]>
Commit | Line | Data |
---|---|---|
54936004 | 1 | /* |
5b6dd868 | 2 | * Virtual page mapping |
5fafdf24 | 3 | * |
54936004 FB |
4 | * Copyright (c) 2003 Fabrice Bellard |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
8167ee88 | 17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
54936004 | 18 | */ |
7b31bbc2 | 19 | #include "qemu/osdep.h" |
da34e65c | 20 | #include "qapi/error.h" |
777872e5 | 21 | #ifndef _WIN32 |
d5a8f07c FB |
22 | #include <sys/mman.h> |
23 | #endif | |
54936004 | 24 | |
f348b6d1 | 25 | #include "qemu/cutils.h" |
6180a181 | 26 | #include "cpu.h" |
63c91552 | 27 | #include "exec/exec-all.h" |
b67d9a52 | 28 | #include "tcg.h" |
741da0d3 | 29 | #include "hw/qdev-core.h" |
4485bd26 | 30 | #if !defined(CONFIG_USER_ONLY) |
47c8ca53 | 31 | #include "hw/boards.h" |
33c11879 | 32 | #include "hw/xen/xen.h" |
4485bd26 | 33 | #endif |
9c17d615 | 34 | #include "sysemu/kvm.h" |
2ff3de68 | 35 | #include "sysemu/sysemu.h" |
1de7afc9 PB |
36 | #include "qemu/timer.h" |
37 | #include "qemu/config-file.h" | |
75a34036 | 38 | #include "qemu/error-report.h" |
53a5960a PB |
39 | #if defined(CONFIG_USER_ONLY) |
40 | #include <qemu.h> | |
432d268c | 41 | #else /* !CONFIG_USER_ONLY */ |
741da0d3 PB |
42 | #include "hw/hw.h" |
43 | #include "exec/memory.h" | |
df43d49c | 44 | #include "exec/ioport.h" |
741da0d3 PB |
45 | #include "sysemu/dma.h" |
46 | #include "exec/address-spaces.h" | |
9c17d615 | 47 | #include "sysemu/xen-mapcache.h" |
6506e4f9 | 48 | #include "trace.h" |
53a5960a | 49 | #endif |
0d6d3c87 | 50 | #include "exec/cpu-all.h" |
0dc3f44a | 51 | #include "qemu/rcu_queue.h" |
4840f10e | 52 | #include "qemu/main-loop.h" |
5b6dd868 | 53 | #include "translate-all.h" |
7615936e | 54 | #include "sysemu/replay.h" |
0cac1b66 | 55 | |
022c62cb | 56 | #include "exec/memory-internal.h" |
220c3ebd | 57 | #include "exec/ram_addr.h" |
508127e2 | 58 | #include "exec/log.h" |
67d95c15 | 59 | |
9dfeca7c BR |
60 | #include "migration/vmstate.h" |
61 | ||
b35ba30f | 62 | #include "qemu/range.h" |
794e8f30 MT |
63 | #ifndef _WIN32 |
64 | #include "qemu/mmap-alloc.h" | |
65 | #endif | |
b35ba30f | 66 | |
db7b5426 | 67 | //#define DEBUG_SUBPAGE |
1196be37 | 68 | |
e2eef170 | 69 | #if !defined(CONFIG_USER_ONLY) |
0dc3f44a MD |
70 | /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes |
71 | * are protected by the ramlist lock. | |
72 | */ | |
0d53d9fe | 73 | RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; |
62152b8a AK |
74 | |
75 | static MemoryRegion *system_memory; | |
309cb471 | 76 | static MemoryRegion *system_io; |
62152b8a | 77 | |
f6790af6 AK |
78 | AddressSpace address_space_io; |
79 | AddressSpace address_space_memory; | |
2673a5da | 80 | |
0844e007 | 81 | MemoryRegion io_mem_rom, io_mem_notdirty; |
acc9d80b | 82 | static MemoryRegion io_mem_unassigned; |
0e0df1e2 | 83 | |
7bd4f430 PB |
84 | /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ |
85 | #define RAM_PREALLOC (1 << 0) | |
86 | ||
dbcb8981 PB |
87 | /* RAM is mmap-ed with MAP_SHARED */ |
88 | #define RAM_SHARED (1 << 1) | |
89 | ||
62be4e3a MT |
90 | /* Only a portion of RAM (used_length) is actually used, and migrated. |
91 | * This used_length size can change across reboots. | |
92 | */ | |
93 | #define RAM_RESIZEABLE (1 << 2) | |
94 | ||
e2eef170 | 95 | #endif |
9fa3e853 | 96 | |
bdc44640 | 97 | struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus); |
6a00d601 FB |
98 | /* current CPU in the current thread. It is only valid inside |
99 | cpu_exec() */ | |
f240eb6f | 100 | __thread CPUState *current_cpu; |
2e70f6ef | 101 | /* 0 = Do not count executed instructions. |
bf20dc07 | 102 | 1 = Precise instruction counting. |
2e70f6ef | 103 | 2 = Adaptive rate instruction counting. */ |
5708fc66 | 104 | int use_icount; |
6a00d601 | 105 | |
e2eef170 | 106 | #if !defined(CONFIG_USER_ONLY) |
4346ae3e | 107 | |
1db8abb1 PB |
108 | typedef struct PhysPageEntry PhysPageEntry; |
109 | ||
110 | struct PhysPageEntry { | |
9736e55b | 111 | /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ |
8b795765 | 112 | uint32_t skip : 6; |
9736e55b | 113 | /* index into phys_sections (!skip) or phys_map_nodes (skip) */ |
8b795765 | 114 | uint32_t ptr : 26; |
1db8abb1 PB |
115 | }; |
116 | ||
8b795765 MT |
117 | #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) |
118 | ||
03f49957 | 119 | /* Size of the L2 (and L3, etc) page tables. */ |
57271d63 | 120 | #define ADDR_SPACE_BITS 64 |
03f49957 | 121 | |
026736ce | 122 | #define P_L2_BITS 9 |
03f49957 PB |
123 | #define P_L2_SIZE (1 << P_L2_BITS) |
124 | ||
125 | #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) | |
126 | ||
127 | typedef PhysPageEntry Node[P_L2_SIZE]; | |
0475d94f | 128 | |
53cb28cb | 129 | typedef struct PhysPageMap { |
79e2b9ae PB |
130 | struct rcu_head rcu; |
131 | ||
53cb28cb MA |
132 | unsigned sections_nb; |
133 | unsigned sections_nb_alloc; | |
134 | unsigned nodes_nb; | |
135 | unsigned nodes_nb_alloc; | |
136 | Node *nodes; | |
137 | MemoryRegionSection *sections; | |
138 | } PhysPageMap; | |
139 | ||
1db8abb1 | 140 | struct AddressSpaceDispatch { |
79e2b9ae PB |
141 | struct rcu_head rcu; |
142 | ||
729633c2 | 143 | MemoryRegionSection *mru_section; |
1db8abb1 PB |
144 | /* This is a multi-level map on the physical address space. |
145 | * The bottom level has pointers to MemoryRegionSections. | |
146 | */ | |
147 | PhysPageEntry phys_map; | |
53cb28cb | 148 | PhysPageMap map; |
acc9d80b | 149 | AddressSpace *as; |
1db8abb1 PB |
150 | }; |
151 | ||
90260c6c JK |
152 | #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) |
153 | typedef struct subpage_t { | |
154 | MemoryRegion iomem; | |
acc9d80b | 155 | AddressSpace *as; |
90260c6c JK |
156 | hwaddr base; |
157 | uint16_t sub_section[TARGET_PAGE_SIZE]; | |
158 | } subpage_t; | |
159 | ||
b41aac4f LPF |
160 | #define PHYS_SECTION_UNASSIGNED 0 |
161 | #define PHYS_SECTION_NOTDIRTY 1 | |
162 | #define PHYS_SECTION_ROM 2 | |
163 | #define PHYS_SECTION_WATCH 3 | |
5312bd8b | 164 | |
e2eef170 | 165 | static void io_mem_init(void); |
62152b8a | 166 | static void memory_map_init(void); |
09daed84 | 167 | static void tcg_commit(MemoryListener *listener); |
e2eef170 | 168 | |
1ec9b909 | 169 | static MemoryRegion io_mem_watch; |
32857f4d PM |
170 | |
171 | /** | |
172 | * CPUAddressSpace: all the information a CPU needs about an AddressSpace | |
173 | * @cpu: the CPU whose AddressSpace this is | |
174 | * @as: the AddressSpace itself | |
175 | * @memory_dispatch: its dispatch pointer (cached, RCU protected) | |
176 | * @tcg_as_listener: listener for tracking changes to the AddressSpace | |
177 | */ | |
178 | struct CPUAddressSpace { | |
179 | CPUState *cpu; | |
180 | AddressSpace *as; | |
181 | struct AddressSpaceDispatch *memory_dispatch; | |
182 | MemoryListener tcg_as_listener; | |
183 | }; | |
184 | ||
6658ffb8 | 185 | #endif |
fd6ce8f6 | 186 | |
6d9a1304 | 187 | #if !defined(CONFIG_USER_ONLY) |
d6f2ea22 | 188 | |
53cb28cb | 189 | static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) |
d6f2ea22 | 190 | { |
53cb28cb MA |
191 | if (map->nodes_nb + nodes > map->nodes_nb_alloc) { |
192 | map->nodes_nb_alloc = MAX(map->nodes_nb_alloc * 2, 16); | |
193 | map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes); | |
194 | map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); | |
d6f2ea22 | 195 | } |
f7bf5461 AK |
196 | } |
197 | ||
db94604b | 198 | static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf) |
f7bf5461 AK |
199 | { |
200 | unsigned i; | |
8b795765 | 201 | uint32_t ret; |
db94604b PB |
202 | PhysPageEntry e; |
203 | PhysPageEntry *p; | |
f7bf5461 | 204 | |
53cb28cb | 205 | ret = map->nodes_nb++; |
db94604b | 206 | p = map->nodes[ret]; |
f7bf5461 | 207 | assert(ret != PHYS_MAP_NODE_NIL); |
53cb28cb | 208 | assert(ret != map->nodes_nb_alloc); |
db94604b PB |
209 | |
210 | e.skip = leaf ? 0 : 1; | |
211 | e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL; | |
03f49957 | 212 | for (i = 0; i < P_L2_SIZE; ++i) { |
db94604b | 213 | memcpy(&p[i], &e, sizeof(e)); |
d6f2ea22 | 214 | } |
f7bf5461 | 215 | return ret; |
d6f2ea22 AK |
216 | } |
217 | ||
53cb28cb MA |
218 | static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, |
219 | hwaddr *index, hwaddr *nb, uint16_t leaf, | |
2999097b | 220 | int level) |
f7bf5461 AK |
221 | { |
222 | PhysPageEntry *p; | |
03f49957 | 223 | hwaddr step = (hwaddr)1 << (level * P_L2_BITS); |
108c49b8 | 224 | |
9736e55b | 225 | if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { |
db94604b | 226 | lp->ptr = phys_map_node_alloc(map, level == 0); |
92e873b9 | 227 | } |
db94604b | 228 | p = map->nodes[lp->ptr]; |
03f49957 | 229 | lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; |
f7bf5461 | 230 | |
03f49957 | 231 | while (*nb && lp < &p[P_L2_SIZE]) { |
07f07b31 | 232 | if ((*index & (step - 1)) == 0 && *nb >= step) { |
9736e55b | 233 | lp->skip = 0; |
c19e8800 | 234 | lp->ptr = leaf; |
07f07b31 AK |
235 | *index += step; |
236 | *nb -= step; | |
2999097b | 237 | } else { |
53cb28cb | 238 | phys_page_set_level(map, lp, index, nb, leaf, level - 1); |
2999097b AK |
239 | } |
240 | ++lp; | |
f7bf5461 AK |
241 | } |
242 | } | |
243 | ||
ac1970fb | 244 | static void phys_page_set(AddressSpaceDispatch *d, |
a8170e5e | 245 | hwaddr index, hwaddr nb, |
2999097b | 246 | uint16_t leaf) |
f7bf5461 | 247 | { |
2999097b | 248 | /* Wildly overreserve - it doesn't matter much. */ |
53cb28cb | 249 | phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); |
5cd2c5b6 | 250 | |
53cb28cb | 251 | phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); |
92e873b9 FB |
252 | } |
253 | ||
b35ba30f MT |
254 | /* Compact a non leaf page entry. Simply detect that the entry has a single child, |
255 | * and update our entry so we can skip it and go directly to the destination. | |
256 | */ | |
257 | static void phys_page_compact(PhysPageEntry *lp, Node *nodes, unsigned long *compacted) | |
258 | { | |
259 | unsigned valid_ptr = P_L2_SIZE; | |
260 | int valid = 0; | |
261 | PhysPageEntry *p; | |
262 | int i; | |
263 | ||
264 | if (lp->ptr == PHYS_MAP_NODE_NIL) { | |
265 | return; | |
266 | } | |
267 | ||
268 | p = nodes[lp->ptr]; | |
269 | for (i = 0; i < P_L2_SIZE; i++) { | |
270 | if (p[i].ptr == PHYS_MAP_NODE_NIL) { | |
271 | continue; | |
272 | } | |
273 | ||
274 | valid_ptr = i; | |
275 | valid++; | |
276 | if (p[i].skip) { | |
277 | phys_page_compact(&p[i], nodes, compacted); | |
278 | } | |
279 | } | |
280 | ||
281 | /* We can only compress if there's only one child. */ | |
282 | if (valid != 1) { | |
283 | return; | |
284 | } | |
285 | ||
286 | assert(valid_ptr < P_L2_SIZE); | |
287 | ||
288 | /* Don't compress if it won't fit in the # of bits we have. */ | |
289 | if (lp->skip + p[valid_ptr].skip >= (1 << 3)) { | |
290 | return; | |
291 | } | |
292 | ||
293 | lp->ptr = p[valid_ptr].ptr; | |
294 | if (!p[valid_ptr].skip) { | |
295 | /* If our only child is a leaf, make this a leaf. */ | |
296 | /* By design, we should have made this node a leaf to begin with so we | |
297 | * should never reach here. | |
298 | * But since it's so simple to handle this, let's do it just in case we | |
299 | * change this rule. | |
300 | */ | |
301 | lp->skip = 0; | |
302 | } else { | |
303 | lp->skip += p[valid_ptr].skip; | |
304 | } | |
305 | } | |
306 | ||
307 | static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb) | |
308 | { | |
309 | DECLARE_BITMAP(compacted, nodes_nb); | |
310 | ||
311 | if (d->phys_map.skip) { | |
53cb28cb | 312 | phys_page_compact(&d->phys_map, d->map.nodes, compacted); |
b35ba30f MT |
313 | } |
314 | } | |
315 | ||
29cb533d FZ |
316 | static inline bool section_covers_addr(const MemoryRegionSection *section, |
317 | hwaddr addr) | |
318 | { | |
319 | /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means | |
320 | * the section must cover the entire address space. | |
321 | */ | |
322 | return section->size.hi || | |
323 | range_covers_byte(section->offset_within_address_space, | |
324 | section->size.lo, addr); | |
325 | } | |
326 | ||
97115a8d | 327 | static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr, |
9affd6fc | 328 | Node *nodes, MemoryRegionSection *sections) |
92e873b9 | 329 | { |
31ab2b4a | 330 | PhysPageEntry *p; |
97115a8d | 331 | hwaddr index = addr >> TARGET_PAGE_BITS; |
31ab2b4a | 332 | int i; |
f1f6e3b8 | 333 | |
9736e55b | 334 | for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { |
c19e8800 | 335 | if (lp.ptr == PHYS_MAP_NODE_NIL) { |
9affd6fc | 336 | return §ions[PHYS_SECTION_UNASSIGNED]; |
31ab2b4a | 337 | } |
9affd6fc | 338 | p = nodes[lp.ptr]; |
03f49957 | 339 | lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; |
5312bd8b | 340 | } |
b35ba30f | 341 | |
29cb533d | 342 | if (section_covers_addr(§ions[lp.ptr], addr)) { |
b35ba30f MT |
343 | return §ions[lp.ptr]; |
344 | } else { | |
345 | return §ions[PHYS_SECTION_UNASSIGNED]; | |
346 | } | |
f3705d53 AK |
347 | } |
348 | ||
e5548617 BS |
349 | bool memory_region_is_unassigned(MemoryRegion *mr) |
350 | { | |
2a8e7499 | 351 | return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device |
5b6dd868 | 352 | && mr != &io_mem_watch; |
fd6ce8f6 | 353 | } |
149f54b5 | 354 | |
79e2b9ae | 355 | /* Called from RCU critical section */ |
c7086b4a | 356 | static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, |
90260c6c JK |
357 | hwaddr addr, |
358 | bool resolve_subpage) | |
9f029603 | 359 | { |
729633c2 | 360 | MemoryRegionSection *section = atomic_read(&d->mru_section); |
90260c6c | 361 | subpage_t *subpage; |
729633c2 | 362 | bool update; |
90260c6c | 363 | |
729633c2 FZ |
364 | if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] && |
365 | section_covers_addr(section, addr)) { | |
366 | update = false; | |
367 | } else { | |
368 | section = phys_page_find(d->phys_map, addr, d->map.nodes, | |
369 | d->map.sections); | |
370 | update = true; | |
371 | } | |
90260c6c JK |
372 | if (resolve_subpage && section->mr->subpage) { |
373 | subpage = container_of(section->mr, subpage_t, iomem); | |
53cb28cb | 374 | section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; |
90260c6c | 375 | } |
729633c2 FZ |
376 | if (update) { |
377 | atomic_set(&d->mru_section, section); | |
378 | } | |
90260c6c | 379 | return section; |
9f029603 JK |
380 | } |
381 | ||
79e2b9ae | 382 | /* Called from RCU critical section */ |
90260c6c | 383 | static MemoryRegionSection * |
c7086b4a | 384 | address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, |
90260c6c | 385 | hwaddr *plen, bool resolve_subpage) |
149f54b5 PB |
386 | { |
387 | MemoryRegionSection *section; | |
965eb2fc | 388 | MemoryRegion *mr; |
a87f3954 | 389 | Int128 diff; |
149f54b5 | 390 | |
c7086b4a | 391 | section = address_space_lookup_region(d, addr, resolve_subpage); |
149f54b5 PB |
392 | /* Compute offset within MemoryRegionSection */ |
393 | addr -= section->offset_within_address_space; | |
394 | ||
395 | /* Compute offset within MemoryRegion */ | |
396 | *xlat = addr + section->offset_within_region; | |
397 | ||
965eb2fc | 398 | mr = section->mr; |
b242e0e0 PB |
399 | |
400 | /* MMIO registers can be expected to perform full-width accesses based only | |
401 | * on their address, without considering adjacent registers that could | |
402 | * decode to completely different MemoryRegions. When such registers | |
403 | * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO | |
404 | * regions overlap wildly. For this reason we cannot clamp the accesses | |
405 | * here. | |
406 | * | |
407 | * If the length is small (as is the case for address_space_ldl/stl), | |
408 | * everything works fine. If the incoming length is large, however, | |
409 | * the caller really has to do the clamping through memory_access_size. | |
410 | */ | |
965eb2fc | 411 | if (memory_region_is_ram(mr)) { |
e4a511f8 | 412 | diff = int128_sub(section->size, int128_make64(addr)); |
965eb2fc PB |
413 | *plen = int128_get64(int128_min(diff, int128_make64(*plen))); |
414 | } | |
149f54b5 PB |
415 | return section; |
416 | } | |
90260c6c | 417 | |
41063e1e | 418 | /* Called from RCU critical section */ |
5c8a00ce PB |
419 | MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr, |
420 | hwaddr *xlat, hwaddr *plen, | |
421 | bool is_write) | |
90260c6c | 422 | { |
30951157 AK |
423 | IOMMUTLBEntry iotlb; |
424 | MemoryRegionSection *section; | |
425 | MemoryRegion *mr; | |
30951157 AK |
426 | |
427 | for (;;) { | |
79e2b9ae PB |
428 | AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch); |
429 | section = address_space_translate_internal(d, addr, &addr, plen, true); | |
30951157 AK |
430 | mr = section->mr; |
431 | ||
432 | if (!mr->iommu_ops) { | |
433 | break; | |
434 | } | |
435 | ||
8d7b8cb9 | 436 | iotlb = mr->iommu_ops->translate(mr, addr, is_write); |
30951157 AK |
437 | addr = ((iotlb.translated_addr & ~iotlb.addr_mask) |
438 | | (addr & iotlb.addr_mask)); | |
23820dbf | 439 | *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1); |
30951157 AK |
440 | if (!(iotlb.perm & (1 << is_write))) { |
441 | mr = &io_mem_unassigned; | |
442 | break; | |
443 | } | |
444 | ||
445 | as = iotlb.target_as; | |
446 | } | |
447 | ||
fe680d0d | 448 | if (xen_enabled() && memory_access_is_direct(mr, is_write)) { |
a87f3954 | 449 | hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; |
23820dbf | 450 | *plen = MIN(page, *plen); |
a87f3954 PB |
451 | } |
452 | ||
30951157 AK |
453 | *xlat = addr; |
454 | return mr; | |
90260c6c JK |
455 | } |
456 | ||
79e2b9ae | 457 | /* Called from RCU critical section */ |
90260c6c | 458 | MemoryRegionSection * |
d7898cda | 459 | address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr, |
9d82b5a7 | 460 | hwaddr *xlat, hwaddr *plen) |
90260c6c | 461 | { |
30951157 | 462 | MemoryRegionSection *section; |
d7898cda PM |
463 | AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch; |
464 | ||
465 | section = address_space_translate_internal(d, addr, xlat, plen, false); | |
30951157 AK |
466 | |
467 | assert(!section->mr->iommu_ops); | |
468 | return section; | |
90260c6c | 469 | } |
5b6dd868 | 470 | #endif |
fd6ce8f6 | 471 | |
b170fce3 | 472 | #if !defined(CONFIG_USER_ONLY) |
5b6dd868 BS |
473 | |
474 | static int cpu_common_post_load(void *opaque, int version_id) | |
fd6ce8f6 | 475 | { |
259186a7 | 476 | CPUState *cpu = opaque; |
a513fe19 | 477 | |
5b6dd868 BS |
478 | /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the |
479 | version_id is increased. */ | |
259186a7 | 480 | cpu->interrupt_request &= ~0x01; |
c01a71c1 | 481 | tlb_flush(cpu, 1); |
5b6dd868 BS |
482 | |
483 | return 0; | |
a513fe19 | 484 | } |
7501267e | 485 | |
6c3bff0e PD |
486 | static int cpu_common_pre_load(void *opaque) |
487 | { | |
488 | CPUState *cpu = opaque; | |
489 | ||
adee6424 | 490 | cpu->exception_index = -1; |
6c3bff0e PD |
491 | |
492 | return 0; | |
493 | } | |
494 | ||
495 | static bool cpu_common_exception_index_needed(void *opaque) | |
496 | { | |
497 | CPUState *cpu = opaque; | |
498 | ||
adee6424 | 499 | return tcg_enabled() && cpu->exception_index != -1; |
6c3bff0e PD |
500 | } |
501 | ||
502 | static const VMStateDescription vmstate_cpu_common_exception_index = { | |
503 | .name = "cpu_common/exception_index", | |
504 | .version_id = 1, | |
505 | .minimum_version_id = 1, | |
5cd8cada | 506 | .needed = cpu_common_exception_index_needed, |
6c3bff0e PD |
507 | .fields = (VMStateField[]) { |
508 | VMSTATE_INT32(exception_index, CPUState), | |
509 | VMSTATE_END_OF_LIST() | |
510 | } | |
511 | }; | |
512 | ||
bac05aa9 AS |
513 | static bool cpu_common_crash_occurred_needed(void *opaque) |
514 | { | |
515 | CPUState *cpu = opaque; | |
516 | ||
517 | return cpu->crash_occurred; | |
518 | } | |
519 | ||
520 | static const VMStateDescription vmstate_cpu_common_crash_occurred = { | |
521 | .name = "cpu_common/crash_occurred", | |
522 | .version_id = 1, | |
523 | .minimum_version_id = 1, | |
524 | .needed = cpu_common_crash_occurred_needed, | |
525 | .fields = (VMStateField[]) { | |
526 | VMSTATE_BOOL(crash_occurred, CPUState), | |
527 | VMSTATE_END_OF_LIST() | |
528 | } | |
529 | }; | |
530 | ||
1a1562f5 | 531 | const VMStateDescription vmstate_cpu_common = { |
5b6dd868 BS |
532 | .name = "cpu_common", |
533 | .version_id = 1, | |
534 | .minimum_version_id = 1, | |
6c3bff0e | 535 | .pre_load = cpu_common_pre_load, |
5b6dd868 | 536 | .post_load = cpu_common_post_load, |
35d08458 | 537 | .fields = (VMStateField[]) { |
259186a7 AF |
538 | VMSTATE_UINT32(halted, CPUState), |
539 | VMSTATE_UINT32(interrupt_request, CPUState), | |
5b6dd868 | 540 | VMSTATE_END_OF_LIST() |
6c3bff0e | 541 | }, |
5cd8cada JQ |
542 | .subsections = (const VMStateDescription*[]) { |
543 | &vmstate_cpu_common_exception_index, | |
bac05aa9 | 544 | &vmstate_cpu_common_crash_occurred, |
5cd8cada | 545 | NULL |
5b6dd868 BS |
546 | } |
547 | }; | |
1a1562f5 | 548 | |
5b6dd868 | 549 | #endif |
ea041c0e | 550 | |
38d8f5c8 | 551 | CPUState *qemu_get_cpu(int index) |
ea041c0e | 552 | { |
bdc44640 | 553 | CPUState *cpu; |
ea041c0e | 554 | |
bdc44640 | 555 | CPU_FOREACH(cpu) { |
55e5c285 | 556 | if (cpu->cpu_index == index) { |
bdc44640 | 557 | return cpu; |
55e5c285 | 558 | } |
ea041c0e | 559 | } |
5b6dd868 | 560 | |
bdc44640 | 561 | return NULL; |
ea041c0e FB |
562 | } |
563 | ||
09daed84 | 564 | #if !defined(CONFIG_USER_ONLY) |
56943e8c | 565 | void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx) |
09daed84 | 566 | { |
12ebc9a7 PM |
567 | CPUAddressSpace *newas; |
568 | ||
569 | /* Target code should have set num_ases before calling us */ | |
570 | assert(asidx < cpu->num_ases); | |
571 | ||
56943e8c PM |
572 | if (asidx == 0) { |
573 | /* address space 0 gets the convenience alias */ | |
574 | cpu->as = as; | |
575 | } | |
576 | ||
12ebc9a7 PM |
577 | /* KVM cannot currently support multiple address spaces. */ |
578 | assert(asidx == 0 || !kvm_enabled()); | |
09daed84 | 579 | |
12ebc9a7 PM |
580 | if (!cpu->cpu_ases) { |
581 | cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases); | |
09daed84 | 582 | } |
32857f4d | 583 | |
12ebc9a7 PM |
584 | newas = &cpu->cpu_ases[asidx]; |
585 | newas->cpu = cpu; | |
586 | newas->as = as; | |
56943e8c | 587 | if (tcg_enabled()) { |
12ebc9a7 PM |
588 | newas->tcg_as_listener.commit = tcg_commit; |
589 | memory_listener_register(&newas->tcg_as_listener, as); | |
56943e8c | 590 | } |
09daed84 | 591 | } |
651a5bc0 PM |
592 | |
593 | AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx) | |
594 | { | |
595 | /* Return the AddressSpace corresponding to the specified index */ | |
596 | return cpu->cpu_ases[asidx].as; | |
597 | } | |
09daed84 EI |
598 | #endif |
599 | ||
b7bca733 BR |
600 | #ifndef CONFIG_USER_ONLY |
601 | static DECLARE_BITMAP(cpu_index_map, MAX_CPUMASK_BITS); | |
602 | ||
603 | static int cpu_get_free_index(Error **errp) | |
604 | { | |
605 | int cpu = find_first_zero_bit(cpu_index_map, MAX_CPUMASK_BITS); | |
606 | ||
607 | if (cpu >= MAX_CPUMASK_BITS) { | |
608 | error_setg(errp, "Trying to use more CPUs than max of %d", | |
609 | MAX_CPUMASK_BITS); | |
610 | return -1; | |
611 | } | |
612 | ||
613 | bitmap_set(cpu_index_map, cpu, 1); | |
614 | return cpu; | |
615 | } | |
616 | ||
1c59eb39 | 617 | static void cpu_release_index(CPUState *cpu) |
b7bca733 | 618 | { |
b7bca733 | 619 | bitmap_clear(cpu_index_map, cpu->cpu_index, 1); |
b7bca733 BR |
620 | } |
621 | #else | |
622 | ||
623 | static int cpu_get_free_index(Error **errp) | |
624 | { | |
625 | CPUState *some_cpu; | |
626 | int cpu_index = 0; | |
627 | ||
628 | CPU_FOREACH(some_cpu) { | |
629 | cpu_index++; | |
630 | } | |
631 | return cpu_index; | |
632 | } | |
633 | ||
1c59eb39 | 634 | static void cpu_release_index(CPUState *cpu) |
b7bca733 | 635 | { |
1c59eb39 | 636 | return; |
b7bca733 BR |
637 | } |
638 | #endif | |
639 | ||
1c59eb39 BR |
640 | void cpu_exec_exit(CPUState *cpu) |
641 | { | |
9dfeca7c BR |
642 | CPUClass *cc = CPU_GET_CLASS(cpu); |
643 | ||
1c59eb39 BR |
644 | #if defined(CONFIG_USER_ONLY) |
645 | cpu_list_lock(); | |
646 | #endif | |
647 | if (cpu->cpu_index == -1) { | |
648 | /* cpu_index was never allocated by this @cpu or was already freed. */ | |
649 | #if defined(CONFIG_USER_ONLY) | |
650 | cpu_list_unlock(); | |
651 | #endif | |
652 | return; | |
653 | } | |
654 | ||
655 | QTAILQ_REMOVE(&cpus, cpu, node); | |
656 | cpu_release_index(cpu); | |
657 | cpu->cpu_index = -1; | |
658 | #if defined(CONFIG_USER_ONLY) | |
659 | cpu_list_unlock(); | |
660 | #endif | |
9dfeca7c BR |
661 | |
662 | if (cc->vmsd != NULL) { | |
663 | vmstate_unregister(NULL, cc->vmsd, cpu); | |
664 | } | |
665 | if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { | |
666 | vmstate_unregister(NULL, &vmstate_cpu_common, cpu); | |
667 | } | |
1c59eb39 BR |
668 | } |
669 | ||
4bad9e39 | 670 | void cpu_exec_init(CPUState *cpu, Error **errp) |
ea041c0e | 671 | { |
b170fce3 | 672 | CPUClass *cc = CPU_GET_CLASS(cpu); |
b7bca733 | 673 | Error *local_err = NULL; |
5b6dd868 | 674 | |
56943e8c | 675 | cpu->as = NULL; |
12ebc9a7 | 676 | cpu->num_ases = 0; |
56943e8c | 677 | |
291135b5 | 678 | #ifndef CONFIG_USER_ONLY |
291135b5 | 679 | cpu->thread_id = qemu_get_thread_id(); |
6731d864 PC |
680 | |
681 | /* This is a softmmu CPU object, so create a property for it | |
682 | * so users can wire up its memory. (This can't go in qom/cpu.c | |
683 | * because that file is compiled only once for both user-mode | |
684 | * and system builds.) The default if no link is set up is to use | |
685 | * the system address space. | |
686 | */ | |
687 | object_property_add_link(OBJECT(cpu), "memory", TYPE_MEMORY_REGION, | |
688 | (Object **)&cpu->memory, | |
689 | qdev_prop_allow_set_link_before_realize, | |
690 | OBJ_PROP_LINK_UNREF_ON_RELEASE, | |
691 | &error_abort); | |
692 | cpu->memory = system_memory; | |
693 | object_ref(OBJECT(cpu->memory)); | |
291135b5 EH |
694 | #endif |
695 | ||
5b6dd868 BS |
696 | #if defined(CONFIG_USER_ONLY) |
697 | cpu_list_lock(); | |
698 | #endif | |
741da0d3 | 699 | cpu->cpu_index = cpu_get_free_index(&local_err); |
b7bca733 BR |
700 | if (local_err) { |
701 | error_propagate(errp, local_err); | |
702 | #if defined(CONFIG_USER_ONLY) | |
703 | cpu_list_unlock(); | |
704 | #endif | |
705 | return; | |
5b6dd868 | 706 | } |
bdc44640 | 707 | QTAILQ_INSERT_TAIL(&cpus, cpu, node); |
5b6dd868 | 708 | #if defined(CONFIG_USER_ONLY) |
741da0d3 | 709 | (void) cc; |
5b6dd868 | 710 | cpu_list_unlock(); |
741da0d3 | 711 | #else |
e0d47944 | 712 | if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { |
741da0d3 | 713 | vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu); |
e0d47944 | 714 | } |
b170fce3 | 715 | if (cc->vmsd != NULL) { |
741da0d3 | 716 | vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu); |
b170fce3 | 717 | } |
741da0d3 | 718 | #endif |
ea041c0e FB |
719 | } |
720 | ||
94df27fd | 721 | #if defined(CONFIG_USER_ONLY) |
00b941e5 | 722 | static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) |
94df27fd PB |
723 | { |
724 | tb_invalidate_phys_page_range(pc, pc + 1, 0); | |
725 | } | |
726 | #else | |
00b941e5 | 727 | static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) |
1e7855a5 | 728 | { |
5232e4c7 PM |
729 | MemTxAttrs attrs; |
730 | hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs); | |
731 | int asidx = cpu_asidx_from_attrs(cpu, attrs); | |
e8262a1b | 732 | if (phys != -1) { |
5232e4c7 | 733 | tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as, |
29d8ec7b | 734 | phys | (pc & ~TARGET_PAGE_MASK)); |
e8262a1b | 735 | } |
1e7855a5 | 736 | } |
c27004ec | 737 | #endif |
d720b93d | 738 | |
c527ee8f | 739 | #if defined(CONFIG_USER_ONLY) |
75a34036 | 740 | void cpu_watchpoint_remove_all(CPUState *cpu, int mask) |
c527ee8f PB |
741 | |
742 | { | |
743 | } | |
744 | ||
3ee887e8 PM |
745 | int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, |
746 | int flags) | |
747 | { | |
748 | return -ENOSYS; | |
749 | } | |
750 | ||
751 | void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) | |
752 | { | |
753 | } | |
754 | ||
75a34036 | 755 | int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, |
c527ee8f PB |
756 | int flags, CPUWatchpoint **watchpoint) |
757 | { | |
758 | return -ENOSYS; | |
759 | } | |
760 | #else | |
6658ffb8 | 761 | /* Add a watchpoint. */ |
75a34036 | 762 | int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, |
a1d1bb31 | 763 | int flags, CPUWatchpoint **watchpoint) |
6658ffb8 | 764 | { |
c0ce998e | 765 | CPUWatchpoint *wp; |
6658ffb8 | 766 | |
05068c0d | 767 | /* forbid ranges which are empty or run off the end of the address space */ |
07e2863d | 768 | if (len == 0 || (addr + len - 1) < addr) { |
75a34036 AF |
769 | error_report("tried to set invalid watchpoint at %" |
770 | VADDR_PRIx ", len=%" VADDR_PRIu, addr, len); | |
b4051334 AL |
771 | return -EINVAL; |
772 | } | |
7267c094 | 773 | wp = g_malloc(sizeof(*wp)); |
a1d1bb31 AL |
774 | |
775 | wp->vaddr = addr; | |
05068c0d | 776 | wp->len = len; |
a1d1bb31 AL |
777 | wp->flags = flags; |
778 | ||
2dc9f411 | 779 | /* keep all GDB-injected watchpoints in front */ |
ff4700b0 AF |
780 | if (flags & BP_GDB) { |
781 | QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry); | |
782 | } else { | |
783 | QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry); | |
784 | } | |
6658ffb8 | 785 | |
31b030d4 | 786 | tlb_flush_page(cpu, addr); |
a1d1bb31 AL |
787 | |
788 | if (watchpoint) | |
789 | *watchpoint = wp; | |
790 | return 0; | |
6658ffb8 PB |
791 | } |
792 | ||
a1d1bb31 | 793 | /* Remove a specific watchpoint. */ |
75a34036 | 794 | int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, |
a1d1bb31 | 795 | int flags) |
6658ffb8 | 796 | { |
a1d1bb31 | 797 | CPUWatchpoint *wp; |
6658ffb8 | 798 | |
ff4700b0 | 799 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d | 800 | if (addr == wp->vaddr && len == wp->len |
6e140f28 | 801 | && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { |
75a34036 | 802 | cpu_watchpoint_remove_by_ref(cpu, wp); |
6658ffb8 PB |
803 | return 0; |
804 | } | |
805 | } | |
a1d1bb31 | 806 | return -ENOENT; |
6658ffb8 PB |
807 | } |
808 | ||
a1d1bb31 | 809 | /* Remove a specific watchpoint by reference. */ |
75a34036 | 810 | void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) |
a1d1bb31 | 811 | { |
ff4700b0 | 812 | QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry); |
7d03f82f | 813 | |
31b030d4 | 814 | tlb_flush_page(cpu, watchpoint->vaddr); |
a1d1bb31 | 815 | |
7267c094 | 816 | g_free(watchpoint); |
a1d1bb31 AL |
817 | } |
818 | ||
819 | /* Remove all matching watchpoints. */ | |
75a34036 | 820 | void cpu_watchpoint_remove_all(CPUState *cpu, int mask) |
a1d1bb31 | 821 | { |
c0ce998e | 822 | CPUWatchpoint *wp, *next; |
a1d1bb31 | 823 | |
ff4700b0 | 824 | QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) { |
75a34036 AF |
825 | if (wp->flags & mask) { |
826 | cpu_watchpoint_remove_by_ref(cpu, wp); | |
827 | } | |
c0ce998e | 828 | } |
7d03f82f | 829 | } |
05068c0d PM |
830 | |
831 | /* Return true if this watchpoint address matches the specified | |
832 | * access (ie the address range covered by the watchpoint overlaps | |
833 | * partially or completely with the address range covered by the | |
834 | * access). | |
835 | */ | |
836 | static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp, | |
837 | vaddr addr, | |
838 | vaddr len) | |
839 | { | |
840 | /* We know the lengths are non-zero, but a little caution is | |
841 | * required to avoid errors in the case where the range ends | |
842 | * exactly at the top of the address space and so addr + len | |
843 | * wraps round to zero. | |
844 | */ | |
845 | vaddr wpend = wp->vaddr + wp->len - 1; | |
846 | vaddr addrend = addr + len - 1; | |
847 | ||
848 | return !(addr > wpend || wp->vaddr > addrend); | |
849 | } | |
850 | ||
c527ee8f | 851 | #endif |
7d03f82f | 852 | |
a1d1bb31 | 853 | /* Add a breakpoint. */ |
b3310ab3 | 854 | int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, |
a1d1bb31 | 855 | CPUBreakpoint **breakpoint) |
4c3a88a2 | 856 | { |
c0ce998e | 857 | CPUBreakpoint *bp; |
3b46e624 | 858 | |
7267c094 | 859 | bp = g_malloc(sizeof(*bp)); |
4c3a88a2 | 860 | |
a1d1bb31 AL |
861 | bp->pc = pc; |
862 | bp->flags = flags; | |
863 | ||
2dc9f411 | 864 | /* keep all GDB-injected breakpoints in front */ |
00b941e5 | 865 | if (flags & BP_GDB) { |
f0c3c505 | 866 | QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry); |
00b941e5 | 867 | } else { |
f0c3c505 | 868 | QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry); |
00b941e5 | 869 | } |
3b46e624 | 870 | |
f0c3c505 | 871 | breakpoint_invalidate(cpu, pc); |
a1d1bb31 | 872 | |
00b941e5 | 873 | if (breakpoint) { |
a1d1bb31 | 874 | *breakpoint = bp; |
00b941e5 | 875 | } |
4c3a88a2 | 876 | return 0; |
4c3a88a2 FB |
877 | } |
878 | ||
a1d1bb31 | 879 | /* Remove a specific breakpoint. */ |
b3310ab3 | 880 | int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags) |
a1d1bb31 | 881 | { |
a1d1bb31 AL |
882 | CPUBreakpoint *bp; |
883 | ||
f0c3c505 | 884 | QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { |
a1d1bb31 | 885 | if (bp->pc == pc && bp->flags == flags) { |
b3310ab3 | 886 | cpu_breakpoint_remove_by_ref(cpu, bp); |
a1d1bb31 AL |
887 | return 0; |
888 | } | |
7d03f82f | 889 | } |
a1d1bb31 | 890 | return -ENOENT; |
7d03f82f EI |
891 | } |
892 | ||
a1d1bb31 | 893 | /* Remove a specific breakpoint by reference. */ |
b3310ab3 | 894 | void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint) |
4c3a88a2 | 895 | { |
f0c3c505 AF |
896 | QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry); |
897 | ||
898 | breakpoint_invalidate(cpu, breakpoint->pc); | |
a1d1bb31 | 899 | |
7267c094 | 900 | g_free(breakpoint); |
a1d1bb31 AL |
901 | } |
902 | ||
903 | /* Remove all matching breakpoints. */ | |
b3310ab3 | 904 | void cpu_breakpoint_remove_all(CPUState *cpu, int mask) |
a1d1bb31 | 905 | { |
c0ce998e | 906 | CPUBreakpoint *bp, *next; |
a1d1bb31 | 907 | |
f0c3c505 | 908 | QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) { |
b3310ab3 AF |
909 | if (bp->flags & mask) { |
910 | cpu_breakpoint_remove_by_ref(cpu, bp); | |
911 | } | |
c0ce998e | 912 | } |
4c3a88a2 FB |
913 | } |
914 | ||
c33a346e FB |
915 | /* enable or disable single step mode. EXCP_DEBUG is returned by the |
916 | CPU loop after each instruction */ | |
3825b28f | 917 | void cpu_single_step(CPUState *cpu, int enabled) |
c33a346e | 918 | { |
ed2803da AF |
919 | if (cpu->singlestep_enabled != enabled) { |
920 | cpu->singlestep_enabled = enabled; | |
921 | if (kvm_enabled()) { | |
38e478ec | 922 | kvm_update_guest_debug(cpu, 0); |
ed2803da | 923 | } else { |
ccbb4d44 | 924 | /* must flush all the translated code to avoid inconsistencies */ |
e22a25c9 | 925 | /* XXX: only flush what is necessary */ |
bbd77c18 | 926 | tb_flush(cpu); |
e22a25c9 | 927 | } |
c33a346e | 928 | } |
c33a346e FB |
929 | } |
930 | ||
a47dddd7 | 931 | void cpu_abort(CPUState *cpu, const char *fmt, ...) |
7501267e FB |
932 | { |
933 | va_list ap; | |
493ae1f0 | 934 | va_list ap2; |
7501267e FB |
935 | |
936 | va_start(ap, fmt); | |
493ae1f0 | 937 | va_copy(ap2, ap); |
7501267e FB |
938 | fprintf(stderr, "qemu: fatal: "); |
939 | vfprintf(stderr, fmt, ap); | |
940 | fprintf(stderr, "\n"); | |
878096ee | 941 | cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP); |
013a2942 | 942 | if (qemu_log_separate()) { |
93fcfe39 AL |
943 | qemu_log("qemu: fatal: "); |
944 | qemu_log_vprintf(fmt, ap2); | |
945 | qemu_log("\n"); | |
a0762859 | 946 | log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP); |
31b1a7b4 | 947 | qemu_log_flush(); |
93fcfe39 | 948 | qemu_log_close(); |
924edcae | 949 | } |
493ae1f0 | 950 | va_end(ap2); |
f9373291 | 951 | va_end(ap); |
7615936e | 952 | replay_finish(); |
fd052bf6 RV |
953 | #if defined(CONFIG_USER_ONLY) |
954 | { | |
955 | struct sigaction act; | |
956 | sigfillset(&act.sa_mask); | |
957 | act.sa_handler = SIG_DFL; | |
958 | sigaction(SIGABRT, &act, NULL); | |
959 | } | |
960 | #endif | |
7501267e FB |
961 | abort(); |
962 | } | |
963 | ||
0124311e | 964 | #if !defined(CONFIG_USER_ONLY) |
0dc3f44a | 965 | /* Called from RCU critical section */ |
041603fe PB |
966 | static RAMBlock *qemu_get_ram_block(ram_addr_t addr) |
967 | { | |
968 | RAMBlock *block; | |
969 | ||
43771539 | 970 | block = atomic_rcu_read(&ram_list.mru_block); |
9b8424d5 | 971 | if (block && addr - block->offset < block->max_length) { |
68851b98 | 972 | return block; |
041603fe | 973 | } |
0dc3f44a | 974 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
9b8424d5 | 975 | if (addr - block->offset < block->max_length) { |
041603fe PB |
976 | goto found; |
977 | } | |
978 | } | |
979 | ||
980 | fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); | |
981 | abort(); | |
982 | ||
983 | found: | |
43771539 PB |
984 | /* It is safe to write mru_block outside the iothread lock. This |
985 | * is what happens: | |
986 | * | |
987 | * mru_block = xxx | |
988 | * rcu_read_unlock() | |
989 | * xxx removed from list | |
990 | * rcu_read_lock() | |
991 | * read mru_block | |
992 | * mru_block = NULL; | |
993 | * call_rcu(reclaim_ramblock, xxx); | |
994 | * rcu_read_unlock() | |
995 | * | |
996 | * atomic_rcu_set is not needed here. The block was already published | |
997 | * when it was placed into the list. Here we're just making an extra | |
998 | * copy of the pointer. | |
999 | */ | |
041603fe PB |
1000 | ram_list.mru_block = block; |
1001 | return block; | |
1002 | } | |
1003 | ||
a2f4d5be | 1004 | static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) |
d24981d3 | 1005 | { |
9a13565d | 1006 | CPUState *cpu; |
041603fe | 1007 | ram_addr_t start1; |
a2f4d5be JQ |
1008 | RAMBlock *block; |
1009 | ram_addr_t end; | |
1010 | ||
1011 | end = TARGET_PAGE_ALIGN(start + length); | |
1012 | start &= TARGET_PAGE_MASK; | |
d24981d3 | 1013 | |
0dc3f44a | 1014 | rcu_read_lock(); |
041603fe PB |
1015 | block = qemu_get_ram_block(start); |
1016 | assert(block == qemu_get_ram_block(end - 1)); | |
1240be24 | 1017 | start1 = (uintptr_t)ramblock_ptr(block, start - block->offset); |
9a13565d PC |
1018 | CPU_FOREACH(cpu) { |
1019 | tlb_reset_dirty(cpu, start1, length); | |
1020 | } | |
0dc3f44a | 1021 | rcu_read_unlock(); |
d24981d3 JQ |
1022 | } |
1023 | ||
5579c7f3 | 1024 | /* Note: start and end must be within the same ram block. */ |
03eebc9e SH |
1025 | bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, |
1026 | ram_addr_t length, | |
1027 | unsigned client) | |
1ccde1cb | 1028 | { |
5b82b703 | 1029 | DirtyMemoryBlocks *blocks; |
03eebc9e | 1030 | unsigned long end, page; |
5b82b703 | 1031 | bool dirty = false; |
03eebc9e SH |
1032 | |
1033 | if (length == 0) { | |
1034 | return false; | |
1035 | } | |
f23db169 | 1036 | |
03eebc9e SH |
1037 | end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; |
1038 | page = start >> TARGET_PAGE_BITS; | |
5b82b703 SH |
1039 | |
1040 | rcu_read_lock(); | |
1041 | ||
1042 | blocks = atomic_rcu_read(&ram_list.dirty_memory[client]); | |
1043 | ||
1044 | while (page < end) { | |
1045 | unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; | |
1046 | unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; | |
1047 | unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset); | |
1048 | ||
1049 | dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx], | |
1050 | offset, num); | |
1051 | page += num; | |
1052 | } | |
1053 | ||
1054 | rcu_read_unlock(); | |
03eebc9e SH |
1055 | |
1056 | if (dirty && tcg_enabled()) { | |
a2f4d5be | 1057 | tlb_reset_dirty_range_all(start, length); |
5579c7f3 | 1058 | } |
03eebc9e SH |
1059 | |
1060 | return dirty; | |
1ccde1cb FB |
1061 | } |
1062 | ||
79e2b9ae | 1063 | /* Called from RCU critical section */ |
bb0e627a | 1064 | hwaddr memory_region_section_get_iotlb(CPUState *cpu, |
149f54b5 PB |
1065 | MemoryRegionSection *section, |
1066 | target_ulong vaddr, | |
1067 | hwaddr paddr, hwaddr xlat, | |
1068 | int prot, | |
1069 | target_ulong *address) | |
e5548617 | 1070 | { |
a8170e5e | 1071 | hwaddr iotlb; |
e5548617 BS |
1072 | CPUWatchpoint *wp; |
1073 | ||
cc5bea60 | 1074 | if (memory_region_is_ram(section->mr)) { |
e5548617 | 1075 | /* Normal RAM. */ |
e4e69794 | 1076 | iotlb = memory_region_get_ram_addr(section->mr) + xlat; |
e5548617 | 1077 | if (!section->readonly) { |
b41aac4f | 1078 | iotlb |= PHYS_SECTION_NOTDIRTY; |
e5548617 | 1079 | } else { |
b41aac4f | 1080 | iotlb |= PHYS_SECTION_ROM; |
e5548617 BS |
1081 | } |
1082 | } else { | |
0b8e2c10 PM |
1083 | AddressSpaceDispatch *d; |
1084 | ||
1085 | d = atomic_rcu_read(§ion->address_space->dispatch); | |
1086 | iotlb = section - d->map.sections; | |
149f54b5 | 1087 | iotlb += xlat; |
e5548617 BS |
1088 | } |
1089 | ||
1090 | /* Make accesses to pages with watchpoints go via the | |
1091 | watchpoint trap routines. */ | |
ff4700b0 | 1092 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d | 1093 | if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) { |
e5548617 BS |
1094 | /* Avoid trapping reads of pages with a write breakpoint. */ |
1095 | if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) { | |
b41aac4f | 1096 | iotlb = PHYS_SECTION_WATCH + paddr; |
e5548617 BS |
1097 | *address |= TLB_MMIO; |
1098 | break; | |
1099 | } | |
1100 | } | |
1101 | } | |
1102 | ||
1103 | return iotlb; | |
1104 | } | |
9fa3e853 FB |
1105 | #endif /* defined(CONFIG_USER_ONLY) */ |
1106 | ||
e2eef170 | 1107 | #if !defined(CONFIG_USER_ONLY) |
8da3ff18 | 1108 | |
c227f099 | 1109 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, |
5312bd8b | 1110 | uint16_t section); |
acc9d80b | 1111 | static subpage_t *subpage_init(AddressSpace *as, hwaddr base); |
54688b1e | 1112 | |
a2b257d6 IM |
1113 | static void *(*phys_mem_alloc)(size_t size, uint64_t *align) = |
1114 | qemu_anon_ram_alloc; | |
91138037 MA |
1115 | |
1116 | /* | |
1117 | * Set a custom physical guest memory alloator. | |
1118 | * Accelerators with unusual needs may need this. Hopefully, we can | |
1119 | * get rid of it eventually. | |
1120 | */ | |
a2b257d6 | 1121 | void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align)) |
91138037 MA |
1122 | { |
1123 | phys_mem_alloc = alloc; | |
1124 | } | |
1125 | ||
53cb28cb MA |
1126 | static uint16_t phys_section_add(PhysPageMap *map, |
1127 | MemoryRegionSection *section) | |
5312bd8b | 1128 | { |
68f3f65b PB |
1129 | /* The physical section number is ORed with a page-aligned |
1130 | * pointer to produce the iotlb entries. Thus it should | |
1131 | * never overflow into the page-aligned value. | |
1132 | */ | |
53cb28cb | 1133 | assert(map->sections_nb < TARGET_PAGE_SIZE); |
68f3f65b | 1134 | |
53cb28cb MA |
1135 | if (map->sections_nb == map->sections_nb_alloc) { |
1136 | map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); | |
1137 | map->sections = g_renew(MemoryRegionSection, map->sections, | |
1138 | map->sections_nb_alloc); | |
5312bd8b | 1139 | } |
53cb28cb | 1140 | map->sections[map->sections_nb] = *section; |
dfde4e6e | 1141 | memory_region_ref(section->mr); |
53cb28cb | 1142 | return map->sections_nb++; |
5312bd8b AK |
1143 | } |
1144 | ||
058bc4b5 PB |
1145 | static void phys_section_destroy(MemoryRegion *mr) |
1146 | { | |
55b4e80b DS |
1147 | bool have_sub_page = mr->subpage; |
1148 | ||
dfde4e6e PB |
1149 | memory_region_unref(mr); |
1150 | ||
55b4e80b | 1151 | if (have_sub_page) { |
058bc4b5 | 1152 | subpage_t *subpage = container_of(mr, subpage_t, iomem); |
b4fefef9 | 1153 | object_unref(OBJECT(&subpage->iomem)); |
058bc4b5 PB |
1154 | g_free(subpage); |
1155 | } | |
1156 | } | |
1157 | ||
6092666e | 1158 | static void phys_sections_free(PhysPageMap *map) |
5312bd8b | 1159 | { |
9affd6fc PB |
1160 | while (map->sections_nb > 0) { |
1161 | MemoryRegionSection *section = &map->sections[--map->sections_nb]; | |
058bc4b5 PB |
1162 | phys_section_destroy(section->mr); |
1163 | } | |
9affd6fc PB |
1164 | g_free(map->sections); |
1165 | g_free(map->nodes); | |
5312bd8b AK |
1166 | } |
1167 | ||
ac1970fb | 1168 | static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section) |
0f0cb164 AK |
1169 | { |
1170 | subpage_t *subpage; | |
a8170e5e | 1171 | hwaddr base = section->offset_within_address_space |
0f0cb164 | 1172 | & TARGET_PAGE_MASK; |
97115a8d | 1173 | MemoryRegionSection *existing = phys_page_find(d->phys_map, base, |
53cb28cb | 1174 | d->map.nodes, d->map.sections); |
0f0cb164 AK |
1175 | MemoryRegionSection subsection = { |
1176 | .offset_within_address_space = base, | |
052e87b0 | 1177 | .size = int128_make64(TARGET_PAGE_SIZE), |
0f0cb164 | 1178 | }; |
a8170e5e | 1179 | hwaddr start, end; |
0f0cb164 | 1180 | |
f3705d53 | 1181 | assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); |
0f0cb164 | 1182 | |
f3705d53 | 1183 | if (!(existing->mr->subpage)) { |
acc9d80b | 1184 | subpage = subpage_init(d->as, base); |
3be91e86 | 1185 | subsection.address_space = d->as; |
0f0cb164 | 1186 | subsection.mr = &subpage->iomem; |
ac1970fb | 1187 | phys_page_set(d, base >> TARGET_PAGE_BITS, 1, |
53cb28cb | 1188 | phys_section_add(&d->map, &subsection)); |
0f0cb164 | 1189 | } else { |
f3705d53 | 1190 | subpage = container_of(existing->mr, subpage_t, iomem); |
0f0cb164 AK |
1191 | } |
1192 | start = section->offset_within_address_space & ~TARGET_PAGE_MASK; | |
052e87b0 | 1193 | end = start + int128_get64(section->size) - 1; |
53cb28cb MA |
1194 | subpage_register(subpage, start, end, |
1195 | phys_section_add(&d->map, section)); | |
0f0cb164 AK |
1196 | } |
1197 | ||
1198 | ||
052e87b0 PB |
1199 | static void register_multipage(AddressSpaceDispatch *d, |
1200 | MemoryRegionSection *section) | |
33417e70 | 1201 | { |
a8170e5e | 1202 | hwaddr start_addr = section->offset_within_address_space; |
53cb28cb | 1203 | uint16_t section_index = phys_section_add(&d->map, section); |
052e87b0 PB |
1204 | uint64_t num_pages = int128_get64(int128_rshift(section->size, |
1205 | TARGET_PAGE_BITS)); | |
dd81124b | 1206 | |
733d5ef5 PB |
1207 | assert(num_pages); |
1208 | phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); | |
33417e70 FB |
1209 | } |
1210 | ||
ac1970fb | 1211 | static void mem_add(MemoryListener *listener, MemoryRegionSection *section) |
0f0cb164 | 1212 | { |
89ae337a | 1213 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); |
00752703 | 1214 | AddressSpaceDispatch *d = as->next_dispatch; |
99b9cc06 | 1215 | MemoryRegionSection now = *section, remain = *section; |
052e87b0 | 1216 | Int128 page_size = int128_make64(TARGET_PAGE_SIZE); |
0f0cb164 | 1217 | |
733d5ef5 PB |
1218 | if (now.offset_within_address_space & ~TARGET_PAGE_MASK) { |
1219 | uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space) | |
1220 | - now.offset_within_address_space; | |
1221 | ||
052e87b0 | 1222 | now.size = int128_min(int128_make64(left), now.size); |
ac1970fb | 1223 | register_subpage(d, &now); |
733d5ef5 | 1224 | } else { |
052e87b0 | 1225 | now.size = int128_zero(); |
733d5ef5 | 1226 | } |
052e87b0 PB |
1227 | while (int128_ne(remain.size, now.size)) { |
1228 | remain.size = int128_sub(remain.size, now.size); | |
1229 | remain.offset_within_address_space += int128_get64(now.size); | |
1230 | remain.offset_within_region += int128_get64(now.size); | |
69b67646 | 1231 | now = remain; |
052e87b0 | 1232 | if (int128_lt(remain.size, page_size)) { |
733d5ef5 | 1233 | register_subpage(d, &now); |
88266249 | 1234 | } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { |
052e87b0 | 1235 | now.size = page_size; |
ac1970fb | 1236 | register_subpage(d, &now); |
69b67646 | 1237 | } else { |
052e87b0 | 1238 | now.size = int128_and(now.size, int128_neg(page_size)); |
ac1970fb | 1239 | register_multipage(d, &now); |
69b67646 | 1240 | } |
0f0cb164 AK |
1241 | } |
1242 | } | |
1243 | ||
62a2744c SY |
1244 | void qemu_flush_coalesced_mmio_buffer(void) |
1245 | { | |
1246 | if (kvm_enabled()) | |
1247 | kvm_flush_coalesced_mmio_buffer(); | |
1248 | } | |
1249 | ||
b2a8658e UD |
1250 | void qemu_mutex_lock_ramlist(void) |
1251 | { | |
1252 | qemu_mutex_lock(&ram_list.mutex); | |
1253 | } | |
1254 | ||
1255 | void qemu_mutex_unlock_ramlist(void) | |
1256 | { | |
1257 | qemu_mutex_unlock(&ram_list.mutex); | |
1258 | } | |
1259 | ||
e1e84ba0 | 1260 | #ifdef __linux__ |
04b16653 AW |
1261 | static void *file_ram_alloc(RAMBlock *block, |
1262 | ram_addr_t memory, | |
7f56e740 PB |
1263 | const char *path, |
1264 | Error **errp) | |
c902760f | 1265 | { |
fd97fd44 | 1266 | bool unlink_on_error = false; |
c902760f | 1267 | char *filename; |
8ca761f6 PF |
1268 | char *sanitized_name; |
1269 | char *c; | |
794e8f30 | 1270 | void *area; |
5c3ece79 | 1271 | int fd = -1; |
e1fb6471 | 1272 | int64_t page_size; |
c902760f MT |
1273 | |
1274 | if (kvm_enabled() && !kvm_has_sync_mmu()) { | |
7f56e740 PB |
1275 | error_setg(errp, |
1276 | "host lacks kvm mmu notifiers, -mem-path unsupported"); | |
fd97fd44 | 1277 | return NULL; |
c902760f MT |
1278 | } |
1279 | ||
fd97fd44 MA |
1280 | for (;;) { |
1281 | fd = open(path, O_RDWR); | |
1282 | if (fd >= 0) { | |
1283 | /* @path names an existing file, use it */ | |
1284 | break; | |
8d31d6b6 | 1285 | } |
fd97fd44 MA |
1286 | if (errno == ENOENT) { |
1287 | /* @path names a file that doesn't exist, create it */ | |
1288 | fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644); | |
1289 | if (fd >= 0) { | |
1290 | unlink_on_error = true; | |
1291 | break; | |
1292 | } | |
1293 | } else if (errno == EISDIR) { | |
1294 | /* @path names a directory, create a file there */ | |
1295 | /* Make name safe to use with mkstemp by replacing '/' with '_'. */ | |
1296 | sanitized_name = g_strdup(memory_region_name(block->mr)); | |
1297 | for (c = sanitized_name; *c != '\0'; c++) { | |
1298 | if (*c == '/') { | |
1299 | *c = '_'; | |
1300 | } | |
1301 | } | |
8ca761f6 | 1302 | |
fd97fd44 MA |
1303 | filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, |
1304 | sanitized_name); | |
1305 | g_free(sanitized_name); | |
8d31d6b6 | 1306 | |
fd97fd44 MA |
1307 | fd = mkstemp(filename); |
1308 | if (fd >= 0) { | |
1309 | unlink(filename); | |
1310 | g_free(filename); | |
1311 | break; | |
1312 | } | |
1313 | g_free(filename); | |
8d31d6b6 | 1314 | } |
fd97fd44 MA |
1315 | if (errno != EEXIST && errno != EINTR) { |
1316 | error_setg_errno(errp, errno, | |
1317 | "can't open backing store %s for guest RAM", | |
1318 | path); | |
1319 | goto error; | |
1320 | } | |
1321 | /* | |
1322 | * Try again on EINTR and EEXIST. The latter happens when | |
1323 | * something else creates the file between our two open(). | |
1324 | */ | |
8d31d6b6 | 1325 | } |
c902760f | 1326 | |
e1fb6471 | 1327 | page_size = qemu_fd_getpagesize(fd); |
d2f39add | 1328 | block->mr->align = MAX(page_size, QEMU_VMALLOC_ALIGN); |
fd97fd44 | 1329 | |
e1fb6471 | 1330 | if (memory < page_size) { |
fd97fd44 MA |
1331 | error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " |
1332 | "or larger than page size 0x%" PRIx64, | |
e1fb6471 | 1333 | memory, page_size); |
f9a49dfa | 1334 | goto error; |
c902760f | 1335 | } |
c902760f | 1336 | |
e1fb6471 | 1337 | memory = ROUND_UP(memory, page_size); |
c902760f MT |
1338 | |
1339 | /* | |
1340 | * ftruncate is not supported by hugetlbfs in older | |
1341 | * hosts, so don't bother bailing out on errors. | |
1342 | * If anything goes wrong with it under other filesystems, | |
1343 | * mmap will fail. | |
1344 | */ | |
7f56e740 | 1345 | if (ftruncate(fd, memory)) { |
9742bf26 | 1346 | perror("ftruncate"); |
7f56e740 | 1347 | } |
c902760f | 1348 | |
d2f39add DD |
1349 | area = qemu_ram_mmap(fd, memory, block->mr->align, |
1350 | block->flags & RAM_SHARED); | |
c902760f | 1351 | if (area == MAP_FAILED) { |
7f56e740 | 1352 | error_setg_errno(errp, errno, |
fd97fd44 | 1353 | "unable to map backing store for guest RAM"); |
f9a49dfa | 1354 | goto error; |
c902760f | 1355 | } |
ef36fa14 MT |
1356 | |
1357 | if (mem_prealloc) { | |
38183310 | 1358 | os_mem_prealloc(fd, area, memory); |
ef36fa14 MT |
1359 | } |
1360 | ||
04b16653 | 1361 | block->fd = fd; |
c902760f | 1362 | return area; |
f9a49dfa MT |
1363 | |
1364 | error: | |
fd97fd44 MA |
1365 | if (unlink_on_error) { |
1366 | unlink(path); | |
1367 | } | |
5c3ece79 PB |
1368 | if (fd != -1) { |
1369 | close(fd); | |
1370 | } | |
f9a49dfa | 1371 | return NULL; |
c902760f MT |
1372 | } |
1373 | #endif | |
1374 | ||
0dc3f44a | 1375 | /* Called with the ramlist lock held. */ |
d17b5288 | 1376 | static ram_addr_t find_ram_offset(ram_addr_t size) |
04b16653 AW |
1377 | { |
1378 | RAMBlock *block, *next_block; | |
3e837b2c | 1379 | ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; |
04b16653 | 1380 | |
49cd9ac6 SH |
1381 | assert(size != 0); /* it would hand out same offset multiple times */ |
1382 | ||
0dc3f44a | 1383 | if (QLIST_EMPTY_RCU(&ram_list.blocks)) { |
04b16653 | 1384 | return 0; |
0d53d9fe | 1385 | } |
04b16653 | 1386 | |
0dc3f44a | 1387 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
f15fbc4b | 1388 | ram_addr_t end, next = RAM_ADDR_MAX; |
04b16653 | 1389 | |
62be4e3a | 1390 | end = block->offset + block->max_length; |
04b16653 | 1391 | |
0dc3f44a | 1392 | QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) { |
04b16653 AW |
1393 | if (next_block->offset >= end) { |
1394 | next = MIN(next, next_block->offset); | |
1395 | } | |
1396 | } | |
1397 | if (next - end >= size && next - end < mingap) { | |
3e837b2c | 1398 | offset = end; |
04b16653 AW |
1399 | mingap = next - end; |
1400 | } | |
1401 | } | |
3e837b2c AW |
1402 | |
1403 | if (offset == RAM_ADDR_MAX) { | |
1404 | fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", | |
1405 | (uint64_t)size); | |
1406 | abort(); | |
1407 | } | |
1408 | ||
04b16653 AW |
1409 | return offset; |
1410 | } | |
1411 | ||
652d7ec2 | 1412 | ram_addr_t last_ram_offset(void) |
d17b5288 AW |
1413 | { |
1414 | RAMBlock *block; | |
1415 | ram_addr_t last = 0; | |
1416 | ||
0dc3f44a MD |
1417 | rcu_read_lock(); |
1418 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
62be4e3a | 1419 | last = MAX(last, block->offset + block->max_length); |
0d53d9fe | 1420 | } |
0dc3f44a | 1421 | rcu_read_unlock(); |
d17b5288 AW |
1422 | return last; |
1423 | } | |
1424 | ||
ddb97f1d JB |
1425 | static void qemu_ram_setup_dump(void *addr, ram_addr_t size) |
1426 | { | |
1427 | int ret; | |
ddb97f1d JB |
1428 | |
1429 | /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ | |
47c8ca53 | 1430 | if (!machine_dump_guest_core(current_machine)) { |
ddb97f1d JB |
1431 | ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); |
1432 | if (ret) { | |
1433 | perror("qemu_madvise"); | |
1434 | fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " | |
1435 | "but dump_guest_core=off specified\n"); | |
1436 | } | |
1437 | } | |
1438 | } | |
1439 | ||
422148d3 DDAG |
1440 | const char *qemu_ram_get_idstr(RAMBlock *rb) |
1441 | { | |
1442 | return rb->idstr; | |
1443 | } | |
1444 | ||
ae3a7047 | 1445 | /* Called with iothread lock held. */ |
fa53a0e5 | 1446 | void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev) |
20cfe881 | 1447 | { |
fa53a0e5 | 1448 | RAMBlock *block; |
20cfe881 | 1449 | |
c5705a77 AK |
1450 | assert(new_block); |
1451 | assert(!new_block->idstr[0]); | |
84b89d78 | 1452 | |
09e5ab63 AL |
1453 | if (dev) { |
1454 | char *id = qdev_get_dev_path(dev); | |
84b89d78 CM |
1455 | if (id) { |
1456 | snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); | |
7267c094 | 1457 | g_free(id); |
84b89d78 CM |
1458 | } |
1459 | } | |
1460 | pstrcat(new_block->idstr, sizeof(new_block->idstr), name); | |
1461 | ||
ab0a9956 | 1462 | rcu_read_lock(); |
0dc3f44a | 1463 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
fa53a0e5 GA |
1464 | if (block != new_block && |
1465 | !strcmp(block->idstr, new_block->idstr)) { | |
84b89d78 CM |
1466 | fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", |
1467 | new_block->idstr); | |
1468 | abort(); | |
1469 | } | |
1470 | } | |
0dc3f44a | 1471 | rcu_read_unlock(); |
c5705a77 AK |
1472 | } |
1473 | ||
ae3a7047 | 1474 | /* Called with iothread lock held. */ |
fa53a0e5 | 1475 | void qemu_ram_unset_idstr(RAMBlock *block) |
20cfe881 | 1476 | { |
ae3a7047 MD |
1477 | /* FIXME: arch_init.c assumes that this is not called throughout |
1478 | * migration. Ignore the problem since hot-unplug during migration | |
1479 | * does not work anyway. | |
1480 | */ | |
20cfe881 HT |
1481 | if (block) { |
1482 | memset(block->idstr, 0, sizeof(block->idstr)); | |
1483 | } | |
1484 | } | |
1485 | ||
8490fc78 LC |
1486 | static int memory_try_enable_merging(void *addr, size_t len) |
1487 | { | |
75cc7f01 | 1488 | if (!machine_mem_merge(current_machine)) { |
8490fc78 LC |
1489 | /* disabled by the user */ |
1490 | return 0; | |
1491 | } | |
1492 | ||
1493 | return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); | |
1494 | } | |
1495 | ||
62be4e3a MT |
1496 | /* Only legal before guest might have detected the memory size: e.g. on |
1497 | * incoming migration, or right after reset. | |
1498 | * | |
1499 | * As memory core doesn't know how is memory accessed, it is up to | |
1500 | * resize callback to update device state and/or add assertions to detect | |
1501 | * misuse, if necessary. | |
1502 | */ | |
fa53a0e5 | 1503 | int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp) |
62be4e3a | 1504 | { |
62be4e3a MT |
1505 | assert(block); |
1506 | ||
4ed023ce | 1507 | newsize = HOST_PAGE_ALIGN(newsize); |
129ddaf3 | 1508 | |
62be4e3a MT |
1509 | if (block->used_length == newsize) { |
1510 | return 0; | |
1511 | } | |
1512 | ||
1513 | if (!(block->flags & RAM_RESIZEABLE)) { | |
1514 | error_setg_errno(errp, EINVAL, | |
1515 | "Length mismatch: %s: 0x" RAM_ADDR_FMT | |
1516 | " in != 0x" RAM_ADDR_FMT, block->idstr, | |
1517 | newsize, block->used_length); | |
1518 | return -EINVAL; | |
1519 | } | |
1520 | ||
1521 | if (block->max_length < newsize) { | |
1522 | error_setg_errno(errp, EINVAL, | |
1523 | "Length too large: %s: 0x" RAM_ADDR_FMT | |
1524 | " > 0x" RAM_ADDR_FMT, block->idstr, | |
1525 | newsize, block->max_length); | |
1526 | return -EINVAL; | |
1527 | } | |
1528 | ||
1529 | cpu_physical_memory_clear_dirty_range(block->offset, block->used_length); | |
1530 | block->used_length = newsize; | |
58d2707e PB |
1531 | cpu_physical_memory_set_dirty_range(block->offset, block->used_length, |
1532 | DIRTY_CLIENTS_ALL); | |
62be4e3a MT |
1533 | memory_region_set_size(block->mr, newsize); |
1534 | if (block->resized) { | |
1535 | block->resized(block->idstr, newsize, block->host); | |
1536 | } | |
1537 | return 0; | |
1538 | } | |
1539 | ||
5b82b703 SH |
1540 | /* Called with ram_list.mutex held */ |
1541 | static void dirty_memory_extend(ram_addr_t old_ram_size, | |
1542 | ram_addr_t new_ram_size) | |
1543 | { | |
1544 | ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size, | |
1545 | DIRTY_MEMORY_BLOCK_SIZE); | |
1546 | ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size, | |
1547 | DIRTY_MEMORY_BLOCK_SIZE); | |
1548 | int i; | |
1549 | ||
1550 | /* Only need to extend if block count increased */ | |
1551 | if (new_num_blocks <= old_num_blocks) { | |
1552 | return; | |
1553 | } | |
1554 | ||
1555 | for (i = 0; i < DIRTY_MEMORY_NUM; i++) { | |
1556 | DirtyMemoryBlocks *old_blocks; | |
1557 | DirtyMemoryBlocks *new_blocks; | |
1558 | int j; | |
1559 | ||
1560 | old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]); | |
1561 | new_blocks = g_malloc(sizeof(*new_blocks) + | |
1562 | sizeof(new_blocks->blocks[0]) * new_num_blocks); | |
1563 | ||
1564 | if (old_num_blocks) { | |
1565 | memcpy(new_blocks->blocks, old_blocks->blocks, | |
1566 | old_num_blocks * sizeof(old_blocks->blocks[0])); | |
1567 | } | |
1568 | ||
1569 | for (j = old_num_blocks; j < new_num_blocks; j++) { | |
1570 | new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE); | |
1571 | } | |
1572 | ||
1573 | atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks); | |
1574 | ||
1575 | if (old_blocks) { | |
1576 | g_free_rcu(old_blocks, rcu); | |
1577 | } | |
1578 | } | |
1579 | } | |
1580 | ||
528f46af | 1581 | static void ram_block_add(RAMBlock *new_block, Error **errp) |
c5705a77 | 1582 | { |
e1c57ab8 | 1583 | RAMBlock *block; |
0d53d9fe | 1584 | RAMBlock *last_block = NULL; |
2152f5ca | 1585 | ram_addr_t old_ram_size, new_ram_size; |
37aa7a0e | 1586 | Error *err = NULL; |
2152f5ca JQ |
1587 | |
1588 | old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS; | |
c5705a77 | 1589 | |
b2a8658e | 1590 | qemu_mutex_lock_ramlist(); |
9b8424d5 | 1591 | new_block->offset = find_ram_offset(new_block->max_length); |
e1c57ab8 PB |
1592 | |
1593 | if (!new_block->host) { | |
1594 | if (xen_enabled()) { | |
9b8424d5 | 1595 | xen_ram_alloc(new_block->offset, new_block->max_length, |
37aa7a0e MA |
1596 | new_block->mr, &err); |
1597 | if (err) { | |
1598 | error_propagate(errp, err); | |
1599 | qemu_mutex_unlock_ramlist(); | |
39c350ee | 1600 | return; |
37aa7a0e | 1601 | } |
e1c57ab8 | 1602 | } else { |
9b8424d5 | 1603 | new_block->host = phys_mem_alloc(new_block->max_length, |
a2b257d6 | 1604 | &new_block->mr->align); |
39228250 | 1605 | if (!new_block->host) { |
ef701d7b HT |
1606 | error_setg_errno(errp, errno, |
1607 | "cannot set up guest memory '%s'", | |
1608 | memory_region_name(new_block->mr)); | |
1609 | qemu_mutex_unlock_ramlist(); | |
39c350ee | 1610 | return; |
39228250 | 1611 | } |
9b8424d5 | 1612 | memory_try_enable_merging(new_block->host, new_block->max_length); |
6977dfe6 | 1613 | } |
c902760f | 1614 | } |
94a6b54f | 1615 | |
dd631697 LZ |
1616 | new_ram_size = MAX(old_ram_size, |
1617 | (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS); | |
1618 | if (new_ram_size > old_ram_size) { | |
1619 | migration_bitmap_extend(old_ram_size, new_ram_size); | |
5b82b703 | 1620 | dirty_memory_extend(old_ram_size, new_ram_size); |
dd631697 | 1621 | } |
0d53d9fe MD |
1622 | /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ, |
1623 | * QLIST (which has an RCU-friendly variant) does not have insertion at | |
1624 | * tail, so save the last element in last_block. | |
1625 | */ | |
0dc3f44a | 1626 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
0d53d9fe | 1627 | last_block = block; |
9b8424d5 | 1628 | if (block->max_length < new_block->max_length) { |
abb26d63 PB |
1629 | break; |
1630 | } | |
1631 | } | |
1632 | if (block) { | |
0dc3f44a | 1633 | QLIST_INSERT_BEFORE_RCU(block, new_block, next); |
0d53d9fe | 1634 | } else if (last_block) { |
0dc3f44a | 1635 | QLIST_INSERT_AFTER_RCU(last_block, new_block, next); |
0d53d9fe | 1636 | } else { /* list is empty */ |
0dc3f44a | 1637 | QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); |
abb26d63 | 1638 | } |
0d6d3c87 | 1639 | ram_list.mru_block = NULL; |
94a6b54f | 1640 | |
0dc3f44a MD |
1641 | /* Write list before version */ |
1642 | smp_wmb(); | |
f798b07f | 1643 | ram_list.version++; |
b2a8658e | 1644 | qemu_mutex_unlock_ramlist(); |
f798b07f | 1645 | |
9b8424d5 | 1646 | cpu_physical_memory_set_dirty_range(new_block->offset, |
58d2707e PB |
1647 | new_block->used_length, |
1648 | DIRTY_CLIENTS_ALL); | |
94a6b54f | 1649 | |
a904c911 PB |
1650 | if (new_block->host) { |
1651 | qemu_ram_setup_dump(new_block->host, new_block->max_length); | |
1652 | qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); | |
1653 | qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK); | |
1654 | if (kvm_enabled()) { | |
1655 | kvm_setup_guest_memory(new_block->host, new_block->max_length); | |
1656 | } | |
e1c57ab8 | 1657 | } |
94a6b54f | 1658 | } |
e9a1ab19 | 1659 | |
0b183fc8 | 1660 | #ifdef __linux__ |
528f46af FZ |
1661 | RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, |
1662 | bool share, const char *mem_path, | |
1663 | Error **errp) | |
e1c57ab8 PB |
1664 | { |
1665 | RAMBlock *new_block; | |
ef701d7b | 1666 | Error *local_err = NULL; |
e1c57ab8 PB |
1667 | |
1668 | if (xen_enabled()) { | |
7f56e740 | 1669 | error_setg(errp, "-mem-path not supported with Xen"); |
528f46af | 1670 | return NULL; |
e1c57ab8 PB |
1671 | } |
1672 | ||
1673 | if (phys_mem_alloc != qemu_anon_ram_alloc) { | |
1674 | /* | |
1675 | * file_ram_alloc() needs to allocate just like | |
1676 | * phys_mem_alloc, but we haven't bothered to provide | |
1677 | * a hook there. | |
1678 | */ | |
7f56e740 PB |
1679 | error_setg(errp, |
1680 | "-mem-path not supported with this accelerator"); | |
528f46af | 1681 | return NULL; |
e1c57ab8 PB |
1682 | } |
1683 | ||
4ed023ce | 1684 | size = HOST_PAGE_ALIGN(size); |
e1c57ab8 PB |
1685 | new_block = g_malloc0(sizeof(*new_block)); |
1686 | new_block->mr = mr; | |
9b8424d5 MT |
1687 | new_block->used_length = size; |
1688 | new_block->max_length = size; | |
dbcb8981 | 1689 | new_block->flags = share ? RAM_SHARED : 0; |
7f56e740 PB |
1690 | new_block->host = file_ram_alloc(new_block, size, |
1691 | mem_path, errp); | |
1692 | if (!new_block->host) { | |
1693 | g_free(new_block); | |
528f46af | 1694 | return NULL; |
7f56e740 PB |
1695 | } |
1696 | ||
528f46af | 1697 | ram_block_add(new_block, &local_err); |
ef701d7b HT |
1698 | if (local_err) { |
1699 | g_free(new_block); | |
1700 | error_propagate(errp, local_err); | |
528f46af | 1701 | return NULL; |
ef701d7b | 1702 | } |
528f46af | 1703 | return new_block; |
e1c57ab8 | 1704 | } |
0b183fc8 | 1705 | #endif |
e1c57ab8 | 1706 | |
62be4e3a | 1707 | static |
528f46af FZ |
1708 | RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size, |
1709 | void (*resized)(const char*, | |
1710 | uint64_t length, | |
1711 | void *host), | |
1712 | void *host, bool resizeable, | |
1713 | MemoryRegion *mr, Error **errp) | |
e1c57ab8 PB |
1714 | { |
1715 | RAMBlock *new_block; | |
ef701d7b | 1716 | Error *local_err = NULL; |
e1c57ab8 | 1717 | |
4ed023ce DDAG |
1718 | size = HOST_PAGE_ALIGN(size); |
1719 | max_size = HOST_PAGE_ALIGN(max_size); | |
e1c57ab8 PB |
1720 | new_block = g_malloc0(sizeof(*new_block)); |
1721 | new_block->mr = mr; | |
62be4e3a | 1722 | new_block->resized = resized; |
9b8424d5 MT |
1723 | new_block->used_length = size; |
1724 | new_block->max_length = max_size; | |
62be4e3a | 1725 | assert(max_size >= size); |
e1c57ab8 PB |
1726 | new_block->fd = -1; |
1727 | new_block->host = host; | |
1728 | if (host) { | |
7bd4f430 | 1729 | new_block->flags |= RAM_PREALLOC; |
e1c57ab8 | 1730 | } |
62be4e3a MT |
1731 | if (resizeable) { |
1732 | new_block->flags |= RAM_RESIZEABLE; | |
1733 | } | |
528f46af | 1734 | ram_block_add(new_block, &local_err); |
ef701d7b HT |
1735 | if (local_err) { |
1736 | g_free(new_block); | |
1737 | error_propagate(errp, local_err); | |
528f46af | 1738 | return NULL; |
ef701d7b | 1739 | } |
528f46af | 1740 | return new_block; |
e1c57ab8 PB |
1741 | } |
1742 | ||
528f46af | 1743 | RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, |
62be4e3a MT |
1744 | MemoryRegion *mr, Error **errp) |
1745 | { | |
1746 | return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp); | |
1747 | } | |
1748 | ||
528f46af | 1749 | RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp) |
6977dfe6 | 1750 | { |
62be4e3a MT |
1751 | return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp); |
1752 | } | |
1753 | ||
528f46af | 1754 | RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz, |
62be4e3a MT |
1755 | void (*resized)(const char*, |
1756 | uint64_t length, | |
1757 | void *host), | |
1758 | MemoryRegion *mr, Error **errp) | |
1759 | { | |
1760 | return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp); | |
6977dfe6 YT |
1761 | } |
1762 | ||
43771539 PB |
1763 | static void reclaim_ramblock(RAMBlock *block) |
1764 | { | |
1765 | if (block->flags & RAM_PREALLOC) { | |
1766 | ; | |
1767 | } else if (xen_enabled()) { | |
1768 | xen_invalidate_map_cache_entry(block->host); | |
1769 | #ifndef _WIN32 | |
1770 | } else if (block->fd >= 0) { | |
2f3a2bb1 | 1771 | qemu_ram_munmap(block->host, block->max_length); |
43771539 PB |
1772 | close(block->fd); |
1773 | #endif | |
1774 | } else { | |
1775 | qemu_anon_ram_free(block->host, block->max_length); | |
1776 | } | |
1777 | g_free(block); | |
1778 | } | |
1779 | ||
f1060c55 | 1780 | void qemu_ram_free(RAMBlock *block) |
e9a1ab19 | 1781 | { |
85bc2a15 MAL |
1782 | if (!block) { |
1783 | return; | |
1784 | } | |
1785 | ||
b2a8658e | 1786 | qemu_mutex_lock_ramlist(); |
f1060c55 FZ |
1787 | QLIST_REMOVE_RCU(block, next); |
1788 | ram_list.mru_block = NULL; | |
1789 | /* Write list before version */ | |
1790 | smp_wmb(); | |
1791 | ram_list.version++; | |
1792 | call_rcu(block, reclaim_ramblock, rcu); | |
b2a8658e | 1793 | qemu_mutex_unlock_ramlist(); |
e9a1ab19 FB |
1794 | } |
1795 | ||
cd19cfa2 HY |
1796 | #ifndef _WIN32 |
1797 | void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) | |
1798 | { | |
1799 | RAMBlock *block; | |
1800 | ram_addr_t offset; | |
1801 | int flags; | |
1802 | void *area, *vaddr; | |
1803 | ||
0dc3f44a | 1804 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
cd19cfa2 | 1805 | offset = addr - block->offset; |
9b8424d5 | 1806 | if (offset < block->max_length) { |
1240be24 | 1807 | vaddr = ramblock_ptr(block, offset); |
7bd4f430 | 1808 | if (block->flags & RAM_PREALLOC) { |
cd19cfa2 | 1809 | ; |
dfeaf2ab MA |
1810 | } else if (xen_enabled()) { |
1811 | abort(); | |
cd19cfa2 HY |
1812 | } else { |
1813 | flags = MAP_FIXED; | |
3435f395 | 1814 | if (block->fd >= 0) { |
dbcb8981 PB |
1815 | flags |= (block->flags & RAM_SHARED ? |
1816 | MAP_SHARED : MAP_PRIVATE); | |
3435f395 MA |
1817 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, |
1818 | flags, block->fd, offset); | |
cd19cfa2 | 1819 | } else { |
2eb9fbaa MA |
1820 | /* |
1821 | * Remap needs to match alloc. Accelerators that | |
1822 | * set phys_mem_alloc never remap. If they did, | |
1823 | * we'd need a remap hook here. | |
1824 | */ | |
1825 | assert(phys_mem_alloc == qemu_anon_ram_alloc); | |
1826 | ||
cd19cfa2 HY |
1827 | flags |= MAP_PRIVATE | MAP_ANONYMOUS; |
1828 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, | |
1829 | flags, -1, 0); | |
cd19cfa2 HY |
1830 | } |
1831 | if (area != vaddr) { | |
f15fbc4b AP |
1832 | fprintf(stderr, "Could not remap addr: " |
1833 | RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n", | |
cd19cfa2 HY |
1834 | length, addr); |
1835 | exit(1); | |
1836 | } | |
8490fc78 | 1837 | memory_try_enable_merging(vaddr, length); |
ddb97f1d | 1838 | qemu_ram_setup_dump(vaddr, length); |
cd19cfa2 | 1839 | } |
cd19cfa2 HY |
1840 | } |
1841 | } | |
1842 | } | |
1843 | #endif /* !_WIN32 */ | |
1844 | ||
1b5ec234 | 1845 | /* Return a host pointer to ram allocated with qemu_ram_alloc. |
ae3a7047 MD |
1846 | * This should not be used for general purpose DMA. Use address_space_map |
1847 | * or address_space_rw instead. For local memory (e.g. video ram) that the | |
1848 | * device owns, use memory_region_get_ram_ptr. | |
0dc3f44a | 1849 | * |
49b24afc | 1850 | * Called within RCU critical section. |
1b5ec234 | 1851 | */ |
0878d0e1 | 1852 | void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr) |
1b5ec234 | 1853 | { |
3655cb9c GA |
1854 | RAMBlock *block = ram_block; |
1855 | ||
1856 | if (block == NULL) { | |
1857 | block = qemu_get_ram_block(addr); | |
0878d0e1 | 1858 | addr -= block->offset; |
3655cb9c | 1859 | } |
ae3a7047 MD |
1860 | |
1861 | if (xen_enabled() && block->host == NULL) { | |
0d6d3c87 PB |
1862 | /* We need to check if the requested address is in the RAM |
1863 | * because we don't want to map the entire memory in QEMU. | |
1864 | * In that case just map until the end of the page. | |
1865 | */ | |
1866 | if (block->offset == 0) { | |
49b24afc | 1867 | return xen_map_cache(addr, 0, 0); |
0d6d3c87 | 1868 | } |
ae3a7047 MD |
1869 | |
1870 | block->host = xen_map_cache(block->offset, block->max_length, 1); | |
0d6d3c87 | 1871 | } |
0878d0e1 | 1872 | return ramblock_ptr(block, addr); |
dc828ca1 PB |
1873 | } |
1874 | ||
0878d0e1 | 1875 | /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr |
ae3a7047 | 1876 | * but takes a size argument. |
0dc3f44a | 1877 | * |
e81bcda5 | 1878 | * Called within RCU critical section. |
ae3a7047 | 1879 | */ |
3655cb9c GA |
1880 | static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr, |
1881 | hwaddr *size) | |
38bee5dc | 1882 | { |
3655cb9c | 1883 | RAMBlock *block = ram_block; |
8ab934f9 SS |
1884 | if (*size == 0) { |
1885 | return NULL; | |
1886 | } | |
e81bcda5 | 1887 | |
3655cb9c GA |
1888 | if (block == NULL) { |
1889 | block = qemu_get_ram_block(addr); | |
0878d0e1 | 1890 | addr -= block->offset; |
3655cb9c | 1891 | } |
0878d0e1 | 1892 | *size = MIN(*size, block->max_length - addr); |
e81bcda5 PB |
1893 | |
1894 | if (xen_enabled() && block->host == NULL) { | |
1895 | /* We need to check if the requested address is in the RAM | |
1896 | * because we don't want to map the entire memory in QEMU. | |
1897 | * In that case just map the requested area. | |
1898 | */ | |
1899 | if (block->offset == 0) { | |
1900 | return xen_map_cache(addr, *size, 1); | |
38bee5dc SS |
1901 | } |
1902 | ||
e81bcda5 | 1903 | block->host = xen_map_cache(block->offset, block->max_length, 1); |
38bee5dc | 1904 | } |
e81bcda5 | 1905 | |
0878d0e1 | 1906 | return ramblock_ptr(block, addr); |
38bee5dc SS |
1907 | } |
1908 | ||
422148d3 DDAG |
1909 | /* |
1910 | * Translates a host ptr back to a RAMBlock, a ram_addr and an offset | |
1911 | * in that RAMBlock. | |
1912 | * | |
1913 | * ptr: Host pointer to look up | |
1914 | * round_offset: If true round the result offset down to a page boundary | |
1915 | * *ram_addr: set to result ram_addr | |
1916 | * *offset: set to result offset within the RAMBlock | |
1917 | * | |
1918 | * Returns: RAMBlock (or NULL if not found) | |
ae3a7047 MD |
1919 | * |
1920 | * By the time this function returns, the returned pointer is not protected | |
1921 | * by RCU anymore. If the caller is not within an RCU critical section and | |
1922 | * does not hold the iothread lock, it must have other means of protecting the | |
1923 | * pointer, such as a reference to the region that includes the incoming | |
1924 | * ram_addr_t. | |
1925 | */ | |
422148d3 | 1926 | RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, |
422148d3 | 1927 | ram_addr_t *offset) |
5579c7f3 | 1928 | { |
94a6b54f PB |
1929 | RAMBlock *block; |
1930 | uint8_t *host = ptr; | |
1931 | ||
868bb33f | 1932 | if (xen_enabled()) { |
f615f396 | 1933 | ram_addr_t ram_addr; |
0dc3f44a | 1934 | rcu_read_lock(); |
f615f396 PB |
1935 | ram_addr = xen_ram_addr_from_mapcache(ptr); |
1936 | block = qemu_get_ram_block(ram_addr); | |
422148d3 DDAG |
1937 | if (block) { |
1938 | *offset = (host - block->host); | |
1939 | } | |
0dc3f44a | 1940 | rcu_read_unlock(); |
422148d3 | 1941 | return block; |
712c2b41 SS |
1942 | } |
1943 | ||
0dc3f44a MD |
1944 | rcu_read_lock(); |
1945 | block = atomic_rcu_read(&ram_list.mru_block); | |
9b8424d5 | 1946 | if (block && block->host && host - block->host < block->max_length) { |
23887b79 PB |
1947 | goto found; |
1948 | } | |
1949 | ||
0dc3f44a | 1950 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
432d268c JN |
1951 | /* This case append when the block is not mapped. */ |
1952 | if (block->host == NULL) { | |
1953 | continue; | |
1954 | } | |
9b8424d5 | 1955 | if (host - block->host < block->max_length) { |
23887b79 | 1956 | goto found; |
f471a17e | 1957 | } |
94a6b54f | 1958 | } |
432d268c | 1959 | |
0dc3f44a | 1960 | rcu_read_unlock(); |
1b5ec234 | 1961 | return NULL; |
23887b79 PB |
1962 | |
1963 | found: | |
422148d3 DDAG |
1964 | *offset = (host - block->host); |
1965 | if (round_offset) { | |
1966 | *offset &= TARGET_PAGE_MASK; | |
1967 | } | |
0dc3f44a | 1968 | rcu_read_unlock(); |
422148d3 DDAG |
1969 | return block; |
1970 | } | |
1971 | ||
e3dd7493 DDAG |
1972 | /* |
1973 | * Finds the named RAMBlock | |
1974 | * | |
1975 | * name: The name of RAMBlock to find | |
1976 | * | |
1977 | * Returns: RAMBlock (or NULL if not found) | |
1978 | */ | |
1979 | RAMBlock *qemu_ram_block_by_name(const char *name) | |
1980 | { | |
1981 | RAMBlock *block; | |
1982 | ||
1983 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
1984 | if (!strcmp(name, block->idstr)) { | |
1985 | return block; | |
1986 | } | |
1987 | } | |
1988 | ||
1989 | return NULL; | |
1990 | } | |
1991 | ||
422148d3 DDAG |
1992 | /* Some of the softmmu routines need to translate from a host pointer |
1993 | (typically a TLB entry) back to a ram offset. */ | |
07bdaa41 | 1994 | ram_addr_t qemu_ram_addr_from_host(void *ptr) |
422148d3 DDAG |
1995 | { |
1996 | RAMBlock *block; | |
f615f396 | 1997 | ram_addr_t offset; |
422148d3 | 1998 | |
f615f396 | 1999 | block = qemu_ram_block_from_host(ptr, false, &offset); |
422148d3 | 2000 | if (!block) { |
07bdaa41 | 2001 | return RAM_ADDR_INVALID; |
422148d3 DDAG |
2002 | } |
2003 | ||
07bdaa41 | 2004 | return block->offset + offset; |
e890261f | 2005 | } |
f471a17e | 2006 | |
49b24afc | 2007 | /* Called within RCU critical section. */ |
a8170e5e | 2008 | static void notdirty_mem_write(void *opaque, hwaddr ram_addr, |
0e0df1e2 | 2009 | uint64_t val, unsigned size) |
9fa3e853 | 2010 | { |
52159192 | 2011 | if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { |
0e0df1e2 | 2012 | tb_invalidate_phys_page_fast(ram_addr, size); |
3a7d929e | 2013 | } |
0e0df1e2 AK |
2014 | switch (size) { |
2015 | case 1: | |
0878d0e1 | 2016 | stb_p(qemu_map_ram_ptr(NULL, ram_addr), val); |
0e0df1e2 AK |
2017 | break; |
2018 | case 2: | |
0878d0e1 | 2019 | stw_p(qemu_map_ram_ptr(NULL, ram_addr), val); |
0e0df1e2 AK |
2020 | break; |
2021 | case 4: | |
0878d0e1 | 2022 | stl_p(qemu_map_ram_ptr(NULL, ram_addr), val); |
0e0df1e2 AK |
2023 | break; |
2024 | default: | |
2025 | abort(); | |
3a7d929e | 2026 | } |
58d2707e PB |
2027 | /* Set both VGA and migration bits for simplicity and to remove |
2028 | * the notdirty callback faster. | |
2029 | */ | |
2030 | cpu_physical_memory_set_dirty_range(ram_addr, size, | |
2031 | DIRTY_CLIENTS_NOCODE); | |
f23db169 FB |
2032 | /* we remove the notdirty callback only if the code has been |
2033 | flushed */ | |
a2cd8c85 | 2034 | if (!cpu_physical_memory_is_clean(ram_addr)) { |
bcae01e4 | 2035 | tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr); |
4917cf44 | 2036 | } |
9fa3e853 FB |
2037 | } |
2038 | ||
b018ddf6 PB |
2039 | static bool notdirty_mem_accepts(void *opaque, hwaddr addr, |
2040 | unsigned size, bool is_write) | |
2041 | { | |
2042 | return is_write; | |
2043 | } | |
2044 | ||
0e0df1e2 | 2045 | static const MemoryRegionOps notdirty_mem_ops = { |
0e0df1e2 | 2046 | .write = notdirty_mem_write, |
b018ddf6 | 2047 | .valid.accepts = notdirty_mem_accepts, |
0e0df1e2 | 2048 | .endianness = DEVICE_NATIVE_ENDIAN, |
1ccde1cb FB |
2049 | }; |
2050 | ||
0f459d16 | 2051 | /* Generate a debug exception if a watchpoint has been hit. */ |
66b9b43c | 2052 | static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags) |
0f459d16 | 2053 | { |
93afeade | 2054 | CPUState *cpu = current_cpu; |
568496c0 | 2055 | CPUClass *cc = CPU_GET_CLASS(cpu); |
93afeade | 2056 | CPUArchState *env = cpu->env_ptr; |
06d55cc1 | 2057 | target_ulong pc, cs_base; |
0f459d16 | 2058 | target_ulong vaddr; |
a1d1bb31 | 2059 | CPUWatchpoint *wp; |
89fee74a | 2060 | uint32_t cpu_flags; |
0f459d16 | 2061 | |
ff4700b0 | 2062 | if (cpu->watchpoint_hit) { |
06d55cc1 AL |
2063 | /* We re-entered the check after replacing the TB. Now raise |
2064 | * the debug interrupt so that is will trigger after the | |
2065 | * current instruction. */ | |
93afeade | 2066 | cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG); |
06d55cc1 AL |
2067 | return; |
2068 | } | |
93afeade | 2069 | vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset; |
ff4700b0 | 2070 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d PM |
2071 | if (cpu_watchpoint_address_matches(wp, vaddr, len) |
2072 | && (wp->flags & flags)) { | |
08225676 PM |
2073 | if (flags == BP_MEM_READ) { |
2074 | wp->flags |= BP_WATCHPOINT_HIT_READ; | |
2075 | } else { | |
2076 | wp->flags |= BP_WATCHPOINT_HIT_WRITE; | |
2077 | } | |
2078 | wp->hitaddr = vaddr; | |
66b9b43c | 2079 | wp->hitattrs = attrs; |
ff4700b0 | 2080 | if (!cpu->watchpoint_hit) { |
568496c0 SF |
2081 | if (wp->flags & BP_CPU && |
2082 | !cc->debug_check_watchpoint(cpu, wp)) { | |
2083 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
2084 | continue; | |
2085 | } | |
ff4700b0 | 2086 | cpu->watchpoint_hit = wp; |
239c51a5 | 2087 | tb_check_watchpoint(cpu); |
6e140f28 | 2088 | if (wp->flags & BP_STOP_BEFORE_ACCESS) { |
27103424 | 2089 | cpu->exception_index = EXCP_DEBUG; |
5638d180 | 2090 | cpu_loop_exit(cpu); |
6e140f28 AL |
2091 | } else { |
2092 | cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags); | |
648f034c | 2093 | tb_gen_code(cpu, pc, cs_base, cpu_flags, 1); |
6886b980 | 2094 | cpu_loop_exit_noexc(cpu); |
6e140f28 | 2095 | } |
06d55cc1 | 2096 | } |
6e140f28 AL |
2097 | } else { |
2098 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
0f459d16 PB |
2099 | } |
2100 | } | |
2101 | } | |
2102 | ||
6658ffb8 PB |
2103 | /* Watchpoint access routines. Watchpoints are inserted using TLB tricks, |
2104 | so these check for a hit then pass through to the normal out-of-line | |
2105 | phys routines. */ | |
66b9b43c PM |
2106 | static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata, |
2107 | unsigned size, MemTxAttrs attrs) | |
6658ffb8 | 2108 | { |
66b9b43c PM |
2109 | MemTxResult res; |
2110 | uint64_t data; | |
79ed0416 PM |
2111 | int asidx = cpu_asidx_from_attrs(current_cpu, attrs); |
2112 | AddressSpace *as = current_cpu->cpu_ases[asidx].as; | |
66b9b43c PM |
2113 | |
2114 | check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ); | |
1ec9b909 | 2115 | switch (size) { |
66b9b43c | 2116 | case 1: |
79ed0416 | 2117 | data = address_space_ldub(as, addr, attrs, &res); |
66b9b43c PM |
2118 | break; |
2119 | case 2: | |
79ed0416 | 2120 | data = address_space_lduw(as, addr, attrs, &res); |
66b9b43c PM |
2121 | break; |
2122 | case 4: | |
79ed0416 | 2123 | data = address_space_ldl(as, addr, attrs, &res); |
66b9b43c | 2124 | break; |
1ec9b909 AK |
2125 | default: abort(); |
2126 | } | |
66b9b43c PM |
2127 | *pdata = data; |
2128 | return res; | |
6658ffb8 PB |
2129 | } |
2130 | ||
66b9b43c PM |
2131 | static MemTxResult watch_mem_write(void *opaque, hwaddr addr, |
2132 | uint64_t val, unsigned size, | |
2133 | MemTxAttrs attrs) | |
6658ffb8 | 2134 | { |
66b9b43c | 2135 | MemTxResult res; |
79ed0416 PM |
2136 | int asidx = cpu_asidx_from_attrs(current_cpu, attrs); |
2137 | AddressSpace *as = current_cpu->cpu_ases[asidx].as; | |
66b9b43c PM |
2138 | |
2139 | check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE); | |
1ec9b909 | 2140 | switch (size) { |
67364150 | 2141 | case 1: |
79ed0416 | 2142 | address_space_stb(as, addr, val, attrs, &res); |
67364150 MF |
2143 | break; |
2144 | case 2: | |
79ed0416 | 2145 | address_space_stw(as, addr, val, attrs, &res); |
67364150 MF |
2146 | break; |
2147 | case 4: | |
79ed0416 | 2148 | address_space_stl(as, addr, val, attrs, &res); |
67364150 | 2149 | break; |
1ec9b909 AK |
2150 | default: abort(); |
2151 | } | |
66b9b43c | 2152 | return res; |
6658ffb8 PB |
2153 | } |
2154 | ||
1ec9b909 | 2155 | static const MemoryRegionOps watch_mem_ops = { |
66b9b43c PM |
2156 | .read_with_attrs = watch_mem_read, |
2157 | .write_with_attrs = watch_mem_write, | |
1ec9b909 | 2158 | .endianness = DEVICE_NATIVE_ENDIAN, |
6658ffb8 | 2159 | }; |
6658ffb8 | 2160 | |
f25a49e0 PM |
2161 | static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data, |
2162 | unsigned len, MemTxAttrs attrs) | |
db7b5426 | 2163 | { |
acc9d80b | 2164 | subpage_t *subpage = opaque; |
ff6cff75 | 2165 | uint8_t buf[8]; |
5c9eb028 | 2166 | MemTxResult res; |
791af8c8 | 2167 | |
db7b5426 | 2168 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2169 | printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__, |
acc9d80b | 2170 | subpage, len, addr); |
db7b5426 | 2171 | #endif |
5c9eb028 PM |
2172 | res = address_space_read(subpage->as, addr + subpage->base, |
2173 | attrs, buf, len); | |
2174 | if (res) { | |
2175 | return res; | |
f25a49e0 | 2176 | } |
acc9d80b JK |
2177 | switch (len) { |
2178 | case 1: | |
f25a49e0 PM |
2179 | *data = ldub_p(buf); |
2180 | return MEMTX_OK; | |
acc9d80b | 2181 | case 2: |
f25a49e0 PM |
2182 | *data = lduw_p(buf); |
2183 | return MEMTX_OK; | |
acc9d80b | 2184 | case 4: |
f25a49e0 PM |
2185 | *data = ldl_p(buf); |
2186 | return MEMTX_OK; | |
ff6cff75 | 2187 | case 8: |
f25a49e0 PM |
2188 | *data = ldq_p(buf); |
2189 | return MEMTX_OK; | |
acc9d80b JK |
2190 | default: |
2191 | abort(); | |
2192 | } | |
db7b5426 BS |
2193 | } |
2194 | ||
f25a49e0 PM |
2195 | static MemTxResult subpage_write(void *opaque, hwaddr addr, |
2196 | uint64_t value, unsigned len, MemTxAttrs attrs) | |
db7b5426 | 2197 | { |
acc9d80b | 2198 | subpage_t *subpage = opaque; |
ff6cff75 | 2199 | uint8_t buf[8]; |
acc9d80b | 2200 | |
db7b5426 | 2201 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2202 | printf("%s: subpage %p len %u addr " TARGET_FMT_plx |
acc9d80b JK |
2203 | " value %"PRIx64"\n", |
2204 | __func__, subpage, len, addr, value); | |
db7b5426 | 2205 | #endif |
acc9d80b JK |
2206 | switch (len) { |
2207 | case 1: | |
2208 | stb_p(buf, value); | |
2209 | break; | |
2210 | case 2: | |
2211 | stw_p(buf, value); | |
2212 | break; | |
2213 | case 4: | |
2214 | stl_p(buf, value); | |
2215 | break; | |
ff6cff75 PB |
2216 | case 8: |
2217 | stq_p(buf, value); | |
2218 | break; | |
acc9d80b JK |
2219 | default: |
2220 | abort(); | |
2221 | } | |
5c9eb028 PM |
2222 | return address_space_write(subpage->as, addr + subpage->base, |
2223 | attrs, buf, len); | |
db7b5426 BS |
2224 | } |
2225 | ||
c353e4cc | 2226 | static bool subpage_accepts(void *opaque, hwaddr addr, |
016e9d62 | 2227 | unsigned len, bool is_write) |
c353e4cc | 2228 | { |
acc9d80b | 2229 | subpage_t *subpage = opaque; |
c353e4cc | 2230 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2231 | printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n", |
acc9d80b | 2232 | __func__, subpage, is_write ? 'w' : 'r', len, addr); |
c353e4cc PB |
2233 | #endif |
2234 | ||
acc9d80b | 2235 | return address_space_access_valid(subpage->as, addr + subpage->base, |
016e9d62 | 2236 | len, is_write); |
c353e4cc PB |
2237 | } |
2238 | ||
70c68e44 | 2239 | static const MemoryRegionOps subpage_ops = { |
f25a49e0 PM |
2240 | .read_with_attrs = subpage_read, |
2241 | .write_with_attrs = subpage_write, | |
ff6cff75 PB |
2242 | .impl.min_access_size = 1, |
2243 | .impl.max_access_size = 8, | |
2244 | .valid.min_access_size = 1, | |
2245 | .valid.max_access_size = 8, | |
c353e4cc | 2246 | .valid.accepts = subpage_accepts, |
70c68e44 | 2247 | .endianness = DEVICE_NATIVE_ENDIAN, |
db7b5426 BS |
2248 | }; |
2249 | ||
c227f099 | 2250 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, |
5312bd8b | 2251 | uint16_t section) |
db7b5426 BS |
2252 | { |
2253 | int idx, eidx; | |
2254 | ||
2255 | if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) | |
2256 | return -1; | |
2257 | idx = SUBPAGE_IDX(start); | |
2258 | eidx = SUBPAGE_IDX(end); | |
2259 | #if defined(DEBUG_SUBPAGE) | |
016e9d62 AK |
2260 | printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", |
2261 | __func__, mmio, start, end, idx, eidx, section); | |
db7b5426 | 2262 | #endif |
db7b5426 | 2263 | for (; idx <= eidx; idx++) { |
5312bd8b | 2264 | mmio->sub_section[idx] = section; |
db7b5426 BS |
2265 | } |
2266 | ||
2267 | return 0; | |
2268 | } | |
2269 | ||
acc9d80b | 2270 | static subpage_t *subpage_init(AddressSpace *as, hwaddr base) |
db7b5426 | 2271 | { |
c227f099 | 2272 | subpage_t *mmio; |
db7b5426 | 2273 | |
7267c094 | 2274 | mmio = g_malloc0(sizeof(subpage_t)); |
1eec614b | 2275 | |
acc9d80b | 2276 | mmio->as = as; |
1eec614b | 2277 | mmio->base = base; |
2c9b15ca | 2278 | memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, |
b4fefef9 | 2279 | NULL, TARGET_PAGE_SIZE); |
b3b00c78 | 2280 | mmio->iomem.subpage = true; |
db7b5426 | 2281 | #if defined(DEBUG_SUBPAGE) |
016e9d62 AK |
2282 | printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__, |
2283 | mmio, base, TARGET_PAGE_SIZE); | |
db7b5426 | 2284 | #endif |
b41aac4f | 2285 | subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED); |
db7b5426 BS |
2286 | |
2287 | return mmio; | |
2288 | } | |
2289 | ||
a656e22f PC |
2290 | static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as, |
2291 | MemoryRegion *mr) | |
5312bd8b | 2292 | { |
a656e22f | 2293 | assert(as); |
5312bd8b | 2294 | MemoryRegionSection section = { |
a656e22f | 2295 | .address_space = as, |
5312bd8b AK |
2296 | .mr = mr, |
2297 | .offset_within_address_space = 0, | |
2298 | .offset_within_region = 0, | |
052e87b0 | 2299 | .size = int128_2_64(), |
5312bd8b AK |
2300 | }; |
2301 | ||
53cb28cb | 2302 | return phys_section_add(map, §ion); |
5312bd8b AK |
2303 | } |
2304 | ||
a54c87b6 | 2305 | MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs) |
aa102231 | 2306 | { |
a54c87b6 PM |
2307 | int asidx = cpu_asidx_from_attrs(cpu, attrs); |
2308 | CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx]; | |
32857f4d | 2309 | AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch); |
79e2b9ae | 2310 | MemoryRegionSection *sections = d->map.sections; |
9d82b5a7 PB |
2311 | |
2312 | return sections[index & ~TARGET_PAGE_MASK].mr; | |
aa102231 AK |
2313 | } |
2314 | ||
e9179ce1 AK |
2315 | static void io_mem_init(void) |
2316 | { | |
1f6245e5 | 2317 | memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX); |
2c9b15ca | 2318 | memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, |
1f6245e5 | 2319 | NULL, UINT64_MAX); |
2c9b15ca | 2320 | memory_region_init_io(&io_mem_notdirty, NULL, ¬dirty_mem_ops, NULL, |
1f6245e5 | 2321 | NULL, UINT64_MAX); |
2c9b15ca | 2322 | memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL, |
1f6245e5 | 2323 | NULL, UINT64_MAX); |
e9179ce1 AK |
2324 | } |
2325 | ||
ac1970fb | 2326 | static void mem_begin(MemoryListener *listener) |
00752703 PB |
2327 | { |
2328 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); | |
53cb28cb MA |
2329 | AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); |
2330 | uint16_t n; | |
2331 | ||
a656e22f | 2332 | n = dummy_section(&d->map, as, &io_mem_unassigned); |
53cb28cb | 2333 | assert(n == PHYS_SECTION_UNASSIGNED); |
a656e22f | 2334 | n = dummy_section(&d->map, as, &io_mem_notdirty); |
53cb28cb | 2335 | assert(n == PHYS_SECTION_NOTDIRTY); |
a656e22f | 2336 | n = dummy_section(&d->map, as, &io_mem_rom); |
53cb28cb | 2337 | assert(n == PHYS_SECTION_ROM); |
a656e22f | 2338 | n = dummy_section(&d->map, as, &io_mem_watch); |
53cb28cb | 2339 | assert(n == PHYS_SECTION_WATCH); |
00752703 | 2340 | |
9736e55b | 2341 | d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; |
00752703 PB |
2342 | d->as = as; |
2343 | as->next_dispatch = d; | |
2344 | } | |
2345 | ||
79e2b9ae PB |
2346 | static void address_space_dispatch_free(AddressSpaceDispatch *d) |
2347 | { | |
2348 | phys_sections_free(&d->map); | |
2349 | g_free(d); | |
2350 | } | |
2351 | ||
00752703 | 2352 | static void mem_commit(MemoryListener *listener) |
ac1970fb | 2353 | { |
89ae337a | 2354 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); |
0475d94f PB |
2355 | AddressSpaceDispatch *cur = as->dispatch; |
2356 | AddressSpaceDispatch *next = as->next_dispatch; | |
2357 | ||
53cb28cb | 2358 | phys_page_compact_all(next, next->map.nodes_nb); |
b35ba30f | 2359 | |
79e2b9ae | 2360 | atomic_rcu_set(&as->dispatch, next); |
53cb28cb | 2361 | if (cur) { |
79e2b9ae | 2362 | call_rcu(cur, address_space_dispatch_free, rcu); |
53cb28cb | 2363 | } |
9affd6fc PB |
2364 | } |
2365 | ||
1d71148e | 2366 | static void tcg_commit(MemoryListener *listener) |
50c1e149 | 2367 | { |
32857f4d PM |
2368 | CPUAddressSpace *cpuas; |
2369 | AddressSpaceDispatch *d; | |
117712c3 AK |
2370 | |
2371 | /* since each CPU stores ram addresses in its TLB cache, we must | |
2372 | reset the modified entries */ | |
32857f4d PM |
2373 | cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); |
2374 | cpu_reloading_memory_map(); | |
2375 | /* The CPU and TLB are protected by the iothread lock. | |
2376 | * We reload the dispatch pointer now because cpu_reloading_memory_map() | |
2377 | * may have split the RCU critical section. | |
2378 | */ | |
2379 | d = atomic_rcu_read(&cpuas->as->dispatch); | |
2380 | cpuas->memory_dispatch = d; | |
2381 | tlb_flush(cpuas->cpu, 1); | |
50c1e149 AK |
2382 | } |
2383 | ||
ac1970fb AK |
2384 | void address_space_init_dispatch(AddressSpace *as) |
2385 | { | |
00752703 | 2386 | as->dispatch = NULL; |
89ae337a | 2387 | as->dispatch_listener = (MemoryListener) { |
ac1970fb | 2388 | .begin = mem_begin, |
00752703 | 2389 | .commit = mem_commit, |
ac1970fb AK |
2390 | .region_add = mem_add, |
2391 | .region_nop = mem_add, | |
2392 | .priority = 0, | |
2393 | }; | |
89ae337a | 2394 | memory_listener_register(&as->dispatch_listener, as); |
ac1970fb AK |
2395 | } |
2396 | ||
6e48e8f9 PB |
2397 | void address_space_unregister(AddressSpace *as) |
2398 | { | |
2399 | memory_listener_unregister(&as->dispatch_listener); | |
2400 | } | |
2401 | ||
83f3c251 AK |
2402 | void address_space_destroy_dispatch(AddressSpace *as) |
2403 | { | |
2404 | AddressSpaceDispatch *d = as->dispatch; | |
2405 | ||
79e2b9ae PB |
2406 | atomic_rcu_set(&as->dispatch, NULL); |
2407 | if (d) { | |
2408 | call_rcu(d, address_space_dispatch_free, rcu); | |
2409 | } | |
83f3c251 AK |
2410 | } |
2411 | ||
62152b8a AK |
2412 | static void memory_map_init(void) |
2413 | { | |
7267c094 | 2414 | system_memory = g_malloc(sizeof(*system_memory)); |
03f49957 | 2415 | |
57271d63 | 2416 | memory_region_init(system_memory, NULL, "system", UINT64_MAX); |
7dca8043 | 2417 | address_space_init(&address_space_memory, system_memory, "memory"); |
309cb471 | 2418 | |
7267c094 | 2419 | system_io = g_malloc(sizeof(*system_io)); |
3bb28b72 JK |
2420 | memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", |
2421 | 65536); | |
7dca8043 | 2422 | address_space_init(&address_space_io, system_io, "I/O"); |
62152b8a AK |
2423 | } |
2424 | ||
2425 | MemoryRegion *get_system_memory(void) | |
2426 | { | |
2427 | return system_memory; | |
2428 | } | |
2429 | ||
309cb471 AK |
2430 | MemoryRegion *get_system_io(void) |
2431 | { | |
2432 | return system_io; | |
2433 | } | |
2434 | ||
e2eef170 PB |
2435 | #endif /* !defined(CONFIG_USER_ONLY) */ |
2436 | ||
13eb76e0 FB |
2437 | /* physical memory access (slow version, mainly for debug) */ |
2438 | #if defined(CONFIG_USER_ONLY) | |
f17ec444 | 2439 | int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, |
a68fe89c | 2440 | uint8_t *buf, int len, int is_write) |
13eb76e0 FB |
2441 | { |
2442 | int l, flags; | |
2443 | target_ulong page; | |
53a5960a | 2444 | void * p; |
13eb76e0 FB |
2445 | |
2446 | while (len > 0) { | |
2447 | page = addr & TARGET_PAGE_MASK; | |
2448 | l = (page + TARGET_PAGE_SIZE) - addr; | |
2449 | if (l > len) | |
2450 | l = len; | |
2451 | flags = page_get_flags(page); | |
2452 | if (!(flags & PAGE_VALID)) | |
a68fe89c | 2453 | return -1; |
13eb76e0 FB |
2454 | if (is_write) { |
2455 | if (!(flags & PAGE_WRITE)) | |
a68fe89c | 2456 | return -1; |
579a97f7 | 2457 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 2458 | if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) |
a68fe89c | 2459 | return -1; |
72fb7daa AJ |
2460 | memcpy(p, buf, l); |
2461 | unlock_user(p, addr, l); | |
13eb76e0 FB |
2462 | } else { |
2463 | if (!(flags & PAGE_READ)) | |
a68fe89c | 2464 | return -1; |
579a97f7 | 2465 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 2466 | if (!(p = lock_user(VERIFY_READ, addr, l, 1))) |
a68fe89c | 2467 | return -1; |
72fb7daa | 2468 | memcpy(buf, p, l); |
5b257578 | 2469 | unlock_user(p, addr, 0); |
13eb76e0 FB |
2470 | } |
2471 | len -= l; | |
2472 | buf += l; | |
2473 | addr += l; | |
2474 | } | |
a68fe89c | 2475 | return 0; |
13eb76e0 | 2476 | } |
8df1cd07 | 2477 | |
13eb76e0 | 2478 | #else |
51d7a9eb | 2479 | |
845b6214 | 2480 | static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, |
a8170e5e | 2481 | hwaddr length) |
51d7a9eb | 2482 | { |
e87f7778 | 2483 | uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr); |
0878d0e1 PB |
2484 | addr += memory_region_get_ram_addr(mr); |
2485 | ||
e87f7778 PB |
2486 | /* No early return if dirty_log_mask is or becomes 0, because |
2487 | * cpu_physical_memory_set_dirty_range will still call | |
2488 | * xen_modified_memory. | |
2489 | */ | |
2490 | if (dirty_log_mask) { | |
2491 | dirty_log_mask = | |
2492 | cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask); | |
2493 | } | |
2494 | if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) { | |
2495 | tb_invalidate_phys_range(addr, addr + length); | |
2496 | dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); | |
51d7a9eb | 2497 | } |
e87f7778 | 2498 | cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask); |
51d7a9eb AP |
2499 | } |
2500 | ||
23326164 | 2501 | static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) |
82f2563f | 2502 | { |
e1622f4b | 2503 | unsigned access_size_max = mr->ops->valid.max_access_size; |
23326164 RH |
2504 | |
2505 | /* Regions are assumed to support 1-4 byte accesses unless | |
2506 | otherwise specified. */ | |
23326164 RH |
2507 | if (access_size_max == 0) { |
2508 | access_size_max = 4; | |
2509 | } | |
2510 | ||
2511 | /* Bound the maximum access by the alignment of the address. */ | |
2512 | if (!mr->ops->impl.unaligned) { | |
2513 | unsigned align_size_max = addr & -addr; | |
2514 | if (align_size_max != 0 && align_size_max < access_size_max) { | |
2515 | access_size_max = align_size_max; | |
2516 | } | |
82f2563f | 2517 | } |
23326164 RH |
2518 | |
2519 | /* Don't attempt accesses larger than the maximum. */ | |
2520 | if (l > access_size_max) { | |
2521 | l = access_size_max; | |
82f2563f | 2522 | } |
6554f5c0 | 2523 | l = pow2floor(l); |
23326164 RH |
2524 | |
2525 | return l; | |
82f2563f PB |
2526 | } |
2527 | ||
4840f10e | 2528 | static bool prepare_mmio_access(MemoryRegion *mr) |
125b3806 | 2529 | { |
4840f10e JK |
2530 | bool unlocked = !qemu_mutex_iothread_locked(); |
2531 | bool release_lock = false; | |
2532 | ||
2533 | if (unlocked && mr->global_locking) { | |
2534 | qemu_mutex_lock_iothread(); | |
2535 | unlocked = false; | |
2536 | release_lock = true; | |
2537 | } | |
125b3806 | 2538 | if (mr->flush_coalesced_mmio) { |
4840f10e JK |
2539 | if (unlocked) { |
2540 | qemu_mutex_lock_iothread(); | |
2541 | } | |
125b3806 | 2542 | qemu_flush_coalesced_mmio_buffer(); |
4840f10e JK |
2543 | if (unlocked) { |
2544 | qemu_mutex_unlock_iothread(); | |
2545 | } | |
125b3806 | 2546 | } |
4840f10e JK |
2547 | |
2548 | return release_lock; | |
125b3806 PB |
2549 | } |
2550 | ||
a203ac70 PB |
2551 | /* Called within RCU critical section. */ |
2552 | static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr, | |
2553 | MemTxAttrs attrs, | |
2554 | const uint8_t *buf, | |
2555 | int len, hwaddr addr1, | |
2556 | hwaddr l, MemoryRegion *mr) | |
13eb76e0 | 2557 | { |
13eb76e0 | 2558 | uint8_t *ptr; |
791af8c8 | 2559 | uint64_t val; |
3b643495 | 2560 | MemTxResult result = MEMTX_OK; |
4840f10e | 2561 | bool release_lock = false; |
3b46e624 | 2562 | |
a203ac70 | 2563 | for (;;) { |
eb7eeb88 PB |
2564 | if (!memory_access_is_direct(mr, true)) { |
2565 | release_lock |= prepare_mmio_access(mr); | |
2566 | l = memory_access_size(mr, l, addr1); | |
2567 | /* XXX: could force current_cpu to NULL to avoid | |
2568 | potential bugs */ | |
2569 | switch (l) { | |
2570 | case 8: | |
2571 | /* 64 bit write access */ | |
2572 | val = ldq_p(buf); | |
2573 | result |= memory_region_dispatch_write(mr, addr1, val, 8, | |
2574 | attrs); | |
2575 | break; | |
2576 | case 4: | |
2577 | /* 32 bit write access */ | |
2578 | val = ldl_p(buf); | |
2579 | result |= memory_region_dispatch_write(mr, addr1, val, 4, | |
2580 | attrs); | |
2581 | break; | |
2582 | case 2: | |
2583 | /* 16 bit write access */ | |
2584 | val = lduw_p(buf); | |
2585 | result |= memory_region_dispatch_write(mr, addr1, val, 2, | |
2586 | attrs); | |
2587 | break; | |
2588 | case 1: | |
2589 | /* 8 bit write access */ | |
2590 | val = ldub_p(buf); | |
2591 | result |= memory_region_dispatch_write(mr, addr1, val, 1, | |
2592 | attrs); | |
2593 | break; | |
2594 | default: | |
2595 | abort(); | |
13eb76e0 FB |
2596 | } |
2597 | } else { | |
eb7eeb88 | 2598 | /* RAM case */ |
0878d0e1 | 2599 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
eb7eeb88 PB |
2600 | memcpy(ptr, buf, l); |
2601 | invalidate_and_set_dirty(mr, addr1, l); | |
13eb76e0 | 2602 | } |
4840f10e JK |
2603 | |
2604 | if (release_lock) { | |
2605 | qemu_mutex_unlock_iothread(); | |
2606 | release_lock = false; | |
2607 | } | |
2608 | ||
13eb76e0 FB |
2609 | len -= l; |
2610 | buf += l; | |
2611 | addr += l; | |
a203ac70 PB |
2612 | |
2613 | if (!len) { | |
2614 | break; | |
2615 | } | |
2616 | ||
2617 | l = len; | |
2618 | mr = address_space_translate(as, addr, &addr1, &l, true); | |
13eb76e0 | 2619 | } |
fd8aaa76 | 2620 | |
3b643495 | 2621 | return result; |
13eb76e0 | 2622 | } |
8df1cd07 | 2623 | |
a203ac70 PB |
2624 | MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, |
2625 | const uint8_t *buf, int len) | |
ac1970fb | 2626 | { |
eb7eeb88 | 2627 | hwaddr l; |
eb7eeb88 PB |
2628 | hwaddr addr1; |
2629 | MemoryRegion *mr; | |
2630 | MemTxResult result = MEMTX_OK; | |
eb7eeb88 | 2631 | |
a203ac70 PB |
2632 | if (len > 0) { |
2633 | rcu_read_lock(); | |
eb7eeb88 | 2634 | l = len; |
a203ac70 PB |
2635 | mr = address_space_translate(as, addr, &addr1, &l, true); |
2636 | result = address_space_write_continue(as, addr, attrs, buf, len, | |
2637 | addr1, l, mr); | |
2638 | rcu_read_unlock(); | |
2639 | } | |
2640 | ||
2641 | return result; | |
2642 | } | |
2643 | ||
2644 | /* Called within RCU critical section. */ | |
2645 | MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr, | |
2646 | MemTxAttrs attrs, uint8_t *buf, | |
2647 | int len, hwaddr addr1, hwaddr l, | |
2648 | MemoryRegion *mr) | |
2649 | { | |
2650 | uint8_t *ptr; | |
2651 | uint64_t val; | |
2652 | MemTxResult result = MEMTX_OK; | |
2653 | bool release_lock = false; | |
eb7eeb88 | 2654 | |
a203ac70 | 2655 | for (;;) { |
eb7eeb88 PB |
2656 | if (!memory_access_is_direct(mr, false)) { |
2657 | /* I/O case */ | |
2658 | release_lock |= prepare_mmio_access(mr); | |
2659 | l = memory_access_size(mr, l, addr1); | |
2660 | switch (l) { | |
2661 | case 8: | |
2662 | /* 64 bit read access */ | |
2663 | result |= memory_region_dispatch_read(mr, addr1, &val, 8, | |
2664 | attrs); | |
2665 | stq_p(buf, val); | |
2666 | break; | |
2667 | case 4: | |
2668 | /* 32 bit read access */ | |
2669 | result |= memory_region_dispatch_read(mr, addr1, &val, 4, | |
2670 | attrs); | |
2671 | stl_p(buf, val); | |
2672 | break; | |
2673 | case 2: | |
2674 | /* 16 bit read access */ | |
2675 | result |= memory_region_dispatch_read(mr, addr1, &val, 2, | |
2676 | attrs); | |
2677 | stw_p(buf, val); | |
2678 | break; | |
2679 | case 1: | |
2680 | /* 8 bit read access */ | |
2681 | result |= memory_region_dispatch_read(mr, addr1, &val, 1, | |
2682 | attrs); | |
2683 | stb_p(buf, val); | |
2684 | break; | |
2685 | default: | |
2686 | abort(); | |
2687 | } | |
2688 | } else { | |
2689 | /* RAM case */ | |
0878d0e1 | 2690 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
eb7eeb88 PB |
2691 | memcpy(buf, ptr, l); |
2692 | } | |
2693 | ||
2694 | if (release_lock) { | |
2695 | qemu_mutex_unlock_iothread(); | |
2696 | release_lock = false; | |
2697 | } | |
2698 | ||
2699 | len -= l; | |
2700 | buf += l; | |
2701 | addr += l; | |
a203ac70 PB |
2702 | |
2703 | if (!len) { | |
2704 | break; | |
2705 | } | |
2706 | ||
2707 | l = len; | |
2708 | mr = address_space_translate(as, addr, &addr1, &l, false); | |
2709 | } | |
2710 | ||
2711 | return result; | |
2712 | } | |
2713 | ||
3cc8f884 PB |
2714 | MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, |
2715 | MemTxAttrs attrs, uint8_t *buf, int len) | |
a203ac70 PB |
2716 | { |
2717 | hwaddr l; | |
2718 | hwaddr addr1; | |
2719 | MemoryRegion *mr; | |
2720 | MemTxResult result = MEMTX_OK; | |
2721 | ||
2722 | if (len > 0) { | |
2723 | rcu_read_lock(); | |
2724 | l = len; | |
2725 | mr = address_space_translate(as, addr, &addr1, &l, false); | |
2726 | result = address_space_read_continue(as, addr, attrs, buf, len, | |
2727 | addr1, l, mr); | |
2728 | rcu_read_unlock(); | |
eb7eeb88 | 2729 | } |
eb7eeb88 PB |
2730 | |
2731 | return result; | |
ac1970fb AK |
2732 | } |
2733 | ||
eb7eeb88 PB |
2734 | MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, |
2735 | uint8_t *buf, int len, bool is_write) | |
2736 | { | |
2737 | if (is_write) { | |
2738 | return address_space_write(as, addr, attrs, (uint8_t *)buf, len); | |
2739 | } else { | |
2740 | return address_space_read(as, addr, attrs, (uint8_t *)buf, len); | |
2741 | } | |
2742 | } | |
ac1970fb | 2743 | |
a8170e5e | 2744 | void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf, |
ac1970fb AK |
2745 | int len, int is_write) |
2746 | { | |
5c9eb028 PM |
2747 | address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, |
2748 | buf, len, is_write); | |
ac1970fb AK |
2749 | } |
2750 | ||
582b55a9 AG |
2751 | enum write_rom_type { |
2752 | WRITE_DATA, | |
2753 | FLUSH_CACHE, | |
2754 | }; | |
2755 | ||
2a221651 | 2756 | static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as, |
582b55a9 | 2757 | hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type) |
d0ecd2aa | 2758 | { |
149f54b5 | 2759 | hwaddr l; |
d0ecd2aa | 2760 | uint8_t *ptr; |
149f54b5 | 2761 | hwaddr addr1; |
5c8a00ce | 2762 | MemoryRegion *mr; |
3b46e624 | 2763 | |
41063e1e | 2764 | rcu_read_lock(); |
d0ecd2aa | 2765 | while (len > 0) { |
149f54b5 | 2766 | l = len; |
2a221651 | 2767 | mr = address_space_translate(as, addr, &addr1, &l, true); |
3b46e624 | 2768 | |
5c8a00ce PB |
2769 | if (!(memory_region_is_ram(mr) || |
2770 | memory_region_is_romd(mr))) { | |
b242e0e0 | 2771 | l = memory_access_size(mr, l, addr1); |
d0ecd2aa | 2772 | } else { |
d0ecd2aa | 2773 | /* ROM/RAM case */ |
0878d0e1 | 2774 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
582b55a9 AG |
2775 | switch (type) { |
2776 | case WRITE_DATA: | |
2777 | memcpy(ptr, buf, l); | |
845b6214 | 2778 | invalidate_and_set_dirty(mr, addr1, l); |
582b55a9 AG |
2779 | break; |
2780 | case FLUSH_CACHE: | |
2781 | flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l); | |
2782 | break; | |
2783 | } | |
d0ecd2aa FB |
2784 | } |
2785 | len -= l; | |
2786 | buf += l; | |
2787 | addr += l; | |
2788 | } | |
41063e1e | 2789 | rcu_read_unlock(); |
d0ecd2aa FB |
2790 | } |
2791 | ||
582b55a9 | 2792 | /* used for ROM loading : can write in RAM and ROM */ |
2a221651 | 2793 | void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr, |
582b55a9 AG |
2794 | const uint8_t *buf, int len) |
2795 | { | |
2a221651 | 2796 | cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA); |
582b55a9 AG |
2797 | } |
2798 | ||
2799 | void cpu_flush_icache_range(hwaddr start, int len) | |
2800 | { | |
2801 | /* | |
2802 | * This function should do the same thing as an icache flush that was | |
2803 | * triggered from within the guest. For TCG we are always cache coherent, | |
2804 | * so there is no need to flush anything. For KVM / Xen we need to flush | |
2805 | * the host's instruction cache at least. | |
2806 | */ | |
2807 | if (tcg_enabled()) { | |
2808 | return; | |
2809 | } | |
2810 | ||
2a221651 EI |
2811 | cpu_physical_memory_write_rom_internal(&address_space_memory, |
2812 | start, NULL, len, FLUSH_CACHE); | |
582b55a9 AG |
2813 | } |
2814 | ||
6d16c2f8 | 2815 | typedef struct { |
d3e71559 | 2816 | MemoryRegion *mr; |
6d16c2f8 | 2817 | void *buffer; |
a8170e5e AK |
2818 | hwaddr addr; |
2819 | hwaddr len; | |
c2cba0ff | 2820 | bool in_use; |
6d16c2f8 AL |
2821 | } BounceBuffer; |
2822 | ||
2823 | static BounceBuffer bounce; | |
2824 | ||
ba223c29 | 2825 | typedef struct MapClient { |
e95205e1 | 2826 | QEMUBH *bh; |
72cf2d4f | 2827 | QLIST_ENTRY(MapClient) link; |
ba223c29 AL |
2828 | } MapClient; |
2829 | ||
38e047b5 | 2830 | QemuMutex map_client_list_lock; |
72cf2d4f BS |
2831 | static QLIST_HEAD(map_client_list, MapClient) map_client_list |
2832 | = QLIST_HEAD_INITIALIZER(map_client_list); | |
ba223c29 | 2833 | |
e95205e1 FZ |
2834 | static void cpu_unregister_map_client_do(MapClient *client) |
2835 | { | |
2836 | QLIST_REMOVE(client, link); | |
2837 | g_free(client); | |
2838 | } | |
2839 | ||
33b6c2ed FZ |
2840 | static void cpu_notify_map_clients_locked(void) |
2841 | { | |
2842 | MapClient *client; | |
2843 | ||
2844 | while (!QLIST_EMPTY(&map_client_list)) { | |
2845 | client = QLIST_FIRST(&map_client_list); | |
e95205e1 FZ |
2846 | qemu_bh_schedule(client->bh); |
2847 | cpu_unregister_map_client_do(client); | |
33b6c2ed FZ |
2848 | } |
2849 | } | |
2850 | ||
e95205e1 | 2851 | void cpu_register_map_client(QEMUBH *bh) |
ba223c29 | 2852 | { |
7267c094 | 2853 | MapClient *client = g_malloc(sizeof(*client)); |
ba223c29 | 2854 | |
38e047b5 | 2855 | qemu_mutex_lock(&map_client_list_lock); |
e95205e1 | 2856 | client->bh = bh; |
72cf2d4f | 2857 | QLIST_INSERT_HEAD(&map_client_list, client, link); |
33b6c2ed FZ |
2858 | if (!atomic_read(&bounce.in_use)) { |
2859 | cpu_notify_map_clients_locked(); | |
2860 | } | |
38e047b5 | 2861 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
2862 | } |
2863 | ||
38e047b5 | 2864 | void cpu_exec_init_all(void) |
ba223c29 | 2865 | { |
38e047b5 | 2866 | qemu_mutex_init(&ram_list.mutex); |
38e047b5 | 2867 | io_mem_init(); |
680a4783 | 2868 | memory_map_init(); |
38e047b5 | 2869 | qemu_mutex_init(&map_client_list_lock); |
ba223c29 AL |
2870 | } |
2871 | ||
e95205e1 | 2872 | void cpu_unregister_map_client(QEMUBH *bh) |
ba223c29 AL |
2873 | { |
2874 | MapClient *client; | |
2875 | ||
e95205e1 FZ |
2876 | qemu_mutex_lock(&map_client_list_lock); |
2877 | QLIST_FOREACH(client, &map_client_list, link) { | |
2878 | if (client->bh == bh) { | |
2879 | cpu_unregister_map_client_do(client); | |
2880 | break; | |
2881 | } | |
ba223c29 | 2882 | } |
e95205e1 | 2883 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
2884 | } |
2885 | ||
2886 | static void cpu_notify_map_clients(void) | |
2887 | { | |
38e047b5 | 2888 | qemu_mutex_lock(&map_client_list_lock); |
33b6c2ed | 2889 | cpu_notify_map_clients_locked(); |
38e047b5 | 2890 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
2891 | } |
2892 | ||
51644ab7 PB |
2893 | bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write) |
2894 | { | |
5c8a00ce | 2895 | MemoryRegion *mr; |
51644ab7 PB |
2896 | hwaddr l, xlat; |
2897 | ||
41063e1e | 2898 | rcu_read_lock(); |
51644ab7 PB |
2899 | while (len > 0) { |
2900 | l = len; | |
5c8a00ce PB |
2901 | mr = address_space_translate(as, addr, &xlat, &l, is_write); |
2902 | if (!memory_access_is_direct(mr, is_write)) { | |
2903 | l = memory_access_size(mr, l, addr); | |
2904 | if (!memory_region_access_valid(mr, xlat, l, is_write)) { | |
51644ab7 PB |
2905 | return false; |
2906 | } | |
2907 | } | |
2908 | ||
2909 | len -= l; | |
2910 | addr += l; | |
2911 | } | |
41063e1e | 2912 | rcu_read_unlock(); |
51644ab7 PB |
2913 | return true; |
2914 | } | |
2915 | ||
6d16c2f8 AL |
2916 | /* Map a physical memory region into a host virtual address. |
2917 | * May map a subset of the requested range, given by and returned in *plen. | |
2918 | * May return NULL if resources needed to perform the mapping are exhausted. | |
2919 | * Use only for reads OR writes - not for read-modify-write operations. | |
ba223c29 AL |
2920 | * Use cpu_register_map_client() to know when retrying the map operation is |
2921 | * likely to succeed. | |
6d16c2f8 | 2922 | */ |
ac1970fb | 2923 | void *address_space_map(AddressSpace *as, |
a8170e5e AK |
2924 | hwaddr addr, |
2925 | hwaddr *plen, | |
ac1970fb | 2926 | bool is_write) |
6d16c2f8 | 2927 | { |
a8170e5e | 2928 | hwaddr len = *plen; |
e3127ae0 PB |
2929 | hwaddr done = 0; |
2930 | hwaddr l, xlat, base; | |
2931 | MemoryRegion *mr, *this_mr; | |
e81bcda5 | 2932 | void *ptr; |
6d16c2f8 | 2933 | |
e3127ae0 PB |
2934 | if (len == 0) { |
2935 | return NULL; | |
2936 | } | |
38bee5dc | 2937 | |
e3127ae0 | 2938 | l = len; |
41063e1e | 2939 | rcu_read_lock(); |
e3127ae0 | 2940 | mr = address_space_translate(as, addr, &xlat, &l, is_write); |
41063e1e | 2941 | |
e3127ae0 | 2942 | if (!memory_access_is_direct(mr, is_write)) { |
c2cba0ff | 2943 | if (atomic_xchg(&bounce.in_use, true)) { |
41063e1e | 2944 | rcu_read_unlock(); |
e3127ae0 | 2945 | return NULL; |
6d16c2f8 | 2946 | } |
e85d9db5 KW |
2947 | /* Avoid unbounded allocations */ |
2948 | l = MIN(l, TARGET_PAGE_SIZE); | |
2949 | bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l); | |
e3127ae0 PB |
2950 | bounce.addr = addr; |
2951 | bounce.len = l; | |
d3e71559 PB |
2952 | |
2953 | memory_region_ref(mr); | |
2954 | bounce.mr = mr; | |
e3127ae0 | 2955 | if (!is_write) { |
5c9eb028 PM |
2956 | address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED, |
2957 | bounce.buffer, l); | |
8ab934f9 | 2958 | } |
6d16c2f8 | 2959 | |
41063e1e | 2960 | rcu_read_unlock(); |
e3127ae0 PB |
2961 | *plen = l; |
2962 | return bounce.buffer; | |
2963 | } | |
2964 | ||
2965 | base = xlat; | |
e3127ae0 PB |
2966 | |
2967 | for (;;) { | |
6d16c2f8 AL |
2968 | len -= l; |
2969 | addr += l; | |
e3127ae0 PB |
2970 | done += l; |
2971 | if (len == 0) { | |
2972 | break; | |
2973 | } | |
2974 | ||
2975 | l = len; | |
2976 | this_mr = address_space_translate(as, addr, &xlat, &l, is_write); | |
2977 | if (this_mr != mr || xlat != base + done) { | |
2978 | break; | |
2979 | } | |
6d16c2f8 | 2980 | } |
e3127ae0 | 2981 | |
d3e71559 | 2982 | memory_region_ref(mr); |
e3127ae0 | 2983 | *plen = done; |
0878d0e1 | 2984 | ptr = qemu_ram_ptr_length(mr->ram_block, base, plen); |
e81bcda5 PB |
2985 | rcu_read_unlock(); |
2986 | ||
2987 | return ptr; | |
6d16c2f8 AL |
2988 | } |
2989 | ||
ac1970fb | 2990 | /* Unmaps a memory region previously mapped by address_space_map(). |
6d16c2f8 AL |
2991 | * Will also mark the memory as dirty if is_write == 1. access_len gives |
2992 | * the amount of memory that was actually read or written by the caller. | |
2993 | */ | |
a8170e5e AK |
2994 | void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, |
2995 | int is_write, hwaddr access_len) | |
6d16c2f8 AL |
2996 | { |
2997 | if (buffer != bounce.buffer) { | |
d3e71559 PB |
2998 | MemoryRegion *mr; |
2999 | ram_addr_t addr1; | |
3000 | ||
07bdaa41 | 3001 | mr = memory_region_from_host(buffer, &addr1); |
d3e71559 | 3002 | assert(mr != NULL); |
6d16c2f8 | 3003 | if (is_write) { |
845b6214 | 3004 | invalidate_and_set_dirty(mr, addr1, access_len); |
6d16c2f8 | 3005 | } |
868bb33f | 3006 | if (xen_enabled()) { |
e41d7c69 | 3007 | xen_invalidate_map_cache_entry(buffer); |
050a0ddf | 3008 | } |
d3e71559 | 3009 | memory_region_unref(mr); |
6d16c2f8 AL |
3010 | return; |
3011 | } | |
3012 | if (is_write) { | |
5c9eb028 PM |
3013 | address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED, |
3014 | bounce.buffer, access_len); | |
6d16c2f8 | 3015 | } |
f8a83245 | 3016 | qemu_vfree(bounce.buffer); |
6d16c2f8 | 3017 | bounce.buffer = NULL; |
d3e71559 | 3018 | memory_region_unref(bounce.mr); |
c2cba0ff | 3019 | atomic_mb_set(&bounce.in_use, false); |
ba223c29 | 3020 | cpu_notify_map_clients(); |
6d16c2f8 | 3021 | } |
d0ecd2aa | 3022 | |
a8170e5e AK |
3023 | void *cpu_physical_memory_map(hwaddr addr, |
3024 | hwaddr *plen, | |
ac1970fb AK |
3025 | int is_write) |
3026 | { | |
3027 | return address_space_map(&address_space_memory, addr, plen, is_write); | |
3028 | } | |
3029 | ||
a8170e5e AK |
3030 | void cpu_physical_memory_unmap(void *buffer, hwaddr len, |
3031 | int is_write, hwaddr access_len) | |
ac1970fb AK |
3032 | { |
3033 | return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); | |
3034 | } | |
3035 | ||
8df1cd07 | 3036 | /* warning: addr must be aligned */ |
50013115 PM |
3037 | static inline uint32_t address_space_ldl_internal(AddressSpace *as, hwaddr addr, |
3038 | MemTxAttrs attrs, | |
3039 | MemTxResult *result, | |
3040 | enum device_endian endian) | |
8df1cd07 | 3041 | { |
8df1cd07 | 3042 | uint8_t *ptr; |
791af8c8 | 3043 | uint64_t val; |
5c8a00ce | 3044 | MemoryRegion *mr; |
149f54b5 PB |
3045 | hwaddr l = 4; |
3046 | hwaddr addr1; | |
50013115 | 3047 | MemTxResult r; |
4840f10e | 3048 | bool release_lock = false; |
8df1cd07 | 3049 | |
41063e1e | 3050 | rcu_read_lock(); |
fdfba1a2 | 3051 | mr = address_space_translate(as, addr, &addr1, &l, false); |
5c8a00ce | 3052 | if (l < 4 || !memory_access_is_direct(mr, false)) { |
4840f10e | 3053 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3054 | |
8df1cd07 | 3055 | /* I/O case */ |
50013115 | 3056 | r = memory_region_dispatch_read(mr, addr1, &val, 4, attrs); |
1e78bcc1 AG |
3057 | #if defined(TARGET_WORDS_BIGENDIAN) |
3058 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3059 | val = bswap32(val); | |
3060 | } | |
3061 | #else | |
3062 | if (endian == DEVICE_BIG_ENDIAN) { | |
3063 | val = bswap32(val); | |
3064 | } | |
3065 | #endif | |
8df1cd07 FB |
3066 | } else { |
3067 | /* RAM case */ | |
0878d0e1 | 3068 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
1e78bcc1 AG |
3069 | switch (endian) { |
3070 | case DEVICE_LITTLE_ENDIAN: | |
3071 | val = ldl_le_p(ptr); | |
3072 | break; | |
3073 | case DEVICE_BIG_ENDIAN: | |
3074 | val = ldl_be_p(ptr); | |
3075 | break; | |
3076 | default: | |
3077 | val = ldl_p(ptr); | |
3078 | break; | |
3079 | } | |
50013115 PM |
3080 | r = MEMTX_OK; |
3081 | } | |
3082 | if (result) { | |
3083 | *result = r; | |
8df1cd07 | 3084 | } |
4840f10e JK |
3085 | if (release_lock) { |
3086 | qemu_mutex_unlock_iothread(); | |
3087 | } | |
41063e1e | 3088 | rcu_read_unlock(); |
8df1cd07 FB |
3089 | return val; |
3090 | } | |
3091 | ||
50013115 PM |
3092 | uint32_t address_space_ldl(AddressSpace *as, hwaddr addr, |
3093 | MemTxAttrs attrs, MemTxResult *result) | |
3094 | { | |
3095 | return address_space_ldl_internal(as, addr, attrs, result, | |
3096 | DEVICE_NATIVE_ENDIAN); | |
3097 | } | |
3098 | ||
3099 | uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr, | |
3100 | MemTxAttrs attrs, MemTxResult *result) | |
3101 | { | |
3102 | return address_space_ldl_internal(as, addr, attrs, result, | |
3103 | DEVICE_LITTLE_ENDIAN); | |
3104 | } | |
3105 | ||
3106 | uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr, | |
3107 | MemTxAttrs attrs, MemTxResult *result) | |
3108 | { | |
3109 | return address_space_ldl_internal(as, addr, attrs, result, | |
3110 | DEVICE_BIG_ENDIAN); | |
3111 | } | |
3112 | ||
fdfba1a2 | 3113 | uint32_t ldl_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3114 | { |
50013115 | 3115 | return address_space_ldl(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3116 | } |
3117 | ||
fdfba1a2 | 3118 | uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3119 | { |
50013115 | 3120 | return address_space_ldl_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3121 | } |
3122 | ||
fdfba1a2 | 3123 | uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3124 | { |
50013115 | 3125 | return address_space_ldl_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3126 | } |
3127 | ||
84b7b8e7 | 3128 | /* warning: addr must be aligned */ |
50013115 PM |
3129 | static inline uint64_t address_space_ldq_internal(AddressSpace *as, hwaddr addr, |
3130 | MemTxAttrs attrs, | |
3131 | MemTxResult *result, | |
3132 | enum device_endian endian) | |
84b7b8e7 | 3133 | { |
84b7b8e7 FB |
3134 | uint8_t *ptr; |
3135 | uint64_t val; | |
5c8a00ce | 3136 | MemoryRegion *mr; |
149f54b5 PB |
3137 | hwaddr l = 8; |
3138 | hwaddr addr1; | |
50013115 | 3139 | MemTxResult r; |
4840f10e | 3140 | bool release_lock = false; |
84b7b8e7 | 3141 | |
41063e1e | 3142 | rcu_read_lock(); |
2c17449b | 3143 | mr = address_space_translate(as, addr, &addr1, &l, |
5c8a00ce PB |
3144 | false); |
3145 | if (l < 8 || !memory_access_is_direct(mr, false)) { | |
4840f10e | 3146 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3147 | |
84b7b8e7 | 3148 | /* I/O case */ |
50013115 | 3149 | r = memory_region_dispatch_read(mr, addr1, &val, 8, attrs); |
968a5627 PB |
3150 | #if defined(TARGET_WORDS_BIGENDIAN) |
3151 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3152 | val = bswap64(val); | |
3153 | } | |
3154 | #else | |
3155 | if (endian == DEVICE_BIG_ENDIAN) { | |
3156 | val = bswap64(val); | |
3157 | } | |
84b7b8e7 FB |
3158 | #endif |
3159 | } else { | |
3160 | /* RAM case */ | |
0878d0e1 | 3161 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
1e78bcc1 AG |
3162 | switch (endian) { |
3163 | case DEVICE_LITTLE_ENDIAN: | |
3164 | val = ldq_le_p(ptr); | |
3165 | break; | |
3166 | case DEVICE_BIG_ENDIAN: | |
3167 | val = ldq_be_p(ptr); | |
3168 | break; | |
3169 | default: | |
3170 | val = ldq_p(ptr); | |
3171 | break; | |
3172 | } | |
50013115 PM |
3173 | r = MEMTX_OK; |
3174 | } | |
3175 | if (result) { | |
3176 | *result = r; | |
84b7b8e7 | 3177 | } |
4840f10e JK |
3178 | if (release_lock) { |
3179 | qemu_mutex_unlock_iothread(); | |
3180 | } | |
41063e1e | 3181 | rcu_read_unlock(); |
84b7b8e7 FB |
3182 | return val; |
3183 | } | |
3184 | ||
50013115 PM |
3185 | uint64_t address_space_ldq(AddressSpace *as, hwaddr addr, |
3186 | MemTxAttrs attrs, MemTxResult *result) | |
3187 | { | |
3188 | return address_space_ldq_internal(as, addr, attrs, result, | |
3189 | DEVICE_NATIVE_ENDIAN); | |
3190 | } | |
3191 | ||
3192 | uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr, | |
3193 | MemTxAttrs attrs, MemTxResult *result) | |
3194 | { | |
3195 | return address_space_ldq_internal(as, addr, attrs, result, | |
3196 | DEVICE_LITTLE_ENDIAN); | |
3197 | } | |
3198 | ||
3199 | uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr, | |
3200 | MemTxAttrs attrs, MemTxResult *result) | |
3201 | { | |
3202 | return address_space_ldq_internal(as, addr, attrs, result, | |
3203 | DEVICE_BIG_ENDIAN); | |
3204 | } | |
3205 | ||
2c17449b | 3206 | uint64_t ldq_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3207 | { |
50013115 | 3208 | return address_space_ldq(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3209 | } |
3210 | ||
2c17449b | 3211 | uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3212 | { |
50013115 | 3213 | return address_space_ldq_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3214 | } |
3215 | ||
2c17449b | 3216 | uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3217 | { |
50013115 | 3218 | return address_space_ldq_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3219 | } |
3220 | ||
aab33094 | 3221 | /* XXX: optimize */ |
50013115 PM |
3222 | uint32_t address_space_ldub(AddressSpace *as, hwaddr addr, |
3223 | MemTxAttrs attrs, MemTxResult *result) | |
aab33094 FB |
3224 | { |
3225 | uint8_t val; | |
50013115 PM |
3226 | MemTxResult r; |
3227 | ||
3228 | r = address_space_rw(as, addr, attrs, &val, 1, 0); | |
3229 | if (result) { | |
3230 | *result = r; | |
3231 | } | |
aab33094 FB |
3232 | return val; |
3233 | } | |
3234 | ||
50013115 PM |
3235 | uint32_t ldub_phys(AddressSpace *as, hwaddr addr) |
3236 | { | |
3237 | return address_space_ldub(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); | |
3238 | } | |
3239 | ||
733f0b02 | 3240 | /* warning: addr must be aligned */ |
50013115 PM |
3241 | static inline uint32_t address_space_lduw_internal(AddressSpace *as, |
3242 | hwaddr addr, | |
3243 | MemTxAttrs attrs, | |
3244 | MemTxResult *result, | |
3245 | enum device_endian endian) | |
aab33094 | 3246 | { |
733f0b02 MT |
3247 | uint8_t *ptr; |
3248 | uint64_t val; | |
5c8a00ce | 3249 | MemoryRegion *mr; |
149f54b5 PB |
3250 | hwaddr l = 2; |
3251 | hwaddr addr1; | |
50013115 | 3252 | MemTxResult r; |
4840f10e | 3253 | bool release_lock = false; |
733f0b02 | 3254 | |
41063e1e | 3255 | rcu_read_lock(); |
41701aa4 | 3256 | mr = address_space_translate(as, addr, &addr1, &l, |
5c8a00ce PB |
3257 | false); |
3258 | if (l < 2 || !memory_access_is_direct(mr, false)) { | |
4840f10e | 3259 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3260 | |
733f0b02 | 3261 | /* I/O case */ |
50013115 | 3262 | r = memory_region_dispatch_read(mr, addr1, &val, 2, attrs); |
1e78bcc1 AG |
3263 | #if defined(TARGET_WORDS_BIGENDIAN) |
3264 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3265 | val = bswap16(val); | |
3266 | } | |
3267 | #else | |
3268 | if (endian == DEVICE_BIG_ENDIAN) { | |
3269 | val = bswap16(val); | |
3270 | } | |
3271 | #endif | |
733f0b02 MT |
3272 | } else { |
3273 | /* RAM case */ | |
0878d0e1 | 3274 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
1e78bcc1 AG |
3275 | switch (endian) { |
3276 | case DEVICE_LITTLE_ENDIAN: | |
3277 | val = lduw_le_p(ptr); | |
3278 | break; | |
3279 | case DEVICE_BIG_ENDIAN: | |
3280 | val = lduw_be_p(ptr); | |
3281 | break; | |
3282 | default: | |
3283 | val = lduw_p(ptr); | |
3284 | break; | |
3285 | } | |
50013115 PM |
3286 | r = MEMTX_OK; |
3287 | } | |
3288 | if (result) { | |
3289 | *result = r; | |
733f0b02 | 3290 | } |
4840f10e JK |
3291 | if (release_lock) { |
3292 | qemu_mutex_unlock_iothread(); | |
3293 | } | |
41063e1e | 3294 | rcu_read_unlock(); |
733f0b02 | 3295 | return val; |
aab33094 FB |
3296 | } |
3297 | ||
50013115 PM |
3298 | uint32_t address_space_lduw(AddressSpace *as, hwaddr addr, |
3299 | MemTxAttrs attrs, MemTxResult *result) | |
3300 | { | |
3301 | return address_space_lduw_internal(as, addr, attrs, result, | |
3302 | DEVICE_NATIVE_ENDIAN); | |
3303 | } | |
3304 | ||
3305 | uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr, | |
3306 | MemTxAttrs attrs, MemTxResult *result) | |
3307 | { | |
3308 | return address_space_lduw_internal(as, addr, attrs, result, | |
3309 | DEVICE_LITTLE_ENDIAN); | |
3310 | } | |
3311 | ||
3312 | uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr, | |
3313 | MemTxAttrs attrs, MemTxResult *result) | |
3314 | { | |
3315 | return address_space_lduw_internal(as, addr, attrs, result, | |
3316 | DEVICE_BIG_ENDIAN); | |
3317 | } | |
3318 | ||
41701aa4 | 3319 | uint32_t lduw_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3320 | { |
50013115 | 3321 | return address_space_lduw(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3322 | } |
3323 | ||
41701aa4 | 3324 | uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3325 | { |
50013115 | 3326 | return address_space_lduw_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3327 | } |
3328 | ||
41701aa4 | 3329 | uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3330 | { |
50013115 | 3331 | return address_space_lduw_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3332 | } |
3333 | ||
8df1cd07 FB |
3334 | /* warning: addr must be aligned. The ram page is not masked as dirty |
3335 | and the code inside is not invalidated. It is useful if the dirty | |
3336 | bits are used to track modified PTEs */ | |
50013115 PM |
3337 | void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val, |
3338 | MemTxAttrs attrs, MemTxResult *result) | |
8df1cd07 | 3339 | { |
8df1cd07 | 3340 | uint8_t *ptr; |
5c8a00ce | 3341 | MemoryRegion *mr; |
149f54b5 PB |
3342 | hwaddr l = 4; |
3343 | hwaddr addr1; | |
50013115 | 3344 | MemTxResult r; |
845b6214 | 3345 | uint8_t dirty_log_mask; |
4840f10e | 3346 | bool release_lock = false; |
8df1cd07 | 3347 | |
41063e1e | 3348 | rcu_read_lock(); |
2198a121 | 3349 | mr = address_space_translate(as, addr, &addr1, &l, |
5c8a00ce PB |
3350 | true); |
3351 | if (l < 4 || !memory_access_is_direct(mr, true)) { | |
4840f10e | 3352 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3353 | |
50013115 | 3354 | r = memory_region_dispatch_write(mr, addr1, val, 4, attrs); |
8df1cd07 | 3355 | } else { |
0878d0e1 | 3356 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
8df1cd07 | 3357 | stl_p(ptr, val); |
74576198 | 3358 | |
845b6214 PB |
3359 | dirty_log_mask = memory_region_get_dirty_log_mask(mr); |
3360 | dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); | |
0878d0e1 PB |
3361 | cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr, |
3362 | 4, dirty_log_mask); | |
50013115 PM |
3363 | r = MEMTX_OK; |
3364 | } | |
3365 | if (result) { | |
3366 | *result = r; | |
8df1cd07 | 3367 | } |
4840f10e JK |
3368 | if (release_lock) { |
3369 | qemu_mutex_unlock_iothread(); | |
3370 | } | |
41063e1e | 3371 | rcu_read_unlock(); |
8df1cd07 FB |
3372 | } |
3373 | ||
50013115 PM |
3374 | void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val) |
3375 | { | |
3376 | address_space_stl_notdirty(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
3377 | } | |
3378 | ||
8df1cd07 | 3379 | /* warning: addr must be aligned */ |
50013115 PM |
3380 | static inline void address_space_stl_internal(AddressSpace *as, |
3381 | hwaddr addr, uint32_t val, | |
3382 | MemTxAttrs attrs, | |
3383 | MemTxResult *result, | |
3384 | enum device_endian endian) | |
8df1cd07 | 3385 | { |
8df1cd07 | 3386 | uint8_t *ptr; |
5c8a00ce | 3387 | MemoryRegion *mr; |
149f54b5 PB |
3388 | hwaddr l = 4; |
3389 | hwaddr addr1; | |
50013115 | 3390 | MemTxResult r; |
4840f10e | 3391 | bool release_lock = false; |
8df1cd07 | 3392 | |
41063e1e | 3393 | rcu_read_lock(); |
ab1da857 | 3394 | mr = address_space_translate(as, addr, &addr1, &l, |
5c8a00ce PB |
3395 | true); |
3396 | if (l < 4 || !memory_access_is_direct(mr, true)) { | |
4840f10e | 3397 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3398 | |
1e78bcc1 AG |
3399 | #if defined(TARGET_WORDS_BIGENDIAN) |
3400 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3401 | val = bswap32(val); | |
3402 | } | |
3403 | #else | |
3404 | if (endian == DEVICE_BIG_ENDIAN) { | |
3405 | val = bswap32(val); | |
3406 | } | |
3407 | #endif | |
50013115 | 3408 | r = memory_region_dispatch_write(mr, addr1, val, 4, attrs); |
8df1cd07 | 3409 | } else { |
8df1cd07 | 3410 | /* RAM case */ |
0878d0e1 | 3411 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
1e78bcc1 AG |
3412 | switch (endian) { |
3413 | case DEVICE_LITTLE_ENDIAN: | |
3414 | stl_le_p(ptr, val); | |
3415 | break; | |
3416 | case DEVICE_BIG_ENDIAN: | |
3417 | stl_be_p(ptr, val); | |
3418 | break; | |
3419 | default: | |
3420 | stl_p(ptr, val); | |
3421 | break; | |
3422 | } | |
845b6214 | 3423 | invalidate_and_set_dirty(mr, addr1, 4); |
50013115 PM |
3424 | r = MEMTX_OK; |
3425 | } | |
3426 | if (result) { | |
3427 | *result = r; | |
8df1cd07 | 3428 | } |
4840f10e JK |
3429 | if (release_lock) { |
3430 | qemu_mutex_unlock_iothread(); | |
3431 | } | |
41063e1e | 3432 | rcu_read_unlock(); |
8df1cd07 FB |
3433 | } |
3434 | ||
50013115 PM |
3435 | void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val, |
3436 | MemTxAttrs attrs, MemTxResult *result) | |
3437 | { | |
3438 | address_space_stl_internal(as, addr, val, attrs, result, | |
3439 | DEVICE_NATIVE_ENDIAN); | |
3440 | } | |
3441 | ||
3442 | void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val, | |
3443 | MemTxAttrs attrs, MemTxResult *result) | |
3444 | { | |
3445 | address_space_stl_internal(as, addr, val, attrs, result, | |
3446 | DEVICE_LITTLE_ENDIAN); | |
3447 | } | |
3448 | ||
3449 | void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val, | |
3450 | MemTxAttrs attrs, MemTxResult *result) | |
3451 | { | |
3452 | address_space_stl_internal(as, addr, val, attrs, result, | |
3453 | DEVICE_BIG_ENDIAN); | |
3454 | } | |
3455 | ||
ab1da857 | 3456 | void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3457 | { |
50013115 | 3458 | address_space_stl(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3459 | } |
3460 | ||
ab1da857 | 3461 | void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3462 | { |
50013115 | 3463 | address_space_stl_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3464 | } |
3465 | ||
ab1da857 | 3466 | void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3467 | { |
50013115 | 3468 | address_space_stl_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3469 | } |
3470 | ||
aab33094 | 3471 | /* XXX: optimize */ |
50013115 PM |
3472 | void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val, |
3473 | MemTxAttrs attrs, MemTxResult *result) | |
aab33094 FB |
3474 | { |
3475 | uint8_t v = val; | |
50013115 PM |
3476 | MemTxResult r; |
3477 | ||
3478 | r = address_space_rw(as, addr, attrs, &v, 1, 1); | |
3479 | if (result) { | |
3480 | *result = r; | |
3481 | } | |
3482 | } | |
3483 | ||
3484 | void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val) | |
3485 | { | |
3486 | address_space_stb(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
aab33094 FB |
3487 | } |
3488 | ||
733f0b02 | 3489 | /* warning: addr must be aligned */ |
50013115 PM |
3490 | static inline void address_space_stw_internal(AddressSpace *as, |
3491 | hwaddr addr, uint32_t val, | |
3492 | MemTxAttrs attrs, | |
3493 | MemTxResult *result, | |
3494 | enum device_endian endian) | |
aab33094 | 3495 | { |
733f0b02 | 3496 | uint8_t *ptr; |
5c8a00ce | 3497 | MemoryRegion *mr; |
149f54b5 PB |
3498 | hwaddr l = 2; |
3499 | hwaddr addr1; | |
50013115 | 3500 | MemTxResult r; |
4840f10e | 3501 | bool release_lock = false; |
733f0b02 | 3502 | |
41063e1e | 3503 | rcu_read_lock(); |
5ce5944d | 3504 | mr = address_space_translate(as, addr, &addr1, &l, true); |
5c8a00ce | 3505 | if (l < 2 || !memory_access_is_direct(mr, true)) { |
4840f10e | 3506 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3507 | |
1e78bcc1 AG |
3508 | #if defined(TARGET_WORDS_BIGENDIAN) |
3509 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3510 | val = bswap16(val); | |
3511 | } | |
3512 | #else | |
3513 | if (endian == DEVICE_BIG_ENDIAN) { | |
3514 | val = bswap16(val); | |
3515 | } | |
3516 | #endif | |
50013115 | 3517 | r = memory_region_dispatch_write(mr, addr1, val, 2, attrs); |
733f0b02 | 3518 | } else { |
733f0b02 | 3519 | /* RAM case */ |
0878d0e1 | 3520 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
1e78bcc1 AG |
3521 | switch (endian) { |
3522 | case DEVICE_LITTLE_ENDIAN: | |
3523 | stw_le_p(ptr, val); | |
3524 | break; | |
3525 | case DEVICE_BIG_ENDIAN: | |
3526 | stw_be_p(ptr, val); | |
3527 | break; | |
3528 | default: | |
3529 | stw_p(ptr, val); | |
3530 | break; | |
3531 | } | |
845b6214 | 3532 | invalidate_and_set_dirty(mr, addr1, 2); |
50013115 PM |
3533 | r = MEMTX_OK; |
3534 | } | |
3535 | if (result) { | |
3536 | *result = r; | |
733f0b02 | 3537 | } |
4840f10e JK |
3538 | if (release_lock) { |
3539 | qemu_mutex_unlock_iothread(); | |
3540 | } | |
41063e1e | 3541 | rcu_read_unlock(); |
aab33094 FB |
3542 | } |
3543 | ||
50013115 PM |
3544 | void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val, |
3545 | MemTxAttrs attrs, MemTxResult *result) | |
3546 | { | |
3547 | address_space_stw_internal(as, addr, val, attrs, result, | |
3548 | DEVICE_NATIVE_ENDIAN); | |
3549 | } | |
3550 | ||
3551 | void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val, | |
3552 | MemTxAttrs attrs, MemTxResult *result) | |
3553 | { | |
3554 | address_space_stw_internal(as, addr, val, attrs, result, | |
3555 | DEVICE_LITTLE_ENDIAN); | |
3556 | } | |
3557 | ||
3558 | void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val, | |
3559 | MemTxAttrs attrs, MemTxResult *result) | |
3560 | { | |
3561 | address_space_stw_internal(as, addr, val, attrs, result, | |
3562 | DEVICE_BIG_ENDIAN); | |
3563 | } | |
3564 | ||
5ce5944d | 3565 | void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3566 | { |
50013115 | 3567 | address_space_stw(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3568 | } |
3569 | ||
5ce5944d | 3570 | void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3571 | { |
50013115 | 3572 | address_space_stw_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3573 | } |
3574 | ||
5ce5944d | 3575 | void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3576 | { |
50013115 | 3577 | address_space_stw_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3578 | } |
3579 | ||
aab33094 | 3580 | /* XXX: optimize */ |
50013115 PM |
3581 | void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val, |
3582 | MemTxAttrs attrs, MemTxResult *result) | |
aab33094 | 3583 | { |
50013115 | 3584 | MemTxResult r; |
aab33094 | 3585 | val = tswap64(val); |
50013115 PM |
3586 | r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1); |
3587 | if (result) { | |
3588 | *result = r; | |
3589 | } | |
aab33094 FB |
3590 | } |
3591 | ||
50013115 PM |
3592 | void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val, |
3593 | MemTxAttrs attrs, MemTxResult *result) | |
1e78bcc1 | 3594 | { |
50013115 | 3595 | MemTxResult r; |
1e78bcc1 | 3596 | val = cpu_to_le64(val); |
50013115 PM |
3597 | r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1); |
3598 | if (result) { | |
3599 | *result = r; | |
3600 | } | |
3601 | } | |
3602 | void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val, | |
3603 | MemTxAttrs attrs, MemTxResult *result) | |
3604 | { | |
3605 | MemTxResult r; | |
3606 | val = cpu_to_be64(val); | |
3607 | r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1); | |
3608 | if (result) { | |
3609 | *result = r; | |
3610 | } | |
3611 | } | |
3612 | ||
3613 | void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val) | |
3614 | { | |
3615 | address_space_stq(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
3616 | } | |
3617 | ||
3618 | void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val) | |
3619 | { | |
3620 | address_space_stq_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
1e78bcc1 AG |
3621 | } |
3622 | ||
f606604f | 3623 | void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val) |
1e78bcc1 | 3624 | { |
50013115 | 3625 | address_space_stq_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3626 | } |
3627 | ||
5e2972fd | 3628 | /* virtual memory access for debug (includes writing to ROM) */ |
f17ec444 | 3629 | int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, |
b448f2f3 | 3630 | uint8_t *buf, int len, int is_write) |
13eb76e0 FB |
3631 | { |
3632 | int l; | |
a8170e5e | 3633 | hwaddr phys_addr; |
9b3c35e0 | 3634 | target_ulong page; |
13eb76e0 FB |
3635 | |
3636 | while (len > 0) { | |
5232e4c7 PM |
3637 | int asidx; |
3638 | MemTxAttrs attrs; | |
3639 | ||
13eb76e0 | 3640 | page = addr & TARGET_PAGE_MASK; |
5232e4c7 PM |
3641 | phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs); |
3642 | asidx = cpu_asidx_from_attrs(cpu, attrs); | |
13eb76e0 FB |
3643 | /* if no physical page mapped, return an error */ |
3644 | if (phys_addr == -1) | |
3645 | return -1; | |
3646 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3647 | if (l > len) | |
3648 | l = len; | |
5e2972fd | 3649 | phys_addr += (addr & ~TARGET_PAGE_MASK); |
2e38847b | 3650 | if (is_write) { |
5232e4c7 PM |
3651 | cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as, |
3652 | phys_addr, buf, l); | |
2e38847b | 3653 | } else { |
5232e4c7 PM |
3654 | address_space_rw(cpu->cpu_ases[asidx].as, phys_addr, |
3655 | MEMTXATTRS_UNSPECIFIED, | |
5c9eb028 | 3656 | buf, l, 0); |
2e38847b | 3657 | } |
13eb76e0 FB |
3658 | len -= l; |
3659 | buf += l; | |
3660 | addr += l; | |
3661 | } | |
3662 | return 0; | |
3663 | } | |
038629a6 DDAG |
3664 | |
3665 | /* | |
3666 | * Allows code that needs to deal with migration bitmaps etc to still be built | |
3667 | * target independent. | |
3668 | */ | |
3669 | size_t qemu_target_page_bits(void) | |
3670 | { | |
3671 | return TARGET_PAGE_BITS; | |
3672 | } | |
3673 | ||
a68fe89c | 3674 | #endif |
13eb76e0 | 3675 | |
8e4a424b BS |
3676 | /* |
3677 | * A helper function for the _utterly broken_ virtio device model to find out if | |
3678 | * it's running on a big endian machine. Don't do this at home kids! | |
3679 | */ | |
98ed8ecf GK |
3680 | bool target_words_bigendian(void); |
3681 | bool target_words_bigendian(void) | |
8e4a424b BS |
3682 | { |
3683 | #if defined(TARGET_WORDS_BIGENDIAN) | |
3684 | return true; | |
3685 | #else | |
3686 | return false; | |
3687 | #endif | |
3688 | } | |
3689 | ||
76f35538 | 3690 | #ifndef CONFIG_USER_ONLY |
a8170e5e | 3691 | bool cpu_physical_memory_is_io(hwaddr phys_addr) |
76f35538 | 3692 | { |
5c8a00ce | 3693 | MemoryRegion*mr; |
149f54b5 | 3694 | hwaddr l = 1; |
41063e1e | 3695 | bool res; |
76f35538 | 3696 | |
41063e1e | 3697 | rcu_read_lock(); |
5c8a00ce PB |
3698 | mr = address_space_translate(&address_space_memory, |
3699 | phys_addr, &phys_addr, &l, false); | |
76f35538 | 3700 | |
41063e1e PB |
3701 | res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr)); |
3702 | rcu_read_unlock(); | |
3703 | return res; | |
76f35538 | 3704 | } |
bd2fa51f | 3705 | |
e3807054 | 3706 | int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) |
bd2fa51f MH |
3707 | { |
3708 | RAMBlock *block; | |
e3807054 | 3709 | int ret = 0; |
bd2fa51f | 3710 | |
0dc3f44a MD |
3711 | rcu_read_lock(); |
3712 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
e3807054 DDAG |
3713 | ret = func(block->idstr, block->host, block->offset, |
3714 | block->used_length, opaque); | |
3715 | if (ret) { | |
3716 | break; | |
3717 | } | |
bd2fa51f | 3718 | } |
0dc3f44a | 3719 | rcu_read_unlock(); |
e3807054 | 3720 | return ret; |
bd2fa51f | 3721 | } |
ec3f8c99 | 3722 | #endif |