]>
Commit | Line | Data |
---|---|---|
54936004 | 1 | /* |
5b6dd868 | 2 | * Virtual page mapping |
5fafdf24 | 3 | * |
54936004 FB |
4 | * Copyright (c) 2003 Fabrice Bellard |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
8167ee88 | 17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
54936004 | 18 | */ |
14a48c1d | 19 | |
7b31bbc2 | 20 | #include "qemu/osdep.h" |
a8d25326 | 21 | #include "qemu-common.h" |
da34e65c | 22 | #include "qapi/error.h" |
54936004 | 23 | |
f348b6d1 | 24 | #include "qemu/cutils.h" |
6180a181 | 25 | #include "cpu.h" |
63c91552 | 26 | #include "exec/exec-all.h" |
51180423 | 27 | #include "exec/target_page.h" |
dcb32f1d | 28 | #include "tcg/tcg.h" |
741da0d3 | 29 | #include "hw/qdev-core.h" |
c7e002c5 | 30 | #include "hw/qdev-properties.h" |
4485bd26 | 31 | #if !defined(CONFIG_USER_ONLY) |
47c8ca53 | 32 | #include "hw/boards.h" |
33c11879 | 33 | #include "hw/xen/xen.h" |
4485bd26 | 34 | #endif |
9c17d615 | 35 | #include "sysemu/kvm.h" |
2ff3de68 | 36 | #include "sysemu/sysemu.h" |
14a48c1d | 37 | #include "sysemu/tcg.h" |
a028edea | 38 | #include "sysemu/qtest.h" |
1de7afc9 PB |
39 | #include "qemu/timer.h" |
40 | #include "qemu/config-file.h" | |
75a34036 | 41 | #include "qemu/error-report.h" |
b6b71cb5 | 42 | #include "qemu/qemu-print.h" |
53a5960a | 43 | #if defined(CONFIG_USER_ONLY) |
a9c94277 | 44 | #include "qemu.h" |
432d268c | 45 | #else /* !CONFIG_USER_ONLY */ |
741da0d3 | 46 | #include "exec/memory.h" |
df43d49c | 47 | #include "exec/ioport.h" |
741da0d3 | 48 | #include "sysemu/dma.h" |
b58c5c2d | 49 | #include "sysemu/hostmem.h" |
79ca7a1b | 50 | #include "sysemu/hw_accel.h" |
741da0d3 | 51 | #include "exec/address-spaces.h" |
9c17d615 | 52 | #include "sysemu/xen-mapcache.h" |
0ab8ed18 | 53 | #include "trace-root.h" |
d3a5038c | 54 | |
e2fa71f5 | 55 | #ifdef CONFIG_FALLOCATE_PUNCH_HOLE |
e2fa71f5 DDAG |
56 | #include <linux/falloc.h> |
57 | #endif | |
58 | ||
53a5960a | 59 | #endif |
0dc3f44a | 60 | #include "qemu/rcu_queue.h" |
4840f10e | 61 | #include "qemu/main-loop.h" |
5b6dd868 | 62 | #include "translate-all.h" |
7615936e | 63 | #include "sysemu/replay.h" |
0cac1b66 | 64 | |
022c62cb | 65 | #include "exec/memory-internal.h" |
220c3ebd | 66 | #include "exec/ram_addr.h" |
508127e2 | 67 | #include "exec/log.h" |
67d95c15 | 68 | |
61c490e2 BM |
69 | #include "qemu/pmem.h" |
70 | ||
9dfeca7c BR |
71 | #include "migration/vmstate.h" |
72 | ||
b35ba30f | 73 | #include "qemu/range.h" |
794e8f30 MT |
74 | #ifndef _WIN32 |
75 | #include "qemu/mmap-alloc.h" | |
76 | #endif | |
b35ba30f | 77 | |
be9b23c4 PX |
78 | #include "monitor/monitor.h" |
79 | ||
db7b5426 | 80 | //#define DEBUG_SUBPAGE |
1196be37 | 81 | |
e2eef170 | 82 | #if !defined(CONFIG_USER_ONLY) |
0dc3f44a MD |
83 | /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes |
84 | * are protected by the ramlist lock. | |
85 | */ | |
0d53d9fe | 86 | RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; |
62152b8a AK |
87 | |
88 | static MemoryRegion *system_memory; | |
309cb471 | 89 | static MemoryRegion *system_io; |
62152b8a | 90 | |
f6790af6 AK |
91 | AddressSpace address_space_io; |
92 | AddressSpace address_space_memory; | |
2673a5da | 93 | |
acc9d80b | 94 | static MemoryRegion io_mem_unassigned; |
e2eef170 | 95 | #endif |
9fa3e853 | 96 | |
f481ee2d PB |
97 | CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus); |
98 | ||
6a00d601 FB |
99 | /* current CPU in the current thread. It is only valid inside |
100 | cpu_exec() */ | |
f240eb6f | 101 | __thread CPUState *current_cpu; |
6a00d601 | 102 | |
a0be0c58 YZ |
103 | uintptr_t qemu_host_page_size; |
104 | intptr_t qemu_host_page_mask; | |
a0be0c58 | 105 | |
e2eef170 | 106 | #if !defined(CONFIG_USER_ONLY) |
fe3dada3 PB |
107 | /* 0 = Do not count executed instructions. |
108 | 1 = Precise instruction counting. | |
109 | 2 = Adaptive rate instruction counting. */ | |
110 | int use_icount; | |
4346ae3e | 111 | |
1db8abb1 PB |
112 | typedef struct PhysPageEntry PhysPageEntry; |
113 | ||
114 | struct PhysPageEntry { | |
9736e55b | 115 | /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ |
8b795765 | 116 | uint32_t skip : 6; |
9736e55b | 117 | /* index into phys_sections (!skip) or phys_map_nodes (skip) */ |
8b795765 | 118 | uint32_t ptr : 26; |
1db8abb1 PB |
119 | }; |
120 | ||
8b795765 MT |
121 | #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) |
122 | ||
03f49957 | 123 | /* Size of the L2 (and L3, etc) page tables. */ |
57271d63 | 124 | #define ADDR_SPACE_BITS 64 |
03f49957 | 125 | |
026736ce | 126 | #define P_L2_BITS 9 |
03f49957 PB |
127 | #define P_L2_SIZE (1 << P_L2_BITS) |
128 | ||
129 | #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) | |
130 | ||
131 | typedef PhysPageEntry Node[P_L2_SIZE]; | |
0475d94f | 132 | |
53cb28cb | 133 | typedef struct PhysPageMap { |
79e2b9ae PB |
134 | struct rcu_head rcu; |
135 | ||
53cb28cb MA |
136 | unsigned sections_nb; |
137 | unsigned sections_nb_alloc; | |
138 | unsigned nodes_nb; | |
139 | unsigned nodes_nb_alloc; | |
140 | Node *nodes; | |
141 | MemoryRegionSection *sections; | |
142 | } PhysPageMap; | |
143 | ||
1db8abb1 | 144 | struct AddressSpaceDispatch { |
729633c2 | 145 | MemoryRegionSection *mru_section; |
1db8abb1 PB |
146 | /* This is a multi-level map on the physical address space. |
147 | * The bottom level has pointers to MemoryRegionSections. | |
148 | */ | |
149 | PhysPageEntry phys_map; | |
53cb28cb | 150 | PhysPageMap map; |
1db8abb1 PB |
151 | }; |
152 | ||
90260c6c JK |
153 | #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) |
154 | typedef struct subpage_t { | |
155 | MemoryRegion iomem; | |
16620684 | 156 | FlatView *fv; |
90260c6c | 157 | hwaddr base; |
2615fabd | 158 | uint16_t sub_section[]; |
90260c6c JK |
159 | } subpage_t; |
160 | ||
b41aac4f | 161 | #define PHYS_SECTION_UNASSIGNED 0 |
5312bd8b | 162 | |
e2eef170 | 163 | static void io_mem_init(void); |
62152b8a | 164 | static void memory_map_init(void); |
9458a9a1 | 165 | static void tcg_log_global_after_sync(MemoryListener *listener); |
09daed84 | 166 | static void tcg_commit(MemoryListener *listener); |
e2eef170 | 167 | |
32857f4d PM |
168 | /** |
169 | * CPUAddressSpace: all the information a CPU needs about an AddressSpace | |
170 | * @cpu: the CPU whose AddressSpace this is | |
171 | * @as: the AddressSpace itself | |
172 | * @memory_dispatch: its dispatch pointer (cached, RCU protected) | |
173 | * @tcg_as_listener: listener for tracking changes to the AddressSpace | |
174 | */ | |
175 | struct CPUAddressSpace { | |
176 | CPUState *cpu; | |
177 | AddressSpace *as; | |
178 | struct AddressSpaceDispatch *memory_dispatch; | |
179 | MemoryListener tcg_as_listener; | |
180 | }; | |
181 | ||
8deaf12c GH |
182 | struct DirtyBitmapSnapshot { |
183 | ram_addr_t start; | |
184 | ram_addr_t end; | |
185 | unsigned long dirty[]; | |
186 | }; | |
187 | ||
6658ffb8 | 188 | #endif |
fd6ce8f6 | 189 | |
6d9a1304 | 190 | #if !defined(CONFIG_USER_ONLY) |
d6f2ea22 | 191 | |
53cb28cb | 192 | static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) |
d6f2ea22 | 193 | { |
101420b8 | 194 | static unsigned alloc_hint = 16; |
53cb28cb | 195 | if (map->nodes_nb + nodes > map->nodes_nb_alloc) { |
c95cfd04 | 196 | map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes); |
53cb28cb | 197 | map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); |
101420b8 | 198 | alloc_hint = map->nodes_nb_alloc; |
d6f2ea22 | 199 | } |
f7bf5461 AK |
200 | } |
201 | ||
db94604b | 202 | static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf) |
f7bf5461 AK |
203 | { |
204 | unsigned i; | |
8b795765 | 205 | uint32_t ret; |
db94604b PB |
206 | PhysPageEntry e; |
207 | PhysPageEntry *p; | |
f7bf5461 | 208 | |
53cb28cb | 209 | ret = map->nodes_nb++; |
db94604b | 210 | p = map->nodes[ret]; |
f7bf5461 | 211 | assert(ret != PHYS_MAP_NODE_NIL); |
53cb28cb | 212 | assert(ret != map->nodes_nb_alloc); |
db94604b PB |
213 | |
214 | e.skip = leaf ? 0 : 1; | |
215 | e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL; | |
03f49957 | 216 | for (i = 0; i < P_L2_SIZE; ++i) { |
db94604b | 217 | memcpy(&p[i], &e, sizeof(e)); |
d6f2ea22 | 218 | } |
f7bf5461 | 219 | return ret; |
d6f2ea22 AK |
220 | } |
221 | ||
53cb28cb | 222 | static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, |
56b15076 | 223 | hwaddr *index, uint64_t *nb, uint16_t leaf, |
2999097b | 224 | int level) |
f7bf5461 AK |
225 | { |
226 | PhysPageEntry *p; | |
03f49957 | 227 | hwaddr step = (hwaddr)1 << (level * P_L2_BITS); |
108c49b8 | 228 | |
9736e55b | 229 | if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { |
db94604b | 230 | lp->ptr = phys_map_node_alloc(map, level == 0); |
92e873b9 | 231 | } |
db94604b | 232 | p = map->nodes[lp->ptr]; |
03f49957 | 233 | lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; |
f7bf5461 | 234 | |
03f49957 | 235 | while (*nb && lp < &p[P_L2_SIZE]) { |
07f07b31 | 236 | if ((*index & (step - 1)) == 0 && *nb >= step) { |
9736e55b | 237 | lp->skip = 0; |
c19e8800 | 238 | lp->ptr = leaf; |
07f07b31 AK |
239 | *index += step; |
240 | *nb -= step; | |
2999097b | 241 | } else { |
53cb28cb | 242 | phys_page_set_level(map, lp, index, nb, leaf, level - 1); |
2999097b AK |
243 | } |
244 | ++lp; | |
f7bf5461 AK |
245 | } |
246 | } | |
247 | ||
ac1970fb | 248 | static void phys_page_set(AddressSpaceDispatch *d, |
56b15076 | 249 | hwaddr index, uint64_t nb, |
2999097b | 250 | uint16_t leaf) |
f7bf5461 | 251 | { |
2999097b | 252 | /* Wildly overreserve - it doesn't matter much. */ |
53cb28cb | 253 | phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); |
5cd2c5b6 | 254 | |
53cb28cb | 255 | phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); |
92e873b9 FB |
256 | } |
257 | ||
b35ba30f MT |
258 | /* Compact a non leaf page entry. Simply detect that the entry has a single child, |
259 | * and update our entry so we can skip it and go directly to the destination. | |
260 | */ | |
efee678d | 261 | static void phys_page_compact(PhysPageEntry *lp, Node *nodes) |
b35ba30f MT |
262 | { |
263 | unsigned valid_ptr = P_L2_SIZE; | |
264 | int valid = 0; | |
265 | PhysPageEntry *p; | |
266 | int i; | |
267 | ||
268 | if (lp->ptr == PHYS_MAP_NODE_NIL) { | |
269 | return; | |
270 | } | |
271 | ||
272 | p = nodes[lp->ptr]; | |
273 | for (i = 0; i < P_L2_SIZE; i++) { | |
274 | if (p[i].ptr == PHYS_MAP_NODE_NIL) { | |
275 | continue; | |
276 | } | |
277 | ||
278 | valid_ptr = i; | |
279 | valid++; | |
280 | if (p[i].skip) { | |
efee678d | 281 | phys_page_compact(&p[i], nodes); |
b35ba30f MT |
282 | } |
283 | } | |
284 | ||
285 | /* We can only compress if there's only one child. */ | |
286 | if (valid != 1) { | |
287 | return; | |
288 | } | |
289 | ||
290 | assert(valid_ptr < P_L2_SIZE); | |
291 | ||
292 | /* Don't compress if it won't fit in the # of bits we have. */ | |
526ca236 WY |
293 | if (P_L2_LEVELS >= (1 << 6) && |
294 | lp->skip + p[valid_ptr].skip >= (1 << 6)) { | |
b35ba30f MT |
295 | return; |
296 | } | |
297 | ||
298 | lp->ptr = p[valid_ptr].ptr; | |
299 | if (!p[valid_ptr].skip) { | |
300 | /* If our only child is a leaf, make this a leaf. */ | |
301 | /* By design, we should have made this node a leaf to begin with so we | |
302 | * should never reach here. | |
303 | * But since it's so simple to handle this, let's do it just in case we | |
304 | * change this rule. | |
305 | */ | |
306 | lp->skip = 0; | |
307 | } else { | |
308 | lp->skip += p[valid_ptr].skip; | |
309 | } | |
310 | } | |
311 | ||
8629d3fc | 312 | void address_space_dispatch_compact(AddressSpaceDispatch *d) |
b35ba30f | 313 | { |
b35ba30f | 314 | if (d->phys_map.skip) { |
efee678d | 315 | phys_page_compact(&d->phys_map, d->map.nodes); |
b35ba30f MT |
316 | } |
317 | } | |
318 | ||
29cb533d FZ |
319 | static inline bool section_covers_addr(const MemoryRegionSection *section, |
320 | hwaddr addr) | |
321 | { | |
322 | /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means | |
323 | * the section must cover the entire address space. | |
324 | */ | |
258dfaaa | 325 | return int128_gethi(section->size) || |
29cb533d | 326 | range_covers_byte(section->offset_within_address_space, |
258dfaaa | 327 | int128_getlo(section->size), addr); |
29cb533d FZ |
328 | } |
329 | ||
003a0cf2 | 330 | static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr) |
92e873b9 | 331 | { |
003a0cf2 PX |
332 | PhysPageEntry lp = d->phys_map, *p; |
333 | Node *nodes = d->map.nodes; | |
334 | MemoryRegionSection *sections = d->map.sections; | |
97115a8d | 335 | hwaddr index = addr >> TARGET_PAGE_BITS; |
31ab2b4a | 336 | int i; |
f1f6e3b8 | 337 | |
9736e55b | 338 | for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { |
c19e8800 | 339 | if (lp.ptr == PHYS_MAP_NODE_NIL) { |
9affd6fc | 340 | return §ions[PHYS_SECTION_UNASSIGNED]; |
31ab2b4a | 341 | } |
9affd6fc | 342 | p = nodes[lp.ptr]; |
03f49957 | 343 | lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; |
5312bd8b | 344 | } |
b35ba30f | 345 | |
29cb533d | 346 | if (section_covers_addr(§ions[lp.ptr], addr)) { |
b35ba30f MT |
347 | return §ions[lp.ptr]; |
348 | } else { | |
349 | return §ions[PHYS_SECTION_UNASSIGNED]; | |
350 | } | |
f3705d53 AK |
351 | } |
352 | ||
79e2b9ae | 353 | /* Called from RCU critical section */ |
c7086b4a | 354 | static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, |
90260c6c JK |
355 | hwaddr addr, |
356 | bool resolve_subpage) | |
9f029603 | 357 | { |
729633c2 | 358 | MemoryRegionSection *section = atomic_read(&d->mru_section); |
90260c6c JK |
359 | subpage_t *subpage; |
360 | ||
07c114bb PB |
361 | if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] || |
362 | !section_covers_addr(section, addr)) { | |
003a0cf2 | 363 | section = phys_page_find(d, addr); |
07c114bb | 364 | atomic_set(&d->mru_section, section); |
729633c2 | 365 | } |
90260c6c JK |
366 | if (resolve_subpage && section->mr->subpage) { |
367 | subpage = container_of(section->mr, subpage_t, iomem); | |
53cb28cb | 368 | section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; |
90260c6c JK |
369 | } |
370 | return section; | |
9f029603 JK |
371 | } |
372 | ||
79e2b9ae | 373 | /* Called from RCU critical section */ |
90260c6c | 374 | static MemoryRegionSection * |
c7086b4a | 375 | address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, |
90260c6c | 376 | hwaddr *plen, bool resolve_subpage) |
149f54b5 PB |
377 | { |
378 | MemoryRegionSection *section; | |
965eb2fc | 379 | MemoryRegion *mr; |
a87f3954 | 380 | Int128 diff; |
149f54b5 | 381 | |
c7086b4a | 382 | section = address_space_lookup_region(d, addr, resolve_subpage); |
149f54b5 PB |
383 | /* Compute offset within MemoryRegionSection */ |
384 | addr -= section->offset_within_address_space; | |
385 | ||
386 | /* Compute offset within MemoryRegion */ | |
387 | *xlat = addr + section->offset_within_region; | |
388 | ||
965eb2fc | 389 | mr = section->mr; |
b242e0e0 PB |
390 | |
391 | /* MMIO registers can be expected to perform full-width accesses based only | |
392 | * on their address, without considering adjacent registers that could | |
393 | * decode to completely different MemoryRegions. When such registers | |
394 | * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO | |
395 | * regions overlap wildly. For this reason we cannot clamp the accesses | |
396 | * here. | |
397 | * | |
398 | * If the length is small (as is the case for address_space_ldl/stl), | |
399 | * everything works fine. If the incoming length is large, however, | |
400 | * the caller really has to do the clamping through memory_access_size. | |
401 | */ | |
965eb2fc | 402 | if (memory_region_is_ram(mr)) { |
e4a511f8 | 403 | diff = int128_sub(section->size, int128_make64(addr)); |
965eb2fc PB |
404 | *plen = int128_get64(int128_min(diff, int128_make64(*plen))); |
405 | } | |
149f54b5 PB |
406 | return section; |
407 | } | |
90260c6c | 408 | |
a411c84b PB |
409 | /** |
410 | * address_space_translate_iommu - translate an address through an IOMMU | |
411 | * memory region and then through the target address space. | |
412 | * | |
413 | * @iommu_mr: the IOMMU memory region that we start the translation from | |
414 | * @addr: the address to be translated through the MMU | |
415 | * @xlat: the translated address offset within the destination memory region. | |
416 | * It cannot be %NULL. | |
417 | * @plen_out: valid read/write length of the translated address. It | |
418 | * cannot be %NULL. | |
419 | * @page_mask_out: page mask for the translated address. This | |
420 | * should only be meaningful for IOMMU translated | |
421 | * addresses, since there may be huge pages that this bit | |
422 | * would tell. It can be %NULL if we don't care about it. | |
423 | * @is_write: whether the translation operation is for write | |
424 | * @is_mmio: whether this can be MMIO, set true if it can | |
425 | * @target_as: the address space targeted by the IOMMU | |
2f7b009c | 426 | * @attrs: transaction attributes |
a411c84b PB |
427 | * |
428 | * This function is called from RCU critical section. It is the common | |
429 | * part of flatview_do_translate and address_space_translate_cached. | |
430 | */ | |
431 | static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr, | |
432 | hwaddr *xlat, | |
433 | hwaddr *plen_out, | |
434 | hwaddr *page_mask_out, | |
435 | bool is_write, | |
436 | bool is_mmio, | |
2f7b009c PM |
437 | AddressSpace **target_as, |
438 | MemTxAttrs attrs) | |
a411c84b PB |
439 | { |
440 | MemoryRegionSection *section; | |
441 | hwaddr page_mask = (hwaddr)-1; | |
442 | ||
443 | do { | |
444 | hwaddr addr = *xlat; | |
445 | IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr); | |
2c91bcf2 PM |
446 | int iommu_idx = 0; |
447 | IOMMUTLBEntry iotlb; | |
448 | ||
449 | if (imrc->attrs_to_index) { | |
450 | iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); | |
451 | } | |
452 | ||
453 | iotlb = imrc->translate(iommu_mr, addr, is_write ? | |
454 | IOMMU_WO : IOMMU_RO, iommu_idx); | |
a411c84b PB |
455 | |
456 | if (!(iotlb.perm & (1 << is_write))) { | |
457 | goto unassigned; | |
458 | } | |
459 | ||
460 | addr = ((iotlb.translated_addr & ~iotlb.addr_mask) | |
461 | | (addr & iotlb.addr_mask)); | |
462 | page_mask &= iotlb.addr_mask; | |
463 | *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1); | |
464 | *target_as = iotlb.target_as; | |
465 | ||
466 | section = address_space_translate_internal( | |
467 | address_space_to_dispatch(iotlb.target_as), addr, xlat, | |
468 | plen_out, is_mmio); | |
469 | ||
470 | iommu_mr = memory_region_get_iommu(section->mr); | |
471 | } while (unlikely(iommu_mr)); | |
472 | ||
473 | if (page_mask_out) { | |
474 | *page_mask_out = page_mask; | |
475 | } | |
476 | return *section; | |
477 | ||
478 | unassigned: | |
479 | return (MemoryRegionSection) { .mr = &io_mem_unassigned }; | |
480 | } | |
481 | ||
d5e5fafd PX |
482 | /** |
483 | * flatview_do_translate - translate an address in FlatView | |
484 | * | |
485 | * @fv: the flat view that we want to translate on | |
486 | * @addr: the address to be translated in above address space | |
487 | * @xlat: the translated address offset within memory region. It | |
488 | * cannot be @NULL. | |
489 | * @plen_out: valid read/write length of the translated address. It | |
490 | * can be @NULL when we don't care about it. | |
491 | * @page_mask_out: page mask for the translated address. This | |
492 | * should only be meaningful for IOMMU translated | |
493 | * addresses, since there may be huge pages that this bit | |
494 | * would tell. It can be @NULL if we don't care about it. | |
495 | * @is_write: whether the translation operation is for write | |
496 | * @is_mmio: whether this can be MMIO, set true if it can | |
ad2804d9 | 497 | * @target_as: the address space targeted by the IOMMU |
49e14aa8 | 498 | * @attrs: memory transaction attributes |
d5e5fafd PX |
499 | * |
500 | * This function is called from RCU critical section | |
501 | */ | |
16620684 AK |
502 | static MemoryRegionSection flatview_do_translate(FlatView *fv, |
503 | hwaddr addr, | |
504 | hwaddr *xlat, | |
d5e5fafd PX |
505 | hwaddr *plen_out, |
506 | hwaddr *page_mask_out, | |
16620684 AK |
507 | bool is_write, |
508 | bool is_mmio, | |
49e14aa8 PM |
509 | AddressSpace **target_as, |
510 | MemTxAttrs attrs) | |
052c8fa9 | 511 | { |
052c8fa9 | 512 | MemoryRegionSection *section; |
3df9d748 | 513 | IOMMUMemoryRegion *iommu_mr; |
d5e5fafd PX |
514 | hwaddr plen = (hwaddr)(-1); |
515 | ||
ad2804d9 PB |
516 | if (!plen_out) { |
517 | plen_out = &plen; | |
d5e5fafd | 518 | } |
052c8fa9 | 519 | |
a411c84b PB |
520 | section = address_space_translate_internal( |
521 | flatview_to_dispatch(fv), addr, xlat, | |
522 | plen_out, is_mmio); | |
052c8fa9 | 523 | |
a411c84b PB |
524 | iommu_mr = memory_region_get_iommu(section->mr); |
525 | if (unlikely(iommu_mr)) { | |
526 | return address_space_translate_iommu(iommu_mr, xlat, | |
527 | plen_out, page_mask_out, | |
528 | is_write, is_mmio, | |
2f7b009c | 529 | target_as, attrs); |
052c8fa9 | 530 | } |
d5e5fafd | 531 | if (page_mask_out) { |
a411c84b PB |
532 | /* Not behind an IOMMU, use default page size. */ |
533 | *page_mask_out = ~TARGET_PAGE_MASK; | |
d5e5fafd PX |
534 | } |
535 | ||
a764040c | 536 | return *section; |
052c8fa9 JW |
537 | } |
538 | ||
539 | /* Called from RCU critical section */ | |
a764040c | 540 | IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, |
7446eb07 | 541 | bool is_write, MemTxAttrs attrs) |
90260c6c | 542 | { |
a764040c | 543 | MemoryRegionSection section; |
076a93d7 | 544 | hwaddr xlat, page_mask; |
30951157 | 545 | |
076a93d7 PX |
546 | /* |
547 | * This can never be MMIO, and we don't really care about plen, | |
548 | * but page mask. | |
549 | */ | |
550 | section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat, | |
49e14aa8 PM |
551 | NULL, &page_mask, is_write, false, &as, |
552 | attrs); | |
30951157 | 553 | |
a764040c PX |
554 | /* Illegal translation */ |
555 | if (section.mr == &io_mem_unassigned) { | |
556 | goto iotlb_fail; | |
557 | } | |
30951157 | 558 | |
a764040c PX |
559 | /* Convert memory region offset into address space offset */ |
560 | xlat += section.offset_within_address_space - | |
561 | section.offset_within_region; | |
562 | ||
a764040c | 563 | return (IOMMUTLBEntry) { |
e76bb18f | 564 | .target_as = as, |
076a93d7 PX |
565 | .iova = addr & ~page_mask, |
566 | .translated_addr = xlat & ~page_mask, | |
567 | .addr_mask = page_mask, | |
a764040c PX |
568 | /* IOTLBs are for DMAs, and DMA only allows on RAMs. */ |
569 | .perm = IOMMU_RW, | |
570 | }; | |
571 | ||
572 | iotlb_fail: | |
573 | return (IOMMUTLBEntry) {0}; | |
574 | } | |
575 | ||
576 | /* Called from RCU critical section */ | |
16620684 | 577 | MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat, |
efa99a2f PM |
578 | hwaddr *plen, bool is_write, |
579 | MemTxAttrs attrs) | |
a764040c PX |
580 | { |
581 | MemoryRegion *mr; | |
582 | MemoryRegionSection section; | |
16620684 | 583 | AddressSpace *as = NULL; |
a764040c PX |
584 | |
585 | /* This can be MMIO, so setup MMIO bit. */ | |
d5e5fafd | 586 | section = flatview_do_translate(fv, addr, xlat, plen, NULL, |
49e14aa8 | 587 | is_write, true, &as, attrs); |
a764040c PX |
588 | mr = section.mr; |
589 | ||
fe680d0d | 590 | if (xen_enabled() && memory_access_is_direct(mr, is_write)) { |
a87f3954 | 591 | hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; |
23820dbf | 592 | *plen = MIN(page, *plen); |
a87f3954 PB |
593 | } |
594 | ||
30951157 | 595 | return mr; |
90260c6c JK |
596 | } |
597 | ||
1f871c5e PM |
598 | typedef struct TCGIOMMUNotifier { |
599 | IOMMUNotifier n; | |
600 | MemoryRegion *mr; | |
601 | CPUState *cpu; | |
602 | int iommu_idx; | |
603 | bool active; | |
604 | } TCGIOMMUNotifier; | |
605 | ||
606 | static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) | |
607 | { | |
608 | TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n); | |
609 | ||
610 | if (!notifier->active) { | |
611 | return; | |
612 | } | |
613 | tlb_flush(notifier->cpu); | |
614 | notifier->active = false; | |
615 | /* We leave the notifier struct on the list to avoid reallocating it later. | |
616 | * Generally the number of IOMMUs a CPU deals with will be small. | |
617 | * In any case we can't unregister the iommu notifier from a notify | |
618 | * callback. | |
619 | */ | |
620 | } | |
621 | ||
622 | static void tcg_register_iommu_notifier(CPUState *cpu, | |
623 | IOMMUMemoryRegion *iommu_mr, | |
624 | int iommu_idx) | |
625 | { | |
626 | /* Make sure this CPU has an IOMMU notifier registered for this | |
627 | * IOMMU/IOMMU index combination, so that we can flush its TLB | |
628 | * when the IOMMU tells us the mappings we've cached have changed. | |
629 | */ | |
630 | MemoryRegion *mr = MEMORY_REGION(iommu_mr); | |
631 | TCGIOMMUNotifier *notifier; | |
549d4005 EA |
632 | Error *err = NULL; |
633 | int i, ret; | |
1f871c5e PM |
634 | |
635 | for (i = 0; i < cpu->iommu_notifiers->len; i++) { | |
5601be3b | 636 | notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); |
1f871c5e PM |
637 | if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) { |
638 | break; | |
639 | } | |
640 | } | |
641 | if (i == cpu->iommu_notifiers->len) { | |
642 | /* Not found, add a new entry at the end of the array */ | |
643 | cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1); | |
5601be3b PM |
644 | notifier = g_new0(TCGIOMMUNotifier, 1); |
645 | g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier; | |
1f871c5e PM |
646 | |
647 | notifier->mr = mr; | |
648 | notifier->iommu_idx = iommu_idx; | |
649 | notifier->cpu = cpu; | |
650 | /* Rather than trying to register interest in the specific part | |
651 | * of the iommu's address space that we've accessed and then | |
652 | * expand it later as subsequent accesses touch more of it, we | |
653 | * just register interest in the whole thing, on the assumption | |
654 | * that iommu reconfiguration will be rare. | |
655 | */ | |
656 | iommu_notifier_init(¬ifier->n, | |
657 | tcg_iommu_unmap_notify, | |
658 | IOMMU_NOTIFIER_UNMAP, | |
659 | 0, | |
660 | HWADDR_MAX, | |
661 | iommu_idx); | |
549d4005 EA |
662 | ret = memory_region_register_iommu_notifier(notifier->mr, ¬ifier->n, |
663 | &err); | |
664 | if (ret) { | |
665 | error_report_err(err); | |
666 | exit(1); | |
667 | } | |
1f871c5e PM |
668 | } |
669 | ||
670 | if (!notifier->active) { | |
671 | notifier->active = true; | |
672 | } | |
673 | } | |
674 | ||
675 | static void tcg_iommu_free_notifier_list(CPUState *cpu) | |
676 | { | |
677 | /* Destroy the CPU's notifier list */ | |
678 | int i; | |
679 | TCGIOMMUNotifier *notifier; | |
680 | ||
681 | for (i = 0; i < cpu->iommu_notifiers->len; i++) { | |
5601be3b | 682 | notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); |
1f871c5e | 683 | memory_region_unregister_iommu_notifier(notifier->mr, ¬ifier->n); |
5601be3b | 684 | g_free(notifier); |
1f871c5e PM |
685 | } |
686 | g_array_free(cpu->iommu_notifiers, true); | |
687 | } | |
688 | ||
79e2b9ae | 689 | /* Called from RCU critical section */ |
90260c6c | 690 | MemoryRegionSection * |
d7898cda | 691 | address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr, |
1f871c5e PM |
692 | hwaddr *xlat, hwaddr *plen, |
693 | MemTxAttrs attrs, int *prot) | |
90260c6c | 694 | { |
30951157 | 695 | MemoryRegionSection *section; |
1f871c5e PM |
696 | IOMMUMemoryRegion *iommu_mr; |
697 | IOMMUMemoryRegionClass *imrc; | |
698 | IOMMUTLBEntry iotlb; | |
699 | int iommu_idx; | |
f35e44e7 | 700 | AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch); |
d7898cda | 701 | |
1f871c5e PM |
702 | for (;;) { |
703 | section = address_space_translate_internal(d, addr, &addr, plen, false); | |
704 | ||
705 | iommu_mr = memory_region_get_iommu(section->mr); | |
706 | if (!iommu_mr) { | |
707 | break; | |
708 | } | |
709 | ||
710 | imrc = memory_region_get_iommu_class_nocheck(iommu_mr); | |
711 | ||
712 | iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); | |
713 | tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx); | |
714 | /* We need all the permissions, so pass IOMMU_NONE so the IOMMU | |
715 | * doesn't short-cut its translation table walk. | |
716 | */ | |
717 | iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx); | |
718 | addr = ((iotlb.translated_addr & ~iotlb.addr_mask) | |
719 | | (addr & iotlb.addr_mask)); | |
720 | /* Update the caller's prot bits to remove permissions the IOMMU | |
721 | * is giving us a failure response for. If we get down to no | |
722 | * permissions left at all we can give up now. | |
723 | */ | |
724 | if (!(iotlb.perm & IOMMU_RO)) { | |
725 | *prot &= ~(PAGE_READ | PAGE_EXEC); | |
726 | } | |
727 | if (!(iotlb.perm & IOMMU_WO)) { | |
728 | *prot &= ~PAGE_WRITE; | |
729 | } | |
730 | ||
731 | if (!*prot) { | |
732 | goto translate_fail; | |
733 | } | |
734 | ||
735 | d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as)); | |
736 | } | |
30951157 | 737 | |
3df9d748 | 738 | assert(!memory_region_is_iommu(section->mr)); |
1f871c5e | 739 | *xlat = addr; |
30951157 | 740 | return section; |
1f871c5e PM |
741 | |
742 | translate_fail: | |
743 | return &d->map.sections[PHYS_SECTION_UNASSIGNED]; | |
90260c6c | 744 | } |
5b6dd868 | 745 | #endif |
fd6ce8f6 | 746 | |
b170fce3 | 747 | #if !defined(CONFIG_USER_ONLY) |
5b6dd868 BS |
748 | |
749 | static int cpu_common_post_load(void *opaque, int version_id) | |
fd6ce8f6 | 750 | { |
259186a7 | 751 | CPUState *cpu = opaque; |
a513fe19 | 752 | |
5b6dd868 BS |
753 | /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the |
754 | version_id is increased. */ | |
259186a7 | 755 | cpu->interrupt_request &= ~0x01; |
d10eb08f | 756 | tlb_flush(cpu); |
5b6dd868 | 757 | |
15a356c4 PD |
758 | /* loadvm has just updated the content of RAM, bypassing the |
759 | * usual mechanisms that ensure we flush TBs for writes to | |
760 | * memory we've translated code from. So we must flush all TBs, | |
761 | * which will now be stale. | |
762 | */ | |
763 | tb_flush(cpu); | |
764 | ||
5b6dd868 | 765 | return 0; |
a513fe19 | 766 | } |
7501267e | 767 | |
6c3bff0e PD |
768 | static int cpu_common_pre_load(void *opaque) |
769 | { | |
770 | CPUState *cpu = opaque; | |
771 | ||
adee6424 | 772 | cpu->exception_index = -1; |
6c3bff0e PD |
773 | |
774 | return 0; | |
775 | } | |
776 | ||
777 | static bool cpu_common_exception_index_needed(void *opaque) | |
778 | { | |
779 | CPUState *cpu = opaque; | |
780 | ||
adee6424 | 781 | return tcg_enabled() && cpu->exception_index != -1; |
6c3bff0e PD |
782 | } |
783 | ||
784 | static const VMStateDescription vmstate_cpu_common_exception_index = { | |
785 | .name = "cpu_common/exception_index", | |
786 | .version_id = 1, | |
787 | .minimum_version_id = 1, | |
5cd8cada | 788 | .needed = cpu_common_exception_index_needed, |
6c3bff0e PD |
789 | .fields = (VMStateField[]) { |
790 | VMSTATE_INT32(exception_index, CPUState), | |
791 | VMSTATE_END_OF_LIST() | |
792 | } | |
793 | }; | |
794 | ||
bac05aa9 AS |
795 | static bool cpu_common_crash_occurred_needed(void *opaque) |
796 | { | |
797 | CPUState *cpu = opaque; | |
798 | ||
799 | return cpu->crash_occurred; | |
800 | } | |
801 | ||
802 | static const VMStateDescription vmstate_cpu_common_crash_occurred = { | |
803 | .name = "cpu_common/crash_occurred", | |
804 | .version_id = 1, | |
805 | .minimum_version_id = 1, | |
806 | .needed = cpu_common_crash_occurred_needed, | |
807 | .fields = (VMStateField[]) { | |
808 | VMSTATE_BOOL(crash_occurred, CPUState), | |
809 | VMSTATE_END_OF_LIST() | |
810 | } | |
811 | }; | |
812 | ||
1a1562f5 | 813 | const VMStateDescription vmstate_cpu_common = { |
5b6dd868 BS |
814 | .name = "cpu_common", |
815 | .version_id = 1, | |
816 | .minimum_version_id = 1, | |
6c3bff0e | 817 | .pre_load = cpu_common_pre_load, |
5b6dd868 | 818 | .post_load = cpu_common_post_load, |
35d08458 | 819 | .fields = (VMStateField[]) { |
259186a7 AF |
820 | VMSTATE_UINT32(halted, CPUState), |
821 | VMSTATE_UINT32(interrupt_request, CPUState), | |
5b6dd868 | 822 | VMSTATE_END_OF_LIST() |
6c3bff0e | 823 | }, |
5cd8cada JQ |
824 | .subsections = (const VMStateDescription*[]) { |
825 | &vmstate_cpu_common_exception_index, | |
bac05aa9 | 826 | &vmstate_cpu_common_crash_occurred, |
5cd8cada | 827 | NULL |
5b6dd868 BS |
828 | } |
829 | }; | |
1a1562f5 | 830 | |
5b6dd868 | 831 | #endif |
ea041c0e | 832 | |
38d8f5c8 | 833 | CPUState *qemu_get_cpu(int index) |
ea041c0e | 834 | { |
bdc44640 | 835 | CPUState *cpu; |
ea041c0e | 836 | |
bdc44640 | 837 | CPU_FOREACH(cpu) { |
55e5c285 | 838 | if (cpu->cpu_index == index) { |
bdc44640 | 839 | return cpu; |
55e5c285 | 840 | } |
ea041c0e | 841 | } |
5b6dd868 | 842 | |
bdc44640 | 843 | return NULL; |
ea041c0e FB |
844 | } |
845 | ||
09daed84 | 846 | #if !defined(CONFIG_USER_ONLY) |
80ceb07a PX |
847 | void cpu_address_space_init(CPUState *cpu, int asidx, |
848 | const char *prefix, MemoryRegion *mr) | |
09daed84 | 849 | { |
12ebc9a7 | 850 | CPUAddressSpace *newas; |
80ceb07a | 851 | AddressSpace *as = g_new0(AddressSpace, 1); |
87a621d8 | 852 | char *as_name; |
80ceb07a PX |
853 | |
854 | assert(mr); | |
87a621d8 PX |
855 | as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index); |
856 | address_space_init(as, mr, as_name); | |
857 | g_free(as_name); | |
12ebc9a7 PM |
858 | |
859 | /* Target code should have set num_ases before calling us */ | |
860 | assert(asidx < cpu->num_ases); | |
861 | ||
56943e8c PM |
862 | if (asidx == 0) { |
863 | /* address space 0 gets the convenience alias */ | |
864 | cpu->as = as; | |
865 | } | |
866 | ||
12ebc9a7 PM |
867 | /* KVM cannot currently support multiple address spaces. */ |
868 | assert(asidx == 0 || !kvm_enabled()); | |
09daed84 | 869 | |
12ebc9a7 PM |
870 | if (!cpu->cpu_ases) { |
871 | cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases); | |
09daed84 | 872 | } |
32857f4d | 873 | |
12ebc9a7 PM |
874 | newas = &cpu->cpu_ases[asidx]; |
875 | newas->cpu = cpu; | |
876 | newas->as = as; | |
56943e8c | 877 | if (tcg_enabled()) { |
9458a9a1 | 878 | newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync; |
12ebc9a7 PM |
879 | newas->tcg_as_listener.commit = tcg_commit; |
880 | memory_listener_register(&newas->tcg_as_listener, as); | |
56943e8c | 881 | } |
09daed84 | 882 | } |
651a5bc0 PM |
883 | |
884 | AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx) | |
885 | { | |
886 | /* Return the AddressSpace corresponding to the specified index */ | |
887 | return cpu->cpu_ases[asidx].as; | |
888 | } | |
09daed84 EI |
889 | #endif |
890 | ||
7bbc124e | 891 | void cpu_exec_unrealizefn(CPUState *cpu) |
1c59eb39 | 892 | { |
9dfeca7c BR |
893 | CPUClass *cc = CPU_GET_CLASS(cpu); |
894 | ||
267f685b | 895 | cpu_list_remove(cpu); |
9dfeca7c BR |
896 | |
897 | if (cc->vmsd != NULL) { | |
898 | vmstate_unregister(NULL, cc->vmsd, cpu); | |
899 | } | |
900 | if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { | |
901 | vmstate_unregister(NULL, &vmstate_cpu_common, cpu); | |
902 | } | |
1f871c5e PM |
903 | #ifndef CONFIG_USER_ONLY |
904 | tcg_iommu_free_notifier_list(cpu); | |
905 | #endif | |
1c59eb39 BR |
906 | } |
907 | ||
c7e002c5 FZ |
908 | Property cpu_common_props[] = { |
909 | #ifndef CONFIG_USER_ONLY | |
910 | /* Create a memory property for softmmu CPU object, | |
2e5b09fd | 911 | * so users can wire up its memory. (This can't go in hw/core/cpu.c |
c7e002c5 FZ |
912 | * because that file is compiled only once for both user-mode |
913 | * and system builds.) The default if no link is set up is to use | |
914 | * the system address space. | |
915 | */ | |
916 | DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION, | |
917 | MemoryRegion *), | |
918 | #endif | |
919 | DEFINE_PROP_END_OF_LIST(), | |
920 | }; | |
921 | ||
39e329e3 | 922 | void cpu_exec_initfn(CPUState *cpu) |
ea041c0e | 923 | { |
56943e8c | 924 | cpu->as = NULL; |
12ebc9a7 | 925 | cpu->num_ases = 0; |
56943e8c | 926 | |
291135b5 | 927 | #ifndef CONFIG_USER_ONLY |
291135b5 | 928 | cpu->thread_id = qemu_get_thread_id(); |
6731d864 PC |
929 | cpu->memory = system_memory; |
930 | object_ref(OBJECT(cpu->memory)); | |
291135b5 | 931 | #endif |
39e329e3 LV |
932 | } |
933 | ||
ce5b1bbf | 934 | void cpu_exec_realizefn(CPUState *cpu, Error **errp) |
39e329e3 | 935 | { |
55c3ceef | 936 | CPUClass *cc = CPU_GET_CLASS(cpu); |
2dda6354 | 937 | static bool tcg_target_initialized; |
291135b5 | 938 | |
267f685b | 939 | cpu_list_add(cpu); |
1bc7e522 | 940 | |
2dda6354 EC |
941 | if (tcg_enabled() && !tcg_target_initialized) { |
942 | tcg_target_initialized = true; | |
55c3ceef RH |
943 | cc->tcg_initialize(); |
944 | } | |
5005e253 | 945 | tlb_init(cpu); |
55c3ceef | 946 | |
30865f31 EC |
947 | qemu_plugin_vcpu_init_hook(cpu); |
948 | ||
1bc7e522 | 949 | #ifndef CONFIG_USER_ONLY |
e0d47944 | 950 | if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { |
741da0d3 | 951 | vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu); |
e0d47944 | 952 | } |
b170fce3 | 953 | if (cc->vmsd != NULL) { |
741da0d3 | 954 | vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu); |
b170fce3 | 955 | } |
1f871c5e | 956 | |
5601be3b | 957 | cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *)); |
741da0d3 | 958 | #endif |
ea041c0e FB |
959 | } |
960 | ||
c1c8cfe5 | 961 | const char *parse_cpu_option(const char *cpu_option) |
2278b939 IM |
962 | { |
963 | ObjectClass *oc; | |
964 | CPUClass *cc; | |
965 | gchar **model_pieces; | |
966 | const char *cpu_type; | |
967 | ||
c1c8cfe5 | 968 | model_pieces = g_strsplit(cpu_option, ",", 2); |
5b863f3e EH |
969 | if (!model_pieces[0]) { |
970 | error_report("-cpu option cannot be empty"); | |
971 | exit(1); | |
972 | } | |
2278b939 IM |
973 | |
974 | oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]); | |
975 | if (oc == NULL) { | |
976 | error_report("unable to find CPU model '%s'", model_pieces[0]); | |
977 | g_strfreev(model_pieces); | |
978 | exit(EXIT_FAILURE); | |
979 | } | |
980 | ||
981 | cpu_type = object_class_get_name(oc); | |
982 | cc = CPU_CLASS(oc); | |
983 | cc->parse_features(cpu_type, model_pieces[1], &error_fatal); | |
984 | g_strfreev(model_pieces); | |
985 | return cpu_type; | |
986 | } | |
987 | ||
c40d4792 | 988 | #if defined(CONFIG_USER_ONLY) |
8bca9a03 | 989 | void tb_invalidate_phys_addr(target_ulong addr) |
1e7855a5 | 990 | { |
406bc339 | 991 | mmap_lock(); |
ce9f5e27 | 992 | tb_invalidate_phys_page_range(addr, addr + 1); |
406bc339 PK |
993 | mmap_unlock(); |
994 | } | |
8bca9a03 PB |
995 | |
996 | static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) | |
997 | { | |
998 | tb_invalidate_phys_addr(pc); | |
999 | } | |
406bc339 | 1000 | #else |
8bca9a03 PB |
1001 | void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs) |
1002 | { | |
1003 | ram_addr_t ram_addr; | |
1004 | MemoryRegion *mr; | |
1005 | hwaddr l = 1; | |
1006 | ||
c40d4792 PB |
1007 | if (!tcg_enabled()) { |
1008 | return; | |
1009 | } | |
1010 | ||
694ea274 | 1011 | RCU_READ_LOCK_GUARD(); |
8bca9a03 PB |
1012 | mr = address_space_translate(as, addr, &addr, &l, false, attrs); |
1013 | if (!(memory_region_is_ram(mr) | |
1014 | || memory_region_is_romd(mr))) { | |
8bca9a03 PB |
1015 | return; |
1016 | } | |
1017 | ram_addr = memory_region_get_ram_addr(mr) + addr; | |
ce9f5e27 | 1018 | tb_invalidate_phys_page_range(ram_addr, ram_addr + 1); |
8bca9a03 PB |
1019 | } |
1020 | ||
406bc339 PK |
1021 | static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) |
1022 | { | |
b55f54bc MF |
1023 | /* |
1024 | * There may not be a virtual to physical translation for the pc | |
1025 | * right now, but there may exist cached TB for this pc. | |
1026 | * Flush the whole TB cache to force re-translation of such TBs. | |
1027 | * This is heavyweight, but we're debugging anyway. | |
1028 | */ | |
1029 | tb_flush(cpu); | |
1e7855a5 | 1030 | } |
406bc339 | 1031 | #endif |
d720b93d | 1032 | |
74841f04 | 1033 | #ifndef CONFIG_USER_ONLY |
6658ffb8 | 1034 | /* Add a watchpoint. */ |
75a34036 | 1035 | int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, |
a1d1bb31 | 1036 | int flags, CPUWatchpoint **watchpoint) |
6658ffb8 | 1037 | { |
c0ce998e | 1038 | CPUWatchpoint *wp; |
6658ffb8 | 1039 | |
05068c0d | 1040 | /* forbid ranges which are empty or run off the end of the address space */ |
07e2863d | 1041 | if (len == 0 || (addr + len - 1) < addr) { |
75a34036 AF |
1042 | error_report("tried to set invalid watchpoint at %" |
1043 | VADDR_PRIx ", len=%" VADDR_PRIu, addr, len); | |
b4051334 AL |
1044 | return -EINVAL; |
1045 | } | |
7267c094 | 1046 | wp = g_malloc(sizeof(*wp)); |
a1d1bb31 AL |
1047 | |
1048 | wp->vaddr = addr; | |
05068c0d | 1049 | wp->len = len; |
a1d1bb31 AL |
1050 | wp->flags = flags; |
1051 | ||
2dc9f411 | 1052 | /* keep all GDB-injected watchpoints in front */ |
ff4700b0 AF |
1053 | if (flags & BP_GDB) { |
1054 | QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry); | |
1055 | } else { | |
1056 | QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry); | |
1057 | } | |
6658ffb8 | 1058 | |
31b030d4 | 1059 | tlb_flush_page(cpu, addr); |
a1d1bb31 AL |
1060 | |
1061 | if (watchpoint) | |
1062 | *watchpoint = wp; | |
1063 | return 0; | |
6658ffb8 PB |
1064 | } |
1065 | ||
a1d1bb31 | 1066 | /* Remove a specific watchpoint. */ |
75a34036 | 1067 | int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, |
a1d1bb31 | 1068 | int flags) |
6658ffb8 | 1069 | { |
a1d1bb31 | 1070 | CPUWatchpoint *wp; |
6658ffb8 | 1071 | |
ff4700b0 | 1072 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d | 1073 | if (addr == wp->vaddr && len == wp->len |
6e140f28 | 1074 | && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { |
75a34036 | 1075 | cpu_watchpoint_remove_by_ref(cpu, wp); |
6658ffb8 PB |
1076 | return 0; |
1077 | } | |
1078 | } | |
a1d1bb31 | 1079 | return -ENOENT; |
6658ffb8 PB |
1080 | } |
1081 | ||
a1d1bb31 | 1082 | /* Remove a specific watchpoint by reference. */ |
75a34036 | 1083 | void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) |
a1d1bb31 | 1084 | { |
ff4700b0 | 1085 | QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry); |
7d03f82f | 1086 | |
31b030d4 | 1087 | tlb_flush_page(cpu, watchpoint->vaddr); |
a1d1bb31 | 1088 | |
7267c094 | 1089 | g_free(watchpoint); |
a1d1bb31 AL |
1090 | } |
1091 | ||
1092 | /* Remove all matching watchpoints. */ | |
75a34036 | 1093 | void cpu_watchpoint_remove_all(CPUState *cpu, int mask) |
a1d1bb31 | 1094 | { |
c0ce998e | 1095 | CPUWatchpoint *wp, *next; |
a1d1bb31 | 1096 | |
ff4700b0 | 1097 | QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) { |
75a34036 AF |
1098 | if (wp->flags & mask) { |
1099 | cpu_watchpoint_remove_by_ref(cpu, wp); | |
1100 | } | |
c0ce998e | 1101 | } |
7d03f82f | 1102 | } |
05068c0d PM |
1103 | |
1104 | /* Return true if this watchpoint address matches the specified | |
1105 | * access (ie the address range covered by the watchpoint overlaps | |
1106 | * partially or completely with the address range covered by the | |
1107 | * access). | |
1108 | */ | |
56ad8b00 RH |
1109 | static inline bool watchpoint_address_matches(CPUWatchpoint *wp, |
1110 | vaddr addr, vaddr len) | |
05068c0d PM |
1111 | { |
1112 | /* We know the lengths are non-zero, but a little caution is | |
1113 | * required to avoid errors in the case where the range ends | |
1114 | * exactly at the top of the address space and so addr + len | |
1115 | * wraps round to zero. | |
1116 | */ | |
1117 | vaddr wpend = wp->vaddr + wp->len - 1; | |
1118 | vaddr addrend = addr + len - 1; | |
1119 | ||
1120 | return !(addr > wpend || wp->vaddr > addrend); | |
1121 | } | |
1122 | ||
56ad8b00 RH |
1123 | /* Return flags for watchpoints that match addr + prot. */ |
1124 | int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len) | |
1125 | { | |
1126 | CPUWatchpoint *wp; | |
1127 | int ret = 0; | |
1128 | ||
1129 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { | |
1130 | if (watchpoint_address_matches(wp, addr, TARGET_PAGE_SIZE)) { | |
1131 | ret |= wp->flags; | |
1132 | } | |
1133 | } | |
1134 | return ret; | |
1135 | } | |
74841f04 | 1136 | #endif /* !CONFIG_USER_ONLY */ |
7d03f82f | 1137 | |
a1d1bb31 | 1138 | /* Add a breakpoint. */ |
b3310ab3 | 1139 | int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, |
a1d1bb31 | 1140 | CPUBreakpoint **breakpoint) |
4c3a88a2 | 1141 | { |
c0ce998e | 1142 | CPUBreakpoint *bp; |
3b46e624 | 1143 | |
7267c094 | 1144 | bp = g_malloc(sizeof(*bp)); |
4c3a88a2 | 1145 | |
a1d1bb31 AL |
1146 | bp->pc = pc; |
1147 | bp->flags = flags; | |
1148 | ||
2dc9f411 | 1149 | /* keep all GDB-injected breakpoints in front */ |
00b941e5 | 1150 | if (flags & BP_GDB) { |
f0c3c505 | 1151 | QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry); |
00b941e5 | 1152 | } else { |
f0c3c505 | 1153 | QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry); |
00b941e5 | 1154 | } |
3b46e624 | 1155 | |
f0c3c505 | 1156 | breakpoint_invalidate(cpu, pc); |
a1d1bb31 | 1157 | |
00b941e5 | 1158 | if (breakpoint) { |
a1d1bb31 | 1159 | *breakpoint = bp; |
00b941e5 | 1160 | } |
4c3a88a2 | 1161 | return 0; |
4c3a88a2 FB |
1162 | } |
1163 | ||
a1d1bb31 | 1164 | /* Remove a specific breakpoint. */ |
b3310ab3 | 1165 | int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags) |
a1d1bb31 | 1166 | { |
a1d1bb31 AL |
1167 | CPUBreakpoint *bp; |
1168 | ||
f0c3c505 | 1169 | QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { |
a1d1bb31 | 1170 | if (bp->pc == pc && bp->flags == flags) { |
b3310ab3 | 1171 | cpu_breakpoint_remove_by_ref(cpu, bp); |
a1d1bb31 AL |
1172 | return 0; |
1173 | } | |
7d03f82f | 1174 | } |
a1d1bb31 | 1175 | return -ENOENT; |
7d03f82f EI |
1176 | } |
1177 | ||
a1d1bb31 | 1178 | /* Remove a specific breakpoint by reference. */ |
b3310ab3 | 1179 | void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint) |
4c3a88a2 | 1180 | { |
f0c3c505 AF |
1181 | QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry); |
1182 | ||
1183 | breakpoint_invalidate(cpu, breakpoint->pc); | |
a1d1bb31 | 1184 | |
7267c094 | 1185 | g_free(breakpoint); |
a1d1bb31 AL |
1186 | } |
1187 | ||
1188 | /* Remove all matching breakpoints. */ | |
b3310ab3 | 1189 | void cpu_breakpoint_remove_all(CPUState *cpu, int mask) |
a1d1bb31 | 1190 | { |
c0ce998e | 1191 | CPUBreakpoint *bp, *next; |
a1d1bb31 | 1192 | |
f0c3c505 | 1193 | QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) { |
b3310ab3 AF |
1194 | if (bp->flags & mask) { |
1195 | cpu_breakpoint_remove_by_ref(cpu, bp); | |
1196 | } | |
c0ce998e | 1197 | } |
4c3a88a2 FB |
1198 | } |
1199 | ||
c33a346e FB |
1200 | /* enable or disable single step mode. EXCP_DEBUG is returned by the |
1201 | CPU loop after each instruction */ | |
3825b28f | 1202 | void cpu_single_step(CPUState *cpu, int enabled) |
c33a346e | 1203 | { |
ed2803da AF |
1204 | if (cpu->singlestep_enabled != enabled) { |
1205 | cpu->singlestep_enabled = enabled; | |
1206 | if (kvm_enabled()) { | |
38e478ec | 1207 | kvm_update_guest_debug(cpu, 0); |
ed2803da | 1208 | } else { |
ccbb4d44 | 1209 | /* must flush all the translated code to avoid inconsistencies */ |
e22a25c9 | 1210 | /* XXX: only flush what is necessary */ |
bbd77c18 | 1211 | tb_flush(cpu); |
e22a25c9 | 1212 | } |
c33a346e | 1213 | } |
c33a346e FB |
1214 | } |
1215 | ||
a47dddd7 | 1216 | void cpu_abort(CPUState *cpu, const char *fmt, ...) |
7501267e FB |
1217 | { |
1218 | va_list ap; | |
493ae1f0 | 1219 | va_list ap2; |
7501267e FB |
1220 | |
1221 | va_start(ap, fmt); | |
493ae1f0 | 1222 | va_copy(ap2, ap); |
7501267e FB |
1223 | fprintf(stderr, "qemu: fatal: "); |
1224 | vfprintf(stderr, fmt, ap); | |
1225 | fprintf(stderr, "\n"); | |
90c84c56 | 1226 | cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP); |
013a2942 | 1227 | if (qemu_log_separate()) { |
fc59d2d8 | 1228 | FILE *logfile = qemu_log_lock(); |
93fcfe39 AL |
1229 | qemu_log("qemu: fatal: "); |
1230 | qemu_log_vprintf(fmt, ap2); | |
1231 | qemu_log("\n"); | |
a0762859 | 1232 | log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP); |
31b1a7b4 | 1233 | qemu_log_flush(); |
fc59d2d8 | 1234 | qemu_log_unlock(logfile); |
93fcfe39 | 1235 | qemu_log_close(); |
924edcae | 1236 | } |
493ae1f0 | 1237 | va_end(ap2); |
f9373291 | 1238 | va_end(ap); |
7615936e | 1239 | replay_finish(); |
fd052bf6 RV |
1240 | #if defined(CONFIG_USER_ONLY) |
1241 | { | |
1242 | struct sigaction act; | |
1243 | sigfillset(&act.sa_mask); | |
1244 | act.sa_handler = SIG_DFL; | |
8347c185 | 1245 | act.sa_flags = 0; |
fd052bf6 RV |
1246 | sigaction(SIGABRT, &act, NULL); |
1247 | } | |
1248 | #endif | |
7501267e FB |
1249 | abort(); |
1250 | } | |
1251 | ||
0124311e | 1252 | #if !defined(CONFIG_USER_ONLY) |
0dc3f44a | 1253 | /* Called from RCU critical section */ |
041603fe PB |
1254 | static RAMBlock *qemu_get_ram_block(ram_addr_t addr) |
1255 | { | |
1256 | RAMBlock *block; | |
1257 | ||
43771539 | 1258 | block = atomic_rcu_read(&ram_list.mru_block); |
9b8424d5 | 1259 | if (block && addr - block->offset < block->max_length) { |
68851b98 | 1260 | return block; |
041603fe | 1261 | } |
99e15582 | 1262 | RAMBLOCK_FOREACH(block) { |
9b8424d5 | 1263 | if (addr - block->offset < block->max_length) { |
041603fe PB |
1264 | goto found; |
1265 | } | |
1266 | } | |
1267 | ||
1268 | fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); | |
1269 | abort(); | |
1270 | ||
1271 | found: | |
43771539 PB |
1272 | /* It is safe to write mru_block outside the iothread lock. This |
1273 | * is what happens: | |
1274 | * | |
1275 | * mru_block = xxx | |
1276 | * rcu_read_unlock() | |
1277 | * xxx removed from list | |
1278 | * rcu_read_lock() | |
1279 | * read mru_block | |
1280 | * mru_block = NULL; | |
1281 | * call_rcu(reclaim_ramblock, xxx); | |
1282 | * rcu_read_unlock() | |
1283 | * | |
1284 | * atomic_rcu_set is not needed here. The block was already published | |
1285 | * when it was placed into the list. Here we're just making an extra | |
1286 | * copy of the pointer. | |
1287 | */ | |
041603fe PB |
1288 | ram_list.mru_block = block; |
1289 | return block; | |
1290 | } | |
1291 | ||
a2f4d5be | 1292 | static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) |
d24981d3 | 1293 | { |
9a13565d | 1294 | CPUState *cpu; |
041603fe | 1295 | ram_addr_t start1; |
a2f4d5be JQ |
1296 | RAMBlock *block; |
1297 | ram_addr_t end; | |
1298 | ||
f28d0dfd | 1299 | assert(tcg_enabled()); |
a2f4d5be JQ |
1300 | end = TARGET_PAGE_ALIGN(start + length); |
1301 | start &= TARGET_PAGE_MASK; | |
d24981d3 | 1302 | |
694ea274 | 1303 | RCU_READ_LOCK_GUARD(); |
041603fe PB |
1304 | block = qemu_get_ram_block(start); |
1305 | assert(block == qemu_get_ram_block(end - 1)); | |
1240be24 | 1306 | start1 = (uintptr_t)ramblock_ptr(block, start - block->offset); |
9a13565d PC |
1307 | CPU_FOREACH(cpu) { |
1308 | tlb_reset_dirty(cpu, start1, length); | |
1309 | } | |
d24981d3 JQ |
1310 | } |
1311 | ||
5579c7f3 | 1312 | /* Note: start and end must be within the same ram block. */ |
03eebc9e SH |
1313 | bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, |
1314 | ram_addr_t length, | |
1315 | unsigned client) | |
1ccde1cb | 1316 | { |
5b82b703 | 1317 | DirtyMemoryBlocks *blocks; |
03eebc9e | 1318 | unsigned long end, page; |
5b82b703 | 1319 | bool dirty = false; |
077874e0 PX |
1320 | RAMBlock *ramblock; |
1321 | uint64_t mr_offset, mr_size; | |
03eebc9e SH |
1322 | |
1323 | if (length == 0) { | |
1324 | return false; | |
1325 | } | |
f23db169 | 1326 | |
03eebc9e SH |
1327 | end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; |
1328 | page = start >> TARGET_PAGE_BITS; | |
5b82b703 | 1329 | |
694ea274 DDAG |
1330 | WITH_RCU_READ_LOCK_GUARD() { |
1331 | blocks = atomic_rcu_read(&ram_list.dirty_memory[client]); | |
1332 | ramblock = qemu_get_ram_block(start); | |
1333 | /* Range sanity check on the ramblock */ | |
1334 | assert(start >= ramblock->offset && | |
1335 | start + length <= ramblock->offset + ramblock->used_length); | |
5b82b703 | 1336 | |
694ea274 DDAG |
1337 | while (page < end) { |
1338 | unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; | |
1339 | unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; | |
1340 | unsigned long num = MIN(end - page, | |
1341 | DIRTY_MEMORY_BLOCK_SIZE - offset); | |
5b82b703 | 1342 | |
694ea274 DDAG |
1343 | dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx], |
1344 | offset, num); | |
1345 | page += num; | |
1346 | } | |
5b82b703 | 1347 | |
694ea274 DDAG |
1348 | mr_offset = (ram_addr_t)(page << TARGET_PAGE_BITS) - ramblock->offset; |
1349 | mr_size = (end - page) << TARGET_PAGE_BITS; | |
1350 | memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size); | |
5b82b703 SH |
1351 | } |
1352 | ||
03eebc9e | 1353 | if (dirty && tcg_enabled()) { |
a2f4d5be | 1354 | tlb_reset_dirty_range_all(start, length); |
5579c7f3 | 1355 | } |
03eebc9e SH |
1356 | |
1357 | return dirty; | |
1ccde1cb FB |
1358 | } |
1359 | ||
8deaf12c | 1360 | DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty |
5dea4079 | 1361 | (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client) |
8deaf12c GH |
1362 | { |
1363 | DirtyMemoryBlocks *blocks; | |
5dea4079 | 1364 | ram_addr_t start = memory_region_get_ram_addr(mr) + offset; |
8deaf12c GH |
1365 | unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL); |
1366 | ram_addr_t first = QEMU_ALIGN_DOWN(start, align); | |
1367 | ram_addr_t last = QEMU_ALIGN_UP(start + length, align); | |
1368 | DirtyBitmapSnapshot *snap; | |
1369 | unsigned long page, end, dest; | |
1370 | ||
1371 | snap = g_malloc0(sizeof(*snap) + | |
1372 | ((last - first) >> (TARGET_PAGE_BITS + 3))); | |
1373 | snap->start = first; | |
1374 | snap->end = last; | |
1375 | ||
1376 | page = first >> TARGET_PAGE_BITS; | |
1377 | end = last >> TARGET_PAGE_BITS; | |
1378 | dest = 0; | |
1379 | ||
694ea274 DDAG |
1380 | WITH_RCU_READ_LOCK_GUARD() { |
1381 | blocks = atomic_rcu_read(&ram_list.dirty_memory[client]); | |
8deaf12c | 1382 | |
694ea274 DDAG |
1383 | while (page < end) { |
1384 | unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; | |
1385 | unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; | |
1386 | unsigned long num = MIN(end - page, | |
1387 | DIRTY_MEMORY_BLOCK_SIZE - offset); | |
8deaf12c | 1388 | |
694ea274 DDAG |
1389 | assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL))); |
1390 | assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL))); | |
1391 | offset >>= BITS_PER_LEVEL; | |
8deaf12c | 1392 | |
694ea274 DDAG |
1393 | bitmap_copy_and_clear_atomic(snap->dirty + dest, |
1394 | blocks->blocks[idx] + offset, | |
1395 | num); | |
1396 | page += num; | |
1397 | dest += num >> BITS_PER_LEVEL; | |
1398 | } | |
8deaf12c GH |
1399 | } |
1400 | ||
8deaf12c GH |
1401 | if (tcg_enabled()) { |
1402 | tlb_reset_dirty_range_all(start, length); | |
1403 | } | |
1404 | ||
077874e0 PX |
1405 | memory_region_clear_dirty_bitmap(mr, offset, length); |
1406 | ||
8deaf12c GH |
1407 | return snap; |
1408 | } | |
1409 | ||
1410 | bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap, | |
1411 | ram_addr_t start, | |
1412 | ram_addr_t length) | |
1413 | { | |
1414 | unsigned long page, end; | |
1415 | ||
1416 | assert(start >= snap->start); | |
1417 | assert(start + length <= snap->end); | |
1418 | ||
1419 | end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS; | |
1420 | page = (start - snap->start) >> TARGET_PAGE_BITS; | |
1421 | ||
1422 | while (page < end) { | |
1423 | if (test_bit(page, snap->dirty)) { | |
1424 | return true; | |
1425 | } | |
1426 | page++; | |
1427 | } | |
1428 | return false; | |
1429 | } | |
1430 | ||
79e2b9ae | 1431 | /* Called from RCU critical section */ |
bb0e627a | 1432 | hwaddr memory_region_section_get_iotlb(CPUState *cpu, |
8f5db641 | 1433 | MemoryRegionSection *section) |
e5548617 | 1434 | { |
8f5db641 RH |
1435 | AddressSpaceDispatch *d = flatview_to_dispatch(section->fv); |
1436 | return section - d->map.sections; | |
e5548617 | 1437 | } |
9fa3e853 FB |
1438 | #endif /* defined(CONFIG_USER_ONLY) */ |
1439 | ||
e2eef170 | 1440 | #if !defined(CONFIG_USER_ONLY) |
8da3ff18 | 1441 | |
b797ab1a WY |
1442 | static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, |
1443 | uint16_t section); | |
16620684 | 1444 | static subpage_t *subpage_init(FlatView *fv, hwaddr base); |
54688b1e | 1445 | |
06329cce | 1446 | static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) = |
a2b257d6 | 1447 | qemu_anon_ram_alloc; |
91138037 MA |
1448 | |
1449 | /* | |
1450 | * Set a custom physical guest memory alloator. | |
1451 | * Accelerators with unusual needs may need this. Hopefully, we can | |
1452 | * get rid of it eventually. | |
1453 | */ | |
06329cce | 1454 | void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared)) |
91138037 MA |
1455 | { |
1456 | phys_mem_alloc = alloc; | |
1457 | } | |
1458 | ||
53cb28cb MA |
1459 | static uint16_t phys_section_add(PhysPageMap *map, |
1460 | MemoryRegionSection *section) | |
5312bd8b | 1461 | { |
68f3f65b PB |
1462 | /* The physical section number is ORed with a page-aligned |
1463 | * pointer to produce the iotlb entries. Thus it should | |
1464 | * never overflow into the page-aligned value. | |
1465 | */ | |
53cb28cb | 1466 | assert(map->sections_nb < TARGET_PAGE_SIZE); |
68f3f65b | 1467 | |
53cb28cb MA |
1468 | if (map->sections_nb == map->sections_nb_alloc) { |
1469 | map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); | |
1470 | map->sections = g_renew(MemoryRegionSection, map->sections, | |
1471 | map->sections_nb_alloc); | |
5312bd8b | 1472 | } |
53cb28cb | 1473 | map->sections[map->sections_nb] = *section; |
dfde4e6e | 1474 | memory_region_ref(section->mr); |
53cb28cb | 1475 | return map->sections_nb++; |
5312bd8b AK |
1476 | } |
1477 | ||
058bc4b5 PB |
1478 | static void phys_section_destroy(MemoryRegion *mr) |
1479 | { | |
55b4e80b DS |
1480 | bool have_sub_page = mr->subpage; |
1481 | ||
dfde4e6e PB |
1482 | memory_region_unref(mr); |
1483 | ||
55b4e80b | 1484 | if (have_sub_page) { |
058bc4b5 | 1485 | subpage_t *subpage = container_of(mr, subpage_t, iomem); |
b4fefef9 | 1486 | object_unref(OBJECT(&subpage->iomem)); |
058bc4b5 PB |
1487 | g_free(subpage); |
1488 | } | |
1489 | } | |
1490 | ||
6092666e | 1491 | static void phys_sections_free(PhysPageMap *map) |
5312bd8b | 1492 | { |
9affd6fc PB |
1493 | while (map->sections_nb > 0) { |
1494 | MemoryRegionSection *section = &map->sections[--map->sections_nb]; | |
058bc4b5 PB |
1495 | phys_section_destroy(section->mr); |
1496 | } | |
9affd6fc PB |
1497 | g_free(map->sections); |
1498 | g_free(map->nodes); | |
5312bd8b AK |
1499 | } |
1500 | ||
9950322a | 1501 | static void register_subpage(FlatView *fv, MemoryRegionSection *section) |
0f0cb164 | 1502 | { |
9950322a | 1503 | AddressSpaceDispatch *d = flatview_to_dispatch(fv); |
0f0cb164 | 1504 | subpage_t *subpage; |
a8170e5e | 1505 | hwaddr base = section->offset_within_address_space |
0f0cb164 | 1506 | & TARGET_PAGE_MASK; |
003a0cf2 | 1507 | MemoryRegionSection *existing = phys_page_find(d, base); |
0f0cb164 AK |
1508 | MemoryRegionSection subsection = { |
1509 | .offset_within_address_space = base, | |
052e87b0 | 1510 | .size = int128_make64(TARGET_PAGE_SIZE), |
0f0cb164 | 1511 | }; |
a8170e5e | 1512 | hwaddr start, end; |
0f0cb164 | 1513 | |
f3705d53 | 1514 | assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); |
0f0cb164 | 1515 | |
f3705d53 | 1516 | if (!(existing->mr->subpage)) { |
16620684 AK |
1517 | subpage = subpage_init(fv, base); |
1518 | subsection.fv = fv; | |
0f0cb164 | 1519 | subsection.mr = &subpage->iomem; |
ac1970fb | 1520 | phys_page_set(d, base >> TARGET_PAGE_BITS, 1, |
53cb28cb | 1521 | phys_section_add(&d->map, &subsection)); |
0f0cb164 | 1522 | } else { |
f3705d53 | 1523 | subpage = container_of(existing->mr, subpage_t, iomem); |
0f0cb164 AK |
1524 | } |
1525 | start = section->offset_within_address_space & ~TARGET_PAGE_MASK; | |
052e87b0 | 1526 | end = start + int128_get64(section->size) - 1; |
53cb28cb MA |
1527 | subpage_register(subpage, start, end, |
1528 | phys_section_add(&d->map, section)); | |
0f0cb164 AK |
1529 | } |
1530 | ||
1531 | ||
9950322a | 1532 | static void register_multipage(FlatView *fv, |
052e87b0 | 1533 | MemoryRegionSection *section) |
33417e70 | 1534 | { |
9950322a | 1535 | AddressSpaceDispatch *d = flatview_to_dispatch(fv); |
a8170e5e | 1536 | hwaddr start_addr = section->offset_within_address_space; |
53cb28cb | 1537 | uint16_t section_index = phys_section_add(&d->map, section); |
052e87b0 PB |
1538 | uint64_t num_pages = int128_get64(int128_rshift(section->size, |
1539 | TARGET_PAGE_BITS)); | |
dd81124b | 1540 | |
733d5ef5 PB |
1541 | assert(num_pages); |
1542 | phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); | |
33417e70 FB |
1543 | } |
1544 | ||
494d1997 WY |
1545 | /* |
1546 | * The range in *section* may look like this: | |
1547 | * | |
1548 | * |s|PPPPPPP|s| | |
1549 | * | |
1550 | * where s stands for subpage and P for page. | |
1551 | */ | |
8629d3fc | 1552 | void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section) |
0f0cb164 | 1553 | { |
494d1997 | 1554 | MemoryRegionSection remain = *section; |
052e87b0 | 1555 | Int128 page_size = int128_make64(TARGET_PAGE_SIZE); |
0f0cb164 | 1556 | |
494d1997 WY |
1557 | /* register first subpage */ |
1558 | if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { | |
1559 | uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space) | |
1560 | - remain.offset_within_address_space; | |
733d5ef5 | 1561 | |
494d1997 | 1562 | MemoryRegionSection now = remain; |
052e87b0 | 1563 | now.size = int128_min(int128_make64(left), now.size); |
9950322a | 1564 | register_subpage(fv, &now); |
494d1997 WY |
1565 | if (int128_eq(remain.size, now.size)) { |
1566 | return; | |
1567 | } | |
052e87b0 PB |
1568 | remain.size = int128_sub(remain.size, now.size); |
1569 | remain.offset_within_address_space += int128_get64(now.size); | |
1570 | remain.offset_within_region += int128_get64(now.size); | |
494d1997 WY |
1571 | } |
1572 | ||
1573 | /* register whole pages */ | |
1574 | if (int128_ge(remain.size, page_size)) { | |
1575 | MemoryRegionSection now = remain; | |
1576 | now.size = int128_and(now.size, int128_neg(page_size)); | |
1577 | register_multipage(fv, &now); | |
1578 | if (int128_eq(remain.size, now.size)) { | |
1579 | return; | |
69b67646 | 1580 | } |
494d1997 WY |
1581 | remain.size = int128_sub(remain.size, now.size); |
1582 | remain.offset_within_address_space += int128_get64(now.size); | |
1583 | remain.offset_within_region += int128_get64(now.size); | |
0f0cb164 | 1584 | } |
494d1997 WY |
1585 | |
1586 | /* register last subpage */ | |
1587 | register_subpage(fv, &remain); | |
0f0cb164 AK |
1588 | } |
1589 | ||
62a2744c SY |
1590 | void qemu_flush_coalesced_mmio_buffer(void) |
1591 | { | |
1592 | if (kvm_enabled()) | |
1593 | kvm_flush_coalesced_mmio_buffer(); | |
1594 | } | |
1595 | ||
b2a8658e UD |
1596 | void qemu_mutex_lock_ramlist(void) |
1597 | { | |
1598 | qemu_mutex_lock(&ram_list.mutex); | |
1599 | } | |
1600 | ||
1601 | void qemu_mutex_unlock_ramlist(void) | |
1602 | { | |
1603 | qemu_mutex_unlock(&ram_list.mutex); | |
1604 | } | |
1605 | ||
be9b23c4 PX |
1606 | void ram_block_dump(Monitor *mon) |
1607 | { | |
1608 | RAMBlock *block; | |
1609 | char *psize; | |
1610 | ||
694ea274 | 1611 | RCU_READ_LOCK_GUARD(); |
be9b23c4 PX |
1612 | monitor_printf(mon, "%24s %8s %18s %18s %18s\n", |
1613 | "Block Name", "PSize", "Offset", "Used", "Total"); | |
1614 | RAMBLOCK_FOREACH(block) { | |
1615 | psize = size_to_str(block->page_size); | |
1616 | monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64 | |
1617 | " 0x%016" PRIx64 "\n", block->idstr, psize, | |
1618 | (uint64_t)block->offset, | |
1619 | (uint64_t)block->used_length, | |
1620 | (uint64_t)block->max_length); | |
1621 | g_free(psize); | |
1622 | } | |
be9b23c4 PX |
1623 | } |
1624 | ||
9c607668 AK |
1625 | #ifdef __linux__ |
1626 | /* | |
1627 | * FIXME TOCTTOU: this iterates over memory backends' mem-path, which | |
1628 | * may or may not name the same files / on the same filesystem now as | |
1629 | * when we actually open and map them. Iterate over the file | |
1630 | * descriptors instead, and use qemu_fd_getpagesize(). | |
1631 | */ | |
905b7ee4 | 1632 | static int find_min_backend_pagesize(Object *obj, void *opaque) |
9c607668 | 1633 | { |
9c607668 AK |
1634 | long *hpsize_min = opaque; |
1635 | ||
1636 | if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { | |
7d5489e6 DG |
1637 | HostMemoryBackend *backend = MEMORY_BACKEND(obj); |
1638 | long hpsize = host_memory_backend_pagesize(backend); | |
2b108085 | 1639 | |
7d5489e6 | 1640 | if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) { |
0de6e2a3 | 1641 | *hpsize_min = hpsize; |
9c607668 AK |
1642 | } |
1643 | } | |
1644 | ||
1645 | return 0; | |
1646 | } | |
1647 | ||
905b7ee4 DH |
1648 | static int find_max_backend_pagesize(Object *obj, void *opaque) |
1649 | { | |
1650 | long *hpsize_max = opaque; | |
1651 | ||
1652 | if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { | |
1653 | HostMemoryBackend *backend = MEMORY_BACKEND(obj); | |
1654 | long hpsize = host_memory_backend_pagesize(backend); | |
1655 | ||
1656 | if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) { | |
1657 | *hpsize_max = hpsize; | |
1658 | } | |
1659 | } | |
1660 | ||
1661 | return 0; | |
1662 | } | |
1663 | ||
1664 | /* | |
1665 | * TODO: We assume right now that all mapped host memory backends are | |
1666 | * used as RAM, however some might be used for different purposes. | |
1667 | */ | |
1668 | long qemu_minrampagesize(void) | |
9c607668 AK |
1669 | { |
1670 | long hpsize = LONG_MAX; | |
ad1172d8 | 1671 | Object *memdev_root = object_resolve_path("/objects", NULL); |
9c607668 | 1672 | |
ad1172d8 | 1673 | object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize); |
9c607668 AK |
1674 | return hpsize; |
1675 | } | |
905b7ee4 DH |
1676 | |
1677 | long qemu_maxrampagesize(void) | |
1678 | { | |
ad1172d8 | 1679 | long pagesize = 0; |
905b7ee4 DH |
1680 | Object *memdev_root = object_resolve_path("/objects", NULL); |
1681 | ||
ad1172d8 | 1682 | object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize); |
905b7ee4 DH |
1683 | return pagesize; |
1684 | } | |
9c607668 | 1685 | #else |
905b7ee4 DH |
1686 | long qemu_minrampagesize(void) |
1687 | { | |
038adc2f | 1688 | return qemu_real_host_page_size; |
905b7ee4 DH |
1689 | } |
1690 | long qemu_maxrampagesize(void) | |
9c607668 | 1691 | { |
038adc2f | 1692 | return qemu_real_host_page_size; |
9c607668 AK |
1693 | } |
1694 | #endif | |
1695 | ||
d5dbde46 | 1696 | #ifdef CONFIG_POSIX |
d6af99c9 HZ |
1697 | static int64_t get_file_size(int fd) |
1698 | { | |
72d41eb4 SH |
1699 | int64_t size; |
1700 | #if defined(__linux__) | |
1701 | struct stat st; | |
1702 | ||
1703 | if (fstat(fd, &st) < 0) { | |
1704 | return -errno; | |
1705 | } | |
1706 | ||
1707 | /* Special handling for devdax character devices */ | |
1708 | if (S_ISCHR(st.st_mode)) { | |
1709 | g_autofree char *subsystem_path = NULL; | |
1710 | g_autofree char *subsystem = NULL; | |
1711 | ||
1712 | subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem", | |
1713 | major(st.st_rdev), minor(st.st_rdev)); | |
1714 | subsystem = g_file_read_link(subsystem_path, NULL); | |
1715 | ||
1716 | if (subsystem && g_str_has_suffix(subsystem, "/dax")) { | |
1717 | g_autofree char *size_path = NULL; | |
1718 | g_autofree char *size_str = NULL; | |
1719 | ||
1720 | size_path = g_strdup_printf("/sys/dev/char/%d:%d/size", | |
1721 | major(st.st_rdev), minor(st.st_rdev)); | |
1722 | ||
1723 | if (g_file_get_contents(size_path, &size_str, NULL, NULL)) { | |
1724 | return g_ascii_strtoll(size_str, NULL, 0); | |
1725 | } | |
1726 | } | |
1727 | } | |
1728 | #endif /* defined(__linux__) */ | |
1729 | ||
1730 | /* st.st_size may be zero for special files yet lseek(2) works */ | |
1731 | size = lseek(fd, 0, SEEK_END); | |
d6af99c9 HZ |
1732 | if (size < 0) { |
1733 | return -errno; | |
1734 | } | |
1735 | return size; | |
1736 | } | |
1737 | ||
8d37b030 MAL |
1738 | static int file_ram_open(const char *path, |
1739 | const char *region_name, | |
1740 | bool *created, | |
1741 | Error **errp) | |
c902760f MT |
1742 | { |
1743 | char *filename; | |
8ca761f6 PF |
1744 | char *sanitized_name; |
1745 | char *c; | |
5c3ece79 | 1746 | int fd = -1; |
c902760f | 1747 | |
8d37b030 | 1748 | *created = false; |
fd97fd44 MA |
1749 | for (;;) { |
1750 | fd = open(path, O_RDWR); | |
1751 | if (fd >= 0) { | |
1752 | /* @path names an existing file, use it */ | |
1753 | break; | |
8d31d6b6 | 1754 | } |
fd97fd44 MA |
1755 | if (errno == ENOENT) { |
1756 | /* @path names a file that doesn't exist, create it */ | |
1757 | fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644); | |
1758 | if (fd >= 0) { | |
8d37b030 | 1759 | *created = true; |
fd97fd44 MA |
1760 | break; |
1761 | } | |
1762 | } else if (errno == EISDIR) { | |
1763 | /* @path names a directory, create a file there */ | |
1764 | /* Make name safe to use with mkstemp by replacing '/' with '_'. */ | |
8d37b030 | 1765 | sanitized_name = g_strdup(region_name); |
fd97fd44 MA |
1766 | for (c = sanitized_name; *c != '\0'; c++) { |
1767 | if (*c == '/') { | |
1768 | *c = '_'; | |
1769 | } | |
1770 | } | |
8ca761f6 | 1771 | |
fd97fd44 MA |
1772 | filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, |
1773 | sanitized_name); | |
1774 | g_free(sanitized_name); | |
8d31d6b6 | 1775 | |
fd97fd44 MA |
1776 | fd = mkstemp(filename); |
1777 | if (fd >= 0) { | |
1778 | unlink(filename); | |
1779 | g_free(filename); | |
1780 | break; | |
1781 | } | |
1782 | g_free(filename); | |
8d31d6b6 | 1783 | } |
fd97fd44 MA |
1784 | if (errno != EEXIST && errno != EINTR) { |
1785 | error_setg_errno(errp, errno, | |
1786 | "can't open backing store %s for guest RAM", | |
1787 | path); | |
8d37b030 | 1788 | return -1; |
fd97fd44 MA |
1789 | } |
1790 | /* | |
1791 | * Try again on EINTR and EEXIST. The latter happens when | |
1792 | * something else creates the file between our two open(). | |
1793 | */ | |
8d31d6b6 | 1794 | } |
c902760f | 1795 | |
8d37b030 MAL |
1796 | return fd; |
1797 | } | |
1798 | ||
1799 | static void *file_ram_alloc(RAMBlock *block, | |
1800 | ram_addr_t memory, | |
1801 | int fd, | |
1802 | bool truncate, | |
1803 | Error **errp) | |
1804 | { | |
1805 | void *area; | |
1806 | ||
863e9621 | 1807 | block->page_size = qemu_fd_getpagesize(fd); |
98376843 HZ |
1808 | if (block->mr->align % block->page_size) { |
1809 | error_setg(errp, "alignment 0x%" PRIx64 | |
1810 | " must be multiples of page size 0x%zx", | |
1811 | block->mr->align, block->page_size); | |
1812 | return NULL; | |
61362b71 DH |
1813 | } else if (block->mr->align && !is_power_of_2(block->mr->align)) { |
1814 | error_setg(errp, "alignment 0x%" PRIx64 | |
1815 | " must be a power of two", block->mr->align); | |
1816 | return NULL; | |
98376843 HZ |
1817 | } |
1818 | block->mr->align = MAX(block->page_size, block->mr->align); | |
8360668e HZ |
1819 | #if defined(__s390x__) |
1820 | if (kvm_enabled()) { | |
1821 | block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN); | |
1822 | } | |
1823 | #endif | |
fd97fd44 | 1824 | |
863e9621 | 1825 | if (memory < block->page_size) { |
fd97fd44 | 1826 | error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " |
863e9621 DDAG |
1827 | "or larger than page size 0x%zx", |
1828 | memory, block->page_size); | |
8d37b030 | 1829 | return NULL; |
1775f111 HZ |
1830 | } |
1831 | ||
863e9621 | 1832 | memory = ROUND_UP(memory, block->page_size); |
c902760f MT |
1833 | |
1834 | /* | |
1835 | * ftruncate is not supported by hugetlbfs in older | |
1836 | * hosts, so don't bother bailing out on errors. | |
1837 | * If anything goes wrong with it under other filesystems, | |
1838 | * mmap will fail. | |
d6af99c9 HZ |
1839 | * |
1840 | * Do not truncate the non-empty backend file to avoid corrupting | |
1841 | * the existing data in the file. Disabling shrinking is not | |
1842 | * enough. For example, the current vNVDIMM implementation stores | |
1843 | * the guest NVDIMM labels at the end of the backend file. If the | |
1844 | * backend file is later extended, QEMU will not be able to find | |
1845 | * those labels. Therefore, extending the non-empty backend file | |
1846 | * is disabled as well. | |
c902760f | 1847 | */ |
8d37b030 | 1848 | if (truncate && ftruncate(fd, memory)) { |
9742bf26 | 1849 | perror("ftruncate"); |
7f56e740 | 1850 | } |
c902760f | 1851 | |
d2f39add | 1852 | area = qemu_ram_mmap(fd, memory, block->mr->align, |
2ac0f162 | 1853 | block->flags & RAM_SHARED, block->flags & RAM_PMEM); |
c902760f | 1854 | if (area == MAP_FAILED) { |
7f56e740 | 1855 | error_setg_errno(errp, errno, |
fd97fd44 | 1856 | "unable to map backing store for guest RAM"); |
8d37b030 | 1857 | return NULL; |
c902760f | 1858 | } |
ef36fa14 | 1859 | |
04b16653 | 1860 | block->fd = fd; |
c902760f MT |
1861 | return area; |
1862 | } | |
1863 | #endif | |
1864 | ||
154cc9ea DDAG |
1865 | /* Allocate space within the ram_addr_t space that governs the |
1866 | * dirty bitmaps. | |
1867 | * Called with the ramlist lock held. | |
1868 | */ | |
d17b5288 | 1869 | static ram_addr_t find_ram_offset(ram_addr_t size) |
04b16653 AW |
1870 | { |
1871 | RAMBlock *block, *next_block; | |
3e837b2c | 1872 | ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; |
04b16653 | 1873 | |
49cd9ac6 SH |
1874 | assert(size != 0); /* it would hand out same offset multiple times */ |
1875 | ||
0dc3f44a | 1876 | if (QLIST_EMPTY_RCU(&ram_list.blocks)) { |
04b16653 | 1877 | return 0; |
0d53d9fe | 1878 | } |
04b16653 | 1879 | |
99e15582 | 1880 | RAMBLOCK_FOREACH(block) { |
154cc9ea | 1881 | ram_addr_t candidate, next = RAM_ADDR_MAX; |
04b16653 | 1882 | |
801110ab DDAG |
1883 | /* Align blocks to start on a 'long' in the bitmap |
1884 | * which makes the bitmap sync'ing take the fast path. | |
1885 | */ | |
154cc9ea | 1886 | candidate = block->offset + block->max_length; |
801110ab | 1887 | candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS); |
04b16653 | 1888 | |
154cc9ea DDAG |
1889 | /* Search for the closest following block |
1890 | * and find the gap. | |
1891 | */ | |
99e15582 | 1892 | RAMBLOCK_FOREACH(next_block) { |
154cc9ea | 1893 | if (next_block->offset >= candidate) { |
04b16653 AW |
1894 | next = MIN(next, next_block->offset); |
1895 | } | |
1896 | } | |
154cc9ea DDAG |
1897 | |
1898 | /* If it fits remember our place and remember the size | |
1899 | * of gap, but keep going so that we might find a smaller | |
1900 | * gap to fill so avoiding fragmentation. | |
1901 | */ | |
1902 | if (next - candidate >= size && next - candidate < mingap) { | |
1903 | offset = candidate; | |
1904 | mingap = next - candidate; | |
04b16653 | 1905 | } |
154cc9ea DDAG |
1906 | |
1907 | trace_find_ram_offset_loop(size, candidate, offset, next, mingap); | |
04b16653 | 1908 | } |
3e837b2c AW |
1909 | |
1910 | if (offset == RAM_ADDR_MAX) { | |
1911 | fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", | |
1912 | (uint64_t)size); | |
1913 | abort(); | |
1914 | } | |
1915 | ||
154cc9ea DDAG |
1916 | trace_find_ram_offset(size, offset); |
1917 | ||
04b16653 AW |
1918 | return offset; |
1919 | } | |
1920 | ||
c136180c | 1921 | static unsigned long last_ram_page(void) |
d17b5288 AW |
1922 | { |
1923 | RAMBlock *block; | |
1924 | ram_addr_t last = 0; | |
1925 | ||
694ea274 | 1926 | RCU_READ_LOCK_GUARD(); |
99e15582 | 1927 | RAMBLOCK_FOREACH(block) { |
62be4e3a | 1928 | last = MAX(last, block->offset + block->max_length); |
0d53d9fe | 1929 | } |
b8c48993 | 1930 | return last >> TARGET_PAGE_BITS; |
d17b5288 AW |
1931 | } |
1932 | ||
ddb97f1d JB |
1933 | static void qemu_ram_setup_dump(void *addr, ram_addr_t size) |
1934 | { | |
1935 | int ret; | |
ddb97f1d JB |
1936 | |
1937 | /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ | |
47c8ca53 | 1938 | if (!machine_dump_guest_core(current_machine)) { |
ddb97f1d JB |
1939 | ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); |
1940 | if (ret) { | |
1941 | perror("qemu_madvise"); | |
1942 | fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " | |
1943 | "but dump_guest_core=off specified\n"); | |
1944 | } | |
1945 | } | |
1946 | } | |
1947 | ||
422148d3 DDAG |
1948 | const char *qemu_ram_get_idstr(RAMBlock *rb) |
1949 | { | |
1950 | return rb->idstr; | |
1951 | } | |
1952 | ||
754cb9c0 YK |
1953 | void *qemu_ram_get_host_addr(RAMBlock *rb) |
1954 | { | |
1955 | return rb->host; | |
1956 | } | |
1957 | ||
1958 | ram_addr_t qemu_ram_get_offset(RAMBlock *rb) | |
1959 | { | |
1960 | return rb->offset; | |
1961 | } | |
1962 | ||
1963 | ram_addr_t qemu_ram_get_used_length(RAMBlock *rb) | |
1964 | { | |
1965 | return rb->used_length; | |
1966 | } | |
1967 | ||
463a4ac2 DDAG |
1968 | bool qemu_ram_is_shared(RAMBlock *rb) |
1969 | { | |
1970 | return rb->flags & RAM_SHARED; | |
1971 | } | |
1972 | ||
2ce16640 DDAG |
1973 | /* Note: Only set at the start of postcopy */ |
1974 | bool qemu_ram_is_uf_zeroable(RAMBlock *rb) | |
1975 | { | |
1976 | return rb->flags & RAM_UF_ZEROPAGE; | |
1977 | } | |
1978 | ||
1979 | void qemu_ram_set_uf_zeroable(RAMBlock *rb) | |
1980 | { | |
1981 | rb->flags |= RAM_UF_ZEROPAGE; | |
1982 | } | |
1983 | ||
b895de50 CLG |
1984 | bool qemu_ram_is_migratable(RAMBlock *rb) |
1985 | { | |
1986 | return rb->flags & RAM_MIGRATABLE; | |
1987 | } | |
1988 | ||
1989 | void qemu_ram_set_migratable(RAMBlock *rb) | |
1990 | { | |
1991 | rb->flags |= RAM_MIGRATABLE; | |
1992 | } | |
1993 | ||
1994 | void qemu_ram_unset_migratable(RAMBlock *rb) | |
1995 | { | |
1996 | rb->flags &= ~RAM_MIGRATABLE; | |
1997 | } | |
1998 | ||
ae3a7047 | 1999 | /* Called with iothread lock held. */ |
fa53a0e5 | 2000 | void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev) |
20cfe881 | 2001 | { |
fa53a0e5 | 2002 | RAMBlock *block; |
20cfe881 | 2003 | |
c5705a77 AK |
2004 | assert(new_block); |
2005 | assert(!new_block->idstr[0]); | |
84b89d78 | 2006 | |
09e5ab63 AL |
2007 | if (dev) { |
2008 | char *id = qdev_get_dev_path(dev); | |
84b89d78 CM |
2009 | if (id) { |
2010 | snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); | |
7267c094 | 2011 | g_free(id); |
84b89d78 CM |
2012 | } |
2013 | } | |
2014 | pstrcat(new_block->idstr, sizeof(new_block->idstr), name); | |
2015 | ||
694ea274 | 2016 | RCU_READ_LOCK_GUARD(); |
99e15582 | 2017 | RAMBLOCK_FOREACH(block) { |
fa53a0e5 GA |
2018 | if (block != new_block && |
2019 | !strcmp(block->idstr, new_block->idstr)) { | |
84b89d78 CM |
2020 | fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", |
2021 | new_block->idstr); | |
2022 | abort(); | |
2023 | } | |
2024 | } | |
c5705a77 AK |
2025 | } |
2026 | ||
ae3a7047 | 2027 | /* Called with iothread lock held. */ |
fa53a0e5 | 2028 | void qemu_ram_unset_idstr(RAMBlock *block) |
20cfe881 | 2029 | { |
ae3a7047 MD |
2030 | /* FIXME: arch_init.c assumes that this is not called throughout |
2031 | * migration. Ignore the problem since hot-unplug during migration | |
2032 | * does not work anyway. | |
2033 | */ | |
20cfe881 HT |
2034 | if (block) { |
2035 | memset(block->idstr, 0, sizeof(block->idstr)); | |
2036 | } | |
2037 | } | |
2038 | ||
863e9621 DDAG |
2039 | size_t qemu_ram_pagesize(RAMBlock *rb) |
2040 | { | |
2041 | return rb->page_size; | |
2042 | } | |
2043 | ||
67f11b5c DDAG |
2044 | /* Returns the largest size of page in use */ |
2045 | size_t qemu_ram_pagesize_largest(void) | |
2046 | { | |
2047 | RAMBlock *block; | |
2048 | size_t largest = 0; | |
2049 | ||
99e15582 | 2050 | RAMBLOCK_FOREACH(block) { |
67f11b5c DDAG |
2051 | largest = MAX(largest, qemu_ram_pagesize(block)); |
2052 | } | |
2053 | ||
2054 | return largest; | |
2055 | } | |
2056 | ||
8490fc78 LC |
2057 | static int memory_try_enable_merging(void *addr, size_t len) |
2058 | { | |
75cc7f01 | 2059 | if (!machine_mem_merge(current_machine)) { |
8490fc78 LC |
2060 | /* disabled by the user */ |
2061 | return 0; | |
2062 | } | |
2063 | ||
2064 | return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); | |
2065 | } | |
2066 | ||
62be4e3a MT |
2067 | /* Only legal before guest might have detected the memory size: e.g. on |
2068 | * incoming migration, or right after reset. | |
2069 | * | |
2070 | * As memory core doesn't know how is memory accessed, it is up to | |
2071 | * resize callback to update device state and/or add assertions to detect | |
2072 | * misuse, if necessary. | |
2073 | */ | |
fa53a0e5 | 2074 | int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp) |
62be4e3a | 2075 | { |
62be4e3a MT |
2076 | assert(block); |
2077 | ||
4ed023ce | 2078 | newsize = HOST_PAGE_ALIGN(newsize); |
129ddaf3 | 2079 | |
62be4e3a MT |
2080 | if (block->used_length == newsize) { |
2081 | return 0; | |
2082 | } | |
2083 | ||
2084 | if (!(block->flags & RAM_RESIZEABLE)) { | |
2085 | error_setg_errno(errp, EINVAL, | |
2086 | "Length mismatch: %s: 0x" RAM_ADDR_FMT | |
2087 | " in != 0x" RAM_ADDR_FMT, block->idstr, | |
2088 | newsize, block->used_length); | |
2089 | return -EINVAL; | |
2090 | } | |
2091 | ||
2092 | if (block->max_length < newsize) { | |
2093 | error_setg_errno(errp, EINVAL, | |
2094 | "Length too large: %s: 0x" RAM_ADDR_FMT | |
2095 | " > 0x" RAM_ADDR_FMT, block->idstr, | |
2096 | newsize, block->max_length); | |
2097 | return -EINVAL; | |
2098 | } | |
2099 | ||
2100 | cpu_physical_memory_clear_dirty_range(block->offset, block->used_length); | |
2101 | block->used_length = newsize; | |
58d2707e PB |
2102 | cpu_physical_memory_set_dirty_range(block->offset, block->used_length, |
2103 | DIRTY_CLIENTS_ALL); | |
62be4e3a MT |
2104 | memory_region_set_size(block->mr, newsize); |
2105 | if (block->resized) { | |
2106 | block->resized(block->idstr, newsize, block->host); | |
2107 | } | |
2108 | return 0; | |
2109 | } | |
2110 | ||
61c490e2 BM |
2111 | /* |
2112 | * Trigger sync on the given ram block for range [start, start + length] | |
2113 | * with the backing store if one is available. | |
2114 | * Otherwise no-op. | |
2115 | * @Note: this is supposed to be a synchronous op. | |
2116 | */ | |
2117 | void qemu_ram_writeback(RAMBlock *block, ram_addr_t start, ram_addr_t length) | |
2118 | { | |
61c490e2 BM |
2119 | /* The requested range should fit in within the block range */ |
2120 | g_assert((start + length) <= block->used_length); | |
2121 | ||
2122 | #ifdef CONFIG_LIBPMEM | |
2123 | /* The lack of support for pmem should not block the sync */ | |
2124 | if (ramblock_is_pmem(block)) { | |
5d4c9549 | 2125 | void *addr = ramblock_ptr(block, start); |
61c490e2 BM |
2126 | pmem_persist(addr, length); |
2127 | return; | |
2128 | } | |
2129 | #endif | |
2130 | if (block->fd >= 0) { | |
2131 | /** | |
2132 | * Case there is no support for PMEM or the memory has not been | |
2133 | * specified as persistent (or is not one) - use the msync. | |
2134 | * Less optimal but still achieves the same goal | |
2135 | */ | |
5d4c9549 | 2136 | void *addr = ramblock_ptr(block, start); |
61c490e2 BM |
2137 | if (qemu_msync(addr, length, block->fd)) { |
2138 | warn_report("%s: failed to sync memory range: start: " | |
2139 | RAM_ADDR_FMT " length: " RAM_ADDR_FMT, | |
2140 | __func__, start, length); | |
2141 | } | |
2142 | } | |
2143 | } | |
2144 | ||
5b82b703 SH |
2145 | /* Called with ram_list.mutex held */ |
2146 | static void dirty_memory_extend(ram_addr_t old_ram_size, | |
2147 | ram_addr_t new_ram_size) | |
2148 | { | |
2149 | ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size, | |
2150 | DIRTY_MEMORY_BLOCK_SIZE); | |
2151 | ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size, | |
2152 | DIRTY_MEMORY_BLOCK_SIZE); | |
2153 | int i; | |
2154 | ||
2155 | /* Only need to extend if block count increased */ | |
2156 | if (new_num_blocks <= old_num_blocks) { | |
2157 | return; | |
2158 | } | |
2159 | ||
2160 | for (i = 0; i < DIRTY_MEMORY_NUM; i++) { | |
2161 | DirtyMemoryBlocks *old_blocks; | |
2162 | DirtyMemoryBlocks *new_blocks; | |
2163 | int j; | |
2164 | ||
2165 | old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]); | |
2166 | new_blocks = g_malloc(sizeof(*new_blocks) + | |
2167 | sizeof(new_blocks->blocks[0]) * new_num_blocks); | |
2168 | ||
2169 | if (old_num_blocks) { | |
2170 | memcpy(new_blocks->blocks, old_blocks->blocks, | |
2171 | old_num_blocks * sizeof(old_blocks->blocks[0])); | |
2172 | } | |
2173 | ||
2174 | for (j = old_num_blocks; j < new_num_blocks; j++) { | |
2175 | new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE); | |
2176 | } | |
2177 | ||
2178 | atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks); | |
2179 | ||
2180 | if (old_blocks) { | |
2181 | g_free_rcu(old_blocks, rcu); | |
2182 | } | |
2183 | } | |
2184 | } | |
2185 | ||
06329cce | 2186 | static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared) |
c5705a77 | 2187 | { |
e1c57ab8 | 2188 | RAMBlock *block; |
0d53d9fe | 2189 | RAMBlock *last_block = NULL; |
2152f5ca | 2190 | ram_addr_t old_ram_size, new_ram_size; |
37aa7a0e | 2191 | Error *err = NULL; |
2152f5ca | 2192 | |
b8c48993 | 2193 | old_ram_size = last_ram_page(); |
c5705a77 | 2194 | |
b2a8658e | 2195 | qemu_mutex_lock_ramlist(); |
9b8424d5 | 2196 | new_block->offset = find_ram_offset(new_block->max_length); |
e1c57ab8 PB |
2197 | |
2198 | if (!new_block->host) { | |
2199 | if (xen_enabled()) { | |
9b8424d5 | 2200 | xen_ram_alloc(new_block->offset, new_block->max_length, |
37aa7a0e MA |
2201 | new_block->mr, &err); |
2202 | if (err) { | |
2203 | error_propagate(errp, err); | |
2204 | qemu_mutex_unlock_ramlist(); | |
39c350ee | 2205 | return; |
37aa7a0e | 2206 | } |
e1c57ab8 | 2207 | } else { |
9b8424d5 | 2208 | new_block->host = phys_mem_alloc(new_block->max_length, |
06329cce | 2209 | &new_block->mr->align, shared); |
39228250 | 2210 | if (!new_block->host) { |
ef701d7b HT |
2211 | error_setg_errno(errp, errno, |
2212 | "cannot set up guest memory '%s'", | |
2213 | memory_region_name(new_block->mr)); | |
2214 | qemu_mutex_unlock_ramlist(); | |
39c350ee | 2215 | return; |
39228250 | 2216 | } |
9b8424d5 | 2217 | memory_try_enable_merging(new_block->host, new_block->max_length); |
6977dfe6 | 2218 | } |
c902760f | 2219 | } |
94a6b54f | 2220 | |
dd631697 LZ |
2221 | new_ram_size = MAX(old_ram_size, |
2222 | (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS); | |
2223 | if (new_ram_size > old_ram_size) { | |
5b82b703 | 2224 | dirty_memory_extend(old_ram_size, new_ram_size); |
dd631697 | 2225 | } |
0d53d9fe MD |
2226 | /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ, |
2227 | * QLIST (which has an RCU-friendly variant) does not have insertion at | |
2228 | * tail, so save the last element in last_block. | |
2229 | */ | |
99e15582 | 2230 | RAMBLOCK_FOREACH(block) { |
0d53d9fe | 2231 | last_block = block; |
9b8424d5 | 2232 | if (block->max_length < new_block->max_length) { |
abb26d63 PB |
2233 | break; |
2234 | } | |
2235 | } | |
2236 | if (block) { | |
0dc3f44a | 2237 | QLIST_INSERT_BEFORE_RCU(block, new_block, next); |
0d53d9fe | 2238 | } else if (last_block) { |
0dc3f44a | 2239 | QLIST_INSERT_AFTER_RCU(last_block, new_block, next); |
0d53d9fe | 2240 | } else { /* list is empty */ |
0dc3f44a | 2241 | QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); |
abb26d63 | 2242 | } |
0d6d3c87 | 2243 | ram_list.mru_block = NULL; |
94a6b54f | 2244 | |
0dc3f44a MD |
2245 | /* Write list before version */ |
2246 | smp_wmb(); | |
f798b07f | 2247 | ram_list.version++; |
b2a8658e | 2248 | qemu_mutex_unlock_ramlist(); |
f798b07f | 2249 | |
9b8424d5 | 2250 | cpu_physical_memory_set_dirty_range(new_block->offset, |
58d2707e PB |
2251 | new_block->used_length, |
2252 | DIRTY_CLIENTS_ALL); | |
94a6b54f | 2253 | |
a904c911 PB |
2254 | if (new_block->host) { |
2255 | qemu_ram_setup_dump(new_block->host, new_block->max_length); | |
2256 | qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); | |
a028edea AB |
2257 | /* |
2258 | * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU | |
2259 | * Configure it unless the machine is a qtest server, in which case | |
2260 | * KVM is not used and it may be forked (eg for fuzzing purposes). | |
2261 | */ | |
2262 | if (!qtest_enabled()) { | |
2263 | qemu_madvise(new_block->host, new_block->max_length, | |
2264 | QEMU_MADV_DONTFORK); | |
2265 | } | |
0987d735 | 2266 | ram_block_notify_add(new_block->host, new_block->max_length); |
e1c57ab8 | 2267 | } |
94a6b54f | 2268 | } |
e9a1ab19 | 2269 | |
d5dbde46 | 2270 | #ifdef CONFIG_POSIX |
38b3362d | 2271 | RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr, |
cbfc0171 | 2272 | uint32_t ram_flags, int fd, |
38b3362d | 2273 | Error **errp) |
e1c57ab8 PB |
2274 | { |
2275 | RAMBlock *new_block; | |
ef701d7b | 2276 | Error *local_err = NULL; |
8d37b030 | 2277 | int64_t file_size; |
e1c57ab8 | 2278 | |
a4de8552 JH |
2279 | /* Just support these ram flags by now. */ |
2280 | assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0); | |
2281 | ||
e1c57ab8 | 2282 | if (xen_enabled()) { |
7f56e740 | 2283 | error_setg(errp, "-mem-path not supported with Xen"); |
528f46af | 2284 | return NULL; |
e1c57ab8 PB |
2285 | } |
2286 | ||
e45e7ae2 MAL |
2287 | if (kvm_enabled() && !kvm_has_sync_mmu()) { |
2288 | error_setg(errp, | |
2289 | "host lacks kvm mmu notifiers, -mem-path unsupported"); | |
2290 | return NULL; | |
2291 | } | |
2292 | ||
e1c57ab8 PB |
2293 | if (phys_mem_alloc != qemu_anon_ram_alloc) { |
2294 | /* | |
2295 | * file_ram_alloc() needs to allocate just like | |
2296 | * phys_mem_alloc, but we haven't bothered to provide | |
2297 | * a hook there. | |
2298 | */ | |
7f56e740 PB |
2299 | error_setg(errp, |
2300 | "-mem-path not supported with this accelerator"); | |
528f46af | 2301 | return NULL; |
e1c57ab8 PB |
2302 | } |
2303 | ||
4ed023ce | 2304 | size = HOST_PAGE_ALIGN(size); |
8d37b030 MAL |
2305 | file_size = get_file_size(fd); |
2306 | if (file_size > 0 && file_size < size) { | |
c001c3b3 | 2307 | error_setg(errp, "backing store size 0x%" PRIx64 |
8d37b030 | 2308 | " does not match 'size' option 0x" RAM_ADDR_FMT, |
c001c3b3 | 2309 | file_size, size); |
8d37b030 MAL |
2310 | return NULL; |
2311 | } | |
2312 | ||
e1c57ab8 PB |
2313 | new_block = g_malloc0(sizeof(*new_block)); |
2314 | new_block->mr = mr; | |
9b8424d5 MT |
2315 | new_block->used_length = size; |
2316 | new_block->max_length = size; | |
cbfc0171 | 2317 | new_block->flags = ram_flags; |
8d37b030 | 2318 | new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp); |
7f56e740 PB |
2319 | if (!new_block->host) { |
2320 | g_free(new_block); | |
528f46af | 2321 | return NULL; |
7f56e740 PB |
2322 | } |
2323 | ||
cbfc0171 | 2324 | ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED); |
ef701d7b HT |
2325 | if (local_err) { |
2326 | g_free(new_block); | |
2327 | error_propagate(errp, local_err); | |
528f46af | 2328 | return NULL; |
ef701d7b | 2329 | } |
528f46af | 2330 | return new_block; |
38b3362d MAL |
2331 | |
2332 | } | |
2333 | ||
2334 | ||
2335 | RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, | |
cbfc0171 | 2336 | uint32_t ram_flags, const char *mem_path, |
38b3362d MAL |
2337 | Error **errp) |
2338 | { | |
2339 | int fd; | |
2340 | bool created; | |
2341 | RAMBlock *block; | |
2342 | ||
2343 | fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp); | |
2344 | if (fd < 0) { | |
2345 | return NULL; | |
2346 | } | |
2347 | ||
cbfc0171 | 2348 | block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp); |
38b3362d MAL |
2349 | if (!block) { |
2350 | if (created) { | |
2351 | unlink(mem_path); | |
2352 | } | |
2353 | close(fd); | |
2354 | return NULL; | |
2355 | } | |
2356 | ||
2357 | return block; | |
e1c57ab8 | 2358 | } |
0b183fc8 | 2359 | #endif |
e1c57ab8 | 2360 | |
62be4e3a | 2361 | static |
528f46af FZ |
2362 | RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size, |
2363 | void (*resized)(const char*, | |
2364 | uint64_t length, | |
2365 | void *host), | |
06329cce | 2366 | void *host, bool resizeable, bool share, |
528f46af | 2367 | MemoryRegion *mr, Error **errp) |
e1c57ab8 PB |
2368 | { |
2369 | RAMBlock *new_block; | |
ef701d7b | 2370 | Error *local_err = NULL; |
e1c57ab8 | 2371 | |
4ed023ce DDAG |
2372 | size = HOST_PAGE_ALIGN(size); |
2373 | max_size = HOST_PAGE_ALIGN(max_size); | |
e1c57ab8 PB |
2374 | new_block = g_malloc0(sizeof(*new_block)); |
2375 | new_block->mr = mr; | |
62be4e3a | 2376 | new_block->resized = resized; |
9b8424d5 MT |
2377 | new_block->used_length = size; |
2378 | new_block->max_length = max_size; | |
62be4e3a | 2379 | assert(max_size >= size); |
e1c57ab8 | 2380 | new_block->fd = -1; |
038adc2f | 2381 | new_block->page_size = qemu_real_host_page_size; |
e1c57ab8 PB |
2382 | new_block->host = host; |
2383 | if (host) { | |
7bd4f430 | 2384 | new_block->flags |= RAM_PREALLOC; |
e1c57ab8 | 2385 | } |
62be4e3a MT |
2386 | if (resizeable) { |
2387 | new_block->flags |= RAM_RESIZEABLE; | |
2388 | } | |
06329cce | 2389 | ram_block_add(new_block, &local_err, share); |
ef701d7b HT |
2390 | if (local_err) { |
2391 | g_free(new_block); | |
2392 | error_propagate(errp, local_err); | |
528f46af | 2393 | return NULL; |
ef701d7b | 2394 | } |
528f46af | 2395 | return new_block; |
e1c57ab8 PB |
2396 | } |
2397 | ||
528f46af | 2398 | RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, |
62be4e3a MT |
2399 | MemoryRegion *mr, Error **errp) |
2400 | { | |
06329cce MA |
2401 | return qemu_ram_alloc_internal(size, size, NULL, host, false, |
2402 | false, mr, errp); | |
62be4e3a MT |
2403 | } |
2404 | ||
06329cce MA |
2405 | RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share, |
2406 | MemoryRegion *mr, Error **errp) | |
6977dfe6 | 2407 | { |
06329cce MA |
2408 | return qemu_ram_alloc_internal(size, size, NULL, NULL, false, |
2409 | share, mr, errp); | |
62be4e3a MT |
2410 | } |
2411 | ||
528f46af | 2412 | RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz, |
62be4e3a MT |
2413 | void (*resized)(const char*, |
2414 | uint64_t length, | |
2415 | void *host), | |
2416 | MemoryRegion *mr, Error **errp) | |
2417 | { | |
06329cce MA |
2418 | return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, |
2419 | false, mr, errp); | |
6977dfe6 YT |
2420 | } |
2421 | ||
43771539 PB |
2422 | static void reclaim_ramblock(RAMBlock *block) |
2423 | { | |
2424 | if (block->flags & RAM_PREALLOC) { | |
2425 | ; | |
2426 | } else if (xen_enabled()) { | |
2427 | xen_invalidate_map_cache_entry(block->host); | |
2428 | #ifndef _WIN32 | |
2429 | } else if (block->fd >= 0) { | |
53adb9d4 | 2430 | qemu_ram_munmap(block->fd, block->host, block->max_length); |
43771539 PB |
2431 | close(block->fd); |
2432 | #endif | |
2433 | } else { | |
2434 | qemu_anon_ram_free(block->host, block->max_length); | |
2435 | } | |
2436 | g_free(block); | |
2437 | } | |
2438 | ||
f1060c55 | 2439 | void qemu_ram_free(RAMBlock *block) |
e9a1ab19 | 2440 | { |
85bc2a15 MAL |
2441 | if (!block) { |
2442 | return; | |
2443 | } | |
2444 | ||
0987d735 PB |
2445 | if (block->host) { |
2446 | ram_block_notify_remove(block->host, block->max_length); | |
2447 | } | |
2448 | ||
b2a8658e | 2449 | qemu_mutex_lock_ramlist(); |
f1060c55 FZ |
2450 | QLIST_REMOVE_RCU(block, next); |
2451 | ram_list.mru_block = NULL; | |
2452 | /* Write list before version */ | |
2453 | smp_wmb(); | |
2454 | ram_list.version++; | |
2455 | call_rcu(block, reclaim_ramblock, rcu); | |
b2a8658e | 2456 | qemu_mutex_unlock_ramlist(); |
e9a1ab19 FB |
2457 | } |
2458 | ||
cd19cfa2 HY |
2459 | #ifndef _WIN32 |
2460 | void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) | |
2461 | { | |
2462 | RAMBlock *block; | |
2463 | ram_addr_t offset; | |
2464 | int flags; | |
2465 | void *area, *vaddr; | |
2466 | ||
99e15582 | 2467 | RAMBLOCK_FOREACH(block) { |
cd19cfa2 | 2468 | offset = addr - block->offset; |
9b8424d5 | 2469 | if (offset < block->max_length) { |
1240be24 | 2470 | vaddr = ramblock_ptr(block, offset); |
7bd4f430 | 2471 | if (block->flags & RAM_PREALLOC) { |
cd19cfa2 | 2472 | ; |
dfeaf2ab MA |
2473 | } else if (xen_enabled()) { |
2474 | abort(); | |
cd19cfa2 HY |
2475 | } else { |
2476 | flags = MAP_FIXED; | |
3435f395 | 2477 | if (block->fd >= 0) { |
dbcb8981 PB |
2478 | flags |= (block->flags & RAM_SHARED ? |
2479 | MAP_SHARED : MAP_PRIVATE); | |
3435f395 MA |
2480 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, |
2481 | flags, block->fd, offset); | |
cd19cfa2 | 2482 | } else { |
2eb9fbaa MA |
2483 | /* |
2484 | * Remap needs to match alloc. Accelerators that | |
2485 | * set phys_mem_alloc never remap. If they did, | |
2486 | * we'd need a remap hook here. | |
2487 | */ | |
2488 | assert(phys_mem_alloc == qemu_anon_ram_alloc); | |
2489 | ||
cd19cfa2 HY |
2490 | flags |= MAP_PRIVATE | MAP_ANONYMOUS; |
2491 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, | |
2492 | flags, -1, 0); | |
cd19cfa2 HY |
2493 | } |
2494 | if (area != vaddr) { | |
493d89bf AF |
2495 | error_report("Could not remap addr: " |
2496 | RAM_ADDR_FMT "@" RAM_ADDR_FMT "", | |
2497 | length, addr); | |
cd19cfa2 HY |
2498 | exit(1); |
2499 | } | |
8490fc78 | 2500 | memory_try_enable_merging(vaddr, length); |
ddb97f1d | 2501 | qemu_ram_setup_dump(vaddr, length); |
cd19cfa2 | 2502 | } |
cd19cfa2 HY |
2503 | } |
2504 | } | |
2505 | } | |
2506 | #endif /* !_WIN32 */ | |
2507 | ||
1b5ec234 | 2508 | /* Return a host pointer to ram allocated with qemu_ram_alloc. |
ae3a7047 MD |
2509 | * This should not be used for general purpose DMA. Use address_space_map |
2510 | * or address_space_rw instead. For local memory (e.g. video ram) that the | |
2511 | * device owns, use memory_region_get_ram_ptr. | |
0dc3f44a | 2512 | * |
49b24afc | 2513 | * Called within RCU critical section. |
1b5ec234 | 2514 | */ |
0878d0e1 | 2515 | void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr) |
1b5ec234 | 2516 | { |
3655cb9c GA |
2517 | RAMBlock *block = ram_block; |
2518 | ||
2519 | if (block == NULL) { | |
2520 | block = qemu_get_ram_block(addr); | |
0878d0e1 | 2521 | addr -= block->offset; |
3655cb9c | 2522 | } |
ae3a7047 MD |
2523 | |
2524 | if (xen_enabled() && block->host == NULL) { | |
0d6d3c87 PB |
2525 | /* We need to check if the requested address is in the RAM |
2526 | * because we don't want to map the entire memory in QEMU. | |
2527 | * In that case just map until the end of the page. | |
2528 | */ | |
2529 | if (block->offset == 0) { | |
1ff7c598 | 2530 | return xen_map_cache(addr, 0, 0, false); |
0d6d3c87 | 2531 | } |
ae3a7047 | 2532 | |
1ff7c598 | 2533 | block->host = xen_map_cache(block->offset, block->max_length, 1, false); |
0d6d3c87 | 2534 | } |
0878d0e1 | 2535 | return ramblock_ptr(block, addr); |
dc828ca1 PB |
2536 | } |
2537 | ||
0878d0e1 | 2538 | /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr |
ae3a7047 | 2539 | * but takes a size argument. |
0dc3f44a | 2540 | * |
e81bcda5 | 2541 | * Called within RCU critical section. |
ae3a7047 | 2542 | */ |
3655cb9c | 2543 | static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr, |
f5aa69bd | 2544 | hwaddr *size, bool lock) |
38bee5dc | 2545 | { |
3655cb9c | 2546 | RAMBlock *block = ram_block; |
8ab934f9 SS |
2547 | if (*size == 0) { |
2548 | return NULL; | |
2549 | } | |
e81bcda5 | 2550 | |
3655cb9c GA |
2551 | if (block == NULL) { |
2552 | block = qemu_get_ram_block(addr); | |
0878d0e1 | 2553 | addr -= block->offset; |
3655cb9c | 2554 | } |
0878d0e1 | 2555 | *size = MIN(*size, block->max_length - addr); |
e81bcda5 PB |
2556 | |
2557 | if (xen_enabled() && block->host == NULL) { | |
2558 | /* We need to check if the requested address is in the RAM | |
2559 | * because we don't want to map the entire memory in QEMU. | |
2560 | * In that case just map the requested area. | |
2561 | */ | |
2562 | if (block->offset == 0) { | |
f5aa69bd | 2563 | return xen_map_cache(addr, *size, lock, lock); |
38bee5dc SS |
2564 | } |
2565 | ||
f5aa69bd | 2566 | block->host = xen_map_cache(block->offset, block->max_length, 1, lock); |
38bee5dc | 2567 | } |
e81bcda5 | 2568 | |
0878d0e1 | 2569 | return ramblock_ptr(block, addr); |
38bee5dc SS |
2570 | } |
2571 | ||
f90bb71b DDAG |
2572 | /* Return the offset of a hostpointer within a ramblock */ |
2573 | ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host) | |
2574 | { | |
2575 | ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host; | |
2576 | assert((uintptr_t)host >= (uintptr_t)rb->host); | |
2577 | assert(res < rb->max_length); | |
2578 | ||
2579 | return res; | |
2580 | } | |
2581 | ||
422148d3 DDAG |
2582 | /* |
2583 | * Translates a host ptr back to a RAMBlock, a ram_addr and an offset | |
2584 | * in that RAMBlock. | |
2585 | * | |
2586 | * ptr: Host pointer to look up | |
2587 | * round_offset: If true round the result offset down to a page boundary | |
2588 | * *ram_addr: set to result ram_addr | |
2589 | * *offset: set to result offset within the RAMBlock | |
2590 | * | |
2591 | * Returns: RAMBlock (or NULL if not found) | |
ae3a7047 MD |
2592 | * |
2593 | * By the time this function returns, the returned pointer is not protected | |
2594 | * by RCU anymore. If the caller is not within an RCU critical section and | |
2595 | * does not hold the iothread lock, it must have other means of protecting the | |
2596 | * pointer, such as a reference to the region that includes the incoming | |
2597 | * ram_addr_t. | |
2598 | */ | |
422148d3 | 2599 | RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, |
422148d3 | 2600 | ram_addr_t *offset) |
5579c7f3 | 2601 | { |
94a6b54f PB |
2602 | RAMBlock *block; |
2603 | uint8_t *host = ptr; | |
2604 | ||
868bb33f | 2605 | if (xen_enabled()) { |
f615f396 | 2606 | ram_addr_t ram_addr; |
694ea274 | 2607 | RCU_READ_LOCK_GUARD(); |
f615f396 PB |
2608 | ram_addr = xen_ram_addr_from_mapcache(ptr); |
2609 | block = qemu_get_ram_block(ram_addr); | |
422148d3 | 2610 | if (block) { |
d6b6aec4 | 2611 | *offset = ram_addr - block->offset; |
422148d3 | 2612 | } |
422148d3 | 2613 | return block; |
712c2b41 SS |
2614 | } |
2615 | ||
694ea274 | 2616 | RCU_READ_LOCK_GUARD(); |
0dc3f44a | 2617 | block = atomic_rcu_read(&ram_list.mru_block); |
9b8424d5 | 2618 | if (block && block->host && host - block->host < block->max_length) { |
23887b79 PB |
2619 | goto found; |
2620 | } | |
2621 | ||
99e15582 | 2622 | RAMBLOCK_FOREACH(block) { |
432d268c JN |
2623 | /* This case append when the block is not mapped. */ |
2624 | if (block->host == NULL) { | |
2625 | continue; | |
2626 | } | |
9b8424d5 | 2627 | if (host - block->host < block->max_length) { |
23887b79 | 2628 | goto found; |
f471a17e | 2629 | } |
94a6b54f | 2630 | } |
432d268c | 2631 | |
1b5ec234 | 2632 | return NULL; |
23887b79 PB |
2633 | |
2634 | found: | |
422148d3 DDAG |
2635 | *offset = (host - block->host); |
2636 | if (round_offset) { | |
2637 | *offset &= TARGET_PAGE_MASK; | |
2638 | } | |
422148d3 DDAG |
2639 | return block; |
2640 | } | |
2641 | ||
e3dd7493 DDAG |
2642 | /* |
2643 | * Finds the named RAMBlock | |
2644 | * | |
2645 | * name: The name of RAMBlock to find | |
2646 | * | |
2647 | * Returns: RAMBlock (or NULL if not found) | |
2648 | */ | |
2649 | RAMBlock *qemu_ram_block_by_name(const char *name) | |
2650 | { | |
2651 | RAMBlock *block; | |
2652 | ||
99e15582 | 2653 | RAMBLOCK_FOREACH(block) { |
e3dd7493 DDAG |
2654 | if (!strcmp(name, block->idstr)) { |
2655 | return block; | |
2656 | } | |
2657 | } | |
2658 | ||
2659 | return NULL; | |
2660 | } | |
2661 | ||
422148d3 DDAG |
2662 | /* Some of the softmmu routines need to translate from a host pointer |
2663 | (typically a TLB entry) back to a ram offset. */ | |
07bdaa41 | 2664 | ram_addr_t qemu_ram_addr_from_host(void *ptr) |
422148d3 DDAG |
2665 | { |
2666 | RAMBlock *block; | |
f615f396 | 2667 | ram_addr_t offset; |
422148d3 | 2668 | |
f615f396 | 2669 | block = qemu_ram_block_from_host(ptr, false, &offset); |
422148d3 | 2670 | if (!block) { |
07bdaa41 | 2671 | return RAM_ADDR_INVALID; |
422148d3 DDAG |
2672 | } |
2673 | ||
07bdaa41 | 2674 | return block->offset + offset; |
e890261f | 2675 | } |
f471a17e | 2676 | |
0f459d16 | 2677 | /* Generate a debug exception if a watchpoint has been hit. */ |
0026348b DH |
2678 | void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, |
2679 | MemTxAttrs attrs, int flags, uintptr_t ra) | |
0f459d16 | 2680 | { |
568496c0 | 2681 | CPUClass *cc = CPU_GET_CLASS(cpu); |
a1d1bb31 | 2682 | CPUWatchpoint *wp; |
0f459d16 | 2683 | |
5aa1ef71 | 2684 | assert(tcg_enabled()); |
ff4700b0 | 2685 | if (cpu->watchpoint_hit) { |
50b107c5 RH |
2686 | /* |
2687 | * We re-entered the check after replacing the TB. | |
2688 | * Now raise the debug interrupt so that it will | |
2689 | * trigger after the current instruction. | |
2690 | */ | |
2691 | qemu_mutex_lock_iothread(); | |
93afeade | 2692 | cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG); |
50b107c5 | 2693 | qemu_mutex_unlock_iothread(); |
06d55cc1 AL |
2694 | return; |
2695 | } | |
0026348b DH |
2696 | |
2697 | addr = cc->adjust_watchpoint_address(cpu, addr, len); | |
ff4700b0 | 2698 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
56ad8b00 | 2699 | if (watchpoint_address_matches(wp, addr, len) |
05068c0d | 2700 | && (wp->flags & flags)) { |
08225676 PM |
2701 | if (flags == BP_MEM_READ) { |
2702 | wp->flags |= BP_WATCHPOINT_HIT_READ; | |
2703 | } else { | |
2704 | wp->flags |= BP_WATCHPOINT_HIT_WRITE; | |
2705 | } | |
0026348b | 2706 | wp->hitaddr = MAX(addr, wp->vaddr); |
66b9b43c | 2707 | wp->hitattrs = attrs; |
ff4700b0 | 2708 | if (!cpu->watchpoint_hit) { |
568496c0 SF |
2709 | if (wp->flags & BP_CPU && |
2710 | !cc->debug_check_watchpoint(cpu, wp)) { | |
2711 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
2712 | continue; | |
2713 | } | |
ff4700b0 | 2714 | cpu->watchpoint_hit = wp; |
a5e99826 | 2715 | |
0ac20318 | 2716 | mmap_lock(); |
ae57db63 | 2717 | tb_check_watchpoint(cpu, ra); |
6e140f28 | 2718 | if (wp->flags & BP_STOP_BEFORE_ACCESS) { |
27103424 | 2719 | cpu->exception_index = EXCP_DEBUG; |
0ac20318 | 2720 | mmap_unlock(); |
0026348b | 2721 | cpu_loop_exit_restore(cpu, ra); |
6e140f28 | 2722 | } else { |
9b990ee5 RH |
2723 | /* Force execution of one insn next time. */ |
2724 | cpu->cflags_next_tb = 1 | curr_cflags(); | |
0ac20318 | 2725 | mmap_unlock(); |
0026348b DH |
2726 | if (ra) { |
2727 | cpu_restore_state(cpu, ra, true); | |
2728 | } | |
6886b980 | 2729 | cpu_loop_exit_noexc(cpu); |
6e140f28 | 2730 | } |
06d55cc1 | 2731 | } |
6e140f28 AL |
2732 | } else { |
2733 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
0f459d16 PB |
2734 | } |
2735 | } | |
2736 | } | |
2737 | ||
b2a44fca | 2738 | static MemTxResult flatview_read(FlatView *fv, hwaddr addr, |
a152be43 | 2739 | MemTxAttrs attrs, void *buf, hwaddr len); |
16620684 | 2740 | static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, |
a152be43 | 2741 | const void *buf, hwaddr len); |
0c249ff7 | 2742 | static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, |
eace72b7 | 2743 | bool is_write, MemTxAttrs attrs); |
16620684 | 2744 | |
f25a49e0 PM |
2745 | static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data, |
2746 | unsigned len, MemTxAttrs attrs) | |
db7b5426 | 2747 | { |
acc9d80b | 2748 | subpage_t *subpage = opaque; |
ff6cff75 | 2749 | uint8_t buf[8]; |
5c9eb028 | 2750 | MemTxResult res; |
791af8c8 | 2751 | |
db7b5426 | 2752 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2753 | printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__, |
acc9d80b | 2754 | subpage, len, addr); |
db7b5426 | 2755 | #endif |
16620684 | 2756 | res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len); |
5c9eb028 PM |
2757 | if (res) { |
2758 | return res; | |
f25a49e0 | 2759 | } |
6d3ede54 PM |
2760 | *data = ldn_p(buf, len); |
2761 | return MEMTX_OK; | |
db7b5426 BS |
2762 | } |
2763 | ||
f25a49e0 PM |
2764 | static MemTxResult subpage_write(void *opaque, hwaddr addr, |
2765 | uint64_t value, unsigned len, MemTxAttrs attrs) | |
db7b5426 | 2766 | { |
acc9d80b | 2767 | subpage_t *subpage = opaque; |
ff6cff75 | 2768 | uint8_t buf[8]; |
acc9d80b | 2769 | |
db7b5426 | 2770 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2771 | printf("%s: subpage %p len %u addr " TARGET_FMT_plx |
acc9d80b JK |
2772 | " value %"PRIx64"\n", |
2773 | __func__, subpage, len, addr, value); | |
db7b5426 | 2774 | #endif |
6d3ede54 | 2775 | stn_p(buf, len, value); |
16620684 | 2776 | return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len); |
db7b5426 BS |
2777 | } |
2778 | ||
c353e4cc | 2779 | static bool subpage_accepts(void *opaque, hwaddr addr, |
8372d383 PM |
2780 | unsigned len, bool is_write, |
2781 | MemTxAttrs attrs) | |
c353e4cc | 2782 | { |
acc9d80b | 2783 | subpage_t *subpage = opaque; |
c353e4cc | 2784 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2785 | printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n", |
acc9d80b | 2786 | __func__, subpage, is_write ? 'w' : 'r', len, addr); |
c353e4cc PB |
2787 | #endif |
2788 | ||
16620684 | 2789 | return flatview_access_valid(subpage->fv, addr + subpage->base, |
eace72b7 | 2790 | len, is_write, attrs); |
c353e4cc PB |
2791 | } |
2792 | ||
70c68e44 | 2793 | static const MemoryRegionOps subpage_ops = { |
f25a49e0 PM |
2794 | .read_with_attrs = subpage_read, |
2795 | .write_with_attrs = subpage_write, | |
ff6cff75 PB |
2796 | .impl.min_access_size = 1, |
2797 | .impl.max_access_size = 8, | |
2798 | .valid.min_access_size = 1, | |
2799 | .valid.max_access_size = 8, | |
c353e4cc | 2800 | .valid.accepts = subpage_accepts, |
70c68e44 | 2801 | .endianness = DEVICE_NATIVE_ENDIAN, |
db7b5426 BS |
2802 | }; |
2803 | ||
b797ab1a WY |
2804 | static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, |
2805 | uint16_t section) | |
db7b5426 BS |
2806 | { |
2807 | int idx, eidx; | |
2808 | ||
2809 | if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) | |
2810 | return -1; | |
2811 | idx = SUBPAGE_IDX(start); | |
2812 | eidx = SUBPAGE_IDX(end); | |
2813 | #if defined(DEBUG_SUBPAGE) | |
016e9d62 AK |
2814 | printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", |
2815 | __func__, mmio, start, end, idx, eidx, section); | |
db7b5426 | 2816 | #endif |
db7b5426 | 2817 | for (; idx <= eidx; idx++) { |
5312bd8b | 2818 | mmio->sub_section[idx] = section; |
db7b5426 BS |
2819 | } |
2820 | ||
2821 | return 0; | |
2822 | } | |
2823 | ||
16620684 | 2824 | static subpage_t *subpage_init(FlatView *fv, hwaddr base) |
db7b5426 | 2825 | { |
c227f099 | 2826 | subpage_t *mmio; |
db7b5426 | 2827 | |
b797ab1a | 2828 | /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */ |
2615fabd | 2829 | mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t)); |
16620684 | 2830 | mmio->fv = fv; |
1eec614b | 2831 | mmio->base = base; |
2c9b15ca | 2832 | memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, |
b4fefef9 | 2833 | NULL, TARGET_PAGE_SIZE); |
b3b00c78 | 2834 | mmio->iomem.subpage = true; |
db7b5426 | 2835 | #if defined(DEBUG_SUBPAGE) |
016e9d62 AK |
2836 | printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__, |
2837 | mmio, base, TARGET_PAGE_SIZE); | |
db7b5426 | 2838 | #endif |
db7b5426 BS |
2839 | |
2840 | return mmio; | |
2841 | } | |
2842 | ||
16620684 | 2843 | static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr) |
5312bd8b | 2844 | { |
16620684 | 2845 | assert(fv); |
5312bd8b | 2846 | MemoryRegionSection section = { |
16620684 | 2847 | .fv = fv, |
5312bd8b AK |
2848 | .mr = mr, |
2849 | .offset_within_address_space = 0, | |
2850 | .offset_within_region = 0, | |
052e87b0 | 2851 | .size = int128_2_64(), |
5312bd8b AK |
2852 | }; |
2853 | ||
53cb28cb | 2854 | return phys_section_add(map, §ion); |
5312bd8b AK |
2855 | } |
2856 | ||
2d54f194 PM |
2857 | MemoryRegionSection *iotlb_to_section(CPUState *cpu, |
2858 | hwaddr index, MemTxAttrs attrs) | |
aa102231 | 2859 | { |
a54c87b6 PM |
2860 | int asidx = cpu_asidx_from_attrs(cpu, attrs); |
2861 | CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx]; | |
32857f4d | 2862 | AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch); |
79e2b9ae | 2863 | MemoryRegionSection *sections = d->map.sections; |
9d82b5a7 | 2864 | |
2d54f194 | 2865 | return §ions[index & ~TARGET_PAGE_MASK]; |
aa102231 AK |
2866 | } |
2867 | ||
e9179ce1 AK |
2868 | static void io_mem_init(void) |
2869 | { | |
2c9b15ca | 2870 | memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, |
1f6245e5 | 2871 | NULL, UINT64_MAX); |
e9179ce1 AK |
2872 | } |
2873 | ||
8629d3fc | 2874 | AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv) |
00752703 | 2875 | { |
53cb28cb MA |
2876 | AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); |
2877 | uint16_t n; | |
2878 | ||
16620684 | 2879 | n = dummy_section(&d->map, fv, &io_mem_unassigned); |
53cb28cb | 2880 | assert(n == PHYS_SECTION_UNASSIGNED); |
00752703 | 2881 | |
9736e55b | 2882 | d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; |
66a6df1d AK |
2883 | |
2884 | return d; | |
00752703 PB |
2885 | } |
2886 | ||
66a6df1d | 2887 | void address_space_dispatch_free(AddressSpaceDispatch *d) |
79e2b9ae PB |
2888 | { |
2889 | phys_sections_free(&d->map); | |
2890 | g_free(d); | |
2891 | } | |
2892 | ||
9458a9a1 PB |
2893 | static void do_nothing(CPUState *cpu, run_on_cpu_data d) |
2894 | { | |
2895 | } | |
2896 | ||
2897 | static void tcg_log_global_after_sync(MemoryListener *listener) | |
2898 | { | |
2899 | CPUAddressSpace *cpuas; | |
2900 | ||
2901 | /* Wait for the CPU to end the current TB. This avoids the following | |
2902 | * incorrect race: | |
2903 | * | |
2904 | * vCPU migration | |
2905 | * ---------------------- ------------------------- | |
2906 | * TLB check -> slow path | |
2907 | * notdirty_mem_write | |
2908 | * write to RAM | |
2909 | * mark dirty | |
2910 | * clear dirty flag | |
2911 | * TLB check -> fast path | |
2912 | * read memory | |
2913 | * write to RAM | |
2914 | * | |
2915 | * by pushing the migration thread's memory read after the vCPU thread has | |
2916 | * written the memory. | |
2917 | */ | |
86cf9e15 PD |
2918 | if (replay_mode == REPLAY_MODE_NONE) { |
2919 | /* | |
2920 | * VGA can make calls to this function while updating the screen. | |
2921 | * In record/replay mode this causes a deadlock, because | |
2922 | * run_on_cpu waits for rr mutex. Therefore no races are possible | |
2923 | * in this case and no need for making run_on_cpu when | |
2924 | * record/replay is not enabled. | |
2925 | */ | |
2926 | cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); | |
2927 | run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL); | |
2928 | } | |
9458a9a1 PB |
2929 | } |
2930 | ||
1d71148e | 2931 | static void tcg_commit(MemoryListener *listener) |
50c1e149 | 2932 | { |
32857f4d PM |
2933 | CPUAddressSpace *cpuas; |
2934 | AddressSpaceDispatch *d; | |
117712c3 | 2935 | |
f28d0dfd | 2936 | assert(tcg_enabled()); |
117712c3 AK |
2937 | /* since each CPU stores ram addresses in its TLB cache, we must |
2938 | reset the modified entries */ | |
32857f4d PM |
2939 | cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); |
2940 | cpu_reloading_memory_map(); | |
2941 | /* The CPU and TLB are protected by the iothread lock. | |
2942 | * We reload the dispatch pointer now because cpu_reloading_memory_map() | |
2943 | * may have split the RCU critical section. | |
2944 | */ | |
66a6df1d | 2945 | d = address_space_to_dispatch(cpuas->as); |
f35e44e7 | 2946 | atomic_rcu_set(&cpuas->memory_dispatch, d); |
d10eb08f | 2947 | tlb_flush(cpuas->cpu); |
50c1e149 AK |
2948 | } |
2949 | ||
62152b8a AK |
2950 | static void memory_map_init(void) |
2951 | { | |
7267c094 | 2952 | system_memory = g_malloc(sizeof(*system_memory)); |
03f49957 | 2953 | |
57271d63 | 2954 | memory_region_init(system_memory, NULL, "system", UINT64_MAX); |
7dca8043 | 2955 | address_space_init(&address_space_memory, system_memory, "memory"); |
309cb471 | 2956 | |
7267c094 | 2957 | system_io = g_malloc(sizeof(*system_io)); |
3bb28b72 JK |
2958 | memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", |
2959 | 65536); | |
7dca8043 | 2960 | address_space_init(&address_space_io, system_io, "I/O"); |
62152b8a AK |
2961 | } |
2962 | ||
2963 | MemoryRegion *get_system_memory(void) | |
2964 | { | |
2965 | return system_memory; | |
2966 | } | |
2967 | ||
309cb471 AK |
2968 | MemoryRegion *get_system_io(void) |
2969 | { | |
2970 | return system_io; | |
2971 | } | |
2972 | ||
e2eef170 PB |
2973 | #endif /* !defined(CONFIG_USER_ONLY) */ |
2974 | ||
13eb76e0 FB |
2975 | /* physical memory access (slow version, mainly for debug) */ |
2976 | #if defined(CONFIG_USER_ONLY) | |
f17ec444 | 2977 | int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, |
28c80bfe | 2978 | void *ptr, target_ulong len, bool is_write) |
13eb76e0 | 2979 | { |
0c249ff7 LZ |
2980 | int flags; |
2981 | target_ulong l, page; | |
53a5960a | 2982 | void * p; |
d7ef71ef | 2983 | uint8_t *buf = ptr; |
13eb76e0 FB |
2984 | |
2985 | while (len > 0) { | |
2986 | page = addr & TARGET_PAGE_MASK; | |
2987 | l = (page + TARGET_PAGE_SIZE) - addr; | |
2988 | if (l > len) | |
2989 | l = len; | |
2990 | flags = page_get_flags(page); | |
2991 | if (!(flags & PAGE_VALID)) | |
a68fe89c | 2992 | return -1; |
13eb76e0 FB |
2993 | if (is_write) { |
2994 | if (!(flags & PAGE_WRITE)) | |
a68fe89c | 2995 | return -1; |
579a97f7 | 2996 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 2997 | if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) |
a68fe89c | 2998 | return -1; |
72fb7daa AJ |
2999 | memcpy(p, buf, l); |
3000 | unlock_user(p, addr, l); | |
13eb76e0 FB |
3001 | } else { |
3002 | if (!(flags & PAGE_READ)) | |
a68fe89c | 3003 | return -1; |
579a97f7 | 3004 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 3005 | if (!(p = lock_user(VERIFY_READ, addr, l, 1))) |
a68fe89c | 3006 | return -1; |
72fb7daa | 3007 | memcpy(buf, p, l); |
5b257578 | 3008 | unlock_user(p, addr, 0); |
13eb76e0 FB |
3009 | } |
3010 | len -= l; | |
3011 | buf += l; | |
3012 | addr += l; | |
3013 | } | |
a68fe89c | 3014 | return 0; |
13eb76e0 | 3015 | } |
8df1cd07 | 3016 | |
13eb76e0 | 3017 | #else |
51d7a9eb | 3018 | |
845b6214 | 3019 | static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, |
a8170e5e | 3020 | hwaddr length) |
51d7a9eb | 3021 | { |
e87f7778 | 3022 | uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr); |
0878d0e1 PB |
3023 | addr += memory_region_get_ram_addr(mr); |
3024 | ||
e87f7778 PB |
3025 | /* No early return if dirty_log_mask is or becomes 0, because |
3026 | * cpu_physical_memory_set_dirty_range will still call | |
3027 | * xen_modified_memory. | |
3028 | */ | |
3029 | if (dirty_log_mask) { | |
3030 | dirty_log_mask = | |
3031 | cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask); | |
3032 | } | |
3033 | if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) { | |
5aa1ef71 | 3034 | assert(tcg_enabled()); |
e87f7778 PB |
3035 | tb_invalidate_phys_range(addr, addr + length); |
3036 | dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); | |
51d7a9eb | 3037 | } |
e87f7778 | 3038 | cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask); |
51d7a9eb AP |
3039 | } |
3040 | ||
047be4ed SH |
3041 | void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size) |
3042 | { | |
3043 | /* | |
3044 | * In principle this function would work on other memory region types too, | |
3045 | * but the ROM device use case is the only one where this operation is | |
3046 | * necessary. Other memory regions should use the | |
3047 | * address_space_read/write() APIs. | |
3048 | */ | |
3049 | assert(memory_region_is_romd(mr)); | |
3050 | ||
3051 | invalidate_and_set_dirty(mr, addr, size); | |
3052 | } | |
3053 | ||
23326164 | 3054 | static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) |
82f2563f | 3055 | { |
e1622f4b | 3056 | unsigned access_size_max = mr->ops->valid.max_access_size; |
23326164 RH |
3057 | |
3058 | /* Regions are assumed to support 1-4 byte accesses unless | |
3059 | otherwise specified. */ | |
23326164 RH |
3060 | if (access_size_max == 0) { |
3061 | access_size_max = 4; | |
3062 | } | |
3063 | ||
3064 | /* Bound the maximum access by the alignment of the address. */ | |
3065 | if (!mr->ops->impl.unaligned) { | |
3066 | unsigned align_size_max = addr & -addr; | |
3067 | if (align_size_max != 0 && align_size_max < access_size_max) { | |
3068 | access_size_max = align_size_max; | |
3069 | } | |
82f2563f | 3070 | } |
23326164 RH |
3071 | |
3072 | /* Don't attempt accesses larger than the maximum. */ | |
3073 | if (l > access_size_max) { | |
3074 | l = access_size_max; | |
82f2563f | 3075 | } |
6554f5c0 | 3076 | l = pow2floor(l); |
23326164 RH |
3077 | |
3078 | return l; | |
82f2563f PB |
3079 | } |
3080 | ||
4840f10e | 3081 | static bool prepare_mmio_access(MemoryRegion *mr) |
125b3806 | 3082 | { |
4840f10e JK |
3083 | bool unlocked = !qemu_mutex_iothread_locked(); |
3084 | bool release_lock = false; | |
3085 | ||
3086 | if (unlocked && mr->global_locking) { | |
3087 | qemu_mutex_lock_iothread(); | |
3088 | unlocked = false; | |
3089 | release_lock = true; | |
3090 | } | |
125b3806 | 3091 | if (mr->flush_coalesced_mmio) { |
4840f10e JK |
3092 | if (unlocked) { |
3093 | qemu_mutex_lock_iothread(); | |
3094 | } | |
125b3806 | 3095 | qemu_flush_coalesced_mmio_buffer(); |
4840f10e JK |
3096 | if (unlocked) { |
3097 | qemu_mutex_unlock_iothread(); | |
3098 | } | |
125b3806 | 3099 | } |
4840f10e JK |
3100 | |
3101 | return release_lock; | |
125b3806 PB |
3102 | } |
3103 | ||
a203ac70 | 3104 | /* Called within RCU critical section. */ |
16620684 AK |
3105 | static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr, |
3106 | MemTxAttrs attrs, | |
a152be43 | 3107 | const void *ptr, |
0c249ff7 | 3108 | hwaddr len, hwaddr addr1, |
16620684 | 3109 | hwaddr l, MemoryRegion *mr) |
13eb76e0 | 3110 | { |
20804676 | 3111 | uint8_t *ram_ptr; |
791af8c8 | 3112 | uint64_t val; |
3b643495 | 3113 | MemTxResult result = MEMTX_OK; |
4840f10e | 3114 | bool release_lock = false; |
a152be43 | 3115 | const uint8_t *buf = ptr; |
3b46e624 | 3116 | |
a203ac70 | 3117 | for (;;) { |
eb7eeb88 PB |
3118 | if (!memory_access_is_direct(mr, true)) { |
3119 | release_lock |= prepare_mmio_access(mr); | |
3120 | l = memory_access_size(mr, l, addr1); | |
3121 | /* XXX: could force current_cpu to NULL to avoid | |
3122 | potential bugs */ | |
9bf825bf | 3123 | val = ldn_he_p(buf, l); |
3d9e7c3e | 3124 | result |= memory_region_dispatch_write(mr, addr1, val, |
9bf825bf | 3125 | size_memop(l), attrs); |
13eb76e0 | 3126 | } else { |
eb7eeb88 | 3127 | /* RAM case */ |
20804676 PMD |
3128 | ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false); |
3129 | memcpy(ram_ptr, buf, l); | |
eb7eeb88 | 3130 | invalidate_and_set_dirty(mr, addr1, l); |
13eb76e0 | 3131 | } |
4840f10e JK |
3132 | |
3133 | if (release_lock) { | |
3134 | qemu_mutex_unlock_iothread(); | |
3135 | release_lock = false; | |
3136 | } | |
3137 | ||
13eb76e0 FB |
3138 | len -= l; |
3139 | buf += l; | |
3140 | addr += l; | |
a203ac70 PB |
3141 | |
3142 | if (!len) { | |
3143 | break; | |
3144 | } | |
3145 | ||
3146 | l = len; | |
efa99a2f | 3147 | mr = flatview_translate(fv, addr, &addr1, &l, true, attrs); |
13eb76e0 | 3148 | } |
fd8aaa76 | 3149 | |
3b643495 | 3150 | return result; |
13eb76e0 | 3151 | } |
8df1cd07 | 3152 | |
4c6ebbb3 | 3153 | /* Called from RCU critical section. */ |
16620684 | 3154 | static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, |
a152be43 | 3155 | const void *buf, hwaddr len) |
ac1970fb | 3156 | { |
eb7eeb88 | 3157 | hwaddr l; |
eb7eeb88 PB |
3158 | hwaddr addr1; |
3159 | MemoryRegion *mr; | |
3160 | MemTxResult result = MEMTX_OK; | |
eb7eeb88 | 3161 | |
4c6ebbb3 | 3162 | l = len; |
efa99a2f | 3163 | mr = flatview_translate(fv, addr, &addr1, &l, true, attrs); |
4c6ebbb3 PB |
3164 | result = flatview_write_continue(fv, addr, attrs, buf, len, |
3165 | addr1, l, mr); | |
a203ac70 PB |
3166 | |
3167 | return result; | |
3168 | } | |
3169 | ||
3170 | /* Called within RCU critical section. */ | |
16620684 | 3171 | MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, |
a152be43 | 3172 | MemTxAttrs attrs, void *ptr, |
0c249ff7 | 3173 | hwaddr len, hwaddr addr1, hwaddr l, |
16620684 | 3174 | MemoryRegion *mr) |
a203ac70 | 3175 | { |
20804676 | 3176 | uint8_t *ram_ptr; |
a203ac70 PB |
3177 | uint64_t val; |
3178 | MemTxResult result = MEMTX_OK; | |
3179 | bool release_lock = false; | |
a152be43 | 3180 | uint8_t *buf = ptr; |
eb7eeb88 | 3181 | |
a203ac70 | 3182 | for (;;) { |
eb7eeb88 PB |
3183 | if (!memory_access_is_direct(mr, false)) { |
3184 | /* I/O case */ | |
3185 | release_lock |= prepare_mmio_access(mr); | |
3186 | l = memory_access_size(mr, l, addr1); | |
3d9e7c3e | 3187 | result |= memory_region_dispatch_read(mr, addr1, &val, |
9bf825bf TN |
3188 | size_memop(l), attrs); |
3189 | stn_he_p(buf, l, val); | |
eb7eeb88 PB |
3190 | } else { |
3191 | /* RAM case */ | |
20804676 PMD |
3192 | ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false); |
3193 | memcpy(buf, ram_ptr, l); | |
eb7eeb88 PB |
3194 | } |
3195 | ||
3196 | if (release_lock) { | |
3197 | qemu_mutex_unlock_iothread(); | |
3198 | release_lock = false; | |
3199 | } | |
3200 | ||
3201 | len -= l; | |
3202 | buf += l; | |
3203 | addr += l; | |
a203ac70 PB |
3204 | |
3205 | if (!len) { | |
3206 | break; | |
3207 | } | |
3208 | ||
3209 | l = len; | |
efa99a2f | 3210 | mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); |
a203ac70 PB |
3211 | } |
3212 | ||
3213 | return result; | |
3214 | } | |
3215 | ||
b2a44fca PB |
3216 | /* Called from RCU critical section. */ |
3217 | static MemTxResult flatview_read(FlatView *fv, hwaddr addr, | |
a152be43 | 3218 | MemTxAttrs attrs, void *buf, hwaddr len) |
a203ac70 PB |
3219 | { |
3220 | hwaddr l; | |
3221 | hwaddr addr1; | |
3222 | MemoryRegion *mr; | |
eb7eeb88 | 3223 | |
b2a44fca | 3224 | l = len; |
efa99a2f | 3225 | mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); |
b2a44fca PB |
3226 | return flatview_read_continue(fv, addr, attrs, buf, len, |
3227 | addr1, l, mr); | |
ac1970fb AK |
3228 | } |
3229 | ||
b2a44fca | 3230 | MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, |
daa3dda4 | 3231 | MemTxAttrs attrs, void *buf, hwaddr len) |
b2a44fca PB |
3232 | { |
3233 | MemTxResult result = MEMTX_OK; | |
3234 | FlatView *fv; | |
3235 | ||
3236 | if (len > 0) { | |
694ea274 | 3237 | RCU_READ_LOCK_GUARD(); |
b2a44fca PB |
3238 | fv = address_space_to_flatview(as); |
3239 | result = flatview_read(fv, addr, attrs, buf, len); | |
b2a44fca PB |
3240 | } |
3241 | ||
3242 | return result; | |
3243 | } | |
3244 | ||
4c6ebbb3 PB |
3245 | MemTxResult address_space_write(AddressSpace *as, hwaddr addr, |
3246 | MemTxAttrs attrs, | |
daa3dda4 | 3247 | const void *buf, hwaddr len) |
4c6ebbb3 PB |
3248 | { |
3249 | MemTxResult result = MEMTX_OK; | |
3250 | FlatView *fv; | |
3251 | ||
3252 | if (len > 0) { | |
694ea274 | 3253 | RCU_READ_LOCK_GUARD(); |
4c6ebbb3 PB |
3254 | fv = address_space_to_flatview(as); |
3255 | result = flatview_write(fv, addr, attrs, buf, len); | |
4c6ebbb3 PB |
3256 | } |
3257 | ||
3258 | return result; | |
3259 | } | |
3260 | ||
db84fd97 | 3261 | MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, |
daa3dda4 | 3262 | void *buf, hwaddr len, bool is_write) |
db84fd97 PB |
3263 | { |
3264 | if (is_write) { | |
3265 | return address_space_write(as, addr, attrs, buf, len); | |
3266 | } else { | |
3267 | return address_space_read_full(as, addr, attrs, buf, len); | |
3268 | } | |
3269 | } | |
3270 | ||
d7ef71ef | 3271 | void cpu_physical_memory_rw(hwaddr addr, void *buf, |
28c80bfe | 3272 | hwaddr len, bool is_write) |
ac1970fb | 3273 | { |
5c9eb028 PM |
3274 | address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, |
3275 | buf, len, is_write); | |
ac1970fb AK |
3276 | } |
3277 | ||
582b55a9 AG |
3278 | enum write_rom_type { |
3279 | WRITE_DATA, | |
3280 | FLUSH_CACHE, | |
3281 | }; | |
3282 | ||
75693e14 PM |
3283 | static inline MemTxResult address_space_write_rom_internal(AddressSpace *as, |
3284 | hwaddr addr, | |
3285 | MemTxAttrs attrs, | |
daa3dda4 | 3286 | const void *ptr, |
0c249ff7 | 3287 | hwaddr len, |
75693e14 | 3288 | enum write_rom_type type) |
d0ecd2aa | 3289 | { |
149f54b5 | 3290 | hwaddr l; |
20804676 | 3291 | uint8_t *ram_ptr; |
149f54b5 | 3292 | hwaddr addr1; |
5c8a00ce | 3293 | MemoryRegion *mr; |
daa3dda4 | 3294 | const uint8_t *buf = ptr; |
3b46e624 | 3295 | |
694ea274 | 3296 | RCU_READ_LOCK_GUARD(); |
d0ecd2aa | 3297 | while (len > 0) { |
149f54b5 | 3298 | l = len; |
75693e14 | 3299 | mr = address_space_translate(as, addr, &addr1, &l, true, attrs); |
3b46e624 | 3300 | |
5c8a00ce PB |
3301 | if (!(memory_region_is_ram(mr) || |
3302 | memory_region_is_romd(mr))) { | |
b242e0e0 | 3303 | l = memory_access_size(mr, l, addr1); |
d0ecd2aa | 3304 | } else { |
d0ecd2aa | 3305 | /* ROM/RAM case */ |
20804676 | 3306 | ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
582b55a9 AG |
3307 | switch (type) { |
3308 | case WRITE_DATA: | |
20804676 | 3309 | memcpy(ram_ptr, buf, l); |
845b6214 | 3310 | invalidate_and_set_dirty(mr, addr1, l); |
582b55a9 AG |
3311 | break; |
3312 | case FLUSH_CACHE: | |
20804676 | 3313 | flush_icache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr + l); |
582b55a9 AG |
3314 | break; |
3315 | } | |
d0ecd2aa FB |
3316 | } |
3317 | len -= l; | |
3318 | buf += l; | |
3319 | addr += l; | |
3320 | } | |
75693e14 | 3321 | return MEMTX_OK; |
d0ecd2aa FB |
3322 | } |
3323 | ||
582b55a9 | 3324 | /* used for ROM loading : can write in RAM and ROM */ |
3c8133f9 PM |
3325 | MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, |
3326 | MemTxAttrs attrs, | |
daa3dda4 | 3327 | const void *buf, hwaddr len) |
582b55a9 | 3328 | { |
3c8133f9 PM |
3329 | return address_space_write_rom_internal(as, addr, attrs, |
3330 | buf, len, WRITE_DATA); | |
582b55a9 AG |
3331 | } |
3332 | ||
0c249ff7 | 3333 | void cpu_flush_icache_range(hwaddr start, hwaddr len) |
582b55a9 AG |
3334 | { |
3335 | /* | |
3336 | * This function should do the same thing as an icache flush that was | |
3337 | * triggered from within the guest. For TCG we are always cache coherent, | |
3338 | * so there is no need to flush anything. For KVM / Xen we need to flush | |
3339 | * the host's instruction cache at least. | |
3340 | */ | |
3341 | if (tcg_enabled()) { | |
3342 | return; | |
3343 | } | |
3344 | ||
75693e14 PM |
3345 | address_space_write_rom_internal(&address_space_memory, |
3346 | start, MEMTXATTRS_UNSPECIFIED, | |
3347 | NULL, len, FLUSH_CACHE); | |
582b55a9 AG |
3348 | } |
3349 | ||
6d16c2f8 | 3350 | typedef struct { |
d3e71559 | 3351 | MemoryRegion *mr; |
6d16c2f8 | 3352 | void *buffer; |
a8170e5e AK |
3353 | hwaddr addr; |
3354 | hwaddr len; | |
c2cba0ff | 3355 | bool in_use; |
6d16c2f8 AL |
3356 | } BounceBuffer; |
3357 | ||
3358 | static BounceBuffer bounce; | |
3359 | ||
ba223c29 | 3360 | typedef struct MapClient { |
e95205e1 | 3361 | QEMUBH *bh; |
72cf2d4f | 3362 | QLIST_ENTRY(MapClient) link; |
ba223c29 AL |
3363 | } MapClient; |
3364 | ||
38e047b5 | 3365 | QemuMutex map_client_list_lock; |
b58deb34 | 3366 | static QLIST_HEAD(, MapClient) map_client_list |
72cf2d4f | 3367 | = QLIST_HEAD_INITIALIZER(map_client_list); |
ba223c29 | 3368 | |
e95205e1 FZ |
3369 | static void cpu_unregister_map_client_do(MapClient *client) |
3370 | { | |
3371 | QLIST_REMOVE(client, link); | |
3372 | g_free(client); | |
3373 | } | |
3374 | ||
33b6c2ed FZ |
3375 | static void cpu_notify_map_clients_locked(void) |
3376 | { | |
3377 | MapClient *client; | |
3378 | ||
3379 | while (!QLIST_EMPTY(&map_client_list)) { | |
3380 | client = QLIST_FIRST(&map_client_list); | |
e95205e1 FZ |
3381 | qemu_bh_schedule(client->bh); |
3382 | cpu_unregister_map_client_do(client); | |
33b6c2ed FZ |
3383 | } |
3384 | } | |
3385 | ||
e95205e1 | 3386 | void cpu_register_map_client(QEMUBH *bh) |
ba223c29 | 3387 | { |
7267c094 | 3388 | MapClient *client = g_malloc(sizeof(*client)); |
ba223c29 | 3389 | |
38e047b5 | 3390 | qemu_mutex_lock(&map_client_list_lock); |
e95205e1 | 3391 | client->bh = bh; |
72cf2d4f | 3392 | QLIST_INSERT_HEAD(&map_client_list, client, link); |
33b6c2ed FZ |
3393 | if (!atomic_read(&bounce.in_use)) { |
3394 | cpu_notify_map_clients_locked(); | |
3395 | } | |
38e047b5 | 3396 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
3397 | } |
3398 | ||
38e047b5 | 3399 | void cpu_exec_init_all(void) |
ba223c29 | 3400 | { |
38e047b5 | 3401 | qemu_mutex_init(&ram_list.mutex); |
20bccb82 PM |
3402 | /* The data structures we set up here depend on knowing the page size, |
3403 | * so no more changes can be made after this point. | |
3404 | * In an ideal world, nothing we did before we had finished the | |
3405 | * machine setup would care about the target page size, and we could | |
3406 | * do this much later, rather than requiring board models to state | |
3407 | * up front what their requirements are. | |
3408 | */ | |
3409 | finalize_target_page_bits(); | |
38e047b5 | 3410 | io_mem_init(); |
680a4783 | 3411 | memory_map_init(); |
38e047b5 | 3412 | qemu_mutex_init(&map_client_list_lock); |
ba223c29 AL |
3413 | } |
3414 | ||
e95205e1 | 3415 | void cpu_unregister_map_client(QEMUBH *bh) |
ba223c29 AL |
3416 | { |
3417 | MapClient *client; | |
3418 | ||
e95205e1 FZ |
3419 | qemu_mutex_lock(&map_client_list_lock); |
3420 | QLIST_FOREACH(client, &map_client_list, link) { | |
3421 | if (client->bh == bh) { | |
3422 | cpu_unregister_map_client_do(client); | |
3423 | break; | |
3424 | } | |
ba223c29 | 3425 | } |
e95205e1 | 3426 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
3427 | } |
3428 | ||
3429 | static void cpu_notify_map_clients(void) | |
3430 | { | |
38e047b5 | 3431 | qemu_mutex_lock(&map_client_list_lock); |
33b6c2ed | 3432 | cpu_notify_map_clients_locked(); |
38e047b5 | 3433 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
3434 | } |
3435 | ||
0c249ff7 | 3436 | static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, |
eace72b7 | 3437 | bool is_write, MemTxAttrs attrs) |
51644ab7 | 3438 | { |
5c8a00ce | 3439 | MemoryRegion *mr; |
51644ab7 PB |
3440 | hwaddr l, xlat; |
3441 | ||
3442 | while (len > 0) { | |
3443 | l = len; | |
efa99a2f | 3444 | mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); |
5c8a00ce PB |
3445 | if (!memory_access_is_direct(mr, is_write)) { |
3446 | l = memory_access_size(mr, l, addr); | |
eace72b7 | 3447 | if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) { |
51644ab7 PB |
3448 | return false; |
3449 | } | |
3450 | } | |
3451 | ||
3452 | len -= l; | |
3453 | addr += l; | |
3454 | } | |
3455 | return true; | |
3456 | } | |
3457 | ||
16620684 | 3458 | bool address_space_access_valid(AddressSpace *as, hwaddr addr, |
0c249ff7 | 3459 | hwaddr len, bool is_write, |
fddffa42 | 3460 | MemTxAttrs attrs) |
16620684 | 3461 | { |
11e732a5 PB |
3462 | FlatView *fv; |
3463 | bool result; | |
3464 | ||
694ea274 | 3465 | RCU_READ_LOCK_GUARD(); |
11e732a5 | 3466 | fv = address_space_to_flatview(as); |
eace72b7 | 3467 | result = flatview_access_valid(fv, addr, len, is_write, attrs); |
11e732a5 | 3468 | return result; |
16620684 AK |
3469 | } |
3470 | ||
715c31ec | 3471 | static hwaddr |
16620684 | 3472 | flatview_extend_translation(FlatView *fv, hwaddr addr, |
53d0790d PM |
3473 | hwaddr target_len, |
3474 | MemoryRegion *mr, hwaddr base, hwaddr len, | |
3475 | bool is_write, MemTxAttrs attrs) | |
715c31ec PB |
3476 | { |
3477 | hwaddr done = 0; | |
3478 | hwaddr xlat; | |
3479 | MemoryRegion *this_mr; | |
3480 | ||
3481 | for (;;) { | |
3482 | target_len -= len; | |
3483 | addr += len; | |
3484 | done += len; | |
3485 | if (target_len == 0) { | |
3486 | return done; | |
3487 | } | |
3488 | ||
3489 | len = target_len; | |
16620684 | 3490 | this_mr = flatview_translate(fv, addr, &xlat, |
efa99a2f | 3491 | &len, is_write, attrs); |
715c31ec PB |
3492 | if (this_mr != mr || xlat != base + done) { |
3493 | return done; | |
3494 | } | |
3495 | } | |
3496 | } | |
3497 | ||
6d16c2f8 AL |
3498 | /* Map a physical memory region into a host virtual address. |
3499 | * May map a subset of the requested range, given by and returned in *plen. | |
3500 | * May return NULL if resources needed to perform the mapping are exhausted. | |
3501 | * Use only for reads OR writes - not for read-modify-write operations. | |
ba223c29 AL |
3502 | * Use cpu_register_map_client() to know when retrying the map operation is |
3503 | * likely to succeed. | |
6d16c2f8 | 3504 | */ |
ac1970fb | 3505 | void *address_space_map(AddressSpace *as, |
a8170e5e AK |
3506 | hwaddr addr, |
3507 | hwaddr *plen, | |
f26404fb PM |
3508 | bool is_write, |
3509 | MemTxAttrs attrs) | |
6d16c2f8 | 3510 | { |
a8170e5e | 3511 | hwaddr len = *plen; |
715c31ec PB |
3512 | hwaddr l, xlat; |
3513 | MemoryRegion *mr; | |
e81bcda5 | 3514 | void *ptr; |
ad0c60fa | 3515 | FlatView *fv; |
6d16c2f8 | 3516 | |
e3127ae0 PB |
3517 | if (len == 0) { |
3518 | return NULL; | |
3519 | } | |
38bee5dc | 3520 | |
e3127ae0 | 3521 | l = len; |
694ea274 | 3522 | RCU_READ_LOCK_GUARD(); |
ad0c60fa | 3523 | fv = address_space_to_flatview(as); |
efa99a2f | 3524 | mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); |
41063e1e | 3525 | |
e3127ae0 | 3526 | if (!memory_access_is_direct(mr, is_write)) { |
c2cba0ff | 3527 | if (atomic_xchg(&bounce.in_use, true)) { |
e3127ae0 | 3528 | return NULL; |
6d16c2f8 | 3529 | } |
e85d9db5 KW |
3530 | /* Avoid unbounded allocations */ |
3531 | l = MIN(l, TARGET_PAGE_SIZE); | |
3532 | bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l); | |
e3127ae0 PB |
3533 | bounce.addr = addr; |
3534 | bounce.len = l; | |
d3e71559 PB |
3535 | |
3536 | memory_region_ref(mr); | |
3537 | bounce.mr = mr; | |
e3127ae0 | 3538 | if (!is_write) { |
16620684 | 3539 | flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED, |
5c9eb028 | 3540 | bounce.buffer, l); |
8ab934f9 | 3541 | } |
6d16c2f8 | 3542 | |
e3127ae0 PB |
3543 | *plen = l; |
3544 | return bounce.buffer; | |
3545 | } | |
3546 | ||
e3127ae0 | 3547 | |
d3e71559 | 3548 | memory_region_ref(mr); |
16620684 | 3549 | *plen = flatview_extend_translation(fv, addr, len, mr, xlat, |
53d0790d | 3550 | l, is_write, attrs); |
f5aa69bd | 3551 | ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true); |
e81bcda5 PB |
3552 | |
3553 | return ptr; | |
6d16c2f8 AL |
3554 | } |
3555 | ||
ac1970fb | 3556 | /* Unmaps a memory region previously mapped by address_space_map(). |
ae5883ab | 3557 | * Will also mark the memory as dirty if is_write is true. access_len gives |
6d16c2f8 AL |
3558 | * the amount of memory that was actually read or written by the caller. |
3559 | */ | |
a8170e5e | 3560 | void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, |
ae5883ab | 3561 | bool is_write, hwaddr access_len) |
6d16c2f8 AL |
3562 | { |
3563 | if (buffer != bounce.buffer) { | |
d3e71559 PB |
3564 | MemoryRegion *mr; |
3565 | ram_addr_t addr1; | |
3566 | ||
07bdaa41 | 3567 | mr = memory_region_from_host(buffer, &addr1); |
d3e71559 | 3568 | assert(mr != NULL); |
6d16c2f8 | 3569 | if (is_write) { |
845b6214 | 3570 | invalidate_and_set_dirty(mr, addr1, access_len); |
6d16c2f8 | 3571 | } |
868bb33f | 3572 | if (xen_enabled()) { |
e41d7c69 | 3573 | xen_invalidate_map_cache_entry(buffer); |
050a0ddf | 3574 | } |
d3e71559 | 3575 | memory_region_unref(mr); |
6d16c2f8 AL |
3576 | return; |
3577 | } | |
3578 | if (is_write) { | |
5c9eb028 PM |
3579 | address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED, |
3580 | bounce.buffer, access_len); | |
6d16c2f8 | 3581 | } |
f8a83245 | 3582 | qemu_vfree(bounce.buffer); |
6d16c2f8 | 3583 | bounce.buffer = NULL; |
d3e71559 | 3584 | memory_region_unref(bounce.mr); |
c2cba0ff | 3585 | atomic_mb_set(&bounce.in_use, false); |
ba223c29 | 3586 | cpu_notify_map_clients(); |
6d16c2f8 | 3587 | } |
d0ecd2aa | 3588 | |
a8170e5e AK |
3589 | void *cpu_physical_memory_map(hwaddr addr, |
3590 | hwaddr *plen, | |
28c80bfe | 3591 | bool is_write) |
ac1970fb | 3592 | { |
f26404fb PM |
3593 | return address_space_map(&address_space_memory, addr, plen, is_write, |
3594 | MEMTXATTRS_UNSPECIFIED); | |
ac1970fb AK |
3595 | } |
3596 | ||
a8170e5e | 3597 | void cpu_physical_memory_unmap(void *buffer, hwaddr len, |
28c80bfe | 3598 | bool is_write, hwaddr access_len) |
ac1970fb AK |
3599 | { |
3600 | return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); | |
3601 | } | |
3602 | ||
0ce265ff PB |
3603 | #define ARG1_DECL AddressSpace *as |
3604 | #define ARG1 as | |
3605 | #define SUFFIX | |
3606 | #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__) | |
0ce265ff PB |
3607 | #define RCU_READ_LOCK(...) rcu_read_lock() |
3608 | #define RCU_READ_UNLOCK(...) rcu_read_unlock() | |
3609 | #include "memory_ldst.inc.c" | |
1e78bcc1 | 3610 | |
1f4e496e PB |
3611 | int64_t address_space_cache_init(MemoryRegionCache *cache, |
3612 | AddressSpace *as, | |
3613 | hwaddr addr, | |
3614 | hwaddr len, | |
3615 | bool is_write) | |
3616 | { | |
48564041 PB |
3617 | AddressSpaceDispatch *d; |
3618 | hwaddr l; | |
3619 | MemoryRegion *mr; | |
3620 | ||
3621 | assert(len > 0); | |
3622 | ||
3623 | l = len; | |
3624 | cache->fv = address_space_get_flatview(as); | |
3625 | d = flatview_to_dispatch(cache->fv); | |
3626 | cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true); | |
3627 | ||
3628 | mr = cache->mrs.mr; | |
3629 | memory_region_ref(mr); | |
3630 | if (memory_access_is_direct(mr, is_write)) { | |
53d0790d PM |
3631 | /* We don't care about the memory attributes here as we're only |
3632 | * doing this if we found actual RAM, which behaves the same | |
3633 | * regardless of attributes; so UNSPECIFIED is fine. | |
3634 | */ | |
48564041 | 3635 | l = flatview_extend_translation(cache->fv, addr, len, mr, |
53d0790d PM |
3636 | cache->xlat, l, is_write, |
3637 | MEMTXATTRS_UNSPECIFIED); | |
48564041 PB |
3638 | cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true); |
3639 | } else { | |
3640 | cache->ptr = NULL; | |
3641 | } | |
3642 | ||
3643 | cache->len = l; | |
3644 | cache->is_write = is_write; | |
3645 | return l; | |
1f4e496e PB |
3646 | } |
3647 | ||
3648 | void address_space_cache_invalidate(MemoryRegionCache *cache, | |
3649 | hwaddr addr, | |
3650 | hwaddr access_len) | |
3651 | { | |
48564041 PB |
3652 | assert(cache->is_write); |
3653 | if (likely(cache->ptr)) { | |
3654 | invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len); | |
3655 | } | |
1f4e496e PB |
3656 | } |
3657 | ||
3658 | void address_space_cache_destroy(MemoryRegionCache *cache) | |
3659 | { | |
48564041 PB |
3660 | if (!cache->mrs.mr) { |
3661 | return; | |
3662 | } | |
3663 | ||
3664 | if (xen_enabled()) { | |
3665 | xen_invalidate_map_cache_entry(cache->ptr); | |
3666 | } | |
3667 | memory_region_unref(cache->mrs.mr); | |
3668 | flatview_unref(cache->fv); | |
3669 | cache->mrs.mr = NULL; | |
3670 | cache->fv = NULL; | |
3671 | } | |
3672 | ||
3673 | /* Called from RCU critical section. This function has the same | |
3674 | * semantics as address_space_translate, but it only works on a | |
3675 | * predefined range of a MemoryRegion that was mapped with | |
3676 | * address_space_cache_init. | |
3677 | */ | |
3678 | static inline MemoryRegion *address_space_translate_cached( | |
3679 | MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat, | |
bc6b1cec | 3680 | hwaddr *plen, bool is_write, MemTxAttrs attrs) |
48564041 PB |
3681 | { |
3682 | MemoryRegionSection section; | |
3683 | MemoryRegion *mr; | |
3684 | IOMMUMemoryRegion *iommu_mr; | |
3685 | AddressSpace *target_as; | |
3686 | ||
3687 | assert(!cache->ptr); | |
3688 | *xlat = addr + cache->xlat; | |
3689 | ||
3690 | mr = cache->mrs.mr; | |
3691 | iommu_mr = memory_region_get_iommu(mr); | |
3692 | if (!iommu_mr) { | |
3693 | /* MMIO region. */ | |
3694 | return mr; | |
3695 | } | |
3696 | ||
3697 | section = address_space_translate_iommu(iommu_mr, xlat, plen, | |
3698 | NULL, is_write, true, | |
2f7b009c | 3699 | &target_as, attrs); |
48564041 PB |
3700 | return section.mr; |
3701 | } | |
3702 | ||
3703 | /* Called from RCU critical section. address_space_read_cached uses this | |
3704 | * out of line function when the target is an MMIO or IOMMU region. | |
3705 | */ | |
3706 | void | |
3707 | address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr, | |
0c249ff7 | 3708 | void *buf, hwaddr len) |
48564041 PB |
3709 | { |
3710 | hwaddr addr1, l; | |
3711 | MemoryRegion *mr; | |
3712 | ||
3713 | l = len; | |
bc6b1cec PM |
3714 | mr = address_space_translate_cached(cache, addr, &addr1, &l, false, |
3715 | MEMTXATTRS_UNSPECIFIED); | |
48564041 PB |
3716 | flatview_read_continue(cache->fv, |
3717 | addr, MEMTXATTRS_UNSPECIFIED, buf, len, | |
3718 | addr1, l, mr); | |
3719 | } | |
3720 | ||
3721 | /* Called from RCU critical section. address_space_write_cached uses this | |
3722 | * out of line function when the target is an MMIO or IOMMU region. | |
3723 | */ | |
3724 | void | |
3725 | address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr, | |
0c249ff7 | 3726 | const void *buf, hwaddr len) |
48564041 PB |
3727 | { |
3728 | hwaddr addr1, l; | |
3729 | MemoryRegion *mr; | |
3730 | ||
3731 | l = len; | |
bc6b1cec PM |
3732 | mr = address_space_translate_cached(cache, addr, &addr1, &l, true, |
3733 | MEMTXATTRS_UNSPECIFIED); | |
48564041 PB |
3734 | flatview_write_continue(cache->fv, |
3735 | addr, MEMTXATTRS_UNSPECIFIED, buf, len, | |
3736 | addr1, l, mr); | |
1f4e496e PB |
3737 | } |
3738 | ||
3739 | #define ARG1_DECL MemoryRegionCache *cache | |
3740 | #define ARG1 cache | |
48564041 PB |
3741 | #define SUFFIX _cached_slow |
3742 | #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__) | |
48564041 PB |
3743 | #define RCU_READ_LOCK() ((void)0) |
3744 | #define RCU_READ_UNLOCK() ((void)0) | |
1f4e496e PB |
3745 | #include "memory_ldst.inc.c" |
3746 | ||
5e2972fd | 3747 | /* virtual memory access for debug (includes writing to ROM) */ |
f17ec444 | 3748 | int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, |
28c80bfe | 3749 | void *ptr, target_ulong len, bool is_write) |
13eb76e0 | 3750 | { |
a8170e5e | 3751 | hwaddr phys_addr; |
0c249ff7 | 3752 | target_ulong l, page; |
d7ef71ef | 3753 | uint8_t *buf = ptr; |
13eb76e0 | 3754 | |
79ca7a1b | 3755 | cpu_synchronize_state(cpu); |
13eb76e0 | 3756 | while (len > 0) { |
5232e4c7 PM |
3757 | int asidx; |
3758 | MemTxAttrs attrs; | |
3759 | ||
13eb76e0 | 3760 | page = addr & TARGET_PAGE_MASK; |
5232e4c7 PM |
3761 | phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs); |
3762 | asidx = cpu_asidx_from_attrs(cpu, attrs); | |
13eb76e0 FB |
3763 | /* if no physical page mapped, return an error */ |
3764 | if (phys_addr == -1) | |
3765 | return -1; | |
3766 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3767 | if (l > len) | |
3768 | l = len; | |
5e2972fd | 3769 | phys_addr += (addr & ~TARGET_PAGE_MASK); |
2e38847b | 3770 | if (is_write) { |
3c8133f9 | 3771 | address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr, |
ea7a5330 | 3772 | attrs, buf, l); |
2e38847b | 3773 | } else { |
19f70347 PM |
3774 | address_space_read(cpu->cpu_ases[asidx].as, phys_addr, attrs, buf, |
3775 | l); | |
2e38847b | 3776 | } |
13eb76e0 FB |
3777 | len -= l; |
3778 | buf += l; | |
3779 | addr += l; | |
3780 | } | |
3781 | return 0; | |
3782 | } | |
038629a6 DDAG |
3783 | |
3784 | /* | |
3785 | * Allows code that needs to deal with migration bitmaps etc to still be built | |
3786 | * target independent. | |
3787 | */ | |
20afaed9 | 3788 | size_t qemu_target_page_size(void) |
038629a6 | 3789 | { |
20afaed9 | 3790 | return TARGET_PAGE_SIZE; |
038629a6 DDAG |
3791 | } |
3792 | ||
46d702b1 JQ |
3793 | int qemu_target_page_bits(void) |
3794 | { | |
3795 | return TARGET_PAGE_BITS; | |
3796 | } | |
3797 | ||
3798 | int qemu_target_page_bits_min(void) | |
3799 | { | |
3800 | return TARGET_PAGE_BITS_MIN; | |
3801 | } | |
a68fe89c | 3802 | #endif |
13eb76e0 | 3803 | |
98ed8ecf | 3804 | bool target_words_bigendian(void) |
8e4a424b BS |
3805 | { |
3806 | #if defined(TARGET_WORDS_BIGENDIAN) | |
3807 | return true; | |
3808 | #else | |
3809 | return false; | |
3810 | #endif | |
3811 | } | |
3812 | ||
76f35538 | 3813 | #ifndef CONFIG_USER_ONLY |
a8170e5e | 3814 | bool cpu_physical_memory_is_io(hwaddr phys_addr) |
76f35538 | 3815 | { |
5c8a00ce | 3816 | MemoryRegion*mr; |
149f54b5 | 3817 | hwaddr l = 1; |
41063e1e | 3818 | bool res; |
76f35538 | 3819 | |
694ea274 | 3820 | RCU_READ_LOCK_GUARD(); |
5c8a00ce | 3821 | mr = address_space_translate(&address_space_memory, |
bc6b1cec PM |
3822 | phys_addr, &phys_addr, &l, false, |
3823 | MEMTXATTRS_UNSPECIFIED); | |
76f35538 | 3824 | |
41063e1e | 3825 | res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr)); |
41063e1e | 3826 | return res; |
76f35538 | 3827 | } |
bd2fa51f | 3828 | |
e3807054 | 3829 | int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) |
bd2fa51f MH |
3830 | { |
3831 | RAMBlock *block; | |
e3807054 | 3832 | int ret = 0; |
bd2fa51f | 3833 | |
694ea274 | 3834 | RCU_READ_LOCK_GUARD(); |
99e15582 | 3835 | RAMBLOCK_FOREACH(block) { |
754cb9c0 | 3836 | ret = func(block, opaque); |
e3807054 DDAG |
3837 | if (ret) { |
3838 | break; | |
3839 | } | |
bd2fa51f | 3840 | } |
e3807054 | 3841 | return ret; |
bd2fa51f | 3842 | } |
d3a5038c DDAG |
3843 | |
3844 | /* | |
3845 | * Unmap pages of memory from start to start+length such that | |
3846 | * they a) read as 0, b) Trigger whatever fault mechanism | |
3847 | * the OS provides for postcopy. | |
3848 | * The pages must be unmapped by the end of the function. | |
3849 | * Returns: 0 on success, none-0 on failure | |
3850 | * | |
3851 | */ | |
3852 | int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length) | |
3853 | { | |
3854 | int ret = -1; | |
3855 | ||
3856 | uint8_t *host_startaddr = rb->host + start; | |
3857 | ||
619bd31d | 3858 | if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) { |
d3a5038c DDAG |
3859 | error_report("ram_block_discard_range: Unaligned start address: %p", |
3860 | host_startaddr); | |
3861 | goto err; | |
3862 | } | |
3863 | ||
3864 | if ((start + length) <= rb->used_length) { | |
db144f70 | 3865 | bool need_madvise, need_fallocate; |
619bd31d | 3866 | if (!QEMU_IS_ALIGNED(length, rb->page_size)) { |
72821d93 WY |
3867 | error_report("ram_block_discard_range: Unaligned length: %zx", |
3868 | length); | |
d3a5038c DDAG |
3869 | goto err; |
3870 | } | |
3871 | ||
3872 | errno = ENOTSUP; /* If we are missing MADVISE etc */ | |
3873 | ||
db144f70 DDAG |
3874 | /* The logic here is messy; |
3875 | * madvise DONTNEED fails for hugepages | |
3876 | * fallocate works on hugepages and shmem | |
3877 | */ | |
3878 | need_madvise = (rb->page_size == qemu_host_page_size); | |
3879 | need_fallocate = rb->fd != -1; | |
3880 | if (need_fallocate) { | |
3881 | /* For a file, this causes the area of the file to be zero'd | |
3882 | * if read, and for hugetlbfs also causes it to be unmapped | |
3883 | * so a userfault will trigger. | |
e2fa71f5 DDAG |
3884 | */ |
3885 | #ifdef CONFIG_FALLOCATE_PUNCH_HOLE | |
3886 | ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, | |
3887 | start, length); | |
db144f70 DDAG |
3888 | if (ret) { |
3889 | ret = -errno; | |
3890 | error_report("ram_block_discard_range: Failed to fallocate " | |
3891 | "%s:%" PRIx64 " +%zx (%d)", | |
3892 | rb->idstr, start, length, ret); | |
3893 | goto err; | |
3894 | } | |
3895 | #else | |
3896 | ret = -ENOSYS; | |
3897 | error_report("ram_block_discard_range: fallocate not available/file" | |
3898 | "%s:%" PRIx64 " +%zx (%d)", | |
3899 | rb->idstr, start, length, ret); | |
3900 | goto err; | |
e2fa71f5 DDAG |
3901 | #endif |
3902 | } | |
db144f70 DDAG |
3903 | if (need_madvise) { |
3904 | /* For normal RAM this causes it to be unmapped, | |
3905 | * for shared memory it causes the local mapping to disappear | |
3906 | * and to fall back on the file contents (which we just | |
3907 | * fallocate'd away). | |
3908 | */ | |
3909 | #if defined(CONFIG_MADVISE) | |
3910 | ret = madvise(host_startaddr, length, MADV_DONTNEED); | |
3911 | if (ret) { | |
3912 | ret = -errno; | |
3913 | error_report("ram_block_discard_range: Failed to discard range " | |
3914 | "%s:%" PRIx64 " +%zx (%d)", | |
3915 | rb->idstr, start, length, ret); | |
3916 | goto err; | |
3917 | } | |
3918 | #else | |
3919 | ret = -ENOSYS; | |
3920 | error_report("ram_block_discard_range: MADVISE not available" | |
d3a5038c DDAG |
3921 | "%s:%" PRIx64 " +%zx (%d)", |
3922 | rb->idstr, start, length, ret); | |
db144f70 DDAG |
3923 | goto err; |
3924 | #endif | |
d3a5038c | 3925 | } |
db144f70 DDAG |
3926 | trace_ram_block_discard_range(rb->idstr, host_startaddr, length, |
3927 | need_madvise, need_fallocate, ret); | |
d3a5038c DDAG |
3928 | } else { |
3929 | error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64 | |
3930 | "/%zx/" RAM_ADDR_FMT")", | |
3931 | rb->idstr, start, length, rb->used_length); | |
3932 | } | |
3933 | ||
3934 | err: | |
3935 | return ret; | |
3936 | } | |
3937 | ||
a4de8552 JH |
3938 | bool ramblock_is_pmem(RAMBlock *rb) |
3939 | { | |
3940 | return rb->flags & RAM_PMEM; | |
3941 | } | |
3942 | ||
ec3f8c99 | 3943 | #endif |
a0be0c58 YZ |
3944 | |
3945 | void page_size_init(void) | |
3946 | { | |
3947 | /* NOTE: we can always suppose that qemu_host_page_size >= | |
3948 | TARGET_PAGE_SIZE */ | |
a0be0c58 YZ |
3949 | if (qemu_host_page_size == 0) { |
3950 | qemu_host_page_size = qemu_real_host_page_size; | |
3951 | } | |
3952 | if (qemu_host_page_size < TARGET_PAGE_SIZE) { | |
3953 | qemu_host_page_size = TARGET_PAGE_SIZE; | |
3954 | } | |
3955 | qemu_host_page_mask = -(intptr_t)qemu_host_page_size; | |
3956 | } | |
5e8fd947 AK |
3957 | |
3958 | #if !defined(CONFIG_USER_ONLY) | |
3959 | ||
b6b71cb5 | 3960 | static void mtree_print_phys_entries(int start, int end, int skip, int ptr) |
5e8fd947 AK |
3961 | { |
3962 | if (start == end - 1) { | |
b6b71cb5 | 3963 | qemu_printf("\t%3d ", start); |
5e8fd947 | 3964 | } else { |
b6b71cb5 | 3965 | qemu_printf("\t%3d..%-3d ", start, end - 1); |
5e8fd947 | 3966 | } |
b6b71cb5 | 3967 | qemu_printf(" skip=%d ", skip); |
5e8fd947 | 3968 | if (ptr == PHYS_MAP_NODE_NIL) { |
b6b71cb5 | 3969 | qemu_printf(" ptr=NIL"); |
5e8fd947 | 3970 | } else if (!skip) { |
b6b71cb5 | 3971 | qemu_printf(" ptr=#%d", ptr); |
5e8fd947 | 3972 | } else { |
b6b71cb5 | 3973 | qemu_printf(" ptr=[%d]", ptr); |
5e8fd947 | 3974 | } |
b6b71cb5 | 3975 | qemu_printf("\n"); |
5e8fd947 AK |
3976 | } |
3977 | ||
3978 | #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \ | |
3979 | int128_sub((size), int128_one())) : 0) | |
3980 | ||
b6b71cb5 | 3981 | void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root) |
5e8fd947 AK |
3982 | { |
3983 | int i; | |
3984 | ||
b6b71cb5 MA |
3985 | qemu_printf(" Dispatch\n"); |
3986 | qemu_printf(" Physical sections\n"); | |
5e8fd947 AK |
3987 | |
3988 | for (i = 0; i < d->map.sections_nb; ++i) { | |
3989 | MemoryRegionSection *s = d->map.sections + i; | |
3990 | const char *names[] = { " [unassigned]", " [not dirty]", | |
3991 | " [ROM]", " [watch]" }; | |
3992 | ||
b6b71cb5 MA |
3993 | qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx |
3994 | " %s%s%s%s%s", | |
5e8fd947 AK |
3995 | i, |
3996 | s->offset_within_address_space, | |
3997 | s->offset_within_address_space + MR_SIZE(s->mr->size), | |
3998 | s->mr->name ? s->mr->name : "(noname)", | |
3999 | i < ARRAY_SIZE(names) ? names[i] : "", | |
4000 | s->mr == root ? " [ROOT]" : "", | |
4001 | s == d->mru_section ? " [MRU]" : "", | |
4002 | s->mr->is_iommu ? " [iommu]" : ""); | |
4003 | ||
4004 | if (s->mr->alias) { | |
b6b71cb5 | 4005 | qemu_printf(" alias=%s", s->mr->alias->name ? |
5e8fd947 AK |
4006 | s->mr->alias->name : "noname"); |
4007 | } | |
b6b71cb5 | 4008 | qemu_printf("\n"); |
5e8fd947 AK |
4009 | } |
4010 | ||
b6b71cb5 | 4011 | qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n", |
5e8fd947 AK |
4012 | P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip); |
4013 | for (i = 0; i < d->map.nodes_nb; ++i) { | |
4014 | int j, jprev; | |
4015 | PhysPageEntry prev; | |
4016 | Node *n = d->map.nodes + i; | |
4017 | ||
b6b71cb5 | 4018 | qemu_printf(" [%d]\n", i); |
5e8fd947 AK |
4019 | |
4020 | for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) { | |
4021 | PhysPageEntry *pe = *n + j; | |
4022 | ||
4023 | if (pe->ptr == prev.ptr && pe->skip == prev.skip) { | |
4024 | continue; | |
4025 | } | |
4026 | ||
b6b71cb5 | 4027 | mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); |
5e8fd947 AK |
4028 | |
4029 | jprev = j; | |
4030 | prev = *pe; | |
4031 | } | |
4032 | ||
4033 | if (jprev != ARRAY_SIZE(*n)) { | |
b6b71cb5 | 4034 | mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); |
5e8fd947 AK |
4035 | } |
4036 | } | |
4037 | } | |
4038 | ||
4039 | #endif |