]>
Commit | Line | Data |
---|---|---|
54936004 | 1 | /* |
5b6dd868 | 2 | * Virtual page mapping |
5fafdf24 | 3 | * |
54936004 FB |
4 | * Copyright (c) 2003 Fabrice Bellard |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
8167ee88 | 17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
54936004 | 18 | */ |
14a48c1d | 19 | |
7b31bbc2 | 20 | #include "qemu/osdep.h" |
a8d25326 | 21 | #include "qemu-common.h" |
da34e65c | 22 | #include "qapi/error.h" |
54936004 | 23 | |
f348b6d1 | 24 | #include "qemu/cutils.h" |
6180a181 | 25 | #include "cpu.h" |
63c91552 | 26 | #include "exec/exec-all.h" |
51180423 | 27 | #include "exec/target_page.h" |
dcb32f1d | 28 | #include "tcg/tcg.h" |
741da0d3 | 29 | #include "hw/qdev-core.h" |
c7e002c5 | 30 | #include "hw/qdev-properties.h" |
4485bd26 | 31 | #if !defined(CONFIG_USER_ONLY) |
47c8ca53 | 32 | #include "hw/boards.h" |
33c11879 | 33 | #include "hw/xen/xen.h" |
4485bd26 | 34 | #endif |
9c17d615 | 35 | #include "sysemu/kvm.h" |
2ff3de68 | 36 | #include "sysemu/sysemu.h" |
14a48c1d | 37 | #include "sysemu/tcg.h" |
a028edea | 38 | #include "sysemu/qtest.h" |
1de7afc9 PB |
39 | #include "qemu/timer.h" |
40 | #include "qemu/config-file.h" | |
75a34036 | 41 | #include "qemu/error-report.h" |
b6b71cb5 | 42 | #include "qemu/qemu-print.h" |
53a5960a | 43 | #if defined(CONFIG_USER_ONLY) |
a9c94277 | 44 | #include "qemu.h" |
432d268c | 45 | #else /* !CONFIG_USER_ONLY */ |
741da0d3 | 46 | #include "exec/memory.h" |
df43d49c | 47 | #include "exec/ioport.h" |
741da0d3 | 48 | #include "sysemu/dma.h" |
b58c5c2d | 49 | #include "sysemu/hostmem.h" |
79ca7a1b | 50 | #include "sysemu/hw_accel.h" |
741da0d3 | 51 | #include "exec/address-spaces.h" |
9c17d615 | 52 | #include "sysemu/xen-mapcache.h" |
243af022 | 53 | #include "trace/trace-root.h" |
d3a5038c | 54 | |
e2fa71f5 | 55 | #ifdef CONFIG_FALLOCATE_PUNCH_HOLE |
e2fa71f5 DDAG |
56 | #include <linux/falloc.h> |
57 | #endif | |
58 | ||
53a5960a | 59 | #endif |
0dc3f44a | 60 | #include "qemu/rcu_queue.h" |
4840f10e | 61 | #include "qemu/main-loop.h" |
5b6dd868 | 62 | #include "translate-all.h" |
7615936e | 63 | #include "sysemu/replay.h" |
0cac1b66 | 64 | |
022c62cb | 65 | #include "exec/memory-internal.h" |
220c3ebd | 66 | #include "exec/ram_addr.h" |
508127e2 | 67 | #include "exec/log.h" |
67d95c15 | 68 | |
61c490e2 BM |
69 | #include "qemu/pmem.h" |
70 | ||
9dfeca7c BR |
71 | #include "migration/vmstate.h" |
72 | ||
b35ba30f | 73 | #include "qemu/range.h" |
794e8f30 MT |
74 | #ifndef _WIN32 |
75 | #include "qemu/mmap-alloc.h" | |
76 | #endif | |
b35ba30f | 77 | |
be9b23c4 PX |
78 | #include "monitor/monitor.h" |
79 | ||
ce317be9 JL |
80 | #ifdef CONFIG_LIBDAXCTL |
81 | #include <daxctl/libdaxctl.h> | |
82 | #endif | |
83 | ||
db7b5426 | 84 | //#define DEBUG_SUBPAGE |
1196be37 | 85 | |
e2eef170 | 86 | #if !defined(CONFIG_USER_ONLY) |
0dc3f44a MD |
87 | /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes |
88 | * are protected by the ramlist lock. | |
89 | */ | |
0d53d9fe | 90 | RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; |
62152b8a AK |
91 | |
92 | static MemoryRegion *system_memory; | |
309cb471 | 93 | static MemoryRegion *system_io; |
62152b8a | 94 | |
f6790af6 AK |
95 | AddressSpace address_space_io; |
96 | AddressSpace address_space_memory; | |
2673a5da | 97 | |
acc9d80b | 98 | static MemoryRegion io_mem_unassigned; |
e2eef170 | 99 | #endif |
9fa3e853 | 100 | |
a0be0c58 YZ |
101 | uintptr_t qemu_host_page_size; |
102 | intptr_t qemu_host_page_mask; | |
a0be0c58 | 103 | |
e2eef170 | 104 | #if !defined(CONFIG_USER_ONLY) |
fe3dada3 PB |
105 | /* 0 = Do not count executed instructions. |
106 | 1 = Precise instruction counting. | |
107 | 2 = Adaptive rate instruction counting. */ | |
108 | int use_icount; | |
4346ae3e | 109 | |
1db8abb1 PB |
110 | typedef struct PhysPageEntry PhysPageEntry; |
111 | ||
112 | struct PhysPageEntry { | |
9736e55b | 113 | /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ |
8b795765 | 114 | uint32_t skip : 6; |
9736e55b | 115 | /* index into phys_sections (!skip) or phys_map_nodes (skip) */ |
8b795765 | 116 | uint32_t ptr : 26; |
1db8abb1 PB |
117 | }; |
118 | ||
8b795765 MT |
119 | #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) |
120 | ||
03f49957 | 121 | /* Size of the L2 (and L3, etc) page tables. */ |
57271d63 | 122 | #define ADDR_SPACE_BITS 64 |
03f49957 | 123 | |
026736ce | 124 | #define P_L2_BITS 9 |
03f49957 PB |
125 | #define P_L2_SIZE (1 << P_L2_BITS) |
126 | ||
127 | #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) | |
128 | ||
129 | typedef PhysPageEntry Node[P_L2_SIZE]; | |
0475d94f | 130 | |
53cb28cb | 131 | typedef struct PhysPageMap { |
79e2b9ae PB |
132 | struct rcu_head rcu; |
133 | ||
53cb28cb MA |
134 | unsigned sections_nb; |
135 | unsigned sections_nb_alloc; | |
136 | unsigned nodes_nb; | |
137 | unsigned nodes_nb_alloc; | |
138 | Node *nodes; | |
139 | MemoryRegionSection *sections; | |
140 | } PhysPageMap; | |
141 | ||
1db8abb1 | 142 | struct AddressSpaceDispatch { |
729633c2 | 143 | MemoryRegionSection *mru_section; |
1db8abb1 PB |
144 | /* This is a multi-level map on the physical address space. |
145 | * The bottom level has pointers to MemoryRegionSections. | |
146 | */ | |
147 | PhysPageEntry phys_map; | |
53cb28cb | 148 | PhysPageMap map; |
1db8abb1 PB |
149 | }; |
150 | ||
90260c6c JK |
151 | #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) |
152 | typedef struct subpage_t { | |
153 | MemoryRegion iomem; | |
16620684 | 154 | FlatView *fv; |
90260c6c | 155 | hwaddr base; |
2615fabd | 156 | uint16_t sub_section[]; |
90260c6c JK |
157 | } subpage_t; |
158 | ||
b41aac4f | 159 | #define PHYS_SECTION_UNASSIGNED 0 |
5312bd8b | 160 | |
e2eef170 | 161 | static void io_mem_init(void); |
62152b8a | 162 | static void memory_map_init(void); |
9458a9a1 | 163 | static void tcg_log_global_after_sync(MemoryListener *listener); |
09daed84 | 164 | static void tcg_commit(MemoryListener *listener); |
e2eef170 | 165 | |
32857f4d PM |
166 | /** |
167 | * CPUAddressSpace: all the information a CPU needs about an AddressSpace | |
168 | * @cpu: the CPU whose AddressSpace this is | |
169 | * @as: the AddressSpace itself | |
170 | * @memory_dispatch: its dispatch pointer (cached, RCU protected) | |
171 | * @tcg_as_listener: listener for tracking changes to the AddressSpace | |
172 | */ | |
173 | struct CPUAddressSpace { | |
174 | CPUState *cpu; | |
175 | AddressSpace *as; | |
176 | struct AddressSpaceDispatch *memory_dispatch; | |
177 | MemoryListener tcg_as_listener; | |
178 | }; | |
179 | ||
8deaf12c GH |
180 | struct DirtyBitmapSnapshot { |
181 | ram_addr_t start; | |
182 | ram_addr_t end; | |
183 | unsigned long dirty[]; | |
184 | }; | |
185 | ||
6658ffb8 | 186 | #endif |
fd6ce8f6 | 187 | |
6d9a1304 | 188 | #if !defined(CONFIG_USER_ONLY) |
d6f2ea22 | 189 | |
53cb28cb | 190 | static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) |
d6f2ea22 | 191 | { |
101420b8 | 192 | static unsigned alloc_hint = 16; |
53cb28cb | 193 | if (map->nodes_nb + nodes > map->nodes_nb_alloc) { |
c95cfd04 | 194 | map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes); |
53cb28cb | 195 | map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); |
101420b8 | 196 | alloc_hint = map->nodes_nb_alloc; |
d6f2ea22 | 197 | } |
f7bf5461 AK |
198 | } |
199 | ||
db94604b | 200 | static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf) |
f7bf5461 AK |
201 | { |
202 | unsigned i; | |
8b795765 | 203 | uint32_t ret; |
db94604b PB |
204 | PhysPageEntry e; |
205 | PhysPageEntry *p; | |
f7bf5461 | 206 | |
53cb28cb | 207 | ret = map->nodes_nb++; |
db94604b | 208 | p = map->nodes[ret]; |
f7bf5461 | 209 | assert(ret != PHYS_MAP_NODE_NIL); |
53cb28cb | 210 | assert(ret != map->nodes_nb_alloc); |
db94604b PB |
211 | |
212 | e.skip = leaf ? 0 : 1; | |
213 | e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL; | |
03f49957 | 214 | for (i = 0; i < P_L2_SIZE; ++i) { |
db94604b | 215 | memcpy(&p[i], &e, sizeof(e)); |
d6f2ea22 | 216 | } |
f7bf5461 | 217 | return ret; |
d6f2ea22 AK |
218 | } |
219 | ||
53cb28cb | 220 | static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, |
56b15076 | 221 | hwaddr *index, uint64_t *nb, uint16_t leaf, |
2999097b | 222 | int level) |
f7bf5461 AK |
223 | { |
224 | PhysPageEntry *p; | |
03f49957 | 225 | hwaddr step = (hwaddr)1 << (level * P_L2_BITS); |
108c49b8 | 226 | |
9736e55b | 227 | if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { |
db94604b | 228 | lp->ptr = phys_map_node_alloc(map, level == 0); |
92e873b9 | 229 | } |
db94604b | 230 | p = map->nodes[lp->ptr]; |
03f49957 | 231 | lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; |
f7bf5461 | 232 | |
03f49957 | 233 | while (*nb && lp < &p[P_L2_SIZE]) { |
07f07b31 | 234 | if ((*index & (step - 1)) == 0 && *nb >= step) { |
9736e55b | 235 | lp->skip = 0; |
c19e8800 | 236 | lp->ptr = leaf; |
07f07b31 AK |
237 | *index += step; |
238 | *nb -= step; | |
2999097b | 239 | } else { |
53cb28cb | 240 | phys_page_set_level(map, lp, index, nb, leaf, level - 1); |
2999097b AK |
241 | } |
242 | ++lp; | |
f7bf5461 AK |
243 | } |
244 | } | |
245 | ||
ac1970fb | 246 | static void phys_page_set(AddressSpaceDispatch *d, |
56b15076 | 247 | hwaddr index, uint64_t nb, |
2999097b | 248 | uint16_t leaf) |
f7bf5461 | 249 | { |
2999097b | 250 | /* Wildly overreserve - it doesn't matter much. */ |
53cb28cb | 251 | phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); |
5cd2c5b6 | 252 | |
53cb28cb | 253 | phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); |
92e873b9 FB |
254 | } |
255 | ||
b35ba30f MT |
256 | /* Compact a non leaf page entry. Simply detect that the entry has a single child, |
257 | * and update our entry so we can skip it and go directly to the destination. | |
258 | */ | |
efee678d | 259 | static void phys_page_compact(PhysPageEntry *lp, Node *nodes) |
b35ba30f MT |
260 | { |
261 | unsigned valid_ptr = P_L2_SIZE; | |
262 | int valid = 0; | |
263 | PhysPageEntry *p; | |
264 | int i; | |
265 | ||
266 | if (lp->ptr == PHYS_MAP_NODE_NIL) { | |
267 | return; | |
268 | } | |
269 | ||
270 | p = nodes[lp->ptr]; | |
271 | for (i = 0; i < P_L2_SIZE; i++) { | |
272 | if (p[i].ptr == PHYS_MAP_NODE_NIL) { | |
273 | continue; | |
274 | } | |
275 | ||
276 | valid_ptr = i; | |
277 | valid++; | |
278 | if (p[i].skip) { | |
efee678d | 279 | phys_page_compact(&p[i], nodes); |
b35ba30f MT |
280 | } |
281 | } | |
282 | ||
283 | /* We can only compress if there's only one child. */ | |
284 | if (valid != 1) { | |
285 | return; | |
286 | } | |
287 | ||
288 | assert(valid_ptr < P_L2_SIZE); | |
289 | ||
290 | /* Don't compress if it won't fit in the # of bits we have. */ | |
526ca236 WY |
291 | if (P_L2_LEVELS >= (1 << 6) && |
292 | lp->skip + p[valid_ptr].skip >= (1 << 6)) { | |
b35ba30f MT |
293 | return; |
294 | } | |
295 | ||
296 | lp->ptr = p[valid_ptr].ptr; | |
297 | if (!p[valid_ptr].skip) { | |
298 | /* If our only child is a leaf, make this a leaf. */ | |
299 | /* By design, we should have made this node a leaf to begin with so we | |
300 | * should never reach here. | |
301 | * But since it's so simple to handle this, let's do it just in case we | |
302 | * change this rule. | |
303 | */ | |
304 | lp->skip = 0; | |
305 | } else { | |
306 | lp->skip += p[valid_ptr].skip; | |
307 | } | |
308 | } | |
309 | ||
8629d3fc | 310 | void address_space_dispatch_compact(AddressSpaceDispatch *d) |
b35ba30f | 311 | { |
b35ba30f | 312 | if (d->phys_map.skip) { |
efee678d | 313 | phys_page_compact(&d->phys_map, d->map.nodes); |
b35ba30f MT |
314 | } |
315 | } | |
316 | ||
29cb533d FZ |
317 | static inline bool section_covers_addr(const MemoryRegionSection *section, |
318 | hwaddr addr) | |
319 | { | |
320 | /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means | |
321 | * the section must cover the entire address space. | |
322 | */ | |
258dfaaa | 323 | return int128_gethi(section->size) || |
29cb533d | 324 | range_covers_byte(section->offset_within_address_space, |
258dfaaa | 325 | int128_getlo(section->size), addr); |
29cb533d FZ |
326 | } |
327 | ||
003a0cf2 | 328 | static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr) |
92e873b9 | 329 | { |
003a0cf2 PX |
330 | PhysPageEntry lp = d->phys_map, *p; |
331 | Node *nodes = d->map.nodes; | |
332 | MemoryRegionSection *sections = d->map.sections; | |
97115a8d | 333 | hwaddr index = addr >> TARGET_PAGE_BITS; |
31ab2b4a | 334 | int i; |
f1f6e3b8 | 335 | |
9736e55b | 336 | for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { |
c19e8800 | 337 | if (lp.ptr == PHYS_MAP_NODE_NIL) { |
9affd6fc | 338 | return §ions[PHYS_SECTION_UNASSIGNED]; |
31ab2b4a | 339 | } |
9affd6fc | 340 | p = nodes[lp.ptr]; |
03f49957 | 341 | lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; |
5312bd8b | 342 | } |
b35ba30f | 343 | |
29cb533d | 344 | if (section_covers_addr(§ions[lp.ptr], addr)) { |
b35ba30f MT |
345 | return §ions[lp.ptr]; |
346 | } else { | |
347 | return §ions[PHYS_SECTION_UNASSIGNED]; | |
348 | } | |
f3705d53 AK |
349 | } |
350 | ||
79e2b9ae | 351 | /* Called from RCU critical section */ |
c7086b4a | 352 | static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, |
90260c6c JK |
353 | hwaddr addr, |
354 | bool resolve_subpage) | |
9f029603 | 355 | { |
729633c2 | 356 | MemoryRegionSection *section = atomic_read(&d->mru_section); |
90260c6c JK |
357 | subpage_t *subpage; |
358 | ||
07c114bb PB |
359 | if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] || |
360 | !section_covers_addr(section, addr)) { | |
003a0cf2 | 361 | section = phys_page_find(d, addr); |
07c114bb | 362 | atomic_set(&d->mru_section, section); |
729633c2 | 363 | } |
90260c6c JK |
364 | if (resolve_subpage && section->mr->subpage) { |
365 | subpage = container_of(section->mr, subpage_t, iomem); | |
53cb28cb | 366 | section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; |
90260c6c JK |
367 | } |
368 | return section; | |
9f029603 JK |
369 | } |
370 | ||
79e2b9ae | 371 | /* Called from RCU critical section */ |
90260c6c | 372 | static MemoryRegionSection * |
c7086b4a | 373 | address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, |
90260c6c | 374 | hwaddr *plen, bool resolve_subpage) |
149f54b5 PB |
375 | { |
376 | MemoryRegionSection *section; | |
965eb2fc | 377 | MemoryRegion *mr; |
a87f3954 | 378 | Int128 diff; |
149f54b5 | 379 | |
c7086b4a | 380 | section = address_space_lookup_region(d, addr, resolve_subpage); |
149f54b5 PB |
381 | /* Compute offset within MemoryRegionSection */ |
382 | addr -= section->offset_within_address_space; | |
383 | ||
384 | /* Compute offset within MemoryRegion */ | |
385 | *xlat = addr + section->offset_within_region; | |
386 | ||
965eb2fc | 387 | mr = section->mr; |
b242e0e0 PB |
388 | |
389 | /* MMIO registers can be expected to perform full-width accesses based only | |
390 | * on their address, without considering adjacent registers that could | |
391 | * decode to completely different MemoryRegions. When such registers | |
392 | * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO | |
393 | * regions overlap wildly. For this reason we cannot clamp the accesses | |
394 | * here. | |
395 | * | |
396 | * If the length is small (as is the case for address_space_ldl/stl), | |
397 | * everything works fine. If the incoming length is large, however, | |
398 | * the caller really has to do the clamping through memory_access_size. | |
399 | */ | |
965eb2fc | 400 | if (memory_region_is_ram(mr)) { |
e4a511f8 | 401 | diff = int128_sub(section->size, int128_make64(addr)); |
965eb2fc PB |
402 | *plen = int128_get64(int128_min(diff, int128_make64(*plen))); |
403 | } | |
149f54b5 PB |
404 | return section; |
405 | } | |
90260c6c | 406 | |
a411c84b PB |
407 | /** |
408 | * address_space_translate_iommu - translate an address through an IOMMU | |
409 | * memory region and then through the target address space. | |
410 | * | |
411 | * @iommu_mr: the IOMMU memory region that we start the translation from | |
412 | * @addr: the address to be translated through the MMU | |
413 | * @xlat: the translated address offset within the destination memory region. | |
414 | * It cannot be %NULL. | |
415 | * @plen_out: valid read/write length of the translated address. It | |
416 | * cannot be %NULL. | |
417 | * @page_mask_out: page mask for the translated address. This | |
418 | * should only be meaningful for IOMMU translated | |
419 | * addresses, since there may be huge pages that this bit | |
420 | * would tell. It can be %NULL if we don't care about it. | |
421 | * @is_write: whether the translation operation is for write | |
422 | * @is_mmio: whether this can be MMIO, set true if it can | |
423 | * @target_as: the address space targeted by the IOMMU | |
2f7b009c | 424 | * @attrs: transaction attributes |
a411c84b PB |
425 | * |
426 | * This function is called from RCU critical section. It is the common | |
427 | * part of flatview_do_translate and address_space_translate_cached. | |
428 | */ | |
429 | static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr, | |
430 | hwaddr *xlat, | |
431 | hwaddr *plen_out, | |
432 | hwaddr *page_mask_out, | |
433 | bool is_write, | |
434 | bool is_mmio, | |
2f7b009c PM |
435 | AddressSpace **target_as, |
436 | MemTxAttrs attrs) | |
a411c84b PB |
437 | { |
438 | MemoryRegionSection *section; | |
439 | hwaddr page_mask = (hwaddr)-1; | |
440 | ||
441 | do { | |
442 | hwaddr addr = *xlat; | |
443 | IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr); | |
2c91bcf2 PM |
444 | int iommu_idx = 0; |
445 | IOMMUTLBEntry iotlb; | |
446 | ||
447 | if (imrc->attrs_to_index) { | |
448 | iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); | |
449 | } | |
450 | ||
451 | iotlb = imrc->translate(iommu_mr, addr, is_write ? | |
452 | IOMMU_WO : IOMMU_RO, iommu_idx); | |
a411c84b PB |
453 | |
454 | if (!(iotlb.perm & (1 << is_write))) { | |
455 | goto unassigned; | |
456 | } | |
457 | ||
458 | addr = ((iotlb.translated_addr & ~iotlb.addr_mask) | |
459 | | (addr & iotlb.addr_mask)); | |
460 | page_mask &= iotlb.addr_mask; | |
461 | *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1); | |
462 | *target_as = iotlb.target_as; | |
463 | ||
464 | section = address_space_translate_internal( | |
465 | address_space_to_dispatch(iotlb.target_as), addr, xlat, | |
466 | plen_out, is_mmio); | |
467 | ||
468 | iommu_mr = memory_region_get_iommu(section->mr); | |
469 | } while (unlikely(iommu_mr)); | |
470 | ||
471 | if (page_mask_out) { | |
472 | *page_mask_out = page_mask; | |
473 | } | |
474 | return *section; | |
475 | ||
476 | unassigned: | |
477 | return (MemoryRegionSection) { .mr = &io_mem_unassigned }; | |
478 | } | |
479 | ||
d5e5fafd PX |
480 | /** |
481 | * flatview_do_translate - translate an address in FlatView | |
482 | * | |
483 | * @fv: the flat view that we want to translate on | |
484 | * @addr: the address to be translated in above address space | |
485 | * @xlat: the translated address offset within memory region. It | |
486 | * cannot be @NULL. | |
487 | * @plen_out: valid read/write length of the translated address. It | |
488 | * can be @NULL when we don't care about it. | |
489 | * @page_mask_out: page mask for the translated address. This | |
490 | * should only be meaningful for IOMMU translated | |
491 | * addresses, since there may be huge pages that this bit | |
492 | * would tell. It can be @NULL if we don't care about it. | |
493 | * @is_write: whether the translation operation is for write | |
494 | * @is_mmio: whether this can be MMIO, set true if it can | |
ad2804d9 | 495 | * @target_as: the address space targeted by the IOMMU |
49e14aa8 | 496 | * @attrs: memory transaction attributes |
d5e5fafd PX |
497 | * |
498 | * This function is called from RCU critical section | |
499 | */ | |
16620684 AK |
500 | static MemoryRegionSection flatview_do_translate(FlatView *fv, |
501 | hwaddr addr, | |
502 | hwaddr *xlat, | |
d5e5fafd PX |
503 | hwaddr *plen_out, |
504 | hwaddr *page_mask_out, | |
16620684 AK |
505 | bool is_write, |
506 | bool is_mmio, | |
49e14aa8 PM |
507 | AddressSpace **target_as, |
508 | MemTxAttrs attrs) | |
052c8fa9 | 509 | { |
052c8fa9 | 510 | MemoryRegionSection *section; |
3df9d748 | 511 | IOMMUMemoryRegion *iommu_mr; |
d5e5fafd PX |
512 | hwaddr plen = (hwaddr)(-1); |
513 | ||
ad2804d9 PB |
514 | if (!plen_out) { |
515 | plen_out = &plen; | |
d5e5fafd | 516 | } |
052c8fa9 | 517 | |
a411c84b PB |
518 | section = address_space_translate_internal( |
519 | flatview_to_dispatch(fv), addr, xlat, | |
520 | plen_out, is_mmio); | |
052c8fa9 | 521 | |
a411c84b PB |
522 | iommu_mr = memory_region_get_iommu(section->mr); |
523 | if (unlikely(iommu_mr)) { | |
524 | return address_space_translate_iommu(iommu_mr, xlat, | |
525 | plen_out, page_mask_out, | |
526 | is_write, is_mmio, | |
2f7b009c | 527 | target_as, attrs); |
052c8fa9 | 528 | } |
d5e5fafd | 529 | if (page_mask_out) { |
a411c84b PB |
530 | /* Not behind an IOMMU, use default page size. */ |
531 | *page_mask_out = ~TARGET_PAGE_MASK; | |
d5e5fafd PX |
532 | } |
533 | ||
a764040c | 534 | return *section; |
052c8fa9 JW |
535 | } |
536 | ||
537 | /* Called from RCU critical section */ | |
a764040c | 538 | IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, |
7446eb07 | 539 | bool is_write, MemTxAttrs attrs) |
90260c6c | 540 | { |
a764040c | 541 | MemoryRegionSection section; |
076a93d7 | 542 | hwaddr xlat, page_mask; |
30951157 | 543 | |
076a93d7 PX |
544 | /* |
545 | * This can never be MMIO, and we don't really care about plen, | |
546 | * but page mask. | |
547 | */ | |
548 | section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat, | |
49e14aa8 PM |
549 | NULL, &page_mask, is_write, false, &as, |
550 | attrs); | |
30951157 | 551 | |
a764040c PX |
552 | /* Illegal translation */ |
553 | if (section.mr == &io_mem_unassigned) { | |
554 | goto iotlb_fail; | |
555 | } | |
30951157 | 556 | |
a764040c PX |
557 | /* Convert memory region offset into address space offset */ |
558 | xlat += section.offset_within_address_space - | |
559 | section.offset_within_region; | |
560 | ||
a764040c | 561 | return (IOMMUTLBEntry) { |
e76bb18f | 562 | .target_as = as, |
076a93d7 PX |
563 | .iova = addr & ~page_mask, |
564 | .translated_addr = xlat & ~page_mask, | |
565 | .addr_mask = page_mask, | |
a764040c PX |
566 | /* IOTLBs are for DMAs, and DMA only allows on RAMs. */ |
567 | .perm = IOMMU_RW, | |
568 | }; | |
569 | ||
570 | iotlb_fail: | |
571 | return (IOMMUTLBEntry) {0}; | |
572 | } | |
573 | ||
574 | /* Called from RCU critical section */ | |
16620684 | 575 | MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat, |
efa99a2f PM |
576 | hwaddr *plen, bool is_write, |
577 | MemTxAttrs attrs) | |
a764040c PX |
578 | { |
579 | MemoryRegion *mr; | |
580 | MemoryRegionSection section; | |
16620684 | 581 | AddressSpace *as = NULL; |
a764040c PX |
582 | |
583 | /* This can be MMIO, so setup MMIO bit. */ | |
d5e5fafd | 584 | section = flatview_do_translate(fv, addr, xlat, plen, NULL, |
49e14aa8 | 585 | is_write, true, &as, attrs); |
a764040c PX |
586 | mr = section.mr; |
587 | ||
fe680d0d | 588 | if (xen_enabled() && memory_access_is_direct(mr, is_write)) { |
a87f3954 | 589 | hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; |
23820dbf | 590 | *plen = MIN(page, *plen); |
a87f3954 PB |
591 | } |
592 | ||
30951157 | 593 | return mr; |
90260c6c JK |
594 | } |
595 | ||
1f871c5e PM |
596 | typedef struct TCGIOMMUNotifier { |
597 | IOMMUNotifier n; | |
598 | MemoryRegion *mr; | |
599 | CPUState *cpu; | |
600 | int iommu_idx; | |
601 | bool active; | |
602 | } TCGIOMMUNotifier; | |
603 | ||
604 | static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) | |
605 | { | |
606 | TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n); | |
607 | ||
608 | if (!notifier->active) { | |
609 | return; | |
610 | } | |
611 | tlb_flush(notifier->cpu); | |
612 | notifier->active = false; | |
613 | /* We leave the notifier struct on the list to avoid reallocating it later. | |
614 | * Generally the number of IOMMUs a CPU deals with will be small. | |
615 | * In any case we can't unregister the iommu notifier from a notify | |
616 | * callback. | |
617 | */ | |
618 | } | |
619 | ||
620 | static void tcg_register_iommu_notifier(CPUState *cpu, | |
621 | IOMMUMemoryRegion *iommu_mr, | |
622 | int iommu_idx) | |
623 | { | |
624 | /* Make sure this CPU has an IOMMU notifier registered for this | |
625 | * IOMMU/IOMMU index combination, so that we can flush its TLB | |
626 | * when the IOMMU tells us the mappings we've cached have changed. | |
627 | */ | |
628 | MemoryRegion *mr = MEMORY_REGION(iommu_mr); | |
629 | TCGIOMMUNotifier *notifier; | |
549d4005 EA |
630 | Error *err = NULL; |
631 | int i, ret; | |
1f871c5e PM |
632 | |
633 | for (i = 0; i < cpu->iommu_notifiers->len; i++) { | |
5601be3b | 634 | notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); |
1f871c5e PM |
635 | if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) { |
636 | break; | |
637 | } | |
638 | } | |
639 | if (i == cpu->iommu_notifiers->len) { | |
640 | /* Not found, add a new entry at the end of the array */ | |
641 | cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1); | |
5601be3b PM |
642 | notifier = g_new0(TCGIOMMUNotifier, 1); |
643 | g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier; | |
1f871c5e PM |
644 | |
645 | notifier->mr = mr; | |
646 | notifier->iommu_idx = iommu_idx; | |
647 | notifier->cpu = cpu; | |
648 | /* Rather than trying to register interest in the specific part | |
649 | * of the iommu's address space that we've accessed and then | |
650 | * expand it later as subsequent accesses touch more of it, we | |
651 | * just register interest in the whole thing, on the assumption | |
652 | * that iommu reconfiguration will be rare. | |
653 | */ | |
654 | iommu_notifier_init(¬ifier->n, | |
655 | tcg_iommu_unmap_notify, | |
656 | IOMMU_NOTIFIER_UNMAP, | |
657 | 0, | |
658 | HWADDR_MAX, | |
659 | iommu_idx); | |
549d4005 EA |
660 | ret = memory_region_register_iommu_notifier(notifier->mr, ¬ifier->n, |
661 | &err); | |
662 | if (ret) { | |
663 | error_report_err(err); | |
664 | exit(1); | |
665 | } | |
1f871c5e PM |
666 | } |
667 | ||
668 | if (!notifier->active) { | |
669 | notifier->active = true; | |
670 | } | |
671 | } | |
672 | ||
673 | static void tcg_iommu_free_notifier_list(CPUState *cpu) | |
674 | { | |
675 | /* Destroy the CPU's notifier list */ | |
676 | int i; | |
677 | TCGIOMMUNotifier *notifier; | |
678 | ||
679 | for (i = 0; i < cpu->iommu_notifiers->len; i++) { | |
5601be3b | 680 | notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); |
1f871c5e | 681 | memory_region_unregister_iommu_notifier(notifier->mr, ¬ifier->n); |
5601be3b | 682 | g_free(notifier); |
1f871c5e PM |
683 | } |
684 | g_array_free(cpu->iommu_notifiers, true); | |
685 | } | |
686 | ||
79e2b9ae | 687 | /* Called from RCU critical section */ |
90260c6c | 688 | MemoryRegionSection * |
d7898cda | 689 | address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr, |
1f871c5e PM |
690 | hwaddr *xlat, hwaddr *plen, |
691 | MemTxAttrs attrs, int *prot) | |
90260c6c | 692 | { |
30951157 | 693 | MemoryRegionSection *section; |
1f871c5e PM |
694 | IOMMUMemoryRegion *iommu_mr; |
695 | IOMMUMemoryRegionClass *imrc; | |
696 | IOMMUTLBEntry iotlb; | |
697 | int iommu_idx; | |
f35e44e7 | 698 | AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch); |
d7898cda | 699 | |
1f871c5e PM |
700 | for (;;) { |
701 | section = address_space_translate_internal(d, addr, &addr, plen, false); | |
702 | ||
703 | iommu_mr = memory_region_get_iommu(section->mr); | |
704 | if (!iommu_mr) { | |
705 | break; | |
706 | } | |
707 | ||
708 | imrc = memory_region_get_iommu_class_nocheck(iommu_mr); | |
709 | ||
710 | iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); | |
711 | tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx); | |
712 | /* We need all the permissions, so pass IOMMU_NONE so the IOMMU | |
713 | * doesn't short-cut its translation table walk. | |
714 | */ | |
715 | iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx); | |
716 | addr = ((iotlb.translated_addr & ~iotlb.addr_mask) | |
717 | | (addr & iotlb.addr_mask)); | |
718 | /* Update the caller's prot bits to remove permissions the IOMMU | |
719 | * is giving us a failure response for. If we get down to no | |
720 | * permissions left at all we can give up now. | |
721 | */ | |
722 | if (!(iotlb.perm & IOMMU_RO)) { | |
723 | *prot &= ~(PAGE_READ | PAGE_EXEC); | |
724 | } | |
725 | if (!(iotlb.perm & IOMMU_WO)) { | |
726 | *prot &= ~PAGE_WRITE; | |
727 | } | |
728 | ||
729 | if (!*prot) { | |
730 | goto translate_fail; | |
731 | } | |
732 | ||
733 | d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as)); | |
734 | } | |
30951157 | 735 | |
3df9d748 | 736 | assert(!memory_region_is_iommu(section->mr)); |
1f871c5e | 737 | *xlat = addr; |
30951157 | 738 | return section; |
1f871c5e PM |
739 | |
740 | translate_fail: | |
741 | return &d->map.sections[PHYS_SECTION_UNASSIGNED]; | |
90260c6c | 742 | } |
5b6dd868 | 743 | #endif |
fd6ce8f6 | 744 | |
b170fce3 | 745 | #if !defined(CONFIG_USER_ONLY) |
5b6dd868 BS |
746 | |
747 | static int cpu_common_post_load(void *opaque, int version_id) | |
fd6ce8f6 | 748 | { |
259186a7 | 749 | CPUState *cpu = opaque; |
a513fe19 | 750 | |
5b6dd868 BS |
751 | /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the |
752 | version_id is increased. */ | |
259186a7 | 753 | cpu->interrupt_request &= ~0x01; |
d10eb08f | 754 | tlb_flush(cpu); |
5b6dd868 | 755 | |
15a356c4 PD |
756 | /* loadvm has just updated the content of RAM, bypassing the |
757 | * usual mechanisms that ensure we flush TBs for writes to | |
758 | * memory we've translated code from. So we must flush all TBs, | |
759 | * which will now be stale. | |
760 | */ | |
761 | tb_flush(cpu); | |
762 | ||
5b6dd868 | 763 | return 0; |
a513fe19 | 764 | } |
7501267e | 765 | |
6c3bff0e PD |
766 | static int cpu_common_pre_load(void *opaque) |
767 | { | |
768 | CPUState *cpu = opaque; | |
769 | ||
adee6424 | 770 | cpu->exception_index = -1; |
6c3bff0e PD |
771 | |
772 | return 0; | |
773 | } | |
774 | ||
775 | static bool cpu_common_exception_index_needed(void *opaque) | |
776 | { | |
777 | CPUState *cpu = opaque; | |
778 | ||
adee6424 | 779 | return tcg_enabled() && cpu->exception_index != -1; |
6c3bff0e PD |
780 | } |
781 | ||
782 | static const VMStateDescription vmstate_cpu_common_exception_index = { | |
783 | .name = "cpu_common/exception_index", | |
784 | .version_id = 1, | |
785 | .minimum_version_id = 1, | |
5cd8cada | 786 | .needed = cpu_common_exception_index_needed, |
6c3bff0e PD |
787 | .fields = (VMStateField[]) { |
788 | VMSTATE_INT32(exception_index, CPUState), | |
789 | VMSTATE_END_OF_LIST() | |
790 | } | |
791 | }; | |
792 | ||
bac05aa9 AS |
793 | static bool cpu_common_crash_occurred_needed(void *opaque) |
794 | { | |
795 | CPUState *cpu = opaque; | |
796 | ||
797 | return cpu->crash_occurred; | |
798 | } | |
799 | ||
800 | static const VMStateDescription vmstate_cpu_common_crash_occurred = { | |
801 | .name = "cpu_common/crash_occurred", | |
802 | .version_id = 1, | |
803 | .minimum_version_id = 1, | |
804 | .needed = cpu_common_crash_occurred_needed, | |
805 | .fields = (VMStateField[]) { | |
806 | VMSTATE_BOOL(crash_occurred, CPUState), | |
807 | VMSTATE_END_OF_LIST() | |
808 | } | |
809 | }; | |
810 | ||
1a1562f5 | 811 | const VMStateDescription vmstate_cpu_common = { |
5b6dd868 BS |
812 | .name = "cpu_common", |
813 | .version_id = 1, | |
814 | .minimum_version_id = 1, | |
6c3bff0e | 815 | .pre_load = cpu_common_pre_load, |
5b6dd868 | 816 | .post_load = cpu_common_post_load, |
35d08458 | 817 | .fields = (VMStateField[]) { |
259186a7 AF |
818 | VMSTATE_UINT32(halted, CPUState), |
819 | VMSTATE_UINT32(interrupt_request, CPUState), | |
5b6dd868 | 820 | VMSTATE_END_OF_LIST() |
6c3bff0e | 821 | }, |
5cd8cada JQ |
822 | .subsections = (const VMStateDescription*[]) { |
823 | &vmstate_cpu_common_exception_index, | |
bac05aa9 | 824 | &vmstate_cpu_common_crash_occurred, |
5cd8cada | 825 | NULL |
5b6dd868 BS |
826 | } |
827 | }; | |
1a1562f5 | 828 | |
80ceb07a PX |
829 | void cpu_address_space_init(CPUState *cpu, int asidx, |
830 | const char *prefix, MemoryRegion *mr) | |
09daed84 | 831 | { |
12ebc9a7 | 832 | CPUAddressSpace *newas; |
80ceb07a | 833 | AddressSpace *as = g_new0(AddressSpace, 1); |
87a621d8 | 834 | char *as_name; |
80ceb07a PX |
835 | |
836 | assert(mr); | |
87a621d8 PX |
837 | as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index); |
838 | address_space_init(as, mr, as_name); | |
839 | g_free(as_name); | |
12ebc9a7 PM |
840 | |
841 | /* Target code should have set num_ases before calling us */ | |
842 | assert(asidx < cpu->num_ases); | |
843 | ||
56943e8c PM |
844 | if (asidx == 0) { |
845 | /* address space 0 gets the convenience alias */ | |
846 | cpu->as = as; | |
847 | } | |
848 | ||
12ebc9a7 PM |
849 | /* KVM cannot currently support multiple address spaces. */ |
850 | assert(asidx == 0 || !kvm_enabled()); | |
09daed84 | 851 | |
12ebc9a7 PM |
852 | if (!cpu->cpu_ases) { |
853 | cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases); | |
09daed84 | 854 | } |
32857f4d | 855 | |
12ebc9a7 PM |
856 | newas = &cpu->cpu_ases[asidx]; |
857 | newas->cpu = cpu; | |
858 | newas->as = as; | |
56943e8c | 859 | if (tcg_enabled()) { |
9458a9a1 | 860 | newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync; |
12ebc9a7 PM |
861 | newas->tcg_as_listener.commit = tcg_commit; |
862 | memory_listener_register(&newas->tcg_as_listener, as); | |
56943e8c | 863 | } |
09daed84 | 864 | } |
651a5bc0 PM |
865 | |
866 | AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx) | |
867 | { | |
868 | /* Return the AddressSpace corresponding to the specified index */ | |
869 | return cpu->cpu_ases[asidx].as; | |
870 | } | |
09daed84 EI |
871 | #endif |
872 | ||
7bbc124e | 873 | void cpu_exec_unrealizefn(CPUState *cpu) |
1c59eb39 | 874 | { |
9dfeca7c BR |
875 | CPUClass *cc = CPU_GET_CLASS(cpu); |
876 | ||
816d9be5 | 877 | tlb_destroy(cpu); |
267f685b | 878 | cpu_list_remove(cpu); |
9dfeca7c BR |
879 | |
880 | if (cc->vmsd != NULL) { | |
881 | vmstate_unregister(NULL, cc->vmsd, cpu); | |
882 | } | |
883 | if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { | |
884 | vmstate_unregister(NULL, &vmstate_cpu_common, cpu); | |
885 | } | |
1f871c5e PM |
886 | #ifndef CONFIG_USER_ONLY |
887 | tcg_iommu_free_notifier_list(cpu); | |
888 | #endif | |
1c59eb39 BR |
889 | } |
890 | ||
c7e002c5 FZ |
891 | Property cpu_common_props[] = { |
892 | #ifndef CONFIG_USER_ONLY | |
893 | /* Create a memory property for softmmu CPU object, | |
2e5b09fd | 894 | * so users can wire up its memory. (This can't go in hw/core/cpu.c |
c7e002c5 FZ |
895 | * because that file is compiled only once for both user-mode |
896 | * and system builds.) The default if no link is set up is to use | |
897 | * the system address space. | |
898 | */ | |
899 | DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION, | |
900 | MemoryRegion *), | |
901 | #endif | |
902 | DEFINE_PROP_END_OF_LIST(), | |
903 | }; | |
904 | ||
39e329e3 | 905 | void cpu_exec_initfn(CPUState *cpu) |
ea041c0e | 906 | { |
56943e8c | 907 | cpu->as = NULL; |
12ebc9a7 | 908 | cpu->num_ases = 0; |
56943e8c | 909 | |
291135b5 | 910 | #ifndef CONFIG_USER_ONLY |
291135b5 | 911 | cpu->thread_id = qemu_get_thread_id(); |
6731d864 PC |
912 | cpu->memory = system_memory; |
913 | object_ref(OBJECT(cpu->memory)); | |
291135b5 | 914 | #endif |
39e329e3 LV |
915 | } |
916 | ||
ce5b1bbf | 917 | void cpu_exec_realizefn(CPUState *cpu, Error **errp) |
39e329e3 | 918 | { |
55c3ceef | 919 | CPUClass *cc = CPU_GET_CLASS(cpu); |
2dda6354 | 920 | static bool tcg_target_initialized; |
291135b5 | 921 | |
267f685b | 922 | cpu_list_add(cpu); |
1bc7e522 | 923 | |
2dda6354 EC |
924 | if (tcg_enabled() && !tcg_target_initialized) { |
925 | tcg_target_initialized = true; | |
55c3ceef RH |
926 | cc->tcg_initialize(); |
927 | } | |
5005e253 | 928 | tlb_init(cpu); |
55c3ceef | 929 | |
30865f31 EC |
930 | qemu_plugin_vcpu_init_hook(cpu); |
931 | ||
3e07593a PMD |
932 | #ifdef CONFIG_USER_ONLY |
933 | assert(cc->vmsd == NULL); | |
934 | #else /* !CONFIG_USER_ONLY */ | |
e0d47944 | 935 | if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { |
741da0d3 | 936 | vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu); |
e0d47944 | 937 | } |
b170fce3 | 938 | if (cc->vmsd != NULL) { |
741da0d3 | 939 | vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu); |
b170fce3 | 940 | } |
1f871c5e | 941 | |
5601be3b | 942 | cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *)); |
741da0d3 | 943 | #endif |
ea041c0e FB |
944 | } |
945 | ||
c1c8cfe5 | 946 | const char *parse_cpu_option(const char *cpu_option) |
2278b939 IM |
947 | { |
948 | ObjectClass *oc; | |
949 | CPUClass *cc; | |
950 | gchar **model_pieces; | |
951 | const char *cpu_type; | |
952 | ||
c1c8cfe5 | 953 | model_pieces = g_strsplit(cpu_option, ",", 2); |
5b863f3e EH |
954 | if (!model_pieces[0]) { |
955 | error_report("-cpu option cannot be empty"); | |
956 | exit(1); | |
957 | } | |
2278b939 IM |
958 | |
959 | oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]); | |
960 | if (oc == NULL) { | |
961 | error_report("unable to find CPU model '%s'", model_pieces[0]); | |
962 | g_strfreev(model_pieces); | |
963 | exit(EXIT_FAILURE); | |
964 | } | |
965 | ||
966 | cpu_type = object_class_get_name(oc); | |
967 | cc = CPU_CLASS(oc); | |
968 | cc->parse_features(cpu_type, model_pieces[1], &error_fatal); | |
969 | g_strfreev(model_pieces); | |
970 | return cpu_type; | |
971 | } | |
972 | ||
c40d4792 | 973 | #if defined(CONFIG_USER_ONLY) |
8bca9a03 | 974 | void tb_invalidate_phys_addr(target_ulong addr) |
1e7855a5 | 975 | { |
406bc339 | 976 | mmap_lock(); |
ce9f5e27 | 977 | tb_invalidate_phys_page_range(addr, addr + 1); |
406bc339 PK |
978 | mmap_unlock(); |
979 | } | |
8bca9a03 PB |
980 | |
981 | static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) | |
982 | { | |
983 | tb_invalidate_phys_addr(pc); | |
984 | } | |
406bc339 | 985 | #else |
8bca9a03 PB |
986 | void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs) |
987 | { | |
988 | ram_addr_t ram_addr; | |
989 | MemoryRegion *mr; | |
990 | hwaddr l = 1; | |
991 | ||
c40d4792 PB |
992 | if (!tcg_enabled()) { |
993 | return; | |
994 | } | |
995 | ||
694ea274 | 996 | RCU_READ_LOCK_GUARD(); |
8bca9a03 PB |
997 | mr = address_space_translate(as, addr, &addr, &l, false, attrs); |
998 | if (!(memory_region_is_ram(mr) | |
999 | || memory_region_is_romd(mr))) { | |
8bca9a03 PB |
1000 | return; |
1001 | } | |
1002 | ram_addr = memory_region_get_ram_addr(mr) + addr; | |
ce9f5e27 | 1003 | tb_invalidate_phys_page_range(ram_addr, ram_addr + 1); |
8bca9a03 PB |
1004 | } |
1005 | ||
406bc339 PK |
1006 | static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) |
1007 | { | |
b55f54bc MF |
1008 | /* |
1009 | * There may not be a virtual to physical translation for the pc | |
1010 | * right now, but there may exist cached TB for this pc. | |
1011 | * Flush the whole TB cache to force re-translation of such TBs. | |
1012 | * This is heavyweight, but we're debugging anyway. | |
1013 | */ | |
1014 | tb_flush(cpu); | |
1e7855a5 | 1015 | } |
406bc339 | 1016 | #endif |
d720b93d | 1017 | |
74841f04 | 1018 | #ifndef CONFIG_USER_ONLY |
6658ffb8 | 1019 | /* Add a watchpoint. */ |
75a34036 | 1020 | int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, |
a1d1bb31 | 1021 | int flags, CPUWatchpoint **watchpoint) |
6658ffb8 | 1022 | { |
c0ce998e | 1023 | CPUWatchpoint *wp; |
2e886a24 | 1024 | vaddr in_page; |
6658ffb8 | 1025 | |
05068c0d | 1026 | /* forbid ranges which are empty or run off the end of the address space */ |
07e2863d | 1027 | if (len == 0 || (addr + len - 1) < addr) { |
75a34036 AF |
1028 | error_report("tried to set invalid watchpoint at %" |
1029 | VADDR_PRIx ", len=%" VADDR_PRIu, addr, len); | |
b4051334 AL |
1030 | return -EINVAL; |
1031 | } | |
7267c094 | 1032 | wp = g_malloc(sizeof(*wp)); |
a1d1bb31 AL |
1033 | |
1034 | wp->vaddr = addr; | |
05068c0d | 1035 | wp->len = len; |
a1d1bb31 AL |
1036 | wp->flags = flags; |
1037 | ||
2dc9f411 | 1038 | /* keep all GDB-injected watchpoints in front */ |
ff4700b0 AF |
1039 | if (flags & BP_GDB) { |
1040 | QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry); | |
1041 | } else { | |
1042 | QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry); | |
1043 | } | |
6658ffb8 | 1044 | |
2e886a24 AB |
1045 | in_page = -(addr | TARGET_PAGE_MASK); |
1046 | if (len <= in_page) { | |
1047 | tlb_flush_page(cpu, addr); | |
1048 | } else { | |
1049 | tlb_flush(cpu); | |
1050 | } | |
a1d1bb31 AL |
1051 | |
1052 | if (watchpoint) | |
1053 | *watchpoint = wp; | |
1054 | return 0; | |
6658ffb8 PB |
1055 | } |
1056 | ||
a1d1bb31 | 1057 | /* Remove a specific watchpoint. */ |
75a34036 | 1058 | int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, |
a1d1bb31 | 1059 | int flags) |
6658ffb8 | 1060 | { |
a1d1bb31 | 1061 | CPUWatchpoint *wp; |
6658ffb8 | 1062 | |
ff4700b0 | 1063 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d | 1064 | if (addr == wp->vaddr && len == wp->len |
6e140f28 | 1065 | && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { |
75a34036 | 1066 | cpu_watchpoint_remove_by_ref(cpu, wp); |
6658ffb8 PB |
1067 | return 0; |
1068 | } | |
1069 | } | |
a1d1bb31 | 1070 | return -ENOENT; |
6658ffb8 PB |
1071 | } |
1072 | ||
a1d1bb31 | 1073 | /* Remove a specific watchpoint by reference. */ |
75a34036 | 1074 | void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) |
a1d1bb31 | 1075 | { |
ff4700b0 | 1076 | QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry); |
7d03f82f | 1077 | |
31b030d4 | 1078 | tlb_flush_page(cpu, watchpoint->vaddr); |
a1d1bb31 | 1079 | |
7267c094 | 1080 | g_free(watchpoint); |
a1d1bb31 AL |
1081 | } |
1082 | ||
1083 | /* Remove all matching watchpoints. */ | |
75a34036 | 1084 | void cpu_watchpoint_remove_all(CPUState *cpu, int mask) |
a1d1bb31 | 1085 | { |
c0ce998e | 1086 | CPUWatchpoint *wp, *next; |
a1d1bb31 | 1087 | |
ff4700b0 | 1088 | QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) { |
75a34036 AF |
1089 | if (wp->flags & mask) { |
1090 | cpu_watchpoint_remove_by_ref(cpu, wp); | |
1091 | } | |
c0ce998e | 1092 | } |
7d03f82f | 1093 | } |
05068c0d PM |
1094 | |
1095 | /* Return true if this watchpoint address matches the specified | |
1096 | * access (ie the address range covered by the watchpoint overlaps | |
1097 | * partially or completely with the address range covered by the | |
1098 | * access). | |
1099 | */ | |
56ad8b00 RH |
1100 | static inline bool watchpoint_address_matches(CPUWatchpoint *wp, |
1101 | vaddr addr, vaddr len) | |
05068c0d PM |
1102 | { |
1103 | /* We know the lengths are non-zero, but a little caution is | |
1104 | * required to avoid errors in the case where the range ends | |
1105 | * exactly at the top of the address space and so addr + len | |
1106 | * wraps round to zero. | |
1107 | */ | |
1108 | vaddr wpend = wp->vaddr + wp->len - 1; | |
1109 | vaddr addrend = addr + len - 1; | |
1110 | ||
1111 | return !(addr > wpend || wp->vaddr > addrend); | |
1112 | } | |
1113 | ||
56ad8b00 RH |
1114 | /* Return flags for watchpoints that match addr + prot. */ |
1115 | int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len) | |
1116 | { | |
1117 | CPUWatchpoint *wp; | |
1118 | int ret = 0; | |
1119 | ||
1120 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { | |
9835936d | 1121 | if (watchpoint_address_matches(wp, addr, len)) { |
56ad8b00 RH |
1122 | ret |= wp->flags; |
1123 | } | |
1124 | } | |
1125 | return ret; | |
1126 | } | |
74841f04 | 1127 | #endif /* !CONFIG_USER_ONLY */ |
7d03f82f | 1128 | |
a1d1bb31 | 1129 | /* Add a breakpoint. */ |
b3310ab3 | 1130 | int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, |
a1d1bb31 | 1131 | CPUBreakpoint **breakpoint) |
4c3a88a2 | 1132 | { |
c0ce998e | 1133 | CPUBreakpoint *bp; |
3b46e624 | 1134 | |
7267c094 | 1135 | bp = g_malloc(sizeof(*bp)); |
4c3a88a2 | 1136 | |
a1d1bb31 AL |
1137 | bp->pc = pc; |
1138 | bp->flags = flags; | |
1139 | ||
2dc9f411 | 1140 | /* keep all GDB-injected breakpoints in front */ |
00b941e5 | 1141 | if (flags & BP_GDB) { |
f0c3c505 | 1142 | QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry); |
00b941e5 | 1143 | } else { |
f0c3c505 | 1144 | QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry); |
00b941e5 | 1145 | } |
3b46e624 | 1146 | |
f0c3c505 | 1147 | breakpoint_invalidate(cpu, pc); |
a1d1bb31 | 1148 | |
00b941e5 | 1149 | if (breakpoint) { |
a1d1bb31 | 1150 | *breakpoint = bp; |
00b941e5 | 1151 | } |
4c3a88a2 | 1152 | return 0; |
4c3a88a2 FB |
1153 | } |
1154 | ||
a1d1bb31 | 1155 | /* Remove a specific breakpoint. */ |
b3310ab3 | 1156 | int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags) |
a1d1bb31 | 1157 | { |
a1d1bb31 AL |
1158 | CPUBreakpoint *bp; |
1159 | ||
f0c3c505 | 1160 | QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { |
a1d1bb31 | 1161 | if (bp->pc == pc && bp->flags == flags) { |
b3310ab3 | 1162 | cpu_breakpoint_remove_by_ref(cpu, bp); |
a1d1bb31 AL |
1163 | return 0; |
1164 | } | |
7d03f82f | 1165 | } |
a1d1bb31 | 1166 | return -ENOENT; |
7d03f82f EI |
1167 | } |
1168 | ||
a1d1bb31 | 1169 | /* Remove a specific breakpoint by reference. */ |
b3310ab3 | 1170 | void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint) |
4c3a88a2 | 1171 | { |
f0c3c505 AF |
1172 | QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry); |
1173 | ||
1174 | breakpoint_invalidate(cpu, breakpoint->pc); | |
a1d1bb31 | 1175 | |
7267c094 | 1176 | g_free(breakpoint); |
a1d1bb31 AL |
1177 | } |
1178 | ||
1179 | /* Remove all matching breakpoints. */ | |
b3310ab3 | 1180 | void cpu_breakpoint_remove_all(CPUState *cpu, int mask) |
a1d1bb31 | 1181 | { |
c0ce998e | 1182 | CPUBreakpoint *bp, *next; |
a1d1bb31 | 1183 | |
f0c3c505 | 1184 | QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) { |
b3310ab3 AF |
1185 | if (bp->flags & mask) { |
1186 | cpu_breakpoint_remove_by_ref(cpu, bp); | |
1187 | } | |
c0ce998e | 1188 | } |
4c3a88a2 FB |
1189 | } |
1190 | ||
c33a346e FB |
1191 | /* enable or disable single step mode. EXCP_DEBUG is returned by the |
1192 | CPU loop after each instruction */ | |
3825b28f | 1193 | void cpu_single_step(CPUState *cpu, int enabled) |
c33a346e | 1194 | { |
ed2803da AF |
1195 | if (cpu->singlestep_enabled != enabled) { |
1196 | cpu->singlestep_enabled = enabled; | |
1197 | if (kvm_enabled()) { | |
38e478ec | 1198 | kvm_update_guest_debug(cpu, 0); |
ed2803da | 1199 | } else { |
ccbb4d44 | 1200 | /* must flush all the translated code to avoid inconsistencies */ |
e22a25c9 | 1201 | /* XXX: only flush what is necessary */ |
bbd77c18 | 1202 | tb_flush(cpu); |
e22a25c9 | 1203 | } |
c33a346e | 1204 | } |
c33a346e FB |
1205 | } |
1206 | ||
a47dddd7 | 1207 | void cpu_abort(CPUState *cpu, const char *fmt, ...) |
7501267e FB |
1208 | { |
1209 | va_list ap; | |
493ae1f0 | 1210 | va_list ap2; |
7501267e FB |
1211 | |
1212 | va_start(ap, fmt); | |
493ae1f0 | 1213 | va_copy(ap2, ap); |
7501267e FB |
1214 | fprintf(stderr, "qemu: fatal: "); |
1215 | vfprintf(stderr, fmt, ap); | |
1216 | fprintf(stderr, "\n"); | |
90c84c56 | 1217 | cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP); |
013a2942 | 1218 | if (qemu_log_separate()) { |
fc59d2d8 | 1219 | FILE *logfile = qemu_log_lock(); |
93fcfe39 AL |
1220 | qemu_log("qemu: fatal: "); |
1221 | qemu_log_vprintf(fmt, ap2); | |
1222 | qemu_log("\n"); | |
a0762859 | 1223 | log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP); |
31b1a7b4 | 1224 | qemu_log_flush(); |
fc59d2d8 | 1225 | qemu_log_unlock(logfile); |
93fcfe39 | 1226 | qemu_log_close(); |
924edcae | 1227 | } |
493ae1f0 | 1228 | va_end(ap2); |
f9373291 | 1229 | va_end(ap); |
7615936e | 1230 | replay_finish(); |
fd052bf6 RV |
1231 | #if defined(CONFIG_USER_ONLY) |
1232 | { | |
1233 | struct sigaction act; | |
1234 | sigfillset(&act.sa_mask); | |
1235 | act.sa_handler = SIG_DFL; | |
8347c185 | 1236 | act.sa_flags = 0; |
fd052bf6 RV |
1237 | sigaction(SIGABRT, &act, NULL); |
1238 | } | |
1239 | #endif | |
7501267e FB |
1240 | abort(); |
1241 | } | |
1242 | ||
0124311e | 1243 | #if !defined(CONFIG_USER_ONLY) |
0dc3f44a | 1244 | /* Called from RCU critical section */ |
041603fe PB |
1245 | static RAMBlock *qemu_get_ram_block(ram_addr_t addr) |
1246 | { | |
1247 | RAMBlock *block; | |
1248 | ||
43771539 | 1249 | block = atomic_rcu_read(&ram_list.mru_block); |
9b8424d5 | 1250 | if (block && addr - block->offset < block->max_length) { |
68851b98 | 1251 | return block; |
041603fe | 1252 | } |
99e15582 | 1253 | RAMBLOCK_FOREACH(block) { |
9b8424d5 | 1254 | if (addr - block->offset < block->max_length) { |
041603fe PB |
1255 | goto found; |
1256 | } | |
1257 | } | |
1258 | ||
1259 | fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); | |
1260 | abort(); | |
1261 | ||
1262 | found: | |
43771539 PB |
1263 | /* It is safe to write mru_block outside the iothread lock. This |
1264 | * is what happens: | |
1265 | * | |
1266 | * mru_block = xxx | |
1267 | * rcu_read_unlock() | |
1268 | * xxx removed from list | |
1269 | * rcu_read_lock() | |
1270 | * read mru_block | |
1271 | * mru_block = NULL; | |
1272 | * call_rcu(reclaim_ramblock, xxx); | |
1273 | * rcu_read_unlock() | |
1274 | * | |
1275 | * atomic_rcu_set is not needed here. The block was already published | |
1276 | * when it was placed into the list. Here we're just making an extra | |
1277 | * copy of the pointer. | |
1278 | */ | |
041603fe PB |
1279 | ram_list.mru_block = block; |
1280 | return block; | |
1281 | } | |
1282 | ||
a2f4d5be | 1283 | static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) |
d24981d3 | 1284 | { |
9a13565d | 1285 | CPUState *cpu; |
041603fe | 1286 | ram_addr_t start1; |
a2f4d5be JQ |
1287 | RAMBlock *block; |
1288 | ram_addr_t end; | |
1289 | ||
f28d0dfd | 1290 | assert(tcg_enabled()); |
a2f4d5be JQ |
1291 | end = TARGET_PAGE_ALIGN(start + length); |
1292 | start &= TARGET_PAGE_MASK; | |
d24981d3 | 1293 | |
694ea274 | 1294 | RCU_READ_LOCK_GUARD(); |
041603fe PB |
1295 | block = qemu_get_ram_block(start); |
1296 | assert(block == qemu_get_ram_block(end - 1)); | |
1240be24 | 1297 | start1 = (uintptr_t)ramblock_ptr(block, start - block->offset); |
9a13565d PC |
1298 | CPU_FOREACH(cpu) { |
1299 | tlb_reset_dirty(cpu, start1, length); | |
1300 | } | |
d24981d3 JQ |
1301 | } |
1302 | ||
5579c7f3 | 1303 | /* Note: start and end must be within the same ram block. */ |
03eebc9e SH |
1304 | bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, |
1305 | ram_addr_t length, | |
1306 | unsigned client) | |
1ccde1cb | 1307 | { |
5b82b703 | 1308 | DirtyMemoryBlocks *blocks; |
25aa6b37 | 1309 | unsigned long end, page, start_page; |
5b82b703 | 1310 | bool dirty = false; |
077874e0 PX |
1311 | RAMBlock *ramblock; |
1312 | uint64_t mr_offset, mr_size; | |
03eebc9e SH |
1313 | |
1314 | if (length == 0) { | |
1315 | return false; | |
1316 | } | |
f23db169 | 1317 | |
03eebc9e | 1318 | end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; |
25aa6b37 MB |
1319 | start_page = start >> TARGET_PAGE_BITS; |
1320 | page = start_page; | |
5b82b703 | 1321 | |
694ea274 DDAG |
1322 | WITH_RCU_READ_LOCK_GUARD() { |
1323 | blocks = atomic_rcu_read(&ram_list.dirty_memory[client]); | |
1324 | ramblock = qemu_get_ram_block(start); | |
1325 | /* Range sanity check on the ramblock */ | |
1326 | assert(start >= ramblock->offset && | |
1327 | start + length <= ramblock->offset + ramblock->used_length); | |
5b82b703 | 1328 | |
694ea274 DDAG |
1329 | while (page < end) { |
1330 | unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; | |
1331 | unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; | |
1332 | unsigned long num = MIN(end - page, | |
1333 | DIRTY_MEMORY_BLOCK_SIZE - offset); | |
5b82b703 | 1334 | |
694ea274 DDAG |
1335 | dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx], |
1336 | offset, num); | |
1337 | page += num; | |
1338 | } | |
5b82b703 | 1339 | |
25aa6b37 MB |
1340 | mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset; |
1341 | mr_size = (end - start_page) << TARGET_PAGE_BITS; | |
694ea274 | 1342 | memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size); |
5b82b703 SH |
1343 | } |
1344 | ||
03eebc9e | 1345 | if (dirty && tcg_enabled()) { |
a2f4d5be | 1346 | tlb_reset_dirty_range_all(start, length); |
5579c7f3 | 1347 | } |
03eebc9e SH |
1348 | |
1349 | return dirty; | |
1ccde1cb FB |
1350 | } |
1351 | ||
8deaf12c | 1352 | DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty |
5dea4079 | 1353 | (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client) |
8deaf12c GH |
1354 | { |
1355 | DirtyMemoryBlocks *blocks; | |
5dea4079 | 1356 | ram_addr_t start = memory_region_get_ram_addr(mr) + offset; |
8deaf12c GH |
1357 | unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL); |
1358 | ram_addr_t first = QEMU_ALIGN_DOWN(start, align); | |
1359 | ram_addr_t last = QEMU_ALIGN_UP(start + length, align); | |
1360 | DirtyBitmapSnapshot *snap; | |
1361 | unsigned long page, end, dest; | |
1362 | ||
1363 | snap = g_malloc0(sizeof(*snap) + | |
1364 | ((last - first) >> (TARGET_PAGE_BITS + 3))); | |
1365 | snap->start = first; | |
1366 | snap->end = last; | |
1367 | ||
1368 | page = first >> TARGET_PAGE_BITS; | |
1369 | end = last >> TARGET_PAGE_BITS; | |
1370 | dest = 0; | |
1371 | ||
694ea274 DDAG |
1372 | WITH_RCU_READ_LOCK_GUARD() { |
1373 | blocks = atomic_rcu_read(&ram_list.dirty_memory[client]); | |
8deaf12c | 1374 | |
694ea274 DDAG |
1375 | while (page < end) { |
1376 | unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; | |
1377 | unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; | |
1378 | unsigned long num = MIN(end - page, | |
1379 | DIRTY_MEMORY_BLOCK_SIZE - offset); | |
8deaf12c | 1380 | |
694ea274 DDAG |
1381 | assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL))); |
1382 | assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL))); | |
1383 | offset >>= BITS_PER_LEVEL; | |
8deaf12c | 1384 | |
694ea274 DDAG |
1385 | bitmap_copy_and_clear_atomic(snap->dirty + dest, |
1386 | blocks->blocks[idx] + offset, | |
1387 | num); | |
1388 | page += num; | |
1389 | dest += num >> BITS_PER_LEVEL; | |
1390 | } | |
8deaf12c GH |
1391 | } |
1392 | ||
8deaf12c GH |
1393 | if (tcg_enabled()) { |
1394 | tlb_reset_dirty_range_all(start, length); | |
1395 | } | |
1396 | ||
077874e0 PX |
1397 | memory_region_clear_dirty_bitmap(mr, offset, length); |
1398 | ||
8deaf12c GH |
1399 | return snap; |
1400 | } | |
1401 | ||
1402 | bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap, | |
1403 | ram_addr_t start, | |
1404 | ram_addr_t length) | |
1405 | { | |
1406 | unsigned long page, end; | |
1407 | ||
1408 | assert(start >= snap->start); | |
1409 | assert(start + length <= snap->end); | |
1410 | ||
1411 | end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS; | |
1412 | page = (start - snap->start) >> TARGET_PAGE_BITS; | |
1413 | ||
1414 | while (page < end) { | |
1415 | if (test_bit(page, snap->dirty)) { | |
1416 | return true; | |
1417 | } | |
1418 | page++; | |
1419 | } | |
1420 | return false; | |
1421 | } | |
1422 | ||
79e2b9ae | 1423 | /* Called from RCU critical section */ |
bb0e627a | 1424 | hwaddr memory_region_section_get_iotlb(CPUState *cpu, |
8f5db641 | 1425 | MemoryRegionSection *section) |
e5548617 | 1426 | { |
8f5db641 RH |
1427 | AddressSpaceDispatch *d = flatview_to_dispatch(section->fv); |
1428 | return section - d->map.sections; | |
e5548617 | 1429 | } |
9fa3e853 FB |
1430 | #endif /* defined(CONFIG_USER_ONLY) */ |
1431 | ||
e2eef170 | 1432 | #if !defined(CONFIG_USER_ONLY) |
8da3ff18 | 1433 | |
b797ab1a WY |
1434 | static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, |
1435 | uint16_t section); | |
16620684 | 1436 | static subpage_t *subpage_init(FlatView *fv, hwaddr base); |
54688b1e | 1437 | |
06329cce | 1438 | static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) = |
a2b257d6 | 1439 | qemu_anon_ram_alloc; |
91138037 MA |
1440 | |
1441 | /* | |
1442 | * Set a custom physical guest memory alloator. | |
1443 | * Accelerators with unusual needs may need this. Hopefully, we can | |
1444 | * get rid of it eventually. | |
1445 | */ | |
06329cce | 1446 | void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared)) |
91138037 MA |
1447 | { |
1448 | phys_mem_alloc = alloc; | |
1449 | } | |
1450 | ||
53cb28cb MA |
1451 | static uint16_t phys_section_add(PhysPageMap *map, |
1452 | MemoryRegionSection *section) | |
5312bd8b | 1453 | { |
68f3f65b PB |
1454 | /* The physical section number is ORed with a page-aligned |
1455 | * pointer to produce the iotlb entries. Thus it should | |
1456 | * never overflow into the page-aligned value. | |
1457 | */ | |
53cb28cb | 1458 | assert(map->sections_nb < TARGET_PAGE_SIZE); |
68f3f65b | 1459 | |
53cb28cb MA |
1460 | if (map->sections_nb == map->sections_nb_alloc) { |
1461 | map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); | |
1462 | map->sections = g_renew(MemoryRegionSection, map->sections, | |
1463 | map->sections_nb_alloc); | |
5312bd8b | 1464 | } |
53cb28cb | 1465 | map->sections[map->sections_nb] = *section; |
dfde4e6e | 1466 | memory_region_ref(section->mr); |
53cb28cb | 1467 | return map->sections_nb++; |
5312bd8b AK |
1468 | } |
1469 | ||
058bc4b5 PB |
1470 | static void phys_section_destroy(MemoryRegion *mr) |
1471 | { | |
55b4e80b DS |
1472 | bool have_sub_page = mr->subpage; |
1473 | ||
dfde4e6e PB |
1474 | memory_region_unref(mr); |
1475 | ||
55b4e80b | 1476 | if (have_sub_page) { |
058bc4b5 | 1477 | subpage_t *subpage = container_of(mr, subpage_t, iomem); |
b4fefef9 | 1478 | object_unref(OBJECT(&subpage->iomem)); |
058bc4b5 PB |
1479 | g_free(subpage); |
1480 | } | |
1481 | } | |
1482 | ||
6092666e | 1483 | static void phys_sections_free(PhysPageMap *map) |
5312bd8b | 1484 | { |
9affd6fc PB |
1485 | while (map->sections_nb > 0) { |
1486 | MemoryRegionSection *section = &map->sections[--map->sections_nb]; | |
058bc4b5 PB |
1487 | phys_section_destroy(section->mr); |
1488 | } | |
9affd6fc PB |
1489 | g_free(map->sections); |
1490 | g_free(map->nodes); | |
5312bd8b AK |
1491 | } |
1492 | ||
9950322a | 1493 | static void register_subpage(FlatView *fv, MemoryRegionSection *section) |
0f0cb164 | 1494 | { |
9950322a | 1495 | AddressSpaceDispatch *d = flatview_to_dispatch(fv); |
0f0cb164 | 1496 | subpage_t *subpage; |
a8170e5e | 1497 | hwaddr base = section->offset_within_address_space |
0f0cb164 | 1498 | & TARGET_PAGE_MASK; |
003a0cf2 | 1499 | MemoryRegionSection *existing = phys_page_find(d, base); |
0f0cb164 AK |
1500 | MemoryRegionSection subsection = { |
1501 | .offset_within_address_space = base, | |
052e87b0 | 1502 | .size = int128_make64(TARGET_PAGE_SIZE), |
0f0cb164 | 1503 | }; |
a8170e5e | 1504 | hwaddr start, end; |
0f0cb164 | 1505 | |
f3705d53 | 1506 | assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); |
0f0cb164 | 1507 | |
f3705d53 | 1508 | if (!(existing->mr->subpage)) { |
16620684 AK |
1509 | subpage = subpage_init(fv, base); |
1510 | subsection.fv = fv; | |
0f0cb164 | 1511 | subsection.mr = &subpage->iomem; |
ac1970fb | 1512 | phys_page_set(d, base >> TARGET_PAGE_BITS, 1, |
53cb28cb | 1513 | phys_section_add(&d->map, &subsection)); |
0f0cb164 | 1514 | } else { |
f3705d53 | 1515 | subpage = container_of(existing->mr, subpage_t, iomem); |
0f0cb164 AK |
1516 | } |
1517 | start = section->offset_within_address_space & ~TARGET_PAGE_MASK; | |
052e87b0 | 1518 | end = start + int128_get64(section->size) - 1; |
53cb28cb MA |
1519 | subpage_register(subpage, start, end, |
1520 | phys_section_add(&d->map, section)); | |
0f0cb164 AK |
1521 | } |
1522 | ||
1523 | ||
9950322a | 1524 | static void register_multipage(FlatView *fv, |
052e87b0 | 1525 | MemoryRegionSection *section) |
33417e70 | 1526 | { |
9950322a | 1527 | AddressSpaceDispatch *d = flatview_to_dispatch(fv); |
a8170e5e | 1528 | hwaddr start_addr = section->offset_within_address_space; |
53cb28cb | 1529 | uint16_t section_index = phys_section_add(&d->map, section); |
052e87b0 PB |
1530 | uint64_t num_pages = int128_get64(int128_rshift(section->size, |
1531 | TARGET_PAGE_BITS)); | |
dd81124b | 1532 | |
733d5ef5 PB |
1533 | assert(num_pages); |
1534 | phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); | |
33417e70 FB |
1535 | } |
1536 | ||
494d1997 WY |
1537 | /* |
1538 | * The range in *section* may look like this: | |
1539 | * | |
1540 | * |s|PPPPPPP|s| | |
1541 | * | |
1542 | * where s stands for subpage and P for page. | |
1543 | */ | |
8629d3fc | 1544 | void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section) |
0f0cb164 | 1545 | { |
494d1997 | 1546 | MemoryRegionSection remain = *section; |
052e87b0 | 1547 | Int128 page_size = int128_make64(TARGET_PAGE_SIZE); |
0f0cb164 | 1548 | |
494d1997 WY |
1549 | /* register first subpage */ |
1550 | if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { | |
1551 | uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space) | |
1552 | - remain.offset_within_address_space; | |
733d5ef5 | 1553 | |
494d1997 | 1554 | MemoryRegionSection now = remain; |
052e87b0 | 1555 | now.size = int128_min(int128_make64(left), now.size); |
9950322a | 1556 | register_subpage(fv, &now); |
494d1997 WY |
1557 | if (int128_eq(remain.size, now.size)) { |
1558 | return; | |
1559 | } | |
052e87b0 PB |
1560 | remain.size = int128_sub(remain.size, now.size); |
1561 | remain.offset_within_address_space += int128_get64(now.size); | |
1562 | remain.offset_within_region += int128_get64(now.size); | |
494d1997 WY |
1563 | } |
1564 | ||
1565 | /* register whole pages */ | |
1566 | if (int128_ge(remain.size, page_size)) { | |
1567 | MemoryRegionSection now = remain; | |
1568 | now.size = int128_and(now.size, int128_neg(page_size)); | |
1569 | register_multipage(fv, &now); | |
1570 | if (int128_eq(remain.size, now.size)) { | |
1571 | return; | |
69b67646 | 1572 | } |
494d1997 WY |
1573 | remain.size = int128_sub(remain.size, now.size); |
1574 | remain.offset_within_address_space += int128_get64(now.size); | |
1575 | remain.offset_within_region += int128_get64(now.size); | |
0f0cb164 | 1576 | } |
494d1997 WY |
1577 | |
1578 | /* register last subpage */ | |
1579 | register_subpage(fv, &remain); | |
0f0cb164 AK |
1580 | } |
1581 | ||
62a2744c SY |
1582 | void qemu_flush_coalesced_mmio_buffer(void) |
1583 | { | |
1584 | if (kvm_enabled()) | |
1585 | kvm_flush_coalesced_mmio_buffer(); | |
1586 | } | |
1587 | ||
b2a8658e UD |
1588 | void qemu_mutex_lock_ramlist(void) |
1589 | { | |
1590 | qemu_mutex_lock(&ram_list.mutex); | |
1591 | } | |
1592 | ||
1593 | void qemu_mutex_unlock_ramlist(void) | |
1594 | { | |
1595 | qemu_mutex_unlock(&ram_list.mutex); | |
1596 | } | |
1597 | ||
be9b23c4 PX |
1598 | void ram_block_dump(Monitor *mon) |
1599 | { | |
1600 | RAMBlock *block; | |
1601 | char *psize; | |
1602 | ||
694ea274 | 1603 | RCU_READ_LOCK_GUARD(); |
be9b23c4 PX |
1604 | monitor_printf(mon, "%24s %8s %18s %18s %18s\n", |
1605 | "Block Name", "PSize", "Offset", "Used", "Total"); | |
1606 | RAMBLOCK_FOREACH(block) { | |
1607 | psize = size_to_str(block->page_size); | |
1608 | monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64 | |
1609 | " 0x%016" PRIx64 "\n", block->idstr, psize, | |
1610 | (uint64_t)block->offset, | |
1611 | (uint64_t)block->used_length, | |
1612 | (uint64_t)block->max_length); | |
1613 | g_free(psize); | |
1614 | } | |
be9b23c4 PX |
1615 | } |
1616 | ||
9c607668 AK |
1617 | #ifdef __linux__ |
1618 | /* | |
1619 | * FIXME TOCTTOU: this iterates over memory backends' mem-path, which | |
1620 | * may or may not name the same files / on the same filesystem now as | |
1621 | * when we actually open and map them. Iterate over the file | |
1622 | * descriptors instead, and use qemu_fd_getpagesize(). | |
1623 | */ | |
905b7ee4 | 1624 | static int find_min_backend_pagesize(Object *obj, void *opaque) |
9c607668 | 1625 | { |
9c607668 AK |
1626 | long *hpsize_min = opaque; |
1627 | ||
1628 | if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { | |
7d5489e6 DG |
1629 | HostMemoryBackend *backend = MEMORY_BACKEND(obj); |
1630 | long hpsize = host_memory_backend_pagesize(backend); | |
2b108085 | 1631 | |
7d5489e6 | 1632 | if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) { |
0de6e2a3 | 1633 | *hpsize_min = hpsize; |
9c607668 AK |
1634 | } |
1635 | } | |
1636 | ||
1637 | return 0; | |
1638 | } | |
1639 | ||
905b7ee4 DH |
1640 | static int find_max_backend_pagesize(Object *obj, void *opaque) |
1641 | { | |
1642 | long *hpsize_max = opaque; | |
1643 | ||
1644 | if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { | |
1645 | HostMemoryBackend *backend = MEMORY_BACKEND(obj); | |
1646 | long hpsize = host_memory_backend_pagesize(backend); | |
1647 | ||
1648 | if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) { | |
1649 | *hpsize_max = hpsize; | |
1650 | } | |
1651 | } | |
1652 | ||
1653 | return 0; | |
1654 | } | |
1655 | ||
1656 | /* | |
1657 | * TODO: We assume right now that all mapped host memory backends are | |
1658 | * used as RAM, however some might be used for different purposes. | |
1659 | */ | |
1660 | long qemu_minrampagesize(void) | |
9c607668 AK |
1661 | { |
1662 | long hpsize = LONG_MAX; | |
ad1172d8 | 1663 | Object *memdev_root = object_resolve_path("/objects", NULL); |
9c607668 | 1664 | |
ad1172d8 | 1665 | object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize); |
9c607668 AK |
1666 | return hpsize; |
1667 | } | |
905b7ee4 DH |
1668 | |
1669 | long qemu_maxrampagesize(void) | |
1670 | { | |
ad1172d8 | 1671 | long pagesize = 0; |
905b7ee4 DH |
1672 | Object *memdev_root = object_resolve_path("/objects", NULL); |
1673 | ||
ad1172d8 | 1674 | object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize); |
905b7ee4 DH |
1675 | return pagesize; |
1676 | } | |
9c607668 | 1677 | #else |
905b7ee4 DH |
1678 | long qemu_minrampagesize(void) |
1679 | { | |
038adc2f | 1680 | return qemu_real_host_page_size; |
905b7ee4 DH |
1681 | } |
1682 | long qemu_maxrampagesize(void) | |
9c607668 | 1683 | { |
038adc2f | 1684 | return qemu_real_host_page_size; |
9c607668 AK |
1685 | } |
1686 | #endif | |
1687 | ||
d5dbde46 | 1688 | #ifdef CONFIG_POSIX |
d6af99c9 HZ |
1689 | static int64_t get_file_size(int fd) |
1690 | { | |
72d41eb4 SH |
1691 | int64_t size; |
1692 | #if defined(__linux__) | |
1693 | struct stat st; | |
1694 | ||
1695 | if (fstat(fd, &st) < 0) { | |
1696 | return -errno; | |
1697 | } | |
1698 | ||
1699 | /* Special handling for devdax character devices */ | |
1700 | if (S_ISCHR(st.st_mode)) { | |
1701 | g_autofree char *subsystem_path = NULL; | |
1702 | g_autofree char *subsystem = NULL; | |
1703 | ||
1704 | subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem", | |
1705 | major(st.st_rdev), minor(st.st_rdev)); | |
1706 | subsystem = g_file_read_link(subsystem_path, NULL); | |
1707 | ||
1708 | if (subsystem && g_str_has_suffix(subsystem, "/dax")) { | |
1709 | g_autofree char *size_path = NULL; | |
1710 | g_autofree char *size_str = NULL; | |
1711 | ||
1712 | size_path = g_strdup_printf("/sys/dev/char/%d:%d/size", | |
1713 | major(st.st_rdev), minor(st.st_rdev)); | |
1714 | ||
1715 | if (g_file_get_contents(size_path, &size_str, NULL, NULL)) { | |
1716 | return g_ascii_strtoll(size_str, NULL, 0); | |
1717 | } | |
1718 | } | |
1719 | } | |
1720 | #endif /* defined(__linux__) */ | |
1721 | ||
1722 | /* st.st_size may be zero for special files yet lseek(2) works */ | |
1723 | size = lseek(fd, 0, SEEK_END); | |
d6af99c9 HZ |
1724 | if (size < 0) { |
1725 | return -errno; | |
1726 | } | |
1727 | return size; | |
1728 | } | |
1729 | ||
ce317be9 JL |
1730 | static int64_t get_file_align(int fd) |
1731 | { | |
1732 | int64_t align = -1; | |
1733 | #if defined(__linux__) && defined(CONFIG_LIBDAXCTL) | |
1734 | struct stat st; | |
1735 | ||
1736 | if (fstat(fd, &st) < 0) { | |
1737 | return -errno; | |
1738 | } | |
1739 | ||
1740 | /* Special handling for devdax character devices */ | |
1741 | if (S_ISCHR(st.st_mode)) { | |
1742 | g_autofree char *path = NULL; | |
1743 | g_autofree char *rpath = NULL; | |
1744 | struct daxctl_ctx *ctx; | |
1745 | struct daxctl_region *region; | |
1746 | int rc = 0; | |
1747 | ||
1748 | path = g_strdup_printf("/sys/dev/char/%d:%d", | |
1749 | major(st.st_rdev), minor(st.st_rdev)); | |
1750 | rpath = realpath(path, NULL); | |
1751 | ||
1752 | rc = daxctl_new(&ctx); | |
1753 | if (rc) { | |
1754 | return -1; | |
1755 | } | |
1756 | ||
1757 | daxctl_region_foreach(ctx, region) { | |
1758 | if (strstr(rpath, daxctl_region_get_path(region))) { | |
1759 | align = daxctl_region_get_align(region); | |
1760 | break; | |
1761 | } | |
1762 | } | |
1763 | daxctl_unref(ctx); | |
1764 | } | |
1765 | #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */ | |
1766 | ||
1767 | return align; | |
1768 | } | |
1769 | ||
8d37b030 MAL |
1770 | static int file_ram_open(const char *path, |
1771 | const char *region_name, | |
1772 | bool *created, | |
1773 | Error **errp) | |
c902760f MT |
1774 | { |
1775 | char *filename; | |
8ca761f6 PF |
1776 | char *sanitized_name; |
1777 | char *c; | |
5c3ece79 | 1778 | int fd = -1; |
c902760f | 1779 | |
8d37b030 | 1780 | *created = false; |
fd97fd44 MA |
1781 | for (;;) { |
1782 | fd = open(path, O_RDWR); | |
1783 | if (fd >= 0) { | |
1784 | /* @path names an existing file, use it */ | |
1785 | break; | |
8d31d6b6 | 1786 | } |
fd97fd44 MA |
1787 | if (errno == ENOENT) { |
1788 | /* @path names a file that doesn't exist, create it */ | |
1789 | fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644); | |
1790 | if (fd >= 0) { | |
8d37b030 | 1791 | *created = true; |
fd97fd44 MA |
1792 | break; |
1793 | } | |
1794 | } else if (errno == EISDIR) { | |
1795 | /* @path names a directory, create a file there */ | |
1796 | /* Make name safe to use with mkstemp by replacing '/' with '_'. */ | |
8d37b030 | 1797 | sanitized_name = g_strdup(region_name); |
fd97fd44 MA |
1798 | for (c = sanitized_name; *c != '\0'; c++) { |
1799 | if (*c == '/') { | |
1800 | *c = '_'; | |
1801 | } | |
1802 | } | |
8ca761f6 | 1803 | |
fd97fd44 MA |
1804 | filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, |
1805 | sanitized_name); | |
1806 | g_free(sanitized_name); | |
8d31d6b6 | 1807 | |
fd97fd44 MA |
1808 | fd = mkstemp(filename); |
1809 | if (fd >= 0) { | |
1810 | unlink(filename); | |
1811 | g_free(filename); | |
1812 | break; | |
1813 | } | |
1814 | g_free(filename); | |
8d31d6b6 | 1815 | } |
fd97fd44 MA |
1816 | if (errno != EEXIST && errno != EINTR) { |
1817 | error_setg_errno(errp, errno, | |
1818 | "can't open backing store %s for guest RAM", | |
1819 | path); | |
8d37b030 | 1820 | return -1; |
fd97fd44 MA |
1821 | } |
1822 | /* | |
1823 | * Try again on EINTR and EEXIST. The latter happens when | |
1824 | * something else creates the file between our two open(). | |
1825 | */ | |
8d31d6b6 | 1826 | } |
c902760f | 1827 | |
8d37b030 MAL |
1828 | return fd; |
1829 | } | |
1830 | ||
1831 | static void *file_ram_alloc(RAMBlock *block, | |
1832 | ram_addr_t memory, | |
1833 | int fd, | |
1834 | bool truncate, | |
1835 | Error **errp) | |
1836 | { | |
1837 | void *area; | |
1838 | ||
863e9621 | 1839 | block->page_size = qemu_fd_getpagesize(fd); |
98376843 HZ |
1840 | if (block->mr->align % block->page_size) { |
1841 | error_setg(errp, "alignment 0x%" PRIx64 | |
1842 | " must be multiples of page size 0x%zx", | |
1843 | block->mr->align, block->page_size); | |
1844 | return NULL; | |
61362b71 DH |
1845 | } else if (block->mr->align && !is_power_of_2(block->mr->align)) { |
1846 | error_setg(errp, "alignment 0x%" PRIx64 | |
1847 | " must be a power of two", block->mr->align); | |
1848 | return NULL; | |
98376843 HZ |
1849 | } |
1850 | block->mr->align = MAX(block->page_size, block->mr->align); | |
8360668e HZ |
1851 | #if defined(__s390x__) |
1852 | if (kvm_enabled()) { | |
1853 | block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN); | |
1854 | } | |
1855 | #endif | |
fd97fd44 | 1856 | |
863e9621 | 1857 | if (memory < block->page_size) { |
fd97fd44 | 1858 | error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " |
863e9621 DDAG |
1859 | "or larger than page size 0x%zx", |
1860 | memory, block->page_size); | |
8d37b030 | 1861 | return NULL; |
1775f111 HZ |
1862 | } |
1863 | ||
863e9621 | 1864 | memory = ROUND_UP(memory, block->page_size); |
c902760f MT |
1865 | |
1866 | /* | |
1867 | * ftruncate is not supported by hugetlbfs in older | |
1868 | * hosts, so don't bother bailing out on errors. | |
1869 | * If anything goes wrong with it under other filesystems, | |
1870 | * mmap will fail. | |
d6af99c9 HZ |
1871 | * |
1872 | * Do not truncate the non-empty backend file to avoid corrupting | |
1873 | * the existing data in the file. Disabling shrinking is not | |
1874 | * enough. For example, the current vNVDIMM implementation stores | |
1875 | * the guest NVDIMM labels at the end of the backend file. If the | |
1876 | * backend file is later extended, QEMU will not be able to find | |
1877 | * those labels. Therefore, extending the non-empty backend file | |
1878 | * is disabled as well. | |
c902760f | 1879 | */ |
8d37b030 | 1880 | if (truncate && ftruncate(fd, memory)) { |
9742bf26 | 1881 | perror("ftruncate"); |
7f56e740 | 1882 | } |
c902760f | 1883 | |
d2f39add | 1884 | area = qemu_ram_mmap(fd, memory, block->mr->align, |
2ac0f162 | 1885 | block->flags & RAM_SHARED, block->flags & RAM_PMEM); |
c902760f | 1886 | if (area == MAP_FAILED) { |
7f56e740 | 1887 | error_setg_errno(errp, errno, |
fd97fd44 | 1888 | "unable to map backing store for guest RAM"); |
8d37b030 | 1889 | return NULL; |
c902760f | 1890 | } |
ef36fa14 | 1891 | |
04b16653 | 1892 | block->fd = fd; |
c902760f MT |
1893 | return area; |
1894 | } | |
1895 | #endif | |
1896 | ||
154cc9ea DDAG |
1897 | /* Allocate space within the ram_addr_t space that governs the |
1898 | * dirty bitmaps. | |
1899 | * Called with the ramlist lock held. | |
1900 | */ | |
d17b5288 | 1901 | static ram_addr_t find_ram_offset(ram_addr_t size) |
04b16653 AW |
1902 | { |
1903 | RAMBlock *block, *next_block; | |
3e837b2c | 1904 | ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; |
04b16653 | 1905 | |
49cd9ac6 SH |
1906 | assert(size != 0); /* it would hand out same offset multiple times */ |
1907 | ||
0dc3f44a | 1908 | if (QLIST_EMPTY_RCU(&ram_list.blocks)) { |
04b16653 | 1909 | return 0; |
0d53d9fe | 1910 | } |
04b16653 | 1911 | |
99e15582 | 1912 | RAMBLOCK_FOREACH(block) { |
154cc9ea | 1913 | ram_addr_t candidate, next = RAM_ADDR_MAX; |
04b16653 | 1914 | |
801110ab DDAG |
1915 | /* Align blocks to start on a 'long' in the bitmap |
1916 | * which makes the bitmap sync'ing take the fast path. | |
1917 | */ | |
154cc9ea | 1918 | candidate = block->offset + block->max_length; |
801110ab | 1919 | candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS); |
04b16653 | 1920 | |
154cc9ea DDAG |
1921 | /* Search for the closest following block |
1922 | * and find the gap. | |
1923 | */ | |
99e15582 | 1924 | RAMBLOCK_FOREACH(next_block) { |
154cc9ea | 1925 | if (next_block->offset >= candidate) { |
04b16653 AW |
1926 | next = MIN(next, next_block->offset); |
1927 | } | |
1928 | } | |
154cc9ea DDAG |
1929 | |
1930 | /* If it fits remember our place and remember the size | |
1931 | * of gap, but keep going so that we might find a smaller | |
1932 | * gap to fill so avoiding fragmentation. | |
1933 | */ | |
1934 | if (next - candidate >= size && next - candidate < mingap) { | |
1935 | offset = candidate; | |
1936 | mingap = next - candidate; | |
04b16653 | 1937 | } |
154cc9ea DDAG |
1938 | |
1939 | trace_find_ram_offset_loop(size, candidate, offset, next, mingap); | |
04b16653 | 1940 | } |
3e837b2c AW |
1941 | |
1942 | if (offset == RAM_ADDR_MAX) { | |
1943 | fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", | |
1944 | (uint64_t)size); | |
1945 | abort(); | |
1946 | } | |
1947 | ||
154cc9ea DDAG |
1948 | trace_find_ram_offset(size, offset); |
1949 | ||
04b16653 AW |
1950 | return offset; |
1951 | } | |
1952 | ||
c136180c | 1953 | static unsigned long last_ram_page(void) |
d17b5288 AW |
1954 | { |
1955 | RAMBlock *block; | |
1956 | ram_addr_t last = 0; | |
1957 | ||
694ea274 | 1958 | RCU_READ_LOCK_GUARD(); |
99e15582 | 1959 | RAMBLOCK_FOREACH(block) { |
62be4e3a | 1960 | last = MAX(last, block->offset + block->max_length); |
0d53d9fe | 1961 | } |
b8c48993 | 1962 | return last >> TARGET_PAGE_BITS; |
d17b5288 AW |
1963 | } |
1964 | ||
ddb97f1d JB |
1965 | static void qemu_ram_setup_dump(void *addr, ram_addr_t size) |
1966 | { | |
1967 | int ret; | |
ddb97f1d JB |
1968 | |
1969 | /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ | |
47c8ca53 | 1970 | if (!machine_dump_guest_core(current_machine)) { |
ddb97f1d JB |
1971 | ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); |
1972 | if (ret) { | |
1973 | perror("qemu_madvise"); | |
1974 | fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " | |
1975 | "but dump_guest_core=off specified\n"); | |
1976 | } | |
1977 | } | |
1978 | } | |
1979 | ||
422148d3 DDAG |
1980 | const char *qemu_ram_get_idstr(RAMBlock *rb) |
1981 | { | |
1982 | return rb->idstr; | |
1983 | } | |
1984 | ||
754cb9c0 YK |
1985 | void *qemu_ram_get_host_addr(RAMBlock *rb) |
1986 | { | |
1987 | return rb->host; | |
1988 | } | |
1989 | ||
1990 | ram_addr_t qemu_ram_get_offset(RAMBlock *rb) | |
1991 | { | |
1992 | return rb->offset; | |
1993 | } | |
1994 | ||
1995 | ram_addr_t qemu_ram_get_used_length(RAMBlock *rb) | |
1996 | { | |
1997 | return rb->used_length; | |
1998 | } | |
1999 | ||
463a4ac2 DDAG |
2000 | bool qemu_ram_is_shared(RAMBlock *rb) |
2001 | { | |
2002 | return rb->flags & RAM_SHARED; | |
2003 | } | |
2004 | ||
2ce16640 DDAG |
2005 | /* Note: Only set at the start of postcopy */ |
2006 | bool qemu_ram_is_uf_zeroable(RAMBlock *rb) | |
2007 | { | |
2008 | return rb->flags & RAM_UF_ZEROPAGE; | |
2009 | } | |
2010 | ||
2011 | void qemu_ram_set_uf_zeroable(RAMBlock *rb) | |
2012 | { | |
2013 | rb->flags |= RAM_UF_ZEROPAGE; | |
2014 | } | |
2015 | ||
b895de50 CLG |
2016 | bool qemu_ram_is_migratable(RAMBlock *rb) |
2017 | { | |
2018 | return rb->flags & RAM_MIGRATABLE; | |
2019 | } | |
2020 | ||
2021 | void qemu_ram_set_migratable(RAMBlock *rb) | |
2022 | { | |
2023 | rb->flags |= RAM_MIGRATABLE; | |
2024 | } | |
2025 | ||
2026 | void qemu_ram_unset_migratable(RAMBlock *rb) | |
2027 | { | |
2028 | rb->flags &= ~RAM_MIGRATABLE; | |
2029 | } | |
2030 | ||
ae3a7047 | 2031 | /* Called with iothread lock held. */ |
fa53a0e5 | 2032 | void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev) |
20cfe881 | 2033 | { |
fa53a0e5 | 2034 | RAMBlock *block; |
20cfe881 | 2035 | |
c5705a77 AK |
2036 | assert(new_block); |
2037 | assert(!new_block->idstr[0]); | |
84b89d78 | 2038 | |
09e5ab63 AL |
2039 | if (dev) { |
2040 | char *id = qdev_get_dev_path(dev); | |
84b89d78 CM |
2041 | if (id) { |
2042 | snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); | |
7267c094 | 2043 | g_free(id); |
84b89d78 CM |
2044 | } |
2045 | } | |
2046 | pstrcat(new_block->idstr, sizeof(new_block->idstr), name); | |
2047 | ||
694ea274 | 2048 | RCU_READ_LOCK_GUARD(); |
99e15582 | 2049 | RAMBLOCK_FOREACH(block) { |
fa53a0e5 GA |
2050 | if (block != new_block && |
2051 | !strcmp(block->idstr, new_block->idstr)) { | |
84b89d78 CM |
2052 | fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", |
2053 | new_block->idstr); | |
2054 | abort(); | |
2055 | } | |
2056 | } | |
c5705a77 AK |
2057 | } |
2058 | ||
ae3a7047 | 2059 | /* Called with iothread lock held. */ |
fa53a0e5 | 2060 | void qemu_ram_unset_idstr(RAMBlock *block) |
20cfe881 | 2061 | { |
ae3a7047 MD |
2062 | /* FIXME: arch_init.c assumes that this is not called throughout |
2063 | * migration. Ignore the problem since hot-unplug during migration | |
2064 | * does not work anyway. | |
2065 | */ | |
20cfe881 HT |
2066 | if (block) { |
2067 | memset(block->idstr, 0, sizeof(block->idstr)); | |
2068 | } | |
2069 | } | |
2070 | ||
863e9621 DDAG |
2071 | size_t qemu_ram_pagesize(RAMBlock *rb) |
2072 | { | |
2073 | return rb->page_size; | |
2074 | } | |
2075 | ||
67f11b5c DDAG |
2076 | /* Returns the largest size of page in use */ |
2077 | size_t qemu_ram_pagesize_largest(void) | |
2078 | { | |
2079 | RAMBlock *block; | |
2080 | size_t largest = 0; | |
2081 | ||
99e15582 | 2082 | RAMBLOCK_FOREACH(block) { |
67f11b5c DDAG |
2083 | largest = MAX(largest, qemu_ram_pagesize(block)); |
2084 | } | |
2085 | ||
2086 | return largest; | |
2087 | } | |
2088 | ||
8490fc78 LC |
2089 | static int memory_try_enable_merging(void *addr, size_t len) |
2090 | { | |
75cc7f01 | 2091 | if (!machine_mem_merge(current_machine)) { |
8490fc78 LC |
2092 | /* disabled by the user */ |
2093 | return 0; | |
2094 | } | |
2095 | ||
2096 | return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); | |
2097 | } | |
2098 | ||
62be4e3a MT |
2099 | /* Only legal before guest might have detected the memory size: e.g. on |
2100 | * incoming migration, or right after reset. | |
2101 | * | |
2102 | * As memory core doesn't know how is memory accessed, it is up to | |
2103 | * resize callback to update device state and/or add assertions to detect | |
2104 | * misuse, if necessary. | |
2105 | */ | |
fa53a0e5 | 2106 | int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp) |
62be4e3a | 2107 | { |
ce4adc0b DH |
2108 | const ram_addr_t unaligned_size = newsize; |
2109 | ||
62be4e3a MT |
2110 | assert(block); |
2111 | ||
4ed023ce | 2112 | newsize = HOST_PAGE_ALIGN(newsize); |
129ddaf3 | 2113 | |
62be4e3a | 2114 | if (block->used_length == newsize) { |
ce4adc0b DH |
2115 | /* |
2116 | * We don't have to resize the ram block (which only knows aligned | |
2117 | * sizes), however, we have to notify if the unaligned size changed. | |
2118 | */ | |
2119 | if (unaligned_size != memory_region_size(block->mr)) { | |
2120 | memory_region_set_size(block->mr, unaligned_size); | |
2121 | if (block->resized) { | |
2122 | block->resized(block->idstr, unaligned_size, block->host); | |
2123 | } | |
2124 | } | |
62be4e3a MT |
2125 | return 0; |
2126 | } | |
2127 | ||
2128 | if (!(block->flags & RAM_RESIZEABLE)) { | |
2129 | error_setg_errno(errp, EINVAL, | |
2130 | "Length mismatch: %s: 0x" RAM_ADDR_FMT | |
2131 | " in != 0x" RAM_ADDR_FMT, block->idstr, | |
2132 | newsize, block->used_length); | |
2133 | return -EINVAL; | |
2134 | } | |
2135 | ||
2136 | if (block->max_length < newsize) { | |
2137 | error_setg_errno(errp, EINVAL, | |
2138 | "Length too large: %s: 0x" RAM_ADDR_FMT | |
2139 | " > 0x" RAM_ADDR_FMT, block->idstr, | |
2140 | newsize, block->max_length); | |
2141 | return -EINVAL; | |
2142 | } | |
2143 | ||
2144 | cpu_physical_memory_clear_dirty_range(block->offset, block->used_length); | |
2145 | block->used_length = newsize; | |
58d2707e PB |
2146 | cpu_physical_memory_set_dirty_range(block->offset, block->used_length, |
2147 | DIRTY_CLIENTS_ALL); | |
ce4adc0b | 2148 | memory_region_set_size(block->mr, unaligned_size); |
62be4e3a | 2149 | if (block->resized) { |
ce4adc0b | 2150 | block->resized(block->idstr, unaligned_size, block->host); |
62be4e3a MT |
2151 | } |
2152 | return 0; | |
2153 | } | |
2154 | ||
61c490e2 BM |
2155 | /* |
2156 | * Trigger sync on the given ram block for range [start, start + length] | |
2157 | * with the backing store if one is available. | |
2158 | * Otherwise no-op. | |
2159 | * @Note: this is supposed to be a synchronous op. | |
2160 | */ | |
ab7e41e6 | 2161 | void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length) |
61c490e2 | 2162 | { |
61c490e2 BM |
2163 | /* The requested range should fit in within the block range */ |
2164 | g_assert((start + length) <= block->used_length); | |
2165 | ||
2166 | #ifdef CONFIG_LIBPMEM | |
2167 | /* The lack of support for pmem should not block the sync */ | |
2168 | if (ramblock_is_pmem(block)) { | |
5d4c9549 | 2169 | void *addr = ramblock_ptr(block, start); |
61c490e2 BM |
2170 | pmem_persist(addr, length); |
2171 | return; | |
2172 | } | |
2173 | #endif | |
2174 | if (block->fd >= 0) { | |
2175 | /** | |
2176 | * Case there is no support for PMEM or the memory has not been | |
2177 | * specified as persistent (or is not one) - use the msync. | |
2178 | * Less optimal but still achieves the same goal | |
2179 | */ | |
5d4c9549 | 2180 | void *addr = ramblock_ptr(block, start); |
61c490e2 BM |
2181 | if (qemu_msync(addr, length, block->fd)) { |
2182 | warn_report("%s: failed to sync memory range: start: " | |
2183 | RAM_ADDR_FMT " length: " RAM_ADDR_FMT, | |
2184 | __func__, start, length); | |
2185 | } | |
2186 | } | |
2187 | } | |
2188 | ||
5b82b703 SH |
2189 | /* Called with ram_list.mutex held */ |
2190 | static void dirty_memory_extend(ram_addr_t old_ram_size, | |
2191 | ram_addr_t new_ram_size) | |
2192 | { | |
2193 | ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size, | |
2194 | DIRTY_MEMORY_BLOCK_SIZE); | |
2195 | ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size, | |
2196 | DIRTY_MEMORY_BLOCK_SIZE); | |
2197 | int i; | |
2198 | ||
2199 | /* Only need to extend if block count increased */ | |
2200 | if (new_num_blocks <= old_num_blocks) { | |
2201 | return; | |
2202 | } | |
2203 | ||
2204 | for (i = 0; i < DIRTY_MEMORY_NUM; i++) { | |
2205 | DirtyMemoryBlocks *old_blocks; | |
2206 | DirtyMemoryBlocks *new_blocks; | |
2207 | int j; | |
2208 | ||
2209 | old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]); | |
2210 | new_blocks = g_malloc(sizeof(*new_blocks) + | |
2211 | sizeof(new_blocks->blocks[0]) * new_num_blocks); | |
2212 | ||
2213 | if (old_num_blocks) { | |
2214 | memcpy(new_blocks->blocks, old_blocks->blocks, | |
2215 | old_num_blocks * sizeof(old_blocks->blocks[0])); | |
2216 | } | |
2217 | ||
2218 | for (j = old_num_blocks; j < new_num_blocks; j++) { | |
2219 | new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE); | |
2220 | } | |
2221 | ||
2222 | atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks); | |
2223 | ||
2224 | if (old_blocks) { | |
2225 | g_free_rcu(old_blocks, rcu); | |
2226 | } | |
2227 | } | |
2228 | } | |
2229 | ||
06329cce | 2230 | static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared) |
c5705a77 | 2231 | { |
e1c57ab8 | 2232 | RAMBlock *block; |
0d53d9fe | 2233 | RAMBlock *last_block = NULL; |
2152f5ca | 2234 | ram_addr_t old_ram_size, new_ram_size; |
37aa7a0e | 2235 | Error *err = NULL; |
2152f5ca | 2236 | |
b8c48993 | 2237 | old_ram_size = last_ram_page(); |
c5705a77 | 2238 | |
b2a8658e | 2239 | qemu_mutex_lock_ramlist(); |
9b8424d5 | 2240 | new_block->offset = find_ram_offset(new_block->max_length); |
e1c57ab8 PB |
2241 | |
2242 | if (!new_block->host) { | |
2243 | if (xen_enabled()) { | |
9b8424d5 | 2244 | xen_ram_alloc(new_block->offset, new_block->max_length, |
37aa7a0e MA |
2245 | new_block->mr, &err); |
2246 | if (err) { | |
2247 | error_propagate(errp, err); | |
2248 | qemu_mutex_unlock_ramlist(); | |
39c350ee | 2249 | return; |
37aa7a0e | 2250 | } |
e1c57ab8 | 2251 | } else { |
9b8424d5 | 2252 | new_block->host = phys_mem_alloc(new_block->max_length, |
06329cce | 2253 | &new_block->mr->align, shared); |
39228250 | 2254 | if (!new_block->host) { |
ef701d7b HT |
2255 | error_setg_errno(errp, errno, |
2256 | "cannot set up guest memory '%s'", | |
2257 | memory_region_name(new_block->mr)); | |
2258 | qemu_mutex_unlock_ramlist(); | |
39c350ee | 2259 | return; |
39228250 | 2260 | } |
9b8424d5 | 2261 | memory_try_enable_merging(new_block->host, new_block->max_length); |
6977dfe6 | 2262 | } |
c902760f | 2263 | } |
94a6b54f | 2264 | |
dd631697 LZ |
2265 | new_ram_size = MAX(old_ram_size, |
2266 | (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS); | |
2267 | if (new_ram_size > old_ram_size) { | |
5b82b703 | 2268 | dirty_memory_extend(old_ram_size, new_ram_size); |
dd631697 | 2269 | } |
0d53d9fe MD |
2270 | /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ, |
2271 | * QLIST (which has an RCU-friendly variant) does not have insertion at | |
2272 | * tail, so save the last element in last_block. | |
2273 | */ | |
99e15582 | 2274 | RAMBLOCK_FOREACH(block) { |
0d53d9fe | 2275 | last_block = block; |
9b8424d5 | 2276 | if (block->max_length < new_block->max_length) { |
abb26d63 PB |
2277 | break; |
2278 | } | |
2279 | } | |
2280 | if (block) { | |
0dc3f44a | 2281 | QLIST_INSERT_BEFORE_RCU(block, new_block, next); |
0d53d9fe | 2282 | } else if (last_block) { |
0dc3f44a | 2283 | QLIST_INSERT_AFTER_RCU(last_block, new_block, next); |
0d53d9fe | 2284 | } else { /* list is empty */ |
0dc3f44a | 2285 | QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); |
abb26d63 | 2286 | } |
0d6d3c87 | 2287 | ram_list.mru_block = NULL; |
94a6b54f | 2288 | |
0dc3f44a MD |
2289 | /* Write list before version */ |
2290 | smp_wmb(); | |
f798b07f | 2291 | ram_list.version++; |
b2a8658e | 2292 | qemu_mutex_unlock_ramlist(); |
f798b07f | 2293 | |
9b8424d5 | 2294 | cpu_physical_memory_set_dirty_range(new_block->offset, |
58d2707e PB |
2295 | new_block->used_length, |
2296 | DIRTY_CLIENTS_ALL); | |
94a6b54f | 2297 | |
a904c911 PB |
2298 | if (new_block->host) { |
2299 | qemu_ram_setup_dump(new_block->host, new_block->max_length); | |
2300 | qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); | |
a028edea AB |
2301 | /* |
2302 | * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU | |
2303 | * Configure it unless the machine is a qtest server, in which case | |
2304 | * KVM is not used and it may be forked (eg for fuzzing purposes). | |
2305 | */ | |
2306 | if (!qtest_enabled()) { | |
2307 | qemu_madvise(new_block->host, new_block->max_length, | |
2308 | QEMU_MADV_DONTFORK); | |
2309 | } | |
0987d735 | 2310 | ram_block_notify_add(new_block->host, new_block->max_length); |
e1c57ab8 | 2311 | } |
94a6b54f | 2312 | } |
e9a1ab19 | 2313 | |
d5dbde46 | 2314 | #ifdef CONFIG_POSIX |
38b3362d | 2315 | RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr, |
cbfc0171 | 2316 | uint32_t ram_flags, int fd, |
38b3362d | 2317 | Error **errp) |
e1c57ab8 PB |
2318 | { |
2319 | RAMBlock *new_block; | |
ef701d7b | 2320 | Error *local_err = NULL; |
ce317be9 | 2321 | int64_t file_size, file_align; |
e1c57ab8 | 2322 | |
a4de8552 JH |
2323 | /* Just support these ram flags by now. */ |
2324 | assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0); | |
2325 | ||
e1c57ab8 | 2326 | if (xen_enabled()) { |
7f56e740 | 2327 | error_setg(errp, "-mem-path not supported with Xen"); |
528f46af | 2328 | return NULL; |
e1c57ab8 PB |
2329 | } |
2330 | ||
e45e7ae2 MAL |
2331 | if (kvm_enabled() && !kvm_has_sync_mmu()) { |
2332 | error_setg(errp, | |
2333 | "host lacks kvm mmu notifiers, -mem-path unsupported"); | |
2334 | return NULL; | |
2335 | } | |
2336 | ||
e1c57ab8 PB |
2337 | if (phys_mem_alloc != qemu_anon_ram_alloc) { |
2338 | /* | |
2339 | * file_ram_alloc() needs to allocate just like | |
2340 | * phys_mem_alloc, but we haven't bothered to provide | |
2341 | * a hook there. | |
2342 | */ | |
7f56e740 PB |
2343 | error_setg(errp, |
2344 | "-mem-path not supported with this accelerator"); | |
528f46af | 2345 | return NULL; |
e1c57ab8 PB |
2346 | } |
2347 | ||
4ed023ce | 2348 | size = HOST_PAGE_ALIGN(size); |
8d37b030 MAL |
2349 | file_size = get_file_size(fd); |
2350 | if (file_size > 0 && file_size < size) { | |
c001c3b3 | 2351 | error_setg(errp, "backing store size 0x%" PRIx64 |
8d37b030 | 2352 | " does not match 'size' option 0x" RAM_ADDR_FMT, |
c001c3b3 | 2353 | file_size, size); |
8d37b030 MAL |
2354 | return NULL; |
2355 | } | |
2356 | ||
ce317be9 JL |
2357 | file_align = get_file_align(fd); |
2358 | if (file_align > 0 && mr && file_align > mr->align) { | |
2359 | error_setg(errp, "backing store align 0x%" PRIx64 | |
5f509751 | 2360 | " is larger than 'align' option 0x%" PRIx64, |
ce317be9 JL |
2361 | file_align, mr->align); |
2362 | return NULL; | |
2363 | } | |
2364 | ||
e1c57ab8 PB |
2365 | new_block = g_malloc0(sizeof(*new_block)); |
2366 | new_block->mr = mr; | |
9b8424d5 MT |
2367 | new_block->used_length = size; |
2368 | new_block->max_length = size; | |
cbfc0171 | 2369 | new_block->flags = ram_flags; |
8d37b030 | 2370 | new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp); |
7f56e740 PB |
2371 | if (!new_block->host) { |
2372 | g_free(new_block); | |
528f46af | 2373 | return NULL; |
7f56e740 PB |
2374 | } |
2375 | ||
cbfc0171 | 2376 | ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED); |
ef701d7b HT |
2377 | if (local_err) { |
2378 | g_free(new_block); | |
2379 | error_propagate(errp, local_err); | |
528f46af | 2380 | return NULL; |
ef701d7b | 2381 | } |
528f46af | 2382 | return new_block; |
38b3362d MAL |
2383 | |
2384 | } | |
2385 | ||
2386 | ||
2387 | RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, | |
cbfc0171 | 2388 | uint32_t ram_flags, const char *mem_path, |
38b3362d MAL |
2389 | Error **errp) |
2390 | { | |
2391 | int fd; | |
2392 | bool created; | |
2393 | RAMBlock *block; | |
2394 | ||
2395 | fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp); | |
2396 | if (fd < 0) { | |
2397 | return NULL; | |
2398 | } | |
2399 | ||
cbfc0171 | 2400 | block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp); |
38b3362d MAL |
2401 | if (!block) { |
2402 | if (created) { | |
2403 | unlink(mem_path); | |
2404 | } | |
2405 | close(fd); | |
2406 | return NULL; | |
2407 | } | |
2408 | ||
2409 | return block; | |
e1c57ab8 | 2410 | } |
0b183fc8 | 2411 | #endif |
e1c57ab8 | 2412 | |
62be4e3a | 2413 | static |
528f46af FZ |
2414 | RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size, |
2415 | void (*resized)(const char*, | |
2416 | uint64_t length, | |
2417 | void *host), | |
06329cce | 2418 | void *host, bool resizeable, bool share, |
528f46af | 2419 | MemoryRegion *mr, Error **errp) |
e1c57ab8 PB |
2420 | { |
2421 | RAMBlock *new_block; | |
ef701d7b | 2422 | Error *local_err = NULL; |
e1c57ab8 | 2423 | |
4ed023ce DDAG |
2424 | size = HOST_PAGE_ALIGN(size); |
2425 | max_size = HOST_PAGE_ALIGN(max_size); | |
e1c57ab8 PB |
2426 | new_block = g_malloc0(sizeof(*new_block)); |
2427 | new_block->mr = mr; | |
62be4e3a | 2428 | new_block->resized = resized; |
9b8424d5 MT |
2429 | new_block->used_length = size; |
2430 | new_block->max_length = max_size; | |
62be4e3a | 2431 | assert(max_size >= size); |
e1c57ab8 | 2432 | new_block->fd = -1; |
038adc2f | 2433 | new_block->page_size = qemu_real_host_page_size; |
e1c57ab8 PB |
2434 | new_block->host = host; |
2435 | if (host) { | |
7bd4f430 | 2436 | new_block->flags |= RAM_PREALLOC; |
e1c57ab8 | 2437 | } |
62be4e3a MT |
2438 | if (resizeable) { |
2439 | new_block->flags |= RAM_RESIZEABLE; | |
2440 | } | |
06329cce | 2441 | ram_block_add(new_block, &local_err, share); |
ef701d7b HT |
2442 | if (local_err) { |
2443 | g_free(new_block); | |
2444 | error_propagate(errp, local_err); | |
528f46af | 2445 | return NULL; |
ef701d7b | 2446 | } |
528f46af | 2447 | return new_block; |
e1c57ab8 PB |
2448 | } |
2449 | ||
528f46af | 2450 | RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, |
62be4e3a MT |
2451 | MemoryRegion *mr, Error **errp) |
2452 | { | |
06329cce MA |
2453 | return qemu_ram_alloc_internal(size, size, NULL, host, false, |
2454 | false, mr, errp); | |
62be4e3a MT |
2455 | } |
2456 | ||
06329cce MA |
2457 | RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share, |
2458 | MemoryRegion *mr, Error **errp) | |
6977dfe6 | 2459 | { |
06329cce MA |
2460 | return qemu_ram_alloc_internal(size, size, NULL, NULL, false, |
2461 | share, mr, errp); | |
62be4e3a MT |
2462 | } |
2463 | ||
528f46af | 2464 | RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz, |
62be4e3a MT |
2465 | void (*resized)(const char*, |
2466 | uint64_t length, | |
2467 | void *host), | |
2468 | MemoryRegion *mr, Error **errp) | |
2469 | { | |
06329cce MA |
2470 | return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, |
2471 | false, mr, errp); | |
6977dfe6 YT |
2472 | } |
2473 | ||
43771539 PB |
2474 | static void reclaim_ramblock(RAMBlock *block) |
2475 | { | |
2476 | if (block->flags & RAM_PREALLOC) { | |
2477 | ; | |
2478 | } else if (xen_enabled()) { | |
2479 | xen_invalidate_map_cache_entry(block->host); | |
2480 | #ifndef _WIN32 | |
2481 | } else if (block->fd >= 0) { | |
53adb9d4 | 2482 | qemu_ram_munmap(block->fd, block->host, block->max_length); |
43771539 PB |
2483 | close(block->fd); |
2484 | #endif | |
2485 | } else { | |
2486 | qemu_anon_ram_free(block->host, block->max_length); | |
2487 | } | |
2488 | g_free(block); | |
2489 | } | |
2490 | ||
f1060c55 | 2491 | void qemu_ram_free(RAMBlock *block) |
e9a1ab19 | 2492 | { |
85bc2a15 MAL |
2493 | if (!block) { |
2494 | return; | |
2495 | } | |
2496 | ||
0987d735 PB |
2497 | if (block->host) { |
2498 | ram_block_notify_remove(block->host, block->max_length); | |
2499 | } | |
2500 | ||
b2a8658e | 2501 | qemu_mutex_lock_ramlist(); |
f1060c55 FZ |
2502 | QLIST_REMOVE_RCU(block, next); |
2503 | ram_list.mru_block = NULL; | |
2504 | /* Write list before version */ | |
2505 | smp_wmb(); | |
2506 | ram_list.version++; | |
2507 | call_rcu(block, reclaim_ramblock, rcu); | |
b2a8658e | 2508 | qemu_mutex_unlock_ramlist(); |
e9a1ab19 FB |
2509 | } |
2510 | ||
cd19cfa2 HY |
2511 | #ifndef _WIN32 |
2512 | void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) | |
2513 | { | |
2514 | RAMBlock *block; | |
2515 | ram_addr_t offset; | |
2516 | int flags; | |
2517 | void *area, *vaddr; | |
2518 | ||
99e15582 | 2519 | RAMBLOCK_FOREACH(block) { |
cd19cfa2 | 2520 | offset = addr - block->offset; |
9b8424d5 | 2521 | if (offset < block->max_length) { |
1240be24 | 2522 | vaddr = ramblock_ptr(block, offset); |
7bd4f430 | 2523 | if (block->flags & RAM_PREALLOC) { |
cd19cfa2 | 2524 | ; |
dfeaf2ab MA |
2525 | } else if (xen_enabled()) { |
2526 | abort(); | |
cd19cfa2 HY |
2527 | } else { |
2528 | flags = MAP_FIXED; | |
3435f395 | 2529 | if (block->fd >= 0) { |
dbcb8981 PB |
2530 | flags |= (block->flags & RAM_SHARED ? |
2531 | MAP_SHARED : MAP_PRIVATE); | |
3435f395 MA |
2532 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, |
2533 | flags, block->fd, offset); | |
cd19cfa2 | 2534 | } else { |
2eb9fbaa MA |
2535 | /* |
2536 | * Remap needs to match alloc. Accelerators that | |
2537 | * set phys_mem_alloc never remap. If they did, | |
2538 | * we'd need a remap hook here. | |
2539 | */ | |
2540 | assert(phys_mem_alloc == qemu_anon_ram_alloc); | |
2541 | ||
cd19cfa2 HY |
2542 | flags |= MAP_PRIVATE | MAP_ANONYMOUS; |
2543 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, | |
2544 | flags, -1, 0); | |
cd19cfa2 HY |
2545 | } |
2546 | if (area != vaddr) { | |
493d89bf AF |
2547 | error_report("Could not remap addr: " |
2548 | RAM_ADDR_FMT "@" RAM_ADDR_FMT "", | |
2549 | length, addr); | |
cd19cfa2 HY |
2550 | exit(1); |
2551 | } | |
8490fc78 | 2552 | memory_try_enable_merging(vaddr, length); |
ddb97f1d | 2553 | qemu_ram_setup_dump(vaddr, length); |
cd19cfa2 | 2554 | } |
cd19cfa2 HY |
2555 | } |
2556 | } | |
2557 | } | |
2558 | #endif /* !_WIN32 */ | |
2559 | ||
1b5ec234 | 2560 | /* Return a host pointer to ram allocated with qemu_ram_alloc. |
ae3a7047 MD |
2561 | * This should not be used for general purpose DMA. Use address_space_map |
2562 | * or address_space_rw instead. For local memory (e.g. video ram) that the | |
2563 | * device owns, use memory_region_get_ram_ptr. | |
0dc3f44a | 2564 | * |
49b24afc | 2565 | * Called within RCU critical section. |
1b5ec234 | 2566 | */ |
0878d0e1 | 2567 | void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr) |
1b5ec234 | 2568 | { |
3655cb9c GA |
2569 | RAMBlock *block = ram_block; |
2570 | ||
2571 | if (block == NULL) { | |
2572 | block = qemu_get_ram_block(addr); | |
0878d0e1 | 2573 | addr -= block->offset; |
3655cb9c | 2574 | } |
ae3a7047 MD |
2575 | |
2576 | if (xen_enabled() && block->host == NULL) { | |
0d6d3c87 PB |
2577 | /* We need to check if the requested address is in the RAM |
2578 | * because we don't want to map the entire memory in QEMU. | |
2579 | * In that case just map until the end of the page. | |
2580 | */ | |
2581 | if (block->offset == 0) { | |
1ff7c598 | 2582 | return xen_map_cache(addr, 0, 0, false); |
0d6d3c87 | 2583 | } |
ae3a7047 | 2584 | |
1ff7c598 | 2585 | block->host = xen_map_cache(block->offset, block->max_length, 1, false); |
0d6d3c87 | 2586 | } |
0878d0e1 | 2587 | return ramblock_ptr(block, addr); |
dc828ca1 PB |
2588 | } |
2589 | ||
0878d0e1 | 2590 | /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr |
ae3a7047 | 2591 | * but takes a size argument. |
0dc3f44a | 2592 | * |
e81bcda5 | 2593 | * Called within RCU critical section. |
ae3a7047 | 2594 | */ |
3655cb9c | 2595 | static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr, |
f5aa69bd | 2596 | hwaddr *size, bool lock) |
38bee5dc | 2597 | { |
3655cb9c | 2598 | RAMBlock *block = ram_block; |
8ab934f9 SS |
2599 | if (*size == 0) { |
2600 | return NULL; | |
2601 | } | |
e81bcda5 | 2602 | |
3655cb9c GA |
2603 | if (block == NULL) { |
2604 | block = qemu_get_ram_block(addr); | |
0878d0e1 | 2605 | addr -= block->offset; |
3655cb9c | 2606 | } |
0878d0e1 | 2607 | *size = MIN(*size, block->max_length - addr); |
e81bcda5 PB |
2608 | |
2609 | if (xen_enabled() && block->host == NULL) { | |
2610 | /* We need to check if the requested address is in the RAM | |
2611 | * because we don't want to map the entire memory in QEMU. | |
2612 | * In that case just map the requested area. | |
2613 | */ | |
2614 | if (block->offset == 0) { | |
f5aa69bd | 2615 | return xen_map_cache(addr, *size, lock, lock); |
38bee5dc SS |
2616 | } |
2617 | ||
f5aa69bd | 2618 | block->host = xen_map_cache(block->offset, block->max_length, 1, lock); |
38bee5dc | 2619 | } |
e81bcda5 | 2620 | |
0878d0e1 | 2621 | return ramblock_ptr(block, addr); |
38bee5dc SS |
2622 | } |
2623 | ||
f90bb71b DDAG |
2624 | /* Return the offset of a hostpointer within a ramblock */ |
2625 | ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host) | |
2626 | { | |
2627 | ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host; | |
2628 | assert((uintptr_t)host >= (uintptr_t)rb->host); | |
2629 | assert(res < rb->max_length); | |
2630 | ||
2631 | return res; | |
2632 | } | |
2633 | ||
422148d3 DDAG |
2634 | /* |
2635 | * Translates a host ptr back to a RAMBlock, a ram_addr and an offset | |
2636 | * in that RAMBlock. | |
2637 | * | |
2638 | * ptr: Host pointer to look up | |
2639 | * round_offset: If true round the result offset down to a page boundary | |
2640 | * *ram_addr: set to result ram_addr | |
2641 | * *offset: set to result offset within the RAMBlock | |
2642 | * | |
2643 | * Returns: RAMBlock (or NULL if not found) | |
ae3a7047 MD |
2644 | * |
2645 | * By the time this function returns, the returned pointer is not protected | |
2646 | * by RCU anymore. If the caller is not within an RCU critical section and | |
2647 | * does not hold the iothread lock, it must have other means of protecting the | |
2648 | * pointer, such as a reference to the region that includes the incoming | |
2649 | * ram_addr_t. | |
2650 | */ | |
422148d3 | 2651 | RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, |
422148d3 | 2652 | ram_addr_t *offset) |
5579c7f3 | 2653 | { |
94a6b54f PB |
2654 | RAMBlock *block; |
2655 | uint8_t *host = ptr; | |
2656 | ||
868bb33f | 2657 | if (xen_enabled()) { |
f615f396 | 2658 | ram_addr_t ram_addr; |
694ea274 | 2659 | RCU_READ_LOCK_GUARD(); |
f615f396 PB |
2660 | ram_addr = xen_ram_addr_from_mapcache(ptr); |
2661 | block = qemu_get_ram_block(ram_addr); | |
422148d3 | 2662 | if (block) { |
d6b6aec4 | 2663 | *offset = ram_addr - block->offset; |
422148d3 | 2664 | } |
422148d3 | 2665 | return block; |
712c2b41 SS |
2666 | } |
2667 | ||
694ea274 | 2668 | RCU_READ_LOCK_GUARD(); |
0dc3f44a | 2669 | block = atomic_rcu_read(&ram_list.mru_block); |
9b8424d5 | 2670 | if (block && block->host && host - block->host < block->max_length) { |
23887b79 PB |
2671 | goto found; |
2672 | } | |
2673 | ||
99e15582 | 2674 | RAMBLOCK_FOREACH(block) { |
432d268c JN |
2675 | /* This case append when the block is not mapped. */ |
2676 | if (block->host == NULL) { | |
2677 | continue; | |
2678 | } | |
9b8424d5 | 2679 | if (host - block->host < block->max_length) { |
23887b79 | 2680 | goto found; |
f471a17e | 2681 | } |
94a6b54f | 2682 | } |
432d268c | 2683 | |
1b5ec234 | 2684 | return NULL; |
23887b79 PB |
2685 | |
2686 | found: | |
422148d3 DDAG |
2687 | *offset = (host - block->host); |
2688 | if (round_offset) { | |
2689 | *offset &= TARGET_PAGE_MASK; | |
2690 | } | |
422148d3 DDAG |
2691 | return block; |
2692 | } | |
2693 | ||
e3dd7493 DDAG |
2694 | /* |
2695 | * Finds the named RAMBlock | |
2696 | * | |
2697 | * name: The name of RAMBlock to find | |
2698 | * | |
2699 | * Returns: RAMBlock (or NULL if not found) | |
2700 | */ | |
2701 | RAMBlock *qemu_ram_block_by_name(const char *name) | |
2702 | { | |
2703 | RAMBlock *block; | |
2704 | ||
99e15582 | 2705 | RAMBLOCK_FOREACH(block) { |
e3dd7493 DDAG |
2706 | if (!strcmp(name, block->idstr)) { |
2707 | return block; | |
2708 | } | |
2709 | } | |
2710 | ||
2711 | return NULL; | |
2712 | } | |
2713 | ||
422148d3 DDAG |
2714 | /* Some of the softmmu routines need to translate from a host pointer |
2715 | (typically a TLB entry) back to a ram offset. */ | |
07bdaa41 | 2716 | ram_addr_t qemu_ram_addr_from_host(void *ptr) |
422148d3 DDAG |
2717 | { |
2718 | RAMBlock *block; | |
f615f396 | 2719 | ram_addr_t offset; |
422148d3 | 2720 | |
f615f396 | 2721 | block = qemu_ram_block_from_host(ptr, false, &offset); |
422148d3 | 2722 | if (!block) { |
07bdaa41 | 2723 | return RAM_ADDR_INVALID; |
422148d3 DDAG |
2724 | } |
2725 | ||
07bdaa41 | 2726 | return block->offset + offset; |
e890261f | 2727 | } |
f471a17e | 2728 | |
0f459d16 | 2729 | /* Generate a debug exception if a watchpoint has been hit. */ |
0026348b DH |
2730 | void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, |
2731 | MemTxAttrs attrs, int flags, uintptr_t ra) | |
0f459d16 | 2732 | { |
568496c0 | 2733 | CPUClass *cc = CPU_GET_CLASS(cpu); |
a1d1bb31 | 2734 | CPUWatchpoint *wp; |
0f459d16 | 2735 | |
5aa1ef71 | 2736 | assert(tcg_enabled()); |
ff4700b0 | 2737 | if (cpu->watchpoint_hit) { |
50b107c5 RH |
2738 | /* |
2739 | * We re-entered the check after replacing the TB. | |
2740 | * Now raise the debug interrupt so that it will | |
2741 | * trigger after the current instruction. | |
2742 | */ | |
2743 | qemu_mutex_lock_iothread(); | |
93afeade | 2744 | cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG); |
50b107c5 | 2745 | qemu_mutex_unlock_iothread(); |
06d55cc1 AL |
2746 | return; |
2747 | } | |
0026348b DH |
2748 | |
2749 | addr = cc->adjust_watchpoint_address(cpu, addr, len); | |
ff4700b0 | 2750 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
56ad8b00 | 2751 | if (watchpoint_address_matches(wp, addr, len) |
05068c0d | 2752 | && (wp->flags & flags)) { |
08225676 PM |
2753 | if (flags == BP_MEM_READ) { |
2754 | wp->flags |= BP_WATCHPOINT_HIT_READ; | |
2755 | } else { | |
2756 | wp->flags |= BP_WATCHPOINT_HIT_WRITE; | |
2757 | } | |
0026348b | 2758 | wp->hitaddr = MAX(addr, wp->vaddr); |
66b9b43c | 2759 | wp->hitattrs = attrs; |
ff4700b0 | 2760 | if (!cpu->watchpoint_hit) { |
568496c0 SF |
2761 | if (wp->flags & BP_CPU && |
2762 | !cc->debug_check_watchpoint(cpu, wp)) { | |
2763 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
2764 | continue; | |
2765 | } | |
ff4700b0 | 2766 | cpu->watchpoint_hit = wp; |
a5e99826 | 2767 | |
0ac20318 | 2768 | mmap_lock(); |
ae57db63 | 2769 | tb_check_watchpoint(cpu, ra); |
6e140f28 | 2770 | if (wp->flags & BP_STOP_BEFORE_ACCESS) { |
27103424 | 2771 | cpu->exception_index = EXCP_DEBUG; |
0ac20318 | 2772 | mmap_unlock(); |
0026348b | 2773 | cpu_loop_exit_restore(cpu, ra); |
6e140f28 | 2774 | } else { |
9b990ee5 RH |
2775 | /* Force execution of one insn next time. */ |
2776 | cpu->cflags_next_tb = 1 | curr_cflags(); | |
0ac20318 | 2777 | mmap_unlock(); |
0026348b DH |
2778 | if (ra) { |
2779 | cpu_restore_state(cpu, ra, true); | |
2780 | } | |
6886b980 | 2781 | cpu_loop_exit_noexc(cpu); |
6e140f28 | 2782 | } |
06d55cc1 | 2783 | } |
6e140f28 AL |
2784 | } else { |
2785 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
0f459d16 PB |
2786 | } |
2787 | } | |
2788 | } | |
2789 | ||
b2a44fca | 2790 | static MemTxResult flatview_read(FlatView *fv, hwaddr addr, |
a152be43 | 2791 | MemTxAttrs attrs, void *buf, hwaddr len); |
16620684 | 2792 | static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, |
a152be43 | 2793 | const void *buf, hwaddr len); |
0c249ff7 | 2794 | static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, |
eace72b7 | 2795 | bool is_write, MemTxAttrs attrs); |
16620684 | 2796 | |
f25a49e0 PM |
2797 | static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data, |
2798 | unsigned len, MemTxAttrs attrs) | |
db7b5426 | 2799 | { |
acc9d80b | 2800 | subpage_t *subpage = opaque; |
ff6cff75 | 2801 | uint8_t buf[8]; |
5c9eb028 | 2802 | MemTxResult res; |
791af8c8 | 2803 | |
db7b5426 | 2804 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2805 | printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__, |
acc9d80b | 2806 | subpage, len, addr); |
db7b5426 | 2807 | #endif |
16620684 | 2808 | res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len); |
5c9eb028 PM |
2809 | if (res) { |
2810 | return res; | |
f25a49e0 | 2811 | } |
6d3ede54 PM |
2812 | *data = ldn_p(buf, len); |
2813 | return MEMTX_OK; | |
db7b5426 BS |
2814 | } |
2815 | ||
f25a49e0 PM |
2816 | static MemTxResult subpage_write(void *opaque, hwaddr addr, |
2817 | uint64_t value, unsigned len, MemTxAttrs attrs) | |
db7b5426 | 2818 | { |
acc9d80b | 2819 | subpage_t *subpage = opaque; |
ff6cff75 | 2820 | uint8_t buf[8]; |
acc9d80b | 2821 | |
db7b5426 | 2822 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2823 | printf("%s: subpage %p len %u addr " TARGET_FMT_plx |
acc9d80b JK |
2824 | " value %"PRIx64"\n", |
2825 | __func__, subpage, len, addr, value); | |
db7b5426 | 2826 | #endif |
6d3ede54 | 2827 | stn_p(buf, len, value); |
16620684 | 2828 | return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len); |
db7b5426 BS |
2829 | } |
2830 | ||
c353e4cc | 2831 | static bool subpage_accepts(void *opaque, hwaddr addr, |
8372d383 PM |
2832 | unsigned len, bool is_write, |
2833 | MemTxAttrs attrs) | |
c353e4cc | 2834 | { |
acc9d80b | 2835 | subpage_t *subpage = opaque; |
c353e4cc | 2836 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2837 | printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n", |
acc9d80b | 2838 | __func__, subpage, is_write ? 'w' : 'r', len, addr); |
c353e4cc PB |
2839 | #endif |
2840 | ||
16620684 | 2841 | return flatview_access_valid(subpage->fv, addr + subpage->base, |
eace72b7 | 2842 | len, is_write, attrs); |
c353e4cc PB |
2843 | } |
2844 | ||
70c68e44 | 2845 | static const MemoryRegionOps subpage_ops = { |
f25a49e0 PM |
2846 | .read_with_attrs = subpage_read, |
2847 | .write_with_attrs = subpage_write, | |
ff6cff75 PB |
2848 | .impl.min_access_size = 1, |
2849 | .impl.max_access_size = 8, | |
2850 | .valid.min_access_size = 1, | |
2851 | .valid.max_access_size = 8, | |
c353e4cc | 2852 | .valid.accepts = subpage_accepts, |
70c68e44 | 2853 | .endianness = DEVICE_NATIVE_ENDIAN, |
db7b5426 BS |
2854 | }; |
2855 | ||
b797ab1a WY |
2856 | static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, |
2857 | uint16_t section) | |
db7b5426 BS |
2858 | { |
2859 | int idx, eidx; | |
2860 | ||
2861 | if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) | |
2862 | return -1; | |
2863 | idx = SUBPAGE_IDX(start); | |
2864 | eidx = SUBPAGE_IDX(end); | |
2865 | #if defined(DEBUG_SUBPAGE) | |
016e9d62 AK |
2866 | printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", |
2867 | __func__, mmio, start, end, idx, eidx, section); | |
db7b5426 | 2868 | #endif |
db7b5426 | 2869 | for (; idx <= eidx; idx++) { |
5312bd8b | 2870 | mmio->sub_section[idx] = section; |
db7b5426 BS |
2871 | } |
2872 | ||
2873 | return 0; | |
2874 | } | |
2875 | ||
16620684 | 2876 | static subpage_t *subpage_init(FlatView *fv, hwaddr base) |
db7b5426 | 2877 | { |
c227f099 | 2878 | subpage_t *mmio; |
db7b5426 | 2879 | |
b797ab1a | 2880 | /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */ |
2615fabd | 2881 | mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t)); |
16620684 | 2882 | mmio->fv = fv; |
1eec614b | 2883 | mmio->base = base; |
2c9b15ca | 2884 | memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, |
b4fefef9 | 2885 | NULL, TARGET_PAGE_SIZE); |
b3b00c78 | 2886 | mmio->iomem.subpage = true; |
db7b5426 | 2887 | #if defined(DEBUG_SUBPAGE) |
016e9d62 AK |
2888 | printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__, |
2889 | mmio, base, TARGET_PAGE_SIZE); | |
db7b5426 | 2890 | #endif |
db7b5426 BS |
2891 | |
2892 | return mmio; | |
2893 | } | |
2894 | ||
16620684 | 2895 | static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr) |
5312bd8b | 2896 | { |
16620684 | 2897 | assert(fv); |
5312bd8b | 2898 | MemoryRegionSection section = { |
16620684 | 2899 | .fv = fv, |
5312bd8b AK |
2900 | .mr = mr, |
2901 | .offset_within_address_space = 0, | |
2902 | .offset_within_region = 0, | |
052e87b0 | 2903 | .size = int128_2_64(), |
5312bd8b AK |
2904 | }; |
2905 | ||
53cb28cb | 2906 | return phys_section_add(map, §ion); |
5312bd8b AK |
2907 | } |
2908 | ||
2d54f194 PM |
2909 | MemoryRegionSection *iotlb_to_section(CPUState *cpu, |
2910 | hwaddr index, MemTxAttrs attrs) | |
aa102231 | 2911 | { |
a54c87b6 PM |
2912 | int asidx = cpu_asidx_from_attrs(cpu, attrs); |
2913 | CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx]; | |
32857f4d | 2914 | AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch); |
79e2b9ae | 2915 | MemoryRegionSection *sections = d->map.sections; |
9d82b5a7 | 2916 | |
2d54f194 | 2917 | return §ions[index & ~TARGET_PAGE_MASK]; |
aa102231 AK |
2918 | } |
2919 | ||
e9179ce1 AK |
2920 | static void io_mem_init(void) |
2921 | { | |
2c9b15ca | 2922 | memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, |
1f6245e5 | 2923 | NULL, UINT64_MAX); |
e9179ce1 AK |
2924 | } |
2925 | ||
8629d3fc | 2926 | AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv) |
00752703 | 2927 | { |
53cb28cb MA |
2928 | AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); |
2929 | uint16_t n; | |
2930 | ||
16620684 | 2931 | n = dummy_section(&d->map, fv, &io_mem_unassigned); |
53cb28cb | 2932 | assert(n == PHYS_SECTION_UNASSIGNED); |
00752703 | 2933 | |
9736e55b | 2934 | d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; |
66a6df1d AK |
2935 | |
2936 | return d; | |
00752703 PB |
2937 | } |
2938 | ||
66a6df1d | 2939 | void address_space_dispatch_free(AddressSpaceDispatch *d) |
79e2b9ae PB |
2940 | { |
2941 | phys_sections_free(&d->map); | |
2942 | g_free(d); | |
2943 | } | |
2944 | ||
9458a9a1 PB |
2945 | static void do_nothing(CPUState *cpu, run_on_cpu_data d) |
2946 | { | |
2947 | } | |
2948 | ||
2949 | static void tcg_log_global_after_sync(MemoryListener *listener) | |
2950 | { | |
2951 | CPUAddressSpace *cpuas; | |
2952 | ||
2953 | /* Wait for the CPU to end the current TB. This avoids the following | |
2954 | * incorrect race: | |
2955 | * | |
2956 | * vCPU migration | |
2957 | * ---------------------- ------------------------- | |
2958 | * TLB check -> slow path | |
2959 | * notdirty_mem_write | |
2960 | * write to RAM | |
2961 | * mark dirty | |
2962 | * clear dirty flag | |
2963 | * TLB check -> fast path | |
2964 | * read memory | |
2965 | * write to RAM | |
2966 | * | |
2967 | * by pushing the migration thread's memory read after the vCPU thread has | |
2968 | * written the memory. | |
2969 | */ | |
86cf9e15 PD |
2970 | if (replay_mode == REPLAY_MODE_NONE) { |
2971 | /* | |
2972 | * VGA can make calls to this function while updating the screen. | |
2973 | * In record/replay mode this causes a deadlock, because | |
2974 | * run_on_cpu waits for rr mutex. Therefore no races are possible | |
2975 | * in this case and no need for making run_on_cpu when | |
2976 | * record/replay is not enabled. | |
2977 | */ | |
2978 | cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); | |
2979 | run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL); | |
2980 | } | |
9458a9a1 PB |
2981 | } |
2982 | ||
1d71148e | 2983 | static void tcg_commit(MemoryListener *listener) |
50c1e149 | 2984 | { |
32857f4d PM |
2985 | CPUAddressSpace *cpuas; |
2986 | AddressSpaceDispatch *d; | |
117712c3 | 2987 | |
f28d0dfd | 2988 | assert(tcg_enabled()); |
117712c3 AK |
2989 | /* since each CPU stores ram addresses in its TLB cache, we must |
2990 | reset the modified entries */ | |
32857f4d PM |
2991 | cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); |
2992 | cpu_reloading_memory_map(); | |
2993 | /* The CPU and TLB are protected by the iothread lock. | |
2994 | * We reload the dispatch pointer now because cpu_reloading_memory_map() | |
2995 | * may have split the RCU critical section. | |
2996 | */ | |
66a6df1d | 2997 | d = address_space_to_dispatch(cpuas->as); |
f35e44e7 | 2998 | atomic_rcu_set(&cpuas->memory_dispatch, d); |
d10eb08f | 2999 | tlb_flush(cpuas->cpu); |
50c1e149 AK |
3000 | } |
3001 | ||
62152b8a AK |
3002 | static void memory_map_init(void) |
3003 | { | |
7267c094 | 3004 | system_memory = g_malloc(sizeof(*system_memory)); |
03f49957 | 3005 | |
57271d63 | 3006 | memory_region_init(system_memory, NULL, "system", UINT64_MAX); |
7dca8043 | 3007 | address_space_init(&address_space_memory, system_memory, "memory"); |
309cb471 | 3008 | |
7267c094 | 3009 | system_io = g_malloc(sizeof(*system_io)); |
3bb28b72 JK |
3010 | memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", |
3011 | 65536); | |
7dca8043 | 3012 | address_space_init(&address_space_io, system_io, "I/O"); |
62152b8a AK |
3013 | } |
3014 | ||
3015 | MemoryRegion *get_system_memory(void) | |
3016 | { | |
3017 | return system_memory; | |
3018 | } | |
3019 | ||
309cb471 AK |
3020 | MemoryRegion *get_system_io(void) |
3021 | { | |
3022 | return system_io; | |
3023 | } | |
3024 | ||
e2eef170 PB |
3025 | #endif /* !defined(CONFIG_USER_ONLY) */ |
3026 | ||
13eb76e0 FB |
3027 | /* physical memory access (slow version, mainly for debug) */ |
3028 | #if defined(CONFIG_USER_ONLY) | |
f17ec444 | 3029 | int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, |
28c80bfe | 3030 | void *ptr, target_ulong len, bool is_write) |
13eb76e0 | 3031 | { |
0c249ff7 LZ |
3032 | int flags; |
3033 | target_ulong l, page; | |
53a5960a | 3034 | void * p; |
d7ef71ef | 3035 | uint8_t *buf = ptr; |
13eb76e0 FB |
3036 | |
3037 | while (len > 0) { | |
3038 | page = addr & TARGET_PAGE_MASK; | |
3039 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3040 | if (l > len) | |
3041 | l = len; | |
3042 | flags = page_get_flags(page); | |
3043 | if (!(flags & PAGE_VALID)) | |
a68fe89c | 3044 | return -1; |
13eb76e0 FB |
3045 | if (is_write) { |
3046 | if (!(flags & PAGE_WRITE)) | |
a68fe89c | 3047 | return -1; |
579a97f7 | 3048 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 3049 | if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) |
a68fe89c | 3050 | return -1; |
72fb7daa AJ |
3051 | memcpy(p, buf, l); |
3052 | unlock_user(p, addr, l); | |
13eb76e0 FB |
3053 | } else { |
3054 | if (!(flags & PAGE_READ)) | |
a68fe89c | 3055 | return -1; |
579a97f7 | 3056 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 3057 | if (!(p = lock_user(VERIFY_READ, addr, l, 1))) |
a68fe89c | 3058 | return -1; |
72fb7daa | 3059 | memcpy(buf, p, l); |
5b257578 | 3060 | unlock_user(p, addr, 0); |
13eb76e0 FB |
3061 | } |
3062 | len -= l; | |
3063 | buf += l; | |
3064 | addr += l; | |
3065 | } | |
a68fe89c | 3066 | return 0; |
13eb76e0 | 3067 | } |
8df1cd07 | 3068 | |
13eb76e0 | 3069 | #else |
51d7a9eb | 3070 | |
845b6214 | 3071 | static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, |
a8170e5e | 3072 | hwaddr length) |
51d7a9eb | 3073 | { |
e87f7778 | 3074 | uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr); |
0878d0e1 PB |
3075 | addr += memory_region_get_ram_addr(mr); |
3076 | ||
e87f7778 PB |
3077 | /* No early return if dirty_log_mask is or becomes 0, because |
3078 | * cpu_physical_memory_set_dirty_range will still call | |
3079 | * xen_modified_memory. | |
3080 | */ | |
3081 | if (dirty_log_mask) { | |
3082 | dirty_log_mask = | |
3083 | cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask); | |
3084 | } | |
3085 | if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) { | |
5aa1ef71 | 3086 | assert(tcg_enabled()); |
e87f7778 PB |
3087 | tb_invalidate_phys_range(addr, addr + length); |
3088 | dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); | |
51d7a9eb | 3089 | } |
e87f7778 | 3090 | cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask); |
51d7a9eb AP |
3091 | } |
3092 | ||
047be4ed SH |
3093 | void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size) |
3094 | { | |
3095 | /* | |
3096 | * In principle this function would work on other memory region types too, | |
3097 | * but the ROM device use case is the only one where this operation is | |
3098 | * necessary. Other memory regions should use the | |
3099 | * address_space_read/write() APIs. | |
3100 | */ | |
3101 | assert(memory_region_is_romd(mr)); | |
3102 | ||
3103 | invalidate_and_set_dirty(mr, addr, size); | |
3104 | } | |
3105 | ||
23326164 | 3106 | static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) |
82f2563f | 3107 | { |
e1622f4b | 3108 | unsigned access_size_max = mr->ops->valid.max_access_size; |
23326164 RH |
3109 | |
3110 | /* Regions are assumed to support 1-4 byte accesses unless | |
3111 | otherwise specified. */ | |
23326164 RH |
3112 | if (access_size_max == 0) { |
3113 | access_size_max = 4; | |
3114 | } | |
3115 | ||
3116 | /* Bound the maximum access by the alignment of the address. */ | |
3117 | if (!mr->ops->impl.unaligned) { | |
3118 | unsigned align_size_max = addr & -addr; | |
3119 | if (align_size_max != 0 && align_size_max < access_size_max) { | |
3120 | access_size_max = align_size_max; | |
3121 | } | |
82f2563f | 3122 | } |
23326164 RH |
3123 | |
3124 | /* Don't attempt accesses larger than the maximum. */ | |
3125 | if (l > access_size_max) { | |
3126 | l = access_size_max; | |
82f2563f | 3127 | } |
6554f5c0 | 3128 | l = pow2floor(l); |
23326164 RH |
3129 | |
3130 | return l; | |
82f2563f PB |
3131 | } |
3132 | ||
4840f10e | 3133 | static bool prepare_mmio_access(MemoryRegion *mr) |
125b3806 | 3134 | { |
4840f10e JK |
3135 | bool unlocked = !qemu_mutex_iothread_locked(); |
3136 | bool release_lock = false; | |
3137 | ||
3138 | if (unlocked && mr->global_locking) { | |
3139 | qemu_mutex_lock_iothread(); | |
3140 | unlocked = false; | |
3141 | release_lock = true; | |
3142 | } | |
125b3806 | 3143 | if (mr->flush_coalesced_mmio) { |
4840f10e JK |
3144 | if (unlocked) { |
3145 | qemu_mutex_lock_iothread(); | |
3146 | } | |
125b3806 | 3147 | qemu_flush_coalesced_mmio_buffer(); |
4840f10e JK |
3148 | if (unlocked) { |
3149 | qemu_mutex_unlock_iothread(); | |
3150 | } | |
125b3806 | 3151 | } |
4840f10e JK |
3152 | |
3153 | return release_lock; | |
125b3806 PB |
3154 | } |
3155 | ||
a203ac70 | 3156 | /* Called within RCU critical section. */ |
16620684 AK |
3157 | static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr, |
3158 | MemTxAttrs attrs, | |
a152be43 | 3159 | const void *ptr, |
0c249ff7 | 3160 | hwaddr len, hwaddr addr1, |
16620684 | 3161 | hwaddr l, MemoryRegion *mr) |
13eb76e0 | 3162 | { |
20804676 | 3163 | uint8_t *ram_ptr; |
791af8c8 | 3164 | uint64_t val; |
3b643495 | 3165 | MemTxResult result = MEMTX_OK; |
4840f10e | 3166 | bool release_lock = false; |
a152be43 | 3167 | const uint8_t *buf = ptr; |
3b46e624 | 3168 | |
a203ac70 | 3169 | for (;;) { |
eb7eeb88 PB |
3170 | if (!memory_access_is_direct(mr, true)) { |
3171 | release_lock |= prepare_mmio_access(mr); | |
3172 | l = memory_access_size(mr, l, addr1); | |
3173 | /* XXX: could force current_cpu to NULL to avoid | |
3174 | potential bugs */ | |
9bf825bf | 3175 | val = ldn_he_p(buf, l); |
3d9e7c3e | 3176 | result |= memory_region_dispatch_write(mr, addr1, val, |
9bf825bf | 3177 | size_memop(l), attrs); |
13eb76e0 | 3178 | } else { |
eb7eeb88 | 3179 | /* RAM case */ |
20804676 PMD |
3180 | ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false); |
3181 | memcpy(ram_ptr, buf, l); | |
eb7eeb88 | 3182 | invalidate_and_set_dirty(mr, addr1, l); |
13eb76e0 | 3183 | } |
4840f10e JK |
3184 | |
3185 | if (release_lock) { | |
3186 | qemu_mutex_unlock_iothread(); | |
3187 | release_lock = false; | |
3188 | } | |
3189 | ||
13eb76e0 FB |
3190 | len -= l; |
3191 | buf += l; | |
3192 | addr += l; | |
a203ac70 PB |
3193 | |
3194 | if (!len) { | |
3195 | break; | |
3196 | } | |
3197 | ||
3198 | l = len; | |
efa99a2f | 3199 | mr = flatview_translate(fv, addr, &addr1, &l, true, attrs); |
13eb76e0 | 3200 | } |
fd8aaa76 | 3201 | |
3b643495 | 3202 | return result; |
13eb76e0 | 3203 | } |
8df1cd07 | 3204 | |
4c6ebbb3 | 3205 | /* Called from RCU critical section. */ |
16620684 | 3206 | static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, |
a152be43 | 3207 | const void *buf, hwaddr len) |
ac1970fb | 3208 | { |
eb7eeb88 | 3209 | hwaddr l; |
eb7eeb88 PB |
3210 | hwaddr addr1; |
3211 | MemoryRegion *mr; | |
3212 | MemTxResult result = MEMTX_OK; | |
eb7eeb88 | 3213 | |
4c6ebbb3 | 3214 | l = len; |
efa99a2f | 3215 | mr = flatview_translate(fv, addr, &addr1, &l, true, attrs); |
4c6ebbb3 PB |
3216 | result = flatview_write_continue(fv, addr, attrs, buf, len, |
3217 | addr1, l, mr); | |
a203ac70 PB |
3218 | |
3219 | return result; | |
3220 | } | |
3221 | ||
3222 | /* Called within RCU critical section. */ | |
16620684 | 3223 | MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, |
a152be43 | 3224 | MemTxAttrs attrs, void *ptr, |
0c249ff7 | 3225 | hwaddr len, hwaddr addr1, hwaddr l, |
16620684 | 3226 | MemoryRegion *mr) |
a203ac70 | 3227 | { |
20804676 | 3228 | uint8_t *ram_ptr; |
a203ac70 PB |
3229 | uint64_t val; |
3230 | MemTxResult result = MEMTX_OK; | |
3231 | bool release_lock = false; | |
a152be43 | 3232 | uint8_t *buf = ptr; |
eb7eeb88 | 3233 | |
a203ac70 | 3234 | for (;;) { |
eb7eeb88 PB |
3235 | if (!memory_access_is_direct(mr, false)) { |
3236 | /* I/O case */ | |
3237 | release_lock |= prepare_mmio_access(mr); | |
3238 | l = memory_access_size(mr, l, addr1); | |
3d9e7c3e | 3239 | result |= memory_region_dispatch_read(mr, addr1, &val, |
9bf825bf TN |
3240 | size_memop(l), attrs); |
3241 | stn_he_p(buf, l, val); | |
eb7eeb88 PB |
3242 | } else { |
3243 | /* RAM case */ | |
20804676 PMD |
3244 | ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false); |
3245 | memcpy(buf, ram_ptr, l); | |
eb7eeb88 PB |
3246 | } |
3247 | ||
3248 | if (release_lock) { | |
3249 | qemu_mutex_unlock_iothread(); | |
3250 | release_lock = false; | |
3251 | } | |
3252 | ||
3253 | len -= l; | |
3254 | buf += l; | |
3255 | addr += l; | |
a203ac70 PB |
3256 | |
3257 | if (!len) { | |
3258 | break; | |
3259 | } | |
3260 | ||
3261 | l = len; | |
efa99a2f | 3262 | mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); |
a203ac70 PB |
3263 | } |
3264 | ||
3265 | return result; | |
3266 | } | |
3267 | ||
b2a44fca PB |
3268 | /* Called from RCU critical section. */ |
3269 | static MemTxResult flatview_read(FlatView *fv, hwaddr addr, | |
a152be43 | 3270 | MemTxAttrs attrs, void *buf, hwaddr len) |
a203ac70 PB |
3271 | { |
3272 | hwaddr l; | |
3273 | hwaddr addr1; | |
3274 | MemoryRegion *mr; | |
eb7eeb88 | 3275 | |
b2a44fca | 3276 | l = len; |
efa99a2f | 3277 | mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); |
b2a44fca PB |
3278 | return flatview_read_continue(fv, addr, attrs, buf, len, |
3279 | addr1, l, mr); | |
ac1970fb AK |
3280 | } |
3281 | ||
b2a44fca | 3282 | MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, |
daa3dda4 | 3283 | MemTxAttrs attrs, void *buf, hwaddr len) |
b2a44fca PB |
3284 | { |
3285 | MemTxResult result = MEMTX_OK; | |
3286 | FlatView *fv; | |
3287 | ||
3288 | if (len > 0) { | |
694ea274 | 3289 | RCU_READ_LOCK_GUARD(); |
b2a44fca PB |
3290 | fv = address_space_to_flatview(as); |
3291 | result = flatview_read(fv, addr, attrs, buf, len); | |
b2a44fca PB |
3292 | } |
3293 | ||
3294 | return result; | |
3295 | } | |
3296 | ||
4c6ebbb3 PB |
3297 | MemTxResult address_space_write(AddressSpace *as, hwaddr addr, |
3298 | MemTxAttrs attrs, | |
daa3dda4 | 3299 | const void *buf, hwaddr len) |
4c6ebbb3 PB |
3300 | { |
3301 | MemTxResult result = MEMTX_OK; | |
3302 | FlatView *fv; | |
3303 | ||
3304 | if (len > 0) { | |
694ea274 | 3305 | RCU_READ_LOCK_GUARD(); |
4c6ebbb3 PB |
3306 | fv = address_space_to_flatview(as); |
3307 | result = flatview_write(fv, addr, attrs, buf, len); | |
4c6ebbb3 PB |
3308 | } |
3309 | ||
3310 | return result; | |
3311 | } | |
3312 | ||
db84fd97 | 3313 | MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, |
daa3dda4 | 3314 | void *buf, hwaddr len, bool is_write) |
db84fd97 PB |
3315 | { |
3316 | if (is_write) { | |
3317 | return address_space_write(as, addr, attrs, buf, len); | |
3318 | } else { | |
3319 | return address_space_read_full(as, addr, attrs, buf, len); | |
3320 | } | |
3321 | } | |
3322 | ||
d7ef71ef | 3323 | void cpu_physical_memory_rw(hwaddr addr, void *buf, |
28c80bfe | 3324 | hwaddr len, bool is_write) |
ac1970fb | 3325 | { |
5c9eb028 PM |
3326 | address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, |
3327 | buf, len, is_write); | |
ac1970fb AK |
3328 | } |
3329 | ||
582b55a9 AG |
3330 | enum write_rom_type { |
3331 | WRITE_DATA, | |
3332 | FLUSH_CACHE, | |
3333 | }; | |
3334 | ||
75693e14 PM |
3335 | static inline MemTxResult address_space_write_rom_internal(AddressSpace *as, |
3336 | hwaddr addr, | |
3337 | MemTxAttrs attrs, | |
daa3dda4 | 3338 | const void *ptr, |
0c249ff7 | 3339 | hwaddr len, |
75693e14 | 3340 | enum write_rom_type type) |
d0ecd2aa | 3341 | { |
149f54b5 | 3342 | hwaddr l; |
20804676 | 3343 | uint8_t *ram_ptr; |
149f54b5 | 3344 | hwaddr addr1; |
5c8a00ce | 3345 | MemoryRegion *mr; |
daa3dda4 | 3346 | const uint8_t *buf = ptr; |
3b46e624 | 3347 | |
694ea274 | 3348 | RCU_READ_LOCK_GUARD(); |
d0ecd2aa | 3349 | while (len > 0) { |
149f54b5 | 3350 | l = len; |
75693e14 | 3351 | mr = address_space_translate(as, addr, &addr1, &l, true, attrs); |
3b46e624 | 3352 | |
5c8a00ce PB |
3353 | if (!(memory_region_is_ram(mr) || |
3354 | memory_region_is_romd(mr))) { | |
b242e0e0 | 3355 | l = memory_access_size(mr, l, addr1); |
d0ecd2aa | 3356 | } else { |
d0ecd2aa | 3357 | /* ROM/RAM case */ |
20804676 | 3358 | ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
582b55a9 AG |
3359 | switch (type) { |
3360 | case WRITE_DATA: | |
20804676 | 3361 | memcpy(ram_ptr, buf, l); |
845b6214 | 3362 | invalidate_and_set_dirty(mr, addr1, l); |
582b55a9 AG |
3363 | break; |
3364 | case FLUSH_CACHE: | |
20804676 | 3365 | flush_icache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr + l); |
582b55a9 AG |
3366 | break; |
3367 | } | |
d0ecd2aa FB |
3368 | } |
3369 | len -= l; | |
3370 | buf += l; | |
3371 | addr += l; | |
3372 | } | |
75693e14 | 3373 | return MEMTX_OK; |
d0ecd2aa FB |
3374 | } |
3375 | ||
582b55a9 | 3376 | /* used for ROM loading : can write in RAM and ROM */ |
3c8133f9 PM |
3377 | MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, |
3378 | MemTxAttrs attrs, | |
daa3dda4 | 3379 | const void *buf, hwaddr len) |
582b55a9 | 3380 | { |
3c8133f9 PM |
3381 | return address_space_write_rom_internal(as, addr, attrs, |
3382 | buf, len, WRITE_DATA); | |
582b55a9 AG |
3383 | } |
3384 | ||
0c249ff7 | 3385 | void cpu_flush_icache_range(hwaddr start, hwaddr len) |
582b55a9 AG |
3386 | { |
3387 | /* | |
3388 | * This function should do the same thing as an icache flush that was | |
3389 | * triggered from within the guest. For TCG we are always cache coherent, | |
3390 | * so there is no need to flush anything. For KVM / Xen we need to flush | |
3391 | * the host's instruction cache at least. | |
3392 | */ | |
3393 | if (tcg_enabled()) { | |
3394 | return; | |
3395 | } | |
3396 | ||
75693e14 PM |
3397 | address_space_write_rom_internal(&address_space_memory, |
3398 | start, MEMTXATTRS_UNSPECIFIED, | |
3399 | NULL, len, FLUSH_CACHE); | |
582b55a9 AG |
3400 | } |
3401 | ||
6d16c2f8 | 3402 | typedef struct { |
d3e71559 | 3403 | MemoryRegion *mr; |
6d16c2f8 | 3404 | void *buffer; |
a8170e5e AK |
3405 | hwaddr addr; |
3406 | hwaddr len; | |
c2cba0ff | 3407 | bool in_use; |
6d16c2f8 AL |
3408 | } BounceBuffer; |
3409 | ||
3410 | static BounceBuffer bounce; | |
3411 | ||
ba223c29 | 3412 | typedef struct MapClient { |
e95205e1 | 3413 | QEMUBH *bh; |
72cf2d4f | 3414 | QLIST_ENTRY(MapClient) link; |
ba223c29 AL |
3415 | } MapClient; |
3416 | ||
38e047b5 | 3417 | QemuMutex map_client_list_lock; |
b58deb34 | 3418 | static QLIST_HEAD(, MapClient) map_client_list |
72cf2d4f | 3419 | = QLIST_HEAD_INITIALIZER(map_client_list); |
ba223c29 | 3420 | |
e95205e1 FZ |
3421 | static void cpu_unregister_map_client_do(MapClient *client) |
3422 | { | |
3423 | QLIST_REMOVE(client, link); | |
3424 | g_free(client); | |
3425 | } | |
3426 | ||
33b6c2ed FZ |
3427 | static void cpu_notify_map_clients_locked(void) |
3428 | { | |
3429 | MapClient *client; | |
3430 | ||
3431 | while (!QLIST_EMPTY(&map_client_list)) { | |
3432 | client = QLIST_FIRST(&map_client_list); | |
e95205e1 FZ |
3433 | qemu_bh_schedule(client->bh); |
3434 | cpu_unregister_map_client_do(client); | |
33b6c2ed FZ |
3435 | } |
3436 | } | |
3437 | ||
e95205e1 | 3438 | void cpu_register_map_client(QEMUBH *bh) |
ba223c29 | 3439 | { |
7267c094 | 3440 | MapClient *client = g_malloc(sizeof(*client)); |
ba223c29 | 3441 | |
38e047b5 | 3442 | qemu_mutex_lock(&map_client_list_lock); |
e95205e1 | 3443 | client->bh = bh; |
72cf2d4f | 3444 | QLIST_INSERT_HEAD(&map_client_list, client, link); |
33b6c2ed FZ |
3445 | if (!atomic_read(&bounce.in_use)) { |
3446 | cpu_notify_map_clients_locked(); | |
3447 | } | |
38e047b5 | 3448 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
3449 | } |
3450 | ||
38e047b5 | 3451 | void cpu_exec_init_all(void) |
ba223c29 | 3452 | { |
38e047b5 | 3453 | qemu_mutex_init(&ram_list.mutex); |
20bccb82 PM |
3454 | /* The data structures we set up here depend on knowing the page size, |
3455 | * so no more changes can be made after this point. | |
3456 | * In an ideal world, nothing we did before we had finished the | |
3457 | * machine setup would care about the target page size, and we could | |
3458 | * do this much later, rather than requiring board models to state | |
3459 | * up front what their requirements are. | |
3460 | */ | |
3461 | finalize_target_page_bits(); | |
38e047b5 | 3462 | io_mem_init(); |
680a4783 | 3463 | memory_map_init(); |
38e047b5 | 3464 | qemu_mutex_init(&map_client_list_lock); |
ba223c29 AL |
3465 | } |
3466 | ||
e95205e1 | 3467 | void cpu_unregister_map_client(QEMUBH *bh) |
ba223c29 AL |
3468 | { |
3469 | MapClient *client; | |
3470 | ||
e95205e1 FZ |
3471 | qemu_mutex_lock(&map_client_list_lock); |
3472 | QLIST_FOREACH(client, &map_client_list, link) { | |
3473 | if (client->bh == bh) { | |
3474 | cpu_unregister_map_client_do(client); | |
3475 | break; | |
3476 | } | |
ba223c29 | 3477 | } |
e95205e1 | 3478 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
3479 | } |
3480 | ||
3481 | static void cpu_notify_map_clients(void) | |
3482 | { | |
38e047b5 | 3483 | qemu_mutex_lock(&map_client_list_lock); |
33b6c2ed | 3484 | cpu_notify_map_clients_locked(); |
38e047b5 | 3485 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
3486 | } |
3487 | ||
0c249ff7 | 3488 | static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, |
eace72b7 | 3489 | bool is_write, MemTxAttrs attrs) |
51644ab7 | 3490 | { |
5c8a00ce | 3491 | MemoryRegion *mr; |
51644ab7 PB |
3492 | hwaddr l, xlat; |
3493 | ||
3494 | while (len > 0) { | |
3495 | l = len; | |
efa99a2f | 3496 | mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); |
5c8a00ce PB |
3497 | if (!memory_access_is_direct(mr, is_write)) { |
3498 | l = memory_access_size(mr, l, addr); | |
eace72b7 | 3499 | if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) { |
51644ab7 PB |
3500 | return false; |
3501 | } | |
3502 | } | |
3503 | ||
3504 | len -= l; | |
3505 | addr += l; | |
3506 | } | |
3507 | return true; | |
3508 | } | |
3509 | ||
16620684 | 3510 | bool address_space_access_valid(AddressSpace *as, hwaddr addr, |
0c249ff7 | 3511 | hwaddr len, bool is_write, |
fddffa42 | 3512 | MemTxAttrs attrs) |
16620684 | 3513 | { |
11e732a5 PB |
3514 | FlatView *fv; |
3515 | bool result; | |
3516 | ||
694ea274 | 3517 | RCU_READ_LOCK_GUARD(); |
11e732a5 | 3518 | fv = address_space_to_flatview(as); |
eace72b7 | 3519 | result = flatview_access_valid(fv, addr, len, is_write, attrs); |
11e732a5 | 3520 | return result; |
16620684 AK |
3521 | } |
3522 | ||
715c31ec | 3523 | static hwaddr |
16620684 | 3524 | flatview_extend_translation(FlatView *fv, hwaddr addr, |
53d0790d PM |
3525 | hwaddr target_len, |
3526 | MemoryRegion *mr, hwaddr base, hwaddr len, | |
3527 | bool is_write, MemTxAttrs attrs) | |
715c31ec PB |
3528 | { |
3529 | hwaddr done = 0; | |
3530 | hwaddr xlat; | |
3531 | MemoryRegion *this_mr; | |
3532 | ||
3533 | for (;;) { | |
3534 | target_len -= len; | |
3535 | addr += len; | |
3536 | done += len; | |
3537 | if (target_len == 0) { | |
3538 | return done; | |
3539 | } | |
3540 | ||
3541 | len = target_len; | |
16620684 | 3542 | this_mr = flatview_translate(fv, addr, &xlat, |
efa99a2f | 3543 | &len, is_write, attrs); |
715c31ec PB |
3544 | if (this_mr != mr || xlat != base + done) { |
3545 | return done; | |
3546 | } | |
3547 | } | |
3548 | } | |
3549 | ||
6d16c2f8 AL |
3550 | /* Map a physical memory region into a host virtual address. |
3551 | * May map a subset of the requested range, given by and returned in *plen. | |
3552 | * May return NULL if resources needed to perform the mapping are exhausted. | |
3553 | * Use only for reads OR writes - not for read-modify-write operations. | |
ba223c29 AL |
3554 | * Use cpu_register_map_client() to know when retrying the map operation is |
3555 | * likely to succeed. | |
6d16c2f8 | 3556 | */ |
ac1970fb | 3557 | void *address_space_map(AddressSpace *as, |
a8170e5e AK |
3558 | hwaddr addr, |
3559 | hwaddr *plen, | |
f26404fb PM |
3560 | bool is_write, |
3561 | MemTxAttrs attrs) | |
6d16c2f8 | 3562 | { |
a8170e5e | 3563 | hwaddr len = *plen; |
715c31ec PB |
3564 | hwaddr l, xlat; |
3565 | MemoryRegion *mr; | |
e81bcda5 | 3566 | void *ptr; |
ad0c60fa | 3567 | FlatView *fv; |
6d16c2f8 | 3568 | |
e3127ae0 PB |
3569 | if (len == 0) { |
3570 | return NULL; | |
3571 | } | |
38bee5dc | 3572 | |
e3127ae0 | 3573 | l = len; |
694ea274 | 3574 | RCU_READ_LOCK_GUARD(); |
ad0c60fa | 3575 | fv = address_space_to_flatview(as); |
efa99a2f | 3576 | mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); |
41063e1e | 3577 | |
e3127ae0 | 3578 | if (!memory_access_is_direct(mr, is_write)) { |
c2cba0ff | 3579 | if (atomic_xchg(&bounce.in_use, true)) { |
77f55eac | 3580 | *plen = 0; |
e3127ae0 | 3581 | return NULL; |
6d16c2f8 | 3582 | } |
e85d9db5 KW |
3583 | /* Avoid unbounded allocations */ |
3584 | l = MIN(l, TARGET_PAGE_SIZE); | |
3585 | bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l); | |
e3127ae0 PB |
3586 | bounce.addr = addr; |
3587 | bounce.len = l; | |
d3e71559 PB |
3588 | |
3589 | memory_region_ref(mr); | |
3590 | bounce.mr = mr; | |
e3127ae0 | 3591 | if (!is_write) { |
16620684 | 3592 | flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED, |
5c9eb028 | 3593 | bounce.buffer, l); |
8ab934f9 | 3594 | } |
6d16c2f8 | 3595 | |
e3127ae0 PB |
3596 | *plen = l; |
3597 | return bounce.buffer; | |
3598 | } | |
3599 | ||
e3127ae0 | 3600 | |
d3e71559 | 3601 | memory_region_ref(mr); |
16620684 | 3602 | *plen = flatview_extend_translation(fv, addr, len, mr, xlat, |
53d0790d | 3603 | l, is_write, attrs); |
f5aa69bd | 3604 | ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true); |
e81bcda5 PB |
3605 | |
3606 | return ptr; | |
6d16c2f8 AL |
3607 | } |
3608 | ||
ac1970fb | 3609 | /* Unmaps a memory region previously mapped by address_space_map(). |
ae5883ab | 3610 | * Will also mark the memory as dirty if is_write is true. access_len gives |
6d16c2f8 AL |
3611 | * the amount of memory that was actually read or written by the caller. |
3612 | */ | |
a8170e5e | 3613 | void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, |
ae5883ab | 3614 | bool is_write, hwaddr access_len) |
6d16c2f8 AL |
3615 | { |
3616 | if (buffer != bounce.buffer) { | |
d3e71559 PB |
3617 | MemoryRegion *mr; |
3618 | ram_addr_t addr1; | |
3619 | ||
07bdaa41 | 3620 | mr = memory_region_from_host(buffer, &addr1); |
d3e71559 | 3621 | assert(mr != NULL); |
6d16c2f8 | 3622 | if (is_write) { |
845b6214 | 3623 | invalidate_and_set_dirty(mr, addr1, access_len); |
6d16c2f8 | 3624 | } |
868bb33f | 3625 | if (xen_enabled()) { |
e41d7c69 | 3626 | xen_invalidate_map_cache_entry(buffer); |
050a0ddf | 3627 | } |
d3e71559 | 3628 | memory_region_unref(mr); |
6d16c2f8 AL |
3629 | return; |
3630 | } | |
3631 | if (is_write) { | |
5c9eb028 PM |
3632 | address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED, |
3633 | bounce.buffer, access_len); | |
6d16c2f8 | 3634 | } |
f8a83245 | 3635 | qemu_vfree(bounce.buffer); |
6d16c2f8 | 3636 | bounce.buffer = NULL; |
d3e71559 | 3637 | memory_region_unref(bounce.mr); |
c2cba0ff | 3638 | atomic_mb_set(&bounce.in_use, false); |
ba223c29 | 3639 | cpu_notify_map_clients(); |
6d16c2f8 | 3640 | } |
d0ecd2aa | 3641 | |
a8170e5e AK |
3642 | void *cpu_physical_memory_map(hwaddr addr, |
3643 | hwaddr *plen, | |
28c80bfe | 3644 | bool is_write) |
ac1970fb | 3645 | { |
f26404fb PM |
3646 | return address_space_map(&address_space_memory, addr, plen, is_write, |
3647 | MEMTXATTRS_UNSPECIFIED); | |
ac1970fb AK |
3648 | } |
3649 | ||
a8170e5e | 3650 | void cpu_physical_memory_unmap(void *buffer, hwaddr len, |
28c80bfe | 3651 | bool is_write, hwaddr access_len) |
ac1970fb AK |
3652 | { |
3653 | return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); | |
3654 | } | |
3655 | ||
0ce265ff PB |
3656 | #define ARG1_DECL AddressSpace *as |
3657 | #define ARG1 as | |
3658 | #define SUFFIX | |
3659 | #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__) | |
0ce265ff PB |
3660 | #define RCU_READ_LOCK(...) rcu_read_lock() |
3661 | #define RCU_READ_UNLOCK(...) rcu_read_unlock() | |
139c1837 | 3662 | #include "memory_ldst.c.inc" |
1e78bcc1 | 3663 | |
1f4e496e PB |
3664 | int64_t address_space_cache_init(MemoryRegionCache *cache, |
3665 | AddressSpace *as, | |
3666 | hwaddr addr, | |
3667 | hwaddr len, | |
3668 | bool is_write) | |
3669 | { | |
48564041 PB |
3670 | AddressSpaceDispatch *d; |
3671 | hwaddr l; | |
3672 | MemoryRegion *mr; | |
3673 | ||
3674 | assert(len > 0); | |
3675 | ||
3676 | l = len; | |
3677 | cache->fv = address_space_get_flatview(as); | |
3678 | d = flatview_to_dispatch(cache->fv); | |
3679 | cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true); | |
3680 | ||
3681 | mr = cache->mrs.mr; | |
3682 | memory_region_ref(mr); | |
3683 | if (memory_access_is_direct(mr, is_write)) { | |
53d0790d PM |
3684 | /* We don't care about the memory attributes here as we're only |
3685 | * doing this if we found actual RAM, which behaves the same | |
3686 | * regardless of attributes; so UNSPECIFIED is fine. | |
3687 | */ | |
48564041 | 3688 | l = flatview_extend_translation(cache->fv, addr, len, mr, |
53d0790d PM |
3689 | cache->xlat, l, is_write, |
3690 | MEMTXATTRS_UNSPECIFIED); | |
48564041 PB |
3691 | cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true); |
3692 | } else { | |
3693 | cache->ptr = NULL; | |
3694 | } | |
3695 | ||
3696 | cache->len = l; | |
3697 | cache->is_write = is_write; | |
3698 | return l; | |
1f4e496e PB |
3699 | } |
3700 | ||
3701 | void address_space_cache_invalidate(MemoryRegionCache *cache, | |
3702 | hwaddr addr, | |
3703 | hwaddr access_len) | |
3704 | { | |
48564041 PB |
3705 | assert(cache->is_write); |
3706 | if (likely(cache->ptr)) { | |
3707 | invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len); | |
3708 | } | |
1f4e496e PB |
3709 | } |
3710 | ||
3711 | void address_space_cache_destroy(MemoryRegionCache *cache) | |
3712 | { | |
48564041 PB |
3713 | if (!cache->mrs.mr) { |
3714 | return; | |
3715 | } | |
3716 | ||
3717 | if (xen_enabled()) { | |
3718 | xen_invalidate_map_cache_entry(cache->ptr); | |
3719 | } | |
3720 | memory_region_unref(cache->mrs.mr); | |
3721 | flatview_unref(cache->fv); | |
3722 | cache->mrs.mr = NULL; | |
3723 | cache->fv = NULL; | |
3724 | } | |
3725 | ||
3726 | /* Called from RCU critical section. This function has the same | |
3727 | * semantics as address_space_translate, but it only works on a | |
3728 | * predefined range of a MemoryRegion that was mapped with | |
3729 | * address_space_cache_init. | |
3730 | */ | |
3731 | static inline MemoryRegion *address_space_translate_cached( | |
3732 | MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat, | |
bc6b1cec | 3733 | hwaddr *plen, bool is_write, MemTxAttrs attrs) |
48564041 PB |
3734 | { |
3735 | MemoryRegionSection section; | |
3736 | MemoryRegion *mr; | |
3737 | IOMMUMemoryRegion *iommu_mr; | |
3738 | AddressSpace *target_as; | |
3739 | ||
3740 | assert(!cache->ptr); | |
3741 | *xlat = addr + cache->xlat; | |
3742 | ||
3743 | mr = cache->mrs.mr; | |
3744 | iommu_mr = memory_region_get_iommu(mr); | |
3745 | if (!iommu_mr) { | |
3746 | /* MMIO region. */ | |
3747 | return mr; | |
3748 | } | |
3749 | ||
3750 | section = address_space_translate_iommu(iommu_mr, xlat, plen, | |
3751 | NULL, is_write, true, | |
2f7b009c | 3752 | &target_as, attrs); |
48564041 PB |
3753 | return section.mr; |
3754 | } | |
3755 | ||
3756 | /* Called from RCU critical section. address_space_read_cached uses this | |
3757 | * out of line function when the target is an MMIO or IOMMU region. | |
3758 | */ | |
38df19fa | 3759 | MemTxResult |
48564041 | 3760 | address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr, |
0c249ff7 | 3761 | void *buf, hwaddr len) |
48564041 PB |
3762 | { |
3763 | hwaddr addr1, l; | |
3764 | MemoryRegion *mr; | |
3765 | ||
3766 | l = len; | |
bc6b1cec PM |
3767 | mr = address_space_translate_cached(cache, addr, &addr1, &l, false, |
3768 | MEMTXATTRS_UNSPECIFIED); | |
38df19fa PMD |
3769 | return flatview_read_continue(cache->fv, |
3770 | addr, MEMTXATTRS_UNSPECIFIED, buf, len, | |
3771 | addr1, l, mr); | |
48564041 PB |
3772 | } |
3773 | ||
3774 | /* Called from RCU critical section. address_space_write_cached uses this | |
3775 | * out of line function when the target is an MMIO or IOMMU region. | |
3776 | */ | |
38df19fa | 3777 | MemTxResult |
48564041 | 3778 | address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr, |
0c249ff7 | 3779 | const void *buf, hwaddr len) |
48564041 PB |
3780 | { |
3781 | hwaddr addr1, l; | |
3782 | MemoryRegion *mr; | |
3783 | ||
3784 | l = len; | |
bc6b1cec PM |
3785 | mr = address_space_translate_cached(cache, addr, &addr1, &l, true, |
3786 | MEMTXATTRS_UNSPECIFIED); | |
38df19fa PMD |
3787 | return flatview_write_continue(cache->fv, |
3788 | addr, MEMTXATTRS_UNSPECIFIED, buf, len, | |
3789 | addr1, l, mr); | |
1f4e496e PB |
3790 | } |
3791 | ||
3792 | #define ARG1_DECL MemoryRegionCache *cache | |
3793 | #define ARG1 cache | |
48564041 PB |
3794 | #define SUFFIX _cached_slow |
3795 | #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__) | |
48564041 PB |
3796 | #define RCU_READ_LOCK() ((void)0) |
3797 | #define RCU_READ_UNLOCK() ((void)0) | |
139c1837 | 3798 | #include "memory_ldst.c.inc" |
1f4e496e | 3799 | |
5e2972fd | 3800 | /* virtual memory access for debug (includes writing to ROM) */ |
f17ec444 | 3801 | int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, |
28c80bfe | 3802 | void *ptr, target_ulong len, bool is_write) |
13eb76e0 | 3803 | { |
a8170e5e | 3804 | hwaddr phys_addr; |
0c249ff7 | 3805 | target_ulong l, page; |
d7ef71ef | 3806 | uint8_t *buf = ptr; |
13eb76e0 | 3807 | |
79ca7a1b | 3808 | cpu_synchronize_state(cpu); |
13eb76e0 | 3809 | while (len > 0) { |
5232e4c7 PM |
3810 | int asidx; |
3811 | MemTxAttrs attrs; | |
ddfc8b96 | 3812 | MemTxResult res; |
5232e4c7 | 3813 | |
13eb76e0 | 3814 | page = addr & TARGET_PAGE_MASK; |
5232e4c7 PM |
3815 | phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs); |
3816 | asidx = cpu_asidx_from_attrs(cpu, attrs); | |
13eb76e0 FB |
3817 | /* if no physical page mapped, return an error */ |
3818 | if (phys_addr == -1) | |
3819 | return -1; | |
3820 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3821 | if (l > len) | |
3822 | l = len; | |
5e2972fd | 3823 | phys_addr += (addr & ~TARGET_PAGE_MASK); |
2e38847b | 3824 | if (is_write) { |
ddfc8b96 PMD |
3825 | res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr, |
3826 | attrs, buf, l); | |
2e38847b | 3827 | } else { |
ddfc8b96 PMD |
3828 | res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr, |
3829 | attrs, buf, l); | |
3830 | } | |
3831 | if (res != MEMTX_OK) { | |
3832 | return -1; | |
2e38847b | 3833 | } |
13eb76e0 FB |
3834 | len -= l; |
3835 | buf += l; | |
3836 | addr += l; | |
3837 | } | |
3838 | return 0; | |
3839 | } | |
038629a6 DDAG |
3840 | |
3841 | /* | |
3842 | * Allows code that needs to deal with migration bitmaps etc to still be built | |
3843 | * target independent. | |
3844 | */ | |
20afaed9 | 3845 | size_t qemu_target_page_size(void) |
038629a6 | 3846 | { |
20afaed9 | 3847 | return TARGET_PAGE_SIZE; |
038629a6 DDAG |
3848 | } |
3849 | ||
46d702b1 JQ |
3850 | int qemu_target_page_bits(void) |
3851 | { | |
3852 | return TARGET_PAGE_BITS; | |
3853 | } | |
3854 | ||
3855 | int qemu_target_page_bits_min(void) | |
3856 | { | |
3857 | return TARGET_PAGE_BITS_MIN; | |
3858 | } | |
a68fe89c | 3859 | #endif |
13eb76e0 | 3860 | |
98ed8ecf | 3861 | bool target_words_bigendian(void) |
8e4a424b BS |
3862 | { |
3863 | #if defined(TARGET_WORDS_BIGENDIAN) | |
3864 | return true; | |
3865 | #else | |
3866 | return false; | |
3867 | #endif | |
3868 | } | |
3869 | ||
76f35538 | 3870 | #ifndef CONFIG_USER_ONLY |
a8170e5e | 3871 | bool cpu_physical_memory_is_io(hwaddr phys_addr) |
76f35538 | 3872 | { |
5c8a00ce | 3873 | MemoryRegion*mr; |
149f54b5 | 3874 | hwaddr l = 1; |
41063e1e | 3875 | bool res; |
76f35538 | 3876 | |
694ea274 | 3877 | RCU_READ_LOCK_GUARD(); |
5c8a00ce | 3878 | mr = address_space_translate(&address_space_memory, |
bc6b1cec PM |
3879 | phys_addr, &phys_addr, &l, false, |
3880 | MEMTXATTRS_UNSPECIFIED); | |
76f35538 | 3881 | |
41063e1e | 3882 | res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr)); |
41063e1e | 3883 | return res; |
76f35538 | 3884 | } |
bd2fa51f | 3885 | |
e3807054 | 3886 | int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) |
bd2fa51f MH |
3887 | { |
3888 | RAMBlock *block; | |
e3807054 | 3889 | int ret = 0; |
bd2fa51f | 3890 | |
694ea274 | 3891 | RCU_READ_LOCK_GUARD(); |
99e15582 | 3892 | RAMBLOCK_FOREACH(block) { |
754cb9c0 | 3893 | ret = func(block, opaque); |
e3807054 DDAG |
3894 | if (ret) { |
3895 | break; | |
3896 | } | |
bd2fa51f | 3897 | } |
e3807054 | 3898 | return ret; |
bd2fa51f | 3899 | } |
d3a5038c DDAG |
3900 | |
3901 | /* | |
3902 | * Unmap pages of memory from start to start+length such that | |
3903 | * they a) read as 0, b) Trigger whatever fault mechanism | |
3904 | * the OS provides for postcopy. | |
3905 | * The pages must be unmapped by the end of the function. | |
3906 | * Returns: 0 on success, none-0 on failure | |
3907 | * | |
3908 | */ | |
3909 | int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length) | |
3910 | { | |
3911 | int ret = -1; | |
3912 | ||
3913 | uint8_t *host_startaddr = rb->host + start; | |
3914 | ||
619bd31d | 3915 | if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) { |
d3a5038c DDAG |
3916 | error_report("ram_block_discard_range: Unaligned start address: %p", |
3917 | host_startaddr); | |
3918 | goto err; | |
3919 | } | |
3920 | ||
3921 | if ((start + length) <= rb->used_length) { | |
db144f70 | 3922 | bool need_madvise, need_fallocate; |
619bd31d | 3923 | if (!QEMU_IS_ALIGNED(length, rb->page_size)) { |
72821d93 WY |
3924 | error_report("ram_block_discard_range: Unaligned length: %zx", |
3925 | length); | |
d3a5038c DDAG |
3926 | goto err; |
3927 | } | |
3928 | ||
3929 | errno = ENOTSUP; /* If we are missing MADVISE etc */ | |
3930 | ||
db144f70 DDAG |
3931 | /* The logic here is messy; |
3932 | * madvise DONTNEED fails for hugepages | |
3933 | * fallocate works on hugepages and shmem | |
3934 | */ | |
3935 | need_madvise = (rb->page_size == qemu_host_page_size); | |
3936 | need_fallocate = rb->fd != -1; | |
3937 | if (need_fallocate) { | |
3938 | /* For a file, this causes the area of the file to be zero'd | |
3939 | * if read, and for hugetlbfs also causes it to be unmapped | |
3940 | * so a userfault will trigger. | |
e2fa71f5 DDAG |
3941 | */ |
3942 | #ifdef CONFIG_FALLOCATE_PUNCH_HOLE | |
3943 | ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, | |
3944 | start, length); | |
db144f70 DDAG |
3945 | if (ret) { |
3946 | ret = -errno; | |
3947 | error_report("ram_block_discard_range: Failed to fallocate " | |
3948 | "%s:%" PRIx64 " +%zx (%d)", | |
3949 | rb->idstr, start, length, ret); | |
3950 | goto err; | |
3951 | } | |
3952 | #else | |
3953 | ret = -ENOSYS; | |
3954 | error_report("ram_block_discard_range: fallocate not available/file" | |
3955 | "%s:%" PRIx64 " +%zx (%d)", | |
3956 | rb->idstr, start, length, ret); | |
3957 | goto err; | |
e2fa71f5 DDAG |
3958 | #endif |
3959 | } | |
db144f70 DDAG |
3960 | if (need_madvise) { |
3961 | /* For normal RAM this causes it to be unmapped, | |
3962 | * for shared memory it causes the local mapping to disappear | |
3963 | * and to fall back on the file contents (which we just | |
3964 | * fallocate'd away). | |
3965 | */ | |
3966 | #if defined(CONFIG_MADVISE) | |
3967 | ret = madvise(host_startaddr, length, MADV_DONTNEED); | |
3968 | if (ret) { | |
3969 | ret = -errno; | |
3970 | error_report("ram_block_discard_range: Failed to discard range " | |
3971 | "%s:%" PRIx64 " +%zx (%d)", | |
3972 | rb->idstr, start, length, ret); | |
3973 | goto err; | |
3974 | } | |
3975 | #else | |
3976 | ret = -ENOSYS; | |
3977 | error_report("ram_block_discard_range: MADVISE not available" | |
d3a5038c DDAG |
3978 | "%s:%" PRIx64 " +%zx (%d)", |
3979 | rb->idstr, start, length, ret); | |
db144f70 DDAG |
3980 | goto err; |
3981 | #endif | |
d3a5038c | 3982 | } |
db144f70 DDAG |
3983 | trace_ram_block_discard_range(rb->idstr, host_startaddr, length, |
3984 | need_madvise, need_fallocate, ret); | |
d3a5038c DDAG |
3985 | } else { |
3986 | error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64 | |
3987 | "/%zx/" RAM_ADDR_FMT")", | |
3988 | rb->idstr, start, length, rb->used_length); | |
3989 | } | |
3990 | ||
3991 | err: | |
3992 | return ret; | |
3993 | } | |
3994 | ||
a4de8552 JH |
3995 | bool ramblock_is_pmem(RAMBlock *rb) |
3996 | { | |
3997 | return rb->flags & RAM_PMEM; | |
3998 | } | |
3999 | ||
ec3f8c99 | 4000 | #endif |
a0be0c58 YZ |
4001 | |
4002 | void page_size_init(void) | |
4003 | { | |
4004 | /* NOTE: we can always suppose that qemu_host_page_size >= | |
4005 | TARGET_PAGE_SIZE */ | |
a0be0c58 YZ |
4006 | if (qemu_host_page_size == 0) { |
4007 | qemu_host_page_size = qemu_real_host_page_size; | |
4008 | } | |
4009 | if (qemu_host_page_size < TARGET_PAGE_SIZE) { | |
4010 | qemu_host_page_size = TARGET_PAGE_SIZE; | |
4011 | } | |
4012 | qemu_host_page_mask = -(intptr_t)qemu_host_page_size; | |
4013 | } | |
5e8fd947 AK |
4014 | |
4015 | #if !defined(CONFIG_USER_ONLY) | |
4016 | ||
b6b71cb5 | 4017 | static void mtree_print_phys_entries(int start, int end, int skip, int ptr) |
5e8fd947 AK |
4018 | { |
4019 | if (start == end - 1) { | |
b6b71cb5 | 4020 | qemu_printf("\t%3d ", start); |
5e8fd947 | 4021 | } else { |
b6b71cb5 | 4022 | qemu_printf("\t%3d..%-3d ", start, end - 1); |
5e8fd947 | 4023 | } |
b6b71cb5 | 4024 | qemu_printf(" skip=%d ", skip); |
5e8fd947 | 4025 | if (ptr == PHYS_MAP_NODE_NIL) { |
b6b71cb5 | 4026 | qemu_printf(" ptr=NIL"); |
5e8fd947 | 4027 | } else if (!skip) { |
b6b71cb5 | 4028 | qemu_printf(" ptr=#%d", ptr); |
5e8fd947 | 4029 | } else { |
b6b71cb5 | 4030 | qemu_printf(" ptr=[%d]", ptr); |
5e8fd947 | 4031 | } |
b6b71cb5 | 4032 | qemu_printf("\n"); |
5e8fd947 AK |
4033 | } |
4034 | ||
4035 | #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \ | |
4036 | int128_sub((size), int128_one())) : 0) | |
4037 | ||
b6b71cb5 | 4038 | void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root) |
5e8fd947 AK |
4039 | { |
4040 | int i; | |
4041 | ||
b6b71cb5 MA |
4042 | qemu_printf(" Dispatch\n"); |
4043 | qemu_printf(" Physical sections\n"); | |
5e8fd947 AK |
4044 | |
4045 | for (i = 0; i < d->map.sections_nb; ++i) { | |
4046 | MemoryRegionSection *s = d->map.sections + i; | |
4047 | const char *names[] = { " [unassigned]", " [not dirty]", | |
4048 | " [ROM]", " [watch]" }; | |
4049 | ||
b6b71cb5 MA |
4050 | qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx |
4051 | " %s%s%s%s%s", | |
5e8fd947 AK |
4052 | i, |
4053 | s->offset_within_address_space, | |
4054 | s->offset_within_address_space + MR_SIZE(s->mr->size), | |
4055 | s->mr->name ? s->mr->name : "(noname)", | |
4056 | i < ARRAY_SIZE(names) ? names[i] : "", | |
4057 | s->mr == root ? " [ROOT]" : "", | |
4058 | s == d->mru_section ? " [MRU]" : "", | |
4059 | s->mr->is_iommu ? " [iommu]" : ""); | |
4060 | ||
4061 | if (s->mr->alias) { | |
b6b71cb5 | 4062 | qemu_printf(" alias=%s", s->mr->alias->name ? |
5e8fd947 AK |
4063 | s->mr->alias->name : "noname"); |
4064 | } | |
b6b71cb5 | 4065 | qemu_printf("\n"); |
5e8fd947 AK |
4066 | } |
4067 | ||
b6b71cb5 | 4068 | qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n", |
5e8fd947 AK |
4069 | P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip); |
4070 | for (i = 0; i < d->map.nodes_nb; ++i) { | |
4071 | int j, jprev; | |
4072 | PhysPageEntry prev; | |
4073 | Node *n = d->map.nodes + i; | |
4074 | ||
b6b71cb5 | 4075 | qemu_printf(" [%d]\n", i); |
5e8fd947 AK |
4076 | |
4077 | for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) { | |
4078 | PhysPageEntry *pe = *n + j; | |
4079 | ||
4080 | if (pe->ptr == prev.ptr && pe->skip == prev.skip) { | |
4081 | continue; | |
4082 | } | |
4083 | ||
b6b71cb5 | 4084 | mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); |
5e8fd947 AK |
4085 | |
4086 | jprev = j; | |
4087 | prev = *pe; | |
4088 | } | |
4089 | ||
4090 | if (jprev != ARRAY_SIZE(*n)) { | |
b6b71cb5 | 4091 | mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); |
5e8fd947 AK |
4092 | } |
4093 | } | |
4094 | } | |
4095 | ||
d24f31db DH |
4096 | /* |
4097 | * If positive, discarding RAM is disabled. If negative, discarding RAM is | |
4098 | * required to work and cannot be disabled. | |
4099 | */ | |
4100 | static int ram_block_discard_disabled; | |
4101 | ||
4102 | int ram_block_discard_disable(bool state) | |
4103 | { | |
4104 | int old; | |
4105 | ||
4106 | if (!state) { | |
4107 | atomic_dec(&ram_block_discard_disabled); | |
4108 | return 0; | |
4109 | } | |
4110 | ||
4111 | do { | |
4112 | old = atomic_read(&ram_block_discard_disabled); | |
4113 | if (old < 0) { | |
4114 | return -EBUSY; | |
4115 | } | |
4116 | } while (atomic_cmpxchg(&ram_block_discard_disabled, old, old + 1) != old); | |
4117 | return 0; | |
4118 | } | |
4119 | ||
4120 | int ram_block_discard_require(bool state) | |
4121 | { | |
4122 | int old; | |
4123 | ||
4124 | if (!state) { | |
4125 | atomic_inc(&ram_block_discard_disabled); | |
4126 | return 0; | |
4127 | } | |
4128 | ||
4129 | do { | |
4130 | old = atomic_read(&ram_block_discard_disabled); | |
4131 | if (old > 0) { | |
4132 | return -EBUSY; | |
4133 | } | |
4134 | } while (atomic_cmpxchg(&ram_block_discard_disabled, old, old - 1) != old); | |
4135 | return 0; | |
4136 | } | |
4137 | ||
4138 | bool ram_block_discard_is_disabled(void) | |
4139 | { | |
4140 | return atomic_read(&ram_block_discard_disabled) > 0; | |
4141 | } | |
4142 | ||
4143 | bool ram_block_discard_is_required(void) | |
4144 | { | |
4145 | return atomic_read(&ram_block_discard_disabled) < 0; | |
4146 | } | |
4147 | ||
5e8fd947 | 4148 | #endif |