]>
Commit | Line | Data |
---|---|---|
54936004 | 1 | /* |
5b6dd868 | 2 | * Virtual page mapping |
5fafdf24 | 3 | * |
54936004 FB |
4 | * Copyright (c) 2003 Fabrice Bellard |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
8167ee88 | 17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
54936004 | 18 | */ |
7b31bbc2 | 19 | #include "qemu/osdep.h" |
da34e65c | 20 | #include "qapi/error.h" |
777872e5 | 21 | #ifndef _WIN32 |
d5a8f07c FB |
22 | #include <sys/mman.h> |
23 | #endif | |
54936004 | 24 | |
f348b6d1 | 25 | #include "qemu/cutils.h" |
6180a181 | 26 | #include "cpu.h" |
63c91552 | 27 | #include "exec/exec-all.h" |
b67d9a52 | 28 | #include "tcg.h" |
741da0d3 | 29 | #include "hw/qdev-core.h" |
4485bd26 | 30 | #if !defined(CONFIG_USER_ONLY) |
47c8ca53 | 31 | #include "hw/boards.h" |
33c11879 | 32 | #include "hw/xen/xen.h" |
4485bd26 | 33 | #endif |
9c17d615 | 34 | #include "sysemu/kvm.h" |
2ff3de68 | 35 | #include "sysemu/sysemu.h" |
1de7afc9 PB |
36 | #include "qemu/timer.h" |
37 | #include "qemu/config-file.h" | |
75a34036 | 38 | #include "qemu/error-report.h" |
53a5960a PB |
39 | #if defined(CONFIG_USER_ONLY) |
40 | #include <qemu.h> | |
432d268c | 41 | #else /* !CONFIG_USER_ONLY */ |
741da0d3 PB |
42 | #include "hw/hw.h" |
43 | #include "exec/memory.h" | |
df43d49c | 44 | #include "exec/ioport.h" |
741da0d3 PB |
45 | #include "sysemu/dma.h" |
46 | #include "exec/address-spaces.h" | |
9c17d615 | 47 | #include "sysemu/xen-mapcache.h" |
6506e4f9 | 48 | #include "trace.h" |
53a5960a | 49 | #endif |
0d6d3c87 | 50 | #include "exec/cpu-all.h" |
0dc3f44a | 51 | #include "qemu/rcu_queue.h" |
4840f10e | 52 | #include "qemu/main-loop.h" |
5b6dd868 | 53 | #include "translate-all.h" |
7615936e | 54 | #include "sysemu/replay.h" |
0cac1b66 | 55 | |
022c62cb | 56 | #include "exec/memory-internal.h" |
220c3ebd | 57 | #include "exec/ram_addr.h" |
508127e2 | 58 | #include "exec/log.h" |
67d95c15 | 59 | |
b35ba30f | 60 | #include "qemu/range.h" |
794e8f30 MT |
61 | #ifndef _WIN32 |
62 | #include "qemu/mmap-alloc.h" | |
63 | #endif | |
b35ba30f | 64 | |
db7b5426 | 65 | //#define DEBUG_SUBPAGE |
1196be37 | 66 | |
e2eef170 | 67 | #if !defined(CONFIG_USER_ONLY) |
0dc3f44a MD |
68 | /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes |
69 | * are protected by the ramlist lock. | |
70 | */ | |
0d53d9fe | 71 | RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; |
62152b8a AK |
72 | |
73 | static MemoryRegion *system_memory; | |
309cb471 | 74 | static MemoryRegion *system_io; |
62152b8a | 75 | |
f6790af6 AK |
76 | AddressSpace address_space_io; |
77 | AddressSpace address_space_memory; | |
2673a5da | 78 | |
0844e007 | 79 | MemoryRegion io_mem_rom, io_mem_notdirty; |
acc9d80b | 80 | static MemoryRegion io_mem_unassigned; |
0e0df1e2 | 81 | |
7bd4f430 PB |
82 | /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ |
83 | #define RAM_PREALLOC (1 << 0) | |
84 | ||
dbcb8981 PB |
85 | /* RAM is mmap-ed with MAP_SHARED */ |
86 | #define RAM_SHARED (1 << 1) | |
87 | ||
62be4e3a MT |
88 | /* Only a portion of RAM (used_length) is actually used, and migrated. |
89 | * This used_length size can change across reboots. | |
90 | */ | |
91 | #define RAM_RESIZEABLE (1 << 2) | |
92 | ||
e2eef170 | 93 | #endif |
9fa3e853 | 94 | |
bdc44640 | 95 | struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus); |
6a00d601 FB |
96 | /* current CPU in the current thread. It is only valid inside |
97 | cpu_exec() */ | |
f240eb6f | 98 | __thread CPUState *current_cpu; |
2e70f6ef | 99 | /* 0 = Do not count executed instructions. |
bf20dc07 | 100 | 1 = Precise instruction counting. |
2e70f6ef | 101 | 2 = Adaptive rate instruction counting. */ |
5708fc66 | 102 | int use_icount; |
6a00d601 | 103 | |
e2eef170 | 104 | #if !defined(CONFIG_USER_ONLY) |
4346ae3e | 105 | |
1db8abb1 PB |
106 | typedef struct PhysPageEntry PhysPageEntry; |
107 | ||
108 | struct PhysPageEntry { | |
9736e55b | 109 | /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ |
8b795765 | 110 | uint32_t skip : 6; |
9736e55b | 111 | /* index into phys_sections (!skip) or phys_map_nodes (skip) */ |
8b795765 | 112 | uint32_t ptr : 26; |
1db8abb1 PB |
113 | }; |
114 | ||
8b795765 MT |
115 | #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) |
116 | ||
03f49957 | 117 | /* Size of the L2 (and L3, etc) page tables. */ |
57271d63 | 118 | #define ADDR_SPACE_BITS 64 |
03f49957 | 119 | |
026736ce | 120 | #define P_L2_BITS 9 |
03f49957 PB |
121 | #define P_L2_SIZE (1 << P_L2_BITS) |
122 | ||
123 | #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) | |
124 | ||
125 | typedef PhysPageEntry Node[P_L2_SIZE]; | |
0475d94f | 126 | |
53cb28cb | 127 | typedef struct PhysPageMap { |
79e2b9ae PB |
128 | struct rcu_head rcu; |
129 | ||
53cb28cb MA |
130 | unsigned sections_nb; |
131 | unsigned sections_nb_alloc; | |
132 | unsigned nodes_nb; | |
133 | unsigned nodes_nb_alloc; | |
134 | Node *nodes; | |
135 | MemoryRegionSection *sections; | |
136 | } PhysPageMap; | |
137 | ||
1db8abb1 | 138 | struct AddressSpaceDispatch { |
79e2b9ae PB |
139 | struct rcu_head rcu; |
140 | ||
729633c2 | 141 | MemoryRegionSection *mru_section; |
1db8abb1 PB |
142 | /* This is a multi-level map on the physical address space. |
143 | * The bottom level has pointers to MemoryRegionSections. | |
144 | */ | |
145 | PhysPageEntry phys_map; | |
53cb28cb | 146 | PhysPageMap map; |
acc9d80b | 147 | AddressSpace *as; |
1db8abb1 PB |
148 | }; |
149 | ||
90260c6c JK |
150 | #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) |
151 | typedef struct subpage_t { | |
152 | MemoryRegion iomem; | |
acc9d80b | 153 | AddressSpace *as; |
90260c6c JK |
154 | hwaddr base; |
155 | uint16_t sub_section[TARGET_PAGE_SIZE]; | |
156 | } subpage_t; | |
157 | ||
b41aac4f LPF |
158 | #define PHYS_SECTION_UNASSIGNED 0 |
159 | #define PHYS_SECTION_NOTDIRTY 1 | |
160 | #define PHYS_SECTION_ROM 2 | |
161 | #define PHYS_SECTION_WATCH 3 | |
5312bd8b | 162 | |
e2eef170 | 163 | static void io_mem_init(void); |
62152b8a | 164 | static void memory_map_init(void); |
09daed84 | 165 | static void tcg_commit(MemoryListener *listener); |
e2eef170 | 166 | |
1ec9b909 | 167 | static MemoryRegion io_mem_watch; |
32857f4d PM |
168 | |
169 | /** | |
170 | * CPUAddressSpace: all the information a CPU needs about an AddressSpace | |
171 | * @cpu: the CPU whose AddressSpace this is | |
172 | * @as: the AddressSpace itself | |
173 | * @memory_dispatch: its dispatch pointer (cached, RCU protected) | |
174 | * @tcg_as_listener: listener for tracking changes to the AddressSpace | |
175 | */ | |
176 | struct CPUAddressSpace { | |
177 | CPUState *cpu; | |
178 | AddressSpace *as; | |
179 | struct AddressSpaceDispatch *memory_dispatch; | |
180 | MemoryListener tcg_as_listener; | |
181 | }; | |
182 | ||
6658ffb8 | 183 | #endif |
fd6ce8f6 | 184 | |
6d9a1304 | 185 | #if !defined(CONFIG_USER_ONLY) |
d6f2ea22 | 186 | |
53cb28cb | 187 | static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) |
d6f2ea22 | 188 | { |
53cb28cb MA |
189 | if (map->nodes_nb + nodes > map->nodes_nb_alloc) { |
190 | map->nodes_nb_alloc = MAX(map->nodes_nb_alloc * 2, 16); | |
191 | map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes); | |
192 | map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); | |
d6f2ea22 | 193 | } |
f7bf5461 AK |
194 | } |
195 | ||
db94604b | 196 | static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf) |
f7bf5461 AK |
197 | { |
198 | unsigned i; | |
8b795765 | 199 | uint32_t ret; |
db94604b PB |
200 | PhysPageEntry e; |
201 | PhysPageEntry *p; | |
f7bf5461 | 202 | |
53cb28cb | 203 | ret = map->nodes_nb++; |
db94604b | 204 | p = map->nodes[ret]; |
f7bf5461 | 205 | assert(ret != PHYS_MAP_NODE_NIL); |
53cb28cb | 206 | assert(ret != map->nodes_nb_alloc); |
db94604b PB |
207 | |
208 | e.skip = leaf ? 0 : 1; | |
209 | e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL; | |
03f49957 | 210 | for (i = 0; i < P_L2_SIZE; ++i) { |
db94604b | 211 | memcpy(&p[i], &e, sizeof(e)); |
d6f2ea22 | 212 | } |
f7bf5461 | 213 | return ret; |
d6f2ea22 AK |
214 | } |
215 | ||
53cb28cb MA |
216 | static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, |
217 | hwaddr *index, hwaddr *nb, uint16_t leaf, | |
2999097b | 218 | int level) |
f7bf5461 AK |
219 | { |
220 | PhysPageEntry *p; | |
03f49957 | 221 | hwaddr step = (hwaddr)1 << (level * P_L2_BITS); |
108c49b8 | 222 | |
9736e55b | 223 | if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { |
db94604b | 224 | lp->ptr = phys_map_node_alloc(map, level == 0); |
92e873b9 | 225 | } |
db94604b | 226 | p = map->nodes[lp->ptr]; |
03f49957 | 227 | lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; |
f7bf5461 | 228 | |
03f49957 | 229 | while (*nb && lp < &p[P_L2_SIZE]) { |
07f07b31 | 230 | if ((*index & (step - 1)) == 0 && *nb >= step) { |
9736e55b | 231 | lp->skip = 0; |
c19e8800 | 232 | lp->ptr = leaf; |
07f07b31 AK |
233 | *index += step; |
234 | *nb -= step; | |
2999097b | 235 | } else { |
53cb28cb | 236 | phys_page_set_level(map, lp, index, nb, leaf, level - 1); |
2999097b AK |
237 | } |
238 | ++lp; | |
f7bf5461 AK |
239 | } |
240 | } | |
241 | ||
ac1970fb | 242 | static void phys_page_set(AddressSpaceDispatch *d, |
a8170e5e | 243 | hwaddr index, hwaddr nb, |
2999097b | 244 | uint16_t leaf) |
f7bf5461 | 245 | { |
2999097b | 246 | /* Wildly overreserve - it doesn't matter much. */ |
53cb28cb | 247 | phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); |
5cd2c5b6 | 248 | |
53cb28cb | 249 | phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); |
92e873b9 FB |
250 | } |
251 | ||
b35ba30f MT |
252 | /* Compact a non leaf page entry. Simply detect that the entry has a single child, |
253 | * and update our entry so we can skip it and go directly to the destination. | |
254 | */ | |
255 | static void phys_page_compact(PhysPageEntry *lp, Node *nodes, unsigned long *compacted) | |
256 | { | |
257 | unsigned valid_ptr = P_L2_SIZE; | |
258 | int valid = 0; | |
259 | PhysPageEntry *p; | |
260 | int i; | |
261 | ||
262 | if (lp->ptr == PHYS_MAP_NODE_NIL) { | |
263 | return; | |
264 | } | |
265 | ||
266 | p = nodes[lp->ptr]; | |
267 | for (i = 0; i < P_L2_SIZE; i++) { | |
268 | if (p[i].ptr == PHYS_MAP_NODE_NIL) { | |
269 | continue; | |
270 | } | |
271 | ||
272 | valid_ptr = i; | |
273 | valid++; | |
274 | if (p[i].skip) { | |
275 | phys_page_compact(&p[i], nodes, compacted); | |
276 | } | |
277 | } | |
278 | ||
279 | /* We can only compress if there's only one child. */ | |
280 | if (valid != 1) { | |
281 | return; | |
282 | } | |
283 | ||
284 | assert(valid_ptr < P_L2_SIZE); | |
285 | ||
286 | /* Don't compress if it won't fit in the # of bits we have. */ | |
287 | if (lp->skip + p[valid_ptr].skip >= (1 << 3)) { | |
288 | return; | |
289 | } | |
290 | ||
291 | lp->ptr = p[valid_ptr].ptr; | |
292 | if (!p[valid_ptr].skip) { | |
293 | /* If our only child is a leaf, make this a leaf. */ | |
294 | /* By design, we should have made this node a leaf to begin with so we | |
295 | * should never reach here. | |
296 | * But since it's so simple to handle this, let's do it just in case we | |
297 | * change this rule. | |
298 | */ | |
299 | lp->skip = 0; | |
300 | } else { | |
301 | lp->skip += p[valid_ptr].skip; | |
302 | } | |
303 | } | |
304 | ||
305 | static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb) | |
306 | { | |
307 | DECLARE_BITMAP(compacted, nodes_nb); | |
308 | ||
309 | if (d->phys_map.skip) { | |
53cb28cb | 310 | phys_page_compact(&d->phys_map, d->map.nodes, compacted); |
b35ba30f MT |
311 | } |
312 | } | |
313 | ||
29cb533d FZ |
314 | static inline bool section_covers_addr(const MemoryRegionSection *section, |
315 | hwaddr addr) | |
316 | { | |
317 | /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means | |
318 | * the section must cover the entire address space. | |
319 | */ | |
320 | return section->size.hi || | |
321 | range_covers_byte(section->offset_within_address_space, | |
322 | section->size.lo, addr); | |
323 | } | |
324 | ||
97115a8d | 325 | static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr, |
9affd6fc | 326 | Node *nodes, MemoryRegionSection *sections) |
92e873b9 | 327 | { |
31ab2b4a | 328 | PhysPageEntry *p; |
97115a8d | 329 | hwaddr index = addr >> TARGET_PAGE_BITS; |
31ab2b4a | 330 | int i; |
f1f6e3b8 | 331 | |
9736e55b | 332 | for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { |
c19e8800 | 333 | if (lp.ptr == PHYS_MAP_NODE_NIL) { |
9affd6fc | 334 | return §ions[PHYS_SECTION_UNASSIGNED]; |
31ab2b4a | 335 | } |
9affd6fc | 336 | p = nodes[lp.ptr]; |
03f49957 | 337 | lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; |
5312bd8b | 338 | } |
b35ba30f | 339 | |
29cb533d | 340 | if (section_covers_addr(§ions[lp.ptr], addr)) { |
b35ba30f MT |
341 | return §ions[lp.ptr]; |
342 | } else { | |
343 | return §ions[PHYS_SECTION_UNASSIGNED]; | |
344 | } | |
f3705d53 AK |
345 | } |
346 | ||
e5548617 BS |
347 | bool memory_region_is_unassigned(MemoryRegion *mr) |
348 | { | |
2a8e7499 | 349 | return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device |
5b6dd868 | 350 | && mr != &io_mem_watch; |
fd6ce8f6 | 351 | } |
149f54b5 | 352 | |
79e2b9ae | 353 | /* Called from RCU critical section */ |
c7086b4a | 354 | static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, |
90260c6c JK |
355 | hwaddr addr, |
356 | bool resolve_subpage) | |
9f029603 | 357 | { |
729633c2 | 358 | MemoryRegionSection *section = atomic_read(&d->mru_section); |
90260c6c | 359 | subpage_t *subpage; |
729633c2 | 360 | bool update; |
90260c6c | 361 | |
729633c2 FZ |
362 | if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] && |
363 | section_covers_addr(section, addr)) { | |
364 | update = false; | |
365 | } else { | |
366 | section = phys_page_find(d->phys_map, addr, d->map.nodes, | |
367 | d->map.sections); | |
368 | update = true; | |
369 | } | |
90260c6c JK |
370 | if (resolve_subpage && section->mr->subpage) { |
371 | subpage = container_of(section->mr, subpage_t, iomem); | |
53cb28cb | 372 | section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; |
90260c6c | 373 | } |
729633c2 FZ |
374 | if (update) { |
375 | atomic_set(&d->mru_section, section); | |
376 | } | |
90260c6c | 377 | return section; |
9f029603 JK |
378 | } |
379 | ||
79e2b9ae | 380 | /* Called from RCU critical section */ |
90260c6c | 381 | static MemoryRegionSection * |
c7086b4a | 382 | address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, |
90260c6c | 383 | hwaddr *plen, bool resolve_subpage) |
149f54b5 PB |
384 | { |
385 | MemoryRegionSection *section; | |
965eb2fc | 386 | MemoryRegion *mr; |
a87f3954 | 387 | Int128 diff; |
149f54b5 | 388 | |
c7086b4a | 389 | section = address_space_lookup_region(d, addr, resolve_subpage); |
149f54b5 PB |
390 | /* Compute offset within MemoryRegionSection */ |
391 | addr -= section->offset_within_address_space; | |
392 | ||
393 | /* Compute offset within MemoryRegion */ | |
394 | *xlat = addr + section->offset_within_region; | |
395 | ||
965eb2fc | 396 | mr = section->mr; |
b242e0e0 PB |
397 | |
398 | /* MMIO registers can be expected to perform full-width accesses based only | |
399 | * on their address, without considering adjacent registers that could | |
400 | * decode to completely different MemoryRegions. When such registers | |
401 | * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO | |
402 | * regions overlap wildly. For this reason we cannot clamp the accesses | |
403 | * here. | |
404 | * | |
405 | * If the length is small (as is the case for address_space_ldl/stl), | |
406 | * everything works fine. If the incoming length is large, however, | |
407 | * the caller really has to do the clamping through memory_access_size. | |
408 | */ | |
965eb2fc | 409 | if (memory_region_is_ram(mr)) { |
e4a511f8 | 410 | diff = int128_sub(section->size, int128_make64(addr)); |
965eb2fc PB |
411 | *plen = int128_get64(int128_min(diff, int128_make64(*plen))); |
412 | } | |
149f54b5 PB |
413 | return section; |
414 | } | |
90260c6c | 415 | |
41063e1e | 416 | /* Called from RCU critical section */ |
5c8a00ce PB |
417 | MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr, |
418 | hwaddr *xlat, hwaddr *plen, | |
419 | bool is_write) | |
90260c6c | 420 | { |
30951157 AK |
421 | IOMMUTLBEntry iotlb; |
422 | MemoryRegionSection *section; | |
423 | MemoryRegion *mr; | |
30951157 AK |
424 | |
425 | for (;;) { | |
79e2b9ae PB |
426 | AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch); |
427 | section = address_space_translate_internal(d, addr, &addr, plen, true); | |
30951157 AK |
428 | mr = section->mr; |
429 | ||
430 | if (!mr->iommu_ops) { | |
431 | break; | |
432 | } | |
433 | ||
8d7b8cb9 | 434 | iotlb = mr->iommu_ops->translate(mr, addr, is_write); |
30951157 AK |
435 | addr = ((iotlb.translated_addr & ~iotlb.addr_mask) |
436 | | (addr & iotlb.addr_mask)); | |
23820dbf | 437 | *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1); |
30951157 AK |
438 | if (!(iotlb.perm & (1 << is_write))) { |
439 | mr = &io_mem_unassigned; | |
440 | break; | |
441 | } | |
442 | ||
443 | as = iotlb.target_as; | |
444 | } | |
445 | ||
fe680d0d | 446 | if (xen_enabled() && memory_access_is_direct(mr, is_write)) { |
a87f3954 | 447 | hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; |
23820dbf | 448 | *plen = MIN(page, *plen); |
a87f3954 PB |
449 | } |
450 | ||
30951157 AK |
451 | *xlat = addr; |
452 | return mr; | |
90260c6c JK |
453 | } |
454 | ||
79e2b9ae | 455 | /* Called from RCU critical section */ |
90260c6c | 456 | MemoryRegionSection * |
d7898cda | 457 | address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr, |
9d82b5a7 | 458 | hwaddr *xlat, hwaddr *plen) |
90260c6c | 459 | { |
30951157 | 460 | MemoryRegionSection *section; |
d7898cda PM |
461 | AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch; |
462 | ||
463 | section = address_space_translate_internal(d, addr, xlat, plen, false); | |
30951157 AK |
464 | |
465 | assert(!section->mr->iommu_ops); | |
466 | return section; | |
90260c6c | 467 | } |
5b6dd868 | 468 | #endif |
fd6ce8f6 | 469 | |
b170fce3 | 470 | #if !defined(CONFIG_USER_ONLY) |
5b6dd868 BS |
471 | |
472 | static int cpu_common_post_load(void *opaque, int version_id) | |
fd6ce8f6 | 473 | { |
259186a7 | 474 | CPUState *cpu = opaque; |
a513fe19 | 475 | |
5b6dd868 BS |
476 | /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the |
477 | version_id is increased. */ | |
259186a7 | 478 | cpu->interrupt_request &= ~0x01; |
c01a71c1 | 479 | tlb_flush(cpu, 1); |
5b6dd868 BS |
480 | |
481 | return 0; | |
a513fe19 | 482 | } |
7501267e | 483 | |
6c3bff0e PD |
484 | static int cpu_common_pre_load(void *opaque) |
485 | { | |
486 | CPUState *cpu = opaque; | |
487 | ||
adee6424 | 488 | cpu->exception_index = -1; |
6c3bff0e PD |
489 | |
490 | return 0; | |
491 | } | |
492 | ||
493 | static bool cpu_common_exception_index_needed(void *opaque) | |
494 | { | |
495 | CPUState *cpu = opaque; | |
496 | ||
adee6424 | 497 | return tcg_enabled() && cpu->exception_index != -1; |
6c3bff0e PD |
498 | } |
499 | ||
500 | static const VMStateDescription vmstate_cpu_common_exception_index = { | |
501 | .name = "cpu_common/exception_index", | |
502 | .version_id = 1, | |
503 | .minimum_version_id = 1, | |
5cd8cada | 504 | .needed = cpu_common_exception_index_needed, |
6c3bff0e PD |
505 | .fields = (VMStateField[]) { |
506 | VMSTATE_INT32(exception_index, CPUState), | |
507 | VMSTATE_END_OF_LIST() | |
508 | } | |
509 | }; | |
510 | ||
bac05aa9 AS |
511 | static bool cpu_common_crash_occurred_needed(void *opaque) |
512 | { | |
513 | CPUState *cpu = opaque; | |
514 | ||
515 | return cpu->crash_occurred; | |
516 | } | |
517 | ||
518 | static const VMStateDescription vmstate_cpu_common_crash_occurred = { | |
519 | .name = "cpu_common/crash_occurred", | |
520 | .version_id = 1, | |
521 | .minimum_version_id = 1, | |
522 | .needed = cpu_common_crash_occurred_needed, | |
523 | .fields = (VMStateField[]) { | |
524 | VMSTATE_BOOL(crash_occurred, CPUState), | |
525 | VMSTATE_END_OF_LIST() | |
526 | } | |
527 | }; | |
528 | ||
1a1562f5 | 529 | const VMStateDescription vmstate_cpu_common = { |
5b6dd868 BS |
530 | .name = "cpu_common", |
531 | .version_id = 1, | |
532 | .minimum_version_id = 1, | |
6c3bff0e | 533 | .pre_load = cpu_common_pre_load, |
5b6dd868 | 534 | .post_load = cpu_common_post_load, |
35d08458 | 535 | .fields = (VMStateField[]) { |
259186a7 AF |
536 | VMSTATE_UINT32(halted, CPUState), |
537 | VMSTATE_UINT32(interrupt_request, CPUState), | |
5b6dd868 | 538 | VMSTATE_END_OF_LIST() |
6c3bff0e | 539 | }, |
5cd8cada JQ |
540 | .subsections = (const VMStateDescription*[]) { |
541 | &vmstate_cpu_common_exception_index, | |
bac05aa9 | 542 | &vmstate_cpu_common_crash_occurred, |
5cd8cada | 543 | NULL |
5b6dd868 BS |
544 | } |
545 | }; | |
1a1562f5 | 546 | |
5b6dd868 | 547 | #endif |
ea041c0e | 548 | |
38d8f5c8 | 549 | CPUState *qemu_get_cpu(int index) |
ea041c0e | 550 | { |
bdc44640 | 551 | CPUState *cpu; |
ea041c0e | 552 | |
bdc44640 | 553 | CPU_FOREACH(cpu) { |
55e5c285 | 554 | if (cpu->cpu_index == index) { |
bdc44640 | 555 | return cpu; |
55e5c285 | 556 | } |
ea041c0e | 557 | } |
5b6dd868 | 558 | |
bdc44640 | 559 | return NULL; |
ea041c0e FB |
560 | } |
561 | ||
09daed84 | 562 | #if !defined(CONFIG_USER_ONLY) |
56943e8c | 563 | void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx) |
09daed84 | 564 | { |
12ebc9a7 PM |
565 | CPUAddressSpace *newas; |
566 | ||
567 | /* Target code should have set num_ases before calling us */ | |
568 | assert(asidx < cpu->num_ases); | |
569 | ||
56943e8c PM |
570 | if (asidx == 0) { |
571 | /* address space 0 gets the convenience alias */ | |
572 | cpu->as = as; | |
573 | } | |
574 | ||
12ebc9a7 PM |
575 | /* KVM cannot currently support multiple address spaces. */ |
576 | assert(asidx == 0 || !kvm_enabled()); | |
09daed84 | 577 | |
12ebc9a7 PM |
578 | if (!cpu->cpu_ases) { |
579 | cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases); | |
09daed84 | 580 | } |
32857f4d | 581 | |
12ebc9a7 PM |
582 | newas = &cpu->cpu_ases[asidx]; |
583 | newas->cpu = cpu; | |
584 | newas->as = as; | |
56943e8c | 585 | if (tcg_enabled()) { |
12ebc9a7 PM |
586 | newas->tcg_as_listener.commit = tcg_commit; |
587 | memory_listener_register(&newas->tcg_as_listener, as); | |
56943e8c | 588 | } |
09daed84 | 589 | } |
651a5bc0 PM |
590 | |
591 | AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx) | |
592 | { | |
593 | /* Return the AddressSpace corresponding to the specified index */ | |
594 | return cpu->cpu_ases[asidx].as; | |
595 | } | |
09daed84 EI |
596 | #endif |
597 | ||
b7bca733 BR |
598 | #ifndef CONFIG_USER_ONLY |
599 | static DECLARE_BITMAP(cpu_index_map, MAX_CPUMASK_BITS); | |
600 | ||
601 | static int cpu_get_free_index(Error **errp) | |
602 | { | |
603 | int cpu = find_first_zero_bit(cpu_index_map, MAX_CPUMASK_BITS); | |
604 | ||
605 | if (cpu >= MAX_CPUMASK_BITS) { | |
606 | error_setg(errp, "Trying to use more CPUs than max of %d", | |
607 | MAX_CPUMASK_BITS); | |
608 | return -1; | |
609 | } | |
610 | ||
611 | bitmap_set(cpu_index_map, cpu, 1); | |
612 | return cpu; | |
613 | } | |
614 | ||
615 | void cpu_exec_exit(CPUState *cpu) | |
616 | { | |
617 | if (cpu->cpu_index == -1) { | |
618 | /* cpu_index was never allocated by this @cpu or was already freed. */ | |
619 | return; | |
620 | } | |
621 | ||
622 | bitmap_clear(cpu_index_map, cpu->cpu_index, 1); | |
623 | cpu->cpu_index = -1; | |
624 | } | |
625 | #else | |
626 | ||
627 | static int cpu_get_free_index(Error **errp) | |
628 | { | |
629 | CPUState *some_cpu; | |
630 | int cpu_index = 0; | |
631 | ||
632 | CPU_FOREACH(some_cpu) { | |
633 | cpu_index++; | |
634 | } | |
635 | return cpu_index; | |
636 | } | |
637 | ||
638 | void cpu_exec_exit(CPUState *cpu) | |
639 | { | |
640 | } | |
641 | #endif | |
642 | ||
4bad9e39 | 643 | void cpu_exec_init(CPUState *cpu, Error **errp) |
ea041c0e | 644 | { |
b170fce3 | 645 | CPUClass *cc = CPU_GET_CLASS(cpu); |
b7bca733 | 646 | Error *local_err = NULL; |
5b6dd868 | 647 | |
56943e8c | 648 | cpu->as = NULL; |
12ebc9a7 | 649 | cpu->num_ases = 0; |
56943e8c | 650 | |
291135b5 | 651 | #ifndef CONFIG_USER_ONLY |
291135b5 | 652 | cpu->thread_id = qemu_get_thread_id(); |
6731d864 PC |
653 | |
654 | /* This is a softmmu CPU object, so create a property for it | |
655 | * so users can wire up its memory. (This can't go in qom/cpu.c | |
656 | * because that file is compiled only once for both user-mode | |
657 | * and system builds.) The default if no link is set up is to use | |
658 | * the system address space. | |
659 | */ | |
660 | object_property_add_link(OBJECT(cpu), "memory", TYPE_MEMORY_REGION, | |
661 | (Object **)&cpu->memory, | |
662 | qdev_prop_allow_set_link_before_realize, | |
663 | OBJ_PROP_LINK_UNREF_ON_RELEASE, | |
664 | &error_abort); | |
665 | cpu->memory = system_memory; | |
666 | object_ref(OBJECT(cpu->memory)); | |
291135b5 EH |
667 | #endif |
668 | ||
5b6dd868 BS |
669 | #if defined(CONFIG_USER_ONLY) |
670 | cpu_list_lock(); | |
671 | #endif | |
741da0d3 | 672 | cpu->cpu_index = cpu_get_free_index(&local_err); |
b7bca733 BR |
673 | if (local_err) { |
674 | error_propagate(errp, local_err); | |
675 | #if defined(CONFIG_USER_ONLY) | |
676 | cpu_list_unlock(); | |
677 | #endif | |
678 | return; | |
5b6dd868 | 679 | } |
bdc44640 | 680 | QTAILQ_INSERT_TAIL(&cpus, cpu, node); |
5b6dd868 | 681 | #if defined(CONFIG_USER_ONLY) |
741da0d3 | 682 | (void) cc; |
5b6dd868 | 683 | cpu_list_unlock(); |
741da0d3 | 684 | #else |
e0d47944 | 685 | if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { |
741da0d3 | 686 | vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu); |
e0d47944 | 687 | } |
b170fce3 | 688 | if (cc->vmsd != NULL) { |
741da0d3 | 689 | vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu); |
b170fce3 | 690 | } |
741da0d3 | 691 | #endif |
ea041c0e FB |
692 | } |
693 | ||
94df27fd | 694 | #if defined(CONFIG_USER_ONLY) |
00b941e5 | 695 | static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) |
94df27fd PB |
696 | { |
697 | tb_invalidate_phys_page_range(pc, pc + 1, 0); | |
698 | } | |
699 | #else | |
00b941e5 | 700 | static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) |
1e7855a5 | 701 | { |
5232e4c7 PM |
702 | MemTxAttrs attrs; |
703 | hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs); | |
704 | int asidx = cpu_asidx_from_attrs(cpu, attrs); | |
e8262a1b | 705 | if (phys != -1) { |
5232e4c7 | 706 | tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as, |
29d8ec7b | 707 | phys | (pc & ~TARGET_PAGE_MASK)); |
e8262a1b | 708 | } |
1e7855a5 | 709 | } |
c27004ec | 710 | #endif |
d720b93d | 711 | |
c527ee8f | 712 | #if defined(CONFIG_USER_ONLY) |
75a34036 | 713 | void cpu_watchpoint_remove_all(CPUState *cpu, int mask) |
c527ee8f PB |
714 | |
715 | { | |
716 | } | |
717 | ||
3ee887e8 PM |
718 | int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, |
719 | int flags) | |
720 | { | |
721 | return -ENOSYS; | |
722 | } | |
723 | ||
724 | void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) | |
725 | { | |
726 | } | |
727 | ||
75a34036 | 728 | int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, |
c527ee8f PB |
729 | int flags, CPUWatchpoint **watchpoint) |
730 | { | |
731 | return -ENOSYS; | |
732 | } | |
733 | #else | |
6658ffb8 | 734 | /* Add a watchpoint. */ |
75a34036 | 735 | int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, |
a1d1bb31 | 736 | int flags, CPUWatchpoint **watchpoint) |
6658ffb8 | 737 | { |
c0ce998e | 738 | CPUWatchpoint *wp; |
6658ffb8 | 739 | |
05068c0d | 740 | /* forbid ranges which are empty or run off the end of the address space */ |
07e2863d | 741 | if (len == 0 || (addr + len - 1) < addr) { |
75a34036 AF |
742 | error_report("tried to set invalid watchpoint at %" |
743 | VADDR_PRIx ", len=%" VADDR_PRIu, addr, len); | |
b4051334 AL |
744 | return -EINVAL; |
745 | } | |
7267c094 | 746 | wp = g_malloc(sizeof(*wp)); |
a1d1bb31 AL |
747 | |
748 | wp->vaddr = addr; | |
05068c0d | 749 | wp->len = len; |
a1d1bb31 AL |
750 | wp->flags = flags; |
751 | ||
2dc9f411 | 752 | /* keep all GDB-injected watchpoints in front */ |
ff4700b0 AF |
753 | if (flags & BP_GDB) { |
754 | QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry); | |
755 | } else { | |
756 | QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry); | |
757 | } | |
6658ffb8 | 758 | |
31b030d4 | 759 | tlb_flush_page(cpu, addr); |
a1d1bb31 AL |
760 | |
761 | if (watchpoint) | |
762 | *watchpoint = wp; | |
763 | return 0; | |
6658ffb8 PB |
764 | } |
765 | ||
a1d1bb31 | 766 | /* Remove a specific watchpoint. */ |
75a34036 | 767 | int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, |
a1d1bb31 | 768 | int flags) |
6658ffb8 | 769 | { |
a1d1bb31 | 770 | CPUWatchpoint *wp; |
6658ffb8 | 771 | |
ff4700b0 | 772 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d | 773 | if (addr == wp->vaddr && len == wp->len |
6e140f28 | 774 | && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { |
75a34036 | 775 | cpu_watchpoint_remove_by_ref(cpu, wp); |
6658ffb8 PB |
776 | return 0; |
777 | } | |
778 | } | |
a1d1bb31 | 779 | return -ENOENT; |
6658ffb8 PB |
780 | } |
781 | ||
a1d1bb31 | 782 | /* Remove a specific watchpoint by reference. */ |
75a34036 | 783 | void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) |
a1d1bb31 | 784 | { |
ff4700b0 | 785 | QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry); |
7d03f82f | 786 | |
31b030d4 | 787 | tlb_flush_page(cpu, watchpoint->vaddr); |
a1d1bb31 | 788 | |
7267c094 | 789 | g_free(watchpoint); |
a1d1bb31 AL |
790 | } |
791 | ||
792 | /* Remove all matching watchpoints. */ | |
75a34036 | 793 | void cpu_watchpoint_remove_all(CPUState *cpu, int mask) |
a1d1bb31 | 794 | { |
c0ce998e | 795 | CPUWatchpoint *wp, *next; |
a1d1bb31 | 796 | |
ff4700b0 | 797 | QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) { |
75a34036 AF |
798 | if (wp->flags & mask) { |
799 | cpu_watchpoint_remove_by_ref(cpu, wp); | |
800 | } | |
c0ce998e | 801 | } |
7d03f82f | 802 | } |
05068c0d PM |
803 | |
804 | /* Return true if this watchpoint address matches the specified | |
805 | * access (ie the address range covered by the watchpoint overlaps | |
806 | * partially or completely with the address range covered by the | |
807 | * access). | |
808 | */ | |
809 | static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp, | |
810 | vaddr addr, | |
811 | vaddr len) | |
812 | { | |
813 | /* We know the lengths are non-zero, but a little caution is | |
814 | * required to avoid errors in the case where the range ends | |
815 | * exactly at the top of the address space and so addr + len | |
816 | * wraps round to zero. | |
817 | */ | |
818 | vaddr wpend = wp->vaddr + wp->len - 1; | |
819 | vaddr addrend = addr + len - 1; | |
820 | ||
821 | return !(addr > wpend || wp->vaddr > addrend); | |
822 | } | |
823 | ||
c527ee8f | 824 | #endif |
7d03f82f | 825 | |
a1d1bb31 | 826 | /* Add a breakpoint. */ |
b3310ab3 | 827 | int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, |
a1d1bb31 | 828 | CPUBreakpoint **breakpoint) |
4c3a88a2 | 829 | { |
c0ce998e | 830 | CPUBreakpoint *bp; |
3b46e624 | 831 | |
7267c094 | 832 | bp = g_malloc(sizeof(*bp)); |
4c3a88a2 | 833 | |
a1d1bb31 AL |
834 | bp->pc = pc; |
835 | bp->flags = flags; | |
836 | ||
2dc9f411 | 837 | /* keep all GDB-injected breakpoints in front */ |
00b941e5 | 838 | if (flags & BP_GDB) { |
f0c3c505 | 839 | QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry); |
00b941e5 | 840 | } else { |
f0c3c505 | 841 | QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry); |
00b941e5 | 842 | } |
3b46e624 | 843 | |
f0c3c505 | 844 | breakpoint_invalidate(cpu, pc); |
a1d1bb31 | 845 | |
00b941e5 | 846 | if (breakpoint) { |
a1d1bb31 | 847 | *breakpoint = bp; |
00b941e5 | 848 | } |
4c3a88a2 | 849 | return 0; |
4c3a88a2 FB |
850 | } |
851 | ||
a1d1bb31 | 852 | /* Remove a specific breakpoint. */ |
b3310ab3 | 853 | int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags) |
a1d1bb31 | 854 | { |
a1d1bb31 AL |
855 | CPUBreakpoint *bp; |
856 | ||
f0c3c505 | 857 | QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { |
a1d1bb31 | 858 | if (bp->pc == pc && bp->flags == flags) { |
b3310ab3 | 859 | cpu_breakpoint_remove_by_ref(cpu, bp); |
a1d1bb31 AL |
860 | return 0; |
861 | } | |
7d03f82f | 862 | } |
a1d1bb31 | 863 | return -ENOENT; |
7d03f82f EI |
864 | } |
865 | ||
a1d1bb31 | 866 | /* Remove a specific breakpoint by reference. */ |
b3310ab3 | 867 | void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint) |
4c3a88a2 | 868 | { |
f0c3c505 AF |
869 | QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry); |
870 | ||
871 | breakpoint_invalidate(cpu, breakpoint->pc); | |
a1d1bb31 | 872 | |
7267c094 | 873 | g_free(breakpoint); |
a1d1bb31 AL |
874 | } |
875 | ||
876 | /* Remove all matching breakpoints. */ | |
b3310ab3 | 877 | void cpu_breakpoint_remove_all(CPUState *cpu, int mask) |
a1d1bb31 | 878 | { |
c0ce998e | 879 | CPUBreakpoint *bp, *next; |
a1d1bb31 | 880 | |
f0c3c505 | 881 | QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) { |
b3310ab3 AF |
882 | if (bp->flags & mask) { |
883 | cpu_breakpoint_remove_by_ref(cpu, bp); | |
884 | } | |
c0ce998e | 885 | } |
4c3a88a2 FB |
886 | } |
887 | ||
c33a346e FB |
888 | /* enable or disable single step mode. EXCP_DEBUG is returned by the |
889 | CPU loop after each instruction */ | |
3825b28f | 890 | void cpu_single_step(CPUState *cpu, int enabled) |
c33a346e | 891 | { |
ed2803da AF |
892 | if (cpu->singlestep_enabled != enabled) { |
893 | cpu->singlestep_enabled = enabled; | |
894 | if (kvm_enabled()) { | |
38e478ec | 895 | kvm_update_guest_debug(cpu, 0); |
ed2803da | 896 | } else { |
ccbb4d44 | 897 | /* must flush all the translated code to avoid inconsistencies */ |
e22a25c9 | 898 | /* XXX: only flush what is necessary */ |
bbd77c18 | 899 | tb_flush(cpu); |
e22a25c9 | 900 | } |
c33a346e | 901 | } |
c33a346e FB |
902 | } |
903 | ||
a47dddd7 | 904 | void cpu_abort(CPUState *cpu, const char *fmt, ...) |
7501267e FB |
905 | { |
906 | va_list ap; | |
493ae1f0 | 907 | va_list ap2; |
7501267e FB |
908 | |
909 | va_start(ap, fmt); | |
493ae1f0 | 910 | va_copy(ap2, ap); |
7501267e FB |
911 | fprintf(stderr, "qemu: fatal: "); |
912 | vfprintf(stderr, fmt, ap); | |
913 | fprintf(stderr, "\n"); | |
878096ee | 914 | cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP); |
013a2942 | 915 | if (qemu_log_separate()) { |
93fcfe39 AL |
916 | qemu_log("qemu: fatal: "); |
917 | qemu_log_vprintf(fmt, ap2); | |
918 | qemu_log("\n"); | |
a0762859 | 919 | log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP); |
31b1a7b4 | 920 | qemu_log_flush(); |
93fcfe39 | 921 | qemu_log_close(); |
924edcae | 922 | } |
493ae1f0 | 923 | va_end(ap2); |
f9373291 | 924 | va_end(ap); |
7615936e | 925 | replay_finish(); |
fd052bf6 RV |
926 | #if defined(CONFIG_USER_ONLY) |
927 | { | |
928 | struct sigaction act; | |
929 | sigfillset(&act.sa_mask); | |
930 | act.sa_handler = SIG_DFL; | |
931 | sigaction(SIGABRT, &act, NULL); | |
932 | } | |
933 | #endif | |
7501267e FB |
934 | abort(); |
935 | } | |
936 | ||
0124311e | 937 | #if !defined(CONFIG_USER_ONLY) |
0dc3f44a | 938 | /* Called from RCU critical section */ |
041603fe PB |
939 | static RAMBlock *qemu_get_ram_block(ram_addr_t addr) |
940 | { | |
941 | RAMBlock *block; | |
942 | ||
43771539 | 943 | block = atomic_rcu_read(&ram_list.mru_block); |
9b8424d5 | 944 | if (block && addr - block->offset < block->max_length) { |
68851b98 | 945 | return block; |
041603fe | 946 | } |
0dc3f44a | 947 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
9b8424d5 | 948 | if (addr - block->offset < block->max_length) { |
041603fe PB |
949 | goto found; |
950 | } | |
951 | } | |
952 | ||
953 | fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); | |
954 | abort(); | |
955 | ||
956 | found: | |
43771539 PB |
957 | /* It is safe to write mru_block outside the iothread lock. This |
958 | * is what happens: | |
959 | * | |
960 | * mru_block = xxx | |
961 | * rcu_read_unlock() | |
962 | * xxx removed from list | |
963 | * rcu_read_lock() | |
964 | * read mru_block | |
965 | * mru_block = NULL; | |
966 | * call_rcu(reclaim_ramblock, xxx); | |
967 | * rcu_read_unlock() | |
968 | * | |
969 | * atomic_rcu_set is not needed here. The block was already published | |
970 | * when it was placed into the list. Here we're just making an extra | |
971 | * copy of the pointer. | |
972 | */ | |
041603fe PB |
973 | ram_list.mru_block = block; |
974 | return block; | |
975 | } | |
976 | ||
a2f4d5be | 977 | static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) |
d24981d3 | 978 | { |
9a13565d | 979 | CPUState *cpu; |
041603fe | 980 | ram_addr_t start1; |
a2f4d5be JQ |
981 | RAMBlock *block; |
982 | ram_addr_t end; | |
983 | ||
984 | end = TARGET_PAGE_ALIGN(start + length); | |
985 | start &= TARGET_PAGE_MASK; | |
d24981d3 | 986 | |
0dc3f44a | 987 | rcu_read_lock(); |
041603fe PB |
988 | block = qemu_get_ram_block(start); |
989 | assert(block == qemu_get_ram_block(end - 1)); | |
1240be24 | 990 | start1 = (uintptr_t)ramblock_ptr(block, start - block->offset); |
9a13565d PC |
991 | CPU_FOREACH(cpu) { |
992 | tlb_reset_dirty(cpu, start1, length); | |
993 | } | |
0dc3f44a | 994 | rcu_read_unlock(); |
d24981d3 JQ |
995 | } |
996 | ||
5579c7f3 | 997 | /* Note: start and end must be within the same ram block. */ |
03eebc9e SH |
998 | bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, |
999 | ram_addr_t length, | |
1000 | unsigned client) | |
1ccde1cb | 1001 | { |
5b82b703 | 1002 | DirtyMemoryBlocks *blocks; |
03eebc9e | 1003 | unsigned long end, page; |
5b82b703 | 1004 | bool dirty = false; |
03eebc9e SH |
1005 | |
1006 | if (length == 0) { | |
1007 | return false; | |
1008 | } | |
f23db169 | 1009 | |
03eebc9e SH |
1010 | end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; |
1011 | page = start >> TARGET_PAGE_BITS; | |
5b82b703 SH |
1012 | |
1013 | rcu_read_lock(); | |
1014 | ||
1015 | blocks = atomic_rcu_read(&ram_list.dirty_memory[client]); | |
1016 | ||
1017 | while (page < end) { | |
1018 | unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; | |
1019 | unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; | |
1020 | unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset); | |
1021 | ||
1022 | dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx], | |
1023 | offset, num); | |
1024 | page += num; | |
1025 | } | |
1026 | ||
1027 | rcu_read_unlock(); | |
03eebc9e SH |
1028 | |
1029 | if (dirty && tcg_enabled()) { | |
a2f4d5be | 1030 | tlb_reset_dirty_range_all(start, length); |
5579c7f3 | 1031 | } |
03eebc9e SH |
1032 | |
1033 | return dirty; | |
1ccde1cb FB |
1034 | } |
1035 | ||
79e2b9ae | 1036 | /* Called from RCU critical section */ |
bb0e627a | 1037 | hwaddr memory_region_section_get_iotlb(CPUState *cpu, |
149f54b5 PB |
1038 | MemoryRegionSection *section, |
1039 | target_ulong vaddr, | |
1040 | hwaddr paddr, hwaddr xlat, | |
1041 | int prot, | |
1042 | target_ulong *address) | |
e5548617 | 1043 | { |
a8170e5e | 1044 | hwaddr iotlb; |
e5548617 BS |
1045 | CPUWatchpoint *wp; |
1046 | ||
cc5bea60 | 1047 | if (memory_region_is_ram(section->mr)) { |
e5548617 | 1048 | /* Normal RAM. */ |
e4e69794 | 1049 | iotlb = memory_region_get_ram_addr(section->mr) + xlat; |
e5548617 | 1050 | if (!section->readonly) { |
b41aac4f | 1051 | iotlb |= PHYS_SECTION_NOTDIRTY; |
e5548617 | 1052 | } else { |
b41aac4f | 1053 | iotlb |= PHYS_SECTION_ROM; |
e5548617 BS |
1054 | } |
1055 | } else { | |
0b8e2c10 PM |
1056 | AddressSpaceDispatch *d; |
1057 | ||
1058 | d = atomic_rcu_read(§ion->address_space->dispatch); | |
1059 | iotlb = section - d->map.sections; | |
149f54b5 | 1060 | iotlb += xlat; |
e5548617 BS |
1061 | } |
1062 | ||
1063 | /* Make accesses to pages with watchpoints go via the | |
1064 | watchpoint trap routines. */ | |
ff4700b0 | 1065 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d | 1066 | if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) { |
e5548617 BS |
1067 | /* Avoid trapping reads of pages with a write breakpoint. */ |
1068 | if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) { | |
b41aac4f | 1069 | iotlb = PHYS_SECTION_WATCH + paddr; |
e5548617 BS |
1070 | *address |= TLB_MMIO; |
1071 | break; | |
1072 | } | |
1073 | } | |
1074 | } | |
1075 | ||
1076 | return iotlb; | |
1077 | } | |
9fa3e853 FB |
1078 | #endif /* defined(CONFIG_USER_ONLY) */ |
1079 | ||
e2eef170 | 1080 | #if !defined(CONFIG_USER_ONLY) |
8da3ff18 | 1081 | |
c227f099 | 1082 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, |
5312bd8b | 1083 | uint16_t section); |
acc9d80b | 1084 | static subpage_t *subpage_init(AddressSpace *as, hwaddr base); |
54688b1e | 1085 | |
a2b257d6 IM |
1086 | static void *(*phys_mem_alloc)(size_t size, uint64_t *align) = |
1087 | qemu_anon_ram_alloc; | |
91138037 MA |
1088 | |
1089 | /* | |
1090 | * Set a custom physical guest memory alloator. | |
1091 | * Accelerators with unusual needs may need this. Hopefully, we can | |
1092 | * get rid of it eventually. | |
1093 | */ | |
a2b257d6 | 1094 | void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align)) |
91138037 MA |
1095 | { |
1096 | phys_mem_alloc = alloc; | |
1097 | } | |
1098 | ||
53cb28cb MA |
1099 | static uint16_t phys_section_add(PhysPageMap *map, |
1100 | MemoryRegionSection *section) | |
5312bd8b | 1101 | { |
68f3f65b PB |
1102 | /* The physical section number is ORed with a page-aligned |
1103 | * pointer to produce the iotlb entries. Thus it should | |
1104 | * never overflow into the page-aligned value. | |
1105 | */ | |
53cb28cb | 1106 | assert(map->sections_nb < TARGET_PAGE_SIZE); |
68f3f65b | 1107 | |
53cb28cb MA |
1108 | if (map->sections_nb == map->sections_nb_alloc) { |
1109 | map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); | |
1110 | map->sections = g_renew(MemoryRegionSection, map->sections, | |
1111 | map->sections_nb_alloc); | |
5312bd8b | 1112 | } |
53cb28cb | 1113 | map->sections[map->sections_nb] = *section; |
dfde4e6e | 1114 | memory_region_ref(section->mr); |
53cb28cb | 1115 | return map->sections_nb++; |
5312bd8b AK |
1116 | } |
1117 | ||
058bc4b5 PB |
1118 | static void phys_section_destroy(MemoryRegion *mr) |
1119 | { | |
55b4e80b DS |
1120 | bool have_sub_page = mr->subpage; |
1121 | ||
dfde4e6e PB |
1122 | memory_region_unref(mr); |
1123 | ||
55b4e80b | 1124 | if (have_sub_page) { |
058bc4b5 | 1125 | subpage_t *subpage = container_of(mr, subpage_t, iomem); |
b4fefef9 | 1126 | object_unref(OBJECT(&subpage->iomem)); |
058bc4b5 PB |
1127 | g_free(subpage); |
1128 | } | |
1129 | } | |
1130 | ||
6092666e | 1131 | static void phys_sections_free(PhysPageMap *map) |
5312bd8b | 1132 | { |
9affd6fc PB |
1133 | while (map->sections_nb > 0) { |
1134 | MemoryRegionSection *section = &map->sections[--map->sections_nb]; | |
058bc4b5 PB |
1135 | phys_section_destroy(section->mr); |
1136 | } | |
9affd6fc PB |
1137 | g_free(map->sections); |
1138 | g_free(map->nodes); | |
5312bd8b AK |
1139 | } |
1140 | ||
ac1970fb | 1141 | static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section) |
0f0cb164 AK |
1142 | { |
1143 | subpage_t *subpage; | |
a8170e5e | 1144 | hwaddr base = section->offset_within_address_space |
0f0cb164 | 1145 | & TARGET_PAGE_MASK; |
97115a8d | 1146 | MemoryRegionSection *existing = phys_page_find(d->phys_map, base, |
53cb28cb | 1147 | d->map.nodes, d->map.sections); |
0f0cb164 AK |
1148 | MemoryRegionSection subsection = { |
1149 | .offset_within_address_space = base, | |
052e87b0 | 1150 | .size = int128_make64(TARGET_PAGE_SIZE), |
0f0cb164 | 1151 | }; |
a8170e5e | 1152 | hwaddr start, end; |
0f0cb164 | 1153 | |
f3705d53 | 1154 | assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); |
0f0cb164 | 1155 | |
f3705d53 | 1156 | if (!(existing->mr->subpage)) { |
acc9d80b | 1157 | subpage = subpage_init(d->as, base); |
3be91e86 | 1158 | subsection.address_space = d->as; |
0f0cb164 | 1159 | subsection.mr = &subpage->iomem; |
ac1970fb | 1160 | phys_page_set(d, base >> TARGET_PAGE_BITS, 1, |
53cb28cb | 1161 | phys_section_add(&d->map, &subsection)); |
0f0cb164 | 1162 | } else { |
f3705d53 | 1163 | subpage = container_of(existing->mr, subpage_t, iomem); |
0f0cb164 AK |
1164 | } |
1165 | start = section->offset_within_address_space & ~TARGET_PAGE_MASK; | |
052e87b0 | 1166 | end = start + int128_get64(section->size) - 1; |
53cb28cb MA |
1167 | subpage_register(subpage, start, end, |
1168 | phys_section_add(&d->map, section)); | |
0f0cb164 AK |
1169 | } |
1170 | ||
1171 | ||
052e87b0 PB |
1172 | static void register_multipage(AddressSpaceDispatch *d, |
1173 | MemoryRegionSection *section) | |
33417e70 | 1174 | { |
a8170e5e | 1175 | hwaddr start_addr = section->offset_within_address_space; |
53cb28cb | 1176 | uint16_t section_index = phys_section_add(&d->map, section); |
052e87b0 PB |
1177 | uint64_t num_pages = int128_get64(int128_rshift(section->size, |
1178 | TARGET_PAGE_BITS)); | |
dd81124b | 1179 | |
733d5ef5 PB |
1180 | assert(num_pages); |
1181 | phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); | |
33417e70 FB |
1182 | } |
1183 | ||
ac1970fb | 1184 | static void mem_add(MemoryListener *listener, MemoryRegionSection *section) |
0f0cb164 | 1185 | { |
89ae337a | 1186 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); |
00752703 | 1187 | AddressSpaceDispatch *d = as->next_dispatch; |
99b9cc06 | 1188 | MemoryRegionSection now = *section, remain = *section; |
052e87b0 | 1189 | Int128 page_size = int128_make64(TARGET_PAGE_SIZE); |
0f0cb164 | 1190 | |
733d5ef5 PB |
1191 | if (now.offset_within_address_space & ~TARGET_PAGE_MASK) { |
1192 | uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space) | |
1193 | - now.offset_within_address_space; | |
1194 | ||
052e87b0 | 1195 | now.size = int128_min(int128_make64(left), now.size); |
ac1970fb | 1196 | register_subpage(d, &now); |
733d5ef5 | 1197 | } else { |
052e87b0 | 1198 | now.size = int128_zero(); |
733d5ef5 | 1199 | } |
052e87b0 PB |
1200 | while (int128_ne(remain.size, now.size)) { |
1201 | remain.size = int128_sub(remain.size, now.size); | |
1202 | remain.offset_within_address_space += int128_get64(now.size); | |
1203 | remain.offset_within_region += int128_get64(now.size); | |
69b67646 | 1204 | now = remain; |
052e87b0 | 1205 | if (int128_lt(remain.size, page_size)) { |
733d5ef5 | 1206 | register_subpage(d, &now); |
88266249 | 1207 | } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { |
052e87b0 | 1208 | now.size = page_size; |
ac1970fb | 1209 | register_subpage(d, &now); |
69b67646 | 1210 | } else { |
052e87b0 | 1211 | now.size = int128_and(now.size, int128_neg(page_size)); |
ac1970fb | 1212 | register_multipage(d, &now); |
69b67646 | 1213 | } |
0f0cb164 AK |
1214 | } |
1215 | } | |
1216 | ||
62a2744c SY |
1217 | void qemu_flush_coalesced_mmio_buffer(void) |
1218 | { | |
1219 | if (kvm_enabled()) | |
1220 | kvm_flush_coalesced_mmio_buffer(); | |
1221 | } | |
1222 | ||
b2a8658e UD |
1223 | void qemu_mutex_lock_ramlist(void) |
1224 | { | |
1225 | qemu_mutex_lock(&ram_list.mutex); | |
1226 | } | |
1227 | ||
1228 | void qemu_mutex_unlock_ramlist(void) | |
1229 | { | |
1230 | qemu_mutex_unlock(&ram_list.mutex); | |
1231 | } | |
1232 | ||
e1e84ba0 | 1233 | #ifdef __linux__ |
04b16653 AW |
1234 | static void *file_ram_alloc(RAMBlock *block, |
1235 | ram_addr_t memory, | |
7f56e740 PB |
1236 | const char *path, |
1237 | Error **errp) | |
c902760f | 1238 | { |
fd97fd44 | 1239 | bool unlink_on_error = false; |
c902760f | 1240 | char *filename; |
8ca761f6 PF |
1241 | char *sanitized_name; |
1242 | char *c; | |
794e8f30 | 1243 | void *area; |
5c3ece79 | 1244 | int fd = -1; |
e1fb6471 | 1245 | int64_t page_size; |
c902760f MT |
1246 | |
1247 | if (kvm_enabled() && !kvm_has_sync_mmu()) { | |
7f56e740 PB |
1248 | error_setg(errp, |
1249 | "host lacks kvm mmu notifiers, -mem-path unsupported"); | |
fd97fd44 | 1250 | return NULL; |
c902760f MT |
1251 | } |
1252 | ||
fd97fd44 MA |
1253 | for (;;) { |
1254 | fd = open(path, O_RDWR); | |
1255 | if (fd >= 0) { | |
1256 | /* @path names an existing file, use it */ | |
1257 | break; | |
8d31d6b6 | 1258 | } |
fd97fd44 MA |
1259 | if (errno == ENOENT) { |
1260 | /* @path names a file that doesn't exist, create it */ | |
1261 | fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644); | |
1262 | if (fd >= 0) { | |
1263 | unlink_on_error = true; | |
1264 | break; | |
1265 | } | |
1266 | } else if (errno == EISDIR) { | |
1267 | /* @path names a directory, create a file there */ | |
1268 | /* Make name safe to use with mkstemp by replacing '/' with '_'. */ | |
1269 | sanitized_name = g_strdup(memory_region_name(block->mr)); | |
1270 | for (c = sanitized_name; *c != '\0'; c++) { | |
1271 | if (*c == '/') { | |
1272 | *c = '_'; | |
1273 | } | |
1274 | } | |
8ca761f6 | 1275 | |
fd97fd44 MA |
1276 | filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, |
1277 | sanitized_name); | |
1278 | g_free(sanitized_name); | |
8d31d6b6 | 1279 | |
fd97fd44 MA |
1280 | fd = mkstemp(filename); |
1281 | if (fd >= 0) { | |
1282 | unlink(filename); | |
1283 | g_free(filename); | |
1284 | break; | |
1285 | } | |
1286 | g_free(filename); | |
8d31d6b6 | 1287 | } |
fd97fd44 MA |
1288 | if (errno != EEXIST && errno != EINTR) { |
1289 | error_setg_errno(errp, errno, | |
1290 | "can't open backing store %s for guest RAM", | |
1291 | path); | |
1292 | goto error; | |
1293 | } | |
1294 | /* | |
1295 | * Try again on EINTR and EEXIST. The latter happens when | |
1296 | * something else creates the file between our two open(). | |
1297 | */ | |
8d31d6b6 | 1298 | } |
c902760f | 1299 | |
e1fb6471 | 1300 | page_size = qemu_fd_getpagesize(fd); |
d2f39add | 1301 | block->mr->align = MAX(page_size, QEMU_VMALLOC_ALIGN); |
fd97fd44 | 1302 | |
e1fb6471 | 1303 | if (memory < page_size) { |
fd97fd44 MA |
1304 | error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " |
1305 | "or larger than page size 0x%" PRIx64, | |
e1fb6471 | 1306 | memory, page_size); |
f9a49dfa | 1307 | goto error; |
c902760f | 1308 | } |
c902760f | 1309 | |
e1fb6471 | 1310 | memory = ROUND_UP(memory, page_size); |
c902760f MT |
1311 | |
1312 | /* | |
1313 | * ftruncate is not supported by hugetlbfs in older | |
1314 | * hosts, so don't bother bailing out on errors. | |
1315 | * If anything goes wrong with it under other filesystems, | |
1316 | * mmap will fail. | |
1317 | */ | |
7f56e740 | 1318 | if (ftruncate(fd, memory)) { |
9742bf26 | 1319 | perror("ftruncate"); |
7f56e740 | 1320 | } |
c902760f | 1321 | |
d2f39add DD |
1322 | area = qemu_ram_mmap(fd, memory, block->mr->align, |
1323 | block->flags & RAM_SHARED); | |
c902760f | 1324 | if (area == MAP_FAILED) { |
7f56e740 | 1325 | error_setg_errno(errp, errno, |
fd97fd44 | 1326 | "unable to map backing store for guest RAM"); |
f9a49dfa | 1327 | goto error; |
c902760f | 1328 | } |
ef36fa14 MT |
1329 | |
1330 | if (mem_prealloc) { | |
38183310 | 1331 | os_mem_prealloc(fd, area, memory); |
ef36fa14 MT |
1332 | } |
1333 | ||
04b16653 | 1334 | block->fd = fd; |
c902760f | 1335 | return area; |
f9a49dfa MT |
1336 | |
1337 | error: | |
fd97fd44 MA |
1338 | if (unlink_on_error) { |
1339 | unlink(path); | |
1340 | } | |
5c3ece79 PB |
1341 | if (fd != -1) { |
1342 | close(fd); | |
1343 | } | |
f9a49dfa | 1344 | return NULL; |
c902760f MT |
1345 | } |
1346 | #endif | |
1347 | ||
0dc3f44a | 1348 | /* Called with the ramlist lock held. */ |
d17b5288 | 1349 | static ram_addr_t find_ram_offset(ram_addr_t size) |
04b16653 AW |
1350 | { |
1351 | RAMBlock *block, *next_block; | |
3e837b2c | 1352 | ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; |
04b16653 | 1353 | |
49cd9ac6 SH |
1354 | assert(size != 0); /* it would hand out same offset multiple times */ |
1355 | ||
0dc3f44a | 1356 | if (QLIST_EMPTY_RCU(&ram_list.blocks)) { |
04b16653 | 1357 | return 0; |
0d53d9fe | 1358 | } |
04b16653 | 1359 | |
0dc3f44a | 1360 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
f15fbc4b | 1361 | ram_addr_t end, next = RAM_ADDR_MAX; |
04b16653 | 1362 | |
62be4e3a | 1363 | end = block->offset + block->max_length; |
04b16653 | 1364 | |
0dc3f44a | 1365 | QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) { |
04b16653 AW |
1366 | if (next_block->offset >= end) { |
1367 | next = MIN(next, next_block->offset); | |
1368 | } | |
1369 | } | |
1370 | if (next - end >= size && next - end < mingap) { | |
3e837b2c | 1371 | offset = end; |
04b16653 AW |
1372 | mingap = next - end; |
1373 | } | |
1374 | } | |
3e837b2c AW |
1375 | |
1376 | if (offset == RAM_ADDR_MAX) { | |
1377 | fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", | |
1378 | (uint64_t)size); | |
1379 | abort(); | |
1380 | } | |
1381 | ||
04b16653 AW |
1382 | return offset; |
1383 | } | |
1384 | ||
652d7ec2 | 1385 | ram_addr_t last_ram_offset(void) |
d17b5288 AW |
1386 | { |
1387 | RAMBlock *block; | |
1388 | ram_addr_t last = 0; | |
1389 | ||
0dc3f44a MD |
1390 | rcu_read_lock(); |
1391 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
62be4e3a | 1392 | last = MAX(last, block->offset + block->max_length); |
0d53d9fe | 1393 | } |
0dc3f44a | 1394 | rcu_read_unlock(); |
d17b5288 AW |
1395 | return last; |
1396 | } | |
1397 | ||
ddb97f1d JB |
1398 | static void qemu_ram_setup_dump(void *addr, ram_addr_t size) |
1399 | { | |
1400 | int ret; | |
ddb97f1d JB |
1401 | |
1402 | /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ | |
47c8ca53 | 1403 | if (!machine_dump_guest_core(current_machine)) { |
ddb97f1d JB |
1404 | ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); |
1405 | if (ret) { | |
1406 | perror("qemu_madvise"); | |
1407 | fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " | |
1408 | "but dump_guest_core=off specified\n"); | |
1409 | } | |
1410 | } | |
1411 | } | |
1412 | ||
422148d3 DDAG |
1413 | const char *qemu_ram_get_idstr(RAMBlock *rb) |
1414 | { | |
1415 | return rb->idstr; | |
1416 | } | |
1417 | ||
ae3a7047 | 1418 | /* Called with iothread lock held. */ |
fa53a0e5 | 1419 | void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev) |
20cfe881 | 1420 | { |
fa53a0e5 | 1421 | RAMBlock *block; |
20cfe881 | 1422 | |
c5705a77 AK |
1423 | assert(new_block); |
1424 | assert(!new_block->idstr[0]); | |
84b89d78 | 1425 | |
09e5ab63 AL |
1426 | if (dev) { |
1427 | char *id = qdev_get_dev_path(dev); | |
84b89d78 CM |
1428 | if (id) { |
1429 | snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); | |
7267c094 | 1430 | g_free(id); |
84b89d78 CM |
1431 | } |
1432 | } | |
1433 | pstrcat(new_block->idstr, sizeof(new_block->idstr), name); | |
1434 | ||
ab0a9956 | 1435 | rcu_read_lock(); |
0dc3f44a | 1436 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
fa53a0e5 GA |
1437 | if (block != new_block && |
1438 | !strcmp(block->idstr, new_block->idstr)) { | |
84b89d78 CM |
1439 | fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", |
1440 | new_block->idstr); | |
1441 | abort(); | |
1442 | } | |
1443 | } | |
0dc3f44a | 1444 | rcu_read_unlock(); |
c5705a77 AK |
1445 | } |
1446 | ||
ae3a7047 | 1447 | /* Called with iothread lock held. */ |
fa53a0e5 | 1448 | void qemu_ram_unset_idstr(RAMBlock *block) |
20cfe881 | 1449 | { |
ae3a7047 MD |
1450 | /* FIXME: arch_init.c assumes that this is not called throughout |
1451 | * migration. Ignore the problem since hot-unplug during migration | |
1452 | * does not work anyway. | |
1453 | */ | |
20cfe881 HT |
1454 | if (block) { |
1455 | memset(block->idstr, 0, sizeof(block->idstr)); | |
1456 | } | |
1457 | } | |
1458 | ||
8490fc78 LC |
1459 | static int memory_try_enable_merging(void *addr, size_t len) |
1460 | { | |
75cc7f01 | 1461 | if (!machine_mem_merge(current_machine)) { |
8490fc78 LC |
1462 | /* disabled by the user */ |
1463 | return 0; | |
1464 | } | |
1465 | ||
1466 | return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); | |
1467 | } | |
1468 | ||
62be4e3a MT |
1469 | /* Only legal before guest might have detected the memory size: e.g. on |
1470 | * incoming migration, or right after reset. | |
1471 | * | |
1472 | * As memory core doesn't know how is memory accessed, it is up to | |
1473 | * resize callback to update device state and/or add assertions to detect | |
1474 | * misuse, if necessary. | |
1475 | */ | |
fa53a0e5 | 1476 | int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp) |
62be4e3a | 1477 | { |
62be4e3a MT |
1478 | assert(block); |
1479 | ||
4ed023ce | 1480 | newsize = HOST_PAGE_ALIGN(newsize); |
129ddaf3 | 1481 | |
62be4e3a MT |
1482 | if (block->used_length == newsize) { |
1483 | return 0; | |
1484 | } | |
1485 | ||
1486 | if (!(block->flags & RAM_RESIZEABLE)) { | |
1487 | error_setg_errno(errp, EINVAL, | |
1488 | "Length mismatch: %s: 0x" RAM_ADDR_FMT | |
1489 | " in != 0x" RAM_ADDR_FMT, block->idstr, | |
1490 | newsize, block->used_length); | |
1491 | return -EINVAL; | |
1492 | } | |
1493 | ||
1494 | if (block->max_length < newsize) { | |
1495 | error_setg_errno(errp, EINVAL, | |
1496 | "Length too large: %s: 0x" RAM_ADDR_FMT | |
1497 | " > 0x" RAM_ADDR_FMT, block->idstr, | |
1498 | newsize, block->max_length); | |
1499 | return -EINVAL; | |
1500 | } | |
1501 | ||
1502 | cpu_physical_memory_clear_dirty_range(block->offset, block->used_length); | |
1503 | block->used_length = newsize; | |
58d2707e PB |
1504 | cpu_physical_memory_set_dirty_range(block->offset, block->used_length, |
1505 | DIRTY_CLIENTS_ALL); | |
62be4e3a MT |
1506 | memory_region_set_size(block->mr, newsize); |
1507 | if (block->resized) { | |
1508 | block->resized(block->idstr, newsize, block->host); | |
1509 | } | |
1510 | return 0; | |
1511 | } | |
1512 | ||
5b82b703 SH |
1513 | /* Called with ram_list.mutex held */ |
1514 | static void dirty_memory_extend(ram_addr_t old_ram_size, | |
1515 | ram_addr_t new_ram_size) | |
1516 | { | |
1517 | ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size, | |
1518 | DIRTY_MEMORY_BLOCK_SIZE); | |
1519 | ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size, | |
1520 | DIRTY_MEMORY_BLOCK_SIZE); | |
1521 | int i; | |
1522 | ||
1523 | /* Only need to extend if block count increased */ | |
1524 | if (new_num_blocks <= old_num_blocks) { | |
1525 | return; | |
1526 | } | |
1527 | ||
1528 | for (i = 0; i < DIRTY_MEMORY_NUM; i++) { | |
1529 | DirtyMemoryBlocks *old_blocks; | |
1530 | DirtyMemoryBlocks *new_blocks; | |
1531 | int j; | |
1532 | ||
1533 | old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]); | |
1534 | new_blocks = g_malloc(sizeof(*new_blocks) + | |
1535 | sizeof(new_blocks->blocks[0]) * new_num_blocks); | |
1536 | ||
1537 | if (old_num_blocks) { | |
1538 | memcpy(new_blocks->blocks, old_blocks->blocks, | |
1539 | old_num_blocks * sizeof(old_blocks->blocks[0])); | |
1540 | } | |
1541 | ||
1542 | for (j = old_num_blocks; j < new_num_blocks; j++) { | |
1543 | new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE); | |
1544 | } | |
1545 | ||
1546 | atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks); | |
1547 | ||
1548 | if (old_blocks) { | |
1549 | g_free_rcu(old_blocks, rcu); | |
1550 | } | |
1551 | } | |
1552 | } | |
1553 | ||
528f46af | 1554 | static void ram_block_add(RAMBlock *new_block, Error **errp) |
c5705a77 | 1555 | { |
e1c57ab8 | 1556 | RAMBlock *block; |
0d53d9fe | 1557 | RAMBlock *last_block = NULL; |
2152f5ca | 1558 | ram_addr_t old_ram_size, new_ram_size; |
37aa7a0e | 1559 | Error *err = NULL; |
2152f5ca JQ |
1560 | |
1561 | old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS; | |
c5705a77 | 1562 | |
b2a8658e | 1563 | qemu_mutex_lock_ramlist(); |
9b8424d5 | 1564 | new_block->offset = find_ram_offset(new_block->max_length); |
e1c57ab8 PB |
1565 | |
1566 | if (!new_block->host) { | |
1567 | if (xen_enabled()) { | |
9b8424d5 | 1568 | xen_ram_alloc(new_block->offset, new_block->max_length, |
37aa7a0e MA |
1569 | new_block->mr, &err); |
1570 | if (err) { | |
1571 | error_propagate(errp, err); | |
1572 | qemu_mutex_unlock_ramlist(); | |
39c350ee | 1573 | return; |
37aa7a0e | 1574 | } |
e1c57ab8 | 1575 | } else { |
9b8424d5 | 1576 | new_block->host = phys_mem_alloc(new_block->max_length, |
a2b257d6 | 1577 | &new_block->mr->align); |
39228250 | 1578 | if (!new_block->host) { |
ef701d7b HT |
1579 | error_setg_errno(errp, errno, |
1580 | "cannot set up guest memory '%s'", | |
1581 | memory_region_name(new_block->mr)); | |
1582 | qemu_mutex_unlock_ramlist(); | |
39c350ee | 1583 | return; |
39228250 | 1584 | } |
9b8424d5 | 1585 | memory_try_enable_merging(new_block->host, new_block->max_length); |
6977dfe6 | 1586 | } |
c902760f | 1587 | } |
94a6b54f | 1588 | |
dd631697 LZ |
1589 | new_ram_size = MAX(old_ram_size, |
1590 | (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS); | |
1591 | if (new_ram_size > old_ram_size) { | |
1592 | migration_bitmap_extend(old_ram_size, new_ram_size); | |
5b82b703 | 1593 | dirty_memory_extend(old_ram_size, new_ram_size); |
dd631697 | 1594 | } |
0d53d9fe MD |
1595 | /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ, |
1596 | * QLIST (which has an RCU-friendly variant) does not have insertion at | |
1597 | * tail, so save the last element in last_block. | |
1598 | */ | |
0dc3f44a | 1599 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
0d53d9fe | 1600 | last_block = block; |
9b8424d5 | 1601 | if (block->max_length < new_block->max_length) { |
abb26d63 PB |
1602 | break; |
1603 | } | |
1604 | } | |
1605 | if (block) { | |
0dc3f44a | 1606 | QLIST_INSERT_BEFORE_RCU(block, new_block, next); |
0d53d9fe | 1607 | } else if (last_block) { |
0dc3f44a | 1608 | QLIST_INSERT_AFTER_RCU(last_block, new_block, next); |
0d53d9fe | 1609 | } else { /* list is empty */ |
0dc3f44a | 1610 | QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); |
abb26d63 | 1611 | } |
0d6d3c87 | 1612 | ram_list.mru_block = NULL; |
94a6b54f | 1613 | |
0dc3f44a MD |
1614 | /* Write list before version */ |
1615 | smp_wmb(); | |
f798b07f | 1616 | ram_list.version++; |
b2a8658e | 1617 | qemu_mutex_unlock_ramlist(); |
f798b07f | 1618 | |
9b8424d5 | 1619 | cpu_physical_memory_set_dirty_range(new_block->offset, |
58d2707e PB |
1620 | new_block->used_length, |
1621 | DIRTY_CLIENTS_ALL); | |
94a6b54f | 1622 | |
a904c911 PB |
1623 | if (new_block->host) { |
1624 | qemu_ram_setup_dump(new_block->host, new_block->max_length); | |
1625 | qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); | |
1626 | qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK); | |
1627 | if (kvm_enabled()) { | |
1628 | kvm_setup_guest_memory(new_block->host, new_block->max_length); | |
1629 | } | |
e1c57ab8 | 1630 | } |
94a6b54f | 1631 | } |
e9a1ab19 | 1632 | |
0b183fc8 | 1633 | #ifdef __linux__ |
528f46af FZ |
1634 | RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, |
1635 | bool share, const char *mem_path, | |
1636 | Error **errp) | |
e1c57ab8 PB |
1637 | { |
1638 | RAMBlock *new_block; | |
ef701d7b | 1639 | Error *local_err = NULL; |
e1c57ab8 PB |
1640 | |
1641 | if (xen_enabled()) { | |
7f56e740 | 1642 | error_setg(errp, "-mem-path not supported with Xen"); |
528f46af | 1643 | return NULL; |
e1c57ab8 PB |
1644 | } |
1645 | ||
1646 | if (phys_mem_alloc != qemu_anon_ram_alloc) { | |
1647 | /* | |
1648 | * file_ram_alloc() needs to allocate just like | |
1649 | * phys_mem_alloc, but we haven't bothered to provide | |
1650 | * a hook there. | |
1651 | */ | |
7f56e740 PB |
1652 | error_setg(errp, |
1653 | "-mem-path not supported with this accelerator"); | |
528f46af | 1654 | return NULL; |
e1c57ab8 PB |
1655 | } |
1656 | ||
4ed023ce | 1657 | size = HOST_PAGE_ALIGN(size); |
e1c57ab8 PB |
1658 | new_block = g_malloc0(sizeof(*new_block)); |
1659 | new_block->mr = mr; | |
9b8424d5 MT |
1660 | new_block->used_length = size; |
1661 | new_block->max_length = size; | |
dbcb8981 | 1662 | new_block->flags = share ? RAM_SHARED : 0; |
7f56e740 PB |
1663 | new_block->host = file_ram_alloc(new_block, size, |
1664 | mem_path, errp); | |
1665 | if (!new_block->host) { | |
1666 | g_free(new_block); | |
528f46af | 1667 | return NULL; |
7f56e740 PB |
1668 | } |
1669 | ||
528f46af | 1670 | ram_block_add(new_block, &local_err); |
ef701d7b HT |
1671 | if (local_err) { |
1672 | g_free(new_block); | |
1673 | error_propagate(errp, local_err); | |
528f46af | 1674 | return NULL; |
ef701d7b | 1675 | } |
528f46af | 1676 | return new_block; |
e1c57ab8 | 1677 | } |
0b183fc8 | 1678 | #endif |
e1c57ab8 | 1679 | |
62be4e3a | 1680 | static |
528f46af FZ |
1681 | RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size, |
1682 | void (*resized)(const char*, | |
1683 | uint64_t length, | |
1684 | void *host), | |
1685 | void *host, bool resizeable, | |
1686 | MemoryRegion *mr, Error **errp) | |
e1c57ab8 PB |
1687 | { |
1688 | RAMBlock *new_block; | |
ef701d7b | 1689 | Error *local_err = NULL; |
e1c57ab8 | 1690 | |
4ed023ce DDAG |
1691 | size = HOST_PAGE_ALIGN(size); |
1692 | max_size = HOST_PAGE_ALIGN(max_size); | |
e1c57ab8 PB |
1693 | new_block = g_malloc0(sizeof(*new_block)); |
1694 | new_block->mr = mr; | |
62be4e3a | 1695 | new_block->resized = resized; |
9b8424d5 MT |
1696 | new_block->used_length = size; |
1697 | new_block->max_length = max_size; | |
62be4e3a | 1698 | assert(max_size >= size); |
e1c57ab8 PB |
1699 | new_block->fd = -1; |
1700 | new_block->host = host; | |
1701 | if (host) { | |
7bd4f430 | 1702 | new_block->flags |= RAM_PREALLOC; |
e1c57ab8 | 1703 | } |
62be4e3a MT |
1704 | if (resizeable) { |
1705 | new_block->flags |= RAM_RESIZEABLE; | |
1706 | } | |
528f46af | 1707 | ram_block_add(new_block, &local_err); |
ef701d7b HT |
1708 | if (local_err) { |
1709 | g_free(new_block); | |
1710 | error_propagate(errp, local_err); | |
528f46af | 1711 | return NULL; |
ef701d7b | 1712 | } |
528f46af | 1713 | return new_block; |
e1c57ab8 PB |
1714 | } |
1715 | ||
528f46af | 1716 | RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, |
62be4e3a MT |
1717 | MemoryRegion *mr, Error **errp) |
1718 | { | |
1719 | return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp); | |
1720 | } | |
1721 | ||
528f46af | 1722 | RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp) |
6977dfe6 | 1723 | { |
62be4e3a MT |
1724 | return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp); |
1725 | } | |
1726 | ||
528f46af | 1727 | RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz, |
62be4e3a MT |
1728 | void (*resized)(const char*, |
1729 | uint64_t length, | |
1730 | void *host), | |
1731 | MemoryRegion *mr, Error **errp) | |
1732 | { | |
1733 | return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp); | |
6977dfe6 YT |
1734 | } |
1735 | ||
43771539 PB |
1736 | static void reclaim_ramblock(RAMBlock *block) |
1737 | { | |
1738 | if (block->flags & RAM_PREALLOC) { | |
1739 | ; | |
1740 | } else if (xen_enabled()) { | |
1741 | xen_invalidate_map_cache_entry(block->host); | |
1742 | #ifndef _WIN32 | |
1743 | } else if (block->fd >= 0) { | |
2f3a2bb1 | 1744 | qemu_ram_munmap(block->host, block->max_length); |
43771539 PB |
1745 | close(block->fd); |
1746 | #endif | |
1747 | } else { | |
1748 | qemu_anon_ram_free(block->host, block->max_length); | |
1749 | } | |
1750 | g_free(block); | |
1751 | } | |
1752 | ||
f1060c55 | 1753 | void qemu_ram_free(RAMBlock *block) |
e9a1ab19 | 1754 | { |
85bc2a15 MAL |
1755 | if (!block) { |
1756 | return; | |
1757 | } | |
1758 | ||
b2a8658e | 1759 | qemu_mutex_lock_ramlist(); |
f1060c55 FZ |
1760 | QLIST_REMOVE_RCU(block, next); |
1761 | ram_list.mru_block = NULL; | |
1762 | /* Write list before version */ | |
1763 | smp_wmb(); | |
1764 | ram_list.version++; | |
1765 | call_rcu(block, reclaim_ramblock, rcu); | |
b2a8658e | 1766 | qemu_mutex_unlock_ramlist(); |
e9a1ab19 FB |
1767 | } |
1768 | ||
cd19cfa2 HY |
1769 | #ifndef _WIN32 |
1770 | void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) | |
1771 | { | |
1772 | RAMBlock *block; | |
1773 | ram_addr_t offset; | |
1774 | int flags; | |
1775 | void *area, *vaddr; | |
1776 | ||
0dc3f44a | 1777 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
cd19cfa2 | 1778 | offset = addr - block->offset; |
9b8424d5 | 1779 | if (offset < block->max_length) { |
1240be24 | 1780 | vaddr = ramblock_ptr(block, offset); |
7bd4f430 | 1781 | if (block->flags & RAM_PREALLOC) { |
cd19cfa2 | 1782 | ; |
dfeaf2ab MA |
1783 | } else if (xen_enabled()) { |
1784 | abort(); | |
cd19cfa2 HY |
1785 | } else { |
1786 | flags = MAP_FIXED; | |
3435f395 | 1787 | if (block->fd >= 0) { |
dbcb8981 PB |
1788 | flags |= (block->flags & RAM_SHARED ? |
1789 | MAP_SHARED : MAP_PRIVATE); | |
3435f395 MA |
1790 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, |
1791 | flags, block->fd, offset); | |
cd19cfa2 | 1792 | } else { |
2eb9fbaa MA |
1793 | /* |
1794 | * Remap needs to match alloc. Accelerators that | |
1795 | * set phys_mem_alloc never remap. If they did, | |
1796 | * we'd need a remap hook here. | |
1797 | */ | |
1798 | assert(phys_mem_alloc == qemu_anon_ram_alloc); | |
1799 | ||
cd19cfa2 HY |
1800 | flags |= MAP_PRIVATE | MAP_ANONYMOUS; |
1801 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, | |
1802 | flags, -1, 0); | |
cd19cfa2 HY |
1803 | } |
1804 | if (area != vaddr) { | |
f15fbc4b AP |
1805 | fprintf(stderr, "Could not remap addr: " |
1806 | RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n", | |
cd19cfa2 HY |
1807 | length, addr); |
1808 | exit(1); | |
1809 | } | |
8490fc78 | 1810 | memory_try_enable_merging(vaddr, length); |
ddb97f1d | 1811 | qemu_ram_setup_dump(vaddr, length); |
cd19cfa2 | 1812 | } |
cd19cfa2 HY |
1813 | } |
1814 | } | |
1815 | } | |
1816 | #endif /* !_WIN32 */ | |
1817 | ||
1b5ec234 | 1818 | /* Return a host pointer to ram allocated with qemu_ram_alloc. |
ae3a7047 MD |
1819 | * This should not be used for general purpose DMA. Use address_space_map |
1820 | * or address_space_rw instead. For local memory (e.g. video ram) that the | |
1821 | * device owns, use memory_region_get_ram_ptr. | |
0dc3f44a | 1822 | * |
49b24afc | 1823 | * Called within RCU critical section. |
1b5ec234 | 1824 | */ |
3655cb9c | 1825 | void *qemu_get_ram_ptr(RAMBlock *ram_block, ram_addr_t addr) |
1b5ec234 | 1826 | { |
3655cb9c GA |
1827 | RAMBlock *block = ram_block; |
1828 | ||
1829 | if (block == NULL) { | |
1830 | block = qemu_get_ram_block(addr); | |
1831 | } | |
ae3a7047 MD |
1832 | |
1833 | if (xen_enabled() && block->host == NULL) { | |
0d6d3c87 PB |
1834 | /* We need to check if the requested address is in the RAM |
1835 | * because we don't want to map the entire memory in QEMU. | |
1836 | * In that case just map until the end of the page. | |
1837 | */ | |
1838 | if (block->offset == 0) { | |
49b24afc | 1839 | return xen_map_cache(addr, 0, 0); |
0d6d3c87 | 1840 | } |
ae3a7047 MD |
1841 | |
1842 | block->host = xen_map_cache(block->offset, block->max_length, 1); | |
0d6d3c87 | 1843 | } |
49b24afc | 1844 | return ramblock_ptr(block, addr - block->offset); |
dc828ca1 PB |
1845 | } |
1846 | ||
38bee5dc | 1847 | /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr |
ae3a7047 | 1848 | * but takes a size argument. |
0dc3f44a | 1849 | * |
e81bcda5 | 1850 | * Called within RCU critical section. |
ae3a7047 | 1851 | */ |
3655cb9c GA |
1852 | static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr, |
1853 | hwaddr *size) | |
38bee5dc | 1854 | { |
3655cb9c | 1855 | RAMBlock *block = ram_block; |
e81bcda5 | 1856 | ram_addr_t offset_inside_block; |
8ab934f9 SS |
1857 | if (*size == 0) { |
1858 | return NULL; | |
1859 | } | |
e81bcda5 | 1860 | |
3655cb9c GA |
1861 | if (block == NULL) { |
1862 | block = qemu_get_ram_block(addr); | |
1863 | } | |
e81bcda5 PB |
1864 | offset_inside_block = addr - block->offset; |
1865 | *size = MIN(*size, block->max_length - offset_inside_block); | |
1866 | ||
1867 | if (xen_enabled() && block->host == NULL) { | |
1868 | /* We need to check if the requested address is in the RAM | |
1869 | * because we don't want to map the entire memory in QEMU. | |
1870 | * In that case just map the requested area. | |
1871 | */ | |
1872 | if (block->offset == 0) { | |
1873 | return xen_map_cache(addr, *size, 1); | |
38bee5dc SS |
1874 | } |
1875 | ||
e81bcda5 | 1876 | block->host = xen_map_cache(block->offset, block->max_length, 1); |
38bee5dc | 1877 | } |
e81bcda5 PB |
1878 | |
1879 | return ramblock_ptr(block, offset_inside_block); | |
38bee5dc SS |
1880 | } |
1881 | ||
422148d3 DDAG |
1882 | /* |
1883 | * Translates a host ptr back to a RAMBlock, a ram_addr and an offset | |
1884 | * in that RAMBlock. | |
1885 | * | |
1886 | * ptr: Host pointer to look up | |
1887 | * round_offset: If true round the result offset down to a page boundary | |
1888 | * *ram_addr: set to result ram_addr | |
1889 | * *offset: set to result offset within the RAMBlock | |
1890 | * | |
1891 | * Returns: RAMBlock (or NULL if not found) | |
ae3a7047 MD |
1892 | * |
1893 | * By the time this function returns, the returned pointer is not protected | |
1894 | * by RCU anymore. If the caller is not within an RCU critical section and | |
1895 | * does not hold the iothread lock, it must have other means of protecting the | |
1896 | * pointer, such as a reference to the region that includes the incoming | |
1897 | * ram_addr_t. | |
1898 | */ | |
422148d3 | 1899 | RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, |
422148d3 | 1900 | ram_addr_t *offset) |
5579c7f3 | 1901 | { |
94a6b54f PB |
1902 | RAMBlock *block; |
1903 | uint8_t *host = ptr; | |
1904 | ||
868bb33f | 1905 | if (xen_enabled()) { |
f615f396 | 1906 | ram_addr_t ram_addr; |
0dc3f44a | 1907 | rcu_read_lock(); |
f615f396 PB |
1908 | ram_addr = xen_ram_addr_from_mapcache(ptr); |
1909 | block = qemu_get_ram_block(ram_addr); | |
422148d3 DDAG |
1910 | if (block) { |
1911 | *offset = (host - block->host); | |
1912 | } | |
0dc3f44a | 1913 | rcu_read_unlock(); |
422148d3 | 1914 | return block; |
712c2b41 SS |
1915 | } |
1916 | ||
0dc3f44a MD |
1917 | rcu_read_lock(); |
1918 | block = atomic_rcu_read(&ram_list.mru_block); | |
9b8424d5 | 1919 | if (block && block->host && host - block->host < block->max_length) { |
23887b79 PB |
1920 | goto found; |
1921 | } | |
1922 | ||
0dc3f44a | 1923 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
432d268c JN |
1924 | /* This case append when the block is not mapped. */ |
1925 | if (block->host == NULL) { | |
1926 | continue; | |
1927 | } | |
9b8424d5 | 1928 | if (host - block->host < block->max_length) { |
23887b79 | 1929 | goto found; |
f471a17e | 1930 | } |
94a6b54f | 1931 | } |
432d268c | 1932 | |
0dc3f44a | 1933 | rcu_read_unlock(); |
1b5ec234 | 1934 | return NULL; |
23887b79 PB |
1935 | |
1936 | found: | |
422148d3 DDAG |
1937 | *offset = (host - block->host); |
1938 | if (round_offset) { | |
1939 | *offset &= TARGET_PAGE_MASK; | |
1940 | } | |
0dc3f44a | 1941 | rcu_read_unlock(); |
422148d3 DDAG |
1942 | return block; |
1943 | } | |
1944 | ||
e3dd7493 DDAG |
1945 | /* |
1946 | * Finds the named RAMBlock | |
1947 | * | |
1948 | * name: The name of RAMBlock to find | |
1949 | * | |
1950 | * Returns: RAMBlock (or NULL if not found) | |
1951 | */ | |
1952 | RAMBlock *qemu_ram_block_by_name(const char *name) | |
1953 | { | |
1954 | RAMBlock *block; | |
1955 | ||
1956 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
1957 | if (!strcmp(name, block->idstr)) { | |
1958 | return block; | |
1959 | } | |
1960 | } | |
1961 | ||
1962 | return NULL; | |
1963 | } | |
1964 | ||
422148d3 DDAG |
1965 | /* Some of the softmmu routines need to translate from a host pointer |
1966 | (typically a TLB entry) back to a ram offset. */ | |
07bdaa41 | 1967 | ram_addr_t qemu_ram_addr_from_host(void *ptr) |
422148d3 DDAG |
1968 | { |
1969 | RAMBlock *block; | |
f615f396 | 1970 | ram_addr_t offset; |
422148d3 | 1971 | |
f615f396 | 1972 | block = qemu_ram_block_from_host(ptr, false, &offset); |
422148d3 | 1973 | if (!block) { |
07bdaa41 | 1974 | return RAM_ADDR_INVALID; |
422148d3 DDAG |
1975 | } |
1976 | ||
07bdaa41 | 1977 | return block->offset + offset; |
e890261f | 1978 | } |
f471a17e | 1979 | |
49b24afc | 1980 | /* Called within RCU critical section. */ |
a8170e5e | 1981 | static void notdirty_mem_write(void *opaque, hwaddr ram_addr, |
0e0df1e2 | 1982 | uint64_t val, unsigned size) |
9fa3e853 | 1983 | { |
52159192 | 1984 | if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { |
0e0df1e2 | 1985 | tb_invalidate_phys_page_fast(ram_addr, size); |
3a7d929e | 1986 | } |
0e0df1e2 AK |
1987 | switch (size) { |
1988 | case 1: | |
3655cb9c | 1989 | stb_p(qemu_get_ram_ptr(NULL, ram_addr), val); |
0e0df1e2 AK |
1990 | break; |
1991 | case 2: | |
3655cb9c | 1992 | stw_p(qemu_get_ram_ptr(NULL, ram_addr), val); |
0e0df1e2 AK |
1993 | break; |
1994 | case 4: | |
3655cb9c | 1995 | stl_p(qemu_get_ram_ptr(NULL, ram_addr), val); |
0e0df1e2 AK |
1996 | break; |
1997 | default: | |
1998 | abort(); | |
3a7d929e | 1999 | } |
58d2707e PB |
2000 | /* Set both VGA and migration bits for simplicity and to remove |
2001 | * the notdirty callback faster. | |
2002 | */ | |
2003 | cpu_physical_memory_set_dirty_range(ram_addr, size, | |
2004 | DIRTY_CLIENTS_NOCODE); | |
f23db169 FB |
2005 | /* we remove the notdirty callback only if the code has been |
2006 | flushed */ | |
a2cd8c85 | 2007 | if (!cpu_physical_memory_is_clean(ram_addr)) { |
bcae01e4 | 2008 | tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr); |
4917cf44 | 2009 | } |
9fa3e853 FB |
2010 | } |
2011 | ||
b018ddf6 PB |
2012 | static bool notdirty_mem_accepts(void *opaque, hwaddr addr, |
2013 | unsigned size, bool is_write) | |
2014 | { | |
2015 | return is_write; | |
2016 | } | |
2017 | ||
0e0df1e2 | 2018 | static const MemoryRegionOps notdirty_mem_ops = { |
0e0df1e2 | 2019 | .write = notdirty_mem_write, |
b018ddf6 | 2020 | .valid.accepts = notdirty_mem_accepts, |
0e0df1e2 | 2021 | .endianness = DEVICE_NATIVE_ENDIAN, |
1ccde1cb FB |
2022 | }; |
2023 | ||
0f459d16 | 2024 | /* Generate a debug exception if a watchpoint has been hit. */ |
66b9b43c | 2025 | static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags) |
0f459d16 | 2026 | { |
93afeade | 2027 | CPUState *cpu = current_cpu; |
568496c0 | 2028 | CPUClass *cc = CPU_GET_CLASS(cpu); |
93afeade | 2029 | CPUArchState *env = cpu->env_ptr; |
06d55cc1 | 2030 | target_ulong pc, cs_base; |
0f459d16 | 2031 | target_ulong vaddr; |
a1d1bb31 | 2032 | CPUWatchpoint *wp; |
89fee74a | 2033 | uint32_t cpu_flags; |
0f459d16 | 2034 | |
ff4700b0 | 2035 | if (cpu->watchpoint_hit) { |
06d55cc1 AL |
2036 | /* We re-entered the check after replacing the TB. Now raise |
2037 | * the debug interrupt so that is will trigger after the | |
2038 | * current instruction. */ | |
93afeade | 2039 | cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG); |
06d55cc1 AL |
2040 | return; |
2041 | } | |
93afeade | 2042 | vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset; |
ff4700b0 | 2043 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d PM |
2044 | if (cpu_watchpoint_address_matches(wp, vaddr, len) |
2045 | && (wp->flags & flags)) { | |
08225676 PM |
2046 | if (flags == BP_MEM_READ) { |
2047 | wp->flags |= BP_WATCHPOINT_HIT_READ; | |
2048 | } else { | |
2049 | wp->flags |= BP_WATCHPOINT_HIT_WRITE; | |
2050 | } | |
2051 | wp->hitaddr = vaddr; | |
66b9b43c | 2052 | wp->hitattrs = attrs; |
ff4700b0 | 2053 | if (!cpu->watchpoint_hit) { |
568496c0 SF |
2054 | if (wp->flags & BP_CPU && |
2055 | !cc->debug_check_watchpoint(cpu, wp)) { | |
2056 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
2057 | continue; | |
2058 | } | |
ff4700b0 | 2059 | cpu->watchpoint_hit = wp; |
239c51a5 | 2060 | tb_check_watchpoint(cpu); |
6e140f28 | 2061 | if (wp->flags & BP_STOP_BEFORE_ACCESS) { |
27103424 | 2062 | cpu->exception_index = EXCP_DEBUG; |
5638d180 | 2063 | cpu_loop_exit(cpu); |
6e140f28 AL |
2064 | } else { |
2065 | cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags); | |
648f034c | 2066 | tb_gen_code(cpu, pc, cs_base, cpu_flags, 1); |
0ea8cb88 | 2067 | cpu_resume_from_signal(cpu, NULL); |
6e140f28 | 2068 | } |
06d55cc1 | 2069 | } |
6e140f28 AL |
2070 | } else { |
2071 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
0f459d16 PB |
2072 | } |
2073 | } | |
2074 | } | |
2075 | ||
6658ffb8 PB |
2076 | /* Watchpoint access routines. Watchpoints are inserted using TLB tricks, |
2077 | so these check for a hit then pass through to the normal out-of-line | |
2078 | phys routines. */ | |
66b9b43c PM |
2079 | static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata, |
2080 | unsigned size, MemTxAttrs attrs) | |
6658ffb8 | 2081 | { |
66b9b43c PM |
2082 | MemTxResult res; |
2083 | uint64_t data; | |
79ed0416 PM |
2084 | int asidx = cpu_asidx_from_attrs(current_cpu, attrs); |
2085 | AddressSpace *as = current_cpu->cpu_ases[asidx].as; | |
66b9b43c PM |
2086 | |
2087 | check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ); | |
1ec9b909 | 2088 | switch (size) { |
66b9b43c | 2089 | case 1: |
79ed0416 | 2090 | data = address_space_ldub(as, addr, attrs, &res); |
66b9b43c PM |
2091 | break; |
2092 | case 2: | |
79ed0416 | 2093 | data = address_space_lduw(as, addr, attrs, &res); |
66b9b43c PM |
2094 | break; |
2095 | case 4: | |
79ed0416 | 2096 | data = address_space_ldl(as, addr, attrs, &res); |
66b9b43c | 2097 | break; |
1ec9b909 AK |
2098 | default: abort(); |
2099 | } | |
66b9b43c PM |
2100 | *pdata = data; |
2101 | return res; | |
6658ffb8 PB |
2102 | } |
2103 | ||
66b9b43c PM |
2104 | static MemTxResult watch_mem_write(void *opaque, hwaddr addr, |
2105 | uint64_t val, unsigned size, | |
2106 | MemTxAttrs attrs) | |
6658ffb8 | 2107 | { |
66b9b43c | 2108 | MemTxResult res; |
79ed0416 PM |
2109 | int asidx = cpu_asidx_from_attrs(current_cpu, attrs); |
2110 | AddressSpace *as = current_cpu->cpu_ases[asidx].as; | |
66b9b43c PM |
2111 | |
2112 | check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE); | |
1ec9b909 | 2113 | switch (size) { |
67364150 | 2114 | case 1: |
79ed0416 | 2115 | address_space_stb(as, addr, val, attrs, &res); |
67364150 MF |
2116 | break; |
2117 | case 2: | |
79ed0416 | 2118 | address_space_stw(as, addr, val, attrs, &res); |
67364150 MF |
2119 | break; |
2120 | case 4: | |
79ed0416 | 2121 | address_space_stl(as, addr, val, attrs, &res); |
67364150 | 2122 | break; |
1ec9b909 AK |
2123 | default: abort(); |
2124 | } | |
66b9b43c | 2125 | return res; |
6658ffb8 PB |
2126 | } |
2127 | ||
1ec9b909 | 2128 | static const MemoryRegionOps watch_mem_ops = { |
66b9b43c PM |
2129 | .read_with_attrs = watch_mem_read, |
2130 | .write_with_attrs = watch_mem_write, | |
1ec9b909 | 2131 | .endianness = DEVICE_NATIVE_ENDIAN, |
6658ffb8 | 2132 | }; |
6658ffb8 | 2133 | |
f25a49e0 PM |
2134 | static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data, |
2135 | unsigned len, MemTxAttrs attrs) | |
db7b5426 | 2136 | { |
acc9d80b | 2137 | subpage_t *subpage = opaque; |
ff6cff75 | 2138 | uint8_t buf[8]; |
5c9eb028 | 2139 | MemTxResult res; |
791af8c8 | 2140 | |
db7b5426 | 2141 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2142 | printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__, |
acc9d80b | 2143 | subpage, len, addr); |
db7b5426 | 2144 | #endif |
5c9eb028 PM |
2145 | res = address_space_read(subpage->as, addr + subpage->base, |
2146 | attrs, buf, len); | |
2147 | if (res) { | |
2148 | return res; | |
f25a49e0 | 2149 | } |
acc9d80b JK |
2150 | switch (len) { |
2151 | case 1: | |
f25a49e0 PM |
2152 | *data = ldub_p(buf); |
2153 | return MEMTX_OK; | |
acc9d80b | 2154 | case 2: |
f25a49e0 PM |
2155 | *data = lduw_p(buf); |
2156 | return MEMTX_OK; | |
acc9d80b | 2157 | case 4: |
f25a49e0 PM |
2158 | *data = ldl_p(buf); |
2159 | return MEMTX_OK; | |
ff6cff75 | 2160 | case 8: |
f25a49e0 PM |
2161 | *data = ldq_p(buf); |
2162 | return MEMTX_OK; | |
acc9d80b JK |
2163 | default: |
2164 | abort(); | |
2165 | } | |
db7b5426 BS |
2166 | } |
2167 | ||
f25a49e0 PM |
2168 | static MemTxResult subpage_write(void *opaque, hwaddr addr, |
2169 | uint64_t value, unsigned len, MemTxAttrs attrs) | |
db7b5426 | 2170 | { |
acc9d80b | 2171 | subpage_t *subpage = opaque; |
ff6cff75 | 2172 | uint8_t buf[8]; |
acc9d80b | 2173 | |
db7b5426 | 2174 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2175 | printf("%s: subpage %p len %u addr " TARGET_FMT_plx |
acc9d80b JK |
2176 | " value %"PRIx64"\n", |
2177 | __func__, subpage, len, addr, value); | |
db7b5426 | 2178 | #endif |
acc9d80b JK |
2179 | switch (len) { |
2180 | case 1: | |
2181 | stb_p(buf, value); | |
2182 | break; | |
2183 | case 2: | |
2184 | stw_p(buf, value); | |
2185 | break; | |
2186 | case 4: | |
2187 | stl_p(buf, value); | |
2188 | break; | |
ff6cff75 PB |
2189 | case 8: |
2190 | stq_p(buf, value); | |
2191 | break; | |
acc9d80b JK |
2192 | default: |
2193 | abort(); | |
2194 | } | |
5c9eb028 PM |
2195 | return address_space_write(subpage->as, addr + subpage->base, |
2196 | attrs, buf, len); | |
db7b5426 BS |
2197 | } |
2198 | ||
c353e4cc | 2199 | static bool subpage_accepts(void *opaque, hwaddr addr, |
016e9d62 | 2200 | unsigned len, bool is_write) |
c353e4cc | 2201 | { |
acc9d80b | 2202 | subpage_t *subpage = opaque; |
c353e4cc | 2203 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2204 | printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n", |
acc9d80b | 2205 | __func__, subpage, is_write ? 'w' : 'r', len, addr); |
c353e4cc PB |
2206 | #endif |
2207 | ||
acc9d80b | 2208 | return address_space_access_valid(subpage->as, addr + subpage->base, |
016e9d62 | 2209 | len, is_write); |
c353e4cc PB |
2210 | } |
2211 | ||
70c68e44 | 2212 | static const MemoryRegionOps subpage_ops = { |
f25a49e0 PM |
2213 | .read_with_attrs = subpage_read, |
2214 | .write_with_attrs = subpage_write, | |
ff6cff75 PB |
2215 | .impl.min_access_size = 1, |
2216 | .impl.max_access_size = 8, | |
2217 | .valid.min_access_size = 1, | |
2218 | .valid.max_access_size = 8, | |
c353e4cc | 2219 | .valid.accepts = subpage_accepts, |
70c68e44 | 2220 | .endianness = DEVICE_NATIVE_ENDIAN, |
db7b5426 BS |
2221 | }; |
2222 | ||
c227f099 | 2223 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, |
5312bd8b | 2224 | uint16_t section) |
db7b5426 BS |
2225 | { |
2226 | int idx, eidx; | |
2227 | ||
2228 | if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) | |
2229 | return -1; | |
2230 | idx = SUBPAGE_IDX(start); | |
2231 | eidx = SUBPAGE_IDX(end); | |
2232 | #if defined(DEBUG_SUBPAGE) | |
016e9d62 AK |
2233 | printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", |
2234 | __func__, mmio, start, end, idx, eidx, section); | |
db7b5426 | 2235 | #endif |
db7b5426 | 2236 | for (; idx <= eidx; idx++) { |
5312bd8b | 2237 | mmio->sub_section[idx] = section; |
db7b5426 BS |
2238 | } |
2239 | ||
2240 | return 0; | |
2241 | } | |
2242 | ||
acc9d80b | 2243 | static subpage_t *subpage_init(AddressSpace *as, hwaddr base) |
db7b5426 | 2244 | { |
c227f099 | 2245 | subpage_t *mmio; |
db7b5426 | 2246 | |
7267c094 | 2247 | mmio = g_malloc0(sizeof(subpage_t)); |
1eec614b | 2248 | |
acc9d80b | 2249 | mmio->as = as; |
1eec614b | 2250 | mmio->base = base; |
2c9b15ca | 2251 | memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, |
b4fefef9 | 2252 | NULL, TARGET_PAGE_SIZE); |
b3b00c78 | 2253 | mmio->iomem.subpage = true; |
db7b5426 | 2254 | #if defined(DEBUG_SUBPAGE) |
016e9d62 AK |
2255 | printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__, |
2256 | mmio, base, TARGET_PAGE_SIZE); | |
db7b5426 | 2257 | #endif |
b41aac4f | 2258 | subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED); |
db7b5426 BS |
2259 | |
2260 | return mmio; | |
2261 | } | |
2262 | ||
a656e22f PC |
2263 | static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as, |
2264 | MemoryRegion *mr) | |
5312bd8b | 2265 | { |
a656e22f | 2266 | assert(as); |
5312bd8b | 2267 | MemoryRegionSection section = { |
a656e22f | 2268 | .address_space = as, |
5312bd8b AK |
2269 | .mr = mr, |
2270 | .offset_within_address_space = 0, | |
2271 | .offset_within_region = 0, | |
052e87b0 | 2272 | .size = int128_2_64(), |
5312bd8b AK |
2273 | }; |
2274 | ||
53cb28cb | 2275 | return phys_section_add(map, §ion); |
5312bd8b AK |
2276 | } |
2277 | ||
a54c87b6 | 2278 | MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs) |
aa102231 | 2279 | { |
a54c87b6 PM |
2280 | int asidx = cpu_asidx_from_attrs(cpu, attrs); |
2281 | CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx]; | |
32857f4d | 2282 | AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch); |
79e2b9ae | 2283 | MemoryRegionSection *sections = d->map.sections; |
9d82b5a7 PB |
2284 | |
2285 | return sections[index & ~TARGET_PAGE_MASK].mr; | |
aa102231 AK |
2286 | } |
2287 | ||
e9179ce1 AK |
2288 | static void io_mem_init(void) |
2289 | { | |
1f6245e5 | 2290 | memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX); |
2c9b15ca | 2291 | memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, |
1f6245e5 | 2292 | NULL, UINT64_MAX); |
2c9b15ca | 2293 | memory_region_init_io(&io_mem_notdirty, NULL, ¬dirty_mem_ops, NULL, |
1f6245e5 | 2294 | NULL, UINT64_MAX); |
2c9b15ca | 2295 | memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL, |
1f6245e5 | 2296 | NULL, UINT64_MAX); |
e9179ce1 AK |
2297 | } |
2298 | ||
ac1970fb | 2299 | static void mem_begin(MemoryListener *listener) |
00752703 PB |
2300 | { |
2301 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); | |
53cb28cb MA |
2302 | AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); |
2303 | uint16_t n; | |
2304 | ||
a656e22f | 2305 | n = dummy_section(&d->map, as, &io_mem_unassigned); |
53cb28cb | 2306 | assert(n == PHYS_SECTION_UNASSIGNED); |
a656e22f | 2307 | n = dummy_section(&d->map, as, &io_mem_notdirty); |
53cb28cb | 2308 | assert(n == PHYS_SECTION_NOTDIRTY); |
a656e22f | 2309 | n = dummy_section(&d->map, as, &io_mem_rom); |
53cb28cb | 2310 | assert(n == PHYS_SECTION_ROM); |
a656e22f | 2311 | n = dummy_section(&d->map, as, &io_mem_watch); |
53cb28cb | 2312 | assert(n == PHYS_SECTION_WATCH); |
00752703 | 2313 | |
9736e55b | 2314 | d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; |
00752703 PB |
2315 | d->as = as; |
2316 | as->next_dispatch = d; | |
2317 | } | |
2318 | ||
79e2b9ae PB |
2319 | static void address_space_dispatch_free(AddressSpaceDispatch *d) |
2320 | { | |
2321 | phys_sections_free(&d->map); | |
2322 | g_free(d); | |
2323 | } | |
2324 | ||
00752703 | 2325 | static void mem_commit(MemoryListener *listener) |
ac1970fb | 2326 | { |
89ae337a | 2327 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); |
0475d94f PB |
2328 | AddressSpaceDispatch *cur = as->dispatch; |
2329 | AddressSpaceDispatch *next = as->next_dispatch; | |
2330 | ||
53cb28cb | 2331 | phys_page_compact_all(next, next->map.nodes_nb); |
b35ba30f | 2332 | |
79e2b9ae | 2333 | atomic_rcu_set(&as->dispatch, next); |
53cb28cb | 2334 | if (cur) { |
79e2b9ae | 2335 | call_rcu(cur, address_space_dispatch_free, rcu); |
53cb28cb | 2336 | } |
9affd6fc PB |
2337 | } |
2338 | ||
1d71148e | 2339 | static void tcg_commit(MemoryListener *listener) |
50c1e149 | 2340 | { |
32857f4d PM |
2341 | CPUAddressSpace *cpuas; |
2342 | AddressSpaceDispatch *d; | |
117712c3 AK |
2343 | |
2344 | /* since each CPU stores ram addresses in its TLB cache, we must | |
2345 | reset the modified entries */ | |
32857f4d PM |
2346 | cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); |
2347 | cpu_reloading_memory_map(); | |
2348 | /* The CPU and TLB are protected by the iothread lock. | |
2349 | * We reload the dispatch pointer now because cpu_reloading_memory_map() | |
2350 | * may have split the RCU critical section. | |
2351 | */ | |
2352 | d = atomic_rcu_read(&cpuas->as->dispatch); | |
2353 | cpuas->memory_dispatch = d; | |
2354 | tlb_flush(cpuas->cpu, 1); | |
50c1e149 AK |
2355 | } |
2356 | ||
ac1970fb AK |
2357 | void address_space_init_dispatch(AddressSpace *as) |
2358 | { | |
00752703 | 2359 | as->dispatch = NULL; |
89ae337a | 2360 | as->dispatch_listener = (MemoryListener) { |
ac1970fb | 2361 | .begin = mem_begin, |
00752703 | 2362 | .commit = mem_commit, |
ac1970fb AK |
2363 | .region_add = mem_add, |
2364 | .region_nop = mem_add, | |
2365 | .priority = 0, | |
2366 | }; | |
89ae337a | 2367 | memory_listener_register(&as->dispatch_listener, as); |
ac1970fb AK |
2368 | } |
2369 | ||
6e48e8f9 PB |
2370 | void address_space_unregister(AddressSpace *as) |
2371 | { | |
2372 | memory_listener_unregister(&as->dispatch_listener); | |
2373 | } | |
2374 | ||
83f3c251 AK |
2375 | void address_space_destroy_dispatch(AddressSpace *as) |
2376 | { | |
2377 | AddressSpaceDispatch *d = as->dispatch; | |
2378 | ||
79e2b9ae PB |
2379 | atomic_rcu_set(&as->dispatch, NULL); |
2380 | if (d) { | |
2381 | call_rcu(d, address_space_dispatch_free, rcu); | |
2382 | } | |
83f3c251 AK |
2383 | } |
2384 | ||
62152b8a AK |
2385 | static void memory_map_init(void) |
2386 | { | |
7267c094 | 2387 | system_memory = g_malloc(sizeof(*system_memory)); |
03f49957 | 2388 | |
57271d63 | 2389 | memory_region_init(system_memory, NULL, "system", UINT64_MAX); |
7dca8043 | 2390 | address_space_init(&address_space_memory, system_memory, "memory"); |
309cb471 | 2391 | |
7267c094 | 2392 | system_io = g_malloc(sizeof(*system_io)); |
3bb28b72 JK |
2393 | memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", |
2394 | 65536); | |
7dca8043 | 2395 | address_space_init(&address_space_io, system_io, "I/O"); |
62152b8a AK |
2396 | } |
2397 | ||
2398 | MemoryRegion *get_system_memory(void) | |
2399 | { | |
2400 | return system_memory; | |
2401 | } | |
2402 | ||
309cb471 AK |
2403 | MemoryRegion *get_system_io(void) |
2404 | { | |
2405 | return system_io; | |
2406 | } | |
2407 | ||
e2eef170 PB |
2408 | #endif /* !defined(CONFIG_USER_ONLY) */ |
2409 | ||
13eb76e0 FB |
2410 | /* physical memory access (slow version, mainly for debug) */ |
2411 | #if defined(CONFIG_USER_ONLY) | |
f17ec444 | 2412 | int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, |
a68fe89c | 2413 | uint8_t *buf, int len, int is_write) |
13eb76e0 FB |
2414 | { |
2415 | int l, flags; | |
2416 | target_ulong page; | |
53a5960a | 2417 | void * p; |
13eb76e0 FB |
2418 | |
2419 | while (len > 0) { | |
2420 | page = addr & TARGET_PAGE_MASK; | |
2421 | l = (page + TARGET_PAGE_SIZE) - addr; | |
2422 | if (l > len) | |
2423 | l = len; | |
2424 | flags = page_get_flags(page); | |
2425 | if (!(flags & PAGE_VALID)) | |
a68fe89c | 2426 | return -1; |
13eb76e0 FB |
2427 | if (is_write) { |
2428 | if (!(flags & PAGE_WRITE)) | |
a68fe89c | 2429 | return -1; |
579a97f7 | 2430 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 2431 | if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) |
a68fe89c | 2432 | return -1; |
72fb7daa AJ |
2433 | memcpy(p, buf, l); |
2434 | unlock_user(p, addr, l); | |
13eb76e0 FB |
2435 | } else { |
2436 | if (!(flags & PAGE_READ)) | |
a68fe89c | 2437 | return -1; |
579a97f7 | 2438 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 2439 | if (!(p = lock_user(VERIFY_READ, addr, l, 1))) |
a68fe89c | 2440 | return -1; |
72fb7daa | 2441 | memcpy(buf, p, l); |
5b257578 | 2442 | unlock_user(p, addr, 0); |
13eb76e0 FB |
2443 | } |
2444 | len -= l; | |
2445 | buf += l; | |
2446 | addr += l; | |
2447 | } | |
a68fe89c | 2448 | return 0; |
13eb76e0 | 2449 | } |
8df1cd07 | 2450 | |
13eb76e0 | 2451 | #else |
51d7a9eb | 2452 | |
845b6214 | 2453 | static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, |
a8170e5e | 2454 | hwaddr length) |
51d7a9eb | 2455 | { |
e87f7778 PB |
2456 | uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr); |
2457 | /* No early return if dirty_log_mask is or becomes 0, because | |
2458 | * cpu_physical_memory_set_dirty_range will still call | |
2459 | * xen_modified_memory. | |
2460 | */ | |
2461 | if (dirty_log_mask) { | |
2462 | dirty_log_mask = | |
2463 | cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask); | |
2464 | } | |
2465 | if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) { | |
2466 | tb_invalidate_phys_range(addr, addr + length); | |
2467 | dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); | |
51d7a9eb | 2468 | } |
e87f7778 | 2469 | cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask); |
51d7a9eb AP |
2470 | } |
2471 | ||
23326164 | 2472 | static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) |
82f2563f | 2473 | { |
e1622f4b | 2474 | unsigned access_size_max = mr->ops->valid.max_access_size; |
23326164 RH |
2475 | |
2476 | /* Regions are assumed to support 1-4 byte accesses unless | |
2477 | otherwise specified. */ | |
23326164 RH |
2478 | if (access_size_max == 0) { |
2479 | access_size_max = 4; | |
2480 | } | |
2481 | ||
2482 | /* Bound the maximum access by the alignment of the address. */ | |
2483 | if (!mr->ops->impl.unaligned) { | |
2484 | unsigned align_size_max = addr & -addr; | |
2485 | if (align_size_max != 0 && align_size_max < access_size_max) { | |
2486 | access_size_max = align_size_max; | |
2487 | } | |
82f2563f | 2488 | } |
23326164 RH |
2489 | |
2490 | /* Don't attempt accesses larger than the maximum. */ | |
2491 | if (l > access_size_max) { | |
2492 | l = access_size_max; | |
82f2563f | 2493 | } |
6554f5c0 | 2494 | l = pow2floor(l); |
23326164 RH |
2495 | |
2496 | return l; | |
82f2563f PB |
2497 | } |
2498 | ||
4840f10e | 2499 | static bool prepare_mmio_access(MemoryRegion *mr) |
125b3806 | 2500 | { |
4840f10e JK |
2501 | bool unlocked = !qemu_mutex_iothread_locked(); |
2502 | bool release_lock = false; | |
2503 | ||
2504 | if (unlocked && mr->global_locking) { | |
2505 | qemu_mutex_lock_iothread(); | |
2506 | unlocked = false; | |
2507 | release_lock = true; | |
2508 | } | |
125b3806 | 2509 | if (mr->flush_coalesced_mmio) { |
4840f10e JK |
2510 | if (unlocked) { |
2511 | qemu_mutex_lock_iothread(); | |
2512 | } | |
125b3806 | 2513 | qemu_flush_coalesced_mmio_buffer(); |
4840f10e JK |
2514 | if (unlocked) { |
2515 | qemu_mutex_unlock_iothread(); | |
2516 | } | |
125b3806 | 2517 | } |
4840f10e JK |
2518 | |
2519 | return release_lock; | |
125b3806 PB |
2520 | } |
2521 | ||
a203ac70 PB |
2522 | /* Called within RCU critical section. */ |
2523 | static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr, | |
2524 | MemTxAttrs attrs, | |
2525 | const uint8_t *buf, | |
2526 | int len, hwaddr addr1, | |
2527 | hwaddr l, MemoryRegion *mr) | |
13eb76e0 | 2528 | { |
13eb76e0 | 2529 | uint8_t *ptr; |
791af8c8 | 2530 | uint64_t val; |
3b643495 | 2531 | MemTxResult result = MEMTX_OK; |
4840f10e | 2532 | bool release_lock = false; |
3b46e624 | 2533 | |
a203ac70 | 2534 | for (;;) { |
eb7eeb88 PB |
2535 | if (!memory_access_is_direct(mr, true)) { |
2536 | release_lock |= prepare_mmio_access(mr); | |
2537 | l = memory_access_size(mr, l, addr1); | |
2538 | /* XXX: could force current_cpu to NULL to avoid | |
2539 | potential bugs */ | |
2540 | switch (l) { | |
2541 | case 8: | |
2542 | /* 64 bit write access */ | |
2543 | val = ldq_p(buf); | |
2544 | result |= memory_region_dispatch_write(mr, addr1, val, 8, | |
2545 | attrs); | |
2546 | break; | |
2547 | case 4: | |
2548 | /* 32 bit write access */ | |
2549 | val = ldl_p(buf); | |
2550 | result |= memory_region_dispatch_write(mr, addr1, val, 4, | |
2551 | attrs); | |
2552 | break; | |
2553 | case 2: | |
2554 | /* 16 bit write access */ | |
2555 | val = lduw_p(buf); | |
2556 | result |= memory_region_dispatch_write(mr, addr1, val, 2, | |
2557 | attrs); | |
2558 | break; | |
2559 | case 1: | |
2560 | /* 8 bit write access */ | |
2561 | val = ldub_p(buf); | |
2562 | result |= memory_region_dispatch_write(mr, addr1, val, 1, | |
2563 | attrs); | |
2564 | break; | |
2565 | default: | |
2566 | abort(); | |
13eb76e0 FB |
2567 | } |
2568 | } else { | |
eb7eeb88 PB |
2569 | addr1 += memory_region_get_ram_addr(mr); |
2570 | /* RAM case */ | |
3655cb9c | 2571 | ptr = qemu_get_ram_ptr(mr->ram_block, addr1); |
eb7eeb88 PB |
2572 | memcpy(ptr, buf, l); |
2573 | invalidate_and_set_dirty(mr, addr1, l); | |
13eb76e0 | 2574 | } |
4840f10e JK |
2575 | |
2576 | if (release_lock) { | |
2577 | qemu_mutex_unlock_iothread(); | |
2578 | release_lock = false; | |
2579 | } | |
2580 | ||
13eb76e0 FB |
2581 | len -= l; |
2582 | buf += l; | |
2583 | addr += l; | |
a203ac70 PB |
2584 | |
2585 | if (!len) { | |
2586 | break; | |
2587 | } | |
2588 | ||
2589 | l = len; | |
2590 | mr = address_space_translate(as, addr, &addr1, &l, true); | |
13eb76e0 | 2591 | } |
fd8aaa76 | 2592 | |
3b643495 | 2593 | return result; |
13eb76e0 | 2594 | } |
8df1cd07 | 2595 | |
a203ac70 PB |
2596 | MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, |
2597 | const uint8_t *buf, int len) | |
ac1970fb | 2598 | { |
eb7eeb88 | 2599 | hwaddr l; |
eb7eeb88 PB |
2600 | hwaddr addr1; |
2601 | MemoryRegion *mr; | |
2602 | MemTxResult result = MEMTX_OK; | |
eb7eeb88 | 2603 | |
a203ac70 PB |
2604 | if (len > 0) { |
2605 | rcu_read_lock(); | |
eb7eeb88 | 2606 | l = len; |
a203ac70 PB |
2607 | mr = address_space_translate(as, addr, &addr1, &l, true); |
2608 | result = address_space_write_continue(as, addr, attrs, buf, len, | |
2609 | addr1, l, mr); | |
2610 | rcu_read_unlock(); | |
2611 | } | |
2612 | ||
2613 | return result; | |
2614 | } | |
2615 | ||
2616 | /* Called within RCU critical section. */ | |
2617 | MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr, | |
2618 | MemTxAttrs attrs, uint8_t *buf, | |
2619 | int len, hwaddr addr1, hwaddr l, | |
2620 | MemoryRegion *mr) | |
2621 | { | |
2622 | uint8_t *ptr; | |
2623 | uint64_t val; | |
2624 | MemTxResult result = MEMTX_OK; | |
2625 | bool release_lock = false; | |
eb7eeb88 | 2626 | |
a203ac70 | 2627 | for (;;) { |
eb7eeb88 PB |
2628 | if (!memory_access_is_direct(mr, false)) { |
2629 | /* I/O case */ | |
2630 | release_lock |= prepare_mmio_access(mr); | |
2631 | l = memory_access_size(mr, l, addr1); | |
2632 | switch (l) { | |
2633 | case 8: | |
2634 | /* 64 bit read access */ | |
2635 | result |= memory_region_dispatch_read(mr, addr1, &val, 8, | |
2636 | attrs); | |
2637 | stq_p(buf, val); | |
2638 | break; | |
2639 | case 4: | |
2640 | /* 32 bit read access */ | |
2641 | result |= memory_region_dispatch_read(mr, addr1, &val, 4, | |
2642 | attrs); | |
2643 | stl_p(buf, val); | |
2644 | break; | |
2645 | case 2: | |
2646 | /* 16 bit read access */ | |
2647 | result |= memory_region_dispatch_read(mr, addr1, &val, 2, | |
2648 | attrs); | |
2649 | stw_p(buf, val); | |
2650 | break; | |
2651 | case 1: | |
2652 | /* 8 bit read access */ | |
2653 | result |= memory_region_dispatch_read(mr, addr1, &val, 1, | |
2654 | attrs); | |
2655 | stb_p(buf, val); | |
2656 | break; | |
2657 | default: | |
2658 | abort(); | |
2659 | } | |
2660 | } else { | |
2661 | /* RAM case */ | |
8e41fb63 FZ |
2662 | ptr = qemu_get_ram_ptr(mr->ram_block, |
2663 | memory_region_get_ram_addr(mr) + addr1); | |
eb7eeb88 PB |
2664 | memcpy(buf, ptr, l); |
2665 | } | |
2666 | ||
2667 | if (release_lock) { | |
2668 | qemu_mutex_unlock_iothread(); | |
2669 | release_lock = false; | |
2670 | } | |
2671 | ||
2672 | len -= l; | |
2673 | buf += l; | |
2674 | addr += l; | |
a203ac70 PB |
2675 | |
2676 | if (!len) { | |
2677 | break; | |
2678 | } | |
2679 | ||
2680 | l = len; | |
2681 | mr = address_space_translate(as, addr, &addr1, &l, false); | |
2682 | } | |
2683 | ||
2684 | return result; | |
2685 | } | |
2686 | ||
3cc8f884 PB |
2687 | MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, |
2688 | MemTxAttrs attrs, uint8_t *buf, int len) | |
a203ac70 PB |
2689 | { |
2690 | hwaddr l; | |
2691 | hwaddr addr1; | |
2692 | MemoryRegion *mr; | |
2693 | MemTxResult result = MEMTX_OK; | |
2694 | ||
2695 | if (len > 0) { | |
2696 | rcu_read_lock(); | |
2697 | l = len; | |
2698 | mr = address_space_translate(as, addr, &addr1, &l, false); | |
2699 | result = address_space_read_continue(as, addr, attrs, buf, len, | |
2700 | addr1, l, mr); | |
2701 | rcu_read_unlock(); | |
eb7eeb88 | 2702 | } |
eb7eeb88 PB |
2703 | |
2704 | return result; | |
ac1970fb AK |
2705 | } |
2706 | ||
eb7eeb88 PB |
2707 | MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, |
2708 | uint8_t *buf, int len, bool is_write) | |
2709 | { | |
2710 | if (is_write) { | |
2711 | return address_space_write(as, addr, attrs, (uint8_t *)buf, len); | |
2712 | } else { | |
2713 | return address_space_read(as, addr, attrs, (uint8_t *)buf, len); | |
2714 | } | |
2715 | } | |
ac1970fb | 2716 | |
a8170e5e | 2717 | void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf, |
ac1970fb AK |
2718 | int len, int is_write) |
2719 | { | |
5c9eb028 PM |
2720 | address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, |
2721 | buf, len, is_write); | |
ac1970fb AK |
2722 | } |
2723 | ||
582b55a9 AG |
2724 | enum write_rom_type { |
2725 | WRITE_DATA, | |
2726 | FLUSH_CACHE, | |
2727 | }; | |
2728 | ||
2a221651 | 2729 | static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as, |
582b55a9 | 2730 | hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type) |
d0ecd2aa | 2731 | { |
149f54b5 | 2732 | hwaddr l; |
d0ecd2aa | 2733 | uint8_t *ptr; |
149f54b5 | 2734 | hwaddr addr1; |
5c8a00ce | 2735 | MemoryRegion *mr; |
3b46e624 | 2736 | |
41063e1e | 2737 | rcu_read_lock(); |
d0ecd2aa | 2738 | while (len > 0) { |
149f54b5 | 2739 | l = len; |
2a221651 | 2740 | mr = address_space_translate(as, addr, &addr1, &l, true); |
3b46e624 | 2741 | |
5c8a00ce PB |
2742 | if (!(memory_region_is_ram(mr) || |
2743 | memory_region_is_romd(mr))) { | |
b242e0e0 | 2744 | l = memory_access_size(mr, l, addr1); |
d0ecd2aa | 2745 | } else { |
5c8a00ce | 2746 | addr1 += memory_region_get_ram_addr(mr); |
d0ecd2aa | 2747 | /* ROM/RAM case */ |
3655cb9c | 2748 | ptr = qemu_get_ram_ptr(mr->ram_block, addr1); |
582b55a9 AG |
2749 | switch (type) { |
2750 | case WRITE_DATA: | |
2751 | memcpy(ptr, buf, l); | |
845b6214 | 2752 | invalidate_and_set_dirty(mr, addr1, l); |
582b55a9 AG |
2753 | break; |
2754 | case FLUSH_CACHE: | |
2755 | flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l); | |
2756 | break; | |
2757 | } | |
d0ecd2aa FB |
2758 | } |
2759 | len -= l; | |
2760 | buf += l; | |
2761 | addr += l; | |
2762 | } | |
41063e1e | 2763 | rcu_read_unlock(); |
d0ecd2aa FB |
2764 | } |
2765 | ||
582b55a9 | 2766 | /* used for ROM loading : can write in RAM and ROM */ |
2a221651 | 2767 | void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr, |
582b55a9 AG |
2768 | const uint8_t *buf, int len) |
2769 | { | |
2a221651 | 2770 | cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA); |
582b55a9 AG |
2771 | } |
2772 | ||
2773 | void cpu_flush_icache_range(hwaddr start, int len) | |
2774 | { | |
2775 | /* | |
2776 | * This function should do the same thing as an icache flush that was | |
2777 | * triggered from within the guest. For TCG we are always cache coherent, | |
2778 | * so there is no need to flush anything. For KVM / Xen we need to flush | |
2779 | * the host's instruction cache at least. | |
2780 | */ | |
2781 | if (tcg_enabled()) { | |
2782 | return; | |
2783 | } | |
2784 | ||
2a221651 EI |
2785 | cpu_physical_memory_write_rom_internal(&address_space_memory, |
2786 | start, NULL, len, FLUSH_CACHE); | |
582b55a9 AG |
2787 | } |
2788 | ||
6d16c2f8 | 2789 | typedef struct { |
d3e71559 | 2790 | MemoryRegion *mr; |
6d16c2f8 | 2791 | void *buffer; |
a8170e5e AK |
2792 | hwaddr addr; |
2793 | hwaddr len; | |
c2cba0ff | 2794 | bool in_use; |
6d16c2f8 AL |
2795 | } BounceBuffer; |
2796 | ||
2797 | static BounceBuffer bounce; | |
2798 | ||
ba223c29 | 2799 | typedef struct MapClient { |
e95205e1 | 2800 | QEMUBH *bh; |
72cf2d4f | 2801 | QLIST_ENTRY(MapClient) link; |
ba223c29 AL |
2802 | } MapClient; |
2803 | ||
38e047b5 | 2804 | QemuMutex map_client_list_lock; |
72cf2d4f BS |
2805 | static QLIST_HEAD(map_client_list, MapClient) map_client_list |
2806 | = QLIST_HEAD_INITIALIZER(map_client_list); | |
ba223c29 | 2807 | |
e95205e1 FZ |
2808 | static void cpu_unregister_map_client_do(MapClient *client) |
2809 | { | |
2810 | QLIST_REMOVE(client, link); | |
2811 | g_free(client); | |
2812 | } | |
2813 | ||
33b6c2ed FZ |
2814 | static void cpu_notify_map_clients_locked(void) |
2815 | { | |
2816 | MapClient *client; | |
2817 | ||
2818 | while (!QLIST_EMPTY(&map_client_list)) { | |
2819 | client = QLIST_FIRST(&map_client_list); | |
e95205e1 FZ |
2820 | qemu_bh_schedule(client->bh); |
2821 | cpu_unregister_map_client_do(client); | |
33b6c2ed FZ |
2822 | } |
2823 | } | |
2824 | ||
e95205e1 | 2825 | void cpu_register_map_client(QEMUBH *bh) |
ba223c29 | 2826 | { |
7267c094 | 2827 | MapClient *client = g_malloc(sizeof(*client)); |
ba223c29 | 2828 | |
38e047b5 | 2829 | qemu_mutex_lock(&map_client_list_lock); |
e95205e1 | 2830 | client->bh = bh; |
72cf2d4f | 2831 | QLIST_INSERT_HEAD(&map_client_list, client, link); |
33b6c2ed FZ |
2832 | if (!atomic_read(&bounce.in_use)) { |
2833 | cpu_notify_map_clients_locked(); | |
2834 | } | |
38e047b5 | 2835 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
2836 | } |
2837 | ||
38e047b5 | 2838 | void cpu_exec_init_all(void) |
ba223c29 | 2839 | { |
38e047b5 | 2840 | qemu_mutex_init(&ram_list.mutex); |
38e047b5 | 2841 | io_mem_init(); |
680a4783 | 2842 | memory_map_init(); |
38e047b5 | 2843 | qemu_mutex_init(&map_client_list_lock); |
ba223c29 AL |
2844 | } |
2845 | ||
e95205e1 | 2846 | void cpu_unregister_map_client(QEMUBH *bh) |
ba223c29 AL |
2847 | { |
2848 | MapClient *client; | |
2849 | ||
e95205e1 FZ |
2850 | qemu_mutex_lock(&map_client_list_lock); |
2851 | QLIST_FOREACH(client, &map_client_list, link) { | |
2852 | if (client->bh == bh) { | |
2853 | cpu_unregister_map_client_do(client); | |
2854 | break; | |
2855 | } | |
ba223c29 | 2856 | } |
e95205e1 | 2857 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
2858 | } |
2859 | ||
2860 | static void cpu_notify_map_clients(void) | |
2861 | { | |
38e047b5 | 2862 | qemu_mutex_lock(&map_client_list_lock); |
33b6c2ed | 2863 | cpu_notify_map_clients_locked(); |
38e047b5 | 2864 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
2865 | } |
2866 | ||
51644ab7 PB |
2867 | bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write) |
2868 | { | |
5c8a00ce | 2869 | MemoryRegion *mr; |
51644ab7 PB |
2870 | hwaddr l, xlat; |
2871 | ||
41063e1e | 2872 | rcu_read_lock(); |
51644ab7 PB |
2873 | while (len > 0) { |
2874 | l = len; | |
5c8a00ce PB |
2875 | mr = address_space_translate(as, addr, &xlat, &l, is_write); |
2876 | if (!memory_access_is_direct(mr, is_write)) { | |
2877 | l = memory_access_size(mr, l, addr); | |
2878 | if (!memory_region_access_valid(mr, xlat, l, is_write)) { | |
51644ab7 PB |
2879 | return false; |
2880 | } | |
2881 | } | |
2882 | ||
2883 | len -= l; | |
2884 | addr += l; | |
2885 | } | |
41063e1e | 2886 | rcu_read_unlock(); |
51644ab7 PB |
2887 | return true; |
2888 | } | |
2889 | ||
6d16c2f8 AL |
2890 | /* Map a physical memory region into a host virtual address. |
2891 | * May map a subset of the requested range, given by and returned in *plen. | |
2892 | * May return NULL if resources needed to perform the mapping are exhausted. | |
2893 | * Use only for reads OR writes - not for read-modify-write operations. | |
ba223c29 AL |
2894 | * Use cpu_register_map_client() to know when retrying the map operation is |
2895 | * likely to succeed. | |
6d16c2f8 | 2896 | */ |
ac1970fb | 2897 | void *address_space_map(AddressSpace *as, |
a8170e5e AK |
2898 | hwaddr addr, |
2899 | hwaddr *plen, | |
ac1970fb | 2900 | bool is_write) |
6d16c2f8 | 2901 | { |
a8170e5e | 2902 | hwaddr len = *plen; |
e3127ae0 PB |
2903 | hwaddr done = 0; |
2904 | hwaddr l, xlat, base; | |
2905 | MemoryRegion *mr, *this_mr; | |
2906 | ram_addr_t raddr; | |
e81bcda5 | 2907 | void *ptr; |
6d16c2f8 | 2908 | |
e3127ae0 PB |
2909 | if (len == 0) { |
2910 | return NULL; | |
2911 | } | |
38bee5dc | 2912 | |
e3127ae0 | 2913 | l = len; |
41063e1e | 2914 | rcu_read_lock(); |
e3127ae0 | 2915 | mr = address_space_translate(as, addr, &xlat, &l, is_write); |
41063e1e | 2916 | |
e3127ae0 | 2917 | if (!memory_access_is_direct(mr, is_write)) { |
c2cba0ff | 2918 | if (atomic_xchg(&bounce.in_use, true)) { |
41063e1e | 2919 | rcu_read_unlock(); |
e3127ae0 | 2920 | return NULL; |
6d16c2f8 | 2921 | } |
e85d9db5 KW |
2922 | /* Avoid unbounded allocations */ |
2923 | l = MIN(l, TARGET_PAGE_SIZE); | |
2924 | bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l); | |
e3127ae0 PB |
2925 | bounce.addr = addr; |
2926 | bounce.len = l; | |
d3e71559 PB |
2927 | |
2928 | memory_region_ref(mr); | |
2929 | bounce.mr = mr; | |
e3127ae0 | 2930 | if (!is_write) { |
5c9eb028 PM |
2931 | address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED, |
2932 | bounce.buffer, l); | |
8ab934f9 | 2933 | } |
6d16c2f8 | 2934 | |
41063e1e | 2935 | rcu_read_unlock(); |
e3127ae0 PB |
2936 | *plen = l; |
2937 | return bounce.buffer; | |
2938 | } | |
2939 | ||
2940 | base = xlat; | |
2941 | raddr = memory_region_get_ram_addr(mr); | |
2942 | ||
2943 | for (;;) { | |
6d16c2f8 AL |
2944 | len -= l; |
2945 | addr += l; | |
e3127ae0 PB |
2946 | done += l; |
2947 | if (len == 0) { | |
2948 | break; | |
2949 | } | |
2950 | ||
2951 | l = len; | |
2952 | this_mr = address_space_translate(as, addr, &xlat, &l, is_write); | |
2953 | if (this_mr != mr || xlat != base + done) { | |
2954 | break; | |
2955 | } | |
6d16c2f8 | 2956 | } |
e3127ae0 | 2957 | |
d3e71559 | 2958 | memory_region_ref(mr); |
e3127ae0 | 2959 | *plen = done; |
3655cb9c | 2960 | ptr = qemu_ram_ptr_length(mr->ram_block, raddr + base, plen); |
e81bcda5 PB |
2961 | rcu_read_unlock(); |
2962 | ||
2963 | return ptr; | |
6d16c2f8 AL |
2964 | } |
2965 | ||
ac1970fb | 2966 | /* Unmaps a memory region previously mapped by address_space_map(). |
6d16c2f8 AL |
2967 | * Will also mark the memory as dirty if is_write == 1. access_len gives |
2968 | * the amount of memory that was actually read or written by the caller. | |
2969 | */ | |
a8170e5e AK |
2970 | void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, |
2971 | int is_write, hwaddr access_len) | |
6d16c2f8 AL |
2972 | { |
2973 | if (buffer != bounce.buffer) { | |
d3e71559 PB |
2974 | MemoryRegion *mr; |
2975 | ram_addr_t addr1; | |
2976 | ||
07bdaa41 | 2977 | mr = memory_region_from_host(buffer, &addr1); |
d3e71559 | 2978 | assert(mr != NULL); |
07bdaa41 | 2979 | addr1 += memory_region_get_ram_addr(mr); |
6d16c2f8 | 2980 | if (is_write) { |
845b6214 | 2981 | invalidate_and_set_dirty(mr, addr1, access_len); |
6d16c2f8 | 2982 | } |
868bb33f | 2983 | if (xen_enabled()) { |
e41d7c69 | 2984 | xen_invalidate_map_cache_entry(buffer); |
050a0ddf | 2985 | } |
d3e71559 | 2986 | memory_region_unref(mr); |
6d16c2f8 AL |
2987 | return; |
2988 | } | |
2989 | if (is_write) { | |
5c9eb028 PM |
2990 | address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED, |
2991 | bounce.buffer, access_len); | |
6d16c2f8 | 2992 | } |
f8a83245 | 2993 | qemu_vfree(bounce.buffer); |
6d16c2f8 | 2994 | bounce.buffer = NULL; |
d3e71559 | 2995 | memory_region_unref(bounce.mr); |
c2cba0ff | 2996 | atomic_mb_set(&bounce.in_use, false); |
ba223c29 | 2997 | cpu_notify_map_clients(); |
6d16c2f8 | 2998 | } |
d0ecd2aa | 2999 | |
a8170e5e AK |
3000 | void *cpu_physical_memory_map(hwaddr addr, |
3001 | hwaddr *plen, | |
ac1970fb AK |
3002 | int is_write) |
3003 | { | |
3004 | return address_space_map(&address_space_memory, addr, plen, is_write); | |
3005 | } | |
3006 | ||
a8170e5e AK |
3007 | void cpu_physical_memory_unmap(void *buffer, hwaddr len, |
3008 | int is_write, hwaddr access_len) | |
ac1970fb AK |
3009 | { |
3010 | return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); | |
3011 | } | |
3012 | ||
8df1cd07 | 3013 | /* warning: addr must be aligned */ |
50013115 PM |
3014 | static inline uint32_t address_space_ldl_internal(AddressSpace *as, hwaddr addr, |
3015 | MemTxAttrs attrs, | |
3016 | MemTxResult *result, | |
3017 | enum device_endian endian) | |
8df1cd07 | 3018 | { |
8df1cd07 | 3019 | uint8_t *ptr; |
791af8c8 | 3020 | uint64_t val; |
5c8a00ce | 3021 | MemoryRegion *mr; |
149f54b5 PB |
3022 | hwaddr l = 4; |
3023 | hwaddr addr1; | |
50013115 | 3024 | MemTxResult r; |
4840f10e | 3025 | bool release_lock = false; |
8df1cd07 | 3026 | |
41063e1e | 3027 | rcu_read_lock(); |
fdfba1a2 | 3028 | mr = address_space_translate(as, addr, &addr1, &l, false); |
5c8a00ce | 3029 | if (l < 4 || !memory_access_is_direct(mr, false)) { |
4840f10e | 3030 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3031 | |
8df1cd07 | 3032 | /* I/O case */ |
50013115 | 3033 | r = memory_region_dispatch_read(mr, addr1, &val, 4, attrs); |
1e78bcc1 AG |
3034 | #if defined(TARGET_WORDS_BIGENDIAN) |
3035 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3036 | val = bswap32(val); | |
3037 | } | |
3038 | #else | |
3039 | if (endian == DEVICE_BIG_ENDIAN) { | |
3040 | val = bswap32(val); | |
3041 | } | |
3042 | #endif | |
8df1cd07 FB |
3043 | } else { |
3044 | /* RAM case */ | |
3655cb9c | 3045 | ptr = qemu_get_ram_ptr(mr->ram_block, |
e4e69794 | 3046 | memory_region_get_ram_addr(mr) + addr1); |
1e78bcc1 AG |
3047 | switch (endian) { |
3048 | case DEVICE_LITTLE_ENDIAN: | |
3049 | val = ldl_le_p(ptr); | |
3050 | break; | |
3051 | case DEVICE_BIG_ENDIAN: | |
3052 | val = ldl_be_p(ptr); | |
3053 | break; | |
3054 | default: | |
3055 | val = ldl_p(ptr); | |
3056 | break; | |
3057 | } | |
50013115 PM |
3058 | r = MEMTX_OK; |
3059 | } | |
3060 | if (result) { | |
3061 | *result = r; | |
8df1cd07 | 3062 | } |
4840f10e JK |
3063 | if (release_lock) { |
3064 | qemu_mutex_unlock_iothread(); | |
3065 | } | |
41063e1e | 3066 | rcu_read_unlock(); |
8df1cd07 FB |
3067 | return val; |
3068 | } | |
3069 | ||
50013115 PM |
3070 | uint32_t address_space_ldl(AddressSpace *as, hwaddr addr, |
3071 | MemTxAttrs attrs, MemTxResult *result) | |
3072 | { | |
3073 | return address_space_ldl_internal(as, addr, attrs, result, | |
3074 | DEVICE_NATIVE_ENDIAN); | |
3075 | } | |
3076 | ||
3077 | uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr, | |
3078 | MemTxAttrs attrs, MemTxResult *result) | |
3079 | { | |
3080 | return address_space_ldl_internal(as, addr, attrs, result, | |
3081 | DEVICE_LITTLE_ENDIAN); | |
3082 | } | |
3083 | ||
3084 | uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr, | |
3085 | MemTxAttrs attrs, MemTxResult *result) | |
3086 | { | |
3087 | return address_space_ldl_internal(as, addr, attrs, result, | |
3088 | DEVICE_BIG_ENDIAN); | |
3089 | } | |
3090 | ||
fdfba1a2 | 3091 | uint32_t ldl_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3092 | { |
50013115 | 3093 | return address_space_ldl(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3094 | } |
3095 | ||
fdfba1a2 | 3096 | uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3097 | { |
50013115 | 3098 | return address_space_ldl_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3099 | } |
3100 | ||
fdfba1a2 | 3101 | uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3102 | { |
50013115 | 3103 | return address_space_ldl_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3104 | } |
3105 | ||
84b7b8e7 | 3106 | /* warning: addr must be aligned */ |
50013115 PM |
3107 | static inline uint64_t address_space_ldq_internal(AddressSpace *as, hwaddr addr, |
3108 | MemTxAttrs attrs, | |
3109 | MemTxResult *result, | |
3110 | enum device_endian endian) | |
84b7b8e7 | 3111 | { |
84b7b8e7 FB |
3112 | uint8_t *ptr; |
3113 | uint64_t val; | |
5c8a00ce | 3114 | MemoryRegion *mr; |
149f54b5 PB |
3115 | hwaddr l = 8; |
3116 | hwaddr addr1; | |
50013115 | 3117 | MemTxResult r; |
4840f10e | 3118 | bool release_lock = false; |
84b7b8e7 | 3119 | |
41063e1e | 3120 | rcu_read_lock(); |
2c17449b | 3121 | mr = address_space_translate(as, addr, &addr1, &l, |
5c8a00ce PB |
3122 | false); |
3123 | if (l < 8 || !memory_access_is_direct(mr, false)) { | |
4840f10e | 3124 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3125 | |
84b7b8e7 | 3126 | /* I/O case */ |
50013115 | 3127 | r = memory_region_dispatch_read(mr, addr1, &val, 8, attrs); |
968a5627 PB |
3128 | #if defined(TARGET_WORDS_BIGENDIAN) |
3129 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3130 | val = bswap64(val); | |
3131 | } | |
3132 | #else | |
3133 | if (endian == DEVICE_BIG_ENDIAN) { | |
3134 | val = bswap64(val); | |
3135 | } | |
84b7b8e7 FB |
3136 | #endif |
3137 | } else { | |
3138 | /* RAM case */ | |
3655cb9c | 3139 | ptr = qemu_get_ram_ptr(mr->ram_block, |
e4e69794 | 3140 | memory_region_get_ram_addr(mr) + addr1); |
1e78bcc1 AG |
3141 | switch (endian) { |
3142 | case DEVICE_LITTLE_ENDIAN: | |
3143 | val = ldq_le_p(ptr); | |
3144 | break; | |
3145 | case DEVICE_BIG_ENDIAN: | |
3146 | val = ldq_be_p(ptr); | |
3147 | break; | |
3148 | default: | |
3149 | val = ldq_p(ptr); | |
3150 | break; | |
3151 | } | |
50013115 PM |
3152 | r = MEMTX_OK; |
3153 | } | |
3154 | if (result) { | |
3155 | *result = r; | |
84b7b8e7 | 3156 | } |
4840f10e JK |
3157 | if (release_lock) { |
3158 | qemu_mutex_unlock_iothread(); | |
3159 | } | |
41063e1e | 3160 | rcu_read_unlock(); |
84b7b8e7 FB |
3161 | return val; |
3162 | } | |
3163 | ||
50013115 PM |
3164 | uint64_t address_space_ldq(AddressSpace *as, hwaddr addr, |
3165 | MemTxAttrs attrs, MemTxResult *result) | |
3166 | { | |
3167 | return address_space_ldq_internal(as, addr, attrs, result, | |
3168 | DEVICE_NATIVE_ENDIAN); | |
3169 | } | |
3170 | ||
3171 | uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr, | |
3172 | MemTxAttrs attrs, MemTxResult *result) | |
3173 | { | |
3174 | return address_space_ldq_internal(as, addr, attrs, result, | |
3175 | DEVICE_LITTLE_ENDIAN); | |
3176 | } | |
3177 | ||
3178 | uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr, | |
3179 | MemTxAttrs attrs, MemTxResult *result) | |
3180 | { | |
3181 | return address_space_ldq_internal(as, addr, attrs, result, | |
3182 | DEVICE_BIG_ENDIAN); | |
3183 | } | |
3184 | ||
2c17449b | 3185 | uint64_t ldq_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3186 | { |
50013115 | 3187 | return address_space_ldq(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3188 | } |
3189 | ||
2c17449b | 3190 | uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3191 | { |
50013115 | 3192 | return address_space_ldq_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3193 | } |
3194 | ||
2c17449b | 3195 | uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3196 | { |
50013115 | 3197 | return address_space_ldq_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3198 | } |
3199 | ||
aab33094 | 3200 | /* XXX: optimize */ |
50013115 PM |
3201 | uint32_t address_space_ldub(AddressSpace *as, hwaddr addr, |
3202 | MemTxAttrs attrs, MemTxResult *result) | |
aab33094 FB |
3203 | { |
3204 | uint8_t val; | |
50013115 PM |
3205 | MemTxResult r; |
3206 | ||
3207 | r = address_space_rw(as, addr, attrs, &val, 1, 0); | |
3208 | if (result) { | |
3209 | *result = r; | |
3210 | } | |
aab33094 FB |
3211 | return val; |
3212 | } | |
3213 | ||
50013115 PM |
3214 | uint32_t ldub_phys(AddressSpace *as, hwaddr addr) |
3215 | { | |
3216 | return address_space_ldub(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); | |
3217 | } | |
3218 | ||
733f0b02 | 3219 | /* warning: addr must be aligned */ |
50013115 PM |
3220 | static inline uint32_t address_space_lduw_internal(AddressSpace *as, |
3221 | hwaddr addr, | |
3222 | MemTxAttrs attrs, | |
3223 | MemTxResult *result, | |
3224 | enum device_endian endian) | |
aab33094 | 3225 | { |
733f0b02 MT |
3226 | uint8_t *ptr; |
3227 | uint64_t val; | |
5c8a00ce | 3228 | MemoryRegion *mr; |
149f54b5 PB |
3229 | hwaddr l = 2; |
3230 | hwaddr addr1; | |
50013115 | 3231 | MemTxResult r; |
4840f10e | 3232 | bool release_lock = false; |
733f0b02 | 3233 | |
41063e1e | 3234 | rcu_read_lock(); |
41701aa4 | 3235 | mr = address_space_translate(as, addr, &addr1, &l, |
5c8a00ce PB |
3236 | false); |
3237 | if (l < 2 || !memory_access_is_direct(mr, false)) { | |
4840f10e | 3238 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3239 | |
733f0b02 | 3240 | /* I/O case */ |
50013115 | 3241 | r = memory_region_dispatch_read(mr, addr1, &val, 2, attrs); |
1e78bcc1 AG |
3242 | #if defined(TARGET_WORDS_BIGENDIAN) |
3243 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3244 | val = bswap16(val); | |
3245 | } | |
3246 | #else | |
3247 | if (endian == DEVICE_BIG_ENDIAN) { | |
3248 | val = bswap16(val); | |
3249 | } | |
3250 | #endif | |
733f0b02 MT |
3251 | } else { |
3252 | /* RAM case */ | |
3655cb9c | 3253 | ptr = qemu_get_ram_ptr(mr->ram_block, |
e4e69794 | 3254 | memory_region_get_ram_addr(mr) + addr1); |
1e78bcc1 AG |
3255 | switch (endian) { |
3256 | case DEVICE_LITTLE_ENDIAN: | |
3257 | val = lduw_le_p(ptr); | |
3258 | break; | |
3259 | case DEVICE_BIG_ENDIAN: | |
3260 | val = lduw_be_p(ptr); | |
3261 | break; | |
3262 | default: | |
3263 | val = lduw_p(ptr); | |
3264 | break; | |
3265 | } | |
50013115 PM |
3266 | r = MEMTX_OK; |
3267 | } | |
3268 | if (result) { | |
3269 | *result = r; | |
733f0b02 | 3270 | } |
4840f10e JK |
3271 | if (release_lock) { |
3272 | qemu_mutex_unlock_iothread(); | |
3273 | } | |
41063e1e | 3274 | rcu_read_unlock(); |
733f0b02 | 3275 | return val; |
aab33094 FB |
3276 | } |
3277 | ||
50013115 PM |
3278 | uint32_t address_space_lduw(AddressSpace *as, hwaddr addr, |
3279 | MemTxAttrs attrs, MemTxResult *result) | |
3280 | { | |
3281 | return address_space_lduw_internal(as, addr, attrs, result, | |
3282 | DEVICE_NATIVE_ENDIAN); | |
3283 | } | |
3284 | ||
3285 | uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr, | |
3286 | MemTxAttrs attrs, MemTxResult *result) | |
3287 | { | |
3288 | return address_space_lduw_internal(as, addr, attrs, result, | |
3289 | DEVICE_LITTLE_ENDIAN); | |
3290 | } | |
3291 | ||
3292 | uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr, | |
3293 | MemTxAttrs attrs, MemTxResult *result) | |
3294 | { | |
3295 | return address_space_lduw_internal(as, addr, attrs, result, | |
3296 | DEVICE_BIG_ENDIAN); | |
3297 | } | |
3298 | ||
41701aa4 | 3299 | uint32_t lduw_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3300 | { |
50013115 | 3301 | return address_space_lduw(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3302 | } |
3303 | ||
41701aa4 | 3304 | uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3305 | { |
50013115 | 3306 | return address_space_lduw_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3307 | } |
3308 | ||
41701aa4 | 3309 | uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3310 | { |
50013115 | 3311 | return address_space_lduw_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3312 | } |
3313 | ||
8df1cd07 FB |
3314 | /* warning: addr must be aligned. The ram page is not masked as dirty |
3315 | and the code inside is not invalidated. It is useful if the dirty | |
3316 | bits are used to track modified PTEs */ | |
50013115 PM |
3317 | void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val, |
3318 | MemTxAttrs attrs, MemTxResult *result) | |
8df1cd07 | 3319 | { |
8df1cd07 | 3320 | uint8_t *ptr; |
5c8a00ce | 3321 | MemoryRegion *mr; |
149f54b5 PB |
3322 | hwaddr l = 4; |
3323 | hwaddr addr1; | |
50013115 | 3324 | MemTxResult r; |
845b6214 | 3325 | uint8_t dirty_log_mask; |
4840f10e | 3326 | bool release_lock = false; |
8df1cd07 | 3327 | |
41063e1e | 3328 | rcu_read_lock(); |
2198a121 | 3329 | mr = address_space_translate(as, addr, &addr1, &l, |
5c8a00ce PB |
3330 | true); |
3331 | if (l < 4 || !memory_access_is_direct(mr, true)) { | |
4840f10e | 3332 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3333 | |
50013115 | 3334 | r = memory_region_dispatch_write(mr, addr1, val, 4, attrs); |
8df1cd07 | 3335 | } else { |
e4e69794 | 3336 | addr1 += memory_region_get_ram_addr(mr); |
3655cb9c | 3337 | ptr = qemu_get_ram_ptr(mr->ram_block, addr1); |
8df1cd07 | 3338 | stl_p(ptr, val); |
74576198 | 3339 | |
845b6214 PB |
3340 | dirty_log_mask = memory_region_get_dirty_log_mask(mr); |
3341 | dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); | |
58d2707e | 3342 | cpu_physical_memory_set_dirty_range(addr1, 4, dirty_log_mask); |
50013115 PM |
3343 | r = MEMTX_OK; |
3344 | } | |
3345 | if (result) { | |
3346 | *result = r; | |
8df1cd07 | 3347 | } |
4840f10e JK |
3348 | if (release_lock) { |
3349 | qemu_mutex_unlock_iothread(); | |
3350 | } | |
41063e1e | 3351 | rcu_read_unlock(); |
8df1cd07 FB |
3352 | } |
3353 | ||
50013115 PM |
3354 | void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val) |
3355 | { | |
3356 | address_space_stl_notdirty(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
3357 | } | |
3358 | ||
8df1cd07 | 3359 | /* warning: addr must be aligned */ |
50013115 PM |
3360 | static inline void address_space_stl_internal(AddressSpace *as, |
3361 | hwaddr addr, uint32_t val, | |
3362 | MemTxAttrs attrs, | |
3363 | MemTxResult *result, | |
3364 | enum device_endian endian) | |
8df1cd07 | 3365 | { |
8df1cd07 | 3366 | uint8_t *ptr; |
5c8a00ce | 3367 | MemoryRegion *mr; |
149f54b5 PB |
3368 | hwaddr l = 4; |
3369 | hwaddr addr1; | |
50013115 | 3370 | MemTxResult r; |
4840f10e | 3371 | bool release_lock = false; |
8df1cd07 | 3372 | |
41063e1e | 3373 | rcu_read_lock(); |
ab1da857 | 3374 | mr = address_space_translate(as, addr, &addr1, &l, |
5c8a00ce PB |
3375 | true); |
3376 | if (l < 4 || !memory_access_is_direct(mr, true)) { | |
4840f10e | 3377 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3378 | |
1e78bcc1 AG |
3379 | #if defined(TARGET_WORDS_BIGENDIAN) |
3380 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3381 | val = bswap32(val); | |
3382 | } | |
3383 | #else | |
3384 | if (endian == DEVICE_BIG_ENDIAN) { | |
3385 | val = bswap32(val); | |
3386 | } | |
3387 | #endif | |
50013115 | 3388 | r = memory_region_dispatch_write(mr, addr1, val, 4, attrs); |
8df1cd07 | 3389 | } else { |
8df1cd07 | 3390 | /* RAM case */ |
e4e69794 | 3391 | addr1 += memory_region_get_ram_addr(mr); |
3655cb9c | 3392 | ptr = qemu_get_ram_ptr(mr->ram_block, addr1); |
1e78bcc1 AG |
3393 | switch (endian) { |
3394 | case DEVICE_LITTLE_ENDIAN: | |
3395 | stl_le_p(ptr, val); | |
3396 | break; | |
3397 | case DEVICE_BIG_ENDIAN: | |
3398 | stl_be_p(ptr, val); | |
3399 | break; | |
3400 | default: | |
3401 | stl_p(ptr, val); | |
3402 | break; | |
3403 | } | |
845b6214 | 3404 | invalidate_and_set_dirty(mr, addr1, 4); |
50013115 PM |
3405 | r = MEMTX_OK; |
3406 | } | |
3407 | if (result) { | |
3408 | *result = r; | |
8df1cd07 | 3409 | } |
4840f10e JK |
3410 | if (release_lock) { |
3411 | qemu_mutex_unlock_iothread(); | |
3412 | } | |
41063e1e | 3413 | rcu_read_unlock(); |
8df1cd07 FB |
3414 | } |
3415 | ||
50013115 PM |
3416 | void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val, |
3417 | MemTxAttrs attrs, MemTxResult *result) | |
3418 | { | |
3419 | address_space_stl_internal(as, addr, val, attrs, result, | |
3420 | DEVICE_NATIVE_ENDIAN); | |
3421 | } | |
3422 | ||
3423 | void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val, | |
3424 | MemTxAttrs attrs, MemTxResult *result) | |
3425 | { | |
3426 | address_space_stl_internal(as, addr, val, attrs, result, | |
3427 | DEVICE_LITTLE_ENDIAN); | |
3428 | } | |
3429 | ||
3430 | void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val, | |
3431 | MemTxAttrs attrs, MemTxResult *result) | |
3432 | { | |
3433 | address_space_stl_internal(as, addr, val, attrs, result, | |
3434 | DEVICE_BIG_ENDIAN); | |
3435 | } | |
3436 | ||
ab1da857 | 3437 | void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3438 | { |
50013115 | 3439 | address_space_stl(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3440 | } |
3441 | ||
ab1da857 | 3442 | void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3443 | { |
50013115 | 3444 | address_space_stl_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3445 | } |
3446 | ||
ab1da857 | 3447 | void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3448 | { |
50013115 | 3449 | address_space_stl_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3450 | } |
3451 | ||
aab33094 | 3452 | /* XXX: optimize */ |
50013115 PM |
3453 | void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val, |
3454 | MemTxAttrs attrs, MemTxResult *result) | |
aab33094 FB |
3455 | { |
3456 | uint8_t v = val; | |
50013115 PM |
3457 | MemTxResult r; |
3458 | ||
3459 | r = address_space_rw(as, addr, attrs, &v, 1, 1); | |
3460 | if (result) { | |
3461 | *result = r; | |
3462 | } | |
3463 | } | |
3464 | ||
3465 | void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val) | |
3466 | { | |
3467 | address_space_stb(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
aab33094 FB |
3468 | } |
3469 | ||
733f0b02 | 3470 | /* warning: addr must be aligned */ |
50013115 PM |
3471 | static inline void address_space_stw_internal(AddressSpace *as, |
3472 | hwaddr addr, uint32_t val, | |
3473 | MemTxAttrs attrs, | |
3474 | MemTxResult *result, | |
3475 | enum device_endian endian) | |
aab33094 | 3476 | { |
733f0b02 | 3477 | uint8_t *ptr; |
5c8a00ce | 3478 | MemoryRegion *mr; |
149f54b5 PB |
3479 | hwaddr l = 2; |
3480 | hwaddr addr1; | |
50013115 | 3481 | MemTxResult r; |
4840f10e | 3482 | bool release_lock = false; |
733f0b02 | 3483 | |
41063e1e | 3484 | rcu_read_lock(); |
5ce5944d | 3485 | mr = address_space_translate(as, addr, &addr1, &l, true); |
5c8a00ce | 3486 | if (l < 2 || !memory_access_is_direct(mr, true)) { |
4840f10e | 3487 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3488 | |
1e78bcc1 AG |
3489 | #if defined(TARGET_WORDS_BIGENDIAN) |
3490 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3491 | val = bswap16(val); | |
3492 | } | |
3493 | #else | |
3494 | if (endian == DEVICE_BIG_ENDIAN) { | |
3495 | val = bswap16(val); | |
3496 | } | |
3497 | #endif | |
50013115 | 3498 | r = memory_region_dispatch_write(mr, addr1, val, 2, attrs); |
733f0b02 | 3499 | } else { |
733f0b02 | 3500 | /* RAM case */ |
e4e69794 | 3501 | addr1 += memory_region_get_ram_addr(mr); |
3655cb9c | 3502 | ptr = qemu_get_ram_ptr(mr->ram_block, addr1); |
1e78bcc1 AG |
3503 | switch (endian) { |
3504 | case DEVICE_LITTLE_ENDIAN: | |
3505 | stw_le_p(ptr, val); | |
3506 | break; | |
3507 | case DEVICE_BIG_ENDIAN: | |
3508 | stw_be_p(ptr, val); | |
3509 | break; | |
3510 | default: | |
3511 | stw_p(ptr, val); | |
3512 | break; | |
3513 | } | |
845b6214 | 3514 | invalidate_and_set_dirty(mr, addr1, 2); |
50013115 PM |
3515 | r = MEMTX_OK; |
3516 | } | |
3517 | if (result) { | |
3518 | *result = r; | |
733f0b02 | 3519 | } |
4840f10e JK |
3520 | if (release_lock) { |
3521 | qemu_mutex_unlock_iothread(); | |
3522 | } | |
41063e1e | 3523 | rcu_read_unlock(); |
aab33094 FB |
3524 | } |
3525 | ||
50013115 PM |
3526 | void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val, |
3527 | MemTxAttrs attrs, MemTxResult *result) | |
3528 | { | |
3529 | address_space_stw_internal(as, addr, val, attrs, result, | |
3530 | DEVICE_NATIVE_ENDIAN); | |
3531 | } | |
3532 | ||
3533 | void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val, | |
3534 | MemTxAttrs attrs, MemTxResult *result) | |
3535 | { | |
3536 | address_space_stw_internal(as, addr, val, attrs, result, | |
3537 | DEVICE_LITTLE_ENDIAN); | |
3538 | } | |
3539 | ||
3540 | void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val, | |
3541 | MemTxAttrs attrs, MemTxResult *result) | |
3542 | { | |
3543 | address_space_stw_internal(as, addr, val, attrs, result, | |
3544 | DEVICE_BIG_ENDIAN); | |
3545 | } | |
3546 | ||
5ce5944d | 3547 | void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3548 | { |
50013115 | 3549 | address_space_stw(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3550 | } |
3551 | ||
5ce5944d | 3552 | void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3553 | { |
50013115 | 3554 | address_space_stw_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3555 | } |
3556 | ||
5ce5944d | 3557 | void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3558 | { |
50013115 | 3559 | address_space_stw_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3560 | } |
3561 | ||
aab33094 | 3562 | /* XXX: optimize */ |
50013115 PM |
3563 | void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val, |
3564 | MemTxAttrs attrs, MemTxResult *result) | |
aab33094 | 3565 | { |
50013115 | 3566 | MemTxResult r; |
aab33094 | 3567 | val = tswap64(val); |
50013115 PM |
3568 | r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1); |
3569 | if (result) { | |
3570 | *result = r; | |
3571 | } | |
aab33094 FB |
3572 | } |
3573 | ||
50013115 PM |
3574 | void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val, |
3575 | MemTxAttrs attrs, MemTxResult *result) | |
1e78bcc1 | 3576 | { |
50013115 | 3577 | MemTxResult r; |
1e78bcc1 | 3578 | val = cpu_to_le64(val); |
50013115 PM |
3579 | r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1); |
3580 | if (result) { | |
3581 | *result = r; | |
3582 | } | |
3583 | } | |
3584 | void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val, | |
3585 | MemTxAttrs attrs, MemTxResult *result) | |
3586 | { | |
3587 | MemTxResult r; | |
3588 | val = cpu_to_be64(val); | |
3589 | r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1); | |
3590 | if (result) { | |
3591 | *result = r; | |
3592 | } | |
3593 | } | |
3594 | ||
3595 | void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val) | |
3596 | { | |
3597 | address_space_stq(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
3598 | } | |
3599 | ||
3600 | void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val) | |
3601 | { | |
3602 | address_space_stq_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
1e78bcc1 AG |
3603 | } |
3604 | ||
f606604f | 3605 | void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val) |
1e78bcc1 | 3606 | { |
50013115 | 3607 | address_space_stq_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3608 | } |
3609 | ||
5e2972fd | 3610 | /* virtual memory access for debug (includes writing to ROM) */ |
f17ec444 | 3611 | int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, |
b448f2f3 | 3612 | uint8_t *buf, int len, int is_write) |
13eb76e0 FB |
3613 | { |
3614 | int l; | |
a8170e5e | 3615 | hwaddr phys_addr; |
9b3c35e0 | 3616 | target_ulong page; |
13eb76e0 FB |
3617 | |
3618 | while (len > 0) { | |
5232e4c7 PM |
3619 | int asidx; |
3620 | MemTxAttrs attrs; | |
3621 | ||
13eb76e0 | 3622 | page = addr & TARGET_PAGE_MASK; |
5232e4c7 PM |
3623 | phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs); |
3624 | asidx = cpu_asidx_from_attrs(cpu, attrs); | |
13eb76e0 FB |
3625 | /* if no physical page mapped, return an error */ |
3626 | if (phys_addr == -1) | |
3627 | return -1; | |
3628 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3629 | if (l > len) | |
3630 | l = len; | |
5e2972fd | 3631 | phys_addr += (addr & ~TARGET_PAGE_MASK); |
2e38847b | 3632 | if (is_write) { |
5232e4c7 PM |
3633 | cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as, |
3634 | phys_addr, buf, l); | |
2e38847b | 3635 | } else { |
5232e4c7 PM |
3636 | address_space_rw(cpu->cpu_ases[asidx].as, phys_addr, |
3637 | MEMTXATTRS_UNSPECIFIED, | |
5c9eb028 | 3638 | buf, l, 0); |
2e38847b | 3639 | } |
13eb76e0 FB |
3640 | len -= l; |
3641 | buf += l; | |
3642 | addr += l; | |
3643 | } | |
3644 | return 0; | |
3645 | } | |
038629a6 DDAG |
3646 | |
3647 | /* | |
3648 | * Allows code that needs to deal with migration bitmaps etc to still be built | |
3649 | * target independent. | |
3650 | */ | |
3651 | size_t qemu_target_page_bits(void) | |
3652 | { | |
3653 | return TARGET_PAGE_BITS; | |
3654 | } | |
3655 | ||
a68fe89c | 3656 | #endif |
13eb76e0 | 3657 | |
8e4a424b BS |
3658 | /* |
3659 | * A helper function for the _utterly broken_ virtio device model to find out if | |
3660 | * it's running on a big endian machine. Don't do this at home kids! | |
3661 | */ | |
98ed8ecf GK |
3662 | bool target_words_bigendian(void); |
3663 | bool target_words_bigendian(void) | |
8e4a424b BS |
3664 | { |
3665 | #if defined(TARGET_WORDS_BIGENDIAN) | |
3666 | return true; | |
3667 | #else | |
3668 | return false; | |
3669 | #endif | |
3670 | } | |
3671 | ||
76f35538 | 3672 | #ifndef CONFIG_USER_ONLY |
a8170e5e | 3673 | bool cpu_physical_memory_is_io(hwaddr phys_addr) |
76f35538 | 3674 | { |
5c8a00ce | 3675 | MemoryRegion*mr; |
149f54b5 | 3676 | hwaddr l = 1; |
41063e1e | 3677 | bool res; |
76f35538 | 3678 | |
41063e1e | 3679 | rcu_read_lock(); |
5c8a00ce PB |
3680 | mr = address_space_translate(&address_space_memory, |
3681 | phys_addr, &phys_addr, &l, false); | |
76f35538 | 3682 | |
41063e1e PB |
3683 | res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr)); |
3684 | rcu_read_unlock(); | |
3685 | return res; | |
76f35538 | 3686 | } |
bd2fa51f | 3687 | |
e3807054 | 3688 | int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) |
bd2fa51f MH |
3689 | { |
3690 | RAMBlock *block; | |
e3807054 | 3691 | int ret = 0; |
bd2fa51f | 3692 | |
0dc3f44a MD |
3693 | rcu_read_lock(); |
3694 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
e3807054 DDAG |
3695 | ret = func(block->idstr, block->host, block->offset, |
3696 | block->used_length, opaque); | |
3697 | if (ret) { | |
3698 | break; | |
3699 | } | |
bd2fa51f | 3700 | } |
0dc3f44a | 3701 | rcu_read_unlock(); |
e3807054 | 3702 | return ret; |
bd2fa51f | 3703 | } |
ec3f8c99 | 3704 | #endif |