]>
Commit | Line | Data |
---|---|---|
54936004 | 1 | /* |
5b6dd868 | 2 | * Virtual page mapping |
5fafdf24 | 3 | * |
54936004 FB |
4 | * Copyright (c) 2003 Fabrice Bellard |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
8167ee88 | 17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
54936004 | 18 | */ |
7b31bbc2 | 19 | #include "qemu/osdep.h" |
da34e65c | 20 | #include "qapi/error.h" |
777872e5 | 21 | #ifndef _WIN32 |
d5a8f07c | 22 | #endif |
54936004 | 23 | |
f348b6d1 | 24 | #include "qemu/cutils.h" |
6180a181 | 25 | #include "cpu.h" |
63c91552 | 26 | #include "exec/exec-all.h" |
b67d9a52 | 27 | #include "tcg.h" |
741da0d3 | 28 | #include "hw/qdev-core.h" |
4485bd26 | 29 | #if !defined(CONFIG_USER_ONLY) |
47c8ca53 | 30 | #include "hw/boards.h" |
33c11879 | 31 | #include "hw/xen/xen.h" |
4485bd26 | 32 | #endif |
9c17d615 | 33 | #include "sysemu/kvm.h" |
2ff3de68 | 34 | #include "sysemu/sysemu.h" |
1de7afc9 PB |
35 | #include "qemu/timer.h" |
36 | #include "qemu/config-file.h" | |
75a34036 | 37 | #include "qemu/error-report.h" |
53a5960a | 38 | #if defined(CONFIG_USER_ONLY) |
a9c94277 | 39 | #include "qemu.h" |
432d268c | 40 | #else /* !CONFIG_USER_ONLY */ |
741da0d3 PB |
41 | #include "hw/hw.h" |
42 | #include "exec/memory.h" | |
df43d49c | 43 | #include "exec/ioport.h" |
741da0d3 PB |
44 | #include "sysemu/dma.h" |
45 | #include "exec/address-spaces.h" | |
9c17d615 | 46 | #include "sysemu/xen-mapcache.h" |
6506e4f9 | 47 | #include "trace.h" |
53a5960a | 48 | #endif |
0d6d3c87 | 49 | #include "exec/cpu-all.h" |
0dc3f44a | 50 | #include "qemu/rcu_queue.h" |
4840f10e | 51 | #include "qemu/main-loop.h" |
5b6dd868 | 52 | #include "translate-all.h" |
7615936e | 53 | #include "sysemu/replay.h" |
0cac1b66 | 54 | |
022c62cb | 55 | #include "exec/memory-internal.h" |
220c3ebd | 56 | #include "exec/ram_addr.h" |
508127e2 | 57 | #include "exec/log.h" |
67d95c15 | 58 | |
9dfeca7c BR |
59 | #include "migration/vmstate.h" |
60 | ||
b35ba30f | 61 | #include "qemu/range.h" |
794e8f30 MT |
62 | #ifndef _WIN32 |
63 | #include "qemu/mmap-alloc.h" | |
64 | #endif | |
b35ba30f | 65 | |
db7b5426 | 66 | //#define DEBUG_SUBPAGE |
1196be37 | 67 | |
e2eef170 | 68 | #if !defined(CONFIG_USER_ONLY) |
0dc3f44a MD |
69 | /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes |
70 | * are protected by the ramlist lock. | |
71 | */ | |
0d53d9fe | 72 | RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; |
62152b8a AK |
73 | |
74 | static MemoryRegion *system_memory; | |
309cb471 | 75 | static MemoryRegion *system_io; |
62152b8a | 76 | |
f6790af6 AK |
77 | AddressSpace address_space_io; |
78 | AddressSpace address_space_memory; | |
2673a5da | 79 | |
0844e007 | 80 | MemoryRegion io_mem_rom, io_mem_notdirty; |
acc9d80b | 81 | static MemoryRegion io_mem_unassigned; |
0e0df1e2 | 82 | |
7bd4f430 PB |
83 | /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ |
84 | #define RAM_PREALLOC (1 << 0) | |
85 | ||
dbcb8981 PB |
86 | /* RAM is mmap-ed with MAP_SHARED */ |
87 | #define RAM_SHARED (1 << 1) | |
88 | ||
62be4e3a MT |
89 | /* Only a portion of RAM (used_length) is actually used, and migrated. |
90 | * This used_length size can change across reboots. | |
91 | */ | |
92 | #define RAM_RESIZEABLE (1 << 2) | |
93 | ||
e2eef170 | 94 | #endif |
9fa3e853 | 95 | |
bdc44640 | 96 | struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus); |
6a00d601 FB |
97 | /* current CPU in the current thread. It is only valid inside |
98 | cpu_exec() */ | |
f240eb6f | 99 | __thread CPUState *current_cpu; |
2e70f6ef | 100 | /* 0 = Do not count executed instructions. |
bf20dc07 | 101 | 1 = Precise instruction counting. |
2e70f6ef | 102 | 2 = Adaptive rate instruction counting. */ |
5708fc66 | 103 | int use_icount; |
6a00d601 | 104 | |
e2eef170 | 105 | #if !defined(CONFIG_USER_ONLY) |
4346ae3e | 106 | |
1db8abb1 PB |
107 | typedef struct PhysPageEntry PhysPageEntry; |
108 | ||
109 | struct PhysPageEntry { | |
9736e55b | 110 | /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ |
8b795765 | 111 | uint32_t skip : 6; |
9736e55b | 112 | /* index into phys_sections (!skip) or phys_map_nodes (skip) */ |
8b795765 | 113 | uint32_t ptr : 26; |
1db8abb1 PB |
114 | }; |
115 | ||
8b795765 MT |
116 | #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) |
117 | ||
03f49957 | 118 | /* Size of the L2 (and L3, etc) page tables. */ |
57271d63 | 119 | #define ADDR_SPACE_BITS 64 |
03f49957 | 120 | |
026736ce | 121 | #define P_L2_BITS 9 |
03f49957 PB |
122 | #define P_L2_SIZE (1 << P_L2_BITS) |
123 | ||
124 | #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) | |
125 | ||
126 | typedef PhysPageEntry Node[P_L2_SIZE]; | |
0475d94f | 127 | |
53cb28cb | 128 | typedef struct PhysPageMap { |
79e2b9ae PB |
129 | struct rcu_head rcu; |
130 | ||
53cb28cb MA |
131 | unsigned sections_nb; |
132 | unsigned sections_nb_alloc; | |
133 | unsigned nodes_nb; | |
134 | unsigned nodes_nb_alloc; | |
135 | Node *nodes; | |
136 | MemoryRegionSection *sections; | |
137 | } PhysPageMap; | |
138 | ||
1db8abb1 | 139 | struct AddressSpaceDispatch { |
79e2b9ae PB |
140 | struct rcu_head rcu; |
141 | ||
729633c2 | 142 | MemoryRegionSection *mru_section; |
1db8abb1 PB |
143 | /* This is a multi-level map on the physical address space. |
144 | * The bottom level has pointers to MemoryRegionSections. | |
145 | */ | |
146 | PhysPageEntry phys_map; | |
53cb28cb | 147 | PhysPageMap map; |
acc9d80b | 148 | AddressSpace *as; |
1db8abb1 PB |
149 | }; |
150 | ||
90260c6c JK |
151 | #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) |
152 | typedef struct subpage_t { | |
153 | MemoryRegion iomem; | |
acc9d80b | 154 | AddressSpace *as; |
90260c6c JK |
155 | hwaddr base; |
156 | uint16_t sub_section[TARGET_PAGE_SIZE]; | |
157 | } subpage_t; | |
158 | ||
b41aac4f LPF |
159 | #define PHYS_SECTION_UNASSIGNED 0 |
160 | #define PHYS_SECTION_NOTDIRTY 1 | |
161 | #define PHYS_SECTION_ROM 2 | |
162 | #define PHYS_SECTION_WATCH 3 | |
5312bd8b | 163 | |
e2eef170 | 164 | static void io_mem_init(void); |
62152b8a | 165 | static void memory_map_init(void); |
09daed84 | 166 | static void tcg_commit(MemoryListener *listener); |
e2eef170 | 167 | |
1ec9b909 | 168 | static MemoryRegion io_mem_watch; |
32857f4d PM |
169 | |
170 | /** | |
171 | * CPUAddressSpace: all the information a CPU needs about an AddressSpace | |
172 | * @cpu: the CPU whose AddressSpace this is | |
173 | * @as: the AddressSpace itself | |
174 | * @memory_dispatch: its dispatch pointer (cached, RCU protected) | |
175 | * @tcg_as_listener: listener for tracking changes to the AddressSpace | |
176 | */ | |
177 | struct CPUAddressSpace { | |
178 | CPUState *cpu; | |
179 | AddressSpace *as; | |
180 | struct AddressSpaceDispatch *memory_dispatch; | |
181 | MemoryListener tcg_as_listener; | |
182 | }; | |
183 | ||
6658ffb8 | 184 | #endif |
fd6ce8f6 | 185 | |
6d9a1304 | 186 | #if !defined(CONFIG_USER_ONLY) |
d6f2ea22 | 187 | |
53cb28cb | 188 | static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) |
d6f2ea22 | 189 | { |
101420b8 | 190 | static unsigned alloc_hint = 16; |
53cb28cb | 191 | if (map->nodes_nb + nodes > map->nodes_nb_alloc) { |
101420b8 | 192 | map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint); |
53cb28cb MA |
193 | map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes); |
194 | map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); | |
101420b8 | 195 | alloc_hint = map->nodes_nb_alloc; |
d6f2ea22 | 196 | } |
f7bf5461 AK |
197 | } |
198 | ||
db94604b | 199 | static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf) |
f7bf5461 AK |
200 | { |
201 | unsigned i; | |
8b795765 | 202 | uint32_t ret; |
db94604b PB |
203 | PhysPageEntry e; |
204 | PhysPageEntry *p; | |
f7bf5461 | 205 | |
53cb28cb | 206 | ret = map->nodes_nb++; |
db94604b | 207 | p = map->nodes[ret]; |
f7bf5461 | 208 | assert(ret != PHYS_MAP_NODE_NIL); |
53cb28cb | 209 | assert(ret != map->nodes_nb_alloc); |
db94604b PB |
210 | |
211 | e.skip = leaf ? 0 : 1; | |
212 | e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL; | |
03f49957 | 213 | for (i = 0; i < P_L2_SIZE; ++i) { |
db94604b | 214 | memcpy(&p[i], &e, sizeof(e)); |
d6f2ea22 | 215 | } |
f7bf5461 | 216 | return ret; |
d6f2ea22 AK |
217 | } |
218 | ||
53cb28cb MA |
219 | static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, |
220 | hwaddr *index, hwaddr *nb, uint16_t leaf, | |
2999097b | 221 | int level) |
f7bf5461 AK |
222 | { |
223 | PhysPageEntry *p; | |
03f49957 | 224 | hwaddr step = (hwaddr)1 << (level * P_L2_BITS); |
108c49b8 | 225 | |
9736e55b | 226 | if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { |
db94604b | 227 | lp->ptr = phys_map_node_alloc(map, level == 0); |
92e873b9 | 228 | } |
db94604b | 229 | p = map->nodes[lp->ptr]; |
03f49957 | 230 | lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; |
f7bf5461 | 231 | |
03f49957 | 232 | while (*nb && lp < &p[P_L2_SIZE]) { |
07f07b31 | 233 | if ((*index & (step - 1)) == 0 && *nb >= step) { |
9736e55b | 234 | lp->skip = 0; |
c19e8800 | 235 | lp->ptr = leaf; |
07f07b31 AK |
236 | *index += step; |
237 | *nb -= step; | |
2999097b | 238 | } else { |
53cb28cb | 239 | phys_page_set_level(map, lp, index, nb, leaf, level - 1); |
2999097b AK |
240 | } |
241 | ++lp; | |
f7bf5461 AK |
242 | } |
243 | } | |
244 | ||
ac1970fb | 245 | static void phys_page_set(AddressSpaceDispatch *d, |
a8170e5e | 246 | hwaddr index, hwaddr nb, |
2999097b | 247 | uint16_t leaf) |
f7bf5461 | 248 | { |
2999097b | 249 | /* Wildly overreserve - it doesn't matter much. */ |
53cb28cb | 250 | phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); |
5cd2c5b6 | 251 | |
53cb28cb | 252 | phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); |
92e873b9 FB |
253 | } |
254 | ||
b35ba30f MT |
255 | /* Compact a non leaf page entry. Simply detect that the entry has a single child, |
256 | * and update our entry so we can skip it and go directly to the destination. | |
257 | */ | |
258 | static void phys_page_compact(PhysPageEntry *lp, Node *nodes, unsigned long *compacted) | |
259 | { | |
260 | unsigned valid_ptr = P_L2_SIZE; | |
261 | int valid = 0; | |
262 | PhysPageEntry *p; | |
263 | int i; | |
264 | ||
265 | if (lp->ptr == PHYS_MAP_NODE_NIL) { | |
266 | return; | |
267 | } | |
268 | ||
269 | p = nodes[lp->ptr]; | |
270 | for (i = 0; i < P_L2_SIZE; i++) { | |
271 | if (p[i].ptr == PHYS_MAP_NODE_NIL) { | |
272 | continue; | |
273 | } | |
274 | ||
275 | valid_ptr = i; | |
276 | valid++; | |
277 | if (p[i].skip) { | |
278 | phys_page_compact(&p[i], nodes, compacted); | |
279 | } | |
280 | } | |
281 | ||
282 | /* We can only compress if there's only one child. */ | |
283 | if (valid != 1) { | |
284 | return; | |
285 | } | |
286 | ||
287 | assert(valid_ptr < P_L2_SIZE); | |
288 | ||
289 | /* Don't compress if it won't fit in the # of bits we have. */ | |
290 | if (lp->skip + p[valid_ptr].skip >= (1 << 3)) { | |
291 | return; | |
292 | } | |
293 | ||
294 | lp->ptr = p[valid_ptr].ptr; | |
295 | if (!p[valid_ptr].skip) { | |
296 | /* If our only child is a leaf, make this a leaf. */ | |
297 | /* By design, we should have made this node a leaf to begin with so we | |
298 | * should never reach here. | |
299 | * But since it's so simple to handle this, let's do it just in case we | |
300 | * change this rule. | |
301 | */ | |
302 | lp->skip = 0; | |
303 | } else { | |
304 | lp->skip += p[valid_ptr].skip; | |
305 | } | |
306 | } | |
307 | ||
308 | static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb) | |
309 | { | |
310 | DECLARE_BITMAP(compacted, nodes_nb); | |
311 | ||
312 | if (d->phys_map.skip) { | |
53cb28cb | 313 | phys_page_compact(&d->phys_map, d->map.nodes, compacted); |
b35ba30f MT |
314 | } |
315 | } | |
316 | ||
29cb533d FZ |
317 | static inline bool section_covers_addr(const MemoryRegionSection *section, |
318 | hwaddr addr) | |
319 | { | |
320 | /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means | |
321 | * the section must cover the entire address space. | |
322 | */ | |
323 | return section->size.hi || | |
324 | range_covers_byte(section->offset_within_address_space, | |
325 | section->size.lo, addr); | |
326 | } | |
327 | ||
97115a8d | 328 | static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr, |
9affd6fc | 329 | Node *nodes, MemoryRegionSection *sections) |
92e873b9 | 330 | { |
31ab2b4a | 331 | PhysPageEntry *p; |
97115a8d | 332 | hwaddr index = addr >> TARGET_PAGE_BITS; |
31ab2b4a | 333 | int i; |
f1f6e3b8 | 334 | |
9736e55b | 335 | for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { |
c19e8800 | 336 | if (lp.ptr == PHYS_MAP_NODE_NIL) { |
9affd6fc | 337 | return §ions[PHYS_SECTION_UNASSIGNED]; |
31ab2b4a | 338 | } |
9affd6fc | 339 | p = nodes[lp.ptr]; |
03f49957 | 340 | lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; |
5312bd8b | 341 | } |
b35ba30f | 342 | |
29cb533d | 343 | if (section_covers_addr(§ions[lp.ptr], addr)) { |
b35ba30f MT |
344 | return §ions[lp.ptr]; |
345 | } else { | |
346 | return §ions[PHYS_SECTION_UNASSIGNED]; | |
347 | } | |
f3705d53 AK |
348 | } |
349 | ||
e5548617 BS |
350 | bool memory_region_is_unassigned(MemoryRegion *mr) |
351 | { | |
2a8e7499 | 352 | return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device |
5b6dd868 | 353 | && mr != &io_mem_watch; |
fd6ce8f6 | 354 | } |
149f54b5 | 355 | |
79e2b9ae | 356 | /* Called from RCU critical section */ |
c7086b4a | 357 | static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, |
90260c6c JK |
358 | hwaddr addr, |
359 | bool resolve_subpage) | |
9f029603 | 360 | { |
729633c2 | 361 | MemoryRegionSection *section = atomic_read(&d->mru_section); |
90260c6c | 362 | subpage_t *subpage; |
729633c2 | 363 | bool update; |
90260c6c | 364 | |
729633c2 FZ |
365 | if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] && |
366 | section_covers_addr(section, addr)) { | |
367 | update = false; | |
368 | } else { | |
369 | section = phys_page_find(d->phys_map, addr, d->map.nodes, | |
370 | d->map.sections); | |
371 | update = true; | |
372 | } | |
90260c6c JK |
373 | if (resolve_subpage && section->mr->subpage) { |
374 | subpage = container_of(section->mr, subpage_t, iomem); | |
53cb28cb | 375 | section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; |
90260c6c | 376 | } |
729633c2 FZ |
377 | if (update) { |
378 | atomic_set(&d->mru_section, section); | |
379 | } | |
90260c6c | 380 | return section; |
9f029603 JK |
381 | } |
382 | ||
79e2b9ae | 383 | /* Called from RCU critical section */ |
90260c6c | 384 | static MemoryRegionSection * |
c7086b4a | 385 | address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, |
90260c6c | 386 | hwaddr *plen, bool resolve_subpage) |
149f54b5 PB |
387 | { |
388 | MemoryRegionSection *section; | |
965eb2fc | 389 | MemoryRegion *mr; |
a87f3954 | 390 | Int128 diff; |
149f54b5 | 391 | |
c7086b4a | 392 | section = address_space_lookup_region(d, addr, resolve_subpage); |
149f54b5 PB |
393 | /* Compute offset within MemoryRegionSection */ |
394 | addr -= section->offset_within_address_space; | |
395 | ||
396 | /* Compute offset within MemoryRegion */ | |
397 | *xlat = addr + section->offset_within_region; | |
398 | ||
965eb2fc | 399 | mr = section->mr; |
b242e0e0 PB |
400 | |
401 | /* MMIO registers can be expected to perform full-width accesses based only | |
402 | * on their address, without considering adjacent registers that could | |
403 | * decode to completely different MemoryRegions. When such registers | |
404 | * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO | |
405 | * regions overlap wildly. For this reason we cannot clamp the accesses | |
406 | * here. | |
407 | * | |
408 | * If the length is small (as is the case for address_space_ldl/stl), | |
409 | * everything works fine. If the incoming length is large, however, | |
410 | * the caller really has to do the clamping through memory_access_size. | |
411 | */ | |
965eb2fc | 412 | if (memory_region_is_ram(mr)) { |
e4a511f8 | 413 | diff = int128_sub(section->size, int128_make64(addr)); |
965eb2fc PB |
414 | *plen = int128_get64(int128_min(diff, int128_make64(*plen))); |
415 | } | |
149f54b5 PB |
416 | return section; |
417 | } | |
90260c6c | 418 | |
41063e1e | 419 | /* Called from RCU critical section */ |
5c8a00ce PB |
420 | MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr, |
421 | hwaddr *xlat, hwaddr *plen, | |
422 | bool is_write) | |
90260c6c | 423 | { |
30951157 AK |
424 | IOMMUTLBEntry iotlb; |
425 | MemoryRegionSection *section; | |
426 | MemoryRegion *mr; | |
30951157 AK |
427 | |
428 | for (;;) { | |
79e2b9ae PB |
429 | AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch); |
430 | section = address_space_translate_internal(d, addr, &addr, plen, true); | |
30951157 AK |
431 | mr = section->mr; |
432 | ||
433 | if (!mr->iommu_ops) { | |
434 | break; | |
435 | } | |
436 | ||
8d7b8cb9 | 437 | iotlb = mr->iommu_ops->translate(mr, addr, is_write); |
30951157 AK |
438 | addr = ((iotlb.translated_addr & ~iotlb.addr_mask) |
439 | | (addr & iotlb.addr_mask)); | |
23820dbf | 440 | *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1); |
30951157 AK |
441 | if (!(iotlb.perm & (1 << is_write))) { |
442 | mr = &io_mem_unassigned; | |
443 | break; | |
444 | } | |
445 | ||
446 | as = iotlb.target_as; | |
447 | } | |
448 | ||
fe680d0d | 449 | if (xen_enabled() && memory_access_is_direct(mr, is_write)) { |
a87f3954 | 450 | hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; |
23820dbf | 451 | *plen = MIN(page, *plen); |
a87f3954 PB |
452 | } |
453 | ||
30951157 AK |
454 | *xlat = addr; |
455 | return mr; | |
90260c6c JK |
456 | } |
457 | ||
79e2b9ae | 458 | /* Called from RCU critical section */ |
90260c6c | 459 | MemoryRegionSection * |
d7898cda | 460 | address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr, |
9d82b5a7 | 461 | hwaddr *xlat, hwaddr *plen) |
90260c6c | 462 | { |
30951157 | 463 | MemoryRegionSection *section; |
d7898cda PM |
464 | AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch; |
465 | ||
466 | section = address_space_translate_internal(d, addr, xlat, plen, false); | |
30951157 AK |
467 | |
468 | assert(!section->mr->iommu_ops); | |
469 | return section; | |
90260c6c | 470 | } |
5b6dd868 | 471 | #endif |
fd6ce8f6 | 472 | |
b170fce3 | 473 | #if !defined(CONFIG_USER_ONLY) |
5b6dd868 BS |
474 | |
475 | static int cpu_common_post_load(void *opaque, int version_id) | |
fd6ce8f6 | 476 | { |
259186a7 | 477 | CPUState *cpu = opaque; |
a513fe19 | 478 | |
5b6dd868 BS |
479 | /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the |
480 | version_id is increased. */ | |
259186a7 | 481 | cpu->interrupt_request &= ~0x01; |
c01a71c1 | 482 | tlb_flush(cpu, 1); |
5b6dd868 BS |
483 | |
484 | return 0; | |
a513fe19 | 485 | } |
7501267e | 486 | |
6c3bff0e PD |
487 | static int cpu_common_pre_load(void *opaque) |
488 | { | |
489 | CPUState *cpu = opaque; | |
490 | ||
adee6424 | 491 | cpu->exception_index = -1; |
6c3bff0e PD |
492 | |
493 | return 0; | |
494 | } | |
495 | ||
496 | static bool cpu_common_exception_index_needed(void *opaque) | |
497 | { | |
498 | CPUState *cpu = opaque; | |
499 | ||
adee6424 | 500 | return tcg_enabled() && cpu->exception_index != -1; |
6c3bff0e PD |
501 | } |
502 | ||
503 | static const VMStateDescription vmstate_cpu_common_exception_index = { | |
504 | .name = "cpu_common/exception_index", | |
505 | .version_id = 1, | |
506 | .minimum_version_id = 1, | |
5cd8cada | 507 | .needed = cpu_common_exception_index_needed, |
6c3bff0e PD |
508 | .fields = (VMStateField[]) { |
509 | VMSTATE_INT32(exception_index, CPUState), | |
510 | VMSTATE_END_OF_LIST() | |
511 | } | |
512 | }; | |
513 | ||
bac05aa9 AS |
514 | static bool cpu_common_crash_occurred_needed(void *opaque) |
515 | { | |
516 | CPUState *cpu = opaque; | |
517 | ||
518 | return cpu->crash_occurred; | |
519 | } | |
520 | ||
521 | static const VMStateDescription vmstate_cpu_common_crash_occurred = { | |
522 | .name = "cpu_common/crash_occurred", | |
523 | .version_id = 1, | |
524 | .minimum_version_id = 1, | |
525 | .needed = cpu_common_crash_occurred_needed, | |
526 | .fields = (VMStateField[]) { | |
527 | VMSTATE_BOOL(crash_occurred, CPUState), | |
528 | VMSTATE_END_OF_LIST() | |
529 | } | |
530 | }; | |
531 | ||
1a1562f5 | 532 | const VMStateDescription vmstate_cpu_common = { |
5b6dd868 BS |
533 | .name = "cpu_common", |
534 | .version_id = 1, | |
535 | .minimum_version_id = 1, | |
6c3bff0e | 536 | .pre_load = cpu_common_pre_load, |
5b6dd868 | 537 | .post_load = cpu_common_post_load, |
35d08458 | 538 | .fields = (VMStateField[]) { |
259186a7 AF |
539 | VMSTATE_UINT32(halted, CPUState), |
540 | VMSTATE_UINT32(interrupt_request, CPUState), | |
5b6dd868 | 541 | VMSTATE_END_OF_LIST() |
6c3bff0e | 542 | }, |
5cd8cada JQ |
543 | .subsections = (const VMStateDescription*[]) { |
544 | &vmstate_cpu_common_exception_index, | |
bac05aa9 | 545 | &vmstate_cpu_common_crash_occurred, |
5cd8cada | 546 | NULL |
5b6dd868 BS |
547 | } |
548 | }; | |
1a1562f5 | 549 | |
5b6dd868 | 550 | #endif |
ea041c0e | 551 | |
38d8f5c8 | 552 | CPUState *qemu_get_cpu(int index) |
ea041c0e | 553 | { |
bdc44640 | 554 | CPUState *cpu; |
ea041c0e | 555 | |
bdc44640 | 556 | CPU_FOREACH(cpu) { |
55e5c285 | 557 | if (cpu->cpu_index == index) { |
bdc44640 | 558 | return cpu; |
55e5c285 | 559 | } |
ea041c0e | 560 | } |
5b6dd868 | 561 | |
bdc44640 | 562 | return NULL; |
ea041c0e FB |
563 | } |
564 | ||
09daed84 | 565 | #if !defined(CONFIG_USER_ONLY) |
56943e8c | 566 | void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx) |
09daed84 | 567 | { |
12ebc9a7 PM |
568 | CPUAddressSpace *newas; |
569 | ||
570 | /* Target code should have set num_ases before calling us */ | |
571 | assert(asidx < cpu->num_ases); | |
572 | ||
56943e8c PM |
573 | if (asidx == 0) { |
574 | /* address space 0 gets the convenience alias */ | |
575 | cpu->as = as; | |
576 | } | |
577 | ||
12ebc9a7 PM |
578 | /* KVM cannot currently support multiple address spaces. */ |
579 | assert(asidx == 0 || !kvm_enabled()); | |
09daed84 | 580 | |
12ebc9a7 PM |
581 | if (!cpu->cpu_ases) { |
582 | cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases); | |
09daed84 | 583 | } |
32857f4d | 584 | |
12ebc9a7 PM |
585 | newas = &cpu->cpu_ases[asidx]; |
586 | newas->cpu = cpu; | |
587 | newas->as = as; | |
56943e8c | 588 | if (tcg_enabled()) { |
12ebc9a7 PM |
589 | newas->tcg_as_listener.commit = tcg_commit; |
590 | memory_listener_register(&newas->tcg_as_listener, as); | |
56943e8c | 591 | } |
09daed84 | 592 | } |
651a5bc0 PM |
593 | |
594 | AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx) | |
595 | { | |
596 | /* Return the AddressSpace corresponding to the specified index */ | |
597 | return cpu->cpu_ases[asidx].as; | |
598 | } | |
09daed84 EI |
599 | #endif |
600 | ||
1c59eb39 BR |
601 | void cpu_exec_exit(CPUState *cpu) |
602 | { | |
9dfeca7c BR |
603 | CPUClass *cc = CPU_GET_CLASS(cpu); |
604 | ||
267f685b | 605 | cpu_list_remove(cpu); |
9dfeca7c BR |
606 | |
607 | if (cc->vmsd != NULL) { | |
608 | vmstate_unregister(NULL, cc->vmsd, cpu); | |
609 | } | |
610 | if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { | |
611 | vmstate_unregister(NULL, &vmstate_cpu_common, cpu); | |
612 | } | |
1c59eb39 BR |
613 | } |
614 | ||
4bad9e39 | 615 | void cpu_exec_init(CPUState *cpu, Error **errp) |
ea041c0e | 616 | { |
1bc7e522 | 617 | CPUClass *cc ATTRIBUTE_UNUSED = CPU_GET_CLASS(cpu); |
a07f953e | 618 | Error *local_err ATTRIBUTE_UNUSED = NULL; |
5b6dd868 | 619 | |
56943e8c | 620 | cpu->as = NULL; |
12ebc9a7 | 621 | cpu->num_ases = 0; |
56943e8c | 622 | |
291135b5 | 623 | #ifndef CONFIG_USER_ONLY |
291135b5 | 624 | cpu->thread_id = qemu_get_thread_id(); |
6731d864 PC |
625 | |
626 | /* This is a softmmu CPU object, so create a property for it | |
627 | * so users can wire up its memory. (This can't go in qom/cpu.c | |
628 | * because that file is compiled only once for both user-mode | |
629 | * and system builds.) The default if no link is set up is to use | |
630 | * the system address space. | |
631 | */ | |
632 | object_property_add_link(OBJECT(cpu), "memory", TYPE_MEMORY_REGION, | |
633 | (Object **)&cpu->memory, | |
634 | qdev_prop_allow_set_link_before_realize, | |
635 | OBJ_PROP_LINK_UNREF_ON_RELEASE, | |
636 | &error_abort); | |
637 | cpu->memory = system_memory; | |
638 | object_ref(OBJECT(cpu->memory)); | |
291135b5 EH |
639 | #endif |
640 | ||
267f685b | 641 | cpu_list_add(cpu); |
1bc7e522 IM |
642 | |
643 | #ifndef CONFIG_USER_ONLY | |
e0d47944 | 644 | if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { |
741da0d3 | 645 | vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu); |
e0d47944 | 646 | } |
b170fce3 | 647 | if (cc->vmsd != NULL) { |
741da0d3 | 648 | vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu); |
b170fce3 | 649 | } |
741da0d3 | 650 | #endif |
ea041c0e FB |
651 | } |
652 | ||
94df27fd | 653 | #if defined(CONFIG_USER_ONLY) |
00b941e5 | 654 | static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) |
94df27fd PB |
655 | { |
656 | tb_invalidate_phys_page_range(pc, pc + 1, 0); | |
657 | } | |
658 | #else | |
00b941e5 | 659 | static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) |
1e7855a5 | 660 | { |
5232e4c7 PM |
661 | MemTxAttrs attrs; |
662 | hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs); | |
663 | int asidx = cpu_asidx_from_attrs(cpu, attrs); | |
e8262a1b | 664 | if (phys != -1) { |
5232e4c7 | 665 | tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as, |
29d8ec7b | 666 | phys | (pc & ~TARGET_PAGE_MASK)); |
e8262a1b | 667 | } |
1e7855a5 | 668 | } |
c27004ec | 669 | #endif |
d720b93d | 670 | |
c527ee8f | 671 | #if defined(CONFIG_USER_ONLY) |
75a34036 | 672 | void cpu_watchpoint_remove_all(CPUState *cpu, int mask) |
c527ee8f PB |
673 | |
674 | { | |
675 | } | |
676 | ||
3ee887e8 PM |
677 | int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, |
678 | int flags) | |
679 | { | |
680 | return -ENOSYS; | |
681 | } | |
682 | ||
683 | void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) | |
684 | { | |
685 | } | |
686 | ||
75a34036 | 687 | int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, |
c527ee8f PB |
688 | int flags, CPUWatchpoint **watchpoint) |
689 | { | |
690 | return -ENOSYS; | |
691 | } | |
692 | #else | |
6658ffb8 | 693 | /* Add a watchpoint. */ |
75a34036 | 694 | int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, |
a1d1bb31 | 695 | int flags, CPUWatchpoint **watchpoint) |
6658ffb8 | 696 | { |
c0ce998e | 697 | CPUWatchpoint *wp; |
6658ffb8 | 698 | |
05068c0d | 699 | /* forbid ranges which are empty or run off the end of the address space */ |
07e2863d | 700 | if (len == 0 || (addr + len - 1) < addr) { |
75a34036 AF |
701 | error_report("tried to set invalid watchpoint at %" |
702 | VADDR_PRIx ", len=%" VADDR_PRIu, addr, len); | |
b4051334 AL |
703 | return -EINVAL; |
704 | } | |
7267c094 | 705 | wp = g_malloc(sizeof(*wp)); |
a1d1bb31 AL |
706 | |
707 | wp->vaddr = addr; | |
05068c0d | 708 | wp->len = len; |
a1d1bb31 AL |
709 | wp->flags = flags; |
710 | ||
2dc9f411 | 711 | /* keep all GDB-injected watchpoints in front */ |
ff4700b0 AF |
712 | if (flags & BP_GDB) { |
713 | QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry); | |
714 | } else { | |
715 | QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry); | |
716 | } | |
6658ffb8 | 717 | |
31b030d4 | 718 | tlb_flush_page(cpu, addr); |
a1d1bb31 AL |
719 | |
720 | if (watchpoint) | |
721 | *watchpoint = wp; | |
722 | return 0; | |
6658ffb8 PB |
723 | } |
724 | ||
a1d1bb31 | 725 | /* Remove a specific watchpoint. */ |
75a34036 | 726 | int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, |
a1d1bb31 | 727 | int flags) |
6658ffb8 | 728 | { |
a1d1bb31 | 729 | CPUWatchpoint *wp; |
6658ffb8 | 730 | |
ff4700b0 | 731 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d | 732 | if (addr == wp->vaddr && len == wp->len |
6e140f28 | 733 | && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { |
75a34036 | 734 | cpu_watchpoint_remove_by_ref(cpu, wp); |
6658ffb8 PB |
735 | return 0; |
736 | } | |
737 | } | |
a1d1bb31 | 738 | return -ENOENT; |
6658ffb8 PB |
739 | } |
740 | ||
a1d1bb31 | 741 | /* Remove a specific watchpoint by reference. */ |
75a34036 | 742 | void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) |
a1d1bb31 | 743 | { |
ff4700b0 | 744 | QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry); |
7d03f82f | 745 | |
31b030d4 | 746 | tlb_flush_page(cpu, watchpoint->vaddr); |
a1d1bb31 | 747 | |
7267c094 | 748 | g_free(watchpoint); |
a1d1bb31 AL |
749 | } |
750 | ||
751 | /* Remove all matching watchpoints. */ | |
75a34036 | 752 | void cpu_watchpoint_remove_all(CPUState *cpu, int mask) |
a1d1bb31 | 753 | { |
c0ce998e | 754 | CPUWatchpoint *wp, *next; |
a1d1bb31 | 755 | |
ff4700b0 | 756 | QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) { |
75a34036 AF |
757 | if (wp->flags & mask) { |
758 | cpu_watchpoint_remove_by_ref(cpu, wp); | |
759 | } | |
c0ce998e | 760 | } |
7d03f82f | 761 | } |
05068c0d PM |
762 | |
763 | /* Return true if this watchpoint address matches the specified | |
764 | * access (ie the address range covered by the watchpoint overlaps | |
765 | * partially or completely with the address range covered by the | |
766 | * access). | |
767 | */ | |
768 | static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp, | |
769 | vaddr addr, | |
770 | vaddr len) | |
771 | { | |
772 | /* We know the lengths are non-zero, but a little caution is | |
773 | * required to avoid errors in the case where the range ends | |
774 | * exactly at the top of the address space and so addr + len | |
775 | * wraps round to zero. | |
776 | */ | |
777 | vaddr wpend = wp->vaddr + wp->len - 1; | |
778 | vaddr addrend = addr + len - 1; | |
779 | ||
780 | return !(addr > wpend || wp->vaddr > addrend); | |
781 | } | |
782 | ||
c527ee8f | 783 | #endif |
7d03f82f | 784 | |
a1d1bb31 | 785 | /* Add a breakpoint. */ |
b3310ab3 | 786 | int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, |
a1d1bb31 | 787 | CPUBreakpoint **breakpoint) |
4c3a88a2 | 788 | { |
c0ce998e | 789 | CPUBreakpoint *bp; |
3b46e624 | 790 | |
7267c094 | 791 | bp = g_malloc(sizeof(*bp)); |
4c3a88a2 | 792 | |
a1d1bb31 AL |
793 | bp->pc = pc; |
794 | bp->flags = flags; | |
795 | ||
2dc9f411 | 796 | /* keep all GDB-injected breakpoints in front */ |
00b941e5 | 797 | if (flags & BP_GDB) { |
f0c3c505 | 798 | QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry); |
00b941e5 | 799 | } else { |
f0c3c505 | 800 | QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry); |
00b941e5 | 801 | } |
3b46e624 | 802 | |
f0c3c505 | 803 | breakpoint_invalidate(cpu, pc); |
a1d1bb31 | 804 | |
00b941e5 | 805 | if (breakpoint) { |
a1d1bb31 | 806 | *breakpoint = bp; |
00b941e5 | 807 | } |
4c3a88a2 | 808 | return 0; |
4c3a88a2 FB |
809 | } |
810 | ||
a1d1bb31 | 811 | /* Remove a specific breakpoint. */ |
b3310ab3 | 812 | int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags) |
a1d1bb31 | 813 | { |
a1d1bb31 AL |
814 | CPUBreakpoint *bp; |
815 | ||
f0c3c505 | 816 | QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { |
a1d1bb31 | 817 | if (bp->pc == pc && bp->flags == flags) { |
b3310ab3 | 818 | cpu_breakpoint_remove_by_ref(cpu, bp); |
a1d1bb31 AL |
819 | return 0; |
820 | } | |
7d03f82f | 821 | } |
a1d1bb31 | 822 | return -ENOENT; |
7d03f82f EI |
823 | } |
824 | ||
a1d1bb31 | 825 | /* Remove a specific breakpoint by reference. */ |
b3310ab3 | 826 | void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint) |
4c3a88a2 | 827 | { |
f0c3c505 AF |
828 | QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry); |
829 | ||
830 | breakpoint_invalidate(cpu, breakpoint->pc); | |
a1d1bb31 | 831 | |
7267c094 | 832 | g_free(breakpoint); |
a1d1bb31 AL |
833 | } |
834 | ||
835 | /* Remove all matching breakpoints. */ | |
b3310ab3 | 836 | void cpu_breakpoint_remove_all(CPUState *cpu, int mask) |
a1d1bb31 | 837 | { |
c0ce998e | 838 | CPUBreakpoint *bp, *next; |
a1d1bb31 | 839 | |
f0c3c505 | 840 | QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) { |
b3310ab3 AF |
841 | if (bp->flags & mask) { |
842 | cpu_breakpoint_remove_by_ref(cpu, bp); | |
843 | } | |
c0ce998e | 844 | } |
4c3a88a2 FB |
845 | } |
846 | ||
c33a346e FB |
847 | /* enable or disable single step mode. EXCP_DEBUG is returned by the |
848 | CPU loop after each instruction */ | |
3825b28f | 849 | void cpu_single_step(CPUState *cpu, int enabled) |
c33a346e | 850 | { |
ed2803da AF |
851 | if (cpu->singlestep_enabled != enabled) { |
852 | cpu->singlestep_enabled = enabled; | |
853 | if (kvm_enabled()) { | |
38e478ec | 854 | kvm_update_guest_debug(cpu, 0); |
ed2803da | 855 | } else { |
ccbb4d44 | 856 | /* must flush all the translated code to avoid inconsistencies */ |
e22a25c9 | 857 | /* XXX: only flush what is necessary */ |
bbd77c18 | 858 | tb_flush(cpu); |
e22a25c9 | 859 | } |
c33a346e | 860 | } |
c33a346e FB |
861 | } |
862 | ||
a47dddd7 | 863 | void cpu_abort(CPUState *cpu, const char *fmt, ...) |
7501267e FB |
864 | { |
865 | va_list ap; | |
493ae1f0 | 866 | va_list ap2; |
7501267e FB |
867 | |
868 | va_start(ap, fmt); | |
493ae1f0 | 869 | va_copy(ap2, ap); |
7501267e FB |
870 | fprintf(stderr, "qemu: fatal: "); |
871 | vfprintf(stderr, fmt, ap); | |
872 | fprintf(stderr, "\n"); | |
878096ee | 873 | cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP); |
013a2942 | 874 | if (qemu_log_separate()) { |
93fcfe39 AL |
875 | qemu_log("qemu: fatal: "); |
876 | qemu_log_vprintf(fmt, ap2); | |
877 | qemu_log("\n"); | |
a0762859 | 878 | log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP); |
31b1a7b4 | 879 | qemu_log_flush(); |
93fcfe39 | 880 | qemu_log_close(); |
924edcae | 881 | } |
493ae1f0 | 882 | va_end(ap2); |
f9373291 | 883 | va_end(ap); |
7615936e | 884 | replay_finish(); |
fd052bf6 RV |
885 | #if defined(CONFIG_USER_ONLY) |
886 | { | |
887 | struct sigaction act; | |
888 | sigfillset(&act.sa_mask); | |
889 | act.sa_handler = SIG_DFL; | |
890 | sigaction(SIGABRT, &act, NULL); | |
891 | } | |
892 | #endif | |
7501267e FB |
893 | abort(); |
894 | } | |
895 | ||
0124311e | 896 | #if !defined(CONFIG_USER_ONLY) |
0dc3f44a | 897 | /* Called from RCU critical section */ |
041603fe PB |
898 | static RAMBlock *qemu_get_ram_block(ram_addr_t addr) |
899 | { | |
900 | RAMBlock *block; | |
901 | ||
43771539 | 902 | block = atomic_rcu_read(&ram_list.mru_block); |
9b8424d5 | 903 | if (block && addr - block->offset < block->max_length) { |
68851b98 | 904 | return block; |
041603fe | 905 | } |
0dc3f44a | 906 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
9b8424d5 | 907 | if (addr - block->offset < block->max_length) { |
041603fe PB |
908 | goto found; |
909 | } | |
910 | } | |
911 | ||
912 | fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); | |
913 | abort(); | |
914 | ||
915 | found: | |
43771539 PB |
916 | /* It is safe to write mru_block outside the iothread lock. This |
917 | * is what happens: | |
918 | * | |
919 | * mru_block = xxx | |
920 | * rcu_read_unlock() | |
921 | * xxx removed from list | |
922 | * rcu_read_lock() | |
923 | * read mru_block | |
924 | * mru_block = NULL; | |
925 | * call_rcu(reclaim_ramblock, xxx); | |
926 | * rcu_read_unlock() | |
927 | * | |
928 | * atomic_rcu_set is not needed here. The block was already published | |
929 | * when it was placed into the list. Here we're just making an extra | |
930 | * copy of the pointer. | |
931 | */ | |
041603fe PB |
932 | ram_list.mru_block = block; |
933 | return block; | |
934 | } | |
935 | ||
a2f4d5be | 936 | static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) |
d24981d3 | 937 | { |
9a13565d | 938 | CPUState *cpu; |
041603fe | 939 | ram_addr_t start1; |
a2f4d5be JQ |
940 | RAMBlock *block; |
941 | ram_addr_t end; | |
942 | ||
943 | end = TARGET_PAGE_ALIGN(start + length); | |
944 | start &= TARGET_PAGE_MASK; | |
d24981d3 | 945 | |
0dc3f44a | 946 | rcu_read_lock(); |
041603fe PB |
947 | block = qemu_get_ram_block(start); |
948 | assert(block == qemu_get_ram_block(end - 1)); | |
1240be24 | 949 | start1 = (uintptr_t)ramblock_ptr(block, start - block->offset); |
9a13565d PC |
950 | CPU_FOREACH(cpu) { |
951 | tlb_reset_dirty(cpu, start1, length); | |
952 | } | |
0dc3f44a | 953 | rcu_read_unlock(); |
d24981d3 JQ |
954 | } |
955 | ||
5579c7f3 | 956 | /* Note: start and end must be within the same ram block. */ |
03eebc9e SH |
957 | bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, |
958 | ram_addr_t length, | |
959 | unsigned client) | |
1ccde1cb | 960 | { |
5b82b703 | 961 | DirtyMemoryBlocks *blocks; |
03eebc9e | 962 | unsigned long end, page; |
5b82b703 | 963 | bool dirty = false; |
03eebc9e SH |
964 | |
965 | if (length == 0) { | |
966 | return false; | |
967 | } | |
f23db169 | 968 | |
03eebc9e SH |
969 | end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; |
970 | page = start >> TARGET_PAGE_BITS; | |
5b82b703 SH |
971 | |
972 | rcu_read_lock(); | |
973 | ||
974 | blocks = atomic_rcu_read(&ram_list.dirty_memory[client]); | |
975 | ||
976 | while (page < end) { | |
977 | unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; | |
978 | unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; | |
979 | unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset); | |
980 | ||
981 | dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx], | |
982 | offset, num); | |
983 | page += num; | |
984 | } | |
985 | ||
986 | rcu_read_unlock(); | |
03eebc9e SH |
987 | |
988 | if (dirty && tcg_enabled()) { | |
a2f4d5be | 989 | tlb_reset_dirty_range_all(start, length); |
5579c7f3 | 990 | } |
03eebc9e SH |
991 | |
992 | return dirty; | |
1ccde1cb FB |
993 | } |
994 | ||
79e2b9ae | 995 | /* Called from RCU critical section */ |
bb0e627a | 996 | hwaddr memory_region_section_get_iotlb(CPUState *cpu, |
149f54b5 PB |
997 | MemoryRegionSection *section, |
998 | target_ulong vaddr, | |
999 | hwaddr paddr, hwaddr xlat, | |
1000 | int prot, | |
1001 | target_ulong *address) | |
e5548617 | 1002 | { |
a8170e5e | 1003 | hwaddr iotlb; |
e5548617 BS |
1004 | CPUWatchpoint *wp; |
1005 | ||
cc5bea60 | 1006 | if (memory_region_is_ram(section->mr)) { |
e5548617 | 1007 | /* Normal RAM. */ |
e4e69794 | 1008 | iotlb = memory_region_get_ram_addr(section->mr) + xlat; |
e5548617 | 1009 | if (!section->readonly) { |
b41aac4f | 1010 | iotlb |= PHYS_SECTION_NOTDIRTY; |
e5548617 | 1011 | } else { |
b41aac4f | 1012 | iotlb |= PHYS_SECTION_ROM; |
e5548617 BS |
1013 | } |
1014 | } else { | |
0b8e2c10 PM |
1015 | AddressSpaceDispatch *d; |
1016 | ||
1017 | d = atomic_rcu_read(§ion->address_space->dispatch); | |
1018 | iotlb = section - d->map.sections; | |
149f54b5 | 1019 | iotlb += xlat; |
e5548617 BS |
1020 | } |
1021 | ||
1022 | /* Make accesses to pages with watchpoints go via the | |
1023 | watchpoint trap routines. */ | |
ff4700b0 | 1024 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d | 1025 | if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) { |
e5548617 BS |
1026 | /* Avoid trapping reads of pages with a write breakpoint. */ |
1027 | if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) { | |
b41aac4f | 1028 | iotlb = PHYS_SECTION_WATCH + paddr; |
e5548617 BS |
1029 | *address |= TLB_MMIO; |
1030 | break; | |
1031 | } | |
1032 | } | |
1033 | } | |
1034 | ||
1035 | return iotlb; | |
1036 | } | |
9fa3e853 FB |
1037 | #endif /* defined(CONFIG_USER_ONLY) */ |
1038 | ||
e2eef170 | 1039 | #if !defined(CONFIG_USER_ONLY) |
8da3ff18 | 1040 | |
c227f099 | 1041 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, |
5312bd8b | 1042 | uint16_t section); |
acc9d80b | 1043 | static subpage_t *subpage_init(AddressSpace *as, hwaddr base); |
54688b1e | 1044 | |
a2b257d6 IM |
1045 | static void *(*phys_mem_alloc)(size_t size, uint64_t *align) = |
1046 | qemu_anon_ram_alloc; | |
91138037 MA |
1047 | |
1048 | /* | |
1049 | * Set a custom physical guest memory alloator. | |
1050 | * Accelerators with unusual needs may need this. Hopefully, we can | |
1051 | * get rid of it eventually. | |
1052 | */ | |
a2b257d6 | 1053 | void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align)) |
91138037 MA |
1054 | { |
1055 | phys_mem_alloc = alloc; | |
1056 | } | |
1057 | ||
53cb28cb MA |
1058 | static uint16_t phys_section_add(PhysPageMap *map, |
1059 | MemoryRegionSection *section) | |
5312bd8b | 1060 | { |
68f3f65b PB |
1061 | /* The physical section number is ORed with a page-aligned |
1062 | * pointer to produce the iotlb entries. Thus it should | |
1063 | * never overflow into the page-aligned value. | |
1064 | */ | |
53cb28cb | 1065 | assert(map->sections_nb < TARGET_PAGE_SIZE); |
68f3f65b | 1066 | |
53cb28cb MA |
1067 | if (map->sections_nb == map->sections_nb_alloc) { |
1068 | map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); | |
1069 | map->sections = g_renew(MemoryRegionSection, map->sections, | |
1070 | map->sections_nb_alloc); | |
5312bd8b | 1071 | } |
53cb28cb | 1072 | map->sections[map->sections_nb] = *section; |
dfde4e6e | 1073 | memory_region_ref(section->mr); |
53cb28cb | 1074 | return map->sections_nb++; |
5312bd8b AK |
1075 | } |
1076 | ||
058bc4b5 PB |
1077 | static void phys_section_destroy(MemoryRegion *mr) |
1078 | { | |
55b4e80b DS |
1079 | bool have_sub_page = mr->subpage; |
1080 | ||
dfde4e6e PB |
1081 | memory_region_unref(mr); |
1082 | ||
55b4e80b | 1083 | if (have_sub_page) { |
058bc4b5 | 1084 | subpage_t *subpage = container_of(mr, subpage_t, iomem); |
b4fefef9 | 1085 | object_unref(OBJECT(&subpage->iomem)); |
058bc4b5 PB |
1086 | g_free(subpage); |
1087 | } | |
1088 | } | |
1089 | ||
6092666e | 1090 | static void phys_sections_free(PhysPageMap *map) |
5312bd8b | 1091 | { |
9affd6fc PB |
1092 | while (map->sections_nb > 0) { |
1093 | MemoryRegionSection *section = &map->sections[--map->sections_nb]; | |
058bc4b5 PB |
1094 | phys_section_destroy(section->mr); |
1095 | } | |
9affd6fc PB |
1096 | g_free(map->sections); |
1097 | g_free(map->nodes); | |
5312bd8b AK |
1098 | } |
1099 | ||
ac1970fb | 1100 | static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section) |
0f0cb164 AK |
1101 | { |
1102 | subpage_t *subpage; | |
a8170e5e | 1103 | hwaddr base = section->offset_within_address_space |
0f0cb164 | 1104 | & TARGET_PAGE_MASK; |
97115a8d | 1105 | MemoryRegionSection *existing = phys_page_find(d->phys_map, base, |
53cb28cb | 1106 | d->map.nodes, d->map.sections); |
0f0cb164 AK |
1107 | MemoryRegionSection subsection = { |
1108 | .offset_within_address_space = base, | |
052e87b0 | 1109 | .size = int128_make64(TARGET_PAGE_SIZE), |
0f0cb164 | 1110 | }; |
a8170e5e | 1111 | hwaddr start, end; |
0f0cb164 | 1112 | |
f3705d53 | 1113 | assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); |
0f0cb164 | 1114 | |
f3705d53 | 1115 | if (!(existing->mr->subpage)) { |
acc9d80b | 1116 | subpage = subpage_init(d->as, base); |
3be91e86 | 1117 | subsection.address_space = d->as; |
0f0cb164 | 1118 | subsection.mr = &subpage->iomem; |
ac1970fb | 1119 | phys_page_set(d, base >> TARGET_PAGE_BITS, 1, |
53cb28cb | 1120 | phys_section_add(&d->map, &subsection)); |
0f0cb164 | 1121 | } else { |
f3705d53 | 1122 | subpage = container_of(existing->mr, subpage_t, iomem); |
0f0cb164 AK |
1123 | } |
1124 | start = section->offset_within_address_space & ~TARGET_PAGE_MASK; | |
052e87b0 | 1125 | end = start + int128_get64(section->size) - 1; |
53cb28cb MA |
1126 | subpage_register(subpage, start, end, |
1127 | phys_section_add(&d->map, section)); | |
0f0cb164 AK |
1128 | } |
1129 | ||
1130 | ||
052e87b0 PB |
1131 | static void register_multipage(AddressSpaceDispatch *d, |
1132 | MemoryRegionSection *section) | |
33417e70 | 1133 | { |
a8170e5e | 1134 | hwaddr start_addr = section->offset_within_address_space; |
53cb28cb | 1135 | uint16_t section_index = phys_section_add(&d->map, section); |
052e87b0 PB |
1136 | uint64_t num_pages = int128_get64(int128_rshift(section->size, |
1137 | TARGET_PAGE_BITS)); | |
dd81124b | 1138 | |
733d5ef5 PB |
1139 | assert(num_pages); |
1140 | phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); | |
33417e70 FB |
1141 | } |
1142 | ||
ac1970fb | 1143 | static void mem_add(MemoryListener *listener, MemoryRegionSection *section) |
0f0cb164 | 1144 | { |
89ae337a | 1145 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); |
00752703 | 1146 | AddressSpaceDispatch *d = as->next_dispatch; |
99b9cc06 | 1147 | MemoryRegionSection now = *section, remain = *section; |
052e87b0 | 1148 | Int128 page_size = int128_make64(TARGET_PAGE_SIZE); |
0f0cb164 | 1149 | |
733d5ef5 PB |
1150 | if (now.offset_within_address_space & ~TARGET_PAGE_MASK) { |
1151 | uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space) | |
1152 | - now.offset_within_address_space; | |
1153 | ||
052e87b0 | 1154 | now.size = int128_min(int128_make64(left), now.size); |
ac1970fb | 1155 | register_subpage(d, &now); |
733d5ef5 | 1156 | } else { |
052e87b0 | 1157 | now.size = int128_zero(); |
733d5ef5 | 1158 | } |
052e87b0 PB |
1159 | while (int128_ne(remain.size, now.size)) { |
1160 | remain.size = int128_sub(remain.size, now.size); | |
1161 | remain.offset_within_address_space += int128_get64(now.size); | |
1162 | remain.offset_within_region += int128_get64(now.size); | |
69b67646 | 1163 | now = remain; |
052e87b0 | 1164 | if (int128_lt(remain.size, page_size)) { |
733d5ef5 | 1165 | register_subpage(d, &now); |
88266249 | 1166 | } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { |
052e87b0 | 1167 | now.size = page_size; |
ac1970fb | 1168 | register_subpage(d, &now); |
69b67646 | 1169 | } else { |
052e87b0 | 1170 | now.size = int128_and(now.size, int128_neg(page_size)); |
ac1970fb | 1171 | register_multipage(d, &now); |
69b67646 | 1172 | } |
0f0cb164 AK |
1173 | } |
1174 | } | |
1175 | ||
62a2744c SY |
1176 | void qemu_flush_coalesced_mmio_buffer(void) |
1177 | { | |
1178 | if (kvm_enabled()) | |
1179 | kvm_flush_coalesced_mmio_buffer(); | |
1180 | } | |
1181 | ||
b2a8658e UD |
1182 | void qemu_mutex_lock_ramlist(void) |
1183 | { | |
1184 | qemu_mutex_lock(&ram_list.mutex); | |
1185 | } | |
1186 | ||
1187 | void qemu_mutex_unlock_ramlist(void) | |
1188 | { | |
1189 | qemu_mutex_unlock(&ram_list.mutex); | |
1190 | } | |
1191 | ||
e1e84ba0 | 1192 | #ifdef __linux__ |
04b16653 AW |
1193 | static void *file_ram_alloc(RAMBlock *block, |
1194 | ram_addr_t memory, | |
7f56e740 PB |
1195 | const char *path, |
1196 | Error **errp) | |
c902760f | 1197 | { |
fd97fd44 | 1198 | bool unlink_on_error = false; |
c902760f | 1199 | char *filename; |
8ca761f6 PF |
1200 | char *sanitized_name; |
1201 | char *c; | |
056b68af | 1202 | void *area = MAP_FAILED; |
5c3ece79 | 1203 | int fd = -1; |
e1fb6471 | 1204 | int64_t page_size; |
c902760f MT |
1205 | |
1206 | if (kvm_enabled() && !kvm_has_sync_mmu()) { | |
7f56e740 PB |
1207 | error_setg(errp, |
1208 | "host lacks kvm mmu notifiers, -mem-path unsupported"); | |
fd97fd44 | 1209 | return NULL; |
c902760f MT |
1210 | } |
1211 | ||
fd97fd44 MA |
1212 | for (;;) { |
1213 | fd = open(path, O_RDWR); | |
1214 | if (fd >= 0) { | |
1215 | /* @path names an existing file, use it */ | |
1216 | break; | |
8d31d6b6 | 1217 | } |
fd97fd44 MA |
1218 | if (errno == ENOENT) { |
1219 | /* @path names a file that doesn't exist, create it */ | |
1220 | fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644); | |
1221 | if (fd >= 0) { | |
1222 | unlink_on_error = true; | |
1223 | break; | |
1224 | } | |
1225 | } else if (errno == EISDIR) { | |
1226 | /* @path names a directory, create a file there */ | |
1227 | /* Make name safe to use with mkstemp by replacing '/' with '_'. */ | |
1228 | sanitized_name = g_strdup(memory_region_name(block->mr)); | |
1229 | for (c = sanitized_name; *c != '\0'; c++) { | |
1230 | if (*c == '/') { | |
1231 | *c = '_'; | |
1232 | } | |
1233 | } | |
8ca761f6 | 1234 | |
fd97fd44 MA |
1235 | filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, |
1236 | sanitized_name); | |
1237 | g_free(sanitized_name); | |
8d31d6b6 | 1238 | |
fd97fd44 MA |
1239 | fd = mkstemp(filename); |
1240 | if (fd >= 0) { | |
1241 | unlink(filename); | |
1242 | g_free(filename); | |
1243 | break; | |
1244 | } | |
1245 | g_free(filename); | |
8d31d6b6 | 1246 | } |
fd97fd44 MA |
1247 | if (errno != EEXIST && errno != EINTR) { |
1248 | error_setg_errno(errp, errno, | |
1249 | "can't open backing store %s for guest RAM", | |
1250 | path); | |
1251 | goto error; | |
1252 | } | |
1253 | /* | |
1254 | * Try again on EINTR and EEXIST. The latter happens when | |
1255 | * something else creates the file between our two open(). | |
1256 | */ | |
8d31d6b6 | 1257 | } |
c902760f | 1258 | |
e1fb6471 | 1259 | page_size = qemu_fd_getpagesize(fd); |
d2f39add | 1260 | block->mr->align = MAX(page_size, QEMU_VMALLOC_ALIGN); |
fd97fd44 | 1261 | |
e1fb6471 | 1262 | if (memory < page_size) { |
fd97fd44 MA |
1263 | error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " |
1264 | "or larger than page size 0x%" PRIx64, | |
e1fb6471 | 1265 | memory, page_size); |
f9a49dfa | 1266 | goto error; |
c902760f | 1267 | } |
c902760f | 1268 | |
e1fb6471 | 1269 | memory = ROUND_UP(memory, page_size); |
c902760f MT |
1270 | |
1271 | /* | |
1272 | * ftruncate is not supported by hugetlbfs in older | |
1273 | * hosts, so don't bother bailing out on errors. | |
1274 | * If anything goes wrong with it under other filesystems, | |
1275 | * mmap will fail. | |
1276 | */ | |
7f56e740 | 1277 | if (ftruncate(fd, memory)) { |
9742bf26 | 1278 | perror("ftruncate"); |
7f56e740 | 1279 | } |
c902760f | 1280 | |
d2f39add DD |
1281 | area = qemu_ram_mmap(fd, memory, block->mr->align, |
1282 | block->flags & RAM_SHARED); | |
c902760f | 1283 | if (area == MAP_FAILED) { |
7f56e740 | 1284 | error_setg_errno(errp, errno, |
fd97fd44 | 1285 | "unable to map backing store for guest RAM"); |
f9a49dfa | 1286 | goto error; |
c902760f | 1287 | } |
ef36fa14 MT |
1288 | |
1289 | if (mem_prealloc) { | |
056b68af IM |
1290 | os_mem_prealloc(fd, area, memory, errp); |
1291 | if (errp && *errp) { | |
1292 | goto error; | |
1293 | } | |
ef36fa14 MT |
1294 | } |
1295 | ||
04b16653 | 1296 | block->fd = fd; |
c902760f | 1297 | return area; |
f9a49dfa MT |
1298 | |
1299 | error: | |
056b68af IM |
1300 | if (area != MAP_FAILED) { |
1301 | qemu_ram_munmap(area, memory); | |
1302 | } | |
fd97fd44 MA |
1303 | if (unlink_on_error) { |
1304 | unlink(path); | |
1305 | } | |
5c3ece79 PB |
1306 | if (fd != -1) { |
1307 | close(fd); | |
1308 | } | |
f9a49dfa | 1309 | return NULL; |
c902760f MT |
1310 | } |
1311 | #endif | |
1312 | ||
0dc3f44a | 1313 | /* Called with the ramlist lock held. */ |
d17b5288 | 1314 | static ram_addr_t find_ram_offset(ram_addr_t size) |
04b16653 AW |
1315 | { |
1316 | RAMBlock *block, *next_block; | |
3e837b2c | 1317 | ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; |
04b16653 | 1318 | |
49cd9ac6 SH |
1319 | assert(size != 0); /* it would hand out same offset multiple times */ |
1320 | ||
0dc3f44a | 1321 | if (QLIST_EMPTY_RCU(&ram_list.blocks)) { |
04b16653 | 1322 | return 0; |
0d53d9fe | 1323 | } |
04b16653 | 1324 | |
0dc3f44a | 1325 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
f15fbc4b | 1326 | ram_addr_t end, next = RAM_ADDR_MAX; |
04b16653 | 1327 | |
62be4e3a | 1328 | end = block->offset + block->max_length; |
04b16653 | 1329 | |
0dc3f44a | 1330 | QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) { |
04b16653 AW |
1331 | if (next_block->offset >= end) { |
1332 | next = MIN(next, next_block->offset); | |
1333 | } | |
1334 | } | |
1335 | if (next - end >= size && next - end < mingap) { | |
3e837b2c | 1336 | offset = end; |
04b16653 AW |
1337 | mingap = next - end; |
1338 | } | |
1339 | } | |
3e837b2c AW |
1340 | |
1341 | if (offset == RAM_ADDR_MAX) { | |
1342 | fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", | |
1343 | (uint64_t)size); | |
1344 | abort(); | |
1345 | } | |
1346 | ||
04b16653 AW |
1347 | return offset; |
1348 | } | |
1349 | ||
652d7ec2 | 1350 | ram_addr_t last_ram_offset(void) |
d17b5288 AW |
1351 | { |
1352 | RAMBlock *block; | |
1353 | ram_addr_t last = 0; | |
1354 | ||
0dc3f44a MD |
1355 | rcu_read_lock(); |
1356 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
62be4e3a | 1357 | last = MAX(last, block->offset + block->max_length); |
0d53d9fe | 1358 | } |
0dc3f44a | 1359 | rcu_read_unlock(); |
d17b5288 AW |
1360 | return last; |
1361 | } | |
1362 | ||
ddb97f1d JB |
1363 | static void qemu_ram_setup_dump(void *addr, ram_addr_t size) |
1364 | { | |
1365 | int ret; | |
ddb97f1d JB |
1366 | |
1367 | /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ | |
47c8ca53 | 1368 | if (!machine_dump_guest_core(current_machine)) { |
ddb97f1d JB |
1369 | ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); |
1370 | if (ret) { | |
1371 | perror("qemu_madvise"); | |
1372 | fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " | |
1373 | "but dump_guest_core=off specified\n"); | |
1374 | } | |
1375 | } | |
1376 | } | |
1377 | ||
422148d3 DDAG |
1378 | const char *qemu_ram_get_idstr(RAMBlock *rb) |
1379 | { | |
1380 | return rb->idstr; | |
1381 | } | |
1382 | ||
ae3a7047 | 1383 | /* Called with iothread lock held. */ |
fa53a0e5 | 1384 | void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev) |
20cfe881 | 1385 | { |
fa53a0e5 | 1386 | RAMBlock *block; |
20cfe881 | 1387 | |
c5705a77 AK |
1388 | assert(new_block); |
1389 | assert(!new_block->idstr[0]); | |
84b89d78 | 1390 | |
09e5ab63 AL |
1391 | if (dev) { |
1392 | char *id = qdev_get_dev_path(dev); | |
84b89d78 CM |
1393 | if (id) { |
1394 | snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); | |
7267c094 | 1395 | g_free(id); |
84b89d78 CM |
1396 | } |
1397 | } | |
1398 | pstrcat(new_block->idstr, sizeof(new_block->idstr), name); | |
1399 | ||
ab0a9956 | 1400 | rcu_read_lock(); |
0dc3f44a | 1401 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
fa53a0e5 GA |
1402 | if (block != new_block && |
1403 | !strcmp(block->idstr, new_block->idstr)) { | |
84b89d78 CM |
1404 | fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", |
1405 | new_block->idstr); | |
1406 | abort(); | |
1407 | } | |
1408 | } | |
0dc3f44a | 1409 | rcu_read_unlock(); |
c5705a77 AK |
1410 | } |
1411 | ||
ae3a7047 | 1412 | /* Called with iothread lock held. */ |
fa53a0e5 | 1413 | void qemu_ram_unset_idstr(RAMBlock *block) |
20cfe881 | 1414 | { |
ae3a7047 MD |
1415 | /* FIXME: arch_init.c assumes that this is not called throughout |
1416 | * migration. Ignore the problem since hot-unplug during migration | |
1417 | * does not work anyway. | |
1418 | */ | |
20cfe881 HT |
1419 | if (block) { |
1420 | memset(block->idstr, 0, sizeof(block->idstr)); | |
1421 | } | |
1422 | } | |
1423 | ||
8490fc78 LC |
1424 | static int memory_try_enable_merging(void *addr, size_t len) |
1425 | { | |
75cc7f01 | 1426 | if (!machine_mem_merge(current_machine)) { |
8490fc78 LC |
1427 | /* disabled by the user */ |
1428 | return 0; | |
1429 | } | |
1430 | ||
1431 | return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); | |
1432 | } | |
1433 | ||
62be4e3a MT |
1434 | /* Only legal before guest might have detected the memory size: e.g. on |
1435 | * incoming migration, or right after reset. | |
1436 | * | |
1437 | * As memory core doesn't know how is memory accessed, it is up to | |
1438 | * resize callback to update device state and/or add assertions to detect | |
1439 | * misuse, if necessary. | |
1440 | */ | |
fa53a0e5 | 1441 | int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp) |
62be4e3a | 1442 | { |
62be4e3a MT |
1443 | assert(block); |
1444 | ||
4ed023ce | 1445 | newsize = HOST_PAGE_ALIGN(newsize); |
129ddaf3 | 1446 | |
62be4e3a MT |
1447 | if (block->used_length == newsize) { |
1448 | return 0; | |
1449 | } | |
1450 | ||
1451 | if (!(block->flags & RAM_RESIZEABLE)) { | |
1452 | error_setg_errno(errp, EINVAL, | |
1453 | "Length mismatch: %s: 0x" RAM_ADDR_FMT | |
1454 | " in != 0x" RAM_ADDR_FMT, block->idstr, | |
1455 | newsize, block->used_length); | |
1456 | return -EINVAL; | |
1457 | } | |
1458 | ||
1459 | if (block->max_length < newsize) { | |
1460 | error_setg_errno(errp, EINVAL, | |
1461 | "Length too large: %s: 0x" RAM_ADDR_FMT | |
1462 | " > 0x" RAM_ADDR_FMT, block->idstr, | |
1463 | newsize, block->max_length); | |
1464 | return -EINVAL; | |
1465 | } | |
1466 | ||
1467 | cpu_physical_memory_clear_dirty_range(block->offset, block->used_length); | |
1468 | block->used_length = newsize; | |
58d2707e PB |
1469 | cpu_physical_memory_set_dirty_range(block->offset, block->used_length, |
1470 | DIRTY_CLIENTS_ALL); | |
62be4e3a MT |
1471 | memory_region_set_size(block->mr, newsize); |
1472 | if (block->resized) { | |
1473 | block->resized(block->idstr, newsize, block->host); | |
1474 | } | |
1475 | return 0; | |
1476 | } | |
1477 | ||
5b82b703 SH |
1478 | /* Called with ram_list.mutex held */ |
1479 | static void dirty_memory_extend(ram_addr_t old_ram_size, | |
1480 | ram_addr_t new_ram_size) | |
1481 | { | |
1482 | ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size, | |
1483 | DIRTY_MEMORY_BLOCK_SIZE); | |
1484 | ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size, | |
1485 | DIRTY_MEMORY_BLOCK_SIZE); | |
1486 | int i; | |
1487 | ||
1488 | /* Only need to extend if block count increased */ | |
1489 | if (new_num_blocks <= old_num_blocks) { | |
1490 | return; | |
1491 | } | |
1492 | ||
1493 | for (i = 0; i < DIRTY_MEMORY_NUM; i++) { | |
1494 | DirtyMemoryBlocks *old_blocks; | |
1495 | DirtyMemoryBlocks *new_blocks; | |
1496 | int j; | |
1497 | ||
1498 | old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]); | |
1499 | new_blocks = g_malloc(sizeof(*new_blocks) + | |
1500 | sizeof(new_blocks->blocks[0]) * new_num_blocks); | |
1501 | ||
1502 | if (old_num_blocks) { | |
1503 | memcpy(new_blocks->blocks, old_blocks->blocks, | |
1504 | old_num_blocks * sizeof(old_blocks->blocks[0])); | |
1505 | } | |
1506 | ||
1507 | for (j = old_num_blocks; j < new_num_blocks; j++) { | |
1508 | new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE); | |
1509 | } | |
1510 | ||
1511 | atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks); | |
1512 | ||
1513 | if (old_blocks) { | |
1514 | g_free_rcu(old_blocks, rcu); | |
1515 | } | |
1516 | } | |
1517 | } | |
1518 | ||
528f46af | 1519 | static void ram_block_add(RAMBlock *new_block, Error **errp) |
c5705a77 | 1520 | { |
e1c57ab8 | 1521 | RAMBlock *block; |
0d53d9fe | 1522 | RAMBlock *last_block = NULL; |
2152f5ca | 1523 | ram_addr_t old_ram_size, new_ram_size; |
37aa7a0e | 1524 | Error *err = NULL; |
2152f5ca JQ |
1525 | |
1526 | old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS; | |
c5705a77 | 1527 | |
b2a8658e | 1528 | qemu_mutex_lock_ramlist(); |
9b8424d5 | 1529 | new_block->offset = find_ram_offset(new_block->max_length); |
e1c57ab8 PB |
1530 | |
1531 | if (!new_block->host) { | |
1532 | if (xen_enabled()) { | |
9b8424d5 | 1533 | xen_ram_alloc(new_block->offset, new_block->max_length, |
37aa7a0e MA |
1534 | new_block->mr, &err); |
1535 | if (err) { | |
1536 | error_propagate(errp, err); | |
1537 | qemu_mutex_unlock_ramlist(); | |
39c350ee | 1538 | return; |
37aa7a0e | 1539 | } |
e1c57ab8 | 1540 | } else { |
9b8424d5 | 1541 | new_block->host = phys_mem_alloc(new_block->max_length, |
a2b257d6 | 1542 | &new_block->mr->align); |
39228250 | 1543 | if (!new_block->host) { |
ef701d7b HT |
1544 | error_setg_errno(errp, errno, |
1545 | "cannot set up guest memory '%s'", | |
1546 | memory_region_name(new_block->mr)); | |
1547 | qemu_mutex_unlock_ramlist(); | |
39c350ee | 1548 | return; |
39228250 | 1549 | } |
9b8424d5 | 1550 | memory_try_enable_merging(new_block->host, new_block->max_length); |
6977dfe6 | 1551 | } |
c902760f | 1552 | } |
94a6b54f | 1553 | |
dd631697 LZ |
1554 | new_ram_size = MAX(old_ram_size, |
1555 | (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS); | |
1556 | if (new_ram_size > old_ram_size) { | |
1557 | migration_bitmap_extend(old_ram_size, new_ram_size); | |
5b82b703 | 1558 | dirty_memory_extend(old_ram_size, new_ram_size); |
dd631697 | 1559 | } |
0d53d9fe MD |
1560 | /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ, |
1561 | * QLIST (which has an RCU-friendly variant) does not have insertion at | |
1562 | * tail, so save the last element in last_block. | |
1563 | */ | |
0dc3f44a | 1564 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
0d53d9fe | 1565 | last_block = block; |
9b8424d5 | 1566 | if (block->max_length < new_block->max_length) { |
abb26d63 PB |
1567 | break; |
1568 | } | |
1569 | } | |
1570 | if (block) { | |
0dc3f44a | 1571 | QLIST_INSERT_BEFORE_RCU(block, new_block, next); |
0d53d9fe | 1572 | } else if (last_block) { |
0dc3f44a | 1573 | QLIST_INSERT_AFTER_RCU(last_block, new_block, next); |
0d53d9fe | 1574 | } else { /* list is empty */ |
0dc3f44a | 1575 | QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); |
abb26d63 | 1576 | } |
0d6d3c87 | 1577 | ram_list.mru_block = NULL; |
94a6b54f | 1578 | |
0dc3f44a MD |
1579 | /* Write list before version */ |
1580 | smp_wmb(); | |
f798b07f | 1581 | ram_list.version++; |
b2a8658e | 1582 | qemu_mutex_unlock_ramlist(); |
f798b07f | 1583 | |
9b8424d5 | 1584 | cpu_physical_memory_set_dirty_range(new_block->offset, |
58d2707e PB |
1585 | new_block->used_length, |
1586 | DIRTY_CLIENTS_ALL); | |
94a6b54f | 1587 | |
a904c911 PB |
1588 | if (new_block->host) { |
1589 | qemu_ram_setup_dump(new_block->host, new_block->max_length); | |
1590 | qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); | |
c2cd627d | 1591 | /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */ |
a904c911 | 1592 | qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK); |
e1c57ab8 | 1593 | } |
94a6b54f | 1594 | } |
e9a1ab19 | 1595 | |
0b183fc8 | 1596 | #ifdef __linux__ |
528f46af FZ |
1597 | RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, |
1598 | bool share, const char *mem_path, | |
1599 | Error **errp) | |
e1c57ab8 PB |
1600 | { |
1601 | RAMBlock *new_block; | |
ef701d7b | 1602 | Error *local_err = NULL; |
e1c57ab8 PB |
1603 | |
1604 | if (xen_enabled()) { | |
7f56e740 | 1605 | error_setg(errp, "-mem-path not supported with Xen"); |
528f46af | 1606 | return NULL; |
e1c57ab8 PB |
1607 | } |
1608 | ||
1609 | if (phys_mem_alloc != qemu_anon_ram_alloc) { | |
1610 | /* | |
1611 | * file_ram_alloc() needs to allocate just like | |
1612 | * phys_mem_alloc, but we haven't bothered to provide | |
1613 | * a hook there. | |
1614 | */ | |
7f56e740 PB |
1615 | error_setg(errp, |
1616 | "-mem-path not supported with this accelerator"); | |
528f46af | 1617 | return NULL; |
e1c57ab8 PB |
1618 | } |
1619 | ||
4ed023ce | 1620 | size = HOST_PAGE_ALIGN(size); |
e1c57ab8 PB |
1621 | new_block = g_malloc0(sizeof(*new_block)); |
1622 | new_block->mr = mr; | |
9b8424d5 MT |
1623 | new_block->used_length = size; |
1624 | new_block->max_length = size; | |
dbcb8981 | 1625 | new_block->flags = share ? RAM_SHARED : 0; |
7f56e740 PB |
1626 | new_block->host = file_ram_alloc(new_block, size, |
1627 | mem_path, errp); | |
1628 | if (!new_block->host) { | |
1629 | g_free(new_block); | |
528f46af | 1630 | return NULL; |
7f56e740 PB |
1631 | } |
1632 | ||
528f46af | 1633 | ram_block_add(new_block, &local_err); |
ef701d7b HT |
1634 | if (local_err) { |
1635 | g_free(new_block); | |
1636 | error_propagate(errp, local_err); | |
528f46af | 1637 | return NULL; |
ef701d7b | 1638 | } |
528f46af | 1639 | return new_block; |
e1c57ab8 | 1640 | } |
0b183fc8 | 1641 | #endif |
e1c57ab8 | 1642 | |
62be4e3a | 1643 | static |
528f46af FZ |
1644 | RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size, |
1645 | void (*resized)(const char*, | |
1646 | uint64_t length, | |
1647 | void *host), | |
1648 | void *host, bool resizeable, | |
1649 | MemoryRegion *mr, Error **errp) | |
e1c57ab8 PB |
1650 | { |
1651 | RAMBlock *new_block; | |
ef701d7b | 1652 | Error *local_err = NULL; |
e1c57ab8 | 1653 | |
4ed023ce DDAG |
1654 | size = HOST_PAGE_ALIGN(size); |
1655 | max_size = HOST_PAGE_ALIGN(max_size); | |
e1c57ab8 PB |
1656 | new_block = g_malloc0(sizeof(*new_block)); |
1657 | new_block->mr = mr; | |
62be4e3a | 1658 | new_block->resized = resized; |
9b8424d5 MT |
1659 | new_block->used_length = size; |
1660 | new_block->max_length = max_size; | |
62be4e3a | 1661 | assert(max_size >= size); |
e1c57ab8 PB |
1662 | new_block->fd = -1; |
1663 | new_block->host = host; | |
1664 | if (host) { | |
7bd4f430 | 1665 | new_block->flags |= RAM_PREALLOC; |
e1c57ab8 | 1666 | } |
62be4e3a MT |
1667 | if (resizeable) { |
1668 | new_block->flags |= RAM_RESIZEABLE; | |
1669 | } | |
528f46af | 1670 | ram_block_add(new_block, &local_err); |
ef701d7b HT |
1671 | if (local_err) { |
1672 | g_free(new_block); | |
1673 | error_propagate(errp, local_err); | |
528f46af | 1674 | return NULL; |
ef701d7b | 1675 | } |
528f46af | 1676 | return new_block; |
e1c57ab8 PB |
1677 | } |
1678 | ||
528f46af | 1679 | RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, |
62be4e3a MT |
1680 | MemoryRegion *mr, Error **errp) |
1681 | { | |
1682 | return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp); | |
1683 | } | |
1684 | ||
528f46af | 1685 | RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp) |
6977dfe6 | 1686 | { |
62be4e3a MT |
1687 | return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp); |
1688 | } | |
1689 | ||
528f46af | 1690 | RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz, |
62be4e3a MT |
1691 | void (*resized)(const char*, |
1692 | uint64_t length, | |
1693 | void *host), | |
1694 | MemoryRegion *mr, Error **errp) | |
1695 | { | |
1696 | return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp); | |
6977dfe6 YT |
1697 | } |
1698 | ||
43771539 PB |
1699 | static void reclaim_ramblock(RAMBlock *block) |
1700 | { | |
1701 | if (block->flags & RAM_PREALLOC) { | |
1702 | ; | |
1703 | } else if (xen_enabled()) { | |
1704 | xen_invalidate_map_cache_entry(block->host); | |
1705 | #ifndef _WIN32 | |
1706 | } else if (block->fd >= 0) { | |
2f3a2bb1 | 1707 | qemu_ram_munmap(block->host, block->max_length); |
43771539 PB |
1708 | close(block->fd); |
1709 | #endif | |
1710 | } else { | |
1711 | qemu_anon_ram_free(block->host, block->max_length); | |
1712 | } | |
1713 | g_free(block); | |
1714 | } | |
1715 | ||
f1060c55 | 1716 | void qemu_ram_free(RAMBlock *block) |
e9a1ab19 | 1717 | { |
85bc2a15 MAL |
1718 | if (!block) { |
1719 | return; | |
1720 | } | |
1721 | ||
b2a8658e | 1722 | qemu_mutex_lock_ramlist(); |
f1060c55 FZ |
1723 | QLIST_REMOVE_RCU(block, next); |
1724 | ram_list.mru_block = NULL; | |
1725 | /* Write list before version */ | |
1726 | smp_wmb(); | |
1727 | ram_list.version++; | |
1728 | call_rcu(block, reclaim_ramblock, rcu); | |
b2a8658e | 1729 | qemu_mutex_unlock_ramlist(); |
e9a1ab19 FB |
1730 | } |
1731 | ||
cd19cfa2 HY |
1732 | #ifndef _WIN32 |
1733 | void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) | |
1734 | { | |
1735 | RAMBlock *block; | |
1736 | ram_addr_t offset; | |
1737 | int flags; | |
1738 | void *area, *vaddr; | |
1739 | ||
0dc3f44a | 1740 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
cd19cfa2 | 1741 | offset = addr - block->offset; |
9b8424d5 | 1742 | if (offset < block->max_length) { |
1240be24 | 1743 | vaddr = ramblock_ptr(block, offset); |
7bd4f430 | 1744 | if (block->flags & RAM_PREALLOC) { |
cd19cfa2 | 1745 | ; |
dfeaf2ab MA |
1746 | } else if (xen_enabled()) { |
1747 | abort(); | |
cd19cfa2 HY |
1748 | } else { |
1749 | flags = MAP_FIXED; | |
3435f395 | 1750 | if (block->fd >= 0) { |
dbcb8981 PB |
1751 | flags |= (block->flags & RAM_SHARED ? |
1752 | MAP_SHARED : MAP_PRIVATE); | |
3435f395 MA |
1753 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, |
1754 | flags, block->fd, offset); | |
cd19cfa2 | 1755 | } else { |
2eb9fbaa MA |
1756 | /* |
1757 | * Remap needs to match alloc. Accelerators that | |
1758 | * set phys_mem_alloc never remap. If they did, | |
1759 | * we'd need a remap hook here. | |
1760 | */ | |
1761 | assert(phys_mem_alloc == qemu_anon_ram_alloc); | |
1762 | ||
cd19cfa2 HY |
1763 | flags |= MAP_PRIVATE | MAP_ANONYMOUS; |
1764 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, | |
1765 | flags, -1, 0); | |
cd19cfa2 HY |
1766 | } |
1767 | if (area != vaddr) { | |
f15fbc4b AP |
1768 | fprintf(stderr, "Could not remap addr: " |
1769 | RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n", | |
cd19cfa2 HY |
1770 | length, addr); |
1771 | exit(1); | |
1772 | } | |
8490fc78 | 1773 | memory_try_enable_merging(vaddr, length); |
ddb97f1d | 1774 | qemu_ram_setup_dump(vaddr, length); |
cd19cfa2 | 1775 | } |
cd19cfa2 HY |
1776 | } |
1777 | } | |
1778 | } | |
1779 | #endif /* !_WIN32 */ | |
1780 | ||
1b5ec234 | 1781 | /* Return a host pointer to ram allocated with qemu_ram_alloc. |
ae3a7047 MD |
1782 | * This should not be used for general purpose DMA. Use address_space_map |
1783 | * or address_space_rw instead. For local memory (e.g. video ram) that the | |
1784 | * device owns, use memory_region_get_ram_ptr. | |
0dc3f44a | 1785 | * |
49b24afc | 1786 | * Called within RCU critical section. |
1b5ec234 | 1787 | */ |
0878d0e1 | 1788 | void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr) |
1b5ec234 | 1789 | { |
3655cb9c GA |
1790 | RAMBlock *block = ram_block; |
1791 | ||
1792 | if (block == NULL) { | |
1793 | block = qemu_get_ram_block(addr); | |
0878d0e1 | 1794 | addr -= block->offset; |
3655cb9c | 1795 | } |
ae3a7047 MD |
1796 | |
1797 | if (xen_enabled() && block->host == NULL) { | |
0d6d3c87 PB |
1798 | /* We need to check if the requested address is in the RAM |
1799 | * because we don't want to map the entire memory in QEMU. | |
1800 | * In that case just map until the end of the page. | |
1801 | */ | |
1802 | if (block->offset == 0) { | |
49b24afc | 1803 | return xen_map_cache(addr, 0, 0); |
0d6d3c87 | 1804 | } |
ae3a7047 MD |
1805 | |
1806 | block->host = xen_map_cache(block->offset, block->max_length, 1); | |
0d6d3c87 | 1807 | } |
0878d0e1 | 1808 | return ramblock_ptr(block, addr); |
dc828ca1 PB |
1809 | } |
1810 | ||
0878d0e1 | 1811 | /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr |
ae3a7047 | 1812 | * but takes a size argument. |
0dc3f44a | 1813 | * |
e81bcda5 | 1814 | * Called within RCU critical section. |
ae3a7047 | 1815 | */ |
3655cb9c GA |
1816 | static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr, |
1817 | hwaddr *size) | |
38bee5dc | 1818 | { |
3655cb9c | 1819 | RAMBlock *block = ram_block; |
8ab934f9 SS |
1820 | if (*size == 0) { |
1821 | return NULL; | |
1822 | } | |
e81bcda5 | 1823 | |
3655cb9c GA |
1824 | if (block == NULL) { |
1825 | block = qemu_get_ram_block(addr); | |
0878d0e1 | 1826 | addr -= block->offset; |
3655cb9c | 1827 | } |
0878d0e1 | 1828 | *size = MIN(*size, block->max_length - addr); |
e81bcda5 PB |
1829 | |
1830 | if (xen_enabled() && block->host == NULL) { | |
1831 | /* We need to check if the requested address is in the RAM | |
1832 | * because we don't want to map the entire memory in QEMU. | |
1833 | * In that case just map the requested area. | |
1834 | */ | |
1835 | if (block->offset == 0) { | |
1836 | return xen_map_cache(addr, *size, 1); | |
38bee5dc SS |
1837 | } |
1838 | ||
e81bcda5 | 1839 | block->host = xen_map_cache(block->offset, block->max_length, 1); |
38bee5dc | 1840 | } |
e81bcda5 | 1841 | |
0878d0e1 | 1842 | return ramblock_ptr(block, addr); |
38bee5dc SS |
1843 | } |
1844 | ||
422148d3 DDAG |
1845 | /* |
1846 | * Translates a host ptr back to a RAMBlock, a ram_addr and an offset | |
1847 | * in that RAMBlock. | |
1848 | * | |
1849 | * ptr: Host pointer to look up | |
1850 | * round_offset: If true round the result offset down to a page boundary | |
1851 | * *ram_addr: set to result ram_addr | |
1852 | * *offset: set to result offset within the RAMBlock | |
1853 | * | |
1854 | * Returns: RAMBlock (or NULL if not found) | |
ae3a7047 MD |
1855 | * |
1856 | * By the time this function returns, the returned pointer is not protected | |
1857 | * by RCU anymore. If the caller is not within an RCU critical section and | |
1858 | * does not hold the iothread lock, it must have other means of protecting the | |
1859 | * pointer, such as a reference to the region that includes the incoming | |
1860 | * ram_addr_t. | |
1861 | */ | |
422148d3 | 1862 | RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, |
422148d3 | 1863 | ram_addr_t *offset) |
5579c7f3 | 1864 | { |
94a6b54f PB |
1865 | RAMBlock *block; |
1866 | uint8_t *host = ptr; | |
1867 | ||
868bb33f | 1868 | if (xen_enabled()) { |
f615f396 | 1869 | ram_addr_t ram_addr; |
0dc3f44a | 1870 | rcu_read_lock(); |
f615f396 PB |
1871 | ram_addr = xen_ram_addr_from_mapcache(ptr); |
1872 | block = qemu_get_ram_block(ram_addr); | |
422148d3 | 1873 | if (block) { |
d6b6aec4 | 1874 | *offset = ram_addr - block->offset; |
422148d3 | 1875 | } |
0dc3f44a | 1876 | rcu_read_unlock(); |
422148d3 | 1877 | return block; |
712c2b41 SS |
1878 | } |
1879 | ||
0dc3f44a MD |
1880 | rcu_read_lock(); |
1881 | block = atomic_rcu_read(&ram_list.mru_block); | |
9b8424d5 | 1882 | if (block && block->host && host - block->host < block->max_length) { |
23887b79 PB |
1883 | goto found; |
1884 | } | |
1885 | ||
0dc3f44a | 1886 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
432d268c JN |
1887 | /* This case append when the block is not mapped. */ |
1888 | if (block->host == NULL) { | |
1889 | continue; | |
1890 | } | |
9b8424d5 | 1891 | if (host - block->host < block->max_length) { |
23887b79 | 1892 | goto found; |
f471a17e | 1893 | } |
94a6b54f | 1894 | } |
432d268c | 1895 | |
0dc3f44a | 1896 | rcu_read_unlock(); |
1b5ec234 | 1897 | return NULL; |
23887b79 PB |
1898 | |
1899 | found: | |
422148d3 DDAG |
1900 | *offset = (host - block->host); |
1901 | if (round_offset) { | |
1902 | *offset &= TARGET_PAGE_MASK; | |
1903 | } | |
0dc3f44a | 1904 | rcu_read_unlock(); |
422148d3 DDAG |
1905 | return block; |
1906 | } | |
1907 | ||
e3dd7493 DDAG |
1908 | /* |
1909 | * Finds the named RAMBlock | |
1910 | * | |
1911 | * name: The name of RAMBlock to find | |
1912 | * | |
1913 | * Returns: RAMBlock (or NULL if not found) | |
1914 | */ | |
1915 | RAMBlock *qemu_ram_block_by_name(const char *name) | |
1916 | { | |
1917 | RAMBlock *block; | |
1918 | ||
1919 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
1920 | if (!strcmp(name, block->idstr)) { | |
1921 | return block; | |
1922 | } | |
1923 | } | |
1924 | ||
1925 | return NULL; | |
1926 | } | |
1927 | ||
422148d3 DDAG |
1928 | /* Some of the softmmu routines need to translate from a host pointer |
1929 | (typically a TLB entry) back to a ram offset. */ | |
07bdaa41 | 1930 | ram_addr_t qemu_ram_addr_from_host(void *ptr) |
422148d3 DDAG |
1931 | { |
1932 | RAMBlock *block; | |
f615f396 | 1933 | ram_addr_t offset; |
422148d3 | 1934 | |
f615f396 | 1935 | block = qemu_ram_block_from_host(ptr, false, &offset); |
422148d3 | 1936 | if (!block) { |
07bdaa41 | 1937 | return RAM_ADDR_INVALID; |
422148d3 DDAG |
1938 | } |
1939 | ||
07bdaa41 | 1940 | return block->offset + offset; |
e890261f | 1941 | } |
f471a17e | 1942 | |
49b24afc | 1943 | /* Called within RCU critical section. */ |
a8170e5e | 1944 | static void notdirty_mem_write(void *opaque, hwaddr ram_addr, |
0e0df1e2 | 1945 | uint64_t val, unsigned size) |
9fa3e853 | 1946 | { |
52159192 | 1947 | if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { |
0e0df1e2 | 1948 | tb_invalidate_phys_page_fast(ram_addr, size); |
3a7d929e | 1949 | } |
0e0df1e2 AK |
1950 | switch (size) { |
1951 | case 1: | |
0878d0e1 | 1952 | stb_p(qemu_map_ram_ptr(NULL, ram_addr), val); |
0e0df1e2 AK |
1953 | break; |
1954 | case 2: | |
0878d0e1 | 1955 | stw_p(qemu_map_ram_ptr(NULL, ram_addr), val); |
0e0df1e2 AK |
1956 | break; |
1957 | case 4: | |
0878d0e1 | 1958 | stl_p(qemu_map_ram_ptr(NULL, ram_addr), val); |
0e0df1e2 AK |
1959 | break; |
1960 | default: | |
1961 | abort(); | |
3a7d929e | 1962 | } |
58d2707e PB |
1963 | /* Set both VGA and migration bits for simplicity and to remove |
1964 | * the notdirty callback faster. | |
1965 | */ | |
1966 | cpu_physical_memory_set_dirty_range(ram_addr, size, | |
1967 | DIRTY_CLIENTS_NOCODE); | |
f23db169 FB |
1968 | /* we remove the notdirty callback only if the code has been |
1969 | flushed */ | |
a2cd8c85 | 1970 | if (!cpu_physical_memory_is_clean(ram_addr)) { |
bcae01e4 | 1971 | tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr); |
4917cf44 | 1972 | } |
9fa3e853 FB |
1973 | } |
1974 | ||
b018ddf6 PB |
1975 | static bool notdirty_mem_accepts(void *opaque, hwaddr addr, |
1976 | unsigned size, bool is_write) | |
1977 | { | |
1978 | return is_write; | |
1979 | } | |
1980 | ||
0e0df1e2 | 1981 | static const MemoryRegionOps notdirty_mem_ops = { |
0e0df1e2 | 1982 | .write = notdirty_mem_write, |
b018ddf6 | 1983 | .valid.accepts = notdirty_mem_accepts, |
0e0df1e2 | 1984 | .endianness = DEVICE_NATIVE_ENDIAN, |
1ccde1cb FB |
1985 | }; |
1986 | ||
0f459d16 | 1987 | /* Generate a debug exception if a watchpoint has been hit. */ |
66b9b43c | 1988 | static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags) |
0f459d16 | 1989 | { |
93afeade | 1990 | CPUState *cpu = current_cpu; |
568496c0 | 1991 | CPUClass *cc = CPU_GET_CLASS(cpu); |
93afeade | 1992 | CPUArchState *env = cpu->env_ptr; |
06d55cc1 | 1993 | target_ulong pc, cs_base; |
0f459d16 | 1994 | target_ulong vaddr; |
a1d1bb31 | 1995 | CPUWatchpoint *wp; |
89fee74a | 1996 | uint32_t cpu_flags; |
0f459d16 | 1997 | |
ff4700b0 | 1998 | if (cpu->watchpoint_hit) { |
06d55cc1 AL |
1999 | /* We re-entered the check after replacing the TB. Now raise |
2000 | * the debug interrupt so that is will trigger after the | |
2001 | * current instruction. */ | |
93afeade | 2002 | cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG); |
06d55cc1 AL |
2003 | return; |
2004 | } | |
93afeade | 2005 | vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset; |
ff4700b0 | 2006 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d PM |
2007 | if (cpu_watchpoint_address_matches(wp, vaddr, len) |
2008 | && (wp->flags & flags)) { | |
08225676 PM |
2009 | if (flags == BP_MEM_READ) { |
2010 | wp->flags |= BP_WATCHPOINT_HIT_READ; | |
2011 | } else { | |
2012 | wp->flags |= BP_WATCHPOINT_HIT_WRITE; | |
2013 | } | |
2014 | wp->hitaddr = vaddr; | |
66b9b43c | 2015 | wp->hitattrs = attrs; |
ff4700b0 | 2016 | if (!cpu->watchpoint_hit) { |
568496c0 SF |
2017 | if (wp->flags & BP_CPU && |
2018 | !cc->debug_check_watchpoint(cpu, wp)) { | |
2019 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
2020 | continue; | |
2021 | } | |
ff4700b0 | 2022 | cpu->watchpoint_hit = wp; |
239c51a5 | 2023 | tb_check_watchpoint(cpu); |
6e140f28 | 2024 | if (wp->flags & BP_STOP_BEFORE_ACCESS) { |
27103424 | 2025 | cpu->exception_index = EXCP_DEBUG; |
5638d180 | 2026 | cpu_loop_exit(cpu); |
6e140f28 AL |
2027 | } else { |
2028 | cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags); | |
648f034c | 2029 | tb_gen_code(cpu, pc, cs_base, cpu_flags, 1); |
6886b980 | 2030 | cpu_loop_exit_noexc(cpu); |
6e140f28 | 2031 | } |
06d55cc1 | 2032 | } |
6e140f28 AL |
2033 | } else { |
2034 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
0f459d16 PB |
2035 | } |
2036 | } | |
2037 | } | |
2038 | ||
6658ffb8 PB |
2039 | /* Watchpoint access routines. Watchpoints are inserted using TLB tricks, |
2040 | so these check for a hit then pass through to the normal out-of-line | |
2041 | phys routines. */ | |
66b9b43c PM |
2042 | static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata, |
2043 | unsigned size, MemTxAttrs attrs) | |
6658ffb8 | 2044 | { |
66b9b43c PM |
2045 | MemTxResult res; |
2046 | uint64_t data; | |
79ed0416 PM |
2047 | int asidx = cpu_asidx_from_attrs(current_cpu, attrs); |
2048 | AddressSpace *as = current_cpu->cpu_ases[asidx].as; | |
66b9b43c PM |
2049 | |
2050 | check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ); | |
1ec9b909 | 2051 | switch (size) { |
66b9b43c | 2052 | case 1: |
79ed0416 | 2053 | data = address_space_ldub(as, addr, attrs, &res); |
66b9b43c PM |
2054 | break; |
2055 | case 2: | |
79ed0416 | 2056 | data = address_space_lduw(as, addr, attrs, &res); |
66b9b43c PM |
2057 | break; |
2058 | case 4: | |
79ed0416 | 2059 | data = address_space_ldl(as, addr, attrs, &res); |
66b9b43c | 2060 | break; |
1ec9b909 AK |
2061 | default: abort(); |
2062 | } | |
66b9b43c PM |
2063 | *pdata = data; |
2064 | return res; | |
6658ffb8 PB |
2065 | } |
2066 | ||
66b9b43c PM |
2067 | static MemTxResult watch_mem_write(void *opaque, hwaddr addr, |
2068 | uint64_t val, unsigned size, | |
2069 | MemTxAttrs attrs) | |
6658ffb8 | 2070 | { |
66b9b43c | 2071 | MemTxResult res; |
79ed0416 PM |
2072 | int asidx = cpu_asidx_from_attrs(current_cpu, attrs); |
2073 | AddressSpace *as = current_cpu->cpu_ases[asidx].as; | |
66b9b43c PM |
2074 | |
2075 | check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE); | |
1ec9b909 | 2076 | switch (size) { |
67364150 | 2077 | case 1: |
79ed0416 | 2078 | address_space_stb(as, addr, val, attrs, &res); |
67364150 MF |
2079 | break; |
2080 | case 2: | |
79ed0416 | 2081 | address_space_stw(as, addr, val, attrs, &res); |
67364150 MF |
2082 | break; |
2083 | case 4: | |
79ed0416 | 2084 | address_space_stl(as, addr, val, attrs, &res); |
67364150 | 2085 | break; |
1ec9b909 AK |
2086 | default: abort(); |
2087 | } | |
66b9b43c | 2088 | return res; |
6658ffb8 PB |
2089 | } |
2090 | ||
1ec9b909 | 2091 | static const MemoryRegionOps watch_mem_ops = { |
66b9b43c PM |
2092 | .read_with_attrs = watch_mem_read, |
2093 | .write_with_attrs = watch_mem_write, | |
1ec9b909 | 2094 | .endianness = DEVICE_NATIVE_ENDIAN, |
6658ffb8 | 2095 | }; |
6658ffb8 | 2096 | |
f25a49e0 PM |
2097 | static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data, |
2098 | unsigned len, MemTxAttrs attrs) | |
db7b5426 | 2099 | { |
acc9d80b | 2100 | subpage_t *subpage = opaque; |
ff6cff75 | 2101 | uint8_t buf[8]; |
5c9eb028 | 2102 | MemTxResult res; |
791af8c8 | 2103 | |
db7b5426 | 2104 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2105 | printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__, |
acc9d80b | 2106 | subpage, len, addr); |
db7b5426 | 2107 | #endif |
5c9eb028 PM |
2108 | res = address_space_read(subpage->as, addr + subpage->base, |
2109 | attrs, buf, len); | |
2110 | if (res) { | |
2111 | return res; | |
f25a49e0 | 2112 | } |
acc9d80b JK |
2113 | switch (len) { |
2114 | case 1: | |
f25a49e0 PM |
2115 | *data = ldub_p(buf); |
2116 | return MEMTX_OK; | |
acc9d80b | 2117 | case 2: |
f25a49e0 PM |
2118 | *data = lduw_p(buf); |
2119 | return MEMTX_OK; | |
acc9d80b | 2120 | case 4: |
f25a49e0 PM |
2121 | *data = ldl_p(buf); |
2122 | return MEMTX_OK; | |
ff6cff75 | 2123 | case 8: |
f25a49e0 PM |
2124 | *data = ldq_p(buf); |
2125 | return MEMTX_OK; | |
acc9d80b JK |
2126 | default: |
2127 | abort(); | |
2128 | } | |
db7b5426 BS |
2129 | } |
2130 | ||
f25a49e0 PM |
2131 | static MemTxResult subpage_write(void *opaque, hwaddr addr, |
2132 | uint64_t value, unsigned len, MemTxAttrs attrs) | |
db7b5426 | 2133 | { |
acc9d80b | 2134 | subpage_t *subpage = opaque; |
ff6cff75 | 2135 | uint8_t buf[8]; |
acc9d80b | 2136 | |
db7b5426 | 2137 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2138 | printf("%s: subpage %p len %u addr " TARGET_FMT_plx |
acc9d80b JK |
2139 | " value %"PRIx64"\n", |
2140 | __func__, subpage, len, addr, value); | |
db7b5426 | 2141 | #endif |
acc9d80b JK |
2142 | switch (len) { |
2143 | case 1: | |
2144 | stb_p(buf, value); | |
2145 | break; | |
2146 | case 2: | |
2147 | stw_p(buf, value); | |
2148 | break; | |
2149 | case 4: | |
2150 | stl_p(buf, value); | |
2151 | break; | |
ff6cff75 PB |
2152 | case 8: |
2153 | stq_p(buf, value); | |
2154 | break; | |
acc9d80b JK |
2155 | default: |
2156 | abort(); | |
2157 | } | |
5c9eb028 PM |
2158 | return address_space_write(subpage->as, addr + subpage->base, |
2159 | attrs, buf, len); | |
db7b5426 BS |
2160 | } |
2161 | ||
c353e4cc | 2162 | static bool subpage_accepts(void *opaque, hwaddr addr, |
016e9d62 | 2163 | unsigned len, bool is_write) |
c353e4cc | 2164 | { |
acc9d80b | 2165 | subpage_t *subpage = opaque; |
c353e4cc | 2166 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2167 | printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n", |
acc9d80b | 2168 | __func__, subpage, is_write ? 'w' : 'r', len, addr); |
c353e4cc PB |
2169 | #endif |
2170 | ||
acc9d80b | 2171 | return address_space_access_valid(subpage->as, addr + subpage->base, |
016e9d62 | 2172 | len, is_write); |
c353e4cc PB |
2173 | } |
2174 | ||
70c68e44 | 2175 | static const MemoryRegionOps subpage_ops = { |
f25a49e0 PM |
2176 | .read_with_attrs = subpage_read, |
2177 | .write_with_attrs = subpage_write, | |
ff6cff75 PB |
2178 | .impl.min_access_size = 1, |
2179 | .impl.max_access_size = 8, | |
2180 | .valid.min_access_size = 1, | |
2181 | .valid.max_access_size = 8, | |
c353e4cc | 2182 | .valid.accepts = subpage_accepts, |
70c68e44 | 2183 | .endianness = DEVICE_NATIVE_ENDIAN, |
db7b5426 BS |
2184 | }; |
2185 | ||
c227f099 | 2186 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, |
5312bd8b | 2187 | uint16_t section) |
db7b5426 BS |
2188 | { |
2189 | int idx, eidx; | |
2190 | ||
2191 | if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) | |
2192 | return -1; | |
2193 | idx = SUBPAGE_IDX(start); | |
2194 | eidx = SUBPAGE_IDX(end); | |
2195 | #if defined(DEBUG_SUBPAGE) | |
016e9d62 AK |
2196 | printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", |
2197 | __func__, mmio, start, end, idx, eidx, section); | |
db7b5426 | 2198 | #endif |
db7b5426 | 2199 | for (; idx <= eidx; idx++) { |
5312bd8b | 2200 | mmio->sub_section[idx] = section; |
db7b5426 BS |
2201 | } |
2202 | ||
2203 | return 0; | |
2204 | } | |
2205 | ||
acc9d80b | 2206 | static subpage_t *subpage_init(AddressSpace *as, hwaddr base) |
db7b5426 | 2207 | { |
c227f099 | 2208 | subpage_t *mmio; |
db7b5426 | 2209 | |
7267c094 | 2210 | mmio = g_malloc0(sizeof(subpage_t)); |
1eec614b | 2211 | |
acc9d80b | 2212 | mmio->as = as; |
1eec614b | 2213 | mmio->base = base; |
2c9b15ca | 2214 | memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, |
b4fefef9 | 2215 | NULL, TARGET_PAGE_SIZE); |
b3b00c78 | 2216 | mmio->iomem.subpage = true; |
db7b5426 | 2217 | #if defined(DEBUG_SUBPAGE) |
016e9d62 AK |
2218 | printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__, |
2219 | mmio, base, TARGET_PAGE_SIZE); | |
db7b5426 | 2220 | #endif |
b41aac4f | 2221 | subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED); |
db7b5426 BS |
2222 | |
2223 | return mmio; | |
2224 | } | |
2225 | ||
a656e22f PC |
2226 | static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as, |
2227 | MemoryRegion *mr) | |
5312bd8b | 2228 | { |
a656e22f | 2229 | assert(as); |
5312bd8b | 2230 | MemoryRegionSection section = { |
a656e22f | 2231 | .address_space = as, |
5312bd8b AK |
2232 | .mr = mr, |
2233 | .offset_within_address_space = 0, | |
2234 | .offset_within_region = 0, | |
052e87b0 | 2235 | .size = int128_2_64(), |
5312bd8b AK |
2236 | }; |
2237 | ||
53cb28cb | 2238 | return phys_section_add(map, §ion); |
5312bd8b AK |
2239 | } |
2240 | ||
a54c87b6 | 2241 | MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs) |
aa102231 | 2242 | { |
a54c87b6 PM |
2243 | int asidx = cpu_asidx_from_attrs(cpu, attrs); |
2244 | CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx]; | |
32857f4d | 2245 | AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch); |
79e2b9ae | 2246 | MemoryRegionSection *sections = d->map.sections; |
9d82b5a7 PB |
2247 | |
2248 | return sections[index & ~TARGET_PAGE_MASK].mr; | |
aa102231 AK |
2249 | } |
2250 | ||
e9179ce1 AK |
2251 | static void io_mem_init(void) |
2252 | { | |
1f6245e5 | 2253 | memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX); |
2c9b15ca | 2254 | memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, |
1f6245e5 | 2255 | NULL, UINT64_MAX); |
2c9b15ca | 2256 | memory_region_init_io(&io_mem_notdirty, NULL, ¬dirty_mem_ops, NULL, |
1f6245e5 | 2257 | NULL, UINT64_MAX); |
2c9b15ca | 2258 | memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL, |
1f6245e5 | 2259 | NULL, UINT64_MAX); |
e9179ce1 AK |
2260 | } |
2261 | ||
ac1970fb | 2262 | static void mem_begin(MemoryListener *listener) |
00752703 PB |
2263 | { |
2264 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); | |
53cb28cb MA |
2265 | AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); |
2266 | uint16_t n; | |
2267 | ||
a656e22f | 2268 | n = dummy_section(&d->map, as, &io_mem_unassigned); |
53cb28cb | 2269 | assert(n == PHYS_SECTION_UNASSIGNED); |
a656e22f | 2270 | n = dummy_section(&d->map, as, &io_mem_notdirty); |
53cb28cb | 2271 | assert(n == PHYS_SECTION_NOTDIRTY); |
a656e22f | 2272 | n = dummy_section(&d->map, as, &io_mem_rom); |
53cb28cb | 2273 | assert(n == PHYS_SECTION_ROM); |
a656e22f | 2274 | n = dummy_section(&d->map, as, &io_mem_watch); |
53cb28cb | 2275 | assert(n == PHYS_SECTION_WATCH); |
00752703 | 2276 | |
9736e55b | 2277 | d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; |
00752703 PB |
2278 | d->as = as; |
2279 | as->next_dispatch = d; | |
2280 | } | |
2281 | ||
79e2b9ae PB |
2282 | static void address_space_dispatch_free(AddressSpaceDispatch *d) |
2283 | { | |
2284 | phys_sections_free(&d->map); | |
2285 | g_free(d); | |
2286 | } | |
2287 | ||
00752703 | 2288 | static void mem_commit(MemoryListener *listener) |
ac1970fb | 2289 | { |
89ae337a | 2290 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); |
0475d94f PB |
2291 | AddressSpaceDispatch *cur = as->dispatch; |
2292 | AddressSpaceDispatch *next = as->next_dispatch; | |
2293 | ||
53cb28cb | 2294 | phys_page_compact_all(next, next->map.nodes_nb); |
b35ba30f | 2295 | |
79e2b9ae | 2296 | atomic_rcu_set(&as->dispatch, next); |
53cb28cb | 2297 | if (cur) { |
79e2b9ae | 2298 | call_rcu(cur, address_space_dispatch_free, rcu); |
53cb28cb | 2299 | } |
9affd6fc PB |
2300 | } |
2301 | ||
1d71148e | 2302 | static void tcg_commit(MemoryListener *listener) |
50c1e149 | 2303 | { |
32857f4d PM |
2304 | CPUAddressSpace *cpuas; |
2305 | AddressSpaceDispatch *d; | |
117712c3 AK |
2306 | |
2307 | /* since each CPU stores ram addresses in its TLB cache, we must | |
2308 | reset the modified entries */ | |
32857f4d PM |
2309 | cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); |
2310 | cpu_reloading_memory_map(); | |
2311 | /* The CPU and TLB are protected by the iothread lock. | |
2312 | * We reload the dispatch pointer now because cpu_reloading_memory_map() | |
2313 | * may have split the RCU critical section. | |
2314 | */ | |
2315 | d = atomic_rcu_read(&cpuas->as->dispatch); | |
2316 | cpuas->memory_dispatch = d; | |
2317 | tlb_flush(cpuas->cpu, 1); | |
50c1e149 AK |
2318 | } |
2319 | ||
ac1970fb AK |
2320 | void address_space_init_dispatch(AddressSpace *as) |
2321 | { | |
00752703 | 2322 | as->dispatch = NULL; |
89ae337a | 2323 | as->dispatch_listener = (MemoryListener) { |
ac1970fb | 2324 | .begin = mem_begin, |
00752703 | 2325 | .commit = mem_commit, |
ac1970fb AK |
2326 | .region_add = mem_add, |
2327 | .region_nop = mem_add, | |
2328 | .priority = 0, | |
2329 | }; | |
89ae337a | 2330 | memory_listener_register(&as->dispatch_listener, as); |
ac1970fb AK |
2331 | } |
2332 | ||
6e48e8f9 PB |
2333 | void address_space_unregister(AddressSpace *as) |
2334 | { | |
2335 | memory_listener_unregister(&as->dispatch_listener); | |
2336 | } | |
2337 | ||
83f3c251 AK |
2338 | void address_space_destroy_dispatch(AddressSpace *as) |
2339 | { | |
2340 | AddressSpaceDispatch *d = as->dispatch; | |
2341 | ||
79e2b9ae PB |
2342 | atomic_rcu_set(&as->dispatch, NULL); |
2343 | if (d) { | |
2344 | call_rcu(d, address_space_dispatch_free, rcu); | |
2345 | } | |
83f3c251 AK |
2346 | } |
2347 | ||
62152b8a AK |
2348 | static void memory_map_init(void) |
2349 | { | |
7267c094 | 2350 | system_memory = g_malloc(sizeof(*system_memory)); |
03f49957 | 2351 | |
57271d63 | 2352 | memory_region_init(system_memory, NULL, "system", UINT64_MAX); |
7dca8043 | 2353 | address_space_init(&address_space_memory, system_memory, "memory"); |
309cb471 | 2354 | |
7267c094 | 2355 | system_io = g_malloc(sizeof(*system_io)); |
3bb28b72 JK |
2356 | memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", |
2357 | 65536); | |
7dca8043 | 2358 | address_space_init(&address_space_io, system_io, "I/O"); |
62152b8a AK |
2359 | } |
2360 | ||
2361 | MemoryRegion *get_system_memory(void) | |
2362 | { | |
2363 | return system_memory; | |
2364 | } | |
2365 | ||
309cb471 AK |
2366 | MemoryRegion *get_system_io(void) |
2367 | { | |
2368 | return system_io; | |
2369 | } | |
2370 | ||
e2eef170 PB |
2371 | #endif /* !defined(CONFIG_USER_ONLY) */ |
2372 | ||
13eb76e0 FB |
2373 | /* physical memory access (slow version, mainly for debug) */ |
2374 | #if defined(CONFIG_USER_ONLY) | |
f17ec444 | 2375 | int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, |
a68fe89c | 2376 | uint8_t *buf, int len, int is_write) |
13eb76e0 FB |
2377 | { |
2378 | int l, flags; | |
2379 | target_ulong page; | |
53a5960a | 2380 | void * p; |
13eb76e0 FB |
2381 | |
2382 | while (len > 0) { | |
2383 | page = addr & TARGET_PAGE_MASK; | |
2384 | l = (page + TARGET_PAGE_SIZE) - addr; | |
2385 | if (l > len) | |
2386 | l = len; | |
2387 | flags = page_get_flags(page); | |
2388 | if (!(flags & PAGE_VALID)) | |
a68fe89c | 2389 | return -1; |
13eb76e0 FB |
2390 | if (is_write) { |
2391 | if (!(flags & PAGE_WRITE)) | |
a68fe89c | 2392 | return -1; |
579a97f7 | 2393 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 2394 | if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) |
a68fe89c | 2395 | return -1; |
72fb7daa AJ |
2396 | memcpy(p, buf, l); |
2397 | unlock_user(p, addr, l); | |
13eb76e0 FB |
2398 | } else { |
2399 | if (!(flags & PAGE_READ)) | |
a68fe89c | 2400 | return -1; |
579a97f7 | 2401 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 2402 | if (!(p = lock_user(VERIFY_READ, addr, l, 1))) |
a68fe89c | 2403 | return -1; |
72fb7daa | 2404 | memcpy(buf, p, l); |
5b257578 | 2405 | unlock_user(p, addr, 0); |
13eb76e0 FB |
2406 | } |
2407 | len -= l; | |
2408 | buf += l; | |
2409 | addr += l; | |
2410 | } | |
a68fe89c | 2411 | return 0; |
13eb76e0 | 2412 | } |
8df1cd07 | 2413 | |
13eb76e0 | 2414 | #else |
51d7a9eb | 2415 | |
845b6214 | 2416 | static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, |
a8170e5e | 2417 | hwaddr length) |
51d7a9eb | 2418 | { |
e87f7778 | 2419 | uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr); |
0878d0e1 PB |
2420 | addr += memory_region_get_ram_addr(mr); |
2421 | ||
e87f7778 PB |
2422 | /* No early return if dirty_log_mask is or becomes 0, because |
2423 | * cpu_physical_memory_set_dirty_range will still call | |
2424 | * xen_modified_memory. | |
2425 | */ | |
2426 | if (dirty_log_mask) { | |
2427 | dirty_log_mask = | |
2428 | cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask); | |
2429 | } | |
2430 | if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) { | |
2431 | tb_invalidate_phys_range(addr, addr + length); | |
2432 | dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); | |
51d7a9eb | 2433 | } |
e87f7778 | 2434 | cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask); |
51d7a9eb AP |
2435 | } |
2436 | ||
23326164 | 2437 | static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) |
82f2563f | 2438 | { |
e1622f4b | 2439 | unsigned access_size_max = mr->ops->valid.max_access_size; |
23326164 RH |
2440 | |
2441 | /* Regions are assumed to support 1-4 byte accesses unless | |
2442 | otherwise specified. */ | |
23326164 RH |
2443 | if (access_size_max == 0) { |
2444 | access_size_max = 4; | |
2445 | } | |
2446 | ||
2447 | /* Bound the maximum access by the alignment of the address. */ | |
2448 | if (!mr->ops->impl.unaligned) { | |
2449 | unsigned align_size_max = addr & -addr; | |
2450 | if (align_size_max != 0 && align_size_max < access_size_max) { | |
2451 | access_size_max = align_size_max; | |
2452 | } | |
82f2563f | 2453 | } |
23326164 RH |
2454 | |
2455 | /* Don't attempt accesses larger than the maximum. */ | |
2456 | if (l > access_size_max) { | |
2457 | l = access_size_max; | |
82f2563f | 2458 | } |
6554f5c0 | 2459 | l = pow2floor(l); |
23326164 RH |
2460 | |
2461 | return l; | |
82f2563f PB |
2462 | } |
2463 | ||
4840f10e | 2464 | static bool prepare_mmio_access(MemoryRegion *mr) |
125b3806 | 2465 | { |
4840f10e JK |
2466 | bool unlocked = !qemu_mutex_iothread_locked(); |
2467 | bool release_lock = false; | |
2468 | ||
2469 | if (unlocked && mr->global_locking) { | |
2470 | qemu_mutex_lock_iothread(); | |
2471 | unlocked = false; | |
2472 | release_lock = true; | |
2473 | } | |
125b3806 | 2474 | if (mr->flush_coalesced_mmio) { |
4840f10e JK |
2475 | if (unlocked) { |
2476 | qemu_mutex_lock_iothread(); | |
2477 | } | |
125b3806 | 2478 | qemu_flush_coalesced_mmio_buffer(); |
4840f10e JK |
2479 | if (unlocked) { |
2480 | qemu_mutex_unlock_iothread(); | |
2481 | } | |
125b3806 | 2482 | } |
4840f10e JK |
2483 | |
2484 | return release_lock; | |
125b3806 PB |
2485 | } |
2486 | ||
a203ac70 PB |
2487 | /* Called within RCU critical section. */ |
2488 | static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr, | |
2489 | MemTxAttrs attrs, | |
2490 | const uint8_t *buf, | |
2491 | int len, hwaddr addr1, | |
2492 | hwaddr l, MemoryRegion *mr) | |
13eb76e0 | 2493 | { |
13eb76e0 | 2494 | uint8_t *ptr; |
791af8c8 | 2495 | uint64_t val; |
3b643495 | 2496 | MemTxResult result = MEMTX_OK; |
4840f10e | 2497 | bool release_lock = false; |
3b46e624 | 2498 | |
a203ac70 | 2499 | for (;;) { |
eb7eeb88 PB |
2500 | if (!memory_access_is_direct(mr, true)) { |
2501 | release_lock |= prepare_mmio_access(mr); | |
2502 | l = memory_access_size(mr, l, addr1); | |
2503 | /* XXX: could force current_cpu to NULL to avoid | |
2504 | potential bugs */ | |
2505 | switch (l) { | |
2506 | case 8: | |
2507 | /* 64 bit write access */ | |
2508 | val = ldq_p(buf); | |
2509 | result |= memory_region_dispatch_write(mr, addr1, val, 8, | |
2510 | attrs); | |
2511 | break; | |
2512 | case 4: | |
2513 | /* 32 bit write access */ | |
2514 | val = ldl_p(buf); | |
2515 | result |= memory_region_dispatch_write(mr, addr1, val, 4, | |
2516 | attrs); | |
2517 | break; | |
2518 | case 2: | |
2519 | /* 16 bit write access */ | |
2520 | val = lduw_p(buf); | |
2521 | result |= memory_region_dispatch_write(mr, addr1, val, 2, | |
2522 | attrs); | |
2523 | break; | |
2524 | case 1: | |
2525 | /* 8 bit write access */ | |
2526 | val = ldub_p(buf); | |
2527 | result |= memory_region_dispatch_write(mr, addr1, val, 1, | |
2528 | attrs); | |
2529 | break; | |
2530 | default: | |
2531 | abort(); | |
13eb76e0 FB |
2532 | } |
2533 | } else { | |
eb7eeb88 | 2534 | /* RAM case */ |
0878d0e1 | 2535 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
eb7eeb88 PB |
2536 | memcpy(ptr, buf, l); |
2537 | invalidate_and_set_dirty(mr, addr1, l); | |
13eb76e0 | 2538 | } |
4840f10e JK |
2539 | |
2540 | if (release_lock) { | |
2541 | qemu_mutex_unlock_iothread(); | |
2542 | release_lock = false; | |
2543 | } | |
2544 | ||
13eb76e0 FB |
2545 | len -= l; |
2546 | buf += l; | |
2547 | addr += l; | |
a203ac70 PB |
2548 | |
2549 | if (!len) { | |
2550 | break; | |
2551 | } | |
2552 | ||
2553 | l = len; | |
2554 | mr = address_space_translate(as, addr, &addr1, &l, true); | |
13eb76e0 | 2555 | } |
fd8aaa76 | 2556 | |
3b643495 | 2557 | return result; |
13eb76e0 | 2558 | } |
8df1cd07 | 2559 | |
a203ac70 PB |
2560 | MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, |
2561 | const uint8_t *buf, int len) | |
ac1970fb | 2562 | { |
eb7eeb88 | 2563 | hwaddr l; |
eb7eeb88 PB |
2564 | hwaddr addr1; |
2565 | MemoryRegion *mr; | |
2566 | MemTxResult result = MEMTX_OK; | |
eb7eeb88 | 2567 | |
a203ac70 PB |
2568 | if (len > 0) { |
2569 | rcu_read_lock(); | |
eb7eeb88 | 2570 | l = len; |
a203ac70 PB |
2571 | mr = address_space_translate(as, addr, &addr1, &l, true); |
2572 | result = address_space_write_continue(as, addr, attrs, buf, len, | |
2573 | addr1, l, mr); | |
2574 | rcu_read_unlock(); | |
2575 | } | |
2576 | ||
2577 | return result; | |
2578 | } | |
2579 | ||
2580 | /* Called within RCU critical section. */ | |
2581 | MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr, | |
2582 | MemTxAttrs attrs, uint8_t *buf, | |
2583 | int len, hwaddr addr1, hwaddr l, | |
2584 | MemoryRegion *mr) | |
2585 | { | |
2586 | uint8_t *ptr; | |
2587 | uint64_t val; | |
2588 | MemTxResult result = MEMTX_OK; | |
2589 | bool release_lock = false; | |
eb7eeb88 | 2590 | |
a203ac70 | 2591 | for (;;) { |
eb7eeb88 PB |
2592 | if (!memory_access_is_direct(mr, false)) { |
2593 | /* I/O case */ | |
2594 | release_lock |= prepare_mmio_access(mr); | |
2595 | l = memory_access_size(mr, l, addr1); | |
2596 | switch (l) { | |
2597 | case 8: | |
2598 | /* 64 bit read access */ | |
2599 | result |= memory_region_dispatch_read(mr, addr1, &val, 8, | |
2600 | attrs); | |
2601 | stq_p(buf, val); | |
2602 | break; | |
2603 | case 4: | |
2604 | /* 32 bit read access */ | |
2605 | result |= memory_region_dispatch_read(mr, addr1, &val, 4, | |
2606 | attrs); | |
2607 | stl_p(buf, val); | |
2608 | break; | |
2609 | case 2: | |
2610 | /* 16 bit read access */ | |
2611 | result |= memory_region_dispatch_read(mr, addr1, &val, 2, | |
2612 | attrs); | |
2613 | stw_p(buf, val); | |
2614 | break; | |
2615 | case 1: | |
2616 | /* 8 bit read access */ | |
2617 | result |= memory_region_dispatch_read(mr, addr1, &val, 1, | |
2618 | attrs); | |
2619 | stb_p(buf, val); | |
2620 | break; | |
2621 | default: | |
2622 | abort(); | |
2623 | } | |
2624 | } else { | |
2625 | /* RAM case */ | |
0878d0e1 | 2626 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
eb7eeb88 PB |
2627 | memcpy(buf, ptr, l); |
2628 | } | |
2629 | ||
2630 | if (release_lock) { | |
2631 | qemu_mutex_unlock_iothread(); | |
2632 | release_lock = false; | |
2633 | } | |
2634 | ||
2635 | len -= l; | |
2636 | buf += l; | |
2637 | addr += l; | |
a203ac70 PB |
2638 | |
2639 | if (!len) { | |
2640 | break; | |
2641 | } | |
2642 | ||
2643 | l = len; | |
2644 | mr = address_space_translate(as, addr, &addr1, &l, false); | |
2645 | } | |
2646 | ||
2647 | return result; | |
2648 | } | |
2649 | ||
3cc8f884 PB |
2650 | MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, |
2651 | MemTxAttrs attrs, uint8_t *buf, int len) | |
a203ac70 PB |
2652 | { |
2653 | hwaddr l; | |
2654 | hwaddr addr1; | |
2655 | MemoryRegion *mr; | |
2656 | MemTxResult result = MEMTX_OK; | |
2657 | ||
2658 | if (len > 0) { | |
2659 | rcu_read_lock(); | |
2660 | l = len; | |
2661 | mr = address_space_translate(as, addr, &addr1, &l, false); | |
2662 | result = address_space_read_continue(as, addr, attrs, buf, len, | |
2663 | addr1, l, mr); | |
2664 | rcu_read_unlock(); | |
eb7eeb88 | 2665 | } |
eb7eeb88 PB |
2666 | |
2667 | return result; | |
ac1970fb AK |
2668 | } |
2669 | ||
eb7eeb88 PB |
2670 | MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, |
2671 | uint8_t *buf, int len, bool is_write) | |
2672 | { | |
2673 | if (is_write) { | |
2674 | return address_space_write(as, addr, attrs, (uint8_t *)buf, len); | |
2675 | } else { | |
2676 | return address_space_read(as, addr, attrs, (uint8_t *)buf, len); | |
2677 | } | |
2678 | } | |
ac1970fb | 2679 | |
a8170e5e | 2680 | void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf, |
ac1970fb AK |
2681 | int len, int is_write) |
2682 | { | |
5c9eb028 PM |
2683 | address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, |
2684 | buf, len, is_write); | |
ac1970fb AK |
2685 | } |
2686 | ||
582b55a9 AG |
2687 | enum write_rom_type { |
2688 | WRITE_DATA, | |
2689 | FLUSH_CACHE, | |
2690 | }; | |
2691 | ||
2a221651 | 2692 | static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as, |
582b55a9 | 2693 | hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type) |
d0ecd2aa | 2694 | { |
149f54b5 | 2695 | hwaddr l; |
d0ecd2aa | 2696 | uint8_t *ptr; |
149f54b5 | 2697 | hwaddr addr1; |
5c8a00ce | 2698 | MemoryRegion *mr; |
3b46e624 | 2699 | |
41063e1e | 2700 | rcu_read_lock(); |
d0ecd2aa | 2701 | while (len > 0) { |
149f54b5 | 2702 | l = len; |
2a221651 | 2703 | mr = address_space_translate(as, addr, &addr1, &l, true); |
3b46e624 | 2704 | |
5c8a00ce PB |
2705 | if (!(memory_region_is_ram(mr) || |
2706 | memory_region_is_romd(mr))) { | |
b242e0e0 | 2707 | l = memory_access_size(mr, l, addr1); |
d0ecd2aa | 2708 | } else { |
d0ecd2aa | 2709 | /* ROM/RAM case */ |
0878d0e1 | 2710 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
582b55a9 AG |
2711 | switch (type) { |
2712 | case WRITE_DATA: | |
2713 | memcpy(ptr, buf, l); | |
845b6214 | 2714 | invalidate_and_set_dirty(mr, addr1, l); |
582b55a9 AG |
2715 | break; |
2716 | case FLUSH_CACHE: | |
2717 | flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l); | |
2718 | break; | |
2719 | } | |
d0ecd2aa FB |
2720 | } |
2721 | len -= l; | |
2722 | buf += l; | |
2723 | addr += l; | |
2724 | } | |
41063e1e | 2725 | rcu_read_unlock(); |
d0ecd2aa FB |
2726 | } |
2727 | ||
582b55a9 | 2728 | /* used for ROM loading : can write in RAM and ROM */ |
2a221651 | 2729 | void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr, |
582b55a9 AG |
2730 | const uint8_t *buf, int len) |
2731 | { | |
2a221651 | 2732 | cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA); |
582b55a9 AG |
2733 | } |
2734 | ||
2735 | void cpu_flush_icache_range(hwaddr start, int len) | |
2736 | { | |
2737 | /* | |
2738 | * This function should do the same thing as an icache flush that was | |
2739 | * triggered from within the guest. For TCG we are always cache coherent, | |
2740 | * so there is no need to flush anything. For KVM / Xen we need to flush | |
2741 | * the host's instruction cache at least. | |
2742 | */ | |
2743 | if (tcg_enabled()) { | |
2744 | return; | |
2745 | } | |
2746 | ||
2a221651 EI |
2747 | cpu_physical_memory_write_rom_internal(&address_space_memory, |
2748 | start, NULL, len, FLUSH_CACHE); | |
582b55a9 AG |
2749 | } |
2750 | ||
6d16c2f8 | 2751 | typedef struct { |
d3e71559 | 2752 | MemoryRegion *mr; |
6d16c2f8 | 2753 | void *buffer; |
a8170e5e AK |
2754 | hwaddr addr; |
2755 | hwaddr len; | |
c2cba0ff | 2756 | bool in_use; |
6d16c2f8 AL |
2757 | } BounceBuffer; |
2758 | ||
2759 | static BounceBuffer bounce; | |
2760 | ||
ba223c29 | 2761 | typedef struct MapClient { |
e95205e1 | 2762 | QEMUBH *bh; |
72cf2d4f | 2763 | QLIST_ENTRY(MapClient) link; |
ba223c29 AL |
2764 | } MapClient; |
2765 | ||
38e047b5 | 2766 | QemuMutex map_client_list_lock; |
72cf2d4f BS |
2767 | static QLIST_HEAD(map_client_list, MapClient) map_client_list |
2768 | = QLIST_HEAD_INITIALIZER(map_client_list); | |
ba223c29 | 2769 | |
e95205e1 FZ |
2770 | static void cpu_unregister_map_client_do(MapClient *client) |
2771 | { | |
2772 | QLIST_REMOVE(client, link); | |
2773 | g_free(client); | |
2774 | } | |
2775 | ||
33b6c2ed FZ |
2776 | static void cpu_notify_map_clients_locked(void) |
2777 | { | |
2778 | MapClient *client; | |
2779 | ||
2780 | while (!QLIST_EMPTY(&map_client_list)) { | |
2781 | client = QLIST_FIRST(&map_client_list); | |
e95205e1 FZ |
2782 | qemu_bh_schedule(client->bh); |
2783 | cpu_unregister_map_client_do(client); | |
33b6c2ed FZ |
2784 | } |
2785 | } | |
2786 | ||
e95205e1 | 2787 | void cpu_register_map_client(QEMUBH *bh) |
ba223c29 | 2788 | { |
7267c094 | 2789 | MapClient *client = g_malloc(sizeof(*client)); |
ba223c29 | 2790 | |
38e047b5 | 2791 | qemu_mutex_lock(&map_client_list_lock); |
e95205e1 | 2792 | client->bh = bh; |
72cf2d4f | 2793 | QLIST_INSERT_HEAD(&map_client_list, client, link); |
33b6c2ed FZ |
2794 | if (!atomic_read(&bounce.in_use)) { |
2795 | cpu_notify_map_clients_locked(); | |
2796 | } | |
38e047b5 | 2797 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
2798 | } |
2799 | ||
38e047b5 | 2800 | void cpu_exec_init_all(void) |
ba223c29 | 2801 | { |
38e047b5 | 2802 | qemu_mutex_init(&ram_list.mutex); |
38e047b5 | 2803 | io_mem_init(); |
680a4783 | 2804 | memory_map_init(); |
38e047b5 | 2805 | qemu_mutex_init(&map_client_list_lock); |
ba223c29 AL |
2806 | } |
2807 | ||
e95205e1 | 2808 | void cpu_unregister_map_client(QEMUBH *bh) |
ba223c29 AL |
2809 | { |
2810 | MapClient *client; | |
2811 | ||
e95205e1 FZ |
2812 | qemu_mutex_lock(&map_client_list_lock); |
2813 | QLIST_FOREACH(client, &map_client_list, link) { | |
2814 | if (client->bh == bh) { | |
2815 | cpu_unregister_map_client_do(client); | |
2816 | break; | |
2817 | } | |
ba223c29 | 2818 | } |
e95205e1 | 2819 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
2820 | } |
2821 | ||
2822 | static void cpu_notify_map_clients(void) | |
2823 | { | |
38e047b5 | 2824 | qemu_mutex_lock(&map_client_list_lock); |
33b6c2ed | 2825 | cpu_notify_map_clients_locked(); |
38e047b5 | 2826 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
2827 | } |
2828 | ||
51644ab7 PB |
2829 | bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write) |
2830 | { | |
5c8a00ce | 2831 | MemoryRegion *mr; |
51644ab7 PB |
2832 | hwaddr l, xlat; |
2833 | ||
41063e1e | 2834 | rcu_read_lock(); |
51644ab7 PB |
2835 | while (len > 0) { |
2836 | l = len; | |
5c8a00ce PB |
2837 | mr = address_space_translate(as, addr, &xlat, &l, is_write); |
2838 | if (!memory_access_is_direct(mr, is_write)) { | |
2839 | l = memory_access_size(mr, l, addr); | |
2840 | if (!memory_region_access_valid(mr, xlat, l, is_write)) { | |
51644ab7 PB |
2841 | return false; |
2842 | } | |
2843 | } | |
2844 | ||
2845 | len -= l; | |
2846 | addr += l; | |
2847 | } | |
41063e1e | 2848 | rcu_read_unlock(); |
51644ab7 PB |
2849 | return true; |
2850 | } | |
2851 | ||
6d16c2f8 AL |
2852 | /* Map a physical memory region into a host virtual address. |
2853 | * May map a subset of the requested range, given by and returned in *plen. | |
2854 | * May return NULL if resources needed to perform the mapping are exhausted. | |
2855 | * Use only for reads OR writes - not for read-modify-write operations. | |
ba223c29 AL |
2856 | * Use cpu_register_map_client() to know when retrying the map operation is |
2857 | * likely to succeed. | |
6d16c2f8 | 2858 | */ |
ac1970fb | 2859 | void *address_space_map(AddressSpace *as, |
a8170e5e AK |
2860 | hwaddr addr, |
2861 | hwaddr *plen, | |
ac1970fb | 2862 | bool is_write) |
6d16c2f8 | 2863 | { |
a8170e5e | 2864 | hwaddr len = *plen; |
e3127ae0 PB |
2865 | hwaddr done = 0; |
2866 | hwaddr l, xlat, base; | |
2867 | MemoryRegion *mr, *this_mr; | |
e81bcda5 | 2868 | void *ptr; |
6d16c2f8 | 2869 | |
e3127ae0 PB |
2870 | if (len == 0) { |
2871 | return NULL; | |
2872 | } | |
38bee5dc | 2873 | |
e3127ae0 | 2874 | l = len; |
41063e1e | 2875 | rcu_read_lock(); |
e3127ae0 | 2876 | mr = address_space_translate(as, addr, &xlat, &l, is_write); |
41063e1e | 2877 | |
e3127ae0 | 2878 | if (!memory_access_is_direct(mr, is_write)) { |
c2cba0ff | 2879 | if (atomic_xchg(&bounce.in_use, true)) { |
41063e1e | 2880 | rcu_read_unlock(); |
e3127ae0 | 2881 | return NULL; |
6d16c2f8 | 2882 | } |
e85d9db5 KW |
2883 | /* Avoid unbounded allocations */ |
2884 | l = MIN(l, TARGET_PAGE_SIZE); | |
2885 | bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l); | |
e3127ae0 PB |
2886 | bounce.addr = addr; |
2887 | bounce.len = l; | |
d3e71559 PB |
2888 | |
2889 | memory_region_ref(mr); | |
2890 | bounce.mr = mr; | |
e3127ae0 | 2891 | if (!is_write) { |
5c9eb028 PM |
2892 | address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED, |
2893 | bounce.buffer, l); | |
8ab934f9 | 2894 | } |
6d16c2f8 | 2895 | |
41063e1e | 2896 | rcu_read_unlock(); |
e3127ae0 PB |
2897 | *plen = l; |
2898 | return bounce.buffer; | |
2899 | } | |
2900 | ||
2901 | base = xlat; | |
e3127ae0 PB |
2902 | |
2903 | for (;;) { | |
6d16c2f8 AL |
2904 | len -= l; |
2905 | addr += l; | |
e3127ae0 PB |
2906 | done += l; |
2907 | if (len == 0) { | |
2908 | break; | |
2909 | } | |
2910 | ||
2911 | l = len; | |
2912 | this_mr = address_space_translate(as, addr, &xlat, &l, is_write); | |
2913 | if (this_mr != mr || xlat != base + done) { | |
2914 | break; | |
2915 | } | |
6d16c2f8 | 2916 | } |
e3127ae0 | 2917 | |
d3e71559 | 2918 | memory_region_ref(mr); |
e3127ae0 | 2919 | *plen = done; |
0878d0e1 | 2920 | ptr = qemu_ram_ptr_length(mr->ram_block, base, plen); |
e81bcda5 PB |
2921 | rcu_read_unlock(); |
2922 | ||
2923 | return ptr; | |
6d16c2f8 AL |
2924 | } |
2925 | ||
ac1970fb | 2926 | /* Unmaps a memory region previously mapped by address_space_map(). |
6d16c2f8 AL |
2927 | * Will also mark the memory as dirty if is_write == 1. access_len gives |
2928 | * the amount of memory that was actually read or written by the caller. | |
2929 | */ | |
a8170e5e AK |
2930 | void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, |
2931 | int is_write, hwaddr access_len) | |
6d16c2f8 AL |
2932 | { |
2933 | if (buffer != bounce.buffer) { | |
d3e71559 PB |
2934 | MemoryRegion *mr; |
2935 | ram_addr_t addr1; | |
2936 | ||
07bdaa41 | 2937 | mr = memory_region_from_host(buffer, &addr1); |
d3e71559 | 2938 | assert(mr != NULL); |
6d16c2f8 | 2939 | if (is_write) { |
845b6214 | 2940 | invalidate_and_set_dirty(mr, addr1, access_len); |
6d16c2f8 | 2941 | } |
868bb33f | 2942 | if (xen_enabled()) { |
e41d7c69 | 2943 | xen_invalidate_map_cache_entry(buffer); |
050a0ddf | 2944 | } |
d3e71559 | 2945 | memory_region_unref(mr); |
6d16c2f8 AL |
2946 | return; |
2947 | } | |
2948 | if (is_write) { | |
5c9eb028 PM |
2949 | address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED, |
2950 | bounce.buffer, access_len); | |
6d16c2f8 | 2951 | } |
f8a83245 | 2952 | qemu_vfree(bounce.buffer); |
6d16c2f8 | 2953 | bounce.buffer = NULL; |
d3e71559 | 2954 | memory_region_unref(bounce.mr); |
c2cba0ff | 2955 | atomic_mb_set(&bounce.in_use, false); |
ba223c29 | 2956 | cpu_notify_map_clients(); |
6d16c2f8 | 2957 | } |
d0ecd2aa | 2958 | |
a8170e5e AK |
2959 | void *cpu_physical_memory_map(hwaddr addr, |
2960 | hwaddr *plen, | |
ac1970fb AK |
2961 | int is_write) |
2962 | { | |
2963 | return address_space_map(&address_space_memory, addr, plen, is_write); | |
2964 | } | |
2965 | ||
a8170e5e AK |
2966 | void cpu_physical_memory_unmap(void *buffer, hwaddr len, |
2967 | int is_write, hwaddr access_len) | |
ac1970fb AK |
2968 | { |
2969 | return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); | |
2970 | } | |
2971 | ||
8df1cd07 | 2972 | /* warning: addr must be aligned */ |
50013115 PM |
2973 | static inline uint32_t address_space_ldl_internal(AddressSpace *as, hwaddr addr, |
2974 | MemTxAttrs attrs, | |
2975 | MemTxResult *result, | |
2976 | enum device_endian endian) | |
8df1cd07 | 2977 | { |
8df1cd07 | 2978 | uint8_t *ptr; |
791af8c8 | 2979 | uint64_t val; |
5c8a00ce | 2980 | MemoryRegion *mr; |
149f54b5 PB |
2981 | hwaddr l = 4; |
2982 | hwaddr addr1; | |
50013115 | 2983 | MemTxResult r; |
4840f10e | 2984 | bool release_lock = false; |
8df1cd07 | 2985 | |
41063e1e | 2986 | rcu_read_lock(); |
fdfba1a2 | 2987 | mr = address_space_translate(as, addr, &addr1, &l, false); |
5c8a00ce | 2988 | if (l < 4 || !memory_access_is_direct(mr, false)) { |
4840f10e | 2989 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 2990 | |
8df1cd07 | 2991 | /* I/O case */ |
50013115 | 2992 | r = memory_region_dispatch_read(mr, addr1, &val, 4, attrs); |
1e78bcc1 AG |
2993 | #if defined(TARGET_WORDS_BIGENDIAN) |
2994 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
2995 | val = bswap32(val); | |
2996 | } | |
2997 | #else | |
2998 | if (endian == DEVICE_BIG_ENDIAN) { | |
2999 | val = bswap32(val); | |
3000 | } | |
3001 | #endif | |
8df1cd07 FB |
3002 | } else { |
3003 | /* RAM case */ | |
0878d0e1 | 3004 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
1e78bcc1 AG |
3005 | switch (endian) { |
3006 | case DEVICE_LITTLE_ENDIAN: | |
3007 | val = ldl_le_p(ptr); | |
3008 | break; | |
3009 | case DEVICE_BIG_ENDIAN: | |
3010 | val = ldl_be_p(ptr); | |
3011 | break; | |
3012 | default: | |
3013 | val = ldl_p(ptr); | |
3014 | break; | |
3015 | } | |
50013115 PM |
3016 | r = MEMTX_OK; |
3017 | } | |
3018 | if (result) { | |
3019 | *result = r; | |
8df1cd07 | 3020 | } |
4840f10e JK |
3021 | if (release_lock) { |
3022 | qemu_mutex_unlock_iothread(); | |
3023 | } | |
41063e1e | 3024 | rcu_read_unlock(); |
8df1cd07 FB |
3025 | return val; |
3026 | } | |
3027 | ||
50013115 PM |
3028 | uint32_t address_space_ldl(AddressSpace *as, hwaddr addr, |
3029 | MemTxAttrs attrs, MemTxResult *result) | |
3030 | { | |
3031 | return address_space_ldl_internal(as, addr, attrs, result, | |
3032 | DEVICE_NATIVE_ENDIAN); | |
3033 | } | |
3034 | ||
3035 | uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr, | |
3036 | MemTxAttrs attrs, MemTxResult *result) | |
3037 | { | |
3038 | return address_space_ldl_internal(as, addr, attrs, result, | |
3039 | DEVICE_LITTLE_ENDIAN); | |
3040 | } | |
3041 | ||
3042 | uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr, | |
3043 | MemTxAttrs attrs, MemTxResult *result) | |
3044 | { | |
3045 | return address_space_ldl_internal(as, addr, attrs, result, | |
3046 | DEVICE_BIG_ENDIAN); | |
3047 | } | |
3048 | ||
fdfba1a2 | 3049 | uint32_t ldl_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3050 | { |
50013115 | 3051 | return address_space_ldl(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3052 | } |
3053 | ||
fdfba1a2 | 3054 | uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3055 | { |
50013115 | 3056 | return address_space_ldl_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3057 | } |
3058 | ||
fdfba1a2 | 3059 | uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3060 | { |
50013115 | 3061 | return address_space_ldl_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3062 | } |
3063 | ||
84b7b8e7 | 3064 | /* warning: addr must be aligned */ |
50013115 PM |
3065 | static inline uint64_t address_space_ldq_internal(AddressSpace *as, hwaddr addr, |
3066 | MemTxAttrs attrs, | |
3067 | MemTxResult *result, | |
3068 | enum device_endian endian) | |
84b7b8e7 | 3069 | { |
84b7b8e7 FB |
3070 | uint8_t *ptr; |
3071 | uint64_t val; | |
5c8a00ce | 3072 | MemoryRegion *mr; |
149f54b5 PB |
3073 | hwaddr l = 8; |
3074 | hwaddr addr1; | |
50013115 | 3075 | MemTxResult r; |
4840f10e | 3076 | bool release_lock = false; |
84b7b8e7 | 3077 | |
41063e1e | 3078 | rcu_read_lock(); |
2c17449b | 3079 | mr = address_space_translate(as, addr, &addr1, &l, |
5c8a00ce PB |
3080 | false); |
3081 | if (l < 8 || !memory_access_is_direct(mr, false)) { | |
4840f10e | 3082 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3083 | |
84b7b8e7 | 3084 | /* I/O case */ |
50013115 | 3085 | r = memory_region_dispatch_read(mr, addr1, &val, 8, attrs); |
968a5627 PB |
3086 | #if defined(TARGET_WORDS_BIGENDIAN) |
3087 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3088 | val = bswap64(val); | |
3089 | } | |
3090 | #else | |
3091 | if (endian == DEVICE_BIG_ENDIAN) { | |
3092 | val = bswap64(val); | |
3093 | } | |
84b7b8e7 FB |
3094 | #endif |
3095 | } else { | |
3096 | /* RAM case */ | |
0878d0e1 | 3097 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
1e78bcc1 AG |
3098 | switch (endian) { |
3099 | case DEVICE_LITTLE_ENDIAN: | |
3100 | val = ldq_le_p(ptr); | |
3101 | break; | |
3102 | case DEVICE_BIG_ENDIAN: | |
3103 | val = ldq_be_p(ptr); | |
3104 | break; | |
3105 | default: | |
3106 | val = ldq_p(ptr); | |
3107 | break; | |
3108 | } | |
50013115 PM |
3109 | r = MEMTX_OK; |
3110 | } | |
3111 | if (result) { | |
3112 | *result = r; | |
84b7b8e7 | 3113 | } |
4840f10e JK |
3114 | if (release_lock) { |
3115 | qemu_mutex_unlock_iothread(); | |
3116 | } | |
41063e1e | 3117 | rcu_read_unlock(); |
84b7b8e7 FB |
3118 | return val; |
3119 | } | |
3120 | ||
50013115 PM |
3121 | uint64_t address_space_ldq(AddressSpace *as, hwaddr addr, |
3122 | MemTxAttrs attrs, MemTxResult *result) | |
3123 | { | |
3124 | return address_space_ldq_internal(as, addr, attrs, result, | |
3125 | DEVICE_NATIVE_ENDIAN); | |
3126 | } | |
3127 | ||
3128 | uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr, | |
3129 | MemTxAttrs attrs, MemTxResult *result) | |
3130 | { | |
3131 | return address_space_ldq_internal(as, addr, attrs, result, | |
3132 | DEVICE_LITTLE_ENDIAN); | |
3133 | } | |
3134 | ||
3135 | uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr, | |
3136 | MemTxAttrs attrs, MemTxResult *result) | |
3137 | { | |
3138 | return address_space_ldq_internal(as, addr, attrs, result, | |
3139 | DEVICE_BIG_ENDIAN); | |
3140 | } | |
3141 | ||
2c17449b | 3142 | uint64_t ldq_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3143 | { |
50013115 | 3144 | return address_space_ldq(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3145 | } |
3146 | ||
2c17449b | 3147 | uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3148 | { |
50013115 | 3149 | return address_space_ldq_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3150 | } |
3151 | ||
2c17449b | 3152 | uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3153 | { |
50013115 | 3154 | return address_space_ldq_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3155 | } |
3156 | ||
aab33094 | 3157 | /* XXX: optimize */ |
50013115 PM |
3158 | uint32_t address_space_ldub(AddressSpace *as, hwaddr addr, |
3159 | MemTxAttrs attrs, MemTxResult *result) | |
aab33094 FB |
3160 | { |
3161 | uint8_t val; | |
50013115 PM |
3162 | MemTxResult r; |
3163 | ||
3164 | r = address_space_rw(as, addr, attrs, &val, 1, 0); | |
3165 | if (result) { | |
3166 | *result = r; | |
3167 | } | |
aab33094 FB |
3168 | return val; |
3169 | } | |
3170 | ||
50013115 PM |
3171 | uint32_t ldub_phys(AddressSpace *as, hwaddr addr) |
3172 | { | |
3173 | return address_space_ldub(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); | |
3174 | } | |
3175 | ||
733f0b02 | 3176 | /* warning: addr must be aligned */ |
50013115 PM |
3177 | static inline uint32_t address_space_lduw_internal(AddressSpace *as, |
3178 | hwaddr addr, | |
3179 | MemTxAttrs attrs, | |
3180 | MemTxResult *result, | |
3181 | enum device_endian endian) | |
aab33094 | 3182 | { |
733f0b02 MT |
3183 | uint8_t *ptr; |
3184 | uint64_t val; | |
5c8a00ce | 3185 | MemoryRegion *mr; |
149f54b5 PB |
3186 | hwaddr l = 2; |
3187 | hwaddr addr1; | |
50013115 | 3188 | MemTxResult r; |
4840f10e | 3189 | bool release_lock = false; |
733f0b02 | 3190 | |
41063e1e | 3191 | rcu_read_lock(); |
41701aa4 | 3192 | mr = address_space_translate(as, addr, &addr1, &l, |
5c8a00ce PB |
3193 | false); |
3194 | if (l < 2 || !memory_access_is_direct(mr, false)) { | |
4840f10e | 3195 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3196 | |
733f0b02 | 3197 | /* I/O case */ |
50013115 | 3198 | r = memory_region_dispatch_read(mr, addr1, &val, 2, attrs); |
1e78bcc1 AG |
3199 | #if defined(TARGET_WORDS_BIGENDIAN) |
3200 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3201 | val = bswap16(val); | |
3202 | } | |
3203 | #else | |
3204 | if (endian == DEVICE_BIG_ENDIAN) { | |
3205 | val = bswap16(val); | |
3206 | } | |
3207 | #endif | |
733f0b02 MT |
3208 | } else { |
3209 | /* RAM case */ | |
0878d0e1 | 3210 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
1e78bcc1 AG |
3211 | switch (endian) { |
3212 | case DEVICE_LITTLE_ENDIAN: | |
3213 | val = lduw_le_p(ptr); | |
3214 | break; | |
3215 | case DEVICE_BIG_ENDIAN: | |
3216 | val = lduw_be_p(ptr); | |
3217 | break; | |
3218 | default: | |
3219 | val = lduw_p(ptr); | |
3220 | break; | |
3221 | } | |
50013115 PM |
3222 | r = MEMTX_OK; |
3223 | } | |
3224 | if (result) { | |
3225 | *result = r; | |
733f0b02 | 3226 | } |
4840f10e JK |
3227 | if (release_lock) { |
3228 | qemu_mutex_unlock_iothread(); | |
3229 | } | |
41063e1e | 3230 | rcu_read_unlock(); |
733f0b02 | 3231 | return val; |
aab33094 FB |
3232 | } |
3233 | ||
50013115 PM |
3234 | uint32_t address_space_lduw(AddressSpace *as, hwaddr addr, |
3235 | MemTxAttrs attrs, MemTxResult *result) | |
3236 | { | |
3237 | return address_space_lduw_internal(as, addr, attrs, result, | |
3238 | DEVICE_NATIVE_ENDIAN); | |
3239 | } | |
3240 | ||
3241 | uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr, | |
3242 | MemTxAttrs attrs, MemTxResult *result) | |
3243 | { | |
3244 | return address_space_lduw_internal(as, addr, attrs, result, | |
3245 | DEVICE_LITTLE_ENDIAN); | |
3246 | } | |
3247 | ||
3248 | uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr, | |
3249 | MemTxAttrs attrs, MemTxResult *result) | |
3250 | { | |
3251 | return address_space_lduw_internal(as, addr, attrs, result, | |
3252 | DEVICE_BIG_ENDIAN); | |
3253 | } | |
3254 | ||
41701aa4 | 3255 | uint32_t lduw_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3256 | { |
50013115 | 3257 | return address_space_lduw(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3258 | } |
3259 | ||
41701aa4 | 3260 | uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3261 | { |
50013115 | 3262 | return address_space_lduw_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3263 | } |
3264 | ||
41701aa4 | 3265 | uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3266 | { |
50013115 | 3267 | return address_space_lduw_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3268 | } |
3269 | ||
8df1cd07 FB |
3270 | /* warning: addr must be aligned. The ram page is not masked as dirty |
3271 | and the code inside is not invalidated. It is useful if the dirty | |
3272 | bits are used to track modified PTEs */ | |
50013115 PM |
3273 | void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val, |
3274 | MemTxAttrs attrs, MemTxResult *result) | |
8df1cd07 | 3275 | { |
8df1cd07 | 3276 | uint8_t *ptr; |
5c8a00ce | 3277 | MemoryRegion *mr; |
149f54b5 PB |
3278 | hwaddr l = 4; |
3279 | hwaddr addr1; | |
50013115 | 3280 | MemTxResult r; |
845b6214 | 3281 | uint8_t dirty_log_mask; |
4840f10e | 3282 | bool release_lock = false; |
8df1cd07 | 3283 | |
41063e1e | 3284 | rcu_read_lock(); |
2198a121 | 3285 | mr = address_space_translate(as, addr, &addr1, &l, |
5c8a00ce PB |
3286 | true); |
3287 | if (l < 4 || !memory_access_is_direct(mr, true)) { | |
4840f10e | 3288 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3289 | |
50013115 | 3290 | r = memory_region_dispatch_write(mr, addr1, val, 4, attrs); |
8df1cd07 | 3291 | } else { |
0878d0e1 | 3292 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
8df1cd07 | 3293 | stl_p(ptr, val); |
74576198 | 3294 | |
845b6214 PB |
3295 | dirty_log_mask = memory_region_get_dirty_log_mask(mr); |
3296 | dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); | |
0878d0e1 PB |
3297 | cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr, |
3298 | 4, dirty_log_mask); | |
50013115 PM |
3299 | r = MEMTX_OK; |
3300 | } | |
3301 | if (result) { | |
3302 | *result = r; | |
8df1cd07 | 3303 | } |
4840f10e JK |
3304 | if (release_lock) { |
3305 | qemu_mutex_unlock_iothread(); | |
3306 | } | |
41063e1e | 3307 | rcu_read_unlock(); |
8df1cd07 FB |
3308 | } |
3309 | ||
50013115 PM |
3310 | void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val) |
3311 | { | |
3312 | address_space_stl_notdirty(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
3313 | } | |
3314 | ||
8df1cd07 | 3315 | /* warning: addr must be aligned */ |
50013115 PM |
3316 | static inline void address_space_stl_internal(AddressSpace *as, |
3317 | hwaddr addr, uint32_t val, | |
3318 | MemTxAttrs attrs, | |
3319 | MemTxResult *result, | |
3320 | enum device_endian endian) | |
8df1cd07 | 3321 | { |
8df1cd07 | 3322 | uint8_t *ptr; |
5c8a00ce | 3323 | MemoryRegion *mr; |
149f54b5 PB |
3324 | hwaddr l = 4; |
3325 | hwaddr addr1; | |
50013115 | 3326 | MemTxResult r; |
4840f10e | 3327 | bool release_lock = false; |
8df1cd07 | 3328 | |
41063e1e | 3329 | rcu_read_lock(); |
ab1da857 | 3330 | mr = address_space_translate(as, addr, &addr1, &l, |
5c8a00ce PB |
3331 | true); |
3332 | if (l < 4 || !memory_access_is_direct(mr, true)) { | |
4840f10e | 3333 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3334 | |
1e78bcc1 AG |
3335 | #if defined(TARGET_WORDS_BIGENDIAN) |
3336 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3337 | val = bswap32(val); | |
3338 | } | |
3339 | #else | |
3340 | if (endian == DEVICE_BIG_ENDIAN) { | |
3341 | val = bswap32(val); | |
3342 | } | |
3343 | #endif | |
50013115 | 3344 | r = memory_region_dispatch_write(mr, addr1, val, 4, attrs); |
8df1cd07 | 3345 | } else { |
8df1cd07 | 3346 | /* RAM case */ |
0878d0e1 | 3347 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
1e78bcc1 AG |
3348 | switch (endian) { |
3349 | case DEVICE_LITTLE_ENDIAN: | |
3350 | stl_le_p(ptr, val); | |
3351 | break; | |
3352 | case DEVICE_BIG_ENDIAN: | |
3353 | stl_be_p(ptr, val); | |
3354 | break; | |
3355 | default: | |
3356 | stl_p(ptr, val); | |
3357 | break; | |
3358 | } | |
845b6214 | 3359 | invalidate_and_set_dirty(mr, addr1, 4); |
50013115 PM |
3360 | r = MEMTX_OK; |
3361 | } | |
3362 | if (result) { | |
3363 | *result = r; | |
8df1cd07 | 3364 | } |
4840f10e JK |
3365 | if (release_lock) { |
3366 | qemu_mutex_unlock_iothread(); | |
3367 | } | |
41063e1e | 3368 | rcu_read_unlock(); |
8df1cd07 FB |
3369 | } |
3370 | ||
50013115 PM |
3371 | void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val, |
3372 | MemTxAttrs attrs, MemTxResult *result) | |
3373 | { | |
3374 | address_space_stl_internal(as, addr, val, attrs, result, | |
3375 | DEVICE_NATIVE_ENDIAN); | |
3376 | } | |
3377 | ||
3378 | void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val, | |
3379 | MemTxAttrs attrs, MemTxResult *result) | |
3380 | { | |
3381 | address_space_stl_internal(as, addr, val, attrs, result, | |
3382 | DEVICE_LITTLE_ENDIAN); | |
3383 | } | |
3384 | ||
3385 | void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val, | |
3386 | MemTxAttrs attrs, MemTxResult *result) | |
3387 | { | |
3388 | address_space_stl_internal(as, addr, val, attrs, result, | |
3389 | DEVICE_BIG_ENDIAN); | |
3390 | } | |
3391 | ||
ab1da857 | 3392 | void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3393 | { |
50013115 | 3394 | address_space_stl(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3395 | } |
3396 | ||
ab1da857 | 3397 | void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3398 | { |
50013115 | 3399 | address_space_stl_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3400 | } |
3401 | ||
ab1da857 | 3402 | void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3403 | { |
50013115 | 3404 | address_space_stl_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3405 | } |
3406 | ||
aab33094 | 3407 | /* XXX: optimize */ |
50013115 PM |
3408 | void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val, |
3409 | MemTxAttrs attrs, MemTxResult *result) | |
aab33094 FB |
3410 | { |
3411 | uint8_t v = val; | |
50013115 PM |
3412 | MemTxResult r; |
3413 | ||
3414 | r = address_space_rw(as, addr, attrs, &v, 1, 1); | |
3415 | if (result) { | |
3416 | *result = r; | |
3417 | } | |
3418 | } | |
3419 | ||
3420 | void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val) | |
3421 | { | |
3422 | address_space_stb(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
aab33094 FB |
3423 | } |
3424 | ||
733f0b02 | 3425 | /* warning: addr must be aligned */ |
50013115 PM |
3426 | static inline void address_space_stw_internal(AddressSpace *as, |
3427 | hwaddr addr, uint32_t val, | |
3428 | MemTxAttrs attrs, | |
3429 | MemTxResult *result, | |
3430 | enum device_endian endian) | |
aab33094 | 3431 | { |
733f0b02 | 3432 | uint8_t *ptr; |
5c8a00ce | 3433 | MemoryRegion *mr; |
149f54b5 PB |
3434 | hwaddr l = 2; |
3435 | hwaddr addr1; | |
50013115 | 3436 | MemTxResult r; |
4840f10e | 3437 | bool release_lock = false; |
733f0b02 | 3438 | |
41063e1e | 3439 | rcu_read_lock(); |
5ce5944d | 3440 | mr = address_space_translate(as, addr, &addr1, &l, true); |
5c8a00ce | 3441 | if (l < 2 || !memory_access_is_direct(mr, true)) { |
4840f10e | 3442 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3443 | |
1e78bcc1 AG |
3444 | #if defined(TARGET_WORDS_BIGENDIAN) |
3445 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3446 | val = bswap16(val); | |
3447 | } | |
3448 | #else | |
3449 | if (endian == DEVICE_BIG_ENDIAN) { | |
3450 | val = bswap16(val); | |
3451 | } | |
3452 | #endif | |
50013115 | 3453 | r = memory_region_dispatch_write(mr, addr1, val, 2, attrs); |
733f0b02 | 3454 | } else { |
733f0b02 | 3455 | /* RAM case */ |
0878d0e1 | 3456 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
1e78bcc1 AG |
3457 | switch (endian) { |
3458 | case DEVICE_LITTLE_ENDIAN: | |
3459 | stw_le_p(ptr, val); | |
3460 | break; | |
3461 | case DEVICE_BIG_ENDIAN: | |
3462 | stw_be_p(ptr, val); | |
3463 | break; | |
3464 | default: | |
3465 | stw_p(ptr, val); | |
3466 | break; | |
3467 | } | |
845b6214 | 3468 | invalidate_and_set_dirty(mr, addr1, 2); |
50013115 PM |
3469 | r = MEMTX_OK; |
3470 | } | |
3471 | if (result) { | |
3472 | *result = r; | |
733f0b02 | 3473 | } |
4840f10e JK |
3474 | if (release_lock) { |
3475 | qemu_mutex_unlock_iothread(); | |
3476 | } | |
41063e1e | 3477 | rcu_read_unlock(); |
aab33094 FB |
3478 | } |
3479 | ||
50013115 PM |
3480 | void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val, |
3481 | MemTxAttrs attrs, MemTxResult *result) | |
3482 | { | |
3483 | address_space_stw_internal(as, addr, val, attrs, result, | |
3484 | DEVICE_NATIVE_ENDIAN); | |
3485 | } | |
3486 | ||
3487 | void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val, | |
3488 | MemTxAttrs attrs, MemTxResult *result) | |
3489 | { | |
3490 | address_space_stw_internal(as, addr, val, attrs, result, | |
3491 | DEVICE_LITTLE_ENDIAN); | |
3492 | } | |
3493 | ||
3494 | void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val, | |
3495 | MemTxAttrs attrs, MemTxResult *result) | |
3496 | { | |
3497 | address_space_stw_internal(as, addr, val, attrs, result, | |
3498 | DEVICE_BIG_ENDIAN); | |
3499 | } | |
3500 | ||
5ce5944d | 3501 | void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3502 | { |
50013115 | 3503 | address_space_stw(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3504 | } |
3505 | ||
5ce5944d | 3506 | void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3507 | { |
50013115 | 3508 | address_space_stw_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3509 | } |
3510 | ||
5ce5944d | 3511 | void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3512 | { |
50013115 | 3513 | address_space_stw_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3514 | } |
3515 | ||
aab33094 | 3516 | /* XXX: optimize */ |
50013115 PM |
3517 | void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val, |
3518 | MemTxAttrs attrs, MemTxResult *result) | |
aab33094 | 3519 | { |
50013115 | 3520 | MemTxResult r; |
aab33094 | 3521 | val = tswap64(val); |
50013115 PM |
3522 | r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1); |
3523 | if (result) { | |
3524 | *result = r; | |
3525 | } | |
aab33094 FB |
3526 | } |
3527 | ||
50013115 PM |
3528 | void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val, |
3529 | MemTxAttrs attrs, MemTxResult *result) | |
1e78bcc1 | 3530 | { |
50013115 | 3531 | MemTxResult r; |
1e78bcc1 | 3532 | val = cpu_to_le64(val); |
50013115 PM |
3533 | r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1); |
3534 | if (result) { | |
3535 | *result = r; | |
3536 | } | |
3537 | } | |
3538 | void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val, | |
3539 | MemTxAttrs attrs, MemTxResult *result) | |
3540 | { | |
3541 | MemTxResult r; | |
3542 | val = cpu_to_be64(val); | |
3543 | r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1); | |
3544 | if (result) { | |
3545 | *result = r; | |
3546 | } | |
3547 | } | |
3548 | ||
3549 | void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val) | |
3550 | { | |
3551 | address_space_stq(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
3552 | } | |
3553 | ||
3554 | void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val) | |
3555 | { | |
3556 | address_space_stq_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
1e78bcc1 AG |
3557 | } |
3558 | ||
f606604f | 3559 | void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val) |
1e78bcc1 | 3560 | { |
50013115 | 3561 | address_space_stq_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3562 | } |
3563 | ||
5e2972fd | 3564 | /* virtual memory access for debug (includes writing to ROM) */ |
f17ec444 | 3565 | int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, |
b448f2f3 | 3566 | uint8_t *buf, int len, int is_write) |
13eb76e0 FB |
3567 | { |
3568 | int l; | |
a8170e5e | 3569 | hwaddr phys_addr; |
9b3c35e0 | 3570 | target_ulong page; |
13eb76e0 FB |
3571 | |
3572 | while (len > 0) { | |
5232e4c7 PM |
3573 | int asidx; |
3574 | MemTxAttrs attrs; | |
3575 | ||
13eb76e0 | 3576 | page = addr & TARGET_PAGE_MASK; |
5232e4c7 PM |
3577 | phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs); |
3578 | asidx = cpu_asidx_from_attrs(cpu, attrs); | |
13eb76e0 FB |
3579 | /* if no physical page mapped, return an error */ |
3580 | if (phys_addr == -1) | |
3581 | return -1; | |
3582 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3583 | if (l > len) | |
3584 | l = len; | |
5e2972fd | 3585 | phys_addr += (addr & ~TARGET_PAGE_MASK); |
2e38847b | 3586 | if (is_write) { |
5232e4c7 PM |
3587 | cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as, |
3588 | phys_addr, buf, l); | |
2e38847b | 3589 | } else { |
5232e4c7 PM |
3590 | address_space_rw(cpu->cpu_ases[asidx].as, phys_addr, |
3591 | MEMTXATTRS_UNSPECIFIED, | |
5c9eb028 | 3592 | buf, l, 0); |
2e38847b | 3593 | } |
13eb76e0 FB |
3594 | len -= l; |
3595 | buf += l; | |
3596 | addr += l; | |
3597 | } | |
3598 | return 0; | |
3599 | } | |
038629a6 DDAG |
3600 | |
3601 | /* | |
3602 | * Allows code that needs to deal with migration bitmaps etc to still be built | |
3603 | * target independent. | |
3604 | */ | |
3605 | size_t qemu_target_page_bits(void) | |
3606 | { | |
3607 | return TARGET_PAGE_BITS; | |
3608 | } | |
3609 | ||
a68fe89c | 3610 | #endif |
13eb76e0 | 3611 | |
8e4a424b BS |
3612 | /* |
3613 | * A helper function for the _utterly broken_ virtio device model to find out if | |
3614 | * it's running on a big endian machine. Don't do this at home kids! | |
3615 | */ | |
98ed8ecf GK |
3616 | bool target_words_bigendian(void); |
3617 | bool target_words_bigendian(void) | |
8e4a424b BS |
3618 | { |
3619 | #if defined(TARGET_WORDS_BIGENDIAN) | |
3620 | return true; | |
3621 | #else | |
3622 | return false; | |
3623 | #endif | |
3624 | } | |
3625 | ||
76f35538 | 3626 | #ifndef CONFIG_USER_ONLY |
a8170e5e | 3627 | bool cpu_physical_memory_is_io(hwaddr phys_addr) |
76f35538 | 3628 | { |
5c8a00ce | 3629 | MemoryRegion*mr; |
149f54b5 | 3630 | hwaddr l = 1; |
41063e1e | 3631 | bool res; |
76f35538 | 3632 | |
41063e1e | 3633 | rcu_read_lock(); |
5c8a00ce PB |
3634 | mr = address_space_translate(&address_space_memory, |
3635 | phys_addr, &phys_addr, &l, false); | |
76f35538 | 3636 | |
41063e1e PB |
3637 | res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr)); |
3638 | rcu_read_unlock(); | |
3639 | return res; | |
76f35538 | 3640 | } |
bd2fa51f | 3641 | |
e3807054 | 3642 | int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) |
bd2fa51f MH |
3643 | { |
3644 | RAMBlock *block; | |
e3807054 | 3645 | int ret = 0; |
bd2fa51f | 3646 | |
0dc3f44a MD |
3647 | rcu_read_lock(); |
3648 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
e3807054 DDAG |
3649 | ret = func(block->idstr, block->host, block->offset, |
3650 | block->used_length, opaque); | |
3651 | if (ret) { | |
3652 | break; | |
3653 | } | |
bd2fa51f | 3654 | } |
0dc3f44a | 3655 | rcu_read_unlock(); |
e3807054 | 3656 | return ret; |
bd2fa51f | 3657 | } |
ec3f8c99 | 3658 | #endif |