]>
Commit | Line | Data |
---|---|---|
ca557f44 AC |
1 | /* Target-struct-independent code to start (run) and stop an inferior |
2 | process. | |
8926118c | 3 | |
b811d2c2 | 4 | Copyright (C) 1986-2020 Free Software Foundation, Inc. |
c906108c | 5 | |
c5aa993b | 6 | This file is part of GDB. |
c906108c | 7 | |
c5aa993b JM |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 10 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 11 | (at your option) any later version. |
c906108c | 12 | |
c5aa993b JM |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
c906108c | 17 | |
c5aa993b | 18 | You should have received a copy of the GNU General Public License |
a9762ec7 | 19 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
20 | |
21 | #include "defs.h" | |
45741a9c | 22 | #include "infrun.h" |
c906108c SS |
23 | #include <ctype.h> |
24 | #include "symtab.h" | |
25 | #include "frame.h" | |
26 | #include "inferior.h" | |
27 | #include "breakpoint.h" | |
c906108c SS |
28 | #include "gdbcore.h" |
29 | #include "gdbcmd.h" | |
30 | #include "target.h" | |
2f4fcf00 | 31 | #include "target-connection.h" |
c906108c SS |
32 | #include "gdbthread.h" |
33 | #include "annotate.h" | |
1adeb98a | 34 | #include "symfile.h" |
7a292a7a | 35 | #include "top.h" |
2acceee2 | 36 | #include "inf-loop.h" |
4e052eda | 37 | #include "regcache.h" |
fd0407d6 | 38 | #include "value.h" |
76727919 | 39 | #include "observable.h" |
f636b87d | 40 | #include "language.h" |
a77053c2 | 41 | #include "solib.h" |
f17517ea | 42 | #include "main.h" |
186c406b | 43 | #include "block.h" |
034dad6f | 44 | #include "mi/mi-common.h" |
4f8d22e3 | 45 | #include "event-top.h" |
96429cc8 | 46 | #include "record.h" |
d02ed0bb | 47 | #include "record-full.h" |
edb3359d | 48 | #include "inline-frame.h" |
4efc6507 | 49 | #include "jit.h" |
06cd862c | 50 | #include "tracepoint.h" |
1bfeeb0f | 51 | #include "skip.h" |
28106bc2 SDJ |
52 | #include "probe.h" |
53 | #include "objfiles.h" | |
de0bea00 | 54 | #include "completer.h" |
9107fc8d | 55 | #include "target-descriptions.h" |
f15cb84a | 56 | #include "target-dcache.h" |
d83ad864 | 57 | #include "terminal.h" |
ff862be4 | 58 | #include "solist.h" |
372316f1 | 59 | #include "event-loop.h" |
243a9253 | 60 | #include "thread-fsm.h" |
268a13a5 | 61 | #include "gdbsupport/enum-flags.h" |
5ed8105e | 62 | #include "progspace-and-thread.h" |
268a13a5 | 63 | #include "gdbsupport/gdb_optional.h" |
46a62268 | 64 | #include "arch-utils.h" |
268a13a5 TT |
65 | #include "gdbsupport/scope-exit.h" |
66 | #include "gdbsupport/forward-scope-exit.h" | |
5b6d1e4f PA |
67 | #include "gdb_select.h" |
68 | #include <unordered_map> | |
c906108c SS |
69 | |
70 | /* Prototypes for local functions */ | |
71 | ||
2ea28649 | 72 | static void sig_print_info (enum gdb_signal); |
c906108c | 73 | |
96baa820 | 74 | static void sig_print_header (void); |
c906108c | 75 | |
4ef3f3be | 76 | static int follow_fork (void); |
96baa820 | 77 | |
d83ad864 DB |
78 | static int follow_fork_inferior (int follow_child, int detach_fork); |
79 | ||
80 | static void follow_inferior_reset_breakpoints (void); | |
81 | ||
a289b8f6 JK |
82 | static int currently_stepping (struct thread_info *tp); |
83 | ||
2c03e5be | 84 | static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *); |
2484c66b UW |
85 | |
86 | static void insert_step_resume_breakpoint_at_caller (struct frame_info *); | |
87 | ||
2484c66b UW |
88 | static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR); |
89 | ||
8550d3b3 YQ |
90 | static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc); |
91 | ||
aff4e175 AB |
92 | static void resume (gdb_signal sig); |
93 | ||
5b6d1e4f PA |
94 | static void wait_for_inferior (inferior *inf); |
95 | ||
372316f1 PA |
96 | /* Asynchronous signal handler registered as event loop source for |
97 | when we have pending events ready to be passed to the core. */ | |
98 | static struct async_event_handler *infrun_async_inferior_event_token; | |
99 | ||
100 | /* Stores whether infrun_async was previously enabled or disabled. | |
101 | Starts off as -1, indicating "never enabled/disabled". */ | |
102 | static int infrun_is_async = -1; | |
103 | ||
104 | /* See infrun.h. */ | |
105 | ||
106 | void | |
107 | infrun_async (int enable) | |
108 | { | |
109 | if (infrun_is_async != enable) | |
110 | { | |
111 | infrun_is_async = enable; | |
112 | ||
113 | if (debug_infrun) | |
114 | fprintf_unfiltered (gdb_stdlog, | |
115 | "infrun: infrun_async(%d)\n", | |
116 | enable); | |
117 | ||
118 | if (enable) | |
119 | mark_async_event_handler (infrun_async_inferior_event_token); | |
120 | else | |
121 | clear_async_event_handler (infrun_async_inferior_event_token); | |
122 | } | |
123 | } | |
124 | ||
0b333c5e PA |
125 | /* See infrun.h. */ |
126 | ||
127 | void | |
128 | mark_infrun_async_event_handler (void) | |
129 | { | |
130 | mark_async_event_handler (infrun_async_inferior_event_token); | |
131 | } | |
132 | ||
5fbbeb29 CF |
133 | /* When set, stop the 'step' command if we enter a function which has |
134 | no line number information. The normal behavior is that we step | |
135 | over such function. */ | |
491144b5 | 136 | bool step_stop_if_no_debug = false; |
920d2a44 AC |
137 | static void |
138 | show_step_stop_if_no_debug (struct ui_file *file, int from_tty, | |
139 | struct cmd_list_element *c, const char *value) | |
140 | { | |
141 | fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value); | |
142 | } | |
5fbbeb29 | 143 | |
b9f437de PA |
144 | /* proceed and normal_stop use this to notify the user when the |
145 | inferior stopped in a different thread than it had been running | |
146 | in. */ | |
96baa820 | 147 | |
39f77062 | 148 | static ptid_t previous_inferior_ptid; |
7a292a7a | 149 | |
07107ca6 LM |
150 | /* If set (default for legacy reasons), when following a fork, GDB |
151 | will detach from one of the fork branches, child or parent. | |
152 | Exactly which branch is detached depends on 'set follow-fork-mode' | |
153 | setting. */ | |
154 | ||
491144b5 | 155 | static bool detach_fork = true; |
6c95b8df | 156 | |
491144b5 | 157 | bool debug_displaced = false; |
237fc4c9 PA |
158 | static void |
159 | show_debug_displaced (struct ui_file *file, int from_tty, | |
160 | struct cmd_list_element *c, const char *value) | |
161 | { | |
162 | fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value); | |
163 | } | |
164 | ||
ccce17b0 | 165 | unsigned int debug_infrun = 0; |
920d2a44 AC |
166 | static void |
167 | show_debug_infrun (struct ui_file *file, int from_tty, | |
168 | struct cmd_list_element *c, const char *value) | |
169 | { | |
170 | fprintf_filtered (file, _("Inferior debugging is %s.\n"), value); | |
171 | } | |
527159b7 | 172 | |
03583c20 UW |
173 | |
174 | /* Support for disabling address space randomization. */ | |
175 | ||
491144b5 | 176 | bool disable_randomization = true; |
03583c20 UW |
177 | |
178 | static void | |
179 | show_disable_randomization (struct ui_file *file, int from_tty, | |
180 | struct cmd_list_element *c, const char *value) | |
181 | { | |
182 | if (target_supports_disable_randomization ()) | |
183 | fprintf_filtered (file, | |
184 | _("Disabling randomization of debuggee's " | |
185 | "virtual address space is %s.\n"), | |
186 | value); | |
187 | else | |
188 | fputs_filtered (_("Disabling randomization of debuggee's " | |
189 | "virtual address space is unsupported on\n" | |
190 | "this platform.\n"), file); | |
191 | } | |
192 | ||
193 | static void | |
eb4c3f4a | 194 | set_disable_randomization (const char *args, int from_tty, |
03583c20 UW |
195 | struct cmd_list_element *c) |
196 | { | |
197 | if (!target_supports_disable_randomization ()) | |
198 | error (_("Disabling randomization of debuggee's " | |
199 | "virtual address space is unsupported on\n" | |
200 | "this platform.")); | |
201 | } | |
202 | ||
d32dc48e PA |
203 | /* User interface for non-stop mode. */ |
204 | ||
491144b5 CB |
205 | bool non_stop = false; |
206 | static bool non_stop_1 = false; | |
d32dc48e PA |
207 | |
208 | static void | |
eb4c3f4a | 209 | set_non_stop (const char *args, int from_tty, |
d32dc48e PA |
210 | struct cmd_list_element *c) |
211 | { | |
212 | if (target_has_execution) | |
213 | { | |
214 | non_stop_1 = non_stop; | |
215 | error (_("Cannot change this setting while the inferior is running.")); | |
216 | } | |
217 | ||
218 | non_stop = non_stop_1; | |
219 | } | |
220 | ||
221 | static void | |
222 | show_non_stop (struct ui_file *file, int from_tty, | |
223 | struct cmd_list_element *c, const char *value) | |
224 | { | |
225 | fprintf_filtered (file, | |
226 | _("Controlling the inferior in non-stop mode is %s.\n"), | |
227 | value); | |
228 | } | |
229 | ||
d914c394 SS |
230 | /* "Observer mode" is somewhat like a more extreme version of |
231 | non-stop, in which all GDB operations that might affect the | |
232 | target's execution have been disabled. */ | |
233 | ||
491144b5 CB |
234 | bool observer_mode = false; |
235 | static bool observer_mode_1 = false; | |
d914c394 SS |
236 | |
237 | static void | |
eb4c3f4a | 238 | set_observer_mode (const char *args, int from_tty, |
d914c394 SS |
239 | struct cmd_list_element *c) |
240 | { | |
d914c394 SS |
241 | if (target_has_execution) |
242 | { | |
243 | observer_mode_1 = observer_mode; | |
244 | error (_("Cannot change this setting while the inferior is running.")); | |
245 | } | |
246 | ||
247 | observer_mode = observer_mode_1; | |
248 | ||
249 | may_write_registers = !observer_mode; | |
250 | may_write_memory = !observer_mode; | |
251 | may_insert_breakpoints = !observer_mode; | |
252 | may_insert_tracepoints = !observer_mode; | |
253 | /* We can insert fast tracepoints in or out of observer mode, | |
254 | but enable them if we're going into this mode. */ | |
255 | if (observer_mode) | |
491144b5 | 256 | may_insert_fast_tracepoints = true; |
d914c394 SS |
257 | may_stop = !observer_mode; |
258 | update_target_permissions (); | |
259 | ||
260 | /* Going *into* observer mode we must force non-stop, then | |
261 | going out we leave it that way. */ | |
262 | if (observer_mode) | |
263 | { | |
d914c394 | 264 | pagination_enabled = 0; |
491144b5 | 265 | non_stop = non_stop_1 = true; |
d914c394 SS |
266 | } |
267 | ||
268 | if (from_tty) | |
269 | printf_filtered (_("Observer mode is now %s.\n"), | |
270 | (observer_mode ? "on" : "off")); | |
271 | } | |
272 | ||
273 | static void | |
274 | show_observer_mode (struct ui_file *file, int from_tty, | |
275 | struct cmd_list_element *c, const char *value) | |
276 | { | |
277 | fprintf_filtered (file, _("Observer mode is %s.\n"), value); | |
278 | } | |
279 | ||
280 | /* This updates the value of observer mode based on changes in | |
281 | permissions. Note that we are deliberately ignoring the values of | |
282 | may-write-registers and may-write-memory, since the user may have | |
283 | reason to enable these during a session, for instance to turn on a | |
284 | debugging-related global. */ | |
285 | ||
286 | void | |
287 | update_observer_mode (void) | |
288 | { | |
491144b5 CB |
289 | bool newval = (!may_insert_breakpoints |
290 | && !may_insert_tracepoints | |
291 | && may_insert_fast_tracepoints | |
292 | && !may_stop | |
293 | && non_stop); | |
d914c394 SS |
294 | |
295 | /* Let the user know if things change. */ | |
296 | if (newval != observer_mode) | |
297 | printf_filtered (_("Observer mode is now %s.\n"), | |
298 | (newval ? "on" : "off")); | |
299 | ||
300 | observer_mode = observer_mode_1 = newval; | |
301 | } | |
c2c6d25f | 302 | |
c906108c SS |
303 | /* Tables of how to react to signals; the user sets them. */ |
304 | ||
adc6a863 PA |
305 | static unsigned char signal_stop[GDB_SIGNAL_LAST]; |
306 | static unsigned char signal_print[GDB_SIGNAL_LAST]; | |
307 | static unsigned char signal_program[GDB_SIGNAL_LAST]; | |
c906108c | 308 | |
ab04a2af TT |
309 | /* Table of signals that are registered with "catch signal". A |
310 | non-zero entry indicates that the signal is caught by some "catch | |
adc6a863 PA |
311 | signal" command. */ |
312 | static unsigned char signal_catch[GDB_SIGNAL_LAST]; | |
ab04a2af | 313 | |
2455069d UW |
314 | /* Table of signals that the target may silently handle. |
315 | This is automatically determined from the flags above, | |
316 | and simply cached here. */ | |
adc6a863 | 317 | static unsigned char signal_pass[GDB_SIGNAL_LAST]; |
2455069d | 318 | |
c906108c SS |
319 | #define SET_SIGS(nsigs,sigs,flags) \ |
320 | do { \ | |
321 | int signum = (nsigs); \ | |
322 | while (signum-- > 0) \ | |
323 | if ((sigs)[signum]) \ | |
324 | (flags)[signum] = 1; \ | |
325 | } while (0) | |
326 | ||
327 | #define UNSET_SIGS(nsigs,sigs,flags) \ | |
328 | do { \ | |
329 | int signum = (nsigs); \ | |
330 | while (signum-- > 0) \ | |
331 | if ((sigs)[signum]) \ | |
332 | (flags)[signum] = 0; \ | |
333 | } while (0) | |
334 | ||
9b224c5e PA |
335 | /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of |
336 | this function is to avoid exporting `signal_program'. */ | |
337 | ||
338 | void | |
339 | update_signals_program_target (void) | |
340 | { | |
adc6a863 | 341 | target_program_signals (signal_program); |
9b224c5e PA |
342 | } |
343 | ||
1777feb0 | 344 | /* Value to pass to target_resume() to cause all threads to resume. */ |
39f77062 | 345 | |
edb3359d | 346 | #define RESUME_ALL minus_one_ptid |
c906108c SS |
347 | |
348 | /* Command list pointer for the "stop" placeholder. */ | |
349 | ||
350 | static struct cmd_list_element *stop_command; | |
351 | ||
c906108c SS |
352 | /* Nonzero if we want to give control to the user when we're notified |
353 | of shared library events by the dynamic linker. */ | |
628fe4e4 | 354 | int stop_on_solib_events; |
f9e14852 GB |
355 | |
356 | /* Enable or disable optional shared library event breakpoints | |
357 | as appropriate when the above flag is changed. */ | |
358 | ||
359 | static void | |
eb4c3f4a TT |
360 | set_stop_on_solib_events (const char *args, |
361 | int from_tty, struct cmd_list_element *c) | |
f9e14852 GB |
362 | { |
363 | update_solib_breakpoints (); | |
364 | } | |
365 | ||
920d2a44 AC |
366 | static void |
367 | show_stop_on_solib_events (struct ui_file *file, int from_tty, | |
368 | struct cmd_list_element *c, const char *value) | |
369 | { | |
370 | fprintf_filtered (file, _("Stopping for shared library events is %s.\n"), | |
371 | value); | |
372 | } | |
c906108c | 373 | |
c906108c SS |
374 | /* Nonzero after stop if current stack frame should be printed. */ |
375 | ||
376 | static int stop_print_frame; | |
377 | ||
5b6d1e4f PA |
378 | /* This is a cached copy of the target/ptid/waitstatus of the last |
379 | event returned by target_wait()/deprecated_target_wait_hook(). | |
380 | This information is returned by get_last_target_status(). */ | |
381 | static process_stratum_target *target_last_proc_target; | |
39f77062 | 382 | static ptid_t target_last_wait_ptid; |
e02bc4cc DS |
383 | static struct target_waitstatus target_last_waitstatus; |
384 | ||
4e1c45ea | 385 | void init_thread_stepping_state (struct thread_info *tss); |
0d1e5fa7 | 386 | |
53904c9e AC |
387 | static const char follow_fork_mode_child[] = "child"; |
388 | static const char follow_fork_mode_parent[] = "parent"; | |
389 | ||
40478521 | 390 | static const char *const follow_fork_mode_kind_names[] = { |
53904c9e AC |
391 | follow_fork_mode_child, |
392 | follow_fork_mode_parent, | |
393 | NULL | |
ef346e04 | 394 | }; |
c906108c | 395 | |
53904c9e | 396 | static const char *follow_fork_mode_string = follow_fork_mode_parent; |
920d2a44 AC |
397 | static void |
398 | show_follow_fork_mode_string (struct ui_file *file, int from_tty, | |
399 | struct cmd_list_element *c, const char *value) | |
400 | { | |
3e43a32a MS |
401 | fprintf_filtered (file, |
402 | _("Debugger response to a program " | |
403 | "call of fork or vfork is \"%s\".\n"), | |
920d2a44 AC |
404 | value); |
405 | } | |
c906108c SS |
406 | \f |
407 | ||
d83ad864 DB |
408 | /* Handle changes to the inferior list based on the type of fork, |
409 | which process is being followed, and whether the other process | |
410 | should be detached. On entry inferior_ptid must be the ptid of | |
411 | the fork parent. At return inferior_ptid is the ptid of the | |
412 | followed inferior. */ | |
413 | ||
414 | static int | |
415 | follow_fork_inferior (int follow_child, int detach_fork) | |
416 | { | |
417 | int has_vforked; | |
79639e11 | 418 | ptid_t parent_ptid, child_ptid; |
d83ad864 DB |
419 | |
420 | has_vforked = (inferior_thread ()->pending_follow.kind | |
421 | == TARGET_WAITKIND_VFORKED); | |
79639e11 PA |
422 | parent_ptid = inferior_ptid; |
423 | child_ptid = inferior_thread ()->pending_follow.value.related_pid; | |
d83ad864 DB |
424 | |
425 | if (has_vforked | |
426 | && !non_stop /* Non-stop always resumes both branches. */ | |
3b12939d | 427 | && current_ui->prompt_state == PROMPT_BLOCKED |
d83ad864 DB |
428 | && !(follow_child || detach_fork || sched_multi)) |
429 | { | |
430 | /* The parent stays blocked inside the vfork syscall until the | |
431 | child execs or exits. If we don't let the child run, then | |
432 | the parent stays blocked. If we're telling the parent to run | |
433 | in the foreground, the user will not be able to ctrl-c to get | |
434 | back the terminal, effectively hanging the debug session. */ | |
435 | fprintf_filtered (gdb_stderr, _("\ | |
436 | Can not resume the parent process over vfork in the foreground while\n\ | |
437 | holding the child stopped. Try \"set detach-on-fork\" or \ | |
438 | \"set schedule-multiple\".\n")); | |
d83ad864 DB |
439 | return 1; |
440 | } | |
441 | ||
442 | if (!follow_child) | |
443 | { | |
444 | /* Detach new forked process? */ | |
445 | if (detach_fork) | |
446 | { | |
d83ad864 DB |
447 | /* Before detaching from the child, remove all breakpoints |
448 | from it. If we forked, then this has already been taken | |
449 | care of by infrun.c. If we vforked however, any | |
450 | breakpoint inserted in the parent is visible in the | |
451 | child, even those added while stopped in a vfork | |
452 | catchpoint. This will remove the breakpoints from the | |
453 | parent also, but they'll be reinserted below. */ | |
454 | if (has_vforked) | |
455 | { | |
456 | /* Keep breakpoints list in sync. */ | |
00431a78 | 457 | remove_breakpoints_inf (current_inferior ()); |
d83ad864 DB |
458 | } |
459 | ||
f67c0c91 | 460 | if (print_inferior_events) |
d83ad864 | 461 | { |
8dd06f7a | 462 | /* Ensure that we have a process ptid. */ |
e99b03dc | 463 | ptid_t process_ptid = ptid_t (child_ptid.pid ()); |
8dd06f7a | 464 | |
223ffa71 | 465 | target_terminal::ours_for_output (); |
d83ad864 | 466 | fprintf_filtered (gdb_stdlog, |
f67c0c91 | 467 | _("[Detaching after %s from child %s]\n"), |
6f259a23 | 468 | has_vforked ? "vfork" : "fork", |
a068643d | 469 | target_pid_to_str (process_ptid).c_str ()); |
d83ad864 DB |
470 | } |
471 | } | |
472 | else | |
473 | { | |
474 | struct inferior *parent_inf, *child_inf; | |
d83ad864 DB |
475 | |
476 | /* Add process to GDB's tables. */ | |
e99b03dc | 477 | child_inf = add_inferior (child_ptid.pid ()); |
d83ad864 DB |
478 | |
479 | parent_inf = current_inferior (); | |
480 | child_inf->attach_flag = parent_inf->attach_flag; | |
481 | copy_terminal_info (child_inf, parent_inf); | |
482 | child_inf->gdbarch = parent_inf->gdbarch; | |
483 | copy_inferior_target_desc_info (child_inf, parent_inf); | |
484 | ||
5ed8105e | 485 | scoped_restore_current_pspace_and_thread restore_pspace_thread; |
d83ad864 | 486 | |
2a00d7ce | 487 | set_current_inferior (child_inf); |
5b6d1e4f | 488 | switch_to_no_thread (); |
d83ad864 | 489 | child_inf->symfile_flags = SYMFILE_NO_READ; |
5b6d1e4f PA |
490 | push_target (parent_inf->process_target ()); |
491 | add_thread_silent (child_inf->process_target (), child_ptid); | |
492 | inferior_ptid = child_ptid; | |
d83ad864 DB |
493 | |
494 | /* If this is a vfork child, then the address-space is | |
495 | shared with the parent. */ | |
496 | if (has_vforked) | |
497 | { | |
498 | child_inf->pspace = parent_inf->pspace; | |
499 | child_inf->aspace = parent_inf->aspace; | |
500 | ||
5b6d1e4f PA |
501 | exec_on_vfork (); |
502 | ||
d83ad864 DB |
503 | /* The parent will be frozen until the child is done |
504 | with the shared region. Keep track of the | |
505 | parent. */ | |
506 | child_inf->vfork_parent = parent_inf; | |
507 | child_inf->pending_detach = 0; | |
508 | parent_inf->vfork_child = child_inf; | |
509 | parent_inf->pending_detach = 0; | |
510 | } | |
511 | else | |
512 | { | |
513 | child_inf->aspace = new_address_space (); | |
564b1e3f | 514 | child_inf->pspace = new program_space (child_inf->aspace); |
d83ad864 DB |
515 | child_inf->removable = 1; |
516 | set_current_program_space (child_inf->pspace); | |
517 | clone_program_space (child_inf->pspace, parent_inf->pspace); | |
518 | ||
519 | /* Let the shared library layer (e.g., solib-svr4) learn | |
520 | about this new process, relocate the cloned exec, pull | |
521 | in shared libraries, and install the solib event | |
522 | breakpoint. If a "cloned-VM" event was propagated | |
523 | better throughout the core, this wouldn't be | |
524 | required. */ | |
525 | solib_create_inferior_hook (0); | |
526 | } | |
d83ad864 DB |
527 | } |
528 | ||
529 | if (has_vforked) | |
530 | { | |
531 | struct inferior *parent_inf; | |
532 | ||
533 | parent_inf = current_inferior (); | |
534 | ||
535 | /* If we detached from the child, then we have to be careful | |
536 | to not insert breakpoints in the parent until the child | |
537 | is done with the shared memory region. However, if we're | |
538 | staying attached to the child, then we can and should | |
539 | insert breakpoints, so that we can debug it. A | |
540 | subsequent child exec or exit is enough to know when does | |
541 | the child stops using the parent's address space. */ | |
542 | parent_inf->waiting_for_vfork_done = detach_fork; | |
543 | parent_inf->pspace->breakpoints_not_allowed = detach_fork; | |
544 | } | |
545 | } | |
546 | else | |
547 | { | |
548 | /* Follow the child. */ | |
549 | struct inferior *parent_inf, *child_inf; | |
550 | struct program_space *parent_pspace; | |
551 | ||
f67c0c91 | 552 | if (print_inferior_events) |
d83ad864 | 553 | { |
f67c0c91 SDJ |
554 | std::string parent_pid = target_pid_to_str (parent_ptid); |
555 | std::string child_pid = target_pid_to_str (child_ptid); | |
556 | ||
223ffa71 | 557 | target_terminal::ours_for_output (); |
6f259a23 | 558 | fprintf_filtered (gdb_stdlog, |
f67c0c91 SDJ |
559 | _("[Attaching after %s %s to child %s]\n"), |
560 | parent_pid.c_str (), | |
6f259a23 | 561 | has_vforked ? "vfork" : "fork", |
f67c0c91 | 562 | child_pid.c_str ()); |
d83ad864 DB |
563 | } |
564 | ||
565 | /* Add the new inferior first, so that the target_detach below | |
566 | doesn't unpush the target. */ | |
567 | ||
e99b03dc | 568 | child_inf = add_inferior (child_ptid.pid ()); |
d83ad864 DB |
569 | |
570 | parent_inf = current_inferior (); | |
571 | child_inf->attach_flag = parent_inf->attach_flag; | |
572 | copy_terminal_info (child_inf, parent_inf); | |
573 | child_inf->gdbarch = parent_inf->gdbarch; | |
574 | copy_inferior_target_desc_info (child_inf, parent_inf); | |
575 | ||
576 | parent_pspace = parent_inf->pspace; | |
577 | ||
5b6d1e4f | 578 | process_stratum_target *target = parent_inf->process_target (); |
d83ad864 | 579 | |
5b6d1e4f PA |
580 | { |
581 | /* Hold a strong reference to the target while (maybe) | |
582 | detaching the parent. Otherwise detaching could close the | |
583 | target. */ | |
584 | auto target_ref = target_ops_ref::new_reference (target); | |
585 | ||
586 | /* If we're vforking, we want to hold on to the parent until | |
587 | the child exits or execs. At child exec or exit time we | |
588 | can remove the old breakpoints from the parent and detach | |
589 | or resume debugging it. Otherwise, detach the parent now; | |
590 | we'll want to reuse it's program/address spaces, but we | |
591 | can't set them to the child before removing breakpoints | |
592 | from the parent, otherwise, the breakpoints module could | |
593 | decide to remove breakpoints from the wrong process (since | |
594 | they'd be assigned to the same address space). */ | |
595 | ||
596 | if (has_vforked) | |
597 | { | |
598 | gdb_assert (child_inf->vfork_parent == NULL); | |
599 | gdb_assert (parent_inf->vfork_child == NULL); | |
600 | child_inf->vfork_parent = parent_inf; | |
601 | child_inf->pending_detach = 0; | |
602 | parent_inf->vfork_child = child_inf; | |
603 | parent_inf->pending_detach = detach_fork; | |
604 | parent_inf->waiting_for_vfork_done = 0; | |
605 | } | |
606 | else if (detach_fork) | |
607 | { | |
608 | if (print_inferior_events) | |
609 | { | |
610 | /* Ensure that we have a process ptid. */ | |
611 | ptid_t process_ptid = ptid_t (parent_ptid.pid ()); | |
612 | ||
613 | target_terminal::ours_for_output (); | |
614 | fprintf_filtered (gdb_stdlog, | |
615 | _("[Detaching after fork from " | |
616 | "parent %s]\n"), | |
617 | target_pid_to_str (process_ptid).c_str ()); | |
618 | } | |
8dd06f7a | 619 | |
5b6d1e4f PA |
620 | target_detach (parent_inf, 0); |
621 | parent_inf = NULL; | |
622 | } | |
6f259a23 | 623 | |
5b6d1e4f | 624 | /* Note that the detach above makes PARENT_INF dangling. */ |
d83ad864 | 625 | |
5b6d1e4f PA |
626 | /* Add the child thread to the appropriate lists, and switch |
627 | to this new thread, before cloning the program space, and | |
628 | informing the solib layer about this new process. */ | |
d83ad864 | 629 | |
5b6d1e4f PA |
630 | set_current_inferior (child_inf); |
631 | push_target (target); | |
632 | } | |
d83ad864 | 633 | |
5b6d1e4f | 634 | add_thread_silent (target, child_ptid); |
79639e11 | 635 | inferior_ptid = child_ptid; |
d83ad864 DB |
636 | |
637 | /* If this is a vfork child, then the address-space is shared | |
638 | with the parent. If we detached from the parent, then we can | |
639 | reuse the parent's program/address spaces. */ | |
640 | if (has_vforked || detach_fork) | |
641 | { | |
642 | child_inf->pspace = parent_pspace; | |
643 | child_inf->aspace = child_inf->pspace->aspace; | |
5b6d1e4f PA |
644 | |
645 | exec_on_vfork (); | |
d83ad864 DB |
646 | } |
647 | else | |
648 | { | |
649 | child_inf->aspace = new_address_space (); | |
564b1e3f | 650 | child_inf->pspace = new program_space (child_inf->aspace); |
d83ad864 DB |
651 | child_inf->removable = 1; |
652 | child_inf->symfile_flags = SYMFILE_NO_READ; | |
653 | set_current_program_space (child_inf->pspace); | |
654 | clone_program_space (child_inf->pspace, parent_pspace); | |
655 | ||
656 | /* Let the shared library layer (e.g., solib-svr4) learn | |
657 | about this new process, relocate the cloned exec, pull in | |
658 | shared libraries, and install the solib event breakpoint. | |
659 | If a "cloned-VM" event was propagated better throughout | |
660 | the core, this wouldn't be required. */ | |
661 | solib_create_inferior_hook (0); | |
662 | } | |
663 | } | |
664 | ||
665 | return target_follow_fork (follow_child, detach_fork); | |
666 | } | |
667 | ||
e58b0e63 PA |
668 | /* Tell the target to follow the fork we're stopped at. Returns true |
669 | if the inferior should be resumed; false, if the target for some | |
670 | reason decided it's best not to resume. */ | |
671 | ||
6604731b | 672 | static int |
4ef3f3be | 673 | follow_fork (void) |
c906108c | 674 | { |
ea1dd7bc | 675 | int follow_child = (follow_fork_mode_string == follow_fork_mode_child); |
e58b0e63 PA |
676 | int should_resume = 1; |
677 | struct thread_info *tp; | |
678 | ||
679 | /* Copy user stepping state to the new inferior thread. FIXME: the | |
680 | followed fork child thread should have a copy of most of the | |
4e3990f4 DE |
681 | parent thread structure's run control related fields, not just these. |
682 | Initialized to avoid "may be used uninitialized" warnings from gcc. */ | |
683 | struct breakpoint *step_resume_breakpoint = NULL; | |
186c406b | 684 | struct breakpoint *exception_resume_breakpoint = NULL; |
4e3990f4 DE |
685 | CORE_ADDR step_range_start = 0; |
686 | CORE_ADDR step_range_end = 0; | |
687 | struct frame_id step_frame_id = { 0 }; | |
8980e177 | 688 | struct thread_fsm *thread_fsm = NULL; |
e58b0e63 PA |
689 | |
690 | if (!non_stop) | |
691 | { | |
5b6d1e4f | 692 | process_stratum_target *wait_target; |
e58b0e63 PA |
693 | ptid_t wait_ptid; |
694 | struct target_waitstatus wait_status; | |
695 | ||
696 | /* Get the last target status returned by target_wait(). */ | |
5b6d1e4f | 697 | get_last_target_status (&wait_target, &wait_ptid, &wait_status); |
e58b0e63 PA |
698 | |
699 | /* If not stopped at a fork event, then there's nothing else to | |
700 | do. */ | |
701 | if (wait_status.kind != TARGET_WAITKIND_FORKED | |
702 | && wait_status.kind != TARGET_WAITKIND_VFORKED) | |
703 | return 1; | |
704 | ||
705 | /* Check if we switched over from WAIT_PTID, since the event was | |
706 | reported. */ | |
00431a78 | 707 | if (wait_ptid != minus_one_ptid |
5b6d1e4f PA |
708 | && (current_inferior ()->process_target () != wait_target |
709 | || inferior_ptid != wait_ptid)) | |
e58b0e63 PA |
710 | { |
711 | /* We did. Switch back to WAIT_PTID thread, to tell the | |
712 | target to follow it (in either direction). We'll | |
713 | afterwards refuse to resume, and inform the user what | |
714 | happened. */ | |
5b6d1e4f | 715 | thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid); |
00431a78 | 716 | switch_to_thread (wait_thread); |
e58b0e63 PA |
717 | should_resume = 0; |
718 | } | |
719 | } | |
720 | ||
721 | tp = inferior_thread (); | |
722 | ||
723 | /* If there were any forks/vforks that were caught and are now to be | |
724 | followed, then do so now. */ | |
725 | switch (tp->pending_follow.kind) | |
726 | { | |
727 | case TARGET_WAITKIND_FORKED: | |
728 | case TARGET_WAITKIND_VFORKED: | |
729 | { | |
730 | ptid_t parent, child; | |
731 | ||
732 | /* If the user did a next/step, etc, over a fork call, | |
733 | preserve the stepping state in the fork child. */ | |
734 | if (follow_child && should_resume) | |
735 | { | |
8358c15c JK |
736 | step_resume_breakpoint = clone_momentary_breakpoint |
737 | (tp->control.step_resume_breakpoint); | |
16c381f0 JK |
738 | step_range_start = tp->control.step_range_start; |
739 | step_range_end = tp->control.step_range_end; | |
740 | step_frame_id = tp->control.step_frame_id; | |
186c406b TT |
741 | exception_resume_breakpoint |
742 | = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint); | |
8980e177 | 743 | thread_fsm = tp->thread_fsm; |
e58b0e63 PA |
744 | |
745 | /* For now, delete the parent's sr breakpoint, otherwise, | |
746 | parent/child sr breakpoints are considered duplicates, | |
747 | and the child version will not be installed. Remove | |
748 | this when the breakpoints module becomes aware of | |
749 | inferiors and address spaces. */ | |
750 | delete_step_resume_breakpoint (tp); | |
16c381f0 JK |
751 | tp->control.step_range_start = 0; |
752 | tp->control.step_range_end = 0; | |
753 | tp->control.step_frame_id = null_frame_id; | |
186c406b | 754 | delete_exception_resume_breakpoint (tp); |
8980e177 | 755 | tp->thread_fsm = NULL; |
e58b0e63 PA |
756 | } |
757 | ||
758 | parent = inferior_ptid; | |
759 | child = tp->pending_follow.value.related_pid; | |
760 | ||
5b6d1e4f | 761 | process_stratum_target *parent_targ = tp->inf->process_target (); |
d83ad864 DB |
762 | /* Set up inferior(s) as specified by the caller, and tell the |
763 | target to do whatever is necessary to follow either parent | |
764 | or child. */ | |
765 | if (follow_fork_inferior (follow_child, detach_fork)) | |
e58b0e63 PA |
766 | { |
767 | /* Target refused to follow, or there's some other reason | |
768 | we shouldn't resume. */ | |
769 | should_resume = 0; | |
770 | } | |
771 | else | |
772 | { | |
773 | /* This pending follow fork event is now handled, one way | |
774 | or another. The previous selected thread may be gone | |
775 | from the lists by now, but if it is still around, need | |
776 | to clear the pending follow request. */ | |
5b6d1e4f | 777 | tp = find_thread_ptid (parent_targ, parent); |
e58b0e63 PA |
778 | if (tp) |
779 | tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS; | |
780 | ||
781 | /* This makes sure we don't try to apply the "Switched | |
782 | over from WAIT_PID" logic above. */ | |
783 | nullify_last_target_wait_ptid (); | |
784 | ||
1777feb0 | 785 | /* If we followed the child, switch to it... */ |
e58b0e63 PA |
786 | if (follow_child) |
787 | { | |
5b6d1e4f | 788 | thread_info *child_thr = find_thread_ptid (parent_targ, child); |
00431a78 | 789 | switch_to_thread (child_thr); |
e58b0e63 PA |
790 | |
791 | /* ... and preserve the stepping state, in case the | |
792 | user was stepping over the fork call. */ | |
793 | if (should_resume) | |
794 | { | |
795 | tp = inferior_thread (); | |
8358c15c JK |
796 | tp->control.step_resume_breakpoint |
797 | = step_resume_breakpoint; | |
16c381f0 JK |
798 | tp->control.step_range_start = step_range_start; |
799 | tp->control.step_range_end = step_range_end; | |
800 | tp->control.step_frame_id = step_frame_id; | |
186c406b TT |
801 | tp->control.exception_resume_breakpoint |
802 | = exception_resume_breakpoint; | |
8980e177 | 803 | tp->thread_fsm = thread_fsm; |
e58b0e63 PA |
804 | } |
805 | else | |
806 | { | |
807 | /* If we get here, it was because we're trying to | |
808 | resume from a fork catchpoint, but, the user | |
809 | has switched threads away from the thread that | |
810 | forked. In that case, the resume command | |
811 | issued is most likely not applicable to the | |
812 | child, so just warn, and refuse to resume. */ | |
3e43a32a | 813 | warning (_("Not resuming: switched threads " |
fd7dcb94 | 814 | "before following fork child.")); |
e58b0e63 PA |
815 | } |
816 | ||
817 | /* Reset breakpoints in the child as appropriate. */ | |
818 | follow_inferior_reset_breakpoints (); | |
819 | } | |
e58b0e63 PA |
820 | } |
821 | } | |
822 | break; | |
823 | case TARGET_WAITKIND_SPURIOUS: | |
824 | /* Nothing to follow. */ | |
825 | break; | |
826 | default: | |
827 | internal_error (__FILE__, __LINE__, | |
828 | "Unexpected pending_follow.kind %d\n", | |
829 | tp->pending_follow.kind); | |
830 | break; | |
831 | } | |
c906108c | 832 | |
e58b0e63 | 833 | return should_resume; |
c906108c SS |
834 | } |
835 | ||
d83ad864 | 836 | static void |
6604731b | 837 | follow_inferior_reset_breakpoints (void) |
c906108c | 838 | { |
4e1c45ea PA |
839 | struct thread_info *tp = inferior_thread (); |
840 | ||
6604731b DJ |
841 | /* Was there a step_resume breakpoint? (There was if the user |
842 | did a "next" at the fork() call.) If so, explicitly reset its | |
a1aa2221 LM |
843 | thread number. Cloned step_resume breakpoints are disabled on |
844 | creation, so enable it here now that it is associated with the | |
845 | correct thread. | |
6604731b DJ |
846 | |
847 | step_resumes are a form of bp that are made to be per-thread. | |
848 | Since we created the step_resume bp when the parent process | |
849 | was being debugged, and now are switching to the child process, | |
850 | from the breakpoint package's viewpoint, that's a switch of | |
851 | "threads". We must update the bp's notion of which thread | |
852 | it is for, or it'll be ignored when it triggers. */ | |
853 | ||
8358c15c | 854 | if (tp->control.step_resume_breakpoint) |
a1aa2221 LM |
855 | { |
856 | breakpoint_re_set_thread (tp->control.step_resume_breakpoint); | |
857 | tp->control.step_resume_breakpoint->loc->enabled = 1; | |
858 | } | |
6604731b | 859 | |
a1aa2221 | 860 | /* Treat exception_resume breakpoints like step_resume breakpoints. */ |
186c406b | 861 | if (tp->control.exception_resume_breakpoint) |
a1aa2221 LM |
862 | { |
863 | breakpoint_re_set_thread (tp->control.exception_resume_breakpoint); | |
864 | tp->control.exception_resume_breakpoint->loc->enabled = 1; | |
865 | } | |
186c406b | 866 | |
6604731b DJ |
867 | /* Reinsert all breakpoints in the child. The user may have set |
868 | breakpoints after catching the fork, in which case those | |
869 | were never set in the child, but only in the parent. This makes | |
870 | sure the inserted breakpoints match the breakpoint list. */ | |
871 | ||
872 | breakpoint_re_set (); | |
873 | insert_breakpoints (); | |
c906108c | 874 | } |
c906108c | 875 | |
6c95b8df PA |
876 | /* The child has exited or execed: resume threads of the parent the |
877 | user wanted to be executing. */ | |
878 | ||
879 | static int | |
880 | proceed_after_vfork_done (struct thread_info *thread, | |
881 | void *arg) | |
882 | { | |
883 | int pid = * (int *) arg; | |
884 | ||
00431a78 PA |
885 | if (thread->ptid.pid () == pid |
886 | && thread->state == THREAD_RUNNING | |
887 | && !thread->executing | |
6c95b8df | 888 | && !thread->stop_requested |
a493e3e2 | 889 | && thread->suspend.stop_signal == GDB_SIGNAL_0) |
6c95b8df PA |
890 | { |
891 | if (debug_infrun) | |
892 | fprintf_unfiltered (gdb_stdlog, | |
893 | "infrun: resuming vfork parent thread %s\n", | |
a068643d | 894 | target_pid_to_str (thread->ptid).c_str ()); |
6c95b8df | 895 | |
00431a78 | 896 | switch_to_thread (thread); |
70509625 | 897 | clear_proceed_status (0); |
64ce06e4 | 898 | proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT); |
6c95b8df PA |
899 | } |
900 | ||
901 | return 0; | |
902 | } | |
903 | ||
5ed8105e PA |
904 | /* Save/restore inferior_ptid, current program space and current |
905 | inferior. Only use this if the current context points at an exited | |
906 | inferior (and therefore there's no current thread to save). */ | |
907 | class scoped_restore_exited_inferior | |
908 | { | |
909 | public: | |
910 | scoped_restore_exited_inferior () | |
911 | : m_saved_ptid (&inferior_ptid) | |
912 | {} | |
913 | ||
914 | private: | |
915 | scoped_restore_tmpl<ptid_t> m_saved_ptid; | |
916 | scoped_restore_current_program_space m_pspace; | |
917 | scoped_restore_current_inferior m_inferior; | |
918 | }; | |
919 | ||
6c95b8df PA |
920 | /* Called whenever we notice an exec or exit event, to handle |
921 | detaching or resuming a vfork parent. */ | |
922 | ||
923 | static void | |
924 | handle_vfork_child_exec_or_exit (int exec) | |
925 | { | |
926 | struct inferior *inf = current_inferior (); | |
927 | ||
928 | if (inf->vfork_parent) | |
929 | { | |
930 | int resume_parent = -1; | |
931 | ||
932 | /* This exec or exit marks the end of the shared memory region | |
b73715df TV |
933 | between the parent and the child. Break the bonds. */ |
934 | inferior *vfork_parent = inf->vfork_parent; | |
935 | inf->vfork_parent->vfork_child = NULL; | |
936 | inf->vfork_parent = NULL; | |
6c95b8df | 937 | |
b73715df TV |
938 | /* If the user wanted to detach from the parent, now is the |
939 | time. */ | |
940 | if (vfork_parent->pending_detach) | |
6c95b8df PA |
941 | { |
942 | struct thread_info *tp; | |
6c95b8df PA |
943 | struct program_space *pspace; |
944 | struct address_space *aspace; | |
945 | ||
1777feb0 | 946 | /* follow-fork child, detach-on-fork on. */ |
6c95b8df | 947 | |
b73715df | 948 | vfork_parent->pending_detach = 0; |
68c9da30 | 949 | |
5ed8105e PA |
950 | gdb::optional<scoped_restore_exited_inferior> |
951 | maybe_restore_inferior; | |
952 | gdb::optional<scoped_restore_current_pspace_and_thread> | |
953 | maybe_restore_thread; | |
954 | ||
955 | /* If we're handling a child exit, then inferior_ptid points | |
956 | at the inferior's pid, not to a thread. */ | |
f50f4e56 | 957 | if (!exec) |
5ed8105e | 958 | maybe_restore_inferior.emplace (); |
f50f4e56 | 959 | else |
5ed8105e | 960 | maybe_restore_thread.emplace (); |
6c95b8df PA |
961 | |
962 | /* We're letting loose of the parent. */ | |
b73715df | 963 | tp = any_live_thread_of_inferior (vfork_parent); |
00431a78 | 964 | switch_to_thread (tp); |
6c95b8df PA |
965 | |
966 | /* We're about to detach from the parent, which implicitly | |
967 | removes breakpoints from its address space. There's a | |
968 | catch here: we want to reuse the spaces for the child, | |
969 | but, parent/child are still sharing the pspace at this | |
970 | point, although the exec in reality makes the kernel give | |
971 | the child a fresh set of new pages. The problem here is | |
972 | that the breakpoints module being unaware of this, would | |
973 | likely chose the child process to write to the parent | |
974 | address space. Swapping the child temporarily away from | |
975 | the spaces has the desired effect. Yes, this is "sort | |
976 | of" a hack. */ | |
977 | ||
978 | pspace = inf->pspace; | |
979 | aspace = inf->aspace; | |
980 | inf->aspace = NULL; | |
981 | inf->pspace = NULL; | |
982 | ||
f67c0c91 | 983 | if (print_inferior_events) |
6c95b8df | 984 | { |
a068643d | 985 | std::string pidstr |
b73715df | 986 | = target_pid_to_str (ptid_t (vfork_parent->pid)); |
f67c0c91 | 987 | |
223ffa71 | 988 | target_terminal::ours_for_output (); |
6c95b8df PA |
989 | |
990 | if (exec) | |
6f259a23 DB |
991 | { |
992 | fprintf_filtered (gdb_stdlog, | |
f67c0c91 | 993 | _("[Detaching vfork parent %s " |
a068643d | 994 | "after child exec]\n"), pidstr.c_str ()); |
6f259a23 | 995 | } |
6c95b8df | 996 | else |
6f259a23 DB |
997 | { |
998 | fprintf_filtered (gdb_stdlog, | |
f67c0c91 | 999 | _("[Detaching vfork parent %s " |
a068643d | 1000 | "after child exit]\n"), pidstr.c_str ()); |
6f259a23 | 1001 | } |
6c95b8df PA |
1002 | } |
1003 | ||
b73715df | 1004 | target_detach (vfork_parent, 0); |
6c95b8df PA |
1005 | |
1006 | /* Put it back. */ | |
1007 | inf->pspace = pspace; | |
1008 | inf->aspace = aspace; | |
6c95b8df PA |
1009 | } |
1010 | else if (exec) | |
1011 | { | |
1012 | /* We're staying attached to the parent, so, really give the | |
1013 | child a new address space. */ | |
564b1e3f | 1014 | inf->pspace = new program_space (maybe_new_address_space ()); |
6c95b8df PA |
1015 | inf->aspace = inf->pspace->aspace; |
1016 | inf->removable = 1; | |
1017 | set_current_program_space (inf->pspace); | |
1018 | ||
b73715df | 1019 | resume_parent = vfork_parent->pid; |
6c95b8df PA |
1020 | } |
1021 | else | |
1022 | { | |
6c95b8df PA |
1023 | /* If this is a vfork child exiting, then the pspace and |
1024 | aspaces were shared with the parent. Since we're | |
1025 | reporting the process exit, we'll be mourning all that is | |
1026 | found in the address space, and switching to null_ptid, | |
1027 | preparing to start a new inferior. But, since we don't | |
1028 | want to clobber the parent's address/program spaces, we | |
1029 | go ahead and create a new one for this exiting | |
1030 | inferior. */ | |
1031 | ||
5ed8105e PA |
1032 | /* Switch to null_ptid while running clone_program_space, so |
1033 | that clone_program_space doesn't want to read the | |
1034 | selected frame of a dead process. */ | |
1035 | scoped_restore restore_ptid | |
1036 | = make_scoped_restore (&inferior_ptid, null_ptid); | |
6c95b8df | 1037 | |
53af73bf PA |
1038 | inf->pspace = new program_space (maybe_new_address_space ()); |
1039 | inf->aspace = inf->pspace->aspace; | |
1040 | set_current_program_space (inf->pspace); | |
6c95b8df | 1041 | inf->removable = 1; |
7dcd53a0 | 1042 | inf->symfile_flags = SYMFILE_NO_READ; |
53af73bf | 1043 | clone_program_space (inf->pspace, vfork_parent->pspace); |
6c95b8df | 1044 | |
b73715df | 1045 | resume_parent = vfork_parent->pid; |
6c95b8df PA |
1046 | } |
1047 | ||
6c95b8df PA |
1048 | gdb_assert (current_program_space == inf->pspace); |
1049 | ||
1050 | if (non_stop && resume_parent != -1) | |
1051 | { | |
1052 | /* If the user wanted the parent to be running, let it go | |
1053 | free now. */ | |
5ed8105e | 1054 | scoped_restore_current_thread restore_thread; |
6c95b8df PA |
1055 | |
1056 | if (debug_infrun) | |
3e43a32a MS |
1057 | fprintf_unfiltered (gdb_stdlog, |
1058 | "infrun: resuming vfork parent process %d\n", | |
6c95b8df PA |
1059 | resume_parent); |
1060 | ||
1061 | iterate_over_threads (proceed_after_vfork_done, &resume_parent); | |
6c95b8df PA |
1062 | } |
1063 | } | |
1064 | } | |
1065 | ||
eb6c553b | 1066 | /* Enum strings for "set|show follow-exec-mode". */ |
6c95b8df PA |
1067 | |
1068 | static const char follow_exec_mode_new[] = "new"; | |
1069 | static const char follow_exec_mode_same[] = "same"; | |
40478521 | 1070 | static const char *const follow_exec_mode_names[] = |
6c95b8df PA |
1071 | { |
1072 | follow_exec_mode_new, | |
1073 | follow_exec_mode_same, | |
1074 | NULL, | |
1075 | }; | |
1076 | ||
1077 | static const char *follow_exec_mode_string = follow_exec_mode_same; | |
1078 | static void | |
1079 | show_follow_exec_mode_string (struct ui_file *file, int from_tty, | |
1080 | struct cmd_list_element *c, const char *value) | |
1081 | { | |
1082 | fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value); | |
1083 | } | |
1084 | ||
ecf45d2c | 1085 | /* EXEC_FILE_TARGET is assumed to be non-NULL. */ |
1adeb98a | 1086 | |
c906108c | 1087 | static void |
4ca51187 | 1088 | follow_exec (ptid_t ptid, const char *exec_file_target) |
c906108c | 1089 | { |
6c95b8df | 1090 | struct inferior *inf = current_inferior (); |
e99b03dc | 1091 | int pid = ptid.pid (); |
94585166 | 1092 | ptid_t process_ptid; |
7a292a7a | 1093 | |
65d2b333 PW |
1094 | /* Switch terminal for any messages produced e.g. by |
1095 | breakpoint_re_set. */ | |
1096 | target_terminal::ours_for_output (); | |
1097 | ||
c906108c SS |
1098 | /* This is an exec event that we actually wish to pay attention to. |
1099 | Refresh our symbol table to the newly exec'd program, remove any | |
1100 | momentary bp's, etc. | |
1101 | ||
1102 | If there are breakpoints, they aren't really inserted now, | |
1103 | since the exec() transformed our inferior into a fresh set | |
1104 | of instructions. | |
1105 | ||
1106 | We want to preserve symbolic breakpoints on the list, since | |
1107 | we have hopes that they can be reset after the new a.out's | |
1108 | symbol table is read. | |
1109 | ||
1110 | However, any "raw" breakpoints must be removed from the list | |
1111 | (e.g., the solib bp's), since their address is probably invalid | |
1112 | now. | |
1113 | ||
1114 | And, we DON'T want to call delete_breakpoints() here, since | |
1115 | that may write the bp's "shadow contents" (the instruction | |
85102364 | 1116 | value that was overwritten with a TRAP instruction). Since |
1777feb0 | 1117 | we now have a new a.out, those shadow contents aren't valid. */ |
6c95b8df PA |
1118 | |
1119 | mark_breakpoints_out (); | |
1120 | ||
95e50b27 PA |
1121 | /* The target reports the exec event to the main thread, even if |
1122 | some other thread does the exec, and even if the main thread was | |
1123 | stopped or already gone. We may still have non-leader threads of | |
1124 | the process on our list. E.g., on targets that don't have thread | |
1125 | exit events (like remote); or on native Linux in non-stop mode if | |
1126 | there were only two threads in the inferior and the non-leader | |
1127 | one is the one that execs (and nothing forces an update of the | |
1128 | thread list up to here). When debugging remotely, it's best to | |
1129 | avoid extra traffic, when possible, so avoid syncing the thread | |
1130 | list with the target, and instead go ahead and delete all threads | |
1131 | of the process but one that reported the event. Note this must | |
1132 | be done before calling update_breakpoints_after_exec, as | |
1133 | otherwise clearing the threads' resources would reference stale | |
1134 | thread breakpoints -- it may have been one of these threads that | |
1135 | stepped across the exec. We could just clear their stepping | |
1136 | states, but as long as we're iterating, might as well delete | |
1137 | them. Deleting them now rather than at the next user-visible | |
1138 | stop provides a nicer sequence of events for user and MI | |
1139 | notifications. */ | |
08036331 | 1140 | for (thread_info *th : all_threads_safe ()) |
d7e15655 | 1141 | if (th->ptid.pid () == pid && th->ptid != ptid) |
00431a78 | 1142 | delete_thread (th); |
95e50b27 PA |
1143 | |
1144 | /* We also need to clear any left over stale state for the | |
1145 | leader/event thread. E.g., if there was any step-resume | |
1146 | breakpoint or similar, it's gone now. We cannot truly | |
1147 | step-to-next statement through an exec(). */ | |
08036331 | 1148 | thread_info *th = inferior_thread (); |
8358c15c | 1149 | th->control.step_resume_breakpoint = NULL; |
186c406b | 1150 | th->control.exception_resume_breakpoint = NULL; |
34b7e8a6 | 1151 | th->control.single_step_breakpoints = NULL; |
16c381f0 JK |
1152 | th->control.step_range_start = 0; |
1153 | th->control.step_range_end = 0; | |
c906108c | 1154 | |
95e50b27 PA |
1155 | /* The user may have had the main thread held stopped in the |
1156 | previous image (e.g., schedlock on, or non-stop). Release | |
1157 | it now. */ | |
a75724bc PA |
1158 | th->stop_requested = 0; |
1159 | ||
95e50b27 PA |
1160 | update_breakpoints_after_exec (); |
1161 | ||
1777feb0 | 1162 | /* What is this a.out's name? */ |
f2907e49 | 1163 | process_ptid = ptid_t (pid); |
6c95b8df | 1164 | printf_unfiltered (_("%s is executing new program: %s\n"), |
a068643d | 1165 | target_pid_to_str (process_ptid).c_str (), |
ecf45d2c | 1166 | exec_file_target); |
c906108c SS |
1167 | |
1168 | /* We've followed the inferior through an exec. Therefore, the | |
1777feb0 | 1169 | inferior has essentially been killed & reborn. */ |
7a292a7a | 1170 | |
6ca15a4b | 1171 | breakpoint_init_inferior (inf_execd); |
e85a822c | 1172 | |
797bc1cb TT |
1173 | gdb::unique_xmalloc_ptr<char> exec_file_host |
1174 | = exec_file_find (exec_file_target, NULL); | |
ff862be4 | 1175 | |
ecf45d2c SL |
1176 | /* If we were unable to map the executable target pathname onto a host |
1177 | pathname, tell the user that. Otherwise GDB's subsequent behavior | |
1178 | is confusing. Maybe it would even be better to stop at this point | |
1179 | so that the user can specify a file manually before continuing. */ | |
1180 | if (exec_file_host == NULL) | |
1181 | warning (_("Could not load symbols for executable %s.\n" | |
1182 | "Do you need \"set sysroot\"?"), | |
1183 | exec_file_target); | |
c906108c | 1184 | |
cce9b6bf PA |
1185 | /* Reset the shared library package. This ensures that we get a |
1186 | shlib event when the child reaches "_start", at which point the | |
1187 | dld will have had a chance to initialize the child. */ | |
1188 | /* Also, loading a symbol file below may trigger symbol lookups, and | |
1189 | we don't want those to be satisfied by the libraries of the | |
1190 | previous incarnation of this process. */ | |
1191 | no_shared_libraries (NULL, 0); | |
1192 | ||
6c95b8df PA |
1193 | if (follow_exec_mode_string == follow_exec_mode_new) |
1194 | { | |
6c95b8df PA |
1195 | /* The user wants to keep the old inferior and program spaces |
1196 | around. Create a new fresh one, and switch to it. */ | |
1197 | ||
35ed81d4 SM |
1198 | /* Do exit processing for the original inferior before setting the new |
1199 | inferior's pid. Having two inferiors with the same pid would confuse | |
1200 | find_inferior_p(t)id. Transfer the terminal state and info from the | |
1201 | old to the new inferior. */ | |
1202 | inf = add_inferior_with_spaces (); | |
1203 | swap_terminal_info (inf, current_inferior ()); | |
057302ce | 1204 | exit_inferior_silent (current_inferior ()); |
17d8546e | 1205 | |
94585166 | 1206 | inf->pid = pid; |
ecf45d2c | 1207 | target_follow_exec (inf, exec_file_target); |
6c95b8df | 1208 | |
5b6d1e4f PA |
1209 | inferior *org_inferior = current_inferior (); |
1210 | switch_to_inferior_no_thread (inf); | |
1211 | push_target (org_inferior->process_target ()); | |
1212 | thread_info *thr = add_thread (inf->process_target (), ptid); | |
1213 | switch_to_thread (thr); | |
6c95b8df | 1214 | } |
9107fc8d PA |
1215 | else |
1216 | { | |
1217 | /* The old description may no longer be fit for the new image. | |
1218 | E.g, a 64-bit process exec'ed a 32-bit process. Clear the | |
1219 | old description; we'll read a new one below. No need to do | |
1220 | this on "follow-exec-mode new", as the old inferior stays | |
1221 | around (its description is later cleared/refetched on | |
1222 | restart). */ | |
1223 | target_clear_description (); | |
1224 | } | |
6c95b8df PA |
1225 | |
1226 | gdb_assert (current_program_space == inf->pspace); | |
1227 | ||
ecf45d2c SL |
1228 | /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used |
1229 | because the proper displacement for a PIE (Position Independent | |
1230 | Executable) main symbol file will only be computed by | |
1231 | solib_create_inferior_hook below. breakpoint_re_set would fail | |
1232 | to insert the breakpoints with the zero displacement. */ | |
797bc1cb | 1233 | try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET); |
c906108c | 1234 | |
9107fc8d PA |
1235 | /* If the target can specify a description, read it. Must do this |
1236 | after flipping to the new executable (because the target supplied | |
1237 | description must be compatible with the executable's | |
1238 | architecture, and the old executable may e.g., be 32-bit, while | |
1239 | the new one 64-bit), and before anything involving memory or | |
1240 | registers. */ | |
1241 | target_find_description (); | |
1242 | ||
268a4a75 | 1243 | solib_create_inferior_hook (0); |
c906108c | 1244 | |
4efc6507 DE |
1245 | jit_inferior_created_hook (); |
1246 | ||
c1e56572 JK |
1247 | breakpoint_re_set (); |
1248 | ||
c906108c SS |
1249 | /* Reinsert all breakpoints. (Those which were symbolic have |
1250 | been reset to the proper address in the new a.out, thanks | |
1777feb0 | 1251 | to symbol_file_command...). */ |
c906108c SS |
1252 | insert_breakpoints (); |
1253 | ||
1254 | /* The next resume of this inferior should bring it to the shlib | |
1255 | startup breakpoints. (If the user had also set bp's on | |
1256 | "main" from the old (parent) process, then they'll auto- | |
1777feb0 | 1257 | matically get reset there in the new process.). */ |
c906108c SS |
1258 | } |
1259 | ||
c2829269 PA |
1260 | /* The queue of threads that need to do a step-over operation to get |
1261 | past e.g., a breakpoint. What technique is used to step over the | |
1262 | breakpoint/watchpoint does not matter -- all threads end up in the | |
1263 | same queue, to maintain rough temporal order of execution, in order | |
1264 | to avoid starvation, otherwise, we could e.g., find ourselves | |
1265 | constantly stepping the same couple threads past their breakpoints | |
1266 | over and over, if the single-step finish fast enough. */ | |
1267 | struct thread_info *step_over_queue_head; | |
1268 | ||
6c4cfb24 PA |
1269 | /* Bit flags indicating what the thread needs to step over. */ |
1270 | ||
8d297bbf | 1271 | enum step_over_what_flag |
6c4cfb24 PA |
1272 | { |
1273 | /* Step over a breakpoint. */ | |
1274 | STEP_OVER_BREAKPOINT = 1, | |
1275 | ||
1276 | /* Step past a non-continuable watchpoint, in order to let the | |
1277 | instruction execute so we can evaluate the watchpoint | |
1278 | expression. */ | |
1279 | STEP_OVER_WATCHPOINT = 2 | |
1280 | }; | |
8d297bbf | 1281 | DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what); |
6c4cfb24 | 1282 | |
963f9c80 | 1283 | /* Info about an instruction that is being stepped over. */ |
31e77af2 PA |
1284 | |
1285 | struct step_over_info | |
1286 | { | |
963f9c80 PA |
1287 | /* If we're stepping past a breakpoint, this is the address space |
1288 | and address of the instruction the breakpoint is set at. We'll | |
1289 | skip inserting all breakpoints here. Valid iff ASPACE is | |
1290 | non-NULL. */ | |
8b86c959 | 1291 | const address_space *aspace; |
31e77af2 | 1292 | CORE_ADDR address; |
963f9c80 PA |
1293 | |
1294 | /* The instruction being stepped over triggers a nonsteppable | |
1295 | watchpoint. If true, we'll skip inserting watchpoints. */ | |
1296 | int nonsteppable_watchpoint_p; | |
21edc42f YQ |
1297 | |
1298 | /* The thread's global number. */ | |
1299 | int thread; | |
31e77af2 PA |
1300 | }; |
1301 | ||
1302 | /* The step-over info of the location that is being stepped over. | |
1303 | ||
1304 | Note that with async/breakpoint always-inserted mode, a user might | |
1305 | set a new breakpoint/watchpoint/etc. exactly while a breakpoint is | |
1306 | being stepped over. As setting a new breakpoint inserts all | |
1307 | breakpoints, we need to make sure the breakpoint being stepped over | |
1308 | isn't inserted then. We do that by only clearing the step-over | |
1309 | info when the step-over is actually finished (or aborted). | |
1310 | ||
1311 | Presently GDB can only step over one breakpoint at any given time. | |
1312 | Given threads that can't run code in the same address space as the | |
1313 | breakpoint's can't really miss the breakpoint, GDB could be taught | |
1314 | to step-over at most one breakpoint per address space (so this info | |
1315 | could move to the address space object if/when GDB is extended). | |
1316 | The set of breakpoints being stepped over will normally be much | |
1317 | smaller than the set of all breakpoints, so a flag in the | |
1318 | breakpoint location structure would be wasteful. A separate list | |
1319 | also saves complexity and run-time, as otherwise we'd have to go | |
1320 | through all breakpoint locations clearing their flag whenever we | |
1321 | start a new sequence. Similar considerations weigh against storing | |
1322 | this info in the thread object. Plus, not all step overs actually | |
1323 | have breakpoint locations -- e.g., stepping past a single-step | |
1324 | breakpoint, or stepping to complete a non-continuable | |
1325 | watchpoint. */ | |
1326 | static struct step_over_info step_over_info; | |
1327 | ||
1328 | /* Record the address of the breakpoint/instruction we're currently | |
ce0db137 DE |
1329 | stepping over. |
1330 | N.B. We record the aspace and address now, instead of say just the thread, | |
1331 | because when we need the info later the thread may be running. */ | |
31e77af2 PA |
1332 | |
1333 | static void | |
8b86c959 | 1334 | set_step_over_info (const address_space *aspace, CORE_ADDR address, |
21edc42f YQ |
1335 | int nonsteppable_watchpoint_p, |
1336 | int thread) | |
31e77af2 PA |
1337 | { |
1338 | step_over_info.aspace = aspace; | |
1339 | step_over_info.address = address; | |
963f9c80 | 1340 | step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p; |
21edc42f | 1341 | step_over_info.thread = thread; |
31e77af2 PA |
1342 | } |
1343 | ||
1344 | /* Called when we're not longer stepping over a breakpoint / an | |
1345 | instruction, so all breakpoints are free to be (re)inserted. */ | |
1346 | ||
1347 | static void | |
1348 | clear_step_over_info (void) | |
1349 | { | |
372316f1 PA |
1350 | if (debug_infrun) |
1351 | fprintf_unfiltered (gdb_stdlog, | |
1352 | "infrun: clear_step_over_info\n"); | |
31e77af2 PA |
1353 | step_over_info.aspace = NULL; |
1354 | step_over_info.address = 0; | |
963f9c80 | 1355 | step_over_info.nonsteppable_watchpoint_p = 0; |
21edc42f | 1356 | step_over_info.thread = -1; |
31e77af2 PA |
1357 | } |
1358 | ||
7f89fd65 | 1359 | /* See infrun.h. */ |
31e77af2 PA |
1360 | |
1361 | int | |
1362 | stepping_past_instruction_at (struct address_space *aspace, | |
1363 | CORE_ADDR address) | |
1364 | { | |
1365 | return (step_over_info.aspace != NULL | |
1366 | && breakpoint_address_match (aspace, address, | |
1367 | step_over_info.aspace, | |
1368 | step_over_info.address)); | |
1369 | } | |
1370 | ||
963f9c80 PA |
1371 | /* See infrun.h. */ |
1372 | ||
21edc42f YQ |
1373 | int |
1374 | thread_is_stepping_over_breakpoint (int thread) | |
1375 | { | |
1376 | return (step_over_info.thread != -1 | |
1377 | && thread == step_over_info.thread); | |
1378 | } | |
1379 | ||
1380 | /* See infrun.h. */ | |
1381 | ||
963f9c80 PA |
1382 | int |
1383 | stepping_past_nonsteppable_watchpoint (void) | |
1384 | { | |
1385 | return step_over_info.nonsteppable_watchpoint_p; | |
1386 | } | |
1387 | ||
6cc83d2a PA |
1388 | /* Returns true if step-over info is valid. */ |
1389 | ||
1390 | static int | |
1391 | step_over_info_valid_p (void) | |
1392 | { | |
963f9c80 PA |
1393 | return (step_over_info.aspace != NULL |
1394 | || stepping_past_nonsteppable_watchpoint ()); | |
6cc83d2a PA |
1395 | } |
1396 | ||
c906108c | 1397 | \f |
237fc4c9 PA |
1398 | /* Displaced stepping. */ |
1399 | ||
1400 | /* In non-stop debugging mode, we must take special care to manage | |
1401 | breakpoints properly; in particular, the traditional strategy for | |
1402 | stepping a thread past a breakpoint it has hit is unsuitable. | |
1403 | 'Displaced stepping' is a tactic for stepping one thread past a | |
1404 | breakpoint it has hit while ensuring that other threads running | |
1405 | concurrently will hit the breakpoint as they should. | |
1406 | ||
1407 | The traditional way to step a thread T off a breakpoint in a | |
1408 | multi-threaded program in all-stop mode is as follows: | |
1409 | ||
1410 | a0) Initially, all threads are stopped, and breakpoints are not | |
1411 | inserted. | |
1412 | a1) We single-step T, leaving breakpoints uninserted. | |
1413 | a2) We insert breakpoints, and resume all threads. | |
1414 | ||
1415 | In non-stop debugging, however, this strategy is unsuitable: we | |
1416 | don't want to have to stop all threads in the system in order to | |
1417 | continue or step T past a breakpoint. Instead, we use displaced | |
1418 | stepping: | |
1419 | ||
1420 | n0) Initially, T is stopped, other threads are running, and | |
1421 | breakpoints are inserted. | |
1422 | n1) We copy the instruction "under" the breakpoint to a separate | |
1423 | location, outside the main code stream, making any adjustments | |
1424 | to the instruction, register, and memory state as directed by | |
1425 | T's architecture. | |
1426 | n2) We single-step T over the instruction at its new location. | |
1427 | n3) We adjust the resulting register and memory state as directed | |
1428 | by T's architecture. This includes resetting T's PC to point | |
1429 | back into the main instruction stream. | |
1430 | n4) We resume T. | |
1431 | ||
1432 | This approach depends on the following gdbarch methods: | |
1433 | ||
1434 | - gdbarch_max_insn_length and gdbarch_displaced_step_location | |
1435 | indicate where to copy the instruction, and how much space must | |
1436 | be reserved there. We use these in step n1. | |
1437 | ||
1438 | - gdbarch_displaced_step_copy_insn copies a instruction to a new | |
1439 | address, and makes any necessary adjustments to the instruction, | |
1440 | register contents, and memory. We use this in step n1. | |
1441 | ||
1442 | - gdbarch_displaced_step_fixup adjusts registers and memory after | |
85102364 | 1443 | we have successfully single-stepped the instruction, to yield the |
237fc4c9 PA |
1444 | same effect the instruction would have had if we had executed it |
1445 | at its original address. We use this in step n3. | |
1446 | ||
237fc4c9 PA |
1447 | The gdbarch_displaced_step_copy_insn and |
1448 | gdbarch_displaced_step_fixup functions must be written so that | |
1449 | copying an instruction with gdbarch_displaced_step_copy_insn, | |
1450 | single-stepping across the copied instruction, and then applying | |
1451 | gdbarch_displaced_insn_fixup should have the same effects on the | |
1452 | thread's memory and registers as stepping the instruction in place | |
1453 | would have. Exactly which responsibilities fall to the copy and | |
1454 | which fall to the fixup is up to the author of those functions. | |
1455 | ||
1456 | See the comments in gdbarch.sh for details. | |
1457 | ||
1458 | Note that displaced stepping and software single-step cannot | |
1459 | currently be used in combination, although with some care I think | |
1460 | they could be made to. Software single-step works by placing | |
1461 | breakpoints on all possible subsequent instructions; if the | |
1462 | displaced instruction is a PC-relative jump, those breakpoints | |
1463 | could fall in very strange places --- on pages that aren't | |
1464 | executable, or at addresses that are not proper instruction | |
1465 | boundaries. (We do generally let other threads run while we wait | |
1466 | to hit the software single-step breakpoint, and they might | |
1467 | encounter such a corrupted instruction.) One way to work around | |
1468 | this would be to have gdbarch_displaced_step_copy_insn fully | |
1469 | simulate the effect of PC-relative instructions (and return NULL) | |
1470 | on architectures that use software single-stepping. | |
1471 | ||
1472 | In non-stop mode, we can have independent and simultaneous step | |
1473 | requests, so more than one thread may need to simultaneously step | |
1474 | over a breakpoint. The current implementation assumes there is | |
1475 | only one scratch space per process. In this case, we have to | |
1476 | serialize access to the scratch space. If thread A wants to step | |
1477 | over a breakpoint, but we are currently waiting for some other | |
1478 | thread to complete a displaced step, we leave thread A stopped and | |
1479 | place it in the displaced_step_request_queue. Whenever a displaced | |
1480 | step finishes, we pick the next thread in the queue and start a new | |
1481 | displaced step operation on it. See displaced_step_prepare and | |
1482 | displaced_step_fixup for details. */ | |
1483 | ||
cfba9872 SM |
1484 | /* Default destructor for displaced_step_closure. */ |
1485 | ||
1486 | displaced_step_closure::~displaced_step_closure () = default; | |
1487 | ||
fc1cf338 PA |
1488 | /* Get the displaced stepping state of process PID. */ |
1489 | ||
39a36629 | 1490 | static displaced_step_inferior_state * |
00431a78 | 1491 | get_displaced_stepping_state (inferior *inf) |
fc1cf338 | 1492 | { |
d20172fc | 1493 | return &inf->displaced_step_state; |
fc1cf338 PA |
1494 | } |
1495 | ||
372316f1 PA |
1496 | /* Returns true if any inferior has a thread doing a displaced |
1497 | step. */ | |
1498 | ||
39a36629 SM |
1499 | static bool |
1500 | displaced_step_in_progress_any_inferior () | |
372316f1 | 1501 | { |
d20172fc | 1502 | for (inferior *i : all_inferiors ()) |
39a36629 | 1503 | { |
d20172fc | 1504 | if (i->displaced_step_state.step_thread != nullptr) |
39a36629 SM |
1505 | return true; |
1506 | } | |
372316f1 | 1507 | |
39a36629 | 1508 | return false; |
372316f1 PA |
1509 | } |
1510 | ||
c0987663 YQ |
1511 | /* Return true if thread represented by PTID is doing a displaced |
1512 | step. */ | |
1513 | ||
1514 | static int | |
00431a78 | 1515 | displaced_step_in_progress_thread (thread_info *thread) |
c0987663 | 1516 | { |
00431a78 | 1517 | gdb_assert (thread != NULL); |
c0987663 | 1518 | |
d20172fc | 1519 | return get_displaced_stepping_state (thread->inf)->step_thread == thread; |
c0987663 YQ |
1520 | } |
1521 | ||
8f572e5c PA |
1522 | /* Return true if process PID has a thread doing a displaced step. */ |
1523 | ||
1524 | static int | |
00431a78 | 1525 | displaced_step_in_progress (inferior *inf) |
8f572e5c | 1526 | { |
d20172fc | 1527 | return get_displaced_stepping_state (inf)->step_thread != nullptr; |
fc1cf338 PA |
1528 | } |
1529 | ||
a42244db YQ |
1530 | /* If inferior is in displaced stepping, and ADDR equals to starting address |
1531 | of copy area, return corresponding displaced_step_closure. Otherwise, | |
1532 | return NULL. */ | |
1533 | ||
1534 | struct displaced_step_closure* | |
1535 | get_displaced_step_closure_by_addr (CORE_ADDR addr) | |
1536 | { | |
d20172fc | 1537 | displaced_step_inferior_state *displaced |
00431a78 | 1538 | = get_displaced_stepping_state (current_inferior ()); |
a42244db YQ |
1539 | |
1540 | /* If checking the mode of displaced instruction in copy area. */ | |
d20172fc | 1541 | if (displaced->step_thread != nullptr |
00431a78 | 1542 | && displaced->step_copy == addr) |
a42244db YQ |
1543 | return displaced->step_closure; |
1544 | ||
1545 | return NULL; | |
1546 | } | |
1547 | ||
fc1cf338 PA |
1548 | static void |
1549 | infrun_inferior_exit (struct inferior *inf) | |
1550 | { | |
d20172fc | 1551 | inf->displaced_step_state.reset (); |
fc1cf338 | 1552 | } |
237fc4c9 | 1553 | |
fff08868 HZ |
1554 | /* If ON, and the architecture supports it, GDB will use displaced |
1555 | stepping to step over breakpoints. If OFF, or if the architecture | |
1556 | doesn't support it, GDB will instead use the traditional | |
1557 | hold-and-step approach. If AUTO (which is the default), GDB will | |
1558 | decide which technique to use to step over breakpoints depending on | |
1559 | which of all-stop or non-stop mode is active --- displaced stepping | |
1560 | in non-stop mode; hold-and-step in all-stop mode. */ | |
1561 | ||
72d0e2c5 | 1562 | static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO; |
fff08868 | 1563 | |
237fc4c9 PA |
1564 | static void |
1565 | show_can_use_displaced_stepping (struct ui_file *file, int from_tty, | |
1566 | struct cmd_list_element *c, | |
1567 | const char *value) | |
1568 | { | |
72d0e2c5 | 1569 | if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO) |
3e43a32a MS |
1570 | fprintf_filtered (file, |
1571 | _("Debugger's willingness to use displaced stepping " | |
1572 | "to step over breakpoints is %s (currently %s).\n"), | |
fbea99ea | 1573 | value, target_is_non_stop_p () ? "on" : "off"); |
fff08868 | 1574 | else |
3e43a32a MS |
1575 | fprintf_filtered (file, |
1576 | _("Debugger's willingness to use displaced stepping " | |
1577 | "to step over breakpoints is %s.\n"), value); | |
237fc4c9 PA |
1578 | } |
1579 | ||
fff08868 | 1580 | /* Return non-zero if displaced stepping can/should be used to step |
3fc8eb30 | 1581 | over breakpoints of thread TP. */ |
fff08868 | 1582 | |
237fc4c9 | 1583 | static int |
3fc8eb30 | 1584 | use_displaced_stepping (struct thread_info *tp) |
237fc4c9 | 1585 | { |
00431a78 | 1586 | struct regcache *regcache = get_thread_regcache (tp); |
ac7936df | 1587 | struct gdbarch *gdbarch = regcache->arch (); |
d20172fc SM |
1588 | displaced_step_inferior_state *displaced_state |
1589 | = get_displaced_stepping_state (tp->inf); | |
3fc8eb30 | 1590 | |
fbea99ea PA |
1591 | return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO |
1592 | && target_is_non_stop_p ()) | |
72d0e2c5 | 1593 | || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE) |
96429cc8 | 1594 | && gdbarch_displaced_step_copy_insn_p (gdbarch) |
3fc8eb30 | 1595 | && find_record_target () == NULL |
d20172fc | 1596 | && !displaced_state->failed_before); |
237fc4c9 PA |
1597 | } |
1598 | ||
1599 | /* Clean out any stray displaced stepping state. */ | |
1600 | static void | |
fc1cf338 | 1601 | displaced_step_clear (struct displaced_step_inferior_state *displaced) |
237fc4c9 PA |
1602 | { |
1603 | /* Indicate that there is no cleanup pending. */ | |
00431a78 | 1604 | displaced->step_thread = nullptr; |
237fc4c9 | 1605 | |
cfba9872 | 1606 | delete displaced->step_closure; |
6d45d4b4 | 1607 | displaced->step_closure = NULL; |
237fc4c9 PA |
1608 | } |
1609 | ||
9799571e TT |
1610 | /* A cleanup that wraps displaced_step_clear. */ |
1611 | using displaced_step_clear_cleanup | |
1612 | = FORWARD_SCOPE_EXIT (displaced_step_clear); | |
237fc4c9 PA |
1613 | |
1614 | /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */ | |
1615 | void | |
1616 | displaced_step_dump_bytes (struct ui_file *file, | |
1617 | const gdb_byte *buf, | |
1618 | size_t len) | |
1619 | { | |
1620 | int i; | |
1621 | ||
1622 | for (i = 0; i < len; i++) | |
1623 | fprintf_unfiltered (file, "%02x ", buf[i]); | |
1624 | fputs_unfiltered ("\n", file); | |
1625 | } | |
1626 | ||
1627 | /* Prepare to single-step, using displaced stepping. | |
1628 | ||
1629 | Note that we cannot use displaced stepping when we have a signal to | |
1630 | deliver. If we have a signal to deliver and an instruction to step | |
1631 | over, then after the step, there will be no indication from the | |
1632 | target whether the thread entered a signal handler or ignored the | |
1633 | signal and stepped over the instruction successfully --- both cases | |
1634 | result in a simple SIGTRAP. In the first case we mustn't do a | |
1635 | fixup, and in the second case we must --- but we can't tell which. | |
1636 | Comments in the code for 'random signals' in handle_inferior_event | |
1637 | explain how we handle this case instead. | |
1638 | ||
1639 | Returns 1 if preparing was successful -- this thread is going to be | |
7f03bd92 PA |
1640 | stepped now; 0 if displaced stepping this thread got queued; or -1 |
1641 | if this instruction can't be displaced stepped. */ | |
1642 | ||
237fc4c9 | 1643 | static int |
00431a78 | 1644 | displaced_step_prepare_throw (thread_info *tp) |
237fc4c9 | 1645 | { |
00431a78 | 1646 | regcache *regcache = get_thread_regcache (tp); |
ac7936df | 1647 | struct gdbarch *gdbarch = regcache->arch (); |
8b86c959 | 1648 | const address_space *aspace = regcache->aspace (); |
237fc4c9 PA |
1649 | CORE_ADDR original, copy; |
1650 | ULONGEST len; | |
1651 | struct displaced_step_closure *closure; | |
9e529e1d | 1652 | int status; |
237fc4c9 PA |
1653 | |
1654 | /* We should never reach this function if the architecture does not | |
1655 | support displaced stepping. */ | |
1656 | gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch)); | |
1657 | ||
c2829269 PA |
1658 | /* Nor if the thread isn't meant to step over a breakpoint. */ |
1659 | gdb_assert (tp->control.trap_expected); | |
1660 | ||
c1e36e3e PA |
1661 | /* Disable range stepping while executing in the scratch pad. We |
1662 | want a single-step even if executing the displaced instruction in | |
1663 | the scratch buffer lands within the stepping range (e.g., a | |
1664 | jump/branch). */ | |
1665 | tp->control.may_range_step = 0; | |
1666 | ||
fc1cf338 PA |
1667 | /* We have to displaced step one thread at a time, as we only have |
1668 | access to a single scratch space per inferior. */ | |
237fc4c9 | 1669 | |
d20172fc SM |
1670 | displaced_step_inferior_state *displaced |
1671 | = get_displaced_stepping_state (tp->inf); | |
fc1cf338 | 1672 | |
00431a78 | 1673 | if (displaced->step_thread != nullptr) |
237fc4c9 PA |
1674 | { |
1675 | /* Already waiting for a displaced step to finish. Defer this | |
1676 | request and place in queue. */ | |
237fc4c9 PA |
1677 | |
1678 | if (debug_displaced) | |
1679 | fprintf_unfiltered (gdb_stdlog, | |
c2829269 | 1680 | "displaced: deferring step of %s\n", |
a068643d | 1681 | target_pid_to_str (tp->ptid).c_str ()); |
237fc4c9 | 1682 | |
c2829269 | 1683 | thread_step_over_chain_enqueue (tp); |
237fc4c9 PA |
1684 | return 0; |
1685 | } | |
1686 | else | |
1687 | { | |
1688 | if (debug_displaced) | |
1689 | fprintf_unfiltered (gdb_stdlog, | |
1690 | "displaced: stepping %s now\n", | |
a068643d | 1691 | target_pid_to_str (tp->ptid).c_str ()); |
237fc4c9 PA |
1692 | } |
1693 | ||
fc1cf338 | 1694 | displaced_step_clear (displaced); |
237fc4c9 | 1695 | |
00431a78 PA |
1696 | scoped_restore_current_thread restore_thread; |
1697 | ||
1698 | switch_to_thread (tp); | |
ad53cd71 | 1699 | |
515630c5 | 1700 | original = regcache_read_pc (regcache); |
237fc4c9 PA |
1701 | |
1702 | copy = gdbarch_displaced_step_location (gdbarch); | |
1703 | len = gdbarch_max_insn_length (gdbarch); | |
1704 | ||
d35ae833 PA |
1705 | if (breakpoint_in_range_p (aspace, copy, len)) |
1706 | { | |
1707 | /* There's a breakpoint set in the scratch pad location range | |
1708 | (which is usually around the entry point). We'd either | |
1709 | install it before resuming, which would overwrite/corrupt the | |
1710 | scratch pad, or if it was already inserted, this displaced | |
1711 | step would overwrite it. The latter is OK in the sense that | |
1712 | we already assume that no thread is going to execute the code | |
1713 | in the scratch pad range (after initial startup) anyway, but | |
1714 | the former is unacceptable. Simply punt and fallback to | |
1715 | stepping over this breakpoint in-line. */ | |
1716 | if (debug_displaced) | |
1717 | { | |
1718 | fprintf_unfiltered (gdb_stdlog, | |
1719 | "displaced: breakpoint set in scratch pad. " | |
1720 | "Stepping over breakpoint in-line instead.\n"); | |
1721 | } | |
1722 | ||
d35ae833 PA |
1723 | return -1; |
1724 | } | |
1725 | ||
237fc4c9 | 1726 | /* Save the original contents of the copy area. */ |
d20172fc SM |
1727 | displaced->step_saved_copy.resize (len); |
1728 | status = target_read_memory (copy, displaced->step_saved_copy.data (), len); | |
9e529e1d JK |
1729 | if (status != 0) |
1730 | throw_error (MEMORY_ERROR, | |
1731 | _("Error accessing memory address %s (%s) for " | |
1732 | "displaced-stepping scratch space."), | |
1733 | paddress (gdbarch, copy), safe_strerror (status)); | |
237fc4c9 PA |
1734 | if (debug_displaced) |
1735 | { | |
5af949e3 UW |
1736 | fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ", |
1737 | paddress (gdbarch, copy)); | |
fc1cf338 | 1738 | displaced_step_dump_bytes (gdb_stdlog, |
d20172fc | 1739 | displaced->step_saved_copy.data (), |
fc1cf338 | 1740 | len); |
237fc4c9 PA |
1741 | }; |
1742 | ||
1743 | closure = gdbarch_displaced_step_copy_insn (gdbarch, | |
ad53cd71 | 1744 | original, copy, regcache); |
7f03bd92 PA |
1745 | if (closure == NULL) |
1746 | { | |
1747 | /* The architecture doesn't know how or want to displaced step | |
1748 | this instruction or instruction sequence. Fallback to | |
1749 | stepping over the breakpoint in-line. */ | |
7f03bd92 PA |
1750 | return -1; |
1751 | } | |
237fc4c9 | 1752 | |
9f5a595d UW |
1753 | /* Save the information we need to fix things up if the step |
1754 | succeeds. */ | |
00431a78 | 1755 | displaced->step_thread = tp; |
fc1cf338 PA |
1756 | displaced->step_gdbarch = gdbarch; |
1757 | displaced->step_closure = closure; | |
1758 | displaced->step_original = original; | |
1759 | displaced->step_copy = copy; | |
9f5a595d | 1760 | |
9799571e TT |
1761 | { |
1762 | displaced_step_clear_cleanup cleanup (displaced); | |
237fc4c9 | 1763 | |
9799571e TT |
1764 | /* Resume execution at the copy. */ |
1765 | regcache_write_pc (regcache, copy); | |
237fc4c9 | 1766 | |
9799571e TT |
1767 | cleanup.release (); |
1768 | } | |
ad53cd71 | 1769 | |
237fc4c9 | 1770 | if (debug_displaced) |
5af949e3 UW |
1771 | fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n", |
1772 | paddress (gdbarch, copy)); | |
237fc4c9 | 1773 | |
237fc4c9 PA |
1774 | return 1; |
1775 | } | |
1776 | ||
3fc8eb30 PA |
1777 | /* Wrapper for displaced_step_prepare_throw that disabled further |
1778 | attempts at displaced stepping if we get a memory error. */ | |
1779 | ||
1780 | static int | |
00431a78 | 1781 | displaced_step_prepare (thread_info *thread) |
3fc8eb30 PA |
1782 | { |
1783 | int prepared = -1; | |
1784 | ||
a70b8144 | 1785 | try |
3fc8eb30 | 1786 | { |
00431a78 | 1787 | prepared = displaced_step_prepare_throw (thread); |
3fc8eb30 | 1788 | } |
230d2906 | 1789 | catch (const gdb_exception_error &ex) |
3fc8eb30 PA |
1790 | { |
1791 | struct displaced_step_inferior_state *displaced_state; | |
1792 | ||
16b41842 PA |
1793 | if (ex.error != MEMORY_ERROR |
1794 | && ex.error != NOT_SUPPORTED_ERROR) | |
eedc3f4f | 1795 | throw; |
3fc8eb30 PA |
1796 | |
1797 | if (debug_infrun) | |
1798 | { | |
1799 | fprintf_unfiltered (gdb_stdlog, | |
1800 | "infrun: disabling displaced stepping: %s\n", | |
3d6e9d23 | 1801 | ex.what ()); |
3fc8eb30 PA |
1802 | } |
1803 | ||
1804 | /* Be verbose if "set displaced-stepping" is "on", silent if | |
1805 | "auto". */ | |
1806 | if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE) | |
1807 | { | |
fd7dcb94 | 1808 | warning (_("disabling displaced stepping: %s"), |
3d6e9d23 | 1809 | ex.what ()); |
3fc8eb30 PA |
1810 | } |
1811 | ||
1812 | /* Disable further displaced stepping attempts. */ | |
1813 | displaced_state | |
00431a78 | 1814 | = get_displaced_stepping_state (thread->inf); |
3fc8eb30 PA |
1815 | displaced_state->failed_before = 1; |
1816 | } | |
3fc8eb30 PA |
1817 | |
1818 | return prepared; | |
1819 | } | |
1820 | ||
237fc4c9 | 1821 | static void |
3e43a32a MS |
1822 | write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, |
1823 | const gdb_byte *myaddr, int len) | |
237fc4c9 | 1824 | { |
2989a365 | 1825 | scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); |
abbb1732 | 1826 | |
237fc4c9 PA |
1827 | inferior_ptid = ptid; |
1828 | write_memory (memaddr, myaddr, len); | |
237fc4c9 PA |
1829 | } |
1830 | ||
e2d96639 YQ |
1831 | /* Restore the contents of the copy area for thread PTID. */ |
1832 | ||
1833 | static void | |
1834 | displaced_step_restore (struct displaced_step_inferior_state *displaced, | |
1835 | ptid_t ptid) | |
1836 | { | |
1837 | ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch); | |
1838 | ||
1839 | write_memory_ptid (ptid, displaced->step_copy, | |
d20172fc | 1840 | displaced->step_saved_copy.data (), len); |
e2d96639 YQ |
1841 | if (debug_displaced) |
1842 | fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n", | |
a068643d | 1843 | target_pid_to_str (ptid).c_str (), |
e2d96639 YQ |
1844 | paddress (displaced->step_gdbarch, |
1845 | displaced->step_copy)); | |
1846 | } | |
1847 | ||
372316f1 PA |
1848 | /* If we displaced stepped an instruction successfully, adjust |
1849 | registers and memory to yield the same effect the instruction would | |
1850 | have had if we had executed it at its original address, and return | |
1851 | 1. If the instruction didn't complete, relocate the PC and return | |
1852 | -1. If the thread wasn't displaced stepping, return 0. */ | |
1853 | ||
1854 | static int | |
00431a78 | 1855 | displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal) |
237fc4c9 | 1856 | { |
fc1cf338 | 1857 | struct displaced_step_inferior_state *displaced |
00431a78 | 1858 | = get_displaced_stepping_state (event_thread->inf); |
372316f1 | 1859 | int ret; |
fc1cf338 | 1860 | |
00431a78 PA |
1861 | /* Was this event for the thread we displaced? */ |
1862 | if (displaced->step_thread != event_thread) | |
372316f1 | 1863 | return 0; |
237fc4c9 | 1864 | |
9799571e | 1865 | displaced_step_clear_cleanup cleanup (displaced); |
237fc4c9 | 1866 | |
00431a78 | 1867 | displaced_step_restore (displaced, displaced->step_thread->ptid); |
237fc4c9 | 1868 | |
cb71640d PA |
1869 | /* Fixup may need to read memory/registers. Switch to the thread |
1870 | that we're fixing up. Also, target_stopped_by_watchpoint checks | |
1871 | the current thread. */ | |
00431a78 | 1872 | switch_to_thread (event_thread); |
cb71640d | 1873 | |
237fc4c9 | 1874 | /* Did the instruction complete successfully? */ |
cb71640d PA |
1875 | if (signal == GDB_SIGNAL_TRAP |
1876 | && !(target_stopped_by_watchpoint () | |
1877 | && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch) | |
1878 | || target_have_steppable_watchpoint))) | |
237fc4c9 PA |
1879 | { |
1880 | /* Fix up the resulting state. */ | |
fc1cf338 PA |
1881 | gdbarch_displaced_step_fixup (displaced->step_gdbarch, |
1882 | displaced->step_closure, | |
1883 | displaced->step_original, | |
1884 | displaced->step_copy, | |
00431a78 | 1885 | get_thread_regcache (displaced->step_thread)); |
372316f1 | 1886 | ret = 1; |
237fc4c9 PA |
1887 | } |
1888 | else | |
1889 | { | |
1890 | /* Since the instruction didn't complete, all we can do is | |
1891 | relocate the PC. */ | |
00431a78 | 1892 | struct regcache *regcache = get_thread_regcache (event_thread); |
515630c5 | 1893 | CORE_ADDR pc = regcache_read_pc (regcache); |
abbb1732 | 1894 | |
fc1cf338 | 1895 | pc = displaced->step_original + (pc - displaced->step_copy); |
515630c5 | 1896 | regcache_write_pc (regcache, pc); |
372316f1 | 1897 | ret = -1; |
237fc4c9 PA |
1898 | } |
1899 | ||
372316f1 | 1900 | return ret; |
c2829269 | 1901 | } |
1c5cfe86 | 1902 | |
4d9d9d04 PA |
1903 | /* Data to be passed around while handling an event. This data is |
1904 | discarded between events. */ | |
1905 | struct execution_control_state | |
1906 | { | |
5b6d1e4f | 1907 | process_stratum_target *target; |
4d9d9d04 PA |
1908 | ptid_t ptid; |
1909 | /* The thread that got the event, if this was a thread event; NULL | |
1910 | otherwise. */ | |
1911 | struct thread_info *event_thread; | |
1912 | ||
1913 | struct target_waitstatus ws; | |
1914 | int stop_func_filled_in; | |
1915 | CORE_ADDR stop_func_start; | |
1916 | CORE_ADDR stop_func_end; | |
1917 | const char *stop_func_name; | |
1918 | int wait_some_more; | |
1919 | ||
1920 | /* True if the event thread hit the single-step breakpoint of | |
1921 | another thread. Thus the event doesn't cause a stop, the thread | |
1922 | needs to be single-stepped past the single-step breakpoint before | |
1923 | we can switch back to the original stepping thread. */ | |
1924 | int hit_singlestep_breakpoint; | |
1925 | }; | |
1926 | ||
1927 | /* Clear ECS and set it to point at TP. */ | |
c2829269 PA |
1928 | |
1929 | static void | |
4d9d9d04 PA |
1930 | reset_ecs (struct execution_control_state *ecs, struct thread_info *tp) |
1931 | { | |
1932 | memset (ecs, 0, sizeof (*ecs)); | |
1933 | ecs->event_thread = tp; | |
1934 | ecs->ptid = tp->ptid; | |
1935 | } | |
1936 | ||
1937 | static void keep_going_pass_signal (struct execution_control_state *ecs); | |
1938 | static void prepare_to_wait (struct execution_control_state *ecs); | |
2ac7589c | 1939 | static int keep_going_stepped_thread (struct thread_info *tp); |
8d297bbf | 1940 | static step_over_what thread_still_needs_step_over (struct thread_info *tp); |
4d9d9d04 PA |
1941 | |
1942 | /* Are there any pending step-over requests? If so, run all we can | |
1943 | now and return true. Otherwise, return false. */ | |
1944 | ||
1945 | static int | |
c2829269 PA |
1946 | start_step_over (void) |
1947 | { | |
1948 | struct thread_info *tp, *next; | |
1949 | ||
372316f1 PA |
1950 | /* Don't start a new step-over if we already have an in-line |
1951 | step-over operation ongoing. */ | |
1952 | if (step_over_info_valid_p ()) | |
1953 | return 0; | |
1954 | ||
c2829269 | 1955 | for (tp = step_over_queue_head; tp != NULL; tp = next) |
237fc4c9 | 1956 | { |
4d9d9d04 PA |
1957 | struct execution_control_state ecss; |
1958 | struct execution_control_state *ecs = &ecss; | |
8d297bbf | 1959 | step_over_what step_what; |
372316f1 | 1960 | int must_be_in_line; |
c2829269 | 1961 | |
c65d6b55 PA |
1962 | gdb_assert (!tp->stop_requested); |
1963 | ||
c2829269 | 1964 | next = thread_step_over_chain_next (tp); |
237fc4c9 | 1965 | |
c2829269 PA |
1966 | /* If this inferior already has a displaced step in process, |
1967 | don't start a new one. */ | |
00431a78 | 1968 | if (displaced_step_in_progress (tp->inf)) |
c2829269 PA |
1969 | continue; |
1970 | ||
372316f1 PA |
1971 | step_what = thread_still_needs_step_over (tp); |
1972 | must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT) | |
1973 | || ((step_what & STEP_OVER_BREAKPOINT) | |
3fc8eb30 | 1974 | && !use_displaced_stepping (tp))); |
372316f1 PA |
1975 | |
1976 | /* We currently stop all threads of all processes to step-over | |
1977 | in-line. If we need to start a new in-line step-over, let | |
1978 | any pending displaced steps finish first. */ | |
1979 | if (must_be_in_line && displaced_step_in_progress_any_inferior ()) | |
1980 | return 0; | |
1981 | ||
c2829269 PA |
1982 | thread_step_over_chain_remove (tp); |
1983 | ||
1984 | if (step_over_queue_head == NULL) | |
1985 | { | |
1986 | if (debug_infrun) | |
1987 | fprintf_unfiltered (gdb_stdlog, | |
1988 | "infrun: step-over queue now empty\n"); | |
1989 | } | |
1990 | ||
372316f1 PA |
1991 | if (tp->control.trap_expected |
1992 | || tp->resumed | |
1993 | || tp->executing) | |
ad53cd71 | 1994 | { |
4d9d9d04 PA |
1995 | internal_error (__FILE__, __LINE__, |
1996 | "[%s] has inconsistent state: " | |
372316f1 | 1997 | "trap_expected=%d, resumed=%d, executing=%d\n", |
a068643d | 1998 | target_pid_to_str (tp->ptid).c_str (), |
4d9d9d04 | 1999 | tp->control.trap_expected, |
372316f1 | 2000 | tp->resumed, |
4d9d9d04 | 2001 | tp->executing); |
ad53cd71 | 2002 | } |
1c5cfe86 | 2003 | |
4d9d9d04 PA |
2004 | if (debug_infrun) |
2005 | fprintf_unfiltered (gdb_stdlog, | |
2006 | "infrun: resuming [%s] for step-over\n", | |
a068643d | 2007 | target_pid_to_str (tp->ptid).c_str ()); |
4d9d9d04 PA |
2008 | |
2009 | /* keep_going_pass_signal skips the step-over if the breakpoint | |
2010 | is no longer inserted. In all-stop, we want to keep looking | |
2011 | for a thread that needs a step-over instead of resuming TP, | |
2012 | because we wouldn't be able to resume anything else until the | |
2013 | target stops again. In non-stop, the resume always resumes | |
2014 | only TP, so it's OK to let the thread resume freely. */ | |
fbea99ea | 2015 | if (!target_is_non_stop_p () && !step_what) |
4d9d9d04 | 2016 | continue; |
8550d3b3 | 2017 | |
00431a78 | 2018 | switch_to_thread (tp); |
4d9d9d04 PA |
2019 | reset_ecs (ecs, tp); |
2020 | keep_going_pass_signal (ecs); | |
1c5cfe86 | 2021 | |
4d9d9d04 PA |
2022 | if (!ecs->wait_some_more) |
2023 | error (_("Command aborted.")); | |
1c5cfe86 | 2024 | |
372316f1 PA |
2025 | gdb_assert (tp->resumed); |
2026 | ||
2027 | /* If we started a new in-line step-over, we're done. */ | |
2028 | if (step_over_info_valid_p ()) | |
2029 | { | |
2030 | gdb_assert (tp->control.trap_expected); | |
2031 | return 1; | |
2032 | } | |
2033 | ||
fbea99ea | 2034 | if (!target_is_non_stop_p ()) |
4d9d9d04 PA |
2035 | { |
2036 | /* On all-stop, shouldn't have resumed unless we needed a | |
2037 | step over. */ | |
2038 | gdb_assert (tp->control.trap_expected | |
2039 | || tp->step_after_step_resume_breakpoint); | |
2040 | ||
2041 | /* With remote targets (at least), in all-stop, we can't | |
2042 | issue any further remote commands until the program stops | |
2043 | again. */ | |
2044 | return 1; | |
1c5cfe86 | 2045 | } |
c2829269 | 2046 | |
4d9d9d04 PA |
2047 | /* Either the thread no longer needed a step-over, or a new |
2048 | displaced stepping sequence started. Even in the latter | |
2049 | case, continue looking. Maybe we can also start another | |
2050 | displaced step on a thread of other process. */ | |
237fc4c9 | 2051 | } |
4d9d9d04 PA |
2052 | |
2053 | return 0; | |
237fc4c9 PA |
2054 | } |
2055 | ||
5231c1fd PA |
2056 | /* Update global variables holding ptids to hold NEW_PTID if they were |
2057 | holding OLD_PTID. */ | |
2058 | static void | |
2059 | infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid) | |
2060 | { | |
d7e15655 | 2061 | if (inferior_ptid == old_ptid) |
5231c1fd | 2062 | inferior_ptid = new_ptid; |
5231c1fd PA |
2063 | } |
2064 | ||
237fc4c9 | 2065 | \f |
c906108c | 2066 | |
53904c9e AC |
2067 | static const char schedlock_off[] = "off"; |
2068 | static const char schedlock_on[] = "on"; | |
2069 | static const char schedlock_step[] = "step"; | |
f2665db5 | 2070 | static const char schedlock_replay[] = "replay"; |
40478521 | 2071 | static const char *const scheduler_enums[] = { |
ef346e04 AC |
2072 | schedlock_off, |
2073 | schedlock_on, | |
2074 | schedlock_step, | |
f2665db5 | 2075 | schedlock_replay, |
ef346e04 AC |
2076 | NULL |
2077 | }; | |
f2665db5 | 2078 | static const char *scheduler_mode = schedlock_replay; |
920d2a44 AC |
2079 | static void |
2080 | show_scheduler_mode (struct ui_file *file, int from_tty, | |
2081 | struct cmd_list_element *c, const char *value) | |
2082 | { | |
3e43a32a MS |
2083 | fprintf_filtered (file, |
2084 | _("Mode for locking scheduler " | |
2085 | "during execution is \"%s\".\n"), | |
920d2a44 AC |
2086 | value); |
2087 | } | |
c906108c SS |
2088 | |
2089 | static void | |
eb4c3f4a | 2090 | set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c) |
c906108c | 2091 | { |
eefe576e AC |
2092 | if (!target_can_lock_scheduler) |
2093 | { | |
2094 | scheduler_mode = schedlock_off; | |
2095 | error (_("Target '%s' cannot support this command."), target_shortname); | |
2096 | } | |
c906108c SS |
2097 | } |
2098 | ||
d4db2f36 PA |
2099 | /* True if execution commands resume all threads of all processes by |
2100 | default; otherwise, resume only threads of the current inferior | |
2101 | process. */ | |
491144b5 | 2102 | bool sched_multi = false; |
d4db2f36 | 2103 | |
2facfe5c DD |
2104 | /* Try to setup for software single stepping over the specified location. |
2105 | Return 1 if target_resume() should use hardware single step. | |
2106 | ||
2107 | GDBARCH the current gdbarch. | |
2108 | PC the location to step over. */ | |
2109 | ||
2110 | static int | |
2111 | maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc) | |
2112 | { | |
2113 | int hw_step = 1; | |
2114 | ||
f02253f1 | 2115 | if (execution_direction == EXEC_FORWARD |
93f9a11f YQ |
2116 | && gdbarch_software_single_step_p (gdbarch)) |
2117 | hw_step = !insert_single_step_breakpoints (gdbarch); | |
2118 | ||
2facfe5c DD |
2119 | return hw_step; |
2120 | } | |
c906108c | 2121 | |
f3263aa4 PA |
2122 | /* See infrun.h. */ |
2123 | ||
09cee04b PA |
2124 | ptid_t |
2125 | user_visible_resume_ptid (int step) | |
2126 | { | |
f3263aa4 | 2127 | ptid_t resume_ptid; |
09cee04b | 2128 | |
09cee04b PA |
2129 | if (non_stop) |
2130 | { | |
2131 | /* With non-stop mode on, threads are always handled | |
2132 | individually. */ | |
2133 | resume_ptid = inferior_ptid; | |
2134 | } | |
2135 | else if ((scheduler_mode == schedlock_on) | |
03d46957 | 2136 | || (scheduler_mode == schedlock_step && step)) |
09cee04b | 2137 | { |
f3263aa4 PA |
2138 | /* User-settable 'scheduler' mode requires solo thread |
2139 | resume. */ | |
09cee04b PA |
2140 | resume_ptid = inferior_ptid; |
2141 | } | |
f2665db5 MM |
2142 | else if ((scheduler_mode == schedlock_replay) |
2143 | && target_record_will_replay (minus_one_ptid, execution_direction)) | |
2144 | { | |
2145 | /* User-settable 'scheduler' mode requires solo thread resume in replay | |
2146 | mode. */ | |
2147 | resume_ptid = inferior_ptid; | |
2148 | } | |
f3263aa4 PA |
2149 | else if (!sched_multi && target_supports_multi_process ()) |
2150 | { | |
2151 | /* Resume all threads of the current process (and none of other | |
2152 | processes). */ | |
e99b03dc | 2153 | resume_ptid = ptid_t (inferior_ptid.pid ()); |
f3263aa4 PA |
2154 | } |
2155 | else | |
2156 | { | |
2157 | /* Resume all threads of all processes. */ | |
2158 | resume_ptid = RESUME_ALL; | |
2159 | } | |
09cee04b PA |
2160 | |
2161 | return resume_ptid; | |
2162 | } | |
2163 | ||
5b6d1e4f PA |
2164 | /* See infrun.h. */ |
2165 | ||
2166 | process_stratum_target * | |
2167 | user_visible_resume_target (ptid_t resume_ptid) | |
2168 | { | |
2169 | return (resume_ptid == minus_one_ptid && sched_multi | |
2170 | ? NULL | |
2171 | : current_inferior ()->process_target ()); | |
2172 | } | |
2173 | ||
fbea99ea PA |
2174 | /* Return a ptid representing the set of threads that we will resume, |
2175 | in the perspective of the target, assuming run control handling | |
2176 | does not require leaving some threads stopped (e.g., stepping past | |
2177 | breakpoint). USER_STEP indicates whether we're about to start the | |
2178 | target for a stepping command. */ | |
2179 | ||
2180 | static ptid_t | |
2181 | internal_resume_ptid (int user_step) | |
2182 | { | |
2183 | /* In non-stop, we always control threads individually. Note that | |
2184 | the target may always work in non-stop mode even with "set | |
2185 | non-stop off", in which case user_visible_resume_ptid could | |
2186 | return a wildcard ptid. */ | |
2187 | if (target_is_non_stop_p ()) | |
2188 | return inferior_ptid; | |
2189 | else | |
2190 | return user_visible_resume_ptid (user_step); | |
2191 | } | |
2192 | ||
64ce06e4 PA |
2193 | /* Wrapper for target_resume, that handles infrun-specific |
2194 | bookkeeping. */ | |
2195 | ||
2196 | static void | |
2197 | do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig) | |
2198 | { | |
2199 | struct thread_info *tp = inferior_thread (); | |
2200 | ||
c65d6b55 PA |
2201 | gdb_assert (!tp->stop_requested); |
2202 | ||
64ce06e4 | 2203 | /* Install inferior's terminal modes. */ |
223ffa71 | 2204 | target_terminal::inferior (); |
64ce06e4 PA |
2205 | |
2206 | /* Avoid confusing the next resume, if the next stop/resume | |
2207 | happens to apply to another thread. */ | |
2208 | tp->suspend.stop_signal = GDB_SIGNAL_0; | |
2209 | ||
8f572e5c PA |
2210 | /* Advise target which signals may be handled silently. |
2211 | ||
2212 | If we have removed breakpoints because we are stepping over one | |
2213 | in-line (in any thread), we need to receive all signals to avoid | |
2214 | accidentally skipping a breakpoint during execution of a signal | |
2215 | handler. | |
2216 | ||
2217 | Likewise if we're displaced stepping, otherwise a trap for a | |
2218 | breakpoint in a signal handler might be confused with the | |
2219 | displaced step finishing. We don't make the displaced_step_fixup | |
2220 | step distinguish the cases instead, because: | |
2221 | ||
2222 | - a backtrace while stopped in the signal handler would show the | |
2223 | scratch pad as frame older than the signal handler, instead of | |
2224 | the real mainline code. | |
2225 | ||
2226 | - when the thread is later resumed, the signal handler would | |
2227 | return to the scratch pad area, which would no longer be | |
2228 | valid. */ | |
2229 | if (step_over_info_valid_p () | |
00431a78 | 2230 | || displaced_step_in_progress (tp->inf)) |
adc6a863 | 2231 | target_pass_signals ({}); |
64ce06e4 | 2232 | else |
adc6a863 | 2233 | target_pass_signals (signal_pass); |
64ce06e4 PA |
2234 | |
2235 | target_resume (resume_ptid, step, sig); | |
85ad3aaf PA |
2236 | |
2237 | target_commit_resume (); | |
5b6d1e4f PA |
2238 | |
2239 | if (target_can_async_p ()) | |
2240 | target_async (1); | |
64ce06e4 PA |
2241 | } |
2242 | ||
d930703d | 2243 | /* Resume the inferior. SIG is the signal to give the inferior |
71d378ae PA |
2244 | (GDB_SIGNAL_0 for none). Note: don't call this directly; instead |
2245 | call 'resume', which handles exceptions. */ | |
c906108c | 2246 | |
71d378ae PA |
2247 | static void |
2248 | resume_1 (enum gdb_signal sig) | |
c906108c | 2249 | { |
515630c5 | 2250 | struct regcache *regcache = get_current_regcache (); |
ac7936df | 2251 | struct gdbarch *gdbarch = regcache->arch (); |
4e1c45ea | 2252 | struct thread_info *tp = inferior_thread (); |
515630c5 | 2253 | CORE_ADDR pc = regcache_read_pc (regcache); |
8b86c959 | 2254 | const address_space *aspace = regcache->aspace (); |
b0f16a3e | 2255 | ptid_t resume_ptid; |
856e7dd6 PA |
2256 | /* This represents the user's step vs continue request. When |
2257 | deciding whether "set scheduler-locking step" applies, it's the | |
2258 | user's intention that counts. */ | |
2259 | const int user_step = tp->control.stepping_command; | |
64ce06e4 PA |
2260 | /* This represents what we'll actually request the target to do. |
2261 | This can decay from a step to a continue, if e.g., we need to | |
2262 | implement single-stepping with breakpoints (software | |
2263 | single-step). */ | |
6b403daa | 2264 | int step; |
c7e8a53c | 2265 | |
c65d6b55 | 2266 | gdb_assert (!tp->stop_requested); |
c2829269 PA |
2267 | gdb_assert (!thread_is_in_step_over_chain (tp)); |
2268 | ||
372316f1 PA |
2269 | if (tp->suspend.waitstatus_pending_p) |
2270 | { | |
2271 | if (debug_infrun) | |
2272 | { | |
23fdd69e SM |
2273 | std::string statstr |
2274 | = target_waitstatus_to_string (&tp->suspend.waitstatus); | |
372316f1 | 2275 | |
372316f1 | 2276 | fprintf_unfiltered (gdb_stdlog, |
23fdd69e SM |
2277 | "infrun: resume: thread %s has pending wait " |
2278 | "status %s (currently_stepping=%d).\n", | |
a068643d TT |
2279 | target_pid_to_str (tp->ptid).c_str (), |
2280 | statstr.c_str (), | |
372316f1 | 2281 | currently_stepping (tp)); |
372316f1 PA |
2282 | } |
2283 | ||
5b6d1e4f | 2284 | tp->inf->process_target ()->threads_executing = true; |
719546c4 | 2285 | tp->resumed = true; |
372316f1 PA |
2286 | |
2287 | /* FIXME: What should we do if we are supposed to resume this | |
2288 | thread with a signal? Maybe we should maintain a queue of | |
2289 | pending signals to deliver. */ | |
2290 | if (sig != GDB_SIGNAL_0) | |
2291 | { | |
fd7dcb94 | 2292 | warning (_("Couldn't deliver signal %s to %s."), |
a068643d TT |
2293 | gdb_signal_to_name (sig), |
2294 | target_pid_to_str (tp->ptid).c_str ()); | |
372316f1 PA |
2295 | } |
2296 | ||
2297 | tp->suspend.stop_signal = GDB_SIGNAL_0; | |
372316f1 PA |
2298 | |
2299 | if (target_can_async_p ()) | |
9516f85a AB |
2300 | { |
2301 | target_async (1); | |
2302 | /* Tell the event loop we have an event to process. */ | |
2303 | mark_async_event_handler (infrun_async_inferior_event_token); | |
2304 | } | |
372316f1 PA |
2305 | return; |
2306 | } | |
2307 | ||
2308 | tp->stepped_breakpoint = 0; | |
2309 | ||
6b403daa PA |
2310 | /* Depends on stepped_breakpoint. */ |
2311 | step = currently_stepping (tp); | |
2312 | ||
74609e71 YQ |
2313 | if (current_inferior ()->waiting_for_vfork_done) |
2314 | { | |
48f9886d PA |
2315 | /* Don't try to single-step a vfork parent that is waiting for |
2316 | the child to get out of the shared memory region (by exec'ing | |
2317 | or exiting). This is particularly important on software | |
2318 | single-step archs, as the child process would trip on the | |
2319 | software single step breakpoint inserted for the parent | |
2320 | process. Since the parent will not actually execute any | |
2321 | instruction until the child is out of the shared region (such | |
2322 | are vfork's semantics), it is safe to simply continue it. | |
2323 | Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for | |
2324 | the parent, and tell it to `keep_going', which automatically | |
2325 | re-sets it stepping. */ | |
74609e71 YQ |
2326 | if (debug_infrun) |
2327 | fprintf_unfiltered (gdb_stdlog, | |
2328 | "infrun: resume : clear step\n"); | |
a09dd441 | 2329 | step = 0; |
74609e71 YQ |
2330 | } |
2331 | ||
527159b7 | 2332 | if (debug_infrun) |
237fc4c9 | 2333 | fprintf_unfiltered (gdb_stdlog, |
c9737c08 | 2334 | "infrun: resume (step=%d, signal=%s), " |
0d9a9a5f | 2335 | "trap_expected=%d, current thread [%s] at %s\n", |
c9737c08 PA |
2336 | step, gdb_signal_to_symbol_string (sig), |
2337 | tp->control.trap_expected, | |
a068643d | 2338 | target_pid_to_str (inferior_ptid).c_str (), |
0d9a9a5f | 2339 | paddress (gdbarch, pc)); |
c906108c | 2340 | |
c2c6d25f JM |
2341 | /* Normally, by the time we reach `resume', the breakpoints are either |
2342 | removed or inserted, as appropriate. The exception is if we're sitting | |
2343 | at a permanent breakpoint; we need to step over it, but permanent | |
2344 | breakpoints can't be removed. So we have to test for it here. */ | |
6c95b8df | 2345 | if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here) |
6d350bb5 | 2346 | { |
af48d08f PA |
2347 | if (sig != GDB_SIGNAL_0) |
2348 | { | |
2349 | /* We have a signal to pass to the inferior. The resume | |
2350 | may, or may not take us to the signal handler. If this | |
2351 | is a step, we'll need to stop in the signal handler, if | |
2352 | there's one, (if the target supports stepping into | |
2353 | handlers), or in the next mainline instruction, if | |
2354 | there's no handler. If this is a continue, we need to be | |
2355 | sure to run the handler with all breakpoints inserted. | |
2356 | In all cases, set a breakpoint at the current address | |
2357 | (where the handler returns to), and once that breakpoint | |
2358 | is hit, resume skipping the permanent breakpoint. If | |
2359 | that breakpoint isn't hit, then we've stepped into the | |
2360 | signal handler (or hit some other event). We'll delete | |
2361 | the step-resume breakpoint then. */ | |
2362 | ||
2363 | if (debug_infrun) | |
2364 | fprintf_unfiltered (gdb_stdlog, | |
2365 | "infrun: resume: skipping permanent breakpoint, " | |
2366 | "deliver signal first\n"); | |
2367 | ||
2368 | clear_step_over_info (); | |
2369 | tp->control.trap_expected = 0; | |
2370 | ||
2371 | if (tp->control.step_resume_breakpoint == NULL) | |
2372 | { | |
2373 | /* Set a "high-priority" step-resume, as we don't want | |
2374 | user breakpoints at PC to trigger (again) when this | |
2375 | hits. */ | |
2376 | insert_hp_step_resume_breakpoint_at_frame (get_current_frame ()); | |
2377 | gdb_assert (tp->control.step_resume_breakpoint->loc->permanent); | |
2378 | ||
2379 | tp->step_after_step_resume_breakpoint = step; | |
2380 | } | |
2381 | ||
2382 | insert_breakpoints (); | |
2383 | } | |
2384 | else | |
2385 | { | |
2386 | /* There's no signal to pass, we can go ahead and skip the | |
2387 | permanent breakpoint manually. */ | |
2388 | if (debug_infrun) | |
2389 | fprintf_unfiltered (gdb_stdlog, | |
2390 | "infrun: resume: skipping permanent breakpoint\n"); | |
2391 | gdbarch_skip_permanent_breakpoint (gdbarch, regcache); | |
2392 | /* Update pc to reflect the new address from which we will | |
2393 | execute instructions. */ | |
2394 | pc = regcache_read_pc (regcache); | |
2395 | ||
2396 | if (step) | |
2397 | { | |
2398 | /* We've already advanced the PC, so the stepping part | |
2399 | is done. Now we need to arrange for a trap to be | |
2400 | reported to handle_inferior_event. Set a breakpoint | |
2401 | at the current PC, and run to it. Don't update | |
2402 | prev_pc, because if we end in | |
44a1ee51 PA |
2403 | switch_back_to_stepped_thread, we want the "expected |
2404 | thread advanced also" branch to be taken. IOW, we | |
2405 | don't want this thread to step further from PC | |
af48d08f | 2406 | (overstep). */ |
1ac806b8 | 2407 | gdb_assert (!step_over_info_valid_p ()); |
af48d08f PA |
2408 | insert_single_step_breakpoint (gdbarch, aspace, pc); |
2409 | insert_breakpoints (); | |
2410 | ||
fbea99ea | 2411 | resume_ptid = internal_resume_ptid (user_step); |
1ac806b8 | 2412 | do_target_resume (resume_ptid, 0, GDB_SIGNAL_0); |
719546c4 | 2413 | tp->resumed = true; |
af48d08f PA |
2414 | return; |
2415 | } | |
2416 | } | |
6d350bb5 | 2417 | } |
c2c6d25f | 2418 | |
c1e36e3e PA |
2419 | /* If we have a breakpoint to step over, make sure to do a single |
2420 | step only. Same if we have software watchpoints. */ | |
2421 | if (tp->control.trap_expected || bpstat_should_step ()) | |
2422 | tp->control.may_range_step = 0; | |
2423 | ||
7da6a5b9 LM |
2424 | /* If displaced stepping is enabled, step over breakpoints by executing a |
2425 | copy of the instruction at a different address. | |
237fc4c9 PA |
2426 | |
2427 | We can't use displaced stepping when we have a signal to deliver; | |
2428 | the comments for displaced_step_prepare explain why. The | |
2429 | comments in the handle_inferior event for dealing with 'random | |
74609e71 YQ |
2430 | signals' explain what we do instead. |
2431 | ||
2432 | We can't use displaced stepping when we are waiting for vfork_done | |
2433 | event, displaced stepping breaks the vfork child similarly as single | |
2434 | step software breakpoint. */ | |
3fc8eb30 PA |
2435 | if (tp->control.trap_expected |
2436 | && use_displaced_stepping (tp) | |
cb71640d | 2437 | && !step_over_info_valid_p () |
a493e3e2 | 2438 | && sig == GDB_SIGNAL_0 |
74609e71 | 2439 | && !current_inferior ()->waiting_for_vfork_done) |
237fc4c9 | 2440 | { |
00431a78 | 2441 | int prepared = displaced_step_prepare (tp); |
fc1cf338 | 2442 | |
3fc8eb30 | 2443 | if (prepared == 0) |
d56b7306 | 2444 | { |
4d9d9d04 PA |
2445 | if (debug_infrun) |
2446 | fprintf_unfiltered (gdb_stdlog, | |
2447 | "Got placed in step-over queue\n"); | |
2448 | ||
2449 | tp->control.trap_expected = 0; | |
d56b7306 VP |
2450 | return; |
2451 | } | |
3fc8eb30 PA |
2452 | else if (prepared < 0) |
2453 | { | |
2454 | /* Fallback to stepping over the breakpoint in-line. */ | |
2455 | ||
2456 | if (target_is_non_stop_p ()) | |
2457 | stop_all_threads (); | |
2458 | ||
a01bda52 | 2459 | set_step_over_info (regcache->aspace (), |
21edc42f | 2460 | regcache_read_pc (regcache), 0, tp->global_num); |
3fc8eb30 PA |
2461 | |
2462 | step = maybe_software_singlestep (gdbarch, pc); | |
2463 | ||
2464 | insert_breakpoints (); | |
2465 | } | |
2466 | else if (prepared > 0) | |
2467 | { | |
2468 | struct displaced_step_inferior_state *displaced; | |
99e40580 | 2469 | |
3fc8eb30 PA |
2470 | /* Update pc to reflect the new address from which we will |
2471 | execute instructions due to displaced stepping. */ | |
00431a78 | 2472 | pc = regcache_read_pc (get_thread_regcache (tp)); |
ca7781d2 | 2473 | |
00431a78 | 2474 | displaced = get_displaced_stepping_state (tp->inf); |
3fc8eb30 PA |
2475 | step = gdbarch_displaced_step_hw_singlestep (gdbarch, |
2476 | displaced->step_closure); | |
2477 | } | |
237fc4c9 PA |
2478 | } |
2479 | ||
2facfe5c | 2480 | /* Do we need to do it the hard way, w/temp breakpoints? */ |
99e40580 | 2481 | else if (step) |
2facfe5c | 2482 | step = maybe_software_singlestep (gdbarch, pc); |
c906108c | 2483 | |
30852783 UW |
2484 | /* Currently, our software single-step implementation leads to different |
2485 | results than hardware single-stepping in one situation: when stepping | |
2486 | into delivering a signal which has an associated signal handler, | |
2487 | hardware single-step will stop at the first instruction of the handler, | |
2488 | while software single-step will simply skip execution of the handler. | |
2489 | ||
2490 | For now, this difference in behavior is accepted since there is no | |
2491 | easy way to actually implement single-stepping into a signal handler | |
2492 | without kernel support. | |
2493 | ||
2494 | However, there is one scenario where this difference leads to follow-on | |
2495 | problems: if we're stepping off a breakpoint by removing all breakpoints | |
2496 | and then single-stepping. In this case, the software single-step | |
2497 | behavior means that even if there is a *breakpoint* in the signal | |
2498 | handler, GDB still would not stop. | |
2499 | ||
2500 | Fortunately, we can at least fix this particular issue. We detect | |
2501 | here the case where we are about to deliver a signal while software | |
2502 | single-stepping with breakpoints removed. In this situation, we | |
2503 | revert the decisions to remove all breakpoints and insert single- | |
2504 | step breakpoints, and instead we install a step-resume breakpoint | |
2505 | at the current address, deliver the signal without stepping, and | |
2506 | once we arrive back at the step-resume breakpoint, actually step | |
2507 | over the breakpoint we originally wanted to step over. */ | |
34b7e8a6 | 2508 | if (thread_has_single_step_breakpoints_set (tp) |
6cc83d2a PA |
2509 | && sig != GDB_SIGNAL_0 |
2510 | && step_over_info_valid_p ()) | |
30852783 UW |
2511 | { |
2512 | /* If we have nested signals or a pending signal is delivered | |
7da6a5b9 | 2513 | immediately after a handler returns, might already have |
30852783 UW |
2514 | a step-resume breakpoint set on the earlier handler. We cannot |
2515 | set another step-resume breakpoint; just continue on until the | |
2516 | original breakpoint is hit. */ | |
2517 | if (tp->control.step_resume_breakpoint == NULL) | |
2518 | { | |
2c03e5be | 2519 | insert_hp_step_resume_breakpoint_at_frame (get_current_frame ()); |
30852783 UW |
2520 | tp->step_after_step_resume_breakpoint = 1; |
2521 | } | |
2522 | ||
34b7e8a6 | 2523 | delete_single_step_breakpoints (tp); |
30852783 | 2524 | |
31e77af2 | 2525 | clear_step_over_info (); |
30852783 | 2526 | tp->control.trap_expected = 0; |
31e77af2 PA |
2527 | |
2528 | insert_breakpoints (); | |
30852783 UW |
2529 | } |
2530 | ||
b0f16a3e SM |
2531 | /* If STEP is set, it's a request to use hardware stepping |
2532 | facilities. But in that case, we should never | |
2533 | use singlestep breakpoint. */ | |
34b7e8a6 | 2534 | gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step)); |
dfcd3bfb | 2535 | |
fbea99ea | 2536 | /* Decide the set of threads to ask the target to resume. */ |
1946c4cc | 2537 | if (tp->control.trap_expected) |
b0f16a3e SM |
2538 | { |
2539 | /* We're allowing a thread to run past a breakpoint it has | |
1946c4cc YQ |
2540 | hit, either by single-stepping the thread with the breakpoint |
2541 | removed, or by displaced stepping, with the breakpoint inserted. | |
2542 | In the former case, we need to single-step only this thread, | |
2543 | and keep others stopped, as they can miss this breakpoint if | |
2544 | allowed to run. That's not really a problem for displaced | |
2545 | stepping, but, we still keep other threads stopped, in case | |
2546 | another thread is also stopped for a breakpoint waiting for | |
2547 | its turn in the displaced stepping queue. */ | |
b0f16a3e SM |
2548 | resume_ptid = inferior_ptid; |
2549 | } | |
fbea99ea PA |
2550 | else |
2551 | resume_ptid = internal_resume_ptid (user_step); | |
d4db2f36 | 2552 | |
7f5ef605 PA |
2553 | if (execution_direction != EXEC_REVERSE |
2554 | && step && breakpoint_inserted_here_p (aspace, pc)) | |
b0f16a3e | 2555 | { |
372316f1 PA |
2556 | /* There are two cases where we currently need to step a |
2557 | breakpoint instruction when we have a signal to deliver: | |
2558 | ||
2559 | - See handle_signal_stop where we handle random signals that | |
2560 | could take out us out of the stepping range. Normally, in | |
2561 | that case we end up continuing (instead of stepping) over the | |
7f5ef605 PA |
2562 | signal handler with a breakpoint at PC, but there are cases |
2563 | where we should _always_ single-step, even if we have a | |
2564 | step-resume breakpoint, like when a software watchpoint is | |
2565 | set. Assuming single-stepping and delivering a signal at the | |
2566 | same time would takes us to the signal handler, then we could | |
2567 | have removed the breakpoint at PC to step over it. However, | |
2568 | some hardware step targets (like e.g., Mac OS) can't step | |
2569 | into signal handlers, and for those, we need to leave the | |
2570 | breakpoint at PC inserted, as otherwise if the handler | |
2571 | recurses and executes PC again, it'll miss the breakpoint. | |
2572 | So we leave the breakpoint inserted anyway, but we need to | |
2573 | record that we tried to step a breakpoint instruction, so | |
372316f1 PA |
2574 | that adjust_pc_after_break doesn't end up confused. |
2575 | ||
2576 | - In non-stop if we insert a breakpoint (e.g., a step-resume) | |
2577 | in one thread after another thread that was stepping had been | |
2578 | momentarily paused for a step-over. When we re-resume the | |
2579 | stepping thread, it may be resumed from that address with a | |
2580 | breakpoint that hasn't trapped yet. Seen with | |
2581 | gdb.threads/non-stop-fair-events.exp, on targets that don't | |
2582 | do displaced stepping. */ | |
2583 | ||
2584 | if (debug_infrun) | |
2585 | fprintf_unfiltered (gdb_stdlog, | |
2586 | "infrun: resume: [%s] stepped breakpoint\n", | |
a068643d | 2587 | target_pid_to_str (tp->ptid).c_str ()); |
7f5ef605 PA |
2588 | |
2589 | tp->stepped_breakpoint = 1; | |
2590 | ||
b0f16a3e SM |
2591 | /* Most targets can step a breakpoint instruction, thus |
2592 | executing it normally. But if this one cannot, just | |
2593 | continue and we will hit it anyway. */ | |
7f5ef605 | 2594 | if (gdbarch_cannot_step_breakpoint (gdbarch)) |
b0f16a3e SM |
2595 | step = 0; |
2596 | } | |
ef5cf84e | 2597 | |
b0f16a3e | 2598 | if (debug_displaced |
cb71640d | 2599 | && tp->control.trap_expected |
3fc8eb30 | 2600 | && use_displaced_stepping (tp) |
cb71640d | 2601 | && !step_over_info_valid_p ()) |
b0f16a3e | 2602 | { |
00431a78 | 2603 | struct regcache *resume_regcache = get_thread_regcache (tp); |
ac7936df | 2604 | struct gdbarch *resume_gdbarch = resume_regcache->arch (); |
b0f16a3e SM |
2605 | CORE_ADDR actual_pc = regcache_read_pc (resume_regcache); |
2606 | gdb_byte buf[4]; | |
2607 | ||
2608 | fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ", | |
2609 | paddress (resume_gdbarch, actual_pc)); | |
2610 | read_memory (actual_pc, buf, sizeof (buf)); | |
2611 | displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf)); | |
2612 | } | |
237fc4c9 | 2613 | |
b0f16a3e SM |
2614 | if (tp->control.may_range_step) |
2615 | { | |
2616 | /* If we're resuming a thread with the PC out of the step | |
2617 | range, then we're doing some nested/finer run control | |
2618 | operation, like stepping the thread out of the dynamic | |
2619 | linker or the displaced stepping scratch pad. We | |
2620 | shouldn't have allowed a range step then. */ | |
2621 | gdb_assert (pc_in_thread_step_range (pc, tp)); | |
2622 | } | |
c1e36e3e | 2623 | |
64ce06e4 | 2624 | do_target_resume (resume_ptid, step, sig); |
719546c4 | 2625 | tp->resumed = true; |
c906108c | 2626 | } |
71d378ae PA |
2627 | |
2628 | /* Resume the inferior. SIG is the signal to give the inferior | |
2629 | (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that | |
2630 | rolls back state on error. */ | |
2631 | ||
aff4e175 | 2632 | static void |
71d378ae PA |
2633 | resume (gdb_signal sig) |
2634 | { | |
a70b8144 | 2635 | try |
71d378ae PA |
2636 | { |
2637 | resume_1 (sig); | |
2638 | } | |
230d2906 | 2639 | catch (const gdb_exception &ex) |
71d378ae PA |
2640 | { |
2641 | /* If resuming is being aborted for any reason, delete any | |
2642 | single-step breakpoint resume_1 may have created, to avoid | |
2643 | confusing the following resumption, and to avoid leaving | |
2644 | single-step breakpoints perturbing other threads, in case | |
2645 | we're running in non-stop mode. */ | |
2646 | if (inferior_ptid != null_ptid) | |
2647 | delete_single_step_breakpoints (inferior_thread ()); | |
eedc3f4f | 2648 | throw; |
71d378ae | 2649 | } |
71d378ae PA |
2650 | } |
2651 | ||
c906108c | 2652 | \f |
237fc4c9 | 2653 | /* Proceeding. */ |
c906108c | 2654 | |
4c2f2a79 PA |
2655 | /* See infrun.h. */ |
2656 | ||
2657 | /* Counter that tracks number of user visible stops. This can be used | |
2658 | to tell whether a command has proceeded the inferior past the | |
2659 | current location. This allows e.g., inferior function calls in | |
2660 | breakpoint commands to not interrupt the command list. When the | |
2661 | call finishes successfully, the inferior is standing at the same | |
2662 | breakpoint as if nothing happened (and so we don't call | |
2663 | normal_stop). */ | |
2664 | static ULONGEST current_stop_id; | |
2665 | ||
2666 | /* See infrun.h. */ | |
2667 | ||
2668 | ULONGEST | |
2669 | get_stop_id (void) | |
2670 | { | |
2671 | return current_stop_id; | |
2672 | } | |
2673 | ||
2674 | /* Called when we report a user visible stop. */ | |
2675 | ||
2676 | static void | |
2677 | new_stop_id (void) | |
2678 | { | |
2679 | current_stop_id++; | |
2680 | } | |
2681 | ||
c906108c SS |
2682 | /* Clear out all variables saying what to do when inferior is continued. |
2683 | First do this, then set the ones you want, then call `proceed'. */ | |
2684 | ||
a7212384 UW |
2685 | static void |
2686 | clear_proceed_status_thread (struct thread_info *tp) | |
c906108c | 2687 | { |
a7212384 UW |
2688 | if (debug_infrun) |
2689 | fprintf_unfiltered (gdb_stdlog, | |
2690 | "infrun: clear_proceed_status_thread (%s)\n", | |
a068643d | 2691 | target_pid_to_str (tp->ptid).c_str ()); |
d6b48e9c | 2692 | |
372316f1 PA |
2693 | /* If we're starting a new sequence, then the previous finished |
2694 | single-step is no longer relevant. */ | |
2695 | if (tp->suspend.waitstatus_pending_p) | |
2696 | { | |
2697 | if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP) | |
2698 | { | |
2699 | if (debug_infrun) | |
2700 | fprintf_unfiltered (gdb_stdlog, | |
2701 | "infrun: clear_proceed_status: pending " | |
2702 | "event of %s was a finished step. " | |
2703 | "Discarding.\n", | |
a068643d | 2704 | target_pid_to_str (tp->ptid).c_str ()); |
372316f1 PA |
2705 | |
2706 | tp->suspend.waitstatus_pending_p = 0; | |
2707 | tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON; | |
2708 | } | |
2709 | else if (debug_infrun) | |
2710 | { | |
23fdd69e SM |
2711 | std::string statstr |
2712 | = target_waitstatus_to_string (&tp->suspend.waitstatus); | |
372316f1 | 2713 | |
372316f1 PA |
2714 | fprintf_unfiltered (gdb_stdlog, |
2715 | "infrun: clear_proceed_status_thread: thread %s " | |
2716 | "has pending wait status %s " | |
2717 | "(currently_stepping=%d).\n", | |
a068643d TT |
2718 | target_pid_to_str (tp->ptid).c_str (), |
2719 | statstr.c_str (), | |
372316f1 | 2720 | currently_stepping (tp)); |
372316f1 PA |
2721 | } |
2722 | } | |
2723 | ||
70509625 PA |
2724 | /* If this signal should not be seen by program, give it zero. |
2725 | Used for debugging signals. */ | |
2726 | if (!signal_pass_state (tp->suspend.stop_signal)) | |
2727 | tp->suspend.stop_signal = GDB_SIGNAL_0; | |
2728 | ||
46e3ed7f | 2729 | delete tp->thread_fsm; |
243a9253 PA |
2730 | tp->thread_fsm = NULL; |
2731 | ||
16c381f0 JK |
2732 | tp->control.trap_expected = 0; |
2733 | tp->control.step_range_start = 0; | |
2734 | tp->control.step_range_end = 0; | |
c1e36e3e | 2735 | tp->control.may_range_step = 0; |
16c381f0 JK |
2736 | tp->control.step_frame_id = null_frame_id; |
2737 | tp->control.step_stack_frame_id = null_frame_id; | |
2738 | tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE; | |
885eeb5b | 2739 | tp->control.step_start_function = NULL; |
a7212384 | 2740 | tp->stop_requested = 0; |
4e1c45ea | 2741 | |
16c381f0 | 2742 | tp->control.stop_step = 0; |
32400beb | 2743 | |
16c381f0 | 2744 | tp->control.proceed_to_finish = 0; |
414c69f7 | 2745 | |
856e7dd6 | 2746 | tp->control.stepping_command = 0; |
17b2616c | 2747 | |
a7212384 | 2748 | /* Discard any remaining commands or status from previous stop. */ |
16c381f0 | 2749 | bpstat_clear (&tp->control.stop_bpstat); |
a7212384 | 2750 | } |
32400beb | 2751 | |
a7212384 | 2752 | void |
70509625 | 2753 | clear_proceed_status (int step) |
a7212384 | 2754 | { |
f2665db5 MM |
2755 | /* With scheduler-locking replay, stop replaying other threads if we're |
2756 | not replaying the user-visible resume ptid. | |
2757 | ||
2758 | This is a convenience feature to not require the user to explicitly | |
2759 | stop replaying the other threads. We're assuming that the user's | |
2760 | intent is to resume tracing the recorded process. */ | |
2761 | if (!non_stop && scheduler_mode == schedlock_replay | |
2762 | && target_record_is_replaying (minus_one_ptid) | |
2763 | && !target_record_will_replay (user_visible_resume_ptid (step), | |
2764 | execution_direction)) | |
2765 | target_record_stop_replaying (); | |
2766 | ||
08036331 | 2767 | if (!non_stop && inferior_ptid != null_ptid) |
6c95b8df | 2768 | { |
08036331 | 2769 | ptid_t resume_ptid = user_visible_resume_ptid (step); |
5b6d1e4f PA |
2770 | process_stratum_target *resume_target |
2771 | = user_visible_resume_target (resume_ptid); | |
70509625 PA |
2772 | |
2773 | /* In all-stop mode, delete the per-thread status of all threads | |
2774 | we're about to resume, implicitly and explicitly. */ | |
5b6d1e4f | 2775 | for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid)) |
08036331 | 2776 | clear_proceed_status_thread (tp); |
6c95b8df PA |
2777 | } |
2778 | ||
d7e15655 | 2779 | if (inferior_ptid != null_ptid) |
a7212384 UW |
2780 | { |
2781 | struct inferior *inferior; | |
2782 | ||
2783 | if (non_stop) | |
2784 | { | |
6c95b8df PA |
2785 | /* If in non-stop mode, only delete the per-thread status of |
2786 | the current thread. */ | |
a7212384 UW |
2787 | clear_proceed_status_thread (inferior_thread ()); |
2788 | } | |
6c95b8df | 2789 | |
d6b48e9c | 2790 | inferior = current_inferior (); |
16c381f0 | 2791 | inferior->control.stop_soon = NO_STOP_QUIETLY; |
4e1c45ea PA |
2792 | } |
2793 | ||
76727919 | 2794 | gdb::observers::about_to_proceed.notify (); |
c906108c SS |
2795 | } |
2796 | ||
99619bea PA |
2797 | /* Returns true if TP is still stopped at a breakpoint that needs |
2798 | stepping-over in order to make progress. If the breakpoint is gone | |
2799 | meanwhile, we can skip the whole step-over dance. */ | |
ea67f13b DJ |
2800 | |
2801 | static int | |
6c4cfb24 | 2802 | thread_still_needs_step_over_bp (struct thread_info *tp) |
99619bea PA |
2803 | { |
2804 | if (tp->stepping_over_breakpoint) | |
2805 | { | |
00431a78 | 2806 | struct regcache *regcache = get_thread_regcache (tp); |
99619bea | 2807 | |
a01bda52 | 2808 | if (breakpoint_here_p (regcache->aspace (), |
af48d08f PA |
2809 | regcache_read_pc (regcache)) |
2810 | == ordinary_breakpoint_here) | |
99619bea PA |
2811 | return 1; |
2812 | ||
2813 | tp->stepping_over_breakpoint = 0; | |
2814 | } | |
2815 | ||
2816 | return 0; | |
2817 | } | |
2818 | ||
6c4cfb24 PA |
2819 | /* Check whether thread TP still needs to start a step-over in order |
2820 | to make progress when resumed. Returns an bitwise or of enum | |
2821 | step_over_what bits, indicating what needs to be stepped over. */ | |
2822 | ||
8d297bbf | 2823 | static step_over_what |
6c4cfb24 PA |
2824 | thread_still_needs_step_over (struct thread_info *tp) |
2825 | { | |
8d297bbf | 2826 | step_over_what what = 0; |
6c4cfb24 PA |
2827 | |
2828 | if (thread_still_needs_step_over_bp (tp)) | |
2829 | what |= STEP_OVER_BREAKPOINT; | |
2830 | ||
2831 | if (tp->stepping_over_watchpoint | |
2832 | && !target_have_steppable_watchpoint) | |
2833 | what |= STEP_OVER_WATCHPOINT; | |
2834 | ||
2835 | return what; | |
2836 | } | |
2837 | ||
483805cf PA |
2838 | /* Returns true if scheduler locking applies. STEP indicates whether |
2839 | we're about to do a step/next-like command to a thread. */ | |
2840 | ||
2841 | static int | |
856e7dd6 | 2842 | schedlock_applies (struct thread_info *tp) |
483805cf PA |
2843 | { |
2844 | return (scheduler_mode == schedlock_on | |
2845 | || (scheduler_mode == schedlock_step | |
f2665db5 MM |
2846 | && tp->control.stepping_command) |
2847 | || (scheduler_mode == schedlock_replay | |
2848 | && target_record_will_replay (minus_one_ptid, | |
2849 | execution_direction))); | |
483805cf PA |
2850 | } |
2851 | ||
5b6d1e4f PA |
2852 | /* Calls target_commit_resume on all targets. */ |
2853 | ||
2854 | static void | |
2855 | commit_resume_all_targets () | |
2856 | { | |
2857 | scoped_restore_current_thread restore_thread; | |
2858 | ||
2859 | /* Map between process_target and a representative inferior. This | |
2860 | is to avoid committing a resume in the same target more than | |
2861 | once. Resumptions must be idempotent, so this is an | |
2862 | optimization. */ | |
2863 | std::unordered_map<process_stratum_target *, inferior *> conn_inf; | |
2864 | ||
2865 | for (inferior *inf : all_non_exited_inferiors ()) | |
2866 | if (inf->has_execution ()) | |
2867 | conn_inf[inf->process_target ()] = inf; | |
2868 | ||
2869 | for (const auto &ci : conn_inf) | |
2870 | { | |
2871 | inferior *inf = ci.second; | |
2872 | switch_to_inferior_no_thread (inf); | |
2873 | target_commit_resume (); | |
2874 | } | |
2875 | } | |
2876 | ||
2f4fcf00 PA |
2877 | /* Check that all the targets we're about to resume are in non-stop |
2878 | mode. Ideally, we'd only care whether all targets support | |
2879 | target-async, but we're not there yet. E.g., stop_all_threads | |
2880 | doesn't know how to handle all-stop targets. Also, the remote | |
2881 | protocol in all-stop mode is synchronous, irrespective of | |
2882 | target-async, which means that things like a breakpoint re-set | |
2883 | triggered by one target would try to read memory from all targets | |
2884 | and fail. */ | |
2885 | ||
2886 | static void | |
2887 | check_multi_target_resumption (process_stratum_target *resume_target) | |
2888 | { | |
2889 | if (!non_stop && resume_target == nullptr) | |
2890 | { | |
2891 | scoped_restore_current_thread restore_thread; | |
2892 | ||
2893 | /* This is used to track whether we're resuming more than one | |
2894 | target. */ | |
2895 | process_stratum_target *first_connection = nullptr; | |
2896 | ||
2897 | /* The first inferior we see with a target that does not work in | |
2898 | always-non-stop mode. */ | |
2899 | inferior *first_not_non_stop = nullptr; | |
2900 | ||
2901 | for (inferior *inf : all_non_exited_inferiors (resume_target)) | |
2902 | { | |
2903 | switch_to_inferior_no_thread (inf); | |
2904 | ||
2905 | if (!target_has_execution) | |
2906 | continue; | |
2907 | ||
2908 | process_stratum_target *proc_target | |
2909 | = current_inferior ()->process_target(); | |
2910 | ||
2911 | if (!target_is_non_stop_p ()) | |
2912 | first_not_non_stop = inf; | |
2913 | ||
2914 | if (first_connection == nullptr) | |
2915 | first_connection = proc_target; | |
2916 | else if (first_connection != proc_target | |
2917 | && first_not_non_stop != nullptr) | |
2918 | { | |
2919 | switch_to_inferior_no_thread (first_not_non_stop); | |
2920 | ||
2921 | proc_target = current_inferior ()->process_target(); | |
2922 | ||
2923 | error (_("Connection %d (%s) does not support " | |
2924 | "multi-target resumption."), | |
2925 | proc_target->connection_number, | |
2926 | make_target_connection_string (proc_target).c_str ()); | |
2927 | } | |
2928 | } | |
2929 | } | |
2930 | } | |
2931 | ||
c906108c SS |
2932 | /* Basic routine for continuing the program in various fashions. |
2933 | ||
2934 | ADDR is the address to resume at, or -1 for resume where stopped. | |
aff4e175 AB |
2935 | SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none, |
2936 | or GDB_SIGNAL_DEFAULT for act according to how it stopped. | |
c906108c SS |
2937 | |
2938 | You should call clear_proceed_status before calling proceed. */ | |
2939 | ||
2940 | void | |
64ce06e4 | 2941 | proceed (CORE_ADDR addr, enum gdb_signal siggnal) |
c906108c | 2942 | { |
e58b0e63 PA |
2943 | struct regcache *regcache; |
2944 | struct gdbarch *gdbarch; | |
e58b0e63 | 2945 | CORE_ADDR pc; |
4d9d9d04 PA |
2946 | struct execution_control_state ecss; |
2947 | struct execution_control_state *ecs = &ecss; | |
4d9d9d04 | 2948 | int started; |
c906108c | 2949 | |
e58b0e63 PA |
2950 | /* If we're stopped at a fork/vfork, follow the branch set by the |
2951 | "set follow-fork-mode" command; otherwise, we'll just proceed | |
2952 | resuming the current thread. */ | |
2953 | if (!follow_fork ()) | |
2954 | { | |
2955 | /* The target for some reason decided not to resume. */ | |
2956 | normal_stop (); | |
f148b27e PA |
2957 | if (target_can_async_p ()) |
2958 | inferior_event_handler (INF_EXEC_COMPLETE, NULL); | |
e58b0e63 PA |
2959 | return; |
2960 | } | |
2961 | ||
842951eb PA |
2962 | /* We'll update this if & when we switch to a new thread. */ |
2963 | previous_inferior_ptid = inferior_ptid; | |
2964 | ||
e58b0e63 | 2965 | regcache = get_current_regcache (); |
ac7936df | 2966 | gdbarch = regcache->arch (); |
8b86c959 YQ |
2967 | const address_space *aspace = regcache->aspace (); |
2968 | ||
e58b0e63 | 2969 | pc = regcache_read_pc (regcache); |
08036331 | 2970 | thread_info *cur_thr = inferior_thread (); |
e58b0e63 | 2971 | |
99619bea | 2972 | /* Fill in with reasonable starting values. */ |
08036331 | 2973 | init_thread_stepping_state (cur_thr); |
99619bea | 2974 | |
08036331 | 2975 | gdb_assert (!thread_is_in_step_over_chain (cur_thr)); |
c2829269 | 2976 | |
5b6d1e4f PA |
2977 | ptid_t resume_ptid |
2978 | = user_visible_resume_ptid (cur_thr->control.stepping_command); | |
2979 | process_stratum_target *resume_target | |
2980 | = user_visible_resume_target (resume_ptid); | |
2981 | ||
2f4fcf00 PA |
2982 | check_multi_target_resumption (resume_target); |
2983 | ||
2acceee2 | 2984 | if (addr == (CORE_ADDR) -1) |
c906108c | 2985 | { |
08036331 | 2986 | if (pc == cur_thr->suspend.stop_pc |
af48d08f | 2987 | && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here |
b2175913 | 2988 | && execution_direction != EXEC_REVERSE) |
3352ef37 AC |
2989 | /* There is a breakpoint at the address we will resume at, |
2990 | step one instruction before inserting breakpoints so that | |
2991 | we do not stop right away (and report a second hit at this | |
b2175913 MS |
2992 | breakpoint). |
2993 | ||
2994 | Note, we don't do this in reverse, because we won't | |
2995 | actually be executing the breakpoint insn anyway. | |
2996 | We'll be (un-)executing the previous instruction. */ | |
08036331 | 2997 | cur_thr->stepping_over_breakpoint = 1; |
515630c5 UW |
2998 | else if (gdbarch_single_step_through_delay_p (gdbarch) |
2999 | && gdbarch_single_step_through_delay (gdbarch, | |
3000 | get_current_frame ())) | |
3352ef37 AC |
3001 | /* We stepped onto an instruction that needs to be stepped |
3002 | again before re-inserting the breakpoint, do so. */ | |
08036331 | 3003 | cur_thr->stepping_over_breakpoint = 1; |
c906108c SS |
3004 | } |
3005 | else | |
3006 | { | |
515630c5 | 3007 | regcache_write_pc (regcache, addr); |
c906108c SS |
3008 | } |
3009 | ||
70509625 | 3010 | if (siggnal != GDB_SIGNAL_DEFAULT) |
08036331 | 3011 | cur_thr->suspend.stop_signal = siggnal; |
70509625 | 3012 | |
4d9d9d04 PA |
3013 | /* If an exception is thrown from this point on, make sure to |
3014 | propagate GDB's knowledge of the executing state to the | |
3015 | frontend/user running state. */ | |
5b6d1e4f | 3016 | scoped_finish_thread_state finish_state (resume_target, resume_ptid); |
4d9d9d04 PA |
3017 | |
3018 | /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer | |
3019 | threads (e.g., we might need to set threads stepping over | |
3020 | breakpoints first), from the user/frontend's point of view, all | |
3021 | threads in RESUME_PTID are now running. Unless we're calling an | |
3022 | inferior function, as in that case we pretend the inferior | |
3023 | doesn't run at all. */ | |
08036331 | 3024 | if (!cur_thr->control.in_infcall) |
719546c4 | 3025 | set_running (resume_target, resume_ptid, true); |
17b2616c | 3026 | |
527159b7 | 3027 | if (debug_infrun) |
8a9de0e4 | 3028 | fprintf_unfiltered (gdb_stdlog, |
64ce06e4 | 3029 | "infrun: proceed (addr=%s, signal=%s)\n", |
c9737c08 | 3030 | paddress (gdbarch, addr), |
64ce06e4 | 3031 | gdb_signal_to_symbol_string (siggnal)); |
527159b7 | 3032 | |
4d9d9d04 PA |
3033 | annotate_starting (); |
3034 | ||
3035 | /* Make sure that output from GDB appears before output from the | |
3036 | inferior. */ | |
3037 | gdb_flush (gdb_stdout); | |
3038 | ||
d930703d PA |
3039 | /* Since we've marked the inferior running, give it the terminal. A |
3040 | QUIT/Ctrl-C from here on is forwarded to the target (which can | |
3041 | still detect attempts to unblock a stuck connection with repeated | |
3042 | Ctrl-C from within target_pass_ctrlc). */ | |
3043 | target_terminal::inferior (); | |
3044 | ||
4d9d9d04 PA |
3045 | /* In a multi-threaded task we may select another thread and |
3046 | then continue or step. | |
3047 | ||
3048 | But if a thread that we're resuming had stopped at a breakpoint, | |
3049 | it will immediately cause another breakpoint stop without any | |
3050 | execution (i.e. it will report a breakpoint hit incorrectly). So | |
3051 | we must step over it first. | |
3052 | ||
3053 | Look for threads other than the current (TP) that reported a | |
3054 | breakpoint hit and haven't been resumed yet since. */ | |
3055 | ||
3056 | /* If scheduler locking applies, we can avoid iterating over all | |
3057 | threads. */ | |
08036331 | 3058 | if (!non_stop && !schedlock_applies (cur_thr)) |
94cc34af | 3059 | { |
5b6d1e4f PA |
3060 | for (thread_info *tp : all_non_exited_threads (resume_target, |
3061 | resume_ptid)) | |
08036331 | 3062 | { |
f3f8ece4 PA |
3063 | switch_to_thread_no_regs (tp); |
3064 | ||
4d9d9d04 PA |
3065 | /* Ignore the current thread here. It's handled |
3066 | afterwards. */ | |
08036331 | 3067 | if (tp == cur_thr) |
4d9d9d04 | 3068 | continue; |
c906108c | 3069 | |
4d9d9d04 PA |
3070 | if (!thread_still_needs_step_over (tp)) |
3071 | continue; | |
3072 | ||
3073 | gdb_assert (!thread_is_in_step_over_chain (tp)); | |
c906108c | 3074 | |
99619bea PA |
3075 | if (debug_infrun) |
3076 | fprintf_unfiltered (gdb_stdlog, | |
3077 | "infrun: need to step-over [%s] first\n", | |
a068643d | 3078 | target_pid_to_str (tp->ptid).c_str ()); |
99619bea | 3079 | |
4d9d9d04 | 3080 | thread_step_over_chain_enqueue (tp); |
2adfaa28 | 3081 | } |
f3f8ece4 PA |
3082 | |
3083 | switch_to_thread (cur_thr); | |
30852783 UW |
3084 | } |
3085 | ||
4d9d9d04 PA |
3086 | /* Enqueue the current thread last, so that we move all other |
3087 | threads over their breakpoints first. */ | |
08036331 PA |
3088 | if (cur_thr->stepping_over_breakpoint) |
3089 | thread_step_over_chain_enqueue (cur_thr); | |
30852783 | 3090 | |
4d9d9d04 PA |
3091 | /* If the thread isn't started, we'll still need to set its prev_pc, |
3092 | so that switch_back_to_stepped_thread knows the thread hasn't | |
3093 | advanced. Must do this before resuming any thread, as in | |
3094 | all-stop/remote, once we resume we can't send any other packet | |
3095 | until the target stops again. */ | |
08036331 | 3096 | cur_thr->prev_pc = regcache_read_pc (regcache); |
99619bea | 3097 | |
a9bc57b9 TT |
3098 | { |
3099 | scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume (); | |
85ad3aaf | 3100 | |
a9bc57b9 | 3101 | started = start_step_over (); |
c906108c | 3102 | |
a9bc57b9 TT |
3103 | if (step_over_info_valid_p ()) |
3104 | { | |
3105 | /* Either this thread started a new in-line step over, or some | |
3106 | other thread was already doing one. In either case, don't | |
3107 | resume anything else until the step-over is finished. */ | |
3108 | } | |
3109 | else if (started && !target_is_non_stop_p ()) | |
3110 | { | |
3111 | /* A new displaced stepping sequence was started. In all-stop, | |
3112 | we can't talk to the target anymore until it next stops. */ | |
3113 | } | |
3114 | else if (!non_stop && target_is_non_stop_p ()) | |
3115 | { | |
3116 | /* In all-stop, but the target is always in non-stop mode. | |
3117 | Start all other threads that are implicitly resumed too. */ | |
5b6d1e4f PA |
3118 | for (thread_info *tp : all_non_exited_threads (resume_target, |
3119 | resume_ptid)) | |
3120 | { | |
3121 | switch_to_thread_no_regs (tp); | |
3122 | ||
f9fac3c8 SM |
3123 | if (!tp->inf->has_execution ()) |
3124 | { | |
3125 | if (debug_infrun) | |
3126 | fprintf_unfiltered (gdb_stdlog, | |
3127 | "infrun: proceed: [%s] target has " | |
3128 | "no execution\n", | |
3129 | target_pid_to_str (tp->ptid).c_str ()); | |
3130 | continue; | |
3131 | } | |
f3f8ece4 | 3132 | |
f9fac3c8 SM |
3133 | if (tp->resumed) |
3134 | { | |
3135 | if (debug_infrun) | |
3136 | fprintf_unfiltered (gdb_stdlog, | |
3137 | "infrun: proceed: [%s] resumed\n", | |
3138 | target_pid_to_str (tp->ptid).c_str ()); | |
3139 | gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p); | |
3140 | continue; | |
3141 | } | |
fbea99ea | 3142 | |
f9fac3c8 SM |
3143 | if (thread_is_in_step_over_chain (tp)) |
3144 | { | |
3145 | if (debug_infrun) | |
3146 | fprintf_unfiltered (gdb_stdlog, | |
3147 | "infrun: proceed: [%s] needs step-over\n", | |
3148 | target_pid_to_str (tp->ptid).c_str ()); | |
3149 | continue; | |
3150 | } | |
fbea99ea | 3151 | |
f9fac3c8 SM |
3152 | if (debug_infrun) |
3153 | fprintf_unfiltered (gdb_stdlog, | |
3154 | "infrun: proceed: resuming %s\n", | |
3155 | target_pid_to_str (tp->ptid).c_str ()); | |
fbea99ea | 3156 | |
f9fac3c8 SM |
3157 | reset_ecs (ecs, tp); |
3158 | switch_to_thread (tp); | |
3159 | keep_going_pass_signal (ecs); | |
3160 | if (!ecs->wait_some_more) | |
3161 | error (_("Command aborted.")); | |
3162 | } | |
a9bc57b9 | 3163 | } |
08036331 | 3164 | else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr)) |
a9bc57b9 TT |
3165 | { |
3166 | /* The thread wasn't started, and isn't queued, run it now. */ | |
08036331 PA |
3167 | reset_ecs (ecs, cur_thr); |
3168 | switch_to_thread (cur_thr); | |
a9bc57b9 TT |
3169 | keep_going_pass_signal (ecs); |
3170 | if (!ecs->wait_some_more) | |
3171 | error (_("Command aborted.")); | |
3172 | } | |
3173 | } | |
c906108c | 3174 | |
5b6d1e4f | 3175 | commit_resume_all_targets (); |
85ad3aaf | 3176 | |
731f534f | 3177 | finish_state.release (); |
c906108c | 3178 | |
873657b9 PA |
3179 | /* If we've switched threads above, switch back to the previously |
3180 | current thread. We don't want the user to see a different | |
3181 | selected thread. */ | |
3182 | switch_to_thread (cur_thr); | |
3183 | ||
0b333c5e PA |
3184 | /* Tell the event loop to wait for it to stop. If the target |
3185 | supports asynchronous execution, it'll do this from within | |
3186 | target_resume. */ | |
362646f5 | 3187 | if (!target_can_async_p ()) |
0b333c5e | 3188 | mark_async_event_handler (infrun_async_inferior_event_token); |
c906108c | 3189 | } |
c906108c SS |
3190 | \f |
3191 | ||
3192 | /* Start remote-debugging of a machine over a serial link. */ | |
96baa820 | 3193 | |
c906108c | 3194 | void |
8621d6a9 | 3195 | start_remote (int from_tty) |
c906108c | 3196 | { |
5b6d1e4f PA |
3197 | inferior *inf = current_inferior (); |
3198 | inf->control.stop_soon = STOP_QUIETLY_REMOTE; | |
43ff13b4 | 3199 | |
1777feb0 | 3200 | /* Always go on waiting for the target, regardless of the mode. */ |
6426a772 | 3201 | /* FIXME: cagney/1999-09-23: At present it isn't possible to |
7e73cedf | 3202 | indicate to wait_for_inferior that a target should timeout if |
6426a772 JM |
3203 | nothing is returned (instead of just blocking). Because of this, |
3204 | targets expecting an immediate response need to, internally, set | |
3205 | things up so that the target_wait() is forced to eventually | |
1777feb0 | 3206 | timeout. */ |
6426a772 JM |
3207 | /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to |
3208 | differentiate to its caller what the state of the target is after | |
3209 | the initial open has been performed. Here we're assuming that | |
3210 | the target has stopped. It should be possible to eventually have | |
3211 | target_open() return to the caller an indication that the target | |
3212 | is currently running and GDB state should be set to the same as | |
1777feb0 | 3213 | for an async run. */ |
5b6d1e4f | 3214 | wait_for_inferior (inf); |
8621d6a9 DJ |
3215 | |
3216 | /* Now that the inferior has stopped, do any bookkeeping like | |
3217 | loading shared libraries. We want to do this before normal_stop, | |
3218 | so that the displayed frame is up to date. */ | |
8b88a78e | 3219 | post_create_inferior (current_top_target (), from_tty); |
8621d6a9 | 3220 | |
6426a772 | 3221 | normal_stop (); |
c906108c SS |
3222 | } |
3223 | ||
3224 | /* Initialize static vars when a new inferior begins. */ | |
3225 | ||
3226 | void | |
96baa820 | 3227 | init_wait_for_inferior (void) |
c906108c SS |
3228 | { |
3229 | /* These are meaningless until the first time through wait_for_inferior. */ | |
c906108c | 3230 | |
c906108c SS |
3231 | breakpoint_init_inferior (inf_starting); |
3232 | ||
70509625 | 3233 | clear_proceed_status (0); |
9f976b41 | 3234 | |
ab1ddbcf | 3235 | nullify_last_target_wait_ptid (); |
237fc4c9 | 3236 | |
842951eb | 3237 | previous_inferior_ptid = inferior_ptid; |
c906108c | 3238 | } |
237fc4c9 | 3239 | |
c906108c | 3240 | \f |
488f131b | 3241 | |
ec9499be | 3242 | static void handle_inferior_event (struct execution_control_state *ecs); |
cd0fc7c3 | 3243 | |
568d6575 UW |
3244 | static void handle_step_into_function (struct gdbarch *gdbarch, |
3245 | struct execution_control_state *ecs); | |
3246 | static void handle_step_into_function_backward (struct gdbarch *gdbarch, | |
3247 | struct execution_control_state *ecs); | |
4f5d7f63 | 3248 | static void handle_signal_stop (struct execution_control_state *ecs); |
186c406b | 3249 | static void check_exception_resume (struct execution_control_state *, |
28106bc2 | 3250 | struct frame_info *); |
611c83ae | 3251 | |
bdc36728 | 3252 | static void end_stepping_range (struct execution_control_state *ecs); |
22bcd14b | 3253 | static void stop_waiting (struct execution_control_state *ecs); |
d4f3574e | 3254 | static void keep_going (struct execution_control_state *ecs); |
94c57d6a | 3255 | static void process_event_stop_test (struct execution_control_state *ecs); |
c447ac0b | 3256 | static int switch_back_to_stepped_thread (struct execution_control_state *ecs); |
104c1213 | 3257 | |
252fbfc8 PA |
3258 | /* This function is attached as a "thread_stop_requested" observer. |
3259 | Cleanup local state that assumed the PTID was to be resumed, and | |
3260 | report the stop to the frontend. */ | |
3261 | ||
2c0b251b | 3262 | static void |
252fbfc8 PA |
3263 | infrun_thread_stop_requested (ptid_t ptid) |
3264 | { | |
5b6d1e4f PA |
3265 | process_stratum_target *curr_target = current_inferior ()->process_target (); |
3266 | ||
c65d6b55 PA |
3267 | /* PTID was requested to stop. If the thread was already stopped, |
3268 | but the user/frontend doesn't know about that yet (e.g., the | |
3269 | thread had been temporarily paused for some step-over), set up | |
3270 | for reporting the stop now. */ | |
5b6d1e4f | 3271 | for (thread_info *tp : all_threads (curr_target, ptid)) |
08036331 PA |
3272 | { |
3273 | if (tp->state != THREAD_RUNNING) | |
3274 | continue; | |
3275 | if (tp->executing) | |
3276 | continue; | |
c65d6b55 | 3277 | |
08036331 PA |
3278 | /* Remove matching threads from the step-over queue, so |
3279 | start_step_over doesn't try to resume them | |
3280 | automatically. */ | |
3281 | if (thread_is_in_step_over_chain (tp)) | |
3282 | thread_step_over_chain_remove (tp); | |
c65d6b55 | 3283 | |
08036331 PA |
3284 | /* If the thread is stopped, but the user/frontend doesn't |
3285 | know about that yet, queue a pending event, as if the | |
3286 | thread had just stopped now. Unless the thread already had | |
3287 | a pending event. */ | |
3288 | if (!tp->suspend.waitstatus_pending_p) | |
3289 | { | |
3290 | tp->suspend.waitstatus_pending_p = 1; | |
3291 | tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED; | |
3292 | tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0; | |
3293 | } | |
c65d6b55 | 3294 | |
08036331 PA |
3295 | /* Clear the inline-frame state, since we're re-processing the |
3296 | stop. */ | |
5b6d1e4f | 3297 | clear_inline_frame_state (tp); |
c65d6b55 | 3298 | |
08036331 PA |
3299 | /* If this thread was paused because some other thread was |
3300 | doing an inline-step over, let that finish first. Once | |
3301 | that happens, we'll restart all threads and consume pending | |
3302 | stop events then. */ | |
3303 | if (step_over_info_valid_p ()) | |
3304 | continue; | |
3305 | ||
3306 | /* Otherwise we can process the (new) pending event now. Set | |
3307 | it so this pending event is considered by | |
3308 | do_target_wait. */ | |
719546c4 | 3309 | tp->resumed = true; |
08036331 | 3310 | } |
252fbfc8 PA |
3311 | } |
3312 | ||
a07daef3 PA |
3313 | static void |
3314 | infrun_thread_thread_exit (struct thread_info *tp, int silent) | |
3315 | { | |
5b6d1e4f PA |
3316 | if (target_last_proc_target == tp->inf->process_target () |
3317 | && target_last_wait_ptid == tp->ptid) | |
a07daef3 PA |
3318 | nullify_last_target_wait_ptid (); |
3319 | } | |
3320 | ||
0cbcdb96 PA |
3321 | /* Delete the step resume, single-step and longjmp/exception resume |
3322 | breakpoints of TP. */ | |
4e1c45ea | 3323 | |
0cbcdb96 PA |
3324 | static void |
3325 | delete_thread_infrun_breakpoints (struct thread_info *tp) | |
4e1c45ea | 3326 | { |
0cbcdb96 PA |
3327 | delete_step_resume_breakpoint (tp); |
3328 | delete_exception_resume_breakpoint (tp); | |
34b7e8a6 | 3329 | delete_single_step_breakpoints (tp); |
4e1c45ea PA |
3330 | } |
3331 | ||
0cbcdb96 PA |
3332 | /* If the target still has execution, call FUNC for each thread that |
3333 | just stopped. In all-stop, that's all the non-exited threads; in | |
3334 | non-stop, that's the current thread, only. */ | |
3335 | ||
3336 | typedef void (*for_each_just_stopped_thread_callback_func) | |
3337 | (struct thread_info *tp); | |
4e1c45ea PA |
3338 | |
3339 | static void | |
0cbcdb96 | 3340 | for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func) |
4e1c45ea | 3341 | { |
d7e15655 | 3342 | if (!target_has_execution || inferior_ptid == null_ptid) |
4e1c45ea PA |
3343 | return; |
3344 | ||
fbea99ea | 3345 | if (target_is_non_stop_p ()) |
4e1c45ea | 3346 | { |
0cbcdb96 PA |
3347 | /* If in non-stop mode, only the current thread stopped. */ |
3348 | func (inferior_thread ()); | |
4e1c45ea PA |
3349 | } |
3350 | else | |
0cbcdb96 | 3351 | { |
0cbcdb96 | 3352 | /* In all-stop mode, all threads have stopped. */ |
08036331 PA |
3353 | for (thread_info *tp : all_non_exited_threads ()) |
3354 | func (tp); | |
0cbcdb96 PA |
3355 | } |
3356 | } | |
3357 | ||
3358 | /* Delete the step resume and longjmp/exception resume breakpoints of | |
3359 | the threads that just stopped. */ | |
3360 | ||
3361 | static void | |
3362 | delete_just_stopped_threads_infrun_breakpoints (void) | |
3363 | { | |
3364 | for_each_just_stopped_thread (delete_thread_infrun_breakpoints); | |
34b7e8a6 PA |
3365 | } |
3366 | ||
3367 | /* Delete the single-step breakpoints of the threads that just | |
3368 | stopped. */ | |
7c16b83e | 3369 | |
34b7e8a6 PA |
3370 | static void |
3371 | delete_just_stopped_threads_single_step_breakpoints (void) | |
3372 | { | |
3373 | for_each_just_stopped_thread (delete_single_step_breakpoints); | |
4e1c45ea PA |
3374 | } |
3375 | ||
221e1a37 | 3376 | /* See infrun.h. */ |
223698f8 | 3377 | |
221e1a37 | 3378 | void |
223698f8 DE |
3379 | print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid, |
3380 | const struct target_waitstatus *ws) | |
3381 | { | |
23fdd69e | 3382 | std::string status_string = target_waitstatus_to_string (ws); |
d7e74731 | 3383 | string_file stb; |
223698f8 DE |
3384 | |
3385 | /* The text is split over several lines because it was getting too long. | |
3386 | Call fprintf_unfiltered (gdb_stdlog) once so that the text is still | |
3387 | output as a unit; we want only one timestamp printed if debug_timestamp | |
3388 | is set. */ | |
3389 | ||
d7e74731 | 3390 | stb.printf ("infrun: target_wait (%d.%ld.%ld", |
e99b03dc | 3391 | waiton_ptid.pid (), |
e38504b3 | 3392 | waiton_ptid.lwp (), |
cc6bcb54 | 3393 | waiton_ptid.tid ()); |
e99b03dc | 3394 | if (waiton_ptid.pid () != -1) |
a068643d | 3395 | stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ()); |
d7e74731 PA |
3396 | stb.printf (", status) =\n"); |
3397 | stb.printf ("infrun: %d.%ld.%ld [%s],\n", | |
e99b03dc | 3398 | result_ptid.pid (), |
e38504b3 | 3399 | result_ptid.lwp (), |
cc6bcb54 | 3400 | result_ptid.tid (), |
a068643d | 3401 | target_pid_to_str (result_ptid).c_str ()); |
23fdd69e | 3402 | stb.printf ("infrun: %s\n", status_string.c_str ()); |
223698f8 DE |
3403 | |
3404 | /* This uses %s in part to handle %'s in the text, but also to avoid | |
3405 | a gcc error: the format attribute requires a string literal. */ | |
d7e74731 | 3406 | fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ()); |
223698f8 DE |
3407 | } |
3408 | ||
372316f1 PA |
3409 | /* Select a thread at random, out of those which are resumed and have |
3410 | had events. */ | |
3411 | ||
3412 | static struct thread_info * | |
5b6d1e4f | 3413 | random_pending_event_thread (inferior *inf, ptid_t waiton_ptid) |
372316f1 | 3414 | { |
372316f1 | 3415 | int num_events = 0; |
08036331 | 3416 | |
5b6d1e4f | 3417 | auto has_event = [&] (thread_info *tp) |
08036331 | 3418 | { |
5b6d1e4f PA |
3419 | return (tp->ptid.matches (waiton_ptid) |
3420 | && tp->resumed | |
08036331 PA |
3421 | && tp->suspend.waitstatus_pending_p); |
3422 | }; | |
372316f1 PA |
3423 | |
3424 | /* First see how many events we have. Count only resumed threads | |
3425 | that have an event pending. */ | |
5b6d1e4f | 3426 | for (thread_info *tp : inf->non_exited_threads ()) |
08036331 | 3427 | if (has_event (tp)) |
372316f1 PA |
3428 | num_events++; |
3429 | ||
3430 | if (num_events == 0) | |
3431 | return NULL; | |
3432 | ||
3433 | /* Now randomly pick a thread out of those that have had events. */ | |
08036331 PA |
3434 | int random_selector = (int) ((num_events * (double) rand ()) |
3435 | / (RAND_MAX + 1.0)); | |
372316f1 PA |
3436 | |
3437 | if (debug_infrun && num_events > 1) | |
3438 | fprintf_unfiltered (gdb_stdlog, | |
3439 | "infrun: Found %d events, selecting #%d\n", | |
3440 | num_events, random_selector); | |
3441 | ||
3442 | /* Select the Nth thread that has had an event. */ | |
5b6d1e4f | 3443 | for (thread_info *tp : inf->non_exited_threads ()) |
08036331 | 3444 | if (has_event (tp)) |
372316f1 | 3445 | if (random_selector-- == 0) |
08036331 | 3446 | return tp; |
372316f1 | 3447 | |
08036331 | 3448 | gdb_assert_not_reached ("event thread not found"); |
372316f1 PA |
3449 | } |
3450 | ||
3451 | /* Wrapper for target_wait that first checks whether threads have | |
3452 | pending statuses to report before actually asking the target for | |
5b6d1e4f PA |
3453 | more events. INF is the inferior we're using to call target_wait |
3454 | on. */ | |
372316f1 PA |
3455 | |
3456 | static ptid_t | |
5b6d1e4f PA |
3457 | do_target_wait_1 (inferior *inf, ptid_t ptid, |
3458 | target_waitstatus *status, int options) | |
372316f1 PA |
3459 | { |
3460 | ptid_t event_ptid; | |
3461 | struct thread_info *tp; | |
3462 | ||
3463 | /* First check if there is a resumed thread with a wait status | |
3464 | pending. */ | |
d7e15655 | 3465 | if (ptid == minus_one_ptid || ptid.is_pid ()) |
372316f1 | 3466 | { |
5b6d1e4f | 3467 | tp = random_pending_event_thread (inf, ptid); |
372316f1 PA |
3468 | } |
3469 | else | |
3470 | { | |
3471 | if (debug_infrun) | |
3472 | fprintf_unfiltered (gdb_stdlog, | |
3473 | "infrun: Waiting for specific thread %s.\n", | |
a068643d | 3474 | target_pid_to_str (ptid).c_str ()); |
372316f1 PA |
3475 | |
3476 | /* We have a specific thread to check. */ | |
5b6d1e4f | 3477 | tp = find_thread_ptid (inf, ptid); |
372316f1 PA |
3478 | gdb_assert (tp != NULL); |
3479 | if (!tp->suspend.waitstatus_pending_p) | |
3480 | tp = NULL; | |
3481 | } | |
3482 | ||
3483 | if (tp != NULL | |
3484 | && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT | |
3485 | || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)) | |
3486 | { | |
00431a78 | 3487 | struct regcache *regcache = get_thread_regcache (tp); |
ac7936df | 3488 | struct gdbarch *gdbarch = regcache->arch (); |
372316f1 PA |
3489 | CORE_ADDR pc; |
3490 | int discard = 0; | |
3491 | ||
3492 | pc = regcache_read_pc (regcache); | |
3493 | ||
3494 | if (pc != tp->suspend.stop_pc) | |
3495 | { | |
3496 | if (debug_infrun) | |
3497 | fprintf_unfiltered (gdb_stdlog, | |
3498 | "infrun: PC of %s changed. was=%s, now=%s\n", | |
a068643d | 3499 | target_pid_to_str (tp->ptid).c_str (), |
defd2172 | 3500 | paddress (gdbarch, tp->suspend.stop_pc), |
372316f1 PA |
3501 | paddress (gdbarch, pc)); |
3502 | discard = 1; | |
3503 | } | |
a01bda52 | 3504 | else if (!breakpoint_inserted_here_p (regcache->aspace (), pc)) |
372316f1 PA |
3505 | { |
3506 | if (debug_infrun) | |
3507 | fprintf_unfiltered (gdb_stdlog, | |
3508 | "infrun: previous breakpoint of %s, at %s gone\n", | |
a068643d | 3509 | target_pid_to_str (tp->ptid).c_str (), |
372316f1 PA |
3510 | paddress (gdbarch, pc)); |
3511 | ||
3512 | discard = 1; | |
3513 | } | |
3514 | ||
3515 | if (discard) | |
3516 | { | |
3517 | if (debug_infrun) | |
3518 | fprintf_unfiltered (gdb_stdlog, | |
3519 | "infrun: pending event of %s cancelled.\n", | |
a068643d | 3520 | target_pid_to_str (tp->ptid).c_str ()); |
372316f1 PA |
3521 | |
3522 | tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS; | |
3523 | tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON; | |
3524 | } | |
3525 | } | |
3526 | ||
3527 | if (tp != NULL) | |
3528 | { | |
3529 | if (debug_infrun) | |
3530 | { | |
23fdd69e SM |
3531 | std::string statstr |
3532 | = target_waitstatus_to_string (&tp->suspend.waitstatus); | |
372316f1 | 3533 | |
372316f1 PA |
3534 | fprintf_unfiltered (gdb_stdlog, |
3535 | "infrun: Using pending wait status %s for %s.\n", | |
23fdd69e | 3536 | statstr.c_str (), |
a068643d | 3537 | target_pid_to_str (tp->ptid).c_str ()); |
372316f1 PA |
3538 | } |
3539 | ||
3540 | /* Now that we've selected our final event LWP, un-adjust its PC | |
3541 | if it was a software breakpoint (and the target doesn't | |
3542 | always adjust the PC itself). */ | |
3543 | if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT | |
3544 | && !target_supports_stopped_by_sw_breakpoint ()) | |
3545 | { | |
3546 | struct regcache *regcache; | |
3547 | struct gdbarch *gdbarch; | |
3548 | int decr_pc; | |
3549 | ||
00431a78 | 3550 | regcache = get_thread_regcache (tp); |
ac7936df | 3551 | gdbarch = regcache->arch (); |
372316f1 PA |
3552 | |
3553 | decr_pc = gdbarch_decr_pc_after_break (gdbarch); | |
3554 | if (decr_pc != 0) | |
3555 | { | |
3556 | CORE_ADDR pc; | |
3557 | ||
3558 | pc = regcache_read_pc (regcache); | |
3559 | regcache_write_pc (regcache, pc + decr_pc); | |
3560 | } | |
3561 | } | |
3562 | ||
3563 | tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON; | |
3564 | *status = tp->suspend.waitstatus; | |
3565 | tp->suspend.waitstatus_pending_p = 0; | |
3566 | ||
3567 | /* Wake up the event loop again, until all pending events are | |
3568 | processed. */ | |
3569 | if (target_is_async_p ()) | |
3570 | mark_async_event_handler (infrun_async_inferior_event_token); | |
3571 | return tp->ptid; | |
3572 | } | |
3573 | ||
3574 | /* But if we don't find one, we'll have to wait. */ | |
3575 | ||
3576 | if (deprecated_target_wait_hook) | |
3577 | event_ptid = deprecated_target_wait_hook (ptid, status, options); | |
3578 | else | |
3579 | event_ptid = target_wait (ptid, status, options); | |
3580 | ||
3581 | return event_ptid; | |
3582 | } | |
3583 | ||
5b6d1e4f PA |
3584 | /* Returns true if INF has any resumed thread with a status |
3585 | pending. */ | |
3586 | ||
3587 | static bool | |
3588 | threads_are_resumed_pending_p (inferior *inf) | |
3589 | { | |
3590 | for (thread_info *tp : inf->non_exited_threads ()) | |
3591 | if (tp->resumed | |
3592 | && tp->suspend.waitstatus_pending_p) | |
3593 | return true; | |
3594 | ||
3595 | return false; | |
3596 | } | |
3597 | ||
3598 | /* Wrapper for target_wait that first checks whether threads have | |
3599 | pending statuses to report before actually asking the target for | |
3600 | more events. Polls for events from all inferiors/targets. */ | |
3601 | ||
3602 | static bool | |
3603 | do_target_wait (ptid_t wait_ptid, execution_control_state *ecs, int options) | |
3604 | { | |
3605 | int num_inferiors = 0; | |
3606 | int random_selector; | |
3607 | ||
3608 | /* For fairness, we pick the first inferior/target to poll at | |
3609 | random, and then continue polling the rest of the inferior list | |
3610 | starting from that one in a circular fashion until the whole list | |
3611 | is polled once. */ | |
3612 | ||
3613 | auto inferior_matches = [&wait_ptid] (inferior *inf) | |
3614 | { | |
3615 | return (inf->process_target () != NULL | |
3616 | && (threads_are_executing (inf->process_target ()) | |
3617 | || threads_are_resumed_pending_p (inf)) | |
3618 | && ptid_t (inf->pid).matches (wait_ptid)); | |
3619 | }; | |
3620 | ||
3621 | /* First see how many resumed inferiors we have. */ | |
3622 | for (inferior *inf : all_inferiors ()) | |
3623 | if (inferior_matches (inf)) | |
3624 | num_inferiors++; | |
3625 | ||
3626 | if (num_inferiors == 0) | |
3627 | { | |
3628 | ecs->ws.kind = TARGET_WAITKIND_IGNORE; | |
3629 | return false; | |
3630 | } | |
3631 | ||
3632 | /* Now randomly pick an inferior out of those that were resumed. */ | |
3633 | random_selector = (int) | |
3634 | ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0)); | |
3635 | ||
3636 | if (debug_infrun && num_inferiors > 1) | |
3637 | fprintf_unfiltered (gdb_stdlog, | |
3638 | "infrun: Found %d inferiors, starting at #%d\n", | |
3639 | num_inferiors, random_selector); | |
3640 | ||
3641 | /* Select the Nth inferior that was resumed. */ | |
3642 | ||
3643 | inferior *selected = nullptr; | |
3644 | ||
3645 | for (inferior *inf : all_inferiors ()) | |
3646 | if (inferior_matches (inf)) | |
3647 | if (random_selector-- == 0) | |
3648 | { | |
3649 | selected = inf; | |
3650 | break; | |
3651 | } | |
3652 | ||
3653 | /* Now poll for events out of each of the resumed inferior's | |
3654 | targets, starting from the selected one. */ | |
3655 | ||
3656 | auto do_wait = [&] (inferior *inf) | |
3657 | { | |
3658 | switch_to_inferior_no_thread (inf); | |
3659 | ||
3660 | ecs->ptid = do_target_wait_1 (inf, wait_ptid, &ecs->ws, options); | |
3661 | ecs->target = inf->process_target (); | |
3662 | return (ecs->ws.kind != TARGET_WAITKIND_IGNORE); | |
3663 | }; | |
3664 | ||
3665 | /* Needed in all-stop+target-non-stop mode, because we end up here | |
3666 | spuriously after the target is all stopped and we've already | |
3667 | reported the stop to the user, polling for events. */ | |
3668 | scoped_restore_current_thread restore_thread; | |
3669 | ||
3670 | int inf_num = selected->num; | |
3671 | for (inferior *inf = selected; inf != NULL; inf = inf->next) | |
3672 | if (inferior_matches (inf)) | |
3673 | if (do_wait (inf)) | |
3674 | return true; | |
3675 | ||
3676 | for (inferior *inf = inferior_list; | |
3677 | inf != NULL && inf->num < inf_num; | |
3678 | inf = inf->next) | |
3679 | if (inferior_matches (inf)) | |
3680 | if (do_wait (inf)) | |
3681 | return true; | |
3682 | ||
3683 | ecs->ws.kind = TARGET_WAITKIND_IGNORE; | |
3684 | return false; | |
3685 | } | |
3686 | ||
24291992 PA |
3687 | /* Prepare and stabilize the inferior for detaching it. E.g., |
3688 | detaching while a thread is displaced stepping is a recipe for | |
3689 | crashing it, as nothing would readjust the PC out of the scratch | |
3690 | pad. */ | |
3691 | ||
3692 | void | |
3693 | prepare_for_detach (void) | |
3694 | { | |
3695 | struct inferior *inf = current_inferior (); | |
f2907e49 | 3696 | ptid_t pid_ptid = ptid_t (inf->pid); |
24291992 | 3697 | |
00431a78 | 3698 | displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf); |
24291992 PA |
3699 | |
3700 | /* Is any thread of this process displaced stepping? If not, | |
3701 | there's nothing else to do. */ | |
d20172fc | 3702 | if (displaced->step_thread == nullptr) |
24291992 PA |
3703 | return; |
3704 | ||
3705 | if (debug_infrun) | |
3706 | fprintf_unfiltered (gdb_stdlog, | |
3707 | "displaced-stepping in-process while detaching"); | |
3708 | ||
9bcb1f16 | 3709 | scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true); |
24291992 | 3710 | |
00431a78 | 3711 | while (displaced->step_thread != nullptr) |
24291992 | 3712 | { |
24291992 PA |
3713 | struct execution_control_state ecss; |
3714 | struct execution_control_state *ecs; | |
3715 | ||
3716 | ecs = &ecss; | |
3717 | memset (ecs, 0, sizeof (*ecs)); | |
3718 | ||
3719 | overlay_cache_invalid = 1; | |
f15cb84a YQ |
3720 | /* Flush target cache before starting to handle each event. |
3721 | Target was running and cache could be stale. This is just a | |
3722 | heuristic. Running threads may modify target memory, but we | |
3723 | don't get any event. */ | |
3724 | target_dcache_invalidate (); | |
24291992 | 3725 | |
5b6d1e4f | 3726 | do_target_wait (pid_ptid, ecs, 0); |
24291992 PA |
3727 | |
3728 | if (debug_infrun) | |
3729 | print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws); | |
3730 | ||
3731 | /* If an error happens while handling the event, propagate GDB's | |
3732 | knowledge of the executing state to the frontend/user running | |
3733 | state. */ | |
5b6d1e4f PA |
3734 | scoped_finish_thread_state finish_state (inf->process_target (), |
3735 | minus_one_ptid); | |
24291992 PA |
3736 | |
3737 | /* Now figure out what to do with the result of the result. */ | |
3738 | handle_inferior_event (ecs); | |
3739 | ||
3740 | /* No error, don't finish the state yet. */ | |
731f534f | 3741 | finish_state.release (); |
24291992 PA |
3742 | |
3743 | /* Breakpoints and watchpoints are not installed on the target | |
3744 | at this point, and signals are passed directly to the | |
3745 | inferior, so this must mean the process is gone. */ | |
3746 | if (!ecs->wait_some_more) | |
3747 | { | |
9bcb1f16 | 3748 | restore_detaching.release (); |
24291992 PA |
3749 | error (_("Program exited while detaching")); |
3750 | } | |
3751 | } | |
3752 | ||
9bcb1f16 | 3753 | restore_detaching.release (); |
24291992 PA |
3754 | } |
3755 | ||
cd0fc7c3 | 3756 | /* Wait for control to return from inferior to debugger. |
ae123ec6 | 3757 | |
cd0fc7c3 SS |
3758 | If inferior gets a signal, we may decide to start it up again |
3759 | instead of returning. That is why there is a loop in this function. | |
3760 | When this function actually returns it means the inferior | |
3761 | should be left stopped and GDB should read more commands. */ | |
3762 | ||
5b6d1e4f PA |
3763 | static void |
3764 | wait_for_inferior (inferior *inf) | |
cd0fc7c3 | 3765 | { |
527159b7 | 3766 | if (debug_infrun) |
ae123ec6 | 3767 | fprintf_unfiltered |
e4c8541f | 3768 | (gdb_stdlog, "infrun: wait_for_inferior ()\n"); |
527159b7 | 3769 | |
4c41382a | 3770 | SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); }; |
cd0fc7c3 | 3771 | |
e6f5c25b PA |
3772 | /* If an error happens while handling the event, propagate GDB's |
3773 | knowledge of the executing state to the frontend/user running | |
3774 | state. */ | |
5b6d1e4f PA |
3775 | scoped_finish_thread_state finish_state |
3776 | (inf->process_target (), minus_one_ptid); | |
e6f5c25b | 3777 | |
c906108c SS |
3778 | while (1) |
3779 | { | |
ae25568b PA |
3780 | struct execution_control_state ecss; |
3781 | struct execution_control_state *ecs = &ecss; | |
29f49a6a | 3782 | |
ae25568b PA |
3783 | memset (ecs, 0, sizeof (*ecs)); |
3784 | ||
ec9499be | 3785 | overlay_cache_invalid = 1; |
ec9499be | 3786 | |
f15cb84a YQ |
3787 | /* Flush target cache before starting to handle each event. |
3788 | Target was running and cache could be stale. This is just a | |
3789 | heuristic. Running threads may modify target memory, but we | |
3790 | don't get any event. */ | |
3791 | target_dcache_invalidate (); | |
3792 | ||
5b6d1e4f PA |
3793 | ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0); |
3794 | ecs->target = inf->process_target (); | |
c906108c | 3795 | |
f00150c9 | 3796 | if (debug_infrun) |
5b6d1e4f | 3797 | print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws); |
f00150c9 | 3798 | |
cd0fc7c3 SS |
3799 | /* Now figure out what to do with the result of the result. */ |
3800 | handle_inferior_event (ecs); | |
c906108c | 3801 | |
cd0fc7c3 SS |
3802 | if (!ecs->wait_some_more) |
3803 | break; | |
3804 | } | |
4e1c45ea | 3805 | |
e6f5c25b | 3806 | /* No error, don't finish the state yet. */ |
731f534f | 3807 | finish_state.release (); |
cd0fc7c3 | 3808 | } |
c906108c | 3809 | |
d3d4baed PA |
3810 | /* Cleanup that reinstalls the readline callback handler, if the |
3811 | target is running in the background. If while handling the target | |
3812 | event something triggered a secondary prompt, like e.g., a | |
3813 | pagination prompt, we'll have removed the callback handler (see | |
3814 | gdb_readline_wrapper_line). Need to do this as we go back to the | |
3815 | event loop, ready to process further input. Note this has no | |
3816 | effect if the handler hasn't actually been removed, because calling | |
3817 | rl_callback_handler_install resets the line buffer, thus losing | |
3818 | input. */ | |
3819 | ||
3820 | static void | |
d238133d | 3821 | reinstall_readline_callback_handler_cleanup () |
d3d4baed | 3822 | { |
3b12939d PA |
3823 | struct ui *ui = current_ui; |
3824 | ||
3825 | if (!ui->async) | |
6c400b59 PA |
3826 | { |
3827 | /* We're not going back to the top level event loop yet. Don't | |
3828 | install the readline callback, as it'd prep the terminal, | |
3829 | readline-style (raw, noecho) (e.g., --batch). We'll install | |
3830 | it the next time the prompt is displayed, when we're ready | |
3831 | for input. */ | |
3832 | return; | |
3833 | } | |
3834 | ||
3b12939d | 3835 | if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED) |
d3d4baed PA |
3836 | gdb_rl_callback_handler_reinstall (); |
3837 | } | |
3838 | ||
243a9253 PA |
3839 | /* Clean up the FSMs of threads that are now stopped. In non-stop, |
3840 | that's just the event thread. In all-stop, that's all threads. */ | |
3841 | ||
3842 | static void | |
3843 | clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs) | |
3844 | { | |
08036331 PA |
3845 | if (ecs->event_thread != NULL |
3846 | && ecs->event_thread->thread_fsm != NULL) | |
46e3ed7f | 3847 | ecs->event_thread->thread_fsm->clean_up (ecs->event_thread); |
243a9253 PA |
3848 | |
3849 | if (!non_stop) | |
3850 | { | |
08036331 | 3851 | for (thread_info *thr : all_non_exited_threads ()) |
243a9253 PA |
3852 | { |
3853 | if (thr->thread_fsm == NULL) | |
3854 | continue; | |
3855 | if (thr == ecs->event_thread) | |
3856 | continue; | |
3857 | ||
00431a78 | 3858 | switch_to_thread (thr); |
46e3ed7f | 3859 | thr->thread_fsm->clean_up (thr); |
243a9253 PA |
3860 | } |
3861 | ||
3862 | if (ecs->event_thread != NULL) | |
00431a78 | 3863 | switch_to_thread (ecs->event_thread); |
243a9253 PA |
3864 | } |
3865 | } | |
3866 | ||
3b12939d PA |
3867 | /* Helper for all_uis_check_sync_execution_done that works on the |
3868 | current UI. */ | |
3869 | ||
3870 | static void | |
3871 | check_curr_ui_sync_execution_done (void) | |
3872 | { | |
3873 | struct ui *ui = current_ui; | |
3874 | ||
3875 | if (ui->prompt_state == PROMPT_NEEDED | |
3876 | && ui->async | |
3877 | && !gdb_in_secondary_prompt_p (ui)) | |
3878 | { | |
223ffa71 | 3879 | target_terminal::ours (); |
76727919 | 3880 | gdb::observers::sync_execution_done.notify (); |
3eb7562a | 3881 | ui_register_input_event_handler (ui); |
3b12939d PA |
3882 | } |
3883 | } | |
3884 | ||
3885 | /* See infrun.h. */ | |
3886 | ||
3887 | void | |
3888 | all_uis_check_sync_execution_done (void) | |
3889 | { | |
0e454242 | 3890 | SWITCH_THRU_ALL_UIS () |
3b12939d PA |
3891 | { |
3892 | check_curr_ui_sync_execution_done (); | |
3893 | } | |
3894 | } | |
3895 | ||
a8836c93 PA |
3896 | /* See infrun.h. */ |
3897 | ||
3898 | void | |
3899 | all_uis_on_sync_execution_starting (void) | |
3900 | { | |
0e454242 | 3901 | SWITCH_THRU_ALL_UIS () |
a8836c93 PA |
3902 | { |
3903 | if (current_ui->prompt_state == PROMPT_NEEDED) | |
3904 | async_disable_stdin (); | |
3905 | } | |
3906 | } | |
3907 | ||
1777feb0 | 3908 | /* Asynchronous version of wait_for_inferior. It is called by the |
43ff13b4 | 3909 | event loop whenever a change of state is detected on the file |
1777feb0 MS |
3910 | descriptor corresponding to the target. It can be called more than |
3911 | once to complete a single execution command. In such cases we need | |
3912 | to keep the state in a global variable ECSS. If it is the last time | |
a474d7c2 PA |
3913 | that this function is called for a single execution command, then |
3914 | report to the user that the inferior has stopped, and do the | |
1777feb0 | 3915 | necessary cleanups. */ |
43ff13b4 JM |
3916 | |
3917 | void | |
fba45db2 | 3918 | fetch_inferior_event (void *client_data) |
43ff13b4 | 3919 | { |
0d1e5fa7 | 3920 | struct execution_control_state ecss; |
a474d7c2 | 3921 | struct execution_control_state *ecs = &ecss; |
0f641c01 | 3922 | int cmd_done = 0; |
43ff13b4 | 3923 | |
0d1e5fa7 PA |
3924 | memset (ecs, 0, sizeof (*ecs)); |
3925 | ||
c61db772 PA |
3926 | /* Events are always processed with the main UI as current UI. This |
3927 | way, warnings, debug output, etc. are always consistently sent to | |
3928 | the main console. */ | |
4b6749b9 | 3929 | scoped_restore save_ui = make_scoped_restore (¤t_ui, main_ui); |
c61db772 | 3930 | |
d3d4baed | 3931 | /* End up with readline processing input, if necessary. */ |
d238133d TT |
3932 | { |
3933 | SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); }; | |
3934 | ||
3935 | /* We're handling a live event, so make sure we're doing live | |
3936 | debugging. If we're looking at traceframes while the target is | |
3937 | running, we're going to need to get back to that mode after | |
3938 | handling the event. */ | |
3939 | gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe; | |
3940 | if (non_stop) | |
3941 | { | |
3942 | maybe_restore_traceframe.emplace (); | |
3943 | set_current_traceframe (-1); | |
3944 | } | |
43ff13b4 | 3945 | |
873657b9 PA |
3946 | /* The user/frontend should not notice a thread switch due to |
3947 | internal events. Make sure we revert to the user selected | |
3948 | thread and frame after handling the event and running any | |
3949 | breakpoint commands. */ | |
3950 | scoped_restore_current_thread restore_thread; | |
d238133d TT |
3951 | |
3952 | overlay_cache_invalid = 1; | |
3953 | /* Flush target cache before starting to handle each event. Target | |
3954 | was running and cache could be stale. This is just a heuristic. | |
3955 | Running threads may modify target memory, but we don't get any | |
3956 | event. */ | |
3957 | target_dcache_invalidate (); | |
3958 | ||
3959 | scoped_restore save_exec_dir | |
3960 | = make_scoped_restore (&execution_direction, | |
3961 | target_execution_direction ()); | |
3962 | ||
5b6d1e4f PA |
3963 | if (!do_target_wait (minus_one_ptid, ecs, TARGET_WNOHANG)) |
3964 | return; | |
3965 | ||
3966 | gdb_assert (ecs->ws.kind != TARGET_WAITKIND_IGNORE); | |
3967 | ||
3968 | /* Switch to the target that generated the event, so we can do | |
3969 | target calls. Any inferior bound to the target will do, so we | |
3970 | just switch to the first we find. */ | |
3971 | for (inferior *inf : all_inferiors (ecs->target)) | |
3972 | { | |
3973 | switch_to_inferior_no_thread (inf); | |
3974 | break; | |
3975 | } | |
d238133d TT |
3976 | |
3977 | if (debug_infrun) | |
5b6d1e4f | 3978 | print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws); |
d238133d TT |
3979 | |
3980 | /* If an error happens while handling the event, propagate GDB's | |
3981 | knowledge of the executing state to the frontend/user running | |
3982 | state. */ | |
3983 | ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid; | |
5b6d1e4f | 3984 | scoped_finish_thread_state finish_state (ecs->target, finish_ptid); |
d238133d | 3985 | |
979a0d13 | 3986 | /* Get executed before scoped_restore_current_thread above to apply |
d238133d TT |
3987 | still for the thread which has thrown the exception. */ |
3988 | auto defer_bpstat_clear | |
3989 | = make_scope_exit (bpstat_clear_actions); | |
3990 | auto defer_delete_threads | |
3991 | = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints); | |
3992 | ||
3993 | /* Now figure out what to do with the result of the result. */ | |
3994 | handle_inferior_event (ecs); | |
3995 | ||
3996 | if (!ecs->wait_some_more) | |
3997 | { | |
5b6d1e4f | 3998 | struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid); |
d238133d TT |
3999 | int should_stop = 1; |
4000 | struct thread_info *thr = ecs->event_thread; | |
d6b48e9c | 4001 | |
d238133d | 4002 | delete_just_stopped_threads_infrun_breakpoints (); |
f107f563 | 4003 | |
d238133d TT |
4004 | if (thr != NULL) |
4005 | { | |
4006 | struct thread_fsm *thread_fsm = thr->thread_fsm; | |
243a9253 | 4007 | |
d238133d | 4008 | if (thread_fsm != NULL) |
46e3ed7f | 4009 | should_stop = thread_fsm->should_stop (thr); |
d238133d | 4010 | } |
243a9253 | 4011 | |
d238133d TT |
4012 | if (!should_stop) |
4013 | { | |
4014 | keep_going (ecs); | |
4015 | } | |
4016 | else | |
4017 | { | |
46e3ed7f | 4018 | bool should_notify_stop = true; |
d238133d | 4019 | int proceeded = 0; |
1840d81a | 4020 | |
d238133d | 4021 | clean_up_just_stopped_threads_fsms (ecs); |
243a9253 | 4022 | |
d238133d | 4023 | if (thr != NULL && thr->thread_fsm != NULL) |
46e3ed7f | 4024 | should_notify_stop = thr->thread_fsm->should_notify_stop (); |
388a7084 | 4025 | |
d238133d TT |
4026 | if (should_notify_stop) |
4027 | { | |
4028 | /* We may not find an inferior if this was a process exit. */ | |
4029 | if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY) | |
4030 | proceeded = normal_stop (); | |
4031 | } | |
243a9253 | 4032 | |
d238133d TT |
4033 | if (!proceeded) |
4034 | { | |
4035 | inferior_event_handler (INF_EXEC_COMPLETE, NULL); | |
4036 | cmd_done = 1; | |
4037 | } | |
873657b9 PA |
4038 | |
4039 | /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the | |
4040 | previously selected thread is gone. We have two | |
4041 | choices - switch to no thread selected, or restore the | |
4042 | previously selected thread (now exited). We chose the | |
4043 | later, just because that's what GDB used to do. After | |
4044 | this, "info threads" says "The current thread <Thread | |
4045 | ID 2> has terminated." instead of "No thread | |
4046 | selected.". */ | |
4047 | if (!non_stop | |
4048 | && cmd_done | |
4049 | && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED) | |
4050 | restore_thread.dont_restore (); | |
d238133d TT |
4051 | } |
4052 | } | |
4f8d22e3 | 4053 | |
d238133d TT |
4054 | defer_delete_threads.release (); |
4055 | defer_bpstat_clear.release (); | |
29f49a6a | 4056 | |
d238133d TT |
4057 | /* No error, don't finish the thread states yet. */ |
4058 | finish_state.release (); | |
731f534f | 4059 | |
d238133d TT |
4060 | /* This scope is used to ensure that readline callbacks are |
4061 | reinstalled here. */ | |
4062 | } | |
4f8d22e3 | 4063 | |
3b12939d PA |
4064 | /* If a UI was in sync execution mode, and now isn't, restore its |
4065 | prompt (a synchronous execution command has finished, and we're | |
4066 | ready for input). */ | |
4067 | all_uis_check_sync_execution_done (); | |
0f641c01 PA |
4068 | |
4069 | if (cmd_done | |
0f641c01 | 4070 | && exec_done_display_p |
00431a78 PA |
4071 | && (inferior_ptid == null_ptid |
4072 | || inferior_thread ()->state != THREAD_RUNNING)) | |
0f641c01 | 4073 | printf_unfiltered (_("completed.\n")); |
43ff13b4 JM |
4074 | } |
4075 | ||
edb3359d DJ |
4076 | /* Record the frame and location we're currently stepping through. */ |
4077 | void | |
4078 | set_step_info (struct frame_info *frame, struct symtab_and_line sal) | |
4079 | { | |
4080 | struct thread_info *tp = inferior_thread (); | |
4081 | ||
16c381f0 JK |
4082 | tp->control.step_frame_id = get_frame_id (frame); |
4083 | tp->control.step_stack_frame_id = get_stack_frame_id (frame); | |
edb3359d DJ |
4084 | |
4085 | tp->current_symtab = sal.symtab; | |
4086 | tp->current_line = sal.line; | |
4087 | } | |
4088 | ||
0d1e5fa7 PA |
4089 | /* Clear context switchable stepping state. */ |
4090 | ||
4091 | void | |
4e1c45ea | 4092 | init_thread_stepping_state (struct thread_info *tss) |
0d1e5fa7 | 4093 | { |
7f5ef605 | 4094 | tss->stepped_breakpoint = 0; |
0d1e5fa7 | 4095 | tss->stepping_over_breakpoint = 0; |
963f9c80 | 4096 | tss->stepping_over_watchpoint = 0; |
0d1e5fa7 | 4097 | tss->step_after_step_resume_breakpoint = 0; |
cd0fc7c3 SS |
4098 | } |
4099 | ||
ab1ddbcf | 4100 | /* See infrun.h. */ |
c32c64b7 | 4101 | |
6efcd9a8 | 4102 | void |
5b6d1e4f PA |
4103 | set_last_target_status (process_stratum_target *target, ptid_t ptid, |
4104 | target_waitstatus status) | |
c32c64b7 | 4105 | { |
5b6d1e4f | 4106 | target_last_proc_target = target; |
c32c64b7 DE |
4107 | target_last_wait_ptid = ptid; |
4108 | target_last_waitstatus = status; | |
4109 | } | |
4110 | ||
ab1ddbcf | 4111 | /* See infrun.h. */ |
e02bc4cc DS |
4112 | |
4113 | void | |
5b6d1e4f PA |
4114 | get_last_target_status (process_stratum_target **target, ptid_t *ptid, |
4115 | target_waitstatus *status) | |
e02bc4cc | 4116 | { |
5b6d1e4f PA |
4117 | if (target != nullptr) |
4118 | *target = target_last_proc_target; | |
ab1ddbcf PA |
4119 | if (ptid != nullptr) |
4120 | *ptid = target_last_wait_ptid; | |
4121 | if (status != nullptr) | |
4122 | *status = target_last_waitstatus; | |
e02bc4cc DS |
4123 | } |
4124 | ||
ab1ddbcf PA |
4125 | /* See infrun.h. */ |
4126 | ||
ac264b3b MS |
4127 | void |
4128 | nullify_last_target_wait_ptid (void) | |
4129 | { | |
5b6d1e4f | 4130 | target_last_proc_target = nullptr; |
ac264b3b | 4131 | target_last_wait_ptid = minus_one_ptid; |
ab1ddbcf | 4132 | target_last_waitstatus = {}; |
ac264b3b MS |
4133 | } |
4134 | ||
dcf4fbde | 4135 | /* Switch thread contexts. */ |
dd80620e MS |
4136 | |
4137 | static void | |
00431a78 | 4138 | context_switch (execution_control_state *ecs) |
dd80620e | 4139 | { |
00431a78 PA |
4140 | if (debug_infrun |
4141 | && ecs->ptid != inferior_ptid | |
5b6d1e4f PA |
4142 | && (inferior_ptid == null_ptid |
4143 | || ecs->event_thread != inferior_thread ())) | |
fd48f117 DJ |
4144 | { |
4145 | fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ", | |
a068643d | 4146 | target_pid_to_str (inferior_ptid).c_str ()); |
fd48f117 | 4147 | fprintf_unfiltered (gdb_stdlog, "to %s\n", |
a068643d | 4148 | target_pid_to_str (ecs->ptid).c_str ()); |
fd48f117 DJ |
4149 | } |
4150 | ||
00431a78 | 4151 | switch_to_thread (ecs->event_thread); |
dd80620e MS |
4152 | } |
4153 | ||
d8dd4d5f PA |
4154 | /* If the target can't tell whether we've hit breakpoints |
4155 | (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP, | |
4156 | check whether that could have been caused by a breakpoint. If so, | |
4157 | adjust the PC, per gdbarch_decr_pc_after_break. */ | |
4158 | ||
4fa8626c | 4159 | static void |
d8dd4d5f PA |
4160 | adjust_pc_after_break (struct thread_info *thread, |
4161 | struct target_waitstatus *ws) | |
4fa8626c | 4162 | { |
24a73cce UW |
4163 | struct regcache *regcache; |
4164 | struct gdbarch *gdbarch; | |
118e6252 | 4165 | CORE_ADDR breakpoint_pc, decr_pc; |
4fa8626c | 4166 | |
4fa8626c DJ |
4167 | /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If |
4168 | we aren't, just return. | |
9709f61c DJ |
4169 | |
4170 | We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not | |
b798847d UW |
4171 | affected by gdbarch_decr_pc_after_break. Other waitkinds which are |
4172 | implemented by software breakpoints should be handled through the normal | |
4173 | breakpoint layer. | |
8fb3e588 | 4174 | |
4fa8626c DJ |
4175 | NOTE drow/2004-01-31: On some targets, breakpoints may generate |
4176 | different signals (SIGILL or SIGEMT for instance), but it is less | |
4177 | clear where the PC is pointing afterwards. It may not match | |
b798847d UW |
4178 | gdbarch_decr_pc_after_break. I don't know any specific target that |
4179 | generates these signals at breakpoints (the code has been in GDB since at | |
4180 | least 1992) so I can not guess how to handle them here. | |
8fb3e588 | 4181 | |
e6cf7916 UW |
4182 | In earlier versions of GDB, a target with |
4183 | gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a | |
b798847d UW |
4184 | watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any |
4185 | target with both of these set in GDB history, and it seems unlikely to be | |
4186 | correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */ | |
4fa8626c | 4187 | |
d8dd4d5f | 4188 | if (ws->kind != TARGET_WAITKIND_STOPPED) |
4fa8626c DJ |
4189 | return; |
4190 | ||
d8dd4d5f | 4191 | if (ws->value.sig != GDB_SIGNAL_TRAP) |
4fa8626c DJ |
4192 | return; |
4193 | ||
4058b839 PA |
4194 | /* In reverse execution, when a breakpoint is hit, the instruction |
4195 | under it has already been de-executed. The reported PC always | |
4196 | points at the breakpoint address, so adjusting it further would | |
4197 | be wrong. E.g., consider this case on a decr_pc_after_break == 1 | |
4198 | architecture: | |
4199 | ||
4200 | B1 0x08000000 : INSN1 | |
4201 | B2 0x08000001 : INSN2 | |
4202 | 0x08000002 : INSN3 | |
4203 | PC -> 0x08000003 : INSN4 | |
4204 | ||
4205 | Say you're stopped at 0x08000003 as above. Reverse continuing | |
4206 | from that point should hit B2 as below. Reading the PC when the | |
4207 | SIGTRAP is reported should read 0x08000001 and INSN2 should have | |
4208 | been de-executed already. | |
4209 | ||
4210 | B1 0x08000000 : INSN1 | |
4211 | B2 PC -> 0x08000001 : INSN2 | |
4212 | 0x08000002 : INSN3 | |
4213 | 0x08000003 : INSN4 | |
4214 | ||
4215 | We can't apply the same logic as for forward execution, because | |
4216 | we would wrongly adjust the PC to 0x08000000, since there's a | |
4217 | breakpoint at PC - 1. We'd then report a hit on B1, although | |
4218 | INSN1 hadn't been de-executed yet. Doing nothing is the correct | |
4219 | behaviour. */ | |
4220 | if (execution_direction == EXEC_REVERSE) | |
4221 | return; | |
4222 | ||
1cf4d951 PA |
4223 | /* If the target can tell whether the thread hit a SW breakpoint, |
4224 | trust it. Targets that can tell also adjust the PC | |
4225 | themselves. */ | |
4226 | if (target_supports_stopped_by_sw_breakpoint ()) | |
4227 | return; | |
4228 | ||
4229 | /* Note that relying on whether a breakpoint is planted in memory to | |
4230 | determine this can fail. E.g,. the breakpoint could have been | |
4231 | removed since. Or the thread could have been told to step an | |
4232 | instruction the size of a breakpoint instruction, and only | |
4233 | _after_ was a breakpoint inserted at its address. */ | |
4234 | ||
24a73cce UW |
4235 | /* If this target does not decrement the PC after breakpoints, then |
4236 | we have nothing to do. */ | |
00431a78 | 4237 | regcache = get_thread_regcache (thread); |
ac7936df | 4238 | gdbarch = regcache->arch (); |
118e6252 | 4239 | |
527a273a | 4240 | decr_pc = gdbarch_decr_pc_after_break (gdbarch); |
118e6252 | 4241 | if (decr_pc == 0) |
24a73cce UW |
4242 | return; |
4243 | ||
8b86c959 | 4244 | const address_space *aspace = regcache->aspace (); |
6c95b8df | 4245 | |
8aad930b AC |
4246 | /* Find the location where (if we've hit a breakpoint) the |
4247 | breakpoint would be. */ | |
118e6252 | 4248 | breakpoint_pc = regcache_read_pc (regcache) - decr_pc; |
8aad930b | 4249 | |
1cf4d951 PA |
4250 | /* If the target can't tell whether a software breakpoint triggered, |
4251 | fallback to figuring it out based on breakpoints we think were | |
4252 | inserted in the target, and on whether the thread was stepped or | |
4253 | continued. */ | |
4254 | ||
1c5cfe86 PA |
4255 | /* Check whether there actually is a software breakpoint inserted at |
4256 | that location. | |
4257 | ||
4258 | If in non-stop mode, a race condition is possible where we've | |
4259 | removed a breakpoint, but stop events for that breakpoint were | |
4260 | already queued and arrive later. To suppress those spurious | |
4261 | SIGTRAPs, we keep a list of such breakpoint locations for a bit, | |
1cf4d951 PA |
4262 | and retire them after a number of stop events are reported. Note |
4263 | this is an heuristic and can thus get confused. The real fix is | |
4264 | to get the "stopped by SW BP and needs adjustment" info out of | |
4265 | the target/kernel (and thus never reach here; see above). */ | |
6c95b8df | 4266 | if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc) |
fbea99ea PA |
4267 | || (target_is_non_stop_p () |
4268 | && moribund_breakpoint_here_p (aspace, breakpoint_pc))) | |
8aad930b | 4269 | { |
07036511 | 4270 | gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable; |
abbb1732 | 4271 | |
8213266a | 4272 | if (record_full_is_used ()) |
07036511 TT |
4273 | restore_operation_disable.emplace |
4274 | (record_full_gdb_operation_disable_set ()); | |
96429cc8 | 4275 | |
1c0fdd0e UW |
4276 | /* When using hardware single-step, a SIGTRAP is reported for both |
4277 | a completed single-step and a software breakpoint. Need to | |
4278 | differentiate between the two, as the latter needs adjusting | |
4279 | but the former does not. | |
4280 | ||
4281 | The SIGTRAP can be due to a completed hardware single-step only if | |
4282 | - we didn't insert software single-step breakpoints | |
1c0fdd0e UW |
4283 | - this thread is currently being stepped |
4284 | ||
4285 | If any of these events did not occur, we must have stopped due | |
4286 | to hitting a software breakpoint, and have to back up to the | |
4287 | breakpoint address. | |
4288 | ||
4289 | As a special case, we could have hardware single-stepped a | |
4290 | software breakpoint. In this case (prev_pc == breakpoint_pc), | |
4291 | we also need to back up to the breakpoint address. */ | |
4292 | ||
d8dd4d5f PA |
4293 | if (thread_has_single_step_breakpoints_set (thread) |
4294 | || !currently_stepping (thread) | |
4295 | || (thread->stepped_breakpoint | |
4296 | && thread->prev_pc == breakpoint_pc)) | |
515630c5 | 4297 | regcache_write_pc (regcache, breakpoint_pc); |
8aad930b | 4298 | } |
4fa8626c DJ |
4299 | } |
4300 | ||
edb3359d DJ |
4301 | static int |
4302 | stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id) | |
4303 | { | |
4304 | for (frame = get_prev_frame (frame); | |
4305 | frame != NULL; | |
4306 | frame = get_prev_frame (frame)) | |
4307 | { | |
4308 | if (frame_id_eq (get_frame_id (frame), step_frame_id)) | |
4309 | return 1; | |
4310 | if (get_frame_type (frame) != INLINE_FRAME) | |
4311 | break; | |
4312 | } | |
4313 | ||
4314 | return 0; | |
4315 | } | |
4316 | ||
4a4c04f1 BE |
4317 | /* Look for an inline frame that is marked for skip. |
4318 | If PREV_FRAME is TRUE start at the previous frame, | |
4319 | otherwise start at the current frame. Stop at the | |
4320 | first non-inline frame, or at the frame where the | |
4321 | step started. */ | |
4322 | ||
4323 | static bool | |
4324 | inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp) | |
4325 | { | |
4326 | struct frame_info *frame = get_current_frame (); | |
4327 | ||
4328 | if (prev_frame) | |
4329 | frame = get_prev_frame (frame); | |
4330 | ||
4331 | for (; frame != NULL; frame = get_prev_frame (frame)) | |
4332 | { | |
4333 | const char *fn = NULL; | |
4334 | symtab_and_line sal; | |
4335 | struct symbol *sym; | |
4336 | ||
4337 | if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id)) | |
4338 | break; | |
4339 | if (get_frame_type (frame) != INLINE_FRAME) | |
4340 | break; | |
4341 | ||
4342 | sal = find_frame_sal (frame); | |
4343 | sym = get_frame_function (frame); | |
4344 | ||
4345 | if (sym != NULL) | |
4346 | fn = sym->print_name (); | |
4347 | ||
4348 | if (sal.line != 0 | |
4349 | && function_name_is_marked_for_skip (fn, sal)) | |
4350 | return true; | |
4351 | } | |
4352 | ||
4353 | return false; | |
4354 | } | |
4355 | ||
c65d6b55 PA |
4356 | /* If the event thread has the stop requested flag set, pretend it |
4357 | stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to | |
4358 | target_stop). */ | |
4359 | ||
4360 | static bool | |
4361 | handle_stop_requested (struct execution_control_state *ecs) | |
4362 | { | |
4363 | if (ecs->event_thread->stop_requested) | |
4364 | { | |
4365 | ecs->ws.kind = TARGET_WAITKIND_STOPPED; | |
4366 | ecs->ws.value.sig = GDB_SIGNAL_0; | |
4367 | handle_signal_stop (ecs); | |
4368 | return true; | |
4369 | } | |
4370 | return false; | |
4371 | } | |
4372 | ||
a96d9b2e SDJ |
4373 | /* Auxiliary function that handles syscall entry/return events. |
4374 | It returns 1 if the inferior should keep going (and GDB | |
4375 | should ignore the event), or 0 if the event deserves to be | |
4376 | processed. */ | |
ca2163eb | 4377 | |
a96d9b2e | 4378 | static int |
ca2163eb | 4379 | handle_syscall_event (struct execution_control_state *ecs) |
a96d9b2e | 4380 | { |
ca2163eb | 4381 | struct regcache *regcache; |
ca2163eb PA |
4382 | int syscall_number; |
4383 | ||
00431a78 | 4384 | context_switch (ecs); |
ca2163eb | 4385 | |
00431a78 | 4386 | regcache = get_thread_regcache (ecs->event_thread); |
f90263c1 | 4387 | syscall_number = ecs->ws.value.syscall_number; |
f2ffa92b | 4388 | ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache); |
ca2163eb | 4389 | |
a96d9b2e SDJ |
4390 | if (catch_syscall_enabled () > 0 |
4391 | && catching_syscall_number (syscall_number) > 0) | |
4392 | { | |
4393 | if (debug_infrun) | |
4394 | fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n", | |
4395 | syscall_number); | |
a96d9b2e | 4396 | |
16c381f0 | 4397 | ecs->event_thread->control.stop_bpstat |
a01bda52 | 4398 | = bpstat_stop_status (regcache->aspace (), |
f2ffa92b PA |
4399 | ecs->event_thread->suspend.stop_pc, |
4400 | ecs->event_thread, &ecs->ws); | |
ab04a2af | 4401 | |
c65d6b55 PA |
4402 | if (handle_stop_requested (ecs)) |
4403 | return 0; | |
4404 | ||
ce12b012 | 4405 | if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat)) |
ca2163eb PA |
4406 | { |
4407 | /* Catchpoint hit. */ | |
ca2163eb PA |
4408 | return 0; |
4409 | } | |
a96d9b2e | 4410 | } |
ca2163eb | 4411 | |
c65d6b55 PA |
4412 | if (handle_stop_requested (ecs)) |
4413 | return 0; | |
4414 | ||
ca2163eb | 4415 | /* If no catchpoint triggered for this, then keep going. */ |
ca2163eb PA |
4416 | keep_going (ecs); |
4417 | return 1; | |
a96d9b2e SDJ |
4418 | } |
4419 | ||
7e324e48 GB |
4420 | /* Lazily fill in the execution_control_state's stop_func_* fields. */ |
4421 | ||
4422 | static void | |
4423 | fill_in_stop_func (struct gdbarch *gdbarch, | |
4424 | struct execution_control_state *ecs) | |
4425 | { | |
4426 | if (!ecs->stop_func_filled_in) | |
4427 | { | |
98a617f8 KB |
4428 | const block *block; |
4429 | ||
7e324e48 GB |
4430 | /* Don't care about return value; stop_func_start and stop_func_name |
4431 | will both be 0 if it doesn't work. */ | |
98a617f8 KB |
4432 | find_pc_partial_function (ecs->event_thread->suspend.stop_pc, |
4433 | &ecs->stop_func_name, | |
4434 | &ecs->stop_func_start, | |
4435 | &ecs->stop_func_end, | |
4436 | &block); | |
4437 | ||
4438 | /* The call to find_pc_partial_function, above, will set | |
4439 | stop_func_start and stop_func_end to the start and end | |
4440 | of the range containing the stop pc. If this range | |
4441 | contains the entry pc for the block (which is always the | |
4442 | case for contiguous blocks), advance stop_func_start past | |
4443 | the function's start offset and entrypoint. Note that | |
4444 | stop_func_start is NOT advanced when in a range of a | |
4445 | non-contiguous block that does not contain the entry pc. */ | |
4446 | if (block != nullptr | |
4447 | && ecs->stop_func_start <= BLOCK_ENTRY_PC (block) | |
4448 | && BLOCK_ENTRY_PC (block) < ecs->stop_func_end) | |
4449 | { | |
4450 | ecs->stop_func_start | |
4451 | += gdbarch_deprecated_function_start_offset (gdbarch); | |
4452 | ||
4453 | if (gdbarch_skip_entrypoint_p (gdbarch)) | |
4454 | ecs->stop_func_start | |
4455 | = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start); | |
4456 | } | |
591a12a1 | 4457 | |
7e324e48 GB |
4458 | ecs->stop_func_filled_in = 1; |
4459 | } | |
4460 | } | |
4461 | ||
4f5d7f63 | 4462 | |
00431a78 | 4463 | /* Return the STOP_SOON field of the inferior pointed at by ECS. */ |
4f5d7f63 PA |
4464 | |
4465 | static enum stop_kind | |
00431a78 | 4466 | get_inferior_stop_soon (execution_control_state *ecs) |
4f5d7f63 | 4467 | { |
5b6d1e4f | 4468 | struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid); |
4f5d7f63 PA |
4469 | |
4470 | gdb_assert (inf != NULL); | |
4471 | return inf->control.stop_soon; | |
4472 | } | |
4473 | ||
5b6d1e4f PA |
4474 | /* Poll for one event out of the current target. Store the resulting |
4475 | waitstatus in WS, and return the event ptid. Does not block. */ | |
372316f1 PA |
4476 | |
4477 | static ptid_t | |
5b6d1e4f | 4478 | poll_one_curr_target (struct target_waitstatus *ws) |
372316f1 PA |
4479 | { |
4480 | ptid_t event_ptid; | |
372316f1 PA |
4481 | |
4482 | overlay_cache_invalid = 1; | |
4483 | ||
4484 | /* Flush target cache before starting to handle each event. | |
4485 | Target was running and cache could be stale. This is just a | |
4486 | heuristic. Running threads may modify target memory, but we | |
4487 | don't get any event. */ | |
4488 | target_dcache_invalidate (); | |
4489 | ||
4490 | if (deprecated_target_wait_hook) | |
5b6d1e4f | 4491 | event_ptid = deprecated_target_wait_hook (minus_one_ptid, ws, TARGET_WNOHANG); |
372316f1 | 4492 | else |
5b6d1e4f | 4493 | event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG); |
372316f1 PA |
4494 | |
4495 | if (debug_infrun) | |
5b6d1e4f | 4496 | print_target_wait_results (minus_one_ptid, event_ptid, ws); |
372316f1 PA |
4497 | |
4498 | return event_ptid; | |
4499 | } | |
4500 | ||
5b6d1e4f PA |
4501 | /* An event reported by wait_one. */ |
4502 | ||
4503 | struct wait_one_event | |
4504 | { | |
4505 | /* The target the event came out of. */ | |
4506 | process_stratum_target *target; | |
4507 | ||
4508 | /* The PTID the event was for. */ | |
4509 | ptid_t ptid; | |
4510 | ||
4511 | /* The waitstatus. */ | |
4512 | target_waitstatus ws; | |
4513 | }; | |
4514 | ||
4515 | /* Wait for one event out of any target. */ | |
4516 | ||
4517 | static wait_one_event | |
4518 | wait_one () | |
4519 | { | |
4520 | while (1) | |
4521 | { | |
4522 | for (inferior *inf : all_inferiors ()) | |
4523 | { | |
4524 | process_stratum_target *target = inf->process_target (); | |
4525 | if (target == NULL | |
4526 | || !target->is_async_p () | |
4527 | || !target->threads_executing) | |
4528 | continue; | |
4529 | ||
4530 | switch_to_inferior_no_thread (inf); | |
4531 | ||
4532 | wait_one_event event; | |
4533 | event.target = target; | |
4534 | event.ptid = poll_one_curr_target (&event.ws); | |
4535 | ||
4536 | if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED) | |
4537 | { | |
4538 | /* If nothing is resumed, remove the target from the | |
4539 | event loop. */ | |
4540 | target_async (0); | |
4541 | } | |
4542 | else if (event.ws.kind != TARGET_WAITKIND_IGNORE) | |
4543 | return event; | |
4544 | } | |
4545 | ||
4546 | /* Block waiting for some event. */ | |
4547 | ||
4548 | fd_set readfds; | |
4549 | int nfds = 0; | |
4550 | ||
4551 | FD_ZERO (&readfds); | |
4552 | ||
4553 | for (inferior *inf : all_inferiors ()) | |
4554 | { | |
4555 | process_stratum_target *target = inf->process_target (); | |
4556 | if (target == NULL | |
4557 | || !target->is_async_p () | |
4558 | || !target->threads_executing) | |
4559 | continue; | |
4560 | ||
4561 | int fd = target->async_wait_fd (); | |
4562 | FD_SET (fd, &readfds); | |
4563 | if (nfds <= fd) | |
4564 | nfds = fd + 1; | |
4565 | } | |
4566 | ||
4567 | if (nfds == 0) | |
4568 | { | |
4569 | /* No waitable targets left. All must be stopped. */ | |
4570 | return {NULL, minus_one_ptid, {TARGET_WAITKIND_NO_RESUMED}}; | |
4571 | } | |
4572 | ||
4573 | QUIT; | |
4574 | ||
4575 | int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0); | |
4576 | if (numfds < 0) | |
4577 | { | |
4578 | if (errno == EINTR) | |
4579 | continue; | |
4580 | else | |
4581 | perror_with_name ("interruptible_select"); | |
4582 | } | |
4583 | } | |
4584 | } | |
4585 | ||
372316f1 PA |
4586 | /* Generate a wrapper for target_stopped_by_REASON that works on PTID |
4587 | instead of the current thread. */ | |
4588 | #define THREAD_STOPPED_BY(REASON) \ | |
4589 | static int \ | |
4590 | thread_stopped_by_ ## REASON (ptid_t ptid) \ | |
4591 | { \ | |
2989a365 | 4592 | scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \ |
372316f1 PA |
4593 | inferior_ptid = ptid; \ |
4594 | \ | |
2989a365 | 4595 | return target_stopped_by_ ## REASON (); \ |
372316f1 PA |
4596 | } |
4597 | ||
4598 | /* Generate thread_stopped_by_watchpoint. */ | |
4599 | THREAD_STOPPED_BY (watchpoint) | |
4600 | /* Generate thread_stopped_by_sw_breakpoint. */ | |
4601 | THREAD_STOPPED_BY (sw_breakpoint) | |
4602 | /* Generate thread_stopped_by_hw_breakpoint. */ | |
4603 | THREAD_STOPPED_BY (hw_breakpoint) | |
4604 | ||
372316f1 PA |
4605 | /* Save the thread's event and stop reason to process it later. */ |
4606 | ||
4607 | static void | |
5b6d1e4f | 4608 | save_waitstatus (struct thread_info *tp, const target_waitstatus *ws) |
372316f1 | 4609 | { |
372316f1 PA |
4610 | if (debug_infrun) |
4611 | { | |
23fdd69e | 4612 | std::string statstr = target_waitstatus_to_string (ws); |
372316f1 | 4613 | |
372316f1 PA |
4614 | fprintf_unfiltered (gdb_stdlog, |
4615 | "infrun: saving status %s for %d.%ld.%ld\n", | |
23fdd69e | 4616 | statstr.c_str (), |
e99b03dc | 4617 | tp->ptid.pid (), |
e38504b3 | 4618 | tp->ptid.lwp (), |
cc6bcb54 | 4619 | tp->ptid.tid ()); |
372316f1 PA |
4620 | } |
4621 | ||
4622 | /* Record for later. */ | |
4623 | tp->suspend.waitstatus = *ws; | |
4624 | tp->suspend.waitstatus_pending_p = 1; | |
4625 | ||
00431a78 | 4626 | struct regcache *regcache = get_thread_regcache (tp); |
8b86c959 | 4627 | const address_space *aspace = regcache->aspace (); |
372316f1 PA |
4628 | |
4629 | if (ws->kind == TARGET_WAITKIND_STOPPED | |
4630 | && ws->value.sig == GDB_SIGNAL_TRAP) | |
4631 | { | |
4632 | CORE_ADDR pc = regcache_read_pc (regcache); | |
4633 | ||
4634 | adjust_pc_after_break (tp, &tp->suspend.waitstatus); | |
4635 | ||
4636 | if (thread_stopped_by_watchpoint (tp->ptid)) | |
4637 | { | |
4638 | tp->suspend.stop_reason | |
4639 | = TARGET_STOPPED_BY_WATCHPOINT; | |
4640 | } | |
4641 | else if (target_supports_stopped_by_sw_breakpoint () | |
4642 | && thread_stopped_by_sw_breakpoint (tp->ptid)) | |
4643 | { | |
4644 | tp->suspend.stop_reason | |
4645 | = TARGET_STOPPED_BY_SW_BREAKPOINT; | |
4646 | } | |
4647 | else if (target_supports_stopped_by_hw_breakpoint () | |
4648 | && thread_stopped_by_hw_breakpoint (tp->ptid)) | |
4649 | { | |
4650 | tp->suspend.stop_reason | |
4651 | = TARGET_STOPPED_BY_HW_BREAKPOINT; | |
4652 | } | |
4653 | else if (!target_supports_stopped_by_hw_breakpoint () | |
4654 | && hardware_breakpoint_inserted_here_p (aspace, | |
4655 | pc)) | |
4656 | { | |
4657 | tp->suspend.stop_reason | |
4658 | = TARGET_STOPPED_BY_HW_BREAKPOINT; | |
4659 | } | |
4660 | else if (!target_supports_stopped_by_sw_breakpoint () | |
4661 | && software_breakpoint_inserted_here_p (aspace, | |
4662 | pc)) | |
4663 | { | |
4664 | tp->suspend.stop_reason | |
4665 | = TARGET_STOPPED_BY_SW_BREAKPOINT; | |
4666 | } | |
4667 | else if (!thread_has_single_step_breakpoints_set (tp) | |
4668 | && currently_stepping (tp)) | |
4669 | { | |
4670 | tp->suspend.stop_reason | |
4671 | = TARGET_STOPPED_BY_SINGLE_STEP; | |
4672 | } | |
4673 | } | |
4674 | } | |
4675 | ||
6efcd9a8 | 4676 | /* See infrun.h. */ |
372316f1 | 4677 | |
6efcd9a8 | 4678 | void |
372316f1 PA |
4679 | stop_all_threads (void) |
4680 | { | |
4681 | /* We may need multiple passes to discover all threads. */ | |
4682 | int pass; | |
4683 | int iterations = 0; | |
372316f1 | 4684 | |
fbea99ea | 4685 | gdb_assert (target_is_non_stop_p ()); |
372316f1 PA |
4686 | |
4687 | if (debug_infrun) | |
4688 | fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n"); | |
4689 | ||
00431a78 | 4690 | scoped_restore_current_thread restore_thread; |
372316f1 | 4691 | |
65706a29 | 4692 | target_thread_events (1); |
9885e6bb | 4693 | SCOPE_EXIT { target_thread_events (0); }; |
65706a29 | 4694 | |
372316f1 PA |
4695 | /* Request threads to stop, and then wait for the stops. Because |
4696 | threads we already know about can spawn more threads while we're | |
4697 | trying to stop them, and we only learn about new threads when we | |
4698 | update the thread list, do this in a loop, and keep iterating | |
4699 | until two passes find no threads that need to be stopped. */ | |
4700 | for (pass = 0; pass < 2; pass++, iterations++) | |
4701 | { | |
4702 | if (debug_infrun) | |
4703 | fprintf_unfiltered (gdb_stdlog, | |
4704 | "infrun: stop_all_threads, pass=%d, " | |
4705 | "iterations=%d\n", pass, iterations); | |
4706 | while (1) | |
4707 | { | |
372316f1 | 4708 | int need_wait = 0; |
372316f1 PA |
4709 | |
4710 | update_thread_list (); | |
4711 | ||
4712 | /* Go through all threads looking for threads that we need | |
4713 | to tell the target to stop. */ | |
08036331 | 4714 | for (thread_info *t : all_non_exited_threads ()) |
372316f1 PA |
4715 | { |
4716 | if (t->executing) | |
4717 | { | |
4718 | /* If already stopping, don't request a stop again. | |
4719 | We just haven't seen the notification yet. */ | |
4720 | if (!t->stop_requested) | |
4721 | { | |
4722 | if (debug_infrun) | |
4723 | fprintf_unfiltered (gdb_stdlog, | |
4724 | "infrun: %s executing, " | |
4725 | "need stop\n", | |
a068643d | 4726 | target_pid_to_str (t->ptid).c_str ()); |
f3f8ece4 | 4727 | switch_to_thread_no_regs (t); |
372316f1 PA |
4728 | target_stop (t->ptid); |
4729 | t->stop_requested = 1; | |
4730 | } | |
4731 | else | |
4732 | { | |
4733 | if (debug_infrun) | |
4734 | fprintf_unfiltered (gdb_stdlog, | |
4735 | "infrun: %s executing, " | |
4736 | "already stopping\n", | |
a068643d | 4737 | target_pid_to_str (t->ptid).c_str ()); |
372316f1 PA |
4738 | } |
4739 | ||
4740 | if (t->stop_requested) | |
4741 | need_wait = 1; | |
4742 | } | |
4743 | else | |
4744 | { | |
4745 | if (debug_infrun) | |
4746 | fprintf_unfiltered (gdb_stdlog, | |
4747 | "infrun: %s not executing\n", | |
a068643d | 4748 | target_pid_to_str (t->ptid).c_str ()); |
372316f1 PA |
4749 | |
4750 | /* The thread may be not executing, but still be | |
4751 | resumed with a pending status to process. */ | |
719546c4 | 4752 | t->resumed = false; |
372316f1 PA |
4753 | } |
4754 | } | |
4755 | ||
4756 | if (!need_wait) | |
4757 | break; | |
4758 | ||
4759 | /* If we find new threads on the second iteration, restart | |
4760 | over. We want to see two iterations in a row with all | |
4761 | threads stopped. */ | |
4762 | if (pass > 0) | |
4763 | pass = -1; | |
4764 | ||
5b6d1e4f PA |
4765 | wait_one_event event = wait_one (); |
4766 | ||
c29705b7 | 4767 | if (debug_infrun) |
372316f1 | 4768 | { |
c29705b7 PW |
4769 | fprintf_unfiltered (gdb_stdlog, |
4770 | "infrun: stop_all_threads %s %s\n", | |
5b6d1e4f PA |
4771 | target_waitstatus_to_string (&event.ws).c_str (), |
4772 | target_pid_to_str (event.ptid).c_str ()); | |
372316f1 | 4773 | } |
372316f1 | 4774 | |
5b6d1e4f PA |
4775 | if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED |
4776 | || event.ws.kind == TARGET_WAITKIND_THREAD_EXITED | |
4777 | || event.ws.kind == TARGET_WAITKIND_EXITED | |
4778 | || event.ws.kind == TARGET_WAITKIND_SIGNALLED) | |
c29705b7 PW |
4779 | { |
4780 | /* All resumed threads exited | |
4781 | or one thread/process exited/signalled. */ | |
372316f1 PA |
4782 | } |
4783 | else | |
4784 | { | |
5b6d1e4f | 4785 | thread_info *t = find_thread_ptid (event.target, event.ptid); |
372316f1 | 4786 | if (t == NULL) |
5b6d1e4f | 4787 | t = add_thread (event.target, event.ptid); |
372316f1 PA |
4788 | |
4789 | t->stop_requested = 0; | |
4790 | t->executing = 0; | |
719546c4 | 4791 | t->resumed = false; |
372316f1 PA |
4792 | t->control.may_range_step = 0; |
4793 | ||
6efcd9a8 PA |
4794 | /* This may be the first time we see the inferior report |
4795 | a stop. */ | |
5b6d1e4f | 4796 | inferior *inf = find_inferior_ptid (event.target, event.ptid); |
6efcd9a8 PA |
4797 | if (inf->needs_setup) |
4798 | { | |
4799 | switch_to_thread_no_regs (t); | |
4800 | setup_inferior (0); | |
4801 | } | |
4802 | ||
5b6d1e4f PA |
4803 | if (event.ws.kind == TARGET_WAITKIND_STOPPED |
4804 | && event.ws.value.sig == GDB_SIGNAL_0) | |
372316f1 PA |
4805 | { |
4806 | /* We caught the event that we intended to catch, so | |
4807 | there's no event pending. */ | |
4808 | t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE; | |
4809 | t->suspend.waitstatus_pending_p = 0; | |
4810 | ||
00431a78 | 4811 | if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0) |
372316f1 PA |
4812 | { |
4813 | /* Add it back to the step-over queue. */ | |
4814 | if (debug_infrun) | |
4815 | { | |
4816 | fprintf_unfiltered (gdb_stdlog, | |
4817 | "infrun: displaced-step of %s " | |
4818 | "canceled: adding back to the " | |
4819 | "step-over queue\n", | |
a068643d | 4820 | target_pid_to_str (t->ptid).c_str ()); |
372316f1 PA |
4821 | } |
4822 | t->control.trap_expected = 0; | |
4823 | thread_step_over_chain_enqueue (t); | |
4824 | } | |
4825 | } | |
4826 | else | |
4827 | { | |
4828 | enum gdb_signal sig; | |
4829 | struct regcache *regcache; | |
372316f1 PA |
4830 | |
4831 | if (debug_infrun) | |
4832 | { | |
5b6d1e4f | 4833 | std::string statstr = target_waitstatus_to_string (&event.ws); |
372316f1 | 4834 | |
372316f1 PA |
4835 | fprintf_unfiltered (gdb_stdlog, |
4836 | "infrun: target_wait %s, saving " | |
4837 | "status for %d.%ld.%ld\n", | |
23fdd69e | 4838 | statstr.c_str (), |
e99b03dc | 4839 | t->ptid.pid (), |
e38504b3 | 4840 | t->ptid.lwp (), |
cc6bcb54 | 4841 | t->ptid.tid ()); |
372316f1 PA |
4842 | } |
4843 | ||
4844 | /* Record for later. */ | |
5b6d1e4f | 4845 | save_waitstatus (t, &event.ws); |
372316f1 | 4846 | |
5b6d1e4f PA |
4847 | sig = (event.ws.kind == TARGET_WAITKIND_STOPPED |
4848 | ? event.ws.value.sig : GDB_SIGNAL_0); | |
372316f1 | 4849 | |
00431a78 | 4850 | if (displaced_step_fixup (t, sig) < 0) |
372316f1 PA |
4851 | { |
4852 | /* Add it back to the step-over queue. */ | |
4853 | t->control.trap_expected = 0; | |
4854 | thread_step_over_chain_enqueue (t); | |
4855 | } | |
4856 | ||
00431a78 | 4857 | regcache = get_thread_regcache (t); |
372316f1 PA |
4858 | t->suspend.stop_pc = regcache_read_pc (regcache); |
4859 | ||
4860 | if (debug_infrun) | |
4861 | { | |
4862 | fprintf_unfiltered (gdb_stdlog, | |
4863 | "infrun: saved stop_pc=%s for %s " | |
4864 | "(currently_stepping=%d)\n", | |
4865 | paddress (target_gdbarch (), | |
4866 | t->suspend.stop_pc), | |
a068643d | 4867 | target_pid_to_str (t->ptid).c_str (), |
372316f1 PA |
4868 | currently_stepping (t)); |
4869 | } | |
4870 | } | |
4871 | } | |
4872 | } | |
4873 | } | |
4874 | ||
372316f1 PA |
4875 | if (debug_infrun) |
4876 | fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n"); | |
4877 | } | |
4878 | ||
f4836ba9 PA |
4879 | /* Handle a TARGET_WAITKIND_NO_RESUMED event. */ |
4880 | ||
4881 | static int | |
4882 | handle_no_resumed (struct execution_control_state *ecs) | |
4883 | { | |
3b12939d | 4884 | if (target_can_async_p ()) |
f4836ba9 | 4885 | { |
3b12939d PA |
4886 | struct ui *ui; |
4887 | int any_sync = 0; | |
f4836ba9 | 4888 | |
3b12939d PA |
4889 | ALL_UIS (ui) |
4890 | { | |
4891 | if (ui->prompt_state == PROMPT_BLOCKED) | |
4892 | { | |
4893 | any_sync = 1; | |
4894 | break; | |
4895 | } | |
4896 | } | |
4897 | if (!any_sync) | |
4898 | { | |
4899 | /* There were no unwaited-for children left in the target, but, | |
4900 | we're not synchronously waiting for events either. Just | |
4901 | ignore. */ | |
4902 | ||
4903 | if (debug_infrun) | |
4904 | fprintf_unfiltered (gdb_stdlog, | |
4905 | "infrun: TARGET_WAITKIND_NO_RESUMED " | |
4906 | "(ignoring: bg)\n"); | |
4907 | prepare_to_wait (ecs); | |
4908 | return 1; | |
4909 | } | |
f4836ba9 PA |
4910 | } |
4911 | ||
4912 | /* Otherwise, if we were running a synchronous execution command, we | |
4913 | may need to cancel it and give the user back the terminal. | |
4914 | ||
4915 | In non-stop mode, the target can't tell whether we've already | |
4916 | consumed previous stop events, so it can end up sending us a | |
4917 | no-resumed event like so: | |
4918 | ||
4919 | #0 - thread 1 is left stopped | |
4920 | ||
4921 | #1 - thread 2 is resumed and hits breakpoint | |
4922 | -> TARGET_WAITKIND_STOPPED | |
4923 | ||
4924 | #2 - thread 3 is resumed and exits | |
4925 | this is the last resumed thread, so | |
4926 | -> TARGET_WAITKIND_NO_RESUMED | |
4927 | ||
4928 | #3 - gdb processes stop for thread 2 and decides to re-resume | |
4929 | it. | |
4930 | ||
4931 | #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event. | |
4932 | thread 2 is now resumed, so the event should be ignored. | |
4933 | ||
4934 | IOW, if the stop for thread 2 doesn't end a foreground command, | |
4935 | then we need to ignore the following TARGET_WAITKIND_NO_RESUMED | |
4936 | event. But it could be that the event meant that thread 2 itself | |
4937 | (or whatever other thread was the last resumed thread) exited. | |
4938 | ||
4939 | To address this we refresh the thread list and check whether we | |
4940 | have resumed threads _now_. In the example above, this removes | |
4941 | thread 3 from the thread list. If thread 2 was re-resumed, we | |
4942 | ignore this event. If we find no thread resumed, then we cancel | |
4943 | the synchronous command show "no unwaited-for " to the user. */ | |
4944 | update_thread_list (); | |
4945 | ||
5b6d1e4f | 4946 | for (thread_info *thread : all_non_exited_threads (ecs->target)) |
f4836ba9 PA |
4947 | { |
4948 | if (thread->executing | |
4949 | || thread->suspend.waitstatus_pending_p) | |
4950 | { | |
4951 | /* There were no unwaited-for children left in the target at | |
4952 | some point, but there are now. Just ignore. */ | |
4953 | if (debug_infrun) | |
4954 | fprintf_unfiltered (gdb_stdlog, | |
4955 | "infrun: TARGET_WAITKIND_NO_RESUMED " | |
4956 | "(ignoring: found resumed)\n"); | |
4957 | prepare_to_wait (ecs); | |
4958 | return 1; | |
4959 | } | |
4960 | } | |
4961 | ||
4962 | /* Note however that we may find no resumed thread because the whole | |
4963 | process exited meanwhile (thus updating the thread list results | |
4964 | in an empty thread list). In this case we know we'll be getting | |
4965 | a process exit event shortly. */ | |
5b6d1e4f | 4966 | for (inferior *inf : all_non_exited_inferiors (ecs->target)) |
f4836ba9 | 4967 | { |
08036331 | 4968 | thread_info *thread = any_live_thread_of_inferior (inf); |
f4836ba9 PA |
4969 | if (thread == NULL) |
4970 | { | |
4971 | if (debug_infrun) | |
4972 | fprintf_unfiltered (gdb_stdlog, | |
4973 | "infrun: TARGET_WAITKIND_NO_RESUMED " | |
4974 | "(expect process exit)\n"); | |
4975 | prepare_to_wait (ecs); | |
4976 | return 1; | |
4977 | } | |
4978 | } | |
4979 | ||
4980 | /* Go ahead and report the event. */ | |
4981 | return 0; | |
4982 | } | |
4983 | ||
05ba8510 PA |
4984 | /* Given an execution control state that has been freshly filled in by |
4985 | an event from the inferior, figure out what it means and take | |
4986 | appropriate action. | |
4987 | ||
4988 | The alternatives are: | |
4989 | ||
22bcd14b | 4990 | 1) stop_waiting and return; to really stop and return to the |
05ba8510 PA |
4991 | debugger. |
4992 | ||
4993 | 2) keep_going and return; to wait for the next event (set | |
4994 | ecs->event_thread->stepping_over_breakpoint to 1 to single step | |
4995 | once). */ | |
c906108c | 4996 | |
ec9499be | 4997 | static void |
595915c1 | 4998 | handle_inferior_event (struct execution_control_state *ecs) |
cd0fc7c3 | 4999 | { |
595915c1 TT |
5000 | /* Make sure that all temporary struct value objects that were |
5001 | created during the handling of the event get deleted at the | |
5002 | end. */ | |
5003 | scoped_value_mark free_values; | |
5004 | ||
d6b48e9c PA |
5005 | enum stop_kind stop_soon; |
5006 | ||
c29705b7 PW |
5007 | if (debug_infrun) |
5008 | fprintf_unfiltered (gdb_stdlog, "infrun: handle_inferior_event %s\n", | |
5009 | target_waitstatus_to_string (&ecs->ws).c_str ()); | |
5010 | ||
28736962 PA |
5011 | if (ecs->ws.kind == TARGET_WAITKIND_IGNORE) |
5012 | { | |
5013 | /* We had an event in the inferior, but we are not interested in | |
5014 | handling it at this level. The lower layers have already | |
5015 | done what needs to be done, if anything. | |
5016 | ||
5017 | One of the possible circumstances for this is when the | |
5018 | inferior produces output for the console. The inferior has | |
5019 | not stopped, and we are ignoring the event. Another possible | |
5020 | circumstance is any event which the lower level knows will be | |
5021 | reported multiple times without an intervening resume. */ | |
28736962 PA |
5022 | prepare_to_wait (ecs); |
5023 | return; | |
5024 | } | |
5025 | ||
65706a29 PA |
5026 | if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED) |
5027 | { | |
65706a29 PA |
5028 | prepare_to_wait (ecs); |
5029 | return; | |
5030 | } | |
5031 | ||
0e5bf2a8 | 5032 | if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED |
f4836ba9 PA |
5033 | && handle_no_resumed (ecs)) |
5034 | return; | |
0e5bf2a8 | 5035 | |
5b6d1e4f PA |
5036 | /* Cache the last target/ptid/waitstatus. */ |
5037 | set_last_target_status (ecs->target, ecs->ptid, ecs->ws); | |
e02bc4cc | 5038 | |
ca005067 | 5039 | /* Always clear state belonging to the previous time we stopped. */ |
aa7d318d | 5040 | stop_stack_dummy = STOP_NONE; |
ca005067 | 5041 | |
0e5bf2a8 PA |
5042 | if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED) |
5043 | { | |
5044 | /* No unwaited-for children left. IOW, all resumed children | |
5045 | have exited. */ | |
0e5bf2a8 | 5046 | stop_print_frame = 0; |
22bcd14b | 5047 | stop_waiting (ecs); |
0e5bf2a8 PA |
5048 | return; |
5049 | } | |
5050 | ||
8c90c137 | 5051 | if (ecs->ws.kind != TARGET_WAITKIND_EXITED |
64776a0b | 5052 | && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED) |
359f5fe6 | 5053 | { |
5b6d1e4f | 5054 | ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid); |
359f5fe6 PA |
5055 | /* If it's a new thread, add it to the thread database. */ |
5056 | if (ecs->event_thread == NULL) | |
5b6d1e4f | 5057 | ecs->event_thread = add_thread (ecs->target, ecs->ptid); |
c1e36e3e PA |
5058 | |
5059 | /* Disable range stepping. If the next step request could use a | |
5060 | range, this will be end up re-enabled then. */ | |
5061 | ecs->event_thread->control.may_range_step = 0; | |
359f5fe6 | 5062 | } |
88ed393a JK |
5063 | |
5064 | /* Dependent on valid ECS->EVENT_THREAD. */ | |
d8dd4d5f | 5065 | adjust_pc_after_break (ecs->event_thread, &ecs->ws); |
88ed393a JK |
5066 | |
5067 | /* Dependent on the current PC value modified by adjust_pc_after_break. */ | |
5068 | reinit_frame_cache (); | |
5069 | ||
28736962 PA |
5070 | breakpoint_retire_moribund (); |
5071 | ||
2b009048 DJ |
5072 | /* First, distinguish signals caused by the debugger from signals |
5073 | that have to do with the program's own actions. Note that | |
5074 | breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending | |
5075 | on the operating system version. Here we detect when a SIGILL or | |
5076 | SIGEMT is really a breakpoint and change it to SIGTRAP. We do | |
5077 | something similar for SIGSEGV, since a SIGSEGV will be generated | |
5078 | when we're trying to execute a breakpoint instruction on a | |
5079 | non-executable stack. This happens for call dummy breakpoints | |
5080 | for architectures like SPARC that place call dummies on the | |
5081 | stack. */ | |
2b009048 | 5082 | if (ecs->ws.kind == TARGET_WAITKIND_STOPPED |
a493e3e2 PA |
5083 | && (ecs->ws.value.sig == GDB_SIGNAL_ILL |
5084 | || ecs->ws.value.sig == GDB_SIGNAL_SEGV | |
5085 | || ecs->ws.value.sig == GDB_SIGNAL_EMT)) | |
2b009048 | 5086 | { |
00431a78 | 5087 | struct regcache *regcache = get_thread_regcache (ecs->event_thread); |
de0a0249 | 5088 | |
a01bda52 | 5089 | if (breakpoint_inserted_here_p (regcache->aspace (), |
de0a0249 UW |
5090 | regcache_read_pc (regcache))) |
5091 | { | |
5092 | if (debug_infrun) | |
5093 | fprintf_unfiltered (gdb_stdlog, | |
5094 | "infrun: Treating signal as SIGTRAP\n"); | |
a493e3e2 | 5095 | ecs->ws.value.sig = GDB_SIGNAL_TRAP; |
de0a0249 | 5096 | } |
2b009048 DJ |
5097 | } |
5098 | ||
28736962 PA |
5099 | /* Mark the non-executing threads accordingly. In all-stop, all |
5100 | threads of all processes are stopped when we get any event | |
e1316e60 | 5101 | reported. In non-stop mode, only the event thread stops. */ |
372316f1 PA |
5102 | { |
5103 | ptid_t mark_ptid; | |
5104 | ||
fbea99ea | 5105 | if (!target_is_non_stop_p ()) |
372316f1 PA |
5106 | mark_ptid = minus_one_ptid; |
5107 | else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED | |
5108 | || ecs->ws.kind == TARGET_WAITKIND_EXITED) | |
5109 | { | |
5110 | /* If we're handling a process exit in non-stop mode, even | |
5111 | though threads haven't been deleted yet, one would think | |
5112 | that there is nothing to do, as threads of the dead process | |
5113 | will be soon deleted, and threads of any other process were | |
5114 | left running. However, on some targets, threads survive a | |
5115 | process exit event. E.g., for the "checkpoint" command, | |
5116 | when the current checkpoint/fork exits, linux-fork.c | |
5117 | automatically switches to another fork from within | |
5118 | target_mourn_inferior, by associating the same | |
5119 | inferior/thread to another fork. We haven't mourned yet at | |
5120 | this point, but we must mark any threads left in the | |
5121 | process as not-executing so that finish_thread_state marks | |
5122 | them stopped (in the user's perspective) if/when we present | |
5123 | the stop to the user. */ | |
e99b03dc | 5124 | mark_ptid = ptid_t (ecs->ptid.pid ()); |
372316f1 PA |
5125 | } |
5126 | else | |
5127 | mark_ptid = ecs->ptid; | |
5128 | ||
719546c4 | 5129 | set_executing (ecs->target, mark_ptid, false); |
372316f1 PA |
5130 | |
5131 | /* Likewise the resumed flag. */ | |
719546c4 | 5132 | set_resumed (ecs->target, mark_ptid, false); |
372316f1 | 5133 | } |
8c90c137 | 5134 | |
488f131b JB |
5135 | switch (ecs->ws.kind) |
5136 | { | |
5137 | case TARGET_WAITKIND_LOADED: | |
00431a78 | 5138 | context_switch (ecs); |
b0f4b84b DJ |
5139 | /* Ignore gracefully during startup of the inferior, as it might |
5140 | be the shell which has just loaded some objects, otherwise | |
5141 | add the symbols for the newly loaded objects. Also ignore at | |
5142 | the beginning of an attach or remote session; we will query | |
5143 | the full list of libraries once the connection is | |
5144 | established. */ | |
4f5d7f63 | 5145 | |
00431a78 | 5146 | stop_soon = get_inferior_stop_soon (ecs); |
c0236d92 | 5147 | if (stop_soon == NO_STOP_QUIETLY) |
488f131b | 5148 | { |
edcc5120 TT |
5149 | struct regcache *regcache; |
5150 | ||
00431a78 | 5151 | regcache = get_thread_regcache (ecs->event_thread); |
edcc5120 TT |
5152 | |
5153 | handle_solib_event (); | |
5154 | ||
5155 | ecs->event_thread->control.stop_bpstat | |
a01bda52 | 5156 | = bpstat_stop_status (regcache->aspace (), |
f2ffa92b PA |
5157 | ecs->event_thread->suspend.stop_pc, |
5158 | ecs->event_thread, &ecs->ws); | |
ab04a2af | 5159 | |
c65d6b55 PA |
5160 | if (handle_stop_requested (ecs)) |
5161 | return; | |
5162 | ||
ce12b012 | 5163 | if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat)) |
edcc5120 TT |
5164 | { |
5165 | /* A catchpoint triggered. */ | |
94c57d6a PA |
5166 | process_event_stop_test (ecs); |
5167 | return; | |
edcc5120 | 5168 | } |
488f131b | 5169 | |
b0f4b84b DJ |
5170 | /* If requested, stop when the dynamic linker notifies |
5171 | gdb of events. This allows the user to get control | |
5172 | and place breakpoints in initializer routines for | |
5173 | dynamically loaded objects (among other things). */ | |
a493e3e2 | 5174 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; |
b0f4b84b DJ |
5175 | if (stop_on_solib_events) |
5176 | { | |
55409f9d DJ |
5177 | /* Make sure we print "Stopped due to solib-event" in |
5178 | normal_stop. */ | |
5179 | stop_print_frame = 1; | |
5180 | ||
22bcd14b | 5181 | stop_waiting (ecs); |
b0f4b84b DJ |
5182 | return; |
5183 | } | |
488f131b | 5184 | } |
b0f4b84b DJ |
5185 | |
5186 | /* If we are skipping through a shell, or through shared library | |
5187 | loading that we aren't interested in, resume the program. If | |
5c09a2c5 | 5188 | we're running the program normally, also resume. */ |
b0f4b84b DJ |
5189 | if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY) |
5190 | { | |
74960c60 VP |
5191 | /* Loading of shared libraries might have changed breakpoint |
5192 | addresses. Make sure new breakpoints are inserted. */ | |
a25a5a45 | 5193 | if (stop_soon == NO_STOP_QUIETLY) |
74960c60 | 5194 | insert_breakpoints (); |
64ce06e4 | 5195 | resume (GDB_SIGNAL_0); |
b0f4b84b DJ |
5196 | prepare_to_wait (ecs); |
5197 | return; | |
5198 | } | |
5199 | ||
5c09a2c5 PA |
5200 | /* But stop if we're attaching or setting up a remote |
5201 | connection. */ | |
5202 | if (stop_soon == STOP_QUIETLY_NO_SIGSTOP | |
5203 | || stop_soon == STOP_QUIETLY_REMOTE) | |
5204 | { | |
5205 | if (debug_infrun) | |
5206 | fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n"); | |
22bcd14b | 5207 | stop_waiting (ecs); |
5c09a2c5 PA |
5208 | return; |
5209 | } | |
5210 | ||
5211 | internal_error (__FILE__, __LINE__, | |
5212 | _("unhandled stop_soon: %d"), (int) stop_soon); | |
c5aa993b | 5213 | |
488f131b | 5214 | case TARGET_WAITKIND_SPURIOUS: |
c65d6b55 PA |
5215 | if (handle_stop_requested (ecs)) |
5216 | return; | |
00431a78 | 5217 | context_switch (ecs); |
64ce06e4 | 5218 | resume (GDB_SIGNAL_0); |
488f131b JB |
5219 | prepare_to_wait (ecs); |
5220 | return; | |
c5aa993b | 5221 | |
65706a29 | 5222 | case TARGET_WAITKIND_THREAD_CREATED: |
c65d6b55 PA |
5223 | if (handle_stop_requested (ecs)) |
5224 | return; | |
00431a78 | 5225 | context_switch (ecs); |
65706a29 PA |
5226 | if (!switch_back_to_stepped_thread (ecs)) |
5227 | keep_going (ecs); | |
5228 | return; | |
5229 | ||
488f131b | 5230 | case TARGET_WAITKIND_EXITED: |
940c3c06 | 5231 | case TARGET_WAITKIND_SIGNALLED: |
fb66883a | 5232 | inferior_ptid = ecs->ptid; |
5b6d1e4f | 5233 | set_current_inferior (find_inferior_ptid (ecs->target, ecs->ptid)); |
6c95b8df PA |
5234 | set_current_program_space (current_inferior ()->pspace); |
5235 | handle_vfork_child_exec_or_exit (0); | |
223ffa71 | 5236 | target_terminal::ours (); /* Must do this before mourn anyway. */ |
488f131b | 5237 | |
0c557179 SDJ |
5238 | /* Clearing any previous state of convenience variables. */ |
5239 | clear_exit_convenience_vars (); | |
5240 | ||
940c3c06 PA |
5241 | if (ecs->ws.kind == TARGET_WAITKIND_EXITED) |
5242 | { | |
5243 | /* Record the exit code in the convenience variable $_exitcode, so | |
5244 | that the user can inspect this again later. */ | |
5245 | set_internalvar_integer (lookup_internalvar ("_exitcode"), | |
5246 | (LONGEST) ecs->ws.value.integer); | |
5247 | ||
5248 | /* Also record this in the inferior itself. */ | |
5249 | current_inferior ()->has_exit_code = 1; | |
5250 | current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer; | |
8cf64490 | 5251 | |
98eb56a4 PA |
5252 | /* Support the --return-child-result option. */ |
5253 | return_child_result_value = ecs->ws.value.integer; | |
5254 | ||
76727919 | 5255 | gdb::observers::exited.notify (ecs->ws.value.integer); |
940c3c06 PA |
5256 | } |
5257 | else | |
0c557179 | 5258 | { |
00431a78 | 5259 | struct gdbarch *gdbarch = current_inferior ()->gdbarch; |
0c557179 SDJ |
5260 | |
5261 | if (gdbarch_gdb_signal_to_target_p (gdbarch)) | |
5262 | { | |
5263 | /* Set the value of the internal variable $_exitsignal, | |
5264 | which holds the signal uncaught by the inferior. */ | |
5265 | set_internalvar_integer (lookup_internalvar ("_exitsignal"), | |
5266 | gdbarch_gdb_signal_to_target (gdbarch, | |
5267 | ecs->ws.value.sig)); | |
5268 | } | |
5269 | else | |
5270 | { | |
5271 | /* We don't have access to the target's method used for | |
5272 | converting between signal numbers (GDB's internal | |
5273 | representation <-> target's representation). | |
5274 | Therefore, we cannot do a good job at displaying this | |
5275 | information to the user. It's better to just warn | |
5276 | her about it (if infrun debugging is enabled), and | |
5277 | give up. */ | |
5278 | if (debug_infrun) | |
5279 | fprintf_filtered (gdb_stdlog, _("\ | |
5280 | Cannot fill $_exitsignal with the correct signal number.\n")); | |
5281 | } | |
5282 | ||
76727919 | 5283 | gdb::observers::signal_exited.notify (ecs->ws.value.sig); |
0c557179 | 5284 | } |
8cf64490 | 5285 | |
488f131b | 5286 | gdb_flush (gdb_stdout); |
bc1e6c81 | 5287 | target_mourn_inferior (inferior_ptid); |
488f131b | 5288 | stop_print_frame = 0; |
22bcd14b | 5289 | stop_waiting (ecs); |
488f131b | 5290 | return; |
c5aa993b | 5291 | |
488f131b | 5292 | case TARGET_WAITKIND_FORKED: |
deb3b17b | 5293 | case TARGET_WAITKIND_VFORKED: |
e2d96639 YQ |
5294 | /* Check whether the inferior is displaced stepping. */ |
5295 | { | |
00431a78 | 5296 | struct regcache *regcache = get_thread_regcache (ecs->event_thread); |
ac7936df | 5297 | struct gdbarch *gdbarch = regcache->arch (); |
e2d96639 YQ |
5298 | |
5299 | /* If checking displaced stepping is supported, and thread | |
5300 | ecs->ptid is displaced stepping. */ | |
00431a78 | 5301 | if (displaced_step_in_progress_thread (ecs->event_thread)) |
e2d96639 YQ |
5302 | { |
5303 | struct inferior *parent_inf | |
5b6d1e4f | 5304 | = find_inferior_ptid (ecs->target, ecs->ptid); |
e2d96639 YQ |
5305 | struct regcache *child_regcache; |
5306 | CORE_ADDR parent_pc; | |
5307 | ||
5308 | /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED, | |
5309 | indicating that the displaced stepping of syscall instruction | |
5310 | has been done. Perform cleanup for parent process here. Note | |
5311 | that this operation also cleans up the child process for vfork, | |
5312 | because their pages are shared. */ | |
00431a78 | 5313 | displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP); |
c2829269 PA |
5314 | /* Start a new step-over in another thread if there's one |
5315 | that needs it. */ | |
5316 | start_step_over (); | |
e2d96639 YQ |
5317 | |
5318 | if (ecs->ws.kind == TARGET_WAITKIND_FORKED) | |
5319 | { | |
c0987663 | 5320 | struct displaced_step_inferior_state *displaced |
00431a78 | 5321 | = get_displaced_stepping_state (parent_inf); |
c0987663 | 5322 | |
e2d96639 YQ |
5323 | /* Restore scratch pad for child process. */ |
5324 | displaced_step_restore (displaced, ecs->ws.value.related_pid); | |
5325 | } | |
5326 | ||
5327 | /* Since the vfork/fork syscall instruction was executed in the scratchpad, | |
5328 | the child's PC is also within the scratchpad. Set the child's PC | |
5329 | to the parent's PC value, which has already been fixed up. | |
5330 | FIXME: we use the parent's aspace here, although we're touching | |
5331 | the child, because the child hasn't been added to the inferior | |
5332 | list yet at this point. */ | |
5333 | ||
5334 | child_regcache | |
5b6d1e4f PA |
5335 | = get_thread_arch_aspace_regcache (parent_inf->process_target (), |
5336 | ecs->ws.value.related_pid, | |
e2d96639 YQ |
5337 | gdbarch, |
5338 | parent_inf->aspace); | |
5339 | /* Read PC value of parent process. */ | |
5340 | parent_pc = regcache_read_pc (regcache); | |
5341 | ||
5342 | if (debug_displaced) | |
5343 | fprintf_unfiltered (gdb_stdlog, | |
5344 | "displaced: write child pc from %s to %s\n", | |
5345 | paddress (gdbarch, | |
5346 | regcache_read_pc (child_regcache)), | |
5347 | paddress (gdbarch, parent_pc)); | |
5348 | ||
5349 | regcache_write_pc (child_regcache, parent_pc); | |
5350 | } | |
5351 | } | |
5352 | ||
00431a78 | 5353 | context_switch (ecs); |
5a2901d9 | 5354 | |
b242c3c2 PA |
5355 | /* Immediately detach breakpoints from the child before there's |
5356 | any chance of letting the user delete breakpoints from the | |
5357 | breakpoint lists. If we don't do this early, it's easy to | |
5358 | leave left over traps in the child, vis: "break foo; catch | |
5359 | fork; c; <fork>; del; c; <child calls foo>". We only follow | |
5360 | the fork on the last `continue', and by that time the | |
5361 | breakpoint at "foo" is long gone from the breakpoint table. | |
5362 | If we vforked, then we don't need to unpatch here, since both | |
5363 | parent and child are sharing the same memory pages; we'll | |
5364 | need to unpatch at follow/detach time instead to be certain | |
5365 | that new breakpoints added between catchpoint hit time and | |
5366 | vfork follow are detached. */ | |
5367 | if (ecs->ws.kind != TARGET_WAITKIND_VFORKED) | |
5368 | { | |
b242c3c2 PA |
5369 | /* This won't actually modify the breakpoint list, but will |
5370 | physically remove the breakpoints from the child. */ | |
d80ee84f | 5371 | detach_breakpoints (ecs->ws.value.related_pid); |
b242c3c2 PA |
5372 | } |
5373 | ||
34b7e8a6 | 5374 | delete_just_stopped_threads_single_step_breakpoints (); |
d03285ec | 5375 | |
e58b0e63 PA |
5376 | /* In case the event is caught by a catchpoint, remember that |
5377 | the event is to be followed at the next resume of the thread, | |
5378 | and not immediately. */ | |
5379 | ecs->event_thread->pending_follow = ecs->ws; | |
5380 | ||
f2ffa92b PA |
5381 | ecs->event_thread->suspend.stop_pc |
5382 | = regcache_read_pc (get_thread_regcache (ecs->event_thread)); | |
675bf4cb | 5383 | |
16c381f0 | 5384 | ecs->event_thread->control.stop_bpstat |
a01bda52 | 5385 | = bpstat_stop_status (get_current_regcache ()->aspace (), |
f2ffa92b PA |
5386 | ecs->event_thread->suspend.stop_pc, |
5387 | ecs->event_thread, &ecs->ws); | |
675bf4cb | 5388 | |
c65d6b55 PA |
5389 | if (handle_stop_requested (ecs)) |
5390 | return; | |
5391 | ||
ce12b012 PA |
5392 | /* If no catchpoint triggered for this, then keep going. Note |
5393 | that we're interested in knowing the bpstat actually causes a | |
5394 | stop, not just if it may explain the signal. Software | |
5395 | watchpoints, for example, always appear in the bpstat. */ | |
5396 | if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat)) | |
04e68871 | 5397 | { |
e58b0e63 | 5398 | int should_resume; |
3e43a32a MS |
5399 | int follow_child |
5400 | = (follow_fork_mode_string == follow_fork_mode_child); | |
e58b0e63 | 5401 | |
a493e3e2 | 5402 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; |
e58b0e63 | 5403 | |
5b6d1e4f PA |
5404 | process_stratum_target *targ |
5405 | = ecs->event_thread->inf->process_target (); | |
5406 | ||
e58b0e63 PA |
5407 | should_resume = follow_fork (); |
5408 | ||
5b6d1e4f PA |
5409 | /* Note that one of these may be an invalid pointer, |
5410 | depending on detach_fork. */ | |
00431a78 | 5411 | thread_info *parent = ecs->event_thread; |
5b6d1e4f PA |
5412 | thread_info *child |
5413 | = find_thread_ptid (targ, ecs->ws.value.related_pid); | |
6c95b8df | 5414 | |
a2077e25 PA |
5415 | /* At this point, the parent is marked running, and the |
5416 | child is marked stopped. */ | |
5417 | ||
5418 | /* If not resuming the parent, mark it stopped. */ | |
5419 | if (follow_child && !detach_fork && !non_stop && !sched_multi) | |
00431a78 | 5420 | parent->set_running (false); |
a2077e25 PA |
5421 | |
5422 | /* If resuming the child, mark it running. */ | |
5423 | if (follow_child || (!detach_fork && (non_stop || sched_multi))) | |
00431a78 | 5424 | child->set_running (true); |
a2077e25 | 5425 | |
6c95b8df | 5426 | /* In non-stop mode, also resume the other branch. */ |
fbea99ea PA |
5427 | if (!detach_fork && (non_stop |
5428 | || (sched_multi && target_is_non_stop_p ()))) | |
6c95b8df PA |
5429 | { |
5430 | if (follow_child) | |
5431 | switch_to_thread (parent); | |
5432 | else | |
5433 | switch_to_thread (child); | |
5434 | ||
5435 | ecs->event_thread = inferior_thread (); | |
5436 | ecs->ptid = inferior_ptid; | |
5437 | keep_going (ecs); | |
5438 | } | |
5439 | ||
5440 | if (follow_child) | |
5441 | switch_to_thread (child); | |
5442 | else | |
5443 | switch_to_thread (parent); | |
5444 | ||
e58b0e63 PA |
5445 | ecs->event_thread = inferior_thread (); |
5446 | ecs->ptid = inferior_ptid; | |
5447 | ||
5448 | if (should_resume) | |
5449 | keep_going (ecs); | |
5450 | else | |
22bcd14b | 5451 | stop_waiting (ecs); |
04e68871 DJ |
5452 | return; |
5453 | } | |
94c57d6a PA |
5454 | process_event_stop_test (ecs); |
5455 | return; | |
488f131b | 5456 | |
6c95b8df PA |
5457 | case TARGET_WAITKIND_VFORK_DONE: |
5458 | /* Done with the shared memory region. Re-insert breakpoints in | |
5459 | the parent, and keep going. */ | |
5460 | ||
00431a78 | 5461 | context_switch (ecs); |
6c95b8df PA |
5462 | |
5463 | current_inferior ()->waiting_for_vfork_done = 0; | |
56710373 | 5464 | current_inferior ()->pspace->breakpoints_not_allowed = 0; |
c65d6b55 PA |
5465 | |
5466 | if (handle_stop_requested (ecs)) | |
5467 | return; | |
5468 | ||
6c95b8df PA |
5469 | /* This also takes care of reinserting breakpoints in the |
5470 | previously locked inferior. */ | |
5471 | keep_going (ecs); | |
5472 | return; | |
5473 | ||
488f131b | 5474 | case TARGET_WAITKIND_EXECD: |
488f131b | 5475 | |
cbd2b4e3 PA |
5476 | /* Note we can't read registers yet (the stop_pc), because we |
5477 | don't yet know the inferior's post-exec architecture. | |
5478 | 'stop_pc' is explicitly read below instead. */ | |
00431a78 | 5479 | switch_to_thread_no_regs (ecs->event_thread); |
5a2901d9 | 5480 | |
6c95b8df PA |
5481 | /* Do whatever is necessary to the parent branch of the vfork. */ |
5482 | handle_vfork_child_exec_or_exit (1); | |
5483 | ||
795e548f PA |
5484 | /* This causes the eventpoints and symbol table to be reset. |
5485 | Must do this now, before trying to determine whether to | |
5486 | stop. */ | |
71b43ef8 | 5487 | follow_exec (inferior_ptid, ecs->ws.value.execd_pathname); |
795e548f | 5488 | |
17d8546e DB |
5489 | /* In follow_exec we may have deleted the original thread and |
5490 | created a new one. Make sure that the event thread is the | |
5491 | execd thread for that case (this is a nop otherwise). */ | |
5492 | ecs->event_thread = inferior_thread (); | |
5493 | ||
f2ffa92b PA |
5494 | ecs->event_thread->suspend.stop_pc |
5495 | = regcache_read_pc (get_thread_regcache (ecs->event_thread)); | |
ecdc3a72 | 5496 | |
16c381f0 | 5497 | ecs->event_thread->control.stop_bpstat |
a01bda52 | 5498 | = bpstat_stop_status (get_current_regcache ()->aspace (), |
f2ffa92b PA |
5499 | ecs->event_thread->suspend.stop_pc, |
5500 | ecs->event_thread, &ecs->ws); | |
795e548f | 5501 | |
71b43ef8 PA |
5502 | /* Note that this may be referenced from inside |
5503 | bpstat_stop_status above, through inferior_has_execd. */ | |
5504 | xfree (ecs->ws.value.execd_pathname); | |
5505 | ecs->ws.value.execd_pathname = NULL; | |
5506 | ||
c65d6b55 PA |
5507 | if (handle_stop_requested (ecs)) |
5508 | return; | |
5509 | ||
04e68871 | 5510 | /* If no catchpoint triggered for this, then keep going. */ |
ce12b012 | 5511 | if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat)) |
04e68871 | 5512 | { |
a493e3e2 | 5513 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; |
04e68871 DJ |
5514 | keep_going (ecs); |
5515 | return; | |
5516 | } | |
94c57d6a PA |
5517 | process_event_stop_test (ecs); |
5518 | return; | |
488f131b | 5519 | |
b4dc5ffa MK |
5520 | /* Be careful not to try to gather much state about a thread |
5521 | that's in a syscall. It's frequently a losing proposition. */ | |
488f131b | 5522 | case TARGET_WAITKIND_SYSCALL_ENTRY: |
1777feb0 | 5523 | /* Getting the current syscall number. */ |
94c57d6a PA |
5524 | if (handle_syscall_event (ecs) == 0) |
5525 | process_event_stop_test (ecs); | |
5526 | return; | |
c906108c | 5527 | |
488f131b JB |
5528 | /* Before examining the threads further, step this thread to |
5529 | get it entirely out of the syscall. (We get notice of the | |
5530 | event when the thread is just on the verge of exiting a | |
5531 | syscall. Stepping one instruction seems to get it back | |
b4dc5ffa | 5532 | into user code.) */ |
488f131b | 5533 | case TARGET_WAITKIND_SYSCALL_RETURN: |
94c57d6a PA |
5534 | if (handle_syscall_event (ecs) == 0) |
5535 | process_event_stop_test (ecs); | |
5536 | return; | |
c906108c | 5537 | |
488f131b | 5538 | case TARGET_WAITKIND_STOPPED: |
4f5d7f63 PA |
5539 | handle_signal_stop (ecs); |
5540 | return; | |
c906108c | 5541 | |
b2175913 MS |
5542 | case TARGET_WAITKIND_NO_HISTORY: |
5543 | /* Reverse execution: target ran out of history info. */ | |
eab402df | 5544 | |
d1988021 | 5545 | /* Switch to the stopped thread. */ |
00431a78 | 5546 | context_switch (ecs); |
d1988021 MM |
5547 | if (debug_infrun) |
5548 | fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n"); | |
5549 | ||
34b7e8a6 | 5550 | delete_just_stopped_threads_single_step_breakpoints (); |
f2ffa92b PA |
5551 | ecs->event_thread->suspend.stop_pc |
5552 | = regcache_read_pc (get_thread_regcache (inferior_thread ())); | |
c65d6b55 PA |
5553 | |
5554 | if (handle_stop_requested (ecs)) | |
5555 | return; | |
5556 | ||
76727919 | 5557 | gdb::observers::no_history.notify (); |
22bcd14b | 5558 | stop_waiting (ecs); |
b2175913 | 5559 | return; |
488f131b | 5560 | } |
4f5d7f63 PA |
5561 | } |
5562 | ||
372316f1 PA |
5563 | /* Restart threads back to what they were trying to do back when we |
5564 | paused them for an in-line step-over. The EVENT_THREAD thread is | |
5565 | ignored. */ | |
4d9d9d04 PA |
5566 | |
5567 | static void | |
372316f1 PA |
5568 | restart_threads (struct thread_info *event_thread) |
5569 | { | |
372316f1 PA |
5570 | /* In case the instruction just stepped spawned a new thread. */ |
5571 | update_thread_list (); | |
5572 | ||
08036331 | 5573 | for (thread_info *tp : all_non_exited_threads ()) |
372316f1 | 5574 | { |
f3f8ece4 PA |
5575 | switch_to_thread_no_regs (tp); |
5576 | ||
372316f1 PA |
5577 | if (tp == event_thread) |
5578 | { | |
5579 | if (debug_infrun) | |
5580 | fprintf_unfiltered (gdb_stdlog, | |
5581 | "infrun: restart threads: " | |
5582 | "[%s] is event thread\n", | |
a068643d | 5583 | target_pid_to_str (tp->ptid).c_str ()); |
372316f1 PA |
5584 | continue; |
5585 | } | |
5586 | ||
5587 | if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall)) | |
5588 | { | |
5589 | if (debug_infrun) | |
5590 | fprintf_unfiltered (gdb_stdlog, | |
5591 | "infrun: restart threads: " | |
5592 | "[%s] not meant to be running\n", | |
a068643d | 5593 | target_pid_to_str (tp->ptid).c_str ()); |
372316f1 PA |
5594 | continue; |
5595 | } | |
5596 | ||
5597 | if (tp->resumed) | |
5598 | { | |
5599 | if (debug_infrun) | |
5600 | fprintf_unfiltered (gdb_stdlog, | |
5601 | "infrun: restart threads: [%s] resumed\n", | |
a068643d | 5602 | target_pid_to_str (tp->ptid).c_str ()); |
372316f1 PA |
5603 | gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p); |
5604 | continue; | |
5605 | } | |
5606 | ||
5607 | if (thread_is_in_step_over_chain (tp)) | |
5608 | { | |
5609 | if (debug_infrun) | |
5610 | fprintf_unfiltered (gdb_stdlog, | |
5611 | "infrun: restart threads: " | |
5612 | "[%s] needs step-over\n", | |
a068643d | 5613 | target_pid_to_str (tp->ptid).c_str ()); |
372316f1 PA |
5614 | gdb_assert (!tp->resumed); |
5615 | continue; | |
5616 | } | |
5617 | ||
5618 | ||
5619 | if (tp->suspend.waitstatus_pending_p) | |
5620 | { | |
5621 | if (debug_infrun) | |
5622 | fprintf_unfiltered (gdb_stdlog, | |
5623 | "infrun: restart threads: " | |
5624 | "[%s] has pending status\n", | |
a068643d | 5625 | target_pid_to_str (tp->ptid).c_str ()); |
719546c4 | 5626 | tp->resumed = true; |
372316f1 PA |
5627 | continue; |
5628 | } | |
5629 | ||
c65d6b55 PA |
5630 | gdb_assert (!tp->stop_requested); |
5631 | ||
372316f1 PA |
5632 | /* If some thread needs to start a step-over at this point, it |
5633 | should still be in the step-over queue, and thus skipped | |
5634 | above. */ | |
5635 | if (thread_still_needs_step_over (tp)) | |
5636 | { | |
5637 | internal_error (__FILE__, __LINE__, | |
5638 | "thread [%s] needs a step-over, but not in " | |
5639 | "step-over queue\n", | |
a068643d | 5640 | target_pid_to_str (tp->ptid).c_str ()); |
372316f1 PA |
5641 | } |
5642 | ||
5643 | if (currently_stepping (tp)) | |
5644 | { | |
5645 | if (debug_infrun) | |
5646 | fprintf_unfiltered (gdb_stdlog, | |
5647 | "infrun: restart threads: [%s] was stepping\n", | |
a068643d | 5648 | target_pid_to_str (tp->ptid).c_str ()); |
372316f1 PA |
5649 | keep_going_stepped_thread (tp); |
5650 | } | |
5651 | else | |
5652 | { | |
5653 | struct execution_control_state ecss; | |
5654 | struct execution_control_state *ecs = &ecss; | |
5655 | ||
5656 | if (debug_infrun) | |
5657 | fprintf_unfiltered (gdb_stdlog, | |
5658 | "infrun: restart threads: [%s] continuing\n", | |
a068643d | 5659 | target_pid_to_str (tp->ptid).c_str ()); |
372316f1 | 5660 | reset_ecs (ecs, tp); |
00431a78 | 5661 | switch_to_thread (tp); |
372316f1 PA |
5662 | keep_going_pass_signal (ecs); |
5663 | } | |
5664 | } | |
5665 | } | |
5666 | ||
5667 | /* Callback for iterate_over_threads. Find a resumed thread that has | |
5668 | a pending waitstatus. */ | |
5669 | ||
5670 | static int | |
5671 | resumed_thread_with_pending_status (struct thread_info *tp, | |
5672 | void *arg) | |
5673 | { | |
5674 | return (tp->resumed | |
5675 | && tp->suspend.waitstatus_pending_p); | |
5676 | } | |
5677 | ||
5678 | /* Called when we get an event that may finish an in-line or | |
5679 | out-of-line (displaced stepping) step-over started previously. | |
5680 | Return true if the event is processed and we should go back to the | |
5681 | event loop; false if the caller should continue processing the | |
5682 | event. */ | |
5683 | ||
5684 | static int | |
4d9d9d04 PA |
5685 | finish_step_over (struct execution_control_state *ecs) |
5686 | { | |
372316f1 PA |
5687 | int had_step_over_info; |
5688 | ||
00431a78 | 5689 | displaced_step_fixup (ecs->event_thread, |
4d9d9d04 PA |
5690 | ecs->event_thread->suspend.stop_signal); |
5691 | ||
372316f1 PA |
5692 | had_step_over_info = step_over_info_valid_p (); |
5693 | ||
5694 | if (had_step_over_info) | |
4d9d9d04 PA |
5695 | { |
5696 | /* If we're stepping over a breakpoint with all threads locked, | |
5697 | then only the thread that was stepped should be reporting | |
5698 | back an event. */ | |
5699 | gdb_assert (ecs->event_thread->control.trap_expected); | |
5700 | ||
c65d6b55 | 5701 | clear_step_over_info (); |
4d9d9d04 PA |
5702 | } |
5703 | ||
fbea99ea | 5704 | if (!target_is_non_stop_p ()) |
372316f1 | 5705 | return 0; |
4d9d9d04 PA |
5706 | |
5707 | /* Start a new step-over in another thread if there's one that | |
5708 | needs it. */ | |
5709 | start_step_over (); | |
372316f1 PA |
5710 | |
5711 | /* If we were stepping over a breakpoint before, and haven't started | |
5712 | a new in-line step-over sequence, then restart all other threads | |
5713 | (except the event thread). We can't do this in all-stop, as then | |
5714 | e.g., we wouldn't be able to issue any other remote packet until | |
5715 | these other threads stop. */ | |
5716 | if (had_step_over_info && !step_over_info_valid_p ()) | |
5717 | { | |
5718 | struct thread_info *pending; | |
5719 | ||
5720 | /* If we only have threads with pending statuses, the restart | |
5721 | below won't restart any thread and so nothing re-inserts the | |
5722 | breakpoint we just stepped over. But we need it inserted | |
5723 | when we later process the pending events, otherwise if | |
5724 | another thread has a pending event for this breakpoint too, | |
5725 | we'd discard its event (because the breakpoint that | |
5726 | originally caused the event was no longer inserted). */ | |
00431a78 | 5727 | context_switch (ecs); |
372316f1 PA |
5728 | insert_breakpoints (); |
5729 | ||
5730 | restart_threads (ecs->event_thread); | |
5731 | ||
5732 | /* If we have events pending, go through handle_inferior_event | |
5733 | again, picking up a pending event at random. This avoids | |
5734 | thread starvation. */ | |
5735 | ||
5736 | /* But not if we just stepped over a watchpoint in order to let | |
5737 | the instruction execute so we can evaluate its expression. | |
5738 | The set of watchpoints that triggered is recorded in the | |
5739 | breakpoint objects themselves (see bp->watchpoint_triggered). | |
5740 | If we processed another event first, that other event could | |
5741 | clobber this info. */ | |
5742 | if (ecs->event_thread->stepping_over_watchpoint) | |
5743 | return 0; | |
5744 | ||
5745 | pending = iterate_over_threads (resumed_thread_with_pending_status, | |
5746 | NULL); | |
5747 | if (pending != NULL) | |
5748 | { | |
5749 | struct thread_info *tp = ecs->event_thread; | |
5750 | struct regcache *regcache; | |
5751 | ||
5752 | if (debug_infrun) | |
5753 | { | |
5754 | fprintf_unfiltered (gdb_stdlog, | |
5755 | "infrun: found resumed threads with " | |
5756 | "pending events, saving status\n"); | |
5757 | } | |
5758 | ||
5759 | gdb_assert (pending != tp); | |
5760 | ||
5761 | /* Record the event thread's event for later. */ | |
5762 | save_waitstatus (tp, &ecs->ws); | |
5763 | /* This was cleared early, by handle_inferior_event. Set it | |
5764 | so this pending event is considered by | |
5765 | do_target_wait. */ | |
719546c4 | 5766 | tp->resumed = true; |
372316f1 PA |
5767 | |
5768 | gdb_assert (!tp->executing); | |
5769 | ||
00431a78 | 5770 | regcache = get_thread_regcache (tp); |
372316f1 PA |
5771 | tp->suspend.stop_pc = regcache_read_pc (regcache); |
5772 | ||
5773 | if (debug_infrun) | |
5774 | { | |
5775 | fprintf_unfiltered (gdb_stdlog, | |
5776 | "infrun: saved stop_pc=%s for %s " | |
5777 | "(currently_stepping=%d)\n", | |
5778 | paddress (target_gdbarch (), | |
5779 | tp->suspend.stop_pc), | |
a068643d | 5780 | target_pid_to_str (tp->ptid).c_str (), |
372316f1 PA |
5781 | currently_stepping (tp)); |
5782 | } | |
5783 | ||
5784 | /* This in-line step-over finished; clear this so we won't | |
5785 | start a new one. This is what handle_signal_stop would | |
5786 | do, if we returned false. */ | |
5787 | tp->stepping_over_breakpoint = 0; | |
5788 | ||
5789 | /* Wake up the event loop again. */ | |
5790 | mark_async_event_handler (infrun_async_inferior_event_token); | |
5791 | ||
5792 | prepare_to_wait (ecs); | |
5793 | return 1; | |
5794 | } | |
5795 | } | |
5796 | ||
5797 | return 0; | |
4d9d9d04 PA |
5798 | } |
5799 | ||
4f5d7f63 PA |
5800 | /* Come here when the program has stopped with a signal. */ |
5801 | ||
5802 | static void | |
5803 | handle_signal_stop (struct execution_control_state *ecs) | |
5804 | { | |
5805 | struct frame_info *frame; | |
5806 | struct gdbarch *gdbarch; | |
5807 | int stopped_by_watchpoint; | |
5808 | enum stop_kind stop_soon; | |
5809 | int random_signal; | |
c906108c | 5810 | |
f0407826 DE |
5811 | gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED); |
5812 | ||
c65d6b55 PA |
5813 | ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig; |
5814 | ||
f0407826 DE |
5815 | /* Do we need to clean up the state of a thread that has |
5816 | completed a displaced single-step? (Doing so usually affects | |
5817 | the PC, so do it here, before we set stop_pc.) */ | |
372316f1 PA |
5818 | if (finish_step_over (ecs)) |
5819 | return; | |
f0407826 DE |
5820 | |
5821 | /* If we either finished a single-step or hit a breakpoint, but | |
5822 | the user wanted this thread to be stopped, pretend we got a | |
5823 | SIG0 (generic unsignaled stop). */ | |
5824 | if (ecs->event_thread->stop_requested | |
5825 | && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP) | |
5826 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; | |
237fc4c9 | 5827 | |
f2ffa92b PA |
5828 | ecs->event_thread->suspend.stop_pc |
5829 | = regcache_read_pc (get_thread_regcache (ecs->event_thread)); | |
488f131b | 5830 | |
527159b7 | 5831 | if (debug_infrun) |
237fc4c9 | 5832 | { |
00431a78 | 5833 | struct regcache *regcache = get_thread_regcache (ecs->event_thread); |
b926417a | 5834 | struct gdbarch *reg_gdbarch = regcache->arch (); |
7f82dfc7 | 5835 | |
f3f8ece4 | 5836 | switch_to_thread (ecs->event_thread); |
5af949e3 UW |
5837 | |
5838 | fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n", | |
b926417a | 5839 | paddress (reg_gdbarch, |
f2ffa92b | 5840 | ecs->event_thread->suspend.stop_pc)); |
d92524f1 | 5841 | if (target_stopped_by_watchpoint ()) |
237fc4c9 PA |
5842 | { |
5843 | CORE_ADDR addr; | |
abbb1732 | 5844 | |
237fc4c9 PA |
5845 | fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n"); |
5846 | ||
8b88a78e | 5847 | if (target_stopped_data_address (current_top_target (), &addr)) |
237fc4c9 | 5848 | fprintf_unfiltered (gdb_stdlog, |
5af949e3 | 5849 | "infrun: stopped data address = %s\n", |
b926417a | 5850 | paddress (reg_gdbarch, addr)); |
237fc4c9 PA |
5851 | else |
5852 | fprintf_unfiltered (gdb_stdlog, | |
5853 | "infrun: (no data address available)\n"); | |
5854 | } | |
5855 | } | |
527159b7 | 5856 | |
36fa8042 PA |
5857 | /* This is originated from start_remote(), start_inferior() and |
5858 | shared libraries hook functions. */ | |
00431a78 | 5859 | stop_soon = get_inferior_stop_soon (ecs); |
36fa8042 PA |
5860 | if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE) |
5861 | { | |
00431a78 | 5862 | context_switch (ecs); |
36fa8042 PA |
5863 | if (debug_infrun) |
5864 | fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n"); | |
5865 | stop_print_frame = 1; | |
22bcd14b | 5866 | stop_waiting (ecs); |
36fa8042 PA |
5867 | return; |
5868 | } | |
5869 | ||
36fa8042 PA |
5870 | /* This originates from attach_command(). We need to overwrite |
5871 | the stop_signal here, because some kernels don't ignore a | |
5872 | SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call. | |
5873 | See more comments in inferior.h. On the other hand, if we | |
5874 | get a non-SIGSTOP, report it to the user - assume the backend | |
5875 | will handle the SIGSTOP if it should show up later. | |
5876 | ||
5877 | Also consider that the attach is complete when we see a | |
5878 | SIGTRAP. Some systems (e.g. Windows), and stubs supporting | |
5879 | target extended-remote report it instead of a SIGSTOP | |
5880 | (e.g. gdbserver). We already rely on SIGTRAP being our | |
5881 | signal, so this is no exception. | |
5882 | ||
5883 | Also consider that the attach is complete when we see a | |
5884 | GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell | |
5885 | the target to stop all threads of the inferior, in case the | |
5886 | low level attach operation doesn't stop them implicitly. If | |
5887 | they weren't stopped implicitly, then the stub will report a | |
5888 | GDB_SIGNAL_0, meaning: stopped for no particular reason | |
5889 | other than GDB's request. */ | |
5890 | if (stop_soon == STOP_QUIETLY_NO_SIGSTOP | |
5891 | && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP | |
5892 | || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP | |
5893 | || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0)) | |
5894 | { | |
5895 | stop_print_frame = 1; | |
22bcd14b | 5896 | stop_waiting (ecs); |
36fa8042 PA |
5897 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; |
5898 | return; | |
5899 | } | |
5900 | ||
488f131b | 5901 | /* See if something interesting happened to the non-current thread. If |
b40c7d58 | 5902 | so, then switch to that thread. */ |
d7e15655 | 5903 | if (ecs->ptid != inferior_ptid) |
488f131b | 5904 | { |
527159b7 | 5905 | if (debug_infrun) |
8a9de0e4 | 5906 | fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n"); |
527159b7 | 5907 | |
00431a78 | 5908 | context_switch (ecs); |
c5aa993b | 5909 | |
9a4105ab | 5910 | if (deprecated_context_hook) |
00431a78 | 5911 | deprecated_context_hook (ecs->event_thread->global_num); |
488f131b | 5912 | } |
c906108c | 5913 | |
568d6575 UW |
5914 | /* At this point, get hold of the now-current thread's frame. */ |
5915 | frame = get_current_frame (); | |
5916 | gdbarch = get_frame_arch (frame); | |
5917 | ||
2adfaa28 | 5918 | /* Pull the single step breakpoints out of the target. */ |
af48d08f | 5919 | if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP) |
488f131b | 5920 | { |
af48d08f | 5921 | struct regcache *regcache; |
af48d08f | 5922 | CORE_ADDR pc; |
2adfaa28 | 5923 | |
00431a78 | 5924 | regcache = get_thread_regcache (ecs->event_thread); |
8b86c959 YQ |
5925 | const address_space *aspace = regcache->aspace (); |
5926 | ||
af48d08f | 5927 | pc = regcache_read_pc (regcache); |
34b7e8a6 | 5928 | |
af48d08f PA |
5929 | /* However, before doing so, if this single-step breakpoint was |
5930 | actually for another thread, set this thread up for moving | |
5931 | past it. */ | |
5932 | if (!thread_has_single_step_breakpoint_here (ecs->event_thread, | |
5933 | aspace, pc)) | |
5934 | { | |
5935 | if (single_step_breakpoint_inserted_here_p (aspace, pc)) | |
2adfaa28 PA |
5936 | { |
5937 | if (debug_infrun) | |
5938 | { | |
5939 | fprintf_unfiltered (gdb_stdlog, | |
af48d08f | 5940 | "infrun: [%s] hit another thread's " |
34b7e8a6 | 5941 | "single-step breakpoint\n", |
a068643d | 5942 | target_pid_to_str (ecs->ptid).c_str ()); |
2adfaa28 | 5943 | } |
af48d08f PA |
5944 | ecs->hit_singlestep_breakpoint = 1; |
5945 | } | |
5946 | } | |
5947 | else | |
5948 | { | |
5949 | if (debug_infrun) | |
5950 | { | |
5951 | fprintf_unfiltered (gdb_stdlog, | |
5952 | "infrun: [%s] hit its " | |
5953 | "single-step breakpoint\n", | |
a068643d | 5954 | target_pid_to_str (ecs->ptid).c_str ()); |
2adfaa28 PA |
5955 | } |
5956 | } | |
488f131b | 5957 | } |
af48d08f | 5958 | delete_just_stopped_threads_single_step_breakpoints (); |
c906108c | 5959 | |
963f9c80 PA |
5960 | if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP |
5961 | && ecs->event_thread->control.trap_expected | |
5962 | && ecs->event_thread->stepping_over_watchpoint) | |
d983da9c DJ |
5963 | stopped_by_watchpoint = 0; |
5964 | else | |
5965 | stopped_by_watchpoint = watchpoints_triggered (&ecs->ws); | |
5966 | ||
5967 | /* If necessary, step over this watchpoint. We'll be back to display | |
5968 | it in a moment. */ | |
5969 | if (stopped_by_watchpoint | |
d92524f1 | 5970 | && (target_have_steppable_watchpoint |
568d6575 | 5971 | || gdbarch_have_nonsteppable_watchpoint (gdbarch))) |
488f131b | 5972 | { |
488f131b JB |
5973 | /* At this point, we are stopped at an instruction which has |
5974 | attempted to write to a piece of memory under control of | |
5975 | a watchpoint. The instruction hasn't actually executed | |
5976 | yet. If we were to evaluate the watchpoint expression | |
5977 | now, we would get the old value, and therefore no change | |
5978 | would seem to have occurred. | |
5979 | ||
5980 | In order to make watchpoints work `right', we really need | |
5981 | to complete the memory write, and then evaluate the | |
d983da9c DJ |
5982 | watchpoint expression. We do this by single-stepping the |
5983 | target. | |
5984 | ||
7f89fd65 | 5985 | It may not be necessary to disable the watchpoint to step over |
d983da9c DJ |
5986 | it. For example, the PA can (with some kernel cooperation) |
5987 | single step over a watchpoint without disabling the watchpoint. | |
5988 | ||
5989 | It is far more common to need to disable a watchpoint to step | |
5990 | the inferior over it. If we have non-steppable watchpoints, | |
5991 | we must disable the current watchpoint; it's simplest to | |
963f9c80 PA |
5992 | disable all watchpoints. |
5993 | ||
5994 | Any breakpoint at PC must also be stepped over -- if there's | |
5995 | one, it will have already triggered before the watchpoint | |
5996 | triggered, and we either already reported it to the user, or | |
5997 | it didn't cause a stop and we called keep_going. In either | |
5998 | case, if there was a breakpoint at PC, we must be trying to | |
5999 | step past it. */ | |
6000 | ecs->event_thread->stepping_over_watchpoint = 1; | |
6001 | keep_going (ecs); | |
488f131b JB |
6002 | return; |
6003 | } | |
6004 | ||
4e1c45ea | 6005 | ecs->event_thread->stepping_over_breakpoint = 0; |
963f9c80 | 6006 | ecs->event_thread->stepping_over_watchpoint = 0; |
16c381f0 JK |
6007 | bpstat_clear (&ecs->event_thread->control.stop_bpstat); |
6008 | ecs->event_thread->control.stop_step = 0; | |
488f131b | 6009 | stop_print_frame = 1; |
488f131b | 6010 | stopped_by_random_signal = 0; |
ddfe970e | 6011 | bpstat stop_chain = NULL; |
488f131b | 6012 | |
edb3359d DJ |
6013 | /* Hide inlined functions starting here, unless we just performed stepi or |
6014 | nexti. After stepi and nexti, always show the innermost frame (not any | |
6015 | inline function call sites). */ | |
16c381f0 | 6016 | if (ecs->event_thread->control.step_range_end != 1) |
0574c78f | 6017 | { |
00431a78 PA |
6018 | const address_space *aspace |
6019 | = get_thread_regcache (ecs->event_thread)->aspace (); | |
0574c78f GB |
6020 | |
6021 | /* skip_inline_frames is expensive, so we avoid it if we can | |
6022 | determine that the address is one where functions cannot have | |
6023 | been inlined. This improves performance with inferiors that | |
6024 | load a lot of shared libraries, because the solib event | |
6025 | breakpoint is defined as the address of a function (i.e. not | |
6026 | inline). Note that we have to check the previous PC as well | |
6027 | as the current one to catch cases when we have just | |
6028 | single-stepped off a breakpoint prior to reinstating it. | |
6029 | Note that we're assuming that the code we single-step to is | |
6030 | not inline, but that's not definitive: there's nothing | |
6031 | preventing the event breakpoint function from containing | |
6032 | inlined code, and the single-step ending up there. If the | |
6033 | user had set a breakpoint on that inlined code, the missing | |
6034 | skip_inline_frames call would break things. Fortunately | |
6035 | that's an extremely unlikely scenario. */ | |
f2ffa92b PA |
6036 | if (!pc_at_non_inline_function (aspace, |
6037 | ecs->event_thread->suspend.stop_pc, | |
6038 | &ecs->ws) | |
a210c238 MR |
6039 | && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP |
6040 | && ecs->event_thread->control.trap_expected | |
6041 | && pc_at_non_inline_function (aspace, | |
6042 | ecs->event_thread->prev_pc, | |
09ac7c10 | 6043 | &ecs->ws))) |
1c5a993e | 6044 | { |
f2ffa92b PA |
6045 | stop_chain = build_bpstat_chain (aspace, |
6046 | ecs->event_thread->suspend.stop_pc, | |
6047 | &ecs->ws); | |
00431a78 | 6048 | skip_inline_frames (ecs->event_thread, stop_chain); |
1c5a993e MR |
6049 | |
6050 | /* Re-fetch current thread's frame in case that invalidated | |
6051 | the frame cache. */ | |
6052 | frame = get_current_frame (); | |
6053 | gdbarch = get_frame_arch (frame); | |
6054 | } | |
0574c78f | 6055 | } |
edb3359d | 6056 | |
a493e3e2 | 6057 | if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP |
16c381f0 | 6058 | && ecs->event_thread->control.trap_expected |
568d6575 | 6059 | && gdbarch_single_step_through_delay_p (gdbarch) |
4e1c45ea | 6060 | && currently_stepping (ecs->event_thread)) |
3352ef37 | 6061 | { |
b50d7442 | 6062 | /* We're trying to step off a breakpoint. Turns out that we're |
3352ef37 | 6063 | also on an instruction that needs to be stepped multiple |
1777feb0 | 6064 | times before it's been fully executing. E.g., architectures |
3352ef37 AC |
6065 | with a delay slot. It needs to be stepped twice, once for |
6066 | the instruction and once for the delay slot. */ | |
6067 | int step_through_delay | |
568d6575 | 6068 | = gdbarch_single_step_through_delay (gdbarch, frame); |
abbb1732 | 6069 | |
527159b7 | 6070 | if (debug_infrun && step_through_delay) |
8a9de0e4 | 6071 | fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n"); |
16c381f0 JK |
6072 | if (ecs->event_thread->control.step_range_end == 0 |
6073 | && step_through_delay) | |
3352ef37 AC |
6074 | { |
6075 | /* The user issued a continue when stopped at a breakpoint. | |
6076 | Set up for another trap and get out of here. */ | |
4e1c45ea | 6077 | ecs->event_thread->stepping_over_breakpoint = 1; |
3352ef37 AC |
6078 | keep_going (ecs); |
6079 | return; | |
6080 | } | |
6081 | else if (step_through_delay) | |
6082 | { | |
6083 | /* The user issued a step when stopped at a breakpoint. | |
6084 | Maybe we should stop, maybe we should not - the delay | |
6085 | slot *might* correspond to a line of source. In any | |
ca67fcb8 VP |
6086 | case, don't decide that here, just set |
6087 | ecs->stepping_over_breakpoint, making sure we | |
6088 | single-step again before breakpoints are re-inserted. */ | |
4e1c45ea | 6089 | ecs->event_thread->stepping_over_breakpoint = 1; |
3352ef37 AC |
6090 | } |
6091 | } | |
6092 | ||
ab04a2af TT |
6093 | /* See if there is a breakpoint/watchpoint/catchpoint/etc. that |
6094 | handles this event. */ | |
6095 | ecs->event_thread->control.stop_bpstat | |
a01bda52 | 6096 | = bpstat_stop_status (get_current_regcache ()->aspace (), |
f2ffa92b PA |
6097 | ecs->event_thread->suspend.stop_pc, |
6098 | ecs->event_thread, &ecs->ws, stop_chain); | |
db82e815 | 6099 | |
ab04a2af TT |
6100 | /* Following in case break condition called a |
6101 | function. */ | |
6102 | stop_print_frame = 1; | |
73dd234f | 6103 | |
ab04a2af TT |
6104 | /* This is where we handle "moribund" watchpoints. Unlike |
6105 | software breakpoints traps, hardware watchpoint traps are | |
6106 | always distinguishable from random traps. If no high-level | |
6107 | watchpoint is associated with the reported stop data address | |
6108 | anymore, then the bpstat does not explain the signal --- | |
6109 | simply make sure to ignore it if `stopped_by_watchpoint' is | |
6110 | set. */ | |
6111 | ||
6112 | if (debug_infrun | |
6113 | && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP | |
47591c29 | 6114 | && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat, |
427cd150 | 6115 | GDB_SIGNAL_TRAP) |
ab04a2af TT |
6116 | && stopped_by_watchpoint) |
6117 | fprintf_unfiltered (gdb_stdlog, | |
6118 | "infrun: no user watchpoint explains " | |
6119 | "watchpoint SIGTRAP, ignoring\n"); | |
73dd234f | 6120 | |
bac7d97b | 6121 | /* NOTE: cagney/2003-03-29: These checks for a random signal |
ab04a2af TT |
6122 | at one stage in the past included checks for an inferior |
6123 | function call's call dummy's return breakpoint. The original | |
6124 | comment, that went with the test, read: | |
03cebad2 | 6125 | |
ab04a2af TT |
6126 | ``End of a stack dummy. Some systems (e.g. Sony news) give |
6127 | another signal besides SIGTRAP, so check here as well as | |
6128 | above.'' | |
73dd234f | 6129 | |
ab04a2af TT |
6130 | If someone ever tries to get call dummys on a |
6131 | non-executable stack to work (where the target would stop | |
6132 | with something like a SIGSEGV), then those tests might need | |
6133 | to be re-instated. Given, however, that the tests were only | |
6134 | enabled when momentary breakpoints were not being used, I | |
6135 | suspect that it won't be the case. | |
488f131b | 6136 | |
ab04a2af TT |
6137 | NOTE: kettenis/2004-02-05: Indeed such checks don't seem to |
6138 | be necessary for call dummies on a non-executable stack on | |
6139 | SPARC. */ | |
488f131b | 6140 | |
bac7d97b | 6141 | /* See if the breakpoints module can explain the signal. */ |
47591c29 PA |
6142 | random_signal |
6143 | = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat, | |
6144 | ecs->event_thread->suspend.stop_signal); | |
bac7d97b | 6145 | |
1cf4d951 PA |
6146 | /* Maybe this was a trap for a software breakpoint that has since |
6147 | been removed. */ | |
6148 | if (random_signal && target_stopped_by_sw_breakpoint ()) | |
6149 | { | |
5133a315 LM |
6150 | if (gdbarch_program_breakpoint_here_p (gdbarch, |
6151 | ecs->event_thread->suspend.stop_pc)) | |
1cf4d951 PA |
6152 | { |
6153 | struct regcache *regcache; | |
6154 | int decr_pc; | |
6155 | ||
6156 | /* Re-adjust PC to what the program would see if GDB was not | |
6157 | debugging it. */ | |
00431a78 | 6158 | regcache = get_thread_regcache (ecs->event_thread); |
527a273a | 6159 | decr_pc = gdbarch_decr_pc_after_break (gdbarch); |
1cf4d951 PA |
6160 | if (decr_pc != 0) |
6161 | { | |
07036511 TT |
6162 | gdb::optional<scoped_restore_tmpl<int>> |
6163 | restore_operation_disable; | |
1cf4d951 PA |
6164 | |
6165 | if (record_full_is_used ()) | |
07036511 TT |
6166 | restore_operation_disable.emplace |
6167 | (record_full_gdb_operation_disable_set ()); | |
1cf4d951 | 6168 | |
f2ffa92b PA |
6169 | regcache_write_pc (regcache, |
6170 | ecs->event_thread->suspend.stop_pc + decr_pc); | |
1cf4d951 PA |
6171 | } |
6172 | } | |
6173 | else | |
6174 | { | |
6175 | /* A delayed software breakpoint event. Ignore the trap. */ | |
6176 | if (debug_infrun) | |
6177 | fprintf_unfiltered (gdb_stdlog, | |
6178 | "infrun: delayed software breakpoint " | |
6179 | "trap, ignoring\n"); | |
6180 | random_signal = 0; | |
6181 | } | |
6182 | } | |
6183 | ||
6184 | /* Maybe this was a trap for a hardware breakpoint/watchpoint that | |
6185 | has since been removed. */ | |
6186 | if (random_signal && target_stopped_by_hw_breakpoint ()) | |
6187 | { | |
6188 | /* A delayed hardware breakpoint event. Ignore the trap. */ | |
6189 | if (debug_infrun) | |
6190 | fprintf_unfiltered (gdb_stdlog, | |
6191 | "infrun: delayed hardware breakpoint/watchpoint " | |
6192 | "trap, ignoring\n"); | |
6193 | random_signal = 0; | |
6194 | } | |
6195 | ||
bac7d97b PA |
6196 | /* If not, perhaps stepping/nexting can. */ |
6197 | if (random_signal) | |
6198 | random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP | |
6199 | && currently_stepping (ecs->event_thread)); | |
ab04a2af | 6200 | |
2adfaa28 PA |
6201 | /* Perhaps the thread hit a single-step breakpoint of _another_ |
6202 | thread. Single-step breakpoints are transparent to the | |
6203 | breakpoints module. */ | |
6204 | if (random_signal) | |
6205 | random_signal = !ecs->hit_singlestep_breakpoint; | |
6206 | ||
bac7d97b PA |
6207 | /* No? Perhaps we got a moribund watchpoint. */ |
6208 | if (random_signal) | |
6209 | random_signal = !stopped_by_watchpoint; | |
ab04a2af | 6210 | |
c65d6b55 PA |
6211 | /* Always stop if the user explicitly requested this thread to |
6212 | remain stopped. */ | |
6213 | if (ecs->event_thread->stop_requested) | |
6214 | { | |
6215 | random_signal = 1; | |
6216 | if (debug_infrun) | |
6217 | fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n"); | |
6218 | } | |
6219 | ||
488f131b JB |
6220 | /* For the program's own signals, act according to |
6221 | the signal handling tables. */ | |
6222 | ||
ce12b012 | 6223 | if (random_signal) |
488f131b JB |
6224 | { |
6225 | /* Signal not for debugging purposes. */ | |
5b6d1e4f | 6226 | struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid); |
c9737c08 | 6227 | enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal; |
488f131b | 6228 | |
527159b7 | 6229 | if (debug_infrun) |
c9737c08 PA |
6230 | fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n", |
6231 | gdb_signal_to_symbol_string (stop_signal)); | |
527159b7 | 6232 | |
488f131b JB |
6233 | stopped_by_random_signal = 1; |
6234 | ||
252fbfc8 PA |
6235 | /* Always stop on signals if we're either just gaining control |
6236 | of the program, or the user explicitly requested this thread | |
6237 | to remain stopped. */ | |
d6b48e9c | 6238 | if (stop_soon != NO_STOP_QUIETLY |
252fbfc8 | 6239 | || ecs->event_thread->stop_requested |
24291992 | 6240 | || (!inf->detaching |
16c381f0 | 6241 | && signal_stop_state (ecs->event_thread->suspend.stop_signal))) |
488f131b | 6242 | { |
22bcd14b | 6243 | stop_waiting (ecs); |
488f131b JB |
6244 | return; |
6245 | } | |
b57bacec PA |
6246 | |
6247 | /* Notify observers the signal has "handle print" set. Note we | |
6248 | returned early above if stopping; normal_stop handles the | |
6249 | printing in that case. */ | |
6250 | if (signal_print[ecs->event_thread->suspend.stop_signal]) | |
6251 | { | |
6252 | /* The signal table tells us to print about this signal. */ | |
223ffa71 | 6253 | target_terminal::ours_for_output (); |
76727919 | 6254 | gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal); |
223ffa71 | 6255 | target_terminal::inferior (); |
b57bacec | 6256 | } |
488f131b JB |
6257 | |
6258 | /* Clear the signal if it should not be passed. */ | |
16c381f0 | 6259 | if (signal_program[ecs->event_thread->suspend.stop_signal] == 0) |
a493e3e2 | 6260 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; |
488f131b | 6261 | |
f2ffa92b | 6262 | if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc |
16c381f0 | 6263 | && ecs->event_thread->control.trap_expected |
8358c15c | 6264 | && ecs->event_thread->control.step_resume_breakpoint == NULL) |
68f53502 AC |
6265 | { |
6266 | /* We were just starting a new sequence, attempting to | |
6267 | single-step off of a breakpoint and expecting a SIGTRAP. | |
237fc4c9 | 6268 | Instead this signal arrives. This signal will take us out |
68f53502 AC |
6269 | of the stepping range so GDB needs to remember to, when |
6270 | the signal handler returns, resume stepping off that | |
6271 | breakpoint. */ | |
6272 | /* To simplify things, "continue" is forced to use the same | |
6273 | code paths as single-step - set a breakpoint at the | |
6274 | signal return address and then, once hit, step off that | |
6275 | breakpoint. */ | |
237fc4c9 PA |
6276 | if (debug_infrun) |
6277 | fprintf_unfiltered (gdb_stdlog, | |
6278 | "infrun: signal arrived while stepping over " | |
6279 | "breakpoint\n"); | |
d3169d93 | 6280 | |
2c03e5be | 6281 | insert_hp_step_resume_breakpoint_at_frame (frame); |
4e1c45ea | 6282 | ecs->event_thread->step_after_step_resume_breakpoint = 1; |
2455069d UW |
6283 | /* Reset trap_expected to ensure breakpoints are re-inserted. */ |
6284 | ecs->event_thread->control.trap_expected = 0; | |
d137e6dc PA |
6285 | |
6286 | /* If we were nexting/stepping some other thread, switch to | |
6287 | it, so that we don't continue it, losing control. */ | |
6288 | if (!switch_back_to_stepped_thread (ecs)) | |
6289 | keep_going (ecs); | |
9d799f85 | 6290 | return; |
68f53502 | 6291 | } |
9d799f85 | 6292 | |
e5f8a7cc | 6293 | if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0 |
f2ffa92b PA |
6294 | && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc, |
6295 | ecs->event_thread) | |
e5f8a7cc | 6296 | || ecs->event_thread->control.step_range_end == 1) |
edb3359d | 6297 | && frame_id_eq (get_stack_frame_id (frame), |
16c381f0 | 6298 | ecs->event_thread->control.step_stack_frame_id) |
8358c15c | 6299 | && ecs->event_thread->control.step_resume_breakpoint == NULL) |
d303a6c7 AC |
6300 | { |
6301 | /* The inferior is about to take a signal that will take it | |
6302 | out of the single step range. Set a breakpoint at the | |
6303 | current PC (which is presumably where the signal handler | |
6304 | will eventually return) and then allow the inferior to | |
6305 | run free. | |
6306 | ||
6307 | Note that this is only needed for a signal delivered | |
6308 | while in the single-step range. Nested signals aren't a | |
6309 | problem as they eventually all return. */ | |
237fc4c9 PA |
6310 | if (debug_infrun) |
6311 | fprintf_unfiltered (gdb_stdlog, | |
6312 | "infrun: signal may take us out of " | |
6313 | "single-step range\n"); | |
6314 | ||
372316f1 | 6315 | clear_step_over_info (); |
2c03e5be | 6316 | insert_hp_step_resume_breakpoint_at_frame (frame); |
e5f8a7cc | 6317 | ecs->event_thread->step_after_step_resume_breakpoint = 1; |
2455069d UW |
6318 | /* Reset trap_expected to ensure breakpoints are re-inserted. */ |
6319 | ecs->event_thread->control.trap_expected = 0; | |
9d799f85 AC |
6320 | keep_going (ecs); |
6321 | return; | |
d303a6c7 | 6322 | } |
9d799f85 | 6323 | |
85102364 | 6324 | /* Note: step_resume_breakpoint may be non-NULL. This occurs |
9d799f85 AC |
6325 | when either there's a nested signal, or when there's a |
6326 | pending signal enabled just as the signal handler returns | |
6327 | (leaving the inferior at the step-resume-breakpoint without | |
6328 | actually executing it). Either way continue until the | |
6329 | breakpoint is really hit. */ | |
c447ac0b PA |
6330 | |
6331 | if (!switch_back_to_stepped_thread (ecs)) | |
6332 | { | |
6333 | if (debug_infrun) | |
6334 | fprintf_unfiltered (gdb_stdlog, | |
6335 | "infrun: random signal, keep going\n"); | |
6336 | ||
6337 | keep_going (ecs); | |
6338 | } | |
6339 | return; | |
488f131b | 6340 | } |
94c57d6a PA |
6341 | |
6342 | process_event_stop_test (ecs); | |
6343 | } | |
6344 | ||
6345 | /* Come here when we've got some debug event / signal we can explain | |
6346 | (IOW, not a random signal), and test whether it should cause a | |
6347 | stop, or whether we should resume the inferior (transparently). | |
6348 | E.g., could be a breakpoint whose condition evaluates false; we | |
6349 | could be still stepping within the line; etc. */ | |
6350 | ||
6351 | static void | |
6352 | process_event_stop_test (struct execution_control_state *ecs) | |
6353 | { | |
6354 | struct symtab_and_line stop_pc_sal; | |
6355 | struct frame_info *frame; | |
6356 | struct gdbarch *gdbarch; | |
cdaa5b73 PA |
6357 | CORE_ADDR jmp_buf_pc; |
6358 | struct bpstat_what what; | |
94c57d6a | 6359 | |
cdaa5b73 | 6360 | /* Handle cases caused by hitting a breakpoint. */ |
611c83ae | 6361 | |
cdaa5b73 PA |
6362 | frame = get_current_frame (); |
6363 | gdbarch = get_frame_arch (frame); | |
fcf3daef | 6364 | |
cdaa5b73 | 6365 | what = bpstat_what (ecs->event_thread->control.stop_bpstat); |
611c83ae | 6366 | |
cdaa5b73 PA |
6367 | if (what.call_dummy) |
6368 | { | |
6369 | stop_stack_dummy = what.call_dummy; | |
6370 | } | |
186c406b | 6371 | |
243a9253 PA |
6372 | /* A few breakpoint types have callbacks associated (e.g., |
6373 | bp_jit_event). Run them now. */ | |
6374 | bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat); | |
6375 | ||
cdaa5b73 PA |
6376 | /* If we hit an internal event that triggers symbol changes, the |
6377 | current frame will be invalidated within bpstat_what (e.g., if we | |
6378 | hit an internal solib event). Re-fetch it. */ | |
6379 | frame = get_current_frame (); | |
6380 | gdbarch = get_frame_arch (frame); | |
e2e4d78b | 6381 | |
cdaa5b73 PA |
6382 | switch (what.main_action) |
6383 | { | |
6384 | case BPSTAT_WHAT_SET_LONGJMP_RESUME: | |
6385 | /* If we hit the breakpoint at longjmp while stepping, we | |
6386 | install a momentary breakpoint at the target of the | |
6387 | jmp_buf. */ | |
186c406b | 6388 | |
cdaa5b73 PA |
6389 | if (debug_infrun) |
6390 | fprintf_unfiltered (gdb_stdlog, | |
6391 | "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n"); | |
186c406b | 6392 | |
cdaa5b73 | 6393 | ecs->event_thread->stepping_over_breakpoint = 1; |
611c83ae | 6394 | |
cdaa5b73 PA |
6395 | if (what.is_longjmp) |
6396 | { | |
6397 | struct value *arg_value; | |
6398 | ||
6399 | /* If we set the longjmp breakpoint via a SystemTap probe, | |
6400 | then use it to extract the arguments. The destination PC | |
6401 | is the third argument to the probe. */ | |
6402 | arg_value = probe_safe_evaluate_at_pc (frame, 2); | |
6403 | if (arg_value) | |
8fa0c4f8 AA |
6404 | { |
6405 | jmp_buf_pc = value_as_address (arg_value); | |
6406 | jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc); | |
6407 | } | |
cdaa5b73 PA |
6408 | else if (!gdbarch_get_longjmp_target_p (gdbarch) |
6409 | || !gdbarch_get_longjmp_target (gdbarch, | |
6410 | frame, &jmp_buf_pc)) | |
e2e4d78b | 6411 | { |
cdaa5b73 PA |
6412 | if (debug_infrun) |
6413 | fprintf_unfiltered (gdb_stdlog, | |
6414 | "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME " | |
6415 | "(!gdbarch_get_longjmp_target)\n"); | |
6416 | keep_going (ecs); | |
6417 | return; | |
e2e4d78b | 6418 | } |
e2e4d78b | 6419 | |
cdaa5b73 PA |
6420 | /* Insert a breakpoint at resume address. */ |
6421 | insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc); | |
6422 | } | |
6423 | else | |
6424 | check_exception_resume (ecs, frame); | |
6425 | keep_going (ecs); | |
6426 | return; | |
e81a37f7 | 6427 | |
cdaa5b73 PA |
6428 | case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME: |
6429 | { | |
6430 | struct frame_info *init_frame; | |
e81a37f7 | 6431 | |
cdaa5b73 | 6432 | /* There are several cases to consider. |
c906108c | 6433 | |
cdaa5b73 PA |
6434 | 1. The initiating frame no longer exists. In this case we |
6435 | must stop, because the exception or longjmp has gone too | |
6436 | far. | |
2c03e5be | 6437 | |
cdaa5b73 PA |
6438 | 2. The initiating frame exists, and is the same as the |
6439 | current frame. We stop, because the exception or longjmp | |
6440 | has been caught. | |
2c03e5be | 6441 | |
cdaa5b73 PA |
6442 | 3. The initiating frame exists and is different from the |
6443 | current frame. This means the exception or longjmp has | |
6444 | been caught beneath the initiating frame, so keep going. | |
c906108c | 6445 | |
cdaa5b73 PA |
6446 | 4. longjmp breakpoint has been placed just to protect |
6447 | against stale dummy frames and user is not interested in | |
6448 | stopping around longjmps. */ | |
c5aa993b | 6449 | |
cdaa5b73 PA |
6450 | if (debug_infrun) |
6451 | fprintf_unfiltered (gdb_stdlog, | |
6452 | "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n"); | |
c5aa993b | 6453 | |
cdaa5b73 PA |
6454 | gdb_assert (ecs->event_thread->control.exception_resume_breakpoint |
6455 | != NULL); | |
6456 | delete_exception_resume_breakpoint (ecs->event_thread); | |
c5aa993b | 6457 | |
cdaa5b73 PA |
6458 | if (what.is_longjmp) |
6459 | { | |
b67a2c6f | 6460 | check_longjmp_breakpoint_for_call_dummy (ecs->event_thread); |
c5aa993b | 6461 | |
cdaa5b73 | 6462 | if (!frame_id_p (ecs->event_thread->initiating_frame)) |
e5ef252a | 6463 | { |
cdaa5b73 PA |
6464 | /* Case 4. */ |
6465 | keep_going (ecs); | |
6466 | return; | |
e5ef252a | 6467 | } |
cdaa5b73 | 6468 | } |
c5aa993b | 6469 | |
cdaa5b73 | 6470 | init_frame = frame_find_by_id (ecs->event_thread->initiating_frame); |
527159b7 | 6471 | |
cdaa5b73 PA |
6472 | if (init_frame) |
6473 | { | |
6474 | struct frame_id current_id | |
6475 | = get_frame_id (get_current_frame ()); | |
6476 | if (frame_id_eq (current_id, | |
6477 | ecs->event_thread->initiating_frame)) | |
6478 | { | |
6479 | /* Case 2. Fall through. */ | |
6480 | } | |
6481 | else | |
6482 | { | |
6483 | /* Case 3. */ | |
6484 | keep_going (ecs); | |
6485 | return; | |
6486 | } | |
68f53502 | 6487 | } |
488f131b | 6488 | |
cdaa5b73 PA |
6489 | /* For Cases 1 and 2, remove the step-resume breakpoint, if it |
6490 | exists. */ | |
6491 | delete_step_resume_breakpoint (ecs->event_thread); | |
e5ef252a | 6492 | |
bdc36728 | 6493 | end_stepping_range (ecs); |
cdaa5b73 PA |
6494 | } |
6495 | return; | |
e5ef252a | 6496 | |
cdaa5b73 PA |
6497 | case BPSTAT_WHAT_SINGLE: |
6498 | if (debug_infrun) | |
6499 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n"); | |
6500 | ecs->event_thread->stepping_over_breakpoint = 1; | |
6501 | /* Still need to check other stuff, at least the case where we | |
6502 | are stepping and step out of the right range. */ | |
6503 | break; | |
e5ef252a | 6504 | |
cdaa5b73 PA |
6505 | case BPSTAT_WHAT_STEP_RESUME: |
6506 | if (debug_infrun) | |
6507 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n"); | |
e5ef252a | 6508 | |
cdaa5b73 PA |
6509 | delete_step_resume_breakpoint (ecs->event_thread); |
6510 | if (ecs->event_thread->control.proceed_to_finish | |
6511 | && execution_direction == EXEC_REVERSE) | |
6512 | { | |
6513 | struct thread_info *tp = ecs->event_thread; | |
6514 | ||
6515 | /* We are finishing a function in reverse, and just hit the | |
6516 | step-resume breakpoint at the start address of the | |
6517 | function, and we're almost there -- just need to back up | |
6518 | by one more single-step, which should take us back to the | |
6519 | function call. */ | |
6520 | tp->control.step_range_start = tp->control.step_range_end = 1; | |
6521 | keep_going (ecs); | |
e5ef252a | 6522 | return; |
cdaa5b73 PA |
6523 | } |
6524 | fill_in_stop_func (gdbarch, ecs); | |
f2ffa92b | 6525 | if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start |
cdaa5b73 PA |
6526 | && execution_direction == EXEC_REVERSE) |
6527 | { | |
6528 | /* We are stepping over a function call in reverse, and just | |
6529 | hit the step-resume breakpoint at the start address of | |
6530 | the function. Go back to single-stepping, which should | |
6531 | take us back to the function call. */ | |
6532 | ecs->event_thread->stepping_over_breakpoint = 1; | |
6533 | keep_going (ecs); | |
6534 | return; | |
6535 | } | |
6536 | break; | |
e5ef252a | 6537 | |
cdaa5b73 PA |
6538 | case BPSTAT_WHAT_STOP_NOISY: |
6539 | if (debug_infrun) | |
6540 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n"); | |
6541 | stop_print_frame = 1; | |
e5ef252a | 6542 | |
99619bea PA |
6543 | /* Assume the thread stopped for a breapoint. We'll still check |
6544 | whether a/the breakpoint is there when the thread is next | |
6545 | resumed. */ | |
6546 | ecs->event_thread->stepping_over_breakpoint = 1; | |
e5ef252a | 6547 | |
22bcd14b | 6548 | stop_waiting (ecs); |
cdaa5b73 | 6549 | return; |
e5ef252a | 6550 | |
cdaa5b73 PA |
6551 | case BPSTAT_WHAT_STOP_SILENT: |
6552 | if (debug_infrun) | |
6553 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n"); | |
6554 | stop_print_frame = 0; | |
e5ef252a | 6555 | |
99619bea PA |
6556 | /* Assume the thread stopped for a breapoint. We'll still check |
6557 | whether a/the breakpoint is there when the thread is next | |
6558 | resumed. */ | |
6559 | ecs->event_thread->stepping_over_breakpoint = 1; | |
22bcd14b | 6560 | stop_waiting (ecs); |
cdaa5b73 PA |
6561 | return; |
6562 | ||
6563 | case BPSTAT_WHAT_HP_STEP_RESUME: | |
6564 | if (debug_infrun) | |
6565 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n"); | |
6566 | ||
6567 | delete_step_resume_breakpoint (ecs->event_thread); | |
6568 | if (ecs->event_thread->step_after_step_resume_breakpoint) | |
6569 | { | |
6570 | /* Back when the step-resume breakpoint was inserted, we | |
6571 | were trying to single-step off a breakpoint. Go back to | |
6572 | doing that. */ | |
6573 | ecs->event_thread->step_after_step_resume_breakpoint = 0; | |
6574 | ecs->event_thread->stepping_over_breakpoint = 1; | |
6575 | keep_going (ecs); | |
6576 | return; | |
e5ef252a | 6577 | } |
cdaa5b73 PA |
6578 | break; |
6579 | ||
6580 | case BPSTAT_WHAT_KEEP_CHECKING: | |
6581 | break; | |
e5ef252a | 6582 | } |
c906108c | 6583 | |
af48d08f PA |
6584 | /* If we stepped a permanent breakpoint and we had a high priority |
6585 | step-resume breakpoint for the address we stepped, but we didn't | |
6586 | hit it, then we must have stepped into the signal handler. The | |
6587 | step-resume was only necessary to catch the case of _not_ | |
6588 | stepping into the handler, so delete it, and fall through to | |
6589 | checking whether the step finished. */ | |
6590 | if (ecs->event_thread->stepped_breakpoint) | |
6591 | { | |
6592 | struct breakpoint *sr_bp | |
6593 | = ecs->event_thread->control.step_resume_breakpoint; | |
6594 | ||
8d707a12 PA |
6595 | if (sr_bp != NULL |
6596 | && sr_bp->loc->permanent | |
af48d08f PA |
6597 | && sr_bp->type == bp_hp_step_resume |
6598 | && sr_bp->loc->address == ecs->event_thread->prev_pc) | |
6599 | { | |
6600 | if (debug_infrun) | |
6601 | fprintf_unfiltered (gdb_stdlog, | |
6602 | "infrun: stepped permanent breakpoint, stopped in " | |
6603 | "handler\n"); | |
6604 | delete_step_resume_breakpoint (ecs->event_thread); | |
6605 | ecs->event_thread->step_after_step_resume_breakpoint = 0; | |
6606 | } | |
6607 | } | |
6608 | ||
cdaa5b73 PA |
6609 | /* We come here if we hit a breakpoint but should not stop for it. |
6610 | Possibly we also were stepping and should stop for that. So fall | |
6611 | through and test for stepping. But, if not stepping, do not | |
6612 | stop. */ | |
c906108c | 6613 | |
a7212384 UW |
6614 | /* In all-stop mode, if we're currently stepping but have stopped in |
6615 | some other thread, we need to switch back to the stepped thread. */ | |
c447ac0b PA |
6616 | if (switch_back_to_stepped_thread (ecs)) |
6617 | return; | |
776f04fa | 6618 | |
8358c15c | 6619 | if (ecs->event_thread->control.step_resume_breakpoint) |
488f131b | 6620 | { |
527159b7 | 6621 | if (debug_infrun) |
d3169d93 DJ |
6622 | fprintf_unfiltered (gdb_stdlog, |
6623 | "infrun: step-resume breakpoint is inserted\n"); | |
527159b7 | 6624 | |
488f131b JB |
6625 | /* Having a step-resume breakpoint overrides anything |
6626 | else having to do with stepping commands until | |
6627 | that breakpoint is reached. */ | |
488f131b JB |
6628 | keep_going (ecs); |
6629 | return; | |
6630 | } | |
c5aa993b | 6631 | |
16c381f0 | 6632 | if (ecs->event_thread->control.step_range_end == 0) |
488f131b | 6633 | { |
527159b7 | 6634 | if (debug_infrun) |
8a9de0e4 | 6635 | fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n"); |
488f131b | 6636 | /* Likewise if we aren't even stepping. */ |
488f131b JB |
6637 | keep_going (ecs); |
6638 | return; | |
6639 | } | |
c5aa993b | 6640 | |
4b7703ad JB |
6641 | /* Re-fetch current thread's frame in case the code above caused |
6642 | the frame cache to be re-initialized, making our FRAME variable | |
6643 | a dangling pointer. */ | |
6644 | frame = get_current_frame (); | |
628fe4e4 | 6645 | gdbarch = get_frame_arch (frame); |
7e324e48 | 6646 | fill_in_stop_func (gdbarch, ecs); |
4b7703ad | 6647 | |
488f131b | 6648 | /* If stepping through a line, keep going if still within it. |
c906108c | 6649 | |
488f131b JB |
6650 | Note that step_range_end is the address of the first instruction |
6651 | beyond the step range, and NOT the address of the last instruction | |
31410e84 MS |
6652 | within it! |
6653 | ||
6654 | Note also that during reverse execution, we may be stepping | |
6655 | through a function epilogue and therefore must detect when | |
6656 | the current-frame changes in the middle of a line. */ | |
6657 | ||
f2ffa92b PA |
6658 | if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc, |
6659 | ecs->event_thread) | |
31410e84 | 6660 | && (execution_direction != EXEC_REVERSE |
388a8562 | 6661 | || frame_id_eq (get_frame_id (frame), |
16c381f0 | 6662 | ecs->event_thread->control.step_frame_id))) |
488f131b | 6663 | { |
527159b7 | 6664 | if (debug_infrun) |
5af949e3 UW |
6665 | fprintf_unfiltered |
6666 | (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n", | |
16c381f0 JK |
6667 | paddress (gdbarch, ecs->event_thread->control.step_range_start), |
6668 | paddress (gdbarch, ecs->event_thread->control.step_range_end)); | |
b2175913 | 6669 | |
c1e36e3e PA |
6670 | /* Tentatively re-enable range stepping; `resume' disables it if |
6671 | necessary (e.g., if we're stepping over a breakpoint or we | |
6672 | have software watchpoints). */ | |
6673 | ecs->event_thread->control.may_range_step = 1; | |
6674 | ||
b2175913 MS |
6675 | /* When stepping backward, stop at beginning of line range |
6676 | (unless it's the function entry point, in which case | |
6677 | keep going back to the call point). */ | |
f2ffa92b | 6678 | CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc; |
16c381f0 | 6679 | if (stop_pc == ecs->event_thread->control.step_range_start |
b2175913 MS |
6680 | && stop_pc != ecs->stop_func_start |
6681 | && execution_direction == EXEC_REVERSE) | |
bdc36728 | 6682 | end_stepping_range (ecs); |
b2175913 MS |
6683 | else |
6684 | keep_going (ecs); | |
6685 | ||
488f131b JB |
6686 | return; |
6687 | } | |
c5aa993b | 6688 | |
488f131b | 6689 | /* We stepped out of the stepping range. */ |
c906108c | 6690 | |
488f131b | 6691 | /* If we are stepping at the source level and entered the runtime |
388a8562 MS |
6692 | loader dynamic symbol resolution code... |
6693 | ||
6694 | EXEC_FORWARD: we keep on single stepping until we exit the run | |
6695 | time loader code and reach the callee's address. | |
6696 | ||
6697 | EXEC_REVERSE: we've already executed the callee (backward), and | |
6698 | the runtime loader code is handled just like any other | |
6699 | undebuggable function call. Now we need only keep stepping | |
6700 | backward through the trampoline code, and that's handled further | |
6701 | down, so there is nothing for us to do here. */ | |
6702 | ||
6703 | if (execution_direction != EXEC_REVERSE | |
16c381f0 | 6704 | && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE |
f2ffa92b | 6705 | && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc)) |
488f131b | 6706 | { |
4c8c40e6 | 6707 | CORE_ADDR pc_after_resolver = |
f2ffa92b PA |
6708 | gdbarch_skip_solib_resolver (gdbarch, |
6709 | ecs->event_thread->suspend.stop_pc); | |
c906108c | 6710 | |
527159b7 | 6711 | if (debug_infrun) |
3e43a32a MS |
6712 | fprintf_unfiltered (gdb_stdlog, |
6713 | "infrun: stepped into dynsym resolve code\n"); | |
527159b7 | 6714 | |
488f131b JB |
6715 | if (pc_after_resolver) |
6716 | { | |
6717 | /* Set up a step-resume breakpoint at the address | |
6718 | indicated by SKIP_SOLIB_RESOLVER. */ | |
51abb421 | 6719 | symtab_and_line sr_sal; |
488f131b | 6720 | sr_sal.pc = pc_after_resolver; |
6c95b8df | 6721 | sr_sal.pspace = get_frame_program_space (frame); |
488f131b | 6722 | |
a6d9a66e UW |
6723 | insert_step_resume_breakpoint_at_sal (gdbarch, |
6724 | sr_sal, null_frame_id); | |
c5aa993b | 6725 | } |
c906108c | 6726 | |
488f131b JB |
6727 | keep_going (ecs); |
6728 | return; | |
6729 | } | |
c906108c | 6730 | |
1d509aa6 MM |
6731 | /* Step through an indirect branch thunk. */ |
6732 | if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE | |
f2ffa92b PA |
6733 | && gdbarch_in_indirect_branch_thunk (gdbarch, |
6734 | ecs->event_thread->suspend.stop_pc)) | |
1d509aa6 MM |
6735 | { |
6736 | if (debug_infrun) | |
6737 | fprintf_unfiltered (gdb_stdlog, | |
6738 | "infrun: stepped into indirect branch thunk\n"); | |
6739 | keep_going (ecs); | |
6740 | return; | |
6741 | } | |
6742 | ||
16c381f0 JK |
6743 | if (ecs->event_thread->control.step_range_end != 1 |
6744 | && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE | |
6745 | || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL) | |
568d6575 | 6746 | && get_frame_type (frame) == SIGTRAMP_FRAME) |
488f131b | 6747 | { |
527159b7 | 6748 | if (debug_infrun) |
3e43a32a MS |
6749 | fprintf_unfiltered (gdb_stdlog, |
6750 | "infrun: stepped into signal trampoline\n"); | |
42edda50 | 6751 | /* The inferior, while doing a "step" or "next", has ended up in |
8fb3e588 AC |
6752 | a signal trampoline (either by a signal being delivered or by |
6753 | the signal handler returning). Just single-step until the | |
6754 | inferior leaves the trampoline (either by calling the handler | |
6755 | or returning). */ | |
488f131b JB |
6756 | keep_going (ecs); |
6757 | return; | |
6758 | } | |
c906108c | 6759 | |
14132e89 MR |
6760 | /* If we're in the return path from a shared library trampoline, |
6761 | we want to proceed through the trampoline when stepping. */ | |
6762 | /* macro/2012-04-25: This needs to come before the subroutine | |
6763 | call check below as on some targets return trampolines look | |
6764 | like subroutine calls (MIPS16 return thunks). */ | |
6765 | if (gdbarch_in_solib_return_trampoline (gdbarch, | |
f2ffa92b PA |
6766 | ecs->event_thread->suspend.stop_pc, |
6767 | ecs->stop_func_name) | |
14132e89 MR |
6768 | && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE) |
6769 | { | |
6770 | /* Determine where this trampoline returns. */ | |
f2ffa92b PA |
6771 | CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc; |
6772 | CORE_ADDR real_stop_pc | |
6773 | = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc); | |
14132e89 MR |
6774 | |
6775 | if (debug_infrun) | |
6776 | fprintf_unfiltered (gdb_stdlog, | |
6777 | "infrun: stepped into solib return tramp\n"); | |
6778 | ||
6779 | /* Only proceed through if we know where it's going. */ | |
6780 | if (real_stop_pc) | |
6781 | { | |
6782 | /* And put the step-breakpoint there and go until there. */ | |
51abb421 | 6783 | symtab_and_line sr_sal; |
14132e89 MR |
6784 | sr_sal.pc = real_stop_pc; |
6785 | sr_sal.section = find_pc_overlay (sr_sal.pc); | |
6786 | sr_sal.pspace = get_frame_program_space (frame); | |
6787 | ||
6788 | /* Do not specify what the fp should be when we stop since | |
6789 | on some machines the prologue is where the new fp value | |
6790 | is established. */ | |
6791 | insert_step_resume_breakpoint_at_sal (gdbarch, | |
6792 | sr_sal, null_frame_id); | |
6793 | ||
6794 | /* Restart without fiddling with the step ranges or | |
6795 | other state. */ | |
6796 | keep_going (ecs); | |
6797 | return; | |
6798 | } | |
6799 | } | |
6800 | ||
c17eaafe DJ |
6801 | /* Check for subroutine calls. The check for the current frame |
6802 | equalling the step ID is not necessary - the check of the | |
6803 | previous frame's ID is sufficient - but it is a common case and | |
6804 | cheaper than checking the previous frame's ID. | |
14e60db5 DJ |
6805 | |
6806 | NOTE: frame_id_eq will never report two invalid frame IDs as | |
6807 | being equal, so to get into this block, both the current and | |
6808 | previous frame must have valid frame IDs. */ | |
005ca36a JB |
6809 | /* The outer_frame_id check is a heuristic to detect stepping |
6810 | through startup code. If we step over an instruction which | |
6811 | sets the stack pointer from an invalid value to a valid value, | |
6812 | we may detect that as a subroutine call from the mythical | |
6813 | "outermost" function. This could be fixed by marking | |
6814 | outermost frames as !stack_p,code_p,special_p. Then the | |
6815 | initial outermost frame, before sp was valid, would | |
ce6cca6d | 6816 | have code_addr == &_start. See the comment in frame_id_eq |
005ca36a | 6817 | for more. */ |
edb3359d | 6818 | if (!frame_id_eq (get_stack_frame_id (frame), |
16c381f0 | 6819 | ecs->event_thread->control.step_stack_frame_id) |
005ca36a | 6820 | && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()), |
16c381f0 JK |
6821 | ecs->event_thread->control.step_stack_frame_id) |
6822 | && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id, | |
005ca36a | 6823 | outer_frame_id) |
885eeb5b | 6824 | || (ecs->event_thread->control.step_start_function |
f2ffa92b | 6825 | != find_pc_function (ecs->event_thread->suspend.stop_pc))))) |
488f131b | 6826 | { |
f2ffa92b | 6827 | CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc; |
95918acb | 6828 | CORE_ADDR real_stop_pc; |
8fb3e588 | 6829 | |
527159b7 | 6830 | if (debug_infrun) |
8a9de0e4 | 6831 | fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n"); |
527159b7 | 6832 | |
b7a084be | 6833 | if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE) |
95918acb AC |
6834 | { |
6835 | /* I presume that step_over_calls is only 0 when we're | |
6836 | supposed to be stepping at the assembly language level | |
6837 | ("stepi"). Just stop. */ | |
388a8562 | 6838 | /* And this works the same backward as frontward. MVS */ |
bdc36728 | 6839 | end_stepping_range (ecs); |
95918acb AC |
6840 | return; |
6841 | } | |
8fb3e588 | 6842 | |
388a8562 MS |
6843 | /* Reverse stepping through solib trampolines. */ |
6844 | ||
6845 | if (execution_direction == EXEC_REVERSE | |
16c381f0 | 6846 | && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE |
388a8562 MS |
6847 | && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc) |
6848 | || (ecs->stop_func_start == 0 | |
6849 | && in_solib_dynsym_resolve_code (stop_pc)))) | |
6850 | { | |
6851 | /* Any solib trampoline code can be handled in reverse | |
6852 | by simply continuing to single-step. We have already | |
6853 | executed the solib function (backwards), and a few | |
6854 | steps will take us back through the trampoline to the | |
6855 | caller. */ | |
6856 | keep_going (ecs); | |
6857 | return; | |
6858 | } | |
6859 | ||
16c381f0 | 6860 | if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL) |
8567c30f | 6861 | { |
b2175913 MS |
6862 | /* We're doing a "next". |
6863 | ||
6864 | Normal (forward) execution: set a breakpoint at the | |
6865 | callee's return address (the address at which the caller | |
6866 | will resume). | |
6867 | ||
6868 | Reverse (backward) execution. set the step-resume | |
6869 | breakpoint at the start of the function that we just | |
6870 | stepped into (backwards), and continue to there. When we | |
6130d0b7 | 6871 | get there, we'll need to single-step back to the caller. */ |
b2175913 MS |
6872 | |
6873 | if (execution_direction == EXEC_REVERSE) | |
6874 | { | |
acf9414f JK |
6875 | /* If we're already at the start of the function, we've either |
6876 | just stepped backward into a single instruction function, | |
6877 | or stepped back out of a signal handler to the first instruction | |
6878 | of the function. Just keep going, which will single-step back | |
6879 | to the caller. */ | |
58c48e72 | 6880 | if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0) |
acf9414f | 6881 | { |
acf9414f | 6882 | /* Normal function call return (static or dynamic). */ |
51abb421 | 6883 | symtab_and_line sr_sal; |
acf9414f JK |
6884 | sr_sal.pc = ecs->stop_func_start; |
6885 | sr_sal.pspace = get_frame_program_space (frame); | |
6886 | insert_step_resume_breakpoint_at_sal (gdbarch, | |
6887 | sr_sal, null_frame_id); | |
6888 | } | |
b2175913 MS |
6889 | } |
6890 | else | |
568d6575 | 6891 | insert_step_resume_breakpoint_at_caller (frame); |
b2175913 | 6892 | |
8567c30f AC |
6893 | keep_going (ecs); |
6894 | return; | |
6895 | } | |
a53c66de | 6896 | |
95918acb | 6897 | /* If we are in a function call trampoline (a stub between the |
8fb3e588 AC |
6898 | calling routine and the real function), locate the real |
6899 | function. That's what tells us (a) whether we want to step | |
6900 | into it at all, and (b) what prologue we want to run to the | |
6901 | end of, if we do step into it. */ | |
568d6575 | 6902 | real_stop_pc = skip_language_trampoline (frame, stop_pc); |
95918acb | 6903 | if (real_stop_pc == 0) |
568d6575 | 6904 | real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc); |
95918acb AC |
6905 | if (real_stop_pc != 0) |
6906 | ecs->stop_func_start = real_stop_pc; | |
8fb3e588 | 6907 | |
db5f024e | 6908 | if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc)) |
1b2bfbb9 | 6909 | { |
51abb421 | 6910 | symtab_and_line sr_sal; |
1b2bfbb9 | 6911 | sr_sal.pc = ecs->stop_func_start; |
6c95b8df | 6912 | sr_sal.pspace = get_frame_program_space (frame); |
1b2bfbb9 | 6913 | |
a6d9a66e UW |
6914 | insert_step_resume_breakpoint_at_sal (gdbarch, |
6915 | sr_sal, null_frame_id); | |
8fb3e588 AC |
6916 | keep_going (ecs); |
6917 | return; | |
1b2bfbb9 RC |
6918 | } |
6919 | ||
95918acb | 6920 | /* If we have line number information for the function we are |
1bfeeb0f JL |
6921 | thinking of stepping into and the function isn't on the skip |
6922 | list, step into it. | |
95918acb | 6923 | |
8fb3e588 AC |
6924 | If there are several symtabs at that PC (e.g. with include |
6925 | files), just want to know whether *any* of them have line | |
6926 | numbers. find_pc_line handles this. */ | |
95918acb AC |
6927 | { |
6928 | struct symtab_and_line tmp_sal; | |
8fb3e588 | 6929 | |
95918acb | 6930 | tmp_sal = find_pc_line (ecs->stop_func_start, 0); |
2b914b52 | 6931 | if (tmp_sal.line != 0 |
85817405 | 6932 | && !function_name_is_marked_for_skip (ecs->stop_func_name, |
4a4c04f1 BE |
6933 | tmp_sal) |
6934 | && !inline_frame_is_marked_for_skip (true, ecs->event_thread)) | |
95918acb | 6935 | { |
b2175913 | 6936 | if (execution_direction == EXEC_REVERSE) |
568d6575 | 6937 | handle_step_into_function_backward (gdbarch, ecs); |
b2175913 | 6938 | else |
568d6575 | 6939 | handle_step_into_function (gdbarch, ecs); |
95918acb AC |
6940 | return; |
6941 | } | |
6942 | } | |
6943 | ||
6944 | /* If we have no line number and the step-stop-if-no-debug is | |
8fb3e588 AC |
6945 | set, we stop the step so that the user has a chance to switch |
6946 | in assembly mode. */ | |
16c381f0 | 6947 | if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE |
078130d0 | 6948 | && step_stop_if_no_debug) |
95918acb | 6949 | { |
bdc36728 | 6950 | end_stepping_range (ecs); |
95918acb AC |
6951 | return; |
6952 | } | |
6953 | ||
b2175913 MS |
6954 | if (execution_direction == EXEC_REVERSE) |
6955 | { | |
acf9414f JK |
6956 | /* If we're already at the start of the function, we've either just |
6957 | stepped backward into a single instruction function without line | |
6958 | number info, or stepped back out of a signal handler to the first | |
6959 | instruction of the function without line number info. Just keep | |
6960 | going, which will single-step back to the caller. */ | |
6961 | if (ecs->stop_func_start != stop_pc) | |
6962 | { | |
6963 | /* Set a breakpoint at callee's start address. | |
6964 | From there we can step once and be back in the caller. */ | |
51abb421 | 6965 | symtab_and_line sr_sal; |
acf9414f JK |
6966 | sr_sal.pc = ecs->stop_func_start; |
6967 | sr_sal.pspace = get_frame_program_space (frame); | |
6968 | insert_step_resume_breakpoint_at_sal (gdbarch, | |
6969 | sr_sal, null_frame_id); | |
6970 | } | |
b2175913 MS |
6971 | } |
6972 | else | |
6973 | /* Set a breakpoint at callee's return address (the address | |
6974 | at which the caller will resume). */ | |
568d6575 | 6975 | insert_step_resume_breakpoint_at_caller (frame); |
b2175913 | 6976 | |
95918acb | 6977 | keep_going (ecs); |
488f131b | 6978 | return; |
488f131b | 6979 | } |
c906108c | 6980 | |
fdd654f3 MS |
6981 | /* Reverse stepping through solib trampolines. */ |
6982 | ||
6983 | if (execution_direction == EXEC_REVERSE | |
16c381f0 | 6984 | && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE) |
fdd654f3 | 6985 | { |
f2ffa92b PA |
6986 | CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc; |
6987 | ||
fdd654f3 MS |
6988 | if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc) |
6989 | || (ecs->stop_func_start == 0 | |
6990 | && in_solib_dynsym_resolve_code (stop_pc))) | |
6991 | { | |
6992 | /* Any solib trampoline code can be handled in reverse | |
6993 | by simply continuing to single-step. We have already | |
6994 | executed the solib function (backwards), and a few | |
6995 | steps will take us back through the trampoline to the | |
6996 | caller. */ | |
6997 | keep_going (ecs); | |
6998 | return; | |
6999 | } | |
7000 | else if (in_solib_dynsym_resolve_code (stop_pc)) | |
7001 | { | |
7002 | /* Stepped backward into the solib dynsym resolver. | |
7003 | Set a breakpoint at its start and continue, then | |
7004 | one more step will take us out. */ | |
51abb421 | 7005 | symtab_and_line sr_sal; |
fdd654f3 | 7006 | sr_sal.pc = ecs->stop_func_start; |
9d1807c3 | 7007 | sr_sal.pspace = get_frame_program_space (frame); |
fdd654f3 MS |
7008 | insert_step_resume_breakpoint_at_sal (gdbarch, |
7009 | sr_sal, null_frame_id); | |
7010 | keep_going (ecs); | |
7011 | return; | |
7012 | } | |
7013 | } | |
7014 | ||
f2ffa92b | 7015 | stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0); |
7ed0fe66 | 7016 | |
1b2bfbb9 RC |
7017 | /* NOTE: tausq/2004-05-24: This if block used to be done before all |
7018 | the trampoline processing logic, however, there are some trampolines | |
7019 | that have no names, so we should do trampoline handling first. */ | |
16c381f0 | 7020 | if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE |
7ed0fe66 | 7021 | && ecs->stop_func_name == NULL |
2afb61aa | 7022 | && stop_pc_sal.line == 0) |
1b2bfbb9 | 7023 | { |
527159b7 | 7024 | if (debug_infrun) |
3e43a32a MS |
7025 | fprintf_unfiltered (gdb_stdlog, |
7026 | "infrun: stepped into undebuggable function\n"); | |
527159b7 | 7027 | |
1b2bfbb9 | 7028 | /* The inferior just stepped into, or returned to, an |
7ed0fe66 DJ |
7029 | undebuggable function (where there is no debugging information |
7030 | and no line number corresponding to the address where the | |
1b2bfbb9 RC |
7031 | inferior stopped). Since we want to skip this kind of code, |
7032 | we keep going until the inferior returns from this | |
14e60db5 DJ |
7033 | function - unless the user has asked us not to (via |
7034 | set step-mode) or we no longer know how to get back | |
7035 | to the call site. */ | |
7036 | if (step_stop_if_no_debug | |
c7ce8faa | 7037 | || !frame_id_p (frame_unwind_caller_id (frame))) |
1b2bfbb9 RC |
7038 | { |
7039 | /* If we have no line number and the step-stop-if-no-debug | |
7040 | is set, we stop the step so that the user has a chance to | |
7041 | switch in assembly mode. */ | |
bdc36728 | 7042 | end_stepping_range (ecs); |
1b2bfbb9 RC |
7043 | return; |
7044 | } | |
7045 | else | |
7046 | { | |
7047 | /* Set a breakpoint at callee's return address (the address | |
7048 | at which the caller will resume). */ | |
568d6575 | 7049 | insert_step_resume_breakpoint_at_caller (frame); |
1b2bfbb9 RC |
7050 | keep_going (ecs); |
7051 | return; | |
7052 | } | |
7053 | } | |
7054 | ||
16c381f0 | 7055 | if (ecs->event_thread->control.step_range_end == 1) |
1b2bfbb9 RC |
7056 | { |
7057 | /* It is stepi or nexti. We always want to stop stepping after | |
7058 | one instruction. */ | |
527159b7 | 7059 | if (debug_infrun) |
8a9de0e4 | 7060 | fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n"); |
bdc36728 | 7061 | end_stepping_range (ecs); |
1b2bfbb9 RC |
7062 | return; |
7063 | } | |
7064 | ||
2afb61aa | 7065 | if (stop_pc_sal.line == 0) |
488f131b JB |
7066 | { |
7067 | /* We have no line number information. That means to stop | |
7068 | stepping (does this always happen right after one instruction, | |
7069 | when we do "s" in a function with no line numbers, | |
7070 | or can this happen as a result of a return or longjmp?). */ | |
527159b7 | 7071 | if (debug_infrun) |
8a9de0e4 | 7072 | fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n"); |
bdc36728 | 7073 | end_stepping_range (ecs); |
488f131b JB |
7074 | return; |
7075 | } | |
c906108c | 7076 | |
edb3359d DJ |
7077 | /* Look for "calls" to inlined functions, part one. If the inline |
7078 | frame machinery detected some skipped call sites, we have entered | |
7079 | a new inline function. */ | |
7080 | ||
7081 | if (frame_id_eq (get_frame_id (get_current_frame ()), | |
16c381f0 | 7082 | ecs->event_thread->control.step_frame_id) |
00431a78 | 7083 | && inline_skipped_frames (ecs->event_thread)) |
edb3359d | 7084 | { |
edb3359d DJ |
7085 | if (debug_infrun) |
7086 | fprintf_unfiltered (gdb_stdlog, | |
7087 | "infrun: stepped into inlined function\n"); | |
7088 | ||
51abb421 | 7089 | symtab_and_line call_sal = find_frame_sal (get_current_frame ()); |
edb3359d | 7090 | |
16c381f0 | 7091 | if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL) |
edb3359d DJ |
7092 | { |
7093 | /* For "step", we're going to stop. But if the call site | |
7094 | for this inlined function is on the same source line as | |
7095 | we were previously stepping, go down into the function | |
7096 | first. Otherwise stop at the call site. */ | |
7097 | ||
7098 | if (call_sal.line == ecs->event_thread->current_line | |
7099 | && call_sal.symtab == ecs->event_thread->current_symtab) | |
4a4c04f1 BE |
7100 | { |
7101 | step_into_inline_frame (ecs->event_thread); | |
7102 | if (inline_frame_is_marked_for_skip (false, ecs->event_thread)) | |
7103 | { | |
7104 | keep_going (ecs); | |
7105 | return; | |
7106 | } | |
7107 | } | |
edb3359d | 7108 | |
bdc36728 | 7109 | end_stepping_range (ecs); |
edb3359d DJ |
7110 | return; |
7111 | } | |
7112 | else | |
7113 | { | |
7114 | /* For "next", we should stop at the call site if it is on a | |
7115 | different source line. Otherwise continue through the | |
7116 | inlined function. */ | |
7117 | if (call_sal.line == ecs->event_thread->current_line | |
7118 | && call_sal.symtab == ecs->event_thread->current_symtab) | |
7119 | keep_going (ecs); | |
7120 | else | |
bdc36728 | 7121 | end_stepping_range (ecs); |
edb3359d DJ |
7122 | return; |
7123 | } | |
7124 | } | |
7125 | ||
7126 | /* Look for "calls" to inlined functions, part two. If we are still | |
7127 | in the same real function we were stepping through, but we have | |
7128 | to go further up to find the exact frame ID, we are stepping | |
7129 | through a more inlined call beyond its call site. */ | |
7130 | ||
7131 | if (get_frame_type (get_current_frame ()) == INLINE_FRAME | |
7132 | && !frame_id_eq (get_frame_id (get_current_frame ()), | |
16c381f0 | 7133 | ecs->event_thread->control.step_frame_id) |
edb3359d | 7134 | && stepped_in_from (get_current_frame (), |
16c381f0 | 7135 | ecs->event_thread->control.step_frame_id)) |
edb3359d DJ |
7136 | { |
7137 | if (debug_infrun) | |
7138 | fprintf_unfiltered (gdb_stdlog, | |
7139 | "infrun: stepping through inlined function\n"); | |
7140 | ||
4a4c04f1 BE |
7141 | if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL |
7142 | || inline_frame_is_marked_for_skip (false, ecs->event_thread)) | |
edb3359d DJ |
7143 | keep_going (ecs); |
7144 | else | |
bdc36728 | 7145 | end_stepping_range (ecs); |
edb3359d DJ |
7146 | return; |
7147 | } | |
7148 | ||
f2ffa92b | 7149 | if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc) |
4e1c45ea PA |
7150 | && (ecs->event_thread->current_line != stop_pc_sal.line |
7151 | || ecs->event_thread->current_symtab != stop_pc_sal.symtab)) | |
488f131b JB |
7152 | { |
7153 | /* We are at the start of a different line. So stop. Note that | |
7154 | we don't stop if we step into the middle of a different line. | |
7155 | That is said to make things like for (;;) statements work | |
7156 | better. */ | |
527159b7 | 7157 | if (debug_infrun) |
3e43a32a MS |
7158 | fprintf_unfiltered (gdb_stdlog, |
7159 | "infrun: stepped to a different line\n"); | |
bdc36728 | 7160 | end_stepping_range (ecs); |
488f131b JB |
7161 | return; |
7162 | } | |
c906108c | 7163 | |
488f131b | 7164 | /* We aren't done stepping. |
c906108c | 7165 | |
488f131b JB |
7166 | Optimize by setting the stepping range to the line. |
7167 | (We might not be in the original line, but if we entered a | |
7168 | new line in mid-statement, we continue stepping. This makes | |
7169 | things like for(;;) statements work better.) */ | |
c906108c | 7170 | |
16c381f0 JK |
7171 | ecs->event_thread->control.step_range_start = stop_pc_sal.pc; |
7172 | ecs->event_thread->control.step_range_end = stop_pc_sal.end; | |
c1e36e3e | 7173 | ecs->event_thread->control.may_range_step = 1; |
edb3359d | 7174 | set_step_info (frame, stop_pc_sal); |
488f131b | 7175 | |
527159b7 | 7176 | if (debug_infrun) |
8a9de0e4 | 7177 | fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n"); |
488f131b | 7178 | keep_going (ecs); |
104c1213 JM |
7179 | } |
7180 | ||
c447ac0b PA |
7181 | /* In all-stop mode, if we're currently stepping but have stopped in |
7182 | some other thread, we may need to switch back to the stepped | |
7183 | thread. Returns true we set the inferior running, false if we left | |
7184 | it stopped (and the event needs further processing). */ | |
7185 | ||
7186 | static int | |
7187 | switch_back_to_stepped_thread (struct execution_control_state *ecs) | |
7188 | { | |
fbea99ea | 7189 | if (!target_is_non_stop_p ()) |
c447ac0b | 7190 | { |
99619bea PA |
7191 | struct thread_info *stepping_thread; |
7192 | ||
7193 | /* If any thread is blocked on some internal breakpoint, and we | |
7194 | simply need to step over that breakpoint to get it going | |
7195 | again, do that first. */ | |
7196 | ||
7197 | /* However, if we see an event for the stepping thread, then we | |
7198 | know all other threads have been moved past their breakpoints | |
7199 | already. Let the caller check whether the step is finished, | |
7200 | etc., before deciding to move it past a breakpoint. */ | |
7201 | if (ecs->event_thread->control.step_range_end != 0) | |
7202 | return 0; | |
7203 | ||
7204 | /* Check if the current thread is blocked on an incomplete | |
7205 | step-over, interrupted by a random signal. */ | |
7206 | if (ecs->event_thread->control.trap_expected | |
7207 | && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP) | |
c447ac0b | 7208 | { |
99619bea PA |
7209 | if (debug_infrun) |
7210 | { | |
7211 | fprintf_unfiltered (gdb_stdlog, | |
7212 | "infrun: need to finish step-over of [%s]\n", | |
a068643d | 7213 | target_pid_to_str (ecs->event_thread->ptid).c_str ()); |
99619bea PA |
7214 | } |
7215 | keep_going (ecs); | |
7216 | return 1; | |
7217 | } | |
2adfaa28 | 7218 | |
99619bea PA |
7219 | /* Check if the current thread is blocked by a single-step |
7220 | breakpoint of another thread. */ | |
7221 | if (ecs->hit_singlestep_breakpoint) | |
7222 | { | |
7223 | if (debug_infrun) | |
7224 | { | |
7225 | fprintf_unfiltered (gdb_stdlog, | |
7226 | "infrun: need to step [%s] over single-step " | |
7227 | "breakpoint\n", | |
a068643d | 7228 | target_pid_to_str (ecs->ptid).c_str ()); |
99619bea PA |
7229 | } |
7230 | keep_going (ecs); | |
7231 | return 1; | |
7232 | } | |
7233 | ||
4d9d9d04 PA |
7234 | /* If this thread needs yet another step-over (e.g., stepping |
7235 | through a delay slot), do it first before moving on to | |
7236 | another thread. */ | |
7237 | if (thread_still_needs_step_over (ecs->event_thread)) | |
7238 | { | |
7239 | if (debug_infrun) | |
7240 | { | |
7241 | fprintf_unfiltered (gdb_stdlog, | |
7242 | "infrun: thread [%s] still needs step-over\n", | |
a068643d | 7243 | target_pid_to_str (ecs->event_thread->ptid).c_str ()); |
4d9d9d04 PA |
7244 | } |
7245 | keep_going (ecs); | |
7246 | return 1; | |
7247 | } | |
70509625 | 7248 | |
483805cf PA |
7249 | /* If scheduler locking applies even if not stepping, there's no |
7250 | need to walk over threads. Above we've checked whether the | |
7251 | current thread is stepping. If some other thread not the | |
7252 | event thread is stepping, then it must be that scheduler | |
7253 | locking is not in effect. */ | |
856e7dd6 | 7254 | if (schedlock_applies (ecs->event_thread)) |
483805cf PA |
7255 | return 0; |
7256 | ||
4d9d9d04 PA |
7257 | /* Otherwise, we no longer expect a trap in the current thread. |
7258 | Clear the trap_expected flag before switching back -- this is | |
7259 | what keep_going does as well, if we call it. */ | |
7260 | ecs->event_thread->control.trap_expected = 0; | |
7261 | ||
7262 | /* Likewise, clear the signal if it should not be passed. */ | |
7263 | if (!signal_program[ecs->event_thread->suspend.stop_signal]) | |
7264 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; | |
7265 | ||
7266 | /* Do all pending step-overs before actually proceeding with | |
483805cf | 7267 | step/next/etc. */ |
4d9d9d04 PA |
7268 | if (start_step_over ()) |
7269 | { | |
7270 | prepare_to_wait (ecs); | |
7271 | return 1; | |
7272 | } | |
7273 | ||
7274 | /* Look for the stepping/nexting thread. */ | |
483805cf | 7275 | stepping_thread = NULL; |
4d9d9d04 | 7276 | |
08036331 | 7277 | for (thread_info *tp : all_non_exited_threads ()) |
483805cf | 7278 | { |
f3f8ece4 PA |
7279 | switch_to_thread_no_regs (tp); |
7280 | ||
fbea99ea PA |
7281 | /* Ignore threads of processes the caller is not |
7282 | resuming. */ | |
483805cf | 7283 | if (!sched_multi |
5b6d1e4f PA |
7284 | && (tp->inf->process_target () != ecs->target |
7285 | || tp->inf->pid != ecs->ptid.pid ())) | |
483805cf PA |
7286 | continue; |
7287 | ||
7288 | /* When stepping over a breakpoint, we lock all threads | |
7289 | except the one that needs to move past the breakpoint. | |
7290 | If a non-event thread has this set, the "incomplete | |
7291 | step-over" check above should have caught it earlier. */ | |
372316f1 PA |
7292 | if (tp->control.trap_expected) |
7293 | { | |
7294 | internal_error (__FILE__, __LINE__, | |
7295 | "[%s] has inconsistent state: " | |
7296 | "trap_expected=%d\n", | |
a068643d | 7297 | target_pid_to_str (tp->ptid).c_str (), |
372316f1 PA |
7298 | tp->control.trap_expected); |
7299 | } | |
483805cf PA |
7300 | |
7301 | /* Did we find the stepping thread? */ | |
7302 | if (tp->control.step_range_end) | |
7303 | { | |
7304 | /* Yep. There should only one though. */ | |
7305 | gdb_assert (stepping_thread == NULL); | |
7306 | ||
7307 | /* The event thread is handled at the top, before we | |
7308 | enter this loop. */ | |
7309 | gdb_assert (tp != ecs->event_thread); | |
7310 | ||
7311 | /* If some thread other than the event thread is | |
7312 | stepping, then scheduler locking can't be in effect, | |
7313 | otherwise we wouldn't have resumed the current event | |
7314 | thread in the first place. */ | |
856e7dd6 | 7315 | gdb_assert (!schedlock_applies (tp)); |
483805cf PA |
7316 | |
7317 | stepping_thread = tp; | |
7318 | } | |
99619bea PA |
7319 | } |
7320 | ||
483805cf | 7321 | if (stepping_thread != NULL) |
99619bea | 7322 | { |
c447ac0b PA |
7323 | if (debug_infrun) |
7324 | fprintf_unfiltered (gdb_stdlog, | |
7325 | "infrun: switching back to stepped thread\n"); | |
7326 | ||
2ac7589c PA |
7327 | if (keep_going_stepped_thread (stepping_thread)) |
7328 | { | |
7329 | prepare_to_wait (ecs); | |
7330 | return 1; | |
7331 | } | |
7332 | } | |
f3f8ece4 PA |
7333 | |
7334 | switch_to_thread (ecs->event_thread); | |
2ac7589c | 7335 | } |
2adfaa28 | 7336 | |
2ac7589c PA |
7337 | return 0; |
7338 | } | |
2adfaa28 | 7339 | |
2ac7589c PA |
7340 | /* Set a previously stepped thread back to stepping. Returns true on |
7341 | success, false if the resume is not possible (e.g., the thread | |
7342 | vanished). */ | |
7343 | ||
7344 | static int | |
7345 | keep_going_stepped_thread (struct thread_info *tp) | |
7346 | { | |
7347 | struct frame_info *frame; | |
2ac7589c PA |
7348 | struct execution_control_state ecss; |
7349 | struct execution_control_state *ecs = &ecss; | |
2adfaa28 | 7350 | |
2ac7589c PA |
7351 | /* If the stepping thread exited, then don't try to switch back and |
7352 | resume it, which could fail in several different ways depending | |
7353 | on the target. Instead, just keep going. | |
2adfaa28 | 7354 | |
2ac7589c PA |
7355 | We can find a stepping dead thread in the thread list in two |
7356 | cases: | |
2adfaa28 | 7357 | |
2ac7589c PA |
7358 | - The target supports thread exit events, and when the target |
7359 | tries to delete the thread from the thread list, inferior_ptid | |
7360 | pointed at the exiting thread. In such case, calling | |
7361 | delete_thread does not really remove the thread from the list; | |
7362 | instead, the thread is left listed, with 'exited' state. | |
64ce06e4 | 7363 | |
2ac7589c PA |
7364 | - The target's debug interface does not support thread exit |
7365 | events, and so we have no idea whatsoever if the previously | |
7366 | stepping thread is still alive. For that reason, we need to | |
7367 | synchronously query the target now. */ | |
2adfaa28 | 7368 | |
00431a78 | 7369 | if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid)) |
2ac7589c PA |
7370 | { |
7371 | if (debug_infrun) | |
7372 | fprintf_unfiltered (gdb_stdlog, | |
7373 | "infrun: not resuming previously " | |
7374 | "stepped thread, it has vanished\n"); | |
7375 | ||
00431a78 | 7376 | delete_thread (tp); |
2ac7589c | 7377 | return 0; |
c447ac0b | 7378 | } |
2ac7589c PA |
7379 | |
7380 | if (debug_infrun) | |
7381 | fprintf_unfiltered (gdb_stdlog, | |
7382 | "infrun: resuming previously stepped thread\n"); | |
7383 | ||
7384 | reset_ecs (ecs, tp); | |
00431a78 | 7385 | switch_to_thread (tp); |
2ac7589c | 7386 | |
f2ffa92b | 7387 | tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp)); |
2ac7589c | 7388 | frame = get_current_frame (); |
2ac7589c PA |
7389 | |
7390 | /* If the PC of the thread we were trying to single-step has | |
7391 | changed, then that thread has trapped or been signaled, but the | |
7392 | event has not been reported to GDB yet. Re-poll the target | |
7393 | looking for this particular thread's event (i.e. temporarily | |
7394 | enable schedlock) by: | |
7395 | ||
7396 | - setting a break at the current PC | |
7397 | - resuming that particular thread, only (by setting trap | |
7398 | expected) | |
7399 | ||
7400 | This prevents us continuously moving the single-step breakpoint | |
7401 | forward, one instruction at a time, overstepping. */ | |
7402 | ||
f2ffa92b | 7403 | if (tp->suspend.stop_pc != tp->prev_pc) |
2ac7589c PA |
7404 | { |
7405 | ptid_t resume_ptid; | |
7406 | ||
7407 | if (debug_infrun) | |
7408 | fprintf_unfiltered (gdb_stdlog, | |
7409 | "infrun: expected thread advanced also (%s -> %s)\n", | |
7410 | paddress (target_gdbarch (), tp->prev_pc), | |
f2ffa92b | 7411 | paddress (target_gdbarch (), tp->suspend.stop_pc)); |
2ac7589c PA |
7412 | |
7413 | /* Clear the info of the previous step-over, as it's no longer | |
7414 | valid (if the thread was trying to step over a breakpoint, it | |
7415 | has already succeeded). It's what keep_going would do too, | |
7416 | if we called it. Do this before trying to insert the sss | |
7417 | breakpoint, otherwise if we were previously trying to step | |
7418 | over this exact address in another thread, the breakpoint is | |
7419 | skipped. */ | |
7420 | clear_step_over_info (); | |
7421 | tp->control.trap_expected = 0; | |
7422 | ||
7423 | insert_single_step_breakpoint (get_frame_arch (frame), | |
7424 | get_frame_address_space (frame), | |
f2ffa92b | 7425 | tp->suspend.stop_pc); |
2ac7589c | 7426 | |
719546c4 | 7427 | tp->resumed = true; |
fbea99ea | 7428 | resume_ptid = internal_resume_ptid (tp->control.stepping_command); |
2ac7589c PA |
7429 | do_target_resume (resume_ptid, 0, GDB_SIGNAL_0); |
7430 | } | |
7431 | else | |
7432 | { | |
7433 | if (debug_infrun) | |
7434 | fprintf_unfiltered (gdb_stdlog, | |
7435 | "infrun: expected thread still hasn't advanced\n"); | |
7436 | ||
7437 | keep_going_pass_signal (ecs); | |
7438 | } | |
7439 | return 1; | |
c447ac0b PA |
7440 | } |
7441 | ||
8b061563 PA |
7442 | /* Is thread TP in the middle of (software or hardware) |
7443 | single-stepping? (Note the result of this function must never be | |
7444 | passed directly as target_resume's STEP parameter.) */ | |
104c1213 | 7445 | |
a289b8f6 | 7446 | static int |
b3444185 | 7447 | currently_stepping (struct thread_info *tp) |
a7212384 | 7448 | { |
8358c15c JK |
7449 | return ((tp->control.step_range_end |
7450 | && tp->control.step_resume_breakpoint == NULL) | |
7451 | || tp->control.trap_expected | |
af48d08f | 7452 | || tp->stepped_breakpoint |
8358c15c | 7453 | || bpstat_should_step ()); |
a7212384 UW |
7454 | } |
7455 | ||
b2175913 MS |
7456 | /* Inferior has stepped into a subroutine call with source code that |
7457 | we should not step over. Do step to the first line of code in | |
7458 | it. */ | |
c2c6d25f JM |
7459 | |
7460 | static void | |
568d6575 UW |
7461 | handle_step_into_function (struct gdbarch *gdbarch, |
7462 | struct execution_control_state *ecs) | |
c2c6d25f | 7463 | { |
7e324e48 GB |
7464 | fill_in_stop_func (gdbarch, ecs); |
7465 | ||
f2ffa92b PA |
7466 | compunit_symtab *cust |
7467 | = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc); | |
43f3e411 | 7468 | if (cust != NULL && compunit_language (cust) != language_asm) |
46a62268 YQ |
7469 | ecs->stop_func_start |
7470 | = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start); | |
c2c6d25f | 7471 | |
51abb421 | 7472 | symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0); |
c2c6d25f JM |
7473 | /* Use the step_resume_break to step until the end of the prologue, |
7474 | even if that involves jumps (as it seems to on the vax under | |
7475 | 4.2). */ | |
7476 | /* If the prologue ends in the middle of a source line, continue to | |
7477 | the end of that source line (if it is still within the function). | |
7478 | Otherwise, just go to end of prologue. */ | |
2afb61aa PA |
7479 | if (stop_func_sal.end |
7480 | && stop_func_sal.pc != ecs->stop_func_start | |
7481 | && stop_func_sal.end < ecs->stop_func_end) | |
7482 | ecs->stop_func_start = stop_func_sal.end; | |
c2c6d25f | 7483 | |
2dbd5e30 KB |
7484 | /* Architectures which require breakpoint adjustment might not be able |
7485 | to place a breakpoint at the computed address. If so, the test | |
7486 | ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust | |
7487 | ecs->stop_func_start to an address at which a breakpoint may be | |
7488 | legitimately placed. | |
8fb3e588 | 7489 | |
2dbd5e30 KB |
7490 | Note: kevinb/2004-01-19: On FR-V, if this adjustment is not |
7491 | made, GDB will enter an infinite loop when stepping through | |
7492 | optimized code consisting of VLIW instructions which contain | |
7493 | subinstructions corresponding to different source lines. On | |
7494 | FR-V, it's not permitted to place a breakpoint on any but the | |
7495 | first subinstruction of a VLIW instruction. When a breakpoint is | |
7496 | set, GDB will adjust the breakpoint address to the beginning of | |
7497 | the VLIW instruction. Thus, we need to make the corresponding | |
7498 | adjustment here when computing the stop address. */ | |
8fb3e588 | 7499 | |
568d6575 | 7500 | if (gdbarch_adjust_breakpoint_address_p (gdbarch)) |
2dbd5e30 KB |
7501 | { |
7502 | ecs->stop_func_start | |
568d6575 | 7503 | = gdbarch_adjust_breakpoint_address (gdbarch, |
8fb3e588 | 7504 | ecs->stop_func_start); |
2dbd5e30 KB |
7505 | } |
7506 | ||
f2ffa92b | 7507 | if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc) |
c2c6d25f JM |
7508 | { |
7509 | /* We are already there: stop now. */ | |
bdc36728 | 7510 | end_stepping_range (ecs); |
c2c6d25f JM |
7511 | return; |
7512 | } | |
7513 | else | |
7514 | { | |
7515 | /* Put the step-breakpoint there and go until there. */ | |
51abb421 | 7516 | symtab_and_line sr_sal; |
c2c6d25f JM |
7517 | sr_sal.pc = ecs->stop_func_start; |
7518 | sr_sal.section = find_pc_overlay (ecs->stop_func_start); | |
6c95b8df | 7519 | sr_sal.pspace = get_frame_program_space (get_current_frame ()); |
44cbf7b5 | 7520 | |
c2c6d25f | 7521 | /* Do not specify what the fp should be when we stop since on |
488f131b JB |
7522 | some machines the prologue is where the new fp value is |
7523 | established. */ | |
a6d9a66e | 7524 | insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id); |
c2c6d25f JM |
7525 | |
7526 | /* And make sure stepping stops right away then. */ | |
16c381f0 JK |
7527 | ecs->event_thread->control.step_range_end |
7528 | = ecs->event_thread->control.step_range_start; | |
c2c6d25f JM |
7529 | } |
7530 | keep_going (ecs); | |
7531 | } | |
d4f3574e | 7532 | |
b2175913 MS |
7533 | /* Inferior has stepped backward into a subroutine call with source |
7534 | code that we should not step over. Do step to the beginning of the | |
7535 | last line of code in it. */ | |
7536 | ||
7537 | static void | |
568d6575 UW |
7538 | handle_step_into_function_backward (struct gdbarch *gdbarch, |
7539 | struct execution_control_state *ecs) | |
b2175913 | 7540 | { |
43f3e411 | 7541 | struct compunit_symtab *cust; |
167e4384 | 7542 | struct symtab_and_line stop_func_sal; |
b2175913 | 7543 | |
7e324e48 GB |
7544 | fill_in_stop_func (gdbarch, ecs); |
7545 | ||
f2ffa92b | 7546 | cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc); |
43f3e411 | 7547 | if (cust != NULL && compunit_language (cust) != language_asm) |
46a62268 YQ |
7548 | ecs->stop_func_start |
7549 | = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start); | |
b2175913 | 7550 | |
f2ffa92b | 7551 | stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0); |
b2175913 MS |
7552 | |
7553 | /* OK, we're just going to keep stepping here. */ | |
f2ffa92b | 7554 | if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc) |
b2175913 MS |
7555 | { |
7556 | /* We're there already. Just stop stepping now. */ | |
bdc36728 | 7557 | end_stepping_range (ecs); |
b2175913 MS |
7558 | } |
7559 | else | |
7560 | { | |
7561 | /* Else just reset the step range and keep going. | |
7562 | No step-resume breakpoint, they don't work for | |
7563 | epilogues, which can have multiple entry paths. */ | |
16c381f0 JK |
7564 | ecs->event_thread->control.step_range_start = stop_func_sal.pc; |
7565 | ecs->event_thread->control.step_range_end = stop_func_sal.end; | |
b2175913 MS |
7566 | keep_going (ecs); |
7567 | } | |
7568 | return; | |
7569 | } | |
7570 | ||
d3169d93 | 7571 | /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID. |
44cbf7b5 AC |
7572 | This is used to both functions and to skip over code. */ |
7573 | ||
7574 | static void | |
2c03e5be PA |
7575 | insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch, |
7576 | struct symtab_and_line sr_sal, | |
7577 | struct frame_id sr_id, | |
7578 | enum bptype sr_type) | |
44cbf7b5 | 7579 | { |
611c83ae PA |
7580 | /* There should never be more than one step-resume or longjmp-resume |
7581 | breakpoint per thread, so we should never be setting a new | |
44cbf7b5 | 7582 | step_resume_breakpoint when one is already active. */ |
8358c15c | 7583 | gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL); |
2c03e5be | 7584 | gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume); |
d3169d93 DJ |
7585 | |
7586 | if (debug_infrun) | |
7587 | fprintf_unfiltered (gdb_stdlog, | |
5af949e3 UW |
7588 | "infrun: inserting step-resume breakpoint at %s\n", |
7589 | paddress (gdbarch, sr_sal.pc)); | |
d3169d93 | 7590 | |
8358c15c | 7591 | inferior_thread ()->control.step_resume_breakpoint |
454dafbd | 7592 | = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release (); |
2c03e5be PA |
7593 | } |
7594 | ||
9da8c2a0 | 7595 | void |
2c03e5be PA |
7596 | insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch, |
7597 | struct symtab_and_line sr_sal, | |
7598 | struct frame_id sr_id) | |
7599 | { | |
7600 | insert_step_resume_breakpoint_at_sal_1 (gdbarch, | |
7601 | sr_sal, sr_id, | |
7602 | bp_step_resume); | |
44cbf7b5 | 7603 | } |
7ce450bd | 7604 | |
2c03e5be PA |
7605 | /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc. |
7606 | This is used to skip a potential signal handler. | |
7ce450bd | 7607 | |
14e60db5 DJ |
7608 | This is called with the interrupted function's frame. The signal |
7609 | handler, when it returns, will resume the interrupted function at | |
7610 | RETURN_FRAME.pc. */ | |
d303a6c7 AC |
7611 | |
7612 | static void | |
2c03e5be | 7613 | insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame) |
d303a6c7 | 7614 | { |
f4c1edd8 | 7615 | gdb_assert (return_frame != NULL); |
d303a6c7 | 7616 | |
51abb421 PA |
7617 | struct gdbarch *gdbarch = get_frame_arch (return_frame); |
7618 | ||
7619 | symtab_and_line sr_sal; | |
568d6575 | 7620 | sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame)); |
d303a6c7 | 7621 | sr_sal.section = find_pc_overlay (sr_sal.pc); |
6c95b8df | 7622 | sr_sal.pspace = get_frame_program_space (return_frame); |
d303a6c7 | 7623 | |
2c03e5be PA |
7624 | insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal, |
7625 | get_stack_frame_id (return_frame), | |
7626 | bp_hp_step_resume); | |
d303a6c7 AC |
7627 | } |
7628 | ||
2c03e5be PA |
7629 | /* Insert a "step-resume breakpoint" at the previous frame's PC. This |
7630 | is used to skip a function after stepping into it (for "next" or if | |
7631 | the called function has no debugging information). | |
14e60db5 DJ |
7632 | |
7633 | The current function has almost always been reached by single | |
7634 | stepping a call or return instruction. NEXT_FRAME belongs to the | |
7635 | current function, and the breakpoint will be set at the caller's | |
7636 | resume address. | |
7637 | ||
7638 | This is a separate function rather than reusing | |
2c03e5be | 7639 | insert_hp_step_resume_breakpoint_at_frame in order to avoid |
14e60db5 | 7640 | get_prev_frame, which may stop prematurely (see the implementation |
c7ce8faa | 7641 | of frame_unwind_caller_id for an example). */ |
14e60db5 DJ |
7642 | |
7643 | static void | |
7644 | insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame) | |
7645 | { | |
14e60db5 DJ |
7646 | /* We shouldn't have gotten here if we don't know where the call site |
7647 | is. */ | |
c7ce8faa | 7648 | gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame))); |
14e60db5 | 7649 | |
51abb421 | 7650 | struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame); |
14e60db5 | 7651 | |
51abb421 | 7652 | symtab_and_line sr_sal; |
c7ce8faa DJ |
7653 | sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, |
7654 | frame_unwind_caller_pc (next_frame)); | |
14e60db5 | 7655 | sr_sal.section = find_pc_overlay (sr_sal.pc); |
6c95b8df | 7656 | sr_sal.pspace = frame_unwind_program_space (next_frame); |
14e60db5 | 7657 | |
a6d9a66e | 7658 | insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, |
c7ce8faa | 7659 | frame_unwind_caller_id (next_frame)); |
14e60db5 DJ |
7660 | } |
7661 | ||
611c83ae PA |
7662 | /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a |
7663 | new breakpoint at the target of a jmp_buf. The handling of | |
7664 | longjmp-resume uses the same mechanisms used for handling | |
7665 | "step-resume" breakpoints. */ | |
7666 | ||
7667 | static void | |
a6d9a66e | 7668 | insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc) |
611c83ae | 7669 | { |
e81a37f7 TT |
7670 | /* There should never be more than one longjmp-resume breakpoint per |
7671 | thread, so we should never be setting a new | |
611c83ae | 7672 | longjmp_resume_breakpoint when one is already active. */ |
e81a37f7 | 7673 | gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL); |
611c83ae PA |
7674 | |
7675 | if (debug_infrun) | |
7676 | fprintf_unfiltered (gdb_stdlog, | |
5af949e3 UW |
7677 | "infrun: inserting longjmp-resume breakpoint at %s\n", |
7678 | paddress (gdbarch, pc)); | |
611c83ae | 7679 | |
e81a37f7 | 7680 | inferior_thread ()->control.exception_resume_breakpoint = |
454dafbd | 7681 | set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release (); |
611c83ae PA |
7682 | } |
7683 | ||
186c406b TT |
7684 | /* Insert an exception resume breakpoint. TP is the thread throwing |
7685 | the exception. The block B is the block of the unwinder debug hook | |
7686 | function. FRAME is the frame corresponding to the call to this | |
7687 | function. SYM is the symbol of the function argument holding the | |
7688 | target PC of the exception. */ | |
7689 | ||
7690 | static void | |
7691 | insert_exception_resume_breakpoint (struct thread_info *tp, | |
3977b71f | 7692 | const struct block *b, |
186c406b TT |
7693 | struct frame_info *frame, |
7694 | struct symbol *sym) | |
7695 | { | |
a70b8144 | 7696 | try |
186c406b | 7697 | { |
63e43d3a | 7698 | struct block_symbol vsym; |
186c406b TT |
7699 | struct value *value; |
7700 | CORE_ADDR handler; | |
7701 | struct breakpoint *bp; | |
7702 | ||
987012b8 | 7703 | vsym = lookup_symbol_search_name (sym->search_name (), |
de63c46b | 7704 | b, VAR_DOMAIN); |
63e43d3a | 7705 | value = read_var_value (vsym.symbol, vsym.block, frame); |
186c406b TT |
7706 | /* If the value was optimized out, revert to the old behavior. */ |
7707 | if (! value_optimized_out (value)) | |
7708 | { | |
7709 | handler = value_as_address (value); | |
7710 | ||
7711 | if (debug_infrun) | |
7712 | fprintf_unfiltered (gdb_stdlog, | |
7713 | "infrun: exception resume at %lx\n", | |
7714 | (unsigned long) handler); | |
7715 | ||
7716 | bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame), | |
454dafbd TT |
7717 | handler, |
7718 | bp_exception_resume).release (); | |
c70a6932 JK |
7719 | |
7720 | /* set_momentary_breakpoint_at_pc invalidates FRAME. */ | |
7721 | frame = NULL; | |
7722 | ||
5d5658a1 | 7723 | bp->thread = tp->global_num; |
186c406b TT |
7724 | inferior_thread ()->control.exception_resume_breakpoint = bp; |
7725 | } | |
7726 | } | |
230d2906 | 7727 | catch (const gdb_exception_error &e) |
492d29ea PA |
7728 | { |
7729 | /* We want to ignore errors here. */ | |
7730 | } | |
186c406b TT |
7731 | } |
7732 | ||
28106bc2 SDJ |
7733 | /* A helper for check_exception_resume that sets an |
7734 | exception-breakpoint based on a SystemTap probe. */ | |
7735 | ||
7736 | static void | |
7737 | insert_exception_resume_from_probe (struct thread_info *tp, | |
729662a5 | 7738 | const struct bound_probe *probe, |
28106bc2 SDJ |
7739 | struct frame_info *frame) |
7740 | { | |
7741 | struct value *arg_value; | |
7742 | CORE_ADDR handler; | |
7743 | struct breakpoint *bp; | |
7744 | ||
7745 | arg_value = probe_safe_evaluate_at_pc (frame, 1); | |
7746 | if (!arg_value) | |
7747 | return; | |
7748 | ||
7749 | handler = value_as_address (arg_value); | |
7750 | ||
7751 | if (debug_infrun) | |
7752 | fprintf_unfiltered (gdb_stdlog, | |
7753 | "infrun: exception resume at %s\n", | |
6bac7473 | 7754 | paddress (get_objfile_arch (probe->objfile), |
28106bc2 SDJ |
7755 | handler)); |
7756 | ||
7757 | bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame), | |
454dafbd | 7758 | handler, bp_exception_resume).release (); |
5d5658a1 | 7759 | bp->thread = tp->global_num; |
28106bc2 SDJ |
7760 | inferior_thread ()->control.exception_resume_breakpoint = bp; |
7761 | } | |
7762 | ||
186c406b TT |
7763 | /* This is called when an exception has been intercepted. Check to |
7764 | see whether the exception's destination is of interest, and if so, | |
7765 | set an exception resume breakpoint there. */ | |
7766 | ||
7767 | static void | |
7768 | check_exception_resume (struct execution_control_state *ecs, | |
28106bc2 | 7769 | struct frame_info *frame) |
186c406b | 7770 | { |
729662a5 | 7771 | struct bound_probe probe; |
28106bc2 SDJ |
7772 | struct symbol *func; |
7773 | ||
7774 | /* First see if this exception unwinding breakpoint was set via a | |
7775 | SystemTap probe point. If so, the probe has two arguments: the | |
7776 | CFA and the HANDLER. We ignore the CFA, extract the handler, and | |
7777 | set a breakpoint there. */ | |
6bac7473 | 7778 | probe = find_probe_by_pc (get_frame_pc (frame)); |
935676c9 | 7779 | if (probe.prob) |
28106bc2 | 7780 | { |
729662a5 | 7781 | insert_exception_resume_from_probe (ecs->event_thread, &probe, frame); |
28106bc2 SDJ |
7782 | return; |
7783 | } | |
7784 | ||
7785 | func = get_frame_function (frame); | |
7786 | if (!func) | |
7787 | return; | |
186c406b | 7788 | |
a70b8144 | 7789 | try |
186c406b | 7790 | { |
3977b71f | 7791 | const struct block *b; |
8157b174 | 7792 | struct block_iterator iter; |
186c406b TT |
7793 | struct symbol *sym; |
7794 | int argno = 0; | |
7795 | ||
7796 | /* The exception breakpoint is a thread-specific breakpoint on | |
7797 | the unwinder's debug hook, declared as: | |
7798 | ||
7799 | void _Unwind_DebugHook (void *cfa, void *handler); | |
7800 | ||
7801 | The CFA argument indicates the frame to which control is | |
7802 | about to be transferred. HANDLER is the destination PC. | |
7803 | ||
7804 | We ignore the CFA and set a temporary breakpoint at HANDLER. | |
7805 | This is not extremely efficient but it avoids issues in gdb | |
7806 | with computing the DWARF CFA, and it also works even in weird | |
7807 | cases such as throwing an exception from inside a signal | |
7808 | handler. */ | |
7809 | ||
7810 | b = SYMBOL_BLOCK_VALUE (func); | |
7811 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
7812 | { | |
7813 | if (!SYMBOL_IS_ARGUMENT (sym)) | |
7814 | continue; | |
7815 | ||
7816 | if (argno == 0) | |
7817 | ++argno; | |
7818 | else | |
7819 | { | |
7820 | insert_exception_resume_breakpoint (ecs->event_thread, | |
7821 | b, frame, sym); | |
7822 | break; | |
7823 | } | |
7824 | } | |
7825 | } | |
230d2906 | 7826 | catch (const gdb_exception_error &e) |
492d29ea PA |
7827 | { |
7828 | } | |
186c406b TT |
7829 | } |
7830 | ||
104c1213 | 7831 | static void |
22bcd14b | 7832 | stop_waiting (struct execution_control_state *ecs) |
104c1213 | 7833 | { |
527159b7 | 7834 | if (debug_infrun) |
22bcd14b | 7835 | fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n"); |
527159b7 | 7836 | |
cd0fc7c3 SS |
7837 | /* Let callers know we don't want to wait for the inferior anymore. */ |
7838 | ecs->wait_some_more = 0; | |
fbea99ea PA |
7839 | |
7840 | /* If all-stop, but the target is always in non-stop mode, stop all | |
7841 | threads now that we're presenting the stop to the user. */ | |
7842 | if (!non_stop && target_is_non_stop_p ()) | |
7843 | stop_all_threads (); | |
cd0fc7c3 SS |
7844 | } |
7845 | ||
4d9d9d04 PA |
7846 | /* Like keep_going, but passes the signal to the inferior, even if the |
7847 | signal is set to nopass. */ | |
d4f3574e SS |
7848 | |
7849 | static void | |
4d9d9d04 | 7850 | keep_going_pass_signal (struct execution_control_state *ecs) |
d4f3574e | 7851 | { |
d7e15655 | 7852 | gdb_assert (ecs->event_thread->ptid == inferior_ptid); |
372316f1 | 7853 | gdb_assert (!ecs->event_thread->resumed); |
4d9d9d04 | 7854 | |
d4f3574e | 7855 | /* Save the pc before execution, to compare with pc after stop. */ |
fb14de7b | 7856 | ecs->event_thread->prev_pc |
00431a78 | 7857 | = regcache_read_pc (get_thread_regcache (ecs->event_thread)); |
d4f3574e | 7858 | |
4d9d9d04 | 7859 | if (ecs->event_thread->control.trap_expected) |
d4f3574e | 7860 | { |
4d9d9d04 PA |
7861 | struct thread_info *tp = ecs->event_thread; |
7862 | ||
7863 | if (debug_infrun) | |
7864 | fprintf_unfiltered (gdb_stdlog, | |
7865 | "infrun: %s has trap_expected set, " | |
7866 | "resuming to collect trap\n", | |
a068643d | 7867 | target_pid_to_str (tp->ptid).c_str ()); |
4d9d9d04 | 7868 | |
a9ba6bae PA |
7869 | /* We haven't yet gotten our trap, and either: intercepted a |
7870 | non-signal event (e.g., a fork); or took a signal which we | |
7871 | are supposed to pass through to the inferior. Simply | |
7872 | continue. */ | |
64ce06e4 | 7873 | resume (ecs->event_thread->suspend.stop_signal); |
d4f3574e | 7874 | } |
372316f1 PA |
7875 | else if (step_over_info_valid_p ()) |
7876 | { | |
7877 | /* Another thread is stepping over a breakpoint in-line. If | |
7878 | this thread needs a step-over too, queue the request. In | |
7879 | either case, this resume must be deferred for later. */ | |
7880 | struct thread_info *tp = ecs->event_thread; | |
7881 | ||
7882 | if (ecs->hit_singlestep_breakpoint | |
7883 | || thread_still_needs_step_over (tp)) | |
7884 | { | |
7885 | if (debug_infrun) | |
7886 | fprintf_unfiltered (gdb_stdlog, | |
7887 | "infrun: step-over already in progress: " | |
7888 | "step-over for %s deferred\n", | |
a068643d | 7889 | target_pid_to_str (tp->ptid).c_str ()); |
372316f1 PA |
7890 | thread_step_over_chain_enqueue (tp); |
7891 | } | |
7892 | else | |
7893 | { | |
7894 | if (debug_infrun) | |
7895 | fprintf_unfiltered (gdb_stdlog, | |
7896 | "infrun: step-over in progress: " | |
7897 | "resume of %s deferred\n", | |
a068643d | 7898 | target_pid_to_str (tp->ptid).c_str ()); |
372316f1 | 7899 | } |
372316f1 | 7900 | } |
d4f3574e SS |
7901 | else |
7902 | { | |
31e77af2 | 7903 | struct regcache *regcache = get_current_regcache (); |
963f9c80 PA |
7904 | int remove_bp; |
7905 | int remove_wps; | |
8d297bbf | 7906 | step_over_what step_what; |
31e77af2 | 7907 | |
d4f3574e | 7908 | /* Either the trap was not expected, but we are continuing |
a9ba6bae PA |
7909 | anyway (if we got a signal, the user asked it be passed to |
7910 | the child) | |
7911 | -- or -- | |
7912 | We got our expected trap, but decided we should resume from | |
7913 | it. | |
d4f3574e | 7914 | |
a9ba6bae | 7915 | We're going to run this baby now! |
d4f3574e | 7916 | |
c36b740a VP |
7917 | Note that insert_breakpoints won't try to re-insert |
7918 | already inserted breakpoints. Therefore, we don't | |
7919 | care if breakpoints were already inserted, or not. */ | |
a9ba6bae | 7920 | |
31e77af2 PA |
7921 | /* If we need to step over a breakpoint, and we're not using |
7922 | displaced stepping to do so, insert all breakpoints | |
7923 | (watchpoints, etc.) but the one we're stepping over, step one | |
7924 | instruction, and then re-insert the breakpoint when that step | |
7925 | is finished. */ | |
963f9c80 | 7926 | |
6c4cfb24 PA |
7927 | step_what = thread_still_needs_step_over (ecs->event_thread); |
7928 | ||
963f9c80 | 7929 | remove_bp = (ecs->hit_singlestep_breakpoint |
6c4cfb24 PA |
7930 | || (step_what & STEP_OVER_BREAKPOINT)); |
7931 | remove_wps = (step_what & STEP_OVER_WATCHPOINT); | |
963f9c80 | 7932 | |
cb71640d PA |
7933 | /* We can't use displaced stepping if we need to step past a |
7934 | watchpoint. The instruction copied to the scratch pad would | |
7935 | still trigger the watchpoint. */ | |
7936 | if (remove_bp | |
3fc8eb30 | 7937 | && (remove_wps || !use_displaced_stepping (ecs->event_thread))) |
45e8c884 | 7938 | { |
a01bda52 | 7939 | set_step_over_info (regcache->aspace (), |
21edc42f YQ |
7940 | regcache_read_pc (regcache), remove_wps, |
7941 | ecs->event_thread->global_num); | |
45e8c884 | 7942 | } |
963f9c80 | 7943 | else if (remove_wps) |
21edc42f | 7944 | set_step_over_info (NULL, 0, remove_wps, -1); |
372316f1 PA |
7945 | |
7946 | /* If we now need to do an in-line step-over, we need to stop | |
7947 | all other threads. Note this must be done before | |
7948 | insert_breakpoints below, because that removes the breakpoint | |
7949 | we're about to step over, otherwise other threads could miss | |
7950 | it. */ | |
fbea99ea | 7951 | if (step_over_info_valid_p () && target_is_non_stop_p ()) |
372316f1 | 7952 | stop_all_threads (); |
abbb1732 | 7953 | |
31e77af2 | 7954 | /* Stop stepping if inserting breakpoints fails. */ |
a70b8144 | 7955 | try |
31e77af2 PA |
7956 | { |
7957 | insert_breakpoints (); | |
7958 | } | |
230d2906 | 7959 | catch (const gdb_exception_error &e) |
31e77af2 PA |
7960 | { |
7961 | exception_print (gdb_stderr, e); | |
22bcd14b | 7962 | stop_waiting (ecs); |
bdf2a94a | 7963 | clear_step_over_info (); |
31e77af2 | 7964 | return; |
d4f3574e SS |
7965 | } |
7966 | ||
963f9c80 | 7967 | ecs->event_thread->control.trap_expected = (remove_bp || remove_wps); |
d4f3574e | 7968 | |
64ce06e4 | 7969 | resume (ecs->event_thread->suspend.stop_signal); |
d4f3574e SS |
7970 | } |
7971 | ||
488f131b | 7972 | prepare_to_wait (ecs); |
d4f3574e SS |
7973 | } |
7974 | ||
4d9d9d04 PA |
7975 | /* Called when we should continue running the inferior, because the |
7976 | current event doesn't cause a user visible stop. This does the | |
7977 | resuming part; waiting for the next event is done elsewhere. */ | |
7978 | ||
7979 | static void | |
7980 | keep_going (struct execution_control_state *ecs) | |
7981 | { | |
7982 | if (ecs->event_thread->control.trap_expected | |
7983 | && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP) | |
7984 | ecs->event_thread->control.trap_expected = 0; | |
7985 | ||
7986 | if (!signal_program[ecs->event_thread->suspend.stop_signal]) | |
7987 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; | |
7988 | keep_going_pass_signal (ecs); | |
7989 | } | |
7990 | ||
104c1213 JM |
7991 | /* This function normally comes after a resume, before |
7992 | handle_inferior_event exits. It takes care of any last bits of | |
7993 | housekeeping, and sets the all-important wait_some_more flag. */ | |
cd0fc7c3 | 7994 | |
104c1213 JM |
7995 | static void |
7996 | prepare_to_wait (struct execution_control_state *ecs) | |
cd0fc7c3 | 7997 | { |
527159b7 | 7998 | if (debug_infrun) |
8a9de0e4 | 7999 | fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n"); |
104c1213 | 8000 | |
104c1213 | 8001 | ecs->wait_some_more = 1; |
0b333c5e PA |
8002 | |
8003 | if (!target_is_async_p ()) | |
8004 | mark_infrun_async_event_handler (); | |
c906108c | 8005 | } |
11cf8741 | 8006 | |
fd664c91 | 8007 | /* We are done with the step range of a step/next/si/ni command. |
b57bacec | 8008 | Called once for each n of a "step n" operation. */ |
fd664c91 PA |
8009 | |
8010 | static void | |
bdc36728 | 8011 | end_stepping_range (struct execution_control_state *ecs) |
fd664c91 | 8012 | { |
bdc36728 | 8013 | ecs->event_thread->control.stop_step = 1; |
bdc36728 | 8014 | stop_waiting (ecs); |
fd664c91 PA |
8015 | } |
8016 | ||
33d62d64 JK |
8017 | /* Several print_*_reason functions to print why the inferior has stopped. |
8018 | We always print something when the inferior exits, or receives a signal. | |
8019 | The rest of the cases are dealt with later on in normal_stop and | |
8020 | print_it_typical. Ideally there should be a call to one of these | |
8021 | print_*_reason functions functions from handle_inferior_event each time | |
22bcd14b | 8022 | stop_waiting is called. |
33d62d64 | 8023 | |
fd664c91 PA |
8024 | Note that we don't call these directly, instead we delegate that to |
8025 | the interpreters, through observers. Interpreters then call these | |
8026 | with whatever uiout is right. */ | |
33d62d64 | 8027 | |
fd664c91 PA |
8028 | void |
8029 | print_end_stepping_range_reason (struct ui_out *uiout) | |
33d62d64 | 8030 | { |
fd664c91 | 8031 | /* For CLI-like interpreters, print nothing. */ |
33d62d64 | 8032 | |
112e8700 | 8033 | if (uiout->is_mi_like_p ()) |
fd664c91 | 8034 | { |
112e8700 | 8035 | uiout->field_string ("reason", |
fd664c91 PA |
8036 | async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE)); |
8037 | } | |
8038 | } | |
33d62d64 | 8039 | |
fd664c91 PA |
8040 | void |
8041 | print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal) | |
11cf8741 | 8042 | { |
33d62d64 | 8043 | annotate_signalled (); |
112e8700 SM |
8044 | if (uiout->is_mi_like_p ()) |
8045 | uiout->field_string | |
8046 | ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED)); | |
8047 | uiout->text ("\nProgram terminated with signal "); | |
33d62d64 | 8048 | annotate_signal_name (); |
112e8700 | 8049 | uiout->field_string ("signal-name", |
2ea28649 | 8050 | gdb_signal_to_name (siggnal)); |
33d62d64 | 8051 | annotate_signal_name_end (); |
112e8700 | 8052 | uiout->text (", "); |
33d62d64 | 8053 | annotate_signal_string (); |
112e8700 | 8054 | uiout->field_string ("signal-meaning", |
2ea28649 | 8055 | gdb_signal_to_string (siggnal)); |
33d62d64 | 8056 | annotate_signal_string_end (); |
112e8700 SM |
8057 | uiout->text (".\n"); |
8058 | uiout->text ("The program no longer exists.\n"); | |
33d62d64 JK |
8059 | } |
8060 | ||
fd664c91 PA |
8061 | void |
8062 | print_exited_reason (struct ui_out *uiout, int exitstatus) | |
33d62d64 | 8063 | { |
fda326dd | 8064 | struct inferior *inf = current_inferior (); |
a068643d | 8065 | std::string pidstr = target_pid_to_str (ptid_t (inf->pid)); |
fda326dd | 8066 | |
33d62d64 JK |
8067 | annotate_exited (exitstatus); |
8068 | if (exitstatus) | |
8069 | { | |
112e8700 SM |
8070 | if (uiout->is_mi_like_p ()) |
8071 | uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED)); | |
6a831f06 PA |
8072 | std::string exit_code_str |
8073 | = string_printf ("0%o", (unsigned int) exitstatus); | |
8074 | uiout->message ("[Inferior %s (%s) exited with code %pF]\n", | |
8075 | plongest (inf->num), pidstr.c_str (), | |
8076 | string_field ("exit-code", exit_code_str.c_str ())); | |
33d62d64 JK |
8077 | } |
8078 | else | |
11cf8741 | 8079 | { |
112e8700 SM |
8080 | if (uiout->is_mi_like_p ()) |
8081 | uiout->field_string | |
8082 | ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY)); | |
6a831f06 PA |
8083 | uiout->message ("[Inferior %s (%s) exited normally]\n", |
8084 | plongest (inf->num), pidstr.c_str ()); | |
33d62d64 | 8085 | } |
33d62d64 JK |
8086 | } |
8087 | ||
012b3a21 WT |
8088 | /* Some targets/architectures can do extra processing/display of |
8089 | segmentation faults. E.g., Intel MPX boundary faults. | |
8090 | Call the architecture dependent function to handle the fault. */ | |
8091 | ||
8092 | static void | |
8093 | handle_segmentation_fault (struct ui_out *uiout) | |
8094 | { | |
8095 | struct regcache *regcache = get_current_regcache (); | |
ac7936df | 8096 | struct gdbarch *gdbarch = regcache->arch (); |
012b3a21 WT |
8097 | |
8098 | if (gdbarch_handle_segmentation_fault_p (gdbarch)) | |
8099 | gdbarch_handle_segmentation_fault (gdbarch, uiout); | |
8100 | } | |
8101 | ||
fd664c91 PA |
8102 | void |
8103 | print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal) | |
33d62d64 | 8104 | { |
f303dbd6 PA |
8105 | struct thread_info *thr = inferior_thread (); |
8106 | ||
33d62d64 JK |
8107 | annotate_signal (); |
8108 | ||
112e8700 | 8109 | if (uiout->is_mi_like_p ()) |
f303dbd6 PA |
8110 | ; |
8111 | else if (show_thread_that_caused_stop ()) | |
33d62d64 | 8112 | { |
f303dbd6 | 8113 | const char *name; |
33d62d64 | 8114 | |
112e8700 | 8115 | uiout->text ("\nThread "); |
33eca680 | 8116 | uiout->field_string ("thread-id", print_thread_id (thr)); |
f303dbd6 PA |
8117 | |
8118 | name = thr->name != NULL ? thr->name : target_thread_name (thr); | |
8119 | if (name != NULL) | |
8120 | { | |
112e8700 | 8121 | uiout->text (" \""); |
33eca680 | 8122 | uiout->field_string ("name", name); |
112e8700 | 8123 | uiout->text ("\""); |
f303dbd6 | 8124 | } |
33d62d64 | 8125 | } |
f303dbd6 | 8126 | else |
112e8700 | 8127 | uiout->text ("\nProgram"); |
f303dbd6 | 8128 | |
112e8700 SM |
8129 | if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ()) |
8130 | uiout->text (" stopped"); | |
33d62d64 JK |
8131 | else |
8132 | { | |
112e8700 | 8133 | uiout->text (" received signal "); |
8b93c638 | 8134 | annotate_signal_name (); |
112e8700 SM |
8135 | if (uiout->is_mi_like_p ()) |
8136 | uiout->field_string | |
8137 | ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED)); | |
8138 | uiout->field_string ("signal-name", gdb_signal_to_name (siggnal)); | |
8b93c638 | 8139 | annotate_signal_name_end (); |
112e8700 | 8140 | uiout->text (", "); |
8b93c638 | 8141 | annotate_signal_string (); |
112e8700 | 8142 | uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal)); |
012b3a21 WT |
8143 | |
8144 | if (siggnal == GDB_SIGNAL_SEGV) | |
8145 | handle_segmentation_fault (uiout); | |
8146 | ||
8b93c638 | 8147 | annotate_signal_string_end (); |
33d62d64 | 8148 | } |
112e8700 | 8149 | uiout->text (".\n"); |
33d62d64 | 8150 | } |
252fbfc8 | 8151 | |
fd664c91 PA |
8152 | void |
8153 | print_no_history_reason (struct ui_out *uiout) | |
33d62d64 | 8154 | { |
112e8700 | 8155 | uiout->text ("\nNo more reverse-execution history.\n"); |
11cf8741 | 8156 | } |
43ff13b4 | 8157 | |
0c7e1a46 PA |
8158 | /* Print current location without a level number, if we have changed |
8159 | functions or hit a breakpoint. Print source line if we have one. | |
8160 | bpstat_print contains the logic deciding in detail what to print, | |
8161 | based on the event(s) that just occurred. */ | |
8162 | ||
243a9253 PA |
8163 | static void |
8164 | print_stop_location (struct target_waitstatus *ws) | |
0c7e1a46 PA |
8165 | { |
8166 | int bpstat_ret; | |
f486487f | 8167 | enum print_what source_flag; |
0c7e1a46 PA |
8168 | int do_frame_printing = 1; |
8169 | struct thread_info *tp = inferior_thread (); | |
8170 | ||
8171 | bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind); | |
8172 | switch (bpstat_ret) | |
8173 | { | |
8174 | case PRINT_UNKNOWN: | |
8175 | /* FIXME: cagney/2002-12-01: Given that a frame ID does (or | |
8176 | should) carry around the function and does (or should) use | |
8177 | that when doing a frame comparison. */ | |
8178 | if (tp->control.stop_step | |
8179 | && frame_id_eq (tp->control.step_frame_id, | |
8180 | get_frame_id (get_current_frame ())) | |
f2ffa92b PA |
8181 | && (tp->control.step_start_function |
8182 | == find_pc_function (tp->suspend.stop_pc))) | |
0c7e1a46 PA |
8183 | { |
8184 | /* Finished step, just print source line. */ | |
8185 | source_flag = SRC_LINE; | |
8186 | } | |
8187 | else | |
8188 | { | |
8189 | /* Print location and source line. */ | |
8190 | source_flag = SRC_AND_LOC; | |
8191 | } | |
8192 | break; | |
8193 | case PRINT_SRC_AND_LOC: | |
8194 | /* Print location and source line. */ | |
8195 | source_flag = SRC_AND_LOC; | |
8196 | break; | |
8197 | case PRINT_SRC_ONLY: | |
8198 | source_flag = SRC_LINE; | |
8199 | break; | |
8200 | case PRINT_NOTHING: | |
8201 | /* Something bogus. */ | |
8202 | source_flag = SRC_LINE; | |
8203 | do_frame_printing = 0; | |
8204 | break; | |
8205 | default: | |
8206 | internal_error (__FILE__, __LINE__, _("Unknown value.")); | |
8207 | } | |
8208 | ||
8209 | /* The behavior of this routine with respect to the source | |
8210 | flag is: | |
8211 | SRC_LINE: Print only source line | |
8212 | LOCATION: Print only location | |
8213 | SRC_AND_LOC: Print location and source line. */ | |
8214 | if (do_frame_printing) | |
8215 | print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1); | |
243a9253 PA |
8216 | } |
8217 | ||
243a9253 PA |
8218 | /* See infrun.h. */ |
8219 | ||
8220 | void | |
4c7d57e7 | 8221 | print_stop_event (struct ui_out *uiout, bool displays) |
243a9253 | 8222 | { |
243a9253 | 8223 | struct target_waitstatus last; |
243a9253 PA |
8224 | struct thread_info *tp; |
8225 | ||
5b6d1e4f | 8226 | get_last_target_status (nullptr, nullptr, &last); |
243a9253 | 8227 | |
67ad9399 TT |
8228 | { |
8229 | scoped_restore save_uiout = make_scoped_restore (¤t_uiout, uiout); | |
0c7e1a46 | 8230 | |
67ad9399 | 8231 | print_stop_location (&last); |
243a9253 | 8232 | |
67ad9399 | 8233 | /* Display the auto-display expressions. */ |
4c7d57e7 TT |
8234 | if (displays) |
8235 | do_displays (); | |
67ad9399 | 8236 | } |
243a9253 PA |
8237 | |
8238 | tp = inferior_thread (); | |
8239 | if (tp->thread_fsm != NULL | |
46e3ed7f | 8240 | && tp->thread_fsm->finished_p ()) |
243a9253 PA |
8241 | { |
8242 | struct return_value_info *rv; | |
8243 | ||
46e3ed7f | 8244 | rv = tp->thread_fsm->return_value (); |
243a9253 PA |
8245 | if (rv != NULL) |
8246 | print_return_value (uiout, rv); | |
8247 | } | |
0c7e1a46 PA |
8248 | } |
8249 | ||
388a7084 PA |
8250 | /* See infrun.h. */ |
8251 | ||
8252 | void | |
8253 | maybe_remove_breakpoints (void) | |
8254 | { | |
8255 | if (!breakpoints_should_be_inserted_now () && target_has_execution) | |
8256 | { | |
8257 | if (remove_breakpoints ()) | |
8258 | { | |
223ffa71 | 8259 | target_terminal::ours_for_output (); |
388a7084 PA |
8260 | printf_filtered (_("Cannot remove breakpoints because " |
8261 | "program is no longer writable.\nFurther " | |
8262 | "execution is probably impossible.\n")); | |
8263 | } | |
8264 | } | |
8265 | } | |
8266 | ||
4c2f2a79 PA |
8267 | /* The execution context that just caused a normal stop. */ |
8268 | ||
8269 | struct stop_context | |
8270 | { | |
2d844eaf TT |
8271 | stop_context (); |
8272 | ~stop_context (); | |
8273 | ||
8274 | DISABLE_COPY_AND_ASSIGN (stop_context); | |
8275 | ||
8276 | bool changed () const; | |
8277 | ||
4c2f2a79 PA |
8278 | /* The stop ID. */ |
8279 | ULONGEST stop_id; | |
c906108c | 8280 | |
4c2f2a79 | 8281 | /* The event PTID. */ |
c906108c | 8282 | |
4c2f2a79 PA |
8283 | ptid_t ptid; |
8284 | ||
8285 | /* If stopp for a thread event, this is the thread that caused the | |
8286 | stop. */ | |
8287 | struct thread_info *thread; | |
8288 | ||
8289 | /* The inferior that caused the stop. */ | |
8290 | int inf_num; | |
8291 | }; | |
8292 | ||
2d844eaf | 8293 | /* Initializes a new stop context. If stopped for a thread event, this |
4c2f2a79 PA |
8294 | takes a strong reference to the thread. */ |
8295 | ||
2d844eaf | 8296 | stop_context::stop_context () |
4c2f2a79 | 8297 | { |
2d844eaf TT |
8298 | stop_id = get_stop_id (); |
8299 | ptid = inferior_ptid; | |
8300 | inf_num = current_inferior ()->num; | |
4c2f2a79 | 8301 | |
d7e15655 | 8302 | if (inferior_ptid != null_ptid) |
4c2f2a79 PA |
8303 | { |
8304 | /* Take a strong reference so that the thread can't be deleted | |
8305 | yet. */ | |
2d844eaf TT |
8306 | thread = inferior_thread (); |
8307 | thread->incref (); | |
4c2f2a79 PA |
8308 | } |
8309 | else | |
2d844eaf | 8310 | thread = NULL; |
4c2f2a79 PA |
8311 | } |
8312 | ||
8313 | /* Release a stop context previously created with save_stop_context. | |
8314 | Releases the strong reference to the thread as well. */ | |
8315 | ||
2d844eaf | 8316 | stop_context::~stop_context () |
4c2f2a79 | 8317 | { |
2d844eaf TT |
8318 | if (thread != NULL) |
8319 | thread->decref (); | |
4c2f2a79 PA |
8320 | } |
8321 | ||
8322 | /* Return true if the current context no longer matches the saved stop | |
8323 | context. */ | |
8324 | ||
2d844eaf TT |
8325 | bool |
8326 | stop_context::changed () const | |
8327 | { | |
8328 | if (ptid != inferior_ptid) | |
8329 | return true; | |
8330 | if (inf_num != current_inferior ()->num) | |
8331 | return true; | |
8332 | if (thread != NULL && thread->state != THREAD_STOPPED) | |
8333 | return true; | |
8334 | if (get_stop_id () != stop_id) | |
8335 | return true; | |
8336 | return false; | |
4c2f2a79 PA |
8337 | } |
8338 | ||
8339 | /* See infrun.h. */ | |
8340 | ||
8341 | int | |
96baa820 | 8342 | normal_stop (void) |
c906108c | 8343 | { |
73b65bb0 | 8344 | struct target_waitstatus last; |
73b65bb0 | 8345 | |
5b6d1e4f | 8346 | get_last_target_status (nullptr, nullptr, &last); |
73b65bb0 | 8347 | |
4c2f2a79 PA |
8348 | new_stop_id (); |
8349 | ||
29f49a6a PA |
8350 | /* If an exception is thrown from this point on, make sure to |
8351 | propagate GDB's knowledge of the executing state to the | |
8352 | frontend/user running state. A QUIT is an easy exception to see | |
8353 | here, so do this before any filtered output. */ | |
731f534f | 8354 | |
5b6d1e4f | 8355 | ptid_t finish_ptid = null_ptid; |
731f534f | 8356 | |
c35b1492 | 8357 | if (!non_stop) |
5b6d1e4f | 8358 | finish_ptid = minus_one_ptid; |
e1316e60 PA |
8359 | else if (last.kind == TARGET_WAITKIND_SIGNALLED |
8360 | || last.kind == TARGET_WAITKIND_EXITED) | |
8361 | { | |
8362 | /* On some targets, we may still have live threads in the | |
8363 | inferior when we get a process exit event. E.g., for | |
8364 | "checkpoint", when the current checkpoint/fork exits, | |
8365 | linux-fork.c automatically switches to another fork from | |
8366 | within target_mourn_inferior. */ | |
731f534f | 8367 | if (inferior_ptid != null_ptid) |
5b6d1e4f | 8368 | finish_ptid = ptid_t (inferior_ptid.pid ()); |
e1316e60 PA |
8369 | } |
8370 | else if (last.kind != TARGET_WAITKIND_NO_RESUMED) | |
5b6d1e4f PA |
8371 | finish_ptid = inferior_ptid; |
8372 | ||
8373 | gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state; | |
8374 | if (finish_ptid != null_ptid) | |
8375 | { | |
8376 | maybe_finish_thread_state.emplace | |
8377 | (user_visible_resume_target (finish_ptid), finish_ptid); | |
8378 | } | |
29f49a6a | 8379 | |
b57bacec PA |
8380 | /* As we're presenting a stop, and potentially removing breakpoints, |
8381 | update the thread list so we can tell whether there are threads | |
8382 | running on the target. With target remote, for example, we can | |
8383 | only learn about new threads when we explicitly update the thread | |
8384 | list. Do this before notifying the interpreters about signal | |
8385 | stops, end of stepping ranges, etc., so that the "new thread" | |
8386 | output is emitted before e.g., "Program received signal FOO", | |
8387 | instead of after. */ | |
8388 | update_thread_list (); | |
8389 | ||
8390 | if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal) | |
76727919 | 8391 | gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal); |
b57bacec | 8392 | |
c906108c SS |
8393 | /* As with the notification of thread events, we want to delay |
8394 | notifying the user that we've switched thread context until | |
8395 | the inferior actually stops. | |
8396 | ||
73b65bb0 DJ |
8397 | There's no point in saying anything if the inferior has exited. |
8398 | Note that SIGNALLED here means "exited with a signal", not | |
b65dc60b PA |
8399 | "received a signal". |
8400 | ||
8401 | Also skip saying anything in non-stop mode. In that mode, as we | |
8402 | don't want GDB to switch threads behind the user's back, to avoid | |
8403 | races where the user is typing a command to apply to thread x, | |
8404 | but GDB switches to thread y before the user finishes entering | |
8405 | the command, fetch_inferior_event installs a cleanup to restore | |
8406 | the current thread back to the thread the user had selected right | |
8407 | after this event is handled, so we're not really switching, only | |
8408 | informing of a stop. */ | |
4f8d22e3 | 8409 | if (!non_stop |
731f534f | 8410 | && previous_inferior_ptid != inferior_ptid |
73b65bb0 DJ |
8411 | && target_has_execution |
8412 | && last.kind != TARGET_WAITKIND_SIGNALLED | |
0e5bf2a8 PA |
8413 | && last.kind != TARGET_WAITKIND_EXITED |
8414 | && last.kind != TARGET_WAITKIND_NO_RESUMED) | |
c906108c | 8415 | { |
0e454242 | 8416 | SWITCH_THRU_ALL_UIS () |
3b12939d | 8417 | { |
223ffa71 | 8418 | target_terminal::ours_for_output (); |
3b12939d | 8419 | printf_filtered (_("[Switching to %s]\n"), |
a068643d | 8420 | target_pid_to_str (inferior_ptid).c_str ()); |
3b12939d PA |
8421 | annotate_thread_changed (); |
8422 | } | |
39f77062 | 8423 | previous_inferior_ptid = inferior_ptid; |
c906108c | 8424 | } |
c906108c | 8425 | |
0e5bf2a8 PA |
8426 | if (last.kind == TARGET_WAITKIND_NO_RESUMED) |
8427 | { | |
0e454242 | 8428 | SWITCH_THRU_ALL_UIS () |
3b12939d PA |
8429 | if (current_ui->prompt_state == PROMPT_BLOCKED) |
8430 | { | |
223ffa71 | 8431 | target_terminal::ours_for_output (); |
3b12939d PA |
8432 | printf_filtered (_("No unwaited-for children left.\n")); |
8433 | } | |
0e5bf2a8 PA |
8434 | } |
8435 | ||
b57bacec | 8436 | /* Note: this depends on the update_thread_list call above. */ |
388a7084 | 8437 | maybe_remove_breakpoints (); |
c906108c | 8438 | |
c906108c SS |
8439 | /* If an auto-display called a function and that got a signal, |
8440 | delete that auto-display to avoid an infinite recursion. */ | |
8441 | ||
8442 | if (stopped_by_random_signal) | |
8443 | disable_current_display (); | |
8444 | ||
0e454242 | 8445 | SWITCH_THRU_ALL_UIS () |
3b12939d PA |
8446 | { |
8447 | async_enable_stdin (); | |
8448 | } | |
c906108c | 8449 | |
388a7084 | 8450 | /* Let the user/frontend see the threads as stopped. */ |
731f534f | 8451 | maybe_finish_thread_state.reset (); |
388a7084 PA |
8452 | |
8453 | /* Select innermost stack frame - i.e., current frame is frame 0, | |
8454 | and current location is based on that. Handle the case where the | |
8455 | dummy call is returning after being stopped. E.g. the dummy call | |
8456 | previously hit a breakpoint. (If the dummy call returns | |
8457 | normally, we won't reach here.) Do this before the stop hook is | |
8458 | run, so that it doesn't get to see the temporary dummy frame, | |
8459 | which is not where we'll present the stop. */ | |
8460 | if (has_stack_frames ()) | |
8461 | { | |
8462 | if (stop_stack_dummy == STOP_STACK_DUMMY) | |
8463 | { | |
8464 | /* Pop the empty frame that contains the stack dummy. This | |
8465 | also restores inferior state prior to the call (struct | |
8466 | infcall_suspend_state). */ | |
8467 | struct frame_info *frame = get_current_frame (); | |
8468 | ||
8469 | gdb_assert (get_frame_type (frame) == DUMMY_FRAME); | |
8470 | frame_pop (frame); | |
8471 | /* frame_pop calls reinit_frame_cache as the last thing it | |
8472 | does which means there's now no selected frame. */ | |
8473 | } | |
8474 | ||
8475 | select_frame (get_current_frame ()); | |
8476 | ||
8477 | /* Set the current source location. */ | |
8478 | set_current_sal_from_frame (get_current_frame ()); | |
8479 | } | |
dd7e2d2b PA |
8480 | |
8481 | /* Look up the hook_stop and run it (CLI internally handles problem | |
8482 | of stop_command's pre-hook not existing). */ | |
4c2f2a79 PA |
8483 | if (stop_command != NULL) |
8484 | { | |
2d844eaf | 8485 | stop_context saved_context; |
4c2f2a79 | 8486 | |
a70b8144 | 8487 | try |
bf469271 PA |
8488 | { |
8489 | execute_cmd_pre_hook (stop_command); | |
8490 | } | |
230d2906 | 8491 | catch (const gdb_exception &ex) |
bf469271 PA |
8492 | { |
8493 | exception_fprintf (gdb_stderr, ex, | |
8494 | "Error while running hook_stop:\n"); | |
8495 | } | |
4c2f2a79 PA |
8496 | |
8497 | /* If the stop hook resumes the target, then there's no point in | |
8498 | trying to notify about the previous stop; its context is | |
8499 | gone. Likewise if the command switches thread or inferior -- | |
8500 | the observers would print a stop for the wrong | |
8501 | thread/inferior. */ | |
2d844eaf TT |
8502 | if (saved_context.changed ()) |
8503 | return 1; | |
4c2f2a79 | 8504 | } |
dd7e2d2b | 8505 | |
388a7084 PA |
8506 | /* Notify observers about the stop. This is where the interpreters |
8507 | print the stop event. */ | |
d7e15655 | 8508 | if (inferior_ptid != null_ptid) |
76727919 | 8509 | gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat, |
388a7084 PA |
8510 | stop_print_frame); |
8511 | else | |
76727919 | 8512 | gdb::observers::normal_stop.notify (NULL, stop_print_frame); |
347bddb7 | 8513 | |
243a9253 PA |
8514 | annotate_stopped (); |
8515 | ||
48844aa6 PA |
8516 | if (target_has_execution) |
8517 | { | |
8518 | if (last.kind != TARGET_WAITKIND_SIGNALLED | |
fe726667 PA |
8519 | && last.kind != TARGET_WAITKIND_EXITED |
8520 | && last.kind != TARGET_WAITKIND_NO_RESUMED) | |
48844aa6 PA |
8521 | /* Delete the breakpoint we stopped at, if it wants to be deleted. |
8522 | Delete any breakpoint that is to be deleted at the next stop. */ | |
16c381f0 | 8523 | breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat); |
94cc34af | 8524 | } |
6c95b8df PA |
8525 | |
8526 | /* Try to get rid of automatically added inferiors that are no | |
8527 | longer needed. Keeping those around slows down things linearly. | |
8528 | Note that this never removes the current inferior. */ | |
8529 | prune_inferiors (); | |
4c2f2a79 PA |
8530 | |
8531 | return 0; | |
c906108c | 8532 | } |
c906108c | 8533 | \f |
c5aa993b | 8534 | int |
96baa820 | 8535 | signal_stop_state (int signo) |
c906108c | 8536 | { |
d6b48e9c | 8537 | return signal_stop[signo]; |
c906108c SS |
8538 | } |
8539 | ||
c5aa993b | 8540 | int |
96baa820 | 8541 | signal_print_state (int signo) |
c906108c SS |
8542 | { |
8543 | return signal_print[signo]; | |
8544 | } | |
8545 | ||
c5aa993b | 8546 | int |
96baa820 | 8547 | signal_pass_state (int signo) |
c906108c SS |
8548 | { |
8549 | return signal_program[signo]; | |
8550 | } | |
8551 | ||
2455069d UW |
8552 | static void |
8553 | signal_cache_update (int signo) | |
8554 | { | |
8555 | if (signo == -1) | |
8556 | { | |
a493e3e2 | 8557 | for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++) |
2455069d UW |
8558 | signal_cache_update (signo); |
8559 | ||
8560 | return; | |
8561 | } | |
8562 | ||
8563 | signal_pass[signo] = (signal_stop[signo] == 0 | |
8564 | && signal_print[signo] == 0 | |
ab04a2af TT |
8565 | && signal_program[signo] == 1 |
8566 | && signal_catch[signo] == 0); | |
2455069d UW |
8567 | } |
8568 | ||
488f131b | 8569 | int |
7bda5e4a | 8570 | signal_stop_update (int signo, int state) |
d4f3574e SS |
8571 | { |
8572 | int ret = signal_stop[signo]; | |
abbb1732 | 8573 | |
d4f3574e | 8574 | signal_stop[signo] = state; |
2455069d | 8575 | signal_cache_update (signo); |
d4f3574e SS |
8576 | return ret; |
8577 | } | |
8578 | ||
488f131b | 8579 | int |
7bda5e4a | 8580 | signal_print_update (int signo, int state) |
d4f3574e SS |
8581 | { |
8582 | int ret = signal_print[signo]; | |
abbb1732 | 8583 | |
d4f3574e | 8584 | signal_print[signo] = state; |
2455069d | 8585 | signal_cache_update (signo); |
d4f3574e SS |
8586 | return ret; |
8587 | } | |
8588 | ||
488f131b | 8589 | int |
7bda5e4a | 8590 | signal_pass_update (int signo, int state) |
d4f3574e SS |
8591 | { |
8592 | int ret = signal_program[signo]; | |
abbb1732 | 8593 | |
d4f3574e | 8594 | signal_program[signo] = state; |
2455069d | 8595 | signal_cache_update (signo); |
d4f3574e SS |
8596 | return ret; |
8597 | } | |
8598 | ||
ab04a2af TT |
8599 | /* Update the global 'signal_catch' from INFO and notify the |
8600 | target. */ | |
8601 | ||
8602 | void | |
8603 | signal_catch_update (const unsigned int *info) | |
8604 | { | |
8605 | int i; | |
8606 | ||
8607 | for (i = 0; i < GDB_SIGNAL_LAST; ++i) | |
8608 | signal_catch[i] = info[i] > 0; | |
8609 | signal_cache_update (-1); | |
adc6a863 | 8610 | target_pass_signals (signal_pass); |
ab04a2af TT |
8611 | } |
8612 | ||
c906108c | 8613 | static void |
96baa820 | 8614 | sig_print_header (void) |
c906108c | 8615 | { |
3e43a32a MS |
8616 | printf_filtered (_("Signal Stop\tPrint\tPass " |
8617 | "to program\tDescription\n")); | |
c906108c SS |
8618 | } |
8619 | ||
8620 | static void | |
2ea28649 | 8621 | sig_print_info (enum gdb_signal oursig) |
c906108c | 8622 | { |
2ea28649 | 8623 | const char *name = gdb_signal_to_name (oursig); |
c906108c | 8624 | int name_padding = 13 - strlen (name); |
96baa820 | 8625 | |
c906108c SS |
8626 | if (name_padding <= 0) |
8627 | name_padding = 0; | |
8628 | ||
8629 | printf_filtered ("%s", name); | |
488f131b | 8630 | printf_filtered ("%*.*s ", name_padding, name_padding, " "); |
c906108c SS |
8631 | printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No"); |
8632 | printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No"); | |
8633 | printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No"); | |
2ea28649 | 8634 | printf_filtered ("%s\n", gdb_signal_to_string (oursig)); |
c906108c SS |
8635 | } |
8636 | ||
8637 | /* Specify how various signals in the inferior should be handled. */ | |
8638 | ||
8639 | static void | |
0b39b52e | 8640 | handle_command (const char *args, int from_tty) |
c906108c | 8641 | { |
c906108c | 8642 | int digits, wordlen; |
b926417a | 8643 | int sigfirst, siglast; |
2ea28649 | 8644 | enum gdb_signal oursig; |
c906108c | 8645 | int allsigs; |
c906108c SS |
8646 | |
8647 | if (args == NULL) | |
8648 | { | |
e2e0b3e5 | 8649 | error_no_arg (_("signal to handle")); |
c906108c SS |
8650 | } |
8651 | ||
1777feb0 | 8652 | /* Allocate and zero an array of flags for which signals to handle. */ |
c906108c | 8653 | |
adc6a863 PA |
8654 | const size_t nsigs = GDB_SIGNAL_LAST; |
8655 | unsigned char sigs[nsigs] {}; | |
c906108c | 8656 | |
1777feb0 | 8657 | /* Break the command line up into args. */ |
c906108c | 8658 | |
773a1edc | 8659 | gdb_argv built_argv (args); |
c906108c SS |
8660 | |
8661 | /* Walk through the args, looking for signal oursigs, signal names, and | |
8662 | actions. Signal numbers and signal names may be interspersed with | |
8663 | actions, with the actions being performed for all signals cumulatively | |
1777feb0 | 8664 | specified. Signal ranges can be specified as <LOW>-<HIGH>. */ |
c906108c | 8665 | |
773a1edc | 8666 | for (char *arg : built_argv) |
c906108c | 8667 | { |
773a1edc TT |
8668 | wordlen = strlen (arg); |
8669 | for (digits = 0; isdigit (arg[digits]); digits++) | |
c906108c SS |
8670 | {; |
8671 | } | |
8672 | allsigs = 0; | |
8673 | sigfirst = siglast = -1; | |
8674 | ||
773a1edc | 8675 | if (wordlen >= 1 && !strncmp (arg, "all", wordlen)) |
c906108c SS |
8676 | { |
8677 | /* Apply action to all signals except those used by the | |
1777feb0 | 8678 | debugger. Silently skip those. */ |
c906108c SS |
8679 | allsigs = 1; |
8680 | sigfirst = 0; | |
8681 | siglast = nsigs - 1; | |
8682 | } | |
773a1edc | 8683 | else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen)) |
c906108c SS |
8684 | { |
8685 | SET_SIGS (nsigs, sigs, signal_stop); | |
8686 | SET_SIGS (nsigs, sigs, signal_print); | |
8687 | } | |
773a1edc | 8688 | else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen)) |
c906108c SS |
8689 | { |
8690 | UNSET_SIGS (nsigs, sigs, signal_program); | |
8691 | } | |
773a1edc | 8692 | else if (wordlen >= 2 && !strncmp (arg, "print", wordlen)) |
c906108c SS |
8693 | { |
8694 | SET_SIGS (nsigs, sigs, signal_print); | |
8695 | } | |
773a1edc | 8696 | else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen)) |
c906108c SS |
8697 | { |
8698 | SET_SIGS (nsigs, sigs, signal_program); | |
8699 | } | |
773a1edc | 8700 | else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen)) |
c906108c SS |
8701 | { |
8702 | UNSET_SIGS (nsigs, sigs, signal_stop); | |
8703 | } | |
773a1edc | 8704 | else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen)) |
c906108c SS |
8705 | { |
8706 | SET_SIGS (nsigs, sigs, signal_program); | |
8707 | } | |
773a1edc | 8708 | else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen)) |
c906108c SS |
8709 | { |
8710 | UNSET_SIGS (nsigs, sigs, signal_print); | |
8711 | UNSET_SIGS (nsigs, sigs, signal_stop); | |
8712 | } | |
773a1edc | 8713 | else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen)) |
c906108c SS |
8714 | { |
8715 | UNSET_SIGS (nsigs, sigs, signal_program); | |
8716 | } | |
8717 | else if (digits > 0) | |
8718 | { | |
8719 | /* It is numeric. The numeric signal refers to our own | |
8720 | internal signal numbering from target.h, not to host/target | |
8721 | signal number. This is a feature; users really should be | |
8722 | using symbolic names anyway, and the common ones like | |
8723 | SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */ | |
8724 | ||
8725 | sigfirst = siglast = (int) | |
773a1edc TT |
8726 | gdb_signal_from_command (atoi (arg)); |
8727 | if (arg[digits] == '-') | |
c906108c SS |
8728 | { |
8729 | siglast = (int) | |
773a1edc | 8730 | gdb_signal_from_command (atoi (arg + digits + 1)); |
c906108c SS |
8731 | } |
8732 | if (sigfirst > siglast) | |
8733 | { | |
1777feb0 | 8734 | /* Bet he didn't figure we'd think of this case... */ |
b926417a | 8735 | std::swap (sigfirst, siglast); |
c906108c SS |
8736 | } |
8737 | } | |
8738 | else | |
8739 | { | |
773a1edc | 8740 | oursig = gdb_signal_from_name (arg); |
a493e3e2 | 8741 | if (oursig != GDB_SIGNAL_UNKNOWN) |
c906108c SS |
8742 | { |
8743 | sigfirst = siglast = (int) oursig; | |
8744 | } | |
8745 | else | |
8746 | { | |
8747 | /* Not a number and not a recognized flag word => complain. */ | |
773a1edc | 8748 | error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg); |
c906108c SS |
8749 | } |
8750 | } | |
8751 | ||
8752 | /* If any signal numbers or symbol names were found, set flags for | |
1777feb0 | 8753 | which signals to apply actions to. */ |
c906108c | 8754 | |
b926417a | 8755 | for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++) |
c906108c | 8756 | { |
2ea28649 | 8757 | switch ((enum gdb_signal) signum) |
c906108c | 8758 | { |
a493e3e2 PA |
8759 | case GDB_SIGNAL_TRAP: |
8760 | case GDB_SIGNAL_INT: | |
c906108c SS |
8761 | if (!allsigs && !sigs[signum]) |
8762 | { | |
9e2f0ad4 | 8763 | if (query (_("%s is used by the debugger.\n\ |
3e43a32a | 8764 | Are you sure you want to change it? "), |
2ea28649 | 8765 | gdb_signal_to_name ((enum gdb_signal) signum))) |
c906108c SS |
8766 | { |
8767 | sigs[signum] = 1; | |
8768 | } | |
8769 | else | |
c119e040 | 8770 | printf_unfiltered (_("Not confirmed, unchanged.\n")); |
c906108c SS |
8771 | } |
8772 | break; | |
a493e3e2 PA |
8773 | case GDB_SIGNAL_0: |
8774 | case GDB_SIGNAL_DEFAULT: | |
8775 | case GDB_SIGNAL_UNKNOWN: | |
c906108c SS |
8776 | /* Make sure that "all" doesn't print these. */ |
8777 | break; | |
8778 | default: | |
8779 | sigs[signum] = 1; | |
8780 | break; | |
8781 | } | |
8782 | } | |
c906108c SS |
8783 | } |
8784 | ||
b926417a | 8785 | for (int signum = 0; signum < nsigs; signum++) |
3a031f65 PA |
8786 | if (sigs[signum]) |
8787 | { | |
2455069d | 8788 | signal_cache_update (-1); |
adc6a863 PA |
8789 | target_pass_signals (signal_pass); |
8790 | target_program_signals (signal_program); | |
c906108c | 8791 | |
3a031f65 PA |
8792 | if (from_tty) |
8793 | { | |
8794 | /* Show the results. */ | |
8795 | sig_print_header (); | |
8796 | for (; signum < nsigs; signum++) | |
8797 | if (sigs[signum]) | |
aead7601 | 8798 | sig_print_info ((enum gdb_signal) signum); |
3a031f65 PA |
8799 | } |
8800 | ||
8801 | break; | |
8802 | } | |
c906108c SS |
8803 | } |
8804 | ||
de0bea00 MF |
8805 | /* Complete the "handle" command. */ |
8806 | ||
eb3ff9a5 | 8807 | static void |
de0bea00 | 8808 | handle_completer (struct cmd_list_element *ignore, |
eb3ff9a5 | 8809 | completion_tracker &tracker, |
6f937416 | 8810 | const char *text, const char *word) |
de0bea00 | 8811 | { |
de0bea00 MF |
8812 | static const char * const keywords[] = |
8813 | { | |
8814 | "all", | |
8815 | "stop", | |
8816 | "ignore", | |
8817 | "print", | |
8818 | "pass", | |
8819 | "nostop", | |
8820 | "noignore", | |
8821 | "noprint", | |
8822 | "nopass", | |
8823 | NULL, | |
8824 | }; | |
8825 | ||
eb3ff9a5 PA |
8826 | signal_completer (ignore, tracker, text, word); |
8827 | complete_on_enum (tracker, keywords, word, word); | |
de0bea00 MF |
8828 | } |
8829 | ||
2ea28649 PA |
8830 | enum gdb_signal |
8831 | gdb_signal_from_command (int num) | |
ed01b82c PA |
8832 | { |
8833 | if (num >= 1 && num <= 15) | |
2ea28649 | 8834 | return (enum gdb_signal) num; |
ed01b82c PA |
8835 | error (_("Only signals 1-15 are valid as numeric signals.\n\ |
8836 | Use \"info signals\" for a list of symbolic signals.")); | |
8837 | } | |
8838 | ||
c906108c SS |
8839 | /* Print current contents of the tables set by the handle command. |
8840 | It is possible we should just be printing signals actually used | |
8841 | by the current target (but for things to work right when switching | |
8842 | targets, all signals should be in the signal tables). */ | |
8843 | ||
8844 | static void | |
1d12d88f | 8845 | info_signals_command (const char *signum_exp, int from_tty) |
c906108c | 8846 | { |
2ea28649 | 8847 | enum gdb_signal oursig; |
abbb1732 | 8848 | |
c906108c SS |
8849 | sig_print_header (); |
8850 | ||
8851 | if (signum_exp) | |
8852 | { | |
8853 | /* First see if this is a symbol name. */ | |
2ea28649 | 8854 | oursig = gdb_signal_from_name (signum_exp); |
a493e3e2 | 8855 | if (oursig == GDB_SIGNAL_UNKNOWN) |
c906108c SS |
8856 | { |
8857 | /* No, try numeric. */ | |
8858 | oursig = | |
2ea28649 | 8859 | gdb_signal_from_command (parse_and_eval_long (signum_exp)); |
c906108c SS |
8860 | } |
8861 | sig_print_info (oursig); | |
8862 | return; | |
8863 | } | |
8864 | ||
8865 | printf_filtered ("\n"); | |
8866 | /* These ugly casts brought to you by the native VAX compiler. */ | |
a493e3e2 PA |
8867 | for (oursig = GDB_SIGNAL_FIRST; |
8868 | (int) oursig < (int) GDB_SIGNAL_LAST; | |
2ea28649 | 8869 | oursig = (enum gdb_signal) ((int) oursig + 1)) |
c906108c SS |
8870 | { |
8871 | QUIT; | |
8872 | ||
a493e3e2 PA |
8873 | if (oursig != GDB_SIGNAL_UNKNOWN |
8874 | && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0) | |
c906108c SS |
8875 | sig_print_info (oursig); |
8876 | } | |
8877 | ||
3e43a32a MS |
8878 | printf_filtered (_("\nUse the \"handle\" command " |
8879 | "to change these tables.\n")); | |
c906108c | 8880 | } |
4aa995e1 PA |
8881 | |
8882 | /* The $_siginfo convenience variable is a bit special. We don't know | |
8883 | for sure the type of the value until we actually have a chance to | |
7a9dd1b2 | 8884 | fetch the data. The type can change depending on gdbarch, so it is |
4aa995e1 PA |
8885 | also dependent on which thread you have selected. |
8886 | ||
8887 | 1. making $_siginfo be an internalvar that creates a new value on | |
8888 | access. | |
8889 | ||
8890 | 2. making the value of $_siginfo be an lval_computed value. */ | |
8891 | ||
8892 | /* This function implements the lval_computed support for reading a | |
8893 | $_siginfo value. */ | |
8894 | ||
8895 | static void | |
8896 | siginfo_value_read (struct value *v) | |
8897 | { | |
8898 | LONGEST transferred; | |
8899 | ||
a911d87a PA |
8900 | /* If we can access registers, so can we access $_siginfo. Likewise |
8901 | vice versa. */ | |
8902 | validate_registers_access (); | |
c709acd1 | 8903 | |
4aa995e1 | 8904 | transferred = |
8b88a78e | 8905 | target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, |
4aa995e1 PA |
8906 | NULL, |
8907 | value_contents_all_raw (v), | |
8908 | value_offset (v), | |
8909 | TYPE_LENGTH (value_type (v))); | |
8910 | ||
8911 | if (transferred != TYPE_LENGTH (value_type (v))) | |
8912 | error (_("Unable to read siginfo")); | |
8913 | } | |
8914 | ||
8915 | /* This function implements the lval_computed support for writing a | |
8916 | $_siginfo value. */ | |
8917 | ||
8918 | static void | |
8919 | siginfo_value_write (struct value *v, struct value *fromval) | |
8920 | { | |
8921 | LONGEST transferred; | |
8922 | ||
a911d87a PA |
8923 | /* If we can access registers, so can we access $_siginfo. Likewise |
8924 | vice versa. */ | |
8925 | validate_registers_access (); | |
c709acd1 | 8926 | |
8b88a78e | 8927 | transferred = target_write (current_top_target (), |
4aa995e1 PA |
8928 | TARGET_OBJECT_SIGNAL_INFO, |
8929 | NULL, | |
8930 | value_contents_all_raw (fromval), | |
8931 | value_offset (v), | |
8932 | TYPE_LENGTH (value_type (fromval))); | |
8933 | ||
8934 | if (transferred != TYPE_LENGTH (value_type (fromval))) | |
8935 | error (_("Unable to write siginfo")); | |
8936 | } | |
8937 | ||
c8f2448a | 8938 | static const struct lval_funcs siginfo_value_funcs = |
4aa995e1 PA |
8939 | { |
8940 | siginfo_value_read, | |
8941 | siginfo_value_write | |
8942 | }; | |
8943 | ||
8944 | /* Return a new value with the correct type for the siginfo object of | |
78267919 UW |
8945 | the current thread using architecture GDBARCH. Return a void value |
8946 | if there's no object available. */ | |
4aa995e1 | 8947 | |
2c0b251b | 8948 | static struct value * |
22d2b532 SDJ |
8949 | siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var, |
8950 | void *ignore) | |
4aa995e1 | 8951 | { |
4aa995e1 | 8952 | if (target_has_stack |
d7e15655 | 8953 | && inferior_ptid != null_ptid |
78267919 | 8954 | && gdbarch_get_siginfo_type_p (gdbarch)) |
4aa995e1 | 8955 | { |
78267919 | 8956 | struct type *type = gdbarch_get_siginfo_type (gdbarch); |
abbb1732 | 8957 | |
78267919 | 8958 | return allocate_computed_value (type, &siginfo_value_funcs, NULL); |
4aa995e1 PA |
8959 | } |
8960 | ||
78267919 | 8961 | return allocate_value (builtin_type (gdbarch)->builtin_void); |
4aa995e1 PA |
8962 | } |
8963 | ||
c906108c | 8964 | \f |
16c381f0 JK |
8965 | /* infcall_suspend_state contains state about the program itself like its |
8966 | registers and any signal it received when it last stopped. | |
8967 | This state must be restored regardless of how the inferior function call | |
8968 | ends (either successfully, or after it hits a breakpoint or signal) | |
8969 | if the program is to properly continue where it left off. */ | |
8970 | ||
6bf78e29 | 8971 | class infcall_suspend_state |
7a292a7a | 8972 | { |
6bf78e29 AB |
8973 | public: |
8974 | /* Capture state from GDBARCH, TP, and REGCACHE that must be restored | |
8975 | once the inferior function call has finished. */ | |
8976 | infcall_suspend_state (struct gdbarch *gdbarch, | |
8977 | const struct thread_info *tp, | |
8978 | struct regcache *regcache) | |
8979 | : m_thread_suspend (tp->suspend), | |
8980 | m_registers (new readonly_detached_regcache (*regcache)) | |
8981 | { | |
8982 | gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data; | |
8983 | ||
8984 | if (gdbarch_get_siginfo_type_p (gdbarch)) | |
8985 | { | |
8986 | struct type *type = gdbarch_get_siginfo_type (gdbarch); | |
8987 | size_t len = TYPE_LENGTH (type); | |
8988 | ||
8989 | siginfo_data.reset ((gdb_byte *) xmalloc (len)); | |
8990 | ||
8991 | if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL, | |
8992 | siginfo_data.get (), 0, len) != len) | |
8993 | { | |
8994 | /* Errors ignored. */ | |
8995 | siginfo_data.reset (nullptr); | |
8996 | } | |
8997 | } | |
8998 | ||
8999 | if (siginfo_data) | |
9000 | { | |
9001 | m_siginfo_gdbarch = gdbarch; | |
9002 | m_siginfo_data = std::move (siginfo_data); | |
9003 | } | |
9004 | } | |
9005 | ||
9006 | /* Return a pointer to the stored register state. */ | |
16c381f0 | 9007 | |
6bf78e29 AB |
9008 | readonly_detached_regcache *registers () const |
9009 | { | |
9010 | return m_registers.get (); | |
9011 | } | |
9012 | ||
9013 | /* Restores the stored state into GDBARCH, TP, and REGCACHE. */ | |
9014 | ||
9015 | void restore (struct gdbarch *gdbarch, | |
9016 | struct thread_info *tp, | |
9017 | struct regcache *regcache) const | |
9018 | { | |
9019 | tp->suspend = m_thread_suspend; | |
9020 | ||
9021 | if (m_siginfo_gdbarch == gdbarch) | |
9022 | { | |
9023 | struct type *type = gdbarch_get_siginfo_type (gdbarch); | |
9024 | ||
9025 | /* Errors ignored. */ | |
9026 | target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL, | |
9027 | m_siginfo_data.get (), 0, TYPE_LENGTH (type)); | |
9028 | } | |
9029 | ||
9030 | /* The inferior can be gone if the user types "print exit(0)" | |
9031 | (and perhaps other times). */ | |
9032 | if (target_has_execution) | |
9033 | /* NB: The register write goes through to the target. */ | |
9034 | regcache->restore (registers ()); | |
9035 | } | |
9036 | ||
9037 | private: | |
9038 | /* How the current thread stopped before the inferior function call was | |
9039 | executed. */ | |
9040 | struct thread_suspend_state m_thread_suspend; | |
9041 | ||
9042 | /* The registers before the inferior function call was executed. */ | |
9043 | std::unique_ptr<readonly_detached_regcache> m_registers; | |
1736ad11 | 9044 | |
35515841 | 9045 | /* Format of SIGINFO_DATA or NULL if it is not present. */ |
6bf78e29 | 9046 | struct gdbarch *m_siginfo_gdbarch = nullptr; |
1736ad11 JK |
9047 | |
9048 | /* The inferior format depends on SIGINFO_GDBARCH and it has a length of | |
9049 | TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the | |
9050 | content would be invalid. */ | |
6bf78e29 | 9051 | gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data; |
b89667eb DE |
9052 | }; |
9053 | ||
cb524840 TT |
9054 | infcall_suspend_state_up |
9055 | save_infcall_suspend_state () | |
b89667eb | 9056 | { |
b89667eb | 9057 | struct thread_info *tp = inferior_thread (); |
1736ad11 | 9058 | struct regcache *regcache = get_current_regcache (); |
ac7936df | 9059 | struct gdbarch *gdbarch = regcache->arch (); |
1736ad11 | 9060 | |
6bf78e29 AB |
9061 | infcall_suspend_state_up inf_state |
9062 | (new struct infcall_suspend_state (gdbarch, tp, regcache)); | |
1736ad11 | 9063 | |
6bf78e29 AB |
9064 | /* Having saved the current state, adjust the thread state, discarding |
9065 | any stop signal information. The stop signal is not useful when | |
9066 | starting an inferior function call, and run_inferior_call will not use | |
9067 | the signal due to its `proceed' call with GDB_SIGNAL_0. */ | |
a493e3e2 | 9068 | tp->suspend.stop_signal = GDB_SIGNAL_0; |
35515841 | 9069 | |
b89667eb DE |
9070 | return inf_state; |
9071 | } | |
9072 | ||
9073 | /* Restore inferior session state to INF_STATE. */ | |
9074 | ||
9075 | void | |
16c381f0 | 9076 | restore_infcall_suspend_state (struct infcall_suspend_state *inf_state) |
b89667eb DE |
9077 | { |
9078 | struct thread_info *tp = inferior_thread (); | |
1736ad11 | 9079 | struct regcache *regcache = get_current_regcache (); |
ac7936df | 9080 | struct gdbarch *gdbarch = regcache->arch (); |
b89667eb | 9081 | |
6bf78e29 | 9082 | inf_state->restore (gdbarch, tp, regcache); |
16c381f0 | 9083 | discard_infcall_suspend_state (inf_state); |
b89667eb DE |
9084 | } |
9085 | ||
b89667eb | 9086 | void |
16c381f0 | 9087 | discard_infcall_suspend_state (struct infcall_suspend_state *inf_state) |
b89667eb | 9088 | { |
dd848631 | 9089 | delete inf_state; |
b89667eb DE |
9090 | } |
9091 | ||
daf6667d | 9092 | readonly_detached_regcache * |
16c381f0 | 9093 | get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state) |
b89667eb | 9094 | { |
6bf78e29 | 9095 | return inf_state->registers (); |
b89667eb DE |
9096 | } |
9097 | ||
16c381f0 JK |
9098 | /* infcall_control_state contains state regarding gdb's control of the |
9099 | inferior itself like stepping control. It also contains session state like | |
9100 | the user's currently selected frame. */ | |
b89667eb | 9101 | |
16c381f0 | 9102 | struct infcall_control_state |
b89667eb | 9103 | { |
16c381f0 JK |
9104 | struct thread_control_state thread_control; |
9105 | struct inferior_control_state inferior_control; | |
d82142e2 JK |
9106 | |
9107 | /* Other fields: */ | |
ee841dd8 TT |
9108 | enum stop_stack_kind stop_stack_dummy = STOP_NONE; |
9109 | int stopped_by_random_signal = 0; | |
7a292a7a | 9110 | |
b89667eb | 9111 | /* ID if the selected frame when the inferior function call was made. */ |
ee841dd8 | 9112 | struct frame_id selected_frame_id {}; |
7a292a7a SS |
9113 | }; |
9114 | ||
c906108c | 9115 | /* Save all of the information associated with the inferior<==>gdb |
b89667eb | 9116 | connection. */ |
c906108c | 9117 | |
cb524840 TT |
9118 | infcall_control_state_up |
9119 | save_infcall_control_state () | |
c906108c | 9120 | { |
cb524840 | 9121 | infcall_control_state_up inf_status (new struct infcall_control_state); |
4e1c45ea | 9122 | struct thread_info *tp = inferior_thread (); |
d6b48e9c | 9123 | struct inferior *inf = current_inferior (); |
7a292a7a | 9124 | |
16c381f0 JK |
9125 | inf_status->thread_control = tp->control; |
9126 | inf_status->inferior_control = inf->control; | |
d82142e2 | 9127 | |
8358c15c | 9128 | tp->control.step_resume_breakpoint = NULL; |
5b79abe7 | 9129 | tp->control.exception_resume_breakpoint = NULL; |
8358c15c | 9130 | |
16c381f0 JK |
9131 | /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of |
9132 | chain. If caller's caller is walking the chain, they'll be happier if we | |
9133 | hand them back the original chain when restore_infcall_control_state is | |
9134 | called. */ | |
9135 | tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat); | |
d82142e2 JK |
9136 | |
9137 | /* Other fields: */ | |
9138 | inf_status->stop_stack_dummy = stop_stack_dummy; | |
9139 | inf_status->stopped_by_random_signal = stopped_by_random_signal; | |
c5aa993b | 9140 | |
206415a3 | 9141 | inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL)); |
b89667eb | 9142 | |
7a292a7a | 9143 | return inf_status; |
c906108c SS |
9144 | } |
9145 | ||
bf469271 PA |
9146 | static void |
9147 | restore_selected_frame (const frame_id &fid) | |
c906108c | 9148 | { |
bf469271 | 9149 | frame_info *frame = frame_find_by_id (fid); |
c906108c | 9150 | |
aa0cd9c1 AC |
9151 | /* If inf_status->selected_frame_id is NULL, there was no previously |
9152 | selected frame. */ | |
101dcfbe | 9153 | if (frame == NULL) |
c906108c | 9154 | { |
8a3fe4f8 | 9155 | warning (_("Unable to restore previously selected frame.")); |
bf469271 | 9156 | return; |
c906108c SS |
9157 | } |
9158 | ||
0f7d239c | 9159 | select_frame (frame); |
c906108c SS |
9160 | } |
9161 | ||
b89667eb DE |
9162 | /* Restore inferior session state to INF_STATUS. */ |
9163 | ||
c906108c | 9164 | void |
16c381f0 | 9165 | restore_infcall_control_state (struct infcall_control_state *inf_status) |
c906108c | 9166 | { |
4e1c45ea | 9167 | struct thread_info *tp = inferior_thread (); |
d6b48e9c | 9168 | struct inferior *inf = current_inferior (); |
4e1c45ea | 9169 | |
8358c15c JK |
9170 | if (tp->control.step_resume_breakpoint) |
9171 | tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop; | |
9172 | ||
5b79abe7 TT |
9173 | if (tp->control.exception_resume_breakpoint) |
9174 | tp->control.exception_resume_breakpoint->disposition | |
9175 | = disp_del_at_next_stop; | |
9176 | ||
d82142e2 | 9177 | /* Handle the bpstat_copy of the chain. */ |
16c381f0 | 9178 | bpstat_clear (&tp->control.stop_bpstat); |
d82142e2 | 9179 | |
16c381f0 JK |
9180 | tp->control = inf_status->thread_control; |
9181 | inf->control = inf_status->inferior_control; | |
d82142e2 JK |
9182 | |
9183 | /* Other fields: */ | |
9184 | stop_stack_dummy = inf_status->stop_stack_dummy; | |
9185 | stopped_by_random_signal = inf_status->stopped_by_random_signal; | |
c906108c | 9186 | |
b89667eb | 9187 | if (target_has_stack) |
c906108c | 9188 | { |
bf469271 | 9189 | /* The point of the try/catch is that if the stack is clobbered, |
101dcfbe AC |
9190 | walking the stack might encounter a garbage pointer and |
9191 | error() trying to dereference it. */ | |
a70b8144 | 9192 | try |
bf469271 PA |
9193 | { |
9194 | restore_selected_frame (inf_status->selected_frame_id); | |
9195 | } | |
230d2906 | 9196 | catch (const gdb_exception_error &ex) |
bf469271 PA |
9197 | { |
9198 | exception_fprintf (gdb_stderr, ex, | |
9199 | "Unable to restore previously selected frame:\n"); | |
9200 | /* Error in restoring the selected frame. Select the | |
9201 | innermost frame. */ | |
9202 | select_frame (get_current_frame ()); | |
9203 | } | |
c906108c | 9204 | } |
c906108c | 9205 | |
ee841dd8 | 9206 | delete inf_status; |
7a292a7a | 9207 | } |
c906108c SS |
9208 | |
9209 | void | |
16c381f0 | 9210 | discard_infcall_control_state (struct infcall_control_state *inf_status) |
7a292a7a | 9211 | { |
8358c15c JK |
9212 | if (inf_status->thread_control.step_resume_breakpoint) |
9213 | inf_status->thread_control.step_resume_breakpoint->disposition | |
9214 | = disp_del_at_next_stop; | |
9215 | ||
5b79abe7 TT |
9216 | if (inf_status->thread_control.exception_resume_breakpoint) |
9217 | inf_status->thread_control.exception_resume_breakpoint->disposition | |
9218 | = disp_del_at_next_stop; | |
9219 | ||
1777feb0 | 9220 | /* See save_infcall_control_state for info on stop_bpstat. */ |
16c381f0 | 9221 | bpstat_clear (&inf_status->thread_control.stop_bpstat); |
8358c15c | 9222 | |
ee841dd8 | 9223 | delete inf_status; |
7a292a7a | 9224 | } |
b89667eb | 9225 | \f |
7f89fd65 | 9226 | /* See infrun.h. */ |
0c557179 SDJ |
9227 | |
9228 | void | |
9229 | clear_exit_convenience_vars (void) | |
9230 | { | |
9231 | clear_internalvar (lookup_internalvar ("_exitsignal")); | |
9232 | clear_internalvar (lookup_internalvar ("_exitcode")); | |
9233 | } | |
c5aa993b | 9234 | \f |
488f131b | 9235 | |
b2175913 MS |
9236 | /* User interface for reverse debugging: |
9237 | Set exec-direction / show exec-direction commands | |
9238 | (returns error unless target implements to_set_exec_direction method). */ | |
9239 | ||
170742de | 9240 | enum exec_direction_kind execution_direction = EXEC_FORWARD; |
b2175913 MS |
9241 | static const char exec_forward[] = "forward"; |
9242 | static const char exec_reverse[] = "reverse"; | |
9243 | static const char *exec_direction = exec_forward; | |
40478521 | 9244 | static const char *const exec_direction_names[] = { |
b2175913 MS |
9245 | exec_forward, |
9246 | exec_reverse, | |
9247 | NULL | |
9248 | }; | |
9249 | ||
9250 | static void | |
eb4c3f4a | 9251 | set_exec_direction_func (const char *args, int from_tty, |
b2175913 MS |
9252 | struct cmd_list_element *cmd) |
9253 | { | |
9254 | if (target_can_execute_reverse) | |
9255 | { | |
9256 | if (!strcmp (exec_direction, exec_forward)) | |
9257 | execution_direction = EXEC_FORWARD; | |
9258 | else if (!strcmp (exec_direction, exec_reverse)) | |
9259 | execution_direction = EXEC_REVERSE; | |
9260 | } | |
8bbed405 MS |
9261 | else |
9262 | { | |
9263 | exec_direction = exec_forward; | |
9264 | error (_("Target does not support this operation.")); | |
9265 | } | |
b2175913 MS |
9266 | } |
9267 | ||
9268 | static void | |
9269 | show_exec_direction_func (struct ui_file *out, int from_tty, | |
9270 | struct cmd_list_element *cmd, const char *value) | |
9271 | { | |
9272 | switch (execution_direction) { | |
9273 | case EXEC_FORWARD: | |
9274 | fprintf_filtered (out, _("Forward.\n")); | |
9275 | break; | |
9276 | case EXEC_REVERSE: | |
9277 | fprintf_filtered (out, _("Reverse.\n")); | |
9278 | break; | |
b2175913 | 9279 | default: |
d8b34453 PA |
9280 | internal_error (__FILE__, __LINE__, |
9281 | _("bogus execution_direction value: %d"), | |
9282 | (int) execution_direction); | |
b2175913 MS |
9283 | } |
9284 | } | |
9285 | ||
d4db2f36 PA |
9286 | static void |
9287 | show_schedule_multiple (struct ui_file *file, int from_tty, | |
9288 | struct cmd_list_element *c, const char *value) | |
9289 | { | |
3e43a32a MS |
9290 | fprintf_filtered (file, _("Resuming the execution of threads " |
9291 | "of all processes is %s.\n"), value); | |
d4db2f36 | 9292 | } |
ad52ddc6 | 9293 | |
22d2b532 SDJ |
9294 | /* Implementation of `siginfo' variable. */ |
9295 | ||
9296 | static const struct internalvar_funcs siginfo_funcs = | |
9297 | { | |
9298 | siginfo_make_value, | |
9299 | NULL, | |
9300 | NULL | |
9301 | }; | |
9302 | ||
372316f1 PA |
9303 | /* Callback for infrun's target events source. This is marked when a |
9304 | thread has a pending status to process. */ | |
9305 | ||
9306 | static void | |
9307 | infrun_async_inferior_event_handler (gdb_client_data data) | |
9308 | { | |
372316f1 PA |
9309 | inferior_event_handler (INF_REG_EVENT, NULL); |
9310 | } | |
9311 | ||
6c265988 | 9312 | void _initialize_infrun (); |
c906108c | 9313 | void |
6c265988 | 9314 | _initialize_infrun () |
c906108c | 9315 | { |
de0bea00 | 9316 | struct cmd_list_element *c; |
c906108c | 9317 | |
372316f1 PA |
9318 | /* Register extra event sources in the event loop. */ |
9319 | infrun_async_inferior_event_token | |
9320 | = create_async_event_handler (infrun_async_inferior_event_handler, NULL); | |
9321 | ||
11db9430 | 9322 | add_info ("signals", info_signals_command, _("\ |
1bedd215 AC |
9323 | What debugger does when program gets various signals.\n\ |
9324 | Specify a signal as argument to print info on that signal only.")); | |
c906108c SS |
9325 | add_info_alias ("handle", "signals", 0); |
9326 | ||
de0bea00 | 9327 | c = add_com ("handle", class_run, handle_command, _("\ |
dfbd5e7b | 9328 | Specify how to handle signals.\n\ |
486c7739 | 9329 | Usage: handle SIGNAL [ACTIONS]\n\ |
c906108c | 9330 | Args are signals and actions to apply to those signals.\n\ |
dfbd5e7b | 9331 | If no actions are specified, the current settings for the specified signals\n\ |
486c7739 MF |
9332 | will be displayed instead.\n\ |
9333 | \n\ | |
c906108c SS |
9334 | Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\ |
9335 | from 1-15 are allowed for compatibility with old versions of GDB.\n\ | |
9336 | Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\ | |
9337 | The special arg \"all\" is recognized to mean all signals except those\n\ | |
1bedd215 | 9338 | used by the debugger, typically SIGTRAP and SIGINT.\n\ |
486c7739 | 9339 | \n\ |
1bedd215 | 9340 | Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\ |
c906108c SS |
9341 | \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\ |
9342 | Stop means reenter debugger if this signal happens (implies print).\n\ | |
9343 | Print means print a message if this signal happens.\n\ | |
9344 | Pass means let program see this signal; otherwise program doesn't know.\n\ | |
9345 | Ignore is a synonym for nopass and noignore is a synonym for pass.\n\ | |
dfbd5e7b PA |
9346 | Pass and Stop may be combined.\n\ |
9347 | \n\ | |
9348 | Multiple signals may be specified. Signal numbers and signal names\n\ | |
9349 | may be interspersed with actions, with the actions being performed for\n\ | |
9350 | all signals cumulatively specified.")); | |
de0bea00 | 9351 | set_cmd_completer (c, handle_completer); |
486c7739 | 9352 | |
c906108c | 9353 | if (!dbx_commands) |
1a966eab AC |
9354 | stop_command = add_cmd ("stop", class_obscure, |
9355 | not_just_help_class_command, _("\ | |
9356 | There is no `stop' command, but you can set a hook on `stop'.\n\ | |
c906108c | 9357 | This allows you to set a list of commands to be run each time execution\n\ |
1a966eab | 9358 | of the program stops."), &cmdlist); |
c906108c | 9359 | |
ccce17b0 | 9360 | add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\ |
85c07804 AC |
9361 | Set inferior debugging."), _("\ |
9362 | Show inferior debugging."), _("\ | |
9363 | When non-zero, inferior specific debugging is enabled."), | |
ccce17b0 YQ |
9364 | NULL, |
9365 | show_debug_infrun, | |
9366 | &setdebuglist, &showdebuglist); | |
527159b7 | 9367 | |
3e43a32a MS |
9368 | add_setshow_boolean_cmd ("displaced", class_maintenance, |
9369 | &debug_displaced, _("\ | |
237fc4c9 PA |
9370 | Set displaced stepping debugging."), _("\ |
9371 | Show displaced stepping debugging."), _("\ | |
9372 | When non-zero, displaced stepping specific debugging is enabled."), | |
9373 | NULL, | |
9374 | show_debug_displaced, | |
9375 | &setdebuglist, &showdebuglist); | |
9376 | ||
ad52ddc6 PA |
9377 | add_setshow_boolean_cmd ("non-stop", no_class, |
9378 | &non_stop_1, _("\ | |
9379 | Set whether gdb controls the inferior in non-stop mode."), _("\ | |
9380 | Show whether gdb controls the inferior in non-stop mode."), _("\ | |
9381 | When debugging a multi-threaded program and this setting is\n\ | |
9382 | off (the default, also called all-stop mode), when one thread stops\n\ | |
9383 | (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\ | |
9384 | all other threads in the program while you interact with the thread of\n\ | |
9385 | interest. When you continue or step a thread, you can allow the other\n\ | |
9386 | threads to run, or have them remain stopped, but while you inspect any\n\ | |
9387 | thread's state, all threads stop.\n\ | |
9388 | \n\ | |
9389 | In non-stop mode, when one thread stops, other threads can continue\n\ | |
9390 | to run freely. You'll be able to step each thread independently,\n\ | |
9391 | leave it stopped or free to run as needed."), | |
9392 | set_non_stop, | |
9393 | show_non_stop, | |
9394 | &setlist, | |
9395 | &showlist); | |
9396 | ||
adc6a863 | 9397 | for (size_t i = 0; i < GDB_SIGNAL_LAST; i++) |
c906108c SS |
9398 | { |
9399 | signal_stop[i] = 1; | |
9400 | signal_print[i] = 1; | |
9401 | signal_program[i] = 1; | |
ab04a2af | 9402 | signal_catch[i] = 0; |
c906108c SS |
9403 | } |
9404 | ||
4d9d9d04 PA |
9405 | /* Signals caused by debugger's own actions should not be given to |
9406 | the program afterwards. | |
9407 | ||
9408 | Do not deliver GDB_SIGNAL_TRAP by default, except when the user | |
9409 | explicitly specifies that it should be delivered to the target | |
9410 | program. Typically, that would occur when a user is debugging a | |
9411 | target monitor on a simulator: the target monitor sets a | |
9412 | breakpoint; the simulator encounters this breakpoint and halts | |
9413 | the simulation handing control to GDB; GDB, noting that the stop | |
9414 | address doesn't map to any known breakpoint, returns control back | |
9415 | to the simulator; the simulator then delivers the hardware | |
9416 | equivalent of a GDB_SIGNAL_TRAP to the program being | |
9417 | debugged. */ | |
a493e3e2 PA |
9418 | signal_program[GDB_SIGNAL_TRAP] = 0; |
9419 | signal_program[GDB_SIGNAL_INT] = 0; | |
c906108c SS |
9420 | |
9421 | /* Signals that are not errors should not normally enter the debugger. */ | |
a493e3e2 PA |
9422 | signal_stop[GDB_SIGNAL_ALRM] = 0; |
9423 | signal_print[GDB_SIGNAL_ALRM] = 0; | |
9424 | signal_stop[GDB_SIGNAL_VTALRM] = 0; | |
9425 | signal_print[GDB_SIGNAL_VTALRM] = 0; | |
9426 | signal_stop[GDB_SIGNAL_PROF] = 0; | |
9427 | signal_print[GDB_SIGNAL_PROF] = 0; | |
9428 | signal_stop[GDB_SIGNAL_CHLD] = 0; | |
9429 | signal_print[GDB_SIGNAL_CHLD] = 0; | |
9430 | signal_stop[GDB_SIGNAL_IO] = 0; | |
9431 | signal_print[GDB_SIGNAL_IO] = 0; | |
9432 | signal_stop[GDB_SIGNAL_POLL] = 0; | |
9433 | signal_print[GDB_SIGNAL_POLL] = 0; | |
9434 | signal_stop[GDB_SIGNAL_URG] = 0; | |
9435 | signal_print[GDB_SIGNAL_URG] = 0; | |
9436 | signal_stop[GDB_SIGNAL_WINCH] = 0; | |
9437 | signal_print[GDB_SIGNAL_WINCH] = 0; | |
9438 | signal_stop[GDB_SIGNAL_PRIO] = 0; | |
9439 | signal_print[GDB_SIGNAL_PRIO] = 0; | |
c906108c | 9440 | |
cd0fc7c3 SS |
9441 | /* These signals are used internally by user-level thread |
9442 | implementations. (See signal(5) on Solaris.) Like the above | |
9443 | signals, a healthy program receives and handles them as part of | |
9444 | its normal operation. */ | |
a493e3e2 PA |
9445 | signal_stop[GDB_SIGNAL_LWP] = 0; |
9446 | signal_print[GDB_SIGNAL_LWP] = 0; | |
9447 | signal_stop[GDB_SIGNAL_WAITING] = 0; | |
9448 | signal_print[GDB_SIGNAL_WAITING] = 0; | |
9449 | signal_stop[GDB_SIGNAL_CANCEL] = 0; | |
9450 | signal_print[GDB_SIGNAL_CANCEL] = 0; | |
bc7b765a JB |
9451 | signal_stop[GDB_SIGNAL_LIBRT] = 0; |
9452 | signal_print[GDB_SIGNAL_LIBRT] = 0; | |
cd0fc7c3 | 9453 | |
2455069d UW |
9454 | /* Update cached state. */ |
9455 | signal_cache_update (-1); | |
9456 | ||
85c07804 AC |
9457 | add_setshow_zinteger_cmd ("stop-on-solib-events", class_support, |
9458 | &stop_on_solib_events, _("\ | |
9459 | Set stopping for shared library events."), _("\ | |
9460 | Show stopping for shared library events."), _("\ | |
c906108c SS |
9461 | If nonzero, gdb will give control to the user when the dynamic linker\n\ |
9462 | notifies gdb of shared library events. The most common event of interest\n\ | |
85c07804 | 9463 | to the user would be loading/unloading of a new library."), |
f9e14852 | 9464 | set_stop_on_solib_events, |
920d2a44 | 9465 | show_stop_on_solib_events, |
85c07804 | 9466 | &setlist, &showlist); |
c906108c | 9467 | |
7ab04401 AC |
9468 | add_setshow_enum_cmd ("follow-fork-mode", class_run, |
9469 | follow_fork_mode_kind_names, | |
9470 | &follow_fork_mode_string, _("\ | |
9471 | Set debugger response to a program call of fork or vfork."), _("\ | |
9472 | Show debugger response to a program call of fork or vfork."), _("\ | |
c906108c SS |
9473 | A fork or vfork creates a new process. follow-fork-mode can be:\n\ |
9474 | parent - the original process is debugged after a fork\n\ | |
9475 | child - the new process is debugged after a fork\n\ | |
ea1dd7bc | 9476 | The unfollowed process will continue to run.\n\ |
7ab04401 AC |
9477 | By default, the debugger will follow the parent process."), |
9478 | NULL, | |
920d2a44 | 9479 | show_follow_fork_mode_string, |
7ab04401 AC |
9480 | &setlist, &showlist); |
9481 | ||
6c95b8df PA |
9482 | add_setshow_enum_cmd ("follow-exec-mode", class_run, |
9483 | follow_exec_mode_names, | |
9484 | &follow_exec_mode_string, _("\ | |
9485 | Set debugger response to a program call of exec."), _("\ | |
9486 | Show debugger response to a program call of exec."), _("\ | |
9487 | An exec call replaces the program image of a process.\n\ | |
9488 | \n\ | |
9489 | follow-exec-mode can be:\n\ | |
9490 | \n\ | |
cce7e648 | 9491 | new - the debugger creates a new inferior and rebinds the process\n\ |
6c95b8df PA |
9492 | to this new inferior. The program the process was running before\n\ |
9493 | the exec call can be restarted afterwards by restarting the original\n\ | |
9494 | inferior.\n\ | |
9495 | \n\ | |
9496 | same - the debugger keeps the process bound to the same inferior.\n\ | |
9497 | The new executable image replaces the previous executable loaded in\n\ | |
9498 | the inferior. Restarting the inferior after the exec call restarts\n\ | |
9499 | the executable the process was running after the exec call.\n\ | |
9500 | \n\ | |
9501 | By default, the debugger will use the same inferior."), | |
9502 | NULL, | |
9503 | show_follow_exec_mode_string, | |
9504 | &setlist, &showlist); | |
9505 | ||
7ab04401 AC |
9506 | add_setshow_enum_cmd ("scheduler-locking", class_run, |
9507 | scheduler_enums, &scheduler_mode, _("\ | |
9508 | Set mode for locking scheduler during execution."), _("\ | |
9509 | Show mode for locking scheduler during execution."), _("\ | |
f2665db5 MM |
9510 | off == no locking (threads may preempt at any time)\n\ |
9511 | on == full locking (no thread except the current thread may run)\n\ | |
9512 | This applies to both normal execution and replay mode.\n\ | |
9513 | step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\ | |
9514 | In this mode, other threads may run during other commands.\n\ | |
9515 | This applies to both normal execution and replay mode.\n\ | |
9516 | replay == scheduler locked in replay mode and unlocked during normal execution."), | |
7ab04401 | 9517 | set_schedlock_func, /* traps on target vector */ |
920d2a44 | 9518 | show_scheduler_mode, |
7ab04401 | 9519 | &setlist, &showlist); |
5fbbeb29 | 9520 | |
d4db2f36 PA |
9521 | add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\ |
9522 | Set mode for resuming threads of all processes."), _("\ | |
9523 | Show mode for resuming threads of all processes."), _("\ | |
9524 | When on, execution commands (such as 'continue' or 'next') resume all\n\ | |
9525 | threads of all processes. When off (which is the default), execution\n\ | |
9526 | commands only resume the threads of the current process. The set of\n\ | |
9527 | threads that are resumed is further refined by the scheduler-locking\n\ | |
9528 | mode (see help set scheduler-locking)."), | |
9529 | NULL, | |
9530 | show_schedule_multiple, | |
9531 | &setlist, &showlist); | |
9532 | ||
5bf193a2 AC |
9533 | add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\ |
9534 | Set mode of the step operation."), _("\ | |
9535 | Show mode of the step operation."), _("\ | |
9536 | When set, doing a step over a function without debug line information\n\ | |
9537 | will stop at the first instruction of that function. Otherwise, the\n\ | |
9538 | function is skipped and the step command stops at a different source line."), | |
9539 | NULL, | |
920d2a44 | 9540 | show_step_stop_if_no_debug, |
5bf193a2 | 9541 | &setlist, &showlist); |
ca6724c1 | 9542 | |
72d0e2c5 YQ |
9543 | add_setshow_auto_boolean_cmd ("displaced-stepping", class_run, |
9544 | &can_use_displaced_stepping, _("\ | |
237fc4c9 PA |
9545 | Set debugger's willingness to use displaced stepping."), _("\ |
9546 | Show debugger's willingness to use displaced stepping."), _("\ | |
fff08868 HZ |
9547 | If on, gdb will use displaced stepping to step over breakpoints if it is\n\ |
9548 | supported by the target architecture. If off, gdb will not use displaced\n\ | |
9549 | stepping to step over breakpoints, even if such is supported by the target\n\ | |
9550 | architecture. If auto (which is the default), gdb will use displaced stepping\n\ | |
9551 | if the target architecture supports it and non-stop mode is active, but will not\n\ | |
9552 | use it in all-stop mode (see help set non-stop)."), | |
72d0e2c5 YQ |
9553 | NULL, |
9554 | show_can_use_displaced_stepping, | |
9555 | &setlist, &showlist); | |
237fc4c9 | 9556 | |
b2175913 MS |
9557 | add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names, |
9558 | &exec_direction, _("Set direction of execution.\n\ | |
9559 | Options are 'forward' or 'reverse'."), | |
9560 | _("Show direction of execution (forward/reverse)."), | |
9561 | _("Tells gdb whether to execute forward or backward."), | |
9562 | set_exec_direction_func, show_exec_direction_func, | |
9563 | &setlist, &showlist); | |
9564 | ||
6c95b8df PA |
9565 | /* Set/show detach-on-fork: user-settable mode. */ |
9566 | ||
9567 | add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\ | |
9568 | Set whether gdb will detach the child of a fork."), _("\ | |
9569 | Show whether gdb will detach the child of a fork."), _("\ | |
9570 | Tells gdb whether to detach the child of a fork."), | |
9571 | NULL, NULL, &setlist, &showlist); | |
9572 | ||
03583c20 UW |
9573 | /* Set/show disable address space randomization mode. */ |
9574 | ||
9575 | add_setshow_boolean_cmd ("disable-randomization", class_support, | |
9576 | &disable_randomization, _("\ | |
9577 | Set disabling of debuggee's virtual address space randomization."), _("\ | |
9578 | Show disabling of debuggee's virtual address space randomization."), _("\ | |
9579 | When this mode is on (which is the default), randomization of the virtual\n\ | |
9580 | address space is disabled. Standalone programs run with the randomization\n\ | |
9581 | enabled by default on some platforms."), | |
9582 | &set_disable_randomization, | |
9583 | &show_disable_randomization, | |
9584 | &setlist, &showlist); | |
9585 | ||
ca6724c1 | 9586 | /* ptid initializations */ |
ca6724c1 KB |
9587 | inferior_ptid = null_ptid; |
9588 | target_last_wait_ptid = minus_one_ptid; | |
5231c1fd | 9589 | |
76727919 TT |
9590 | gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed); |
9591 | gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested); | |
9592 | gdb::observers::thread_exit.attach (infrun_thread_thread_exit); | |
9593 | gdb::observers::inferior_exit.attach (infrun_inferior_exit); | |
4aa995e1 PA |
9594 | |
9595 | /* Explicitly create without lookup, since that tries to create a | |
9596 | value with a void typed value, and when we get here, gdbarch | |
9597 | isn't initialized yet. At this point, we're quite sure there | |
9598 | isn't another convenience variable of the same name. */ | |
22d2b532 | 9599 | create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL); |
d914c394 SS |
9600 | |
9601 | add_setshow_boolean_cmd ("observer", no_class, | |
9602 | &observer_mode_1, _("\ | |
9603 | Set whether gdb controls the inferior in observer mode."), _("\ | |
9604 | Show whether gdb controls the inferior in observer mode."), _("\ | |
9605 | In observer mode, GDB can get data from the inferior, but not\n\ | |
9606 | affect its execution. Registers and memory may not be changed,\n\ | |
9607 | breakpoints may not be set, and the program cannot be interrupted\n\ | |
9608 | or signalled."), | |
9609 | set_observer_mode, | |
9610 | show_observer_mode, | |
9611 | &setlist, | |
9612 | &showlist); | |
c906108c | 9613 | } |