]>
Commit | Line | Data |
---|---|---|
54936004 | 1 | /* |
5b6dd868 | 2 | * Virtual page mapping |
5fafdf24 | 3 | * |
54936004 FB |
4 | * Copyright (c) 2003 Fabrice Bellard |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
8167ee88 | 17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
54936004 | 18 | */ |
7b31bbc2 | 19 | #include "qemu/osdep.h" |
da34e65c | 20 | #include "qapi/error.h" |
54936004 | 21 | |
f348b6d1 | 22 | #include "qemu/cutils.h" |
6180a181 | 23 | #include "cpu.h" |
63c91552 | 24 | #include "exec/exec-all.h" |
51180423 | 25 | #include "exec/target_page.h" |
b67d9a52 | 26 | #include "tcg.h" |
741da0d3 | 27 | #include "hw/qdev-core.h" |
c7e002c5 | 28 | #include "hw/qdev-properties.h" |
4485bd26 | 29 | #if !defined(CONFIG_USER_ONLY) |
47c8ca53 | 30 | #include "hw/boards.h" |
33c11879 | 31 | #include "hw/xen/xen.h" |
4485bd26 | 32 | #endif |
9c17d615 | 33 | #include "sysemu/kvm.h" |
2ff3de68 | 34 | #include "sysemu/sysemu.h" |
1de7afc9 PB |
35 | #include "qemu/timer.h" |
36 | #include "qemu/config-file.h" | |
75a34036 | 37 | #include "qemu/error-report.h" |
53a5960a | 38 | #if defined(CONFIG_USER_ONLY) |
a9c94277 | 39 | #include "qemu.h" |
432d268c | 40 | #else /* !CONFIG_USER_ONLY */ |
741da0d3 PB |
41 | #include "hw/hw.h" |
42 | #include "exec/memory.h" | |
df43d49c | 43 | #include "exec/ioport.h" |
741da0d3 | 44 | #include "sysemu/dma.h" |
9c607668 | 45 | #include "sysemu/numa.h" |
79ca7a1b | 46 | #include "sysemu/hw_accel.h" |
741da0d3 | 47 | #include "exec/address-spaces.h" |
9c17d615 | 48 | #include "sysemu/xen-mapcache.h" |
0ab8ed18 | 49 | #include "trace-root.h" |
d3a5038c | 50 | |
e2fa71f5 | 51 | #ifdef CONFIG_FALLOCATE_PUNCH_HOLE |
e2fa71f5 DDAG |
52 | #include <linux/falloc.h> |
53 | #endif | |
54 | ||
53a5960a | 55 | #endif |
0dc3f44a | 56 | #include "qemu/rcu_queue.h" |
4840f10e | 57 | #include "qemu/main-loop.h" |
5b6dd868 | 58 | #include "translate-all.h" |
7615936e | 59 | #include "sysemu/replay.h" |
0cac1b66 | 60 | |
022c62cb | 61 | #include "exec/memory-internal.h" |
220c3ebd | 62 | #include "exec/ram_addr.h" |
508127e2 | 63 | #include "exec/log.h" |
67d95c15 | 64 | |
9dfeca7c BR |
65 | #include "migration/vmstate.h" |
66 | ||
b35ba30f | 67 | #include "qemu/range.h" |
794e8f30 MT |
68 | #ifndef _WIN32 |
69 | #include "qemu/mmap-alloc.h" | |
70 | #endif | |
b35ba30f | 71 | |
be9b23c4 PX |
72 | #include "monitor/monitor.h" |
73 | ||
db7b5426 | 74 | //#define DEBUG_SUBPAGE |
1196be37 | 75 | |
e2eef170 | 76 | #if !defined(CONFIG_USER_ONLY) |
0dc3f44a MD |
77 | /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes |
78 | * are protected by the ramlist lock. | |
79 | */ | |
0d53d9fe | 80 | RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; |
62152b8a AK |
81 | |
82 | static MemoryRegion *system_memory; | |
309cb471 | 83 | static MemoryRegion *system_io; |
62152b8a | 84 | |
f6790af6 AK |
85 | AddressSpace address_space_io; |
86 | AddressSpace address_space_memory; | |
2673a5da | 87 | |
0844e007 | 88 | MemoryRegion io_mem_rom, io_mem_notdirty; |
acc9d80b | 89 | static MemoryRegion io_mem_unassigned; |
0e0df1e2 | 90 | |
7bd4f430 PB |
91 | /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ |
92 | #define RAM_PREALLOC (1 << 0) | |
93 | ||
dbcb8981 PB |
94 | /* RAM is mmap-ed with MAP_SHARED */ |
95 | #define RAM_SHARED (1 << 1) | |
96 | ||
62be4e3a MT |
97 | /* Only a portion of RAM (used_length) is actually used, and migrated. |
98 | * This used_length size can change across reboots. | |
99 | */ | |
100 | #define RAM_RESIZEABLE (1 << 2) | |
101 | ||
2ce16640 DDAG |
102 | /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically |
103 | * zero the page and wake waiting processes. | |
104 | * (Set during postcopy) | |
105 | */ | |
106 | #define RAM_UF_ZEROPAGE (1 << 3) | |
b895de50 CLG |
107 | |
108 | /* RAM can be migrated */ | |
109 | #define RAM_MIGRATABLE (1 << 4) | |
e2eef170 | 110 | #endif |
9fa3e853 | 111 | |
20bccb82 PM |
112 | #ifdef TARGET_PAGE_BITS_VARY |
113 | int target_page_bits; | |
114 | bool target_page_bits_decided; | |
115 | #endif | |
116 | ||
bdc44640 | 117 | struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus); |
6a00d601 FB |
118 | /* current CPU in the current thread. It is only valid inside |
119 | cpu_exec() */ | |
f240eb6f | 120 | __thread CPUState *current_cpu; |
2e70f6ef | 121 | /* 0 = Do not count executed instructions. |
bf20dc07 | 122 | 1 = Precise instruction counting. |
2e70f6ef | 123 | 2 = Adaptive rate instruction counting. */ |
5708fc66 | 124 | int use_icount; |
6a00d601 | 125 | |
a0be0c58 YZ |
126 | uintptr_t qemu_host_page_size; |
127 | intptr_t qemu_host_page_mask; | |
a0be0c58 | 128 | |
20bccb82 PM |
129 | bool set_preferred_target_page_bits(int bits) |
130 | { | |
131 | /* The target page size is the lowest common denominator for all | |
132 | * the CPUs in the system, so we can only make it smaller, never | |
133 | * larger. And we can't make it smaller once we've committed to | |
134 | * a particular size. | |
135 | */ | |
136 | #ifdef TARGET_PAGE_BITS_VARY | |
137 | assert(bits >= TARGET_PAGE_BITS_MIN); | |
138 | if (target_page_bits == 0 || target_page_bits > bits) { | |
139 | if (target_page_bits_decided) { | |
140 | return false; | |
141 | } | |
142 | target_page_bits = bits; | |
143 | } | |
144 | #endif | |
145 | return true; | |
146 | } | |
147 | ||
e2eef170 | 148 | #if !defined(CONFIG_USER_ONLY) |
4346ae3e | 149 | |
20bccb82 PM |
150 | static void finalize_target_page_bits(void) |
151 | { | |
152 | #ifdef TARGET_PAGE_BITS_VARY | |
153 | if (target_page_bits == 0) { | |
154 | target_page_bits = TARGET_PAGE_BITS_MIN; | |
155 | } | |
156 | target_page_bits_decided = true; | |
157 | #endif | |
158 | } | |
159 | ||
1db8abb1 PB |
160 | typedef struct PhysPageEntry PhysPageEntry; |
161 | ||
162 | struct PhysPageEntry { | |
9736e55b | 163 | /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ |
8b795765 | 164 | uint32_t skip : 6; |
9736e55b | 165 | /* index into phys_sections (!skip) or phys_map_nodes (skip) */ |
8b795765 | 166 | uint32_t ptr : 26; |
1db8abb1 PB |
167 | }; |
168 | ||
8b795765 MT |
169 | #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) |
170 | ||
03f49957 | 171 | /* Size of the L2 (and L3, etc) page tables. */ |
57271d63 | 172 | #define ADDR_SPACE_BITS 64 |
03f49957 | 173 | |
026736ce | 174 | #define P_L2_BITS 9 |
03f49957 PB |
175 | #define P_L2_SIZE (1 << P_L2_BITS) |
176 | ||
177 | #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) | |
178 | ||
179 | typedef PhysPageEntry Node[P_L2_SIZE]; | |
0475d94f | 180 | |
53cb28cb | 181 | typedef struct PhysPageMap { |
79e2b9ae PB |
182 | struct rcu_head rcu; |
183 | ||
53cb28cb MA |
184 | unsigned sections_nb; |
185 | unsigned sections_nb_alloc; | |
186 | unsigned nodes_nb; | |
187 | unsigned nodes_nb_alloc; | |
188 | Node *nodes; | |
189 | MemoryRegionSection *sections; | |
190 | } PhysPageMap; | |
191 | ||
1db8abb1 | 192 | struct AddressSpaceDispatch { |
729633c2 | 193 | MemoryRegionSection *mru_section; |
1db8abb1 PB |
194 | /* This is a multi-level map on the physical address space. |
195 | * The bottom level has pointers to MemoryRegionSections. | |
196 | */ | |
197 | PhysPageEntry phys_map; | |
53cb28cb | 198 | PhysPageMap map; |
1db8abb1 PB |
199 | }; |
200 | ||
90260c6c JK |
201 | #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) |
202 | typedef struct subpage_t { | |
203 | MemoryRegion iomem; | |
16620684 | 204 | FlatView *fv; |
90260c6c | 205 | hwaddr base; |
2615fabd | 206 | uint16_t sub_section[]; |
90260c6c JK |
207 | } subpage_t; |
208 | ||
b41aac4f LPF |
209 | #define PHYS_SECTION_UNASSIGNED 0 |
210 | #define PHYS_SECTION_NOTDIRTY 1 | |
211 | #define PHYS_SECTION_ROM 2 | |
212 | #define PHYS_SECTION_WATCH 3 | |
5312bd8b | 213 | |
e2eef170 | 214 | static void io_mem_init(void); |
62152b8a | 215 | static void memory_map_init(void); |
09daed84 | 216 | static void tcg_commit(MemoryListener *listener); |
e2eef170 | 217 | |
1ec9b909 | 218 | static MemoryRegion io_mem_watch; |
32857f4d PM |
219 | |
220 | /** | |
221 | * CPUAddressSpace: all the information a CPU needs about an AddressSpace | |
222 | * @cpu: the CPU whose AddressSpace this is | |
223 | * @as: the AddressSpace itself | |
224 | * @memory_dispatch: its dispatch pointer (cached, RCU protected) | |
225 | * @tcg_as_listener: listener for tracking changes to the AddressSpace | |
226 | */ | |
227 | struct CPUAddressSpace { | |
228 | CPUState *cpu; | |
229 | AddressSpace *as; | |
230 | struct AddressSpaceDispatch *memory_dispatch; | |
231 | MemoryListener tcg_as_listener; | |
232 | }; | |
233 | ||
8deaf12c GH |
234 | struct DirtyBitmapSnapshot { |
235 | ram_addr_t start; | |
236 | ram_addr_t end; | |
237 | unsigned long dirty[]; | |
238 | }; | |
239 | ||
6658ffb8 | 240 | #endif |
fd6ce8f6 | 241 | |
6d9a1304 | 242 | #if !defined(CONFIG_USER_ONLY) |
d6f2ea22 | 243 | |
53cb28cb | 244 | static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) |
d6f2ea22 | 245 | { |
101420b8 | 246 | static unsigned alloc_hint = 16; |
53cb28cb | 247 | if (map->nodes_nb + nodes > map->nodes_nb_alloc) { |
101420b8 | 248 | map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint); |
53cb28cb MA |
249 | map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes); |
250 | map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); | |
101420b8 | 251 | alloc_hint = map->nodes_nb_alloc; |
d6f2ea22 | 252 | } |
f7bf5461 AK |
253 | } |
254 | ||
db94604b | 255 | static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf) |
f7bf5461 AK |
256 | { |
257 | unsigned i; | |
8b795765 | 258 | uint32_t ret; |
db94604b PB |
259 | PhysPageEntry e; |
260 | PhysPageEntry *p; | |
f7bf5461 | 261 | |
53cb28cb | 262 | ret = map->nodes_nb++; |
db94604b | 263 | p = map->nodes[ret]; |
f7bf5461 | 264 | assert(ret != PHYS_MAP_NODE_NIL); |
53cb28cb | 265 | assert(ret != map->nodes_nb_alloc); |
db94604b PB |
266 | |
267 | e.skip = leaf ? 0 : 1; | |
268 | e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL; | |
03f49957 | 269 | for (i = 0; i < P_L2_SIZE; ++i) { |
db94604b | 270 | memcpy(&p[i], &e, sizeof(e)); |
d6f2ea22 | 271 | } |
f7bf5461 | 272 | return ret; |
d6f2ea22 AK |
273 | } |
274 | ||
53cb28cb MA |
275 | static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, |
276 | hwaddr *index, hwaddr *nb, uint16_t leaf, | |
2999097b | 277 | int level) |
f7bf5461 AK |
278 | { |
279 | PhysPageEntry *p; | |
03f49957 | 280 | hwaddr step = (hwaddr)1 << (level * P_L2_BITS); |
108c49b8 | 281 | |
9736e55b | 282 | if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { |
db94604b | 283 | lp->ptr = phys_map_node_alloc(map, level == 0); |
92e873b9 | 284 | } |
db94604b | 285 | p = map->nodes[lp->ptr]; |
03f49957 | 286 | lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; |
f7bf5461 | 287 | |
03f49957 | 288 | while (*nb && lp < &p[P_L2_SIZE]) { |
07f07b31 | 289 | if ((*index & (step - 1)) == 0 && *nb >= step) { |
9736e55b | 290 | lp->skip = 0; |
c19e8800 | 291 | lp->ptr = leaf; |
07f07b31 AK |
292 | *index += step; |
293 | *nb -= step; | |
2999097b | 294 | } else { |
53cb28cb | 295 | phys_page_set_level(map, lp, index, nb, leaf, level - 1); |
2999097b AK |
296 | } |
297 | ++lp; | |
f7bf5461 AK |
298 | } |
299 | } | |
300 | ||
ac1970fb | 301 | static void phys_page_set(AddressSpaceDispatch *d, |
a8170e5e | 302 | hwaddr index, hwaddr nb, |
2999097b | 303 | uint16_t leaf) |
f7bf5461 | 304 | { |
2999097b | 305 | /* Wildly overreserve - it doesn't matter much. */ |
53cb28cb | 306 | phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); |
5cd2c5b6 | 307 | |
53cb28cb | 308 | phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); |
92e873b9 FB |
309 | } |
310 | ||
b35ba30f MT |
311 | /* Compact a non leaf page entry. Simply detect that the entry has a single child, |
312 | * and update our entry so we can skip it and go directly to the destination. | |
313 | */ | |
efee678d | 314 | static void phys_page_compact(PhysPageEntry *lp, Node *nodes) |
b35ba30f MT |
315 | { |
316 | unsigned valid_ptr = P_L2_SIZE; | |
317 | int valid = 0; | |
318 | PhysPageEntry *p; | |
319 | int i; | |
320 | ||
321 | if (lp->ptr == PHYS_MAP_NODE_NIL) { | |
322 | return; | |
323 | } | |
324 | ||
325 | p = nodes[lp->ptr]; | |
326 | for (i = 0; i < P_L2_SIZE; i++) { | |
327 | if (p[i].ptr == PHYS_MAP_NODE_NIL) { | |
328 | continue; | |
329 | } | |
330 | ||
331 | valid_ptr = i; | |
332 | valid++; | |
333 | if (p[i].skip) { | |
efee678d | 334 | phys_page_compact(&p[i], nodes); |
b35ba30f MT |
335 | } |
336 | } | |
337 | ||
338 | /* We can only compress if there's only one child. */ | |
339 | if (valid != 1) { | |
340 | return; | |
341 | } | |
342 | ||
343 | assert(valid_ptr < P_L2_SIZE); | |
344 | ||
345 | /* Don't compress if it won't fit in the # of bits we have. */ | |
346 | if (lp->skip + p[valid_ptr].skip >= (1 << 3)) { | |
347 | return; | |
348 | } | |
349 | ||
350 | lp->ptr = p[valid_ptr].ptr; | |
351 | if (!p[valid_ptr].skip) { | |
352 | /* If our only child is a leaf, make this a leaf. */ | |
353 | /* By design, we should have made this node a leaf to begin with so we | |
354 | * should never reach here. | |
355 | * But since it's so simple to handle this, let's do it just in case we | |
356 | * change this rule. | |
357 | */ | |
358 | lp->skip = 0; | |
359 | } else { | |
360 | lp->skip += p[valid_ptr].skip; | |
361 | } | |
362 | } | |
363 | ||
8629d3fc | 364 | void address_space_dispatch_compact(AddressSpaceDispatch *d) |
b35ba30f | 365 | { |
b35ba30f | 366 | if (d->phys_map.skip) { |
efee678d | 367 | phys_page_compact(&d->phys_map, d->map.nodes); |
b35ba30f MT |
368 | } |
369 | } | |
370 | ||
29cb533d FZ |
371 | static inline bool section_covers_addr(const MemoryRegionSection *section, |
372 | hwaddr addr) | |
373 | { | |
374 | /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means | |
375 | * the section must cover the entire address space. | |
376 | */ | |
258dfaaa | 377 | return int128_gethi(section->size) || |
29cb533d | 378 | range_covers_byte(section->offset_within_address_space, |
258dfaaa | 379 | int128_getlo(section->size), addr); |
29cb533d FZ |
380 | } |
381 | ||
003a0cf2 | 382 | static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr) |
92e873b9 | 383 | { |
003a0cf2 PX |
384 | PhysPageEntry lp = d->phys_map, *p; |
385 | Node *nodes = d->map.nodes; | |
386 | MemoryRegionSection *sections = d->map.sections; | |
97115a8d | 387 | hwaddr index = addr >> TARGET_PAGE_BITS; |
31ab2b4a | 388 | int i; |
f1f6e3b8 | 389 | |
9736e55b | 390 | for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { |
c19e8800 | 391 | if (lp.ptr == PHYS_MAP_NODE_NIL) { |
9affd6fc | 392 | return §ions[PHYS_SECTION_UNASSIGNED]; |
31ab2b4a | 393 | } |
9affd6fc | 394 | p = nodes[lp.ptr]; |
03f49957 | 395 | lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; |
5312bd8b | 396 | } |
b35ba30f | 397 | |
29cb533d | 398 | if (section_covers_addr(§ions[lp.ptr], addr)) { |
b35ba30f MT |
399 | return §ions[lp.ptr]; |
400 | } else { | |
401 | return §ions[PHYS_SECTION_UNASSIGNED]; | |
402 | } | |
f3705d53 AK |
403 | } |
404 | ||
e5548617 BS |
405 | bool memory_region_is_unassigned(MemoryRegion *mr) |
406 | { | |
2a8e7499 | 407 | return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device |
5b6dd868 | 408 | && mr != &io_mem_watch; |
fd6ce8f6 | 409 | } |
149f54b5 | 410 | |
79e2b9ae | 411 | /* Called from RCU critical section */ |
c7086b4a | 412 | static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, |
90260c6c JK |
413 | hwaddr addr, |
414 | bool resolve_subpage) | |
9f029603 | 415 | { |
729633c2 | 416 | MemoryRegionSection *section = atomic_read(&d->mru_section); |
90260c6c JK |
417 | subpage_t *subpage; |
418 | ||
07c114bb PB |
419 | if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] || |
420 | !section_covers_addr(section, addr)) { | |
003a0cf2 | 421 | section = phys_page_find(d, addr); |
07c114bb | 422 | atomic_set(&d->mru_section, section); |
729633c2 | 423 | } |
90260c6c JK |
424 | if (resolve_subpage && section->mr->subpage) { |
425 | subpage = container_of(section->mr, subpage_t, iomem); | |
53cb28cb | 426 | section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; |
90260c6c JK |
427 | } |
428 | return section; | |
9f029603 JK |
429 | } |
430 | ||
79e2b9ae | 431 | /* Called from RCU critical section */ |
90260c6c | 432 | static MemoryRegionSection * |
c7086b4a | 433 | address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, |
90260c6c | 434 | hwaddr *plen, bool resolve_subpage) |
149f54b5 PB |
435 | { |
436 | MemoryRegionSection *section; | |
965eb2fc | 437 | MemoryRegion *mr; |
a87f3954 | 438 | Int128 diff; |
149f54b5 | 439 | |
c7086b4a | 440 | section = address_space_lookup_region(d, addr, resolve_subpage); |
149f54b5 PB |
441 | /* Compute offset within MemoryRegionSection */ |
442 | addr -= section->offset_within_address_space; | |
443 | ||
444 | /* Compute offset within MemoryRegion */ | |
445 | *xlat = addr + section->offset_within_region; | |
446 | ||
965eb2fc | 447 | mr = section->mr; |
b242e0e0 PB |
448 | |
449 | /* MMIO registers can be expected to perform full-width accesses based only | |
450 | * on their address, without considering adjacent registers that could | |
451 | * decode to completely different MemoryRegions. When such registers | |
452 | * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO | |
453 | * regions overlap wildly. For this reason we cannot clamp the accesses | |
454 | * here. | |
455 | * | |
456 | * If the length is small (as is the case for address_space_ldl/stl), | |
457 | * everything works fine. If the incoming length is large, however, | |
458 | * the caller really has to do the clamping through memory_access_size. | |
459 | */ | |
965eb2fc | 460 | if (memory_region_is_ram(mr)) { |
e4a511f8 | 461 | diff = int128_sub(section->size, int128_make64(addr)); |
965eb2fc PB |
462 | *plen = int128_get64(int128_min(diff, int128_make64(*plen))); |
463 | } | |
149f54b5 PB |
464 | return section; |
465 | } | |
90260c6c | 466 | |
a411c84b PB |
467 | /** |
468 | * address_space_translate_iommu - translate an address through an IOMMU | |
469 | * memory region and then through the target address space. | |
470 | * | |
471 | * @iommu_mr: the IOMMU memory region that we start the translation from | |
472 | * @addr: the address to be translated through the MMU | |
473 | * @xlat: the translated address offset within the destination memory region. | |
474 | * It cannot be %NULL. | |
475 | * @plen_out: valid read/write length of the translated address. It | |
476 | * cannot be %NULL. | |
477 | * @page_mask_out: page mask for the translated address. This | |
478 | * should only be meaningful for IOMMU translated | |
479 | * addresses, since there may be huge pages that this bit | |
480 | * would tell. It can be %NULL if we don't care about it. | |
481 | * @is_write: whether the translation operation is for write | |
482 | * @is_mmio: whether this can be MMIO, set true if it can | |
483 | * @target_as: the address space targeted by the IOMMU | |
2f7b009c | 484 | * @attrs: transaction attributes |
a411c84b PB |
485 | * |
486 | * This function is called from RCU critical section. It is the common | |
487 | * part of flatview_do_translate and address_space_translate_cached. | |
488 | */ | |
489 | static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr, | |
490 | hwaddr *xlat, | |
491 | hwaddr *plen_out, | |
492 | hwaddr *page_mask_out, | |
493 | bool is_write, | |
494 | bool is_mmio, | |
2f7b009c PM |
495 | AddressSpace **target_as, |
496 | MemTxAttrs attrs) | |
a411c84b PB |
497 | { |
498 | MemoryRegionSection *section; | |
499 | hwaddr page_mask = (hwaddr)-1; | |
500 | ||
501 | do { | |
502 | hwaddr addr = *xlat; | |
503 | IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr); | |
2c91bcf2 PM |
504 | int iommu_idx = 0; |
505 | IOMMUTLBEntry iotlb; | |
506 | ||
507 | if (imrc->attrs_to_index) { | |
508 | iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); | |
509 | } | |
510 | ||
511 | iotlb = imrc->translate(iommu_mr, addr, is_write ? | |
512 | IOMMU_WO : IOMMU_RO, iommu_idx); | |
a411c84b PB |
513 | |
514 | if (!(iotlb.perm & (1 << is_write))) { | |
515 | goto unassigned; | |
516 | } | |
517 | ||
518 | addr = ((iotlb.translated_addr & ~iotlb.addr_mask) | |
519 | | (addr & iotlb.addr_mask)); | |
520 | page_mask &= iotlb.addr_mask; | |
521 | *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1); | |
522 | *target_as = iotlb.target_as; | |
523 | ||
524 | section = address_space_translate_internal( | |
525 | address_space_to_dispatch(iotlb.target_as), addr, xlat, | |
526 | plen_out, is_mmio); | |
527 | ||
528 | iommu_mr = memory_region_get_iommu(section->mr); | |
529 | } while (unlikely(iommu_mr)); | |
530 | ||
531 | if (page_mask_out) { | |
532 | *page_mask_out = page_mask; | |
533 | } | |
534 | return *section; | |
535 | ||
536 | unassigned: | |
537 | return (MemoryRegionSection) { .mr = &io_mem_unassigned }; | |
538 | } | |
539 | ||
d5e5fafd PX |
540 | /** |
541 | * flatview_do_translate - translate an address in FlatView | |
542 | * | |
543 | * @fv: the flat view that we want to translate on | |
544 | * @addr: the address to be translated in above address space | |
545 | * @xlat: the translated address offset within memory region. It | |
546 | * cannot be @NULL. | |
547 | * @plen_out: valid read/write length of the translated address. It | |
548 | * can be @NULL when we don't care about it. | |
549 | * @page_mask_out: page mask for the translated address. This | |
550 | * should only be meaningful for IOMMU translated | |
551 | * addresses, since there may be huge pages that this bit | |
552 | * would tell. It can be @NULL if we don't care about it. | |
553 | * @is_write: whether the translation operation is for write | |
554 | * @is_mmio: whether this can be MMIO, set true if it can | |
ad2804d9 | 555 | * @target_as: the address space targeted by the IOMMU |
49e14aa8 | 556 | * @attrs: memory transaction attributes |
d5e5fafd PX |
557 | * |
558 | * This function is called from RCU critical section | |
559 | */ | |
16620684 AK |
560 | static MemoryRegionSection flatview_do_translate(FlatView *fv, |
561 | hwaddr addr, | |
562 | hwaddr *xlat, | |
d5e5fafd PX |
563 | hwaddr *plen_out, |
564 | hwaddr *page_mask_out, | |
16620684 AK |
565 | bool is_write, |
566 | bool is_mmio, | |
49e14aa8 PM |
567 | AddressSpace **target_as, |
568 | MemTxAttrs attrs) | |
052c8fa9 | 569 | { |
052c8fa9 | 570 | MemoryRegionSection *section; |
3df9d748 | 571 | IOMMUMemoryRegion *iommu_mr; |
d5e5fafd PX |
572 | hwaddr plen = (hwaddr)(-1); |
573 | ||
ad2804d9 PB |
574 | if (!plen_out) { |
575 | plen_out = &plen; | |
d5e5fafd | 576 | } |
052c8fa9 | 577 | |
a411c84b PB |
578 | section = address_space_translate_internal( |
579 | flatview_to_dispatch(fv), addr, xlat, | |
580 | plen_out, is_mmio); | |
052c8fa9 | 581 | |
a411c84b PB |
582 | iommu_mr = memory_region_get_iommu(section->mr); |
583 | if (unlikely(iommu_mr)) { | |
584 | return address_space_translate_iommu(iommu_mr, xlat, | |
585 | plen_out, page_mask_out, | |
586 | is_write, is_mmio, | |
2f7b009c | 587 | target_as, attrs); |
052c8fa9 | 588 | } |
d5e5fafd | 589 | if (page_mask_out) { |
a411c84b PB |
590 | /* Not behind an IOMMU, use default page size. */ |
591 | *page_mask_out = ~TARGET_PAGE_MASK; | |
d5e5fafd PX |
592 | } |
593 | ||
a764040c | 594 | return *section; |
052c8fa9 JW |
595 | } |
596 | ||
597 | /* Called from RCU critical section */ | |
a764040c | 598 | IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, |
7446eb07 | 599 | bool is_write, MemTxAttrs attrs) |
90260c6c | 600 | { |
a764040c | 601 | MemoryRegionSection section; |
076a93d7 | 602 | hwaddr xlat, page_mask; |
30951157 | 603 | |
076a93d7 PX |
604 | /* |
605 | * This can never be MMIO, and we don't really care about plen, | |
606 | * but page mask. | |
607 | */ | |
608 | section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat, | |
49e14aa8 PM |
609 | NULL, &page_mask, is_write, false, &as, |
610 | attrs); | |
30951157 | 611 | |
a764040c PX |
612 | /* Illegal translation */ |
613 | if (section.mr == &io_mem_unassigned) { | |
614 | goto iotlb_fail; | |
615 | } | |
30951157 | 616 | |
a764040c PX |
617 | /* Convert memory region offset into address space offset */ |
618 | xlat += section.offset_within_address_space - | |
619 | section.offset_within_region; | |
620 | ||
a764040c | 621 | return (IOMMUTLBEntry) { |
e76bb18f | 622 | .target_as = as, |
076a93d7 PX |
623 | .iova = addr & ~page_mask, |
624 | .translated_addr = xlat & ~page_mask, | |
625 | .addr_mask = page_mask, | |
a764040c PX |
626 | /* IOTLBs are for DMAs, and DMA only allows on RAMs. */ |
627 | .perm = IOMMU_RW, | |
628 | }; | |
629 | ||
630 | iotlb_fail: | |
631 | return (IOMMUTLBEntry) {0}; | |
632 | } | |
633 | ||
634 | /* Called from RCU critical section */ | |
16620684 | 635 | MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat, |
efa99a2f PM |
636 | hwaddr *plen, bool is_write, |
637 | MemTxAttrs attrs) | |
a764040c PX |
638 | { |
639 | MemoryRegion *mr; | |
640 | MemoryRegionSection section; | |
16620684 | 641 | AddressSpace *as = NULL; |
a764040c PX |
642 | |
643 | /* This can be MMIO, so setup MMIO bit. */ | |
d5e5fafd | 644 | section = flatview_do_translate(fv, addr, xlat, plen, NULL, |
49e14aa8 | 645 | is_write, true, &as, attrs); |
a764040c PX |
646 | mr = section.mr; |
647 | ||
fe680d0d | 648 | if (xen_enabled() && memory_access_is_direct(mr, is_write)) { |
a87f3954 | 649 | hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; |
23820dbf | 650 | *plen = MIN(page, *plen); |
a87f3954 PB |
651 | } |
652 | ||
30951157 | 653 | return mr; |
90260c6c JK |
654 | } |
655 | ||
1f871c5e PM |
656 | typedef struct TCGIOMMUNotifier { |
657 | IOMMUNotifier n; | |
658 | MemoryRegion *mr; | |
659 | CPUState *cpu; | |
660 | int iommu_idx; | |
661 | bool active; | |
662 | } TCGIOMMUNotifier; | |
663 | ||
664 | static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) | |
665 | { | |
666 | TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n); | |
667 | ||
668 | if (!notifier->active) { | |
669 | return; | |
670 | } | |
671 | tlb_flush(notifier->cpu); | |
672 | notifier->active = false; | |
673 | /* We leave the notifier struct on the list to avoid reallocating it later. | |
674 | * Generally the number of IOMMUs a CPU deals with will be small. | |
675 | * In any case we can't unregister the iommu notifier from a notify | |
676 | * callback. | |
677 | */ | |
678 | } | |
679 | ||
680 | static void tcg_register_iommu_notifier(CPUState *cpu, | |
681 | IOMMUMemoryRegion *iommu_mr, | |
682 | int iommu_idx) | |
683 | { | |
684 | /* Make sure this CPU has an IOMMU notifier registered for this | |
685 | * IOMMU/IOMMU index combination, so that we can flush its TLB | |
686 | * when the IOMMU tells us the mappings we've cached have changed. | |
687 | */ | |
688 | MemoryRegion *mr = MEMORY_REGION(iommu_mr); | |
689 | TCGIOMMUNotifier *notifier; | |
690 | int i; | |
691 | ||
692 | for (i = 0; i < cpu->iommu_notifiers->len; i++) { | |
693 | notifier = &g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier, i); | |
694 | if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) { | |
695 | break; | |
696 | } | |
697 | } | |
698 | if (i == cpu->iommu_notifiers->len) { | |
699 | /* Not found, add a new entry at the end of the array */ | |
700 | cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1); | |
701 | notifier = &g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier, i); | |
702 | ||
703 | notifier->mr = mr; | |
704 | notifier->iommu_idx = iommu_idx; | |
705 | notifier->cpu = cpu; | |
706 | /* Rather than trying to register interest in the specific part | |
707 | * of the iommu's address space that we've accessed and then | |
708 | * expand it later as subsequent accesses touch more of it, we | |
709 | * just register interest in the whole thing, on the assumption | |
710 | * that iommu reconfiguration will be rare. | |
711 | */ | |
712 | iommu_notifier_init(¬ifier->n, | |
713 | tcg_iommu_unmap_notify, | |
714 | IOMMU_NOTIFIER_UNMAP, | |
715 | 0, | |
716 | HWADDR_MAX, | |
717 | iommu_idx); | |
718 | memory_region_register_iommu_notifier(notifier->mr, ¬ifier->n); | |
719 | } | |
720 | ||
721 | if (!notifier->active) { | |
722 | notifier->active = true; | |
723 | } | |
724 | } | |
725 | ||
726 | static void tcg_iommu_free_notifier_list(CPUState *cpu) | |
727 | { | |
728 | /* Destroy the CPU's notifier list */ | |
729 | int i; | |
730 | TCGIOMMUNotifier *notifier; | |
731 | ||
732 | for (i = 0; i < cpu->iommu_notifiers->len; i++) { | |
733 | notifier = &g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier, i); | |
734 | memory_region_unregister_iommu_notifier(notifier->mr, ¬ifier->n); | |
735 | } | |
736 | g_array_free(cpu->iommu_notifiers, true); | |
737 | } | |
738 | ||
79e2b9ae | 739 | /* Called from RCU critical section */ |
90260c6c | 740 | MemoryRegionSection * |
d7898cda | 741 | address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr, |
1f871c5e PM |
742 | hwaddr *xlat, hwaddr *plen, |
743 | MemTxAttrs attrs, int *prot) | |
90260c6c | 744 | { |
30951157 | 745 | MemoryRegionSection *section; |
1f871c5e PM |
746 | IOMMUMemoryRegion *iommu_mr; |
747 | IOMMUMemoryRegionClass *imrc; | |
748 | IOMMUTLBEntry iotlb; | |
749 | int iommu_idx; | |
f35e44e7 | 750 | AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch); |
d7898cda | 751 | |
1f871c5e PM |
752 | for (;;) { |
753 | section = address_space_translate_internal(d, addr, &addr, plen, false); | |
754 | ||
755 | iommu_mr = memory_region_get_iommu(section->mr); | |
756 | if (!iommu_mr) { | |
757 | break; | |
758 | } | |
759 | ||
760 | imrc = memory_region_get_iommu_class_nocheck(iommu_mr); | |
761 | ||
762 | iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); | |
763 | tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx); | |
764 | /* We need all the permissions, so pass IOMMU_NONE so the IOMMU | |
765 | * doesn't short-cut its translation table walk. | |
766 | */ | |
767 | iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx); | |
768 | addr = ((iotlb.translated_addr & ~iotlb.addr_mask) | |
769 | | (addr & iotlb.addr_mask)); | |
770 | /* Update the caller's prot bits to remove permissions the IOMMU | |
771 | * is giving us a failure response for. If we get down to no | |
772 | * permissions left at all we can give up now. | |
773 | */ | |
774 | if (!(iotlb.perm & IOMMU_RO)) { | |
775 | *prot &= ~(PAGE_READ | PAGE_EXEC); | |
776 | } | |
777 | if (!(iotlb.perm & IOMMU_WO)) { | |
778 | *prot &= ~PAGE_WRITE; | |
779 | } | |
780 | ||
781 | if (!*prot) { | |
782 | goto translate_fail; | |
783 | } | |
784 | ||
785 | d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as)); | |
786 | } | |
30951157 | 787 | |
3df9d748 | 788 | assert(!memory_region_is_iommu(section->mr)); |
1f871c5e | 789 | *xlat = addr; |
30951157 | 790 | return section; |
1f871c5e PM |
791 | |
792 | translate_fail: | |
793 | return &d->map.sections[PHYS_SECTION_UNASSIGNED]; | |
90260c6c | 794 | } |
5b6dd868 | 795 | #endif |
fd6ce8f6 | 796 | |
b170fce3 | 797 | #if !defined(CONFIG_USER_ONLY) |
5b6dd868 BS |
798 | |
799 | static int cpu_common_post_load(void *opaque, int version_id) | |
fd6ce8f6 | 800 | { |
259186a7 | 801 | CPUState *cpu = opaque; |
a513fe19 | 802 | |
5b6dd868 BS |
803 | /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the |
804 | version_id is increased. */ | |
259186a7 | 805 | cpu->interrupt_request &= ~0x01; |
d10eb08f | 806 | tlb_flush(cpu); |
5b6dd868 | 807 | |
15a356c4 PD |
808 | /* loadvm has just updated the content of RAM, bypassing the |
809 | * usual mechanisms that ensure we flush TBs for writes to | |
810 | * memory we've translated code from. So we must flush all TBs, | |
811 | * which will now be stale. | |
812 | */ | |
813 | tb_flush(cpu); | |
814 | ||
5b6dd868 | 815 | return 0; |
a513fe19 | 816 | } |
7501267e | 817 | |
6c3bff0e PD |
818 | static int cpu_common_pre_load(void *opaque) |
819 | { | |
820 | CPUState *cpu = opaque; | |
821 | ||
adee6424 | 822 | cpu->exception_index = -1; |
6c3bff0e PD |
823 | |
824 | return 0; | |
825 | } | |
826 | ||
827 | static bool cpu_common_exception_index_needed(void *opaque) | |
828 | { | |
829 | CPUState *cpu = opaque; | |
830 | ||
adee6424 | 831 | return tcg_enabled() && cpu->exception_index != -1; |
6c3bff0e PD |
832 | } |
833 | ||
834 | static const VMStateDescription vmstate_cpu_common_exception_index = { | |
835 | .name = "cpu_common/exception_index", | |
836 | .version_id = 1, | |
837 | .minimum_version_id = 1, | |
5cd8cada | 838 | .needed = cpu_common_exception_index_needed, |
6c3bff0e PD |
839 | .fields = (VMStateField[]) { |
840 | VMSTATE_INT32(exception_index, CPUState), | |
841 | VMSTATE_END_OF_LIST() | |
842 | } | |
843 | }; | |
844 | ||
bac05aa9 AS |
845 | static bool cpu_common_crash_occurred_needed(void *opaque) |
846 | { | |
847 | CPUState *cpu = opaque; | |
848 | ||
849 | return cpu->crash_occurred; | |
850 | } | |
851 | ||
852 | static const VMStateDescription vmstate_cpu_common_crash_occurred = { | |
853 | .name = "cpu_common/crash_occurred", | |
854 | .version_id = 1, | |
855 | .minimum_version_id = 1, | |
856 | .needed = cpu_common_crash_occurred_needed, | |
857 | .fields = (VMStateField[]) { | |
858 | VMSTATE_BOOL(crash_occurred, CPUState), | |
859 | VMSTATE_END_OF_LIST() | |
860 | } | |
861 | }; | |
862 | ||
1a1562f5 | 863 | const VMStateDescription vmstate_cpu_common = { |
5b6dd868 BS |
864 | .name = "cpu_common", |
865 | .version_id = 1, | |
866 | .minimum_version_id = 1, | |
6c3bff0e | 867 | .pre_load = cpu_common_pre_load, |
5b6dd868 | 868 | .post_load = cpu_common_post_load, |
35d08458 | 869 | .fields = (VMStateField[]) { |
259186a7 AF |
870 | VMSTATE_UINT32(halted, CPUState), |
871 | VMSTATE_UINT32(interrupt_request, CPUState), | |
5b6dd868 | 872 | VMSTATE_END_OF_LIST() |
6c3bff0e | 873 | }, |
5cd8cada JQ |
874 | .subsections = (const VMStateDescription*[]) { |
875 | &vmstate_cpu_common_exception_index, | |
bac05aa9 | 876 | &vmstate_cpu_common_crash_occurred, |
5cd8cada | 877 | NULL |
5b6dd868 BS |
878 | } |
879 | }; | |
1a1562f5 | 880 | |
5b6dd868 | 881 | #endif |
ea041c0e | 882 | |
38d8f5c8 | 883 | CPUState *qemu_get_cpu(int index) |
ea041c0e | 884 | { |
bdc44640 | 885 | CPUState *cpu; |
ea041c0e | 886 | |
bdc44640 | 887 | CPU_FOREACH(cpu) { |
55e5c285 | 888 | if (cpu->cpu_index == index) { |
bdc44640 | 889 | return cpu; |
55e5c285 | 890 | } |
ea041c0e | 891 | } |
5b6dd868 | 892 | |
bdc44640 | 893 | return NULL; |
ea041c0e FB |
894 | } |
895 | ||
09daed84 | 896 | #if !defined(CONFIG_USER_ONLY) |
80ceb07a PX |
897 | void cpu_address_space_init(CPUState *cpu, int asidx, |
898 | const char *prefix, MemoryRegion *mr) | |
09daed84 | 899 | { |
12ebc9a7 | 900 | CPUAddressSpace *newas; |
80ceb07a | 901 | AddressSpace *as = g_new0(AddressSpace, 1); |
87a621d8 | 902 | char *as_name; |
80ceb07a PX |
903 | |
904 | assert(mr); | |
87a621d8 PX |
905 | as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index); |
906 | address_space_init(as, mr, as_name); | |
907 | g_free(as_name); | |
12ebc9a7 PM |
908 | |
909 | /* Target code should have set num_ases before calling us */ | |
910 | assert(asidx < cpu->num_ases); | |
911 | ||
56943e8c PM |
912 | if (asidx == 0) { |
913 | /* address space 0 gets the convenience alias */ | |
914 | cpu->as = as; | |
915 | } | |
916 | ||
12ebc9a7 PM |
917 | /* KVM cannot currently support multiple address spaces. */ |
918 | assert(asidx == 0 || !kvm_enabled()); | |
09daed84 | 919 | |
12ebc9a7 PM |
920 | if (!cpu->cpu_ases) { |
921 | cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases); | |
09daed84 | 922 | } |
32857f4d | 923 | |
12ebc9a7 PM |
924 | newas = &cpu->cpu_ases[asidx]; |
925 | newas->cpu = cpu; | |
926 | newas->as = as; | |
56943e8c | 927 | if (tcg_enabled()) { |
12ebc9a7 PM |
928 | newas->tcg_as_listener.commit = tcg_commit; |
929 | memory_listener_register(&newas->tcg_as_listener, as); | |
56943e8c | 930 | } |
09daed84 | 931 | } |
651a5bc0 PM |
932 | |
933 | AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx) | |
934 | { | |
935 | /* Return the AddressSpace corresponding to the specified index */ | |
936 | return cpu->cpu_ases[asidx].as; | |
937 | } | |
09daed84 EI |
938 | #endif |
939 | ||
7bbc124e | 940 | void cpu_exec_unrealizefn(CPUState *cpu) |
1c59eb39 | 941 | { |
9dfeca7c BR |
942 | CPUClass *cc = CPU_GET_CLASS(cpu); |
943 | ||
267f685b | 944 | cpu_list_remove(cpu); |
9dfeca7c BR |
945 | |
946 | if (cc->vmsd != NULL) { | |
947 | vmstate_unregister(NULL, cc->vmsd, cpu); | |
948 | } | |
949 | if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { | |
950 | vmstate_unregister(NULL, &vmstate_cpu_common, cpu); | |
951 | } | |
1f871c5e PM |
952 | #ifndef CONFIG_USER_ONLY |
953 | tcg_iommu_free_notifier_list(cpu); | |
954 | #endif | |
1c59eb39 BR |
955 | } |
956 | ||
c7e002c5 FZ |
957 | Property cpu_common_props[] = { |
958 | #ifndef CONFIG_USER_ONLY | |
959 | /* Create a memory property for softmmu CPU object, | |
960 | * so users can wire up its memory. (This can't go in qom/cpu.c | |
961 | * because that file is compiled only once for both user-mode | |
962 | * and system builds.) The default if no link is set up is to use | |
963 | * the system address space. | |
964 | */ | |
965 | DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION, | |
966 | MemoryRegion *), | |
967 | #endif | |
968 | DEFINE_PROP_END_OF_LIST(), | |
969 | }; | |
970 | ||
39e329e3 | 971 | void cpu_exec_initfn(CPUState *cpu) |
ea041c0e | 972 | { |
56943e8c | 973 | cpu->as = NULL; |
12ebc9a7 | 974 | cpu->num_ases = 0; |
56943e8c | 975 | |
291135b5 | 976 | #ifndef CONFIG_USER_ONLY |
291135b5 | 977 | cpu->thread_id = qemu_get_thread_id(); |
6731d864 PC |
978 | cpu->memory = system_memory; |
979 | object_ref(OBJECT(cpu->memory)); | |
291135b5 | 980 | #endif |
39e329e3 LV |
981 | } |
982 | ||
ce5b1bbf | 983 | void cpu_exec_realizefn(CPUState *cpu, Error **errp) |
39e329e3 | 984 | { |
55c3ceef | 985 | CPUClass *cc = CPU_GET_CLASS(cpu); |
2dda6354 | 986 | static bool tcg_target_initialized; |
291135b5 | 987 | |
267f685b | 988 | cpu_list_add(cpu); |
1bc7e522 | 989 | |
2dda6354 EC |
990 | if (tcg_enabled() && !tcg_target_initialized) { |
991 | tcg_target_initialized = true; | |
55c3ceef RH |
992 | cc->tcg_initialize(); |
993 | } | |
994 | ||
1bc7e522 | 995 | #ifndef CONFIG_USER_ONLY |
e0d47944 | 996 | if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { |
741da0d3 | 997 | vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu); |
e0d47944 | 998 | } |
b170fce3 | 999 | if (cc->vmsd != NULL) { |
741da0d3 | 1000 | vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu); |
b170fce3 | 1001 | } |
1f871c5e PM |
1002 | |
1003 | cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier)); | |
741da0d3 | 1004 | #endif |
ea041c0e FB |
1005 | } |
1006 | ||
2278b939 IM |
1007 | const char *parse_cpu_model(const char *cpu_model) |
1008 | { | |
1009 | ObjectClass *oc; | |
1010 | CPUClass *cc; | |
1011 | gchar **model_pieces; | |
1012 | const char *cpu_type; | |
1013 | ||
1014 | model_pieces = g_strsplit(cpu_model, ",", 2); | |
1015 | ||
1016 | oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]); | |
1017 | if (oc == NULL) { | |
1018 | error_report("unable to find CPU model '%s'", model_pieces[0]); | |
1019 | g_strfreev(model_pieces); | |
1020 | exit(EXIT_FAILURE); | |
1021 | } | |
1022 | ||
1023 | cpu_type = object_class_get_name(oc); | |
1024 | cc = CPU_CLASS(oc); | |
1025 | cc->parse_features(cpu_type, model_pieces[1], &error_fatal); | |
1026 | g_strfreev(model_pieces); | |
1027 | return cpu_type; | |
1028 | } | |
1029 | ||
c40d4792 | 1030 | #if defined(CONFIG_USER_ONLY) |
8bca9a03 | 1031 | void tb_invalidate_phys_addr(target_ulong addr) |
1e7855a5 | 1032 | { |
406bc339 | 1033 | mmap_lock(); |
8bca9a03 | 1034 | tb_invalidate_phys_page_range(addr, addr + 1, 0); |
406bc339 PK |
1035 | mmap_unlock(); |
1036 | } | |
8bca9a03 PB |
1037 | |
1038 | static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) | |
1039 | { | |
1040 | tb_invalidate_phys_addr(pc); | |
1041 | } | |
406bc339 | 1042 | #else |
8bca9a03 PB |
1043 | void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs) |
1044 | { | |
1045 | ram_addr_t ram_addr; | |
1046 | MemoryRegion *mr; | |
1047 | hwaddr l = 1; | |
1048 | ||
c40d4792 PB |
1049 | if (!tcg_enabled()) { |
1050 | return; | |
1051 | } | |
1052 | ||
8bca9a03 PB |
1053 | rcu_read_lock(); |
1054 | mr = address_space_translate(as, addr, &addr, &l, false, attrs); | |
1055 | if (!(memory_region_is_ram(mr) | |
1056 | || memory_region_is_romd(mr))) { | |
1057 | rcu_read_unlock(); | |
1058 | return; | |
1059 | } | |
1060 | ram_addr = memory_region_get_ram_addr(mr) + addr; | |
1061 | tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0); | |
1062 | rcu_read_unlock(); | |
1063 | } | |
1064 | ||
406bc339 PK |
1065 | static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) |
1066 | { | |
1067 | MemTxAttrs attrs; | |
1068 | hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs); | |
1069 | int asidx = cpu_asidx_from_attrs(cpu, attrs); | |
1070 | if (phys != -1) { | |
1071 | /* Locks grabbed by tb_invalidate_phys_addr */ | |
1072 | tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as, | |
c874dc4f | 1073 | phys | (pc & ~TARGET_PAGE_MASK), attrs); |
406bc339 | 1074 | } |
1e7855a5 | 1075 | } |
406bc339 | 1076 | #endif |
d720b93d | 1077 | |
c527ee8f | 1078 | #if defined(CONFIG_USER_ONLY) |
75a34036 | 1079 | void cpu_watchpoint_remove_all(CPUState *cpu, int mask) |
c527ee8f PB |
1080 | |
1081 | { | |
1082 | } | |
1083 | ||
3ee887e8 PM |
1084 | int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, |
1085 | int flags) | |
1086 | { | |
1087 | return -ENOSYS; | |
1088 | } | |
1089 | ||
1090 | void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) | |
1091 | { | |
1092 | } | |
1093 | ||
75a34036 | 1094 | int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, |
c527ee8f PB |
1095 | int flags, CPUWatchpoint **watchpoint) |
1096 | { | |
1097 | return -ENOSYS; | |
1098 | } | |
1099 | #else | |
6658ffb8 | 1100 | /* Add a watchpoint. */ |
75a34036 | 1101 | int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, |
a1d1bb31 | 1102 | int flags, CPUWatchpoint **watchpoint) |
6658ffb8 | 1103 | { |
c0ce998e | 1104 | CPUWatchpoint *wp; |
6658ffb8 | 1105 | |
05068c0d | 1106 | /* forbid ranges which are empty or run off the end of the address space */ |
07e2863d | 1107 | if (len == 0 || (addr + len - 1) < addr) { |
75a34036 AF |
1108 | error_report("tried to set invalid watchpoint at %" |
1109 | VADDR_PRIx ", len=%" VADDR_PRIu, addr, len); | |
b4051334 AL |
1110 | return -EINVAL; |
1111 | } | |
7267c094 | 1112 | wp = g_malloc(sizeof(*wp)); |
a1d1bb31 AL |
1113 | |
1114 | wp->vaddr = addr; | |
05068c0d | 1115 | wp->len = len; |
a1d1bb31 AL |
1116 | wp->flags = flags; |
1117 | ||
2dc9f411 | 1118 | /* keep all GDB-injected watchpoints in front */ |
ff4700b0 AF |
1119 | if (flags & BP_GDB) { |
1120 | QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry); | |
1121 | } else { | |
1122 | QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry); | |
1123 | } | |
6658ffb8 | 1124 | |
31b030d4 | 1125 | tlb_flush_page(cpu, addr); |
a1d1bb31 AL |
1126 | |
1127 | if (watchpoint) | |
1128 | *watchpoint = wp; | |
1129 | return 0; | |
6658ffb8 PB |
1130 | } |
1131 | ||
a1d1bb31 | 1132 | /* Remove a specific watchpoint. */ |
75a34036 | 1133 | int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, |
a1d1bb31 | 1134 | int flags) |
6658ffb8 | 1135 | { |
a1d1bb31 | 1136 | CPUWatchpoint *wp; |
6658ffb8 | 1137 | |
ff4700b0 | 1138 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d | 1139 | if (addr == wp->vaddr && len == wp->len |
6e140f28 | 1140 | && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { |
75a34036 | 1141 | cpu_watchpoint_remove_by_ref(cpu, wp); |
6658ffb8 PB |
1142 | return 0; |
1143 | } | |
1144 | } | |
a1d1bb31 | 1145 | return -ENOENT; |
6658ffb8 PB |
1146 | } |
1147 | ||
a1d1bb31 | 1148 | /* Remove a specific watchpoint by reference. */ |
75a34036 | 1149 | void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) |
a1d1bb31 | 1150 | { |
ff4700b0 | 1151 | QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry); |
7d03f82f | 1152 | |
31b030d4 | 1153 | tlb_flush_page(cpu, watchpoint->vaddr); |
a1d1bb31 | 1154 | |
7267c094 | 1155 | g_free(watchpoint); |
a1d1bb31 AL |
1156 | } |
1157 | ||
1158 | /* Remove all matching watchpoints. */ | |
75a34036 | 1159 | void cpu_watchpoint_remove_all(CPUState *cpu, int mask) |
a1d1bb31 | 1160 | { |
c0ce998e | 1161 | CPUWatchpoint *wp, *next; |
a1d1bb31 | 1162 | |
ff4700b0 | 1163 | QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) { |
75a34036 AF |
1164 | if (wp->flags & mask) { |
1165 | cpu_watchpoint_remove_by_ref(cpu, wp); | |
1166 | } | |
c0ce998e | 1167 | } |
7d03f82f | 1168 | } |
05068c0d PM |
1169 | |
1170 | /* Return true if this watchpoint address matches the specified | |
1171 | * access (ie the address range covered by the watchpoint overlaps | |
1172 | * partially or completely with the address range covered by the | |
1173 | * access). | |
1174 | */ | |
1175 | static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp, | |
1176 | vaddr addr, | |
1177 | vaddr len) | |
1178 | { | |
1179 | /* We know the lengths are non-zero, but a little caution is | |
1180 | * required to avoid errors in the case where the range ends | |
1181 | * exactly at the top of the address space and so addr + len | |
1182 | * wraps round to zero. | |
1183 | */ | |
1184 | vaddr wpend = wp->vaddr + wp->len - 1; | |
1185 | vaddr addrend = addr + len - 1; | |
1186 | ||
1187 | return !(addr > wpend || wp->vaddr > addrend); | |
1188 | } | |
1189 | ||
c527ee8f | 1190 | #endif |
7d03f82f | 1191 | |
a1d1bb31 | 1192 | /* Add a breakpoint. */ |
b3310ab3 | 1193 | int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, |
a1d1bb31 | 1194 | CPUBreakpoint **breakpoint) |
4c3a88a2 | 1195 | { |
c0ce998e | 1196 | CPUBreakpoint *bp; |
3b46e624 | 1197 | |
7267c094 | 1198 | bp = g_malloc(sizeof(*bp)); |
4c3a88a2 | 1199 | |
a1d1bb31 AL |
1200 | bp->pc = pc; |
1201 | bp->flags = flags; | |
1202 | ||
2dc9f411 | 1203 | /* keep all GDB-injected breakpoints in front */ |
00b941e5 | 1204 | if (flags & BP_GDB) { |
f0c3c505 | 1205 | QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry); |
00b941e5 | 1206 | } else { |
f0c3c505 | 1207 | QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry); |
00b941e5 | 1208 | } |
3b46e624 | 1209 | |
f0c3c505 | 1210 | breakpoint_invalidate(cpu, pc); |
a1d1bb31 | 1211 | |
00b941e5 | 1212 | if (breakpoint) { |
a1d1bb31 | 1213 | *breakpoint = bp; |
00b941e5 | 1214 | } |
4c3a88a2 | 1215 | return 0; |
4c3a88a2 FB |
1216 | } |
1217 | ||
a1d1bb31 | 1218 | /* Remove a specific breakpoint. */ |
b3310ab3 | 1219 | int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags) |
a1d1bb31 | 1220 | { |
a1d1bb31 AL |
1221 | CPUBreakpoint *bp; |
1222 | ||
f0c3c505 | 1223 | QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { |
a1d1bb31 | 1224 | if (bp->pc == pc && bp->flags == flags) { |
b3310ab3 | 1225 | cpu_breakpoint_remove_by_ref(cpu, bp); |
a1d1bb31 AL |
1226 | return 0; |
1227 | } | |
7d03f82f | 1228 | } |
a1d1bb31 | 1229 | return -ENOENT; |
7d03f82f EI |
1230 | } |
1231 | ||
a1d1bb31 | 1232 | /* Remove a specific breakpoint by reference. */ |
b3310ab3 | 1233 | void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint) |
4c3a88a2 | 1234 | { |
f0c3c505 AF |
1235 | QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry); |
1236 | ||
1237 | breakpoint_invalidate(cpu, breakpoint->pc); | |
a1d1bb31 | 1238 | |
7267c094 | 1239 | g_free(breakpoint); |
a1d1bb31 AL |
1240 | } |
1241 | ||
1242 | /* Remove all matching breakpoints. */ | |
b3310ab3 | 1243 | void cpu_breakpoint_remove_all(CPUState *cpu, int mask) |
a1d1bb31 | 1244 | { |
c0ce998e | 1245 | CPUBreakpoint *bp, *next; |
a1d1bb31 | 1246 | |
f0c3c505 | 1247 | QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) { |
b3310ab3 AF |
1248 | if (bp->flags & mask) { |
1249 | cpu_breakpoint_remove_by_ref(cpu, bp); | |
1250 | } | |
c0ce998e | 1251 | } |
4c3a88a2 FB |
1252 | } |
1253 | ||
c33a346e FB |
1254 | /* enable or disable single step mode. EXCP_DEBUG is returned by the |
1255 | CPU loop after each instruction */ | |
3825b28f | 1256 | void cpu_single_step(CPUState *cpu, int enabled) |
c33a346e | 1257 | { |
ed2803da AF |
1258 | if (cpu->singlestep_enabled != enabled) { |
1259 | cpu->singlestep_enabled = enabled; | |
1260 | if (kvm_enabled()) { | |
38e478ec | 1261 | kvm_update_guest_debug(cpu, 0); |
ed2803da | 1262 | } else { |
ccbb4d44 | 1263 | /* must flush all the translated code to avoid inconsistencies */ |
e22a25c9 | 1264 | /* XXX: only flush what is necessary */ |
bbd77c18 | 1265 | tb_flush(cpu); |
e22a25c9 | 1266 | } |
c33a346e | 1267 | } |
c33a346e FB |
1268 | } |
1269 | ||
a47dddd7 | 1270 | void cpu_abort(CPUState *cpu, const char *fmt, ...) |
7501267e FB |
1271 | { |
1272 | va_list ap; | |
493ae1f0 | 1273 | va_list ap2; |
7501267e FB |
1274 | |
1275 | va_start(ap, fmt); | |
493ae1f0 | 1276 | va_copy(ap2, ap); |
7501267e FB |
1277 | fprintf(stderr, "qemu: fatal: "); |
1278 | vfprintf(stderr, fmt, ap); | |
1279 | fprintf(stderr, "\n"); | |
878096ee | 1280 | cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP); |
013a2942 | 1281 | if (qemu_log_separate()) { |
1ee73216 | 1282 | qemu_log_lock(); |
93fcfe39 AL |
1283 | qemu_log("qemu: fatal: "); |
1284 | qemu_log_vprintf(fmt, ap2); | |
1285 | qemu_log("\n"); | |
a0762859 | 1286 | log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP); |
31b1a7b4 | 1287 | qemu_log_flush(); |
1ee73216 | 1288 | qemu_log_unlock(); |
93fcfe39 | 1289 | qemu_log_close(); |
924edcae | 1290 | } |
493ae1f0 | 1291 | va_end(ap2); |
f9373291 | 1292 | va_end(ap); |
7615936e | 1293 | replay_finish(); |
fd052bf6 RV |
1294 | #if defined(CONFIG_USER_ONLY) |
1295 | { | |
1296 | struct sigaction act; | |
1297 | sigfillset(&act.sa_mask); | |
1298 | act.sa_handler = SIG_DFL; | |
8347c185 | 1299 | act.sa_flags = 0; |
fd052bf6 RV |
1300 | sigaction(SIGABRT, &act, NULL); |
1301 | } | |
1302 | #endif | |
7501267e FB |
1303 | abort(); |
1304 | } | |
1305 | ||
0124311e | 1306 | #if !defined(CONFIG_USER_ONLY) |
0dc3f44a | 1307 | /* Called from RCU critical section */ |
041603fe PB |
1308 | static RAMBlock *qemu_get_ram_block(ram_addr_t addr) |
1309 | { | |
1310 | RAMBlock *block; | |
1311 | ||
43771539 | 1312 | block = atomic_rcu_read(&ram_list.mru_block); |
9b8424d5 | 1313 | if (block && addr - block->offset < block->max_length) { |
68851b98 | 1314 | return block; |
041603fe | 1315 | } |
99e15582 | 1316 | RAMBLOCK_FOREACH(block) { |
9b8424d5 | 1317 | if (addr - block->offset < block->max_length) { |
041603fe PB |
1318 | goto found; |
1319 | } | |
1320 | } | |
1321 | ||
1322 | fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); | |
1323 | abort(); | |
1324 | ||
1325 | found: | |
43771539 PB |
1326 | /* It is safe to write mru_block outside the iothread lock. This |
1327 | * is what happens: | |
1328 | * | |
1329 | * mru_block = xxx | |
1330 | * rcu_read_unlock() | |
1331 | * xxx removed from list | |
1332 | * rcu_read_lock() | |
1333 | * read mru_block | |
1334 | * mru_block = NULL; | |
1335 | * call_rcu(reclaim_ramblock, xxx); | |
1336 | * rcu_read_unlock() | |
1337 | * | |
1338 | * atomic_rcu_set is not needed here. The block was already published | |
1339 | * when it was placed into the list. Here we're just making an extra | |
1340 | * copy of the pointer. | |
1341 | */ | |
041603fe PB |
1342 | ram_list.mru_block = block; |
1343 | return block; | |
1344 | } | |
1345 | ||
a2f4d5be | 1346 | static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) |
d24981d3 | 1347 | { |
9a13565d | 1348 | CPUState *cpu; |
041603fe | 1349 | ram_addr_t start1; |
a2f4d5be JQ |
1350 | RAMBlock *block; |
1351 | ram_addr_t end; | |
1352 | ||
f28d0dfd | 1353 | assert(tcg_enabled()); |
a2f4d5be JQ |
1354 | end = TARGET_PAGE_ALIGN(start + length); |
1355 | start &= TARGET_PAGE_MASK; | |
d24981d3 | 1356 | |
0dc3f44a | 1357 | rcu_read_lock(); |
041603fe PB |
1358 | block = qemu_get_ram_block(start); |
1359 | assert(block == qemu_get_ram_block(end - 1)); | |
1240be24 | 1360 | start1 = (uintptr_t)ramblock_ptr(block, start - block->offset); |
9a13565d PC |
1361 | CPU_FOREACH(cpu) { |
1362 | tlb_reset_dirty(cpu, start1, length); | |
1363 | } | |
0dc3f44a | 1364 | rcu_read_unlock(); |
d24981d3 JQ |
1365 | } |
1366 | ||
5579c7f3 | 1367 | /* Note: start and end must be within the same ram block. */ |
03eebc9e SH |
1368 | bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, |
1369 | ram_addr_t length, | |
1370 | unsigned client) | |
1ccde1cb | 1371 | { |
5b82b703 | 1372 | DirtyMemoryBlocks *blocks; |
03eebc9e | 1373 | unsigned long end, page; |
5b82b703 | 1374 | bool dirty = false; |
03eebc9e SH |
1375 | |
1376 | if (length == 0) { | |
1377 | return false; | |
1378 | } | |
f23db169 | 1379 | |
03eebc9e SH |
1380 | end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; |
1381 | page = start >> TARGET_PAGE_BITS; | |
5b82b703 SH |
1382 | |
1383 | rcu_read_lock(); | |
1384 | ||
1385 | blocks = atomic_rcu_read(&ram_list.dirty_memory[client]); | |
1386 | ||
1387 | while (page < end) { | |
1388 | unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; | |
1389 | unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; | |
1390 | unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset); | |
1391 | ||
1392 | dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx], | |
1393 | offset, num); | |
1394 | page += num; | |
1395 | } | |
1396 | ||
1397 | rcu_read_unlock(); | |
03eebc9e SH |
1398 | |
1399 | if (dirty && tcg_enabled()) { | |
a2f4d5be | 1400 | tlb_reset_dirty_range_all(start, length); |
5579c7f3 | 1401 | } |
03eebc9e SH |
1402 | |
1403 | return dirty; | |
1ccde1cb FB |
1404 | } |
1405 | ||
8deaf12c GH |
1406 | DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty |
1407 | (ram_addr_t start, ram_addr_t length, unsigned client) | |
1408 | { | |
1409 | DirtyMemoryBlocks *blocks; | |
1410 | unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL); | |
1411 | ram_addr_t first = QEMU_ALIGN_DOWN(start, align); | |
1412 | ram_addr_t last = QEMU_ALIGN_UP(start + length, align); | |
1413 | DirtyBitmapSnapshot *snap; | |
1414 | unsigned long page, end, dest; | |
1415 | ||
1416 | snap = g_malloc0(sizeof(*snap) + | |
1417 | ((last - first) >> (TARGET_PAGE_BITS + 3))); | |
1418 | snap->start = first; | |
1419 | snap->end = last; | |
1420 | ||
1421 | page = first >> TARGET_PAGE_BITS; | |
1422 | end = last >> TARGET_PAGE_BITS; | |
1423 | dest = 0; | |
1424 | ||
1425 | rcu_read_lock(); | |
1426 | ||
1427 | blocks = atomic_rcu_read(&ram_list.dirty_memory[client]); | |
1428 | ||
1429 | while (page < end) { | |
1430 | unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; | |
1431 | unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; | |
1432 | unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset); | |
1433 | ||
1434 | assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL))); | |
1435 | assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL))); | |
1436 | offset >>= BITS_PER_LEVEL; | |
1437 | ||
1438 | bitmap_copy_and_clear_atomic(snap->dirty + dest, | |
1439 | blocks->blocks[idx] + offset, | |
1440 | num); | |
1441 | page += num; | |
1442 | dest += num >> BITS_PER_LEVEL; | |
1443 | } | |
1444 | ||
1445 | rcu_read_unlock(); | |
1446 | ||
1447 | if (tcg_enabled()) { | |
1448 | tlb_reset_dirty_range_all(start, length); | |
1449 | } | |
1450 | ||
1451 | return snap; | |
1452 | } | |
1453 | ||
1454 | bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap, | |
1455 | ram_addr_t start, | |
1456 | ram_addr_t length) | |
1457 | { | |
1458 | unsigned long page, end; | |
1459 | ||
1460 | assert(start >= snap->start); | |
1461 | assert(start + length <= snap->end); | |
1462 | ||
1463 | end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS; | |
1464 | page = (start - snap->start) >> TARGET_PAGE_BITS; | |
1465 | ||
1466 | while (page < end) { | |
1467 | if (test_bit(page, snap->dirty)) { | |
1468 | return true; | |
1469 | } | |
1470 | page++; | |
1471 | } | |
1472 | return false; | |
1473 | } | |
1474 | ||
79e2b9ae | 1475 | /* Called from RCU critical section */ |
bb0e627a | 1476 | hwaddr memory_region_section_get_iotlb(CPUState *cpu, |
149f54b5 PB |
1477 | MemoryRegionSection *section, |
1478 | target_ulong vaddr, | |
1479 | hwaddr paddr, hwaddr xlat, | |
1480 | int prot, | |
1481 | target_ulong *address) | |
e5548617 | 1482 | { |
a8170e5e | 1483 | hwaddr iotlb; |
e5548617 BS |
1484 | CPUWatchpoint *wp; |
1485 | ||
cc5bea60 | 1486 | if (memory_region_is_ram(section->mr)) { |
e5548617 | 1487 | /* Normal RAM. */ |
e4e69794 | 1488 | iotlb = memory_region_get_ram_addr(section->mr) + xlat; |
e5548617 | 1489 | if (!section->readonly) { |
b41aac4f | 1490 | iotlb |= PHYS_SECTION_NOTDIRTY; |
e5548617 | 1491 | } else { |
b41aac4f | 1492 | iotlb |= PHYS_SECTION_ROM; |
e5548617 BS |
1493 | } |
1494 | } else { | |
0b8e2c10 PM |
1495 | AddressSpaceDispatch *d; |
1496 | ||
16620684 | 1497 | d = flatview_to_dispatch(section->fv); |
0b8e2c10 | 1498 | iotlb = section - d->map.sections; |
149f54b5 | 1499 | iotlb += xlat; |
e5548617 BS |
1500 | } |
1501 | ||
1502 | /* Make accesses to pages with watchpoints go via the | |
1503 | watchpoint trap routines. */ | |
ff4700b0 | 1504 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d | 1505 | if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) { |
e5548617 BS |
1506 | /* Avoid trapping reads of pages with a write breakpoint. */ |
1507 | if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) { | |
b41aac4f | 1508 | iotlb = PHYS_SECTION_WATCH + paddr; |
e5548617 BS |
1509 | *address |= TLB_MMIO; |
1510 | break; | |
1511 | } | |
1512 | } | |
1513 | } | |
1514 | ||
1515 | return iotlb; | |
1516 | } | |
9fa3e853 FB |
1517 | #endif /* defined(CONFIG_USER_ONLY) */ |
1518 | ||
e2eef170 | 1519 | #if !defined(CONFIG_USER_ONLY) |
8da3ff18 | 1520 | |
c227f099 | 1521 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, |
5312bd8b | 1522 | uint16_t section); |
16620684 | 1523 | static subpage_t *subpage_init(FlatView *fv, hwaddr base); |
54688b1e | 1524 | |
06329cce | 1525 | static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) = |
a2b257d6 | 1526 | qemu_anon_ram_alloc; |
91138037 MA |
1527 | |
1528 | /* | |
1529 | * Set a custom physical guest memory alloator. | |
1530 | * Accelerators with unusual needs may need this. Hopefully, we can | |
1531 | * get rid of it eventually. | |
1532 | */ | |
06329cce | 1533 | void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared)) |
91138037 MA |
1534 | { |
1535 | phys_mem_alloc = alloc; | |
1536 | } | |
1537 | ||
53cb28cb MA |
1538 | static uint16_t phys_section_add(PhysPageMap *map, |
1539 | MemoryRegionSection *section) | |
5312bd8b | 1540 | { |
68f3f65b PB |
1541 | /* The physical section number is ORed with a page-aligned |
1542 | * pointer to produce the iotlb entries. Thus it should | |
1543 | * never overflow into the page-aligned value. | |
1544 | */ | |
53cb28cb | 1545 | assert(map->sections_nb < TARGET_PAGE_SIZE); |
68f3f65b | 1546 | |
53cb28cb MA |
1547 | if (map->sections_nb == map->sections_nb_alloc) { |
1548 | map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); | |
1549 | map->sections = g_renew(MemoryRegionSection, map->sections, | |
1550 | map->sections_nb_alloc); | |
5312bd8b | 1551 | } |
53cb28cb | 1552 | map->sections[map->sections_nb] = *section; |
dfde4e6e | 1553 | memory_region_ref(section->mr); |
53cb28cb | 1554 | return map->sections_nb++; |
5312bd8b AK |
1555 | } |
1556 | ||
058bc4b5 PB |
1557 | static void phys_section_destroy(MemoryRegion *mr) |
1558 | { | |
55b4e80b DS |
1559 | bool have_sub_page = mr->subpage; |
1560 | ||
dfde4e6e PB |
1561 | memory_region_unref(mr); |
1562 | ||
55b4e80b | 1563 | if (have_sub_page) { |
058bc4b5 | 1564 | subpage_t *subpage = container_of(mr, subpage_t, iomem); |
b4fefef9 | 1565 | object_unref(OBJECT(&subpage->iomem)); |
058bc4b5 PB |
1566 | g_free(subpage); |
1567 | } | |
1568 | } | |
1569 | ||
6092666e | 1570 | static void phys_sections_free(PhysPageMap *map) |
5312bd8b | 1571 | { |
9affd6fc PB |
1572 | while (map->sections_nb > 0) { |
1573 | MemoryRegionSection *section = &map->sections[--map->sections_nb]; | |
058bc4b5 PB |
1574 | phys_section_destroy(section->mr); |
1575 | } | |
9affd6fc PB |
1576 | g_free(map->sections); |
1577 | g_free(map->nodes); | |
5312bd8b AK |
1578 | } |
1579 | ||
9950322a | 1580 | static void register_subpage(FlatView *fv, MemoryRegionSection *section) |
0f0cb164 | 1581 | { |
9950322a | 1582 | AddressSpaceDispatch *d = flatview_to_dispatch(fv); |
0f0cb164 | 1583 | subpage_t *subpage; |
a8170e5e | 1584 | hwaddr base = section->offset_within_address_space |
0f0cb164 | 1585 | & TARGET_PAGE_MASK; |
003a0cf2 | 1586 | MemoryRegionSection *existing = phys_page_find(d, base); |
0f0cb164 AK |
1587 | MemoryRegionSection subsection = { |
1588 | .offset_within_address_space = base, | |
052e87b0 | 1589 | .size = int128_make64(TARGET_PAGE_SIZE), |
0f0cb164 | 1590 | }; |
a8170e5e | 1591 | hwaddr start, end; |
0f0cb164 | 1592 | |
f3705d53 | 1593 | assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); |
0f0cb164 | 1594 | |
f3705d53 | 1595 | if (!(existing->mr->subpage)) { |
16620684 AK |
1596 | subpage = subpage_init(fv, base); |
1597 | subsection.fv = fv; | |
0f0cb164 | 1598 | subsection.mr = &subpage->iomem; |
ac1970fb | 1599 | phys_page_set(d, base >> TARGET_PAGE_BITS, 1, |
53cb28cb | 1600 | phys_section_add(&d->map, &subsection)); |
0f0cb164 | 1601 | } else { |
f3705d53 | 1602 | subpage = container_of(existing->mr, subpage_t, iomem); |
0f0cb164 AK |
1603 | } |
1604 | start = section->offset_within_address_space & ~TARGET_PAGE_MASK; | |
052e87b0 | 1605 | end = start + int128_get64(section->size) - 1; |
53cb28cb MA |
1606 | subpage_register(subpage, start, end, |
1607 | phys_section_add(&d->map, section)); | |
0f0cb164 AK |
1608 | } |
1609 | ||
1610 | ||
9950322a | 1611 | static void register_multipage(FlatView *fv, |
052e87b0 | 1612 | MemoryRegionSection *section) |
33417e70 | 1613 | { |
9950322a | 1614 | AddressSpaceDispatch *d = flatview_to_dispatch(fv); |
a8170e5e | 1615 | hwaddr start_addr = section->offset_within_address_space; |
53cb28cb | 1616 | uint16_t section_index = phys_section_add(&d->map, section); |
052e87b0 PB |
1617 | uint64_t num_pages = int128_get64(int128_rshift(section->size, |
1618 | TARGET_PAGE_BITS)); | |
dd81124b | 1619 | |
733d5ef5 PB |
1620 | assert(num_pages); |
1621 | phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); | |
33417e70 FB |
1622 | } |
1623 | ||
8629d3fc | 1624 | void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section) |
0f0cb164 | 1625 | { |
99b9cc06 | 1626 | MemoryRegionSection now = *section, remain = *section; |
052e87b0 | 1627 | Int128 page_size = int128_make64(TARGET_PAGE_SIZE); |
0f0cb164 | 1628 | |
733d5ef5 PB |
1629 | if (now.offset_within_address_space & ~TARGET_PAGE_MASK) { |
1630 | uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space) | |
1631 | - now.offset_within_address_space; | |
1632 | ||
052e87b0 | 1633 | now.size = int128_min(int128_make64(left), now.size); |
9950322a | 1634 | register_subpage(fv, &now); |
733d5ef5 | 1635 | } else { |
052e87b0 | 1636 | now.size = int128_zero(); |
733d5ef5 | 1637 | } |
052e87b0 PB |
1638 | while (int128_ne(remain.size, now.size)) { |
1639 | remain.size = int128_sub(remain.size, now.size); | |
1640 | remain.offset_within_address_space += int128_get64(now.size); | |
1641 | remain.offset_within_region += int128_get64(now.size); | |
69b67646 | 1642 | now = remain; |
052e87b0 | 1643 | if (int128_lt(remain.size, page_size)) { |
9950322a | 1644 | register_subpage(fv, &now); |
88266249 | 1645 | } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { |
052e87b0 | 1646 | now.size = page_size; |
9950322a | 1647 | register_subpage(fv, &now); |
69b67646 | 1648 | } else { |
052e87b0 | 1649 | now.size = int128_and(now.size, int128_neg(page_size)); |
9950322a | 1650 | register_multipage(fv, &now); |
69b67646 | 1651 | } |
0f0cb164 AK |
1652 | } |
1653 | } | |
1654 | ||
62a2744c SY |
1655 | void qemu_flush_coalesced_mmio_buffer(void) |
1656 | { | |
1657 | if (kvm_enabled()) | |
1658 | kvm_flush_coalesced_mmio_buffer(); | |
1659 | } | |
1660 | ||
b2a8658e UD |
1661 | void qemu_mutex_lock_ramlist(void) |
1662 | { | |
1663 | qemu_mutex_lock(&ram_list.mutex); | |
1664 | } | |
1665 | ||
1666 | void qemu_mutex_unlock_ramlist(void) | |
1667 | { | |
1668 | qemu_mutex_unlock(&ram_list.mutex); | |
1669 | } | |
1670 | ||
be9b23c4 PX |
1671 | void ram_block_dump(Monitor *mon) |
1672 | { | |
1673 | RAMBlock *block; | |
1674 | char *psize; | |
1675 | ||
1676 | rcu_read_lock(); | |
1677 | monitor_printf(mon, "%24s %8s %18s %18s %18s\n", | |
1678 | "Block Name", "PSize", "Offset", "Used", "Total"); | |
1679 | RAMBLOCK_FOREACH(block) { | |
1680 | psize = size_to_str(block->page_size); | |
1681 | monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64 | |
1682 | " 0x%016" PRIx64 "\n", block->idstr, psize, | |
1683 | (uint64_t)block->offset, | |
1684 | (uint64_t)block->used_length, | |
1685 | (uint64_t)block->max_length); | |
1686 | g_free(psize); | |
1687 | } | |
1688 | rcu_read_unlock(); | |
1689 | } | |
1690 | ||
9c607668 AK |
1691 | #ifdef __linux__ |
1692 | /* | |
1693 | * FIXME TOCTTOU: this iterates over memory backends' mem-path, which | |
1694 | * may or may not name the same files / on the same filesystem now as | |
1695 | * when we actually open and map them. Iterate over the file | |
1696 | * descriptors instead, and use qemu_fd_getpagesize(). | |
1697 | */ | |
1698 | static int find_max_supported_pagesize(Object *obj, void *opaque) | |
1699 | { | |
9c607668 AK |
1700 | long *hpsize_min = opaque; |
1701 | ||
1702 | if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { | |
2b108085 DG |
1703 | long hpsize = host_memory_backend_pagesize(MEMORY_BACKEND(obj)); |
1704 | ||
0de6e2a3 DG |
1705 | if (hpsize < *hpsize_min) { |
1706 | *hpsize_min = hpsize; | |
9c607668 AK |
1707 | } |
1708 | } | |
1709 | ||
1710 | return 0; | |
1711 | } | |
1712 | ||
1713 | long qemu_getrampagesize(void) | |
1714 | { | |
1715 | long hpsize = LONG_MAX; | |
1716 | long mainrampagesize; | |
1717 | Object *memdev_root; | |
1718 | ||
0de6e2a3 | 1719 | mainrampagesize = qemu_mempath_getpagesize(mem_path); |
9c607668 AK |
1720 | |
1721 | /* it's possible we have memory-backend objects with | |
1722 | * hugepage-backed RAM. these may get mapped into system | |
1723 | * address space via -numa parameters or memory hotplug | |
1724 | * hooks. we want to take these into account, but we | |
1725 | * also want to make sure these supported hugepage | |
1726 | * sizes are applicable across the entire range of memory | |
1727 | * we may boot from, so we take the min across all | |
1728 | * backends, and assume normal pages in cases where a | |
1729 | * backend isn't backed by hugepages. | |
1730 | */ | |
1731 | memdev_root = object_resolve_path("/objects", NULL); | |
1732 | if (memdev_root) { | |
1733 | object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize); | |
1734 | } | |
1735 | if (hpsize == LONG_MAX) { | |
1736 | /* No additional memory regions found ==> Report main RAM page size */ | |
1737 | return mainrampagesize; | |
1738 | } | |
1739 | ||
1740 | /* If NUMA is disabled or the NUMA nodes are not backed with a | |
1741 | * memory-backend, then there is at least one node using "normal" RAM, | |
1742 | * so if its page size is smaller we have got to report that size instead. | |
1743 | */ | |
1744 | if (hpsize > mainrampagesize && | |
1745 | (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) { | |
1746 | static bool warned; | |
1747 | if (!warned) { | |
1748 | error_report("Huge page support disabled (n/a for main memory)."); | |
1749 | warned = true; | |
1750 | } | |
1751 | return mainrampagesize; | |
1752 | } | |
1753 | ||
1754 | return hpsize; | |
1755 | } | |
1756 | #else | |
1757 | long qemu_getrampagesize(void) | |
1758 | { | |
1759 | return getpagesize(); | |
1760 | } | |
1761 | #endif | |
1762 | ||
e1e84ba0 | 1763 | #ifdef __linux__ |
d6af99c9 HZ |
1764 | static int64_t get_file_size(int fd) |
1765 | { | |
1766 | int64_t size = lseek(fd, 0, SEEK_END); | |
1767 | if (size < 0) { | |
1768 | return -errno; | |
1769 | } | |
1770 | return size; | |
1771 | } | |
1772 | ||
8d37b030 MAL |
1773 | static int file_ram_open(const char *path, |
1774 | const char *region_name, | |
1775 | bool *created, | |
1776 | Error **errp) | |
c902760f MT |
1777 | { |
1778 | char *filename; | |
8ca761f6 PF |
1779 | char *sanitized_name; |
1780 | char *c; | |
5c3ece79 | 1781 | int fd = -1; |
c902760f | 1782 | |
8d37b030 | 1783 | *created = false; |
fd97fd44 MA |
1784 | for (;;) { |
1785 | fd = open(path, O_RDWR); | |
1786 | if (fd >= 0) { | |
1787 | /* @path names an existing file, use it */ | |
1788 | break; | |
8d31d6b6 | 1789 | } |
fd97fd44 MA |
1790 | if (errno == ENOENT) { |
1791 | /* @path names a file that doesn't exist, create it */ | |
1792 | fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644); | |
1793 | if (fd >= 0) { | |
8d37b030 | 1794 | *created = true; |
fd97fd44 MA |
1795 | break; |
1796 | } | |
1797 | } else if (errno == EISDIR) { | |
1798 | /* @path names a directory, create a file there */ | |
1799 | /* Make name safe to use with mkstemp by replacing '/' with '_'. */ | |
8d37b030 | 1800 | sanitized_name = g_strdup(region_name); |
fd97fd44 MA |
1801 | for (c = sanitized_name; *c != '\0'; c++) { |
1802 | if (*c == '/') { | |
1803 | *c = '_'; | |
1804 | } | |
1805 | } | |
8ca761f6 | 1806 | |
fd97fd44 MA |
1807 | filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, |
1808 | sanitized_name); | |
1809 | g_free(sanitized_name); | |
8d31d6b6 | 1810 | |
fd97fd44 MA |
1811 | fd = mkstemp(filename); |
1812 | if (fd >= 0) { | |
1813 | unlink(filename); | |
1814 | g_free(filename); | |
1815 | break; | |
1816 | } | |
1817 | g_free(filename); | |
8d31d6b6 | 1818 | } |
fd97fd44 MA |
1819 | if (errno != EEXIST && errno != EINTR) { |
1820 | error_setg_errno(errp, errno, | |
1821 | "can't open backing store %s for guest RAM", | |
1822 | path); | |
8d37b030 | 1823 | return -1; |
fd97fd44 MA |
1824 | } |
1825 | /* | |
1826 | * Try again on EINTR and EEXIST. The latter happens when | |
1827 | * something else creates the file between our two open(). | |
1828 | */ | |
8d31d6b6 | 1829 | } |
c902760f | 1830 | |
8d37b030 MAL |
1831 | return fd; |
1832 | } | |
1833 | ||
1834 | static void *file_ram_alloc(RAMBlock *block, | |
1835 | ram_addr_t memory, | |
1836 | int fd, | |
1837 | bool truncate, | |
1838 | Error **errp) | |
1839 | { | |
1840 | void *area; | |
1841 | ||
863e9621 | 1842 | block->page_size = qemu_fd_getpagesize(fd); |
98376843 HZ |
1843 | if (block->mr->align % block->page_size) { |
1844 | error_setg(errp, "alignment 0x%" PRIx64 | |
1845 | " must be multiples of page size 0x%zx", | |
1846 | block->mr->align, block->page_size); | |
1847 | return NULL; | |
61362b71 DH |
1848 | } else if (block->mr->align && !is_power_of_2(block->mr->align)) { |
1849 | error_setg(errp, "alignment 0x%" PRIx64 | |
1850 | " must be a power of two", block->mr->align); | |
1851 | return NULL; | |
98376843 HZ |
1852 | } |
1853 | block->mr->align = MAX(block->page_size, block->mr->align); | |
8360668e HZ |
1854 | #if defined(__s390x__) |
1855 | if (kvm_enabled()) { | |
1856 | block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN); | |
1857 | } | |
1858 | #endif | |
fd97fd44 | 1859 | |
863e9621 | 1860 | if (memory < block->page_size) { |
fd97fd44 | 1861 | error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " |
863e9621 DDAG |
1862 | "or larger than page size 0x%zx", |
1863 | memory, block->page_size); | |
8d37b030 | 1864 | return NULL; |
1775f111 HZ |
1865 | } |
1866 | ||
863e9621 | 1867 | memory = ROUND_UP(memory, block->page_size); |
c902760f MT |
1868 | |
1869 | /* | |
1870 | * ftruncate is not supported by hugetlbfs in older | |
1871 | * hosts, so don't bother bailing out on errors. | |
1872 | * If anything goes wrong with it under other filesystems, | |
1873 | * mmap will fail. | |
d6af99c9 HZ |
1874 | * |
1875 | * Do not truncate the non-empty backend file to avoid corrupting | |
1876 | * the existing data in the file. Disabling shrinking is not | |
1877 | * enough. For example, the current vNVDIMM implementation stores | |
1878 | * the guest NVDIMM labels at the end of the backend file. If the | |
1879 | * backend file is later extended, QEMU will not be able to find | |
1880 | * those labels. Therefore, extending the non-empty backend file | |
1881 | * is disabled as well. | |
c902760f | 1882 | */ |
8d37b030 | 1883 | if (truncate && ftruncate(fd, memory)) { |
9742bf26 | 1884 | perror("ftruncate"); |
7f56e740 | 1885 | } |
c902760f | 1886 | |
d2f39add DD |
1887 | area = qemu_ram_mmap(fd, memory, block->mr->align, |
1888 | block->flags & RAM_SHARED); | |
c902760f | 1889 | if (area == MAP_FAILED) { |
7f56e740 | 1890 | error_setg_errno(errp, errno, |
fd97fd44 | 1891 | "unable to map backing store for guest RAM"); |
8d37b030 | 1892 | return NULL; |
c902760f | 1893 | } |
ef36fa14 MT |
1894 | |
1895 | if (mem_prealloc) { | |
1e356fc1 | 1896 | os_mem_prealloc(fd, area, memory, smp_cpus, errp); |
056b68af | 1897 | if (errp && *errp) { |
8d37b030 MAL |
1898 | qemu_ram_munmap(area, memory); |
1899 | return NULL; | |
056b68af | 1900 | } |
ef36fa14 MT |
1901 | } |
1902 | ||
04b16653 | 1903 | block->fd = fd; |
c902760f MT |
1904 | return area; |
1905 | } | |
1906 | #endif | |
1907 | ||
154cc9ea DDAG |
1908 | /* Allocate space within the ram_addr_t space that governs the |
1909 | * dirty bitmaps. | |
1910 | * Called with the ramlist lock held. | |
1911 | */ | |
d17b5288 | 1912 | static ram_addr_t find_ram_offset(ram_addr_t size) |
04b16653 AW |
1913 | { |
1914 | RAMBlock *block, *next_block; | |
3e837b2c | 1915 | ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; |
04b16653 | 1916 | |
49cd9ac6 SH |
1917 | assert(size != 0); /* it would hand out same offset multiple times */ |
1918 | ||
0dc3f44a | 1919 | if (QLIST_EMPTY_RCU(&ram_list.blocks)) { |
04b16653 | 1920 | return 0; |
0d53d9fe | 1921 | } |
04b16653 | 1922 | |
99e15582 | 1923 | RAMBLOCK_FOREACH(block) { |
154cc9ea | 1924 | ram_addr_t candidate, next = RAM_ADDR_MAX; |
04b16653 | 1925 | |
801110ab DDAG |
1926 | /* Align blocks to start on a 'long' in the bitmap |
1927 | * which makes the bitmap sync'ing take the fast path. | |
1928 | */ | |
154cc9ea | 1929 | candidate = block->offset + block->max_length; |
801110ab | 1930 | candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS); |
04b16653 | 1931 | |
154cc9ea DDAG |
1932 | /* Search for the closest following block |
1933 | * and find the gap. | |
1934 | */ | |
99e15582 | 1935 | RAMBLOCK_FOREACH(next_block) { |
154cc9ea | 1936 | if (next_block->offset >= candidate) { |
04b16653 AW |
1937 | next = MIN(next, next_block->offset); |
1938 | } | |
1939 | } | |
154cc9ea DDAG |
1940 | |
1941 | /* If it fits remember our place and remember the size | |
1942 | * of gap, but keep going so that we might find a smaller | |
1943 | * gap to fill so avoiding fragmentation. | |
1944 | */ | |
1945 | if (next - candidate >= size && next - candidate < mingap) { | |
1946 | offset = candidate; | |
1947 | mingap = next - candidate; | |
04b16653 | 1948 | } |
154cc9ea DDAG |
1949 | |
1950 | trace_find_ram_offset_loop(size, candidate, offset, next, mingap); | |
04b16653 | 1951 | } |
3e837b2c AW |
1952 | |
1953 | if (offset == RAM_ADDR_MAX) { | |
1954 | fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", | |
1955 | (uint64_t)size); | |
1956 | abort(); | |
1957 | } | |
1958 | ||
154cc9ea DDAG |
1959 | trace_find_ram_offset(size, offset); |
1960 | ||
04b16653 AW |
1961 | return offset; |
1962 | } | |
1963 | ||
c136180c | 1964 | static unsigned long last_ram_page(void) |
d17b5288 AW |
1965 | { |
1966 | RAMBlock *block; | |
1967 | ram_addr_t last = 0; | |
1968 | ||
0dc3f44a | 1969 | rcu_read_lock(); |
99e15582 | 1970 | RAMBLOCK_FOREACH(block) { |
62be4e3a | 1971 | last = MAX(last, block->offset + block->max_length); |
0d53d9fe | 1972 | } |
0dc3f44a | 1973 | rcu_read_unlock(); |
b8c48993 | 1974 | return last >> TARGET_PAGE_BITS; |
d17b5288 AW |
1975 | } |
1976 | ||
ddb97f1d JB |
1977 | static void qemu_ram_setup_dump(void *addr, ram_addr_t size) |
1978 | { | |
1979 | int ret; | |
ddb97f1d JB |
1980 | |
1981 | /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ | |
47c8ca53 | 1982 | if (!machine_dump_guest_core(current_machine)) { |
ddb97f1d JB |
1983 | ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); |
1984 | if (ret) { | |
1985 | perror("qemu_madvise"); | |
1986 | fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " | |
1987 | "but dump_guest_core=off specified\n"); | |
1988 | } | |
1989 | } | |
1990 | } | |
1991 | ||
422148d3 DDAG |
1992 | const char *qemu_ram_get_idstr(RAMBlock *rb) |
1993 | { | |
1994 | return rb->idstr; | |
1995 | } | |
1996 | ||
463a4ac2 DDAG |
1997 | bool qemu_ram_is_shared(RAMBlock *rb) |
1998 | { | |
1999 | return rb->flags & RAM_SHARED; | |
2000 | } | |
2001 | ||
2ce16640 DDAG |
2002 | /* Note: Only set at the start of postcopy */ |
2003 | bool qemu_ram_is_uf_zeroable(RAMBlock *rb) | |
2004 | { | |
2005 | return rb->flags & RAM_UF_ZEROPAGE; | |
2006 | } | |
2007 | ||
2008 | void qemu_ram_set_uf_zeroable(RAMBlock *rb) | |
2009 | { | |
2010 | rb->flags |= RAM_UF_ZEROPAGE; | |
2011 | } | |
2012 | ||
b895de50 CLG |
2013 | bool qemu_ram_is_migratable(RAMBlock *rb) |
2014 | { | |
2015 | return rb->flags & RAM_MIGRATABLE; | |
2016 | } | |
2017 | ||
2018 | void qemu_ram_set_migratable(RAMBlock *rb) | |
2019 | { | |
2020 | rb->flags |= RAM_MIGRATABLE; | |
2021 | } | |
2022 | ||
2023 | void qemu_ram_unset_migratable(RAMBlock *rb) | |
2024 | { | |
2025 | rb->flags &= ~RAM_MIGRATABLE; | |
2026 | } | |
2027 | ||
ae3a7047 | 2028 | /* Called with iothread lock held. */ |
fa53a0e5 | 2029 | void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev) |
20cfe881 | 2030 | { |
fa53a0e5 | 2031 | RAMBlock *block; |
20cfe881 | 2032 | |
c5705a77 AK |
2033 | assert(new_block); |
2034 | assert(!new_block->idstr[0]); | |
84b89d78 | 2035 | |
09e5ab63 AL |
2036 | if (dev) { |
2037 | char *id = qdev_get_dev_path(dev); | |
84b89d78 CM |
2038 | if (id) { |
2039 | snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); | |
7267c094 | 2040 | g_free(id); |
84b89d78 CM |
2041 | } |
2042 | } | |
2043 | pstrcat(new_block->idstr, sizeof(new_block->idstr), name); | |
2044 | ||
ab0a9956 | 2045 | rcu_read_lock(); |
99e15582 | 2046 | RAMBLOCK_FOREACH(block) { |
fa53a0e5 GA |
2047 | if (block != new_block && |
2048 | !strcmp(block->idstr, new_block->idstr)) { | |
84b89d78 CM |
2049 | fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", |
2050 | new_block->idstr); | |
2051 | abort(); | |
2052 | } | |
2053 | } | |
0dc3f44a | 2054 | rcu_read_unlock(); |
c5705a77 AK |
2055 | } |
2056 | ||
ae3a7047 | 2057 | /* Called with iothread lock held. */ |
fa53a0e5 | 2058 | void qemu_ram_unset_idstr(RAMBlock *block) |
20cfe881 | 2059 | { |
ae3a7047 MD |
2060 | /* FIXME: arch_init.c assumes that this is not called throughout |
2061 | * migration. Ignore the problem since hot-unplug during migration | |
2062 | * does not work anyway. | |
2063 | */ | |
20cfe881 HT |
2064 | if (block) { |
2065 | memset(block->idstr, 0, sizeof(block->idstr)); | |
2066 | } | |
2067 | } | |
2068 | ||
863e9621 DDAG |
2069 | size_t qemu_ram_pagesize(RAMBlock *rb) |
2070 | { | |
2071 | return rb->page_size; | |
2072 | } | |
2073 | ||
67f11b5c DDAG |
2074 | /* Returns the largest size of page in use */ |
2075 | size_t qemu_ram_pagesize_largest(void) | |
2076 | { | |
2077 | RAMBlock *block; | |
2078 | size_t largest = 0; | |
2079 | ||
99e15582 | 2080 | RAMBLOCK_FOREACH(block) { |
67f11b5c DDAG |
2081 | largest = MAX(largest, qemu_ram_pagesize(block)); |
2082 | } | |
2083 | ||
2084 | return largest; | |
2085 | } | |
2086 | ||
8490fc78 LC |
2087 | static int memory_try_enable_merging(void *addr, size_t len) |
2088 | { | |
75cc7f01 | 2089 | if (!machine_mem_merge(current_machine)) { |
8490fc78 LC |
2090 | /* disabled by the user */ |
2091 | return 0; | |
2092 | } | |
2093 | ||
2094 | return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); | |
2095 | } | |
2096 | ||
62be4e3a MT |
2097 | /* Only legal before guest might have detected the memory size: e.g. on |
2098 | * incoming migration, or right after reset. | |
2099 | * | |
2100 | * As memory core doesn't know how is memory accessed, it is up to | |
2101 | * resize callback to update device state and/or add assertions to detect | |
2102 | * misuse, if necessary. | |
2103 | */ | |
fa53a0e5 | 2104 | int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp) |
62be4e3a | 2105 | { |
62be4e3a MT |
2106 | assert(block); |
2107 | ||
4ed023ce | 2108 | newsize = HOST_PAGE_ALIGN(newsize); |
129ddaf3 | 2109 | |
62be4e3a MT |
2110 | if (block->used_length == newsize) { |
2111 | return 0; | |
2112 | } | |
2113 | ||
2114 | if (!(block->flags & RAM_RESIZEABLE)) { | |
2115 | error_setg_errno(errp, EINVAL, | |
2116 | "Length mismatch: %s: 0x" RAM_ADDR_FMT | |
2117 | " in != 0x" RAM_ADDR_FMT, block->idstr, | |
2118 | newsize, block->used_length); | |
2119 | return -EINVAL; | |
2120 | } | |
2121 | ||
2122 | if (block->max_length < newsize) { | |
2123 | error_setg_errno(errp, EINVAL, | |
2124 | "Length too large: %s: 0x" RAM_ADDR_FMT | |
2125 | " > 0x" RAM_ADDR_FMT, block->idstr, | |
2126 | newsize, block->max_length); | |
2127 | return -EINVAL; | |
2128 | } | |
2129 | ||
2130 | cpu_physical_memory_clear_dirty_range(block->offset, block->used_length); | |
2131 | block->used_length = newsize; | |
58d2707e PB |
2132 | cpu_physical_memory_set_dirty_range(block->offset, block->used_length, |
2133 | DIRTY_CLIENTS_ALL); | |
62be4e3a MT |
2134 | memory_region_set_size(block->mr, newsize); |
2135 | if (block->resized) { | |
2136 | block->resized(block->idstr, newsize, block->host); | |
2137 | } | |
2138 | return 0; | |
2139 | } | |
2140 | ||
5b82b703 SH |
2141 | /* Called with ram_list.mutex held */ |
2142 | static void dirty_memory_extend(ram_addr_t old_ram_size, | |
2143 | ram_addr_t new_ram_size) | |
2144 | { | |
2145 | ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size, | |
2146 | DIRTY_MEMORY_BLOCK_SIZE); | |
2147 | ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size, | |
2148 | DIRTY_MEMORY_BLOCK_SIZE); | |
2149 | int i; | |
2150 | ||
2151 | /* Only need to extend if block count increased */ | |
2152 | if (new_num_blocks <= old_num_blocks) { | |
2153 | return; | |
2154 | } | |
2155 | ||
2156 | for (i = 0; i < DIRTY_MEMORY_NUM; i++) { | |
2157 | DirtyMemoryBlocks *old_blocks; | |
2158 | DirtyMemoryBlocks *new_blocks; | |
2159 | int j; | |
2160 | ||
2161 | old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]); | |
2162 | new_blocks = g_malloc(sizeof(*new_blocks) + | |
2163 | sizeof(new_blocks->blocks[0]) * new_num_blocks); | |
2164 | ||
2165 | if (old_num_blocks) { | |
2166 | memcpy(new_blocks->blocks, old_blocks->blocks, | |
2167 | old_num_blocks * sizeof(old_blocks->blocks[0])); | |
2168 | } | |
2169 | ||
2170 | for (j = old_num_blocks; j < new_num_blocks; j++) { | |
2171 | new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE); | |
2172 | } | |
2173 | ||
2174 | atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks); | |
2175 | ||
2176 | if (old_blocks) { | |
2177 | g_free_rcu(old_blocks, rcu); | |
2178 | } | |
2179 | } | |
2180 | } | |
2181 | ||
06329cce | 2182 | static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared) |
c5705a77 | 2183 | { |
e1c57ab8 | 2184 | RAMBlock *block; |
0d53d9fe | 2185 | RAMBlock *last_block = NULL; |
2152f5ca | 2186 | ram_addr_t old_ram_size, new_ram_size; |
37aa7a0e | 2187 | Error *err = NULL; |
2152f5ca | 2188 | |
b8c48993 | 2189 | old_ram_size = last_ram_page(); |
c5705a77 | 2190 | |
b2a8658e | 2191 | qemu_mutex_lock_ramlist(); |
9b8424d5 | 2192 | new_block->offset = find_ram_offset(new_block->max_length); |
e1c57ab8 PB |
2193 | |
2194 | if (!new_block->host) { | |
2195 | if (xen_enabled()) { | |
9b8424d5 | 2196 | xen_ram_alloc(new_block->offset, new_block->max_length, |
37aa7a0e MA |
2197 | new_block->mr, &err); |
2198 | if (err) { | |
2199 | error_propagate(errp, err); | |
2200 | qemu_mutex_unlock_ramlist(); | |
39c350ee | 2201 | return; |
37aa7a0e | 2202 | } |
e1c57ab8 | 2203 | } else { |
9b8424d5 | 2204 | new_block->host = phys_mem_alloc(new_block->max_length, |
06329cce | 2205 | &new_block->mr->align, shared); |
39228250 | 2206 | if (!new_block->host) { |
ef701d7b HT |
2207 | error_setg_errno(errp, errno, |
2208 | "cannot set up guest memory '%s'", | |
2209 | memory_region_name(new_block->mr)); | |
2210 | qemu_mutex_unlock_ramlist(); | |
39c350ee | 2211 | return; |
39228250 | 2212 | } |
9b8424d5 | 2213 | memory_try_enable_merging(new_block->host, new_block->max_length); |
6977dfe6 | 2214 | } |
c902760f | 2215 | } |
94a6b54f | 2216 | |
dd631697 LZ |
2217 | new_ram_size = MAX(old_ram_size, |
2218 | (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS); | |
2219 | if (new_ram_size > old_ram_size) { | |
5b82b703 | 2220 | dirty_memory_extend(old_ram_size, new_ram_size); |
dd631697 | 2221 | } |
0d53d9fe MD |
2222 | /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ, |
2223 | * QLIST (which has an RCU-friendly variant) does not have insertion at | |
2224 | * tail, so save the last element in last_block. | |
2225 | */ | |
99e15582 | 2226 | RAMBLOCK_FOREACH(block) { |
0d53d9fe | 2227 | last_block = block; |
9b8424d5 | 2228 | if (block->max_length < new_block->max_length) { |
abb26d63 PB |
2229 | break; |
2230 | } | |
2231 | } | |
2232 | if (block) { | |
0dc3f44a | 2233 | QLIST_INSERT_BEFORE_RCU(block, new_block, next); |
0d53d9fe | 2234 | } else if (last_block) { |
0dc3f44a | 2235 | QLIST_INSERT_AFTER_RCU(last_block, new_block, next); |
0d53d9fe | 2236 | } else { /* list is empty */ |
0dc3f44a | 2237 | QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); |
abb26d63 | 2238 | } |
0d6d3c87 | 2239 | ram_list.mru_block = NULL; |
94a6b54f | 2240 | |
0dc3f44a MD |
2241 | /* Write list before version */ |
2242 | smp_wmb(); | |
f798b07f | 2243 | ram_list.version++; |
b2a8658e | 2244 | qemu_mutex_unlock_ramlist(); |
f798b07f | 2245 | |
9b8424d5 | 2246 | cpu_physical_memory_set_dirty_range(new_block->offset, |
58d2707e PB |
2247 | new_block->used_length, |
2248 | DIRTY_CLIENTS_ALL); | |
94a6b54f | 2249 | |
a904c911 PB |
2250 | if (new_block->host) { |
2251 | qemu_ram_setup_dump(new_block->host, new_block->max_length); | |
2252 | qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); | |
c2cd627d | 2253 | /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */ |
a904c911 | 2254 | qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK); |
0987d735 | 2255 | ram_block_notify_add(new_block->host, new_block->max_length); |
e1c57ab8 | 2256 | } |
94a6b54f | 2257 | } |
e9a1ab19 | 2258 | |
0b183fc8 | 2259 | #ifdef __linux__ |
38b3362d MAL |
2260 | RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr, |
2261 | bool share, int fd, | |
2262 | Error **errp) | |
e1c57ab8 PB |
2263 | { |
2264 | RAMBlock *new_block; | |
ef701d7b | 2265 | Error *local_err = NULL; |
8d37b030 | 2266 | int64_t file_size; |
e1c57ab8 PB |
2267 | |
2268 | if (xen_enabled()) { | |
7f56e740 | 2269 | error_setg(errp, "-mem-path not supported with Xen"); |
528f46af | 2270 | return NULL; |
e1c57ab8 PB |
2271 | } |
2272 | ||
e45e7ae2 MAL |
2273 | if (kvm_enabled() && !kvm_has_sync_mmu()) { |
2274 | error_setg(errp, | |
2275 | "host lacks kvm mmu notifiers, -mem-path unsupported"); | |
2276 | return NULL; | |
2277 | } | |
2278 | ||
e1c57ab8 PB |
2279 | if (phys_mem_alloc != qemu_anon_ram_alloc) { |
2280 | /* | |
2281 | * file_ram_alloc() needs to allocate just like | |
2282 | * phys_mem_alloc, but we haven't bothered to provide | |
2283 | * a hook there. | |
2284 | */ | |
7f56e740 PB |
2285 | error_setg(errp, |
2286 | "-mem-path not supported with this accelerator"); | |
528f46af | 2287 | return NULL; |
e1c57ab8 PB |
2288 | } |
2289 | ||
4ed023ce | 2290 | size = HOST_PAGE_ALIGN(size); |
8d37b030 MAL |
2291 | file_size = get_file_size(fd); |
2292 | if (file_size > 0 && file_size < size) { | |
2293 | error_setg(errp, "backing store %s size 0x%" PRIx64 | |
2294 | " does not match 'size' option 0x" RAM_ADDR_FMT, | |
2295 | mem_path, file_size, size); | |
8d37b030 MAL |
2296 | return NULL; |
2297 | } | |
2298 | ||
e1c57ab8 PB |
2299 | new_block = g_malloc0(sizeof(*new_block)); |
2300 | new_block->mr = mr; | |
9b8424d5 MT |
2301 | new_block->used_length = size; |
2302 | new_block->max_length = size; | |
dbcb8981 | 2303 | new_block->flags = share ? RAM_SHARED : 0; |
8d37b030 | 2304 | new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp); |
7f56e740 PB |
2305 | if (!new_block->host) { |
2306 | g_free(new_block); | |
528f46af | 2307 | return NULL; |
7f56e740 PB |
2308 | } |
2309 | ||
06329cce | 2310 | ram_block_add(new_block, &local_err, share); |
ef701d7b HT |
2311 | if (local_err) { |
2312 | g_free(new_block); | |
2313 | error_propagate(errp, local_err); | |
528f46af | 2314 | return NULL; |
ef701d7b | 2315 | } |
528f46af | 2316 | return new_block; |
38b3362d MAL |
2317 | |
2318 | } | |
2319 | ||
2320 | ||
2321 | RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, | |
2322 | bool share, const char *mem_path, | |
2323 | Error **errp) | |
2324 | { | |
2325 | int fd; | |
2326 | bool created; | |
2327 | RAMBlock *block; | |
2328 | ||
2329 | fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp); | |
2330 | if (fd < 0) { | |
2331 | return NULL; | |
2332 | } | |
2333 | ||
2334 | block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp); | |
2335 | if (!block) { | |
2336 | if (created) { | |
2337 | unlink(mem_path); | |
2338 | } | |
2339 | close(fd); | |
2340 | return NULL; | |
2341 | } | |
2342 | ||
2343 | return block; | |
e1c57ab8 | 2344 | } |
0b183fc8 | 2345 | #endif |
e1c57ab8 | 2346 | |
62be4e3a | 2347 | static |
528f46af FZ |
2348 | RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size, |
2349 | void (*resized)(const char*, | |
2350 | uint64_t length, | |
2351 | void *host), | |
06329cce | 2352 | void *host, bool resizeable, bool share, |
528f46af | 2353 | MemoryRegion *mr, Error **errp) |
e1c57ab8 PB |
2354 | { |
2355 | RAMBlock *new_block; | |
ef701d7b | 2356 | Error *local_err = NULL; |
e1c57ab8 | 2357 | |
4ed023ce DDAG |
2358 | size = HOST_PAGE_ALIGN(size); |
2359 | max_size = HOST_PAGE_ALIGN(max_size); | |
e1c57ab8 PB |
2360 | new_block = g_malloc0(sizeof(*new_block)); |
2361 | new_block->mr = mr; | |
62be4e3a | 2362 | new_block->resized = resized; |
9b8424d5 MT |
2363 | new_block->used_length = size; |
2364 | new_block->max_length = max_size; | |
62be4e3a | 2365 | assert(max_size >= size); |
e1c57ab8 | 2366 | new_block->fd = -1; |
863e9621 | 2367 | new_block->page_size = getpagesize(); |
e1c57ab8 PB |
2368 | new_block->host = host; |
2369 | if (host) { | |
7bd4f430 | 2370 | new_block->flags |= RAM_PREALLOC; |
e1c57ab8 | 2371 | } |
62be4e3a MT |
2372 | if (resizeable) { |
2373 | new_block->flags |= RAM_RESIZEABLE; | |
2374 | } | |
06329cce | 2375 | ram_block_add(new_block, &local_err, share); |
ef701d7b HT |
2376 | if (local_err) { |
2377 | g_free(new_block); | |
2378 | error_propagate(errp, local_err); | |
528f46af | 2379 | return NULL; |
ef701d7b | 2380 | } |
528f46af | 2381 | return new_block; |
e1c57ab8 PB |
2382 | } |
2383 | ||
528f46af | 2384 | RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, |
62be4e3a MT |
2385 | MemoryRegion *mr, Error **errp) |
2386 | { | |
06329cce MA |
2387 | return qemu_ram_alloc_internal(size, size, NULL, host, false, |
2388 | false, mr, errp); | |
62be4e3a MT |
2389 | } |
2390 | ||
06329cce MA |
2391 | RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share, |
2392 | MemoryRegion *mr, Error **errp) | |
6977dfe6 | 2393 | { |
06329cce MA |
2394 | return qemu_ram_alloc_internal(size, size, NULL, NULL, false, |
2395 | share, mr, errp); | |
62be4e3a MT |
2396 | } |
2397 | ||
528f46af | 2398 | RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz, |
62be4e3a MT |
2399 | void (*resized)(const char*, |
2400 | uint64_t length, | |
2401 | void *host), | |
2402 | MemoryRegion *mr, Error **errp) | |
2403 | { | |
06329cce MA |
2404 | return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, |
2405 | false, mr, errp); | |
6977dfe6 YT |
2406 | } |
2407 | ||
43771539 PB |
2408 | static void reclaim_ramblock(RAMBlock *block) |
2409 | { | |
2410 | if (block->flags & RAM_PREALLOC) { | |
2411 | ; | |
2412 | } else if (xen_enabled()) { | |
2413 | xen_invalidate_map_cache_entry(block->host); | |
2414 | #ifndef _WIN32 | |
2415 | } else if (block->fd >= 0) { | |
2f3a2bb1 | 2416 | qemu_ram_munmap(block->host, block->max_length); |
43771539 PB |
2417 | close(block->fd); |
2418 | #endif | |
2419 | } else { | |
2420 | qemu_anon_ram_free(block->host, block->max_length); | |
2421 | } | |
2422 | g_free(block); | |
2423 | } | |
2424 | ||
f1060c55 | 2425 | void qemu_ram_free(RAMBlock *block) |
e9a1ab19 | 2426 | { |
85bc2a15 MAL |
2427 | if (!block) { |
2428 | return; | |
2429 | } | |
2430 | ||
0987d735 PB |
2431 | if (block->host) { |
2432 | ram_block_notify_remove(block->host, block->max_length); | |
2433 | } | |
2434 | ||
b2a8658e | 2435 | qemu_mutex_lock_ramlist(); |
f1060c55 FZ |
2436 | QLIST_REMOVE_RCU(block, next); |
2437 | ram_list.mru_block = NULL; | |
2438 | /* Write list before version */ | |
2439 | smp_wmb(); | |
2440 | ram_list.version++; | |
2441 | call_rcu(block, reclaim_ramblock, rcu); | |
b2a8658e | 2442 | qemu_mutex_unlock_ramlist(); |
e9a1ab19 FB |
2443 | } |
2444 | ||
cd19cfa2 HY |
2445 | #ifndef _WIN32 |
2446 | void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) | |
2447 | { | |
2448 | RAMBlock *block; | |
2449 | ram_addr_t offset; | |
2450 | int flags; | |
2451 | void *area, *vaddr; | |
2452 | ||
99e15582 | 2453 | RAMBLOCK_FOREACH(block) { |
cd19cfa2 | 2454 | offset = addr - block->offset; |
9b8424d5 | 2455 | if (offset < block->max_length) { |
1240be24 | 2456 | vaddr = ramblock_ptr(block, offset); |
7bd4f430 | 2457 | if (block->flags & RAM_PREALLOC) { |
cd19cfa2 | 2458 | ; |
dfeaf2ab MA |
2459 | } else if (xen_enabled()) { |
2460 | abort(); | |
cd19cfa2 HY |
2461 | } else { |
2462 | flags = MAP_FIXED; | |
3435f395 | 2463 | if (block->fd >= 0) { |
dbcb8981 PB |
2464 | flags |= (block->flags & RAM_SHARED ? |
2465 | MAP_SHARED : MAP_PRIVATE); | |
3435f395 MA |
2466 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, |
2467 | flags, block->fd, offset); | |
cd19cfa2 | 2468 | } else { |
2eb9fbaa MA |
2469 | /* |
2470 | * Remap needs to match alloc. Accelerators that | |
2471 | * set phys_mem_alloc never remap. If they did, | |
2472 | * we'd need a remap hook here. | |
2473 | */ | |
2474 | assert(phys_mem_alloc == qemu_anon_ram_alloc); | |
2475 | ||
cd19cfa2 HY |
2476 | flags |= MAP_PRIVATE | MAP_ANONYMOUS; |
2477 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, | |
2478 | flags, -1, 0); | |
cd19cfa2 HY |
2479 | } |
2480 | if (area != vaddr) { | |
493d89bf AF |
2481 | error_report("Could not remap addr: " |
2482 | RAM_ADDR_FMT "@" RAM_ADDR_FMT "", | |
2483 | length, addr); | |
cd19cfa2 HY |
2484 | exit(1); |
2485 | } | |
8490fc78 | 2486 | memory_try_enable_merging(vaddr, length); |
ddb97f1d | 2487 | qemu_ram_setup_dump(vaddr, length); |
cd19cfa2 | 2488 | } |
cd19cfa2 HY |
2489 | } |
2490 | } | |
2491 | } | |
2492 | #endif /* !_WIN32 */ | |
2493 | ||
1b5ec234 | 2494 | /* Return a host pointer to ram allocated with qemu_ram_alloc. |
ae3a7047 MD |
2495 | * This should not be used for general purpose DMA. Use address_space_map |
2496 | * or address_space_rw instead. For local memory (e.g. video ram) that the | |
2497 | * device owns, use memory_region_get_ram_ptr. | |
0dc3f44a | 2498 | * |
49b24afc | 2499 | * Called within RCU critical section. |
1b5ec234 | 2500 | */ |
0878d0e1 | 2501 | void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr) |
1b5ec234 | 2502 | { |
3655cb9c GA |
2503 | RAMBlock *block = ram_block; |
2504 | ||
2505 | if (block == NULL) { | |
2506 | block = qemu_get_ram_block(addr); | |
0878d0e1 | 2507 | addr -= block->offset; |
3655cb9c | 2508 | } |
ae3a7047 MD |
2509 | |
2510 | if (xen_enabled() && block->host == NULL) { | |
0d6d3c87 PB |
2511 | /* We need to check if the requested address is in the RAM |
2512 | * because we don't want to map the entire memory in QEMU. | |
2513 | * In that case just map until the end of the page. | |
2514 | */ | |
2515 | if (block->offset == 0) { | |
1ff7c598 | 2516 | return xen_map_cache(addr, 0, 0, false); |
0d6d3c87 | 2517 | } |
ae3a7047 | 2518 | |
1ff7c598 | 2519 | block->host = xen_map_cache(block->offset, block->max_length, 1, false); |
0d6d3c87 | 2520 | } |
0878d0e1 | 2521 | return ramblock_ptr(block, addr); |
dc828ca1 PB |
2522 | } |
2523 | ||
0878d0e1 | 2524 | /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr |
ae3a7047 | 2525 | * but takes a size argument. |
0dc3f44a | 2526 | * |
e81bcda5 | 2527 | * Called within RCU critical section. |
ae3a7047 | 2528 | */ |
3655cb9c | 2529 | static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr, |
f5aa69bd | 2530 | hwaddr *size, bool lock) |
38bee5dc | 2531 | { |
3655cb9c | 2532 | RAMBlock *block = ram_block; |
8ab934f9 SS |
2533 | if (*size == 0) { |
2534 | return NULL; | |
2535 | } | |
e81bcda5 | 2536 | |
3655cb9c GA |
2537 | if (block == NULL) { |
2538 | block = qemu_get_ram_block(addr); | |
0878d0e1 | 2539 | addr -= block->offset; |
3655cb9c | 2540 | } |
0878d0e1 | 2541 | *size = MIN(*size, block->max_length - addr); |
e81bcda5 PB |
2542 | |
2543 | if (xen_enabled() && block->host == NULL) { | |
2544 | /* We need to check if the requested address is in the RAM | |
2545 | * because we don't want to map the entire memory in QEMU. | |
2546 | * In that case just map the requested area. | |
2547 | */ | |
2548 | if (block->offset == 0) { | |
f5aa69bd | 2549 | return xen_map_cache(addr, *size, lock, lock); |
38bee5dc SS |
2550 | } |
2551 | ||
f5aa69bd | 2552 | block->host = xen_map_cache(block->offset, block->max_length, 1, lock); |
38bee5dc | 2553 | } |
e81bcda5 | 2554 | |
0878d0e1 | 2555 | return ramblock_ptr(block, addr); |
38bee5dc SS |
2556 | } |
2557 | ||
f90bb71b DDAG |
2558 | /* Return the offset of a hostpointer within a ramblock */ |
2559 | ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host) | |
2560 | { | |
2561 | ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host; | |
2562 | assert((uintptr_t)host >= (uintptr_t)rb->host); | |
2563 | assert(res < rb->max_length); | |
2564 | ||
2565 | return res; | |
2566 | } | |
2567 | ||
422148d3 DDAG |
2568 | /* |
2569 | * Translates a host ptr back to a RAMBlock, a ram_addr and an offset | |
2570 | * in that RAMBlock. | |
2571 | * | |
2572 | * ptr: Host pointer to look up | |
2573 | * round_offset: If true round the result offset down to a page boundary | |
2574 | * *ram_addr: set to result ram_addr | |
2575 | * *offset: set to result offset within the RAMBlock | |
2576 | * | |
2577 | * Returns: RAMBlock (or NULL if not found) | |
ae3a7047 MD |
2578 | * |
2579 | * By the time this function returns, the returned pointer is not protected | |
2580 | * by RCU anymore. If the caller is not within an RCU critical section and | |
2581 | * does not hold the iothread lock, it must have other means of protecting the | |
2582 | * pointer, such as a reference to the region that includes the incoming | |
2583 | * ram_addr_t. | |
2584 | */ | |
422148d3 | 2585 | RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, |
422148d3 | 2586 | ram_addr_t *offset) |
5579c7f3 | 2587 | { |
94a6b54f PB |
2588 | RAMBlock *block; |
2589 | uint8_t *host = ptr; | |
2590 | ||
868bb33f | 2591 | if (xen_enabled()) { |
f615f396 | 2592 | ram_addr_t ram_addr; |
0dc3f44a | 2593 | rcu_read_lock(); |
f615f396 PB |
2594 | ram_addr = xen_ram_addr_from_mapcache(ptr); |
2595 | block = qemu_get_ram_block(ram_addr); | |
422148d3 | 2596 | if (block) { |
d6b6aec4 | 2597 | *offset = ram_addr - block->offset; |
422148d3 | 2598 | } |
0dc3f44a | 2599 | rcu_read_unlock(); |
422148d3 | 2600 | return block; |
712c2b41 SS |
2601 | } |
2602 | ||
0dc3f44a MD |
2603 | rcu_read_lock(); |
2604 | block = atomic_rcu_read(&ram_list.mru_block); | |
9b8424d5 | 2605 | if (block && block->host && host - block->host < block->max_length) { |
23887b79 PB |
2606 | goto found; |
2607 | } | |
2608 | ||
99e15582 | 2609 | RAMBLOCK_FOREACH(block) { |
432d268c JN |
2610 | /* This case append when the block is not mapped. */ |
2611 | if (block->host == NULL) { | |
2612 | continue; | |
2613 | } | |
9b8424d5 | 2614 | if (host - block->host < block->max_length) { |
23887b79 | 2615 | goto found; |
f471a17e | 2616 | } |
94a6b54f | 2617 | } |
432d268c | 2618 | |
0dc3f44a | 2619 | rcu_read_unlock(); |
1b5ec234 | 2620 | return NULL; |
23887b79 PB |
2621 | |
2622 | found: | |
422148d3 DDAG |
2623 | *offset = (host - block->host); |
2624 | if (round_offset) { | |
2625 | *offset &= TARGET_PAGE_MASK; | |
2626 | } | |
0dc3f44a | 2627 | rcu_read_unlock(); |
422148d3 DDAG |
2628 | return block; |
2629 | } | |
2630 | ||
e3dd7493 DDAG |
2631 | /* |
2632 | * Finds the named RAMBlock | |
2633 | * | |
2634 | * name: The name of RAMBlock to find | |
2635 | * | |
2636 | * Returns: RAMBlock (or NULL if not found) | |
2637 | */ | |
2638 | RAMBlock *qemu_ram_block_by_name(const char *name) | |
2639 | { | |
2640 | RAMBlock *block; | |
2641 | ||
99e15582 | 2642 | RAMBLOCK_FOREACH(block) { |
e3dd7493 DDAG |
2643 | if (!strcmp(name, block->idstr)) { |
2644 | return block; | |
2645 | } | |
2646 | } | |
2647 | ||
2648 | return NULL; | |
2649 | } | |
2650 | ||
422148d3 DDAG |
2651 | /* Some of the softmmu routines need to translate from a host pointer |
2652 | (typically a TLB entry) back to a ram offset. */ | |
07bdaa41 | 2653 | ram_addr_t qemu_ram_addr_from_host(void *ptr) |
422148d3 DDAG |
2654 | { |
2655 | RAMBlock *block; | |
f615f396 | 2656 | ram_addr_t offset; |
422148d3 | 2657 | |
f615f396 | 2658 | block = qemu_ram_block_from_host(ptr, false, &offset); |
422148d3 | 2659 | if (!block) { |
07bdaa41 | 2660 | return RAM_ADDR_INVALID; |
422148d3 DDAG |
2661 | } |
2662 | ||
07bdaa41 | 2663 | return block->offset + offset; |
e890261f | 2664 | } |
f471a17e | 2665 | |
27266271 PM |
2666 | /* Called within RCU critical section. */ |
2667 | void memory_notdirty_write_prepare(NotDirtyInfo *ndi, | |
2668 | CPUState *cpu, | |
2669 | vaddr mem_vaddr, | |
2670 | ram_addr_t ram_addr, | |
2671 | unsigned size) | |
2672 | { | |
2673 | ndi->cpu = cpu; | |
2674 | ndi->ram_addr = ram_addr; | |
2675 | ndi->mem_vaddr = mem_vaddr; | |
2676 | ndi->size = size; | |
0ac20318 | 2677 | ndi->pages = NULL; |
ba051fb5 | 2678 | |
5aa1ef71 | 2679 | assert(tcg_enabled()); |
52159192 | 2680 | if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { |
0ac20318 EC |
2681 | ndi->pages = page_collection_lock(ram_addr, ram_addr + size); |
2682 | tb_invalidate_phys_page_fast(ndi->pages, ram_addr, size); | |
3a7d929e | 2683 | } |
27266271 PM |
2684 | } |
2685 | ||
2686 | /* Called within RCU critical section. */ | |
2687 | void memory_notdirty_write_complete(NotDirtyInfo *ndi) | |
2688 | { | |
0ac20318 | 2689 | if (ndi->pages) { |
f28d0dfd | 2690 | assert(tcg_enabled()); |
0ac20318 EC |
2691 | page_collection_unlock(ndi->pages); |
2692 | ndi->pages = NULL; | |
27266271 PM |
2693 | } |
2694 | ||
2695 | /* Set both VGA and migration bits for simplicity and to remove | |
2696 | * the notdirty callback faster. | |
2697 | */ | |
2698 | cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size, | |
2699 | DIRTY_CLIENTS_NOCODE); | |
2700 | /* we remove the notdirty callback only if the code has been | |
2701 | flushed */ | |
2702 | if (!cpu_physical_memory_is_clean(ndi->ram_addr)) { | |
2703 | tlb_set_dirty(ndi->cpu, ndi->mem_vaddr); | |
2704 | } | |
2705 | } | |
2706 | ||
2707 | /* Called within RCU critical section. */ | |
2708 | static void notdirty_mem_write(void *opaque, hwaddr ram_addr, | |
2709 | uint64_t val, unsigned size) | |
2710 | { | |
2711 | NotDirtyInfo ndi; | |
2712 | ||
2713 | memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr, | |
2714 | ram_addr, size); | |
2715 | ||
6d3ede54 | 2716 | stn_p(qemu_map_ram_ptr(NULL, ram_addr), size, val); |
27266271 | 2717 | memory_notdirty_write_complete(&ndi); |
9fa3e853 FB |
2718 | } |
2719 | ||
b018ddf6 | 2720 | static bool notdirty_mem_accepts(void *opaque, hwaddr addr, |
8372d383 PM |
2721 | unsigned size, bool is_write, |
2722 | MemTxAttrs attrs) | |
b018ddf6 PB |
2723 | { |
2724 | return is_write; | |
2725 | } | |
2726 | ||
0e0df1e2 | 2727 | static const MemoryRegionOps notdirty_mem_ops = { |
0e0df1e2 | 2728 | .write = notdirty_mem_write, |
b018ddf6 | 2729 | .valid.accepts = notdirty_mem_accepts, |
0e0df1e2 | 2730 | .endianness = DEVICE_NATIVE_ENDIAN, |
ad52878f AB |
2731 | .valid = { |
2732 | .min_access_size = 1, | |
2733 | .max_access_size = 8, | |
2734 | .unaligned = false, | |
2735 | }, | |
2736 | .impl = { | |
2737 | .min_access_size = 1, | |
2738 | .max_access_size = 8, | |
2739 | .unaligned = false, | |
2740 | }, | |
1ccde1cb FB |
2741 | }; |
2742 | ||
0f459d16 | 2743 | /* Generate a debug exception if a watchpoint has been hit. */ |
66b9b43c | 2744 | static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags) |
0f459d16 | 2745 | { |
93afeade | 2746 | CPUState *cpu = current_cpu; |
568496c0 | 2747 | CPUClass *cc = CPU_GET_CLASS(cpu); |
0f459d16 | 2748 | target_ulong vaddr; |
a1d1bb31 | 2749 | CPUWatchpoint *wp; |
0f459d16 | 2750 | |
5aa1ef71 | 2751 | assert(tcg_enabled()); |
ff4700b0 | 2752 | if (cpu->watchpoint_hit) { |
06d55cc1 AL |
2753 | /* We re-entered the check after replacing the TB. Now raise |
2754 | * the debug interrupt so that is will trigger after the | |
2755 | * current instruction. */ | |
93afeade | 2756 | cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG); |
06d55cc1 AL |
2757 | return; |
2758 | } | |
93afeade | 2759 | vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset; |
40612000 | 2760 | vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len); |
ff4700b0 | 2761 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d PM |
2762 | if (cpu_watchpoint_address_matches(wp, vaddr, len) |
2763 | && (wp->flags & flags)) { | |
08225676 PM |
2764 | if (flags == BP_MEM_READ) { |
2765 | wp->flags |= BP_WATCHPOINT_HIT_READ; | |
2766 | } else { | |
2767 | wp->flags |= BP_WATCHPOINT_HIT_WRITE; | |
2768 | } | |
2769 | wp->hitaddr = vaddr; | |
66b9b43c | 2770 | wp->hitattrs = attrs; |
ff4700b0 | 2771 | if (!cpu->watchpoint_hit) { |
568496c0 SF |
2772 | if (wp->flags & BP_CPU && |
2773 | !cc->debug_check_watchpoint(cpu, wp)) { | |
2774 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
2775 | continue; | |
2776 | } | |
ff4700b0 | 2777 | cpu->watchpoint_hit = wp; |
a5e99826 | 2778 | |
0ac20318 | 2779 | mmap_lock(); |
239c51a5 | 2780 | tb_check_watchpoint(cpu); |
6e140f28 | 2781 | if (wp->flags & BP_STOP_BEFORE_ACCESS) { |
27103424 | 2782 | cpu->exception_index = EXCP_DEBUG; |
0ac20318 | 2783 | mmap_unlock(); |
5638d180 | 2784 | cpu_loop_exit(cpu); |
6e140f28 | 2785 | } else { |
9b990ee5 RH |
2786 | /* Force execution of one insn next time. */ |
2787 | cpu->cflags_next_tb = 1 | curr_cflags(); | |
0ac20318 | 2788 | mmap_unlock(); |
6886b980 | 2789 | cpu_loop_exit_noexc(cpu); |
6e140f28 | 2790 | } |
06d55cc1 | 2791 | } |
6e140f28 AL |
2792 | } else { |
2793 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
0f459d16 PB |
2794 | } |
2795 | } | |
2796 | } | |
2797 | ||
6658ffb8 PB |
2798 | /* Watchpoint access routines. Watchpoints are inserted using TLB tricks, |
2799 | so these check for a hit then pass through to the normal out-of-line | |
2800 | phys routines. */ | |
66b9b43c PM |
2801 | static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata, |
2802 | unsigned size, MemTxAttrs attrs) | |
6658ffb8 | 2803 | { |
66b9b43c PM |
2804 | MemTxResult res; |
2805 | uint64_t data; | |
79ed0416 PM |
2806 | int asidx = cpu_asidx_from_attrs(current_cpu, attrs); |
2807 | AddressSpace *as = current_cpu->cpu_ases[asidx].as; | |
66b9b43c PM |
2808 | |
2809 | check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ); | |
1ec9b909 | 2810 | switch (size) { |
66b9b43c | 2811 | case 1: |
79ed0416 | 2812 | data = address_space_ldub(as, addr, attrs, &res); |
66b9b43c PM |
2813 | break; |
2814 | case 2: | |
79ed0416 | 2815 | data = address_space_lduw(as, addr, attrs, &res); |
66b9b43c PM |
2816 | break; |
2817 | case 4: | |
79ed0416 | 2818 | data = address_space_ldl(as, addr, attrs, &res); |
66b9b43c | 2819 | break; |
306526b5 PB |
2820 | case 8: |
2821 | data = address_space_ldq(as, addr, attrs, &res); | |
2822 | break; | |
1ec9b909 AK |
2823 | default: abort(); |
2824 | } | |
66b9b43c PM |
2825 | *pdata = data; |
2826 | return res; | |
6658ffb8 PB |
2827 | } |
2828 | ||
66b9b43c PM |
2829 | static MemTxResult watch_mem_write(void *opaque, hwaddr addr, |
2830 | uint64_t val, unsigned size, | |
2831 | MemTxAttrs attrs) | |
6658ffb8 | 2832 | { |
66b9b43c | 2833 | MemTxResult res; |
79ed0416 PM |
2834 | int asidx = cpu_asidx_from_attrs(current_cpu, attrs); |
2835 | AddressSpace *as = current_cpu->cpu_ases[asidx].as; | |
66b9b43c PM |
2836 | |
2837 | check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE); | |
1ec9b909 | 2838 | switch (size) { |
67364150 | 2839 | case 1: |
79ed0416 | 2840 | address_space_stb(as, addr, val, attrs, &res); |
67364150 MF |
2841 | break; |
2842 | case 2: | |
79ed0416 | 2843 | address_space_stw(as, addr, val, attrs, &res); |
67364150 MF |
2844 | break; |
2845 | case 4: | |
79ed0416 | 2846 | address_space_stl(as, addr, val, attrs, &res); |
67364150 | 2847 | break; |
306526b5 PB |
2848 | case 8: |
2849 | address_space_stq(as, addr, val, attrs, &res); | |
2850 | break; | |
1ec9b909 AK |
2851 | default: abort(); |
2852 | } | |
66b9b43c | 2853 | return res; |
6658ffb8 PB |
2854 | } |
2855 | ||
1ec9b909 | 2856 | static const MemoryRegionOps watch_mem_ops = { |
66b9b43c PM |
2857 | .read_with_attrs = watch_mem_read, |
2858 | .write_with_attrs = watch_mem_write, | |
1ec9b909 | 2859 | .endianness = DEVICE_NATIVE_ENDIAN, |
306526b5 PB |
2860 | .valid = { |
2861 | .min_access_size = 1, | |
2862 | .max_access_size = 8, | |
2863 | .unaligned = false, | |
2864 | }, | |
2865 | .impl = { | |
2866 | .min_access_size = 1, | |
2867 | .max_access_size = 8, | |
2868 | .unaligned = false, | |
2869 | }, | |
6658ffb8 | 2870 | }; |
6658ffb8 | 2871 | |
b2a44fca PB |
2872 | static MemTxResult flatview_read(FlatView *fv, hwaddr addr, |
2873 | MemTxAttrs attrs, uint8_t *buf, int len); | |
16620684 AK |
2874 | static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, |
2875 | const uint8_t *buf, int len); | |
2876 | static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len, | |
eace72b7 | 2877 | bool is_write, MemTxAttrs attrs); |
16620684 | 2878 | |
f25a49e0 PM |
2879 | static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data, |
2880 | unsigned len, MemTxAttrs attrs) | |
db7b5426 | 2881 | { |
acc9d80b | 2882 | subpage_t *subpage = opaque; |
ff6cff75 | 2883 | uint8_t buf[8]; |
5c9eb028 | 2884 | MemTxResult res; |
791af8c8 | 2885 | |
db7b5426 | 2886 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2887 | printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__, |
acc9d80b | 2888 | subpage, len, addr); |
db7b5426 | 2889 | #endif |
16620684 | 2890 | res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len); |
5c9eb028 PM |
2891 | if (res) { |
2892 | return res; | |
f25a49e0 | 2893 | } |
6d3ede54 PM |
2894 | *data = ldn_p(buf, len); |
2895 | return MEMTX_OK; | |
db7b5426 BS |
2896 | } |
2897 | ||
f25a49e0 PM |
2898 | static MemTxResult subpage_write(void *opaque, hwaddr addr, |
2899 | uint64_t value, unsigned len, MemTxAttrs attrs) | |
db7b5426 | 2900 | { |
acc9d80b | 2901 | subpage_t *subpage = opaque; |
ff6cff75 | 2902 | uint8_t buf[8]; |
acc9d80b | 2903 | |
db7b5426 | 2904 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2905 | printf("%s: subpage %p len %u addr " TARGET_FMT_plx |
acc9d80b JK |
2906 | " value %"PRIx64"\n", |
2907 | __func__, subpage, len, addr, value); | |
db7b5426 | 2908 | #endif |
6d3ede54 | 2909 | stn_p(buf, len, value); |
16620684 | 2910 | return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len); |
db7b5426 BS |
2911 | } |
2912 | ||
c353e4cc | 2913 | static bool subpage_accepts(void *opaque, hwaddr addr, |
8372d383 PM |
2914 | unsigned len, bool is_write, |
2915 | MemTxAttrs attrs) | |
c353e4cc | 2916 | { |
acc9d80b | 2917 | subpage_t *subpage = opaque; |
c353e4cc | 2918 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2919 | printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n", |
acc9d80b | 2920 | __func__, subpage, is_write ? 'w' : 'r', len, addr); |
c353e4cc PB |
2921 | #endif |
2922 | ||
16620684 | 2923 | return flatview_access_valid(subpage->fv, addr + subpage->base, |
eace72b7 | 2924 | len, is_write, attrs); |
c353e4cc PB |
2925 | } |
2926 | ||
70c68e44 | 2927 | static const MemoryRegionOps subpage_ops = { |
f25a49e0 PM |
2928 | .read_with_attrs = subpage_read, |
2929 | .write_with_attrs = subpage_write, | |
ff6cff75 PB |
2930 | .impl.min_access_size = 1, |
2931 | .impl.max_access_size = 8, | |
2932 | .valid.min_access_size = 1, | |
2933 | .valid.max_access_size = 8, | |
c353e4cc | 2934 | .valid.accepts = subpage_accepts, |
70c68e44 | 2935 | .endianness = DEVICE_NATIVE_ENDIAN, |
db7b5426 BS |
2936 | }; |
2937 | ||
c227f099 | 2938 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, |
5312bd8b | 2939 | uint16_t section) |
db7b5426 BS |
2940 | { |
2941 | int idx, eidx; | |
2942 | ||
2943 | if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) | |
2944 | return -1; | |
2945 | idx = SUBPAGE_IDX(start); | |
2946 | eidx = SUBPAGE_IDX(end); | |
2947 | #if defined(DEBUG_SUBPAGE) | |
016e9d62 AK |
2948 | printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", |
2949 | __func__, mmio, start, end, idx, eidx, section); | |
db7b5426 | 2950 | #endif |
db7b5426 | 2951 | for (; idx <= eidx; idx++) { |
5312bd8b | 2952 | mmio->sub_section[idx] = section; |
db7b5426 BS |
2953 | } |
2954 | ||
2955 | return 0; | |
2956 | } | |
2957 | ||
16620684 | 2958 | static subpage_t *subpage_init(FlatView *fv, hwaddr base) |
db7b5426 | 2959 | { |
c227f099 | 2960 | subpage_t *mmio; |
db7b5426 | 2961 | |
2615fabd | 2962 | mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t)); |
16620684 | 2963 | mmio->fv = fv; |
1eec614b | 2964 | mmio->base = base; |
2c9b15ca | 2965 | memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, |
b4fefef9 | 2966 | NULL, TARGET_PAGE_SIZE); |
b3b00c78 | 2967 | mmio->iomem.subpage = true; |
db7b5426 | 2968 | #if defined(DEBUG_SUBPAGE) |
016e9d62 AK |
2969 | printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__, |
2970 | mmio, base, TARGET_PAGE_SIZE); | |
db7b5426 | 2971 | #endif |
b41aac4f | 2972 | subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED); |
db7b5426 BS |
2973 | |
2974 | return mmio; | |
2975 | } | |
2976 | ||
16620684 | 2977 | static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr) |
5312bd8b | 2978 | { |
16620684 | 2979 | assert(fv); |
5312bd8b | 2980 | MemoryRegionSection section = { |
16620684 | 2981 | .fv = fv, |
5312bd8b AK |
2982 | .mr = mr, |
2983 | .offset_within_address_space = 0, | |
2984 | .offset_within_region = 0, | |
052e87b0 | 2985 | .size = int128_2_64(), |
5312bd8b AK |
2986 | }; |
2987 | ||
53cb28cb | 2988 | return phys_section_add(map, §ion); |
5312bd8b AK |
2989 | } |
2990 | ||
8af36743 PM |
2991 | static void readonly_mem_write(void *opaque, hwaddr addr, |
2992 | uint64_t val, unsigned size) | |
2993 | { | |
2994 | /* Ignore any write to ROM. */ | |
2995 | } | |
2996 | ||
2997 | static bool readonly_mem_accepts(void *opaque, hwaddr addr, | |
8372d383 PM |
2998 | unsigned size, bool is_write, |
2999 | MemTxAttrs attrs) | |
8af36743 PM |
3000 | { |
3001 | return is_write; | |
3002 | } | |
3003 | ||
3004 | /* This will only be used for writes, because reads are special cased | |
3005 | * to directly access the underlying host ram. | |
3006 | */ | |
3007 | static const MemoryRegionOps readonly_mem_ops = { | |
3008 | .write = readonly_mem_write, | |
3009 | .valid.accepts = readonly_mem_accepts, | |
3010 | .endianness = DEVICE_NATIVE_ENDIAN, | |
3011 | .valid = { | |
3012 | .min_access_size = 1, | |
3013 | .max_access_size = 8, | |
3014 | .unaligned = false, | |
3015 | }, | |
3016 | .impl = { | |
3017 | .min_access_size = 1, | |
3018 | .max_access_size = 8, | |
3019 | .unaligned = false, | |
3020 | }, | |
3021 | }; | |
3022 | ||
2d54f194 PM |
3023 | MemoryRegionSection *iotlb_to_section(CPUState *cpu, |
3024 | hwaddr index, MemTxAttrs attrs) | |
aa102231 | 3025 | { |
a54c87b6 PM |
3026 | int asidx = cpu_asidx_from_attrs(cpu, attrs); |
3027 | CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx]; | |
32857f4d | 3028 | AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch); |
79e2b9ae | 3029 | MemoryRegionSection *sections = d->map.sections; |
9d82b5a7 | 3030 | |
2d54f194 | 3031 | return §ions[index & ~TARGET_PAGE_MASK]; |
aa102231 AK |
3032 | } |
3033 | ||
e9179ce1 AK |
3034 | static void io_mem_init(void) |
3035 | { | |
8af36743 PM |
3036 | memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops, |
3037 | NULL, NULL, UINT64_MAX); | |
2c9b15ca | 3038 | memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, |
1f6245e5 | 3039 | NULL, UINT64_MAX); |
8d04fb55 JK |
3040 | |
3041 | /* io_mem_notdirty calls tb_invalidate_phys_page_fast, | |
3042 | * which can be called without the iothread mutex. | |
3043 | */ | |
2c9b15ca | 3044 | memory_region_init_io(&io_mem_notdirty, NULL, ¬dirty_mem_ops, NULL, |
1f6245e5 | 3045 | NULL, UINT64_MAX); |
8d04fb55 JK |
3046 | memory_region_clear_global_locking(&io_mem_notdirty); |
3047 | ||
2c9b15ca | 3048 | memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL, |
1f6245e5 | 3049 | NULL, UINT64_MAX); |
e9179ce1 AK |
3050 | } |
3051 | ||
8629d3fc | 3052 | AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv) |
00752703 | 3053 | { |
53cb28cb MA |
3054 | AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); |
3055 | uint16_t n; | |
3056 | ||
16620684 | 3057 | n = dummy_section(&d->map, fv, &io_mem_unassigned); |
53cb28cb | 3058 | assert(n == PHYS_SECTION_UNASSIGNED); |
16620684 | 3059 | n = dummy_section(&d->map, fv, &io_mem_notdirty); |
53cb28cb | 3060 | assert(n == PHYS_SECTION_NOTDIRTY); |
16620684 | 3061 | n = dummy_section(&d->map, fv, &io_mem_rom); |
53cb28cb | 3062 | assert(n == PHYS_SECTION_ROM); |
16620684 | 3063 | n = dummy_section(&d->map, fv, &io_mem_watch); |
53cb28cb | 3064 | assert(n == PHYS_SECTION_WATCH); |
00752703 | 3065 | |
9736e55b | 3066 | d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; |
66a6df1d AK |
3067 | |
3068 | return d; | |
00752703 PB |
3069 | } |
3070 | ||
66a6df1d | 3071 | void address_space_dispatch_free(AddressSpaceDispatch *d) |
79e2b9ae PB |
3072 | { |
3073 | phys_sections_free(&d->map); | |
3074 | g_free(d); | |
3075 | } | |
3076 | ||
1d71148e | 3077 | static void tcg_commit(MemoryListener *listener) |
50c1e149 | 3078 | { |
32857f4d PM |
3079 | CPUAddressSpace *cpuas; |
3080 | AddressSpaceDispatch *d; | |
117712c3 | 3081 | |
f28d0dfd | 3082 | assert(tcg_enabled()); |
117712c3 AK |
3083 | /* since each CPU stores ram addresses in its TLB cache, we must |
3084 | reset the modified entries */ | |
32857f4d PM |
3085 | cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); |
3086 | cpu_reloading_memory_map(); | |
3087 | /* The CPU and TLB are protected by the iothread lock. | |
3088 | * We reload the dispatch pointer now because cpu_reloading_memory_map() | |
3089 | * may have split the RCU critical section. | |
3090 | */ | |
66a6df1d | 3091 | d = address_space_to_dispatch(cpuas->as); |
f35e44e7 | 3092 | atomic_rcu_set(&cpuas->memory_dispatch, d); |
d10eb08f | 3093 | tlb_flush(cpuas->cpu); |
50c1e149 AK |
3094 | } |
3095 | ||
62152b8a AK |
3096 | static void memory_map_init(void) |
3097 | { | |
7267c094 | 3098 | system_memory = g_malloc(sizeof(*system_memory)); |
03f49957 | 3099 | |
57271d63 | 3100 | memory_region_init(system_memory, NULL, "system", UINT64_MAX); |
7dca8043 | 3101 | address_space_init(&address_space_memory, system_memory, "memory"); |
309cb471 | 3102 | |
7267c094 | 3103 | system_io = g_malloc(sizeof(*system_io)); |
3bb28b72 JK |
3104 | memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", |
3105 | 65536); | |
7dca8043 | 3106 | address_space_init(&address_space_io, system_io, "I/O"); |
62152b8a AK |
3107 | } |
3108 | ||
3109 | MemoryRegion *get_system_memory(void) | |
3110 | { | |
3111 | return system_memory; | |
3112 | } | |
3113 | ||
309cb471 AK |
3114 | MemoryRegion *get_system_io(void) |
3115 | { | |
3116 | return system_io; | |
3117 | } | |
3118 | ||
e2eef170 PB |
3119 | #endif /* !defined(CONFIG_USER_ONLY) */ |
3120 | ||
13eb76e0 FB |
3121 | /* physical memory access (slow version, mainly for debug) */ |
3122 | #if defined(CONFIG_USER_ONLY) | |
f17ec444 | 3123 | int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, |
a68fe89c | 3124 | uint8_t *buf, int len, int is_write) |
13eb76e0 FB |
3125 | { |
3126 | int l, flags; | |
3127 | target_ulong page; | |
53a5960a | 3128 | void * p; |
13eb76e0 FB |
3129 | |
3130 | while (len > 0) { | |
3131 | page = addr & TARGET_PAGE_MASK; | |
3132 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3133 | if (l > len) | |
3134 | l = len; | |
3135 | flags = page_get_flags(page); | |
3136 | if (!(flags & PAGE_VALID)) | |
a68fe89c | 3137 | return -1; |
13eb76e0 FB |
3138 | if (is_write) { |
3139 | if (!(flags & PAGE_WRITE)) | |
a68fe89c | 3140 | return -1; |
579a97f7 | 3141 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 3142 | if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) |
a68fe89c | 3143 | return -1; |
72fb7daa AJ |
3144 | memcpy(p, buf, l); |
3145 | unlock_user(p, addr, l); | |
13eb76e0 FB |
3146 | } else { |
3147 | if (!(flags & PAGE_READ)) | |
a68fe89c | 3148 | return -1; |
579a97f7 | 3149 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 3150 | if (!(p = lock_user(VERIFY_READ, addr, l, 1))) |
a68fe89c | 3151 | return -1; |
72fb7daa | 3152 | memcpy(buf, p, l); |
5b257578 | 3153 | unlock_user(p, addr, 0); |
13eb76e0 FB |
3154 | } |
3155 | len -= l; | |
3156 | buf += l; | |
3157 | addr += l; | |
3158 | } | |
a68fe89c | 3159 | return 0; |
13eb76e0 | 3160 | } |
8df1cd07 | 3161 | |
13eb76e0 | 3162 | #else |
51d7a9eb | 3163 | |
845b6214 | 3164 | static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, |
a8170e5e | 3165 | hwaddr length) |
51d7a9eb | 3166 | { |
e87f7778 | 3167 | uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr); |
0878d0e1 PB |
3168 | addr += memory_region_get_ram_addr(mr); |
3169 | ||
e87f7778 PB |
3170 | /* No early return if dirty_log_mask is or becomes 0, because |
3171 | * cpu_physical_memory_set_dirty_range will still call | |
3172 | * xen_modified_memory. | |
3173 | */ | |
3174 | if (dirty_log_mask) { | |
3175 | dirty_log_mask = | |
3176 | cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask); | |
3177 | } | |
3178 | if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) { | |
5aa1ef71 | 3179 | assert(tcg_enabled()); |
e87f7778 PB |
3180 | tb_invalidate_phys_range(addr, addr + length); |
3181 | dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); | |
51d7a9eb | 3182 | } |
e87f7778 | 3183 | cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask); |
51d7a9eb AP |
3184 | } |
3185 | ||
23326164 | 3186 | static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) |
82f2563f | 3187 | { |
e1622f4b | 3188 | unsigned access_size_max = mr->ops->valid.max_access_size; |
23326164 RH |
3189 | |
3190 | /* Regions are assumed to support 1-4 byte accesses unless | |
3191 | otherwise specified. */ | |
23326164 RH |
3192 | if (access_size_max == 0) { |
3193 | access_size_max = 4; | |
3194 | } | |
3195 | ||
3196 | /* Bound the maximum access by the alignment of the address. */ | |
3197 | if (!mr->ops->impl.unaligned) { | |
3198 | unsigned align_size_max = addr & -addr; | |
3199 | if (align_size_max != 0 && align_size_max < access_size_max) { | |
3200 | access_size_max = align_size_max; | |
3201 | } | |
82f2563f | 3202 | } |
23326164 RH |
3203 | |
3204 | /* Don't attempt accesses larger than the maximum. */ | |
3205 | if (l > access_size_max) { | |
3206 | l = access_size_max; | |
82f2563f | 3207 | } |
6554f5c0 | 3208 | l = pow2floor(l); |
23326164 RH |
3209 | |
3210 | return l; | |
82f2563f PB |
3211 | } |
3212 | ||
4840f10e | 3213 | static bool prepare_mmio_access(MemoryRegion *mr) |
125b3806 | 3214 | { |
4840f10e JK |
3215 | bool unlocked = !qemu_mutex_iothread_locked(); |
3216 | bool release_lock = false; | |
3217 | ||
3218 | if (unlocked && mr->global_locking) { | |
3219 | qemu_mutex_lock_iothread(); | |
3220 | unlocked = false; | |
3221 | release_lock = true; | |
3222 | } | |
125b3806 | 3223 | if (mr->flush_coalesced_mmio) { |
4840f10e JK |
3224 | if (unlocked) { |
3225 | qemu_mutex_lock_iothread(); | |
3226 | } | |
125b3806 | 3227 | qemu_flush_coalesced_mmio_buffer(); |
4840f10e JK |
3228 | if (unlocked) { |
3229 | qemu_mutex_unlock_iothread(); | |
3230 | } | |
125b3806 | 3231 | } |
4840f10e JK |
3232 | |
3233 | return release_lock; | |
125b3806 PB |
3234 | } |
3235 | ||
a203ac70 | 3236 | /* Called within RCU critical section. */ |
16620684 AK |
3237 | static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr, |
3238 | MemTxAttrs attrs, | |
3239 | const uint8_t *buf, | |
3240 | int len, hwaddr addr1, | |
3241 | hwaddr l, MemoryRegion *mr) | |
13eb76e0 | 3242 | { |
13eb76e0 | 3243 | uint8_t *ptr; |
791af8c8 | 3244 | uint64_t val; |
3b643495 | 3245 | MemTxResult result = MEMTX_OK; |
4840f10e | 3246 | bool release_lock = false; |
3b46e624 | 3247 | |
a203ac70 | 3248 | for (;;) { |
eb7eeb88 PB |
3249 | if (!memory_access_is_direct(mr, true)) { |
3250 | release_lock |= prepare_mmio_access(mr); | |
3251 | l = memory_access_size(mr, l, addr1); | |
3252 | /* XXX: could force current_cpu to NULL to avoid | |
3253 | potential bugs */ | |
6d3ede54 PM |
3254 | val = ldn_p(buf, l); |
3255 | result |= memory_region_dispatch_write(mr, addr1, val, l, attrs); | |
13eb76e0 | 3256 | } else { |
eb7eeb88 | 3257 | /* RAM case */ |
f5aa69bd | 3258 | ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false); |
eb7eeb88 PB |
3259 | memcpy(ptr, buf, l); |
3260 | invalidate_and_set_dirty(mr, addr1, l); | |
13eb76e0 | 3261 | } |
4840f10e JK |
3262 | |
3263 | if (release_lock) { | |
3264 | qemu_mutex_unlock_iothread(); | |
3265 | release_lock = false; | |
3266 | } | |
3267 | ||
13eb76e0 FB |
3268 | len -= l; |
3269 | buf += l; | |
3270 | addr += l; | |
a203ac70 PB |
3271 | |
3272 | if (!len) { | |
3273 | break; | |
3274 | } | |
3275 | ||
3276 | l = len; | |
efa99a2f | 3277 | mr = flatview_translate(fv, addr, &addr1, &l, true, attrs); |
13eb76e0 | 3278 | } |
fd8aaa76 | 3279 | |
3b643495 | 3280 | return result; |
13eb76e0 | 3281 | } |
8df1cd07 | 3282 | |
4c6ebbb3 | 3283 | /* Called from RCU critical section. */ |
16620684 AK |
3284 | static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, |
3285 | const uint8_t *buf, int len) | |
ac1970fb | 3286 | { |
eb7eeb88 | 3287 | hwaddr l; |
eb7eeb88 PB |
3288 | hwaddr addr1; |
3289 | MemoryRegion *mr; | |
3290 | MemTxResult result = MEMTX_OK; | |
eb7eeb88 | 3291 | |
4c6ebbb3 | 3292 | l = len; |
efa99a2f | 3293 | mr = flatview_translate(fv, addr, &addr1, &l, true, attrs); |
4c6ebbb3 PB |
3294 | result = flatview_write_continue(fv, addr, attrs, buf, len, |
3295 | addr1, l, mr); | |
a203ac70 PB |
3296 | |
3297 | return result; | |
3298 | } | |
3299 | ||
3300 | /* Called within RCU critical section. */ | |
16620684 AK |
3301 | MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, |
3302 | MemTxAttrs attrs, uint8_t *buf, | |
3303 | int len, hwaddr addr1, hwaddr l, | |
3304 | MemoryRegion *mr) | |
a203ac70 PB |
3305 | { |
3306 | uint8_t *ptr; | |
3307 | uint64_t val; | |
3308 | MemTxResult result = MEMTX_OK; | |
3309 | bool release_lock = false; | |
eb7eeb88 | 3310 | |
a203ac70 | 3311 | for (;;) { |
eb7eeb88 PB |
3312 | if (!memory_access_is_direct(mr, false)) { |
3313 | /* I/O case */ | |
3314 | release_lock |= prepare_mmio_access(mr); | |
3315 | l = memory_access_size(mr, l, addr1); | |
6d3ede54 PM |
3316 | result |= memory_region_dispatch_read(mr, addr1, &val, l, attrs); |
3317 | stn_p(buf, l, val); | |
eb7eeb88 PB |
3318 | } else { |
3319 | /* RAM case */ | |
f5aa69bd | 3320 | ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false); |
eb7eeb88 PB |
3321 | memcpy(buf, ptr, l); |
3322 | } | |
3323 | ||
3324 | if (release_lock) { | |
3325 | qemu_mutex_unlock_iothread(); | |
3326 | release_lock = false; | |
3327 | } | |
3328 | ||
3329 | len -= l; | |
3330 | buf += l; | |
3331 | addr += l; | |
a203ac70 PB |
3332 | |
3333 | if (!len) { | |
3334 | break; | |
3335 | } | |
3336 | ||
3337 | l = len; | |
efa99a2f | 3338 | mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); |
a203ac70 PB |
3339 | } |
3340 | ||
3341 | return result; | |
3342 | } | |
3343 | ||
b2a44fca PB |
3344 | /* Called from RCU critical section. */ |
3345 | static MemTxResult flatview_read(FlatView *fv, hwaddr addr, | |
3346 | MemTxAttrs attrs, uint8_t *buf, int len) | |
a203ac70 PB |
3347 | { |
3348 | hwaddr l; | |
3349 | hwaddr addr1; | |
3350 | MemoryRegion *mr; | |
eb7eeb88 | 3351 | |
b2a44fca | 3352 | l = len; |
efa99a2f | 3353 | mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); |
b2a44fca PB |
3354 | return flatview_read_continue(fv, addr, attrs, buf, len, |
3355 | addr1, l, mr); | |
ac1970fb AK |
3356 | } |
3357 | ||
b2a44fca PB |
3358 | MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, |
3359 | MemTxAttrs attrs, uint8_t *buf, int len) | |
3360 | { | |
3361 | MemTxResult result = MEMTX_OK; | |
3362 | FlatView *fv; | |
3363 | ||
3364 | if (len > 0) { | |
3365 | rcu_read_lock(); | |
3366 | fv = address_space_to_flatview(as); | |
3367 | result = flatview_read(fv, addr, attrs, buf, len); | |
3368 | rcu_read_unlock(); | |
3369 | } | |
3370 | ||
3371 | return result; | |
3372 | } | |
3373 | ||
4c6ebbb3 PB |
3374 | MemTxResult address_space_write(AddressSpace *as, hwaddr addr, |
3375 | MemTxAttrs attrs, | |
3376 | const uint8_t *buf, int len) | |
3377 | { | |
3378 | MemTxResult result = MEMTX_OK; | |
3379 | FlatView *fv; | |
3380 | ||
3381 | if (len > 0) { | |
3382 | rcu_read_lock(); | |
3383 | fv = address_space_to_flatview(as); | |
3384 | result = flatview_write(fv, addr, attrs, buf, len); | |
3385 | rcu_read_unlock(); | |
3386 | } | |
3387 | ||
3388 | return result; | |
3389 | } | |
3390 | ||
db84fd97 PB |
3391 | MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, |
3392 | uint8_t *buf, int len, bool is_write) | |
3393 | { | |
3394 | if (is_write) { | |
3395 | return address_space_write(as, addr, attrs, buf, len); | |
3396 | } else { | |
3397 | return address_space_read_full(as, addr, attrs, buf, len); | |
3398 | } | |
3399 | } | |
3400 | ||
a8170e5e | 3401 | void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf, |
ac1970fb AK |
3402 | int len, int is_write) |
3403 | { | |
5c9eb028 PM |
3404 | address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, |
3405 | buf, len, is_write); | |
ac1970fb AK |
3406 | } |
3407 | ||
582b55a9 AG |
3408 | enum write_rom_type { |
3409 | WRITE_DATA, | |
3410 | FLUSH_CACHE, | |
3411 | }; | |
3412 | ||
2a221651 | 3413 | static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as, |
582b55a9 | 3414 | hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type) |
d0ecd2aa | 3415 | { |
149f54b5 | 3416 | hwaddr l; |
d0ecd2aa | 3417 | uint8_t *ptr; |
149f54b5 | 3418 | hwaddr addr1; |
5c8a00ce | 3419 | MemoryRegion *mr; |
3b46e624 | 3420 | |
41063e1e | 3421 | rcu_read_lock(); |
d0ecd2aa | 3422 | while (len > 0) { |
149f54b5 | 3423 | l = len; |
bc6b1cec PM |
3424 | mr = address_space_translate(as, addr, &addr1, &l, true, |
3425 | MEMTXATTRS_UNSPECIFIED); | |
3b46e624 | 3426 | |
5c8a00ce PB |
3427 | if (!(memory_region_is_ram(mr) || |
3428 | memory_region_is_romd(mr))) { | |
b242e0e0 | 3429 | l = memory_access_size(mr, l, addr1); |
d0ecd2aa | 3430 | } else { |
d0ecd2aa | 3431 | /* ROM/RAM case */ |
0878d0e1 | 3432 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
582b55a9 AG |
3433 | switch (type) { |
3434 | case WRITE_DATA: | |
3435 | memcpy(ptr, buf, l); | |
845b6214 | 3436 | invalidate_and_set_dirty(mr, addr1, l); |
582b55a9 AG |
3437 | break; |
3438 | case FLUSH_CACHE: | |
3439 | flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l); | |
3440 | break; | |
3441 | } | |
d0ecd2aa FB |
3442 | } |
3443 | len -= l; | |
3444 | buf += l; | |
3445 | addr += l; | |
3446 | } | |
41063e1e | 3447 | rcu_read_unlock(); |
d0ecd2aa FB |
3448 | } |
3449 | ||
582b55a9 | 3450 | /* used for ROM loading : can write in RAM and ROM */ |
2a221651 | 3451 | void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr, |
582b55a9 AG |
3452 | const uint8_t *buf, int len) |
3453 | { | |
2a221651 | 3454 | cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA); |
582b55a9 AG |
3455 | } |
3456 | ||
3457 | void cpu_flush_icache_range(hwaddr start, int len) | |
3458 | { | |
3459 | /* | |
3460 | * This function should do the same thing as an icache flush that was | |
3461 | * triggered from within the guest. For TCG we are always cache coherent, | |
3462 | * so there is no need to flush anything. For KVM / Xen we need to flush | |
3463 | * the host's instruction cache at least. | |
3464 | */ | |
3465 | if (tcg_enabled()) { | |
3466 | return; | |
3467 | } | |
3468 | ||
2a221651 EI |
3469 | cpu_physical_memory_write_rom_internal(&address_space_memory, |
3470 | start, NULL, len, FLUSH_CACHE); | |
582b55a9 AG |
3471 | } |
3472 | ||
6d16c2f8 | 3473 | typedef struct { |
d3e71559 | 3474 | MemoryRegion *mr; |
6d16c2f8 | 3475 | void *buffer; |
a8170e5e AK |
3476 | hwaddr addr; |
3477 | hwaddr len; | |
c2cba0ff | 3478 | bool in_use; |
6d16c2f8 AL |
3479 | } BounceBuffer; |
3480 | ||
3481 | static BounceBuffer bounce; | |
3482 | ||
ba223c29 | 3483 | typedef struct MapClient { |
e95205e1 | 3484 | QEMUBH *bh; |
72cf2d4f | 3485 | QLIST_ENTRY(MapClient) link; |
ba223c29 AL |
3486 | } MapClient; |
3487 | ||
38e047b5 | 3488 | QemuMutex map_client_list_lock; |
72cf2d4f BS |
3489 | static QLIST_HEAD(map_client_list, MapClient) map_client_list |
3490 | = QLIST_HEAD_INITIALIZER(map_client_list); | |
ba223c29 | 3491 | |
e95205e1 FZ |
3492 | static void cpu_unregister_map_client_do(MapClient *client) |
3493 | { | |
3494 | QLIST_REMOVE(client, link); | |
3495 | g_free(client); | |
3496 | } | |
3497 | ||
33b6c2ed FZ |
3498 | static void cpu_notify_map_clients_locked(void) |
3499 | { | |
3500 | MapClient *client; | |
3501 | ||
3502 | while (!QLIST_EMPTY(&map_client_list)) { | |
3503 | client = QLIST_FIRST(&map_client_list); | |
e95205e1 FZ |
3504 | qemu_bh_schedule(client->bh); |
3505 | cpu_unregister_map_client_do(client); | |
33b6c2ed FZ |
3506 | } |
3507 | } | |
3508 | ||
e95205e1 | 3509 | void cpu_register_map_client(QEMUBH *bh) |
ba223c29 | 3510 | { |
7267c094 | 3511 | MapClient *client = g_malloc(sizeof(*client)); |
ba223c29 | 3512 | |
38e047b5 | 3513 | qemu_mutex_lock(&map_client_list_lock); |
e95205e1 | 3514 | client->bh = bh; |
72cf2d4f | 3515 | QLIST_INSERT_HEAD(&map_client_list, client, link); |
33b6c2ed FZ |
3516 | if (!atomic_read(&bounce.in_use)) { |
3517 | cpu_notify_map_clients_locked(); | |
3518 | } | |
38e047b5 | 3519 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
3520 | } |
3521 | ||
38e047b5 | 3522 | void cpu_exec_init_all(void) |
ba223c29 | 3523 | { |
38e047b5 | 3524 | qemu_mutex_init(&ram_list.mutex); |
20bccb82 PM |
3525 | /* The data structures we set up here depend on knowing the page size, |
3526 | * so no more changes can be made after this point. | |
3527 | * In an ideal world, nothing we did before we had finished the | |
3528 | * machine setup would care about the target page size, and we could | |
3529 | * do this much later, rather than requiring board models to state | |
3530 | * up front what their requirements are. | |
3531 | */ | |
3532 | finalize_target_page_bits(); | |
38e047b5 | 3533 | io_mem_init(); |
680a4783 | 3534 | memory_map_init(); |
38e047b5 | 3535 | qemu_mutex_init(&map_client_list_lock); |
ba223c29 AL |
3536 | } |
3537 | ||
e95205e1 | 3538 | void cpu_unregister_map_client(QEMUBH *bh) |
ba223c29 AL |
3539 | { |
3540 | MapClient *client; | |
3541 | ||
e95205e1 FZ |
3542 | qemu_mutex_lock(&map_client_list_lock); |
3543 | QLIST_FOREACH(client, &map_client_list, link) { | |
3544 | if (client->bh == bh) { | |
3545 | cpu_unregister_map_client_do(client); | |
3546 | break; | |
3547 | } | |
ba223c29 | 3548 | } |
e95205e1 | 3549 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
3550 | } |
3551 | ||
3552 | static void cpu_notify_map_clients(void) | |
3553 | { | |
38e047b5 | 3554 | qemu_mutex_lock(&map_client_list_lock); |
33b6c2ed | 3555 | cpu_notify_map_clients_locked(); |
38e047b5 | 3556 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
3557 | } |
3558 | ||
16620684 | 3559 | static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len, |
eace72b7 | 3560 | bool is_write, MemTxAttrs attrs) |
51644ab7 | 3561 | { |
5c8a00ce | 3562 | MemoryRegion *mr; |
51644ab7 PB |
3563 | hwaddr l, xlat; |
3564 | ||
3565 | while (len > 0) { | |
3566 | l = len; | |
efa99a2f | 3567 | mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); |
5c8a00ce PB |
3568 | if (!memory_access_is_direct(mr, is_write)) { |
3569 | l = memory_access_size(mr, l, addr); | |
eace72b7 | 3570 | if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) { |
51644ab7 PB |
3571 | return false; |
3572 | } | |
3573 | } | |
3574 | ||
3575 | len -= l; | |
3576 | addr += l; | |
3577 | } | |
3578 | return true; | |
3579 | } | |
3580 | ||
16620684 | 3581 | bool address_space_access_valid(AddressSpace *as, hwaddr addr, |
fddffa42 PM |
3582 | int len, bool is_write, |
3583 | MemTxAttrs attrs) | |
16620684 | 3584 | { |
11e732a5 PB |
3585 | FlatView *fv; |
3586 | bool result; | |
3587 | ||
3588 | rcu_read_lock(); | |
3589 | fv = address_space_to_flatview(as); | |
eace72b7 | 3590 | result = flatview_access_valid(fv, addr, len, is_write, attrs); |
11e732a5 PB |
3591 | rcu_read_unlock(); |
3592 | return result; | |
16620684 AK |
3593 | } |
3594 | ||
715c31ec | 3595 | static hwaddr |
16620684 | 3596 | flatview_extend_translation(FlatView *fv, hwaddr addr, |
53d0790d PM |
3597 | hwaddr target_len, |
3598 | MemoryRegion *mr, hwaddr base, hwaddr len, | |
3599 | bool is_write, MemTxAttrs attrs) | |
715c31ec PB |
3600 | { |
3601 | hwaddr done = 0; | |
3602 | hwaddr xlat; | |
3603 | MemoryRegion *this_mr; | |
3604 | ||
3605 | for (;;) { | |
3606 | target_len -= len; | |
3607 | addr += len; | |
3608 | done += len; | |
3609 | if (target_len == 0) { | |
3610 | return done; | |
3611 | } | |
3612 | ||
3613 | len = target_len; | |
16620684 | 3614 | this_mr = flatview_translate(fv, addr, &xlat, |
efa99a2f | 3615 | &len, is_write, attrs); |
715c31ec PB |
3616 | if (this_mr != mr || xlat != base + done) { |
3617 | return done; | |
3618 | } | |
3619 | } | |
3620 | } | |
3621 | ||
6d16c2f8 AL |
3622 | /* Map a physical memory region into a host virtual address. |
3623 | * May map a subset of the requested range, given by and returned in *plen. | |
3624 | * May return NULL if resources needed to perform the mapping are exhausted. | |
3625 | * Use only for reads OR writes - not for read-modify-write operations. | |
ba223c29 AL |
3626 | * Use cpu_register_map_client() to know when retrying the map operation is |
3627 | * likely to succeed. | |
6d16c2f8 | 3628 | */ |
ac1970fb | 3629 | void *address_space_map(AddressSpace *as, |
a8170e5e AK |
3630 | hwaddr addr, |
3631 | hwaddr *plen, | |
f26404fb PM |
3632 | bool is_write, |
3633 | MemTxAttrs attrs) | |
6d16c2f8 | 3634 | { |
a8170e5e | 3635 | hwaddr len = *plen; |
715c31ec PB |
3636 | hwaddr l, xlat; |
3637 | MemoryRegion *mr; | |
e81bcda5 | 3638 | void *ptr; |
ad0c60fa | 3639 | FlatView *fv; |
6d16c2f8 | 3640 | |
e3127ae0 PB |
3641 | if (len == 0) { |
3642 | return NULL; | |
3643 | } | |
38bee5dc | 3644 | |
e3127ae0 | 3645 | l = len; |
41063e1e | 3646 | rcu_read_lock(); |
ad0c60fa | 3647 | fv = address_space_to_flatview(as); |
efa99a2f | 3648 | mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); |
41063e1e | 3649 | |
e3127ae0 | 3650 | if (!memory_access_is_direct(mr, is_write)) { |
c2cba0ff | 3651 | if (atomic_xchg(&bounce.in_use, true)) { |
41063e1e | 3652 | rcu_read_unlock(); |
e3127ae0 | 3653 | return NULL; |
6d16c2f8 | 3654 | } |
e85d9db5 KW |
3655 | /* Avoid unbounded allocations */ |
3656 | l = MIN(l, TARGET_PAGE_SIZE); | |
3657 | bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l); | |
e3127ae0 PB |
3658 | bounce.addr = addr; |
3659 | bounce.len = l; | |
d3e71559 PB |
3660 | |
3661 | memory_region_ref(mr); | |
3662 | bounce.mr = mr; | |
e3127ae0 | 3663 | if (!is_write) { |
16620684 | 3664 | flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED, |
5c9eb028 | 3665 | bounce.buffer, l); |
8ab934f9 | 3666 | } |
6d16c2f8 | 3667 | |
41063e1e | 3668 | rcu_read_unlock(); |
e3127ae0 PB |
3669 | *plen = l; |
3670 | return bounce.buffer; | |
3671 | } | |
3672 | ||
e3127ae0 | 3673 | |
d3e71559 | 3674 | memory_region_ref(mr); |
16620684 | 3675 | *plen = flatview_extend_translation(fv, addr, len, mr, xlat, |
53d0790d | 3676 | l, is_write, attrs); |
f5aa69bd | 3677 | ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true); |
e81bcda5 PB |
3678 | rcu_read_unlock(); |
3679 | ||
3680 | return ptr; | |
6d16c2f8 AL |
3681 | } |
3682 | ||
ac1970fb | 3683 | /* Unmaps a memory region previously mapped by address_space_map(). |
6d16c2f8 AL |
3684 | * Will also mark the memory as dirty if is_write == 1. access_len gives |
3685 | * the amount of memory that was actually read or written by the caller. | |
3686 | */ | |
a8170e5e AK |
3687 | void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, |
3688 | int is_write, hwaddr access_len) | |
6d16c2f8 AL |
3689 | { |
3690 | if (buffer != bounce.buffer) { | |
d3e71559 PB |
3691 | MemoryRegion *mr; |
3692 | ram_addr_t addr1; | |
3693 | ||
07bdaa41 | 3694 | mr = memory_region_from_host(buffer, &addr1); |
d3e71559 | 3695 | assert(mr != NULL); |
6d16c2f8 | 3696 | if (is_write) { |
845b6214 | 3697 | invalidate_and_set_dirty(mr, addr1, access_len); |
6d16c2f8 | 3698 | } |
868bb33f | 3699 | if (xen_enabled()) { |
e41d7c69 | 3700 | xen_invalidate_map_cache_entry(buffer); |
050a0ddf | 3701 | } |
d3e71559 | 3702 | memory_region_unref(mr); |
6d16c2f8 AL |
3703 | return; |
3704 | } | |
3705 | if (is_write) { | |
5c9eb028 PM |
3706 | address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED, |
3707 | bounce.buffer, access_len); | |
6d16c2f8 | 3708 | } |
f8a83245 | 3709 | qemu_vfree(bounce.buffer); |
6d16c2f8 | 3710 | bounce.buffer = NULL; |
d3e71559 | 3711 | memory_region_unref(bounce.mr); |
c2cba0ff | 3712 | atomic_mb_set(&bounce.in_use, false); |
ba223c29 | 3713 | cpu_notify_map_clients(); |
6d16c2f8 | 3714 | } |
d0ecd2aa | 3715 | |
a8170e5e AK |
3716 | void *cpu_physical_memory_map(hwaddr addr, |
3717 | hwaddr *plen, | |
ac1970fb AK |
3718 | int is_write) |
3719 | { | |
f26404fb PM |
3720 | return address_space_map(&address_space_memory, addr, plen, is_write, |
3721 | MEMTXATTRS_UNSPECIFIED); | |
ac1970fb AK |
3722 | } |
3723 | ||
a8170e5e AK |
3724 | void cpu_physical_memory_unmap(void *buffer, hwaddr len, |
3725 | int is_write, hwaddr access_len) | |
ac1970fb AK |
3726 | { |
3727 | return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); | |
3728 | } | |
3729 | ||
0ce265ff PB |
3730 | #define ARG1_DECL AddressSpace *as |
3731 | #define ARG1 as | |
3732 | #define SUFFIX | |
3733 | #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__) | |
0ce265ff PB |
3734 | #define RCU_READ_LOCK(...) rcu_read_lock() |
3735 | #define RCU_READ_UNLOCK(...) rcu_read_unlock() | |
3736 | #include "memory_ldst.inc.c" | |
1e78bcc1 | 3737 | |
1f4e496e PB |
3738 | int64_t address_space_cache_init(MemoryRegionCache *cache, |
3739 | AddressSpace *as, | |
3740 | hwaddr addr, | |
3741 | hwaddr len, | |
3742 | bool is_write) | |
3743 | { | |
48564041 PB |
3744 | AddressSpaceDispatch *d; |
3745 | hwaddr l; | |
3746 | MemoryRegion *mr; | |
3747 | ||
3748 | assert(len > 0); | |
3749 | ||
3750 | l = len; | |
3751 | cache->fv = address_space_get_flatview(as); | |
3752 | d = flatview_to_dispatch(cache->fv); | |
3753 | cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true); | |
3754 | ||
3755 | mr = cache->mrs.mr; | |
3756 | memory_region_ref(mr); | |
3757 | if (memory_access_is_direct(mr, is_write)) { | |
53d0790d PM |
3758 | /* We don't care about the memory attributes here as we're only |
3759 | * doing this if we found actual RAM, which behaves the same | |
3760 | * regardless of attributes; so UNSPECIFIED is fine. | |
3761 | */ | |
48564041 | 3762 | l = flatview_extend_translation(cache->fv, addr, len, mr, |
53d0790d PM |
3763 | cache->xlat, l, is_write, |
3764 | MEMTXATTRS_UNSPECIFIED); | |
48564041 PB |
3765 | cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true); |
3766 | } else { | |
3767 | cache->ptr = NULL; | |
3768 | } | |
3769 | ||
3770 | cache->len = l; | |
3771 | cache->is_write = is_write; | |
3772 | return l; | |
1f4e496e PB |
3773 | } |
3774 | ||
3775 | void address_space_cache_invalidate(MemoryRegionCache *cache, | |
3776 | hwaddr addr, | |
3777 | hwaddr access_len) | |
3778 | { | |
48564041 PB |
3779 | assert(cache->is_write); |
3780 | if (likely(cache->ptr)) { | |
3781 | invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len); | |
3782 | } | |
1f4e496e PB |
3783 | } |
3784 | ||
3785 | void address_space_cache_destroy(MemoryRegionCache *cache) | |
3786 | { | |
48564041 PB |
3787 | if (!cache->mrs.mr) { |
3788 | return; | |
3789 | } | |
3790 | ||
3791 | if (xen_enabled()) { | |
3792 | xen_invalidate_map_cache_entry(cache->ptr); | |
3793 | } | |
3794 | memory_region_unref(cache->mrs.mr); | |
3795 | flatview_unref(cache->fv); | |
3796 | cache->mrs.mr = NULL; | |
3797 | cache->fv = NULL; | |
3798 | } | |
3799 | ||
3800 | /* Called from RCU critical section. This function has the same | |
3801 | * semantics as address_space_translate, but it only works on a | |
3802 | * predefined range of a MemoryRegion that was mapped with | |
3803 | * address_space_cache_init. | |
3804 | */ | |
3805 | static inline MemoryRegion *address_space_translate_cached( | |
3806 | MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat, | |
bc6b1cec | 3807 | hwaddr *plen, bool is_write, MemTxAttrs attrs) |
48564041 PB |
3808 | { |
3809 | MemoryRegionSection section; | |
3810 | MemoryRegion *mr; | |
3811 | IOMMUMemoryRegion *iommu_mr; | |
3812 | AddressSpace *target_as; | |
3813 | ||
3814 | assert(!cache->ptr); | |
3815 | *xlat = addr + cache->xlat; | |
3816 | ||
3817 | mr = cache->mrs.mr; | |
3818 | iommu_mr = memory_region_get_iommu(mr); | |
3819 | if (!iommu_mr) { | |
3820 | /* MMIO region. */ | |
3821 | return mr; | |
3822 | } | |
3823 | ||
3824 | section = address_space_translate_iommu(iommu_mr, xlat, plen, | |
3825 | NULL, is_write, true, | |
2f7b009c | 3826 | &target_as, attrs); |
48564041 PB |
3827 | return section.mr; |
3828 | } | |
3829 | ||
3830 | /* Called from RCU critical section. address_space_read_cached uses this | |
3831 | * out of line function when the target is an MMIO or IOMMU region. | |
3832 | */ | |
3833 | void | |
3834 | address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr, | |
3835 | void *buf, int len) | |
3836 | { | |
3837 | hwaddr addr1, l; | |
3838 | MemoryRegion *mr; | |
3839 | ||
3840 | l = len; | |
bc6b1cec PM |
3841 | mr = address_space_translate_cached(cache, addr, &addr1, &l, false, |
3842 | MEMTXATTRS_UNSPECIFIED); | |
48564041 PB |
3843 | flatview_read_continue(cache->fv, |
3844 | addr, MEMTXATTRS_UNSPECIFIED, buf, len, | |
3845 | addr1, l, mr); | |
3846 | } | |
3847 | ||
3848 | /* Called from RCU critical section. address_space_write_cached uses this | |
3849 | * out of line function when the target is an MMIO or IOMMU region. | |
3850 | */ | |
3851 | void | |
3852 | address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr, | |
3853 | const void *buf, int len) | |
3854 | { | |
3855 | hwaddr addr1, l; | |
3856 | MemoryRegion *mr; | |
3857 | ||
3858 | l = len; | |
bc6b1cec PM |
3859 | mr = address_space_translate_cached(cache, addr, &addr1, &l, true, |
3860 | MEMTXATTRS_UNSPECIFIED); | |
48564041 PB |
3861 | flatview_write_continue(cache->fv, |
3862 | addr, MEMTXATTRS_UNSPECIFIED, buf, len, | |
3863 | addr1, l, mr); | |
1f4e496e PB |
3864 | } |
3865 | ||
3866 | #define ARG1_DECL MemoryRegionCache *cache | |
3867 | #define ARG1 cache | |
48564041 PB |
3868 | #define SUFFIX _cached_slow |
3869 | #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__) | |
48564041 PB |
3870 | #define RCU_READ_LOCK() ((void)0) |
3871 | #define RCU_READ_UNLOCK() ((void)0) | |
1f4e496e PB |
3872 | #include "memory_ldst.inc.c" |
3873 | ||
5e2972fd | 3874 | /* virtual memory access for debug (includes writing to ROM) */ |
f17ec444 | 3875 | int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, |
b448f2f3 | 3876 | uint8_t *buf, int len, int is_write) |
13eb76e0 FB |
3877 | { |
3878 | int l; | |
a8170e5e | 3879 | hwaddr phys_addr; |
9b3c35e0 | 3880 | target_ulong page; |
13eb76e0 | 3881 | |
79ca7a1b | 3882 | cpu_synchronize_state(cpu); |
13eb76e0 | 3883 | while (len > 0) { |
5232e4c7 PM |
3884 | int asidx; |
3885 | MemTxAttrs attrs; | |
3886 | ||
13eb76e0 | 3887 | page = addr & TARGET_PAGE_MASK; |
5232e4c7 PM |
3888 | phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs); |
3889 | asidx = cpu_asidx_from_attrs(cpu, attrs); | |
13eb76e0 FB |
3890 | /* if no physical page mapped, return an error */ |
3891 | if (phys_addr == -1) | |
3892 | return -1; | |
3893 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3894 | if (l > len) | |
3895 | l = len; | |
5e2972fd | 3896 | phys_addr += (addr & ~TARGET_PAGE_MASK); |
2e38847b | 3897 | if (is_write) { |
5232e4c7 PM |
3898 | cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as, |
3899 | phys_addr, buf, l); | |
2e38847b | 3900 | } else { |
5232e4c7 PM |
3901 | address_space_rw(cpu->cpu_ases[asidx].as, phys_addr, |
3902 | MEMTXATTRS_UNSPECIFIED, | |
5c9eb028 | 3903 | buf, l, 0); |
2e38847b | 3904 | } |
13eb76e0 FB |
3905 | len -= l; |
3906 | buf += l; | |
3907 | addr += l; | |
3908 | } | |
3909 | return 0; | |
3910 | } | |
038629a6 DDAG |
3911 | |
3912 | /* | |
3913 | * Allows code that needs to deal with migration bitmaps etc to still be built | |
3914 | * target independent. | |
3915 | */ | |
20afaed9 | 3916 | size_t qemu_target_page_size(void) |
038629a6 | 3917 | { |
20afaed9 | 3918 | return TARGET_PAGE_SIZE; |
038629a6 DDAG |
3919 | } |
3920 | ||
46d702b1 JQ |
3921 | int qemu_target_page_bits(void) |
3922 | { | |
3923 | return TARGET_PAGE_BITS; | |
3924 | } | |
3925 | ||
3926 | int qemu_target_page_bits_min(void) | |
3927 | { | |
3928 | return TARGET_PAGE_BITS_MIN; | |
3929 | } | |
a68fe89c | 3930 | #endif |
13eb76e0 | 3931 | |
8e4a424b BS |
3932 | /* |
3933 | * A helper function for the _utterly broken_ virtio device model to find out if | |
3934 | * it's running on a big endian machine. Don't do this at home kids! | |
3935 | */ | |
98ed8ecf GK |
3936 | bool target_words_bigendian(void); |
3937 | bool target_words_bigendian(void) | |
8e4a424b BS |
3938 | { |
3939 | #if defined(TARGET_WORDS_BIGENDIAN) | |
3940 | return true; | |
3941 | #else | |
3942 | return false; | |
3943 | #endif | |
3944 | } | |
3945 | ||
76f35538 | 3946 | #ifndef CONFIG_USER_ONLY |
a8170e5e | 3947 | bool cpu_physical_memory_is_io(hwaddr phys_addr) |
76f35538 | 3948 | { |
5c8a00ce | 3949 | MemoryRegion*mr; |
149f54b5 | 3950 | hwaddr l = 1; |
41063e1e | 3951 | bool res; |
76f35538 | 3952 | |
41063e1e | 3953 | rcu_read_lock(); |
5c8a00ce | 3954 | mr = address_space_translate(&address_space_memory, |
bc6b1cec PM |
3955 | phys_addr, &phys_addr, &l, false, |
3956 | MEMTXATTRS_UNSPECIFIED); | |
76f35538 | 3957 | |
41063e1e PB |
3958 | res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr)); |
3959 | rcu_read_unlock(); | |
3960 | return res; | |
76f35538 | 3961 | } |
bd2fa51f | 3962 | |
e3807054 | 3963 | int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) |
bd2fa51f MH |
3964 | { |
3965 | RAMBlock *block; | |
e3807054 | 3966 | int ret = 0; |
bd2fa51f | 3967 | |
0dc3f44a | 3968 | rcu_read_lock(); |
99e15582 | 3969 | RAMBLOCK_FOREACH(block) { |
e3807054 DDAG |
3970 | ret = func(block->idstr, block->host, block->offset, |
3971 | block->used_length, opaque); | |
3972 | if (ret) { | |
3973 | break; | |
3974 | } | |
bd2fa51f | 3975 | } |
0dc3f44a | 3976 | rcu_read_unlock(); |
e3807054 | 3977 | return ret; |
bd2fa51f | 3978 | } |
d3a5038c | 3979 | |
b895de50 CLG |
3980 | int qemu_ram_foreach_migratable_block(RAMBlockIterFunc func, void *opaque) |
3981 | { | |
3982 | RAMBlock *block; | |
3983 | int ret = 0; | |
3984 | ||
3985 | rcu_read_lock(); | |
3986 | RAMBLOCK_FOREACH(block) { | |
3987 | if (!qemu_ram_is_migratable(block)) { | |
3988 | continue; | |
3989 | } | |
3990 | ret = func(block->idstr, block->host, block->offset, | |
3991 | block->used_length, opaque); | |
3992 | if (ret) { | |
3993 | break; | |
3994 | } | |
3995 | } | |
3996 | rcu_read_unlock(); | |
3997 | return ret; | |
3998 | } | |
3999 | ||
d3a5038c DDAG |
4000 | /* |
4001 | * Unmap pages of memory from start to start+length such that | |
4002 | * they a) read as 0, b) Trigger whatever fault mechanism | |
4003 | * the OS provides for postcopy. | |
4004 | * The pages must be unmapped by the end of the function. | |
4005 | * Returns: 0 on success, none-0 on failure | |
4006 | * | |
4007 | */ | |
4008 | int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length) | |
4009 | { | |
4010 | int ret = -1; | |
4011 | ||
4012 | uint8_t *host_startaddr = rb->host + start; | |
4013 | ||
4014 | if ((uintptr_t)host_startaddr & (rb->page_size - 1)) { | |
4015 | error_report("ram_block_discard_range: Unaligned start address: %p", | |
4016 | host_startaddr); | |
4017 | goto err; | |
4018 | } | |
4019 | ||
4020 | if ((start + length) <= rb->used_length) { | |
db144f70 | 4021 | bool need_madvise, need_fallocate; |
d3a5038c DDAG |
4022 | uint8_t *host_endaddr = host_startaddr + length; |
4023 | if ((uintptr_t)host_endaddr & (rb->page_size - 1)) { | |
4024 | error_report("ram_block_discard_range: Unaligned end address: %p", | |
4025 | host_endaddr); | |
4026 | goto err; | |
4027 | } | |
4028 | ||
4029 | errno = ENOTSUP; /* If we are missing MADVISE etc */ | |
4030 | ||
db144f70 DDAG |
4031 | /* The logic here is messy; |
4032 | * madvise DONTNEED fails for hugepages | |
4033 | * fallocate works on hugepages and shmem | |
4034 | */ | |
4035 | need_madvise = (rb->page_size == qemu_host_page_size); | |
4036 | need_fallocate = rb->fd != -1; | |
4037 | if (need_fallocate) { | |
4038 | /* For a file, this causes the area of the file to be zero'd | |
4039 | * if read, and for hugetlbfs also causes it to be unmapped | |
4040 | * so a userfault will trigger. | |
e2fa71f5 DDAG |
4041 | */ |
4042 | #ifdef CONFIG_FALLOCATE_PUNCH_HOLE | |
4043 | ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, | |
4044 | start, length); | |
db144f70 DDAG |
4045 | if (ret) { |
4046 | ret = -errno; | |
4047 | error_report("ram_block_discard_range: Failed to fallocate " | |
4048 | "%s:%" PRIx64 " +%zx (%d)", | |
4049 | rb->idstr, start, length, ret); | |
4050 | goto err; | |
4051 | } | |
4052 | #else | |
4053 | ret = -ENOSYS; | |
4054 | error_report("ram_block_discard_range: fallocate not available/file" | |
4055 | "%s:%" PRIx64 " +%zx (%d)", | |
4056 | rb->idstr, start, length, ret); | |
4057 | goto err; | |
e2fa71f5 DDAG |
4058 | #endif |
4059 | } | |
db144f70 DDAG |
4060 | if (need_madvise) { |
4061 | /* For normal RAM this causes it to be unmapped, | |
4062 | * for shared memory it causes the local mapping to disappear | |
4063 | * and to fall back on the file contents (which we just | |
4064 | * fallocate'd away). | |
4065 | */ | |
4066 | #if defined(CONFIG_MADVISE) | |
4067 | ret = madvise(host_startaddr, length, MADV_DONTNEED); | |
4068 | if (ret) { | |
4069 | ret = -errno; | |
4070 | error_report("ram_block_discard_range: Failed to discard range " | |
4071 | "%s:%" PRIx64 " +%zx (%d)", | |
4072 | rb->idstr, start, length, ret); | |
4073 | goto err; | |
4074 | } | |
4075 | #else | |
4076 | ret = -ENOSYS; | |
4077 | error_report("ram_block_discard_range: MADVISE not available" | |
d3a5038c DDAG |
4078 | "%s:%" PRIx64 " +%zx (%d)", |
4079 | rb->idstr, start, length, ret); | |
db144f70 DDAG |
4080 | goto err; |
4081 | #endif | |
d3a5038c | 4082 | } |
db144f70 DDAG |
4083 | trace_ram_block_discard_range(rb->idstr, host_startaddr, length, |
4084 | need_madvise, need_fallocate, ret); | |
d3a5038c DDAG |
4085 | } else { |
4086 | error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64 | |
4087 | "/%zx/" RAM_ADDR_FMT")", | |
4088 | rb->idstr, start, length, rb->used_length); | |
4089 | } | |
4090 | ||
4091 | err: | |
4092 | return ret; | |
4093 | } | |
4094 | ||
ec3f8c99 | 4095 | #endif |
a0be0c58 YZ |
4096 | |
4097 | void page_size_init(void) | |
4098 | { | |
4099 | /* NOTE: we can always suppose that qemu_host_page_size >= | |
4100 | TARGET_PAGE_SIZE */ | |
a0be0c58 YZ |
4101 | if (qemu_host_page_size == 0) { |
4102 | qemu_host_page_size = qemu_real_host_page_size; | |
4103 | } | |
4104 | if (qemu_host_page_size < TARGET_PAGE_SIZE) { | |
4105 | qemu_host_page_size = TARGET_PAGE_SIZE; | |
4106 | } | |
4107 | qemu_host_page_mask = -(intptr_t)qemu_host_page_size; | |
4108 | } | |
5e8fd947 AK |
4109 | |
4110 | #if !defined(CONFIG_USER_ONLY) | |
4111 | ||
4112 | static void mtree_print_phys_entries(fprintf_function mon, void *f, | |
4113 | int start, int end, int skip, int ptr) | |
4114 | { | |
4115 | if (start == end - 1) { | |
4116 | mon(f, "\t%3d ", start); | |
4117 | } else { | |
4118 | mon(f, "\t%3d..%-3d ", start, end - 1); | |
4119 | } | |
4120 | mon(f, " skip=%d ", skip); | |
4121 | if (ptr == PHYS_MAP_NODE_NIL) { | |
4122 | mon(f, " ptr=NIL"); | |
4123 | } else if (!skip) { | |
4124 | mon(f, " ptr=#%d", ptr); | |
4125 | } else { | |
4126 | mon(f, " ptr=[%d]", ptr); | |
4127 | } | |
4128 | mon(f, "\n"); | |
4129 | } | |
4130 | ||
4131 | #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \ | |
4132 | int128_sub((size), int128_one())) : 0) | |
4133 | ||
4134 | void mtree_print_dispatch(fprintf_function mon, void *f, | |
4135 | AddressSpaceDispatch *d, MemoryRegion *root) | |
4136 | { | |
4137 | int i; | |
4138 | ||
4139 | mon(f, " Dispatch\n"); | |
4140 | mon(f, " Physical sections\n"); | |
4141 | ||
4142 | for (i = 0; i < d->map.sections_nb; ++i) { | |
4143 | MemoryRegionSection *s = d->map.sections + i; | |
4144 | const char *names[] = { " [unassigned]", " [not dirty]", | |
4145 | " [ROM]", " [watch]" }; | |
4146 | ||
4147 | mon(f, " #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s", | |
4148 | i, | |
4149 | s->offset_within_address_space, | |
4150 | s->offset_within_address_space + MR_SIZE(s->mr->size), | |
4151 | s->mr->name ? s->mr->name : "(noname)", | |
4152 | i < ARRAY_SIZE(names) ? names[i] : "", | |
4153 | s->mr == root ? " [ROOT]" : "", | |
4154 | s == d->mru_section ? " [MRU]" : "", | |
4155 | s->mr->is_iommu ? " [iommu]" : ""); | |
4156 | ||
4157 | if (s->mr->alias) { | |
4158 | mon(f, " alias=%s", s->mr->alias->name ? | |
4159 | s->mr->alias->name : "noname"); | |
4160 | } | |
4161 | mon(f, "\n"); | |
4162 | } | |
4163 | ||
4164 | mon(f, " Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n", | |
4165 | P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip); | |
4166 | for (i = 0; i < d->map.nodes_nb; ++i) { | |
4167 | int j, jprev; | |
4168 | PhysPageEntry prev; | |
4169 | Node *n = d->map.nodes + i; | |
4170 | ||
4171 | mon(f, " [%d]\n", i); | |
4172 | ||
4173 | for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) { | |
4174 | PhysPageEntry *pe = *n + j; | |
4175 | ||
4176 | if (pe->ptr == prev.ptr && pe->skip == prev.skip) { | |
4177 | continue; | |
4178 | } | |
4179 | ||
4180 | mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr); | |
4181 | ||
4182 | jprev = j; | |
4183 | prev = *pe; | |
4184 | } | |
4185 | ||
4186 | if (jprev != ARRAY_SIZE(*n)) { | |
4187 | mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr); | |
4188 | } | |
4189 | } | |
4190 | } | |
4191 | ||
4192 | #endif |