]> Git Repo - qemu.git/blame - exec.c
exec: move qemu_ram_addr_from_host_nofail to cputlb.c
[qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004 26
055403b2 27#include "qemu-common.h"
6180a181 28#include "cpu.h"
b67d9a52 29#include "tcg.h"
b3c7724c 30#include "hw/hw.h"
cc9e98cb 31#include "hw/qdev.h"
1de7afc9 32#include "qemu/osdep.h"
9c17d615 33#include "sysemu/kvm.h"
0d09e41a 34#include "hw/xen/xen.h"
1de7afc9
PB
35#include "qemu/timer.h"
36#include "qemu/config-file.h"
022c62cb 37#include "exec/memory.h"
9c17d615 38#include "sysemu/dma.h"
022c62cb 39#include "exec/address-spaces.h"
53a5960a
PB
40#if defined(CONFIG_USER_ONLY)
41#include <qemu.h>
432d268c 42#else /* !CONFIG_USER_ONLY */
9c17d615 43#include "sysemu/xen-mapcache.h"
6506e4f9 44#include "trace.h"
53a5960a 45#endif
0d6d3c87 46#include "exec/cpu-all.h"
54936004 47
022c62cb 48#include "exec/cputlb.h"
5b6dd868 49#include "translate-all.h"
0cac1b66 50
022c62cb 51#include "exec/memory-internal.h"
67d95c15 52
db7b5426 53//#define DEBUG_SUBPAGE
1196be37 54
e2eef170 55#if !defined(CONFIG_USER_ONLY)
9fa3e853 56int phys_ram_fd;
74576198 57static int in_migration;
94a6b54f 58
a3161038 59RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
60
61static MemoryRegion *system_memory;
309cb471 62static MemoryRegion *system_io;
62152b8a 63
f6790af6
AK
64AddressSpace address_space_io;
65AddressSpace address_space_memory;
2673a5da 66
0844e007 67MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 68static MemoryRegion io_mem_unassigned;
0e0df1e2 69
e2eef170 70#endif
9fa3e853 71
9349b4f9 72CPUArchState *first_cpu;
6a00d601
FB
73/* current CPU in the current thread. It is only valid inside
74 cpu_exec() */
9349b4f9 75DEFINE_TLS(CPUArchState *,cpu_single_env);
2e70f6ef 76/* 0 = Do not count executed instructions.
bf20dc07 77 1 = Precise instruction counting.
2e70f6ef 78 2 = Adaptive rate instruction counting. */
5708fc66 79int use_icount;
6a00d601 80
e2eef170 81#if !defined(CONFIG_USER_ONLY)
4346ae3e 82
1db8abb1
PB
83typedef struct PhysPageEntry PhysPageEntry;
84
85struct PhysPageEntry {
86 uint16_t is_leaf : 1;
87 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
88 uint16_t ptr : 15;
89};
90
91struct AddressSpaceDispatch {
92 /* This is a multi-level map on the physical address space.
93 * The bottom level has pointers to MemoryRegionSections.
94 */
95 PhysPageEntry phys_map;
96 MemoryListener listener;
acc9d80b 97 AddressSpace *as;
1db8abb1
PB
98};
99
90260c6c
JK
100#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
101typedef struct subpage_t {
102 MemoryRegion iomem;
acc9d80b 103 AddressSpace *as;
90260c6c
JK
104 hwaddr base;
105 uint16_t sub_section[TARGET_PAGE_SIZE];
106} subpage_t;
107
5312bd8b
AK
108static MemoryRegionSection *phys_sections;
109static unsigned phys_sections_nb, phys_sections_nb_alloc;
110static uint16_t phys_section_unassigned;
aa102231
AK
111static uint16_t phys_section_notdirty;
112static uint16_t phys_section_rom;
113static uint16_t phys_section_watch;
5312bd8b 114
d6f2ea22
AK
115/* Simple allocator for PhysPageEntry nodes */
116static PhysPageEntry (*phys_map_nodes)[L2_SIZE];
117static unsigned phys_map_nodes_nb, phys_map_nodes_nb_alloc;
118
07f07b31 119#define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
d6f2ea22 120
e2eef170 121static void io_mem_init(void);
62152b8a 122static void memory_map_init(void);
8b9c99d9 123static void *qemu_safe_ram_ptr(ram_addr_t addr);
e2eef170 124
1ec9b909 125static MemoryRegion io_mem_watch;
6658ffb8 126#endif
fd6ce8f6 127
6d9a1304 128#if !defined(CONFIG_USER_ONLY)
d6f2ea22 129
f7bf5461 130static void phys_map_node_reserve(unsigned nodes)
d6f2ea22 131{
f7bf5461 132 if (phys_map_nodes_nb + nodes > phys_map_nodes_nb_alloc) {
d6f2ea22
AK
133 typedef PhysPageEntry Node[L2_SIZE];
134 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc * 2, 16);
f7bf5461
AK
135 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc,
136 phys_map_nodes_nb + nodes);
d6f2ea22
AK
137 phys_map_nodes = g_renew(Node, phys_map_nodes,
138 phys_map_nodes_nb_alloc);
139 }
f7bf5461
AK
140}
141
142static uint16_t phys_map_node_alloc(void)
143{
144 unsigned i;
145 uint16_t ret;
146
147 ret = phys_map_nodes_nb++;
148 assert(ret != PHYS_MAP_NODE_NIL);
149 assert(ret != phys_map_nodes_nb_alloc);
d6f2ea22 150 for (i = 0; i < L2_SIZE; ++i) {
07f07b31 151 phys_map_nodes[ret][i].is_leaf = 0;
c19e8800 152 phys_map_nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
d6f2ea22 153 }
f7bf5461 154 return ret;
d6f2ea22
AK
155}
156
a8170e5e
AK
157static void phys_page_set_level(PhysPageEntry *lp, hwaddr *index,
158 hwaddr *nb, uint16_t leaf,
2999097b 159 int level)
f7bf5461
AK
160{
161 PhysPageEntry *p;
162 int i;
a8170e5e 163 hwaddr step = (hwaddr)1 << (level * L2_BITS);
108c49b8 164
07f07b31 165 if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
c19e8800
AK
166 lp->ptr = phys_map_node_alloc();
167 p = phys_map_nodes[lp->ptr];
f7bf5461
AK
168 if (level == 0) {
169 for (i = 0; i < L2_SIZE; i++) {
07f07b31 170 p[i].is_leaf = 1;
c19e8800 171 p[i].ptr = phys_section_unassigned;
4346ae3e 172 }
67c4d23c 173 }
f7bf5461 174 } else {
c19e8800 175 p = phys_map_nodes[lp->ptr];
92e873b9 176 }
2999097b 177 lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
f7bf5461 178
2999097b 179 while (*nb && lp < &p[L2_SIZE]) {
07f07b31
AK
180 if ((*index & (step - 1)) == 0 && *nb >= step) {
181 lp->is_leaf = true;
c19e8800 182 lp->ptr = leaf;
07f07b31
AK
183 *index += step;
184 *nb -= step;
2999097b
AK
185 } else {
186 phys_page_set_level(lp, index, nb, leaf, level - 1);
187 }
188 ++lp;
f7bf5461
AK
189 }
190}
191
ac1970fb 192static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 193 hwaddr index, hwaddr nb,
2999097b 194 uint16_t leaf)
f7bf5461 195{
2999097b 196 /* Wildly overreserve - it doesn't matter much. */
07f07b31 197 phys_map_node_reserve(3 * P_L2_LEVELS);
5cd2c5b6 198
ac1970fb 199 phys_page_set_level(&d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
200}
201
149f54b5 202static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr index)
92e873b9 203{
ac1970fb 204 PhysPageEntry lp = d->phys_map;
31ab2b4a
AK
205 PhysPageEntry *p;
206 int i;
f1f6e3b8 207
07f07b31 208 for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
c19e8800 209 if (lp.ptr == PHYS_MAP_NODE_NIL) {
fd298934 210 return &phys_sections[phys_section_unassigned];
31ab2b4a 211 }
c19e8800 212 p = phys_map_nodes[lp.ptr];
31ab2b4a 213 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
5312bd8b 214 }
fd298934 215 return &phys_sections[lp.ptr];
f3705d53
AK
216}
217
e5548617
BS
218bool memory_region_is_unassigned(MemoryRegion *mr)
219{
2a8e7499 220 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
5b6dd868 221 && mr != &io_mem_watch;
fd6ce8f6 222}
149f54b5 223
9f029603 224static MemoryRegionSection *address_space_lookup_region(AddressSpace *as,
90260c6c
JK
225 hwaddr addr,
226 bool resolve_subpage)
9f029603 227{
90260c6c
JK
228 MemoryRegionSection *section;
229 subpage_t *subpage;
230
231 section = phys_page_find(as->dispatch, addr >> TARGET_PAGE_BITS);
232 if (resolve_subpage && section->mr->subpage) {
233 subpage = container_of(section->mr, subpage_t, iomem);
234 section = &phys_sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
235 }
236 return section;
9f029603
JK
237}
238
90260c6c
JK
239static MemoryRegionSection *
240address_space_translate_internal(AddressSpace *as, hwaddr addr, hwaddr *xlat,
241 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
242{
243 MemoryRegionSection *section;
244 Int128 diff;
245
90260c6c 246 section = address_space_lookup_region(as, addr, resolve_subpage);
149f54b5
PB
247 /* Compute offset within MemoryRegionSection */
248 addr -= section->offset_within_address_space;
249
250 /* Compute offset within MemoryRegion */
251 *xlat = addr + section->offset_within_region;
252
253 diff = int128_sub(section->mr->size, int128_make64(addr));
3752a036 254 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
149f54b5
PB
255 return section;
256}
90260c6c 257
5c8a00ce
PB
258MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
259 hwaddr *xlat, hwaddr *plen,
260 bool is_write)
90260c6c 261{
30951157
AK
262 IOMMUTLBEntry iotlb;
263 MemoryRegionSection *section;
264 MemoryRegion *mr;
265 hwaddr len = *plen;
266
267 for (;;) {
268 section = address_space_translate_internal(as, addr, &addr, plen, true);
269 mr = section->mr;
270
271 if (!mr->iommu_ops) {
272 break;
273 }
274
275 iotlb = mr->iommu_ops->translate(mr, addr);
276 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
277 | (addr & iotlb.addr_mask));
278 len = MIN(len, (addr | iotlb.addr_mask) - addr + 1);
279 if (!(iotlb.perm & (1 << is_write))) {
280 mr = &io_mem_unassigned;
281 break;
282 }
283
284 as = iotlb.target_as;
285 }
286
287 *plen = len;
288 *xlat = addr;
289 return mr;
90260c6c
JK
290}
291
292MemoryRegionSection *
293address_space_translate_for_iotlb(AddressSpace *as, hwaddr addr, hwaddr *xlat,
294 hwaddr *plen)
295{
30951157
AK
296 MemoryRegionSection *section;
297 section = address_space_translate_internal(as, addr, xlat, plen, false);
298
299 assert(!section->mr->iommu_ops);
300 return section;
90260c6c 301}
5b6dd868 302#endif
fd6ce8f6 303
5b6dd868 304void cpu_exec_init_all(void)
fdbb84d1 305{
5b6dd868 306#if !defined(CONFIG_USER_ONLY)
b2a8658e 307 qemu_mutex_init(&ram_list.mutex);
5b6dd868
BS
308 memory_map_init();
309 io_mem_init();
fdbb84d1 310#endif
5b6dd868 311}
fdbb84d1 312
b170fce3 313#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
314
315static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 316{
259186a7 317 CPUState *cpu = opaque;
a513fe19 318
5b6dd868
BS
319 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
320 version_id is increased. */
259186a7
AF
321 cpu->interrupt_request &= ~0x01;
322 tlb_flush(cpu->env_ptr, 1);
5b6dd868
BS
323
324 return 0;
a513fe19 325}
7501267e 326
1a1562f5 327const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
328 .name = "cpu_common",
329 .version_id = 1,
330 .minimum_version_id = 1,
331 .minimum_version_id_old = 1,
332 .post_load = cpu_common_post_load,
333 .fields = (VMStateField []) {
259186a7
AF
334 VMSTATE_UINT32(halted, CPUState),
335 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868
BS
336 VMSTATE_END_OF_LIST()
337 }
338};
1a1562f5 339
5b6dd868 340#endif
ea041c0e 341
38d8f5c8 342CPUState *qemu_get_cpu(int index)
ea041c0e 343{
5b6dd868 344 CPUArchState *env = first_cpu;
38d8f5c8 345 CPUState *cpu = NULL;
ea041c0e 346
5b6dd868 347 while (env) {
55e5c285
AF
348 cpu = ENV_GET_CPU(env);
349 if (cpu->cpu_index == index) {
5b6dd868 350 break;
55e5c285 351 }
5b6dd868 352 env = env->next_cpu;
ea041c0e 353 }
5b6dd868 354
d76fddae 355 return env ? cpu : NULL;
ea041c0e
FB
356}
357
d6b9e0d6
MT
358void qemu_for_each_cpu(void (*func)(CPUState *cpu, void *data), void *data)
359{
360 CPUArchState *env = first_cpu;
361
362 while (env) {
363 func(ENV_GET_CPU(env), data);
364 env = env->next_cpu;
365 }
366}
367
5b6dd868 368void cpu_exec_init(CPUArchState *env)
ea041c0e 369{
5b6dd868 370 CPUState *cpu = ENV_GET_CPU(env);
b170fce3 371 CPUClass *cc = CPU_GET_CLASS(cpu);
5b6dd868
BS
372 CPUArchState **penv;
373 int cpu_index;
374
375#if defined(CONFIG_USER_ONLY)
376 cpu_list_lock();
377#endif
378 env->next_cpu = NULL;
379 penv = &first_cpu;
380 cpu_index = 0;
381 while (*penv != NULL) {
382 penv = &(*penv)->next_cpu;
383 cpu_index++;
384 }
55e5c285 385 cpu->cpu_index = cpu_index;
1b1ed8dc 386 cpu->numa_node = 0;
5b6dd868
BS
387 QTAILQ_INIT(&env->breakpoints);
388 QTAILQ_INIT(&env->watchpoints);
389#ifndef CONFIG_USER_ONLY
390 cpu->thread_id = qemu_get_thread_id();
391#endif
392 *penv = env;
393#if defined(CONFIG_USER_ONLY)
394 cpu_list_unlock();
395#endif
259186a7 396 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
5b6dd868 397#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
5b6dd868
BS
398 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
399 cpu_save, cpu_load, env);
b170fce3 400 assert(cc->vmsd == NULL);
5b6dd868 401#endif
b170fce3
AF
402 if (cc->vmsd != NULL) {
403 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
404 }
ea041c0e
FB
405}
406
1fddef4b 407#if defined(TARGET_HAS_ICE)
94df27fd 408#if defined(CONFIG_USER_ONLY)
9349b4f9 409static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
94df27fd
PB
410{
411 tb_invalidate_phys_page_range(pc, pc + 1, 0);
412}
413#else
1e7855a5
MF
414static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
415{
9d70c4b7
MF
416 tb_invalidate_phys_addr(cpu_get_phys_page_debug(env, pc) |
417 (pc & ~TARGET_PAGE_MASK));
1e7855a5 418}
c27004ec 419#endif
94df27fd 420#endif /* TARGET_HAS_ICE */
d720b93d 421
c527ee8f 422#if defined(CONFIG_USER_ONLY)
9349b4f9 423void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
c527ee8f
PB
424
425{
426}
427
9349b4f9 428int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
c527ee8f
PB
429 int flags, CPUWatchpoint **watchpoint)
430{
431 return -ENOSYS;
432}
433#else
6658ffb8 434/* Add a watchpoint. */
9349b4f9 435int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
a1d1bb31 436 int flags, CPUWatchpoint **watchpoint)
6658ffb8 437{
b4051334 438 target_ulong len_mask = ~(len - 1);
c0ce998e 439 CPUWatchpoint *wp;
6658ffb8 440
b4051334 441 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
0dc23828
MF
442 if ((len & (len - 1)) || (addr & ~len_mask) ||
443 len == 0 || len > TARGET_PAGE_SIZE) {
b4051334
AL
444 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
445 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
446 return -EINVAL;
447 }
7267c094 448 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
449
450 wp->vaddr = addr;
b4051334 451 wp->len_mask = len_mask;
a1d1bb31
AL
452 wp->flags = flags;
453
2dc9f411 454 /* keep all GDB-injected watchpoints in front */
c0ce998e 455 if (flags & BP_GDB)
72cf2d4f 456 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 457 else
72cf2d4f 458 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 459
6658ffb8 460 tlb_flush_page(env, addr);
a1d1bb31
AL
461
462 if (watchpoint)
463 *watchpoint = wp;
464 return 0;
6658ffb8
PB
465}
466
a1d1bb31 467/* Remove a specific watchpoint. */
9349b4f9 468int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
a1d1bb31 469 int flags)
6658ffb8 470{
b4051334 471 target_ulong len_mask = ~(len - 1);
a1d1bb31 472 CPUWatchpoint *wp;
6658ffb8 473
72cf2d4f 474 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 475 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 476 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 477 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
478 return 0;
479 }
480 }
a1d1bb31 481 return -ENOENT;
6658ffb8
PB
482}
483
a1d1bb31 484/* Remove a specific watchpoint by reference. */
9349b4f9 485void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
a1d1bb31 486{
72cf2d4f 487 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 488
a1d1bb31
AL
489 tlb_flush_page(env, watchpoint->vaddr);
490
7267c094 491 g_free(watchpoint);
a1d1bb31
AL
492}
493
494/* Remove all matching watchpoints. */
9349b4f9 495void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
a1d1bb31 496{
c0ce998e 497 CPUWatchpoint *wp, *next;
a1d1bb31 498
72cf2d4f 499 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
500 if (wp->flags & mask)
501 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 502 }
7d03f82f 503}
c527ee8f 504#endif
7d03f82f 505
a1d1bb31 506/* Add a breakpoint. */
9349b4f9 507int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
a1d1bb31 508 CPUBreakpoint **breakpoint)
4c3a88a2 509{
1fddef4b 510#if defined(TARGET_HAS_ICE)
c0ce998e 511 CPUBreakpoint *bp;
3b46e624 512
7267c094 513 bp = g_malloc(sizeof(*bp));
4c3a88a2 514
a1d1bb31
AL
515 bp->pc = pc;
516 bp->flags = flags;
517
2dc9f411 518 /* keep all GDB-injected breakpoints in front */
c0ce998e 519 if (flags & BP_GDB)
72cf2d4f 520 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
c0ce998e 521 else
72cf2d4f 522 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 523
d720b93d 524 breakpoint_invalidate(env, pc);
a1d1bb31
AL
525
526 if (breakpoint)
527 *breakpoint = bp;
4c3a88a2
FB
528 return 0;
529#else
a1d1bb31 530 return -ENOSYS;
4c3a88a2
FB
531#endif
532}
533
a1d1bb31 534/* Remove a specific breakpoint. */
9349b4f9 535int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
a1d1bb31 536{
7d03f82f 537#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
538 CPUBreakpoint *bp;
539
72cf2d4f 540 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
541 if (bp->pc == pc && bp->flags == flags) {
542 cpu_breakpoint_remove_by_ref(env, bp);
543 return 0;
544 }
7d03f82f 545 }
a1d1bb31
AL
546 return -ENOENT;
547#else
548 return -ENOSYS;
7d03f82f
EI
549#endif
550}
551
a1d1bb31 552/* Remove a specific breakpoint by reference. */
9349b4f9 553void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
4c3a88a2 554{
1fddef4b 555#if defined(TARGET_HAS_ICE)
72cf2d4f 556 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 557
a1d1bb31
AL
558 breakpoint_invalidate(env, breakpoint->pc);
559
7267c094 560 g_free(breakpoint);
a1d1bb31
AL
561#endif
562}
563
564/* Remove all matching breakpoints. */
9349b4f9 565void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
a1d1bb31
AL
566{
567#if defined(TARGET_HAS_ICE)
c0ce998e 568 CPUBreakpoint *bp, *next;
a1d1bb31 569
72cf2d4f 570 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
571 if (bp->flags & mask)
572 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 573 }
4c3a88a2
FB
574#endif
575}
576
c33a346e
FB
577/* enable or disable single step mode. EXCP_DEBUG is returned by the
578 CPU loop after each instruction */
9349b4f9 579void cpu_single_step(CPUArchState *env, int enabled)
c33a346e 580{
1fddef4b 581#if defined(TARGET_HAS_ICE)
c33a346e
FB
582 if (env->singlestep_enabled != enabled) {
583 env->singlestep_enabled = enabled;
e22a25c9
AL
584 if (kvm_enabled())
585 kvm_update_guest_debug(env, 0);
586 else {
ccbb4d44 587 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
588 /* XXX: only flush what is necessary */
589 tb_flush(env);
590 }
c33a346e
FB
591 }
592#endif
593}
594
9349b4f9 595void cpu_abort(CPUArchState *env, const char *fmt, ...)
7501267e 596{
878096ee 597 CPUState *cpu = ENV_GET_CPU(env);
7501267e 598 va_list ap;
493ae1f0 599 va_list ap2;
7501267e
FB
600
601 va_start(ap, fmt);
493ae1f0 602 va_copy(ap2, ap);
7501267e
FB
603 fprintf(stderr, "qemu: fatal: ");
604 vfprintf(stderr, fmt, ap);
605 fprintf(stderr, "\n");
878096ee 606 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
93fcfe39
AL
607 if (qemu_log_enabled()) {
608 qemu_log("qemu: fatal: ");
609 qemu_log_vprintf(fmt, ap2);
610 qemu_log("\n");
6fd2a026 611 log_cpu_state(env, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 612 qemu_log_flush();
93fcfe39 613 qemu_log_close();
924edcae 614 }
493ae1f0 615 va_end(ap2);
f9373291 616 va_end(ap);
fd052bf6
RV
617#if defined(CONFIG_USER_ONLY)
618 {
619 struct sigaction act;
620 sigfillset(&act.sa_mask);
621 act.sa_handler = SIG_DFL;
622 sigaction(SIGABRT, &act, NULL);
623 }
624#endif
7501267e
FB
625 abort();
626}
627
9349b4f9 628CPUArchState *cpu_copy(CPUArchState *env)
c5be9f08 629{
9349b4f9
AF
630 CPUArchState *new_env = cpu_init(env->cpu_model_str);
631 CPUArchState *next_cpu = new_env->next_cpu;
5a38f081
AL
632#if defined(TARGET_HAS_ICE)
633 CPUBreakpoint *bp;
634 CPUWatchpoint *wp;
635#endif
636
9349b4f9 637 memcpy(new_env, env, sizeof(CPUArchState));
5a38f081 638
55e5c285 639 /* Preserve chaining. */
c5be9f08 640 new_env->next_cpu = next_cpu;
5a38f081
AL
641
642 /* Clone all break/watchpoints.
643 Note: Once we support ptrace with hw-debug register access, make sure
644 BP_CPU break/watchpoints are handled correctly on clone. */
72cf2d4f
BS
645 QTAILQ_INIT(&env->breakpoints);
646 QTAILQ_INIT(&env->watchpoints);
5a38f081 647#if defined(TARGET_HAS_ICE)
72cf2d4f 648 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
5a38f081
AL
649 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
650 }
72cf2d4f 651 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
5a38f081
AL
652 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
653 wp->flags, NULL);
654 }
655#endif
656
c5be9f08
TS
657 return new_env;
658}
659
0124311e 660#if !defined(CONFIG_USER_ONLY)
d24981d3
JQ
661static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
662 uintptr_t length)
663{
664 uintptr_t start1;
665
666 /* we modify the TLB cache so that the dirty bit will be set again
667 when accessing the range */
668 start1 = (uintptr_t)qemu_safe_ram_ptr(start);
669 /* Check that we don't span multiple blocks - this breaks the
670 address comparisons below. */
671 if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
672 != (end - 1) - start) {
673 abort();
674 }
675 cpu_tlb_reset_dirty_all(start1, length);
676
677}
678
5579c7f3 679/* Note: start and end must be within the same ram block. */
c227f099 680void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 681 int dirty_flags)
1ccde1cb 682{
d24981d3 683 uintptr_t length;
1ccde1cb
FB
684
685 start &= TARGET_PAGE_MASK;
686 end = TARGET_PAGE_ALIGN(end);
687
688 length = end - start;
689 if (length == 0)
690 return;
f7c11b53 691 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
f23db169 692
d24981d3
JQ
693 if (tcg_enabled()) {
694 tlb_reset_dirty_range_all(start, end, length);
5579c7f3 695 }
1ccde1cb
FB
696}
697
8b9c99d9 698static int cpu_physical_memory_set_dirty_tracking(int enable)
74576198 699{
f6f3fbca 700 int ret = 0;
74576198 701 in_migration = enable;
f6f3fbca 702 return ret;
74576198
AL
703}
704
a8170e5e 705hwaddr memory_region_section_get_iotlb(CPUArchState *env,
149f54b5
PB
706 MemoryRegionSection *section,
707 target_ulong vaddr,
708 hwaddr paddr, hwaddr xlat,
709 int prot,
710 target_ulong *address)
e5548617 711{
a8170e5e 712 hwaddr iotlb;
e5548617
BS
713 CPUWatchpoint *wp;
714
cc5bea60 715 if (memory_region_is_ram(section->mr)) {
e5548617
BS
716 /* Normal RAM. */
717 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
149f54b5 718 + xlat;
e5548617
BS
719 if (!section->readonly) {
720 iotlb |= phys_section_notdirty;
721 } else {
722 iotlb |= phys_section_rom;
723 }
724 } else {
e5548617 725 iotlb = section - phys_sections;
149f54b5 726 iotlb += xlat;
e5548617
BS
727 }
728
729 /* Make accesses to pages with watchpoints go via the
730 watchpoint trap routines. */
731 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
732 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
733 /* Avoid trapping reads of pages with a write breakpoint. */
734 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
735 iotlb = phys_section_watch + paddr;
736 *address |= TLB_MMIO;
737 break;
738 }
739 }
740 }
741
742 return iotlb;
743}
9fa3e853
FB
744#endif /* defined(CONFIG_USER_ONLY) */
745
e2eef170 746#if !defined(CONFIG_USER_ONLY)
8da3ff18 747
c227f099 748static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 749 uint16_t section);
acc9d80b 750static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
54688b1e 751
5312bd8b
AK
752static uint16_t phys_section_add(MemoryRegionSection *section)
753{
68f3f65b
PB
754 /* The physical section number is ORed with a page-aligned
755 * pointer to produce the iotlb entries. Thus it should
756 * never overflow into the page-aligned value.
757 */
758 assert(phys_sections_nb < TARGET_PAGE_SIZE);
759
5312bd8b
AK
760 if (phys_sections_nb == phys_sections_nb_alloc) {
761 phys_sections_nb_alloc = MAX(phys_sections_nb_alloc * 2, 16);
762 phys_sections = g_renew(MemoryRegionSection, phys_sections,
763 phys_sections_nb_alloc);
764 }
765 phys_sections[phys_sections_nb] = *section;
dfde4e6e 766 memory_region_ref(section->mr);
5312bd8b
AK
767 return phys_sections_nb++;
768}
769
058bc4b5
PB
770static void phys_section_destroy(MemoryRegion *mr)
771{
dfde4e6e
PB
772 memory_region_unref(mr);
773
058bc4b5
PB
774 if (mr->subpage) {
775 subpage_t *subpage = container_of(mr, subpage_t, iomem);
776 memory_region_destroy(&subpage->iomem);
777 g_free(subpage);
778 }
779}
780
5312bd8b
AK
781static void phys_sections_clear(void)
782{
058bc4b5
PB
783 while (phys_sections_nb > 0) {
784 MemoryRegionSection *section = &phys_sections[--phys_sections_nb];
785 phys_section_destroy(section->mr);
786 }
b7e95164 787 phys_map_nodes_nb = 0;
5312bd8b
AK
788}
789
ac1970fb 790static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
0f0cb164
AK
791{
792 subpage_t *subpage;
a8170e5e 793 hwaddr base = section->offset_within_address_space
0f0cb164 794 & TARGET_PAGE_MASK;
ac1970fb 795 MemoryRegionSection *existing = phys_page_find(d, base >> TARGET_PAGE_BITS);
0f0cb164
AK
796 MemoryRegionSection subsection = {
797 .offset_within_address_space = base,
052e87b0 798 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 799 };
a8170e5e 800 hwaddr start, end;
0f0cb164 801
f3705d53 802 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 803
f3705d53 804 if (!(existing->mr->subpage)) {
acc9d80b 805 subpage = subpage_init(d->as, base);
0f0cb164 806 subsection.mr = &subpage->iomem;
ac1970fb 807 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
2999097b 808 phys_section_add(&subsection));
0f0cb164 809 } else {
f3705d53 810 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
811 }
812 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 813 end = start + int128_get64(section->size) - 1;
0f0cb164
AK
814 subpage_register(subpage, start, end, phys_section_add(section));
815}
816
817
052e87b0
PB
818static void register_multipage(AddressSpaceDispatch *d,
819 MemoryRegionSection *section)
33417e70 820{
a8170e5e 821 hwaddr start_addr = section->offset_within_address_space;
5312bd8b 822 uint16_t section_index = phys_section_add(section);
052e87b0
PB
823 uint64_t num_pages = int128_get64(int128_rshift(section->size,
824 TARGET_PAGE_BITS));
dd81124b 825
733d5ef5
PB
826 assert(num_pages);
827 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
828}
829
ac1970fb 830static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
0f0cb164 831{
ac1970fb 832 AddressSpaceDispatch *d = container_of(listener, AddressSpaceDispatch, listener);
99b9cc06 833 MemoryRegionSection now = *section, remain = *section;
052e87b0 834 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 835
733d5ef5
PB
836 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
837 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
838 - now.offset_within_address_space;
839
052e87b0 840 now.size = int128_min(int128_make64(left), now.size);
ac1970fb 841 register_subpage(d, &now);
733d5ef5 842 } else {
052e87b0 843 now.size = int128_zero();
733d5ef5 844 }
052e87b0
PB
845 while (int128_ne(remain.size, now.size)) {
846 remain.size = int128_sub(remain.size, now.size);
847 remain.offset_within_address_space += int128_get64(now.size);
848 remain.offset_within_region += int128_get64(now.size);
69b67646 849 now = remain;
052e87b0 850 if (int128_lt(remain.size, page_size)) {
733d5ef5
PB
851 register_subpage(d, &now);
852 } else if (remain.offset_within_region & ~TARGET_PAGE_MASK) {
052e87b0 853 now.size = page_size;
ac1970fb 854 register_subpage(d, &now);
69b67646 855 } else {
052e87b0 856 now.size = int128_and(now.size, int128_neg(page_size));
ac1970fb 857 register_multipage(d, &now);
69b67646 858 }
0f0cb164
AK
859 }
860}
861
62a2744c
SY
862void qemu_flush_coalesced_mmio_buffer(void)
863{
864 if (kvm_enabled())
865 kvm_flush_coalesced_mmio_buffer();
866}
867
b2a8658e
UD
868void qemu_mutex_lock_ramlist(void)
869{
870 qemu_mutex_lock(&ram_list.mutex);
871}
872
873void qemu_mutex_unlock_ramlist(void)
874{
875 qemu_mutex_unlock(&ram_list.mutex);
876}
877
c902760f
MT
878#if defined(__linux__) && !defined(TARGET_S390X)
879
880#include <sys/vfs.h>
881
882#define HUGETLBFS_MAGIC 0x958458f6
883
884static long gethugepagesize(const char *path)
885{
886 struct statfs fs;
887 int ret;
888
889 do {
9742bf26 890 ret = statfs(path, &fs);
c902760f
MT
891 } while (ret != 0 && errno == EINTR);
892
893 if (ret != 0) {
9742bf26
YT
894 perror(path);
895 return 0;
c902760f
MT
896 }
897
898 if (fs.f_type != HUGETLBFS_MAGIC)
9742bf26 899 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
c902760f
MT
900
901 return fs.f_bsize;
902}
903
04b16653
AW
904static void *file_ram_alloc(RAMBlock *block,
905 ram_addr_t memory,
906 const char *path)
c902760f
MT
907{
908 char *filename;
8ca761f6
PF
909 char *sanitized_name;
910 char *c;
c902760f
MT
911 void *area;
912 int fd;
913#ifdef MAP_POPULATE
914 int flags;
915#endif
916 unsigned long hpagesize;
917
918 hpagesize = gethugepagesize(path);
919 if (!hpagesize) {
9742bf26 920 return NULL;
c902760f
MT
921 }
922
923 if (memory < hpagesize) {
924 return NULL;
925 }
926
927 if (kvm_enabled() && !kvm_has_sync_mmu()) {
928 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
929 return NULL;
930 }
931
8ca761f6
PF
932 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
933 sanitized_name = g_strdup(block->mr->name);
934 for (c = sanitized_name; *c != '\0'; c++) {
935 if (*c == '/')
936 *c = '_';
937 }
938
939 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
940 sanitized_name);
941 g_free(sanitized_name);
c902760f
MT
942
943 fd = mkstemp(filename);
944 if (fd < 0) {
9742bf26 945 perror("unable to create backing store for hugepages");
e4ada482 946 g_free(filename);
9742bf26 947 return NULL;
c902760f
MT
948 }
949 unlink(filename);
e4ada482 950 g_free(filename);
c902760f
MT
951
952 memory = (memory+hpagesize-1) & ~(hpagesize-1);
953
954 /*
955 * ftruncate is not supported by hugetlbfs in older
956 * hosts, so don't bother bailing out on errors.
957 * If anything goes wrong with it under other filesystems,
958 * mmap will fail.
959 */
960 if (ftruncate(fd, memory))
9742bf26 961 perror("ftruncate");
c902760f
MT
962
963#ifdef MAP_POPULATE
964 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
965 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
966 * to sidestep this quirk.
967 */
968 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
969 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
970#else
971 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
972#endif
973 if (area == MAP_FAILED) {
9742bf26
YT
974 perror("file_ram_alloc: can't mmap RAM pages");
975 close(fd);
976 return (NULL);
c902760f 977 }
04b16653 978 block->fd = fd;
c902760f
MT
979 return area;
980}
981#endif
982
d17b5288 983static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
984{
985 RAMBlock *block, *next_block;
3e837b2c 986 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 987
49cd9ac6
SH
988 assert(size != 0); /* it would hand out same offset multiple times */
989
a3161038 990 if (QTAILQ_EMPTY(&ram_list.blocks))
04b16653
AW
991 return 0;
992
a3161038 993 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
f15fbc4b 994 ram_addr_t end, next = RAM_ADDR_MAX;
04b16653
AW
995
996 end = block->offset + block->length;
997
a3161038 998 QTAILQ_FOREACH(next_block, &ram_list.blocks, next) {
04b16653
AW
999 if (next_block->offset >= end) {
1000 next = MIN(next, next_block->offset);
1001 }
1002 }
1003 if (next - end >= size && next - end < mingap) {
3e837b2c 1004 offset = end;
04b16653
AW
1005 mingap = next - end;
1006 }
1007 }
3e837b2c
AW
1008
1009 if (offset == RAM_ADDR_MAX) {
1010 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1011 (uint64_t)size);
1012 abort();
1013 }
1014
04b16653
AW
1015 return offset;
1016}
1017
652d7ec2 1018ram_addr_t last_ram_offset(void)
d17b5288
AW
1019{
1020 RAMBlock *block;
1021 ram_addr_t last = 0;
1022
a3161038 1023 QTAILQ_FOREACH(block, &ram_list.blocks, next)
d17b5288
AW
1024 last = MAX(last, block->offset + block->length);
1025
1026 return last;
1027}
1028
ddb97f1d
JB
1029static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1030{
1031 int ret;
1032 QemuOpts *machine_opts;
1033
1034 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1035 machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0);
1036 if (machine_opts &&
1037 !qemu_opt_get_bool(machine_opts, "dump-guest-core", true)) {
1038 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1039 if (ret) {
1040 perror("qemu_madvise");
1041 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1042 "but dump_guest_core=off specified\n");
1043 }
1044 }
1045}
1046
c5705a77 1047void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
84b89d78
CM
1048{
1049 RAMBlock *new_block, *block;
1050
c5705a77 1051 new_block = NULL;
a3161038 1052 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
c5705a77
AK
1053 if (block->offset == addr) {
1054 new_block = block;
1055 break;
1056 }
1057 }
1058 assert(new_block);
1059 assert(!new_block->idstr[0]);
84b89d78 1060
09e5ab63
AL
1061 if (dev) {
1062 char *id = qdev_get_dev_path(dev);
84b89d78
CM
1063 if (id) {
1064 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 1065 g_free(id);
84b89d78
CM
1066 }
1067 }
1068 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1069
b2a8658e
UD
1070 /* This assumes the iothread lock is taken here too. */
1071 qemu_mutex_lock_ramlist();
a3161038 1072 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
c5705a77 1073 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
1074 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1075 new_block->idstr);
1076 abort();
1077 }
1078 }
b2a8658e 1079 qemu_mutex_unlock_ramlist();
c5705a77
AK
1080}
1081
8490fc78
LC
1082static int memory_try_enable_merging(void *addr, size_t len)
1083{
1084 QemuOpts *opts;
1085
1086 opts = qemu_opts_find(qemu_find_opts("machine"), 0);
1087 if (opts && !qemu_opt_get_bool(opts, "mem-merge", true)) {
1088 /* disabled by the user */
1089 return 0;
1090 }
1091
1092 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1093}
1094
c5705a77
AK
1095ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1096 MemoryRegion *mr)
1097{
abb26d63 1098 RAMBlock *block, *new_block;
c5705a77
AK
1099
1100 size = TARGET_PAGE_ALIGN(size);
1101 new_block = g_malloc0(sizeof(*new_block));
84b89d78 1102
b2a8658e
UD
1103 /* This assumes the iothread lock is taken here too. */
1104 qemu_mutex_lock_ramlist();
7c637366 1105 new_block->mr = mr;
432d268c 1106 new_block->offset = find_ram_offset(size);
6977dfe6
YT
1107 if (host) {
1108 new_block->host = host;
cd19cfa2 1109 new_block->flags |= RAM_PREALLOC_MASK;
6977dfe6
YT
1110 } else {
1111 if (mem_path) {
c902760f 1112#if defined (__linux__) && !defined(TARGET_S390X)
6977dfe6
YT
1113 new_block->host = file_ram_alloc(new_block, size, mem_path);
1114 if (!new_block->host) {
6eebf958 1115 new_block->host = qemu_anon_ram_alloc(size);
8490fc78 1116 memory_try_enable_merging(new_block->host, size);
6977dfe6 1117 }
c902760f 1118#else
6977dfe6
YT
1119 fprintf(stderr, "-mem-path option unsupported\n");
1120 exit(1);
c902760f 1121#endif
6977dfe6 1122 } else {
868bb33f 1123 if (xen_enabled()) {
fce537d4 1124 xen_ram_alloc(new_block->offset, size, mr);
fdec9918
CB
1125 } else if (kvm_enabled()) {
1126 /* some s390/kvm configurations have special constraints */
6eebf958 1127 new_block->host = kvm_ram_alloc(size);
432d268c 1128 } else {
6eebf958 1129 new_block->host = qemu_anon_ram_alloc(size);
432d268c 1130 }
8490fc78 1131 memory_try_enable_merging(new_block->host, size);
6977dfe6 1132 }
c902760f 1133 }
94a6b54f
PB
1134 new_block->length = size;
1135
abb26d63
PB
1136 /* Keep the list sorted from biggest to smallest block. */
1137 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1138 if (block->length < new_block->length) {
1139 break;
1140 }
1141 }
1142 if (block) {
1143 QTAILQ_INSERT_BEFORE(block, new_block, next);
1144 } else {
1145 QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next);
1146 }
0d6d3c87 1147 ram_list.mru_block = NULL;
94a6b54f 1148
f798b07f 1149 ram_list.version++;
b2a8658e 1150 qemu_mutex_unlock_ramlist();
f798b07f 1151
7267c094 1152 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
04b16653 1153 last_ram_offset() >> TARGET_PAGE_BITS);
5fda043f
IM
1154 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
1155 0, size >> TARGET_PAGE_BITS);
1720aeee 1156 cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
94a6b54f 1157
ddb97f1d 1158 qemu_ram_setup_dump(new_block->host, size);
ad0b5321 1159 qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
ddb97f1d 1160
6f0437e8
JK
1161 if (kvm_enabled())
1162 kvm_setup_guest_memory(new_block->host, size);
1163
94a6b54f
PB
1164 return new_block->offset;
1165}
e9a1ab19 1166
c5705a77 1167ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
6977dfe6 1168{
c5705a77 1169 return qemu_ram_alloc_from_ptr(size, NULL, mr);
6977dfe6
YT
1170}
1171
1f2e98b6
AW
1172void qemu_ram_free_from_ptr(ram_addr_t addr)
1173{
1174 RAMBlock *block;
1175
b2a8658e
UD
1176 /* This assumes the iothread lock is taken here too. */
1177 qemu_mutex_lock_ramlist();
a3161038 1178 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1f2e98b6 1179 if (addr == block->offset) {
a3161038 1180 QTAILQ_REMOVE(&ram_list.blocks, block, next);
0d6d3c87 1181 ram_list.mru_block = NULL;
f798b07f 1182 ram_list.version++;
7267c094 1183 g_free(block);
b2a8658e 1184 break;
1f2e98b6
AW
1185 }
1186 }
b2a8658e 1187 qemu_mutex_unlock_ramlist();
1f2e98b6
AW
1188}
1189
c227f099 1190void qemu_ram_free(ram_addr_t addr)
e9a1ab19 1191{
04b16653
AW
1192 RAMBlock *block;
1193
b2a8658e
UD
1194 /* This assumes the iothread lock is taken here too. */
1195 qemu_mutex_lock_ramlist();
a3161038 1196 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
04b16653 1197 if (addr == block->offset) {
a3161038 1198 QTAILQ_REMOVE(&ram_list.blocks, block, next);
0d6d3c87 1199 ram_list.mru_block = NULL;
f798b07f 1200 ram_list.version++;
cd19cfa2
HY
1201 if (block->flags & RAM_PREALLOC_MASK) {
1202 ;
1203 } else if (mem_path) {
04b16653
AW
1204#if defined (__linux__) && !defined(TARGET_S390X)
1205 if (block->fd) {
1206 munmap(block->host, block->length);
1207 close(block->fd);
1208 } else {
e7a09b92 1209 qemu_anon_ram_free(block->host, block->length);
04b16653 1210 }
fd28aa13
JK
1211#else
1212 abort();
04b16653
AW
1213#endif
1214 } else {
868bb33f 1215 if (xen_enabled()) {
e41d7c69 1216 xen_invalidate_map_cache_entry(block->host);
432d268c 1217 } else {
e7a09b92 1218 qemu_anon_ram_free(block->host, block->length);
432d268c 1219 }
04b16653 1220 }
7267c094 1221 g_free(block);
b2a8658e 1222 break;
04b16653
AW
1223 }
1224 }
b2a8658e 1225 qemu_mutex_unlock_ramlist();
04b16653 1226
e9a1ab19
FB
1227}
1228
cd19cfa2
HY
1229#ifndef _WIN32
1230void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1231{
1232 RAMBlock *block;
1233 ram_addr_t offset;
1234 int flags;
1235 void *area, *vaddr;
1236
a3161038 1237 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
cd19cfa2
HY
1238 offset = addr - block->offset;
1239 if (offset < block->length) {
1240 vaddr = block->host + offset;
1241 if (block->flags & RAM_PREALLOC_MASK) {
1242 ;
1243 } else {
1244 flags = MAP_FIXED;
1245 munmap(vaddr, length);
1246 if (mem_path) {
1247#if defined(__linux__) && !defined(TARGET_S390X)
1248 if (block->fd) {
1249#ifdef MAP_POPULATE
1250 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
1251 MAP_PRIVATE;
1252#else
1253 flags |= MAP_PRIVATE;
1254#endif
1255 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1256 flags, block->fd, offset);
1257 } else {
1258 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1259 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1260 flags, -1, 0);
1261 }
fd28aa13
JK
1262#else
1263 abort();
cd19cfa2
HY
1264#endif
1265 } else {
1266#if defined(TARGET_S390X) && defined(CONFIG_KVM)
1267 flags |= MAP_SHARED | MAP_ANONYMOUS;
1268 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
1269 flags, -1, 0);
1270#else
1271 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1272 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1273 flags, -1, 0);
1274#endif
1275 }
1276 if (area != vaddr) {
f15fbc4b
AP
1277 fprintf(stderr, "Could not remap addr: "
1278 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
1279 length, addr);
1280 exit(1);
1281 }
8490fc78 1282 memory_try_enable_merging(vaddr, length);
ddb97f1d 1283 qemu_ram_setup_dump(vaddr, length);
cd19cfa2
HY
1284 }
1285 return;
1286 }
1287 }
1288}
1289#endif /* !_WIN32 */
1290
dc828ca1 1291/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
1292 With the exception of the softmmu code in this file, this should
1293 only be used for local memory (e.g. video ram) that the device owns,
1294 and knows it isn't going to access beyond the end of the block.
1295
1296 It should not be used for general purpose DMA.
1297 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1298 */
c227f099 1299void *qemu_get_ram_ptr(ram_addr_t addr)
dc828ca1 1300{
94a6b54f
PB
1301 RAMBlock *block;
1302
b2a8658e 1303 /* The list is protected by the iothread lock here. */
0d6d3c87
PB
1304 block = ram_list.mru_block;
1305 if (block && addr - block->offset < block->length) {
1306 goto found;
1307 }
a3161038 1308 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
f471a17e 1309 if (addr - block->offset < block->length) {
0d6d3c87 1310 goto found;
f471a17e 1311 }
94a6b54f 1312 }
f471a17e
AW
1313
1314 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1315 abort();
1316
0d6d3c87
PB
1317found:
1318 ram_list.mru_block = block;
1319 if (xen_enabled()) {
1320 /* We need to check if the requested address is in the RAM
1321 * because we don't want to map the entire memory in QEMU.
1322 * In that case just map until the end of the page.
1323 */
1324 if (block->offset == 0) {
1325 return xen_map_cache(addr, 0, 0);
1326 } else if (block->host == NULL) {
1327 block->host =
1328 xen_map_cache(block->offset, block->length, 1);
1329 }
1330 }
1331 return block->host + (addr - block->offset);
dc828ca1
PB
1332}
1333
0d6d3c87
PB
1334/* Return a host pointer to ram allocated with qemu_ram_alloc. Same as
1335 * qemu_get_ram_ptr but do not touch ram_list.mru_block.
1336 *
1337 * ??? Is this still necessary?
b2e0a138 1338 */
8b9c99d9 1339static void *qemu_safe_ram_ptr(ram_addr_t addr)
b2e0a138
MT
1340{
1341 RAMBlock *block;
1342
b2a8658e 1343 /* The list is protected by the iothread lock here. */
a3161038 1344 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
b2e0a138 1345 if (addr - block->offset < block->length) {
868bb33f 1346 if (xen_enabled()) {
432d268c
JN
1347 /* We need to check if the requested address is in the RAM
1348 * because we don't want to map the entire memory in QEMU.
712c2b41 1349 * In that case just map until the end of the page.
432d268c
JN
1350 */
1351 if (block->offset == 0) {
e41d7c69 1352 return xen_map_cache(addr, 0, 0);
432d268c 1353 } else if (block->host == NULL) {
e41d7c69
JK
1354 block->host =
1355 xen_map_cache(block->offset, block->length, 1);
432d268c
JN
1356 }
1357 }
b2e0a138
MT
1358 return block->host + (addr - block->offset);
1359 }
1360 }
1361
1362 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1363 abort();
1364
1365 return NULL;
1366}
1367
38bee5dc
SS
1368/* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1369 * but takes a size argument */
8b9c99d9 1370static void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
38bee5dc 1371{
8ab934f9
SS
1372 if (*size == 0) {
1373 return NULL;
1374 }
868bb33f 1375 if (xen_enabled()) {
e41d7c69 1376 return xen_map_cache(addr, *size, 1);
868bb33f 1377 } else {
38bee5dc
SS
1378 RAMBlock *block;
1379
a3161038 1380 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
38bee5dc
SS
1381 if (addr - block->offset < block->length) {
1382 if (addr - block->offset + *size > block->length)
1383 *size = block->length - addr + block->offset;
1384 return block->host + (addr - block->offset);
1385 }
1386 }
1387
1388 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1389 abort();
38bee5dc
SS
1390 }
1391}
1392
7443b437
PB
1393/* Some of the softmmu routines need to translate from a host pointer
1394 (typically a TLB entry) back to a ram offset. */
e890261f 1395int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
5579c7f3 1396{
94a6b54f
PB
1397 RAMBlock *block;
1398 uint8_t *host = ptr;
1399
868bb33f 1400 if (xen_enabled()) {
e41d7c69 1401 *ram_addr = xen_ram_addr_from_mapcache(ptr);
712c2b41
SS
1402 return 0;
1403 }
1404
23887b79
PB
1405 block = ram_list.mru_block;
1406 if (block && block->host && host - block->host < block->length) {
1407 goto found;
1408 }
1409
a3161038 1410 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
432d268c
JN
1411 /* This case append when the block is not mapped. */
1412 if (block->host == NULL) {
1413 continue;
1414 }
f471a17e 1415 if (host - block->host < block->length) {
23887b79 1416 goto found;
f471a17e 1417 }
94a6b54f 1418 }
432d268c 1419
e890261f 1420 return -1;
23887b79
PB
1421
1422found:
1423 *ram_addr = block->offset + (host - block->host);
1424 return 0;
e890261f 1425}
f471a17e 1426
a8170e5e 1427static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
0e0df1e2 1428 uint64_t val, unsigned size)
9fa3e853 1429{
3a7d929e 1430 int dirty_flags;
f7c11b53 1431 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 1432 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
0e0df1e2 1433 tb_invalidate_phys_page_fast(ram_addr, size);
f7c11b53 1434 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 1435 }
0e0df1e2
AK
1436 switch (size) {
1437 case 1:
1438 stb_p(qemu_get_ram_ptr(ram_addr), val);
1439 break;
1440 case 2:
1441 stw_p(qemu_get_ram_ptr(ram_addr), val);
1442 break;
1443 case 4:
1444 stl_p(qemu_get_ram_ptr(ram_addr), val);
1445 break;
1446 default:
1447 abort();
3a7d929e 1448 }
f23db169 1449 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 1450 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
1451 /* we remove the notdirty callback only if the code has been
1452 flushed */
1453 if (dirty_flags == 0xff)
2e70f6ef 1454 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
1455}
1456
b018ddf6
PB
1457static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
1458 unsigned size, bool is_write)
1459{
1460 return is_write;
1461}
1462
0e0df1e2 1463static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 1464 .write = notdirty_mem_write,
b018ddf6 1465 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 1466 .endianness = DEVICE_NATIVE_ENDIAN,
1ccde1cb
FB
1467};
1468
0f459d16 1469/* Generate a debug exception if a watchpoint has been hit. */
b4051334 1470static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16 1471{
9349b4f9 1472 CPUArchState *env = cpu_single_env;
06d55cc1 1473 target_ulong pc, cs_base;
0f459d16 1474 target_ulong vaddr;
a1d1bb31 1475 CPUWatchpoint *wp;
06d55cc1 1476 int cpu_flags;
0f459d16 1477
06d55cc1
AL
1478 if (env->watchpoint_hit) {
1479 /* We re-entered the check after replacing the TB. Now raise
1480 * the debug interrupt so that is will trigger after the
1481 * current instruction. */
c3affe56 1482 cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_DEBUG);
06d55cc1
AL
1483 return;
1484 }
2e70f6ef 1485 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 1486 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
1487 if ((vaddr == (wp->vaddr & len_mask) ||
1488 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
1489 wp->flags |= BP_WATCHPOINT_HIT;
1490 if (!env->watchpoint_hit) {
1491 env->watchpoint_hit = wp;
5a316526 1492 tb_check_watchpoint(env);
6e140f28
AL
1493 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
1494 env->exception_index = EXCP_DEBUG;
488d6577 1495 cpu_loop_exit(env);
6e140f28
AL
1496 } else {
1497 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
1498 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
488d6577 1499 cpu_resume_from_signal(env, NULL);
6e140f28 1500 }
06d55cc1 1501 }
6e140f28
AL
1502 } else {
1503 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
1504 }
1505 }
1506}
1507
6658ffb8
PB
1508/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1509 so these check for a hit then pass through to the normal out-of-line
1510 phys routines. */
a8170e5e 1511static uint64_t watch_mem_read(void *opaque, hwaddr addr,
1ec9b909 1512 unsigned size)
6658ffb8 1513{
1ec9b909
AK
1514 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
1515 switch (size) {
1516 case 1: return ldub_phys(addr);
1517 case 2: return lduw_phys(addr);
1518 case 4: return ldl_phys(addr);
1519 default: abort();
1520 }
6658ffb8
PB
1521}
1522
a8170e5e 1523static void watch_mem_write(void *opaque, hwaddr addr,
1ec9b909 1524 uint64_t val, unsigned size)
6658ffb8 1525{
1ec9b909
AK
1526 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
1527 switch (size) {
67364150
MF
1528 case 1:
1529 stb_phys(addr, val);
1530 break;
1531 case 2:
1532 stw_phys(addr, val);
1533 break;
1534 case 4:
1535 stl_phys(addr, val);
1536 break;
1ec9b909
AK
1537 default: abort();
1538 }
6658ffb8
PB
1539}
1540
1ec9b909
AK
1541static const MemoryRegionOps watch_mem_ops = {
1542 .read = watch_mem_read,
1543 .write = watch_mem_write,
1544 .endianness = DEVICE_NATIVE_ENDIAN,
6658ffb8 1545};
6658ffb8 1546
a8170e5e 1547static uint64_t subpage_read(void *opaque, hwaddr addr,
70c68e44 1548 unsigned len)
db7b5426 1549{
acc9d80b
JK
1550 subpage_t *subpage = opaque;
1551 uint8_t buf[4];
791af8c8 1552
db7b5426 1553#if defined(DEBUG_SUBPAGE)
acc9d80b
JK
1554 printf("%s: subpage %p len %d addr " TARGET_FMT_plx "\n", __func__,
1555 subpage, len, addr);
db7b5426 1556#endif
acc9d80b
JK
1557 address_space_read(subpage->as, addr + subpage->base, buf, len);
1558 switch (len) {
1559 case 1:
1560 return ldub_p(buf);
1561 case 2:
1562 return lduw_p(buf);
1563 case 4:
1564 return ldl_p(buf);
1565 default:
1566 abort();
1567 }
db7b5426
BS
1568}
1569
a8170e5e 1570static void subpage_write(void *opaque, hwaddr addr,
70c68e44 1571 uint64_t value, unsigned len)
db7b5426 1572{
acc9d80b
JK
1573 subpage_t *subpage = opaque;
1574 uint8_t buf[4];
1575
db7b5426 1576#if defined(DEBUG_SUBPAGE)
70c68e44 1577 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
acc9d80b
JK
1578 " value %"PRIx64"\n",
1579 __func__, subpage, len, addr, value);
db7b5426 1580#endif
acc9d80b
JK
1581 switch (len) {
1582 case 1:
1583 stb_p(buf, value);
1584 break;
1585 case 2:
1586 stw_p(buf, value);
1587 break;
1588 case 4:
1589 stl_p(buf, value);
1590 break;
1591 default:
1592 abort();
1593 }
1594 address_space_write(subpage->as, addr + subpage->base, buf, len);
db7b5426
BS
1595}
1596
c353e4cc
PB
1597static bool subpage_accepts(void *opaque, hwaddr addr,
1598 unsigned size, bool is_write)
1599{
acc9d80b 1600 subpage_t *subpage = opaque;
c353e4cc 1601#if defined(DEBUG_SUBPAGE)
acc9d80b
JK
1602 printf("%s: subpage %p %c len %d addr " TARGET_FMT_plx "\n",
1603 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
1604#endif
1605
acc9d80b
JK
1606 return address_space_access_valid(subpage->as, addr + subpage->base,
1607 size, is_write);
c353e4cc
PB
1608}
1609
70c68e44
AK
1610static const MemoryRegionOps subpage_ops = {
1611 .read = subpage_read,
1612 .write = subpage_write,
c353e4cc 1613 .valid.accepts = subpage_accepts,
70c68e44 1614 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
1615};
1616
c227f099 1617static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 1618 uint16_t section)
db7b5426
BS
1619{
1620 int idx, eidx;
1621
1622 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
1623 return -1;
1624 idx = SUBPAGE_IDX(start);
1625 eidx = SUBPAGE_IDX(end);
1626#if defined(DEBUG_SUBPAGE)
0bf9e31a 1627 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
1628 mmio, start, end, idx, eidx, memory);
1629#endif
db7b5426 1630 for (; idx <= eidx; idx++) {
5312bd8b 1631 mmio->sub_section[idx] = section;
db7b5426
BS
1632 }
1633
1634 return 0;
1635}
1636
acc9d80b 1637static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
db7b5426 1638{
c227f099 1639 subpage_t *mmio;
db7b5426 1640
7267c094 1641 mmio = g_malloc0(sizeof(subpage_t));
1eec614b 1642
acc9d80b 1643 mmio->as = as;
1eec614b 1644 mmio->base = base;
2c9b15ca 1645 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
70c68e44 1646 "subpage", TARGET_PAGE_SIZE);
b3b00c78 1647 mmio->iomem.subpage = true;
db7b5426 1648#if defined(DEBUG_SUBPAGE)
1eec614b
AL
1649 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
1650 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 1651#endif
0f0cb164 1652 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, phys_section_unassigned);
db7b5426
BS
1653
1654 return mmio;
1655}
1656
5312bd8b
AK
1657static uint16_t dummy_section(MemoryRegion *mr)
1658{
1659 MemoryRegionSection section = {
1660 .mr = mr,
1661 .offset_within_address_space = 0,
1662 .offset_within_region = 0,
052e87b0 1663 .size = int128_2_64(),
5312bd8b
AK
1664 };
1665
1666 return phys_section_add(&section);
1667}
1668
a8170e5e 1669MemoryRegion *iotlb_to_region(hwaddr index)
aa102231 1670{
37ec01d4 1671 return phys_sections[index & ~TARGET_PAGE_MASK].mr;
aa102231
AK
1672}
1673
e9179ce1
AK
1674static void io_mem_init(void)
1675{
2c9b15ca
PB
1676 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, "rom", UINT64_MAX);
1677 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
0e0df1e2 1678 "unassigned", UINT64_MAX);
2c9b15ca 1679 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
0e0df1e2 1680 "notdirty", UINT64_MAX);
2c9b15ca 1681 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1ec9b909 1682 "watch", UINT64_MAX);
e9179ce1
AK
1683}
1684
ac1970fb
AK
1685static void mem_begin(MemoryListener *listener)
1686{
1687 AddressSpaceDispatch *d = container_of(listener, AddressSpaceDispatch, listener);
1688
ac1970fb
AK
1689 d->phys_map.ptr = PHYS_MAP_NODE_NIL;
1690}
1691
50c1e149
AK
1692static void core_begin(MemoryListener *listener)
1693{
5312bd8b
AK
1694 phys_sections_clear();
1695 phys_section_unassigned = dummy_section(&io_mem_unassigned);
aa102231
AK
1696 phys_section_notdirty = dummy_section(&io_mem_notdirty);
1697 phys_section_rom = dummy_section(&io_mem_rom);
1698 phys_section_watch = dummy_section(&io_mem_watch);
50c1e149
AK
1699}
1700
1d71148e 1701static void tcg_commit(MemoryListener *listener)
50c1e149 1702{
9349b4f9 1703 CPUArchState *env;
117712c3
AK
1704
1705 /* since each CPU stores ram addresses in its TLB cache, we must
1706 reset the modified entries */
1707 /* XXX: slow ! */
1708 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1709 tlb_flush(env, 1);
1710 }
50c1e149
AK
1711}
1712
93632747
AK
1713static void core_log_global_start(MemoryListener *listener)
1714{
1715 cpu_physical_memory_set_dirty_tracking(1);
1716}
1717
1718static void core_log_global_stop(MemoryListener *listener)
1719{
1720 cpu_physical_memory_set_dirty_tracking(0);
1721}
1722
93632747 1723static MemoryListener core_memory_listener = {
50c1e149 1724 .begin = core_begin,
93632747
AK
1725 .log_global_start = core_log_global_start,
1726 .log_global_stop = core_log_global_stop,
ac1970fb 1727 .priority = 1,
93632747
AK
1728};
1729
1d71148e
AK
1730static MemoryListener tcg_memory_listener = {
1731 .commit = tcg_commit,
1732};
1733
ac1970fb
AK
1734void address_space_init_dispatch(AddressSpace *as)
1735{
1736 AddressSpaceDispatch *d = g_new(AddressSpaceDispatch, 1);
1737
1738 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
1739 d->listener = (MemoryListener) {
1740 .begin = mem_begin,
1741 .region_add = mem_add,
1742 .region_nop = mem_add,
1743 .priority = 0,
1744 };
acc9d80b 1745 d->as = as;
ac1970fb
AK
1746 as->dispatch = d;
1747 memory_listener_register(&d->listener, as);
1748}
1749
83f3c251
AK
1750void address_space_destroy_dispatch(AddressSpace *as)
1751{
1752 AddressSpaceDispatch *d = as->dispatch;
1753
1754 memory_listener_unregister(&d->listener);
83f3c251
AK
1755 g_free(d);
1756 as->dispatch = NULL;
1757}
1758
62152b8a
AK
1759static void memory_map_init(void)
1760{
7267c094 1761 system_memory = g_malloc(sizeof(*system_memory));
2c9b15ca 1762 memory_region_init(system_memory, NULL, "system", INT64_MAX);
7dca8043 1763 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 1764
7267c094 1765 system_io = g_malloc(sizeof(*system_io));
2c9b15ca 1766 memory_region_init(system_io, NULL, "io", 65536);
7dca8043 1767 address_space_init(&address_space_io, system_io, "I/O");
93632747 1768
f6790af6 1769 memory_listener_register(&core_memory_listener, &address_space_memory);
f6790af6 1770 memory_listener_register(&tcg_memory_listener, &address_space_memory);
62152b8a
AK
1771}
1772
1773MemoryRegion *get_system_memory(void)
1774{
1775 return system_memory;
1776}
1777
309cb471
AK
1778MemoryRegion *get_system_io(void)
1779{
1780 return system_io;
1781}
1782
e2eef170
PB
1783#endif /* !defined(CONFIG_USER_ONLY) */
1784
13eb76e0
FB
1785/* physical memory access (slow version, mainly for debug) */
1786#if defined(CONFIG_USER_ONLY)
9349b4f9 1787int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
a68fe89c 1788 uint8_t *buf, int len, int is_write)
13eb76e0
FB
1789{
1790 int l, flags;
1791 target_ulong page;
53a5960a 1792 void * p;
13eb76e0
FB
1793
1794 while (len > 0) {
1795 page = addr & TARGET_PAGE_MASK;
1796 l = (page + TARGET_PAGE_SIZE) - addr;
1797 if (l > len)
1798 l = len;
1799 flags = page_get_flags(page);
1800 if (!(flags & PAGE_VALID))
a68fe89c 1801 return -1;
13eb76e0
FB
1802 if (is_write) {
1803 if (!(flags & PAGE_WRITE))
a68fe89c 1804 return -1;
579a97f7 1805 /* XXX: this code should not depend on lock_user */
72fb7daa 1806 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 1807 return -1;
72fb7daa
AJ
1808 memcpy(p, buf, l);
1809 unlock_user(p, addr, l);
13eb76e0
FB
1810 } else {
1811 if (!(flags & PAGE_READ))
a68fe89c 1812 return -1;
579a97f7 1813 /* XXX: this code should not depend on lock_user */
72fb7daa 1814 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 1815 return -1;
72fb7daa 1816 memcpy(buf, p, l);
5b257578 1817 unlock_user(p, addr, 0);
13eb76e0
FB
1818 }
1819 len -= l;
1820 buf += l;
1821 addr += l;
1822 }
a68fe89c 1823 return 0;
13eb76e0 1824}
8df1cd07 1825
13eb76e0 1826#else
51d7a9eb 1827
a8170e5e
AK
1828static void invalidate_and_set_dirty(hwaddr addr,
1829 hwaddr length)
51d7a9eb
AP
1830{
1831 if (!cpu_physical_memory_is_dirty(addr)) {
1832 /* invalidate code */
1833 tb_invalidate_phys_page_range(addr, addr + length, 0);
1834 /* set dirty bit */
1835 cpu_physical_memory_set_dirty_flags(addr, (0xff & ~CODE_DIRTY_FLAG));
1836 }
e226939d 1837 xen_modified_memory(addr, length);
51d7a9eb
AP
1838}
1839
2bbfa05d
PB
1840static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1841{
1842 if (memory_region_is_ram(mr)) {
1843 return !(is_write && mr->readonly);
1844 }
1845 if (memory_region_is_romd(mr)) {
1846 return !is_write;
1847 }
1848
1849 return false;
1850}
1851
f52cc467 1852static inline int memory_access_size(MemoryRegion *mr, int l, hwaddr addr)
82f2563f 1853{
f52cc467 1854 if (l >= 4 && (((addr & 3) == 0 || mr->ops->impl.unaligned))) {
82f2563f
PB
1855 return 4;
1856 }
f52cc467 1857 if (l >= 2 && (((addr & 1) == 0) || mr->ops->impl.unaligned)) {
82f2563f
PB
1858 return 2;
1859 }
1860 return 1;
1861}
1862
fd8aaa76 1863bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
ac1970fb 1864 int len, bool is_write)
13eb76e0 1865{
149f54b5 1866 hwaddr l;
13eb76e0 1867 uint8_t *ptr;
791af8c8 1868 uint64_t val;
149f54b5 1869 hwaddr addr1;
5c8a00ce 1870 MemoryRegion *mr;
fd8aaa76 1871 bool error = false;
3b46e624 1872
13eb76e0 1873 while (len > 0) {
149f54b5 1874 l = len;
5c8a00ce 1875 mr = address_space_translate(as, addr, &addr1, &l, is_write);
3b46e624 1876
13eb76e0 1877 if (is_write) {
5c8a00ce
PB
1878 if (!memory_access_is_direct(mr, is_write)) {
1879 l = memory_access_size(mr, l, addr1);
6a00d601
FB
1880 /* XXX: could force cpu_single_env to NULL to avoid
1881 potential bugs */
82f2563f 1882 if (l == 4) {
1c213d19 1883 /* 32 bit write access */
c27004ec 1884 val = ldl_p(buf);
5c8a00ce 1885 error |= io_mem_write(mr, addr1, val, 4);
82f2563f 1886 } else if (l == 2) {
1c213d19 1887 /* 16 bit write access */
c27004ec 1888 val = lduw_p(buf);
5c8a00ce 1889 error |= io_mem_write(mr, addr1, val, 2);
13eb76e0 1890 } else {
1c213d19 1891 /* 8 bit write access */
c27004ec 1892 val = ldub_p(buf);
5c8a00ce 1893 error |= io_mem_write(mr, addr1, val, 1);
13eb76e0 1894 }
2bbfa05d 1895 } else {
5c8a00ce 1896 addr1 += memory_region_get_ram_addr(mr);
13eb76e0 1897 /* RAM case */
5579c7f3 1898 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 1899 memcpy(ptr, buf, l);
51d7a9eb 1900 invalidate_and_set_dirty(addr1, l);
13eb76e0
FB
1901 }
1902 } else {
5c8a00ce 1903 if (!memory_access_is_direct(mr, is_write)) {
13eb76e0 1904 /* I/O case */
5c8a00ce 1905 l = memory_access_size(mr, l, addr1);
82f2563f 1906 if (l == 4) {
13eb76e0 1907 /* 32 bit read access */
5c8a00ce 1908 error |= io_mem_read(mr, addr1, &val, 4);
c27004ec 1909 stl_p(buf, val);
82f2563f 1910 } else if (l == 2) {
13eb76e0 1911 /* 16 bit read access */
5c8a00ce 1912 error |= io_mem_read(mr, addr1, &val, 2);
c27004ec 1913 stw_p(buf, val);
13eb76e0 1914 } else {
1c213d19 1915 /* 8 bit read access */
5c8a00ce 1916 error |= io_mem_read(mr, addr1, &val, 1);
c27004ec 1917 stb_p(buf, val);
13eb76e0
FB
1918 }
1919 } else {
1920 /* RAM case */
5c8a00ce 1921 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
f3705d53 1922 memcpy(buf, ptr, l);
13eb76e0
FB
1923 }
1924 }
1925 len -= l;
1926 buf += l;
1927 addr += l;
1928 }
fd8aaa76
PB
1929
1930 return error;
13eb76e0 1931}
8df1cd07 1932
fd8aaa76 1933bool address_space_write(AddressSpace *as, hwaddr addr,
ac1970fb
AK
1934 const uint8_t *buf, int len)
1935{
fd8aaa76 1936 return address_space_rw(as, addr, (uint8_t *)buf, len, true);
ac1970fb
AK
1937}
1938
fd8aaa76 1939bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
ac1970fb 1940{
fd8aaa76 1941 return address_space_rw(as, addr, buf, len, false);
ac1970fb
AK
1942}
1943
1944
a8170e5e 1945void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
ac1970fb
AK
1946 int len, int is_write)
1947{
fd8aaa76 1948 address_space_rw(&address_space_memory, addr, buf, len, is_write);
ac1970fb
AK
1949}
1950
d0ecd2aa 1951/* used for ROM loading : can write in RAM and ROM */
a8170e5e 1952void cpu_physical_memory_write_rom(hwaddr addr,
d0ecd2aa
FB
1953 const uint8_t *buf, int len)
1954{
149f54b5 1955 hwaddr l;
d0ecd2aa 1956 uint8_t *ptr;
149f54b5 1957 hwaddr addr1;
5c8a00ce 1958 MemoryRegion *mr;
3b46e624 1959
d0ecd2aa 1960 while (len > 0) {
149f54b5 1961 l = len;
5c8a00ce
PB
1962 mr = address_space_translate(&address_space_memory,
1963 addr, &addr1, &l, true);
3b46e624 1964
5c8a00ce
PB
1965 if (!(memory_region_is_ram(mr) ||
1966 memory_region_is_romd(mr))) {
d0ecd2aa
FB
1967 /* do nothing */
1968 } else {
5c8a00ce 1969 addr1 += memory_region_get_ram_addr(mr);
d0ecd2aa 1970 /* ROM/RAM case */
5579c7f3 1971 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa 1972 memcpy(ptr, buf, l);
51d7a9eb 1973 invalidate_and_set_dirty(addr1, l);
d0ecd2aa
FB
1974 }
1975 len -= l;
1976 buf += l;
1977 addr += l;
1978 }
1979}
1980
6d16c2f8
AL
1981typedef struct {
1982 void *buffer;
a8170e5e
AK
1983 hwaddr addr;
1984 hwaddr len;
6d16c2f8
AL
1985} BounceBuffer;
1986
1987static BounceBuffer bounce;
1988
ba223c29
AL
1989typedef struct MapClient {
1990 void *opaque;
1991 void (*callback)(void *opaque);
72cf2d4f 1992 QLIST_ENTRY(MapClient) link;
ba223c29
AL
1993} MapClient;
1994
72cf2d4f
BS
1995static QLIST_HEAD(map_client_list, MapClient) map_client_list
1996 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
1997
1998void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
1999{
7267c094 2000 MapClient *client = g_malloc(sizeof(*client));
ba223c29
AL
2001
2002 client->opaque = opaque;
2003 client->callback = callback;
72cf2d4f 2004 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
2005 return client;
2006}
2007
8b9c99d9 2008static void cpu_unregister_map_client(void *_client)
ba223c29
AL
2009{
2010 MapClient *client = (MapClient *)_client;
2011
72cf2d4f 2012 QLIST_REMOVE(client, link);
7267c094 2013 g_free(client);
ba223c29
AL
2014}
2015
2016static void cpu_notify_map_clients(void)
2017{
2018 MapClient *client;
2019
72cf2d4f
BS
2020 while (!QLIST_EMPTY(&map_client_list)) {
2021 client = QLIST_FIRST(&map_client_list);
ba223c29 2022 client->callback(client->opaque);
34d5e948 2023 cpu_unregister_map_client(client);
ba223c29
AL
2024 }
2025}
2026
51644ab7
PB
2027bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2028{
5c8a00ce 2029 MemoryRegion *mr;
51644ab7
PB
2030 hwaddr l, xlat;
2031
2032 while (len > 0) {
2033 l = len;
5c8a00ce
PB
2034 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2035 if (!memory_access_is_direct(mr, is_write)) {
2036 l = memory_access_size(mr, l, addr);
2037 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
51644ab7
PB
2038 return false;
2039 }
2040 }
2041
2042 len -= l;
2043 addr += l;
2044 }
2045 return true;
2046}
2047
6d16c2f8
AL
2048/* Map a physical memory region into a host virtual address.
2049 * May map a subset of the requested range, given by and returned in *plen.
2050 * May return NULL if resources needed to perform the mapping are exhausted.
2051 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
2052 * Use cpu_register_map_client() to know when retrying the map operation is
2053 * likely to succeed.
6d16c2f8 2054 */
ac1970fb 2055void *address_space_map(AddressSpace *as,
a8170e5e
AK
2056 hwaddr addr,
2057 hwaddr *plen,
ac1970fb 2058 bool is_write)
6d16c2f8 2059{
a8170e5e
AK
2060 hwaddr len = *plen;
2061 hwaddr todo = 0;
149f54b5 2062 hwaddr l, xlat;
5c8a00ce 2063 MemoryRegion *mr;
f15fbc4b 2064 ram_addr_t raddr = RAM_ADDR_MAX;
8ab934f9
SS
2065 ram_addr_t rlen;
2066 void *ret;
6d16c2f8
AL
2067
2068 while (len > 0) {
149f54b5 2069 l = len;
5c8a00ce 2070 mr = address_space_translate(as, addr, &xlat, &l, is_write);
6d16c2f8 2071
5c8a00ce 2072 if (!memory_access_is_direct(mr, is_write)) {
38bee5dc 2073 if (todo || bounce.buffer) {
6d16c2f8
AL
2074 break;
2075 }
2076 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
2077 bounce.addr = addr;
2078 bounce.len = l;
2079 if (!is_write) {
ac1970fb 2080 address_space_read(as, addr, bounce.buffer, l);
6d16c2f8 2081 }
38bee5dc
SS
2082
2083 *plen = l;
2084 return bounce.buffer;
6d16c2f8 2085 }
8ab934f9 2086 if (!todo) {
5c8a00ce 2087 raddr = memory_region_get_ram_addr(mr) + xlat;
149f54b5 2088 } else {
5c8a00ce 2089 if (memory_region_get_ram_addr(mr) + xlat != raddr + todo) {
149f54b5
PB
2090 break;
2091 }
8ab934f9 2092 }
6d16c2f8
AL
2093
2094 len -= l;
2095 addr += l;
38bee5dc 2096 todo += l;
6d16c2f8 2097 }
8ab934f9
SS
2098 rlen = todo;
2099 ret = qemu_ram_ptr_length(raddr, &rlen);
2100 *plen = rlen;
2101 return ret;
6d16c2f8
AL
2102}
2103
ac1970fb 2104/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
2105 * Will also mark the memory as dirty if is_write == 1. access_len gives
2106 * the amount of memory that was actually read or written by the caller.
2107 */
a8170e5e
AK
2108void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2109 int is_write, hwaddr access_len)
6d16c2f8
AL
2110{
2111 if (buffer != bounce.buffer) {
2112 if (is_write) {
7443b437
PB
2113 ram_addr_t addr1;
2114 int rc = qemu_ram_addr_from_host(buffer, &addr1);
2115 assert(rc == 0);
6d16c2f8
AL
2116 while (access_len) {
2117 unsigned l;
2118 l = TARGET_PAGE_SIZE;
2119 if (l > access_len)
2120 l = access_len;
51d7a9eb 2121 invalidate_and_set_dirty(addr1, l);
6d16c2f8
AL
2122 addr1 += l;
2123 access_len -= l;
2124 }
2125 }
868bb33f 2126 if (xen_enabled()) {
e41d7c69 2127 xen_invalidate_map_cache_entry(buffer);
050a0ddf 2128 }
6d16c2f8
AL
2129 return;
2130 }
2131 if (is_write) {
ac1970fb 2132 address_space_write(as, bounce.addr, bounce.buffer, access_len);
6d16c2f8 2133 }
f8a83245 2134 qemu_vfree(bounce.buffer);
6d16c2f8 2135 bounce.buffer = NULL;
ba223c29 2136 cpu_notify_map_clients();
6d16c2f8 2137}
d0ecd2aa 2138
a8170e5e
AK
2139void *cpu_physical_memory_map(hwaddr addr,
2140 hwaddr *plen,
ac1970fb
AK
2141 int is_write)
2142{
2143 return address_space_map(&address_space_memory, addr, plen, is_write);
2144}
2145
a8170e5e
AK
2146void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2147 int is_write, hwaddr access_len)
ac1970fb
AK
2148{
2149 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2150}
2151
8df1cd07 2152/* warning: addr must be aligned */
a8170e5e 2153static inline uint32_t ldl_phys_internal(hwaddr addr,
1e78bcc1 2154 enum device_endian endian)
8df1cd07 2155{
8df1cd07 2156 uint8_t *ptr;
791af8c8 2157 uint64_t val;
5c8a00ce 2158 MemoryRegion *mr;
149f54b5
PB
2159 hwaddr l = 4;
2160 hwaddr addr1;
8df1cd07 2161
5c8a00ce
PB
2162 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2163 false);
2164 if (l < 4 || !memory_access_is_direct(mr, false)) {
8df1cd07 2165 /* I/O case */
5c8a00ce 2166 io_mem_read(mr, addr1, &val, 4);
1e78bcc1
AG
2167#if defined(TARGET_WORDS_BIGENDIAN)
2168 if (endian == DEVICE_LITTLE_ENDIAN) {
2169 val = bswap32(val);
2170 }
2171#else
2172 if (endian == DEVICE_BIG_ENDIAN) {
2173 val = bswap32(val);
2174 }
2175#endif
8df1cd07
FB
2176 } else {
2177 /* RAM case */
5c8a00ce 2178 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 2179 & TARGET_PAGE_MASK)
149f54b5 2180 + addr1);
1e78bcc1
AG
2181 switch (endian) {
2182 case DEVICE_LITTLE_ENDIAN:
2183 val = ldl_le_p(ptr);
2184 break;
2185 case DEVICE_BIG_ENDIAN:
2186 val = ldl_be_p(ptr);
2187 break;
2188 default:
2189 val = ldl_p(ptr);
2190 break;
2191 }
8df1cd07
FB
2192 }
2193 return val;
2194}
2195
a8170e5e 2196uint32_t ldl_phys(hwaddr addr)
1e78bcc1
AG
2197{
2198 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2199}
2200
a8170e5e 2201uint32_t ldl_le_phys(hwaddr addr)
1e78bcc1
AG
2202{
2203 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2204}
2205
a8170e5e 2206uint32_t ldl_be_phys(hwaddr addr)
1e78bcc1
AG
2207{
2208 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
2209}
2210
84b7b8e7 2211/* warning: addr must be aligned */
a8170e5e 2212static inline uint64_t ldq_phys_internal(hwaddr addr,
1e78bcc1 2213 enum device_endian endian)
84b7b8e7 2214{
84b7b8e7
FB
2215 uint8_t *ptr;
2216 uint64_t val;
5c8a00ce 2217 MemoryRegion *mr;
149f54b5
PB
2218 hwaddr l = 8;
2219 hwaddr addr1;
84b7b8e7 2220
5c8a00ce
PB
2221 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2222 false);
2223 if (l < 8 || !memory_access_is_direct(mr, false)) {
84b7b8e7 2224 /* I/O case */
5c8a00ce 2225 io_mem_read(mr, addr1, &val, 8);
968a5627
PB
2226#if defined(TARGET_WORDS_BIGENDIAN)
2227 if (endian == DEVICE_LITTLE_ENDIAN) {
2228 val = bswap64(val);
2229 }
2230#else
2231 if (endian == DEVICE_BIG_ENDIAN) {
2232 val = bswap64(val);
2233 }
84b7b8e7
FB
2234#endif
2235 } else {
2236 /* RAM case */
5c8a00ce 2237 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 2238 & TARGET_PAGE_MASK)
149f54b5 2239 + addr1);
1e78bcc1
AG
2240 switch (endian) {
2241 case DEVICE_LITTLE_ENDIAN:
2242 val = ldq_le_p(ptr);
2243 break;
2244 case DEVICE_BIG_ENDIAN:
2245 val = ldq_be_p(ptr);
2246 break;
2247 default:
2248 val = ldq_p(ptr);
2249 break;
2250 }
84b7b8e7
FB
2251 }
2252 return val;
2253}
2254
a8170e5e 2255uint64_t ldq_phys(hwaddr addr)
1e78bcc1
AG
2256{
2257 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2258}
2259
a8170e5e 2260uint64_t ldq_le_phys(hwaddr addr)
1e78bcc1
AG
2261{
2262 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2263}
2264
a8170e5e 2265uint64_t ldq_be_phys(hwaddr addr)
1e78bcc1
AG
2266{
2267 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
2268}
2269
aab33094 2270/* XXX: optimize */
a8170e5e 2271uint32_t ldub_phys(hwaddr addr)
aab33094
FB
2272{
2273 uint8_t val;
2274 cpu_physical_memory_read(addr, &val, 1);
2275 return val;
2276}
2277
733f0b02 2278/* warning: addr must be aligned */
a8170e5e 2279static inline uint32_t lduw_phys_internal(hwaddr addr,
1e78bcc1 2280 enum device_endian endian)
aab33094 2281{
733f0b02
MT
2282 uint8_t *ptr;
2283 uint64_t val;
5c8a00ce 2284 MemoryRegion *mr;
149f54b5
PB
2285 hwaddr l = 2;
2286 hwaddr addr1;
733f0b02 2287
5c8a00ce
PB
2288 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2289 false);
2290 if (l < 2 || !memory_access_is_direct(mr, false)) {
733f0b02 2291 /* I/O case */
5c8a00ce 2292 io_mem_read(mr, addr1, &val, 2);
1e78bcc1
AG
2293#if defined(TARGET_WORDS_BIGENDIAN)
2294 if (endian == DEVICE_LITTLE_ENDIAN) {
2295 val = bswap16(val);
2296 }
2297#else
2298 if (endian == DEVICE_BIG_ENDIAN) {
2299 val = bswap16(val);
2300 }
2301#endif
733f0b02
MT
2302 } else {
2303 /* RAM case */
5c8a00ce 2304 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 2305 & TARGET_PAGE_MASK)
149f54b5 2306 + addr1);
1e78bcc1
AG
2307 switch (endian) {
2308 case DEVICE_LITTLE_ENDIAN:
2309 val = lduw_le_p(ptr);
2310 break;
2311 case DEVICE_BIG_ENDIAN:
2312 val = lduw_be_p(ptr);
2313 break;
2314 default:
2315 val = lduw_p(ptr);
2316 break;
2317 }
733f0b02
MT
2318 }
2319 return val;
aab33094
FB
2320}
2321
a8170e5e 2322uint32_t lduw_phys(hwaddr addr)
1e78bcc1
AG
2323{
2324 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2325}
2326
a8170e5e 2327uint32_t lduw_le_phys(hwaddr addr)
1e78bcc1
AG
2328{
2329 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2330}
2331
a8170e5e 2332uint32_t lduw_be_phys(hwaddr addr)
1e78bcc1
AG
2333{
2334 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
2335}
2336
8df1cd07
FB
2337/* warning: addr must be aligned. The ram page is not masked as dirty
2338 and the code inside is not invalidated. It is useful if the dirty
2339 bits are used to track modified PTEs */
a8170e5e 2340void stl_phys_notdirty(hwaddr addr, uint32_t val)
8df1cd07 2341{
8df1cd07 2342 uint8_t *ptr;
5c8a00ce 2343 MemoryRegion *mr;
149f54b5
PB
2344 hwaddr l = 4;
2345 hwaddr addr1;
8df1cd07 2346
5c8a00ce
PB
2347 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2348 true);
2349 if (l < 4 || !memory_access_is_direct(mr, true)) {
2350 io_mem_write(mr, addr1, val, 4);
8df1cd07 2351 } else {
5c8a00ce 2352 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
5579c7f3 2353 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 2354 stl_p(ptr, val);
74576198
AL
2355
2356 if (unlikely(in_migration)) {
2357 if (!cpu_physical_memory_is_dirty(addr1)) {
2358 /* invalidate code */
2359 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2360 /* set dirty bit */
f7c11b53
YT
2361 cpu_physical_memory_set_dirty_flags(
2362 addr1, (0xff & ~CODE_DIRTY_FLAG));
74576198
AL
2363 }
2364 }
8df1cd07
FB
2365 }
2366}
2367
2368/* warning: addr must be aligned */
a8170e5e 2369static inline void stl_phys_internal(hwaddr addr, uint32_t val,
1e78bcc1 2370 enum device_endian endian)
8df1cd07 2371{
8df1cd07 2372 uint8_t *ptr;
5c8a00ce 2373 MemoryRegion *mr;
149f54b5
PB
2374 hwaddr l = 4;
2375 hwaddr addr1;
8df1cd07 2376
5c8a00ce
PB
2377 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2378 true);
2379 if (l < 4 || !memory_access_is_direct(mr, true)) {
1e78bcc1
AG
2380#if defined(TARGET_WORDS_BIGENDIAN)
2381 if (endian == DEVICE_LITTLE_ENDIAN) {
2382 val = bswap32(val);
2383 }
2384#else
2385 if (endian == DEVICE_BIG_ENDIAN) {
2386 val = bswap32(val);
2387 }
2388#endif
5c8a00ce 2389 io_mem_write(mr, addr1, val, 4);
8df1cd07 2390 } else {
8df1cd07 2391 /* RAM case */
5c8a00ce 2392 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
5579c7f3 2393 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
2394 switch (endian) {
2395 case DEVICE_LITTLE_ENDIAN:
2396 stl_le_p(ptr, val);
2397 break;
2398 case DEVICE_BIG_ENDIAN:
2399 stl_be_p(ptr, val);
2400 break;
2401 default:
2402 stl_p(ptr, val);
2403 break;
2404 }
51d7a9eb 2405 invalidate_and_set_dirty(addr1, 4);
8df1cd07
FB
2406 }
2407}
2408
a8170e5e 2409void stl_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2410{
2411 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2412}
2413
a8170e5e 2414void stl_le_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2415{
2416 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2417}
2418
a8170e5e 2419void stl_be_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2420{
2421 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2422}
2423
aab33094 2424/* XXX: optimize */
a8170e5e 2425void stb_phys(hwaddr addr, uint32_t val)
aab33094
FB
2426{
2427 uint8_t v = val;
2428 cpu_physical_memory_write(addr, &v, 1);
2429}
2430
733f0b02 2431/* warning: addr must be aligned */
a8170e5e 2432static inline void stw_phys_internal(hwaddr addr, uint32_t val,
1e78bcc1 2433 enum device_endian endian)
aab33094 2434{
733f0b02 2435 uint8_t *ptr;
5c8a00ce 2436 MemoryRegion *mr;
149f54b5
PB
2437 hwaddr l = 2;
2438 hwaddr addr1;
733f0b02 2439
5c8a00ce
PB
2440 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2441 true);
2442 if (l < 2 || !memory_access_is_direct(mr, true)) {
1e78bcc1
AG
2443#if defined(TARGET_WORDS_BIGENDIAN)
2444 if (endian == DEVICE_LITTLE_ENDIAN) {
2445 val = bswap16(val);
2446 }
2447#else
2448 if (endian == DEVICE_BIG_ENDIAN) {
2449 val = bswap16(val);
2450 }
2451#endif
5c8a00ce 2452 io_mem_write(mr, addr1, val, 2);
733f0b02 2453 } else {
733f0b02 2454 /* RAM case */
5c8a00ce 2455 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
733f0b02 2456 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
2457 switch (endian) {
2458 case DEVICE_LITTLE_ENDIAN:
2459 stw_le_p(ptr, val);
2460 break;
2461 case DEVICE_BIG_ENDIAN:
2462 stw_be_p(ptr, val);
2463 break;
2464 default:
2465 stw_p(ptr, val);
2466 break;
2467 }
51d7a9eb 2468 invalidate_and_set_dirty(addr1, 2);
733f0b02 2469 }
aab33094
FB
2470}
2471
a8170e5e 2472void stw_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2473{
2474 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2475}
2476
a8170e5e 2477void stw_le_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2478{
2479 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2480}
2481
a8170e5e 2482void stw_be_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2483{
2484 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2485}
2486
aab33094 2487/* XXX: optimize */
a8170e5e 2488void stq_phys(hwaddr addr, uint64_t val)
aab33094
FB
2489{
2490 val = tswap64(val);
71d2b725 2491 cpu_physical_memory_write(addr, &val, 8);
aab33094
FB
2492}
2493
a8170e5e 2494void stq_le_phys(hwaddr addr, uint64_t val)
1e78bcc1
AG
2495{
2496 val = cpu_to_le64(val);
2497 cpu_physical_memory_write(addr, &val, 8);
2498}
2499
a8170e5e 2500void stq_be_phys(hwaddr addr, uint64_t val)
1e78bcc1
AG
2501{
2502 val = cpu_to_be64(val);
2503 cpu_physical_memory_write(addr, &val, 8);
2504}
2505
5e2972fd 2506/* virtual memory access for debug (includes writing to ROM) */
9349b4f9 2507int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
b448f2f3 2508 uint8_t *buf, int len, int is_write)
13eb76e0
FB
2509{
2510 int l;
a8170e5e 2511 hwaddr phys_addr;
9b3c35e0 2512 target_ulong page;
13eb76e0
FB
2513
2514 while (len > 0) {
2515 page = addr & TARGET_PAGE_MASK;
2516 phys_addr = cpu_get_phys_page_debug(env, page);
2517 /* if no physical page mapped, return an error */
2518 if (phys_addr == -1)
2519 return -1;
2520 l = (page + TARGET_PAGE_SIZE) - addr;
2521 if (l > len)
2522 l = len;
5e2972fd 2523 phys_addr += (addr & ~TARGET_PAGE_MASK);
5e2972fd
AL
2524 if (is_write)
2525 cpu_physical_memory_write_rom(phys_addr, buf, l);
2526 else
5e2972fd 2527 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
2528 len -= l;
2529 buf += l;
2530 addr += l;
2531 }
2532 return 0;
2533}
a68fe89c 2534#endif
13eb76e0 2535
8e4a424b
BS
2536#if !defined(CONFIG_USER_ONLY)
2537
2538/*
2539 * A helper function for the _utterly broken_ virtio device model to find out if
2540 * it's running on a big endian machine. Don't do this at home kids!
2541 */
2542bool virtio_is_big_endian(void);
2543bool virtio_is_big_endian(void)
2544{
2545#if defined(TARGET_WORDS_BIGENDIAN)
2546 return true;
2547#else
2548 return false;
2549#endif
2550}
2551
2552#endif
2553
76f35538 2554#ifndef CONFIG_USER_ONLY
a8170e5e 2555bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 2556{
5c8a00ce 2557 MemoryRegion*mr;
149f54b5 2558 hwaddr l = 1;
76f35538 2559
5c8a00ce
PB
2560 mr = address_space_translate(&address_space_memory,
2561 phys_addr, &phys_addr, &l, false);
76f35538 2562
5c8a00ce
PB
2563 return !(memory_region_is_ram(mr) ||
2564 memory_region_is_romd(mr));
76f35538 2565}
bd2fa51f
MH
2566
2567void qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
2568{
2569 RAMBlock *block;
2570
2571 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
2572 func(block->host, block->offset, block->length, opaque);
2573 }
2574}
ec3f8c99 2575#endif
This page took 1.270456 seconds and 4 git commands to generate.