]>
Commit | Line | Data |
---|---|---|
54936004 | 1 | /* |
5b6dd868 | 2 | * Virtual page mapping |
5fafdf24 | 3 | * |
54936004 FB |
4 | * Copyright (c) 2003 Fabrice Bellard |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
8167ee88 | 17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
54936004 | 18 | */ |
67b915a5 | 19 | #include "config.h" |
777872e5 | 20 | #ifndef _WIN32 |
a98d49b1 | 21 | #include <sys/types.h> |
d5a8f07c FB |
22 | #include <sys/mman.h> |
23 | #endif | |
54936004 | 24 | |
055403b2 | 25 | #include "qemu-common.h" |
6180a181 | 26 | #include "cpu.h" |
b67d9a52 | 27 | #include "tcg.h" |
b3c7724c | 28 | #include "hw/hw.h" |
4485bd26 | 29 | #if !defined(CONFIG_USER_ONLY) |
47c8ca53 | 30 | #include "hw/boards.h" |
4485bd26 | 31 | #endif |
cc9e98cb | 32 | #include "hw/qdev.h" |
1de7afc9 | 33 | #include "qemu/osdep.h" |
9c17d615 | 34 | #include "sysemu/kvm.h" |
2ff3de68 | 35 | #include "sysemu/sysemu.h" |
0d09e41a | 36 | #include "hw/xen/xen.h" |
1de7afc9 PB |
37 | #include "qemu/timer.h" |
38 | #include "qemu/config-file.h" | |
75a34036 | 39 | #include "qemu/error-report.h" |
022c62cb | 40 | #include "exec/memory.h" |
9c17d615 | 41 | #include "sysemu/dma.h" |
022c62cb | 42 | #include "exec/address-spaces.h" |
53a5960a PB |
43 | #if defined(CONFIG_USER_ONLY) |
44 | #include <qemu.h> | |
432d268c | 45 | #else /* !CONFIG_USER_ONLY */ |
9c17d615 | 46 | #include "sysemu/xen-mapcache.h" |
6506e4f9 | 47 | #include "trace.h" |
53a5960a | 48 | #endif |
0d6d3c87 | 49 | #include "exec/cpu-all.h" |
0dc3f44a | 50 | #include "qemu/rcu_queue.h" |
4840f10e | 51 | #include "qemu/main-loop.h" |
5b6dd868 | 52 | #include "translate-all.h" |
7615936e | 53 | #include "sysemu/replay.h" |
0cac1b66 | 54 | |
022c62cb | 55 | #include "exec/memory-internal.h" |
220c3ebd | 56 | #include "exec/ram_addr.h" |
67d95c15 | 57 | |
b35ba30f | 58 | #include "qemu/range.h" |
794e8f30 MT |
59 | #ifndef _WIN32 |
60 | #include "qemu/mmap-alloc.h" | |
61 | #endif | |
b35ba30f | 62 | |
db7b5426 | 63 | //#define DEBUG_SUBPAGE |
1196be37 | 64 | |
e2eef170 | 65 | #if !defined(CONFIG_USER_ONLY) |
0dc3f44a MD |
66 | /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes |
67 | * are protected by the ramlist lock. | |
68 | */ | |
0d53d9fe | 69 | RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; |
62152b8a AK |
70 | |
71 | static MemoryRegion *system_memory; | |
309cb471 | 72 | static MemoryRegion *system_io; |
62152b8a | 73 | |
f6790af6 AK |
74 | AddressSpace address_space_io; |
75 | AddressSpace address_space_memory; | |
2673a5da | 76 | |
0844e007 | 77 | MemoryRegion io_mem_rom, io_mem_notdirty; |
acc9d80b | 78 | static MemoryRegion io_mem_unassigned; |
0e0df1e2 | 79 | |
7bd4f430 PB |
80 | /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ |
81 | #define RAM_PREALLOC (1 << 0) | |
82 | ||
dbcb8981 PB |
83 | /* RAM is mmap-ed with MAP_SHARED */ |
84 | #define RAM_SHARED (1 << 1) | |
85 | ||
62be4e3a MT |
86 | /* Only a portion of RAM (used_length) is actually used, and migrated. |
87 | * This used_length size can change across reboots. | |
88 | */ | |
89 | #define RAM_RESIZEABLE (1 << 2) | |
90 | ||
e2eef170 | 91 | #endif |
9fa3e853 | 92 | |
bdc44640 | 93 | struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus); |
6a00d601 FB |
94 | /* current CPU in the current thread. It is only valid inside |
95 | cpu_exec() */ | |
f240eb6f | 96 | __thread CPUState *current_cpu; |
2e70f6ef | 97 | /* 0 = Do not count executed instructions. |
bf20dc07 | 98 | 1 = Precise instruction counting. |
2e70f6ef | 99 | 2 = Adaptive rate instruction counting. */ |
5708fc66 | 100 | int use_icount; |
6a00d601 | 101 | |
e2eef170 | 102 | #if !defined(CONFIG_USER_ONLY) |
4346ae3e | 103 | |
1db8abb1 PB |
104 | typedef struct PhysPageEntry PhysPageEntry; |
105 | ||
106 | struct PhysPageEntry { | |
9736e55b | 107 | /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ |
8b795765 | 108 | uint32_t skip : 6; |
9736e55b | 109 | /* index into phys_sections (!skip) or phys_map_nodes (skip) */ |
8b795765 | 110 | uint32_t ptr : 26; |
1db8abb1 PB |
111 | }; |
112 | ||
8b795765 MT |
113 | #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) |
114 | ||
03f49957 | 115 | /* Size of the L2 (and L3, etc) page tables. */ |
57271d63 | 116 | #define ADDR_SPACE_BITS 64 |
03f49957 | 117 | |
026736ce | 118 | #define P_L2_BITS 9 |
03f49957 PB |
119 | #define P_L2_SIZE (1 << P_L2_BITS) |
120 | ||
121 | #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) | |
122 | ||
123 | typedef PhysPageEntry Node[P_L2_SIZE]; | |
0475d94f | 124 | |
53cb28cb | 125 | typedef struct PhysPageMap { |
79e2b9ae PB |
126 | struct rcu_head rcu; |
127 | ||
53cb28cb MA |
128 | unsigned sections_nb; |
129 | unsigned sections_nb_alloc; | |
130 | unsigned nodes_nb; | |
131 | unsigned nodes_nb_alloc; | |
132 | Node *nodes; | |
133 | MemoryRegionSection *sections; | |
134 | } PhysPageMap; | |
135 | ||
1db8abb1 | 136 | struct AddressSpaceDispatch { |
79e2b9ae PB |
137 | struct rcu_head rcu; |
138 | ||
1db8abb1 PB |
139 | /* This is a multi-level map on the physical address space. |
140 | * The bottom level has pointers to MemoryRegionSections. | |
141 | */ | |
142 | PhysPageEntry phys_map; | |
53cb28cb | 143 | PhysPageMap map; |
acc9d80b | 144 | AddressSpace *as; |
1db8abb1 PB |
145 | }; |
146 | ||
90260c6c JK |
147 | #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) |
148 | typedef struct subpage_t { | |
149 | MemoryRegion iomem; | |
acc9d80b | 150 | AddressSpace *as; |
90260c6c JK |
151 | hwaddr base; |
152 | uint16_t sub_section[TARGET_PAGE_SIZE]; | |
153 | } subpage_t; | |
154 | ||
b41aac4f LPF |
155 | #define PHYS_SECTION_UNASSIGNED 0 |
156 | #define PHYS_SECTION_NOTDIRTY 1 | |
157 | #define PHYS_SECTION_ROM 2 | |
158 | #define PHYS_SECTION_WATCH 3 | |
5312bd8b | 159 | |
e2eef170 | 160 | static void io_mem_init(void); |
62152b8a | 161 | static void memory_map_init(void); |
09daed84 | 162 | static void tcg_commit(MemoryListener *listener); |
e2eef170 | 163 | |
1ec9b909 | 164 | static MemoryRegion io_mem_watch; |
32857f4d PM |
165 | |
166 | /** | |
167 | * CPUAddressSpace: all the information a CPU needs about an AddressSpace | |
168 | * @cpu: the CPU whose AddressSpace this is | |
169 | * @as: the AddressSpace itself | |
170 | * @memory_dispatch: its dispatch pointer (cached, RCU protected) | |
171 | * @tcg_as_listener: listener for tracking changes to the AddressSpace | |
172 | */ | |
173 | struct CPUAddressSpace { | |
174 | CPUState *cpu; | |
175 | AddressSpace *as; | |
176 | struct AddressSpaceDispatch *memory_dispatch; | |
177 | MemoryListener tcg_as_listener; | |
178 | }; | |
179 | ||
6658ffb8 | 180 | #endif |
fd6ce8f6 | 181 | |
6d9a1304 | 182 | #if !defined(CONFIG_USER_ONLY) |
d6f2ea22 | 183 | |
53cb28cb | 184 | static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) |
d6f2ea22 | 185 | { |
53cb28cb MA |
186 | if (map->nodes_nb + nodes > map->nodes_nb_alloc) { |
187 | map->nodes_nb_alloc = MAX(map->nodes_nb_alloc * 2, 16); | |
188 | map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes); | |
189 | map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); | |
d6f2ea22 | 190 | } |
f7bf5461 AK |
191 | } |
192 | ||
db94604b | 193 | static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf) |
f7bf5461 AK |
194 | { |
195 | unsigned i; | |
8b795765 | 196 | uint32_t ret; |
db94604b PB |
197 | PhysPageEntry e; |
198 | PhysPageEntry *p; | |
f7bf5461 | 199 | |
53cb28cb | 200 | ret = map->nodes_nb++; |
db94604b | 201 | p = map->nodes[ret]; |
f7bf5461 | 202 | assert(ret != PHYS_MAP_NODE_NIL); |
53cb28cb | 203 | assert(ret != map->nodes_nb_alloc); |
db94604b PB |
204 | |
205 | e.skip = leaf ? 0 : 1; | |
206 | e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL; | |
03f49957 | 207 | for (i = 0; i < P_L2_SIZE; ++i) { |
db94604b | 208 | memcpy(&p[i], &e, sizeof(e)); |
d6f2ea22 | 209 | } |
f7bf5461 | 210 | return ret; |
d6f2ea22 AK |
211 | } |
212 | ||
53cb28cb MA |
213 | static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, |
214 | hwaddr *index, hwaddr *nb, uint16_t leaf, | |
2999097b | 215 | int level) |
f7bf5461 AK |
216 | { |
217 | PhysPageEntry *p; | |
03f49957 | 218 | hwaddr step = (hwaddr)1 << (level * P_L2_BITS); |
108c49b8 | 219 | |
9736e55b | 220 | if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { |
db94604b | 221 | lp->ptr = phys_map_node_alloc(map, level == 0); |
92e873b9 | 222 | } |
db94604b | 223 | p = map->nodes[lp->ptr]; |
03f49957 | 224 | lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; |
f7bf5461 | 225 | |
03f49957 | 226 | while (*nb && lp < &p[P_L2_SIZE]) { |
07f07b31 | 227 | if ((*index & (step - 1)) == 0 && *nb >= step) { |
9736e55b | 228 | lp->skip = 0; |
c19e8800 | 229 | lp->ptr = leaf; |
07f07b31 AK |
230 | *index += step; |
231 | *nb -= step; | |
2999097b | 232 | } else { |
53cb28cb | 233 | phys_page_set_level(map, lp, index, nb, leaf, level - 1); |
2999097b AK |
234 | } |
235 | ++lp; | |
f7bf5461 AK |
236 | } |
237 | } | |
238 | ||
ac1970fb | 239 | static void phys_page_set(AddressSpaceDispatch *d, |
a8170e5e | 240 | hwaddr index, hwaddr nb, |
2999097b | 241 | uint16_t leaf) |
f7bf5461 | 242 | { |
2999097b | 243 | /* Wildly overreserve - it doesn't matter much. */ |
53cb28cb | 244 | phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); |
5cd2c5b6 | 245 | |
53cb28cb | 246 | phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); |
92e873b9 FB |
247 | } |
248 | ||
b35ba30f MT |
249 | /* Compact a non leaf page entry. Simply detect that the entry has a single child, |
250 | * and update our entry so we can skip it and go directly to the destination. | |
251 | */ | |
252 | static void phys_page_compact(PhysPageEntry *lp, Node *nodes, unsigned long *compacted) | |
253 | { | |
254 | unsigned valid_ptr = P_L2_SIZE; | |
255 | int valid = 0; | |
256 | PhysPageEntry *p; | |
257 | int i; | |
258 | ||
259 | if (lp->ptr == PHYS_MAP_NODE_NIL) { | |
260 | return; | |
261 | } | |
262 | ||
263 | p = nodes[lp->ptr]; | |
264 | for (i = 0; i < P_L2_SIZE; i++) { | |
265 | if (p[i].ptr == PHYS_MAP_NODE_NIL) { | |
266 | continue; | |
267 | } | |
268 | ||
269 | valid_ptr = i; | |
270 | valid++; | |
271 | if (p[i].skip) { | |
272 | phys_page_compact(&p[i], nodes, compacted); | |
273 | } | |
274 | } | |
275 | ||
276 | /* We can only compress if there's only one child. */ | |
277 | if (valid != 1) { | |
278 | return; | |
279 | } | |
280 | ||
281 | assert(valid_ptr < P_L2_SIZE); | |
282 | ||
283 | /* Don't compress if it won't fit in the # of bits we have. */ | |
284 | if (lp->skip + p[valid_ptr].skip >= (1 << 3)) { | |
285 | return; | |
286 | } | |
287 | ||
288 | lp->ptr = p[valid_ptr].ptr; | |
289 | if (!p[valid_ptr].skip) { | |
290 | /* If our only child is a leaf, make this a leaf. */ | |
291 | /* By design, we should have made this node a leaf to begin with so we | |
292 | * should never reach here. | |
293 | * But since it's so simple to handle this, let's do it just in case we | |
294 | * change this rule. | |
295 | */ | |
296 | lp->skip = 0; | |
297 | } else { | |
298 | lp->skip += p[valid_ptr].skip; | |
299 | } | |
300 | } | |
301 | ||
302 | static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb) | |
303 | { | |
304 | DECLARE_BITMAP(compacted, nodes_nb); | |
305 | ||
306 | if (d->phys_map.skip) { | |
53cb28cb | 307 | phys_page_compact(&d->phys_map, d->map.nodes, compacted); |
b35ba30f MT |
308 | } |
309 | } | |
310 | ||
97115a8d | 311 | static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr, |
9affd6fc | 312 | Node *nodes, MemoryRegionSection *sections) |
92e873b9 | 313 | { |
31ab2b4a | 314 | PhysPageEntry *p; |
97115a8d | 315 | hwaddr index = addr >> TARGET_PAGE_BITS; |
31ab2b4a | 316 | int i; |
f1f6e3b8 | 317 | |
9736e55b | 318 | for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { |
c19e8800 | 319 | if (lp.ptr == PHYS_MAP_NODE_NIL) { |
9affd6fc | 320 | return §ions[PHYS_SECTION_UNASSIGNED]; |
31ab2b4a | 321 | } |
9affd6fc | 322 | p = nodes[lp.ptr]; |
03f49957 | 323 | lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; |
5312bd8b | 324 | } |
b35ba30f MT |
325 | |
326 | if (sections[lp.ptr].size.hi || | |
327 | range_covers_byte(sections[lp.ptr].offset_within_address_space, | |
328 | sections[lp.ptr].size.lo, addr)) { | |
329 | return §ions[lp.ptr]; | |
330 | } else { | |
331 | return §ions[PHYS_SECTION_UNASSIGNED]; | |
332 | } | |
f3705d53 AK |
333 | } |
334 | ||
e5548617 BS |
335 | bool memory_region_is_unassigned(MemoryRegion *mr) |
336 | { | |
2a8e7499 | 337 | return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device |
5b6dd868 | 338 | && mr != &io_mem_watch; |
fd6ce8f6 | 339 | } |
149f54b5 | 340 | |
79e2b9ae | 341 | /* Called from RCU critical section */ |
c7086b4a | 342 | static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, |
90260c6c JK |
343 | hwaddr addr, |
344 | bool resolve_subpage) | |
9f029603 | 345 | { |
90260c6c JK |
346 | MemoryRegionSection *section; |
347 | subpage_t *subpage; | |
348 | ||
53cb28cb | 349 | section = phys_page_find(d->phys_map, addr, d->map.nodes, d->map.sections); |
90260c6c JK |
350 | if (resolve_subpage && section->mr->subpage) { |
351 | subpage = container_of(section->mr, subpage_t, iomem); | |
53cb28cb | 352 | section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; |
90260c6c JK |
353 | } |
354 | return section; | |
9f029603 JK |
355 | } |
356 | ||
79e2b9ae | 357 | /* Called from RCU critical section */ |
90260c6c | 358 | static MemoryRegionSection * |
c7086b4a | 359 | address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, |
90260c6c | 360 | hwaddr *plen, bool resolve_subpage) |
149f54b5 PB |
361 | { |
362 | MemoryRegionSection *section; | |
965eb2fc | 363 | MemoryRegion *mr; |
a87f3954 | 364 | Int128 diff; |
149f54b5 | 365 | |
c7086b4a | 366 | section = address_space_lookup_region(d, addr, resolve_subpage); |
149f54b5 PB |
367 | /* Compute offset within MemoryRegionSection */ |
368 | addr -= section->offset_within_address_space; | |
369 | ||
370 | /* Compute offset within MemoryRegion */ | |
371 | *xlat = addr + section->offset_within_region; | |
372 | ||
965eb2fc | 373 | mr = section->mr; |
b242e0e0 PB |
374 | |
375 | /* MMIO registers can be expected to perform full-width accesses based only | |
376 | * on their address, without considering adjacent registers that could | |
377 | * decode to completely different MemoryRegions. When such registers | |
378 | * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO | |
379 | * regions overlap wildly. For this reason we cannot clamp the accesses | |
380 | * here. | |
381 | * | |
382 | * If the length is small (as is the case for address_space_ldl/stl), | |
383 | * everything works fine. If the incoming length is large, however, | |
384 | * the caller really has to do the clamping through memory_access_size. | |
385 | */ | |
965eb2fc | 386 | if (memory_region_is_ram(mr)) { |
e4a511f8 | 387 | diff = int128_sub(section->size, int128_make64(addr)); |
965eb2fc PB |
388 | *plen = int128_get64(int128_min(diff, int128_make64(*plen))); |
389 | } | |
149f54b5 PB |
390 | return section; |
391 | } | |
90260c6c | 392 | |
41063e1e | 393 | /* Called from RCU critical section */ |
5c8a00ce PB |
394 | MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr, |
395 | hwaddr *xlat, hwaddr *plen, | |
396 | bool is_write) | |
90260c6c | 397 | { |
30951157 AK |
398 | IOMMUTLBEntry iotlb; |
399 | MemoryRegionSection *section; | |
400 | MemoryRegion *mr; | |
30951157 AK |
401 | |
402 | for (;;) { | |
79e2b9ae PB |
403 | AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch); |
404 | section = address_space_translate_internal(d, addr, &addr, plen, true); | |
30951157 AK |
405 | mr = section->mr; |
406 | ||
407 | if (!mr->iommu_ops) { | |
408 | break; | |
409 | } | |
410 | ||
8d7b8cb9 | 411 | iotlb = mr->iommu_ops->translate(mr, addr, is_write); |
30951157 AK |
412 | addr = ((iotlb.translated_addr & ~iotlb.addr_mask) |
413 | | (addr & iotlb.addr_mask)); | |
23820dbf | 414 | *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1); |
30951157 AK |
415 | if (!(iotlb.perm & (1 << is_write))) { |
416 | mr = &io_mem_unassigned; | |
417 | break; | |
418 | } | |
419 | ||
420 | as = iotlb.target_as; | |
421 | } | |
422 | ||
fe680d0d | 423 | if (xen_enabled() && memory_access_is_direct(mr, is_write)) { |
a87f3954 | 424 | hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; |
23820dbf | 425 | *plen = MIN(page, *plen); |
a87f3954 PB |
426 | } |
427 | ||
30951157 AK |
428 | *xlat = addr; |
429 | return mr; | |
90260c6c JK |
430 | } |
431 | ||
79e2b9ae | 432 | /* Called from RCU critical section */ |
90260c6c | 433 | MemoryRegionSection * |
d7898cda | 434 | address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr, |
9d82b5a7 | 435 | hwaddr *xlat, hwaddr *plen) |
90260c6c | 436 | { |
30951157 | 437 | MemoryRegionSection *section; |
d7898cda PM |
438 | AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch; |
439 | ||
440 | section = address_space_translate_internal(d, addr, xlat, plen, false); | |
30951157 AK |
441 | |
442 | assert(!section->mr->iommu_ops); | |
443 | return section; | |
90260c6c | 444 | } |
5b6dd868 | 445 | #endif |
fd6ce8f6 | 446 | |
b170fce3 | 447 | #if !defined(CONFIG_USER_ONLY) |
5b6dd868 BS |
448 | |
449 | static int cpu_common_post_load(void *opaque, int version_id) | |
fd6ce8f6 | 450 | { |
259186a7 | 451 | CPUState *cpu = opaque; |
a513fe19 | 452 | |
5b6dd868 BS |
453 | /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the |
454 | version_id is increased. */ | |
259186a7 | 455 | cpu->interrupt_request &= ~0x01; |
c01a71c1 | 456 | tlb_flush(cpu, 1); |
5b6dd868 BS |
457 | |
458 | return 0; | |
a513fe19 | 459 | } |
7501267e | 460 | |
6c3bff0e PD |
461 | static int cpu_common_pre_load(void *opaque) |
462 | { | |
463 | CPUState *cpu = opaque; | |
464 | ||
adee6424 | 465 | cpu->exception_index = -1; |
6c3bff0e PD |
466 | |
467 | return 0; | |
468 | } | |
469 | ||
470 | static bool cpu_common_exception_index_needed(void *opaque) | |
471 | { | |
472 | CPUState *cpu = opaque; | |
473 | ||
adee6424 | 474 | return tcg_enabled() && cpu->exception_index != -1; |
6c3bff0e PD |
475 | } |
476 | ||
477 | static const VMStateDescription vmstate_cpu_common_exception_index = { | |
478 | .name = "cpu_common/exception_index", | |
479 | .version_id = 1, | |
480 | .minimum_version_id = 1, | |
5cd8cada | 481 | .needed = cpu_common_exception_index_needed, |
6c3bff0e PD |
482 | .fields = (VMStateField[]) { |
483 | VMSTATE_INT32(exception_index, CPUState), | |
484 | VMSTATE_END_OF_LIST() | |
485 | } | |
486 | }; | |
487 | ||
bac05aa9 AS |
488 | static bool cpu_common_crash_occurred_needed(void *opaque) |
489 | { | |
490 | CPUState *cpu = opaque; | |
491 | ||
492 | return cpu->crash_occurred; | |
493 | } | |
494 | ||
495 | static const VMStateDescription vmstate_cpu_common_crash_occurred = { | |
496 | .name = "cpu_common/crash_occurred", | |
497 | .version_id = 1, | |
498 | .minimum_version_id = 1, | |
499 | .needed = cpu_common_crash_occurred_needed, | |
500 | .fields = (VMStateField[]) { | |
501 | VMSTATE_BOOL(crash_occurred, CPUState), | |
502 | VMSTATE_END_OF_LIST() | |
503 | } | |
504 | }; | |
505 | ||
1a1562f5 | 506 | const VMStateDescription vmstate_cpu_common = { |
5b6dd868 BS |
507 | .name = "cpu_common", |
508 | .version_id = 1, | |
509 | .minimum_version_id = 1, | |
6c3bff0e | 510 | .pre_load = cpu_common_pre_load, |
5b6dd868 | 511 | .post_load = cpu_common_post_load, |
35d08458 | 512 | .fields = (VMStateField[]) { |
259186a7 AF |
513 | VMSTATE_UINT32(halted, CPUState), |
514 | VMSTATE_UINT32(interrupt_request, CPUState), | |
5b6dd868 | 515 | VMSTATE_END_OF_LIST() |
6c3bff0e | 516 | }, |
5cd8cada JQ |
517 | .subsections = (const VMStateDescription*[]) { |
518 | &vmstate_cpu_common_exception_index, | |
bac05aa9 | 519 | &vmstate_cpu_common_crash_occurred, |
5cd8cada | 520 | NULL |
5b6dd868 BS |
521 | } |
522 | }; | |
1a1562f5 | 523 | |
5b6dd868 | 524 | #endif |
ea041c0e | 525 | |
38d8f5c8 | 526 | CPUState *qemu_get_cpu(int index) |
ea041c0e | 527 | { |
bdc44640 | 528 | CPUState *cpu; |
ea041c0e | 529 | |
bdc44640 | 530 | CPU_FOREACH(cpu) { |
55e5c285 | 531 | if (cpu->cpu_index == index) { |
bdc44640 | 532 | return cpu; |
55e5c285 | 533 | } |
ea041c0e | 534 | } |
5b6dd868 | 535 | |
bdc44640 | 536 | return NULL; |
ea041c0e FB |
537 | } |
538 | ||
09daed84 | 539 | #if !defined(CONFIG_USER_ONLY) |
56943e8c | 540 | void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx) |
09daed84 | 541 | { |
12ebc9a7 PM |
542 | CPUAddressSpace *newas; |
543 | ||
544 | /* Target code should have set num_ases before calling us */ | |
545 | assert(asidx < cpu->num_ases); | |
546 | ||
56943e8c PM |
547 | if (asidx == 0) { |
548 | /* address space 0 gets the convenience alias */ | |
549 | cpu->as = as; | |
550 | } | |
551 | ||
12ebc9a7 PM |
552 | /* KVM cannot currently support multiple address spaces. */ |
553 | assert(asidx == 0 || !kvm_enabled()); | |
09daed84 | 554 | |
12ebc9a7 PM |
555 | if (!cpu->cpu_ases) { |
556 | cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases); | |
09daed84 | 557 | } |
32857f4d | 558 | |
12ebc9a7 PM |
559 | newas = &cpu->cpu_ases[asidx]; |
560 | newas->cpu = cpu; | |
561 | newas->as = as; | |
56943e8c | 562 | if (tcg_enabled()) { |
12ebc9a7 PM |
563 | newas->tcg_as_listener.commit = tcg_commit; |
564 | memory_listener_register(&newas->tcg_as_listener, as); | |
56943e8c | 565 | } |
09daed84 | 566 | } |
651a5bc0 PM |
567 | |
568 | AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx) | |
569 | { | |
570 | /* Return the AddressSpace corresponding to the specified index */ | |
571 | return cpu->cpu_ases[asidx].as; | |
572 | } | |
09daed84 EI |
573 | #endif |
574 | ||
b7bca733 BR |
575 | #ifndef CONFIG_USER_ONLY |
576 | static DECLARE_BITMAP(cpu_index_map, MAX_CPUMASK_BITS); | |
577 | ||
578 | static int cpu_get_free_index(Error **errp) | |
579 | { | |
580 | int cpu = find_first_zero_bit(cpu_index_map, MAX_CPUMASK_BITS); | |
581 | ||
582 | if (cpu >= MAX_CPUMASK_BITS) { | |
583 | error_setg(errp, "Trying to use more CPUs than max of %d", | |
584 | MAX_CPUMASK_BITS); | |
585 | return -1; | |
586 | } | |
587 | ||
588 | bitmap_set(cpu_index_map, cpu, 1); | |
589 | return cpu; | |
590 | } | |
591 | ||
592 | void cpu_exec_exit(CPUState *cpu) | |
593 | { | |
594 | if (cpu->cpu_index == -1) { | |
595 | /* cpu_index was never allocated by this @cpu or was already freed. */ | |
596 | return; | |
597 | } | |
598 | ||
599 | bitmap_clear(cpu_index_map, cpu->cpu_index, 1); | |
600 | cpu->cpu_index = -1; | |
601 | } | |
602 | #else | |
603 | ||
604 | static int cpu_get_free_index(Error **errp) | |
605 | { | |
606 | CPUState *some_cpu; | |
607 | int cpu_index = 0; | |
608 | ||
609 | CPU_FOREACH(some_cpu) { | |
610 | cpu_index++; | |
611 | } | |
612 | return cpu_index; | |
613 | } | |
614 | ||
615 | void cpu_exec_exit(CPUState *cpu) | |
616 | { | |
617 | } | |
618 | #endif | |
619 | ||
4bad9e39 | 620 | void cpu_exec_init(CPUState *cpu, Error **errp) |
ea041c0e | 621 | { |
b170fce3 | 622 | CPUClass *cc = CPU_GET_CLASS(cpu); |
5b6dd868 | 623 | int cpu_index; |
b7bca733 | 624 | Error *local_err = NULL; |
5b6dd868 | 625 | |
56943e8c | 626 | cpu->as = NULL; |
12ebc9a7 | 627 | cpu->num_ases = 0; |
56943e8c | 628 | |
291135b5 | 629 | #ifndef CONFIG_USER_ONLY |
291135b5 | 630 | cpu->thread_id = qemu_get_thread_id(); |
291135b5 EH |
631 | #endif |
632 | ||
5b6dd868 BS |
633 | #if defined(CONFIG_USER_ONLY) |
634 | cpu_list_lock(); | |
635 | #endif | |
b7bca733 BR |
636 | cpu_index = cpu->cpu_index = cpu_get_free_index(&local_err); |
637 | if (local_err) { | |
638 | error_propagate(errp, local_err); | |
639 | #if defined(CONFIG_USER_ONLY) | |
640 | cpu_list_unlock(); | |
641 | #endif | |
642 | return; | |
5b6dd868 | 643 | } |
bdc44640 | 644 | QTAILQ_INSERT_TAIL(&cpus, cpu, node); |
5b6dd868 BS |
645 | #if defined(CONFIG_USER_ONLY) |
646 | cpu_list_unlock(); | |
647 | #endif | |
e0d47944 AF |
648 | if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { |
649 | vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu); | |
650 | } | |
5b6dd868 | 651 | #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY) |
5b6dd868 | 652 | register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION, |
4bad9e39 | 653 | cpu_save, cpu_load, cpu->env_ptr); |
b170fce3 | 654 | assert(cc->vmsd == NULL); |
e0d47944 | 655 | assert(qdev_get_vmsd(DEVICE(cpu)) == NULL); |
5b6dd868 | 656 | #endif |
b170fce3 AF |
657 | if (cc->vmsd != NULL) { |
658 | vmstate_register(NULL, cpu_index, cc->vmsd, cpu); | |
659 | } | |
ea041c0e FB |
660 | } |
661 | ||
94df27fd | 662 | #if defined(CONFIG_USER_ONLY) |
00b941e5 | 663 | static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) |
94df27fd PB |
664 | { |
665 | tb_invalidate_phys_page_range(pc, pc + 1, 0); | |
666 | } | |
667 | #else | |
00b941e5 | 668 | static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) |
1e7855a5 | 669 | { |
5232e4c7 PM |
670 | MemTxAttrs attrs; |
671 | hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs); | |
672 | int asidx = cpu_asidx_from_attrs(cpu, attrs); | |
e8262a1b | 673 | if (phys != -1) { |
5232e4c7 | 674 | tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as, |
29d8ec7b | 675 | phys | (pc & ~TARGET_PAGE_MASK)); |
e8262a1b | 676 | } |
1e7855a5 | 677 | } |
c27004ec | 678 | #endif |
d720b93d | 679 | |
c527ee8f | 680 | #if defined(CONFIG_USER_ONLY) |
75a34036 | 681 | void cpu_watchpoint_remove_all(CPUState *cpu, int mask) |
c527ee8f PB |
682 | |
683 | { | |
684 | } | |
685 | ||
3ee887e8 PM |
686 | int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, |
687 | int flags) | |
688 | { | |
689 | return -ENOSYS; | |
690 | } | |
691 | ||
692 | void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) | |
693 | { | |
694 | } | |
695 | ||
75a34036 | 696 | int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, |
c527ee8f PB |
697 | int flags, CPUWatchpoint **watchpoint) |
698 | { | |
699 | return -ENOSYS; | |
700 | } | |
701 | #else | |
6658ffb8 | 702 | /* Add a watchpoint. */ |
75a34036 | 703 | int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, |
a1d1bb31 | 704 | int flags, CPUWatchpoint **watchpoint) |
6658ffb8 | 705 | { |
c0ce998e | 706 | CPUWatchpoint *wp; |
6658ffb8 | 707 | |
05068c0d | 708 | /* forbid ranges which are empty or run off the end of the address space */ |
07e2863d | 709 | if (len == 0 || (addr + len - 1) < addr) { |
75a34036 AF |
710 | error_report("tried to set invalid watchpoint at %" |
711 | VADDR_PRIx ", len=%" VADDR_PRIu, addr, len); | |
b4051334 AL |
712 | return -EINVAL; |
713 | } | |
7267c094 | 714 | wp = g_malloc(sizeof(*wp)); |
a1d1bb31 AL |
715 | |
716 | wp->vaddr = addr; | |
05068c0d | 717 | wp->len = len; |
a1d1bb31 AL |
718 | wp->flags = flags; |
719 | ||
2dc9f411 | 720 | /* keep all GDB-injected watchpoints in front */ |
ff4700b0 AF |
721 | if (flags & BP_GDB) { |
722 | QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry); | |
723 | } else { | |
724 | QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry); | |
725 | } | |
6658ffb8 | 726 | |
31b030d4 | 727 | tlb_flush_page(cpu, addr); |
a1d1bb31 AL |
728 | |
729 | if (watchpoint) | |
730 | *watchpoint = wp; | |
731 | return 0; | |
6658ffb8 PB |
732 | } |
733 | ||
a1d1bb31 | 734 | /* Remove a specific watchpoint. */ |
75a34036 | 735 | int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, |
a1d1bb31 | 736 | int flags) |
6658ffb8 | 737 | { |
a1d1bb31 | 738 | CPUWatchpoint *wp; |
6658ffb8 | 739 | |
ff4700b0 | 740 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d | 741 | if (addr == wp->vaddr && len == wp->len |
6e140f28 | 742 | && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { |
75a34036 | 743 | cpu_watchpoint_remove_by_ref(cpu, wp); |
6658ffb8 PB |
744 | return 0; |
745 | } | |
746 | } | |
a1d1bb31 | 747 | return -ENOENT; |
6658ffb8 PB |
748 | } |
749 | ||
a1d1bb31 | 750 | /* Remove a specific watchpoint by reference. */ |
75a34036 | 751 | void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) |
a1d1bb31 | 752 | { |
ff4700b0 | 753 | QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry); |
7d03f82f | 754 | |
31b030d4 | 755 | tlb_flush_page(cpu, watchpoint->vaddr); |
a1d1bb31 | 756 | |
7267c094 | 757 | g_free(watchpoint); |
a1d1bb31 AL |
758 | } |
759 | ||
760 | /* Remove all matching watchpoints. */ | |
75a34036 | 761 | void cpu_watchpoint_remove_all(CPUState *cpu, int mask) |
a1d1bb31 | 762 | { |
c0ce998e | 763 | CPUWatchpoint *wp, *next; |
a1d1bb31 | 764 | |
ff4700b0 | 765 | QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) { |
75a34036 AF |
766 | if (wp->flags & mask) { |
767 | cpu_watchpoint_remove_by_ref(cpu, wp); | |
768 | } | |
c0ce998e | 769 | } |
7d03f82f | 770 | } |
05068c0d PM |
771 | |
772 | /* Return true if this watchpoint address matches the specified | |
773 | * access (ie the address range covered by the watchpoint overlaps | |
774 | * partially or completely with the address range covered by the | |
775 | * access). | |
776 | */ | |
777 | static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp, | |
778 | vaddr addr, | |
779 | vaddr len) | |
780 | { | |
781 | /* We know the lengths are non-zero, but a little caution is | |
782 | * required to avoid errors in the case where the range ends | |
783 | * exactly at the top of the address space and so addr + len | |
784 | * wraps round to zero. | |
785 | */ | |
786 | vaddr wpend = wp->vaddr + wp->len - 1; | |
787 | vaddr addrend = addr + len - 1; | |
788 | ||
789 | return !(addr > wpend || wp->vaddr > addrend); | |
790 | } | |
791 | ||
c527ee8f | 792 | #endif |
7d03f82f | 793 | |
a1d1bb31 | 794 | /* Add a breakpoint. */ |
b3310ab3 | 795 | int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, |
a1d1bb31 | 796 | CPUBreakpoint **breakpoint) |
4c3a88a2 | 797 | { |
c0ce998e | 798 | CPUBreakpoint *bp; |
3b46e624 | 799 | |
7267c094 | 800 | bp = g_malloc(sizeof(*bp)); |
4c3a88a2 | 801 | |
a1d1bb31 AL |
802 | bp->pc = pc; |
803 | bp->flags = flags; | |
804 | ||
2dc9f411 | 805 | /* keep all GDB-injected breakpoints in front */ |
00b941e5 | 806 | if (flags & BP_GDB) { |
f0c3c505 | 807 | QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry); |
00b941e5 | 808 | } else { |
f0c3c505 | 809 | QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry); |
00b941e5 | 810 | } |
3b46e624 | 811 | |
f0c3c505 | 812 | breakpoint_invalidate(cpu, pc); |
a1d1bb31 | 813 | |
00b941e5 | 814 | if (breakpoint) { |
a1d1bb31 | 815 | *breakpoint = bp; |
00b941e5 | 816 | } |
4c3a88a2 | 817 | return 0; |
4c3a88a2 FB |
818 | } |
819 | ||
a1d1bb31 | 820 | /* Remove a specific breakpoint. */ |
b3310ab3 | 821 | int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags) |
a1d1bb31 | 822 | { |
a1d1bb31 AL |
823 | CPUBreakpoint *bp; |
824 | ||
f0c3c505 | 825 | QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { |
a1d1bb31 | 826 | if (bp->pc == pc && bp->flags == flags) { |
b3310ab3 | 827 | cpu_breakpoint_remove_by_ref(cpu, bp); |
a1d1bb31 AL |
828 | return 0; |
829 | } | |
7d03f82f | 830 | } |
a1d1bb31 | 831 | return -ENOENT; |
7d03f82f EI |
832 | } |
833 | ||
a1d1bb31 | 834 | /* Remove a specific breakpoint by reference. */ |
b3310ab3 | 835 | void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint) |
4c3a88a2 | 836 | { |
f0c3c505 AF |
837 | QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry); |
838 | ||
839 | breakpoint_invalidate(cpu, breakpoint->pc); | |
a1d1bb31 | 840 | |
7267c094 | 841 | g_free(breakpoint); |
a1d1bb31 AL |
842 | } |
843 | ||
844 | /* Remove all matching breakpoints. */ | |
b3310ab3 | 845 | void cpu_breakpoint_remove_all(CPUState *cpu, int mask) |
a1d1bb31 | 846 | { |
c0ce998e | 847 | CPUBreakpoint *bp, *next; |
a1d1bb31 | 848 | |
f0c3c505 | 849 | QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) { |
b3310ab3 AF |
850 | if (bp->flags & mask) { |
851 | cpu_breakpoint_remove_by_ref(cpu, bp); | |
852 | } | |
c0ce998e | 853 | } |
4c3a88a2 FB |
854 | } |
855 | ||
c33a346e FB |
856 | /* enable or disable single step mode. EXCP_DEBUG is returned by the |
857 | CPU loop after each instruction */ | |
3825b28f | 858 | void cpu_single_step(CPUState *cpu, int enabled) |
c33a346e | 859 | { |
ed2803da AF |
860 | if (cpu->singlestep_enabled != enabled) { |
861 | cpu->singlestep_enabled = enabled; | |
862 | if (kvm_enabled()) { | |
38e478ec | 863 | kvm_update_guest_debug(cpu, 0); |
ed2803da | 864 | } else { |
ccbb4d44 | 865 | /* must flush all the translated code to avoid inconsistencies */ |
e22a25c9 | 866 | /* XXX: only flush what is necessary */ |
bbd77c18 | 867 | tb_flush(cpu); |
e22a25c9 | 868 | } |
c33a346e | 869 | } |
c33a346e FB |
870 | } |
871 | ||
a47dddd7 | 872 | void cpu_abort(CPUState *cpu, const char *fmt, ...) |
7501267e FB |
873 | { |
874 | va_list ap; | |
493ae1f0 | 875 | va_list ap2; |
7501267e FB |
876 | |
877 | va_start(ap, fmt); | |
493ae1f0 | 878 | va_copy(ap2, ap); |
7501267e FB |
879 | fprintf(stderr, "qemu: fatal: "); |
880 | vfprintf(stderr, fmt, ap); | |
881 | fprintf(stderr, "\n"); | |
878096ee | 882 | cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP); |
013a2942 | 883 | if (qemu_log_separate()) { |
93fcfe39 AL |
884 | qemu_log("qemu: fatal: "); |
885 | qemu_log_vprintf(fmt, ap2); | |
886 | qemu_log("\n"); | |
a0762859 | 887 | log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP); |
31b1a7b4 | 888 | qemu_log_flush(); |
93fcfe39 | 889 | qemu_log_close(); |
924edcae | 890 | } |
493ae1f0 | 891 | va_end(ap2); |
f9373291 | 892 | va_end(ap); |
7615936e | 893 | replay_finish(); |
fd052bf6 RV |
894 | #if defined(CONFIG_USER_ONLY) |
895 | { | |
896 | struct sigaction act; | |
897 | sigfillset(&act.sa_mask); | |
898 | act.sa_handler = SIG_DFL; | |
899 | sigaction(SIGABRT, &act, NULL); | |
900 | } | |
901 | #endif | |
7501267e FB |
902 | abort(); |
903 | } | |
904 | ||
0124311e | 905 | #if !defined(CONFIG_USER_ONLY) |
0dc3f44a | 906 | /* Called from RCU critical section */ |
041603fe PB |
907 | static RAMBlock *qemu_get_ram_block(ram_addr_t addr) |
908 | { | |
909 | RAMBlock *block; | |
910 | ||
43771539 | 911 | block = atomic_rcu_read(&ram_list.mru_block); |
9b8424d5 | 912 | if (block && addr - block->offset < block->max_length) { |
68851b98 | 913 | return block; |
041603fe | 914 | } |
0dc3f44a | 915 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
9b8424d5 | 916 | if (addr - block->offset < block->max_length) { |
041603fe PB |
917 | goto found; |
918 | } | |
919 | } | |
920 | ||
921 | fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); | |
922 | abort(); | |
923 | ||
924 | found: | |
43771539 PB |
925 | /* It is safe to write mru_block outside the iothread lock. This |
926 | * is what happens: | |
927 | * | |
928 | * mru_block = xxx | |
929 | * rcu_read_unlock() | |
930 | * xxx removed from list | |
931 | * rcu_read_lock() | |
932 | * read mru_block | |
933 | * mru_block = NULL; | |
934 | * call_rcu(reclaim_ramblock, xxx); | |
935 | * rcu_read_unlock() | |
936 | * | |
937 | * atomic_rcu_set is not needed here. The block was already published | |
938 | * when it was placed into the list. Here we're just making an extra | |
939 | * copy of the pointer. | |
940 | */ | |
041603fe PB |
941 | ram_list.mru_block = block; |
942 | return block; | |
943 | } | |
944 | ||
a2f4d5be | 945 | static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) |
d24981d3 | 946 | { |
9a13565d | 947 | CPUState *cpu; |
041603fe | 948 | ram_addr_t start1; |
a2f4d5be JQ |
949 | RAMBlock *block; |
950 | ram_addr_t end; | |
951 | ||
952 | end = TARGET_PAGE_ALIGN(start + length); | |
953 | start &= TARGET_PAGE_MASK; | |
d24981d3 | 954 | |
0dc3f44a | 955 | rcu_read_lock(); |
041603fe PB |
956 | block = qemu_get_ram_block(start); |
957 | assert(block == qemu_get_ram_block(end - 1)); | |
1240be24 | 958 | start1 = (uintptr_t)ramblock_ptr(block, start - block->offset); |
9a13565d PC |
959 | CPU_FOREACH(cpu) { |
960 | tlb_reset_dirty(cpu, start1, length); | |
961 | } | |
0dc3f44a | 962 | rcu_read_unlock(); |
d24981d3 JQ |
963 | } |
964 | ||
5579c7f3 | 965 | /* Note: start and end must be within the same ram block. */ |
03eebc9e SH |
966 | bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, |
967 | ram_addr_t length, | |
968 | unsigned client) | |
1ccde1cb | 969 | { |
03eebc9e SH |
970 | unsigned long end, page; |
971 | bool dirty; | |
972 | ||
973 | if (length == 0) { | |
974 | return false; | |
975 | } | |
f23db169 | 976 | |
03eebc9e SH |
977 | end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; |
978 | page = start >> TARGET_PAGE_BITS; | |
979 | dirty = bitmap_test_and_clear_atomic(ram_list.dirty_memory[client], | |
980 | page, end - page); | |
981 | ||
982 | if (dirty && tcg_enabled()) { | |
a2f4d5be | 983 | tlb_reset_dirty_range_all(start, length); |
5579c7f3 | 984 | } |
03eebc9e SH |
985 | |
986 | return dirty; | |
1ccde1cb FB |
987 | } |
988 | ||
79e2b9ae | 989 | /* Called from RCU critical section */ |
bb0e627a | 990 | hwaddr memory_region_section_get_iotlb(CPUState *cpu, |
149f54b5 PB |
991 | MemoryRegionSection *section, |
992 | target_ulong vaddr, | |
993 | hwaddr paddr, hwaddr xlat, | |
994 | int prot, | |
995 | target_ulong *address) | |
e5548617 | 996 | { |
a8170e5e | 997 | hwaddr iotlb; |
e5548617 BS |
998 | CPUWatchpoint *wp; |
999 | ||
cc5bea60 | 1000 | if (memory_region_is_ram(section->mr)) { |
e5548617 BS |
1001 | /* Normal RAM. */ |
1002 | iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK) | |
149f54b5 | 1003 | + xlat; |
e5548617 | 1004 | if (!section->readonly) { |
b41aac4f | 1005 | iotlb |= PHYS_SECTION_NOTDIRTY; |
e5548617 | 1006 | } else { |
b41aac4f | 1007 | iotlb |= PHYS_SECTION_ROM; |
e5548617 BS |
1008 | } |
1009 | } else { | |
0b8e2c10 PM |
1010 | AddressSpaceDispatch *d; |
1011 | ||
1012 | d = atomic_rcu_read(§ion->address_space->dispatch); | |
1013 | iotlb = section - d->map.sections; | |
149f54b5 | 1014 | iotlb += xlat; |
e5548617 BS |
1015 | } |
1016 | ||
1017 | /* Make accesses to pages with watchpoints go via the | |
1018 | watchpoint trap routines. */ | |
ff4700b0 | 1019 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d | 1020 | if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) { |
e5548617 BS |
1021 | /* Avoid trapping reads of pages with a write breakpoint. */ |
1022 | if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) { | |
b41aac4f | 1023 | iotlb = PHYS_SECTION_WATCH + paddr; |
e5548617 BS |
1024 | *address |= TLB_MMIO; |
1025 | break; | |
1026 | } | |
1027 | } | |
1028 | } | |
1029 | ||
1030 | return iotlb; | |
1031 | } | |
9fa3e853 FB |
1032 | #endif /* defined(CONFIG_USER_ONLY) */ |
1033 | ||
e2eef170 | 1034 | #if !defined(CONFIG_USER_ONLY) |
8da3ff18 | 1035 | |
c227f099 | 1036 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, |
5312bd8b | 1037 | uint16_t section); |
acc9d80b | 1038 | static subpage_t *subpage_init(AddressSpace *as, hwaddr base); |
54688b1e | 1039 | |
a2b257d6 IM |
1040 | static void *(*phys_mem_alloc)(size_t size, uint64_t *align) = |
1041 | qemu_anon_ram_alloc; | |
91138037 MA |
1042 | |
1043 | /* | |
1044 | * Set a custom physical guest memory alloator. | |
1045 | * Accelerators with unusual needs may need this. Hopefully, we can | |
1046 | * get rid of it eventually. | |
1047 | */ | |
a2b257d6 | 1048 | void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align)) |
91138037 MA |
1049 | { |
1050 | phys_mem_alloc = alloc; | |
1051 | } | |
1052 | ||
53cb28cb MA |
1053 | static uint16_t phys_section_add(PhysPageMap *map, |
1054 | MemoryRegionSection *section) | |
5312bd8b | 1055 | { |
68f3f65b PB |
1056 | /* The physical section number is ORed with a page-aligned |
1057 | * pointer to produce the iotlb entries. Thus it should | |
1058 | * never overflow into the page-aligned value. | |
1059 | */ | |
53cb28cb | 1060 | assert(map->sections_nb < TARGET_PAGE_SIZE); |
68f3f65b | 1061 | |
53cb28cb MA |
1062 | if (map->sections_nb == map->sections_nb_alloc) { |
1063 | map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); | |
1064 | map->sections = g_renew(MemoryRegionSection, map->sections, | |
1065 | map->sections_nb_alloc); | |
5312bd8b | 1066 | } |
53cb28cb | 1067 | map->sections[map->sections_nb] = *section; |
dfde4e6e | 1068 | memory_region_ref(section->mr); |
53cb28cb | 1069 | return map->sections_nb++; |
5312bd8b AK |
1070 | } |
1071 | ||
058bc4b5 PB |
1072 | static void phys_section_destroy(MemoryRegion *mr) |
1073 | { | |
55b4e80b DS |
1074 | bool have_sub_page = mr->subpage; |
1075 | ||
dfde4e6e PB |
1076 | memory_region_unref(mr); |
1077 | ||
55b4e80b | 1078 | if (have_sub_page) { |
058bc4b5 | 1079 | subpage_t *subpage = container_of(mr, subpage_t, iomem); |
b4fefef9 | 1080 | object_unref(OBJECT(&subpage->iomem)); |
058bc4b5 PB |
1081 | g_free(subpage); |
1082 | } | |
1083 | } | |
1084 | ||
6092666e | 1085 | static void phys_sections_free(PhysPageMap *map) |
5312bd8b | 1086 | { |
9affd6fc PB |
1087 | while (map->sections_nb > 0) { |
1088 | MemoryRegionSection *section = &map->sections[--map->sections_nb]; | |
058bc4b5 PB |
1089 | phys_section_destroy(section->mr); |
1090 | } | |
9affd6fc PB |
1091 | g_free(map->sections); |
1092 | g_free(map->nodes); | |
5312bd8b AK |
1093 | } |
1094 | ||
ac1970fb | 1095 | static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section) |
0f0cb164 AK |
1096 | { |
1097 | subpage_t *subpage; | |
a8170e5e | 1098 | hwaddr base = section->offset_within_address_space |
0f0cb164 | 1099 | & TARGET_PAGE_MASK; |
97115a8d | 1100 | MemoryRegionSection *existing = phys_page_find(d->phys_map, base, |
53cb28cb | 1101 | d->map.nodes, d->map.sections); |
0f0cb164 AK |
1102 | MemoryRegionSection subsection = { |
1103 | .offset_within_address_space = base, | |
052e87b0 | 1104 | .size = int128_make64(TARGET_PAGE_SIZE), |
0f0cb164 | 1105 | }; |
a8170e5e | 1106 | hwaddr start, end; |
0f0cb164 | 1107 | |
f3705d53 | 1108 | assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); |
0f0cb164 | 1109 | |
f3705d53 | 1110 | if (!(existing->mr->subpage)) { |
acc9d80b | 1111 | subpage = subpage_init(d->as, base); |
3be91e86 | 1112 | subsection.address_space = d->as; |
0f0cb164 | 1113 | subsection.mr = &subpage->iomem; |
ac1970fb | 1114 | phys_page_set(d, base >> TARGET_PAGE_BITS, 1, |
53cb28cb | 1115 | phys_section_add(&d->map, &subsection)); |
0f0cb164 | 1116 | } else { |
f3705d53 | 1117 | subpage = container_of(existing->mr, subpage_t, iomem); |
0f0cb164 AK |
1118 | } |
1119 | start = section->offset_within_address_space & ~TARGET_PAGE_MASK; | |
052e87b0 | 1120 | end = start + int128_get64(section->size) - 1; |
53cb28cb MA |
1121 | subpage_register(subpage, start, end, |
1122 | phys_section_add(&d->map, section)); | |
0f0cb164 AK |
1123 | } |
1124 | ||
1125 | ||
052e87b0 PB |
1126 | static void register_multipage(AddressSpaceDispatch *d, |
1127 | MemoryRegionSection *section) | |
33417e70 | 1128 | { |
a8170e5e | 1129 | hwaddr start_addr = section->offset_within_address_space; |
53cb28cb | 1130 | uint16_t section_index = phys_section_add(&d->map, section); |
052e87b0 PB |
1131 | uint64_t num_pages = int128_get64(int128_rshift(section->size, |
1132 | TARGET_PAGE_BITS)); | |
dd81124b | 1133 | |
733d5ef5 PB |
1134 | assert(num_pages); |
1135 | phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); | |
33417e70 FB |
1136 | } |
1137 | ||
ac1970fb | 1138 | static void mem_add(MemoryListener *listener, MemoryRegionSection *section) |
0f0cb164 | 1139 | { |
89ae337a | 1140 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); |
00752703 | 1141 | AddressSpaceDispatch *d = as->next_dispatch; |
99b9cc06 | 1142 | MemoryRegionSection now = *section, remain = *section; |
052e87b0 | 1143 | Int128 page_size = int128_make64(TARGET_PAGE_SIZE); |
0f0cb164 | 1144 | |
733d5ef5 PB |
1145 | if (now.offset_within_address_space & ~TARGET_PAGE_MASK) { |
1146 | uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space) | |
1147 | - now.offset_within_address_space; | |
1148 | ||
052e87b0 | 1149 | now.size = int128_min(int128_make64(left), now.size); |
ac1970fb | 1150 | register_subpage(d, &now); |
733d5ef5 | 1151 | } else { |
052e87b0 | 1152 | now.size = int128_zero(); |
733d5ef5 | 1153 | } |
052e87b0 PB |
1154 | while (int128_ne(remain.size, now.size)) { |
1155 | remain.size = int128_sub(remain.size, now.size); | |
1156 | remain.offset_within_address_space += int128_get64(now.size); | |
1157 | remain.offset_within_region += int128_get64(now.size); | |
69b67646 | 1158 | now = remain; |
052e87b0 | 1159 | if (int128_lt(remain.size, page_size)) { |
733d5ef5 | 1160 | register_subpage(d, &now); |
88266249 | 1161 | } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { |
052e87b0 | 1162 | now.size = page_size; |
ac1970fb | 1163 | register_subpage(d, &now); |
69b67646 | 1164 | } else { |
052e87b0 | 1165 | now.size = int128_and(now.size, int128_neg(page_size)); |
ac1970fb | 1166 | register_multipage(d, &now); |
69b67646 | 1167 | } |
0f0cb164 AK |
1168 | } |
1169 | } | |
1170 | ||
62a2744c SY |
1171 | void qemu_flush_coalesced_mmio_buffer(void) |
1172 | { | |
1173 | if (kvm_enabled()) | |
1174 | kvm_flush_coalesced_mmio_buffer(); | |
1175 | } | |
1176 | ||
b2a8658e UD |
1177 | void qemu_mutex_lock_ramlist(void) |
1178 | { | |
1179 | qemu_mutex_lock(&ram_list.mutex); | |
1180 | } | |
1181 | ||
1182 | void qemu_mutex_unlock_ramlist(void) | |
1183 | { | |
1184 | qemu_mutex_unlock(&ram_list.mutex); | |
1185 | } | |
1186 | ||
e1e84ba0 | 1187 | #ifdef __linux__ |
c902760f MT |
1188 | |
1189 | #include <sys/vfs.h> | |
1190 | ||
1191 | #define HUGETLBFS_MAGIC 0x958458f6 | |
1192 | ||
fc7a5800 | 1193 | static long gethugepagesize(const char *path, Error **errp) |
c902760f MT |
1194 | { |
1195 | struct statfs fs; | |
1196 | int ret; | |
1197 | ||
1198 | do { | |
9742bf26 | 1199 | ret = statfs(path, &fs); |
c902760f MT |
1200 | } while (ret != 0 && errno == EINTR); |
1201 | ||
1202 | if (ret != 0) { | |
fc7a5800 HT |
1203 | error_setg_errno(errp, errno, "failed to get page size of file %s", |
1204 | path); | |
9742bf26 | 1205 | return 0; |
c902760f MT |
1206 | } |
1207 | ||
c902760f MT |
1208 | return fs.f_bsize; |
1209 | } | |
1210 | ||
04b16653 AW |
1211 | static void *file_ram_alloc(RAMBlock *block, |
1212 | ram_addr_t memory, | |
7f56e740 PB |
1213 | const char *path, |
1214 | Error **errp) | |
c902760f | 1215 | { |
8d31d6b6 | 1216 | struct stat st; |
c902760f | 1217 | char *filename; |
8ca761f6 PF |
1218 | char *sanitized_name; |
1219 | char *c; | |
794e8f30 | 1220 | void *area; |
c902760f | 1221 | int fd; |
557529dd | 1222 | uint64_t hpagesize; |
fc7a5800 | 1223 | Error *local_err = NULL; |
c902760f | 1224 | |
fc7a5800 HT |
1225 | hpagesize = gethugepagesize(path, &local_err); |
1226 | if (local_err) { | |
1227 | error_propagate(errp, local_err); | |
f9a49dfa | 1228 | goto error; |
c902760f | 1229 | } |
a2b257d6 | 1230 | block->mr->align = hpagesize; |
c902760f MT |
1231 | |
1232 | if (memory < hpagesize) { | |
557529dd HT |
1233 | error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " |
1234 | "or larger than huge page size 0x%" PRIx64, | |
1235 | memory, hpagesize); | |
1236 | goto error; | |
c902760f MT |
1237 | } |
1238 | ||
1239 | if (kvm_enabled() && !kvm_has_sync_mmu()) { | |
7f56e740 PB |
1240 | error_setg(errp, |
1241 | "host lacks kvm mmu notifiers, -mem-path unsupported"); | |
f9a49dfa | 1242 | goto error; |
c902760f MT |
1243 | } |
1244 | ||
8d31d6b6 PF |
1245 | if (!stat(path, &st) && S_ISDIR(st.st_mode)) { |
1246 | /* Make name safe to use with mkstemp by replacing '/' with '_'. */ | |
1247 | sanitized_name = g_strdup(memory_region_name(block->mr)); | |
1248 | for (c = sanitized_name; *c != '\0'; c++) { | |
1249 | if (*c == '/') { | |
1250 | *c = '_'; | |
1251 | } | |
1252 | } | |
8ca761f6 | 1253 | |
8d31d6b6 PF |
1254 | filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, |
1255 | sanitized_name); | |
1256 | g_free(sanitized_name); | |
1257 | ||
1258 | fd = mkstemp(filename); | |
1259 | if (fd >= 0) { | |
1260 | unlink(filename); | |
1261 | } | |
1262 | g_free(filename); | |
1263 | } else { | |
1264 | fd = open(path, O_RDWR | O_CREAT, 0644); | |
1265 | } | |
c902760f | 1266 | |
c902760f | 1267 | if (fd < 0) { |
7f56e740 PB |
1268 | error_setg_errno(errp, errno, |
1269 | "unable to create backing store for hugepages"); | |
f9a49dfa | 1270 | goto error; |
c902760f | 1271 | } |
c902760f | 1272 | |
9284f319 | 1273 | memory = ROUND_UP(memory, hpagesize); |
c902760f MT |
1274 | |
1275 | /* | |
1276 | * ftruncate is not supported by hugetlbfs in older | |
1277 | * hosts, so don't bother bailing out on errors. | |
1278 | * If anything goes wrong with it under other filesystems, | |
1279 | * mmap will fail. | |
1280 | */ | |
7f56e740 | 1281 | if (ftruncate(fd, memory)) { |
9742bf26 | 1282 | perror("ftruncate"); |
7f56e740 | 1283 | } |
c902760f | 1284 | |
794e8f30 | 1285 | area = qemu_ram_mmap(fd, memory, hpagesize, block->flags & RAM_SHARED); |
c902760f | 1286 | if (area == MAP_FAILED) { |
7f56e740 PB |
1287 | error_setg_errno(errp, errno, |
1288 | "unable to map backing store for hugepages"); | |
9742bf26 | 1289 | close(fd); |
f9a49dfa | 1290 | goto error; |
c902760f | 1291 | } |
ef36fa14 MT |
1292 | |
1293 | if (mem_prealloc) { | |
38183310 | 1294 | os_mem_prealloc(fd, area, memory); |
ef36fa14 MT |
1295 | } |
1296 | ||
04b16653 | 1297 | block->fd = fd; |
c902760f | 1298 | return area; |
f9a49dfa MT |
1299 | |
1300 | error: | |
f9a49dfa | 1301 | return NULL; |
c902760f MT |
1302 | } |
1303 | #endif | |
1304 | ||
0dc3f44a | 1305 | /* Called with the ramlist lock held. */ |
d17b5288 | 1306 | static ram_addr_t find_ram_offset(ram_addr_t size) |
04b16653 AW |
1307 | { |
1308 | RAMBlock *block, *next_block; | |
3e837b2c | 1309 | ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; |
04b16653 | 1310 | |
49cd9ac6 SH |
1311 | assert(size != 0); /* it would hand out same offset multiple times */ |
1312 | ||
0dc3f44a | 1313 | if (QLIST_EMPTY_RCU(&ram_list.blocks)) { |
04b16653 | 1314 | return 0; |
0d53d9fe | 1315 | } |
04b16653 | 1316 | |
0dc3f44a | 1317 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
f15fbc4b | 1318 | ram_addr_t end, next = RAM_ADDR_MAX; |
04b16653 | 1319 | |
62be4e3a | 1320 | end = block->offset + block->max_length; |
04b16653 | 1321 | |
0dc3f44a | 1322 | QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) { |
04b16653 AW |
1323 | if (next_block->offset >= end) { |
1324 | next = MIN(next, next_block->offset); | |
1325 | } | |
1326 | } | |
1327 | if (next - end >= size && next - end < mingap) { | |
3e837b2c | 1328 | offset = end; |
04b16653 AW |
1329 | mingap = next - end; |
1330 | } | |
1331 | } | |
3e837b2c AW |
1332 | |
1333 | if (offset == RAM_ADDR_MAX) { | |
1334 | fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", | |
1335 | (uint64_t)size); | |
1336 | abort(); | |
1337 | } | |
1338 | ||
04b16653 AW |
1339 | return offset; |
1340 | } | |
1341 | ||
652d7ec2 | 1342 | ram_addr_t last_ram_offset(void) |
d17b5288 AW |
1343 | { |
1344 | RAMBlock *block; | |
1345 | ram_addr_t last = 0; | |
1346 | ||
0dc3f44a MD |
1347 | rcu_read_lock(); |
1348 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
62be4e3a | 1349 | last = MAX(last, block->offset + block->max_length); |
0d53d9fe | 1350 | } |
0dc3f44a | 1351 | rcu_read_unlock(); |
d17b5288 AW |
1352 | return last; |
1353 | } | |
1354 | ||
ddb97f1d JB |
1355 | static void qemu_ram_setup_dump(void *addr, ram_addr_t size) |
1356 | { | |
1357 | int ret; | |
ddb97f1d JB |
1358 | |
1359 | /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ | |
47c8ca53 | 1360 | if (!machine_dump_guest_core(current_machine)) { |
ddb97f1d JB |
1361 | ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); |
1362 | if (ret) { | |
1363 | perror("qemu_madvise"); | |
1364 | fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " | |
1365 | "but dump_guest_core=off specified\n"); | |
1366 | } | |
1367 | } | |
1368 | } | |
1369 | ||
0dc3f44a MD |
1370 | /* Called within an RCU critical section, or while the ramlist lock |
1371 | * is held. | |
1372 | */ | |
20cfe881 | 1373 | static RAMBlock *find_ram_block(ram_addr_t addr) |
84b89d78 | 1374 | { |
20cfe881 | 1375 | RAMBlock *block; |
84b89d78 | 1376 | |
0dc3f44a | 1377 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
c5705a77 | 1378 | if (block->offset == addr) { |
20cfe881 | 1379 | return block; |
c5705a77 AK |
1380 | } |
1381 | } | |
20cfe881 HT |
1382 | |
1383 | return NULL; | |
1384 | } | |
1385 | ||
422148d3 DDAG |
1386 | const char *qemu_ram_get_idstr(RAMBlock *rb) |
1387 | { | |
1388 | return rb->idstr; | |
1389 | } | |
1390 | ||
ae3a7047 | 1391 | /* Called with iothread lock held. */ |
20cfe881 HT |
1392 | void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev) |
1393 | { | |
ae3a7047 | 1394 | RAMBlock *new_block, *block; |
20cfe881 | 1395 | |
0dc3f44a | 1396 | rcu_read_lock(); |
ae3a7047 | 1397 | new_block = find_ram_block(addr); |
c5705a77 AK |
1398 | assert(new_block); |
1399 | assert(!new_block->idstr[0]); | |
84b89d78 | 1400 | |
09e5ab63 AL |
1401 | if (dev) { |
1402 | char *id = qdev_get_dev_path(dev); | |
84b89d78 CM |
1403 | if (id) { |
1404 | snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); | |
7267c094 | 1405 | g_free(id); |
84b89d78 CM |
1406 | } |
1407 | } | |
1408 | pstrcat(new_block->idstr, sizeof(new_block->idstr), name); | |
1409 | ||
0dc3f44a | 1410 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
c5705a77 | 1411 | if (block != new_block && !strcmp(block->idstr, new_block->idstr)) { |
84b89d78 CM |
1412 | fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", |
1413 | new_block->idstr); | |
1414 | abort(); | |
1415 | } | |
1416 | } | |
0dc3f44a | 1417 | rcu_read_unlock(); |
c5705a77 AK |
1418 | } |
1419 | ||
ae3a7047 | 1420 | /* Called with iothread lock held. */ |
20cfe881 HT |
1421 | void qemu_ram_unset_idstr(ram_addr_t addr) |
1422 | { | |
ae3a7047 | 1423 | RAMBlock *block; |
20cfe881 | 1424 | |
ae3a7047 MD |
1425 | /* FIXME: arch_init.c assumes that this is not called throughout |
1426 | * migration. Ignore the problem since hot-unplug during migration | |
1427 | * does not work anyway. | |
1428 | */ | |
1429 | ||
0dc3f44a | 1430 | rcu_read_lock(); |
ae3a7047 | 1431 | block = find_ram_block(addr); |
20cfe881 HT |
1432 | if (block) { |
1433 | memset(block->idstr, 0, sizeof(block->idstr)); | |
1434 | } | |
0dc3f44a | 1435 | rcu_read_unlock(); |
20cfe881 HT |
1436 | } |
1437 | ||
8490fc78 LC |
1438 | static int memory_try_enable_merging(void *addr, size_t len) |
1439 | { | |
75cc7f01 | 1440 | if (!machine_mem_merge(current_machine)) { |
8490fc78 LC |
1441 | /* disabled by the user */ |
1442 | return 0; | |
1443 | } | |
1444 | ||
1445 | return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); | |
1446 | } | |
1447 | ||
62be4e3a MT |
1448 | /* Only legal before guest might have detected the memory size: e.g. on |
1449 | * incoming migration, or right after reset. | |
1450 | * | |
1451 | * As memory core doesn't know how is memory accessed, it is up to | |
1452 | * resize callback to update device state and/or add assertions to detect | |
1453 | * misuse, if necessary. | |
1454 | */ | |
1455 | int qemu_ram_resize(ram_addr_t base, ram_addr_t newsize, Error **errp) | |
1456 | { | |
1457 | RAMBlock *block = find_ram_block(base); | |
1458 | ||
1459 | assert(block); | |
1460 | ||
4ed023ce | 1461 | newsize = HOST_PAGE_ALIGN(newsize); |
129ddaf3 | 1462 | |
62be4e3a MT |
1463 | if (block->used_length == newsize) { |
1464 | return 0; | |
1465 | } | |
1466 | ||
1467 | if (!(block->flags & RAM_RESIZEABLE)) { | |
1468 | error_setg_errno(errp, EINVAL, | |
1469 | "Length mismatch: %s: 0x" RAM_ADDR_FMT | |
1470 | " in != 0x" RAM_ADDR_FMT, block->idstr, | |
1471 | newsize, block->used_length); | |
1472 | return -EINVAL; | |
1473 | } | |
1474 | ||
1475 | if (block->max_length < newsize) { | |
1476 | error_setg_errno(errp, EINVAL, | |
1477 | "Length too large: %s: 0x" RAM_ADDR_FMT | |
1478 | " > 0x" RAM_ADDR_FMT, block->idstr, | |
1479 | newsize, block->max_length); | |
1480 | return -EINVAL; | |
1481 | } | |
1482 | ||
1483 | cpu_physical_memory_clear_dirty_range(block->offset, block->used_length); | |
1484 | block->used_length = newsize; | |
58d2707e PB |
1485 | cpu_physical_memory_set_dirty_range(block->offset, block->used_length, |
1486 | DIRTY_CLIENTS_ALL); | |
62be4e3a MT |
1487 | memory_region_set_size(block->mr, newsize); |
1488 | if (block->resized) { | |
1489 | block->resized(block->idstr, newsize, block->host); | |
1490 | } | |
1491 | return 0; | |
1492 | } | |
1493 | ||
ef701d7b | 1494 | static ram_addr_t ram_block_add(RAMBlock *new_block, Error **errp) |
c5705a77 | 1495 | { |
e1c57ab8 | 1496 | RAMBlock *block; |
0d53d9fe | 1497 | RAMBlock *last_block = NULL; |
2152f5ca JQ |
1498 | ram_addr_t old_ram_size, new_ram_size; |
1499 | ||
1500 | old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS; | |
c5705a77 | 1501 | |
b2a8658e | 1502 | qemu_mutex_lock_ramlist(); |
9b8424d5 | 1503 | new_block->offset = find_ram_offset(new_block->max_length); |
e1c57ab8 PB |
1504 | |
1505 | if (!new_block->host) { | |
1506 | if (xen_enabled()) { | |
9b8424d5 MT |
1507 | xen_ram_alloc(new_block->offset, new_block->max_length, |
1508 | new_block->mr); | |
e1c57ab8 | 1509 | } else { |
9b8424d5 | 1510 | new_block->host = phys_mem_alloc(new_block->max_length, |
a2b257d6 | 1511 | &new_block->mr->align); |
39228250 | 1512 | if (!new_block->host) { |
ef701d7b HT |
1513 | error_setg_errno(errp, errno, |
1514 | "cannot set up guest memory '%s'", | |
1515 | memory_region_name(new_block->mr)); | |
1516 | qemu_mutex_unlock_ramlist(); | |
1517 | return -1; | |
39228250 | 1518 | } |
9b8424d5 | 1519 | memory_try_enable_merging(new_block->host, new_block->max_length); |
6977dfe6 | 1520 | } |
c902760f | 1521 | } |
94a6b54f | 1522 | |
dd631697 LZ |
1523 | new_ram_size = MAX(old_ram_size, |
1524 | (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS); | |
1525 | if (new_ram_size > old_ram_size) { | |
1526 | migration_bitmap_extend(old_ram_size, new_ram_size); | |
1527 | } | |
0d53d9fe MD |
1528 | /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ, |
1529 | * QLIST (which has an RCU-friendly variant) does not have insertion at | |
1530 | * tail, so save the last element in last_block. | |
1531 | */ | |
0dc3f44a | 1532 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
0d53d9fe | 1533 | last_block = block; |
9b8424d5 | 1534 | if (block->max_length < new_block->max_length) { |
abb26d63 PB |
1535 | break; |
1536 | } | |
1537 | } | |
1538 | if (block) { | |
0dc3f44a | 1539 | QLIST_INSERT_BEFORE_RCU(block, new_block, next); |
0d53d9fe | 1540 | } else if (last_block) { |
0dc3f44a | 1541 | QLIST_INSERT_AFTER_RCU(last_block, new_block, next); |
0d53d9fe | 1542 | } else { /* list is empty */ |
0dc3f44a | 1543 | QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); |
abb26d63 | 1544 | } |
0d6d3c87 | 1545 | ram_list.mru_block = NULL; |
94a6b54f | 1546 | |
0dc3f44a MD |
1547 | /* Write list before version */ |
1548 | smp_wmb(); | |
f798b07f | 1549 | ram_list.version++; |
b2a8658e | 1550 | qemu_mutex_unlock_ramlist(); |
f798b07f | 1551 | |
2152f5ca JQ |
1552 | new_ram_size = last_ram_offset() >> TARGET_PAGE_BITS; |
1553 | ||
1554 | if (new_ram_size > old_ram_size) { | |
1ab4c8ce | 1555 | int i; |
ae3a7047 MD |
1556 | |
1557 | /* ram_list.dirty_memory[] is protected by the iothread lock. */ | |
1ab4c8ce JQ |
1558 | for (i = 0; i < DIRTY_MEMORY_NUM; i++) { |
1559 | ram_list.dirty_memory[i] = | |
1560 | bitmap_zero_extend(ram_list.dirty_memory[i], | |
1561 | old_ram_size, new_ram_size); | |
1562 | } | |
2152f5ca | 1563 | } |
9b8424d5 | 1564 | cpu_physical_memory_set_dirty_range(new_block->offset, |
58d2707e PB |
1565 | new_block->used_length, |
1566 | DIRTY_CLIENTS_ALL); | |
94a6b54f | 1567 | |
a904c911 PB |
1568 | if (new_block->host) { |
1569 | qemu_ram_setup_dump(new_block->host, new_block->max_length); | |
1570 | qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); | |
1571 | qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK); | |
1572 | if (kvm_enabled()) { | |
1573 | kvm_setup_guest_memory(new_block->host, new_block->max_length); | |
1574 | } | |
e1c57ab8 | 1575 | } |
6f0437e8 | 1576 | |
94a6b54f PB |
1577 | return new_block->offset; |
1578 | } | |
e9a1ab19 | 1579 | |
0b183fc8 | 1580 | #ifdef __linux__ |
e1c57ab8 | 1581 | ram_addr_t qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, |
dbcb8981 | 1582 | bool share, const char *mem_path, |
7f56e740 | 1583 | Error **errp) |
e1c57ab8 PB |
1584 | { |
1585 | RAMBlock *new_block; | |
ef701d7b HT |
1586 | ram_addr_t addr; |
1587 | Error *local_err = NULL; | |
e1c57ab8 PB |
1588 | |
1589 | if (xen_enabled()) { | |
7f56e740 PB |
1590 | error_setg(errp, "-mem-path not supported with Xen"); |
1591 | return -1; | |
e1c57ab8 PB |
1592 | } |
1593 | ||
1594 | if (phys_mem_alloc != qemu_anon_ram_alloc) { | |
1595 | /* | |
1596 | * file_ram_alloc() needs to allocate just like | |
1597 | * phys_mem_alloc, but we haven't bothered to provide | |
1598 | * a hook there. | |
1599 | */ | |
7f56e740 PB |
1600 | error_setg(errp, |
1601 | "-mem-path not supported with this accelerator"); | |
1602 | return -1; | |
e1c57ab8 PB |
1603 | } |
1604 | ||
4ed023ce | 1605 | size = HOST_PAGE_ALIGN(size); |
e1c57ab8 PB |
1606 | new_block = g_malloc0(sizeof(*new_block)); |
1607 | new_block->mr = mr; | |
9b8424d5 MT |
1608 | new_block->used_length = size; |
1609 | new_block->max_length = size; | |
dbcb8981 | 1610 | new_block->flags = share ? RAM_SHARED : 0; |
7f56e740 PB |
1611 | new_block->host = file_ram_alloc(new_block, size, |
1612 | mem_path, errp); | |
1613 | if (!new_block->host) { | |
1614 | g_free(new_block); | |
1615 | return -1; | |
1616 | } | |
1617 | ||
ef701d7b HT |
1618 | addr = ram_block_add(new_block, &local_err); |
1619 | if (local_err) { | |
1620 | g_free(new_block); | |
1621 | error_propagate(errp, local_err); | |
1622 | return -1; | |
1623 | } | |
1624 | return addr; | |
e1c57ab8 | 1625 | } |
0b183fc8 | 1626 | #endif |
e1c57ab8 | 1627 | |
62be4e3a MT |
1628 | static |
1629 | ram_addr_t qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size, | |
1630 | void (*resized)(const char*, | |
1631 | uint64_t length, | |
1632 | void *host), | |
1633 | void *host, bool resizeable, | |
ef701d7b | 1634 | MemoryRegion *mr, Error **errp) |
e1c57ab8 PB |
1635 | { |
1636 | RAMBlock *new_block; | |
ef701d7b HT |
1637 | ram_addr_t addr; |
1638 | Error *local_err = NULL; | |
e1c57ab8 | 1639 | |
4ed023ce DDAG |
1640 | size = HOST_PAGE_ALIGN(size); |
1641 | max_size = HOST_PAGE_ALIGN(max_size); | |
e1c57ab8 PB |
1642 | new_block = g_malloc0(sizeof(*new_block)); |
1643 | new_block->mr = mr; | |
62be4e3a | 1644 | new_block->resized = resized; |
9b8424d5 MT |
1645 | new_block->used_length = size; |
1646 | new_block->max_length = max_size; | |
62be4e3a | 1647 | assert(max_size >= size); |
e1c57ab8 PB |
1648 | new_block->fd = -1; |
1649 | new_block->host = host; | |
1650 | if (host) { | |
7bd4f430 | 1651 | new_block->flags |= RAM_PREALLOC; |
e1c57ab8 | 1652 | } |
62be4e3a MT |
1653 | if (resizeable) { |
1654 | new_block->flags |= RAM_RESIZEABLE; | |
1655 | } | |
ef701d7b HT |
1656 | addr = ram_block_add(new_block, &local_err); |
1657 | if (local_err) { | |
1658 | g_free(new_block); | |
1659 | error_propagate(errp, local_err); | |
1660 | return -1; | |
1661 | } | |
1662 | return addr; | |
e1c57ab8 PB |
1663 | } |
1664 | ||
62be4e3a MT |
1665 | ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, |
1666 | MemoryRegion *mr, Error **errp) | |
1667 | { | |
1668 | return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp); | |
1669 | } | |
1670 | ||
ef701d7b | 1671 | ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp) |
6977dfe6 | 1672 | { |
62be4e3a MT |
1673 | return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp); |
1674 | } | |
1675 | ||
1676 | ram_addr_t qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz, | |
1677 | void (*resized)(const char*, | |
1678 | uint64_t length, | |
1679 | void *host), | |
1680 | MemoryRegion *mr, Error **errp) | |
1681 | { | |
1682 | return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp); | |
6977dfe6 YT |
1683 | } |
1684 | ||
43771539 PB |
1685 | static void reclaim_ramblock(RAMBlock *block) |
1686 | { | |
1687 | if (block->flags & RAM_PREALLOC) { | |
1688 | ; | |
1689 | } else if (xen_enabled()) { | |
1690 | xen_invalidate_map_cache_entry(block->host); | |
1691 | #ifndef _WIN32 | |
1692 | } else if (block->fd >= 0) { | |
2f3a2bb1 | 1693 | qemu_ram_munmap(block->host, block->max_length); |
43771539 PB |
1694 | close(block->fd); |
1695 | #endif | |
1696 | } else { | |
1697 | qemu_anon_ram_free(block->host, block->max_length); | |
1698 | } | |
1699 | g_free(block); | |
1700 | } | |
1701 | ||
c227f099 | 1702 | void qemu_ram_free(ram_addr_t addr) |
e9a1ab19 | 1703 | { |
04b16653 AW |
1704 | RAMBlock *block; |
1705 | ||
b2a8658e | 1706 | qemu_mutex_lock_ramlist(); |
0dc3f44a | 1707 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
04b16653 | 1708 | if (addr == block->offset) { |
0dc3f44a | 1709 | QLIST_REMOVE_RCU(block, next); |
0d6d3c87 | 1710 | ram_list.mru_block = NULL; |
0dc3f44a MD |
1711 | /* Write list before version */ |
1712 | smp_wmb(); | |
f798b07f | 1713 | ram_list.version++; |
43771539 | 1714 | call_rcu(block, reclaim_ramblock, rcu); |
b2a8658e | 1715 | break; |
04b16653 AW |
1716 | } |
1717 | } | |
b2a8658e | 1718 | qemu_mutex_unlock_ramlist(); |
e9a1ab19 FB |
1719 | } |
1720 | ||
cd19cfa2 HY |
1721 | #ifndef _WIN32 |
1722 | void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) | |
1723 | { | |
1724 | RAMBlock *block; | |
1725 | ram_addr_t offset; | |
1726 | int flags; | |
1727 | void *area, *vaddr; | |
1728 | ||
0dc3f44a | 1729 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
cd19cfa2 | 1730 | offset = addr - block->offset; |
9b8424d5 | 1731 | if (offset < block->max_length) { |
1240be24 | 1732 | vaddr = ramblock_ptr(block, offset); |
7bd4f430 | 1733 | if (block->flags & RAM_PREALLOC) { |
cd19cfa2 | 1734 | ; |
dfeaf2ab MA |
1735 | } else if (xen_enabled()) { |
1736 | abort(); | |
cd19cfa2 HY |
1737 | } else { |
1738 | flags = MAP_FIXED; | |
3435f395 | 1739 | if (block->fd >= 0) { |
dbcb8981 PB |
1740 | flags |= (block->flags & RAM_SHARED ? |
1741 | MAP_SHARED : MAP_PRIVATE); | |
3435f395 MA |
1742 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, |
1743 | flags, block->fd, offset); | |
cd19cfa2 | 1744 | } else { |
2eb9fbaa MA |
1745 | /* |
1746 | * Remap needs to match alloc. Accelerators that | |
1747 | * set phys_mem_alloc never remap. If they did, | |
1748 | * we'd need a remap hook here. | |
1749 | */ | |
1750 | assert(phys_mem_alloc == qemu_anon_ram_alloc); | |
1751 | ||
cd19cfa2 HY |
1752 | flags |= MAP_PRIVATE | MAP_ANONYMOUS; |
1753 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, | |
1754 | flags, -1, 0); | |
cd19cfa2 HY |
1755 | } |
1756 | if (area != vaddr) { | |
f15fbc4b AP |
1757 | fprintf(stderr, "Could not remap addr: " |
1758 | RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n", | |
cd19cfa2 HY |
1759 | length, addr); |
1760 | exit(1); | |
1761 | } | |
8490fc78 | 1762 | memory_try_enable_merging(vaddr, length); |
ddb97f1d | 1763 | qemu_ram_setup_dump(vaddr, length); |
cd19cfa2 | 1764 | } |
cd19cfa2 HY |
1765 | } |
1766 | } | |
1767 | } | |
1768 | #endif /* !_WIN32 */ | |
1769 | ||
a35ba7be PB |
1770 | int qemu_get_ram_fd(ram_addr_t addr) |
1771 | { | |
ae3a7047 MD |
1772 | RAMBlock *block; |
1773 | int fd; | |
a35ba7be | 1774 | |
0dc3f44a | 1775 | rcu_read_lock(); |
ae3a7047 MD |
1776 | block = qemu_get_ram_block(addr); |
1777 | fd = block->fd; | |
0dc3f44a | 1778 | rcu_read_unlock(); |
ae3a7047 | 1779 | return fd; |
a35ba7be PB |
1780 | } |
1781 | ||
56a571d9 TM |
1782 | void qemu_set_ram_fd(ram_addr_t addr, int fd) |
1783 | { | |
1784 | RAMBlock *block; | |
1785 | ||
1786 | rcu_read_lock(); | |
1787 | block = qemu_get_ram_block(addr); | |
1788 | block->fd = fd; | |
1789 | rcu_read_unlock(); | |
1790 | } | |
1791 | ||
3fd74b84 DM |
1792 | void *qemu_get_ram_block_host_ptr(ram_addr_t addr) |
1793 | { | |
ae3a7047 MD |
1794 | RAMBlock *block; |
1795 | void *ptr; | |
3fd74b84 | 1796 | |
0dc3f44a | 1797 | rcu_read_lock(); |
ae3a7047 MD |
1798 | block = qemu_get_ram_block(addr); |
1799 | ptr = ramblock_ptr(block, 0); | |
0dc3f44a | 1800 | rcu_read_unlock(); |
ae3a7047 | 1801 | return ptr; |
3fd74b84 DM |
1802 | } |
1803 | ||
1b5ec234 | 1804 | /* Return a host pointer to ram allocated with qemu_ram_alloc. |
ae3a7047 MD |
1805 | * This should not be used for general purpose DMA. Use address_space_map |
1806 | * or address_space_rw instead. For local memory (e.g. video ram) that the | |
1807 | * device owns, use memory_region_get_ram_ptr. | |
0dc3f44a | 1808 | * |
49b24afc | 1809 | * Called within RCU critical section. |
1b5ec234 PB |
1810 | */ |
1811 | void *qemu_get_ram_ptr(ram_addr_t addr) | |
1812 | { | |
49b24afc | 1813 | RAMBlock *block = qemu_get_ram_block(addr); |
ae3a7047 MD |
1814 | |
1815 | if (xen_enabled() && block->host == NULL) { | |
0d6d3c87 PB |
1816 | /* We need to check if the requested address is in the RAM |
1817 | * because we don't want to map the entire memory in QEMU. | |
1818 | * In that case just map until the end of the page. | |
1819 | */ | |
1820 | if (block->offset == 0) { | |
49b24afc | 1821 | return xen_map_cache(addr, 0, 0); |
0d6d3c87 | 1822 | } |
ae3a7047 MD |
1823 | |
1824 | block->host = xen_map_cache(block->offset, block->max_length, 1); | |
0d6d3c87 | 1825 | } |
49b24afc | 1826 | return ramblock_ptr(block, addr - block->offset); |
dc828ca1 PB |
1827 | } |
1828 | ||
38bee5dc | 1829 | /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr |
ae3a7047 | 1830 | * but takes a size argument. |
0dc3f44a | 1831 | * |
e81bcda5 | 1832 | * Called within RCU critical section. |
ae3a7047 | 1833 | */ |
cb85f7ab | 1834 | static void *qemu_ram_ptr_length(ram_addr_t addr, hwaddr *size) |
38bee5dc | 1835 | { |
e81bcda5 PB |
1836 | RAMBlock *block; |
1837 | ram_addr_t offset_inside_block; | |
8ab934f9 SS |
1838 | if (*size == 0) { |
1839 | return NULL; | |
1840 | } | |
e81bcda5 PB |
1841 | |
1842 | block = qemu_get_ram_block(addr); | |
1843 | offset_inside_block = addr - block->offset; | |
1844 | *size = MIN(*size, block->max_length - offset_inside_block); | |
1845 | ||
1846 | if (xen_enabled() && block->host == NULL) { | |
1847 | /* We need to check if the requested address is in the RAM | |
1848 | * because we don't want to map the entire memory in QEMU. | |
1849 | * In that case just map the requested area. | |
1850 | */ | |
1851 | if (block->offset == 0) { | |
1852 | return xen_map_cache(addr, *size, 1); | |
38bee5dc SS |
1853 | } |
1854 | ||
e81bcda5 | 1855 | block->host = xen_map_cache(block->offset, block->max_length, 1); |
38bee5dc | 1856 | } |
e81bcda5 PB |
1857 | |
1858 | return ramblock_ptr(block, offset_inside_block); | |
38bee5dc SS |
1859 | } |
1860 | ||
422148d3 DDAG |
1861 | /* |
1862 | * Translates a host ptr back to a RAMBlock, a ram_addr and an offset | |
1863 | * in that RAMBlock. | |
1864 | * | |
1865 | * ptr: Host pointer to look up | |
1866 | * round_offset: If true round the result offset down to a page boundary | |
1867 | * *ram_addr: set to result ram_addr | |
1868 | * *offset: set to result offset within the RAMBlock | |
1869 | * | |
1870 | * Returns: RAMBlock (or NULL if not found) | |
ae3a7047 MD |
1871 | * |
1872 | * By the time this function returns, the returned pointer is not protected | |
1873 | * by RCU anymore. If the caller is not within an RCU critical section and | |
1874 | * does not hold the iothread lock, it must have other means of protecting the | |
1875 | * pointer, such as a reference to the region that includes the incoming | |
1876 | * ram_addr_t. | |
1877 | */ | |
422148d3 DDAG |
1878 | RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, |
1879 | ram_addr_t *ram_addr, | |
1880 | ram_addr_t *offset) | |
5579c7f3 | 1881 | { |
94a6b54f PB |
1882 | RAMBlock *block; |
1883 | uint8_t *host = ptr; | |
1884 | ||
868bb33f | 1885 | if (xen_enabled()) { |
0dc3f44a | 1886 | rcu_read_lock(); |
e41d7c69 | 1887 | *ram_addr = xen_ram_addr_from_mapcache(ptr); |
422148d3 DDAG |
1888 | block = qemu_get_ram_block(*ram_addr); |
1889 | if (block) { | |
1890 | *offset = (host - block->host); | |
1891 | } | |
0dc3f44a | 1892 | rcu_read_unlock(); |
422148d3 | 1893 | return block; |
712c2b41 SS |
1894 | } |
1895 | ||
0dc3f44a MD |
1896 | rcu_read_lock(); |
1897 | block = atomic_rcu_read(&ram_list.mru_block); | |
9b8424d5 | 1898 | if (block && block->host && host - block->host < block->max_length) { |
23887b79 PB |
1899 | goto found; |
1900 | } | |
1901 | ||
0dc3f44a | 1902 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
432d268c JN |
1903 | /* This case append when the block is not mapped. */ |
1904 | if (block->host == NULL) { | |
1905 | continue; | |
1906 | } | |
9b8424d5 | 1907 | if (host - block->host < block->max_length) { |
23887b79 | 1908 | goto found; |
f471a17e | 1909 | } |
94a6b54f | 1910 | } |
432d268c | 1911 | |
0dc3f44a | 1912 | rcu_read_unlock(); |
1b5ec234 | 1913 | return NULL; |
23887b79 PB |
1914 | |
1915 | found: | |
422148d3 DDAG |
1916 | *offset = (host - block->host); |
1917 | if (round_offset) { | |
1918 | *offset &= TARGET_PAGE_MASK; | |
1919 | } | |
1920 | *ram_addr = block->offset + *offset; | |
0dc3f44a | 1921 | rcu_read_unlock(); |
422148d3 DDAG |
1922 | return block; |
1923 | } | |
1924 | ||
e3dd7493 DDAG |
1925 | /* |
1926 | * Finds the named RAMBlock | |
1927 | * | |
1928 | * name: The name of RAMBlock to find | |
1929 | * | |
1930 | * Returns: RAMBlock (or NULL if not found) | |
1931 | */ | |
1932 | RAMBlock *qemu_ram_block_by_name(const char *name) | |
1933 | { | |
1934 | RAMBlock *block; | |
1935 | ||
1936 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
1937 | if (!strcmp(name, block->idstr)) { | |
1938 | return block; | |
1939 | } | |
1940 | } | |
1941 | ||
1942 | return NULL; | |
1943 | } | |
1944 | ||
422148d3 DDAG |
1945 | /* Some of the softmmu routines need to translate from a host pointer |
1946 | (typically a TLB entry) back to a ram offset. */ | |
1947 | MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr) | |
1948 | { | |
1949 | RAMBlock *block; | |
1950 | ram_addr_t offset; /* Not used */ | |
1951 | ||
1952 | block = qemu_ram_block_from_host(ptr, false, ram_addr, &offset); | |
1953 | ||
1954 | if (!block) { | |
1955 | return NULL; | |
1956 | } | |
1957 | ||
1958 | return block->mr; | |
e890261f | 1959 | } |
f471a17e | 1960 | |
49b24afc | 1961 | /* Called within RCU critical section. */ |
a8170e5e | 1962 | static void notdirty_mem_write(void *opaque, hwaddr ram_addr, |
0e0df1e2 | 1963 | uint64_t val, unsigned size) |
9fa3e853 | 1964 | { |
52159192 | 1965 | if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { |
0e0df1e2 | 1966 | tb_invalidate_phys_page_fast(ram_addr, size); |
3a7d929e | 1967 | } |
0e0df1e2 AK |
1968 | switch (size) { |
1969 | case 1: | |
1970 | stb_p(qemu_get_ram_ptr(ram_addr), val); | |
1971 | break; | |
1972 | case 2: | |
1973 | stw_p(qemu_get_ram_ptr(ram_addr), val); | |
1974 | break; | |
1975 | case 4: | |
1976 | stl_p(qemu_get_ram_ptr(ram_addr), val); | |
1977 | break; | |
1978 | default: | |
1979 | abort(); | |
3a7d929e | 1980 | } |
58d2707e PB |
1981 | /* Set both VGA and migration bits for simplicity and to remove |
1982 | * the notdirty callback faster. | |
1983 | */ | |
1984 | cpu_physical_memory_set_dirty_range(ram_addr, size, | |
1985 | DIRTY_CLIENTS_NOCODE); | |
f23db169 FB |
1986 | /* we remove the notdirty callback only if the code has been |
1987 | flushed */ | |
a2cd8c85 | 1988 | if (!cpu_physical_memory_is_clean(ram_addr)) { |
bcae01e4 | 1989 | tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr); |
4917cf44 | 1990 | } |
9fa3e853 FB |
1991 | } |
1992 | ||
b018ddf6 PB |
1993 | static bool notdirty_mem_accepts(void *opaque, hwaddr addr, |
1994 | unsigned size, bool is_write) | |
1995 | { | |
1996 | return is_write; | |
1997 | } | |
1998 | ||
0e0df1e2 | 1999 | static const MemoryRegionOps notdirty_mem_ops = { |
0e0df1e2 | 2000 | .write = notdirty_mem_write, |
b018ddf6 | 2001 | .valid.accepts = notdirty_mem_accepts, |
0e0df1e2 | 2002 | .endianness = DEVICE_NATIVE_ENDIAN, |
1ccde1cb FB |
2003 | }; |
2004 | ||
0f459d16 | 2005 | /* Generate a debug exception if a watchpoint has been hit. */ |
66b9b43c | 2006 | static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags) |
0f459d16 | 2007 | { |
93afeade AF |
2008 | CPUState *cpu = current_cpu; |
2009 | CPUArchState *env = cpu->env_ptr; | |
06d55cc1 | 2010 | target_ulong pc, cs_base; |
0f459d16 | 2011 | target_ulong vaddr; |
a1d1bb31 | 2012 | CPUWatchpoint *wp; |
06d55cc1 | 2013 | int cpu_flags; |
0f459d16 | 2014 | |
ff4700b0 | 2015 | if (cpu->watchpoint_hit) { |
06d55cc1 AL |
2016 | /* We re-entered the check after replacing the TB. Now raise |
2017 | * the debug interrupt so that is will trigger after the | |
2018 | * current instruction. */ | |
93afeade | 2019 | cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG); |
06d55cc1 AL |
2020 | return; |
2021 | } | |
93afeade | 2022 | vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset; |
ff4700b0 | 2023 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d PM |
2024 | if (cpu_watchpoint_address_matches(wp, vaddr, len) |
2025 | && (wp->flags & flags)) { | |
08225676 PM |
2026 | if (flags == BP_MEM_READ) { |
2027 | wp->flags |= BP_WATCHPOINT_HIT_READ; | |
2028 | } else { | |
2029 | wp->flags |= BP_WATCHPOINT_HIT_WRITE; | |
2030 | } | |
2031 | wp->hitaddr = vaddr; | |
66b9b43c | 2032 | wp->hitattrs = attrs; |
ff4700b0 AF |
2033 | if (!cpu->watchpoint_hit) { |
2034 | cpu->watchpoint_hit = wp; | |
239c51a5 | 2035 | tb_check_watchpoint(cpu); |
6e140f28 | 2036 | if (wp->flags & BP_STOP_BEFORE_ACCESS) { |
27103424 | 2037 | cpu->exception_index = EXCP_DEBUG; |
5638d180 | 2038 | cpu_loop_exit(cpu); |
6e140f28 AL |
2039 | } else { |
2040 | cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags); | |
648f034c | 2041 | tb_gen_code(cpu, pc, cs_base, cpu_flags, 1); |
0ea8cb88 | 2042 | cpu_resume_from_signal(cpu, NULL); |
6e140f28 | 2043 | } |
06d55cc1 | 2044 | } |
6e140f28 AL |
2045 | } else { |
2046 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
0f459d16 PB |
2047 | } |
2048 | } | |
2049 | } | |
2050 | ||
6658ffb8 PB |
2051 | /* Watchpoint access routines. Watchpoints are inserted using TLB tricks, |
2052 | so these check for a hit then pass through to the normal out-of-line | |
2053 | phys routines. */ | |
66b9b43c PM |
2054 | static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata, |
2055 | unsigned size, MemTxAttrs attrs) | |
6658ffb8 | 2056 | { |
66b9b43c PM |
2057 | MemTxResult res; |
2058 | uint64_t data; | |
2059 | ||
2060 | check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ); | |
1ec9b909 | 2061 | switch (size) { |
66b9b43c PM |
2062 | case 1: |
2063 | data = address_space_ldub(&address_space_memory, addr, attrs, &res); | |
2064 | break; | |
2065 | case 2: | |
2066 | data = address_space_lduw(&address_space_memory, addr, attrs, &res); | |
2067 | break; | |
2068 | case 4: | |
2069 | data = address_space_ldl(&address_space_memory, addr, attrs, &res); | |
2070 | break; | |
1ec9b909 AK |
2071 | default: abort(); |
2072 | } | |
66b9b43c PM |
2073 | *pdata = data; |
2074 | return res; | |
6658ffb8 PB |
2075 | } |
2076 | ||
66b9b43c PM |
2077 | static MemTxResult watch_mem_write(void *opaque, hwaddr addr, |
2078 | uint64_t val, unsigned size, | |
2079 | MemTxAttrs attrs) | |
6658ffb8 | 2080 | { |
66b9b43c PM |
2081 | MemTxResult res; |
2082 | ||
2083 | check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE); | |
1ec9b909 | 2084 | switch (size) { |
67364150 | 2085 | case 1: |
66b9b43c | 2086 | address_space_stb(&address_space_memory, addr, val, attrs, &res); |
67364150 MF |
2087 | break; |
2088 | case 2: | |
66b9b43c | 2089 | address_space_stw(&address_space_memory, addr, val, attrs, &res); |
67364150 MF |
2090 | break; |
2091 | case 4: | |
66b9b43c | 2092 | address_space_stl(&address_space_memory, addr, val, attrs, &res); |
67364150 | 2093 | break; |
1ec9b909 AK |
2094 | default: abort(); |
2095 | } | |
66b9b43c | 2096 | return res; |
6658ffb8 PB |
2097 | } |
2098 | ||
1ec9b909 | 2099 | static const MemoryRegionOps watch_mem_ops = { |
66b9b43c PM |
2100 | .read_with_attrs = watch_mem_read, |
2101 | .write_with_attrs = watch_mem_write, | |
1ec9b909 | 2102 | .endianness = DEVICE_NATIVE_ENDIAN, |
6658ffb8 | 2103 | }; |
6658ffb8 | 2104 | |
f25a49e0 PM |
2105 | static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data, |
2106 | unsigned len, MemTxAttrs attrs) | |
db7b5426 | 2107 | { |
acc9d80b | 2108 | subpage_t *subpage = opaque; |
ff6cff75 | 2109 | uint8_t buf[8]; |
5c9eb028 | 2110 | MemTxResult res; |
791af8c8 | 2111 | |
db7b5426 | 2112 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2113 | printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__, |
acc9d80b | 2114 | subpage, len, addr); |
db7b5426 | 2115 | #endif |
5c9eb028 PM |
2116 | res = address_space_read(subpage->as, addr + subpage->base, |
2117 | attrs, buf, len); | |
2118 | if (res) { | |
2119 | return res; | |
f25a49e0 | 2120 | } |
acc9d80b JK |
2121 | switch (len) { |
2122 | case 1: | |
f25a49e0 PM |
2123 | *data = ldub_p(buf); |
2124 | return MEMTX_OK; | |
acc9d80b | 2125 | case 2: |
f25a49e0 PM |
2126 | *data = lduw_p(buf); |
2127 | return MEMTX_OK; | |
acc9d80b | 2128 | case 4: |
f25a49e0 PM |
2129 | *data = ldl_p(buf); |
2130 | return MEMTX_OK; | |
ff6cff75 | 2131 | case 8: |
f25a49e0 PM |
2132 | *data = ldq_p(buf); |
2133 | return MEMTX_OK; | |
acc9d80b JK |
2134 | default: |
2135 | abort(); | |
2136 | } | |
db7b5426 BS |
2137 | } |
2138 | ||
f25a49e0 PM |
2139 | static MemTxResult subpage_write(void *opaque, hwaddr addr, |
2140 | uint64_t value, unsigned len, MemTxAttrs attrs) | |
db7b5426 | 2141 | { |
acc9d80b | 2142 | subpage_t *subpage = opaque; |
ff6cff75 | 2143 | uint8_t buf[8]; |
acc9d80b | 2144 | |
db7b5426 | 2145 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2146 | printf("%s: subpage %p len %u addr " TARGET_FMT_plx |
acc9d80b JK |
2147 | " value %"PRIx64"\n", |
2148 | __func__, subpage, len, addr, value); | |
db7b5426 | 2149 | #endif |
acc9d80b JK |
2150 | switch (len) { |
2151 | case 1: | |
2152 | stb_p(buf, value); | |
2153 | break; | |
2154 | case 2: | |
2155 | stw_p(buf, value); | |
2156 | break; | |
2157 | case 4: | |
2158 | stl_p(buf, value); | |
2159 | break; | |
ff6cff75 PB |
2160 | case 8: |
2161 | stq_p(buf, value); | |
2162 | break; | |
acc9d80b JK |
2163 | default: |
2164 | abort(); | |
2165 | } | |
5c9eb028 PM |
2166 | return address_space_write(subpage->as, addr + subpage->base, |
2167 | attrs, buf, len); | |
db7b5426 BS |
2168 | } |
2169 | ||
c353e4cc | 2170 | static bool subpage_accepts(void *opaque, hwaddr addr, |
016e9d62 | 2171 | unsigned len, bool is_write) |
c353e4cc | 2172 | { |
acc9d80b | 2173 | subpage_t *subpage = opaque; |
c353e4cc | 2174 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2175 | printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n", |
acc9d80b | 2176 | __func__, subpage, is_write ? 'w' : 'r', len, addr); |
c353e4cc PB |
2177 | #endif |
2178 | ||
acc9d80b | 2179 | return address_space_access_valid(subpage->as, addr + subpage->base, |
016e9d62 | 2180 | len, is_write); |
c353e4cc PB |
2181 | } |
2182 | ||
70c68e44 | 2183 | static const MemoryRegionOps subpage_ops = { |
f25a49e0 PM |
2184 | .read_with_attrs = subpage_read, |
2185 | .write_with_attrs = subpage_write, | |
ff6cff75 PB |
2186 | .impl.min_access_size = 1, |
2187 | .impl.max_access_size = 8, | |
2188 | .valid.min_access_size = 1, | |
2189 | .valid.max_access_size = 8, | |
c353e4cc | 2190 | .valid.accepts = subpage_accepts, |
70c68e44 | 2191 | .endianness = DEVICE_NATIVE_ENDIAN, |
db7b5426 BS |
2192 | }; |
2193 | ||
c227f099 | 2194 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, |
5312bd8b | 2195 | uint16_t section) |
db7b5426 BS |
2196 | { |
2197 | int idx, eidx; | |
2198 | ||
2199 | if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) | |
2200 | return -1; | |
2201 | idx = SUBPAGE_IDX(start); | |
2202 | eidx = SUBPAGE_IDX(end); | |
2203 | #if defined(DEBUG_SUBPAGE) | |
016e9d62 AK |
2204 | printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", |
2205 | __func__, mmio, start, end, idx, eidx, section); | |
db7b5426 | 2206 | #endif |
db7b5426 | 2207 | for (; idx <= eidx; idx++) { |
5312bd8b | 2208 | mmio->sub_section[idx] = section; |
db7b5426 BS |
2209 | } |
2210 | ||
2211 | return 0; | |
2212 | } | |
2213 | ||
acc9d80b | 2214 | static subpage_t *subpage_init(AddressSpace *as, hwaddr base) |
db7b5426 | 2215 | { |
c227f099 | 2216 | subpage_t *mmio; |
db7b5426 | 2217 | |
7267c094 | 2218 | mmio = g_malloc0(sizeof(subpage_t)); |
1eec614b | 2219 | |
acc9d80b | 2220 | mmio->as = as; |
1eec614b | 2221 | mmio->base = base; |
2c9b15ca | 2222 | memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, |
b4fefef9 | 2223 | NULL, TARGET_PAGE_SIZE); |
b3b00c78 | 2224 | mmio->iomem.subpage = true; |
db7b5426 | 2225 | #if defined(DEBUG_SUBPAGE) |
016e9d62 AK |
2226 | printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__, |
2227 | mmio, base, TARGET_PAGE_SIZE); | |
db7b5426 | 2228 | #endif |
b41aac4f | 2229 | subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED); |
db7b5426 BS |
2230 | |
2231 | return mmio; | |
2232 | } | |
2233 | ||
a656e22f PC |
2234 | static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as, |
2235 | MemoryRegion *mr) | |
5312bd8b | 2236 | { |
a656e22f | 2237 | assert(as); |
5312bd8b | 2238 | MemoryRegionSection section = { |
a656e22f | 2239 | .address_space = as, |
5312bd8b AK |
2240 | .mr = mr, |
2241 | .offset_within_address_space = 0, | |
2242 | .offset_within_region = 0, | |
052e87b0 | 2243 | .size = int128_2_64(), |
5312bd8b AK |
2244 | }; |
2245 | ||
53cb28cb | 2246 | return phys_section_add(map, §ion); |
5312bd8b AK |
2247 | } |
2248 | ||
a54c87b6 | 2249 | MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs) |
aa102231 | 2250 | { |
a54c87b6 PM |
2251 | int asidx = cpu_asidx_from_attrs(cpu, attrs); |
2252 | CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx]; | |
32857f4d | 2253 | AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch); |
79e2b9ae | 2254 | MemoryRegionSection *sections = d->map.sections; |
9d82b5a7 PB |
2255 | |
2256 | return sections[index & ~TARGET_PAGE_MASK].mr; | |
aa102231 AK |
2257 | } |
2258 | ||
e9179ce1 AK |
2259 | static void io_mem_init(void) |
2260 | { | |
1f6245e5 | 2261 | memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX); |
2c9b15ca | 2262 | memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, |
1f6245e5 | 2263 | NULL, UINT64_MAX); |
2c9b15ca | 2264 | memory_region_init_io(&io_mem_notdirty, NULL, ¬dirty_mem_ops, NULL, |
1f6245e5 | 2265 | NULL, UINT64_MAX); |
2c9b15ca | 2266 | memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL, |
1f6245e5 | 2267 | NULL, UINT64_MAX); |
e9179ce1 AK |
2268 | } |
2269 | ||
ac1970fb | 2270 | static void mem_begin(MemoryListener *listener) |
00752703 PB |
2271 | { |
2272 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); | |
53cb28cb MA |
2273 | AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); |
2274 | uint16_t n; | |
2275 | ||
a656e22f | 2276 | n = dummy_section(&d->map, as, &io_mem_unassigned); |
53cb28cb | 2277 | assert(n == PHYS_SECTION_UNASSIGNED); |
a656e22f | 2278 | n = dummy_section(&d->map, as, &io_mem_notdirty); |
53cb28cb | 2279 | assert(n == PHYS_SECTION_NOTDIRTY); |
a656e22f | 2280 | n = dummy_section(&d->map, as, &io_mem_rom); |
53cb28cb | 2281 | assert(n == PHYS_SECTION_ROM); |
a656e22f | 2282 | n = dummy_section(&d->map, as, &io_mem_watch); |
53cb28cb | 2283 | assert(n == PHYS_SECTION_WATCH); |
00752703 | 2284 | |
9736e55b | 2285 | d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; |
00752703 PB |
2286 | d->as = as; |
2287 | as->next_dispatch = d; | |
2288 | } | |
2289 | ||
79e2b9ae PB |
2290 | static void address_space_dispatch_free(AddressSpaceDispatch *d) |
2291 | { | |
2292 | phys_sections_free(&d->map); | |
2293 | g_free(d); | |
2294 | } | |
2295 | ||
00752703 | 2296 | static void mem_commit(MemoryListener *listener) |
ac1970fb | 2297 | { |
89ae337a | 2298 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); |
0475d94f PB |
2299 | AddressSpaceDispatch *cur = as->dispatch; |
2300 | AddressSpaceDispatch *next = as->next_dispatch; | |
2301 | ||
53cb28cb | 2302 | phys_page_compact_all(next, next->map.nodes_nb); |
b35ba30f | 2303 | |
79e2b9ae | 2304 | atomic_rcu_set(&as->dispatch, next); |
53cb28cb | 2305 | if (cur) { |
79e2b9ae | 2306 | call_rcu(cur, address_space_dispatch_free, rcu); |
53cb28cb | 2307 | } |
9affd6fc PB |
2308 | } |
2309 | ||
1d71148e | 2310 | static void tcg_commit(MemoryListener *listener) |
50c1e149 | 2311 | { |
32857f4d PM |
2312 | CPUAddressSpace *cpuas; |
2313 | AddressSpaceDispatch *d; | |
117712c3 AK |
2314 | |
2315 | /* since each CPU stores ram addresses in its TLB cache, we must | |
2316 | reset the modified entries */ | |
32857f4d PM |
2317 | cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); |
2318 | cpu_reloading_memory_map(); | |
2319 | /* The CPU and TLB are protected by the iothread lock. | |
2320 | * We reload the dispatch pointer now because cpu_reloading_memory_map() | |
2321 | * may have split the RCU critical section. | |
2322 | */ | |
2323 | d = atomic_rcu_read(&cpuas->as->dispatch); | |
2324 | cpuas->memory_dispatch = d; | |
2325 | tlb_flush(cpuas->cpu, 1); | |
50c1e149 AK |
2326 | } |
2327 | ||
ac1970fb AK |
2328 | void address_space_init_dispatch(AddressSpace *as) |
2329 | { | |
00752703 | 2330 | as->dispatch = NULL; |
89ae337a | 2331 | as->dispatch_listener = (MemoryListener) { |
ac1970fb | 2332 | .begin = mem_begin, |
00752703 | 2333 | .commit = mem_commit, |
ac1970fb AK |
2334 | .region_add = mem_add, |
2335 | .region_nop = mem_add, | |
2336 | .priority = 0, | |
2337 | }; | |
89ae337a | 2338 | memory_listener_register(&as->dispatch_listener, as); |
ac1970fb AK |
2339 | } |
2340 | ||
6e48e8f9 PB |
2341 | void address_space_unregister(AddressSpace *as) |
2342 | { | |
2343 | memory_listener_unregister(&as->dispatch_listener); | |
2344 | } | |
2345 | ||
83f3c251 AK |
2346 | void address_space_destroy_dispatch(AddressSpace *as) |
2347 | { | |
2348 | AddressSpaceDispatch *d = as->dispatch; | |
2349 | ||
79e2b9ae PB |
2350 | atomic_rcu_set(&as->dispatch, NULL); |
2351 | if (d) { | |
2352 | call_rcu(d, address_space_dispatch_free, rcu); | |
2353 | } | |
83f3c251 AK |
2354 | } |
2355 | ||
62152b8a AK |
2356 | static void memory_map_init(void) |
2357 | { | |
7267c094 | 2358 | system_memory = g_malloc(sizeof(*system_memory)); |
03f49957 | 2359 | |
57271d63 | 2360 | memory_region_init(system_memory, NULL, "system", UINT64_MAX); |
7dca8043 | 2361 | address_space_init(&address_space_memory, system_memory, "memory"); |
309cb471 | 2362 | |
7267c094 | 2363 | system_io = g_malloc(sizeof(*system_io)); |
3bb28b72 JK |
2364 | memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", |
2365 | 65536); | |
7dca8043 | 2366 | address_space_init(&address_space_io, system_io, "I/O"); |
62152b8a AK |
2367 | } |
2368 | ||
2369 | MemoryRegion *get_system_memory(void) | |
2370 | { | |
2371 | return system_memory; | |
2372 | } | |
2373 | ||
309cb471 AK |
2374 | MemoryRegion *get_system_io(void) |
2375 | { | |
2376 | return system_io; | |
2377 | } | |
2378 | ||
e2eef170 PB |
2379 | #endif /* !defined(CONFIG_USER_ONLY) */ |
2380 | ||
13eb76e0 FB |
2381 | /* physical memory access (slow version, mainly for debug) */ |
2382 | #if defined(CONFIG_USER_ONLY) | |
f17ec444 | 2383 | int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, |
a68fe89c | 2384 | uint8_t *buf, int len, int is_write) |
13eb76e0 FB |
2385 | { |
2386 | int l, flags; | |
2387 | target_ulong page; | |
53a5960a | 2388 | void * p; |
13eb76e0 FB |
2389 | |
2390 | while (len > 0) { | |
2391 | page = addr & TARGET_PAGE_MASK; | |
2392 | l = (page + TARGET_PAGE_SIZE) - addr; | |
2393 | if (l > len) | |
2394 | l = len; | |
2395 | flags = page_get_flags(page); | |
2396 | if (!(flags & PAGE_VALID)) | |
a68fe89c | 2397 | return -1; |
13eb76e0 FB |
2398 | if (is_write) { |
2399 | if (!(flags & PAGE_WRITE)) | |
a68fe89c | 2400 | return -1; |
579a97f7 | 2401 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 2402 | if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) |
a68fe89c | 2403 | return -1; |
72fb7daa AJ |
2404 | memcpy(p, buf, l); |
2405 | unlock_user(p, addr, l); | |
13eb76e0 FB |
2406 | } else { |
2407 | if (!(flags & PAGE_READ)) | |
a68fe89c | 2408 | return -1; |
579a97f7 | 2409 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 2410 | if (!(p = lock_user(VERIFY_READ, addr, l, 1))) |
a68fe89c | 2411 | return -1; |
72fb7daa | 2412 | memcpy(buf, p, l); |
5b257578 | 2413 | unlock_user(p, addr, 0); |
13eb76e0 FB |
2414 | } |
2415 | len -= l; | |
2416 | buf += l; | |
2417 | addr += l; | |
2418 | } | |
a68fe89c | 2419 | return 0; |
13eb76e0 | 2420 | } |
8df1cd07 | 2421 | |
13eb76e0 | 2422 | #else |
51d7a9eb | 2423 | |
845b6214 | 2424 | static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, |
a8170e5e | 2425 | hwaddr length) |
51d7a9eb | 2426 | { |
e87f7778 PB |
2427 | uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr); |
2428 | /* No early return if dirty_log_mask is or becomes 0, because | |
2429 | * cpu_physical_memory_set_dirty_range will still call | |
2430 | * xen_modified_memory. | |
2431 | */ | |
2432 | if (dirty_log_mask) { | |
2433 | dirty_log_mask = | |
2434 | cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask); | |
2435 | } | |
2436 | if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) { | |
2437 | tb_invalidate_phys_range(addr, addr + length); | |
2438 | dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); | |
51d7a9eb | 2439 | } |
e87f7778 | 2440 | cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask); |
51d7a9eb AP |
2441 | } |
2442 | ||
23326164 | 2443 | static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) |
82f2563f | 2444 | { |
e1622f4b | 2445 | unsigned access_size_max = mr->ops->valid.max_access_size; |
23326164 RH |
2446 | |
2447 | /* Regions are assumed to support 1-4 byte accesses unless | |
2448 | otherwise specified. */ | |
23326164 RH |
2449 | if (access_size_max == 0) { |
2450 | access_size_max = 4; | |
2451 | } | |
2452 | ||
2453 | /* Bound the maximum access by the alignment of the address. */ | |
2454 | if (!mr->ops->impl.unaligned) { | |
2455 | unsigned align_size_max = addr & -addr; | |
2456 | if (align_size_max != 0 && align_size_max < access_size_max) { | |
2457 | access_size_max = align_size_max; | |
2458 | } | |
82f2563f | 2459 | } |
23326164 RH |
2460 | |
2461 | /* Don't attempt accesses larger than the maximum. */ | |
2462 | if (l > access_size_max) { | |
2463 | l = access_size_max; | |
82f2563f | 2464 | } |
6554f5c0 | 2465 | l = pow2floor(l); |
23326164 RH |
2466 | |
2467 | return l; | |
82f2563f PB |
2468 | } |
2469 | ||
4840f10e | 2470 | static bool prepare_mmio_access(MemoryRegion *mr) |
125b3806 | 2471 | { |
4840f10e JK |
2472 | bool unlocked = !qemu_mutex_iothread_locked(); |
2473 | bool release_lock = false; | |
2474 | ||
2475 | if (unlocked && mr->global_locking) { | |
2476 | qemu_mutex_lock_iothread(); | |
2477 | unlocked = false; | |
2478 | release_lock = true; | |
2479 | } | |
125b3806 | 2480 | if (mr->flush_coalesced_mmio) { |
4840f10e JK |
2481 | if (unlocked) { |
2482 | qemu_mutex_lock_iothread(); | |
2483 | } | |
125b3806 | 2484 | qemu_flush_coalesced_mmio_buffer(); |
4840f10e JK |
2485 | if (unlocked) { |
2486 | qemu_mutex_unlock_iothread(); | |
2487 | } | |
125b3806 | 2488 | } |
4840f10e JK |
2489 | |
2490 | return release_lock; | |
125b3806 PB |
2491 | } |
2492 | ||
a203ac70 PB |
2493 | /* Called within RCU critical section. */ |
2494 | static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr, | |
2495 | MemTxAttrs attrs, | |
2496 | const uint8_t *buf, | |
2497 | int len, hwaddr addr1, | |
2498 | hwaddr l, MemoryRegion *mr) | |
13eb76e0 | 2499 | { |
13eb76e0 | 2500 | uint8_t *ptr; |
791af8c8 | 2501 | uint64_t val; |
3b643495 | 2502 | MemTxResult result = MEMTX_OK; |
4840f10e | 2503 | bool release_lock = false; |
3b46e624 | 2504 | |
a203ac70 | 2505 | for (;;) { |
eb7eeb88 PB |
2506 | if (!memory_access_is_direct(mr, true)) { |
2507 | release_lock |= prepare_mmio_access(mr); | |
2508 | l = memory_access_size(mr, l, addr1); | |
2509 | /* XXX: could force current_cpu to NULL to avoid | |
2510 | potential bugs */ | |
2511 | switch (l) { | |
2512 | case 8: | |
2513 | /* 64 bit write access */ | |
2514 | val = ldq_p(buf); | |
2515 | result |= memory_region_dispatch_write(mr, addr1, val, 8, | |
2516 | attrs); | |
2517 | break; | |
2518 | case 4: | |
2519 | /* 32 bit write access */ | |
2520 | val = ldl_p(buf); | |
2521 | result |= memory_region_dispatch_write(mr, addr1, val, 4, | |
2522 | attrs); | |
2523 | break; | |
2524 | case 2: | |
2525 | /* 16 bit write access */ | |
2526 | val = lduw_p(buf); | |
2527 | result |= memory_region_dispatch_write(mr, addr1, val, 2, | |
2528 | attrs); | |
2529 | break; | |
2530 | case 1: | |
2531 | /* 8 bit write access */ | |
2532 | val = ldub_p(buf); | |
2533 | result |= memory_region_dispatch_write(mr, addr1, val, 1, | |
2534 | attrs); | |
2535 | break; | |
2536 | default: | |
2537 | abort(); | |
13eb76e0 FB |
2538 | } |
2539 | } else { | |
eb7eeb88 PB |
2540 | addr1 += memory_region_get_ram_addr(mr); |
2541 | /* RAM case */ | |
2542 | ptr = qemu_get_ram_ptr(addr1); | |
2543 | memcpy(ptr, buf, l); | |
2544 | invalidate_and_set_dirty(mr, addr1, l); | |
13eb76e0 | 2545 | } |
4840f10e JK |
2546 | |
2547 | if (release_lock) { | |
2548 | qemu_mutex_unlock_iothread(); | |
2549 | release_lock = false; | |
2550 | } | |
2551 | ||
13eb76e0 FB |
2552 | len -= l; |
2553 | buf += l; | |
2554 | addr += l; | |
a203ac70 PB |
2555 | |
2556 | if (!len) { | |
2557 | break; | |
2558 | } | |
2559 | ||
2560 | l = len; | |
2561 | mr = address_space_translate(as, addr, &addr1, &l, true); | |
13eb76e0 | 2562 | } |
fd8aaa76 | 2563 | |
3b643495 | 2564 | return result; |
13eb76e0 | 2565 | } |
8df1cd07 | 2566 | |
a203ac70 PB |
2567 | MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, |
2568 | const uint8_t *buf, int len) | |
ac1970fb | 2569 | { |
eb7eeb88 | 2570 | hwaddr l; |
eb7eeb88 PB |
2571 | hwaddr addr1; |
2572 | MemoryRegion *mr; | |
2573 | MemTxResult result = MEMTX_OK; | |
eb7eeb88 | 2574 | |
a203ac70 PB |
2575 | if (len > 0) { |
2576 | rcu_read_lock(); | |
eb7eeb88 | 2577 | l = len; |
a203ac70 PB |
2578 | mr = address_space_translate(as, addr, &addr1, &l, true); |
2579 | result = address_space_write_continue(as, addr, attrs, buf, len, | |
2580 | addr1, l, mr); | |
2581 | rcu_read_unlock(); | |
2582 | } | |
2583 | ||
2584 | return result; | |
2585 | } | |
2586 | ||
2587 | /* Called within RCU critical section. */ | |
2588 | MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr, | |
2589 | MemTxAttrs attrs, uint8_t *buf, | |
2590 | int len, hwaddr addr1, hwaddr l, | |
2591 | MemoryRegion *mr) | |
2592 | { | |
2593 | uint8_t *ptr; | |
2594 | uint64_t val; | |
2595 | MemTxResult result = MEMTX_OK; | |
2596 | bool release_lock = false; | |
eb7eeb88 | 2597 | |
a203ac70 | 2598 | for (;;) { |
eb7eeb88 PB |
2599 | if (!memory_access_is_direct(mr, false)) { |
2600 | /* I/O case */ | |
2601 | release_lock |= prepare_mmio_access(mr); | |
2602 | l = memory_access_size(mr, l, addr1); | |
2603 | switch (l) { | |
2604 | case 8: | |
2605 | /* 64 bit read access */ | |
2606 | result |= memory_region_dispatch_read(mr, addr1, &val, 8, | |
2607 | attrs); | |
2608 | stq_p(buf, val); | |
2609 | break; | |
2610 | case 4: | |
2611 | /* 32 bit read access */ | |
2612 | result |= memory_region_dispatch_read(mr, addr1, &val, 4, | |
2613 | attrs); | |
2614 | stl_p(buf, val); | |
2615 | break; | |
2616 | case 2: | |
2617 | /* 16 bit read access */ | |
2618 | result |= memory_region_dispatch_read(mr, addr1, &val, 2, | |
2619 | attrs); | |
2620 | stw_p(buf, val); | |
2621 | break; | |
2622 | case 1: | |
2623 | /* 8 bit read access */ | |
2624 | result |= memory_region_dispatch_read(mr, addr1, &val, 1, | |
2625 | attrs); | |
2626 | stb_p(buf, val); | |
2627 | break; | |
2628 | default: | |
2629 | abort(); | |
2630 | } | |
2631 | } else { | |
2632 | /* RAM case */ | |
2633 | ptr = qemu_get_ram_ptr(mr->ram_addr + addr1); | |
2634 | memcpy(buf, ptr, l); | |
2635 | } | |
2636 | ||
2637 | if (release_lock) { | |
2638 | qemu_mutex_unlock_iothread(); | |
2639 | release_lock = false; | |
2640 | } | |
2641 | ||
2642 | len -= l; | |
2643 | buf += l; | |
2644 | addr += l; | |
a203ac70 PB |
2645 | |
2646 | if (!len) { | |
2647 | break; | |
2648 | } | |
2649 | ||
2650 | l = len; | |
2651 | mr = address_space_translate(as, addr, &addr1, &l, false); | |
2652 | } | |
2653 | ||
2654 | return result; | |
2655 | } | |
2656 | ||
3cc8f884 PB |
2657 | MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, |
2658 | MemTxAttrs attrs, uint8_t *buf, int len) | |
a203ac70 PB |
2659 | { |
2660 | hwaddr l; | |
2661 | hwaddr addr1; | |
2662 | MemoryRegion *mr; | |
2663 | MemTxResult result = MEMTX_OK; | |
2664 | ||
2665 | if (len > 0) { | |
2666 | rcu_read_lock(); | |
2667 | l = len; | |
2668 | mr = address_space_translate(as, addr, &addr1, &l, false); | |
2669 | result = address_space_read_continue(as, addr, attrs, buf, len, | |
2670 | addr1, l, mr); | |
2671 | rcu_read_unlock(); | |
eb7eeb88 | 2672 | } |
eb7eeb88 PB |
2673 | |
2674 | return result; | |
ac1970fb AK |
2675 | } |
2676 | ||
eb7eeb88 PB |
2677 | MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, |
2678 | uint8_t *buf, int len, bool is_write) | |
2679 | { | |
2680 | if (is_write) { | |
2681 | return address_space_write(as, addr, attrs, (uint8_t *)buf, len); | |
2682 | } else { | |
2683 | return address_space_read(as, addr, attrs, (uint8_t *)buf, len); | |
2684 | } | |
2685 | } | |
ac1970fb | 2686 | |
a8170e5e | 2687 | void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf, |
ac1970fb AK |
2688 | int len, int is_write) |
2689 | { | |
5c9eb028 PM |
2690 | address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, |
2691 | buf, len, is_write); | |
ac1970fb AK |
2692 | } |
2693 | ||
582b55a9 AG |
2694 | enum write_rom_type { |
2695 | WRITE_DATA, | |
2696 | FLUSH_CACHE, | |
2697 | }; | |
2698 | ||
2a221651 | 2699 | static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as, |
582b55a9 | 2700 | hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type) |
d0ecd2aa | 2701 | { |
149f54b5 | 2702 | hwaddr l; |
d0ecd2aa | 2703 | uint8_t *ptr; |
149f54b5 | 2704 | hwaddr addr1; |
5c8a00ce | 2705 | MemoryRegion *mr; |
3b46e624 | 2706 | |
41063e1e | 2707 | rcu_read_lock(); |
d0ecd2aa | 2708 | while (len > 0) { |
149f54b5 | 2709 | l = len; |
2a221651 | 2710 | mr = address_space_translate(as, addr, &addr1, &l, true); |
3b46e624 | 2711 | |
5c8a00ce PB |
2712 | if (!(memory_region_is_ram(mr) || |
2713 | memory_region_is_romd(mr))) { | |
b242e0e0 | 2714 | l = memory_access_size(mr, l, addr1); |
d0ecd2aa | 2715 | } else { |
5c8a00ce | 2716 | addr1 += memory_region_get_ram_addr(mr); |
d0ecd2aa | 2717 | /* ROM/RAM case */ |
5579c7f3 | 2718 | ptr = qemu_get_ram_ptr(addr1); |
582b55a9 AG |
2719 | switch (type) { |
2720 | case WRITE_DATA: | |
2721 | memcpy(ptr, buf, l); | |
845b6214 | 2722 | invalidate_and_set_dirty(mr, addr1, l); |
582b55a9 AG |
2723 | break; |
2724 | case FLUSH_CACHE: | |
2725 | flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l); | |
2726 | break; | |
2727 | } | |
d0ecd2aa FB |
2728 | } |
2729 | len -= l; | |
2730 | buf += l; | |
2731 | addr += l; | |
2732 | } | |
41063e1e | 2733 | rcu_read_unlock(); |
d0ecd2aa FB |
2734 | } |
2735 | ||
582b55a9 | 2736 | /* used for ROM loading : can write in RAM and ROM */ |
2a221651 | 2737 | void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr, |
582b55a9 AG |
2738 | const uint8_t *buf, int len) |
2739 | { | |
2a221651 | 2740 | cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA); |
582b55a9 AG |
2741 | } |
2742 | ||
2743 | void cpu_flush_icache_range(hwaddr start, int len) | |
2744 | { | |
2745 | /* | |
2746 | * This function should do the same thing as an icache flush that was | |
2747 | * triggered from within the guest. For TCG we are always cache coherent, | |
2748 | * so there is no need to flush anything. For KVM / Xen we need to flush | |
2749 | * the host's instruction cache at least. | |
2750 | */ | |
2751 | if (tcg_enabled()) { | |
2752 | return; | |
2753 | } | |
2754 | ||
2a221651 EI |
2755 | cpu_physical_memory_write_rom_internal(&address_space_memory, |
2756 | start, NULL, len, FLUSH_CACHE); | |
582b55a9 AG |
2757 | } |
2758 | ||
6d16c2f8 | 2759 | typedef struct { |
d3e71559 | 2760 | MemoryRegion *mr; |
6d16c2f8 | 2761 | void *buffer; |
a8170e5e AK |
2762 | hwaddr addr; |
2763 | hwaddr len; | |
c2cba0ff | 2764 | bool in_use; |
6d16c2f8 AL |
2765 | } BounceBuffer; |
2766 | ||
2767 | static BounceBuffer bounce; | |
2768 | ||
ba223c29 | 2769 | typedef struct MapClient { |
e95205e1 | 2770 | QEMUBH *bh; |
72cf2d4f | 2771 | QLIST_ENTRY(MapClient) link; |
ba223c29 AL |
2772 | } MapClient; |
2773 | ||
38e047b5 | 2774 | QemuMutex map_client_list_lock; |
72cf2d4f BS |
2775 | static QLIST_HEAD(map_client_list, MapClient) map_client_list |
2776 | = QLIST_HEAD_INITIALIZER(map_client_list); | |
ba223c29 | 2777 | |
e95205e1 FZ |
2778 | static void cpu_unregister_map_client_do(MapClient *client) |
2779 | { | |
2780 | QLIST_REMOVE(client, link); | |
2781 | g_free(client); | |
2782 | } | |
2783 | ||
33b6c2ed FZ |
2784 | static void cpu_notify_map_clients_locked(void) |
2785 | { | |
2786 | MapClient *client; | |
2787 | ||
2788 | while (!QLIST_EMPTY(&map_client_list)) { | |
2789 | client = QLIST_FIRST(&map_client_list); | |
e95205e1 FZ |
2790 | qemu_bh_schedule(client->bh); |
2791 | cpu_unregister_map_client_do(client); | |
33b6c2ed FZ |
2792 | } |
2793 | } | |
2794 | ||
e95205e1 | 2795 | void cpu_register_map_client(QEMUBH *bh) |
ba223c29 | 2796 | { |
7267c094 | 2797 | MapClient *client = g_malloc(sizeof(*client)); |
ba223c29 | 2798 | |
38e047b5 | 2799 | qemu_mutex_lock(&map_client_list_lock); |
e95205e1 | 2800 | client->bh = bh; |
72cf2d4f | 2801 | QLIST_INSERT_HEAD(&map_client_list, client, link); |
33b6c2ed FZ |
2802 | if (!atomic_read(&bounce.in_use)) { |
2803 | cpu_notify_map_clients_locked(); | |
2804 | } | |
38e047b5 | 2805 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
2806 | } |
2807 | ||
38e047b5 | 2808 | void cpu_exec_init_all(void) |
ba223c29 | 2809 | { |
38e047b5 | 2810 | qemu_mutex_init(&ram_list.mutex); |
38e047b5 | 2811 | io_mem_init(); |
680a4783 | 2812 | memory_map_init(); |
38e047b5 | 2813 | qemu_mutex_init(&map_client_list_lock); |
ba223c29 AL |
2814 | } |
2815 | ||
e95205e1 | 2816 | void cpu_unregister_map_client(QEMUBH *bh) |
ba223c29 AL |
2817 | { |
2818 | MapClient *client; | |
2819 | ||
e95205e1 FZ |
2820 | qemu_mutex_lock(&map_client_list_lock); |
2821 | QLIST_FOREACH(client, &map_client_list, link) { | |
2822 | if (client->bh == bh) { | |
2823 | cpu_unregister_map_client_do(client); | |
2824 | break; | |
2825 | } | |
ba223c29 | 2826 | } |
e95205e1 | 2827 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
2828 | } |
2829 | ||
2830 | static void cpu_notify_map_clients(void) | |
2831 | { | |
38e047b5 | 2832 | qemu_mutex_lock(&map_client_list_lock); |
33b6c2ed | 2833 | cpu_notify_map_clients_locked(); |
38e047b5 | 2834 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
2835 | } |
2836 | ||
51644ab7 PB |
2837 | bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write) |
2838 | { | |
5c8a00ce | 2839 | MemoryRegion *mr; |
51644ab7 PB |
2840 | hwaddr l, xlat; |
2841 | ||
41063e1e | 2842 | rcu_read_lock(); |
51644ab7 PB |
2843 | while (len > 0) { |
2844 | l = len; | |
5c8a00ce PB |
2845 | mr = address_space_translate(as, addr, &xlat, &l, is_write); |
2846 | if (!memory_access_is_direct(mr, is_write)) { | |
2847 | l = memory_access_size(mr, l, addr); | |
2848 | if (!memory_region_access_valid(mr, xlat, l, is_write)) { | |
51644ab7 PB |
2849 | return false; |
2850 | } | |
2851 | } | |
2852 | ||
2853 | len -= l; | |
2854 | addr += l; | |
2855 | } | |
41063e1e | 2856 | rcu_read_unlock(); |
51644ab7 PB |
2857 | return true; |
2858 | } | |
2859 | ||
6d16c2f8 AL |
2860 | /* Map a physical memory region into a host virtual address. |
2861 | * May map a subset of the requested range, given by and returned in *plen. | |
2862 | * May return NULL if resources needed to perform the mapping are exhausted. | |
2863 | * Use only for reads OR writes - not for read-modify-write operations. | |
ba223c29 AL |
2864 | * Use cpu_register_map_client() to know when retrying the map operation is |
2865 | * likely to succeed. | |
6d16c2f8 | 2866 | */ |
ac1970fb | 2867 | void *address_space_map(AddressSpace *as, |
a8170e5e AK |
2868 | hwaddr addr, |
2869 | hwaddr *plen, | |
ac1970fb | 2870 | bool is_write) |
6d16c2f8 | 2871 | { |
a8170e5e | 2872 | hwaddr len = *plen; |
e3127ae0 PB |
2873 | hwaddr done = 0; |
2874 | hwaddr l, xlat, base; | |
2875 | MemoryRegion *mr, *this_mr; | |
2876 | ram_addr_t raddr; | |
e81bcda5 | 2877 | void *ptr; |
6d16c2f8 | 2878 | |
e3127ae0 PB |
2879 | if (len == 0) { |
2880 | return NULL; | |
2881 | } | |
38bee5dc | 2882 | |
e3127ae0 | 2883 | l = len; |
41063e1e | 2884 | rcu_read_lock(); |
e3127ae0 | 2885 | mr = address_space_translate(as, addr, &xlat, &l, is_write); |
41063e1e | 2886 | |
e3127ae0 | 2887 | if (!memory_access_is_direct(mr, is_write)) { |
c2cba0ff | 2888 | if (atomic_xchg(&bounce.in_use, true)) { |
41063e1e | 2889 | rcu_read_unlock(); |
e3127ae0 | 2890 | return NULL; |
6d16c2f8 | 2891 | } |
e85d9db5 KW |
2892 | /* Avoid unbounded allocations */ |
2893 | l = MIN(l, TARGET_PAGE_SIZE); | |
2894 | bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l); | |
e3127ae0 PB |
2895 | bounce.addr = addr; |
2896 | bounce.len = l; | |
d3e71559 PB |
2897 | |
2898 | memory_region_ref(mr); | |
2899 | bounce.mr = mr; | |
e3127ae0 | 2900 | if (!is_write) { |
5c9eb028 PM |
2901 | address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED, |
2902 | bounce.buffer, l); | |
8ab934f9 | 2903 | } |
6d16c2f8 | 2904 | |
41063e1e | 2905 | rcu_read_unlock(); |
e3127ae0 PB |
2906 | *plen = l; |
2907 | return bounce.buffer; | |
2908 | } | |
2909 | ||
2910 | base = xlat; | |
2911 | raddr = memory_region_get_ram_addr(mr); | |
2912 | ||
2913 | for (;;) { | |
6d16c2f8 AL |
2914 | len -= l; |
2915 | addr += l; | |
e3127ae0 PB |
2916 | done += l; |
2917 | if (len == 0) { | |
2918 | break; | |
2919 | } | |
2920 | ||
2921 | l = len; | |
2922 | this_mr = address_space_translate(as, addr, &xlat, &l, is_write); | |
2923 | if (this_mr != mr || xlat != base + done) { | |
2924 | break; | |
2925 | } | |
6d16c2f8 | 2926 | } |
e3127ae0 | 2927 | |
d3e71559 | 2928 | memory_region_ref(mr); |
e3127ae0 | 2929 | *plen = done; |
e81bcda5 PB |
2930 | ptr = qemu_ram_ptr_length(raddr + base, plen); |
2931 | rcu_read_unlock(); | |
2932 | ||
2933 | return ptr; | |
6d16c2f8 AL |
2934 | } |
2935 | ||
ac1970fb | 2936 | /* Unmaps a memory region previously mapped by address_space_map(). |
6d16c2f8 AL |
2937 | * Will also mark the memory as dirty if is_write == 1. access_len gives |
2938 | * the amount of memory that was actually read or written by the caller. | |
2939 | */ | |
a8170e5e AK |
2940 | void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, |
2941 | int is_write, hwaddr access_len) | |
6d16c2f8 AL |
2942 | { |
2943 | if (buffer != bounce.buffer) { | |
d3e71559 PB |
2944 | MemoryRegion *mr; |
2945 | ram_addr_t addr1; | |
2946 | ||
2947 | mr = qemu_ram_addr_from_host(buffer, &addr1); | |
2948 | assert(mr != NULL); | |
6d16c2f8 | 2949 | if (is_write) { |
845b6214 | 2950 | invalidate_and_set_dirty(mr, addr1, access_len); |
6d16c2f8 | 2951 | } |
868bb33f | 2952 | if (xen_enabled()) { |
e41d7c69 | 2953 | xen_invalidate_map_cache_entry(buffer); |
050a0ddf | 2954 | } |
d3e71559 | 2955 | memory_region_unref(mr); |
6d16c2f8 AL |
2956 | return; |
2957 | } | |
2958 | if (is_write) { | |
5c9eb028 PM |
2959 | address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED, |
2960 | bounce.buffer, access_len); | |
6d16c2f8 | 2961 | } |
f8a83245 | 2962 | qemu_vfree(bounce.buffer); |
6d16c2f8 | 2963 | bounce.buffer = NULL; |
d3e71559 | 2964 | memory_region_unref(bounce.mr); |
c2cba0ff | 2965 | atomic_mb_set(&bounce.in_use, false); |
ba223c29 | 2966 | cpu_notify_map_clients(); |
6d16c2f8 | 2967 | } |
d0ecd2aa | 2968 | |
a8170e5e AK |
2969 | void *cpu_physical_memory_map(hwaddr addr, |
2970 | hwaddr *plen, | |
ac1970fb AK |
2971 | int is_write) |
2972 | { | |
2973 | return address_space_map(&address_space_memory, addr, plen, is_write); | |
2974 | } | |
2975 | ||
a8170e5e AK |
2976 | void cpu_physical_memory_unmap(void *buffer, hwaddr len, |
2977 | int is_write, hwaddr access_len) | |
ac1970fb AK |
2978 | { |
2979 | return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); | |
2980 | } | |
2981 | ||
8df1cd07 | 2982 | /* warning: addr must be aligned */ |
50013115 PM |
2983 | static inline uint32_t address_space_ldl_internal(AddressSpace *as, hwaddr addr, |
2984 | MemTxAttrs attrs, | |
2985 | MemTxResult *result, | |
2986 | enum device_endian endian) | |
8df1cd07 | 2987 | { |
8df1cd07 | 2988 | uint8_t *ptr; |
791af8c8 | 2989 | uint64_t val; |
5c8a00ce | 2990 | MemoryRegion *mr; |
149f54b5 PB |
2991 | hwaddr l = 4; |
2992 | hwaddr addr1; | |
50013115 | 2993 | MemTxResult r; |
4840f10e | 2994 | bool release_lock = false; |
8df1cd07 | 2995 | |
41063e1e | 2996 | rcu_read_lock(); |
fdfba1a2 | 2997 | mr = address_space_translate(as, addr, &addr1, &l, false); |
5c8a00ce | 2998 | if (l < 4 || !memory_access_is_direct(mr, false)) { |
4840f10e | 2999 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3000 | |
8df1cd07 | 3001 | /* I/O case */ |
50013115 | 3002 | r = memory_region_dispatch_read(mr, addr1, &val, 4, attrs); |
1e78bcc1 AG |
3003 | #if defined(TARGET_WORDS_BIGENDIAN) |
3004 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3005 | val = bswap32(val); | |
3006 | } | |
3007 | #else | |
3008 | if (endian == DEVICE_BIG_ENDIAN) { | |
3009 | val = bswap32(val); | |
3010 | } | |
3011 | #endif | |
8df1cd07 FB |
3012 | } else { |
3013 | /* RAM case */ | |
5c8a00ce | 3014 | ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr) |
06ef3525 | 3015 | & TARGET_PAGE_MASK) |
149f54b5 | 3016 | + addr1); |
1e78bcc1 AG |
3017 | switch (endian) { |
3018 | case DEVICE_LITTLE_ENDIAN: | |
3019 | val = ldl_le_p(ptr); | |
3020 | break; | |
3021 | case DEVICE_BIG_ENDIAN: | |
3022 | val = ldl_be_p(ptr); | |
3023 | break; | |
3024 | default: | |
3025 | val = ldl_p(ptr); | |
3026 | break; | |
3027 | } | |
50013115 PM |
3028 | r = MEMTX_OK; |
3029 | } | |
3030 | if (result) { | |
3031 | *result = r; | |
8df1cd07 | 3032 | } |
4840f10e JK |
3033 | if (release_lock) { |
3034 | qemu_mutex_unlock_iothread(); | |
3035 | } | |
41063e1e | 3036 | rcu_read_unlock(); |
8df1cd07 FB |
3037 | return val; |
3038 | } | |
3039 | ||
50013115 PM |
3040 | uint32_t address_space_ldl(AddressSpace *as, hwaddr addr, |
3041 | MemTxAttrs attrs, MemTxResult *result) | |
3042 | { | |
3043 | return address_space_ldl_internal(as, addr, attrs, result, | |
3044 | DEVICE_NATIVE_ENDIAN); | |
3045 | } | |
3046 | ||
3047 | uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr, | |
3048 | MemTxAttrs attrs, MemTxResult *result) | |
3049 | { | |
3050 | return address_space_ldl_internal(as, addr, attrs, result, | |
3051 | DEVICE_LITTLE_ENDIAN); | |
3052 | } | |
3053 | ||
3054 | uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr, | |
3055 | MemTxAttrs attrs, MemTxResult *result) | |
3056 | { | |
3057 | return address_space_ldl_internal(as, addr, attrs, result, | |
3058 | DEVICE_BIG_ENDIAN); | |
3059 | } | |
3060 | ||
fdfba1a2 | 3061 | uint32_t ldl_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3062 | { |
50013115 | 3063 | return address_space_ldl(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3064 | } |
3065 | ||
fdfba1a2 | 3066 | uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3067 | { |
50013115 | 3068 | return address_space_ldl_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3069 | } |
3070 | ||
fdfba1a2 | 3071 | uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3072 | { |
50013115 | 3073 | return address_space_ldl_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3074 | } |
3075 | ||
84b7b8e7 | 3076 | /* warning: addr must be aligned */ |
50013115 PM |
3077 | static inline uint64_t address_space_ldq_internal(AddressSpace *as, hwaddr addr, |
3078 | MemTxAttrs attrs, | |
3079 | MemTxResult *result, | |
3080 | enum device_endian endian) | |
84b7b8e7 | 3081 | { |
84b7b8e7 FB |
3082 | uint8_t *ptr; |
3083 | uint64_t val; | |
5c8a00ce | 3084 | MemoryRegion *mr; |
149f54b5 PB |
3085 | hwaddr l = 8; |
3086 | hwaddr addr1; | |
50013115 | 3087 | MemTxResult r; |
4840f10e | 3088 | bool release_lock = false; |
84b7b8e7 | 3089 | |
41063e1e | 3090 | rcu_read_lock(); |
2c17449b | 3091 | mr = address_space_translate(as, addr, &addr1, &l, |
5c8a00ce PB |
3092 | false); |
3093 | if (l < 8 || !memory_access_is_direct(mr, false)) { | |
4840f10e | 3094 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3095 | |
84b7b8e7 | 3096 | /* I/O case */ |
50013115 | 3097 | r = memory_region_dispatch_read(mr, addr1, &val, 8, attrs); |
968a5627 PB |
3098 | #if defined(TARGET_WORDS_BIGENDIAN) |
3099 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3100 | val = bswap64(val); | |
3101 | } | |
3102 | #else | |
3103 | if (endian == DEVICE_BIG_ENDIAN) { | |
3104 | val = bswap64(val); | |
3105 | } | |
84b7b8e7 FB |
3106 | #endif |
3107 | } else { | |
3108 | /* RAM case */ | |
5c8a00ce | 3109 | ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr) |
06ef3525 | 3110 | & TARGET_PAGE_MASK) |
149f54b5 | 3111 | + addr1); |
1e78bcc1 AG |
3112 | switch (endian) { |
3113 | case DEVICE_LITTLE_ENDIAN: | |
3114 | val = ldq_le_p(ptr); | |
3115 | break; | |
3116 | case DEVICE_BIG_ENDIAN: | |
3117 | val = ldq_be_p(ptr); | |
3118 | break; | |
3119 | default: | |
3120 | val = ldq_p(ptr); | |
3121 | break; | |
3122 | } | |
50013115 PM |
3123 | r = MEMTX_OK; |
3124 | } | |
3125 | if (result) { | |
3126 | *result = r; | |
84b7b8e7 | 3127 | } |
4840f10e JK |
3128 | if (release_lock) { |
3129 | qemu_mutex_unlock_iothread(); | |
3130 | } | |
41063e1e | 3131 | rcu_read_unlock(); |
84b7b8e7 FB |
3132 | return val; |
3133 | } | |
3134 | ||
50013115 PM |
3135 | uint64_t address_space_ldq(AddressSpace *as, hwaddr addr, |
3136 | MemTxAttrs attrs, MemTxResult *result) | |
3137 | { | |
3138 | return address_space_ldq_internal(as, addr, attrs, result, | |
3139 | DEVICE_NATIVE_ENDIAN); | |
3140 | } | |
3141 | ||
3142 | uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr, | |
3143 | MemTxAttrs attrs, MemTxResult *result) | |
3144 | { | |
3145 | return address_space_ldq_internal(as, addr, attrs, result, | |
3146 | DEVICE_LITTLE_ENDIAN); | |
3147 | } | |
3148 | ||
3149 | uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr, | |
3150 | MemTxAttrs attrs, MemTxResult *result) | |
3151 | { | |
3152 | return address_space_ldq_internal(as, addr, attrs, result, | |
3153 | DEVICE_BIG_ENDIAN); | |
3154 | } | |
3155 | ||
2c17449b | 3156 | uint64_t ldq_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3157 | { |
50013115 | 3158 | return address_space_ldq(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3159 | } |
3160 | ||
2c17449b | 3161 | uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3162 | { |
50013115 | 3163 | return address_space_ldq_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3164 | } |
3165 | ||
2c17449b | 3166 | uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3167 | { |
50013115 | 3168 | return address_space_ldq_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3169 | } |
3170 | ||
aab33094 | 3171 | /* XXX: optimize */ |
50013115 PM |
3172 | uint32_t address_space_ldub(AddressSpace *as, hwaddr addr, |
3173 | MemTxAttrs attrs, MemTxResult *result) | |
aab33094 FB |
3174 | { |
3175 | uint8_t val; | |
50013115 PM |
3176 | MemTxResult r; |
3177 | ||
3178 | r = address_space_rw(as, addr, attrs, &val, 1, 0); | |
3179 | if (result) { | |
3180 | *result = r; | |
3181 | } | |
aab33094 FB |
3182 | return val; |
3183 | } | |
3184 | ||
50013115 PM |
3185 | uint32_t ldub_phys(AddressSpace *as, hwaddr addr) |
3186 | { | |
3187 | return address_space_ldub(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); | |
3188 | } | |
3189 | ||
733f0b02 | 3190 | /* warning: addr must be aligned */ |
50013115 PM |
3191 | static inline uint32_t address_space_lduw_internal(AddressSpace *as, |
3192 | hwaddr addr, | |
3193 | MemTxAttrs attrs, | |
3194 | MemTxResult *result, | |
3195 | enum device_endian endian) | |
aab33094 | 3196 | { |
733f0b02 MT |
3197 | uint8_t *ptr; |
3198 | uint64_t val; | |
5c8a00ce | 3199 | MemoryRegion *mr; |
149f54b5 PB |
3200 | hwaddr l = 2; |
3201 | hwaddr addr1; | |
50013115 | 3202 | MemTxResult r; |
4840f10e | 3203 | bool release_lock = false; |
733f0b02 | 3204 | |
41063e1e | 3205 | rcu_read_lock(); |
41701aa4 | 3206 | mr = address_space_translate(as, addr, &addr1, &l, |
5c8a00ce PB |
3207 | false); |
3208 | if (l < 2 || !memory_access_is_direct(mr, false)) { | |
4840f10e | 3209 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3210 | |
733f0b02 | 3211 | /* I/O case */ |
50013115 | 3212 | r = memory_region_dispatch_read(mr, addr1, &val, 2, attrs); |
1e78bcc1 AG |
3213 | #if defined(TARGET_WORDS_BIGENDIAN) |
3214 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3215 | val = bswap16(val); | |
3216 | } | |
3217 | #else | |
3218 | if (endian == DEVICE_BIG_ENDIAN) { | |
3219 | val = bswap16(val); | |
3220 | } | |
3221 | #endif | |
733f0b02 MT |
3222 | } else { |
3223 | /* RAM case */ | |
5c8a00ce | 3224 | ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr) |
06ef3525 | 3225 | & TARGET_PAGE_MASK) |
149f54b5 | 3226 | + addr1); |
1e78bcc1 AG |
3227 | switch (endian) { |
3228 | case DEVICE_LITTLE_ENDIAN: | |
3229 | val = lduw_le_p(ptr); | |
3230 | break; | |
3231 | case DEVICE_BIG_ENDIAN: | |
3232 | val = lduw_be_p(ptr); | |
3233 | break; | |
3234 | default: | |
3235 | val = lduw_p(ptr); | |
3236 | break; | |
3237 | } | |
50013115 PM |
3238 | r = MEMTX_OK; |
3239 | } | |
3240 | if (result) { | |
3241 | *result = r; | |
733f0b02 | 3242 | } |
4840f10e JK |
3243 | if (release_lock) { |
3244 | qemu_mutex_unlock_iothread(); | |
3245 | } | |
41063e1e | 3246 | rcu_read_unlock(); |
733f0b02 | 3247 | return val; |
aab33094 FB |
3248 | } |
3249 | ||
50013115 PM |
3250 | uint32_t address_space_lduw(AddressSpace *as, hwaddr addr, |
3251 | MemTxAttrs attrs, MemTxResult *result) | |
3252 | { | |
3253 | return address_space_lduw_internal(as, addr, attrs, result, | |
3254 | DEVICE_NATIVE_ENDIAN); | |
3255 | } | |
3256 | ||
3257 | uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr, | |
3258 | MemTxAttrs attrs, MemTxResult *result) | |
3259 | { | |
3260 | return address_space_lduw_internal(as, addr, attrs, result, | |
3261 | DEVICE_LITTLE_ENDIAN); | |
3262 | } | |
3263 | ||
3264 | uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr, | |
3265 | MemTxAttrs attrs, MemTxResult *result) | |
3266 | { | |
3267 | return address_space_lduw_internal(as, addr, attrs, result, | |
3268 | DEVICE_BIG_ENDIAN); | |
3269 | } | |
3270 | ||
41701aa4 | 3271 | uint32_t lduw_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3272 | { |
50013115 | 3273 | return address_space_lduw(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3274 | } |
3275 | ||
41701aa4 | 3276 | uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3277 | { |
50013115 | 3278 | return address_space_lduw_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3279 | } |
3280 | ||
41701aa4 | 3281 | uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3282 | { |
50013115 | 3283 | return address_space_lduw_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3284 | } |
3285 | ||
8df1cd07 FB |
3286 | /* warning: addr must be aligned. The ram page is not masked as dirty |
3287 | and the code inside is not invalidated. It is useful if the dirty | |
3288 | bits are used to track modified PTEs */ | |
50013115 PM |
3289 | void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val, |
3290 | MemTxAttrs attrs, MemTxResult *result) | |
8df1cd07 | 3291 | { |
8df1cd07 | 3292 | uint8_t *ptr; |
5c8a00ce | 3293 | MemoryRegion *mr; |
149f54b5 PB |
3294 | hwaddr l = 4; |
3295 | hwaddr addr1; | |
50013115 | 3296 | MemTxResult r; |
845b6214 | 3297 | uint8_t dirty_log_mask; |
4840f10e | 3298 | bool release_lock = false; |
8df1cd07 | 3299 | |
41063e1e | 3300 | rcu_read_lock(); |
2198a121 | 3301 | mr = address_space_translate(as, addr, &addr1, &l, |
5c8a00ce PB |
3302 | true); |
3303 | if (l < 4 || !memory_access_is_direct(mr, true)) { | |
4840f10e | 3304 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3305 | |
50013115 | 3306 | r = memory_region_dispatch_write(mr, addr1, val, 4, attrs); |
8df1cd07 | 3307 | } else { |
5c8a00ce | 3308 | addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK; |
5579c7f3 | 3309 | ptr = qemu_get_ram_ptr(addr1); |
8df1cd07 | 3310 | stl_p(ptr, val); |
74576198 | 3311 | |
845b6214 PB |
3312 | dirty_log_mask = memory_region_get_dirty_log_mask(mr); |
3313 | dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); | |
58d2707e | 3314 | cpu_physical_memory_set_dirty_range(addr1, 4, dirty_log_mask); |
50013115 PM |
3315 | r = MEMTX_OK; |
3316 | } | |
3317 | if (result) { | |
3318 | *result = r; | |
8df1cd07 | 3319 | } |
4840f10e JK |
3320 | if (release_lock) { |
3321 | qemu_mutex_unlock_iothread(); | |
3322 | } | |
41063e1e | 3323 | rcu_read_unlock(); |
8df1cd07 FB |
3324 | } |
3325 | ||
50013115 PM |
3326 | void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val) |
3327 | { | |
3328 | address_space_stl_notdirty(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
3329 | } | |
3330 | ||
8df1cd07 | 3331 | /* warning: addr must be aligned */ |
50013115 PM |
3332 | static inline void address_space_stl_internal(AddressSpace *as, |
3333 | hwaddr addr, uint32_t val, | |
3334 | MemTxAttrs attrs, | |
3335 | MemTxResult *result, | |
3336 | enum device_endian endian) | |
8df1cd07 | 3337 | { |
8df1cd07 | 3338 | uint8_t *ptr; |
5c8a00ce | 3339 | MemoryRegion *mr; |
149f54b5 PB |
3340 | hwaddr l = 4; |
3341 | hwaddr addr1; | |
50013115 | 3342 | MemTxResult r; |
4840f10e | 3343 | bool release_lock = false; |
8df1cd07 | 3344 | |
41063e1e | 3345 | rcu_read_lock(); |
ab1da857 | 3346 | mr = address_space_translate(as, addr, &addr1, &l, |
5c8a00ce PB |
3347 | true); |
3348 | if (l < 4 || !memory_access_is_direct(mr, true)) { | |
4840f10e | 3349 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3350 | |
1e78bcc1 AG |
3351 | #if defined(TARGET_WORDS_BIGENDIAN) |
3352 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3353 | val = bswap32(val); | |
3354 | } | |
3355 | #else | |
3356 | if (endian == DEVICE_BIG_ENDIAN) { | |
3357 | val = bswap32(val); | |
3358 | } | |
3359 | #endif | |
50013115 | 3360 | r = memory_region_dispatch_write(mr, addr1, val, 4, attrs); |
8df1cd07 | 3361 | } else { |
8df1cd07 | 3362 | /* RAM case */ |
5c8a00ce | 3363 | addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK; |
5579c7f3 | 3364 | ptr = qemu_get_ram_ptr(addr1); |
1e78bcc1 AG |
3365 | switch (endian) { |
3366 | case DEVICE_LITTLE_ENDIAN: | |
3367 | stl_le_p(ptr, val); | |
3368 | break; | |
3369 | case DEVICE_BIG_ENDIAN: | |
3370 | stl_be_p(ptr, val); | |
3371 | break; | |
3372 | default: | |
3373 | stl_p(ptr, val); | |
3374 | break; | |
3375 | } | |
845b6214 | 3376 | invalidate_and_set_dirty(mr, addr1, 4); |
50013115 PM |
3377 | r = MEMTX_OK; |
3378 | } | |
3379 | if (result) { | |
3380 | *result = r; | |
8df1cd07 | 3381 | } |
4840f10e JK |
3382 | if (release_lock) { |
3383 | qemu_mutex_unlock_iothread(); | |
3384 | } | |
41063e1e | 3385 | rcu_read_unlock(); |
8df1cd07 FB |
3386 | } |
3387 | ||
50013115 PM |
3388 | void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val, |
3389 | MemTxAttrs attrs, MemTxResult *result) | |
3390 | { | |
3391 | address_space_stl_internal(as, addr, val, attrs, result, | |
3392 | DEVICE_NATIVE_ENDIAN); | |
3393 | } | |
3394 | ||
3395 | void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val, | |
3396 | MemTxAttrs attrs, MemTxResult *result) | |
3397 | { | |
3398 | address_space_stl_internal(as, addr, val, attrs, result, | |
3399 | DEVICE_LITTLE_ENDIAN); | |
3400 | } | |
3401 | ||
3402 | void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val, | |
3403 | MemTxAttrs attrs, MemTxResult *result) | |
3404 | { | |
3405 | address_space_stl_internal(as, addr, val, attrs, result, | |
3406 | DEVICE_BIG_ENDIAN); | |
3407 | } | |
3408 | ||
ab1da857 | 3409 | void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3410 | { |
50013115 | 3411 | address_space_stl(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3412 | } |
3413 | ||
ab1da857 | 3414 | void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3415 | { |
50013115 | 3416 | address_space_stl_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3417 | } |
3418 | ||
ab1da857 | 3419 | void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3420 | { |
50013115 | 3421 | address_space_stl_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3422 | } |
3423 | ||
aab33094 | 3424 | /* XXX: optimize */ |
50013115 PM |
3425 | void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val, |
3426 | MemTxAttrs attrs, MemTxResult *result) | |
aab33094 FB |
3427 | { |
3428 | uint8_t v = val; | |
50013115 PM |
3429 | MemTxResult r; |
3430 | ||
3431 | r = address_space_rw(as, addr, attrs, &v, 1, 1); | |
3432 | if (result) { | |
3433 | *result = r; | |
3434 | } | |
3435 | } | |
3436 | ||
3437 | void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val) | |
3438 | { | |
3439 | address_space_stb(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
aab33094 FB |
3440 | } |
3441 | ||
733f0b02 | 3442 | /* warning: addr must be aligned */ |
50013115 PM |
3443 | static inline void address_space_stw_internal(AddressSpace *as, |
3444 | hwaddr addr, uint32_t val, | |
3445 | MemTxAttrs attrs, | |
3446 | MemTxResult *result, | |
3447 | enum device_endian endian) | |
aab33094 | 3448 | { |
733f0b02 | 3449 | uint8_t *ptr; |
5c8a00ce | 3450 | MemoryRegion *mr; |
149f54b5 PB |
3451 | hwaddr l = 2; |
3452 | hwaddr addr1; | |
50013115 | 3453 | MemTxResult r; |
4840f10e | 3454 | bool release_lock = false; |
733f0b02 | 3455 | |
41063e1e | 3456 | rcu_read_lock(); |
5ce5944d | 3457 | mr = address_space_translate(as, addr, &addr1, &l, true); |
5c8a00ce | 3458 | if (l < 2 || !memory_access_is_direct(mr, true)) { |
4840f10e | 3459 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3460 | |
1e78bcc1 AG |
3461 | #if defined(TARGET_WORDS_BIGENDIAN) |
3462 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3463 | val = bswap16(val); | |
3464 | } | |
3465 | #else | |
3466 | if (endian == DEVICE_BIG_ENDIAN) { | |
3467 | val = bswap16(val); | |
3468 | } | |
3469 | #endif | |
50013115 | 3470 | r = memory_region_dispatch_write(mr, addr1, val, 2, attrs); |
733f0b02 | 3471 | } else { |
733f0b02 | 3472 | /* RAM case */ |
5c8a00ce | 3473 | addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK; |
733f0b02 | 3474 | ptr = qemu_get_ram_ptr(addr1); |
1e78bcc1 AG |
3475 | switch (endian) { |
3476 | case DEVICE_LITTLE_ENDIAN: | |
3477 | stw_le_p(ptr, val); | |
3478 | break; | |
3479 | case DEVICE_BIG_ENDIAN: | |
3480 | stw_be_p(ptr, val); | |
3481 | break; | |
3482 | default: | |
3483 | stw_p(ptr, val); | |
3484 | break; | |
3485 | } | |
845b6214 | 3486 | invalidate_and_set_dirty(mr, addr1, 2); |
50013115 PM |
3487 | r = MEMTX_OK; |
3488 | } | |
3489 | if (result) { | |
3490 | *result = r; | |
733f0b02 | 3491 | } |
4840f10e JK |
3492 | if (release_lock) { |
3493 | qemu_mutex_unlock_iothread(); | |
3494 | } | |
41063e1e | 3495 | rcu_read_unlock(); |
aab33094 FB |
3496 | } |
3497 | ||
50013115 PM |
3498 | void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val, |
3499 | MemTxAttrs attrs, MemTxResult *result) | |
3500 | { | |
3501 | address_space_stw_internal(as, addr, val, attrs, result, | |
3502 | DEVICE_NATIVE_ENDIAN); | |
3503 | } | |
3504 | ||
3505 | void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val, | |
3506 | MemTxAttrs attrs, MemTxResult *result) | |
3507 | { | |
3508 | address_space_stw_internal(as, addr, val, attrs, result, | |
3509 | DEVICE_LITTLE_ENDIAN); | |
3510 | } | |
3511 | ||
3512 | void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val, | |
3513 | MemTxAttrs attrs, MemTxResult *result) | |
3514 | { | |
3515 | address_space_stw_internal(as, addr, val, attrs, result, | |
3516 | DEVICE_BIG_ENDIAN); | |
3517 | } | |
3518 | ||
5ce5944d | 3519 | void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3520 | { |
50013115 | 3521 | address_space_stw(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3522 | } |
3523 | ||
5ce5944d | 3524 | void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3525 | { |
50013115 | 3526 | address_space_stw_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3527 | } |
3528 | ||
5ce5944d | 3529 | void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3530 | { |
50013115 | 3531 | address_space_stw_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3532 | } |
3533 | ||
aab33094 | 3534 | /* XXX: optimize */ |
50013115 PM |
3535 | void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val, |
3536 | MemTxAttrs attrs, MemTxResult *result) | |
aab33094 | 3537 | { |
50013115 | 3538 | MemTxResult r; |
aab33094 | 3539 | val = tswap64(val); |
50013115 PM |
3540 | r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1); |
3541 | if (result) { | |
3542 | *result = r; | |
3543 | } | |
aab33094 FB |
3544 | } |
3545 | ||
50013115 PM |
3546 | void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val, |
3547 | MemTxAttrs attrs, MemTxResult *result) | |
1e78bcc1 | 3548 | { |
50013115 | 3549 | MemTxResult r; |
1e78bcc1 | 3550 | val = cpu_to_le64(val); |
50013115 PM |
3551 | r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1); |
3552 | if (result) { | |
3553 | *result = r; | |
3554 | } | |
3555 | } | |
3556 | void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val, | |
3557 | MemTxAttrs attrs, MemTxResult *result) | |
3558 | { | |
3559 | MemTxResult r; | |
3560 | val = cpu_to_be64(val); | |
3561 | r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1); | |
3562 | if (result) { | |
3563 | *result = r; | |
3564 | } | |
3565 | } | |
3566 | ||
3567 | void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val) | |
3568 | { | |
3569 | address_space_stq(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
3570 | } | |
3571 | ||
3572 | void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val) | |
3573 | { | |
3574 | address_space_stq_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
1e78bcc1 AG |
3575 | } |
3576 | ||
f606604f | 3577 | void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val) |
1e78bcc1 | 3578 | { |
50013115 | 3579 | address_space_stq_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3580 | } |
3581 | ||
5e2972fd | 3582 | /* virtual memory access for debug (includes writing to ROM) */ |
f17ec444 | 3583 | int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, |
b448f2f3 | 3584 | uint8_t *buf, int len, int is_write) |
13eb76e0 FB |
3585 | { |
3586 | int l; | |
a8170e5e | 3587 | hwaddr phys_addr; |
9b3c35e0 | 3588 | target_ulong page; |
13eb76e0 FB |
3589 | |
3590 | while (len > 0) { | |
5232e4c7 PM |
3591 | int asidx; |
3592 | MemTxAttrs attrs; | |
3593 | ||
13eb76e0 | 3594 | page = addr & TARGET_PAGE_MASK; |
5232e4c7 PM |
3595 | phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs); |
3596 | asidx = cpu_asidx_from_attrs(cpu, attrs); | |
13eb76e0 FB |
3597 | /* if no physical page mapped, return an error */ |
3598 | if (phys_addr == -1) | |
3599 | return -1; | |
3600 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3601 | if (l > len) | |
3602 | l = len; | |
5e2972fd | 3603 | phys_addr += (addr & ~TARGET_PAGE_MASK); |
2e38847b | 3604 | if (is_write) { |
5232e4c7 PM |
3605 | cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as, |
3606 | phys_addr, buf, l); | |
2e38847b | 3607 | } else { |
5232e4c7 PM |
3608 | address_space_rw(cpu->cpu_ases[asidx].as, phys_addr, |
3609 | MEMTXATTRS_UNSPECIFIED, | |
5c9eb028 | 3610 | buf, l, 0); |
2e38847b | 3611 | } |
13eb76e0 FB |
3612 | len -= l; |
3613 | buf += l; | |
3614 | addr += l; | |
3615 | } | |
3616 | return 0; | |
3617 | } | |
038629a6 DDAG |
3618 | |
3619 | /* | |
3620 | * Allows code that needs to deal with migration bitmaps etc to still be built | |
3621 | * target independent. | |
3622 | */ | |
3623 | size_t qemu_target_page_bits(void) | |
3624 | { | |
3625 | return TARGET_PAGE_BITS; | |
3626 | } | |
3627 | ||
a68fe89c | 3628 | #endif |
13eb76e0 | 3629 | |
8e4a424b BS |
3630 | /* |
3631 | * A helper function for the _utterly broken_ virtio device model to find out if | |
3632 | * it's running on a big endian machine. Don't do this at home kids! | |
3633 | */ | |
98ed8ecf GK |
3634 | bool target_words_bigendian(void); |
3635 | bool target_words_bigendian(void) | |
8e4a424b BS |
3636 | { |
3637 | #if defined(TARGET_WORDS_BIGENDIAN) | |
3638 | return true; | |
3639 | #else | |
3640 | return false; | |
3641 | #endif | |
3642 | } | |
3643 | ||
76f35538 | 3644 | #ifndef CONFIG_USER_ONLY |
a8170e5e | 3645 | bool cpu_physical_memory_is_io(hwaddr phys_addr) |
76f35538 | 3646 | { |
5c8a00ce | 3647 | MemoryRegion*mr; |
149f54b5 | 3648 | hwaddr l = 1; |
41063e1e | 3649 | bool res; |
76f35538 | 3650 | |
41063e1e | 3651 | rcu_read_lock(); |
5c8a00ce PB |
3652 | mr = address_space_translate(&address_space_memory, |
3653 | phys_addr, &phys_addr, &l, false); | |
76f35538 | 3654 | |
41063e1e PB |
3655 | res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr)); |
3656 | rcu_read_unlock(); | |
3657 | return res; | |
76f35538 | 3658 | } |
bd2fa51f | 3659 | |
e3807054 | 3660 | int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) |
bd2fa51f MH |
3661 | { |
3662 | RAMBlock *block; | |
e3807054 | 3663 | int ret = 0; |
bd2fa51f | 3664 | |
0dc3f44a MD |
3665 | rcu_read_lock(); |
3666 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
e3807054 DDAG |
3667 | ret = func(block->idstr, block->host, block->offset, |
3668 | block->used_length, opaque); | |
3669 | if (ret) { | |
3670 | break; | |
3671 | } | |
bd2fa51f | 3672 | } |
0dc3f44a | 3673 | rcu_read_unlock(); |
e3807054 | 3674 | return ret; |
bd2fa51f | 3675 | } |
ec3f8c99 | 3676 | #endif |