]>
Commit | Line | Data |
---|---|---|
05330448 AL |
1 | /* |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright (C) 2006-2008 Qumranet Technologies | |
5 | * Copyright IBM, Corp. 2008 | |
6 | * | |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
9 | * | |
10 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
11 | * See the COPYING file in the top-level directory. | |
12 | * | |
13 | */ | |
14 | ||
15 | #include <sys/types.h> | |
16 | #include <sys/ioctl.h> | |
17 | #include <sys/mman.h> | |
25d2e361 | 18 | #include <sys/utsname.h> |
05330448 AL |
19 | |
20 | #include <linux/kvm.h> | |
5802e066 | 21 | #include <linux/kvm_para.h> |
05330448 AL |
22 | |
23 | #include "qemu-common.h" | |
9c17d615 PB |
24 | #include "sysemu/sysemu.h" |
25 | #include "sysemu/kvm.h" | |
1d31f66b | 26 | #include "kvm_i386.h" |
05330448 | 27 | #include "cpu.h" |
022c62cb | 28 | #include "exec/gdbstub.h" |
1de7afc9 PB |
29 | #include "qemu/host-utils.h" |
30 | #include "qemu/config-file.h" | |
0d09e41a PB |
31 | #include "hw/i386/pc.h" |
32 | #include "hw/i386/apic.h" | |
022c62cb | 33 | #include "exec/ioport.h" |
92067bf4 | 34 | #include <asm/hyperv.h> |
a2cb15b0 | 35 | #include "hw/pci/pci.h" |
05330448 AL |
36 | |
37 | //#define DEBUG_KVM | |
38 | ||
39 | #ifdef DEBUG_KVM | |
8c0d577e | 40 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
41 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) |
42 | #else | |
8c0d577e | 43 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
44 | do { } while (0) |
45 | #endif | |
46 | ||
1a03675d GC |
47 | #define MSR_KVM_WALL_CLOCK 0x11 |
48 | #define MSR_KVM_SYSTEM_TIME 0x12 | |
49 | ||
c0532a76 MT |
50 | #ifndef BUS_MCEERR_AR |
51 | #define BUS_MCEERR_AR 4 | |
52 | #endif | |
53 | #ifndef BUS_MCEERR_AO | |
54 | #define BUS_MCEERR_AO 5 | |
55 | #endif | |
56 | ||
94a8d39a JK |
57 | const KVMCapabilityInfo kvm_arch_required_capabilities[] = { |
58 | KVM_CAP_INFO(SET_TSS_ADDR), | |
59 | KVM_CAP_INFO(EXT_CPUID), | |
60 | KVM_CAP_INFO(MP_STATE), | |
61 | KVM_CAP_LAST_INFO | |
62 | }; | |
25d2e361 | 63 | |
c3a3a7d3 JK |
64 | static bool has_msr_star; |
65 | static bool has_msr_hsave_pa; | |
f28558d3 | 66 | static bool has_msr_tsc_adjust; |
aa82ba54 | 67 | static bool has_msr_tsc_deadline; |
df67696e | 68 | static bool has_msr_feature_control; |
c5999bfc | 69 | static bool has_msr_async_pf_en; |
bc9a839d | 70 | static bool has_msr_pv_eoi_en; |
21e87c46 | 71 | static bool has_msr_misc_enable; |
79e9ebeb | 72 | static bool has_msr_bndcfgs; |
917367aa | 73 | static bool has_msr_kvm_steal_time; |
25d2e361 | 74 | static int lm_capable_kernel; |
7bc3d711 PB |
75 | static bool has_msr_hv_hypercall; |
76 | static bool has_msr_hv_vapic; | |
48a5f3bc | 77 | static bool has_msr_hv_tsc; |
b827df58 | 78 | |
0d894367 PB |
79 | static bool has_msr_architectural_pmu; |
80 | static uint32_t num_architectural_pmu_counters; | |
81 | ||
1d31f66b PM |
82 | bool kvm_allows_irq0_override(void) |
83 | { | |
84 | return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing(); | |
85 | } | |
86 | ||
b827df58 AK |
87 | static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) |
88 | { | |
89 | struct kvm_cpuid2 *cpuid; | |
90 | int r, size; | |
91 | ||
92 | size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); | |
7267c094 | 93 | cpuid = (struct kvm_cpuid2 *)g_malloc0(size); |
b827df58 AK |
94 | cpuid->nent = max; |
95 | r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid); | |
76ae317f MM |
96 | if (r == 0 && cpuid->nent >= max) { |
97 | r = -E2BIG; | |
98 | } | |
b827df58 AK |
99 | if (r < 0) { |
100 | if (r == -E2BIG) { | |
7267c094 | 101 | g_free(cpuid); |
b827df58 AK |
102 | return NULL; |
103 | } else { | |
104 | fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n", | |
105 | strerror(-r)); | |
106 | exit(1); | |
107 | } | |
108 | } | |
109 | return cpuid; | |
110 | } | |
111 | ||
dd87f8a6 EH |
112 | /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough |
113 | * for all entries. | |
114 | */ | |
115 | static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s) | |
116 | { | |
117 | struct kvm_cpuid2 *cpuid; | |
118 | int max = 1; | |
119 | while ((cpuid = try_get_cpuid(s, max)) == NULL) { | |
120 | max *= 2; | |
121 | } | |
122 | return cpuid; | |
123 | } | |
124 | ||
a443bc34 | 125 | static const struct kvm_para_features { |
0c31b744 GC |
126 | int cap; |
127 | int feature; | |
128 | } para_features[] = { | |
129 | { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE }, | |
130 | { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY }, | |
131 | { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP }, | |
0c31b744 | 132 | { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF }, |
0c31b744 GC |
133 | }; |
134 | ||
ba9bc59e | 135 | static int get_para_features(KVMState *s) |
0c31b744 GC |
136 | { |
137 | int i, features = 0; | |
138 | ||
8e03c100 | 139 | for (i = 0; i < ARRAY_SIZE(para_features); i++) { |
ba9bc59e | 140 | if (kvm_check_extension(s, para_features[i].cap)) { |
0c31b744 GC |
141 | features |= (1 << para_features[i].feature); |
142 | } | |
143 | } | |
144 | ||
145 | return features; | |
146 | } | |
0c31b744 GC |
147 | |
148 | ||
829ae2f9 EH |
149 | /* Returns the value for a specific register on the cpuid entry |
150 | */ | |
151 | static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg) | |
152 | { | |
153 | uint32_t ret = 0; | |
154 | switch (reg) { | |
155 | case R_EAX: | |
156 | ret = entry->eax; | |
157 | break; | |
158 | case R_EBX: | |
159 | ret = entry->ebx; | |
160 | break; | |
161 | case R_ECX: | |
162 | ret = entry->ecx; | |
163 | break; | |
164 | case R_EDX: | |
165 | ret = entry->edx; | |
166 | break; | |
167 | } | |
168 | return ret; | |
169 | } | |
170 | ||
4fb73f1d EH |
171 | /* Find matching entry for function/index on kvm_cpuid2 struct |
172 | */ | |
173 | static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid, | |
174 | uint32_t function, | |
175 | uint32_t index) | |
176 | { | |
177 | int i; | |
178 | for (i = 0; i < cpuid->nent; ++i) { | |
179 | if (cpuid->entries[i].function == function && | |
180 | cpuid->entries[i].index == index) { | |
181 | return &cpuid->entries[i]; | |
182 | } | |
183 | } | |
184 | /* not found: */ | |
185 | return NULL; | |
186 | } | |
187 | ||
ba9bc59e | 188 | uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function, |
c958a8bd | 189 | uint32_t index, int reg) |
b827df58 AK |
190 | { |
191 | struct kvm_cpuid2 *cpuid; | |
b827df58 AK |
192 | uint32_t ret = 0; |
193 | uint32_t cpuid_1_edx; | |
8c723b79 | 194 | bool found = false; |
b827df58 | 195 | |
dd87f8a6 | 196 | cpuid = get_supported_cpuid(s); |
b827df58 | 197 | |
4fb73f1d EH |
198 | struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index); |
199 | if (entry) { | |
200 | found = true; | |
201 | ret = cpuid_entry_get_reg(entry, reg); | |
b827df58 AK |
202 | } |
203 | ||
7b46e5ce EH |
204 | /* Fixups for the data returned by KVM, below */ |
205 | ||
c2acb022 EH |
206 | if (function == 1 && reg == R_EDX) { |
207 | /* KVM before 2.6.30 misreports the following features */ | |
208 | ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA; | |
84bd945c EH |
209 | } else if (function == 1 && reg == R_ECX) { |
210 | /* We can set the hypervisor flag, even if KVM does not return it on | |
211 | * GET_SUPPORTED_CPUID | |
212 | */ | |
213 | ret |= CPUID_EXT_HYPERVISOR; | |
ac67ee26 EH |
214 | /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it |
215 | * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER, | |
216 | * and the irqchip is in the kernel. | |
217 | */ | |
218 | if (kvm_irqchip_in_kernel() && | |
219 | kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) { | |
220 | ret |= CPUID_EXT_TSC_DEADLINE_TIMER; | |
221 | } | |
41e5e76d EH |
222 | |
223 | /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled | |
224 | * without the in-kernel irqchip | |
225 | */ | |
226 | if (!kvm_irqchip_in_kernel()) { | |
227 | ret &= ~CPUID_EXT_X2APIC; | |
b827df58 | 228 | } |
c2acb022 EH |
229 | } else if (function == 0x80000001 && reg == R_EDX) { |
230 | /* On Intel, kvm returns cpuid according to the Intel spec, | |
231 | * so add missing bits according to the AMD spec: | |
232 | */ | |
233 | cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX); | |
234 | ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES; | |
b827df58 AK |
235 | } |
236 | ||
7267c094 | 237 | g_free(cpuid); |
b827df58 | 238 | |
0c31b744 | 239 | /* fallback for older kernels */ |
8c723b79 | 240 | if ((function == KVM_CPUID_FEATURES) && !found) { |
ba9bc59e | 241 | ret = get_para_features(s); |
b9bec74b | 242 | } |
0c31b744 GC |
243 | |
244 | return ret; | |
bb0300dc | 245 | } |
bb0300dc | 246 | |
3c85e74f HY |
247 | typedef struct HWPoisonPage { |
248 | ram_addr_t ram_addr; | |
249 | QLIST_ENTRY(HWPoisonPage) list; | |
250 | } HWPoisonPage; | |
251 | ||
252 | static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = | |
253 | QLIST_HEAD_INITIALIZER(hwpoison_page_list); | |
254 | ||
255 | static void kvm_unpoison_all(void *param) | |
256 | { | |
257 | HWPoisonPage *page, *next_page; | |
258 | ||
259 | QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { | |
260 | QLIST_REMOVE(page, list); | |
261 | qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); | |
7267c094 | 262 | g_free(page); |
3c85e74f HY |
263 | } |
264 | } | |
265 | ||
3c85e74f HY |
266 | static void kvm_hwpoison_page_add(ram_addr_t ram_addr) |
267 | { | |
268 | HWPoisonPage *page; | |
269 | ||
270 | QLIST_FOREACH(page, &hwpoison_page_list, list) { | |
271 | if (page->ram_addr == ram_addr) { | |
272 | return; | |
273 | } | |
274 | } | |
7267c094 | 275 | page = g_malloc(sizeof(HWPoisonPage)); |
3c85e74f HY |
276 | page->ram_addr = ram_addr; |
277 | QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); | |
278 | } | |
279 | ||
e7701825 MT |
280 | static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap, |
281 | int *max_banks) | |
282 | { | |
283 | int r; | |
284 | ||
14a09518 | 285 | r = kvm_check_extension(s, KVM_CAP_MCE); |
e7701825 MT |
286 | if (r > 0) { |
287 | *max_banks = r; | |
288 | return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap); | |
289 | } | |
290 | return -ENOSYS; | |
291 | } | |
292 | ||
bee615d4 | 293 | static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code) |
e7701825 | 294 | { |
bee615d4 | 295 | CPUX86State *env = &cpu->env; |
c34d440a JK |
296 | uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN | |
297 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S; | |
298 | uint64_t mcg_status = MCG_STATUS_MCIP; | |
e7701825 | 299 | |
c34d440a JK |
300 | if (code == BUS_MCEERR_AR) { |
301 | status |= MCI_STATUS_AR | 0x134; | |
302 | mcg_status |= MCG_STATUS_EIPV; | |
303 | } else { | |
304 | status |= 0xc0; | |
305 | mcg_status |= MCG_STATUS_RIPV; | |
419fb20a | 306 | } |
8c5cf3b6 | 307 | cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr, |
c34d440a JK |
308 | (MCM_ADDR_PHYS << 6) | 0xc, |
309 | cpu_x86_support_mca_broadcast(env) ? | |
310 | MCE_INJECT_BROADCAST : 0); | |
419fb20a | 311 | } |
419fb20a JK |
312 | |
313 | static void hardware_memory_error(void) | |
314 | { | |
315 | fprintf(stderr, "Hardware memory error!\n"); | |
316 | exit(1); | |
317 | } | |
318 | ||
20d695a9 | 319 | int kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr) |
419fb20a | 320 | { |
20d695a9 AF |
321 | X86CPU *cpu = X86_CPU(c); |
322 | CPUX86State *env = &cpu->env; | |
419fb20a | 323 | ram_addr_t ram_addr; |
a8170e5e | 324 | hwaddr paddr; |
419fb20a JK |
325 | |
326 | if ((env->mcg_cap & MCG_SER_P) && addr | |
c34d440a | 327 | && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) { |
1b5ec234 | 328 | if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL || |
a60f24b5 | 329 | !kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) { |
419fb20a JK |
330 | fprintf(stderr, "Hardware memory error for memory used by " |
331 | "QEMU itself instead of guest system!\n"); | |
332 | /* Hope we are lucky for AO MCE */ | |
333 | if (code == BUS_MCEERR_AO) { | |
334 | return 0; | |
335 | } else { | |
336 | hardware_memory_error(); | |
337 | } | |
338 | } | |
3c85e74f | 339 | kvm_hwpoison_page_add(ram_addr); |
bee615d4 | 340 | kvm_mce_inject(cpu, paddr, code); |
e56ff191 | 341 | } else { |
419fb20a JK |
342 | if (code == BUS_MCEERR_AO) { |
343 | return 0; | |
344 | } else if (code == BUS_MCEERR_AR) { | |
345 | hardware_memory_error(); | |
346 | } else { | |
347 | return 1; | |
348 | } | |
349 | } | |
350 | return 0; | |
351 | } | |
352 | ||
353 | int kvm_arch_on_sigbus(int code, void *addr) | |
354 | { | |
182735ef AF |
355 | X86CPU *cpu = X86_CPU(first_cpu); |
356 | ||
357 | if ((cpu->env.mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) { | |
419fb20a | 358 | ram_addr_t ram_addr; |
a8170e5e | 359 | hwaddr paddr; |
419fb20a JK |
360 | |
361 | /* Hope we are lucky for AO MCE */ | |
1b5ec234 | 362 | if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL || |
182735ef | 363 | !kvm_physical_memory_addr_from_host(first_cpu->kvm_state, |
a60f24b5 | 364 | addr, &paddr)) { |
419fb20a JK |
365 | fprintf(stderr, "Hardware memory error for memory used by " |
366 | "QEMU itself instead of guest system!: %p\n", addr); | |
367 | return 0; | |
368 | } | |
3c85e74f | 369 | kvm_hwpoison_page_add(ram_addr); |
182735ef | 370 | kvm_mce_inject(X86_CPU(first_cpu), paddr, code); |
e56ff191 | 371 | } else { |
419fb20a JK |
372 | if (code == BUS_MCEERR_AO) { |
373 | return 0; | |
374 | } else if (code == BUS_MCEERR_AR) { | |
375 | hardware_memory_error(); | |
376 | } else { | |
377 | return 1; | |
378 | } | |
379 | } | |
380 | return 0; | |
381 | } | |
e7701825 | 382 | |
1bc22652 | 383 | static int kvm_inject_mce_oldstyle(X86CPU *cpu) |
ab443475 | 384 | { |
1bc22652 AF |
385 | CPUX86State *env = &cpu->env; |
386 | ||
ab443475 JK |
387 | if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) { |
388 | unsigned int bank, bank_num = env->mcg_cap & 0xff; | |
389 | struct kvm_x86_mce mce; | |
390 | ||
391 | env->exception_injected = -1; | |
392 | ||
393 | /* | |
394 | * There must be at least one bank in use if an MCE is pending. | |
395 | * Find it and use its values for the event injection. | |
396 | */ | |
397 | for (bank = 0; bank < bank_num; bank++) { | |
398 | if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) { | |
399 | break; | |
400 | } | |
401 | } | |
402 | assert(bank < bank_num); | |
403 | ||
404 | mce.bank = bank; | |
405 | mce.status = env->mce_banks[bank * 4 + 1]; | |
406 | mce.mcg_status = env->mcg_status; | |
407 | mce.addr = env->mce_banks[bank * 4 + 2]; | |
408 | mce.misc = env->mce_banks[bank * 4 + 3]; | |
409 | ||
1bc22652 | 410 | return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce); |
ab443475 | 411 | } |
ab443475 JK |
412 | return 0; |
413 | } | |
414 | ||
1dfb4dd9 | 415 | static void cpu_update_state(void *opaque, int running, RunState state) |
b8cc45d6 | 416 | { |
317ac620 | 417 | CPUX86State *env = opaque; |
b8cc45d6 GC |
418 | |
419 | if (running) { | |
420 | env->tsc_valid = false; | |
421 | } | |
422 | } | |
423 | ||
83b17af5 | 424 | unsigned long kvm_arch_vcpu_id(CPUState *cs) |
b164e48e | 425 | { |
83b17af5 EH |
426 | X86CPU *cpu = X86_CPU(cs); |
427 | return cpu->env.cpuid_apic_id; | |
b164e48e EH |
428 | } |
429 | ||
92067bf4 IM |
430 | #ifndef KVM_CPUID_SIGNATURE_NEXT |
431 | #define KVM_CPUID_SIGNATURE_NEXT 0x40000100 | |
432 | #endif | |
433 | ||
434 | static bool hyperv_hypercall_available(X86CPU *cpu) | |
435 | { | |
436 | return cpu->hyperv_vapic || | |
437 | (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY); | |
438 | } | |
439 | ||
440 | static bool hyperv_enabled(X86CPU *cpu) | |
441 | { | |
7bc3d711 PB |
442 | CPUState *cs = CPU(cpu); |
443 | return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 && | |
444 | (hyperv_hypercall_available(cpu) || | |
48a5f3bc | 445 | cpu->hyperv_time || |
7bc3d711 | 446 | cpu->hyperv_relaxed_timing); |
92067bf4 IM |
447 | } |
448 | ||
f8bb0565 | 449 | #define KVM_MAX_CPUID_ENTRIES 100 |
0893d460 | 450 | |
20d695a9 | 451 | int kvm_arch_init_vcpu(CPUState *cs) |
05330448 AL |
452 | { |
453 | struct { | |
486bd5a2 | 454 | struct kvm_cpuid2 cpuid; |
f8bb0565 | 455 | struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES]; |
541dc0d4 | 456 | } QEMU_PACKED cpuid_data; |
20d695a9 AF |
457 | X86CPU *cpu = X86_CPU(cs); |
458 | CPUX86State *env = &cpu->env; | |
486bd5a2 | 459 | uint32_t limit, i, j, cpuid_i; |
a33609ca | 460 | uint32_t unused; |
bb0300dc | 461 | struct kvm_cpuid_entry2 *c; |
bb0300dc | 462 | uint32_t signature[3]; |
234cc647 | 463 | int kvm_base = KVM_CPUID_SIGNATURE; |
e7429073 | 464 | int r; |
05330448 | 465 | |
ef4cbe14 SW |
466 | memset(&cpuid_data, 0, sizeof(cpuid_data)); |
467 | ||
05330448 AL |
468 | cpuid_i = 0; |
469 | ||
bb0300dc | 470 | /* Paravirtualization CPUIDs */ |
234cc647 PB |
471 | if (hyperv_enabled(cpu)) { |
472 | c = &cpuid_data.entries[cpuid_i++]; | |
473 | c->function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS; | |
eab70139 VR |
474 | memcpy(signature, "Microsoft Hv", 12); |
475 | c->eax = HYPERV_CPUID_MIN; | |
234cc647 PB |
476 | c->ebx = signature[0]; |
477 | c->ecx = signature[1]; | |
478 | c->edx = signature[2]; | |
0c31b744 | 479 | |
234cc647 PB |
480 | c = &cpuid_data.entries[cpuid_i++]; |
481 | c->function = HYPERV_CPUID_INTERFACE; | |
eab70139 VR |
482 | memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12); |
483 | c->eax = signature[0]; | |
234cc647 PB |
484 | c->ebx = 0; |
485 | c->ecx = 0; | |
486 | c->edx = 0; | |
eab70139 VR |
487 | |
488 | c = &cpuid_data.entries[cpuid_i++]; | |
eab70139 VR |
489 | c->function = HYPERV_CPUID_VERSION; |
490 | c->eax = 0x00001bbc; | |
491 | c->ebx = 0x00060001; | |
492 | ||
493 | c = &cpuid_data.entries[cpuid_i++]; | |
eab70139 | 494 | c->function = HYPERV_CPUID_FEATURES; |
92067bf4 | 495 | if (cpu->hyperv_relaxed_timing) { |
eab70139 VR |
496 | c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE; |
497 | } | |
92067bf4 | 498 | if (cpu->hyperv_vapic) { |
eab70139 VR |
499 | c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE; |
500 | c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE; | |
7bc3d711 | 501 | has_msr_hv_vapic = true; |
eab70139 | 502 | } |
48a5f3bc VR |
503 | if (cpu->hyperv_time && |
504 | kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) { | |
505 | c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE; | |
506 | c->eax |= HV_X64_MSR_TIME_REF_COUNT_AVAILABLE; | |
507 | c->eax |= 0x200; | |
508 | has_msr_hv_tsc = true; | |
509 | } | |
eab70139 | 510 | c = &cpuid_data.entries[cpuid_i++]; |
eab70139 | 511 | c->function = HYPERV_CPUID_ENLIGHTMENT_INFO; |
92067bf4 | 512 | if (cpu->hyperv_relaxed_timing) { |
eab70139 VR |
513 | c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED; |
514 | } | |
7bc3d711 | 515 | if (has_msr_hv_vapic) { |
eab70139 VR |
516 | c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED; |
517 | } | |
92067bf4 | 518 | c->ebx = cpu->hyperv_spinlock_attempts; |
eab70139 VR |
519 | |
520 | c = &cpuid_data.entries[cpuid_i++]; | |
eab70139 VR |
521 | c->function = HYPERV_CPUID_IMPLEMENT_LIMITS; |
522 | c->eax = 0x40; | |
523 | c->ebx = 0x40; | |
524 | ||
234cc647 | 525 | kvm_base = KVM_CPUID_SIGNATURE_NEXT; |
7bc3d711 | 526 | has_msr_hv_hypercall = true; |
eab70139 VR |
527 | } |
528 | ||
234cc647 PB |
529 | memcpy(signature, "KVMKVMKVM\0\0\0", 12); |
530 | c = &cpuid_data.entries[cpuid_i++]; | |
531 | c->function = KVM_CPUID_SIGNATURE | kvm_base; | |
532 | c->eax = 0; | |
533 | c->ebx = signature[0]; | |
534 | c->ecx = signature[1]; | |
535 | c->edx = signature[2]; | |
536 | ||
537 | c = &cpuid_data.entries[cpuid_i++]; | |
538 | c->function = KVM_CPUID_FEATURES | kvm_base; | |
539 | c->eax = env->features[FEAT_KVM]; | |
540 | ||
0c31b744 | 541 | has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF); |
bb0300dc | 542 | |
bc9a839d MT |
543 | has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI); |
544 | ||
917367aa MT |
545 | has_msr_kvm_steal_time = c->eax & (1 << KVM_FEATURE_STEAL_TIME); |
546 | ||
a33609ca | 547 | cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); |
05330448 AL |
548 | |
549 | for (i = 0; i <= limit; i++) { | |
f8bb0565 IM |
550 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
551 | fprintf(stderr, "unsupported level value: 0x%x\n", limit); | |
552 | abort(); | |
553 | } | |
bb0300dc | 554 | c = &cpuid_data.entries[cpuid_i++]; |
486bd5a2 AL |
555 | |
556 | switch (i) { | |
a36b1029 AL |
557 | case 2: { |
558 | /* Keep reading function 2 till all the input is received */ | |
559 | int times; | |
560 | ||
a36b1029 | 561 | c->function = i; |
a33609ca AL |
562 | c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC | |
563 | KVM_CPUID_FLAG_STATE_READ_NEXT; | |
564 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
565 | times = c->eax & 0xff; | |
a36b1029 AL |
566 | |
567 | for (j = 1; j < times; ++j) { | |
f8bb0565 IM |
568 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
569 | fprintf(stderr, "cpuid_data is full, no space for " | |
570 | "cpuid(eax:2):eax & 0xf = 0x%x\n", times); | |
571 | abort(); | |
572 | } | |
a33609ca | 573 | c = &cpuid_data.entries[cpuid_i++]; |
a36b1029 | 574 | c->function = i; |
a33609ca AL |
575 | c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC; |
576 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
a36b1029 AL |
577 | } |
578 | break; | |
579 | } | |
486bd5a2 AL |
580 | case 4: |
581 | case 0xb: | |
582 | case 0xd: | |
583 | for (j = 0; ; j++) { | |
31e8c696 AP |
584 | if (i == 0xd && j == 64) { |
585 | break; | |
586 | } | |
486bd5a2 AL |
587 | c->function = i; |
588 | c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | |
589 | c->index = j; | |
a33609ca | 590 | cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); |
486bd5a2 | 591 | |
b9bec74b | 592 | if (i == 4 && c->eax == 0) { |
486bd5a2 | 593 | break; |
b9bec74b JK |
594 | } |
595 | if (i == 0xb && !(c->ecx & 0xff00)) { | |
486bd5a2 | 596 | break; |
b9bec74b JK |
597 | } |
598 | if (i == 0xd && c->eax == 0) { | |
31e8c696 | 599 | continue; |
b9bec74b | 600 | } |
f8bb0565 IM |
601 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
602 | fprintf(stderr, "cpuid_data is full, no space for " | |
603 | "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); | |
604 | abort(); | |
605 | } | |
a33609ca | 606 | c = &cpuid_data.entries[cpuid_i++]; |
486bd5a2 AL |
607 | } |
608 | break; | |
609 | default: | |
486bd5a2 | 610 | c->function = i; |
a33609ca AL |
611 | c->flags = 0; |
612 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
486bd5a2 AL |
613 | break; |
614 | } | |
05330448 | 615 | } |
0d894367 PB |
616 | |
617 | if (limit >= 0x0a) { | |
618 | uint32_t ver; | |
619 | ||
620 | cpu_x86_cpuid(env, 0x0a, 0, &ver, &unused, &unused, &unused); | |
621 | if ((ver & 0xff) > 0) { | |
622 | has_msr_architectural_pmu = true; | |
623 | num_architectural_pmu_counters = (ver & 0xff00) >> 8; | |
624 | ||
625 | /* Shouldn't be more than 32, since that's the number of bits | |
626 | * available in EBX to tell us _which_ counters are available. | |
627 | * Play it safe. | |
628 | */ | |
629 | if (num_architectural_pmu_counters > MAX_GP_COUNTERS) { | |
630 | num_architectural_pmu_counters = MAX_GP_COUNTERS; | |
631 | } | |
632 | } | |
633 | } | |
634 | ||
a33609ca | 635 | cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); |
05330448 AL |
636 | |
637 | for (i = 0x80000000; i <= limit; i++) { | |
f8bb0565 IM |
638 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
639 | fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit); | |
640 | abort(); | |
641 | } | |
bb0300dc | 642 | c = &cpuid_data.entries[cpuid_i++]; |
05330448 | 643 | |
05330448 | 644 | c->function = i; |
a33609ca AL |
645 | c->flags = 0; |
646 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
05330448 AL |
647 | } |
648 | ||
b3baa152 BW |
649 | /* Call Centaur's CPUID instructions they are supported. */ |
650 | if (env->cpuid_xlevel2 > 0) { | |
b3baa152 BW |
651 | cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused); |
652 | ||
653 | for (i = 0xC0000000; i <= limit; i++) { | |
f8bb0565 IM |
654 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
655 | fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit); | |
656 | abort(); | |
657 | } | |
b3baa152 BW |
658 | c = &cpuid_data.entries[cpuid_i++]; |
659 | ||
660 | c->function = i; | |
661 | c->flags = 0; | |
662 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
663 | } | |
664 | } | |
665 | ||
05330448 AL |
666 | cpuid_data.cpuid.nent = cpuid_i; |
667 | ||
e7701825 | 668 | if (((env->cpuid_version >> 8)&0xF) >= 6 |
0514ef2f | 669 | && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) == |
fc7a504c | 670 | (CPUID_MCE | CPUID_MCA) |
a60f24b5 | 671 | && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) { |
e7701825 MT |
672 | uint64_t mcg_cap; |
673 | int banks; | |
32a42024 | 674 | int ret; |
e7701825 | 675 | |
a60f24b5 | 676 | ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks); |
75d49497 JK |
677 | if (ret < 0) { |
678 | fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret)); | |
679 | return ret; | |
e7701825 | 680 | } |
75d49497 JK |
681 | |
682 | if (banks > MCE_BANKS_DEF) { | |
683 | banks = MCE_BANKS_DEF; | |
684 | } | |
685 | mcg_cap &= MCE_CAP_DEF; | |
686 | mcg_cap |= banks; | |
1bc22652 | 687 | ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &mcg_cap); |
75d49497 JK |
688 | if (ret < 0) { |
689 | fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret)); | |
690 | return ret; | |
691 | } | |
692 | ||
693 | env->mcg_cap = mcg_cap; | |
e7701825 | 694 | } |
e7701825 | 695 | |
b8cc45d6 GC |
696 | qemu_add_vm_change_state_handler(cpu_update_state, env); |
697 | ||
df67696e LJ |
698 | c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0); |
699 | if (c) { | |
700 | has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) || | |
701 | !!(c->ecx & CPUID_EXT_SMX); | |
702 | } | |
703 | ||
7e680753 | 704 | cpuid_data.cpuid.padding = 0; |
1bc22652 | 705 | r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data); |
fdc9c41a JK |
706 | if (r) { |
707 | return r; | |
708 | } | |
e7429073 | 709 | |
a60f24b5 | 710 | r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL); |
e7429073 | 711 | if (r && env->tsc_khz) { |
1bc22652 | 712 | r = kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz); |
e7429073 JR |
713 | if (r < 0) { |
714 | fprintf(stderr, "KVM_SET_TSC_KHZ failed\n"); | |
715 | return r; | |
716 | } | |
717 | } | |
e7429073 | 718 | |
fabacc0f JK |
719 | if (kvm_has_xsave()) { |
720 | env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave)); | |
721 | } | |
722 | ||
e7429073 | 723 | return 0; |
05330448 AL |
724 | } |
725 | ||
20d695a9 | 726 | void kvm_arch_reset_vcpu(CPUState *cs) |
caa5af0f | 727 | { |
20d695a9 AF |
728 | X86CPU *cpu = X86_CPU(cs); |
729 | CPUX86State *env = &cpu->env; | |
dd673288 | 730 | |
e73223a5 | 731 | env->exception_injected = -1; |
0e607a80 | 732 | env->interrupt_injected = -1; |
1a5e9d2f | 733 | env->xcr0 = 1; |
ddced198 | 734 | if (kvm_irqchip_in_kernel()) { |
dd673288 | 735 | env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE : |
ddced198 MT |
736 | KVM_MP_STATE_UNINITIALIZED; |
737 | } else { | |
738 | env->mp_state = KVM_MP_STATE_RUNNABLE; | |
739 | } | |
caa5af0f JK |
740 | } |
741 | ||
c3a3a7d3 | 742 | static int kvm_get_supported_msrs(KVMState *s) |
05330448 | 743 | { |
75b10c43 | 744 | static int kvm_supported_msrs; |
c3a3a7d3 | 745 | int ret = 0; |
05330448 AL |
746 | |
747 | /* first time */ | |
75b10c43 | 748 | if (kvm_supported_msrs == 0) { |
05330448 AL |
749 | struct kvm_msr_list msr_list, *kvm_msr_list; |
750 | ||
75b10c43 | 751 | kvm_supported_msrs = -1; |
05330448 AL |
752 | |
753 | /* Obtain MSR list from KVM. These are the MSRs that we must | |
754 | * save/restore */ | |
4c9f7372 | 755 | msr_list.nmsrs = 0; |
c3a3a7d3 | 756 | ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list); |
6fb6d245 | 757 | if (ret < 0 && ret != -E2BIG) { |
c3a3a7d3 | 758 | return ret; |
6fb6d245 | 759 | } |
d9db889f JK |
760 | /* Old kernel modules had a bug and could write beyond the provided |
761 | memory. Allocate at least a safe amount of 1K. */ | |
7267c094 | 762 | kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) + |
d9db889f JK |
763 | msr_list.nmsrs * |
764 | sizeof(msr_list.indices[0]))); | |
05330448 | 765 | |
55308450 | 766 | kvm_msr_list->nmsrs = msr_list.nmsrs; |
c3a3a7d3 | 767 | ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list); |
05330448 AL |
768 | if (ret >= 0) { |
769 | int i; | |
770 | ||
771 | for (i = 0; i < kvm_msr_list->nmsrs; i++) { | |
772 | if (kvm_msr_list->indices[i] == MSR_STAR) { | |
c3a3a7d3 | 773 | has_msr_star = true; |
75b10c43 MT |
774 | continue; |
775 | } | |
776 | if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) { | |
c3a3a7d3 | 777 | has_msr_hsave_pa = true; |
75b10c43 | 778 | continue; |
05330448 | 779 | } |
f28558d3 WA |
780 | if (kvm_msr_list->indices[i] == MSR_TSC_ADJUST) { |
781 | has_msr_tsc_adjust = true; | |
782 | continue; | |
783 | } | |
aa82ba54 LJ |
784 | if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) { |
785 | has_msr_tsc_deadline = true; | |
786 | continue; | |
787 | } | |
21e87c46 AK |
788 | if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) { |
789 | has_msr_misc_enable = true; | |
790 | continue; | |
791 | } | |
79e9ebeb LJ |
792 | if (kvm_msr_list->indices[i] == MSR_IA32_BNDCFGS) { |
793 | has_msr_bndcfgs = true; | |
794 | continue; | |
795 | } | |
05330448 AL |
796 | } |
797 | } | |
798 | ||
7267c094 | 799 | g_free(kvm_msr_list); |
05330448 AL |
800 | } |
801 | ||
c3a3a7d3 | 802 | return ret; |
05330448 AL |
803 | } |
804 | ||
cad1e282 | 805 | int kvm_arch_init(KVMState *s) |
20420430 | 806 | { |
11076198 | 807 | uint64_t identity_base = 0xfffbc000; |
39d6960a | 808 | uint64_t shadow_mem; |
20420430 | 809 | int ret; |
25d2e361 | 810 | struct utsname utsname; |
20420430 | 811 | |
c3a3a7d3 | 812 | ret = kvm_get_supported_msrs(s); |
20420430 | 813 | if (ret < 0) { |
20420430 SY |
814 | return ret; |
815 | } | |
25d2e361 MT |
816 | |
817 | uname(&utsname); | |
818 | lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0; | |
819 | ||
4c5b10b7 | 820 | /* |
11076198 JK |
821 | * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly. |
822 | * In order to use vm86 mode, an EPT identity map and a TSS are needed. | |
823 | * Since these must be part of guest physical memory, we need to allocate | |
824 | * them, both by setting their start addresses in the kernel and by | |
825 | * creating a corresponding e820 entry. We need 4 pages before the BIOS. | |
826 | * | |
827 | * Older KVM versions may not support setting the identity map base. In | |
828 | * that case we need to stick with the default, i.e. a 256K maximum BIOS | |
829 | * size. | |
4c5b10b7 | 830 | */ |
11076198 JK |
831 | if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) { |
832 | /* Allows up to 16M BIOSes. */ | |
833 | identity_base = 0xfeffc000; | |
834 | ||
835 | ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base); | |
836 | if (ret < 0) { | |
837 | return ret; | |
838 | } | |
4c5b10b7 | 839 | } |
e56ff191 | 840 | |
11076198 JK |
841 | /* Set TSS base one page after EPT identity map. */ |
842 | ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000); | |
20420430 SY |
843 | if (ret < 0) { |
844 | return ret; | |
845 | } | |
846 | ||
11076198 JK |
847 | /* Tell fw_cfg to notify the BIOS to reserve the range. */ |
848 | ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED); | |
20420430 | 849 | if (ret < 0) { |
11076198 | 850 | fprintf(stderr, "e820_add_entry() table is full\n"); |
20420430 SY |
851 | return ret; |
852 | } | |
3c85e74f | 853 | qemu_register_reset(kvm_unpoison_all, NULL); |
20420430 | 854 | |
36ad0e94 MA |
855 | shadow_mem = qemu_opt_get_size(qemu_get_machine_opts(), |
856 | "kvm_shadow_mem", -1); | |
857 | if (shadow_mem != -1) { | |
858 | shadow_mem /= 4096; | |
859 | ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem); | |
860 | if (ret < 0) { | |
861 | return ret; | |
39d6960a JK |
862 | } |
863 | } | |
11076198 | 864 | return 0; |
05330448 | 865 | } |
b9bec74b | 866 | |
05330448 AL |
867 | static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) |
868 | { | |
869 | lhs->selector = rhs->selector; | |
870 | lhs->base = rhs->base; | |
871 | lhs->limit = rhs->limit; | |
872 | lhs->type = 3; | |
873 | lhs->present = 1; | |
874 | lhs->dpl = 3; | |
875 | lhs->db = 0; | |
876 | lhs->s = 1; | |
877 | lhs->l = 0; | |
878 | lhs->g = 0; | |
879 | lhs->avl = 0; | |
880 | lhs->unusable = 0; | |
881 | } | |
882 | ||
883 | static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) | |
884 | { | |
885 | unsigned flags = rhs->flags; | |
886 | lhs->selector = rhs->selector; | |
887 | lhs->base = rhs->base; | |
888 | lhs->limit = rhs->limit; | |
889 | lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; | |
890 | lhs->present = (flags & DESC_P_MASK) != 0; | |
acaa7550 | 891 | lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3; |
05330448 AL |
892 | lhs->db = (flags >> DESC_B_SHIFT) & 1; |
893 | lhs->s = (flags & DESC_S_MASK) != 0; | |
894 | lhs->l = (flags >> DESC_L_SHIFT) & 1; | |
895 | lhs->g = (flags & DESC_G_MASK) != 0; | |
896 | lhs->avl = (flags & DESC_AVL_MASK) != 0; | |
897 | lhs->unusable = 0; | |
7e680753 | 898 | lhs->padding = 0; |
05330448 AL |
899 | } |
900 | ||
901 | static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) | |
902 | { | |
903 | lhs->selector = rhs->selector; | |
904 | lhs->base = rhs->base; | |
905 | lhs->limit = rhs->limit; | |
b9bec74b JK |
906 | lhs->flags = (rhs->type << DESC_TYPE_SHIFT) | |
907 | (rhs->present * DESC_P_MASK) | | |
908 | (rhs->dpl << DESC_DPL_SHIFT) | | |
909 | (rhs->db << DESC_B_SHIFT) | | |
910 | (rhs->s * DESC_S_MASK) | | |
911 | (rhs->l << DESC_L_SHIFT) | | |
912 | (rhs->g * DESC_G_MASK) | | |
913 | (rhs->avl * DESC_AVL_MASK); | |
05330448 AL |
914 | } |
915 | ||
916 | static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) | |
917 | { | |
b9bec74b | 918 | if (set) { |
05330448 | 919 | *kvm_reg = *qemu_reg; |
b9bec74b | 920 | } else { |
05330448 | 921 | *qemu_reg = *kvm_reg; |
b9bec74b | 922 | } |
05330448 AL |
923 | } |
924 | ||
1bc22652 | 925 | static int kvm_getput_regs(X86CPU *cpu, int set) |
05330448 | 926 | { |
1bc22652 | 927 | CPUX86State *env = &cpu->env; |
05330448 AL |
928 | struct kvm_regs regs; |
929 | int ret = 0; | |
930 | ||
931 | if (!set) { | |
1bc22652 | 932 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, ®s); |
b9bec74b | 933 | if (ret < 0) { |
05330448 | 934 | return ret; |
b9bec74b | 935 | } |
05330448 AL |
936 | } |
937 | ||
938 | kvm_getput_reg(®s.rax, &env->regs[R_EAX], set); | |
939 | kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set); | |
940 | kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set); | |
941 | kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set); | |
942 | kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set); | |
943 | kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set); | |
944 | kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set); | |
945 | kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set); | |
946 | #ifdef TARGET_X86_64 | |
947 | kvm_getput_reg(®s.r8, &env->regs[8], set); | |
948 | kvm_getput_reg(®s.r9, &env->regs[9], set); | |
949 | kvm_getput_reg(®s.r10, &env->regs[10], set); | |
950 | kvm_getput_reg(®s.r11, &env->regs[11], set); | |
951 | kvm_getput_reg(®s.r12, &env->regs[12], set); | |
952 | kvm_getput_reg(®s.r13, &env->regs[13], set); | |
953 | kvm_getput_reg(®s.r14, &env->regs[14], set); | |
954 | kvm_getput_reg(®s.r15, &env->regs[15], set); | |
955 | #endif | |
956 | ||
957 | kvm_getput_reg(®s.rflags, &env->eflags, set); | |
958 | kvm_getput_reg(®s.rip, &env->eip, set); | |
959 | ||
b9bec74b | 960 | if (set) { |
1bc22652 | 961 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, ®s); |
b9bec74b | 962 | } |
05330448 AL |
963 | |
964 | return ret; | |
965 | } | |
966 | ||
1bc22652 | 967 | static int kvm_put_fpu(X86CPU *cpu) |
05330448 | 968 | { |
1bc22652 | 969 | CPUX86State *env = &cpu->env; |
05330448 AL |
970 | struct kvm_fpu fpu; |
971 | int i; | |
972 | ||
973 | memset(&fpu, 0, sizeof fpu); | |
974 | fpu.fsw = env->fpus & ~(7 << 11); | |
975 | fpu.fsw |= (env->fpstt & 7) << 11; | |
976 | fpu.fcw = env->fpuc; | |
42cc8fa6 JK |
977 | fpu.last_opcode = env->fpop; |
978 | fpu.last_ip = env->fpip; | |
979 | fpu.last_dp = env->fpdp; | |
b9bec74b JK |
980 | for (i = 0; i < 8; ++i) { |
981 | fpu.ftwx |= (!env->fptags[i]) << i; | |
982 | } | |
05330448 AL |
983 | memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs); |
984 | memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs); | |
985 | fpu.mxcsr = env->mxcsr; | |
986 | ||
1bc22652 | 987 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu); |
05330448 AL |
988 | } |
989 | ||
6b42494b JK |
990 | #define XSAVE_FCW_FSW 0 |
991 | #define XSAVE_FTW_FOP 1 | |
f1665b21 SY |
992 | #define XSAVE_CWD_RIP 2 |
993 | #define XSAVE_CWD_RDP 4 | |
994 | #define XSAVE_MXCSR 6 | |
995 | #define XSAVE_ST_SPACE 8 | |
996 | #define XSAVE_XMM_SPACE 40 | |
997 | #define XSAVE_XSTATE_BV 128 | |
998 | #define XSAVE_YMMH_SPACE 144 | |
79e9ebeb LJ |
999 | #define XSAVE_BNDREGS 240 |
1000 | #define XSAVE_BNDCSR 256 | |
f1665b21 | 1001 | |
1bc22652 | 1002 | static int kvm_put_xsave(X86CPU *cpu) |
f1665b21 | 1003 | { |
1bc22652 | 1004 | CPUX86State *env = &cpu->env; |
fabacc0f | 1005 | struct kvm_xsave* xsave = env->kvm_xsave_buf; |
42cc8fa6 | 1006 | uint16_t cwd, swd, twd; |
fabacc0f | 1007 | int i, r; |
f1665b21 | 1008 | |
b9bec74b | 1009 | if (!kvm_has_xsave()) { |
1bc22652 | 1010 | return kvm_put_fpu(cpu); |
b9bec74b | 1011 | } |
f1665b21 | 1012 | |
f1665b21 | 1013 | memset(xsave, 0, sizeof(struct kvm_xsave)); |
6115c0a8 | 1014 | twd = 0; |
f1665b21 SY |
1015 | swd = env->fpus & ~(7 << 11); |
1016 | swd |= (env->fpstt & 7) << 11; | |
1017 | cwd = env->fpuc; | |
b9bec74b | 1018 | for (i = 0; i < 8; ++i) { |
f1665b21 | 1019 | twd |= (!env->fptags[i]) << i; |
b9bec74b | 1020 | } |
6b42494b JK |
1021 | xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd; |
1022 | xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd; | |
42cc8fa6 JK |
1023 | memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip)); |
1024 | memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp)); | |
f1665b21 SY |
1025 | memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs, |
1026 | sizeof env->fpregs); | |
1027 | memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs, | |
1028 | sizeof env->xmm_regs); | |
1029 | xsave->region[XSAVE_MXCSR] = env->mxcsr; | |
1030 | *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv; | |
1031 | memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs, | |
1032 | sizeof env->ymmh_regs); | |
79e9ebeb LJ |
1033 | memcpy(&xsave->region[XSAVE_BNDREGS], env->bnd_regs, |
1034 | sizeof env->bnd_regs); | |
1035 | memcpy(&xsave->region[XSAVE_BNDCSR], &env->bndcs_regs, | |
1036 | sizeof(env->bndcs_regs)); | |
1bc22652 | 1037 | r = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave); |
0f53994f | 1038 | return r; |
f1665b21 SY |
1039 | } |
1040 | ||
1bc22652 | 1041 | static int kvm_put_xcrs(X86CPU *cpu) |
f1665b21 | 1042 | { |
1bc22652 | 1043 | CPUX86State *env = &cpu->env; |
f1665b21 SY |
1044 | struct kvm_xcrs xcrs; |
1045 | ||
b9bec74b | 1046 | if (!kvm_has_xcrs()) { |
f1665b21 | 1047 | return 0; |
b9bec74b | 1048 | } |
f1665b21 SY |
1049 | |
1050 | xcrs.nr_xcrs = 1; | |
1051 | xcrs.flags = 0; | |
1052 | xcrs.xcrs[0].xcr = 0; | |
1053 | xcrs.xcrs[0].value = env->xcr0; | |
1bc22652 | 1054 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs); |
f1665b21 SY |
1055 | } |
1056 | ||
1bc22652 | 1057 | static int kvm_put_sregs(X86CPU *cpu) |
05330448 | 1058 | { |
1bc22652 | 1059 | CPUX86State *env = &cpu->env; |
05330448 AL |
1060 | struct kvm_sregs sregs; |
1061 | ||
0e607a80 JK |
1062 | memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); |
1063 | if (env->interrupt_injected >= 0) { | |
1064 | sregs.interrupt_bitmap[env->interrupt_injected / 64] |= | |
1065 | (uint64_t)1 << (env->interrupt_injected % 64); | |
1066 | } | |
05330448 AL |
1067 | |
1068 | if ((env->eflags & VM_MASK)) { | |
b9bec74b JK |
1069 | set_v8086_seg(&sregs.cs, &env->segs[R_CS]); |
1070 | set_v8086_seg(&sregs.ds, &env->segs[R_DS]); | |
1071 | set_v8086_seg(&sregs.es, &env->segs[R_ES]); | |
1072 | set_v8086_seg(&sregs.fs, &env->segs[R_FS]); | |
1073 | set_v8086_seg(&sregs.gs, &env->segs[R_GS]); | |
1074 | set_v8086_seg(&sregs.ss, &env->segs[R_SS]); | |
05330448 | 1075 | } else { |
b9bec74b JK |
1076 | set_seg(&sregs.cs, &env->segs[R_CS]); |
1077 | set_seg(&sregs.ds, &env->segs[R_DS]); | |
1078 | set_seg(&sregs.es, &env->segs[R_ES]); | |
1079 | set_seg(&sregs.fs, &env->segs[R_FS]); | |
1080 | set_seg(&sregs.gs, &env->segs[R_GS]); | |
1081 | set_seg(&sregs.ss, &env->segs[R_SS]); | |
05330448 AL |
1082 | } |
1083 | ||
1084 | set_seg(&sregs.tr, &env->tr); | |
1085 | set_seg(&sregs.ldt, &env->ldt); | |
1086 | ||
1087 | sregs.idt.limit = env->idt.limit; | |
1088 | sregs.idt.base = env->idt.base; | |
7e680753 | 1089 | memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); |
05330448 AL |
1090 | sregs.gdt.limit = env->gdt.limit; |
1091 | sregs.gdt.base = env->gdt.base; | |
7e680753 | 1092 | memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); |
05330448 AL |
1093 | |
1094 | sregs.cr0 = env->cr[0]; | |
1095 | sregs.cr2 = env->cr[2]; | |
1096 | sregs.cr3 = env->cr[3]; | |
1097 | sregs.cr4 = env->cr[4]; | |
1098 | ||
02e51483 CF |
1099 | sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state); |
1100 | sregs.apic_base = cpu_get_apic_base(cpu->apic_state); | |
05330448 AL |
1101 | |
1102 | sregs.efer = env->efer; | |
1103 | ||
1bc22652 | 1104 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs); |
05330448 AL |
1105 | } |
1106 | ||
1107 | static void kvm_msr_entry_set(struct kvm_msr_entry *entry, | |
1108 | uint32_t index, uint64_t value) | |
1109 | { | |
1110 | entry->index = index; | |
1111 | entry->data = value; | |
1112 | } | |
1113 | ||
7477cd38 MT |
1114 | static int kvm_put_tscdeadline_msr(X86CPU *cpu) |
1115 | { | |
1116 | CPUX86State *env = &cpu->env; | |
1117 | struct { | |
1118 | struct kvm_msrs info; | |
1119 | struct kvm_msr_entry entries[1]; | |
1120 | } msr_data; | |
1121 | struct kvm_msr_entry *msrs = msr_data.entries; | |
1122 | ||
1123 | if (!has_msr_tsc_deadline) { | |
1124 | return 0; | |
1125 | } | |
1126 | ||
1127 | kvm_msr_entry_set(&msrs[0], MSR_IA32_TSCDEADLINE, env->tsc_deadline); | |
1128 | ||
1129 | msr_data.info.nmsrs = 1; | |
1130 | ||
1131 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data); | |
1132 | } | |
1133 | ||
6bdf863d JK |
1134 | /* |
1135 | * Provide a separate write service for the feature control MSR in order to | |
1136 | * kick the VCPU out of VMXON or even guest mode on reset. This has to be done | |
1137 | * before writing any other state because forcibly leaving nested mode | |
1138 | * invalidates the VCPU state. | |
1139 | */ | |
1140 | static int kvm_put_msr_feature_control(X86CPU *cpu) | |
1141 | { | |
1142 | struct { | |
1143 | struct kvm_msrs info; | |
1144 | struct kvm_msr_entry entry; | |
1145 | } msr_data; | |
1146 | ||
1147 | kvm_msr_entry_set(&msr_data.entry, MSR_IA32_FEATURE_CONTROL, | |
1148 | cpu->env.msr_ia32_feature_control); | |
1149 | msr_data.info.nmsrs = 1; | |
1150 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data); | |
1151 | } | |
1152 | ||
1bc22652 | 1153 | static int kvm_put_msrs(X86CPU *cpu, int level) |
05330448 | 1154 | { |
1bc22652 | 1155 | CPUX86State *env = &cpu->env; |
05330448 AL |
1156 | struct { |
1157 | struct kvm_msrs info; | |
1158 | struct kvm_msr_entry entries[100]; | |
1159 | } msr_data; | |
1160 | struct kvm_msr_entry *msrs = msr_data.entries; | |
0d894367 | 1161 | int n = 0, i; |
05330448 AL |
1162 | |
1163 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs); | |
1164 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp); | |
1165 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip); | |
0c03266a | 1166 | kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat); |
c3a3a7d3 | 1167 | if (has_msr_star) { |
b9bec74b JK |
1168 | kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star); |
1169 | } | |
c3a3a7d3 | 1170 | if (has_msr_hsave_pa) { |
75b10c43 | 1171 | kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave); |
b9bec74b | 1172 | } |
f28558d3 WA |
1173 | if (has_msr_tsc_adjust) { |
1174 | kvm_msr_entry_set(&msrs[n++], MSR_TSC_ADJUST, env->tsc_adjust); | |
1175 | } | |
21e87c46 AK |
1176 | if (has_msr_misc_enable) { |
1177 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE, | |
1178 | env->msr_ia32_misc_enable); | |
1179 | } | |
439d19f2 PB |
1180 | if (has_msr_bndcfgs) { |
1181 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_BNDCFGS, env->msr_bndcfgs); | |
1182 | } | |
05330448 | 1183 | #ifdef TARGET_X86_64 |
25d2e361 MT |
1184 | if (lm_capable_kernel) { |
1185 | kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar); | |
1186 | kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase); | |
1187 | kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask); | |
1188 | kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar); | |
1189 | } | |
05330448 | 1190 | #endif |
ff5c186b | 1191 | /* |
0d894367 PB |
1192 | * The following MSRs have side effects on the guest or are too heavy |
1193 | * for normal writeback. Limit them to reset or full state updates. | |
ff5c186b JK |
1194 | */ |
1195 | if (level >= KVM_PUT_RESET_STATE) { | |
0522604b | 1196 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc); |
ea643051 JK |
1197 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME, |
1198 | env->system_time_msr); | |
1199 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr); | |
c5999bfc JK |
1200 | if (has_msr_async_pf_en) { |
1201 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN, | |
1202 | env->async_pf_en_msr); | |
1203 | } | |
bc9a839d MT |
1204 | if (has_msr_pv_eoi_en) { |
1205 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN, | |
1206 | env->pv_eoi_en_msr); | |
1207 | } | |
917367aa MT |
1208 | if (has_msr_kvm_steal_time) { |
1209 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_STEAL_TIME, | |
1210 | env->steal_time_msr); | |
1211 | } | |
0d894367 PB |
1212 | if (has_msr_architectural_pmu) { |
1213 | /* Stop the counter. */ | |
1214 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR_CTRL, 0); | |
1215 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_CTRL, 0); | |
1216 | ||
1217 | /* Set the counter values. */ | |
1218 | for (i = 0; i < MAX_FIXED_COUNTERS; i++) { | |
1219 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR0 + i, | |
1220 | env->msr_fixed_counters[i]); | |
1221 | } | |
1222 | for (i = 0; i < num_architectural_pmu_counters; i++) { | |
1223 | kvm_msr_entry_set(&msrs[n++], MSR_P6_PERFCTR0 + i, | |
1224 | env->msr_gp_counters[i]); | |
1225 | kvm_msr_entry_set(&msrs[n++], MSR_P6_EVNTSEL0 + i, | |
1226 | env->msr_gp_evtsel[i]); | |
1227 | } | |
1228 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_STATUS, | |
1229 | env->msr_global_status); | |
1230 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_OVF_CTRL, | |
1231 | env->msr_global_ovf_ctrl); | |
1232 | ||
1233 | /* Now start the PMU. */ | |
1234 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR_CTRL, | |
1235 | env->msr_fixed_ctr_ctrl); | |
1236 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_CTRL, | |
1237 | env->msr_global_ctrl); | |
1238 | } | |
7bc3d711 | 1239 | if (has_msr_hv_hypercall) { |
1c90ef26 VR |
1240 | kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, |
1241 | env->msr_hv_guest_os_id); | |
1242 | kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, | |
1243 | env->msr_hv_hypercall); | |
eab70139 | 1244 | } |
7bc3d711 | 1245 | if (has_msr_hv_vapic) { |
5ef68987 VR |
1246 | kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, |
1247 | env->msr_hv_vapic); | |
eab70139 | 1248 | } |
48a5f3bc VR |
1249 | if (has_msr_hv_tsc) { |
1250 | kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_REFERENCE_TSC, | |
1251 | env->msr_hv_tsc); | |
1252 | } | |
6bdf863d JK |
1253 | |
1254 | /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see | |
1255 | * kvm_put_msr_feature_control. */ | |
ea643051 | 1256 | } |
57780495 | 1257 | if (env->mcg_cap) { |
d8da8574 | 1258 | int i; |
b9bec74b | 1259 | |
c34d440a JK |
1260 | kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status); |
1261 | kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl); | |
1262 | for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { | |
1263 | kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]); | |
57780495 MT |
1264 | } |
1265 | } | |
1a03675d | 1266 | |
05330448 AL |
1267 | msr_data.info.nmsrs = n; |
1268 | ||
1bc22652 | 1269 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data); |
05330448 AL |
1270 | |
1271 | } | |
1272 | ||
1273 | ||
1bc22652 | 1274 | static int kvm_get_fpu(X86CPU *cpu) |
05330448 | 1275 | { |
1bc22652 | 1276 | CPUX86State *env = &cpu->env; |
05330448 AL |
1277 | struct kvm_fpu fpu; |
1278 | int i, ret; | |
1279 | ||
1bc22652 | 1280 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu); |
b9bec74b | 1281 | if (ret < 0) { |
05330448 | 1282 | return ret; |
b9bec74b | 1283 | } |
05330448 AL |
1284 | |
1285 | env->fpstt = (fpu.fsw >> 11) & 7; | |
1286 | env->fpus = fpu.fsw; | |
1287 | env->fpuc = fpu.fcw; | |
42cc8fa6 JK |
1288 | env->fpop = fpu.last_opcode; |
1289 | env->fpip = fpu.last_ip; | |
1290 | env->fpdp = fpu.last_dp; | |
b9bec74b JK |
1291 | for (i = 0; i < 8; ++i) { |
1292 | env->fptags[i] = !((fpu.ftwx >> i) & 1); | |
1293 | } | |
05330448 AL |
1294 | memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs); |
1295 | memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs); | |
1296 | env->mxcsr = fpu.mxcsr; | |
1297 | ||
1298 | return 0; | |
1299 | } | |
1300 | ||
1bc22652 | 1301 | static int kvm_get_xsave(X86CPU *cpu) |
f1665b21 | 1302 | { |
1bc22652 | 1303 | CPUX86State *env = &cpu->env; |
fabacc0f | 1304 | struct kvm_xsave* xsave = env->kvm_xsave_buf; |
f1665b21 | 1305 | int ret, i; |
42cc8fa6 | 1306 | uint16_t cwd, swd, twd; |
f1665b21 | 1307 | |
b9bec74b | 1308 | if (!kvm_has_xsave()) { |
1bc22652 | 1309 | return kvm_get_fpu(cpu); |
b9bec74b | 1310 | } |
f1665b21 | 1311 | |
1bc22652 | 1312 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave); |
0f53994f | 1313 | if (ret < 0) { |
f1665b21 | 1314 | return ret; |
0f53994f | 1315 | } |
f1665b21 | 1316 | |
6b42494b JK |
1317 | cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW]; |
1318 | swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16); | |
1319 | twd = (uint16_t)xsave->region[XSAVE_FTW_FOP]; | |
1320 | env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16); | |
f1665b21 SY |
1321 | env->fpstt = (swd >> 11) & 7; |
1322 | env->fpus = swd; | |
1323 | env->fpuc = cwd; | |
b9bec74b | 1324 | for (i = 0; i < 8; ++i) { |
f1665b21 | 1325 | env->fptags[i] = !((twd >> i) & 1); |
b9bec74b | 1326 | } |
42cc8fa6 JK |
1327 | memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip)); |
1328 | memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp)); | |
f1665b21 SY |
1329 | env->mxcsr = xsave->region[XSAVE_MXCSR]; |
1330 | memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE], | |
1331 | sizeof env->fpregs); | |
1332 | memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE], | |
1333 | sizeof env->xmm_regs); | |
1334 | env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV]; | |
1335 | memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE], | |
1336 | sizeof env->ymmh_regs); | |
79e9ebeb LJ |
1337 | memcpy(env->bnd_regs, &xsave->region[XSAVE_BNDREGS], |
1338 | sizeof env->bnd_regs); | |
1339 | memcpy(&env->bndcs_regs, &xsave->region[XSAVE_BNDCSR], | |
1340 | sizeof(env->bndcs_regs)); | |
f1665b21 | 1341 | return 0; |
f1665b21 SY |
1342 | } |
1343 | ||
1bc22652 | 1344 | static int kvm_get_xcrs(X86CPU *cpu) |
f1665b21 | 1345 | { |
1bc22652 | 1346 | CPUX86State *env = &cpu->env; |
f1665b21 SY |
1347 | int i, ret; |
1348 | struct kvm_xcrs xcrs; | |
1349 | ||
b9bec74b | 1350 | if (!kvm_has_xcrs()) { |
f1665b21 | 1351 | return 0; |
b9bec74b | 1352 | } |
f1665b21 | 1353 | |
1bc22652 | 1354 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs); |
b9bec74b | 1355 | if (ret < 0) { |
f1665b21 | 1356 | return ret; |
b9bec74b | 1357 | } |
f1665b21 | 1358 | |
b9bec74b | 1359 | for (i = 0; i < xcrs.nr_xcrs; i++) { |
f1665b21 | 1360 | /* Only support xcr0 now */ |
0fd53fec PB |
1361 | if (xcrs.xcrs[i].xcr == 0) { |
1362 | env->xcr0 = xcrs.xcrs[i].value; | |
f1665b21 SY |
1363 | break; |
1364 | } | |
b9bec74b | 1365 | } |
f1665b21 | 1366 | return 0; |
f1665b21 SY |
1367 | } |
1368 | ||
1bc22652 | 1369 | static int kvm_get_sregs(X86CPU *cpu) |
05330448 | 1370 | { |
1bc22652 | 1371 | CPUX86State *env = &cpu->env; |
05330448 AL |
1372 | struct kvm_sregs sregs; |
1373 | uint32_t hflags; | |
0e607a80 | 1374 | int bit, i, ret; |
05330448 | 1375 | |
1bc22652 | 1376 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); |
b9bec74b | 1377 | if (ret < 0) { |
05330448 | 1378 | return ret; |
b9bec74b | 1379 | } |
05330448 | 1380 | |
0e607a80 JK |
1381 | /* There can only be one pending IRQ set in the bitmap at a time, so try |
1382 | to find it and save its number instead (-1 for none). */ | |
1383 | env->interrupt_injected = -1; | |
1384 | for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) { | |
1385 | if (sregs.interrupt_bitmap[i]) { | |
1386 | bit = ctz64(sregs.interrupt_bitmap[i]); | |
1387 | env->interrupt_injected = i * 64 + bit; | |
1388 | break; | |
1389 | } | |
1390 | } | |
05330448 AL |
1391 | |
1392 | get_seg(&env->segs[R_CS], &sregs.cs); | |
1393 | get_seg(&env->segs[R_DS], &sregs.ds); | |
1394 | get_seg(&env->segs[R_ES], &sregs.es); | |
1395 | get_seg(&env->segs[R_FS], &sregs.fs); | |
1396 | get_seg(&env->segs[R_GS], &sregs.gs); | |
1397 | get_seg(&env->segs[R_SS], &sregs.ss); | |
1398 | ||
1399 | get_seg(&env->tr, &sregs.tr); | |
1400 | get_seg(&env->ldt, &sregs.ldt); | |
1401 | ||
1402 | env->idt.limit = sregs.idt.limit; | |
1403 | env->idt.base = sregs.idt.base; | |
1404 | env->gdt.limit = sregs.gdt.limit; | |
1405 | env->gdt.base = sregs.gdt.base; | |
1406 | ||
1407 | env->cr[0] = sregs.cr0; | |
1408 | env->cr[2] = sregs.cr2; | |
1409 | env->cr[3] = sregs.cr3; | |
1410 | env->cr[4] = sregs.cr4; | |
1411 | ||
05330448 | 1412 | env->efer = sregs.efer; |
cce47516 JK |
1413 | |
1414 | /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ | |
05330448 | 1415 | |
b9bec74b JK |
1416 | #define HFLAG_COPY_MASK \ |
1417 | ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \ | |
1418 | HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \ | |
1419 | HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \ | |
1420 | HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK) | |
05330448 AL |
1421 | |
1422 | hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK; | |
1423 | hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT); | |
1424 | hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) & | |
b9bec74b | 1425 | (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK); |
05330448 AL |
1426 | hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK)); |
1427 | hflags |= (env->cr[4] & CR4_OSFXSR_MASK) << | |
b9bec74b | 1428 | (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT); |
05330448 AL |
1429 | |
1430 | if (env->efer & MSR_EFER_LMA) { | |
1431 | hflags |= HF_LMA_MASK; | |
1432 | } | |
1433 | ||
1434 | if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) { | |
1435 | hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK; | |
1436 | } else { | |
1437 | hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >> | |
b9bec74b | 1438 | (DESC_B_SHIFT - HF_CS32_SHIFT); |
05330448 | 1439 | hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >> |
b9bec74b JK |
1440 | (DESC_B_SHIFT - HF_SS32_SHIFT); |
1441 | if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) || | |
1442 | !(hflags & HF_CS32_MASK)) { | |
1443 | hflags |= HF_ADDSEG_MASK; | |
1444 | } else { | |
1445 | hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base | | |
1446 | env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT; | |
1447 | } | |
05330448 AL |
1448 | } |
1449 | env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags; | |
05330448 AL |
1450 | |
1451 | return 0; | |
1452 | } | |
1453 | ||
1bc22652 | 1454 | static int kvm_get_msrs(X86CPU *cpu) |
05330448 | 1455 | { |
1bc22652 | 1456 | CPUX86State *env = &cpu->env; |
05330448 AL |
1457 | struct { |
1458 | struct kvm_msrs info; | |
1459 | struct kvm_msr_entry entries[100]; | |
1460 | } msr_data; | |
1461 | struct kvm_msr_entry *msrs = msr_data.entries; | |
1462 | int ret, i, n; | |
1463 | ||
1464 | n = 0; | |
1465 | msrs[n++].index = MSR_IA32_SYSENTER_CS; | |
1466 | msrs[n++].index = MSR_IA32_SYSENTER_ESP; | |
1467 | msrs[n++].index = MSR_IA32_SYSENTER_EIP; | |
0c03266a | 1468 | msrs[n++].index = MSR_PAT; |
c3a3a7d3 | 1469 | if (has_msr_star) { |
b9bec74b JK |
1470 | msrs[n++].index = MSR_STAR; |
1471 | } | |
c3a3a7d3 | 1472 | if (has_msr_hsave_pa) { |
75b10c43 | 1473 | msrs[n++].index = MSR_VM_HSAVE_PA; |
b9bec74b | 1474 | } |
f28558d3 WA |
1475 | if (has_msr_tsc_adjust) { |
1476 | msrs[n++].index = MSR_TSC_ADJUST; | |
1477 | } | |
aa82ba54 LJ |
1478 | if (has_msr_tsc_deadline) { |
1479 | msrs[n++].index = MSR_IA32_TSCDEADLINE; | |
1480 | } | |
21e87c46 AK |
1481 | if (has_msr_misc_enable) { |
1482 | msrs[n++].index = MSR_IA32_MISC_ENABLE; | |
1483 | } | |
df67696e LJ |
1484 | if (has_msr_feature_control) { |
1485 | msrs[n++].index = MSR_IA32_FEATURE_CONTROL; | |
1486 | } | |
79e9ebeb LJ |
1487 | if (has_msr_bndcfgs) { |
1488 | msrs[n++].index = MSR_IA32_BNDCFGS; | |
1489 | } | |
b8cc45d6 GC |
1490 | |
1491 | if (!env->tsc_valid) { | |
1492 | msrs[n++].index = MSR_IA32_TSC; | |
1354869c | 1493 | env->tsc_valid = !runstate_is_running(); |
b8cc45d6 GC |
1494 | } |
1495 | ||
05330448 | 1496 | #ifdef TARGET_X86_64 |
25d2e361 MT |
1497 | if (lm_capable_kernel) { |
1498 | msrs[n++].index = MSR_CSTAR; | |
1499 | msrs[n++].index = MSR_KERNELGSBASE; | |
1500 | msrs[n++].index = MSR_FMASK; | |
1501 | msrs[n++].index = MSR_LSTAR; | |
1502 | } | |
05330448 | 1503 | #endif |
1a03675d GC |
1504 | msrs[n++].index = MSR_KVM_SYSTEM_TIME; |
1505 | msrs[n++].index = MSR_KVM_WALL_CLOCK; | |
c5999bfc JK |
1506 | if (has_msr_async_pf_en) { |
1507 | msrs[n++].index = MSR_KVM_ASYNC_PF_EN; | |
1508 | } | |
bc9a839d MT |
1509 | if (has_msr_pv_eoi_en) { |
1510 | msrs[n++].index = MSR_KVM_PV_EOI_EN; | |
1511 | } | |
917367aa MT |
1512 | if (has_msr_kvm_steal_time) { |
1513 | msrs[n++].index = MSR_KVM_STEAL_TIME; | |
1514 | } | |
0d894367 PB |
1515 | if (has_msr_architectural_pmu) { |
1516 | msrs[n++].index = MSR_CORE_PERF_FIXED_CTR_CTRL; | |
1517 | msrs[n++].index = MSR_CORE_PERF_GLOBAL_CTRL; | |
1518 | msrs[n++].index = MSR_CORE_PERF_GLOBAL_STATUS; | |
1519 | msrs[n++].index = MSR_CORE_PERF_GLOBAL_OVF_CTRL; | |
1520 | for (i = 0; i < MAX_FIXED_COUNTERS; i++) { | |
1521 | msrs[n++].index = MSR_CORE_PERF_FIXED_CTR0 + i; | |
1522 | } | |
1523 | for (i = 0; i < num_architectural_pmu_counters; i++) { | |
1524 | msrs[n++].index = MSR_P6_PERFCTR0 + i; | |
1525 | msrs[n++].index = MSR_P6_EVNTSEL0 + i; | |
1526 | } | |
1527 | } | |
1a03675d | 1528 | |
57780495 MT |
1529 | if (env->mcg_cap) { |
1530 | msrs[n++].index = MSR_MCG_STATUS; | |
1531 | msrs[n++].index = MSR_MCG_CTL; | |
b9bec74b | 1532 | for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { |
57780495 | 1533 | msrs[n++].index = MSR_MC0_CTL + i; |
b9bec74b | 1534 | } |
57780495 | 1535 | } |
57780495 | 1536 | |
1c90ef26 VR |
1537 | if (has_msr_hv_hypercall) { |
1538 | msrs[n++].index = HV_X64_MSR_HYPERCALL; | |
1539 | msrs[n++].index = HV_X64_MSR_GUEST_OS_ID; | |
1540 | } | |
5ef68987 VR |
1541 | if (has_msr_hv_vapic) { |
1542 | msrs[n++].index = HV_X64_MSR_APIC_ASSIST_PAGE; | |
1543 | } | |
48a5f3bc VR |
1544 | if (has_msr_hv_tsc) { |
1545 | msrs[n++].index = HV_X64_MSR_REFERENCE_TSC; | |
1546 | } | |
5ef68987 | 1547 | |
05330448 | 1548 | msr_data.info.nmsrs = n; |
1bc22652 | 1549 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data); |
b9bec74b | 1550 | if (ret < 0) { |
05330448 | 1551 | return ret; |
b9bec74b | 1552 | } |
05330448 AL |
1553 | |
1554 | for (i = 0; i < ret; i++) { | |
0d894367 PB |
1555 | uint32_t index = msrs[i].index; |
1556 | switch (index) { | |
05330448 AL |
1557 | case MSR_IA32_SYSENTER_CS: |
1558 | env->sysenter_cs = msrs[i].data; | |
1559 | break; | |
1560 | case MSR_IA32_SYSENTER_ESP: | |
1561 | env->sysenter_esp = msrs[i].data; | |
1562 | break; | |
1563 | case MSR_IA32_SYSENTER_EIP: | |
1564 | env->sysenter_eip = msrs[i].data; | |
1565 | break; | |
0c03266a JK |
1566 | case MSR_PAT: |
1567 | env->pat = msrs[i].data; | |
1568 | break; | |
05330448 AL |
1569 | case MSR_STAR: |
1570 | env->star = msrs[i].data; | |
1571 | break; | |
1572 | #ifdef TARGET_X86_64 | |
1573 | case MSR_CSTAR: | |
1574 | env->cstar = msrs[i].data; | |
1575 | break; | |
1576 | case MSR_KERNELGSBASE: | |
1577 | env->kernelgsbase = msrs[i].data; | |
1578 | break; | |
1579 | case MSR_FMASK: | |
1580 | env->fmask = msrs[i].data; | |
1581 | break; | |
1582 | case MSR_LSTAR: | |
1583 | env->lstar = msrs[i].data; | |
1584 | break; | |
1585 | #endif | |
1586 | case MSR_IA32_TSC: | |
1587 | env->tsc = msrs[i].data; | |
1588 | break; | |
f28558d3 WA |
1589 | case MSR_TSC_ADJUST: |
1590 | env->tsc_adjust = msrs[i].data; | |
1591 | break; | |
aa82ba54 LJ |
1592 | case MSR_IA32_TSCDEADLINE: |
1593 | env->tsc_deadline = msrs[i].data; | |
1594 | break; | |
aa851e36 MT |
1595 | case MSR_VM_HSAVE_PA: |
1596 | env->vm_hsave = msrs[i].data; | |
1597 | break; | |
1a03675d GC |
1598 | case MSR_KVM_SYSTEM_TIME: |
1599 | env->system_time_msr = msrs[i].data; | |
1600 | break; | |
1601 | case MSR_KVM_WALL_CLOCK: | |
1602 | env->wall_clock_msr = msrs[i].data; | |
1603 | break; | |
57780495 MT |
1604 | case MSR_MCG_STATUS: |
1605 | env->mcg_status = msrs[i].data; | |
1606 | break; | |
1607 | case MSR_MCG_CTL: | |
1608 | env->mcg_ctl = msrs[i].data; | |
1609 | break; | |
21e87c46 AK |
1610 | case MSR_IA32_MISC_ENABLE: |
1611 | env->msr_ia32_misc_enable = msrs[i].data; | |
1612 | break; | |
0779caeb ACL |
1613 | case MSR_IA32_FEATURE_CONTROL: |
1614 | env->msr_ia32_feature_control = msrs[i].data; | |
df67696e | 1615 | break; |
79e9ebeb LJ |
1616 | case MSR_IA32_BNDCFGS: |
1617 | env->msr_bndcfgs = msrs[i].data; | |
1618 | break; | |
57780495 | 1619 | default: |
57780495 MT |
1620 | if (msrs[i].index >= MSR_MC0_CTL && |
1621 | msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) { | |
1622 | env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data; | |
57780495 | 1623 | } |
d8da8574 | 1624 | break; |
f6584ee2 GN |
1625 | case MSR_KVM_ASYNC_PF_EN: |
1626 | env->async_pf_en_msr = msrs[i].data; | |
1627 | break; | |
bc9a839d MT |
1628 | case MSR_KVM_PV_EOI_EN: |
1629 | env->pv_eoi_en_msr = msrs[i].data; | |
1630 | break; | |
917367aa MT |
1631 | case MSR_KVM_STEAL_TIME: |
1632 | env->steal_time_msr = msrs[i].data; | |
1633 | break; | |
0d894367 PB |
1634 | case MSR_CORE_PERF_FIXED_CTR_CTRL: |
1635 | env->msr_fixed_ctr_ctrl = msrs[i].data; | |
1636 | break; | |
1637 | case MSR_CORE_PERF_GLOBAL_CTRL: | |
1638 | env->msr_global_ctrl = msrs[i].data; | |
1639 | break; | |
1640 | case MSR_CORE_PERF_GLOBAL_STATUS: | |
1641 | env->msr_global_status = msrs[i].data; | |
1642 | break; | |
1643 | case MSR_CORE_PERF_GLOBAL_OVF_CTRL: | |
1644 | env->msr_global_ovf_ctrl = msrs[i].data; | |
1645 | break; | |
1646 | case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1: | |
1647 | env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data; | |
1648 | break; | |
1649 | case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1: | |
1650 | env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data; | |
1651 | break; | |
1652 | case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1: | |
1653 | env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data; | |
1654 | break; | |
1c90ef26 VR |
1655 | case HV_X64_MSR_HYPERCALL: |
1656 | env->msr_hv_hypercall = msrs[i].data; | |
1657 | break; | |
1658 | case HV_X64_MSR_GUEST_OS_ID: | |
1659 | env->msr_hv_guest_os_id = msrs[i].data; | |
1660 | break; | |
5ef68987 VR |
1661 | case HV_X64_MSR_APIC_ASSIST_PAGE: |
1662 | env->msr_hv_vapic = msrs[i].data; | |
1663 | break; | |
48a5f3bc VR |
1664 | case HV_X64_MSR_REFERENCE_TSC: |
1665 | env->msr_hv_tsc = msrs[i].data; | |
1666 | break; | |
05330448 AL |
1667 | } |
1668 | } | |
1669 | ||
1670 | return 0; | |
1671 | } | |
1672 | ||
1bc22652 | 1673 | static int kvm_put_mp_state(X86CPU *cpu) |
9bdbe550 | 1674 | { |
1bc22652 | 1675 | struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state }; |
9bdbe550 | 1676 | |
1bc22652 | 1677 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); |
9bdbe550 HB |
1678 | } |
1679 | ||
23d02d9b | 1680 | static int kvm_get_mp_state(X86CPU *cpu) |
9bdbe550 | 1681 | { |
259186a7 | 1682 | CPUState *cs = CPU(cpu); |
23d02d9b | 1683 | CPUX86State *env = &cpu->env; |
9bdbe550 HB |
1684 | struct kvm_mp_state mp_state; |
1685 | int ret; | |
1686 | ||
259186a7 | 1687 | ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state); |
9bdbe550 HB |
1688 | if (ret < 0) { |
1689 | return ret; | |
1690 | } | |
1691 | env->mp_state = mp_state.mp_state; | |
c14750e8 | 1692 | if (kvm_irqchip_in_kernel()) { |
259186a7 | 1693 | cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED); |
c14750e8 | 1694 | } |
9bdbe550 HB |
1695 | return 0; |
1696 | } | |
1697 | ||
1bc22652 | 1698 | static int kvm_get_apic(X86CPU *cpu) |
680c1c6f | 1699 | { |
02e51483 | 1700 | DeviceState *apic = cpu->apic_state; |
680c1c6f JK |
1701 | struct kvm_lapic_state kapic; |
1702 | int ret; | |
1703 | ||
3d4b2649 | 1704 | if (apic && kvm_irqchip_in_kernel()) { |
1bc22652 | 1705 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic); |
680c1c6f JK |
1706 | if (ret < 0) { |
1707 | return ret; | |
1708 | } | |
1709 | ||
1710 | kvm_get_apic_state(apic, &kapic); | |
1711 | } | |
1712 | return 0; | |
1713 | } | |
1714 | ||
1bc22652 | 1715 | static int kvm_put_apic(X86CPU *cpu) |
680c1c6f | 1716 | { |
02e51483 | 1717 | DeviceState *apic = cpu->apic_state; |
680c1c6f JK |
1718 | struct kvm_lapic_state kapic; |
1719 | ||
3d4b2649 | 1720 | if (apic && kvm_irqchip_in_kernel()) { |
680c1c6f JK |
1721 | kvm_put_apic_state(apic, &kapic); |
1722 | ||
1bc22652 | 1723 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_LAPIC, &kapic); |
680c1c6f JK |
1724 | } |
1725 | return 0; | |
1726 | } | |
1727 | ||
1bc22652 | 1728 | static int kvm_put_vcpu_events(X86CPU *cpu, int level) |
a0fb002c | 1729 | { |
1bc22652 | 1730 | CPUX86State *env = &cpu->env; |
a0fb002c JK |
1731 | struct kvm_vcpu_events events; |
1732 | ||
1733 | if (!kvm_has_vcpu_events()) { | |
1734 | return 0; | |
1735 | } | |
1736 | ||
31827373 JK |
1737 | events.exception.injected = (env->exception_injected >= 0); |
1738 | events.exception.nr = env->exception_injected; | |
a0fb002c JK |
1739 | events.exception.has_error_code = env->has_error_code; |
1740 | events.exception.error_code = env->error_code; | |
7e680753 | 1741 | events.exception.pad = 0; |
a0fb002c JK |
1742 | |
1743 | events.interrupt.injected = (env->interrupt_injected >= 0); | |
1744 | events.interrupt.nr = env->interrupt_injected; | |
1745 | events.interrupt.soft = env->soft_interrupt; | |
1746 | ||
1747 | events.nmi.injected = env->nmi_injected; | |
1748 | events.nmi.pending = env->nmi_pending; | |
1749 | events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK); | |
7e680753 | 1750 | events.nmi.pad = 0; |
a0fb002c JK |
1751 | |
1752 | events.sipi_vector = env->sipi_vector; | |
1753 | ||
ea643051 JK |
1754 | events.flags = 0; |
1755 | if (level >= KVM_PUT_RESET_STATE) { | |
1756 | events.flags |= | |
1757 | KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR; | |
1758 | } | |
aee028b9 | 1759 | |
1bc22652 | 1760 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); |
a0fb002c JK |
1761 | } |
1762 | ||
1bc22652 | 1763 | static int kvm_get_vcpu_events(X86CPU *cpu) |
a0fb002c | 1764 | { |
1bc22652 | 1765 | CPUX86State *env = &cpu->env; |
a0fb002c JK |
1766 | struct kvm_vcpu_events events; |
1767 | int ret; | |
1768 | ||
1769 | if (!kvm_has_vcpu_events()) { | |
1770 | return 0; | |
1771 | } | |
1772 | ||
1bc22652 | 1773 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); |
a0fb002c JK |
1774 | if (ret < 0) { |
1775 | return ret; | |
1776 | } | |
31827373 | 1777 | env->exception_injected = |
a0fb002c JK |
1778 | events.exception.injected ? events.exception.nr : -1; |
1779 | env->has_error_code = events.exception.has_error_code; | |
1780 | env->error_code = events.exception.error_code; | |
1781 | ||
1782 | env->interrupt_injected = | |
1783 | events.interrupt.injected ? events.interrupt.nr : -1; | |
1784 | env->soft_interrupt = events.interrupt.soft; | |
1785 | ||
1786 | env->nmi_injected = events.nmi.injected; | |
1787 | env->nmi_pending = events.nmi.pending; | |
1788 | if (events.nmi.masked) { | |
1789 | env->hflags2 |= HF2_NMI_MASK; | |
1790 | } else { | |
1791 | env->hflags2 &= ~HF2_NMI_MASK; | |
1792 | } | |
1793 | ||
1794 | env->sipi_vector = events.sipi_vector; | |
a0fb002c JK |
1795 | |
1796 | return 0; | |
1797 | } | |
1798 | ||
1bc22652 | 1799 | static int kvm_guest_debug_workarounds(X86CPU *cpu) |
b0b1d690 | 1800 | { |
ed2803da | 1801 | CPUState *cs = CPU(cpu); |
1bc22652 | 1802 | CPUX86State *env = &cpu->env; |
b0b1d690 | 1803 | int ret = 0; |
b0b1d690 JK |
1804 | unsigned long reinject_trap = 0; |
1805 | ||
1806 | if (!kvm_has_vcpu_events()) { | |
1807 | if (env->exception_injected == 1) { | |
1808 | reinject_trap = KVM_GUESTDBG_INJECT_DB; | |
1809 | } else if (env->exception_injected == 3) { | |
1810 | reinject_trap = KVM_GUESTDBG_INJECT_BP; | |
1811 | } | |
1812 | env->exception_injected = -1; | |
1813 | } | |
1814 | ||
1815 | /* | |
1816 | * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF | |
1817 | * injected via SET_GUEST_DEBUG while updating GP regs. Work around this | |
1818 | * by updating the debug state once again if single-stepping is on. | |
1819 | * Another reason to call kvm_update_guest_debug here is a pending debug | |
1820 | * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to | |
1821 | * reinject them via SET_GUEST_DEBUG. | |
1822 | */ | |
1823 | if (reinject_trap || | |
ed2803da | 1824 | (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) { |
38e478ec | 1825 | ret = kvm_update_guest_debug(cs, reinject_trap); |
b0b1d690 | 1826 | } |
b0b1d690 JK |
1827 | return ret; |
1828 | } | |
1829 | ||
1bc22652 | 1830 | static int kvm_put_debugregs(X86CPU *cpu) |
ff44f1a3 | 1831 | { |
1bc22652 | 1832 | CPUX86State *env = &cpu->env; |
ff44f1a3 JK |
1833 | struct kvm_debugregs dbgregs; |
1834 | int i; | |
1835 | ||
1836 | if (!kvm_has_debugregs()) { | |
1837 | return 0; | |
1838 | } | |
1839 | ||
1840 | for (i = 0; i < 4; i++) { | |
1841 | dbgregs.db[i] = env->dr[i]; | |
1842 | } | |
1843 | dbgregs.dr6 = env->dr[6]; | |
1844 | dbgregs.dr7 = env->dr[7]; | |
1845 | dbgregs.flags = 0; | |
1846 | ||
1bc22652 | 1847 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs); |
ff44f1a3 JK |
1848 | } |
1849 | ||
1bc22652 | 1850 | static int kvm_get_debugregs(X86CPU *cpu) |
ff44f1a3 | 1851 | { |
1bc22652 | 1852 | CPUX86State *env = &cpu->env; |
ff44f1a3 JK |
1853 | struct kvm_debugregs dbgregs; |
1854 | int i, ret; | |
1855 | ||
1856 | if (!kvm_has_debugregs()) { | |
1857 | return 0; | |
1858 | } | |
1859 | ||
1bc22652 | 1860 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs); |
ff44f1a3 | 1861 | if (ret < 0) { |
b9bec74b | 1862 | return ret; |
ff44f1a3 JK |
1863 | } |
1864 | for (i = 0; i < 4; i++) { | |
1865 | env->dr[i] = dbgregs.db[i]; | |
1866 | } | |
1867 | env->dr[4] = env->dr[6] = dbgregs.dr6; | |
1868 | env->dr[5] = env->dr[7] = dbgregs.dr7; | |
ff44f1a3 JK |
1869 | |
1870 | return 0; | |
1871 | } | |
1872 | ||
20d695a9 | 1873 | int kvm_arch_put_registers(CPUState *cpu, int level) |
05330448 | 1874 | { |
20d695a9 | 1875 | X86CPU *x86_cpu = X86_CPU(cpu); |
05330448 AL |
1876 | int ret; |
1877 | ||
2fa45344 | 1878 | assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu)); |
dbaa07c4 | 1879 | |
6bdf863d JK |
1880 | if (level >= KVM_PUT_RESET_STATE && has_msr_feature_control) { |
1881 | ret = kvm_put_msr_feature_control(x86_cpu); | |
1882 | if (ret < 0) { | |
1883 | return ret; | |
1884 | } | |
1885 | } | |
1886 | ||
1bc22652 | 1887 | ret = kvm_getput_regs(x86_cpu, 1); |
b9bec74b | 1888 | if (ret < 0) { |
05330448 | 1889 | return ret; |
b9bec74b | 1890 | } |
1bc22652 | 1891 | ret = kvm_put_xsave(x86_cpu); |
b9bec74b | 1892 | if (ret < 0) { |
f1665b21 | 1893 | return ret; |
b9bec74b | 1894 | } |
1bc22652 | 1895 | ret = kvm_put_xcrs(x86_cpu); |
b9bec74b | 1896 | if (ret < 0) { |
05330448 | 1897 | return ret; |
b9bec74b | 1898 | } |
1bc22652 | 1899 | ret = kvm_put_sregs(x86_cpu); |
b9bec74b | 1900 | if (ret < 0) { |
05330448 | 1901 | return ret; |
b9bec74b | 1902 | } |
ab443475 | 1903 | /* must be before kvm_put_msrs */ |
1bc22652 | 1904 | ret = kvm_inject_mce_oldstyle(x86_cpu); |
ab443475 JK |
1905 | if (ret < 0) { |
1906 | return ret; | |
1907 | } | |
1bc22652 | 1908 | ret = kvm_put_msrs(x86_cpu, level); |
b9bec74b | 1909 | if (ret < 0) { |
05330448 | 1910 | return ret; |
b9bec74b | 1911 | } |
ea643051 | 1912 | if (level >= KVM_PUT_RESET_STATE) { |
1bc22652 | 1913 | ret = kvm_put_mp_state(x86_cpu); |
b9bec74b | 1914 | if (ret < 0) { |
ea643051 | 1915 | return ret; |
b9bec74b | 1916 | } |
1bc22652 | 1917 | ret = kvm_put_apic(x86_cpu); |
680c1c6f JK |
1918 | if (ret < 0) { |
1919 | return ret; | |
1920 | } | |
ea643051 | 1921 | } |
7477cd38 MT |
1922 | |
1923 | ret = kvm_put_tscdeadline_msr(x86_cpu); | |
1924 | if (ret < 0) { | |
1925 | return ret; | |
1926 | } | |
1927 | ||
1bc22652 | 1928 | ret = kvm_put_vcpu_events(x86_cpu, level); |
b9bec74b | 1929 | if (ret < 0) { |
a0fb002c | 1930 | return ret; |
b9bec74b | 1931 | } |
1bc22652 | 1932 | ret = kvm_put_debugregs(x86_cpu); |
b9bec74b | 1933 | if (ret < 0) { |
b0b1d690 | 1934 | return ret; |
b9bec74b | 1935 | } |
b0b1d690 | 1936 | /* must be last */ |
1bc22652 | 1937 | ret = kvm_guest_debug_workarounds(x86_cpu); |
b9bec74b | 1938 | if (ret < 0) { |
ff44f1a3 | 1939 | return ret; |
b9bec74b | 1940 | } |
05330448 AL |
1941 | return 0; |
1942 | } | |
1943 | ||
20d695a9 | 1944 | int kvm_arch_get_registers(CPUState *cs) |
05330448 | 1945 | { |
20d695a9 | 1946 | X86CPU *cpu = X86_CPU(cs); |
05330448 AL |
1947 | int ret; |
1948 | ||
20d695a9 | 1949 | assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs)); |
dbaa07c4 | 1950 | |
1bc22652 | 1951 | ret = kvm_getput_regs(cpu, 0); |
b9bec74b | 1952 | if (ret < 0) { |
05330448 | 1953 | return ret; |
b9bec74b | 1954 | } |
1bc22652 | 1955 | ret = kvm_get_xsave(cpu); |
b9bec74b | 1956 | if (ret < 0) { |
f1665b21 | 1957 | return ret; |
b9bec74b | 1958 | } |
1bc22652 | 1959 | ret = kvm_get_xcrs(cpu); |
b9bec74b | 1960 | if (ret < 0) { |
05330448 | 1961 | return ret; |
b9bec74b | 1962 | } |
1bc22652 | 1963 | ret = kvm_get_sregs(cpu); |
b9bec74b | 1964 | if (ret < 0) { |
05330448 | 1965 | return ret; |
b9bec74b | 1966 | } |
1bc22652 | 1967 | ret = kvm_get_msrs(cpu); |
b9bec74b | 1968 | if (ret < 0) { |
05330448 | 1969 | return ret; |
b9bec74b | 1970 | } |
23d02d9b | 1971 | ret = kvm_get_mp_state(cpu); |
b9bec74b | 1972 | if (ret < 0) { |
5a2e3c2e | 1973 | return ret; |
b9bec74b | 1974 | } |
1bc22652 | 1975 | ret = kvm_get_apic(cpu); |
680c1c6f JK |
1976 | if (ret < 0) { |
1977 | return ret; | |
1978 | } | |
1bc22652 | 1979 | ret = kvm_get_vcpu_events(cpu); |
b9bec74b | 1980 | if (ret < 0) { |
a0fb002c | 1981 | return ret; |
b9bec74b | 1982 | } |
1bc22652 | 1983 | ret = kvm_get_debugregs(cpu); |
b9bec74b | 1984 | if (ret < 0) { |
ff44f1a3 | 1985 | return ret; |
b9bec74b | 1986 | } |
05330448 AL |
1987 | return 0; |
1988 | } | |
1989 | ||
20d695a9 | 1990 | void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) |
05330448 | 1991 | { |
20d695a9 AF |
1992 | X86CPU *x86_cpu = X86_CPU(cpu); |
1993 | CPUX86State *env = &x86_cpu->env; | |
ce377af3 JK |
1994 | int ret; |
1995 | ||
276ce815 | 1996 | /* Inject NMI */ |
259186a7 AF |
1997 | if (cpu->interrupt_request & CPU_INTERRUPT_NMI) { |
1998 | cpu->interrupt_request &= ~CPU_INTERRUPT_NMI; | |
276ce815 | 1999 | DPRINTF("injected NMI\n"); |
1bc22652 | 2000 | ret = kvm_vcpu_ioctl(cpu, KVM_NMI); |
ce377af3 JK |
2001 | if (ret < 0) { |
2002 | fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n", | |
2003 | strerror(-ret)); | |
2004 | } | |
276ce815 LJ |
2005 | } |
2006 | ||
db1669bc | 2007 | if (!kvm_irqchip_in_kernel()) { |
d362e757 JK |
2008 | /* Force the VCPU out of its inner loop to process any INIT requests |
2009 | * or pending TPR access reports. */ | |
259186a7 | 2010 | if (cpu->interrupt_request & |
d362e757 | 2011 | (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) { |
fcd7d003 | 2012 | cpu->exit_request = 1; |
05330448 | 2013 | } |
05330448 | 2014 | |
db1669bc JK |
2015 | /* Try to inject an interrupt if the guest can accept it */ |
2016 | if (run->ready_for_interrupt_injection && | |
259186a7 | 2017 | (cpu->interrupt_request & CPU_INTERRUPT_HARD) && |
db1669bc JK |
2018 | (env->eflags & IF_MASK)) { |
2019 | int irq; | |
2020 | ||
259186a7 | 2021 | cpu->interrupt_request &= ~CPU_INTERRUPT_HARD; |
db1669bc JK |
2022 | irq = cpu_get_pic_interrupt(env); |
2023 | if (irq >= 0) { | |
2024 | struct kvm_interrupt intr; | |
2025 | ||
2026 | intr.irq = irq; | |
db1669bc | 2027 | DPRINTF("injected interrupt %d\n", irq); |
1bc22652 | 2028 | ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr); |
ce377af3 JK |
2029 | if (ret < 0) { |
2030 | fprintf(stderr, | |
2031 | "KVM: injection failed, interrupt lost (%s)\n", | |
2032 | strerror(-ret)); | |
2033 | } | |
db1669bc JK |
2034 | } |
2035 | } | |
05330448 | 2036 | |
db1669bc JK |
2037 | /* If we have an interrupt but the guest is not ready to receive an |
2038 | * interrupt, request an interrupt window exit. This will | |
2039 | * cause a return to userspace as soon as the guest is ready to | |
2040 | * receive interrupts. */ | |
259186a7 | 2041 | if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) { |
db1669bc JK |
2042 | run->request_interrupt_window = 1; |
2043 | } else { | |
2044 | run->request_interrupt_window = 0; | |
2045 | } | |
2046 | ||
2047 | DPRINTF("setting tpr\n"); | |
02e51483 | 2048 | run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state); |
db1669bc | 2049 | } |
05330448 AL |
2050 | } |
2051 | ||
20d695a9 | 2052 | void kvm_arch_post_run(CPUState *cpu, struct kvm_run *run) |
05330448 | 2053 | { |
20d695a9 AF |
2054 | X86CPU *x86_cpu = X86_CPU(cpu); |
2055 | CPUX86State *env = &x86_cpu->env; | |
2056 | ||
b9bec74b | 2057 | if (run->if_flag) { |
05330448 | 2058 | env->eflags |= IF_MASK; |
b9bec74b | 2059 | } else { |
05330448 | 2060 | env->eflags &= ~IF_MASK; |
b9bec74b | 2061 | } |
02e51483 CF |
2062 | cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8); |
2063 | cpu_set_apic_base(x86_cpu->apic_state, run->apic_base); | |
05330448 AL |
2064 | } |
2065 | ||
20d695a9 | 2066 | int kvm_arch_process_async_events(CPUState *cs) |
0af691d7 | 2067 | { |
20d695a9 AF |
2068 | X86CPU *cpu = X86_CPU(cs); |
2069 | CPUX86State *env = &cpu->env; | |
232fc23b | 2070 | |
259186a7 | 2071 | if (cs->interrupt_request & CPU_INTERRUPT_MCE) { |
ab443475 JK |
2072 | /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */ |
2073 | assert(env->mcg_cap); | |
2074 | ||
259186a7 | 2075 | cs->interrupt_request &= ~CPU_INTERRUPT_MCE; |
ab443475 | 2076 | |
dd1750d7 | 2077 | kvm_cpu_synchronize_state(cs); |
ab443475 JK |
2078 | |
2079 | if (env->exception_injected == EXCP08_DBLE) { | |
2080 | /* this means triple fault */ | |
2081 | qemu_system_reset_request(); | |
fcd7d003 | 2082 | cs->exit_request = 1; |
ab443475 JK |
2083 | return 0; |
2084 | } | |
2085 | env->exception_injected = EXCP12_MCHK; | |
2086 | env->has_error_code = 0; | |
2087 | ||
259186a7 | 2088 | cs->halted = 0; |
ab443475 JK |
2089 | if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) { |
2090 | env->mp_state = KVM_MP_STATE_RUNNABLE; | |
2091 | } | |
2092 | } | |
2093 | ||
db1669bc JK |
2094 | if (kvm_irqchip_in_kernel()) { |
2095 | return 0; | |
2096 | } | |
2097 | ||
259186a7 AF |
2098 | if (cs->interrupt_request & CPU_INTERRUPT_POLL) { |
2099 | cs->interrupt_request &= ~CPU_INTERRUPT_POLL; | |
02e51483 | 2100 | apic_poll_irq(cpu->apic_state); |
5d62c43a | 2101 | } |
259186a7 | 2102 | if (((cs->interrupt_request & CPU_INTERRUPT_HARD) && |
4601f7b0 | 2103 | (env->eflags & IF_MASK)) || |
259186a7 AF |
2104 | (cs->interrupt_request & CPU_INTERRUPT_NMI)) { |
2105 | cs->halted = 0; | |
6792a57b | 2106 | } |
259186a7 | 2107 | if (cs->interrupt_request & CPU_INTERRUPT_INIT) { |
dd1750d7 | 2108 | kvm_cpu_synchronize_state(cs); |
232fc23b | 2109 | do_cpu_init(cpu); |
0af691d7 | 2110 | } |
259186a7 | 2111 | if (cs->interrupt_request & CPU_INTERRUPT_SIPI) { |
dd1750d7 | 2112 | kvm_cpu_synchronize_state(cs); |
232fc23b | 2113 | do_cpu_sipi(cpu); |
0af691d7 | 2114 | } |
259186a7 AF |
2115 | if (cs->interrupt_request & CPU_INTERRUPT_TPR) { |
2116 | cs->interrupt_request &= ~CPU_INTERRUPT_TPR; | |
dd1750d7 | 2117 | kvm_cpu_synchronize_state(cs); |
02e51483 | 2118 | apic_handle_tpr_access_report(cpu->apic_state, env->eip, |
d362e757 JK |
2119 | env->tpr_access_type); |
2120 | } | |
0af691d7 | 2121 | |
259186a7 | 2122 | return cs->halted; |
0af691d7 MT |
2123 | } |
2124 | ||
839b5630 | 2125 | static int kvm_handle_halt(X86CPU *cpu) |
05330448 | 2126 | { |
259186a7 | 2127 | CPUState *cs = CPU(cpu); |
839b5630 AF |
2128 | CPUX86State *env = &cpu->env; |
2129 | ||
259186a7 | 2130 | if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) && |
05330448 | 2131 | (env->eflags & IF_MASK)) && |
259186a7 AF |
2132 | !(cs->interrupt_request & CPU_INTERRUPT_NMI)) { |
2133 | cs->halted = 1; | |
bb4ea393 | 2134 | return EXCP_HLT; |
05330448 AL |
2135 | } |
2136 | ||
bb4ea393 | 2137 | return 0; |
05330448 AL |
2138 | } |
2139 | ||
f7575c96 | 2140 | static int kvm_handle_tpr_access(X86CPU *cpu) |
d362e757 | 2141 | { |
f7575c96 AF |
2142 | CPUState *cs = CPU(cpu); |
2143 | struct kvm_run *run = cs->kvm_run; | |
d362e757 | 2144 | |
02e51483 | 2145 | apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip, |
d362e757 JK |
2146 | run->tpr_access.is_write ? TPR_ACCESS_WRITE |
2147 | : TPR_ACCESS_READ); | |
2148 | return 1; | |
2149 | } | |
2150 | ||
f17ec444 | 2151 | int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) |
e22a25c9 | 2152 | { |
38972938 | 2153 | static const uint8_t int3 = 0xcc; |
64bf3f4e | 2154 | |
f17ec444 AF |
2155 | if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || |
2156 | cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) { | |
e22a25c9 | 2157 | return -EINVAL; |
b9bec74b | 2158 | } |
e22a25c9 AL |
2159 | return 0; |
2160 | } | |
2161 | ||
f17ec444 | 2162 | int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) |
e22a25c9 AL |
2163 | { |
2164 | uint8_t int3; | |
2165 | ||
f17ec444 AF |
2166 | if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc || |
2167 | cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) { | |
e22a25c9 | 2168 | return -EINVAL; |
b9bec74b | 2169 | } |
e22a25c9 AL |
2170 | return 0; |
2171 | } | |
2172 | ||
2173 | static struct { | |
2174 | target_ulong addr; | |
2175 | int len; | |
2176 | int type; | |
2177 | } hw_breakpoint[4]; | |
2178 | ||
2179 | static int nb_hw_breakpoint; | |
2180 | ||
2181 | static int find_hw_breakpoint(target_ulong addr, int len, int type) | |
2182 | { | |
2183 | int n; | |
2184 | ||
b9bec74b | 2185 | for (n = 0; n < nb_hw_breakpoint; n++) { |
e22a25c9 | 2186 | if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && |
b9bec74b | 2187 | (hw_breakpoint[n].len == len || len == -1)) { |
e22a25c9 | 2188 | return n; |
b9bec74b JK |
2189 | } |
2190 | } | |
e22a25c9 AL |
2191 | return -1; |
2192 | } | |
2193 | ||
2194 | int kvm_arch_insert_hw_breakpoint(target_ulong addr, | |
2195 | target_ulong len, int type) | |
2196 | { | |
2197 | switch (type) { | |
2198 | case GDB_BREAKPOINT_HW: | |
2199 | len = 1; | |
2200 | break; | |
2201 | case GDB_WATCHPOINT_WRITE: | |
2202 | case GDB_WATCHPOINT_ACCESS: | |
2203 | switch (len) { | |
2204 | case 1: | |
2205 | break; | |
2206 | case 2: | |
2207 | case 4: | |
2208 | case 8: | |
b9bec74b | 2209 | if (addr & (len - 1)) { |
e22a25c9 | 2210 | return -EINVAL; |
b9bec74b | 2211 | } |
e22a25c9 AL |
2212 | break; |
2213 | default: | |
2214 | return -EINVAL; | |
2215 | } | |
2216 | break; | |
2217 | default: | |
2218 | return -ENOSYS; | |
2219 | } | |
2220 | ||
b9bec74b | 2221 | if (nb_hw_breakpoint == 4) { |
e22a25c9 | 2222 | return -ENOBUFS; |
b9bec74b JK |
2223 | } |
2224 | if (find_hw_breakpoint(addr, len, type) >= 0) { | |
e22a25c9 | 2225 | return -EEXIST; |
b9bec74b | 2226 | } |
e22a25c9 AL |
2227 | hw_breakpoint[nb_hw_breakpoint].addr = addr; |
2228 | hw_breakpoint[nb_hw_breakpoint].len = len; | |
2229 | hw_breakpoint[nb_hw_breakpoint].type = type; | |
2230 | nb_hw_breakpoint++; | |
2231 | ||
2232 | return 0; | |
2233 | } | |
2234 | ||
2235 | int kvm_arch_remove_hw_breakpoint(target_ulong addr, | |
2236 | target_ulong len, int type) | |
2237 | { | |
2238 | int n; | |
2239 | ||
2240 | n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type); | |
b9bec74b | 2241 | if (n < 0) { |
e22a25c9 | 2242 | return -ENOENT; |
b9bec74b | 2243 | } |
e22a25c9 AL |
2244 | nb_hw_breakpoint--; |
2245 | hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; | |
2246 | ||
2247 | return 0; | |
2248 | } | |
2249 | ||
2250 | void kvm_arch_remove_all_hw_breakpoints(void) | |
2251 | { | |
2252 | nb_hw_breakpoint = 0; | |
2253 | } | |
2254 | ||
2255 | static CPUWatchpoint hw_watchpoint; | |
2256 | ||
a60f24b5 | 2257 | static int kvm_handle_debug(X86CPU *cpu, |
48405526 | 2258 | struct kvm_debug_exit_arch *arch_info) |
e22a25c9 | 2259 | { |
ed2803da | 2260 | CPUState *cs = CPU(cpu); |
a60f24b5 | 2261 | CPUX86State *env = &cpu->env; |
f2574737 | 2262 | int ret = 0; |
e22a25c9 AL |
2263 | int n; |
2264 | ||
2265 | if (arch_info->exception == 1) { | |
2266 | if (arch_info->dr6 & (1 << 14)) { | |
ed2803da | 2267 | if (cs->singlestep_enabled) { |
f2574737 | 2268 | ret = EXCP_DEBUG; |
b9bec74b | 2269 | } |
e22a25c9 | 2270 | } else { |
b9bec74b JK |
2271 | for (n = 0; n < 4; n++) { |
2272 | if (arch_info->dr6 & (1 << n)) { | |
e22a25c9 AL |
2273 | switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { |
2274 | case 0x0: | |
f2574737 | 2275 | ret = EXCP_DEBUG; |
e22a25c9 AL |
2276 | break; |
2277 | case 0x1: | |
f2574737 | 2278 | ret = EXCP_DEBUG; |
ff4700b0 | 2279 | cs->watchpoint_hit = &hw_watchpoint; |
e22a25c9 AL |
2280 | hw_watchpoint.vaddr = hw_breakpoint[n].addr; |
2281 | hw_watchpoint.flags = BP_MEM_WRITE; | |
2282 | break; | |
2283 | case 0x3: | |
f2574737 | 2284 | ret = EXCP_DEBUG; |
ff4700b0 | 2285 | cs->watchpoint_hit = &hw_watchpoint; |
e22a25c9 AL |
2286 | hw_watchpoint.vaddr = hw_breakpoint[n].addr; |
2287 | hw_watchpoint.flags = BP_MEM_ACCESS; | |
2288 | break; | |
2289 | } | |
b9bec74b JK |
2290 | } |
2291 | } | |
e22a25c9 | 2292 | } |
ff4700b0 | 2293 | } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) { |
f2574737 | 2294 | ret = EXCP_DEBUG; |
b9bec74b | 2295 | } |
f2574737 | 2296 | if (ret == 0) { |
ff4700b0 | 2297 | cpu_synchronize_state(cs); |
48405526 | 2298 | assert(env->exception_injected == -1); |
b0b1d690 | 2299 | |
f2574737 | 2300 | /* pass to guest */ |
48405526 BS |
2301 | env->exception_injected = arch_info->exception; |
2302 | env->has_error_code = 0; | |
b0b1d690 | 2303 | } |
e22a25c9 | 2304 | |
f2574737 | 2305 | return ret; |
e22a25c9 AL |
2306 | } |
2307 | ||
20d695a9 | 2308 | void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) |
e22a25c9 AL |
2309 | { |
2310 | const uint8_t type_code[] = { | |
2311 | [GDB_BREAKPOINT_HW] = 0x0, | |
2312 | [GDB_WATCHPOINT_WRITE] = 0x1, | |
2313 | [GDB_WATCHPOINT_ACCESS] = 0x3 | |
2314 | }; | |
2315 | const uint8_t len_code[] = { | |
2316 | [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 | |
2317 | }; | |
2318 | int n; | |
2319 | ||
a60f24b5 | 2320 | if (kvm_sw_breakpoints_active(cpu)) { |
e22a25c9 | 2321 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; |
b9bec74b | 2322 | } |
e22a25c9 AL |
2323 | if (nb_hw_breakpoint > 0) { |
2324 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; | |
2325 | dbg->arch.debugreg[7] = 0x0600; | |
2326 | for (n = 0; n < nb_hw_breakpoint; n++) { | |
2327 | dbg->arch.debugreg[n] = hw_breakpoint[n].addr; | |
2328 | dbg->arch.debugreg[7] |= (2 << (n * 2)) | | |
2329 | (type_code[hw_breakpoint[n].type] << (16 + n*4)) | | |
95c077c9 | 2330 | ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4)); |
e22a25c9 AL |
2331 | } |
2332 | } | |
2333 | } | |
4513d923 | 2334 | |
2a4dac83 JK |
2335 | static bool host_supports_vmx(void) |
2336 | { | |
2337 | uint32_t ecx, unused; | |
2338 | ||
2339 | host_cpuid(1, 0, &unused, &unused, &ecx, &unused); | |
2340 | return ecx & CPUID_EXT_VMX; | |
2341 | } | |
2342 | ||
2343 | #define VMX_INVALID_GUEST_STATE 0x80000021 | |
2344 | ||
20d695a9 | 2345 | int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) |
2a4dac83 | 2346 | { |
20d695a9 | 2347 | X86CPU *cpu = X86_CPU(cs); |
2a4dac83 JK |
2348 | uint64_t code; |
2349 | int ret; | |
2350 | ||
2351 | switch (run->exit_reason) { | |
2352 | case KVM_EXIT_HLT: | |
2353 | DPRINTF("handle_hlt\n"); | |
839b5630 | 2354 | ret = kvm_handle_halt(cpu); |
2a4dac83 JK |
2355 | break; |
2356 | case KVM_EXIT_SET_TPR: | |
2357 | ret = 0; | |
2358 | break; | |
d362e757 | 2359 | case KVM_EXIT_TPR_ACCESS: |
f7575c96 | 2360 | ret = kvm_handle_tpr_access(cpu); |
d362e757 | 2361 | break; |
2a4dac83 JK |
2362 | case KVM_EXIT_FAIL_ENTRY: |
2363 | code = run->fail_entry.hardware_entry_failure_reason; | |
2364 | fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n", | |
2365 | code); | |
2366 | if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) { | |
2367 | fprintf(stderr, | |
12619721 | 2368 | "\nIf you're running a guest on an Intel machine without " |
2a4dac83 JK |
2369 | "unrestricted mode\n" |
2370 | "support, the failure can be most likely due to the guest " | |
2371 | "entering an invalid\n" | |
2372 | "state for Intel VT. For example, the guest maybe running " | |
2373 | "in big real mode\n" | |
2374 | "which is not supported on less recent Intel processors." | |
2375 | "\n\n"); | |
2376 | } | |
2377 | ret = -1; | |
2378 | break; | |
2379 | case KVM_EXIT_EXCEPTION: | |
2380 | fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n", | |
2381 | run->ex.exception, run->ex.error_code); | |
2382 | ret = -1; | |
2383 | break; | |
f2574737 JK |
2384 | case KVM_EXIT_DEBUG: |
2385 | DPRINTF("kvm_exit_debug\n"); | |
a60f24b5 | 2386 | ret = kvm_handle_debug(cpu, &run->debug.arch); |
f2574737 | 2387 | break; |
2a4dac83 JK |
2388 | default: |
2389 | fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); | |
2390 | ret = -1; | |
2391 | break; | |
2392 | } | |
2393 | ||
2394 | return ret; | |
2395 | } | |
2396 | ||
20d695a9 | 2397 | bool kvm_arch_stop_on_emulation_error(CPUState *cs) |
4513d923 | 2398 | { |
20d695a9 AF |
2399 | X86CPU *cpu = X86_CPU(cs); |
2400 | CPUX86State *env = &cpu->env; | |
2401 | ||
dd1750d7 | 2402 | kvm_cpu_synchronize_state(cs); |
b9bec74b JK |
2403 | return !(env->cr[0] & CR0_PE_MASK) || |
2404 | ((env->segs[R_CS].selector & 3) != 3); | |
4513d923 | 2405 | } |
84b058d7 JK |
2406 | |
2407 | void kvm_arch_init_irq_routing(KVMState *s) | |
2408 | { | |
2409 | if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) { | |
2410 | /* If kernel can't do irq routing, interrupt source | |
2411 | * override 0->2 cannot be set up as required by HPET. | |
2412 | * So we have to disable it. | |
2413 | */ | |
2414 | no_hpet = 1; | |
2415 | } | |
cc7e0ddf | 2416 | /* We know at this point that we're using the in-kernel |
614e41bc | 2417 | * irqchip, so we can use irqfds, and on x86 we know |
f3e1bed8 | 2418 | * we can use msi via irqfd and GSI routing. |
cc7e0ddf PM |
2419 | */ |
2420 | kvm_irqfds_allowed = true; | |
614e41bc | 2421 | kvm_msi_via_irqfd_allowed = true; |
f3e1bed8 | 2422 | kvm_gsi_routing_allowed = true; |
84b058d7 | 2423 | } |
b139bd30 JK |
2424 | |
2425 | /* Classic KVM device assignment interface. Will remain x86 only. */ | |
2426 | int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr, | |
2427 | uint32_t flags, uint32_t *dev_id) | |
2428 | { | |
2429 | struct kvm_assigned_pci_dev dev_data = { | |
2430 | .segnr = dev_addr->domain, | |
2431 | .busnr = dev_addr->bus, | |
2432 | .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function), | |
2433 | .flags = flags, | |
2434 | }; | |
2435 | int ret; | |
2436 | ||
2437 | dev_data.assigned_dev_id = | |
2438 | (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn; | |
2439 | ||
2440 | ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data); | |
2441 | if (ret < 0) { | |
2442 | return ret; | |
2443 | } | |
2444 | ||
2445 | *dev_id = dev_data.assigned_dev_id; | |
2446 | ||
2447 | return 0; | |
2448 | } | |
2449 | ||
2450 | int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id) | |
2451 | { | |
2452 | struct kvm_assigned_pci_dev dev_data = { | |
2453 | .assigned_dev_id = dev_id, | |
2454 | }; | |
2455 | ||
2456 | return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data); | |
2457 | } | |
2458 | ||
2459 | static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id, | |
2460 | uint32_t irq_type, uint32_t guest_irq) | |
2461 | { | |
2462 | struct kvm_assigned_irq assigned_irq = { | |
2463 | .assigned_dev_id = dev_id, | |
2464 | .guest_irq = guest_irq, | |
2465 | .flags = irq_type, | |
2466 | }; | |
2467 | ||
2468 | if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) { | |
2469 | return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq); | |
2470 | } else { | |
2471 | return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq); | |
2472 | } | |
2473 | } | |
2474 | ||
2475 | int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi, | |
2476 | uint32_t guest_irq) | |
2477 | { | |
2478 | uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX | | |
2479 | (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX); | |
2480 | ||
2481 | return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq); | |
2482 | } | |
2483 | ||
2484 | int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked) | |
2485 | { | |
2486 | struct kvm_assigned_pci_dev dev_data = { | |
2487 | .assigned_dev_id = dev_id, | |
2488 | .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0, | |
2489 | }; | |
2490 | ||
2491 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data); | |
2492 | } | |
2493 | ||
2494 | static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id, | |
2495 | uint32_t type) | |
2496 | { | |
2497 | struct kvm_assigned_irq assigned_irq = { | |
2498 | .assigned_dev_id = dev_id, | |
2499 | .flags = type, | |
2500 | }; | |
2501 | ||
2502 | return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq); | |
2503 | } | |
2504 | ||
2505 | int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi) | |
2506 | { | |
2507 | return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX | | |
2508 | (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX)); | |
2509 | } | |
2510 | ||
2511 | int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq) | |
2512 | { | |
2513 | return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI | | |
2514 | KVM_DEV_IRQ_GUEST_MSI, virq); | |
2515 | } | |
2516 | ||
2517 | int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id) | |
2518 | { | |
2519 | return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI | | |
2520 | KVM_DEV_IRQ_HOST_MSI); | |
2521 | } | |
2522 | ||
2523 | bool kvm_device_msix_supported(KVMState *s) | |
2524 | { | |
2525 | /* The kernel lacks a corresponding KVM_CAP, so we probe by calling | |
2526 | * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */ | |
2527 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT; | |
2528 | } | |
2529 | ||
2530 | int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id, | |
2531 | uint32_t nr_vectors) | |
2532 | { | |
2533 | struct kvm_assigned_msix_nr msix_nr = { | |
2534 | .assigned_dev_id = dev_id, | |
2535 | .entry_nr = nr_vectors, | |
2536 | }; | |
2537 | ||
2538 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr); | |
2539 | } | |
2540 | ||
2541 | int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector, | |
2542 | int virq) | |
2543 | { | |
2544 | struct kvm_assigned_msix_entry msix_entry = { | |
2545 | .assigned_dev_id = dev_id, | |
2546 | .gsi = virq, | |
2547 | .entry = vector, | |
2548 | }; | |
2549 | ||
2550 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry); | |
2551 | } | |
2552 | ||
2553 | int kvm_device_msix_assign(KVMState *s, uint32_t dev_id) | |
2554 | { | |
2555 | return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX | | |
2556 | KVM_DEV_IRQ_GUEST_MSIX, 0); | |
2557 | } | |
2558 | ||
2559 | int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id) | |
2560 | { | |
2561 | return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX | | |
2562 | KVM_DEV_IRQ_HOST_MSIX); | |
2563 | } |