]>
Commit | Line | Data |
---|---|---|
54936004 | 1 | /* |
5b6dd868 | 2 | * Virtual page mapping |
5fafdf24 | 3 | * |
54936004 FB |
4 | * Copyright (c) 2003 Fabrice Bellard |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
8167ee88 | 17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
54936004 | 18 | */ |
14a48c1d | 19 | |
7b31bbc2 | 20 | #include "qemu/osdep.h" |
a8d25326 | 21 | #include "qemu-common.h" |
da34e65c | 22 | #include "qapi/error.h" |
54936004 | 23 | |
f348b6d1 | 24 | #include "qemu/cutils.h" |
6180a181 | 25 | #include "cpu.h" |
63c91552 | 26 | #include "exec/exec-all.h" |
51180423 | 27 | #include "exec/target_page.h" |
dcb32f1d | 28 | #include "tcg/tcg.h" |
741da0d3 | 29 | #include "hw/qdev-core.h" |
c7e002c5 | 30 | #include "hw/qdev-properties.h" |
4485bd26 | 31 | #if !defined(CONFIG_USER_ONLY) |
47c8ca53 | 32 | #include "hw/boards.h" |
33c11879 | 33 | #include "hw/xen/xen.h" |
4485bd26 | 34 | #endif |
9c17d615 | 35 | #include "sysemu/kvm.h" |
2ff3de68 | 36 | #include "sysemu/sysemu.h" |
14a48c1d | 37 | #include "sysemu/tcg.h" |
a028edea | 38 | #include "sysemu/qtest.h" |
1de7afc9 PB |
39 | #include "qemu/timer.h" |
40 | #include "qemu/config-file.h" | |
75a34036 | 41 | #include "qemu/error-report.h" |
b6b71cb5 | 42 | #include "qemu/qemu-print.h" |
53a5960a | 43 | #if defined(CONFIG_USER_ONLY) |
a9c94277 | 44 | #include "qemu.h" |
432d268c | 45 | #else /* !CONFIG_USER_ONLY */ |
741da0d3 | 46 | #include "exec/memory.h" |
df43d49c | 47 | #include "exec/ioport.h" |
741da0d3 | 48 | #include "sysemu/dma.h" |
b58c5c2d | 49 | #include "sysemu/hostmem.h" |
79ca7a1b | 50 | #include "sysemu/hw_accel.h" |
741da0d3 | 51 | #include "exec/address-spaces.h" |
9c17d615 | 52 | #include "sysemu/xen-mapcache.h" |
0ab8ed18 | 53 | #include "trace-root.h" |
d3a5038c | 54 | |
e2fa71f5 | 55 | #ifdef CONFIG_FALLOCATE_PUNCH_HOLE |
e2fa71f5 DDAG |
56 | #include <linux/falloc.h> |
57 | #endif | |
58 | ||
53a5960a | 59 | #endif |
0dc3f44a | 60 | #include "qemu/rcu_queue.h" |
4840f10e | 61 | #include "qemu/main-loop.h" |
5b6dd868 | 62 | #include "translate-all.h" |
7615936e | 63 | #include "sysemu/replay.h" |
0cac1b66 | 64 | |
022c62cb | 65 | #include "exec/memory-internal.h" |
220c3ebd | 66 | #include "exec/ram_addr.h" |
508127e2 | 67 | #include "exec/log.h" |
67d95c15 | 68 | |
61c490e2 BM |
69 | #include "qemu/pmem.h" |
70 | ||
9dfeca7c BR |
71 | #include "migration/vmstate.h" |
72 | ||
b35ba30f | 73 | #include "qemu/range.h" |
794e8f30 MT |
74 | #ifndef _WIN32 |
75 | #include "qemu/mmap-alloc.h" | |
76 | #endif | |
b35ba30f | 77 | |
be9b23c4 PX |
78 | #include "monitor/monitor.h" |
79 | ||
db7b5426 | 80 | //#define DEBUG_SUBPAGE |
1196be37 | 81 | |
e2eef170 | 82 | #if !defined(CONFIG_USER_ONLY) |
0dc3f44a MD |
83 | /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes |
84 | * are protected by the ramlist lock. | |
85 | */ | |
0d53d9fe | 86 | RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; |
62152b8a AK |
87 | |
88 | static MemoryRegion *system_memory; | |
309cb471 | 89 | static MemoryRegion *system_io; |
62152b8a | 90 | |
f6790af6 AK |
91 | AddressSpace address_space_io; |
92 | AddressSpace address_space_memory; | |
2673a5da | 93 | |
acc9d80b | 94 | static MemoryRegion io_mem_unassigned; |
e2eef170 | 95 | #endif |
9fa3e853 | 96 | |
f481ee2d PB |
97 | CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus); |
98 | ||
6a00d601 FB |
99 | /* current CPU in the current thread. It is only valid inside |
100 | cpu_exec() */ | |
f240eb6f | 101 | __thread CPUState *current_cpu; |
6a00d601 | 102 | |
a0be0c58 YZ |
103 | uintptr_t qemu_host_page_size; |
104 | intptr_t qemu_host_page_mask; | |
a0be0c58 | 105 | |
e2eef170 | 106 | #if !defined(CONFIG_USER_ONLY) |
fe3dada3 PB |
107 | /* 0 = Do not count executed instructions. |
108 | 1 = Precise instruction counting. | |
109 | 2 = Adaptive rate instruction counting. */ | |
110 | int use_icount; | |
4346ae3e | 111 | |
1db8abb1 PB |
112 | typedef struct PhysPageEntry PhysPageEntry; |
113 | ||
114 | struct PhysPageEntry { | |
9736e55b | 115 | /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ |
8b795765 | 116 | uint32_t skip : 6; |
9736e55b | 117 | /* index into phys_sections (!skip) or phys_map_nodes (skip) */ |
8b795765 | 118 | uint32_t ptr : 26; |
1db8abb1 PB |
119 | }; |
120 | ||
8b795765 MT |
121 | #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) |
122 | ||
03f49957 | 123 | /* Size of the L2 (and L3, etc) page tables. */ |
57271d63 | 124 | #define ADDR_SPACE_BITS 64 |
03f49957 | 125 | |
026736ce | 126 | #define P_L2_BITS 9 |
03f49957 PB |
127 | #define P_L2_SIZE (1 << P_L2_BITS) |
128 | ||
129 | #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) | |
130 | ||
131 | typedef PhysPageEntry Node[P_L2_SIZE]; | |
0475d94f | 132 | |
53cb28cb | 133 | typedef struct PhysPageMap { |
79e2b9ae PB |
134 | struct rcu_head rcu; |
135 | ||
53cb28cb MA |
136 | unsigned sections_nb; |
137 | unsigned sections_nb_alloc; | |
138 | unsigned nodes_nb; | |
139 | unsigned nodes_nb_alloc; | |
140 | Node *nodes; | |
141 | MemoryRegionSection *sections; | |
142 | } PhysPageMap; | |
143 | ||
1db8abb1 | 144 | struct AddressSpaceDispatch { |
729633c2 | 145 | MemoryRegionSection *mru_section; |
1db8abb1 PB |
146 | /* This is a multi-level map on the physical address space. |
147 | * The bottom level has pointers to MemoryRegionSections. | |
148 | */ | |
149 | PhysPageEntry phys_map; | |
53cb28cb | 150 | PhysPageMap map; |
1db8abb1 PB |
151 | }; |
152 | ||
90260c6c JK |
153 | #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) |
154 | typedef struct subpage_t { | |
155 | MemoryRegion iomem; | |
16620684 | 156 | FlatView *fv; |
90260c6c | 157 | hwaddr base; |
2615fabd | 158 | uint16_t sub_section[]; |
90260c6c JK |
159 | } subpage_t; |
160 | ||
b41aac4f | 161 | #define PHYS_SECTION_UNASSIGNED 0 |
5312bd8b | 162 | |
e2eef170 | 163 | static void io_mem_init(void); |
62152b8a | 164 | static void memory_map_init(void); |
9458a9a1 | 165 | static void tcg_log_global_after_sync(MemoryListener *listener); |
09daed84 | 166 | static void tcg_commit(MemoryListener *listener); |
e2eef170 | 167 | |
32857f4d PM |
168 | /** |
169 | * CPUAddressSpace: all the information a CPU needs about an AddressSpace | |
170 | * @cpu: the CPU whose AddressSpace this is | |
171 | * @as: the AddressSpace itself | |
172 | * @memory_dispatch: its dispatch pointer (cached, RCU protected) | |
173 | * @tcg_as_listener: listener for tracking changes to the AddressSpace | |
174 | */ | |
175 | struct CPUAddressSpace { | |
176 | CPUState *cpu; | |
177 | AddressSpace *as; | |
178 | struct AddressSpaceDispatch *memory_dispatch; | |
179 | MemoryListener tcg_as_listener; | |
180 | }; | |
181 | ||
8deaf12c GH |
182 | struct DirtyBitmapSnapshot { |
183 | ram_addr_t start; | |
184 | ram_addr_t end; | |
185 | unsigned long dirty[]; | |
186 | }; | |
187 | ||
6658ffb8 | 188 | #endif |
fd6ce8f6 | 189 | |
6d9a1304 | 190 | #if !defined(CONFIG_USER_ONLY) |
d6f2ea22 | 191 | |
53cb28cb | 192 | static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) |
d6f2ea22 | 193 | { |
101420b8 | 194 | static unsigned alloc_hint = 16; |
53cb28cb | 195 | if (map->nodes_nb + nodes > map->nodes_nb_alloc) { |
c95cfd04 | 196 | map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes); |
53cb28cb | 197 | map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); |
101420b8 | 198 | alloc_hint = map->nodes_nb_alloc; |
d6f2ea22 | 199 | } |
f7bf5461 AK |
200 | } |
201 | ||
db94604b | 202 | static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf) |
f7bf5461 AK |
203 | { |
204 | unsigned i; | |
8b795765 | 205 | uint32_t ret; |
db94604b PB |
206 | PhysPageEntry e; |
207 | PhysPageEntry *p; | |
f7bf5461 | 208 | |
53cb28cb | 209 | ret = map->nodes_nb++; |
db94604b | 210 | p = map->nodes[ret]; |
f7bf5461 | 211 | assert(ret != PHYS_MAP_NODE_NIL); |
53cb28cb | 212 | assert(ret != map->nodes_nb_alloc); |
db94604b PB |
213 | |
214 | e.skip = leaf ? 0 : 1; | |
215 | e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL; | |
03f49957 | 216 | for (i = 0; i < P_L2_SIZE; ++i) { |
db94604b | 217 | memcpy(&p[i], &e, sizeof(e)); |
d6f2ea22 | 218 | } |
f7bf5461 | 219 | return ret; |
d6f2ea22 AK |
220 | } |
221 | ||
53cb28cb | 222 | static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, |
56b15076 | 223 | hwaddr *index, uint64_t *nb, uint16_t leaf, |
2999097b | 224 | int level) |
f7bf5461 AK |
225 | { |
226 | PhysPageEntry *p; | |
03f49957 | 227 | hwaddr step = (hwaddr)1 << (level * P_L2_BITS); |
108c49b8 | 228 | |
9736e55b | 229 | if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { |
db94604b | 230 | lp->ptr = phys_map_node_alloc(map, level == 0); |
92e873b9 | 231 | } |
db94604b | 232 | p = map->nodes[lp->ptr]; |
03f49957 | 233 | lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; |
f7bf5461 | 234 | |
03f49957 | 235 | while (*nb && lp < &p[P_L2_SIZE]) { |
07f07b31 | 236 | if ((*index & (step - 1)) == 0 && *nb >= step) { |
9736e55b | 237 | lp->skip = 0; |
c19e8800 | 238 | lp->ptr = leaf; |
07f07b31 AK |
239 | *index += step; |
240 | *nb -= step; | |
2999097b | 241 | } else { |
53cb28cb | 242 | phys_page_set_level(map, lp, index, nb, leaf, level - 1); |
2999097b AK |
243 | } |
244 | ++lp; | |
f7bf5461 AK |
245 | } |
246 | } | |
247 | ||
ac1970fb | 248 | static void phys_page_set(AddressSpaceDispatch *d, |
56b15076 | 249 | hwaddr index, uint64_t nb, |
2999097b | 250 | uint16_t leaf) |
f7bf5461 | 251 | { |
2999097b | 252 | /* Wildly overreserve - it doesn't matter much. */ |
53cb28cb | 253 | phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); |
5cd2c5b6 | 254 | |
53cb28cb | 255 | phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); |
92e873b9 FB |
256 | } |
257 | ||
b35ba30f MT |
258 | /* Compact a non leaf page entry. Simply detect that the entry has a single child, |
259 | * and update our entry so we can skip it and go directly to the destination. | |
260 | */ | |
efee678d | 261 | static void phys_page_compact(PhysPageEntry *lp, Node *nodes) |
b35ba30f MT |
262 | { |
263 | unsigned valid_ptr = P_L2_SIZE; | |
264 | int valid = 0; | |
265 | PhysPageEntry *p; | |
266 | int i; | |
267 | ||
268 | if (lp->ptr == PHYS_MAP_NODE_NIL) { | |
269 | return; | |
270 | } | |
271 | ||
272 | p = nodes[lp->ptr]; | |
273 | for (i = 0; i < P_L2_SIZE; i++) { | |
274 | if (p[i].ptr == PHYS_MAP_NODE_NIL) { | |
275 | continue; | |
276 | } | |
277 | ||
278 | valid_ptr = i; | |
279 | valid++; | |
280 | if (p[i].skip) { | |
efee678d | 281 | phys_page_compact(&p[i], nodes); |
b35ba30f MT |
282 | } |
283 | } | |
284 | ||
285 | /* We can only compress if there's only one child. */ | |
286 | if (valid != 1) { | |
287 | return; | |
288 | } | |
289 | ||
290 | assert(valid_ptr < P_L2_SIZE); | |
291 | ||
292 | /* Don't compress if it won't fit in the # of bits we have. */ | |
526ca236 WY |
293 | if (P_L2_LEVELS >= (1 << 6) && |
294 | lp->skip + p[valid_ptr].skip >= (1 << 6)) { | |
b35ba30f MT |
295 | return; |
296 | } | |
297 | ||
298 | lp->ptr = p[valid_ptr].ptr; | |
299 | if (!p[valid_ptr].skip) { | |
300 | /* If our only child is a leaf, make this a leaf. */ | |
301 | /* By design, we should have made this node a leaf to begin with so we | |
302 | * should never reach here. | |
303 | * But since it's so simple to handle this, let's do it just in case we | |
304 | * change this rule. | |
305 | */ | |
306 | lp->skip = 0; | |
307 | } else { | |
308 | lp->skip += p[valid_ptr].skip; | |
309 | } | |
310 | } | |
311 | ||
8629d3fc | 312 | void address_space_dispatch_compact(AddressSpaceDispatch *d) |
b35ba30f | 313 | { |
b35ba30f | 314 | if (d->phys_map.skip) { |
efee678d | 315 | phys_page_compact(&d->phys_map, d->map.nodes); |
b35ba30f MT |
316 | } |
317 | } | |
318 | ||
29cb533d FZ |
319 | static inline bool section_covers_addr(const MemoryRegionSection *section, |
320 | hwaddr addr) | |
321 | { | |
322 | /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means | |
323 | * the section must cover the entire address space. | |
324 | */ | |
258dfaaa | 325 | return int128_gethi(section->size) || |
29cb533d | 326 | range_covers_byte(section->offset_within_address_space, |
258dfaaa | 327 | int128_getlo(section->size), addr); |
29cb533d FZ |
328 | } |
329 | ||
003a0cf2 | 330 | static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr) |
92e873b9 | 331 | { |
003a0cf2 PX |
332 | PhysPageEntry lp = d->phys_map, *p; |
333 | Node *nodes = d->map.nodes; | |
334 | MemoryRegionSection *sections = d->map.sections; | |
97115a8d | 335 | hwaddr index = addr >> TARGET_PAGE_BITS; |
31ab2b4a | 336 | int i; |
f1f6e3b8 | 337 | |
9736e55b | 338 | for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { |
c19e8800 | 339 | if (lp.ptr == PHYS_MAP_NODE_NIL) { |
9affd6fc | 340 | return §ions[PHYS_SECTION_UNASSIGNED]; |
31ab2b4a | 341 | } |
9affd6fc | 342 | p = nodes[lp.ptr]; |
03f49957 | 343 | lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; |
5312bd8b | 344 | } |
b35ba30f | 345 | |
29cb533d | 346 | if (section_covers_addr(§ions[lp.ptr], addr)) { |
b35ba30f MT |
347 | return §ions[lp.ptr]; |
348 | } else { | |
349 | return §ions[PHYS_SECTION_UNASSIGNED]; | |
350 | } | |
f3705d53 AK |
351 | } |
352 | ||
79e2b9ae | 353 | /* Called from RCU critical section */ |
c7086b4a | 354 | static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, |
90260c6c JK |
355 | hwaddr addr, |
356 | bool resolve_subpage) | |
9f029603 | 357 | { |
729633c2 | 358 | MemoryRegionSection *section = atomic_read(&d->mru_section); |
90260c6c JK |
359 | subpage_t *subpage; |
360 | ||
07c114bb PB |
361 | if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] || |
362 | !section_covers_addr(section, addr)) { | |
003a0cf2 | 363 | section = phys_page_find(d, addr); |
07c114bb | 364 | atomic_set(&d->mru_section, section); |
729633c2 | 365 | } |
90260c6c JK |
366 | if (resolve_subpage && section->mr->subpage) { |
367 | subpage = container_of(section->mr, subpage_t, iomem); | |
53cb28cb | 368 | section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; |
90260c6c JK |
369 | } |
370 | return section; | |
9f029603 JK |
371 | } |
372 | ||
79e2b9ae | 373 | /* Called from RCU critical section */ |
90260c6c | 374 | static MemoryRegionSection * |
c7086b4a | 375 | address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, |
90260c6c | 376 | hwaddr *plen, bool resolve_subpage) |
149f54b5 PB |
377 | { |
378 | MemoryRegionSection *section; | |
965eb2fc | 379 | MemoryRegion *mr; |
a87f3954 | 380 | Int128 diff; |
149f54b5 | 381 | |
c7086b4a | 382 | section = address_space_lookup_region(d, addr, resolve_subpage); |
149f54b5 PB |
383 | /* Compute offset within MemoryRegionSection */ |
384 | addr -= section->offset_within_address_space; | |
385 | ||
386 | /* Compute offset within MemoryRegion */ | |
387 | *xlat = addr + section->offset_within_region; | |
388 | ||
965eb2fc | 389 | mr = section->mr; |
b242e0e0 PB |
390 | |
391 | /* MMIO registers can be expected to perform full-width accesses based only | |
392 | * on their address, without considering adjacent registers that could | |
393 | * decode to completely different MemoryRegions. When such registers | |
394 | * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO | |
395 | * regions overlap wildly. For this reason we cannot clamp the accesses | |
396 | * here. | |
397 | * | |
398 | * If the length is small (as is the case for address_space_ldl/stl), | |
399 | * everything works fine. If the incoming length is large, however, | |
400 | * the caller really has to do the clamping through memory_access_size. | |
401 | */ | |
965eb2fc | 402 | if (memory_region_is_ram(mr)) { |
e4a511f8 | 403 | diff = int128_sub(section->size, int128_make64(addr)); |
965eb2fc PB |
404 | *plen = int128_get64(int128_min(diff, int128_make64(*plen))); |
405 | } | |
149f54b5 PB |
406 | return section; |
407 | } | |
90260c6c | 408 | |
a411c84b PB |
409 | /** |
410 | * address_space_translate_iommu - translate an address through an IOMMU | |
411 | * memory region and then through the target address space. | |
412 | * | |
413 | * @iommu_mr: the IOMMU memory region that we start the translation from | |
414 | * @addr: the address to be translated through the MMU | |
415 | * @xlat: the translated address offset within the destination memory region. | |
416 | * It cannot be %NULL. | |
417 | * @plen_out: valid read/write length of the translated address. It | |
418 | * cannot be %NULL. | |
419 | * @page_mask_out: page mask for the translated address. This | |
420 | * should only be meaningful for IOMMU translated | |
421 | * addresses, since there may be huge pages that this bit | |
422 | * would tell. It can be %NULL if we don't care about it. | |
423 | * @is_write: whether the translation operation is for write | |
424 | * @is_mmio: whether this can be MMIO, set true if it can | |
425 | * @target_as: the address space targeted by the IOMMU | |
2f7b009c | 426 | * @attrs: transaction attributes |
a411c84b PB |
427 | * |
428 | * This function is called from RCU critical section. It is the common | |
429 | * part of flatview_do_translate and address_space_translate_cached. | |
430 | */ | |
431 | static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr, | |
432 | hwaddr *xlat, | |
433 | hwaddr *plen_out, | |
434 | hwaddr *page_mask_out, | |
435 | bool is_write, | |
436 | bool is_mmio, | |
2f7b009c PM |
437 | AddressSpace **target_as, |
438 | MemTxAttrs attrs) | |
a411c84b PB |
439 | { |
440 | MemoryRegionSection *section; | |
441 | hwaddr page_mask = (hwaddr)-1; | |
442 | ||
443 | do { | |
444 | hwaddr addr = *xlat; | |
445 | IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr); | |
2c91bcf2 PM |
446 | int iommu_idx = 0; |
447 | IOMMUTLBEntry iotlb; | |
448 | ||
449 | if (imrc->attrs_to_index) { | |
450 | iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); | |
451 | } | |
452 | ||
453 | iotlb = imrc->translate(iommu_mr, addr, is_write ? | |
454 | IOMMU_WO : IOMMU_RO, iommu_idx); | |
a411c84b PB |
455 | |
456 | if (!(iotlb.perm & (1 << is_write))) { | |
457 | goto unassigned; | |
458 | } | |
459 | ||
460 | addr = ((iotlb.translated_addr & ~iotlb.addr_mask) | |
461 | | (addr & iotlb.addr_mask)); | |
462 | page_mask &= iotlb.addr_mask; | |
463 | *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1); | |
464 | *target_as = iotlb.target_as; | |
465 | ||
466 | section = address_space_translate_internal( | |
467 | address_space_to_dispatch(iotlb.target_as), addr, xlat, | |
468 | plen_out, is_mmio); | |
469 | ||
470 | iommu_mr = memory_region_get_iommu(section->mr); | |
471 | } while (unlikely(iommu_mr)); | |
472 | ||
473 | if (page_mask_out) { | |
474 | *page_mask_out = page_mask; | |
475 | } | |
476 | return *section; | |
477 | ||
478 | unassigned: | |
479 | return (MemoryRegionSection) { .mr = &io_mem_unassigned }; | |
480 | } | |
481 | ||
d5e5fafd PX |
482 | /** |
483 | * flatview_do_translate - translate an address in FlatView | |
484 | * | |
485 | * @fv: the flat view that we want to translate on | |
486 | * @addr: the address to be translated in above address space | |
487 | * @xlat: the translated address offset within memory region. It | |
488 | * cannot be @NULL. | |
489 | * @plen_out: valid read/write length of the translated address. It | |
490 | * can be @NULL when we don't care about it. | |
491 | * @page_mask_out: page mask for the translated address. This | |
492 | * should only be meaningful for IOMMU translated | |
493 | * addresses, since there may be huge pages that this bit | |
494 | * would tell. It can be @NULL if we don't care about it. | |
495 | * @is_write: whether the translation operation is for write | |
496 | * @is_mmio: whether this can be MMIO, set true if it can | |
ad2804d9 | 497 | * @target_as: the address space targeted by the IOMMU |
49e14aa8 | 498 | * @attrs: memory transaction attributes |
d5e5fafd PX |
499 | * |
500 | * This function is called from RCU critical section | |
501 | */ | |
16620684 AK |
502 | static MemoryRegionSection flatview_do_translate(FlatView *fv, |
503 | hwaddr addr, | |
504 | hwaddr *xlat, | |
d5e5fafd PX |
505 | hwaddr *plen_out, |
506 | hwaddr *page_mask_out, | |
16620684 AK |
507 | bool is_write, |
508 | bool is_mmio, | |
49e14aa8 PM |
509 | AddressSpace **target_as, |
510 | MemTxAttrs attrs) | |
052c8fa9 | 511 | { |
052c8fa9 | 512 | MemoryRegionSection *section; |
3df9d748 | 513 | IOMMUMemoryRegion *iommu_mr; |
d5e5fafd PX |
514 | hwaddr plen = (hwaddr)(-1); |
515 | ||
ad2804d9 PB |
516 | if (!plen_out) { |
517 | plen_out = &plen; | |
d5e5fafd | 518 | } |
052c8fa9 | 519 | |
a411c84b PB |
520 | section = address_space_translate_internal( |
521 | flatview_to_dispatch(fv), addr, xlat, | |
522 | plen_out, is_mmio); | |
052c8fa9 | 523 | |
a411c84b PB |
524 | iommu_mr = memory_region_get_iommu(section->mr); |
525 | if (unlikely(iommu_mr)) { | |
526 | return address_space_translate_iommu(iommu_mr, xlat, | |
527 | plen_out, page_mask_out, | |
528 | is_write, is_mmio, | |
2f7b009c | 529 | target_as, attrs); |
052c8fa9 | 530 | } |
d5e5fafd | 531 | if (page_mask_out) { |
a411c84b PB |
532 | /* Not behind an IOMMU, use default page size. */ |
533 | *page_mask_out = ~TARGET_PAGE_MASK; | |
d5e5fafd PX |
534 | } |
535 | ||
a764040c | 536 | return *section; |
052c8fa9 JW |
537 | } |
538 | ||
539 | /* Called from RCU critical section */ | |
a764040c | 540 | IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, |
7446eb07 | 541 | bool is_write, MemTxAttrs attrs) |
90260c6c | 542 | { |
a764040c | 543 | MemoryRegionSection section; |
076a93d7 | 544 | hwaddr xlat, page_mask; |
30951157 | 545 | |
076a93d7 PX |
546 | /* |
547 | * This can never be MMIO, and we don't really care about plen, | |
548 | * but page mask. | |
549 | */ | |
550 | section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat, | |
49e14aa8 PM |
551 | NULL, &page_mask, is_write, false, &as, |
552 | attrs); | |
30951157 | 553 | |
a764040c PX |
554 | /* Illegal translation */ |
555 | if (section.mr == &io_mem_unassigned) { | |
556 | goto iotlb_fail; | |
557 | } | |
30951157 | 558 | |
a764040c PX |
559 | /* Convert memory region offset into address space offset */ |
560 | xlat += section.offset_within_address_space - | |
561 | section.offset_within_region; | |
562 | ||
a764040c | 563 | return (IOMMUTLBEntry) { |
e76bb18f | 564 | .target_as = as, |
076a93d7 PX |
565 | .iova = addr & ~page_mask, |
566 | .translated_addr = xlat & ~page_mask, | |
567 | .addr_mask = page_mask, | |
a764040c PX |
568 | /* IOTLBs are for DMAs, and DMA only allows on RAMs. */ |
569 | .perm = IOMMU_RW, | |
570 | }; | |
571 | ||
572 | iotlb_fail: | |
573 | return (IOMMUTLBEntry) {0}; | |
574 | } | |
575 | ||
576 | /* Called from RCU critical section */ | |
16620684 | 577 | MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat, |
efa99a2f PM |
578 | hwaddr *plen, bool is_write, |
579 | MemTxAttrs attrs) | |
a764040c PX |
580 | { |
581 | MemoryRegion *mr; | |
582 | MemoryRegionSection section; | |
16620684 | 583 | AddressSpace *as = NULL; |
a764040c PX |
584 | |
585 | /* This can be MMIO, so setup MMIO bit. */ | |
d5e5fafd | 586 | section = flatview_do_translate(fv, addr, xlat, plen, NULL, |
49e14aa8 | 587 | is_write, true, &as, attrs); |
a764040c PX |
588 | mr = section.mr; |
589 | ||
fe680d0d | 590 | if (xen_enabled() && memory_access_is_direct(mr, is_write)) { |
a87f3954 | 591 | hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; |
23820dbf | 592 | *plen = MIN(page, *plen); |
a87f3954 PB |
593 | } |
594 | ||
30951157 | 595 | return mr; |
90260c6c JK |
596 | } |
597 | ||
1f871c5e PM |
598 | typedef struct TCGIOMMUNotifier { |
599 | IOMMUNotifier n; | |
600 | MemoryRegion *mr; | |
601 | CPUState *cpu; | |
602 | int iommu_idx; | |
603 | bool active; | |
604 | } TCGIOMMUNotifier; | |
605 | ||
606 | static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) | |
607 | { | |
608 | TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n); | |
609 | ||
610 | if (!notifier->active) { | |
611 | return; | |
612 | } | |
613 | tlb_flush(notifier->cpu); | |
614 | notifier->active = false; | |
615 | /* We leave the notifier struct on the list to avoid reallocating it later. | |
616 | * Generally the number of IOMMUs a CPU deals with will be small. | |
617 | * In any case we can't unregister the iommu notifier from a notify | |
618 | * callback. | |
619 | */ | |
620 | } | |
621 | ||
622 | static void tcg_register_iommu_notifier(CPUState *cpu, | |
623 | IOMMUMemoryRegion *iommu_mr, | |
624 | int iommu_idx) | |
625 | { | |
626 | /* Make sure this CPU has an IOMMU notifier registered for this | |
627 | * IOMMU/IOMMU index combination, so that we can flush its TLB | |
628 | * when the IOMMU tells us the mappings we've cached have changed. | |
629 | */ | |
630 | MemoryRegion *mr = MEMORY_REGION(iommu_mr); | |
631 | TCGIOMMUNotifier *notifier; | |
549d4005 EA |
632 | Error *err = NULL; |
633 | int i, ret; | |
1f871c5e PM |
634 | |
635 | for (i = 0; i < cpu->iommu_notifiers->len; i++) { | |
5601be3b | 636 | notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); |
1f871c5e PM |
637 | if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) { |
638 | break; | |
639 | } | |
640 | } | |
641 | if (i == cpu->iommu_notifiers->len) { | |
642 | /* Not found, add a new entry at the end of the array */ | |
643 | cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1); | |
5601be3b PM |
644 | notifier = g_new0(TCGIOMMUNotifier, 1); |
645 | g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier; | |
1f871c5e PM |
646 | |
647 | notifier->mr = mr; | |
648 | notifier->iommu_idx = iommu_idx; | |
649 | notifier->cpu = cpu; | |
650 | /* Rather than trying to register interest in the specific part | |
651 | * of the iommu's address space that we've accessed and then | |
652 | * expand it later as subsequent accesses touch more of it, we | |
653 | * just register interest in the whole thing, on the assumption | |
654 | * that iommu reconfiguration will be rare. | |
655 | */ | |
656 | iommu_notifier_init(¬ifier->n, | |
657 | tcg_iommu_unmap_notify, | |
658 | IOMMU_NOTIFIER_UNMAP, | |
659 | 0, | |
660 | HWADDR_MAX, | |
661 | iommu_idx); | |
549d4005 EA |
662 | ret = memory_region_register_iommu_notifier(notifier->mr, ¬ifier->n, |
663 | &err); | |
664 | if (ret) { | |
665 | error_report_err(err); | |
666 | exit(1); | |
667 | } | |
1f871c5e PM |
668 | } |
669 | ||
670 | if (!notifier->active) { | |
671 | notifier->active = true; | |
672 | } | |
673 | } | |
674 | ||
675 | static void tcg_iommu_free_notifier_list(CPUState *cpu) | |
676 | { | |
677 | /* Destroy the CPU's notifier list */ | |
678 | int i; | |
679 | TCGIOMMUNotifier *notifier; | |
680 | ||
681 | for (i = 0; i < cpu->iommu_notifiers->len; i++) { | |
5601be3b | 682 | notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); |
1f871c5e | 683 | memory_region_unregister_iommu_notifier(notifier->mr, ¬ifier->n); |
5601be3b | 684 | g_free(notifier); |
1f871c5e PM |
685 | } |
686 | g_array_free(cpu->iommu_notifiers, true); | |
687 | } | |
688 | ||
79e2b9ae | 689 | /* Called from RCU critical section */ |
90260c6c | 690 | MemoryRegionSection * |
d7898cda | 691 | address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr, |
1f871c5e PM |
692 | hwaddr *xlat, hwaddr *plen, |
693 | MemTxAttrs attrs, int *prot) | |
90260c6c | 694 | { |
30951157 | 695 | MemoryRegionSection *section; |
1f871c5e PM |
696 | IOMMUMemoryRegion *iommu_mr; |
697 | IOMMUMemoryRegionClass *imrc; | |
698 | IOMMUTLBEntry iotlb; | |
699 | int iommu_idx; | |
f35e44e7 | 700 | AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch); |
d7898cda | 701 | |
1f871c5e PM |
702 | for (;;) { |
703 | section = address_space_translate_internal(d, addr, &addr, plen, false); | |
704 | ||
705 | iommu_mr = memory_region_get_iommu(section->mr); | |
706 | if (!iommu_mr) { | |
707 | break; | |
708 | } | |
709 | ||
710 | imrc = memory_region_get_iommu_class_nocheck(iommu_mr); | |
711 | ||
712 | iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); | |
713 | tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx); | |
714 | /* We need all the permissions, so pass IOMMU_NONE so the IOMMU | |
715 | * doesn't short-cut its translation table walk. | |
716 | */ | |
717 | iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx); | |
718 | addr = ((iotlb.translated_addr & ~iotlb.addr_mask) | |
719 | | (addr & iotlb.addr_mask)); | |
720 | /* Update the caller's prot bits to remove permissions the IOMMU | |
721 | * is giving us a failure response for. If we get down to no | |
722 | * permissions left at all we can give up now. | |
723 | */ | |
724 | if (!(iotlb.perm & IOMMU_RO)) { | |
725 | *prot &= ~(PAGE_READ | PAGE_EXEC); | |
726 | } | |
727 | if (!(iotlb.perm & IOMMU_WO)) { | |
728 | *prot &= ~PAGE_WRITE; | |
729 | } | |
730 | ||
731 | if (!*prot) { | |
732 | goto translate_fail; | |
733 | } | |
734 | ||
735 | d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as)); | |
736 | } | |
30951157 | 737 | |
3df9d748 | 738 | assert(!memory_region_is_iommu(section->mr)); |
1f871c5e | 739 | *xlat = addr; |
30951157 | 740 | return section; |
1f871c5e PM |
741 | |
742 | translate_fail: | |
743 | return &d->map.sections[PHYS_SECTION_UNASSIGNED]; | |
90260c6c | 744 | } |
5b6dd868 | 745 | #endif |
fd6ce8f6 | 746 | |
b170fce3 | 747 | #if !defined(CONFIG_USER_ONLY) |
5b6dd868 BS |
748 | |
749 | static int cpu_common_post_load(void *opaque, int version_id) | |
fd6ce8f6 | 750 | { |
259186a7 | 751 | CPUState *cpu = opaque; |
a513fe19 | 752 | |
5b6dd868 BS |
753 | /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the |
754 | version_id is increased. */ | |
259186a7 | 755 | cpu->interrupt_request &= ~0x01; |
d10eb08f | 756 | tlb_flush(cpu); |
5b6dd868 | 757 | |
15a356c4 PD |
758 | /* loadvm has just updated the content of RAM, bypassing the |
759 | * usual mechanisms that ensure we flush TBs for writes to | |
760 | * memory we've translated code from. So we must flush all TBs, | |
761 | * which will now be stale. | |
762 | */ | |
763 | tb_flush(cpu); | |
764 | ||
5b6dd868 | 765 | return 0; |
a513fe19 | 766 | } |
7501267e | 767 | |
6c3bff0e PD |
768 | static int cpu_common_pre_load(void *opaque) |
769 | { | |
770 | CPUState *cpu = opaque; | |
771 | ||
adee6424 | 772 | cpu->exception_index = -1; |
6c3bff0e PD |
773 | |
774 | return 0; | |
775 | } | |
776 | ||
777 | static bool cpu_common_exception_index_needed(void *opaque) | |
778 | { | |
779 | CPUState *cpu = opaque; | |
780 | ||
adee6424 | 781 | return tcg_enabled() && cpu->exception_index != -1; |
6c3bff0e PD |
782 | } |
783 | ||
784 | static const VMStateDescription vmstate_cpu_common_exception_index = { | |
785 | .name = "cpu_common/exception_index", | |
786 | .version_id = 1, | |
787 | .minimum_version_id = 1, | |
5cd8cada | 788 | .needed = cpu_common_exception_index_needed, |
6c3bff0e PD |
789 | .fields = (VMStateField[]) { |
790 | VMSTATE_INT32(exception_index, CPUState), | |
791 | VMSTATE_END_OF_LIST() | |
792 | } | |
793 | }; | |
794 | ||
bac05aa9 AS |
795 | static bool cpu_common_crash_occurred_needed(void *opaque) |
796 | { | |
797 | CPUState *cpu = opaque; | |
798 | ||
799 | return cpu->crash_occurred; | |
800 | } | |
801 | ||
802 | static const VMStateDescription vmstate_cpu_common_crash_occurred = { | |
803 | .name = "cpu_common/crash_occurred", | |
804 | .version_id = 1, | |
805 | .minimum_version_id = 1, | |
806 | .needed = cpu_common_crash_occurred_needed, | |
807 | .fields = (VMStateField[]) { | |
808 | VMSTATE_BOOL(crash_occurred, CPUState), | |
809 | VMSTATE_END_OF_LIST() | |
810 | } | |
811 | }; | |
812 | ||
1a1562f5 | 813 | const VMStateDescription vmstate_cpu_common = { |
5b6dd868 BS |
814 | .name = "cpu_common", |
815 | .version_id = 1, | |
816 | .minimum_version_id = 1, | |
6c3bff0e | 817 | .pre_load = cpu_common_pre_load, |
5b6dd868 | 818 | .post_load = cpu_common_post_load, |
35d08458 | 819 | .fields = (VMStateField[]) { |
259186a7 AF |
820 | VMSTATE_UINT32(halted, CPUState), |
821 | VMSTATE_UINT32(interrupt_request, CPUState), | |
5b6dd868 | 822 | VMSTATE_END_OF_LIST() |
6c3bff0e | 823 | }, |
5cd8cada JQ |
824 | .subsections = (const VMStateDescription*[]) { |
825 | &vmstate_cpu_common_exception_index, | |
bac05aa9 | 826 | &vmstate_cpu_common_crash_occurred, |
5cd8cada | 827 | NULL |
5b6dd868 BS |
828 | } |
829 | }; | |
1a1562f5 | 830 | |
5b6dd868 | 831 | #endif |
ea041c0e | 832 | |
38d8f5c8 | 833 | CPUState *qemu_get_cpu(int index) |
ea041c0e | 834 | { |
bdc44640 | 835 | CPUState *cpu; |
ea041c0e | 836 | |
bdc44640 | 837 | CPU_FOREACH(cpu) { |
55e5c285 | 838 | if (cpu->cpu_index == index) { |
bdc44640 | 839 | return cpu; |
55e5c285 | 840 | } |
ea041c0e | 841 | } |
5b6dd868 | 842 | |
bdc44640 | 843 | return NULL; |
ea041c0e FB |
844 | } |
845 | ||
09daed84 | 846 | #if !defined(CONFIG_USER_ONLY) |
80ceb07a PX |
847 | void cpu_address_space_init(CPUState *cpu, int asidx, |
848 | const char *prefix, MemoryRegion *mr) | |
09daed84 | 849 | { |
12ebc9a7 | 850 | CPUAddressSpace *newas; |
80ceb07a | 851 | AddressSpace *as = g_new0(AddressSpace, 1); |
87a621d8 | 852 | char *as_name; |
80ceb07a PX |
853 | |
854 | assert(mr); | |
87a621d8 PX |
855 | as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index); |
856 | address_space_init(as, mr, as_name); | |
857 | g_free(as_name); | |
12ebc9a7 PM |
858 | |
859 | /* Target code should have set num_ases before calling us */ | |
860 | assert(asidx < cpu->num_ases); | |
861 | ||
56943e8c PM |
862 | if (asidx == 0) { |
863 | /* address space 0 gets the convenience alias */ | |
864 | cpu->as = as; | |
865 | } | |
866 | ||
12ebc9a7 PM |
867 | /* KVM cannot currently support multiple address spaces. */ |
868 | assert(asidx == 0 || !kvm_enabled()); | |
09daed84 | 869 | |
12ebc9a7 PM |
870 | if (!cpu->cpu_ases) { |
871 | cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases); | |
09daed84 | 872 | } |
32857f4d | 873 | |
12ebc9a7 PM |
874 | newas = &cpu->cpu_ases[asidx]; |
875 | newas->cpu = cpu; | |
876 | newas->as = as; | |
56943e8c | 877 | if (tcg_enabled()) { |
9458a9a1 | 878 | newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync; |
12ebc9a7 PM |
879 | newas->tcg_as_listener.commit = tcg_commit; |
880 | memory_listener_register(&newas->tcg_as_listener, as); | |
56943e8c | 881 | } |
09daed84 | 882 | } |
651a5bc0 PM |
883 | |
884 | AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx) | |
885 | { | |
886 | /* Return the AddressSpace corresponding to the specified index */ | |
887 | return cpu->cpu_ases[asidx].as; | |
888 | } | |
09daed84 EI |
889 | #endif |
890 | ||
7bbc124e | 891 | void cpu_exec_unrealizefn(CPUState *cpu) |
1c59eb39 | 892 | { |
9dfeca7c BR |
893 | CPUClass *cc = CPU_GET_CLASS(cpu); |
894 | ||
267f685b | 895 | cpu_list_remove(cpu); |
9dfeca7c BR |
896 | |
897 | if (cc->vmsd != NULL) { | |
898 | vmstate_unregister(NULL, cc->vmsd, cpu); | |
899 | } | |
900 | if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { | |
901 | vmstate_unregister(NULL, &vmstate_cpu_common, cpu); | |
902 | } | |
1f871c5e PM |
903 | #ifndef CONFIG_USER_ONLY |
904 | tcg_iommu_free_notifier_list(cpu); | |
905 | #endif | |
1c59eb39 BR |
906 | } |
907 | ||
c7e002c5 FZ |
908 | Property cpu_common_props[] = { |
909 | #ifndef CONFIG_USER_ONLY | |
910 | /* Create a memory property for softmmu CPU object, | |
2e5b09fd | 911 | * so users can wire up its memory. (This can't go in hw/core/cpu.c |
c7e002c5 FZ |
912 | * because that file is compiled only once for both user-mode |
913 | * and system builds.) The default if no link is set up is to use | |
914 | * the system address space. | |
915 | */ | |
916 | DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION, | |
917 | MemoryRegion *), | |
918 | #endif | |
919 | DEFINE_PROP_END_OF_LIST(), | |
920 | }; | |
921 | ||
39e329e3 | 922 | void cpu_exec_initfn(CPUState *cpu) |
ea041c0e | 923 | { |
56943e8c | 924 | cpu->as = NULL; |
12ebc9a7 | 925 | cpu->num_ases = 0; |
56943e8c | 926 | |
291135b5 | 927 | #ifndef CONFIG_USER_ONLY |
291135b5 | 928 | cpu->thread_id = qemu_get_thread_id(); |
6731d864 PC |
929 | cpu->memory = system_memory; |
930 | object_ref(OBJECT(cpu->memory)); | |
291135b5 | 931 | #endif |
39e329e3 LV |
932 | } |
933 | ||
ce5b1bbf | 934 | void cpu_exec_realizefn(CPUState *cpu, Error **errp) |
39e329e3 | 935 | { |
55c3ceef | 936 | CPUClass *cc = CPU_GET_CLASS(cpu); |
2dda6354 | 937 | static bool tcg_target_initialized; |
291135b5 | 938 | |
267f685b | 939 | cpu_list_add(cpu); |
1bc7e522 | 940 | |
2dda6354 EC |
941 | if (tcg_enabled() && !tcg_target_initialized) { |
942 | tcg_target_initialized = true; | |
55c3ceef RH |
943 | cc->tcg_initialize(); |
944 | } | |
5005e253 | 945 | tlb_init(cpu); |
55c3ceef | 946 | |
30865f31 EC |
947 | qemu_plugin_vcpu_init_hook(cpu); |
948 | ||
3e07593a PMD |
949 | #ifdef CONFIG_USER_ONLY |
950 | assert(cc->vmsd == NULL); | |
951 | #else /* !CONFIG_USER_ONLY */ | |
e0d47944 | 952 | if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { |
741da0d3 | 953 | vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu); |
e0d47944 | 954 | } |
b170fce3 | 955 | if (cc->vmsd != NULL) { |
741da0d3 | 956 | vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu); |
b170fce3 | 957 | } |
1f871c5e | 958 | |
5601be3b | 959 | cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *)); |
741da0d3 | 960 | #endif |
ea041c0e FB |
961 | } |
962 | ||
c1c8cfe5 | 963 | const char *parse_cpu_option(const char *cpu_option) |
2278b939 IM |
964 | { |
965 | ObjectClass *oc; | |
966 | CPUClass *cc; | |
967 | gchar **model_pieces; | |
968 | const char *cpu_type; | |
969 | ||
c1c8cfe5 | 970 | model_pieces = g_strsplit(cpu_option, ",", 2); |
5b863f3e EH |
971 | if (!model_pieces[0]) { |
972 | error_report("-cpu option cannot be empty"); | |
973 | exit(1); | |
974 | } | |
2278b939 IM |
975 | |
976 | oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]); | |
977 | if (oc == NULL) { | |
978 | error_report("unable to find CPU model '%s'", model_pieces[0]); | |
979 | g_strfreev(model_pieces); | |
980 | exit(EXIT_FAILURE); | |
981 | } | |
982 | ||
983 | cpu_type = object_class_get_name(oc); | |
984 | cc = CPU_CLASS(oc); | |
985 | cc->parse_features(cpu_type, model_pieces[1], &error_fatal); | |
986 | g_strfreev(model_pieces); | |
987 | return cpu_type; | |
988 | } | |
989 | ||
c40d4792 | 990 | #if defined(CONFIG_USER_ONLY) |
8bca9a03 | 991 | void tb_invalidate_phys_addr(target_ulong addr) |
1e7855a5 | 992 | { |
406bc339 | 993 | mmap_lock(); |
ce9f5e27 | 994 | tb_invalidate_phys_page_range(addr, addr + 1); |
406bc339 PK |
995 | mmap_unlock(); |
996 | } | |
8bca9a03 PB |
997 | |
998 | static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) | |
999 | { | |
1000 | tb_invalidate_phys_addr(pc); | |
1001 | } | |
406bc339 | 1002 | #else |
8bca9a03 PB |
1003 | void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs) |
1004 | { | |
1005 | ram_addr_t ram_addr; | |
1006 | MemoryRegion *mr; | |
1007 | hwaddr l = 1; | |
1008 | ||
c40d4792 PB |
1009 | if (!tcg_enabled()) { |
1010 | return; | |
1011 | } | |
1012 | ||
694ea274 | 1013 | RCU_READ_LOCK_GUARD(); |
8bca9a03 PB |
1014 | mr = address_space_translate(as, addr, &addr, &l, false, attrs); |
1015 | if (!(memory_region_is_ram(mr) | |
1016 | || memory_region_is_romd(mr))) { | |
8bca9a03 PB |
1017 | return; |
1018 | } | |
1019 | ram_addr = memory_region_get_ram_addr(mr) + addr; | |
ce9f5e27 | 1020 | tb_invalidate_phys_page_range(ram_addr, ram_addr + 1); |
8bca9a03 PB |
1021 | } |
1022 | ||
406bc339 PK |
1023 | static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) |
1024 | { | |
b55f54bc MF |
1025 | /* |
1026 | * There may not be a virtual to physical translation for the pc | |
1027 | * right now, but there may exist cached TB for this pc. | |
1028 | * Flush the whole TB cache to force re-translation of such TBs. | |
1029 | * This is heavyweight, but we're debugging anyway. | |
1030 | */ | |
1031 | tb_flush(cpu); | |
1e7855a5 | 1032 | } |
406bc339 | 1033 | #endif |
d720b93d | 1034 | |
74841f04 | 1035 | #ifndef CONFIG_USER_ONLY |
6658ffb8 | 1036 | /* Add a watchpoint. */ |
75a34036 | 1037 | int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, |
a1d1bb31 | 1038 | int flags, CPUWatchpoint **watchpoint) |
6658ffb8 | 1039 | { |
c0ce998e | 1040 | CPUWatchpoint *wp; |
6658ffb8 | 1041 | |
05068c0d | 1042 | /* forbid ranges which are empty or run off the end of the address space */ |
07e2863d | 1043 | if (len == 0 || (addr + len - 1) < addr) { |
75a34036 AF |
1044 | error_report("tried to set invalid watchpoint at %" |
1045 | VADDR_PRIx ", len=%" VADDR_PRIu, addr, len); | |
b4051334 AL |
1046 | return -EINVAL; |
1047 | } | |
7267c094 | 1048 | wp = g_malloc(sizeof(*wp)); |
a1d1bb31 AL |
1049 | |
1050 | wp->vaddr = addr; | |
05068c0d | 1051 | wp->len = len; |
a1d1bb31 AL |
1052 | wp->flags = flags; |
1053 | ||
2dc9f411 | 1054 | /* keep all GDB-injected watchpoints in front */ |
ff4700b0 AF |
1055 | if (flags & BP_GDB) { |
1056 | QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry); | |
1057 | } else { | |
1058 | QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry); | |
1059 | } | |
6658ffb8 | 1060 | |
31b030d4 | 1061 | tlb_flush_page(cpu, addr); |
a1d1bb31 AL |
1062 | |
1063 | if (watchpoint) | |
1064 | *watchpoint = wp; | |
1065 | return 0; | |
6658ffb8 PB |
1066 | } |
1067 | ||
a1d1bb31 | 1068 | /* Remove a specific watchpoint. */ |
75a34036 | 1069 | int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, |
a1d1bb31 | 1070 | int flags) |
6658ffb8 | 1071 | { |
a1d1bb31 | 1072 | CPUWatchpoint *wp; |
6658ffb8 | 1073 | |
ff4700b0 | 1074 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d | 1075 | if (addr == wp->vaddr && len == wp->len |
6e140f28 | 1076 | && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { |
75a34036 | 1077 | cpu_watchpoint_remove_by_ref(cpu, wp); |
6658ffb8 PB |
1078 | return 0; |
1079 | } | |
1080 | } | |
a1d1bb31 | 1081 | return -ENOENT; |
6658ffb8 PB |
1082 | } |
1083 | ||
a1d1bb31 | 1084 | /* Remove a specific watchpoint by reference. */ |
75a34036 | 1085 | void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) |
a1d1bb31 | 1086 | { |
ff4700b0 | 1087 | QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry); |
7d03f82f | 1088 | |
31b030d4 | 1089 | tlb_flush_page(cpu, watchpoint->vaddr); |
a1d1bb31 | 1090 | |
7267c094 | 1091 | g_free(watchpoint); |
a1d1bb31 AL |
1092 | } |
1093 | ||
1094 | /* Remove all matching watchpoints. */ | |
75a34036 | 1095 | void cpu_watchpoint_remove_all(CPUState *cpu, int mask) |
a1d1bb31 | 1096 | { |
c0ce998e | 1097 | CPUWatchpoint *wp, *next; |
a1d1bb31 | 1098 | |
ff4700b0 | 1099 | QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) { |
75a34036 AF |
1100 | if (wp->flags & mask) { |
1101 | cpu_watchpoint_remove_by_ref(cpu, wp); | |
1102 | } | |
c0ce998e | 1103 | } |
7d03f82f | 1104 | } |
05068c0d PM |
1105 | |
1106 | /* Return true if this watchpoint address matches the specified | |
1107 | * access (ie the address range covered by the watchpoint overlaps | |
1108 | * partially or completely with the address range covered by the | |
1109 | * access). | |
1110 | */ | |
56ad8b00 RH |
1111 | static inline bool watchpoint_address_matches(CPUWatchpoint *wp, |
1112 | vaddr addr, vaddr len) | |
05068c0d PM |
1113 | { |
1114 | /* We know the lengths are non-zero, but a little caution is | |
1115 | * required to avoid errors in the case where the range ends | |
1116 | * exactly at the top of the address space and so addr + len | |
1117 | * wraps round to zero. | |
1118 | */ | |
1119 | vaddr wpend = wp->vaddr + wp->len - 1; | |
1120 | vaddr addrend = addr + len - 1; | |
1121 | ||
1122 | return !(addr > wpend || wp->vaddr > addrend); | |
1123 | } | |
1124 | ||
56ad8b00 RH |
1125 | /* Return flags for watchpoints that match addr + prot. */ |
1126 | int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len) | |
1127 | { | |
1128 | CPUWatchpoint *wp; | |
1129 | int ret = 0; | |
1130 | ||
1131 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { | |
9835936d | 1132 | if (watchpoint_address_matches(wp, addr, len)) { |
56ad8b00 RH |
1133 | ret |= wp->flags; |
1134 | } | |
1135 | } | |
1136 | return ret; | |
1137 | } | |
74841f04 | 1138 | #endif /* !CONFIG_USER_ONLY */ |
7d03f82f | 1139 | |
a1d1bb31 | 1140 | /* Add a breakpoint. */ |
b3310ab3 | 1141 | int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, |
a1d1bb31 | 1142 | CPUBreakpoint **breakpoint) |
4c3a88a2 | 1143 | { |
c0ce998e | 1144 | CPUBreakpoint *bp; |
3b46e624 | 1145 | |
7267c094 | 1146 | bp = g_malloc(sizeof(*bp)); |
4c3a88a2 | 1147 | |
a1d1bb31 AL |
1148 | bp->pc = pc; |
1149 | bp->flags = flags; | |
1150 | ||
2dc9f411 | 1151 | /* keep all GDB-injected breakpoints in front */ |
00b941e5 | 1152 | if (flags & BP_GDB) { |
f0c3c505 | 1153 | QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry); |
00b941e5 | 1154 | } else { |
f0c3c505 | 1155 | QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry); |
00b941e5 | 1156 | } |
3b46e624 | 1157 | |
f0c3c505 | 1158 | breakpoint_invalidate(cpu, pc); |
a1d1bb31 | 1159 | |
00b941e5 | 1160 | if (breakpoint) { |
a1d1bb31 | 1161 | *breakpoint = bp; |
00b941e5 | 1162 | } |
4c3a88a2 | 1163 | return 0; |
4c3a88a2 FB |
1164 | } |
1165 | ||
a1d1bb31 | 1166 | /* Remove a specific breakpoint. */ |
b3310ab3 | 1167 | int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags) |
a1d1bb31 | 1168 | { |
a1d1bb31 AL |
1169 | CPUBreakpoint *bp; |
1170 | ||
f0c3c505 | 1171 | QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { |
a1d1bb31 | 1172 | if (bp->pc == pc && bp->flags == flags) { |
b3310ab3 | 1173 | cpu_breakpoint_remove_by_ref(cpu, bp); |
a1d1bb31 AL |
1174 | return 0; |
1175 | } | |
7d03f82f | 1176 | } |
a1d1bb31 | 1177 | return -ENOENT; |
7d03f82f EI |
1178 | } |
1179 | ||
a1d1bb31 | 1180 | /* Remove a specific breakpoint by reference. */ |
b3310ab3 | 1181 | void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint) |
4c3a88a2 | 1182 | { |
f0c3c505 AF |
1183 | QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry); |
1184 | ||
1185 | breakpoint_invalidate(cpu, breakpoint->pc); | |
a1d1bb31 | 1186 | |
7267c094 | 1187 | g_free(breakpoint); |
a1d1bb31 AL |
1188 | } |
1189 | ||
1190 | /* Remove all matching breakpoints. */ | |
b3310ab3 | 1191 | void cpu_breakpoint_remove_all(CPUState *cpu, int mask) |
a1d1bb31 | 1192 | { |
c0ce998e | 1193 | CPUBreakpoint *bp, *next; |
a1d1bb31 | 1194 | |
f0c3c505 | 1195 | QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) { |
b3310ab3 AF |
1196 | if (bp->flags & mask) { |
1197 | cpu_breakpoint_remove_by_ref(cpu, bp); | |
1198 | } | |
c0ce998e | 1199 | } |
4c3a88a2 FB |
1200 | } |
1201 | ||
c33a346e FB |
1202 | /* enable or disable single step mode. EXCP_DEBUG is returned by the |
1203 | CPU loop after each instruction */ | |
3825b28f | 1204 | void cpu_single_step(CPUState *cpu, int enabled) |
c33a346e | 1205 | { |
ed2803da AF |
1206 | if (cpu->singlestep_enabled != enabled) { |
1207 | cpu->singlestep_enabled = enabled; | |
1208 | if (kvm_enabled()) { | |
38e478ec | 1209 | kvm_update_guest_debug(cpu, 0); |
ed2803da | 1210 | } else { |
ccbb4d44 | 1211 | /* must flush all the translated code to avoid inconsistencies */ |
e22a25c9 | 1212 | /* XXX: only flush what is necessary */ |
bbd77c18 | 1213 | tb_flush(cpu); |
e22a25c9 | 1214 | } |
c33a346e | 1215 | } |
c33a346e FB |
1216 | } |
1217 | ||
a47dddd7 | 1218 | void cpu_abort(CPUState *cpu, const char *fmt, ...) |
7501267e FB |
1219 | { |
1220 | va_list ap; | |
493ae1f0 | 1221 | va_list ap2; |
7501267e FB |
1222 | |
1223 | va_start(ap, fmt); | |
493ae1f0 | 1224 | va_copy(ap2, ap); |
7501267e FB |
1225 | fprintf(stderr, "qemu: fatal: "); |
1226 | vfprintf(stderr, fmt, ap); | |
1227 | fprintf(stderr, "\n"); | |
90c84c56 | 1228 | cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP); |
013a2942 | 1229 | if (qemu_log_separate()) { |
fc59d2d8 | 1230 | FILE *logfile = qemu_log_lock(); |
93fcfe39 AL |
1231 | qemu_log("qemu: fatal: "); |
1232 | qemu_log_vprintf(fmt, ap2); | |
1233 | qemu_log("\n"); | |
a0762859 | 1234 | log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP); |
31b1a7b4 | 1235 | qemu_log_flush(); |
fc59d2d8 | 1236 | qemu_log_unlock(logfile); |
93fcfe39 | 1237 | qemu_log_close(); |
924edcae | 1238 | } |
493ae1f0 | 1239 | va_end(ap2); |
f9373291 | 1240 | va_end(ap); |
7615936e | 1241 | replay_finish(); |
fd052bf6 RV |
1242 | #if defined(CONFIG_USER_ONLY) |
1243 | { | |
1244 | struct sigaction act; | |
1245 | sigfillset(&act.sa_mask); | |
1246 | act.sa_handler = SIG_DFL; | |
8347c185 | 1247 | act.sa_flags = 0; |
fd052bf6 RV |
1248 | sigaction(SIGABRT, &act, NULL); |
1249 | } | |
1250 | #endif | |
7501267e FB |
1251 | abort(); |
1252 | } | |
1253 | ||
0124311e | 1254 | #if !defined(CONFIG_USER_ONLY) |
0dc3f44a | 1255 | /* Called from RCU critical section */ |
041603fe PB |
1256 | static RAMBlock *qemu_get_ram_block(ram_addr_t addr) |
1257 | { | |
1258 | RAMBlock *block; | |
1259 | ||
43771539 | 1260 | block = atomic_rcu_read(&ram_list.mru_block); |
9b8424d5 | 1261 | if (block && addr - block->offset < block->max_length) { |
68851b98 | 1262 | return block; |
041603fe | 1263 | } |
99e15582 | 1264 | RAMBLOCK_FOREACH(block) { |
9b8424d5 | 1265 | if (addr - block->offset < block->max_length) { |
041603fe PB |
1266 | goto found; |
1267 | } | |
1268 | } | |
1269 | ||
1270 | fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); | |
1271 | abort(); | |
1272 | ||
1273 | found: | |
43771539 PB |
1274 | /* It is safe to write mru_block outside the iothread lock. This |
1275 | * is what happens: | |
1276 | * | |
1277 | * mru_block = xxx | |
1278 | * rcu_read_unlock() | |
1279 | * xxx removed from list | |
1280 | * rcu_read_lock() | |
1281 | * read mru_block | |
1282 | * mru_block = NULL; | |
1283 | * call_rcu(reclaim_ramblock, xxx); | |
1284 | * rcu_read_unlock() | |
1285 | * | |
1286 | * atomic_rcu_set is not needed here. The block was already published | |
1287 | * when it was placed into the list. Here we're just making an extra | |
1288 | * copy of the pointer. | |
1289 | */ | |
041603fe PB |
1290 | ram_list.mru_block = block; |
1291 | return block; | |
1292 | } | |
1293 | ||
a2f4d5be | 1294 | static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) |
d24981d3 | 1295 | { |
9a13565d | 1296 | CPUState *cpu; |
041603fe | 1297 | ram_addr_t start1; |
a2f4d5be JQ |
1298 | RAMBlock *block; |
1299 | ram_addr_t end; | |
1300 | ||
f28d0dfd | 1301 | assert(tcg_enabled()); |
a2f4d5be JQ |
1302 | end = TARGET_PAGE_ALIGN(start + length); |
1303 | start &= TARGET_PAGE_MASK; | |
d24981d3 | 1304 | |
694ea274 | 1305 | RCU_READ_LOCK_GUARD(); |
041603fe PB |
1306 | block = qemu_get_ram_block(start); |
1307 | assert(block == qemu_get_ram_block(end - 1)); | |
1240be24 | 1308 | start1 = (uintptr_t)ramblock_ptr(block, start - block->offset); |
9a13565d PC |
1309 | CPU_FOREACH(cpu) { |
1310 | tlb_reset_dirty(cpu, start1, length); | |
1311 | } | |
d24981d3 JQ |
1312 | } |
1313 | ||
5579c7f3 | 1314 | /* Note: start and end must be within the same ram block. */ |
03eebc9e SH |
1315 | bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, |
1316 | ram_addr_t length, | |
1317 | unsigned client) | |
1ccde1cb | 1318 | { |
5b82b703 | 1319 | DirtyMemoryBlocks *blocks; |
25aa6b37 | 1320 | unsigned long end, page, start_page; |
5b82b703 | 1321 | bool dirty = false; |
077874e0 PX |
1322 | RAMBlock *ramblock; |
1323 | uint64_t mr_offset, mr_size; | |
03eebc9e SH |
1324 | |
1325 | if (length == 0) { | |
1326 | return false; | |
1327 | } | |
f23db169 | 1328 | |
03eebc9e | 1329 | end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; |
25aa6b37 MB |
1330 | start_page = start >> TARGET_PAGE_BITS; |
1331 | page = start_page; | |
5b82b703 | 1332 | |
694ea274 DDAG |
1333 | WITH_RCU_READ_LOCK_GUARD() { |
1334 | blocks = atomic_rcu_read(&ram_list.dirty_memory[client]); | |
1335 | ramblock = qemu_get_ram_block(start); | |
1336 | /* Range sanity check on the ramblock */ | |
1337 | assert(start >= ramblock->offset && | |
1338 | start + length <= ramblock->offset + ramblock->used_length); | |
5b82b703 | 1339 | |
694ea274 DDAG |
1340 | while (page < end) { |
1341 | unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; | |
1342 | unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; | |
1343 | unsigned long num = MIN(end - page, | |
1344 | DIRTY_MEMORY_BLOCK_SIZE - offset); | |
5b82b703 | 1345 | |
694ea274 DDAG |
1346 | dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx], |
1347 | offset, num); | |
1348 | page += num; | |
1349 | } | |
5b82b703 | 1350 | |
25aa6b37 MB |
1351 | mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset; |
1352 | mr_size = (end - start_page) << TARGET_PAGE_BITS; | |
694ea274 | 1353 | memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size); |
5b82b703 SH |
1354 | } |
1355 | ||
03eebc9e | 1356 | if (dirty && tcg_enabled()) { |
a2f4d5be | 1357 | tlb_reset_dirty_range_all(start, length); |
5579c7f3 | 1358 | } |
03eebc9e SH |
1359 | |
1360 | return dirty; | |
1ccde1cb FB |
1361 | } |
1362 | ||
8deaf12c | 1363 | DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty |
5dea4079 | 1364 | (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client) |
8deaf12c GH |
1365 | { |
1366 | DirtyMemoryBlocks *blocks; | |
5dea4079 | 1367 | ram_addr_t start = memory_region_get_ram_addr(mr) + offset; |
8deaf12c GH |
1368 | unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL); |
1369 | ram_addr_t first = QEMU_ALIGN_DOWN(start, align); | |
1370 | ram_addr_t last = QEMU_ALIGN_UP(start + length, align); | |
1371 | DirtyBitmapSnapshot *snap; | |
1372 | unsigned long page, end, dest; | |
1373 | ||
1374 | snap = g_malloc0(sizeof(*snap) + | |
1375 | ((last - first) >> (TARGET_PAGE_BITS + 3))); | |
1376 | snap->start = first; | |
1377 | snap->end = last; | |
1378 | ||
1379 | page = first >> TARGET_PAGE_BITS; | |
1380 | end = last >> TARGET_PAGE_BITS; | |
1381 | dest = 0; | |
1382 | ||
694ea274 DDAG |
1383 | WITH_RCU_READ_LOCK_GUARD() { |
1384 | blocks = atomic_rcu_read(&ram_list.dirty_memory[client]); | |
8deaf12c | 1385 | |
694ea274 DDAG |
1386 | while (page < end) { |
1387 | unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; | |
1388 | unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; | |
1389 | unsigned long num = MIN(end - page, | |
1390 | DIRTY_MEMORY_BLOCK_SIZE - offset); | |
8deaf12c | 1391 | |
694ea274 DDAG |
1392 | assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL))); |
1393 | assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL))); | |
1394 | offset >>= BITS_PER_LEVEL; | |
8deaf12c | 1395 | |
694ea274 DDAG |
1396 | bitmap_copy_and_clear_atomic(snap->dirty + dest, |
1397 | blocks->blocks[idx] + offset, | |
1398 | num); | |
1399 | page += num; | |
1400 | dest += num >> BITS_PER_LEVEL; | |
1401 | } | |
8deaf12c GH |
1402 | } |
1403 | ||
8deaf12c GH |
1404 | if (tcg_enabled()) { |
1405 | tlb_reset_dirty_range_all(start, length); | |
1406 | } | |
1407 | ||
077874e0 PX |
1408 | memory_region_clear_dirty_bitmap(mr, offset, length); |
1409 | ||
8deaf12c GH |
1410 | return snap; |
1411 | } | |
1412 | ||
1413 | bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap, | |
1414 | ram_addr_t start, | |
1415 | ram_addr_t length) | |
1416 | { | |
1417 | unsigned long page, end; | |
1418 | ||
1419 | assert(start >= snap->start); | |
1420 | assert(start + length <= snap->end); | |
1421 | ||
1422 | end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS; | |
1423 | page = (start - snap->start) >> TARGET_PAGE_BITS; | |
1424 | ||
1425 | while (page < end) { | |
1426 | if (test_bit(page, snap->dirty)) { | |
1427 | return true; | |
1428 | } | |
1429 | page++; | |
1430 | } | |
1431 | return false; | |
1432 | } | |
1433 | ||
79e2b9ae | 1434 | /* Called from RCU critical section */ |
bb0e627a | 1435 | hwaddr memory_region_section_get_iotlb(CPUState *cpu, |
8f5db641 | 1436 | MemoryRegionSection *section) |
e5548617 | 1437 | { |
8f5db641 RH |
1438 | AddressSpaceDispatch *d = flatview_to_dispatch(section->fv); |
1439 | return section - d->map.sections; | |
e5548617 | 1440 | } |
9fa3e853 FB |
1441 | #endif /* defined(CONFIG_USER_ONLY) */ |
1442 | ||
e2eef170 | 1443 | #if !defined(CONFIG_USER_ONLY) |
8da3ff18 | 1444 | |
b797ab1a WY |
1445 | static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, |
1446 | uint16_t section); | |
16620684 | 1447 | static subpage_t *subpage_init(FlatView *fv, hwaddr base); |
54688b1e | 1448 | |
06329cce | 1449 | static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) = |
a2b257d6 | 1450 | qemu_anon_ram_alloc; |
91138037 MA |
1451 | |
1452 | /* | |
1453 | * Set a custom physical guest memory alloator. | |
1454 | * Accelerators with unusual needs may need this. Hopefully, we can | |
1455 | * get rid of it eventually. | |
1456 | */ | |
06329cce | 1457 | void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared)) |
91138037 MA |
1458 | { |
1459 | phys_mem_alloc = alloc; | |
1460 | } | |
1461 | ||
53cb28cb MA |
1462 | static uint16_t phys_section_add(PhysPageMap *map, |
1463 | MemoryRegionSection *section) | |
5312bd8b | 1464 | { |
68f3f65b PB |
1465 | /* The physical section number is ORed with a page-aligned |
1466 | * pointer to produce the iotlb entries. Thus it should | |
1467 | * never overflow into the page-aligned value. | |
1468 | */ | |
53cb28cb | 1469 | assert(map->sections_nb < TARGET_PAGE_SIZE); |
68f3f65b | 1470 | |
53cb28cb MA |
1471 | if (map->sections_nb == map->sections_nb_alloc) { |
1472 | map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); | |
1473 | map->sections = g_renew(MemoryRegionSection, map->sections, | |
1474 | map->sections_nb_alloc); | |
5312bd8b | 1475 | } |
53cb28cb | 1476 | map->sections[map->sections_nb] = *section; |
dfde4e6e | 1477 | memory_region_ref(section->mr); |
53cb28cb | 1478 | return map->sections_nb++; |
5312bd8b AK |
1479 | } |
1480 | ||
058bc4b5 PB |
1481 | static void phys_section_destroy(MemoryRegion *mr) |
1482 | { | |
55b4e80b DS |
1483 | bool have_sub_page = mr->subpage; |
1484 | ||
dfde4e6e PB |
1485 | memory_region_unref(mr); |
1486 | ||
55b4e80b | 1487 | if (have_sub_page) { |
058bc4b5 | 1488 | subpage_t *subpage = container_of(mr, subpage_t, iomem); |
b4fefef9 | 1489 | object_unref(OBJECT(&subpage->iomem)); |
058bc4b5 PB |
1490 | g_free(subpage); |
1491 | } | |
1492 | } | |
1493 | ||
6092666e | 1494 | static void phys_sections_free(PhysPageMap *map) |
5312bd8b | 1495 | { |
9affd6fc PB |
1496 | while (map->sections_nb > 0) { |
1497 | MemoryRegionSection *section = &map->sections[--map->sections_nb]; | |
058bc4b5 PB |
1498 | phys_section_destroy(section->mr); |
1499 | } | |
9affd6fc PB |
1500 | g_free(map->sections); |
1501 | g_free(map->nodes); | |
5312bd8b AK |
1502 | } |
1503 | ||
9950322a | 1504 | static void register_subpage(FlatView *fv, MemoryRegionSection *section) |
0f0cb164 | 1505 | { |
9950322a | 1506 | AddressSpaceDispatch *d = flatview_to_dispatch(fv); |
0f0cb164 | 1507 | subpage_t *subpage; |
a8170e5e | 1508 | hwaddr base = section->offset_within_address_space |
0f0cb164 | 1509 | & TARGET_PAGE_MASK; |
003a0cf2 | 1510 | MemoryRegionSection *existing = phys_page_find(d, base); |
0f0cb164 AK |
1511 | MemoryRegionSection subsection = { |
1512 | .offset_within_address_space = base, | |
052e87b0 | 1513 | .size = int128_make64(TARGET_PAGE_SIZE), |
0f0cb164 | 1514 | }; |
a8170e5e | 1515 | hwaddr start, end; |
0f0cb164 | 1516 | |
f3705d53 | 1517 | assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); |
0f0cb164 | 1518 | |
f3705d53 | 1519 | if (!(existing->mr->subpage)) { |
16620684 AK |
1520 | subpage = subpage_init(fv, base); |
1521 | subsection.fv = fv; | |
0f0cb164 | 1522 | subsection.mr = &subpage->iomem; |
ac1970fb | 1523 | phys_page_set(d, base >> TARGET_PAGE_BITS, 1, |
53cb28cb | 1524 | phys_section_add(&d->map, &subsection)); |
0f0cb164 | 1525 | } else { |
f3705d53 | 1526 | subpage = container_of(existing->mr, subpage_t, iomem); |
0f0cb164 AK |
1527 | } |
1528 | start = section->offset_within_address_space & ~TARGET_PAGE_MASK; | |
052e87b0 | 1529 | end = start + int128_get64(section->size) - 1; |
53cb28cb MA |
1530 | subpage_register(subpage, start, end, |
1531 | phys_section_add(&d->map, section)); | |
0f0cb164 AK |
1532 | } |
1533 | ||
1534 | ||
9950322a | 1535 | static void register_multipage(FlatView *fv, |
052e87b0 | 1536 | MemoryRegionSection *section) |
33417e70 | 1537 | { |
9950322a | 1538 | AddressSpaceDispatch *d = flatview_to_dispatch(fv); |
a8170e5e | 1539 | hwaddr start_addr = section->offset_within_address_space; |
53cb28cb | 1540 | uint16_t section_index = phys_section_add(&d->map, section); |
052e87b0 PB |
1541 | uint64_t num_pages = int128_get64(int128_rshift(section->size, |
1542 | TARGET_PAGE_BITS)); | |
dd81124b | 1543 | |
733d5ef5 PB |
1544 | assert(num_pages); |
1545 | phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); | |
33417e70 FB |
1546 | } |
1547 | ||
494d1997 WY |
1548 | /* |
1549 | * The range in *section* may look like this: | |
1550 | * | |
1551 | * |s|PPPPPPP|s| | |
1552 | * | |
1553 | * where s stands for subpage and P for page. | |
1554 | */ | |
8629d3fc | 1555 | void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section) |
0f0cb164 | 1556 | { |
494d1997 | 1557 | MemoryRegionSection remain = *section; |
052e87b0 | 1558 | Int128 page_size = int128_make64(TARGET_PAGE_SIZE); |
0f0cb164 | 1559 | |
494d1997 WY |
1560 | /* register first subpage */ |
1561 | if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { | |
1562 | uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space) | |
1563 | - remain.offset_within_address_space; | |
733d5ef5 | 1564 | |
494d1997 | 1565 | MemoryRegionSection now = remain; |
052e87b0 | 1566 | now.size = int128_min(int128_make64(left), now.size); |
9950322a | 1567 | register_subpage(fv, &now); |
494d1997 WY |
1568 | if (int128_eq(remain.size, now.size)) { |
1569 | return; | |
1570 | } | |
052e87b0 PB |
1571 | remain.size = int128_sub(remain.size, now.size); |
1572 | remain.offset_within_address_space += int128_get64(now.size); | |
1573 | remain.offset_within_region += int128_get64(now.size); | |
494d1997 WY |
1574 | } |
1575 | ||
1576 | /* register whole pages */ | |
1577 | if (int128_ge(remain.size, page_size)) { | |
1578 | MemoryRegionSection now = remain; | |
1579 | now.size = int128_and(now.size, int128_neg(page_size)); | |
1580 | register_multipage(fv, &now); | |
1581 | if (int128_eq(remain.size, now.size)) { | |
1582 | return; | |
69b67646 | 1583 | } |
494d1997 WY |
1584 | remain.size = int128_sub(remain.size, now.size); |
1585 | remain.offset_within_address_space += int128_get64(now.size); | |
1586 | remain.offset_within_region += int128_get64(now.size); | |
0f0cb164 | 1587 | } |
494d1997 WY |
1588 | |
1589 | /* register last subpage */ | |
1590 | register_subpage(fv, &remain); | |
0f0cb164 AK |
1591 | } |
1592 | ||
62a2744c SY |
1593 | void qemu_flush_coalesced_mmio_buffer(void) |
1594 | { | |
1595 | if (kvm_enabled()) | |
1596 | kvm_flush_coalesced_mmio_buffer(); | |
1597 | } | |
1598 | ||
b2a8658e UD |
1599 | void qemu_mutex_lock_ramlist(void) |
1600 | { | |
1601 | qemu_mutex_lock(&ram_list.mutex); | |
1602 | } | |
1603 | ||
1604 | void qemu_mutex_unlock_ramlist(void) | |
1605 | { | |
1606 | qemu_mutex_unlock(&ram_list.mutex); | |
1607 | } | |
1608 | ||
be9b23c4 PX |
1609 | void ram_block_dump(Monitor *mon) |
1610 | { | |
1611 | RAMBlock *block; | |
1612 | char *psize; | |
1613 | ||
694ea274 | 1614 | RCU_READ_LOCK_GUARD(); |
be9b23c4 PX |
1615 | monitor_printf(mon, "%24s %8s %18s %18s %18s\n", |
1616 | "Block Name", "PSize", "Offset", "Used", "Total"); | |
1617 | RAMBLOCK_FOREACH(block) { | |
1618 | psize = size_to_str(block->page_size); | |
1619 | monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64 | |
1620 | " 0x%016" PRIx64 "\n", block->idstr, psize, | |
1621 | (uint64_t)block->offset, | |
1622 | (uint64_t)block->used_length, | |
1623 | (uint64_t)block->max_length); | |
1624 | g_free(psize); | |
1625 | } | |
be9b23c4 PX |
1626 | } |
1627 | ||
9c607668 AK |
1628 | #ifdef __linux__ |
1629 | /* | |
1630 | * FIXME TOCTTOU: this iterates over memory backends' mem-path, which | |
1631 | * may or may not name the same files / on the same filesystem now as | |
1632 | * when we actually open and map them. Iterate over the file | |
1633 | * descriptors instead, and use qemu_fd_getpagesize(). | |
1634 | */ | |
905b7ee4 | 1635 | static int find_min_backend_pagesize(Object *obj, void *opaque) |
9c607668 | 1636 | { |
9c607668 AK |
1637 | long *hpsize_min = opaque; |
1638 | ||
1639 | if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { | |
7d5489e6 DG |
1640 | HostMemoryBackend *backend = MEMORY_BACKEND(obj); |
1641 | long hpsize = host_memory_backend_pagesize(backend); | |
2b108085 | 1642 | |
7d5489e6 | 1643 | if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) { |
0de6e2a3 | 1644 | *hpsize_min = hpsize; |
9c607668 AK |
1645 | } |
1646 | } | |
1647 | ||
1648 | return 0; | |
1649 | } | |
1650 | ||
905b7ee4 DH |
1651 | static int find_max_backend_pagesize(Object *obj, void *opaque) |
1652 | { | |
1653 | long *hpsize_max = opaque; | |
1654 | ||
1655 | if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { | |
1656 | HostMemoryBackend *backend = MEMORY_BACKEND(obj); | |
1657 | long hpsize = host_memory_backend_pagesize(backend); | |
1658 | ||
1659 | if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) { | |
1660 | *hpsize_max = hpsize; | |
1661 | } | |
1662 | } | |
1663 | ||
1664 | return 0; | |
1665 | } | |
1666 | ||
1667 | /* | |
1668 | * TODO: We assume right now that all mapped host memory backends are | |
1669 | * used as RAM, however some might be used for different purposes. | |
1670 | */ | |
1671 | long qemu_minrampagesize(void) | |
9c607668 AK |
1672 | { |
1673 | long hpsize = LONG_MAX; | |
ad1172d8 | 1674 | Object *memdev_root = object_resolve_path("/objects", NULL); |
9c607668 | 1675 | |
ad1172d8 | 1676 | object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize); |
9c607668 AK |
1677 | return hpsize; |
1678 | } | |
905b7ee4 DH |
1679 | |
1680 | long qemu_maxrampagesize(void) | |
1681 | { | |
ad1172d8 | 1682 | long pagesize = 0; |
905b7ee4 DH |
1683 | Object *memdev_root = object_resolve_path("/objects", NULL); |
1684 | ||
ad1172d8 | 1685 | object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize); |
905b7ee4 DH |
1686 | return pagesize; |
1687 | } | |
9c607668 | 1688 | #else |
905b7ee4 DH |
1689 | long qemu_minrampagesize(void) |
1690 | { | |
038adc2f | 1691 | return qemu_real_host_page_size; |
905b7ee4 DH |
1692 | } |
1693 | long qemu_maxrampagesize(void) | |
9c607668 | 1694 | { |
038adc2f | 1695 | return qemu_real_host_page_size; |
9c607668 AK |
1696 | } |
1697 | #endif | |
1698 | ||
d5dbde46 | 1699 | #ifdef CONFIG_POSIX |
d6af99c9 HZ |
1700 | static int64_t get_file_size(int fd) |
1701 | { | |
72d41eb4 SH |
1702 | int64_t size; |
1703 | #if defined(__linux__) | |
1704 | struct stat st; | |
1705 | ||
1706 | if (fstat(fd, &st) < 0) { | |
1707 | return -errno; | |
1708 | } | |
1709 | ||
1710 | /* Special handling for devdax character devices */ | |
1711 | if (S_ISCHR(st.st_mode)) { | |
1712 | g_autofree char *subsystem_path = NULL; | |
1713 | g_autofree char *subsystem = NULL; | |
1714 | ||
1715 | subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem", | |
1716 | major(st.st_rdev), minor(st.st_rdev)); | |
1717 | subsystem = g_file_read_link(subsystem_path, NULL); | |
1718 | ||
1719 | if (subsystem && g_str_has_suffix(subsystem, "/dax")) { | |
1720 | g_autofree char *size_path = NULL; | |
1721 | g_autofree char *size_str = NULL; | |
1722 | ||
1723 | size_path = g_strdup_printf("/sys/dev/char/%d:%d/size", | |
1724 | major(st.st_rdev), minor(st.st_rdev)); | |
1725 | ||
1726 | if (g_file_get_contents(size_path, &size_str, NULL, NULL)) { | |
1727 | return g_ascii_strtoll(size_str, NULL, 0); | |
1728 | } | |
1729 | } | |
1730 | } | |
1731 | #endif /* defined(__linux__) */ | |
1732 | ||
1733 | /* st.st_size may be zero for special files yet lseek(2) works */ | |
1734 | size = lseek(fd, 0, SEEK_END); | |
d6af99c9 HZ |
1735 | if (size < 0) { |
1736 | return -errno; | |
1737 | } | |
1738 | return size; | |
1739 | } | |
1740 | ||
8d37b030 MAL |
1741 | static int file_ram_open(const char *path, |
1742 | const char *region_name, | |
1743 | bool *created, | |
1744 | Error **errp) | |
c902760f MT |
1745 | { |
1746 | char *filename; | |
8ca761f6 PF |
1747 | char *sanitized_name; |
1748 | char *c; | |
5c3ece79 | 1749 | int fd = -1; |
c902760f | 1750 | |
8d37b030 | 1751 | *created = false; |
fd97fd44 MA |
1752 | for (;;) { |
1753 | fd = open(path, O_RDWR); | |
1754 | if (fd >= 0) { | |
1755 | /* @path names an existing file, use it */ | |
1756 | break; | |
8d31d6b6 | 1757 | } |
fd97fd44 MA |
1758 | if (errno == ENOENT) { |
1759 | /* @path names a file that doesn't exist, create it */ | |
1760 | fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644); | |
1761 | if (fd >= 0) { | |
8d37b030 | 1762 | *created = true; |
fd97fd44 MA |
1763 | break; |
1764 | } | |
1765 | } else if (errno == EISDIR) { | |
1766 | /* @path names a directory, create a file there */ | |
1767 | /* Make name safe to use with mkstemp by replacing '/' with '_'. */ | |
8d37b030 | 1768 | sanitized_name = g_strdup(region_name); |
fd97fd44 MA |
1769 | for (c = sanitized_name; *c != '\0'; c++) { |
1770 | if (*c == '/') { | |
1771 | *c = '_'; | |
1772 | } | |
1773 | } | |
8ca761f6 | 1774 | |
fd97fd44 MA |
1775 | filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, |
1776 | sanitized_name); | |
1777 | g_free(sanitized_name); | |
8d31d6b6 | 1778 | |
fd97fd44 MA |
1779 | fd = mkstemp(filename); |
1780 | if (fd >= 0) { | |
1781 | unlink(filename); | |
1782 | g_free(filename); | |
1783 | break; | |
1784 | } | |
1785 | g_free(filename); | |
8d31d6b6 | 1786 | } |
fd97fd44 MA |
1787 | if (errno != EEXIST && errno != EINTR) { |
1788 | error_setg_errno(errp, errno, | |
1789 | "can't open backing store %s for guest RAM", | |
1790 | path); | |
8d37b030 | 1791 | return -1; |
fd97fd44 MA |
1792 | } |
1793 | /* | |
1794 | * Try again on EINTR and EEXIST. The latter happens when | |
1795 | * something else creates the file between our two open(). | |
1796 | */ | |
8d31d6b6 | 1797 | } |
c902760f | 1798 | |
8d37b030 MAL |
1799 | return fd; |
1800 | } | |
1801 | ||
1802 | static void *file_ram_alloc(RAMBlock *block, | |
1803 | ram_addr_t memory, | |
1804 | int fd, | |
1805 | bool truncate, | |
1806 | Error **errp) | |
1807 | { | |
1808 | void *area; | |
1809 | ||
863e9621 | 1810 | block->page_size = qemu_fd_getpagesize(fd); |
98376843 HZ |
1811 | if (block->mr->align % block->page_size) { |
1812 | error_setg(errp, "alignment 0x%" PRIx64 | |
1813 | " must be multiples of page size 0x%zx", | |
1814 | block->mr->align, block->page_size); | |
1815 | return NULL; | |
61362b71 DH |
1816 | } else if (block->mr->align && !is_power_of_2(block->mr->align)) { |
1817 | error_setg(errp, "alignment 0x%" PRIx64 | |
1818 | " must be a power of two", block->mr->align); | |
1819 | return NULL; | |
98376843 HZ |
1820 | } |
1821 | block->mr->align = MAX(block->page_size, block->mr->align); | |
8360668e HZ |
1822 | #if defined(__s390x__) |
1823 | if (kvm_enabled()) { | |
1824 | block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN); | |
1825 | } | |
1826 | #endif | |
fd97fd44 | 1827 | |
863e9621 | 1828 | if (memory < block->page_size) { |
fd97fd44 | 1829 | error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " |
863e9621 DDAG |
1830 | "or larger than page size 0x%zx", |
1831 | memory, block->page_size); | |
8d37b030 | 1832 | return NULL; |
1775f111 HZ |
1833 | } |
1834 | ||
863e9621 | 1835 | memory = ROUND_UP(memory, block->page_size); |
c902760f MT |
1836 | |
1837 | /* | |
1838 | * ftruncate is not supported by hugetlbfs in older | |
1839 | * hosts, so don't bother bailing out on errors. | |
1840 | * If anything goes wrong with it under other filesystems, | |
1841 | * mmap will fail. | |
d6af99c9 HZ |
1842 | * |
1843 | * Do not truncate the non-empty backend file to avoid corrupting | |
1844 | * the existing data in the file. Disabling shrinking is not | |
1845 | * enough. For example, the current vNVDIMM implementation stores | |
1846 | * the guest NVDIMM labels at the end of the backend file. If the | |
1847 | * backend file is later extended, QEMU will not be able to find | |
1848 | * those labels. Therefore, extending the non-empty backend file | |
1849 | * is disabled as well. | |
c902760f | 1850 | */ |
8d37b030 | 1851 | if (truncate && ftruncate(fd, memory)) { |
9742bf26 | 1852 | perror("ftruncate"); |
7f56e740 | 1853 | } |
c902760f | 1854 | |
d2f39add | 1855 | area = qemu_ram_mmap(fd, memory, block->mr->align, |
2ac0f162 | 1856 | block->flags & RAM_SHARED, block->flags & RAM_PMEM); |
c902760f | 1857 | if (area == MAP_FAILED) { |
7f56e740 | 1858 | error_setg_errno(errp, errno, |
fd97fd44 | 1859 | "unable to map backing store for guest RAM"); |
8d37b030 | 1860 | return NULL; |
c902760f | 1861 | } |
ef36fa14 | 1862 | |
04b16653 | 1863 | block->fd = fd; |
c902760f MT |
1864 | return area; |
1865 | } | |
1866 | #endif | |
1867 | ||
154cc9ea DDAG |
1868 | /* Allocate space within the ram_addr_t space that governs the |
1869 | * dirty bitmaps. | |
1870 | * Called with the ramlist lock held. | |
1871 | */ | |
d17b5288 | 1872 | static ram_addr_t find_ram_offset(ram_addr_t size) |
04b16653 AW |
1873 | { |
1874 | RAMBlock *block, *next_block; | |
3e837b2c | 1875 | ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; |
04b16653 | 1876 | |
49cd9ac6 SH |
1877 | assert(size != 0); /* it would hand out same offset multiple times */ |
1878 | ||
0dc3f44a | 1879 | if (QLIST_EMPTY_RCU(&ram_list.blocks)) { |
04b16653 | 1880 | return 0; |
0d53d9fe | 1881 | } |
04b16653 | 1882 | |
99e15582 | 1883 | RAMBLOCK_FOREACH(block) { |
154cc9ea | 1884 | ram_addr_t candidate, next = RAM_ADDR_MAX; |
04b16653 | 1885 | |
801110ab DDAG |
1886 | /* Align blocks to start on a 'long' in the bitmap |
1887 | * which makes the bitmap sync'ing take the fast path. | |
1888 | */ | |
154cc9ea | 1889 | candidate = block->offset + block->max_length; |
801110ab | 1890 | candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS); |
04b16653 | 1891 | |
154cc9ea DDAG |
1892 | /* Search for the closest following block |
1893 | * and find the gap. | |
1894 | */ | |
99e15582 | 1895 | RAMBLOCK_FOREACH(next_block) { |
154cc9ea | 1896 | if (next_block->offset >= candidate) { |
04b16653 AW |
1897 | next = MIN(next, next_block->offset); |
1898 | } | |
1899 | } | |
154cc9ea DDAG |
1900 | |
1901 | /* If it fits remember our place and remember the size | |
1902 | * of gap, but keep going so that we might find a smaller | |
1903 | * gap to fill so avoiding fragmentation. | |
1904 | */ | |
1905 | if (next - candidate >= size && next - candidate < mingap) { | |
1906 | offset = candidate; | |
1907 | mingap = next - candidate; | |
04b16653 | 1908 | } |
154cc9ea DDAG |
1909 | |
1910 | trace_find_ram_offset_loop(size, candidate, offset, next, mingap); | |
04b16653 | 1911 | } |
3e837b2c AW |
1912 | |
1913 | if (offset == RAM_ADDR_MAX) { | |
1914 | fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", | |
1915 | (uint64_t)size); | |
1916 | abort(); | |
1917 | } | |
1918 | ||
154cc9ea DDAG |
1919 | trace_find_ram_offset(size, offset); |
1920 | ||
04b16653 AW |
1921 | return offset; |
1922 | } | |
1923 | ||
c136180c | 1924 | static unsigned long last_ram_page(void) |
d17b5288 AW |
1925 | { |
1926 | RAMBlock *block; | |
1927 | ram_addr_t last = 0; | |
1928 | ||
694ea274 | 1929 | RCU_READ_LOCK_GUARD(); |
99e15582 | 1930 | RAMBLOCK_FOREACH(block) { |
62be4e3a | 1931 | last = MAX(last, block->offset + block->max_length); |
0d53d9fe | 1932 | } |
b8c48993 | 1933 | return last >> TARGET_PAGE_BITS; |
d17b5288 AW |
1934 | } |
1935 | ||
ddb97f1d JB |
1936 | static void qemu_ram_setup_dump(void *addr, ram_addr_t size) |
1937 | { | |
1938 | int ret; | |
ddb97f1d JB |
1939 | |
1940 | /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ | |
47c8ca53 | 1941 | if (!machine_dump_guest_core(current_machine)) { |
ddb97f1d JB |
1942 | ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); |
1943 | if (ret) { | |
1944 | perror("qemu_madvise"); | |
1945 | fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " | |
1946 | "but dump_guest_core=off specified\n"); | |
1947 | } | |
1948 | } | |
1949 | } | |
1950 | ||
422148d3 DDAG |
1951 | const char *qemu_ram_get_idstr(RAMBlock *rb) |
1952 | { | |
1953 | return rb->idstr; | |
1954 | } | |
1955 | ||
754cb9c0 YK |
1956 | void *qemu_ram_get_host_addr(RAMBlock *rb) |
1957 | { | |
1958 | return rb->host; | |
1959 | } | |
1960 | ||
1961 | ram_addr_t qemu_ram_get_offset(RAMBlock *rb) | |
1962 | { | |
1963 | return rb->offset; | |
1964 | } | |
1965 | ||
1966 | ram_addr_t qemu_ram_get_used_length(RAMBlock *rb) | |
1967 | { | |
1968 | return rb->used_length; | |
1969 | } | |
1970 | ||
463a4ac2 DDAG |
1971 | bool qemu_ram_is_shared(RAMBlock *rb) |
1972 | { | |
1973 | return rb->flags & RAM_SHARED; | |
1974 | } | |
1975 | ||
2ce16640 DDAG |
1976 | /* Note: Only set at the start of postcopy */ |
1977 | bool qemu_ram_is_uf_zeroable(RAMBlock *rb) | |
1978 | { | |
1979 | return rb->flags & RAM_UF_ZEROPAGE; | |
1980 | } | |
1981 | ||
1982 | void qemu_ram_set_uf_zeroable(RAMBlock *rb) | |
1983 | { | |
1984 | rb->flags |= RAM_UF_ZEROPAGE; | |
1985 | } | |
1986 | ||
b895de50 CLG |
1987 | bool qemu_ram_is_migratable(RAMBlock *rb) |
1988 | { | |
1989 | return rb->flags & RAM_MIGRATABLE; | |
1990 | } | |
1991 | ||
1992 | void qemu_ram_set_migratable(RAMBlock *rb) | |
1993 | { | |
1994 | rb->flags |= RAM_MIGRATABLE; | |
1995 | } | |
1996 | ||
1997 | void qemu_ram_unset_migratable(RAMBlock *rb) | |
1998 | { | |
1999 | rb->flags &= ~RAM_MIGRATABLE; | |
2000 | } | |
2001 | ||
ae3a7047 | 2002 | /* Called with iothread lock held. */ |
fa53a0e5 | 2003 | void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev) |
20cfe881 | 2004 | { |
fa53a0e5 | 2005 | RAMBlock *block; |
20cfe881 | 2006 | |
c5705a77 AK |
2007 | assert(new_block); |
2008 | assert(!new_block->idstr[0]); | |
84b89d78 | 2009 | |
09e5ab63 AL |
2010 | if (dev) { |
2011 | char *id = qdev_get_dev_path(dev); | |
84b89d78 CM |
2012 | if (id) { |
2013 | snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); | |
7267c094 | 2014 | g_free(id); |
84b89d78 CM |
2015 | } |
2016 | } | |
2017 | pstrcat(new_block->idstr, sizeof(new_block->idstr), name); | |
2018 | ||
694ea274 | 2019 | RCU_READ_LOCK_GUARD(); |
99e15582 | 2020 | RAMBLOCK_FOREACH(block) { |
fa53a0e5 GA |
2021 | if (block != new_block && |
2022 | !strcmp(block->idstr, new_block->idstr)) { | |
84b89d78 CM |
2023 | fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", |
2024 | new_block->idstr); | |
2025 | abort(); | |
2026 | } | |
2027 | } | |
c5705a77 AK |
2028 | } |
2029 | ||
ae3a7047 | 2030 | /* Called with iothread lock held. */ |
fa53a0e5 | 2031 | void qemu_ram_unset_idstr(RAMBlock *block) |
20cfe881 | 2032 | { |
ae3a7047 MD |
2033 | /* FIXME: arch_init.c assumes that this is not called throughout |
2034 | * migration. Ignore the problem since hot-unplug during migration | |
2035 | * does not work anyway. | |
2036 | */ | |
20cfe881 HT |
2037 | if (block) { |
2038 | memset(block->idstr, 0, sizeof(block->idstr)); | |
2039 | } | |
2040 | } | |
2041 | ||
863e9621 DDAG |
2042 | size_t qemu_ram_pagesize(RAMBlock *rb) |
2043 | { | |
2044 | return rb->page_size; | |
2045 | } | |
2046 | ||
67f11b5c DDAG |
2047 | /* Returns the largest size of page in use */ |
2048 | size_t qemu_ram_pagesize_largest(void) | |
2049 | { | |
2050 | RAMBlock *block; | |
2051 | size_t largest = 0; | |
2052 | ||
99e15582 | 2053 | RAMBLOCK_FOREACH(block) { |
67f11b5c DDAG |
2054 | largest = MAX(largest, qemu_ram_pagesize(block)); |
2055 | } | |
2056 | ||
2057 | return largest; | |
2058 | } | |
2059 | ||
8490fc78 LC |
2060 | static int memory_try_enable_merging(void *addr, size_t len) |
2061 | { | |
75cc7f01 | 2062 | if (!machine_mem_merge(current_machine)) { |
8490fc78 LC |
2063 | /* disabled by the user */ |
2064 | return 0; | |
2065 | } | |
2066 | ||
2067 | return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); | |
2068 | } | |
2069 | ||
62be4e3a MT |
2070 | /* Only legal before guest might have detected the memory size: e.g. on |
2071 | * incoming migration, or right after reset. | |
2072 | * | |
2073 | * As memory core doesn't know how is memory accessed, it is up to | |
2074 | * resize callback to update device state and/or add assertions to detect | |
2075 | * misuse, if necessary. | |
2076 | */ | |
fa53a0e5 | 2077 | int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp) |
62be4e3a | 2078 | { |
ce4adc0b DH |
2079 | const ram_addr_t unaligned_size = newsize; |
2080 | ||
62be4e3a MT |
2081 | assert(block); |
2082 | ||
4ed023ce | 2083 | newsize = HOST_PAGE_ALIGN(newsize); |
129ddaf3 | 2084 | |
62be4e3a | 2085 | if (block->used_length == newsize) { |
ce4adc0b DH |
2086 | /* |
2087 | * We don't have to resize the ram block (which only knows aligned | |
2088 | * sizes), however, we have to notify if the unaligned size changed. | |
2089 | */ | |
2090 | if (unaligned_size != memory_region_size(block->mr)) { | |
2091 | memory_region_set_size(block->mr, unaligned_size); | |
2092 | if (block->resized) { | |
2093 | block->resized(block->idstr, unaligned_size, block->host); | |
2094 | } | |
2095 | } | |
62be4e3a MT |
2096 | return 0; |
2097 | } | |
2098 | ||
2099 | if (!(block->flags & RAM_RESIZEABLE)) { | |
2100 | error_setg_errno(errp, EINVAL, | |
2101 | "Length mismatch: %s: 0x" RAM_ADDR_FMT | |
2102 | " in != 0x" RAM_ADDR_FMT, block->idstr, | |
2103 | newsize, block->used_length); | |
2104 | return -EINVAL; | |
2105 | } | |
2106 | ||
2107 | if (block->max_length < newsize) { | |
2108 | error_setg_errno(errp, EINVAL, | |
2109 | "Length too large: %s: 0x" RAM_ADDR_FMT | |
2110 | " > 0x" RAM_ADDR_FMT, block->idstr, | |
2111 | newsize, block->max_length); | |
2112 | return -EINVAL; | |
2113 | } | |
2114 | ||
2115 | cpu_physical_memory_clear_dirty_range(block->offset, block->used_length); | |
2116 | block->used_length = newsize; | |
58d2707e PB |
2117 | cpu_physical_memory_set_dirty_range(block->offset, block->used_length, |
2118 | DIRTY_CLIENTS_ALL); | |
ce4adc0b | 2119 | memory_region_set_size(block->mr, unaligned_size); |
62be4e3a | 2120 | if (block->resized) { |
ce4adc0b | 2121 | block->resized(block->idstr, unaligned_size, block->host); |
62be4e3a MT |
2122 | } |
2123 | return 0; | |
2124 | } | |
2125 | ||
61c490e2 BM |
2126 | /* |
2127 | * Trigger sync on the given ram block for range [start, start + length] | |
2128 | * with the backing store if one is available. | |
2129 | * Otherwise no-op. | |
2130 | * @Note: this is supposed to be a synchronous op. | |
2131 | */ | |
ab7e41e6 | 2132 | void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length) |
61c490e2 | 2133 | { |
61c490e2 BM |
2134 | /* The requested range should fit in within the block range */ |
2135 | g_assert((start + length) <= block->used_length); | |
2136 | ||
2137 | #ifdef CONFIG_LIBPMEM | |
2138 | /* The lack of support for pmem should not block the sync */ | |
2139 | if (ramblock_is_pmem(block)) { | |
5d4c9549 | 2140 | void *addr = ramblock_ptr(block, start); |
61c490e2 BM |
2141 | pmem_persist(addr, length); |
2142 | return; | |
2143 | } | |
2144 | #endif | |
2145 | if (block->fd >= 0) { | |
2146 | /** | |
2147 | * Case there is no support for PMEM or the memory has not been | |
2148 | * specified as persistent (or is not one) - use the msync. | |
2149 | * Less optimal but still achieves the same goal | |
2150 | */ | |
5d4c9549 | 2151 | void *addr = ramblock_ptr(block, start); |
61c490e2 BM |
2152 | if (qemu_msync(addr, length, block->fd)) { |
2153 | warn_report("%s: failed to sync memory range: start: " | |
2154 | RAM_ADDR_FMT " length: " RAM_ADDR_FMT, | |
2155 | __func__, start, length); | |
2156 | } | |
2157 | } | |
2158 | } | |
2159 | ||
5b82b703 SH |
2160 | /* Called with ram_list.mutex held */ |
2161 | static void dirty_memory_extend(ram_addr_t old_ram_size, | |
2162 | ram_addr_t new_ram_size) | |
2163 | { | |
2164 | ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size, | |
2165 | DIRTY_MEMORY_BLOCK_SIZE); | |
2166 | ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size, | |
2167 | DIRTY_MEMORY_BLOCK_SIZE); | |
2168 | int i; | |
2169 | ||
2170 | /* Only need to extend if block count increased */ | |
2171 | if (new_num_blocks <= old_num_blocks) { | |
2172 | return; | |
2173 | } | |
2174 | ||
2175 | for (i = 0; i < DIRTY_MEMORY_NUM; i++) { | |
2176 | DirtyMemoryBlocks *old_blocks; | |
2177 | DirtyMemoryBlocks *new_blocks; | |
2178 | int j; | |
2179 | ||
2180 | old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]); | |
2181 | new_blocks = g_malloc(sizeof(*new_blocks) + | |
2182 | sizeof(new_blocks->blocks[0]) * new_num_blocks); | |
2183 | ||
2184 | if (old_num_blocks) { | |
2185 | memcpy(new_blocks->blocks, old_blocks->blocks, | |
2186 | old_num_blocks * sizeof(old_blocks->blocks[0])); | |
2187 | } | |
2188 | ||
2189 | for (j = old_num_blocks; j < new_num_blocks; j++) { | |
2190 | new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE); | |
2191 | } | |
2192 | ||
2193 | atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks); | |
2194 | ||
2195 | if (old_blocks) { | |
2196 | g_free_rcu(old_blocks, rcu); | |
2197 | } | |
2198 | } | |
2199 | } | |
2200 | ||
06329cce | 2201 | static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared) |
c5705a77 | 2202 | { |
e1c57ab8 | 2203 | RAMBlock *block; |
0d53d9fe | 2204 | RAMBlock *last_block = NULL; |
2152f5ca | 2205 | ram_addr_t old_ram_size, new_ram_size; |
37aa7a0e | 2206 | Error *err = NULL; |
2152f5ca | 2207 | |
b8c48993 | 2208 | old_ram_size = last_ram_page(); |
c5705a77 | 2209 | |
b2a8658e | 2210 | qemu_mutex_lock_ramlist(); |
9b8424d5 | 2211 | new_block->offset = find_ram_offset(new_block->max_length); |
e1c57ab8 PB |
2212 | |
2213 | if (!new_block->host) { | |
2214 | if (xen_enabled()) { | |
9b8424d5 | 2215 | xen_ram_alloc(new_block->offset, new_block->max_length, |
37aa7a0e MA |
2216 | new_block->mr, &err); |
2217 | if (err) { | |
2218 | error_propagate(errp, err); | |
2219 | qemu_mutex_unlock_ramlist(); | |
39c350ee | 2220 | return; |
37aa7a0e | 2221 | } |
e1c57ab8 | 2222 | } else { |
9b8424d5 | 2223 | new_block->host = phys_mem_alloc(new_block->max_length, |
06329cce | 2224 | &new_block->mr->align, shared); |
39228250 | 2225 | if (!new_block->host) { |
ef701d7b HT |
2226 | error_setg_errno(errp, errno, |
2227 | "cannot set up guest memory '%s'", | |
2228 | memory_region_name(new_block->mr)); | |
2229 | qemu_mutex_unlock_ramlist(); | |
39c350ee | 2230 | return; |
39228250 | 2231 | } |
9b8424d5 | 2232 | memory_try_enable_merging(new_block->host, new_block->max_length); |
6977dfe6 | 2233 | } |
c902760f | 2234 | } |
94a6b54f | 2235 | |
dd631697 LZ |
2236 | new_ram_size = MAX(old_ram_size, |
2237 | (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS); | |
2238 | if (new_ram_size > old_ram_size) { | |
5b82b703 | 2239 | dirty_memory_extend(old_ram_size, new_ram_size); |
dd631697 | 2240 | } |
0d53d9fe MD |
2241 | /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ, |
2242 | * QLIST (which has an RCU-friendly variant) does not have insertion at | |
2243 | * tail, so save the last element in last_block. | |
2244 | */ | |
99e15582 | 2245 | RAMBLOCK_FOREACH(block) { |
0d53d9fe | 2246 | last_block = block; |
9b8424d5 | 2247 | if (block->max_length < new_block->max_length) { |
abb26d63 PB |
2248 | break; |
2249 | } | |
2250 | } | |
2251 | if (block) { | |
0dc3f44a | 2252 | QLIST_INSERT_BEFORE_RCU(block, new_block, next); |
0d53d9fe | 2253 | } else if (last_block) { |
0dc3f44a | 2254 | QLIST_INSERT_AFTER_RCU(last_block, new_block, next); |
0d53d9fe | 2255 | } else { /* list is empty */ |
0dc3f44a | 2256 | QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); |
abb26d63 | 2257 | } |
0d6d3c87 | 2258 | ram_list.mru_block = NULL; |
94a6b54f | 2259 | |
0dc3f44a MD |
2260 | /* Write list before version */ |
2261 | smp_wmb(); | |
f798b07f | 2262 | ram_list.version++; |
b2a8658e | 2263 | qemu_mutex_unlock_ramlist(); |
f798b07f | 2264 | |
9b8424d5 | 2265 | cpu_physical_memory_set_dirty_range(new_block->offset, |
58d2707e PB |
2266 | new_block->used_length, |
2267 | DIRTY_CLIENTS_ALL); | |
94a6b54f | 2268 | |
a904c911 PB |
2269 | if (new_block->host) { |
2270 | qemu_ram_setup_dump(new_block->host, new_block->max_length); | |
2271 | qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); | |
a028edea AB |
2272 | /* |
2273 | * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU | |
2274 | * Configure it unless the machine is a qtest server, in which case | |
2275 | * KVM is not used and it may be forked (eg for fuzzing purposes). | |
2276 | */ | |
2277 | if (!qtest_enabled()) { | |
2278 | qemu_madvise(new_block->host, new_block->max_length, | |
2279 | QEMU_MADV_DONTFORK); | |
2280 | } | |
0987d735 | 2281 | ram_block_notify_add(new_block->host, new_block->max_length); |
e1c57ab8 | 2282 | } |
94a6b54f | 2283 | } |
e9a1ab19 | 2284 | |
d5dbde46 | 2285 | #ifdef CONFIG_POSIX |
38b3362d | 2286 | RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr, |
cbfc0171 | 2287 | uint32_t ram_flags, int fd, |
38b3362d | 2288 | Error **errp) |
e1c57ab8 PB |
2289 | { |
2290 | RAMBlock *new_block; | |
ef701d7b | 2291 | Error *local_err = NULL; |
8d37b030 | 2292 | int64_t file_size; |
e1c57ab8 | 2293 | |
a4de8552 JH |
2294 | /* Just support these ram flags by now. */ |
2295 | assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0); | |
2296 | ||
e1c57ab8 | 2297 | if (xen_enabled()) { |
7f56e740 | 2298 | error_setg(errp, "-mem-path not supported with Xen"); |
528f46af | 2299 | return NULL; |
e1c57ab8 PB |
2300 | } |
2301 | ||
e45e7ae2 MAL |
2302 | if (kvm_enabled() && !kvm_has_sync_mmu()) { |
2303 | error_setg(errp, | |
2304 | "host lacks kvm mmu notifiers, -mem-path unsupported"); | |
2305 | return NULL; | |
2306 | } | |
2307 | ||
e1c57ab8 PB |
2308 | if (phys_mem_alloc != qemu_anon_ram_alloc) { |
2309 | /* | |
2310 | * file_ram_alloc() needs to allocate just like | |
2311 | * phys_mem_alloc, but we haven't bothered to provide | |
2312 | * a hook there. | |
2313 | */ | |
7f56e740 PB |
2314 | error_setg(errp, |
2315 | "-mem-path not supported with this accelerator"); | |
528f46af | 2316 | return NULL; |
e1c57ab8 PB |
2317 | } |
2318 | ||
4ed023ce | 2319 | size = HOST_PAGE_ALIGN(size); |
8d37b030 MAL |
2320 | file_size = get_file_size(fd); |
2321 | if (file_size > 0 && file_size < size) { | |
c001c3b3 | 2322 | error_setg(errp, "backing store size 0x%" PRIx64 |
8d37b030 | 2323 | " does not match 'size' option 0x" RAM_ADDR_FMT, |
c001c3b3 | 2324 | file_size, size); |
8d37b030 MAL |
2325 | return NULL; |
2326 | } | |
2327 | ||
e1c57ab8 PB |
2328 | new_block = g_malloc0(sizeof(*new_block)); |
2329 | new_block->mr = mr; | |
9b8424d5 MT |
2330 | new_block->used_length = size; |
2331 | new_block->max_length = size; | |
cbfc0171 | 2332 | new_block->flags = ram_flags; |
8d37b030 | 2333 | new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp); |
7f56e740 PB |
2334 | if (!new_block->host) { |
2335 | g_free(new_block); | |
528f46af | 2336 | return NULL; |
7f56e740 PB |
2337 | } |
2338 | ||
cbfc0171 | 2339 | ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED); |
ef701d7b HT |
2340 | if (local_err) { |
2341 | g_free(new_block); | |
2342 | error_propagate(errp, local_err); | |
528f46af | 2343 | return NULL; |
ef701d7b | 2344 | } |
528f46af | 2345 | return new_block; |
38b3362d MAL |
2346 | |
2347 | } | |
2348 | ||
2349 | ||
2350 | RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, | |
cbfc0171 | 2351 | uint32_t ram_flags, const char *mem_path, |
38b3362d MAL |
2352 | Error **errp) |
2353 | { | |
2354 | int fd; | |
2355 | bool created; | |
2356 | RAMBlock *block; | |
2357 | ||
2358 | fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp); | |
2359 | if (fd < 0) { | |
2360 | return NULL; | |
2361 | } | |
2362 | ||
cbfc0171 | 2363 | block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp); |
38b3362d MAL |
2364 | if (!block) { |
2365 | if (created) { | |
2366 | unlink(mem_path); | |
2367 | } | |
2368 | close(fd); | |
2369 | return NULL; | |
2370 | } | |
2371 | ||
2372 | return block; | |
e1c57ab8 | 2373 | } |
0b183fc8 | 2374 | #endif |
e1c57ab8 | 2375 | |
62be4e3a | 2376 | static |
528f46af FZ |
2377 | RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size, |
2378 | void (*resized)(const char*, | |
2379 | uint64_t length, | |
2380 | void *host), | |
06329cce | 2381 | void *host, bool resizeable, bool share, |
528f46af | 2382 | MemoryRegion *mr, Error **errp) |
e1c57ab8 PB |
2383 | { |
2384 | RAMBlock *new_block; | |
ef701d7b | 2385 | Error *local_err = NULL; |
e1c57ab8 | 2386 | |
4ed023ce DDAG |
2387 | size = HOST_PAGE_ALIGN(size); |
2388 | max_size = HOST_PAGE_ALIGN(max_size); | |
e1c57ab8 PB |
2389 | new_block = g_malloc0(sizeof(*new_block)); |
2390 | new_block->mr = mr; | |
62be4e3a | 2391 | new_block->resized = resized; |
9b8424d5 MT |
2392 | new_block->used_length = size; |
2393 | new_block->max_length = max_size; | |
62be4e3a | 2394 | assert(max_size >= size); |
e1c57ab8 | 2395 | new_block->fd = -1; |
038adc2f | 2396 | new_block->page_size = qemu_real_host_page_size; |
e1c57ab8 PB |
2397 | new_block->host = host; |
2398 | if (host) { | |
7bd4f430 | 2399 | new_block->flags |= RAM_PREALLOC; |
e1c57ab8 | 2400 | } |
62be4e3a MT |
2401 | if (resizeable) { |
2402 | new_block->flags |= RAM_RESIZEABLE; | |
2403 | } | |
06329cce | 2404 | ram_block_add(new_block, &local_err, share); |
ef701d7b HT |
2405 | if (local_err) { |
2406 | g_free(new_block); | |
2407 | error_propagate(errp, local_err); | |
528f46af | 2408 | return NULL; |
ef701d7b | 2409 | } |
528f46af | 2410 | return new_block; |
e1c57ab8 PB |
2411 | } |
2412 | ||
528f46af | 2413 | RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, |
62be4e3a MT |
2414 | MemoryRegion *mr, Error **errp) |
2415 | { | |
06329cce MA |
2416 | return qemu_ram_alloc_internal(size, size, NULL, host, false, |
2417 | false, mr, errp); | |
62be4e3a MT |
2418 | } |
2419 | ||
06329cce MA |
2420 | RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share, |
2421 | MemoryRegion *mr, Error **errp) | |
6977dfe6 | 2422 | { |
06329cce MA |
2423 | return qemu_ram_alloc_internal(size, size, NULL, NULL, false, |
2424 | share, mr, errp); | |
62be4e3a MT |
2425 | } |
2426 | ||
528f46af | 2427 | RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz, |
62be4e3a MT |
2428 | void (*resized)(const char*, |
2429 | uint64_t length, | |
2430 | void *host), | |
2431 | MemoryRegion *mr, Error **errp) | |
2432 | { | |
06329cce MA |
2433 | return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, |
2434 | false, mr, errp); | |
6977dfe6 YT |
2435 | } |
2436 | ||
43771539 PB |
2437 | static void reclaim_ramblock(RAMBlock *block) |
2438 | { | |
2439 | if (block->flags & RAM_PREALLOC) { | |
2440 | ; | |
2441 | } else if (xen_enabled()) { | |
2442 | xen_invalidate_map_cache_entry(block->host); | |
2443 | #ifndef _WIN32 | |
2444 | } else if (block->fd >= 0) { | |
53adb9d4 | 2445 | qemu_ram_munmap(block->fd, block->host, block->max_length); |
43771539 PB |
2446 | close(block->fd); |
2447 | #endif | |
2448 | } else { | |
2449 | qemu_anon_ram_free(block->host, block->max_length); | |
2450 | } | |
2451 | g_free(block); | |
2452 | } | |
2453 | ||
f1060c55 | 2454 | void qemu_ram_free(RAMBlock *block) |
e9a1ab19 | 2455 | { |
85bc2a15 MAL |
2456 | if (!block) { |
2457 | return; | |
2458 | } | |
2459 | ||
0987d735 PB |
2460 | if (block->host) { |
2461 | ram_block_notify_remove(block->host, block->max_length); | |
2462 | } | |
2463 | ||
b2a8658e | 2464 | qemu_mutex_lock_ramlist(); |
f1060c55 FZ |
2465 | QLIST_REMOVE_RCU(block, next); |
2466 | ram_list.mru_block = NULL; | |
2467 | /* Write list before version */ | |
2468 | smp_wmb(); | |
2469 | ram_list.version++; | |
2470 | call_rcu(block, reclaim_ramblock, rcu); | |
b2a8658e | 2471 | qemu_mutex_unlock_ramlist(); |
e9a1ab19 FB |
2472 | } |
2473 | ||
cd19cfa2 HY |
2474 | #ifndef _WIN32 |
2475 | void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) | |
2476 | { | |
2477 | RAMBlock *block; | |
2478 | ram_addr_t offset; | |
2479 | int flags; | |
2480 | void *area, *vaddr; | |
2481 | ||
99e15582 | 2482 | RAMBLOCK_FOREACH(block) { |
cd19cfa2 | 2483 | offset = addr - block->offset; |
9b8424d5 | 2484 | if (offset < block->max_length) { |
1240be24 | 2485 | vaddr = ramblock_ptr(block, offset); |
7bd4f430 | 2486 | if (block->flags & RAM_PREALLOC) { |
cd19cfa2 | 2487 | ; |
dfeaf2ab MA |
2488 | } else if (xen_enabled()) { |
2489 | abort(); | |
cd19cfa2 HY |
2490 | } else { |
2491 | flags = MAP_FIXED; | |
3435f395 | 2492 | if (block->fd >= 0) { |
dbcb8981 PB |
2493 | flags |= (block->flags & RAM_SHARED ? |
2494 | MAP_SHARED : MAP_PRIVATE); | |
3435f395 MA |
2495 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, |
2496 | flags, block->fd, offset); | |
cd19cfa2 | 2497 | } else { |
2eb9fbaa MA |
2498 | /* |
2499 | * Remap needs to match alloc. Accelerators that | |
2500 | * set phys_mem_alloc never remap. If they did, | |
2501 | * we'd need a remap hook here. | |
2502 | */ | |
2503 | assert(phys_mem_alloc == qemu_anon_ram_alloc); | |
2504 | ||
cd19cfa2 HY |
2505 | flags |= MAP_PRIVATE | MAP_ANONYMOUS; |
2506 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, | |
2507 | flags, -1, 0); | |
cd19cfa2 HY |
2508 | } |
2509 | if (area != vaddr) { | |
493d89bf AF |
2510 | error_report("Could not remap addr: " |
2511 | RAM_ADDR_FMT "@" RAM_ADDR_FMT "", | |
2512 | length, addr); | |
cd19cfa2 HY |
2513 | exit(1); |
2514 | } | |
8490fc78 | 2515 | memory_try_enable_merging(vaddr, length); |
ddb97f1d | 2516 | qemu_ram_setup_dump(vaddr, length); |
cd19cfa2 | 2517 | } |
cd19cfa2 HY |
2518 | } |
2519 | } | |
2520 | } | |
2521 | #endif /* !_WIN32 */ | |
2522 | ||
1b5ec234 | 2523 | /* Return a host pointer to ram allocated with qemu_ram_alloc. |
ae3a7047 MD |
2524 | * This should not be used for general purpose DMA. Use address_space_map |
2525 | * or address_space_rw instead. For local memory (e.g. video ram) that the | |
2526 | * device owns, use memory_region_get_ram_ptr. | |
0dc3f44a | 2527 | * |
49b24afc | 2528 | * Called within RCU critical section. |
1b5ec234 | 2529 | */ |
0878d0e1 | 2530 | void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr) |
1b5ec234 | 2531 | { |
3655cb9c GA |
2532 | RAMBlock *block = ram_block; |
2533 | ||
2534 | if (block == NULL) { | |
2535 | block = qemu_get_ram_block(addr); | |
0878d0e1 | 2536 | addr -= block->offset; |
3655cb9c | 2537 | } |
ae3a7047 MD |
2538 | |
2539 | if (xen_enabled() && block->host == NULL) { | |
0d6d3c87 PB |
2540 | /* We need to check if the requested address is in the RAM |
2541 | * because we don't want to map the entire memory in QEMU. | |
2542 | * In that case just map until the end of the page. | |
2543 | */ | |
2544 | if (block->offset == 0) { | |
1ff7c598 | 2545 | return xen_map_cache(addr, 0, 0, false); |
0d6d3c87 | 2546 | } |
ae3a7047 | 2547 | |
1ff7c598 | 2548 | block->host = xen_map_cache(block->offset, block->max_length, 1, false); |
0d6d3c87 | 2549 | } |
0878d0e1 | 2550 | return ramblock_ptr(block, addr); |
dc828ca1 PB |
2551 | } |
2552 | ||
0878d0e1 | 2553 | /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr |
ae3a7047 | 2554 | * but takes a size argument. |
0dc3f44a | 2555 | * |
e81bcda5 | 2556 | * Called within RCU critical section. |
ae3a7047 | 2557 | */ |
3655cb9c | 2558 | static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr, |
f5aa69bd | 2559 | hwaddr *size, bool lock) |
38bee5dc | 2560 | { |
3655cb9c | 2561 | RAMBlock *block = ram_block; |
8ab934f9 SS |
2562 | if (*size == 0) { |
2563 | return NULL; | |
2564 | } | |
e81bcda5 | 2565 | |
3655cb9c GA |
2566 | if (block == NULL) { |
2567 | block = qemu_get_ram_block(addr); | |
0878d0e1 | 2568 | addr -= block->offset; |
3655cb9c | 2569 | } |
0878d0e1 | 2570 | *size = MIN(*size, block->max_length - addr); |
e81bcda5 PB |
2571 | |
2572 | if (xen_enabled() && block->host == NULL) { | |
2573 | /* We need to check if the requested address is in the RAM | |
2574 | * because we don't want to map the entire memory in QEMU. | |
2575 | * In that case just map the requested area. | |
2576 | */ | |
2577 | if (block->offset == 0) { | |
f5aa69bd | 2578 | return xen_map_cache(addr, *size, lock, lock); |
38bee5dc SS |
2579 | } |
2580 | ||
f5aa69bd | 2581 | block->host = xen_map_cache(block->offset, block->max_length, 1, lock); |
38bee5dc | 2582 | } |
e81bcda5 | 2583 | |
0878d0e1 | 2584 | return ramblock_ptr(block, addr); |
38bee5dc SS |
2585 | } |
2586 | ||
f90bb71b DDAG |
2587 | /* Return the offset of a hostpointer within a ramblock */ |
2588 | ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host) | |
2589 | { | |
2590 | ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host; | |
2591 | assert((uintptr_t)host >= (uintptr_t)rb->host); | |
2592 | assert(res < rb->max_length); | |
2593 | ||
2594 | return res; | |
2595 | } | |
2596 | ||
422148d3 DDAG |
2597 | /* |
2598 | * Translates a host ptr back to a RAMBlock, a ram_addr and an offset | |
2599 | * in that RAMBlock. | |
2600 | * | |
2601 | * ptr: Host pointer to look up | |
2602 | * round_offset: If true round the result offset down to a page boundary | |
2603 | * *ram_addr: set to result ram_addr | |
2604 | * *offset: set to result offset within the RAMBlock | |
2605 | * | |
2606 | * Returns: RAMBlock (or NULL if not found) | |
ae3a7047 MD |
2607 | * |
2608 | * By the time this function returns, the returned pointer is not protected | |
2609 | * by RCU anymore. If the caller is not within an RCU critical section and | |
2610 | * does not hold the iothread lock, it must have other means of protecting the | |
2611 | * pointer, such as a reference to the region that includes the incoming | |
2612 | * ram_addr_t. | |
2613 | */ | |
422148d3 | 2614 | RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, |
422148d3 | 2615 | ram_addr_t *offset) |
5579c7f3 | 2616 | { |
94a6b54f PB |
2617 | RAMBlock *block; |
2618 | uint8_t *host = ptr; | |
2619 | ||
868bb33f | 2620 | if (xen_enabled()) { |
f615f396 | 2621 | ram_addr_t ram_addr; |
694ea274 | 2622 | RCU_READ_LOCK_GUARD(); |
f615f396 PB |
2623 | ram_addr = xen_ram_addr_from_mapcache(ptr); |
2624 | block = qemu_get_ram_block(ram_addr); | |
422148d3 | 2625 | if (block) { |
d6b6aec4 | 2626 | *offset = ram_addr - block->offset; |
422148d3 | 2627 | } |
422148d3 | 2628 | return block; |
712c2b41 SS |
2629 | } |
2630 | ||
694ea274 | 2631 | RCU_READ_LOCK_GUARD(); |
0dc3f44a | 2632 | block = atomic_rcu_read(&ram_list.mru_block); |
9b8424d5 | 2633 | if (block && block->host && host - block->host < block->max_length) { |
23887b79 PB |
2634 | goto found; |
2635 | } | |
2636 | ||
99e15582 | 2637 | RAMBLOCK_FOREACH(block) { |
432d268c JN |
2638 | /* This case append when the block is not mapped. */ |
2639 | if (block->host == NULL) { | |
2640 | continue; | |
2641 | } | |
9b8424d5 | 2642 | if (host - block->host < block->max_length) { |
23887b79 | 2643 | goto found; |
f471a17e | 2644 | } |
94a6b54f | 2645 | } |
432d268c | 2646 | |
1b5ec234 | 2647 | return NULL; |
23887b79 PB |
2648 | |
2649 | found: | |
422148d3 DDAG |
2650 | *offset = (host - block->host); |
2651 | if (round_offset) { | |
2652 | *offset &= TARGET_PAGE_MASK; | |
2653 | } | |
422148d3 DDAG |
2654 | return block; |
2655 | } | |
2656 | ||
e3dd7493 DDAG |
2657 | /* |
2658 | * Finds the named RAMBlock | |
2659 | * | |
2660 | * name: The name of RAMBlock to find | |
2661 | * | |
2662 | * Returns: RAMBlock (or NULL if not found) | |
2663 | */ | |
2664 | RAMBlock *qemu_ram_block_by_name(const char *name) | |
2665 | { | |
2666 | RAMBlock *block; | |
2667 | ||
99e15582 | 2668 | RAMBLOCK_FOREACH(block) { |
e3dd7493 DDAG |
2669 | if (!strcmp(name, block->idstr)) { |
2670 | return block; | |
2671 | } | |
2672 | } | |
2673 | ||
2674 | return NULL; | |
2675 | } | |
2676 | ||
422148d3 DDAG |
2677 | /* Some of the softmmu routines need to translate from a host pointer |
2678 | (typically a TLB entry) back to a ram offset. */ | |
07bdaa41 | 2679 | ram_addr_t qemu_ram_addr_from_host(void *ptr) |
422148d3 DDAG |
2680 | { |
2681 | RAMBlock *block; | |
f615f396 | 2682 | ram_addr_t offset; |
422148d3 | 2683 | |
f615f396 | 2684 | block = qemu_ram_block_from_host(ptr, false, &offset); |
422148d3 | 2685 | if (!block) { |
07bdaa41 | 2686 | return RAM_ADDR_INVALID; |
422148d3 DDAG |
2687 | } |
2688 | ||
07bdaa41 | 2689 | return block->offset + offset; |
e890261f | 2690 | } |
f471a17e | 2691 | |
0f459d16 | 2692 | /* Generate a debug exception if a watchpoint has been hit. */ |
0026348b DH |
2693 | void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, |
2694 | MemTxAttrs attrs, int flags, uintptr_t ra) | |
0f459d16 | 2695 | { |
568496c0 | 2696 | CPUClass *cc = CPU_GET_CLASS(cpu); |
a1d1bb31 | 2697 | CPUWatchpoint *wp; |
0f459d16 | 2698 | |
5aa1ef71 | 2699 | assert(tcg_enabled()); |
ff4700b0 | 2700 | if (cpu->watchpoint_hit) { |
50b107c5 RH |
2701 | /* |
2702 | * We re-entered the check after replacing the TB. | |
2703 | * Now raise the debug interrupt so that it will | |
2704 | * trigger after the current instruction. | |
2705 | */ | |
2706 | qemu_mutex_lock_iothread(); | |
93afeade | 2707 | cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG); |
50b107c5 | 2708 | qemu_mutex_unlock_iothread(); |
06d55cc1 AL |
2709 | return; |
2710 | } | |
0026348b DH |
2711 | |
2712 | addr = cc->adjust_watchpoint_address(cpu, addr, len); | |
ff4700b0 | 2713 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
56ad8b00 | 2714 | if (watchpoint_address_matches(wp, addr, len) |
05068c0d | 2715 | && (wp->flags & flags)) { |
08225676 PM |
2716 | if (flags == BP_MEM_READ) { |
2717 | wp->flags |= BP_WATCHPOINT_HIT_READ; | |
2718 | } else { | |
2719 | wp->flags |= BP_WATCHPOINT_HIT_WRITE; | |
2720 | } | |
0026348b | 2721 | wp->hitaddr = MAX(addr, wp->vaddr); |
66b9b43c | 2722 | wp->hitattrs = attrs; |
ff4700b0 | 2723 | if (!cpu->watchpoint_hit) { |
568496c0 SF |
2724 | if (wp->flags & BP_CPU && |
2725 | !cc->debug_check_watchpoint(cpu, wp)) { | |
2726 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
2727 | continue; | |
2728 | } | |
ff4700b0 | 2729 | cpu->watchpoint_hit = wp; |
a5e99826 | 2730 | |
0ac20318 | 2731 | mmap_lock(); |
ae57db63 | 2732 | tb_check_watchpoint(cpu, ra); |
6e140f28 | 2733 | if (wp->flags & BP_STOP_BEFORE_ACCESS) { |
27103424 | 2734 | cpu->exception_index = EXCP_DEBUG; |
0ac20318 | 2735 | mmap_unlock(); |
0026348b | 2736 | cpu_loop_exit_restore(cpu, ra); |
6e140f28 | 2737 | } else { |
9b990ee5 RH |
2738 | /* Force execution of one insn next time. */ |
2739 | cpu->cflags_next_tb = 1 | curr_cflags(); | |
0ac20318 | 2740 | mmap_unlock(); |
0026348b DH |
2741 | if (ra) { |
2742 | cpu_restore_state(cpu, ra, true); | |
2743 | } | |
6886b980 | 2744 | cpu_loop_exit_noexc(cpu); |
6e140f28 | 2745 | } |
06d55cc1 | 2746 | } |
6e140f28 AL |
2747 | } else { |
2748 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
0f459d16 PB |
2749 | } |
2750 | } | |
2751 | } | |
2752 | ||
b2a44fca | 2753 | static MemTxResult flatview_read(FlatView *fv, hwaddr addr, |
a152be43 | 2754 | MemTxAttrs attrs, void *buf, hwaddr len); |
16620684 | 2755 | static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, |
a152be43 | 2756 | const void *buf, hwaddr len); |
0c249ff7 | 2757 | static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, |
eace72b7 | 2758 | bool is_write, MemTxAttrs attrs); |
16620684 | 2759 | |
f25a49e0 PM |
2760 | static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data, |
2761 | unsigned len, MemTxAttrs attrs) | |
db7b5426 | 2762 | { |
acc9d80b | 2763 | subpage_t *subpage = opaque; |
ff6cff75 | 2764 | uint8_t buf[8]; |
5c9eb028 | 2765 | MemTxResult res; |
791af8c8 | 2766 | |
db7b5426 | 2767 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2768 | printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__, |
acc9d80b | 2769 | subpage, len, addr); |
db7b5426 | 2770 | #endif |
16620684 | 2771 | res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len); |
5c9eb028 PM |
2772 | if (res) { |
2773 | return res; | |
f25a49e0 | 2774 | } |
6d3ede54 PM |
2775 | *data = ldn_p(buf, len); |
2776 | return MEMTX_OK; | |
db7b5426 BS |
2777 | } |
2778 | ||
f25a49e0 PM |
2779 | static MemTxResult subpage_write(void *opaque, hwaddr addr, |
2780 | uint64_t value, unsigned len, MemTxAttrs attrs) | |
db7b5426 | 2781 | { |
acc9d80b | 2782 | subpage_t *subpage = opaque; |
ff6cff75 | 2783 | uint8_t buf[8]; |
acc9d80b | 2784 | |
db7b5426 | 2785 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2786 | printf("%s: subpage %p len %u addr " TARGET_FMT_plx |
acc9d80b JK |
2787 | " value %"PRIx64"\n", |
2788 | __func__, subpage, len, addr, value); | |
db7b5426 | 2789 | #endif |
6d3ede54 | 2790 | stn_p(buf, len, value); |
16620684 | 2791 | return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len); |
db7b5426 BS |
2792 | } |
2793 | ||
c353e4cc | 2794 | static bool subpage_accepts(void *opaque, hwaddr addr, |
8372d383 PM |
2795 | unsigned len, bool is_write, |
2796 | MemTxAttrs attrs) | |
c353e4cc | 2797 | { |
acc9d80b | 2798 | subpage_t *subpage = opaque; |
c353e4cc | 2799 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2800 | printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n", |
acc9d80b | 2801 | __func__, subpage, is_write ? 'w' : 'r', len, addr); |
c353e4cc PB |
2802 | #endif |
2803 | ||
16620684 | 2804 | return flatview_access_valid(subpage->fv, addr + subpage->base, |
eace72b7 | 2805 | len, is_write, attrs); |
c353e4cc PB |
2806 | } |
2807 | ||
70c68e44 | 2808 | static const MemoryRegionOps subpage_ops = { |
f25a49e0 PM |
2809 | .read_with_attrs = subpage_read, |
2810 | .write_with_attrs = subpage_write, | |
ff6cff75 PB |
2811 | .impl.min_access_size = 1, |
2812 | .impl.max_access_size = 8, | |
2813 | .valid.min_access_size = 1, | |
2814 | .valid.max_access_size = 8, | |
c353e4cc | 2815 | .valid.accepts = subpage_accepts, |
70c68e44 | 2816 | .endianness = DEVICE_NATIVE_ENDIAN, |
db7b5426 BS |
2817 | }; |
2818 | ||
b797ab1a WY |
2819 | static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, |
2820 | uint16_t section) | |
db7b5426 BS |
2821 | { |
2822 | int idx, eidx; | |
2823 | ||
2824 | if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) | |
2825 | return -1; | |
2826 | idx = SUBPAGE_IDX(start); | |
2827 | eidx = SUBPAGE_IDX(end); | |
2828 | #if defined(DEBUG_SUBPAGE) | |
016e9d62 AK |
2829 | printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", |
2830 | __func__, mmio, start, end, idx, eidx, section); | |
db7b5426 | 2831 | #endif |
db7b5426 | 2832 | for (; idx <= eidx; idx++) { |
5312bd8b | 2833 | mmio->sub_section[idx] = section; |
db7b5426 BS |
2834 | } |
2835 | ||
2836 | return 0; | |
2837 | } | |
2838 | ||
16620684 | 2839 | static subpage_t *subpage_init(FlatView *fv, hwaddr base) |
db7b5426 | 2840 | { |
c227f099 | 2841 | subpage_t *mmio; |
db7b5426 | 2842 | |
b797ab1a | 2843 | /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */ |
2615fabd | 2844 | mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t)); |
16620684 | 2845 | mmio->fv = fv; |
1eec614b | 2846 | mmio->base = base; |
2c9b15ca | 2847 | memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, |
b4fefef9 | 2848 | NULL, TARGET_PAGE_SIZE); |
b3b00c78 | 2849 | mmio->iomem.subpage = true; |
db7b5426 | 2850 | #if defined(DEBUG_SUBPAGE) |
016e9d62 AK |
2851 | printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__, |
2852 | mmio, base, TARGET_PAGE_SIZE); | |
db7b5426 | 2853 | #endif |
db7b5426 BS |
2854 | |
2855 | return mmio; | |
2856 | } | |
2857 | ||
16620684 | 2858 | static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr) |
5312bd8b | 2859 | { |
16620684 | 2860 | assert(fv); |
5312bd8b | 2861 | MemoryRegionSection section = { |
16620684 | 2862 | .fv = fv, |
5312bd8b AK |
2863 | .mr = mr, |
2864 | .offset_within_address_space = 0, | |
2865 | .offset_within_region = 0, | |
052e87b0 | 2866 | .size = int128_2_64(), |
5312bd8b AK |
2867 | }; |
2868 | ||
53cb28cb | 2869 | return phys_section_add(map, §ion); |
5312bd8b AK |
2870 | } |
2871 | ||
2d54f194 PM |
2872 | MemoryRegionSection *iotlb_to_section(CPUState *cpu, |
2873 | hwaddr index, MemTxAttrs attrs) | |
aa102231 | 2874 | { |
a54c87b6 PM |
2875 | int asidx = cpu_asidx_from_attrs(cpu, attrs); |
2876 | CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx]; | |
32857f4d | 2877 | AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch); |
79e2b9ae | 2878 | MemoryRegionSection *sections = d->map.sections; |
9d82b5a7 | 2879 | |
2d54f194 | 2880 | return §ions[index & ~TARGET_PAGE_MASK]; |
aa102231 AK |
2881 | } |
2882 | ||
e9179ce1 AK |
2883 | static void io_mem_init(void) |
2884 | { | |
2c9b15ca | 2885 | memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, |
1f6245e5 | 2886 | NULL, UINT64_MAX); |
e9179ce1 AK |
2887 | } |
2888 | ||
8629d3fc | 2889 | AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv) |
00752703 | 2890 | { |
53cb28cb MA |
2891 | AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); |
2892 | uint16_t n; | |
2893 | ||
16620684 | 2894 | n = dummy_section(&d->map, fv, &io_mem_unassigned); |
53cb28cb | 2895 | assert(n == PHYS_SECTION_UNASSIGNED); |
00752703 | 2896 | |
9736e55b | 2897 | d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; |
66a6df1d AK |
2898 | |
2899 | return d; | |
00752703 PB |
2900 | } |
2901 | ||
66a6df1d | 2902 | void address_space_dispatch_free(AddressSpaceDispatch *d) |
79e2b9ae PB |
2903 | { |
2904 | phys_sections_free(&d->map); | |
2905 | g_free(d); | |
2906 | } | |
2907 | ||
9458a9a1 PB |
2908 | static void do_nothing(CPUState *cpu, run_on_cpu_data d) |
2909 | { | |
2910 | } | |
2911 | ||
2912 | static void tcg_log_global_after_sync(MemoryListener *listener) | |
2913 | { | |
2914 | CPUAddressSpace *cpuas; | |
2915 | ||
2916 | /* Wait for the CPU to end the current TB. This avoids the following | |
2917 | * incorrect race: | |
2918 | * | |
2919 | * vCPU migration | |
2920 | * ---------------------- ------------------------- | |
2921 | * TLB check -> slow path | |
2922 | * notdirty_mem_write | |
2923 | * write to RAM | |
2924 | * mark dirty | |
2925 | * clear dirty flag | |
2926 | * TLB check -> fast path | |
2927 | * read memory | |
2928 | * write to RAM | |
2929 | * | |
2930 | * by pushing the migration thread's memory read after the vCPU thread has | |
2931 | * written the memory. | |
2932 | */ | |
86cf9e15 PD |
2933 | if (replay_mode == REPLAY_MODE_NONE) { |
2934 | /* | |
2935 | * VGA can make calls to this function while updating the screen. | |
2936 | * In record/replay mode this causes a deadlock, because | |
2937 | * run_on_cpu waits for rr mutex. Therefore no races are possible | |
2938 | * in this case and no need for making run_on_cpu when | |
2939 | * record/replay is not enabled. | |
2940 | */ | |
2941 | cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); | |
2942 | run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL); | |
2943 | } | |
9458a9a1 PB |
2944 | } |
2945 | ||
1d71148e | 2946 | static void tcg_commit(MemoryListener *listener) |
50c1e149 | 2947 | { |
32857f4d PM |
2948 | CPUAddressSpace *cpuas; |
2949 | AddressSpaceDispatch *d; | |
117712c3 | 2950 | |
f28d0dfd | 2951 | assert(tcg_enabled()); |
117712c3 AK |
2952 | /* since each CPU stores ram addresses in its TLB cache, we must |
2953 | reset the modified entries */ | |
32857f4d PM |
2954 | cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); |
2955 | cpu_reloading_memory_map(); | |
2956 | /* The CPU and TLB are protected by the iothread lock. | |
2957 | * We reload the dispatch pointer now because cpu_reloading_memory_map() | |
2958 | * may have split the RCU critical section. | |
2959 | */ | |
66a6df1d | 2960 | d = address_space_to_dispatch(cpuas->as); |
f35e44e7 | 2961 | atomic_rcu_set(&cpuas->memory_dispatch, d); |
d10eb08f | 2962 | tlb_flush(cpuas->cpu); |
50c1e149 AK |
2963 | } |
2964 | ||
62152b8a AK |
2965 | static void memory_map_init(void) |
2966 | { | |
7267c094 | 2967 | system_memory = g_malloc(sizeof(*system_memory)); |
03f49957 | 2968 | |
57271d63 | 2969 | memory_region_init(system_memory, NULL, "system", UINT64_MAX); |
7dca8043 | 2970 | address_space_init(&address_space_memory, system_memory, "memory"); |
309cb471 | 2971 | |
7267c094 | 2972 | system_io = g_malloc(sizeof(*system_io)); |
3bb28b72 JK |
2973 | memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", |
2974 | 65536); | |
7dca8043 | 2975 | address_space_init(&address_space_io, system_io, "I/O"); |
62152b8a AK |
2976 | } |
2977 | ||
2978 | MemoryRegion *get_system_memory(void) | |
2979 | { | |
2980 | return system_memory; | |
2981 | } | |
2982 | ||
309cb471 AK |
2983 | MemoryRegion *get_system_io(void) |
2984 | { | |
2985 | return system_io; | |
2986 | } | |
2987 | ||
e2eef170 PB |
2988 | #endif /* !defined(CONFIG_USER_ONLY) */ |
2989 | ||
13eb76e0 FB |
2990 | /* physical memory access (slow version, mainly for debug) */ |
2991 | #if defined(CONFIG_USER_ONLY) | |
f17ec444 | 2992 | int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, |
28c80bfe | 2993 | void *ptr, target_ulong len, bool is_write) |
13eb76e0 | 2994 | { |
0c249ff7 LZ |
2995 | int flags; |
2996 | target_ulong l, page; | |
53a5960a | 2997 | void * p; |
d7ef71ef | 2998 | uint8_t *buf = ptr; |
13eb76e0 FB |
2999 | |
3000 | while (len > 0) { | |
3001 | page = addr & TARGET_PAGE_MASK; | |
3002 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3003 | if (l > len) | |
3004 | l = len; | |
3005 | flags = page_get_flags(page); | |
3006 | if (!(flags & PAGE_VALID)) | |
a68fe89c | 3007 | return -1; |
13eb76e0 FB |
3008 | if (is_write) { |
3009 | if (!(flags & PAGE_WRITE)) | |
a68fe89c | 3010 | return -1; |
579a97f7 | 3011 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 3012 | if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) |
a68fe89c | 3013 | return -1; |
72fb7daa AJ |
3014 | memcpy(p, buf, l); |
3015 | unlock_user(p, addr, l); | |
13eb76e0 FB |
3016 | } else { |
3017 | if (!(flags & PAGE_READ)) | |
a68fe89c | 3018 | return -1; |
579a97f7 | 3019 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 3020 | if (!(p = lock_user(VERIFY_READ, addr, l, 1))) |
a68fe89c | 3021 | return -1; |
72fb7daa | 3022 | memcpy(buf, p, l); |
5b257578 | 3023 | unlock_user(p, addr, 0); |
13eb76e0 FB |
3024 | } |
3025 | len -= l; | |
3026 | buf += l; | |
3027 | addr += l; | |
3028 | } | |
a68fe89c | 3029 | return 0; |
13eb76e0 | 3030 | } |
8df1cd07 | 3031 | |
13eb76e0 | 3032 | #else |
51d7a9eb | 3033 | |
845b6214 | 3034 | static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, |
a8170e5e | 3035 | hwaddr length) |
51d7a9eb | 3036 | { |
e87f7778 | 3037 | uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr); |
0878d0e1 PB |
3038 | addr += memory_region_get_ram_addr(mr); |
3039 | ||
e87f7778 PB |
3040 | /* No early return if dirty_log_mask is or becomes 0, because |
3041 | * cpu_physical_memory_set_dirty_range will still call | |
3042 | * xen_modified_memory. | |
3043 | */ | |
3044 | if (dirty_log_mask) { | |
3045 | dirty_log_mask = | |
3046 | cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask); | |
3047 | } | |
3048 | if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) { | |
5aa1ef71 | 3049 | assert(tcg_enabled()); |
e87f7778 PB |
3050 | tb_invalidate_phys_range(addr, addr + length); |
3051 | dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); | |
51d7a9eb | 3052 | } |
e87f7778 | 3053 | cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask); |
51d7a9eb AP |
3054 | } |
3055 | ||
047be4ed SH |
3056 | void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size) |
3057 | { | |
3058 | /* | |
3059 | * In principle this function would work on other memory region types too, | |
3060 | * but the ROM device use case is the only one where this operation is | |
3061 | * necessary. Other memory regions should use the | |
3062 | * address_space_read/write() APIs. | |
3063 | */ | |
3064 | assert(memory_region_is_romd(mr)); | |
3065 | ||
3066 | invalidate_and_set_dirty(mr, addr, size); | |
3067 | } | |
3068 | ||
23326164 | 3069 | static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) |
82f2563f | 3070 | { |
e1622f4b | 3071 | unsigned access_size_max = mr->ops->valid.max_access_size; |
23326164 RH |
3072 | |
3073 | /* Regions are assumed to support 1-4 byte accesses unless | |
3074 | otherwise specified. */ | |
23326164 RH |
3075 | if (access_size_max == 0) { |
3076 | access_size_max = 4; | |
3077 | } | |
3078 | ||
3079 | /* Bound the maximum access by the alignment of the address. */ | |
3080 | if (!mr->ops->impl.unaligned) { | |
3081 | unsigned align_size_max = addr & -addr; | |
3082 | if (align_size_max != 0 && align_size_max < access_size_max) { | |
3083 | access_size_max = align_size_max; | |
3084 | } | |
82f2563f | 3085 | } |
23326164 RH |
3086 | |
3087 | /* Don't attempt accesses larger than the maximum. */ | |
3088 | if (l > access_size_max) { | |
3089 | l = access_size_max; | |
82f2563f | 3090 | } |
6554f5c0 | 3091 | l = pow2floor(l); |
23326164 RH |
3092 | |
3093 | return l; | |
82f2563f PB |
3094 | } |
3095 | ||
4840f10e | 3096 | static bool prepare_mmio_access(MemoryRegion *mr) |
125b3806 | 3097 | { |
4840f10e JK |
3098 | bool unlocked = !qemu_mutex_iothread_locked(); |
3099 | bool release_lock = false; | |
3100 | ||
3101 | if (unlocked && mr->global_locking) { | |
3102 | qemu_mutex_lock_iothread(); | |
3103 | unlocked = false; | |
3104 | release_lock = true; | |
3105 | } | |
125b3806 | 3106 | if (mr->flush_coalesced_mmio) { |
4840f10e JK |
3107 | if (unlocked) { |
3108 | qemu_mutex_lock_iothread(); | |
3109 | } | |
125b3806 | 3110 | qemu_flush_coalesced_mmio_buffer(); |
4840f10e JK |
3111 | if (unlocked) { |
3112 | qemu_mutex_unlock_iothread(); | |
3113 | } | |
125b3806 | 3114 | } |
4840f10e JK |
3115 | |
3116 | return release_lock; | |
125b3806 PB |
3117 | } |
3118 | ||
a203ac70 | 3119 | /* Called within RCU critical section. */ |
16620684 AK |
3120 | static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr, |
3121 | MemTxAttrs attrs, | |
a152be43 | 3122 | const void *ptr, |
0c249ff7 | 3123 | hwaddr len, hwaddr addr1, |
16620684 | 3124 | hwaddr l, MemoryRegion *mr) |
13eb76e0 | 3125 | { |
20804676 | 3126 | uint8_t *ram_ptr; |
791af8c8 | 3127 | uint64_t val; |
3b643495 | 3128 | MemTxResult result = MEMTX_OK; |
4840f10e | 3129 | bool release_lock = false; |
a152be43 | 3130 | const uint8_t *buf = ptr; |
3b46e624 | 3131 | |
a203ac70 | 3132 | for (;;) { |
eb7eeb88 PB |
3133 | if (!memory_access_is_direct(mr, true)) { |
3134 | release_lock |= prepare_mmio_access(mr); | |
3135 | l = memory_access_size(mr, l, addr1); | |
3136 | /* XXX: could force current_cpu to NULL to avoid | |
3137 | potential bugs */ | |
9bf825bf | 3138 | val = ldn_he_p(buf, l); |
3d9e7c3e | 3139 | result |= memory_region_dispatch_write(mr, addr1, val, |
9bf825bf | 3140 | size_memop(l), attrs); |
13eb76e0 | 3141 | } else { |
eb7eeb88 | 3142 | /* RAM case */ |
20804676 PMD |
3143 | ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false); |
3144 | memcpy(ram_ptr, buf, l); | |
eb7eeb88 | 3145 | invalidate_and_set_dirty(mr, addr1, l); |
13eb76e0 | 3146 | } |
4840f10e JK |
3147 | |
3148 | if (release_lock) { | |
3149 | qemu_mutex_unlock_iothread(); | |
3150 | release_lock = false; | |
3151 | } | |
3152 | ||
13eb76e0 FB |
3153 | len -= l; |
3154 | buf += l; | |
3155 | addr += l; | |
a203ac70 PB |
3156 | |
3157 | if (!len) { | |
3158 | break; | |
3159 | } | |
3160 | ||
3161 | l = len; | |
efa99a2f | 3162 | mr = flatview_translate(fv, addr, &addr1, &l, true, attrs); |
13eb76e0 | 3163 | } |
fd8aaa76 | 3164 | |
3b643495 | 3165 | return result; |
13eb76e0 | 3166 | } |
8df1cd07 | 3167 | |
4c6ebbb3 | 3168 | /* Called from RCU critical section. */ |
16620684 | 3169 | static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, |
a152be43 | 3170 | const void *buf, hwaddr len) |
ac1970fb | 3171 | { |
eb7eeb88 | 3172 | hwaddr l; |
eb7eeb88 PB |
3173 | hwaddr addr1; |
3174 | MemoryRegion *mr; | |
3175 | MemTxResult result = MEMTX_OK; | |
eb7eeb88 | 3176 | |
4c6ebbb3 | 3177 | l = len; |
efa99a2f | 3178 | mr = flatview_translate(fv, addr, &addr1, &l, true, attrs); |
4c6ebbb3 PB |
3179 | result = flatview_write_continue(fv, addr, attrs, buf, len, |
3180 | addr1, l, mr); | |
a203ac70 PB |
3181 | |
3182 | return result; | |
3183 | } | |
3184 | ||
3185 | /* Called within RCU critical section. */ | |
16620684 | 3186 | MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, |
a152be43 | 3187 | MemTxAttrs attrs, void *ptr, |
0c249ff7 | 3188 | hwaddr len, hwaddr addr1, hwaddr l, |
16620684 | 3189 | MemoryRegion *mr) |
a203ac70 | 3190 | { |
20804676 | 3191 | uint8_t *ram_ptr; |
a203ac70 PB |
3192 | uint64_t val; |
3193 | MemTxResult result = MEMTX_OK; | |
3194 | bool release_lock = false; | |
a152be43 | 3195 | uint8_t *buf = ptr; |
eb7eeb88 | 3196 | |
a203ac70 | 3197 | for (;;) { |
eb7eeb88 PB |
3198 | if (!memory_access_is_direct(mr, false)) { |
3199 | /* I/O case */ | |
3200 | release_lock |= prepare_mmio_access(mr); | |
3201 | l = memory_access_size(mr, l, addr1); | |
3d9e7c3e | 3202 | result |= memory_region_dispatch_read(mr, addr1, &val, |
9bf825bf TN |
3203 | size_memop(l), attrs); |
3204 | stn_he_p(buf, l, val); | |
eb7eeb88 PB |
3205 | } else { |
3206 | /* RAM case */ | |
20804676 PMD |
3207 | ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false); |
3208 | memcpy(buf, ram_ptr, l); | |
eb7eeb88 PB |
3209 | } |
3210 | ||
3211 | if (release_lock) { | |
3212 | qemu_mutex_unlock_iothread(); | |
3213 | release_lock = false; | |
3214 | } | |
3215 | ||
3216 | len -= l; | |
3217 | buf += l; | |
3218 | addr += l; | |
a203ac70 PB |
3219 | |
3220 | if (!len) { | |
3221 | break; | |
3222 | } | |
3223 | ||
3224 | l = len; | |
efa99a2f | 3225 | mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); |
a203ac70 PB |
3226 | } |
3227 | ||
3228 | return result; | |
3229 | } | |
3230 | ||
b2a44fca PB |
3231 | /* Called from RCU critical section. */ |
3232 | static MemTxResult flatview_read(FlatView *fv, hwaddr addr, | |
a152be43 | 3233 | MemTxAttrs attrs, void *buf, hwaddr len) |
a203ac70 PB |
3234 | { |
3235 | hwaddr l; | |
3236 | hwaddr addr1; | |
3237 | MemoryRegion *mr; | |
eb7eeb88 | 3238 | |
b2a44fca | 3239 | l = len; |
efa99a2f | 3240 | mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); |
b2a44fca PB |
3241 | return flatview_read_continue(fv, addr, attrs, buf, len, |
3242 | addr1, l, mr); | |
ac1970fb AK |
3243 | } |
3244 | ||
b2a44fca | 3245 | MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, |
daa3dda4 | 3246 | MemTxAttrs attrs, void *buf, hwaddr len) |
b2a44fca PB |
3247 | { |
3248 | MemTxResult result = MEMTX_OK; | |
3249 | FlatView *fv; | |
3250 | ||
3251 | if (len > 0) { | |
694ea274 | 3252 | RCU_READ_LOCK_GUARD(); |
b2a44fca PB |
3253 | fv = address_space_to_flatview(as); |
3254 | result = flatview_read(fv, addr, attrs, buf, len); | |
b2a44fca PB |
3255 | } |
3256 | ||
3257 | return result; | |
3258 | } | |
3259 | ||
4c6ebbb3 PB |
3260 | MemTxResult address_space_write(AddressSpace *as, hwaddr addr, |
3261 | MemTxAttrs attrs, | |
daa3dda4 | 3262 | const void *buf, hwaddr len) |
4c6ebbb3 PB |
3263 | { |
3264 | MemTxResult result = MEMTX_OK; | |
3265 | FlatView *fv; | |
3266 | ||
3267 | if (len > 0) { | |
694ea274 | 3268 | RCU_READ_LOCK_GUARD(); |
4c6ebbb3 PB |
3269 | fv = address_space_to_flatview(as); |
3270 | result = flatview_write(fv, addr, attrs, buf, len); | |
4c6ebbb3 PB |
3271 | } |
3272 | ||
3273 | return result; | |
3274 | } | |
3275 | ||
db84fd97 | 3276 | MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, |
daa3dda4 | 3277 | void *buf, hwaddr len, bool is_write) |
db84fd97 PB |
3278 | { |
3279 | if (is_write) { | |
3280 | return address_space_write(as, addr, attrs, buf, len); | |
3281 | } else { | |
3282 | return address_space_read_full(as, addr, attrs, buf, len); | |
3283 | } | |
3284 | } | |
3285 | ||
d7ef71ef | 3286 | void cpu_physical_memory_rw(hwaddr addr, void *buf, |
28c80bfe | 3287 | hwaddr len, bool is_write) |
ac1970fb | 3288 | { |
5c9eb028 PM |
3289 | address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, |
3290 | buf, len, is_write); | |
ac1970fb AK |
3291 | } |
3292 | ||
582b55a9 AG |
3293 | enum write_rom_type { |
3294 | WRITE_DATA, | |
3295 | FLUSH_CACHE, | |
3296 | }; | |
3297 | ||
75693e14 PM |
3298 | static inline MemTxResult address_space_write_rom_internal(AddressSpace *as, |
3299 | hwaddr addr, | |
3300 | MemTxAttrs attrs, | |
daa3dda4 | 3301 | const void *ptr, |
0c249ff7 | 3302 | hwaddr len, |
75693e14 | 3303 | enum write_rom_type type) |
d0ecd2aa | 3304 | { |
149f54b5 | 3305 | hwaddr l; |
20804676 | 3306 | uint8_t *ram_ptr; |
149f54b5 | 3307 | hwaddr addr1; |
5c8a00ce | 3308 | MemoryRegion *mr; |
daa3dda4 | 3309 | const uint8_t *buf = ptr; |
3b46e624 | 3310 | |
694ea274 | 3311 | RCU_READ_LOCK_GUARD(); |
d0ecd2aa | 3312 | while (len > 0) { |
149f54b5 | 3313 | l = len; |
75693e14 | 3314 | mr = address_space_translate(as, addr, &addr1, &l, true, attrs); |
3b46e624 | 3315 | |
5c8a00ce PB |
3316 | if (!(memory_region_is_ram(mr) || |
3317 | memory_region_is_romd(mr))) { | |
b242e0e0 | 3318 | l = memory_access_size(mr, l, addr1); |
d0ecd2aa | 3319 | } else { |
d0ecd2aa | 3320 | /* ROM/RAM case */ |
20804676 | 3321 | ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
582b55a9 AG |
3322 | switch (type) { |
3323 | case WRITE_DATA: | |
20804676 | 3324 | memcpy(ram_ptr, buf, l); |
845b6214 | 3325 | invalidate_and_set_dirty(mr, addr1, l); |
582b55a9 AG |
3326 | break; |
3327 | case FLUSH_CACHE: | |
20804676 | 3328 | flush_icache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr + l); |
582b55a9 AG |
3329 | break; |
3330 | } | |
d0ecd2aa FB |
3331 | } |
3332 | len -= l; | |
3333 | buf += l; | |
3334 | addr += l; | |
3335 | } | |
75693e14 | 3336 | return MEMTX_OK; |
d0ecd2aa FB |
3337 | } |
3338 | ||
582b55a9 | 3339 | /* used for ROM loading : can write in RAM and ROM */ |
3c8133f9 PM |
3340 | MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, |
3341 | MemTxAttrs attrs, | |
daa3dda4 | 3342 | const void *buf, hwaddr len) |
582b55a9 | 3343 | { |
3c8133f9 PM |
3344 | return address_space_write_rom_internal(as, addr, attrs, |
3345 | buf, len, WRITE_DATA); | |
582b55a9 AG |
3346 | } |
3347 | ||
0c249ff7 | 3348 | void cpu_flush_icache_range(hwaddr start, hwaddr len) |
582b55a9 AG |
3349 | { |
3350 | /* | |
3351 | * This function should do the same thing as an icache flush that was | |
3352 | * triggered from within the guest. For TCG we are always cache coherent, | |
3353 | * so there is no need to flush anything. For KVM / Xen we need to flush | |
3354 | * the host's instruction cache at least. | |
3355 | */ | |
3356 | if (tcg_enabled()) { | |
3357 | return; | |
3358 | } | |
3359 | ||
75693e14 PM |
3360 | address_space_write_rom_internal(&address_space_memory, |
3361 | start, MEMTXATTRS_UNSPECIFIED, | |
3362 | NULL, len, FLUSH_CACHE); | |
582b55a9 AG |
3363 | } |
3364 | ||
6d16c2f8 | 3365 | typedef struct { |
d3e71559 | 3366 | MemoryRegion *mr; |
6d16c2f8 | 3367 | void *buffer; |
a8170e5e AK |
3368 | hwaddr addr; |
3369 | hwaddr len; | |
c2cba0ff | 3370 | bool in_use; |
6d16c2f8 AL |
3371 | } BounceBuffer; |
3372 | ||
3373 | static BounceBuffer bounce; | |
3374 | ||
ba223c29 | 3375 | typedef struct MapClient { |
e95205e1 | 3376 | QEMUBH *bh; |
72cf2d4f | 3377 | QLIST_ENTRY(MapClient) link; |
ba223c29 AL |
3378 | } MapClient; |
3379 | ||
38e047b5 | 3380 | QemuMutex map_client_list_lock; |
b58deb34 | 3381 | static QLIST_HEAD(, MapClient) map_client_list |
72cf2d4f | 3382 | = QLIST_HEAD_INITIALIZER(map_client_list); |
ba223c29 | 3383 | |
e95205e1 FZ |
3384 | static void cpu_unregister_map_client_do(MapClient *client) |
3385 | { | |
3386 | QLIST_REMOVE(client, link); | |
3387 | g_free(client); | |
3388 | } | |
3389 | ||
33b6c2ed FZ |
3390 | static void cpu_notify_map_clients_locked(void) |
3391 | { | |
3392 | MapClient *client; | |
3393 | ||
3394 | while (!QLIST_EMPTY(&map_client_list)) { | |
3395 | client = QLIST_FIRST(&map_client_list); | |
e95205e1 FZ |
3396 | qemu_bh_schedule(client->bh); |
3397 | cpu_unregister_map_client_do(client); | |
33b6c2ed FZ |
3398 | } |
3399 | } | |
3400 | ||
e95205e1 | 3401 | void cpu_register_map_client(QEMUBH *bh) |
ba223c29 | 3402 | { |
7267c094 | 3403 | MapClient *client = g_malloc(sizeof(*client)); |
ba223c29 | 3404 | |
38e047b5 | 3405 | qemu_mutex_lock(&map_client_list_lock); |
e95205e1 | 3406 | client->bh = bh; |
72cf2d4f | 3407 | QLIST_INSERT_HEAD(&map_client_list, client, link); |
33b6c2ed FZ |
3408 | if (!atomic_read(&bounce.in_use)) { |
3409 | cpu_notify_map_clients_locked(); | |
3410 | } | |
38e047b5 | 3411 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
3412 | } |
3413 | ||
38e047b5 | 3414 | void cpu_exec_init_all(void) |
ba223c29 | 3415 | { |
38e047b5 | 3416 | qemu_mutex_init(&ram_list.mutex); |
20bccb82 PM |
3417 | /* The data structures we set up here depend on knowing the page size, |
3418 | * so no more changes can be made after this point. | |
3419 | * In an ideal world, nothing we did before we had finished the | |
3420 | * machine setup would care about the target page size, and we could | |
3421 | * do this much later, rather than requiring board models to state | |
3422 | * up front what their requirements are. | |
3423 | */ | |
3424 | finalize_target_page_bits(); | |
38e047b5 | 3425 | io_mem_init(); |
680a4783 | 3426 | memory_map_init(); |
38e047b5 | 3427 | qemu_mutex_init(&map_client_list_lock); |
ba223c29 AL |
3428 | } |
3429 | ||
e95205e1 | 3430 | void cpu_unregister_map_client(QEMUBH *bh) |
ba223c29 AL |
3431 | { |
3432 | MapClient *client; | |
3433 | ||
e95205e1 FZ |
3434 | qemu_mutex_lock(&map_client_list_lock); |
3435 | QLIST_FOREACH(client, &map_client_list, link) { | |
3436 | if (client->bh == bh) { | |
3437 | cpu_unregister_map_client_do(client); | |
3438 | break; | |
3439 | } | |
ba223c29 | 3440 | } |
e95205e1 | 3441 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
3442 | } |
3443 | ||
3444 | static void cpu_notify_map_clients(void) | |
3445 | { | |
38e047b5 | 3446 | qemu_mutex_lock(&map_client_list_lock); |
33b6c2ed | 3447 | cpu_notify_map_clients_locked(); |
38e047b5 | 3448 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
3449 | } |
3450 | ||
0c249ff7 | 3451 | static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, |
eace72b7 | 3452 | bool is_write, MemTxAttrs attrs) |
51644ab7 | 3453 | { |
5c8a00ce | 3454 | MemoryRegion *mr; |
51644ab7 PB |
3455 | hwaddr l, xlat; |
3456 | ||
3457 | while (len > 0) { | |
3458 | l = len; | |
efa99a2f | 3459 | mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); |
5c8a00ce PB |
3460 | if (!memory_access_is_direct(mr, is_write)) { |
3461 | l = memory_access_size(mr, l, addr); | |
eace72b7 | 3462 | if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) { |
51644ab7 PB |
3463 | return false; |
3464 | } | |
3465 | } | |
3466 | ||
3467 | len -= l; | |
3468 | addr += l; | |
3469 | } | |
3470 | return true; | |
3471 | } | |
3472 | ||
16620684 | 3473 | bool address_space_access_valid(AddressSpace *as, hwaddr addr, |
0c249ff7 | 3474 | hwaddr len, bool is_write, |
fddffa42 | 3475 | MemTxAttrs attrs) |
16620684 | 3476 | { |
11e732a5 PB |
3477 | FlatView *fv; |
3478 | bool result; | |
3479 | ||
694ea274 | 3480 | RCU_READ_LOCK_GUARD(); |
11e732a5 | 3481 | fv = address_space_to_flatview(as); |
eace72b7 | 3482 | result = flatview_access_valid(fv, addr, len, is_write, attrs); |
11e732a5 | 3483 | return result; |
16620684 AK |
3484 | } |
3485 | ||
715c31ec | 3486 | static hwaddr |
16620684 | 3487 | flatview_extend_translation(FlatView *fv, hwaddr addr, |
53d0790d PM |
3488 | hwaddr target_len, |
3489 | MemoryRegion *mr, hwaddr base, hwaddr len, | |
3490 | bool is_write, MemTxAttrs attrs) | |
715c31ec PB |
3491 | { |
3492 | hwaddr done = 0; | |
3493 | hwaddr xlat; | |
3494 | MemoryRegion *this_mr; | |
3495 | ||
3496 | for (;;) { | |
3497 | target_len -= len; | |
3498 | addr += len; | |
3499 | done += len; | |
3500 | if (target_len == 0) { | |
3501 | return done; | |
3502 | } | |
3503 | ||
3504 | len = target_len; | |
16620684 | 3505 | this_mr = flatview_translate(fv, addr, &xlat, |
efa99a2f | 3506 | &len, is_write, attrs); |
715c31ec PB |
3507 | if (this_mr != mr || xlat != base + done) { |
3508 | return done; | |
3509 | } | |
3510 | } | |
3511 | } | |
3512 | ||
6d16c2f8 AL |
3513 | /* Map a physical memory region into a host virtual address. |
3514 | * May map a subset of the requested range, given by and returned in *plen. | |
3515 | * May return NULL if resources needed to perform the mapping are exhausted. | |
3516 | * Use only for reads OR writes - not for read-modify-write operations. | |
ba223c29 AL |
3517 | * Use cpu_register_map_client() to know when retrying the map operation is |
3518 | * likely to succeed. | |
6d16c2f8 | 3519 | */ |
ac1970fb | 3520 | void *address_space_map(AddressSpace *as, |
a8170e5e AK |
3521 | hwaddr addr, |
3522 | hwaddr *plen, | |
f26404fb PM |
3523 | bool is_write, |
3524 | MemTxAttrs attrs) | |
6d16c2f8 | 3525 | { |
a8170e5e | 3526 | hwaddr len = *plen; |
715c31ec PB |
3527 | hwaddr l, xlat; |
3528 | MemoryRegion *mr; | |
e81bcda5 | 3529 | void *ptr; |
ad0c60fa | 3530 | FlatView *fv; |
6d16c2f8 | 3531 | |
e3127ae0 PB |
3532 | if (len == 0) { |
3533 | return NULL; | |
3534 | } | |
38bee5dc | 3535 | |
e3127ae0 | 3536 | l = len; |
694ea274 | 3537 | RCU_READ_LOCK_GUARD(); |
ad0c60fa | 3538 | fv = address_space_to_flatview(as); |
efa99a2f | 3539 | mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); |
41063e1e | 3540 | |
e3127ae0 | 3541 | if (!memory_access_is_direct(mr, is_write)) { |
c2cba0ff | 3542 | if (atomic_xchg(&bounce.in_use, true)) { |
77f55eac | 3543 | *plen = 0; |
e3127ae0 | 3544 | return NULL; |
6d16c2f8 | 3545 | } |
e85d9db5 KW |
3546 | /* Avoid unbounded allocations */ |
3547 | l = MIN(l, TARGET_PAGE_SIZE); | |
3548 | bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l); | |
e3127ae0 PB |
3549 | bounce.addr = addr; |
3550 | bounce.len = l; | |
d3e71559 PB |
3551 | |
3552 | memory_region_ref(mr); | |
3553 | bounce.mr = mr; | |
e3127ae0 | 3554 | if (!is_write) { |
16620684 | 3555 | flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED, |
5c9eb028 | 3556 | bounce.buffer, l); |
8ab934f9 | 3557 | } |
6d16c2f8 | 3558 | |
e3127ae0 PB |
3559 | *plen = l; |
3560 | return bounce.buffer; | |
3561 | } | |
3562 | ||
e3127ae0 | 3563 | |
d3e71559 | 3564 | memory_region_ref(mr); |
16620684 | 3565 | *plen = flatview_extend_translation(fv, addr, len, mr, xlat, |
53d0790d | 3566 | l, is_write, attrs); |
f5aa69bd | 3567 | ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true); |
e81bcda5 PB |
3568 | |
3569 | return ptr; | |
6d16c2f8 AL |
3570 | } |
3571 | ||
ac1970fb | 3572 | /* Unmaps a memory region previously mapped by address_space_map(). |
ae5883ab | 3573 | * Will also mark the memory as dirty if is_write is true. access_len gives |
6d16c2f8 AL |
3574 | * the amount of memory that was actually read or written by the caller. |
3575 | */ | |
a8170e5e | 3576 | void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, |
ae5883ab | 3577 | bool is_write, hwaddr access_len) |
6d16c2f8 AL |
3578 | { |
3579 | if (buffer != bounce.buffer) { | |
d3e71559 PB |
3580 | MemoryRegion *mr; |
3581 | ram_addr_t addr1; | |
3582 | ||
07bdaa41 | 3583 | mr = memory_region_from_host(buffer, &addr1); |
d3e71559 | 3584 | assert(mr != NULL); |
6d16c2f8 | 3585 | if (is_write) { |
845b6214 | 3586 | invalidate_and_set_dirty(mr, addr1, access_len); |
6d16c2f8 | 3587 | } |
868bb33f | 3588 | if (xen_enabled()) { |
e41d7c69 | 3589 | xen_invalidate_map_cache_entry(buffer); |
050a0ddf | 3590 | } |
d3e71559 | 3591 | memory_region_unref(mr); |
6d16c2f8 AL |
3592 | return; |
3593 | } | |
3594 | if (is_write) { | |
5c9eb028 PM |
3595 | address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED, |
3596 | bounce.buffer, access_len); | |
6d16c2f8 | 3597 | } |
f8a83245 | 3598 | qemu_vfree(bounce.buffer); |
6d16c2f8 | 3599 | bounce.buffer = NULL; |
d3e71559 | 3600 | memory_region_unref(bounce.mr); |
c2cba0ff | 3601 | atomic_mb_set(&bounce.in_use, false); |
ba223c29 | 3602 | cpu_notify_map_clients(); |
6d16c2f8 | 3603 | } |
d0ecd2aa | 3604 | |
a8170e5e AK |
3605 | void *cpu_physical_memory_map(hwaddr addr, |
3606 | hwaddr *plen, | |
28c80bfe | 3607 | bool is_write) |
ac1970fb | 3608 | { |
f26404fb PM |
3609 | return address_space_map(&address_space_memory, addr, plen, is_write, |
3610 | MEMTXATTRS_UNSPECIFIED); | |
ac1970fb AK |
3611 | } |
3612 | ||
a8170e5e | 3613 | void cpu_physical_memory_unmap(void *buffer, hwaddr len, |
28c80bfe | 3614 | bool is_write, hwaddr access_len) |
ac1970fb AK |
3615 | { |
3616 | return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); | |
3617 | } | |
3618 | ||
0ce265ff PB |
3619 | #define ARG1_DECL AddressSpace *as |
3620 | #define ARG1 as | |
3621 | #define SUFFIX | |
3622 | #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__) | |
0ce265ff PB |
3623 | #define RCU_READ_LOCK(...) rcu_read_lock() |
3624 | #define RCU_READ_UNLOCK(...) rcu_read_unlock() | |
3625 | #include "memory_ldst.inc.c" | |
1e78bcc1 | 3626 | |
1f4e496e PB |
3627 | int64_t address_space_cache_init(MemoryRegionCache *cache, |
3628 | AddressSpace *as, | |
3629 | hwaddr addr, | |
3630 | hwaddr len, | |
3631 | bool is_write) | |
3632 | { | |
48564041 PB |
3633 | AddressSpaceDispatch *d; |
3634 | hwaddr l; | |
3635 | MemoryRegion *mr; | |
3636 | ||
3637 | assert(len > 0); | |
3638 | ||
3639 | l = len; | |
3640 | cache->fv = address_space_get_flatview(as); | |
3641 | d = flatview_to_dispatch(cache->fv); | |
3642 | cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true); | |
3643 | ||
3644 | mr = cache->mrs.mr; | |
3645 | memory_region_ref(mr); | |
3646 | if (memory_access_is_direct(mr, is_write)) { | |
53d0790d PM |
3647 | /* We don't care about the memory attributes here as we're only |
3648 | * doing this if we found actual RAM, which behaves the same | |
3649 | * regardless of attributes; so UNSPECIFIED is fine. | |
3650 | */ | |
48564041 | 3651 | l = flatview_extend_translation(cache->fv, addr, len, mr, |
53d0790d PM |
3652 | cache->xlat, l, is_write, |
3653 | MEMTXATTRS_UNSPECIFIED); | |
48564041 PB |
3654 | cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true); |
3655 | } else { | |
3656 | cache->ptr = NULL; | |
3657 | } | |
3658 | ||
3659 | cache->len = l; | |
3660 | cache->is_write = is_write; | |
3661 | return l; | |
1f4e496e PB |
3662 | } |
3663 | ||
3664 | void address_space_cache_invalidate(MemoryRegionCache *cache, | |
3665 | hwaddr addr, | |
3666 | hwaddr access_len) | |
3667 | { | |
48564041 PB |
3668 | assert(cache->is_write); |
3669 | if (likely(cache->ptr)) { | |
3670 | invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len); | |
3671 | } | |
1f4e496e PB |
3672 | } |
3673 | ||
3674 | void address_space_cache_destroy(MemoryRegionCache *cache) | |
3675 | { | |
48564041 PB |
3676 | if (!cache->mrs.mr) { |
3677 | return; | |
3678 | } | |
3679 | ||
3680 | if (xen_enabled()) { | |
3681 | xen_invalidate_map_cache_entry(cache->ptr); | |
3682 | } | |
3683 | memory_region_unref(cache->mrs.mr); | |
3684 | flatview_unref(cache->fv); | |
3685 | cache->mrs.mr = NULL; | |
3686 | cache->fv = NULL; | |
3687 | } | |
3688 | ||
3689 | /* Called from RCU critical section. This function has the same | |
3690 | * semantics as address_space_translate, but it only works on a | |
3691 | * predefined range of a MemoryRegion that was mapped with | |
3692 | * address_space_cache_init. | |
3693 | */ | |
3694 | static inline MemoryRegion *address_space_translate_cached( | |
3695 | MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat, | |
bc6b1cec | 3696 | hwaddr *plen, bool is_write, MemTxAttrs attrs) |
48564041 PB |
3697 | { |
3698 | MemoryRegionSection section; | |
3699 | MemoryRegion *mr; | |
3700 | IOMMUMemoryRegion *iommu_mr; | |
3701 | AddressSpace *target_as; | |
3702 | ||
3703 | assert(!cache->ptr); | |
3704 | *xlat = addr + cache->xlat; | |
3705 | ||
3706 | mr = cache->mrs.mr; | |
3707 | iommu_mr = memory_region_get_iommu(mr); | |
3708 | if (!iommu_mr) { | |
3709 | /* MMIO region. */ | |
3710 | return mr; | |
3711 | } | |
3712 | ||
3713 | section = address_space_translate_iommu(iommu_mr, xlat, plen, | |
3714 | NULL, is_write, true, | |
2f7b009c | 3715 | &target_as, attrs); |
48564041 PB |
3716 | return section.mr; |
3717 | } | |
3718 | ||
3719 | /* Called from RCU critical section. address_space_read_cached uses this | |
3720 | * out of line function when the target is an MMIO or IOMMU region. | |
3721 | */ | |
38df19fa | 3722 | MemTxResult |
48564041 | 3723 | address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr, |
0c249ff7 | 3724 | void *buf, hwaddr len) |
48564041 PB |
3725 | { |
3726 | hwaddr addr1, l; | |
3727 | MemoryRegion *mr; | |
3728 | ||
3729 | l = len; | |
bc6b1cec PM |
3730 | mr = address_space_translate_cached(cache, addr, &addr1, &l, false, |
3731 | MEMTXATTRS_UNSPECIFIED); | |
38df19fa PMD |
3732 | return flatview_read_continue(cache->fv, |
3733 | addr, MEMTXATTRS_UNSPECIFIED, buf, len, | |
3734 | addr1, l, mr); | |
48564041 PB |
3735 | } |
3736 | ||
3737 | /* Called from RCU critical section. address_space_write_cached uses this | |
3738 | * out of line function when the target is an MMIO or IOMMU region. | |
3739 | */ | |
38df19fa | 3740 | MemTxResult |
48564041 | 3741 | address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr, |
0c249ff7 | 3742 | const void *buf, hwaddr len) |
48564041 PB |
3743 | { |
3744 | hwaddr addr1, l; | |
3745 | MemoryRegion *mr; | |
3746 | ||
3747 | l = len; | |
bc6b1cec PM |
3748 | mr = address_space_translate_cached(cache, addr, &addr1, &l, true, |
3749 | MEMTXATTRS_UNSPECIFIED); | |
38df19fa PMD |
3750 | return flatview_write_continue(cache->fv, |
3751 | addr, MEMTXATTRS_UNSPECIFIED, buf, len, | |
3752 | addr1, l, mr); | |
1f4e496e PB |
3753 | } |
3754 | ||
3755 | #define ARG1_DECL MemoryRegionCache *cache | |
3756 | #define ARG1 cache | |
48564041 PB |
3757 | #define SUFFIX _cached_slow |
3758 | #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__) | |
48564041 PB |
3759 | #define RCU_READ_LOCK() ((void)0) |
3760 | #define RCU_READ_UNLOCK() ((void)0) | |
1f4e496e PB |
3761 | #include "memory_ldst.inc.c" |
3762 | ||
5e2972fd | 3763 | /* virtual memory access for debug (includes writing to ROM) */ |
f17ec444 | 3764 | int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, |
28c80bfe | 3765 | void *ptr, target_ulong len, bool is_write) |
13eb76e0 | 3766 | { |
a8170e5e | 3767 | hwaddr phys_addr; |
0c249ff7 | 3768 | target_ulong l, page; |
d7ef71ef | 3769 | uint8_t *buf = ptr; |
13eb76e0 | 3770 | |
79ca7a1b | 3771 | cpu_synchronize_state(cpu); |
13eb76e0 | 3772 | while (len > 0) { |
5232e4c7 PM |
3773 | int asidx; |
3774 | MemTxAttrs attrs; | |
ddfc8b96 | 3775 | MemTxResult res; |
5232e4c7 | 3776 | |
13eb76e0 | 3777 | page = addr & TARGET_PAGE_MASK; |
5232e4c7 PM |
3778 | phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs); |
3779 | asidx = cpu_asidx_from_attrs(cpu, attrs); | |
13eb76e0 FB |
3780 | /* if no physical page mapped, return an error */ |
3781 | if (phys_addr == -1) | |
3782 | return -1; | |
3783 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3784 | if (l > len) | |
3785 | l = len; | |
5e2972fd | 3786 | phys_addr += (addr & ~TARGET_PAGE_MASK); |
2e38847b | 3787 | if (is_write) { |
ddfc8b96 PMD |
3788 | res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr, |
3789 | attrs, buf, l); | |
2e38847b | 3790 | } else { |
ddfc8b96 PMD |
3791 | res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr, |
3792 | attrs, buf, l); | |
3793 | } | |
3794 | if (res != MEMTX_OK) { | |
3795 | return -1; | |
2e38847b | 3796 | } |
13eb76e0 FB |
3797 | len -= l; |
3798 | buf += l; | |
3799 | addr += l; | |
3800 | } | |
3801 | return 0; | |
3802 | } | |
038629a6 DDAG |
3803 | |
3804 | /* | |
3805 | * Allows code that needs to deal with migration bitmaps etc to still be built | |
3806 | * target independent. | |
3807 | */ | |
20afaed9 | 3808 | size_t qemu_target_page_size(void) |
038629a6 | 3809 | { |
20afaed9 | 3810 | return TARGET_PAGE_SIZE; |
038629a6 DDAG |
3811 | } |
3812 | ||
46d702b1 JQ |
3813 | int qemu_target_page_bits(void) |
3814 | { | |
3815 | return TARGET_PAGE_BITS; | |
3816 | } | |
3817 | ||
3818 | int qemu_target_page_bits_min(void) | |
3819 | { | |
3820 | return TARGET_PAGE_BITS_MIN; | |
3821 | } | |
a68fe89c | 3822 | #endif |
13eb76e0 | 3823 | |
98ed8ecf | 3824 | bool target_words_bigendian(void) |
8e4a424b BS |
3825 | { |
3826 | #if defined(TARGET_WORDS_BIGENDIAN) | |
3827 | return true; | |
3828 | #else | |
3829 | return false; | |
3830 | #endif | |
3831 | } | |
3832 | ||
76f35538 | 3833 | #ifndef CONFIG_USER_ONLY |
a8170e5e | 3834 | bool cpu_physical_memory_is_io(hwaddr phys_addr) |
76f35538 | 3835 | { |
5c8a00ce | 3836 | MemoryRegion*mr; |
149f54b5 | 3837 | hwaddr l = 1; |
41063e1e | 3838 | bool res; |
76f35538 | 3839 | |
694ea274 | 3840 | RCU_READ_LOCK_GUARD(); |
5c8a00ce | 3841 | mr = address_space_translate(&address_space_memory, |
bc6b1cec PM |
3842 | phys_addr, &phys_addr, &l, false, |
3843 | MEMTXATTRS_UNSPECIFIED); | |
76f35538 | 3844 | |
41063e1e | 3845 | res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr)); |
41063e1e | 3846 | return res; |
76f35538 | 3847 | } |
bd2fa51f | 3848 | |
e3807054 | 3849 | int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) |
bd2fa51f MH |
3850 | { |
3851 | RAMBlock *block; | |
e3807054 | 3852 | int ret = 0; |
bd2fa51f | 3853 | |
694ea274 | 3854 | RCU_READ_LOCK_GUARD(); |
99e15582 | 3855 | RAMBLOCK_FOREACH(block) { |
754cb9c0 | 3856 | ret = func(block, opaque); |
e3807054 DDAG |
3857 | if (ret) { |
3858 | break; | |
3859 | } | |
bd2fa51f | 3860 | } |
e3807054 | 3861 | return ret; |
bd2fa51f | 3862 | } |
d3a5038c DDAG |
3863 | |
3864 | /* | |
3865 | * Unmap pages of memory from start to start+length such that | |
3866 | * they a) read as 0, b) Trigger whatever fault mechanism | |
3867 | * the OS provides for postcopy. | |
3868 | * The pages must be unmapped by the end of the function. | |
3869 | * Returns: 0 on success, none-0 on failure | |
3870 | * | |
3871 | */ | |
3872 | int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length) | |
3873 | { | |
3874 | int ret = -1; | |
3875 | ||
3876 | uint8_t *host_startaddr = rb->host + start; | |
3877 | ||
619bd31d | 3878 | if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) { |
d3a5038c DDAG |
3879 | error_report("ram_block_discard_range: Unaligned start address: %p", |
3880 | host_startaddr); | |
3881 | goto err; | |
3882 | } | |
3883 | ||
3884 | if ((start + length) <= rb->used_length) { | |
db144f70 | 3885 | bool need_madvise, need_fallocate; |
619bd31d | 3886 | if (!QEMU_IS_ALIGNED(length, rb->page_size)) { |
72821d93 WY |
3887 | error_report("ram_block_discard_range: Unaligned length: %zx", |
3888 | length); | |
d3a5038c DDAG |
3889 | goto err; |
3890 | } | |
3891 | ||
3892 | errno = ENOTSUP; /* If we are missing MADVISE etc */ | |
3893 | ||
db144f70 DDAG |
3894 | /* The logic here is messy; |
3895 | * madvise DONTNEED fails for hugepages | |
3896 | * fallocate works on hugepages and shmem | |
3897 | */ | |
3898 | need_madvise = (rb->page_size == qemu_host_page_size); | |
3899 | need_fallocate = rb->fd != -1; | |
3900 | if (need_fallocate) { | |
3901 | /* For a file, this causes the area of the file to be zero'd | |
3902 | * if read, and for hugetlbfs also causes it to be unmapped | |
3903 | * so a userfault will trigger. | |
e2fa71f5 DDAG |
3904 | */ |
3905 | #ifdef CONFIG_FALLOCATE_PUNCH_HOLE | |
3906 | ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, | |
3907 | start, length); | |
db144f70 DDAG |
3908 | if (ret) { |
3909 | ret = -errno; | |
3910 | error_report("ram_block_discard_range: Failed to fallocate " | |
3911 | "%s:%" PRIx64 " +%zx (%d)", | |
3912 | rb->idstr, start, length, ret); | |
3913 | goto err; | |
3914 | } | |
3915 | #else | |
3916 | ret = -ENOSYS; | |
3917 | error_report("ram_block_discard_range: fallocate not available/file" | |
3918 | "%s:%" PRIx64 " +%zx (%d)", | |
3919 | rb->idstr, start, length, ret); | |
3920 | goto err; | |
e2fa71f5 DDAG |
3921 | #endif |
3922 | } | |
db144f70 DDAG |
3923 | if (need_madvise) { |
3924 | /* For normal RAM this causes it to be unmapped, | |
3925 | * for shared memory it causes the local mapping to disappear | |
3926 | * and to fall back on the file contents (which we just | |
3927 | * fallocate'd away). | |
3928 | */ | |
3929 | #if defined(CONFIG_MADVISE) | |
3930 | ret = madvise(host_startaddr, length, MADV_DONTNEED); | |
3931 | if (ret) { | |
3932 | ret = -errno; | |
3933 | error_report("ram_block_discard_range: Failed to discard range " | |
3934 | "%s:%" PRIx64 " +%zx (%d)", | |
3935 | rb->idstr, start, length, ret); | |
3936 | goto err; | |
3937 | } | |
3938 | #else | |
3939 | ret = -ENOSYS; | |
3940 | error_report("ram_block_discard_range: MADVISE not available" | |
d3a5038c DDAG |
3941 | "%s:%" PRIx64 " +%zx (%d)", |
3942 | rb->idstr, start, length, ret); | |
db144f70 DDAG |
3943 | goto err; |
3944 | #endif | |
d3a5038c | 3945 | } |
db144f70 DDAG |
3946 | trace_ram_block_discard_range(rb->idstr, host_startaddr, length, |
3947 | need_madvise, need_fallocate, ret); | |
d3a5038c DDAG |
3948 | } else { |
3949 | error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64 | |
3950 | "/%zx/" RAM_ADDR_FMT")", | |
3951 | rb->idstr, start, length, rb->used_length); | |
3952 | } | |
3953 | ||
3954 | err: | |
3955 | return ret; | |
3956 | } | |
3957 | ||
a4de8552 JH |
3958 | bool ramblock_is_pmem(RAMBlock *rb) |
3959 | { | |
3960 | return rb->flags & RAM_PMEM; | |
3961 | } | |
3962 | ||
ec3f8c99 | 3963 | #endif |
a0be0c58 YZ |
3964 | |
3965 | void page_size_init(void) | |
3966 | { | |
3967 | /* NOTE: we can always suppose that qemu_host_page_size >= | |
3968 | TARGET_PAGE_SIZE */ | |
a0be0c58 YZ |
3969 | if (qemu_host_page_size == 0) { |
3970 | qemu_host_page_size = qemu_real_host_page_size; | |
3971 | } | |
3972 | if (qemu_host_page_size < TARGET_PAGE_SIZE) { | |
3973 | qemu_host_page_size = TARGET_PAGE_SIZE; | |
3974 | } | |
3975 | qemu_host_page_mask = -(intptr_t)qemu_host_page_size; | |
3976 | } | |
5e8fd947 AK |
3977 | |
3978 | #if !defined(CONFIG_USER_ONLY) | |
3979 | ||
b6b71cb5 | 3980 | static void mtree_print_phys_entries(int start, int end, int skip, int ptr) |
5e8fd947 AK |
3981 | { |
3982 | if (start == end - 1) { | |
b6b71cb5 | 3983 | qemu_printf("\t%3d ", start); |
5e8fd947 | 3984 | } else { |
b6b71cb5 | 3985 | qemu_printf("\t%3d..%-3d ", start, end - 1); |
5e8fd947 | 3986 | } |
b6b71cb5 | 3987 | qemu_printf(" skip=%d ", skip); |
5e8fd947 | 3988 | if (ptr == PHYS_MAP_NODE_NIL) { |
b6b71cb5 | 3989 | qemu_printf(" ptr=NIL"); |
5e8fd947 | 3990 | } else if (!skip) { |
b6b71cb5 | 3991 | qemu_printf(" ptr=#%d", ptr); |
5e8fd947 | 3992 | } else { |
b6b71cb5 | 3993 | qemu_printf(" ptr=[%d]", ptr); |
5e8fd947 | 3994 | } |
b6b71cb5 | 3995 | qemu_printf("\n"); |
5e8fd947 AK |
3996 | } |
3997 | ||
3998 | #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \ | |
3999 | int128_sub((size), int128_one())) : 0) | |
4000 | ||
b6b71cb5 | 4001 | void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root) |
5e8fd947 AK |
4002 | { |
4003 | int i; | |
4004 | ||
b6b71cb5 MA |
4005 | qemu_printf(" Dispatch\n"); |
4006 | qemu_printf(" Physical sections\n"); | |
5e8fd947 AK |
4007 | |
4008 | for (i = 0; i < d->map.sections_nb; ++i) { | |
4009 | MemoryRegionSection *s = d->map.sections + i; | |
4010 | const char *names[] = { " [unassigned]", " [not dirty]", | |
4011 | " [ROM]", " [watch]" }; | |
4012 | ||
b6b71cb5 MA |
4013 | qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx |
4014 | " %s%s%s%s%s", | |
5e8fd947 AK |
4015 | i, |
4016 | s->offset_within_address_space, | |
4017 | s->offset_within_address_space + MR_SIZE(s->mr->size), | |
4018 | s->mr->name ? s->mr->name : "(noname)", | |
4019 | i < ARRAY_SIZE(names) ? names[i] : "", | |
4020 | s->mr == root ? " [ROOT]" : "", | |
4021 | s == d->mru_section ? " [MRU]" : "", | |
4022 | s->mr->is_iommu ? " [iommu]" : ""); | |
4023 | ||
4024 | if (s->mr->alias) { | |
b6b71cb5 | 4025 | qemu_printf(" alias=%s", s->mr->alias->name ? |
5e8fd947 AK |
4026 | s->mr->alias->name : "noname"); |
4027 | } | |
b6b71cb5 | 4028 | qemu_printf("\n"); |
5e8fd947 AK |
4029 | } |
4030 | ||
b6b71cb5 | 4031 | qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n", |
5e8fd947 AK |
4032 | P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip); |
4033 | for (i = 0; i < d->map.nodes_nb; ++i) { | |
4034 | int j, jprev; | |
4035 | PhysPageEntry prev; | |
4036 | Node *n = d->map.nodes + i; | |
4037 | ||
b6b71cb5 | 4038 | qemu_printf(" [%d]\n", i); |
5e8fd947 AK |
4039 | |
4040 | for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) { | |
4041 | PhysPageEntry *pe = *n + j; | |
4042 | ||
4043 | if (pe->ptr == prev.ptr && pe->skip == prev.skip) { | |
4044 | continue; | |
4045 | } | |
4046 | ||
b6b71cb5 | 4047 | mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); |
5e8fd947 AK |
4048 | |
4049 | jprev = j; | |
4050 | prev = *pe; | |
4051 | } | |
4052 | ||
4053 | if (jprev != ARRAY_SIZE(*n)) { | |
b6b71cb5 | 4054 | mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); |
5e8fd947 AK |
4055 | } |
4056 | } | |
4057 | } | |
4058 | ||
4059 | #endif |