]>
Commit | Line | Data |
---|---|---|
54936004 | 1 | /* |
5b6dd868 | 2 | * Virtual page mapping |
5fafdf24 | 3 | * |
54936004 FB |
4 | * Copyright (c) 2003 Fabrice Bellard |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
8167ee88 | 17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
54936004 | 18 | */ |
7b31bbc2 | 19 | #include "qemu/osdep.h" |
da34e65c | 20 | #include "qapi/error.h" |
777872e5 | 21 | #ifndef _WIN32 |
d5a8f07c | 22 | #endif |
54936004 | 23 | |
f348b6d1 | 24 | #include "qemu/cutils.h" |
6180a181 | 25 | #include "cpu.h" |
63c91552 | 26 | #include "exec/exec-all.h" |
b67d9a52 | 27 | #include "tcg.h" |
741da0d3 | 28 | #include "hw/qdev-core.h" |
4485bd26 | 29 | #if !defined(CONFIG_USER_ONLY) |
47c8ca53 | 30 | #include "hw/boards.h" |
33c11879 | 31 | #include "hw/xen/xen.h" |
4485bd26 | 32 | #endif |
9c17d615 | 33 | #include "sysemu/kvm.h" |
2ff3de68 | 34 | #include "sysemu/sysemu.h" |
1de7afc9 PB |
35 | #include "qemu/timer.h" |
36 | #include "qemu/config-file.h" | |
75a34036 | 37 | #include "qemu/error-report.h" |
53a5960a | 38 | #if defined(CONFIG_USER_ONLY) |
a9c94277 | 39 | #include "qemu.h" |
432d268c | 40 | #else /* !CONFIG_USER_ONLY */ |
741da0d3 PB |
41 | #include "hw/hw.h" |
42 | #include "exec/memory.h" | |
df43d49c | 43 | #include "exec/ioport.h" |
741da0d3 PB |
44 | #include "sysemu/dma.h" |
45 | #include "exec/address-spaces.h" | |
9c17d615 | 46 | #include "sysemu/xen-mapcache.h" |
6506e4f9 | 47 | #include "trace.h" |
53a5960a | 48 | #endif |
0d6d3c87 | 49 | #include "exec/cpu-all.h" |
0dc3f44a | 50 | #include "qemu/rcu_queue.h" |
4840f10e | 51 | #include "qemu/main-loop.h" |
5b6dd868 | 52 | #include "translate-all.h" |
7615936e | 53 | #include "sysemu/replay.h" |
0cac1b66 | 54 | |
022c62cb | 55 | #include "exec/memory-internal.h" |
220c3ebd | 56 | #include "exec/ram_addr.h" |
508127e2 | 57 | #include "exec/log.h" |
67d95c15 | 58 | |
9dfeca7c BR |
59 | #include "migration/vmstate.h" |
60 | ||
b35ba30f | 61 | #include "qemu/range.h" |
794e8f30 MT |
62 | #ifndef _WIN32 |
63 | #include "qemu/mmap-alloc.h" | |
64 | #endif | |
b35ba30f | 65 | |
db7b5426 | 66 | //#define DEBUG_SUBPAGE |
1196be37 | 67 | |
e2eef170 | 68 | #if !defined(CONFIG_USER_ONLY) |
0dc3f44a MD |
69 | /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes |
70 | * are protected by the ramlist lock. | |
71 | */ | |
0d53d9fe | 72 | RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; |
62152b8a AK |
73 | |
74 | static MemoryRegion *system_memory; | |
309cb471 | 75 | static MemoryRegion *system_io; |
62152b8a | 76 | |
f6790af6 AK |
77 | AddressSpace address_space_io; |
78 | AddressSpace address_space_memory; | |
2673a5da | 79 | |
0844e007 | 80 | MemoryRegion io_mem_rom, io_mem_notdirty; |
acc9d80b | 81 | static MemoryRegion io_mem_unassigned; |
0e0df1e2 | 82 | |
7bd4f430 PB |
83 | /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ |
84 | #define RAM_PREALLOC (1 << 0) | |
85 | ||
dbcb8981 PB |
86 | /* RAM is mmap-ed with MAP_SHARED */ |
87 | #define RAM_SHARED (1 << 1) | |
88 | ||
62be4e3a MT |
89 | /* Only a portion of RAM (used_length) is actually used, and migrated. |
90 | * This used_length size can change across reboots. | |
91 | */ | |
92 | #define RAM_RESIZEABLE (1 << 2) | |
93 | ||
e2eef170 | 94 | #endif |
9fa3e853 | 95 | |
bdc44640 | 96 | struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus); |
6a00d601 FB |
97 | /* current CPU in the current thread. It is only valid inside |
98 | cpu_exec() */ | |
f240eb6f | 99 | __thread CPUState *current_cpu; |
2e70f6ef | 100 | /* 0 = Do not count executed instructions. |
bf20dc07 | 101 | 1 = Precise instruction counting. |
2e70f6ef | 102 | 2 = Adaptive rate instruction counting. */ |
5708fc66 | 103 | int use_icount; |
6a00d601 | 104 | |
e2eef170 | 105 | #if !defined(CONFIG_USER_ONLY) |
4346ae3e | 106 | |
1db8abb1 PB |
107 | typedef struct PhysPageEntry PhysPageEntry; |
108 | ||
109 | struct PhysPageEntry { | |
9736e55b | 110 | /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ |
8b795765 | 111 | uint32_t skip : 6; |
9736e55b | 112 | /* index into phys_sections (!skip) or phys_map_nodes (skip) */ |
8b795765 | 113 | uint32_t ptr : 26; |
1db8abb1 PB |
114 | }; |
115 | ||
8b795765 MT |
116 | #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) |
117 | ||
03f49957 | 118 | /* Size of the L2 (and L3, etc) page tables. */ |
57271d63 | 119 | #define ADDR_SPACE_BITS 64 |
03f49957 | 120 | |
026736ce | 121 | #define P_L2_BITS 9 |
03f49957 PB |
122 | #define P_L2_SIZE (1 << P_L2_BITS) |
123 | ||
124 | #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) | |
125 | ||
126 | typedef PhysPageEntry Node[P_L2_SIZE]; | |
0475d94f | 127 | |
53cb28cb | 128 | typedef struct PhysPageMap { |
79e2b9ae PB |
129 | struct rcu_head rcu; |
130 | ||
53cb28cb MA |
131 | unsigned sections_nb; |
132 | unsigned sections_nb_alloc; | |
133 | unsigned nodes_nb; | |
134 | unsigned nodes_nb_alloc; | |
135 | Node *nodes; | |
136 | MemoryRegionSection *sections; | |
137 | } PhysPageMap; | |
138 | ||
1db8abb1 | 139 | struct AddressSpaceDispatch { |
79e2b9ae PB |
140 | struct rcu_head rcu; |
141 | ||
729633c2 | 142 | MemoryRegionSection *mru_section; |
1db8abb1 PB |
143 | /* This is a multi-level map on the physical address space. |
144 | * The bottom level has pointers to MemoryRegionSections. | |
145 | */ | |
146 | PhysPageEntry phys_map; | |
53cb28cb | 147 | PhysPageMap map; |
acc9d80b | 148 | AddressSpace *as; |
1db8abb1 PB |
149 | }; |
150 | ||
90260c6c JK |
151 | #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) |
152 | typedef struct subpage_t { | |
153 | MemoryRegion iomem; | |
acc9d80b | 154 | AddressSpace *as; |
90260c6c JK |
155 | hwaddr base; |
156 | uint16_t sub_section[TARGET_PAGE_SIZE]; | |
157 | } subpage_t; | |
158 | ||
b41aac4f LPF |
159 | #define PHYS_SECTION_UNASSIGNED 0 |
160 | #define PHYS_SECTION_NOTDIRTY 1 | |
161 | #define PHYS_SECTION_ROM 2 | |
162 | #define PHYS_SECTION_WATCH 3 | |
5312bd8b | 163 | |
e2eef170 | 164 | static void io_mem_init(void); |
62152b8a | 165 | static void memory_map_init(void); |
09daed84 | 166 | static void tcg_commit(MemoryListener *listener); |
e2eef170 | 167 | |
1ec9b909 | 168 | static MemoryRegion io_mem_watch; |
32857f4d PM |
169 | |
170 | /** | |
171 | * CPUAddressSpace: all the information a CPU needs about an AddressSpace | |
172 | * @cpu: the CPU whose AddressSpace this is | |
173 | * @as: the AddressSpace itself | |
174 | * @memory_dispatch: its dispatch pointer (cached, RCU protected) | |
175 | * @tcg_as_listener: listener for tracking changes to the AddressSpace | |
176 | */ | |
177 | struct CPUAddressSpace { | |
178 | CPUState *cpu; | |
179 | AddressSpace *as; | |
180 | struct AddressSpaceDispatch *memory_dispatch; | |
181 | MemoryListener tcg_as_listener; | |
182 | }; | |
183 | ||
6658ffb8 | 184 | #endif |
fd6ce8f6 | 185 | |
6d9a1304 | 186 | #if !defined(CONFIG_USER_ONLY) |
d6f2ea22 | 187 | |
53cb28cb | 188 | static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) |
d6f2ea22 | 189 | { |
101420b8 | 190 | static unsigned alloc_hint = 16; |
53cb28cb | 191 | if (map->nodes_nb + nodes > map->nodes_nb_alloc) { |
101420b8 | 192 | map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint); |
53cb28cb MA |
193 | map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes); |
194 | map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); | |
101420b8 | 195 | alloc_hint = map->nodes_nb_alloc; |
d6f2ea22 | 196 | } |
f7bf5461 AK |
197 | } |
198 | ||
db94604b | 199 | static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf) |
f7bf5461 AK |
200 | { |
201 | unsigned i; | |
8b795765 | 202 | uint32_t ret; |
db94604b PB |
203 | PhysPageEntry e; |
204 | PhysPageEntry *p; | |
f7bf5461 | 205 | |
53cb28cb | 206 | ret = map->nodes_nb++; |
db94604b | 207 | p = map->nodes[ret]; |
f7bf5461 | 208 | assert(ret != PHYS_MAP_NODE_NIL); |
53cb28cb | 209 | assert(ret != map->nodes_nb_alloc); |
db94604b PB |
210 | |
211 | e.skip = leaf ? 0 : 1; | |
212 | e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL; | |
03f49957 | 213 | for (i = 0; i < P_L2_SIZE; ++i) { |
db94604b | 214 | memcpy(&p[i], &e, sizeof(e)); |
d6f2ea22 | 215 | } |
f7bf5461 | 216 | return ret; |
d6f2ea22 AK |
217 | } |
218 | ||
53cb28cb MA |
219 | static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, |
220 | hwaddr *index, hwaddr *nb, uint16_t leaf, | |
2999097b | 221 | int level) |
f7bf5461 AK |
222 | { |
223 | PhysPageEntry *p; | |
03f49957 | 224 | hwaddr step = (hwaddr)1 << (level * P_L2_BITS); |
108c49b8 | 225 | |
9736e55b | 226 | if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { |
db94604b | 227 | lp->ptr = phys_map_node_alloc(map, level == 0); |
92e873b9 | 228 | } |
db94604b | 229 | p = map->nodes[lp->ptr]; |
03f49957 | 230 | lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; |
f7bf5461 | 231 | |
03f49957 | 232 | while (*nb && lp < &p[P_L2_SIZE]) { |
07f07b31 | 233 | if ((*index & (step - 1)) == 0 && *nb >= step) { |
9736e55b | 234 | lp->skip = 0; |
c19e8800 | 235 | lp->ptr = leaf; |
07f07b31 AK |
236 | *index += step; |
237 | *nb -= step; | |
2999097b | 238 | } else { |
53cb28cb | 239 | phys_page_set_level(map, lp, index, nb, leaf, level - 1); |
2999097b AK |
240 | } |
241 | ++lp; | |
f7bf5461 AK |
242 | } |
243 | } | |
244 | ||
ac1970fb | 245 | static void phys_page_set(AddressSpaceDispatch *d, |
a8170e5e | 246 | hwaddr index, hwaddr nb, |
2999097b | 247 | uint16_t leaf) |
f7bf5461 | 248 | { |
2999097b | 249 | /* Wildly overreserve - it doesn't matter much. */ |
53cb28cb | 250 | phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); |
5cd2c5b6 | 251 | |
53cb28cb | 252 | phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); |
92e873b9 FB |
253 | } |
254 | ||
b35ba30f MT |
255 | /* Compact a non leaf page entry. Simply detect that the entry has a single child, |
256 | * and update our entry so we can skip it and go directly to the destination. | |
257 | */ | |
efee678d | 258 | static void phys_page_compact(PhysPageEntry *lp, Node *nodes) |
b35ba30f MT |
259 | { |
260 | unsigned valid_ptr = P_L2_SIZE; | |
261 | int valid = 0; | |
262 | PhysPageEntry *p; | |
263 | int i; | |
264 | ||
265 | if (lp->ptr == PHYS_MAP_NODE_NIL) { | |
266 | return; | |
267 | } | |
268 | ||
269 | p = nodes[lp->ptr]; | |
270 | for (i = 0; i < P_L2_SIZE; i++) { | |
271 | if (p[i].ptr == PHYS_MAP_NODE_NIL) { | |
272 | continue; | |
273 | } | |
274 | ||
275 | valid_ptr = i; | |
276 | valid++; | |
277 | if (p[i].skip) { | |
efee678d | 278 | phys_page_compact(&p[i], nodes); |
b35ba30f MT |
279 | } |
280 | } | |
281 | ||
282 | /* We can only compress if there's only one child. */ | |
283 | if (valid != 1) { | |
284 | return; | |
285 | } | |
286 | ||
287 | assert(valid_ptr < P_L2_SIZE); | |
288 | ||
289 | /* Don't compress if it won't fit in the # of bits we have. */ | |
290 | if (lp->skip + p[valid_ptr].skip >= (1 << 3)) { | |
291 | return; | |
292 | } | |
293 | ||
294 | lp->ptr = p[valid_ptr].ptr; | |
295 | if (!p[valid_ptr].skip) { | |
296 | /* If our only child is a leaf, make this a leaf. */ | |
297 | /* By design, we should have made this node a leaf to begin with so we | |
298 | * should never reach here. | |
299 | * But since it's so simple to handle this, let's do it just in case we | |
300 | * change this rule. | |
301 | */ | |
302 | lp->skip = 0; | |
303 | } else { | |
304 | lp->skip += p[valid_ptr].skip; | |
305 | } | |
306 | } | |
307 | ||
308 | static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb) | |
309 | { | |
b35ba30f | 310 | if (d->phys_map.skip) { |
efee678d | 311 | phys_page_compact(&d->phys_map, d->map.nodes); |
b35ba30f MT |
312 | } |
313 | } | |
314 | ||
29cb533d FZ |
315 | static inline bool section_covers_addr(const MemoryRegionSection *section, |
316 | hwaddr addr) | |
317 | { | |
318 | /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means | |
319 | * the section must cover the entire address space. | |
320 | */ | |
321 | return section->size.hi || | |
322 | range_covers_byte(section->offset_within_address_space, | |
323 | section->size.lo, addr); | |
324 | } | |
325 | ||
97115a8d | 326 | static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr, |
9affd6fc | 327 | Node *nodes, MemoryRegionSection *sections) |
92e873b9 | 328 | { |
31ab2b4a | 329 | PhysPageEntry *p; |
97115a8d | 330 | hwaddr index = addr >> TARGET_PAGE_BITS; |
31ab2b4a | 331 | int i; |
f1f6e3b8 | 332 | |
9736e55b | 333 | for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { |
c19e8800 | 334 | if (lp.ptr == PHYS_MAP_NODE_NIL) { |
9affd6fc | 335 | return §ions[PHYS_SECTION_UNASSIGNED]; |
31ab2b4a | 336 | } |
9affd6fc | 337 | p = nodes[lp.ptr]; |
03f49957 | 338 | lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; |
5312bd8b | 339 | } |
b35ba30f | 340 | |
29cb533d | 341 | if (section_covers_addr(§ions[lp.ptr], addr)) { |
b35ba30f MT |
342 | return §ions[lp.ptr]; |
343 | } else { | |
344 | return §ions[PHYS_SECTION_UNASSIGNED]; | |
345 | } | |
f3705d53 AK |
346 | } |
347 | ||
e5548617 BS |
348 | bool memory_region_is_unassigned(MemoryRegion *mr) |
349 | { | |
2a8e7499 | 350 | return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device |
5b6dd868 | 351 | && mr != &io_mem_watch; |
fd6ce8f6 | 352 | } |
149f54b5 | 353 | |
79e2b9ae | 354 | /* Called from RCU critical section */ |
c7086b4a | 355 | static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, |
90260c6c JK |
356 | hwaddr addr, |
357 | bool resolve_subpage) | |
9f029603 | 358 | { |
729633c2 | 359 | MemoryRegionSection *section = atomic_read(&d->mru_section); |
90260c6c | 360 | subpage_t *subpage; |
729633c2 | 361 | bool update; |
90260c6c | 362 | |
729633c2 FZ |
363 | if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] && |
364 | section_covers_addr(section, addr)) { | |
365 | update = false; | |
366 | } else { | |
367 | section = phys_page_find(d->phys_map, addr, d->map.nodes, | |
368 | d->map.sections); | |
369 | update = true; | |
370 | } | |
90260c6c JK |
371 | if (resolve_subpage && section->mr->subpage) { |
372 | subpage = container_of(section->mr, subpage_t, iomem); | |
53cb28cb | 373 | section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; |
90260c6c | 374 | } |
729633c2 FZ |
375 | if (update) { |
376 | atomic_set(&d->mru_section, section); | |
377 | } | |
90260c6c | 378 | return section; |
9f029603 JK |
379 | } |
380 | ||
79e2b9ae | 381 | /* Called from RCU critical section */ |
90260c6c | 382 | static MemoryRegionSection * |
c7086b4a | 383 | address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, |
90260c6c | 384 | hwaddr *plen, bool resolve_subpage) |
149f54b5 PB |
385 | { |
386 | MemoryRegionSection *section; | |
965eb2fc | 387 | MemoryRegion *mr; |
a87f3954 | 388 | Int128 diff; |
149f54b5 | 389 | |
c7086b4a | 390 | section = address_space_lookup_region(d, addr, resolve_subpage); |
149f54b5 PB |
391 | /* Compute offset within MemoryRegionSection */ |
392 | addr -= section->offset_within_address_space; | |
393 | ||
394 | /* Compute offset within MemoryRegion */ | |
395 | *xlat = addr + section->offset_within_region; | |
396 | ||
965eb2fc | 397 | mr = section->mr; |
b242e0e0 PB |
398 | |
399 | /* MMIO registers can be expected to perform full-width accesses based only | |
400 | * on their address, without considering adjacent registers that could | |
401 | * decode to completely different MemoryRegions. When such registers | |
402 | * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO | |
403 | * regions overlap wildly. For this reason we cannot clamp the accesses | |
404 | * here. | |
405 | * | |
406 | * If the length is small (as is the case for address_space_ldl/stl), | |
407 | * everything works fine. If the incoming length is large, however, | |
408 | * the caller really has to do the clamping through memory_access_size. | |
409 | */ | |
965eb2fc | 410 | if (memory_region_is_ram(mr)) { |
e4a511f8 | 411 | diff = int128_sub(section->size, int128_make64(addr)); |
965eb2fc PB |
412 | *plen = int128_get64(int128_min(diff, int128_make64(*plen))); |
413 | } | |
149f54b5 PB |
414 | return section; |
415 | } | |
90260c6c | 416 | |
41063e1e | 417 | /* Called from RCU critical section */ |
5c8a00ce PB |
418 | MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr, |
419 | hwaddr *xlat, hwaddr *plen, | |
420 | bool is_write) | |
90260c6c | 421 | { |
30951157 AK |
422 | IOMMUTLBEntry iotlb; |
423 | MemoryRegionSection *section; | |
424 | MemoryRegion *mr; | |
30951157 AK |
425 | |
426 | for (;;) { | |
79e2b9ae PB |
427 | AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch); |
428 | section = address_space_translate_internal(d, addr, &addr, plen, true); | |
30951157 AK |
429 | mr = section->mr; |
430 | ||
431 | if (!mr->iommu_ops) { | |
432 | break; | |
433 | } | |
434 | ||
8d7b8cb9 | 435 | iotlb = mr->iommu_ops->translate(mr, addr, is_write); |
30951157 AK |
436 | addr = ((iotlb.translated_addr & ~iotlb.addr_mask) |
437 | | (addr & iotlb.addr_mask)); | |
23820dbf | 438 | *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1); |
30951157 AK |
439 | if (!(iotlb.perm & (1 << is_write))) { |
440 | mr = &io_mem_unassigned; | |
441 | break; | |
442 | } | |
443 | ||
444 | as = iotlb.target_as; | |
445 | } | |
446 | ||
fe680d0d | 447 | if (xen_enabled() && memory_access_is_direct(mr, is_write)) { |
a87f3954 | 448 | hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; |
23820dbf | 449 | *plen = MIN(page, *plen); |
a87f3954 PB |
450 | } |
451 | ||
30951157 AK |
452 | *xlat = addr; |
453 | return mr; | |
90260c6c JK |
454 | } |
455 | ||
79e2b9ae | 456 | /* Called from RCU critical section */ |
90260c6c | 457 | MemoryRegionSection * |
d7898cda | 458 | address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr, |
9d82b5a7 | 459 | hwaddr *xlat, hwaddr *plen) |
90260c6c | 460 | { |
30951157 | 461 | MemoryRegionSection *section; |
d7898cda PM |
462 | AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch; |
463 | ||
464 | section = address_space_translate_internal(d, addr, xlat, plen, false); | |
30951157 AK |
465 | |
466 | assert(!section->mr->iommu_ops); | |
467 | return section; | |
90260c6c | 468 | } |
5b6dd868 | 469 | #endif |
fd6ce8f6 | 470 | |
b170fce3 | 471 | #if !defined(CONFIG_USER_ONLY) |
5b6dd868 BS |
472 | |
473 | static int cpu_common_post_load(void *opaque, int version_id) | |
fd6ce8f6 | 474 | { |
259186a7 | 475 | CPUState *cpu = opaque; |
a513fe19 | 476 | |
5b6dd868 BS |
477 | /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the |
478 | version_id is increased. */ | |
259186a7 | 479 | cpu->interrupt_request &= ~0x01; |
c01a71c1 | 480 | tlb_flush(cpu, 1); |
5b6dd868 BS |
481 | |
482 | return 0; | |
a513fe19 | 483 | } |
7501267e | 484 | |
6c3bff0e PD |
485 | static int cpu_common_pre_load(void *opaque) |
486 | { | |
487 | CPUState *cpu = opaque; | |
488 | ||
adee6424 | 489 | cpu->exception_index = -1; |
6c3bff0e PD |
490 | |
491 | return 0; | |
492 | } | |
493 | ||
494 | static bool cpu_common_exception_index_needed(void *opaque) | |
495 | { | |
496 | CPUState *cpu = opaque; | |
497 | ||
adee6424 | 498 | return tcg_enabled() && cpu->exception_index != -1; |
6c3bff0e PD |
499 | } |
500 | ||
501 | static const VMStateDescription vmstate_cpu_common_exception_index = { | |
502 | .name = "cpu_common/exception_index", | |
503 | .version_id = 1, | |
504 | .minimum_version_id = 1, | |
5cd8cada | 505 | .needed = cpu_common_exception_index_needed, |
6c3bff0e PD |
506 | .fields = (VMStateField[]) { |
507 | VMSTATE_INT32(exception_index, CPUState), | |
508 | VMSTATE_END_OF_LIST() | |
509 | } | |
510 | }; | |
511 | ||
bac05aa9 AS |
512 | static bool cpu_common_crash_occurred_needed(void *opaque) |
513 | { | |
514 | CPUState *cpu = opaque; | |
515 | ||
516 | return cpu->crash_occurred; | |
517 | } | |
518 | ||
519 | static const VMStateDescription vmstate_cpu_common_crash_occurred = { | |
520 | .name = "cpu_common/crash_occurred", | |
521 | .version_id = 1, | |
522 | .minimum_version_id = 1, | |
523 | .needed = cpu_common_crash_occurred_needed, | |
524 | .fields = (VMStateField[]) { | |
525 | VMSTATE_BOOL(crash_occurred, CPUState), | |
526 | VMSTATE_END_OF_LIST() | |
527 | } | |
528 | }; | |
529 | ||
1a1562f5 | 530 | const VMStateDescription vmstate_cpu_common = { |
5b6dd868 BS |
531 | .name = "cpu_common", |
532 | .version_id = 1, | |
533 | .minimum_version_id = 1, | |
6c3bff0e | 534 | .pre_load = cpu_common_pre_load, |
5b6dd868 | 535 | .post_load = cpu_common_post_load, |
35d08458 | 536 | .fields = (VMStateField[]) { |
259186a7 AF |
537 | VMSTATE_UINT32(halted, CPUState), |
538 | VMSTATE_UINT32(interrupt_request, CPUState), | |
5b6dd868 | 539 | VMSTATE_END_OF_LIST() |
6c3bff0e | 540 | }, |
5cd8cada JQ |
541 | .subsections = (const VMStateDescription*[]) { |
542 | &vmstate_cpu_common_exception_index, | |
bac05aa9 | 543 | &vmstate_cpu_common_crash_occurred, |
5cd8cada | 544 | NULL |
5b6dd868 BS |
545 | } |
546 | }; | |
1a1562f5 | 547 | |
5b6dd868 | 548 | #endif |
ea041c0e | 549 | |
38d8f5c8 | 550 | CPUState *qemu_get_cpu(int index) |
ea041c0e | 551 | { |
bdc44640 | 552 | CPUState *cpu; |
ea041c0e | 553 | |
bdc44640 | 554 | CPU_FOREACH(cpu) { |
55e5c285 | 555 | if (cpu->cpu_index == index) { |
bdc44640 | 556 | return cpu; |
55e5c285 | 557 | } |
ea041c0e | 558 | } |
5b6dd868 | 559 | |
bdc44640 | 560 | return NULL; |
ea041c0e FB |
561 | } |
562 | ||
09daed84 | 563 | #if !defined(CONFIG_USER_ONLY) |
56943e8c | 564 | void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx) |
09daed84 | 565 | { |
12ebc9a7 PM |
566 | CPUAddressSpace *newas; |
567 | ||
568 | /* Target code should have set num_ases before calling us */ | |
569 | assert(asidx < cpu->num_ases); | |
570 | ||
56943e8c PM |
571 | if (asidx == 0) { |
572 | /* address space 0 gets the convenience alias */ | |
573 | cpu->as = as; | |
574 | } | |
575 | ||
12ebc9a7 PM |
576 | /* KVM cannot currently support multiple address spaces. */ |
577 | assert(asidx == 0 || !kvm_enabled()); | |
09daed84 | 578 | |
12ebc9a7 PM |
579 | if (!cpu->cpu_ases) { |
580 | cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases); | |
09daed84 | 581 | } |
32857f4d | 582 | |
12ebc9a7 PM |
583 | newas = &cpu->cpu_ases[asidx]; |
584 | newas->cpu = cpu; | |
585 | newas->as = as; | |
56943e8c | 586 | if (tcg_enabled()) { |
12ebc9a7 PM |
587 | newas->tcg_as_listener.commit = tcg_commit; |
588 | memory_listener_register(&newas->tcg_as_listener, as); | |
56943e8c | 589 | } |
09daed84 | 590 | } |
651a5bc0 PM |
591 | |
592 | AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx) | |
593 | { | |
594 | /* Return the AddressSpace corresponding to the specified index */ | |
595 | return cpu->cpu_ases[asidx].as; | |
596 | } | |
09daed84 EI |
597 | #endif |
598 | ||
1c59eb39 BR |
599 | void cpu_exec_exit(CPUState *cpu) |
600 | { | |
9dfeca7c BR |
601 | CPUClass *cc = CPU_GET_CLASS(cpu); |
602 | ||
267f685b | 603 | cpu_list_remove(cpu); |
9dfeca7c BR |
604 | |
605 | if (cc->vmsd != NULL) { | |
606 | vmstate_unregister(NULL, cc->vmsd, cpu); | |
607 | } | |
608 | if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { | |
609 | vmstate_unregister(NULL, &vmstate_cpu_common, cpu); | |
610 | } | |
1c59eb39 BR |
611 | } |
612 | ||
4bad9e39 | 613 | void cpu_exec_init(CPUState *cpu, Error **errp) |
ea041c0e | 614 | { |
1bc7e522 | 615 | CPUClass *cc ATTRIBUTE_UNUSED = CPU_GET_CLASS(cpu); |
a07f953e | 616 | Error *local_err ATTRIBUTE_UNUSED = NULL; |
5b6dd868 | 617 | |
56943e8c | 618 | cpu->as = NULL; |
12ebc9a7 | 619 | cpu->num_ases = 0; |
56943e8c | 620 | |
291135b5 | 621 | #ifndef CONFIG_USER_ONLY |
291135b5 | 622 | cpu->thread_id = qemu_get_thread_id(); |
6731d864 PC |
623 | |
624 | /* This is a softmmu CPU object, so create a property for it | |
625 | * so users can wire up its memory. (This can't go in qom/cpu.c | |
626 | * because that file is compiled only once for both user-mode | |
627 | * and system builds.) The default if no link is set up is to use | |
628 | * the system address space. | |
629 | */ | |
630 | object_property_add_link(OBJECT(cpu), "memory", TYPE_MEMORY_REGION, | |
631 | (Object **)&cpu->memory, | |
632 | qdev_prop_allow_set_link_before_realize, | |
633 | OBJ_PROP_LINK_UNREF_ON_RELEASE, | |
634 | &error_abort); | |
635 | cpu->memory = system_memory; | |
636 | object_ref(OBJECT(cpu->memory)); | |
291135b5 EH |
637 | #endif |
638 | ||
267f685b | 639 | cpu_list_add(cpu); |
1bc7e522 IM |
640 | |
641 | #ifndef CONFIG_USER_ONLY | |
e0d47944 | 642 | if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { |
741da0d3 | 643 | vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu); |
e0d47944 | 644 | } |
b170fce3 | 645 | if (cc->vmsd != NULL) { |
741da0d3 | 646 | vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu); |
b170fce3 | 647 | } |
741da0d3 | 648 | #endif |
ea041c0e FB |
649 | } |
650 | ||
94df27fd | 651 | #if defined(CONFIG_USER_ONLY) |
00b941e5 | 652 | static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) |
94df27fd PB |
653 | { |
654 | tb_invalidate_phys_page_range(pc, pc + 1, 0); | |
655 | } | |
656 | #else | |
00b941e5 | 657 | static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) |
1e7855a5 | 658 | { |
5232e4c7 PM |
659 | MemTxAttrs attrs; |
660 | hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs); | |
661 | int asidx = cpu_asidx_from_attrs(cpu, attrs); | |
e8262a1b | 662 | if (phys != -1) { |
5232e4c7 | 663 | tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as, |
29d8ec7b | 664 | phys | (pc & ~TARGET_PAGE_MASK)); |
e8262a1b | 665 | } |
1e7855a5 | 666 | } |
c27004ec | 667 | #endif |
d720b93d | 668 | |
c527ee8f | 669 | #if defined(CONFIG_USER_ONLY) |
75a34036 | 670 | void cpu_watchpoint_remove_all(CPUState *cpu, int mask) |
c527ee8f PB |
671 | |
672 | { | |
673 | } | |
674 | ||
3ee887e8 PM |
675 | int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, |
676 | int flags) | |
677 | { | |
678 | return -ENOSYS; | |
679 | } | |
680 | ||
681 | void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) | |
682 | { | |
683 | } | |
684 | ||
75a34036 | 685 | int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, |
c527ee8f PB |
686 | int flags, CPUWatchpoint **watchpoint) |
687 | { | |
688 | return -ENOSYS; | |
689 | } | |
690 | #else | |
6658ffb8 | 691 | /* Add a watchpoint. */ |
75a34036 | 692 | int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, |
a1d1bb31 | 693 | int flags, CPUWatchpoint **watchpoint) |
6658ffb8 | 694 | { |
c0ce998e | 695 | CPUWatchpoint *wp; |
6658ffb8 | 696 | |
05068c0d | 697 | /* forbid ranges which are empty or run off the end of the address space */ |
07e2863d | 698 | if (len == 0 || (addr + len - 1) < addr) { |
75a34036 AF |
699 | error_report("tried to set invalid watchpoint at %" |
700 | VADDR_PRIx ", len=%" VADDR_PRIu, addr, len); | |
b4051334 AL |
701 | return -EINVAL; |
702 | } | |
7267c094 | 703 | wp = g_malloc(sizeof(*wp)); |
a1d1bb31 AL |
704 | |
705 | wp->vaddr = addr; | |
05068c0d | 706 | wp->len = len; |
a1d1bb31 AL |
707 | wp->flags = flags; |
708 | ||
2dc9f411 | 709 | /* keep all GDB-injected watchpoints in front */ |
ff4700b0 AF |
710 | if (flags & BP_GDB) { |
711 | QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry); | |
712 | } else { | |
713 | QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry); | |
714 | } | |
6658ffb8 | 715 | |
31b030d4 | 716 | tlb_flush_page(cpu, addr); |
a1d1bb31 AL |
717 | |
718 | if (watchpoint) | |
719 | *watchpoint = wp; | |
720 | return 0; | |
6658ffb8 PB |
721 | } |
722 | ||
a1d1bb31 | 723 | /* Remove a specific watchpoint. */ |
75a34036 | 724 | int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, |
a1d1bb31 | 725 | int flags) |
6658ffb8 | 726 | { |
a1d1bb31 | 727 | CPUWatchpoint *wp; |
6658ffb8 | 728 | |
ff4700b0 | 729 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d | 730 | if (addr == wp->vaddr && len == wp->len |
6e140f28 | 731 | && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { |
75a34036 | 732 | cpu_watchpoint_remove_by_ref(cpu, wp); |
6658ffb8 PB |
733 | return 0; |
734 | } | |
735 | } | |
a1d1bb31 | 736 | return -ENOENT; |
6658ffb8 PB |
737 | } |
738 | ||
a1d1bb31 | 739 | /* Remove a specific watchpoint by reference. */ |
75a34036 | 740 | void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) |
a1d1bb31 | 741 | { |
ff4700b0 | 742 | QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry); |
7d03f82f | 743 | |
31b030d4 | 744 | tlb_flush_page(cpu, watchpoint->vaddr); |
a1d1bb31 | 745 | |
7267c094 | 746 | g_free(watchpoint); |
a1d1bb31 AL |
747 | } |
748 | ||
749 | /* Remove all matching watchpoints. */ | |
75a34036 | 750 | void cpu_watchpoint_remove_all(CPUState *cpu, int mask) |
a1d1bb31 | 751 | { |
c0ce998e | 752 | CPUWatchpoint *wp, *next; |
a1d1bb31 | 753 | |
ff4700b0 | 754 | QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) { |
75a34036 AF |
755 | if (wp->flags & mask) { |
756 | cpu_watchpoint_remove_by_ref(cpu, wp); | |
757 | } | |
c0ce998e | 758 | } |
7d03f82f | 759 | } |
05068c0d PM |
760 | |
761 | /* Return true if this watchpoint address matches the specified | |
762 | * access (ie the address range covered by the watchpoint overlaps | |
763 | * partially or completely with the address range covered by the | |
764 | * access). | |
765 | */ | |
766 | static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp, | |
767 | vaddr addr, | |
768 | vaddr len) | |
769 | { | |
770 | /* We know the lengths are non-zero, but a little caution is | |
771 | * required to avoid errors in the case where the range ends | |
772 | * exactly at the top of the address space and so addr + len | |
773 | * wraps round to zero. | |
774 | */ | |
775 | vaddr wpend = wp->vaddr + wp->len - 1; | |
776 | vaddr addrend = addr + len - 1; | |
777 | ||
778 | return !(addr > wpend || wp->vaddr > addrend); | |
779 | } | |
780 | ||
c527ee8f | 781 | #endif |
7d03f82f | 782 | |
a1d1bb31 | 783 | /* Add a breakpoint. */ |
b3310ab3 | 784 | int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, |
a1d1bb31 | 785 | CPUBreakpoint **breakpoint) |
4c3a88a2 | 786 | { |
c0ce998e | 787 | CPUBreakpoint *bp; |
3b46e624 | 788 | |
7267c094 | 789 | bp = g_malloc(sizeof(*bp)); |
4c3a88a2 | 790 | |
a1d1bb31 AL |
791 | bp->pc = pc; |
792 | bp->flags = flags; | |
793 | ||
2dc9f411 | 794 | /* keep all GDB-injected breakpoints in front */ |
00b941e5 | 795 | if (flags & BP_GDB) { |
f0c3c505 | 796 | QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry); |
00b941e5 | 797 | } else { |
f0c3c505 | 798 | QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry); |
00b941e5 | 799 | } |
3b46e624 | 800 | |
f0c3c505 | 801 | breakpoint_invalidate(cpu, pc); |
a1d1bb31 | 802 | |
00b941e5 | 803 | if (breakpoint) { |
a1d1bb31 | 804 | *breakpoint = bp; |
00b941e5 | 805 | } |
4c3a88a2 | 806 | return 0; |
4c3a88a2 FB |
807 | } |
808 | ||
a1d1bb31 | 809 | /* Remove a specific breakpoint. */ |
b3310ab3 | 810 | int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags) |
a1d1bb31 | 811 | { |
a1d1bb31 AL |
812 | CPUBreakpoint *bp; |
813 | ||
f0c3c505 | 814 | QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { |
a1d1bb31 | 815 | if (bp->pc == pc && bp->flags == flags) { |
b3310ab3 | 816 | cpu_breakpoint_remove_by_ref(cpu, bp); |
a1d1bb31 AL |
817 | return 0; |
818 | } | |
7d03f82f | 819 | } |
a1d1bb31 | 820 | return -ENOENT; |
7d03f82f EI |
821 | } |
822 | ||
a1d1bb31 | 823 | /* Remove a specific breakpoint by reference. */ |
b3310ab3 | 824 | void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint) |
4c3a88a2 | 825 | { |
f0c3c505 AF |
826 | QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry); |
827 | ||
828 | breakpoint_invalidate(cpu, breakpoint->pc); | |
a1d1bb31 | 829 | |
7267c094 | 830 | g_free(breakpoint); |
a1d1bb31 AL |
831 | } |
832 | ||
833 | /* Remove all matching breakpoints. */ | |
b3310ab3 | 834 | void cpu_breakpoint_remove_all(CPUState *cpu, int mask) |
a1d1bb31 | 835 | { |
c0ce998e | 836 | CPUBreakpoint *bp, *next; |
a1d1bb31 | 837 | |
f0c3c505 | 838 | QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) { |
b3310ab3 AF |
839 | if (bp->flags & mask) { |
840 | cpu_breakpoint_remove_by_ref(cpu, bp); | |
841 | } | |
c0ce998e | 842 | } |
4c3a88a2 FB |
843 | } |
844 | ||
c33a346e FB |
845 | /* enable or disable single step mode. EXCP_DEBUG is returned by the |
846 | CPU loop after each instruction */ | |
3825b28f | 847 | void cpu_single_step(CPUState *cpu, int enabled) |
c33a346e | 848 | { |
ed2803da AF |
849 | if (cpu->singlestep_enabled != enabled) { |
850 | cpu->singlestep_enabled = enabled; | |
851 | if (kvm_enabled()) { | |
38e478ec | 852 | kvm_update_guest_debug(cpu, 0); |
ed2803da | 853 | } else { |
ccbb4d44 | 854 | /* must flush all the translated code to avoid inconsistencies */ |
e22a25c9 | 855 | /* XXX: only flush what is necessary */ |
bbd77c18 | 856 | tb_flush(cpu); |
e22a25c9 | 857 | } |
c33a346e | 858 | } |
c33a346e FB |
859 | } |
860 | ||
a47dddd7 | 861 | void cpu_abort(CPUState *cpu, const char *fmt, ...) |
7501267e FB |
862 | { |
863 | va_list ap; | |
493ae1f0 | 864 | va_list ap2; |
7501267e FB |
865 | |
866 | va_start(ap, fmt); | |
493ae1f0 | 867 | va_copy(ap2, ap); |
7501267e FB |
868 | fprintf(stderr, "qemu: fatal: "); |
869 | vfprintf(stderr, fmt, ap); | |
870 | fprintf(stderr, "\n"); | |
878096ee | 871 | cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP); |
013a2942 | 872 | if (qemu_log_separate()) { |
93fcfe39 AL |
873 | qemu_log("qemu: fatal: "); |
874 | qemu_log_vprintf(fmt, ap2); | |
875 | qemu_log("\n"); | |
a0762859 | 876 | log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP); |
31b1a7b4 | 877 | qemu_log_flush(); |
93fcfe39 | 878 | qemu_log_close(); |
924edcae | 879 | } |
493ae1f0 | 880 | va_end(ap2); |
f9373291 | 881 | va_end(ap); |
7615936e | 882 | replay_finish(); |
fd052bf6 RV |
883 | #if defined(CONFIG_USER_ONLY) |
884 | { | |
885 | struct sigaction act; | |
886 | sigfillset(&act.sa_mask); | |
887 | act.sa_handler = SIG_DFL; | |
888 | sigaction(SIGABRT, &act, NULL); | |
889 | } | |
890 | #endif | |
7501267e FB |
891 | abort(); |
892 | } | |
893 | ||
0124311e | 894 | #if !defined(CONFIG_USER_ONLY) |
0dc3f44a | 895 | /* Called from RCU critical section */ |
041603fe PB |
896 | static RAMBlock *qemu_get_ram_block(ram_addr_t addr) |
897 | { | |
898 | RAMBlock *block; | |
899 | ||
43771539 | 900 | block = atomic_rcu_read(&ram_list.mru_block); |
9b8424d5 | 901 | if (block && addr - block->offset < block->max_length) { |
68851b98 | 902 | return block; |
041603fe | 903 | } |
0dc3f44a | 904 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
9b8424d5 | 905 | if (addr - block->offset < block->max_length) { |
041603fe PB |
906 | goto found; |
907 | } | |
908 | } | |
909 | ||
910 | fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); | |
911 | abort(); | |
912 | ||
913 | found: | |
43771539 PB |
914 | /* It is safe to write mru_block outside the iothread lock. This |
915 | * is what happens: | |
916 | * | |
917 | * mru_block = xxx | |
918 | * rcu_read_unlock() | |
919 | * xxx removed from list | |
920 | * rcu_read_lock() | |
921 | * read mru_block | |
922 | * mru_block = NULL; | |
923 | * call_rcu(reclaim_ramblock, xxx); | |
924 | * rcu_read_unlock() | |
925 | * | |
926 | * atomic_rcu_set is not needed here. The block was already published | |
927 | * when it was placed into the list. Here we're just making an extra | |
928 | * copy of the pointer. | |
929 | */ | |
041603fe PB |
930 | ram_list.mru_block = block; |
931 | return block; | |
932 | } | |
933 | ||
a2f4d5be | 934 | static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) |
d24981d3 | 935 | { |
9a13565d | 936 | CPUState *cpu; |
041603fe | 937 | ram_addr_t start1; |
a2f4d5be JQ |
938 | RAMBlock *block; |
939 | ram_addr_t end; | |
940 | ||
941 | end = TARGET_PAGE_ALIGN(start + length); | |
942 | start &= TARGET_PAGE_MASK; | |
d24981d3 | 943 | |
0dc3f44a | 944 | rcu_read_lock(); |
041603fe PB |
945 | block = qemu_get_ram_block(start); |
946 | assert(block == qemu_get_ram_block(end - 1)); | |
1240be24 | 947 | start1 = (uintptr_t)ramblock_ptr(block, start - block->offset); |
9a13565d PC |
948 | CPU_FOREACH(cpu) { |
949 | tlb_reset_dirty(cpu, start1, length); | |
950 | } | |
0dc3f44a | 951 | rcu_read_unlock(); |
d24981d3 JQ |
952 | } |
953 | ||
5579c7f3 | 954 | /* Note: start and end must be within the same ram block. */ |
03eebc9e SH |
955 | bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, |
956 | ram_addr_t length, | |
957 | unsigned client) | |
1ccde1cb | 958 | { |
5b82b703 | 959 | DirtyMemoryBlocks *blocks; |
03eebc9e | 960 | unsigned long end, page; |
5b82b703 | 961 | bool dirty = false; |
03eebc9e SH |
962 | |
963 | if (length == 0) { | |
964 | return false; | |
965 | } | |
f23db169 | 966 | |
03eebc9e SH |
967 | end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; |
968 | page = start >> TARGET_PAGE_BITS; | |
5b82b703 SH |
969 | |
970 | rcu_read_lock(); | |
971 | ||
972 | blocks = atomic_rcu_read(&ram_list.dirty_memory[client]); | |
973 | ||
974 | while (page < end) { | |
975 | unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; | |
976 | unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; | |
977 | unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset); | |
978 | ||
979 | dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx], | |
980 | offset, num); | |
981 | page += num; | |
982 | } | |
983 | ||
984 | rcu_read_unlock(); | |
03eebc9e SH |
985 | |
986 | if (dirty && tcg_enabled()) { | |
a2f4d5be | 987 | tlb_reset_dirty_range_all(start, length); |
5579c7f3 | 988 | } |
03eebc9e SH |
989 | |
990 | return dirty; | |
1ccde1cb FB |
991 | } |
992 | ||
79e2b9ae | 993 | /* Called from RCU critical section */ |
bb0e627a | 994 | hwaddr memory_region_section_get_iotlb(CPUState *cpu, |
149f54b5 PB |
995 | MemoryRegionSection *section, |
996 | target_ulong vaddr, | |
997 | hwaddr paddr, hwaddr xlat, | |
998 | int prot, | |
999 | target_ulong *address) | |
e5548617 | 1000 | { |
a8170e5e | 1001 | hwaddr iotlb; |
e5548617 BS |
1002 | CPUWatchpoint *wp; |
1003 | ||
cc5bea60 | 1004 | if (memory_region_is_ram(section->mr)) { |
e5548617 | 1005 | /* Normal RAM. */ |
e4e69794 | 1006 | iotlb = memory_region_get_ram_addr(section->mr) + xlat; |
e5548617 | 1007 | if (!section->readonly) { |
b41aac4f | 1008 | iotlb |= PHYS_SECTION_NOTDIRTY; |
e5548617 | 1009 | } else { |
b41aac4f | 1010 | iotlb |= PHYS_SECTION_ROM; |
e5548617 BS |
1011 | } |
1012 | } else { | |
0b8e2c10 PM |
1013 | AddressSpaceDispatch *d; |
1014 | ||
1015 | d = atomic_rcu_read(§ion->address_space->dispatch); | |
1016 | iotlb = section - d->map.sections; | |
149f54b5 | 1017 | iotlb += xlat; |
e5548617 BS |
1018 | } |
1019 | ||
1020 | /* Make accesses to pages with watchpoints go via the | |
1021 | watchpoint trap routines. */ | |
ff4700b0 | 1022 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d | 1023 | if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) { |
e5548617 BS |
1024 | /* Avoid trapping reads of pages with a write breakpoint. */ |
1025 | if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) { | |
b41aac4f | 1026 | iotlb = PHYS_SECTION_WATCH + paddr; |
e5548617 BS |
1027 | *address |= TLB_MMIO; |
1028 | break; | |
1029 | } | |
1030 | } | |
1031 | } | |
1032 | ||
1033 | return iotlb; | |
1034 | } | |
9fa3e853 FB |
1035 | #endif /* defined(CONFIG_USER_ONLY) */ |
1036 | ||
e2eef170 | 1037 | #if !defined(CONFIG_USER_ONLY) |
8da3ff18 | 1038 | |
c227f099 | 1039 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, |
5312bd8b | 1040 | uint16_t section); |
acc9d80b | 1041 | static subpage_t *subpage_init(AddressSpace *as, hwaddr base); |
54688b1e | 1042 | |
a2b257d6 IM |
1043 | static void *(*phys_mem_alloc)(size_t size, uint64_t *align) = |
1044 | qemu_anon_ram_alloc; | |
91138037 MA |
1045 | |
1046 | /* | |
1047 | * Set a custom physical guest memory alloator. | |
1048 | * Accelerators with unusual needs may need this. Hopefully, we can | |
1049 | * get rid of it eventually. | |
1050 | */ | |
a2b257d6 | 1051 | void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align)) |
91138037 MA |
1052 | { |
1053 | phys_mem_alloc = alloc; | |
1054 | } | |
1055 | ||
53cb28cb MA |
1056 | static uint16_t phys_section_add(PhysPageMap *map, |
1057 | MemoryRegionSection *section) | |
5312bd8b | 1058 | { |
68f3f65b PB |
1059 | /* The physical section number is ORed with a page-aligned |
1060 | * pointer to produce the iotlb entries. Thus it should | |
1061 | * never overflow into the page-aligned value. | |
1062 | */ | |
53cb28cb | 1063 | assert(map->sections_nb < TARGET_PAGE_SIZE); |
68f3f65b | 1064 | |
53cb28cb MA |
1065 | if (map->sections_nb == map->sections_nb_alloc) { |
1066 | map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); | |
1067 | map->sections = g_renew(MemoryRegionSection, map->sections, | |
1068 | map->sections_nb_alloc); | |
5312bd8b | 1069 | } |
53cb28cb | 1070 | map->sections[map->sections_nb] = *section; |
dfde4e6e | 1071 | memory_region_ref(section->mr); |
53cb28cb | 1072 | return map->sections_nb++; |
5312bd8b AK |
1073 | } |
1074 | ||
058bc4b5 PB |
1075 | static void phys_section_destroy(MemoryRegion *mr) |
1076 | { | |
55b4e80b DS |
1077 | bool have_sub_page = mr->subpage; |
1078 | ||
dfde4e6e PB |
1079 | memory_region_unref(mr); |
1080 | ||
55b4e80b | 1081 | if (have_sub_page) { |
058bc4b5 | 1082 | subpage_t *subpage = container_of(mr, subpage_t, iomem); |
b4fefef9 | 1083 | object_unref(OBJECT(&subpage->iomem)); |
058bc4b5 PB |
1084 | g_free(subpage); |
1085 | } | |
1086 | } | |
1087 | ||
6092666e | 1088 | static void phys_sections_free(PhysPageMap *map) |
5312bd8b | 1089 | { |
9affd6fc PB |
1090 | while (map->sections_nb > 0) { |
1091 | MemoryRegionSection *section = &map->sections[--map->sections_nb]; | |
058bc4b5 PB |
1092 | phys_section_destroy(section->mr); |
1093 | } | |
9affd6fc PB |
1094 | g_free(map->sections); |
1095 | g_free(map->nodes); | |
5312bd8b AK |
1096 | } |
1097 | ||
ac1970fb | 1098 | static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section) |
0f0cb164 AK |
1099 | { |
1100 | subpage_t *subpage; | |
a8170e5e | 1101 | hwaddr base = section->offset_within_address_space |
0f0cb164 | 1102 | & TARGET_PAGE_MASK; |
97115a8d | 1103 | MemoryRegionSection *existing = phys_page_find(d->phys_map, base, |
53cb28cb | 1104 | d->map.nodes, d->map.sections); |
0f0cb164 AK |
1105 | MemoryRegionSection subsection = { |
1106 | .offset_within_address_space = base, | |
052e87b0 | 1107 | .size = int128_make64(TARGET_PAGE_SIZE), |
0f0cb164 | 1108 | }; |
a8170e5e | 1109 | hwaddr start, end; |
0f0cb164 | 1110 | |
f3705d53 | 1111 | assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); |
0f0cb164 | 1112 | |
f3705d53 | 1113 | if (!(existing->mr->subpage)) { |
acc9d80b | 1114 | subpage = subpage_init(d->as, base); |
3be91e86 | 1115 | subsection.address_space = d->as; |
0f0cb164 | 1116 | subsection.mr = &subpage->iomem; |
ac1970fb | 1117 | phys_page_set(d, base >> TARGET_PAGE_BITS, 1, |
53cb28cb | 1118 | phys_section_add(&d->map, &subsection)); |
0f0cb164 | 1119 | } else { |
f3705d53 | 1120 | subpage = container_of(existing->mr, subpage_t, iomem); |
0f0cb164 AK |
1121 | } |
1122 | start = section->offset_within_address_space & ~TARGET_PAGE_MASK; | |
052e87b0 | 1123 | end = start + int128_get64(section->size) - 1; |
53cb28cb MA |
1124 | subpage_register(subpage, start, end, |
1125 | phys_section_add(&d->map, section)); | |
0f0cb164 AK |
1126 | } |
1127 | ||
1128 | ||
052e87b0 PB |
1129 | static void register_multipage(AddressSpaceDispatch *d, |
1130 | MemoryRegionSection *section) | |
33417e70 | 1131 | { |
a8170e5e | 1132 | hwaddr start_addr = section->offset_within_address_space; |
53cb28cb | 1133 | uint16_t section_index = phys_section_add(&d->map, section); |
052e87b0 PB |
1134 | uint64_t num_pages = int128_get64(int128_rshift(section->size, |
1135 | TARGET_PAGE_BITS)); | |
dd81124b | 1136 | |
733d5ef5 PB |
1137 | assert(num_pages); |
1138 | phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); | |
33417e70 FB |
1139 | } |
1140 | ||
ac1970fb | 1141 | static void mem_add(MemoryListener *listener, MemoryRegionSection *section) |
0f0cb164 | 1142 | { |
89ae337a | 1143 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); |
00752703 | 1144 | AddressSpaceDispatch *d = as->next_dispatch; |
99b9cc06 | 1145 | MemoryRegionSection now = *section, remain = *section; |
052e87b0 | 1146 | Int128 page_size = int128_make64(TARGET_PAGE_SIZE); |
0f0cb164 | 1147 | |
733d5ef5 PB |
1148 | if (now.offset_within_address_space & ~TARGET_PAGE_MASK) { |
1149 | uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space) | |
1150 | - now.offset_within_address_space; | |
1151 | ||
052e87b0 | 1152 | now.size = int128_min(int128_make64(left), now.size); |
ac1970fb | 1153 | register_subpage(d, &now); |
733d5ef5 | 1154 | } else { |
052e87b0 | 1155 | now.size = int128_zero(); |
733d5ef5 | 1156 | } |
052e87b0 PB |
1157 | while (int128_ne(remain.size, now.size)) { |
1158 | remain.size = int128_sub(remain.size, now.size); | |
1159 | remain.offset_within_address_space += int128_get64(now.size); | |
1160 | remain.offset_within_region += int128_get64(now.size); | |
69b67646 | 1161 | now = remain; |
052e87b0 | 1162 | if (int128_lt(remain.size, page_size)) { |
733d5ef5 | 1163 | register_subpage(d, &now); |
88266249 | 1164 | } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { |
052e87b0 | 1165 | now.size = page_size; |
ac1970fb | 1166 | register_subpage(d, &now); |
69b67646 | 1167 | } else { |
052e87b0 | 1168 | now.size = int128_and(now.size, int128_neg(page_size)); |
ac1970fb | 1169 | register_multipage(d, &now); |
69b67646 | 1170 | } |
0f0cb164 AK |
1171 | } |
1172 | } | |
1173 | ||
62a2744c SY |
1174 | void qemu_flush_coalesced_mmio_buffer(void) |
1175 | { | |
1176 | if (kvm_enabled()) | |
1177 | kvm_flush_coalesced_mmio_buffer(); | |
1178 | } | |
1179 | ||
b2a8658e UD |
1180 | void qemu_mutex_lock_ramlist(void) |
1181 | { | |
1182 | qemu_mutex_lock(&ram_list.mutex); | |
1183 | } | |
1184 | ||
1185 | void qemu_mutex_unlock_ramlist(void) | |
1186 | { | |
1187 | qemu_mutex_unlock(&ram_list.mutex); | |
1188 | } | |
1189 | ||
e1e84ba0 | 1190 | #ifdef __linux__ |
04b16653 AW |
1191 | static void *file_ram_alloc(RAMBlock *block, |
1192 | ram_addr_t memory, | |
7f56e740 PB |
1193 | const char *path, |
1194 | Error **errp) | |
c902760f | 1195 | { |
fd97fd44 | 1196 | bool unlink_on_error = false; |
c902760f | 1197 | char *filename; |
8ca761f6 PF |
1198 | char *sanitized_name; |
1199 | char *c; | |
056b68af | 1200 | void *area = MAP_FAILED; |
5c3ece79 | 1201 | int fd = -1; |
c902760f MT |
1202 | |
1203 | if (kvm_enabled() && !kvm_has_sync_mmu()) { | |
7f56e740 PB |
1204 | error_setg(errp, |
1205 | "host lacks kvm mmu notifiers, -mem-path unsupported"); | |
fd97fd44 | 1206 | return NULL; |
c902760f MT |
1207 | } |
1208 | ||
fd97fd44 MA |
1209 | for (;;) { |
1210 | fd = open(path, O_RDWR); | |
1211 | if (fd >= 0) { | |
1212 | /* @path names an existing file, use it */ | |
1213 | break; | |
8d31d6b6 | 1214 | } |
fd97fd44 MA |
1215 | if (errno == ENOENT) { |
1216 | /* @path names a file that doesn't exist, create it */ | |
1217 | fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644); | |
1218 | if (fd >= 0) { | |
1219 | unlink_on_error = true; | |
1220 | break; | |
1221 | } | |
1222 | } else if (errno == EISDIR) { | |
1223 | /* @path names a directory, create a file there */ | |
1224 | /* Make name safe to use with mkstemp by replacing '/' with '_'. */ | |
1225 | sanitized_name = g_strdup(memory_region_name(block->mr)); | |
1226 | for (c = sanitized_name; *c != '\0'; c++) { | |
1227 | if (*c == '/') { | |
1228 | *c = '_'; | |
1229 | } | |
1230 | } | |
8ca761f6 | 1231 | |
fd97fd44 MA |
1232 | filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, |
1233 | sanitized_name); | |
1234 | g_free(sanitized_name); | |
8d31d6b6 | 1235 | |
fd97fd44 MA |
1236 | fd = mkstemp(filename); |
1237 | if (fd >= 0) { | |
1238 | unlink(filename); | |
1239 | g_free(filename); | |
1240 | break; | |
1241 | } | |
1242 | g_free(filename); | |
8d31d6b6 | 1243 | } |
fd97fd44 MA |
1244 | if (errno != EEXIST && errno != EINTR) { |
1245 | error_setg_errno(errp, errno, | |
1246 | "can't open backing store %s for guest RAM", | |
1247 | path); | |
1248 | goto error; | |
1249 | } | |
1250 | /* | |
1251 | * Try again on EINTR and EEXIST. The latter happens when | |
1252 | * something else creates the file between our two open(). | |
1253 | */ | |
8d31d6b6 | 1254 | } |
c902760f | 1255 | |
863e9621 DDAG |
1256 | block->page_size = qemu_fd_getpagesize(fd); |
1257 | block->mr->align = MAX(block->page_size, QEMU_VMALLOC_ALIGN); | |
fd97fd44 | 1258 | |
863e9621 | 1259 | if (memory < block->page_size) { |
fd97fd44 | 1260 | error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " |
863e9621 DDAG |
1261 | "or larger than page size 0x%zx", |
1262 | memory, block->page_size); | |
f9a49dfa | 1263 | goto error; |
c902760f | 1264 | } |
c902760f | 1265 | |
863e9621 | 1266 | memory = ROUND_UP(memory, block->page_size); |
c902760f MT |
1267 | |
1268 | /* | |
1269 | * ftruncate is not supported by hugetlbfs in older | |
1270 | * hosts, so don't bother bailing out on errors. | |
1271 | * If anything goes wrong with it under other filesystems, | |
1272 | * mmap will fail. | |
1273 | */ | |
7f56e740 | 1274 | if (ftruncate(fd, memory)) { |
9742bf26 | 1275 | perror("ftruncate"); |
7f56e740 | 1276 | } |
c902760f | 1277 | |
d2f39add DD |
1278 | area = qemu_ram_mmap(fd, memory, block->mr->align, |
1279 | block->flags & RAM_SHARED); | |
c902760f | 1280 | if (area == MAP_FAILED) { |
7f56e740 | 1281 | error_setg_errno(errp, errno, |
fd97fd44 | 1282 | "unable to map backing store for guest RAM"); |
f9a49dfa | 1283 | goto error; |
c902760f | 1284 | } |
ef36fa14 MT |
1285 | |
1286 | if (mem_prealloc) { | |
056b68af IM |
1287 | os_mem_prealloc(fd, area, memory, errp); |
1288 | if (errp && *errp) { | |
1289 | goto error; | |
1290 | } | |
ef36fa14 MT |
1291 | } |
1292 | ||
04b16653 | 1293 | block->fd = fd; |
c902760f | 1294 | return area; |
f9a49dfa MT |
1295 | |
1296 | error: | |
056b68af IM |
1297 | if (area != MAP_FAILED) { |
1298 | qemu_ram_munmap(area, memory); | |
1299 | } | |
fd97fd44 MA |
1300 | if (unlink_on_error) { |
1301 | unlink(path); | |
1302 | } | |
5c3ece79 PB |
1303 | if (fd != -1) { |
1304 | close(fd); | |
1305 | } | |
f9a49dfa | 1306 | return NULL; |
c902760f MT |
1307 | } |
1308 | #endif | |
1309 | ||
0dc3f44a | 1310 | /* Called with the ramlist lock held. */ |
d17b5288 | 1311 | static ram_addr_t find_ram_offset(ram_addr_t size) |
04b16653 AW |
1312 | { |
1313 | RAMBlock *block, *next_block; | |
3e837b2c | 1314 | ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; |
04b16653 | 1315 | |
49cd9ac6 SH |
1316 | assert(size != 0); /* it would hand out same offset multiple times */ |
1317 | ||
0dc3f44a | 1318 | if (QLIST_EMPTY_RCU(&ram_list.blocks)) { |
04b16653 | 1319 | return 0; |
0d53d9fe | 1320 | } |
04b16653 | 1321 | |
0dc3f44a | 1322 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
f15fbc4b | 1323 | ram_addr_t end, next = RAM_ADDR_MAX; |
04b16653 | 1324 | |
62be4e3a | 1325 | end = block->offset + block->max_length; |
04b16653 | 1326 | |
0dc3f44a | 1327 | QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) { |
04b16653 AW |
1328 | if (next_block->offset >= end) { |
1329 | next = MIN(next, next_block->offset); | |
1330 | } | |
1331 | } | |
1332 | if (next - end >= size && next - end < mingap) { | |
3e837b2c | 1333 | offset = end; |
04b16653 AW |
1334 | mingap = next - end; |
1335 | } | |
1336 | } | |
3e837b2c AW |
1337 | |
1338 | if (offset == RAM_ADDR_MAX) { | |
1339 | fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", | |
1340 | (uint64_t)size); | |
1341 | abort(); | |
1342 | } | |
1343 | ||
04b16653 AW |
1344 | return offset; |
1345 | } | |
1346 | ||
652d7ec2 | 1347 | ram_addr_t last_ram_offset(void) |
d17b5288 AW |
1348 | { |
1349 | RAMBlock *block; | |
1350 | ram_addr_t last = 0; | |
1351 | ||
0dc3f44a MD |
1352 | rcu_read_lock(); |
1353 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
62be4e3a | 1354 | last = MAX(last, block->offset + block->max_length); |
0d53d9fe | 1355 | } |
0dc3f44a | 1356 | rcu_read_unlock(); |
d17b5288 AW |
1357 | return last; |
1358 | } | |
1359 | ||
ddb97f1d JB |
1360 | static void qemu_ram_setup_dump(void *addr, ram_addr_t size) |
1361 | { | |
1362 | int ret; | |
ddb97f1d JB |
1363 | |
1364 | /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ | |
47c8ca53 | 1365 | if (!machine_dump_guest_core(current_machine)) { |
ddb97f1d JB |
1366 | ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); |
1367 | if (ret) { | |
1368 | perror("qemu_madvise"); | |
1369 | fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " | |
1370 | "but dump_guest_core=off specified\n"); | |
1371 | } | |
1372 | } | |
1373 | } | |
1374 | ||
422148d3 DDAG |
1375 | const char *qemu_ram_get_idstr(RAMBlock *rb) |
1376 | { | |
1377 | return rb->idstr; | |
1378 | } | |
1379 | ||
ae3a7047 | 1380 | /* Called with iothread lock held. */ |
fa53a0e5 | 1381 | void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev) |
20cfe881 | 1382 | { |
fa53a0e5 | 1383 | RAMBlock *block; |
20cfe881 | 1384 | |
c5705a77 AK |
1385 | assert(new_block); |
1386 | assert(!new_block->idstr[0]); | |
84b89d78 | 1387 | |
09e5ab63 AL |
1388 | if (dev) { |
1389 | char *id = qdev_get_dev_path(dev); | |
84b89d78 CM |
1390 | if (id) { |
1391 | snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); | |
7267c094 | 1392 | g_free(id); |
84b89d78 CM |
1393 | } |
1394 | } | |
1395 | pstrcat(new_block->idstr, sizeof(new_block->idstr), name); | |
1396 | ||
ab0a9956 | 1397 | rcu_read_lock(); |
0dc3f44a | 1398 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
fa53a0e5 GA |
1399 | if (block != new_block && |
1400 | !strcmp(block->idstr, new_block->idstr)) { | |
84b89d78 CM |
1401 | fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", |
1402 | new_block->idstr); | |
1403 | abort(); | |
1404 | } | |
1405 | } | |
0dc3f44a | 1406 | rcu_read_unlock(); |
c5705a77 AK |
1407 | } |
1408 | ||
ae3a7047 | 1409 | /* Called with iothread lock held. */ |
fa53a0e5 | 1410 | void qemu_ram_unset_idstr(RAMBlock *block) |
20cfe881 | 1411 | { |
ae3a7047 MD |
1412 | /* FIXME: arch_init.c assumes that this is not called throughout |
1413 | * migration. Ignore the problem since hot-unplug during migration | |
1414 | * does not work anyway. | |
1415 | */ | |
20cfe881 HT |
1416 | if (block) { |
1417 | memset(block->idstr, 0, sizeof(block->idstr)); | |
1418 | } | |
1419 | } | |
1420 | ||
863e9621 DDAG |
1421 | size_t qemu_ram_pagesize(RAMBlock *rb) |
1422 | { | |
1423 | return rb->page_size; | |
1424 | } | |
1425 | ||
8490fc78 LC |
1426 | static int memory_try_enable_merging(void *addr, size_t len) |
1427 | { | |
75cc7f01 | 1428 | if (!machine_mem_merge(current_machine)) { |
8490fc78 LC |
1429 | /* disabled by the user */ |
1430 | return 0; | |
1431 | } | |
1432 | ||
1433 | return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); | |
1434 | } | |
1435 | ||
62be4e3a MT |
1436 | /* Only legal before guest might have detected the memory size: e.g. on |
1437 | * incoming migration, or right after reset. | |
1438 | * | |
1439 | * As memory core doesn't know how is memory accessed, it is up to | |
1440 | * resize callback to update device state and/or add assertions to detect | |
1441 | * misuse, if necessary. | |
1442 | */ | |
fa53a0e5 | 1443 | int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp) |
62be4e3a | 1444 | { |
62be4e3a MT |
1445 | assert(block); |
1446 | ||
4ed023ce | 1447 | newsize = HOST_PAGE_ALIGN(newsize); |
129ddaf3 | 1448 | |
62be4e3a MT |
1449 | if (block->used_length == newsize) { |
1450 | return 0; | |
1451 | } | |
1452 | ||
1453 | if (!(block->flags & RAM_RESIZEABLE)) { | |
1454 | error_setg_errno(errp, EINVAL, | |
1455 | "Length mismatch: %s: 0x" RAM_ADDR_FMT | |
1456 | " in != 0x" RAM_ADDR_FMT, block->idstr, | |
1457 | newsize, block->used_length); | |
1458 | return -EINVAL; | |
1459 | } | |
1460 | ||
1461 | if (block->max_length < newsize) { | |
1462 | error_setg_errno(errp, EINVAL, | |
1463 | "Length too large: %s: 0x" RAM_ADDR_FMT | |
1464 | " > 0x" RAM_ADDR_FMT, block->idstr, | |
1465 | newsize, block->max_length); | |
1466 | return -EINVAL; | |
1467 | } | |
1468 | ||
1469 | cpu_physical_memory_clear_dirty_range(block->offset, block->used_length); | |
1470 | block->used_length = newsize; | |
58d2707e PB |
1471 | cpu_physical_memory_set_dirty_range(block->offset, block->used_length, |
1472 | DIRTY_CLIENTS_ALL); | |
62be4e3a MT |
1473 | memory_region_set_size(block->mr, newsize); |
1474 | if (block->resized) { | |
1475 | block->resized(block->idstr, newsize, block->host); | |
1476 | } | |
1477 | return 0; | |
1478 | } | |
1479 | ||
5b82b703 SH |
1480 | /* Called with ram_list.mutex held */ |
1481 | static void dirty_memory_extend(ram_addr_t old_ram_size, | |
1482 | ram_addr_t new_ram_size) | |
1483 | { | |
1484 | ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size, | |
1485 | DIRTY_MEMORY_BLOCK_SIZE); | |
1486 | ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size, | |
1487 | DIRTY_MEMORY_BLOCK_SIZE); | |
1488 | int i; | |
1489 | ||
1490 | /* Only need to extend if block count increased */ | |
1491 | if (new_num_blocks <= old_num_blocks) { | |
1492 | return; | |
1493 | } | |
1494 | ||
1495 | for (i = 0; i < DIRTY_MEMORY_NUM; i++) { | |
1496 | DirtyMemoryBlocks *old_blocks; | |
1497 | DirtyMemoryBlocks *new_blocks; | |
1498 | int j; | |
1499 | ||
1500 | old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]); | |
1501 | new_blocks = g_malloc(sizeof(*new_blocks) + | |
1502 | sizeof(new_blocks->blocks[0]) * new_num_blocks); | |
1503 | ||
1504 | if (old_num_blocks) { | |
1505 | memcpy(new_blocks->blocks, old_blocks->blocks, | |
1506 | old_num_blocks * sizeof(old_blocks->blocks[0])); | |
1507 | } | |
1508 | ||
1509 | for (j = old_num_blocks; j < new_num_blocks; j++) { | |
1510 | new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE); | |
1511 | } | |
1512 | ||
1513 | atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks); | |
1514 | ||
1515 | if (old_blocks) { | |
1516 | g_free_rcu(old_blocks, rcu); | |
1517 | } | |
1518 | } | |
1519 | } | |
1520 | ||
528f46af | 1521 | static void ram_block_add(RAMBlock *new_block, Error **errp) |
c5705a77 | 1522 | { |
e1c57ab8 | 1523 | RAMBlock *block; |
0d53d9fe | 1524 | RAMBlock *last_block = NULL; |
2152f5ca | 1525 | ram_addr_t old_ram_size, new_ram_size; |
37aa7a0e | 1526 | Error *err = NULL; |
2152f5ca JQ |
1527 | |
1528 | old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS; | |
c5705a77 | 1529 | |
b2a8658e | 1530 | qemu_mutex_lock_ramlist(); |
9b8424d5 | 1531 | new_block->offset = find_ram_offset(new_block->max_length); |
e1c57ab8 PB |
1532 | |
1533 | if (!new_block->host) { | |
1534 | if (xen_enabled()) { | |
9b8424d5 | 1535 | xen_ram_alloc(new_block->offset, new_block->max_length, |
37aa7a0e MA |
1536 | new_block->mr, &err); |
1537 | if (err) { | |
1538 | error_propagate(errp, err); | |
1539 | qemu_mutex_unlock_ramlist(); | |
39c350ee | 1540 | return; |
37aa7a0e | 1541 | } |
e1c57ab8 | 1542 | } else { |
9b8424d5 | 1543 | new_block->host = phys_mem_alloc(new_block->max_length, |
a2b257d6 | 1544 | &new_block->mr->align); |
39228250 | 1545 | if (!new_block->host) { |
ef701d7b HT |
1546 | error_setg_errno(errp, errno, |
1547 | "cannot set up guest memory '%s'", | |
1548 | memory_region_name(new_block->mr)); | |
1549 | qemu_mutex_unlock_ramlist(); | |
39c350ee | 1550 | return; |
39228250 | 1551 | } |
9b8424d5 | 1552 | memory_try_enable_merging(new_block->host, new_block->max_length); |
6977dfe6 | 1553 | } |
c902760f | 1554 | } |
94a6b54f | 1555 | |
dd631697 LZ |
1556 | new_ram_size = MAX(old_ram_size, |
1557 | (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS); | |
1558 | if (new_ram_size > old_ram_size) { | |
1559 | migration_bitmap_extend(old_ram_size, new_ram_size); | |
5b82b703 | 1560 | dirty_memory_extend(old_ram_size, new_ram_size); |
dd631697 | 1561 | } |
0d53d9fe MD |
1562 | /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ, |
1563 | * QLIST (which has an RCU-friendly variant) does not have insertion at | |
1564 | * tail, so save the last element in last_block. | |
1565 | */ | |
0dc3f44a | 1566 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
0d53d9fe | 1567 | last_block = block; |
9b8424d5 | 1568 | if (block->max_length < new_block->max_length) { |
abb26d63 PB |
1569 | break; |
1570 | } | |
1571 | } | |
1572 | if (block) { | |
0dc3f44a | 1573 | QLIST_INSERT_BEFORE_RCU(block, new_block, next); |
0d53d9fe | 1574 | } else if (last_block) { |
0dc3f44a | 1575 | QLIST_INSERT_AFTER_RCU(last_block, new_block, next); |
0d53d9fe | 1576 | } else { /* list is empty */ |
0dc3f44a | 1577 | QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); |
abb26d63 | 1578 | } |
0d6d3c87 | 1579 | ram_list.mru_block = NULL; |
94a6b54f | 1580 | |
0dc3f44a MD |
1581 | /* Write list before version */ |
1582 | smp_wmb(); | |
f798b07f | 1583 | ram_list.version++; |
b2a8658e | 1584 | qemu_mutex_unlock_ramlist(); |
f798b07f | 1585 | |
9b8424d5 | 1586 | cpu_physical_memory_set_dirty_range(new_block->offset, |
58d2707e PB |
1587 | new_block->used_length, |
1588 | DIRTY_CLIENTS_ALL); | |
94a6b54f | 1589 | |
a904c911 PB |
1590 | if (new_block->host) { |
1591 | qemu_ram_setup_dump(new_block->host, new_block->max_length); | |
1592 | qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); | |
c2cd627d | 1593 | /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */ |
a904c911 | 1594 | qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK); |
e1c57ab8 | 1595 | } |
94a6b54f | 1596 | } |
e9a1ab19 | 1597 | |
0b183fc8 | 1598 | #ifdef __linux__ |
528f46af FZ |
1599 | RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, |
1600 | bool share, const char *mem_path, | |
1601 | Error **errp) | |
e1c57ab8 PB |
1602 | { |
1603 | RAMBlock *new_block; | |
ef701d7b | 1604 | Error *local_err = NULL; |
e1c57ab8 PB |
1605 | |
1606 | if (xen_enabled()) { | |
7f56e740 | 1607 | error_setg(errp, "-mem-path not supported with Xen"); |
528f46af | 1608 | return NULL; |
e1c57ab8 PB |
1609 | } |
1610 | ||
1611 | if (phys_mem_alloc != qemu_anon_ram_alloc) { | |
1612 | /* | |
1613 | * file_ram_alloc() needs to allocate just like | |
1614 | * phys_mem_alloc, but we haven't bothered to provide | |
1615 | * a hook there. | |
1616 | */ | |
7f56e740 PB |
1617 | error_setg(errp, |
1618 | "-mem-path not supported with this accelerator"); | |
528f46af | 1619 | return NULL; |
e1c57ab8 PB |
1620 | } |
1621 | ||
4ed023ce | 1622 | size = HOST_PAGE_ALIGN(size); |
e1c57ab8 PB |
1623 | new_block = g_malloc0(sizeof(*new_block)); |
1624 | new_block->mr = mr; | |
9b8424d5 MT |
1625 | new_block->used_length = size; |
1626 | new_block->max_length = size; | |
dbcb8981 | 1627 | new_block->flags = share ? RAM_SHARED : 0; |
7f56e740 PB |
1628 | new_block->host = file_ram_alloc(new_block, size, |
1629 | mem_path, errp); | |
1630 | if (!new_block->host) { | |
1631 | g_free(new_block); | |
528f46af | 1632 | return NULL; |
7f56e740 PB |
1633 | } |
1634 | ||
528f46af | 1635 | ram_block_add(new_block, &local_err); |
ef701d7b HT |
1636 | if (local_err) { |
1637 | g_free(new_block); | |
1638 | error_propagate(errp, local_err); | |
528f46af | 1639 | return NULL; |
ef701d7b | 1640 | } |
528f46af | 1641 | return new_block; |
e1c57ab8 | 1642 | } |
0b183fc8 | 1643 | #endif |
e1c57ab8 | 1644 | |
62be4e3a | 1645 | static |
528f46af FZ |
1646 | RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size, |
1647 | void (*resized)(const char*, | |
1648 | uint64_t length, | |
1649 | void *host), | |
1650 | void *host, bool resizeable, | |
1651 | MemoryRegion *mr, Error **errp) | |
e1c57ab8 PB |
1652 | { |
1653 | RAMBlock *new_block; | |
ef701d7b | 1654 | Error *local_err = NULL; |
e1c57ab8 | 1655 | |
4ed023ce DDAG |
1656 | size = HOST_PAGE_ALIGN(size); |
1657 | max_size = HOST_PAGE_ALIGN(max_size); | |
e1c57ab8 PB |
1658 | new_block = g_malloc0(sizeof(*new_block)); |
1659 | new_block->mr = mr; | |
62be4e3a | 1660 | new_block->resized = resized; |
9b8424d5 MT |
1661 | new_block->used_length = size; |
1662 | new_block->max_length = max_size; | |
62be4e3a | 1663 | assert(max_size >= size); |
e1c57ab8 | 1664 | new_block->fd = -1; |
863e9621 | 1665 | new_block->page_size = getpagesize(); |
e1c57ab8 PB |
1666 | new_block->host = host; |
1667 | if (host) { | |
7bd4f430 | 1668 | new_block->flags |= RAM_PREALLOC; |
e1c57ab8 | 1669 | } |
62be4e3a MT |
1670 | if (resizeable) { |
1671 | new_block->flags |= RAM_RESIZEABLE; | |
1672 | } | |
528f46af | 1673 | ram_block_add(new_block, &local_err); |
ef701d7b HT |
1674 | if (local_err) { |
1675 | g_free(new_block); | |
1676 | error_propagate(errp, local_err); | |
528f46af | 1677 | return NULL; |
ef701d7b | 1678 | } |
528f46af | 1679 | return new_block; |
e1c57ab8 PB |
1680 | } |
1681 | ||
528f46af | 1682 | RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, |
62be4e3a MT |
1683 | MemoryRegion *mr, Error **errp) |
1684 | { | |
1685 | return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp); | |
1686 | } | |
1687 | ||
528f46af | 1688 | RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp) |
6977dfe6 | 1689 | { |
62be4e3a MT |
1690 | return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp); |
1691 | } | |
1692 | ||
528f46af | 1693 | RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz, |
62be4e3a MT |
1694 | void (*resized)(const char*, |
1695 | uint64_t length, | |
1696 | void *host), | |
1697 | MemoryRegion *mr, Error **errp) | |
1698 | { | |
1699 | return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp); | |
6977dfe6 YT |
1700 | } |
1701 | ||
43771539 PB |
1702 | static void reclaim_ramblock(RAMBlock *block) |
1703 | { | |
1704 | if (block->flags & RAM_PREALLOC) { | |
1705 | ; | |
1706 | } else if (xen_enabled()) { | |
1707 | xen_invalidate_map_cache_entry(block->host); | |
1708 | #ifndef _WIN32 | |
1709 | } else if (block->fd >= 0) { | |
2f3a2bb1 | 1710 | qemu_ram_munmap(block->host, block->max_length); |
43771539 PB |
1711 | close(block->fd); |
1712 | #endif | |
1713 | } else { | |
1714 | qemu_anon_ram_free(block->host, block->max_length); | |
1715 | } | |
1716 | g_free(block); | |
1717 | } | |
1718 | ||
f1060c55 | 1719 | void qemu_ram_free(RAMBlock *block) |
e9a1ab19 | 1720 | { |
85bc2a15 MAL |
1721 | if (!block) { |
1722 | return; | |
1723 | } | |
1724 | ||
b2a8658e | 1725 | qemu_mutex_lock_ramlist(); |
f1060c55 FZ |
1726 | QLIST_REMOVE_RCU(block, next); |
1727 | ram_list.mru_block = NULL; | |
1728 | /* Write list before version */ | |
1729 | smp_wmb(); | |
1730 | ram_list.version++; | |
1731 | call_rcu(block, reclaim_ramblock, rcu); | |
b2a8658e | 1732 | qemu_mutex_unlock_ramlist(); |
e9a1ab19 FB |
1733 | } |
1734 | ||
cd19cfa2 HY |
1735 | #ifndef _WIN32 |
1736 | void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) | |
1737 | { | |
1738 | RAMBlock *block; | |
1739 | ram_addr_t offset; | |
1740 | int flags; | |
1741 | void *area, *vaddr; | |
1742 | ||
0dc3f44a | 1743 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
cd19cfa2 | 1744 | offset = addr - block->offset; |
9b8424d5 | 1745 | if (offset < block->max_length) { |
1240be24 | 1746 | vaddr = ramblock_ptr(block, offset); |
7bd4f430 | 1747 | if (block->flags & RAM_PREALLOC) { |
cd19cfa2 | 1748 | ; |
dfeaf2ab MA |
1749 | } else if (xen_enabled()) { |
1750 | abort(); | |
cd19cfa2 HY |
1751 | } else { |
1752 | flags = MAP_FIXED; | |
3435f395 | 1753 | if (block->fd >= 0) { |
dbcb8981 PB |
1754 | flags |= (block->flags & RAM_SHARED ? |
1755 | MAP_SHARED : MAP_PRIVATE); | |
3435f395 MA |
1756 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, |
1757 | flags, block->fd, offset); | |
cd19cfa2 | 1758 | } else { |
2eb9fbaa MA |
1759 | /* |
1760 | * Remap needs to match alloc. Accelerators that | |
1761 | * set phys_mem_alloc never remap. If they did, | |
1762 | * we'd need a remap hook here. | |
1763 | */ | |
1764 | assert(phys_mem_alloc == qemu_anon_ram_alloc); | |
1765 | ||
cd19cfa2 HY |
1766 | flags |= MAP_PRIVATE | MAP_ANONYMOUS; |
1767 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, | |
1768 | flags, -1, 0); | |
cd19cfa2 HY |
1769 | } |
1770 | if (area != vaddr) { | |
f15fbc4b AP |
1771 | fprintf(stderr, "Could not remap addr: " |
1772 | RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n", | |
cd19cfa2 HY |
1773 | length, addr); |
1774 | exit(1); | |
1775 | } | |
8490fc78 | 1776 | memory_try_enable_merging(vaddr, length); |
ddb97f1d | 1777 | qemu_ram_setup_dump(vaddr, length); |
cd19cfa2 | 1778 | } |
cd19cfa2 HY |
1779 | } |
1780 | } | |
1781 | } | |
1782 | #endif /* !_WIN32 */ | |
1783 | ||
1b5ec234 | 1784 | /* Return a host pointer to ram allocated with qemu_ram_alloc. |
ae3a7047 MD |
1785 | * This should not be used for general purpose DMA. Use address_space_map |
1786 | * or address_space_rw instead. For local memory (e.g. video ram) that the | |
1787 | * device owns, use memory_region_get_ram_ptr. | |
0dc3f44a | 1788 | * |
49b24afc | 1789 | * Called within RCU critical section. |
1b5ec234 | 1790 | */ |
0878d0e1 | 1791 | void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr) |
1b5ec234 | 1792 | { |
3655cb9c GA |
1793 | RAMBlock *block = ram_block; |
1794 | ||
1795 | if (block == NULL) { | |
1796 | block = qemu_get_ram_block(addr); | |
0878d0e1 | 1797 | addr -= block->offset; |
3655cb9c | 1798 | } |
ae3a7047 MD |
1799 | |
1800 | if (xen_enabled() && block->host == NULL) { | |
0d6d3c87 PB |
1801 | /* We need to check if the requested address is in the RAM |
1802 | * because we don't want to map the entire memory in QEMU. | |
1803 | * In that case just map until the end of the page. | |
1804 | */ | |
1805 | if (block->offset == 0) { | |
49b24afc | 1806 | return xen_map_cache(addr, 0, 0); |
0d6d3c87 | 1807 | } |
ae3a7047 MD |
1808 | |
1809 | block->host = xen_map_cache(block->offset, block->max_length, 1); | |
0d6d3c87 | 1810 | } |
0878d0e1 | 1811 | return ramblock_ptr(block, addr); |
dc828ca1 PB |
1812 | } |
1813 | ||
0878d0e1 | 1814 | /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr |
ae3a7047 | 1815 | * but takes a size argument. |
0dc3f44a | 1816 | * |
e81bcda5 | 1817 | * Called within RCU critical section. |
ae3a7047 | 1818 | */ |
3655cb9c GA |
1819 | static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr, |
1820 | hwaddr *size) | |
38bee5dc | 1821 | { |
3655cb9c | 1822 | RAMBlock *block = ram_block; |
8ab934f9 SS |
1823 | if (*size == 0) { |
1824 | return NULL; | |
1825 | } | |
e81bcda5 | 1826 | |
3655cb9c GA |
1827 | if (block == NULL) { |
1828 | block = qemu_get_ram_block(addr); | |
0878d0e1 | 1829 | addr -= block->offset; |
3655cb9c | 1830 | } |
0878d0e1 | 1831 | *size = MIN(*size, block->max_length - addr); |
e81bcda5 PB |
1832 | |
1833 | if (xen_enabled() && block->host == NULL) { | |
1834 | /* We need to check if the requested address is in the RAM | |
1835 | * because we don't want to map the entire memory in QEMU. | |
1836 | * In that case just map the requested area. | |
1837 | */ | |
1838 | if (block->offset == 0) { | |
1839 | return xen_map_cache(addr, *size, 1); | |
38bee5dc SS |
1840 | } |
1841 | ||
e81bcda5 | 1842 | block->host = xen_map_cache(block->offset, block->max_length, 1); |
38bee5dc | 1843 | } |
e81bcda5 | 1844 | |
0878d0e1 | 1845 | return ramblock_ptr(block, addr); |
38bee5dc SS |
1846 | } |
1847 | ||
422148d3 DDAG |
1848 | /* |
1849 | * Translates a host ptr back to a RAMBlock, a ram_addr and an offset | |
1850 | * in that RAMBlock. | |
1851 | * | |
1852 | * ptr: Host pointer to look up | |
1853 | * round_offset: If true round the result offset down to a page boundary | |
1854 | * *ram_addr: set to result ram_addr | |
1855 | * *offset: set to result offset within the RAMBlock | |
1856 | * | |
1857 | * Returns: RAMBlock (or NULL if not found) | |
ae3a7047 MD |
1858 | * |
1859 | * By the time this function returns, the returned pointer is not protected | |
1860 | * by RCU anymore. If the caller is not within an RCU critical section and | |
1861 | * does not hold the iothread lock, it must have other means of protecting the | |
1862 | * pointer, such as a reference to the region that includes the incoming | |
1863 | * ram_addr_t. | |
1864 | */ | |
422148d3 | 1865 | RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, |
422148d3 | 1866 | ram_addr_t *offset) |
5579c7f3 | 1867 | { |
94a6b54f PB |
1868 | RAMBlock *block; |
1869 | uint8_t *host = ptr; | |
1870 | ||
868bb33f | 1871 | if (xen_enabled()) { |
f615f396 | 1872 | ram_addr_t ram_addr; |
0dc3f44a | 1873 | rcu_read_lock(); |
f615f396 PB |
1874 | ram_addr = xen_ram_addr_from_mapcache(ptr); |
1875 | block = qemu_get_ram_block(ram_addr); | |
422148d3 | 1876 | if (block) { |
d6b6aec4 | 1877 | *offset = ram_addr - block->offset; |
422148d3 | 1878 | } |
0dc3f44a | 1879 | rcu_read_unlock(); |
422148d3 | 1880 | return block; |
712c2b41 SS |
1881 | } |
1882 | ||
0dc3f44a MD |
1883 | rcu_read_lock(); |
1884 | block = atomic_rcu_read(&ram_list.mru_block); | |
9b8424d5 | 1885 | if (block && block->host && host - block->host < block->max_length) { |
23887b79 PB |
1886 | goto found; |
1887 | } | |
1888 | ||
0dc3f44a | 1889 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
432d268c JN |
1890 | /* This case append when the block is not mapped. */ |
1891 | if (block->host == NULL) { | |
1892 | continue; | |
1893 | } | |
9b8424d5 | 1894 | if (host - block->host < block->max_length) { |
23887b79 | 1895 | goto found; |
f471a17e | 1896 | } |
94a6b54f | 1897 | } |
432d268c | 1898 | |
0dc3f44a | 1899 | rcu_read_unlock(); |
1b5ec234 | 1900 | return NULL; |
23887b79 PB |
1901 | |
1902 | found: | |
422148d3 DDAG |
1903 | *offset = (host - block->host); |
1904 | if (round_offset) { | |
1905 | *offset &= TARGET_PAGE_MASK; | |
1906 | } | |
0dc3f44a | 1907 | rcu_read_unlock(); |
422148d3 DDAG |
1908 | return block; |
1909 | } | |
1910 | ||
e3dd7493 DDAG |
1911 | /* |
1912 | * Finds the named RAMBlock | |
1913 | * | |
1914 | * name: The name of RAMBlock to find | |
1915 | * | |
1916 | * Returns: RAMBlock (or NULL if not found) | |
1917 | */ | |
1918 | RAMBlock *qemu_ram_block_by_name(const char *name) | |
1919 | { | |
1920 | RAMBlock *block; | |
1921 | ||
1922 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
1923 | if (!strcmp(name, block->idstr)) { | |
1924 | return block; | |
1925 | } | |
1926 | } | |
1927 | ||
1928 | return NULL; | |
1929 | } | |
1930 | ||
422148d3 DDAG |
1931 | /* Some of the softmmu routines need to translate from a host pointer |
1932 | (typically a TLB entry) back to a ram offset. */ | |
07bdaa41 | 1933 | ram_addr_t qemu_ram_addr_from_host(void *ptr) |
422148d3 DDAG |
1934 | { |
1935 | RAMBlock *block; | |
f615f396 | 1936 | ram_addr_t offset; |
422148d3 | 1937 | |
f615f396 | 1938 | block = qemu_ram_block_from_host(ptr, false, &offset); |
422148d3 | 1939 | if (!block) { |
07bdaa41 | 1940 | return RAM_ADDR_INVALID; |
422148d3 DDAG |
1941 | } |
1942 | ||
07bdaa41 | 1943 | return block->offset + offset; |
e890261f | 1944 | } |
f471a17e | 1945 | |
49b24afc | 1946 | /* Called within RCU critical section. */ |
a8170e5e | 1947 | static void notdirty_mem_write(void *opaque, hwaddr ram_addr, |
0e0df1e2 | 1948 | uint64_t val, unsigned size) |
9fa3e853 | 1949 | { |
52159192 | 1950 | if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { |
0e0df1e2 | 1951 | tb_invalidate_phys_page_fast(ram_addr, size); |
3a7d929e | 1952 | } |
0e0df1e2 AK |
1953 | switch (size) { |
1954 | case 1: | |
0878d0e1 | 1955 | stb_p(qemu_map_ram_ptr(NULL, ram_addr), val); |
0e0df1e2 AK |
1956 | break; |
1957 | case 2: | |
0878d0e1 | 1958 | stw_p(qemu_map_ram_ptr(NULL, ram_addr), val); |
0e0df1e2 AK |
1959 | break; |
1960 | case 4: | |
0878d0e1 | 1961 | stl_p(qemu_map_ram_ptr(NULL, ram_addr), val); |
0e0df1e2 AK |
1962 | break; |
1963 | default: | |
1964 | abort(); | |
3a7d929e | 1965 | } |
58d2707e PB |
1966 | /* Set both VGA and migration bits for simplicity and to remove |
1967 | * the notdirty callback faster. | |
1968 | */ | |
1969 | cpu_physical_memory_set_dirty_range(ram_addr, size, | |
1970 | DIRTY_CLIENTS_NOCODE); | |
f23db169 FB |
1971 | /* we remove the notdirty callback only if the code has been |
1972 | flushed */ | |
a2cd8c85 | 1973 | if (!cpu_physical_memory_is_clean(ram_addr)) { |
bcae01e4 | 1974 | tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr); |
4917cf44 | 1975 | } |
9fa3e853 FB |
1976 | } |
1977 | ||
b018ddf6 PB |
1978 | static bool notdirty_mem_accepts(void *opaque, hwaddr addr, |
1979 | unsigned size, bool is_write) | |
1980 | { | |
1981 | return is_write; | |
1982 | } | |
1983 | ||
0e0df1e2 | 1984 | static const MemoryRegionOps notdirty_mem_ops = { |
0e0df1e2 | 1985 | .write = notdirty_mem_write, |
b018ddf6 | 1986 | .valid.accepts = notdirty_mem_accepts, |
0e0df1e2 | 1987 | .endianness = DEVICE_NATIVE_ENDIAN, |
1ccde1cb FB |
1988 | }; |
1989 | ||
0f459d16 | 1990 | /* Generate a debug exception if a watchpoint has been hit. */ |
66b9b43c | 1991 | static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags) |
0f459d16 | 1992 | { |
93afeade | 1993 | CPUState *cpu = current_cpu; |
568496c0 | 1994 | CPUClass *cc = CPU_GET_CLASS(cpu); |
93afeade | 1995 | CPUArchState *env = cpu->env_ptr; |
06d55cc1 | 1996 | target_ulong pc, cs_base; |
0f459d16 | 1997 | target_ulong vaddr; |
a1d1bb31 | 1998 | CPUWatchpoint *wp; |
89fee74a | 1999 | uint32_t cpu_flags; |
0f459d16 | 2000 | |
ff4700b0 | 2001 | if (cpu->watchpoint_hit) { |
06d55cc1 AL |
2002 | /* We re-entered the check after replacing the TB. Now raise |
2003 | * the debug interrupt so that is will trigger after the | |
2004 | * current instruction. */ | |
93afeade | 2005 | cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG); |
06d55cc1 AL |
2006 | return; |
2007 | } | |
93afeade | 2008 | vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset; |
ff4700b0 | 2009 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d PM |
2010 | if (cpu_watchpoint_address_matches(wp, vaddr, len) |
2011 | && (wp->flags & flags)) { | |
08225676 PM |
2012 | if (flags == BP_MEM_READ) { |
2013 | wp->flags |= BP_WATCHPOINT_HIT_READ; | |
2014 | } else { | |
2015 | wp->flags |= BP_WATCHPOINT_HIT_WRITE; | |
2016 | } | |
2017 | wp->hitaddr = vaddr; | |
66b9b43c | 2018 | wp->hitattrs = attrs; |
ff4700b0 | 2019 | if (!cpu->watchpoint_hit) { |
568496c0 SF |
2020 | if (wp->flags & BP_CPU && |
2021 | !cc->debug_check_watchpoint(cpu, wp)) { | |
2022 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
2023 | continue; | |
2024 | } | |
ff4700b0 | 2025 | cpu->watchpoint_hit = wp; |
239c51a5 | 2026 | tb_check_watchpoint(cpu); |
6e140f28 | 2027 | if (wp->flags & BP_STOP_BEFORE_ACCESS) { |
27103424 | 2028 | cpu->exception_index = EXCP_DEBUG; |
5638d180 | 2029 | cpu_loop_exit(cpu); |
6e140f28 AL |
2030 | } else { |
2031 | cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags); | |
648f034c | 2032 | tb_gen_code(cpu, pc, cs_base, cpu_flags, 1); |
6886b980 | 2033 | cpu_loop_exit_noexc(cpu); |
6e140f28 | 2034 | } |
06d55cc1 | 2035 | } |
6e140f28 AL |
2036 | } else { |
2037 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
0f459d16 PB |
2038 | } |
2039 | } | |
2040 | } | |
2041 | ||
6658ffb8 PB |
2042 | /* Watchpoint access routines. Watchpoints are inserted using TLB tricks, |
2043 | so these check for a hit then pass through to the normal out-of-line | |
2044 | phys routines. */ | |
66b9b43c PM |
2045 | static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata, |
2046 | unsigned size, MemTxAttrs attrs) | |
6658ffb8 | 2047 | { |
66b9b43c PM |
2048 | MemTxResult res; |
2049 | uint64_t data; | |
79ed0416 PM |
2050 | int asidx = cpu_asidx_from_attrs(current_cpu, attrs); |
2051 | AddressSpace *as = current_cpu->cpu_ases[asidx].as; | |
66b9b43c PM |
2052 | |
2053 | check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ); | |
1ec9b909 | 2054 | switch (size) { |
66b9b43c | 2055 | case 1: |
79ed0416 | 2056 | data = address_space_ldub(as, addr, attrs, &res); |
66b9b43c PM |
2057 | break; |
2058 | case 2: | |
79ed0416 | 2059 | data = address_space_lduw(as, addr, attrs, &res); |
66b9b43c PM |
2060 | break; |
2061 | case 4: | |
79ed0416 | 2062 | data = address_space_ldl(as, addr, attrs, &res); |
66b9b43c | 2063 | break; |
1ec9b909 AK |
2064 | default: abort(); |
2065 | } | |
66b9b43c PM |
2066 | *pdata = data; |
2067 | return res; | |
6658ffb8 PB |
2068 | } |
2069 | ||
66b9b43c PM |
2070 | static MemTxResult watch_mem_write(void *opaque, hwaddr addr, |
2071 | uint64_t val, unsigned size, | |
2072 | MemTxAttrs attrs) | |
6658ffb8 | 2073 | { |
66b9b43c | 2074 | MemTxResult res; |
79ed0416 PM |
2075 | int asidx = cpu_asidx_from_attrs(current_cpu, attrs); |
2076 | AddressSpace *as = current_cpu->cpu_ases[asidx].as; | |
66b9b43c PM |
2077 | |
2078 | check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE); | |
1ec9b909 | 2079 | switch (size) { |
67364150 | 2080 | case 1: |
79ed0416 | 2081 | address_space_stb(as, addr, val, attrs, &res); |
67364150 MF |
2082 | break; |
2083 | case 2: | |
79ed0416 | 2084 | address_space_stw(as, addr, val, attrs, &res); |
67364150 MF |
2085 | break; |
2086 | case 4: | |
79ed0416 | 2087 | address_space_stl(as, addr, val, attrs, &res); |
67364150 | 2088 | break; |
1ec9b909 AK |
2089 | default: abort(); |
2090 | } | |
66b9b43c | 2091 | return res; |
6658ffb8 PB |
2092 | } |
2093 | ||
1ec9b909 | 2094 | static const MemoryRegionOps watch_mem_ops = { |
66b9b43c PM |
2095 | .read_with_attrs = watch_mem_read, |
2096 | .write_with_attrs = watch_mem_write, | |
1ec9b909 | 2097 | .endianness = DEVICE_NATIVE_ENDIAN, |
6658ffb8 | 2098 | }; |
6658ffb8 | 2099 | |
f25a49e0 PM |
2100 | static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data, |
2101 | unsigned len, MemTxAttrs attrs) | |
db7b5426 | 2102 | { |
acc9d80b | 2103 | subpage_t *subpage = opaque; |
ff6cff75 | 2104 | uint8_t buf[8]; |
5c9eb028 | 2105 | MemTxResult res; |
791af8c8 | 2106 | |
db7b5426 | 2107 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2108 | printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__, |
acc9d80b | 2109 | subpage, len, addr); |
db7b5426 | 2110 | #endif |
5c9eb028 PM |
2111 | res = address_space_read(subpage->as, addr + subpage->base, |
2112 | attrs, buf, len); | |
2113 | if (res) { | |
2114 | return res; | |
f25a49e0 | 2115 | } |
acc9d80b JK |
2116 | switch (len) { |
2117 | case 1: | |
f25a49e0 PM |
2118 | *data = ldub_p(buf); |
2119 | return MEMTX_OK; | |
acc9d80b | 2120 | case 2: |
f25a49e0 PM |
2121 | *data = lduw_p(buf); |
2122 | return MEMTX_OK; | |
acc9d80b | 2123 | case 4: |
f25a49e0 PM |
2124 | *data = ldl_p(buf); |
2125 | return MEMTX_OK; | |
ff6cff75 | 2126 | case 8: |
f25a49e0 PM |
2127 | *data = ldq_p(buf); |
2128 | return MEMTX_OK; | |
acc9d80b JK |
2129 | default: |
2130 | abort(); | |
2131 | } | |
db7b5426 BS |
2132 | } |
2133 | ||
f25a49e0 PM |
2134 | static MemTxResult subpage_write(void *opaque, hwaddr addr, |
2135 | uint64_t value, unsigned len, MemTxAttrs attrs) | |
db7b5426 | 2136 | { |
acc9d80b | 2137 | subpage_t *subpage = opaque; |
ff6cff75 | 2138 | uint8_t buf[8]; |
acc9d80b | 2139 | |
db7b5426 | 2140 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2141 | printf("%s: subpage %p len %u addr " TARGET_FMT_plx |
acc9d80b JK |
2142 | " value %"PRIx64"\n", |
2143 | __func__, subpage, len, addr, value); | |
db7b5426 | 2144 | #endif |
acc9d80b JK |
2145 | switch (len) { |
2146 | case 1: | |
2147 | stb_p(buf, value); | |
2148 | break; | |
2149 | case 2: | |
2150 | stw_p(buf, value); | |
2151 | break; | |
2152 | case 4: | |
2153 | stl_p(buf, value); | |
2154 | break; | |
ff6cff75 PB |
2155 | case 8: |
2156 | stq_p(buf, value); | |
2157 | break; | |
acc9d80b JK |
2158 | default: |
2159 | abort(); | |
2160 | } | |
5c9eb028 PM |
2161 | return address_space_write(subpage->as, addr + subpage->base, |
2162 | attrs, buf, len); | |
db7b5426 BS |
2163 | } |
2164 | ||
c353e4cc | 2165 | static bool subpage_accepts(void *opaque, hwaddr addr, |
016e9d62 | 2166 | unsigned len, bool is_write) |
c353e4cc | 2167 | { |
acc9d80b | 2168 | subpage_t *subpage = opaque; |
c353e4cc | 2169 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2170 | printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n", |
acc9d80b | 2171 | __func__, subpage, is_write ? 'w' : 'r', len, addr); |
c353e4cc PB |
2172 | #endif |
2173 | ||
acc9d80b | 2174 | return address_space_access_valid(subpage->as, addr + subpage->base, |
016e9d62 | 2175 | len, is_write); |
c353e4cc PB |
2176 | } |
2177 | ||
70c68e44 | 2178 | static const MemoryRegionOps subpage_ops = { |
f25a49e0 PM |
2179 | .read_with_attrs = subpage_read, |
2180 | .write_with_attrs = subpage_write, | |
ff6cff75 PB |
2181 | .impl.min_access_size = 1, |
2182 | .impl.max_access_size = 8, | |
2183 | .valid.min_access_size = 1, | |
2184 | .valid.max_access_size = 8, | |
c353e4cc | 2185 | .valid.accepts = subpage_accepts, |
70c68e44 | 2186 | .endianness = DEVICE_NATIVE_ENDIAN, |
db7b5426 BS |
2187 | }; |
2188 | ||
c227f099 | 2189 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, |
5312bd8b | 2190 | uint16_t section) |
db7b5426 BS |
2191 | { |
2192 | int idx, eidx; | |
2193 | ||
2194 | if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) | |
2195 | return -1; | |
2196 | idx = SUBPAGE_IDX(start); | |
2197 | eidx = SUBPAGE_IDX(end); | |
2198 | #if defined(DEBUG_SUBPAGE) | |
016e9d62 AK |
2199 | printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", |
2200 | __func__, mmio, start, end, idx, eidx, section); | |
db7b5426 | 2201 | #endif |
db7b5426 | 2202 | for (; idx <= eidx; idx++) { |
5312bd8b | 2203 | mmio->sub_section[idx] = section; |
db7b5426 BS |
2204 | } |
2205 | ||
2206 | return 0; | |
2207 | } | |
2208 | ||
acc9d80b | 2209 | static subpage_t *subpage_init(AddressSpace *as, hwaddr base) |
db7b5426 | 2210 | { |
c227f099 | 2211 | subpage_t *mmio; |
db7b5426 | 2212 | |
7267c094 | 2213 | mmio = g_malloc0(sizeof(subpage_t)); |
1eec614b | 2214 | |
acc9d80b | 2215 | mmio->as = as; |
1eec614b | 2216 | mmio->base = base; |
2c9b15ca | 2217 | memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, |
b4fefef9 | 2218 | NULL, TARGET_PAGE_SIZE); |
b3b00c78 | 2219 | mmio->iomem.subpage = true; |
db7b5426 | 2220 | #if defined(DEBUG_SUBPAGE) |
016e9d62 AK |
2221 | printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__, |
2222 | mmio, base, TARGET_PAGE_SIZE); | |
db7b5426 | 2223 | #endif |
b41aac4f | 2224 | subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED); |
db7b5426 BS |
2225 | |
2226 | return mmio; | |
2227 | } | |
2228 | ||
a656e22f PC |
2229 | static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as, |
2230 | MemoryRegion *mr) | |
5312bd8b | 2231 | { |
a656e22f | 2232 | assert(as); |
5312bd8b | 2233 | MemoryRegionSection section = { |
a656e22f | 2234 | .address_space = as, |
5312bd8b AK |
2235 | .mr = mr, |
2236 | .offset_within_address_space = 0, | |
2237 | .offset_within_region = 0, | |
052e87b0 | 2238 | .size = int128_2_64(), |
5312bd8b AK |
2239 | }; |
2240 | ||
53cb28cb | 2241 | return phys_section_add(map, §ion); |
5312bd8b AK |
2242 | } |
2243 | ||
a54c87b6 | 2244 | MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs) |
aa102231 | 2245 | { |
a54c87b6 PM |
2246 | int asidx = cpu_asidx_from_attrs(cpu, attrs); |
2247 | CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx]; | |
32857f4d | 2248 | AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch); |
79e2b9ae | 2249 | MemoryRegionSection *sections = d->map.sections; |
9d82b5a7 PB |
2250 | |
2251 | return sections[index & ~TARGET_PAGE_MASK].mr; | |
aa102231 AK |
2252 | } |
2253 | ||
e9179ce1 AK |
2254 | static void io_mem_init(void) |
2255 | { | |
1f6245e5 | 2256 | memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX); |
2c9b15ca | 2257 | memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, |
1f6245e5 | 2258 | NULL, UINT64_MAX); |
2c9b15ca | 2259 | memory_region_init_io(&io_mem_notdirty, NULL, ¬dirty_mem_ops, NULL, |
1f6245e5 | 2260 | NULL, UINT64_MAX); |
2c9b15ca | 2261 | memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL, |
1f6245e5 | 2262 | NULL, UINT64_MAX); |
e9179ce1 AK |
2263 | } |
2264 | ||
ac1970fb | 2265 | static void mem_begin(MemoryListener *listener) |
00752703 PB |
2266 | { |
2267 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); | |
53cb28cb MA |
2268 | AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); |
2269 | uint16_t n; | |
2270 | ||
a656e22f | 2271 | n = dummy_section(&d->map, as, &io_mem_unassigned); |
53cb28cb | 2272 | assert(n == PHYS_SECTION_UNASSIGNED); |
a656e22f | 2273 | n = dummy_section(&d->map, as, &io_mem_notdirty); |
53cb28cb | 2274 | assert(n == PHYS_SECTION_NOTDIRTY); |
a656e22f | 2275 | n = dummy_section(&d->map, as, &io_mem_rom); |
53cb28cb | 2276 | assert(n == PHYS_SECTION_ROM); |
a656e22f | 2277 | n = dummy_section(&d->map, as, &io_mem_watch); |
53cb28cb | 2278 | assert(n == PHYS_SECTION_WATCH); |
00752703 | 2279 | |
9736e55b | 2280 | d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; |
00752703 PB |
2281 | d->as = as; |
2282 | as->next_dispatch = d; | |
2283 | } | |
2284 | ||
79e2b9ae PB |
2285 | static void address_space_dispatch_free(AddressSpaceDispatch *d) |
2286 | { | |
2287 | phys_sections_free(&d->map); | |
2288 | g_free(d); | |
2289 | } | |
2290 | ||
00752703 | 2291 | static void mem_commit(MemoryListener *listener) |
ac1970fb | 2292 | { |
89ae337a | 2293 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); |
0475d94f PB |
2294 | AddressSpaceDispatch *cur = as->dispatch; |
2295 | AddressSpaceDispatch *next = as->next_dispatch; | |
2296 | ||
53cb28cb | 2297 | phys_page_compact_all(next, next->map.nodes_nb); |
b35ba30f | 2298 | |
79e2b9ae | 2299 | atomic_rcu_set(&as->dispatch, next); |
53cb28cb | 2300 | if (cur) { |
79e2b9ae | 2301 | call_rcu(cur, address_space_dispatch_free, rcu); |
53cb28cb | 2302 | } |
9affd6fc PB |
2303 | } |
2304 | ||
1d71148e | 2305 | static void tcg_commit(MemoryListener *listener) |
50c1e149 | 2306 | { |
32857f4d PM |
2307 | CPUAddressSpace *cpuas; |
2308 | AddressSpaceDispatch *d; | |
117712c3 AK |
2309 | |
2310 | /* since each CPU stores ram addresses in its TLB cache, we must | |
2311 | reset the modified entries */ | |
32857f4d PM |
2312 | cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); |
2313 | cpu_reloading_memory_map(); | |
2314 | /* The CPU and TLB are protected by the iothread lock. | |
2315 | * We reload the dispatch pointer now because cpu_reloading_memory_map() | |
2316 | * may have split the RCU critical section. | |
2317 | */ | |
2318 | d = atomic_rcu_read(&cpuas->as->dispatch); | |
2319 | cpuas->memory_dispatch = d; | |
2320 | tlb_flush(cpuas->cpu, 1); | |
50c1e149 AK |
2321 | } |
2322 | ||
ac1970fb AK |
2323 | void address_space_init_dispatch(AddressSpace *as) |
2324 | { | |
00752703 | 2325 | as->dispatch = NULL; |
89ae337a | 2326 | as->dispatch_listener = (MemoryListener) { |
ac1970fb | 2327 | .begin = mem_begin, |
00752703 | 2328 | .commit = mem_commit, |
ac1970fb AK |
2329 | .region_add = mem_add, |
2330 | .region_nop = mem_add, | |
2331 | .priority = 0, | |
2332 | }; | |
89ae337a | 2333 | memory_listener_register(&as->dispatch_listener, as); |
ac1970fb AK |
2334 | } |
2335 | ||
6e48e8f9 PB |
2336 | void address_space_unregister(AddressSpace *as) |
2337 | { | |
2338 | memory_listener_unregister(&as->dispatch_listener); | |
2339 | } | |
2340 | ||
83f3c251 AK |
2341 | void address_space_destroy_dispatch(AddressSpace *as) |
2342 | { | |
2343 | AddressSpaceDispatch *d = as->dispatch; | |
2344 | ||
79e2b9ae PB |
2345 | atomic_rcu_set(&as->dispatch, NULL); |
2346 | if (d) { | |
2347 | call_rcu(d, address_space_dispatch_free, rcu); | |
2348 | } | |
83f3c251 AK |
2349 | } |
2350 | ||
62152b8a AK |
2351 | static void memory_map_init(void) |
2352 | { | |
7267c094 | 2353 | system_memory = g_malloc(sizeof(*system_memory)); |
03f49957 | 2354 | |
57271d63 | 2355 | memory_region_init(system_memory, NULL, "system", UINT64_MAX); |
7dca8043 | 2356 | address_space_init(&address_space_memory, system_memory, "memory"); |
309cb471 | 2357 | |
7267c094 | 2358 | system_io = g_malloc(sizeof(*system_io)); |
3bb28b72 JK |
2359 | memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", |
2360 | 65536); | |
7dca8043 | 2361 | address_space_init(&address_space_io, system_io, "I/O"); |
62152b8a AK |
2362 | } |
2363 | ||
2364 | MemoryRegion *get_system_memory(void) | |
2365 | { | |
2366 | return system_memory; | |
2367 | } | |
2368 | ||
309cb471 AK |
2369 | MemoryRegion *get_system_io(void) |
2370 | { | |
2371 | return system_io; | |
2372 | } | |
2373 | ||
e2eef170 PB |
2374 | #endif /* !defined(CONFIG_USER_ONLY) */ |
2375 | ||
13eb76e0 FB |
2376 | /* physical memory access (slow version, mainly for debug) */ |
2377 | #if defined(CONFIG_USER_ONLY) | |
f17ec444 | 2378 | int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, |
a68fe89c | 2379 | uint8_t *buf, int len, int is_write) |
13eb76e0 FB |
2380 | { |
2381 | int l, flags; | |
2382 | target_ulong page; | |
53a5960a | 2383 | void * p; |
13eb76e0 FB |
2384 | |
2385 | while (len > 0) { | |
2386 | page = addr & TARGET_PAGE_MASK; | |
2387 | l = (page + TARGET_PAGE_SIZE) - addr; | |
2388 | if (l > len) | |
2389 | l = len; | |
2390 | flags = page_get_flags(page); | |
2391 | if (!(flags & PAGE_VALID)) | |
a68fe89c | 2392 | return -1; |
13eb76e0 FB |
2393 | if (is_write) { |
2394 | if (!(flags & PAGE_WRITE)) | |
a68fe89c | 2395 | return -1; |
579a97f7 | 2396 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 2397 | if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) |
a68fe89c | 2398 | return -1; |
72fb7daa AJ |
2399 | memcpy(p, buf, l); |
2400 | unlock_user(p, addr, l); | |
13eb76e0 FB |
2401 | } else { |
2402 | if (!(flags & PAGE_READ)) | |
a68fe89c | 2403 | return -1; |
579a97f7 | 2404 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 2405 | if (!(p = lock_user(VERIFY_READ, addr, l, 1))) |
a68fe89c | 2406 | return -1; |
72fb7daa | 2407 | memcpy(buf, p, l); |
5b257578 | 2408 | unlock_user(p, addr, 0); |
13eb76e0 FB |
2409 | } |
2410 | len -= l; | |
2411 | buf += l; | |
2412 | addr += l; | |
2413 | } | |
a68fe89c | 2414 | return 0; |
13eb76e0 | 2415 | } |
8df1cd07 | 2416 | |
13eb76e0 | 2417 | #else |
51d7a9eb | 2418 | |
845b6214 | 2419 | static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, |
a8170e5e | 2420 | hwaddr length) |
51d7a9eb | 2421 | { |
e87f7778 | 2422 | uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr); |
0878d0e1 PB |
2423 | addr += memory_region_get_ram_addr(mr); |
2424 | ||
e87f7778 PB |
2425 | /* No early return if dirty_log_mask is or becomes 0, because |
2426 | * cpu_physical_memory_set_dirty_range will still call | |
2427 | * xen_modified_memory. | |
2428 | */ | |
2429 | if (dirty_log_mask) { | |
2430 | dirty_log_mask = | |
2431 | cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask); | |
2432 | } | |
2433 | if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) { | |
2434 | tb_invalidate_phys_range(addr, addr + length); | |
2435 | dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); | |
51d7a9eb | 2436 | } |
e87f7778 | 2437 | cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask); |
51d7a9eb AP |
2438 | } |
2439 | ||
23326164 | 2440 | static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) |
82f2563f | 2441 | { |
e1622f4b | 2442 | unsigned access_size_max = mr->ops->valid.max_access_size; |
23326164 RH |
2443 | |
2444 | /* Regions are assumed to support 1-4 byte accesses unless | |
2445 | otherwise specified. */ | |
23326164 RH |
2446 | if (access_size_max == 0) { |
2447 | access_size_max = 4; | |
2448 | } | |
2449 | ||
2450 | /* Bound the maximum access by the alignment of the address. */ | |
2451 | if (!mr->ops->impl.unaligned) { | |
2452 | unsigned align_size_max = addr & -addr; | |
2453 | if (align_size_max != 0 && align_size_max < access_size_max) { | |
2454 | access_size_max = align_size_max; | |
2455 | } | |
82f2563f | 2456 | } |
23326164 RH |
2457 | |
2458 | /* Don't attempt accesses larger than the maximum. */ | |
2459 | if (l > access_size_max) { | |
2460 | l = access_size_max; | |
82f2563f | 2461 | } |
6554f5c0 | 2462 | l = pow2floor(l); |
23326164 RH |
2463 | |
2464 | return l; | |
82f2563f PB |
2465 | } |
2466 | ||
4840f10e | 2467 | static bool prepare_mmio_access(MemoryRegion *mr) |
125b3806 | 2468 | { |
4840f10e JK |
2469 | bool unlocked = !qemu_mutex_iothread_locked(); |
2470 | bool release_lock = false; | |
2471 | ||
2472 | if (unlocked && mr->global_locking) { | |
2473 | qemu_mutex_lock_iothread(); | |
2474 | unlocked = false; | |
2475 | release_lock = true; | |
2476 | } | |
125b3806 | 2477 | if (mr->flush_coalesced_mmio) { |
4840f10e JK |
2478 | if (unlocked) { |
2479 | qemu_mutex_lock_iothread(); | |
2480 | } | |
125b3806 | 2481 | qemu_flush_coalesced_mmio_buffer(); |
4840f10e JK |
2482 | if (unlocked) { |
2483 | qemu_mutex_unlock_iothread(); | |
2484 | } | |
125b3806 | 2485 | } |
4840f10e JK |
2486 | |
2487 | return release_lock; | |
125b3806 PB |
2488 | } |
2489 | ||
a203ac70 PB |
2490 | /* Called within RCU critical section. */ |
2491 | static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr, | |
2492 | MemTxAttrs attrs, | |
2493 | const uint8_t *buf, | |
2494 | int len, hwaddr addr1, | |
2495 | hwaddr l, MemoryRegion *mr) | |
13eb76e0 | 2496 | { |
13eb76e0 | 2497 | uint8_t *ptr; |
791af8c8 | 2498 | uint64_t val; |
3b643495 | 2499 | MemTxResult result = MEMTX_OK; |
4840f10e | 2500 | bool release_lock = false; |
3b46e624 | 2501 | |
a203ac70 | 2502 | for (;;) { |
eb7eeb88 PB |
2503 | if (!memory_access_is_direct(mr, true)) { |
2504 | release_lock |= prepare_mmio_access(mr); | |
2505 | l = memory_access_size(mr, l, addr1); | |
2506 | /* XXX: could force current_cpu to NULL to avoid | |
2507 | potential bugs */ | |
2508 | switch (l) { | |
2509 | case 8: | |
2510 | /* 64 bit write access */ | |
2511 | val = ldq_p(buf); | |
2512 | result |= memory_region_dispatch_write(mr, addr1, val, 8, | |
2513 | attrs); | |
2514 | break; | |
2515 | case 4: | |
2516 | /* 32 bit write access */ | |
2517 | val = ldl_p(buf); | |
2518 | result |= memory_region_dispatch_write(mr, addr1, val, 4, | |
2519 | attrs); | |
2520 | break; | |
2521 | case 2: | |
2522 | /* 16 bit write access */ | |
2523 | val = lduw_p(buf); | |
2524 | result |= memory_region_dispatch_write(mr, addr1, val, 2, | |
2525 | attrs); | |
2526 | break; | |
2527 | case 1: | |
2528 | /* 8 bit write access */ | |
2529 | val = ldub_p(buf); | |
2530 | result |= memory_region_dispatch_write(mr, addr1, val, 1, | |
2531 | attrs); | |
2532 | break; | |
2533 | default: | |
2534 | abort(); | |
13eb76e0 FB |
2535 | } |
2536 | } else { | |
eb7eeb88 | 2537 | /* RAM case */ |
0878d0e1 | 2538 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
eb7eeb88 PB |
2539 | memcpy(ptr, buf, l); |
2540 | invalidate_and_set_dirty(mr, addr1, l); | |
13eb76e0 | 2541 | } |
4840f10e JK |
2542 | |
2543 | if (release_lock) { | |
2544 | qemu_mutex_unlock_iothread(); | |
2545 | release_lock = false; | |
2546 | } | |
2547 | ||
13eb76e0 FB |
2548 | len -= l; |
2549 | buf += l; | |
2550 | addr += l; | |
a203ac70 PB |
2551 | |
2552 | if (!len) { | |
2553 | break; | |
2554 | } | |
2555 | ||
2556 | l = len; | |
2557 | mr = address_space_translate(as, addr, &addr1, &l, true); | |
13eb76e0 | 2558 | } |
fd8aaa76 | 2559 | |
3b643495 | 2560 | return result; |
13eb76e0 | 2561 | } |
8df1cd07 | 2562 | |
a203ac70 PB |
2563 | MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, |
2564 | const uint8_t *buf, int len) | |
ac1970fb | 2565 | { |
eb7eeb88 | 2566 | hwaddr l; |
eb7eeb88 PB |
2567 | hwaddr addr1; |
2568 | MemoryRegion *mr; | |
2569 | MemTxResult result = MEMTX_OK; | |
eb7eeb88 | 2570 | |
a203ac70 PB |
2571 | if (len > 0) { |
2572 | rcu_read_lock(); | |
eb7eeb88 | 2573 | l = len; |
a203ac70 PB |
2574 | mr = address_space_translate(as, addr, &addr1, &l, true); |
2575 | result = address_space_write_continue(as, addr, attrs, buf, len, | |
2576 | addr1, l, mr); | |
2577 | rcu_read_unlock(); | |
2578 | } | |
2579 | ||
2580 | return result; | |
2581 | } | |
2582 | ||
2583 | /* Called within RCU critical section. */ | |
2584 | MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr, | |
2585 | MemTxAttrs attrs, uint8_t *buf, | |
2586 | int len, hwaddr addr1, hwaddr l, | |
2587 | MemoryRegion *mr) | |
2588 | { | |
2589 | uint8_t *ptr; | |
2590 | uint64_t val; | |
2591 | MemTxResult result = MEMTX_OK; | |
2592 | bool release_lock = false; | |
eb7eeb88 | 2593 | |
a203ac70 | 2594 | for (;;) { |
eb7eeb88 PB |
2595 | if (!memory_access_is_direct(mr, false)) { |
2596 | /* I/O case */ | |
2597 | release_lock |= prepare_mmio_access(mr); | |
2598 | l = memory_access_size(mr, l, addr1); | |
2599 | switch (l) { | |
2600 | case 8: | |
2601 | /* 64 bit read access */ | |
2602 | result |= memory_region_dispatch_read(mr, addr1, &val, 8, | |
2603 | attrs); | |
2604 | stq_p(buf, val); | |
2605 | break; | |
2606 | case 4: | |
2607 | /* 32 bit read access */ | |
2608 | result |= memory_region_dispatch_read(mr, addr1, &val, 4, | |
2609 | attrs); | |
2610 | stl_p(buf, val); | |
2611 | break; | |
2612 | case 2: | |
2613 | /* 16 bit read access */ | |
2614 | result |= memory_region_dispatch_read(mr, addr1, &val, 2, | |
2615 | attrs); | |
2616 | stw_p(buf, val); | |
2617 | break; | |
2618 | case 1: | |
2619 | /* 8 bit read access */ | |
2620 | result |= memory_region_dispatch_read(mr, addr1, &val, 1, | |
2621 | attrs); | |
2622 | stb_p(buf, val); | |
2623 | break; | |
2624 | default: | |
2625 | abort(); | |
2626 | } | |
2627 | } else { | |
2628 | /* RAM case */ | |
0878d0e1 | 2629 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
eb7eeb88 PB |
2630 | memcpy(buf, ptr, l); |
2631 | } | |
2632 | ||
2633 | if (release_lock) { | |
2634 | qemu_mutex_unlock_iothread(); | |
2635 | release_lock = false; | |
2636 | } | |
2637 | ||
2638 | len -= l; | |
2639 | buf += l; | |
2640 | addr += l; | |
a203ac70 PB |
2641 | |
2642 | if (!len) { | |
2643 | break; | |
2644 | } | |
2645 | ||
2646 | l = len; | |
2647 | mr = address_space_translate(as, addr, &addr1, &l, false); | |
2648 | } | |
2649 | ||
2650 | return result; | |
2651 | } | |
2652 | ||
3cc8f884 PB |
2653 | MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, |
2654 | MemTxAttrs attrs, uint8_t *buf, int len) | |
a203ac70 PB |
2655 | { |
2656 | hwaddr l; | |
2657 | hwaddr addr1; | |
2658 | MemoryRegion *mr; | |
2659 | MemTxResult result = MEMTX_OK; | |
2660 | ||
2661 | if (len > 0) { | |
2662 | rcu_read_lock(); | |
2663 | l = len; | |
2664 | mr = address_space_translate(as, addr, &addr1, &l, false); | |
2665 | result = address_space_read_continue(as, addr, attrs, buf, len, | |
2666 | addr1, l, mr); | |
2667 | rcu_read_unlock(); | |
eb7eeb88 | 2668 | } |
eb7eeb88 PB |
2669 | |
2670 | return result; | |
ac1970fb AK |
2671 | } |
2672 | ||
eb7eeb88 PB |
2673 | MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, |
2674 | uint8_t *buf, int len, bool is_write) | |
2675 | { | |
2676 | if (is_write) { | |
2677 | return address_space_write(as, addr, attrs, (uint8_t *)buf, len); | |
2678 | } else { | |
2679 | return address_space_read(as, addr, attrs, (uint8_t *)buf, len); | |
2680 | } | |
2681 | } | |
ac1970fb | 2682 | |
a8170e5e | 2683 | void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf, |
ac1970fb AK |
2684 | int len, int is_write) |
2685 | { | |
5c9eb028 PM |
2686 | address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, |
2687 | buf, len, is_write); | |
ac1970fb AK |
2688 | } |
2689 | ||
582b55a9 AG |
2690 | enum write_rom_type { |
2691 | WRITE_DATA, | |
2692 | FLUSH_CACHE, | |
2693 | }; | |
2694 | ||
2a221651 | 2695 | static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as, |
582b55a9 | 2696 | hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type) |
d0ecd2aa | 2697 | { |
149f54b5 | 2698 | hwaddr l; |
d0ecd2aa | 2699 | uint8_t *ptr; |
149f54b5 | 2700 | hwaddr addr1; |
5c8a00ce | 2701 | MemoryRegion *mr; |
3b46e624 | 2702 | |
41063e1e | 2703 | rcu_read_lock(); |
d0ecd2aa | 2704 | while (len > 0) { |
149f54b5 | 2705 | l = len; |
2a221651 | 2706 | mr = address_space_translate(as, addr, &addr1, &l, true); |
3b46e624 | 2707 | |
5c8a00ce PB |
2708 | if (!(memory_region_is_ram(mr) || |
2709 | memory_region_is_romd(mr))) { | |
b242e0e0 | 2710 | l = memory_access_size(mr, l, addr1); |
d0ecd2aa | 2711 | } else { |
d0ecd2aa | 2712 | /* ROM/RAM case */ |
0878d0e1 | 2713 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
582b55a9 AG |
2714 | switch (type) { |
2715 | case WRITE_DATA: | |
2716 | memcpy(ptr, buf, l); | |
845b6214 | 2717 | invalidate_and_set_dirty(mr, addr1, l); |
582b55a9 AG |
2718 | break; |
2719 | case FLUSH_CACHE: | |
2720 | flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l); | |
2721 | break; | |
2722 | } | |
d0ecd2aa FB |
2723 | } |
2724 | len -= l; | |
2725 | buf += l; | |
2726 | addr += l; | |
2727 | } | |
41063e1e | 2728 | rcu_read_unlock(); |
d0ecd2aa FB |
2729 | } |
2730 | ||
582b55a9 | 2731 | /* used for ROM loading : can write in RAM and ROM */ |
2a221651 | 2732 | void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr, |
582b55a9 AG |
2733 | const uint8_t *buf, int len) |
2734 | { | |
2a221651 | 2735 | cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA); |
582b55a9 AG |
2736 | } |
2737 | ||
2738 | void cpu_flush_icache_range(hwaddr start, int len) | |
2739 | { | |
2740 | /* | |
2741 | * This function should do the same thing as an icache flush that was | |
2742 | * triggered from within the guest. For TCG we are always cache coherent, | |
2743 | * so there is no need to flush anything. For KVM / Xen we need to flush | |
2744 | * the host's instruction cache at least. | |
2745 | */ | |
2746 | if (tcg_enabled()) { | |
2747 | return; | |
2748 | } | |
2749 | ||
2a221651 EI |
2750 | cpu_physical_memory_write_rom_internal(&address_space_memory, |
2751 | start, NULL, len, FLUSH_CACHE); | |
582b55a9 AG |
2752 | } |
2753 | ||
6d16c2f8 | 2754 | typedef struct { |
d3e71559 | 2755 | MemoryRegion *mr; |
6d16c2f8 | 2756 | void *buffer; |
a8170e5e AK |
2757 | hwaddr addr; |
2758 | hwaddr len; | |
c2cba0ff | 2759 | bool in_use; |
6d16c2f8 AL |
2760 | } BounceBuffer; |
2761 | ||
2762 | static BounceBuffer bounce; | |
2763 | ||
ba223c29 | 2764 | typedef struct MapClient { |
e95205e1 | 2765 | QEMUBH *bh; |
72cf2d4f | 2766 | QLIST_ENTRY(MapClient) link; |
ba223c29 AL |
2767 | } MapClient; |
2768 | ||
38e047b5 | 2769 | QemuMutex map_client_list_lock; |
72cf2d4f BS |
2770 | static QLIST_HEAD(map_client_list, MapClient) map_client_list |
2771 | = QLIST_HEAD_INITIALIZER(map_client_list); | |
ba223c29 | 2772 | |
e95205e1 FZ |
2773 | static void cpu_unregister_map_client_do(MapClient *client) |
2774 | { | |
2775 | QLIST_REMOVE(client, link); | |
2776 | g_free(client); | |
2777 | } | |
2778 | ||
33b6c2ed FZ |
2779 | static void cpu_notify_map_clients_locked(void) |
2780 | { | |
2781 | MapClient *client; | |
2782 | ||
2783 | while (!QLIST_EMPTY(&map_client_list)) { | |
2784 | client = QLIST_FIRST(&map_client_list); | |
e95205e1 FZ |
2785 | qemu_bh_schedule(client->bh); |
2786 | cpu_unregister_map_client_do(client); | |
33b6c2ed FZ |
2787 | } |
2788 | } | |
2789 | ||
e95205e1 | 2790 | void cpu_register_map_client(QEMUBH *bh) |
ba223c29 | 2791 | { |
7267c094 | 2792 | MapClient *client = g_malloc(sizeof(*client)); |
ba223c29 | 2793 | |
38e047b5 | 2794 | qemu_mutex_lock(&map_client_list_lock); |
e95205e1 | 2795 | client->bh = bh; |
72cf2d4f | 2796 | QLIST_INSERT_HEAD(&map_client_list, client, link); |
33b6c2ed FZ |
2797 | if (!atomic_read(&bounce.in_use)) { |
2798 | cpu_notify_map_clients_locked(); | |
2799 | } | |
38e047b5 | 2800 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
2801 | } |
2802 | ||
38e047b5 | 2803 | void cpu_exec_init_all(void) |
ba223c29 | 2804 | { |
38e047b5 | 2805 | qemu_mutex_init(&ram_list.mutex); |
38e047b5 | 2806 | io_mem_init(); |
680a4783 | 2807 | memory_map_init(); |
38e047b5 | 2808 | qemu_mutex_init(&map_client_list_lock); |
ba223c29 AL |
2809 | } |
2810 | ||
e95205e1 | 2811 | void cpu_unregister_map_client(QEMUBH *bh) |
ba223c29 AL |
2812 | { |
2813 | MapClient *client; | |
2814 | ||
e95205e1 FZ |
2815 | qemu_mutex_lock(&map_client_list_lock); |
2816 | QLIST_FOREACH(client, &map_client_list, link) { | |
2817 | if (client->bh == bh) { | |
2818 | cpu_unregister_map_client_do(client); | |
2819 | break; | |
2820 | } | |
ba223c29 | 2821 | } |
e95205e1 | 2822 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
2823 | } |
2824 | ||
2825 | static void cpu_notify_map_clients(void) | |
2826 | { | |
38e047b5 | 2827 | qemu_mutex_lock(&map_client_list_lock); |
33b6c2ed | 2828 | cpu_notify_map_clients_locked(); |
38e047b5 | 2829 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
2830 | } |
2831 | ||
51644ab7 PB |
2832 | bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write) |
2833 | { | |
5c8a00ce | 2834 | MemoryRegion *mr; |
51644ab7 PB |
2835 | hwaddr l, xlat; |
2836 | ||
41063e1e | 2837 | rcu_read_lock(); |
51644ab7 PB |
2838 | while (len > 0) { |
2839 | l = len; | |
5c8a00ce PB |
2840 | mr = address_space_translate(as, addr, &xlat, &l, is_write); |
2841 | if (!memory_access_is_direct(mr, is_write)) { | |
2842 | l = memory_access_size(mr, l, addr); | |
2843 | if (!memory_region_access_valid(mr, xlat, l, is_write)) { | |
51644ab7 PB |
2844 | return false; |
2845 | } | |
2846 | } | |
2847 | ||
2848 | len -= l; | |
2849 | addr += l; | |
2850 | } | |
41063e1e | 2851 | rcu_read_unlock(); |
51644ab7 PB |
2852 | return true; |
2853 | } | |
2854 | ||
6d16c2f8 AL |
2855 | /* Map a physical memory region into a host virtual address. |
2856 | * May map a subset of the requested range, given by and returned in *plen. | |
2857 | * May return NULL if resources needed to perform the mapping are exhausted. | |
2858 | * Use only for reads OR writes - not for read-modify-write operations. | |
ba223c29 AL |
2859 | * Use cpu_register_map_client() to know when retrying the map operation is |
2860 | * likely to succeed. | |
6d16c2f8 | 2861 | */ |
ac1970fb | 2862 | void *address_space_map(AddressSpace *as, |
a8170e5e AK |
2863 | hwaddr addr, |
2864 | hwaddr *plen, | |
ac1970fb | 2865 | bool is_write) |
6d16c2f8 | 2866 | { |
a8170e5e | 2867 | hwaddr len = *plen; |
e3127ae0 PB |
2868 | hwaddr done = 0; |
2869 | hwaddr l, xlat, base; | |
2870 | MemoryRegion *mr, *this_mr; | |
e81bcda5 | 2871 | void *ptr; |
6d16c2f8 | 2872 | |
e3127ae0 PB |
2873 | if (len == 0) { |
2874 | return NULL; | |
2875 | } | |
38bee5dc | 2876 | |
e3127ae0 | 2877 | l = len; |
41063e1e | 2878 | rcu_read_lock(); |
e3127ae0 | 2879 | mr = address_space_translate(as, addr, &xlat, &l, is_write); |
41063e1e | 2880 | |
e3127ae0 | 2881 | if (!memory_access_is_direct(mr, is_write)) { |
c2cba0ff | 2882 | if (atomic_xchg(&bounce.in_use, true)) { |
41063e1e | 2883 | rcu_read_unlock(); |
e3127ae0 | 2884 | return NULL; |
6d16c2f8 | 2885 | } |
e85d9db5 KW |
2886 | /* Avoid unbounded allocations */ |
2887 | l = MIN(l, TARGET_PAGE_SIZE); | |
2888 | bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l); | |
e3127ae0 PB |
2889 | bounce.addr = addr; |
2890 | bounce.len = l; | |
d3e71559 PB |
2891 | |
2892 | memory_region_ref(mr); | |
2893 | bounce.mr = mr; | |
e3127ae0 | 2894 | if (!is_write) { |
5c9eb028 PM |
2895 | address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED, |
2896 | bounce.buffer, l); | |
8ab934f9 | 2897 | } |
6d16c2f8 | 2898 | |
41063e1e | 2899 | rcu_read_unlock(); |
e3127ae0 PB |
2900 | *plen = l; |
2901 | return bounce.buffer; | |
2902 | } | |
2903 | ||
2904 | base = xlat; | |
e3127ae0 PB |
2905 | |
2906 | for (;;) { | |
6d16c2f8 AL |
2907 | len -= l; |
2908 | addr += l; | |
e3127ae0 PB |
2909 | done += l; |
2910 | if (len == 0) { | |
2911 | break; | |
2912 | } | |
2913 | ||
2914 | l = len; | |
2915 | this_mr = address_space_translate(as, addr, &xlat, &l, is_write); | |
2916 | if (this_mr != mr || xlat != base + done) { | |
2917 | break; | |
2918 | } | |
6d16c2f8 | 2919 | } |
e3127ae0 | 2920 | |
d3e71559 | 2921 | memory_region_ref(mr); |
e3127ae0 | 2922 | *plen = done; |
0878d0e1 | 2923 | ptr = qemu_ram_ptr_length(mr->ram_block, base, plen); |
e81bcda5 PB |
2924 | rcu_read_unlock(); |
2925 | ||
2926 | return ptr; | |
6d16c2f8 AL |
2927 | } |
2928 | ||
ac1970fb | 2929 | /* Unmaps a memory region previously mapped by address_space_map(). |
6d16c2f8 AL |
2930 | * Will also mark the memory as dirty if is_write == 1. access_len gives |
2931 | * the amount of memory that was actually read or written by the caller. | |
2932 | */ | |
a8170e5e AK |
2933 | void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, |
2934 | int is_write, hwaddr access_len) | |
6d16c2f8 AL |
2935 | { |
2936 | if (buffer != bounce.buffer) { | |
d3e71559 PB |
2937 | MemoryRegion *mr; |
2938 | ram_addr_t addr1; | |
2939 | ||
07bdaa41 | 2940 | mr = memory_region_from_host(buffer, &addr1); |
d3e71559 | 2941 | assert(mr != NULL); |
6d16c2f8 | 2942 | if (is_write) { |
845b6214 | 2943 | invalidate_and_set_dirty(mr, addr1, access_len); |
6d16c2f8 | 2944 | } |
868bb33f | 2945 | if (xen_enabled()) { |
e41d7c69 | 2946 | xen_invalidate_map_cache_entry(buffer); |
050a0ddf | 2947 | } |
d3e71559 | 2948 | memory_region_unref(mr); |
6d16c2f8 AL |
2949 | return; |
2950 | } | |
2951 | if (is_write) { | |
5c9eb028 PM |
2952 | address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED, |
2953 | bounce.buffer, access_len); | |
6d16c2f8 | 2954 | } |
f8a83245 | 2955 | qemu_vfree(bounce.buffer); |
6d16c2f8 | 2956 | bounce.buffer = NULL; |
d3e71559 | 2957 | memory_region_unref(bounce.mr); |
c2cba0ff | 2958 | atomic_mb_set(&bounce.in_use, false); |
ba223c29 | 2959 | cpu_notify_map_clients(); |
6d16c2f8 | 2960 | } |
d0ecd2aa | 2961 | |
a8170e5e AK |
2962 | void *cpu_physical_memory_map(hwaddr addr, |
2963 | hwaddr *plen, | |
ac1970fb AK |
2964 | int is_write) |
2965 | { | |
2966 | return address_space_map(&address_space_memory, addr, plen, is_write); | |
2967 | } | |
2968 | ||
a8170e5e AK |
2969 | void cpu_physical_memory_unmap(void *buffer, hwaddr len, |
2970 | int is_write, hwaddr access_len) | |
ac1970fb AK |
2971 | { |
2972 | return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); | |
2973 | } | |
2974 | ||
8df1cd07 | 2975 | /* warning: addr must be aligned */ |
50013115 PM |
2976 | static inline uint32_t address_space_ldl_internal(AddressSpace *as, hwaddr addr, |
2977 | MemTxAttrs attrs, | |
2978 | MemTxResult *result, | |
2979 | enum device_endian endian) | |
8df1cd07 | 2980 | { |
8df1cd07 | 2981 | uint8_t *ptr; |
791af8c8 | 2982 | uint64_t val; |
5c8a00ce | 2983 | MemoryRegion *mr; |
149f54b5 PB |
2984 | hwaddr l = 4; |
2985 | hwaddr addr1; | |
50013115 | 2986 | MemTxResult r; |
4840f10e | 2987 | bool release_lock = false; |
8df1cd07 | 2988 | |
41063e1e | 2989 | rcu_read_lock(); |
fdfba1a2 | 2990 | mr = address_space_translate(as, addr, &addr1, &l, false); |
5c8a00ce | 2991 | if (l < 4 || !memory_access_is_direct(mr, false)) { |
4840f10e | 2992 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 2993 | |
8df1cd07 | 2994 | /* I/O case */ |
50013115 | 2995 | r = memory_region_dispatch_read(mr, addr1, &val, 4, attrs); |
1e78bcc1 AG |
2996 | #if defined(TARGET_WORDS_BIGENDIAN) |
2997 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
2998 | val = bswap32(val); | |
2999 | } | |
3000 | #else | |
3001 | if (endian == DEVICE_BIG_ENDIAN) { | |
3002 | val = bswap32(val); | |
3003 | } | |
3004 | #endif | |
8df1cd07 FB |
3005 | } else { |
3006 | /* RAM case */ | |
0878d0e1 | 3007 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
1e78bcc1 AG |
3008 | switch (endian) { |
3009 | case DEVICE_LITTLE_ENDIAN: | |
3010 | val = ldl_le_p(ptr); | |
3011 | break; | |
3012 | case DEVICE_BIG_ENDIAN: | |
3013 | val = ldl_be_p(ptr); | |
3014 | break; | |
3015 | default: | |
3016 | val = ldl_p(ptr); | |
3017 | break; | |
3018 | } | |
50013115 PM |
3019 | r = MEMTX_OK; |
3020 | } | |
3021 | if (result) { | |
3022 | *result = r; | |
8df1cd07 | 3023 | } |
4840f10e JK |
3024 | if (release_lock) { |
3025 | qemu_mutex_unlock_iothread(); | |
3026 | } | |
41063e1e | 3027 | rcu_read_unlock(); |
8df1cd07 FB |
3028 | return val; |
3029 | } | |
3030 | ||
50013115 PM |
3031 | uint32_t address_space_ldl(AddressSpace *as, hwaddr addr, |
3032 | MemTxAttrs attrs, MemTxResult *result) | |
3033 | { | |
3034 | return address_space_ldl_internal(as, addr, attrs, result, | |
3035 | DEVICE_NATIVE_ENDIAN); | |
3036 | } | |
3037 | ||
3038 | uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr, | |
3039 | MemTxAttrs attrs, MemTxResult *result) | |
3040 | { | |
3041 | return address_space_ldl_internal(as, addr, attrs, result, | |
3042 | DEVICE_LITTLE_ENDIAN); | |
3043 | } | |
3044 | ||
3045 | uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr, | |
3046 | MemTxAttrs attrs, MemTxResult *result) | |
3047 | { | |
3048 | return address_space_ldl_internal(as, addr, attrs, result, | |
3049 | DEVICE_BIG_ENDIAN); | |
3050 | } | |
3051 | ||
fdfba1a2 | 3052 | uint32_t ldl_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3053 | { |
50013115 | 3054 | return address_space_ldl(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3055 | } |
3056 | ||
fdfba1a2 | 3057 | uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3058 | { |
50013115 | 3059 | return address_space_ldl_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3060 | } |
3061 | ||
fdfba1a2 | 3062 | uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3063 | { |
50013115 | 3064 | return address_space_ldl_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3065 | } |
3066 | ||
84b7b8e7 | 3067 | /* warning: addr must be aligned */ |
50013115 PM |
3068 | static inline uint64_t address_space_ldq_internal(AddressSpace *as, hwaddr addr, |
3069 | MemTxAttrs attrs, | |
3070 | MemTxResult *result, | |
3071 | enum device_endian endian) | |
84b7b8e7 | 3072 | { |
84b7b8e7 FB |
3073 | uint8_t *ptr; |
3074 | uint64_t val; | |
5c8a00ce | 3075 | MemoryRegion *mr; |
149f54b5 PB |
3076 | hwaddr l = 8; |
3077 | hwaddr addr1; | |
50013115 | 3078 | MemTxResult r; |
4840f10e | 3079 | bool release_lock = false; |
84b7b8e7 | 3080 | |
41063e1e | 3081 | rcu_read_lock(); |
2c17449b | 3082 | mr = address_space_translate(as, addr, &addr1, &l, |
5c8a00ce PB |
3083 | false); |
3084 | if (l < 8 || !memory_access_is_direct(mr, false)) { | |
4840f10e | 3085 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3086 | |
84b7b8e7 | 3087 | /* I/O case */ |
50013115 | 3088 | r = memory_region_dispatch_read(mr, addr1, &val, 8, attrs); |
968a5627 PB |
3089 | #if defined(TARGET_WORDS_BIGENDIAN) |
3090 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3091 | val = bswap64(val); | |
3092 | } | |
3093 | #else | |
3094 | if (endian == DEVICE_BIG_ENDIAN) { | |
3095 | val = bswap64(val); | |
3096 | } | |
84b7b8e7 FB |
3097 | #endif |
3098 | } else { | |
3099 | /* RAM case */ | |
0878d0e1 | 3100 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
1e78bcc1 AG |
3101 | switch (endian) { |
3102 | case DEVICE_LITTLE_ENDIAN: | |
3103 | val = ldq_le_p(ptr); | |
3104 | break; | |
3105 | case DEVICE_BIG_ENDIAN: | |
3106 | val = ldq_be_p(ptr); | |
3107 | break; | |
3108 | default: | |
3109 | val = ldq_p(ptr); | |
3110 | break; | |
3111 | } | |
50013115 PM |
3112 | r = MEMTX_OK; |
3113 | } | |
3114 | if (result) { | |
3115 | *result = r; | |
84b7b8e7 | 3116 | } |
4840f10e JK |
3117 | if (release_lock) { |
3118 | qemu_mutex_unlock_iothread(); | |
3119 | } | |
41063e1e | 3120 | rcu_read_unlock(); |
84b7b8e7 FB |
3121 | return val; |
3122 | } | |
3123 | ||
50013115 PM |
3124 | uint64_t address_space_ldq(AddressSpace *as, hwaddr addr, |
3125 | MemTxAttrs attrs, MemTxResult *result) | |
3126 | { | |
3127 | return address_space_ldq_internal(as, addr, attrs, result, | |
3128 | DEVICE_NATIVE_ENDIAN); | |
3129 | } | |
3130 | ||
3131 | uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr, | |
3132 | MemTxAttrs attrs, MemTxResult *result) | |
3133 | { | |
3134 | return address_space_ldq_internal(as, addr, attrs, result, | |
3135 | DEVICE_LITTLE_ENDIAN); | |
3136 | } | |
3137 | ||
3138 | uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr, | |
3139 | MemTxAttrs attrs, MemTxResult *result) | |
3140 | { | |
3141 | return address_space_ldq_internal(as, addr, attrs, result, | |
3142 | DEVICE_BIG_ENDIAN); | |
3143 | } | |
3144 | ||
2c17449b | 3145 | uint64_t ldq_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3146 | { |
50013115 | 3147 | return address_space_ldq(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3148 | } |
3149 | ||
2c17449b | 3150 | uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3151 | { |
50013115 | 3152 | return address_space_ldq_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3153 | } |
3154 | ||
2c17449b | 3155 | uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3156 | { |
50013115 | 3157 | return address_space_ldq_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3158 | } |
3159 | ||
aab33094 | 3160 | /* XXX: optimize */ |
50013115 PM |
3161 | uint32_t address_space_ldub(AddressSpace *as, hwaddr addr, |
3162 | MemTxAttrs attrs, MemTxResult *result) | |
aab33094 FB |
3163 | { |
3164 | uint8_t val; | |
50013115 PM |
3165 | MemTxResult r; |
3166 | ||
3167 | r = address_space_rw(as, addr, attrs, &val, 1, 0); | |
3168 | if (result) { | |
3169 | *result = r; | |
3170 | } | |
aab33094 FB |
3171 | return val; |
3172 | } | |
3173 | ||
50013115 PM |
3174 | uint32_t ldub_phys(AddressSpace *as, hwaddr addr) |
3175 | { | |
3176 | return address_space_ldub(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); | |
3177 | } | |
3178 | ||
733f0b02 | 3179 | /* warning: addr must be aligned */ |
50013115 PM |
3180 | static inline uint32_t address_space_lduw_internal(AddressSpace *as, |
3181 | hwaddr addr, | |
3182 | MemTxAttrs attrs, | |
3183 | MemTxResult *result, | |
3184 | enum device_endian endian) | |
aab33094 | 3185 | { |
733f0b02 MT |
3186 | uint8_t *ptr; |
3187 | uint64_t val; | |
5c8a00ce | 3188 | MemoryRegion *mr; |
149f54b5 PB |
3189 | hwaddr l = 2; |
3190 | hwaddr addr1; | |
50013115 | 3191 | MemTxResult r; |
4840f10e | 3192 | bool release_lock = false; |
733f0b02 | 3193 | |
41063e1e | 3194 | rcu_read_lock(); |
41701aa4 | 3195 | mr = address_space_translate(as, addr, &addr1, &l, |
5c8a00ce PB |
3196 | false); |
3197 | if (l < 2 || !memory_access_is_direct(mr, false)) { | |
4840f10e | 3198 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3199 | |
733f0b02 | 3200 | /* I/O case */ |
50013115 | 3201 | r = memory_region_dispatch_read(mr, addr1, &val, 2, attrs); |
1e78bcc1 AG |
3202 | #if defined(TARGET_WORDS_BIGENDIAN) |
3203 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3204 | val = bswap16(val); | |
3205 | } | |
3206 | #else | |
3207 | if (endian == DEVICE_BIG_ENDIAN) { | |
3208 | val = bswap16(val); | |
3209 | } | |
3210 | #endif | |
733f0b02 MT |
3211 | } else { |
3212 | /* RAM case */ | |
0878d0e1 | 3213 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
1e78bcc1 AG |
3214 | switch (endian) { |
3215 | case DEVICE_LITTLE_ENDIAN: | |
3216 | val = lduw_le_p(ptr); | |
3217 | break; | |
3218 | case DEVICE_BIG_ENDIAN: | |
3219 | val = lduw_be_p(ptr); | |
3220 | break; | |
3221 | default: | |
3222 | val = lduw_p(ptr); | |
3223 | break; | |
3224 | } | |
50013115 PM |
3225 | r = MEMTX_OK; |
3226 | } | |
3227 | if (result) { | |
3228 | *result = r; | |
733f0b02 | 3229 | } |
4840f10e JK |
3230 | if (release_lock) { |
3231 | qemu_mutex_unlock_iothread(); | |
3232 | } | |
41063e1e | 3233 | rcu_read_unlock(); |
733f0b02 | 3234 | return val; |
aab33094 FB |
3235 | } |
3236 | ||
50013115 PM |
3237 | uint32_t address_space_lduw(AddressSpace *as, hwaddr addr, |
3238 | MemTxAttrs attrs, MemTxResult *result) | |
3239 | { | |
3240 | return address_space_lduw_internal(as, addr, attrs, result, | |
3241 | DEVICE_NATIVE_ENDIAN); | |
3242 | } | |
3243 | ||
3244 | uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr, | |
3245 | MemTxAttrs attrs, MemTxResult *result) | |
3246 | { | |
3247 | return address_space_lduw_internal(as, addr, attrs, result, | |
3248 | DEVICE_LITTLE_ENDIAN); | |
3249 | } | |
3250 | ||
3251 | uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr, | |
3252 | MemTxAttrs attrs, MemTxResult *result) | |
3253 | { | |
3254 | return address_space_lduw_internal(as, addr, attrs, result, | |
3255 | DEVICE_BIG_ENDIAN); | |
3256 | } | |
3257 | ||
41701aa4 | 3258 | uint32_t lduw_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3259 | { |
50013115 | 3260 | return address_space_lduw(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3261 | } |
3262 | ||
41701aa4 | 3263 | uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3264 | { |
50013115 | 3265 | return address_space_lduw_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3266 | } |
3267 | ||
41701aa4 | 3268 | uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3269 | { |
50013115 | 3270 | return address_space_lduw_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3271 | } |
3272 | ||
8df1cd07 FB |
3273 | /* warning: addr must be aligned. The ram page is not masked as dirty |
3274 | and the code inside is not invalidated. It is useful if the dirty | |
3275 | bits are used to track modified PTEs */ | |
50013115 PM |
3276 | void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val, |
3277 | MemTxAttrs attrs, MemTxResult *result) | |
8df1cd07 | 3278 | { |
8df1cd07 | 3279 | uint8_t *ptr; |
5c8a00ce | 3280 | MemoryRegion *mr; |
149f54b5 PB |
3281 | hwaddr l = 4; |
3282 | hwaddr addr1; | |
50013115 | 3283 | MemTxResult r; |
845b6214 | 3284 | uint8_t dirty_log_mask; |
4840f10e | 3285 | bool release_lock = false; |
8df1cd07 | 3286 | |
41063e1e | 3287 | rcu_read_lock(); |
2198a121 | 3288 | mr = address_space_translate(as, addr, &addr1, &l, |
5c8a00ce PB |
3289 | true); |
3290 | if (l < 4 || !memory_access_is_direct(mr, true)) { | |
4840f10e | 3291 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3292 | |
50013115 | 3293 | r = memory_region_dispatch_write(mr, addr1, val, 4, attrs); |
8df1cd07 | 3294 | } else { |
0878d0e1 | 3295 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
8df1cd07 | 3296 | stl_p(ptr, val); |
74576198 | 3297 | |
845b6214 PB |
3298 | dirty_log_mask = memory_region_get_dirty_log_mask(mr); |
3299 | dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); | |
0878d0e1 PB |
3300 | cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr, |
3301 | 4, dirty_log_mask); | |
50013115 PM |
3302 | r = MEMTX_OK; |
3303 | } | |
3304 | if (result) { | |
3305 | *result = r; | |
8df1cd07 | 3306 | } |
4840f10e JK |
3307 | if (release_lock) { |
3308 | qemu_mutex_unlock_iothread(); | |
3309 | } | |
41063e1e | 3310 | rcu_read_unlock(); |
8df1cd07 FB |
3311 | } |
3312 | ||
50013115 PM |
3313 | void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val) |
3314 | { | |
3315 | address_space_stl_notdirty(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
3316 | } | |
3317 | ||
8df1cd07 | 3318 | /* warning: addr must be aligned */ |
50013115 PM |
3319 | static inline void address_space_stl_internal(AddressSpace *as, |
3320 | hwaddr addr, uint32_t val, | |
3321 | MemTxAttrs attrs, | |
3322 | MemTxResult *result, | |
3323 | enum device_endian endian) | |
8df1cd07 | 3324 | { |
8df1cd07 | 3325 | uint8_t *ptr; |
5c8a00ce | 3326 | MemoryRegion *mr; |
149f54b5 PB |
3327 | hwaddr l = 4; |
3328 | hwaddr addr1; | |
50013115 | 3329 | MemTxResult r; |
4840f10e | 3330 | bool release_lock = false; |
8df1cd07 | 3331 | |
41063e1e | 3332 | rcu_read_lock(); |
ab1da857 | 3333 | mr = address_space_translate(as, addr, &addr1, &l, |
5c8a00ce PB |
3334 | true); |
3335 | if (l < 4 || !memory_access_is_direct(mr, true)) { | |
4840f10e | 3336 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3337 | |
1e78bcc1 AG |
3338 | #if defined(TARGET_WORDS_BIGENDIAN) |
3339 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3340 | val = bswap32(val); | |
3341 | } | |
3342 | #else | |
3343 | if (endian == DEVICE_BIG_ENDIAN) { | |
3344 | val = bswap32(val); | |
3345 | } | |
3346 | #endif | |
50013115 | 3347 | r = memory_region_dispatch_write(mr, addr1, val, 4, attrs); |
8df1cd07 | 3348 | } else { |
8df1cd07 | 3349 | /* RAM case */ |
0878d0e1 | 3350 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
1e78bcc1 AG |
3351 | switch (endian) { |
3352 | case DEVICE_LITTLE_ENDIAN: | |
3353 | stl_le_p(ptr, val); | |
3354 | break; | |
3355 | case DEVICE_BIG_ENDIAN: | |
3356 | stl_be_p(ptr, val); | |
3357 | break; | |
3358 | default: | |
3359 | stl_p(ptr, val); | |
3360 | break; | |
3361 | } | |
845b6214 | 3362 | invalidate_and_set_dirty(mr, addr1, 4); |
50013115 PM |
3363 | r = MEMTX_OK; |
3364 | } | |
3365 | if (result) { | |
3366 | *result = r; | |
8df1cd07 | 3367 | } |
4840f10e JK |
3368 | if (release_lock) { |
3369 | qemu_mutex_unlock_iothread(); | |
3370 | } | |
41063e1e | 3371 | rcu_read_unlock(); |
8df1cd07 FB |
3372 | } |
3373 | ||
50013115 PM |
3374 | void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val, |
3375 | MemTxAttrs attrs, MemTxResult *result) | |
3376 | { | |
3377 | address_space_stl_internal(as, addr, val, attrs, result, | |
3378 | DEVICE_NATIVE_ENDIAN); | |
3379 | } | |
3380 | ||
3381 | void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val, | |
3382 | MemTxAttrs attrs, MemTxResult *result) | |
3383 | { | |
3384 | address_space_stl_internal(as, addr, val, attrs, result, | |
3385 | DEVICE_LITTLE_ENDIAN); | |
3386 | } | |
3387 | ||
3388 | void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val, | |
3389 | MemTxAttrs attrs, MemTxResult *result) | |
3390 | { | |
3391 | address_space_stl_internal(as, addr, val, attrs, result, | |
3392 | DEVICE_BIG_ENDIAN); | |
3393 | } | |
3394 | ||
ab1da857 | 3395 | void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3396 | { |
50013115 | 3397 | address_space_stl(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3398 | } |
3399 | ||
ab1da857 | 3400 | void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3401 | { |
50013115 | 3402 | address_space_stl_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3403 | } |
3404 | ||
ab1da857 | 3405 | void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3406 | { |
50013115 | 3407 | address_space_stl_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3408 | } |
3409 | ||
aab33094 | 3410 | /* XXX: optimize */ |
50013115 PM |
3411 | void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val, |
3412 | MemTxAttrs attrs, MemTxResult *result) | |
aab33094 FB |
3413 | { |
3414 | uint8_t v = val; | |
50013115 PM |
3415 | MemTxResult r; |
3416 | ||
3417 | r = address_space_rw(as, addr, attrs, &v, 1, 1); | |
3418 | if (result) { | |
3419 | *result = r; | |
3420 | } | |
3421 | } | |
3422 | ||
3423 | void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val) | |
3424 | { | |
3425 | address_space_stb(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
aab33094 FB |
3426 | } |
3427 | ||
733f0b02 | 3428 | /* warning: addr must be aligned */ |
50013115 PM |
3429 | static inline void address_space_stw_internal(AddressSpace *as, |
3430 | hwaddr addr, uint32_t val, | |
3431 | MemTxAttrs attrs, | |
3432 | MemTxResult *result, | |
3433 | enum device_endian endian) | |
aab33094 | 3434 | { |
733f0b02 | 3435 | uint8_t *ptr; |
5c8a00ce | 3436 | MemoryRegion *mr; |
149f54b5 PB |
3437 | hwaddr l = 2; |
3438 | hwaddr addr1; | |
50013115 | 3439 | MemTxResult r; |
4840f10e | 3440 | bool release_lock = false; |
733f0b02 | 3441 | |
41063e1e | 3442 | rcu_read_lock(); |
5ce5944d | 3443 | mr = address_space_translate(as, addr, &addr1, &l, true); |
5c8a00ce | 3444 | if (l < 2 || !memory_access_is_direct(mr, true)) { |
4840f10e | 3445 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3446 | |
1e78bcc1 AG |
3447 | #if defined(TARGET_WORDS_BIGENDIAN) |
3448 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3449 | val = bswap16(val); | |
3450 | } | |
3451 | #else | |
3452 | if (endian == DEVICE_BIG_ENDIAN) { | |
3453 | val = bswap16(val); | |
3454 | } | |
3455 | #endif | |
50013115 | 3456 | r = memory_region_dispatch_write(mr, addr1, val, 2, attrs); |
733f0b02 | 3457 | } else { |
733f0b02 | 3458 | /* RAM case */ |
0878d0e1 | 3459 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
1e78bcc1 AG |
3460 | switch (endian) { |
3461 | case DEVICE_LITTLE_ENDIAN: | |
3462 | stw_le_p(ptr, val); | |
3463 | break; | |
3464 | case DEVICE_BIG_ENDIAN: | |
3465 | stw_be_p(ptr, val); | |
3466 | break; | |
3467 | default: | |
3468 | stw_p(ptr, val); | |
3469 | break; | |
3470 | } | |
845b6214 | 3471 | invalidate_and_set_dirty(mr, addr1, 2); |
50013115 PM |
3472 | r = MEMTX_OK; |
3473 | } | |
3474 | if (result) { | |
3475 | *result = r; | |
733f0b02 | 3476 | } |
4840f10e JK |
3477 | if (release_lock) { |
3478 | qemu_mutex_unlock_iothread(); | |
3479 | } | |
41063e1e | 3480 | rcu_read_unlock(); |
aab33094 FB |
3481 | } |
3482 | ||
50013115 PM |
3483 | void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val, |
3484 | MemTxAttrs attrs, MemTxResult *result) | |
3485 | { | |
3486 | address_space_stw_internal(as, addr, val, attrs, result, | |
3487 | DEVICE_NATIVE_ENDIAN); | |
3488 | } | |
3489 | ||
3490 | void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val, | |
3491 | MemTxAttrs attrs, MemTxResult *result) | |
3492 | { | |
3493 | address_space_stw_internal(as, addr, val, attrs, result, | |
3494 | DEVICE_LITTLE_ENDIAN); | |
3495 | } | |
3496 | ||
3497 | void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val, | |
3498 | MemTxAttrs attrs, MemTxResult *result) | |
3499 | { | |
3500 | address_space_stw_internal(as, addr, val, attrs, result, | |
3501 | DEVICE_BIG_ENDIAN); | |
3502 | } | |
3503 | ||
5ce5944d | 3504 | void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3505 | { |
50013115 | 3506 | address_space_stw(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3507 | } |
3508 | ||
5ce5944d | 3509 | void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3510 | { |
50013115 | 3511 | address_space_stw_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3512 | } |
3513 | ||
5ce5944d | 3514 | void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3515 | { |
50013115 | 3516 | address_space_stw_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3517 | } |
3518 | ||
aab33094 | 3519 | /* XXX: optimize */ |
50013115 PM |
3520 | void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val, |
3521 | MemTxAttrs attrs, MemTxResult *result) | |
aab33094 | 3522 | { |
50013115 | 3523 | MemTxResult r; |
aab33094 | 3524 | val = tswap64(val); |
50013115 PM |
3525 | r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1); |
3526 | if (result) { | |
3527 | *result = r; | |
3528 | } | |
aab33094 FB |
3529 | } |
3530 | ||
50013115 PM |
3531 | void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val, |
3532 | MemTxAttrs attrs, MemTxResult *result) | |
1e78bcc1 | 3533 | { |
50013115 | 3534 | MemTxResult r; |
1e78bcc1 | 3535 | val = cpu_to_le64(val); |
50013115 PM |
3536 | r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1); |
3537 | if (result) { | |
3538 | *result = r; | |
3539 | } | |
3540 | } | |
3541 | void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val, | |
3542 | MemTxAttrs attrs, MemTxResult *result) | |
3543 | { | |
3544 | MemTxResult r; | |
3545 | val = cpu_to_be64(val); | |
3546 | r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1); | |
3547 | if (result) { | |
3548 | *result = r; | |
3549 | } | |
3550 | } | |
3551 | ||
3552 | void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val) | |
3553 | { | |
3554 | address_space_stq(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
3555 | } | |
3556 | ||
3557 | void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val) | |
3558 | { | |
3559 | address_space_stq_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
1e78bcc1 AG |
3560 | } |
3561 | ||
f606604f | 3562 | void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val) |
1e78bcc1 | 3563 | { |
50013115 | 3564 | address_space_stq_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3565 | } |
3566 | ||
5e2972fd | 3567 | /* virtual memory access for debug (includes writing to ROM) */ |
f17ec444 | 3568 | int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, |
b448f2f3 | 3569 | uint8_t *buf, int len, int is_write) |
13eb76e0 FB |
3570 | { |
3571 | int l; | |
a8170e5e | 3572 | hwaddr phys_addr; |
9b3c35e0 | 3573 | target_ulong page; |
13eb76e0 FB |
3574 | |
3575 | while (len > 0) { | |
5232e4c7 PM |
3576 | int asidx; |
3577 | MemTxAttrs attrs; | |
3578 | ||
13eb76e0 | 3579 | page = addr & TARGET_PAGE_MASK; |
5232e4c7 PM |
3580 | phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs); |
3581 | asidx = cpu_asidx_from_attrs(cpu, attrs); | |
13eb76e0 FB |
3582 | /* if no physical page mapped, return an error */ |
3583 | if (phys_addr == -1) | |
3584 | return -1; | |
3585 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3586 | if (l > len) | |
3587 | l = len; | |
5e2972fd | 3588 | phys_addr += (addr & ~TARGET_PAGE_MASK); |
2e38847b | 3589 | if (is_write) { |
5232e4c7 PM |
3590 | cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as, |
3591 | phys_addr, buf, l); | |
2e38847b | 3592 | } else { |
5232e4c7 PM |
3593 | address_space_rw(cpu->cpu_ases[asidx].as, phys_addr, |
3594 | MEMTXATTRS_UNSPECIFIED, | |
5c9eb028 | 3595 | buf, l, 0); |
2e38847b | 3596 | } |
13eb76e0 FB |
3597 | len -= l; |
3598 | buf += l; | |
3599 | addr += l; | |
3600 | } | |
3601 | return 0; | |
3602 | } | |
038629a6 DDAG |
3603 | |
3604 | /* | |
3605 | * Allows code that needs to deal with migration bitmaps etc to still be built | |
3606 | * target independent. | |
3607 | */ | |
3608 | size_t qemu_target_page_bits(void) | |
3609 | { | |
3610 | return TARGET_PAGE_BITS; | |
3611 | } | |
3612 | ||
a68fe89c | 3613 | #endif |
13eb76e0 | 3614 | |
8e4a424b BS |
3615 | /* |
3616 | * A helper function for the _utterly broken_ virtio device model to find out if | |
3617 | * it's running on a big endian machine. Don't do this at home kids! | |
3618 | */ | |
98ed8ecf GK |
3619 | bool target_words_bigendian(void); |
3620 | bool target_words_bigendian(void) | |
8e4a424b BS |
3621 | { |
3622 | #if defined(TARGET_WORDS_BIGENDIAN) | |
3623 | return true; | |
3624 | #else | |
3625 | return false; | |
3626 | #endif | |
3627 | } | |
3628 | ||
76f35538 | 3629 | #ifndef CONFIG_USER_ONLY |
a8170e5e | 3630 | bool cpu_physical_memory_is_io(hwaddr phys_addr) |
76f35538 | 3631 | { |
5c8a00ce | 3632 | MemoryRegion*mr; |
149f54b5 | 3633 | hwaddr l = 1; |
41063e1e | 3634 | bool res; |
76f35538 | 3635 | |
41063e1e | 3636 | rcu_read_lock(); |
5c8a00ce PB |
3637 | mr = address_space_translate(&address_space_memory, |
3638 | phys_addr, &phys_addr, &l, false); | |
76f35538 | 3639 | |
41063e1e PB |
3640 | res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr)); |
3641 | rcu_read_unlock(); | |
3642 | return res; | |
76f35538 | 3643 | } |
bd2fa51f | 3644 | |
e3807054 | 3645 | int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) |
bd2fa51f MH |
3646 | { |
3647 | RAMBlock *block; | |
e3807054 | 3648 | int ret = 0; |
bd2fa51f | 3649 | |
0dc3f44a MD |
3650 | rcu_read_lock(); |
3651 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
e3807054 DDAG |
3652 | ret = func(block->idstr, block->host, block->offset, |
3653 | block->used_length, opaque); | |
3654 | if (ret) { | |
3655 | break; | |
3656 | } | |
bd2fa51f | 3657 | } |
0dc3f44a | 3658 | rcu_read_unlock(); |
e3807054 | 3659 | return ret; |
bd2fa51f | 3660 | } |
ec3f8c99 | 3661 | #endif |