]> Git Repo - qemu.git/blame - target-i386/kvm.c
target-i386: the x86 CPL is stored in CS.selector - auto update hflags accordingly.
[qemu.git] / target-i386 / kvm.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <[email protected]>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15#include <sys/types.h>
16#include <sys/ioctl.h>
17#include <sys/mman.h>
25d2e361 18#include <sys/utsname.h>
05330448
AL
19
20#include <linux/kvm.h>
5802e066 21#include <linux/kvm_para.h>
05330448
AL
22
23#include "qemu-common.h"
9c17d615
PB
24#include "sysemu/sysemu.h"
25#include "sysemu/kvm.h"
1d31f66b 26#include "kvm_i386.h"
05330448 27#include "cpu.h"
022c62cb 28#include "exec/gdbstub.h"
1de7afc9
PB
29#include "qemu/host-utils.h"
30#include "qemu/config-file.h"
0d09e41a
PB
31#include "hw/i386/pc.h"
32#include "hw/i386/apic.h"
022c62cb 33#include "exec/ioport.h"
92067bf4 34#include <asm/hyperv.h>
a2cb15b0 35#include "hw/pci/pci.h"
05330448
AL
36
37//#define DEBUG_KVM
38
39#ifdef DEBUG_KVM
8c0d577e 40#define DPRINTF(fmt, ...) \
05330448
AL
41 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
42#else
8c0d577e 43#define DPRINTF(fmt, ...) \
05330448
AL
44 do { } while (0)
45#endif
46
1a03675d
GC
47#define MSR_KVM_WALL_CLOCK 0x11
48#define MSR_KVM_SYSTEM_TIME 0x12
49
c0532a76
MT
50#ifndef BUS_MCEERR_AR
51#define BUS_MCEERR_AR 4
52#endif
53#ifndef BUS_MCEERR_AO
54#define BUS_MCEERR_AO 5
55#endif
56
94a8d39a
JK
57const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
58 KVM_CAP_INFO(SET_TSS_ADDR),
59 KVM_CAP_INFO(EXT_CPUID),
60 KVM_CAP_INFO(MP_STATE),
61 KVM_CAP_LAST_INFO
62};
25d2e361 63
c3a3a7d3
JK
64static bool has_msr_star;
65static bool has_msr_hsave_pa;
f28558d3 66static bool has_msr_tsc_adjust;
aa82ba54 67static bool has_msr_tsc_deadline;
df67696e 68static bool has_msr_feature_control;
c5999bfc 69static bool has_msr_async_pf_en;
bc9a839d 70static bool has_msr_pv_eoi_en;
21e87c46 71static bool has_msr_misc_enable;
79e9ebeb 72static bool has_msr_bndcfgs;
917367aa 73static bool has_msr_kvm_steal_time;
25d2e361 74static int lm_capable_kernel;
7bc3d711
PB
75static bool has_msr_hv_hypercall;
76static bool has_msr_hv_vapic;
48a5f3bc 77static bool has_msr_hv_tsc;
b827df58 78
0d894367
PB
79static bool has_msr_architectural_pmu;
80static uint32_t num_architectural_pmu_counters;
81
1d31f66b
PM
82bool kvm_allows_irq0_override(void)
83{
84 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
85}
86
b827df58
AK
87static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
88{
89 struct kvm_cpuid2 *cpuid;
90 int r, size;
91
92 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
7267c094 93 cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
b827df58
AK
94 cpuid->nent = max;
95 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
76ae317f
MM
96 if (r == 0 && cpuid->nent >= max) {
97 r = -E2BIG;
98 }
b827df58
AK
99 if (r < 0) {
100 if (r == -E2BIG) {
7267c094 101 g_free(cpuid);
b827df58
AK
102 return NULL;
103 } else {
104 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
105 strerror(-r));
106 exit(1);
107 }
108 }
109 return cpuid;
110}
111
dd87f8a6
EH
112/* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
113 * for all entries.
114 */
115static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
116{
117 struct kvm_cpuid2 *cpuid;
118 int max = 1;
119 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
120 max *= 2;
121 }
122 return cpuid;
123}
124
a443bc34 125static const struct kvm_para_features {
0c31b744
GC
126 int cap;
127 int feature;
128} para_features[] = {
129 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
130 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
131 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
0c31b744 132 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
0c31b744
GC
133};
134
ba9bc59e 135static int get_para_features(KVMState *s)
0c31b744
GC
136{
137 int i, features = 0;
138
8e03c100 139 for (i = 0; i < ARRAY_SIZE(para_features); i++) {
ba9bc59e 140 if (kvm_check_extension(s, para_features[i].cap)) {
0c31b744
GC
141 features |= (1 << para_features[i].feature);
142 }
143 }
144
145 return features;
146}
0c31b744
GC
147
148
829ae2f9
EH
149/* Returns the value for a specific register on the cpuid entry
150 */
151static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
152{
153 uint32_t ret = 0;
154 switch (reg) {
155 case R_EAX:
156 ret = entry->eax;
157 break;
158 case R_EBX:
159 ret = entry->ebx;
160 break;
161 case R_ECX:
162 ret = entry->ecx;
163 break;
164 case R_EDX:
165 ret = entry->edx;
166 break;
167 }
168 return ret;
169}
170
4fb73f1d
EH
171/* Find matching entry for function/index on kvm_cpuid2 struct
172 */
173static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
174 uint32_t function,
175 uint32_t index)
176{
177 int i;
178 for (i = 0; i < cpuid->nent; ++i) {
179 if (cpuid->entries[i].function == function &&
180 cpuid->entries[i].index == index) {
181 return &cpuid->entries[i];
182 }
183 }
184 /* not found: */
185 return NULL;
186}
187
ba9bc59e 188uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
c958a8bd 189 uint32_t index, int reg)
b827df58
AK
190{
191 struct kvm_cpuid2 *cpuid;
b827df58
AK
192 uint32_t ret = 0;
193 uint32_t cpuid_1_edx;
8c723b79 194 bool found = false;
b827df58 195
dd87f8a6 196 cpuid = get_supported_cpuid(s);
b827df58 197
4fb73f1d
EH
198 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
199 if (entry) {
200 found = true;
201 ret = cpuid_entry_get_reg(entry, reg);
b827df58
AK
202 }
203
7b46e5ce
EH
204 /* Fixups for the data returned by KVM, below */
205
c2acb022
EH
206 if (function == 1 && reg == R_EDX) {
207 /* KVM before 2.6.30 misreports the following features */
208 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
84bd945c
EH
209 } else if (function == 1 && reg == R_ECX) {
210 /* We can set the hypervisor flag, even if KVM does not return it on
211 * GET_SUPPORTED_CPUID
212 */
213 ret |= CPUID_EXT_HYPERVISOR;
ac67ee26
EH
214 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
215 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
216 * and the irqchip is in the kernel.
217 */
218 if (kvm_irqchip_in_kernel() &&
219 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
220 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
221 }
41e5e76d
EH
222
223 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
224 * without the in-kernel irqchip
225 */
226 if (!kvm_irqchip_in_kernel()) {
227 ret &= ~CPUID_EXT_X2APIC;
b827df58 228 }
c2acb022
EH
229 } else if (function == 0x80000001 && reg == R_EDX) {
230 /* On Intel, kvm returns cpuid according to the Intel spec,
231 * so add missing bits according to the AMD spec:
232 */
233 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
234 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
b827df58
AK
235 }
236
7267c094 237 g_free(cpuid);
b827df58 238
0c31b744 239 /* fallback for older kernels */
8c723b79 240 if ((function == KVM_CPUID_FEATURES) && !found) {
ba9bc59e 241 ret = get_para_features(s);
b9bec74b 242 }
0c31b744
GC
243
244 return ret;
bb0300dc 245}
bb0300dc 246
3c85e74f
HY
247typedef struct HWPoisonPage {
248 ram_addr_t ram_addr;
249 QLIST_ENTRY(HWPoisonPage) list;
250} HWPoisonPage;
251
252static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
253 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
254
255static void kvm_unpoison_all(void *param)
256{
257 HWPoisonPage *page, *next_page;
258
259 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
260 QLIST_REMOVE(page, list);
261 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
7267c094 262 g_free(page);
3c85e74f
HY
263 }
264}
265
3c85e74f
HY
266static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
267{
268 HWPoisonPage *page;
269
270 QLIST_FOREACH(page, &hwpoison_page_list, list) {
271 if (page->ram_addr == ram_addr) {
272 return;
273 }
274 }
7267c094 275 page = g_malloc(sizeof(HWPoisonPage));
3c85e74f
HY
276 page->ram_addr = ram_addr;
277 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
278}
279
e7701825
MT
280static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
281 int *max_banks)
282{
283 int r;
284
14a09518 285 r = kvm_check_extension(s, KVM_CAP_MCE);
e7701825
MT
286 if (r > 0) {
287 *max_banks = r;
288 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
289 }
290 return -ENOSYS;
291}
292
bee615d4 293static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
e7701825 294{
bee615d4 295 CPUX86State *env = &cpu->env;
c34d440a
JK
296 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
297 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
298 uint64_t mcg_status = MCG_STATUS_MCIP;
e7701825 299
c34d440a
JK
300 if (code == BUS_MCEERR_AR) {
301 status |= MCI_STATUS_AR | 0x134;
302 mcg_status |= MCG_STATUS_EIPV;
303 } else {
304 status |= 0xc0;
305 mcg_status |= MCG_STATUS_RIPV;
419fb20a 306 }
8c5cf3b6 307 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
c34d440a
JK
308 (MCM_ADDR_PHYS << 6) | 0xc,
309 cpu_x86_support_mca_broadcast(env) ?
310 MCE_INJECT_BROADCAST : 0);
419fb20a 311}
419fb20a
JK
312
313static void hardware_memory_error(void)
314{
315 fprintf(stderr, "Hardware memory error!\n");
316 exit(1);
317}
318
20d695a9 319int kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
419fb20a 320{
20d695a9
AF
321 X86CPU *cpu = X86_CPU(c);
322 CPUX86State *env = &cpu->env;
419fb20a 323 ram_addr_t ram_addr;
a8170e5e 324 hwaddr paddr;
419fb20a
JK
325
326 if ((env->mcg_cap & MCG_SER_P) && addr
c34d440a 327 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
1b5ec234 328 if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL ||
a60f24b5 329 !kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
419fb20a
JK
330 fprintf(stderr, "Hardware memory error for memory used by "
331 "QEMU itself instead of guest system!\n");
332 /* Hope we are lucky for AO MCE */
333 if (code == BUS_MCEERR_AO) {
334 return 0;
335 } else {
336 hardware_memory_error();
337 }
338 }
3c85e74f 339 kvm_hwpoison_page_add(ram_addr);
bee615d4 340 kvm_mce_inject(cpu, paddr, code);
e56ff191 341 } else {
419fb20a
JK
342 if (code == BUS_MCEERR_AO) {
343 return 0;
344 } else if (code == BUS_MCEERR_AR) {
345 hardware_memory_error();
346 } else {
347 return 1;
348 }
349 }
350 return 0;
351}
352
353int kvm_arch_on_sigbus(int code, void *addr)
354{
182735ef
AF
355 X86CPU *cpu = X86_CPU(first_cpu);
356
357 if ((cpu->env.mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
419fb20a 358 ram_addr_t ram_addr;
a8170e5e 359 hwaddr paddr;
419fb20a
JK
360
361 /* Hope we are lucky for AO MCE */
1b5ec234 362 if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL ||
182735ef 363 !kvm_physical_memory_addr_from_host(first_cpu->kvm_state,
a60f24b5 364 addr, &paddr)) {
419fb20a
JK
365 fprintf(stderr, "Hardware memory error for memory used by "
366 "QEMU itself instead of guest system!: %p\n", addr);
367 return 0;
368 }
3c85e74f 369 kvm_hwpoison_page_add(ram_addr);
182735ef 370 kvm_mce_inject(X86_CPU(first_cpu), paddr, code);
e56ff191 371 } else {
419fb20a
JK
372 if (code == BUS_MCEERR_AO) {
373 return 0;
374 } else if (code == BUS_MCEERR_AR) {
375 hardware_memory_error();
376 } else {
377 return 1;
378 }
379 }
380 return 0;
381}
e7701825 382
1bc22652 383static int kvm_inject_mce_oldstyle(X86CPU *cpu)
ab443475 384{
1bc22652
AF
385 CPUX86State *env = &cpu->env;
386
ab443475
JK
387 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
388 unsigned int bank, bank_num = env->mcg_cap & 0xff;
389 struct kvm_x86_mce mce;
390
391 env->exception_injected = -1;
392
393 /*
394 * There must be at least one bank in use if an MCE is pending.
395 * Find it and use its values for the event injection.
396 */
397 for (bank = 0; bank < bank_num; bank++) {
398 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
399 break;
400 }
401 }
402 assert(bank < bank_num);
403
404 mce.bank = bank;
405 mce.status = env->mce_banks[bank * 4 + 1];
406 mce.mcg_status = env->mcg_status;
407 mce.addr = env->mce_banks[bank * 4 + 2];
408 mce.misc = env->mce_banks[bank * 4 + 3];
409
1bc22652 410 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
ab443475 411 }
ab443475
JK
412 return 0;
413}
414
1dfb4dd9 415static void cpu_update_state(void *opaque, int running, RunState state)
b8cc45d6 416{
317ac620 417 CPUX86State *env = opaque;
b8cc45d6
GC
418
419 if (running) {
420 env->tsc_valid = false;
421 }
422}
423
83b17af5 424unsigned long kvm_arch_vcpu_id(CPUState *cs)
b164e48e 425{
83b17af5
EH
426 X86CPU *cpu = X86_CPU(cs);
427 return cpu->env.cpuid_apic_id;
b164e48e
EH
428}
429
92067bf4
IM
430#ifndef KVM_CPUID_SIGNATURE_NEXT
431#define KVM_CPUID_SIGNATURE_NEXT 0x40000100
432#endif
433
434static bool hyperv_hypercall_available(X86CPU *cpu)
435{
436 return cpu->hyperv_vapic ||
437 (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY);
438}
439
440static bool hyperv_enabled(X86CPU *cpu)
441{
7bc3d711
PB
442 CPUState *cs = CPU(cpu);
443 return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 &&
444 (hyperv_hypercall_available(cpu) ||
48a5f3bc 445 cpu->hyperv_time ||
7bc3d711 446 cpu->hyperv_relaxed_timing);
92067bf4
IM
447}
448
f8bb0565 449#define KVM_MAX_CPUID_ENTRIES 100
0893d460 450
20d695a9 451int kvm_arch_init_vcpu(CPUState *cs)
05330448
AL
452{
453 struct {
486bd5a2 454 struct kvm_cpuid2 cpuid;
f8bb0565 455 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
541dc0d4 456 } QEMU_PACKED cpuid_data;
20d695a9
AF
457 X86CPU *cpu = X86_CPU(cs);
458 CPUX86State *env = &cpu->env;
486bd5a2 459 uint32_t limit, i, j, cpuid_i;
a33609ca 460 uint32_t unused;
bb0300dc 461 struct kvm_cpuid_entry2 *c;
bb0300dc 462 uint32_t signature[3];
234cc647 463 int kvm_base = KVM_CPUID_SIGNATURE;
e7429073 464 int r;
05330448 465
ef4cbe14
SW
466 memset(&cpuid_data, 0, sizeof(cpuid_data));
467
05330448
AL
468 cpuid_i = 0;
469
bb0300dc 470 /* Paravirtualization CPUIDs */
234cc647
PB
471 if (hyperv_enabled(cpu)) {
472 c = &cpuid_data.entries[cpuid_i++];
473 c->function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
eab70139
VR
474 memcpy(signature, "Microsoft Hv", 12);
475 c->eax = HYPERV_CPUID_MIN;
234cc647
PB
476 c->ebx = signature[0];
477 c->ecx = signature[1];
478 c->edx = signature[2];
0c31b744 479
234cc647
PB
480 c = &cpuid_data.entries[cpuid_i++];
481 c->function = HYPERV_CPUID_INTERFACE;
eab70139
VR
482 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
483 c->eax = signature[0];
234cc647
PB
484 c->ebx = 0;
485 c->ecx = 0;
486 c->edx = 0;
eab70139
VR
487
488 c = &cpuid_data.entries[cpuid_i++];
eab70139
VR
489 c->function = HYPERV_CPUID_VERSION;
490 c->eax = 0x00001bbc;
491 c->ebx = 0x00060001;
492
493 c = &cpuid_data.entries[cpuid_i++];
eab70139 494 c->function = HYPERV_CPUID_FEATURES;
92067bf4 495 if (cpu->hyperv_relaxed_timing) {
eab70139
VR
496 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
497 }
92067bf4 498 if (cpu->hyperv_vapic) {
eab70139
VR
499 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
500 c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
7bc3d711 501 has_msr_hv_vapic = true;
eab70139 502 }
48a5f3bc
VR
503 if (cpu->hyperv_time &&
504 kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
505 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
506 c->eax |= HV_X64_MSR_TIME_REF_COUNT_AVAILABLE;
507 c->eax |= 0x200;
508 has_msr_hv_tsc = true;
509 }
eab70139 510 c = &cpuid_data.entries[cpuid_i++];
eab70139 511 c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
92067bf4 512 if (cpu->hyperv_relaxed_timing) {
eab70139
VR
513 c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
514 }
7bc3d711 515 if (has_msr_hv_vapic) {
eab70139
VR
516 c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
517 }
92067bf4 518 c->ebx = cpu->hyperv_spinlock_attempts;
eab70139
VR
519
520 c = &cpuid_data.entries[cpuid_i++];
eab70139
VR
521 c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
522 c->eax = 0x40;
523 c->ebx = 0x40;
524
234cc647 525 kvm_base = KVM_CPUID_SIGNATURE_NEXT;
7bc3d711 526 has_msr_hv_hypercall = true;
eab70139
VR
527 }
528
234cc647
PB
529 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
530 c = &cpuid_data.entries[cpuid_i++];
531 c->function = KVM_CPUID_SIGNATURE | kvm_base;
532 c->eax = 0;
533 c->ebx = signature[0];
534 c->ecx = signature[1];
535 c->edx = signature[2];
536
537 c = &cpuid_data.entries[cpuid_i++];
538 c->function = KVM_CPUID_FEATURES | kvm_base;
539 c->eax = env->features[FEAT_KVM];
540
0c31b744 541 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
bb0300dc 542
bc9a839d
MT
543 has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI);
544
917367aa
MT
545 has_msr_kvm_steal_time = c->eax & (1 << KVM_FEATURE_STEAL_TIME);
546
a33609ca 547 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
05330448
AL
548
549 for (i = 0; i <= limit; i++) {
f8bb0565
IM
550 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
551 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
552 abort();
553 }
bb0300dc 554 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
555
556 switch (i) {
a36b1029
AL
557 case 2: {
558 /* Keep reading function 2 till all the input is received */
559 int times;
560
a36b1029 561 c->function = i;
a33609ca
AL
562 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
563 KVM_CPUID_FLAG_STATE_READ_NEXT;
564 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
565 times = c->eax & 0xff;
a36b1029
AL
566
567 for (j = 1; j < times; ++j) {
f8bb0565
IM
568 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
569 fprintf(stderr, "cpuid_data is full, no space for "
570 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
571 abort();
572 }
a33609ca 573 c = &cpuid_data.entries[cpuid_i++];
a36b1029 574 c->function = i;
a33609ca
AL
575 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
576 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
a36b1029
AL
577 }
578 break;
579 }
486bd5a2
AL
580 case 4:
581 case 0xb:
582 case 0xd:
583 for (j = 0; ; j++) {
31e8c696
AP
584 if (i == 0xd && j == 64) {
585 break;
586 }
486bd5a2
AL
587 c->function = i;
588 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
589 c->index = j;
a33609ca 590 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2 591
b9bec74b 592 if (i == 4 && c->eax == 0) {
486bd5a2 593 break;
b9bec74b
JK
594 }
595 if (i == 0xb && !(c->ecx & 0xff00)) {
486bd5a2 596 break;
b9bec74b
JK
597 }
598 if (i == 0xd && c->eax == 0) {
31e8c696 599 continue;
b9bec74b 600 }
f8bb0565
IM
601 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
602 fprintf(stderr, "cpuid_data is full, no space for "
603 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
604 abort();
605 }
a33609ca 606 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
607 }
608 break;
609 default:
486bd5a2 610 c->function = i;
a33609ca
AL
611 c->flags = 0;
612 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2
AL
613 break;
614 }
05330448 615 }
0d894367
PB
616
617 if (limit >= 0x0a) {
618 uint32_t ver;
619
620 cpu_x86_cpuid(env, 0x0a, 0, &ver, &unused, &unused, &unused);
621 if ((ver & 0xff) > 0) {
622 has_msr_architectural_pmu = true;
623 num_architectural_pmu_counters = (ver & 0xff00) >> 8;
624
625 /* Shouldn't be more than 32, since that's the number of bits
626 * available in EBX to tell us _which_ counters are available.
627 * Play it safe.
628 */
629 if (num_architectural_pmu_counters > MAX_GP_COUNTERS) {
630 num_architectural_pmu_counters = MAX_GP_COUNTERS;
631 }
632 }
633 }
634
a33609ca 635 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
05330448
AL
636
637 for (i = 0x80000000; i <= limit; i++) {
f8bb0565
IM
638 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
639 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
640 abort();
641 }
bb0300dc 642 c = &cpuid_data.entries[cpuid_i++];
05330448 643
05330448 644 c->function = i;
a33609ca
AL
645 c->flags = 0;
646 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
05330448
AL
647 }
648
b3baa152
BW
649 /* Call Centaur's CPUID instructions they are supported. */
650 if (env->cpuid_xlevel2 > 0) {
b3baa152
BW
651 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
652
653 for (i = 0xC0000000; i <= limit; i++) {
f8bb0565
IM
654 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
655 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
656 abort();
657 }
b3baa152
BW
658 c = &cpuid_data.entries[cpuid_i++];
659
660 c->function = i;
661 c->flags = 0;
662 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
663 }
664 }
665
05330448
AL
666 cpuid_data.cpuid.nent = cpuid_i;
667
e7701825 668 if (((env->cpuid_version >> 8)&0xF) >= 6
0514ef2f 669 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
fc7a504c 670 (CPUID_MCE | CPUID_MCA)
a60f24b5 671 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
e7701825
MT
672 uint64_t mcg_cap;
673 int banks;
32a42024 674 int ret;
e7701825 675
a60f24b5 676 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
75d49497
JK
677 if (ret < 0) {
678 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
679 return ret;
e7701825 680 }
75d49497
JK
681
682 if (banks > MCE_BANKS_DEF) {
683 banks = MCE_BANKS_DEF;
684 }
685 mcg_cap &= MCE_CAP_DEF;
686 mcg_cap |= banks;
1bc22652 687 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &mcg_cap);
75d49497
JK
688 if (ret < 0) {
689 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
690 return ret;
691 }
692
693 env->mcg_cap = mcg_cap;
e7701825 694 }
e7701825 695
b8cc45d6
GC
696 qemu_add_vm_change_state_handler(cpu_update_state, env);
697
df67696e
LJ
698 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
699 if (c) {
700 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
701 !!(c->ecx & CPUID_EXT_SMX);
702 }
703
7e680753 704 cpuid_data.cpuid.padding = 0;
1bc22652 705 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
fdc9c41a
JK
706 if (r) {
707 return r;
708 }
e7429073 709
a60f24b5 710 r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL);
e7429073 711 if (r && env->tsc_khz) {
1bc22652 712 r = kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz);
e7429073
JR
713 if (r < 0) {
714 fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
715 return r;
716 }
717 }
e7429073 718
fabacc0f
JK
719 if (kvm_has_xsave()) {
720 env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
721 }
722
e7429073 723 return 0;
05330448
AL
724}
725
20d695a9 726void kvm_arch_reset_vcpu(CPUState *cs)
caa5af0f 727{
20d695a9
AF
728 X86CPU *cpu = X86_CPU(cs);
729 CPUX86State *env = &cpu->env;
dd673288 730
e73223a5 731 env->exception_injected = -1;
0e607a80 732 env->interrupt_injected = -1;
1a5e9d2f 733 env->xcr0 = 1;
ddced198 734 if (kvm_irqchip_in_kernel()) {
dd673288 735 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
ddced198
MT
736 KVM_MP_STATE_UNINITIALIZED;
737 } else {
738 env->mp_state = KVM_MP_STATE_RUNNABLE;
739 }
caa5af0f
JK
740}
741
c3a3a7d3 742static int kvm_get_supported_msrs(KVMState *s)
05330448 743{
75b10c43 744 static int kvm_supported_msrs;
c3a3a7d3 745 int ret = 0;
05330448
AL
746
747 /* first time */
75b10c43 748 if (kvm_supported_msrs == 0) {
05330448
AL
749 struct kvm_msr_list msr_list, *kvm_msr_list;
750
75b10c43 751 kvm_supported_msrs = -1;
05330448
AL
752
753 /* Obtain MSR list from KVM. These are the MSRs that we must
754 * save/restore */
4c9f7372 755 msr_list.nmsrs = 0;
c3a3a7d3 756 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
6fb6d245 757 if (ret < 0 && ret != -E2BIG) {
c3a3a7d3 758 return ret;
6fb6d245 759 }
d9db889f
JK
760 /* Old kernel modules had a bug and could write beyond the provided
761 memory. Allocate at least a safe amount of 1K. */
7267c094 762 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
d9db889f
JK
763 msr_list.nmsrs *
764 sizeof(msr_list.indices[0])));
05330448 765
55308450 766 kvm_msr_list->nmsrs = msr_list.nmsrs;
c3a3a7d3 767 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
05330448
AL
768 if (ret >= 0) {
769 int i;
770
771 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
772 if (kvm_msr_list->indices[i] == MSR_STAR) {
c3a3a7d3 773 has_msr_star = true;
75b10c43
MT
774 continue;
775 }
776 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
c3a3a7d3 777 has_msr_hsave_pa = true;
75b10c43 778 continue;
05330448 779 }
f28558d3
WA
780 if (kvm_msr_list->indices[i] == MSR_TSC_ADJUST) {
781 has_msr_tsc_adjust = true;
782 continue;
783 }
aa82ba54
LJ
784 if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
785 has_msr_tsc_deadline = true;
786 continue;
787 }
21e87c46
AK
788 if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
789 has_msr_misc_enable = true;
790 continue;
791 }
79e9ebeb
LJ
792 if (kvm_msr_list->indices[i] == MSR_IA32_BNDCFGS) {
793 has_msr_bndcfgs = true;
794 continue;
795 }
05330448
AL
796 }
797 }
798
7267c094 799 g_free(kvm_msr_list);
05330448
AL
800 }
801
c3a3a7d3 802 return ret;
05330448
AL
803}
804
cad1e282 805int kvm_arch_init(KVMState *s)
20420430 806{
11076198 807 uint64_t identity_base = 0xfffbc000;
39d6960a 808 uint64_t shadow_mem;
20420430 809 int ret;
25d2e361 810 struct utsname utsname;
20420430 811
c3a3a7d3 812 ret = kvm_get_supported_msrs(s);
20420430 813 if (ret < 0) {
20420430
SY
814 return ret;
815 }
25d2e361
MT
816
817 uname(&utsname);
818 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
819
4c5b10b7 820 /*
11076198
JK
821 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
822 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
823 * Since these must be part of guest physical memory, we need to allocate
824 * them, both by setting their start addresses in the kernel and by
825 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
826 *
827 * Older KVM versions may not support setting the identity map base. In
828 * that case we need to stick with the default, i.e. a 256K maximum BIOS
829 * size.
4c5b10b7 830 */
11076198
JK
831 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
832 /* Allows up to 16M BIOSes. */
833 identity_base = 0xfeffc000;
834
835 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
836 if (ret < 0) {
837 return ret;
838 }
4c5b10b7 839 }
e56ff191 840
11076198
JK
841 /* Set TSS base one page after EPT identity map. */
842 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
20420430
SY
843 if (ret < 0) {
844 return ret;
845 }
846
11076198
JK
847 /* Tell fw_cfg to notify the BIOS to reserve the range. */
848 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
20420430 849 if (ret < 0) {
11076198 850 fprintf(stderr, "e820_add_entry() table is full\n");
20420430
SY
851 return ret;
852 }
3c85e74f 853 qemu_register_reset(kvm_unpoison_all, NULL);
20420430 854
36ad0e94
MA
855 shadow_mem = qemu_opt_get_size(qemu_get_machine_opts(),
856 "kvm_shadow_mem", -1);
857 if (shadow_mem != -1) {
858 shadow_mem /= 4096;
859 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
860 if (ret < 0) {
861 return ret;
39d6960a
JK
862 }
863 }
11076198 864 return 0;
05330448 865}
b9bec74b 866
05330448
AL
867static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
868{
869 lhs->selector = rhs->selector;
870 lhs->base = rhs->base;
871 lhs->limit = rhs->limit;
872 lhs->type = 3;
873 lhs->present = 1;
874 lhs->dpl = 3;
875 lhs->db = 0;
876 lhs->s = 1;
877 lhs->l = 0;
878 lhs->g = 0;
879 lhs->avl = 0;
880 lhs->unusable = 0;
881}
882
883static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
884{
885 unsigned flags = rhs->flags;
886 lhs->selector = rhs->selector;
887 lhs->base = rhs->base;
888 lhs->limit = rhs->limit;
889 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
890 lhs->present = (flags & DESC_P_MASK) != 0;
acaa7550 891 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
05330448
AL
892 lhs->db = (flags >> DESC_B_SHIFT) & 1;
893 lhs->s = (flags & DESC_S_MASK) != 0;
894 lhs->l = (flags >> DESC_L_SHIFT) & 1;
895 lhs->g = (flags & DESC_G_MASK) != 0;
896 lhs->avl = (flags & DESC_AVL_MASK) != 0;
897 lhs->unusable = 0;
7e680753 898 lhs->padding = 0;
05330448
AL
899}
900
901static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
902{
903 lhs->selector = rhs->selector;
904 lhs->base = rhs->base;
905 lhs->limit = rhs->limit;
b9bec74b
JK
906 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
907 (rhs->present * DESC_P_MASK) |
908 (rhs->dpl << DESC_DPL_SHIFT) |
909 (rhs->db << DESC_B_SHIFT) |
910 (rhs->s * DESC_S_MASK) |
911 (rhs->l << DESC_L_SHIFT) |
912 (rhs->g * DESC_G_MASK) |
913 (rhs->avl * DESC_AVL_MASK);
05330448
AL
914}
915
916static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
917{
b9bec74b 918 if (set) {
05330448 919 *kvm_reg = *qemu_reg;
b9bec74b 920 } else {
05330448 921 *qemu_reg = *kvm_reg;
b9bec74b 922 }
05330448
AL
923}
924
1bc22652 925static int kvm_getput_regs(X86CPU *cpu, int set)
05330448 926{
1bc22652 927 CPUX86State *env = &cpu->env;
05330448
AL
928 struct kvm_regs regs;
929 int ret = 0;
930
931 if (!set) {
1bc22652 932 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
b9bec74b 933 if (ret < 0) {
05330448 934 return ret;
b9bec74b 935 }
05330448
AL
936 }
937
938 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
939 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
940 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
941 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
942 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
943 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
944 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
945 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
946#ifdef TARGET_X86_64
947 kvm_getput_reg(&regs.r8, &env->regs[8], set);
948 kvm_getput_reg(&regs.r9, &env->regs[9], set);
949 kvm_getput_reg(&regs.r10, &env->regs[10], set);
950 kvm_getput_reg(&regs.r11, &env->regs[11], set);
951 kvm_getput_reg(&regs.r12, &env->regs[12], set);
952 kvm_getput_reg(&regs.r13, &env->regs[13], set);
953 kvm_getput_reg(&regs.r14, &env->regs[14], set);
954 kvm_getput_reg(&regs.r15, &env->regs[15], set);
955#endif
956
957 kvm_getput_reg(&regs.rflags, &env->eflags, set);
958 kvm_getput_reg(&regs.rip, &env->eip, set);
959
b9bec74b 960 if (set) {
1bc22652 961 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
b9bec74b 962 }
05330448
AL
963
964 return ret;
965}
966
1bc22652 967static int kvm_put_fpu(X86CPU *cpu)
05330448 968{
1bc22652 969 CPUX86State *env = &cpu->env;
05330448
AL
970 struct kvm_fpu fpu;
971 int i;
972
973 memset(&fpu, 0, sizeof fpu);
974 fpu.fsw = env->fpus & ~(7 << 11);
975 fpu.fsw |= (env->fpstt & 7) << 11;
976 fpu.fcw = env->fpuc;
42cc8fa6
JK
977 fpu.last_opcode = env->fpop;
978 fpu.last_ip = env->fpip;
979 fpu.last_dp = env->fpdp;
b9bec74b
JK
980 for (i = 0; i < 8; ++i) {
981 fpu.ftwx |= (!env->fptags[i]) << i;
982 }
05330448
AL
983 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
984 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
985 fpu.mxcsr = env->mxcsr;
986
1bc22652 987 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
05330448
AL
988}
989
6b42494b
JK
990#define XSAVE_FCW_FSW 0
991#define XSAVE_FTW_FOP 1
f1665b21
SY
992#define XSAVE_CWD_RIP 2
993#define XSAVE_CWD_RDP 4
994#define XSAVE_MXCSR 6
995#define XSAVE_ST_SPACE 8
996#define XSAVE_XMM_SPACE 40
997#define XSAVE_XSTATE_BV 128
998#define XSAVE_YMMH_SPACE 144
79e9ebeb
LJ
999#define XSAVE_BNDREGS 240
1000#define XSAVE_BNDCSR 256
f1665b21 1001
1bc22652 1002static int kvm_put_xsave(X86CPU *cpu)
f1665b21 1003{
1bc22652 1004 CPUX86State *env = &cpu->env;
fabacc0f 1005 struct kvm_xsave* xsave = env->kvm_xsave_buf;
42cc8fa6 1006 uint16_t cwd, swd, twd;
fabacc0f 1007 int i, r;
f1665b21 1008
b9bec74b 1009 if (!kvm_has_xsave()) {
1bc22652 1010 return kvm_put_fpu(cpu);
b9bec74b 1011 }
f1665b21 1012
f1665b21 1013 memset(xsave, 0, sizeof(struct kvm_xsave));
6115c0a8 1014 twd = 0;
f1665b21
SY
1015 swd = env->fpus & ~(7 << 11);
1016 swd |= (env->fpstt & 7) << 11;
1017 cwd = env->fpuc;
b9bec74b 1018 for (i = 0; i < 8; ++i) {
f1665b21 1019 twd |= (!env->fptags[i]) << i;
b9bec74b 1020 }
6b42494b
JK
1021 xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
1022 xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
42cc8fa6
JK
1023 memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
1024 memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
f1665b21
SY
1025 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
1026 sizeof env->fpregs);
1027 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
1028 sizeof env->xmm_regs);
1029 xsave->region[XSAVE_MXCSR] = env->mxcsr;
1030 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
1031 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
1032 sizeof env->ymmh_regs);
79e9ebeb
LJ
1033 memcpy(&xsave->region[XSAVE_BNDREGS], env->bnd_regs,
1034 sizeof env->bnd_regs);
1035 memcpy(&xsave->region[XSAVE_BNDCSR], &env->bndcs_regs,
1036 sizeof(env->bndcs_regs));
1bc22652 1037 r = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
0f53994f 1038 return r;
f1665b21
SY
1039}
1040
1bc22652 1041static int kvm_put_xcrs(X86CPU *cpu)
f1665b21 1042{
1bc22652 1043 CPUX86State *env = &cpu->env;
f1665b21
SY
1044 struct kvm_xcrs xcrs;
1045
b9bec74b 1046 if (!kvm_has_xcrs()) {
f1665b21 1047 return 0;
b9bec74b 1048 }
f1665b21
SY
1049
1050 xcrs.nr_xcrs = 1;
1051 xcrs.flags = 0;
1052 xcrs.xcrs[0].xcr = 0;
1053 xcrs.xcrs[0].value = env->xcr0;
1bc22652 1054 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
f1665b21
SY
1055}
1056
1bc22652 1057static int kvm_put_sregs(X86CPU *cpu)
05330448 1058{
1bc22652 1059 CPUX86State *env = &cpu->env;
05330448
AL
1060 struct kvm_sregs sregs;
1061
0e607a80
JK
1062 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
1063 if (env->interrupt_injected >= 0) {
1064 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
1065 (uint64_t)1 << (env->interrupt_injected % 64);
1066 }
05330448
AL
1067
1068 if ((env->eflags & VM_MASK)) {
b9bec74b
JK
1069 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
1070 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
1071 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
1072 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
1073 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
1074 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
05330448 1075 } else {
b9bec74b
JK
1076 set_seg(&sregs.cs, &env->segs[R_CS]);
1077 set_seg(&sregs.ds, &env->segs[R_DS]);
1078 set_seg(&sregs.es, &env->segs[R_ES]);
1079 set_seg(&sregs.fs, &env->segs[R_FS]);
1080 set_seg(&sregs.gs, &env->segs[R_GS]);
1081 set_seg(&sregs.ss, &env->segs[R_SS]);
05330448
AL
1082 }
1083
1084 set_seg(&sregs.tr, &env->tr);
1085 set_seg(&sregs.ldt, &env->ldt);
1086
1087 sregs.idt.limit = env->idt.limit;
1088 sregs.idt.base = env->idt.base;
7e680753 1089 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
05330448
AL
1090 sregs.gdt.limit = env->gdt.limit;
1091 sregs.gdt.base = env->gdt.base;
7e680753 1092 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
05330448
AL
1093
1094 sregs.cr0 = env->cr[0];
1095 sregs.cr2 = env->cr[2];
1096 sregs.cr3 = env->cr[3];
1097 sregs.cr4 = env->cr[4];
1098
02e51483
CF
1099 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
1100 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
05330448
AL
1101
1102 sregs.efer = env->efer;
1103
1bc22652 1104 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
05330448
AL
1105}
1106
1107static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
1108 uint32_t index, uint64_t value)
1109{
1110 entry->index = index;
1111 entry->data = value;
1112}
1113
7477cd38
MT
1114static int kvm_put_tscdeadline_msr(X86CPU *cpu)
1115{
1116 CPUX86State *env = &cpu->env;
1117 struct {
1118 struct kvm_msrs info;
1119 struct kvm_msr_entry entries[1];
1120 } msr_data;
1121 struct kvm_msr_entry *msrs = msr_data.entries;
1122
1123 if (!has_msr_tsc_deadline) {
1124 return 0;
1125 }
1126
1127 kvm_msr_entry_set(&msrs[0], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
1128
1129 msr_data.info.nmsrs = 1;
1130
1131 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
1132}
1133
6bdf863d
JK
1134/*
1135 * Provide a separate write service for the feature control MSR in order to
1136 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
1137 * before writing any other state because forcibly leaving nested mode
1138 * invalidates the VCPU state.
1139 */
1140static int kvm_put_msr_feature_control(X86CPU *cpu)
1141{
1142 struct {
1143 struct kvm_msrs info;
1144 struct kvm_msr_entry entry;
1145 } msr_data;
1146
1147 kvm_msr_entry_set(&msr_data.entry, MSR_IA32_FEATURE_CONTROL,
1148 cpu->env.msr_ia32_feature_control);
1149 msr_data.info.nmsrs = 1;
1150 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
1151}
1152
1bc22652 1153static int kvm_put_msrs(X86CPU *cpu, int level)
05330448 1154{
1bc22652 1155 CPUX86State *env = &cpu->env;
05330448
AL
1156 struct {
1157 struct kvm_msrs info;
1158 struct kvm_msr_entry entries[100];
1159 } msr_data;
1160 struct kvm_msr_entry *msrs = msr_data.entries;
0d894367 1161 int n = 0, i;
05330448
AL
1162
1163 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
1164 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
1165 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
0c03266a 1166 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
c3a3a7d3 1167 if (has_msr_star) {
b9bec74b
JK
1168 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
1169 }
c3a3a7d3 1170 if (has_msr_hsave_pa) {
75b10c43 1171 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
b9bec74b 1172 }
f28558d3
WA
1173 if (has_msr_tsc_adjust) {
1174 kvm_msr_entry_set(&msrs[n++], MSR_TSC_ADJUST, env->tsc_adjust);
1175 }
21e87c46
AK
1176 if (has_msr_misc_enable) {
1177 kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
1178 env->msr_ia32_misc_enable);
1179 }
439d19f2
PB
1180 if (has_msr_bndcfgs) {
1181 kvm_msr_entry_set(&msrs[n++], MSR_IA32_BNDCFGS, env->msr_bndcfgs);
1182 }
05330448 1183#ifdef TARGET_X86_64
25d2e361
MT
1184 if (lm_capable_kernel) {
1185 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
1186 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
1187 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
1188 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
1189 }
05330448 1190#endif
ff5c186b 1191 /*
0d894367
PB
1192 * The following MSRs have side effects on the guest or are too heavy
1193 * for normal writeback. Limit them to reset or full state updates.
ff5c186b
JK
1194 */
1195 if (level >= KVM_PUT_RESET_STATE) {
0522604b 1196 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
ea643051
JK
1197 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1198 env->system_time_msr);
1199 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
c5999bfc
JK
1200 if (has_msr_async_pf_en) {
1201 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1202 env->async_pf_en_msr);
1203 }
bc9a839d
MT
1204 if (has_msr_pv_eoi_en) {
1205 kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN,
1206 env->pv_eoi_en_msr);
1207 }
917367aa
MT
1208 if (has_msr_kvm_steal_time) {
1209 kvm_msr_entry_set(&msrs[n++], MSR_KVM_STEAL_TIME,
1210 env->steal_time_msr);
1211 }
0d894367
PB
1212 if (has_msr_architectural_pmu) {
1213 /* Stop the counter. */
1214 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
1215 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_CTRL, 0);
1216
1217 /* Set the counter values. */
1218 for (i = 0; i < MAX_FIXED_COUNTERS; i++) {
1219 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR0 + i,
1220 env->msr_fixed_counters[i]);
1221 }
1222 for (i = 0; i < num_architectural_pmu_counters; i++) {
1223 kvm_msr_entry_set(&msrs[n++], MSR_P6_PERFCTR0 + i,
1224 env->msr_gp_counters[i]);
1225 kvm_msr_entry_set(&msrs[n++], MSR_P6_EVNTSEL0 + i,
1226 env->msr_gp_evtsel[i]);
1227 }
1228 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_STATUS,
1229 env->msr_global_status);
1230 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1231 env->msr_global_ovf_ctrl);
1232
1233 /* Now start the PMU. */
1234 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR_CTRL,
1235 env->msr_fixed_ctr_ctrl);
1236 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_CTRL,
1237 env->msr_global_ctrl);
1238 }
7bc3d711 1239 if (has_msr_hv_hypercall) {
1c90ef26
VR
1240 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID,
1241 env->msr_hv_guest_os_id);
1242 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL,
1243 env->msr_hv_hypercall);
eab70139 1244 }
7bc3d711 1245 if (has_msr_hv_vapic) {
5ef68987
VR
1246 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE,
1247 env->msr_hv_vapic);
eab70139 1248 }
48a5f3bc
VR
1249 if (has_msr_hv_tsc) {
1250 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_REFERENCE_TSC,
1251 env->msr_hv_tsc);
1252 }
6bdf863d
JK
1253
1254 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
1255 * kvm_put_msr_feature_control. */
ea643051 1256 }
57780495 1257 if (env->mcg_cap) {
d8da8574 1258 int i;
b9bec74b 1259
c34d440a
JK
1260 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1261 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1262 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1263 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
57780495
MT
1264 }
1265 }
1a03675d 1266
05330448
AL
1267 msr_data.info.nmsrs = n;
1268
1bc22652 1269 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
05330448
AL
1270
1271}
1272
1273
1bc22652 1274static int kvm_get_fpu(X86CPU *cpu)
05330448 1275{
1bc22652 1276 CPUX86State *env = &cpu->env;
05330448
AL
1277 struct kvm_fpu fpu;
1278 int i, ret;
1279
1bc22652 1280 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
b9bec74b 1281 if (ret < 0) {
05330448 1282 return ret;
b9bec74b 1283 }
05330448
AL
1284
1285 env->fpstt = (fpu.fsw >> 11) & 7;
1286 env->fpus = fpu.fsw;
1287 env->fpuc = fpu.fcw;
42cc8fa6
JK
1288 env->fpop = fpu.last_opcode;
1289 env->fpip = fpu.last_ip;
1290 env->fpdp = fpu.last_dp;
b9bec74b
JK
1291 for (i = 0; i < 8; ++i) {
1292 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1293 }
05330448
AL
1294 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1295 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1296 env->mxcsr = fpu.mxcsr;
1297
1298 return 0;
1299}
1300
1bc22652 1301static int kvm_get_xsave(X86CPU *cpu)
f1665b21 1302{
1bc22652 1303 CPUX86State *env = &cpu->env;
fabacc0f 1304 struct kvm_xsave* xsave = env->kvm_xsave_buf;
f1665b21 1305 int ret, i;
42cc8fa6 1306 uint16_t cwd, swd, twd;
f1665b21 1307
b9bec74b 1308 if (!kvm_has_xsave()) {
1bc22652 1309 return kvm_get_fpu(cpu);
b9bec74b 1310 }
f1665b21 1311
1bc22652 1312 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
0f53994f 1313 if (ret < 0) {
f1665b21 1314 return ret;
0f53994f 1315 }
f1665b21 1316
6b42494b
JK
1317 cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1318 swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1319 twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1320 env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
f1665b21
SY
1321 env->fpstt = (swd >> 11) & 7;
1322 env->fpus = swd;
1323 env->fpuc = cwd;
b9bec74b 1324 for (i = 0; i < 8; ++i) {
f1665b21 1325 env->fptags[i] = !((twd >> i) & 1);
b9bec74b 1326 }
42cc8fa6
JK
1327 memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1328 memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
f1665b21
SY
1329 env->mxcsr = xsave->region[XSAVE_MXCSR];
1330 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1331 sizeof env->fpregs);
1332 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1333 sizeof env->xmm_regs);
1334 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1335 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1336 sizeof env->ymmh_regs);
79e9ebeb
LJ
1337 memcpy(env->bnd_regs, &xsave->region[XSAVE_BNDREGS],
1338 sizeof env->bnd_regs);
1339 memcpy(&env->bndcs_regs, &xsave->region[XSAVE_BNDCSR],
1340 sizeof(env->bndcs_regs));
f1665b21 1341 return 0;
f1665b21
SY
1342}
1343
1bc22652 1344static int kvm_get_xcrs(X86CPU *cpu)
f1665b21 1345{
1bc22652 1346 CPUX86State *env = &cpu->env;
f1665b21
SY
1347 int i, ret;
1348 struct kvm_xcrs xcrs;
1349
b9bec74b 1350 if (!kvm_has_xcrs()) {
f1665b21 1351 return 0;
b9bec74b 1352 }
f1665b21 1353
1bc22652 1354 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
b9bec74b 1355 if (ret < 0) {
f1665b21 1356 return ret;
b9bec74b 1357 }
f1665b21 1358
b9bec74b 1359 for (i = 0; i < xcrs.nr_xcrs; i++) {
f1665b21 1360 /* Only support xcr0 now */
0fd53fec
PB
1361 if (xcrs.xcrs[i].xcr == 0) {
1362 env->xcr0 = xcrs.xcrs[i].value;
f1665b21
SY
1363 break;
1364 }
b9bec74b 1365 }
f1665b21 1366 return 0;
f1665b21
SY
1367}
1368
1bc22652 1369static int kvm_get_sregs(X86CPU *cpu)
05330448 1370{
1bc22652 1371 CPUX86State *env = &cpu->env;
05330448
AL
1372 struct kvm_sregs sregs;
1373 uint32_t hflags;
0e607a80 1374 int bit, i, ret;
05330448 1375
1bc22652 1376 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
b9bec74b 1377 if (ret < 0) {
05330448 1378 return ret;
b9bec74b 1379 }
05330448 1380
0e607a80
JK
1381 /* There can only be one pending IRQ set in the bitmap at a time, so try
1382 to find it and save its number instead (-1 for none). */
1383 env->interrupt_injected = -1;
1384 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1385 if (sregs.interrupt_bitmap[i]) {
1386 bit = ctz64(sregs.interrupt_bitmap[i]);
1387 env->interrupt_injected = i * 64 + bit;
1388 break;
1389 }
1390 }
05330448
AL
1391
1392 get_seg(&env->segs[R_CS], &sregs.cs);
1393 get_seg(&env->segs[R_DS], &sregs.ds);
1394 get_seg(&env->segs[R_ES], &sregs.es);
1395 get_seg(&env->segs[R_FS], &sregs.fs);
1396 get_seg(&env->segs[R_GS], &sregs.gs);
1397 get_seg(&env->segs[R_SS], &sregs.ss);
1398
1399 get_seg(&env->tr, &sregs.tr);
1400 get_seg(&env->ldt, &sregs.ldt);
1401
1402 env->idt.limit = sregs.idt.limit;
1403 env->idt.base = sregs.idt.base;
1404 env->gdt.limit = sregs.gdt.limit;
1405 env->gdt.base = sregs.gdt.base;
1406
1407 env->cr[0] = sregs.cr0;
1408 env->cr[2] = sregs.cr2;
1409 env->cr[3] = sregs.cr3;
1410 env->cr[4] = sregs.cr4;
1411
05330448 1412 env->efer = sregs.efer;
cce47516
JK
1413
1414 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
05330448 1415
b9bec74b
JK
1416#define HFLAG_COPY_MASK \
1417 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1418 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1419 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1420 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
05330448
AL
1421
1422 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1423 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1424 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
b9bec74b 1425 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
05330448
AL
1426 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1427 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
b9bec74b 1428 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
05330448
AL
1429
1430 if (env->efer & MSR_EFER_LMA) {
1431 hflags |= HF_LMA_MASK;
1432 }
1433
1434 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1435 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1436 } else {
1437 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
b9bec74b 1438 (DESC_B_SHIFT - HF_CS32_SHIFT);
05330448 1439 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
b9bec74b
JK
1440 (DESC_B_SHIFT - HF_SS32_SHIFT);
1441 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1442 !(hflags & HF_CS32_MASK)) {
1443 hflags |= HF_ADDSEG_MASK;
1444 } else {
1445 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1446 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1447 }
05330448
AL
1448 }
1449 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
05330448
AL
1450
1451 return 0;
1452}
1453
1bc22652 1454static int kvm_get_msrs(X86CPU *cpu)
05330448 1455{
1bc22652 1456 CPUX86State *env = &cpu->env;
05330448
AL
1457 struct {
1458 struct kvm_msrs info;
1459 struct kvm_msr_entry entries[100];
1460 } msr_data;
1461 struct kvm_msr_entry *msrs = msr_data.entries;
1462 int ret, i, n;
1463
1464 n = 0;
1465 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1466 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1467 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
0c03266a 1468 msrs[n++].index = MSR_PAT;
c3a3a7d3 1469 if (has_msr_star) {
b9bec74b
JK
1470 msrs[n++].index = MSR_STAR;
1471 }
c3a3a7d3 1472 if (has_msr_hsave_pa) {
75b10c43 1473 msrs[n++].index = MSR_VM_HSAVE_PA;
b9bec74b 1474 }
f28558d3
WA
1475 if (has_msr_tsc_adjust) {
1476 msrs[n++].index = MSR_TSC_ADJUST;
1477 }
aa82ba54
LJ
1478 if (has_msr_tsc_deadline) {
1479 msrs[n++].index = MSR_IA32_TSCDEADLINE;
1480 }
21e87c46
AK
1481 if (has_msr_misc_enable) {
1482 msrs[n++].index = MSR_IA32_MISC_ENABLE;
1483 }
df67696e
LJ
1484 if (has_msr_feature_control) {
1485 msrs[n++].index = MSR_IA32_FEATURE_CONTROL;
1486 }
79e9ebeb
LJ
1487 if (has_msr_bndcfgs) {
1488 msrs[n++].index = MSR_IA32_BNDCFGS;
1489 }
b8cc45d6
GC
1490
1491 if (!env->tsc_valid) {
1492 msrs[n++].index = MSR_IA32_TSC;
1354869c 1493 env->tsc_valid = !runstate_is_running();
b8cc45d6
GC
1494 }
1495
05330448 1496#ifdef TARGET_X86_64
25d2e361
MT
1497 if (lm_capable_kernel) {
1498 msrs[n++].index = MSR_CSTAR;
1499 msrs[n++].index = MSR_KERNELGSBASE;
1500 msrs[n++].index = MSR_FMASK;
1501 msrs[n++].index = MSR_LSTAR;
1502 }
05330448 1503#endif
1a03675d
GC
1504 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1505 msrs[n++].index = MSR_KVM_WALL_CLOCK;
c5999bfc
JK
1506 if (has_msr_async_pf_en) {
1507 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1508 }
bc9a839d
MT
1509 if (has_msr_pv_eoi_en) {
1510 msrs[n++].index = MSR_KVM_PV_EOI_EN;
1511 }
917367aa
MT
1512 if (has_msr_kvm_steal_time) {
1513 msrs[n++].index = MSR_KVM_STEAL_TIME;
1514 }
0d894367
PB
1515 if (has_msr_architectural_pmu) {
1516 msrs[n++].index = MSR_CORE_PERF_FIXED_CTR_CTRL;
1517 msrs[n++].index = MSR_CORE_PERF_GLOBAL_CTRL;
1518 msrs[n++].index = MSR_CORE_PERF_GLOBAL_STATUS;
1519 msrs[n++].index = MSR_CORE_PERF_GLOBAL_OVF_CTRL;
1520 for (i = 0; i < MAX_FIXED_COUNTERS; i++) {
1521 msrs[n++].index = MSR_CORE_PERF_FIXED_CTR0 + i;
1522 }
1523 for (i = 0; i < num_architectural_pmu_counters; i++) {
1524 msrs[n++].index = MSR_P6_PERFCTR0 + i;
1525 msrs[n++].index = MSR_P6_EVNTSEL0 + i;
1526 }
1527 }
1a03675d 1528
57780495
MT
1529 if (env->mcg_cap) {
1530 msrs[n++].index = MSR_MCG_STATUS;
1531 msrs[n++].index = MSR_MCG_CTL;
b9bec74b 1532 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
57780495 1533 msrs[n++].index = MSR_MC0_CTL + i;
b9bec74b 1534 }
57780495 1535 }
57780495 1536
1c90ef26
VR
1537 if (has_msr_hv_hypercall) {
1538 msrs[n++].index = HV_X64_MSR_HYPERCALL;
1539 msrs[n++].index = HV_X64_MSR_GUEST_OS_ID;
1540 }
5ef68987
VR
1541 if (has_msr_hv_vapic) {
1542 msrs[n++].index = HV_X64_MSR_APIC_ASSIST_PAGE;
1543 }
48a5f3bc
VR
1544 if (has_msr_hv_tsc) {
1545 msrs[n++].index = HV_X64_MSR_REFERENCE_TSC;
1546 }
5ef68987 1547
05330448 1548 msr_data.info.nmsrs = n;
1bc22652 1549 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
b9bec74b 1550 if (ret < 0) {
05330448 1551 return ret;
b9bec74b 1552 }
05330448
AL
1553
1554 for (i = 0; i < ret; i++) {
0d894367
PB
1555 uint32_t index = msrs[i].index;
1556 switch (index) {
05330448
AL
1557 case MSR_IA32_SYSENTER_CS:
1558 env->sysenter_cs = msrs[i].data;
1559 break;
1560 case MSR_IA32_SYSENTER_ESP:
1561 env->sysenter_esp = msrs[i].data;
1562 break;
1563 case MSR_IA32_SYSENTER_EIP:
1564 env->sysenter_eip = msrs[i].data;
1565 break;
0c03266a
JK
1566 case MSR_PAT:
1567 env->pat = msrs[i].data;
1568 break;
05330448
AL
1569 case MSR_STAR:
1570 env->star = msrs[i].data;
1571 break;
1572#ifdef TARGET_X86_64
1573 case MSR_CSTAR:
1574 env->cstar = msrs[i].data;
1575 break;
1576 case MSR_KERNELGSBASE:
1577 env->kernelgsbase = msrs[i].data;
1578 break;
1579 case MSR_FMASK:
1580 env->fmask = msrs[i].data;
1581 break;
1582 case MSR_LSTAR:
1583 env->lstar = msrs[i].data;
1584 break;
1585#endif
1586 case MSR_IA32_TSC:
1587 env->tsc = msrs[i].data;
1588 break;
f28558d3
WA
1589 case MSR_TSC_ADJUST:
1590 env->tsc_adjust = msrs[i].data;
1591 break;
aa82ba54
LJ
1592 case MSR_IA32_TSCDEADLINE:
1593 env->tsc_deadline = msrs[i].data;
1594 break;
aa851e36
MT
1595 case MSR_VM_HSAVE_PA:
1596 env->vm_hsave = msrs[i].data;
1597 break;
1a03675d
GC
1598 case MSR_KVM_SYSTEM_TIME:
1599 env->system_time_msr = msrs[i].data;
1600 break;
1601 case MSR_KVM_WALL_CLOCK:
1602 env->wall_clock_msr = msrs[i].data;
1603 break;
57780495
MT
1604 case MSR_MCG_STATUS:
1605 env->mcg_status = msrs[i].data;
1606 break;
1607 case MSR_MCG_CTL:
1608 env->mcg_ctl = msrs[i].data;
1609 break;
21e87c46
AK
1610 case MSR_IA32_MISC_ENABLE:
1611 env->msr_ia32_misc_enable = msrs[i].data;
1612 break;
0779caeb
ACL
1613 case MSR_IA32_FEATURE_CONTROL:
1614 env->msr_ia32_feature_control = msrs[i].data;
df67696e 1615 break;
79e9ebeb
LJ
1616 case MSR_IA32_BNDCFGS:
1617 env->msr_bndcfgs = msrs[i].data;
1618 break;
57780495 1619 default:
57780495
MT
1620 if (msrs[i].index >= MSR_MC0_CTL &&
1621 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1622 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
57780495 1623 }
d8da8574 1624 break;
f6584ee2
GN
1625 case MSR_KVM_ASYNC_PF_EN:
1626 env->async_pf_en_msr = msrs[i].data;
1627 break;
bc9a839d
MT
1628 case MSR_KVM_PV_EOI_EN:
1629 env->pv_eoi_en_msr = msrs[i].data;
1630 break;
917367aa
MT
1631 case MSR_KVM_STEAL_TIME:
1632 env->steal_time_msr = msrs[i].data;
1633 break;
0d894367
PB
1634 case MSR_CORE_PERF_FIXED_CTR_CTRL:
1635 env->msr_fixed_ctr_ctrl = msrs[i].data;
1636 break;
1637 case MSR_CORE_PERF_GLOBAL_CTRL:
1638 env->msr_global_ctrl = msrs[i].data;
1639 break;
1640 case MSR_CORE_PERF_GLOBAL_STATUS:
1641 env->msr_global_status = msrs[i].data;
1642 break;
1643 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
1644 env->msr_global_ovf_ctrl = msrs[i].data;
1645 break;
1646 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
1647 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
1648 break;
1649 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
1650 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
1651 break;
1652 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
1653 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
1654 break;
1c90ef26
VR
1655 case HV_X64_MSR_HYPERCALL:
1656 env->msr_hv_hypercall = msrs[i].data;
1657 break;
1658 case HV_X64_MSR_GUEST_OS_ID:
1659 env->msr_hv_guest_os_id = msrs[i].data;
1660 break;
5ef68987
VR
1661 case HV_X64_MSR_APIC_ASSIST_PAGE:
1662 env->msr_hv_vapic = msrs[i].data;
1663 break;
48a5f3bc
VR
1664 case HV_X64_MSR_REFERENCE_TSC:
1665 env->msr_hv_tsc = msrs[i].data;
1666 break;
05330448
AL
1667 }
1668 }
1669
1670 return 0;
1671}
1672
1bc22652 1673static int kvm_put_mp_state(X86CPU *cpu)
9bdbe550 1674{
1bc22652 1675 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
9bdbe550 1676
1bc22652 1677 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
9bdbe550
HB
1678}
1679
23d02d9b 1680static int kvm_get_mp_state(X86CPU *cpu)
9bdbe550 1681{
259186a7 1682 CPUState *cs = CPU(cpu);
23d02d9b 1683 CPUX86State *env = &cpu->env;
9bdbe550
HB
1684 struct kvm_mp_state mp_state;
1685 int ret;
1686
259186a7 1687 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
9bdbe550
HB
1688 if (ret < 0) {
1689 return ret;
1690 }
1691 env->mp_state = mp_state.mp_state;
c14750e8 1692 if (kvm_irqchip_in_kernel()) {
259186a7 1693 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
c14750e8 1694 }
9bdbe550
HB
1695 return 0;
1696}
1697
1bc22652 1698static int kvm_get_apic(X86CPU *cpu)
680c1c6f 1699{
02e51483 1700 DeviceState *apic = cpu->apic_state;
680c1c6f
JK
1701 struct kvm_lapic_state kapic;
1702 int ret;
1703
3d4b2649 1704 if (apic && kvm_irqchip_in_kernel()) {
1bc22652 1705 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
680c1c6f
JK
1706 if (ret < 0) {
1707 return ret;
1708 }
1709
1710 kvm_get_apic_state(apic, &kapic);
1711 }
1712 return 0;
1713}
1714
1bc22652 1715static int kvm_put_apic(X86CPU *cpu)
680c1c6f 1716{
02e51483 1717 DeviceState *apic = cpu->apic_state;
680c1c6f
JK
1718 struct kvm_lapic_state kapic;
1719
3d4b2649 1720 if (apic && kvm_irqchip_in_kernel()) {
680c1c6f
JK
1721 kvm_put_apic_state(apic, &kapic);
1722
1bc22652 1723 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_LAPIC, &kapic);
680c1c6f
JK
1724 }
1725 return 0;
1726}
1727
1bc22652 1728static int kvm_put_vcpu_events(X86CPU *cpu, int level)
a0fb002c 1729{
1bc22652 1730 CPUX86State *env = &cpu->env;
a0fb002c
JK
1731 struct kvm_vcpu_events events;
1732
1733 if (!kvm_has_vcpu_events()) {
1734 return 0;
1735 }
1736
31827373
JK
1737 events.exception.injected = (env->exception_injected >= 0);
1738 events.exception.nr = env->exception_injected;
a0fb002c
JK
1739 events.exception.has_error_code = env->has_error_code;
1740 events.exception.error_code = env->error_code;
7e680753 1741 events.exception.pad = 0;
a0fb002c
JK
1742
1743 events.interrupt.injected = (env->interrupt_injected >= 0);
1744 events.interrupt.nr = env->interrupt_injected;
1745 events.interrupt.soft = env->soft_interrupt;
1746
1747 events.nmi.injected = env->nmi_injected;
1748 events.nmi.pending = env->nmi_pending;
1749 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
7e680753 1750 events.nmi.pad = 0;
a0fb002c
JK
1751
1752 events.sipi_vector = env->sipi_vector;
1753
ea643051
JK
1754 events.flags = 0;
1755 if (level >= KVM_PUT_RESET_STATE) {
1756 events.flags |=
1757 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1758 }
aee028b9 1759
1bc22652 1760 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
a0fb002c
JK
1761}
1762
1bc22652 1763static int kvm_get_vcpu_events(X86CPU *cpu)
a0fb002c 1764{
1bc22652 1765 CPUX86State *env = &cpu->env;
a0fb002c
JK
1766 struct kvm_vcpu_events events;
1767 int ret;
1768
1769 if (!kvm_has_vcpu_events()) {
1770 return 0;
1771 }
1772
1bc22652 1773 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
a0fb002c
JK
1774 if (ret < 0) {
1775 return ret;
1776 }
31827373 1777 env->exception_injected =
a0fb002c
JK
1778 events.exception.injected ? events.exception.nr : -1;
1779 env->has_error_code = events.exception.has_error_code;
1780 env->error_code = events.exception.error_code;
1781
1782 env->interrupt_injected =
1783 events.interrupt.injected ? events.interrupt.nr : -1;
1784 env->soft_interrupt = events.interrupt.soft;
1785
1786 env->nmi_injected = events.nmi.injected;
1787 env->nmi_pending = events.nmi.pending;
1788 if (events.nmi.masked) {
1789 env->hflags2 |= HF2_NMI_MASK;
1790 } else {
1791 env->hflags2 &= ~HF2_NMI_MASK;
1792 }
1793
1794 env->sipi_vector = events.sipi_vector;
a0fb002c
JK
1795
1796 return 0;
1797}
1798
1bc22652 1799static int kvm_guest_debug_workarounds(X86CPU *cpu)
b0b1d690 1800{
ed2803da 1801 CPUState *cs = CPU(cpu);
1bc22652 1802 CPUX86State *env = &cpu->env;
b0b1d690 1803 int ret = 0;
b0b1d690
JK
1804 unsigned long reinject_trap = 0;
1805
1806 if (!kvm_has_vcpu_events()) {
1807 if (env->exception_injected == 1) {
1808 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1809 } else if (env->exception_injected == 3) {
1810 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1811 }
1812 env->exception_injected = -1;
1813 }
1814
1815 /*
1816 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1817 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1818 * by updating the debug state once again if single-stepping is on.
1819 * Another reason to call kvm_update_guest_debug here is a pending debug
1820 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1821 * reinject them via SET_GUEST_DEBUG.
1822 */
1823 if (reinject_trap ||
ed2803da 1824 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
38e478ec 1825 ret = kvm_update_guest_debug(cs, reinject_trap);
b0b1d690 1826 }
b0b1d690
JK
1827 return ret;
1828}
1829
1bc22652 1830static int kvm_put_debugregs(X86CPU *cpu)
ff44f1a3 1831{
1bc22652 1832 CPUX86State *env = &cpu->env;
ff44f1a3
JK
1833 struct kvm_debugregs dbgregs;
1834 int i;
1835
1836 if (!kvm_has_debugregs()) {
1837 return 0;
1838 }
1839
1840 for (i = 0; i < 4; i++) {
1841 dbgregs.db[i] = env->dr[i];
1842 }
1843 dbgregs.dr6 = env->dr[6];
1844 dbgregs.dr7 = env->dr[7];
1845 dbgregs.flags = 0;
1846
1bc22652 1847 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
ff44f1a3
JK
1848}
1849
1bc22652 1850static int kvm_get_debugregs(X86CPU *cpu)
ff44f1a3 1851{
1bc22652 1852 CPUX86State *env = &cpu->env;
ff44f1a3
JK
1853 struct kvm_debugregs dbgregs;
1854 int i, ret;
1855
1856 if (!kvm_has_debugregs()) {
1857 return 0;
1858 }
1859
1bc22652 1860 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
ff44f1a3 1861 if (ret < 0) {
b9bec74b 1862 return ret;
ff44f1a3
JK
1863 }
1864 for (i = 0; i < 4; i++) {
1865 env->dr[i] = dbgregs.db[i];
1866 }
1867 env->dr[4] = env->dr[6] = dbgregs.dr6;
1868 env->dr[5] = env->dr[7] = dbgregs.dr7;
ff44f1a3
JK
1869
1870 return 0;
1871}
1872
20d695a9 1873int kvm_arch_put_registers(CPUState *cpu, int level)
05330448 1874{
20d695a9 1875 X86CPU *x86_cpu = X86_CPU(cpu);
05330448
AL
1876 int ret;
1877
2fa45344 1878 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
dbaa07c4 1879
6bdf863d
JK
1880 if (level >= KVM_PUT_RESET_STATE && has_msr_feature_control) {
1881 ret = kvm_put_msr_feature_control(x86_cpu);
1882 if (ret < 0) {
1883 return ret;
1884 }
1885 }
1886
1bc22652 1887 ret = kvm_getput_regs(x86_cpu, 1);
b9bec74b 1888 if (ret < 0) {
05330448 1889 return ret;
b9bec74b 1890 }
1bc22652 1891 ret = kvm_put_xsave(x86_cpu);
b9bec74b 1892 if (ret < 0) {
f1665b21 1893 return ret;
b9bec74b 1894 }
1bc22652 1895 ret = kvm_put_xcrs(x86_cpu);
b9bec74b 1896 if (ret < 0) {
05330448 1897 return ret;
b9bec74b 1898 }
1bc22652 1899 ret = kvm_put_sregs(x86_cpu);
b9bec74b 1900 if (ret < 0) {
05330448 1901 return ret;
b9bec74b 1902 }
ab443475 1903 /* must be before kvm_put_msrs */
1bc22652 1904 ret = kvm_inject_mce_oldstyle(x86_cpu);
ab443475
JK
1905 if (ret < 0) {
1906 return ret;
1907 }
1bc22652 1908 ret = kvm_put_msrs(x86_cpu, level);
b9bec74b 1909 if (ret < 0) {
05330448 1910 return ret;
b9bec74b 1911 }
ea643051 1912 if (level >= KVM_PUT_RESET_STATE) {
1bc22652 1913 ret = kvm_put_mp_state(x86_cpu);
b9bec74b 1914 if (ret < 0) {
ea643051 1915 return ret;
b9bec74b 1916 }
1bc22652 1917 ret = kvm_put_apic(x86_cpu);
680c1c6f
JK
1918 if (ret < 0) {
1919 return ret;
1920 }
ea643051 1921 }
7477cd38
MT
1922
1923 ret = kvm_put_tscdeadline_msr(x86_cpu);
1924 if (ret < 0) {
1925 return ret;
1926 }
1927
1bc22652 1928 ret = kvm_put_vcpu_events(x86_cpu, level);
b9bec74b 1929 if (ret < 0) {
a0fb002c 1930 return ret;
b9bec74b 1931 }
1bc22652 1932 ret = kvm_put_debugregs(x86_cpu);
b9bec74b 1933 if (ret < 0) {
b0b1d690 1934 return ret;
b9bec74b 1935 }
b0b1d690 1936 /* must be last */
1bc22652 1937 ret = kvm_guest_debug_workarounds(x86_cpu);
b9bec74b 1938 if (ret < 0) {
ff44f1a3 1939 return ret;
b9bec74b 1940 }
05330448
AL
1941 return 0;
1942}
1943
20d695a9 1944int kvm_arch_get_registers(CPUState *cs)
05330448 1945{
20d695a9 1946 X86CPU *cpu = X86_CPU(cs);
05330448
AL
1947 int ret;
1948
20d695a9 1949 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
dbaa07c4 1950
1bc22652 1951 ret = kvm_getput_regs(cpu, 0);
b9bec74b 1952 if (ret < 0) {
05330448 1953 return ret;
b9bec74b 1954 }
1bc22652 1955 ret = kvm_get_xsave(cpu);
b9bec74b 1956 if (ret < 0) {
f1665b21 1957 return ret;
b9bec74b 1958 }
1bc22652 1959 ret = kvm_get_xcrs(cpu);
b9bec74b 1960 if (ret < 0) {
05330448 1961 return ret;
b9bec74b 1962 }
1bc22652 1963 ret = kvm_get_sregs(cpu);
b9bec74b 1964 if (ret < 0) {
05330448 1965 return ret;
b9bec74b 1966 }
1bc22652 1967 ret = kvm_get_msrs(cpu);
b9bec74b 1968 if (ret < 0) {
05330448 1969 return ret;
b9bec74b 1970 }
23d02d9b 1971 ret = kvm_get_mp_state(cpu);
b9bec74b 1972 if (ret < 0) {
5a2e3c2e 1973 return ret;
b9bec74b 1974 }
1bc22652 1975 ret = kvm_get_apic(cpu);
680c1c6f
JK
1976 if (ret < 0) {
1977 return ret;
1978 }
1bc22652 1979 ret = kvm_get_vcpu_events(cpu);
b9bec74b 1980 if (ret < 0) {
a0fb002c 1981 return ret;
b9bec74b 1982 }
1bc22652 1983 ret = kvm_get_debugregs(cpu);
b9bec74b 1984 if (ret < 0) {
ff44f1a3 1985 return ret;
b9bec74b 1986 }
05330448
AL
1987 return 0;
1988}
1989
20d695a9 1990void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
05330448 1991{
20d695a9
AF
1992 X86CPU *x86_cpu = X86_CPU(cpu);
1993 CPUX86State *env = &x86_cpu->env;
ce377af3
JK
1994 int ret;
1995
276ce815 1996 /* Inject NMI */
259186a7
AF
1997 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
1998 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
276ce815 1999 DPRINTF("injected NMI\n");
1bc22652 2000 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
ce377af3
JK
2001 if (ret < 0) {
2002 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
2003 strerror(-ret));
2004 }
276ce815
LJ
2005 }
2006
db1669bc 2007 if (!kvm_irqchip_in_kernel()) {
d362e757
JK
2008 /* Force the VCPU out of its inner loop to process any INIT requests
2009 * or pending TPR access reports. */
259186a7 2010 if (cpu->interrupt_request &
d362e757 2011 (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
fcd7d003 2012 cpu->exit_request = 1;
05330448 2013 }
05330448 2014
db1669bc
JK
2015 /* Try to inject an interrupt if the guest can accept it */
2016 if (run->ready_for_interrupt_injection &&
259186a7 2017 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
db1669bc
JK
2018 (env->eflags & IF_MASK)) {
2019 int irq;
2020
259186a7 2021 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
db1669bc
JK
2022 irq = cpu_get_pic_interrupt(env);
2023 if (irq >= 0) {
2024 struct kvm_interrupt intr;
2025
2026 intr.irq = irq;
db1669bc 2027 DPRINTF("injected interrupt %d\n", irq);
1bc22652 2028 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
ce377af3
JK
2029 if (ret < 0) {
2030 fprintf(stderr,
2031 "KVM: injection failed, interrupt lost (%s)\n",
2032 strerror(-ret));
2033 }
db1669bc
JK
2034 }
2035 }
05330448 2036
db1669bc
JK
2037 /* If we have an interrupt but the guest is not ready to receive an
2038 * interrupt, request an interrupt window exit. This will
2039 * cause a return to userspace as soon as the guest is ready to
2040 * receive interrupts. */
259186a7 2041 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
db1669bc
JK
2042 run->request_interrupt_window = 1;
2043 } else {
2044 run->request_interrupt_window = 0;
2045 }
2046
2047 DPRINTF("setting tpr\n");
02e51483 2048 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
db1669bc 2049 }
05330448
AL
2050}
2051
20d695a9 2052void kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
05330448 2053{
20d695a9
AF
2054 X86CPU *x86_cpu = X86_CPU(cpu);
2055 CPUX86State *env = &x86_cpu->env;
2056
b9bec74b 2057 if (run->if_flag) {
05330448 2058 env->eflags |= IF_MASK;
b9bec74b 2059 } else {
05330448 2060 env->eflags &= ~IF_MASK;
b9bec74b 2061 }
02e51483
CF
2062 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
2063 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
05330448
AL
2064}
2065
20d695a9 2066int kvm_arch_process_async_events(CPUState *cs)
0af691d7 2067{
20d695a9
AF
2068 X86CPU *cpu = X86_CPU(cs);
2069 CPUX86State *env = &cpu->env;
232fc23b 2070
259186a7 2071 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
ab443475
JK
2072 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
2073 assert(env->mcg_cap);
2074
259186a7 2075 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
ab443475 2076
dd1750d7 2077 kvm_cpu_synchronize_state(cs);
ab443475
JK
2078
2079 if (env->exception_injected == EXCP08_DBLE) {
2080 /* this means triple fault */
2081 qemu_system_reset_request();
fcd7d003 2082 cs->exit_request = 1;
ab443475
JK
2083 return 0;
2084 }
2085 env->exception_injected = EXCP12_MCHK;
2086 env->has_error_code = 0;
2087
259186a7 2088 cs->halted = 0;
ab443475
JK
2089 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
2090 env->mp_state = KVM_MP_STATE_RUNNABLE;
2091 }
2092 }
2093
db1669bc
JK
2094 if (kvm_irqchip_in_kernel()) {
2095 return 0;
2096 }
2097
259186a7
AF
2098 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
2099 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
02e51483 2100 apic_poll_irq(cpu->apic_state);
5d62c43a 2101 }
259186a7 2102 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4601f7b0 2103 (env->eflags & IF_MASK)) ||
259186a7
AF
2104 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
2105 cs->halted = 0;
6792a57b 2106 }
259186a7 2107 if (cs->interrupt_request & CPU_INTERRUPT_INIT) {
dd1750d7 2108 kvm_cpu_synchronize_state(cs);
232fc23b 2109 do_cpu_init(cpu);
0af691d7 2110 }
259186a7 2111 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
dd1750d7 2112 kvm_cpu_synchronize_state(cs);
232fc23b 2113 do_cpu_sipi(cpu);
0af691d7 2114 }
259186a7
AF
2115 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
2116 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
dd1750d7 2117 kvm_cpu_synchronize_state(cs);
02e51483 2118 apic_handle_tpr_access_report(cpu->apic_state, env->eip,
d362e757
JK
2119 env->tpr_access_type);
2120 }
0af691d7 2121
259186a7 2122 return cs->halted;
0af691d7
MT
2123}
2124
839b5630 2125static int kvm_handle_halt(X86CPU *cpu)
05330448 2126{
259186a7 2127 CPUState *cs = CPU(cpu);
839b5630
AF
2128 CPUX86State *env = &cpu->env;
2129
259186a7 2130 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
05330448 2131 (env->eflags & IF_MASK)) &&
259186a7
AF
2132 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
2133 cs->halted = 1;
bb4ea393 2134 return EXCP_HLT;
05330448
AL
2135 }
2136
bb4ea393 2137 return 0;
05330448
AL
2138}
2139
f7575c96 2140static int kvm_handle_tpr_access(X86CPU *cpu)
d362e757 2141{
f7575c96
AF
2142 CPUState *cs = CPU(cpu);
2143 struct kvm_run *run = cs->kvm_run;
d362e757 2144
02e51483 2145 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
d362e757
JK
2146 run->tpr_access.is_write ? TPR_ACCESS_WRITE
2147 : TPR_ACCESS_READ);
2148 return 1;
2149}
2150
f17ec444 2151int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
e22a25c9 2152{
38972938 2153 static const uint8_t int3 = 0xcc;
64bf3f4e 2154
f17ec444
AF
2155 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
2156 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
e22a25c9 2157 return -EINVAL;
b9bec74b 2158 }
e22a25c9
AL
2159 return 0;
2160}
2161
f17ec444 2162int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
e22a25c9
AL
2163{
2164 uint8_t int3;
2165
f17ec444
AF
2166 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
2167 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
e22a25c9 2168 return -EINVAL;
b9bec74b 2169 }
e22a25c9
AL
2170 return 0;
2171}
2172
2173static struct {
2174 target_ulong addr;
2175 int len;
2176 int type;
2177} hw_breakpoint[4];
2178
2179static int nb_hw_breakpoint;
2180
2181static int find_hw_breakpoint(target_ulong addr, int len, int type)
2182{
2183 int n;
2184
b9bec74b 2185 for (n = 0; n < nb_hw_breakpoint; n++) {
e22a25c9 2186 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
b9bec74b 2187 (hw_breakpoint[n].len == len || len == -1)) {
e22a25c9 2188 return n;
b9bec74b
JK
2189 }
2190 }
e22a25c9
AL
2191 return -1;
2192}
2193
2194int kvm_arch_insert_hw_breakpoint(target_ulong addr,
2195 target_ulong len, int type)
2196{
2197 switch (type) {
2198 case GDB_BREAKPOINT_HW:
2199 len = 1;
2200 break;
2201 case GDB_WATCHPOINT_WRITE:
2202 case GDB_WATCHPOINT_ACCESS:
2203 switch (len) {
2204 case 1:
2205 break;
2206 case 2:
2207 case 4:
2208 case 8:
b9bec74b 2209 if (addr & (len - 1)) {
e22a25c9 2210 return -EINVAL;
b9bec74b 2211 }
e22a25c9
AL
2212 break;
2213 default:
2214 return -EINVAL;
2215 }
2216 break;
2217 default:
2218 return -ENOSYS;
2219 }
2220
b9bec74b 2221 if (nb_hw_breakpoint == 4) {
e22a25c9 2222 return -ENOBUFS;
b9bec74b
JK
2223 }
2224 if (find_hw_breakpoint(addr, len, type) >= 0) {
e22a25c9 2225 return -EEXIST;
b9bec74b 2226 }
e22a25c9
AL
2227 hw_breakpoint[nb_hw_breakpoint].addr = addr;
2228 hw_breakpoint[nb_hw_breakpoint].len = len;
2229 hw_breakpoint[nb_hw_breakpoint].type = type;
2230 nb_hw_breakpoint++;
2231
2232 return 0;
2233}
2234
2235int kvm_arch_remove_hw_breakpoint(target_ulong addr,
2236 target_ulong len, int type)
2237{
2238 int n;
2239
2240 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
b9bec74b 2241 if (n < 0) {
e22a25c9 2242 return -ENOENT;
b9bec74b 2243 }
e22a25c9
AL
2244 nb_hw_breakpoint--;
2245 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
2246
2247 return 0;
2248}
2249
2250void kvm_arch_remove_all_hw_breakpoints(void)
2251{
2252 nb_hw_breakpoint = 0;
2253}
2254
2255static CPUWatchpoint hw_watchpoint;
2256
a60f24b5 2257static int kvm_handle_debug(X86CPU *cpu,
48405526 2258 struct kvm_debug_exit_arch *arch_info)
e22a25c9 2259{
ed2803da 2260 CPUState *cs = CPU(cpu);
a60f24b5 2261 CPUX86State *env = &cpu->env;
f2574737 2262 int ret = 0;
e22a25c9
AL
2263 int n;
2264
2265 if (arch_info->exception == 1) {
2266 if (arch_info->dr6 & (1 << 14)) {
ed2803da 2267 if (cs->singlestep_enabled) {
f2574737 2268 ret = EXCP_DEBUG;
b9bec74b 2269 }
e22a25c9 2270 } else {
b9bec74b
JK
2271 for (n = 0; n < 4; n++) {
2272 if (arch_info->dr6 & (1 << n)) {
e22a25c9
AL
2273 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
2274 case 0x0:
f2574737 2275 ret = EXCP_DEBUG;
e22a25c9
AL
2276 break;
2277 case 0x1:
f2574737 2278 ret = EXCP_DEBUG;
ff4700b0 2279 cs->watchpoint_hit = &hw_watchpoint;
e22a25c9
AL
2280 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2281 hw_watchpoint.flags = BP_MEM_WRITE;
2282 break;
2283 case 0x3:
f2574737 2284 ret = EXCP_DEBUG;
ff4700b0 2285 cs->watchpoint_hit = &hw_watchpoint;
e22a25c9
AL
2286 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2287 hw_watchpoint.flags = BP_MEM_ACCESS;
2288 break;
2289 }
b9bec74b
JK
2290 }
2291 }
e22a25c9 2292 }
ff4700b0 2293 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
f2574737 2294 ret = EXCP_DEBUG;
b9bec74b 2295 }
f2574737 2296 if (ret == 0) {
ff4700b0 2297 cpu_synchronize_state(cs);
48405526 2298 assert(env->exception_injected == -1);
b0b1d690 2299
f2574737 2300 /* pass to guest */
48405526
BS
2301 env->exception_injected = arch_info->exception;
2302 env->has_error_code = 0;
b0b1d690 2303 }
e22a25c9 2304
f2574737 2305 return ret;
e22a25c9
AL
2306}
2307
20d695a9 2308void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
e22a25c9
AL
2309{
2310 const uint8_t type_code[] = {
2311 [GDB_BREAKPOINT_HW] = 0x0,
2312 [GDB_WATCHPOINT_WRITE] = 0x1,
2313 [GDB_WATCHPOINT_ACCESS] = 0x3
2314 };
2315 const uint8_t len_code[] = {
2316 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
2317 };
2318 int n;
2319
a60f24b5 2320 if (kvm_sw_breakpoints_active(cpu)) {
e22a25c9 2321 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
b9bec74b 2322 }
e22a25c9
AL
2323 if (nb_hw_breakpoint > 0) {
2324 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
2325 dbg->arch.debugreg[7] = 0x0600;
2326 for (n = 0; n < nb_hw_breakpoint; n++) {
2327 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
2328 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
2329 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
95c077c9 2330 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
e22a25c9
AL
2331 }
2332 }
2333}
4513d923 2334
2a4dac83
JK
2335static bool host_supports_vmx(void)
2336{
2337 uint32_t ecx, unused;
2338
2339 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
2340 return ecx & CPUID_EXT_VMX;
2341}
2342
2343#define VMX_INVALID_GUEST_STATE 0x80000021
2344
20d695a9 2345int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
2a4dac83 2346{
20d695a9 2347 X86CPU *cpu = X86_CPU(cs);
2a4dac83
JK
2348 uint64_t code;
2349 int ret;
2350
2351 switch (run->exit_reason) {
2352 case KVM_EXIT_HLT:
2353 DPRINTF("handle_hlt\n");
839b5630 2354 ret = kvm_handle_halt(cpu);
2a4dac83
JK
2355 break;
2356 case KVM_EXIT_SET_TPR:
2357 ret = 0;
2358 break;
d362e757 2359 case KVM_EXIT_TPR_ACCESS:
f7575c96 2360 ret = kvm_handle_tpr_access(cpu);
d362e757 2361 break;
2a4dac83
JK
2362 case KVM_EXIT_FAIL_ENTRY:
2363 code = run->fail_entry.hardware_entry_failure_reason;
2364 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
2365 code);
2366 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
2367 fprintf(stderr,
12619721 2368 "\nIf you're running a guest on an Intel machine without "
2a4dac83
JK
2369 "unrestricted mode\n"
2370 "support, the failure can be most likely due to the guest "
2371 "entering an invalid\n"
2372 "state for Intel VT. For example, the guest maybe running "
2373 "in big real mode\n"
2374 "which is not supported on less recent Intel processors."
2375 "\n\n");
2376 }
2377 ret = -1;
2378 break;
2379 case KVM_EXIT_EXCEPTION:
2380 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
2381 run->ex.exception, run->ex.error_code);
2382 ret = -1;
2383 break;
f2574737
JK
2384 case KVM_EXIT_DEBUG:
2385 DPRINTF("kvm_exit_debug\n");
a60f24b5 2386 ret = kvm_handle_debug(cpu, &run->debug.arch);
f2574737 2387 break;
2a4dac83
JK
2388 default:
2389 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
2390 ret = -1;
2391 break;
2392 }
2393
2394 return ret;
2395}
2396
20d695a9 2397bool kvm_arch_stop_on_emulation_error(CPUState *cs)
4513d923 2398{
20d695a9
AF
2399 X86CPU *cpu = X86_CPU(cs);
2400 CPUX86State *env = &cpu->env;
2401
dd1750d7 2402 kvm_cpu_synchronize_state(cs);
b9bec74b
JK
2403 return !(env->cr[0] & CR0_PE_MASK) ||
2404 ((env->segs[R_CS].selector & 3) != 3);
4513d923 2405}
84b058d7
JK
2406
2407void kvm_arch_init_irq_routing(KVMState *s)
2408{
2409 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2410 /* If kernel can't do irq routing, interrupt source
2411 * override 0->2 cannot be set up as required by HPET.
2412 * So we have to disable it.
2413 */
2414 no_hpet = 1;
2415 }
cc7e0ddf 2416 /* We know at this point that we're using the in-kernel
614e41bc 2417 * irqchip, so we can use irqfds, and on x86 we know
f3e1bed8 2418 * we can use msi via irqfd and GSI routing.
cc7e0ddf
PM
2419 */
2420 kvm_irqfds_allowed = true;
614e41bc 2421 kvm_msi_via_irqfd_allowed = true;
f3e1bed8 2422 kvm_gsi_routing_allowed = true;
84b058d7 2423}
b139bd30
JK
2424
2425/* Classic KVM device assignment interface. Will remain x86 only. */
2426int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
2427 uint32_t flags, uint32_t *dev_id)
2428{
2429 struct kvm_assigned_pci_dev dev_data = {
2430 .segnr = dev_addr->domain,
2431 .busnr = dev_addr->bus,
2432 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
2433 .flags = flags,
2434 };
2435 int ret;
2436
2437 dev_data.assigned_dev_id =
2438 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
2439
2440 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
2441 if (ret < 0) {
2442 return ret;
2443 }
2444
2445 *dev_id = dev_data.assigned_dev_id;
2446
2447 return 0;
2448}
2449
2450int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
2451{
2452 struct kvm_assigned_pci_dev dev_data = {
2453 .assigned_dev_id = dev_id,
2454 };
2455
2456 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
2457}
2458
2459static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
2460 uint32_t irq_type, uint32_t guest_irq)
2461{
2462 struct kvm_assigned_irq assigned_irq = {
2463 .assigned_dev_id = dev_id,
2464 .guest_irq = guest_irq,
2465 .flags = irq_type,
2466 };
2467
2468 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
2469 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
2470 } else {
2471 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
2472 }
2473}
2474
2475int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
2476 uint32_t guest_irq)
2477{
2478 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
2479 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
2480
2481 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
2482}
2483
2484int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
2485{
2486 struct kvm_assigned_pci_dev dev_data = {
2487 .assigned_dev_id = dev_id,
2488 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
2489 };
2490
2491 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
2492}
2493
2494static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
2495 uint32_t type)
2496{
2497 struct kvm_assigned_irq assigned_irq = {
2498 .assigned_dev_id = dev_id,
2499 .flags = type,
2500 };
2501
2502 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
2503}
2504
2505int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
2506{
2507 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
2508 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
2509}
2510
2511int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
2512{
2513 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
2514 KVM_DEV_IRQ_GUEST_MSI, virq);
2515}
2516
2517int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
2518{
2519 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
2520 KVM_DEV_IRQ_HOST_MSI);
2521}
2522
2523bool kvm_device_msix_supported(KVMState *s)
2524{
2525 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
2526 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
2527 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
2528}
2529
2530int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
2531 uint32_t nr_vectors)
2532{
2533 struct kvm_assigned_msix_nr msix_nr = {
2534 .assigned_dev_id = dev_id,
2535 .entry_nr = nr_vectors,
2536 };
2537
2538 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
2539}
2540
2541int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
2542 int virq)
2543{
2544 struct kvm_assigned_msix_entry msix_entry = {
2545 .assigned_dev_id = dev_id,
2546 .gsi = virq,
2547 .entry = vector,
2548 };
2549
2550 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
2551}
2552
2553int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
2554{
2555 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
2556 KVM_DEV_IRQ_GUEST_MSIX, 0);
2557}
2558
2559int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
2560{
2561 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
2562 KVM_DEV_IRQ_HOST_MSIX);
2563}
This page took 1.116307 seconds and 4 git commands to generate.