Make address_space_get_iotlb_entry() take a MemTxAttrs argument
[qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
7b31bbc2 19#include "qemu/osdep.h"
da34e65c 20#include "qapi/error.h"
54936004 21
f348b6d1 22#include "qemu/cutils.h"
6180a181 23#include "cpu.h"
63c91552 24#include "exec/exec-all.h"
51180423 25#include "exec/target_page.h"
b67d9a52 26#include "tcg.h"
741da0d3 27#include "hw/qdev-core.h"
c7e002c5 28#include "hw/qdev-properties.h"
4485bd26 29#if !defined(CONFIG_USER_ONLY)
47c8ca53 30#include "hw/boards.h"
33c11879 31#include "hw/xen/xen.h"
4485bd26 32#endif
9c17d615 33#include "sysemu/kvm.h"
2ff3de68 34#include "sysemu/sysemu.h"
1de7afc9
PB
35#include "qemu/timer.h"
36#include "qemu/config-file.h"
75a34036 37#include "qemu/error-report.h"
53a5960a 38#if defined(CONFIG_USER_ONLY)
a9c94277 39#include "qemu.h"
432d268c 40#else /* !CONFIG_USER_ONLY */
741da0d3
PB
41#include "hw/hw.h"
42#include "exec/memory.h"
df43d49c 43#include "exec/ioport.h"
741da0d3 44#include "sysemu/dma.h"
9c607668 45#include "sysemu/numa.h"
79ca7a1b 46#include "sysemu/hw_accel.h"
741da0d3 47#include "exec/address-spaces.h"
9c17d615 48#include "sysemu/xen-mapcache.h"
0ab8ed18 49#include "trace-root.h"
d3a5038c 50
e2fa71f5 51#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
e2fa71f5
DDAG
52#include <linux/falloc.h>
53#endif
54
53a5960a 55#endif
0dc3f44a 56#include "qemu/rcu_queue.h"
4840f10e 57#include "qemu/main-loop.h"
5b6dd868 58#include "translate-all.h"
7615936e 59#include "sysemu/replay.h"
0cac1b66 60
022c62cb 61#include "exec/memory-internal.h"
220c3ebd 62#include "exec/ram_addr.h"
508127e2 63#include "exec/log.h"
67d95c15 64
9dfeca7c
BR
65#include "migration/vmstate.h"
66
b35ba30f 67#include "qemu/range.h"
794e8f30
MT
68#ifndef _WIN32
69#include "qemu/mmap-alloc.h"
70#endif
b35ba30f 71
be9b23c4
PX
72#include "monitor/monitor.h"
73
db7b5426 74//#define DEBUG_SUBPAGE
1196be37 75
e2eef170 76#if !defined(CONFIG_USER_ONLY)
0dc3f44a
MD
77/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
78 * are protected by the ramlist lock.
79 */
0d53d9fe 80RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
81
82static MemoryRegion *system_memory;
309cb471 83static MemoryRegion *system_io;
62152b8a 84
f6790af6
AK
85AddressSpace address_space_io;
86AddressSpace address_space_memory;
2673a5da 87
0844e007 88MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 89static MemoryRegion io_mem_unassigned;
0e0df1e2 90
7bd4f430
PB
91/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
92#define RAM_PREALLOC (1 << 0)
93
dbcb8981
PB
94/* RAM is mmap-ed with MAP_SHARED */
95#define RAM_SHARED (1 << 1)
96
62be4e3a
MT
97/* Only a portion of RAM (used_length) is actually used, and migrated.
98 * This used_length size can change across reboots.
99 */
100#define RAM_RESIZEABLE (1 << 2)
101
2ce16640
DDAG
102/* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
103 * zero the page and wake waiting processes.
104 * (Set during postcopy)
105 */
106#define RAM_UF_ZEROPAGE (1 << 3)
e2eef170 107#endif
9fa3e853 108
20bccb82
PM
109#ifdef TARGET_PAGE_BITS_VARY
110int target_page_bits;
111bool target_page_bits_decided;
112#endif
113
bdc44640 114struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
6a00d601
FB
115/* current CPU in the current thread. It is only valid inside
116 cpu_exec() */
f240eb6f 117__thread CPUState *current_cpu;
2e70f6ef 118/* 0 = Do not count executed instructions.
bf20dc07 119 1 = Precise instruction counting.
2e70f6ef 120 2 = Adaptive rate instruction counting. */
5708fc66 121int use_icount;
6a00d601 122
a0be0c58
YZ
123uintptr_t qemu_host_page_size;
124intptr_t qemu_host_page_mask;
a0be0c58 125
20bccb82
PM
126bool set_preferred_target_page_bits(int bits)
127{
128 /* The target page size is the lowest common denominator for all
129 * the CPUs in the system, so we can only make it smaller, never
130 * larger. And we can't make it smaller once we've committed to
131 * a particular size.
132 */
133#ifdef TARGET_PAGE_BITS_VARY
134 assert(bits >= TARGET_PAGE_BITS_MIN);
135 if (target_page_bits == 0 || target_page_bits > bits) {
136 if (target_page_bits_decided) {
137 return false;
138 }
139 target_page_bits = bits;
140 }
141#endif
142 return true;
143}
144
e2eef170 145#if !defined(CONFIG_USER_ONLY)
4346ae3e 146
20bccb82
PM
147static void finalize_target_page_bits(void)
148{
149#ifdef TARGET_PAGE_BITS_VARY
150 if (target_page_bits == 0) {
151 target_page_bits = TARGET_PAGE_BITS_MIN;
152 }
153 target_page_bits_decided = true;
154#endif
155}
156
1db8abb1
PB
157typedef struct PhysPageEntry PhysPageEntry;
158
159struct PhysPageEntry {
9736e55b 160 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 161 uint32_t skip : 6;
9736e55b 162 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 163 uint32_t ptr : 26;
1db8abb1
PB
164};
165
8b795765
MT
166#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
167
03f49957 168/* Size of the L2 (and L3, etc) page tables. */
57271d63 169#define ADDR_SPACE_BITS 64
03f49957 170
026736ce 171#define P_L2_BITS 9
03f49957
PB
172#define P_L2_SIZE (1 << P_L2_BITS)
173
174#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
175
176typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 177
53cb28cb 178typedef struct PhysPageMap {
79e2b9ae
PB
179 struct rcu_head rcu;
180
53cb28cb
MA
181 unsigned sections_nb;
182 unsigned sections_nb_alloc;
183 unsigned nodes_nb;
184 unsigned nodes_nb_alloc;
185 Node *nodes;
186 MemoryRegionSection *sections;
187} PhysPageMap;
188
1db8abb1 189struct AddressSpaceDispatch {
729633c2 190 MemoryRegionSection *mru_section;
1db8abb1
PB
191 /* This is a multi-level map on the physical address space.
192 * The bottom level has pointers to MemoryRegionSections.
193 */
194 PhysPageEntry phys_map;
53cb28cb 195 PhysPageMap map;
1db8abb1
PB
196};
197
90260c6c
JK
198#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
199typedef struct subpage_t {
200 MemoryRegion iomem;
16620684 201 FlatView *fv;
90260c6c 202 hwaddr base;
2615fabd 203 uint16_t sub_section[];
90260c6c
JK
204} subpage_t;
205
b41aac4f
LPF
206#define PHYS_SECTION_UNASSIGNED 0
207#define PHYS_SECTION_NOTDIRTY 1
208#define PHYS_SECTION_ROM 2
209#define PHYS_SECTION_WATCH 3
5312bd8b 210
e2eef170 211static void io_mem_init(void);
62152b8a 212static void memory_map_init(void);
09daed84 213static void tcg_commit(MemoryListener *listener);
e2eef170 214
1ec9b909 215static MemoryRegion io_mem_watch;
32857f4d
PM
216
217/**
218 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
219 * @cpu: the CPU whose AddressSpace this is
220 * @as: the AddressSpace itself
221 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
222 * @tcg_as_listener: listener for tracking changes to the AddressSpace
223 */
224struct CPUAddressSpace {
225 CPUState *cpu;
226 AddressSpace *as;
227 struct AddressSpaceDispatch *memory_dispatch;
228 MemoryListener tcg_as_listener;
229};
230
8deaf12c
GH
231struct DirtyBitmapSnapshot {
232 ram_addr_t start;
233 ram_addr_t end;
234 unsigned long dirty[];
235};
236
6658ffb8 237#endif
fd6ce8f6 238
6d9a1304 239#if !defined(CONFIG_USER_ONLY)
d6f2ea22 240
53cb28cb 241static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 242{
101420b8 243 static unsigned alloc_hint = 16;
53cb28cb 244 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
101420b8 245 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
53cb28cb
MA
246 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
247 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
101420b8 248 alloc_hint = map->nodes_nb_alloc;
d6f2ea22 249 }
f7bf5461
AK
250}
251
db94604b 252static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
253{
254 unsigned i;
8b795765 255 uint32_t ret;
db94604b
PB
256 PhysPageEntry e;
257 PhysPageEntry *p;
f7bf5461 258
53cb28cb 259 ret = map->nodes_nb++;
db94604b 260 p = map->nodes[ret];
f7bf5461 261 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 262 assert(ret != map->nodes_nb_alloc);
db94604b
PB
263
264 e.skip = leaf ? 0 : 1;
265 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 266 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 267 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 268 }
f7bf5461 269 return ret;
d6f2ea22
AK
270}
271
53cb28cb
MA
272static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
273 hwaddr *index, hwaddr *nb, uint16_t leaf,
2999097b 274 int level)
f7bf5461
AK
275{
276 PhysPageEntry *p;
03f49957 277 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 278
9736e55b 279 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 280 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 281 }
db94604b 282 p = map->nodes[lp->ptr];
03f49957 283 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 284
03f49957 285 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 286 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 287 lp->skip = 0;
c19e8800 288 lp->ptr = leaf;
07f07b31
AK
289 *index += step;
290 *nb -= step;
2999097b 291 } else {
53cb28cb 292 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
293 }
294 ++lp;
f7bf5461
AK
295 }
296}
297
ac1970fb 298static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 299 hwaddr index, hwaddr nb,
2999097b 300 uint16_t leaf)
f7bf5461 301{
2999097b 302 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 303 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 304
53cb28cb 305 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
306}
307
b35ba30f
MT
308/* Compact a non leaf page entry. Simply detect that the entry has a single child,
309 * and update our entry so we can skip it and go directly to the destination.
310 */
efee678d 311static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
b35ba30f
MT
312{
313 unsigned valid_ptr = P_L2_SIZE;
314 int valid = 0;
315 PhysPageEntry *p;
316 int i;
317
318 if (lp->ptr == PHYS_MAP_NODE_NIL) {
319 return;
320 }
321
322 p = nodes[lp->ptr];
323 for (i = 0; i < P_L2_SIZE; i++) {
324 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
325 continue;
326 }
327
328 valid_ptr = i;
329 valid++;
330 if (p[i].skip) {
efee678d 331 phys_page_compact(&p[i], nodes);
b35ba30f
MT
332 }
333 }
334
335 /* We can only compress if there's only one child. */
336 if (valid != 1) {
337 return;
338 }
339
340 assert(valid_ptr < P_L2_SIZE);
341
342 /* Don't compress if it won't fit in the # of bits we have. */
343 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
344 return;
345 }
346
347 lp->ptr = p[valid_ptr].ptr;
348 if (!p[valid_ptr].skip) {
349 /* If our only child is a leaf, make this a leaf. */
350 /* By design, we should have made this node a leaf to begin with so we
351 * should never reach here.
352 * But since it's so simple to handle this, let's do it just in case we
353 * change this rule.
354 */
355 lp->skip = 0;
356 } else {
357 lp->skip += p[valid_ptr].skip;
358 }
359}
360
8629d3fc 361void address_space_dispatch_compact(AddressSpaceDispatch *d)
b35ba30f 362{
b35ba30f 363 if (d->phys_map.skip) {
efee678d 364 phys_page_compact(&d->phys_map, d->map.nodes);
b35ba30f
MT
365 }
366}
367
29cb533d
FZ
368static inline bool section_covers_addr(const MemoryRegionSection *section,
369 hwaddr addr)
370{
371 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
372 * the section must cover the entire address space.
373 */
258dfaaa 374 return int128_gethi(section->size) ||
29cb533d 375 range_covers_byte(section->offset_within_address_space,
258dfaaa 376 int128_getlo(section->size), addr);
29cb533d
FZ
377}
378
003a0cf2 379static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
92e873b9 380{
003a0cf2
PX
381 PhysPageEntry lp = d->phys_map, *p;
382 Node *nodes = d->map.nodes;
383 MemoryRegionSection *sections = d->map.sections;
97115a8d 384 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 385 int i;
f1f6e3b8 386
9736e55b 387 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 388 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 389 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 390 }
9affd6fc 391 p = nodes[lp.ptr];
03f49957 392 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 393 }
b35ba30f 394
29cb533d 395 if (section_covers_addr(&sections[lp.ptr], addr)) {
b35ba30f
MT
396 return &sections[lp.ptr];
397 } else {
398 return &sections[PHYS_SECTION_UNASSIGNED];
399 }
f3705d53
AK
400}
401
e5548617
BS
402bool memory_region_is_unassigned(MemoryRegion *mr)
403{
2a8e7499 404 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
5b6dd868 405 && mr != &io_mem_watch;
fd6ce8f6 406}
149f54b5 407
79e2b9ae 408/* Called from RCU critical section */
c7086b4a 409static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
410 hwaddr addr,
411 bool resolve_subpage)
9f029603 412{
729633c2 413 MemoryRegionSection *section = atomic_read(&d->mru_section);
90260c6c
JK
414 subpage_t *subpage;
415
07c114bb
PB
416 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
417 !section_covers_addr(section, addr)) {
003a0cf2 418 section = phys_page_find(d, addr);
07c114bb 419 atomic_set(&d->mru_section, section);
729633c2 420 }
90260c6c
JK
421 if (resolve_subpage && section->mr->subpage) {
422 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 423 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c
JK
424 }
425 return section;
9f029603
JK
426}
427
79e2b9ae 428/* Called from RCU critical section */
90260c6c 429static MemoryRegionSection *
c7086b4a 430address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 431 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
432{
433 MemoryRegionSection *section;
965eb2fc 434 MemoryRegion *mr;
a87f3954 435 Int128 diff;
149f54b5 436
c7086b4a 437 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
438 /* Compute offset within MemoryRegionSection */
439 addr -= section->offset_within_address_space;
440
441 /* Compute offset within MemoryRegion */
442 *xlat = addr + section->offset_within_region;
443
965eb2fc 444 mr = section->mr;
b242e0e0
PB
445
446 /* MMIO registers can be expected to perform full-width accesses based only
447 * on their address, without considering adjacent registers that could
448 * decode to completely different MemoryRegions. When such registers
449 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
450 * regions overlap wildly. For this reason we cannot clamp the accesses
451 * here.
452 *
453 * If the length is small (as is the case for address_space_ldl/stl),
454 * everything works fine. If the incoming length is large, however,
455 * the caller really has to do the clamping through memory_access_size.
456 */
965eb2fc 457 if (memory_region_is_ram(mr)) {
e4a511f8 458 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
459 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
460 }
149f54b5
PB
461 return section;
462}
90260c6c 463
a411c84b
PB
464/**
465 * address_space_translate_iommu - translate an address through an IOMMU
466 * memory region and then through the target address space.
467 *
468 * @iommu_mr: the IOMMU memory region that we start the translation from
469 * @addr: the address to be translated through the MMU
470 * @xlat: the translated address offset within the destination memory region.
471 * It cannot be %NULL.
472 * @plen_out: valid read/write length of the translated address. It
473 * cannot be %NULL.
474 * @page_mask_out: page mask for the translated address. This
475 * should only be meaningful for IOMMU translated
476 * addresses, since there may be huge pages that this bit
477 * would tell. It can be %NULL if we don't care about it.
478 * @is_write: whether the translation operation is for write
479 * @is_mmio: whether this can be MMIO, set true if it can
480 * @target_as: the address space targeted by the IOMMU
481 *
482 * This function is called from RCU critical section. It is the common
483 * part of flatview_do_translate and address_space_translate_cached.
484 */
485static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
486 hwaddr *xlat,
487 hwaddr *plen_out,
488 hwaddr *page_mask_out,
489 bool is_write,
490 bool is_mmio,
491 AddressSpace **target_as)
492{
493 MemoryRegionSection *section;
494 hwaddr page_mask = (hwaddr)-1;
495
496 do {
497 hwaddr addr = *xlat;
498 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
499 IOMMUTLBEntry iotlb = imrc->translate(iommu_mr, addr, is_write ?
500 IOMMU_WO : IOMMU_RO);
501
502 if (!(iotlb.perm & (1 << is_write))) {
503 goto unassigned;
504 }
505
506 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
507 | (addr & iotlb.addr_mask));
508 page_mask &= iotlb.addr_mask;
509 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
510 *target_as = iotlb.target_as;
511
512 section = address_space_translate_internal(
513 address_space_to_dispatch(iotlb.target_as), addr, xlat,
514 plen_out, is_mmio);
515
516 iommu_mr = memory_region_get_iommu(section->mr);
517 } while (unlikely(iommu_mr));
518
519 if (page_mask_out) {
520 *page_mask_out = page_mask;
521 }
522 return *section;
523
524unassigned:
525 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
526}
527
d5e5fafd
PX
528/**
529 * flatview_do_translate - translate an address in FlatView
530 *
531 * @fv: the flat view that we want to translate on
532 * @addr: the address to be translated in above address space
533 * @xlat: the translated address offset within memory region. It
534 * cannot be @NULL.
535 * @plen_out: valid read/write length of the translated address. It
536 * can be @NULL when we don't care about it.
537 * @page_mask_out: page mask for the translated address. This
538 * should only be meaningful for IOMMU translated
539 * addresses, since there may be huge pages that this bit
540 * would tell. It can be @NULL if we don't care about it.
541 * @is_write: whether the translation operation is for write
542 * @is_mmio: whether this can be MMIO, set true if it can
ad2804d9 543 * @target_as: the address space targeted by the IOMMU
d5e5fafd
PX
544 *
545 * This function is called from RCU critical section
546 */
16620684
AK
547static MemoryRegionSection flatview_do_translate(FlatView *fv,
548 hwaddr addr,
549 hwaddr *xlat,
d5e5fafd
PX
550 hwaddr *plen_out,
551 hwaddr *page_mask_out,
16620684
AK
552 bool is_write,
553 bool is_mmio,
554 AddressSpace **target_as)
052c8fa9 555{
052c8fa9 556 MemoryRegionSection *section;
3df9d748 557 IOMMUMemoryRegion *iommu_mr;
d5e5fafd
PX
558 hwaddr plen = (hwaddr)(-1);
559
ad2804d9
PB
560 if (!plen_out) {
561 plen_out = &plen;
d5e5fafd 562 }
052c8fa9 563
a411c84b
PB
564 section = address_space_translate_internal(
565 flatview_to_dispatch(fv), addr, xlat,
566 plen_out, is_mmio);
052c8fa9 567
a411c84b
PB
568 iommu_mr = memory_region_get_iommu(section->mr);
569 if (unlikely(iommu_mr)) {
570 return address_space_translate_iommu(iommu_mr, xlat,
571 plen_out, page_mask_out,
572 is_write, is_mmio,
573 target_as);
052c8fa9 574 }
d5e5fafd 575 if (page_mask_out) {
a411c84b
PB
576 /* Not behind an IOMMU, use default page size. */
577 *page_mask_out = ~TARGET_PAGE_MASK;
d5e5fafd
PX
578 }
579
a764040c 580 return *section;
052c8fa9
JW
581}
582
583/* Called from RCU critical section */
a764040c 584IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
7446eb07 585 bool is_write, MemTxAttrs attrs)
90260c6c 586{
a764040c 587 MemoryRegionSection section;
076a93d7 588 hwaddr xlat, page_mask;
30951157 589
076a93d7
PX
590 /*
591 * This can never be MMIO, and we don't really care about plen,
592 * but page mask.
593 */
594 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
595 NULL, &page_mask, is_write, false, &as);
30951157 596
a764040c
PX
597 /* Illegal translation */
598 if (section.mr == &io_mem_unassigned) {
599 goto iotlb_fail;
600 }
30951157 601
a764040c
PX
602 /* Convert memory region offset into address space offset */
603 xlat += section.offset_within_address_space -
604 section.offset_within_region;
605
a764040c 606 return (IOMMUTLBEntry) {
e76bb18f 607 .target_as = as,
076a93d7
PX
608 .iova = addr & ~page_mask,
609 .translated_addr = xlat & ~page_mask,
610 .addr_mask = page_mask,
a764040c
PX
611 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
612 .perm = IOMMU_RW,
613 };
614
615iotlb_fail:
616 return (IOMMUTLBEntry) {0};
617}
618
619/* Called from RCU critical section */
16620684 620MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
efa99a2f
PM
621 hwaddr *plen, bool is_write,
622 MemTxAttrs attrs)
a764040c
PX
623{
624 MemoryRegion *mr;
625 MemoryRegionSection section;
16620684 626 AddressSpace *as = NULL;
a764040c
PX
627
628 /* This can be MMIO, so setup MMIO bit. */
d5e5fafd
PX
629 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
630 is_write, true, &as);
a764040c
PX
631 mr = section.mr;
632
fe680d0d 633 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 634 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 635 *plen = MIN(page, *plen);
a87f3954
PB
636 }
637
30951157 638 return mr;
90260c6c
JK
639}
640
79e2b9ae 641/* Called from RCU critical section */
90260c6c 642MemoryRegionSection *
d7898cda 643address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
9d82b5a7 644 hwaddr *xlat, hwaddr *plen)
90260c6c 645{
30951157 646 MemoryRegionSection *section;
f35e44e7 647 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
d7898cda
PM
648
649 section = address_space_translate_internal(d, addr, xlat, plen, false);
30951157 650
3df9d748 651 assert(!memory_region_is_iommu(section->mr));
30951157 652 return section;
90260c6c 653}
5b6dd868 654#endif
fd6ce8f6 655
b170fce3 656#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
657
658static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 659{
259186a7 660 CPUState *cpu = opaque;
a513fe19 661
5b6dd868
BS
662 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
663 version_id is increased. */
259186a7 664 cpu->interrupt_request &= ~0x01;
d10eb08f 665 tlb_flush(cpu);
5b6dd868 666
15a356c4
PD
667 /* loadvm has just updated the content of RAM, bypassing the
668 * usual mechanisms that ensure we flush TBs for writes to
669 * memory we've translated code from. So we must flush all TBs,
670 * which will now be stale.
671 */
672 tb_flush(cpu);
673
5b6dd868 674 return 0;
a513fe19 675}
7501267e 676
6c3bff0e
PD
677static int cpu_common_pre_load(void *opaque)
678{
679 CPUState *cpu = opaque;
680
adee6424 681 cpu->exception_index = -1;
6c3bff0e
PD
682
683 return 0;
684}
685
686static bool cpu_common_exception_index_needed(void *opaque)
687{
688 CPUState *cpu = opaque;
689
adee6424 690 return tcg_enabled() && cpu->exception_index != -1;
6c3bff0e
PD
691}
692
693static const VMStateDescription vmstate_cpu_common_exception_index = {
694 .name = "cpu_common/exception_index",
695 .version_id = 1,
696 .minimum_version_id = 1,
5cd8cada 697 .needed = cpu_common_exception_index_needed,
6c3bff0e
PD
698 .fields = (VMStateField[]) {
699 VMSTATE_INT32(exception_index, CPUState),
700 VMSTATE_END_OF_LIST()
701 }
702};
703
bac05aa9
AS
704static bool cpu_common_crash_occurred_needed(void *opaque)
705{
706 CPUState *cpu = opaque;
707
708 return cpu->crash_occurred;
709}
710
711static const VMStateDescription vmstate_cpu_common_crash_occurred = {
712 .name = "cpu_common/crash_occurred",
713 .version_id = 1,
714 .minimum_version_id = 1,
715 .needed = cpu_common_crash_occurred_needed,
716 .fields = (VMStateField[]) {
717 VMSTATE_BOOL(crash_occurred, CPUState),
718 VMSTATE_END_OF_LIST()
719 }
720};
721
1a1562f5 722const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
723 .name = "cpu_common",
724 .version_id = 1,
725 .minimum_version_id = 1,
6c3bff0e 726 .pre_load = cpu_common_pre_load,
5b6dd868 727 .post_load = cpu_common_post_load,
35d08458 728 .fields = (VMStateField[]) {
259186a7
AF
729 VMSTATE_UINT32(halted, CPUState),
730 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868 731 VMSTATE_END_OF_LIST()
6c3bff0e 732 },
5cd8cada
JQ
733 .subsections = (const VMStateDescription*[]) {
734 &vmstate_cpu_common_exception_index,
bac05aa9 735 &vmstate_cpu_common_crash_occurred,
5cd8cada 736 NULL
5b6dd868
BS
737 }
738};
1a1562f5 739
5b6dd868 740#endif
ea041c0e 741
38d8f5c8 742CPUState *qemu_get_cpu(int index)
ea041c0e 743{
bdc44640 744 CPUState *cpu;
ea041c0e 745
bdc44640 746 CPU_FOREACH(cpu) {
55e5c285 747 if (cpu->cpu_index == index) {
bdc44640 748 return cpu;
55e5c285 749 }
ea041c0e 750 }
5b6dd868 751
bdc44640 752 return NULL;
ea041c0e
FB
753}
754
09daed84 755#if !defined(CONFIG_USER_ONLY)
80ceb07a
PX
756void cpu_address_space_init(CPUState *cpu, int asidx,
757 const char *prefix, MemoryRegion *mr)
09daed84 758{
12ebc9a7 759 CPUAddressSpace *newas;
80ceb07a 760 AddressSpace *as = g_new0(AddressSpace, 1);
87a621d8 761 char *as_name;
80ceb07a
PX
762
763 assert(mr);
87a621d8
PX
764 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
765 address_space_init(as, mr, as_name);
766 g_free(as_name);
12ebc9a7
PM
767
768 /* Target code should have set num_ases before calling us */
769 assert(asidx < cpu->num_ases);
770
56943e8c
PM
771 if (asidx == 0) {
772 /* address space 0 gets the convenience alias */
773 cpu->as = as;
774 }
775
12ebc9a7
PM
776 /* KVM cannot currently support multiple address spaces. */
777 assert(asidx == 0 || !kvm_enabled());
09daed84 778
12ebc9a7
PM
779 if (!cpu->cpu_ases) {
780 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
09daed84 781 }
32857f4d 782
12ebc9a7
PM
783 newas = &cpu->cpu_ases[asidx];
784 newas->cpu = cpu;
785 newas->as = as;
56943e8c 786 if (tcg_enabled()) {
12ebc9a7
PM
787 newas->tcg_as_listener.commit = tcg_commit;
788 memory_listener_register(&newas->tcg_as_listener, as);
56943e8c 789 }
09daed84 790}
651a5bc0
PM
791
792AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
793{
794 /* Return the AddressSpace corresponding to the specified index */
795 return cpu->cpu_ases[asidx].as;
796}
09daed84
EI
797#endif
798
7bbc124e 799void cpu_exec_unrealizefn(CPUState *cpu)
1c59eb39 800{
9dfeca7c
BR
801 CPUClass *cc = CPU_GET_CLASS(cpu);
802
267f685b 803 cpu_list_remove(cpu);
9dfeca7c
BR
804
805 if (cc->vmsd != NULL) {
806 vmstate_unregister(NULL, cc->vmsd, cpu);
807 }
808 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
809 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
810 }
1c59eb39
BR
811}
812
c7e002c5
FZ
813Property cpu_common_props[] = {
814#ifndef CONFIG_USER_ONLY
815 /* Create a memory property for softmmu CPU object,
816 * so users can wire up its memory. (This can't go in qom/cpu.c
817 * because that file is compiled only once for both user-mode
818 * and system builds.) The default if no link is set up is to use
819 * the system address space.
820 */
821 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
822 MemoryRegion *),
823#endif
824 DEFINE_PROP_END_OF_LIST(),
825};
826
39e329e3 827void cpu_exec_initfn(CPUState *cpu)
ea041c0e 828{
56943e8c 829 cpu->as = NULL;
12ebc9a7 830 cpu->num_ases = 0;
56943e8c 831
291135b5 832#ifndef CONFIG_USER_ONLY
291135b5 833 cpu->thread_id = qemu_get_thread_id();
6731d864
PC
834 cpu->memory = system_memory;
835 object_ref(OBJECT(cpu->memory));
291135b5 836#endif
39e329e3
LV
837}
838
ce5b1bbf 839void cpu_exec_realizefn(CPUState *cpu, Error **errp)
39e329e3 840{
55c3ceef 841 CPUClass *cc = CPU_GET_CLASS(cpu);
2dda6354 842 static bool tcg_target_initialized;
291135b5 843
267f685b 844 cpu_list_add(cpu);
1bc7e522 845
2dda6354
EC
846 if (tcg_enabled() && !tcg_target_initialized) {
847 tcg_target_initialized = true;
55c3ceef
RH
848 cc->tcg_initialize();
849 }
850
1bc7e522 851#ifndef CONFIG_USER_ONLY
e0d47944 852 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
741da0d3 853 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
e0d47944 854 }
b170fce3 855 if (cc->vmsd != NULL) {
741da0d3 856 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
b170fce3 857 }
741da0d3 858#endif
ea041c0e
FB
859}
860
2278b939
IM
861const char *parse_cpu_model(const char *cpu_model)
862{
863 ObjectClass *oc;
864 CPUClass *cc;
865 gchar **model_pieces;
866 const char *cpu_type;
867
868 model_pieces = g_strsplit(cpu_model, ",", 2);
869
870 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
871 if (oc == NULL) {
872 error_report("unable to find CPU model '%s'", model_pieces[0]);
873 g_strfreev(model_pieces);
874 exit(EXIT_FAILURE);
875 }
876
877 cpu_type = object_class_get_name(oc);
878 cc = CPU_CLASS(oc);
879 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
880 g_strfreev(model_pieces);
881 return cpu_type;
882}
883
406bc339 884#if defined(CONFIG_USER_ONLY)
00b941e5 885static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1e7855a5 886{
406bc339
PK
887 mmap_lock();
888 tb_lock();
889 tb_invalidate_phys_page_range(pc, pc + 1, 0);
890 tb_unlock();
891 mmap_unlock();
892}
893#else
894static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
895{
896 MemTxAttrs attrs;
897 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
898 int asidx = cpu_asidx_from_attrs(cpu, attrs);
899 if (phys != -1) {
900 /* Locks grabbed by tb_invalidate_phys_addr */
901 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
c874dc4f 902 phys | (pc & ~TARGET_PAGE_MASK), attrs);
406bc339 903 }
1e7855a5 904}
406bc339 905#endif
d720b93d 906
c527ee8f 907#if defined(CONFIG_USER_ONLY)
75a34036 908void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
c527ee8f
PB
909
910{
911}
912
3ee887e8
PM
913int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
914 int flags)
915{
916 return -ENOSYS;
917}
918
919void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
920{
921}
922
75a34036 923int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
c527ee8f
PB
924 int flags, CPUWatchpoint **watchpoint)
925{
926 return -ENOSYS;
927}
928#else
6658ffb8 929/* Add a watchpoint. */
75a34036 930int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 931 int flags, CPUWatchpoint **watchpoint)
6658ffb8 932{
c0ce998e 933 CPUWatchpoint *wp;
6658ffb8 934
05068c0d 935 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 936 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
937 error_report("tried to set invalid watchpoint at %"
938 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
939 return -EINVAL;
940 }
7267c094 941 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
942
943 wp->vaddr = addr;
05068c0d 944 wp->len = len;
a1d1bb31
AL
945 wp->flags = flags;
946
2dc9f411 947 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
948 if (flags & BP_GDB) {
949 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
950 } else {
951 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
952 }
6658ffb8 953
31b030d4 954 tlb_flush_page(cpu, addr);
a1d1bb31
AL
955
956 if (watchpoint)
957 *watchpoint = wp;
958 return 0;
6658ffb8
PB
959}
960
a1d1bb31 961/* Remove a specific watchpoint. */
75a34036 962int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 963 int flags)
6658ffb8 964{
a1d1bb31 965 CPUWatchpoint *wp;
6658ffb8 966
ff4700b0 967 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 968 if (addr == wp->vaddr && len == wp->len
6e140f28 969 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 970 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
971 return 0;
972 }
973 }
a1d1bb31 974 return -ENOENT;
6658ffb8
PB
975}
976
a1d1bb31 977/* Remove a specific watchpoint by reference. */
75a34036 978void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 979{
ff4700b0 980 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 981
31b030d4 982 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 983
7267c094 984 g_free(watchpoint);
a1d1bb31
AL
985}
986
987/* Remove all matching watchpoints. */
75a34036 988void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 989{
c0ce998e 990 CPUWatchpoint *wp, *next;
a1d1bb31 991
ff4700b0 992 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
993 if (wp->flags & mask) {
994 cpu_watchpoint_remove_by_ref(cpu, wp);
995 }
c0ce998e 996 }
7d03f82f 997}
05068c0d
PM
998
999/* Return true if this watchpoint address matches the specified
1000 * access (ie the address range covered by the watchpoint overlaps
1001 * partially or completely with the address range covered by the
1002 * access).
1003 */
1004static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
1005 vaddr addr,
1006 vaddr len)
1007{
1008 /* We know the lengths are non-zero, but a little caution is
1009 * required to avoid errors in the case where the range ends
1010 * exactly at the top of the address space and so addr + len
1011 * wraps round to zero.
1012 */
1013 vaddr wpend = wp->vaddr + wp->len - 1;
1014 vaddr addrend = addr + len - 1;
1015
1016 return !(addr > wpend || wp->vaddr > addrend);
1017}
1018
c527ee8f 1019#endif
7d03f82f 1020
a1d1bb31 1021/* Add a breakpoint. */
b3310ab3 1022int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
a1d1bb31 1023 CPUBreakpoint **breakpoint)
4c3a88a2 1024{
c0ce998e 1025 CPUBreakpoint *bp;
3b46e624 1026
7267c094 1027 bp = g_malloc(sizeof(*bp));
4c3a88a2 1028
a1d1bb31
AL
1029 bp->pc = pc;
1030 bp->flags = flags;
1031
2dc9f411 1032 /* keep all GDB-injected breakpoints in front */
00b941e5 1033 if (flags & BP_GDB) {
f0c3c505 1034 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 1035 } else {
f0c3c505 1036 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 1037 }
3b46e624 1038
f0c3c505 1039 breakpoint_invalidate(cpu, pc);
a1d1bb31 1040
00b941e5 1041 if (breakpoint) {
a1d1bb31 1042 *breakpoint = bp;
00b941e5 1043 }
4c3a88a2 1044 return 0;
4c3a88a2
FB
1045}
1046
a1d1bb31 1047/* Remove a specific breakpoint. */
b3310ab3 1048int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
a1d1bb31 1049{
a1d1bb31
AL
1050 CPUBreakpoint *bp;
1051
f0c3c505 1052 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31 1053 if (bp->pc == pc && bp->flags == flags) {
b3310ab3 1054 cpu_breakpoint_remove_by_ref(cpu, bp);
a1d1bb31
AL
1055 return 0;
1056 }
7d03f82f 1057 }
a1d1bb31 1058 return -ENOENT;
7d03f82f
EI
1059}
1060
a1d1bb31 1061/* Remove a specific breakpoint by reference. */
b3310ab3 1062void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
4c3a88a2 1063{
f0c3c505
AF
1064 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1065
1066 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 1067
7267c094 1068 g_free(breakpoint);
a1d1bb31
AL
1069}
1070
1071/* Remove all matching breakpoints. */
b3310ab3 1072void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 1073{
c0ce998e 1074 CPUBreakpoint *bp, *next;
a1d1bb31 1075
f0c3c505 1076 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
b3310ab3
AF
1077 if (bp->flags & mask) {
1078 cpu_breakpoint_remove_by_ref(cpu, bp);
1079 }
c0ce998e 1080 }
4c3a88a2
FB
1081}
1082
c33a346e
FB
1083/* enable or disable single step mode. EXCP_DEBUG is returned by the
1084 CPU loop after each instruction */
3825b28f 1085void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 1086{
ed2803da
AF
1087 if (cpu->singlestep_enabled != enabled) {
1088 cpu->singlestep_enabled = enabled;
1089 if (kvm_enabled()) {
38e478ec 1090 kvm_update_guest_debug(cpu, 0);
ed2803da 1091 } else {
ccbb4d44 1092 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 1093 /* XXX: only flush what is necessary */
bbd77c18 1094 tb_flush(cpu);
e22a25c9 1095 }
c33a346e 1096 }
c33a346e
FB
1097}
1098
a47dddd7 1099void cpu_abort(CPUState *cpu, const char *fmt, ...)
7501267e
FB
1100{
1101 va_list ap;
493ae1f0 1102 va_list ap2;
7501267e
FB
1103
1104 va_start(ap, fmt);
493ae1f0 1105 va_copy(ap2, ap);
7501267e
FB
1106 fprintf(stderr, "qemu: fatal: ");
1107 vfprintf(stderr, fmt, ap);
1108 fprintf(stderr, "\n");
878096ee 1109 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
013a2942 1110 if (qemu_log_separate()) {
1ee73216 1111 qemu_log_lock();
93fcfe39
AL
1112 qemu_log("qemu: fatal: ");
1113 qemu_log_vprintf(fmt, ap2);
1114 qemu_log("\n");
a0762859 1115 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 1116 qemu_log_flush();
1ee73216 1117 qemu_log_unlock();
93fcfe39 1118 qemu_log_close();
924edcae 1119 }
493ae1f0 1120 va_end(ap2);
f9373291 1121 va_end(ap);
7615936e 1122 replay_finish();
fd052bf6
RV
1123#if defined(CONFIG_USER_ONLY)
1124 {
1125 struct sigaction act;
1126 sigfillset(&act.sa_mask);
1127 act.sa_handler = SIG_DFL;
1128 sigaction(SIGABRT, &act, NULL);
1129 }
1130#endif
7501267e
FB
1131 abort();
1132}
1133
0124311e 1134#if !defined(CONFIG_USER_ONLY)
0dc3f44a 1135/* Called from RCU critical section */
041603fe
PB
1136static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1137{
1138 RAMBlock *block;
1139
43771539 1140 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 1141 if (block && addr - block->offset < block->max_length) {
68851b98 1142 return block;
041603fe 1143 }
99e15582 1144 RAMBLOCK_FOREACH(block) {
9b8424d5 1145 if (addr - block->offset < block->max_length) {
041603fe
PB
1146 goto found;
1147 }
1148 }
1149
1150 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1151 abort();
1152
1153found:
43771539
PB
1154 /* It is safe to write mru_block outside the iothread lock. This
1155 * is what happens:
1156 *
1157 * mru_block = xxx
1158 * rcu_read_unlock()
1159 * xxx removed from list
1160 * rcu_read_lock()
1161 * read mru_block
1162 * mru_block = NULL;
1163 * call_rcu(reclaim_ramblock, xxx);
1164 * rcu_read_unlock()
1165 *
1166 * atomic_rcu_set is not needed here. The block was already published
1167 * when it was placed into the list. Here we're just making an extra
1168 * copy of the pointer.
1169 */
041603fe
PB
1170 ram_list.mru_block = block;
1171 return block;
1172}
1173
a2f4d5be 1174static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 1175{
9a13565d 1176 CPUState *cpu;
041603fe 1177 ram_addr_t start1;
a2f4d5be
JQ
1178 RAMBlock *block;
1179 ram_addr_t end;
1180
1181 end = TARGET_PAGE_ALIGN(start + length);
1182 start &= TARGET_PAGE_MASK;
d24981d3 1183
0dc3f44a 1184 rcu_read_lock();
041603fe
PB
1185 block = qemu_get_ram_block(start);
1186 assert(block == qemu_get_ram_block(end - 1));
1240be24 1187 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
9a13565d
PC
1188 CPU_FOREACH(cpu) {
1189 tlb_reset_dirty(cpu, start1, length);
1190 }
0dc3f44a 1191 rcu_read_unlock();
d24981d3
JQ
1192}
1193
5579c7f3 1194/* Note: start and end must be within the same ram block. */
03eebc9e
SH
1195bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1196 ram_addr_t length,
1197 unsigned client)
1ccde1cb 1198{
5b82b703 1199 DirtyMemoryBlocks *blocks;
03eebc9e 1200 unsigned long end, page;
5b82b703 1201 bool dirty = false;
03eebc9e
SH
1202
1203 if (length == 0) {
1204 return false;
1205 }
f23db169 1206
03eebc9e
SH
1207 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1208 page = start >> TARGET_PAGE_BITS;
5b82b703
SH
1209
1210 rcu_read_lock();
1211
1212 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1213
1214 while (page < end) {
1215 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1216 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1217 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1218
1219 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1220 offset, num);
1221 page += num;
1222 }
1223
1224 rcu_read_unlock();
03eebc9e
SH
1225
1226 if (dirty && tcg_enabled()) {
a2f4d5be 1227 tlb_reset_dirty_range_all(start, length);
5579c7f3 1228 }
03eebc9e
SH
1229
1230 return dirty;
1ccde1cb
FB
1231}
1232
8deaf12c
GH
1233DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1234 (ram_addr_t start, ram_addr_t length, unsigned client)
1235{
1236 DirtyMemoryBlocks *blocks;
1237 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1238 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1239 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1240 DirtyBitmapSnapshot *snap;
1241 unsigned long page, end, dest;
1242
1243 snap = g_malloc0(sizeof(*snap) +
1244 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1245 snap->start = first;
1246 snap->end = last;
1247
1248 page = first >> TARGET_PAGE_BITS;
1249 end = last >> TARGET_PAGE_BITS;
1250 dest = 0;
1251
1252 rcu_read_lock();
1253
1254 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1255
1256 while (page < end) {
1257 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1258 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1259 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1260
1261 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1262 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1263 offset >>= BITS_PER_LEVEL;
1264
1265 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1266 blocks->blocks[idx] + offset,
1267 num);
1268 page += num;
1269 dest += num >> BITS_PER_LEVEL;
1270 }
1271
1272 rcu_read_unlock();
1273
1274 if (tcg_enabled()) {
1275 tlb_reset_dirty_range_all(start, length);
1276 }
1277
1278 return snap;
1279}
1280
1281bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1282 ram_addr_t start,
1283 ram_addr_t length)
1284{
1285 unsigned long page, end;
1286
1287 assert(start >= snap->start);
1288 assert(start + length <= snap->end);
1289
1290 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1291 page = (start - snap->start) >> TARGET_PAGE_BITS;
1292
1293 while (page < end) {
1294 if (test_bit(page, snap->dirty)) {
1295 return true;
1296 }
1297 page++;
1298 }
1299 return false;
1300}
1301
79e2b9ae 1302/* Called from RCU critical section */
bb0e627a 1303hwaddr memory_region_section_get_iotlb(CPUState *cpu,
149f54b5
PB
1304 MemoryRegionSection *section,
1305 target_ulong vaddr,
1306 hwaddr paddr, hwaddr xlat,
1307 int prot,
1308 target_ulong *address)
e5548617 1309{
a8170e5e 1310 hwaddr iotlb;
e5548617
BS
1311 CPUWatchpoint *wp;
1312
cc5bea60 1313 if (memory_region_is_ram(section->mr)) {
e5548617 1314 /* Normal RAM. */
e4e69794 1315 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
e5548617 1316 if (!section->readonly) {
b41aac4f 1317 iotlb |= PHYS_SECTION_NOTDIRTY;
e5548617 1318 } else {
b41aac4f 1319 iotlb |= PHYS_SECTION_ROM;
e5548617
BS
1320 }
1321 } else {
0b8e2c10
PM
1322 AddressSpaceDispatch *d;
1323
16620684 1324 d = flatview_to_dispatch(section->fv);
0b8e2c10 1325 iotlb = section - d->map.sections;
149f54b5 1326 iotlb += xlat;
e5548617
BS
1327 }
1328
1329 /* Make accesses to pages with watchpoints go via the
1330 watchpoint trap routines. */
ff4700b0 1331 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1332 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
e5548617
BS
1333 /* Avoid trapping reads of pages with a write breakpoint. */
1334 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
b41aac4f 1335 iotlb = PHYS_SECTION_WATCH + paddr;
e5548617
BS
1336 *address |= TLB_MMIO;
1337 break;
1338 }
1339 }
1340 }
1341
1342 return iotlb;
1343}
9fa3e853
FB
1344#endif /* defined(CONFIG_USER_ONLY) */
1345
e2eef170 1346#if !defined(CONFIG_USER_ONLY)
8da3ff18 1347
c227f099 1348static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 1349 uint16_t section);
16620684 1350static subpage_t *subpage_init(FlatView *fv, hwaddr base);
54688b1e 1351
06329cce 1352static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
a2b257d6 1353 qemu_anon_ram_alloc;
91138037
MA
1354
1355/*
1356 * Set a custom physical guest memory alloator.
1357 * Accelerators with unusual needs may need this. Hopefully, we can
1358 * get rid of it eventually.
1359 */
06329cce 1360void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
91138037
MA
1361{
1362 phys_mem_alloc = alloc;
1363}
1364
53cb28cb
MA
1365static uint16_t phys_section_add(PhysPageMap *map,
1366 MemoryRegionSection *section)
5312bd8b 1367{
68f3f65b
PB
1368 /* The physical section number is ORed with a page-aligned
1369 * pointer to produce the iotlb entries. Thus it should
1370 * never overflow into the page-aligned value.
1371 */
53cb28cb 1372 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1373
53cb28cb
MA
1374 if (map->sections_nb == map->sections_nb_alloc) {
1375 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1376 map->sections = g_renew(MemoryRegionSection, map->sections,
1377 map->sections_nb_alloc);
5312bd8b 1378 }
53cb28cb 1379 map->sections[map->sections_nb] = *section;
dfde4e6e 1380 memory_region_ref(section->mr);
53cb28cb 1381 return map->sections_nb++;
5312bd8b
AK
1382}
1383
058bc4b5
PB
1384static void phys_section_destroy(MemoryRegion *mr)
1385{
55b4e80b
DS
1386 bool have_sub_page = mr->subpage;
1387
dfde4e6e
PB
1388 memory_region_unref(mr);
1389
55b4e80b 1390 if (have_sub_page) {
058bc4b5 1391 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1392 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1393 g_free(subpage);
1394 }
1395}
1396
6092666e 1397static void phys_sections_free(PhysPageMap *map)
5312bd8b 1398{
9affd6fc
PB
1399 while (map->sections_nb > 0) {
1400 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1401 phys_section_destroy(section->mr);
1402 }
9affd6fc
PB
1403 g_free(map->sections);
1404 g_free(map->nodes);
5312bd8b
AK
1405}
1406
9950322a 1407static void register_subpage(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1408{
9950322a 1409 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
0f0cb164 1410 subpage_t *subpage;
a8170e5e 1411 hwaddr base = section->offset_within_address_space
0f0cb164 1412 & TARGET_PAGE_MASK;
003a0cf2 1413 MemoryRegionSection *existing = phys_page_find(d, base);
0f0cb164
AK
1414 MemoryRegionSection subsection = {
1415 .offset_within_address_space = base,
052e87b0 1416 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1417 };
a8170e5e 1418 hwaddr start, end;
0f0cb164 1419
f3705d53 1420 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1421
f3705d53 1422 if (!(existing->mr->subpage)) {
16620684
AK
1423 subpage = subpage_init(fv, base);
1424 subsection.fv = fv;
0f0cb164 1425 subsection.mr = &subpage->iomem;
ac1970fb 1426 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1427 phys_section_add(&d->map, &subsection));
0f0cb164 1428 } else {
f3705d53 1429 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1430 }
1431 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1432 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1433 subpage_register(subpage, start, end,
1434 phys_section_add(&d->map, section));
0f0cb164
AK
1435}
1436
1437
9950322a 1438static void register_multipage(FlatView *fv,
052e87b0 1439 MemoryRegionSection *section)
33417e70 1440{
9950322a 1441 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
a8170e5e 1442 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1443 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1444 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1445 TARGET_PAGE_BITS));
dd81124b 1446
733d5ef5
PB
1447 assert(num_pages);
1448 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1449}
1450
8629d3fc 1451void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1452{
99b9cc06 1453 MemoryRegionSection now = *section, remain = *section;
052e87b0 1454 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1455
733d5ef5
PB
1456 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1457 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1458 - now.offset_within_address_space;
1459
052e87b0 1460 now.size = int128_min(int128_make64(left), now.size);
9950322a 1461 register_subpage(fv, &now);
733d5ef5 1462 } else {
052e87b0 1463 now.size = int128_zero();
733d5ef5 1464 }
052e87b0
PB
1465 while (int128_ne(remain.size, now.size)) {
1466 remain.size = int128_sub(remain.size, now.size);
1467 remain.offset_within_address_space += int128_get64(now.size);
1468 remain.offset_within_region += int128_get64(now.size);
69b67646 1469 now = remain;
052e87b0 1470 if (int128_lt(remain.size, page_size)) {
9950322a 1471 register_subpage(fv, &now);
88266249 1472 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
052e87b0 1473 now.size = page_size;
9950322a 1474 register_subpage(fv, &now);
69b67646 1475 } else {
052e87b0 1476 now.size = int128_and(now.size, int128_neg(page_size));
9950322a 1477 register_multipage(fv, &now);
69b67646 1478 }
0f0cb164
AK
1479 }
1480}
1481
62a2744c
SY
1482void qemu_flush_coalesced_mmio_buffer(void)
1483{
1484 if (kvm_enabled())
1485 kvm_flush_coalesced_mmio_buffer();
1486}
1487
b2a8658e
UD
1488void qemu_mutex_lock_ramlist(void)
1489{
1490 qemu_mutex_lock(&ram_list.mutex);
1491}
1492
1493void qemu_mutex_unlock_ramlist(void)
1494{
1495 qemu_mutex_unlock(&ram_list.mutex);
1496}
1497
be9b23c4
PX
1498void ram_block_dump(Monitor *mon)
1499{
1500 RAMBlock *block;
1501 char *psize;
1502
1503 rcu_read_lock();
1504 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1505 "Block Name", "PSize", "Offset", "Used", "Total");
1506 RAMBLOCK_FOREACH(block) {
1507 psize = size_to_str(block->page_size);
1508 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1509 " 0x%016" PRIx64 "\n", block->idstr, psize,
1510 (uint64_t)block->offset,
1511 (uint64_t)block->used_length,
1512 (uint64_t)block->max_length);
1513 g_free(psize);
1514 }
1515 rcu_read_unlock();
1516}
1517
9c607668
AK
1518#ifdef __linux__
1519/*
1520 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1521 * may or may not name the same files / on the same filesystem now as
1522 * when we actually open and map them. Iterate over the file
1523 * descriptors instead, and use qemu_fd_getpagesize().
1524 */
1525static int find_max_supported_pagesize(Object *obj, void *opaque)
1526{
9c607668
AK
1527 long *hpsize_min = opaque;
1528
1529 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
2b108085
DG
1530 long hpsize = host_memory_backend_pagesize(MEMORY_BACKEND(obj));
1531
0de6e2a3
DG
1532 if (hpsize < *hpsize_min) {
1533 *hpsize_min = hpsize;
9c607668
AK
1534 }
1535 }
1536
1537 return 0;
1538}
1539
1540long qemu_getrampagesize(void)
1541{
1542 long hpsize = LONG_MAX;
1543 long mainrampagesize;
1544 Object *memdev_root;
1545
0de6e2a3 1546 mainrampagesize = qemu_mempath_getpagesize(mem_path);
9c607668
AK
1547
1548 /* it's possible we have memory-backend objects with
1549 * hugepage-backed RAM. these may get mapped into system
1550 * address space via -numa parameters or memory hotplug
1551 * hooks. we want to take these into account, but we
1552 * also want to make sure these supported hugepage
1553 * sizes are applicable across the entire range of memory
1554 * we may boot from, so we take the min across all
1555 * backends, and assume normal pages in cases where a
1556 * backend isn't backed by hugepages.
1557 */
1558 memdev_root = object_resolve_path("/objects", NULL);
1559 if (memdev_root) {
1560 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1561 }
1562 if (hpsize == LONG_MAX) {
1563 /* No additional memory regions found ==> Report main RAM page size */
1564 return mainrampagesize;
1565 }
1566
1567 /* If NUMA is disabled or the NUMA nodes are not backed with a
1568 * memory-backend, then there is at least one node using "normal" RAM,
1569 * so if its page size is smaller we have got to report that size instead.
1570 */
1571 if (hpsize > mainrampagesize &&
1572 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1573 static bool warned;
1574 if (!warned) {
1575 error_report("Huge page support disabled (n/a for main memory).");
1576 warned = true;
1577 }
1578 return mainrampagesize;
1579 }
1580
1581 return hpsize;
1582}
1583#else
1584long qemu_getrampagesize(void)
1585{
1586 return getpagesize();
1587}
1588#endif
1589
e1e84ba0 1590#ifdef __linux__
d6af99c9
HZ
1591static int64_t get_file_size(int fd)
1592{
1593 int64_t size = lseek(fd, 0, SEEK_END);
1594 if (size < 0) {
1595 return -errno;
1596 }
1597 return size;
1598}
1599
8d37b030
MAL
1600static int file_ram_open(const char *path,
1601 const char *region_name,
1602 bool *created,
1603 Error **errp)
c902760f
MT
1604{
1605 char *filename;
8ca761f6
PF
1606 char *sanitized_name;
1607 char *c;
5c3ece79 1608 int fd = -1;
c902760f 1609
8d37b030 1610 *created = false;
fd97fd44
MA
1611 for (;;) {
1612 fd = open(path, O_RDWR);
1613 if (fd >= 0) {
1614 /* @path names an existing file, use it */
1615 break;
8d31d6b6 1616 }
fd97fd44
MA
1617 if (errno == ENOENT) {
1618 /* @path names a file that doesn't exist, create it */
1619 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1620 if (fd >= 0) {
8d37b030 1621 *created = true;
fd97fd44
MA
1622 break;
1623 }
1624 } else if (errno == EISDIR) {
1625 /* @path names a directory, create a file there */
1626 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
8d37b030 1627 sanitized_name = g_strdup(region_name);
fd97fd44
MA
1628 for (c = sanitized_name; *c != '\0'; c++) {
1629 if (*c == '/') {
1630 *c = '_';
1631 }
1632 }
8ca761f6 1633
fd97fd44
MA
1634 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1635 sanitized_name);
1636 g_free(sanitized_name);
8d31d6b6 1637
fd97fd44
MA
1638 fd = mkstemp(filename);
1639 if (fd >= 0) {
1640 unlink(filename);
1641 g_free(filename);
1642 break;
1643 }
1644 g_free(filename);
8d31d6b6 1645 }
fd97fd44
MA
1646 if (errno != EEXIST && errno != EINTR) {
1647 error_setg_errno(errp, errno,
1648 "can't open backing store %s for guest RAM",
1649 path);
8d37b030 1650 return -1;
fd97fd44
MA
1651 }
1652 /*
1653 * Try again on EINTR and EEXIST. The latter happens when
1654 * something else creates the file between our two open().
1655 */
8d31d6b6 1656 }
c902760f 1657
8d37b030
MAL
1658 return fd;
1659}
1660
1661static void *file_ram_alloc(RAMBlock *block,
1662 ram_addr_t memory,
1663 int fd,
1664 bool truncate,
1665 Error **errp)
1666{
1667 void *area;
1668
863e9621 1669 block->page_size = qemu_fd_getpagesize(fd);
98376843
HZ
1670 if (block->mr->align % block->page_size) {
1671 error_setg(errp, "alignment 0x%" PRIx64
1672 " must be multiples of page size 0x%zx",
1673 block->mr->align, block->page_size);
1674 return NULL;
1675 }
1676 block->mr->align = MAX(block->page_size, block->mr->align);
8360668e
HZ
1677#if defined(__s390x__)
1678 if (kvm_enabled()) {
1679 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1680 }
1681#endif
fd97fd44 1682
863e9621 1683 if (memory < block->page_size) {
fd97fd44 1684 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
863e9621
DDAG
1685 "or larger than page size 0x%zx",
1686 memory, block->page_size);
8d37b030 1687 return NULL;
1775f111
HZ
1688 }
1689
863e9621 1690 memory = ROUND_UP(memory, block->page_size);
c902760f
MT
1691
1692 /*
1693 * ftruncate is not supported by hugetlbfs in older
1694 * hosts, so don't bother bailing out on errors.
1695 * If anything goes wrong with it under other filesystems,
1696 * mmap will fail.
d6af99c9
HZ
1697 *
1698 * Do not truncate the non-empty backend file to avoid corrupting
1699 * the existing data in the file. Disabling shrinking is not
1700 * enough. For example, the current vNVDIMM implementation stores
1701 * the guest NVDIMM labels at the end of the backend file. If the
1702 * backend file is later extended, QEMU will not be able to find
1703 * those labels. Therefore, extending the non-empty backend file
1704 * is disabled as well.
c902760f 1705 */
8d37b030 1706 if (truncate && ftruncate(fd, memory)) {
9742bf26 1707 perror("ftruncate");
7f56e740 1708 }
c902760f 1709
d2f39add
DD
1710 area = qemu_ram_mmap(fd, memory, block->mr->align,
1711 block->flags & RAM_SHARED);
c902760f 1712 if (area == MAP_FAILED) {
7f56e740 1713 error_setg_errno(errp, errno,
fd97fd44 1714 "unable to map backing store for guest RAM");
8d37b030 1715 return NULL;
c902760f 1716 }
ef36fa14
MT
1717
1718 if (mem_prealloc) {
1e356fc1 1719 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
056b68af 1720 if (errp && *errp) {
8d37b030
MAL
1721 qemu_ram_munmap(area, memory);
1722 return NULL;
056b68af 1723 }
ef36fa14
MT
1724 }
1725
04b16653 1726 block->fd = fd;
c902760f
MT
1727 return area;
1728}
1729#endif
1730
154cc9ea
DDAG
1731/* Allocate space within the ram_addr_t space that governs the
1732 * dirty bitmaps.
1733 * Called with the ramlist lock held.
1734 */
d17b5288 1735static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1736{
1737 RAMBlock *block, *next_block;
3e837b2c 1738 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1739
49cd9ac6
SH
1740 assert(size != 0); /* it would hand out same offset multiple times */
1741
0dc3f44a 1742 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1743 return 0;
0d53d9fe 1744 }
04b16653 1745
99e15582 1746 RAMBLOCK_FOREACH(block) {
154cc9ea 1747 ram_addr_t candidate, next = RAM_ADDR_MAX;
04b16653 1748
801110ab
DDAG
1749 /* Align blocks to start on a 'long' in the bitmap
1750 * which makes the bitmap sync'ing take the fast path.
1751 */
154cc9ea 1752 candidate = block->offset + block->max_length;
801110ab 1753 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
04b16653 1754
154cc9ea
DDAG
1755 /* Search for the closest following block
1756 * and find the gap.
1757 */
99e15582 1758 RAMBLOCK_FOREACH(next_block) {
154cc9ea 1759 if (next_block->offset >= candidate) {
04b16653
AW
1760 next = MIN(next, next_block->offset);
1761 }
1762 }
154cc9ea
DDAG
1763
1764 /* If it fits remember our place and remember the size
1765 * of gap, but keep going so that we might find a smaller
1766 * gap to fill so avoiding fragmentation.
1767 */
1768 if (next - candidate >= size && next - candidate < mingap) {
1769 offset = candidate;
1770 mingap = next - candidate;
04b16653 1771 }
154cc9ea
DDAG
1772
1773 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
04b16653 1774 }
3e837b2c
AW
1775
1776 if (offset == RAM_ADDR_MAX) {
1777 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1778 (uint64_t)size);
1779 abort();
1780 }
1781
154cc9ea
DDAG
1782 trace_find_ram_offset(size, offset);
1783
04b16653
AW
1784 return offset;
1785}
1786
b8c48993 1787unsigned long last_ram_page(void)
d17b5288
AW
1788{
1789 RAMBlock *block;
1790 ram_addr_t last = 0;
1791
0dc3f44a 1792 rcu_read_lock();
99e15582 1793 RAMBLOCK_FOREACH(block) {
62be4e3a 1794 last = MAX(last, block->offset + block->max_length);
0d53d9fe 1795 }
0dc3f44a 1796 rcu_read_unlock();
b8c48993 1797 return last >> TARGET_PAGE_BITS;
d17b5288
AW
1798}
1799
ddb97f1d
JB
1800static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1801{
1802 int ret;
ddb97f1d
JB
1803
1804 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 1805 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
1806 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1807 if (ret) {
1808 perror("qemu_madvise");
1809 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1810 "but dump_guest_core=off specified\n");
1811 }
1812 }
1813}
1814
422148d3
DDAG
1815const char *qemu_ram_get_idstr(RAMBlock *rb)
1816{
1817 return rb->idstr;
1818}
1819
463a4ac2
DDAG
1820bool qemu_ram_is_shared(RAMBlock *rb)
1821{
1822 return rb->flags & RAM_SHARED;
1823}
1824
2ce16640
DDAG
1825/* Note: Only set at the start of postcopy */
1826bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1827{
1828 return rb->flags & RAM_UF_ZEROPAGE;
1829}
1830
1831void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1832{
1833 rb->flags |= RAM_UF_ZEROPAGE;
1834}
1835
ae3a7047 1836/* Called with iothread lock held. */
fa53a0e5 1837void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
20cfe881 1838{
fa53a0e5 1839 RAMBlock *block;
20cfe881 1840
c5705a77
AK
1841 assert(new_block);
1842 assert(!new_block->idstr[0]);
84b89d78 1843
09e5ab63
AL
1844 if (dev) {
1845 char *id = qdev_get_dev_path(dev);
84b89d78
CM
1846 if (id) {
1847 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 1848 g_free(id);
84b89d78
CM
1849 }
1850 }
1851 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1852
ab0a9956 1853 rcu_read_lock();
99e15582 1854 RAMBLOCK_FOREACH(block) {
fa53a0e5
GA
1855 if (block != new_block &&
1856 !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
1857 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1858 new_block->idstr);
1859 abort();
1860 }
1861 }
0dc3f44a 1862 rcu_read_unlock();
c5705a77
AK
1863}
1864
ae3a7047 1865/* Called with iothread lock held. */
fa53a0e5 1866void qemu_ram_unset_idstr(RAMBlock *block)
20cfe881 1867{
ae3a7047
MD
1868 /* FIXME: arch_init.c assumes that this is not called throughout
1869 * migration. Ignore the problem since hot-unplug during migration
1870 * does not work anyway.
1871 */
20cfe881
HT
1872 if (block) {
1873 memset(block->idstr, 0, sizeof(block->idstr));
1874 }
1875}
1876
863e9621
DDAG
1877size_t qemu_ram_pagesize(RAMBlock *rb)
1878{
1879 return rb->page_size;
1880}
1881
67f11b5c
DDAG
1882/* Returns the largest size of page in use */
1883size_t qemu_ram_pagesize_largest(void)
1884{
1885 RAMBlock *block;
1886 size_t largest = 0;
1887
99e15582 1888 RAMBLOCK_FOREACH(block) {
67f11b5c
DDAG
1889 largest = MAX(largest, qemu_ram_pagesize(block));
1890 }
1891
1892 return largest;
1893}
1894
8490fc78
LC
1895static int memory_try_enable_merging(void *addr, size_t len)
1896{
75cc7f01 1897 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
1898 /* disabled by the user */
1899 return 0;
1900 }
1901
1902 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1903}
1904
62be4e3a
MT
1905/* Only legal before guest might have detected the memory size: e.g. on
1906 * incoming migration, or right after reset.
1907 *
1908 * As memory core doesn't know how is memory accessed, it is up to
1909 * resize callback to update device state and/or add assertions to detect
1910 * misuse, if necessary.
1911 */
fa53a0e5 1912int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
62be4e3a 1913{
62be4e3a
MT
1914 assert(block);
1915
4ed023ce 1916 newsize = HOST_PAGE_ALIGN(newsize);
129ddaf3 1917
62be4e3a
MT
1918 if (block->used_length == newsize) {
1919 return 0;
1920 }
1921
1922 if (!(block->flags & RAM_RESIZEABLE)) {
1923 error_setg_errno(errp, EINVAL,
1924 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1925 " in != 0x" RAM_ADDR_FMT, block->idstr,
1926 newsize, block->used_length);
1927 return -EINVAL;
1928 }
1929
1930 if (block->max_length < newsize) {
1931 error_setg_errno(errp, EINVAL,
1932 "Length too large: %s: 0x" RAM_ADDR_FMT
1933 " > 0x" RAM_ADDR_FMT, block->idstr,
1934 newsize, block->max_length);
1935 return -EINVAL;
1936 }
1937
1938 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1939 block->used_length = newsize;
58d2707e
PB
1940 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1941 DIRTY_CLIENTS_ALL);
62be4e3a
MT
1942 memory_region_set_size(block->mr, newsize);
1943 if (block->resized) {
1944 block->resized(block->idstr, newsize, block->host);
1945 }
1946 return 0;
1947}
1948
5b82b703
SH
1949/* Called with ram_list.mutex held */
1950static void dirty_memory_extend(ram_addr_t old_ram_size,
1951 ram_addr_t new_ram_size)
1952{
1953 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1954 DIRTY_MEMORY_BLOCK_SIZE);
1955 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1956 DIRTY_MEMORY_BLOCK_SIZE);
1957 int i;
1958
1959 /* Only need to extend if block count increased */
1960 if (new_num_blocks <= old_num_blocks) {
1961 return;
1962 }
1963
1964 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1965 DirtyMemoryBlocks *old_blocks;
1966 DirtyMemoryBlocks *new_blocks;
1967 int j;
1968
1969 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1970 new_blocks = g_malloc(sizeof(*new_blocks) +
1971 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1972
1973 if (old_num_blocks) {
1974 memcpy(new_blocks->blocks, old_blocks->blocks,
1975 old_num_blocks * sizeof(old_blocks->blocks[0]));
1976 }
1977
1978 for (j = old_num_blocks; j < new_num_blocks; j++) {
1979 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1980 }
1981
1982 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1983
1984 if (old_blocks) {
1985 g_free_rcu(old_blocks, rcu);
1986 }
1987 }
1988}
1989
06329cce 1990static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
c5705a77 1991{
e1c57ab8 1992 RAMBlock *block;
0d53d9fe 1993 RAMBlock *last_block = NULL;
2152f5ca 1994 ram_addr_t old_ram_size, new_ram_size;
37aa7a0e 1995 Error *err = NULL;
2152f5ca 1996
b8c48993 1997 old_ram_size = last_ram_page();
c5705a77 1998
b2a8658e 1999 qemu_mutex_lock_ramlist();
9b8424d5 2000 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
2001
2002 if (!new_block->host) {
2003 if (xen_enabled()) {
9b8424d5 2004 xen_ram_alloc(new_block->offset, new_block->max_length,
37aa7a0e
MA
2005 new_block->mr, &err);
2006 if (err) {
2007 error_propagate(errp, err);
2008 qemu_mutex_unlock_ramlist();
39c350ee 2009 return;
37aa7a0e 2010 }
e1c57ab8 2011 } else {
9b8424d5 2012 new_block->host = phys_mem_alloc(new_block->max_length,
06329cce 2013 &new_block->mr->align, shared);
39228250 2014 if (!new_block->host) {
ef701d7b
HT
2015 error_setg_errno(errp, errno,
2016 "cannot set up guest memory '%s'",
2017 memory_region_name(new_block->mr));
2018 qemu_mutex_unlock_ramlist();
39c350ee 2019 return;
39228250 2020 }
9b8424d5 2021 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 2022 }
c902760f 2023 }
94a6b54f 2024
dd631697
LZ
2025 new_ram_size = MAX(old_ram_size,
2026 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2027 if (new_ram_size > old_ram_size) {
5b82b703 2028 dirty_memory_extend(old_ram_size, new_ram_size);
dd631697 2029 }
0d53d9fe
MD
2030 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2031 * QLIST (which has an RCU-friendly variant) does not have insertion at
2032 * tail, so save the last element in last_block.
2033 */
99e15582 2034 RAMBLOCK_FOREACH(block) {
0d53d9fe 2035 last_block = block;
9b8424d5 2036 if (block->max_length < new_block->max_length) {
abb26d63
PB
2037 break;
2038 }
2039 }
2040 if (block) {
0dc3f44a 2041 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 2042 } else if (last_block) {
0dc3f44a 2043 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 2044 } else { /* list is empty */
0dc3f44a 2045 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 2046 }
0d6d3c87 2047 ram_list.mru_block = NULL;
94a6b54f 2048
0dc3f44a
MD
2049 /* Write list before version */
2050 smp_wmb();
f798b07f 2051 ram_list.version++;
b2a8658e 2052 qemu_mutex_unlock_ramlist();
f798b07f 2053
9b8424d5 2054 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
2055 new_block->used_length,
2056 DIRTY_CLIENTS_ALL);
94a6b54f 2057
a904c911
PB
2058 if (new_block->host) {
2059 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2060 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
c2cd627d 2061 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
a904c911 2062 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
0987d735 2063 ram_block_notify_add(new_block->host, new_block->max_length);
e1c57ab8 2064 }
94a6b54f 2065}
e9a1ab19 2066
0b183fc8 2067#ifdef __linux__
38b3362d
MAL
2068RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2069 bool share, int fd,
2070 Error **errp)
e1c57ab8
PB
2071{
2072 RAMBlock *new_block;
ef701d7b 2073 Error *local_err = NULL;
8d37b030 2074 int64_t file_size;
e1c57ab8
PB
2075
2076 if (xen_enabled()) {
7f56e740 2077 error_setg(errp, "-mem-path not supported with Xen");
528f46af 2078 return NULL;
e1c57ab8
PB
2079 }
2080
e45e7ae2
MAL
2081 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2082 error_setg(errp,
2083 "host lacks kvm mmu notifiers, -mem-path unsupported");
2084 return NULL;
2085 }
2086
e1c57ab8
PB
2087 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2088 /*
2089 * file_ram_alloc() needs to allocate just like
2090 * phys_mem_alloc, but we haven't bothered to provide
2091 * a hook there.
2092 */
7f56e740
PB
2093 error_setg(errp,
2094 "-mem-path not supported with this accelerator");
528f46af 2095 return NULL;
e1c57ab8
PB
2096 }
2097
4ed023ce 2098 size = HOST_PAGE_ALIGN(size);
8d37b030
MAL
2099 file_size = get_file_size(fd);
2100 if (file_size > 0 && file_size < size) {
2101 error_setg(errp, "backing store %s size 0x%" PRIx64
2102 " does not match 'size' option 0x" RAM_ADDR_FMT,
2103 mem_path, file_size, size);
8d37b030
MAL
2104 return NULL;
2105 }
2106
e1c57ab8
PB
2107 new_block = g_malloc0(sizeof(*new_block));
2108 new_block->mr = mr;
9b8424d5
MT
2109 new_block->used_length = size;
2110 new_block->max_length = size;
dbcb8981 2111 new_block->flags = share ? RAM_SHARED : 0;
8d37b030 2112 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
7f56e740
PB
2113 if (!new_block->host) {
2114 g_free(new_block);
528f46af 2115 return NULL;
7f56e740
PB
2116 }
2117
06329cce 2118 ram_block_add(new_block, &local_err, share);
ef701d7b
HT
2119 if (local_err) {
2120 g_free(new_block);
2121 error_propagate(errp, local_err);
528f46af 2122 return NULL;
ef701d7b 2123 }
528f46af 2124 return new_block;
38b3362d
MAL
2125
2126}
2127
2128
2129RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2130 bool share, const char *mem_path,
2131 Error **errp)
2132{
2133 int fd;
2134 bool created;
2135 RAMBlock *block;
2136
2137 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2138 if (fd < 0) {
2139 return NULL;
2140 }
2141
2142 block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp);
2143 if (!block) {
2144 if (created) {
2145 unlink(mem_path);
2146 }
2147 close(fd);
2148 return NULL;
2149 }
2150
2151 return block;
e1c57ab8 2152}
0b183fc8 2153#endif
e1c57ab8 2154
62be4e3a 2155static
528f46af
FZ
2156RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2157 void (*resized)(const char*,
2158 uint64_t length,
2159 void *host),
06329cce 2160 void *host, bool resizeable, bool share,
528f46af 2161 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
2162{
2163 RAMBlock *new_block;
ef701d7b 2164 Error *local_err = NULL;
e1c57ab8 2165
4ed023ce
DDAG
2166 size = HOST_PAGE_ALIGN(size);
2167 max_size = HOST_PAGE_ALIGN(max_size);
e1c57ab8
PB
2168 new_block = g_malloc0(sizeof(*new_block));
2169 new_block->mr = mr;
62be4e3a 2170 new_block->resized = resized;
9b8424d5
MT
2171 new_block->used_length = size;
2172 new_block->max_length = max_size;
62be4e3a 2173 assert(max_size >= size);
e1c57ab8 2174 new_block->fd = -1;
863e9621 2175 new_block->page_size = getpagesize();
e1c57ab8
PB
2176 new_block->host = host;
2177 if (host) {
7bd4f430 2178 new_block->flags |= RAM_PREALLOC;
e1c57ab8 2179 }
62be4e3a
MT
2180 if (resizeable) {
2181 new_block->flags |= RAM_RESIZEABLE;
2182 }
06329cce 2183 ram_block_add(new_block, &local_err, share);
ef701d7b
HT
2184 if (local_err) {
2185 g_free(new_block);
2186 error_propagate(errp, local_err);
528f46af 2187 return NULL;
ef701d7b 2188 }
528f46af 2189 return new_block;
e1c57ab8
PB
2190}
2191
528f46af 2192RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
62be4e3a
MT
2193 MemoryRegion *mr, Error **errp)
2194{
06329cce
MA
2195 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2196 false, mr, errp);
62be4e3a
MT
2197}
2198
06329cce
MA
2199RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2200 MemoryRegion *mr, Error **errp)
6977dfe6 2201{
06329cce
MA
2202 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2203 share, mr, errp);
62be4e3a
MT
2204}
2205
528f46af 2206RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
62be4e3a
MT
2207 void (*resized)(const char*,
2208 uint64_t length,
2209 void *host),
2210 MemoryRegion *mr, Error **errp)
2211{
06329cce
MA
2212 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2213 false, mr, errp);
6977dfe6
YT
2214}
2215
43771539
PB
2216static void reclaim_ramblock(RAMBlock *block)
2217{
2218 if (block->flags & RAM_PREALLOC) {
2219 ;
2220 } else if (xen_enabled()) {
2221 xen_invalidate_map_cache_entry(block->host);
2222#ifndef _WIN32
2223 } else if (block->fd >= 0) {
2f3a2bb1 2224 qemu_ram_munmap(block->host, block->max_length);
43771539
PB
2225 close(block->fd);
2226#endif
2227 } else {
2228 qemu_anon_ram_free(block->host, block->max_length);
2229 }
2230 g_free(block);
2231}
2232
f1060c55 2233void qemu_ram_free(RAMBlock *block)
e9a1ab19 2234{
85bc2a15
MAL
2235 if (!block) {
2236 return;
2237 }
2238
0987d735
PB
2239 if (block->host) {
2240 ram_block_notify_remove(block->host, block->max_length);
2241 }
2242
b2a8658e 2243 qemu_mutex_lock_ramlist();
f1060c55
FZ
2244 QLIST_REMOVE_RCU(block, next);
2245 ram_list.mru_block = NULL;
2246 /* Write list before version */
2247 smp_wmb();
2248 ram_list.version++;
2249 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 2250 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
2251}
2252
cd19cfa2
HY
2253#ifndef _WIN32
2254void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2255{
2256 RAMBlock *block;
2257 ram_addr_t offset;
2258 int flags;
2259 void *area, *vaddr;
2260
99e15582 2261 RAMBLOCK_FOREACH(block) {
cd19cfa2 2262 offset = addr - block->offset;
9b8424d5 2263 if (offset < block->max_length) {
1240be24 2264 vaddr = ramblock_ptr(block, offset);
7bd4f430 2265 if (block->flags & RAM_PREALLOC) {
cd19cfa2 2266 ;
dfeaf2ab
MA
2267 } else if (xen_enabled()) {
2268 abort();
cd19cfa2
HY
2269 } else {
2270 flags = MAP_FIXED;
3435f395 2271 if (block->fd >= 0) {
dbcb8981
PB
2272 flags |= (block->flags & RAM_SHARED ?
2273 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
2274 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2275 flags, block->fd, offset);
cd19cfa2 2276 } else {
2eb9fbaa
MA
2277 /*
2278 * Remap needs to match alloc. Accelerators that
2279 * set phys_mem_alloc never remap. If they did,
2280 * we'd need a remap hook here.
2281 */
2282 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2283
cd19cfa2
HY
2284 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2285 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2286 flags, -1, 0);
cd19cfa2
HY
2287 }
2288 if (area != vaddr) {
493d89bf
AF
2289 error_report("Could not remap addr: "
2290 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2291 length, addr);
cd19cfa2
HY
2292 exit(1);
2293 }
8490fc78 2294 memory_try_enable_merging(vaddr, length);
ddb97f1d 2295 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 2296 }
cd19cfa2
HY
2297 }
2298 }
2299}
2300#endif /* !_WIN32 */
2301
1b5ec234 2302/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
2303 * This should not be used for general purpose DMA. Use address_space_map
2304 * or address_space_rw instead. For local memory (e.g. video ram) that the
2305 * device owns, use memory_region_get_ram_ptr.
0dc3f44a 2306 *
49b24afc 2307 * Called within RCU critical section.
1b5ec234 2308 */
0878d0e1 2309void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1b5ec234 2310{
3655cb9c
GA
2311 RAMBlock *block = ram_block;
2312
2313 if (block == NULL) {
2314 block = qemu_get_ram_block(addr);
0878d0e1 2315 addr -= block->offset;
3655cb9c 2316 }
ae3a7047
MD
2317
2318 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
2319 /* We need to check if the requested address is in the RAM
2320 * because we don't want to map the entire memory in QEMU.
2321 * In that case just map until the end of the page.
2322 */
2323 if (block->offset == 0) {
1ff7c598 2324 return xen_map_cache(addr, 0, 0, false);
0d6d3c87 2325 }
ae3a7047 2326
1ff7c598 2327 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
0d6d3c87 2328 }
0878d0e1 2329 return ramblock_ptr(block, addr);
dc828ca1
PB
2330}
2331
0878d0e1 2332/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
ae3a7047 2333 * but takes a size argument.
0dc3f44a 2334 *
e81bcda5 2335 * Called within RCU critical section.
ae3a7047 2336 */
3655cb9c 2337static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
f5aa69bd 2338 hwaddr *size, bool lock)
38bee5dc 2339{
3655cb9c 2340 RAMBlock *block = ram_block;
8ab934f9
SS
2341 if (*size == 0) {
2342 return NULL;
2343 }
e81bcda5 2344
3655cb9c
GA
2345 if (block == NULL) {
2346 block = qemu_get_ram_block(addr);
0878d0e1 2347 addr -= block->offset;
3655cb9c 2348 }
0878d0e1 2349 *size = MIN(*size, block->max_length - addr);
e81bcda5
PB
2350
2351 if (xen_enabled() && block->host == NULL) {
2352 /* We need to check if the requested address is in the RAM
2353 * because we don't want to map the entire memory in QEMU.
2354 * In that case just map the requested area.
2355 */
2356 if (block->offset == 0) {
f5aa69bd 2357 return xen_map_cache(addr, *size, lock, lock);
38bee5dc
SS
2358 }
2359
f5aa69bd 2360 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
38bee5dc 2361 }
e81bcda5 2362
0878d0e1 2363 return ramblock_ptr(block, addr);
38bee5dc
SS
2364}
2365
f90bb71b
DDAG
2366/* Return the offset of a hostpointer within a ramblock */
2367ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2368{
2369 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2370 assert((uintptr_t)host >= (uintptr_t)rb->host);
2371 assert(res < rb->max_length);
2372
2373 return res;
2374}
2375
422148d3
DDAG
2376/*
2377 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2378 * in that RAMBlock.
2379 *
2380 * ptr: Host pointer to look up
2381 * round_offset: If true round the result offset down to a page boundary
2382 * *ram_addr: set to result ram_addr
2383 * *offset: set to result offset within the RAMBlock
2384 *
2385 * Returns: RAMBlock (or NULL if not found)
ae3a7047
MD
2386 *
2387 * By the time this function returns, the returned pointer is not protected
2388 * by RCU anymore. If the caller is not within an RCU critical section and
2389 * does not hold the iothread lock, it must have other means of protecting the
2390 * pointer, such as a reference to the region that includes the incoming
2391 * ram_addr_t.
2392 */
422148d3 2393RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
422148d3 2394 ram_addr_t *offset)
5579c7f3 2395{
94a6b54f
PB
2396 RAMBlock *block;
2397 uint8_t *host = ptr;
2398
868bb33f 2399 if (xen_enabled()) {
f615f396 2400 ram_addr_t ram_addr;
0dc3f44a 2401 rcu_read_lock();
f615f396
PB
2402 ram_addr = xen_ram_addr_from_mapcache(ptr);
2403 block = qemu_get_ram_block(ram_addr);
422148d3 2404 if (block) {
d6b6aec4 2405 *offset = ram_addr - block->offset;
422148d3 2406 }
0dc3f44a 2407 rcu_read_unlock();
422148d3 2408 return block;
712c2b41
SS
2409 }
2410
0dc3f44a
MD
2411 rcu_read_lock();
2412 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 2413 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
2414 goto found;
2415 }
2416
99e15582 2417 RAMBLOCK_FOREACH(block) {
432d268c
JN
2418 /* This case append when the block is not mapped. */
2419 if (block->host == NULL) {
2420 continue;
2421 }
9b8424d5 2422 if (host - block->host < block->max_length) {
23887b79 2423 goto found;
f471a17e 2424 }
94a6b54f 2425 }
432d268c 2426
0dc3f44a 2427 rcu_read_unlock();
1b5ec234 2428 return NULL;
23887b79
PB
2429
2430found:
422148d3
DDAG
2431 *offset = (host - block->host);
2432 if (round_offset) {
2433 *offset &= TARGET_PAGE_MASK;
2434 }
0dc3f44a 2435 rcu_read_unlock();
422148d3
DDAG
2436 return block;
2437}
2438
e3dd7493
DDAG
2439/*
2440 * Finds the named RAMBlock
2441 *
2442 * name: The name of RAMBlock to find
2443 *
2444 * Returns: RAMBlock (or NULL if not found)
2445 */
2446RAMBlock *qemu_ram_block_by_name(const char *name)
2447{
2448 RAMBlock *block;
2449
99e15582 2450 RAMBLOCK_FOREACH(block) {
e3dd7493
DDAG
2451 if (!strcmp(name, block->idstr)) {
2452 return block;
2453 }
2454 }
2455
2456 return NULL;
2457}
2458
422148d3
DDAG
2459/* Some of the softmmu routines need to translate from a host pointer
2460 (typically a TLB entry) back to a ram offset. */
07bdaa41 2461ram_addr_t qemu_ram_addr_from_host(void *ptr)
422148d3
DDAG
2462{
2463 RAMBlock *block;
f615f396 2464 ram_addr_t offset;
422148d3 2465
f615f396 2466 block = qemu_ram_block_from_host(ptr, false, &offset);
422148d3 2467 if (!block) {
07bdaa41 2468 return RAM_ADDR_INVALID;
422148d3
DDAG
2469 }
2470
07bdaa41 2471 return block->offset + offset;
e890261f 2472}
f471a17e 2473
27266271
PM
2474/* Called within RCU critical section. */
2475void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2476 CPUState *cpu,
2477 vaddr mem_vaddr,
2478 ram_addr_t ram_addr,
2479 unsigned size)
2480{
2481 ndi->cpu = cpu;
2482 ndi->ram_addr = ram_addr;
2483 ndi->mem_vaddr = mem_vaddr;
2484 ndi->size = size;
2485 ndi->locked = false;
ba051fb5 2486
5aa1ef71 2487 assert(tcg_enabled());
52159192 2488 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
27266271 2489 ndi->locked = true;
ba051fb5 2490 tb_lock();
0e0df1e2 2491 tb_invalidate_phys_page_fast(ram_addr, size);
3a7d929e 2492 }
27266271
PM
2493}
2494
2495/* Called within RCU critical section. */
2496void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2497{
2498 if (ndi->locked) {
2499 tb_unlock();
2500 }
2501
2502 /* Set both VGA and migration bits for simplicity and to remove
2503 * the notdirty callback faster.
2504 */
2505 cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2506 DIRTY_CLIENTS_NOCODE);
2507 /* we remove the notdirty callback only if the code has been
2508 flushed */
2509 if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2510 tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2511 }
2512}
2513
2514/* Called within RCU critical section. */
2515static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2516 uint64_t val, unsigned size)
2517{
2518 NotDirtyInfo ndi;
2519
2520 memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2521 ram_addr, size);
2522
0e0df1e2
AK
2523 switch (size) {
2524 case 1:
0878d0e1 2525 stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2526 break;
2527 case 2:
0878d0e1 2528 stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2529 break;
2530 case 4:
0878d0e1 2531 stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2 2532 break;
ad52878f
AB
2533 case 8:
2534 stq_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2535 break;
0e0df1e2
AK
2536 default:
2537 abort();
3a7d929e 2538 }
27266271 2539 memory_notdirty_write_complete(&ndi);
9fa3e853
FB
2540}
2541
b018ddf6 2542static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
8372d383
PM
2543 unsigned size, bool is_write,
2544 MemTxAttrs attrs)
b018ddf6
PB
2545{
2546 return is_write;
2547}
2548
0e0df1e2 2549static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 2550 .write = notdirty_mem_write,
b018ddf6 2551 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 2552 .endianness = DEVICE_NATIVE_ENDIAN,
ad52878f
AB
2553 .valid = {
2554 .min_access_size = 1,
2555 .max_access_size = 8,
2556 .unaligned = false,
2557 },
2558 .impl = {
2559 .min_access_size = 1,
2560 .max_access_size = 8,
2561 .unaligned = false,
2562 },
1ccde1cb
FB
2563};
2564
0f459d16 2565/* Generate a debug exception if a watchpoint has been hit. */
66b9b43c 2566static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
0f459d16 2567{
93afeade 2568 CPUState *cpu = current_cpu;
568496c0 2569 CPUClass *cc = CPU_GET_CLASS(cpu);
0f459d16 2570 target_ulong vaddr;
a1d1bb31 2571 CPUWatchpoint *wp;
0f459d16 2572
5aa1ef71 2573 assert(tcg_enabled());
ff4700b0 2574 if (cpu->watchpoint_hit) {
06d55cc1
AL
2575 /* We re-entered the check after replacing the TB. Now raise
2576 * the debug interrupt so that is will trigger after the
2577 * current instruction. */
93afeade 2578 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
06d55cc1
AL
2579 return;
2580 }
93afeade 2581 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
40612000 2582 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
ff4700b0 2583 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d
PM
2584 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2585 && (wp->flags & flags)) {
08225676
PM
2586 if (flags == BP_MEM_READ) {
2587 wp->flags |= BP_WATCHPOINT_HIT_READ;
2588 } else {
2589 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2590 }
2591 wp->hitaddr = vaddr;
66b9b43c 2592 wp->hitattrs = attrs;
ff4700b0 2593 if (!cpu->watchpoint_hit) {
568496c0
SF
2594 if (wp->flags & BP_CPU &&
2595 !cc->debug_check_watchpoint(cpu, wp)) {
2596 wp->flags &= ~BP_WATCHPOINT_HIT;
2597 continue;
2598 }
ff4700b0 2599 cpu->watchpoint_hit = wp;
a5e99826 2600
8d04fb55
JK
2601 /* Both tb_lock and iothread_mutex will be reset when
2602 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2603 * back into the cpu_exec main loop.
a5e99826
FK
2604 */
2605 tb_lock();
239c51a5 2606 tb_check_watchpoint(cpu);
6e140f28 2607 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 2608 cpu->exception_index = EXCP_DEBUG;
5638d180 2609 cpu_loop_exit(cpu);
6e140f28 2610 } else {
9b990ee5
RH
2611 /* Force execution of one insn next time. */
2612 cpu->cflags_next_tb = 1 | curr_cflags();
6886b980 2613 cpu_loop_exit_noexc(cpu);
6e140f28 2614 }
06d55cc1 2615 }
6e140f28
AL
2616 } else {
2617 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2618 }
2619 }
2620}
2621
6658ffb8
PB
2622/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2623 so these check for a hit then pass through to the normal out-of-line
2624 phys routines. */
66b9b43c
PM
2625static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2626 unsigned size, MemTxAttrs attrs)
6658ffb8 2627{
66b9b43c
PM
2628 MemTxResult res;
2629 uint64_t data;
79ed0416
PM
2630 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2631 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2632
2633 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
1ec9b909 2634 switch (size) {
66b9b43c 2635 case 1:
79ed0416 2636 data = address_space_ldub(as, addr, attrs, &res);
66b9b43c
PM
2637 break;
2638 case 2:
79ed0416 2639 data = address_space_lduw(as, addr, attrs, &res);
66b9b43c
PM
2640 break;
2641 case 4:
79ed0416 2642 data = address_space_ldl(as, addr, attrs, &res);
66b9b43c 2643 break;
306526b5
PB
2644 case 8:
2645 data = address_space_ldq(as, addr, attrs, &res);
2646 break;
1ec9b909
AK
2647 default: abort();
2648 }
66b9b43c
PM
2649 *pdata = data;
2650 return res;
6658ffb8
PB
2651}
2652
66b9b43c
PM
2653static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2654 uint64_t val, unsigned size,
2655 MemTxAttrs attrs)
6658ffb8 2656{
66b9b43c 2657 MemTxResult res;
79ed0416
PM
2658 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2659 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2660
2661 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
1ec9b909 2662 switch (size) {
67364150 2663 case 1:
79ed0416 2664 address_space_stb(as, addr, val, attrs, &res);
67364150
MF
2665 break;
2666 case 2:
79ed0416 2667 address_space_stw(as, addr, val, attrs, &res);
67364150
MF
2668 break;
2669 case 4:
79ed0416 2670 address_space_stl(as, addr, val, attrs, &res);
67364150 2671 break;
306526b5
PB
2672 case 8:
2673 address_space_stq(as, addr, val, attrs, &res);
2674 break;
1ec9b909
AK
2675 default: abort();
2676 }
66b9b43c 2677 return res;
6658ffb8
PB
2678}
2679
1ec9b909 2680static const MemoryRegionOps watch_mem_ops = {
66b9b43c
PM
2681 .read_with_attrs = watch_mem_read,
2682 .write_with_attrs = watch_mem_write,
1ec9b909 2683 .endianness = DEVICE_NATIVE_ENDIAN,
306526b5
PB
2684 .valid = {
2685 .min_access_size = 1,
2686 .max_access_size = 8,
2687 .unaligned = false,
2688 },
2689 .impl = {
2690 .min_access_size = 1,
2691 .max_access_size = 8,
2692 .unaligned = false,
2693 },
6658ffb8 2694};
6658ffb8 2695
b2a44fca
PB
2696static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2697 MemTxAttrs attrs, uint8_t *buf, int len);
16620684
AK
2698static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2699 const uint8_t *buf, int len);
2700static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
eace72b7 2701 bool is_write, MemTxAttrs attrs);
16620684 2702
f25a49e0
PM
2703static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2704 unsigned len, MemTxAttrs attrs)
db7b5426 2705{
acc9d80b 2706 subpage_t *subpage = opaque;
ff6cff75 2707 uint8_t buf[8];
5c9eb028 2708 MemTxResult res;
791af8c8 2709
db7b5426 2710#if defined(DEBUG_SUBPAGE)
016e9d62 2711 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2712 subpage, len, addr);
db7b5426 2713#endif
16620684 2714 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
5c9eb028
PM
2715 if (res) {
2716 return res;
f25a49e0 2717 }
acc9d80b
JK
2718 switch (len) {
2719 case 1:
f25a49e0
PM
2720 *data = ldub_p(buf);
2721 return MEMTX_OK;
acc9d80b 2722 case 2:
f25a49e0
PM
2723 *data = lduw_p(buf);
2724 return MEMTX_OK;
acc9d80b 2725 case 4:
f25a49e0
PM
2726 *data = ldl_p(buf);
2727 return MEMTX_OK;
ff6cff75 2728 case 8:
f25a49e0
PM
2729 *data = ldq_p(buf);
2730 return MEMTX_OK;
acc9d80b
JK
2731 default:
2732 abort();
2733 }
db7b5426
BS
2734}
2735
f25a49e0
PM
2736static MemTxResult subpage_write(void *opaque, hwaddr addr,
2737 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2738{
acc9d80b 2739 subpage_t *subpage = opaque;
ff6cff75 2740 uint8_t buf[8];
acc9d80b 2741
db7b5426 2742#if defined(DEBUG_SUBPAGE)
016e9d62 2743 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2744 " value %"PRIx64"\n",
2745 __func__, subpage, len, addr, value);
db7b5426 2746#endif
acc9d80b
JK
2747 switch (len) {
2748 case 1:
2749 stb_p(buf, value);
2750 break;
2751 case 2:
2752 stw_p(buf, value);
2753 break;
2754 case 4:
2755 stl_p(buf, value);
2756 break;
ff6cff75
PB
2757 case 8:
2758 stq_p(buf, value);
2759 break;
acc9d80b
JK
2760 default:
2761 abort();
2762 }
16620684 2763 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
db7b5426
BS
2764}
2765
c353e4cc 2766static bool subpage_accepts(void *opaque, hwaddr addr,
8372d383
PM
2767 unsigned len, bool is_write,
2768 MemTxAttrs attrs)
c353e4cc 2769{
acc9d80b 2770 subpage_t *subpage = opaque;
c353e4cc 2771#if defined(DEBUG_SUBPAGE)
016e9d62 2772 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2773 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2774#endif
2775
16620684 2776 return flatview_access_valid(subpage->fv, addr + subpage->base,
eace72b7 2777 len, is_write, attrs);
c353e4cc
PB
2778}
2779
70c68e44 2780static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2781 .read_with_attrs = subpage_read,
2782 .write_with_attrs = subpage_write,
ff6cff75
PB
2783 .impl.min_access_size = 1,
2784 .impl.max_access_size = 8,
2785 .valid.min_access_size = 1,
2786 .valid.max_access_size = 8,
c353e4cc 2787 .valid.accepts = subpage_accepts,
70c68e44 2788 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
2789};
2790
c227f099 2791static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 2792 uint16_t section)
db7b5426
BS
2793{
2794 int idx, eidx;
2795
2796 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2797 return -1;
2798 idx = SUBPAGE_IDX(start);
2799 eidx = SUBPAGE_IDX(end);
2800#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2801 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2802 __func__, mmio, start, end, idx, eidx, section);
db7b5426 2803#endif
db7b5426 2804 for (; idx <= eidx; idx++) {
5312bd8b 2805 mmio->sub_section[idx] = section;
db7b5426
BS
2806 }
2807
2808 return 0;
2809}
2810
16620684 2811static subpage_t *subpage_init(FlatView *fv, hwaddr base)
db7b5426 2812{
c227f099 2813 subpage_t *mmio;
db7b5426 2814
2615fabd 2815 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
16620684 2816 mmio->fv = fv;
1eec614b 2817 mmio->base = base;
2c9b15ca 2818 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 2819 NULL, TARGET_PAGE_SIZE);
b3b00c78 2820 mmio->iomem.subpage = true;
db7b5426 2821#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2822 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2823 mmio, base, TARGET_PAGE_SIZE);
db7b5426 2824#endif
b41aac4f 2825 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
db7b5426
BS
2826
2827 return mmio;
2828}
2829
16620684 2830static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
5312bd8b 2831{
16620684 2832 assert(fv);
5312bd8b 2833 MemoryRegionSection section = {
16620684 2834 .fv = fv,
5312bd8b
AK
2835 .mr = mr,
2836 .offset_within_address_space = 0,
2837 .offset_within_region = 0,
052e87b0 2838 .size = int128_2_64(),
5312bd8b
AK
2839 };
2840
53cb28cb 2841 return phys_section_add(map, &section);
5312bd8b
AK
2842}
2843
8af36743
PM
2844static void readonly_mem_write(void *opaque, hwaddr addr,
2845 uint64_t val, unsigned size)
2846{
2847 /* Ignore any write to ROM. */
2848}
2849
2850static bool readonly_mem_accepts(void *opaque, hwaddr addr,
8372d383
PM
2851 unsigned size, bool is_write,
2852 MemTxAttrs attrs)
8af36743
PM
2853{
2854 return is_write;
2855}
2856
2857/* This will only be used for writes, because reads are special cased
2858 * to directly access the underlying host ram.
2859 */
2860static const MemoryRegionOps readonly_mem_ops = {
2861 .write = readonly_mem_write,
2862 .valid.accepts = readonly_mem_accepts,
2863 .endianness = DEVICE_NATIVE_ENDIAN,
2864 .valid = {
2865 .min_access_size = 1,
2866 .max_access_size = 8,
2867 .unaligned = false,
2868 },
2869 .impl = {
2870 .min_access_size = 1,
2871 .max_access_size = 8,
2872 .unaligned = false,
2873 },
2874};
2875
a54c87b6 2876MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
aa102231 2877{
a54c87b6
PM
2878 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2879 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
32857f4d 2880 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
79e2b9ae 2881 MemoryRegionSection *sections = d->map.sections;
9d82b5a7
PB
2882
2883 return sections[index & ~TARGET_PAGE_MASK].mr;
aa102231
AK
2884}
2885
e9179ce1
AK
2886static void io_mem_init(void)
2887{
8af36743
PM
2888 memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
2889 NULL, NULL, UINT64_MAX);
2c9b15ca 2890 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 2891 NULL, UINT64_MAX);
8d04fb55
JK
2892
2893 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2894 * which can be called without the iothread mutex.
2895 */
2c9b15ca 2896 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1f6245e5 2897 NULL, UINT64_MAX);
8d04fb55
JK
2898 memory_region_clear_global_locking(&io_mem_notdirty);
2899
2c9b15ca 2900 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1f6245e5 2901 NULL, UINT64_MAX);
e9179ce1
AK
2902}
2903
8629d3fc 2904AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
00752703 2905{
53cb28cb
MA
2906 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2907 uint16_t n;
2908
16620684 2909 n = dummy_section(&d->map, fv, &io_mem_unassigned);
53cb28cb 2910 assert(n == PHYS_SECTION_UNASSIGNED);
16620684 2911 n = dummy_section(&d->map, fv, &io_mem_notdirty);
53cb28cb 2912 assert(n == PHYS_SECTION_NOTDIRTY);
16620684 2913 n = dummy_section(&d->map, fv, &io_mem_rom);
53cb28cb 2914 assert(n == PHYS_SECTION_ROM);
16620684 2915 n = dummy_section(&d->map, fv, &io_mem_watch);
53cb28cb 2916 assert(n == PHYS_SECTION_WATCH);
00752703 2917
9736e55b 2918 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
66a6df1d
AK
2919
2920 return d;
00752703
PB
2921}
2922
66a6df1d 2923void address_space_dispatch_free(AddressSpaceDispatch *d)
79e2b9ae
PB
2924{
2925 phys_sections_free(&d->map);
2926 g_free(d);
2927}
2928
1d71148e 2929static void tcg_commit(MemoryListener *listener)
50c1e149 2930{
32857f4d
PM
2931 CPUAddressSpace *cpuas;
2932 AddressSpaceDispatch *d;
117712c3
AK
2933
2934 /* since each CPU stores ram addresses in its TLB cache, we must
2935 reset the modified entries */
32857f4d
PM
2936 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2937 cpu_reloading_memory_map();
2938 /* The CPU and TLB are protected by the iothread lock.
2939 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2940 * may have split the RCU critical section.
2941 */
66a6df1d 2942 d = address_space_to_dispatch(cpuas->as);
f35e44e7 2943 atomic_rcu_set(&cpuas->memory_dispatch, d);
d10eb08f 2944 tlb_flush(cpuas->cpu);
50c1e149
AK
2945}
2946
62152b8a
AK
2947static void memory_map_init(void)
2948{
7267c094 2949 system_memory = g_malloc(sizeof(*system_memory));
03f49957 2950
57271d63 2951 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 2952 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 2953
7267c094 2954 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
2955 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2956 65536);
7dca8043 2957 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
2958}
2959
2960MemoryRegion *get_system_memory(void)
2961{
2962 return system_memory;
2963}
2964
309cb471
AK
2965MemoryRegion *get_system_io(void)
2966{
2967 return system_io;
2968}
2969
e2eef170
PB
2970#endif /* !defined(CONFIG_USER_ONLY) */
2971
13eb76e0
FB
2972/* physical memory access (slow version, mainly for debug) */
2973#if defined(CONFIG_USER_ONLY)
f17ec444 2974int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
a68fe89c 2975 uint8_t *buf, int len, int is_write)
13eb76e0
FB
2976{
2977 int l, flags;
2978 target_ulong page;
53a5960a 2979 void * p;
13eb76e0
FB
2980
2981 while (len > 0) {
2982 page = addr & TARGET_PAGE_MASK;
2983 l = (page + TARGET_PAGE_SIZE) - addr;
2984 if (l > len)
2985 l = len;
2986 flags = page_get_flags(page);
2987 if (!(flags & PAGE_VALID))
a68fe89c 2988 return -1;
13eb76e0
FB
2989 if (is_write) {
2990 if (!(flags & PAGE_WRITE))
a68fe89c 2991 return -1;
579a97f7 2992 /* XXX: this code should not depend on lock_user */
72fb7daa 2993 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 2994 return -1;
72fb7daa
AJ
2995 memcpy(p, buf, l);
2996 unlock_user(p, addr, l);
13eb76e0
FB
2997 } else {
2998 if (!(flags & PAGE_READ))
a68fe89c 2999 return -1;
579a97f7 3000 /* XXX: this code should not depend on lock_user */
72fb7daa 3001 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3002 return -1;
72fb7daa 3003 memcpy(buf, p, l);
5b257578 3004 unlock_user(p, addr, 0);
13eb76e0
FB
3005 }
3006 len -= l;
3007 buf += l;
3008 addr += l;
3009 }
a68fe89c 3010 return 0;
13eb76e0 3011}
8df1cd07 3012
13eb76e0 3013#else
51d7a9eb 3014
845b6214 3015static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 3016 hwaddr length)
51d7a9eb 3017{
e87f7778 3018 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
0878d0e1
PB
3019 addr += memory_region_get_ram_addr(mr);
3020
e87f7778
PB
3021 /* No early return if dirty_log_mask is or becomes 0, because
3022 * cpu_physical_memory_set_dirty_range will still call
3023 * xen_modified_memory.
3024 */
3025 if (dirty_log_mask) {
3026 dirty_log_mask =
3027 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3028 }
3029 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
5aa1ef71 3030 assert(tcg_enabled());
ba051fb5 3031 tb_lock();
e87f7778 3032 tb_invalidate_phys_range(addr, addr + length);
ba051fb5 3033 tb_unlock();
e87f7778 3034 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 3035 }
e87f7778 3036 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
3037}
3038
23326164 3039static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 3040{
e1622f4b 3041 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
3042
3043 /* Regions are assumed to support 1-4 byte accesses unless
3044 otherwise specified. */
23326164
RH
3045 if (access_size_max == 0) {
3046 access_size_max = 4;
3047 }
3048
3049 /* Bound the maximum access by the alignment of the address. */
3050 if (!mr->ops->impl.unaligned) {
3051 unsigned align_size_max = addr & -addr;
3052 if (align_size_max != 0 && align_size_max < access_size_max) {
3053 access_size_max = align_size_max;
3054 }
82f2563f 3055 }
23326164
RH
3056
3057 /* Don't attempt accesses larger than the maximum. */
3058 if (l > access_size_max) {
3059 l = access_size_max;
82f2563f 3060 }
6554f5c0 3061 l = pow2floor(l);
23326164
RH
3062
3063 return l;
82f2563f
PB
3064}
3065
4840f10e 3066static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 3067{
4840f10e
JK
3068 bool unlocked = !qemu_mutex_iothread_locked();
3069 bool release_lock = false;
3070
3071 if (unlocked && mr->global_locking) {
3072 qemu_mutex_lock_iothread();
3073 unlocked = false;
3074 release_lock = true;
3075 }
125b3806 3076 if (mr->flush_coalesced_mmio) {
4840f10e
JK
3077 if (unlocked) {
3078 qemu_mutex_lock_iothread();
3079 }
125b3806 3080 qemu_flush_coalesced_mmio_buffer();
4840f10e
JK
3081 if (unlocked) {
3082 qemu_mutex_unlock_iothread();
3083 }
125b3806 3084 }
4840f10e
JK
3085
3086 return release_lock;
125b3806
PB
3087}
3088
a203ac70 3089/* Called within RCU critical section. */
16620684
AK
3090static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3091 MemTxAttrs attrs,
3092 const uint8_t *buf,
3093 int len, hwaddr addr1,
3094 hwaddr l, MemoryRegion *mr)
13eb76e0 3095{
13eb76e0 3096 uint8_t *ptr;
791af8c8 3097 uint64_t val;
3b643495 3098 MemTxResult result = MEMTX_OK;
4840f10e 3099 bool release_lock = false;
3b46e624 3100
a203ac70 3101 for (;;) {
eb7eeb88
PB
3102 if (!memory_access_is_direct(mr, true)) {
3103 release_lock |= prepare_mmio_access(mr);
3104 l = memory_access_size(mr, l, addr1);
3105 /* XXX: could force current_cpu to NULL to avoid
3106 potential bugs */
3107 switch (l) {
3108 case 8:
3109 /* 64 bit write access */
3110 val = ldq_p(buf);
3111 result |= memory_region_dispatch_write(mr, addr1, val, 8,
3112 attrs);
3113 break;
3114 case 4:
3115 /* 32 bit write access */
6da67de6 3116 val = (uint32_t)ldl_p(buf);
eb7eeb88
PB
3117 result |= memory_region_dispatch_write(mr, addr1, val, 4,
3118 attrs);
3119 break;
3120 case 2:
3121 /* 16 bit write access */
3122 val = lduw_p(buf);
3123 result |= memory_region_dispatch_write(mr, addr1, val, 2,
3124 attrs);
3125 break;
3126 case 1:
3127 /* 8 bit write access */
3128 val = ldub_p(buf);
3129 result |= memory_region_dispatch_write(mr, addr1, val, 1,
3130 attrs);
3131 break;
3132 default:
3133 abort();
13eb76e0
FB
3134 }
3135 } else {
eb7eeb88 3136 /* RAM case */
f5aa69bd 3137 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
eb7eeb88
PB
3138 memcpy(ptr, buf, l);
3139 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0 3140 }
4840f10e
JK
3141
3142 if (release_lock) {
3143 qemu_mutex_unlock_iothread();
3144 release_lock = false;
3145 }
3146
13eb76e0
FB
3147 len -= l;
3148 buf += l;
3149 addr += l;
a203ac70
PB
3150
3151 if (!len) {
3152 break;
3153 }
3154
3155 l = len;
efa99a2f 3156 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
13eb76e0 3157 }
fd8aaa76 3158
3b643495 3159 return result;
13eb76e0 3160}
8df1cd07 3161
4c6ebbb3 3162/* Called from RCU critical section. */
16620684
AK
3163static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3164 const uint8_t *buf, int len)
ac1970fb 3165{
eb7eeb88 3166 hwaddr l;
eb7eeb88
PB
3167 hwaddr addr1;
3168 MemoryRegion *mr;
3169 MemTxResult result = MEMTX_OK;
eb7eeb88 3170
4c6ebbb3 3171 l = len;
efa99a2f 3172 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
4c6ebbb3
PB
3173 result = flatview_write_continue(fv, addr, attrs, buf, len,
3174 addr1, l, mr);
a203ac70
PB
3175
3176 return result;
3177}
3178
3179/* Called within RCU critical section. */
16620684
AK
3180MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3181 MemTxAttrs attrs, uint8_t *buf,
3182 int len, hwaddr addr1, hwaddr l,
3183 MemoryRegion *mr)
a203ac70
PB
3184{
3185 uint8_t *ptr;
3186 uint64_t val;
3187 MemTxResult result = MEMTX_OK;
3188 bool release_lock = false;
eb7eeb88 3189
a203ac70 3190 for (;;) {
eb7eeb88
PB
3191 if (!memory_access_is_direct(mr, false)) {
3192 /* I/O case */
3193 release_lock |= prepare_mmio_access(mr);
3194 l = memory_access_size(mr, l, addr1);
3195 switch (l) {
3196 case 8:
3197 /* 64 bit read access */
3198 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
3199 attrs);
3200 stq_p(buf, val);
3201 break;
3202 case 4:
3203 /* 32 bit read access */
3204 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
3205 attrs);
3206 stl_p(buf, val);
3207 break;
3208 case 2:
3209 /* 16 bit read access */
3210 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
3211 attrs);
3212 stw_p(buf, val);
3213 break;
3214 case 1:
3215 /* 8 bit read access */
3216 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
3217 attrs);
3218 stb_p(buf, val);
3219 break;
3220 default:
3221 abort();
3222 }
3223 } else {
3224 /* RAM case */
f5aa69bd 3225 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
eb7eeb88
PB
3226 memcpy(buf, ptr, l);
3227 }
3228
3229 if (release_lock) {
3230 qemu_mutex_unlock_iothread();
3231 release_lock = false;
3232 }
3233
3234 len -= l;
3235 buf += l;
3236 addr += l;
a203ac70
PB
3237
3238 if (!len) {
3239 break;
3240 }
3241
3242 l = len;
efa99a2f 3243 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
a203ac70
PB
3244 }
3245
3246 return result;
3247}
3248
b2a44fca
PB
3249/* Called from RCU critical section. */
3250static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3251 MemTxAttrs attrs, uint8_t *buf, int len)
a203ac70
PB
3252{
3253 hwaddr l;
3254 hwaddr addr1;
3255 MemoryRegion *mr;
eb7eeb88 3256
b2a44fca 3257 l = len;
efa99a2f 3258 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
b2a44fca
PB
3259 return flatview_read_continue(fv, addr, attrs, buf, len,
3260 addr1, l, mr);
ac1970fb
AK
3261}
3262
b2a44fca
PB
3263MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3264 MemTxAttrs attrs, uint8_t *buf, int len)
3265{
3266 MemTxResult result = MEMTX_OK;
3267 FlatView *fv;
3268
3269 if (len > 0) {
3270 rcu_read_lock();
3271 fv = address_space_to_flatview(as);
3272 result = flatview_read(fv, addr, attrs, buf, len);
3273 rcu_read_unlock();
3274 }
3275
3276 return result;
3277}
3278
4c6ebbb3
PB
3279MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3280 MemTxAttrs attrs,
3281 const uint8_t *buf, int len)
3282{
3283 MemTxResult result = MEMTX_OK;
3284 FlatView *fv;
3285
3286 if (len > 0) {
3287 rcu_read_lock();
3288 fv = address_space_to_flatview(as);
3289 result = flatview_write(fv, addr, attrs, buf, len);
3290 rcu_read_unlock();
3291 }
3292
3293 return result;
3294}
3295
db84fd97
PB
3296MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3297 uint8_t *buf, int len, bool is_write)
3298{
3299 if (is_write) {
3300 return address_space_write(as, addr, attrs, buf, len);
3301 } else {
3302 return address_space_read_full(as, addr, attrs, buf, len);
3303 }
3304}
3305
a8170e5e 3306void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
ac1970fb
AK
3307 int len, int is_write)
3308{
5c9eb028
PM
3309 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3310 buf, len, is_write);
ac1970fb
AK
3311}
3312
582b55a9
AG
3313enum write_rom_type {
3314 WRITE_DATA,
3315 FLUSH_CACHE,
3316};
3317
2a221651 3318static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
582b55a9 3319 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
d0ecd2aa 3320{
149f54b5 3321 hwaddr l;
d0ecd2aa 3322 uint8_t *ptr;
149f54b5 3323 hwaddr addr1;
5c8a00ce 3324 MemoryRegion *mr;
3b46e624 3325
41063e1e 3326 rcu_read_lock();
d0ecd2aa 3327 while (len > 0) {
149f54b5 3328 l = len;
bc6b1cec
PM
3329 mr = address_space_translate(as, addr, &addr1, &l, true,
3330 MEMTXATTRS_UNSPECIFIED);
3b46e624 3331
5c8a00ce
PB
3332 if (!(memory_region_is_ram(mr) ||
3333 memory_region_is_romd(mr))) {
b242e0e0 3334 l = memory_access_size(mr, l, addr1);
d0ecd2aa 3335 } else {
d0ecd2aa 3336 /* ROM/RAM case */
0878d0e1 3337 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
582b55a9
AG
3338 switch (type) {
3339 case WRITE_DATA:
3340 memcpy(ptr, buf, l);
845b6214 3341 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
3342 break;
3343 case FLUSH_CACHE:
3344 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3345 break;
3346 }
d0ecd2aa
FB
3347 }
3348 len -= l;
3349 buf += l;
3350 addr += l;
3351 }
41063e1e 3352 rcu_read_unlock();
d0ecd2aa
FB
3353}
3354
582b55a9 3355/* used for ROM loading : can write in RAM and ROM */
2a221651 3356void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
582b55a9
AG
3357 const uint8_t *buf, int len)
3358{
2a221651 3359 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
582b55a9
AG
3360}
3361
3362void cpu_flush_icache_range(hwaddr start, int len)
3363{
3364 /*
3365 * This function should do the same thing as an icache flush that was
3366 * triggered from within the guest. For TCG we are always cache coherent,
3367 * so there is no need to flush anything. For KVM / Xen we need to flush
3368 * the host's instruction cache at least.
3369 */
3370 if (tcg_enabled()) {
3371 return;
3372 }
3373
2a221651
EI
3374 cpu_physical_memory_write_rom_internal(&address_space_memory,
3375 start, NULL, len, FLUSH_CACHE);
582b55a9
AG
3376}
3377
6d16c2f8 3378typedef struct {
d3e71559 3379 MemoryRegion *mr;
6d16c2f8 3380 void *buffer;
a8170e5e
AK
3381 hwaddr addr;
3382 hwaddr len;
c2cba0ff 3383 bool in_use;
6d16c2f8
AL
3384} BounceBuffer;
3385
3386static BounceBuffer bounce;
3387
ba223c29 3388typedef struct MapClient {
e95205e1 3389 QEMUBH *bh;
72cf2d4f 3390 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3391} MapClient;
3392
38e047b5 3393QemuMutex map_client_list_lock;
72cf2d4f
BS
3394static QLIST_HEAD(map_client_list, MapClient) map_client_list
3395 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 3396
e95205e1
FZ
3397static void cpu_unregister_map_client_do(MapClient *client)
3398{
3399 QLIST_REMOVE(client, link);
3400 g_free(client);
3401}
3402
33b6c2ed
FZ
3403static void cpu_notify_map_clients_locked(void)
3404{
3405 MapClient *client;
3406
3407 while (!QLIST_EMPTY(&map_client_list)) {
3408 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
3409 qemu_bh_schedule(client->bh);
3410 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
3411 }
3412}
3413
e95205e1 3414void cpu_register_map_client(QEMUBH *bh)
ba223c29 3415{
7267c094 3416 MapClient *client = g_malloc(sizeof(*client));
ba223c29 3417
38e047b5 3418 qemu_mutex_lock(&map_client_list_lock);
e95205e1 3419 client->bh = bh;
72cf2d4f 3420 QLIST_INSERT_HEAD(&map_client_list, client, link);
33b6c2ed
FZ
3421 if (!atomic_read(&bounce.in_use)) {
3422 cpu_notify_map_clients_locked();
3423 }
38e047b5 3424 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3425}
3426
38e047b5 3427void cpu_exec_init_all(void)
ba223c29 3428{
38e047b5 3429 qemu_mutex_init(&ram_list.mutex);
20bccb82
PM
3430 /* The data structures we set up here depend on knowing the page size,
3431 * so no more changes can be made after this point.
3432 * In an ideal world, nothing we did before we had finished the
3433 * machine setup would care about the target page size, and we could
3434 * do this much later, rather than requiring board models to state
3435 * up front what their requirements are.
3436 */
3437 finalize_target_page_bits();
38e047b5 3438 io_mem_init();
680a4783 3439 memory_map_init();
38e047b5 3440 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
3441}
3442
e95205e1 3443void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
3444{
3445 MapClient *client;
3446
e95205e1
FZ
3447 qemu_mutex_lock(&map_client_list_lock);
3448 QLIST_FOREACH(client, &map_client_list, link) {
3449 if (client->bh == bh) {
3450 cpu_unregister_map_client_do(client);
3451 break;
3452 }
ba223c29 3453 }
e95205e1 3454 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3455}
3456
3457static void cpu_notify_map_clients(void)
3458{
38e047b5 3459 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 3460 cpu_notify_map_clients_locked();
38e047b5 3461 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3462}
3463
16620684 3464static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
eace72b7 3465 bool is_write, MemTxAttrs attrs)
51644ab7 3466{
5c8a00ce 3467 MemoryRegion *mr;
51644ab7
PB
3468 hwaddr l, xlat;
3469
3470 while (len > 0) {
3471 l = len;
efa99a2f 3472 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
5c8a00ce
PB
3473 if (!memory_access_is_direct(mr, is_write)) {
3474 l = memory_access_size(mr, l, addr);
eace72b7 3475 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
51644ab7
PB
3476 return false;
3477 }
3478 }
3479
3480 len -= l;
3481 addr += l;
3482 }
3483 return true;
3484}
3485
16620684 3486bool address_space_access_valid(AddressSpace *as, hwaddr addr,
fddffa42
PM
3487 int len, bool is_write,
3488 MemTxAttrs attrs)
16620684 3489{
11e732a5
PB
3490 FlatView *fv;
3491 bool result;
3492
3493 rcu_read_lock();
3494 fv = address_space_to_flatview(as);
eace72b7 3495 result = flatview_access_valid(fv, addr, len, is_write, attrs);
11e732a5
PB
3496 rcu_read_unlock();
3497 return result;
16620684
AK
3498}
3499
715c31ec 3500static hwaddr
16620684 3501flatview_extend_translation(FlatView *fv, hwaddr addr,
53d0790d
PM
3502 hwaddr target_len,
3503 MemoryRegion *mr, hwaddr base, hwaddr len,
3504 bool is_write, MemTxAttrs attrs)
715c31ec
PB
3505{
3506 hwaddr done = 0;
3507 hwaddr xlat;
3508 MemoryRegion *this_mr;
3509
3510 for (;;) {
3511 target_len -= len;
3512 addr += len;
3513 done += len;
3514 if (target_len == 0) {
3515 return done;
3516 }
3517
3518 len = target_len;
16620684 3519 this_mr = flatview_translate(fv, addr, &xlat,
efa99a2f 3520 &len, is_write, attrs);
715c31ec
PB
3521 if (this_mr != mr || xlat != base + done) {
3522 return done;
3523 }
3524 }
3525}
3526
6d16c2f8
AL
3527/* Map a physical memory region into a host virtual address.
3528 * May map a subset of the requested range, given by and returned in *plen.
3529 * May return NULL if resources needed to perform the mapping are exhausted.
3530 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3531 * Use cpu_register_map_client() to know when retrying the map operation is
3532 * likely to succeed.
6d16c2f8 3533 */
ac1970fb 3534void *address_space_map(AddressSpace *as,
a8170e5e
AK
3535 hwaddr addr,
3536 hwaddr *plen,
f26404fb
PM
3537 bool is_write,
3538 MemTxAttrs attrs)
6d16c2f8 3539{
a8170e5e 3540 hwaddr len = *plen;
715c31ec
PB
3541 hwaddr l, xlat;
3542 MemoryRegion *mr;
e81bcda5 3543 void *ptr;
ad0c60fa 3544 FlatView *fv;
6d16c2f8 3545
e3127ae0
PB
3546 if (len == 0) {
3547 return NULL;
3548 }
38bee5dc 3549
e3127ae0 3550 l = len;
41063e1e 3551 rcu_read_lock();
ad0c60fa 3552 fv = address_space_to_flatview(as);
efa99a2f 3553 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
41063e1e 3554
e3127ae0 3555 if (!memory_access_is_direct(mr, is_write)) {
c2cba0ff 3556 if (atomic_xchg(&bounce.in_use, true)) {
41063e1e 3557 rcu_read_unlock();
e3127ae0 3558 return NULL;
6d16c2f8 3559 }
e85d9db5
KW
3560 /* Avoid unbounded allocations */
3561 l = MIN(l, TARGET_PAGE_SIZE);
3562 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
3563 bounce.addr = addr;
3564 bounce.len = l;
d3e71559
PB
3565
3566 memory_region_ref(mr);
3567 bounce.mr = mr;
e3127ae0 3568 if (!is_write) {
16620684 3569 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
5c9eb028 3570 bounce.buffer, l);
8ab934f9 3571 }
6d16c2f8 3572
41063e1e 3573 rcu_read_unlock();
e3127ae0
PB
3574 *plen = l;
3575 return bounce.buffer;
3576 }
3577
e3127ae0 3578
d3e71559 3579 memory_region_ref(mr);
16620684 3580 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
53d0790d 3581 l, is_write, attrs);
f5aa69bd 3582 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
e81bcda5
PB
3583 rcu_read_unlock();
3584
3585 return ptr;
6d16c2f8
AL
3586}
3587
ac1970fb 3588/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
3589 * Will also mark the memory as dirty if is_write == 1. access_len gives
3590 * the amount of memory that was actually read or written by the caller.
3591 */
a8170e5e
AK
3592void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3593 int is_write, hwaddr access_len)
6d16c2f8
AL
3594{
3595 if (buffer != bounce.buffer) {
d3e71559
PB
3596 MemoryRegion *mr;
3597 ram_addr_t addr1;
3598
07bdaa41 3599 mr = memory_region_from_host(buffer, &addr1);
d3e71559 3600 assert(mr != NULL);
6d16c2f8 3601 if (is_write) {
845b6214 3602 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 3603 }
868bb33f 3604 if (xen_enabled()) {
e41d7c69 3605 xen_invalidate_map_cache_entry(buffer);
050a0ddf 3606 }
d3e71559 3607 memory_region_unref(mr);
6d16c2f8
AL
3608 return;
3609 }
3610 if (is_write) {
5c9eb028
PM
3611 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3612 bounce.buffer, access_len);
6d16c2f8 3613 }
f8a83245 3614 qemu_vfree(bounce.buffer);
6d16c2f8 3615 bounce.buffer = NULL;
d3e71559 3616 memory_region_unref(bounce.mr);
c2cba0ff 3617 atomic_mb_set(&bounce.in_use, false);
ba223c29 3618 cpu_notify_map_clients();
6d16c2f8 3619}
d0ecd2aa 3620
a8170e5e
AK
3621void *cpu_physical_memory_map(hwaddr addr,
3622 hwaddr *plen,
ac1970fb
AK
3623 int is_write)
3624{
f26404fb
PM
3625 return address_space_map(&address_space_memory, addr, plen, is_write,
3626 MEMTXATTRS_UNSPECIFIED);
ac1970fb
AK
3627}
3628
a8170e5e
AK
3629void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3630 int is_write, hwaddr access_len)
ac1970fb
AK
3631{
3632 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3633}
3634
0ce265ff
PB
3635#define ARG1_DECL AddressSpace *as
3636#define ARG1 as
3637#define SUFFIX
3638#define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3639#define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3640#define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3641#define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3642#define RCU_READ_LOCK(...) rcu_read_lock()
3643#define RCU_READ_UNLOCK(...) rcu_read_unlock()
3644#include "memory_ldst.inc.c"
1e78bcc1 3645
1f4e496e
PB
3646int64_t address_space_cache_init(MemoryRegionCache *cache,
3647 AddressSpace *as,
3648 hwaddr addr,
3649 hwaddr len,
3650 bool is_write)
3651{
48564041
PB
3652 AddressSpaceDispatch *d;
3653 hwaddr l;
3654 MemoryRegion *mr;
3655
3656 assert(len > 0);
3657
3658 l = len;
3659 cache->fv = address_space_get_flatview(as);
3660 d = flatview_to_dispatch(cache->fv);
3661 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3662
3663 mr = cache->mrs.mr;
3664 memory_region_ref(mr);
3665 if (memory_access_is_direct(mr, is_write)) {
53d0790d
PM
3666 /* We don't care about the memory attributes here as we're only
3667 * doing this if we found actual RAM, which behaves the same
3668 * regardless of attributes; so UNSPECIFIED is fine.
3669 */
48564041 3670 l = flatview_extend_translation(cache->fv, addr, len, mr,
53d0790d
PM
3671 cache->xlat, l, is_write,
3672 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3673 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3674 } else {
3675 cache->ptr = NULL;
3676 }
3677
3678 cache->len = l;
3679 cache->is_write = is_write;
3680 return l;
1f4e496e
PB
3681}
3682
3683void address_space_cache_invalidate(MemoryRegionCache *cache,
3684 hwaddr addr,
3685 hwaddr access_len)
3686{
48564041
PB
3687 assert(cache->is_write);
3688 if (likely(cache->ptr)) {
3689 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3690 }
1f4e496e
PB
3691}
3692
3693void address_space_cache_destroy(MemoryRegionCache *cache)
3694{
48564041
PB
3695 if (!cache->mrs.mr) {
3696 return;
3697 }
3698
3699 if (xen_enabled()) {
3700 xen_invalidate_map_cache_entry(cache->ptr);
3701 }
3702 memory_region_unref(cache->mrs.mr);
3703 flatview_unref(cache->fv);
3704 cache->mrs.mr = NULL;
3705 cache->fv = NULL;
3706}
3707
3708/* Called from RCU critical section. This function has the same
3709 * semantics as address_space_translate, but it only works on a
3710 * predefined range of a MemoryRegion that was mapped with
3711 * address_space_cache_init.
3712 */
3713static inline MemoryRegion *address_space_translate_cached(
3714 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
bc6b1cec 3715 hwaddr *plen, bool is_write, MemTxAttrs attrs)
48564041
PB
3716{
3717 MemoryRegionSection section;
3718 MemoryRegion *mr;
3719 IOMMUMemoryRegion *iommu_mr;
3720 AddressSpace *target_as;
3721
3722 assert(!cache->ptr);
3723 *xlat = addr + cache->xlat;
3724
3725 mr = cache->mrs.mr;
3726 iommu_mr = memory_region_get_iommu(mr);
3727 if (!iommu_mr) {
3728 /* MMIO region. */
3729 return mr;
3730 }
3731
3732 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3733 NULL, is_write, true,
3734 &target_as);
3735 return section.mr;
3736}
3737
3738/* Called from RCU critical section. address_space_read_cached uses this
3739 * out of line function when the target is an MMIO or IOMMU region.
3740 */
3741void
3742address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3743 void *buf, int len)
3744{
3745 hwaddr addr1, l;
3746 MemoryRegion *mr;
3747
3748 l = len;
bc6b1cec
PM
3749 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3750 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3751 flatview_read_continue(cache->fv,
3752 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3753 addr1, l, mr);
3754}
3755
3756/* Called from RCU critical section. address_space_write_cached uses this
3757 * out of line function when the target is an MMIO or IOMMU region.
3758 */
3759void
3760address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3761 const void *buf, int len)
3762{
3763 hwaddr addr1, l;
3764 MemoryRegion *mr;
3765
3766 l = len;
bc6b1cec
PM
3767 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3768 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3769 flatview_write_continue(cache->fv,
3770 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3771 addr1, l, mr);
1f4e496e
PB
3772}
3773
3774#define ARG1_DECL MemoryRegionCache *cache
3775#define ARG1 cache
48564041
PB
3776#define SUFFIX _cached_slow
3777#define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3778#define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3779#define MAP_RAM(mr, ofs) (cache->ptr + (ofs - cache->xlat))
90c4fe5f 3780#define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
48564041
PB
3781#define RCU_READ_LOCK() ((void)0)
3782#define RCU_READ_UNLOCK() ((void)0)
1f4e496e
PB
3783#include "memory_ldst.inc.c"
3784
5e2972fd 3785/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3786int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
b448f2f3 3787 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3788{
3789 int l;
a8170e5e 3790 hwaddr phys_addr;
9b3c35e0 3791 target_ulong page;
13eb76e0 3792
79ca7a1b 3793 cpu_synchronize_state(cpu);
13eb76e0 3794 while (len > 0) {
5232e4c7
PM
3795 int asidx;
3796 MemTxAttrs attrs;
3797
13eb76e0 3798 page = addr & TARGET_PAGE_MASK;
5232e4c7
PM
3799 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3800 asidx = cpu_asidx_from_attrs(cpu, attrs);
13eb76e0
FB
3801 /* if no physical page mapped, return an error */
3802 if (phys_addr == -1)
3803 return -1;
3804 l = (page + TARGET_PAGE_SIZE) - addr;
3805 if (l > len)
3806 l = len;
5e2972fd 3807 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b 3808 if (is_write) {
5232e4c7
PM
3809 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3810 phys_addr, buf, l);
2e38847b 3811 } else {
5232e4c7
PM
3812 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3813 MEMTXATTRS_UNSPECIFIED,
5c9eb028 3814 buf, l, 0);
2e38847b 3815 }
13eb76e0
FB
3816 len -= l;
3817 buf += l;
3818 addr += l;
3819 }
3820 return 0;
3821}
038629a6
DDAG
3822
3823/*
3824 * Allows code that needs to deal with migration bitmaps etc to still be built
3825 * target independent.
3826 */
20afaed9 3827size_t qemu_target_page_size(void)
038629a6 3828{
20afaed9 3829 return TARGET_PAGE_SIZE;
038629a6
DDAG
3830}
3831
46d702b1
JQ
3832int qemu_target_page_bits(void)
3833{
3834 return TARGET_PAGE_BITS;
3835}
3836
3837int qemu_target_page_bits_min(void)
3838{
3839 return TARGET_PAGE_BITS_MIN;
3840}
a68fe89c 3841#endif
13eb76e0 3842
8e4a424b
BS
3843/*
3844 * A helper function for the _utterly broken_ virtio device model to find out if
3845 * it's running on a big endian machine. Don't do this at home kids!
3846 */
98ed8ecf
GK
3847bool target_words_bigendian(void);
3848bool target_words_bigendian(void)
8e4a424b
BS
3849{
3850#if defined(TARGET_WORDS_BIGENDIAN)
3851 return true;
3852#else
3853 return false;
3854#endif
3855}
3856
76f35538 3857#ifndef CONFIG_USER_ONLY
a8170e5e 3858bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 3859{
5c8a00ce 3860 MemoryRegion*mr;
149f54b5 3861 hwaddr l = 1;
41063e1e 3862 bool res;
76f35538 3863
41063e1e 3864 rcu_read_lock();
5c8a00ce 3865 mr = address_space_translate(&address_space_memory,
bc6b1cec
PM
3866 phys_addr, &phys_addr, &l, false,
3867 MEMTXATTRS_UNSPECIFIED);
76f35538 3868
41063e1e
PB
3869 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3870 rcu_read_unlock();
3871 return res;
76f35538 3872}
bd2fa51f 3873
e3807054 3874int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
3875{
3876 RAMBlock *block;
e3807054 3877 int ret = 0;
bd2fa51f 3878
0dc3f44a 3879 rcu_read_lock();
99e15582 3880 RAMBLOCK_FOREACH(block) {
e3807054
DDAG
3881 ret = func(block->idstr, block->host, block->offset,
3882 block->used_length, opaque);
3883 if (ret) {
3884 break;
3885 }
bd2fa51f 3886 }
0dc3f44a 3887 rcu_read_unlock();
e3807054 3888 return ret;
bd2fa51f 3889}
d3a5038c
DDAG
3890
3891/*
3892 * Unmap pages of memory from start to start+length such that
3893 * they a) read as 0, b) Trigger whatever fault mechanism
3894 * the OS provides for postcopy.
3895 * The pages must be unmapped by the end of the function.
3896 * Returns: 0 on success, none-0 on failure
3897 *
3898 */
3899int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3900{
3901 int ret = -1;
3902
3903 uint8_t *host_startaddr = rb->host + start;
3904
3905 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3906 error_report("ram_block_discard_range: Unaligned start address: %p",
3907 host_startaddr);
3908 goto err;
3909 }
3910
3911 if ((start + length) <= rb->used_length) {
db144f70 3912 bool need_madvise, need_fallocate;
d3a5038c
DDAG
3913 uint8_t *host_endaddr = host_startaddr + length;
3914 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
3915 error_report("ram_block_discard_range: Unaligned end address: %p",
3916 host_endaddr);
3917 goto err;
3918 }
3919
3920 errno = ENOTSUP; /* If we are missing MADVISE etc */
3921
db144f70
DDAG
3922 /* The logic here is messy;
3923 * madvise DONTNEED fails for hugepages
3924 * fallocate works on hugepages and shmem
3925 */
3926 need_madvise = (rb->page_size == qemu_host_page_size);
3927 need_fallocate = rb->fd != -1;
3928 if (need_fallocate) {
3929 /* For a file, this causes the area of the file to be zero'd
3930 * if read, and for hugetlbfs also causes it to be unmapped
3931 * so a userfault will trigger.
e2fa71f5
DDAG
3932 */
3933#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3934 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3935 start, length);
db144f70
DDAG
3936 if (ret) {
3937 ret = -errno;
3938 error_report("ram_block_discard_range: Failed to fallocate "
3939 "%s:%" PRIx64 " +%zx (%d)",
3940 rb->idstr, start, length, ret);
3941 goto err;
3942 }
3943#else
3944 ret = -ENOSYS;
3945 error_report("ram_block_discard_range: fallocate not available/file"
3946 "%s:%" PRIx64 " +%zx (%d)",
3947 rb->idstr, start, length, ret);
3948 goto err;
e2fa71f5
DDAG
3949#endif
3950 }
db144f70
DDAG
3951 if (need_madvise) {
3952 /* For normal RAM this causes it to be unmapped,
3953 * for shared memory it causes the local mapping to disappear
3954 * and to fall back on the file contents (which we just
3955 * fallocate'd away).
3956 */
3957#if defined(CONFIG_MADVISE)
3958 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3959 if (ret) {
3960 ret = -errno;
3961 error_report("ram_block_discard_range: Failed to discard range "
3962 "%s:%" PRIx64 " +%zx (%d)",
3963 rb->idstr, start, length, ret);
3964 goto err;
3965 }
3966#else
3967 ret = -ENOSYS;
3968 error_report("ram_block_discard_range: MADVISE not available"
d3a5038c
DDAG
3969 "%s:%" PRIx64 " +%zx (%d)",
3970 rb->idstr, start, length, ret);
db144f70
DDAG
3971 goto err;
3972#endif
d3a5038c 3973 }
db144f70
DDAG
3974 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3975 need_madvise, need_fallocate, ret);
d3a5038c
DDAG
3976 } else {
3977 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3978 "/%zx/" RAM_ADDR_FMT")",
3979 rb->idstr, start, length, rb->used_length);
3980 }
3981
3982err:
3983 return ret;
3984}
3985
ec3f8c99 3986#endif
a0be0c58
YZ
3987
3988void page_size_init(void)
3989{
3990 /* NOTE: we can always suppose that qemu_host_page_size >=
3991 TARGET_PAGE_SIZE */
a0be0c58
YZ
3992 if (qemu_host_page_size == 0) {
3993 qemu_host_page_size = qemu_real_host_page_size;
3994 }
3995 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
3996 qemu_host_page_size = TARGET_PAGE_SIZE;
3997 }
3998 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
3999}
5e8fd947
AK
4000
4001#if !defined(CONFIG_USER_ONLY)
4002
4003static void mtree_print_phys_entries(fprintf_function mon, void *f,
4004 int start, int end, int skip, int ptr)
4005{
4006 if (start == end - 1) {
4007 mon(f, "\t%3d ", start);
4008 } else {
4009 mon(f, "\t%3d..%-3d ", start, end - 1);
4010 }
4011 mon(f, " skip=%d ", skip);
4012 if (ptr == PHYS_MAP_NODE_NIL) {
4013 mon(f, " ptr=NIL");
4014 } else if (!skip) {
4015 mon(f, " ptr=#%d", ptr);
4016 } else {
4017 mon(f, " ptr=[%d]", ptr);
4018 }
4019 mon(f, "\n");
4020}
4021
4022#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4023 int128_sub((size), int128_one())) : 0)
4024
4025void mtree_print_dispatch(fprintf_function mon, void *f,
4026 AddressSpaceDispatch *d, MemoryRegion *root)
4027{
4028 int i;
4029
4030 mon(f, " Dispatch\n");
4031 mon(f, " Physical sections\n");
4032
4033 for (i = 0; i < d->map.sections_nb; ++i) {
4034 MemoryRegionSection *s = d->map.sections + i;
4035 const char *names[] = { " [unassigned]", " [not dirty]",
4036 " [ROM]", " [watch]" };
4037
4038 mon(f, " #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s",
4039 i,
4040 s->offset_within_address_space,
4041 s->offset_within_address_space + MR_SIZE(s->mr->size),
4042 s->mr->name ? s->mr->name : "(noname)",
4043 i < ARRAY_SIZE(names) ? names[i] : "",
4044 s->mr == root ? " [ROOT]" : "",
4045 s == d->mru_section ? " [MRU]" : "",
4046 s->mr->is_iommu ? " [iommu]" : "");
4047
4048 if (s->mr->alias) {
4049 mon(f, " alias=%s", s->mr->alias->name ?
4050 s->mr->alias->name : "noname");
4051 }
4052 mon(f, "\n");
4053 }
4054
4055 mon(f, " Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4056 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4057 for (i = 0; i < d->map.nodes_nb; ++i) {
4058 int j, jprev;
4059 PhysPageEntry prev;
4060 Node *n = d->map.nodes + i;
4061
4062 mon(f, " [%d]\n", i);
4063
4064 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4065 PhysPageEntry *pe = *n + j;
4066
4067 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4068 continue;
4069 }
4070
4071 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
4072
4073 jprev = j;
4074 prev = *pe;
4075 }
4076
4077 if (jprev != ARRAY_SIZE(*n)) {
4078 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
4079 }
4080 }
4081}
4082
4083#endif
This page took 1.742202 seconds and 4 git commands to generate.