]>
Commit | Line | Data |
---|---|---|
54936004 | 1 | /* |
5b6dd868 | 2 | * Virtual page mapping |
5fafdf24 | 3 | * |
54936004 FB |
4 | * Copyright (c) 2003 Fabrice Bellard |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
8167ee88 | 17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
54936004 | 18 | */ |
7b31bbc2 | 19 | #include "qemu/osdep.h" |
da34e65c | 20 | #include "qapi/error.h" |
777872e5 | 21 | #ifndef _WIN32 |
d5a8f07c | 22 | #endif |
54936004 | 23 | |
f348b6d1 | 24 | #include "qemu/cutils.h" |
6180a181 | 25 | #include "cpu.h" |
63c91552 | 26 | #include "exec/exec-all.h" |
b67d9a52 | 27 | #include "tcg.h" |
741da0d3 | 28 | #include "hw/qdev-core.h" |
4485bd26 | 29 | #if !defined(CONFIG_USER_ONLY) |
47c8ca53 | 30 | #include "hw/boards.h" |
33c11879 | 31 | #include "hw/xen/xen.h" |
4485bd26 | 32 | #endif |
9c17d615 | 33 | #include "sysemu/kvm.h" |
2ff3de68 | 34 | #include "sysemu/sysemu.h" |
1de7afc9 PB |
35 | #include "qemu/timer.h" |
36 | #include "qemu/config-file.h" | |
75a34036 | 37 | #include "qemu/error-report.h" |
53a5960a | 38 | #if defined(CONFIG_USER_ONLY) |
a9c94277 | 39 | #include "qemu.h" |
432d268c | 40 | #else /* !CONFIG_USER_ONLY */ |
741da0d3 PB |
41 | #include "hw/hw.h" |
42 | #include "exec/memory.h" | |
df43d49c | 43 | #include "exec/ioport.h" |
741da0d3 | 44 | #include "sysemu/dma.h" |
9c607668 | 45 | #include "sysemu/numa.h" |
79ca7a1b | 46 | #include "sysemu/hw_accel.h" |
741da0d3 | 47 | #include "exec/address-spaces.h" |
9c17d615 | 48 | #include "sysemu/xen-mapcache.h" |
0ab8ed18 | 49 | #include "trace-root.h" |
d3a5038c | 50 | |
e2fa71f5 DDAG |
51 | #ifdef CONFIG_FALLOCATE_PUNCH_HOLE |
52 | #include <fcntl.h> | |
53 | #include <linux/falloc.h> | |
54 | #endif | |
55 | ||
53a5960a | 56 | #endif |
0d6d3c87 | 57 | #include "exec/cpu-all.h" |
0dc3f44a | 58 | #include "qemu/rcu_queue.h" |
4840f10e | 59 | #include "qemu/main-loop.h" |
5b6dd868 | 60 | #include "translate-all.h" |
7615936e | 61 | #include "sysemu/replay.h" |
0cac1b66 | 62 | |
022c62cb | 63 | #include "exec/memory-internal.h" |
220c3ebd | 64 | #include "exec/ram_addr.h" |
508127e2 | 65 | #include "exec/log.h" |
67d95c15 | 66 | |
9dfeca7c BR |
67 | #include "migration/vmstate.h" |
68 | ||
b35ba30f | 69 | #include "qemu/range.h" |
794e8f30 MT |
70 | #ifndef _WIN32 |
71 | #include "qemu/mmap-alloc.h" | |
72 | #endif | |
b35ba30f | 73 | |
db7b5426 | 74 | //#define DEBUG_SUBPAGE |
1196be37 | 75 | |
e2eef170 | 76 | #if !defined(CONFIG_USER_ONLY) |
0dc3f44a MD |
77 | /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes |
78 | * are protected by the ramlist lock. | |
79 | */ | |
0d53d9fe | 80 | RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; |
62152b8a AK |
81 | |
82 | static MemoryRegion *system_memory; | |
309cb471 | 83 | static MemoryRegion *system_io; |
62152b8a | 84 | |
f6790af6 AK |
85 | AddressSpace address_space_io; |
86 | AddressSpace address_space_memory; | |
2673a5da | 87 | |
0844e007 | 88 | MemoryRegion io_mem_rom, io_mem_notdirty; |
acc9d80b | 89 | static MemoryRegion io_mem_unassigned; |
0e0df1e2 | 90 | |
7bd4f430 PB |
91 | /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ |
92 | #define RAM_PREALLOC (1 << 0) | |
93 | ||
dbcb8981 PB |
94 | /* RAM is mmap-ed with MAP_SHARED */ |
95 | #define RAM_SHARED (1 << 1) | |
96 | ||
62be4e3a MT |
97 | /* Only a portion of RAM (used_length) is actually used, and migrated. |
98 | * This used_length size can change across reboots. | |
99 | */ | |
100 | #define RAM_RESIZEABLE (1 << 2) | |
101 | ||
e2eef170 | 102 | #endif |
9fa3e853 | 103 | |
20bccb82 PM |
104 | #ifdef TARGET_PAGE_BITS_VARY |
105 | int target_page_bits; | |
106 | bool target_page_bits_decided; | |
107 | #endif | |
108 | ||
bdc44640 | 109 | struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus); |
6a00d601 FB |
110 | /* current CPU in the current thread. It is only valid inside |
111 | cpu_exec() */ | |
f240eb6f | 112 | __thread CPUState *current_cpu; |
2e70f6ef | 113 | /* 0 = Do not count executed instructions. |
bf20dc07 | 114 | 1 = Precise instruction counting. |
2e70f6ef | 115 | 2 = Adaptive rate instruction counting. */ |
5708fc66 | 116 | int use_icount; |
6a00d601 | 117 | |
20bccb82 PM |
118 | bool set_preferred_target_page_bits(int bits) |
119 | { | |
120 | /* The target page size is the lowest common denominator for all | |
121 | * the CPUs in the system, so we can only make it smaller, never | |
122 | * larger. And we can't make it smaller once we've committed to | |
123 | * a particular size. | |
124 | */ | |
125 | #ifdef TARGET_PAGE_BITS_VARY | |
126 | assert(bits >= TARGET_PAGE_BITS_MIN); | |
127 | if (target_page_bits == 0 || target_page_bits > bits) { | |
128 | if (target_page_bits_decided) { | |
129 | return false; | |
130 | } | |
131 | target_page_bits = bits; | |
132 | } | |
133 | #endif | |
134 | return true; | |
135 | } | |
136 | ||
e2eef170 | 137 | #if !defined(CONFIG_USER_ONLY) |
4346ae3e | 138 | |
20bccb82 PM |
139 | static void finalize_target_page_bits(void) |
140 | { | |
141 | #ifdef TARGET_PAGE_BITS_VARY | |
142 | if (target_page_bits == 0) { | |
143 | target_page_bits = TARGET_PAGE_BITS_MIN; | |
144 | } | |
145 | target_page_bits_decided = true; | |
146 | #endif | |
147 | } | |
148 | ||
1db8abb1 PB |
149 | typedef struct PhysPageEntry PhysPageEntry; |
150 | ||
151 | struct PhysPageEntry { | |
9736e55b | 152 | /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ |
8b795765 | 153 | uint32_t skip : 6; |
9736e55b | 154 | /* index into phys_sections (!skip) or phys_map_nodes (skip) */ |
8b795765 | 155 | uint32_t ptr : 26; |
1db8abb1 PB |
156 | }; |
157 | ||
8b795765 MT |
158 | #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) |
159 | ||
03f49957 | 160 | /* Size of the L2 (and L3, etc) page tables. */ |
57271d63 | 161 | #define ADDR_SPACE_BITS 64 |
03f49957 | 162 | |
026736ce | 163 | #define P_L2_BITS 9 |
03f49957 PB |
164 | #define P_L2_SIZE (1 << P_L2_BITS) |
165 | ||
166 | #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) | |
167 | ||
168 | typedef PhysPageEntry Node[P_L2_SIZE]; | |
0475d94f | 169 | |
53cb28cb | 170 | typedef struct PhysPageMap { |
79e2b9ae PB |
171 | struct rcu_head rcu; |
172 | ||
53cb28cb MA |
173 | unsigned sections_nb; |
174 | unsigned sections_nb_alloc; | |
175 | unsigned nodes_nb; | |
176 | unsigned nodes_nb_alloc; | |
177 | Node *nodes; | |
178 | MemoryRegionSection *sections; | |
179 | } PhysPageMap; | |
180 | ||
1db8abb1 | 181 | struct AddressSpaceDispatch { |
79e2b9ae PB |
182 | struct rcu_head rcu; |
183 | ||
729633c2 | 184 | MemoryRegionSection *mru_section; |
1db8abb1 PB |
185 | /* This is a multi-level map on the physical address space. |
186 | * The bottom level has pointers to MemoryRegionSections. | |
187 | */ | |
188 | PhysPageEntry phys_map; | |
53cb28cb | 189 | PhysPageMap map; |
acc9d80b | 190 | AddressSpace *as; |
1db8abb1 PB |
191 | }; |
192 | ||
90260c6c JK |
193 | #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) |
194 | typedef struct subpage_t { | |
195 | MemoryRegion iomem; | |
acc9d80b | 196 | AddressSpace *as; |
90260c6c | 197 | hwaddr base; |
2615fabd | 198 | uint16_t sub_section[]; |
90260c6c JK |
199 | } subpage_t; |
200 | ||
b41aac4f LPF |
201 | #define PHYS_SECTION_UNASSIGNED 0 |
202 | #define PHYS_SECTION_NOTDIRTY 1 | |
203 | #define PHYS_SECTION_ROM 2 | |
204 | #define PHYS_SECTION_WATCH 3 | |
5312bd8b | 205 | |
e2eef170 | 206 | static void io_mem_init(void); |
62152b8a | 207 | static void memory_map_init(void); |
09daed84 | 208 | static void tcg_commit(MemoryListener *listener); |
e2eef170 | 209 | |
1ec9b909 | 210 | static MemoryRegion io_mem_watch; |
32857f4d PM |
211 | |
212 | /** | |
213 | * CPUAddressSpace: all the information a CPU needs about an AddressSpace | |
214 | * @cpu: the CPU whose AddressSpace this is | |
215 | * @as: the AddressSpace itself | |
216 | * @memory_dispatch: its dispatch pointer (cached, RCU protected) | |
217 | * @tcg_as_listener: listener for tracking changes to the AddressSpace | |
218 | */ | |
219 | struct CPUAddressSpace { | |
220 | CPUState *cpu; | |
221 | AddressSpace *as; | |
222 | struct AddressSpaceDispatch *memory_dispatch; | |
223 | MemoryListener tcg_as_listener; | |
224 | }; | |
225 | ||
8deaf12c GH |
226 | struct DirtyBitmapSnapshot { |
227 | ram_addr_t start; | |
228 | ram_addr_t end; | |
229 | unsigned long dirty[]; | |
230 | }; | |
231 | ||
6658ffb8 | 232 | #endif |
fd6ce8f6 | 233 | |
6d9a1304 | 234 | #if !defined(CONFIG_USER_ONLY) |
d6f2ea22 | 235 | |
53cb28cb | 236 | static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) |
d6f2ea22 | 237 | { |
101420b8 | 238 | static unsigned alloc_hint = 16; |
53cb28cb | 239 | if (map->nodes_nb + nodes > map->nodes_nb_alloc) { |
101420b8 | 240 | map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint); |
53cb28cb MA |
241 | map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes); |
242 | map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); | |
101420b8 | 243 | alloc_hint = map->nodes_nb_alloc; |
d6f2ea22 | 244 | } |
f7bf5461 AK |
245 | } |
246 | ||
db94604b | 247 | static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf) |
f7bf5461 AK |
248 | { |
249 | unsigned i; | |
8b795765 | 250 | uint32_t ret; |
db94604b PB |
251 | PhysPageEntry e; |
252 | PhysPageEntry *p; | |
f7bf5461 | 253 | |
53cb28cb | 254 | ret = map->nodes_nb++; |
db94604b | 255 | p = map->nodes[ret]; |
f7bf5461 | 256 | assert(ret != PHYS_MAP_NODE_NIL); |
53cb28cb | 257 | assert(ret != map->nodes_nb_alloc); |
db94604b PB |
258 | |
259 | e.skip = leaf ? 0 : 1; | |
260 | e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL; | |
03f49957 | 261 | for (i = 0; i < P_L2_SIZE; ++i) { |
db94604b | 262 | memcpy(&p[i], &e, sizeof(e)); |
d6f2ea22 | 263 | } |
f7bf5461 | 264 | return ret; |
d6f2ea22 AK |
265 | } |
266 | ||
53cb28cb MA |
267 | static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, |
268 | hwaddr *index, hwaddr *nb, uint16_t leaf, | |
2999097b | 269 | int level) |
f7bf5461 AK |
270 | { |
271 | PhysPageEntry *p; | |
03f49957 | 272 | hwaddr step = (hwaddr)1 << (level * P_L2_BITS); |
108c49b8 | 273 | |
9736e55b | 274 | if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { |
db94604b | 275 | lp->ptr = phys_map_node_alloc(map, level == 0); |
92e873b9 | 276 | } |
db94604b | 277 | p = map->nodes[lp->ptr]; |
03f49957 | 278 | lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; |
f7bf5461 | 279 | |
03f49957 | 280 | while (*nb && lp < &p[P_L2_SIZE]) { |
07f07b31 | 281 | if ((*index & (step - 1)) == 0 && *nb >= step) { |
9736e55b | 282 | lp->skip = 0; |
c19e8800 | 283 | lp->ptr = leaf; |
07f07b31 AK |
284 | *index += step; |
285 | *nb -= step; | |
2999097b | 286 | } else { |
53cb28cb | 287 | phys_page_set_level(map, lp, index, nb, leaf, level - 1); |
2999097b AK |
288 | } |
289 | ++lp; | |
f7bf5461 AK |
290 | } |
291 | } | |
292 | ||
ac1970fb | 293 | static void phys_page_set(AddressSpaceDispatch *d, |
a8170e5e | 294 | hwaddr index, hwaddr nb, |
2999097b | 295 | uint16_t leaf) |
f7bf5461 | 296 | { |
2999097b | 297 | /* Wildly overreserve - it doesn't matter much. */ |
53cb28cb | 298 | phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); |
5cd2c5b6 | 299 | |
53cb28cb | 300 | phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); |
92e873b9 FB |
301 | } |
302 | ||
b35ba30f MT |
303 | /* Compact a non leaf page entry. Simply detect that the entry has a single child, |
304 | * and update our entry so we can skip it and go directly to the destination. | |
305 | */ | |
efee678d | 306 | static void phys_page_compact(PhysPageEntry *lp, Node *nodes) |
b35ba30f MT |
307 | { |
308 | unsigned valid_ptr = P_L2_SIZE; | |
309 | int valid = 0; | |
310 | PhysPageEntry *p; | |
311 | int i; | |
312 | ||
313 | if (lp->ptr == PHYS_MAP_NODE_NIL) { | |
314 | return; | |
315 | } | |
316 | ||
317 | p = nodes[lp->ptr]; | |
318 | for (i = 0; i < P_L2_SIZE; i++) { | |
319 | if (p[i].ptr == PHYS_MAP_NODE_NIL) { | |
320 | continue; | |
321 | } | |
322 | ||
323 | valid_ptr = i; | |
324 | valid++; | |
325 | if (p[i].skip) { | |
efee678d | 326 | phys_page_compact(&p[i], nodes); |
b35ba30f MT |
327 | } |
328 | } | |
329 | ||
330 | /* We can only compress if there's only one child. */ | |
331 | if (valid != 1) { | |
332 | return; | |
333 | } | |
334 | ||
335 | assert(valid_ptr < P_L2_SIZE); | |
336 | ||
337 | /* Don't compress if it won't fit in the # of bits we have. */ | |
338 | if (lp->skip + p[valid_ptr].skip >= (1 << 3)) { | |
339 | return; | |
340 | } | |
341 | ||
342 | lp->ptr = p[valid_ptr].ptr; | |
343 | if (!p[valid_ptr].skip) { | |
344 | /* If our only child is a leaf, make this a leaf. */ | |
345 | /* By design, we should have made this node a leaf to begin with so we | |
346 | * should never reach here. | |
347 | * But since it's so simple to handle this, let's do it just in case we | |
348 | * change this rule. | |
349 | */ | |
350 | lp->skip = 0; | |
351 | } else { | |
352 | lp->skip += p[valid_ptr].skip; | |
353 | } | |
354 | } | |
355 | ||
356 | static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb) | |
357 | { | |
b35ba30f | 358 | if (d->phys_map.skip) { |
efee678d | 359 | phys_page_compact(&d->phys_map, d->map.nodes); |
b35ba30f MT |
360 | } |
361 | } | |
362 | ||
29cb533d FZ |
363 | static inline bool section_covers_addr(const MemoryRegionSection *section, |
364 | hwaddr addr) | |
365 | { | |
366 | /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means | |
367 | * the section must cover the entire address space. | |
368 | */ | |
258dfaaa | 369 | return int128_gethi(section->size) || |
29cb533d | 370 | range_covers_byte(section->offset_within_address_space, |
258dfaaa | 371 | int128_getlo(section->size), addr); |
29cb533d FZ |
372 | } |
373 | ||
97115a8d | 374 | static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr, |
9affd6fc | 375 | Node *nodes, MemoryRegionSection *sections) |
92e873b9 | 376 | { |
31ab2b4a | 377 | PhysPageEntry *p; |
97115a8d | 378 | hwaddr index = addr >> TARGET_PAGE_BITS; |
31ab2b4a | 379 | int i; |
f1f6e3b8 | 380 | |
9736e55b | 381 | for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { |
c19e8800 | 382 | if (lp.ptr == PHYS_MAP_NODE_NIL) { |
9affd6fc | 383 | return §ions[PHYS_SECTION_UNASSIGNED]; |
31ab2b4a | 384 | } |
9affd6fc | 385 | p = nodes[lp.ptr]; |
03f49957 | 386 | lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; |
5312bd8b | 387 | } |
b35ba30f | 388 | |
29cb533d | 389 | if (section_covers_addr(§ions[lp.ptr], addr)) { |
b35ba30f MT |
390 | return §ions[lp.ptr]; |
391 | } else { | |
392 | return §ions[PHYS_SECTION_UNASSIGNED]; | |
393 | } | |
f3705d53 AK |
394 | } |
395 | ||
e5548617 BS |
396 | bool memory_region_is_unassigned(MemoryRegion *mr) |
397 | { | |
2a8e7499 | 398 | return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device |
5b6dd868 | 399 | && mr != &io_mem_watch; |
fd6ce8f6 | 400 | } |
149f54b5 | 401 | |
79e2b9ae | 402 | /* Called from RCU critical section */ |
c7086b4a | 403 | static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, |
90260c6c JK |
404 | hwaddr addr, |
405 | bool resolve_subpage) | |
9f029603 | 406 | { |
729633c2 | 407 | MemoryRegionSection *section = atomic_read(&d->mru_section); |
90260c6c | 408 | subpage_t *subpage; |
729633c2 | 409 | bool update; |
90260c6c | 410 | |
729633c2 FZ |
411 | if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] && |
412 | section_covers_addr(section, addr)) { | |
413 | update = false; | |
414 | } else { | |
415 | section = phys_page_find(d->phys_map, addr, d->map.nodes, | |
416 | d->map.sections); | |
417 | update = true; | |
418 | } | |
90260c6c JK |
419 | if (resolve_subpage && section->mr->subpage) { |
420 | subpage = container_of(section->mr, subpage_t, iomem); | |
53cb28cb | 421 | section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; |
90260c6c | 422 | } |
729633c2 FZ |
423 | if (update) { |
424 | atomic_set(&d->mru_section, section); | |
425 | } | |
90260c6c | 426 | return section; |
9f029603 JK |
427 | } |
428 | ||
79e2b9ae | 429 | /* Called from RCU critical section */ |
90260c6c | 430 | static MemoryRegionSection * |
c7086b4a | 431 | address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, |
90260c6c | 432 | hwaddr *plen, bool resolve_subpage) |
149f54b5 PB |
433 | { |
434 | MemoryRegionSection *section; | |
965eb2fc | 435 | MemoryRegion *mr; |
a87f3954 | 436 | Int128 diff; |
149f54b5 | 437 | |
c7086b4a | 438 | section = address_space_lookup_region(d, addr, resolve_subpage); |
149f54b5 PB |
439 | /* Compute offset within MemoryRegionSection */ |
440 | addr -= section->offset_within_address_space; | |
441 | ||
442 | /* Compute offset within MemoryRegion */ | |
443 | *xlat = addr + section->offset_within_region; | |
444 | ||
965eb2fc | 445 | mr = section->mr; |
b242e0e0 PB |
446 | |
447 | /* MMIO registers can be expected to perform full-width accesses based only | |
448 | * on their address, without considering adjacent registers that could | |
449 | * decode to completely different MemoryRegions. When such registers | |
450 | * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO | |
451 | * regions overlap wildly. For this reason we cannot clamp the accesses | |
452 | * here. | |
453 | * | |
454 | * If the length is small (as is the case for address_space_ldl/stl), | |
455 | * everything works fine. If the incoming length is large, however, | |
456 | * the caller really has to do the clamping through memory_access_size. | |
457 | */ | |
965eb2fc | 458 | if (memory_region_is_ram(mr)) { |
e4a511f8 | 459 | diff = int128_sub(section->size, int128_make64(addr)); |
965eb2fc PB |
460 | *plen = int128_get64(int128_min(diff, int128_make64(*plen))); |
461 | } | |
149f54b5 PB |
462 | return section; |
463 | } | |
90260c6c | 464 | |
41063e1e | 465 | /* Called from RCU critical section */ |
052c8fa9 JW |
466 | IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, |
467 | bool is_write) | |
468 | { | |
469 | IOMMUTLBEntry iotlb = {0}; | |
470 | MemoryRegionSection *section; | |
471 | MemoryRegion *mr; | |
472 | ||
473 | for (;;) { | |
474 | AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch); | |
475 | section = address_space_lookup_region(d, addr, false); | |
476 | addr = addr - section->offset_within_address_space | |
477 | + section->offset_within_region; | |
478 | mr = section->mr; | |
479 | ||
480 | if (!mr->iommu_ops) { | |
481 | break; | |
482 | } | |
483 | ||
484 | iotlb = mr->iommu_ops->translate(mr, addr, is_write); | |
485 | if (!(iotlb.perm & (1 << is_write))) { | |
486 | iotlb.target_as = NULL; | |
487 | break; | |
488 | } | |
489 | ||
490 | addr = ((iotlb.translated_addr & ~iotlb.addr_mask) | |
491 | | (addr & iotlb.addr_mask)); | |
492 | as = iotlb.target_as; | |
493 | } | |
494 | ||
495 | return iotlb; | |
496 | } | |
497 | ||
498 | /* Called from RCU critical section */ | |
5c8a00ce PB |
499 | MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr, |
500 | hwaddr *xlat, hwaddr *plen, | |
501 | bool is_write) | |
90260c6c | 502 | { |
30951157 AK |
503 | IOMMUTLBEntry iotlb; |
504 | MemoryRegionSection *section; | |
505 | MemoryRegion *mr; | |
30951157 AK |
506 | |
507 | for (;;) { | |
79e2b9ae PB |
508 | AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch); |
509 | section = address_space_translate_internal(d, addr, &addr, plen, true); | |
30951157 AK |
510 | mr = section->mr; |
511 | ||
512 | if (!mr->iommu_ops) { | |
513 | break; | |
514 | } | |
515 | ||
8d7b8cb9 | 516 | iotlb = mr->iommu_ops->translate(mr, addr, is_write); |
30951157 AK |
517 | addr = ((iotlb.translated_addr & ~iotlb.addr_mask) |
518 | | (addr & iotlb.addr_mask)); | |
23820dbf | 519 | *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1); |
30951157 AK |
520 | if (!(iotlb.perm & (1 << is_write))) { |
521 | mr = &io_mem_unassigned; | |
522 | break; | |
523 | } | |
524 | ||
525 | as = iotlb.target_as; | |
526 | } | |
527 | ||
fe680d0d | 528 | if (xen_enabled() && memory_access_is_direct(mr, is_write)) { |
a87f3954 | 529 | hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; |
23820dbf | 530 | *plen = MIN(page, *plen); |
a87f3954 PB |
531 | } |
532 | ||
30951157 AK |
533 | *xlat = addr; |
534 | return mr; | |
90260c6c JK |
535 | } |
536 | ||
79e2b9ae | 537 | /* Called from RCU critical section */ |
90260c6c | 538 | MemoryRegionSection * |
d7898cda | 539 | address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr, |
9d82b5a7 | 540 | hwaddr *xlat, hwaddr *plen) |
90260c6c | 541 | { |
30951157 | 542 | MemoryRegionSection *section; |
f35e44e7 | 543 | AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch); |
d7898cda PM |
544 | |
545 | section = address_space_translate_internal(d, addr, xlat, plen, false); | |
30951157 AK |
546 | |
547 | assert(!section->mr->iommu_ops); | |
548 | return section; | |
90260c6c | 549 | } |
5b6dd868 | 550 | #endif |
fd6ce8f6 | 551 | |
b170fce3 | 552 | #if !defined(CONFIG_USER_ONLY) |
5b6dd868 BS |
553 | |
554 | static int cpu_common_post_load(void *opaque, int version_id) | |
fd6ce8f6 | 555 | { |
259186a7 | 556 | CPUState *cpu = opaque; |
a513fe19 | 557 | |
5b6dd868 BS |
558 | /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the |
559 | version_id is increased. */ | |
259186a7 | 560 | cpu->interrupt_request &= ~0x01; |
d10eb08f | 561 | tlb_flush(cpu); |
5b6dd868 BS |
562 | |
563 | return 0; | |
a513fe19 | 564 | } |
7501267e | 565 | |
6c3bff0e PD |
566 | static int cpu_common_pre_load(void *opaque) |
567 | { | |
568 | CPUState *cpu = opaque; | |
569 | ||
adee6424 | 570 | cpu->exception_index = -1; |
6c3bff0e PD |
571 | |
572 | return 0; | |
573 | } | |
574 | ||
575 | static bool cpu_common_exception_index_needed(void *opaque) | |
576 | { | |
577 | CPUState *cpu = opaque; | |
578 | ||
adee6424 | 579 | return tcg_enabled() && cpu->exception_index != -1; |
6c3bff0e PD |
580 | } |
581 | ||
582 | static const VMStateDescription vmstate_cpu_common_exception_index = { | |
583 | .name = "cpu_common/exception_index", | |
584 | .version_id = 1, | |
585 | .minimum_version_id = 1, | |
5cd8cada | 586 | .needed = cpu_common_exception_index_needed, |
6c3bff0e PD |
587 | .fields = (VMStateField[]) { |
588 | VMSTATE_INT32(exception_index, CPUState), | |
589 | VMSTATE_END_OF_LIST() | |
590 | } | |
591 | }; | |
592 | ||
bac05aa9 AS |
593 | static bool cpu_common_crash_occurred_needed(void *opaque) |
594 | { | |
595 | CPUState *cpu = opaque; | |
596 | ||
597 | return cpu->crash_occurred; | |
598 | } | |
599 | ||
600 | static const VMStateDescription vmstate_cpu_common_crash_occurred = { | |
601 | .name = "cpu_common/crash_occurred", | |
602 | .version_id = 1, | |
603 | .minimum_version_id = 1, | |
604 | .needed = cpu_common_crash_occurred_needed, | |
605 | .fields = (VMStateField[]) { | |
606 | VMSTATE_BOOL(crash_occurred, CPUState), | |
607 | VMSTATE_END_OF_LIST() | |
608 | } | |
609 | }; | |
610 | ||
1a1562f5 | 611 | const VMStateDescription vmstate_cpu_common = { |
5b6dd868 BS |
612 | .name = "cpu_common", |
613 | .version_id = 1, | |
614 | .minimum_version_id = 1, | |
6c3bff0e | 615 | .pre_load = cpu_common_pre_load, |
5b6dd868 | 616 | .post_load = cpu_common_post_load, |
35d08458 | 617 | .fields = (VMStateField[]) { |
259186a7 AF |
618 | VMSTATE_UINT32(halted, CPUState), |
619 | VMSTATE_UINT32(interrupt_request, CPUState), | |
5b6dd868 | 620 | VMSTATE_END_OF_LIST() |
6c3bff0e | 621 | }, |
5cd8cada JQ |
622 | .subsections = (const VMStateDescription*[]) { |
623 | &vmstate_cpu_common_exception_index, | |
bac05aa9 | 624 | &vmstate_cpu_common_crash_occurred, |
5cd8cada | 625 | NULL |
5b6dd868 BS |
626 | } |
627 | }; | |
1a1562f5 | 628 | |
5b6dd868 | 629 | #endif |
ea041c0e | 630 | |
38d8f5c8 | 631 | CPUState *qemu_get_cpu(int index) |
ea041c0e | 632 | { |
bdc44640 | 633 | CPUState *cpu; |
ea041c0e | 634 | |
bdc44640 | 635 | CPU_FOREACH(cpu) { |
55e5c285 | 636 | if (cpu->cpu_index == index) { |
bdc44640 | 637 | return cpu; |
55e5c285 | 638 | } |
ea041c0e | 639 | } |
5b6dd868 | 640 | |
bdc44640 | 641 | return NULL; |
ea041c0e FB |
642 | } |
643 | ||
09daed84 | 644 | #if !defined(CONFIG_USER_ONLY) |
56943e8c | 645 | void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx) |
09daed84 | 646 | { |
12ebc9a7 PM |
647 | CPUAddressSpace *newas; |
648 | ||
649 | /* Target code should have set num_ases before calling us */ | |
650 | assert(asidx < cpu->num_ases); | |
651 | ||
56943e8c PM |
652 | if (asidx == 0) { |
653 | /* address space 0 gets the convenience alias */ | |
654 | cpu->as = as; | |
655 | } | |
656 | ||
12ebc9a7 PM |
657 | /* KVM cannot currently support multiple address spaces. */ |
658 | assert(asidx == 0 || !kvm_enabled()); | |
09daed84 | 659 | |
12ebc9a7 PM |
660 | if (!cpu->cpu_ases) { |
661 | cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases); | |
09daed84 | 662 | } |
32857f4d | 663 | |
12ebc9a7 PM |
664 | newas = &cpu->cpu_ases[asidx]; |
665 | newas->cpu = cpu; | |
666 | newas->as = as; | |
56943e8c | 667 | if (tcg_enabled()) { |
12ebc9a7 PM |
668 | newas->tcg_as_listener.commit = tcg_commit; |
669 | memory_listener_register(&newas->tcg_as_listener, as); | |
56943e8c | 670 | } |
09daed84 | 671 | } |
651a5bc0 PM |
672 | |
673 | AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx) | |
674 | { | |
675 | /* Return the AddressSpace corresponding to the specified index */ | |
676 | return cpu->cpu_ases[asidx].as; | |
677 | } | |
09daed84 EI |
678 | #endif |
679 | ||
7bbc124e | 680 | void cpu_exec_unrealizefn(CPUState *cpu) |
1c59eb39 | 681 | { |
9dfeca7c BR |
682 | CPUClass *cc = CPU_GET_CLASS(cpu); |
683 | ||
267f685b | 684 | cpu_list_remove(cpu); |
9dfeca7c BR |
685 | |
686 | if (cc->vmsd != NULL) { | |
687 | vmstate_unregister(NULL, cc->vmsd, cpu); | |
688 | } | |
689 | if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { | |
690 | vmstate_unregister(NULL, &vmstate_cpu_common, cpu); | |
691 | } | |
1c59eb39 BR |
692 | } |
693 | ||
39e329e3 | 694 | void cpu_exec_initfn(CPUState *cpu) |
ea041c0e | 695 | { |
56943e8c | 696 | cpu->as = NULL; |
12ebc9a7 | 697 | cpu->num_ases = 0; |
56943e8c | 698 | |
291135b5 | 699 | #ifndef CONFIG_USER_ONLY |
291135b5 | 700 | cpu->thread_id = qemu_get_thread_id(); |
6731d864 PC |
701 | |
702 | /* This is a softmmu CPU object, so create a property for it | |
703 | * so users can wire up its memory. (This can't go in qom/cpu.c | |
704 | * because that file is compiled only once for both user-mode | |
705 | * and system builds.) The default if no link is set up is to use | |
706 | * the system address space. | |
707 | */ | |
708 | object_property_add_link(OBJECT(cpu), "memory", TYPE_MEMORY_REGION, | |
709 | (Object **)&cpu->memory, | |
710 | qdev_prop_allow_set_link_before_realize, | |
711 | OBJ_PROP_LINK_UNREF_ON_RELEASE, | |
712 | &error_abort); | |
713 | cpu->memory = system_memory; | |
714 | object_ref(OBJECT(cpu->memory)); | |
291135b5 | 715 | #endif |
39e329e3 LV |
716 | } |
717 | ||
ce5b1bbf | 718 | void cpu_exec_realizefn(CPUState *cpu, Error **errp) |
39e329e3 LV |
719 | { |
720 | CPUClass *cc ATTRIBUTE_UNUSED = CPU_GET_CLASS(cpu); | |
291135b5 | 721 | |
267f685b | 722 | cpu_list_add(cpu); |
1bc7e522 IM |
723 | |
724 | #ifndef CONFIG_USER_ONLY | |
e0d47944 | 725 | if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { |
741da0d3 | 726 | vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu); |
e0d47944 | 727 | } |
b170fce3 | 728 | if (cc->vmsd != NULL) { |
741da0d3 | 729 | vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu); |
b170fce3 | 730 | } |
741da0d3 | 731 | #endif |
ea041c0e FB |
732 | } |
733 | ||
00b941e5 | 734 | static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) |
1e7855a5 | 735 | { |
a9353fe8 PM |
736 | /* Flush the whole TB as this will not have race conditions |
737 | * even if we don't have proper locking yet. | |
738 | * Ideally we would just invalidate the TBs for the | |
739 | * specified PC. | |
740 | */ | |
741 | tb_flush(cpu); | |
1e7855a5 | 742 | } |
d720b93d | 743 | |
c527ee8f | 744 | #if defined(CONFIG_USER_ONLY) |
75a34036 | 745 | void cpu_watchpoint_remove_all(CPUState *cpu, int mask) |
c527ee8f PB |
746 | |
747 | { | |
748 | } | |
749 | ||
3ee887e8 PM |
750 | int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, |
751 | int flags) | |
752 | { | |
753 | return -ENOSYS; | |
754 | } | |
755 | ||
756 | void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) | |
757 | { | |
758 | } | |
759 | ||
75a34036 | 760 | int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, |
c527ee8f PB |
761 | int flags, CPUWatchpoint **watchpoint) |
762 | { | |
763 | return -ENOSYS; | |
764 | } | |
765 | #else | |
6658ffb8 | 766 | /* Add a watchpoint. */ |
75a34036 | 767 | int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, |
a1d1bb31 | 768 | int flags, CPUWatchpoint **watchpoint) |
6658ffb8 | 769 | { |
c0ce998e | 770 | CPUWatchpoint *wp; |
6658ffb8 | 771 | |
05068c0d | 772 | /* forbid ranges which are empty or run off the end of the address space */ |
07e2863d | 773 | if (len == 0 || (addr + len - 1) < addr) { |
75a34036 AF |
774 | error_report("tried to set invalid watchpoint at %" |
775 | VADDR_PRIx ", len=%" VADDR_PRIu, addr, len); | |
b4051334 AL |
776 | return -EINVAL; |
777 | } | |
7267c094 | 778 | wp = g_malloc(sizeof(*wp)); |
a1d1bb31 AL |
779 | |
780 | wp->vaddr = addr; | |
05068c0d | 781 | wp->len = len; |
a1d1bb31 AL |
782 | wp->flags = flags; |
783 | ||
2dc9f411 | 784 | /* keep all GDB-injected watchpoints in front */ |
ff4700b0 AF |
785 | if (flags & BP_GDB) { |
786 | QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry); | |
787 | } else { | |
788 | QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry); | |
789 | } | |
6658ffb8 | 790 | |
31b030d4 | 791 | tlb_flush_page(cpu, addr); |
a1d1bb31 AL |
792 | |
793 | if (watchpoint) | |
794 | *watchpoint = wp; | |
795 | return 0; | |
6658ffb8 PB |
796 | } |
797 | ||
a1d1bb31 | 798 | /* Remove a specific watchpoint. */ |
75a34036 | 799 | int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, |
a1d1bb31 | 800 | int flags) |
6658ffb8 | 801 | { |
a1d1bb31 | 802 | CPUWatchpoint *wp; |
6658ffb8 | 803 | |
ff4700b0 | 804 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d | 805 | if (addr == wp->vaddr && len == wp->len |
6e140f28 | 806 | && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { |
75a34036 | 807 | cpu_watchpoint_remove_by_ref(cpu, wp); |
6658ffb8 PB |
808 | return 0; |
809 | } | |
810 | } | |
a1d1bb31 | 811 | return -ENOENT; |
6658ffb8 PB |
812 | } |
813 | ||
a1d1bb31 | 814 | /* Remove a specific watchpoint by reference. */ |
75a34036 | 815 | void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) |
a1d1bb31 | 816 | { |
ff4700b0 | 817 | QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry); |
7d03f82f | 818 | |
31b030d4 | 819 | tlb_flush_page(cpu, watchpoint->vaddr); |
a1d1bb31 | 820 | |
7267c094 | 821 | g_free(watchpoint); |
a1d1bb31 AL |
822 | } |
823 | ||
824 | /* Remove all matching watchpoints. */ | |
75a34036 | 825 | void cpu_watchpoint_remove_all(CPUState *cpu, int mask) |
a1d1bb31 | 826 | { |
c0ce998e | 827 | CPUWatchpoint *wp, *next; |
a1d1bb31 | 828 | |
ff4700b0 | 829 | QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) { |
75a34036 AF |
830 | if (wp->flags & mask) { |
831 | cpu_watchpoint_remove_by_ref(cpu, wp); | |
832 | } | |
c0ce998e | 833 | } |
7d03f82f | 834 | } |
05068c0d PM |
835 | |
836 | /* Return true if this watchpoint address matches the specified | |
837 | * access (ie the address range covered by the watchpoint overlaps | |
838 | * partially or completely with the address range covered by the | |
839 | * access). | |
840 | */ | |
841 | static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp, | |
842 | vaddr addr, | |
843 | vaddr len) | |
844 | { | |
845 | /* We know the lengths are non-zero, but a little caution is | |
846 | * required to avoid errors in the case where the range ends | |
847 | * exactly at the top of the address space and so addr + len | |
848 | * wraps round to zero. | |
849 | */ | |
850 | vaddr wpend = wp->vaddr + wp->len - 1; | |
851 | vaddr addrend = addr + len - 1; | |
852 | ||
853 | return !(addr > wpend || wp->vaddr > addrend); | |
854 | } | |
855 | ||
c527ee8f | 856 | #endif |
7d03f82f | 857 | |
a1d1bb31 | 858 | /* Add a breakpoint. */ |
b3310ab3 | 859 | int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, |
a1d1bb31 | 860 | CPUBreakpoint **breakpoint) |
4c3a88a2 | 861 | { |
c0ce998e | 862 | CPUBreakpoint *bp; |
3b46e624 | 863 | |
7267c094 | 864 | bp = g_malloc(sizeof(*bp)); |
4c3a88a2 | 865 | |
a1d1bb31 AL |
866 | bp->pc = pc; |
867 | bp->flags = flags; | |
868 | ||
2dc9f411 | 869 | /* keep all GDB-injected breakpoints in front */ |
00b941e5 | 870 | if (flags & BP_GDB) { |
f0c3c505 | 871 | QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry); |
00b941e5 | 872 | } else { |
f0c3c505 | 873 | QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry); |
00b941e5 | 874 | } |
3b46e624 | 875 | |
f0c3c505 | 876 | breakpoint_invalidate(cpu, pc); |
a1d1bb31 | 877 | |
00b941e5 | 878 | if (breakpoint) { |
a1d1bb31 | 879 | *breakpoint = bp; |
00b941e5 | 880 | } |
4c3a88a2 | 881 | return 0; |
4c3a88a2 FB |
882 | } |
883 | ||
a1d1bb31 | 884 | /* Remove a specific breakpoint. */ |
b3310ab3 | 885 | int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags) |
a1d1bb31 | 886 | { |
a1d1bb31 AL |
887 | CPUBreakpoint *bp; |
888 | ||
f0c3c505 | 889 | QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { |
a1d1bb31 | 890 | if (bp->pc == pc && bp->flags == flags) { |
b3310ab3 | 891 | cpu_breakpoint_remove_by_ref(cpu, bp); |
a1d1bb31 AL |
892 | return 0; |
893 | } | |
7d03f82f | 894 | } |
a1d1bb31 | 895 | return -ENOENT; |
7d03f82f EI |
896 | } |
897 | ||
a1d1bb31 | 898 | /* Remove a specific breakpoint by reference. */ |
b3310ab3 | 899 | void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint) |
4c3a88a2 | 900 | { |
f0c3c505 AF |
901 | QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry); |
902 | ||
903 | breakpoint_invalidate(cpu, breakpoint->pc); | |
a1d1bb31 | 904 | |
7267c094 | 905 | g_free(breakpoint); |
a1d1bb31 AL |
906 | } |
907 | ||
908 | /* Remove all matching breakpoints. */ | |
b3310ab3 | 909 | void cpu_breakpoint_remove_all(CPUState *cpu, int mask) |
a1d1bb31 | 910 | { |
c0ce998e | 911 | CPUBreakpoint *bp, *next; |
a1d1bb31 | 912 | |
f0c3c505 | 913 | QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) { |
b3310ab3 AF |
914 | if (bp->flags & mask) { |
915 | cpu_breakpoint_remove_by_ref(cpu, bp); | |
916 | } | |
c0ce998e | 917 | } |
4c3a88a2 FB |
918 | } |
919 | ||
c33a346e FB |
920 | /* enable or disable single step mode. EXCP_DEBUG is returned by the |
921 | CPU loop after each instruction */ | |
3825b28f | 922 | void cpu_single_step(CPUState *cpu, int enabled) |
c33a346e | 923 | { |
ed2803da AF |
924 | if (cpu->singlestep_enabled != enabled) { |
925 | cpu->singlestep_enabled = enabled; | |
926 | if (kvm_enabled()) { | |
38e478ec | 927 | kvm_update_guest_debug(cpu, 0); |
ed2803da | 928 | } else { |
ccbb4d44 | 929 | /* must flush all the translated code to avoid inconsistencies */ |
e22a25c9 | 930 | /* XXX: only flush what is necessary */ |
bbd77c18 | 931 | tb_flush(cpu); |
e22a25c9 | 932 | } |
c33a346e | 933 | } |
c33a346e FB |
934 | } |
935 | ||
a47dddd7 | 936 | void cpu_abort(CPUState *cpu, const char *fmt, ...) |
7501267e FB |
937 | { |
938 | va_list ap; | |
493ae1f0 | 939 | va_list ap2; |
7501267e FB |
940 | |
941 | va_start(ap, fmt); | |
493ae1f0 | 942 | va_copy(ap2, ap); |
7501267e FB |
943 | fprintf(stderr, "qemu: fatal: "); |
944 | vfprintf(stderr, fmt, ap); | |
945 | fprintf(stderr, "\n"); | |
878096ee | 946 | cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP); |
013a2942 | 947 | if (qemu_log_separate()) { |
1ee73216 | 948 | qemu_log_lock(); |
93fcfe39 AL |
949 | qemu_log("qemu: fatal: "); |
950 | qemu_log_vprintf(fmt, ap2); | |
951 | qemu_log("\n"); | |
a0762859 | 952 | log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP); |
31b1a7b4 | 953 | qemu_log_flush(); |
1ee73216 | 954 | qemu_log_unlock(); |
93fcfe39 | 955 | qemu_log_close(); |
924edcae | 956 | } |
493ae1f0 | 957 | va_end(ap2); |
f9373291 | 958 | va_end(ap); |
7615936e | 959 | replay_finish(); |
fd052bf6 RV |
960 | #if defined(CONFIG_USER_ONLY) |
961 | { | |
962 | struct sigaction act; | |
963 | sigfillset(&act.sa_mask); | |
964 | act.sa_handler = SIG_DFL; | |
965 | sigaction(SIGABRT, &act, NULL); | |
966 | } | |
967 | #endif | |
7501267e FB |
968 | abort(); |
969 | } | |
970 | ||
0124311e | 971 | #if !defined(CONFIG_USER_ONLY) |
0dc3f44a | 972 | /* Called from RCU critical section */ |
041603fe PB |
973 | static RAMBlock *qemu_get_ram_block(ram_addr_t addr) |
974 | { | |
975 | RAMBlock *block; | |
976 | ||
43771539 | 977 | block = atomic_rcu_read(&ram_list.mru_block); |
9b8424d5 | 978 | if (block && addr - block->offset < block->max_length) { |
68851b98 | 979 | return block; |
041603fe | 980 | } |
0dc3f44a | 981 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
9b8424d5 | 982 | if (addr - block->offset < block->max_length) { |
041603fe PB |
983 | goto found; |
984 | } | |
985 | } | |
986 | ||
987 | fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); | |
988 | abort(); | |
989 | ||
990 | found: | |
43771539 PB |
991 | /* It is safe to write mru_block outside the iothread lock. This |
992 | * is what happens: | |
993 | * | |
994 | * mru_block = xxx | |
995 | * rcu_read_unlock() | |
996 | * xxx removed from list | |
997 | * rcu_read_lock() | |
998 | * read mru_block | |
999 | * mru_block = NULL; | |
1000 | * call_rcu(reclaim_ramblock, xxx); | |
1001 | * rcu_read_unlock() | |
1002 | * | |
1003 | * atomic_rcu_set is not needed here. The block was already published | |
1004 | * when it was placed into the list. Here we're just making an extra | |
1005 | * copy of the pointer. | |
1006 | */ | |
041603fe PB |
1007 | ram_list.mru_block = block; |
1008 | return block; | |
1009 | } | |
1010 | ||
a2f4d5be | 1011 | static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) |
d24981d3 | 1012 | { |
9a13565d | 1013 | CPUState *cpu; |
041603fe | 1014 | ram_addr_t start1; |
a2f4d5be JQ |
1015 | RAMBlock *block; |
1016 | ram_addr_t end; | |
1017 | ||
1018 | end = TARGET_PAGE_ALIGN(start + length); | |
1019 | start &= TARGET_PAGE_MASK; | |
d24981d3 | 1020 | |
0dc3f44a | 1021 | rcu_read_lock(); |
041603fe PB |
1022 | block = qemu_get_ram_block(start); |
1023 | assert(block == qemu_get_ram_block(end - 1)); | |
1240be24 | 1024 | start1 = (uintptr_t)ramblock_ptr(block, start - block->offset); |
9a13565d PC |
1025 | CPU_FOREACH(cpu) { |
1026 | tlb_reset_dirty(cpu, start1, length); | |
1027 | } | |
0dc3f44a | 1028 | rcu_read_unlock(); |
d24981d3 JQ |
1029 | } |
1030 | ||
5579c7f3 | 1031 | /* Note: start and end must be within the same ram block. */ |
03eebc9e SH |
1032 | bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, |
1033 | ram_addr_t length, | |
1034 | unsigned client) | |
1ccde1cb | 1035 | { |
5b82b703 | 1036 | DirtyMemoryBlocks *blocks; |
03eebc9e | 1037 | unsigned long end, page; |
5b82b703 | 1038 | bool dirty = false; |
03eebc9e SH |
1039 | |
1040 | if (length == 0) { | |
1041 | return false; | |
1042 | } | |
f23db169 | 1043 | |
03eebc9e SH |
1044 | end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; |
1045 | page = start >> TARGET_PAGE_BITS; | |
5b82b703 SH |
1046 | |
1047 | rcu_read_lock(); | |
1048 | ||
1049 | blocks = atomic_rcu_read(&ram_list.dirty_memory[client]); | |
1050 | ||
1051 | while (page < end) { | |
1052 | unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; | |
1053 | unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; | |
1054 | unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset); | |
1055 | ||
1056 | dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx], | |
1057 | offset, num); | |
1058 | page += num; | |
1059 | } | |
1060 | ||
1061 | rcu_read_unlock(); | |
03eebc9e SH |
1062 | |
1063 | if (dirty && tcg_enabled()) { | |
a2f4d5be | 1064 | tlb_reset_dirty_range_all(start, length); |
5579c7f3 | 1065 | } |
03eebc9e SH |
1066 | |
1067 | return dirty; | |
1ccde1cb FB |
1068 | } |
1069 | ||
8deaf12c GH |
1070 | DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty |
1071 | (ram_addr_t start, ram_addr_t length, unsigned client) | |
1072 | { | |
1073 | DirtyMemoryBlocks *blocks; | |
1074 | unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL); | |
1075 | ram_addr_t first = QEMU_ALIGN_DOWN(start, align); | |
1076 | ram_addr_t last = QEMU_ALIGN_UP(start + length, align); | |
1077 | DirtyBitmapSnapshot *snap; | |
1078 | unsigned long page, end, dest; | |
1079 | ||
1080 | snap = g_malloc0(sizeof(*snap) + | |
1081 | ((last - first) >> (TARGET_PAGE_BITS + 3))); | |
1082 | snap->start = first; | |
1083 | snap->end = last; | |
1084 | ||
1085 | page = first >> TARGET_PAGE_BITS; | |
1086 | end = last >> TARGET_PAGE_BITS; | |
1087 | dest = 0; | |
1088 | ||
1089 | rcu_read_lock(); | |
1090 | ||
1091 | blocks = atomic_rcu_read(&ram_list.dirty_memory[client]); | |
1092 | ||
1093 | while (page < end) { | |
1094 | unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; | |
1095 | unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; | |
1096 | unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset); | |
1097 | ||
1098 | assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL))); | |
1099 | assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL))); | |
1100 | offset >>= BITS_PER_LEVEL; | |
1101 | ||
1102 | bitmap_copy_and_clear_atomic(snap->dirty + dest, | |
1103 | blocks->blocks[idx] + offset, | |
1104 | num); | |
1105 | page += num; | |
1106 | dest += num >> BITS_PER_LEVEL; | |
1107 | } | |
1108 | ||
1109 | rcu_read_unlock(); | |
1110 | ||
1111 | if (tcg_enabled()) { | |
1112 | tlb_reset_dirty_range_all(start, length); | |
1113 | } | |
1114 | ||
1115 | return snap; | |
1116 | } | |
1117 | ||
1118 | bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap, | |
1119 | ram_addr_t start, | |
1120 | ram_addr_t length) | |
1121 | { | |
1122 | unsigned long page, end; | |
1123 | ||
1124 | assert(start >= snap->start); | |
1125 | assert(start + length <= snap->end); | |
1126 | ||
1127 | end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS; | |
1128 | page = (start - snap->start) >> TARGET_PAGE_BITS; | |
1129 | ||
1130 | while (page < end) { | |
1131 | if (test_bit(page, snap->dirty)) { | |
1132 | return true; | |
1133 | } | |
1134 | page++; | |
1135 | } | |
1136 | return false; | |
1137 | } | |
1138 | ||
79e2b9ae | 1139 | /* Called from RCU critical section */ |
bb0e627a | 1140 | hwaddr memory_region_section_get_iotlb(CPUState *cpu, |
149f54b5 PB |
1141 | MemoryRegionSection *section, |
1142 | target_ulong vaddr, | |
1143 | hwaddr paddr, hwaddr xlat, | |
1144 | int prot, | |
1145 | target_ulong *address) | |
e5548617 | 1146 | { |
a8170e5e | 1147 | hwaddr iotlb; |
e5548617 BS |
1148 | CPUWatchpoint *wp; |
1149 | ||
cc5bea60 | 1150 | if (memory_region_is_ram(section->mr)) { |
e5548617 | 1151 | /* Normal RAM. */ |
e4e69794 | 1152 | iotlb = memory_region_get_ram_addr(section->mr) + xlat; |
e5548617 | 1153 | if (!section->readonly) { |
b41aac4f | 1154 | iotlb |= PHYS_SECTION_NOTDIRTY; |
e5548617 | 1155 | } else { |
b41aac4f | 1156 | iotlb |= PHYS_SECTION_ROM; |
e5548617 BS |
1157 | } |
1158 | } else { | |
0b8e2c10 PM |
1159 | AddressSpaceDispatch *d; |
1160 | ||
1161 | d = atomic_rcu_read(§ion->address_space->dispatch); | |
1162 | iotlb = section - d->map.sections; | |
149f54b5 | 1163 | iotlb += xlat; |
e5548617 BS |
1164 | } |
1165 | ||
1166 | /* Make accesses to pages with watchpoints go via the | |
1167 | watchpoint trap routines. */ | |
ff4700b0 | 1168 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d | 1169 | if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) { |
e5548617 BS |
1170 | /* Avoid trapping reads of pages with a write breakpoint. */ |
1171 | if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) { | |
b41aac4f | 1172 | iotlb = PHYS_SECTION_WATCH + paddr; |
e5548617 BS |
1173 | *address |= TLB_MMIO; |
1174 | break; | |
1175 | } | |
1176 | } | |
1177 | } | |
1178 | ||
1179 | return iotlb; | |
1180 | } | |
9fa3e853 FB |
1181 | #endif /* defined(CONFIG_USER_ONLY) */ |
1182 | ||
e2eef170 | 1183 | #if !defined(CONFIG_USER_ONLY) |
8da3ff18 | 1184 | |
c227f099 | 1185 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, |
5312bd8b | 1186 | uint16_t section); |
acc9d80b | 1187 | static subpage_t *subpage_init(AddressSpace *as, hwaddr base); |
54688b1e | 1188 | |
a2b257d6 IM |
1189 | static void *(*phys_mem_alloc)(size_t size, uint64_t *align) = |
1190 | qemu_anon_ram_alloc; | |
91138037 MA |
1191 | |
1192 | /* | |
1193 | * Set a custom physical guest memory alloator. | |
1194 | * Accelerators with unusual needs may need this. Hopefully, we can | |
1195 | * get rid of it eventually. | |
1196 | */ | |
a2b257d6 | 1197 | void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align)) |
91138037 MA |
1198 | { |
1199 | phys_mem_alloc = alloc; | |
1200 | } | |
1201 | ||
53cb28cb MA |
1202 | static uint16_t phys_section_add(PhysPageMap *map, |
1203 | MemoryRegionSection *section) | |
5312bd8b | 1204 | { |
68f3f65b PB |
1205 | /* The physical section number is ORed with a page-aligned |
1206 | * pointer to produce the iotlb entries. Thus it should | |
1207 | * never overflow into the page-aligned value. | |
1208 | */ | |
53cb28cb | 1209 | assert(map->sections_nb < TARGET_PAGE_SIZE); |
68f3f65b | 1210 | |
53cb28cb MA |
1211 | if (map->sections_nb == map->sections_nb_alloc) { |
1212 | map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); | |
1213 | map->sections = g_renew(MemoryRegionSection, map->sections, | |
1214 | map->sections_nb_alloc); | |
5312bd8b | 1215 | } |
53cb28cb | 1216 | map->sections[map->sections_nb] = *section; |
dfde4e6e | 1217 | memory_region_ref(section->mr); |
53cb28cb | 1218 | return map->sections_nb++; |
5312bd8b AK |
1219 | } |
1220 | ||
058bc4b5 PB |
1221 | static void phys_section_destroy(MemoryRegion *mr) |
1222 | { | |
55b4e80b DS |
1223 | bool have_sub_page = mr->subpage; |
1224 | ||
dfde4e6e PB |
1225 | memory_region_unref(mr); |
1226 | ||
55b4e80b | 1227 | if (have_sub_page) { |
058bc4b5 | 1228 | subpage_t *subpage = container_of(mr, subpage_t, iomem); |
b4fefef9 | 1229 | object_unref(OBJECT(&subpage->iomem)); |
058bc4b5 PB |
1230 | g_free(subpage); |
1231 | } | |
1232 | } | |
1233 | ||
6092666e | 1234 | static void phys_sections_free(PhysPageMap *map) |
5312bd8b | 1235 | { |
9affd6fc PB |
1236 | while (map->sections_nb > 0) { |
1237 | MemoryRegionSection *section = &map->sections[--map->sections_nb]; | |
058bc4b5 PB |
1238 | phys_section_destroy(section->mr); |
1239 | } | |
9affd6fc PB |
1240 | g_free(map->sections); |
1241 | g_free(map->nodes); | |
5312bd8b AK |
1242 | } |
1243 | ||
ac1970fb | 1244 | static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section) |
0f0cb164 AK |
1245 | { |
1246 | subpage_t *subpage; | |
a8170e5e | 1247 | hwaddr base = section->offset_within_address_space |
0f0cb164 | 1248 | & TARGET_PAGE_MASK; |
97115a8d | 1249 | MemoryRegionSection *existing = phys_page_find(d->phys_map, base, |
53cb28cb | 1250 | d->map.nodes, d->map.sections); |
0f0cb164 AK |
1251 | MemoryRegionSection subsection = { |
1252 | .offset_within_address_space = base, | |
052e87b0 | 1253 | .size = int128_make64(TARGET_PAGE_SIZE), |
0f0cb164 | 1254 | }; |
a8170e5e | 1255 | hwaddr start, end; |
0f0cb164 | 1256 | |
f3705d53 | 1257 | assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); |
0f0cb164 | 1258 | |
f3705d53 | 1259 | if (!(existing->mr->subpage)) { |
acc9d80b | 1260 | subpage = subpage_init(d->as, base); |
3be91e86 | 1261 | subsection.address_space = d->as; |
0f0cb164 | 1262 | subsection.mr = &subpage->iomem; |
ac1970fb | 1263 | phys_page_set(d, base >> TARGET_PAGE_BITS, 1, |
53cb28cb | 1264 | phys_section_add(&d->map, &subsection)); |
0f0cb164 | 1265 | } else { |
f3705d53 | 1266 | subpage = container_of(existing->mr, subpage_t, iomem); |
0f0cb164 AK |
1267 | } |
1268 | start = section->offset_within_address_space & ~TARGET_PAGE_MASK; | |
052e87b0 | 1269 | end = start + int128_get64(section->size) - 1; |
53cb28cb MA |
1270 | subpage_register(subpage, start, end, |
1271 | phys_section_add(&d->map, section)); | |
0f0cb164 AK |
1272 | } |
1273 | ||
1274 | ||
052e87b0 PB |
1275 | static void register_multipage(AddressSpaceDispatch *d, |
1276 | MemoryRegionSection *section) | |
33417e70 | 1277 | { |
a8170e5e | 1278 | hwaddr start_addr = section->offset_within_address_space; |
53cb28cb | 1279 | uint16_t section_index = phys_section_add(&d->map, section); |
052e87b0 PB |
1280 | uint64_t num_pages = int128_get64(int128_rshift(section->size, |
1281 | TARGET_PAGE_BITS)); | |
dd81124b | 1282 | |
733d5ef5 PB |
1283 | assert(num_pages); |
1284 | phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); | |
33417e70 FB |
1285 | } |
1286 | ||
ac1970fb | 1287 | static void mem_add(MemoryListener *listener, MemoryRegionSection *section) |
0f0cb164 | 1288 | { |
89ae337a | 1289 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); |
00752703 | 1290 | AddressSpaceDispatch *d = as->next_dispatch; |
99b9cc06 | 1291 | MemoryRegionSection now = *section, remain = *section; |
052e87b0 | 1292 | Int128 page_size = int128_make64(TARGET_PAGE_SIZE); |
0f0cb164 | 1293 | |
733d5ef5 PB |
1294 | if (now.offset_within_address_space & ~TARGET_PAGE_MASK) { |
1295 | uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space) | |
1296 | - now.offset_within_address_space; | |
1297 | ||
052e87b0 | 1298 | now.size = int128_min(int128_make64(left), now.size); |
ac1970fb | 1299 | register_subpage(d, &now); |
733d5ef5 | 1300 | } else { |
052e87b0 | 1301 | now.size = int128_zero(); |
733d5ef5 | 1302 | } |
052e87b0 PB |
1303 | while (int128_ne(remain.size, now.size)) { |
1304 | remain.size = int128_sub(remain.size, now.size); | |
1305 | remain.offset_within_address_space += int128_get64(now.size); | |
1306 | remain.offset_within_region += int128_get64(now.size); | |
69b67646 | 1307 | now = remain; |
052e87b0 | 1308 | if (int128_lt(remain.size, page_size)) { |
733d5ef5 | 1309 | register_subpage(d, &now); |
88266249 | 1310 | } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { |
052e87b0 | 1311 | now.size = page_size; |
ac1970fb | 1312 | register_subpage(d, &now); |
69b67646 | 1313 | } else { |
052e87b0 | 1314 | now.size = int128_and(now.size, int128_neg(page_size)); |
ac1970fb | 1315 | register_multipage(d, &now); |
69b67646 | 1316 | } |
0f0cb164 AK |
1317 | } |
1318 | } | |
1319 | ||
62a2744c SY |
1320 | void qemu_flush_coalesced_mmio_buffer(void) |
1321 | { | |
1322 | if (kvm_enabled()) | |
1323 | kvm_flush_coalesced_mmio_buffer(); | |
1324 | } | |
1325 | ||
b2a8658e UD |
1326 | void qemu_mutex_lock_ramlist(void) |
1327 | { | |
1328 | qemu_mutex_lock(&ram_list.mutex); | |
1329 | } | |
1330 | ||
1331 | void qemu_mutex_unlock_ramlist(void) | |
1332 | { | |
1333 | qemu_mutex_unlock(&ram_list.mutex); | |
1334 | } | |
1335 | ||
9c607668 AK |
1336 | #ifdef __linux__ |
1337 | /* | |
1338 | * FIXME TOCTTOU: this iterates over memory backends' mem-path, which | |
1339 | * may or may not name the same files / on the same filesystem now as | |
1340 | * when we actually open and map them. Iterate over the file | |
1341 | * descriptors instead, and use qemu_fd_getpagesize(). | |
1342 | */ | |
1343 | static int find_max_supported_pagesize(Object *obj, void *opaque) | |
1344 | { | |
1345 | char *mem_path; | |
1346 | long *hpsize_min = opaque; | |
1347 | ||
1348 | if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { | |
1349 | mem_path = object_property_get_str(obj, "mem-path", NULL); | |
1350 | if (mem_path) { | |
1351 | long hpsize = qemu_mempath_getpagesize(mem_path); | |
1352 | if (hpsize < *hpsize_min) { | |
1353 | *hpsize_min = hpsize; | |
1354 | } | |
1355 | } else { | |
1356 | *hpsize_min = getpagesize(); | |
1357 | } | |
1358 | } | |
1359 | ||
1360 | return 0; | |
1361 | } | |
1362 | ||
1363 | long qemu_getrampagesize(void) | |
1364 | { | |
1365 | long hpsize = LONG_MAX; | |
1366 | long mainrampagesize; | |
1367 | Object *memdev_root; | |
1368 | ||
1369 | if (mem_path) { | |
1370 | mainrampagesize = qemu_mempath_getpagesize(mem_path); | |
1371 | } else { | |
1372 | mainrampagesize = getpagesize(); | |
1373 | } | |
1374 | ||
1375 | /* it's possible we have memory-backend objects with | |
1376 | * hugepage-backed RAM. these may get mapped into system | |
1377 | * address space via -numa parameters or memory hotplug | |
1378 | * hooks. we want to take these into account, but we | |
1379 | * also want to make sure these supported hugepage | |
1380 | * sizes are applicable across the entire range of memory | |
1381 | * we may boot from, so we take the min across all | |
1382 | * backends, and assume normal pages in cases where a | |
1383 | * backend isn't backed by hugepages. | |
1384 | */ | |
1385 | memdev_root = object_resolve_path("/objects", NULL); | |
1386 | if (memdev_root) { | |
1387 | object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize); | |
1388 | } | |
1389 | if (hpsize == LONG_MAX) { | |
1390 | /* No additional memory regions found ==> Report main RAM page size */ | |
1391 | return mainrampagesize; | |
1392 | } | |
1393 | ||
1394 | /* If NUMA is disabled or the NUMA nodes are not backed with a | |
1395 | * memory-backend, then there is at least one node using "normal" RAM, | |
1396 | * so if its page size is smaller we have got to report that size instead. | |
1397 | */ | |
1398 | if (hpsize > mainrampagesize && | |
1399 | (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) { | |
1400 | static bool warned; | |
1401 | if (!warned) { | |
1402 | error_report("Huge page support disabled (n/a for main memory)."); | |
1403 | warned = true; | |
1404 | } | |
1405 | return mainrampagesize; | |
1406 | } | |
1407 | ||
1408 | return hpsize; | |
1409 | } | |
1410 | #else | |
1411 | long qemu_getrampagesize(void) | |
1412 | { | |
1413 | return getpagesize(); | |
1414 | } | |
1415 | #endif | |
1416 | ||
e1e84ba0 | 1417 | #ifdef __linux__ |
d6af99c9 HZ |
1418 | static int64_t get_file_size(int fd) |
1419 | { | |
1420 | int64_t size = lseek(fd, 0, SEEK_END); | |
1421 | if (size < 0) { | |
1422 | return -errno; | |
1423 | } | |
1424 | return size; | |
1425 | } | |
1426 | ||
04b16653 AW |
1427 | static void *file_ram_alloc(RAMBlock *block, |
1428 | ram_addr_t memory, | |
7f56e740 PB |
1429 | const char *path, |
1430 | Error **errp) | |
c902760f | 1431 | { |
fd97fd44 | 1432 | bool unlink_on_error = false; |
c902760f | 1433 | char *filename; |
8ca761f6 PF |
1434 | char *sanitized_name; |
1435 | char *c; | |
056b68af | 1436 | void *area = MAP_FAILED; |
5c3ece79 | 1437 | int fd = -1; |
d6af99c9 | 1438 | int64_t file_size; |
c902760f MT |
1439 | |
1440 | if (kvm_enabled() && !kvm_has_sync_mmu()) { | |
7f56e740 PB |
1441 | error_setg(errp, |
1442 | "host lacks kvm mmu notifiers, -mem-path unsupported"); | |
fd97fd44 | 1443 | return NULL; |
c902760f MT |
1444 | } |
1445 | ||
fd97fd44 MA |
1446 | for (;;) { |
1447 | fd = open(path, O_RDWR); | |
1448 | if (fd >= 0) { | |
1449 | /* @path names an existing file, use it */ | |
1450 | break; | |
8d31d6b6 | 1451 | } |
fd97fd44 MA |
1452 | if (errno == ENOENT) { |
1453 | /* @path names a file that doesn't exist, create it */ | |
1454 | fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644); | |
1455 | if (fd >= 0) { | |
1456 | unlink_on_error = true; | |
1457 | break; | |
1458 | } | |
1459 | } else if (errno == EISDIR) { | |
1460 | /* @path names a directory, create a file there */ | |
1461 | /* Make name safe to use with mkstemp by replacing '/' with '_'. */ | |
1462 | sanitized_name = g_strdup(memory_region_name(block->mr)); | |
1463 | for (c = sanitized_name; *c != '\0'; c++) { | |
1464 | if (*c == '/') { | |
1465 | *c = '_'; | |
1466 | } | |
1467 | } | |
8ca761f6 | 1468 | |
fd97fd44 MA |
1469 | filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, |
1470 | sanitized_name); | |
1471 | g_free(sanitized_name); | |
8d31d6b6 | 1472 | |
fd97fd44 MA |
1473 | fd = mkstemp(filename); |
1474 | if (fd >= 0) { | |
1475 | unlink(filename); | |
1476 | g_free(filename); | |
1477 | break; | |
1478 | } | |
1479 | g_free(filename); | |
8d31d6b6 | 1480 | } |
fd97fd44 MA |
1481 | if (errno != EEXIST && errno != EINTR) { |
1482 | error_setg_errno(errp, errno, | |
1483 | "can't open backing store %s for guest RAM", | |
1484 | path); | |
1485 | goto error; | |
1486 | } | |
1487 | /* | |
1488 | * Try again on EINTR and EEXIST. The latter happens when | |
1489 | * something else creates the file between our two open(). | |
1490 | */ | |
8d31d6b6 | 1491 | } |
c902760f | 1492 | |
863e9621 | 1493 | block->page_size = qemu_fd_getpagesize(fd); |
8360668e HZ |
1494 | block->mr->align = block->page_size; |
1495 | #if defined(__s390x__) | |
1496 | if (kvm_enabled()) { | |
1497 | block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN); | |
1498 | } | |
1499 | #endif | |
fd97fd44 | 1500 | |
d6af99c9 HZ |
1501 | file_size = get_file_size(fd); |
1502 | ||
863e9621 | 1503 | if (memory < block->page_size) { |
fd97fd44 | 1504 | error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " |
863e9621 DDAG |
1505 | "or larger than page size 0x%zx", |
1506 | memory, block->page_size); | |
f9a49dfa | 1507 | goto error; |
c902760f | 1508 | } |
c902760f | 1509 | |
1775f111 HZ |
1510 | if (file_size > 0 && file_size < memory) { |
1511 | error_setg(errp, "backing store %s size 0x%" PRIx64 | |
1512 | " does not match 'size' option 0x" RAM_ADDR_FMT, | |
1513 | path, file_size, memory); | |
1514 | goto error; | |
1515 | } | |
1516 | ||
863e9621 | 1517 | memory = ROUND_UP(memory, block->page_size); |
c902760f MT |
1518 | |
1519 | /* | |
1520 | * ftruncate is not supported by hugetlbfs in older | |
1521 | * hosts, so don't bother bailing out on errors. | |
1522 | * If anything goes wrong with it under other filesystems, | |
1523 | * mmap will fail. | |
d6af99c9 HZ |
1524 | * |
1525 | * Do not truncate the non-empty backend file to avoid corrupting | |
1526 | * the existing data in the file. Disabling shrinking is not | |
1527 | * enough. For example, the current vNVDIMM implementation stores | |
1528 | * the guest NVDIMM labels at the end of the backend file. If the | |
1529 | * backend file is later extended, QEMU will not be able to find | |
1530 | * those labels. Therefore, extending the non-empty backend file | |
1531 | * is disabled as well. | |
c902760f | 1532 | */ |
d6af99c9 | 1533 | if (!file_size && ftruncate(fd, memory)) { |
9742bf26 | 1534 | perror("ftruncate"); |
7f56e740 | 1535 | } |
c902760f | 1536 | |
d2f39add DD |
1537 | area = qemu_ram_mmap(fd, memory, block->mr->align, |
1538 | block->flags & RAM_SHARED); | |
c902760f | 1539 | if (area == MAP_FAILED) { |
7f56e740 | 1540 | error_setg_errno(errp, errno, |
fd97fd44 | 1541 | "unable to map backing store for guest RAM"); |
f9a49dfa | 1542 | goto error; |
c902760f | 1543 | } |
ef36fa14 MT |
1544 | |
1545 | if (mem_prealloc) { | |
1e356fc1 | 1546 | os_mem_prealloc(fd, area, memory, smp_cpus, errp); |
056b68af IM |
1547 | if (errp && *errp) { |
1548 | goto error; | |
1549 | } | |
ef36fa14 MT |
1550 | } |
1551 | ||
04b16653 | 1552 | block->fd = fd; |
c902760f | 1553 | return area; |
f9a49dfa MT |
1554 | |
1555 | error: | |
056b68af IM |
1556 | if (area != MAP_FAILED) { |
1557 | qemu_ram_munmap(area, memory); | |
1558 | } | |
fd97fd44 MA |
1559 | if (unlink_on_error) { |
1560 | unlink(path); | |
1561 | } | |
5c3ece79 PB |
1562 | if (fd != -1) { |
1563 | close(fd); | |
1564 | } | |
f9a49dfa | 1565 | return NULL; |
c902760f MT |
1566 | } |
1567 | #endif | |
1568 | ||
0dc3f44a | 1569 | /* Called with the ramlist lock held. */ |
d17b5288 | 1570 | static ram_addr_t find_ram_offset(ram_addr_t size) |
04b16653 AW |
1571 | { |
1572 | RAMBlock *block, *next_block; | |
3e837b2c | 1573 | ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; |
04b16653 | 1574 | |
49cd9ac6 SH |
1575 | assert(size != 0); /* it would hand out same offset multiple times */ |
1576 | ||
0dc3f44a | 1577 | if (QLIST_EMPTY_RCU(&ram_list.blocks)) { |
04b16653 | 1578 | return 0; |
0d53d9fe | 1579 | } |
04b16653 | 1580 | |
0dc3f44a | 1581 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
f15fbc4b | 1582 | ram_addr_t end, next = RAM_ADDR_MAX; |
04b16653 | 1583 | |
62be4e3a | 1584 | end = block->offset + block->max_length; |
04b16653 | 1585 | |
0dc3f44a | 1586 | QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) { |
04b16653 AW |
1587 | if (next_block->offset >= end) { |
1588 | next = MIN(next, next_block->offset); | |
1589 | } | |
1590 | } | |
1591 | if (next - end >= size && next - end < mingap) { | |
3e837b2c | 1592 | offset = end; |
04b16653 AW |
1593 | mingap = next - end; |
1594 | } | |
1595 | } | |
3e837b2c AW |
1596 | |
1597 | if (offset == RAM_ADDR_MAX) { | |
1598 | fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", | |
1599 | (uint64_t)size); | |
1600 | abort(); | |
1601 | } | |
1602 | ||
04b16653 AW |
1603 | return offset; |
1604 | } | |
1605 | ||
b8c48993 | 1606 | unsigned long last_ram_page(void) |
d17b5288 AW |
1607 | { |
1608 | RAMBlock *block; | |
1609 | ram_addr_t last = 0; | |
1610 | ||
0dc3f44a MD |
1611 | rcu_read_lock(); |
1612 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
62be4e3a | 1613 | last = MAX(last, block->offset + block->max_length); |
0d53d9fe | 1614 | } |
0dc3f44a | 1615 | rcu_read_unlock(); |
b8c48993 | 1616 | return last >> TARGET_PAGE_BITS; |
d17b5288 AW |
1617 | } |
1618 | ||
ddb97f1d JB |
1619 | static void qemu_ram_setup_dump(void *addr, ram_addr_t size) |
1620 | { | |
1621 | int ret; | |
ddb97f1d JB |
1622 | |
1623 | /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ | |
47c8ca53 | 1624 | if (!machine_dump_guest_core(current_machine)) { |
ddb97f1d JB |
1625 | ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); |
1626 | if (ret) { | |
1627 | perror("qemu_madvise"); | |
1628 | fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " | |
1629 | "but dump_guest_core=off specified\n"); | |
1630 | } | |
1631 | } | |
1632 | } | |
1633 | ||
422148d3 DDAG |
1634 | const char *qemu_ram_get_idstr(RAMBlock *rb) |
1635 | { | |
1636 | return rb->idstr; | |
1637 | } | |
1638 | ||
463a4ac2 DDAG |
1639 | bool qemu_ram_is_shared(RAMBlock *rb) |
1640 | { | |
1641 | return rb->flags & RAM_SHARED; | |
1642 | } | |
1643 | ||
ae3a7047 | 1644 | /* Called with iothread lock held. */ |
fa53a0e5 | 1645 | void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev) |
20cfe881 | 1646 | { |
fa53a0e5 | 1647 | RAMBlock *block; |
20cfe881 | 1648 | |
c5705a77 AK |
1649 | assert(new_block); |
1650 | assert(!new_block->idstr[0]); | |
84b89d78 | 1651 | |
09e5ab63 AL |
1652 | if (dev) { |
1653 | char *id = qdev_get_dev_path(dev); | |
84b89d78 CM |
1654 | if (id) { |
1655 | snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); | |
7267c094 | 1656 | g_free(id); |
84b89d78 CM |
1657 | } |
1658 | } | |
1659 | pstrcat(new_block->idstr, sizeof(new_block->idstr), name); | |
1660 | ||
ab0a9956 | 1661 | rcu_read_lock(); |
0dc3f44a | 1662 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
fa53a0e5 GA |
1663 | if (block != new_block && |
1664 | !strcmp(block->idstr, new_block->idstr)) { | |
84b89d78 CM |
1665 | fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", |
1666 | new_block->idstr); | |
1667 | abort(); | |
1668 | } | |
1669 | } | |
0dc3f44a | 1670 | rcu_read_unlock(); |
c5705a77 AK |
1671 | } |
1672 | ||
ae3a7047 | 1673 | /* Called with iothread lock held. */ |
fa53a0e5 | 1674 | void qemu_ram_unset_idstr(RAMBlock *block) |
20cfe881 | 1675 | { |
ae3a7047 MD |
1676 | /* FIXME: arch_init.c assumes that this is not called throughout |
1677 | * migration. Ignore the problem since hot-unplug during migration | |
1678 | * does not work anyway. | |
1679 | */ | |
20cfe881 HT |
1680 | if (block) { |
1681 | memset(block->idstr, 0, sizeof(block->idstr)); | |
1682 | } | |
1683 | } | |
1684 | ||
863e9621 DDAG |
1685 | size_t qemu_ram_pagesize(RAMBlock *rb) |
1686 | { | |
1687 | return rb->page_size; | |
1688 | } | |
1689 | ||
67f11b5c DDAG |
1690 | /* Returns the largest size of page in use */ |
1691 | size_t qemu_ram_pagesize_largest(void) | |
1692 | { | |
1693 | RAMBlock *block; | |
1694 | size_t largest = 0; | |
1695 | ||
1696 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
1697 | largest = MAX(largest, qemu_ram_pagesize(block)); | |
1698 | } | |
1699 | ||
1700 | return largest; | |
1701 | } | |
1702 | ||
8490fc78 LC |
1703 | static int memory_try_enable_merging(void *addr, size_t len) |
1704 | { | |
75cc7f01 | 1705 | if (!machine_mem_merge(current_machine)) { |
8490fc78 LC |
1706 | /* disabled by the user */ |
1707 | return 0; | |
1708 | } | |
1709 | ||
1710 | return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); | |
1711 | } | |
1712 | ||
62be4e3a MT |
1713 | /* Only legal before guest might have detected the memory size: e.g. on |
1714 | * incoming migration, or right after reset. | |
1715 | * | |
1716 | * As memory core doesn't know how is memory accessed, it is up to | |
1717 | * resize callback to update device state and/or add assertions to detect | |
1718 | * misuse, if necessary. | |
1719 | */ | |
fa53a0e5 | 1720 | int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp) |
62be4e3a | 1721 | { |
62be4e3a MT |
1722 | assert(block); |
1723 | ||
4ed023ce | 1724 | newsize = HOST_PAGE_ALIGN(newsize); |
129ddaf3 | 1725 | |
62be4e3a MT |
1726 | if (block->used_length == newsize) { |
1727 | return 0; | |
1728 | } | |
1729 | ||
1730 | if (!(block->flags & RAM_RESIZEABLE)) { | |
1731 | error_setg_errno(errp, EINVAL, | |
1732 | "Length mismatch: %s: 0x" RAM_ADDR_FMT | |
1733 | " in != 0x" RAM_ADDR_FMT, block->idstr, | |
1734 | newsize, block->used_length); | |
1735 | return -EINVAL; | |
1736 | } | |
1737 | ||
1738 | if (block->max_length < newsize) { | |
1739 | error_setg_errno(errp, EINVAL, | |
1740 | "Length too large: %s: 0x" RAM_ADDR_FMT | |
1741 | " > 0x" RAM_ADDR_FMT, block->idstr, | |
1742 | newsize, block->max_length); | |
1743 | return -EINVAL; | |
1744 | } | |
1745 | ||
1746 | cpu_physical_memory_clear_dirty_range(block->offset, block->used_length); | |
1747 | block->used_length = newsize; | |
58d2707e PB |
1748 | cpu_physical_memory_set_dirty_range(block->offset, block->used_length, |
1749 | DIRTY_CLIENTS_ALL); | |
62be4e3a MT |
1750 | memory_region_set_size(block->mr, newsize); |
1751 | if (block->resized) { | |
1752 | block->resized(block->idstr, newsize, block->host); | |
1753 | } | |
1754 | return 0; | |
1755 | } | |
1756 | ||
5b82b703 SH |
1757 | /* Called with ram_list.mutex held */ |
1758 | static void dirty_memory_extend(ram_addr_t old_ram_size, | |
1759 | ram_addr_t new_ram_size) | |
1760 | { | |
1761 | ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size, | |
1762 | DIRTY_MEMORY_BLOCK_SIZE); | |
1763 | ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size, | |
1764 | DIRTY_MEMORY_BLOCK_SIZE); | |
1765 | int i; | |
1766 | ||
1767 | /* Only need to extend if block count increased */ | |
1768 | if (new_num_blocks <= old_num_blocks) { | |
1769 | return; | |
1770 | } | |
1771 | ||
1772 | for (i = 0; i < DIRTY_MEMORY_NUM; i++) { | |
1773 | DirtyMemoryBlocks *old_blocks; | |
1774 | DirtyMemoryBlocks *new_blocks; | |
1775 | int j; | |
1776 | ||
1777 | old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]); | |
1778 | new_blocks = g_malloc(sizeof(*new_blocks) + | |
1779 | sizeof(new_blocks->blocks[0]) * new_num_blocks); | |
1780 | ||
1781 | if (old_num_blocks) { | |
1782 | memcpy(new_blocks->blocks, old_blocks->blocks, | |
1783 | old_num_blocks * sizeof(old_blocks->blocks[0])); | |
1784 | } | |
1785 | ||
1786 | for (j = old_num_blocks; j < new_num_blocks; j++) { | |
1787 | new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE); | |
1788 | } | |
1789 | ||
1790 | atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks); | |
1791 | ||
1792 | if (old_blocks) { | |
1793 | g_free_rcu(old_blocks, rcu); | |
1794 | } | |
1795 | } | |
1796 | } | |
1797 | ||
528f46af | 1798 | static void ram_block_add(RAMBlock *new_block, Error **errp) |
c5705a77 | 1799 | { |
e1c57ab8 | 1800 | RAMBlock *block; |
0d53d9fe | 1801 | RAMBlock *last_block = NULL; |
2152f5ca | 1802 | ram_addr_t old_ram_size, new_ram_size; |
37aa7a0e | 1803 | Error *err = NULL; |
2152f5ca | 1804 | |
b8c48993 | 1805 | old_ram_size = last_ram_page(); |
c5705a77 | 1806 | |
b2a8658e | 1807 | qemu_mutex_lock_ramlist(); |
9b8424d5 | 1808 | new_block->offset = find_ram_offset(new_block->max_length); |
e1c57ab8 PB |
1809 | |
1810 | if (!new_block->host) { | |
1811 | if (xen_enabled()) { | |
9b8424d5 | 1812 | xen_ram_alloc(new_block->offset, new_block->max_length, |
37aa7a0e MA |
1813 | new_block->mr, &err); |
1814 | if (err) { | |
1815 | error_propagate(errp, err); | |
1816 | qemu_mutex_unlock_ramlist(); | |
39c350ee | 1817 | return; |
37aa7a0e | 1818 | } |
e1c57ab8 | 1819 | } else { |
9b8424d5 | 1820 | new_block->host = phys_mem_alloc(new_block->max_length, |
a2b257d6 | 1821 | &new_block->mr->align); |
39228250 | 1822 | if (!new_block->host) { |
ef701d7b HT |
1823 | error_setg_errno(errp, errno, |
1824 | "cannot set up guest memory '%s'", | |
1825 | memory_region_name(new_block->mr)); | |
1826 | qemu_mutex_unlock_ramlist(); | |
39c350ee | 1827 | return; |
39228250 | 1828 | } |
9b8424d5 | 1829 | memory_try_enable_merging(new_block->host, new_block->max_length); |
6977dfe6 | 1830 | } |
c902760f | 1831 | } |
94a6b54f | 1832 | |
dd631697 LZ |
1833 | new_ram_size = MAX(old_ram_size, |
1834 | (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS); | |
1835 | if (new_ram_size > old_ram_size) { | |
5b82b703 | 1836 | dirty_memory_extend(old_ram_size, new_ram_size); |
dd631697 | 1837 | } |
0d53d9fe MD |
1838 | /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ, |
1839 | * QLIST (which has an RCU-friendly variant) does not have insertion at | |
1840 | * tail, so save the last element in last_block. | |
1841 | */ | |
0dc3f44a | 1842 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
0d53d9fe | 1843 | last_block = block; |
9b8424d5 | 1844 | if (block->max_length < new_block->max_length) { |
abb26d63 PB |
1845 | break; |
1846 | } | |
1847 | } | |
1848 | if (block) { | |
0dc3f44a | 1849 | QLIST_INSERT_BEFORE_RCU(block, new_block, next); |
0d53d9fe | 1850 | } else if (last_block) { |
0dc3f44a | 1851 | QLIST_INSERT_AFTER_RCU(last_block, new_block, next); |
0d53d9fe | 1852 | } else { /* list is empty */ |
0dc3f44a | 1853 | QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); |
abb26d63 | 1854 | } |
0d6d3c87 | 1855 | ram_list.mru_block = NULL; |
94a6b54f | 1856 | |
0dc3f44a MD |
1857 | /* Write list before version */ |
1858 | smp_wmb(); | |
f798b07f | 1859 | ram_list.version++; |
b2a8658e | 1860 | qemu_mutex_unlock_ramlist(); |
f798b07f | 1861 | |
9b8424d5 | 1862 | cpu_physical_memory_set_dirty_range(new_block->offset, |
58d2707e PB |
1863 | new_block->used_length, |
1864 | DIRTY_CLIENTS_ALL); | |
94a6b54f | 1865 | |
a904c911 PB |
1866 | if (new_block->host) { |
1867 | qemu_ram_setup_dump(new_block->host, new_block->max_length); | |
1868 | qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); | |
c2cd627d | 1869 | /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */ |
a904c911 | 1870 | qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK); |
0987d735 | 1871 | ram_block_notify_add(new_block->host, new_block->max_length); |
e1c57ab8 | 1872 | } |
94a6b54f | 1873 | } |
e9a1ab19 | 1874 | |
0b183fc8 | 1875 | #ifdef __linux__ |
528f46af FZ |
1876 | RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, |
1877 | bool share, const char *mem_path, | |
1878 | Error **errp) | |
e1c57ab8 PB |
1879 | { |
1880 | RAMBlock *new_block; | |
ef701d7b | 1881 | Error *local_err = NULL; |
e1c57ab8 PB |
1882 | |
1883 | if (xen_enabled()) { | |
7f56e740 | 1884 | error_setg(errp, "-mem-path not supported with Xen"); |
528f46af | 1885 | return NULL; |
e1c57ab8 PB |
1886 | } |
1887 | ||
1888 | if (phys_mem_alloc != qemu_anon_ram_alloc) { | |
1889 | /* | |
1890 | * file_ram_alloc() needs to allocate just like | |
1891 | * phys_mem_alloc, but we haven't bothered to provide | |
1892 | * a hook there. | |
1893 | */ | |
7f56e740 PB |
1894 | error_setg(errp, |
1895 | "-mem-path not supported with this accelerator"); | |
528f46af | 1896 | return NULL; |
e1c57ab8 PB |
1897 | } |
1898 | ||
4ed023ce | 1899 | size = HOST_PAGE_ALIGN(size); |
e1c57ab8 PB |
1900 | new_block = g_malloc0(sizeof(*new_block)); |
1901 | new_block->mr = mr; | |
9b8424d5 MT |
1902 | new_block->used_length = size; |
1903 | new_block->max_length = size; | |
dbcb8981 | 1904 | new_block->flags = share ? RAM_SHARED : 0; |
7f56e740 PB |
1905 | new_block->host = file_ram_alloc(new_block, size, |
1906 | mem_path, errp); | |
1907 | if (!new_block->host) { | |
1908 | g_free(new_block); | |
528f46af | 1909 | return NULL; |
7f56e740 PB |
1910 | } |
1911 | ||
528f46af | 1912 | ram_block_add(new_block, &local_err); |
ef701d7b HT |
1913 | if (local_err) { |
1914 | g_free(new_block); | |
1915 | error_propagate(errp, local_err); | |
528f46af | 1916 | return NULL; |
ef701d7b | 1917 | } |
528f46af | 1918 | return new_block; |
e1c57ab8 | 1919 | } |
0b183fc8 | 1920 | #endif |
e1c57ab8 | 1921 | |
62be4e3a | 1922 | static |
528f46af FZ |
1923 | RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size, |
1924 | void (*resized)(const char*, | |
1925 | uint64_t length, | |
1926 | void *host), | |
1927 | void *host, bool resizeable, | |
1928 | MemoryRegion *mr, Error **errp) | |
e1c57ab8 PB |
1929 | { |
1930 | RAMBlock *new_block; | |
ef701d7b | 1931 | Error *local_err = NULL; |
e1c57ab8 | 1932 | |
4ed023ce DDAG |
1933 | size = HOST_PAGE_ALIGN(size); |
1934 | max_size = HOST_PAGE_ALIGN(max_size); | |
e1c57ab8 PB |
1935 | new_block = g_malloc0(sizeof(*new_block)); |
1936 | new_block->mr = mr; | |
62be4e3a | 1937 | new_block->resized = resized; |
9b8424d5 MT |
1938 | new_block->used_length = size; |
1939 | new_block->max_length = max_size; | |
62be4e3a | 1940 | assert(max_size >= size); |
e1c57ab8 | 1941 | new_block->fd = -1; |
863e9621 | 1942 | new_block->page_size = getpagesize(); |
e1c57ab8 PB |
1943 | new_block->host = host; |
1944 | if (host) { | |
7bd4f430 | 1945 | new_block->flags |= RAM_PREALLOC; |
e1c57ab8 | 1946 | } |
62be4e3a MT |
1947 | if (resizeable) { |
1948 | new_block->flags |= RAM_RESIZEABLE; | |
1949 | } | |
528f46af | 1950 | ram_block_add(new_block, &local_err); |
ef701d7b HT |
1951 | if (local_err) { |
1952 | g_free(new_block); | |
1953 | error_propagate(errp, local_err); | |
528f46af | 1954 | return NULL; |
ef701d7b | 1955 | } |
528f46af | 1956 | return new_block; |
e1c57ab8 PB |
1957 | } |
1958 | ||
528f46af | 1959 | RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, |
62be4e3a MT |
1960 | MemoryRegion *mr, Error **errp) |
1961 | { | |
1962 | return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp); | |
1963 | } | |
1964 | ||
528f46af | 1965 | RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp) |
6977dfe6 | 1966 | { |
62be4e3a MT |
1967 | return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp); |
1968 | } | |
1969 | ||
528f46af | 1970 | RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz, |
62be4e3a MT |
1971 | void (*resized)(const char*, |
1972 | uint64_t length, | |
1973 | void *host), | |
1974 | MemoryRegion *mr, Error **errp) | |
1975 | { | |
1976 | return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp); | |
6977dfe6 YT |
1977 | } |
1978 | ||
43771539 PB |
1979 | static void reclaim_ramblock(RAMBlock *block) |
1980 | { | |
1981 | if (block->flags & RAM_PREALLOC) { | |
1982 | ; | |
1983 | } else if (xen_enabled()) { | |
1984 | xen_invalidate_map_cache_entry(block->host); | |
1985 | #ifndef _WIN32 | |
1986 | } else if (block->fd >= 0) { | |
2f3a2bb1 | 1987 | qemu_ram_munmap(block->host, block->max_length); |
43771539 PB |
1988 | close(block->fd); |
1989 | #endif | |
1990 | } else { | |
1991 | qemu_anon_ram_free(block->host, block->max_length); | |
1992 | } | |
1993 | g_free(block); | |
1994 | } | |
1995 | ||
f1060c55 | 1996 | void qemu_ram_free(RAMBlock *block) |
e9a1ab19 | 1997 | { |
85bc2a15 MAL |
1998 | if (!block) { |
1999 | return; | |
2000 | } | |
2001 | ||
0987d735 PB |
2002 | if (block->host) { |
2003 | ram_block_notify_remove(block->host, block->max_length); | |
2004 | } | |
2005 | ||
b2a8658e | 2006 | qemu_mutex_lock_ramlist(); |
f1060c55 FZ |
2007 | QLIST_REMOVE_RCU(block, next); |
2008 | ram_list.mru_block = NULL; | |
2009 | /* Write list before version */ | |
2010 | smp_wmb(); | |
2011 | ram_list.version++; | |
2012 | call_rcu(block, reclaim_ramblock, rcu); | |
b2a8658e | 2013 | qemu_mutex_unlock_ramlist(); |
e9a1ab19 FB |
2014 | } |
2015 | ||
cd19cfa2 HY |
2016 | #ifndef _WIN32 |
2017 | void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) | |
2018 | { | |
2019 | RAMBlock *block; | |
2020 | ram_addr_t offset; | |
2021 | int flags; | |
2022 | void *area, *vaddr; | |
2023 | ||
0dc3f44a | 2024 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
cd19cfa2 | 2025 | offset = addr - block->offset; |
9b8424d5 | 2026 | if (offset < block->max_length) { |
1240be24 | 2027 | vaddr = ramblock_ptr(block, offset); |
7bd4f430 | 2028 | if (block->flags & RAM_PREALLOC) { |
cd19cfa2 | 2029 | ; |
dfeaf2ab MA |
2030 | } else if (xen_enabled()) { |
2031 | abort(); | |
cd19cfa2 HY |
2032 | } else { |
2033 | flags = MAP_FIXED; | |
3435f395 | 2034 | if (block->fd >= 0) { |
dbcb8981 PB |
2035 | flags |= (block->flags & RAM_SHARED ? |
2036 | MAP_SHARED : MAP_PRIVATE); | |
3435f395 MA |
2037 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, |
2038 | flags, block->fd, offset); | |
cd19cfa2 | 2039 | } else { |
2eb9fbaa MA |
2040 | /* |
2041 | * Remap needs to match alloc. Accelerators that | |
2042 | * set phys_mem_alloc never remap. If they did, | |
2043 | * we'd need a remap hook here. | |
2044 | */ | |
2045 | assert(phys_mem_alloc == qemu_anon_ram_alloc); | |
2046 | ||
cd19cfa2 HY |
2047 | flags |= MAP_PRIVATE | MAP_ANONYMOUS; |
2048 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, | |
2049 | flags, -1, 0); | |
cd19cfa2 HY |
2050 | } |
2051 | if (area != vaddr) { | |
f15fbc4b AP |
2052 | fprintf(stderr, "Could not remap addr: " |
2053 | RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n", | |
cd19cfa2 HY |
2054 | length, addr); |
2055 | exit(1); | |
2056 | } | |
8490fc78 | 2057 | memory_try_enable_merging(vaddr, length); |
ddb97f1d | 2058 | qemu_ram_setup_dump(vaddr, length); |
cd19cfa2 | 2059 | } |
cd19cfa2 HY |
2060 | } |
2061 | } | |
2062 | } | |
2063 | #endif /* !_WIN32 */ | |
2064 | ||
1b5ec234 | 2065 | /* Return a host pointer to ram allocated with qemu_ram_alloc. |
ae3a7047 MD |
2066 | * This should not be used for general purpose DMA. Use address_space_map |
2067 | * or address_space_rw instead. For local memory (e.g. video ram) that the | |
2068 | * device owns, use memory_region_get_ram_ptr. | |
0dc3f44a | 2069 | * |
49b24afc | 2070 | * Called within RCU critical section. |
1b5ec234 | 2071 | */ |
0878d0e1 | 2072 | void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr) |
1b5ec234 | 2073 | { |
3655cb9c GA |
2074 | RAMBlock *block = ram_block; |
2075 | ||
2076 | if (block == NULL) { | |
2077 | block = qemu_get_ram_block(addr); | |
0878d0e1 | 2078 | addr -= block->offset; |
3655cb9c | 2079 | } |
ae3a7047 MD |
2080 | |
2081 | if (xen_enabled() && block->host == NULL) { | |
0d6d3c87 PB |
2082 | /* We need to check if the requested address is in the RAM |
2083 | * because we don't want to map the entire memory in QEMU. | |
2084 | * In that case just map until the end of the page. | |
2085 | */ | |
2086 | if (block->offset == 0) { | |
49b24afc | 2087 | return xen_map_cache(addr, 0, 0); |
0d6d3c87 | 2088 | } |
ae3a7047 MD |
2089 | |
2090 | block->host = xen_map_cache(block->offset, block->max_length, 1); | |
0d6d3c87 | 2091 | } |
0878d0e1 | 2092 | return ramblock_ptr(block, addr); |
dc828ca1 PB |
2093 | } |
2094 | ||
0878d0e1 | 2095 | /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr |
ae3a7047 | 2096 | * but takes a size argument. |
0dc3f44a | 2097 | * |
e81bcda5 | 2098 | * Called within RCU critical section. |
ae3a7047 | 2099 | */ |
3655cb9c GA |
2100 | static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr, |
2101 | hwaddr *size) | |
38bee5dc | 2102 | { |
3655cb9c | 2103 | RAMBlock *block = ram_block; |
8ab934f9 SS |
2104 | if (*size == 0) { |
2105 | return NULL; | |
2106 | } | |
e81bcda5 | 2107 | |
3655cb9c GA |
2108 | if (block == NULL) { |
2109 | block = qemu_get_ram_block(addr); | |
0878d0e1 | 2110 | addr -= block->offset; |
3655cb9c | 2111 | } |
0878d0e1 | 2112 | *size = MIN(*size, block->max_length - addr); |
e81bcda5 PB |
2113 | |
2114 | if (xen_enabled() && block->host == NULL) { | |
2115 | /* We need to check if the requested address is in the RAM | |
2116 | * because we don't want to map the entire memory in QEMU. | |
2117 | * In that case just map the requested area. | |
2118 | */ | |
2119 | if (block->offset == 0) { | |
2120 | return xen_map_cache(addr, *size, 1); | |
38bee5dc SS |
2121 | } |
2122 | ||
e81bcda5 | 2123 | block->host = xen_map_cache(block->offset, block->max_length, 1); |
38bee5dc | 2124 | } |
e81bcda5 | 2125 | |
0878d0e1 | 2126 | return ramblock_ptr(block, addr); |
38bee5dc SS |
2127 | } |
2128 | ||
422148d3 DDAG |
2129 | /* |
2130 | * Translates a host ptr back to a RAMBlock, a ram_addr and an offset | |
2131 | * in that RAMBlock. | |
2132 | * | |
2133 | * ptr: Host pointer to look up | |
2134 | * round_offset: If true round the result offset down to a page boundary | |
2135 | * *ram_addr: set to result ram_addr | |
2136 | * *offset: set to result offset within the RAMBlock | |
2137 | * | |
2138 | * Returns: RAMBlock (or NULL if not found) | |
ae3a7047 MD |
2139 | * |
2140 | * By the time this function returns, the returned pointer is not protected | |
2141 | * by RCU anymore. If the caller is not within an RCU critical section and | |
2142 | * does not hold the iothread lock, it must have other means of protecting the | |
2143 | * pointer, such as a reference to the region that includes the incoming | |
2144 | * ram_addr_t. | |
2145 | */ | |
422148d3 | 2146 | RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, |
422148d3 | 2147 | ram_addr_t *offset) |
5579c7f3 | 2148 | { |
94a6b54f PB |
2149 | RAMBlock *block; |
2150 | uint8_t *host = ptr; | |
2151 | ||
868bb33f | 2152 | if (xen_enabled()) { |
f615f396 | 2153 | ram_addr_t ram_addr; |
0dc3f44a | 2154 | rcu_read_lock(); |
f615f396 PB |
2155 | ram_addr = xen_ram_addr_from_mapcache(ptr); |
2156 | block = qemu_get_ram_block(ram_addr); | |
422148d3 | 2157 | if (block) { |
d6b6aec4 | 2158 | *offset = ram_addr - block->offset; |
422148d3 | 2159 | } |
0dc3f44a | 2160 | rcu_read_unlock(); |
422148d3 | 2161 | return block; |
712c2b41 SS |
2162 | } |
2163 | ||
0dc3f44a MD |
2164 | rcu_read_lock(); |
2165 | block = atomic_rcu_read(&ram_list.mru_block); | |
9b8424d5 | 2166 | if (block && block->host && host - block->host < block->max_length) { |
23887b79 PB |
2167 | goto found; |
2168 | } | |
2169 | ||
0dc3f44a | 2170 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
432d268c JN |
2171 | /* This case append when the block is not mapped. */ |
2172 | if (block->host == NULL) { | |
2173 | continue; | |
2174 | } | |
9b8424d5 | 2175 | if (host - block->host < block->max_length) { |
23887b79 | 2176 | goto found; |
f471a17e | 2177 | } |
94a6b54f | 2178 | } |
432d268c | 2179 | |
0dc3f44a | 2180 | rcu_read_unlock(); |
1b5ec234 | 2181 | return NULL; |
23887b79 PB |
2182 | |
2183 | found: | |
422148d3 DDAG |
2184 | *offset = (host - block->host); |
2185 | if (round_offset) { | |
2186 | *offset &= TARGET_PAGE_MASK; | |
2187 | } | |
0dc3f44a | 2188 | rcu_read_unlock(); |
422148d3 DDAG |
2189 | return block; |
2190 | } | |
2191 | ||
e3dd7493 DDAG |
2192 | /* |
2193 | * Finds the named RAMBlock | |
2194 | * | |
2195 | * name: The name of RAMBlock to find | |
2196 | * | |
2197 | * Returns: RAMBlock (or NULL if not found) | |
2198 | */ | |
2199 | RAMBlock *qemu_ram_block_by_name(const char *name) | |
2200 | { | |
2201 | RAMBlock *block; | |
2202 | ||
2203 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
2204 | if (!strcmp(name, block->idstr)) { | |
2205 | return block; | |
2206 | } | |
2207 | } | |
2208 | ||
2209 | return NULL; | |
2210 | } | |
2211 | ||
422148d3 DDAG |
2212 | /* Some of the softmmu routines need to translate from a host pointer |
2213 | (typically a TLB entry) back to a ram offset. */ | |
07bdaa41 | 2214 | ram_addr_t qemu_ram_addr_from_host(void *ptr) |
422148d3 DDAG |
2215 | { |
2216 | RAMBlock *block; | |
f615f396 | 2217 | ram_addr_t offset; |
422148d3 | 2218 | |
f615f396 | 2219 | block = qemu_ram_block_from_host(ptr, false, &offset); |
422148d3 | 2220 | if (!block) { |
07bdaa41 | 2221 | return RAM_ADDR_INVALID; |
422148d3 DDAG |
2222 | } |
2223 | ||
07bdaa41 | 2224 | return block->offset + offset; |
e890261f | 2225 | } |
f471a17e | 2226 | |
49b24afc | 2227 | /* Called within RCU critical section. */ |
a8170e5e | 2228 | static void notdirty_mem_write(void *opaque, hwaddr ram_addr, |
0e0df1e2 | 2229 | uint64_t val, unsigned size) |
9fa3e853 | 2230 | { |
ba051fb5 AB |
2231 | bool locked = false; |
2232 | ||
52159192 | 2233 | if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { |
ba051fb5 AB |
2234 | locked = true; |
2235 | tb_lock(); | |
0e0df1e2 | 2236 | tb_invalidate_phys_page_fast(ram_addr, size); |
3a7d929e | 2237 | } |
0e0df1e2 AK |
2238 | switch (size) { |
2239 | case 1: | |
0878d0e1 | 2240 | stb_p(qemu_map_ram_ptr(NULL, ram_addr), val); |
0e0df1e2 AK |
2241 | break; |
2242 | case 2: | |
0878d0e1 | 2243 | stw_p(qemu_map_ram_ptr(NULL, ram_addr), val); |
0e0df1e2 AK |
2244 | break; |
2245 | case 4: | |
0878d0e1 | 2246 | stl_p(qemu_map_ram_ptr(NULL, ram_addr), val); |
0e0df1e2 AK |
2247 | break; |
2248 | default: | |
2249 | abort(); | |
3a7d929e | 2250 | } |
ba051fb5 AB |
2251 | |
2252 | if (locked) { | |
2253 | tb_unlock(); | |
2254 | } | |
2255 | ||
58d2707e PB |
2256 | /* Set both VGA and migration bits for simplicity and to remove |
2257 | * the notdirty callback faster. | |
2258 | */ | |
2259 | cpu_physical_memory_set_dirty_range(ram_addr, size, | |
2260 | DIRTY_CLIENTS_NOCODE); | |
f23db169 FB |
2261 | /* we remove the notdirty callback only if the code has been |
2262 | flushed */ | |
a2cd8c85 | 2263 | if (!cpu_physical_memory_is_clean(ram_addr)) { |
bcae01e4 | 2264 | tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr); |
4917cf44 | 2265 | } |
9fa3e853 FB |
2266 | } |
2267 | ||
b018ddf6 PB |
2268 | static bool notdirty_mem_accepts(void *opaque, hwaddr addr, |
2269 | unsigned size, bool is_write) | |
2270 | { | |
2271 | return is_write; | |
2272 | } | |
2273 | ||
0e0df1e2 | 2274 | static const MemoryRegionOps notdirty_mem_ops = { |
0e0df1e2 | 2275 | .write = notdirty_mem_write, |
b018ddf6 | 2276 | .valid.accepts = notdirty_mem_accepts, |
0e0df1e2 | 2277 | .endianness = DEVICE_NATIVE_ENDIAN, |
1ccde1cb FB |
2278 | }; |
2279 | ||
0f459d16 | 2280 | /* Generate a debug exception if a watchpoint has been hit. */ |
66b9b43c | 2281 | static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags) |
0f459d16 | 2282 | { |
93afeade | 2283 | CPUState *cpu = current_cpu; |
568496c0 | 2284 | CPUClass *cc = CPU_GET_CLASS(cpu); |
93afeade | 2285 | CPUArchState *env = cpu->env_ptr; |
06d55cc1 | 2286 | target_ulong pc, cs_base; |
0f459d16 | 2287 | target_ulong vaddr; |
a1d1bb31 | 2288 | CPUWatchpoint *wp; |
89fee74a | 2289 | uint32_t cpu_flags; |
0f459d16 | 2290 | |
ff4700b0 | 2291 | if (cpu->watchpoint_hit) { |
06d55cc1 AL |
2292 | /* We re-entered the check after replacing the TB. Now raise |
2293 | * the debug interrupt so that is will trigger after the | |
2294 | * current instruction. */ | |
93afeade | 2295 | cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG); |
06d55cc1 AL |
2296 | return; |
2297 | } | |
93afeade | 2298 | vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset; |
40612000 | 2299 | vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len); |
ff4700b0 | 2300 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d PM |
2301 | if (cpu_watchpoint_address_matches(wp, vaddr, len) |
2302 | && (wp->flags & flags)) { | |
08225676 PM |
2303 | if (flags == BP_MEM_READ) { |
2304 | wp->flags |= BP_WATCHPOINT_HIT_READ; | |
2305 | } else { | |
2306 | wp->flags |= BP_WATCHPOINT_HIT_WRITE; | |
2307 | } | |
2308 | wp->hitaddr = vaddr; | |
66b9b43c | 2309 | wp->hitattrs = attrs; |
ff4700b0 | 2310 | if (!cpu->watchpoint_hit) { |
568496c0 SF |
2311 | if (wp->flags & BP_CPU && |
2312 | !cc->debug_check_watchpoint(cpu, wp)) { | |
2313 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
2314 | continue; | |
2315 | } | |
ff4700b0 | 2316 | cpu->watchpoint_hit = wp; |
a5e99826 | 2317 | |
8d04fb55 JK |
2318 | /* Both tb_lock and iothread_mutex will be reset when |
2319 | * cpu_loop_exit or cpu_loop_exit_noexc longjmp | |
2320 | * back into the cpu_exec main loop. | |
a5e99826 FK |
2321 | */ |
2322 | tb_lock(); | |
239c51a5 | 2323 | tb_check_watchpoint(cpu); |
6e140f28 | 2324 | if (wp->flags & BP_STOP_BEFORE_ACCESS) { |
27103424 | 2325 | cpu->exception_index = EXCP_DEBUG; |
5638d180 | 2326 | cpu_loop_exit(cpu); |
6e140f28 AL |
2327 | } else { |
2328 | cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags); | |
648f034c | 2329 | tb_gen_code(cpu, pc, cs_base, cpu_flags, 1); |
6886b980 | 2330 | cpu_loop_exit_noexc(cpu); |
6e140f28 | 2331 | } |
06d55cc1 | 2332 | } |
6e140f28 AL |
2333 | } else { |
2334 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
0f459d16 PB |
2335 | } |
2336 | } | |
2337 | } | |
2338 | ||
6658ffb8 PB |
2339 | /* Watchpoint access routines. Watchpoints are inserted using TLB tricks, |
2340 | so these check for a hit then pass through to the normal out-of-line | |
2341 | phys routines. */ | |
66b9b43c PM |
2342 | static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata, |
2343 | unsigned size, MemTxAttrs attrs) | |
6658ffb8 | 2344 | { |
66b9b43c PM |
2345 | MemTxResult res; |
2346 | uint64_t data; | |
79ed0416 PM |
2347 | int asidx = cpu_asidx_from_attrs(current_cpu, attrs); |
2348 | AddressSpace *as = current_cpu->cpu_ases[asidx].as; | |
66b9b43c PM |
2349 | |
2350 | check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ); | |
1ec9b909 | 2351 | switch (size) { |
66b9b43c | 2352 | case 1: |
79ed0416 | 2353 | data = address_space_ldub(as, addr, attrs, &res); |
66b9b43c PM |
2354 | break; |
2355 | case 2: | |
79ed0416 | 2356 | data = address_space_lduw(as, addr, attrs, &res); |
66b9b43c PM |
2357 | break; |
2358 | case 4: | |
79ed0416 | 2359 | data = address_space_ldl(as, addr, attrs, &res); |
66b9b43c | 2360 | break; |
1ec9b909 AK |
2361 | default: abort(); |
2362 | } | |
66b9b43c PM |
2363 | *pdata = data; |
2364 | return res; | |
6658ffb8 PB |
2365 | } |
2366 | ||
66b9b43c PM |
2367 | static MemTxResult watch_mem_write(void *opaque, hwaddr addr, |
2368 | uint64_t val, unsigned size, | |
2369 | MemTxAttrs attrs) | |
6658ffb8 | 2370 | { |
66b9b43c | 2371 | MemTxResult res; |
79ed0416 PM |
2372 | int asidx = cpu_asidx_from_attrs(current_cpu, attrs); |
2373 | AddressSpace *as = current_cpu->cpu_ases[asidx].as; | |
66b9b43c PM |
2374 | |
2375 | check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE); | |
1ec9b909 | 2376 | switch (size) { |
67364150 | 2377 | case 1: |
79ed0416 | 2378 | address_space_stb(as, addr, val, attrs, &res); |
67364150 MF |
2379 | break; |
2380 | case 2: | |
79ed0416 | 2381 | address_space_stw(as, addr, val, attrs, &res); |
67364150 MF |
2382 | break; |
2383 | case 4: | |
79ed0416 | 2384 | address_space_stl(as, addr, val, attrs, &res); |
67364150 | 2385 | break; |
1ec9b909 AK |
2386 | default: abort(); |
2387 | } | |
66b9b43c | 2388 | return res; |
6658ffb8 PB |
2389 | } |
2390 | ||
1ec9b909 | 2391 | static const MemoryRegionOps watch_mem_ops = { |
66b9b43c PM |
2392 | .read_with_attrs = watch_mem_read, |
2393 | .write_with_attrs = watch_mem_write, | |
1ec9b909 | 2394 | .endianness = DEVICE_NATIVE_ENDIAN, |
6658ffb8 | 2395 | }; |
6658ffb8 | 2396 | |
f25a49e0 PM |
2397 | static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data, |
2398 | unsigned len, MemTxAttrs attrs) | |
db7b5426 | 2399 | { |
acc9d80b | 2400 | subpage_t *subpage = opaque; |
ff6cff75 | 2401 | uint8_t buf[8]; |
5c9eb028 | 2402 | MemTxResult res; |
791af8c8 | 2403 | |
db7b5426 | 2404 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2405 | printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__, |
acc9d80b | 2406 | subpage, len, addr); |
db7b5426 | 2407 | #endif |
5c9eb028 PM |
2408 | res = address_space_read(subpage->as, addr + subpage->base, |
2409 | attrs, buf, len); | |
2410 | if (res) { | |
2411 | return res; | |
f25a49e0 | 2412 | } |
acc9d80b JK |
2413 | switch (len) { |
2414 | case 1: | |
f25a49e0 PM |
2415 | *data = ldub_p(buf); |
2416 | return MEMTX_OK; | |
acc9d80b | 2417 | case 2: |
f25a49e0 PM |
2418 | *data = lduw_p(buf); |
2419 | return MEMTX_OK; | |
acc9d80b | 2420 | case 4: |
f25a49e0 PM |
2421 | *data = ldl_p(buf); |
2422 | return MEMTX_OK; | |
ff6cff75 | 2423 | case 8: |
f25a49e0 PM |
2424 | *data = ldq_p(buf); |
2425 | return MEMTX_OK; | |
acc9d80b JK |
2426 | default: |
2427 | abort(); | |
2428 | } | |
db7b5426 BS |
2429 | } |
2430 | ||
f25a49e0 PM |
2431 | static MemTxResult subpage_write(void *opaque, hwaddr addr, |
2432 | uint64_t value, unsigned len, MemTxAttrs attrs) | |
db7b5426 | 2433 | { |
acc9d80b | 2434 | subpage_t *subpage = opaque; |
ff6cff75 | 2435 | uint8_t buf[8]; |
acc9d80b | 2436 | |
db7b5426 | 2437 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2438 | printf("%s: subpage %p len %u addr " TARGET_FMT_plx |
acc9d80b JK |
2439 | " value %"PRIx64"\n", |
2440 | __func__, subpage, len, addr, value); | |
db7b5426 | 2441 | #endif |
acc9d80b JK |
2442 | switch (len) { |
2443 | case 1: | |
2444 | stb_p(buf, value); | |
2445 | break; | |
2446 | case 2: | |
2447 | stw_p(buf, value); | |
2448 | break; | |
2449 | case 4: | |
2450 | stl_p(buf, value); | |
2451 | break; | |
ff6cff75 PB |
2452 | case 8: |
2453 | stq_p(buf, value); | |
2454 | break; | |
acc9d80b JK |
2455 | default: |
2456 | abort(); | |
2457 | } | |
5c9eb028 PM |
2458 | return address_space_write(subpage->as, addr + subpage->base, |
2459 | attrs, buf, len); | |
db7b5426 BS |
2460 | } |
2461 | ||
c353e4cc | 2462 | static bool subpage_accepts(void *opaque, hwaddr addr, |
016e9d62 | 2463 | unsigned len, bool is_write) |
c353e4cc | 2464 | { |
acc9d80b | 2465 | subpage_t *subpage = opaque; |
c353e4cc | 2466 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2467 | printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n", |
acc9d80b | 2468 | __func__, subpage, is_write ? 'w' : 'r', len, addr); |
c353e4cc PB |
2469 | #endif |
2470 | ||
acc9d80b | 2471 | return address_space_access_valid(subpage->as, addr + subpage->base, |
016e9d62 | 2472 | len, is_write); |
c353e4cc PB |
2473 | } |
2474 | ||
70c68e44 | 2475 | static const MemoryRegionOps subpage_ops = { |
f25a49e0 PM |
2476 | .read_with_attrs = subpage_read, |
2477 | .write_with_attrs = subpage_write, | |
ff6cff75 PB |
2478 | .impl.min_access_size = 1, |
2479 | .impl.max_access_size = 8, | |
2480 | .valid.min_access_size = 1, | |
2481 | .valid.max_access_size = 8, | |
c353e4cc | 2482 | .valid.accepts = subpage_accepts, |
70c68e44 | 2483 | .endianness = DEVICE_NATIVE_ENDIAN, |
db7b5426 BS |
2484 | }; |
2485 | ||
c227f099 | 2486 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, |
5312bd8b | 2487 | uint16_t section) |
db7b5426 BS |
2488 | { |
2489 | int idx, eidx; | |
2490 | ||
2491 | if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) | |
2492 | return -1; | |
2493 | idx = SUBPAGE_IDX(start); | |
2494 | eidx = SUBPAGE_IDX(end); | |
2495 | #if defined(DEBUG_SUBPAGE) | |
016e9d62 AK |
2496 | printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", |
2497 | __func__, mmio, start, end, idx, eidx, section); | |
db7b5426 | 2498 | #endif |
db7b5426 | 2499 | for (; idx <= eidx; idx++) { |
5312bd8b | 2500 | mmio->sub_section[idx] = section; |
db7b5426 BS |
2501 | } |
2502 | ||
2503 | return 0; | |
2504 | } | |
2505 | ||
acc9d80b | 2506 | static subpage_t *subpage_init(AddressSpace *as, hwaddr base) |
db7b5426 | 2507 | { |
c227f099 | 2508 | subpage_t *mmio; |
db7b5426 | 2509 | |
2615fabd | 2510 | mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t)); |
acc9d80b | 2511 | mmio->as = as; |
1eec614b | 2512 | mmio->base = base; |
2c9b15ca | 2513 | memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, |
b4fefef9 | 2514 | NULL, TARGET_PAGE_SIZE); |
b3b00c78 | 2515 | mmio->iomem.subpage = true; |
db7b5426 | 2516 | #if defined(DEBUG_SUBPAGE) |
016e9d62 AK |
2517 | printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__, |
2518 | mmio, base, TARGET_PAGE_SIZE); | |
db7b5426 | 2519 | #endif |
b41aac4f | 2520 | subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED); |
db7b5426 BS |
2521 | |
2522 | return mmio; | |
2523 | } | |
2524 | ||
a656e22f PC |
2525 | static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as, |
2526 | MemoryRegion *mr) | |
5312bd8b | 2527 | { |
a656e22f | 2528 | assert(as); |
5312bd8b | 2529 | MemoryRegionSection section = { |
a656e22f | 2530 | .address_space = as, |
5312bd8b AK |
2531 | .mr = mr, |
2532 | .offset_within_address_space = 0, | |
2533 | .offset_within_region = 0, | |
052e87b0 | 2534 | .size = int128_2_64(), |
5312bd8b AK |
2535 | }; |
2536 | ||
53cb28cb | 2537 | return phys_section_add(map, §ion); |
5312bd8b AK |
2538 | } |
2539 | ||
a54c87b6 | 2540 | MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs) |
aa102231 | 2541 | { |
a54c87b6 PM |
2542 | int asidx = cpu_asidx_from_attrs(cpu, attrs); |
2543 | CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx]; | |
32857f4d | 2544 | AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch); |
79e2b9ae | 2545 | MemoryRegionSection *sections = d->map.sections; |
9d82b5a7 PB |
2546 | |
2547 | return sections[index & ~TARGET_PAGE_MASK].mr; | |
aa102231 AK |
2548 | } |
2549 | ||
e9179ce1 AK |
2550 | static void io_mem_init(void) |
2551 | { | |
1f6245e5 | 2552 | memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX); |
2c9b15ca | 2553 | memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, |
1f6245e5 | 2554 | NULL, UINT64_MAX); |
8d04fb55 JK |
2555 | |
2556 | /* io_mem_notdirty calls tb_invalidate_phys_page_fast, | |
2557 | * which can be called without the iothread mutex. | |
2558 | */ | |
2c9b15ca | 2559 | memory_region_init_io(&io_mem_notdirty, NULL, ¬dirty_mem_ops, NULL, |
1f6245e5 | 2560 | NULL, UINT64_MAX); |
8d04fb55 JK |
2561 | memory_region_clear_global_locking(&io_mem_notdirty); |
2562 | ||
2c9b15ca | 2563 | memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL, |
1f6245e5 | 2564 | NULL, UINT64_MAX); |
e9179ce1 AK |
2565 | } |
2566 | ||
ac1970fb | 2567 | static void mem_begin(MemoryListener *listener) |
00752703 PB |
2568 | { |
2569 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); | |
53cb28cb MA |
2570 | AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); |
2571 | uint16_t n; | |
2572 | ||
a656e22f | 2573 | n = dummy_section(&d->map, as, &io_mem_unassigned); |
53cb28cb | 2574 | assert(n == PHYS_SECTION_UNASSIGNED); |
a656e22f | 2575 | n = dummy_section(&d->map, as, &io_mem_notdirty); |
53cb28cb | 2576 | assert(n == PHYS_SECTION_NOTDIRTY); |
a656e22f | 2577 | n = dummy_section(&d->map, as, &io_mem_rom); |
53cb28cb | 2578 | assert(n == PHYS_SECTION_ROM); |
a656e22f | 2579 | n = dummy_section(&d->map, as, &io_mem_watch); |
53cb28cb | 2580 | assert(n == PHYS_SECTION_WATCH); |
00752703 | 2581 | |
9736e55b | 2582 | d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; |
00752703 PB |
2583 | d->as = as; |
2584 | as->next_dispatch = d; | |
2585 | } | |
2586 | ||
79e2b9ae PB |
2587 | static void address_space_dispatch_free(AddressSpaceDispatch *d) |
2588 | { | |
2589 | phys_sections_free(&d->map); | |
2590 | g_free(d); | |
2591 | } | |
2592 | ||
00752703 | 2593 | static void mem_commit(MemoryListener *listener) |
ac1970fb | 2594 | { |
89ae337a | 2595 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); |
0475d94f PB |
2596 | AddressSpaceDispatch *cur = as->dispatch; |
2597 | AddressSpaceDispatch *next = as->next_dispatch; | |
2598 | ||
53cb28cb | 2599 | phys_page_compact_all(next, next->map.nodes_nb); |
b35ba30f | 2600 | |
79e2b9ae | 2601 | atomic_rcu_set(&as->dispatch, next); |
53cb28cb | 2602 | if (cur) { |
79e2b9ae | 2603 | call_rcu(cur, address_space_dispatch_free, rcu); |
53cb28cb | 2604 | } |
9affd6fc PB |
2605 | } |
2606 | ||
1d71148e | 2607 | static void tcg_commit(MemoryListener *listener) |
50c1e149 | 2608 | { |
32857f4d PM |
2609 | CPUAddressSpace *cpuas; |
2610 | AddressSpaceDispatch *d; | |
117712c3 AK |
2611 | |
2612 | /* since each CPU stores ram addresses in its TLB cache, we must | |
2613 | reset the modified entries */ | |
32857f4d PM |
2614 | cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); |
2615 | cpu_reloading_memory_map(); | |
2616 | /* The CPU and TLB are protected by the iothread lock. | |
2617 | * We reload the dispatch pointer now because cpu_reloading_memory_map() | |
2618 | * may have split the RCU critical section. | |
2619 | */ | |
2620 | d = atomic_rcu_read(&cpuas->as->dispatch); | |
f35e44e7 | 2621 | atomic_rcu_set(&cpuas->memory_dispatch, d); |
d10eb08f | 2622 | tlb_flush(cpuas->cpu); |
50c1e149 AK |
2623 | } |
2624 | ||
ac1970fb AK |
2625 | void address_space_init_dispatch(AddressSpace *as) |
2626 | { | |
00752703 | 2627 | as->dispatch = NULL; |
89ae337a | 2628 | as->dispatch_listener = (MemoryListener) { |
ac1970fb | 2629 | .begin = mem_begin, |
00752703 | 2630 | .commit = mem_commit, |
ac1970fb AK |
2631 | .region_add = mem_add, |
2632 | .region_nop = mem_add, | |
2633 | .priority = 0, | |
2634 | }; | |
89ae337a | 2635 | memory_listener_register(&as->dispatch_listener, as); |
ac1970fb AK |
2636 | } |
2637 | ||
6e48e8f9 PB |
2638 | void address_space_unregister(AddressSpace *as) |
2639 | { | |
2640 | memory_listener_unregister(&as->dispatch_listener); | |
2641 | } | |
2642 | ||
83f3c251 AK |
2643 | void address_space_destroy_dispatch(AddressSpace *as) |
2644 | { | |
2645 | AddressSpaceDispatch *d = as->dispatch; | |
2646 | ||
79e2b9ae PB |
2647 | atomic_rcu_set(&as->dispatch, NULL); |
2648 | if (d) { | |
2649 | call_rcu(d, address_space_dispatch_free, rcu); | |
2650 | } | |
83f3c251 AK |
2651 | } |
2652 | ||
62152b8a AK |
2653 | static void memory_map_init(void) |
2654 | { | |
7267c094 | 2655 | system_memory = g_malloc(sizeof(*system_memory)); |
03f49957 | 2656 | |
57271d63 | 2657 | memory_region_init(system_memory, NULL, "system", UINT64_MAX); |
7dca8043 | 2658 | address_space_init(&address_space_memory, system_memory, "memory"); |
309cb471 | 2659 | |
7267c094 | 2660 | system_io = g_malloc(sizeof(*system_io)); |
3bb28b72 JK |
2661 | memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", |
2662 | 65536); | |
7dca8043 | 2663 | address_space_init(&address_space_io, system_io, "I/O"); |
62152b8a AK |
2664 | } |
2665 | ||
2666 | MemoryRegion *get_system_memory(void) | |
2667 | { | |
2668 | return system_memory; | |
2669 | } | |
2670 | ||
309cb471 AK |
2671 | MemoryRegion *get_system_io(void) |
2672 | { | |
2673 | return system_io; | |
2674 | } | |
2675 | ||
e2eef170 PB |
2676 | #endif /* !defined(CONFIG_USER_ONLY) */ |
2677 | ||
13eb76e0 FB |
2678 | /* physical memory access (slow version, mainly for debug) */ |
2679 | #if defined(CONFIG_USER_ONLY) | |
f17ec444 | 2680 | int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, |
a68fe89c | 2681 | uint8_t *buf, int len, int is_write) |
13eb76e0 FB |
2682 | { |
2683 | int l, flags; | |
2684 | target_ulong page; | |
53a5960a | 2685 | void * p; |
13eb76e0 FB |
2686 | |
2687 | while (len > 0) { | |
2688 | page = addr & TARGET_PAGE_MASK; | |
2689 | l = (page + TARGET_PAGE_SIZE) - addr; | |
2690 | if (l > len) | |
2691 | l = len; | |
2692 | flags = page_get_flags(page); | |
2693 | if (!(flags & PAGE_VALID)) | |
a68fe89c | 2694 | return -1; |
13eb76e0 FB |
2695 | if (is_write) { |
2696 | if (!(flags & PAGE_WRITE)) | |
a68fe89c | 2697 | return -1; |
579a97f7 | 2698 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 2699 | if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) |
a68fe89c | 2700 | return -1; |
72fb7daa AJ |
2701 | memcpy(p, buf, l); |
2702 | unlock_user(p, addr, l); | |
13eb76e0 FB |
2703 | } else { |
2704 | if (!(flags & PAGE_READ)) | |
a68fe89c | 2705 | return -1; |
579a97f7 | 2706 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 2707 | if (!(p = lock_user(VERIFY_READ, addr, l, 1))) |
a68fe89c | 2708 | return -1; |
72fb7daa | 2709 | memcpy(buf, p, l); |
5b257578 | 2710 | unlock_user(p, addr, 0); |
13eb76e0 FB |
2711 | } |
2712 | len -= l; | |
2713 | buf += l; | |
2714 | addr += l; | |
2715 | } | |
a68fe89c | 2716 | return 0; |
13eb76e0 | 2717 | } |
8df1cd07 | 2718 | |
13eb76e0 | 2719 | #else |
51d7a9eb | 2720 | |
845b6214 | 2721 | static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, |
a8170e5e | 2722 | hwaddr length) |
51d7a9eb | 2723 | { |
e87f7778 | 2724 | uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr); |
0878d0e1 PB |
2725 | addr += memory_region_get_ram_addr(mr); |
2726 | ||
e87f7778 PB |
2727 | /* No early return if dirty_log_mask is or becomes 0, because |
2728 | * cpu_physical_memory_set_dirty_range will still call | |
2729 | * xen_modified_memory. | |
2730 | */ | |
2731 | if (dirty_log_mask) { | |
2732 | dirty_log_mask = | |
2733 | cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask); | |
2734 | } | |
2735 | if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) { | |
ba051fb5 | 2736 | tb_lock(); |
e87f7778 | 2737 | tb_invalidate_phys_range(addr, addr + length); |
ba051fb5 | 2738 | tb_unlock(); |
e87f7778 | 2739 | dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); |
51d7a9eb | 2740 | } |
e87f7778 | 2741 | cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask); |
51d7a9eb AP |
2742 | } |
2743 | ||
23326164 | 2744 | static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) |
82f2563f | 2745 | { |
e1622f4b | 2746 | unsigned access_size_max = mr->ops->valid.max_access_size; |
23326164 RH |
2747 | |
2748 | /* Regions are assumed to support 1-4 byte accesses unless | |
2749 | otherwise specified. */ | |
23326164 RH |
2750 | if (access_size_max == 0) { |
2751 | access_size_max = 4; | |
2752 | } | |
2753 | ||
2754 | /* Bound the maximum access by the alignment of the address. */ | |
2755 | if (!mr->ops->impl.unaligned) { | |
2756 | unsigned align_size_max = addr & -addr; | |
2757 | if (align_size_max != 0 && align_size_max < access_size_max) { | |
2758 | access_size_max = align_size_max; | |
2759 | } | |
82f2563f | 2760 | } |
23326164 RH |
2761 | |
2762 | /* Don't attempt accesses larger than the maximum. */ | |
2763 | if (l > access_size_max) { | |
2764 | l = access_size_max; | |
82f2563f | 2765 | } |
6554f5c0 | 2766 | l = pow2floor(l); |
23326164 RH |
2767 | |
2768 | return l; | |
82f2563f PB |
2769 | } |
2770 | ||
4840f10e | 2771 | static bool prepare_mmio_access(MemoryRegion *mr) |
125b3806 | 2772 | { |
4840f10e JK |
2773 | bool unlocked = !qemu_mutex_iothread_locked(); |
2774 | bool release_lock = false; | |
2775 | ||
2776 | if (unlocked && mr->global_locking) { | |
2777 | qemu_mutex_lock_iothread(); | |
2778 | unlocked = false; | |
2779 | release_lock = true; | |
2780 | } | |
125b3806 | 2781 | if (mr->flush_coalesced_mmio) { |
4840f10e JK |
2782 | if (unlocked) { |
2783 | qemu_mutex_lock_iothread(); | |
2784 | } | |
125b3806 | 2785 | qemu_flush_coalesced_mmio_buffer(); |
4840f10e JK |
2786 | if (unlocked) { |
2787 | qemu_mutex_unlock_iothread(); | |
2788 | } | |
125b3806 | 2789 | } |
4840f10e JK |
2790 | |
2791 | return release_lock; | |
125b3806 PB |
2792 | } |
2793 | ||
a203ac70 PB |
2794 | /* Called within RCU critical section. */ |
2795 | static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr, | |
2796 | MemTxAttrs attrs, | |
2797 | const uint8_t *buf, | |
2798 | int len, hwaddr addr1, | |
2799 | hwaddr l, MemoryRegion *mr) | |
13eb76e0 | 2800 | { |
13eb76e0 | 2801 | uint8_t *ptr; |
791af8c8 | 2802 | uint64_t val; |
3b643495 | 2803 | MemTxResult result = MEMTX_OK; |
4840f10e | 2804 | bool release_lock = false; |
3b46e624 | 2805 | |
a203ac70 | 2806 | for (;;) { |
eb7eeb88 PB |
2807 | if (!memory_access_is_direct(mr, true)) { |
2808 | release_lock |= prepare_mmio_access(mr); | |
2809 | l = memory_access_size(mr, l, addr1); | |
2810 | /* XXX: could force current_cpu to NULL to avoid | |
2811 | potential bugs */ | |
2812 | switch (l) { | |
2813 | case 8: | |
2814 | /* 64 bit write access */ | |
2815 | val = ldq_p(buf); | |
2816 | result |= memory_region_dispatch_write(mr, addr1, val, 8, | |
2817 | attrs); | |
2818 | break; | |
2819 | case 4: | |
2820 | /* 32 bit write access */ | |
6da67de6 | 2821 | val = (uint32_t)ldl_p(buf); |
eb7eeb88 PB |
2822 | result |= memory_region_dispatch_write(mr, addr1, val, 4, |
2823 | attrs); | |
2824 | break; | |
2825 | case 2: | |
2826 | /* 16 bit write access */ | |
2827 | val = lduw_p(buf); | |
2828 | result |= memory_region_dispatch_write(mr, addr1, val, 2, | |
2829 | attrs); | |
2830 | break; | |
2831 | case 1: | |
2832 | /* 8 bit write access */ | |
2833 | val = ldub_p(buf); | |
2834 | result |= memory_region_dispatch_write(mr, addr1, val, 1, | |
2835 | attrs); | |
2836 | break; | |
2837 | default: | |
2838 | abort(); | |
13eb76e0 FB |
2839 | } |
2840 | } else { | |
eb7eeb88 | 2841 | /* RAM case */ |
0878d0e1 | 2842 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
eb7eeb88 PB |
2843 | memcpy(ptr, buf, l); |
2844 | invalidate_and_set_dirty(mr, addr1, l); | |
13eb76e0 | 2845 | } |
4840f10e JK |
2846 | |
2847 | if (release_lock) { | |
2848 | qemu_mutex_unlock_iothread(); | |
2849 | release_lock = false; | |
2850 | } | |
2851 | ||
13eb76e0 FB |
2852 | len -= l; |
2853 | buf += l; | |
2854 | addr += l; | |
a203ac70 PB |
2855 | |
2856 | if (!len) { | |
2857 | break; | |
2858 | } | |
2859 | ||
2860 | l = len; | |
2861 | mr = address_space_translate(as, addr, &addr1, &l, true); | |
13eb76e0 | 2862 | } |
fd8aaa76 | 2863 | |
3b643495 | 2864 | return result; |
13eb76e0 | 2865 | } |
8df1cd07 | 2866 | |
a203ac70 PB |
2867 | MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, |
2868 | const uint8_t *buf, int len) | |
ac1970fb | 2869 | { |
eb7eeb88 | 2870 | hwaddr l; |
eb7eeb88 PB |
2871 | hwaddr addr1; |
2872 | MemoryRegion *mr; | |
2873 | MemTxResult result = MEMTX_OK; | |
eb7eeb88 | 2874 | |
a203ac70 PB |
2875 | if (len > 0) { |
2876 | rcu_read_lock(); | |
eb7eeb88 | 2877 | l = len; |
a203ac70 PB |
2878 | mr = address_space_translate(as, addr, &addr1, &l, true); |
2879 | result = address_space_write_continue(as, addr, attrs, buf, len, | |
2880 | addr1, l, mr); | |
2881 | rcu_read_unlock(); | |
2882 | } | |
2883 | ||
2884 | return result; | |
2885 | } | |
2886 | ||
2887 | /* Called within RCU critical section. */ | |
2888 | MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr, | |
2889 | MemTxAttrs attrs, uint8_t *buf, | |
2890 | int len, hwaddr addr1, hwaddr l, | |
2891 | MemoryRegion *mr) | |
2892 | { | |
2893 | uint8_t *ptr; | |
2894 | uint64_t val; | |
2895 | MemTxResult result = MEMTX_OK; | |
2896 | bool release_lock = false; | |
eb7eeb88 | 2897 | |
a203ac70 | 2898 | for (;;) { |
eb7eeb88 PB |
2899 | if (!memory_access_is_direct(mr, false)) { |
2900 | /* I/O case */ | |
2901 | release_lock |= prepare_mmio_access(mr); | |
2902 | l = memory_access_size(mr, l, addr1); | |
2903 | switch (l) { | |
2904 | case 8: | |
2905 | /* 64 bit read access */ | |
2906 | result |= memory_region_dispatch_read(mr, addr1, &val, 8, | |
2907 | attrs); | |
2908 | stq_p(buf, val); | |
2909 | break; | |
2910 | case 4: | |
2911 | /* 32 bit read access */ | |
2912 | result |= memory_region_dispatch_read(mr, addr1, &val, 4, | |
2913 | attrs); | |
2914 | stl_p(buf, val); | |
2915 | break; | |
2916 | case 2: | |
2917 | /* 16 bit read access */ | |
2918 | result |= memory_region_dispatch_read(mr, addr1, &val, 2, | |
2919 | attrs); | |
2920 | stw_p(buf, val); | |
2921 | break; | |
2922 | case 1: | |
2923 | /* 8 bit read access */ | |
2924 | result |= memory_region_dispatch_read(mr, addr1, &val, 1, | |
2925 | attrs); | |
2926 | stb_p(buf, val); | |
2927 | break; | |
2928 | default: | |
2929 | abort(); | |
2930 | } | |
2931 | } else { | |
2932 | /* RAM case */ | |
0878d0e1 | 2933 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
eb7eeb88 PB |
2934 | memcpy(buf, ptr, l); |
2935 | } | |
2936 | ||
2937 | if (release_lock) { | |
2938 | qemu_mutex_unlock_iothread(); | |
2939 | release_lock = false; | |
2940 | } | |
2941 | ||
2942 | len -= l; | |
2943 | buf += l; | |
2944 | addr += l; | |
a203ac70 PB |
2945 | |
2946 | if (!len) { | |
2947 | break; | |
2948 | } | |
2949 | ||
2950 | l = len; | |
2951 | mr = address_space_translate(as, addr, &addr1, &l, false); | |
2952 | } | |
2953 | ||
2954 | return result; | |
2955 | } | |
2956 | ||
3cc8f884 PB |
2957 | MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, |
2958 | MemTxAttrs attrs, uint8_t *buf, int len) | |
a203ac70 PB |
2959 | { |
2960 | hwaddr l; | |
2961 | hwaddr addr1; | |
2962 | MemoryRegion *mr; | |
2963 | MemTxResult result = MEMTX_OK; | |
2964 | ||
2965 | if (len > 0) { | |
2966 | rcu_read_lock(); | |
2967 | l = len; | |
2968 | mr = address_space_translate(as, addr, &addr1, &l, false); | |
2969 | result = address_space_read_continue(as, addr, attrs, buf, len, | |
2970 | addr1, l, mr); | |
2971 | rcu_read_unlock(); | |
eb7eeb88 | 2972 | } |
eb7eeb88 PB |
2973 | |
2974 | return result; | |
ac1970fb AK |
2975 | } |
2976 | ||
eb7eeb88 PB |
2977 | MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, |
2978 | uint8_t *buf, int len, bool is_write) | |
2979 | { | |
2980 | if (is_write) { | |
2981 | return address_space_write(as, addr, attrs, (uint8_t *)buf, len); | |
2982 | } else { | |
2983 | return address_space_read(as, addr, attrs, (uint8_t *)buf, len); | |
2984 | } | |
2985 | } | |
ac1970fb | 2986 | |
a8170e5e | 2987 | void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf, |
ac1970fb AK |
2988 | int len, int is_write) |
2989 | { | |
5c9eb028 PM |
2990 | address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, |
2991 | buf, len, is_write); | |
ac1970fb AK |
2992 | } |
2993 | ||
582b55a9 AG |
2994 | enum write_rom_type { |
2995 | WRITE_DATA, | |
2996 | FLUSH_CACHE, | |
2997 | }; | |
2998 | ||
2a221651 | 2999 | static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as, |
582b55a9 | 3000 | hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type) |
d0ecd2aa | 3001 | { |
149f54b5 | 3002 | hwaddr l; |
d0ecd2aa | 3003 | uint8_t *ptr; |
149f54b5 | 3004 | hwaddr addr1; |
5c8a00ce | 3005 | MemoryRegion *mr; |
3b46e624 | 3006 | |
41063e1e | 3007 | rcu_read_lock(); |
d0ecd2aa | 3008 | while (len > 0) { |
149f54b5 | 3009 | l = len; |
2a221651 | 3010 | mr = address_space_translate(as, addr, &addr1, &l, true); |
3b46e624 | 3011 | |
5c8a00ce PB |
3012 | if (!(memory_region_is_ram(mr) || |
3013 | memory_region_is_romd(mr))) { | |
b242e0e0 | 3014 | l = memory_access_size(mr, l, addr1); |
d0ecd2aa | 3015 | } else { |
d0ecd2aa | 3016 | /* ROM/RAM case */ |
0878d0e1 | 3017 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
582b55a9 AG |
3018 | switch (type) { |
3019 | case WRITE_DATA: | |
3020 | memcpy(ptr, buf, l); | |
845b6214 | 3021 | invalidate_and_set_dirty(mr, addr1, l); |
582b55a9 AG |
3022 | break; |
3023 | case FLUSH_CACHE: | |
3024 | flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l); | |
3025 | break; | |
3026 | } | |
d0ecd2aa FB |
3027 | } |
3028 | len -= l; | |
3029 | buf += l; | |
3030 | addr += l; | |
3031 | } | |
41063e1e | 3032 | rcu_read_unlock(); |
d0ecd2aa FB |
3033 | } |
3034 | ||
582b55a9 | 3035 | /* used for ROM loading : can write in RAM and ROM */ |
2a221651 | 3036 | void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr, |
582b55a9 AG |
3037 | const uint8_t *buf, int len) |
3038 | { | |
2a221651 | 3039 | cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA); |
582b55a9 AG |
3040 | } |
3041 | ||
3042 | void cpu_flush_icache_range(hwaddr start, int len) | |
3043 | { | |
3044 | /* | |
3045 | * This function should do the same thing as an icache flush that was | |
3046 | * triggered from within the guest. For TCG we are always cache coherent, | |
3047 | * so there is no need to flush anything. For KVM / Xen we need to flush | |
3048 | * the host's instruction cache at least. | |
3049 | */ | |
3050 | if (tcg_enabled()) { | |
3051 | return; | |
3052 | } | |
3053 | ||
2a221651 EI |
3054 | cpu_physical_memory_write_rom_internal(&address_space_memory, |
3055 | start, NULL, len, FLUSH_CACHE); | |
582b55a9 AG |
3056 | } |
3057 | ||
6d16c2f8 | 3058 | typedef struct { |
d3e71559 | 3059 | MemoryRegion *mr; |
6d16c2f8 | 3060 | void *buffer; |
a8170e5e AK |
3061 | hwaddr addr; |
3062 | hwaddr len; | |
c2cba0ff | 3063 | bool in_use; |
6d16c2f8 AL |
3064 | } BounceBuffer; |
3065 | ||
3066 | static BounceBuffer bounce; | |
3067 | ||
ba223c29 | 3068 | typedef struct MapClient { |
e95205e1 | 3069 | QEMUBH *bh; |
72cf2d4f | 3070 | QLIST_ENTRY(MapClient) link; |
ba223c29 AL |
3071 | } MapClient; |
3072 | ||
38e047b5 | 3073 | QemuMutex map_client_list_lock; |
72cf2d4f BS |
3074 | static QLIST_HEAD(map_client_list, MapClient) map_client_list |
3075 | = QLIST_HEAD_INITIALIZER(map_client_list); | |
ba223c29 | 3076 | |
e95205e1 FZ |
3077 | static void cpu_unregister_map_client_do(MapClient *client) |
3078 | { | |
3079 | QLIST_REMOVE(client, link); | |
3080 | g_free(client); | |
3081 | } | |
3082 | ||
33b6c2ed FZ |
3083 | static void cpu_notify_map_clients_locked(void) |
3084 | { | |
3085 | MapClient *client; | |
3086 | ||
3087 | while (!QLIST_EMPTY(&map_client_list)) { | |
3088 | client = QLIST_FIRST(&map_client_list); | |
e95205e1 FZ |
3089 | qemu_bh_schedule(client->bh); |
3090 | cpu_unregister_map_client_do(client); | |
33b6c2ed FZ |
3091 | } |
3092 | } | |
3093 | ||
e95205e1 | 3094 | void cpu_register_map_client(QEMUBH *bh) |
ba223c29 | 3095 | { |
7267c094 | 3096 | MapClient *client = g_malloc(sizeof(*client)); |
ba223c29 | 3097 | |
38e047b5 | 3098 | qemu_mutex_lock(&map_client_list_lock); |
e95205e1 | 3099 | client->bh = bh; |
72cf2d4f | 3100 | QLIST_INSERT_HEAD(&map_client_list, client, link); |
33b6c2ed FZ |
3101 | if (!atomic_read(&bounce.in_use)) { |
3102 | cpu_notify_map_clients_locked(); | |
3103 | } | |
38e047b5 | 3104 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
3105 | } |
3106 | ||
38e047b5 | 3107 | void cpu_exec_init_all(void) |
ba223c29 | 3108 | { |
38e047b5 | 3109 | qemu_mutex_init(&ram_list.mutex); |
20bccb82 PM |
3110 | /* The data structures we set up here depend on knowing the page size, |
3111 | * so no more changes can be made after this point. | |
3112 | * In an ideal world, nothing we did before we had finished the | |
3113 | * machine setup would care about the target page size, and we could | |
3114 | * do this much later, rather than requiring board models to state | |
3115 | * up front what their requirements are. | |
3116 | */ | |
3117 | finalize_target_page_bits(); | |
38e047b5 | 3118 | io_mem_init(); |
680a4783 | 3119 | memory_map_init(); |
38e047b5 | 3120 | qemu_mutex_init(&map_client_list_lock); |
ba223c29 AL |
3121 | } |
3122 | ||
e95205e1 | 3123 | void cpu_unregister_map_client(QEMUBH *bh) |
ba223c29 AL |
3124 | { |
3125 | MapClient *client; | |
3126 | ||
e95205e1 FZ |
3127 | qemu_mutex_lock(&map_client_list_lock); |
3128 | QLIST_FOREACH(client, &map_client_list, link) { | |
3129 | if (client->bh == bh) { | |
3130 | cpu_unregister_map_client_do(client); | |
3131 | break; | |
3132 | } | |
ba223c29 | 3133 | } |
e95205e1 | 3134 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
3135 | } |
3136 | ||
3137 | static void cpu_notify_map_clients(void) | |
3138 | { | |
38e047b5 | 3139 | qemu_mutex_lock(&map_client_list_lock); |
33b6c2ed | 3140 | cpu_notify_map_clients_locked(); |
38e047b5 | 3141 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
3142 | } |
3143 | ||
51644ab7 PB |
3144 | bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write) |
3145 | { | |
5c8a00ce | 3146 | MemoryRegion *mr; |
51644ab7 PB |
3147 | hwaddr l, xlat; |
3148 | ||
41063e1e | 3149 | rcu_read_lock(); |
51644ab7 PB |
3150 | while (len > 0) { |
3151 | l = len; | |
5c8a00ce PB |
3152 | mr = address_space_translate(as, addr, &xlat, &l, is_write); |
3153 | if (!memory_access_is_direct(mr, is_write)) { | |
3154 | l = memory_access_size(mr, l, addr); | |
3155 | if (!memory_region_access_valid(mr, xlat, l, is_write)) { | |
5ad4a2b7 | 3156 | rcu_read_unlock(); |
51644ab7 PB |
3157 | return false; |
3158 | } | |
3159 | } | |
3160 | ||
3161 | len -= l; | |
3162 | addr += l; | |
3163 | } | |
41063e1e | 3164 | rcu_read_unlock(); |
51644ab7 PB |
3165 | return true; |
3166 | } | |
3167 | ||
715c31ec PB |
3168 | static hwaddr |
3169 | address_space_extend_translation(AddressSpace *as, hwaddr addr, hwaddr target_len, | |
3170 | MemoryRegion *mr, hwaddr base, hwaddr len, | |
3171 | bool is_write) | |
3172 | { | |
3173 | hwaddr done = 0; | |
3174 | hwaddr xlat; | |
3175 | MemoryRegion *this_mr; | |
3176 | ||
3177 | for (;;) { | |
3178 | target_len -= len; | |
3179 | addr += len; | |
3180 | done += len; | |
3181 | if (target_len == 0) { | |
3182 | return done; | |
3183 | } | |
3184 | ||
3185 | len = target_len; | |
3186 | this_mr = address_space_translate(as, addr, &xlat, &len, is_write); | |
3187 | if (this_mr != mr || xlat != base + done) { | |
3188 | return done; | |
3189 | } | |
3190 | } | |
3191 | } | |
3192 | ||
6d16c2f8 AL |
3193 | /* Map a physical memory region into a host virtual address. |
3194 | * May map a subset of the requested range, given by and returned in *plen. | |
3195 | * May return NULL if resources needed to perform the mapping are exhausted. | |
3196 | * Use only for reads OR writes - not for read-modify-write operations. | |
ba223c29 AL |
3197 | * Use cpu_register_map_client() to know when retrying the map operation is |
3198 | * likely to succeed. | |
6d16c2f8 | 3199 | */ |
ac1970fb | 3200 | void *address_space_map(AddressSpace *as, |
a8170e5e AK |
3201 | hwaddr addr, |
3202 | hwaddr *plen, | |
ac1970fb | 3203 | bool is_write) |
6d16c2f8 | 3204 | { |
a8170e5e | 3205 | hwaddr len = *plen; |
715c31ec PB |
3206 | hwaddr l, xlat; |
3207 | MemoryRegion *mr; | |
e81bcda5 | 3208 | void *ptr; |
6d16c2f8 | 3209 | |
e3127ae0 PB |
3210 | if (len == 0) { |
3211 | return NULL; | |
3212 | } | |
38bee5dc | 3213 | |
e3127ae0 | 3214 | l = len; |
41063e1e | 3215 | rcu_read_lock(); |
e3127ae0 | 3216 | mr = address_space_translate(as, addr, &xlat, &l, is_write); |
41063e1e | 3217 | |
e3127ae0 | 3218 | if (!memory_access_is_direct(mr, is_write)) { |
c2cba0ff | 3219 | if (atomic_xchg(&bounce.in_use, true)) { |
41063e1e | 3220 | rcu_read_unlock(); |
e3127ae0 | 3221 | return NULL; |
6d16c2f8 | 3222 | } |
e85d9db5 KW |
3223 | /* Avoid unbounded allocations */ |
3224 | l = MIN(l, TARGET_PAGE_SIZE); | |
3225 | bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l); | |
e3127ae0 PB |
3226 | bounce.addr = addr; |
3227 | bounce.len = l; | |
d3e71559 PB |
3228 | |
3229 | memory_region_ref(mr); | |
3230 | bounce.mr = mr; | |
e3127ae0 | 3231 | if (!is_write) { |
5c9eb028 PM |
3232 | address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED, |
3233 | bounce.buffer, l); | |
8ab934f9 | 3234 | } |
6d16c2f8 | 3235 | |
41063e1e | 3236 | rcu_read_unlock(); |
e3127ae0 PB |
3237 | *plen = l; |
3238 | return bounce.buffer; | |
3239 | } | |
3240 | ||
e3127ae0 | 3241 | |
d3e71559 | 3242 | memory_region_ref(mr); |
715c31ec PB |
3243 | *plen = address_space_extend_translation(as, addr, len, mr, xlat, l, is_write); |
3244 | ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen); | |
e81bcda5 PB |
3245 | rcu_read_unlock(); |
3246 | ||
3247 | return ptr; | |
6d16c2f8 AL |
3248 | } |
3249 | ||
ac1970fb | 3250 | /* Unmaps a memory region previously mapped by address_space_map(). |
6d16c2f8 AL |
3251 | * Will also mark the memory as dirty if is_write == 1. access_len gives |
3252 | * the amount of memory that was actually read or written by the caller. | |
3253 | */ | |
a8170e5e AK |
3254 | void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, |
3255 | int is_write, hwaddr access_len) | |
6d16c2f8 AL |
3256 | { |
3257 | if (buffer != bounce.buffer) { | |
d3e71559 PB |
3258 | MemoryRegion *mr; |
3259 | ram_addr_t addr1; | |
3260 | ||
07bdaa41 | 3261 | mr = memory_region_from_host(buffer, &addr1); |
d3e71559 | 3262 | assert(mr != NULL); |
6d16c2f8 | 3263 | if (is_write) { |
845b6214 | 3264 | invalidate_and_set_dirty(mr, addr1, access_len); |
6d16c2f8 | 3265 | } |
868bb33f | 3266 | if (xen_enabled()) { |
e41d7c69 | 3267 | xen_invalidate_map_cache_entry(buffer); |
050a0ddf | 3268 | } |
d3e71559 | 3269 | memory_region_unref(mr); |
6d16c2f8 AL |
3270 | return; |
3271 | } | |
3272 | if (is_write) { | |
5c9eb028 PM |
3273 | address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED, |
3274 | bounce.buffer, access_len); | |
6d16c2f8 | 3275 | } |
f8a83245 | 3276 | qemu_vfree(bounce.buffer); |
6d16c2f8 | 3277 | bounce.buffer = NULL; |
d3e71559 | 3278 | memory_region_unref(bounce.mr); |
c2cba0ff | 3279 | atomic_mb_set(&bounce.in_use, false); |
ba223c29 | 3280 | cpu_notify_map_clients(); |
6d16c2f8 | 3281 | } |
d0ecd2aa | 3282 | |
a8170e5e AK |
3283 | void *cpu_physical_memory_map(hwaddr addr, |
3284 | hwaddr *plen, | |
ac1970fb AK |
3285 | int is_write) |
3286 | { | |
3287 | return address_space_map(&address_space_memory, addr, plen, is_write); | |
3288 | } | |
3289 | ||
a8170e5e AK |
3290 | void cpu_physical_memory_unmap(void *buffer, hwaddr len, |
3291 | int is_write, hwaddr access_len) | |
ac1970fb AK |
3292 | { |
3293 | return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); | |
3294 | } | |
3295 | ||
0ce265ff PB |
3296 | #define ARG1_DECL AddressSpace *as |
3297 | #define ARG1 as | |
3298 | #define SUFFIX | |
3299 | #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__) | |
3300 | #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write) | |
3301 | #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs) | |
3302 | #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len) | |
3303 | #define RCU_READ_LOCK(...) rcu_read_lock() | |
3304 | #define RCU_READ_UNLOCK(...) rcu_read_unlock() | |
3305 | #include "memory_ldst.inc.c" | |
1e78bcc1 | 3306 | |
1f4e496e PB |
3307 | int64_t address_space_cache_init(MemoryRegionCache *cache, |
3308 | AddressSpace *as, | |
3309 | hwaddr addr, | |
3310 | hwaddr len, | |
3311 | bool is_write) | |
3312 | { | |
90c4fe5f PB |
3313 | cache->len = len; |
3314 | cache->as = as; | |
3315 | cache->xlat = addr; | |
3316 | return len; | |
1f4e496e PB |
3317 | } |
3318 | ||
3319 | void address_space_cache_invalidate(MemoryRegionCache *cache, | |
3320 | hwaddr addr, | |
3321 | hwaddr access_len) | |
3322 | { | |
1f4e496e PB |
3323 | } |
3324 | ||
3325 | void address_space_cache_destroy(MemoryRegionCache *cache) | |
3326 | { | |
90c4fe5f | 3327 | cache->as = NULL; |
1f4e496e PB |
3328 | } |
3329 | ||
3330 | #define ARG1_DECL MemoryRegionCache *cache | |
3331 | #define ARG1 cache | |
3332 | #define SUFFIX _cached | |
90c4fe5f PB |
3333 | #define TRANSLATE(addr, ...) \ |
3334 | address_space_translate(cache->as, cache->xlat + (addr), __VA_ARGS__) | |
1f4e496e | 3335 | #define IS_DIRECT(mr, is_write) true |
90c4fe5f PB |
3336 | #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs) |
3337 | #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len) | |
3338 | #define RCU_READ_LOCK() rcu_read_lock() | |
3339 | #define RCU_READ_UNLOCK() rcu_read_unlock() | |
1f4e496e PB |
3340 | #include "memory_ldst.inc.c" |
3341 | ||
5e2972fd | 3342 | /* virtual memory access for debug (includes writing to ROM) */ |
f17ec444 | 3343 | int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, |
b448f2f3 | 3344 | uint8_t *buf, int len, int is_write) |
13eb76e0 FB |
3345 | { |
3346 | int l; | |
a8170e5e | 3347 | hwaddr phys_addr; |
9b3c35e0 | 3348 | target_ulong page; |
13eb76e0 | 3349 | |
79ca7a1b | 3350 | cpu_synchronize_state(cpu); |
13eb76e0 | 3351 | while (len > 0) { |
5232e4c7 PM |
3352 | int asidx; |
3353 | MemTxAttrs attrs; | |
3354 | ||
13eb76e0 | 3355 | page = addr & TARGET_PAGE_MASK; |
5232e4c7 PM |
3356 | phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs); |
3357 | asidx = cpu_asidx_from_attrs(cpu, attrs); | |
13eb76e0 FB |
3358 | /* if no physical page mapped, return an error */ |
3359 | if (phys_addr == -1) | |
3360 | return -1; | |
3361 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3362 | if (l > len) | |
3363 | l = len; | |
5e2972fd | 3364 | phys_addr += (addr & ~TARGET_PAGE_MASK); |
2e38847b | 3365 | if (is_write) { |
5232e4c7 PM |
3366 | cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as, |
3367 | phys_addr, buf, l); | |
2e38847b | 3368 | } else { |
5232e4c7 PM |
3369 | address_space_rw(cpu->cpu_ases[asidx].as, phys_addr, |
3370 | MEMTXATTRS_UNSPECIFIED, | |
5c9eb028 | 3371 | buf, l, 0); |
2e38847b | 3372 | } |
13eb76e0 FB |
3373 | len -= l; |
3374 | buf += l; | |
3375 | addr += l; | |
3376 | } | |
3377 | return 0; | |
3378 | } | |
038629a6 DDAG |
3379 | |
3380 | /* | |
3381 | * Allows code that needs to deal with migration bitmaps etc to still be built | |
3382 | * target independent. | |
3383 | */ | |
20afaed9 | 3384 | size_t qemu_target_page_size(void) |
038629a6 | 3385 | { |
20afaed9 | 3386 | return TARGET_PAGE_SIZE; |
038629a6 DDAG |
3387 | } |
3388 | ||
a68fe89c | 3389 | #endif |
13eb76e0 | 3390 | |
8e4a424b BS |
3391 | /* |
3392 | * A helper function for the _utterly broken_ virtio device model to find out if | |
3393 | * it's running on a big endian machine. Don't do this at home kids! | |
3394 | */ | |
98ed8ecf GK |
3395 | bool target_words_bigendian(void); |
3396 | bool target_words_bigendian(void) | |
8e4a424b BS |
3397 | { |
3398 | #if defined(TARGET_WORDS_BIGENDIAN) | |
3399 | return true; | |
3400 | #else | |
3401 | return false; | |
3402 | #endif | |
3403 | } | |
3404 | ||
76f35538 | 3405 | #ifndef CONFIG_USER_ONLY |
a8170e5e | 3406 | bool cpu_physical_memory_is_io(hwaddr phys_addr) |
76f35538 | 3407 | { |
5c8a00ce | 3408 | MemoryRegion*mr; |
149f54b5 | 3409 | hwaddr l = 1; |
41063e1e | 3410 | bool res; |
76f35538 | 3411 | |
41063e1e | 3412 | rcu_read_lock(); |
5c8a00ce PB |
3413 | mr = address_space_translate(&address_space_memory, |
3414 | phys_addr, &phys_addr, &l, false); | |
76f35538 | 3415 | |
41063e1e PB |
3416 | res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr)); |
3417 | rcu_read_unlock(); | |
3418 | return res; | |
76f35538 | 3419 | } |
bd2fa51f | 3420 | |
e3807054 | 3421 | int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) |
bd2fa51f MH |
3422 | { |
3423 | RAMBlock *block; | |
e3807054 | 3424 | int ret = 0; |
bd2fa51f | 3425 | |
0dc3f44a MD |
3426 | rcu_read_lock(); |
3427 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
e3807054 DDAG |
3428 | ret = func(block->idstr, block->host, block->offset, |
3429 | block->used_length, opaque); | |
3430 | if (ret) { | |
3431 | break; | |
3432 | } | |
bd2fa51f | 3433 | } |
0dc3f44a | 3434 | rcu_read_unlock(); |
e3807054 | 3435 | return ret; |
bd2fa51f | 3436 | } |
d3a5038c DDAG |
3437 | |
3438 | /* | |
3439 | * Unmap pages of memory from start to start+length such that | |
3440 | * they a) read as 0, b) Trigger whatever fault mechanism | |
3441 | * the OS provides for postcopy. | |
3442 | * The pages must be unmapped by the end of the function. | |
3443 | * Returns: 0 on success, none-0 on failure | |
3444 | * | |
3445 | */ | |
3446 | int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length) | |
3447 | { | |
3448 | int ret = -1; | |
3449 | ||
3450 | uint8_t *host_startaddr = rb->host + start; | |
3451 | ||
3452 | if ((uintptr_t)host_startaddr & (rb->page_size - 1)) { | |
3453 | error_report("ram_block_discard_range: Unaligned start address: %p", | |
3454 | host_startaddr); | |
3455 | goto err; | |
3456 | } | |
3457 | ||
3458 | if ((start + length) <= rb->used_length) { | |
3459 | uint8_t *host_endaddr = host_startaddr + length; | |
3460 | if ((uintptr_t)host_endaddr & (rb->page_size - 1)) { | |
3461 | error_report("ram_block_discard_range: Unaligned end address: %p", | |
3462 | host_endaddr); | |
3463 | goto err; | |
3464 | } | |
3465 | ||
3466 | errno = ENOTSUP; /* If we are missing MADVISE etc */ | |
3467 | ||
e2fa71f5 | 3468 | if (rb->page_size == qemu_host_page_size) { |
d3a5038c | 3469 | #if defined(CONFIG_MADVISE) |
e2fa71f5 DDAG |
3470 | /* Note: We need the madvise MADV_DONTNEED behaviour of definitely |
3471 | * freeing the page. | |
3472 | */ | |
3473 | ret = madvise(host_startaddr, length, MADV_DONTNEED); | |
d3a5038c | 3474 | #endif |
e2fa71f5 DDAG |
3475 | } else { |
3476 | /* Huge page case - unfortunately it can't do DONTNEED, but | |
3477 | * it can do the equivalent by FALLOC_FL_PUNCH_HOLE in the | |
3478 | * huge page file. | |
3479 | */ | |
3480 | #ifdef CONFIG_FALLOCATE_PUNCH_HOLE | |
3481 | ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, | |
3482 | start, length); | |
3483 | #endif | |
3484 | } | |
d3a5038c DDAG |
3485 | if (ret) { |
3486 | ret = -errno; | |
3487 | error_report("ram_block_discard_range: Failed to discard range " | |
3488 | "%s:%" PRIx64 " +%zx (%d)", | |
3489 | rb->idstr, start, length, ret); | |
3490 | } | |
3491 | } else { | |
3492 | error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64 | |
3493 | "/%zx/" RAM_ADDR_FMT")", | |
3494 | rb->idstr, start, length, rb->used_length); | |
3495 | } | |
3496 | ||
3497 | err: | |
3498 | return ret; | |
3499 | } | |
3500 | ||
ec3f8c99 | 3501 | #endif |