]>
Commit | Line | Data |
---|---|---|
54936004 | 1 | /* |
5b6dd868 | 2 | * Virtual page mapping |
5fafdf24 | 3 | * |
54936004 FB |
4 | * Copyright (c) 2003 Fabrice Bellard |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
8167ee88 | 17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
54936004 | 18 | */ |
67b915a5 | 19 | #include "config.h" |
777872e5 | 20 | #ifndef _WIN32 |
a98d49b1 | 21 | #include <sys/types.h> |
d5a8f07c FB |
22 | #include <sys/mman.h> |
23 | #endif | |
54936004 | 24 | |
055403b2 | 25 | #include "qemu-common.h" |
6180a181 | 26 | #include "cpu.h" |
b67d9a52 | 27 | #include "tcg.h" |
b3c7724c | 28 | #include "hw/hw.h" |
4485bd26 | 29 | #if !defined(CONFIG_USER_ONLY) |
47c8ca53 | 30 | #include "hw/boards.h" |
4485bd26 | 31 | #endif |
cc9e98cb | 32 | #include "hw/qdev.h" |
1de7afc9 | 33 | #include "qemu/osdep.h" |
9c17d615 | 34 | #include "sysemu/kvm.h" |
2ff3de68 | 35 | #include "sysemu/sysemu.h" |
0d09e41a | 36 | #include "hw/xen/xen.h" |
1de7afc9 PB |
37 | #include "qemu/timer.h" |
38 | #include "qemu/config-file.h" | |
75a34036 | 39 | #include "qemu/error-report.h" |
022c62cb | 40 | #include "exec/memory.h" |
9c17d615 | 41 | #include "sysemu/dma.h" |
022c62cb | 42 | #include "exec/address-spaces.h" |
53a5960a PB |
43 | #if defined(CONFIG_USER_ONLY) |
44 | #include <qemu.h> | |
432d268c | 45 | #else /* !CONFIG_USER_ONLY */ |
9c17d615 | 46 | #include "sysemu/xen-mapcache.h" |
6506e4f9 | 47 | #include "trace.h" |
53a5960a | 48 | #endif |
0d6d3c87 | 49 | #include "exec/cpu-all.h" |
0dc3f44a | 50 | #include "qemu/rcu_queue.h" |
4840f10e | 51 | #include "qemu/main-loop.h" |
5b6dd868 | 52 | #include "translate-all.h" |
7615936e | 53 | #include "sysemu/replay.h" |
0cac1b66 | 54 | |
022c62cb | 55 | #include "exec/memory-internal.h" |
220c3ebd | 56 | #include "exec/ram_addr.h" |
67d95c15 | 57 | |
b35ba30f | 58 | #include "qemu/range.h" |
794e8f30 MT |
59 | #ifndef _WIN32 |
60 | #include "qemu/mmap-alloc.h" | |
61 | #endif | |
b35ba30f | 62 | |
db7b5426 | 63 | //#define DEBUG_SUBPAGE |
1196be37 | 64 | |
e2eef170 | 65 | #if !defined(CONFIG_USER_ONLY) |
0dc3f44a MD |
66 | /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes |
67 | * are protected by the ramlist lock. | |
68 | */ | |
0d53d9fe | 69 | RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; |
62152b8a AK |
70 | |
71 | static MemoryRegion *system_memory; | |
309cb471 | 72 | static MemoryRegion *system_io; |
62152b8a | 73 | |
f6790af6 AK |
74 | AddressSpace address_space_io; |
75 | AddressSpace address_space_memory; | |
2673a5da | 76 | |
0844e007 | 77 | MemoryRegion io_mem_rom, io_mem_notdirty; |
acc9d80b | 78 | static MemoryRegion io_mem_unassigned; |
0e0df1e2 | 79 | |
7bd4f430 PB |
80 | /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ |
81 | #define RAM_PREALLOC (1 << 0) | |
82 | ||
dbcb8981 PB |
83 | /* RAM is mmap-ed with MAP_SHARED */ |
84 | #define RAM_SHARED (1 << 1) | |
85 | ||
62be4e3a MT |
86 | /* Only a portion of RAM (used_length) is actually used, and migrated. |
87 | * This used_length size can change across reboots. | |
88 | */ | |
89 | #define RAM_RESIZEABLE (1 << 2) | |
90 | ||
e2eef170 | 91 | #endif |
9fa3e853 | 92 | |
bdc44640 | 93 | struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus); |
6a00d601 FB |
94 | /* current CPU in the current thread. It is only valid inside |
95 | cpu_exec() */ | |
f240eb6f | 96 | __thread CPUState *current_cpu; |
2e70f6ef | 97 | /* 0 = Do not count executed instructions. |
bf20dc07 | 98 | 1 = Precise instruction counting. |
2e70f6ef | 99 | 2 = Adaptive rate instruction counting. */ |
5708fc66 | 100 | int use_icount; |
6a00d601 | 101 | |
e2eef170 | 102 | #if !defined(CONFIG_USER_ONLY) |
4346ae3e | 103 | |
1db8abb1 PB |
104 | typedef struct PhysPageEntry PhysPageEntry; |
105 | ||
106 | struct PhysPageEntry { | |
9736e55b | 107 | /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ |
8b795765 | 108 | uint32_t skip : 6; |
9736e55b | 109 | /* index into phys_sections (!skip) or phys_map_nodes (skip) */ |
8b795765 | 110 | uint32_t ptr : 26; |
1db8abb1 PB |
111 | }; |
112 | ||
8b795765 MT |
113 | #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) |
114 | ||
03f49957 | 115 | /* Size of the L2 (and L3, etc) page tables. */ |
57271d63 | 116 | #define ADDR_SPACE_BITS 64 |
03f49957 | 117 | |
026736ce | 118 | #define P_L2_BITS 9 |
03f49957 PB |
119 | #define P_L2_SIZE (1 << P_L2_BITS) |
120 | ||
121 | #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) | |
122 | ||
123 | typedef PhysPageEntry Node[P_L2_SIZE]; | |
0475d94f | 124 | |
53cb28cb | 125 | typedef struct PhysPageMap { |
79e2b9ae PB |
126 | struct rcu_head rcu; |
127 | ||
53cb28cb MA |
128 | unsigned sections_nb; |
129 | unsigned sections_nb_alloc; | |
130 | unsigned nodes_nb; | |
131 | unsigned nodes_nb_alloc; | |
132 | Node *nodes; | |
133 | MemoryRegionSection *sections; | |
134 | } PhysPageMap; | |
135 | ||
1db8abb1 | 136 | struct AddressSpaceDispatch { |
79e2b9ae PB |
137 | struct rcu_head rcu; |
138 | ||
1db8abb1 PB |
139 | /* This is a multi-level map on the physical address space. |
140 | * The bottom level has pointers to MemoryRegionSections. | |
141 | */ | |
142 | PhysPageEntry phys_map; | |
53cb28cb | 143 | PhysPageMap map; |
acc9d80b | 144 | AddressSpace *as; |
1db8abb1 PB |
145 | }; |
146 | ||
90260c6c JK |
147 | #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) |
148 | typedef struct subpage_t { | |
149 | MemoryRegion iomem; | |
acc9d80b | 150 | AddressSpace *as; |
90260c6c JK |
151 | hwaddr base; |
152 | uint16_t sub_section[TARGET_PAGE_SIZE]; | |
153 | } subpage_t; | |
154 | ||
b41aac4f LPF |
155 | #define PHYS_SECTION_UNASSIGNED 0 |
156 | #define PHYS_SECTION_NOTDIRTY 1 | |
157 | #define PHYS_SECTION_ROM 2 | |
158 | #define PHYS_SECTION_WATCH 3 | |
5312bd8b | 159 | |
e2eef170 | 160 | static void io_mem_init(void); |
62152b8a | 161 | static void memory_map_init(void); |
09daed84 | 162 | static void tcg_commit(MemoryListener *listener); |
e2eef170 | 163 | |
1ec9b909 | 164 | static MemoryRegion io_mem_watch; |
32857f4d PM |
165 | |
166 | /** | |
167 | * CPUAddressSpace: all the information a CPU needs about an AddressSpace | |
168 | * @cpu: the CPU whose AddressSpace this is | |
169 | * @as: the AddressSpace itself | |
170 | * @memory_dispatch: its dispatch pointer (cached, RCU protected) | |
171 | * @tcg_as_listener: listener for tracking changes to the AddressSpace | |
172 | */ | |
173 | struct CPUAddressSpace { | |
174 | CPUState *cpu; | |
175 | AddressSpace *as; | |
176 | struct AddressSpaceDispatch *memory_dispatch; | |
177 | MemoryListener tcg_as_listener; | |
178 | }; | |
179 | ||
6658ffb8 | 180 | #endif |
fd6ce8f6 | 181 | |
6d9a1304 | 182 | #if !defined(CONFIG_USER_ONLY) |
d6f2ea22 | 183 | |
53cb28cb | 184 | static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) |
d6f2ea22 | 185 | { |
53cb28cb MA |
186 | if (map->nodes_nb + nodes > map->nodes_nb_alloc) { |
187 | map->nodes_nb_alloc = MAX(map->nodes_nb_alloc * 2, 16); | |
188 | map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes); | |
189 | map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); | |
d6f2ea22 | 190 | } |
f7bf5461 AK |
191 | } |
192 | ||
db94604b | 193 | static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf) |
f7bf5461 AK |
194 | { |
195 | unsigned i; | |
8b795765 | 196 | uint32_t ret; |
db94604b PB |
197 | PhysPageEntry e; |
198 | PhysPageEntry *p; | |
f7bf5461 | 199 | |
53cb28cb | 200 | ret = map->nodes_nb++; |
db94604b | 201 | p = map->nodes[ret]; |
f7bf5461 | 202 | assert(ret != PHYS_MAP_NODE_NIL); |
53cb28cb | 203 | assert(ret != map->nodes_nb_alloc); |
db94604b PB |
204 | |
205 | e.skip = leaf ? 0 : 1; | |
206 | e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL; | |
03f49957 | 207 | for (i = 0; i < P_L2_SIZE; ++i) { |
db94604b | 208 | memcpy(&p[i], &e, sizeof(e)); |
d6f2ea22 | 209 | } |
f7bf5461 | 210 | return ret; |
d6f2ea22 AK |
211 | } |
212 | ||
53cb28cb MA |
213 | static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, |
214 | hwaddr *index, hwaddr *nb, uint16_t leaf, | |
2999097b | 215 | int level) |
f7bf5461 AK |
216 | { |
217 | PhysPageEntry *p; | |
03f49957 | 218 | hwaddr step = (hwaddr)1 << (level * P_L2_BITS); |
108c49b8 | 219 | |
9736e55b | 220 | if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { |
db94604b | 221 | lp->ptr = phys_map_node_alloc(map, level == 0); |
92e873b9 | 222 | } |
db94604b | 223 | p = map->nodes[lp->ptr]; |
03f49957 | 224 | lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; |
f7bf5461 | 225 | |
03f49957 | 226 | while (*nb && lp < &p[P_L2_SIZE]) { |
07f07b31 | 227 | if ((*index & (step - 1)) == 0 && *nb >= step) { |
9736e55b | 228 | lp->skip = 0; |
c19e8800 | 229 | lp->ptr = leaf; |
07f07b31 AK |
230 | *index += step; |
231 | *nb -= step; | |
2999097b | 232 | } else { |
53cb28cb | 233 | phys_page_set_level(map, lp, index, nb, leaf, level - 1); |
2999097b AK |
234 | } |
235 | ++lp; | |
f7bf5461 AK |
236 | } |
237 | } | |
238 | ||
ac1970fb | 239 | static void phys_page_set(AddressSpaceDispatch *d, |
a8170e5e | 240 | hwaddr index, hwaddr nb, |
2999097b | 241 | uint16_t leaf) |
f7bf5461 | 242 | { |
2999097b | 243 | /* Wildly overreserve - it doesn't matter much. */ |
53cb28cb | 244 | phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); |
5cd2c5b6 | 245 | |
53cb28cb | 246 | phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); |
92e873b9 FB |
247 | } |
248 | ||
b35ba30f MT |
249 | /* Compact a non leaf page entry. Simply detect that the entry has a single child, |
250 | * and update our entry so we can skip it and go directly to the destination. | |
251 | */ | |
252 | static void phys_page_compact(PhysPageEntry *lp, Node *nodes, unsigned long *compacted) | |
253 | { | |
254 | unsigned valid_ptr = P_L2_SIZE; | |
255 | int valid = 0; | |
256 | PhysPageEntry *p; | |
257 | int i; | |
258 | ||
259 | if (lp->ptr == PHYS_MAP_NODE_NIL) { | |
260 | return; | |
261 | } | |
262 | ||
263 | p = nodes[lp->ptr]; | |
264 | for (i = 0; i < P_L2_SIZE; i++) { | |
265 | if (p[i].ptr == PHYS_MAP_NODE_NIL) { | |
266 | continue; | |
267 | } | |
268 | ||
269 | valid_ptr = i; | |
270 | valid++; | |
271 | if (p[i].skip) { | |
272 | phys_page_compact(&p[i], nodes, compacted); | |
273 | } | |
274 | } | |
275 | ||
276 | /* We can only compress if there's only one child. */ | |
277 | if (valid != 1) { | |
278 | return; | |
279 | } | |
280 | ||
281 | assert(valid_ptr < P_L2_SIZE); | |
282 | ||
283 | /* Don't compress if it won't fit in the # of bits we have. */ | |
284 | if (lp->skip + p[valid_ptr].skip >= (1 << 3)) { | |
285 | return; | |
286 | } | |
287 | ||
288 | lp->ptr = p[valid_ptr].ptr; | |
289 | if (!p[valid_ptr].skip) { | |
290 | /* If our only child is a leaf, make this a leaf. */ | |
291 | /* By design, we should have made this node a leaf to begin with so we | |
292 | * should never reach here. | |
293 | * But since it's so simple to handle this, let's do it just in case we | |
294 | * change this rule. | |
295 | */ | |
296 | lp->skip = 0; | |
297 | } else { | |
298 | lp->skip += p[valid_ptr].skip; | |
299 | } | |
300 | } | |
301 | ||
302 | static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb) | |
303 | { | |
304 | DECLARE_BITMAP(compacted, nodes_nb); | |
305 | ||
306 | if (d->phys_map.skip) { | |
53cb28cb | 307 | phys_page_compact(&d->phys_map, d->map.nodes, compacted); |
b35ba30f MT |
308 | } |
309 | } | |
310 | ||
97115a8d | 311 | static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr, |
9affd6fc | 312 | Node *nodes, MemoryRegionSection *sections) |
92e873b9 | 313 | { |
31ab2b4a | 314 | PhysPageEntry *p; |
97115a8d | 315 | hwaddr index = addr >> TARGET_PAGE_BITS; |
31ab2b4a | 316 | int i; |
f1f6e3b8 | 317 | |
9736e55b | 318 | for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { |
c19e8800 | 319 | if (lp.ptr == PHYS_MAP_NODE_NIL) { |
9affd6fc | 320 | return §ions[PHYS_SECTION_UNASSIGNED]; |
31ab2b4a | 321 | } |
9affd6fc | 322 | p = nodes[lp.ptr]; |
03f49957 | 323 | lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; |
5312bd8b | 324 | } |
b35ba30f MT |
325 | |
326 | if (sections[lp.ptr].size.hi || | |
327 | range_covers_byte(sections[lp.ptr].offset_within_address_space, | |
328 | sections[lp.ptr].size.lo, addr)) { | |
329 | return §ions[lp.ptr]; | |
330 | } else { | |
331 | return §ions[PHYS_SECTION_UNASSIGNED]; | |
332 | } | |
f3705d53 AK |
333 | } |
334 | ||
e5548617 BS |
335 | bool memory_region_is_unassigned(MemoryRegion *mr) |
336 | { | |
2a8e7499 | 337 | return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device |
5b6dd868 | 338 | && mr != &io_mem_watch; |
fd6ce8f6 | 339 | } |
149f54b5 | 340 | |
79e2b9ae | 341 | /* Called from RCU critical section */ |
c7086b4a | 342 | static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, |
90260c6c JK |
343 | hwaddr addr, |
344 | bool resolve_subpage) | |
9f029603 | 345 | { |
90260c6c JK |
346 | MemoryRegionSection *section; |
347 | subpage_t *subpage; | |
348 | ||
53cb28cb | 349 | section = phys_page_find(d->phys_map, addr, d->map.nodes, d->map.sections); |
90260c6c JK |
350 | if (resolve_subpage && section->mr->subpage) { |
351 | subpage = container_of(section->mr, subpage_t, iomem); | |
53cb28cb | 352 | section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; |
90260c6c JK |
353 | } |
354 | return section; | |
9f029603 JK |
355 | } |
356 | ||
79e2b9ae | 357 | /* Called from RCU critical section */ |
90260c6c | 358 | static MemoryRegionSection * |
c7086b4a | 359 | address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, |
90260c6c | 360 | hwaddr *plen, bool resolve_subpage) |
149f54b5 PB |
361 | { |
362 | MemoryRegionSection *section; | |
965eb2fc | 363 | MemoryRegion *mr; |
a87f3954 | 364 | Int128 diff; |
149f54b5 | 365 | |
c7086b4a | 366 | section = address_space_lookup_region(d, addr, resolve_subpage); |
149f54b5 PB |
367 | /* Compute offset within MemoryRegionSection */ |
368 | addr -= section->offset_within_address_space; | |
369 | ||
370 | /* Compute offset within MemoryRegion */ | |
371 | *xlat = addr + section->offset_within_region; | |
372 | ||
965eb2fc | 373 | mr = section->mr; |
b242e0e0 PB |
374 | |
375 | /* MMIO registers can be expected to perform full-width accesses based only | |
376 | * on their address, without considering adjacent registers that could | |
377 | * decode to completely different MemoryRegions. When such registers | |
378 | * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO | |
379 | * regions overlap wildly. For this reason we cannot clamp the accesses | |
380 | * here. | |
381 | * | |
382 | * If the length is small (as is the case for address_space_ldl/stl), | |
383 | * everything works fine. If the incoming length is large, however, | |
384 | * the caller really has to do the clamping through memory_access_size. | |
385 | */ | |
965eb2fc | 386 | if (memory_region_is_ram(mr)) { |
e4a511f8 | 387 | diff = int128_sub(section->size, int128_make64(addr)); |
965eb2fc PB |
388 | *plen = int128_get64(int128_min(diff, int128_make64(*plen))); |
389 | } | |
149f54b5 PB |
390 | return section; |
391 | } | |
90260c6c | 392 | |
41063e1e | 393 | /* Called from RCU critical section */ |
5c8a00ce PB |
394 | MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr, |
395 | hwaddr *xlat, hwaddr *plen, | |
396 | bool is_write) | |
90260c6c | 397 | { |
30951157 AK |
398 | IOMMUTLBEntry iotlb; |
399 | MemoryRegionSection *section; | |
400 | MemoryRegion *mr; | |
30951157 AK |
401 | |
402 | for (;;) { | |
79e2b9ae PB |
403 | AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch); |
404 | section = address_space_translate_internal(d, addr, &addr, plen, true); | |
30951157 AK |
405 | mr = section->mr; |
406 | ||
407 | if (!mr->iommu_ops) { | |
408 | break; | |
409 | } | |
410 | ||
8d7b8cb9 | 411 | iotlb = mr->iommu_ops->translate(mr, addr, is_write); |
30951157 AK |
412 | addr = ((iotlb.translated_addr & ~iotlb.addr_mask) |
413 | | (addr & iotlb.addr_mask)); | |
23820dbf | 414 | *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1); |
30951157 AK |
415 | if (!(iotlb.perm & (1 << is_write))) { |
416 | mr = &io_mem_unassigned; | |
417 | break; | |
418 | } | |
419 | ||
420 | as = iotlb.target_as; | |
421 | } | |
422 | ||
fe680d0d | 423 | if (xen_enabled() && memory_access_is_direct(mr, is_write)) { |
a87f3954 | 424 | hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; |
23820dbf | 425 | *plen = MIN(page, *plen); |
a87f3954 PB |
426 | } |
427 | ||
30951157 AK |
428 | *xlat = addr; |
429 | return mr; | |
90260c6c JK |
430 | } |
431 | ||
79e2b9ae | 432 | /* Called from RCU critical section */ |
90260c6c | 433 | MemoryRegionSection * |
d7898cda | 434 | address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr, |
9d82b5a7 | 435 | hwaddr *xlat, hwaddr *plen) |
90260c6c | 436 | { |
30951157 | 437 | MemoryRegionSection *section; |
d7898cda PM |
438 | AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch; |
439 | ||
440 | section = address_space_translate_internal(d, addr, xlat, plen, false); | |
30951157 AK |
441 | |
442 | assert(!section->mr->iommu_ops); | |
443 | return section; | |
90260c6c | 444 | } |
5b6dd868 | 445 | #endif |
fd6ce8f6 | 446 | |
b170fce3 | 447 | #if !defined(CONFIG_USER_ONLY) |
5b6dd868 BS |
448 | |
449 | static int cpu_common_post_load(void *opaque, int version_id) | |
fd6ce8f6 | 450 | { |
259186a7 | 451 | CPUState *cpu = opaque; |
a513fe19 | 452 | |
5b6dd868 BS |
453 | /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the |
454 | version_id is increased. */ | |
259186a7 | 455 | cpu->interrupt_request &= ~0x01; |
c01a71c1 | 456 | tlb_flush(cpu, 1); |
5b6dd868 BS |
457 | |
458 | return 0; | |
a513fe19 | 459 | } |
7501267e | 460 | |
6c3bff0e PD |
461 | static int cpu_common_pre_load(void *opaque) |
462 | { | |
463 | CPUState *cpu = opaque; | |
464 | ||
adee6424 | 465 | cpu->exception_index = -1; |
6c3bff0e PD |
466 | |
467 | return 0; | |
468 | } | |
469 | ||
470 | static bool cpu_common_exception_index_needed(void *opaque) | |
471 | { | |
472 | CPUState *cpu = opaque; | |
473 | ||
adee6424 | 474 | return tcg_enabled() && cpu->exception_index != -1; |
6c3bff0e PD |
475 | } |
476 | ||
477 | static const VMStateDescription vmstate_cpu_common_exception_index = { | |
478 | .name = "cpu_common/exception_index", | |
479 | .version_id = 1, | |
480 | .minimum_version_id = 1, | |
5cd8cada | 481 | .needed = cpu_common_exception_index_needed, |
6c3bff0e PD |
482 | .fields = (VMStateField[]) { |
483 | VMSTATE_INT32(exception_index, CPUState), | |
484 | VMSTATE_END_OF_LIST() | |
485 | } | |
486 | }; | |
487 | ||
bac05aa9 AS |
488 | static bool cpu_common_crash_occurred_needed(void *opaque) |
489 | { | |
490 | CPUState *cpu = opaque; | |
491 | ||
492 | return cpu->crash_occurred; | |
493 | } | |
494 | ||
495 | static const VMStateDescription vmstate_cpu_common_crash_occurred = { | |
496 | .name = "cpu_common/crash_occurred", | |
497 | .version_id = 1, | |
498 | .minimum_version_id = 1, | |
499 | .needed = cpu_common_crash_occurred_needed, | |
500 | .fields = (VMStateField[]) { | |
501 | VMSTATE_BOOL(crash_occurred, CPUState), | |
502 | VMSTATE_END_OF_LIST() | |
503 | } | |
504 | }; | |
505 | ||
1a1562f5 | 506 | const VMStateDescription vmstate_cpu_common = { |
5b6dd868 BS |
507 | .name = "cpu_common", |
508 | .version_id = 1, | |
509 | .minimum_version_id = 1, | |
6c3bff0e | 510 | .pre_load = cpu_common_pre_load, |
5b6dd868 | 511 | .post_load = cpu_common_post_load, |
35d08458 | 512 | .fields = (VMStateField[]) { |
259186a7 AF |
513 | VMSTATE_UINT32(halted, CPUState), |
514 | VMSTATE_UINT32(interrupt_request, CPUState), | |
5b6dd868 | 515 | VMSTATE_END_OF_LIST() |
6c3bff0e | 516 | }, |
5cd8cada JQ |
517 | .subsections = (const VMStateDescription*[]) { |
518 | &vmstate_cpu_common_exception_index, | |
bac05aa9 | 519 | &vmstate_cpu_common_crash_occurred, |
5cd8cada | 520 | NULL |
5b6dd868 BS |
521 | } |
522 | }; | |
1a1562f5 | 523 | |
5b6dd868 | 524 | #endif |
ea041c0e | 525 | |
38d8f5c8 | 526 | CPUState *qemu_get_cpu(int index) |
ea041c0e | 527 | { |
bdc44640 | 528 | CPUState *cpu; |
ea041c0e | 529 | |
bdc44640 | 530 | CPU_FOREACH(cpu) { |
55e5c285 | 531 | if (cpu->cpu_index == index) { |
bdc44640 | 532 | return cpu; |
55e5c285 | 533 | } |
ea041c0e | 534 | } |
5b6dd868 | 535 | |
bdc44640 | 536 | return NULL; |
ea041c0e FB |
537 | } |
538 | ||
09daed84 | 539 | #if !defined(CONFIG_USER_ONLY) |
56943e8c | 540 | void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx) |
09daed84 | 541 | { |
12ebc9a7 PM |
542 | CPUAddressSpace *newas; |
543 | ||
544 | /* Target code should have set num_ases before calling us */ | |
545 | assert(asidx < cpu->num_ases); | |
546 | ||
56943e8c PM |
547 | if (asidx == 0) { |
548 | /* address space 0 gets the convenience alias */ | |
549 | cpu->as = as; | |
550 | } | |
551 | ||
12ebc9a7 PM |
552 | /* KVM cannot currently support multiple address spaces. */ |
553 | assert(asidx == 0 || !kvm_enabled()); | |
09daed84 | 554 | |
12ebc9a7 PM |
555 | if (!cpu->cpu_ases) { |
556 | cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases); | |
09daed84 | 557 | } |
32857f4d | 558 | |
12ebc9a7 PM |
559 | newas = &cpu->cpu_ases[asidx]; |
560 | newas->cpu = cpu; | |
561 | newas->as = as; | |
56943e8c | 562 | if (tcg_enabled()) { |
12ebc9a7 PM |
563 | newas->tcg_as_listener.commit = tcg_commit; |
564 | memory_listener_register(&newas->tcg_as_listener, as); | |
56943e8c | 565 | } |
09daed84 EI |
566 | } |
567 | #endif | |
568 | ||
b7bca733 BR |
569 | #ifndef CONFIG_USER_ONLY |
570 | static DECLARE_BITMAP(cpu_index_map, MAX_CPUMASK_BITS); | |
571 | ||
572 | static int cpu_get_free_index(Error **errp) | |
573 | { | |
574 | int cpu = find_first_zero_bit(cpu_index_map, MAX_CPUMASK_BITS); | |
575 | ||
576 | if (cpu >= MAX_CPUMASK_BITS) { | |
577 | error_setg(errp, "Trying to use more CPUs than max of %d", | |
578 | MAX_CPUMASK_BITS); | |
579 | return -1; | |
580 | } | |
581 | ||
582 | bitmap_set(cpu_index_map, cpu, 1); | |
583 | return cpu; | |
584 | } | |
585 | ||
586 | void cpu_exec_exit(CPUState *cpu) | |
587 | { | |
588 | if (cpu->cpu_index == -1) { | |
589 | /* cpu_index was never allocated by this @cpu or was already freed. */ | |
590 | return; | |
591 | } | |
592 | ||
593 | bitmap_clear(cpu_index_map, cpu->cpu_index, 1); | |
594 | cpu->cpu_index = -1; | |
595 | } | |
596 | #else | |
597 | ||
598 | static int cpu_get_free_index(Error **errp) | |
599 | { | |
600 | CPUState *some_cpu; | |
601 | int cpu_index = 0; | |
602 | ||
603 | CPU_FOREACH(some_cpu) { | |
604 | cpu_index++; | |
605 | } | |
606 | return cpu_index; | |
607 | } | |
608 | ||
609 | void cpu_exec_exit(CPUState *cpu) | |
610 | { | |
611 | } | |
612 | #endif | |
613 | ||
4bad9e39 | 614 | void cpu_exec_init(CPUState *cpu, Error **errp) |
ea041c0e | 615 | { |
b170fce3 | 616 | CPUClass *cc = CPU_GET_CLASS(cpu); |
5b6dd868 | 617 | int cpu_index; |
b7bca733 | 618 | Error *local_err = NULL; |
5b6dd868 | 619 | |
56943e8c | 620 | cpu->as = NULL; |
12ebc9a7 | 621 | cpu->num_ases = 0; |
56943e8c | 622 | |
291135b5 | 623 | #ifndef CONFIG_USER_ONLY |
291135b5 | 624 | cpu->thread_id = qemu_get_thread_id(); |
291135b5 EH |
625 | #endif |
626 | ||
5b6dd868 BS |
627 | #if defined(CONFIG_USER_ONLY) |
628 | cpu_list_lock(); | |
629 | #endif | |
b7bca733 BR |
630 | cpu_index = cpu->cpu_index = cpu_get_free_index(&local_err); |
631 | if (local_err) { | |
632 | error_propagate(errp, local_err); | |
633 | #if defined(CONFIG_USER_ONLY) | |
634 | cpu_list_unlock(); | |
635 | #endif | |
636 | return; | |
5b6dd868 | 637 | } |
bdc44640 | 638 | QTAILQ_INSERT_TAIL(&cpus, cpu, node); |
5b6dd868 BS |
639 | #if defined(CONFIG_USER_ONLY) |
640 | cpu_list_unlock(); | |
641 | #endif | |
e0d47944 AF |
642 | if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { |
643 | vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu); | |
644 | } | |
5b6dd868 | 645 | #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY) |
5b6dd868 | 646 | register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION, |
4bad9e39 | 647 | cpu_save, cpu_load, cpu->env_ptr); |
b170fce3 | 648 | assert(cc->vmsd == NULL); |
e0d47944 | 649 | assert(qdev_get_vmsd(DEVICE(cpu)) == NULL); |
5b6dd868 | 650 | #endif |
b170fce3 AF |
651 | if (cc->vmsd != NULL) { |
652 | vmstate_register(NULL, cpu_index, cc->vmsd, cpu); | |
653 | } | |
ea041c0e FB |
654 | } |
655 | ||
94df27fd | 656 | #if defined(CONFIG_USER_ONLY) |
00b941e5 | 657 | static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) |
94df27fd PB |
658 | { |
659 | tb_invalidate_phys_page_range(pc, pc + 1, 0); | |
660 | } | |
661 | #else | |
00b941e5 | 662 | static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) |
1e7855a5 | 663 | { |
e8262a1b MF |
664 | hwaddr phys = cpu_get_phys_page_debug(cpu, pc); |
665 | if (phys != -1) { | |
09daed84 | 666 | tb_invalidate_phys_addr(cpu->as, |
29d8ec7b | 667 | phys | (pc & ~TARGET_PAGE_MASK)); |
e8262a1b | 668 | } |
1e7855a5 | 669 | } |
c27004ec | 670 | #endif |
d720b93d | 671 | |
c527ee8f | 672 | #if defined(CONFIG_USER_ONLY) |
75a34036 | 673 | void cpu_watchpoint_remove_all(CPUState *cpu, int mask) |
c527ee8f PB |
674 | |
675 | { | |
676 | } | |
677 | ||
3ee887e8 PM |
678 | int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, |
679 | int flags) | |
680 | { | |
681 | return -ENOSYS; | |
682 | } | |
683 | ||
684 | void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) | |
685 | { | |
686 | } | |
687 | ||
75a34036 | 688 | int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, |
c527ee8f PB |
689 | int flags, CPUWatchpoint **watchpoint) |
690 | { | |
691 | return -ENOSYS; | |
692 | } | |
693 | #else | |
6658ffb8 | 694 | /* Add a watchpoint. */ |
75a34036 | 695 | int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, |
a1d1bb31 | 696 | int flags, CPUWatchpoint **watchpoint) |
6658ffb8 | 697 | { |
c0ce998e | 698 | CPUWatchpoint *wp; |
6658ffb8 | 699 | |
05068c0d | 700 | /* forbid ranges which are empty or run off the end of the address space */ |
07e2863d | 701 | if (len == 0 || (addr + len - 1) < addr) { |
75a34036 AF |
702 | error_report("tried to set invalid watchpoint at %" |
703 | VADDR_PRIx ", len=%" VADDR_PRIu, addr, len); | |
b4051334 AL |
704 | return -EINVAL; |
705 | } | |
7267c094 | 706 | wp = g_malloc(sizeof(*wp)); |
a1d1bb31 AL |
707 | |
708 | wp->vaddr = addr; | |
05068c0d | 709 | wp->len = len; |
a1d1bb31 AL |
710 | wp->flags = flags; |
711 | ||
2dc9f411 | 712 | /* keep all GDB-injected watchpoints in front */ |
ff4700b0 AF |
713 | if (flags & BP_GDB) { |
714 | QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry); | |
715 | } else { | |
716 | QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry); | |
717 | } | |
6658ffb8 | 718 | |
31b030d4 | 719 | tlb_flush_page(cpu, addr); |
a1d1bb31 AL |
720 | |
721 | if (watchpoint) | |
722 | *watchpoint = wp; | |
723 | return 0; | |
6658ffb8 PB |
724 | } |
725 | ||
a1d1bb31 | 726 | /* Remove a specific watchpoint. */ |
75a34036 | 727 | int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, |
a1d1bb31 | 728 | int flags) |
6658ffb8 | 729 | { |
a1d1bb31 | 730 | CPUWatchpoint *wp; |
6658ffb8 | 731 | |
ff4700b0 | 732 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d | 733 | if (addr == wp->vaddr && len == wp->len |
6e140f28 | 734 | && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { |
75a34036 | 735 | cpu_watchpoint_remove_by_ref(cpu, wp); |
6658ffb8 PB |
736 | return 0; |
737 | } | |
738 | } | |
a1d1bb31 | 739 | return -ENOENT; |
6658ffb8 PB |
740 | } |
741 | ||
a1d1bb31 | 742 | /* Remove a specific watchpoint by reference. */ |
75a34036 | 743 | void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) |
a1d1bb31 | 744 | { |
ff4700b0 | 745 | QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry); |
7d03f82f | 746 | |
31b030d4 | 747 | tlb_flush_page(cpu, watchpoint->vaddr); |
a1d1bb31 | 748 | |
7267c094 | 749 | g_free(watchpoint); |
a1d1bb31 AL |
750 | } |
751 | ||
752 | /* Remove all matching watchpoints. */ | |
75a34036 | 753 | void cpu_watchpoint_remove_all(CPUState *cpu, int mask) |
a1d1bb31 | 754 | { |
c0ce998e | 755 | CPUWatchpoint *wp, *next; |
a1d1bb31 | 756 | |
ff4700b0 | 757 | QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) { |
75a34036 AF |
758 | if (wp->flags & mask) { |
759 | cpu_watchpoint_remove_by_ref(cpu, wp); | |
760 | } | |
c0ce998e | 761 | } |
7d03f82f | 762 | } |
05068c0d PM |
763 | |
764 | /* Return true if this watchpoint address matches the specified | |
765 | * access (ie the address range covered by the watchpoint overlaps | |
766 | * partially or completely with the address range covered by the | |
767 | * access). | |
768 | */ | |
769 | static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp, | |
770 | vaddr addr, | |
771 | vaddr len) | |
772 | { | |
773 | /* We know the lengths are non-zero, but a little caution is | |
774 | * required to avoid errors in the case where the range ends | |
775 | * exactly at the top of the address space and so addr + len | |
776 | * wraps round to zero. | |
777 | */ | |
778 | vaddr wpend = wp->vaddr + wp->len - 1; | |
779 | vaddr addrend = addr + len - 1; | |
780 | ||
781 | return !(addr > wpend || wp->vaddr > addrend); | |
782 | } | |
783 | ||
c527ee8f | 784 | #endif |
7d03f82f | 785 | |
a1d1bb31 | 786 | /* Add a breakpoint. */ |
b3310ab3 | 787 | int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, |
a1d1bb31 | 788 | CPUBreakpoint **breakpoint) |
4c3a88a2 | 789 | { |
c0ce998e | 790 | CPUBreakpoint *bp; |
3b46e624 | 791 | |
7267c094 | 792 | bp = g_malloc(sizeof(*bp)); |
4c3a88a2 | 793 | |
a1d1bb31 AL |
794 | bp->pc = pc; |
795 | bp->flags = flags; | |
796 | ||
2dc9f411 | 797 | /* keep all GDB-injected breakpoints in front */ |
00b941e5 | 798 | if (flags & BP_GDB) { |
f0c3c505 | 799 | QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry); |
00b941e5 | 800 | } else { |
f0c3c505 | 801 | QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry); |
00b941e5 | 802 | } |
3b46e624 | 803 | |
f0c3c505 | 804 | breakpoint_invalidate(cpu, pc); |
a1d1bb31 | 805 | |
00b941e5 | 806 | if (breakpoint) { |
a1d1bb31 | 807 | *breakpoint = bp; |
00b941e5 | 808 | } |
4c3a88a2 | 809 | return 0; |
4c3a88a2 FB |
810 | } |
811 | ||
a1d1bb31 | 812 | /* Remove a specific breakpoint. */ |
b3310ab3 | 813 | int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags) |
a1d1bb31 | 814 | { |
a1d1bb31 AL |
815 | CPUBreakpoint *bp; |
816 | ||
f0c3c505 | 817 | QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { |
a1d1bb31 | 818 | if (bp->pc == pc && bp->flags == flags) { |
b3310ab3 | 819 | cpu_breakpoint_remove_by_ref(cpu, bp); |
a1d1bb31 AL |
820 | return 0; |
821 | } | |
7d03f82f | 822 | } |
a1d1bb31 | 823 | return -ENOENT; |
7d03f82f EI |
824 | } |
825 | ||
a1d1bb31 | 826 | /* Remove a specific breakpoint by reference. */ |
b3310ab3 | 827 | void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint) |
4c3a88a2 | 828 | { |
f0c3c505 AF |
829 | QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry); |
830 | ||
831 | breakpoint_invalidate(cpu, breakpoint->pc); | |
a1d1bb31 | 832 | |
7267c094 | 833 | g_free(breakpoint); |
a1d1bb31 AL |
834 | } |
835 | ||
836 | /* Remove all matching breakpoints. */ | |
b3310ab3 | 837 | void cpu_breakpoint_remove_all(CPUState *cpu, int mask) |
a1d1bb31 | 838 | { |
c0ce998e | 839 | CPUBreakpoint *bp, *next; |
a1d1bb31 | 840 | |
f0c3c505 | 841 | QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) { |
b3310ab3 AF |
842 | if (bp->flags & mask) { |
843 | cpu_breakpoint_remove_by_ref(cpu, bp); | |
844 | } | |
c0ce998e | 845 | } |
4c3a88a2 FB |
846 | } |
847 | ||
c33a346e FB |
848 | /* enable or disable single step mode. EXCP_DEBUG is returned by the |
849 | CPU loop after each instruction */ | |
3825b28f | 850 | void cpu_single_step(CPUState *cpu, int enabled) |
c33a346e | 851 | { |
ed2803da AF |
852 | if (cpu->singlestep_enabled != enabled) { |
853 | cpu->singlestep_enabled = enabled; | |
854 | if (kvm_enabled()) { | |
38e478ec | 855 | kvm_update_guest_debug(cpu, 0); |
ed2803da | 856 | } else { |
ccbb4d44 | 857 | /* must flush all the translated code to avoid inconsistencies */ |
e22a25c9 | 858 | /* XXX: only flush what is necessary */ |
bbd77c18 | 859 | tb_flush(cpu); |
e22a25c9 | 860 | } |
c33a346e | 861 | } |
c33a346e FB |
862 | } |
863 | ||
a47dddd7 | 864 | void cpu_abort(CPUState *cpu, const char *fmt, ...) |
7501267e FB |
865 | { |
866 | va_list ap; | |
493ae1f0 | 867 | va_list ap2; |
7501267e FB |
868 | |
869 | va_start(ap, fmt); | |
493ae1f0 | 870 | va_copy(ap2, ap); |
7501267e FB |
871 | fprintf(stderr, "qemu: fatal: "); |
872 | vfprintf(stderr, fmt, ap); | |
873 | fprintf(stderr, "\n"); | |
878096ee | 874 | cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP); |
013a2942 | 875 | if (qemu_log_separate()) { |
93fcfe39 AL |
876 | qemu_log("qemu: fatal: "); |
877 | qemu_log_vprintf(fmt, ap2); | |
878 | qemu_log("\n"); | |
a0762859 | 879 | log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP); |
31b1a7b4 | 880 | qemu_log_flush(); |
93fcfe39 | 881 | qemu_log_close(); |
924edcae | 882 | } |
493ae1f0 | 883 | va_end(ap2); |
f9373291 | 884 | va_end(ap); |
7615936e | 885 | replay_finish(); |
fd052bf6 RV |
886 | #if defined(CONFIG_USER_ONLY) |
887 | { | |
888 | struct sigaction act; | |
889 | sigfillset(&act.sa_mask); | |
890 | act.sa_handler = SIG_DFL; | |
891 | sigaction(SIGABRT, &act, NULL); | |
892 | } | |
893 | #endif | |
7501267e FB |
894 | abort(); |
895 | } | |
896 | ||
0124311e | 897 | #if !defined(CONFIG_USER_ONLY) |
0dc3f44a | 898 | /* Called from RCU critical section */ |
041603fe PB |
899 | static RAMBlock *qemu_get_ram_block(ram_addr_t addr) |
900 | { | |
901 | RAMBlock *block; | |
902 | ||
43771539 | 903 | block = atomic_rcu_read(&ram_list.mru_block); |
9b8424d5 | 904 | if (block && addr - block->offset < block->max_length) { |
68851b98 | 905 | return block; |
041603fe | 906 | } |
0dc3f44a | 907 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
9b8424d5 | 908 | if (addr - block->offset < block->max_length) { |
041603fe PB |
909 | goto found; |
910 | } | |
911 | } | |
912 | ||
913 | fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); | |
914 | abort(); | |
915 | ||
916 | found: | |
43771539 PB |
917 | /* It is safe to write mru_block outside the iothread lock. This |
918 | * is what happens: | |
919 | * | |
920 | * mru_block = xxx | |
921 | * rcu_read_unlock() | |
922 | * xxx removed from list | |
923 | * rcu_read_lock() | |
924 | * read mru_block | |
925 | * mru_block = NULL; | |
926 | * call_rcu(reclaim_ramblock, xxx); | |
927 | * rcu_read_unlock() | |
928 | * | |
929 | * atomic_rcu_set is not needed here. The block was already published | |
930 | * when it was placed into the list. Here we're just making an extra | |
931 | * copy of the pointer. | |
932 | */ | |
041603fe PB |
933 | ram_list.mru_block = block; |
934 | return block; | |
935 | } | |
936 | ||
a2f4d5be | 937 | static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) |
d24981d3 | 938 | { |
9a13565d | 939 | CPUState *cpu; |
041603fe | 940 | ram_addr_t start1; |
a2f4d5be JQ |
941 | RAMBlock *block; |
942 | ram_addr_t end; | |
943 | ||
944 | end = TARGET_PAGE_ALIGN(start + length); | |
945 | start &= TARGET_PAGE_MASK; | |
d24981d3 | 946 | |
0dc3f44a | 947 | rcu_read_lock(); |
041603fe PB |
948 | block = qemu_get_ram_block(start); |
949 | assert(block == qemu_get_ram_block(end - 1)); | |
1240be24 | 950 | start1 = (uintptr_t)ramblock_ptr(block, start - block->offset); |
9a13565d PC |
951 | CPU_FOREACH(cpu) { |
952 | tlb_reset_dirty(cpu, start1, length); | |
953 | } | |
0dc3f44a | 954 | rcu_read_unlock(); |
d24981d3 JQ |
955 | } |
956 | ||
5579c7f3 | 957 | /* Note: start and end must be within the same ram block. */ |
03eebc9e SH |
958 | bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, |
959 | ram_addr_t length, | |
960 | unsigned client) | |
1ccde1cb | 961 | { |
03eebc9e SH |
962 | unsigned long end, page; |
963 | bool dirty; | |
964 | ||
965 | if (length == 0) { | |
966 | return false; | |
967 | } | |
f23db169 | 968 | |
03eebc9e SH |
969 | end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; |
970 | page = start >> TARGET_PAGE_BITS; | |
971 | dirty = bitmap_test_and_clear_atomic(ram_list.dirty_memory[client], | |
972 | page, end - page); | |
973 | ||
974 | if (dirty && tcg_enabled()) { | |
a2f4d5be | 975 | tlb_reset_dirty_range_all(start, length); |
5579c7f3 | 976 | } |
03eebc9e SH |
977 | |
978 | return dirty; | |
1ccde1cb FB |
979 | } |
980 | ||
79e2b9ae | 981 | /* Called from RCU critical section */ |
bb0e627a | 982 | hwaddr memory_region_section_get_iotlb(CPUState *cpu, |
149f54b5 PB |
983 | MemoryRegionSection *section, |
984 | target_ulong vaddr, | |
985 | hwaddr paddr, hwaddr xlat, | |
986 | int prot, | |
987 | target_ulong *address) | |
e5548617 | 988 | { |
a8170e5e | 989 | hwaddr iotlb; |
e5548617 BS |
990 | CPUWatchpoint *wp; |
991 | ||
cc5bea60 | 992 | if (memory_region_is_ram(section->mr)) { |
e5548617 BS |
993 | /* Normal RAM. */ |
994 | iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK) | |
149f54b5 | 995 | + xlat; |
e5548617 | 996 | if (!section->readonly) { |
b41aac4f | 997 | iotlb |= PHYS_SECTION_NOTDIRTY; |
e5548617 | 998 | } else { |
b41aac4f | 999 | iotlb |= PHYS_SECTION_ROM; |
e5548617 BS |
1000 | } |
1001 | } else { | |
0b8e2c10 PM |
1002 | AddressSpaceDispatch *d; |
1003 | ||
1004 | d = atomic_rcu_read(§ion->address_space->dispatch); | |
1005 | iotlb = section - d->map.sections; | |
149f54b5 | 1006 | iotlb += xlat; |
e5548617 BS |
1007 | } |
1008 | ||
1009 | /* Make accesses to pages with watchpoints go via the | |
1010 | watchpoint trap routines. */ | |
ff4700b0 | 1011 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d | 1012 | if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) { |
e5548617 BS |
1013 | /* Avoid trapping reads of pages with a write breakpoint. */ |
1014 | if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) { | |
b41aac4f | 1015 | iotlb = PHYS_SECTION_WATCH + paddr; |
e5548617 BS |
1016 | *address |= TLB_MMIO; |
1017 | break; | |
1018 | } | |
1019 | } | |
1020 | } | |
1021 | ||
1022 | return iotlb; | |
1023 | } | |
9fa3e853 FB |
1024 | #endif /* defined(CONFIG_USER_ONLY) */ |
1025 | ||
e2eef170 | 1026 | #if !defined(CONFIG_USER_ONLY) |
8da3ff18 | 1027 | |
c227f099 | 1028 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, |
5312bd8b | 1029 | uint16_t section); |
acc9d80b | 1030 | static subpage_t *subpage_init(AddressSpace *as, hwaddr base); |
54688b1e | 1031 | |
a2b257d6 IM |
1032 | static void *(*phys_mem_alloc)(size_t size, uint64_t *align) = |
1033 | qemu_anon_ram_alloc; | |
91138037 MA |
1034 | |
1035 | /* | |
1036 | * Set a custom physical guest memory alloator. | |
1037 | * Accelerators with unusual needs may need this. Hopefully, we can | |
1038 | * get rid of it eventually. | |
1039 | */ | |
a2b257d6 | 1040 | void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align)) |
91138037 MA |
1041 | { |
1042 | phys_mem_alloc = alloc; | |
1043 | } | |
1044 | ||
53cb28cb MA |
1045 | static uint16_t phys_section_add(PhysPageMap *map, |
1046 | MemoryRegionSection *section) | |
5312bd8b | 1047 | { |
68f3f65b PB |
1048 | /* The physical section number is ORed with a page-aligned |
1049 | * pointer to produce the iotlb entries. Thus it should | |
1050 | * never overflow into the page-aligned value. | |
1051 | */ | |
53cb28cb | 1052 | assert(map->sections_nb < TARGET_PAGE_SIZE); |
68f3f65b | 1053 | |
53cb28cb MA |
1054 | if (map->sections_nb == map->sections_nb_alloc) { |
1055 | map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); | |
1056 | map->sections = g_renew(MemoryRegionSection, map->sections, | |
1057 | map->sections_nb_alloc); | |
5312bd8b | 1058 | } |
53cb28cb | 1059 | map->sections[map->sections_nb] = *section; |
dfde4e6e | 1060 | memory_region_ref(section->mr); |
53cb28cb | 1061 | return map->sections_nb++; |
5312bd8b AK |
1062 | } |
1063 | ||
058bc4b5 PB |
1064 | static void phys_section_destroy(MemoryRegion *mr) |
1065 | { | |
55b4e80b DS |
1066 | bool have_sub_page = mr->subpage; |
1067 | ||
dfde4e6e PB |
1068 | memory_region_unref(mr); |
1069 | ||
55b4e80b | 1070 | if (have_sub_page) { |
058bc4b5 | 1071 | subpage_t *subpage = container_of(mr, subpage_t, iomem); |
b4fefef9 | 1072 | object_unref(OBJECT(&subpage->iomem)); |
058bc4b5 PB |
1073 | g_free(subpage); |
1074 | } | |
1075 | } | |
1076 | ||
6092666e | 1077 | static void phys_sections_free(PhysPageMap *map) |
5312bd8b | 1078 | { |
9affd6fc PB |
1079 | while (map->sections_nb > 0) { |
1080 | MemoryRegionSection *section = &map->sections[--map->sections_nb]; | |
058bc4b5 PB |
1081 | phys_section_destroy(section->mr); |
1082 | } | |
9affd6fc PB |
1083 | g_free(map->sections); |
1084 | g_free(map->nodes); | |
5312bd8b AK |
1085 | } |
1086 | ||
ac1970fb | 1087 | static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section) |
0f0cb164 AK |
1088 | { |
1089 | subpage_t *subpage; | |
a8170e5e | 1090 | hwaddr base = section->offset_within_address_space |
0f0cb164 | 1091 | & TARGET_PAGE_MASK; |
97115a8d | 1092 | MemoryRegionSection *existing = phys_page_find(d->phys_map, base, |
53cb28cb | 1093 | d->map.nodes, d->map.sections); |
0f0cb164 AK |
1094 | MemoryRegionSection subsection = { |
1095 | .offset_within_address_space = base, | |
052e87b0 | 1096 | .size = int128_make64(TARGET_PAGE_SIZE), |
0f0cb164 | 1097 | }; |
a8170e5e | 1098 | hwaddr start, end; |
0f0cb164 | 1099 | |
f3705d53 | 1100 | assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); |
0f0cb164 | 1101 | |
f3705d53 | 1102 | if (!(existing->mr->subpage)) { |
acc9d80b | 1103 | subpage = subpage_init(d->as, base); |
3be91e86 | 1104 | subsection.address_space = d->as; |
0f0cb164 | 1105 | subsection.mr = &subpage->iomem; |
ac1970fb | 1106 | phys_page_set(d, base >> TARGET_PAGE_BITS, 1, |
53cb28cb | 1107 | phys_section_add(&d->map, &subsection)); |
0f0cb164 | 1108 | } else { |
f3705d53 | 1109 | subpage = container_of(existing->mr, subpage_t, iomem); |
0f0cb164 AK |
1110 | } |
1111 | start = section->offset_within_address_space & ~TARGET_PAGE_MASK; | |
052e87b0 | 1112 | end = start + int128_get64(section->size) - 1; |
53cb28cb MA |
1113 | subpage_register(subpage, start, end, |
1114 | phys_section_add(&d->map, section)); | |
0f0cb164 AK |
1115 | } |
1116 | ||
1117 | ||
052e87b0 PB |
1118 | static void register_multipage(AddressSpaceDispatch *d, |
1119 | MemoryRegionSection *section) | |
33417e70 | 1120 | { |
a8170e5e | 1121 | hwaddr start_addr = section->offset_within_address_space; |
53cb28cb | 1122 | uint16_t section_index = phys_section_add(&d->map, section); |
052e87b0 PB |
1123 | uint64_t num_pages = int128_get64(int128_rshift(section->size, |
1124 | TARGET_PAGE_BITS)); | |
dd81124b | 1125 | |
733d5ef5 PB |
1126 | assert(num_pages); |
1127 | phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); | |
33417e70 FB |
1128 | } |
1129 | ||
ac1970fb | 1130 | static void mem_add(MemoryListener *listener, MemoryRegionSection *section) |
0f0cb164 | 1131 | { |
89ae337a | 1132 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); |
00752703 | 1133 | AddressSpaceDispatch *d = as->next_dispatch; |
99b9cc06 | 1134 | MemoryRegionSection now = *section, remain = *section; |
052e87b0 | 1135 | Int128 page_size = int128_make64(TARGET_PAGE_SIZE); |
0f0cb164 | 1136 | |
733d5ef5 PB |
1137 | if (now.offset_within_address_space & ~TARGET_PAGE_MASK) { |
1138 | uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space) | |
1139 | - now.offset_within_address_space; | |
1140 | ||
052e87b0 | 1141 | now.size = int128_min(int128_make64(left), now.size); |
ac1970fb | 1142 | register_subpage(d, &now); |
733d5ef5 | 1143 | } else { |
052e87b0 | 1144 | now.size = int128_zero(); |
733d5ef5 | 1145 | } |
052e87b0 PB |
1146 | while (int128_ne(remain.size, now.size)) { |
1147 | remain.size = int128_sub(remain.size, now.size); | |
1148 | remain.offset_within_address_space += int128_get64(now.size); | |
1149 | remain.offset_within_region += int128_get64(now.size); | |
69b67646 | 1150 | now = remain; |
052e87b0 | 1151 | if (int128_lt(remain.size, page_size)) { |
733d5ef5 | 1152 | register_subpage(d, &now); |
88266249 | 1153 | } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { |
052e87b0 | 1154 | now.size = page_size; |
ac1970fb | 1155 | register_subpage(d, &now); |
69b67646 | 1156 | } else { |
052e87b0 | 1157 | now.size = int128_and(now.size, int128_neg(page_size)); |
ac1970fb | 1158 | register_multipage(d, &now); |
69b67646 | 1159 | } |
0f0cb164 AK |
1160 | } |
1161 | } | |
1162 | ||
62a2744c SY |
1163 | void qemu_flush_coalesced_mmio_buffer(void) |
1164 | { | |
1165 | if (kvm_enabled()) | |
1166 | kvm_flush_coalesced_mmio_buffer(); | |
1167 | } | |
1168 | ||
b2a8658e UD |
1169 | void qemu_mutex_lock_ramlist(void) |
1170 | { | |
1171 | qemu_mutex_lock(&ram_list.mutex); | |
1172 | } | |
1173 | ||
1174 | void qemu_mutex_unlock_ramlist(void) | |
1175 | { | |
1176 | qemu_mutex_unlock(&ram_list.mutex); | |
1177 | } | |
1178 | ||
e1e84ba0 | 1179 | #ifdef __linux__ |
c902760f MT |
1180 | |
1181 | #include <sys/vfs.h> | |
1182 | ||
1183 | #define HUGETLBFS_MAGIC 0x958458f6 | |
1184 | ||
fc7a5800 | 1185 | static long gethugepagesize(const char *path, Error **errp) |
c902760f MT |
1186 | { |
1187 | struct statfs fs; | |
1188 | int ret; | |
1189 | ||
1190 | do { | |
9742bf26 | 1191 | ret = statfs(path, &fs); |
c902760f MT |
1192 | } while (ret != 0 && errno == EINTR); |
1193 | ||
1194 | if (ret != 0) { | |
fc7a5800 HT |
1195 | error_setg_errno(errp, errno, "failed to get page size of file %s", |
1196 | path); | |
9742bf26 | 1197 | return 0; |
c902760f MT |
1198 | } |
1199 | ||
c902760f MT |
1200 | return fs.f_bsize; |
1201 | } | |
1202 | ||
04b16653 AW |
1203 | static void *file_ram_alloc(RAMBlock *block, |
1204 | ram_addr_t memory, | |
7f56e740 PB |
1205 | const char *path, |
1206 | Error **errp) | |
c902760f | 1207 | { |
8d31d6b6 | 1208 | struct stat st; |
c902760f | 1209 | char *filename; |
8ca761f6 PF |
1210 | char *sanitized_name; |
1211 | char *c; | |
794e8f30 | 1212 | void *area; |
c902760f | 1213 | int fd; |
557529dd | 1214 | uint64_t hpagesize; |
fc7a5800 | 1215 | Error *local_err = NULL; |
c902760f | 1216 | |
fc7a5800 HT |
1217 | hpagesize = gethugepagesize(path, &local_err); |
1218 | if (local_err) { | |
1219 | error_propagate(errp, local_err); | |
f9a49dfa | 1220 | goto error; |
c902760f | 1221 | } |
a2b257d6 | 1222 | block->mr->align = hpagesize; |
c902760f MT |
1223 | |
1224 | if (memory < hpagesize) { | |
557529dd HT |
1225 | error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " |
1226 | "or larger than huge page size 0x%" PRIx64, | |
1227 | memory, hpagesize); | |
1228 | goto error; | |
c902760f MT |
1229 | } |
1230 | ||
1231 | if (kvm_enabled() && !kvm_has_sync_mmu()) { | |
7f56e740 PB |
1232 | error_setg(errp, |
1233 | "host lacks kvm mmu notifiers, -mem-path unsupported"); | |
f9a49dfa | 1234 | goto error; |
c902760f MT |
1235 | } |
1236 | ||
8d31d6b6 PF |
1237 | if (!stat(path, &st) && S_ISDIR(st.st_mode)) { |
1238 | /* Make name safe to use with mkstemp by replacing '/' with '_'. */ | |
1239 | sanitized_name = g_strdup(memory_region_name(block->mr)); | |
1240 | for (c = sanitized_name; *c != '\0'; c++) { | |
1241 | if (*c == '/') { | |
1242 | *c = '_'; | |
1243 | } | |
1244 | } | |
8ca761f6 | 1245 | |
8d31d6b6 PF |
1246 | filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, |
1247 | sanitized_name); | |
1248 | g_free(sanitized_name); | |
1249 | ||
1250 | fd = mkstemp(filename); | |
1251 | if (fd >= 0) { | |
1252 | unlink(filename); | |
1253 | } | |
1254 | g_free(filename); | |
1255 | } else { | |
1256 | fd = open(path, O_RDWR | O_CREAT, 0644); | |
1257 | } | |
c902760f | 1258 | |
c902760f | 1259 | if (fd < 0) { |
7f56e740 PB |
1260 | error_setg_errno(errp, errno, |
1261 | "unable to create backing store for hugepages"); | |
f9a49dfa | 1262 | goto error; |
c902760f | 1263 | } |
c902760f | 1264 | |
9284f319 | 1265 | memory = ROUND_UP(memory, hpagesize); |
c902760f MT |
1266 | |
1267 | /* | |
1268 | * ftruncate is not supported by hugetlbfs in older | |
1269 | * hosts, so don't bother bailing out on errors. | |
1270 | * If anything goes wrong with it under other filesystems, | |
1271 | * mmap will fail. | |
1272 | */ | |
7f56e740 | 1273 | if (ftruncate(fd, memory)) { |
9742bf26 | 1274 | perror("ftruncate"); |
7f56e740 | 1275 | } |
c902760f | 1276 | |
794e8f30 | 1277 | area = qemu_ram_mmap(fd, memory, hpagesize, block->flags & RAM_SHARED); |
c902760f | 1278 | if (area == MAP_FAILED) { |
7f56e740 PB |
1279 | error_setg_errno(errp, errno, |
1280 | "unable to map backing store for hugepages"); | |
9742bf26 | 1281 | close(fd); |
f9a49dfa | 1282 | goto error; |
c902760f | 1283 | } |
ef36fa14 MT |
1284 | |
1285 | if (mem_prealloc) { | |
38183310 | 1286 | os_mem_prealloc(fd, area, memory); |
ef36fa14 MT |
1287 | } |
1288 | ||
04b16653 | 1289 | block->fd = fd; |
c902760f | 1290 | return area; |
f9a49dfa MT |
1291 | |
1292 | error: | |
f9a49dfa | 1293 | return NULL; |
c902760f MT |
1294 | } |
1295 | #endif | |
1296 | ||
0dc3f44a | 1297 | /* Called with the ramlist lock held. */ |
d17b5288 | 1298 | static ram_addr_t find_ram_offset(ram_addr_t size) |
04b16653 AW |
1299 | { |
1300 | RAMBlock *block, *next_block; | |
3e837b2c | 1301 | ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; |
04b16653 | 1302 | |
49cd9ac6 SH |
1303 | assert(size != 0); /* it would hand out same offset multiple times */ |
1304 | ||
0dc3f44a | 1305 | if (QLIST_EMPTY_RCU(&ram_list.blocks)) { |
04b16653 | 1306 | return 0; |
0d53d9fe | 1307 | } |
04b16653 | 1308 | |
0dc3f44a | 1309 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
f15fbc4b | 1310 | ram_addr_t end, next = RAM_ADDR_MAX; |
04b16653 | 1311 | |
62be4e3a | 1312 | end = block->offset + block->max_length; |
04b16653 | 1313 | |
0dc3f44a | 1314 | QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) { |
04b16653 AW |
1315 | if (next_block->offset >= end) { |
1316 | next = MIN(next, next_block->offset); | |
1317 | } | |
1318 | } | |
1319 | if (next - end >= size && next - end < mingap) { | |
3e837b2c | 1320 | offset = end; |
04b16653 AW |
1321 | mingap = next - end; |
1322 | } | |
1323 | } | |
3e837b2c AW |
1324 | |
1325 | if (offset == RAM_ADDR_MAX) { | |
1326 | fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", | |
1327 | (uint64_t)size); | |
1328 | abort(); | |
1329 | } | |
1330 | ||
04b16653 AW |
1331 | return offset; |
1332 | } | |
1333 | ||
652d7ec2 | 1334 | ram_addr_t last_ram_offset(void) |
d17b5288 AW |
1335 | { |
1336 | RAMBlock *block; | |
1337 | ram_addr_t last = 0; | |
1338 | ||
0dc3f44a MD |
1339 | rcu_read_lock(); |
1340 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
62be4e3a | 1341 | last = MAX(last, block->offset + block->max_length); |
0d53d9fe | 1342 | } |
0dc3f44a | 1343 | rcu_read_unlock(); |
d17b5288 AW |
1344 | return last; |
1345 | } | |
1346 | ||
ddb97f1d JB |
1347 | static void qemu_ram_setup_dump(void *addr, ram_addr_t size) |
1348 | { | |
1349 | int ret; | |
ddb97f1d JB |
1350 | |
1351 | /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ | |
47c8ca53 | 1352 | if (!machine_dump_guest_core(current_machine)) { |
ddb97f1d JB |
1353 | ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); |
1354 | if (ret) { | |
1355 | perror("qemu_madvise"); | |
1356 | fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " | |
1357 | "but dump_guest_core=off specified\n"); | |
1358 | } | |
1359 | } | |
1360 | } | |
1361 | ||
0dc3f44a MD |
1362 | /* Called within an RCU critical section, or while the ramlist lock |
1363 | * is held. | |
1364 | */ | |
20cfe881 | 1365 | static RAMBlock *find_ram_block(ram_addr_t addr) |
84b89d78 | 1366 | { |
20cfe881 | 1367 | RAMBlock *block; |
84b89d78 | 1368 | |
0dc3f44a | 1369 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
c5705a77 | 1370 | if (block->offset == addr) { |
20cfe881 | 1371 | return block; |
c5705a77 AK |
1372 | } |
1373 | } | |
20cfe881 HT |
1374 | |
1375 | return NULL; | |
1376 | } | |
1377 | ||
422148d3 DDAG |
1378 | const char *qemu_ram_get_idstr(RAMBlock *rb) |
1379 | { | |
1380 | return rb->idstr; | |
1381 | } | |
1382 | ||
ae3a7047 | 1383 | /* Called with iothread lock held. */ |
20cfe881 HT |
1384 | void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev) |
1385 | { | |
ae3a7047 | 1386 | RAMBlock *new_block, *block; |
20cfe881 | 1387 | |
0dc3f44a | 1388 | rcu_read_lock(); |
ae3a7047 | 1389 | new_block = find_ram_block(addr); |
c5705a77 AK |
1390 | assert(new_block); |
1391 | assert(!new_block->idstr[0]); | |
84b89d78 | 1392 | |
09e5ab63 AL |
1393 | if (dev) { |
1394 | char *id = qdev_get_dev_path(dev); | |
84b89d78 CM |
1395 | if (id) { |
1396 | snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); | |
7267c094 | 1397 | g_free(id); |
84b89d78 CM |
1398 | } |
1399 | } | |
1400 | pstrcat(new_block->idstr, sizeof(new_block->idstr), name); | |
1401 | ||
0dc3f44a | 1402 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
c5705a77 | 1403 | if (block != new_block && !strcmp(block->idstr, new_block->idstr)) { |
84b89d78 CM |
1404 | fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", |
1405 | new_block->idstr); | |
1406 | abort(); | |
1407 | } | |
1408 | } | |
0dc3f44a | 1409 | rcu_read_unlock(); |
c5705a77 AK |
1410 | } |
1411 | ||
ae3a7047 | 1412 | /* Called with iothread lock held. */ |
20cfe881 HT |
1413 | void qemu_ram_unset_idstr(ram_addr_t addr) |
1414 | { | |
ae3a7047 | 1415 | RAMBlock *block; |
20cfe881 | 1416 | |
ae3a7047 MD |
1417 | /* FIXME: arch_init.c assumes that this is not called throughout |
1418 | * migration. Ignore the problem since hot-unplug during migration | |
1419 | * does not work anyway. | |
1420 | */ | |
1421 | ||
0dc3f44a | 1422 | rcu_read_lock(); |
ae3a7047 | 1423 | block = find_ram_block(addr); |
20cfe881 HT |
1424 | if (block) { |
1425 | memset(block->idstr, 0, sizeof(block->idstr)); | |
1426 | } | |
0dc3f44a | 1427 | rcu_read_unlock(); |
20cfe881 HT |
1428 | } |
1429 | ||
8490fc78 LC |
1430 | static int memory_try_enable_merging(void *addr, size_t len) |
1431 | { | |
75cc7f01 | 1432 | if (!machine_mem_merge(current_machine)) { |
8490fc78 LC |
1433 | /* disabled by the user */ |
1434 | return 0; | |
1435 | } | |
1436 | ||
1437 | return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); | |
1438 | } | |
1439 | ||
62be4e3a MT |
1440 | /* Only legal before guest might have detected the memory size: e.g. on |
1441 | * incoming migration, or right after reset. | |
1442 | * | |
1443 | * As memory core doesn't know how is memory accessed, it is up to | |
1444 | * resize callback to update device state and/or add assertions to detect | |
1445 | * misuse, if necessary. | |
1446 | */ | |
1447 | int qemu_ram_resize(ram_addr_t base, ram_addr_t newsize, Error **errp) | |
1448 | { | |
1449 | RAMBlock *block = find_ram_block(base); | |
1450 | ||
1451 | assert(block); | |
1452 | ||
4ed023ce | 1453 | newsize = HOST_PAGE_ALIGN(newsize); |
129ddaf3 | 1454 | |
62be4e3a MT |
1455 | if (block->used_length == newsize) { |
1456 | return 0; | |
1457 | } | |
1458 | ||
1459 | if (!(block->flags & RAM_RESIZEABLE)) { | |
1460 | error_setg_errno(errp, EINVAL, | |
1461 | "Length mismatch: %s: 0x" RAM_ADDR_FMT | |
1462 | " in != 0x" RAM_ADDR_FMT, block->idstr, | |
1463 | newsize, block->used_length); | |
1464 | return -EINVAL; | |
1465 | } | |
1466 | ||
1467 | if (block->max_length < newsize) { | |
1468 | error_setg_errno(errp, EINVAL, | |
1469 | "Length too large: %s: 0x" RAM_ADDR_FMT | |
1470 | " > 0x" RAM_ADDR_FMT, block->idstr, | |
1471 | newsize, block->max_length); | |
1472 | return -EINVAL; | |
1473 | } | |
1474 | ||
1475 | cpu_physical_memory_clear_dirty_range(block->offset, block->used_length); | |
1476 | block->used_length = newsize; | |
58d2707e PB |
1477 | cpu_physical_memory_set_dirty_range(block->offset, block->used_length, |
1478 | DIRTY_CLIENTS_ALL); | |
62be4e3a MT |
1479 | memory_region_set_size(block->mr, newsize); |
1480 | if (block->resized) { | |
1481 | block->resized(block->idstr, newsize, block->host); | |
1482 | } | |
1483 | return 0; | |
1484 | } | |
1485 | ||
ef701d7b | 1486 | static ram_addr_t ram_block_add(RAMBlock *new_block, Error **errp) |
c5705a77 | 1487 | { |
e1c57ab8 | 1488 | RAMBlock *block; |
0d53d9fe | 1489 | RAMBlock *last_block = NULL; |
2152f5ca JQ |
1490 | ram_addr_t old_ram_size, new_ram_size; |
1491 | ||
1492 | old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS; | |
c5705a77 | 1493 | |
b2a8658e | 1494 | qemu_mutex_lock_ramlist(); |
9b8424d5 | 1495 | new_block->offset = find_ram_offset(new_block->max_length); |
e1c57ab8 PB |
1496 | |
1497 | if (!new_block->host) { | |
1498 | if (xen_enabled()) { | |
9b8424d5 MT |
1499 | xen_ram_alloc(new_block->offset, new_block->max_length, |
1500 | new_block->mr); | |
e1c57ab8 | 1501 | } else { |
9b8424d5 | 1502 | new_block->host = phys_mem_alloc(new_block->max_length, |
a2b257d6 | 1503 | &new_block->mr->align); |
39228250 | 1504 | if (!new_block->host) { |
ef701d7b HT |
1505 | error_setg_errno(errp, errno, |
1506 | "cannot set up guest memory '%s'", | |
1507 | memory_region_name(new_block->mr)); | |
1508 | qemu_mutex_unlock_ramlist(); | |
1509 | return -1; | |
39228250 | 1510 | } |
9b8424d5 | 1511 | memory_try_enable_merging(new_block->host, new_block->max_length); |
6977dfe6 | 1512 | } |
c902760f | 1513 | } |
94a6b54f | 1514 | |
dd631697 LZ |
1515 | new_ram_size = MAX(old_ram_size, |
1516 | (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS); | |
1517 | if (new_ram_size > old_ram_size) { | |
1518 | migration_bitmap_extend(old_ram_size, new_ram_size); | |
1519 | } | |
0d53d9fe MD |
1520 | /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ, |
1521 | * QLIST (which has an RCU-friendly variant) does not have insertion at | |
1522 | * tail, so save the last element in last_block. | |
1523 | */ | |
0dc3f44a | 1524 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
0d53d9fe | 1525 | last_block = block; |
9b8424d5 | 1526 | if (block->max_length < new_block->max_length) { |
abb26d63 PB |
1527 | break; |
1528 | } | |
1529 | } | |
1530 | if (block) { | |
0dc3f44a | 1531 | QLIST_INSERT_BEFORE_RCU(block, new_block, next); |
0d53d9fe | 1532 | } else if (last_block) { |
0dc3f44a | 1533 | QLIST_INSERT_AFTER_RCU(last_block, new_block, next); |
0d53d9fe | 1534 | } else { /* list is empty */ |
0dc3f44a | 1535 | QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); |
abb26d63 | 1536 | } |
0d6d3c87 | 1537 | ram_list.mru_block = NULL; |
94a6b54f | 1538 | |
0dc3f44a MD |
1539 | /* Write list before version */ |
1540 | smp_wmb(); | |
f798b07f | 1541 | ram_list.version++; |
b2a8658e | 1542 | qemu_mutex_unlock_ramlist(); |
f798b07f | 1543 | |
2152f5ca JQ |
1544 | new_ram_size = last_ram_offset() >> TARGET_PAGE_BITS; |
1545 | ||
1546 | if (new_ram_size > old_ram_size) { | |
1ab4c8ce | 1547 | int i; |
ae3a7047 MD |
1548 | |
1549 | /* ram_list.dirty_memory[] is protected by the iothread lock. */ | |
1ab4c8ce JQ |
1550 | for (i = 0; i < DIRTY_MEMORY_NUM; i++) { |
1551 | ram_list.dirty_memory[i] = | |
1552 | bitmap_zero_extend(ram_list.dirty_memory[i], | |
1553 | old_ram_size, new_ram_size); | |
1554 | } | |
2152f5ca | 1555 | } |
9b8424d5 | 1556 | cpu_physical_memory_set_dirty_range(new_block->offset, |
58d2707e PB |
1557 | new_block->used_length, |
1558 | DIRTY_CLIENTS_ALL); | |
94a6b54f | 1559 | |
a904c911 PB |
1560 | if (new_block->host) { |
1561 | qemu_ram_setup_dump(new_block->host, new_block->max_length); | |
1562 | qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); | |
1563 | qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK); | |
1564 | if (kvm_enabled()) { | |
1565 | kvm_setup_guest_memory(new_block->host, new_block->max_length); | |
1566 | } | |
e1c57ab8 | 1567 | } |
6f0437e8 | 1568 | |
94a6b54f PB |
1569 | return new_block->offset; |
1570 | } | |
e9a1ab19 | 1571 | |
0b183fc8 | 1572 | #ifdef __linux__ |
e1c57ab8 | 1573 | ram_addr_t qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, |
dbcb8981 | 1574 | bool share, const char *mem_path, |
7f56e740 | 1575 | Error **errp) |
e1c57ab8 PB |
1576 | { |
1577 | RAMBlock *new_block; | |
ef701d7b HT |
1578 | ram_addr_t addr; |
1579 | Error *local_err = NULL; | |
e1c57ab8 PB |
1580 | |
1581 | if (xen_enabled()) { | |
7f56e740 PB |
1582 | error_setg(errp, "-mem-path not supported with Xen"); |
1583 | return -1; | |
e1c57ab8 PB |
1584 | } |
1585 | ||
1586 | if (phys_mem_alloc != qemu_anon_ram_alloc) { | |
1587 | /* | |
1588 | * file_ram_alloc() needs to allocate just like | |
1589 | * phys_mem_alloc, but we haven't bothered to provide | |
1590 | * a hook there. | |
1591 | */ | |
7f56e740 PB |
1592 | error_setg(errp, |
1593 | "-mem-path not supported with this accelerator"); | |
1594 | return -1; | |
e1c57ab8 PB |
1595 | } |
1596 | ||
4ed023ce | 1597 | size = HOST_PAGE_ALIGN(size); |
e1c57ab8 PB |
1598 | new_block = g_malloc0(sizeof(*new_block)); |
1599 | new_block->mr = mr; | |
9b8424d5 MT |
1600 | new_block->used_length = size; |
1601 | new_block->max_length = size; | |
dbcb8981 | 1602 | new_block->flags = share ? RAM_SHARED : 0; |
7f56e740 PB |
1603 | new_block->host = file_ram_alloc(new_block, size, |
1604 | mem_path, errp); | |
1605 | if (!new_block->host) { | |
1606 | g_free(new_block); | |
1607 | return -1; | |
1608 | } | |
1609 | ||
ef701d7b HT |
1610 | addr = ram_block_add(new_block, &local_err); |
1611 | if (local_err) { | |
1612 | g_free(new_block); | |
1613 | error_propagate(errp, local_err); | |
1614 | return -1; | |
1615 | } | |
1616 | return addr; | |
e1c57ab8 | 1617 | } |
0b183fc8 | 1618 | #endif |
e1c57ab8 | 1619 | |
62be4e3a MT |
1620 | static |
1621 | ram_addr_t qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size, | |
1622 | void (*resized)(const char*, | |
1623 | uint64_t length, | |
1624 | void *host), | |
1625 | void *host, bool resizeable, | |
ef701d7b | 1626 | MemoryRegion *mr, Error **errp) |
e1c57ab8 PB |
1627 | { |
1628 | RAMBlock *new_block; | |
ef701d7b HT |
1629 | ram_addr_t addr; |
1630 | Error *local_err = NULL; | |
e1c57ab8 | 1631 | |
4ed023ce DDAG |
1632 | size = HOST_PAGE_ALIGN(size); |
1633 | max_size = HOST_PAGE_ALIGN(max_size); | |
e1c57ab8 PB |
1634 | new_block = g_malloc0(sizeof(*new_block)); |
1635 | new_block->mr = mr; | |
62be4e3a | 1636 | new_block->resized = resized; |
9b8424d5 MT |
1637 | new_block->used_length = size; |
1638 | new_block->max_length = max_size; | |
62be4e3a | 1639 | assert(max_size >= size); |
e1c57ab8 PB |
1640 | new_block->fd = -1; |
1641 | new_block->host = host; | |
1642 | if (host) { | |
7bd4f430 | 1643 | new_block->flags |= RAM_PREALLOC; |
e1c57ab8 | 1644 | } |
62be4e3a MT |
1645 | if (resizeable) { |
1646 | new_block->flags |= RAM_RESIZEABLE; | |
1647 | } | |
ef701d7b HT |
1648 | addr = ram_block_add(new_block, &local_err); |
1649 | if (local_err) { | |
1650 | g_free(new_block); | |
1651 | error_propagate(errp, local_err); | |
1652 | return -1; | |
1653 | } | |
1654 | return addr; | |
e1c57ab8 PB |
1655 | } |
1656 | ||
62be4e3a MT |
1657 | ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, |
1658 | MemoryRegion *mr, Error **errp) | |
1659 | { | |
1660 | return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp); | |
1661 | } | |
1662 | ||
ef701d7b | 1663 | ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp) |
6977dfe6 | 1664 | { |
62be4e3a MT |
1665 | return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp); |
1666 | } | |
1667 | ||
1668 | ram_addr_t qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz, | |
1669 | void (*resized)(const char*, | |
1670 | uint64_t length, | |
1671 | void *host), | |
1672 | MemoryRegion *mr, Error **errp) | |
1673 | { | |
1674 | return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp); | |
6977dfe6 YT |
1675 | } |
1676 | ||
43771539 PB |
1677 | static void reclaim_ramblock(RAMBlock *block) |
1678 | { | |
1679 | if (block->flags & RAM_PREALLOC) { | |
1680 | ; | |
1681 | } else if (xen_enabled()) { | |
1682 | xen_invalidate_map_cache_entry(block->host); | |
1683 | #ifndef _WIN32 | |
1684 | } else if (block->fd >= 0) { | |
2f3a2bb1 | 1685 | qemu_ram_munmap(block->host, block->max_length); |
43771539 PB |
1686 | close(block->fd); |
1687 | #endif | |
1688 | } else { | |
1689 | qemu_anon_ram_free(block->host, block->max_length); | |
1690 | } | |
1691 | g_free(block); | |
1692 | } | |
1693 | ||
c227f099 | 1694 | void qemu_ram_free(ram_addr_t addr) |
e9a1ab19 | 1695 | { |
04b16653 AW |
1696 | RAMBlock *block; |
1697 | ||
b2a8658e | 1698 | qemu_mutex_lock_ramlist(); |
0dc3f44a | 1699 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
04b16653 | 1700 | if (addr == block->offset) { |
0dc3f44a | 1701 | QLIST_REMOVE_RCU(block, next); |
0d6d3c87 | 1702 | ram_list.mru_block = NULL; |
0dc3f44a MD |
1703 | /* Write list before version */ |
1704 | smp_wmb(); | |
f798b07f | 1705 | ram_list.version++; |
43771539 | 1706 | call_rcu(block, reclaim_ramblock, rcu); |
b2a8658e | 1707 | break; |
04b16653 AW |
1708 | } |
1709 | } | |
b2a8658e | 1710 | qemu_mutex_unlock_ramlist(); |
e9a1ab19 FB |
1711 | } |
1712 | ||
cd19cfa2 HY |
1713 | #ifndef _WIN32 |
1714 | void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) | |
1715 | { | |
1716 | RAMBlock *block; | |
1717 | ram_addr_t offset; | |
1718 | int flags; | |
1719 | void *area, *vaddr; | |
1720 | ||
0dc3f44a | 1721 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
cd19cfa2 | 1722 | offset = addr - block->offset; |
9b8424d5 | 1723 | if (offset < block->max_length) { |
1240be24 | 1724 | vaddr = ramblock_ptr(block, offset); |
7bd4f430 | 1725 | if (block->flags & RAM_PREALLOC) { |
cd19cfa2 | 1726 | ; |
dfeaf2ab MA |
1727 | } else if (xen_enabled()) { |
1728 | abort(); | |
cd19cfa2 HY |
1729 | } else { |
1730 | flags = MAP_FIXED; | |
3435f395 | 1731 | if (block->fd >= 0) { |
dbcb8981 PB |
1732 | flags |= (block->flags & RAM_SHARED ? |
1733 | MAP_SHARED : MAP_PRIVATE); | |
3435f395 MA |
1734 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, |
1735 | flags, block->fd, offset); | |
cd19cfa2 | 1736 | } else { |
2eb9fbaa MA |
1737 | /* |
1738 | * Remap needs to match alloc. Accelerators that | |
1739 | * set phys_mem_alloc never remap. If they did, | |
1740 | * we'd need a remap hook here. | |
1741 | */ | |
1742 | assert(phys_mem_alloc == qemu_anon_ram_alloc); | |
1743 | ||
cd19cfa2 HY |
1744 | flags |= MAP_PRIVATE | MAP_ANONYMOUS; |
1745 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, | |
1746 | flags, -1, 0); | |
cd19cfa2 HY |
1747 | } |
1748 | if (area != vaddr) { | |
f15fbc4b AP |
1749 | fprintf(stderr, "Could not remap addr: " |
1750 | RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n", | |
cd19cfa2 HY |
1751 | length, addr); |
1752 | exit(1); | |
1753 | } | |
8490fc78 | 1754 | memory_try_enable_merging(vaddr, length); |
ddb97f1d | 1755 | qemu_ram_setup_dump(vaddr, length); |
cd19cfa2 | 1756 | } |
cd19cfa2 HY |
1757 | } |
1758 | } | |
1759 | } | |
1760 | #endif /* !_WIN32 */ | |
1761 | ||
a35ba7be PB |
1762 | int qemu_get_ram_fd(ram_addr_t addr) |
1763 | { | |
ae3a7047 MD |
1764 | RAMBlock *block; |
1765 | int fd; | |
a35ba7be | 1766 | |
0dc3f44a | 1767 | rcu_read_lock(); |
ae3a7047 MD |
1768 | block = qemu_get_ram_block(addr); |
1769 | fd = block->fd; | |
0dc3f44a | 1770 | rcu_read_unlock(); |
ae3a7047 | 1771 | return fd; |
a35ba7be PB |
1772 | } |
1773 | ||
56a571d9 TM |
1774 | void qemu_set_ram_fd(ram_addr_t addr, int fd) |
1775 | { | |
1776 | RAMBlock *block; | |
1777 | ||
1778 | rcu_read_lock(); | |
1779 | block = qemu_get_ram_block(addr); | |
1780 | block->fd = fd; | |
1781 | rcu_read_unlock(); | |
1782 | } | |
1783 | ||
3fd74b84 DM |
1784 | void *qemu_get_ram_block_host_ptr(ram_addr_t addr) |
1785 | { | |
ae3a7047 MD |
1786 | RAMBlock *block; |
1787 | void *ptr; | |
3fd74b84 | 1788 | |
0dc3f44a | 1789 | rcu_read_lock(); |
ae3a7047 MD |
1790 | block = qemu_get_ram_block(addr); |
1791 | ptr = ramblock_ptr(block, 0); | |
0dc3f44a | 1792 | rcu_read_unlock(); |
ae3a7047 | 1793 | return ptr; |
3fd74b84 DM |
1794 | } |
1795 | ||
1b5ec234 | 1796 | /* Return a host pointer to ram allocated with qemu_ram_alloc. |
ae3a7047 MD |
1797 | * This should not be used for general purpose DMA. Use address_space_map |
1798 | * or address_space_rw instead. For local memory (e.g. video ram) that the | |
1799 | * device owns, use memory_region_get_ram_ptr. | |
0dc3f44a | 1800 | * |
49b24afc | 1801 | * Called within RCU critical section. |
1b5ec234 PB |
1802 | */ |
1803 | void *qemu_get_ram_ptr(ram_addr_t addr) | |
1804 | { | |
49b24afc | 1805 | RAMBlock *block = qemu_get_ram_block(addr); |
ae3a7047 MD |
1806 | |
1807 | if (xen_enabled() && block->host == NULL) { | |
0d6d3c87 PB |
1808 | /* We need to check if the requested address is in the RAM |
1809 | * because we don't want to map the entire memory in QEMU. | |
1810 | * In that case just map until the end of the page. | |
1811 | */ | |
1812 | if (block->offset == 0) { | |
49b24afc | 1813 | return xen_map_cache(addr, 0, 0); |
0d6d3c87 | 1814 | } |
ae3a7047 MD |
1815 | |
1816 | block->host = xen_map_cache(block->offset, block->max_length, 1); | |
0d6d3c87 | 1817 | } |
49b24afc | 1818 | return ramblock_ptr(block, addr - block->offset); |
dc828ca1 PB |
1819 | } |
1820 | ||
38bee5dc | 1821 | /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr |
ae3a7047 | 1822 | * but takes a size argument. |
0dc3f44a | 1823 | * |
e81bcda5 | 1824 | * Called within RCU critical section. |
ae3a7047 | 1825 | */ |
cb85f7ab | 1826 | static void *qemu_ram_ptr_length(ram_addr_t addr, hwaddr *size) |
38bee5dc | 1827 | { |
e81bcda5 PB |
1828 | RAMBlock *block; |
1829 | ram_addr_t offset_inside_block; | |
8ab934f9 SS |
1830 | if (*size == 0) { |
1831 | return NULL; | |
1832 | } | |
e81bcda5 PB |
1833 | |
1834 | block = qemu_get_ram_block(addr); | |
1835 | offset_inside_block = addr - block->offset; | |
1836 | *size = MIN(*size, block->max_length - offset_inside_block); | |
1837 | ||
1838 | if (xen_enabled() && block->host == NULL) { | |
1839 | /* We need to check if the requested address is in the RAM | |
1840 | * because we don't want to map the entire memory in QEMU. | |
1841 | * In that case just map the requested area. | |
1842 | */ | |
1843 | if (block->offset == 0) { | |
1844 | return xen_map_cache(addr, *size, 1); | |
38bee5dc SS |
1845 | } |
1846 | ||
e81bcda5 | 1847 | block->host = xen_map_cache(block->offset, block->max_length, 1); |
38bee5dc | 1848 | } |
e81bcda5 PB |
1849 | |
1850 | return ramblock_ptr(block, offset_inside_block); | |
38bee5dc SS |
1851 | } |
1852 | ||
422148d3 DDAG |
1853 | /* |
1854 | * Translates a host ptr back to a RAMBlock, a ram_addr and an offset | |
1855 | * in that RAMBlock. | |
1856 | * | |
1857 | * ptr: Host pointer to look up | |
1858 | * round_offset: If true round the result offset down to a page boundary | |
1859 | * *ram_addr: set to result ram_addr | |
1860 | * *offset: set to result offset within the RAMBlock | |
1861 | * | |
1862 | * Returns: RAMBlock (or NULL if not found) | |
ae3a7047 MD |
1863 | * |
1864 | * By the time this function returns, the returned pointer is not protected | |
1865 | * by RCU anymore. If the caller is not within an RCU critical section and | |
1866 | * does not hold the iothread lock, it must have other means of protecting the | |
1867 | * pointer, such as a reference to the region that includes the incoming | |
1868 | * ram_addr_t. | |
1869 | */ | |
422148d3 DDAG |
1870 | RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, |
1871 | ram_addr_t *ram_addr, | |
1872 | ram_addr_t *offset) | |
5579c7f3 | 1873 | { |
94a6b54f PB |
1874 | RAMBlock *block; |
1875 | uint8_t *host = ptr; | |
1876 | ||
868bb33f | 1877 | if (xen_enabled()) { |
0dc3f44a | 1878 | rcu_read_lock(); |
e41d7c69 | 1879 | *ram_addr = xen_ram_addr_from_mapcache(ptr); |
422148d3 DDAG |
1880 | block = qemu_get_ram_block(*ram_addr); |
1881 | if (block) { | |
1882 | *offset = (host - block->host); | |
1883 | } | |
0dc3f44a | 1884 | rcu_read_unlock(); |
422148d3 | 1885 | return block; |
712c2b41 SS |
1886 | } |
1887 | ||
0dc3f44a MD |
1888 | rcu_read_lock(); |
1889 | block = atomic_rcu_read(&ram_list.mru_block); | |
9b8424d5 | 1890 | if (block && block->host && host - block->host < block->max_length) { |
23887b79 PB |
1891 | goto found; |
1892 | } | |
1893 | ||
0dc3f44a | 1894 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
432d268c JN |
1895 | /* This case append when the block is not mapped. */ |
1896 | if (block->host == NULL) { | |
1897 | continue; | |
1898 | } | |
9b8424d5 | 1899 | if (host - block->host < block->max_length) { |
23887b79 | 1900 | goto found; |
f471a17e | 1901 | } |
94a6b54f | 1902 | } |
432d268c | 1903 | |
0dc3f44a | 1904 | rcu_read_unlock(); |
1b5ec234 | 1905 | return NULL; |
23887b79 PB |
1906 | |
1907 | found: | |
422148d3 DDAG |
1908 | *offset = (host - block->host); |
1909 | if (round_offset) { | |
1910 | *offset &= TARGET_PAGE_MASK; | |
1911 | } | |
1912 | *ram_addr = block->offset + *offset; | |
0dc3f44a | 1913 | rcu_read_unlock(); |
422148d3 DDAG |
1914 | return block; |
1915 | } | |
1916 | ||
e3dd7493 DDAG |
1917 | /* |
1918 | * Finds the named RAMBlock | |
1919 | * | |
1920 | * name: The name of RAMBlock to find | |
1921 | * | |
1922 | * Returns: RAMBlock (or NULL if not found) | |
1923 | */ | |
1924 | RAMBlock *qemu_ram_block_by_name(const char *name) | |
1925 | { | |
1926 | RAMBlock *block; | |
1927 | ||
1928 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
1929 | if (!strcmp(name, block->idstr)) { | |
1930 | return block; | |
1931 | } | |
1932 | } | |
1933 | ||
1934 | return NULL; | |
1935 | } | |
1936 | ||
422148d3 DDAG |
1937 | /* Some of the softmmu routines need to translate from a host pointer |
1938 | (typically a TLB entry) back to a ram offset. */ | |
1939 | MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr) | |
1940 | { | |
1941 | RAMBlock *block; | |
1942 | ram_addr_t offset; /* Not used */ | |
1943 | ||
1944 | block = qemu_ram_block_from_host(ptr, false, ram_addr, &offset); | |
1945 | ||
1946 | if (!block) { | |
1947 | return NULL; | |
1948 | } | |
1949 | ||
1950 | return block->mr; | |
e890261f | 1951 | } |
f471a17e | 1952 | |
49b24afc | 1953 | /* Called within RCU critical section. */ |
a8170e5e | 1954 | static void notdirty_mem_write(void *opaque, hwaddr ram_addr, |
0e0df1e2 | 1955 | uint64_t val, unsigned size) |
9fa3e853 | 1956 | { |
52159192 | 1957 | if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { |
0e0df1e2 | 1958 | tb_invalidate_phys_page_fast(ram_addr, size); |
3a7d929e | 1959 | } |
0e0df1e2 AK |
1960 | switch (size) { |
1961 | case 1: | |
1962 | stb_p(qemu_get_ram_ptr(ram_addr), val); | |
1963 | break; | |
1964 | case 2: | |
1965 | stw_p(qemu_get_ram_ptr(ram_addr), val); | |
1966 | break; | |
1967 | case 4: | |
1968 | stl_p(qemu_get_ram_ptr(ram_addr), val); | |
1969 | break; | |
1970 | default: | |
1971 | abort(); | |
3a7d929e | 1972 | } |
58d2707e PB |
1973 | /* Set both VGA and migration bits for simplicity and to remove |
1974 | * the notdirty callback faster. | |
1975 | */ | |
1976 | cpu_physical_memory_set_dirty_range(ram_addr, size, | |
1977 | DIRTY_CLIENTS_NOCODE); | |
f23db169 FB |
1978 | /* we remove the notdirty callback only if the code has been |
1979 | flushed */ | |
a2cd8c85 | 1980 | if (!cpu_physical_memory_is_clean(ram_addr)) { |
bcae01e4 | 1981 | tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr); |
4917cf44 | 1982 | } |
9fa3e853 FB |
1983 | } |
1984 | ||
b018ddf6 PB |
1985 | static bool notdirty_mem_accepts(void *opaque, hwaddr addr, |
1986 | unsigned size, bool is_write) | |
1987 | { | |
1988 | return is_write; | |
1989 | } | |
1990 | ||
0e0df1e2 | 1991 | static const MemoryRegionOps notdirty_mem_ops = { |
0e0df1e2 | 1992 | .write = notdirty_mem_write, |
b018ddf6 | 1993 | .valid.accepts = notdirty_mem_accepts, |
0e0df1e2 | 1994 | .endianness = DEVICE_NATIVE_ENDIAN, |
1ccde1cb FB |
1995 | }; |
1996 | ||
0f459d16 | 1997 | /* Generate a debug exception if a watchpoint has been hit. */ |
66b9b43c | 1998 | static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags) |
0f459d16 | 1999 | { |
93afeade AF |
2000 | CPUState *cpu = current_cpu; |
2001 | CPUArchState *env = cpu->env_ptr; | |
06d55cc1 | 2002 | target_ulong pc, cs_base; |
0f459d16 | 2003 | target_ulong vaddr; |
a1d1bb31 | 2004 | CPUWatchpoint *wp; |
06d55cc1 | 2005 | int cpu_flags; |
0f459d16 | 2006 | |
ff4700b0 | 2007 | if (cpu->watchpoint_hit) { |
06d55cc1 AL |
2008 | /* We re-entered the check after replacing the TB. Now raise |
2009 | * the debug interrupt so that is will trigger after the | |
2010 | * current instruction. */ | |
93afeade | 2011 | cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG); |
06d55cc1 AL |
2012 | return; |
2013 | } | |
93afeade | 2014 | vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset; |
ff4700b0 | 2015 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d PM |
2016 | if (cpu_watchpoint_address_matches(wp, vaddr, len) |
2017 | && (wp->flags & flags)) { | |
08225676 PM |
2018 | if (flags == BP_MEM_READ) { |
2019 | wp->flags |= BP_WATCHPOINT_HIT_READ; | |
2020 | } else { | |
2021 | wp->flags |= BP_WATCHPOINT_HIT_WRITE; | |
2022 | } | |
2023 | wp->hitaddr = vaddr; | |
66b9b43c | 2024 | wp->hitattrs = attrs; |
ff4700b0 AF |
2025 | if (!cpu->watchpoint_hit) { |
2026 | cpu->watchpoint_hit = wp; | |
239c51a5 | 2027 | tb_check_watchpoint(cpu); |
6e140f28 | 2028 | if (wp->flags & BP_STOP_BEFORE_ACCESS) { |
27103424 | 2029 | cpu->exception_index = EXCP_DEBUG; |
5638d180 | 2030 | cpu_loop_exit(cpu); |
6e140f28 AL |
2031 | } else { |
2032 | cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags); | |
648f034c | 2033 | tb_gen_code(cpu, pc, cs_base, cpu_flags, 1); |
0ea8cb88 | 2034 | cpu_resume_from_signal(cpu, NULL); |
6e140f28 | 2035 | } |
06d55cc1 | 2036 | } |
6e140f28 AL |
2037 | } else { |
2038 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
0f459d16 PB |
2039 | } |
2040 | } | |
2041 | } | |
2042 | ||
6658ffb8 PB |
2043 | /* Watchpoint access routines. Watchpoints are inserted using TLB tricks, |
2044 | so these check for a hit then pass through to the normal out-of-line | |
2045 | phys routines. */ | |
66b9b43c PM |
2046 | static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata, |
2047 | unsigned size, MemTxAttrs attrs) | |
6658ffb8 | 2048 | { |
66b9b43c PM |
2049 | MemTxResult res; |
2050 | uint64_t data; | |
2051 | ||
2052 | check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ); | |
1ec9b909 | 2053 | switch (size) { |
66b9b43c PM |
2054 | case 1: |
2055 | data = address_space_ldub(&address_space_memory, addr, attrs, &res); | |
2056 | break; | |
2057 | case 2: | |
2058 | data = address_space_lduw(&address_space_memory, addr, attrs, &res); | |
2059 | break; | |
2060 | case 4: | |
2061 | data = address_space_ldl(&address_space_memory, addr, attrs, &res); | |
2062 | break; | |
1ec9b909 AK |
2063 | default: abort(); |
2064 | } | |
66b9b43c PM |
2065 | *pdata = data; |
2066 | return res; | |
6658ffb8 PB |
2067 | } |
2068 | ||
66b9b43c PM |
2069 | static MemTxResult watch_mem_write(void *opaque, hwaddr addr, |
2070 | uint64_t val, unsigned size, | |
2071 | MemTxAttrs attrs) | |
6658ffb8 | 2072 | { |
66b9b43c PM |
2073 | MemTxResult res; |
2074 | ||
2075 | check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE); | |
1ec9b909 | 2076 | switch (size) { |
67364150 | 2077 | case 1: |
66b9b43c | 2078 | address_space_stb(&address_space_memory, addr, val, attrs, &res); |
67364150 MF |
2079 | break; |
2080 | case 2: | |
66b9b43c | 2081 | address_space_stw(&address_space_memory, addr, val, attrs, &res); |
67364150 MF |
2082 | break; |
2083 | case 4: | |
66b9b43c | 2084 | address_space_stl(&address_space_memory, addr, val, attrs, &res); |
67364150 | 2085 | break; |
1ec9b909 AK |
2086 | default: abort(); |
2087 | } | |
66b9b43c | 2088 | return res; |
6658ffb8 PB |
2089 | } |
2090 | ||
1ec9b909 | 2091 | static const MemoryRegionOps watch_mem_ops = { |
66b9b43c PM |
2092 | .read_with_attrs = watch_mem_read, |
2093 | .write_with_attrs = watch_mem_write, | |
1ec9b909 | 2094 | .endianness = DEVICE_NATIVE_ENDIAN, |
6658ffb8 | 2095 | }; |
6658ffb8 | 2096 | |
f25a49e0 PM |
2097 | static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data, |
2098 | unsigned len, MemTxAttrs attrs) | |
db7b5426 | 2099 | { |
acc9d80b | 2100 | subpage_t *subpage = opaque; |
ff6cff75 | 2101 | uint8_t buf[8]; |
5c9eb028 | 2102 | MemTxResult res; |
791af8c8 | 2103 | |
db7b5426 | 2104 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2105 | printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__, |
acc9d80b | 2106 | subpage, len, addr); |
db7b5426 | 2107 | #endif |
5c9eb028 PM |
2108 | res = address_space_read(subpage->as, addr + subpage->base, |
2109 | attrs, buf, len); | |
2110 | if (res) { | |
2111 | return res; | |
f25a49e0 | 2112 | } |
acc9d80b JK |
2113 | switch (len) { |
2114 | case 1: | |
f25a49e0 PM |
2115 | *data = ldub_p(buf); |
2116 | return MEMTX_OK; | |
acc9d80b | 2117 | case 2: |
f25a49e0 PM |
2118 | *data = lduw_p(buf); |
2119 | return MEMTX_OK; | |
acc9d80b | 2120 | case 4: |
f25a49e0 PM |
2121 | *data = ldl_p(buf); |
2122 | return MEMTX_OK; | |
ff6cff75 | 2123 | case 8: |
f25a49e0 PM |
2124 | *data = ldq_p(buf); |
2125 | return MEMTX_OK; | |
acc9d80b JK |
2126 | default: |
2127 | abort(); | |
2128 | } | |
db7b5426 BS |
2129 | } |
2130 | ||
f25a49e0 PM |
2131 | static MemTxResult subpage_write(void *opaque, hwaddr addr, |
2132 | uint64_t value, unsigned len, MemTxAttrs attrs) | |
db7b5426 | 2133 | { |
acc9d80b | 2134 | subpage_t *subpage = opaque; |
ff6cff75 | 2135 | uint8_t buf[8]; |
acc9d80b | 2136 | |
db7b5426 | 2137 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2138 | printf("%s: subpage %p len %u addr " TARGET_FMT_plx |
acc9d80b JK |
2139 | " value %"PRIx64"\n", |
2140 | __func__, subpage, len, addr, value); | |
db7b5426 | 2141 | #endif |
acc9d80b JK |
2142 | switch (len) { |
2143 | case 1: | |
2144 | stb_p(buf, value); | |
2145 | break; | |
2146 | case 2: | |
2147 | stw_p(buf, value); | |
2148 | break; | |
2149 | case 4: | |
2150 | stl_p(buf, value); | |
2151 | break; | |
ff6cff75 PB |
2152 | case 8: |
2153 | stq_p(buf, value); | |
2154 | break; | |
acc9d80b JK |
2155 | default: |
2156 | abort(); | |
2157 | } | |
5c9eb028 PM |
2158 | return address_space_write(subpage->as, addr + subpage->base, |
2159 | attrs, buf, len); | |
db7b5426 BS |
2160 | } |
2161 | ||
c353e4cc | 2162 | static bool subpage_accepts(void *opaque, hwaddr addr, |
016e9d62 | 2163 | unsigned len, bool is_write) |
c353e4cc | 2164 | { |
acc9d80b | 2165 | subpage_t *subpage = opaque; |
c353e4cc | 2166 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2167 | printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n", |
acc9d80b | 2168 | __func__, subpage, is_write ? 'w' : 'r', len, addr); |
c353e4cc PB |
2169 | #endif |
2170 | ||
acc9d80b | 2171 | return address_space_access_valid(subpage->as, addr + subpage->base, |
016e9d62 | 2172 | len, is_write); |
c353e4cc PB |
2173 | } |
2174 | ||
70c68e44 | 2175 | static const MemoryRegionOps subpage_ops = { |
f25a49e0 PM |
2176 | .read_with_attrs = subpage_read, |
2177 | .write_with_attrs = subpage_write, | |
ff6cff75 PB |
2178 | .impl.min_access_size = 1, |
2179 | .impl.max_access_size = 8, | |
2180 | .valid.min_access_size = 1, | |
2181 | .valid.max_access_size = 8, | |
c353e4cc | 2182 | .valid.accepts = subpage_accepts, |
70c68e44 | 2183 | .endianness = DEVICE_NATIVE_ENDIAN, |
db7b5426 BS |
2184 | }; |
2185 | ||
c227f099 | 2186 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, |
5312bd8b | 2187 | uint16_t section) |
db7b5426 BS |
2188 | { |
2189 | int idx, eidx; | |
2190 | ||
2191 | if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) | |
2192 | return -1; | |
2193 | idx = SUBPAGE_IDX(start); | |
2194 | eidx = SUBPAGE_IDX(end); | |
2195 | #if defined(DEBUG_SUBPAGE) | |
016e9d62 AK |
2196 | printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", |
2197 | __func__, mmio, start, end, idx, eidx, section); | |
db7b5426 | 2198 | #endif |
db7b5426 | 2199 | for (; idx <= eidx; idx++) { |
5312bd8b | 2200 | mmio->sub_section[idx] = section; |
db7b5426 BS |
2201 | } |
2202 | ||
2203 | return 0; | |
2204 | } | |
2205 | ||
acc9d80b | 2206 | static subpage_t *subpage_init(AddressSpace *as, hwaddr base) |
db7b5426 | 2207 | { |
c227f099 | 2208 | subpage_t *mmio; |
db7b5426 | 2209 | |
7267c094 | 2210 | mmio = g_malloc0(sizeof(subpage_t)); |
1eec614b | 2211 | |
acc9d80b | 2212 | mmio->as = as; |
1eec614b | 2213 | mmio->base = base; |
2c9b15ca | 2214 | memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, |
b4fefef9 | 2215 | NULL, TARGET_PAGE_SIZE); |
b3b00c78 | 2216 | mmio->iomem.subpage = true; |
db7b5426 | 2217 | #if defined(DEBUG_SUBPAGE) |
016e9d62 AK |
2218 | printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__, |
2219 | mmio, base, TARGET_PAGE_SIZE); | |
db7b5426 | 2220 | #endif |
b41aac4f | 2221 | subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED); |
db7b5426 BS |
2222 | |
2223 | return mmio; | |
2224 | } | |
2225 | ||
a656e22f PC |
2226 | static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as, |
2227 | MemoryRegion *mr) | |
5312bd8b | 2228 | { |
a656e22f | 2229 | assert(as); |
5312bd8b | 2230 | MemoryRegionSection section = { |
a656e22f | 2231 | .address_space = as, |
5312bd8b AK |
2232 | .mr = mr, |
2233 | .offset_within_address_space = 0, | |
2234 | .offset_within_region = 0, | |
052e87b0 | 2235 | .size = int128_2_64(), |
5312bd8b AK |
2236 | }; |
2237 | ||
53cb28cb | 2238 | return phys_section_add(map, §ion); |
5312bd8b AK |
2239 | } |
2240 | ||
a54c87b6 | 2241 | MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs) |
aa102231 | 2242 | { |
a54c87b6 PM |
2243 | int asidx = cpu_asidx_from_attrs(cpu, attrs); |
2244 | CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx]; | |
32857f4d | 2245 | AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch); |
79e2b9ae | 2246 | MemoryRegionSection *sections = d->map.sections; |
9d82b5a7 PB |
2247 | |
2248 | return sections[index & ~TARGET_PAGE_MASK].mr; | |
aa102231 AK |
2249 | } |
2250 | ||
e9179ce1 AK |
2251 | static void io_mem_init(void) |
2252 | { | |
1f6245e5 | 2253 | memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX); |
2c9b15ca | 2254 | memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, |
1f6245e5 | 2255 | NULL, UINT64_MAX); |
2c9b15ca | 2256 | memory_region_init_io(&io_mem_notdirty, NULL, ¬dirty_mem_ops, NULL, |
1f6245e5 | 2257 | NULL, UINT64_MAX); |
2c9b15ca | 2258 | memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL, |
1f6245e5 | 2259 | NULL, UINT64_MAX); |
e9179ce1 AK |
2260 | } |
2261 | ||
ac1970fb | 2262 | static void mem_begin(MemoryListener *listener) |
00752703 PB |
2263 | { |
2264 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); | |
53cb28cb MA |
2265 | AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); |
2266 | uint16_t n; | |
2267 | ||
a656e22f | 2268 | n = dummy_section(&d->map, as, &io_mem_unassigned); |
53cb28cb | 2269 | assert(n == PHYS_SECTION_UNASSIGNED); |
a656e22f | 2270 | n = dummy_section(&d->map, as, &io_mem_notdirty); |
53cb28cb | 2271 | assert(n == PHYS_SECTION_NOTDIRTY); |
a656e22f | 2272 | n = dummy_section(&d->map, as, &io_mem_rom); |
53cb28cb | 2273 | assert(n == PHYS_SECTION_ROM); |
a656e22f | 2274 | n = dummy_section(&d->map, as, &io_mem_watch); |
53cb28cb | 2275 | assert(n == PHYS_SECTION_WATCH); |
00752703 | 2276 | |
9736e55b | 2277 | d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; |
00752703 PB |
2278 | d->as = as; |
2279 | as->next_dispatch = d; | |
2280 | } | |
2281 | ||
79e2b9ae PB |
2282 | static void address_space_dispatch_free(AddressSpaceDispatch *d) |
2283 | { | |
2284 | phys_sections_free(&d->map); | |
2285 | g_free(d); | |
2286 | } | |
2287 | ||
00752703 | 2288 | static void mem_commit(MemoryListener *listener) |
ac1970fb | 2289 | { |
89ae337a | 2290 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); |
0475d94f PB |
2291 | AddressSpaceDispatch *cur = as->dispatch; |
2292 | AddressSpaceDispatch *next = as->next_dispatch; | |
2293 | ||
53cb28cb | 2294 | phys_page_compact_all(next, next->map.nodes_nb); |
b35ba30f | 2295 | |
79e2b9ae | 2296 | atomic_rcu_set(&as->dispatch, next); |
53cb28cb | 2297 | if (cur) { |
79e2b9ae | 2298 | call_rcu(cur, address_space_dispatch_free, rcu); |
53cb28cb | 2299 | } |
9affd6fc PB |
2300 | } |
2301 | ||
1d71148e | 2302 | static void tcg_commit(MemoryListener *listener) |
50c1e149 | 2303 | { |
32857f4d PM |
2304 | CPUAddressSpace *cpuas; |
2305 | AddressSpaceDispatch *d; | |
117712c3 AK |
2306 | |
2307 | /* since each CPU stores ram addresses in its TLB cache, we must | |
2308 | reset the modified entries */ | |
32857f4d PM |
2309 | cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); |
2310 | cpu_reloading_memory_map(); | |
2311 | /* The CPU and TLB are protected by the iothread lock. | |
2312 | * We reload the dispatch pointer now because cpu_reloading_memory_map() | |
2313 | * may have split the RCU critical section. | |
2314 | */ | |
2315 | d = atomic_rcu_read(&cpuas->as->dispatch); | |
2316 | cpuas->memory_dispatch = d; | |
2317 | tlb_flush(cpuas->cpu, 1); | |
50c1e149 AK |
2318 | } |
2319 | ||
ac1970fb AK |
2320 | void address_space_init_dispatch(AddressSpace *as) |
2321 | { | |
00752703 | 2322 | as->dispatch = NULL; |
89ae337a | 2323 | as->dispatch_listener = (MemoryListener) { |
ac1970fb | 2324 | .begin = mem_begin, |
00752703 | 2325 | .commit = mem_commit, |
ac1970fb AK |
2326 | .region_add = mem_add, |
2327 | .region_nop = mem_add, | |
2328 | .priority = 0, | |
2329 | }; | |
89ae337a | 2330 | memory_listener_register(&as->dispatch_listener, as); |
ac1970fb AK |
2331 | } |
2332 | ||
6e48e8f9 PB |
2333 | void address_space_unregister(AddressSpace *as) |
2334 | { | |
2335 | memory_listener_unregister(&as->dispatch_listener); | |
2336 | } | |
2337 | ||
83f3c251 AK |
2338 | void address_space_destroy_dispatch(AddressSpace *as) |
2339 | { | |
2340 | AddressSpaceDispatch *d = as->dispatch; | |
2341 | ||
79e2b9ae PB |
2342 | atomic_rcu_set(&as->dispatch, NULL); |
2343 | if (d) { | |
2344 | call_rcu(d, address_space_dispatch_free, rcu); | |
2345 | } | |
83f3c251 AK |
2346 | } |
2347 | ||
62152b8a AK |
2348 | static void memory_map_init(void) |
2349 | { | |
7267c094 | 2350 | system_memory = g_malloc(sizeof(*system_memory)); |
03f49957 | 2351 | |
57271d63 | 2352 | memory_region_init(system_memory, NULL, "system", UINT64_MAX); |
7dca8043 | 2353 | address_space_init(&address_space_memory, system_memory, "memory"); |
309cb471 | 2354 | |
7267c094 | 2355 | system_io = g_malloc(sizeof(*system_io)); |
3bb28b72 JK |
2356 | memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", |
2357 | 65536); | |
7dca8043 | 2358 | address_space_init(&address_space_io, system_io, "I/O"); |
62152b8a AK |
2359 | } |
2360 | ||
2361 | MemoryRegion *get_system_memory(void) | |
2362 | { | |
2363 | return system_memory; | |
2364 | } | |
2365 | ||
309cb471 AK |
2366 | MemoryRegion *get_system_io(void) |
2367 | { | |
2368 | return system_io; | |
2369 | } | |
2370 | ||
e2eef170 PB |
2371 | #endif /* !defined(CONFIG_USER_ONLY) */ |
2372 | ||
13eb76e0 FB |
2373 | /* physical memory access (slow version, mainly for debug) */ |
2374 | #if defined(CONFIG_USER_ONLY) | |
f17ec444 | 2375 | int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, |
a68fe89c | 2376 | uint8_t *buf, int len, int is_write) |
13eb76e0 FB |
2377 | { |
2378 | int l, flags; | |
2379 | target_ulong page; | |
53a5960a | 2380 | void * p; |
13eb76e0 FB |
2381 | |
2382 | while (len > 0) { | |
2383 | page = addr & TARGET_PAGE_MASK; | |
2384 | l = (page + TARGET_PAGE_SIZE) - addr; | |
2385 | if (l > len) | |
2386 | l = len; | |
2387 | flags = page_get_flags(page); | |
2388 | if (!(flags & PAGE_VALID)) | |
a68fe89c | 2389 | return -1; |
13eb76e0 FB |
2390 | if (is_write) { |
2391 | if (!(flags & PAGE_WRITE)) | |
a68fe89c | 2392 | return -1; |
579a97f7 | 2393 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 2394 | if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) |
a68fe89c | 2395 | return -1; |
72fb7daa AJ |
2396 | memcpy(p, buf, l); |
2397 | unlock_user(p, addr, l); | |
13eb76e0 FB |
2398 | } else { |
2399 | if (!(flags & PAGE_READ)) | |
a68fe89c | 2400 | return -1; |
579a97f7 | 2401 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 2402 | if (!(p = lock_user(VERIFY_READ, addr, l, 1))) |
a68fe89c | 2403 | return -1; |
72fb7daa | 2404 | memcpy(buf, p, l); |
5b257578 | 2405 | unlock_user(p, addr, 0); |
13eb76e0 FB |
2406 | } |
2407 | len -= l; | |
2408 | buf += l; | |
2409 | addr += l; | |
2410 | } | |
a68fe89c | 2411 | return 0; |
13eb76e0 | 2412 | } |
8df1cd07 | 2413 | |
13eb76e0 | 2414 | #else |
51d7a9eb | 2415 | |
845b6214 | 2416 | static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, |
a8170e5e | 2417 | hwaddr length) |
51d7a9eb | 2418 | { |
e87f7778 PB |
2419 | uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr); |
2420 | /* No early return if dirty_log_mask is or becomes 0, because | |
2421 | * cpu_physical_memory_set_dirty_range will still call | |
2422 | * xen_modified_memory. | |
2423 | */ | |
2424 | if (dirty_log_mask) { | |
2425 | dirty_log_mask = | |
2426 | cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask); | |
2427 | } | |
2428 | if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) { | |
2429 | tb_invalidate_phys_range(addr, addr + length); | |
2430 | dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); | |
51d7a9eb | 2431 | } |
e87f7778 | 2432 | cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask); |
51d7a9eb AP |
2433 | } |
2434 | ||
23326164 | 2435 | static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) |
82f2563f | 2436 | { |
e1622f4b | 2437 | unsigned access_size_max = mr->ops->valid.max_access_size; |
23326164 RH |
2438 | |
2439 | /* Regions are assumed to support 1-4 byte accesses unless | |
2440 | otherwise specified. */ | |
23326164 RH |
2441 | if (access_size_max == 0) { |
2442 | access_size_max = 4; | |
2443 | } | |
2444 | ||
2445 | /* Bound the maximum access by the alignment of the address. */ | |
2446 | if (!mr->ops->impl.unaligned) { | |
2447 | unsigned align_size_max = addr & -addr; | |
2448 | if (align_size_max != 0 && align_size_max < access_size_max) { | |
2449 | access_size_max = align_size_max; | |
2450 | } | |
82f2563f | 2451 | } |
23326164 RH |
2452 | |
2453 | /* Don't attempt accesses larger than the maximum. */ | |
2454 | if (l > access_size_max) { | |
2455 | l = access_size_max; | |
82f2563f | 2456 | } |
6554f5c0 | 2457 | l = pow2floor(l); |
23326164 RH |
2458 | |
2459 | return l; | |
82f2563f PB |
2460 | } |
2461 | ||
4840f10e | 2462 | static bool prepare_mmio_access(MemoryRegion *mr) |
125b3806 | 2463 | { |
4840f10e JK |
2464 | bool unlocked = !qemu_mutex_iothread_locked(); |
2465 | bool release_lock = false; | |
2466 | ||
2467 | if (unlocked && mr->global_locking) { | |
2468 | qemu_mutex_lock_iothread(); | |
2469 | unlocked = false; | |
2470 | release_lock = true; | |
2471 | } | |
125b3806 | 2472 | if (mr->flush_coalesced_mmio) { |
4840f10e JK |
2473 | if (unlocked) { |
2474 | qemu_mutex_lock_iothread(); | |
2475 | } | |
125b3806 | 2476 | qemu_flush_coalesced_mmio_buffer(); |
4840f10e JK |
2477 | if (unlocked) { |
2478 | qemu_mutex_unlock_iothread(); | |
2479 | } | |
125b3806 | 2480 | } |
4840f10e JK |
2481 | |
2482 | return release_lock; | |
125b3806 PB |
2483 | } |
2484 | ||
a203ac70 PB |
2485 | /* Called within RCU critical section. */ |
2486 | static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr, | |
2487 | MemTxAttrs attrs, | |
2488 | const uint8_t *buf, | |
2489 | int len, hwaddr addr1, | |
2490 | hwaddr l, MemoryRegion *mr) | |
13eb76e0 | 2491 | { |
13eb76e0 | 2492 | uint8_t *ptr; |
791af8c8 | 2493 | uint64_t val; |
3b643495 | 2494 | MemTxResult result = MEMTX_OK; |
4840f10e | 2495 | bool release_lock = false; |
3b46e624 | 2496 | |
a203ac70 | 2497 | for (;;) { |
eb7eeb88 PB |
2498 | if (!memory_access_is_direct(mr, true)) { |
2499 | release_lock |= prepare_mmio_access(mr); | |
2500 | l = memory_access_size(mr, l, addr1); | |
2501 | /* XXX: could force current_cpu to NULL to avoid | |
2502 | potential bugs */ | |
2503 | switch (l) { | |
2504 | case 8: | |
2505 | /* 64 bit write access */ | |
2506 | val = ldq_p(buf); | |
2507 | result |= memory_region_dispatch_write(mr, addr1, val, 8, | |
2508 | attrs); | |
2509 | break; | |
2510 | case 4: | |
2511 | /* 32 bit write access */ | |
2512 | val = ldl_p(buf); | |
2513 | result |= memory_region_dispatch_write(mr, addr1, val, 4, | |
2514 | attrs); | |
2515 | break; | |
2516 | case 2: | |
2517 | /* 16 bit write access */ | |
2518 | val = lduw_p(buf); | |
2519 | result |= memory_region_dispatch_write(mr, addr1, val, 2, | |
2520 | attrs); | |
2521 | break; | |
2522 | case 1: | |
2523 | /* 8 bit write access */ | |
2524 | val = ldub_p(buf); | |
2525 | result |= memory_region_dispatch_write(mr, addr1, val, 1, | |
2526 | attrs); | |
2527 | break; | |
2528 | default: | |
2529 | abort(); | |
13eb76e0 FB |
2530 | } |
2531 | } else { | |
eb7eeb88 PB |
2532 | addr1 += memory_region_get_ram_addr(mr); |
2533 | /* RAM case */ | |
2534 | ptr = qemu_get_ram_ptr(addr1); | |
2535 | memcpy(ptr, buf, l); | |
2536 | invalidate_and_set_dirty(mr, addr1, l); | |
13eb76e0 | 2537 | } |
4840f10e JK |
2538 | |
2539 | if (release_lock) { | |
2540 | qemu_mutex_unlock_iothread(); | |
2541 | release_lock = false; | |
2542 | } | |
2543 | ||
13eb76e0 FB |
2544 | len -= l; |
2545 | buf += l; | |
2546 | addr += l; | |
a203ac70 PB |
2547 | |
2548 | if (!len) { | |
2549 | break; | |
2550 | } | |
2551 | ||
2552 | l = len; | |
2553 | mr = address_space_translate(as, addr, &addr1, &l, true); | |
13eb76e0 | 2554 | } |
fd8aaa76 | 2555 | |
3b643495 | 2556 | return result; |
13eb76e0 | 2557 | } |
8df1cd07 | 2558 | |
a203ac70 PB |
2559 | MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, |
2560 | const uint8_t *buf, int len) | |
ac1970fb | 2561 | { |
eb7eeb88 | 2562 | hwaddr l; |
eb7eeb88 PB |
2563 | hwaddr addr1; |
2564 | MemoryRegion *mr; | |
2565 | MemTxResult result = MEMTX_OK; | |
eb7eeb88 | 2566 | |
a203ac70 PB |
2567 | if (len > 0) { |
2568 | rcu_read_lock(); | |
eb7eeb88 | 2569 | l = len; |
a203ac70 PB |
2570 | mr = address_space_translate(as, addr, &addr1, &l, true); |
2571 | result = address_space_write_continue(as, addr, attrs, buf, len, | |
2572 | addr1, l, mr); | |
2573 | rcu_read_unlock(); | |
2574 | } | |
2575 | ||
2576 | return result; | |
2577 | } | |
2578 | ||
2579 | /* Called within RCU critical section. */ | |
2580 | MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr, | |
2581 | MemTxAttrs attrs, uint8_t *buf, | |
2582 | int len, hwaddr addr1, hwaddr l, | |
2583 | MemoryRegion *mr) | |
2584 | { | |
2585 | uint8_t *ptr; | |
2586 | uint64_t val; | |
2587 | MemTxResult result = MEMTX_OK; | |
2588 | bool release_lock = false; | |
eb7eeb88 | 2589 | |
a203ac70 | 2590 | for (;;) { |
eb7eeb88 PB |
2591 | if (!memory_access_is_direct(mr, false)) { |
2592 | /* I/O case */ | |
2593 | release_lock |= prepare_mmio_access(mr); | |
2594 | l = memory_access_size(mr, l, addr1); | |
2595 | switch (l) { | |
2596 | case 8: | |
2597 | /* 64 bit read access */ | |
2598 | result |= memory_region_dispatch_read(mr, addr1, &val, 8, | |
2599 | attrs); | |
2600 | stq_p(buf, val); | |
2601 | break; | |
2602 | case 4: | |
2603 | /* 32 bit read access */ | |
2604 | result |= memory_region_dispatch_read(mr, addr1, &val, 4, | |
2605 | attrs); | |
2606 | stl_p(buf, val); | |
2607 | break; | |
2608 | case 2: | |
2609 | /* 16 bit read access */ | |
2610 | result |= memory_region_dispatch_read(mr, addr1, &val, 2, | |
2611 | attrs); | |
2612 | stw_p(buf, val); | |
2613 | break; | |
2614 | case 1: | |
2615 | /* 8 bit read access */ | |
2616 | result |= memory_region_dispatch_read(mr, addr1, &val, 1, | |
2617 | attrs); | |
2618 | stb_p(buf, val); | |
2619 | break; | |
2620 | default: | |
2621 | abort(); | |
2622 | } | |
2623 | } else { | |
2624 | /* RAM case */ | |
2625 | ptr = qemu_get_ram_ptr(mr->ram_addr + addr1); | |
2626 | memcpy(buf, ptr, l); | |
2627 | } | |
2628 | ||
2629 | if (release_lock) { | |
2630 | qemu_mutex_unlock_iothread(); | |
2631 | release_lock = false; | |
2632 | } | |
2633 | ||
2634 | len -= l; | |
2635 | buf += l; | |
2636 | addr += l; | |
a203ac70 PB |
2637 | |
2638 | if (!len) { | |
2639 | break; | |
2640 | } | |
2641 | ||
2642 | l = len; | |
2643 | mr = address_space_translate(as, addr, &addr1, &l, false); | |
2644 | } | |
2645 | ||
2646 | return result; | |
2647 | } | |
2648 | ||
3cc8f884 PB |
2649 | MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, |
2650 | MemTxAttrs attrs, uint8_t *buf, int len) | |
a203ac70 PB |
2651 | { |
2652 | hwaddr l; | |
2653 | hwaddr addr1; | |
2654 | MemoryRegion *mr; | |
2655 | MemTxResult result = MEMTX_OK; | |
2656 | ||
2657 | if (len > 0) { | |
2658 | rcu_read_lock(); | |
2659 | l = len; | |
2660 | mr = address_space_translate(as, addr, &addr1, &l, false); | |
2661 | result = address_space_read_continue(as, addr, attrs, buf, len, | |
2662 | addr1, l, mr); | |
2663 | rcu_read_unlock(); | |
eb7eeb88 | 2664 | } |
eb7eeb88 PB |
2665 | |
2666 | return result; | |
ac1970fb AK |
2667 | } |
2668 | ||
eb7eeb88 PB |
2669 | MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, |
2670 | uint8_t *buf, int len, bool is_write) | |
2671 | { | |
2672 | if (is_write) { | |
2673 | return address_space_write(as, addr, attrs, (uint8_t *)buf, len); | |
2674 | } else { | |
2675 | return address_space_read(as, addr, attrs, (uint8_t *)buf, len); | |
2676 | } | |
2677 | } | |
ac1970fb | 2678 | |
a8170e5e | 2679 | void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf, |
ac1970fb AK |
2680 | int len, int is_write) |
2681 | { | |
5c9eb028 PM |
2682 | address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, |
2683 | buf, len, is_write); | |
ac1970fb AK |
2684 | } |
2685 | ||
582b55a9 AG |
2686 | enum write_rom_type { |
2687 | WRITE_DATA, | |
2688 | FLUSH_CACHE, | |
2689 | }; | |
2690 | ||
2a221651 | 2691 | static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as, |
582b55a9 | 2692 | hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type) |
d0ecd2aa | 2693 | { |
149f54b5 | 2694 | hwaddr l; |
d0ecd2aa | 2695 | uint8_t *ptr; |
149f54b5 | 2696 | hwaddr addr1; |
5c8a00ce | 2697 | MemoryRegion *mr; |
3b46e624 | 2698 | |
41063e1e | 2699 | rcu_read_lock(); |
d0ecd2aa | 2700 | while (len > 0) { |
149f54b5 | 2701 | l = len; |
2a221651 | 2702 | mr = address_space_translate(as, addr, &addr1, &l, true); |
3b46e624 | 2703 | |
5c8a00ce PB |
2704 | if (!(memory_region_is_ram(mr) || |
2705 | memory_region_is_romd(mr))) { | |
b242e0e0 | 2706 | l = memory_access_size(mr, l, addr1); |
d0ecd2aa | 2707 | } else { |
5c8a00ce | 2708 | addr1 += memory_region_get_ram_addr(mr); |
d0ecd2aa | 2709 | /* ROM/RAM case */ |
5579c7f3 | 2710 | ptr = qemu_get_ram_ptr(addr1); |
582b55a9 AG |
2711 | switch (type) { |
2712 | case WRITE_DATA: | |
2713 | memcpy(ptr, buf, l); | |
845b6214 | 2714 | invalidate_and_set_dirty(mr, addr1, l); |
582b55a9 AG |
2715 | break; |
2716 | case FLUSH_CACHE: | |
2717 | flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l); | |
2718 | break; | |
2719 | } | |
d0ecd2aa FB |
2720 | } |
2721 | len -= l; | |
2722 | buf += l; | |
2723 | addr += l; | |
2724 | } | |
41063e1e | 2725 | rcu_read_unlock(); |
d0ecd2aa FB |
2726 | } |
2727 | ||
582b55a9 | 2728 | /* used for ROM loading : can write in RAM and ROM */ |
2a221651 | 2729 | void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr, |
582b55a9 AG |
2730 | const uint8_t *buf, int len) |
2731 | { | |
2a221651 | 2732 | cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA); |
582b55a9 AG |
2733 | } |
2734 | ||
2735 | void cpu_flush_icache_range(hwaddr start, int len) | |
2736 | { | |
2737 | /* | |
2738 | * This function should do the same thing as an icache flush that was | |
2739 | * triggered from within the guest. For TCG we are always cache coherent, | |
2740 | * so there is no need to flush anything. For KVM / Xen we need to flush | |
2741 | * the host's instruction cache at least. | |
2742 | */ | |
2743 | if (tcg_enabled()) { | |
2744 | return; | |
2745 | } | |
2746 | ||
2a221651 EI |
2747 | cpu_physical_memory_write_rom_internal(&address_space_memory, |
2748 | start, NULL, len, FLUSH_CACHE); | |
582b55a9 AG |
2749 | } |
2750 | ||
6d16c2f8 | 2751 | typedef struct { |
d3e71559 | 2752 | MemoryRegion *mr; |
6d16c2f8 | 2753 | void *buffer; |
a8170e5e AK |
2754 | hwaddr addr; |
2755 | hwaddr len; | |
c2cba0ff | 2756 | bool in_use; |
6d16c2f8 AL |
2757 | } BounceBuffer; |
2758 | ||
2759 | static BounceBuffer bounce; | |
2760 | ||
ba223c29 | 2761 | typedef struct MapClient { |
e95205e1 | 2762 | QEMUBH *bh; |
72cf2d4f | 2763 | QLIST_ENTRY(MapClient) link; |
ba223c29 AL |
2764 | } MapClient; |
2765 | ||
38e047b5 | 2766 | QemuMutex map_client_list_lock; |
72cf2d4f BS |
2767 | static QLIST_HEAD(map_client_list, MapClient) map_client_list |
2768 | = QLIST_HEAD_INITIALIZER(map_client_list); | |
ba223c29 | 2769 | |
e95205e1 FZ |
2770 | static void cpu_unregister_map_client_do(MapClient *client) |
2771 | { | |
2772 | QLIST_REMOVE(client, link); | |
2773 | g_free(client); | |
2774 | } | |
2775 | ||
33b6c2ed FZ |
2776 | static void cpu_notify_map_clients_locked(void) |
2777 | { | |
2778 | MapClient *client; | |
2779 | ||
2780 | while (!QLIST_EMPTY(&map_client_list)) { | |
2781 | client = QLIST_FIRST(&map_client_list); | |
e95205e1 FZ |
2782 | qemu_bh_schedule(client->bh); |
2783 | cpu_unregister_map_client_do(client); | |
33b6c2ed FZ |
2784 | } |
2785 | } | |
2786 | ||
e95205e1 | 2787 | void cpu_register_map_client(QEMUBH *bh) |
ba223c29 | 2788 | { |
7267c094 | 2789 | MapClient *client = g_malloc(sizeof(*client)); |
ba223c29 | 2790 | |
38e047b5 | 2791 | qemu_mutex_lock(&map_client_list_lock); |
e95205e1 | 2792 | client->bh = bh; |
72cf2d4f | 2793 | QLIST_INSERT_HEAD(&map_client_list, client, link); |
33b6c2ed FZ |
2794 | if (!atomic_read(&bounce.in_use)) { |
2795 | cpu_notify_map_clients_locked(); | |
2796 | } | |
38e047b5 | 2797 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
2798 | } |
2799 | ||
38e047b5 | 2800 | void cpu_exec_init_all(void) |
ba223c29 | 2801 | { |
38e047b5 | 2802 | qemu_mutex_init(&ram_list.mutex); |
38e047b5 | 2803 | io_mem_init(); |
680a4783 | 2804 | memory_map_init(); |
38e047b5 | 2805 | qemu_mutex_init(&map_client_list_lock); |
ba223c29 AL |
2806 | } |
2807 | ||
e95205e1 | 2808 | void cpu_unregister_map_client(QEMUBH *bh) |
ba223c29 AL |
2809 | { |
2810 | MapClient *client; | |
2811 | ||
e95205e1 FZ |
2812 | qemu_mutex_lock(&map_client_list_lock); |
2813 | QLIST_FOREACH(client, &map_client_list, link) { | |
2814 | if (client->bh == bh) { | |
2815 | cpu_unregister_map_client_do(client); | |
2816 | break; | |
2817 | } | |
ba223c29 | 2818 | } |
e95205e1 | 2819 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
2820 | } |
2821 | ||
2822 | static void cpu_notify_map_clients(void) | |
2823 | { | |
38e047b5 | 2824 | qemu_mutex_lock(&map_client_list_lock); |
33b6c2ed | 2825 | cpu_notify_map_clients_locked(); |
38e047b5 | 2826 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
2827 | } |
2828 | ||
51644ab7 PB |
2829 | bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write) |
2830 | { | |
5c8a00ce | 2831 | MemoryRegion *mr; |
51644ab7 PB |
2832 | hwaddr l, xlat; |
2833 | ||
41063e1e | 2834 | rcu_read_lock(); |
51644ab7 PB |
2835 | while (len > 0) { |
2836 | l = len; | |
5c8a00ce PB |
2837 | mr = address_space_translate(as, addr, &xlat, &l, is_write); |
2838 | if (!memory_access_is_direct(mr, is_write)) { | |
2839 | l = memory_access_size(mr, l, addr); | |
2840 | if (!memory_region_access_valid(mr, xlat, l, is_write)) { | |
51644ab7 PB |
2841 | return false; |
2842 | } | |
2843 | } | |
2844 | ||
2845 | len -= l; | |
2846 | addr += l; | |
2847 | } | |
41063e1e | 2848 | rcu_read_unlock(); |
51644ab7 PB |
2849 | return true; |
2850 | } | |
2851 | ||
6d16c2f8 AL |
2852 | /* Map a physical memory region into a host virtual address. |
2853 | * May map a subset of the requested range, given by and returned in *plen. | |
2854 | * May return NULL if resources needed to perform the mapping are exhausted. | |
2855 | * Use only for reads OR writes - not for read-modify-write operations. | |
ba223c29 AL |
2856 | * Use cpu_register_map_client() to know when retrying the map operation is |
2857 | * likely to succeed. | |
6d16c2f8 | 2858 | */ |
ac1970fb | 2859 | void *address_space_map(AddressSpace *as, |
a8170e5e AK |
2860 | hwaddr addr, |
2861 | hwaddr *plen, | |
ac1970fb | 2862 | bool is_write) |
6d16c2f8 | 2863 | { |
a8170e5e | 2864 | hwaddr len = *plen; |
e3127ae0 PB |
2865 | hwaddr done = 0; |
2866 | hwaddr l, xlat, base; | |
2867 | MemoryRegion *mr, *this_mr; | |
2868 | ram_addr_t raddr; | |
e81bcda5 | 2869 | void *ptr; |
6d16c2f8 | 2870 | |
e3127ae0 PB |
2871 | if (len == 0) { |
2872 | return NULL; | |
2873 | } | |
38bee5dc | 2874 | |
e3127ae0 | 2875 | l = len; |
41063e1e | 2876 | rcu_read_lock(); |
e3127ae0 | 2877 | mr = address_space_translate(as, addr, &xlat, &l, is_write); |
41063e1e | 2878 | |
e3127ae0 | 2879 | if (!memory_access_is_direct(mr, is_write)) { |
c2cba0ff | 2880 | if (atomic_xchg(&bounce.in_use, true)) { |
41063e1e | 2881 | rcu_read_unlock(); |
e3127ae0 | 2882 | return NULL; |
6d16c2f8 | 2883 | } |
e85d9db5 KW |
2884 | /* Avoid unbounded allocations */ |
2885 | l = MIN(l, TARGET_PAGE_SIZE); | |
2886 | bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l); | |
e3127ae0 PB |
2887 | bounce.addr = addr; |
2888 | bounce.len = l; | |
d3e71559 PB |
2889 | |
2890 | memory_region_ref(mr); | |
2891 | bounce.mr = mr; | |
e3127ae0 | 2892 | if (!is_write) { |
5c9eb028 PM |
2893 | address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED, |
2894 | bounce.buffer, l); | |
8ab934f9 | 2895 | } |
6d16c2f8 | 2896 | |
41063e1e | 2897 | rcu_read_unlock(); |
e3127ae0 PB |
2898 | *plen = l; |
2899 | return bounce.buffer; | |
2900 | } | |
2901 | ||
2902 | base = xlat; | |
2903 | raddr = memory_region_get_ram_addr(mr); | |
2904 | ||
2905 | for (;;) { | |
6d16c2f8 AL |
2906 | len -= l; |
2907 | addr += l; | |
e3127ae0 PB |
2908 | done += l; |
2909 | if (len == 0) { | |
2910 | break; | |
2911 | } | |
2912 | ||
2913 | l = len; | |
2914 | this_mr = address_space_translate(as, addr, &xlat, &l, is_write); | |
2915 | if (this_mr != mr || xlat != base + done) { | |
2916 | break; | |
2917 | } | |
6d16c2f8 | 2918 | } |
e3127ae0 | 2919 | |
d3e71559 | 2920 | memory_region_ref(mr); |
e3127ae0 | 2921 | *plen = done; |
e81bcda5 PB |
2922 | ptr = qemu_ram_ptr_length(raddr + base, plen); |
2923 | rcu_read_unlock(); | |
2924 | ||
2925 | return ptr; | |
6d16c2f8 AL |
2926 | } |
2927 | ||
ac1970fb | 2928 | /* Unmaps a memory region previously mapped by address_space_map(). |
6d16c2f8 AL |
2929 | * Will also mark the memory as dirty if is_write == 1. access_len gives |
2930 | * the amount of memory that was actually read or written by the caller. | |
2931 | */ | |
a8170e5e AK |
2932 | void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, |
2933 | int is_write, hwaddr access_len) | |
6d16c2f8 AL |
2934 | { |
2935 | if (buffer != bounce.buffer) { | |
d3e71559 PB |
2936 | MemoryRegion *mr; |
2937 | ram_addr_t addr1; | |
2938 | ||
2939 | mr = qemu_ram_addr_from_host(buffer, &addr1); | |
2940 | assert(mr != NULL); | |
6d16c2f8 | 2941 | if (is_write) { |
845b6214 | 2942 | invalidate_and_set_dirty(mr, addr1, access_len); |
6d16c2f8 | 2943 | } |
868bb33f | 2944 | if (xen_enabled()) { |
e41d7c69 | 2945 | xen_invalidate_map_cache_entry(buffer); |
050a0ddf | 2946 | } |
d3e71559 | 2947 | memory_region_unref(mr); |
6d16c2f8 AL |
2948 | return; |
2949 | } | |
2950 | if (is_write) { | |
5c9eb028 PM |
2951 | address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED, |
2952 | bounce.buffer, access_len); | |
6d16c2f8 | 2953 | } |
f8a83245 | 2954 | qemu_vfree(bounce.buffer); |
6d16c2f8 | 2955 | bounce.buffer = NULL; |
d3e71559 | 2956 | memory_region_unref(bounce.mr); |
c2cba0ff | 2957 | atomic_mb_set(&bounce.in_use, false); |
ba223c29 | 2958 | cpu_notify_map_clients(); |
6d16c2f8 | 2959 | } |
d0ecd2aa | 2960 | |
a8170e5e AK |
2961 | void *cpu_physical_memory_map(hwaddr addr, |
2962 | hwaddr *plen, | |
ac1970fb AK |
2963 | int is_write) |
2964 | { | |
2965 | return address_space_map(&address_space_memory, addr, plen, is_write); | |
2966 | } | |
2967 | ||
a8170e5e AK |
2968 | void cpu_physical_memory_unmap(void *buffer, hwaddr len, |
2969 | int is_write, hwaddr access_len) | |
ac1970fb AK |
2970 | { |
2971 | return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); | |
2972 | } | |
2973 | ||
8df1cd07 | 2974 | /* warning: addr must be aligned */ |
50013115 PM |
2975 | static inline uint32_t address_space_ldl_internal(AddressSpace *as, hwaddr addr, |
2976 | MemTxAttrs attrs, | |
2977 | MemTxResult *result, | |
2978 | enum device_endian endian) | |
8df1cd07 | 2979 | { |
8df1cd07 | 2980 | uint8_t *ptr; |
791af8c8 | 2981 | uint64_t val; |
5c8a00ce | 2982 | MemoryRegion *mr; |
149f54b5 PB |
2983 | hwaddr l = 4; |
2984 | hwaddr addr1; | |
50013115 | 2985 | MemTxResult r; |
4840f10e | 2986 | bool release_lock = false; |
8df1cd07 | 2987 | |
41063e1e | 2988 | rcu_read_lock(); |
fdfba1a2 | 2989 | mr = address_space_translate(as, addr, &addr1, &l, false); |
5c8a00ce | 2990 | if (l < 4 || !memory_access_is_direct(mr, false)) { |
4840f10e | 2991 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 2992 | |
8df1cd07 | 2993 | /* I/O case */ |
50013115 | 2994 | r = memory_region_dispatch_read(mr, addr1, &val, 4, attrs); |
1e78bcc1 AG |
2995 | #if defined(TARGET_WORDS_BIGENDIAN) |
2996 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
2997 | val = bswap32(val); | |
2998 | } | |
2999 | #else | |
3000 | if (endian == DEVICE_BIG_ENDIAN) { | |
3001 | val = bswap32(val); | |
3002 | } | |
3003 | #endif | |
8df1cd07 FB |
3004 | } else { |
3005 | /* RAM case */ | |
5c8a00ce | 3006 | ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr) |
06ef3525 | 3007 | & TARGET_PAGE_MASK) |
149f54b5 | 3008 | + addr1); |
1e78bcc1 AG |
3009 | switch (endian) { |
3010 | case DEVICE_LITTLE_ENDIAN: | |
3011 | val = ldl_le_p(ptr); | |
3012 | break; | |
3013 | case DEVICE_BIG_ENDIAN: | |
3014 | val = ldl_be_p(ptr); | |
3015 | break; | |
3016 | default: | |
3017 | val = ldl_p(ptr); | |
3018 | break; | |
3019 | } | |
50013115 PM |
3020 | r = MEMTX_OK; |
3021 | } | |
3022 | if (result) { | |
3023 | *result = r; | |
8df1cd07 | 3024 | } |
4840f10e JK |
3025 | if (release_lock) { |
3026 | qemu_mutex_unlock_iothread(); | |
3027 | } | |
41063e1e | 3028 | rcu_read_unlock(); |
8df1cd07 FB |
3029 | return val; |
3030 | } | |
3031 | ||
50013115 PM |
3032 | uint32_t address_space_ldl(AddressSpace *as, hwaddr addr, |
3033 | MemTxAttrs attrs, MemTxResult *result) | |
3034 | { | |
3035 | return address_space_ldl_internal(as, addr, attrs, result, | |
3036 | DEVICE_NATIVE_ENDIAN); | |
3037 | } | |
3038 | ||
3039 | uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr, | |
3040 | MemTxAttrs attrs, MemTxResult *result) | |
3041 | { | |
3042 | return address_space_ldl_internal(as, addr, attrs, result, | |
3043 | DEVICE_LITTLE_ENDIAN); | |
3044 | } | |
3045 | ||
3046 | uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr, | |
3047 | MemTxAttrs attrs, MemTxResult *result) | |
3048 | { | |
3049 | return address_space_ldl_internal(as, addr, attrs, result, | |
3050 | DEVICE_BIG_ENDIAN); | |
3051 | } | |
3052 | ||
fdfba1a2 | 3053 | uint32_t ldl_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3054 | { |
50013115 | 3055 | return address_space_ldl(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3056 | } |
3057 | ||
fdfba1a2 | 3058 | uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3059 | { |
50013115 | 3060 | return address_space_ldl_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3061 | } |
3062 | ||
fdfba1a2 | 3063 | uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3064 | { |
50013115 | 3065 | return address_space_ldl_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3066 | } |
3067 | ||
84b7b8e7 | 3068 | /* warning: addr must be aligned */ |
50013115 PM |
3069 | static inline uint64_t address_space_ldq_internal(AddressSpace *as, hwaddr addr, |
3070 | MemTxAttrs attrs, | |
3071 | MemTxResult *result, | |
3072 | enum device_endian endian) | |
84b7b8e7 | 3073 | { |
84b7b8e7 FB |
3074 | uint8_t *ptr; |
3075 | uint64_t val; | |
5c8a00ce | 3076 | MemoryRegion *mr; |
149f54b5 PB |
3077 | hwaddr l = 8; |
3078 | hwaddr addr1; | |
50013115 | 3079 | MemTxResult r; |
4840f10e | 3080 | bool release_lock = false; |
84b7b8e7 | 3081 | |
41063e1e | 3082 | rcu_read_lock(); |
2c17449b | 3083 | mr = address_space_translate(as, addr, &addr1, &l, |
5c8a00ce PB |
3084 | false); |
3085 | if (l < 8 || !memory_access_is_direct(mr, false)) { | |
4840f10e | 3086 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3087 | |
84b7b8e7 | 3088 | /* I/O case */ |
50013115 | 3089 | r = memory_region_dispatch_read(mr, addr1, &val, 8, attrs); |
968a5627 PB |
3090 | #if defined(TARGET_WORDS_BIGENDIAN) |
3091 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3092 | val = bswap64(val); | |
3093 | } | |
3094 | #else | |
3095 | if (endian == DEVICE_BIG_ENDIAN) { | |
3096 | val = bswap64(val); | |
3097 | } | |
84b7b8e7 FB |
3098 | #endif |
3099 | } else { | |
3100 | /* RAM case */ | |
5c8a00ce | 3101 | ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr) |
06ef3525 | 3102 | & TARGET_PAGE_MASK) |
149f54b5 | 3103 | + addr1); |
1e78bcc1 AG |
3104 | switch (endian) { |
3105 | case DEVICE_LITTLE_ENDIAN: | |
3106 | val = ldq_le_p(ptr); | |
3107 | break; | |
3108 | case DEVICE_BIG_ENDIAN: | |
3109 | val = ldq_be_p(ptr); | |
3110 | break; | |
3111 | default: | |
3112 | val = ldq_p(ptr); | |
3113 | break; | |
3114 | } | |
50013115 PM |
3115 | r = MEMTX_OK; |
3116 | } | |
3117 | if (result) { | |
3118 | *result = r; | |
84b7b8e7 | 3119 | } |
4840f10e JK |
3120 | if (release_lock) { |
3121 | qemu_mutex_unlock_iothread(); | |
3122 | } | |
41063e1e | 3123 | rcu_read_unlock(); |
84b7b8e7 FB |
3124 | return val; |
3125 | } | |
3126 | ||
50013115 PM |
3127 | uint64_t address_space_ldq(AddressSpace *as, hwaddr addr, |
3128 | MemTxAttrs attrs, MemTxResult *result) | |
3129 | { | |
3130 | return address_space_ldq_internal(as, addr, attrs, result, | |
3131 | DEVICE_NATIVE_ENDIAN); | |
3132 | } | |
3133 | ||
3134 | uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr, | |
3135 | MemTxAttrs attrs, MemTxResult *result) | |
3136 | { | |
3137 | return address_space_ldq_internal(as, addr, attrs, result, | |
3138 | DEVICE_LITTLE_ENDIAN); | |
3139 | } | |
3140 | ||
3141 | uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr, | |
3142 | MemTxAttrs attrs, MemTxResult *result) | |
3143 | { | |
3144 | return address_space_ldq_internal(as, addr, attrs, result, | |
3145 | DEVICE_BIG_ENDIAN); | |
3146 | } | |
3147 | ||
2c17449b | 3148 | uint64_t ldq_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3149 | { |
50013115 | 3150 | return address_space_ldq(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3151 | } |
3152 | ||
2c17449b | 3153 | uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3154 | { |
50013115 | 3155 | return address_space_ldq_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3156 | } |
3157 | ||
2c17449b | 3158 | uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3159 | { |
50013115 | 3160 | return address_space_ldq_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3161 | } |
3162 | ||
aab33094 | 3163 | /* XXX: optimize */ |
50013115 PM |
3164 | uint32_t address_space_ldub(AddressSpace *as, hwaddr addr, |
3165 | MemTxAttrs attrs, MemTxResult *result) | |
aab33094 FB |
3166 | { |
3167 | uint8_t val; | |
50013115 PM |
3168 | MemTxResult r; |
3169 | ||
3170 | r = address_space_rw(as, addr, attrs, &val, 1, 0); | |
3171 | if (result) { | |
3172 | *result = r; | |
3173 | } | |
aab33094 FB |
3174 | return val; |
3175 | } | |
3176 | ||
50013115 PM |
3177 | uint32_t ldub_phys(AddressSpace *as, hwaddr addr) |
3178 | { | |
3179 | return address_space_ldub(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); | |
3180 | } | |
3181 | ||
733f0b02 | 3182 | /* warning: addr must be aligned */ |
50013115 PM |
3183 | static inline uint32_t address_space_lduw_internal(AddressSpace *as, |
3184 | hwaddr addr, | |
3185 | MemTxAttrs attrs, | |
3186 | MemTxResult *result, | |
3187 | enum device_endian endian) | |
aab33094 | 3188 | { |
733f0b02 MT |
3189 | uint8_t *ptr; |
3190 | uint64_t val; | |
5c8a00ce | 3191 | MemoryRegion *mr; |
149f54b5 PB |
3192 | hwaddr l = 2; |
3193 | hwaddr addr1; | |
50013115 | 3194 | MemTxResult r; |
4840f10e | 3195 | bool release_lock = false; |
733f0b02 | 3196 | |
41063e1e | 3197 | rcu_read_lock(); |
41701aa4 | 3198 | mr = address_space_translate(as, addr, &addr1, &l, |
5c8a00ce PB |
3199 | false); |
3200 | if (l < 2 || !memory_access_is_direct(mr, false)) { | |
4840f10e | 3201 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3202 | |
733f0b02 | 3203 | /* I/O case */ |
50013115 | 3204 | r = memory_region_dispatch_read(mr, addr1, &val, 2, attrs); |
1e78bcc1 AG |
3205 | #if defined(TARGET_WORDS_BIGENDIAN) |
3206 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3207 | val = bswap16(val); | |
3208 | } | |
3209 | #else | |
3210 | if (endian == DEVICE_BIG_ENDIAN) { | |
3211 | val = bswap16(val); | |
3212 | } | |
3213 | #endif | |
733f0b02 MT |
3214 | } else { |
3215 | /* RAM case */ | |
5c8a00ce | 3216 | ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr) |
06ef3525 | 3217 | & TARGET_PAGE_MASK) |
149f54b5 | 3218 | + addr1); |
1e78bcc1 AG |
3219 | switch (endian) { |
3220 | case DEVICE_LITTLE_ENDIAN: | |
3221 | val = lduw_le_p(ptr); | |
3222 | break; | |
3223 | case DEVICE_BIG_ENDIAN: | |
3224 | val = lduw_be_p(ptr); | |
3225 | break; | |
3226 | default: | |
3227 | val = lduw_p(ptr); | |
3228 | break; | |
3229 | } | |
50013115 PM |
3230 | r = MEMTX_OK; |
3231 | } | |
3232 | if (result) { | |
3233 | *result = r; | |
733f0b02 | 3234 | } |
4840f10e JK |
3235 | if (release_lock) { |
3236 | qemu_mutex_unlock_iothread(); | |
3237 | } | |
41063e1e | 3238 | rcu_read_unlock(); |
733f0b02 | 3239 | return val; |
aab33094 FB |
3240 | } |
3241 | ||
50013115 PM |
3242 | uint32_t address_space_lduw(AddressSpace *as, hwaddr addr, |
3243 | MemTxAttrs attrs, MemTxResult *result) | |
3244 | { | |
3245 | return address_space_lduw_internal(as, addr, attrs, result, | |
3246 | DEVICE_NATIVE_ENDIAN); | |
3247 | } | |
3248 | ||
3249 | uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr, | |
3250 | MemTxAttrs attrs, MemTxResult *result) | |
3251 | { | |
3252 | return address_space_lduw_internal(as, addr, attrs, result, | |
3253 | DEVICE_LITTLE_ENDIAN); | |
3254 | } | |
3255 | ||
3256 | uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr, | |
3257 | MemTxAttrs attrs, MemTxResult *result) | |
3258 | { | |
3259 | return address_space_lduw_internal(as, addr, attrs, result, | |
3260 | DEVICE_BIG_ENDIAN); | |
3261 | } | |
3262 | ||
41701aa4 | 3263 | uint32_t lduw_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3264 | { |
50013115 | 3265 | return address_space_lduw(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3266 | } |
3267 | ||
41701aa4 | 3268 | uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3269 | { |
50013115 | 3270 | return address_space_lduw_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3271 | } |
3272 | ||
41701aa4 | 3273 | uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3274 | { |
50013115 | 3275 | return address_space_lduw_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3276 | } |
3277 | ||
8df1cd07 FB |
3278 | /* warning: addr must be aligned. The ram page is not masked as dirty |
3279 | and the code inside is not invalidated. It is useful if the dirty | |
3280 | bits are used to track modified PTEs */ | |
50013115 PM |
3281 | void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val, |
3282 | MemTxAttrs attrs, MemTxResult *result) | |
8df1cd07 | 3283 | { |
8df1cd07 | 3284 | uint8_t *ptr; |
5c8a00ce | 3285 | MemoryRegion *mr; |
149f54b5 PB |
3286 | hwaddr l = 4; |
3287 | hwaddr addr1; | |
50013115 | 3288 | MemTxResult r; |
845b6214 | 3289 | uint8_t dirty_log_mask; |
4840f10e | 3290 | bool release_lock = false; |
8df1cd07 | 3291 | |
41063e1e | 3292 | rcu_read_lock(); |
2198a121 | 3293 | mr = address_space_translate(as, addr, &addr1, &l, |
5c8a00ce PB |
3294 | true); |
3295 | if (l < 4 || !memory_access_is_direct(mr, true)) { | |
4840f10e | 3296 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3297 | |
50013115 | 3298 | r = memory_region_dispatch_write(mr, addr1, val, 4, attrs); |
8df1cd07 | 3299 | } else { |
5c8a00ce | 3300 | addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK; |
5579c7f3 | 3301 | ptr = qemu_get_ram_ptr(addr1); |
8df1cd07 | 3302 | stl_p(ptr, val); |
74576198 | 3303 | |
845b6214 PB |
3304 | dirty_log_mask = memory_region_get_dirty_log_mask(mr); |
3305 | dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); | |
58d2707e | 3306 | cpu_physical_memory_set_dirty_range(addr1, 4, dirty_log_mask); |
50013115 PM |
3307 | r = MEMTX_OK; |
3308 | } | |
3309 | if (result) { | |
3310 | *result = r; | |
8df1cd07 | 3311 | } |
4840f10e JK |
3312 | if (release_lock) { |
3313 | qemu_mutex_unlock_iothread(); | |
3314 | } | |
41063e1e | 3315 | rcu_read_unlock(); |
8df1cd07 FB |
3316 | } |
3317 | ||
50013115 PM |
3318 | void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val) |
3319 | { | |
3320 | address_space_stl_notdirty(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
3321 | } | |
3322 | ||
8df1cd07 | 3323 | /* warning: addr must be aligned */ |
50013115 PM |
3324 | static inline void address_space_stl_internal(AddressSpace *as, |
3325 | hwaddr addr, uint32_t val, | |
3326 | MemTxAttrs attrs, | |
3327 | MemTxResult *result, | |
3328 | enum device_endian endian) | |
8df1cd07 | 3329 | { |
8df1cd07 | 3330 | uint8_t *ptr; |
5c8a00ce | 3331 | MemoryRegion *mr; |
149f54b5 PB |
3332 | hwaddr l = 4; |
3333 | hwaddr addr1; | |
50013115 | 3334 | MemTxResult r; |
4840f10e | 3335 | bool release_lock = false; |
8df1cd07 | 3336 | |
41063e1e | 3337 | rcu_read_lock(); |
ab1da857 | 3338 | mr = address_space_translate(as, addr, &addr1, &l, |
5c8a00ce PB |
3339 | true); |
3340 | if (l < 4 || !memory_access_is_direct(mr, true)) { | |
4840f10e | 3341 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3342 | |
1e78bcc1 AG |
3343 | #if defined(TARGET_WORDS_BIGENDIAN) |
3344 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3345 | val = bswap32(val); | |
3346 | } | |
3347 | #else | |
3348 | if (endian == DEVICE_BIG_ENDIAN) { | |
3349 | val = bswap32(val); | |
3350 | } | |
3351 | #endif | |
50013115 | 3352 | r = memory_region_dispatch_write(mr, addr1, val, 4, attrs); |
8df1cd07 | 3353 | } else { |
8df1cd07 | 3354 | /* RAM case */ |
5c8a00ce | 3355 | addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK; |
5579c7f3 | 3356 | ptr = qemu_get_ram_ptr(addr1); |
1e78bcc1 AG |
3357 | switch (endian) { |
3358 | case DEVICE_LITTLE_ENDIAN: | |
3359 | stl_le_p(ptr, val); | |
3360 | break; | |
3361 | case DEVICE_BIG_ENDIAN: | |
3362 | stl_be_p(ptr, val); | |
3363 | break; | |
3364 | default: | |
3365 | stl_p(ptr, val); | |
3366 | break; | |
3367 | } | |
845b6214 | 3368 | invalidate_and_set_dirty(mr, addr1, 4); |
50013115 PM |
3369 | r = MEMTX_OK; |
3370 | } | |
3371 | if (result) { | |
3372 | *result = r; | |
8df1cd07 | 3373 | } |
4840f10e JK |
3374 | if (release_lock) { |
3375 | qemu_mutex_unlock_iothread(); | |
3376 | } | |
41063e1e | 3377 | rcu_read_unlock(); |
8df1cd07 FB |
3378 | } |
3379 | ||
50013115 PM |
3380 | void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val, |
3381 | MemTxAttrs attrs, MemTxResult *result) | |
3382 | { | |
3383 | address_space_stl_internal(as, addr, val, attrs, result, | |
3384 | DEVICE_NATIVE_ENDIAN); | |
3385 | } | |
3386 | ||
3387 | void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val, | |
3388 | MemTxAttrs attrs, MemTxResult *result) | |
3389 | { | |
3390 | address_space_stl_internal(as, addr, val, attrs, result, | |
3391 | DEVICE_LITTLE_ENDIAN); | |
3392 | } | |
3393 | ||
3394 | void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val, | |
3395 | MemTxAttrs attrs, MemTxResult *result) | |
3396 | { | |
3397 | address_space_stl_internal(as, addr, val, attrs, result, | |
3398 | DEVICE_BIG_ENDIAN); | |
3399 | } | |
3400 | ||
ab1da857 | 3401 | void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3402 | { |
50013115 | 3403 | address_space_stl(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3404 | } |
3405 | ||
ab1da857 | 3406 | void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3407 | { |
50013115 | 3408 | address_space_stl_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3409 | } |
3410 | ||
ab1da857 | 3411 | void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3412 | { |
50013115 | 3413 | address_space_stl_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3414 | } |
3415 | ||
aab33094 | 3416 | /* XXX: optimize */ |
50013115 PM |
3417 | void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val, |
3418 | MemTxAttrs attrs, MemTxResult *result) | |
aab33094 FB |
3419 | { |
3420 | uint8_t v = val; | |
50013115 PM |
3421 | MemTxResult r; |
3422 | ||
3423 | r = address_space_rw(as, addr, attrs, &v, 1, 1); | |
3424 | if (result) { | |
3425 | *result = r; | |
3426 | } | |
3427 | } | |
3428 | ||
3429 | void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val) | |
3430 | { | |
3431 | address_space_stb(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
aab33094 FB |
3432 | } |
3433 | ||
733f0b02 | 3434 | /* warning: addr must be aligned */ |
50013115 PM |
3435 | static inline void address_space_stw_internal(AddressSpace *as, |
3436 | hwaddr addr, uint32_t val, | |
3437 | MemTxAttrs attrs, | |
3438 | MemTxResult *result, | |
3439 | enum device_endian endian) | |
aab33094 | 3440 | { |
733f0b02 | 3441 | uint8_t *ptr; |
5c8a00ce | 3442 | MemoryRegion *mr; |
149f54b5 PB |
3443 | hwaddr l = 2; |
3444 | hwaddr addr1; | |
50013115 | 3445 | MemTxResult r; |
4840f10e | 3446 | bool release_lock = false; |
733f0b02 | 3447 | |
41063e1e | 3448 | rcu_read_lock(); |
5ce5944d | 3449 | mr = address_space_translate(as, addr, &addr1, &l, true); |
5c8a00ce | 3450 | if (l < 2 || !memory_access_is_direct(mr, true)) { |
4840f10e | 3451 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3452 | |
1e78bcc1 AG |
3453 | #if defined(TARGET_WORDS_BIGENDIAN) |
3454 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3455 | val = bswap16(val); | |
3456 | } | |
3457 | #else | |
3458 | if (endian == DEVICE_BIG_ENDIAN) { | |
3459 | val = bswap16(val); | |
3460 | } | |
3461 | #endif | |
50013115 | 3462 | r = memory_region_dispatch_write(mr, addr1, val, 2, attrs); |
733f0b02 | 3463 | } else { |
733f0b02 | 3464 | /* RAM case */ |
5c8a00ce | 3465 | addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK; |
733f0b02 | 3466 | ptr = qemu_get_ram_ptr(addr1); |
1e78bcc1 AG |
3467 | switch (endian) { |
3468 | case DEVICE_LITTLE_ENDIAN: | |
3469 | stw_le_p(ptr, val); | |
3470 | break; | |
3471 | case DEVICE_BIG_ENDIAN: | |
3472 | stw_be_p(ptr, val); | |
3473 | break; | |
3474 | default: | |
3475 | stw_p(ptr, val); | |
3476 | break; | |
3477 | } | |
845b6214 | 3478 | invalidate_and_set_dirty(mr, addr1, 2); |
50013115 PM |
3479 | r = MEMTX_OK; |
3480 | } | |
3481 | if (result) { | |
3482 | *result = r; | |
733f0b02 | 3483 | } |
4840f10e JK |
3484 | if (release_lock) { |
3485 | qemu_mutex_unlock_iothread(); | |
3486 | } | |
41063e1e | 3487 | rcu_read_unlock(); |
aab33094 FB |
3488 | } |
3489 | ||
50013115 PM |
3490 | void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val, |
3491 | MemTxAttrs attrs, MemTxResult *result) | |
3492 | { | |
3493 | address_space_stw_internal(as, addr, val, attrs, result, | |
3494 | DEVICE_NATIVE_ENDIAN); | |
3495 | } | |
3496 | ||
3497 | void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val, | |
3498 | MemTxAttrs attrs, MemTxResult *result) | |
3499 | { | |
3500 | address_space_stw_internal(as, addr, val, attrs, result, | |
3501 | DEVICE_LITTLE_ENDIAN); | |
3502 | } | |
3503 | ||
3504 | void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val, | |
3505 | MemTxAttrs attrs, MemTxResult *result) | |
3506 | { | |
3507 | address_space_stw_internal(as, addr, val, attrs, result, | |
3508 | DEVICE_BIG_ENDIAN); | |
3509 | } | |
3510 | ||
5ce5944d | 3511 | void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3512 | { |
50013115 | 3513 | address_space_stw(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3514 | } |
3515 | ||
5ce5944d | 3516 | void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3517 | { |
50013115 | 3518 | address_space_stw_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3519 | } |
3520 | ||
5ce5944d | 3521 | void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3522 | { |
50013115 | 3523 | address_space_stw_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3524 | } |
3525 | ||
aab33094 | 3526 | /* XXX: optimize */ |
50013115 PM |
3527 | void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val, |
3528 | MemTxAttrs attrs, MemTxResult *result) | |
aab33094 | 3529 | { |
50013115 | 3530 | MemTxResult r; |
aab33094 | 3531 | val = tswap64(val); |
50013115 PM |
3532 | r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1); |
3533 | if (result) { | |
3534 | *result = r; | |
3535 | } | |
aab33094 FB |
3536 | } |
3537 | ||
50013115 PM |
3538 | void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val, |
3539 | MemTxAttrs attrs, MemTxResult *result) | |
1e78bcc1 | 3540 | { |
50013115 | 3541 | MemTxResult r; |
1e78bcc1 | 3542 | val = cpu_to_le64(val); |
50013115 PM |
3543 | r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1); |
3544 | if (result) { | |
3545 | *result = r; | |
3546 | } | |
3547 | } | |
3548 | void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val, | |
3549 | MemTxAttrs attrs, MemTxResult *result) | |
3550 | { | |
3551 | MemTxResult r; | |
3552 | val = cpu_to_be64(val); | |
3553 | r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1); | |
3554 | if (result) { | |
3555 | *result = r; | |
3556 | } | |
3557 | } | |
3558 | ||
3559 | void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val) | |
3560 | { | |
3561 | address_space_stq(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
3562 | } | |
3563 | ||
3564 | void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val) | |
3565 | { | |
3566 | address_space_stq_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
1e78bcc1 AG |
3567 | } |
3568 | ||
f606604f | 3569 | void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val) |
1e78bcc1 | 3570 | { |
50013115 | 3571 | address_space_stq_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3572 | } |
3573 | ||
5e2972fd | 3574 | /* virtual memory access for debug (includes writing to ROM) */ |
f17ec444 | 3575 | int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, |
b448f2f3 | 3576 | uint8_t *buf, int len, int is_write) |
13eb76e0 FB |
3577 | { |
3578 | int l; | |
a8170e5e | 3579 | hwaddr phys_addr; |
9b3c35e0 | 3580 | target_ulong page; |
13eb76e0 FB |
3581 | |
3582 | while (len > 0) { | |
3583 | page = addr & TARGET_PAGE_MASK; | |
f17ec444 | 3584 | phys_addr = cpu_get_phys_page_debug(cpu, page); |
13eb76e0 FB |
3585 | /* if no physical page mapped, return an error */ |
3586 | if (phys_addr == -1) | |
3587 | return -1; | |
3588 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3589 | if (l > len) | |
3590 | l = len; | |
5e2972fd | 3591 | phys_addr += (addr & ~TARGET_PAGE_MASK); |
2e38847b EI |
3592 | if (is_write) { |
3593 | cpu_physical_memory_write_rom(cpu->as, phys_addr, buf, l); | |
3594 | } else { | |
5c9eb028 PM |
3595 | address_space_rw(cpu->as, phys_addr, MEMTXATTRS_UNSPECIFIED, |
3596 | buf, l, 0); | |
2e38847b | 3597 | } |
13eb76e0 FB |
3598 | len -= l; |
3599 | buf += l; | |
3600 | addr += l; | |
3601 | } | |
3602 | return 0; | |
3603 | } | |
038629a6 DDAG |
3604 | |
3605 | /* | |
3606 | * Allows code that needs to deal with migration bitmaps etc to still be built | |
3607 | * target independent. | |
3608 | */ | |
3609 | size_t qemu_target_page_bits(void) | |
3610 | { | |
3611 | return TARGET_PAGE_BITS; | |
3612 | } | |
3613 | ||
a68fe89c | 3614 | #endif |
13eb76e0 | 3615 | |
8e4a424b BS |
3616 | /* |
3617 | * A helper function for the _utterly broken_ virtio device model to find out if | |
3618 | * it's running on a big endian machine. Don't do this at home kids! | |
3619 | */ | |
98ed8ecf GK |
3620 | bool target_words_bigendian(void); |
3621 | bool target_words_bigendian(void) | |
8e4a424b BS |
3622 | { |
3623 | #if defined(TARGET_WORDS_BIGENDIAN) | |
3624 | return true; | |
3625 | #else | |
3626 | return false; | |
3627 | #endif | |
3628 | } | |
3629 | ||
76f35538 | 3630 | #ifndef CONFIG_USER_ONLY |
a8170e5e | 3631 | bool cpu_physical_memory_is_io(hwaddr phys_addr) |
76f35538 | 3632 | { |
5c8a00ce | 3633 | MemoryRegion*mr; |
149f54b5 | 3634 | hwaddr l = 1; |
41063e1e | 3635 | bool res; |
76f35538 | 3636 | |
41063e1e | 3637 | rcu_read_lock(); |
5c8a00ce PB |
3638 | mr = address_space_translate(&address_space_memory, |
3639 | phys_addr, &phys_addr, &l, false); | |
76f35538 | 3640 | |
41063e1e PB |
3641 | res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr)); |
3642 | rcu_read_unlock(); | |
3643 | return res; | |
76f35538 | 3644 | } |
bd2fa51f | 3645 | |
e3807054 | 3646 | int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) |
bd2fa51f MH |
3647 | { |
3648 | RAMBlock *block; | |
e3807054 | 3649 | int ret = 0; |
bd2fa51f | 3650 | |
0dc3f44a MD |
3651 | rcu_read_lock(); |
3652 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
e3807054 DDAG |
3653 | ret = func(block->idstr, block->host, block->offset, |
3654 | block->used_length, opaque); | |
3655 | if (ret) { | |
3656 | break; | |
3657 | } | |
bd2fa51f | 3658 | } |
0dc3f44a | 3659 | rcu_read_unlock(); |
e3807054 | 3660 | return ret; |
bd2fa51f | 3661 | } |
ec3f8c99 | 3662 | #endif |