]>
Commit | Line | Data |
---|---|---|
54936004 | 1 | /* |
5b6dd868 | 2 | * Virtual page mapping |
5fafdf24 | 3 | * |
54936004 FB |
4 | * Copyright (c) 2003 Fabrice Bellard |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
8167ee88 | 17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
54936004 | 18 | */ |
7b31bbc2 | 19 | #include "qemu/osdep.h" |
da34e65c | 20 | #include "qapi/error.h" |
54936004 | 21 | |
f348b6d1 | 22 | #include "qemu/cutils.h" |
6180a181 | 23 | #include "cpu.h" |
63c91552 | 24 | #include "exec/exec-all.h" |
51180423 | 25 | #include "exec/target_page.h" |
b67d9a52 | 26 | #include "tcg.h" |
741da0d3 | 27 | #include "hw/qdev-core.h" |
c7e002c5 | 28 | #include "hw/qdev-properties.h" |
4485bd26 | 29 | #if !defined(CONFIG_USER_ONLY) |
47c8ca53 | 30 | #include "hw/boards.h" |
33c11879 | 31 | #include "hw/xen/xen.h" |
4485bd26 | 32 | #endif |
9c17d615 | 33 | #include "sysemu/kvm.h" |
2ff3de68 | 34 | #include "sysemu/sysemu.h" |
1de7afc9 PB |
35 | #include "qemu/timer.h" |
36 | #include "qemu/config-file.h" | |
75a34036 | 37 | #include "qemu/error-report.h" |
53a5960a | 38 | #if defined(CONFIG_USER_ONLY) |
a9c94277 | 39 | #include "qemu.h" |
432d268c | 40 | #else /* !CONFIG_USER_ONLY */ |
741da0d3 PB |
41 | #include "hw/hw.h" |
42 | #include "exec/memory.h" | |
df43d49c | 43 | #include "exec/ioport.h" |
741da0d3 | 44 | #include "sysemu/dma.h" |
9c607668 | 45 | #include "sysemu/numa.h" |
79ca7a1b | 46 | #include "sysemu/hw_accel.h" |
741da0d3 | 47 | #include "exec/address-spaces.h" |
9c17d615 | 48 | #include "sysemu/xen-mapcache.h" |
0ab8ed18 | 49 | #include "trace-root.h" |
d3a5038c | 50 | |
e2fa71f5 | 51 | #ifdef CONFIG_FALLOCATE_PUNCH_HOLE |
e2fa71f5 DDAG |
52 | #include <linux/falloc.h> |
53 | #endif | |
54 | ||
53a5960a | 55 | #endif |
0dc3f44a | 56 | #include "qemu/rcu_queue.h" |
4840f10e | 57 | #include "qemu/main-loop.h" |
5b6dd868 | 58 | #include "translate-all.h" |
7615936e | 59 | #include "sysemu/replay.h" |
0cac1b66 | 60 | |
022c62cb | 61 | #include "exec/memory-internal.h" |
220c3ebd | 62 | #include "exec/ram_addr.h" |
508127e2 | 63 | #include "exec/log.h" |
67d95c15 | 64 | |
9dfeca7c BR |
65 | #include "migration/vmstate.h" |
66 | ||
b35ba30f | 67 | #include "qemu/range.h" |
794e8f30 MT |
68 | #ifndef _WIN32 |
69 | #include "qemu/mmap-alloc.h" | |
70 | #endif | |
b35ba30f | 71 | |
be9b23c4 PX |
72 | #include "monitor/monitor.h" |
73 | ||
db7b5426 | 74 | //#define DEBUG_SUBPAGE |
1196be37 | 75 | |
e2eef170 | 76 | #if !defined(CONFIG_USER_ONLY) |
0dc3f44a MD |
77 | /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes |
78 | * are protected by the ramlist lock. | |
79 | */ | |
0d53d9fe | 80 | RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; |
62152b8a AK |
81 | |
82 | static MemoryRegion *system_memory; | |
309cb471 | 83 | static MemoryRegion *system_io; |
62152b8a | 84 | |
f6790af6 AK |
85 | AddressSpace address_space_io; |
86 | AddressSpace address_space_memory; | |
2673a5da | 87 | |
0844e007 | 88 | MemoryRegion io_mem_rom, io_mem_notdirty; |
acc9d80b | 89 | static MemoryRegion io_mem_unassigned; |
0e0df1e2 | 90 | |
7bd4f430 PB |
91 | /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ |
92 | #define RAM_PREALLOC (1 << 0) | |
93 | ||
dbcb8981 PB |
94 | /* RAM is mmap-ed with MAP_SHARED */ |
95 | #define RAM_SHARED (1 << 1) | |
96 | ||
62be4e3a MT |
97 | /* Only a portion of RAM (used_length) is actually used, and migrated. |
98 | * This used_length size can change across reboots. | |
99 | */ | |
100 | #define RAM_RESIZEABLE (1 << 2) | |
101 | ||
e2eef170 | 102 | #endif |
9fa3e853 | 103 | |
20bccb82 PM |
104 | #ifdef TARGET_PAGE_BITS_VARY |
105 | int target_page_bits; | |
106 | bool target_page_bits_decided; | |
107 | #endif | |
108 | ||
bdc44640 | 109 | struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus); |
6a00d601 FB |
110 | /* current CPU in the current thread. It is only valid inside |
111 | cpu_exec() */ | |
f240eb6f | 112 | __thread CPUState *current_cpu; |
2e70f6ef | 113 | /* 0 = Do not count executed instructions. |
bf20dc07 | 114 | 1 = Precise instruction counting. |
2e70f6ef | 115 | 2 = Adaptive rate instruction counting. */ |
5708fc66 | 116 | int use_icount; |
6a00d601 | 117 | |
a0be0c58 YZ |
118 | uintptr_t qemu_host_page_size; |
119 | intptr_t qemu_host_page_mask; | |
a0be0c58 | 120 | |
20bccb82 PM |
121 | bool set_preferred_target_page_bits(int bits) |
122 | { | |
123 | /* The target page size is the lowest common denominator for all | |
124 | * the CPUs in the system, so we can only make it smaller, never | |
125 | * larger. And we can't make it smaller once we've committed to | |
126 | * a particular size. | |
127 | */ | |
128 | #ifdef TARGET_PAGE_BITS_VARY | |
129 | assert(bits >= TARGET_PAGE_BITS_MIN); | |
130 | if (target_page_bits == 0 || target_page_bits > bits) { | |
131 | if (target_page_bits_decided) { | |
132 | return false; | |
133 | } | |
134 | target_page_bits = bits; | |
135 | } | |
136 | #endif | |
137 | return true; | |
138 | } | |
139 | ||
e2eef170 | 140 | #if !defined(CONFIG_USER_ONLY) |
4346ae3e | 141 | |
20bccb82 PM |
142 | static void finalize_target_page_bits(void) |
143 | { | |
144 | #ifdef TARGET_PAGE_BITS_VARY | |
145 | if (target_page_bits == 0) { | |
146 | target_page_bits = TARGET_PAGE_BITS_MIN; | |
147 | } | |
148 | target_page_bits_decided = true; | |
149 | #endif | |
150 | } | |
151 | ||
1db8abb1 PB |
152 | typedef struct PhysPageEntry PhysPageEntry; |
153 | ||
154 | struct PhysPageEntry { | |
9736e55b | 155 | /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ |
8b795765 | 156 | uint32_t skip : 6; |
9736e55b | 157 | /* index into phys_sections (!skip) or phys_map_nodes (skip) */ |
8b795765 | 158 | uint32_t ptr : 26; |
1db8abb1 PB |
159 | }; |
160 | ||
8b795765 MT |
161 | #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) |
162 | ||
03f49957 | 163 | /* Size of the L2 (and L3, etc) page tables. */ |
57271d63 | 164 | #define ADDR_SPACE_BITS 64 |
03f49957 | 165 | |
026736ce | 166 | #define P_L2_BITS 9 |
03f49957 PB |
167 | #define P_L2_SIZE (1 << P_L2_BITS) |
168 | ||
169 | #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) | |
170 | ||
171 | typedef PhysPageEntry Node[P_L2_SIZE]; | |
0475d94f | 172 | |
53cb28cb | 173 | typedef struct PhysPageMap { |
79e2b9ae PB |
174 | struct rcu_head rcu; |
175 | ||
53cb28cb MA |
176 | unsigned sections_nb; |
177 | unsigned sections_nb_alloc; | |
178 | unsigned nodes_nb; | |
179 | unsigned nodes_nb_alloc; | |
180 | Node *nodes; | |
181 | MemoryRegionSection *sections; | |
182 | } PhysPageMap; | |
183 | ||
1db8abb1 | 184 | struct AddressSpaceDispatch { |
729633c2 | 185 | MemoryRegionSection *mru_section; |
1db8abb1 PB |
186 | /* This is a multi-level map on the physical address space. |
187 | * The bottom level has pointers to MemoryRegionSections. | |
188 | */ | |
189 | PhysPageEntry phys_map; | |
53cb28cb | 190 | PhysPageMap map; |
1db8abb1 PB |
191 | }; |
192 | ||
90260c6c JK |
193 | #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) |
194 | typedef struct subpage_t { | |
195 | MemoryRegion iomem; | |
16620684 | 196 | FlatView *fv; |
90260c6c | 197 | hwaddr base; |
2615fabd | 198 | uint16_t sub_section[]; |
90260c6c JK |
199 | } subpage_t; |
200 | ||
b41aac4f LPF |
201 | #define PHYS_SECTION_UNASSIGNED 0 |
202 | #define PHYS_SECTION_NOTDIRTY 1 | |
203 | #define PHYS_SECTION_ROM 2 | |
204 | #define PHYS_SECTION_WATCH 3 | |
5312bd8b | 205 | |
e2eef170 | 206 | static void io_mem_init(void); |
62152b8a | 207 | static void memory_map_init(void); |
09daed84 | 208 | static void tcg_commit(MemoryListener *listener); |
e2eef170 | 209 | |
1ec9b909 | 210 | static MemoryRegion io_mem_watch; |
32857f4d PM |
211 | |
212 | /** | |
213 | * CPUAddressSpace: all the information a CPU needs about an AddressSpace | |
214 | * @cpu: the CPU whose AddressSpace this is | |
215 | * @as: the AddressSpace itself | |
216 | * @memory_dispatch: its dispatch pointer (cached, RCU protected) | |
217 | * @tcg_as_listener: listener for tracking changes to the AddressSpace | |
218 | */ | |
219 | struct CPUAddressSpace { | |
220 | CPUState *cpu; | |
221 | AddressSpace *as; | |
222 | struct AddressSpaceDispatch *memory_dispatch; | |
223 | MemoryListener tcg_as_listener; | |
224 | }; | |
225 | ||
8deaf12c GH |
226 | struct DirtyBitmapSnapshot { |
227 | ram_addr_t start; | |
228 | ram_addr_t end; | |
229 | unsigned long dirty[]; | |
230 | }; | |
231 | ||
6658ffb8 | 232 | #endif |
fd6ce8f6 | 233 | |
6d9a1304 | 234 | #if !defined(CONFIG_USER_ONLY) |
d6f2ea22 | 235 | |
53cb28cb | 236 | static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) |
d6f2ea22 | 237 | { |
101420b8 | 238 | static unsigned alloc_hint = 16; |
53cb28cb | 239 | if (map->nodes_nb + nodes > map->nodes_nb_alloc) { |
101420b8 | 240 | map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint); |
53cb28cb MA |
241 | map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes); |
242 | map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); | |
101420b8 | 243 | alloc_hint = map->nodes_nb_alloc; |
d6f2ea22 | 244 | } |
f7bf5461 AK |
245 | } |
246 | ||
db94604b | 247 | static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf) |
f7bf5461 AK |
248 | { |
249 | unsigned i; | |
8b795765 | 250 | uint32_t ret; |
db94604b PB |
251 | PhysPageEntry e; |
252 | PhysPageEntry *p; | |
f7bf5461 | 253 | |
53cb28cb | 254 | ret = map->nodes_nb++; |
db94604b | 255 | p = map->nodes[ret]; |
f7bf5461 | 256 | assert(ret != PHYS_MAP_NODE_NIL); |
53cb28cb | 257 | assert(ret != map->nodes_nb_alloc); |
db94604b PB |
258 | |
259 | e.skip = leaf ? 0 : 1; | |
260 | e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL; | |
03f49957 | 261 | for (i = 0; i < P_L2_SIZE; ++i) { |
db94604b | 262 | memcpy(&p[i], &e, sizeof(e)); |
d6f2ea22 | 263 | } |
f7bf5461 | 264 | return ret; |
d6f2ea22 AK |
265 | } |
266 | ||
53cb28cb MA |
267 | static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, |
268 | hwaddr *index, hwaddr *nb, uint16_t leaf, | |
2999097b | 269 | int level) |
f7bf5461 AK |
270 | { |
271 | PhysPageEntry *p; | |
03f49957 | 272 | hwaddr step = (hwaddr)1 << (level * P_L2_BITS); |
108c49b8 | 273 | |
9736e55b | 274 | if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { |
db94604b | 275 | lp->ptr = phys_map_node_alloc(map, level == 0); |
92e873b9 | 276 | } |
db94604b | 277 | p = map->nodes[lp->ptr]; |
03f49957 | 278 | lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; |
f7bf5461 | 279 | |
03f49957 | 280 | while (*nb && lp < &p[P_L2_SIZE]) { |
07f07b31 | 281 | if ((*index & (step - 1)) == 0 && *nb >= step) { |
9736e55b | 282 | lp->skip = 0; |
c19e8800 | 283 | lp->ptr = leaf; |
07f07b31 AK |
284 | *index += step; |
285 | *nb -= step; | |
2999097b | 286 | } else { |
53cb28cb | 287 | phys_page_set_level(map, lp, index, nb, leaf, level - 1); |
2999097b AK |
288 | } |
289 | ++lp; | |
f7bf5461 AK |
290 | } |
291 | } | |
292 | ||
ac1970fb | 293 | static void phys_page_set(AddressSpaceDispatch *d, |
a8170e5e | 294 | hwaddr index, hwaddr nb, |
2999097b | 295 | uint16_t leaf) |
f7bf5461 | 296 | { |
2999097b | 297 | /* Wildly overreserve - it doesn't matter much. */ |
53cb28cb | 298 | phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); |
5cd2c5b6 | 299 | |
53cb28cb | 300 | phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); |
92e873b9 FB |
301 | } |
302 | ||
b35ba30f MT |
303 | /* Compact a non leaf page entry. Simply detect that the entry has a single child, |
304 | * and update our entry so we can skip it and go directly to the destination. | |
305 | */ | |
efee678d | 306 | static void phys_page_compact(PhysPageEntry *lp, Node *nodes) |
b35ba30f MT |
307 | { |
308 | unsigned valid_ptr = P_L2_SIZE; | |
309 | int valid = 0; | |
310 | PhysPageEntry *p; | |
311 | int i; | |
312 | ||
313 | if (lp->ptr == PHYS_MAP_NODE_NIL) { | |
314 | return; | |
315 | } | |
316 | ||
317 | p = nodes[lp->ptr]; | |
318 | for (i = 0; i < P_L2_SIZE; i++) { | |
319 | if (p[i].ptr == PHYS_MAP_NODE_NIL) { | |
320 | continue; | |
321 | } | |
322 | ||
323 | valid_ptr = i; | |
324 | valid++; | |
325 | if (p[i].skip) { | |
efee678d | 326 | phys_page_compact(&p[i], nodes); |
b35ba30f MT |
327 | } |
328 | } | |
329 | ||
330 | /* We can only compress if there's only one child. */ | |
331 | if (valid != 1) { | |
332 | return; | |
333 | } | |
334 | ||
335 | assert(valid_ptr < P_L2_SIZE); | |
336 | ||
337 | /* Don't compress if it won't fit in the # of bits we have. */ | |
338 | if (lp->skip + p[valid_ptr].skip >= (1 << 3)) { | |
339 | return; | |
340 | } | |
341 | ||
342 | lp->ptr = p[valid_ptr].ptr; | |
343 | if (!p[valid_ptr].skip) { | |
344 | /* If our only child is a leaf, make this a leaf. */ | |
345 | /* By design, we should have made this node a leaf to begin with so we | |
346 | * should never reach here. | |
347 | * But since it's so simple to handle this, let's do it just in case we | |
348 | * change this rule. | |
349 | */ | |
350 | lp->skip = 0; | |
351 | } else { | |
352 | lp->skip += p[valid_ptr].skip; | |
353 | } | |
354 | } | |
355 | ||
8629d3fc | 356 | void address_space_dispatch_compact(AddressSpaceDispatch *d) |
b35ba30f | 357 | { |
b35ba30f | 358 | if (d->phys_map.skip) { |
efee678d | 359 | phys_page_compact(&d->phys_map, d->map.nodes); |
b35ba30f MT |
360 | } |
361 | } | |
362 | ||
29cb533d FZ |
363 | static inline bool section_covers_addr(const MemoryRegionSection *section, |
364 | hwaddr addr) | |
365 | { | |
366 | /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means | |
367 | * the section must cover the entire address space. | |
368 | */ | |
258dfaaa | 369 | return int128_gethi(section->size) || |
29cb533d | 370 | range_covers_byte(section->offset_within_address_space, |
258dfaaa | 371 | int128_getlo(section->size), addr); |
29cb533d FZ |
372 | } |
373 | ||
003a0cf2 | 374 | static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr) |
92e873b9 | 375 | { |
003a0cf2 PX |
376 | PhysPageEntry lp = d->phys_map, *p; |
377 | Node *nodes = d->map.nodes; | |
378 | MemoryRegionSection *sections = d->map.sections; | |
97115a8d | 379 | hwaddr index = addr >> TARGET_PAGE_BITS; |
31ab2b4a | 380 | int i; |
f1f6e3b8 | 381 | |
9736e55b | 382 | for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { |
c19e8800 | 383 | if (lp.ptr == PHYS_MAP_NODE_NIL) { |
9affd6fc | 384 | return §ions[PHYS_SECTION_UNASSIGNED]; |
31ab2b4a | 385 | } |
9affd6fc | 386 | p = nodes[lp.ptr]; |
03f49957 | 387 | lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; |
5312bd8b | 388 | } |
b35ba30f | 389 | |
29cb533d | 390 | if (section_covers_addr(§ions[lp.ptr], addr)) { |
b35ba30f MT |
391 | return §ions[lp.ptr]; |
392 | } else { | |
393 | return §ions[PHYS_SECTION_UNASSIGNED]; | |
394 | } | |
f3705d53 AK |
395 | } |
396 | ||
e5548617 BS |
397 | bool memory_region_is_unassigned(MemoryRegion *mr) |
398 | { | |
2a8e7499 | 399 | return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device |
5b6dd868 | 400 | && mr != &io_mem_watch; |
fd6ce8f6 | 401 | } |
149f54b5 | 402 | |
79e2b9ae | 403 | /* Called from RCU critical section */ |
c7086b4a | 404 | static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, |
90260c6c JK |
405 | hwaddr addr, |
406 | bool resolve_subpage) | |
9f029603 | 407 | { |
729633c2 | 408 | MemoryRegionSection *section = atomic_read(&d->mru_section); |
90260c6c JK |
409 | subpage_t *subpage; |
410 | ||
07c114bb PB |
411 | if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] || |
412 | !section_covers_addr(section, addr)) { | |
003a0cf2 | 413 | section = phys_page_find(d, addr); |
07c114bb | 414 | atomic_set(&d->mru_section, section); |
729633c2 | 415 | } |
90260c6c JK |
416 | if (resolve_subpage && section->mr->subpage) { |
417 | subpage = container_of(section->mr, subpage_t, iomem); | |
53cb28cb | 418 | section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; |
90260c6c JK |
419 | } |
420 | return section; | |
9f029603 JK |
421 | } |
422 | ||
79e2b9ae | 423 | /* Called from RCU critical section */ |
90260c6c | 424 | static MemoryRegionSection * |
c7086b4a | 425 | address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, |
90260c6c | 426 | hwaddr *plen, bool resolve_subpage) |
149f54b5 PB |
427 | { |
428 | MemoryRegionSection *section; | |
965eb2fc | 429 | MemoryRegion *mr; |
a87f3954 | 430 | Int128 diff; |
149f54b5 | 431 | |
c7086b4a | 432 | section = address_space_lookup_region(d, addr, resolve_subpage); |
149f54b5 PB |
433 | /* Compute offset within MemoryRegionSection */ |
434 | addr -= section->offset_within_address_space; | |
435 | ||
436 | /* Compute offset within MemoryRegion */ | |
437 | *xlat = addr + section->offset_within_region; | |
438 | ||
965eb2fc | 439 | mr = section->mr; |
b242e0e0 PB |
440 | |
441 | /* MMIO registers can be expected to perform full-width accesses based only | |
442 | * on their address, without considering adjacent registers that could | |
443 | * decode to completely different MemoryRegions. When such registers | |
444 | * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO | |
445 | * regions overlap wildly. For this reason we cannot clamp the accesses | |
446 | * here. | |
447 | * | |
448 | * If the length is small (as is the case for address_space_ldl/stl), | |
449 | * everything works fine. If the incoming length is large, however, | |
450 | * the caller really has to do the clamping through memory_access_size. | |
451 | */ | |
965eb2fc | 452 | if (memory_region_is_ram(mr)) { |
e4a511f8 | 453 | diff = int128_sub(section->size, int128_make64(addr)); |
965eb2fc PB |
454 | *plen = int128_get64(int128_min(diff, int128_make64(*plen))); |
455 | } | |
149f54b5 PB |
456 | return section; |
457 | } | |
90260c6c | 458 | |
d5e5fafd PX |
459 | /** |
460 | * flatview_do_translate - translate an address in FlatView | |
461 | * | |
462 | * @fv: the flat view that we want to translate on | |
463 | * @addr: the address to be translated in above address space | |
464 | * @xlat: the translated address offset within memory region. It | |
465 | * cannot be @NULL. | |
466 | * @plen_out: valid read/write length of the translated address. It | |
467 | * can be @NULL when we don't care about it. | |
468 | * @page_mask_out: page mask for the translated address. This | |
469 | * should only be meaningful for IOMMU translated | |
470 | * addresses, since there may be huge pages that this bit | |
471 | * would tell. It can be @NULL if we don't care about it. | |
472 | * @is_write: whether the translation operation is for write | |
473 | * @is_mmio: whether this can be MMIO, set true if it can | |
474 | * | |
475 | * This function is called from RCU critical section | |
476 | */ | |
16620684 AK |
477 | static MemoryRegionSection flatview_do_translate(FlatView *fv, |
478 | hwaddr addr, | |
479 | hwaddr *xlat, | |
d5e5fafd PX |
480 | hwaddr *plen_out, |
481 | hwaddr *page_mask_out, | |
16620684 AK |
482 | bool is_write, |
483 | bool is_mmio, | |
484 | AddressSpace **target_as) | |
052c8fa9 | 485 | { |
a764040c | 486 | IOMMUTLBEntry iotlb; |
052c8fa9 | 487 | MemoryRegionSection *section; |
3df9d748 | 488 | IOMMUMemoryRegion *iommu_mr; |
1221a474 | 489 | IOMMUMemoryRegionClass *imrc; |
d5e5fafd PX |
490 | hwaddr page_mask = (hwaddr)(-1); |
491 | hwaddr plen = (hwaddr)(-1); | |
492 | ||
493 | if (plen_out) { | |
494 | plen = *plen_out; | |
495 | } | |
052c8fa9 JW |
496 | |
497 | for (;;) { | |
16620684 AK |
498 | section = address_space_translate_internal( |
499 | flatview_to_dispatch(fv), addr, &addr, | |
d5e5fafd | 500 | &plen, is_mmio); |
052c8fa9 | 501 | |
3df9d748 AK |
502 | iommu_mr = memory_region_get_iommu(section->mr); |
503 | if (!iommu_mr) { | |
052c8fa9 JW |
504 | break; |
505 | } | |
1221a474 | 506 | imrc = memory_region_get_iommu_class_nocheck(iommu_mr); |
052c8fa9 | 507 | |
1221a474 AK |
508 | iotlb = imrc->translate(iommu_mr, addr, is_write ? |
509 | IOMMU_WO : IOMMU_RO); | |
a764040c PX |
510 | addr = ((iotlb.translated_addr & ~iotlb.addr_mask) |
511 | | (addr & iotlb.addr_mask)); | |
d5e5fafd PX |
512 | page_mask &= iotlb.addr_mask; |
513 | plen = MIN(plen, (addr | iotlb.addr_mask) - addr + 1); | |
052c8fa9 | 514 | if (!(iotlb.perm & (1 << is_write))) { |
a764040c | 515 | goto translate_fail; |
052c8fa9 JW |
516 | } |
517 | ||
16620684 | 518 | fv = address_space_to_flatview(iotlb.target_as); |
e76bb18f | 519 | *target_as = iotlb.target_as; |
052c8fa9 JW |
520 | } |
521 | ||
a764040c PX |
522 | *xlat = addr; |
523 | ||
d5e5fafd PX |
524 | if (page_mask == (hwaddr)(-1)) { |
525 | /* Not behind an IOMMU, use default page size. */ | |
526 | page_mask = ~TARGET_PAGE_MASK; | |
527 | } | |
528 | ||
529 | if (page_mask_out) { | |
530 | *page_mask_out = page_mask; | |
531 | } | |
532 | ||
533 | if (plen_out) { | |
534 | *plen_out = plen; | |
535 | } | |
536 | ||
a764040c PX |
537 | return *section; |
538 | ||
539 | translate_fail: | |
540 | return (MemoryRegionSection) { .mr = &io_mem_unassigned }; | |
052c8fa9 JW |
541 | } |
542 | ||
543 | /* Called from RCU critical section */ | |
a764040c PX |
544 | IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, |
545 | bool is_write) | |
90260c6c | 546 | { |
a764040c | 547 | MemoryRegionSection section; |
076a93d7 | 548 | hwaddr xlat, page_mask; |
30951157 | 549 | |
076a93d7 PX |
550 | /* |
551 | * This can never be MMIO, and we don't really care about plen, | |
552 | * but page mask. | |
553 | */ | |
554 | section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat, | |
555 | NULL, &page_mask, is_write, false, &as); | |
30951157 | 556 | |
a764040c PX |
557 | /* Illegal translation */ |
558 | if (section.mr == &io_mem_unassigned) { | |
559 | goto iotlb_fail; | |
560 | } | |
30951157 | 561 | |
a764040c PX |
562 | /* Convert memory region offset into address space offset */ |
563 | xlat += section.offset_within_address_space - | |
564 | section.offset_within_region; | |
565 | ||
a764040c | 566 | return (IOMMUTLBEntry) { |
e76bb18f | 567 | .target_as = as, |
076a93d7 PX |
568 | .iova = addr & ~page_mask, |
569 | .translated_addr = xlat & ~page_mask, | |
570 | .addr_mask = page_mask, | |
a764040c PX |
571 | /* IOTLBs are for DMAs, and DMA only allows on RAMs. */ |
572 | .perm = IOMMU_RW, | |
573 | }; | |
574 | ||
575 | iotlb_fail: | |
576 | return (IOMMUTLBEntry) {0}; | |
577 | } | |
578 | ||
579 | /* Called from RCU critical section */ | |
16620684 AK |
580 | MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat, |
581 | hwaddr *plen, bool is_write) | |
a764040c PX |
582 | { |
583 | MemoryRegion *mr; | |
584 | MemoryRegionSection section; | |
16620684 | 585 | AddressSpace *as = NULL; |
a764040c PX |
586 | |
587 | /* This can be MMIO, so setup MMIO bit. */ | |
d5e5fafd PX |
588 | section = flatview_do_translate(fv, addr, xlat, plen, NULL, |
589 | is_write, true, &as); | |
a764040c PX |
590 | mr = section.mr; |
591 | ||
fe680d0d | 592 | if (xen_enabled() && memory_access_is_direct(mr, is_write)) { |
a87f3954 | 593 | hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; |
23820dbf | 594 | *plen = MIN(page, *plen); |
a87f3954 PB |
595 | } |
596 | ||
30951157 | 597 | return mr; |
90260c6c JK |
598 | } |
599 | ||
79e2b9ae | 600 | /* Called from RCU critical section */ |
90260c6c | 601 | MemoryRegionSection * |
d7898cda | 602 | address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr, |
9d82b5a7 | 603 | hwaddr *xlat, hwaddr *plen) |
90260c6c | 604 | { |
30951157 | 605 | MemoryRegionSection *section; |
f35e44e7 | 606 | AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch); |
d7898cda PM |
607 | |
608 | section = address_space_translate_internal(d, addr, xlat, plen, false); | |
30951157 | 609 | |
3df9d748 | 610 | assert(!memory_region_is_iommu(section->mr)); |
30951157 | 611 | return section; |
90260c6c | 612 | } |
5b6dd868 | 613 | #endif |
fd6ce8f6 | 614 | |
b170fce3 | 615 | #if !defined(CONFIG_USER_ONLY) |
5b6dd868 BS |
616 | |
617 | static int cpu_common_post_load(void *opaque, int version_id) | |
fd6ce8f6 | 618 | { |
259186a7 | 619 | CPUState *cpu = opaque; |
a513fe19 | 620 | |
5b6dd868 BS |
621 | /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the |
622 | version_id is increased. */ | |
259186a7 | 623 | cpu->interrupt_request &= ~0x01; |
d10eb08f | 624 | tlb_flush(cpu); |
5b6dd868 BS |
625 | |
626 | return 0; | |
a513fe19 | 627 | } |
7501267e | 628 | |
6c3bff0e PD |
629 | static int cpu_common_pre_load(void *opaque) |
630 | { | |
631 | CPUState *cpu = opaque; | |
632 | ||
adee6424 | 633 | cpu->exception_index = -1; |
6c3bff0e PD |
634 | |
635 | return 0; | |
636 | } | |
637 | ||
638 | static bool cpu_common_exception_index_needed(void *opaque) | |
639 | { | |
640 | CPUState *cpu = opaque; | |
641 | ||
adee6424 | 642 | return tcg_enabled() && cpu->exception_index != -1; |
6c3bff0e PD |
643 | } |
644 | ||
645 | static const VMStateDescription vmstate_cpu_common_exception_index = { | |
646 | .name = "cpu_common/exception_index", | |
647 | .version_id = 1, | |
648 | .minimum_version_id = 1, | |
5cd8cada | 649 | .needed = cpu_common_exception_index_needed, |
6c3bff0e PD |
650 | .fields = (VMStateField[]) { |
651 | VMSTATE_INT32(exception_index, CPUState), | |
652 | VMSTATE_END_OF_LIST() | |
653 | } | |
654 | }; | |
655 | ||
bac05aa9 AS |
656 | static bool cpu_common_crash_occurred_needed(void *opaque) |
657 | { | |
658 | CPUState *cpu = opaque; | |
659 | ||
660 | return cpu->crash_occurred; | |
661 | } | |
662 | ||
663 | static const VMStateDescription vmstate_cpu_common_crash_occurred = { | |
664 | .name = "cpu_common/crash_occurred", | |
665 | .version_id = 1, | |
666 | .minimum_version_id = 1, | |
667 | .needed = cpu_common_crash_occurred_needed, | |
668 | .fields = (VMStateField[]) { | |
669 | VMSTATE_BOOL(crash_occurred, CPUState), | |
670 | VMSTATE_END_OF_LIST() | |
671 | } | |
672 | }; | |
673 | ||
1a1562f5 | 674 | const VMStateDescription vmstate_cpu_common = { |
5b6dd868 BS |
675 | .name = "cpu_common", |
676 | .version_id = 1, | |
677 | .minimum_version_id = 1, | |
6c3bff0e | 678 | .pre_load = cpu_common_pre_load, |
5b6dd868 | 679 | .post_load = cpu_common_post_load, |
35d08458 | 680 | .fields = (VMStateField[]) { |
259186a7 AF |
681 | VMSTATE_UINT32(halted, CPUState), |
682 | VMSTATE_UINT32(interrupt_request, CPUState), | |
5b6dd868 | 683 | VMSTATE_END_OF_LIST() |
6c3bff0e | 684 | }, |
5cd8cada JQ |
685 | .subsections = (const VMStateDescription*[]) { |
686 | &vmstate_cpu_common_exception_index, | |
bac05aa9 | 687 | &vmstate_cpu_common_crash_occurred, |
5cd8cada | 688 | NULL |
5b6dd868 BS |
689 | } |
690 | }; | |
1a1562f5 | 691 | |
5b6dd868 | 692 | #endif |
ea041c0e | 693 | |
38d8f5c8 | 694 | CPUState *qemu_get_cpu(int index) |
ea041c0e | 695 | { |
bdc44640 | 696 | CPUState *cpu; |
ea041c0e | 697 | |
bdc44640 | 698 | CPU_FOREACH(cpu) { |
55e5c285 | 699 | if (cpu->cpu_index == index) { |
bdc44640 | 700 | return cpu; |
55e5c285 | 701 | } |
ea041c0e | 702 | } |
5b6dd868 | 703 | |
bdc44640 | 704 | return NULL; |
ea041c0e FB |
705 | } |
706 | ||
09daed84 | 707 | #if !defined(CONFIG_USER_ONLY) |
80ceb07a PX |
708 | void cpu_address_space_init(CPUState *cpu, int asidx, |
709 | const char *prefix, MemoryRegion *mr) | |
09daed84 | 710 | { |
12ebc9a7 | 711 | CPUAddressSpace *newas; |
80ceb07a | 712 | AddressSpace *as = g_new0(AddressSpace, 1); |
87a621d8 | 713 | char *as_name; |
80ceb07a PX |
714 | |
715 | assert(mr); | |
87a621d8 PX |
716 | as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index); |
717 | address_space_init(as, mr, as_name); | |
718 | g_free(as_name); | |
12ebc9a7 PM |
719 | |
720 | /* Target code should have set num_ases before calling us */ | |
721 | assert(asidx < cpu->num_ases); | |
722 | ||
56943e8c PM |
723 | if (asidx == 0) { |
724 | /* address space 0 gets the convenience alias */ | |
725 | cpu->as = as; | |
726 | } | |
727 | ||
12ebc9a7 PM |
728 | /* KVM cannot currently support multiple address spaces. */ |
729 | assert(asidx == 0 || !kvm_enabled()); | |
09daed84 | 730 | |
12ebc9a7 PM |
731 | if (!cpu->cpu_ases) { |
732 | cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases); | |
09daed84 | 733 | } |
32857f4d | 734 | |
12ebc9a7 PM |
735 | newas = &cpu->cpu_ases[asidx]; |
736 | newas->cpu = cpu; | |
737 | newas->as = as; | |
56943e8c | 738 | if (tcg_enabled()) { |
12ebc9a7 PM |
739 | newas->tcg_as_listener.commit = tcg_commit; |
740 | memory_listener_register(&newas->tcg_as_listener, as); | |
56943e8c | 741 | } |
09daed84 | 742 | } |
651a5bc0 PM |
743 | |
744 | AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx) | |
745 | { | |
746 | /* Return the AddressSpace corresponding to the specified index */ | |
747 | return cpu->cpu_ases[asidx].as; | |
748 | } | |
09daed84 EI |
749 | #endif |
750 | ||
7bbc124e | 751 | void cpu_exec_unrealizefn(CPUState *cpu) |
1c59eb39 | 752 | { |
9dfeca7c BR |
753 | CPUClass *cc = CPU_GET_CLASS(cpu); |
754 | ||
267f685b | 755 | cpu_list_remove(cpu); |
9dfeca7c BR |
756 | |
757 | if (cc->vmsd != NULL) { | |
758 | vmstate_unregister(NULL, cc->vmsd, cpu); | |
759 | } | |
760 | if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { | |
761 | vmstate_unregister(NULL, &vmstate_cpu_common, cpu); | |
762 | } | |
1c59eb39 BR |
763 | } |
764 | ||
c7e002c5 FZ |
765 | Property cpu_common_props[] = { |
766 | #ifndef CONFIG_USER_ONLY | |
767 | /* Create a memory property for softmmu CPU object, | |
768 | * so users can wire up its memory. (This can't go in qom/cpu.c | |
769 | * because that file is compiled only once for both user-mode | |
770 | * and system builds.) The default if no link is set up is to use | |
771 | * the system address space. | |
772 | */ | |
773 | DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION, | |
774 | MemoryRegion *), | |
775 | #endif | |
776 | DEFINE_PROP_END_OF_LIST(), | |
777 | }; | |
778 | ||
39e329e3 | 779 | void cpu_exec_initfn(CPUState *cpu) |
ea041c0e | 780 | { |
56943e8c | 781 | cpu->as = NULL; |
12ebc9a7 | 782 | cpu->num_ases = 0; |
56943e8c | 783 | |
291135b5 | 784 | #ifndef CONFIG_USER_ONLY |
291135b5 | 785 | cpu->thread_id = qemu_get_thread_id(); |
6731d864 PC |
786 | cpu->memory = system_memory; |
787 | object_ref(OBJECT(cpu->memory)); | |
291135b5 | 788 | #endif |
39e329e3 LV |
789 | } |
790 | ||
ce5b1bbf | 791 | void cpu_exec_realizefn(CPUState *cpu, Error **errp) |
39e329e3 | 792 | { |
55c3ceef | 793 | CPUClass *cc = CPU_GET_CLASS(cpu); |
2dda6354 | 794 | static bool tcg_target_initialized; |
291135b5 | 795 | |
267f685b | 796 | cpu_list_add(cpu); |
1bc7e522 | 797 | |
2dda6354 EC |
798 | if (tcg_enabled() && !tcg_target_initialized) { |
799 | tcg_target_initialized = true; | |
55c3ceef RH |
800 | cc->tcg_initialize(); |
801 | } | |
802 | ||
1bc7e522 | 803 | #ifndef CONFIG_USER_ONLY |
e0d47944 | 804 | if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { |
741da0d3 | 805 | vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu); |
e0d47944 | 806 | } |
b170fce3 | 807 | if (cc->vmsd != NULL) { |
741da0d3 | 808 | vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu); |
b170fce3 | 809 | } |
741da0d3 | 810 | #endif |
ea041c0e FB |
811 | } |
812 | ||
406bc339 | 813 | #if defined(CONFIG_USER_ONLY) |
00b941e5 | 814 | static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) |
1e7855a5 | 815 | { |
406bc339 PK |
816 | mmap_lock(); |
817 | tb_lock(); | |
818 | tb_invalidate_phys_page_range(pc, pc + 1, 0); | |
819 | tb_unlock(); | |
820 | mmap_unlock(); | |
821 | } | |
822 | #else | |
823 | static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) | |
824 | { | |
825 | MemTxAttrs attrs; | |
826 | hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs); | |
827 | int asidx = cpu_asidx_from_attrs(cpu, attrs); | |
828 | if (phys != -1) { | |
829 | /* Locks grabbed by tb_invalidate_phys_addr */ | |
830 | tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as, | |
831 | phys | (pc & ~TARGET_PAGE_MASK)); | |
832 | } | |
1e7855a5 | 833 | } |
406bc339 | 834 | #endif |
d720b93d | 835 | |
c527ee8f | 836 | #if defined(CONFIG_USER_ONLY) |
75a34036 | 837 | void cpu_watchpoint_remove_all(CPUState *cpu, int mask) |
c527ee8f PB |
838 | |
839 | { | |
840 | } | |
841 | ||
3ee887e8 PM |
842 | int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, |
843 | int flags) | |
844 | { | |
845 | return -ENOSYS; | |
846 | } | |
847 | ||
848 | void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) | |
849 | { | |
850 | } | |
851 | ||
75a34036 | 852 | int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, |
c527ee8f PB |
853 | int flags, CPUWatchpoint **watchpoint) |
854 | { | |
855 | return -ENOSYS; | |
856 | } | |
857 | #else | |
6658ffb8 | 858 | /* Add a watchpoint. */ |
75a34036 | 859 | int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, |
a1d1bb31 | 860 | int flags, CPUWatchpoint **watchpoint) |
6658ffb8 | 861 | { |
c0ce998e | 862 | CPUWatchpoint *wp; |
6658ffb8 | 863 | |
05068c0d | 864 | /* forbid ranges which are empty or run off the end of the address space */ |
07e2863d | 865 | if (len == 0 || (addr + len - 1) < addr) { |
75a34036 AF |
866 | error_report("tried to set invalid watchpoint at %" |
867 | VADDR_PRIx ", len=%" VADDR_PRIu, addr, len); | |
b4051334 AL |
868 | return -EINVAL; |
869 | } | |
7267c094 | 870 | wp = g_malloc(sizeof(*wp)); |
a1d1bb31 AL |
871 | |
872 | wp->vaddr = addr; | |
05068c0d | 873 | wp->len = len; |
a1d1bb31 AL |
874 | wp->flags = flags; |
875 | ||
2dc9f411 | 876 | /* keep all GDB-injected watchpoints in front */ |
ff4700b0 AF |
877 | if (flags & BP_GDB) { |
878 | QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry); | |
879 | } else { | |
880 | QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry); | |
881 | } | |
6658ffb8 | 882 | |
31b030d4 | 883 | tlb_flush_page(cpu, addr); |
a1d1bb31 AL |
884 | |
885 | if (watchpoint) | |
886 | *watchpoint = wp; | |
887 | return 0; | |
6658ffb8 PB |
888 | } |
889 | ||
a1d1bb31 | 890 | /* Remove a specific watchpoint. */ |
75a34036 | 891 | int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, |
a1d1bb31 | 892 | int flags) |
6658ffb8 | 893 | { |
a1d1bb31 | 894 | CPUWatchpoint *wp; |
6658ffb8 | 895 | |
ff4700b0 | 896 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d | 897 | if (addr == wp->vaddr && len == wp->len |
6e140f28 | 898 | && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { |
75a34036 | 899 | cpu_watchpoint_remove_by_ref(cpu, wp); |
6658ffb8 PB |
900 | return 0; |
901 | } | |
902 | } | |
a1d1bb31 | 903 | return -ENOENT; |
6658ffb8 PB |
904 | } |
905 | ||
a1d1bb31 | 906 | /* Remove a specific watchpoint by reference. */ |
75a34036 | 907 | void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) |
a1d1bb31 | 908 | { |
ff4700b0 | 909 | QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry); |
7d03f82f | 910 | |
31b030d4 | 911 | tlb_flush_page(cpu, watchpoint->vaddr); |
a1d1bb31 | 912 | |
7267c094 | 913 | g_free(watchpoint); |
a1d1bb31 AL |
914 | } |
915 | ||
916 | /* Remove all matching watchpoints. */ | |
75a34036 | 917 | void cpu_watchpoint_remove_all(CPUState *cpu, int mask) |
a1d1bb31 | 918 | { |
c0ce998e | 919 | CPUWatchpoint *wp, *next; |
a1d1bb31 | 920 | |
ff4700b0 | 921 | QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) { |
75a34036 AF |
922 | if (wp->flags & mask) { |
923 | cpu_watchpoint_remove_by_ref(cpu, wp); | |
924 | } | |
c0ce998e | 925 | } |
7d03f82f | 926 | } |
05068c0d PM |
927 | |
928 | /* Return true if this watchpoint address matches the specified | |
929 | * access (ie the address range covered by the watchpoint overlaps | |
930 | * partially or completely with the address range covered by the | |
931 | * access). | |
932 | */ | |
933 | static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp, | |
934 | vaddr addr, | |
935 | vaddr len) | |
936 | { | |
937 | /* We know the lengths are non-zero, but a little caution is | |
938 | * required to avoid errors in the case where the range ends | |
939 | * exactly at the top of the address space and so addr + len | |
940 | * wraps round to zero. | |
941 | */ | |
942 | vaddr wpend = wp->vaddr + wp->len - 1; | |
943 | vaddr addrend = addr + len - 1; | |
944 | ||
945 | return !(addr > wpend || wp->vaddr > addrend); | |
946 | } | |
947 | ||
c527ee8f | 948 | #endif |
7d03f82f | 949 | |
a1d1bb31 | 950 | /* Add a breakpoint. */ |
b3310ab3 | 951 | int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, |
a1d1bb31 | 952 | CPUBreakpoint **breakpoint) |
4c3a88a2 | 953 | { |
c0ce998e | 954 | CPUBreakpoint *bp; |
3b46e624 | 955 | |
7267c094 | 956 | bp = g_malloc(sizeof(*bp)); |
4c3a88a2 | 957 | |
a1d1bb31 AL |
958 | bp->pc = pc; |
959 | bp->flags = flags; | |
960 | ||
2dc9f411 | 961 | /* keep all GDB-injected breakpoints in front */ |
00b941e5 | 962 | if (flags & BP_GDB) { |
f0c3c505 | 963 | QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry); |
00b941e5 | 964 | } else { |
f0c3c505 | 965 | QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry); |
00b941e5 | 966 | } |
3b46e624 | 967 | |
f0c3c505 | 968 | breakpoint_invalidate(cpu, pc); |
a1d1bb31 | 969 | |
00b941e5 | 970 | if (breakpoint) { |
a1d1bb31 | 971 | *breakpoint = bp; |
00b941e5 | 972 | } |
4c3a88a2 | 973 | return 0; |
4c3a88a2 FB |
974 | } |
975 | ||
a1d1bb31 | 976 | /* Remove a specific breakpoint. */ |
b3310ab3 | 977 | int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags) |
a1d1bb31 | 978 | { |
a1d1bb31 AL |
979 | CPUBreakpoint *bp; |
980 | ||
f0c3c505 | 981 | QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { |
a1d1bb31 | 982 | if (bp->pc == pc && bp->flags == flags) { |
b3310ab3 | 983 | cpu_breakpoint_remove_by_ref(cpu, bp); |
a1d1bb31 AL |
984 | return 0; |
985 | } | |
7d03f82f | 986 | } |
a1d1bb31 | 987 | return -ENOENT; |
7d03f82f EI |
988 | } |
989 | ||
a1d1bb31 | 990 | /* Remove a specific breakpoint by reference. */ |
b3310ab3 | 991 | void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint) |
4c3a88a2 | 992 | { |
f0c3c505 AF |
993 | QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry); |
994 | ||
995 | breakpoint_invalidate(cpu, breakpoint->pc); | |
a1d1bb31 | 996 | |
7267c094 | 997 | g_free(breakpoint); |
a1d1bb31 AL |
998 | } |
999 | ||
1000 | /* Remove all matching breakpoints. */ | |
b3310ab3 | 1001 | void cpu_breakpoint_remove_all(CPUState *cpu, int mask) |
a1d1bb31 | 1002 | { |
c0ce998e | 1003 | CPUBreakpoint *bp, *next; |
a1d1bb31 | 1004 | |
f0c3c505 | 1005 | QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) { |
b3310ab3 AF |
1006 | if (bp->flags & mask) { |
1007 | cpu_breakpoint_remove_by_ref(cpu, bp); | |
1008 | } | |
c0ce998e | 1009 | } |
4c3a88a2 FB |
1010 | } |
1011 | ||
c33a346e FB |
1012 | /* enable or disable single step mode. EXCP_DEBUG is returned by the |
1013 | CPU loop after each instruction */ | |
3825b28f | 1014 | void cpu_single_step(CPUState *cpu, int enabled) |
c33a346e | 1015 | { |
ed2803da AF |
1016 | if (cpu->singlestep_enabled != enabled) { |
1017 | cpu->singlestep_enabled = enabled; | |
1018 | if (kvm_enabled()) { | |
38e478ec | 1019 | kvm_update_guest_debug(cpu, 0); |
ed2803da | 1020 | } else { |
ccbb4d44 | 1021 | /* must flush all the translated code to avoid inconsistencies */ |
e22a25c9 | 1022 | /* XXX: only flush what is necessary */ |
bbd77c18 | 1023 | tb_flush(cpu); |
e22a25c9 | 1024 | } |
c33a346e | 1025 | } |
c33a346e FB |
1026 | } |
1027 | ||
a47dddd7 | 1028 | void cpu_abort(CPUState *cpu, const char *fmt, ...) |
7501267e FB |
1029 | { |
1030 | va_list ap; | |
493ae1f0 | 1031 | va_list ap2; |
7501267e FB |
1032 | |
1033 | va_start(ap, fmt); | |
493ae1f0 | 1034 | va_copy(ap2, ap); |
7501267e FB |
1035 | fprintf(stderr, "qemu: fatal: "); |
1036 | vfprintf(stderr, fmt, ap); | |
1037 | fprintf(stderr, "\n"); | |
878096ee | 1038 | cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP); |
013a2942 | 1039 | if (qemu_log_separate()) { |
1ee73216 | 1040 | qemu_log_lock(); |
93fcfe39 AL |
1041 | qemu_log("qemu: fatal: "); |
1042 | qemu_log_vprintf(fmt, ap2); | |
1043 | qemu_log("\n"); | |
a0762859 | 1044 | log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP); |
31b1a7b4 | 1045 | qemu_log_flush(); |
1ee73216 | 1046 | qemu_log_unlock(); |
93fcfe39 | 1047 | qemu_log_close(); |
924edcae | 1048 | } |
493ae1f0 | 1049 | va_end(ap2); |
f9373291 | 1050 | va_end(ap); |
7615936e | 1051 | replay_finish(); |
fd052bf6 RV |
1052 | #if defined(CONFIG_USER_ONLY) |
1053 | { | |
1054 | struct sigaction act; | |
1055 | sigfillset(&act.sa_mask); | |
1056 | act.sa_handler = SIG_DFL; | |
1057 | sigaction(SIGABRT, &act, NULL); | |
1058 | } | |
1059 | #endif | |
7501267e FB |
1060 | abort(); |
1061 | } | |
1062 | ||
0124311e | 1063 | #if !defined(CONFIG_USER_ONLY) |
0dc3f44a | 1064 | /* Called from RCU critical section */ |
041603fe PB |
1065 | static RAMBlock *qemu_get_ram_block(ram_addr_t addr) |
1066 | { | |
1067 | RAMBlock *block; | |
1068 | ||
43771539 | 1069 | block = atomic_rcu_read(&ram_list.mru_block); |
9b8424d5 | 1070 | if (block && addr - block->offset < block->max_length) { |
68851b98 | 1071 | return block; |
041603fe | 1072 | } |
99e15582 | 1073 | RAMBLOCK_FOREACH(block) { |
9b8424d5 | 1074 | if (addr - block->offset < block->max_length) { |
041603fe PB |
1075 | goto found; |
1076 | } | |
1077 | } | |
1078 | ||
1079 | fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); | |
1080 | abort(); | |
1081 | ||
1082 | found: | |
43771539 PB |
1083 | /* It is safe to write mru_block outside the iothread lock. This |
1084 | * is what happens: | |
1085 | * | |
1086 | * mru_block = xxx | |
1087 | * rcu_read_unlock() | |
1088 | * xxx removed from list | |
1089 | * rcu_read_lock() | |
1090 | * read mru_block | |
1091 | * mru_block = NULL; | |
1092 | * call_rcu(reclaim_ramblock, xxx); | |
1093 | * rcu_read_unlock() | |
1094 | * | |
1095 | * atomic_rcu_set is not needed here. The block was already published | |
1096 | * when it was placed into the list. Here we're just making an extra | |
1097 | * copy of the pointer. | |
1098 | */ | |
041603fe PB |
1099 | ram_list.mru_block = block; |
1100 | return block; | |
1101 | } | |
1102 | ||
a2f4d5be | 1103 | static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) |
d24981d3 | 1104 | { |
9a13565d | 1105 | CPUState *cpu; |
041603fe | 1106 | ram_addr_t start1; |
a2f4d5be JQ |
1107 | RAMBlock *block; |
1108 | ram_addr_t end; | |
1109 | ||
1110 | end = TARGET_PAGE_ALIGN(start + length); | |
1111 | start &= TARGET_PAGE_MASK; | |
d24981d3 | 1112 | |
0dc3f44a | 1113 | rcu_read_lock(); |
041603fe PB |
1114 | block = qemu_get_ram_block(start); |
1115 | assert(block == qemu_get_ram_block(end - 1)); | |
1240be24 | 1116 | start1 = (uintptr_t)ramblock_ptr(block, start - block->offset); |
9a13565d PC |
1117 | CPU_FOREACH(cpu) { |
1118 | tlb_reset_dirty(cpu, start1, length); | |
1119 | } | |
0dc3f44a | 1120 | rcu_read_unlock(); |
d24981d3 JQ |
1121 | } |
1122 | ||
5579c7f3 | 1123 | /* Note: start and end must be within the same ram block. */ |
03eebc9e SH |
1124 | bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, |
1125 | ram_addr_t length, | |
1126 | unsigned client) | |
1ccde1cb | 1127 | { |
5b82b703 | 1128 | DirtyMemoryBlocks *blocks; |
03eebc9e | 1129 | unsigned long end, page; |
5b82b703 | 1130 | bool dirty = false; |
03eebc9e SH |
1131 | |
1132 | if (length == 0) { | |
1133 | return false; | |
1134 | } | |
f23db169 | 1135 | |
03eebc9e SH |
1136 | end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; |
1137 | page = start >> TARGET_PAGE_BITS; | |
5b82b703 SH |
1138 | |
1139 | rcu_read_lock(); | |
1140 | ||
1141 | blocks = atomic_rcu_read(&ram_list.dirty_memory[client]); | |
1142 | ||
1143 | while (page < end) { | |
1144 | unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; | |
1145 | unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; | |
1146 | unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset); | |
1147 | ||
1148 | dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx], | |
1149 | offset, num); | |
1150 | page += num; | |
1151 | } | |
1152 | ||
1153 | rcu_read_unlock(); | |
03eebc9e SH |
1154 | |
1155 | if (dirty && tcg_enabled()) { | |
a2f4d5be | 1156 | tlb_reset_dirty_range_all(start, length); |
5579c7f3 | 1157 | } |
03eebc9e SH |
1158 | |
1159 | return dirty; | |
1ccde1cb FB |
1160 | } |
1161 | ||
8deaf12c GH |
1162 | DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty |
1163 | (ram_addr_t start, ram_addr_t length, unsigned client) | |
1164 | { | |
1165 | DirtyMemoryBlocks *blocks; | |
1166 | unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL); | |
1167 | ram_addr_t first = QEMU_ALIGN_DOWN(start, align); | |
1168 | ram_addr_t last = QEMU_ALIGN_UP(start + length, align); | |
1169 | DirtyBitmapSnapshot *snap; | |
1170 | unsigned long page, end, dest; | |
1171 | ||
1172 | snap = g_malloc0(sizeof(*snap) + | |
1173 | ((last - first) >> (TARGET_PAGE_BITS + 3))); | |
1174 | snap->start = first; | |
1175 | snap->end = last; | |
1176 | ||
1177 | page = first >> TARGET_PAGE_BITS; | |
1178 | end = last >> TARGET_PAGE_BITS; | |
1179 | dest = 0; | |
1180 | ||
1181 | rcu_read_lock(); | |
1182 | ||
1183 | blocks = atomic_rcu_read(&ram_list.dirty_memory[client]); | |
1184 | ||
1185 | while (page < end) { | |
1186 | unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; | |
1187 | unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; | |
1188 | unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset); | |
1189 | ||
1190 | assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL))); | |
1191 | assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL))); | |
1192 | offset >>= BITS_PER_LEVEL; | |
1193 | ||
1194 | bitmap_copy_and_clear_atomic(snap->dirty + dest, | |
1195 | blocks->blocks[idx] + offset, | |
1196 | num); | |
1197 | page += num; | |
1198 | dest += num >> BITS_PER_LEVEL; | |
1199 | } | |
1200 | ||
1201 | rcu_read_unlock(); | |
1202 | ||
1203 | if (tcg_enabled()) { | |
1204 | tlb_reset_dirty_range_all(start, length); | |
1205 | } | |
1206 | ||
1207 | return snap; | |
1208 | } | |
1209 | ||
1210 | bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap, | |
1211 | ram_addr_t start, | |
1212 | ram_addr_t length) | |
1213 | { | |
1214 | unsigned long page, end; | |
1215 | ||
1216 | assert(start >= snap->start); | |
1217 | assert(start + length <= snap->end); | |
1218 | ||
1219 | end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS; | |
1220 | page = (start - snap->start) >> TARGET_PAGE_BITS; | |
1221 | ||
1222 | while (page < end) { | |
1223 | if (test_bit(page, snap->dirty)) { | |
1224 | return true; | |
1225 | } | |
1226 | page++; | |
1227 | } | |
1228 | return false; | |
1229 | } | |
1230 | ||
79e2b9ae | 1231 | /* Called from RCU critical section */ |
bb0e627a | 1232 | hwaddr memory_region_section_get_iotlb(CPUState *cpu, |
149f54b5 PB |
1233 | MemoryRegionSection *section, |
1234 | target_ulong vaddr, | |
1235 | hwaddr paddr, hwaddr xlat, | |
1236 | int prot, | |
1237 | target_ulong *address) | |
e5548617 | 1238 | { |
a8170e5e | 1239 | hwaddr iotlb; |
e5548617 BS |
1240 | CPUWatchpoint *wp; |
1241 | ||
cc5bea60 | 1242 | if (memory_region_is_ram(section->mr)) { |
e5548617 | 1243 | /* Normal RAM. */ |
e4e69794 | 1244 | iotlb = memory_region_get_ram_addr(section->mr) + xlat; |
e5548617 | 1245 | if (!section->readonly) { |
b41aac4f | 1246 | iotlb |= PHYS_SECTION_NOTDIRTY; |
e5548617 | 1247 | } else { |
b41aac4f | 1248 | iotlb |= PHYS_SECTION_ROM; |
e5548617 BS |
1249 | } |
1250 | } else { | |
0b8e2c10 PM |
1251 | AddressSpaceDispatch *d; |
1252 | ||
16620684 | 1253 | d = flatview_to_dispatch(section->fv); |
0b8e2c10 | 1254 | iotlb = section - d->map.sections; |
149f54b5 | 1255 | iotlb += xlat; |
e5548617 BS |
1256 | } |
1257 | ||
1258 | /* Make accesses to pages with watchpoints go via the | |
1259 | watchpoint trap routines. */ | |
ff4700b0 | 1260 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d | 1261 | if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) { |
e5548617 BS |
1262 | /* Avoid trapping reads of pages with a write breakpoint. */ |
1263 | if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) { | |
b41aac4f | 1264 | iotlb = PHYS_SECTION_WATCH + paddr; |
e5548617 BS |
1265 | *address |= TLB_MMIO; |
1266 | break; | |
1267 | } | |
1268 | } | |
1269 | } | |
1270 | ||
1271 | return iotlb; | |
1272 | } | |
9fa3e853 FB |
1273 | #endif /* defined(CONFIG_USER_ONLY) */ |
1274 | ||
e2eef170 | 1275 | #if !defined(CONFIG_USER_ONLY) |
8da3ff18 | 1276 | |
c227f099 | 1277 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, |
5312bd8b | 1278 | uint16_t section); |
16620684 | 1279 | static subpage_t *subpage_init(FlatView *fv, hwaddr base); |
54688b1e | 1280 | |
a2b257d6 IM |
1281 | static void *(*phys_mem_alloc)(size_t size, uint64_t *align) = |
1282 | qemu_anon_ram_alloc; | |
91138037 MA |
1283 | |
1284 | /* | |
1285 | * Set a custom physical guest memory alloator. | |
1286 | * Accelerators with unusual needs may need this. Hopefully, we can | |
1287 | * get rid of it eventually. | |
1288 | */ | |
a2b257d6 | 1289 | void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align)) |
91138037 MA |
1290 | { |
1291 | phys_mem_alloc = alloc; | |
1292 | } | |
1293 | ||
53cb28cb MA |
1294 | static uint16_t phys_section_add(PhysPageMap *map, |
1295 | MemoryRegionSection *section) | |
5312bd8b | 1296 | { |
68f3f65b PB |
1297 | /* The physical section number is ORed with a page-aligned |
1298 | * pointer to produce the iotlb entries. Thus it should | |
1299 | * never overflow into the page-aligned value. | |
1300 | */ | |
53cb28cb | 1301 | assert(map->sections_nb < TARGET_PAGE_SIZE); |
68f3f65b | 1302 | |
53cb28cb MA |
1303 | if (map->sections_nb == map->sections_nb_alloc) { |
1304 | map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); | |
1305 | map->sections = g_renew(MemoryRegionSection, map->sections, | |
1306 | map->sections_nb_alloc); | |
5312bd8b | 1307 | } |
53cb28cb | 1308 | map->sections[map->sections_nb] = *section; |
dfde4e6e | 1309 | memory_region_ref(section->mr); |
53cb28cb | 1310 | return map->sections_nb++; |
5312bd8b AK |
1311 | } |
1312 | ||
058bc4b5 PB |
1313 | static void phys_section_destroy(MemoryRegion *mr) |
1314 | { | |
55b4e80b DS |
1315 | bool have_sub_page = mr->subpage; |
1316 | ||
dfde4e6e PB |
1317 | memory_region_unref(mr); |
1318 | ||
55b4e80b | 1319 | if (have_sub_page) { |
058bc4b5 | 1320 | subpage_t *subpage = container_of(mr, subpage_t, iomem); |
b4fefef9 | 1321 | object_unref(OBJECT(&subpage->iomem)); |
058bc4b5 PB |
1322 | g_free(subpage); |
1323 | } | |
1324 | } | |
1325 | ||
6092666e | 1326 | static void phys_sections_free(PhysPageMap *map) |
5312bd8b | 1327 | { |
9affd6fc PB |
1328 | while (map->sections_nb > 0) { |
1329 | MemoryRegionSection *section = &map->sections[--map->sections_nb]; | |
058bc4b5 PB |
1330 | phys_section_destroy(section->mr); |
1331 | } | |
9affd6fc PB |
1332 | g_free(map->sections); |
1333 | g_free(map->nodes); | |
5312bd8b AK |
1334 | } |
1335 | ||
9950322a | 1336 | static void register_subpage(FlatView *fv, MemoryRegionSection *section) |
0f0cb164 | 1337 | { |
9950322a | 1338 | AddressSpaceDispatch *d = flatview_to_dispatch(fv); |
0f0cb164 | 1339 | subpage_t *subpage; |
a8170e5e | 1340 | hwaddr base = section->offset_within_address_space |
0f0cb164 | 1341 | & TARGET_PAGE_MASK; |
003a0cf2 | 1342 | MemoryRegionSection *existing = phys_page_find(d, base); |
0f0cb164 AK |
1343 | MemoryRegionSection subsection = { |
1344 | .offset_within_address_space = base, | |
052e87b0 | 1345 | .size = int128_make64(TARGET_PAGE_SIZE), |
0f0cb164 | 1346 | }; |
a8170e5e | 1347 | hwaddr start, end; |
0f0cb164 | 1348 | |
f3705d53 | 1349 | assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); |
0f0cb164 | 1350 | |
f3705d53 | 1351 | if (!(existing->mr->subpage)) { |
16620684 AK |
1352 | subpage = subpage_init(fv, base); |
1353 | subsection.fv = fv; | |
0f0cb164 | 1354 | subsection.mr = &subpage->iomem; |
ac1970fb | 1355 | phys_page_set(d, base >> TARGET_PAGE_BITS, 1, |
53cb28cb | 1356 | phys_section_add(&d->map, &subsection)); |
0f0cb164 | 1357 | } else { |
f3705d53 | 1358 | subpage = container_of(existing->mr, subpage_t, iomem); |
0f0cb164 AK |
1359 | } |
1360 | start = section->offset_within_address_space & ~TARGET_PAGE_MASK; | |
052e87b0 | 1361 | end = start + int128_get64(section->size) - 1; |
53cb28cb MA |
1362 | subpage_register(subpage, start, end, |
1363 | phys_section_add(&d->map, section)); | |
0f0cb164 AK |
1364 | } |
1365 | ||
1366 | ||
9950322a | 1367 | static void register_multipage(FlatView *fv, |
052e87b0 | 1368 | MemoryRegionSection *section) |
33417e70 | 1369 | { |
9950322a | 1370 | AddressSpaceDispatch *d = flatview_to_dispatch(fv); |
a8170e5e | 1371 | hwaddr start_addr = section->offset_within_address_space; |
53cb28cb | 1372 | uint16_t section_index = phys_section_add(&d->map, section); |
052e87b0 PB |
1373 | uint64_t num_pages = int128_get64(int128_rshift(section->size, |
1374 | TARGET_PAGE_BITS)); | |
dd81124b | 1375 | |
733d5ef5 PB |
1376 | assert(num_pages); |
1377 | phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); | |
33417e70 FB |
1378 | } |
1379 | ||
8629d3fc | 1380 | void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section) |
0f0cb164 | 1381 | { |
99b9cc06 | 1382 | MemoryRegionSection now = *section, remain = *section; |
052e87b0 | 1383 | Int128 page_size = int128_make64(TARGET_PAGE_SIZE); |
0f0cb164 | 1384 | |
733d5ef5 PB |
1385 | if (now.offset_within_address_space & ~TARGET_PAGE_MASK) { |
1386 | uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space) | |
1387 | - now.offset_within_address_space; | |
1388 | ||
052e87b0 | 1389 | now.size = int128_min(int128_make64(left), now.size); |
9950322a | 1390 | register_subpage(fv, &now); |
733d5ef5 | 1391 | } else { |
052e87b0 | 1392 | now.size = int128_zero(); |
733d5ef5 | 1393 | } |
052e87b0 PB |
1394 | while (int128_ne(remain.size, now.size)) { |
1395 | remain.size = int128_sub(remain.size, now.size); | |
1396 | remain.offset_within_address_space += int128_get64(now.size); | |
1397 | remain.offset_within_region += int128_get64(now.size); | |
69b67646 | 1398 | now = remain; |
052e87b0 | 1399 | if (int128_lt(remain.size, page_size)) { |
9950322a | 1400 | register_subpage(fv, &now); |
88266249 | 1401 | } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { |
052e87b0 | 1402 | now.size = page_size; |
9950322a | 1403 | register_subpage(fv, &now); |
69b67646 | 1404 | } else { |
052e87b0 | 1405 | now.size = int128_and(now.size, int128_neg(page_size)); |
9950322a | 1406 | register_multipage(fv, &now); |
69b67646 | 1407 | } |
0f0cb164 AK |
1408 | } |
1409 | } | |
1410 | ||
62a2744c SY |
1411 | void qemu_flush_coalesced_mmio_buffer(void) |
1412 | { | |
1413 | if (kvm_enabled()) | |
1414 | kvm_flush_coalesced_mmio_buffer(); | |
1415 | } | |
1416 | ||
b2a8658e UD |
1417 | void qemu_mutex_lock_ramlist(void) |
1418 | { | |
1419 | qemu_mutex_lock(&ram_list.mutex); | |
1420 | } | |
1421 | ||
1422 | void qemu_mutex_unlock_ramlist(void) | |
1423 | { | |
1424 | qemu_mutex_unlock(&ram_list.mutex); | |
1425 | } | |
1426 | ||
be9b23c4 PX |
1427 | void ram_block_dump(Monitor *mon) |
1428 | { | |
1429 | RAMBlock *block; | |
1430 | char *psize; | |
1431 | ||
1432 | rcu_read_lock(); | |
1433 | monitor_printf(mon, "%24s %8s %18s %18s %18s\n", | |
1434 | "Block Name", "PSize", "Offset", "Used", "Total"); | |
1435 | RAMBLOCK_FOREACH(block) { | |
1436 | psize = size_to_str(block->page_size); | |
1437 | monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64 | |
1438 | " 0x%016" PRIx64 "\n", block->idstr, psize, | |
1439 | (uint64_t)block->offset, | |
1440 | (uint64_t)block->used_length, | |
1441 | (uint64_t)block->max_length); | |
1442 | g_free(psize); | |
1443 | } | |
1444 | rcu_read_unlock(); | |
1445 | } | |
1446 | ||
9c607668 AK |
1447 | #ifdef __linux__ |
1448 | /* | |
1449 | * FIXME TOCTTOU: this iterates over memory backends' mem-path, which | |
1450 | * may or may not name the same files / on the same filesystem now as | |
1451 | * when we actually open and map them. Iterate over the file | |
1452 | * descriptors instead, and use qemu_fd_getpagesize(). | |
1453 | */ | |
1454 | static int find_max_supported_pagesize(Object *obj, void *opaque) | |
1455 | { | |
1456 | char *mem_path; | |
1457 | long *hpsize_min = opaque; | |
1458 | ||
1459 | if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { | |
1460 | mem_path = object_property_get_str(obj, "mem-path", NULL); | |
1461 | if (mem_path) { | |
1462 | long hpsize = qemu_mempath_getpagesize(mem_path); | |
1463 | if (hpsize < *hpsize_min) { | |
1464 | *hpsize_min = hpsize; | |
1465 | } | |
1466 | } else { | |
1467 | *hpsize_min = getpagesize(); | |
1468 | } | |
1469 | } | |
1470 | ||
1471 | return 0; | |
1472 | } | |
1473 | ||
1474 | long qemu_getrampagesize(void) | |
1475 | { | |
1476 | long hpsize = LONG_MAX; | |
1477 | long mainrampagesize; | |
1478 | Object *memdev_root; | |
1479 | ||
1480 | if (mem_path) { | |
1481 | mainrampagesize = qemu_mempath_getpagesize(mem_path); | |
1482 | } else { | |
1483 | mainrampagesize = getpagesize(); | |
1484 | } | |
1485 | ||
1486 | /* it's possible we have memory-backend objects with | |
1487 | * hugepage-backed RAM. these may get mapped into system | |
1488 | * address space via -numa parameters or memory hotplug | |
1489 | * hooks. we want to take these into account, but we | |
1490 | * also want to make sure these supported hugepage | |
1491 | * sizes are applicable across the entire range of memory | |
1492 | * we may boot from, so we take the min across all | |
1493 | * backends, and assume normal pages in cases where a | |
1494 | * backend isn't backed by hugepages. | |
1495 | */ | |
1496 | memdev_root = object_resolve_path("/objects", NULL); | |
1497 | if (memdev_root) { | |
1498 | object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize); | |
1499 | } | |
1500 | if (hpsize == LONG_MAX) { | |
1501 | /* No additional memory regions found ==> Report main RAM page size */ | |
1502 | return mainrampagesize; | |
1503 | } | |
1504 | ||
1505 | /* If NUMA is disabled or the NUMA nodes are not backed with a | |
1506 | * memory-backend, then there is at least one node using "normal" RAM, | |
1507 | * so if its page size is smaller we have got to report that size instead. | |
1508 | */ | |
1509 | if (hpsize > mainrampagesize && | |
1510 | (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) { | |
1511 | static bool warned; | |
1512 | if (!warned) { | |
1513 | error_report("Huge page support disabled (n/a for main memory)."); | |
1514 | warned = true; | |
1515 | } | |
1516 | return mainrampagesize; | |
1517 | } | |
1518 | ||
1519 | return hpsize; | |
1520 | } | |
1521 | #else | |
1522 | long qemu_getrampagesize(void) | |
1523 | { | |
1524 | return getpagesize(); | |
1525 | } | |
1526 | #endif | |
1527 | ||
e1e84ba0 | 1528 | #ifdef __linux__ |
d6af99c9 HZ |
1529 | static int64_t get_file_size(int fd) |
1530 | { | |
1531 | int64_t size = lseek(fd, 0, SEEK_END); | |
1532 | if (size < 0) { | |
1533 | return -errno; | |
1534 | } | |
1535 | return size; | |
1536 | } | |
1537 | ||
8d37b030 MAL |
1538 | static int file_ram_open(const char *path, |
1539 | const char *region_name, | |
1540 | bool *created, | |
1541 | Error **errp) | |
c902760f MT |
1542 | { |
1543 | char *filename; | |
8ca761f6 PF |
1544 | char *sanitized_name; |
1545 | char *c; | |
5c3ece79 | 1546 | int fd = -1; |
c902760f | 1547 | |
8d37b030 | 1548 | *created = false; |
fd97fd44 MA |
1549 | for (;;) { |
1550 | fd = open(path, O_RDWR); | |
1551 | if (fd >= 0) { | |
1552 | /* @path names an existing file, use it */ | |
1553 | break; | |
8d31d6b6 | 1554 | } |
fd97fd44 MA |
1555 | if (errno == ENOENT) { |
1556 | /* @path names a file that doesn't exist, create it */ | |
1557 | fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644); | |
1558 | if (fd >= 0) { | |
8d37b030 | 1559 | *created = true; |
fd97fd44 MA |
1560 | break; |
1561 | } | |
1562 | } else if (errno == EISDIR) { | |
1563 | /* @path names a directory, create a file there */ | |
1564 | /* Make name safe to use with mkstemp by replacing '/' with '_'. */ | |
8d37b030 | 1565 | sanitized_name = g_strdup(region_name); |
fd97fd44 MA |
1566 | for (c = sanitized_name; *c != '\0'; c++) { |
1567 | if (*c == '/') { | |
1568 | *c = '_'; | |
1569 | } | |
1570 | } | |
8ca761f6 | 1571 | |
fd97fd44 MA |
1572 | filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, |
1573 | sanitized_name); | |
1574 | g_free(sanitized_name); | |
8d31d6b6 | 1575 | |
fd97fd44 MA |
1576 | fd = mkstemp(filename); |
1577 | if (fd >= 0) { | |
1578 | unlink(filename); | |
1579 | g_free(filename); | |
1580 | break; | |
1581 | } | |
1582 | g_free(filename); | |
8d31d6b6 | 1583 | } |
fd97fd44 MA |
1584 | if (errno != EEXIST && errno != EINTR) { |
1585 | error_setg_errno(errp, errno, | |
1586 | "can't open backing store %s for guest RAM", | |
1587 | path); | |
8d37b030 | 1588 | return -1; |
fd97fd44 MA |
1589 | } |
1590 | /* | |
1591 | * Try again on EINTR and EEXIST. The latter happens when | |
1592 | * something else creates the file between our two open(). | |
1593 | */ | |
8d31d6b6 | 1594 | } |
c902760f | 1595 | |
8d37b030 MAL |
1596 | return fd; |
1597 | } | |
1598 | ||
1599 | static void *file_ram_alloc(RAMBlock *block, | |
1600 | ram_addr_t memory, | |
1601 | int fd, | |
1602 | bool truncate, | |
1603 | Error **errp) | |
1604 | { | |
1605 | void *area; | |
1606 | ||
863e9621 | 1607 | block->page_size = qemu_fd_getpagesize(fd); |
8360668e HZ |
1608 | block->mr->align = block->page_size; |
1609 | #if defined(__s390x__) | |
1610 | if (kvm_enabled()) { | |
1611 | block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN); | |
1612 | } | |
1613 | #endif | |
fd97fd44 | 1614 | |
863e9621 | 1615 | if (memory < block->page_size) { |
fd97fd44 | 1616 | error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " |
863e9621 DDAG |
1617 | "or larger than page size 0x%zx", |
1618 | memory, block->page_size); | |
8d37b030 | 1619 | return NULL; |
1775f111 HZ |
1620 | } |
1621 | ||
863e9621 | 1622 | memory = ROUND_UP(memory, block->page_size); |
c902760f MT |
1623 | |
1624 | /* | |
1625 | * ftruncate is not supported by hugetlbfs in older | |
1626 | * hosts, so don't bother bailing out on errors. | |
1627 | * If anything goes wrong with it under other filesystems, | |
1628 | * mmap will fail. | |
d6af99c9 HZ |
1629 | * |
1630 | * Do not truncate the non-empty backend file to avoid corrupting | |
1631 | * the existing data in the file. Disabling shrinking is not | |
1632 | * enough. For example, the current vNVDIMM implementation stores | |
1633 | * the guest NVDIMM labels at the end of the backend file. If the | |
1634 | * backend file is later extended, QEMU will not be able to find | |
1635 | * those labels. Therefore, extending the non-empty backend file | |
1636 | * is disabled as well. | |
c902760f | 1637 | */ |
8d37b030 | 1638 | if (truncate && ftruncate(fd, memory)) { |
9742bf26 | 1639 | perror("ftruncate"); |
7f56e740 | 1640 | } |
c902760f | 1641 | |
d2f39add DD |
1642 | area = qemu_ram_mmap(fd, memory, block->mr->align, |
1643 | block->flags & RAM_SHARED); | |
c902760f | 1644 | if (area == MAP_FAILED) { |
7f56e740 | 1645 | error_setg_errno(errp, errno, |
fd97fd44 | 1646 | "unable to map backing store for guest RAM"); |
8d37b030 | 1647 | return NULL; |
c902760f | 1648 | } |
ef36fa14 MT |
1649 | |
1650 | if (mem_prealloc) { | |
1e356fc1 | 1651 | os_mem_prealloc(fd, area, memory, smp_cpus, errp); |
056b68af | 1652 | if (errp && *errp) { |
8d37b030 MAL |
1653 | qemu_ram_munmap(area, memory); |
1654 | return NULL; | |
056b68af | 1655 | } |
ef36fa14 MT |
1656 | } |
1657 | ||
04b16653 | 1658 | block->fd = fd; |
c902760f MT |
1659 | return area; |
1660 | } | |
1661 | #endif | |
1662 | ||
154cc9ea DDAG |
1663 | /* Allocate space within the ram_addr_t space that governs the |
1664 | * dirty bitmaps. | |
1665 | * Called with the ramlist lock held. | |
1666 | */ | |
d17b5288 | 1667 | static ram_addr_t find_ram_offset(ram_addr_t size) |
04b16653 AW |
1668 | { |
1669 | RAMBlock *block, *next_block; | |
3e837b2c | 1670 | ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; |
04b16653 | 1671 | |
49cd9ac6 SH |
1672 | assert(size != 0); /* it would hand out same offset multiple times */ |
1673 | ||
0dc3f44a | 1674 | if (QLIST_EMPTY_RCU(&ram_list.blocks)) { |
04b16653 | 1675 | return 0; |
0d53d9fe | 1676 | } |
04b16653 | 1677 | |
99e15582 | 1678 | RAMBLOCK_FOREACH(block) { |
154cc9ea | 1679 | ram_addr_t candidate, next = RAM_ADDR_MAX; |
04b16653 | 1680 | |
801110ab DDAG |
1681 | /* Align blocks to start on a 'long' in the bitmap |
1682 | * which makes the bitmap sync'ing take the fast path. | |
1683 | */ | |
154cc9ea | 1684 | candidate = block->offset + block->max_length; |
801110ab | 1685 | candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS); |
04b16653 | 1686 | |
154cc9ea DDAG |
1687 | /* Search for the closest following block |
1688 | * and find the gap. | |
1689 | */ | |
99e15582 | 1690 | RAMBLOCK_FOREACH(next_block) { |
154cc9ea | 1691 | if (next_block->offset >= candidate) { |
04b16653 AW |
1692 | next = MIN(next, next_block->offset); |
1693 | } | |
1694 | } | |
154cc9ea DDAG |
1695 | |
1696 | /* If it fits remember our place and remember the size | |
1697 | * of gap, but keep going so that we might find a smaller | |
1698 | * gap to fill so avoiding fragmentation. | |
1699 | */ | |
1700 | if (next - candidate >= size && next - candidate < mingap) { | |
1701 | offset = candidate; | |
1702 | mingap = next - candidate; | |
04b16653 | 1703 | } |
154cc9ea DDAG |
1704 | |
1705 | trace_find_ram_offset_loop(size, candidate, offset, next, mingap); | |
04b16653 | 1706 | } |
3e837b2c AW |
1707 | |
1708 | if (offset == RAM_ADDR_MAX) { | |
1709 | fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", | |
1710 | (uint64_t)size); | |
1711 | abort(); | |
1712 | } | |
1713 | ||
154cc9ea DDAG |
1714 | trace_find_ram_offset(size, offset); |
1715 | ||
04b16653 AW |
1716 | return offset; |
1717 | } | |
1718 | ||
b8c48993 | 1719 | unsigned long last_ram_page(void) |
d17b5288 AW |
1720 | { |
1721 | RAMBlock *block; | |
1722 | ram_addr_t last = 0; | |
1723 | ||
0dc3f44a | 1724 | rcu_read_lock(); |
99e15582 | 1725 | RAMBLOCK_FOREACH(block) { |
62be4e3a | 1726 | last = MAX(last, block->offset + block->max_length); |
0d53d9fe | 1727 | } |
0dc3f44a | 1728 | rcu_read_unlock(); |
b8c48993 | 1729 | return last >> TARGET_PAGE_BITS; |
d17b5288 AW |
1730 | } |
1731 | ||
ddb97f1d JB |
1732 | static void qemu_ram_setup_dump(void *addr, ram_addr_t size) |
1733 | { | |
1734 | int ret; | |
ddb97f1d JB |
1735 | |
1736 | /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ | |
47c8ca53 | 1737 | if (!machine_dump_guest_core(current_machine)) { |
ddb97f1d JB |
1738 | ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); |
1739 | if (ret) { | |
1740 | perror("qemu_madvise"); | |
1741 | fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " | |
1742 | "but dump_guest_core=off specified\n"); | |
1743 | } | |
1744 | } | |
1745 | } | |
1746 | ||
422148d3 DDAG |
1747 | const char *qemu_ram_get_idstr(RAMBlock *rb) |
1748 | { | |
1749 | return rb->idstr; | |
1750 | } | |
1751 | ||
463a4ac2 DDAG |
1752 | bool qemu_ram_is_shared(RAMBlock *rb) |
1753 | { | |
1754 | return rb->flags & RAM_SHARED; | |
1755 | } | |
1756 | ||
ae3a7047 | 1757 | /* Called with iothread lock held. */ |
fa53a0e5 | 1758 | void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev) |
20cfe881 | 1759 | { |
fa53a0e5 | 1760 | RAMBlock *block; |
20cfe881 | 1761 | |
c5705a77 AK |
1762 | assert(new_block); |
1763 | assert(!new_block->idstr[0]); | |
84b89d78 | 1764 | |
09e5ab63 AL |
1765 | if (dev) { |
1766 | char *id = qdev_get_dev_path(dev); | |
84b89d78 CM |
1767 | if (id) { |
1768 | snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); | |
7267c094 | 1769 | g_free(id); |
84b89d78 CM |
1770 | } |
1771 | } | |
1772 | pstrcat(new_block->idstr, sizeof(new_block->idstr), name); | |
1773 | ||
ab0a9956 | 1774 | rcu_read_lock(); |
99e15582 | 1775 | RAMBLOCK_FOREACH(block) { |
fa53a0e5 GA |
1776 | if (block != new_block && |
1777 | !strcmp(block->idstr, new_block->idstr)) { | |
84b89d78 CM |
1778 | fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", |
1779 | new_block->idstr); | |
1780 | abort(); | |
1781 | } | |
1782 | } | |
0dc3f44a | 1783 | rcu_read_unlock(); |
c5705a77 AK |
1784 | } |
1785 | ||
ae3a7047 | 1786 | /* Called with iothread lock held. */ |
fa53a0e5 | 1787 | void qemu_ram_unset_idstr(RAMBlock *block) |
20cfe881 | 1788 | { |
ae3a7047 MD |
1789 | /* FIXME: arch_init.c assumes that this is not called throughout |
1790 | * migration. Ignore the problem since hot-unplug during migration | |
1791 | * does not work anyway. | |
1792 | */ | |
20cfe881 HT |
1793 | if (block) { |
1794 | memset(block->idstr, 0, sizeof(block->idstr)); | |
1795 | } | |
1796 | } | |
1797 | ||
863e9621 DDAG |
1798 | size_t qemu_ram_pagesize(RAMBlock *rb) |
1799 | { | |
1800 | return rb->page_size; | |
1801 | } | |
1802 | ||
67f11b5c DDAG |
1803 | /* Returns the largest size of page in use */ |
1804 | size_t qemu_ram_pagesize_largest(void) | |
1805 | { | |
1806 | RAMBlock *block; | |
1807 | size_t largest = 0; | |
1808 | ||
99e15582 | 1809 | RAMBLOCK_FOREACH(block) { |
67f11b5c DDAG |
1810 | largest = MAX(largest, qemu_ram_pagesize(block)); |
1811 | } | |
1812 | ||
1813 | return largest; | |
1814 | } | |
1815 | ||
8490fc78 LC |
1816 | static int memory_try_enable_merging(void *addr, size_t len) |
1817 | { | |
75cc7f01 | 1818 | if (!machine_mem_merge(current_machine)) { |
8490fc78 LC |
1819 | /* disabled by the user */ |
1820 | return 0; | |
1821 | } | |
1822 | ||
1823 | return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); | |
1824 | } | |
1825 | ||
62be4e3a MT |
1826 | /* Only legal before guest might have detected the memory size: e.g. on |
1827 | * incoming migration, or right after reset. | |
1828 | * | |
1829 | * As memory core doesn't know how is memory accessed, it is up to | |
1830 | * resize callback to update device state and/or add assertions to detect | |
1831 | * misuse, if necessary. | |
1832 | */ | |
fa53a0e5 | 1833 | int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp) |
62be4e3a | 1834 | { |
62be4e3a MT |
1835 | assert(block); |
1836 | ||
4ed023ce | 1837 | newsize = HOST_PAGE_ALIGN(newsize); |
129ddaf3 | 1838 | |
62be4e3a MT |
1839 | if (block->used_length == newsize) { |
1840 | return 0; | |
1841 | } | |
1842 | ||
1843 | if (!(block->flags & RAM_RESIZEABLE)) { | |
1844 | error_setg_errno(errp, EINVAL, | |
1845 | "Length mismatch: %s: 0x" RAM_ADDR_FMT | |
1846 | " in != 0x" RAM_ADDR_FMT, block->idstr, | |
1847 | newsize, block->used_length); | |
1848 | return -EINVAL; | |
1849 | } | |
1850 | ||
1851 | if (block->max_length < newsize) { | |
1852 | error_setg_errno(errp, EINVAL, | |
1853 | "Length too large: %s: 0x" RAM_ADDR_FMT | |
1854 | " > 0x" RAM_ADDR_FMT, block->idstr, | |
1855 | newsize, block->max_length); | |
1856 | return -EINVAL; | |
1857 | } | |
1858 | ||
1859 | cpu_physical_memory_clear_dirty_range(block->offset, block->used_length); | |
1860 | block->used_length = newsize; | |
58d2707e PB |
1861 | cpu_physical_memory_set_dirty_range(block->offset, block->used_length, |
1862 | DIRTY_CLIENTS_ALL); | |
62be4e3a MT |
1863 | memory_region_set_size(block->mr, newsize); |
1864 | if (block->resized) { | |
1865 | block->resized(block->idstr, newsize, block->host); | |
1866 | } | |
1867 | return 0; | |
1868 | } | |
1869 | ||
5b82b703 SH |
1870 | /* Called with ram_list.mutex held */ |
1871 | static void dirty_memory_extend(ram_addr_t old_ram_size, | |
1872 | ram_addr_t new_ram_size) | |
1873 | { | |
1874 | ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size, | |
1875 | DIRTY_MEMORY_BLOCK_SIZE); | |
1876 | ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size, | |
1877 | DIRTY_MEMORY_BLOCK_SIZE); | |
1878 | int i; | |
1879 | ||
1880 | /* Only need to extend if block count increased */ | |
1881 | if (new_num_blocks <= old_num_blocks) { | |
1882 | return; | |
1883 | } | |
1884 | ||
1885 | for (i = 0; i < DIRTY_MEMORY_NUM; i++) { | |
1886 | DirtyMemoryBlocks *old_blocks; | |
1887 | DirtyMemoryBlocks *new_blocks; | |
1888 | int j; | |
1889 | ||
1890 | old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]); | |
1891 | new_blocks = g_malloc(sizeof(*new_blocks) + | |
1892 | sizeof(new_blocks->blocks[0]) * new_num_blocks); | |
1893 | ||
1894 | if (old_num_blocks) { | |
1895 | memcpy(new_blocks->blocks, old_blocks->blocks, | |
1896 | old_num_blocks * sizeof(old_blocks->blocks[0])); | |
1897 | } | |
1898 | ||
1899 | for (j = old_num_blocks; j < new_num_blocks; j++) { | |
1900 | new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE); | |
1901 | } | |
1902 | ||
1903 | atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks); | |
1904 | ||
1905 | if (old_blocks) { | |
1906 | g_free_rcu(old_blocks, rcu); | |
1907 | } | |
1908 | } | |
1909 | } | |
1910 | ||
528f46af | 1911 | static void ram_block_add(RAMBlock *new_block, Error **errp) |
c5705a77 | 1912 | { |
e1c57ab8 | 1913 | RAMBlock *block; |
0d53d9fe | 1914 | RAMBlock *last_block = NULL; |
2152f5ca | 1915 | ram_addr_t old_ram_size, new_ram_size; |
37aa7a0e | 1916 | Error *err = NULL; |
2152f5ca | 1917 | |
b8c48993 | 1918 | old_ram_size = last_ram_page(); |
c5705a77 | 1919 | |
b2a8658e | 1920 | qemu_mutex_lock_ramlist(); |
9b8424d5 | 1921 | new_block->offset = find_ram_offset(new_block->max_length); |
e1c57ab8 PB |
1922 | |
1923 | if (!new_block->host) { | |
1924 | if (xen_enabled()) { | |
9b8424d5 | 1925 | xen_ram_alloc(new_block->offset, new_block->max_length, |
37aa7a0e MA |
1926 | new_block->mr, &err); |
1927 | if (err) { | |
1928 | error_propagate(errp, err); | |
1929 | qemu_mutex_unlock_ramlist(); | |
39c350ee | 1930 | return; |
37aa7a0e | 1931 | } |
e1c57ab8 | 1932 | } else { |
9b8424d5 | 1933 | new_block->host = phys_mem_alloc(new_block->max_length, |
a2b257d6 | 1934 | &new_block->mr->align); |
39228250 | 1935 | if (!new_block->host) { |
ef701d7b HT |
1936 | error_setg_errno(errp, errno, |
1937 | "cannot set up guest memory '%s'", | |
1938 | memory_region_name(new_block->mr)); | |
1939 | qemu_mutex_unlock_ramlist(); | |
39c350ee | 1940 | return; |
39228250 | 1941 | } |
9b8424d5 | 1942 | memory_try_enable_merging(new_block->host, new_block->max_length); |
6977dfe6 | 1943 | } |
c902760f | 1944 | } |
94a6b54f | 1945 | |
dd631697 LZ |
1946 | new_ram_size = MAX(old_ram_size, |
1947 | (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS); | |
1948 | if (new_ram_size > old_ram_size) { | |
5b82b703 | 1949 | dirty_memory_extend(old_ram_size, new_ram_size); |
dd631697 | 1950 | } |
0d53d9fe MD |
1951 | /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ, |
1952 | * QLIST (which has an RCU-friendly variant) does not have insertion at | |
1953 | * tail, so save the last element in last_block. | |
1954 | */ | |
99e15582 | 1955 | RAMBLOCK_FOREACH(block) { |
0d53d9fe | 1956 | last_block = block; |
9b8424d5 | 1957 | if (block->max_length < new_block->max_length) { |
abb26d63 PB |
1958 | break; |
1959 | } | |
1960 | } | |
1961 | if (block) { | |
0dc3f44a | 1962 | QLIST_INSERT_BEFORE_RCU(block, new_block, next); |
0d53d9fe | 1963 | } else if (last_block) { |
0dc3f44a | 1964 | QLIST_INSERT_AFTER_RCU(last_block, new_block, next); |
0d53d9fe | 1965 | } else { /* list is empty */ |
0dc3f44a | 1966 | QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); |
abb26d63 | 1967 | } |
0d6d3c87 | 1968 | ram_list.mru_block = NULL; |
94a6b54f | 1969 | |
0dc3f44a MD |
1970 | /* Write list before version */ |
1971 | smp_wmb(); | |
f798b07f | 1972 | ram_list.version++; |
b2a8658e | 1973 | qemu_mutex_unlock_ramlist(); |
f798b07f | 1974 | |
9b8424d5 | 1975 | cpu_physical_memory_set_dirty_range(new_block->offset, |
58d2707e PB |
1976 | new_block->used_length, |
1977 | DIRTY_CLIENTS_ALL); | |
94a6b54f | 1978 | |
a904c911 PB |
1979 | if (new_block->host) { |
1980 | qemu_ram_setup_dump(new_block->host, new_block->max_length); | |
1981 | qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); | |
c2cd627d | 1982 | /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */ |
a904c911 | 1983 | qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK); |
0987d735 | 1984 | ram_block_notify_add(new_block->host, new_block->max_length); |
e1c57ab8 | 1985 | } |
94a6b54f | 1986 | } |
e9a1ab19 | 1987 | |
0b183fc8 | 1988 | #ifdef __linux__ |
38b3362d MAL |
1989 | RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr, |
1990 | bool share, int fd, | |
1991 | Error **errp) | |
e1c57ab8 PB |
1992 | { |
1993 | RAMBlock *new_block; | |
ef701d7b | 1994 | Error *local_err = NULL; |
8d37b030 | 1995 | int64_t file_size; |
e1c57ab8 PB |
1996 | |
1997 | if (xen_enabled()) { | |
7f56e740 | 1998 | error_setg(errp, "-mem-path not supported with Xen"); |
528f46af | 1999 | return NULL; |
e1c57ab8 PB |
2000 | } |
2001 | ||
e45e7ae2 MAL |
2002 | if (kvm_enabled() && !kvm_has_sync_mmu()) { |
2003 | error_setg(errp, | |
2004 | "host lacks kvm mmu notifiers, -mem-path unsupported"); | |
2005 | return NULL; | |
2006 | } | |
2007 | ||
e1c57ab8 PB |
2008 | if (phys_mem_alloc != qemu_anon_ram_alloc) { |
2009 | /* | |
2010 | * file_ram_alloc() needs to allocate just like | |
2011 | * phys_mem_alloc, but we haven't bothered to provide | |
2012 | * a hook there. | |
2013 | */ | |
7f56e740 PB |
2014 | error_setg(errp, |
2015 | "-mem-path not supported with this accelerator"); | |
528f46af | 2016 | return NULL; |
e1c57ab8 PB |
2017 | } |
2018 | ||
4ed023ce | 2019 | size = HOST_PAGE_ALIGN(size); |
8d37b030 MAL |
2020 | file_size = get_file_size(fd); |
2021 | if (file_size > 0 && file_size < size) { | |
2022 | error_setg(errp, "backing store %s size 0x%" PRIx64 | |
2023 | " does not match 'size' option 0x" RAM_ADDR_FMT, | |
2024 | mem_path, file_size, size); | |
8d37b030 MAL |
2025 | return NULL; |
2026 | } | |
2027 | ||
e1c57ab8 PB |
2028 | new_block = g_malloc0(sizeof(*new_block)); |
2029 | new_block->mr = mr; | |
9b8424d5 MT |
2030 | new_block->used_length = size; |
2031 | new_block->max_length = size; | |
dbcb8981 | 2032 | new_block->flags = share ? RAM_SHARED : 0; |
8d37b030 | 2033 | new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp); |
7f56e740 PB |
2034 | if (!new_block->host) { |
2035 | g_free(new_block); | |
528f46af | 2036 | return NULL; |
7f56e740 PB |
2037 | } |
2038 | ||
528f46af | 2039 | ram_block_add(new_block, &local_err); |
ef701d7b HT |
2040 | if (local_err) { |
2041 | g_free(new_block); | |
2042 | error_propagate(errp, local_err); | |
528f46af | 2043 | return NULL; |
ef701d7b | 2044 | } |
528f46af | 2045 | return new_block; |
38b3362d MAL |
2046 | |
2047 | } | |
2048 | ||
2049 | ||
2050 | RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, | |
2051 | bool share, const char *mem_path, | |
2052 | Error **errp) | |
2053 | { | |
2054 | int fd; | |
2055 | bool created; | |
2056 | RAMBlock *block; | |
2057 | ||
2058 | fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp); | |
2059 | if (fd < 0) { | |
2060 | return NULL; | |
2061 | } | |
2062 | ||
2063 | block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp); | |
2064 | if (!block) { | |
2065 | if (created) { | |
2066 | unlink(mem_path); | |
2067 | } | |
2068 | close(fd); | |
2069 | return NULL; | |
2070 | } | |
2071 | ||
2072 | return block; | |
e1c57ab8 | 2073 | } |
0b183fc8 | 2074 | #endif |
e1c57ab8 | 2075 | |
62be4e3a | 2076 | static |
528f46af FZ |
2077 | RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size, |
2078 | void (*resized)(const char*, | |
2079 | uint64_t length, | |
2080 | void *host), | |
2081 | void *host, bool resizeable, | |
2082 | MemoryRegion *mr, Error **errp) | |
e1c57ab8 PB |
2083 | { |
2084 | RAMBlock *new_block; | |
ef701d7b | 2085 | Error *local_err = NULL; |
e1c57ab8 | 2086 | |
4ed023ce DDAG |
2087 | size = HOST_PAGE_ALIGN(size); |
2088 | max_size = HOST_PAGE_ALIGN(max_size); | |
e1c57ab8 PB |
2089 | new_block = g_malloc0(sizeof(*new_block)); |
2090 | new_block->mr = mr; | |
62be4e3a | 2091 | new_block->resized = resized; |
9b8424d5 MT |
2092 | new_block->used_length = size; |
2093 | new_block->max_length = max_size; | |
62be4e3a | 2094 | assert(max_size >= size); |
e1c57ab8 | 2095 | new_block->fd = -1; |
863e9621 | 2096 | new_block->page_size = getpagesize(); |
e1c57ab8 PB |
2097 | new_block->host = host; |
2098 | if (host) { | |
7bd4f430 | 2099 | new_block->flags |= RAM_PREALLOC; |
e1c57ab8 | 2100 | } |
62be4e3a MT |
2101 | if (resizeable) { |
2102 | new_block->flags |= RAM_RESIZEABLE; | |
2103 | } | |
528f46af | 2104 | ram_block_add(new_block, &local_err); |
ef701d7b HT |
2105 | if (local_err) { |
2106 | g_free(new_block); | |
2107 | error_propagate(errp, local_err); | |
528f46af | 2108 | return NULL; |
ef701d7b | 2109 | } |
528f46af | 2110 | return new_block; |
e1c57ab8 PB |
2111 | } |
2112 | ||
528f46af | 2113 | RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, |
62be4e3a MT |
2114 | MemoryRegion *mr, Error **errp) |
2115 | { | |
2116 | return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp); | |
2117 | } | |
2118 | ||
528f46af | 2119 | RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp) |
6977dfe6 | 2120 | { |
62be4e3a MT |
2121 | return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp); |
2122 | } | |
2123 | ||
528f46af | 2124 | RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz, |
62be4e3a MT |
2125 | void (*resized)(const char*, |
2126 | uint64_t length, | |
2127 | void *host), | |
2128 | MemoryRegion *mr, Error **errp) | |
2129 | { | |
2130 | return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp); | |
6977dfe6 YT |
2131 | } |
2132 | ||
43771539 PB |
2133 | static void reclaim_ramblock(RAMBlock *block) |
2134 | { | |
2135 | if (block->flags & RAM_PREALLOC) { | |
2136 | ; | |
2137 | } else if (xen_enabled()) { | |
2138 | xen_invalidate_map_cache_entry(block->host); | |
2139 | #ifndef _WIN32 | |
2140 | } else if (block->fd >= 0) { | |
2f3a2bb1 | 2141 | qemu_ram_munmap(block->host, block->max_length); |
43771539 PB |
2142 | close(block->fd); |
2143 | #endif | |
2144 | } else { | |
2145 | qemu_anon_ram_free(block->host, block->max_length); | |
2146 | } | |
2147 | g_free(block); | |
2148 | } | |
2149 | ||
f1060c55 | 2150 | void qemu_ram_free(RAMBlock *block) |
e9a1ab19 | 2151 | { |
85bc2a15 MAL |
2152 | if (!block) { |
2153 | return; | |
2154 | } | |
2155 | ||
0987d735 PB |
2156 | if (block->host) { |
2157 | ram_block_notify_remove(block->host, block->max_length); | |
2158 | } | |
2159 | ||
b2a8658e | 2160 | qemu_mutex_lock_ramlist(); |
f1060c55 FZ |
2161 | QLIST_REMOVE_RCU(block, next); |
2162 | ram_list.mru_block = NULL; | |
2163 | /* Write list before version */ | |
2164 | smp_wmb(); | |
2165 | ram_list.version++; | |
2166 | call_rcu(block, reclaim_ramblock, rcu); | |
b2a8658e | 2167 | qemu_mutex_unlock_ramlist(); |
e9a1ab19 FB |
2168 | } |
2169 | ||
cd19cfa2 HY |
2170 | #ifndef _WIN32 |
2171 | void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) | |
2172 | { | |
2173 | RAMBlock *block; | |
2174 | ram_addr_t offset; | |
2175 | int flags; | |
2176 | void *area, *vaddr; | |
2177 | ||
99e15582 | 2178 | RAMBLOCK_FOREACH(block) { |
cd19cfa2 | 2179 | offset = addr - block->offset; |
9b8424d5 | 2180 | if (offset < block->max_length) { |
1240be24 | 2181 | vaddr = ramblock_ptr(block, offset); |
7bd4f430 | 2182 | if (block->flags & RAM_PREALLOC) { |
cd19cfa2 | 2183 | ; |
dfeaf2ab MA |
2184 | } else if (xen_enabled()) { |
2185 | abort(); | |
cd19cfa2 HY |
2186 | } else { |
2187 | flags = MAP_FIXED; | |
3435f395 | 2188 | if (block->fd >= 0) { |
dbcb8981 PB |
2189 | flags |= (block->flags & RAM_SHARED ? |
2190 | MAP_SHARED : MAP_PRIVATE); | |
3435f395 MA |
2191 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, |
2192 | flags, block->fd, offset); | |
cd19cfa2 | 2193 | } else { |
2eb9fbaa MA |
2194 | /* |
2195 | * Remap needs to match alloc. Accelerators that | |
2196 | * set phys_mem_alloc never remap. If they did, | |
2197 | * we'd need a remap hook here. | |
2198 | */ | |
2199 | assert(phys_mem_alloc == qemu_anon_ram_alloc); | |
2200 | ||
cd19cfa2 HY |
2201 | flags |= MAP_PRIVATE | MAP_ANONYMOUS; |
2202 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, | |
2203 | flags, -1, 0); | |
cd19cfa2 HY |
2204 | } |
2205 | if (area != vaddr) { | |
f15fbc4b AP |
2206 | fprintf(stderr, "Could not remap addr: " |
2207 | RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n", | |
cd19cfa2 HY |
2208 | length, addr); |
2209 | exit(1); | |
2210 | } | |
8490fc78 | 2211 | memory_try_enable_merging(vaddr, length); |
ddb97f1d | 2212 | qemu_ram_setup_dump(vaddr, length); |
cd19cfa2 | 2213 | } |
cd19cfa2 HY |
2214 | } |
2215 | } | |
2216 | } | |
2217 | #endif /* !_WIN32 */ | |
2218 | ||
1b5ec234 | 2219 | /* Return a host pointer to ram allocated with qemu_ram_alloc. |
ae3a7047 MD |
2220 | * This should not be used for general purpose DMA. Use address_space_map |
2221 | * or address_space_rw instead. For local memory (e.g. video ram) that the | |
2222 | * device owns, use memory_region_get_ram_ptr. | |
0dc3f44a | 2223 | * |
49b24afc | 2224 | * Called within RCU critical section. |
1b5ec234 | 2225 | */ |
0878d0e1 | 2226 | void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr) |
1b5ec234 | 2227 | { |
3655cb9c GA |
2228 | RAMBlock *block = ram_block; |
2229 | ||
2230 | if (block == NULL) { | |
2231 | block = qemu_get_ram_block(addr); | |
0878d0e1 | 2232 | addr -= block->offset; |
3655cb9c | 2233 | } |
ae3a7047 MD |
2234 | |
2235 | if (xen_enabled() && block->host == NULL) { | |
0d6d3c87 PB |
2236 | /* We need to check if the requested address is in the RAM |
2237 | * because we don't want to map the entire memory in QEMU. | |
2238 | * In that case just map until the end of the page. | |
2239 | */ | |
2240 | if (block->offset == 0) { | |
1ff7c598 | 2241 | return xen_map_cache(addr, 0, 0, false); |
0d6d3c87 | 2242 | } |
ae3a7047 | 2243 | |
1ff7c598 | 2244 | block->host = xen_map_cache(block->offset, block->max_length, 1, false); |
0d6d3c87 | 2245 | } |
0878d0e1 | 2246 | return ramblock_ptr(block, addr); |
dc828ca1 PB |
2247 | } |
2248 | ||
0878d0e1 | 2249 | /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr |
ae3a7047 | 2250 | * but takes a size argument. |
0dc3f44a | 2251 | * |
e81bcda5 | 2252 | * Called within RCU critical section. |
ae3a7047 | 2253 | */ |
3655cb9c | 2254 | static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr, |
f5aa69bd | 2255 | hwaddr *size, bool lock) |
38bee5dc | 2256 | { |
3655cb9c | 2257 | RAMBlock *block = ram_block; |
8ab934f9 SS |
2258 | if (*size == 0) { |
2259 | return NULL; | |
2260 | } | |
e81bcda5 | 2261 | |
3655cb9c GA |
2262 | if (block == NULL) { |
2263 | block = qemu_get_ram_block(addr); | |
0878d0e1 | 2264 | addr -= block->offset; |
3655cb9c | 2265 | } |
0878d0e1 | 2266 | *size = MIN(*size, block->max_length - addr); |
e81bcda5 PB |
2267 | |
2268 | if (xen_enabled() && block->host == NULL) { | |
2269 | /* We need to check if the requested address is in the RAM | |
2270 | * because we don't want to map the entire memory in QEMU. | |
2271 | * In that case just map the requested area. | |
2272 | */ | |
2273 | if (block->offset == 0) { | |
f5aa69bd | 2274 | return xen_map_cache(addr, *size, lock, lock); |
38bee5dc SS |
2275 | } |
2276 | ||
f5aa69bd | 2277 | block->host = xen_map_cache(block->offset, block->max_length, 1, lock); |
38bee5dc | 2278 | } |
e81bcda5 | 2279 | |
0878d0e1 | 2280 | return ramblock_ptr(block, addr); |
38bee5dc SS |
2281 | } |
2282 | ||
422148d3 DDAG |
2283 | /* |
2284 | * Translates a host ptr back to a RAMBlock, a ram_addr and an offset | |
2285 | * in that RAMBlock. | |
2286 | * | |
2287 | * ptr: Host pointer to look up | |
2288 | * round_offset: If true round the result offset down to a page boundary | |
2289 | * *ram_addr: set to result ram_addr | |
2290 | * *offset: set to result offset within the RAMBlock | |
2291 | * | |
2292 | * Returns: RAMBlock (or NULL if not found) | |
ae3a7047 MD |
2293 | * |
2294 | * By the time this function returns, the returned pointer is not protected | |
2295 | * by RCU anymore. If the caller is not within an RCU critical section and | |
2296 | * does not hold the iothread lock, it must have other means of protecting the | |
2297 | * pointer, such as a reference to the region that includes the incoming | |
2298 | * ram_addr_t. | |
2299 | */ | |
422148d3 | 2300 | RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, |
422148d3 | 2301 | ram_addr_t *offset) |
5579c7f3 | 2302 | { |
94a6b54f PB |
2303 | RAMBlock *block; |
2304 | uint8_t *host = ptr; | |
2305 | ||
868bb33f | 2306 | if (xen_enabled()) { |
f615f396 | 2307 | ram_addr_t ram_addr; |
0dc3f44a | 2308 | rcu_read_lock(); |
f615f396 PB |
2309 | ram_addr = xen_ram_addr_from_mapcache(ptr); |
2310 | block = qemu_get_ram_block(ram_addr); | |
422148d3 | 2311 | if (block) { |
d6b6aec4 | 2312 | *offset = ram_addr - block->offset; |
422148d3 | 2313 | } |
0dc3f44a | 2314 | rcu_read_unlock(); |
422148d3 | 2315 | return block; |
712c2b41 SS |
2316 | } |
2317 | ||
0dc3f44a MD |
2318 | rcu_read_lock(); |
2319 | block = atomic_rcu_read(&ram_list.mru_block); | |
9b8424d5 | 2320 | if (block && block->host && host - block->host < block->max_length) { |
23887b79 PB |
2321 | goto found; |
2322 | } | |
2323 | ||
99e15582 | 2324 | RAMBLOCK_FOREACH(block) { |
432d268c JN |
2325 | /* This case append when the block is not mapped. */ |
2326 | if (block->host == NULL) { | |
2327 | continue; | |
2328 | } | |
9b8424d5 | 2329 | if (host - block->host < block->max_length) { |
23887b79 | 2330 | goto found; |
f471a17e | 2331 | } |
94a6b54f | 2332 | } |
432d268c | 2333 | |
0dc3f44a | 2334 | rcu_read_unlock(); |
1b5ec234 | 2335 | return NULL; |
23887b79 PB |
2336 | |
2337 | found: | |
422148d3 DDAG |
2338 | *offset = (host - block->host); |
2339 | if (round_offset) { | |
2340 | *offset &= TARGET_PAGE_MASK; | |
2341 | } | |
0dc3f44a | 2342 | rcu_read_unlock(); |
422148d3 DDAG |
2343 | return block; |
2344 | } | |
2345 | ||
e3dd7493 DDAG |
2346 | /* |
2347 | * Finds the named RAMBlock | |
2348 | * | |
2349 | * name: The name of RAMBlock to find | |
2350 | * | |
2351 | * Returns: RAMBlock (or NULL if not found) | |
2352 | */ | |
2353 | RAMBlock *qemu_ram_block_by_name(const char *name) | |
2354 | { | |
2355 | RAMBlock *block; | |
2356 | ||
99e15582 | 2357 | RAMBLOCK_FOREACH(block) { |
e3dd7493 DDAG |
2358 | if (!strcmp(name, block->idstr)) { |
2359 | return block; | |
2360 | } | |
2361 | } | |
2362 | ||
2363 | return NULL; | |
2364 | } | |
2365 | ||
422148d3 DDAG |
2366 | /* Some of the softmmu routines need to translate from a host pointer |
2367 | (typically a TLB entry) back to a ram offset. */ | |
07bdaa41 | 2368 | ram_addr_t qemu_ram_addr_from_host(void *ptr) |
422148d3 DDAG |
2369 | { |
2370 | RAMBlock *block; | |
f615f396 | 2371 | ram_addr_t offset; |
422148d3 | 2372 | |
f615f396 | 2373 | block = qemu_ram_block_from_host(ptr, false, &offset); |
422148d3 | 2374 | if (!block) { |
07bdaa41 | 2375 | return RAM_ADDR_INVALID; |
422148d3 DDAG |
2376 | } |
2377 | ||
07bdaa41 | 2378 | return block->offset + offset; |
e890261f | 2379 | } |
f471a17e | 2380 | |
27266271 PM |
2381 | /* Called within RCU critical section. */ |
2382 | void memory_notdirty_write_prepare(NotDirtyInfo *ndi, | |
2383 | CPUState *cpu, | |
2384 | vaddr mem_vaddr, | |
2385 | ram_addr_t ram_addr, | |
2386 | unsigned size) | |
2387 | { | |
2388 | ndi->cpu = cpu; | |
2389 | ndi->ram_addr = ram_addr; | |
2390 | ndi->mem_vaddr = mem_vaddr; | |
2391 | ndi->size = size; | |
2392 | ndi->locked = false; | |
ba051fb5 | 2393 | |
5aa1ef71 | 2394 | assert(tcg_enabled()); |
52159192 | 2395 | if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { |
27266271 | 2396 | ndi->locked = true; |
ba051fb5 | 2397 | tb_lock(); |
0e0df1e2 | 2398 | tb_invalidate_phys_page_fast(ram_addr, size); |
3a7d929e | 2399 | } |
27266271 PM |
2400 | } |
2401 | ||
2402 | /* Called within RCU critical section. */ | |
2403 | void memory_notdirty_write_complete(NotDirtyInfo *ndi) | |
2404 | { | |
2405 | if (ndi->locked) { | |
2406 | tb_unlock(); | |
2407 | } | |
2408 | ||
2409 | /* Set both VGA and migration bits for simplicity and to remove | |
2410 | * the notdirty callback faster. | |
2411 | */ | |
2412 | cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size, | |
2413 | DIRTY_CLIENTS_NOCODE); | |
2414 | /* we remove the notdirty callback only if the code has been | |
2415 | flushed */ | |
2416 | if (!cpu_physical_memory_is_clean(ndi->ram_addr)) { | |
2417 | tlb_set_dirty(ndi->cpu, ndi->mem_vaddr); | |
2418 | } | |
2419 | } | |
2420 | ||
2421 | /* Called within RCU critical section. */ | |
2422 | static void notdirty_mem_write(void *opaque, hwaddr ram_addr, | |
2423 | uint64_t val, unsigned size) | |
2424 | { | |
2425 | NotDirtyInfo ndi; | |
2426 | ||
2427 | memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr, | |
2428 | ram_addr, size); | |
2429 | ||
0e0df1e2 AK |
2430 | switch (size) { |
2431 | case 1: | |
0878d0e1 | 2432 | stb_p(qemu_map_ram_ptr(NULL, ram_addr), val); |
0e0df1e2 AK |
2433 | break; |
2434 | case 2: | |
0878d0e1 | 2435 | stw_p(qemu_map_ram_ptr(NULL, ram_addr), val); |
0e0df1e2 AK |
2436 | break; |
2437 | case 4: | |
0878d0e1 | 2438 | stl_p(qemu_map_ram_ptr(NULL, ram_addr), val); |
0e0df1e2 | 2439 | break; |
ad52878f AB |
2440 | case 8: |
2441 | stq_p(qemu_map_ram_ptr(NULL, ram_addr), val); | |
2442 | break; | |
0e0df1e2 AK |
2443 | default: |
2444 | abort(); | |
3a7d929e | 2445 | } |
27266271 | 2446 | memory_notdirty_write_complete(&ndi); |
9fa3e853 FB |
2447 | } |
2448 | ||
b018ddf6 PB |
2449 | static bool notdirty_mem_accepts(void *opaque, hwaddr addr, |
2450 | unsigned size, bool is_write) | |
2451 | { | |
2452 | return is_write; | |
2453 | } | |
2454 | ||
0e0df1e2 | 2455 | static const MemoryRegionOps notdirty_mem_ops = { |
0e0df1e2 | 2456 | .write = notdirty_mem_write, |
b018ddf6 | 2457 | .valid.accepts = notdirty_mem_accepts, |
0e0df1e2 | 2458 | .endianness = DEVICE_NATIVE_ENDIAN, |
ad52878f AB |
2459 | .valid = { |
2460 | .min_access_size = 1, | |
2461 | .max_access_size = 8, | |
2462 | .unaligned = false, | |
2463 | }, | |
2464 | .impl = { | |
2465 | .min_access_size = 1, | |
2466 | .max_access_size = 8, | |
2467 | .unaligned = false, | |
2468 | }, | |
1ccde1cb FB |
2469 | }; |
2470 | ||
0f459d16 | 2471 | /* Generate a debug exception if a watchpoint has been hit. */ |
66b9b43c | 2472 | static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags) |
0f459d16 | 2473 | { |
93afeade | 2474 | CPUState *cpu = current_cpu; |
568496c0 | 2475 | CPUClass *cc = CPU_GET_CLASS(cpu); |
0f459d16 | 2476 | target_ulong vaddr; |
a1d1bb31 | 2477 | CPUWatchpoint *wp; |
0f459d16 | 2478 | |
5aa1ef71 | 2479 | assert(tcg_enabled()); |
ff4700b0 | 2480 | if (cpu->watchpoint_hit) { |
06d55cc1 AL |
2481 | /* We re-entered the check after replacing the TB. Now raise |
2482 | * the debug interrupt so that is will trigger after the | |
2483 | * current instruction. */ | |
93afeade | 2484 | cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG); |
06d55cc1 AL |
2485 | return; |
2486 | } | |
93afeade | 2487 | vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset; |
40612000 | 2488 | vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len); |
ff4700b0 | 2489 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d PM |
2490 | if (cpu_watchpoint_address_matches(wp, vaddr, len) |
2491 | && (wp->flags & flags)) { | |
08225676 PM |
2492 | if (flags == BP_MEM_READ) { |
2493 | wp->flags |= BP_WATCHPOINT_HIT_READ; | |
2494 | } else { | |
2495 | wp->flags |= BP_WATCHPOINT_HIT_WRITE; | |
2496 | } | |
2497 | wp->hitaddr = vaddr; | |
66b9b43c | 2498 | wp->hitattrs = attrs; |
ff4700b0 | 2499 | if (!cpu->watchpoint_hit) { |
568496c0 SF |
2500 | if (wp->flags & BP_CPU && |
2501 | !cc->debug_check_watchpoint(cpu, wp)) { | |
2502 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
2503 | continue; | |
2504 | } | |
ff4700b0 | 2505 | cpu->watchpoint_hit = wp; |
a5e99826 | 2506 | |
8d04fb55 JK |
2507 | /* Both tb_lock and iothread_mutex will be reset when |
2508 | * cpu_loop_exit or cpu_loop_exit_noexc longjmp | |
2509 | * back into the cpu_exec main loop. | |
a5e99826 FK |
2510 | */ |
2511 | tb_lock(); | |
239c51a5 | 2512 | tb_check_watchpoint(cpu); |
6e140f28 | 2513 | if (wp->flags & BP_STOP_BEFORE_ACCESS) { |
27103424 | 2514 | cpu->exception_index = EXCP_DEBUG; |
5638d180 | 2515 | cpu_loop_exit(cpu); |
6e140f28 | 2516 | } else { |
9b990ee5 RH |
2517 | /* Force execution of one insn next time. */ |
2518 | cpu->cflags_next_tb = 1 | curr_cflags(); | |
6886b980 | 2519 | cpu_loop_exit_noexc(cpu); |
6e140f28 | 2520 | } |
06d55cc1 | 2521 | } |
6e140f28 AL |
2522 | } else { |
2523 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
0f459d16 PB |
2524 | } |
2525 | } | |
2526 | } | |
2527 | ||
6658ffb8 PB |
2528 | /* Watchpoint access routines. Watchpoints are inserted using TLB tricks, |
2529 | so these check for a hit then pass through to the normal out-of-line | |
2530 | phys routines. */ | |
66b9b43c PM |
2531 | static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata, |
2532 | unsigned size, MemTxAttrs attrs) | |
6658ffb8 | 2533 | { |
66b9b43c PM |
2534 | MemTxResult res; |
2535 | uint64_t data; | |
79ed0416 PM |
2536 | int asidx = cpu_asidx_from_attrs(current_cpu, attrs); |
2537 | AddressSpace *as = current_cpu->cpu_ases[asidx].as; | |
66b9b43c PM |
2538 | |
2539 | check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ); | |
1ec9b909 | 2540 | switch (size) { |
66b9b43c | 2541 | case 1: |
79ed0416 | 2542 | data = address_space_ldub(as, addr, attrs, &res); |
66b9b43c PM |
2543 | break; |
2544 | case 2: | |
79ed0416 | 2545 | data = address_space_lduw(as, addr, attrs, &res); |
66b9b43c PM |
2546 | break; |
2547 | case 4: | |
79ed0416 | 2548 | data = address_space_ldl(as, addr, attrs, &res); |
66b9b43c | 2549 | break; |
306526b5 PB |
2550 | case 8: |
2551 | data = address_space_ldq(as, addr, attrs, &res); | |
2552 | break; | |
1ec9b909 AK |
2553 | default: abort(); |
2554 | } | |
66b9b43c PM |
2555 | *pdata = data; |
2556 | return res; | |
6658ffb8 PB |
2557 | } |
2558 | ||
66b9b43c PM |
2559 | static MemTxResult watch_mem_write(void *opaque, hwaddr addr, |
2560 | uint64_t val, unsigned size, | |
2561 | MemTxAttrs attrs) | |
6658ffb8 | 2562 | { |
66b9b43c | 2563 | MemTxResult res; |
79ed0416 PM |
2564 | int asidx = cpu_asidx_from_attrs(current_cpu, attrs); |
2565 | AddressSpace *as = current_cpu->cpu_ases[asidx].as; | |
66b9b43c PM |
2566 | |
2567 | check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE); | |
1ec9b909 | 2568 | switch (size) { |
67364150 | 2569 | case 1: |
79ed0416 | 2570 | address_space_stb(as, addr, val, attrs, &res); |
67364150 MF |
2571 | break; |
2572 | case 2: | |
79ed0416 | 2573 | address_space_stw(as, addr, val, attrs, &res); |
67364150 MF |
2574 | break; |
2575 | case 4: | |
79ed0416 | 2576 | address_space_stl(as, addr, val, attrs, &res); |
67364150 | 2577 | break; |
306526b5 PB |
2578 | case 8: |
2579 | address_space_stq(as, addr, val, attrs, &res); | |
2580 | break; | |
1ec9b909 AK |
2581 | default: abort(); |
2582 | } | |
66b9b43c | 2583 | return res; |
6658ffb8 PB |
2584 | } |
2585 | ||
1ec9b909 | 2586 | static const MemoryRegionOps watch_mem_ops = { |
66b9b43c PM |
2587 | .read_with_attrs = watch_mem_read, |
2588 | .write_with_attrs = watch_mem_write, | |
1ec9b909 | 2589 | .endianness = DEVICE_NATIVE_ENDIAN, |
306526b5 PB |
2590 | .valid = { |
2591 | .min_access_size = 1, | |
2592 | .max_access_size = 8, | |
2593 | .unaligned = false, | |
2594 | }, | |
2595 | .impl = { | |
2596 | .min_access_size = 1, | |
2597 | .max_access_size = 8, | |
2598 | .unaligned = false, | |
2599 | }, | |
6658ffb8 | 2600 | }; |
6658ffb8 | 2601 | |
16620684 AK |
2602 | static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, |
2603 | const uint8_t *buf, int len); | |
2604 | static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len, | |
2605 | bool is_write); | |
2606 | ||
f25a49e0 PM |
2607 | static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data, |
2608 | unsigned len, MemTxAttrs attrs) | |
db7b5426 | 2609 | { |
acc9d80b | 2610 | subpage_t *subpage = opaque; |
ff6cff75 | 2611 | uint8_t buf[8]; |
5c9eb028 | 2612 | MemTxResult res; |
791af8c8 | 2613 | |
db7b5426 | 2614 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2615 | printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__, |
acc9d80b | 2616 | subpage, len, addr); |
db7b5426 | 2617 | #endif |
16620684 | 2618 | res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len); |
5c9eb028 PM |
2619 | if (res) { |
2620 | return res; | |
f25a49e0 | 2621 | } |
acc9d80b JK |
2622 | switch (len) { |
2623 | case 1: | |
f25a49e0 PM |
2624 | *data = ldub_p(buf); |
2625 | return MEMTX_OK; | |
acc9d80b | 2626 | case 2: |
f25a49e0 PM |
2627 | *data = lduw_p(buf); |
2628 | return MEMTX_OK; | |
acc9d80b | 2629 | case 4: |
f25a49e0 PM |
2630 | *data = ldl_p(buf); |
2631 | return MEMTX_OK; | |
ff6cff75 | 2632 | case 8: |
f25a49e0 PM |
2633 | *data = ldq_p(buf); |
2634 | return MEMTX_OK; | |
acc9d80b JK |
2635 | default: |
2636 | abort(); | |
2637 | } | |
db7b5426 BS |
2638 | } |
2639 | ||
f25a49e0 PM |
2640 | static MemTxResult subpage_write(void *opaque, hwaddr addr, |
2641 | uint64_t value, unsigned len, MemTxAttrs attrs) | |
db7b5426 | 2642 | { |
acc9d80b | 2643 | subpage_t *subpage = opaque; |
ff6cff75 | 2644 | uint8_t buf[8]; |
acc9d80b | 2645 | |
db7b5426 | 2646 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2647 | printf("%s: subpage %p len %u addr " TARGET_FMT_plx |
acc9d80b JK |
2648 | " value %"PRIx64"\n", |
2649 | __func__, subpage, len, addr, value); | |
db7b5426 | 2650 | #endif |
acc9d80b JK |
2651 | switch (len) { |
2652 | case 1: | |
2653 | stb_p(buf, value); | |
2654 | break; | |
2655 | case 2: | |
2656 | stw_p(buf, value); | |
2657 | break; | |
2658 | case 4: | |
2659 | stl_p(buf, value); | |
2660 | break; | |
ff6cff75 PB |
2661 | case 8: |
2662 | stq_p(buf, value); | |
2663 | break; | |
acc9d80b JK |
2664 | default: |
2665 | abort(); | |
2666 | } | |
16620684 | 2667 | return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len); |
db7b5426 BS |
2668 | } |
2669 | ||
c353e4cc | 2670 | static bool subpage_accepts(void *opaque, hwaddr addr, |
016e9d62 | 2671 | unsigned len, bool is_write) |
c353e4cc | 2672 | { |
acc9d80b | 2673 | subpage_t *subpage = opaque; |
c353e4cc | 2674 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2675 | printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n", |
acc9d80b | 2676 | __func__, subpage, is_write ? 'w' : 'r', len, addr); |
c353e4cc PB |
2677 | #endif |
2678 | ||
16620684 AK |
2679 | return flatview_access_valid(subpage->fv, addr + subpage->base, |
2680 | len, is_write); | |
c353e4cc PB |
2681 | } |
2682 | ||
70c68e44 | 2683 | static const MemoryRegionOps subpage_ops = { |
f25a49e0 PM |
2684 | .read_with_attrs = subpage_read, |
2685 | .write_with_attrs = subpage_write, | |
ff6cff75 PB |
2686 | .impl.min_access_size = 1, |
2687 | .impl.max_access_size = 8, | |
2688 | .valid.min_access_size = 1, | |
2689 | .valid.max_access_size = 8, | |
c353e4cc | 2690 | .valid.accepts = subpage_accepts, |
70c68e44 | 2691 | .endianness = DEVICE_NATIVE_ENDIAN, |
db7b5426 BS |
2692 | }; |
2693 | ||
c227f099 | 2694 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, |
5312bd8b | 2695 | uint16_t section) |
db7b5426 BS |
2696 | { |
2697 | int idx, eidx; | |
2698 | ||
2699 | if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) | |
2700 | return -1; | |
2701 | idx = SUBPAGE_IDX(start); | |
2702 | eidx = SUBPAGE_IDX(end); | |
2703 | #if defined(DEBUG_SUBPAGE) | |
016e9d62 AK |
2704 | printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", |
2705 | __func__, mmio, start, end, idx, eidx, section); | |
db7b5426 | 2706 | #endif |
db7b5426 | 2707 | for (; idx <= eidx; idx++) { |
5312bd8b | 2708 | mmio->sub_section[idx] = section; |
db7b5426 BS |
2709 | } |
2710 | ||
2711 | return 0; | |
2712 | } | |
2713 | ||
16620684 | 2714 | static subpage_t *subpage_init(FlatView *fv, hwaddr base) |
db7b5426 | 2715 | { |
c227f099 | 2716 | subpage_t *mmio; |
db7b5426 | 2717 | |
2615fabd | 2718 | mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t)); |
16620684 | 2719 | mmio->fv = fv; |
1eec614b | 2720 | mmio->base = base; |
2c9b15ca | 2721 | memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, |
b4fefef9 | 2722 | NULL, TARGET_PAGE_SIZE); |
b3b00c78 | 2723 | mmio->iomem.subpage = true; |
db7b5426 | 2724 | #if defined(DEBUG_SUBPAGE) |
016e9d62 AK |
2725 | printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__, |
2726 | mmio, base, TARGET_PAGE_SIZE); | |
db7b5426 | 2727 | #endif |
b41aac4f | 2728 | subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED); |
db7b5426 BS |
2729 | |
2730 | return mmio; | |
2731 | } | |
2732 | ||
16620684 | 2733 | static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr) |
5312bd8b | 2734 | { |
16620684 | 2735 | assert(fv); |
5312bd8b | 2736 | MemoryRegionSection section = { |
16620684 | 2737 | .fv = fv, |
5312bd8b AK |
2738 | .mr = mr, |
2739 | .offset_within_address_space = 0, | |
2740 | .offset_within_region = 0, | |
052e87b0 | 2741 | .size = int128_2_64(), |
5312bd8b AK |
2742 | }; |
2743 | ||
53cb28cb | 2744 | return phys_section_add(map, §ion); |
5312bd8b AK |
2745 | } |
2746 | ||
8af36743 PM |
2747 | static void readonly_mem_write(void *opaque, hwaddr addr, |
2748 | uint64_t val, unsigned size) | |
2749 | { | |
2750 | /* Ignore any write to ROM. */ | |
2751 | } | |
2752 | ||
2753 | static bool readonly_mem_accepts(void *opaque, hwaddr addr, | |
2754 | unsigned size, bool is_write) | |
2755 | { | |
2756 | return is_write; | |
2757 | } | |
2758 | ||
2759 | /* This will only be used for writes, because reads are special cased | |
2760 | * to directly access the underlying host ram. | |
2761 | */ | |
2762 | static const MemoryRegionOps readonly_mem_ops = { | |
2763 | .write = readonly_mem_write, | |
2764 | .valid.accepts = readonly_mem_accepts, | |
2765 | .endianness = DEVICE_NATIVE_ENDIAN, | |
2766 | .valid = { | |
2767 | .min_access_size = 1, | |
2768 | .max_access_size = 8, | |
2769 | .unaligned = false, | |
2770 | }, | |
2771 | .impl = { | |
2772 | .min_access_size = 1, | |
2773 | .max_access_size = 8, | |
2774 | .unaligned = false, | |
2775 | }, | |
2776 | }; | |
2777 | ||
a54c87b6 | 2778 | MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs) |
aa102231 | 2779 | { |
a54c87b6 PM |
2780 | int asidx = cpu_asidx_from_attrs(cpu, attrs); |
2781 | CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx]; | |
32857f4d | 2782 | AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch); |
79e2b9ae | 2783 | MemoryRegionSection *sections = d->map.sections; |
9d82b5a7 PB |
2784 | |
2785 | return sections[index & ~TARGET_PAGE_MASK].mr; | |
aa102231 AK |
2786 | } |
2787 | ||
e9179ce1 AK |
2788 | static void io_mem_init(void) |
2789 | { | |
8af36743 PM |
2790 | memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops, |
2791 | NULL, NULL, UINT64_MAX); | |
2c9b15ca | 2792 | memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, |
1f6245e5 | 2793 | NULL, UINT64_MAX); |
8d04fb55 JK |
2794 | |
2795 | /* io_mem_notdirty calls tb_invalidate_phys_page_fast, | |
2796 | * which can be called without the iothread mutex. | |
2797 | */ | |
2c9b15ca | 2798 | memory_region_init_io(&io_mem_notdirty, NULL, ¬dirty_mem_ops, NULL, |
1f6245e5 | 2799 | NULL, UINT64_MAX); |
8d04fb55 JK |
2800 | memory_region_clear_global_locking(&io_mem_notdirty); |
2801 | ||
2c9b15ca | 2802 | memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL, |
1f6245e5 | 2803 | NULL, UINT64_MAX); |
e9179ce1 AK |
2804 | } |
2805 | ||
8629d3fc | 2806 | AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv) |
00752703 | 2807 | { |
53cb28cb MA |
2808 | AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); |
2809 | uint16_t n; | |
2810 | ||
16620684 | 2811 | n = dummy_section(&d->map, fv, &io_mem_unassigned); |
53cb28cb | 2812 | assert(n == PHYS_SECTION_UNASSIGNED); |
16620684 | 2813 | n = dummy_section(&d->map, fv, &io_mem_notdirty); |
53cb28cb | 2814 | assert(n == PHYS_SECTION_NOTDIRTY); |
16620684 | 2815 | n = dummy_section(&d->map, fv, &io_mem_rom); |
53cb28cb | 2816 | assert(n == PHYS_SECTION_ROM); |
16620684 | 2817 | n = dummy_section(&d->map, fv, &io_mem_watch); |
53cb28cb | 2818 | assert(n == PHYS_SECTION_WATCH); |
00752703 | 2819 | |
9736e55b | 2820 | d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; |
66a6df1d AK |
2821 | |
2822 | return d; | |
00752703 PB |
2823 | } |
2824 | ||
66a6df1d | 2825 | void address_space_dispatch_free(AddressSpaceDispatch *d) |
79e2b9ae PB |
2826 | { |
2827 | phys_sections_free(&d->map); | |
2828 | g_free(d); | |
2829 | } | |
2830 | ||
1d71148e | 2831 | static void tcg_commit(MemoryListener *listener) |
50c1e149 | 2832 | { |
32857f4d PM |
2833 | CPUAddressSpace *cpuas; |
2834 | AddressSpaceDispatch *d; | |
117712c3 AK |
2835 | |
2836 | /* since each CPU stores ram addresses in its TLB cache, we must | |
2837 | reset the modified entries */ | |
32857f4d PM |
2838 | cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); |
2839 | cpu_reloading_memory_map(); | |
2840 | /* The CPU and TLB are protected by the iothread lock. | |
2841 | * We reload the dispatch pointer now because cpu_reloading_memory_map() | |
2842 | * may have split the RCU critical section. | |
2843 | */ | |
66a6df1d | 2844 | d = address_space_to_dispatch(cpuas->as); |
f35e44e7 | 2845 | atomic_rcu_set(&cpuas->memory_dispatch, d); |
d10eb08f | 2846 | tlb_flush(cpuas->cpu); |
50c1e149 AK |
2847 | } |
2848 | ||
62152b8a AK |
2849 | static void memory_map_init(void) |
2850 | { | |
7267c094 | 2851 | system_memory = g_malloc(sizeof(*system_memory)); |
03f49957 | 2852 | |
57271d63 | 2853 | memory_region_init(system_memory, NULL, "system", UINT64_MAX); |
7dca8043 | 2854 | address_space_init(&address_space_memory, system_memory, "memory"); |
309cb471 | 2855 | |
7267c094 | 2856 | system_io = g_malloc(sizeof(*system_io)); |
3bb28b72 JK |
2857 | memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", |
2858 | 65536); | |
7dca8043 | 2859 | address_space_init(&address_space_io, system_io, "I/O"); |
62152b8a AK |
2860 | } |
2861 | ||
2862 | MemoryRegion *get_system_memory(void) | |
2863 | { | |
2864 | return system_memory; | |
2865 | } | |
2866 | ||
309cb471 AK |
2867 | MemoryRegion *get_system_io(void) |
2868 | { | |
2869 | return system_io; | |
2870 | } | |
2871 | ||
e2eef170 PB |
2872 | #endif /* !defined(CONFIG_USER_ONLY) */ |
2873 | ||
13eb76e0 FB |
2874 | /* physical memory access (slow version, mainly for debug) */ |
2875 | #if defined(CONFIG_USER_ONLY) | |
f17ec444 | 2876 | int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, |
a68fe89c | 2877 | uint8_t *buf, int len, int is_write) |
13eb76e0 FB |
2878 | { |
2879 | int l, flags; | |
2880 | target_ulong page; | |
53a5960a | 2881 | void * p; |
13eb76e0 FB |
2882 | |
2883 | while (len > 0) { | |
2884 | page = addr & TARGET_PAGE_MASK; | |
2885 | l = (page + TARGET_PAGE_SIZE) - addr; | |
2886 | if (l > len) | |
2887 | l = len; | |
2888 | flags = page_get_flags(page); | |
2889 | if (!(flags & PAGE_VALID)) | |
a68fe89c | 2890 | return -1; |
13eb76e0 FB |
2891 | if (is_write) { |
2892 | if (!(flags & PAGE_WRITE)) | |
a68fe89c | 2893 | return -1; |
579a97f7 | 2894 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 2895 | if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) |
a68fe89c | 2896 | return -1; |
72fb7daa AJ |
2897 | memcpy(p, buf, l); |
2898 | unlock_user(p, addr, l); | |
13eb76e0 FB |
2899 | } else { |
2900 | if (!(flags & PAGE_READ)) | |
a68fe89c | 2901 | return -1; |
579a97f7 | 2902 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 2903 | if (!(p = lock_user(VERIFY_READ, addr, l, 1))) |
a68fe89c | 2904 | return -1; |
72fb7daa | 2905 | memcpy(buf, p, l); |
5b257578 | 2906 | unlock_user(p, addr, 0); |
13eb76e0 FB |
2907 | } |
2908 | len -= l; | |
2909 | buf += l; | |
2910 | addr += l; | |
2911 | } | |
a68fe89c | 2912 | return 0; |
13eb76e0 | 2913 | } |
8df1cd07 | 2914 | |
13eb76e0 | 2915 | #else |
51d7a9eb | 2916 | |
845b6214 | 2917 | static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, |
a8170e5e | 2918 | hwaddr length) |
51d7a9eb | 2919 | { |
e87f7778 | 2920 | uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr); |
0878d0e1 PB |
2921 | addr += memory_region_get_ram_addr(mr); |
2922 | ||
e87f7778 PB |
2923 | /* No early return if dirty_log_mask is or becomes 0, because |
2924 | * cpu_physical_memory_set_dirty_range will still call | |
2925 | * xen_modified_memory. | |
2926 | */ | |
2927 | if (dirty_log_mask) { | |
2928 | dirty_log_mask = | |
2929 | cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask); | |
2930 | } | |
2931 | if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) { | |
5aa1ef71 | 2932 | assert(tcg_enabled()); |
ba051fb5 | 2933 | tb_lock(); |
e87f7778 | 2934 | tb_invalidate_phys_range(addr, addr + length); |
ba051fb5 | 2935 | tb_unlock(); |
e87f7778 | 2936 | dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); |
51d7a9eb | 2937 | } |
e87f7778 | 2938 | cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask); |
51d7a9eb AP |
2939 | } |
2940 | ||
23326164 | 2941 | static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) |
82f2563f | 2942 | { |
e1622f4b | 2943 | unsigned access_size_max = mr->ops->valid.max_access_size; |
23326164 RH |
2944 | |
2945 | /* Regions are assumed to support 1-4 byte accesses unless | |
2946 | otherwise specified. */ | |
23326164 RH |
2947 | if (access_size_max == 0) { |
2948 | access_size_max = 4; | |
2949 | } | |
2950 | ||
2951 | /* Bound the maximum access by the alignment of the address. */ | |
2952 | if (!mr->ops->impl.unaligned) { | |
2953 | unsigned align_size_max = addr & -addr; | |
2954 | if (align_size_max != 0 && align_size_max < access_size_max) { | |
2955 | access_size_max = align_size_max; | |
2956 | } | |
82f2563f | 2957 | } |
23326164 RH |
2958 | |
2959 | /* Don't attempt accesses larger than the maximum. */ | |
2960 | if (l > access_size_max) { | |
2961 | l = access_size_max; | |
82f2563f | 2962 | } |
6554f5c0 | 2963 | l = pow2floor(l); |
23326164 RH |
2964 | |
2965 | return l; | |
82f2563f PB |
2966 | } |
2967 | ||
4840f10e | 2968 | static bool prepare_mmio_access(MemoryRegion *mr) |
125b3806 | 2969 | { |
4840f10e JK |
2970 | bool unlocked = !qemu_mutex_iothread_locked(); |
2971 | bool release_lock = false; | |
2972 | ||
2973 | if (unlocked && mr->global_locking) { | |
2974 | qemu_mutex_lock_iothread(); | |
2975 | unlocked = false; | |
2976 | release_lock = true; | |
2977 | } | |
125b3806 | 2978 | if (mr->flush_coalesced_mmio) { |
4840f10e JK |
2979 | if (unlocked) { |
2980 | qemu_mutex_lock_iothread(); | |
2981 | } | |
125b3806 | 2982 | qemu_flush_coalesced_mmio_buffer(); |
4840f10e JK |
2983 | if (unlocked) { |
2984 | qemu_mutex_unlock_iothread(); | |
2985 | } | |
125b3806 | 2986 | } |
4840f10e JK |
2987 | |
2988 | return release_lock; | |
125b3806 PB |
2989 | } |
2990 | ||
a203ac70 | 2991 | /* Called within RCU critical section. */ |
16620684 AK |
2992 | static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr, |
2993 | MemTxAttrs attrs, | |
2994 | const uint8_t *buf, | |
2995 | int len, hwaddr addr1, | |
2996 | hwaddr l, MemoryRegion *mr) | |
13eb76e0 | 2997 | { |
13eb76e0 | 2998 | uint8_t *ptr; |
791af8c8 | 2999 | uint64_t val; |
3b643495 | 3000 | MemTxResult result = MEMTX_OK; |
4840f10e | 3001 | bool release_lock = false; |
3b46e624 | 3002 | |
a203ac70 | 3003 | for (;;) { |
eb7eeb88 PB |
3004 | if (!memory_access_is_direct(mr, true)) { |
3005 | release_lock |= prepare_mmio_access(mr); | |
3006 | l = memory_access_size(mr, l, addr1); | |
3007 | /* XXX: could force current_cpu to NULL to avoid | |
3008 | potential bugs */ | |
3009 | switch (l) { | |
3010 | case 8: | |
3011 | /* 64 bit write access */ | |
3012 | val = ldq_p(buf); | |
3013 | result |= memory_region_dispatch_write(mr, addr1, val, 8, | |
3014 | attrs); | |
3015 | break; | |
3016 | case 4: | |
3017 | /* 32 bit write access */ | |
6da67de6 | 3018 | val = (uint32_t)ldl_p(buf); |
eb7eeb88 PB |
3019 | result |= memory_region_dispatch_write(mr, addr1, val, 4, |
3020 | attrs); | |
3021 | break; | |
3022 | case 2: | |
3023 | /* 16 bit write access */ | |
3024 | val = lduw_p(buf); | |
3025 | result |= memory_region_dispatch_write(mr, addr1, val, 2, | |
3026 | attrs); | |
3027 | break; | |
3028 | case 1: | |
3029 | /* 8 bit write access */ | |
3030 | val = ldub_p(buf); | |
3031 | result |= memory_region_dispatch_write(mr, addr1, val, 1, | |
3032 | attrs); | |
3033 | break; | |
3034 | default: | |
3035 | abort(); | |
13eb76e0 FB |
3036 | } |
3037 | } else { | |
eb7eeb88 | 3038 | /* RAM case */ |
f5aa69bd | 3039 | ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false); |
eb7eeb88 PB |
3040 | memcpy(ptr, buf, l); |
3041 | invalidate_and_set_dirty(mr, addr1, l); | |
13eb76e0 | 3042 | } |
4840f10e JK |
3043 | |
3044 | if (release_lock) { | |
3045 | qemu_mutex_unlock_iothread(); | |
3046 | release_lock = false; | |
3047 | } | |
3048 | ||
13eb76e0 FB |
3049 | len -= l; |
3050 | buf += l; | |
3051 | addr += l; | |
a203ac70 PB |
3052 | |
3053 | if (!len) { | |
3054 | break; | |
3055 | } | |
3056 | ||
3057 | l = len; | |
16620684 | 3058 | mr = flatview_translate(fv, addr, &addr1, &l, true); |
13eb76e0 | 3059 | } |
fd8aaa76 | 3060 | |
3b643495 | 3061 | return result; |
13eb76e0 | 3062 | } |
8df1cd07 | 3063 | |
16620684 AK |
3064 | static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, |
3065 | const uint8_t *buf, int len) | |
ac1970fb | 3066 | { |
eb7eeb88 | 3067 | hwaddr l; |
eb7eeb88 PB |
3068 | hwaddr addr1; |
3069 | MemoryRegion *mr; | |
3070 | MemTxResult result = MEMTX_OK; | |
eb7eeb88 | 3071 | |
a203ac70 PB |
3072 | if (len > 0) { |
3073 | rcu_read_lock(); | |
eb7eeb88 | 3074 | l = len; |
16620684 AK |
3075 | mr = flatview_translate(fv, addr, &addr1, &l, true); |
3076 | result = flatview_write_continue(fv, addr, attrs, buf, len, | |
3077 | addr1, l, mr); | |
a203ac70 PB |
3078 | rcu_read_unlock(); |
3079 | } | |
3080 | ||
3081 | return result; | |
3082 | } | |
3083 | ||
16620684 AK |
3084 | MemTxResult address_space_write(AddressSpace *as, hwaddr addr, |
3085 | MemTxAttrs attrs, | |
3086 | const uint8_t *buf, int len) | |
3087 | { | |
3088 | return flatview_write(address_space_to_flatview(as), addr, attrs, buf, len); | |
3089 | } | |
3090 | ||
a203ac70 | 3091 | /* Called within RCU critical section. */ |
16620684 AK |
3092 | MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, |
3093 | MemTxAttrs attrs, uint8_t *buf, | |
3094 | int len, hwaddr addr1, hwaddr l, | |
3095 | MemoryRegion *mr) | |
a203ac70 PB |
3096 | { |
3097 | uint8_t *ptr; | |
3098 | uint64_t val; | |
3099 | MemTxResult result = MEMTX_OK; | |
3100 | bool release_lock = false; | |
eb7eeb88 | 3101 | |
a203ac70 | 3102 | for (;;) { |
eb7eeb88 PB |
3103 | if (!memory_access_is_direct(mr, false)) { |
3104 | /* I/O case */ | |
3105 | release_lock |= prepare_mmio_access(mr); | |
3106 | l = memory_access_size(mr, l, addr1); | |
3107 | switch (l) { | |
3108 | case 8: | |
3109 | /* 64 bit read access */ | |
3110 | result |= memory_region_dispatch_read(mr, addr1, &val, 8, | |
3111 | attrs); | |
3112 | stq_p(buf, val); | |
3113 | break; | |
3114 | case 4: | |
3115 | /* 32 bit read access */ | |
3116 | result |= memory_region_dispatch_read(mr, addr1, &val, 4, | |
3117 | attrs); | |
3118 | stl_p(buf, val); | |
3119 | break; | |
3120 | case 2: | |
3121 | /* 16 bit read access */ | |
3122 | result |= memory_region_dispatch_read(mr, addr1, &val, 2, | |
3123 | attrs); | |
3124 | stw_p(buf, val); | |
3125 | break; | |
3126 | case 1: | |
3127 | /* 8 bit read access */ | |
3128 | result |= memory_region_dispatch_read(mr, addr1, &val, 1, | |
3129 | attrs); | |
3130 | stb_p(buf, val); | |
3131 | break; | |
3132 | default: | |
3133 | abort(); | |
3134 | } | |
3135 | } else { | |
3136 | /* RAM case */ | |
f5aa69bd | 3137 | ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false); |
eb7eeb88 PB |
3138 | memcpy(buf, ptr, l); |
3139 | } | |
3140 | ||
3141 | if (release_lock) { | |
3142 | qemu_mutex_unlock_iothread(); | |
3143 | release_lock = false; | |
3144 | } | |
3145 | ||
3146 | len -= l; | |
3147 | buf += l; | |
3148 | addr += l; | |
a203ac70 PB |
3149 | |
3150 | if (!len) { | |
3151 | break; | |
3152 | } | |
3153 | ||
3154 | l = len; | |
16620684 | 3155 | mr = flatview_translate(fv, addr, &addr1, &l, false); |
a203ac70 PB |
3156 | } |
3157 | ||
3158 | return result; | |
3159 | } | |
3160 | ||
16620684 AK |
3161 | MemTxResult flatview_read_full(FlatView *fv, hwaddr addr, |
3162 | MemTxAttrs attrs, uint8_t *buf, int len) | |
a203ac70 PB |
3163 | { |
3164 | hwaddr l; | |
3165 | hwaddr addr1; | |
3166 | MemoryRegion *mr; | |
3167 | MemTxResult result = MEMTX_OK; | |
3168 | ||
3169 | if (len > 0) { | |
3170 | rcu_read_lock(); | |
3171 | l = len; | |
16620684 AK |
3172 | mr = flatview_translate(fv, addr, &addr1, &l, false); |
3173 | result = flatview_read_continue(fv, addr, attrs, buf, len, | |
3174 | addr1, l, mr); | |
a203ac70 | 3175 | rcu_read_unlock(); |
eb7eeb88 | 3176 | } |
eb7eeb88 PB |
3177 | |
3178 | return result; | |
ac1970fb AK |
3179 | } |
3180 | ||
16620684 AK |
3181 | static MemTxResult flatview_rw(FlatView *fv, hwaddr addr, MemTxAttrs attrs, |
3182 | uint8_t *buf, int len, bool is_write) | |
eb7eeb88 PB |
3183 | { |
3184 | if (is_write) { | |
16620684 | 3185 | return flatview_write(fv, addr, attrs, (uint8_t *)buf, len); |
eb7eeb88 | 3186 | } else { |
16620684 | 3187 | return flatview_read(fv, addr, attrs, (uint8_t *)buf, len); |
eb7eeb88 PB |
3188 | } |
3189 | } | |
ac1970fb | 3190 | |
16620684 AK |
3191 | MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, |
3192 | MemTxAttrs attrs, uint8_t *buf, | |
3193 | int len, bool is_write) | |
3194 | { | |
3195 | return flatview_rw(address_space_to_flatview(as), | |
3196 | addr, attrs, buf, len, is_write); | |
3197 | } | |
3198 | ||
a8170e5e | 3199 | void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf, |
ac1970fb AK |
3200 | int len, int is_write) |
3201 | { | |
5c9eb028 PM |
3202 | address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, |
3203 | buf, len, is_write); | |
ac1970fb AK |
3204 | } |
3205 | ||
582b55a9 AG |
3206 | enum write_rom_type { |
3207 | WRITE_DATA, | |
3208 | FLUSH_CACHE, | |
3209 | }; | |
3210 | ||
2a221651 | 3211 | static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as, |
582b55a9 | 3212 | hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type) |
d0ecd2aa | 3213 | { |
149f54b5 | 3214 | hwaddr l; |
d0ecd2aa | 3215 | uint8_t *ptr; |
149f54b5 | 3216 | hwaddr addr1; |
5c8a00ce | 3217 | MemoryRegion *mr; |
3b46e624 | 3218 | |
41063e1e | 3219 | rcu_read_lock(); |
d0ecd2aa | 3220 | while (len > 0) { |
149f54b5 | 3221 | l = len; |
2a221651 | 3222 | mr = address_space_translate(as, addr, &addr1, &l, true); |
3b46e624 | 3223 | |
5c8a00ce PB |
3224 | if (!(memory_region_is_ram(mr) || |
3225 | memory_region_is_romd(mr))) { | |
b242e0e0 | 3226 | l = memory_access_size(mr, l, addr1); |
d0ecd2aa | 3227 | } else { |
d0ecd2aa | 3228 | /* ROM/RAM case */ |
0878d0e1 | 3229 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
582b55a9 AG |
3230 | switch (type) { |
3231 | case WRITE_DATA: | |
3232 | memcpy(ptr, buf, l); | |
845b6214 | 3233 | invalidate_and_set_dirty(mr, addr1, l); |
582b55a9 AG |
3234 | break; |
3235 | case FLUSH_CACHE: | |
3236 | flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l); | |
3237 | break; | |
3238 | } | |
d0ecd2aa FB |
3239 | } |
3240 | len -= l; | |
3241 | buf += l; | |
3242 | addr += l; | |
3243 | } | |
41063e1e | 3244 | rcu_read_unlock(); |
d0ecd2aa FB |
3245 | } |
3246 | ||
582b55a9 | 3247 | /* used for ROM loading : can write in RAM and ROM */ |
2a221651 | 3248 | void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr, |
582b55a9 AG |
3249 | const uint8_t *buf, int len) |
3250 | { | |
2a221651 | 3251 | cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA); |
582b55a9 AG |
3252 | } |
3253 | ||
3254 | void cpu_flush_icache_range(hwaddr start, int len) | |
3255 | { | |
3256 | /* | |
3257 | * This function should do the same thing as an icache flush that was | |
3258 | * triggered from within the guest. For TCG we are always cache coherent, | |
3259 | * so there is no need to flush anything. For KVM / Xen we need to flush | |
3260 | * the host's instruction cache at least. | |
3261 | */ | |
3262 | if (tcg_enabled()) { | |
3263 | return; | |
3264 | } | |
3265 | ||
2a221651 EI |
3266 | cpu_physical_memory_write_rom_internal(&address_space_memory, |
3267 | start, NULL, len, FLUSH_CACHE); | |
582b55a9 AG |
3268 | } |
3269 | ||
6d16c2f8 | 3270 | typedef struct { |
d3e71559 | 3271 | MemoryRegion *mr; |
6d16c2f8 | 3272 | void *buffer; |
a8170e5e AK |
3273 | hwaddr addr; |
3274 | hwaddr len; | |
c2cba0ff | 3275 | bool in_use; |
6d16c2f8 AL |
3276 | } BounceBuffer; |
3277 | ||
3278 | static BounceBuffer bounce; | |
3279 | ||
ba223c29 | 3280 | typedef struct MapClient { |
e95205e1 | 3281 | QEMUBH *bh; |
72cf2d4f | 3282 | QLIST_ENTRY(MapClient) link; |
ba223c29 AL |
3283 | } MapClient; |
3284 | ||
38e047b5 | 3285 | QemuMutex map_client_list_lock; |
72cf2d4f BS |
3286 | static QLIST_HEAD(map_client_list, MapClient) map_client_list |
3287 | = QLIST_HEAD_INITIALIZER(map_client_list); | |
ba223c29 | 3288 | |
e95205e1 FZ |
3289 | static void cpu_unregister_map_client_do(MapClient *client) |
3290 | { | |
3291 | QLIST_REMOVE(client, link); | |
3292 | g_free(client); | |
3293 | } | |
3294 | ||
33b6c2ed FZ |
3295 | static void cpu_notify_map_clients_locked(void) |
3296 | { | |
3297 | MapClient *client; | |
3298 | ||
3299 | while (!QLIST_EMPTY(&map_client_list)) { | |
3300 | client = QLIST_FIRST(&map_client_list); | |
e95205e1 FZ |
3301 | qemu_bh_schedule(client->bh); |
3302 | cpu_unregister_map_client_do(client); | |
33b6c2ed FZ |
3303 | } |
3304 | } | |
3305 | ||
e95205e1 | 3306 | void cpu_register_map_client(QEMUBH *bh) |
ba223c29 | 3307 | { |
7267c094 | 3308 | MapClient *client = g_malloc(sizeof(*client)); |
ba223c29 | 3309 | |
38e047b5 | 3310 | qemu_mutex_lock(&map_client_list_lock); |
e95205e1 | 3311 | client->bh = bh; |
72cf2d4f | 3312 | QLIST_INSERT_HEAD(&map_client_list, client, link); |
33b6c2ed FZ |
3313 | if (!atomic_read(&bounce.in_use)) { |
3314 | cpu_notify_map_clients_locked(); | |
3315 | } | |
38e047b5 | 3316 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
3317 | } |
3318 | ||
38e047b5 | 3319 | void cpu_exec_init_all(void) |
ba223c29 | 3320 | { |
38e047b5 | 3321 | qemu_mutex_init(&ram_list.mutex); |
20bccb82 PM |
3322 | /* The data structures we set up here depend on knowing the page size, |
3323 | * so no more changes can be made after this point. | |
3324 | * In an ideal world, nothing we did before we had finished the | |
3325 | * machine setup would care about the target page size, and we could | |
3326 | * do this much later, rather than requiring board models to state | |
3327 | * up front what their requirements are. | |
3328 | */ | |
3329 | finalize_target_page_bits(); | |
38e047b5 | 3330 | io_mem_init(); |
680a4783 | 3331 | memory_map_init(); |
38e047b5 | 3332 | qemu_mutex_init(&map_client_list_lock); |
ba223c29 AL |
3333 | } |
3334 | ||
e95205e1 | 3335 | void cpu_unregister_map_client(QEMUBH *bh) |
ba223c29 AL |
3336 | { |
3337 | MapClient *client; | |
3338 | ||
e95205e1 FZ |
3339 | qemu_mutex_lock(&map_client_list_lock); |
3340 | QLIST_FOREACH(client, &map_client_list, link) { | |
3341 | if (client->bh == bh) { | |
3342 | cpu_unregister_map_client_do(client); | |
3343 | break; | |
3344 | } | |
ba223c29 | 3345 | } |
e95205e1 | 3346 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
3347 | } |
3348 | ||
3349 | static void cpu_notify_map_clients(void) | |
3350 | { | |
38e047b5 | 3351 | qemu_mutex_lock(&map_client_list_lock); |
33b6c2ed | 3352 | cpu_notify_map_clients_locked(); |
38e047b5 | 3353 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
3354 | } |
3355 | ||
16620684 AK |
3356 | static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len, |
3357 | bool is_write) | |
51644ab7 | 3358 | { |
5c8a00ce | 3359 | MemoryRegion *mr; |
51644ab7 PB |
3360 | hwaddr l, xlat; |
3361 | ||
41063e1e | 3362 | rcu_read_lock(); |
51644ab7 PB |
3363 | while (len > 0) { |
3364 | l = len; | |
16620684 | 3365 | mr = flatview_translate(fv, addr, &xlat, &l, is_write); |
5c8a00ce PB |
3366 | if (!memory_access_is_direct(mr, is_write)) { |
3367 | l = memory_access_size(mr, l, addr); | |
3368 | if (!memory_region_access_valid(mr, xlat, l, is_write)) { | |
5ad4a2b7 | 3369 | rcu_read_unlock(); |
51644ab7 PB |
3370 | return false; |
3371 | } | |
3372 | } | |
3373 | ||
3374 | len -= l; | |
3375 | addr += l; | |
3376 | } | |
41063e1e | 3377 | rcu_read_unlock(); |
51644ab7 PB |
3378 | return true; |
3379 | } | |
3380 | ||
16620684 AK |
3381 | bool address_space_access_valid(AddressSpace *as, hwaddr addr, |
3382 | int len, bool is_write) | |
3383 | { | |
3384 | return flatview_access_valid(address_space_to_flatview(as), | |
3385 | addr, len, is_write); | |
3386 | } | |
3387 | ||
715c31ec | 3388 | static hwaddr |
16620684 AK |
3389 | flatview_extend_translation(FlatView *fv, hwaddr addr, |
3390 | hwaddr target_len, | |
715c31ec PB |
3391 | MemoryRegion *mr, hwaddr base, hwaddr len, |
3392 | bool is_write) | |
3393 | { | |
3394 | hwaddr done = 0; | |
3395 | hwaddr xlat; | |
3396 | MemoryRegion *this_mr; | |
3397 | ||
3398 | for (;;) { | |
3399 | target_len -= len; | |
3400 | addr += len; | |
3401 | done += len; | |
3402 | if (target_len == 0) { | |
3403 | return done; | |
3404 | } | |
3405 | ||
3406 | len = target_len; | |
16620684 AK |
3407 | this_mr = flatview_translate(fv, addr, &xlat, |
3408 | &len, is_write); | |
715c31ec PB |
3409 | if (this_mr != mr || xlat != base + done) { |
3410 | return done; | |
3411 | } | |
3412 | } | |
3413 | } | |
3414 | ||
6d16c2f8 AL |
3415 | /* Map a physical memory region into a host virtual address. |
3416 | * May map a subset of the requested range, given by and returned in *plen. | |
3417 | * May return NULL if resources needed to perform the mapping are exhausted. | |
3418 | * Use only for reads OR writes - not for read-modify-write operations. | |
ba223c29 AL |
3419 | * Use cpu_register_map_client() to know when retrying the map operation is |
3420 | * likely to succeed. | |
6d16c2f8 | 3421 | */ |
ac1970fb | 3422 | void *address_space_map(AddressSpace *as, |
a8170e5e AK |
3423 | hwaddr addr, |
3424 | hwaddr *plen, | |
ac1970fb | 3425 | bool is_write) |
6d16c2f8 | 3426 | { |
a8170e5e | 3427 | hwaddr len = *plen; |
715c31ec PB |
3428 | hwaddr l, xlat; |
3429 | MemoryRegion *mr; | |
e81bcda5 | 3430 | void *ptr; |
16620684 | 3431 | FlatView *fv = address_space_to_flatview(as); |
6d16c2f8 | 3432 | |
e3127ae0 PB |
3433 | if (len == 0) { |
3434 | return NULL; | |
3435 | } | |
38bee5dc | 3436 | |
e3127ae0 | 3437 | l = len; |
41063e1e | 3438 | rcu_read_lock(); |
16620684 | 3439 | mr = flatview_translate(fv, addr, &xlat, &l, is_write); |
41063e1e | 3440 | |
e3127ae0 | 3441 | if (!memory_access_is_direct(mr, is_write)) { |
c2cba0ff | 3442 | if (atomic_xchg(&bounce.in_use, true)) { |
41063e1e | 3443 | rcu_read_unlock(); |
e3127ae0 | 3444 | return NULL; |
6d16c2f8 | 3445 | } |
e85d9db5 KW |
3446 | /* Avoid unbounded allocations */ |
3447 | l = MIN(l, TARGET_PAGE_SIZE); | |
3448 | bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l); | |
e3127ae0 PB |
3449 | bounce.addr = addr; |
3450 | bounce.len = l; | |
d3e71559 PB |
3451 | |
3452 | memory_region_ref(mr); | |
3453 | bounce.mr = mr; | |
e3127ae0 | 3454 | if (!is_write) { |
16620684 | 3455 | flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED, |
5c9eb028 | 3456 | bounce.buffer, l); |
8ab934f9 | 3457 | } |
6d16c2f8 | 3458 | |
41063e1e | 3459 | rcu_read_unlock(); |
e3127ae0 PB |
3460 | *plen = l; |
3461 | return bounce.buffer; | |
3462 | } | |
3463 | ||
e3127ae0 | 3464 | |
d3e71559 | 3465 | memory_region_ref(mr); |
16620684 AK |
3466 | *plen = flatview_extend_translation(fv, addr, len, mr, xlat, |
3467 | l, is_write); | |
f5aa69bd | 3468 | ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true); |
e81bcda5 PB |
3469 | rcu_read_unlock(); |
3470 | ||
3471 | return ptr; | |
6d16c2f8 AL |
3472 | } |
3473 | ||
ac1970fb | 3474 | /* Unmaps a memory region previously mapped by address_space_map(). |
6d16c2f8 AL |
3475 | * Will also mark the memory as dirty if is_write == 1. access_len gives |
3476 | * the amount of memory that was actually read or written by the caller. | |
3477 | */ | |
a8170e5e AK |
3478 | void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, |
3479 | int is_write, hwaddr access_len) | |
6d16c2f8 AL |
3480 | { |
3481 | if (buffer != bounce.buffer) { | |
d3e71559 PB |
3482 | MemoryRegion *mr; |
3483 | ram_addr_t addr1; | |
3484 | ||
07bdaa41 | 3485 | mr = memory_region_from_host(buffer, &addr1); |
d3e71559 | 3486 | assert(mr != NULL); |
6d16c2f8 | 3487 | if (is_write) { |
845b6214 | 3488 | invalidate_and_set_dirty(mr, addr1, access_len); |
6d16c2f8 | 3489 | } |
868bb33f | 3490 | if (xen_enabled()) { |
e41d7c69 | 3491 | xen_invalidate_map_cache_entry(buffer); |
050a0ddf | 3492 | } |
d3e71559 | 3493 | memory_region_unref(mr); |
6d16c2f8 AL |
3494 | return; |
3495 | } | |
3496 | if (is_write) { | |
5c9eb028 PM |
3497 | address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED, |
3498 | bounce.buffer, access_len); | |
6d16c2f8 | 3499 | } |
f8a83245 | 3500 | qemu_vfree(bounce.buffer); |
6d16c2f8 | 3501 | bounce.buffer = NULL; |
d3e71559 | 3502 | memory_region_unref(bounce.mr); |
c2cba0ff | 3503 | atomic_mb_set(&bounce.in_use, false); |
ba223c29 | 3504 | cpu_notify_map_clients(); |
6d16c2f8 | 3505 | } |
d0ecd2aa | 3506 | |
a8170e5e AK |
3507 | void *cpu_physical_memory_map(hwaddr addr, |
3508 | hwaddr *plen, | |
ac1970fb AK |
3509 | int is_write) |
3510 | { | |
3511 | return address_space_map(&address_space_memory, addr, plen, is_write); | |
3512 | } | |
3513 | ||
a8170e5e AK |
3514 | void cpu_physical_memory_unmap(void *buffer, hwaddr len, |
3515 | int is_write, hwaddr access_len) | |
ac1970fb AK |
3516 | { |
3517 | return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); | |
3518 | } | |
3519 | ||
0ce265ff PB |
3520 | #define ARG1_DECL AddressSpace *as |
3521 | #define ARG1 as | |
3522 | #define SUFFIX | |
3523 | #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__) | |
3524 | #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write) | |
3525 | #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs) | |
3526 | #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len) | |
3527 | #define RCU_READ_LOCK(...) rcu_read_lock() | |
3528 | #define RCU_READ_UNLOCK(...) rcu_read_unlock() | |
3529 | #include "memory_ldst.inc.c" | |
1e78bcc1 | 3530 | |
1f4e496e PB |
3531 | int64_t address_space_cache_init(MemoryRegionCache *cache, |
3532 | AddressSpace *as, | |
3533 | hwaddr addr, | |
3534 | hwaddr len, | |
3535 | bool is_write) | |
3536 | { | |
90c4fe5f PB |
3537 | cache->len = len; |
3538 | cache->as = as; | |
3539 | cache->xlat = addr; | |
3540 | return len; | |
1f4e496e PB |
3541 | } |
3542 | ||
3543 | void address_space_cache_invalidate(MemoryRegionCache *cache, | |
3544 | hwaddr addr, | |
3545 | hwaddr access_len) | |
3546 | { | |
1f4e496e PB |
3547 | } |
3548 | ||
3549 | void address_space_cache_destroy(MemoryRegionCache *cache) | |
3550 | { | |
90c4fe5f | 3551 | cache->as = NULL; |
1f4e496e PB |
3552 | } |
3553 | ||
3554 | #define ARG1_DECL MemoryRegionCache *cache | |
3555 | #define ARG1 cache | |
3556 | #define SUFFIX _cached | |
90c4fe5f PB |
3557 | #define TRANSLATE(addr, ...) \ |
3558 | address_space_translate(cache->as, cache->xlat + (addr), __VA_ARGS__) | |
1f4e496e | 3559 | #define IS_DIRECT(mr, is_write) true |
90c4fe5f PB |
3560 | #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs) |
3561 | #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len) | |
3562 | #define RCU_READ_LOCK() rcu_read_lock() | |
3563 | #define RCU_READ_UNLOCK() rcu_read_unlock() | |
1f4e496e PB |
3564 | #include "memory_ldst.inc.c" |
3565 | ||
5e2972fd | 3566 | /* virtual memory access for debug (includes writing to ROM) */ |
f17ec444 | 3567 | int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, |
b448f2f3 | 3568 | uint8_t *buf, int len, int is_write) |
13eb76e0 FB |
3569 | { |
3570 | int l; | |
a8170e5e | 3571 | hwaddr phys_addr; |
9b3c35e0 | 3572 | target_ulong page; |
13eb76e0 | 3573 | |
79ca7a1b | 3574 | cpu_synchronize_state(cpu); |
13eb76e0 | 3575 | while (len > 0) { |
5232e4c7 PM |
3576 | int asidx; |
3577 | MemTxAttrs attrs; | |
3578 | ||
13eb76e0 | 3579 | page = addr & TARGET_PAGE_MASK; |
5232e4c7 PM |
3580 | phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs); |
3581 | asidx = cpu_asidx_from_attrs(cpu, attrs); | |
13eb76e0 FB |
3582 | /* if no physical page mapped, return an error */ |
3583 | if (phys_addr == -1) | |
3584 | return -1; | |
3585 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3586 | if (l > len) | |
3587 | l = len; | |
5e2972fd | 3588 | phys_addr += (addr & ~TARGET_PAGE_MASK); |
2e38847b | 3589 | if (is_write) { |
5232e4c7 PM |
3590 | cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as, |
3591 | phys_addr, buf, l); | |
2e38847b | 3592 | } else { |
5232e4c7 PM |
3593 | address_space_rw(cpu->cpu_ases[asidx].as, phys_addr, |
3594 | MEMTXATTRS_UNSPECIFIED, | |
5c9eb028 | 3595 | buf, l, 0); |
2e38847b | 3596 | } |
13eb76e0 FB |
3597 | len -= l; |
3598 | buf += l; | |
3599 | addr += l; | |
3600 | } | |
3601 | return 0; | |
3602 | } | |
038629a6 DDAG |
3603 | |
3604 | /* | |
3605 | * Allows code that needs to deal with migration bitmaps etc to still be built | |
3606 | * target independent. | |
3607 | */ | |
20afaed9 | 3608 | size_t qemu_target_page_size(void) |
038629a6 | 3609 | { |
20afaed9 | 3610 | return TARGET_PAGE_SIZE; |
038629a6 DDAG |
3611 | } |
3612 | ||
46d702b1 JQ |
3613 | int qemu_target_page_bits(void) |
3614 | { | |
3615 | return TARGET_PAGE_BITS; | |
3616 | } | |
3617 | ||
3618 | int qemu_target_page_bits_min(void) | |
3619 | { | |
3620 | return TARGET_PAGE_BITS_MIN; | |
3621 | } | |
a68fe89c | 3622 | #endif |
13eb76e0 | 3623 | |
8e4a424b BS |
3624 | /* |
3625 | * A helper function for the _utterly broken_ virtio device model to find out if | |
3626 | * it's running on a big endian machine. Don't do this at home kids! | |
3627 | */ | |
98ed8ecf GK |
3628 | bool target_words_bigendian(void); |
3629 | bool target_words_bigendian(void) | |
8e4a424b BS |
3630 | { |
3631 | #if defined(TARGET_WORDS_BIGENDIAN) | |
3632 | return true; | |
3633 | #else | |
3634 | return false; | |
3635 | #endif | |
3636 | } | |
3637 | ||
76f35538 | 3638 | #ifndef CONFIG_USER_ONLY |
a8170e5e | 3639 | bool cpu_physical_memory_is_io(hwaddr phys_addr) |
76f35538 | 3640 | { |
5c8a00ce | 3641 | MemoryRegion*mr; |
149f54b5 | 3642 | hwaddr l = 1; |
41063e1e | 3643 | bool res; |
76f35538 | 3644 | |
41063e1e | 3645 | rcu_read_lock(); |
5c8a00ce PB |
3646 | mr = address_space_translate(&address_space_memory, |
3647 | phys_addr, &phys_addr, &l, false); | |
76f35538 | 3648 | |
41063e1e PB |
3649 | res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr)); |
3650 | rcu_read_unlock(); | |
3651 | return res; | |
76f35538 | 3652 | } |
bd2fa51f | 3653 | |
e3807054 | 3654 | int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) |
bd2fa51f MH |
3655 | { |
3656 | RAMBlock *block; | |
e3807054 | 3657 | int ret = 0; |
bd2fa51f | 3658 | |
0dc3f44a | 3659 | rcu_read_lock(); |
99e15582 | 3660 | RAMBLOCK_FOREACH(block) { |
e3807054 DDAG |
3661 | ret = func(block->idstr, block->host, block->offset, |
3662 | block->used_length, opaque); | |
3663 | if (ret) { | |
3664 | break; | |
3665 | } | |
bd2fa51f | 3666 | } |
0dc3f44a | 3667 | rcu_read_unlock(); |
e3807054 | 3668 | return ret; |
bd2fa51f | 3669 | } |
d3a5038c DDAG |
3670 | |
3671 | /* | |
3672 | * Unmap pages of memory from start to start+length such that | |
3673 | * they a) read as 0, b) Trigger whatever fault mechanism | |
3674 | * the OS provides for postcopy. | |
3675 | * The pages must be unmapped by the end of the function. | |
3676 | * Returns: 0 on success, none-0 on failure | |
3677 | * | |
3678 | */ | |
3679 | int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length) | |
3680 | { | |
3681 | int ret = -1; | |
3682 | ||
3683 | uint8_t *host_startaddr = rb->host + start; | |
3684 | ||
3685 | if ((uintptr_t)host_startaddr & (rb->page_size - 1)) { | |
3686 | error_report("ram_block_discard_range: Unaligned start address: %p", | |
3687 | host_startaddr); | |
3688 | goto err; | |
3689 | } | |
3690 | ||
3691 | if ((start + length) <= rb->used_length) { | |
3692 | uint8_t *host_endaddr = host_startaddr + length; | |
3693 | if ((uintptr_t)host_endaddr & (rb->page_size - 1)) { | |
3694 | error_report("ram_block_discard_range: Unaligned end address: %p", | |
3695 | host_endaddr); | |
3696 | goto err; | |
3697 | } | |
3698 | ||
3699 | errno = ENOTSUP; /* If we are missing MADVISE etc */ | |
3700 | ||
e2fa71f5 | 3701 | if (rb->page_size == qemu_host_page_size) { |
d3a5038c | 3702 | #if defined(CONFIG_MADVISE) |
e2fa71f5 DDAG |
3703 | /* Note: We need the madvise MADV_DONTNEED behaviour of definitely |
3704 | * freeing the page. | |
3705 | */ | |
3706 | ret = madvise(host_startaddr, length, MADV_DONTNEED); | |
d3a5038c | 3707 | #endif |
e2fa71f5 DDAG |
3708 | } else { |
3709 | /* Huge page case - unfortunately it can't do DONTNEED, but | |
3710 | * it can do the equivalent by FALLOC_FL_PUNCH_HOLE in the | |
3711 | * huge page file. | |
3712 | */ | |
3713 | #ifdef CONFIG_FALLOCATE_PUNCH_HOLE | |
3714 | ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, | |
3715 | start, length); | |
3716 | #endif | |
3717 | } | |
d3a5038c DDAG |
3718 | if (ret) { |
3719 | ret = -errno; | |
3720 | error_report("ram_block_discard_range: Failed to discard range " | |
3721 | "%s:%" PRIx64 " +%zx (%d)", | |
3722 | rb->idstr, start, length, ret); | |
3723 | } | |
3724 | } else { | |
3725 | error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64 | |
3726 | "/%zx/" RAM_ADDR_FMT")", | |
3727 | rb->idstr, start, length, rb->used_length); | |
3728 | } | |
3729 | ||
3730 | err: | |
3731 | return ret; | |
3732 | } | |
3733 | ||
ec3f8c99 | 3734 | #endif |
a0be0c58 YZ |
3735 | |
3736 | void page_size_init(void) | |
3737 | { | |
3738 | /* NOTE: we can always suppose that qemu_host_page_size >= | |
3739 | TARGET_PAGE_SIZE */ | |
a0be0c58 YZ |
3740 | if (qemu_host_page_size == 0) { |
3741 | qemu_host_page_size = qemu_real_host_page_size; | |
3742 | } | |
3743 | if (qemu_host_page_size < TARGET_PAGE_SIZE) { | |
3744 | qemu_host_page_size = TARGET_PAGE_SIZE; | |
3745 | } | |
3746 | qemu_host_page_mask = -(intptr_t)qemu_host_page_size; | |
3747 | } | |
5e8fd947 AK |
3748 | |
3749 | #if !defined(CONFIG_USER_ONLY) | |
3750 | ||
3751 | static void mtree_print_phys_entries(fprintf_function mon, void *f, | |
3752 | int start, int end, int skip, int ptr) | |
3753 | { | |
3754 | if (start == end - 1) { | |
3755 | mon(f, "\t%3d ", start); | |
3756 | } else { | |
3757 | mon(f, "\t%3d..%-3d ", start, end - 1); | |
3758 | } | |
3759 | mon(f, " skip=%d ", skip); | |
3760 | if (ptr == PHYS_MAP_NODE_NIL) { | |
3761 | mon(f, " ptr=NIL"); | |
3762 | } else if (!skip) { | |
3763 | mon(f, " ptr=#%d", ptr); | |
3764 | } else { | |
3765 | mon(f, " ptr=[%d]", ptr); | |
3766 | } | |
3767 | mon(f, "\n"); | |
3768 | } | |
3769 | ||
3770 | #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \ | |
3771 | int128_sub((size), int128_one())) : 0) | |
3772 | ||
3773 | void mtree_print_dispatch(fprintf_function mon, void *f, | |
3774 | AddressSpaceDispatch *d, MemoryRegion *root) | |
3775 | { | |
3776 | int i; | |
3777 | ||
3778 | mon(f, " Dispatch\n"); | |
3779 | mon(f, " Physical sections\n"); | |
3780 | ||
3781 | for (i = 0; i < d->map.sections_nb; ++i) { | |
3782 | MemoryRegionSection *s = d->map.sections + i; | |
3783 | const char *names[] = { " [unassigned]", " [not dirty]", | |
3784 | " [ROM]", " [watch]" }; | |
3785 | ||
3786 | mon(f, " #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s", | |
3787 | i, | |
3788 | s->offset_within_address_space, | |
3789 | s->offset_within_address_space + MR_SIZE(s->mr->size), | |
3790 | s->mr->name ? s->mr->name : "(noname)", | |
3791 | i < ARRAY_SIZE(names) ? names[i] : "", | |
3792 | s->mr == root ? " [ROOT]" : "", | |
3793 | s == d->mru_section ? " [MRU]" : "", | |
3794 | s->mr->is_iommu ? " [iommu]" : ""); | |
3795 | ||
3796 | if (s->mr->alias) { | |
3797 | mon(f, " alias=%s", s->mr->alias->name ? | |
3798 | s->mr->alias->name : "noname"); | |
3799 | } | |
3800 | mon(f, "\n"); | |
3801 | } | |
3802 | ||
3803 | mon(f, " Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n", | |
3804 | P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip); | |
3805 | for (i = 0; i < d->map.nodes_nb; ++i) { | |
3806 | int j, jprev; | |
3807 | PhysPageEntry prev; | |
3808 | Node *n = d->map.nodes + i; | |
3809 | ||
3810 | mon(f, " [%d]\n", i); | |
3811 | ||
3812 | for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) { | |
3813 | PhysPageEntry *pe = *n + j; | |
3814 | ||
3815 | if (pe->ptr == prev.ptr && pe->skip == prev.skip) { | |
3816 | continue; | |
3817 | } | |
3818 | ||
3819 | mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr); | |
3820 | ||
3821 | jprev = j; | |
3822 | prev = *pe; | |
3823 | } | |
3824 | ||
3825 | if (jprev != ARRAY_SIZE(*n)) { | |
3826 | mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr); | |
3827 | } | |
3828 | } | |
3829 | } | |
3830 | ||
3831 | #endif |