]>
Commit | Line | Data |
---|---|---|
ca557f44 AC |
1 | /* Target-struct-independent code to start (run) and stop an inferior |
2 | process. | |
8926118c | 3 | |
618f726f | 4 | Copyright (C) 1986-2016 Free Software Foundation, Inc. |
c906108c | 5 | |
c5aa993b | 6 | This file is part of GDB. |
c906108c | 7 | |
c5aa993b JM |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 10 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 11 | (at your option) any later version. |
c906108c | 12 | |
c5aa993b JM |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
c906108c | 17 | |
c5aa993b | 18 | You should have received a copy of the GNU General Public License |
a9762ec7 | 19 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
20 | |
21 | #include "defs.h" | |
45741a9c | 22 | #include "infrun.h" |
c906108c SS |
23 | #include <ctype.h> |
24 | #include "symtab.h" | |
25 | #include "frame.h" | |
26 | #include "inferior.h" | |
27 | #include "breakpoint.h" | |
03f2053f | 28 | #include "gdb_wait.h" |
c906108c SS |
29 | #include "gdbcore.h" |
30 | #include "gdbcmd.h" | |
210661e7 | 31 | #include "cli/cli-script.h" |
c906108c SS |
32 | #include "target.h" |
33 | #include "gdbthread.h" | |
34 | #include "annotate.h" | |
1adeb98a | 35 | #include "symfile.h" |
7a292a7a | 36 | #include "top.h" |
c906108c | 37 | #include <signal.h> |
2acceee2 | 38 | #include "inf-loop.h" |
4e052eda | 39 | #include "regcache.h" |
fd0407d6 | 40 | #include "value.h" |
06600e06 | 41 | #include "observer.h" |
f636b87d | 42 | #include "language.h" |
a77053c2 | 43 | #include "solib.h" |
f17517ea | 44 | #include "main.h" |
186c406b TT |
45 | #include "dictionary.h" |
46 | #include "block.h" | |
034dad6f | 47 | #include "mi/mi-common.h" |
4f8d22e3 | 48 | #include "event-top.h" |
96429cc8 | 49 | #include "record.h" |
d02ed0bb | 50 | #include "record-full.h" |
edb3359d | 51 | #include "inline-frame.h" |
4efc6507 | 52 | #include "jit.h" |
06cd862c | 53 | #include "tracepoint.h" |
be34f849 | 54 | #include "continuations.h" |
b4a14fd0 | 55 | #include "interps.h" |
1bfeeb0f | 56 | #include "skip.h" |
28106bc2 SDJ |
57 | #include "probe.h" |
58 | #include "objfiles.h" | |
de0bea00 | 59 | #include "completer.h" |
9107fc8d | 60 | #include "target-descriptions.h" |
f15cb84a | 61 | #include "target-dcache.h" |
d83ad864 | 62 | #include "terminal.h" |
ff862be4 | 63 | #include "solist.h" |
372316f1 | 64 | #include "event-loop.h" |
243a9253 | 65 | #include "thread-fsm.h" |
8d297bbf | 66 | #include "common/enum-flags.h" |
c906108c SS |
67 | |
68 | /* Prototypes for local functions */ | |
69 | ||
96baa820 | 70 | static void signals_info (char *, int); |
c906108c | 71 | |
96baa820 | 72 | static void handle_command (char *, int); |
c906108c | 73 | |
2ea28649 | 74 | static void sig_print_info (enum gdb_signal); |
c906108c | 75 | |
96baa820 | 76 | static void sig_print_header (void); |
c906108c | 77 | |
74b7792f | 78 | static void resume_cleanups (void *); |
c906108c | 79 | |
96baa820 | 80 | static int hook_stop_stub (void *); |
c906108c | 81 | |
96baa820 JM |
82 | static int restore_selected_frame (void *); |
83 | ||
4ef3f3be | 84 | static int follow_fork (void); |
96baa820 | 85 | |
d83ad864 DB |
86 | static int follow_fork_inferior (int follow_child, int detach_fork); |
87 | ||
88 | static void follow_inferior_reset_breakpoints (void); | |
89 | ||
96baa820 | 90 | static void set_schedlock_func (char *args, int from_tty, |
488f131b | 91 | struct cmd_list_element *c); |
96baa820 | 92 | |
a289b8f6 JK |
93 | static int currently_stepping (struct thread_info *tp); |
94 | ||
96baa820 | 95 | void _initialize_infrun (void); |
43ff13b4 | 96 | |
e58b0e63 PA |
97 | void nullify_last_target_wait_ptid (void); |
98 | ||
2c03e5be | 99 | static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *); |
2484c66b UW |
100 | |
101 | static void insert_step_resume_breakpoint_at_caller (struct frame_info *); | |
102 | ||
2484c66b UW |
103 | static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR); |
104 | ||
8550d3b3 YQ |
105 | static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc); |
106 | ||
372316f1 PA |
107 | /* Asynchronous signal handler registered as event loop source for |
108 | when we have pending events ready to be passed to the core. */ | |
109 | static struct async_event_handler *infrun_async_inferior_event_token; | |
110 | ||
111 | /* Stores whether infrun_async was previously enabled or disabled. | |
112 | Starts off as -1, indicating "never enabled/disabled". */ | |
113 | static int infrun_is_async = -1; | |
114 | ||
115 | /* See infrun.h. */ | |
116 | ||
117 | void | |
118 | infrun_async (int enable) | |
119 | { | |
120 | if (infrun_is_async != enable) | |
121 | { | |
122 | infrun_is_async = enable; | |
123 | ||
124 | if (debug_infrun) | |
125 | fprintf_unfiltered (gdb_stdlog, | |
126 | "infrun: infrun_async(%d)\n", | |
127 | enable); | |
128 | ||
129 | if (enable) | |
130 | mark_async_event_handler (infrun_async_inferior_event_token); | |
131 | else | |
132 | clear_async_event_handler (infrun_async_inferior_event_token); | |
133 | } | |
134 | } | |
135 | ||
0b333c5e PA |
136 | /* See infrun.h. */ |
137 | ||
138 | void | |
139 | mark_infrun_async_event_handler (void) | |
140 | { | |
141 | mark_async_event_handler (infrun_async_inferior_event_token); | |
142 | } | |
143 | ||
5fbbeb29 CF |
144 | /* When set, stop the 'step' command if we enter a function which has |
145 | no line number information. The normal behavior is that we step | |
146 | over such function. */ | |
147 | int step_stop_if_no_debug = 0; | |
920d2a44 AC |
148 | static void |
149 | show_step_stop_if_no_debug (struct ui_file *file, int from_tty, | |
150 | struct cmd_list_element *c, const char *value) | |
151 | { | |
152 | fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value); | |
153 | } | |
5fbbeb29 | 154 | |
b9f437de PA |
155 | /* proceed and normal_stop use this to notify the user when the |
156 | inferior stopped in a different thread than it had been running | |
157 | in. */ | |
96baa820 | 158 | |
39f77062 | 159 | static ptid_t previous_inferior_ptid; |
7a292a7a | 160 | |
07107ca6 LM |
161 | /* If set (default for legacy reasons), when following a fork, GDB |
162 | will detach from one of the fork branches, child or parent. | |
163 | Exactly which branch is detached depends on 'set follow-fork-mode' | |
164 | setting. */ | |
165 | ||
166 | static int detach_fork = 1; | |
6c95b8df | 167 | |
237fc4c9 PA |
168 | int debug_displaced = 0; |
169 | static void | |
170 | show_debug_displaced (struct ui_file *file, int from_tty, | |
171 | struct cmd_list_element *c, const char *value) | |
172 | { | |
173 | fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value); | |
174 | } | |
175 | ||
ccce17b0 | 176 | unsigned int debug_infrun = 0; |
920d2a44 AC |
177 | static void |
178 | show_debug_infrun (struct ui_file *file, int from_tty, | |
179 | struct cmd_list_element *c, const char *value) | |
180 | { | |
181 | fprintf_filtered (file, _("Inferior debugging is %s.\n"), value); | |
182 | } | |
527159b7 | 183 | |
03583c20 UW |
184 | |
185 | /* Support for disabling address space randomization. */ | |
186 | ||
187 | int disable_randomization = 1; | |
188 | ||
189 | static void | |
190 | show_disable_randomization (struct ui_file *file, int from_tty, | |
191 | struct cmd_list_element *c, const char *value) | |
192 | { | |
193 | if (target_supports_disable_randomization ()) | |
194 | fprintf_filtered (file, | |
195 | _("Disabling randomization of debuggee's " | |
196 | "virtual address space is %s.\n"), | |
197 | value); | |
198 | else | |
199 | fputs_filtered (_("Disabling randomization of debuggee's " | |
200 | "virtual address space is unsupported on\n" | |
201 | "this platform.\n"), file); | |
202 | } | |
203 | ||
204 | static void | |
205 | set_disable_randomization (char *args, int from_tty, | |
206 | struct cmd_list_element *c) | |
207 | { | |
208 | if (!target_supports_disable_randomization ()) | |
209 | error (_("Disabling randomization of debuggee's " | |
210 | "virtual address space is unsupported on\n" | |
211 | "this platform.")); | |
212 | } | |
213 | ||
d32dc48e PA |
214 | /* User interface for non-stop mode. */ |
215 | ||
216 | int non_stop = 0; | |
217 | static int non_stop_1 = 0; | |
218 | ||
219 | static void | |
220 | set_non_stop (char *args, int from_tty, | |
221 | struct cmd_list_element *c) | |
222 | { | |
223 | if (target_has_execution) | |
224 | { | |
225 | non_stop_1 = non_stop; | |
226 | error (_("Cannot change this setting while the inferior is running.")); | |
227 | } | |
228 | ||
229 | non_stop = non_stop_1; | |
230 | } | |
231 | ||
232 | static void | |
233 | show_non_stop (struct ui_file *file, int from_tty, | |
234 | struct cmd_list_element *c, const char *value) | |
235 | { | |
236 | fprintf_filtered (file, | |
237 | _("Controlling the inferior in non-stop mode is %s.\n"), | |
238 | value); | |
239 | } | |
240 | ||
d914c394 SS |
241 | /* "Observer mode" is somewhat like a more extreme version of |
242 | non-stop, in which all GDB operations that might affect the | |
243 | target's execution have been disabled. */ | |
244 | ||
d914c394 SS |
245 | int observer_mode = 0; |
246 | static int observer_mode_1 = 0; | |
247 | ||
248 | static void | |
249 | set_observer_mode (char *args, int from_tty, | |
250 | struct cmd_list_element *c) | |
251 | { | |
d914c394 SS |
252 | if (target_has_execution) |
253 | { | |
254 | observer_mode_1 = observer_mode; | |
255 | error (_("Cannot change this setting while the inferior is running.")); | |
256 | } | |
257 | ||
258 | observer_mode = observer_mode_1; | |
259 | ||
260 | may_write_registers = !observer_mode; | |
261 | may_write_memory = !observer_mode; | |
262 | may_insert_breakpoints = !observer_mode; | |
263 | may_insert_tracepoints = !observer_mode; | |
264 | /* We can insert fast tracepoints in or out of observer mode, | |
265 | but enable them if we're going into this mode. */ | |
266 | if (observer_mode) | |
267 | may_insert_fast_tracepoints = 1; | |
268 | may_stop = !observer_mode; | |
269 | update_target_permissions (); | |
270 | ||
271 | /* Going *into* observer mode we must force non-stop, then | |
272 | going out we leave it that way. */ | |
273 | if (observer_mode) | |
274 | { | |
d914c394 SS |
275 | pagination_enabled = 0; |
276 | non_stop = non_stop_1 = 1; | |
277 | } | |
278 | ||
279 | if (from_tty) | |
280 | printf_filtered (_("Observer mode is now %s.\n"), | |
281 | (observer_mode ? "on" : "off")); | |
282 | } | |
283 | ||
284 | static void | |
285 | show_observer_mode (struct ui_file *file, int from_tty, | |
286 | struct cmd_list_element *c, const char *value) | |
287 | { | |
288 | fprintf_filtered (file, _("Observer mode is %s.\n"), value); | |
289 | } | |
290 | ||
291 | /* This updates the value of observer mode based on changes in | |
292 | permissions. Note that we are deliberately ignoring the values of | |
293 | may-write-registers and may-write-memory, since the user may have | |
294 | reason to enable these during a session, for instance to turn on a | |
295 | debugging-related global. */ | |
296 | ||
297 | void | |
298 | update_observer_mode (void) | |
299 | { | |
300 | int newval; | |
301 | ||
302 | newval = (!may_insert_breakpoints | |
303 | && !may_insert_tracepoints | |
304 | && may_insert_fast_tracepoints | |
305 | && !may_stop | |
306 | && non_stop); | |
307 | ||
308 | /* Let the user know if things change. */ | |
309 | if (newval != observer_mode) | |
310 | printf_filtered (_("Observer mode is now %s.\n"), | |
311 | (newval ? "on" : "off")); | |
312 | ||
313 | observer_mode = observer_mode_1 = newval; | |
314 | } | |
c2c6d25f | 315 | |
c906108c SS |
316 | /* Tables of how to react to signals; the user sets them. */ |
317 | ||
318 | static unsigned char *signal_stop; | |
319 | static unsigned char *signal_print; | |
320 | static unsigned char *signal_program; | |
321 | ||
ab04a2af TT |
322 | /* Table of signals that are registered with "catch signal". A |
323 | non-zero entry indicates that the signal is caught by some "catch | |
324 | signal" command. This has size GDB_SIGNAL_LAST, to accommodate all | |
325 | signals. */ | |
326 | static unsigned char *signal_catch; | |
327 | ||
2455069d UW |
328 | /* Table of signals that the target may silently handle. |
329 | This is automatically determined from the flags above, | |
330 | and simply cached here. */ | |
331 | static unsigned char *signal_pass; | |
332 | ||
c906108c SS |
333 | #define SET_SIGS(nsigs,sigs,flags) \ |
334 | do { \ | |
335 | int signum = (nsigs); \ | |
336 | while (signum-- > 0) \ | |
337 | if ((sigs)[signum]) \ | |
338 | (flags)[signum] = 1; \ | |
339 | } while (0) | |
340 | ||
341 | #define UNSET_SIGS(nsigs,sigs,flags) \ | |
342 | do { \ | |
343 | int signum = (nsigs); \ | |
344 | while (signum-- > 0) \ | |
345 | if ((sigs)[signum]) \ | |
346 | (flags)[signum] = 0; \ | |
347 | } while (0) | |
348 | ||
9b224c5e PA |
349 | /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of |
350 | this function is to avoid exporting `signal_program'. */ | |
351 | ||
352 | void | |
353 | update_signals_program_target (void) | |
354 | { | |
a493e3e2 | 355 | target_program_signals ((int) GDB_SIGNAL_LAST, signal_program); |
9b224c5e PA |
356 | } |
357 | ||
1777feb0 | 358 | /* Value to pass to target_resume() to cause all threads to resume. */ |
39f77062 | 359 | |
edb3359d | 360 | #define RESUME_ALL minus_one_ptid |
c906108c SS |
361 | |
362 | /* Command list pointer for the "stop" placeholder. */ | |
363 | ||
364 | static struct cmd_list_element *stop_command; | |
365 | ||
c906108c SS |
366 | /* Nonzero if we want to give control to the user when we're notified |
367 | of shared library events by the dynamic linker. */ | |
628fe4e4 | 368 | int stop_on_solib_events; |
f9e14852 GB |
369 | |
370 | /* Enable or disable optional shared library event breakpoints | |
371 | as appropriate when the above flag is changed. */ | |
372 | ||
373 | static void | |
374 | set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c) | |
375 | { | |
376 | update_solib_breakpoints (); | |
377 | } | |
378 | ||
920d2a44 AC |
379 | static void |
380 | show_stop_on_solib_events (struct ui_file *file, int from_tty, | |
381 | struct cmd_list_element *c, const char *value) | |
382 | { | |
383 | fprintf_filtered (file, _("Stopping for shared library events is %s.\n"), | |
384 | value); | |
385 | } | |
c906108c | 386 | |
c906108c SS |
387 | /* Nonzero after stop if current stack frame should be printed. */ |
388 | ||
389 | static int stop_print_frame; | |
390 | ||
e02bc4cc | 391 | /* This is a cached copy of the pid/waitstatus of the last event |
9a4105ab AC |
392 | returned by target_wait()/deprecated_target_wait_hook(). This |
393 | information is returned by get_last_target_status(). */ | |
39f77062 | 394 | static ptid_t target_last_wait_ptid; |
e02bc4cc DS |
395 | static struct target_waitstatus target_last_waitstatus; |
396 | ||
0d1e5fa7 PA |
397 | static void context_switch (ptid_t ptid); |
398 | ||
4e1c45ea | 399 | void init_thread_stepping_state (struct thread_info *tss); |
0d1e5fa7 | 400 | |
53904c9e AC |
401 | static const char follow_fork_mode_child[] = "child"; |
402 | static const char follow_fork_mode_parent[] = "parent"; | |
403 | ||
40478521 | 404 | static const char *const follow_fork_mode_kind_names[] = { |
53904c9e AC |
405 | follow_fork_mode_child, |
406 | follow_fork_mode_parent, | |
407 | NULL | |
ef346e04 | 408 | }; |
c906108c | 409 | |
53904c9e | 410 | static const char *follow_fork_mode_string = follow_fork_mode_parent; |
920d2a44 AC |
411 | static void |
412 | show_follow_fork_mode_string (struct ui_file *file, int from_tty, | |
413 | struct cmd_list_element *c, const char *value) | |
414 | { | |
3e43a32a MS |
415 | fprintf_filtered (file, |
416 | _("Debugger response to a program " | |
417 | "call of fork or vfork is \"%s\".\n"), | |
920d2a44 AC |
418 | value); |
419 | } | |
c906108c SS |
420 | \f |
421 | ||
d83ad864 DB |
422 | /* Handle changes to the inferior list based on the type of fork, |
423 | which process is being followed, and whether the other process | |
424 | should be detached. On entry inferior_ptid must be the ptid of | |
425 | the fork parent. At return inferior_ptid is the ptid of the | |
426 | followed inferior. */ | |
427 | ||
428 | static int | |
429 | follow_fork_inferior (int follow_child, int detach_fork) | |
430 | { | |
431 | int has_vforked; | |
79639e11 | 432 | ptid_t parent_ptid, child_ptid; |
d83ad864 DB |
433 | |
434 | has_vforked = (inferior_thread ()->pending_follow.kind | |
435 | == TARGET_WAITKIND_VFORKED); | |
79639e11 PA |
436 | parent_ptid = inferior_ptid; |
437 | child_ptid = inferior_thread ()->pending_follow.value.related_pid; | |
d83ad864 DB |
438 | |
439 | if (has_vforked | |
440 | && !non_stop /* Non-stop always resumes both branches. */ | |
3b12939d | 441 | && current_ui->prompt_state == PROMPT_BLOCKED |
d83ad864 DB |
442 | && !(follow_child || detach_fork || sched_multi)) |
443 | { | |
444 | /* The parent stays blocked inside the vfork syscall until the | |
445 | child execs or exits. If we don't let the child run, then | |
446 | the parent stays blocked. If we're telling the parent to run | |
447 | in the foreground, the user will not be able to ctrl-c to get | |
448 | back the terminal, effectively hanging the debug session. */ | |
449 | fprintf_filtered (gdb_stderr, _("\ | |
450 | Can not resume the parent process over vfork in the foreground while\n\ | |
451 | holding the child stopped. Try \"set detach-on-fork\" or \ | |
452 | \"set schedule-multiple\".\n")); | |
453 | /* FIXME output string > 80 columns. */ | |
454 | return 1; | |
455 | } | |
456 | ||
457 | if (!follow_child) | |
458 | { | |
459 | /* Detach new forked process? */ | |
460 | if (detach_fork) | |
461 | { | |
d83ad864 DB |
462 | /* Before detaching from the child, remove all breakpoints |
463 | from it. If we forked, then this has already been taken | |
464 | care of by infrun.c. If we vforked however, any | |
465 | breakpoint inserted in the parent is visible in the | |
466 | child, even those added while stopped in a vfork | |
467 | catchpoint. This will remove the breakpoints from the | |
468 | parent also, but they'll be reinserted below. */ | |
469 | if (has_vforked) | |
470 | { | |
471 | /* Keep breakpoints list in sync. */ | |
472 | remove_breakpoints_pid (ptid_get_pid (inferior_ptid)); | |
473 | } | |
474 | ||
475 | if (info_verbose || debug_infrun) | |
476 | { | |
8dd06f7a DB |
477 | /* Ensure that we have a process ptid. */ |
478 | ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid)); | |
479 | ||
6f259a23 | 480 | target_terminal_ours_for_output (); |
d83ad864 | 481 | fprintf_filtered (gdb_stdlog, |
79639e11 | 482 | _("Detaching after %s from child %s.\n"), |
6f259a23 | 483 | has_vforked ? "vfork" : "fork", |
8dd06f7a | 484 | target_pid_to_str (process_ptid)); |
d83ad864 DB |
485 | } |
486 | } | |
487 | else | |
488 | { | |
489 | struct inferior *parent_inf, *child_inf; | |
490 | struct cleanup *old_chain; | |
491 | ||
492 | /* Add process to GDB's tables. */ | |
79639e11 | 493 | child_inf = add_inferior (ptid_get_pid (child_ptid)); |
d83ad864 DB |
494 | |
495 | parent_inf = current_inferior (); | |
496 | child_inf->attach_flag = parent_inf->attach_flag; | |
497 | copy_terminal_info (child_inf, parent_inf); | |
498 | child_inf->gdbarch = parent_inf->gdbarch; | |
499 | copy_inferior_target_desc_info (child_inf, parent_inf); | |
500 | ||
501 | old_chain = save_inferior_ptid (); | |
502 | save_current_program_space (); | |
503 | ||
79639e11 | 504 | inferior_ptid = child_ptid; |
d83ad864 DB |
505 | add_thread (inferior_ptid); |
506 | child_inf->symfile_flags = SYMFILE_NO_READ; | |
507 | ||
508 | /* If this is a vfork child, then the address-space is | |
509 | shared with the parent. */ | |
510 | if (has_vforked) | |
511 | { | |
512 | child_inf->pspace = parent_inf->pspace; | |
513 | child_inf->aspace = parent_inf->aspace; | |
514 | ||
515 | /* The parent will be frozen until the child is done | |
516 | with the shared region. Keep track of the | |
517 | parent. */ | |
518 | child_inf->vfork_parent = parent_inf; | |
519 | child_inf->pending_detach = 0; | |
520 | parent_inf->vfork_child = child_inf; | |
521 | parent_inf->pending_detach = 0; | |
522 | } | |
523 | else | |
524 | { | |
525 | child_inf->aspace = new_address_space (); | |
526 | child_inf->pspace = add_program_space (child_inf->aspace); | |
527 | child_inf->removable = 1; | |
528 | set_current_program_space (child_inf->pspace); | |
529 | clone_program_space (child_inf->pspace, parent_inf->pspace); | |
530 | ||
531 | /* Let the shared library layer (e.g., solib-svr4) learn | |
532 | about this new process, relocate the cloned exec, pull | |
533 | in shared libraries, and install the solib event | |
534 | breakpoint. If a "cloned-VM" event was propagated | |
535 | better throughout the core, this wouldn't be | |
536 | required. */ | |
537 | solib_create_inferior_hook (0); | |
538 | } | |
539 | ||
540 | do_cleanups (old_chain); | |
541 | } | |
542 | ||
543 | if (has_vforked) | |
544 | { | |
545 | struct inferior *parent_inf; | |
546 | ||
547 | parent_inf = current_inferior (); | |
548 | ||
549 | /* If we detached from the child, then we have to be careful | |
550 | to not insert breakpoints in the parent until the child | |
551 | is done with the shared memory region. However, if we're | |
552 | staying attached to the child, then we can and should | |
553 | insert breakpoints, so that we can debug it. A | |
554 | subsequent child exec or exit is enough to know when does | |
555 | the child stops using the parent's address space. */ | |
556 | parent_inf->waiting_for_vfork_done = detach_fork; | |
557 | parent_inf->pspace->breakpoints_not_allowed = detach_fork; | |
558 | } | |
559 | } | |
560 | else | |
561 | { | |
562 | /* Follow the child. */ | |
563 | struct inferior *parent_inf, *child_inf; | |
564 | struct program_space *parent_pspace; | |
565 | ||
566 | if (info_verbose || debug_infrun) | |
567 | { | |
6f259a23 DB |
568 | target_terminal_ours_for_output (); |
569 | fprintf_filtered (gdb_stdlog, | |
79639e11 PA |
570 | _("Attaching after %s %s to child %s.\n"), |
571 | target_pid_to_str (parent_ptid), | |
6f259a23 | 572 | has_vforked ? "vfork" : "fork", |
79639e11 | 573 | target_pid_to_str (child_ptid)); |
d83ad864 DB |
574 | } |
575 | ||
576 | /* Add the new inferior first, so that the target_detach below | |
577 | doesn't unpush the target. */ | |
578 | ||
79639e11 | 579 | child_inf = add_inferior (ptid_get_pid (child_ptid)); |
d83ad864 DB |
580 | |
581 | parent_inf = current_inferior (); | |
582 | child_inf->attach_flag = parent_inf->attach_flag; | |
583 | copy_terminal_info (child_inf, parent_inf); | |
584 | child_inf->gdbarch = parent_inf->gdbarch; | |
585 | copy_inferior_target_desc_info (child_inf, parent_inf); | |
586 | ||
587 | parent_pspace = parent_inf->pspace; | |
588 | ||
589 | /* If we're vforking, we want to hold on to the parent until the | |
590 | child exits or execs. At child exec or exit time we can | |
591 | remove the old breakpoints from the parent and detach or | |
592 | resume debugging it. Otherwise, detach the parent now; we'll | |
593 | want to reuse it's program/address spaces, but we can't set | |
594 | them to the child before removing breakpoints from the | |
595 | parent, otherwise, the breakpoints module could decide to | |
596 | remove breakpoints from the wrong process (since they'd be | |
597 | assigned to the same address space). */ | |
598 | ||
599 | if (has_vforked) | |
600 | { | |
601 | gdb_assert (child_inf->vfork_parent == NULL); | |
602 | gdb_assert (parent_inf->vfork_child == NULL); | |
603 | child_inf->vfork_parent = parent_inf; | |
604 | child_inf->pending_detach = 0; | |
605 | parent_inf->vfork_child = child_inf; | |
606 | parent_inf->pending_detach = detach_fork; | |
607 | parent_inf->waiting_for_vfork_done = 0; | |
608 | } | |
609 | else if (detach_fork) | |
6f259a23 DB |
610 | { |
611 | if (info_verbose || debug_infrun) | |
612 | { | |
8dd06f7a DB |
613 | /* Ensure that we have a process ptid. */ |
614 | ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid)); | |
615 | ||
6f259a23 DB |
616 | target_terminal_ours_for_output (); |
617 | fprintf_filtered (gdb_stdlog, | |
618 | _("Detaching after fork from " | |
79639e11 | 619 | "child %s.\n"), |
8dd06f7a | 620 | target_pid_to_str (process_ptid)); |
6f259a23 DB |
621 | } |
622 | ||
623 | target_detach (NULL, 0); | |
624 | } | |
d83ad864 DB |
625 | |
626 | /* Note that the detach above makes PARENT_INF dangling. */ | |
627 | ||
628 | /* Add the child thread to the appropriate lists, and switch to | |
629 | this new thread, before cloning the program space, and | |
630 | informing the solib layer about this new process. */ | |
631 | ||
79639e11 | 632 | inferior_ptid = child_ptid; |
d83ad864 DB |
633 | add_thread (inferior_ptid); |
634 | ||
635 | /* If this is a vfork child, then the address-space is shared | |
636 | with the parent. If we detached from the parent, then we can | |
637 | reuse the parent's program/address spaces. */ | |
638 | if (has_vforked || detach_fork) | |
639 | { | |
640 | child_inf->pspace = parent_pspace; | |
641 | child_inf->aspace = child_inf->pspace->aspace; | |
642 | } | |
643 | else | |
644 | { | |
645 | child_inf->aspace = new_address_space (); | |
646 | child_inf->pspace = add_program_space (child_inf->aspace); | |
647 | child_inf->removable = 1; | |
648 | child_inf->symfile_flags = SYMFILE_NO_READ; | |
649 | set_current_program_space (child_inf->pspace); | |
650 | clone_program_space (child_inf->pspace, parent_pspace); | |
651 | ||
652 | /* Let the shared library layer (e.g., solib-svr4) learn | |
653 | about this new process, relocate the cloned exec, pull in | |
654 | shared libraries, and install the solib event breakpoint. | |
655 | If a "cloned-VM" event was propagated better throughout | |
656 | the core, this wouldn't be required. */ | |
657 | solib_create_inferior_hook (0); | |
658 | } | |
659 | } | |
660 | ||
661 | return target_follow_fork (follow_child, detach_fork); | |
662 | } | |
663 | ||
e58b0e63 PA |
664 | /* Tell the target to follow the fork we're stopped at. Returns true |
665 | if the inferior should be resumed; false, if the target for some | |
666 | reason decided it's best not to resume. */ | |
667 | ||
6604731b | 668 | static int |
4ef3f3be | 669 | follow_fork (void) |
c906108c | 670 | { |
ea1dd7bc | 671 | int follow_child = (follow_fork_mode_string == follow_fork_mode_child); |
e58b0e63 PA |
672 | int should_resume = 1; |
673 | struct thread_info *tp; | |
674 | ||
675 | /* Copy user stepping state to the new inferior thread. FIXME: the | |
676 | followed fork child thread should have a copy of most of the | |
4e3990f4 DE |
677 | parent thread structure's run control related fields, not just these. |
678 | Initialized to avoid "may be used uninitialized" warnings from gcc. */ | |
679 | struct breakpoint *step_resume_breakpoint = NULL; | |
186c406b | 680 | struct breakpoint *exception_resume_breakpoint = NULL; |
4e3990f4 DE |
681 | CORE_ADDR step_range_start = 0; |
682 | CORE_ADDR step_range_end = 0; | |
683 | struct frame_id step_frame_id = { 0 }; | |
8980e177 | 684 | struct thread_fsm *thread_fsm = NULL; |
e58b0e63 PA |
685 | |
686 | if (!non_stop) | |
687 | { | |
688 | ptid_t wait_ptid; | |
689 | struct target_waitstatus wait_status; | |
690 | ||
691 | /* Get the last target status returned by target_wait(). */ | |
692 | get_last_target_status (&wait_ptid, &wait_status); | |
693 | ||
694 | /* If not stopped at a fork event, then there's nothing else to | |
695 | do. */ | |
696 | if (wait_status.kind != TARGET_WAITKIND_FORKED | |
697 | && wait_status.kind != TARGET_WAITKIND_VFORKED) | |
698 | return 1; | |
699 | ||
700 | /* Check if we switched over from WAIT_PTID, since the event was | |
701 | reported. */ | |
702 | if (!ptid_equal (wait_ptid, minus_one_ptid) | |
703 | && !ptid_equal (inferior_ptid, wait_ptid)) | |
704 | { | |
705 | /* We did. Switch back to WAIT_PTID thread, to tell the | |
706 | target to follow it (in either direction). We'll | |
707 | afterwards refuse to resume, and inform the user what | |
708 | happened. */ | |
709 | switch_to_thread (wait_ptid); | |
710 | should_resume = 0; | |
711 | } | |
712 | } | |
713 | ||
714 | tp = inferior_thread (); | |
715 | ||
716 | /* If there were any forks/vforks that were caught and are now to be | |
717 | followed, then do so now. */ | |
718 | switch (tp->pending_follow.kind) | |
719 | { | |
720 | case TARGET_WAITKIND_FORKED: | |
721 | case TARGET_WAITKIND_VFORKED: | |
722 | { | |
723 | ptid_t parent, child; | |
724 | ||
725 | /* If the user did a next/step, etc, over a fork call, | |
726 | preserve the stepping state in the fork child. */ | |
727 | if (follow_child && should_resume) | |
728 | { | |
8358c15c JK |
729 | step_resume_breakpoint = clone_momentary_breakpoint |
730 | (tp->control.step_resume_breakpoint); | |
16c381f0 JK |
731 | step_range_start = tp->control.step_range_start; |
732 | step_range_end = tp->control.step_range_end; | |
733 | step_frame_id = tp->control.step_frame_id; | |
186c406b TT |
734 | exception_resume_breakpoint |
735 | = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint); | |
8980e177 | 736 | thread_fsm = tp->thread_fsm; |
e58b0e63 PA |
737 | |
738 | /* For now, delete the parent's sr breakpoint, otherwise, | |
739 | parent/child sr breakpoints are considered duplicates, | |
740 | and the child version will not be installed. Remove | |
741 | this when the breakpoints module becomes aware of | |
742 | inferiors and address spaces. */ | |
743 | delete_step_resume_breakpoint (tp); | |
16c381f0 JK |
744 | tp->control.step_range_start = 0; |
745 | tp->control.step_range_end = 0; | |
746 | tp->control.step_frame_id = null_frame_id; | |
186c406b | 747 | delete_exception_resume_breakpoint (tp); |
8980e177 | 748 | tp->thread_fsm = NULL; |
e58b0e63 PA |
749 | } |
750 | ||
751 | parent = inferior_ptid; | |
752 | child = tp->pending_follow.value.related_pid; | |
753 | ||
d83ad864 DB |
754 | /* Set up inferior(s) as specified by the caller, and tell the |
755 | target to do whatever is necessary to follow either parent | |
756 | or child. */ | |
757 | if (follow_fork_inferior (follow_child, detach_fork)) | |
e58b0e63 PA |
758 | { |
759 | /* Target refused to follow, or there's some other reason | |
760 | we shouldn't resume. */ | |
761 | should_resume = 0; | |
762 | } | |
763 | else | |
764 | { | |
765 | /* This pending follow fork event is now handled, one way | |
766 | or another. The previous selected thread may be gone | |
767 | from the lists by now, but if it is still around, need | |
768 | to clear the pending follow request. */ | |
e09875d4 | 769 | tp = find_thread_ptid (parent); |
e58b0e63 PA |
770 | if (tp) |
771 | tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS; | |
772 | ||
773 | /* This makes sure we don't try to apply the "Switched | |
774 | over from WAIT_PID" logic above. */ | |
775 | nullify_last_target_wait_ptid (); | |
776 | ||
1777feb0 | 777 | /* If we followed the child, switch to it... */ |
e58b0e63 PA |
778 | if (follow_child) |
779 | { | |
780 | switch_to_thread (child); | |
781 | ||
782 | /* ... and preserve the stepping state, in case the | |
783 | user was stepping over the fork call. */ | |
784 | if (should_resume) | |
785 | { | |
786 | tp = inferior_thread (); | |
8358c15c JK |
787 | tp->control.step_resume_breakpoint |
788 | = step_resume_breakpoint; | |
16c381f0 JK |
789 | tp->control.step_range_start = step_range_start; |
790 | tp->control.step_range_end = step_range_end; | |
791 | tp->control.step_frame_id = step_frame_id; | |
186c406b TT |
792 | tp->control.exception_resume_breakpoint |
793 | = exception_resume_breakpoint; | |
8980e177 | 794 | tp->thread_fsm = thread_fsm; |
e58b0e63 PA |
795 | } |
796 | else | |
797 | { | |
798 | /* If we get here, it was because we're trying to | |
799 | resume from a fork catchpoint, but, the user | |
800 | has switched threads away from the thread that | |
801 | forked. In that case, the resume command | |
802 | issued is most likely not applicable to the | |
803 | child, so just warn, and refuse to resume. */ | |
3e43a32a | 804 | warning (_("Not resuming: switched threads " |
fd7dcb94 | 805 | "before following fork child.")); |
e58b0e63 PA |
806 | } |
807 | ||
808 | /* Reset breakpoints in the child as appropriate. */ | |
809 | follow_inferior_reset_breakpoints (); | |
810 | } | |
811 | else | |
812 | switch_to_thread (parent); | |
813 | } | |
814 | } | |
815 | break; | |
816 | case TARGET_WAITKIND_SPURIOUS: | |
817 | /* Nothing to follow. */ | |
818 | break; | |
819 | default: | |
820 | internal_error (__FILE__, __LINE__, | |
821 | "Unexpected pending_follow.kind %d\n", | |
822 | tp->pending_follow.kind); | |
823 | break; | |
824 | } | |
c906108c | 825 | |
e58b0e63 | 826 | return should_resume; |
c906108c SS |
827 | } |
828 | ||
d83ad864 | 829 | static void |
6604731b | 830 | follow_inferior_reset_breakpoints (void) |
c906108c | 831 | { |
4e1c45ea PA |
832 | struct thread_info *tp = inferior_thread (); |
833 | ||
6604731b DJ |
834 | /* Was there a step_resume breakpoint? (There was if the user |
835 | did a "next" at the fork() call.) If so, explicitly reset its | |
a1aa2221 LM |
836 | thread number. Cloned step_resume breakpoints are disabled on |
837 | creation, so enable it here now that it is associated with the | |
838 | correct thread. | |
6604731b DJ |
839 | |
840 | step_resumes are a form of bp that are made to be per-thread. | |
841 | Since we created the step_resume bp when the parent process | |
842 | was being debugged, and now are switching to the child process, | |
843 | from the breakpoint package's viewpoint, that's a switch of | |
844 | "threads". We must update the bp's notion of which thread | |
845 | it is for, or it'll be ignored when it triggers. */ | |
846 | ||
8358c15c | 847 | if (tp->control.step_resume_breakpoint) |
a1aa2221 LM |
848 | { |
849 | breakpoint_re_set_thread (tp->control.step_resume_breakpoint); | |
850 | tp->control.step_resume_breakpoint->loc->enabled = 1; | |
851 | } | |
6604731b | 852 | |
a1aa2221 | 853 | /* Treat exception_resume breakpoints like step_resume breakpoints. */ |
186c406b | 854 | if (tp->control.exception_resume_breakpoint) |
a1aa2221 LM |
855 | { |
856 | breakpoint_re_set_thread (tp->control.exception_resume_breakpoint); | |
857 | tp->control.exception_resume_breakpoint->loc->enabled = 1; | |
858 | } | |
186c406b | 859 | |
6604731b DJ |
860 | /* Reinsert all breakpoints in the child. The user may have set |
861 | breakpoints after catching the fork, in which case those | |
862 | were never set in the child, but only in the parent. This makes | |
863 | sure the inserted breakpoints match the breakpoint list. */ | |
864 | ||
865 | breakpoint_re_set (); | |
866 | insert_breakpoints (); | |
c906108c | 867 | } |
c906108c | 868 | |
6c95b8df PA |
869 | /* The child has exited or execed: resume threads of the parent the |
870 | user wanted to be executing. */ | |
871 | ||
872 | static int | |
873 | proceed_after_vfork_done (struct thread_info *thread, | |
874 | void *arg) | |
875 | { | |
876 | int pid = * (int *) arg; | |
877 | ||
878 | if (ptid_get_pid (thread->ptid) == pid | |
879 | && is_running (thread->ptid) | |
880 | && !is_executing (thread->ptid) | |
881 | && !thread->stop_requested | |
a493e3e2 | 882 | && thread->suspend.stop_signal == GDB_SIGNAL_0) |
6c95b8df PA |
883 | { |
884 | if (debug_infrun) | |
885 | fprintf_unfiltered (gdb_stdlog, | |
886 | "infrun: resuming vfork parent thread %s\n", | |
887 | target_pid_to_str (thread->ptid)); | |
888 | ||
889 | switch_to_thread (thread->ptid); | |
70509625 | 890 | clear_proceed_status (0); |
64ce06e4 | 891 | proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT); |
6c95b8df PA |
892 | } |
893 | ||
894 | return 0; | |
895 | } | |
896 | ||
897 | /* Called whenever we notice an exec or exit event, to handle | |
898 | detaching or resuming a vfork parent. */ | |
899 | ||
900 | static void | |
901 | handle_vfork_child_exec_or_exit (int exec) | |
902 | { | |
903 | struct inferior *inf = current_inferior (); | |
904 | ||
905 | if (inf->vfork_parent) | |
906 | { | |
907 | int resume_parent = -1; | |
908 | ||
909 | /* This exec or exit marks the end of the shared memory region | |
910 | between the parent and the child. If the user wanted to | |
911 | detach from the parent, now is the time. */ | |
912 | ||
913 | if (inf->vfork_parent->pending_detach) | |
914 | { | |
915 | struct thread_info *tp; | |
916 | struct cleanup *old_chain; | |
917 | struct program_space *pspace; | |
918 | struct address_space *aspace; | |
919 | ||
1777feb0 | 920 | /* follow-fork child, detach-on-fork on. */ |
6c95b8df | 921 | |
68c9da30 PA |
922 | inf->vfork_parent->pending_detach = 0; |
923 | ||
f50f4e56 PA |
924 | if (!exec) |
925 | { | |
926 | /* If we're handling a child exit, then inferior_ptid | |
927 | points at the inferior's pid, not to a thread. */ | |
928 | old_chain = save_inferior_ptid (); | |
929 | save_current_program_space (); | |
930 | save_current_inferior (); | |
931 | } | |
932 | else | |
933 | old_chain = save_current_space_and_thread (); | |
6c95b8df PA |
934 | |
935 | /* We're letting loose of the parent. */ | |
936 | tp = any_live_thread_of_process (inf->vfork_parent->pid); | |
937 | switch_to_thread (tp->ptid); | |
938 | ||
939 | /* We're about to detach from the parent, which implicitly | |
940 | removes breakpoints from its address space. There's a | |
941 | catch here: we want to reuse the spaces for the child, | |
942 | but, parent/child are still sharing the pspace at this | |
943 | point, although the exec in reality makes the kernel give | |
944 | the child a fresh set of new pages. The problem here is | |
945 | that the breakpoints module being unaware of this, would | |
946 | likely chose the child process to write to the parent | |
947 | address space. Swapping the child temporarily away from | |
948 | the spaces has the desired effect. Yes, this is "sort | |
949 | of" a hack. */ | |
950 | ||
951 | pspace = inf->pspace; | |
952 | aspace = inf->aspace; | |
953 | inf->aspace = NULL; | |
954 | inf->pspace = NULL; | |
955 | ||
956 | if (debug_infrun || info_verbose) | |
957 | { | |
6f259a23 | 958 | target_terminal_ours_for_output (); |
6c95b8df PA |
959 | |
960 | if (exec) | |
6f259a23 DB |
961 | { |
962 | fprintf_filtered (gdb_stdlog, | |
963 | _("Detaching vfork parent process " | |
964 | "%d after child exec.\n"), | |
965 | inf->vfork_parent->pid); | |
966 | } | |
6c95b8df | 967 | else |
6f259a23 DB |
968 | { |
969 | fprintf_filtered (gdb_stdlog, | |
970 | _("Detaching vfork parent process " | |
971 | "%d after child exit.\n"), | |
972 | inf->vfork_parent->pid); | |
973 | } | |
6c95b8df PA |
974 | } |
975 | ||
976 | target_detach (NULL, 0); | |
977 | ||
978 | /* Put it back. */ | |
979 | inf->pspace = pspace; | |
980 | inf->aspace = aspace; | |
981 | ||
982 | do_cleanups (old_chain); | |
983 | } | |
984 | else if (exec) | |
985 | { | |
986 | /* We're staying attached to the parent, so, really give the | |
987 | child a new address space. */ | |
988 | inf->pspace = add_program_space (maybe_new_address_space ()); | |
989 | inf->aspace = inf->pspace->aspace; | |
990 | inf->removable = 1; | |
991 | set_current_program_space (inf->pspace); | |
992 | ||
993 | resume_parent = inf->vfork_parent->pid; | |
994 | ||
995 | /* Break the bonds. */ | |
996 | inf->vfork_parent->vfork_child = NULL; | |
997 | } | |
998 | else | |
999 | { | |
1000 | struct cleanup *old_chain; | |
1001 | struct program_space *pspace; | |
1002 | ||
1003 | /* If this is a vfork child exiting, then the pspace and | |
1004 | aspaces were shared with the parent. Since we're | |
1005 | reporting the process exit, we'll be mourning all that is | |
1006 | found in the address space, and switching to null_ptid, | |
1007 | preparing to start a new inferior. But, since we don't | |
1008 | want to clobber the parent's address/program spaces, we | |
1009 | go ahead and create a new one for this exiting | |
1010 | inferior. */ | |
1011 | ||
1012 | /* Switch to null_ptid, so that clone_program_space doesn't want | |
1013 | to read the selected frame of a dead process. */ | |
1014 | old_chain = save_inferior_ptid (); | |
1015 | inferior_ptid = null_ptid; | |
1016 | ||
1017 | /* This inferior is dead, so avoid giving the breakpoints | |
1018 | module the option to write through to it (cloning a | |
1019 | program space resets breakpoints). */ | |
1020 | inf->aspace = NULL; | |
1021 | inf->pspace = NULL; | |
1022 | pspace = add_program_space (maybe_new_address_space ()); | |
1023 | set_current_program_space (pspace); | |
1024 | inf->removable = 1; | |
7dcd53a0 | 1025 | inf->symfile_flags = SYMFILE_NO_READ; |
6c95b8df PA |
1026 | clone_program_space (pspace, inf->vfork_parent->pspace); |
1027 | inf->pspace = pspace; | |
1028 | inf->aspace = pspace->aspace; | |
1029 | ||
1030 | /* Put back inferior_ptid. We'll continue mourning this | |
1777feb0 | 1031 | inferior. */ |
6c95b8df PA |
1032 | do_cleanups (old_chain); |
1033 | ||
1034 | resume_parent = inf->vfork_parent->pid; | |
1035 | /* Break the bonds. */ | |
1036 | inf->vfork_parent->vfork_child = NULL; | |
1037 | } | |
1038 | ||
1039 | inf->vfork_parent = NULL; | |
1040 | ||
1041 | gdb_assert (current_program_space == inf->pspace); | |
1042 | ||
1043 | if (non_stop && resume_parent != -1) | |
1044 | { | |
1045 | /* If the user wanted the parent to be running, let it go | |
1046 | free now. */ | |
1047 | struct cleanup *old_chain = make_cleanup_restore_current_thread (); | |
1048 | ||
1049 | if (debug_infrun) | |
3e43a32a MS |
1050 | fprintf_unfiltered (gdb_stdlog, |
1051 | "infrun: resuming vfork parent process %d\n", | |
6c95b8df PA |
1052 | resume_parent); |
1053 | ||
1054 | iterate_over_threads (proceed_after_vfork_done, &resume_parent); | |
1055 | ||
1056 | do_cleanups (old_chain); | |
1057 | } | |
1058 | } | |
1059 | } | |
1060 | ||
eb6c553b | 1061 | /* Enum strings for "set|show follow-exec-mode". */ |
6c95b8df PA |
1062 | |
1063 | static const char follow_exec_mode_new[] = "new"; | |
1064 | static const char follow_exec_mode_same[] = "same"; | |
40478521 | 1065 | static const char *const follow_exec_mode_names[] = |
6c95b8df PA |
1066 | { |
1067 | follow_exec_mode_new, | |
1068 | follow_exec_mode_same, | |
1069 | NULL, | |
1070 | }; | |
1071 | ||
1072 | static const char *follow_exec_mode_string = follow_exec_mode_same; | |
1073 | static void | |
1074 | show_follow_exec_mode_string (struct ui_file *file, int from_tty, | |
1075 | struct cmd_list_element *c, const char *value) | |
1076 | { | |
1077 | fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value); | |
1078 | } | |
1079 | ||
1777feb0 | 1080 | /* EXECD_PATHNAME is assumed to be non-NULL. */ |
1adeb98a | 1081 | |
c906108c | 1082 | static void |
95e50b27 | 1083 | follow_exec (ptid_t ptid, char *execd_pathname) |
c906108c | 1084 | { |
95e50b27 | 1085 | struct thread_info *th, *tmp; |
6c95b8df | 1086 | struct inferior *inf = current_inferior (); |
95e50b27 | 1087 | int pid = ptid_get_pid (ptid); |
94585166 | 1088 | ptid_t process_ptid; |
7a292a7a | 1089 | |
c906108c SS |
1090 | /* This is an exec event that we actually wish to pay attention to. |
1091 | Refresh our symbol table to the newly exec'd program, remove any | |
1092 | momentary bp's, etc. | |
1093 | ||
1094 | If there are breakpoints, they aren't really inserted now, | |
1095 | since the exec() transformed our inferior into a fresh set | |
1096 | of instructions. | |
1097 | ||
1098 | We want to preserve symbolic breakpoints on the list, since | |
1099 | we have hopes that they can be reset after the new a.out's | |
1100 | symbol table is read. | |
1101 | ||
1102 | However, any "raw" breakpoints must be removed from the list | |
1103 | (e.g., the solib bp's), since their address is probably invalid | |
1104 | now. | |
1105 | ||
1106 | And, we DON'T want to call delete_breakpoints() here, since | |
1107 | that may write the bp's "shadow contents" (the instruction | |
1108 | value that was overwritten witha TRAP instruction). Since | |
1777feb0 | 1109 | we now have a new a.out, those shadow contents aren't valid. */ |
6c95b8df PA |
1110 | |
1111 | mark_breakpoints_out (); | |
1112 | ||
95e50b27 PA |
1113 | /* The target reports the exec event to the main thread, even if |
1114 | some other thread does the exec, and even if the main thread was | |
1115 | stopped or already gone. We may still have non-leader threads of | |
1116 | the process on our list. E.g., on targets that don't have thread | |
1117 | exit events (like remote); or on native Linux in non-stop mode if | |
1118 | there were only two threads in the inferior and the non-leader | |
1119 | one is the one that execs (and nothing forces an update of the | |
1120 | thread list up to here). When debugging remotely, it's best to | |
1121 | avoid extra traffic, when possible, so avoid syncing the thread | |
1122 | list with the target, and instead go ahead and delete all threads | |
1123 | of the process but one that reported the event. Note this must | |
1124 | be done before calling update_breakpoints_after_exec, as | |
1125 | otherwise clearing the threads' resources would reference stale | |
1126 | thread breakpoints -- it may have been one of these threads that | |
1127 | stepped across the exec. We could just clear their stepping | |
1128 | states, but as long as we're iterating, might as well delete | |
1129 | them. Deleting them now rather than at the next user-visible | |
1130 | stop provides a nicer sequence of events for user and MI | |
1131 | notifications. */ | |
8a06aea7 | 1132 | ALL_THREADS_SAFE (th, tmp) |
95e50b27 PA |
1133 | if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid)) |
1134 | delete_thread (th->ptid); | |
1135 | ||
1136 | /* We also need to clear any left over stale state for the | |
1137 | leader/event thread. E.g., if there was any step-resume | |
1138 | breakpoint or similar, it's gone now. We cannot truly | |
1139 | step-to-next statement through an exec(). */ | |
1140 | th = inferior_thread (); | |
8358c15c | 1141 | th->control.step_resume_breakpoint = NULL; |
186c406b | 1142 | th->control.exception_resume_breakpoint = NULL; |
34b7e8a6 | 1143 | th->control.single_step_breakpoints = NULL; |
16c381f0 JK |
1144 | th->control.step_range_start = 0; |
1145 | th->control.step_range_end = 0; | |
c906108c | 1146 | |
95e50b27 PA |
1147 | /* The user may have had the main thread held stopped in the |
1148 | previous image (e.g., schedlock on, or non-stop). Release | |
1149 | it now. */ | |
a75724bc PA |
1150 | th->stop_requested = 0; |
1151 | ||
95e50b27 PA |
1152 | update_breakpoints_after_exec (); |
1153 | ||
1777feb0 | 1154 | /* What is this a.out's name? */ |
94585166 | 1155 | process_ptid = pid_to_ptid (pid); |
6c95b8df | 1156 | printf_unfiltered (_("%s is executing new program: %s\n"), |
94585166 | 1157 | target_pid_to_str (process_ptid), |
6c95b8df | 1158 | execd_pathname); |
c906108c SS |
1159 | |
1160 | /* We've followed the inferior through an exec. Therefore, the | |
1777feb0 | 1161 | inferior has essentially been killed & reborn. */ |
7a292a7a | 1162 | |
c906108c | 1163 | gdb_flush (gdb_stdout); |
6ca15a4b PA |
1164 | |
1165 | breakpoint_init_inferior (inf_execd); | |
e85a822c | 1166 | |
a3be80c3 | 1167 | if (*gdb_sysroot != '\0') |
e85a822c | 1168 | { |
998d2a3e | 1169 | char *name = exec_file_find (execd_pathname, NULL); |
ff862be4 | 1170 | |
224c3ddb | 1171 | execd_pathname = (char *) alloca (strlen (name) + 1); |
ff862be4 GB |
1172 | strcpy (execd_pathname, name); |
1173 | xfree (name); | |
e85a822c | 1174 | } |
c906108c | 1175 | |
cce9b6bf PA |
1176 | /* Reset the shared library package. This ensures that we get a |
1177 | shlib event when the child reaches "_start", at which point the | |
1178 | dld will have had a chance to initialize the child. */ | |
1179 | /* Also, loading a symbol file below may trigger symbol lookups, and | |
1180 | we don't want those to be satisfied by the libraries of the | |
1181 | previous incarnation of this process. */ | |
1182 | no_shared_libraries (NULL, 0); | |
1183 | ||
6c95b8df PA |
1184 | if (follow_exec_mode_string == follow_exec_mode_new) |
1185 | { | |
6c95b8df PA |
1186 | /* The user wants to keep the old inferior and program spaces |
1187 | around. Create a new fresh one, and switch to it. */ | |
1188 | ||
17d8546e DB |
1189 | /* Do exit processing for the original inferior before adding |
1190 | the new inferior so we don't have two active inferiors with | |
1191 | the same ptid, which can confuse find_inferior_ptid. */ | |
1192 | exit_inferior_num_silent (current_inferior ()->num); | |
1193 | ||
94585166 DB |
1194 | inf = add_inferior_with_spaces (); |
1195 | inf->pid = pid; | |
1196 | target_follow_exec (inf, execd_pathname); | |
6c95b8df PA |
1197 | |
1198 | set_current_inferior (inf); | |
94585166 DB |
1199 | set_current_program_space (inf->pspace); |
1200 | add_thread (ptid); | |
6c95b8df | 1201 | } |
9107fc8d PA |
1202 | else |
1203 | { | |
1204 | /* The old description may no longer be fit for the new image. | |
1205 | E.g, a 64-bit process exec'ed a 32-bit process. Clear the | |
1206 | old description; we'll read a new one below. No need to do | |
1207 | this on "follow-exec-mode new", as the old inferior stays | |
1208 | around (its description is later cleared/refetched on | |
1209 | restart). */ | |
1210 | target_clear_description (); | |
1211 | } | |
6c95b8df PA |
1212 | |
1213 | gdb_assert (current_program_space == inf->pspace); | |
1214 | ||
1777feb0 | 1215 | /* That a.out is now the one to use. */ |
6c95b8df PA |
1216 | exec_file_attach (execd_pathname, 0); |
1217 | ||
c1e56572 JK |
1218 | /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE |
1219 | (Position Independent Executable) main symbol file will get applied by | |
1220 | solib_create_inferior_hook below. breakpoint_re_set would fail to insert | |
1221 | the breakpoints with the zero displacement. */ | |
1222 | ||
7dcd53a0 TT |
1223 | symbol_file_add (execd_pathname, |
1224 | (inf->symfile_flags | |
1225 | | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET), | |
c1e56572 JK |
1226 | NULL, 0); |
1227 | ||
7dcd53a0 TT |
1228 | if ((inf->symfile_flags & SYMFILE_NO_READ) == 0) |
1229 | set_initial_language (); | |
c906108c | 1230 | |
9107fc8d PA |
1231 | /* If the target can specify a description, read it. Must do this |
1232 | after flipping to the new executable (because the target supplied | |
1233 | description must be compatible with the executable's | |
1234 | architecture, and the old executable may e.g., be 32-bit, while | |
1235 | the new one 64-bit), and before anything involving memory or | |
1236 | registers. */ | |
1237 | target_find_description (); | |
1238 | ||
268a4a75 | 1239 | solib_create_inferior_hook (0); |
c906108c | 1240 | |
4efc6507 DE |
1241 | jit_inferior_created_hook (); |
1242 | ||
c1e56572 JK |
1243 | breakpoint_re_set (); |
1244 | ||
c906108c SS |
1245 | /* Reinsert all breakpoints. (Those which were symbolic have |
1246 | been reset to the proper address in the new a.out, thanks | |
1777feb0 | 1247 | to symbol_file_command...). */ |
c906108c SS |
1248 | insert_breakpoints (); |
1249 | ||
1250 | /* The next resume of this inferior should bring it to the shlib | |
1251 | startup breakpoints. (If the user had also set bp's on | |
1252 | "main" from the old (parent) process, then they'll auto- | |
1777feb0 | 1253 | matically get reset there in the new process.). */ |
c906108c SS |
1254 | } |
1255 | ||
c2829269 PA |
1256 | /* The queue of threads that need to do a step-over operation to get |
1257 | past e.g., a breakpoint. What technique is used to step over the | |
1258 | breakpoint/watchpoint does not matter -- all threads end up in the | |
1259 | same queue, to maintain rough temporal order of execution, in order | |
1260 | to avoid starvation, otherwise, we could e.g., find ourselves | |
1261 | constantly stepping the same couple threads past their breakpoints | |
1262 | over and over, if the single-step finish fast enough. */ | |
1263 | struct thread_info *step_over_queue_head; | |
1264 | ||
6c4cfb24 PA |
1265 | /* Bit flags indicating what the thread needs to step over. */ |
1266 | ||
8d297bbf | 1267 | enum step_over_what_flag |
6c4cfb24 PA |
1268 | { |
1269 | /* Step over a breakpoint. */ | |
1270 | STEP_OVER_BREAKPOINT = 1, | |
1271 | ||
1272 | /* Step past a non-continuable watchpoint, in order to let the | |
1273 | instruction execute so we can evaluate the watchpoint | |
1274 | expression. */ | |
1275 | STEP_OVER_WATCHPOINT = 2 | |
1276 | }; | |
8d297bbf | 1277 | DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what); |
6c4cfb24 | 1278 | |
963f9c80 | 1279 | /* Info about an instruction that is being stepped over. */ |
31e77af2 PA |
1280 | |
1281 | struct step_over_info | |
1282 | { | |
963f9c80 PA |
1283 | /* If we're stepping past a breakpoint, this is the address space |
1284 | and address of the instruction the breakpoint is set at. We'll | |
1285 | skip inserting all breakpoints here. Valid iff ASPACE is | |
1286 | non-NULL. */ | |
31e77af2 | 1287 | struct address_space *aspace; |
31e77af2 | 1288 | CORE_ADDR address; |
963f9c80 PA |
1289 | |
1290 | /* The instruction being stepped over triggers a nonsteppable | |
1291 | watchpoint. If true, we'll skip inserting watchpoints. */ | |
1292 | int nonsteppable_watchpoint_p; | |
21edc42f YQ |
1293 | |
1294 | /* The thread's global number. */ | |
1295 | int thread; | |
31e77af2 PA |
1296 | }; |
1297 | ||
1298 | /* The step-over info of the location that is being stepped over. | |
1299 | ||
1300 | Note that with async/breakpoint always-inserted mode, a user might | |
1301 | set a new breakpoint/watchpoint/etc. exactly while a breakpoint is | |
1302 | being stepped over. As setting a new breakpoint inserts all | |
1303 | breakpoints, we need to make sure the breakpoint being stepped over | |
1304 | isn't inserted then. We do that by only clearing the step-over | |
1305 | info when the step-over is actually finished (or aborted). | |
1306 | ||
1307 | Presently GDB can only step over one breakpoint at any given time. | |
1308 | Given threads that can't run code in the same address space as the | |
1309 | breakpoint's can't really miss the breakpoint, GDB could be taught | |
1310 | to step-over at most one breakpoint per address space (so this info | |
1311 | could move to the address space object if/when GDB is extended). | |
1312 | The set of breakpoints being stepped over will normally be much | |
1313 | smaller than the set of all breakpoints, so a flag in the | |
1314 | breakpoint location structure would be wasteful. A separate list | |
1315 | also saves complexity and run-time, as otherwise we'd have to go | |
1316 | through all breakpoint locations clearing their flag whenever we | |
1317 | start a new sequence. Similar considerations weigh against storing | |
1318 | this info in the thread object. Plus, not all step overs actually | |
1319 | have breakpoint locations -- e.g., stepping past a single-step | |
1320 | breakpoint, or stepping to complete a non-continuable | |
1321 | watchpoint. */ | |
1322 | static struct step_over_info step_over_info; | |
1323 | ||
1324 | /* Record the address of the breakpoint/instruction we're currently | |
1325 | stepping over. */ | |
1326 | ||
1327 | static void | |
963f9c80 | 1328 | set_step_over_info (struct address_space *aspace, CORE_ADDR address, |
21edc42f YQ |
1329 | int nonsteppable_watchpoint_p, |
1330 | int thread) | |
31e77af2 PA |
1331 | { |
1332 | step_over_info.aspace = aspace; | |
1333 | step_over_info.address = address; | |
963f9c80 | 1334 | step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p; |
21edc42f | 1335 | step_over_info.thread = thread; |
31e77af2 PA |
1336 | } |
1337 | ||
1338 | /* Called when we're not longer stepping over a breakpoint / an | |
1339 | instruction, so all breakpoints are free to be (re)inserted. */ | |
1340 | ||
1341 | static void | |
1342 | clear_step_over_info (void) | |
1343 | { | |
372316f1 PA |
1344 | if (debug_infrun) |
1345 | fprintf_unfiltered (gdb_stdlog, | |
1346 | "infrun: clear_step_over_info\n"); | |
31e77af2 PA |
1347 | step_over_info.aspace = NULL; |
1348 | step_over_info.address = 0; | |
963f9c80 | 1349 | step_over_info.nonsteppable_watchpoint_p = 0; |
21edc42f | 1350 | step_over_info.thread = -1; |
31e77af2 PA |
1351 | } |
1352 | ||
7f89fd65 | 1353 | /* See infrun.h. */ |
31e77af2 PA |
1354 | |
1355 | int | |
1356 | stepping_past_instruction_at (struct address_space *aspace, | |
1357 | CORE_ADDR address) | |
1358 | { | |
1359 | return (step_over_info.aspace != NULL | |
1360 | && breakpoint_address_match (aspace, address, | |
1361 | step_over_info.aspace, | |
1362 | step_over_info.address)); | |
1363 | } | |
1364 | ||
963f9c80 PA |
1365 | /* See infrun.h. */ |
1366 | ||
21edc42f YQ |
1367 | int |
1368 | thread_is_stepping_over_breakpoint (int thread) | |
1369 | { | |
1370 | return (step_over_info.thread != -1 | |
1371 | && thread == step_over_info.thread); | |
1372 | } | |
1373 | ||
1374 | /* See infrun.h. */ | |
1375 | ||
963f9c80 PA |
1376 | int |
1377 | stepping_past_nonsteppable_watchpoint (void) | |
1378 | { | |
1379 | return step_over_info.nonsteppable_watchpoint_p; | |
1380 | } | |
1381 | ||
6cc83d2a PA |
1382 | /* Returns true if step-over info is valid. */ |
1383 | ||
1384 | static int | |
1385 | step_over_info_valid_p (void) | |
1386 | { | |
963f9c80 PA |
1387 | return (step_over_info.aspace != NULL |
1388 | || stepping_past_nonsteppable_watchpoint ()); | |
6cc83d2a PA |
1389 | } |
1390 | ||
c906108c | 1391 | \f |
237fc4c9 PA |
1392 | /* Displaced stepping. */ |
1393 | ||
1394 | /* In non-stop debugging mode, we must take special care to manage | |
1395 | breakpoints properly; in particular, the traditional strategy for | |
1396 | stepping a thread past a breakpoint it has hit is unsuitable. | |
1397 | 'Displaced stepping' is a tactic for stepping one thread past a | |
1398 | breakpoint it has hit while ensuring that other threads running | |
1399 | concurrently will hit the breakpoint as they should. | |
1400 | ||
1401 | The traditional way to step a thread T off a breakpoint in a | |
1402 | multi-threaded program in all-stop mode is as follows: | |
1403 | ||
1404 | a0) Initially, all threads are stopped, and breakpoints are not | |
1405 | inserted. | |
1406 | a1) We single-step T, leaving breakpoints uninserted. | |
1407 | a2) We insert breakpoints, and resume all threads. | |
1408 | ||
1409 | In non-stop debugging, however, this strategy is unsuitable: we | |
1410 | don't want to have to stop all threads in the system in order to | |
1411 | continue or step T past a breakpoint. Instead, we use displaced | |
1412 | stepping: | |
1413 | ||
1414 | n0) Initially, T is stopped, other threads are running, and | |
1415 | breakpoints are inserted. | |
1416 | n1) We copy the instruction "under" the breakpoint to a separate | |
1417 | location, outside the main code stream, making any adjustments | |
1418 | to the instruction, register, and memory state as directed by | |
1419 | T's architecture. | |
1420 | n2) We single-step T over the instruction at its new location. | |
1421 | n3) We adjust the resulting register and memory state as directed | |
1422 | by T's architecture. This includes resetting T's PC to point | |
1423 | back into the main instruction stream. | |
1424 | n4) We resume T. | |
1425 | ||
1426 | This approach depends on the following gdbarch methods: | |
1427 | ||
1428 | - gdbarch_max_insn_length and gdbarch_displaced_step_location | |
1429 | indicate where to copy the instruction, and how much space must | |
1430 | be reserved there. We use these in step n1. | |
1431 | ||
1432 | - gdbarch_displaced_step_copy_insn copies a instruction to a new | |
1433 | address, and makes any necessary adjustments to the instruction, | |
1434 | register contents, and memory. We use this in step n1. | |
1435 | ||
1436 | - gdbarch_displaced_step_fixup adjusts registers and memory after | |
1437 | we have successfuly single-stepped the instruction, to yield the | |
1438 | same effect the instruction would have had if we had executed it | |
1439 | at its original address. We use this in step n3. | |
1440 | ||
1441 | - gdbarch_displaced_step_free_closure provides cleanup. | |
1442 | ||
1443 | The gdbarch_displaced_step_copy_insn and | |
1444 | gdbarch_displaced_step_fixup functions must be written so that | |
1445 | copying an instruction with gdbarch_displaced_step_copy_insn, | |
1446 | single-stepping across the copied instruction, and then applying | |
1447 | gdbarch_displaced_insn_fixup should have the same effects on the | |
1448 | thread's memory and registers as stepping the instruction in place | |
1449 | would have. Exactly which responsibilities fall to the copy and | |
1450 | which fall to the fixup is up to the author of those functions. | |
1451 | ||
1452 | See the comments in gdbarch.sh for details. | |
1453 | ||
1454 | Note that displaced stepping and software single-step cannot | |
1455 | currently be used in combination, although with some care I think | |
1456 | they could be made to. Software single-step works by placing | |
1457 | breakpoints on all possible subsequent instructions; if the | |
1458 | displaced instruction is a PC-relative jump, those breakpoints | |
1459 | could fall in very strange places --- on pages that aren't | |
1460 | executable, or at addresses that are not proper instruction | |
1461 | boundaries. (We do generally let other threads run while we wait | |
1462 | to hit the software single-step breakpoint, and they might | |
1463 | encounter such a corrupted instruction.) One way to work around | |
1464 | this would be to have gdbarch_displaced_step_copy_insn fully | |
1465 | simulate the effect of PC-relative instructions (and return NULL) | |
1466 | on architectures that use software single-stepping. | |
1467 | ||
1468 | In non-stop mode, we can have independent and simultaneous step | |
1469 | requests, so more than one thread may need to simultaneously step | |
1470 | over a breakpoint. The current implementation assumes there is | |
1471 | only one scratch space per process. In this case, we have to | |
1472 | serialize access to the scratch space. If thread A wants to step | |
1473 | over a breakpoint, but we are currently waiting for some other | |
1474 | thread to complete a displaced step, we leave thread A stopped and | |
1475 | place it in the displaced_step_request_queue. Whenever a displaced | |
1476 | step finishes, we pick the next thread in the queue and start a new | |
1477 | displaced step operation on it. See displaced_step_prepare and | |
1478 | displaced_step_fixup for details. */ | |
1479 | ||
fc1cf338 PA |
1480 | /* Per-inferior displaced stepping state. */ |
1481 | struct displaced_step_inferior_state | |
1482 | { | |
1483 | /* Pointer to next in linked list. */ | |
1484 | struct displaced_step_inferior_state *next; | |
1485 | ||
1486 | /* The process this displaced step state refers to. */ | |
1487 | int pid; | |
1488 | ||
3fc8eb30 PA |
1489 | /* True if preparing a displaced step ever failed. If so, we won't |
1490 | try displaced stepping for this inferior again. */ | |
1491 | int failed_before; | |
1492 | ||
fc1cf338 PA |
1493 | /* If this is not null_ptid, this is the thread carrying out a |
1494 | displaced single-step in process PID. This thread's state will | |
1495 | require fixing up once it has completed its step. */ | |
1496 | ptid_t step_ptid; | |
1497 | ||
1498 | /* The architecture the thread had when we stepped it. */ | |
1499 | struct gdbarch *step_gdbarch; | |
1500 | ||
1501 | /* The closure provided gdbarch_displaced_step_copy_insn, to be used | |
1502 | for post-step cleanup. */ | |
1503 | struct displaced_step_closure *step_closure; | |
1504 | ||
1505 | /* The address of the original instruction, and the copy we | |
1506 | made. */ | |
1507 | CORE_ADDR step_original, step_copy; | |
1508 | ||
1509 | /* Saved contents of copy area. */ | |
1510 | gdb_byte *step_saved_copy; | |
1511 | }; | |
1512 | ||
1513 | /* The list of states of processes involved in displaced stepping | |
1514 | presently. */ | |
1515 | static struct displaced_step_inferior_state *displaced_step_inferior_states; | |
1516 | ||
1517 | /* Get the displaced stepping state of process PID. */ | |
1518 | ||
1519 | static struct displaced_step_inferior_state * | |
1520 | get_displaced_stepping_state (int pid) | |
1521 | { | |
1522 | struct displaced_step_inferior_state *state; | |
1523 | ||
1524 | for (state = displaced_step_inferior_states; | |
1525 | state != NULL; | |
1526 | state = state->next) | |
1527 | if (state->pid == pid) | |
1528 | return state; | |
1529 | ||
1530 | return NULL; | |
1531 | } | |
1532 | ||
372316f1 PA |
1533 | /* Returns true if any inferior has a thread doing a displaced |
1534 | step. */ | |
1535 | ||
1536 | static int | |
1537 | displaced_step_in_progress_any_inferior (void) | |
1538 | { | |
1539 | struct displaced_step_inferior_state *state; | |
1540 | ||
1541 | for (state = displaced_step_inferior_states; | |
1542 | state != NULL; | |
1543 | state = state->next) | |
1544 | if (!ptid_equal (state->step_ptid, null_ptid)) | |
1545 | return 1; | |
1546 | ||
1547 | return 0; | |
1548 | } | |
1549 | ||
c0987663 YQ |
1550 | /* Return true if thread represented by PTID is doing a displaced |
1551 | step. */ | |
1552 | ||
1553 | static int | |
1554 | displaced_step_in_progress_thread (ptid_t ptid) | |
1555 | { | |
1556 | struct displaced_step_inferior_state *displaced; | |
1557 | ||
1558 | gdb_assert (!ptid_equal (ptid, null_ptid)); | |
1559 | ||
1560 | displaced = get_displaced_stepping_state (ptid_get_pid (ptid)); | |
1561 | ||
1562 | return (displaced != NULL && ptid_equal (displaced->step_ptid, ptid)); | |
1563 | } | |
1564 | ||
8f572e5c PA |
1565 | /* Return true if process PID has a thread doing a displaced step. */ |
1566 | ||
1567 | static int | |
1568 | displaced_step_in_progress (int pid) | |
1569 | { | |
1570 | struct displaced_step_inferior_state *displaced; | |
1571 | ||
1572 | displaced = get_displaced_stepping_state (pid); | |
1573 | if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid)) | |
1574 | return 1; | |
1575 | ||
1576 | return 0; | |
1577 | } | |
1578 | ||
fc1cf338 PA |
1579 | /* Add a new displaced stepping state for process PID to the displaced |
1580 | stepping state list, or return a pointer to an already existing | |
1581 | entry, if it already exists. Never returns NULL. */ | |
1582 | ||
1583 | static struct displaced_step_inferior_state * | |
1584 | add_displaced_stepping_state (int pid) | |
1585 | { | |
1586 | struct displaced_step_inferior_state *state; | |
1587 | ||
1588 | for (state = displaced_step_inferior_states; | |
1589 | state != NULL; | |
1590 | state = state->next) | |
1591 | if (state->pid == pid) | |
1592 | return state; | |
237fc4c9 | 1593 | |
8d749320 | 1594 | state = XCNEW (struct displaced_step_inferior_state); |
fc1cf338 PA |
1595 | state->pid = pid; |
1596 | state->next = displaced_step_inferior_states; | |
1597 | displaced_step_inferior_states = state; | |
237fc4c9 | 1598 | |
fc1cf338 PA |
1599 | return state; |
1600 | } | |
1601 | ||
a42244db YQ |
1602 | /* If inferior is in displaced stepping, and ADDR equals to starting address |
1603 | of copy area, return corresponding displaced_step_closure. Otherwise, | |
1604 | return NULL. */ | |
1605 | ||
1606 | struct displaced_step_closure* | |
1607 | get_displaced_step_closure_by_addr (CORE_ADDR addr) | |
1608 | { | |
1609 | struct displaced_step_inferior_state *displaced | |
1610 | = get_displaced_stepping_state (ptid_get_pid (inferior_ptid)); | |
1611 | ||
1612 | /* If checking the mode of displaced instruction in copy area. */ | |
1613 | if (displaced && !ptid_equal (displaced->step_ptid, null_ptid) | |
1614 | && (displaced->step_copy == addr)) | |
1615 | return displaced->step_closure; | |
1616 | ||
1617 | return NULL; | |
1618 | } | |
1619 | ||
fc1cf338 | 1620 | /* Remove the displaced stepping state of process PID. */ |
237fc4c9 | 1621 | |
fc1cf338 PA |
1622 | static void |
1623 | remove_displaced_stepping_state (int pid) | |
1624 | { | |
1625 | struct displaced_step_inferior_state *it, **prev_next_p; | |
237fc4c9 | 1626 | |
fc1cf338 PA |
1627 | gdb_assert (pid != 0); |
1628 | ||
1629 | it = displaced_step_inferior_states; | |
1630 | prev_next_p = &displaced_step_inferior_states; | |
1631 | while (it) | |
1632 | { | |
1633 | if (it->pid == pid) | |
1634 | { | |
1635 | *prev_next_p = it->next; | |
1636 | xfree (it); | |
1637 | return; | |
1638 | } | |
1639 | ||
1640 | prev_next_p = &it->next; | |
1641 | it = *prev_next_p; | |
1642 | } | |
1643 | } | |
1644 | ||
1645 | static void | |
1646 | infrun_inferior_exit (struct inferior *inf) | |
1647 | { | |
1648 | remove_displaced_stepping_state (inf->pid); | |
1649 | } | |
237fc4c9 | 1650 | |
fff08868 HZ |
1651 | /* If ON, and the architecture supports it, GDB will use displaced |
1652 | stepping to step over breakpoints. If OFF, or if the architecture | |
1653 | doesn't support it, GDB will instead use the traditional | |
1654 | hold-and-step approach. If AUTO (which is the default), GDB will | |
1655 | decide which technique to use to step over breakpoints depending on | |
1656 | which of all-stop or non-stop mode is active --- displaced stepping | |
1657 | in non-stop mode; hold-and-step in all-stop mode. */ | |
1658 | ||
72d0e2c5 | 1659 | static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO; |
fff08868 | 1660 | |
237fc4c9 PA |
1661 | static void |
1662 | show_can_use_displaced_stepping (struct ui_file *file, int from_tty, | |
1663 | struct cmd_list_element *c, | |
1664 | const char *value) | |
1665 | { | |
72d0e2c5 | 1666 | if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO) |
3e43a32a MS |
1667 | fprintf_filtered (file, |
1668 | _("Debugger's willingness to use displaced stepping " | |
1669 | "to step over breakpoints is %s (currently %s).\n"), | |
fbea99ea | 1670 | value, target_is_non_stop_p () ? "on" : "off"); |
fff08868 | 1671 | else |
3e43a32a MS |
1672 | fprintf_filtered (file, |
1673 | _("Debugger's willingness to use displaced stepping " | |
1674 | "to step over breakpoints is %s.\n"), value); | |
237fc4c9 PA |
1675 | } |
1676 | ||
fff08868 | 1677 | /* Return non-zero if displaced stepping can/should be used to step |
3fc8eb30 | 1678 | over breakpoints of thread TP. */ |
fff08868 | 1679 | |
237fc4c9 | 1680 | static int |
3fc8eb30 | 1681 | use_displaced_stepping (struct thread_info *tp) |
237fc4c9 | 1682 | { |
3fc8eb30 PA |
1683 | struct regcache *regcache = get_thread_regcache (tp->ptid); |
1684 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
1685 | struct displaced_step_inferior_state *displaced_state; | |
1686 | ||
1687 | displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid)); | |
1688 | ||
fbea99ea PA |
1689 | return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO |
1690 | && target_is_non_stop_p ()) | |
72d0e2c5 | 1691 | || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE) |
96429cc8 | 1692 | && gdbarch_displaced_step_copy_insn_p (gdbarch) |
3fc8eb30 PA |
1693 | && find_record_target () == NULL |
1694 | && (displaced_state == NULL | |
1695 | || !displaced_state->failed_before)); | |
237fc4c9 PA |
1696 | } |
1697 | ||
1698 | /* Clean out any stray displaced stepping state. */ | |
1699 | static void | |
fc1cf338 | 1700 | displaced_step_clear (struct displaced_step_inferior_state *displaced) |
237fc4c9 PA |
1701 | { |
1702 | /* Indicate that there is no cleanup pending. */ | |
fc1cf338 | 1703 | displaced->step_ptid = null_ptid; |
237fc4c9 | 1704 | |
fc1cf338 | 1705 | if (displaced->step_closure) |
237fc4c9 | 1706 | { |
fc1cf338 PA |
1707 | gdbarch_displaced_step_free_closure (displaced->step_gdbarch, |
1708 | displaced->step_closure); | |
1709 | displaced->step_closure = NULL; | |
237fc4c9 PA |
1710 | } |
1711 | } | |
1712 | ||
1713 | static void | |
fc1cf338 | 1714 | displaced_step_clear_cleanup (void *arg) |
237fc4c9 | 1715 | { |
9a3c8263 SM |
1716 | struct displaced_step_inferior_state *state |
1717 | = (struct displaced_step_inferior_state *) arg; | |
fc1cf338 PA |
1718 | |
1719 | displaced_step_clear (state); | |
237fc4c9 PA |
1720 | } |
1721 | ||
1722 | /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */ | |
1723 | void | |
1724 | displaced_step_dump_bytes (struct ui_file *file, | |
1725 | const gdb_byte *buf, | |
1726 | size_t len) | |
1727 | { | |
1728 | int i; | |
1729 | ||
1730 | for (i = 0; i < len; i++) | |
1731 | fprintf_unfiltered (file, "%02x ", buf[i]); | |
1732 | fputs_unfiltered ("\n", file); | |
1733 | } | |
1734 | ||
1735 | /* Prepare to single-step, using displaced stepping. | |
1736 | ||
1737 | Note that we cannot use displaced stepping when we have a signal to | |
1738 | deliver. If we have a signal to deliver and an instruction to step | |
1739 | over, then after the step, there will be no indication from the | |
1740 | target whether the thread entered a signal handler or ignored the | |
1741 | signal and stepped over the instruction successfully --- both cases | |
1742 | result in a simple SIGTRAP. In the first case we mustn't do a | |
1743 | fixup, and in the second case we must --- but we can't tell which. | |
1744 | Comments in the code for 'random signals' in handle_inferior_event | |
1745 | explain how we handle this case instead. | |
1746 | ||
1747 | Returns 1 if preparing was successful -- this thread is going to be | |
7f03bd92 PA |
1748 | stepped now; 0 if displaced stepping this thread got queued; or -1 |
1749 | if this instruction can't be displaced stepped. */ | |
1750 | ||
237fc4c9 | 1751 | static int |
3fc8eb30 | 1752 | displaced_step_prepare_throw (ptid_t ptid) |
237fc4c9 | 1753 | { |
ad53cd71 | 1754 | struct cleanup *old_cleanups, *ignore_cleanups; |
c1e36e3e | 1755 | struct thread_info *tp = find_thread_ptid (ptid); |
237fc4c9 PA |
1756 | struct regcache *regcache = get_thread_regcache (ptid); |
1757 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
d35ae833 | 1758 | struct address_space *aspace = get_regcache_aspace (regcache); |
237fc4c9 PA |
1759 | CORE_ADDR original, copy; |
1760 | ULONGEST len; | |
1761 | struct displaced_step_closure *closure; | |
fc1cf338 | 1762 | struct displaced_step_inferior_state *displaced; |
9e529e1d | 1763 | int status; |
237fc4c9 PA |
1764 | |
1765 | /* We should never reach this function if the architecture does not | |
1766 | support displaced stepping. */ | |
1767 | gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch)); | |
1768 | ||
c2829269 PA |
1769 | /* Nor if the thread isn't meant to step over a breakpoint. */ |
1770 | gdb_assert (tp->control.trap_expected); | |
1771 | ||
c1e36e3e PA |
1772 | /* Disable range stepping while executing in the scratch pad. We |
1773 | want a single-step even if executing the displaced instruction in | |
1774 | the scratch buffer lands within the stepping range (e.g., a | |
1775 | jump/branch). */ | |
1776 | tp->control.may_range_step = 0; | |
1777 | ||
fc1cf338 PA |
1778 | /* We have to displaced step one thread at a time, as we only have |
1779 | access to a single scratch space per inferior. */ | |
237fc4c9 | 1780 | |
fc1cf338 PA |
1781 | displaced = add_displaced_stepping_state (ptid_get_pid (ptid)); |
1782 | ||
1783 | if (!ptid_equal (displaced->step_ptid, null_ptid)) | |
237fc4c9 PA |
1784 | { |
1785 | /* Already waiting for a displaced step to finish. Defer this | |
1786 | request and place in queue. */ | |
237fc4c9 PA |
1787 | |
1788 | if (debug_displaced) | |
1789 | fprintf_unfiltered (gdb_stdlog, | |
c2829269 | 1790 | "displaced: deferring step of %s\n", |
237fc4c9 PA |
1791 | target_pid_to_str (ptid)); |
1792 | ||
c2829269 | 1793 | thread_step_over_chain_enqueue (tp); |
237fc4c9 PA |
1794 | return 0; |
1795 | } | |
1796 | else | |
1797 | { | |
1798 | if (debug_displaced) | |
1799 | fprintf_unfiltered (gdb_stdlog, | |
1800 | "displaced: stepping %s now\n", | |
1801 | target_pid_to_str (ptid)); | |
1802 | } | |
1803 | ||
fc1cf338 | 1804 | displaced_step_clear (displaced); |
237fc4c9 | 1805 | |
ad53cd71 PA |
1806 | old_cleanups = save_inferior_ptid (); |
1807 | inferior_ptid = ptid; | |
1808 | ||
515630c5 | 1809 | original = regcache_read_pc (regcache); |
237fc4c9 PA |
1810 | |
1811 | copy = gdbarch_displaced_step_location (gdbarch); | |
1812 | len = gdbarch_max_insn_length (gdbarch); | |
1813 | ||
d35ae833 PA |
1814 | if (breakpoint_in_range_p (aspace, copy, len)) |
1815 | { | |
1816 | /* There's a breakpoint set in the scratch pad location range | |
1817 | (which is usually around the entry point). We'd either | |
1818 | install it before resuming, which would overwrite/corrupt the | |
1819 | scratch pad, or if it was already inserted, this displaced | |
1820 | step would overwrite it. The latter is OK in the sense that | |
1821 | we already assume that no thread is going to execute the code | |
1822 | in the scratch pad range (after initial startup) anyway, but | |
1823 | the former is unacceptable. Simply punt and fallback to | |
1824 | stepping over this breakpoint in-line. */ | |
1825 | if (debug_displaced) | |
1826 | { | |
1827 | fprintf_unfiltered (gdb_stdlog, | |
1828 | "displaced: breakpoint set in scratch pad. " | |
1829 | "Stepping over breakpoint in-line instead.\n"); | |
1830 | } | |
1831 | ||
1832 | do_cleanups (old_cleanups); | |
1833 | return -1; | |
1834 | } | |
1835 | ||
237fc4c9 | 1836 | /* Save the original contents of the copy area. */ |
224c3ddb | 1837 | displaced->step_saved_copy = (gdb_byte *) xmalloc (len); |
ad53cd71 | 1838 | ignore_cleanups = make_cleanup (free_current_contents, |
fc1cf338 | 1839 | &displaced->step_saved_copy); |
9e529e1d JK |
1840 | status = target_read_memory (copy, displaced->step_saved_copy, len); |
1841 | if (status != 0) | |
1842 | throw_error (MEMORY_ERROR, | |
1843 | _("Error accessing memory address %s (%s) for " | |
1844 | "displaced-stepping scratch space."), | |
1845 | paddress (gdbarch, copy), safe_strerror (status)); | |
237fc4c9 PA |
1846 | if (debug_displaced) |
1847 | { | |
5af949e3 UW |
1848 | fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ", |
1849 | paddress (gdbarch, copy)); | |
fc1cf338 PA |
1850 | displaced_step_dump_bytes (gdb_stdlog, |
1851 | displaced->step_saved_copy, | |
1852 | len); | |
237fc4c9 PA |
1853 | }; |
1854 | ||
1855 | closure = gdbarch_displaced_step_copy_insn (gdbarch, | |
ad53cd71 | 1856 | original, copy, regcache); |
7f03bd92 PA |
1857 | if (closure == NULL) |
1858 | { | |
1859 | /* The architecture doesn't know how or want to displaced step | |
1860 | this instruction or instruction sequence. Fallback to | |
1861 | stepping over the breakpoint in-line. */ | |
1862 | do_cleanups (old_cleanups); | |
1863 | return -1; | |
1864 | } | |
237fc4c9 | 1865 | |
9f5a595d UW |
1866 | /* Save the information we need to fix things up if the step |
1867 | succeeds. */ | |
fc1cf338 PA |
1868 | displaced->step_ptid = ptid; |
1869 | displaced->step_gdbarch = gdbarch; | |
1870 | displaced->step_closure = closure; | |
1871 | displaced->step_original = original; | |
1872 | displaced->step_copy = copy; | |
9f5a595d | 1873 | |
fc1cf338 | 1874 | make_cleanup (displaced_step_clear_cleanup, displaced); |
237fc4c9 PA |
1875 | |
1876 | /* Resume execution at the copy. */ | |
515630c5 | 1877 | regcache_write_pc (regcache, copy); |
237fc4c9 | 1878 | |
ad53cd71 PA |
1879 | discard_cleanups (ignore_cleanups); |
1880 | ||
1881 | do_cleanups (old_cleanups); | |
237fc4c9 PA |
1882 | |
1883 | if (debug_displaced) | |
5af949e3 UW |
1884 | fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n", |
1885 | paddress (gdbarch, copy)); | |
237fc4c9 | 1886 | |
237fc4c9 PA |
1887 | return 1; |
1888 | } | |
1889 | ||
3fc8eb30 PA |
1890 | /* Wrapper for displaced_step_prepare_throw that disabled further |
1891 | attempts at displaced stepping if we get a memory error. */ | |
1892 | ||
1893 | static int | |
1894 | displaced_step_prepare (ptid_t ptid) | |
1895 | { | |
1896 | int prepared = -1; | |
1897 | ||
1898 | TRY | |
1899 | { | |
1900 | prepared = displaced_step_prepare_throw (ptid); | |
1901 | } | |
1902 | CATCH (ex, RETURN_MASK_ERROR) | |
1903 | { | |
1904 | struct displaced_step_inferior_state *displaced_state; | |
1905 | ||
16b41842 PA |
1906 | if (ex.error != MEMORY_ERROR |
1907 | && ex.error != NOT_SUPPORTED_ERROR) | |
3fc8eb30 PA |
1908 | throw_exception (ex); |
1909 | ||
1910 | if (debug_infrun) | |
1911 | { | |
1912 | fprintf_unfiltered (gdb_stdlog, | |
1913 | "infrun: disabling displaced stepping: %s\n", | |
1914 | ex.message); | |
1915 | } | |
1916 | ||
1917 | /* Be verbose if "set displaced-stepping" is "on", silent if | |
1918 | "auto". */ | |
1919 | if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE) | |
1920 | { | |
fd7dcb94 | 1921 | warning (_("disabling displaced stepping: %s"), |
3fc8eb30 PA |
1922 | ex.message); |
1923 | } | |
1924 | ||
1925 | /* Disable further displaced stepping attempts. */ | |
1926 | displaced_state | |
1927 | = get_displaced_stepping_state (ptid_get_pid (ptid)); | |
1928 | displaced_state->failed_before = 1; | |
1929 | } | |
1930 | END_CATCH | |
1931 | ||
1932 | return prepared; | |
1933 | } | |
1934 | ||
237fc4c9 | 1935 | static void |
3e43a32a MS |
1936 | write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, |
1937 | const gdb_byte *myaddr, int len) | |
237fc4c9 PA |
1938 | { |
1939 | struct cleanup *ptid_cleanup = save_inferior_ptid (); | |
abbb1732 | 1940 | |
237fc4c9 PA |
1941 | inferior_ptid = ptid; |
1942 | write_memory (memaddr, myaddr, len); | |
1943 | do_cleanups (ptid_cleanup); | |
1944 | } | |
1945 | ||
e2d96639 YQ |
1946 | /* Restore the contents of the copy area for thread PTID. */ |
1947 | ||
1948 | static void | |
1949 | displaced_step_restore (struct displaced_step_inferior_state *displaced, | |
1950 | ptid_t ptid) | |
1951 | { | |
1952 | ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch); | |
1953 | ||
1954 | write_memory_ptid (ptid, displaced->step_copy, | |
1955 | displaced->step_saved_copy, len); | |
1956 | if (debug_displaced) | |
1957 | fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n", | |
1958 | target_pid_to_str (ptid), | |
1959 | paddress (displaced->step_gdbarch, | |
1960 | displaced->step_copy)); | |
1961 | } | |
1962 | ||
372316f1 PA |
1963 | /* If we displaced stepped an instruction successfully, adjust |
1964 | registers and memory to yield the same effect the instruction would | |
1965 | have had if we had executed it at its original address, and return | |
1966 | 1. If the instruction didn't complete, relocate the PC and return | |
1967 | -1. If the thread wasn't displaced stepping, return 0. */ | |
1968 | ||
1969 | static int | |
2ea28649 | 1970 | displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal) |
237fc4c9 PA |
1971 | { |
1972 | struct cleanup *old_cleanups; | |
fc1cf338 PA |
1973 | struct displaced_step_inferior_state *displaced |
1974 | = get_displaced_stepping_state (ptid_get_pid (event_ptid)); | |
372316f1 | 1975 | int ret; |
fc1cf338 PA |
1976 | |
1977 | /* Was any thread of this process doing a displaced step? */ | |
1978 | if (displaced == NULL) | |
372316f1 | 1979 | return 0; |
237fc4c9 PA |
1980 | |
1981 | /* Was this event for the pid we displaced? */ | |
fc1cf338 PA |
1982 | if (ptid_equal (displaced->step_ptid, null_ptid) |
1983 | || ! ptid_equal (displaced->step_ptid, event_ptid)) | |
372316f1 | 1984 | return 0; |
237fc4c9 | 1985 | |
fc1cf338 | 1986 | old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced); |
237fc4c9 | 1987 | |
e2d96639 | 1988 | displaced_step_restore (displaced, displaced->step_ptid); |
237fc4c9 | 1989 | |
cb71640d PA |
1990 | /* Fixup may need to read memory/registers. Switch to the thread |
1991 | that we're fixing up. Also, target_stopped_by_watchpoint checks | |
1992 | the current thread. */ | |
1993 | switch_to_thread (event_ptid); | |
1994 | ||
237fc4c9 | 1995 | /* Did the instruction complete successfully? */ |
cb71640d PA |
1996 | if (signal == GDB_SIGNAL_TRAP |
1997 | && !(target_stopped_by_watchpoint () | |
1998 | && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch) | |
1999 | || target_have_steppable_watchpoint))) | |
237fc4c9 PA |
2000 | { |
2001 | /* Fix up the resulting state. */ | |
fc1cf338 PA |
2002 | gdbarch_displaced_step_fixup (displaced->step_gdbarch, |
2003 | displaced->step_closure, | |
2004 | displaced->step_original, | |
2005 | displaced->step_copy, | |
2006 | get_thread_regcache (displaced->step_ptid)); | |
372316f1 | 2007 | ret = 1; |
237fc4c9 PA |
2008 | } |
2009 | else | |
2010 | { | |
2011 | /* Since the instruction didn't complete, all we can do is | |
2012 | relocate the PC. */ | |
515630c5 UW |
2013 | struct regcache *regcache = get_thread_regcache (event_ptid); |
2014 | CORE_ADDR pc = regcache_read_pc (regcache); | |
abbb1732 | 2015 | |
fc1cf338 | 2016 | pc = displaced->step_original + (pc - displaced->step_copy); |
515630c5 | 2017 | regcache_write_pc (regcache, pc); |
372316f1 | 2018 | ret = -1; |
237fc4c9 PA |
2019 | } |
2020 | ||
2021 | do_cleanups (old_cleanups); | |
2022 | ||
fc1cf338 | 2023 | displaced->step_ptid = null_ptid; |
372316f1 PA |
2024 | |
2025 | return ret; | |
c2829269 | 2026 | } |
1c5cfe86 | 2027 | |
4d9d9d04 PA |
2028 | /* Data to be passed around while handling an event. This data is |
2029 | discarded between events. */ | |
2030 | struct execution_control_state | |
2031 | { | |
2032 | ptid_t ptid; | |
2033 | /* The thread that got the event, if this was a thread event; NULL | |
2034 | otherwise. */ | |
2035 | struct thread_info *event_thread; | |
2036 | ||
2037 | struct target_waitstatus ws; | |
2038 | int stop_func_filled_in; | |
2039 | CORE_ADDR stop_func_start; | |
2040 | CORE_ADDR stop_func_end; | |
2041 | const char *stop_func_name; | |
2042 | int wait_some_more; | |
2043 | ||
2044 | /* True if the event thread hit the single-step breakpoint of | |
2045 | another thread. Thus the event doesn't cause a stop, the thread | |
2046 | needs to be single-stepped past the single-step breakpoint before | |
2047 | we can switch back to the original stepping thread. */ | |
2048 | int hit_singlestep_breakpoint; | |
2049 | }; | |
2050 | ||
2051 | /* Clear ECS and set it to point at TP. */ | |
c2829269 PA |
2052 | |
2053 | static void | |
4d9d9d04 PA |
2054 | reset_ecs (struct execution_control_state *ecs, struct thread_info *tp) |
2055 | { | |
2056 | memset (ecs, 0, sizeof (*ecs)); | |
2057 | ecs->event_thread = tp; | |
2058 | ecs->ptid = tp->ptid; | |
2059 | } | |
2060 | ||
2061 | static void keep_going_pass_signal (struct execution_control_state *ecs); | |
2062 | static void prepare_to_wait (struct execution_control_state *ecs); | |
2ac7589c | 2063 | static int keep_going_stepped_thread (struct thread_info *tp); |
8d297bbf | 2064 | static step_over_what thread_still_needs_step_over (struct thread_info *tp); |
4d9d9d04 PA |
2065 | |
2066 | /* Are there any pending step-over requests? If so, run all we can | |
2067 | now and return true. Otherwise, return false. */ | |
2068 | ||
2069 | static int | |
c2829269 PA |
2070 | start_step_over (void) |
2071 | { | |
2072 | struct thread_info *tp, *next; | |
2073 | ||
372316f1 PA |
2074 | /* Don't start a new step-over if we already have an in-line |
2075 | step-over operation ongoing. */ | |
2076 | if (step_over_info_valid_p ()) | |
2077 | return 0; | |
2078 | ||
c2829269 | 2079 | for (tp = step_over_queue_head; tp != NULL; tp = next) |
237fc4c9 | 2080 | { |
4d9d9d04 PA |
2081 | struct execution_control_state ecss; |
2082 | struct execution_control_state *ecs = &ecss; | |
8d297bbf | 2083 | step_over_what step_what; |
372316f1 | 2084 | int must_be_in_line; |
c2829269 PA |
2085 | |
2086 | next = thread_step_over_chain_next (tp); | |
237fc4c9 | 2087 | |
c2829269 PA |
2088 | /* If this inferior already has a displaced step in process, |
2089 | don't start a new one. */ | |
4d9d9d04 | 2090 | if (displaced_step_in_progress (ptid_get_pid (tp->ptid))) |
c2829269 PA |
2091 | continue; |
2092 | ||
372316f1 PA |
2093 | step_what = thread_still_needs_step_over (tp); |
2094 | must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT) | |
2095 | || ((step_what & STEP_OVER_BREAKPOINT) | |
3fc8eb30 | 2096 | && !use_displaced_stepping (tp))); |
372316f1 PA |
2097 | |
2098 | /* We currently stop all threads of all processes to step-over | |
2099 | in-line. If we need to start a new in-line step-over, let | |
2100 | any pending displaced steps finish first. */ | |
2101 | if (must_be_in_line && displaced_step_in_progress_any_inferior ()) | |
2102 | return 0; | |
2103 | ||
c2829269 PA |
2104 | thread_step_over_chain_remove (tp); |
2105 | ||
2106 | if (step_over_queue_head == NULL) | |
2107 | { | |
2108 | if (debug_infrun) | |
2109 | fprintf_unfiltered (gdb_stdlog, | |
2110 | "infrun: step-over queue now empty\n"); | |
2111 | } | |
2112 | ||
372316f1 PA |
2113 | if (tp->control.trap_expected |
2114 | || tp->resumed | |
2115 | || tp->executing) | |
ad53cd71 | 2116 | { |
4d9d9d04 PA |
2117 | internal_error (__FILE__, __LINE__, |
2118 | "[%s] has inconsistent state: " | |
372316f1 | 2119 | "trap_expected=%d, resumed=%d, executing=%d\n", |
4d9d9d04 PA |
2120 | target_pid_to_str (tp->ptid), |
2121 | tp->control.trap_expected, | |
372316f1 | 2122 | tp->resumed, |
4d9d9d04 | 2123 | tp->executing); |
ad53cd71 | 2124 | } |
1c5cfe86 | 2125 | |
4d9d9d04 PA |
2126 | if (debug_infrun) |
2127 | fprintf_unfiltered (gdb_stdlog, | |
2128 | "infrun: resuming [%s] for step-over\n", | |
2129 | target_pid_to_str (tp->ptid)); | |
2130 | ||
2131 | /* keep_going_pass_signal skips the step-over if the breakpoint | |
2132 | is no longer inserted. In all-stop, we want to keep looking | |
2133 | for a thread that needs a step-over instead of resuming TP, | |
2134 | because we wouldn't be able to resume anything else until the | |
2135 | target stops again. In non-stop, the resume always resumes | |
2136 | only TP, so it's OK to let the thread resume freely. */ | |
fbea99ea | 2137 | if (!target_is_non_stop_p () && !step_what) |
4d9d9d04 | 2138 | continue; |
8550d3b3 | 2139 | |
4d9d9d04 PA |
2140 | switch_to_thread (tp->ptid); |
2141 | reset_ecs (ecs, tp); | |
2142 | keep_going_pass_signal (ecs); | |
1c5cfe86 | 2143 | |
4d9d9d04 PA |
2144 | if (!ecs->wait_some_more) |
2145 | error (_("Command aborted.")); | |
1c5cfe86 | 2146 | |
372316f1 PA |
2147 | gdb_assert (tp->resumed); |
2148 | ||
2149 | /* If we started a new in-line step-over, we're done. */ | |
2150 | if (step_over_info_valid_p ()) | |
2151 | { | |
2152 | gdb_assert (tp->control.trap_expected); | |
2153 | return 1; | |
2154 | } | |
2155 | ||
fbea99ea | 2156 | if (!target_is_non_stop_p ()) |
4d9d9d04 PA |
2157 | { |
2158 | /* On all-stop, shouldn't have resumed unless we needed a | |
2159 | step over. */ | |
2160 | gdb_assert (tp->control.trap_expected | |
2161 | || tp->step_after_step_resume_breakpoint); | |
2162 | ||
2163 | /* With remote targets (at least), in all-stop, we can't | |
2164 | issue any further remote commands until the program stops | |
2165 | again. */ | |
2166 | return 1; | |
1c5cfe86 | 2167 | } |
c2829269 | 2168 | |
4d9d9d04 PA |
2169 | /* Either the thread no longer needed a step-over, or a new |
2170 | displaced stepping sequence started. Even in the latter | |
2171 | case, continue looking. Maybe we can also start another | |
2172 | displaced step on a thread of other process. */ | |
237fc4c9 | 2173 | } |
4d9d9d04 PA |
2174 | |
2175 | return 0; | |
237fc4c9 PA |
2176 | } |
2177 | ||
5231c1fd PA |
2178 | /* Update global variables holding ptids to hold NEW_PTID if they were |
2179 | holding OLD_PTID. */ | |
2180 | static void | |
2181 | infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid) | |
2182 | { | |
fc1cf338 | 2183 | struct displaced_step_inferior_state *displaced; |
5231c1fd PA |
2184 | |
2185 | if (ptid_equal (inferior_ptid, old_ptid)) | |
2186 | inferior_ptid = new_ptid; | |
2187 | ||
fc1cf338 PA |
2188 | for (displaced = displaced_step_inferior_states; |
2189 | displaced; | |
2190 | displaced = displaced->next) | |
2191 | { | |
2192 | if (ptid_equal (displaced->step_ptid, old_ptid)) | |
2193 | displaced->step_ptid = new_ptid; | |
fc1cf338 | 2194 | } |
5231c1fd PA |
2195 | } |
2196 | ||
237fc4c9 PA |
2197 | \f |
2198 | /* Resuming. */ | |
c906108c SS |
2199 | |
2200 | /* Things to clean up if we QUIT out of resume (). */ | |
c906108c | 2201 | static void |
74b7792f | 2202 | resume_cleanups (void *ignore) |
c906108c | 2203 | { |
34b7e8a6 PA |
2204 | if (!ptid_equal (inferior_ptid, null_ptid)) |
2205 | delete_single_step_breakpoints (inferior_thread ()); | |
7c16b83e | 2206 | |
c906108c SS |
2207 | normal_stop (); |
2208 | } | |
2209 | ||
53904c9e AC |
2210 | static const char schedlock_off[] = "off"; |
2211 | static const char schedlock_on[] = "on"; | |
2212 | static const char schedlock_step[] = "step"; | |
f2665db5 | 2213 | static const char schedlock_replay[] = "replay"; |
40478521 | 2214 | static const char *const scheduler_enums[] = { |
ef346e04 AC |
2215 | schedlock_off, |
2216 | schedlock_on, | |
2217 | schedlock_step, | |
f2665db5 | 2218 | schedlock_replay, |
ef346e04 AC |
2219 | NULL |
2220 | }; | |
f2665db5 | 2221 | static const char *scheduler_mode = schedlock_replay; |
920d2a44 AC |
2222 | static void |
2223 | show_scheduler_mode (struct ui_file *file, int from_tty, | |
2224 | struct cmd_list_element *c, const char *value) | |
2225 | { | |
3e43a32a MS |
2226 | fprintf_filtered (file, |
2227 | _("Mode for locking scheduler " | |
2228 | "during execution is \"%s\".\n"), | |
920d2a44 AC |
2229 | value); |
2230 | } | |
c906108c SS |
2231 | |
2232 | static void | |
96baa820 | 2233 | set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c) |
c906108c | 2234 | { |
eefe576e AC |
2235 | if (!target_can_lock_scheduler) |
2236 | { | |
2237 | scheduler_mode = schedlock_off; | |
2238 | error (_("Target '%s' cannot support this command."), target_shortname); | |
2239 | } | |
c906108c SS |
2240 | } |
2241 | ||
d4db2f36 PA |
2242 | /* True if execution commands resume all threads of all processes by |
2243 | default; otherwise, resume only threads of the current inferior | |
2244 | process. */ | |
2245 | int sched_multi = 0; | |
2246 | ||
2facfe5c DD |
2247 | /* Try to setup for software single stepping over the specified location. |
2248 | Return 1 if target_resume() should use hardware single step. | |
2249 | ||
2250 | GDBARCH the current gdbarch. | |
2251 | PC the location to step over. */ | |
2252 | ||
2253 | static int | |
2254 | maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc) | |
2255 | { | |
2256 | int hw_step = 1; | |
2257 | ||
f02253f1 HZ |
2258 | if (execution_direction == EXEC_FORWARD |
2259 | && gdbarch_software_single_step_p (gdbarch) | |
99e40580 | 2260 | && gdbarch_software_single_step (gdbarch, get_current_frame ())) |
2facfe5c | 2261 | { |
99e40580 | 2262 | hw_step = 0; |
2facfe5c DD |
2263 | } |
2264 | return hw_step; | |
2265 | } | |
c906108c | 2266 | |
f3263aa4 PA |
2267 | /* See infrun.h. */ |
2268 | ||
09cee04b PA |
2269 | ptid_t |
2270 | user_visible_resume_ptid (int step) | |
2271 | { | |
f3263aa4 | 2272 | ptid_t resume_ptid; |
09cee04b | 2273 | |
09cee04b PA |
2274 | if (non_stop) |
2275 | { | |
2276 | /* With non-stop mode on, threads are always handled | |
2277 | individually. */ | |
2278 | resume_ptid = inferior_ptid; | |
2279 | } | |
2280 | else if ((scheduler_mode == schedlock_on) | |
03d46957 | 2281 | || (scheduler_mode == schedlock_step && step)) |
09cee04b | 2282 | { |
f3263aa4 PA |
2283 | /* User-settable 'scheduler' mode requires solo thread |
2284 | resume. */ | |
09cee04b PA |
2285 | resume_ptid = inferior_ptid; |
2286 | } | |
f2665db5 MM |
2287 | else if ((scheduler_mode == schedlock_replay) |
2288 | && target_record_will_replay (minus_one_ptid, execution_direction)) | |
2289 | { | |
2290 | /* User-settable 'scheduler' mode requires solo thread resume in replay | |
2291 | mode. */ | |
2292 | resume_ptid = inferior_ptid; | |
2293 | } | |
f3263aa4 PA |
2294 | else if (!sched_multi && target_supports_multi_process ()) |
2295 | { | |
2296 | /* Resume all threads of the current process (and none of other | |
2297 | processes). */ | |
2298 | resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid)); | |
2299 | } | |
2300 | else | |
2301 | { | |
2302 | /* Resume all threads of all processes. */ | |
2303 | resume_ptid = RESUME_ALL; | |
2304 | } | |
09cee04b PA |
2305 | |
2306 | return resume_ptid; | |
2307 | } | |
2308 | ||
fbea99ea PA |
2309 | /* Return a ptid representing the set of threads that we will resume, |
2310 | in the perspective of the target, assuming run control handling | |
2311 | does not require leaving some threads stopped (e.g., stepping past | |
2312 | breakpoint). USER_STEP indicates whether we're about to start the | |
2313 | target for a stepping command. */ | |
2314 | ||
2315 | static ptid_t | |
2316 | internal_resume_ptid (int user_step) | |
2317 | { | |
2318 | /* In non-stop, we always control threads individually. Note that | |
2319 | the target may always work in non-stop mode even with "set | |
2320 | non-stop off", in which case user_visible_resume_ptid could | |
2321 | return a wildcard ptid. */ | |
2322 | if (target_is_non_stop_p ()) | |
2323 | return inferior_ptid; | |
2324 | else | |
2325 | return user_visible_resume_ptid (user_step); | |
2326 | } | |
2327 | ||
64ce06e4 PA |
2328 | /* Wrapper for target_resume, that handles infrun-specific |
2329 | bookkeeping. */ | |
2330 | ||
2331 | static void | |
2332 | do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig) | |
2333 | { | |
2334 | struct thread_info *tp = inferior_thread (); | |
2335 | ||
2336 | /* Install inferior's terminal modes. */ | |
2337 | target_terminal_inferior (); | |
2338 | ||
2339 | /* Avoid confusing the next resume, if the next stop/resume | |
2340 | happens to apply to another thread. */ | |
2341 | tp->suspend.stop_signal = GDB_SIGNAL_0; | |
2342 | ||
8f572e5c PA |
2343 | /* Advise target which signals may be handled silently. |
2344 | ||
2345 | If we have removed breakpoints because we are stepping over one | |
2346 | in-line (in any thread), we need to receive all signals to avoid | |
2347 | accidentally skipping a breakpoint during execution of a signal | |
2348 | handler. | |
2349 | ||
2350 | Likewise if we're displaced stepping, otherwise a trap for a | |
2351 | breakpoint in a signal handler might be confused with the | |
2352 | displaced step finishing. We don't make the displaced_step_fixup | |
2353 | step distinguish the cases instead, because: | |
2354 | ||
2355 | - a backtrace while stopped in the signal handler would show the | |
2356 | scratch pad as frame older than the signal handler, instead of | |
2357 | the real mainline code. | |
2358 | ||
2359 | - when the thread is later resumed, the signal handler would | |
2360 | return to the scratch pad area, which would no longer be | |
2361 | valid. */ | |
2362 | if (step_over_info_valid_p () | |
2363 | || displaced_step_in_progress (ptid_get_pid (tp->ptid))) | |
64ce06e4 PA |
2364 | target_pass_signals (0, NULL); |
2365 | else | |
2366 | target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass); | |
2367 | ||
2368 | target_resume (resume_ptid, step, sig); | |
2369 | } | |
2370 | ||
c906108c SS |
2371 | /* Resume the inferior, but allow a QUIT. This is useful if the user |
2372 | wants to interrupt some lengthy single-stepping operation | |
2373 | (for child processes, the SIGINT goes to the inferior, and so | |
2374 | we get a SIGINT random_signal, but for remote debugging and perhaps | |
2375 | other targets, that's not true). | |
2376 | ||
c906108c SS |
2377 | SIG is the signal to give the inferior (zero for none). */ |
2378 | void | |
64ce06e4 | 2379 | resume (enum gdb_signal sig) |
c906108c | 2380 | { |
74b7792f | 2381 | struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0); |
515630c5 UW |
2382 | struct regcache *regcache = get_current_regcache (); |
2383 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
4e1c45ea | 2384 | struct thread_info *tp = inferior_thread (); |
515630c5 | 2385 | CORE_ADDR pc = regcache_read_pc (regcache); |
6c95b8df | 2386 | struct address_space *aspace = get_regcache_aspace (regcache); |
b0f16a3e | 2387 | ptid_t resume_ptid; |
856e7dd6 PA |
2388 | /* This represents the user's step vs continue request. When |
2389 | deciding whether "set scheduler-locking step" applies, it's the | |
2390 | user's intention that counts. */ | |
2391 | const int user_step = tp->control.stepping_command; | |
64ce06e4 PA |
2392 | /* This represents what we'll actually request the target to do. |
2393 | This can decay from a step to a continue, if e.g., we need to | |
2394 | implement single-stepping with breakpoints (software | |
2395 | single-step). */ | |
6b403daa | 2396 | int step; |
c7e8a53c | 2397 | |
c2829269 PA |
2398 | gdb_assert (!thread_is_in_step_over_chain (tp)); |
2399 | ||
c906108c SS |
2400 | QUIT; |
2401 | ||
372316f1 PA |
2402 | if (tp->suspend.waitstatus_pending_p) |
2403 | { | |
2404 | if (debug_infrun) | |
2405 | { | |
2406 | char *statstr; | |
2407 | ||
2408 | statstr = target_waitstatus_to_string (&tp->suspend.waitstatus); | |
2409 | fprintf_unfiltered (gdb_stdlog, | |
2410 | "infrun: resume: thread %s has pending wait status %s " | |
2411 | "(currently_stepping=%d).\n", | |
2412 | target_pid_to_str (tp->ptid), statstr, | |
2413 | currently_stepping (tp)); | |
2414 | xfree (statstr); | |
2415 | } | |
2416 | ||
2417 | tp->resumed = 1; | |
2418 | ||
2419 | /* FIXME: What should we do if we are supposed to resume this | |
2420 | thread with a signal? Maybe we should maintain a queue of | |
2421 | pending signals to deliver. */ | |
2422 | if (sig != GDB_SIGNAL_0) | |
2423 | { | |
fd7dcb94 | 2424 | warning (_("Couldn't deliver signal %s to %s."), |
372316f1 PA |
2425 | gdb_signal_to_name (sig), target_pid_to_str (tp->ptid)); |
2426 | } | |
2427 | ||
2428 | tp->suspend.stop_signal = GDB_SIGNAL_0; | |
2429 | discard_cleanups (old_cleanups); | |
2430 | ||
2431 | if (target_can_async_p ()) | |
2432 | target_async (1); | |
2433 | return; | |
2434 | } | |
2435 | ||
2436 | tp->stepped_breakpoint = 0; | |
2437 | ||
6b403daa PA |
2438 | /* Depends on stepped_breakpoint. */ |
2439 | step = currently_stepping (tp); | |
2440 | ||
74609e71 YQ |
2441 | if (current_inferior ()->waiting_for_vfork_done) |
2442 | { | |
48f9886d PA |
2443 | /* Don't try to single-step a vfork parent that is waiting for |
2444 | the child to get out of the shared memory region (by exec'ing | |
2445 | or exiting). This is particularly important on software | |
2446 | single-step archs, as the child process would trip on the | |
2447 | software single step breakpoint inserted for the parent | |
2448 | process. Since the parent will not actually execute any | |
2449 | instruction until the child is out of the shared region (such | |
2450 | are vfork's semantics), it is safe to simply continue it. | |
2451 | Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for | |
2452 | the parent, and tell it to `keep_going', which automatically | |
2453 | re-sets it stepping. */ | |
74609e71 YQ |
2454 | if (debug_infrun) |
2455 | fprintf_unfiltered (gdb_stdlog, | |
2456 | "infrun: resume : clear step\n"); | |
a09dd441 | 2457 | step = 0; |
74609e71 YQ |
2458 | } |
2459 | ||
527159b7 | 2460 | if (debug_infrun) |
237fc4c9 | 2461 | fprintf_unfiltered (gdb_stdlog, |
c9737c08 | 2462 | "infrun: resume (step=%d, signal=%s), " |
0d9a9a5f | 2463 | "trap_expected=%d, current thread [%s] at %s\n", |
c9737c08 PA |
2464 | step, gdb_signal_to_symbol_string (sig), |
2465 | tp->control.trap_expected, | |
0d9a9a5f PA |
2466 | target_pid_to_str (inferior_ptid), |
2467 | paddress (gdbarch, pc)); | |
c906108c | 2468 | |
c2c6d25f JM |
2469 | /* Normally, by the time we reach `resume', the breakpoints are either |
2470 | removed or inserted, as appropriate. The exception is if we're sitting | |
2471 | at a permanent breakpoint; we need to step over it, but permanent | |
2472 | breakpoints can't be removed. So we have to test for it here. */ | |
6c95b8df | 2473 | if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here) |
6d350bb5 | 2474 | { |
af48d08f PA |
2475 | if (sig != GDB_SIGNAL_0) |
2476 | { | |
2477 | /* We have a signal to pass to the inferior. The resume | |
2478 | may, or may not take us to the signal handler. If this | |
2479 | is a step, we'll need to stop in the signal handler, if | |
2480 | there's one, (if the target supports stepping into | |
2481 | handlers), or in the next mainline instruction, if | |
2482 | there's no handler. If this is a continue, we need to be | |
2483 | sure to run the handler with all breakpoints inserted. | |
2484 | In all cases, set a breakpoint at the current address | |
2485 | (where the handler returns to), and once that breakpoint | |
2486 | is hit, resume skipping the permanent breakpoint. If | |
2487 | that breakpoint isn't hit, then we've stepped into the | |
2488 | signal handler (or hit some other event). We'll delete | |
2489 | the step-resume breakpoint then. */ | |
2490 | ||
2491 | if (debug_infrun) | |
2492 | fprintf_unfiltered (gdb_stdlog, | |
2493 | "infrun: resume: skipping permanent breakpoint, " | |
2494 | "deliver signal first\n"); | |
2495 | ||
2496 | clear_step_over_info (); | |
2497 | tp->control.trap_expected = 0; | |
2498 | ||
2499 | if (tp->control.step_resume_breakpoint == NULL) | |
2500 | { | |
2501 | /* Set a "high-priority" step-resume, as we don't want | |
2502 | user breakpoints at PC to trigger (again) when this | |
2503 | hits. */ | |
2504 | insert_hp_step_resume_breakpoint_at_frame (get_current_frame ()); | |
2505 | gdb_assert (tp->control.step_resume_breakpoint->loc->permanent); | |
2506 | ||
2507 | tp->step_after_step_resume_breakpoint = step; | |
2508 | } | |
2509 | ||
2510 | insert_breakpoints (); | |
2511 | } | |
2512 | else | |
2513 | { | |
2514 | /* There's no signal to pass, we can go ahead and skip the | |
2515 | permanent breakpoint manually. */ | |
2516 | if (debug_infrun) | |
2517 | fprintf_unfiltered (gdb_stdlog, | |
2518 | "infrun: resume: skipping permanent breakpoint\n"); | |
2519 | gdbarch_skip_permanent_breakpoint (gdbarch, regcache); | |
2520 | /* Update pc to reflect the new address from which we will | |
2521 | execute instructions. */ | |
2522 | pc = regcache_read_pc (regcache); | |
2523 | ||
2524 | if (step) | |
2525 | { | |
2526 | /* We've already advanced the PC, so the stepping part | |
2527 | is done. Now we need to arrange for a trap to be | |
2528 | reported to handle_inferior_event. Set a breakpoint | |
2529 | at the current PC, and run to it. Don't update | |
2530 | prev_pc, because if we end in | |
44a1ee51 PA |
2531 | switch_back_to_stepped_thread, we want the "expected |
2532 | thread advanced also" branch to be taken. IOW, we | |
2533 | don't want this thread to step further from PC | |
af48d08f | 2534 | (overstep). */ |
1ac806b8 | 2535 | gdb_assert (!step_over_info_valid_p ()); |
af48d08f PA |
2536 | insert_single_step_breakpoint (gdbarch, aspace, pc); |
2537 | insert_breakpoints (); | |
2538 | ||
fbea99ea | 2539 | resume_ptid = internal_resume_ptid (user_step); |
1ac806b8 | 2540 | do_target_resume (resume_ptid, 0, GDB_SIGNAL_0); |
af48d08f | 2541 | discard_cleanups (old_cleanups); |
372316f1 | 2542 | tp->resumed = 1; |
af48d08f PA |
2543 | return; |
2544 | } | |
2545 | } | |
6d350bb5 | 2546 | } |
c2c6d25f | 2547 | |
c1e36e3e PA |
2548 | /* If we have a breakpoint to step over, make sure to do a single |
2549 | step only. Same if we have software watchpoints. */ | |
2550 | if (tp->control.trap_expected || bpstat_should_step ()) | |
2551 | tp->control.may_range_step = 0; | |
2552 | ||
237fc4c9 PA |
2553 | /* If enabled, step over breakpoints by executing a copy of the |
2554 | instruction at a different address. | |
2555 | ||
2556 | We can't use displaced stepping when we have a signal to deliver; | |
2557 | the comments for displaced_step_prepare explain why. The | |
2558 | comments in the handle_inferior event for dealing with 'random | |
74609e71 YQ |
2559 | signals' explain what we do instead. |
2560 | ||
2561 | We can't use displaced stepping when we are waiting for vfork_done | |
2562 | event, displaced stepping breaks the vfork child similarly as single | |
2563 | step software breakpoint. */ | |
3fc8eb30 PA |
2564 | if (tp->control.trap_expected |
2565 | && use_displaced_stepping (tp) | |
cb71640d | 2566 | && !step_over_info_valid_p () |
a493e3e2 | 2567 | && sig == GDB_SIGNAL_0 |
74609e71 | 2568 | && !current_inferior ()->waiting_for_vfork_done) |
237fc4c9 | 2569 | { |
3fc8eb30 | 2570 | int prepared = displaced_step_prepare (inferior_ptid); |
fc1cf338 | 2571 | |
3fc8eb30 | 2572 | if (prepared == 0) |
d56b7306 | 2573 | { |
4d9d9d04 PA |
2574 | if (debug_infrun) |
2575 | fprintf_unfiltered (gdb_stdlog, | |
2576 | "Got placed in step-over queue\n"); | |
2577 | ||
2578 | tp->control.trap_expected = 0; | |
d56b7306 VP |
2579 | discard_cleanups (old_cleanups); |
2580 | return; | |
2581 | } | |
3fc8eb30 PA |
2582 | else if (prepared < 0) |
2583 | { | |
2584 | /* Fallback to stepping over the breakpoint in-line. */ | |
2585 | ||
2586 | if (target_is_non_stop_p ()) | |
2587 | stop_all_threads (); | |
2588 | ||
2589 | set_step_over_info (get_regcache_aspace (regcache), | |
21edc42f | 2590 | regcache_read_pc (regcache), 0, tp->global_num); |
3fc8eb30 PA |
2591 | |
2592 | step = maybe_software_singlestep (gdbarch, pc); | |
2593 | ||
2594 | insert_breakpoints (); | |
2595 | } | |
2596 | else if (prepared > 0) | |
2597 | { | |
2598 | struct displaced_step_inferior_state *displaced; | |
99e40580 | 2599 | |
3fc8eb30 PA |
2600 | /* Update pc to reflect the new address from which we will |
2601 | execute instructions due to displaced stepping. */ | |
2602 | pc = regcache_read_pc (get_thread_regcache (inferior_ptid)); | |
ca7781d2 | 2603 | |
3fc8eb30 PA |
2604 | displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid)); |
2605 | step = gdbarch_displaced_step_hw_singlestep (gdbarch, | |
2606 | displaced->step_closure); | |
2607 | } | |
237fc4c9 PA |
2608 | } |
2609 | ||
2facfe5c | 2610 | /* Do we need to do it the hard way, w/temp breakpoints? */ |
99e40580 | 2611 | else if (step) |
2facfe5c | 2612 | step = maybe_software_singlestep (gdbarch, pc); |
c906108c | 2613 | |
30852783 UW |
2614 | /* Currently, our software single-step implementation leads to different |
2615 | results than hardware single-stepping in one situation: when stepping | |
2616 | into delivering a signal which has an associated signal handler, | |
2617 | hardware single-step will stop at the first instruction of the handler, | |
2618 | while software single-step will simply skip execution of the handler. | |
2619 | ||
2620 | For now, this difference in behavior is accepted since there is no | |
2621 | easy way to actually implement single-stepping into a signal handler | |
2622 | without kernel support. | |
2623 | ||
2624 | However, there is one scenario where this difference leads to follow-on | |
2625 | problems: if we're stepping off a breakpoint by removing all breakpoints | |
2626 | and then single-stepping. In this case, the software single-step | |
2627 | behavior means that even if there is a *breakpoint* in the signal | |
2628 | handler, GDB still would not stop. | |
2629 | ||
2630 | Fortunately, we can at least fix this particular issue. We detect | |
2631 | here the case where we are about to deliver a signal while software | |
2632 | single-stepping with breakpoints removed. In this situation, we | |
2633 | revert the decisions to remove all breakpoints and insert single- | |
2634 | step breakpoints, and instead we install a step-resume breakpoint | |
2635 | at the current address, deliver the signal without stepping, and | |
2636 | once we arrive back at the step-resume breakpoint, actually step | |
2637 | over the breakpoint we originally wanted to step over. */ | |
34b7e8a6 | 2638 | if (thread_has_single_step_breakpoints_set (tp) |
6cc83d2a PA |
2639 | && sig != GDB_SIGNAL_0 |
2640 | && step_over_info_valid_p ()) | |
30852783 UW |
2641 | { |
2642 | /* If we have nested signals or a pending signal is delivered | |
2643 | immediately after a handler returns, might might already have | |
2644 | a step-resume breakpoint set on the earlier handler. We cannot | |
2645 | set another step-resume breakpoint; just continue on until the | |
2646 | original breakpoint is hit. */ | |
2647 | if (tp->control.step_resume_breakpoint == NULL) | |
2648 | { | |
2c03e5be | 2649 | insert_hp_step_resume_breakpoint_at_frame (get_current_frame ()); |
30852783 UW |
2650 | tp->step_after_step_resume_breakpoint = 1; |
2651 | } | |
2652 | ||
34b7e8a6 | 2653 | delete_single_step_breakpoints (tp); |
30852783 | 2654 | |
31e77af2 | 2655 | clear_step_over_info (); |
30852783 | 2656 | tp->control.trap_expected = 0; |
31e77af2 PA |
2657 | |
2658 | insert_breakpoints (); | |
30852783 UW |
2659 | } |
2660 | ||
b0f16a3e SM |
2661 | /* If STEP is set, it's a request to use hardware stepping |
2662 | facilities. But in that case, we should never | |
2663 | use singlestep breakpoint. */ | |
34b7e8a6 | 2664 | gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step)); |
dfcd3bfb | 2665 | |
fbea99ea | 2666 | /* Decide the set of threads to ask the target to resume. */ |
1946c4cc | 2667 | if (tp->control.trap_expected) |
b0f16a3e SM |
2668 | { |
2669 | /* We're allowing a thread to run past a breakpoint it has | |
1946c4cc YQ |
2670 | hit, either by single-stepping the thread with the breakpoint |
2671 | removed, or by displaced stepping, with the breakpoint inserted. | |
2672 | In the former case, we need to single-step only this thread, | |
2673 | and keep others stopped, as they can miss this breakpoint if | |
2674 | allowed to run. That's not really a problem for displaced | |
2675 | stepping, but, we still keep other threads stopped, in case | |
2676 | another thread is also stopped for a breakpoint waiting for | |
2677 | its turn in the displaced stepping queue. */ | |
b0f16a3e SM |
2678 | resume_ptid = inferior_ptid; |
2679 | } | |
fbea99ea PA |
2680 | else |
2681 | resume_ptid = internal_resume_ptid (user_step); | |
d4db2f36 | 2682 | |
7f5ef605 PA |
2683 | if (execution_direction != EXEC_REVERSE |
2684 | && step && breakpoint_inserted_here_p (aspace, pc)) | |
b0f16a3e | 2685 | { |
372316f1 PA |
2686 | /* There are two cases where we currently need to step a |
2687 | breakpoint instruction when we have a signal to deliver: | |
2688 | ||
2689 | - See handle_signal_stop where we handle random signals that | |
2690 | could take out us out of the stepping range. Normally, in | |
2691 | that case we end up continuing (instead of stepping) over the | |
7f5ef605 PA |
2692 | signal handler with a breakpoint at PC, but there are cases |
2693 | where we should _always_ single-step, even if we have a | |
2694 | step-resume breakpoint, like when a software watchpoint is | |
2695 | set. Assuming single-stepping and delivering a signal at the | |
2696 | same time would takes us to the signal handler, then we could | |
2697 | have removed the breakpoint at PC to step over it. However, | |
2698 | some hardware step targets (like e.g., Mac OS) can't step | |
2699 | into signal handlers, and for those, we need to leave the | |
2700 | breakpoint at PC inserted, as otherwise if the handler | |
2701 | recurses and executes PC again, it'll miss the breakpoint. | |
2702 | So we leave the breakpoint inserted anyway, but we need to | |
2703 | record that we tried to step a breakpoint instruction, so | |
372316f1 PA |
2704 | that adjust_pc_after_break doesn't end up confused. |
2705 | ||
2706 | - In non-stop if we insert a breakpoint (e.g., a step-resume) | |
2707 | in one thread after another thread that was stepping had been | |
2708 | momentarily paused for a step-over. When we re-resume the | |
2709 | stepping thread, it may be resumed from that address with a | |
2710 | breakpoint that hasn't trapped yet. Seen with | |
2711 | gdb.threads/non-stop-fair-events.exp, on targets that don't | |
2712 | do displaced stepping. */ | |
2713 | ||
2714 | if (debug_infrun) | |
2715 | fprintf_unfiltered (gdb_stdlog, | |
2716 | "infrun: resume: [%s] stepped breakpoint\n", | |
2717 | target_pid_to_str (tp->ptid)); | |
7f5ef605 PA |
2718 | |
2719 | tp->stepped_breakpoint = 1; | |
2720 | ||
b0f16a3e SM |
2721 | /* Most targets can step a breakpoint instruction, thus |
2722 | executing it normally. But if this one cannot, just | |
2723 | continue and we will hit it anyway. */ | |
7f5ef605 | 2724 | if (gdbarch_cannot_step_breakpoint (gdbarch)) |
b0f16a3e SM |
2725 | step = 0; |
2726 | } | |
ef5cf84e | 2727 | |
b0f16a3e | 2728 | if (debug_displaced |
cb71640d | 2729 | && tp->control.trap_expected |
3fc8eb30 | 2730 | && use_displaced_stepping (tp) |
cb71640d | 2731 | && !step_over_info_valid_p ()) |
b0f16a3e | 2732 | { |
d9b67d9f | 2733 | struct regcache *resume_regcache = get_thread_regcache (tp->ptid); |
b0f16a3e SM |
2734 | struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache); |
2735 | CORE_ADDR actual_pc = regcache_read_pc (resume_regcache); | |
2736 | gdb_byte buf[4]; | |
2737 | ||
2738 | fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ", | |
2739 | paddress (resume_gdbarch, actual_pc)); | |
2740 | read_memory (actual_pc, buf, sizeof (buf)); | |
2741 | displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf)); | |
2742 | } | |
237fc4c9 | 2743 | |
b0f16a3e SM |
2744 | if (tp->control.may_range_step) |
2745 | { | |
2746 | /* If we're resuming a thread with the PC out of the step | |
2747 | range, then we're doing some nested/finer run control | |
2748 | operation, like stepping the thread out of the dynamic | |
2749 | linker or the displaced stepping scratch pad. We | |
2750 | shouldn't have allowed a range step then. */ | |
2751 | gdb_assert (pc_in_thread_step_range (pc, tp)); | |
2752 | } | |
c1e36e3e | 2753 | |
64ce06e4 | 2754 | do_target_resume (resume_ptid, step, sig); |
372316f1 | 2755 | tp->resumed = 1; |
c906108c SS |
2756 | discard_cleanups (old_cleanups); |
2757 | } | |
2758 | \f | |
237fc4c9 | 2759 | /* Proceeding. */ |
c906108c | 2760 | |
4c2f2a79 PA |
2761 | /* See infrun.h. */ |
2762 | ||
2763 | /* Counter that tracks number of user visible stops. This can be used | |
2764 | to tell whether a command has proceeded the inferior past the | |
2765 | current location. This allows e.g., inferior function calls in | |
2766 | breakpoint commands to not interrupt the command list. When the | |
2767 | call finishes successfully, the inferior is standing at the same | |
2768 | breakpoint as if nothing happened (and so we don't call | |
2769 | normal_stop). */ | |
2770 | static ULONGEST current_stop_id; | |
2771 | ||
2772 | /* See infrun.h. */ | |
2773 | ||
2774 | ULONGEST | |
2775 | get_stop_id (void) | |
2776 | { | |
2777 | return current_stop_id; | |
2778 | } | |
2779 | ||
2780 | /* Called when we report a user visible stop. */ | |
2781 | ||
2782 | static void | |
2783 | new_stop_id (void) | |
2784 | { | |
2785 | current_stop_id++; | |
2786 | } | |
2787 | ||
c906108c SS |
2788 | /* Clear out all variables saying what to do when inferior is continued. |
2789 | First do this, then set the ones you want, then call `proceed'. */ | |
2790 | ||
a7212384 UW |
2791 | static void |
2792 | clear_proceed_status_thread (struct thread_info *tp) | |
c906108c | 2793 | { |
a7212384 UW |
2794 | if (debug_infrun) |
2795 | fprintf_unfiltered (gdb_stdlog, | |
2796 | "infrun: clear_proceed_status_thread (%s)\n", | |
2797 | target_pid_to_str (tp->ptid)); | |
d6b48e9c | 2798 | |
372316f1 PA |
2799 | /* If we're starting a new sequence, then the previous finished |
2800 | single-step is no longer relevant. */ | |
2801 | if (tp->suspend.waitstatus_pending_p) | |
2802 | { | |
2803 | if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP) | |
2804 | { | |
2805 | if (debug_infrun) | |
2806 | fprintf_unfiltered (gdb_stdlog, | |
2807 | "infrun: clear_proceed_status: pending " | |
2808 | "event of %s was a finished step. " | |
2809 | "Discarding.\n", | |
2810 | target_pid_to_str (tp->ptid)); | |
2811 | ||
2812 | tp->suspend.waitstatus_pending_p = 0; | |
2813 | tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON; | |
2814 | } | |
2815 | else if (debug_infrun) | |
2816 | { | |
2817 | char *statstr; | |
2818 | ||
2819 | statstr = target_waitstatus_to_string (&tp->suspend.waitstatus); | |
2820 | fprintf_unfiltered (gdb_stdlog, | |
2821 | "infrun: clear_proceed_status_thread: thread %s " | |
2822 | "has pending wait status %s " | |
2823 | "(currently_stepping=%d).\n", | |
2824 | target_pid_to_str (tp->ptid), statstr, | |
2825 | currently_stepping (tp)); | |
2826 | xfree (statstr); | |
2827 | } | |
2828 | } | |
2829 | ||
70509625 PA |
2830 | /* If this signal should not be seen by program, give it zero. |
2831 | Used for debugging signals. */ | |
2832 | if (!signal_pass_state (tp->suspend.stop_signal)) | |
2833 | tp->suspend.stop_signal = GDB_SIGNAL_0; | |
2834 | ||
243a9253 PA |
2835 | thread_fsm_delete (tp->thread_fsm); |
2836 | tp->thread_fsm = NULL; | |
2837 | ||
16c381f0 JK |
2838 | tp->control.trap_expected = 0; |
2839 | tp->control.step_range_start = 0; | |
2840 | tp->control.step_range_end = 0; | |
c1e36e3e | 2841 | tp->control.may_range_step = 0; |
16c381f0 JK |
2842 | tp->control.step_frame_id = null_frame_id; |
2843 | tp->control.step_stack_frame_id = null_frame_id; | |
2844 | tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE; | |
885eeb5b | 2845 | tp->control.step_start_function = NULL; |
a7212384 | 2846 | tp->stop_requested = 0; |
4e1c45ea | 2847 | |
16c381f0 | 2848 | tp->control.stop_step = 0; |
32400beb | 2849 | |
16c381f0 | 2850 | tp->control.proceed_to_finish = 0; |
414c69f7 | 2851 | |
856e7dd6 | 2852 | tp->control.stepping_command = 0; |
17b2616c | 2853 | |
a7212384 | 2854 | /* Discard any remaining commands or status from previous stop. */ |
16c381f0 | 2855 | bpstat_clear (&tp->control.stop_bpstat); |
a7212384 | 2856 | } |
32400beb | 2857 | |
a7212384 | 2858 | void |
70509625 | 2859 | clear_proceed_status (int step) |
a7212384 | 2860 | { |
f2665db5 MM |
2861 | /* With scheduler-locking replay, stop replaying other threads if we're |
2862 | not replaying the user-visible resume ptid. | |
2863 | ||
2864 | This is a convenience feature to not require the user to explicitly | |
2865 | stop replaying the other threads. We're assuming that the user's | |
2866 | intent is to resume tracing the recorded process. */ | |
2867 | if (!non_stop && scheduler_mode == schedlock_replay | |
2868 | && target_record_is_replaying (minus_one_ptid) | |
2869 | && !target_record_will_replay (user_visible_resume_ptid (step), | |
2870 | execution_direction)) | |
2871 | target_record_stop_replaying (); | |
2872 | ||
6c95b8df PA |
2873 | if (!non_stop) |
2874 | { | |
70509625 PA |
2875 | struct thread_info *tp; |
2876 | ptid_t resume_ptid; | |
2877 | ||
2878 | resume_ptid = user_visible_resume_ptid (step); | |
2879 | ||
2880 | /* In all-stop mode, delete the per-thread status of all threads | |
2881 | we're about to resume, implicitly and explicitly. */ | |
2882 | ALL_NON_EXITED_THREADS (tp) | |
2883 | { | |
2884 | if (!ptid_match (tp->ptid, resume_ptid)) | |
2885 | continue; | |
2886 | clear_proceed_status_thread (tp); | |
2887 | } | |
6c95b8df PA |
2888 | } |
2889 | ||
a7212384 UW |
2890 | if (!ptid_equal (inferior_ptid, null_ptid)) |
2891 | { | |
2892 | struct inferior *inferior; | |
2893 | ||
2894 | if (non_stop) | |
2895 | { | |
6c95b8df PA |
2896 | /* If in non-stop mode, only delete the per-thread status of |
2897 | the current thread. */ | |
a7212384 UW |
2898 | clear_proceed_status_thread (inferior_thread ()); |
2899 | } | |
6c95b8df | 2900 | |
d6b48e9c | 2901 | inferior = current_inferior (); |
16c381f0 | 2902 | inferior->control.stop_soon = NO_STOP_QUIETLY; |
4e1c45ea PA |
2903 | } |
2904 | ||
f3b1572e | 2905 | observer_notify_about_to_proceed (); |
c906108c SS |
2906 | } |
2907 | ||
99619bea PA |
2908 | /* Returns true if TP is still stopped at a breakpoint that needs |
2909 | stepping-over in order to make progress. If the breakpoint is gone | |
2910 | meanwhile, we can skip the whole step-over dance. */ | |
ea67f13b DJ |
2911 | |
2912 | static int | |
6c4cfb24 | 2913 | thread_still_needs_step_over_bp (struct thread_info *tp) |
99619bea PA |
2914 | { |
2915 | if (tp->stepping_over_breakpoint) | |
2916 | { | |
2917 | struct regcache *regcache = get_thread_regcache (tp->ptid); | |
2918 | ||
2919 | if (breakpoint_here_p (get_regcache_aspace (regcache), | |
af48d08f PA |
2920 | regcache_read_pc (regcache)) |
2921 | == ordinary_breakpoint_here) | |
99619bea PA |
2922 | return 1; |
2923 | ||
2924 | tp->stepping_over_breakpoint = 0; | |
2925 | } | |
2926 | ||
2927 | return 0; | |
2928 | } | |
2929 | ||
6c4cfb24 PA |
2930 | /* Check whether thread TP still needs to start a step-over in order |
2931 | to make progress when resumed. Returns an bitwise or of enum | |
2932 | step_over_what bits, indicating what needs to be stepped over. */ | |
2933 | ||
8d297bbf | 2934 | static step_over_what |
6c4cfb24 PA |
2935 | thread_still_needs_step_over (struct thread_info *tp) |
2936 | { | |
8d297bbf | 2937 | step_over_what what = 0; |
6c4cfb24 PA |
2938 | |
2939 | if (thread_still_needs_step_over_bp (tp)) | |
2940 | what |= STEP_OVER_BREAKPOINT; | |
2941 | ||
2942 | if (tp->stepping_over_watchpoint | |
2943 | && !target_have_steppable_watchpoint) | |
2944 | what |= STEP_OVER_WATCHPOINT; | |
2945 | ||
2946 | return what; | |
2947 | } | |
2948 | ||
483805cf PA |
2949 | /* Returns true if scheduler locking applies. STEP indicates whether |
2950 | we're about to do a step/next-like command to a thread. */ | |
2951 | ||
2952 | static int | |
856e7dd6 | 2953 | schedlock_applies (struct thread_info *tp) |
483805cf PA |
2954 | { |
2955 | return (scheduler_mode == schedlock_on | |
2956 | || (scheduler_mode == schedlock_step | |
f2665db5 MM |
2957 | && tp->control.stepping_command) |
2958 | || (scheduler_mode == schedlock_replay | |
2959 | && target_record_will_replay (minus_one_ptid, | |
2960 | execution_direction))); | |
483805cf PA |
2961 | } |
2962 | ||
c906108c SS |
2963 | /* Basic routine for continuing the program in various fashions. |
2964 | ||
2965 | ADDR is the address to resume at, or -1 for resume where stopped. | |
2966 | SIGGNAL is the signal to give it, or 0 for none, | |
c5aa993b | 2967 | or -1 for act according to how it stopped. |
c906108c | 2968 | STEP is nonzero if should trap after one instruction. |
c5aa993b JM |
2969 | -1 means return after that and print nothing. |
2970 | You should probably set various step_... variables | |
2971 | before calling here, if you are stepping. | |
c906108c SS |
2972 | |
2973 | You should call clear_proceed_status before calling proceed. */ | |
2974 | ||
2975 | void | |
64ce06e4 | 2976 | proceed (CORE_ADDR addr, enum gdb_signal siggnal) |
c906108c | 2977 | { |
e58b0e63 PA |
2978 | struct regcache *regcache; |
2979 | struct gdbarch *gdbarch; | |
4e1c45ea | 2980 | struct thread_info *tp; |
e58b0e63 | 2981 | CORE_ADDR pc; |
6c95b8df | 2982 | struct address_space *aspace; |
4d9d9d04 PA |
2983 | ptid_t resume_ptid; |
2984 | struct execution_control_state ecss; | |
2985 | struct execution_control_state *ecs = &ecss; | |
2986 | struct cleanup *old_chain; | |
2987 | int started; | |
c906108c | 2988 | |
e58b0e63 PA |
2989 | /* If we're stopped at a fork/vfork, follow the branch set by the |
2990 | "set follow-fork-mode" command; otherwise, we'll just proceed | |
2991 | resuming the current thread. */ | |
2992 | if (!follow_fork ()) | |
2993 | { | |
2994 | /* The target for some reason decided not to resume. */ | |
2995 | normal_stop (); | |
f148b27e PA |
2996 | if (target_can_async_p ()) |
2997 | inferior_event_handler (INF_EXEC_COMPLETE, NULL); | |
e58b0e63 PA |
2998 | return; |
2999 | } | |
3000 | ||
842951eb PA |
3001 | /* We'll update this if & when we switch to a new thread. */ |
3002 | previous_inferior_ptid = inferior_ptid; | |
3003 | ||
e58b0e63 PA |
3004 | regcache = get_current_regcache (); |
3005 | gdbarch = get_regcache_arch (regcache); | |
6c95b8df | 3006 | aspace = get_regcache_aspace (regcache); |
e58b0e63 | 3007 | pc = regcache_read_pc (regcache); |
2adfaa28 | 3008 | tp = inferior_thread (); |
e58b0e63 | 3009 | |
99619bea PA |
3010 | /* Fill in with reasonable starting values. */ |
3011 | init_thread_stepping_state (tp); | |
3012 | ||
c2829269 PA |
3013 | gdb_assert (!thread_is_in_step_over_chain (tp)); |
3014 | ||
2acceee2 | 3015 | if (addr == (CORE_ADDR) -1) |
c906108c | 3016 | { |
af48d08f PA |
3017 | if (pc == stop_pc |
3018 | && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here | |
b2175913 | 3019 | && execution_direction != EXEC_REVERSE) |
3352ef37 AC |
3020 | /* There is a breakpoint at the address we will resume at, |
3021 | step one instruction before inserting breakpoints so that | |
3022 | we do not stop right away (and report a second hit at this | |
b2175913 MS |
3023 | breakpoint). |
3024 | ||
3025 | Note, we don't do this in reverse, because we won't | |
3026 | actually be executing the breakpoint insn anyway. | |
3027 | We'll be (un-)executing the previous instruction. */ | |
99619bea | 3028 | tp->stepping_over_breakpoint = 1; |
515630c5 UW |
3029 | else if (gdbarch_single_step_through_delay_p (gdbarch) |
3030 | && gdbarch_single_step_through_delay (gdbarch, | |
3031 | get_current_frame ())) | |
3352ef37 AC |
3032 | /* We stepped onto an instruction that needs to be stepped |
3033 | again before re-inserting the breakpoint, do so. */ | |
99619bea | 3034 | tp->stepping_over_breakpoint = 1; |
c906108c SS |
3035 | } |
3036 | else | |
3037 | { | |
515630c5 | 3038 | regcache_write_pc (regcache, addr); |
c906108c SS |
3039 | } |
3040 | ||
70509625 PA |
3041 | if (siggnal != GDB_SIGNAL_DEFAULT) |
3042 | tp->suspend.stop_signal = siggnal; | |
3043 | ||
4d9d9d04 PA |
3044 | resume_ptid = user_visible_resume_ptid (tp->control.stepping_command); |
3045 | ||
3046 | /* If an exception is thrown from this point on, make sure to | |
3047 | propagate GDB's knowledge of the executing state to the | |
3048 | frontend/user running state. */ | |
3049 | old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid); | |
3050 | ||
3051 | /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer | |
3052 | threads (e.g., we might need to set threads stepping over | |
3053 | breakpoints first), from the user/frontend's point of view, all | |
3054 | threads in RESUME_PTID are now running. Unless we're calling an | |
3055 | inferior function, as in that case we pretend the inferior | |
3056 | doesn't run at all. */ | |
3057 | if (!tp->control.in_infcall) | |
3058 | set_running (resume_ptid, 1); | |
17b2616c | 3059 | |
527159b7 | 3060 | if (debug_infrun) |
8a9de0e4 | 3061 | fprintf_unfiltered (gdb_stdlog, |
64ce06e4 | 3062 | "infrun: proceed (addr=%s, signal=%s)\n", |
c9737c08 | 3063 | paddress (gdbarch, addr), |
64ce06e4 | 3064 | gdb_signal_to_symbol_string (siggnal)); |
527159b7 | 3065 | |
4d9d9d04 PA |
3066 | annotate_starting (); |
3067 | ||
3068 | /* Make sure that output from GDB appears before output from the | |
3069 | inferior. */ | |
3070 | gdb_flush (gdb_stdout); | |
3071 | ||
3072 | /* In a multi-threaded task we may select another thread and | |
3073 | then continue or step. | |
3074 | ||
3075 | But if a thread that we're resuming had stopped at a breakpoint, | |
3076 | it will immediately cause another breakpoint stop without any | |
3077 | execution (i.e. it will report a breakpoint hit incorrectly). So | |
3078 | we must step over it first. | |
3079 | ||
3080 | Look for threads other than the current (TP) that reported a | |
3081 | breakpoint hit and haven't been resumed yet since. */ | |
3082 | ||
3083 | /* If scheduler locking applies, we can avoid iterating over all | |
3084 | threads. */ | |
3085 | if (!non_stop && !schedlock_applies (tp)) | |
94cc34af | 3086 | { |
4d9d9d04 PA |
3087 | struct thread_info *current = tp; |
3088 | ||
3089 | ALL_NON_EXITED_THREADS (tp) | |
3090 | { | |
3091 | /* Ignore the current thread here. It's handled | |
3092 | afterwards. */ | |
3093 | if (tp == current) | |
3094 | continue; | |
99619bea | 3095 | |
4d9d9d04 PA |
3096 | /* Ignore threads of processes we're not resuming. */ |
3097 | if (!ptid_match (tp->ptid, resume_ptid)) | |
3098 | continue; | |
c906108c | 3099 | |
4d9d9d04 PA |
3100 | if (!thread_still_needs_step_over (tp)) |
3101 | continue; | |
3102 | ||
3103 | gdb_assert (!thread_is_in_step_over_chain (tp)); | |
c906108c | 3104 | |
99619bea PA |
3105 | if (debug_infrun) |
3106 | fprintf_unfiltered (gdb_stdlog, | |
3107 | "infrun: need to step-over [%s] first\n", | |
4d9d9d04 | 3108 | target_pid_to_str (tp->ptid)); |
99619bea | 3109 | |
4d9d9d04 | 3110 | thread_step_over_chain_enqueue (tp); |
2adfaa28 | 3111 | } |
31e77af2 | 3112 | |
4d9d9d04 | 3113 | tp = current; |
30852783 UW |
3114 | } |
3115 | ||
4d9d9d04 PA |
3116 | /* Enqueue the current thread last, so that we move all other |
3117 | threads over their breakpoints first. */ | |
3118 | if (tp->stepping_over_breakpoint) | |
3119 | thread_step_over_chain_enqueue (tp); | |
30852783 | 3120 | |
4d9d9d04 PA |
3121 | /* If the thread isn't started, we'll still need to set its prev_pc, |
3122 | so that switch_back_to_stepped_thread knows the thread hasn't | |
3123 | advanced. Must do this before resuming any thread, as in | |
3124 | all-stop/remote, once we resume we can't send any other packet | |
3125 | until the target stops again. */ | |
3126 | tp->prev_pc = regcache_read_pc (regcache); | |
99619bea | 3127 | |
4d9d9d04 | 3128 | started = start_step_over (); |
c906108c | 3129 | |
4d9d9d04 PA |
3130 | if (step_over_info_valid_p ()) |
3131 | { | |
3132 | /* Either this thread started a new in-line step over, or some | |
3133 | other thread was already doing one. In either case, don't | |
3134 | resume anything else until the step-over is finished. */ | |
3135 | } | |
fbea99ea | 3136 | else if (started && !target_is_non_stop_p ()) |
4d9d9d04 PA |
3137 | { |
3138 | /* A new displaced stepping sequence was started. In all-stop, | |
3139 | we can't talk to the target anymore until it next stops. */ | |
3140 | } | |
fbea99ea PA |
3141 | else if (!non_stop && target_is_non_stop_p ()) |
3142 | { | |
3143 | /* In all-stop, but the target is always in non-stop mode. | |
3144 | Start all other threads that are implicitly resumed too. */ | |
3145 | ALL_NON_EXITED_THREADS (tp) | |
3146 | { | |
3147 | /* Ignore threads of processes we're not resuming. */ | |
3148 | if (!ptid_match (tp->ptid, resume_ptid)) | |
3149 | continue; | |
3150 | ||
3151 | if (tp->resumed) | |
3152 | { | |
3153 | if (debug_infrun) | |
3154 | fprintf_unfiltered (gdb_stdlog, | |
3155 | "infrun: proceed: [%s] resumed\n", | |
3156 | target_pid_to_str (tp->ptid)); | |
3157 | gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p); | |
3158 | continue; | |
3159 | } | |
3160 | ||
3161 | if (thread_is_in_step_over_chain (tp)) | |
3162 | { | |
3163 | if (debug_infrun) | |
3164 | fprintf_unfiltered (gdb_stdlog, | |
3165 | "infrun: proceed: [%s] needs step-over\n", | |
3166 | target_pid_to_str (tp->ptid)); | |
3167 | continue; | |
3168 | } | |
3169 | ||
3170 | if (debug_infrun) | |
3171 | fprintf_unfiltered (gdb_stdlog, | |
3172 | "infrun: proceed: resuming %s\n", | |
3173 | target_pid_to_str (tp->ptid)); | |
3174 | ||
3175 | reset_ecs (ecs, tp); | |
3176 | switch_to_thread (tp->ptid); | |
3177 | keep_going_pass_signal (ecs); | |
3178 | if (!ecs->wait_some_more) | |
fd7dcb94 | 3179 | error (_("Command aborted.")); |
fbea99ea PA |
3180 | } |
3181 | } | |
372316f1 | 3182 | else if (!tp->resumed && !thread_is_in_step_over_chain (tp)) |
4d9d9d04 PA |
3183 | { |
3184 | /* The thread wasn't started, and isn't queued, run it now. */ | |
3185 | reset_ecs (ecs, tp); | |
3186 | switch_to_thread (tp->ptid); | |
3187 | keep_going_pass_signal (ecs); | |
3188 | if (!ecs->wait_some_more) | |
fd7dcb94 | 3189 | error (_("Command aborted.")); |
4d9d9d04 | 3190 | } |
c906108c | 3191 | |
4d9d9d04 | 3192 | discard_cleanups (old_chain); |
c906108c | 3193 | |
0b333c5e PA |
3194 | /* Tell the event loop to wait for it to stop. If the target |
3195 | supports asynchronous execution, it'll do this from within | |
3196 | target_resume. */ | |
362646f5 | 3197 | if (!target_can_async_p ()) |
0b333c5e | 3198 | mark_async_event_handler (infrun_async_inferior_event_token); |
c906108c | 3199 | } |
c906108c SS |
3200 | \f |
3201 | ||
3202 | /* Start remote-debugging of a machine over a serial link. */ | |
96baa820 | 3203 | |
c906108c | 3204 | void |
8621d6a9 | 3205 | start_remote (int from_tty) |
c906108c | 3206 | { |
d6b48e9c | 3207 | struct inferior *inferior; |
d6b48e9c PA |
3208 | |
3209 | inferior = current_inferior (); | |
16c381f0 | 3210 | inferior->control.stop_soon = STOP_QUIETLY_REMOTE; |
43ff13b4 | 3211 | |
1777feb0 | 3212 | /* Always go on waiting for the target, regardless of the mode. */ |
6426a772 | 3213 | /* FIXME: cagney/1999-09-23: At present it isn't possible to |
7e73cedf | 3214 | indicate to wait_for_inferior that a target should timeout if |
6426a772 JM |
3215 | nothing is returned (instead of just blocking). Because of this, |
3216 | targets expecting an immediate response need to, internally, set | |
3217 | things up so that the target_wait() is forced to eventually | |
1777feb0 | 3218 | timeout. */ |
6426a772 JM |
3219 | /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to |
3220 | differentiate to its caller what the state of the target is after | |
3221 | the initial open has been performed. Here we're assuming that | |
3222 | the target has stopped. It should be possible to eventually have | |
3223 | target_open() return to the caller an indication that the target | |
3224 | is currently running and GDB state should be set to the same as | |
1777feb0 | 3225 | for an async run. */ |
e4c8541f | 3226 | wait_for_inferior (); |
8621d6a9 DJ |
3227 | |
3228 | /* Now that the inferior has stopped, do any bookkeeping like | |
3229 | loading shared libraries. We want to do this before normal_stop, | |
3230 | so that the displayed frame is up to date. */ | |
3231 | post_create_inferior (¤t_target, from_tty); | |
3232 | ||
6426a772 | 3233 | normal_stop (); |
c906108c SS |
3234 | } |
3235 | ||
3236 | /* Initialize static vars when a new inferior begins. */ | |
3237 | ||
3238 | void | |
96baa820 | 3239 | init_wait_for_inferior (void) |
c906108c SS |
3240 | { |
3241 | /* These are meaningless until the first time through wait_for_inferior. */ | |
c906108c | 3242 | |
c906108c SS |
3243 | breakpoint_init_inferior (inf_starting); |
3244 | ||
70509625 | 3245 | clear_proceed_status (0); |
9f976b41 | 3246 | |
ca005067 | 3247 | target_last_wait_ptid = minus_one_ptid; |
237fc4c9 | 3248 | |
842951eb | 3249 | previous_inferior_ptid = inferior_ptid; |
0d1e5fa7 | 3250 | |
edb3359d DJ |
3251 | /* Discard any skipped inlined frames. */ |
3252 | clear_inline_frame_state (minus_one_ptid); | |
c906108c | 3253 | } |
237fc4c9 | 3254 | |
c906108c | 3255 | \f |
488f131b | 3256 | |
ec9499be | 3257 | static void handle_inferior_event (struct execution_control_state *ecs); |
cd0fc7c3 | 3258 | |
568d6575 UW |
3259 | static void handle_step_into_function (struct gdbarch *gdbarch, |
3260 | struct execution_control_state *ecs); | |
3261 | static void handle_step_into_function_backward (struct gdbarch *gdbarch, | |
3262 | struct execution_control_state *ecs); | |
4f5d7f63 | 3263 | static void handle_signal_stop (struct execution_control_state *ecs); |
186c406b | 3264 | static void check_exception_resume (struct execution_control_state *, |
28106bc2 | 3265 | struct frame_info *); |
611c83ae | 3266 | |
bdc36728 | 3267 | static void end_stepping_range (struct execution_control_state *ecs); |
22bcd14b | 3268 | static void stop_waiting (struct execution_control_state *ecs); |
d4f3574e | 3269 | static void keep_going (struct execution_control_state *ecs); |
94c57d6a | 3270 | static void process_event_stop_test (struct execution_control_state *ecs); |
c447ac0b | 3271 | static int switch_back_to_stepped_thread (struct execution_control_state *ecs); |
104c1213 | 3272 | |
252fbfc8 PA |
3273 | /* Callback for iterate over threads. If the thread is stopped, but |
3274 | the user/frontend doesn't know about that yet, go through | |
3275 | normal_stop, as if the thread had just stopped now. ARG points at | |
3276 | a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If | |
3277 | ptid_is_pid(PTID) is true, applies to all threads of the process | |
3278 | pointed at by PTID. Otherwise, apply only to the thread pointed by | |
3279 | PTID. */ | |
3280 | ||
3281 | static int | |
3282 | infrun_thread_stop_requested_callback (struct thread_info *info, void *arg) | |
3283 | { | |
3284 | ptid_t ptid = * (ptid_t *) arg; | |
3285 | ||
3286 | if ((ptid_equal (info->ptid, ptid) | |
3287 | || ptid_equal (minus_one_ptid, ptid) | |
3288 | || (ptid_is_pid (ptid) | |
3289 | && ptid_get_pid (ptid) == ptid_get_pid (info->ptid))) | |
3290 | && is_running (info->ptid) | |
3291 | && !is_executing (info->ptid)) | |
3292 | { | |
3293 | struct cleanup *old_chain; | |
3294 | struct execution_control_state ecss; | |
3295 | struct execution_control_state *ecs = &ecss; | |
3296 | ||
3297 | memset (ecs, 0, sizeof (*ecs)); | |
3298 | ||
3299 | old_chain = make_cleanup_restore_current_thread (); | |
3300 | ||
f15cb84a YQ |
3301 | overlay_cache_invalid = 1; |
3302 | /* Flush target cache before starting to handle each event. | |
3303 | Target was running and cache could be stale. This is just a | |
3304 | heuristic. Running threads may modify target memory, but we | |
3305 | don't get any event. */ | |
3306 | target_dcache_invalidate (); | |
3307 | ||
252fbfc8 PA |
3308 | /* Go through handle_inferior_event/normal_stop, so we always |
3309 | have consistent output as if the stop event had been | |
3310 | reported. */ | |
3311 | ecs->ptid = info->ptid; | |
243a9253 | 3312 | ecs->event_thread = info; |
252fbfc8 | 3313 | ecs->ws.kind = TARGET_WAITKIND_STOPPED; |
a493e3e2 | 3314 | ecs->ws.value.sig = GDB_SIGNAL_0; |
252fbfc8 PA |
3315 | |
3316 | handle_inferior_event (ecs); | |
3317 | ||
3318 | if (!ecs->wait_some_more) | |
3319 | { | |
243a9253 PA |
3320 | /* Cancel any running execution command. */ |
3321 | thread_cancel_execution_command (info); | |
3322 | ||
252fbfc8 | 3323 | normal_stop (); |
252fbfc8 PA |
3324 | } |
3325 | ||
3326 | do_cleanups (old_chain); | |
3327 | } | |
3328 | ||
3329 | return 0; | |
3330 | } | |
3331 | ||
3332 | /* This function is attached as a "thread_stop_requested" observer. | |
3333 | Cleanup local state that assumed the PTID was to be resumed, and | |
3334 | report the stop to the frontend. */ | |
3335 | ||
2c0b251b | 3336 | static void |
252fbfc8 PA |
3337 | infrun_thread_stop_requested (ptid_t ptid) |
3338 | { | |
c2829269 | 3339 | struct thread_info *tp; |
252fbfc8 | 3340 | |
c2829269 PA |
3341 | /* PTID was requested to stop. Remove matching threads from the |
3342 | step-over queue, so we don't try to resume them | |
3343 | automatically. */ | |
3344 | ALL_NON_EXITED_THREADS (tp) | |
3345 | if (ptid_match (tp->ptid, ptid)) | |
3346 | { | |
3347 | if (thread_is_in_step_over_chain (tp)) | |
3348 | thread_step_over_chain_remove (tp); | |
3349 | } | |
252fbfc8 PA |
3350 | |
3351 | iterate_over_threads (infrun_thread_stop_requested_callback, &ptid); | |
3352 | } | |
3353 | ||
a07daef3 PA |
3354 | static void |
3355 | infrun_thread_thread_exit (struct thread_info *tp, int silent) | |
3356 | { | |
3357 | if (ptid_equal (target_last_wait_ptid, tp->ptid)) | |
3358 | nullify_last_target_wait_ptid (); | |
3359 | } | |
3360 | ||
0cbcdb96 PA |
3361 | /* Delete the step resume, single-step and longjmp/exception resume |
3362 | breakpoints of TP. */ | |
4e1c45ea | 3363 | |
0cbcdb96 PA |
3364 | static void |
3365 | delete_thread_infrun_breakpoints (struct thread_info *tp) | |
4e1c45ea | 3366 | { |
0cbcdb96 PA |
3367 | delete_step_resume_breakpoint (tp); |
3368 | delete_exception_resume_breakpoint (tp); | |
34b7e8a6 | 3369 | delete_single_step_breakpoints (tp); |
4e1c45ea PA |
3370 | } |
3371 | ||
0cbcdb96 PA |
3372 | /* If the target still has execution, call FUNC for each thread that |
3373 | just stopped. In all-stop, that's all the non-exited threads; in | |
3374 | non-stop, that's the current thread, only. */ | |
3375 | ||
3376 | typedef void (*for_each_just_stopped_thread_callback_func) | |
3377 | (struct thread_info *tp); | |
4e1c45ea PA |
3378 | |
3379 | static void | |
0cbcdb96 | 3380 | for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func) |
4e1c45ea | 3381 | { |
0cbcdb96 | 3382 | if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid)) |
4e1c45ea PA |
3383 | return; |
3384 | ||
fbea99ea | 3385 | if (target_is_non_stop_p ()) |
4e1c45ea | 3386 | { |
0cbcdb96 PA |
3387 | /* If in non-stop mode, only the current thread stopped. */ |
3388 | func (inferior_thread ()); | |
4e1c45ea PA |
3389 | } |
3390 | else | |
0cbcdb96 PA |
3391 | { |
3392 | struct thread_info *tp; | |
3393 | ||
3394 | /* In all-stop mode, all threads have stopped. */ | |
3395 | ALL_NON_EXITED_THREADS (tp) | |
3396 | { | |
3397 | func (tp); | |
3398 | } | |
3399 | } | |
3400 | } | |
3401 | ||
3402 | /* Delete the step resume and longjmp/exception resume breakpoints of | |
3403 | the threads that just stopped. */ | |
3404 | ||
3405 | static void | |
3406 | delete_just_stopped_threads_infrun_breakpoints (void) | |
3407 | { | |
3408 | for_each_just_stopped_thread (delete_thread_infrun_breakpoints); | |
34b7e8a6 PA |
3409 | } |
3410 | ||
3411 | /* Delete the single-step breakpoints of the threads that just | |
3412 | stopped. */ | |
7c16b83e | 3413 | |
34b7e8a6 PA |
3414 | static void |
3415 | delete_just_stopped_threads_single_step_breakpoints (void) | |
3416 | { | |
3417 | for_each_just_stopped_thread (delete_single_step_breakpoints); | |
4e1c45ea PA |
3418 | } |
3419 | ||
1777feb0 | 3420 | /* A cleanup wrapper. */ |
4e1c45ea PA |
3421 | |
3422 | static void | |
0cbcdb96 | 3423 | delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg) |
4e1c45ea | 3424 | { |
0cbcdb96 | 3425 | delete_just_stopped_threads_infrun_breakpoints (); |
4e1c45ea PA |
3426 | } |
3427 | ||
221e1a37 | 3428 | /* See infrun.h. */ |
223698f8 | 3429 | |
221e1a37 | 3430 | void |
223698f8 DE |
3431 | print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid, |
3432 | const struct target_waitstatus *ws) | |
3433 | { | |
3434 | char *status_string = target_waitstatus_to_string (ws); | |
3435 | struct ui_file *tmp_stream = mem_fileopen (); | |
3436 | char *text; | |
223698f8 DE |
3437 | |
3438 | /* The text is split over several lines because it was getting too long. | |
3439 | Call fprintf_unfiltered (gdb_stdlog) once so that the text is still | |
3440 | output as a unit; we want only one timestamp printed if debug_timestamp | |
3441 | is set. */ | |
3442 | ||
3443 | fprintf_unfiltered (tmp_stream, | |
1176ecec PA |
3444 | "infrun: target_wait (%d.%ld.%ld", |
3445 | ptid_get_pid (waiton_ptid), | |
3446 | ptid_get_lwp (waiton_ptid), | |
3447 | ptid_get_tid (waiton_ptid)); | |
dfd4cc63 | 3448 | if (ptid_get_pid (waiton_ptid) != -1) |
223698f8 DE |
3449 | fprintf_unfiltered (tmp_stream, |
3450 | " [%s]", target_pid_to_str (waiton_ptid)); | |
3451 | fprintf_unfiltered (tmp_stream, ", status) =\n"); | |
3452 | fprintf_unfiltered (tmp_stream, | |
1176ecec | 3453 | "infrun: %d.%ld.%ld [%s],\n", |
dfd4cc63 | 3454 | ptid_get_pid (result_ptid), |
1176ecec PA |
3455 | ptid_get_lwp (result_ptid), |
3456 | ptid_get_tid (result_ptid), | |
dfd4cc63 | 3457 | target_pid_to_str (result_ptid)); |
223698f8 DE |
3458 | fprintf_unfiltered (tmp_stream, |
3459 | "infrun: %s\n", | |
3460 | status_string); | |
3461 | ||
759ef836 | 3462 | text = ui_file_xstrdup (tmp_stream, NULL); |
223698f8 DE |
3463 | |
3464 | /* This uses %s in part to handle %'s in the text, but also to avoid | |
3465 | a gcc error: the format attribute requires a string literal. */ | |
3466 | fprintf_unfiltered (gdb_stdlog, "%s", text); | |
3467 | ||
3468 | xfree (status_string); | |
3469 | xfree (text); | |
3470 | ui_file_delete (tmp_stream); | |
3471 | } | |
3472 | ||
372316f1 PA |
3473 | /* Select a thread at random, out of those which are resumed and have |
3474 | had events. */ | |
3475 | ||
3476 | static struct thread_info * | |
3477 | random_pending_event_thread (ptid_t waiton_ptid) | |
3478 | { | |
3479 | struct thread_info *event_tp; | |
3480 | int num_events = 0; | |
3481 | int random_selector; | |
3482 | ||
3483 | /* First see how many events we have. Count only resumed threads | |
3484 | that have an event pending. */ | |
3485 | ALL_NON_EXITED_THREADS (event_tp) | |
3486 | if (ptid_match (event_tp->ptid, waiton_ptid) | |
3487 | && event_tp->resumed | |
3488 | && event_tp->suspend.waitstatus_pending_p) | |
3489 | num_events++; | |
3490 | ||
3491 | if (num_events == 0) | |
3492 | return NULL; | |
3493 | ||
3494 | /* Now randomly pick a thread out of those that have had events. */ | |
3495 | random_selector = (int) | |
3496 | ((num_events * (double) rand ()) / (RAND_MAX + 1.0)); | |
3497 | ||
3498 | if (debug_infrun && num_events > 1) | |
3499 | fprintf_unfiltered (gdb_stdlog, | |
3500 | "infrun: Found %d events, selecting #%d\n", | |
3501 | num_events, random_selector); | |
3502 | ||
3503 | /* Select the Nth thread that has had an event. */ | |
3504 | ALL_NON_EXITED_THREADS (event_tp) | |
3505 | if (ptid_match (event_tp->ptid, waiton_ptid) | |
3506 | && event_tp->resumed | |
3507 | && event_tp->suspend.waitstatus_pending_p) | |
3508 | if (random_selector-- == 0) | |
3509 | break; | |
3510 | ||
3511 | return event_tp; | |
3512 | } | |
3513 | ||
3514 | /* Wrapper for target_wait that first checks whether threads have | |
3515 | pending statuses to report before actually asking the target for | |
3516 | more events. */ | |
3517 | ||
3518 | static ptid_t | |
3519 | do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options) | |
3520 | { | |
3521 | ptid_t event_ptid; | |
3522 | struct thread_info *tp; | |
3523 | ||
3524 | /* First check if there is a resumed thread with a wait status | |
3525 | pending. */ | |
3526 | if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid)) | |
3527 | { | |
3528 | tp = random_pending_event_thread (ptid); | |
3529 | } | |
3530 | else | |
3531 | { | |
3532 | if (debug_infrun) | |
3533 | fprintf_unfiltered (gdb_stdlog, | |
3534 | "infrun: Waiting for specific thread %s.\n", | |
3535 | target_pid_to_str (ptid)); | |
3536 | ||
3537 | /* We have a specific thread to check. */ | |
3538 | tp = find_thread_ptid (ptid); | |
3539 | gdb_assert (tp != NULL); | |
3540 | if (!tp->suspend.waitstatus_pending_p) | |
3541 | tp = NULL; | |
3542 | } | |
3543 | ||
3544 | if (tp != NULL | |
3545 | && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT | |
3546 | || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)) | |
3547 | { | |
3548 | struct regcache *regcache = get_thread_regcache (tp->ptid); | |
3549 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
3550 | CORE_ADDR pc; | |
3551 | int discard = 0; | |
3552 | ||
3553 | pc = regcache_read_pc (regcache); | |
3554 | ||
3555 | if (pc != tp->suspend.stop_pc) | |
3556 | { | |
3557 | if (debug_infrun) | |
3558 | fprintf_unfiltered (gdb_stdlog, | |
3559 | "infrun: PC of %s changed. was=%s, now=%s\n", | |
3560 | target_pid_to_str (tp->ptid), | |
3561 | paddress (gdbarch, tp->prev_pc), | |
3562 | paddress (gdbarch, pc)); | |
3563 | discard = 1; | |
3564 | } | |
3565 | else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc)) | |
3566 | { | |
3567 | if (debug_infrun) | |
3568 | fprintf_unfiltered (gdb_stdlog, | |
3569 | "infrun: previous breakpoint of %s, at %s gone\n", | |
3570 | target_pid_to_str (tp->ptid), | |
3571 | paddress (gdbarch, pc)); | |
3572 | ||
3573 | discard = 1; | |
3574 | } | |
3575 | ||
3576 | if (discard) | |
3577 | { | |
3578 | if (debug_infrun) | |
3579 | fprintf_unfiltered (gdb_stdlog, | |
3580 | "infrun: pending event of %s cancelled.\n", | |
3581 | target_pid_to_str (tp->ptid)); | |
3582 | ||
3583 | tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS; | |
3584 | tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON; | |
3585 | } | |
3586 | } | |
3587 | ||
3588 | if (tp != NULL) | |
3589 | { | |
3590 | if (debug_infrun) | |
3591 | { | |
3592 | char *statstr; | |
3593 | ||
3594 | statstr = target_waitstatus_to_string (&tp->suspend.waitstatus); | |
3595 | fprintf_unfiltered (gdb_stdlog, | |
3596 | "infrun: Using pending wait status %s for %s.\n", | |
3597 | statstr, | |
3598 | target_pid_to_str (tp->ptid)); | |
3599 | xfree (statstr); | |
3600 | } | |
3601 | ||
3602 | /* Now that we've selected our final event LWP, un-adjust its PC | |
3603 | if it was a software breakpoint (and the target doesn't | |
3604 | always adjust the PC itself). */ | |
3605 | if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT | |
3606 | && !target_supports_stopped_by_sw_breakpoint ()) | |
3607 | { | |
3608 | struct regcache *regcache; | |
3609 | struct gdbarch *gdbarch; | |
3610 | int decr_pc; | |
3611 | ||
3612 | regcache = get_thread_regcache (tp->ptid); | |
3613 | gdbarch = get_regcache_arch (regcache); | |
3614 | ||
3615 | decr_pc = gdbarch_decr_pc_after_break (gdbarch); | |
3616 | if (decr_pc != 0) | |
3617 | { | |
3618 | CORE_ADDR pc; | |
3619 | ||
3620 | pc = regcache_read_pc (regcache); | |
3621 | regcache_write_pc (regcache, pc + decr_pc); | |
3622 | } | |
3623 | } | |
3624 | ||
3625 | tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON; | |
3626 | *status = tp->suspend.waitstatus; | |
3627 | tp->suspend.waitstatus_pending_p = 0; | |
3628 | ||
3629 | /* Wake up the event loop again, until all pending events are | |
3630 | processed. */ | |
3631 | if (target_is_async_p ()) | |
3632 | mark_async_event_handler (infrun_async_inferior_event_token); | |
3633 | return tp->ptid; | |
3634 | } | |
3635 | ||
3636 | /* But if we don't find one, we'll have to wait. */ | |
3637 | ||
3638 | if (deprecated_target_wait_hook) | |
3639 | event_ptid = deprecated_target_wait_hook (ptid, status, options); | |
3640 | else | |
3641 | event_ptid = target_wait (ptid, status, options); | |
3642 | ||
3643 | return event_ptid; | |
3644 | } | |
3645 | ||
24291992 PA |
3646 | /* Prepare and stabilize the inferior for detaching it. E.g., |
3647 | detaching while a thread is displaced stepping is a recipe for | |
3648 | crashing it, as nothing would readjust the PC out of the scratch | |
3649 | pad. */ | |
3650 | ||
3651 | void | |
3652 | prepare_for_detach (void) | |
3653 | { | |
3654 | struct inferior *inf = current_inferior (); | |
3655 | ptid_t pid_ptid = pid_to_ptid (inf->pid); | |
3656 | struct cleanup *old_chain_1; | |
3657 | struct displaced_step_inferior_state *displaced; | |
3658 | ||
3659 | displaced = get_displaced_stepping_state (inf->pid); | |
3660 | ||
3661 | /* Is any thread of this process displaced stepping? If not, | |
3662 | there's nothing else to do. */ | |
3663 | if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid)) | |
3664 | return; | |
3665 | ||
3666 | if (debug_infrun) | |
3667 | fprintf_unfiltered (gdb_stdlog, | |
3668 | "displaced-stepping in-process while detaching"); | |
3669 | ||
3670 | old_chain_1 = make_cleanup_restore_integer (&inf->detaching); | |
3671 | inf->detaching = 1; | |
3672 | ||
3673 | while (!ptid_equal (displaced->step_ptid, null_ptid)) | |
3674 | { | |
3675 | struct cleanup *old_chain_2; | |
3676 | struct execution_control_state ecss; | |
3677 | struct execution_control_state *ecs; | |
3678 | ||
3679 | ecs = &ecss; | |
3680 | memset (ecs, 0, sizeof (*ecs)); | |
3681 | ||
3682 | overlay_cache_invalid = 1; | |
f15cb84a YQ |
3683 | /* Flush target cache before starting to handle each event. |
3684 | Target was running and cache could be stale. This is just a | |
3685 | heuristic. Running threads may modify target memory, but we | |
3686 | don't get any event. */ | |
3687 | target_dcache_invalidate (); | |
24291992 | 3688 | |
372316f1 | 3689 | ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0); |
24291992 PA |
3690 | |
3691 | if (debug_infrun) | |
3692 | print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws); | |
3693 | ||
3694 | /* If an error happens while handling the event, propagate GDB's | |
3695 | knowledge of the executing state to the frontend/user running | |
3696 | state. */ | |
3e43a32a MS |
3697 | old_chain_2 = make_cleanup (finish_thread_state_cleanup, |
3698 | &minus_one_ptid); | |
24291992 PA |
3699 | |
3700 | /* Now figure out what to do with the result of the result. */ | |
3701 | handle_inferior_event (ecs); | |
3702 | ||
3703 | /* No error, don't finish the state yet. */ | |
3704 | discard_cleanups (old_chain_2); | |
3705 | ||
3706 | /* Breakpoints and watchpoints are not installed on the target | |
3707 | at this point, and signals are passed directly to the | |
3708 | inferior, so this must mean the process is gone. */ | |
3709 | if (!ecs->wait_some_more) | |
3710 | { | |
3711 | discard_cleanups (old_chain_1); | |
3712 | error (_("Program exited while detaching")); | |
3713 | } | |
3714 | } | |
3715 | ||
3716 | discard_cleanups (old_chain_1); | |
3717 | } | |
3718 | ||
cd0fc7c3 | 3719 | /* Wait for control to return from inferior to debugger. |
ae123ec6 | 3720 | |
cd0fc7c3 SS |
3721 | If inferior gets a signal, we may decide to start it up again |
3722 | instead of returning. That is why there is a loop in this function. | |
3723 | When this function actually returns it means the inferior | |
3724 | should be left stopped and GDB should read more commands. */ | |
3725 | ||
3726 | void | |
e4c8541f | 3727 | wait_for_inferior (void) |
cd0fc7c3 SS |
3728 | { |
3729 | struct cleanup *old_cleanups; | |
e6f5c25b | 3730 | struct cleanup *thread_state_chain; |
c906108c | 3731 | |
527159b7 | 3732 | if (debug_infrun) |
ae123ec6 | 3733 | fprintf_unfiltered |
e4c8541f | 3734 | (gdb_stdlog, "infrun: wait_for_inferior ()\n"); |
527159b7 | 3735 | |
0cbcdb96 PA |
3736 | old_cleanups |
3737 | = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, | |
3738 | NULL); | |
cd0fc7c3 | 3739 | |
e6f5c25b PA |
3740 | /* If an error happens while handling the event, propagate GDB's |
3741 | knowledge of the executing state to the frontend/user running | |
3742 | state. */ | |
3743 | thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid); | |
3744 | ||
c906108c SS |
3745 | while (1) |
3746 | { | |
ae25568b PA |
3747 | struct execution_control_state ecss; |
3748 | struct execution_control_state *ecs = &ecss; | |
963f9c80 | 3749 | ptid_t waiton_ptid = minus_one_ptid; |
29f49a6a | 3750 | |
ae25568b PA |
3751 | memset (ecs, 0, sizeof (*ecs)); |
3752 | ||
ec9499be | 3753 | overlay_cache_invalid = 1; |
ec9499be | 3754 | |
f15cb84a YQ |
3755 | /* Flush target cache before starting to handle each event. |
3756 | Target was running and cache could be stale. This is just a | |
3757 | heuristic. Running threads may modify target memory, but we | |
3758 | don't get any event. */ | |
3759 | target_dcache_invalidate (); | |
3760 | ||
372316f1 | 3761 | ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0); |
c906108c | 3762 | |
f00150c9 | 3763 | if (debug_infrun) |
223698f8 | 3764 | print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws); |
f00150c9 | 3765 | |
cd0fc7c3 SS |
3766 | /* Now figure out what to do with the result of the result. */ |
3767 | handle_inferior_event (ecs); | |
c906108c | 3768 | |
cd0fc7c3 SS |
3769 | if (!ecs->wait_some_more) |
3770 | break; | |
3771 | } | |
4e1c45ea | 3772 | |
e6f5c25b PA |
3773 | /* No error, don't finish the state yet. */ |
3774 | discard_cleanups (thread_state_chain); | |
3775 | ||
cd0fc7c3 SS |
3776 | do_cleanups (old_cleanups); |
3777 | } | |
c906108c | 3778 | |
d3d4baed PA |
3779 | /* Cleanup that reinstalls the readline callback handler, if the |
3780 | target is running in the background. If while handling the target | |
3781 | event something triggered a secondary prompt, like e.g., a | |
3782 | pagination prompt, we'll have removed the callback handler (see | |
3783 | gdb_readline_wrapper_line). Need to do this as we go back to the | |
3784 | event loop, ready to process further input. Note this has no | |
3785 | effect if the handler hasn't actually been removed, because calling | |
3786 | rl_callback_handler_install resets the line buffer, thus losing | |
3787 | input. */ | |
3788 | ||
3789 | static void | |
3790 | reinstall_readline_callback_handler_cleanup (void *arg) | |
3791 | { | |
3b12939d PA |
3792 | struct ui *ui = current_ui; |
3793 | ||
3794 | if (!ui->async) | |
6c400b59 PA |
3795 | { |
3796 | /* We're not going back to the top level event loop yet. Don't | |
3797 | install the readline callback, as it'd prep the terminal, | |
3798 | readline-style (raw, noecho) (e.g., --batch). We'll install | |
3799 | it the next time the prompt is displayed, when we're ready | |
3800 | for input. */ | |
3801 | return; | |
3802 | } | |
3803 | ||
3b12939d | 3804 | if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED) |
d3d4baed PA |
3805 | gdb_rl_callback_handler_reinstall (); |
3806 | } | |
3807 | ||
243a9253 PA |
3808 | /* Clean up the FSMs of threads that are now stopped. In non-stop, |
3809 | that's just the event thread. In all-stop, that's all threads. */ | |
3810 | ||
3811 | static void | |
3812 | clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs) | |
3813 | { | |
3814 | struct thread_info *thr = ecs->event_thread; | |
3815 | ||
3816 | if (thr != NULL && thr->thread_fsm != NULL) | |
8980e177 | 3817 | thread_fsm_clean_up (thr->thread_fsm, thr); |
243a9253 PA |
3818 | |
3819 | if (!non_stop) | |
3820 | { | |
3821 | ALL_NON_EXITED_THREADS (thr) | |
3822 | { | |
3823 | if (thr->thread_fsm == NULL) | |
3824 | continue; | |
3825 | if (thr == ecs->event_thread) | |
3826 | continue; | |
3827 | ||
3828 | switch_to_thread (thr->ptid); | |
8980e177 | 3829 | thread_fsm_clean_up (thr->thread_fsm, thr); |
243a9253 PA |
3830 | } |
3831 | ||
3832 | if (ecs->event_thread != NULL) | |
3833 | switch_to_thread (ecs->event_thread->ptid); | |
3834 | } | |
3835 | } | |
3836 | ||
3b12939d PA |
3837 | /* Helper for all_uis_check_sync_execution_done that works on the |
3838 | current UI. */ | |
3839 | ||
3840 | static void | |
3841 | check_curr_ui_sync_execution_done (void) | |
3842 | { | |
3843 | struct ui *ui = current_ui; | |
3844 | ||
3845 | if (ui->prompt_state == PROMPT_NEEDED | |
3846 | && ui->async | |
3847 | && !gdb_in_secondary_prompt_p (ui)) | |
3848 | { | |
3849 | target_terminal_ours (); | |
3850 | observer_notify_sync_execution_done (); | |
3eb7562a | 3851 | ui_register_input_event_handler (ui); |
3b12939d PA |
3852 | } |
3853 | } | |
3854 | ||
3855 | /* See infrun.h. */ | |
3856 | ||
3857 | void | |
3858 | all_uis_check_sync_execution_done (void) | |
3859 | { | |
3860 | struct switch_thru_all_uis state; | |
3861 | ||
3862 | SWITCH_THRU_ALL_UIS (state) | |
3863 | { | |
3864 | check_curr_ui_sync_execution_done (); | |
3865 | } | |
3866 | } | |
3867 | ||
a8836c93 PA |
3868 | /* See infrun.h. */ |
3869 | ||
3870 | void | |
3871 | all_uis_on_sync_execution_starting (void) | |
3872 | { | |
3873 | struct switch_thru_all_uis state; | |
3874 | ||
3875 | SWITCH_THRU_ALL_UIS (state) | |
3876 | { | |
3877 | if (current_ui->prompt_state == PROMPT_NEEDED) | |
3878 | async_disable_stdin (); | |
3879 | } | |
3880 | } | |
3881 | ||
1777feb0 | 3882 | /* Asynchronous version of wait_for_inferior. It is called by the |
43ff13b4 | 3883 | event loop whenever a change of state is detected on the file |
1777feb0 MS |
3884 | descriptor corresponding to the target. It can be called more than |
3885 | once to complete a single execution command. In such cases we need | |
3886 | to keep the state in a global variable ECSS. If it is the last time | |
a474d7c2 PA |
3887 | that this function is called for a single execution command, then |
3888 | report to the user that the inferior has stopped, and do the | |
1777feb0 | 3889 | necessary cleanups. */ |
43ff13b4 JM |
3890 | |
3891 | void | |
fba45db2 | 3892 | fetch_inferior_event (void *client_data) |
43ff13b4 | 3893 | { |
0d1e5fa7 | 3894 | struct execution_control_state ecss; |
a474d7c2 | 3895 | struct execution_control_state *ecs = &ecss; |
4f8d22e3 | 3896 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); |
29f49a6a | 3897 | struct cleanup *ts_old_chain; |
0f641c01 | 3898 | int cmd_done = 0; |
963f9c80 | 3899 | ptid_t waiton_ptid = minus_one_ptid; |
43ff13b4 | 3900 | |
0d1e5fa7 PA |
3901 | memset (ecs, 0, sizeof (*ecs)); |
3902 | ||
c61db772 PA |
3903 | /* Events are always processed with the main UI as current UI. This |
3904 | way, warnings, debug output, etc. are always consistently sent to | |
3905 | the main console. */ | |
a025b477 | 3906 | make_cleanup_restore_current_ui (); |
c61db772 PA |
3907 | current_ui = main_ui; |
3908 | ||
d3d4baed PA |
3909 | /* End up with readline processing input, if necessary. */ |
3910 | make_cleanup (reinstall_readline_callback_handler_cleanup, NULL); | |
3911 | ||
c5187ac6 PA |
3912 | /* We're handling a live event, so make sure we're doing live |
3913 | debugging. If we're looking at traceframes while the target is | |
3914 | running, we're going to need to get back to that mode after | |
3915 | handling the event. */ | |
3916 | if (non_stop) | |
3917 | { | |
3918 | make_cleanup_restore_current_traceframe (); | |
e6e4e701 | 3919 | set_current_traceframe (-1); |
c5187ac6 PA |
3920 | } |
3921 | ||
4f8d22e3 PA |
3922 | if (non_stop) |
3923 | /* In non-stop mode, the user/frontend should not notice a thread | |
3924 | switch due to internal events. Make sure we reverse to the | |
3925 | user selected thread and frame after handling the event and | |
3926 | running any breakpoint commands. */ | |
3927 | make_cleanup_restore_current_thread (); | |
3928 | ||
ec9499be | 3929 | overlay_cache_invalid = 1; |
f15cb84a YQ |
3930 | /* Flush target cache before starting to handle each event. Target |
3931 | was running and cache could be stale. This is just a heuristic. | |
3932 | Running threads may modify target memory, but we don't get any | |
3933 | event. */ | |
3934 | target_dcache_invalidate (); | |
3dd5b83d | 3935 | |
b7b633e9 TT |
3936 | scoped_restore save_exec_dir |
3937 | = make_scoped_restore (&execution_direction, target_execution_direction ()); | |
32231432 | 3938 | |
0b333c5e PA |
3939 | ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, |
3940 | target_can_async_p () ? TARGET_WNOHANG : 0); | |
43ff13b4 | 3941 | |
f00150c9 | 3942 | if (debug_infrun) |
223698f8 | 3943 | print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws); |
f00150c9 | 3944 | |
29f49a6a PA |
3945 | /* If an error happens while handling the event, propagate GDB's |
3946 | knowledge of the executing state to the frontend/user running | |
3947 | state. */ | |
fbea99ea | 3948 | if (!target_is_non_stop_p ()) |
29f49a6a PA |
3949 | ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid); |
3950 | else | |
3951 | ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid); | |
3952 | ||
353d1d73 JK |
3953 | /* Get executed before make_cleanup_restore_current_thread above to apply |
3954 | still for the thread which has thrown the exception. */ | |
3955 | make_bpstat_clear_actions_cleanup (); | |
3956 | ||
7c16b83e PA |
3957 | make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL); |
3958 | ||
43ff13b4 | 3959 | /* Now figure out what to do with the result of the result. */ |
a474d7c2 | 3960 | handle_inferior_event (ecs); |
43ff13b4 | 3961 | |
a474d7c2 | 3962 | if (!ecs->wait_some_more) |
43ff13b4 | 3963 | { |
c9657e70 | 3964 | struct inferior *inf = find_inferior_ptid (ecs->ptid); |
243a9253 PA |
3965 | int should_stop = 1; |
3966 | struct thread_info *thr = ecs->event_thread; | |
388a7084 | 3967 | int should_notify_stop = 1; |
d6b48e9c | 3968 | |
0cbcdb96 | 3969 | delete_just_stopped_threads_infrun_breakpoints (); |
f107f563 | 3970 | |
243a9253 PA |
3971 | if (thr != NULL) |
3972 | { | |
3973 | struct thread_fsm *thread_fsm = thr->thread_fsm; | |
3974 | ||
3975 | if (thread_fsm != NULL) | |
8980e177 | 3976 | should_stop = thread_fsm_should_stop (thread_fsm, thr); |
243a9253 PA |
3977 | } |
3978 | ||
3979 | if (!should_stop) | |
3980 | { | |
3981 | keep_going (ecs); | |
3982 | } | |
c2d11a7d | 3983 | else |
0f641c01 | 3984 | { |
243a9253 PA |
3985 | clean_up_just_stopped_threads_fsms (ecs); |
3986 | ||
388a7084 PA |
3987 | if (thr != NULL && thr->thread_fsm != NULL) |
3988 | { | |
3989 | should_notify_stop | |
3990 | = thread_fsm_should_notify_stop (thr->thread_fsm); | |
3991 | } | |
3992 | ||
3993 | if (should_notify_stop) | |
3994 | { | |
4c2f2a79 PA |
3995 | int proceeded = 0; |
3996 | ||
388a7084 PA |
3997 | /* We may not find an inferior if this was a process exit. */ |
3998 | if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY) | |
4c2f2a79 | 3999 | proceeded = normal_stop (); |
243a9253 | 4000 | |
4c2f2a79 PA |
4001 | if (!proceeded) |
4002 | { | |
4003 | inferior_event_handler (INF_EXEC_COMPLETE, NULL); | |
4004 | cmd_done = 1; | |
4005 | } | |
388a7084 | 4006 | } |
0f641c01 | 4007 | } |
43ff13b4 | 4008 | } |
4f8d22e3 | 4009 | |
29f49a6a PA |
4010 | /* No error, don't finish the thread states yet. */ |
4011 | discard_cleanups (ts_old_chain); | |
4012 | ||
4f8d22e3 PA |
4013 | /* Revert thread and frame. */ |
4014 | do_cleanups (old_chain); | |
4015 | ||
3b12939d PA |
4016 | /* If a UI was in sync execution mode, and now isn't, restore its |
4017 | prompt (a synchronous execution command has finished, and we're | |
4018 | ready for input). */ | |
4019 | all_uis_check_sync_execution_done (); | |
0f641c01 PA |
4020 | |
4021 | if (cmd_done | |
0f641c01 PA |
4022 | && exec_done_display_p |
4023 | && (ptid_equal (inferior_ptid, null_ptid) | |
4024 | || !is_running (inferior_ptid))) | |
4025 | printf_unfiltered (_("completed.\n")); | |
43ff13b4 JM |
4026 | } |
4027 | ||
edb3359d DJ |
4028 | /* Record the frame and location we're currently stepping through. */ |
4029 | void | |
4030 | set_step_info (struct frame_info *frame, struct symtab_and_line sal) | |
4031 | { | |
4032 | struct thread_info *tp = inferior_thread (); | |
4033 | ||
16c381f0 JK |
4034 | tp->control.step_frame_id = get_frame_id (frame); |
4035 | tp->control.step_stack_frame_id = get_stack_frame_id (frame); | |
edb3359d DJ |
4036 | |
4037 | tp->current_symtab = sal.symtab; | |
4038 | tp->current_line = sal.line; | |
4039 | } | |
4040 | ||
0d1e5fa7 PA |
4041 | /* Clear context switchable stepping state. */ |
4042 | ||
4043 | void | |
4e1c45ea | 4044 | init_thread_stepping_state (struct thread_info *tss) |
0d1e5fa7 | 4045 | { |
7f5ef605 | 4046 | tss->stepped_breakpoint = 0; |
0d1e5fa7 | 4047 | tss->stepping_over_breakpoint = 0; |
963f9c80 | 4048 | tss->stepping_over_watchpoint = 0; |
0d1e5fa7 | 4049 | tss->step_after_step_resume_breakpoint = 0; |
cd0fc7c3 SS |
4050 | } |
4051 | ||
c32c64b7 DE |
4052 | /* Set the cached copy of the last ptid/waitstatus. */ |
4053 | ||
6efcd9a8 | 4054 | void |
c32c64b7 DE |
4055 | set_last_target_status (ptid_t ptid, struct target_waitstatus status) |
4056 | { | |
4057 | target_last_wait_ptid = ptid; | |
4058 | target_last_waitstatus = status; | |
4059 | } | |
4060 | ||
e02bc4cc | 4061 | /* Return the cached copy of the last pid/waitstatus returned by |
9a4105ab AC |
4062 | target_wait()/deprecated_target_wait_hook(). The data is actually |
4063 | cached by handle_inferior_event(), which gets called immediately | |
4064 | after target_wait()/deprecated_target_wait_hook(). */ | |
e02bc4cc DS |
4065 | |
4066 | void | |
488f131b | 4067 | get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status) |
e02bc4cc | 4068 | { |
39f77062 | 4069 | *ptidp = target_last_wait_ptid; |
e02bc4cc DS |
4070 | *status = target_last_waitstatus; |
4071 | } | |
4072 | ||
ac264b3b MS |
4073 | void |
4074 | nullify_last_target_wait_ptid (void) | |
4075 | { | |
4076 | target_last_wait_ptid = minus_one_ptid; | |
4077 | } | |
4078 | ||
dcf4fbde | 4079 | /* Switch thread contexts. */ |
dd80620e MS |
4080 | |
4081 | static void | |
0d1e5fa7 | 4082 | context_switch (ptid_t ptid) |
dd80620e | 4083 | { |
4b51d87b | 4084 | if (debug_infrun && !ptid_equal (ptid, inferior_ptid)) |
fd48f117 DJ |
4085 | { |
4086 | fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ", | |
4087 | target_pid_to_str (inferior_ptid)); | |
4088 | fprintf_unfiltered (gdb_stdlog, "to %s\n", | |
0d1e5fa7 | 4089 | target_pid_to_str (ptid)); |
fd48f117 DJ |
4090 | } |
4091 | ||
0d1e5fa7 | 4092 | switch_to_thread (ptid); |
dd80620e MS |
4093 | } |
4094 | ||
d8dd4d5f PA |
4095 | /* If the target can't tell whether we've hit breakpoints |
4096 | (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP, | |
4097 | check whether that could have been caused by a breakpoint. If so, | |
4098 | adjust the PC, per gdbarch_decr_pc_after_break. */ | |
4099 | ||
4fa8626c | 4100 | static void |
d8dd4d5f PA |
4101 | adjust_pc_after_break (struct thread_info *thread, |
4102 | struct target_waitstatus *ws) | |
4fa8626c | 4103 | { |
24a73cce UW |
4104 | struct regcache *regcache; |
4105 | struct gdbarch *gdbarch; | |
6c95b8df | 4106 | struct address_space *aspace; |
118e6252 | 4107 | CORE_ADDR breakpoint_pc, decr_pc; |
4fa8626c | 4108 | |
4fa8626c DJ |
4109 | /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If |
4110 | we aren't, just return. | |
9709f61c DJ |
4111 | |
4112 | We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not | |
b798847d UW |
4113 | affected by gdbarch_decr_pc_after_break. Other waitkinds which are |
4114 | implemented by software breakpoints should be handled through the normal | |
4115 | breakpoint layer. | |
8fb3e588 | 4116 | |
4fa8626c DJ |
4117 | NOTE drow/2004-01-31: On some targets, breakpoints may generate |
4118 | different signals (SIGILL or SIGEMT for instance), but it is less | |
4119 | clear where the PC is pointing afterwards. It may not match | |
b798847d UW |
4120 | gdbarch_decr_pc_after_break. I don't know any specific target that |
4121 | generates these signals at breakpoints (the code has been in GDB since at | |
4122 | least 1992) so I can not guess how to handle them here. | |
8fb3e588 | 4123 | |
e6cf7916 UW |
4124 | In earlier versions of GDB, a target with |
4125 | gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a | |
b798847d UW |
4126 | watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any |
4127 | target with both of these set in GDB history, and it seems unlikely to be | |
4128 | correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */ | |
4fa8626c | 4129 | |
d8dd4d5f | 4130 | if (ws->kind != TARGET_WAITKIND_STOPPED) |
4fa8626c DJ |
4131 | return; |
4132 | ||
d8dd4d5f | 4133 | if (ws->value.sig != GDB_SIGNAL_TRAP) |
4fa8626c DJ |
4134 | return; |
4135 | ||
4058b839 PA |
4136 | /* In reverse execution, when a breakpoint is hit, the instruction |
4137 | under it has already been de-executed. The reported PC always | |
4138 | points at the breakpoint address, so adjusting it further would | |
4139 | be wrong. E.g., consider this case on a decr_pc_after_break == 1 | |
4140 | architecture: | |
4141 | ||
4142 | B1 0x08000000 : INSN1 | |
4143 | B2 0x08000001 : INSN2 | |
4144 | 0x08000002 : INSN3 | |
4145 | PC -> 0x08000003 : INSN4 | |
4146 | ||
4147 | Say you're stopped at 0x08000003 as above. Reverse continuing | |
4148 | from that point should hit B2 as below. Reading the PC when the | |
4149 | SIGTRAP is reported should read 0x08000001 and INSN2 should have | |
4150 | been de-executed already. | |
4151 | ||
4152 | B1 0x08000000 : INSN1 | |
4153 | B2 PC -> 0x08000001 : INSN2 | |
4154 | 0x08000002 : INSN3 | |
4155 | 0x08000003 : INSN4 | |
4156 | ||
4157 | We can't apply the same logic as for forward execution, because | |
4158 | we would wrongly adjust the PC to 0x08000000, since there's a | |
4159 | breakpoint at PC - 1. We'd then report a hit on B1, although | |
4160 | INSN1 hadn't been de-executed yet. Doing nothing is the correct | |
4161 | behaviour. */ | |
4162 | if (execution_direction == EXEC_REVERSE) | |
4163 | return; | |
4164 | ||
1cf4d951 PA |
4165 | /* If the target can tell whether the thread hit a SW breakpoint, |
4166 | trust it. Targets that can tell also adjust the PC | |
4167 | themselves. */ | |
4168 | if (target_supports_stopped_by_sw_breakpoint ()) | |
4169 | return; | |
4170 | ||
4171 | /* Note that relying on whether a breakpoint is planted in memory to | |
4172 | determine this can fail. E.g,. the breakpoint could have been | |
4173 | removed since. Or the thread could have been told to step an | |
4174 | instruction the size of a breakpoint instruction, and only | |
4175 | _after_ was a breakpoint inserted at its address. */ | |
4176 | ||
24a73cce UW |
4177 | /* If this target does not decrement the PC after breakpoints, then |
4178 | we have nothing to do. */ | |
d8dd4d5f | 4179 | regcache = get_thread_regcache (thread->ptid); |
24a73cce | 4180 | gdbarch = get_regcache_arch (regcache); |
118e6252 | 4181 | |
527a273a | 4182 | decr_pc = gdbarch_decr_pc_after_break (gdbarch); |
118e6252 | 4183 | if (decr_pc == 0) |
24a73cce UW |
4184 | return; |
4185 | ||
6c95b8df PA |
4186 | aspace = get_regcache_aspace (regcache); |
4187 | ||
8aad930b AC |
4188 | /* Find the location where (if we've hit a breakpoint) the |
4189 | breakpoint would be. */ | |
118e6252 | 4190 | breakpoint_pc = regcache_read_pc (regcache) - decr_pc; |
8aad930b | 4191 | |
1cf4d951 PA |
4192 | /* If the target can't tell whether a software breakpoint triggered, |
4193 | fallback to figuring it out based on breakpoints we think were | |
4194 | inserted in the target, and on whether the thread was stepped or | |
4195 | continued. */ | |
4196 | ||
1c5cfe86 PA |
4197 | /* Check whether there actually is a software breakpoint inserted at |
4198 | that location. | |
4199 | ||
4200 | If in non-stop mode, a race condition is possible where we've | |
4201 | removed a breakpoint, but stop events for that breakpoint were | |
4202 | already queued and arrive later. To suppress those spurious | |
4203 | SIGTRAPs, we keep a list of such breakpoint locations for a bit, | |
1cf4d951 PA |
4204 | and retire them after a number of stop events are reported. Note |
4205 | this is an heuristic and can thus get confused. The real fix is | |
4206 | to get the "stopped by SW BP and needs adjustment" info out of | |
4207 | the target/kernel (and thus never reach here; see above). */ | |
6c95b8df | 4208 | if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc) |
fbea99ea PA |
4209 | || (target_is_non_stop_p () |
4210 | && moribund_breakpoint_here_p (aspace, breakpoint_pc))) | |
8aad930b | 4211 | { |
77f9e713 | 4212 | struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL); |
abbb1732 | 4213 | |
8213266a | 4214 | if (record_full_is_used ()) |
77f9e713 | 4215 | record_full_gdb_operation_disable_set (); |
96429cc8 | 4216 | |
1c0fdd0e UW |
4217 | /* When using hardware single-step, a SIGTRAP is reported for both |
4218 | a completed single-step and a software breakpoint. Need to | |
4219 | differentiate between the two, as the latter needs adjusting | |
4220 | but the former does not. | |
4221 | ||
4222 | The SIGTRAP can be due to a completed hardware single-step only if | |
4223 | - we didn't insert software single-step breakpoints | |
1c0fdd0e UW |
4224 | - this thread is currently being stepped |
4225 | ||
4226 | If any of these events did not occur, we must have stopped due | |
4227 | to hitting a software breakpoint, and have to back up to the | |
4228 | breakpoint address. | |
4229 | ||
4230 | As a special case, we could have hardware single-stepped a | |
4231 | software breakpoint. In this case (prev_pc == breakpoint_pc), | |
4232 | we also need to back up to the breakpoint address. */ | |
4233 | ||
d8dd4d5f PA |
4234 | if (thread_has_single_step_breakpoints_set (thread) |
4235 | || !currently_stepping (thread) | |
4236 | || (thread->stepped_breakpoint | |
4237 | && thread->prev_pc == breakpoint_pc)) | |
515630c5 | 4238 | regcache_write_pc (regcache, breakpoint_pc); |
96429cc8 | 4239 | |
77f9e713 | 4240 | do_cleanups (old_cleanups); |
8aad930b | 4241 | } |
4fa8626c DJ |
4242 | } |
4243 | ||
edb3359d DJ |
4244 | static int |
4245 | stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id) | |
4246 | { | |
4247 | for (frame = get_prev_frame (frame); | |
4248 | frame != NULL; | |
4249 | frame = get_prev_frame (frame)) | |
4250 | { | |
4251 | if (frame_id_eq (get_frame_id (frame), step_frame_id)) | |
4252 | return 1; | |
4253 | if (get_frame_type (frame) != INLINE_FRAME) | |
4254 | break; | |
4255 | } | |
4256 | ||
4257 | return 0; | |
4258 | } | |
4259 | ||
a96d9b2e SDJ |
4260 | /* Auxiliary function that handles syscall entry/return events. |
4261 | It returns 1 if the inferior should keep going (and GDB | |
4262 | should ignore the event), or 0 if the event deserves to be | |
4263 | processed. */ | |
ca2163eb | 4264 | |
a96d9b2e | 4265 | static int |
ca2163eb | 4266 | handle_syscall_event (struct execution_control_state *ecs) |
a96d9b2e | 4267 | { |
ca2163eb | 4268 | struct regcache *regcache; |
ca2163eb PA |
4269 | int syscall_number; |
4270 | ||
4271 | if (!ptid_equal (ecs->ptid, inferior_ptid)) | |
4272 | context_switch (ecs->ptid); | |
4273 | ||
4274 | regcache = get_thread_regcache (ecs->ptid); | |
f90263c1 | 4275 | syscall_number = ecs->ws.value.syscall_number; |
ca2163eb PA |
4276 | stop_pc = regcache_read_pc (regcache); |
4277 | ||
a96d9b2e SDJ |
4278 | if (catch_syscall_enabled () > 0 |
4279 | && catching_syscall_number (syscall_number) > 0) | |
4280 | { | |
4281 | if (debug_infrun) | |
4282 | fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n", | |
4283 | syscall_number); | |
a96d9b2e | 4284 | |
16c381f0 | 4285 | ecs->event_thread->control.stop_bpstat |
6c95b8df | 4286 | = bpstat_stop_status (get_regcache_aspace (regcache), |
09ac7c10 | 4287 | stop_pc, ecs->ptid, &ecs->ws); |
ab04a2af | 4288 | |
ce12b012 | 4289 | if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat)) |
ca2163eb PA |
4290 | { |
4291 | /* Catchpoint hit. */ | |
ca2163eb PA |
4292 | return 0; |
4293 | } | |
a96d9b2e | 4294 | } |
ca2163eb PA |
4295 | |
4296 | /* If no catchpoint triggered for this, then keep going. */ | |
ca2163eb PA |
4297 | keep_going (ecs); |
4298 | return 1; | |
a96d9b2e SDJ |
4299 | } |
4300 | ||
7e324e48 GB |
4301 | /* Lazily fill in the execution_control_state's stop_func_* fields. */ |
4302 | ||
4303 | static void | |
4304 | fill_in_stop_func (struct gdbarch *gdbarch, | |
4305 | struct execution_control_state *ecs) | |
4306 | { | |
4307 | if (!ecs->stop_func_filled_in) | |
4308 | { | |
4309 | /* Don't care about return value; stop_func_start and stop_func_name | |
4310 | will both be 0 if it doesn't work. */ | |
4311 | find_pc_partial_function (stop_pc, &ecs->stop_func_name, | |
4312 | &ecs->stop_func_start, &ecs->stop_func_end); | |
4313 | ecs->stop_func_start | |
4314 | += gdbarch_deprecated_function_start_offset (gdbarch); | |
4315 | ||
591a12a1 UW |
4316 | if (gdbarch_skip_entrypoint_p (gdbarch)) |
4317 | ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch, | |
4318 | ecs->stop_func_start); | |
4319 | ||
7e324e48 GB |
4320 | ecs->stop_func_filled_in = 1; |
4321 | } | |
4322 | } | |
4323 | ||
4f5d7f63 PA |
4324 | |
4325 | /* Return the STOP_SOON field of the inferior pointed at by PTID. */ | |
4326 | ||
4327 | static enum stop_kind | |
4328 | get_inferior_stop_soon (ptid_t ptid) | |
4329 | { | |
c9657e70 | 4330 | struct inferior *inf = find_inferior_ptid (ptid); |
4f5d7f63 PA |
4331 | |
4332 | gdb_assert (inf != NULL); | |
4333 | return inf->control.stop_soon; | |
4334 | } | |
4335 | ||
372316f1 PA |
4336 | /* Wait for one event. Store the resulting waitstatus in WS, and |
4337 | return the event ptid. */ | |
4338 | ||
4339 | static ptid_t | |
4340 | wait_one (struct target_waitstatus *ws) | |
4341 | { | |
4342 | ptid_t event_ptid; | |
4343 | ptid_t wait_ptid = minus_one_ptid; | |
4344 | ||
4345 | overlay_cache_invalid = 1; | |
4346 | ||
4347 | /* Flush target cache before starting to handle each event. | |
4348 | Target was running and cache could be stale. This is just a | |
4349 | heuristic. Running threads may modify target memory, but we | |
4350 | don't get any event. */ | |
4351 | target_dcache_invalidate (); | |
4352 | ||
4353 | if (deprecated_target_wait_hook) | |
4354 | event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0); | |
4355 | else | |
4356 | event_ptid = target_wait (wait_ptid, ws, 0); | |
4357 | ||
4358 | if (debug_infrun) | |
4359 | print_target_wait_results (wait_ptid, event_ptid, ws); | |
4360 | ||
4361 | return event_ptid; | |
4362 | } | |
4363 | ||
4364 | /* Generate a wrapper for target_stopped_by_REASON that works on PTID | |
4365 | instead of the current thread. */ | |
4366 | #define THREAD_STOPPED_BY(REASON) \ | |
4367 | static int \ | |
4368 | thread_stopped_by_ ## REASON (ptid_t ptid) \ | |
4369 | { \ | |
4370 | struct cleanup *old_chain; \ | |
4371 | int res; \ | |
4372 | \ | |
4373 | old_chain = save_inferior_ptid (); \ | |
4374 | inferior_ptid = ptid; \ | |
4375 | \ | |
4376 | res = target_stopped_by_ ## REASON (); \ | |
4377 | \ | |
4378 | do_cleanups (old_chain); \ | |
4379 | \ | |
4380 | return res; \ | |
4381 | } | |
4382 | ||
4383 | /* Generate thread_stopped_by_watchpoint. */ | |
4384 | THREAD_STOPPED_BY (watchpoint) | |
4385 | /* Generate thread_stopped_by_sw_breakpoint. */ | |
4386 | THREAD_STOPPED_BY (sw_breakpoint) | |
4387 | /* Generate thread_stopped_by_hw_breakpoint. */ | |
4388 | THREAD_STOPPED_BY (hw_breakpoint) | |
4389 | ||
4390 | /* Cleanups that switches to the PTID pointed at by PTID_P. */ | |
4391 | ||
4392 | static void | |
4393 | switch_to_thread_cleanup (void *ptid_p) | |
4394 | { | |
4395 | ptid_t ptid = *(ptid_t *) ptid_p; | |
4396 | ||
4397 | switch_to_thread (ptid); | |
4398 | } | |
4399 | ||
4400 | /* Save the thread's event and stop reason to process it later. */ | |
4401 | ||
4402 | static void | |
4403 | save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws) | |
4404 | { | |
4405 | struct regcache *regcache; | |
4406 | struct address_space *aspace; | |
4407 | ||
4408 | if (debug_infrun) | |
4409 | { | |
4410 | char *statstr; | |
4411 | ||
4412 | statstr = target_waitstatus_to_string (ws); | |
4413 | fprintf_unfiltered (gdb_stdlog, | |
4414 | "infrun: saving status %s for %d.%ld.%ld\n", | |
4415 | statstr, | |
4416 | ptid_get_pid (tp->ptid), | |
4417 | ptid_get_lwp (tp->ptid), | |
4418 | ptid_get_tid (tp->ptid)); | |
4419 | xfree (statstr); | |
4420 | } | |
4421 | ||
4422 | /* Record for later. */ | |
4423 | tp->suspend.waitstatus = *ws; | |
4424 | tp->suspend.waitstatus_pending_p = 1; | |
4425 | ||
4426 | regcache = get_thread_regcache (tp->ptid); | |
4427 | aspace = get_regcache_aspace (regcache); | |
4428 | ||
4429 | if (ws->kind == TARGET_WAITKIND_STOPPED | |
4430 | && ws->value.sig == GDB_SIGNAL_TRAP) | |
4431 | { | |
4432 | CORE_ADDR pc = regcache_read_pc (regcache); | |
4433 | ||
4434 | adjust_pc_after_break (tp, &tp->suspend.waitstatus); | |
4435 | ||
4436 | if (thread_stopped_by_watchpoint (tp->ptid)) | |
4437 | { | |
4438 | tp->suspend.stop_reason | |
4439 | = TARGET_STOPPED_BY_WATCHPOINT; | |
4440 | } | |
4441 | else if (target_supports_stopped_by_sw_breakpoint () | |
4442 | && thread_stopped_by_sw_breakpoint (tp->ptid)) | |
4443 | { | |
4444 | tp->suspend.stop_reason | |
4445 | = TARGET_STOPPED_BY_SW_BREAKPOINT; | |
4446 | } | |
4447 | else if (target_supports_stopped_by_hw_breakpoint () | |
4448 | && thread_stopped_by_hw_breakpoint (tp->ptid)) | |
4449 | { | |
4450 | tp->suspend.stop_reason | |
4451 | = TARGET_STOPPED_BY_HW_BREAKPOINT; | |
4452 | } | |
4453 | else if (!target_supports_stopped_by_hw_breakpoint () | |
4454 | && hardware_breakpoint_inserted_here_p (aspace, | |
4455 | pc)) | |
4456 | { | |
4457 | tp->suspend.stop_reason | |
4458 | = TARGET_STOPPED_BY_HW_BREAKPOINT; | |
4459 | } | |
4460 | else if (!target_supports_stopped_by_sw_breakpoint () | |
4461 | && software_breakpoint_inserted_here_p (aspace, | |
4462 | pc)) | |
4463 | { | |
4464 | tp->suspend.stop_reason | |
4465 | = TARGET_STOPPED_BY_SW_BREAKPOINT; | |
4466 | } | |
4467 | else if (!thread_has_single_step_breakpoints_set (tp) | |
4468 | && currently_stepping (tp)) | |
4469 | { | |
4470 | tp->suspend.stop_reason | |
4471 | = TARGET_STOPPED_BY_SINGLE_STEP; | |
4472 | } | |
4473 | } | |
4474 | } | |
4475 | ||
65706a29 PA |
4476 | /* A cleanup that disables thread create/exit events. */ |
4477 | ||
4478 | static void | |
4479 | disable_thread_events (void *arg) | |
4480 | { | |
4481 | target_thread_events (0); | |
4482 | } | |
4483 | ||
6efcd9a8 | 4484 | /* See infrun.h. */ |
372316f1 | 4485 | |
6efcd9a8 | 4486 | void |
372316f1 PA |
4487 | stop_all_threads (void) |
4488 | { | |
4489 | /* We may need multiple passes to discover all threads. */ | |
4490 | int pass; | |
4491 | int iterations = 0; | |
4492 | ptid_t entry_ptid; | |
4493 | struct cleanup *old_chain; | |
4494 | ||
fbea99ea | 4495 | gdb_assert (target_is_non_stop_p ()); |
372316f1 PA |
4496 | |
4497 | if (debug_infrun) | |
4498 | fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n"); | |
4499 | ||
4500 | entry_ptid = inferior_ptid; | |
4501 | old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid); | |
4502 | ||
65706a29 PA |
4503 | target_thread_events (1); |
4504 | make_cleanup (disable_thread_events, NULL); | |
4505 | ||
372316f1 PA |
4506 | /* Request threads to stop, and then wait for the stops. Because |
4507 | threads we already know about can spawn more threads while we're | |
4508 | trying to stop them, and we only learn about new threads when we | |
4509 | update the thread list, do this in a loop, and keep iterating | |
4510 | until two passes find no threads that need to be stopped. */ | |
4511 | for (pass = 0; pass < 2; pass++, iterations++) | |
4512 | { | |
4513 | if (debug_infrun) | |
4514 | fprintf_unfiltered (gdb_stdlog, | |
4515 | "infrun: stop_all_threads, pass=%d, " | |
4516 | "iterations=%d\n", pass, iterations); | |
4517 | while (1) | |
4518 | { | |
4519 | ptid_t event_ptid; | |
4520 | struct target_waitstatus ws; | |
4521 | int need_wait = 0; | |
4522 | struct thread_info *t; | |
4523 | ||
4524 | update_thread_list (); | |
4525 | ||
4526 | /* Go through all threads looking for threads that we need | |
4527 | to tell the target to stop. */ | |
4528 | ALL_NON_EXITED_THREADS (t) | |
4529 | { | |
4530 | if (t->executing) | |
4531 | { | |
4532 | /* If already stopping, don't request a stop again. | |
4533 | We just haven't seen the notification yet. */ | |
4534 | if (!t->stop_requested) | |
4535 | { | |
4536 | if (debug_infrun) | |
4537 | fprintf_unfiltered (gdb_stdlog, | |
4538 | "infrun: %s executing, " | |
4539 | "need stop\n", | |
4540 | target_pid_to_str (t->ptid)); | |
4541 | target_stop (t->ptid); | |
4542 | t->stop_requested = 1; | |
4543 | } | |
4544 | else | |
4545 | { | |
4546 | if (debug_infrun) | |
4547 | fprintf_unfiltered (gdb_stdlog, | |
4548 | "infrun: %s executing, " | |
4549 | "already stopping\n", | |
4550 | target_pid_to_str (t->ptid)); | |
4551 | } | |
4552 | ||
4553 | if (t->stop_requested) | |
4554 | need_wait = 1; | |
4555 | } | |
4556 | else | |
4557 | { | |
4558 | if (debug_infrun) | |
4559 | fprintf_unfiltered (gdb_stdlog, | |
4560 | "infrun: %s not executing\n", | |
4561 | target_pid_to_str (t->ptid)); | |
4562 | ||
4563 | /* The thread may be not executing, but still be | |
4564 | resumed with a pending status to process. */ | |
4565 | t->resumed = 0; | |
4566 | } | |
4567 | } | |
4568 | ||
4569 | if (!need_wait) | |
4570 | break; | |
4571 | ||
4572 | /* If we find new threads on the second iteration, restart | |
4573 | over. We want to see two iterations in a row with all | |
4574 | threads stopped. */ | |
4575 | if (pass > 0) | |
4576 | pass = -1; | |
4577 | ||
4578 | event_ptid = wait_one (&ws); | |
4579 | if (ws.kind == TARGET_WAITKIND_NO_RESUMED) | |
4580 | { | |
4581 | /* All resumed threads exited. */ | |
4582 | } | |
65706a29 PA |
4583 | else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED |
4584 | || ws.kind == TARGET_WAITKIND_EXITED | |
372316f1 PA |
4585 | || ws.kind == TARGET_WAITKIND_SIGNALLED) |
4586 | { | |
4587 | if (debug_infrun) | |
4588 | { | |
4589 | ptid_t ptid = pid_to_ptid (ws.value.integer); | |
4590 | ||
4591 | fprintf_unfiltered (gdb_stdlog, | |
4592 | "infrun: %s exited while " | |
4593 | "stopping threads\n", | |
4594 | target_pid_to_str (ptid)); | |
4595 | } | |
4596 | } | |
4597 | else | |
4598 | { | |
6efcd9a8 PA |
4599 | struct inferior *inf; |
4600 | ||
372316f1 PA |
4601 | t = find_thread_ptid (event_ptid); |
4602 | if (t == NULL) | |
4603 | t = add_thread (event_ptid); | |
4604 | ||
4605 | t->stop_requested = 0; | |
4606 | t->executing = 0; | |
4607 | t->resumed = 0; | |
4608 | t->control.may_range_step = 0; | |
4609 | ||
6efcd9a8 PA |
4610 | /* This may be the first time we see the inferior report |
4611 | a stop. */ | |
4612 | inf = find_inferior_ptid (event_ptid); | |
4613 | if (inf->needs_setup) | |
4614 | { | |
4615 | switch_to_thread_no_regs (t); | |
4616 | setup_inferior (0); | |
4617 | } | |
4618 | ||
372316f1 PA |
4619 | if (ws.kind == TARGET_WAITKIND_STOPPED |
4620 | && ws.value.sig == GDB_SIGNAL_0) | |
4621 | { | |
4622 | /* We caught the event that we intended to catch, so | |
4623 | there's no event pending. */ | |
4624 | t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE; | |
4625 | t->suspend.waitstatus_pending_p = 0; | |
4626 | ||
4627 | if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0) | |
4628 | { | |
4629 | /* Add it back to the step-over queue. */ | |
4630 | if (debug_infrun) | |
4631 | { | |
4632 | fprintf_unfiltered (gdb_stdlog, | |
4633 | "infrun: displaced-step of %s " | |
4634 | "canceled: adding back to the " | |
4635 | "step-over queue\n", | |
4636 | target_pid_to_str (t->ptid)); | |
4637 | } | |
4638 | t->control.trap_expected = 0; | |
4639 | thread_step_over_chain_enqueue (t); | |
4640 | } | |
4641 | } | |
4642 | else | |
4643 | { | |
4644 | enum gdb_signal sig; | |
4645 | struct regcache *regcache; | |
372316f1 PA |
4646 | |
4647 | if (debug_infrun) | |
4648 | { | |
4649 | char *statstr; | |
4650 | ||
4651 | statstr = target_waitstatus_to_string (&ws); | |
4652 | fprintf_unfiltered (gdb_stdlog, | |
4653 | "infrun: target_wait %s, saving " | |
4654 | "status for %d.%ld.%ld\n", | |
4655 | statstr, | |
4656 | ptid_get_pid (t->ptid), | |
4657 | ptid_get_lwp (t->ptid), | |
4658 | ptid_get_tid (t->ptid)); | |
4659 | xfree (statstr); | |
4660 | } | |
4661 | ||
4662 | /* Record for later. */ | |
4663 | save_waitstatus (t, &ws); | |
4664 | ||
4665 | sig = (ws.kind == TARGET_WAITKIND_STOPPED | |
4666 | ? ws.value.sig : GDB_SIGNAL_0); | |
4667 | ||
4668 | if (displaced_step_fixup (t->ptid, sig) < 0) | |
4669 | { | |
4670 | /* Add it back to the step-over queue. */ | |
4671 | t->control.trap_expected = 0; | |
4672 | thread_step_over_chain_enqueue (t); | |
4673 | } | |
4674 | ||
4675 | regcache = get_thread_regcache (t->ptid); | |
4676 | t->suspend.stop_pc = regcache_read_pc (regcache); | |
4677 | ||
4678 | if (debug_infrun) | |
4679 | { | |
4680 | fprintf_unfiltered (gdb_stdlog, | |
4681 | "infrun: saved stop_pc=%s for %s " | |
4682 | "(currently_stepping=%d)\n", | |
4683 | paddress (target_gdbarch (), | |
4684 | t->suspend.stop_pc), | |
4685 | target_pid_to_str (t->ptid), | |
4686 | currently_stepping (t)); | |
4687 | } | |
4688 | } | |
4689 | } | |
4690 | } | |
4691 | } | |
4692 | ||
4693 | do_cleanups (old_chain); | |
4694 | ||
4695 | if (debug_infrun) | |
4696 | fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n"); | |
4697 | } | |
4698 | ||
f4836ba9 PA |
4699 | /* Handle a TARGET_WAITKIND_NO_RESUMED event. */ |
4700 | ||
4701 | static int | |
4702 | handle_no_resumed (struct execution_control_state *ecs) | |
4703 | { | |
4704 | struct inferior *inf; | |
4705 | struct thread_info *thread; | |
4706 | ||
3b12939d | 4707 | if (target_can_async_p ()) |
f4836ba9 | 4708 | { |
3b12939d PA |
4709 | struct ui *ui; |
4710 | int any_sync = 0; | |
f4836ba9 | 4711 | |
3b12939d PA |
4712 | ALL_UIS (ui) |
4713 | { | |
4714 | if (ui->prompt_state == PROMPT_BLOCKED) | |
4715 | { | |
4716 | any_sync = 1; | |
4717 | break; | |
4718 | } | |
4719 | } | |
4720 | if (!any_sync) | |
4721 | { | |
4722 | /* There were no unwaited-for children left in the target, but, | |
4723 | we're not synchronously waiting for events either. Just | |
4724 | ignore. */ | |
4725 | ||
4726 | if (debug_infrun) | |
4727 | fprintf_unfiltered (gdb_stdlog, | |
4728 | "infrun: TARGET_WAITKIND_NO_RESUMED " | |
4729 | "(ignoring: bg)\n"); | |
4730 | prepare_to_wait (ecs); | |
4731 | return 1; | |
4732 | } | |
f4836ba9 PA |
4733 | } |
4734 | ||
4735 | /* Otherwise, if we were running a synchronous execution command, we | |
4736 | may need to cancel it and give the user back the terminal. | |
4737 | ||
4738 | In non-stop mode, the target can't tell whether we've already | |
4739 | consumed previous stop events, so it can end up sending us a | |
4740 | no-resumed event like so: | |
4741 | ||
4742 | #0 - thread 1 is left stopped | |
4743 | ||
4744 | #1 - thread 2 is resumed and hits breakpoint | |
4745 | -> TARGET_WAITKIND_STOPPED | |
4746 | ||
4747 | #2 - thread 3 is resumed and exits | |
4748 | this is the last resumed thread, so | |
4749 | -> TARGET_WAITKIND_NO_RESUMED | |
4750 | ||
4751 | #3 - gdb processes stop for thread 2 and decides to re-resume | |
4752 | it. | |
4753 | ||
4754 | #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event. | |
4755 | thread 2 is now resumed, so the event should be ignored. | |
4756 | ||
4757 | IOW, if the stop for thread 2 doesn't end a foreground command, | |
4758 | then we need to ignore the following TARGET_WAITKIND_NO_RESUMED | |
4759 | event. But it could be that the event meant that thread 2 itself | |
4760 | (or whatever other thread was the last resumed thread) exited. | |
4761 | ||
4762 | To address this we refresh the thread list and check whether we | |
4763 | have resumed threads _now_. In the example above, this removes | |
4764 | thread 3 from the thread list. If thread 2 was re-resumed, we | |
4765 | ignore this event. If we find no thread resumed, then we cancel | |
4766 | the synchronous command show "no unwaited-for " to the user. */ | |
4767 | update_thread_list (); | |
4768 | ||
4769 | ALL_NON_EXITED_THREADS (thread) | |
4770 | { | |
4771 | if (thread->executing | |
4772 | || thread->suspend.waitstatus_pending_p) | |
4773 | { | |
4774 | /* There were no unwaited-for children left in the target at | |
4775 | some point, but there are now. Just ignore. */ | |
4776 | if (debug_infrun) | |
4777 | fprintf_unfiltered (gdb_stdlog, | |
4778 | "infrun: TARGET_WAITKIND_NO_RESUMED " | |
4779 | "(ignoring: found resumed)\n"); | |
4780 | prepare_to_wait (ecs); | |
4781 | return 1; | |
4782 | } | |
4783 | } | |
4784 | ||
4785 | /* Note however that we may find no resumed thread because the whole | |
4786 | process exited meanwhile (thus updating the thread list results | |
4787 | in an empty thread list). In this case we know we'll be getting | |
4788 | a process exit event shortly. */ | |
4789 | ALL_INFERIORS (inf) | |
4790 | { | |
4791 | if (inf->pid == 0) | |
4792 | continue; | |
4793 | ||
4794 | thread = any_live_thread_of_process (inf->pid); | |
4795 | if (thread == NULL) | |
4796 | { | |
4797 | if (debug_infrun) | |
4798 | fprintf_unfiltered (gdb_stdlog, | |
4799 | "infrun: TARGET_WAITKIND_NO_RESUMED " | |
4800 | "(expect process exit)\n"); | |
4801 | prepare_to_wait (ecs); | |
4802 | return 1; | |
4803 | } | |
4804 | } | |
4805 | ||
4806 | /* Go ahead and report the event. */ | |
4807 | return 0; | |
4808 | } | |
4809 | ||
05ba8510 PA |
4810 | /* Given an execution control state that has been freshly filled in by |
4811 | an event from the inferior, figure out what it means and take | |
4812 | appropriate action. | |
4813 | ||
4814 | The alternatives are: | |
4815 | ||
22bcd14b | 4816 | 1) stop_waiting and return; to really stop and return to the |
05ba8510 PA |
4817 | debugger. |
4818 | ||
4819 | 2) keep_going and return; to wait for the next event (set | |
4820 | ecs->event_thread->stepping_over_breakpoint to 1 to single step | |
4821 | once). */ | |
c906108c | 4822 | |
ec9499be | 4823 | static void |
0b6e5e10 | 4824 | handle_inferior_event_1 (struct execution_control_state *ecs) |
cd0fc7c3 | 4825 | { |
d6b48e9c PA |
4826 | enum stop_kind stop_soon; |
4827 | ||
28736962 PA |
4828 | if (ecs->ws.kind == TARGET_WAITKIND_IGNORE) |
4829 | { | |
4830 | /* We had an event in the inferior, but we are not interested in | |
4831 | handling it at this level. The lower layers have already | |
4832 | done what needs to be done, if anything. | |
4833 | ||
4834 | One of the possible circumstances for this is when the | |
4835 | inferior produces output for the console. The inferior has | |
4836 | not stopped, and we are ignoring the event. Another possible | |
4837 | circumstance is any event which the lower level knows will be | |
4838 | reported multiple times without an intervening resume. */ | |
4839 | if (debug_infrun) | |
4840 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n"); | |
4841 | prepare_to_wait (ecs); | |
4842 | return; | |
4843 | } | |
4844 | ||
65706a29 PA |
4845 | if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED) |
4846 | { | |
4847 | if (debug_infrun) | |
4848 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n"); | |
4849 | prepare_to_wait (ecs); | |
4850 | return; | |
4851 | } | |
4852 | ||
0e5bf2a8 | 4853 | if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED |
f4836ba9 PA |
4854 | && handle_no_resumed (ecs)) |
4855 | return; | |
0e5bf2a8 | 4856 | |
1777feb0 | 4857 | /* Cache the last pid/waitstatus. */ |
c32c64b7 | 4858 | set_last_target_status (ecs->ptid, ecs->ws); |
e02bc4cc | 4859 | |
ca005067 | 4860 | /* Always clear state belonging to the previous time we stopped. */ |
aa7d318d | 4861 | stop_stack_dummy = STOP_NONE; |
ca005067 | 4862 | |
0e5bf2a8 PA |
4863 | if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED) |
4864 | { | |
4865 | /* No unwaited-for children left. IOW, all resumed children | |
4866 | have exited. */ | |
4867 | if (debug_infrun) | |
4868 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n"); | |
4869 | ||
4870 | stop_print_frame = 0; | |
22bcd14b | 4871 | stop_waiting (ecs); |
0e5bf2a8 PA |
4872 | return; |
4873 | } | |
4874 | ||
8c90c137 | 4875 | if (ecs->ws.kind != TARGET_WAITKIND_EXITED |
64776a0b | 4876 | && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED) |
359f5fe6 PA |
4877 | { |
4878 | ecs->event_thread = find_thread_ptid (ecs->ptid); | |
4879 | /* If it's a new thread, add it to the thread database. */ | |
4880 | if (ecs->event_thread == NULL) | |
4881 | ecs->event_thread = add_thread (ecs->ptid); | |
c1e36e3e PA |
4882 | |
4883 | /* Disable range stepping. If the next step request could use a | |
4884 | range, this will be end up re-enabled then. */ | |
4885 | ecs->event_thread->control.may_range_step = 0; | |
359f5fe6 | 4886 | } |
88ed393a JK |
4887 | |
4888 | /* Dependent on valid ECS->EVENT_THREAD. */ | |
d8dd4d5f | 4889 | adjust_pc_after_break (ecs->event_thread, &ecs->ws); |
88ed393a JK |
4890 | |
4891 | /* Dependent on the current PC value modified by adjust_pc_after_break. */ | |
4892 | reinit_frame_cache (); | |
4893 | ||
28736962 PA |
4894 | breakpoint_retire_moribund (); |
4895 | ||
2b009048 DJ |
4896 | /* First, distinguish signals caused by the debugger from signals |
4897 | that have to do with the program's own actions. Note that | |
4898 | breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending | |
4899 | on the operating system version. Here we detect when a SIGILL or | |
4900 | SIGEMT is really a breakpoint and change it to SIGTRAP. We do | |
4901 | something similar for SIGSEGV, since a SIGSEGV will be generated | |
4902 | when we're trying to execute a breakpoint instruction on a | |
4903 | non-executable stack. This happens for call dummy breakpoints | |
4904 | for architectures like SPARC that place call dummies on the | |
4905 | stack. */ | |
2b009048 | 4906 | if (ecs->ws.kind == TARGET_WAITKIND_STOPPED |
a493e3e2 PA |
4907 | && (ecs->ws.value.sig == GDB_SIGNAL_ILL |
4908 | || ecs->ws.value.sig == GDB_SIGNAL_SEGV | |
4909 | || ecs->ws.value.sig == GDB_SIGNAL_EMT)) | |
2b009048 | 4910 | { |
de0a0249 UW |
4911 | struct regcache *regcache = get_thread_regcache (ecs->ptid); |
4912 | ||
4913 | if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), | |
4914 | regcache_read_pc (regcache))) | |
4915 | { | |
4916 | if (debug_infrun) | |
4917 | fprintf_unfiltered (gdb_stdlog, | |
4918 | "infrun: Treating signal as SIGTRAP\n"); | |
a493e3e2 | 4919 | ecs->ws.value.sig = GDB_SIGNAL_TRAP; |
de0a0249 | 4920 | } |
2b009048 DJ |
4921 | } |
4922 | ||
28736962 PA |
4923 | /* Mark the non-executing threads accordingly. In all-stop, all |
4924 | threads of all processes are stopped when we get any event | |
e1316e60 | 4925 | reported. In non-stop mode, only the event thread stops. */ |
372316f1 PA |
4926 | { |
4927 | ptid_t mark_ptid; | |
4928 | ||
fbea99ea | 4929 | if (!target_is_non_stop_p ()) |
372316f1 PA |
4930 | mark_ptid = minus_one_ptid; |
4931 | else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED | |
4932 | || ecs->ws.kind == TARGET_WAITKIND_EXITED) | |
4933 | { | |
4934 | /* If we're handling a process exit in non-stop mode, even | |
4935 | though threads haven't been deleted yet, one would think | |
4936 | that there is nothing to do, as threads of the dead process | |
4937 | will be soon deleted, and threads of any other process were | |
4938 | left running. However, on some targets, threads survive a | |
4939 | process exit event. E.g., for the "checkpoint" command, | |
4940 | when the current checkpoint/fork exits, linux-fork.c | |
4941 | automatically switches to another fork from within | |
4942 | target_mourn_inferior, by associating the same | |
4943 | inferior/thread to another fork. We haven't mourned yet at | |
4944 | this point, but we must mark any threads left in the | |
4945 | process as not-executing so that finish_thread_state marks | |
4946 | them stopped (in the user's perspective) if/when we present | |
4947 | the stop to the user. */ | |
4948 | mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid)); | |
4949 | } | |
4950 | else | |
4951 | mark_ptid = ecs->ptid; | |
4952 | ||
4953 | set_executing (mark_ptid, 0); | |
4954 | ||
4955 | /* Likewise the resumed flag. */ | |
4956 | set_resumed (mark_ptid, 0); | |
4957 | } | |
8c90c137 | 4958 | |
488f131b JB |
4959 | switch (ecs->ws.kind) |
4960 | { | |
4961 | case TARGET_WAITKIND_LOADED: | |
527159b7 | 4962 | if (debug_infrun) |
8a9de0e4 | 4963 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n"); |
5c09a2c5 PA |
4964 | if (!ptid_equal (ecs->ptid, inferior_ptid)) |
4965 | context_switch (ecs->ptid); | |
b0f4b84b DJ |
4966 | /* Ignore gracefully during startup of the inferior, as it might |
4967 | be the shell which has just loaded some objects, otherwise | |
4968 | add the symbols for the newly loaded objects. Also ignore at | |
4969 | the beginning of an attach or remote session; we will query | |
4970 | the full list of libraries once the connection is | |
4971 | established. */ | |
4f5d7f63 PA |
4972 | |
4973 | stop_soon = get_inferior_stop_soon (ecs->ptid); | |
c0236d92 | 4974 | if (stop_soon == NO_STOP_QUIETLY) |
488f131b | 4975 | { |
edcc5120 TT |
4976 | struct regcache *regcache; |
4977 | ||
edcc5120 TT |
4978 | regcache = get_thread_regcache (ecs->ptid); |
4979 | ||
4980 | handle_solib_event (); | |
4981 | ||
4982 | ecs->event_thread->control.stop_bpstat | |
4983 | = bpstat_stop_status (get_regcache_aspace (regcache), | |
4984 | stop_pc, ecs->ptid, &ecs->ws); | |
ab04a2af | 4985 | |
ce12b012 | 4986 | if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat)) |
edcc5120 TT |
4987 | { |
4988 | /* A catchpoint triggered. */ | |
94c57d6a PA |
4989 | process_event_stop_test (ecs); |
4990 | return; | |
edcc5120 | 4991 | } |
488f131b | 4992 | |
b0f4b84b DJ |
4993 | /* If requested, stop when the dynamic linker notifies |
4994 | gdb of events. This allows the user to get control | |
4995 | and place breakpoints in initializer routines for | |
4996 | dynamically loaded objects (among other things). */ | |
a493e3e2 | 4997 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; |
b0f4b84b DJ |
4998 | if (stop_on_solib_events) |
4999 | { | |
55409f9d DJ |
5000 | /* Make sure we print "Stopped due to solib-event" in |
5001 | normal_stop. */ | |
5002 | stop_print_frame = 1; | |
5003 | ||
22bcd14b | 5004 | stop_waiting (ecs); |
b0f4b84b DJ |
5005 | return; |
5006 | } | |
488f131b | 5007 | } |
b0f4b84b DJ |
5008 | |
5009 | /* If we are skipping through a shell, or through shared library | |
5010 | loading that we aren't interested in, resume the program. If | |
5c09a2c5 | 5011 | we're running the program normally, also resume. */ |
b0f4b84b DJ |
5012 | if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY) |
5013 | { | |
74960c60 VP |
5014 | /* Loading of shared libraries might have changed breakpoint |
5015 | addresses. Make sure new breakpoints are inserted. */ | |
a25a5a45 | 5016 | if (stop_soon == NO_STOP_QUIETLY) |
74960c60 | 5017 | insert_breakpoints (); |
64ce06e4 | 5018 | resume (GDB_SIGNAL_0); |
b0f4b84b DJ |
5019 | prepare_to_wait (ecs); |
5020 | return; | |
5021 | } | |
5022 | ||
5c09a2c5 PA |
5023 | /* But stop if we're attaching or setting up a remote |
5024 | connection. */ | |
5025 | if (stop_soon == STOP_QUIETLY_NO_SIGSTOP | |
5026 | || stop_soon == STOP_QUIETLY_REMOTE) | |
5027 | { | |
5028 | if (debug_infrun) | |
5029 | fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n"); | |
22bcd14b | 5030 | stop_waiting (ecs); |
5c09a2c5 PA |
5031 | return; |
5032 | } | |
5033 | ||
5034 | internal_error (__FILE__, __LINE__, | |
5035 | _("unhandled stop_soon: %d"), (int) stop_soon); | |
c5aa993b | 5036 | |
488f131b | 5037 | case TARGET_WAITKIND_SPURIOUS: |
527159b7 | 5038 | if (debug_infrun) |
8a9de0e4 | 5039 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n"); |
64776a0b | 5040 | if (!ptid_equal (ecs->ptid, inferior_ptid)) |
8b3ee56d | 5041 | context_switch (ecs->ptid); |
64ce06e4 | 5042 | resume (GDB_SIGNAL_0); |
488f131b JB |
5043 | prepare_to_wait (ecs); |
5044 | return; | |
c5aa993b | 5045 | |
65706a29 PA |
5046 | case TARGET_WAITKIND_THREAD_CREATED: |
5047 | if (debug_infrun) | |
5048 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n"); | |
5049 | if (!ptid_equal (ecs->ptid, inferior_ptid)) | |
5050 | context_switch (ecs->ptid); | |
5051 | if (!switch_back_to_stepped_thread (ecs)) | |
5052 | keep_going (ecs); | |
5053 | return; | |
5054 | ||
488f131b | 5055 | case TARGET_WAITKIND_EXITED: |
940c3c06 | 5056 | case TARGET_WAITKIND_SIGNALLED: |
527159b7 | 5057 | if (debug_infrun) |
940c3c06 PA |
5058 | { |
5059 | if (ecs->ws.kind == TARGET_WAITKIND_EXITED) | |
5060 | fprintf_unfiltered (gdb_stdlog, | |
5061 | "infrun: TARGET_WAITKIND_EXITED\n"); | |
5062 | else | |
5063 | fprintf_unfiltered (gdb_stdlog, | |
5064 | "infrun: TARGET_WAITKIND_SIGNALLED\n"); | |
5065 | } | |
5066 | ||
fb66883a | 5067 | inferior_ptid = ecs->ptid; |
c9657e70 | 5068 | set_current_inferior (find_inferior_ptid (ecs->ptid)); |
6c95b8df PA |
5069 | set_current_program_space (current_inferior ()->pspace); |
5070 | handle_vfork_child_exec_or_exit (0); | |
1777feb0 | 5071 | target_terminal_ours (); /* Must do this before mourn anyway. */ |
488f131b | 5072 | |
0c557179 SDJ |
5073 | /* Clearing any previous state of convenience variables. */ |
5074 | clear_exit_convenience_vars (); | |
5075 | ||
940c3c06 PA |
5076 | if (ecs->ws.kind == TARGET_WAITKIND_EXITED) |
5077 | { | |
5078 | /* Record the exit code in the convenience variable $_exitcode, so | |
5079 | that the user can inspect this again later. */ | |
5080 | set_internalvar_integer (lookup_internalvar ("_exitcode"), | |
5081 | (LONGEST) ecs->ws.value.integer); | |
5082 | ||
5083 | /* Also record this in the inferior itself. */ | |
5084 | current_inferior ()->has_exit_code = 1; | |
5085 | current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer; | |
8cf64490 | 5086 | |
98eb56a4 PA |
5087 | /* Support the --return-child-result option. */ |
5088 | return_child_result_value = ecs->ws.value.integer; | |
5089 | ||
fd664c91 | 5090 | observer_notify_exited (ecs->ws.value.integer); |
940c3c06 PA |
5091 | } |
5092 | else | |
0c557179 SDJ |
5093 | { |
5094 | struct regcache *regcache = get_thread_regcache (ecs->ptid); | |
5095 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
5096 | ||
5097 | if (gdbarch_gdb_signal_to_target_p (gdbarch)) | |
5098 | { | |
5099 | /* Set the value of the internal variable $_exitsignal, | |
5100 | which holds the signal uncaught by the inferior. */ | |
5101 | set_internalvar_integer (lookup_internalvar ("_exitsignal"), | |
5102 | gdbarch_gdb_signal_to_target (gdbarch, | |
5103 | ecs->ws.value.sig)); | |
5104 | } | |
5105 | else | |
5106 | { | |
5107 | /* We don't have access to the target's method used for | |
5108 | converting between signal numbers (GDB's internal | |
5109 | representation <-> target's representation). | |
5110 | Therefore, we cannot do a good job at displaying this | |
5111 | information to the user. It's better to just warn | |
5112 | her about it (if infrun debugging is enabled), and | |
5113 | give up. */ | |
5114 | if (debug_infrun) | |
5115 | fprintf_filtered (gdb_stdlog, _("\ | |
5116 | Cannot fill $_exitsignal with the correct signal number.\n")); | |
5117 | } | |
5118 | ||
fd664c91 | 5119 | observer_notify_signal_exited (ecs->ws.value.sig); |
0c557179 | 5120 | } |
8cf64490 | 5121 | |
488f131b | 5122 | gdb_flush (gdb_stdout); |
bc1e6c81 | 5123 | target_mourn_inferior (inferior_ptid); |
488f131b | 5124 | stop_print_frame = 0; |
22bcd14b | 5125 | stop_waiting (ecs); |
488f131b | 5126 | return; |
c5aa993b | 5127 | |
488f131b | 5128 | /* The following are the only cases in which we keep going; |
1777feb0 | 5129 | the above cases end in a continue or goto. */ |
488f131b | 5130 | case TARGET_WAITKIND_FORKED: |
deb3b17b | 5131 | case TARGET_WAITKIND_VFORKED: |
527159b7 | 5132 | if (debug_infrun) |
fed708ed PA |
5133 | { |
5134 | if (ecs->ws.kind == TARGET_WAITKIND_FORKED) | |
5135 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n"); | |
5136 | else | |
5137 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n"); | |
5138 | } | |
c906108c | 5139 | |
e2d96639 YQ |
5140 | /* Check whether the inferior is displaced stepping. */ |
5141 | { | |
5142 | struct regcache *regcache = get_thread_regcache (ecs->ptid); | |
5143 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
e2d96639 YQ |
5144 | |
5145 | /* If checking displaced stepping is supported, and thread | |
5146 | ecs->ptid is displaced stepping. */ | |
c0987663 | 5147 | if (displaced_step_in_progress_thread (ecs->ptid)) |
e2d96639 YQ |
5148 | { |
5149 | struct inferior *parent_inf | |
c9657e70 | 5150 | = find_inferior_ptid (ecs->ptid); |
e2d96639 YQ |
5151 | struct regcache *child_regcache; |
5152 | CORE_ADDR parent_pc; | |
5153 | ||
5154 | /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED, | |
5155 | indicating that the displaced stepping of syscall instruction | |
5156 | has been done. Perform cleanup for parent process here. Note | |
5157 | that this operation also cleans up the child process for vfork, | |
5158 | because their pages are shared. */ | |
a493e3e2 | 5159 | displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP); |
c2829269 PA |
5160 | /* Start a new step-over in another thread if there's one |
5161 | that needs it. */ | |
5162 | start_step_over (); | |
e2d96639 YQ |
5163 | |
5164 | if (ecs->ws.kind == TARGET_WAITKIND_FORKED) | |
5165 | { | |
c0987663 YQ |
5166 | struct displaced_step_inferior_state *displaced |
5167 | = get_displaced_stepping_state (ptid_get_pid (ecs->ptid)); | |
5168 | ||
e2d96639 YQ |
5169 | /* Restore scratch pad for child process. */ |
5170 | displaced_step_restore (displaced, ecs->ws.value.related_pid); | |
5171 | } | |
5172 | ||
5173 | /* Since the vfork/fork syscall instruction was executed in the scratchpad, | |
5174 | the child's PC is also within the scratchpad. Set the child's PC | |
5175 | to the parent's PC value, which has already been fixed up. | |
5176 | FIXME: we use the parent's aspace here, although we're touching | |
5177 | the child, because the child hasn't been added to the inferior | |
5178 | list yet at this point. */ | |
5179 | ||
5180 | child_regcache | |
5181 | = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid, | |
5182 | gdbarch, | |
5183 | parent_inf->aspace); | |
5184 | /* Read PC value of parent process. */ | |
5185 | parent_pc = regcache_read_pc (regcache); | |
5186 | ||
5187 | if (debug_displaced) | |
5188 | fprintf_unfiltered (gdb_stdlog, | |
5189 | "displaced: write child pc from %s to %s\n", | |
5190 | paddress (gdbarch, | |
5191 | regcache_read_pc (child_regcache)), | |
5192 | paddress (gdbarch, parent_pc)); | |
5193 | ||
5194 | regcache_write_pc (child_regcache, parent_pc); | |
5195 | } | |
5196 | } | |
5197 | ||
5a2901d9 | 5198 | if (!ptid_equal (ecs->ptid, inferior_ptid)) |
c3a01a22 | 5199 | context_switch (ecs->ptid); |
5a2901d9 | 5200 | |
b242c3c2 PA |
5201 | /* Immediately detach breakpoints from the child before there's |
5202 | any chance of letting the user delete breakpoints from the | |
5203 | breakpoint lists. If we don't do this early, it's easy to | |
5204 | leave left over traps in the child, vis: "break foo; catch | |
5205 | fork; c; <fork>; del; c; <child calls foo>". We only follow | |
5206 | the fork on the last `continue', and by that time the | |
5207 | breakpoint at "foo" is long gone from the breakpoint table. | |
5208 | If we vforked, then we don't need to unpatch here, since both | |
5209 | parent and child are sharing the same memory pages; we'll | |
5210 | need to unpatch at follow/detach time instead to be certain | |
5211 | that new breakpoints added between catchpoint hit time and | |
5212 | vfork follow are detached. */ | |
5213 | if (ecs->ws.kind != TARGET_WAITKIND_VFORKED) | |
5214 | { | |
b242c3c2 PA |
5215 | /* This won't actually modify the breakpoint list, but will |
5216 | physically remove the breakpoints from the child. */ | |
d80ee84f | 5217 | detach_breakpoints (ecs->ws.value.related_pid); |
b242c3c2 PA |
5218 | } |
5219 | ||
34b7e8a6 | 5220 | delete_just_stopped_threads_single_step_breakpoints (); |
d03285ec | 5221 | |
e58b0e63 PA |
5222 | /* In case the event is caught by a catchpoint, remember that |
5223 | the event is to be followed at the next resume of the thread, | |
5224 | and not immediately. */ | |
5225 | ecs->event_thread->pending_follow = ecs->ws; | |
5226 | ||
fb14de7b | 5227 | stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid)); |
675bf4cb | 5228 | |
16c381f0 | 5229 | ecs->event_thread->control.stop_bpstat |
6c95b8df | 5230 | = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()), |
09ac7c10 | 5231 | stop_pc, ecs->ptid, &ecs->ws); |
675bf4cb | 5232 | |
ce12b012 PA |
5233 | /* If no catchpoint triggered for this, then keep going. Note |
5234 | that we're interested in knowing the bpstat actually causes a | |
5235 | stop, not just if it may explain the signal. Software | |
5236 | watchpoints, for example, always appear in the bpstat. */ | |
5237 | if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat)) | |
04e68871 | 5238 | { |
6c95b8df PA |
5239 | ptid_t parent; |
5240 | ptid_t child; | |
e58b0e63 | 5241 | int should_resume; |
3e43a32a MS |
5242 | int follow_child |
5243 | = (follow_fork_mode_string == follow_fork_mode_child); | |
e58b0e63 | 5244 | |
a493e3e2 | 5245 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; |
e58b0e63 PA |
5246 | |
5247 | should_resume = follow_fork (); | |
5248 | ||
6c95b8df PA |
5249 | parent = ecs->ptid; |
5250 | child = ecs->ws.value.related_pid; | |
5251 | ||
a2077e25 PA |
5252 | /* At this point, the parent is marked running, and the |
5253 | child is marked stopped. */ | |
5254 | ||
5255 | /* If not resuming the parent, mark it stopped. */ | |
5256 | if (follow_child && !detach_fork && !non_stop && !sched_multi) | |
5257 | set_running (parent, 0); | |
5258 | ||
5259 | /* If resuming the child, mark it running. */ | |
5260 | if (follow_child || (!detach_fork && (non_stop || sched_multi))) | |
5261 | set_running (child, 1); | |
5262 | ||
6c95b8df | 5263 | /* In non-stop mode, also resume the other branch. */ |
fbea99ea PA |
5264 | if (!detach_fork && (non_stop |
5265 | || (sched_multi && target_is_non_stop_p ()))) | |
6c95b8df PA |
5266 | { |
5267 | if (follow_child) | |
5268 | switch_to_thread (parent); | |
5269 | else | |
5270 | switch_to_thread (child); | |
5271 | ||
5272 | ecs->event_thread = inferior_thread (); | |
5273 | ecs->ptid = inferior_ptid; | |
5274 | keep_going (ecs); | |
5275 | } | |
5276 | ||
5277 | if (follow_child) | |
5278 | switch_to_thread (child); | |
5279 | else | |
5280 | switch_to_thread (parent); | |
5281 | ||
e58b0e63 PA |
5282 | ecs->event_thread = inferior_thread (); |
5283 | ecs->ptid = inferior_ptid; | |
5284 | ||
5285 | if (should_resume) | |
5286 | keep_going (ecs); | |
5287 | else | |
22bcd14b | 5288 | stop_waiting (ecs); |
04e68871 DJ |
5289 | return; |
5290 | } | |
94c57d6a PA |
5291 | process_event_stop_test (ecs); |
5292 | return; | |
488f131b | 5293 | |
6c95b8df PA |
5294 | case TARGET_WAITKIND_VFORK_DONE: |
5295 | /* Done with the shared memory region. Re-insert breakpoints in | |
5296 | the parent, and keep going. */ | |
5297 | ||
5298 | if (debug_infrun) | |
3e43a32a MS |
5299 | fprintf_unfiltered (gdb_stdlog, |
5300 | "infrun: TARGET_WAITKIND_VFORK_DONE\n"); | |
6c95b8df PA |
5301 | |
5302 | if (!ptid_equal (ecs->ptid, inferior_ptid)) | |
5303 | context_switch (ecs->ptid); | |
5304 | ||
5305 | current_inferior ()->waiting_for_vfork_done = 0; | |
56710373 | 5306 | current_inferior ()->pspace->breakpoints_not_allowed = 0; |
6c95b8df PA |
5307 | /* This also takes care of reinserting breakpoints in the |
5308 | previously locked inferior. */ | |
5309 | keep_going (ecs); | |
5310 | return; | |
5311 | ||
488f131b | 5312 | case TARGET_WAITKIND_EXECD: |
527159b7 | 5313 | if (debug_infrun) |
fc5261f2 | 5314 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n"); |
488f131b | 5315 | |
5a2901d9 | 5316 | if (!ptid_equal (ecs->ptid, inferior_ptid)) |
c3a01a22 | 5317 | context_switch (ecs->ptid); |
5a2901d9 | 5318 | |
fb14de7b | 5319 | stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid)); |
795e548f | 5320 | |
6c95b8df PA |
5321 | /* Do whatever is necessary to the parent branch of the vfork. */ |
5322 | handle_vfork_child_exec_or_exit (1); | |
5323 | ||
795e548f PA |
5324 | /* This causes the eventpoints and symbol table to be reset. |
5325 | Must do this now, before trying to determine whether to | |
5326 | stop. */ | |
71b43ef8 | 5327 | follow_exec (inferior_ptid, ecs->ws.value.execd_pathname); |
795e548f | 5328 | |
17d8546e DB |
5329 | /* In follow_exec we may have deleted the original thread and |
5330 | created a new one. Make sure that the event thread is the | |
5331 | execd thread for that case (this is a nop otherwise). */ | |
5332 | ecs->event_thread = inferior_thread (); | |
5333 | ||
16c381f0 | 5334 | ecs->event_thread->control.stop_bpstat |
6c95b8df | 5335 | = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()), |
09ac7c10 | 5336 | stop_pc, ecs->ptid, &ecs->ws); |
795e548f | 5337 | |
71b43ef8 PA |
5338 | /* Note that this may be referenced from inside |
5339 | bpstat_stop_status above, through inferior_has_execd. */ | |
5340 | xfree (ecs->ws.value.execd_pathname); | |
5341 | ecs->ws.value.execd_pathname = NULL; | |
5342 | ||
04e68871 | 5343 | /* If no catchpoint triggered for this, then keep going. */ |
ce12b012 | 5344 | if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat)) |
04e68871 | 5345 | { |
a493e3e2 | 5346 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; |
04e68871 DJ |
5347 | keep_going (ecs); |
5348 | return; | |
5349 | } | |
94c57d6a PA |
5350 | process_event_stop_test (ecs); |
5351 | return; | |
488f131b | 5352 | |
b4dc5ffa MK |
5353 | /* Be careful not to try to gather much state about a thread |
5354 | that's in a syscall. It's frequently a losing proposition. */ | |
488f131b | 5355 | case TARGET_WAITKIND_SYSCALL_ENTRY: |
527159b7 | 5356 | if (debug_infrun) |
3e43a32a MS |
5357 | fprintf_unfiltered (gdb_stdlog, |
5358 | "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n"); | |
1777feb0 | 5359 | /* Getting the current syscall number. */ |
94c57d6a PA |
5360 | if (handle_syscall_event (ecs) == 0) |
5361 | process_event_stop_test (ecs); | |
5362 | return; | |
c906108c | 5363 | |
488f131b JB |
5364 | /* Before examining the threads further, step this thread to |
5365 | get it entirely out of the syscall. (We get notice of the | |
5366 | event when the thread is just on the verge of exiting a | |
5367 | syscall. Stepping one instruction seems to get it back | |
b4dc5ffa | 5368 | into user code.) */ |
488f131b | 5369 | case TARGET_WAITKIND_SYSCALL_RETURN: |
527159b7 | 5370 | if (debug_infrun) |
3e43a32a MS |
5371 | fprintf_unfiltered (gdb_stdlog, |
5372 | "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n"); | |
94c57d6a PA |
5373 | if (handle_syscall_event (ecs) == 0) |
5374 | process_event_stop_test (ecs); | |
5375 | return; | |
c906108c | 5376 | |
488f131b | 5377 | case TARGET_WAITKIND_STOPPED: |
527159b7 | 5378 | if (debug_infrun) |
8a9de0e4 | 5379 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n"); |
16c381f0 | 5380 | ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig; |
4f5d7f63 PA |
5381 | handle_signal_stop (ecs); |
5382 | return; | |
c906108c | 5383 | |
b2175913 | 5384 | case TARGET_WAITKIND_NO_HISTORY: |
4b4e080e PA |
5385 | if (debug_infrun) |
5386 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n"); | |
b2175913 | 5387 | /* Reverse execution: target ran out of history info. */ |
eab402df | 5388 | |
d1988021 MM |
5389 | /* Switch to the stopped thread. */ |
5390 | if (!ptid_equal (ecs->ptid, inferior_ptid)) | |
5391 | context_switch (ecs->ptid); | |
5392 | if (debug_infrun) | |
5393 | fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n"); | |
5394 | ||
34b7e8a6 | 5395 | delete_just_stopped_threads_single_step_breakpoints (); |
d1988021 | 5396 | stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid)); |
fd664c91 | 5397 | observer_notify_no_history (); |
22bcd14b | 5398 | stop_waiting (ecs); |
b2175913 | 5399 | return; |
488f131b | 5400 | } |
4f5d7f63 PA |
5401 | } |
5402 | ||
0b6e5e10 JB |
5403 | /* A wrapper around handle_inferior_event_1, which also makes sure |
5404 | that all temporary struct value objects that were created during | |
5405 | the handling of the event get deleted at the end. */ | |
5406 | ||
5407 | static void | |
5408 | handle_inferior_event (struct execution_control_state *ecs) | |
5409 | { | |
5410 | struct value *mark = value_mark (); | |
5411 | ||
5412 | handle_inferior_event_1 (ecs); | |
5413 | /* Purge all temporary values created during the event handling, | |
5414 | as it could be a long time before we return to the command level | |
5415 | where such values would otherwise be purged. */ | |
5416 | value_free_to_mark (mark); | |
5417 | } | |
5418 | ||
372316f1 PA |
5419 | /* Restart threads back to what they were trying to do back when we |
5420 | paused them for an in-line step-over. The EVENT_THREAD thread is | |
5421 | ignored. */ | |
4d9d9d04 PA |
5422 | |
5423 | static void | |
372316f1 PA |
5424 | restart_threads (struct thread_info *event_thread) |
5425 | { | |
5426 | struct thread_info *tp; | |
372316f1 PA |
5427 | |
5428 | /* In case the instruction just stepped spawned a new thread. */ | |
5429 | update_thread_list (); | |
5430 | ||
5431 | ALL_NON_EXITED_THREADS (tp) | |
5432 | { | |
5433 | if (tp == event_thread) | |
5434 | { | |
5435 | if (debug_infrun) | |
5436 | fprintf_unfiltered (gdb_stdlog, | |
5437 | "infrun: restart threads: " | |
5438 | "[%s] is event thread\n", | |
5439 | target_pid_to_str (tp->ptid)); | |
5440 | continue; | |
5441 | } | |
5442 | ||
5443 | if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall)) | |
5444 | { | |
5445 | if (debug_infrun) | |
5446 | fprintf_unfiltered (gdb_stdlog, | |
5447 | "infrun: restart threads: " | |
5448 | "[%s] not meant to be running\n", | |
5449 | target_pid_to_str (tp->ptid)); | |
5450 | continue; | |
5451 | } | |
5452 | ||
5453 | if (tp->resumed) | |
5454 | { | |
5455 | if (debug_infrun) | |
5456 | fprintf_unfiltered (gdb_stdlog, | |
5457 | "infrun: restart threads: [%s] resumed\n", | |
5458 | target_pid_to_str (tp->ptid)); | |
5459 | gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p); | |
5460 | continue; | |
5461 | } | |
5462 | ||
5463 | if (thread_is_in_step_over_chain (tp)) | |
5464 | { | |
5465 | if (debug_infrun) | |
5466 | fprintf_unfiltered (gdb_stdlog, | |
5467 | "infrun: restart threads: " | |
5468 | "[%s] needs step-over\n", | |
5469 | target_pid_to_str (tp->ptid)); | |
5470 | gdb_assert (!tp->resumed); | |
5471 | continue; | |
5472 | } | |
5473 | ||
5474 | ||
5475 | if (tp->suspend.waitstatus_pending_p) | |
5476 | { | |
5477 | if (debug_infrun) | |
5478 | fprintf_unfiltered (gdb_stdlog, | |
5479 | "infrun: restart threads: " | |
5480 | "[%s] has pending status\n", | |
5481 | target_pid_to_str (tp->ptid)); | |
5482 | tp->resumed = 1; | |
5483 | continue; | |
5484 | } | |
5485 | ||
5486 | /* If some thread needs to start a step-over at this point, it | |
5487 | should still be in the step-over queue, and thus skipped | |
5488 | above. */ | |
5489 | if (thread_still_needs_step_over (tp)) | |
5490 | { | |
5491 | internal_error (__FILE__, __LINE__, | |
5492 | "thread [%s] needs a step-over, but not in " | |
5493 | "step-over queue\n", | |
5494 | target_pid_to_str (tp->ptid)); | |
5495 | } | |
5496 | ||
5497 | if (currently_stepping (tp)) | |
5498 | { | |
5499 | if (debug_infrun) | |
5500 | fprintf_unfiltered (gdb_stdlog, | |
5501 | "infrun: restart threads: [%s] was stepping\n", | |
5502 | target_pid_to_str (tp->ptid)); | |
5503 | keep_going_stepped_thread (tp); | |
5504 | } | |
5505 | else | |
5506 | { | |
5507 | struct execution_control_state ecss; | |
5508 | struct execution_control_state *ecs = &ecss; | |
5509 | ||
5510 | if (debug_infrun) | |
5511 | fprintf_unfiltered (gdb_stdlog, | |
5512 | "infrun: restart threads: [%s] continuing\n", | |
5513 | target_pid_to_str (tp->ptid)); | |
5514 | reset_ecs (ecs, tp); | |
5515 | switch_to_thread (tp->ptid); | |
5516 | keep_going_pass_signal (ecs); | |
5517 | } | |
5518 | } | |
5519 | } | |
5520 | ||
5521 | /* Callback for iterate_over_threads. Find a resumed thread that has | |
5522 | a pending waitstatus. */ | |
5523 | ||
5524 | static int | |
5525 | resumed_thread_with_pending_status (struct thread_info *tp, | |
5526 | void *arg) | |
5527 | { | |
5528 | return (tp->resumed | |
5529 | && tp->suspend.waitstatus_pending_p); | |
5530 | } | |
5531 | ||
5532 | /* Called when we get an event that may finish an in-line or | |
5533 | out-of-line (displaced stepping) step-over started previously. | |
5534 | Return true if the event is processed and we should go back to the | |
5535 | event loop; false if the caller should continue processing the | |
5536 | event. */ | |
5537 | ||
5538 | static int | |
4d9d9d04 PA |
5539 | finish_step_over (struct execution_control_state *ecs) |
5540 | { | |
372316f1 PA |
5541 | int had_step_over_info; |
5542 | ||
4d9d9d04 PA |
5543 | displaced_step_fixup (ecs->ptid, |
5544 | ecs->event_thread->suspend.stop_signal); | |
5545 | ||
372316f1 PA |
5546 | had_step_over_info = step_over_info_valid_p (); |
5547 | ||
5548 | if (had_step_over_info) | |
4d9d9d04 PA |
5549 | { |
5550 | /* If we're stepping over a breakpoint with all threads locked, | |
5551 | then only the thread that was stepped should be reporting | |
5552 | back an event. */ | |
5553 | gdb_assert (ecs->event_thread->control.trap_expected); | |
5554 | ||
5555 | if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP) | |
5556 | clear_step_over_info (); | |
5557 | } | |
5558 | ||
fbea99ea | 5559 | if (!target_is_non_stop_p ()) |
372316f1 | 5560 | return 0; |
4d9d9d04 PA |
5561 | |
5562 | /* Start a new step-over in another thread if there's one that | |
5563 | needs it. */ | |
5564 | start_step_over (); | |
372316f1 PA |
5565 | |
5566 | /* If we were stepping over a breakpoint before, and haven't started | |
5567 | a new in-line step-over sequence, then restart all other threads | |
5568 | (except the event thread). We can't do this in all-stop, as then | |
5569 | e.g., we wouldn't be able to issue any other remote packet until | |
5570 | these other threads stop. */ | |
5571 | if (had_step_over_info && !step_over_info_valid_p ()) | |
5572 | { | |
5573 | struct thread_info *pending; | |
5574 | ||
5575 | /* If we only have threads with pending statuses, the restart | |
5576 | below won't restart any thread and so nothing re-inserts the | |
5577 | breakpoint we just stepped over. But we need it inserted | |
5578 | when we later process the pending events, otherwise if | |
5579 | another thread has a pending event for this breakpoint too, | |
5580 | we'd discard its event (because the breakpoint that | |
5581 | originally caused the event was no longer inserted). */ | |
5582 | context_switch (ecs->ptid); | |
5583 | insert_breakpoints (); | |
5584 | ||
5585 | restart_threads (ecs->event_thread); | |
5586 | ||
5587 | /* If we have events pending, go through handle_inferior_event | |
5588 | again, picking up a pending event at random. This avoids | |
5589 | thread starvation. */ | |
5590 | ||
5591 | /* But not if we just stepped over a watchpoint in order to let | |
5592 | the instruction execute so we can evaluate its expression. | |
5593 | The set of watchpoints that triggered is recorded in the | |
5594 | breakpoint objects themselves (see bp->watchpoint_triggered). | |
5595 | If we processed another event first, that other event could | |
5596 | clobber this info. */ | |
5597 | if (ecs->event_thread->stepping_over_watchpoint) | |
5598 | return 0; | |
5599 | ||
5600 | pending = iterate_over_threads (resumed_thread_with_pending_status, | |
5601 | NULL); | |
5602 | if (pending != NULL) | |
5603 | { | |
5604 | struct thread_info *tp = ecs->event_thread; | |
5605 | struct regcache *regcache; | |
5606 | ||
5607 | if (debug_infrun) | |
5608 | { | |
5609 | fprintf_unfiltered (gdb_stdlog, | |
5610 | "infrun: found resumed threads with " | |
5611 | "pending events, saving status\n"); | |
5612 | } | |
5613 | ||
5614 | gdb_assert (pending != tp); | |
5615 | ||
5616 | /* Record the event thread's event for later. */ | |
5617 | save_waitstatus (tp, &ecs->ws); | |
5618 | /* This was cleared early, by handle_inferior_event. Set it | |
5619 | so this pending event is considered by | |
5620 | do_target_wait. */ | |
5621 | tp->resumed = 1; | |
5622 | ||
5623 | gdb_assert (!tp->executing); | |
5624 | ||
5625 | regcache = get_thread_regcache (tp->ptid); | |
5626 | tp->suspend.stop_pc = regcache_read_pc (regcache); | |
5627 | ||
5628 | if (debug_infrun) | |
5629 | { | |
5630 | fprintf_unfiltered (gdb_stdlog, | |
5631 | "infrun: saved stop_pc=%s for %s " | |
5632 | "(currently_stepping=%d)\n", | |
5633 | paddress (target_gdbarch (), | |
5634 | tp->suspend.stop_pc), | |
5635 | target_pid_to_str (tp->ptid), | |
5636 | currently_stepping (tp)); | |
5637 | } | |
5638 | ||
5639 | /* This in-line step-over finished; clear this so we won't | |
5640 | start a new one. This is what handle_signal_stop would | |
5641 | do, if we returned false. */ | |
5642 | tp->stepping_over_breakpoint = 0; | |
5643 | ||
5644 | /* Wake up the event loop again. */ | |
5645 | mark_async_event_handler (infrun_async_inferior_event_token); | |
5646 | ||
5647 | prepare_to_wait (ecs); | |
5648 | return 1; | |
5649 | } | |
5650 | } | |
5651 | ||
5652 | return 0; | |
4d9d9d04 PA |
5653 | } |
5654 | ||
4f5d7f63 PA |
5655 | /* Come here when the program has stopped with a signal. */ |
5656 | ||
5657 | static void | |
5658 | handle_signal_stop (struct execution_control_state *ecs) | |
5659 | { | |
5660 | struct frame_info *frame; | |
5661 | struct gdbarch *gdbarch; | |
5662 | int stopped_by_watchpoint; | |
5663 | enum stop_kind stop_soon; | |
5664 | int random_signal; | |
c906108c | 5665 | |
f0407826 DE |
5666 | gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED); |
5667 | ||
5668 | /* Do we need to clean up the state of a thread that has | |
5669 | completed a displaced single-step? (Doing so usually affects | |
5670 | the PC, so do it here, before we set stop_pc.) */ | |
372316f1 PA |
5671 | if (finish_step_over (ecs)) |
5672 | return; | |
f0407826 DE |
5673 | |
5674 | /* If we either finished a single-step or hit a breakpoint, but | |
5675 | the user wanted this thread to be stopped, pretend we got a | |
5676 | SIG0 (generic unsignaled stop). */ | |
5677 | if (ecs->event_thread->stop_requested | |
5678 | && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP) | |
5679 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; | |
237fc4c9 | 5680 | |
515630c5 | 5681 | stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid)); |
488f131b | 5682 | |
527159b7 | 5683 | if (debug_infrun) |
237fc4c9 | 5684 | { |
5af949e3 UW |
5685 | struct regcache *regcache = get_thread_regcache (ecs->ptid); |
5686 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
7f82dfc7 JK |
5687 | struct cleanup *old_chain = save_inferior_ptid (); |
5688 | ||
5689 | inferior_ptid = ecs->ptid; | |
5af949e3 UW |
5690 | |
5691 | fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n", | |
5692 | paddress (gdbarch, stop_pc)); | |
d92524f1 | 5693 | if (target_stopped_by_watchpoint ()) |
237fc4c9 PA |
5694 | { |
5695 | CORE_ADDR addr; | |
abbb1732 | 5696 | |
237fc4c9 PA |
5697 | fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n"); |
5698 | ||
5699 | if (target_stopped_data_address (¤t_target, &addr)) | |
5700 | fprintf_unfiltered (gdb_stdlog, | |
5af949e3 UW |
5701 | "infrun: stopped data address = %s\n", |
5702 | paddress (gdbarch, addr)); | |
237fc4c9 PA |
5703 | else |
5704 | fprintf_unfiltered (gdb_stdlog, | |
5705 | "infrun: (no data address available)\n"); | |
5706 | } | |
7f82dfc7 JK |
5707 | |
5708 | do_cleanups (old_chain); | |
237fc4c9 | 5709 | } |
527159b7 | 5710 | |
36fa8042 PA |
5711 | /* This is originated from start_remote(), start_inferior() and |
5712 | shared libraries hook functions. */ | |
5713 | stop_soon = get_inferior_stop_soon (ecs->ptid); | |
5714 | if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE) | |
5715 | { | |
5716 | if (!ptid_equal (ecs->ptid, inferior_ptid)) | |
5717 | context_switch (ecs->ptid); | |
5718 | if (debug_infrun) | |
5719 | fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n"); | |
5720 | stop_print_frame = 1; | |
22bcd14b | 5721 | stop_waiting (ecs); |
36fa8042 PA |
5722 | return; |
5723 | } | |
5724 | ||
36fa8042 PA |
5725 | /* This originates from attach_command(). We need to overwrite |
5726 | the stop_signal here, because some kernels don't ignore a | |
5727 | SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call. | |
5728 | See more comments in inferior.h. On the other hand, if we | |
5729 | get a non-SIGSTOP, report it to the user - assume the backend | |
5730 | will handle the SIGSTOP if it should show up later. | |
5731 | ||
5732 | Also consider that the attach is complete when we see a | |
5733 | SIGTRAP. Some systems (e.g. Windows), and stubs supporting | |
5734 | target extended-remote report it instead of a SIGSTOP | |
5735 | (e.g. gdbserver). We already rely on SIGTRAP being our | |
5736 | signal, so this is no exception. | |
5737 | ||
5738 | Also consider that the attach is complete when we see a | |
5739 | GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell | |
5740 | the target to stop all threads of the inferior, in case the | |
5741 | low level attach operation doesn't stop them implicitly. If | |
5742 | they weren't stopped implicitly, then the stub will report a | |
5743 | GDB_SIGNAL_0, meaning: stopped for no particular reason | |
5744 | other than GDB's request. */ | |
5745 | if (stop_soon == STOP_QUIETLY_NO_SIGSTOP | |
5746 | && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP | |
5747 | || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP | |
5748 | || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0)) | |
5749 | { | |
5750 | stop_print_frame = 1; | |
22bcd14b | 5751 | stop_waiting (ecs); |
36fa8042 PA |
5752 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; |
5753 | return; | |
5754 | } | |
5755 | ||
488f131b | 5756 | /* See if something interesting happened to the non-current thread. If |
b40c7d58 DJ |
5757 | so, then switch to that thread. */ |
5758 | if (!ptid_equal (ecs->ptid, inferior_ptid)) | |
488f131b | 5759 | { |
527159b7 | 5760 | if (debug_infrun) |
8a9de0e4 | 5761 | fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n"); |
527159b7 | 5762 | |
0d1e5fa7 | 5763 | context_switch (ecs->ptid); |
c5aa993b | 5764 | |
9a4105ab | 5765 | if (deprecated_context_hook) |
5d5658a1 | 5766 | deprecated_context_hook (ptid_to_global_thread_id (ecs->ptid)); |
488f131b | 5767 | } |
c906108c | 5768 | |
568d6575 UW |
5769 | /* At this point, get hold of the now-current thread's frame. */ |
5770 | frame = get_current_frame (); | |
5771 | gdbarch = get_frame_arch (frame); | |
5772 | ||
2adfaa28 | 5773 | /* Pull the single step breakpoints out of the target. */ |
af48d08f | 5774 | if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP) |
488f131b | 5775 | { |
af48d08f PA |
5776 | struct regcache *regcache; |
5777 | struct address_space *aspace; | |
5778 | CORE_ADDR pc; | |
2adfaa28 | 5779 | |
af48d08f PA |
5780 | regcache = get_thread_regcache (ecs->ptid); |
5781 | aspace = get_regcache_aspace (regcache); | |
5782 | pc = regcache_read_pc (regcache); | |
34b7e8a6 | 5783 | |
af48d08f PA |
5784 | /* However, before doing so, if this single-step breakpoint was |
5785 | actually for another thread, set this thread up for moving | |
5786 | past it. */ | |
5787 | if (!thread_has_single_step_breakpoint_here (ecs->event_thread, | |
5788 | aspace, pc)) | |
5789 | { | |
5790 | if (single_step_breakpoint_inserted_here_p (aspace, pc)) | |
2adfaa28 PA |
5791 | { |
5792 | if (debug_infrun) | |
5793 | { | |
5794 | fprintf_unfiltered (gdb_stdlog, | |
af48d08f | 5795 | "infrun: [%s] hit another thread's " |
34b7e8a6 PA |
5796 | "single-step breakpoint\n", |
5797 | target_pid_to_str (ecs->ptid)); | |
2adfaa28 | 5798 | } |
af48d08f PA |
5799 | ecs->hit_singlestep_breakpoint = 1; |
5800 | } | |
5801 | } | |
5802 | else | |
5803 | { | |
5804 | if (debug_infrun) | |
5805 | { | |
5806 | fprintf_unfiltered (gdb_stdlog, | |
5807 | "infrun: [%s] hit its " | |
5808 | "single-step breakpoint\n", | |
5809 | target_pid_to_str (ecs->ptid)); | |
2adfaa28 PA |
5810 | } |
5811 | } | |
488f131b | 5812 | } |
af48d08f | 5813 | delete_just_stopped_threads_single_step_breakpoints (); |
c906108c | 5814 | |
963f9c80 PA |
5815 | if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP |
5816 | && ecs->event_thread->control.trap_expected | |
5817 | && ecs->event_thread->stepping_over_watchpoint) | |
d983da9c DJ |
5818 | stopped_by_watchpoint = 0; |
5819 | else | |
5820 | stopped_by_watchpoint = watchpoints_triggered (&ecs->ws); | |
5821 | ||
5822 | /* If necessary, step over this watchpoint. We'll be back to display | |
5823 | it in a moment. */ | |
5824 | if (stopped_by_watchpoint | |
d92524f1 | 5825 | && (target_have_steppable_watchpoint |
568d6575 | 5826 | || gdbarch_have_nonsteppable_watchpoint (gdbarch))) |
488f131b | 5827 | { |
488f131b JB |
5828 | /* At this point, we are stopped at an instruction which has |
5829 | attempted to write to a piece of memory under control of | |
5830 | a watchpoint. The instruction hasn't actually executed | |
5831 | yet. If we were to evaluate the watchpoint expression | |
5832 | now, we would get the old value, and therefore no change | |
5833 | would seem to have occurred. | |
5834 | ||
5835 | In order to make watchpoints work `right', we really need | |
5836 | to complete the memory write, and then evaluate the | |
d983da9c DJ |
5837 | watchpoint expression. We do this by single-stepping the |
5838 | target. | |
5839 | ||
7f89fd65 | 5840 | It may not be necessary to disable the watchpoint to step over |
d983da9c DJ |
5841 | it. For example, the PA can (with some kernel cooperation) |
5842 | single step over a watchpoint without disabling the watchpoint. | |
5843 | ||
5844 | It is far more common to need to disable a watchpoint to step | |
5845 | the inferior over it. If we have non-steppable watchpoints, | |
5846 | we must disable the current watchpoint; it's simplest to | |
963f9c80 PA |
5847 | disable all watchpoints. |
5848 | ||
5849 | Any breakpoint at PC must also be stepped over -- if there's | |
5850 | one, it will have already triggered before the watchpoint | |
5851 | triggered, and we either already reported it to the user, or | |
5852 | it didn't cause a stop and we called keep_going. In either | |
5853 | case, if there was a breakpoint at PC, we must be trying to | |
5854 | step past it. */ | |
5855 | ecs->event_thread->stepping_over_watchpoint = 1; | |
5856 | keep_going (ecs); | |
488f131b JB |
5857 | return; |
5858 | } | |
5859 | ||
4e1c45ea | 5860 | ecs->event_thread->stepping_over_breakpoint = 0; |
963f9c80 | 5861 | ecs->event_thread->stepping_over_watchpoint = 0; |
16c381f0 JK |
5862 | bpstat_clear (&ecs->event_thread->control.stop_bpstat); |
5863 | ecs->event_thread->control.stop_step = 0; | |
488f131b | 5864 | stop_print_frame = 1; |
488f131b | 5865 | stopped_by_random_signal = 0; |
488f131b | 5866 | |
edb3359d DJ |
5867 | /* Hide inlined functions starting here, unless we just performed stepi or |
5868 | nexti. After stepi and nexti, always show the innermost frame (not any | |
5869 | inline function call sites). */ | |
16c381f0 | 5870 | if (ecs->event_thread->control.step_range_end != 1) |
0574c78f GB |
5871 | { |
5872 | struct address_space *aspace = | |
5873 | get_regcache_aspace (get_thread_regcache (ecs->ptid)); | |
5874 | ||
5875 | /* skip_inline_frames is expensive, so we avoid it if we can | |
5876 | determine that the address is one where functions cannot have | |
5877 | been inlined. This improves performance with inferiors that | |
5878 | load a lot of shared libraries, because the solib event | |
5879 | breakpoint is defined as the address of a function (i.e. not | |
5880 | inline). Note that we have to check the previous PC as well | |
5881 | as the current one to catch cases when we have just | |
5882 | single-stepped off a breakpoint prior to reinstating it. | |
5883 | Note that we're assuming that the code we single-step to is | |
5884 | not inline, but that's not definitive: there's nothing | |
5885 | preventing the event breakpoint function from containing | |
5886 | inlined code, and the single-step ending up there. If the | |
5887 | user had set a breakpoint on that inlined code, the missing | |
5888 | skip_inline_frames call would break things. Fortunately | |
5889 | that's an extremely unlikely scenario. */ | |
09ac7c10 | 5890 | if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws) |
a210c238 MR |
5891 | && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP |
5892 | && ecs->event_thread->control.trap_expected | |
5893 | && pc_at_non_inline_function (aspace, | |
5894 | ecs->event_thread->prev_pc, | |
09ac7c10 | 5895 | &ecs->ws))) |
1c5a993e MR |
5896 | { |
5897 | skip_inline_frames (ecs->ptid); | |
5898 | ||
5899 | /* Re-fetch current thread's frame in case that invalidated | |
5900 | the frame cache. */ | |
5901 | frame = get_current_frame (); | |
5902 | gdbarch = get_frame_arch (frame); | |
5903 | } | |
0574c78f | 5904 | } |
edb3359d | 5905 | |
a493e3e2 | 5906 | if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP |
16c381f0 | 5907 | && ecs->event_thread->control.trap_expected |
568d6575 | 5908 | && gdbarch_single_step_through_delay_p (gdbarch) |
4e1c45ea | 5909 | && currently_stepping (ecs->event_thread)) |
3352ef37 | 5910 | { |
b50d7442 | 5911 | /* We're trying to step off a breakpoint. Turns out that we're |
3352ef37 | 5912 | also on an instruction that needs to be stepped multiple |
1777feb0 | 5913 | times before it's been fully executing. E.g., architectures |
3352ef37 AC |
5914 | with a delay slot. It needs to be stepped twice, once for |
5915 | the instruction and once for the delay slot. */ | |
5916 | int step_through_delay | |
568d6575 | 5917 | = gdbarch_single_step_through_delay (gdbarch, frame); |
abbb1732 | 5918 | |
527159b7 | 5919 | if (debug_infrun && step_through_delay) |
8a9de0e4 | 5920 | fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n"); |
16c381f0 JK |
5921 | if (ecs->event_thread->control.step_range_end == 0 |
5922 | && step_through_delay) | |
3352ef37 AC |
5923 | { |
5924 | /* The user issued a continue when stopped at a breakpoint. | |
5925 | Set up for another trap and get out of here. */ | |
4e1c45ea | 5926 | ecs->event_thread->stepping_over_breakpoint = 1; |
3352ef37 AC |
5927 | keep_going (ecs); |
5928 | return; | |
5929 | } | |
5930 | else if (step_through_delay) | |
5931 | { | |
5932 | /* The user issued a step when stopped at a breakpoint. | |
5933 | Maybe we should stop, maybe we should not - the delay | |
5934 | slot *might* correspond to a line of source. In any | |
ca67fcb8 VP |
5935 | case, don't decide that here, just set |
5936 | ecs->stepping_over_breakpoint, making sure we | |
5937 | single-step again before breakpoints are re-inserted. */ | |
4e1c45ea | 5938 | ecs->event_thread->stepping_over_breakpoint = 1; |
3352ef37 AC |
5939 | } |
5940 | } | |
5941 | ||
ab04a2af TT |
5942 | /* See if there is a breakpoint/watchpoint/catchpoint/etc. that |
5943 | handles this event. */ | |
5944 | ecs->event_thread->control.stop_bpstat | |
5945 | = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()), | |
5946 | stop_pc, ecs->ptid, &ecs->ws); | |
db82e815 | 5947 | |
ab04a2af TT |
5948 | /* Following in case break condition called a |
5949 | function. */ | |
5950 | stop_print_frame = 1; | |
73dd234f | 5951 | |
ab04a2af TT |
5952 | /* This is where we handle "moribund" watchpoints. Unlike |
5953 | software breakpoints traps, hardware watchpoint traps are | |
5954 | always distinguishable from random traps. If no high-level | |
5955 | watchpoint is associated with the reported stop data address | |
5956 | anymore, then the bpstat does not explain the signal --- | |
5957 | simply make sure to ignore it if `stopped_by_watchpoint' is | |
5958 | set. */ | |
5959 | ||
5960 | if (debug_infrun | |
5961 | && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP | |
47591c29 | 5962 | && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat, |
427cd150 | 5963 | GDB_SIGNAL_TRAP) |
ab04a2af TT |
5964 | && stopped_by_watchpoint) |
5965 | fprintf_unfiltered (gdb_stdlog, | |
5966 | "infrun: no user watchpoint explains " | |
5967 | "watchpoint SIGTRAP, ignoring\n"); | |
73dd234f | 5968 | |
bac7d97b | 5969 | /* NOTE: cagney/2003-03-29: These checks for a random signal |
ab04a2af TT |
5970 | at one stage in the past included checks for an inferior |
5971 | function call's call dummy's return breakpoint. The original | |
5972 | comment, that went with the test, read: | |
03cebad2 | 5973 | |
ab04a2af TT |
5974 | ``End of a stack dummy. Some systems (e.g. Sony news) give |
5975 | another signal besides SIGTRAP, so check here as well as | |
5976 | above.'' | |
73dd234f | 5977 | |
ab04a2af TT |
5978 | If someone ever tries to get call dummys on a |
5979 | non-executable stack to work (where the target would stop | |
5980 | with something like a SIGSEGV), then those tests might need | |
5981 | to be re-instated. Given, however, that the tests were only | |
5982 | enabled when momentary breakpoints were not being used, I | |
5983 | suspect that it won't be the case. | |
488f131b | 5984 | |
ab04a2af TT |
5985 | NOTE: kettenis/2004-02-05: Indeed such checks don't seem to |
5986 | be necessary for call dummies on a non-executable stack on | |
5987 | SPARC. */ | |
488f131b | 5988 | |
bac7d97b | 5989 | /* See if the breakpoints module can explain the signal. */ |
47591c29 PA |
5990 | random_signal |
5991 | = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat, | |
5992 | ecs->event_thread->suspend.stop_signal); | |
bac7d97b | 5993 | |
1cf4d951 PA |
5994 | /* Maybe this was a trap for a software breakpoint that has since |
5995 | been removed. */ | |
5996 | if (random_signal && target_stopped_by_sw_breakpoint ()) | |
5997 | { | |
5998 | if (program_breakpoint_here_p (gdbarch, stop_pc)) | |
5999 | { | |
6000 | struct regcache *regcache; | |
6001 | int decr_pc; | |
6002 | ||
6003 | /* Re-adjust PC to what the program would see if GDB was not | |
6004 | debugging it. */ | |
6005 | regcache = get_thread_regcache (ecs->event_thread->ptid); | |
527a273a | 6006 | decr_pc = gdbarch_decr_pc_after_break (gdbarch); |
1cf4d951 PA |
6007 | if (decr_pc != 0) |
6008 | { | |
6009 | struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL); | |
6010 | ||
6011 | if (record_full_is_used ()) | |
6012 | record_full_gdb_operation_disable_set (); | |
6013 | ||
6014 | regcache_write_pc (regcache, stop_pc + decr_pc); | |
6015 | ||
6016 | do_cleanups (old_cleanups); | |
6017 | } | |
6018 | } | |
6019 | else | |
6020 | { | |
6021 | /* A delayed software breakpoint event. Ignore the trap. */ | |
6022 | if (debug_infrun) | |
6023 | fprintf_unfiltered (gdb_stdlog, | |
6024 | "infrun: delayed software breakpoint " | |
6025 | "trap, ignoring\n"); | |
6026 | random_signal = 0; | |
6027 | } | |
6028 | } | |
6029 | ||
6030 | /* Maybe this was a trap for a hardware breakpoint/watchpoint that | |
6031 | has since been removed. */ | |
6032 | if (random_signal && target_stopped_by_hw_breakpoint ()) | |
6033 | { | |
6034 | /* A delayed hardware breakpoint event. Ignore the trap. */ | |
6035 | if (debug_infrun) | |
6036 | fprintf_unfiltered (gdb_stdlog, | |
6037 | "infrun: delayed hardware breakpoint/watchpoint " | |
6038 | "trap, ignoring\n"); | |
6039 | random_signal = 0; | |
6040 | } | |
6041 | ||
bac7d97b PA |
6042 | /* If not, perhaps stepping/nexting can. */ |
6043 | if (random_signal) | |
6044 | random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP | |
6045 | && currently_stepping (ecs->event_thread)); | |
ab04a2af | 6046 | |
2adfaa28 PA |
6047 | /* Perhaps the thread hit a single-step breakpoint of _another_ |
6048 | thread. Single-step breakpoints are transparent to the | |
6049 | breakpoints module. */ | |
6050 | if (random_signal) | |
6051 | random_signal = !ecs->hit_singlestep_breakpoint; | |
6052 | ||
bac7d97b PA |
6053 | /* No? Perhaps we got a moribund watchpoint. */ |
6054 | if (random_signal) | |
6055 | random_signal = !stopped_by_watchpoint; | |
ab04a2af | 6056 | |
488f131b JB |
6057 | /* For the program's own signals, act according to |
6058 | the signal handling tables. */ | |
6059 | ||
ce12b012 | 6060 | if (random_signal) |
488f131b JB |
6061 | { |
6062 | /* Signal not for debugging purposes. */ | |
c9657e70 | 6063 | struct inferior *inf = find_inferior_ptid (ecs->ptid); |
c9737c08 | 6064 | enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal; |
488f131b | 6065 | |
527159b7 | 6066 | if (debug_infrun) |
c9737c08 PA |
6067 | fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n", |
6068 | gdb_signal_to_symbol_string (stop_signal)); | |
527159b7 | 6069 | |
488f131b JB |
6070 | stopped_by_random_signal = 1; |
6071 | ||
252fbfc8 PA |
6072 | /* Always stop on signals if we're either just gaining control |
6073 | of the program, or the user explicitly requested this thread | |
6074 | to remain stopped. */ | |
d6b48e9c | 6075 | if (stop_soon != NO_STOP_QUIETLY |
252fbfc8 | 6076 | || ecs->event_thread->stop_requested |
24291992 | 6077 | || (!inf->detaching |
16c381f0 | 6078 | && signal_stop_state (ecs->event_thread->suspend.stop_signal))) |
488f131b | 6079 | { |
22bcd14b | 6080 | stop_waiting (ecs); |
488f131b JB |
6081 | return; |
6082 | } | |
b57bacec PA |
6083 | |
6084 | /* Notify observers the signal has "handle print" set. Note we | |
6085 | returned early above if stopping; normal_stop handles the | |
6086 | printing in that case. */ | |
6087 | if (signal_print[ecs->event_thread->suspend.stop_signal]) | |
6088 | { | |
6089 | /* The signal table tells us to print about this signal. */ | |
6090 | target_terminal_ours_for_output (); | |
6091 | observer_notify_signal_received (ecs->event_thread->suspend.stop_signal); | |
6092 | target_terminal_inferior (); | |
6093 | } | |
488f131b JB |
6094 | |
6095 | /* Clear the signal if it should not be passed. */ | |
16c381f0 | 6096 | if (signal_program[ecs->event_thread->suspend.stop_signal] == 0) |
a493e3e2 | 6097 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; |
488f131b | 6098 | |
fb14de7b | 6099 | if (ecs->event_thread->prev_pc == stop_pc |
16c381f0 | 6100 | && ecs->event_thread->control.trap_expected |
8358c15c | 6101 | && ecs->event_thread->control.step_resume_breakpoint == NULL) |
68f53502 | 6102 | { |
372316f1 PA |
6103 | int was_in_line; |
6104 | ||
68f53502 AC |
6105 | /* We were just starting a new sequence, attempting to |
6106 | single-step off of a breakpoint and expecting a SIGTRAP. | |
237fc4c9 | 6107 | Instead this signal arrives. This signal will take us out |
68f53502 AC |
6108 | of the stepping range so GDB needs to remember to, when |
6109 | the signal handler returns, resume stepping off that | |
6110 | breakpoint. */ | |
6111 | /* To simplify things, "continue" is forced to use the same | |
6112 | code paths as single-step - set a breakpoint at the | |
6113 | signal return address and then, once hit, step off that | |
6114 | breakpoint. */ | |
237fc4c9 PA |
6115 | if (debug_infrun) |
6116 | fprintf_unfiltered (gdb_stdlog, | |
6117 | "infrun: signal arrived while stepping over " | |
6118 | "breakpoint\n"); | |
d3169d93 | 6119 | |
372316f1 PA |
6120 | was_in_line = step_over_info_valid_p (); |
6121 | clear_step_over_info (); | |
2c03e5be | 6122 | insert_hp_step_resume_breakpoint_at_frame (frame); |
4e1c45ea | 6123 | ecs->event_thread->step_after_step_resume_breakpoint = 1; |
2455069d UW |
6124 | /* Reset trap_expected to ensure breakpoints are re-inserted. */ |
6125 | ecs->event_thread->control.trap_expected = 0; | |
d137e6dc | 6126 | |
fbea99ea | 6127 | if (target_is_non_stop_p ()) |
372316f1 | 6128 | { |
fbea99ea PA |
6129 | /* Either "set non-stop" is "on", or the target is |
6130 | always in non-stop mode. In this case, we have a bit | |
6131 | more work to do. Resume the current thread, and if | |
6132 | we had paused all threads, restart them while the | |
6133 | signal handler runs. */ | |
372316f1 PA |
6134 | keep_going (ecs); |
6135 | ||
372316f1 PA |
6136 | if (was_in_line) |
6137 | { | |
372316f1 PA |
6138 | restart_threads (ecs->event_thread); |
6139 | } | |
6140 | else if (debug_infrun) | |
6141 | { | |
6142 | fprintf_unfiltered (gdb_stdlog, | |
6143 | "infrun: no need to restart threads\n"); | |
6144 | } | |
6145 | return; | |
6146 | } | |
6147 | ||
d137e6dc PA |
6148 | /* If we were nexting/stepping some other thread, switch to |
6149 | it, so that we don't continue it, losing control. */ | |
6150 | if (!switch_back_to_stepped_thread (ecs)) | |
6151 | keep_going (ecs); | |
9d799f85 | 6152 | return; |
68f53502 | 6153 | } |
9d799f85 | 6154 | |
e5f8a7cc PA |
6155 | if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0 |
6156 | && (pc_in_thread_step_range (stop_pc, ecs->event_thread) | |
6157 | || ecs->event_thread->control.step_range_end == 1) | |
edb3359d | 6158 | && frame_id_eq (get_stack_frame_id (frame), |
16c381f0 | 6159 | ecs->event_thread->control.step_stack_frame_id) |
8358c15c | 6160 | && ecs->event_thread->control.step_resume_breakpoint == NULL) |
d303a6c7 AC |
6161 | { |
6162 | /* The inferior is about to take a signal that will take it | |
6163 | out of the single step range. Set a breakpoint at the | |
6164 | current PC (which is presumably where the signal handler | |
6165 | will eventually return) and then allow the inferior to | |
6166 | run free. | |
6167 | ||
6168 | Note that this is only needed for a signal delivered | |
6169 | while in the single-step range. Nested signals aren't a | |
6170 | problem as they eventually all return. */ | |
237fc4c9 PA |
6171 | if (debug_infrun) |
6172 | fprintf_unfiltered (gdb_stdlog, | |
6173 | "infrun: signal may take us out of " | |
6174 | "single-step range\n"); | |
6175 | ||
372316f1 | 6176 | clear_step_over_info (); |
2c03e5be | 6177 | insert_hp_step_resume_breakpoint_at_frame (frame); |
e5f8a7cc | 6178 | ecs->event_thread->step_after_step_resume_breakpoint = 1; |
2455069d UW |
6179 | /* Reset trap_expected to ensure breakpoints are re-inserted. */ |
6180 | ecs->event_thread->control.trap_expected = 0; | |
9d799f85 AC |
6181 | keep_going (ecs); |
6182 | return; | |
d303a6c7 | 6183 | } |
9d799f85 AC |
6184 | |
6185 | /* Note: step_resume_breakpoint may be non-NULL. This occures | |
6186 | when either there's a nested signal, or when there's a | |
6187 | pending signal enabled just as the signal handler returns | |
6188 | (leaving the inferior at the step-resume-breakpoint without | |
6189 | actually executing it). Either way continue until the | |
6190 | breakpoint is really hit. */ | |
c447ac0b PA |
6191 | |
6192 | if (!switch_back_to_stepped_thread (ecs)) | |
6193 | { | |
6194 | if (debug_infrun) | |
6195 | fprintf_unfiltered (gdb_stdlog, | |
6196 | "infrun: random signal, keep going\n"); | |
6197 | ||
6198 | keep_going (ecs); | |
6199 | } | |
6200 | return; | |
488f131b | 6201 | } |
94c57d6a PA |
6202 | |
6203 | process_event_stop_test (ecs); | |
6204 | } | |
6205 | ||
6206 | /* Come here when we've got some debug event / signal we can explain | |
6207 | (IOW, not a random signal), and test whether it should cause a | |
6208 | stop, or whether we should resume the inferior (transparently). | |
6209 | E.g., could be a breakpoint whose condition evaluates false; we | |
6210 | could be still stepping within the line; etc. */ | |
6211 | ||
6212 | static void | |
6213 | process_event_stop_test (struct execution_control_state *ecs) | |
6214 | { | |
6215 | struct symtab_and_line stop_pc_sal; | |
6216 | struct frame_info *frame; | |
6217 | struct gdbarch *gdbarch; | |
cdaa5b73 PA |
6218 | CORE_ADDR jmp_buf_pc; |
6219 | struct bpstat_what what; | |
94c57d6a | 6220 | |
cdaa5b73 | 6221 | /* Handle cases caused by hitting a breakpoint. */ |
611c83ae | 6222 | |
cdaa5b73 PA |
6223 | frame = get_current_frame (); |
6224 | gdbarch = get_frame_arch (frame); | |
fcf3daef | 6225 | |
cdaa5b73 | 6226 | what = bpstat_what (ecs->event_thread->control.stop_bpstat); |
611c83ae | 6227 | |
cdaa5b73 PA |
6228 | if (what.call_dummy) |
6229 | { | |
6230 | stop_stack_dummy = what.call_dummy; | |
6231 | } | |
186c406b | 6232 | |
243a9253 PA |
6233 | /* A few breakpoint types have callbacks associated (e.g., |
6234 | bp_jit_event). Run them now. */ | |
6235 | bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat); | |
6236 | ||
cdaa5b73 PA |
6237 | /* If we hit an internal event that triggers symbol changes, the |
6238 | current frame will be invalidated within bpstat_what (e.g., if we | |
6239 | hit an internal solib event). Re-fetch it. */ | |
6240 | frame = get_current_frame (); | |
6241 | gdbarch = get_frame_arch (frame); | |
e2e4d78b | 6242 | |
cdaa5b73 PA |
6243 | switch (what.main_action) |
6244 | { | |
6245 | case BPSTAT_WHAT_SET_LONGJMP_RESUME: | |
6246 | /* If we hit the breakpoint at longjmp while stepping, we | |
6247 | install a momentary breakpoint at the target of the | |
6248 | jmp_buf. */ | |
186c406b | 6249 | |
cdaa5b73 PA |
6250 | if (debug_infrun) |
6251 | fprintf_unfiltered (gdb_stdlog, | |
6252 | "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n"); | |
186c406b | 6253 | |
cdaa5b73 | 6254 | ecs->event_thread->stepping_over_breakpoint = 1; |
611c83ae | 6255 | |
cdaa5b73 PA |
6256 | if (what.is_longjmp) |
6257 | { | |
6258 | struct value *arg_value; | |
6259 | ||
6260 | /* If we set the longjmp breakpoint via a SystemTap probe, | |
6261 | then use it to extract the arguments. The destination PC | |
6262 | is the third argument to the probe. */ | |
6263 | arg_value = probe_safe_evaluate_at_pc (frame, 2); | |
6264 | if (arg_value) | |
8fa0c4f8 AA |
6265 | { |
6266 | jmp_buf_pc = value_as_address (arg_value); | |
6267 | jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc); | |
6268 | } | |
cdaa5b73 PA |
6269 | else if (!gdbarch_get_longjmp_target_p (gdbarch) |
6270 | || !gdbarch_get_longjmp_target (gdbarch, | |
6271 | frame, &jmp_buf_pc)) | |
e2e4d78b | 6272 | { |
cdaa5b73 PA |
6273 | if (debug_infrun) |
6274 | fprintf_unfiltered (gdb_stdlog, | |
6275 | "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME " | |
6276 | "(!gdbarch_get_longjmp_target)\n"); | |
6277 | keep_going (ecs); | |
6278 | return; | |
e2e4d78b | 6279 | } |
e2e4d78b | 6280 | |
cdaa5b73 PA |
6281 | /* Insert a breakpoint at resume address. */ |
6282 | insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc); | |
6283 | } | |
6284 | else | |
6285 | check_exception_resume (ecs, frame); | |
6286 | keep_going (ecs); | |
6287 | return; | |
e81a37f7 | 6288 | |
cdaa5b73 PA |
6289 | case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME: |
6290 | { | |
6291 | struct frame_info *init_frame; | |
e81a37f7 | 6292 | |
cdaa5b73 | 6293 | /* There are several cases to consider. |
c906108c | 6294 | |
cdaa5b73 PA |
6295 | 1. The initiating frame no longer exists. In this case we |
6296 | must stop, because the exception or longjmp has gone too | |
6297 | far. | |
2c03e5be | 6298 | |
cdaa5b73 PA |
6299 | 2. The initiating frame exists, and is the same as the |
6300 | current frame. We stop, because the exception or longjmp | |
6301 | has been caught. | |
2c03e5be | 6302 | |
cdaa5b73 PA |
6303 | 3. The initiating frame exists and is different from the |
6304 | current frame. This means the exception or longjmp has | |
6305 | been caught beneath the initiating frame, so keep going. | |
c906108c | 6306 | |
cdaa5b73 PA |
6307 | 4. longjmp breakpoint has been placed just to protect |
6308 | against stale dummy frames and user is not interested in | |
6309 | stopping around longjmps. */ | |
c5aa993b | 6310 | |
cdaa5b73 PA |
6311 | if (debug_infrun) |
6312 | fprintf_unfiltered (gdb_stdlog, | |
6313 | "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n"); | |
c5aa993b | 6314 | |
cdaa5b73 PA |
6315 | gdb_assert (ecs->event_thread->control.exception_resume_breakpoint |
6316 | != NULL); | |
6317 | delete_exception_resume_breakpoint (ecs->event_thread); | |
c5aa993b | 6318 | |
cdaa5b73 PA |
6319 | if (what.is_longjmp) |
6320 | { | |
b67a2c6f | 6321 | check_longjmp_breakpoint_for_call_dummy (ecs->event_thread); |
c5aa993b | 6322 | |
cdaa5b73 | 6323 | if (!frame_id_p (ecs->event_thread->initiating_frame)) |
e5ef252a | 6324 | { |
cdaa5b73 PA |
6325 | /* Case 4. */ |
6326 | keep_going (ecs); | |
6327 | return; | |
e5ef252a | 6328 | } |
cdaa5b73 | 6329 | } |
c5aa993b | 6330 | |
cdaa5b73 | 6331 | init_frame = frame_find_by_id (ecs->event_thread->initiating_frame); |
527159b7 | 6332 | |
cdaa5b73 PA |
6333 | if (init_frame) |
6334 | { | |
6335 | struct frame_id current_id | |
6336 | = get_frame_id (get_current_frame ()); | |
6337 | if (frame_id_eq (current_id, | |
6338 | ecs->event_thread->initiating_frame)) | |
6339 | { | |
6340 | /* Case 2. Fall through. */ | |
6341 | } | |
6342 | else | |
6343 | { | |
6344 | /* Case 3. */ | |
6345 | keep_going (ecs); | |
6346 | return; | |
6347 | } | |
68f53502 | 6348 | } |
488f131b | 6349 | |
cdaa5b73 PA |
6350 | /* For Cases 1 and 2, remove the step-resume breakpoint, if it |
6351 | exists. */ | |
6352 | delete_step_resume_breakpoint (ecs->event_thread); | |
e5ef252a | 6353 | |
bdc36728 | 6354 | end_stepping_range (ecs); |
cdaa5b73 PA |
6355 | } |
6356 | return; | |
e5ef252a | 6357 | |
cdaa5b73 PA |
6358 | case BPSTAT_WHAT_SINGLE: |
6359 | if (debug_infrun) | |
6360 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n"); | |
6361 | ecs->event_thread->stepping_over_breakpoint = 1; | |
6362 | /* Still need to check other stuff, at least the case where we | |
6363 | are stepping and step out of the right range. */ | |
6364 | break; | |
e5ef252a | 6365 | |
cdaa5b73 PA |
6366 | case BPSTAT_WHAT_STEP_RESUME: |
6367 | if (debug_infrun) | |
6368 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n"); | |
e5ef252a | 6369 | |
cdaa5b73 PA |
6370 | delete_step_resume_breakpoint (ecs->event_thread); |
6371 | if (ecs->event_thread->control.proceed_to_finish | |
6372 | && execution_direction == EXEC_REVERSE) | |
6373 | { | |
6374 | struct thread_info *tp = ecs->event_thread; | |
6375 | ||
6376 | /* We are finishing a function in reverse, and just hit the | |
6377 | step-resume breakpoint at the start address of the | |
6378 | function, and we're almost there -- just need to back up | |
6379 | by one more single-step, which should take us back to the | |
6380 | function call. */ | |
6381 | tp->control.step_range_start = tp->control.step_range_end = 1; | |
6382 | keep_going (ecs); | |
e5ef252a | 6383 | return; |
cdaa5b73 PA |
6384 | } |
6385 | fill_in_stop_func (gdbarch, ecs); | |
6386 | if (stop_pc == ecs->stop_func_start | |
6387 | && execution_direction == EXEC_REVERSE) | |
6388 | { | |
6389 | /* We are stepping over a function call in reverse, and just | |
6390 | hit the step-resume breakpoint at the start address of | |
6391 | the function. Go back to single-stepping, which should | |
6392 | take us back to the function call. */ | |
6393 | ecs->event_thread->stepping_over_breakpoint = 1; | |
6394 | keep_going (ecs); | |
6395 | return; | |
6396 | } | |
6397 | break; | |
e5ef252a | 6398 | |
cdaa5b73 PA |
6399 | case BPSTAT_WHAT_STOP_NOISY: |
6400 | if (debug_infrun) | |
6401 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n"); | |
6402 | stop_print_frame = 1; | |
e5ef252a | 6403 | |
99619bea PA |
6404 | /* Assume the thread stopped for a breapoint. We'll still check |
6405 | whether a/the breakpoint is there when the thread is next | |
6406 | resumed. */ | |
6407 | ecs->event_thread->stepping_over_breakpoint = 1; | |
e5ef252a | 6408 | |
22bcd14b | 6409 | stop_waiting (ecs); |
cdaa5b73 | 6410 | return; |
e5ef252a | 6411 | |
cdaa5b73 PA |
6412 | case BPSTAT_WHAT_STOP_SILENT: |
6413 | if (debug_infrun) | |
6414 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n"); | |
6415 | stop_print_frame = 0; | |
e5ef252a | 6416 | |
99619bea PA |
6417 | /* Assume the thread stopped for a breapoint. We'll still check |
6418 | whether a/the breakpoint is there when the thread is next | |
6419 | resumed. */ | |
6420 | ecs->event_thread->stepping_over_breakpoint = 1; | |
22bcd14b | 6421 | stop_waiting (ecs); |
cdaa5b73 PA |
6422 | return; |
6423 | ||
6424 | case BPSTAT_WHAT_HP_STEP_RESUME: | |
6425 | if (debug_infrun) | |
6426 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n"); | |
6427 | ||
6428 | delete_step_resume_breakpoint (ecs->event_thread); | |
6429 | if (ecs->event_thread->step_after_step_resume_breakpoint) | |
6430 | { | |
6431 | /* Back when the step-resume breakpoint was inserted, we | |
6432 | were trying to single-step off a breakpoint. Go back to | |
6433 | doing that. */ | |
6434 | ecs->event_thread->step_after_step_resume_breakpoint = 0; | |
6435 | ecs->event_thread->stepping_over_breakpoint = 1; | |
6436 | keep_going (ecs); | |
6437 | return; | |
e5ef252a | 6438 | } |
cdaa5b73 PA |
6439 | break; |
6440 | ||
6441 | case BPSTAT_WHAT_KEEP_CHECKING: | |
6442 | break; | |
e5ef252a | 6443 | } |
c906108c | 6444 | |
af48d08f PA |
6445 | /* If we stepped a permanent breakpoint and we had a high priority |
6446 | step-resume breakpoint for the address we stepped, but we didn't | |
6447 | hit it, then we must have stepped into the signal handler. The | |
6448 | step-resume was only necessary to catch the case of _not_ | |
6449 | stepping into the handler, so delete it, and fall through to | |
6450 | checking whether the step finished. */ | |
6451 | if (ecs->event_thread->stepped_breakpoint) | |
6452 | { | |
6453 | struct breakpoint *sr_bp | |
6454 | = ecs->event_thread->control.step_resume_breakpoint; | |
6455 | ||
8d707a12 PA |
6456 | if (sr_bp != NULL |
6457 | && sr_bp->loc->permanent | |
af48d08f PA |
6458 | && sr_bp->type == bp_hp_step_resume |
6459 | && sr_bp->loc->address == ecs->event_thread->prev_pc) | |
6460 | { | |
6461 | if (debug_infrun) | |
6462 | fprintf_unfiltered (gdb_stdlog, | |
6463 | "infrun: stepped permanent breakpoint, stopped in " | |
6464 | "handler\n"); | |
6465 | delete_step_resume_breakpoint (ecs->event_thread); | |
6466 | ecs->event_thread->step_after_step_resume_breakpoint = 0; | |
6467 | } | |
6468 | } | |
6469 | ||
cdaa5b73 PA |
6470 | /* We come here if we hit a breakpoint but should not stop for it. |
6471 | Possibly we also were stepping and should stop for that. So fall | |
6472 | through and test for stepping. But, if not stepping, do not | |
6473 | stop. */ | |
c906108c | 6474 | |
a7212384 UW |
6475 | /* In all-stop mode, if we're currently stepping but have stopped in |
6476 | some other thread, we need to switch back to the stepped thread. */ | |
c447ac0b PA |
6477 | if (switch_back_to_stepped_thread (ecs)) |
6478 | return; | |
776f04fa | 6479 | |
8358c15c | 6480 | if (ecs->event_thread->control.step_resume_breakpoint) |
488f131b | 6481 | { |
527159b7 | 6482 | if (debug_infrun) |
d3169d93 DJ |
6483 | fprintf_unfiltered (gdb_stdlog, |
6484 | "infrun: step-resume breakpoint is inserted\n"); | |
527159b7 | 6485 | |
488f131b JB |
6486 | /* Having a step-resume breakpoint overrides anything |
6487 | else having to do with stepping commands until | |
6488 | that breakpoint is reached. */ | |
488f131b JB |
6489 | keep_going (ecs); |
6490 | return; | |
6491 | } | |
c5aa993b | 6492 | |
16c381f0 | 6493 | if (ecs->event_thread->control.step_range_end == 0) |
488f131b | 6494 | { |
527159b7 | 6495 | if (debug_infrun) |
8a9de0e4 | 6496 | fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n"); |
488f131b | 6497 | /* Likewise if we aren't even stepping. */ |
488f131b JB |
6498 | keep_going (ecs); |
6499 | return; | |
6500 | } | |
c5aa993b | 6501 | |
4b7703ad JB |
6502 | /* Re-fetch current thread's frame in case the code above caused |
6503 | the frame cache to be re-initialized, making our FRAME variable | |
6504 | a dangling pointer. */ | |
6505 | frame = get_current_frame (); | |
628fe4e4 | 6506 | gdbarch = get_frame_arch (frame); |
7e324e48 | 6507 | fill_in_stop_func (gdbarch, ecs); |
4b7703ad | 6508 | |
488f131b | 6509 | /* If stepping through a line, keep going if still within it. |
c906108c | 6510 | |
488f131b JB |
6511 | Note that step_range_end is the address of the first instruction |
6512 | beyond the step range, and NOT the address of the last instruction | |
31410e84 MS |
6513 | within it! |
6514 | ||
6515 | Note also that during reverse execution, we may be stepping | |
6516 | through a function epilogue and therefore must detect when | |
6517 | the current-frame changes in the middle of a line. */ | |
6518 | ||
ce4c476a | 6519 | if (pc_in_thread_step_range (stop_pc, ecs->event_thread) |
31410e84 | 6520 | && (execution_direction != EXEC_REVERSE |
388a8562 | 6521 | || frame_id_eq (get_frame_id (frame), |
16c381f0 | 6522 | ecs->event_thread->control.step_frame_id))) |
488f131b | 6523 | { |
527159b7 | 6524 | if (debug_infrun) |
5af949e3 UW |
6525 | fprintf_unfiltered |
6526 | (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n", | |
16c381f0 JK |
6527 | paddress (gdbarch, ecs->event_thread->control.step_range_start), |
6528 | paddress (gdbarch, ecs->event_thread->control.step_range_end)); | |
b2175913 | 6529 | |
c1e36e3e PA |
6530 | /* Tentatively re-enable range stepping; `resume' disables it if |
6531 | necessary (e.g., if we're stepping over a breakpoint or we | |
6532 | have software watchpoints). */ | |
6533 | ecs->event_thread->control.may_range_step = 1; | |
6534 | ||
b2175913 MS |
6535 | /* When stepping backward, stop at beginning of line range |
6536 | (unless it's the function entry point, in which case | |
6537 | keep going back to the call point). */ | |
16c381f0 | 6538 | if (stop_pc == ecs->event_thread->control.step_range_start |
b2175913 MS |
6539 | && stop_pc != ecs->stop_func_start |
6540 | && execution_direction == EXEC_REVERSE) | |
bdc36728 | 6541 | end_stepping_range (ecs); |
b2175913 MS |
6542 | else |
6543 | keep_going (ecs); | |
6544 | ||
488f131b JB |
6545 | return; |
6546 | } | |
c5aa993b | 6547 | |
488f131b | 6548 | /* We stepped out of the stepping range. */ |
c906108c | 6549 | |
488f131b | 6550 | /* If we are stepping at the source level and entered the runtime |
388a8562 MS |
6551 | loader dynamic symbol resolution code... |
6552 | ||
6553 | EXEC_FORWARD: we keep on single stepping until we exit the run | |
6554 | time loader code and reach the callee's address. | |
6555 | ||
6556 | EXEC_REVERSE: we've already executed the callee (backward), and | |
6557 | the runtime loader code is handled just like any other | |
6558 | undebuggable function call. Now we need only keep stepping | |
6559 | backward through the trampoline code, and that's handled further | |
6560 | down, so there is nothing for us to do here. */ | |
6561 | ||
6562 | if (execution_direction != EXEC_REVERSE | |
16c381f0 | 6563 | && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE |
cfd8ab24 | 6564 | && in_solib_dynsym_resolve_code (stop_pc)) |
488f131b | 6565 | { |
4c8c40e6 | 6566 | CORE_ADDR pc_after_resolver = |
568d6575 | 6567 | gdbarch_skip_solib_resolver (gdbarch, stop_pc); |
c906108c | 6568 | |
527159b7 | 6569 | if (debug_infrun) |
3e43a32a MS |
6570 | fprintf_unfiltered (gdb_stdlog, |
6571 | "infrun: stepped into dynsym resolve code\n"); | |
527159b7 | 6572 | |
488f131b JB |
6573 | if (pc_after_resolver) |
6574 | { | |
6575 | /* Set up a step-resume breakpoint at the address | |
6576 | indicated by SKIP_SOLIB_RESOLVER. */ | |
6577 | struct symtab_and_line sr_sal; | |
abbb1732 | 6578 | |
fe39c653 | 6579 | init_sal (&sr_sal); |
488f131b | 6580 | sr_sal.pc = pc_after_resolver; |
6c95b8df | 6581 | sr_sal.pspace = get_frame_program_space (frame); |
488f131b | 6582 | |
a6d9a66e UW |
6583 | insert_step_resume_breakpoint_at_sal (gdbarch, |
6584 | sr_sal, null_frame_id); | |
c5aa993b | 6585 | } |
c906108c | 6586 | |
488f131b JB |
6587 | keep_going (ecs); |
6588 | return; | |
6589 | } | |
c906108c | 6590 | |
16c381f0 JK |
6591 | if (ecs->event_thread->control.step_range_end != 1 |
6592 | && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE | |
6593 | || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL) | |
568d6575 | 6594 | && get_frame_type (frame) == SIGTRAMP_FRAME) |
488f131b | 6595 | { |
527159b7 | 6596 | if (debug_infrun) |
3e43a32a MS |
6597 | fprintf_unfiltered (gdb_stdlog, |
6598 | "infrun: stepped into signal trampoline\n"); | |
42edda50 | 6599 | /* The inferior, while doing a "step" or "next", has ended up in |
8fb3e588 AC |
6600 | a signal trampoline (either by a signal being delivered or by |
6601 | the signal handler returning). Just single-step until the | |
6602 | inferior leaves the trampoline (either by calling the handler | |
6603 | or returning). */ | |
488f131b JB |
6604 | keep_going (ecs); |
6605 | return; | |
6606 | } | |
c906108c | 6607 | |
14132e89 MR |
6608 | /* If we're in the return path from a shared library trampoline, |
6609 | we want to proceed through the trampoline when stepping. */ | |
6610 | /* macro/2012-04-25: This needs to come before the subroutine | |
6611 | call check below as on some targets return trampolines look | |
6612 | like subroutine calls (MIPS16 return thunks). */ | |
6613 | if (gdbarch_in_solib_return_trampoline (gdbarch, | |
6614 | stop_pc, ecs->stop_func_name) | |
6615 | && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE) | |
6616 | { | |
6617 | /* Determine where this trampoline returns. */ | |
6618 | CORE_ADDR real_stop_pc; | |
6619 | ||
6620 | real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc); | |
6621 | ||
6622 | if (debug_infrun) | |
6623 | fprintf_unfiltered (gdb_stdlog, | |
6624 | "infrun: stepped into solib return tramp\n"); | |
6625 | ||
6626 | /* Only proceed through if we know where it's going. */ | |
6627 | if (real_stop_pc) | |
6628 | { | |
6629 | /* And put the step-breakpoint there and go until there. */ | |
6630 | struct symtab_and_line sr_sal; | |
6631 | ||
6632 | init_sal (&sr_sal); /* initialize to zeroes */ | |
6633 | sr_sal.pc = real_stop_pc; | |
6634 | sr_sal.section = find_pc_overlay (sr_sal.pc); | |
6635 | sr_sal.pspace = get_frame_program_space (frame); | |
6636 | ||
6637 | /* Do not specify what the fp should be when we stop since | |
6638 | on some machines the prologue is where the new fp value | |
6639 | is established. */ | |
6640 | insert_step_resume_breakpoint_at_sal (gdbarch, | |
6641 | sr_sal, null_frame_id); | |
6642 | ||
6643 | /* Restart without fiddling with the step ranges or | |
6644 | other state. */ | |
6645 | keep_going (ecs); | |
6646 | return; | |
6647 | } | |
6648 | } | |
6649 | ||
c17eaafe DJ |
6650 | /* Check for subroutine calls. The check for the current frame |
6651 | equalling the step ID is not necessary - the check of the | |
6652 | previous frame's ID is sufficient - but it is a common case and | |
6653 | cheaper than checking the previous frame's ID. | |
14e60db5 DJ |
6654 | |
6655 | NOTE: frame_id_eq will never report two invalid frame IDs as | |
6656 | being equal, so to get into this block, both the current and | |
6657 | previous frame must have valid frame IDs. */ | |
005ca36a JB |
6658 | /* The outer_frame_id check is a heuristic to detect stepping |
6659 | through startup code. If we step over an instruction which | |
6660 | sets the stack pointer from an invalid value to a valid value, | |
6661 | we may detect that as a subroutine call from the mythical | |
6662 | "outermost" function. This could be fixed by marking | |
6663 | outermost frames as !stack_p,code_p,special_p. Then the | |
6664 | initial outermost frame, before sp was valid, would | |
ce6cca6d | 6665 | have code_addr == &_start. See the comment in frame_id_eq |
005ca36a | 6666 | for more. */ |
edb3359d | 6667 | if (!frame_id_eq (get_stack_frame_id (frame), |
16c381f0 | 6668 | ecs->event_thread->control.step_stack_frame_id) |
005ca36a | 6669 | && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()), |
16c381f0 JK |
6670 | ecs->event_thread->control.step_stack_frame_id) |
6671 | && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id, | |
005ca36a | 6672 | outer_frame_id) |
885eeb5b PA |
6673 | || (ecs->event_thread->control.step_start_function |
6674 | != find_pc_function (stop_pc))))) | |
488f131b | 6675 | { |
95918acb | 6676 | CORE_ADDR real_stop_pc; |
8fb3e588 | 6677 | |
527159b7 | 6678 | if (debug_infrun) |
8a9de0e4 | 6679 | fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n"); |
527159b7 | 6680 | |
b7a084be | 6681 | if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE) |
95918acb AC |
6682 | { |
6683 | /* I presume that step_over_calls is only 0 when we're | |
6684 | supposed to be stepping at the assembly language level | |
6685 | ("stepi"). Just stop. */ | |
388a8562 | 6686 | /* And this works the same backward as frontward. MVS */ |
bdc36728 | 6687 | end_stepping_range (ecs); |
95918acb AC |
6688 | return; |
6689 | } | |
8fb3e588 | 6690 | |
388a8562 MS |
6691 | /* Reverse stepping through solib trampolines. */ |
6692 | ||
6693 | if (execution_direction == EXEC_REVERSE | |
16c381f0 | 6694 | && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE |
388a8562 MS |
6695 | && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc) |
6696 | || (ecs->stop_func_start == 0 | |
6697 | && in_solib_dynsym_resolve_code (stop_pc)))) | |
6698 | { | |
6699 | /* Any solib trampoline code can be handled in reverse | |
6700 | by simply continuing to single-step. We have already | |
6701 | executed the solib function (backwards), and a few | |
6702 | steps will take us back through the trampoline to the | |
6703 | caller. */ | |
6704 | keep_going (ecs); | |
6705 | return; | |
6706 | } | |
6707 | ||
16c381f0 | 6708 | if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL) |
8567c30f | 6709 | { |
b2175913 MS |
6710 | /* We're doing a "next". |
6711 | ||
6712 | Normal (forward) execution: set a breakpoint at the | |
6713 | callee's return address (the address at which the caller | |
6714 | will resume). | |
6715 | ||
6716 | Reverse (backward) execution. set the step-resume | |
6717 | breakpoint at the start of the function that we just | |
6718 | stepped into (backwards), and continue to there. When we | |
6130d0b7 | 6719 | get there, we'll need to single-step back to the caller. */ |
b2175913 MS |
6720 | |
6721 | if (execution_direction == EXEC_REVERSE) | |
6722 | { | |
acf9414f JK |
6723 | /* If we're already at the start of the function, we've either |
6724 | just stepped backward into a single instruction function, | |
6725 | or stepped back out of a signal handler to the first instruction | |
6726 | of the function. Just keep going, which will single-step back | |
6727 | to the caller. */ | |
58c48e72 | 6728 | if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0) |
acf9414f JK |
6729 | { |
6730 | struct symtab_and_line sr_sal; | |
6731 | ||
6732 | /* Normal function call return (static or dynamic). */ | |
6733 | init_sal (&sr_sal); | |
6734 | sr_sal.pc = ecs->stop_func_start; | |
6735 | sr_sal.pspace = get_frame_program_space (frame); | |
6736 | insert_step_resume_breakpoint_at_sal (gdbarch, | |
6737 | sr_sal, null_frame_id); | |
6738 | } | |
b2175913 MS |
6739 | } |
6740 | else | |
568d6575 | 6741 | insert_step_resume_breakpoint_at_caller (frame); |
b2175913 | 6742 | |
8567c30f AC |
6743 | keep_going (ecs); |
6744 | return; | |
6745 | } | |
a53c66de | 6746 | |
95918acb | 6747 | /* If we are in a function call trampoline (a stub between the |
8fb3e588 AC |
6748 | calling routine and the real function), locate the real |
6749 | function. That's what tells us (a) whether we want to step | |
6750 | into it at all, and (b) what prologue we want to run to the | |
6751 | end of, if we do step into it. */ | |
568d6575 | 6752 | real_stop_pc = skip_language_trampoline (frame, stop_pc); |
95918acb | 6753 | if (real_stop_pc == 0) |
568d6575 | 6754 | real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc); |
95918acb AC |
6755 | if (real_stop_pc != 0) |
6756 | ecs->stop_func_start = real_stop_pc; | |
8fb3e588 | 6757 | |
db5f024e | 6758 | if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc)) |
1b2bfbb9 RC |
6759 | { |
6760 | struct symtab_and_line sr_sal; | |
abbb1732 | 6761 | |
1b2bfbb9 RC |
6762 | init_sal (&sr_sal); |
6763 | sr_sal.pc = ecs->stop_func_start; | |
6c95b8df | 6764 | sr_sal.pspace = get_frame_program_space (frame); |
1b2bfbb9 | 6765 | |
a6d9a66e UW |
6766 | insert_step_resume_breakpoint_at_sal (gdbarch, |
6767 | sr_sal, null_frame_id); | |
8fb3e588 AC |
6768 | keep_going (ecs); |
6769 | return; | |
1b2bfbb9 RC |
6770 | } |
6771 | ||
95918acb | 6772 | /* If we have line number information for the function we are |
1bfeeb0f JL |
6773 | thinking of stepping into and the function isn't on the skip |
6774 | list, step into it. | |
95918acb | 6775 | |
8fb3e588 AC |
6776 | If there are several symtabs at that PC (e.g. with include |
6777 | files), just want to know whether *any* of them have line | |
6778 | numbers. find_pc_line handles this. */ | |
95918acb AC |
6779 | { |
6780 | struct symtab_and_line tmp_sal; | |
8fb3e588 | 6781 | |
95918acb | 6782 | tmp_sal = find_pc_line (ecs->stop_func_start, 0); |
2b914b52 | 6783 | if (tmp_sal.line != 0 |
85817405 JK |
6784 | && !function_name_is_marked_for_skip (ecs->stop_func_name, |
6785 | &tmp_sal)) | |
95918acb | 6786 | { |
b2175913 | 6787 | if (execution_direction == EXEC_REVERSE) |
568d6575 | 6788 | handle_step_into_function_backward (gdbarch, ecs); |
b2175913 | 6789 | else |
568d6575 | 6790 | handle_step_into_function (gdbarch, ecs); |
95918acb AC |
6791 | return; |
6792 | } | |
6793 | } | |
6794 | ||
6795 | /* If we have no line number and the step-stop-if-no-debug is | |
8fb3e588 AC |
6796 | set, we stop the step so that the user has a chance to switch |
6797 | in assembly mode. */ | |
16c381f0 | 6798 | if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE |
078130d0 | 6799 | && step_stop_if_no_debug) |
95918acb | 6800 | { |
bdc36728 | 6801 | end_stepping_range (ecs); |
95918acb AC |
6802 | return; |
6803 | } | |
6804 | ||
b2175913 MS |
6805 | if (execution_direction == EXEC_REVERSE) |
6806 | { | |
acf9414f JK |
6807 | /* If we're already at the start of the function, we've either just |
6808 | stepped backward into a single instruction function without line | |
6809 | number info, or stepped back out of a signal handler to the first | |
6810 | instruction of the function without line number info. Just keep | |
6811 | going, which will single-step back to the caller. */ | |
6812 | if (ecs->stop_func_start != stop_pc) | |
6813 | { | |
6814 | /* Set a breakpoint at callee's start address. | |
6815 | From there we can step once and be back in the caller. */ | |
6816 | struct symtab_and_line sr_sal; | |
abbb1732 | 6817 | |
acf9414f JK |
6818 | init_sal (&sr_sal); |
6819 | sr_sal.pc = ecs->stop_func_start; | |
6820 | sr_sal.pspace = get_frame_program_space (frame); | |
6821 | insert_step_resume_breakpoint_at_sal (gdbarch, | |
6822 | sr_sal, null_frame_id); | |
6823 | } | |
b2175913 MS |
6824 | } |
6825 | else | |
6826 | /* Set a breakpoint at callee's return address (the address | |
6827 | at which the caller will resume). */ | |
568d6575 | 6828 | insert_step_resume_breakpoint_at_caller (frame); |
b2175913 | 6829 | |
95918acb | 6830 | keep_going (ecs); |
488f131b | 6831 | return; |
488f131b | 6832 | } |
c906108c | 6833 | |
fdd654f3 MS |
6834 | /* Reverse stepping through solib trampolines. */ |
6835 | ||
6836 | if (execution_direction == EXEC_REVERSE | |
16c381f0 | 6837 | && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE) |
fdd654f3 MS |
6838 | { |
6839 | if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc) | |
6840 | || (ecs->stop_func_start == 0 | |
6841 | && in_solib_dynsym_resolve_code (stop_pc))) | |
6842 | { | |
6843 | /* Any solib trampoline code can be handled in reverse | |
6844 | by simply continuing to single-step. We have already | |
6845 | executed the solib function (backwards), and a few | |
6846 | steps will take us back through the trampoline to the | |
6847 | caller. */ | |
6848 | keep_going (ecs); | |
6849 | return; | |
6850 | } | |
6851 | else if (in_solib_dynsym_resolve_code (stop_pc)) | |
6852 | { | |
6853 | /* Stepped backward into the solib dynsym resolver. | |
6854 | Set a breakpoint at its start and continue, then | |
6855 | one more step will take us out. */ | |
6856 | struct symtab_and_line sr_sal; | |
abbb1732 | 6857 | |
fdd654f3 MS |
6858 | init_sal (&sr_sal); |
6859 | sr_sal.pc = ecs->stop_func_start; | |
9d1807c3 | 6860 | sr_sal.pspace = get_frame_program_space (frame); |
fdd654f3 MS |
6861 | insert_step_resume_breakpoint_at_sal (gdbarch, |
6862 | sr_sal, null_frame_id); | |
6863 | keep_going (ecs); | |
6864 | return; | |
6865 | } | |
6866 | } | |
6867 | ||
2afb61aa | 6868 | stop_pc_sal = find_pc_line (stop_pc, 0); |
7ed0fe66 | 6869 | |
1b2bfbb9 RC |
6870 | /* NOTE: tausq/2004-05-24: This if block used to be done before all |
6871 | the trampoline processing logic, however, there are some trampolines | |
6872 | that have no names, so we should do trampoline handling first. */ | |
16c381f0 | 6873 | if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE |
7ed0fe66 | 6874 | && ecs->stop_func_name == NULL |
2afb61aa | 6875 | && stop_pc_sal.line == 0) |
1b2bfbb9 | 6876 | { |
527159b7 | 6877 | if (debug_infrun) |
3e43a32a MS |
6878 | fprintf_unfiltered (gdb_stdlog, |
6879 | "infrun: stepped into undebuggable function\n"); | |
527159b7 | 6880 | |
1b2bfbb9 | 6881 | /* The inferior just stepped into, or returned to, an |
7ed0fe66 DJ |
6882 | undebuggable function (where there is no debugging information |
6883 | and no line number corresponding to the address where the | |
1b2bfbb9 RC |
6884 | inferior stopped). Since we want to skip this kind of code, |
6885 | we keep going until the inferior returns from this | |
14e60db5 DJ |
6886 | function - unless the user has asked us not to (via |
6887 | set step-mode) or we no longer know how to get back | |
6888 | to the call site. */ | |
6889 | if (step_stop_if_no_debug | |
c7ce8faa | 6890 | || !frame_id_p (frame_unwind_caller_id (frame))) |
1b2bfbb9 RC |
6891 | { |
6892 | /* If we have no line number and the step-stop-if-no-debug | |
6893 | is set, we stop the step so that the user has a chance to | |
6894 | switch in assembly mode. */ | |
bdc36728 | 6895 | end_stepping_range (ecs); |
1b2bfbb9 RC |
6896 | return; |
6897 | } | |
6898 | else | |
6899 | { | |
6900 | /* Set a breakpoint at callee's return address (the address | |
6901 | at which the caller will resume). */ | |
568d6575 | 6902 | insert_step_resume_breakpoint_at_caller (frame); |
1b2bfbb9 RC |
6903 | keep_going (ecs); |
6904 | return; | |
6905 | } | |
6906 | } | |
6907 | ||
16c381f0 | 6908 | if (ecs->event_thread->control.step_range_end == 1) |
1b2bfbb9 RC |
6909 | { |
6910 | /* It is stepi or nexti. We always want to stop stepping after | |
6911 | one instruction. */ | |
527159b7 | 6912 | if (debug_infrun) |
8a9de0e4 | 6913 | fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n"); |
bdc36728 | 6914 | end_stepping_range (ecs); |
1b2bfbb9 RC |
6915 | return; |
6916 | } | |
6917 | ||
2afb61aa | 6918 | if (stop_pc_sal.line == 0) |
488f131b JB |
6919 | { |
6920 | /* We have no line number information. That means to stop | |
6921 | stepping (does this always happen right after one instruction, | |
6922 | when we do "s" in a function with no line numbers, | |
6923 | or can this happen as a result of a return or longjmp?). */ | |
527159b7 | 6924 | if (debug_infrun) |
8a9de0e4 | 6925 | fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n"); |
bdc36728 | 6926 | end_stepping_range (ecs); |
488f131b JB |
6927 | return; |
6928 | } | |
c906108c | 6929 | |
edb3359d DJ |
6930 | /* Look for "calls" to inlined functions, part one. If the inline |
6931 | frame machinery detected some skipped call sites, we have entered | |
6932 | a new inline function. */ | |
6933 | ||
6934 | if (frame_id_eq (get_frame_id (get_current_frame ()), | |
16c381f0 | 6935 | ecs->event_thread->control.step_frame_id) |
edb3359d DJ |
6936 | && inline_skipped_frames (ecs->ptid)) |
6937 | { | |
6938 | struct symtab_and_line call_sal; | |
6939 | ||
6940 | if (debug_infrun) | |
6941 | fprintf_unfiltered (gdb_stdlog, | |
6942 | "infrun: stepped into inlined function\n"); | |
6943 | ||
6944 | find_frame_sal (get_current_frame (), &call_sal); | |
6945 | ||
16c381f0 | 6946 | if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL) |
edb3359d DJ |
6947 | { |
6948 | /* For "step", we're going to stop. But if the call site | |
6949 | for this inlined function is on the same source line as | |
6950 | we were previously stepping, go down into the function | |
6951 | first. Otherwise stop at the call site. */ | |
6952 | ||
6953 | if (call_sal.line == ecs->event_thread->current_line | |
6954 | && call_sal.symtab == ecs->event_thread->current_symtab) | |
6955 | step_into_inline_frame (ecs->ptid); | |
6956 | ||
bdc36728 | 6957 | end_stepping_range (ecs); |
edb3359d DJ |
6958 | return; |
6959 | } | |
6960 | else | |
6961 | { | |
6962 | /* For "next", we should stop at the call site if it is on a | |
6963 | different source line. Otherwise continue through the | |
6964 | inlined function. */ | |
6965 | if (call_sal.line == ecs->event_thread->current_line | |
6966 | && call_sal.symtab == ecs->event_thread->current_symtab) | |
6967 | keep_going (ecs); | |
6968 | else | |
bdc36728 | 6969 | end_stepping_range (ecs); |
edb3359d DJ |
6970 | return; |
6971 | } | |
6972 | } | |
6973 | ||
6974 | /* Look for "calls" to inlined functions, part two. If we are still | |
6975 | in the same real function we were stepping through, but we have | |
6976 | to go further up to find the exact frame ID, we are stepping | |
6977 | through a more inlined call beyond its call site. */ | |
6978 | ||
6979 | if (get_frame_type (get_current_frame ()) == INLINE_FRAME | |
6980 | && !frame_id_eq (get_frame_id (get_current_frame ()), | |
16c381f0 | 6981 | ecs->event_thread->control.step_frame_id) |
edb3359d | 6982 | && stepped_in_from (get_current_frame (), |
16c381f0 | 6983 | ecs->event_thread->control.step_frame_id)) |
edb3359d DJ |
6984 | { |
6985 | if (debug_infrun) | |
6986 | fprintf_unfiltered (gdb_stdlog, | |
6987 | "infrun: stepping through inlined function\n"); | |
6988 | ||
16c381f0 | 6989 | if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL) |
edb3359d DJ |
6990 | keep_going (ecs); |
6991 | else | |
bdc36728 | 6992 | end_stepping_range (ecs); |
edb3359d DJ |
6993 | return; |
6994 | } | |
6995 | ||
2afb61aa | 6996 | if ((stop_pc == stop_pc_sal.pc) |
4e1c45ea PA |
6997 | && (ecs->event_thread->current_line != stop_pc_sal.line |
6998 | || ecs->event_thread->current_symtab != stop_pc_sal.symtab)) | |
488f131b JB |
6999 | { |
7000 | /* We are at the start of a different line. So stop. Note that | |
7001 | we don't stop if we step into the middle of a different line. | |
7002 | That is said to make things like for (;;) statements work | |
7003 | better. */ | |
527159b7 | 7004 | if (debug_infrun) |
3e43a32a MS |
7005 | fprintf_unfiltered (gdb_stdlog, |
7006 | "infrun: stepped to a different line\n"); | |
bdc36728 | 7007 | end_stepping_range (ecs); |
488f131b JB |
7008 | return; |
7009 | } | |
c906108c | 7010 | |
488f131b | 7011 | /* We aren't done stepping. |
c906108c | 7012 | |
488f131b JB |
7013 | Optimize by setting the stepping range to the line. |
7014 | (We might not be in the original line, but if we entered a | |
7015 | new line in mid-statement, we continue stepping. This makes | |
7016 | things like for(;;) statements work better.) */ | |
c906108c | 7017 | |
16c381f0 JK |
7018 | ecs->event_thread->control.step_range_start = stop_pc_sal.pc; |
7019 | ecs->event_thread->control.step_range_end = stop_pc_sal.end; | |
c1e36e3e | 7020 | ecs->event_thread->control.may_range_step = 1; |
edb3359d | 7021 | set_step_info (frame, stop_pc_sal); |
488f131b | 7022 | |
527159b7 | 7023 | if (debug_infrun) |
8a9de0e4 | 7024 | fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n"); |
488f131b | 7025 | keep_going (ecs); |
104c1213 JM |
7026 | } |
7027 | ||
c447ac0b PA |
7028 | /* In all-stop mode, if we're currently stepping but have stopped in |
7029 | some other thread, we may need to switch back to the stepped | |
7030 | thread. Returns true we set the inferior running, false if we left | |
7031 | it stopped (and the event needs further processing). */ | |
7032 | ||
7033 | static int | |
7034 | switch_back_to_stepped_thread (struct execution_control_state *ecs) | |
7035 | { | |
fbea99ea | 7036 | if (!target_is_non_stop_p ()) |
c447ac0b PA |
7037 | { |
7038 | struct thread_info *tp; | |
99619bea PA |
7039 | struct thread_info *stepping_thread; |
7040 | ||
7041 | /* If any thread is blocked on some internal breakpoint, and we | |
7042 | simply need to step over that breakpoint to get it going | |
7043 | again, do that first. */ | |
7044 | ||
7045 | /* However, if we see an event for the stepping thread, then we | |
7046 | know all other threads have been moved past their breakpoints | |
7047 | already. Let the caller check whether the step is finished, | |
7048 | etc., before deciding to move it past a breakpoint. */ | |
7049 | if (ecs->event_thread->control.step_range_end != 0) | |
7050 | return 0; | |
7051 | ||
7052 | /* Check if the current thread is blocked on an incomplete | |
7053 | step-over, interrupted by a random signal. */ | |
7054 | if (ecs->event_thread->control.trap_expected | |
7055 | && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP) | |
c447ac0b | 7056 | { |
99619bea PA |
7057 | if (debug_infrun) |
7058 | { | |
7059 | fprintf_unfiltered (gdb_stdlog, | |
7060 | "infrun: need to finish step-over of [%s]\n", | |
7061 | target_pid_to_str (ecs->event_thread->ptid)); | |
7062 | } | |
7063 | keep_going (ecs); | |
7064 | return 1; | |
7065 | } | |
2adfaa28 | 7066 | |
99619bea PA |
7067 | /* Check if the current thread is blocked by a single-step |
7068 | breakpoint of another thread. */ | |
7069 | if (ecs->hit_singlestep_breakpoint) | |
7070 | { | |
7071 | if (debug_infrun) | |
7072 | { | |
7073 | fprintf_unfiltered (gdb_stdlog, | |
7074 | "infrun: need to step [%s] over single-step " | |
7075 | "breakpoint\n", | |
7076 | target_pid_to_str (ecs->ptid)); | |
7077 | } | |
7078 | keep_going (ecs); | |
7079 | return 1; | |
7080 | } | |
7081 | ||
4d9d9d04 PA |
7082 | /* If this thread needs yet another step-over (e.g., stepping |
7083 | through a delay slot), do it first before moving on to | |
7084 | another thread. */ | |
7085 | if (thread_still_needs_step_over (ecs->event_thread)) | |
7086 | { | |
7087 | if (debug_infrun) | |
7088 | { | |
7089 | fprintf_unfiltered (gdb_stdlog, | |
7090 | "infrun: thread [%s] still needs step-over\n", | |
7091 | target_pid_to_str (ecs->event_thread->ptid)); | |
7092 | } | |
7093 | keep_going (ecs); | |
7094 | return 1; | |
7095 | } | |
70509625 | 7096 | |
483805cf PA |
7097 | /* If scheduler locking applies even if not stepping, there's no |
7098 | need to walk over threads. Above we've checked whether the | |
7099 | current thread is stepping. If some other thread not the | |
7100 | event thread is stepping, then it must be that scheduler | |
7101 | locking is not in effect. */ | |
856e7dd6 | 7102 | if (schedlock_applies (ecs->event_thread)) |
483805cf PA |
7103 | return 0; |
7104 | ||
4d9d9d04 PA |
7105 | /* Otherwise, we no longer expect a trap in the current thread. |
7106 | Clear the trap_expected flag before switching back -- this is | |
7107 | what keep_going does as well, if we call it. */ | |
7108 | ecs->event_thread->control.trap_expected = 0; | |
7109 | ||
7110 | /* Likewise, clear the signal if it should not be passed. */ | |
7111 | if (!signal_program[ecs->event_thread->suspend.stop_signal]) | |
7112 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; | |
7113 | ||
7114 | /* Do all pending step-overs before actually proceeding with | |
483805cf | 7115 | step/next/etc. */ |
4d9d9d04 PA |
7116 | if (start_step_over ()) |
7117 | { | |
7118 | prepare_to_wait (ecs); | |
7119 | return 1; | |
7120 | } | |
7121 | ||
7122 | /* Look for the stepping/nexting thread. */ | |
483805cf | 7123 | stepping_thread = NULL; |
4d9d9d04 | 7124 | |
034f788c | 7125 | ALL_NON_EXITED_THREADS (tp) |
483805cf | 7126 | { |
fbea99ea PA |
7127 | /* Ignore threads of processes the caller is not |
7128 | resuming. */ | |
483805cf | 7129 | if (!sched_multi |
1afd5965 | 7130 | && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid)) |
483805cf PA |
7131 | continue; |
7132 | ||
7133 | /* When stepping over a breakpoint, we lock all threads | |
7134 | except the one that needs to move past the breakpoint. | |
7135 | If a non-event thread has this set, the "incomplete | |
7136 | step-over" check above should have caught it earlier. */ | |
372316f1 PA |
7137 | if (tp->control.trap_expected) |
7138 | { | |
7139 | internal_error (__FILE__, __LINE__, | |
7140 | "[%s] has inconsistent state: " | |
7141 | "trap_expected=%d\n", | |
7142 | target_pid_to_str (tp->ptid), | |
7143 | tp->control.trap_expected); | |
7144 | } | |
483805cf PA |
7145 | |
7146 | /* Did we find the stepping thread? */ | |
7147 | if (tp->control.step_range_end) | |
7148 | { | |
7149 | /* Yep. There should only one though. */ | |
7150 | gdb_assert (stepping_thread == NULL); | |
7151 | ||
7152 | /* The event thread is handled at the top, before we | |
7153 | enter this loop. */ | |
7154 | gdb_assert (tp != ecs->event_thread); | |
7155 | ||
7156 | /* If some thread other than the event thread is | |
7157 | stepping, then scheduler locking can't be in effect, | |
7158 | otherwise we wouldn't have resumed the current event | |
7159 | thread in the first place. */ | |
856e7dd6 | 7160 | gdb_assert (!schedlock_applies (tp)); |
483805cf PA |
7161 | |
7162 | stepping_thread = tp; | |
7163 | } | |
99619bea PA |
7164 | } |
7165 | ||
483805cf | 7166 | if (stepping_thread != NULL) |
99619bea | 7167 | { |
c447ac0b PA |
7168 | if (debug_infrun) |
7169 | fprintf_unfiltered (gdb_stdlog, | |
7170 | "infrun: switching back to stepped thread\n"); | |
7171 | ||
2ac7589c PA |
7172 | if (keep_going_stepped_thread (stepping_thread)) |
7173 | { | |
7174 | prepare_to_wait (ecs); | |
7175 | return 1; | |
7176 | } | |
7177 | } | |
7178 | } | |
2adfaa28 | 7179 | |
2ac7589c PA |
7180 | return 0; |
7181 | } | |
2adfaa28 | 7182 | |
2ac7589c PA |
7183 | /* Set a previously stepped thread back to stepping. Returns true on |
7184 | success, false if the resume is not possible (e.g., the thread | |
7185 | vanished). */ | |
7186 | ||
7187 | static int | |
7188 | keep_going_stepped_thread (struct thread_info *tp) | |
7189 | { | |
7190 | struct frame_info *frame; | |
2ac7589c PA |
7191 | struct execution_control_state ecss; |
7192 | struct execution_control_state *ecs = &ecss; | |
2adfaa28 | 7193 | |
2ac7589c PA |
7194 | /* If the stepping thread exited, then don't try to switch back and |
7195 | resume it, which could fail in several different ways depending | |
7196 | on the target. Instead, just keep going. | |
2adfaa28 | 7197 | |
2ac7589c PA |
7198 | We can find a stepping dead thread in the thread list in two |
7199 | cases: | |
2adfaa28 | 7200 | |
2ac7589c PA |
7201 | - The target supports thread exit events, and when the target |
7202 | tries to delete the thread from the thread list, inferior_ptid | |
7203 | pointed at the exiting thread. In such case, calling | |
7204 | delete_thread does not really remove the thread from the list; | |
7205 | instead, the thread is left listed, with 'exited' state. | |
64ce06e4 | 7206 | |
2ac7589c PA |
7207 | - The target's debug interface does not support thread exit |
7208 | events, and so we have no idea whatsoever if the previously | |
7209 | stepping thread is still alive. For that reason, we need to | |
7210 | synchronously query the target now. */ | |
2adfaa28 | 7211 | |
2ac7589c PA |
7212 | if (is_exited (tp->ptid) |
7213 | || !target_thread_alive (tp->ptid)) | |
7214 | { | |
7215 | if (debug_infrun) | |
7216 | fprintf_unfiltered (gdb_stdlog, | |
7217 | "infrun: not resuming previously " | |
7218 | "stepped thread, it has vanished\n"); | |
7219 | ||
7220 | delete_thread (tp->ptid); | |
7221 | return 0; | |
c447ac0b | 7222 | } |
2ac7589c PA |
7223 | |
7224 | if (debug_infrun) | |
7225 | fprintf_unfiltered (gdb_stdlog, | |
7226 | "infrun: resuming previously stepped thread\n"); | |
7227 | ||
7228 | reset_ecs (ecs, tp); | |
7229 | switch_to_thread (tp->ptid); | |
7230 | ||
7231 | stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid)); | |
7232 | frame = get_current_frame (); | |
2ac7589c PA |
7233 | |
7234 | /* If the PC of the thread we were trying to single-step has | |
7235 | changed, then that thread has trapped or been signaled, but the | |
7236 | event has not been reported to GDB yet. Re-poll the target | |
7237 | looking for this particular thread's event (i.e. temporarily | |
7238 | enable schedlock) by: | |
7239 | ||
7240 | - setting a break at the current PC | |
7241 | - resuming that particular thread, only (by setting trap | |
7242 | expected) | |
7243 | ||
7244 | This prevents us continuously moving the single-step breakpoint | |
7245 | forward, one instruction at a time, overstepping. */ | |
7246 | ||
7247 | if (stop_pc != tp->prev_pc) | |
7248 | { | |
7249 | ptid_t resume_ptid; | |
7250 | ||
7251 | if (debug_infrun) | |
7252 | fprintf_unfiltered (gdb_stdlog, | |
7253 | "infrun: expected thread advanced also (%s -> %s)\n", | |
7254 | paddress (target_gdbarch (), tp->prev_pc), | |
7255 | paddress (target_gdbarch (), stop_pc)); | |
7256 | ||
7257 | /* Clear the info of the previous step-over, as it's no longer | |
7258 | valid (if the thread was trying to step over a breakpoint, it | |
7259 | has already succeeded). It's what keep_going would do too, | |
7260 | if we called it. Do this before trying to insert the sss | |
7261 | breakpoint, otherwise if we were previously trying to step | |
7262 | over this exact address in another thread, the breakpoint is | |
7263 | skipped. */ | |
7264 | clear_step_over_info (); | |
7265 | tp->control.trap_expected = 0; | |
7266 | ||
7267 | insert_single_step_breakpoint (get_frame_arch (frame), | |
7268 | get_frame_address_space (frame), | |
7269 | stop_pc); | |
7270 | ||
372316f1 | 7271 | tp->resumed = 1; |
fbea99ea | 7272 | resume_ptid = internal_resume_ptid (tp->control.stepping_command); |
2ac7589c PA |
7273 | do_target_resume (resume_ptid, 0, GDB_SIGNAL_0); |
7274 | } | |
7275 | else | |
7276 | { | |
7277 | if (debug_infrun) | |
7278 | fprintf_unfiltered (gdb_stdlog, | |
7279 | "infrun: expected thread still hasn't advanced\n"); | |
7280 | ||
7281 | keep_going_pass_signal (ecs); | |
7282 | } | |
7283 | return 1; | |
c447ac0b PA |
7284 | } |
7285 | ||
8b061563 PA |
7286 | /* Is thread TP in the middle of (software or hardware) |
7287 | single-stepping? (Note the result of this function must never be | |
7288 | passed directly as target_resume's STEP parameter.) */ | |
104c1213 | 7289 | |
a289b8f6 | 7290 | static int |
b3444185 | 7291 | currently_stepping (struct thread_info *tp) |
a7212384 | 7292 | { |
8358c15c JK |
7293 | return ((tp->control.step_range_end |
7294 | && tp->control.step_resume_breakpoint == NULL) | |
7295 | || tp->control.trap_expected | |
af48d08f | 7296 | || tp->stepped_breakpoint |
8358c15c | 7297 | || bpstat_should_step ()); |
a7212384 UW |
7298 | } |
7299 | ||
b2175913 MS |
7300 | /* Inferior has stepped into a subroutine call with source code that |
7301 | we should not step over. Do step to the first line of code in | |
7302 | it. */ | |
c2c6d25f JM |
7303 | |
7304 | static void | |
568d6575 UW |
7305 | handle_step_into_function (struct gdbarch *gdbarch, |
7306 | struct execution_control_state *ecs) | |
c2c6d25f | 7307 | { |
43f3e411 | 7308 | struct compunit_symtab *cust; |
2afb61aa | 7309 | struct symtab_and_line stop_func_sal, sr_sal; |
c2c6d25f | 7310 | |
7e324e48 GB |
7311 | fill_in_stop_func (gdbarch, ecs); |
7312 | ||
43f3e411 DE |
7313 | cust = find_pc_compunit_symtab (stop_pc); |
7314 | if (cust != NULL && compunit_language (cust) != language_asm) | |
568d6575 | 7315 | ecs->stop_func_start = gdbarch_skip_prologue (gdbarch, |
b2175913 | 7316 | ecs->stop_func_start); |
c2c6d25f | 7317 | |
2afb61aa | 7318 | stop_func_sal = find_pc_line (ecs->stop_func_start, 0); |
c2c6d25f JM |
7319 | /* Use the step_resume_break to step until the end of the prologue, |
7320 | even if that involves jumps (as it seems to on the vax under | |
7321 | 4.2). */ | |
7322 | /* If the prologue ends in the middle of a source line, continue to | |
7323 | the end of that source line (if it is still within the function). | |
7324 | Otherwise, just go to end of prologue. */ | |
2afb61aa PA |
7325 | if (stop_func_sal.end |
7326 | && stop_func_sal.pc != ecs->stop_func_start | |
7327 | && stop_func_sal.end < ecs->stop_func_end) | |
7328 | ecs->stop_func_start = stop_func_sal.end; | |
c2c6d25f | 7329 | |
2dbd5e30 KB |
7330 | /* Architectures which require breakpoint adjustment might not be able |
7331 | to place a breakpoint at the computed address. If so, the test | |
7332 | ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust | |
7333 | ecs->stop_func_start to an address at which a breakpoint may be | |
7334 | legitimately placed. | |
8fb3e588 | 7335 | |
2dbd5e30 KB |
7336 | Note: kevinb/2004-01-19: On FR-V, if this adjustment is not |
7337 | made, GDB will enter an infinite loop when stepping through | |
7338 | optimized code consisting of VLIW instructions which contain | |
7339 | subinstructions corresponding to different source lines. On | |
7340 | FR-V, it's not permitted to place a breakpoint on any but the | |
7341 | first subinstruction of a VLIW instruction. When a breakpoint is | |
7342 | set, GDB will adjust the breakpoint address to the beginning of | |
7343 | the VLIW instruction. Thus, we need to make the corresponding | |
7344 | adjustment here when computing the stop address. */ | |
8fb3e588 | 7345 | |
568d6575 | 7346 | if (gdbarch_adjust_breakpoint_address_p (gdbarch)) |
2dbd5e30 KB |
7347 | { |
7348 | ecs->stop_func_start | |
568d6575 | 7349 | = gdbarch_adjust_breakpoint_address (gdbarch, |
8fb3e588 | 7350 | ecs->stop_func_start); |
2dbd5e30 KB |
7351 | } |
7352 | ||
c2c6d25f JM |
7353 | if (ecs->stop_func_start == stop_pc) |
7354 | { | |
7355 | /* We are already there: stop now. */ | |
bdc36728 | 7356 | end_stepping_range (ecs); |
c2c6d25f JM |
7357 | return; |
7358 | } | |
7359 | else | |
7360 | { | |
7361 | /* Put the step-breakpoint there and go until there. */ | |
fe39c653 | 7362 | init_sal (&sr_sal); /* initialize to zeroes */ |
c2c6d25f JM |
7363 | sr_sal.pc = ecs->stop_func_start; |
7364 | sr_sal.section = find_pc_overlay (ecs->stop_func_start); | |
6c95b8df | 7365 | sr_sal.pspace = get_frame_program_space (get_current_frame ()); |
44cbf7b5 | 7366 | |
c2c6d25f | 7367 | /* Do not specify what the fp should be when we stop since on |
488f131b JB |
7368 | some machines the prologue is where the new fp value is |
7369 | established. */ | |
a6d9a66e | 7370 | insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id); |
c2c6d25f JM |
7371 | |
7372 | /* And make sure stepping stops right away then. */ | |
16c381f0 JK |
7373 | ecs->event_thread->control.step_range_end |
7374 | = ecs->event_thread->control.step_range_start; | |
c2c6d25f JM |
7375 | } |
7376 | keep_going (ecs); | |
7377 | } | |
d4f3574e | 7378 | |
b2175913 MS |
7379 | /* Inferior has stepped backward into a subroutine call with source |
7380 | code that we should not step over. Do step to the beginning of the | |
7381 | last line of code in it. */ | |
7382 | ||
7383 | static void | |
568d6575 UW |
7384 | handle_step_into_function_backward (struct gdbarch *gdbarch, |
7385 | struct execution_control_state *ecs) | |
b2175913 | 7386 | { |
43f3e411 | 7387 | struct compunit_symtab *cust; |
167e4384 | 7388 | struct symtab_and_line stop_func_sal; |
b2175913 | 7389 | |
7e324e48 GB |
7390 | fill_in_stop_func (gdbarch, ecs); |
7391 | ||
43f3e411 DE |
7392 | cust = find_pc_compunit_symtab (stop_pc); |
7393 | if (cust != NULL && compunit_language (cust) != language_asm) | |
568d6575 | 7394 | ecs->stop_func_start = gdbarch_skip_prologue (gdbarch, |
b2175913 MS |
7395 | ecs->stop_func_start); |
7396 | ||
7397 | stop_func_sal = find_pc_line (stop_pc, 0); | |
7398 | ||
7399 | /* OK, we're just going to keep stepping here. */ | |
7400 | if (stop_func_sal.pc == stop_pc) | |
7401 | { | |
7402 | /* We're there already. Just stop stepping now. */ | |
bdc36728 | 7403 | end_stepping_range (ecs); |
b2175913 MS |
7404 | } |
7405 | else | |
7406 | { | |
7407 | /* Else just reset the step range and keep going. | |
7408 | No step-resume breakpoint, they don't work for | |
7409 | epilogues, which can have multiple entry paths. */ | |
16c381f0 JK |
7410 | ecs->event_thread->control.step_range_start = stop_func_sal.pc; |
7411 | ecs->event_thread->control.step_range_end = stop_func_sal.end; | |
b2175913 MS |
7412 | keep_going (ecs); |
7413 | } | |
7414 | return; | |
7415 | } | |
7416 | ||
d3169d93 | 7417 | /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID. |
44cbf7b5 AC |
7418 | This is used to both functions and to skip over code. */ |
7419 | ||
7420 | static void | |
2c03e5be PA |
7421 | insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch, |
7422 | struct symtab_and_line sr_sal, | |
7423 | struct frame_id sr_id, | |
7424 | enum bptype sr_type) | |
44cbf7b5 | 7425 | { |
611c83ae PA |
7426 | /* There should never be more than one step-resume or longjmp-resume |
7427 | breakpoint per thread, so we should never be setting a new | |
44cbf7b5 | 7428 | step_resume_breakpoint when one is already active. */ |
8358c15c | 7429 | gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL); |
2c03e5be | 7430 | gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume); |
d3169d93 DJ |
7431 | |
7432 | if (debug_infrun) | |
7433 | fprintf_unfiltered (gdb_stdlog, | |
5af949e3 UW |
7434 | "infrun: inserting step-resume breakpoint at %s\n", |
7435 | paddress (gdbarch, sr_sal.pc)); | |
d3169d93 | 7436 | |
8358c15c | 7437 | inferior_thread ()->control.step_resume_breakpoint |
2c03e5be PA |
7438 | = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type); |
7439 | } | |
7440 | ||
9da8c2a0 | 7441 | void |
2c03e5be PA |
7442 | insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch, |
7443 | struct symtab_and_line sr_sal, | |
7444 | struct frame_id sr_id) | |
7445 | { | |
7446 | insert_step_resume_breakpoint_at_sal_1 (gdbarch, | |
7447 | sr_sal, sr_id, | |
7448 | bp_step_resume); | |
44cbf7b5 | 7449 | } |
7ce450bd | 7450 | |
2c03e5be PA |
7451 | /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc. |
7452 | This is used to skip a potential signal handler. | |
7ce450bd | 7453 | |
14e60db5 DJ |
7454 | This is called with the interrupted function's frame. The signal |
7455 | handler, when it returns, will resume the interrupted function at | |
7456 | RETURN_FRAME.pc. */ | |
d303a6c7 AC |
7457 | |
7458 | static void | |
2c03e5be | 7459 | insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame) |
d303a6c7 AC |
7460 | { |
7461 | struct symtab_and_line sr_sal; | |
a6d9a66e | 7462 | struct gdbarch *gdbarch; |
d303a6c7 | 7463 | |
f4c1edd8 | 7464 | gdb_assert (return_frame != NULL); |
d303a6c7 AC |
7465 | init_sal (&sr_sal); /* initialize to zeros */ |
7466 | ||
a6d9a66e | 7467 | gdbarch = get_frame_arch (return_frame); |
568d6575 | 7468 | sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame)); |
d303a6c7 | 7469 | sr_sal.section = find_pc_overlay (sr_sal.pc); |
6c95b8df | 7470 | sr_sal.pspace = get_frame_program_space (return_frame); |
d303a6c7 | 7471 | |
2c03e5be PA |
7472 | insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal, |
7473 | get_stack_frame_id (return_frame), | |
7474 | bp_hp_step_resume); | |
d303a6c7 AC |
7475 | } |
7476 | ||
2c03e5be PA |
7477 | /* Insert a "step-resume breakpoint" at the previous frame's PC. This |
7478 | is used to skip a function after stepping into it (for "next" or if | |
7479 | the called function has no debugging information). | |
14e60db5 DJ |
7480 | |
7481 | The current function has almost always been reached by single | |
7482 | stepping a call or return instruction. NEXT_FRAME belongs to the | |
7483 | current function, and the breakpoint will be set at the caller's | |
7484 | resume address. | |
7485 | ||
7486 | This is a separate function rather than reusing | |
2c03e5be | 7487 | insert_hp_step_resume_breakpoint_at_frame in order to avoid |
14e60db5 | 7488 | get_prev_frame, which may stop prematurely (see the implementation |
c7ce8faa | 7489 | of frame_unwind_caller_id for an example). */ |
14e60db5 DJ |
7490 | |
7491 | static void | |
7492 | insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame) | |
7493 | { | |
7494 | struct symtab_and_line sr_sal; | |
a6d9a66e | 7495 | struct gdbarch *gdbarch; |
14e60db5 DJ |
7496 | |
7497 | /* We shouldn't have gotten here if we don't know where the call site | |
7498 | is. */ | |
c7ce8faa | 7499 | gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame))); |
14e60db5 DJ |
7500 | |
7501 | init_sal (&sr_sal); /* initialize to zeros */ | |
7502 | ||
a6d9a66e | 7503 | gdbarch = frame_unwind_caller_arch (next_frame); |
c7ce8faa DJ |
7504 | sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, |
7505 | frame_unwind_caller_pc (next_frame)); | |
14e60db5 | 7506 | sr_sal.section = find_pc_overlay (sr_sal.pc); |
6c95b8df | 7507 | sr_sal.pspace = frame_unwind_program_space (next_frame); |
14e60db5 | 7508 | |
a6d9a66e | 7509 | insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, |
c7ce8faa | 7510 | frame_unwind_caller_id (next_frame)); |
14e60db5 DJ |
7511 | } |
7512 | ||
611c83ae PA |
7513 | /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a |
7514 | new breakpoint at the target of a jmp_buf. The handling of | |
7515 | longjmp-resume uses the same mechanisms used for handling | |
7516 | "step-resume" breakpoints. */ | |
7517 | ||
7518 | static void | |
a6d9a66e | 7519 | insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc) |
611c83ae | 7520 | { |
e81a37f7 TT |
7521 | /* There should never be more than one longjmp-resume breakpoint per |
7522 | thread, so we should never be setting a new | |
611c83ae | 7523 | longjmp_resume_breakpoint when one is already active. */ |
e81a37f7 | 7524 | gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL); |
611c83ae PA |
7525 | |
7526 | if (debug_infrun) | |
7527 | fprintf_unfiltered (gdb_stdlog, | |
5af949e3 UW |
7528 | "infrun: inserting longjmp-resume breakpoint at %s\n", |
7529 | paddress (gdbarch, pc)); | |
611c83ae | 7530 | |
e81a37f7 | 7531 | inferior_thread ()->control.exception_resume_breakpoint = |
a6d9a66e | 7532 | set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume); |
611c83ae PA |
7533 | } |
7534 | ||
186c406b TT |
7535 | /* Insert an exception resume breakpoint. TP is the thread throwing |
7536 | the exception. The block B is the block of the unwinder debug hook | |
7537 | function. FRAME is the frame corresponding to the call to this | |
7538 | function. SYM is the symbol of the function argument holding the | |
7539 | target PC of the exception. */ | |
7540 | ||
7541 | static void | |
7542 | insert_exception_resume_breakpoint (struct thread_info *tp, | |
3977b71f | 7543 | const struct block *b, |
186c406b TT |
7544 | struct frame_info *frame, |
7545 | struct symbol *sym) | |
7546 | { | |
492d29ea | 7547 | TRY |
186c406b | 7548 | { |
63e43d3a | 7549 | struct block_symbol vsym; |
186c406b TT |
7550 | struct value *value; |
7551 | CORE_ADDR handler; | |
7552 | struct breakpoint *bp; | |
7553 | ||
63e43d3a PMR |
7554 | vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL); |
7555 | value = read_var_value (vsym.symbol, vsym.block, frame); | |
186c406b TT |
7556 | /* If the value was optimized out, revert to the old behavior. */ |
7557 | if (! value_optimized_out (value)) | |
7558 | { | |
7559 | handler = value_as_address (value); | |
7560 | ||
7561 | if (debug_infrun) | |
7562 | fprintf_unfiltered (gdb_stdlog, | |
7563 | "infrun: exception resume at %lx\n", | |
7564 | (unsigned long) handler); | |
7565 | ||
7566 | bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame), | |
7567 | handler, bp_exception_resume); | |
c70a6932 JK |
7568 | |
7569 | /* set_momentary_breakpoint_at_pc invalidates FRAME. */ | |
7570 | frame = NULL; | |
7571 | ||
5d5658a1 | 7572 | bp->thread = tp->global_num; |
186c406b TT |
7573 | inferior_thread ()->control.exception_resume_breakpoint = bp; |
7574 | } | |
7575 | } | |
492d29ea PA |
7576 | CATCH (e, RETURN_MASK_ERROR) |
7577 | { | |
7578 | /* We want to ignore errors here. */ | |
7579 | } | |
7580 | END_CATCH | |
186c406b TT |
7581 | } |
7582 | ||
28106bc2 SDJ |
7583 | /* A helper for check_exception_resume that sets an |
7584 | exception-breakpoint based on a SystemTap probe. */ | |
7585 | ||
7586 | static void | |
7587 | insert_exception_resume_from_probe (struct thread_info *tp, | |
729662a5 | 7588 | const struct bound_probe *probe, |
28106bc2 SDJ |
7589 | struct frame_info *frame) |
7590 | { | |
7591 | struct value *arg_value; | |
7592 | CORE_ADDR handler; | |
7593 | struct breakpoint *bp; | |
7594 | ||
7595 | arg_value = probe_safe_evaluate_at_pc (frame, 1); | |
7596 | if (!arg_value) | |
7597 | return; | |
7598 | ||
7599 | handler = value_as_address (arg_value); | |
7600 | ||
7601 | if (debug_infrun) | |
7602 | fprintf_unfiltered (gdb_stdlog, | |
7603 | "infrun: exception resume at %s\n", | |
6bac7473 | 7604 | paddress (get_objfile_arch (probe->objfile), |
28106bc2 SDJ |
7605 | handler)); |
7606 | ||
7607 | bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame), | |
7608 | handler, bp_exception_resume); | |
5d5658a1 | 7609 | bp->thread = tp->global_num; |
28106bc2 SDJ |
7610 | inferior_thread ()->control.exception_resume_breakpoint = bp; |
7611 | } | |
7612 | ||
186c406b TT |
7613 | /* This is called when an exception has been intercepted. Check to |
7614 | see whether the exception's destination is of interest, and if so, | |
7615 | set an exception resume breakpoint there. */ | |
7616 | ||
7617 | static void | |
7618 | check_exception_resume (struct execution_control_state *ecs, | |
28106bc2 | 7619 | struct frame_info *frame) |
186c406b | 7620 | { |
729662a5 | 7621 | struct bound_probe probe; |
28106bc2 SDJ |
7622 | struct symbol *func; |
7623 | ||
7624 | /* First see if this exception unwinding breakpoint was set via a | |
7625 | SystemTap probe point. If so, the probe has two arguments: the | |
7626 | CFA and the HANDLER. We ignore the CFA, extract the handler, and | |
7627 | set a breakpoint there. */ | |
6bac7473 | 7628 | probe = find_probe_by_pc (get_frame_pc (frame)); |
729662a5 | 7629 | if (probe.probe) |
28106bc2 | 7630 | { |
729662a5 | 7631 | insert_exception_resume_from_probe (ecs->event_thread, &probe, frame); |
28106bc2 SDJ |
7632 | return; |
7633 | } | |
7634 | ||
7635 | func = get_frame_function (frame); | |
7636 | if (!func) | |
7637 | return; | |
186c406b | 7638 | |
492d29ea | 7639 | TRY |
186c406b | 7640 | { |
3977b71f | 7641 | const struct block *b; |
8157b174 | 7642 | struct block_iterator iter; |
186c406b TT |
7643 | struct symbol *sym; |
7644 | int argno = 0; | |
7645 | ||
7646 | /* The exception breakpoint is a thread-specific breakpoint on | |
7647 | the unwinder's debug hook, declared as: | |
7648 | ||
7649 | void _Unwind_DebugHook (void *cfa, void *handler); | |
7650 | ||
7651 | The CFA argument indicates the frame to which control is | |
7652 | about to be transferred. HANDLER is the destination PC. | |
7653 | ||
7654 | We ignore the CFA and set a temporary breakpoint at HANDLER. | |
7655 | This is not extremely efficient but it avoids issues in gdb | |
7656 | with computing the DWARF CFA, and it also works even in weird | |
7657 | cases such as throwing an exception from inside a signal | |
7658 | handler. */ | |
7659 | ||
7660 | b = SYMBOL_BLOCK_VALUE (func); | |
7661 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
7662 | { | |
7663 | if (!SYMBOL_IS_ARGUMENT (sym)) | |
7664 | continue; | |
7665 | ||
7666 | if (argno == 0) | |
7667 | ++argno; | |
7668 | else | |
7669 | { | |
7670 | insert_exception_resume_breakpoint (ecs->event_thread, | |
7671 | b, frame, sym); | |
7672 | break; | |
7673 | } | |
7674 | } | |
7675 | } | |
492d29ea PA |
7676 | CATCH (e, RETURN_MASK_ERROR) |
7677 | { | |
7678 | } | |
7679 | END_CATCH | |
186c406b TT |
7680 | } |
7681 | ||
104c1213 | 7682 | static void |
22bcd14b | 7683 | stop_waiting (struct execution_control_state *ecs) |
104c1213 | 7684 | { |
527159b7 | 7685 | if (debug_infrun) |
22bcd14b | 7686 | fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n"); |
527159b7 | 7687 | |
31e77af2 PA |
7688 | clear_step_over_info (); |
7689 | ||
cd0fc7c3 SS |
7690 | /* Let callers know we don't want to wait for the inferior anymore. */ |
7691 | ecs->wait_some_more = 0; | |
fbea99ea PA |
7692 | |
7693 | /* If all-stop, but the target is always in non-stop mode, stop all | |
7694 | threads now that we're presenting the stop to the user. */ | |
7695 | if (!non_stop && target_is_non_stop_p ()) | |
7696 | stop_all_threads (); | |
cd0fc7c3 SS |
7697 | } |
7698 | ||
4d9d9d04 PA |
7699 | /* Like keep_going, but passes the signal to the inferior, even if the |
7700 | signal is set to nopass. */ | |
d4f3574e SS |
7701 | |
7702 | static void | |
4d9d9d04 | 7703 | keep_going_pass_signal (struct execution_control_state *ecs) |
d4f3574e | 7704 | { |
c4dbc9af PA |
7705 | /* Make sure normal_stop is called if we get a QUIT handled before |
7706 | reaching resume. */ | |
7707 | struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0); | |
7708 | ||
4d9d9d04 | 7709 | gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid)); |
372316f1 | 7710 | gdb_assert (!ecs->event_thread->resumed); |
4d9d9d04 | 7711 | |
d4f3574e | 7712 | /* Save the pc before execution, to compare with pc after stop. */ |
fb14de7b UW |
7713 | ecs->event_thread->prev_pc |
7714 | = regcache_read_pc (get_thread_regcache (ecs->ptid)); | |
d4f3574e | 7715 | |
4d9d9d04 | 7716 | if (ecs->event_thread->control.trap_expected) |
d4f3574e | 7717 | { |
4d9d9d04 PA |
7718 | struct thread_info *tp = ecs->event_thread; |
7719 | ||
7720 | if (debug_infrun) | |
7721 | fprintf_unfiltered (gdb_stdlog, | |
7722 | "infrun: %s has trap_expected set, " | |
7723 | "resuming to collect trap\n", | |
7724 | target_pid_to_str (tp->ptid)); | |
7725 | ||
a9ba6bae PA |
7726 | /* We haven't yet gotten our trap, and either: intercepted a |
7727 | non-signal event (e.g., a fork); or took a signal which we | |
7728 | are supposed to pass through to the inferior. Simply | |
7729 | continue. */ | |
c4dbc9af | 7730 | discard_cleanups (old_cleanups); |
64ce06e4 | 7731 | resume (ecs->event_thread->suspend.stop_signal); |
d4f3574e | 7732 | } |
372316f1 PA |
7733 | else if (step_over_info_valid_p ()) |
7734 | { | |
7735 | /* Another thread is stepping over a breakpoint in-line. If | |
7736 | this thread needs a step-over too, queue the request. In | |
7737 | either case, this resume must be deferred for later. */ | |
7738 | struct thread_info *tp = ecs->event_thread; | |
7739 | ||
7740 | if (ecs->hit_singlestep_breakpoint | |
7741 | || thread_still_needs_step_over (tp)) | |
7742 | { | |
7743 | if (debug_infrun) | |
7744 | fprintf_unfiltered (gdb_stdlog, | |
7745 | "infrun: step-over already in progress: " | |
7746 | "step-over for %s deferred\n", | |
7747 | target_pid_to_str (tp->ptid)); | |
7748 | thread_step_over_chain_enqueue (tp); | |
7749 | } | |
7750 | else | |
7751 | { | |
7752 | if (debug_infrun) | |
7753 | fprintf_unfiltered (gdb_stdlog, | |
7754 | "infrun: step-over in progress: " | |
7755 | "resume of %s deferred\n", | |
7756 | target_pid_to_str (tp->ptid)); | |
7757 | } | |
7758 | ||
7759 | discard_cleanups (old_cleanups); | |
7760 | } | |
d4f3574e SS |
7761 | else |
7762 | { | |
31e77af2 | 7763 | struct regcache *regcache = get_current_regcache (); |
963f9c80 PA |
7764 | int remove_bp; |
7765 | int remove_wps; | |
8d297bbf | 7766 | step_over_what step_what; |
31e77af2 | 7767 | |
d4f3574e | 7768 | /* Either the trap was not expected, but we are continuing |
a9ba6bae PA |
7769 | anyway (if we got a signal, the user asked it be passed to |
7770 | the child) | |
7771 | -- or -- | |
7772 | We got our expected trap, but decided we should resume from | |
7773 | it. | |
d4f3574e | 7774 | |
a9ba6bae | 7775 | We're going to run this baby now! |
d4f3574e | 7776 | |
c36b740a VP |
7777 | Note that insert_breakpoints won't try to re-insert |
7778 | already inserted breakpoints. Therefore, we don't | |
7779 | care if breakpoints were already inserted, or not. */ | |
a9ba6bae | 7780 | |
31e77af2 PA |
7781 | /* If we need to step over a breakpoint, and we're not using |
7782 | displaced stepping to do so, insert all breakpoints | |
7783 | (watchpoints, etc.) but the one we're stepping over, step one | |
7784 | instruction, and then re-insert the breakpoint when that step | |
7785 | is finished. */ | |
963f9c80 | 7786 | |
6c4cfb24 PA |
7787 | step_what = thread_still_needs_step_over (ecs->event_thread); |
7788 | ||
963f9c80 | 7789 | remove_bp = (ecs->hit_singlestep_breakpoint |
6c4cfb24 PA |
7790 | || (step_what & STEP_OVER_BREAKPOINT)); |
7791 | remove_wps = (step_what & STEP_OVER_WATCHPOINT); | |
963f9c80 | 7792 | |
cb71640d PA |
7793 | /* We can't use displaced stepping if we need to step past a |
7794 | watchpoint. The instruction copied to the scratch pad would | |
7795 | still trigger the watchpoint. */ | |
7796 | if (remove_bp | |
3fc8eb30 | 7797 | && (remove_wps || !use_displaced_stepping (ecs->event_thread))) |
45e8c884 | 7798 | { |
31e77af2 | 7799 | set_step_over_info (get_regcache_aspace (regcache), |
21edc42f YQ |
7800 | regcache_read_pc (regcache), remove_wps, |
7801 | ecs->event_thread->global_num); | |
45e8c884 | 7802 | } |
963f9c80 | 7803 | else if (remove_wps) |
21edc42f | 7804 | set_step_over_info (NULL, 0, remove_wps, -1); |
372316f1 PA |
7805 | |
7806 | /* If we now need to do an in-line step-over, we need to stop | |
7807 | all other threads. Note this must be done before | |
7808 | insert_breakpoints below, because that removes the breakpoint | |
7809 | we're about to step over, otherwise other threads could miss | |
7810 | it. */ | |
fbea99ea | 7811 | if (step_over_info_valid_p () && target_is_non_stop_p ()) |
372316f1 | 7812 | stop_all_threads (); |
abbb1732 | 7813 | |
31e77af2 | 7814 | /* Stop stepping if inserting breakpoints fails. */ |
492d29ea | 7815 | TRY |
31e77af2 PA |
7816 | { |
7817 | insert_breakpoints (); | |
7818 | } | |
492d29ea | 7819 | CATCH (e, RETURN_MASK_ERROR) |
31e77af2 PA |
7820 | { |
7821 | exception_print (gdb_stderr, e); | |
22bcd14b | 7822 | stop_waiting (ecs); |
de1fe8c8 | 7823 | discard_cleanups (old_cleanups); |
31e77af2 | 7824 | return; |
d4f3574e | 7825 | } |
492d29ea | 7826 | END_CATCH |
d4f3574e | 7827 | |
963f9c80 | 7828 | ecs->event_thread->control.trap_expected = (remove_bp || remove_wps); |
d4f3574e | 7829 | |
c4dbc9af | 7830 | discard_cleanups (old_cleanups); |
64ce06e4 | 7831 | resume (ecs->event_thread->suspend.stop_signal); |
d4f3574e SS |
7832 | } |
7833 | ||
488f131b | 7834 | prepare_to_wait (ecs); |
d4f3574e SS |
7835 | } |
7836 | ||
4d9d9d04 PA |
7837 | /* Called when we should continue running the inferior, because the |
7838 | current event doesn't cause a user visible stop. This does the | |
7839 | resuming part; waiting for the next event is done elsewhere. */ | |
7840 | ||
7841 | static void | |
7842 | keep_going (struct execution_control_state *ecs) | |
7843 | { | |
7844 | if (ecs->event_thread->control.trap_expected | |
7845 | && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP) | |
7846 | ecs->event_thread->control.trap_expected = 0; | |
7847 | ||
7848 | if (!signal_program[ecs->event_thread->suspend.stop_signal]) | |
7849 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; | |
7850 | keep_going_pass_signal (ecs); | |
7851 | } | |
7852 | ||
104c1213 JM |
7853 | /* This function normally comes after a resume, before |
7854 | handle_inferior_event exits. It takes care of any last bits of | |
7855 | housekeeping, and sets the all-important wait_some_more flag. */ | |
cd0fc7c3 | 7856 | |
104c1213 JM |
7857 | static void |
7858 | prepare_to_wait (struct execution_control_state *ecs) | |
cd0fc7c3 | 7859 | { |
527159b7 | 7860 | if (debug_infrun) |
8a9de0e4 | 7861 | fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n"); |
104c1213 | 7862 | |
104c1213 | 7863 | ecs->wait_some_more = 1; |
0b333c5e PA |
7864 | |
7865 | if (!target_is_async_p ()) | |
7866 | mark_infrun_async_event_handler (); | |
c906108c | 7867 | } |
11cf8741 | 7868 | |
fd664c91 | 7869 | /* We are done with the step range of a step/next/si/ni command. |
b57bacec | 7870 | Called once for each n of a "step n" operation. */ |
fd664c91 PA |
7871 | |
7872 | static void | |
bdc36728 | 7873 | end_stepping_range (struct execution_control_state *ecs) |
fd664c91 | 7874 | { |
bdc36728 | 7875 | ecs->event_thread->control.stop_step = 1; |
bdc36728 | 7876 | stop_waiting (ecs); |
fd664c91 PA |
7877 | } |
7878 | ||
33d62d64 JK |
7879 | /* Several print_*_reason functions to print why the inferior has stopped. |
7880 | We always print something when the inferior exits, or receives a signal. | |
7881 | The rest of the cases are dealt with later on in normal_stop and | |
7882 | print_it_typical. Ideally there should be a call to one of these | |
7883 | print_*_reason functions functions from handle_inferior_event each time | |
22bcd14b | 7884 | stop_waiting is called. |
33d62d64 | 7885 | |
fd664c91 PA |
7886 | Note that we don't call these directly, instead we delegate that to |
7887 | the interpreters, through observers. Interpreters then call these | |
7888 | with whatever uiout is right. */ | |
33d62d64 | 7889 | |
fd664c91 PA |
7890 | void |
7891 | print_end_stepping_range_reason (struct ui_out *uiout) | |
33d62d64 | 7892 | { |
fd664c91 | 7893 | /* For CLI-like interpreters, print nothing. */ |
33d62d64 | 7894 | |
fd664c91 PA |
7895 | if (ui_out_is_mi_like_p (uiout)) |
7896 | { | |
7897 | ui_out_field_string (uiout, "reason", | |
7898 | async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE)); | |
7899 | } | |
7900 | } | |
33d62d64 | 7901 | |
fd664c91 PA |
7902 | void |
7903 | print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal) | |
11cf8741 | 7904 | { |
33d62d64 JK |
7905 | annotate_signalled (); |
7906 | if (ui_out_is_mi_like_p (uiout)) | |
7907 | ui_out_field_string | |
7908 | (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED)); | |
7909 | ui_out_text (uiout, "\nProgram terminated with signal "); | |
7910 | annotate_signal_name (); | |
7911 | ui_out_field_string (uiout, "signal-name", | |
2ea28649 | 7912 | gdb_signal_to_name (siggnal)); |
33d62d64 JK |
7913 | annotate_signal_name_end (); |
7914 | ui_out_text (uiout, ", "); | |
7915 | annotate_signal_string (); | |
7916 | ui_out_field_string (uiout, "signal-meaning", | |
2ea28649 | 7917 | gdb_signal_to_string (siggnal)); |
33d62d64 JK |
7918 | annotate_signal_string_end (); |
7919 | ui_out_text (uiout, ".\n"); | |
7920 | ui_out_text (uiout, "The program no longer exists.\n"); | |
7921 | } | |
7922 | ||
fd664c91 PA |
7923 | void |
7924 | print_exited_reason (struct ui_out *uiout, int exitstatus) | |
33d62d64 | 7925 | { |
fda326dd TT |
7926 | struct inferior *inf = current_inferior (); |
7927 | const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid)); | |
7928 | ||
33d62d64 JK |
7929 | annotate_exited (exitstatus); |
7930 | if (exitstatus) | |
7931 | { | |
7932 | if (ui_out_is_mi_like_p (uiout)) | |
7933 | ui_out_field_string (uiout, "reason", | |
7934 | async_reason_lookup (EXEC_ASYNC_EXITED)); | |
fda326dd TT |
7935 | ui_out_text (uiout, "[Inferior "); |
7936 | ui_out_text (uiout, plongest (inf->num)); | |
7937 | ui_out_text (uiout, " ("); | |
7938 | ui_out_text (uiout, pidstr); | |
7939 | ui_out_text (uiout, ") exited with code "); | |
33d62d64 | 7940 | ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus); |
fda326dd | 7941 | ui_out_text (uiout, "]\n"); |
33d62d64 JK |
7942 | } |
7943 | else | |
11cf8741 | 7944 | { |
9dc5e2a9 | 7945 | if (ui_out_is_mi_like_p (uiout)) |
034dad6f | 7946 | ui_out_field_string |
33d62d64 | 7947 | (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY)); |
fda326dd TT |
7948 | ui_out_text (uiout, "[Inferior "); |
7949 | ui_out_text (uiout, plongest (inf->num)); | |
7950 | ui_out_text (uiout, " ("); | |
7951 | ui_out_text (uiout, pidstr); | |
7952 | ui_out_text (uiout, ") exited normally]\n"); | |
33d62d64 | 7953 | } |
33d62d64 JK |
7954 | } |
7955 | ||
012b3a21 WT |
7956 | /* Some targets/architectures can do extra processing/display of |
7957 | segmentation faults. E.g., Intel MPX boundary faults. | |
7958 | Call the architecture dependent function to handle the fault. */ | |
7959 | ||
7960 | static void | |
7961 | handle_segmentation_fault (struct ui_out *uiout) | |
7962 | { | |
7963 | struct regcache *regcache = get_current_regcache (); | |
7964 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
7965 | ||
7966 | if (gdbarch_handle_segmentation_fault_p (gdbarch)) | |
7967 | gdbarch_handle_segmentation_fault (gdbarch, uiout); | |
7968 | } | |
7969 | ||
fd664c91 PA |
7970 | void |
7971 | print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal) | |
33d62d64 | 7972 | { |
f303dbd6 PA |
7973 | struct thread_info *thr = inferior_thread (); |
7974 | ||
33d62d64 JK |
7975 | annotate_signal (); |
7976 | ||
f303dbd6 PA |
7977 | if (ui_out_is_mi_like_p (uiout)) |
7978 | ; | |
7979 | else if (show_thread_that_caused_stop ()) | |
33d62d64 | 7980 | { |
f303dbd6 | 7981 | const char *name; |
33d62d64 | 7982 | |
f303dbd6 PA |
7983 | ui_out_text (uiout, "\nThread "); |
7984 | ui_out_field_fmt (uiout, "thread-id", "%s", print_thread_id (thr)); | |
7985 | ||
7986 | name = thr->name != NULL ? thr->name : target_thread_name (thr); | |
7987 | if (name != NULL) | |
7988 | { | |
7989 | ui_out_text (uiout, " \""); | |
7990 | ui_out_field_fmt (uiout, "name", "%s", name); | |
7991 | ui_out_text (uiout, "\""); | |
7992 | } | |
33d62d64 | 7993 | } |
f303dbd6 PA |
7994 | else |
7995 | ui_out_text (uiout, "\nProgram"); | |
7996 | ||
7997 | if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout)) | |
7998 | ui_out_text (uiout, " stopped"); | |
33d62d64 JK |
7999 | else |
8000 | { | |
f303dbd6 | 8001 | ui_out_text (uiout, " received signal "); |
8b93c638 | 8002 | annotate_signal_name (); |
33d62d64 JK |
8003 | if (ui_out_is_mi_like_p (uiout)) |
8004 | ui_out_field_string | |
8005 | (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED)); | |
488f131b | 8006 | ui_out_field_string (uiout, "signal-name", |
2ea28649 | 8007 | gdb_signal_to_name (siggnal)); |
8b93c638 JM |
8008 | annotate_signal_name_end (); |
8009 | ui_out_text (uiout, ", "); | |
8010 | annotate_signal_string (); | |
488f131b | 8011 | ui_out_field_string (uiout, "signal-meaning", |
2ea28649 | 8012 | gdb_signal_to_string (siggnal)); |
012b3a21 WT |
8013 | |
8014 | if (siggnal == GDB_SIGNAL_SEGV) | |
8015 | handle_segmentation_fault (uiout); | |
8016 | ||
8b93c638 | 8017 | annotate_signal_string_end (); |
33d62d64 JK |
8018 | } |
8019 | ui_out_text (uiout, ".\n"); | |
8020 | } | |
252fbfc8 | 8021 | |
fd664c91 PA |
8022 | void |
8023 | print_no_history_reason (struct ui_out *uiout) | |
33d62d64 | 8024 | { |
fd664c91 | 8025 | ui_out_text (uiout, "\nNo more reverse-execution history.\n"); |
11cf8741 | 8026 | } |
43ff13b4 | 8027 | |
0c7e1a46 PA |
8028 | /* Print current location without a level number, if we have changed |
8029 | functions or hit a breakpoint. Print source line if we have one. | |
8030 | bpstat_print contains the logic deciding in detail what to print, | |
8031 | based on the event(s) that just occurred. */ | |
8032 | ||
243a9253 PA |
8033 | static void |
8034 | print_stop_location (struct target_waitstatus *ws) | |
0c7e1a46 PA |
8035 | { |
8036 | int bpstat_ret; | |
f486487f | 8037 | enum print_what source_flag; |
0c7e1a46 PA |
8038 | int do_frame_printing = 1; |
8039 | struct thread_info *tp = inferior_thread (); | |
8040 | ||
8041 | bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind); | |
8042 | switch (bpstat_ret) | |
8043 | { | |
8044 | case PRINT_UNKNOWN: | |
8045 | /* FIXME: cagney/2002-12-01: Given that a frame ID does (or | |
8046 | should) carry around the function and does (or should) use | |
8047 | that when doing a frame comparison. */ | |
8048 | if (tp->control.stop_step | |
8049 | && frame_id_eq (tp->control.step_frame_id, | |
8050 | get_frame_id (get_current_frame ())) | |
885eeb5b | 8051 | && tp->control.step_start_function == find_pc_function (stop_pc)) |
0c7e1a46 PA |
8052 | { |
8053 | /* Finished step, just print source line. */ | |
8054 | source_flag = SRC_LINE; | |
8055 | } | |
8056 | else | |
8057 | { | |
8058 | /* Print location and source line. */ | |
8059 | source_flag = SRC_AND_LOC; | |
8060 | } | |
8061 | break; | |
8062 | case PRINT_SRC_AND_LOC: | |
8063 | /* Print location and source line. */ | |
8064 | source_flag = SRC_AND_LOC; | |
8065 | break; | |
8066 | case PRINT_SRC_ONLY: | |
8067 | source_flag = SRC_LINE; | |
8068 | break; | |
8069 | case PRINT_NOTHING: | |
8070 | /* Something bogus. */ | |
8071 | source_flag = SRC_LINE; | |
8072 | do_frame_printing = 0; | |
8073 | break; | |
8074 | default: | |
8075 | internal_error (__FILE__, __LINE__, _("Unknown value.")); | |
8076 | } | |
8077 | ||
8078 | /* The behavior of this routine with respect to the source | |
8079 | flag is: | |
8080 | SRC_LINE: Print only source line | |
8081 | LOCATION: Print only location | |
8082 | SRC_AND_LOC: Print location and source line. */ | |
8083 | if (do_frame_printing) | |
8084 | print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1); | |
243a9253 PA |
8085 | } |
8086 | ||
243a9253 PA |
8087 | /* See infrun.h. */ |
8088 | ||
8089 | void | |
8090 | print_stop_event (struct ui_out *uiout) | |
8091 | { | |
8092 | struct cleanup *old_chain; | |
8093 | struct target_waitstatus last; | |
8094 | ptid_t last_ptid; | |
8095 | struct thread_info *tp; | |
8096 | ||
8097 | get_last_target_status (&last_ptid, &last); | |
8098 | ||
cd94f6d5 | 8099 | old_chain = make_cleanup_restore_current_uiout (); |
243a9253 PA |
8100 | current_uiout = uiout; |
8101 | ||
8102 | print_stop_location (&last); | |
0c7e1a46 PA |
8103 | |
8104 | /* Display the auto-display expressions. */ | |
8105 | do_displays (); | |
243a9253 PA |
8106 | |
8107 | do_cleanups (old_chain); | |
8108 | ||
8109 | tp = inferior_thread (); | |
8110 | if (tp->thread_fsm != NULL | |
8111 | && thread_fsm_finished_p (tp->thread_fsm)) | |
8112 | { | |
8113 | struct return_value_info *rv; | |
8114 | ||
8115 | rv = thread_fsm_return_value (tp->thread_fsm); | |
8116 | if (rv != NULL) | |
8117 | print_return_value (uiout, rv); | |
8118 | } | |
0c7e1a46 PA |
8119 | } |
8120 | ||
388a7084 PA |
8121 | /* See infrun.h. */ |
8122 | ||
8123 | void | |
8124 | maybe_remove_breakpoints (void) | |
8125 | { | |
8126 | if (!breakpoints_should_be_inserted_now () && target_has_execution) | |
8127 | { | |
8128 | if (remove_breakpoints ()) | |
8129 | { | |
8130 | target_terminal_ours_for_output (); | |
8131 | printf_filtered (_("Cannot remove breakpoints because " | |
8132 | "program is no longer writable.\nFurther " | |
8133 | "execution is probably impossible.\n")); | |
8134 | } | |
8135 | } | |
8136 | } | |
8137 | ||
4c2f2a79 PA |
8138 | /* The execution context that just caused a normal stop. */ |
8139 | ||
8140 | struct stop_context | |
8141 | { | |
8142 | /* The stop ID. */ | |
8143 | ULONGEST stop_id; | |
c906108c | 8144 | |
4c2f2a79 | 8145 | /* The event PTID. */ |
c906108c | 8146 | |
4c2f2a79 PA |
8147 | ptid_t ptid; |
8148 | ||
8149 | /* If stopp for a thread event, this is the thread that caused the | |
8150 | stop. */ | |
8151 | struct thread_info *thread; | |
8152 | ||
8153 | /* The inferior that caused the stop. */ | |
8154 | int inf_num; | |
8155 | }; | |
8156 | ||
8157 | /* Returns a new stop context. If stopped for a thread event, this | |
8158 | takes a strong reference to the thread. */ | |
8159 | ||
8160 | static struct stop_context * | |
8161 | save_stop_context (void) | |
8162 | { | |
224c3ddb | 8163 | struct stop_context *sc = XNEW (struct stop_context); |
4c2f2a79 PA |
8164 | |
8165 | sc->stop_id = get_stop_id (); | |
8166 | sc->ptid = inferior_ptid; | |
8167 | sc->inf_num = current_inferior ()->num; | |
8168 | ||
8169 | if (!ptid_equal (inferior_ptid, null_ptid)) | |
8170 | { | |
8171 | /* Take a strong reference so that the thread can't be deleted | |
8172 | yet. */ | |
8173 | sc->thread = inferior_thread (); | |
8174 | sc->thread->refcount++; | |
8175 | } | |
8176 | else | |
8177 | sc->thread = NULL; | |
8178 | ||
8179 | return sc; | |
8180 | } | |
8181 | ||
8182 | /* Release a stop context previously created with save_stop_context. | |
8183 | Releases the strong reference to the thread as well. */ | |
8184 | ||
8185 | static void | |
8186 | release_stop_context_cleanup (void *arg) | |
8187 | { | |
9a3c8263 | 8188 | struct stop_context *sc = (struct stop_context *) arg; |
4c2f2a79 PA |
8189 | |
8190 | if (sc->thread != NULL) | |
8191 | sc->thread->refcount--; | |
8192 | xfree (sc); | |
8193 | } | |
8194 | ||
8195 | /* Return true if the current context no longer matches the saved stop | |
8196 | context. */ | |
8197 | ||
8198 | static int | |
8199 | stop_context_changed (struct stop_context *prev) | |
8200 | { | |
8201 | if (!ptid_equal (prev->ptid, inferior_ptid)) | |
8202 | return 1; | |
8203 | if (prev->inf_num != current_inferior ()->num) | |
8204 | return 1; | |
8205 | if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED) | |
8206 | return 1; | |
8207 | if (get_stop_id () != prev->stop_id) | |
8208 | return 1; | |
8209 | return 0; | |
8210 | } | |
8211 | ||
8212 | /* See infrun.h. */ | |
8213 | ||
8214 | int | |
96baa820 | 8215 | normal_stop (void) |
c906108c | 8216 | { |
73b65bb0 DJ |
8217 | struct target_waitstatus last; |
8218 | ptid_t last_ptid; | |
29f49a6a | 8219 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); |
e1316e60 | 8220 | ptid_t pid_ptid; |
3b12939d | 8221 | struct switch_thru_all_uis state; |
73b65bb0 DJ |
8222 | |
8223 | get_last_target_status (&last_ptid, &last); | |
8224 | ||
4c2f2a79 PA |
8225 | new_stop_id (); |
8226 | ||
29f49a6a PA |
8227 | /* If an exception is thrown from this point on, make sure to |
8228 | propagate GDB's knowledge of the executing state to the | |
8229 | frontend/user running state. A QUIT is an easy exception to see | |
8230 | here, so do this before any filtered output. */ | |
c35b1492 PA |
8231 | if (!non_stop) |
8232 | make_cleanup (finish_thread_state_cleanup, &minus_one_ptid); | |
e1316e60 PA |
8233 | else if (last.kind == TARGET_WAITKIND_SIGNALLED |
8234 | || last.kind == TARGET_WAITKIND_EXITED) | |
8235 | { | |
8236 | /* On some targets, we may still have live threads in the | |
8237 | inferior when we get a process exit event. E.g., for | |
8238 | "checkpoint", when the current checkpoint/fork exits, | |
8239 | linux-fork.c automatically switches to another fork from | |
8240 | within target_mourn_inferior. */ | |
8241 | if (!ptid_equal (inferior_ptid, null_ptid)) | |
8242 | { | |
8243 | pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid)); | |
8244 | make_cleanup (finish_thread_state_cleanup, &pid_ptid); | |
8245 | } | |
8246 | } | |
8247 | else if (last.kind != TARGET_WAITKIND_NO_RESUMED) | |
c35b1492 | 8248 | make_cleanup (finish_thread_state_cleanup, &inferior_ptid); |
29f49a6a | 8249 | |
b57bacec PA |
8250 | /* As we're presenting a stop, and potentially removing breakpoints, |
8251 | update the thread list so we can tell whether there are threads | |
8252 | running on the target. With target remote, for example, we can | |
8253 | only learn about new threads when we explicitly update the thread | |
8254 | list. Do this before notifying the interpreters about signal | |
8255 | stops, end of stepping ranges, etc., so that the "new thread" | |
8256 | output is emitted before e.g., "Program received signal FOO", | |
8257 | instead of after. */ | |
8258 | update_thread_list (); | |
8259 | ||
8260 | if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal) | |
8261 | observer_notify_signal_received (inferior_thread ()->suspend.stop_signal); | |
8262 | ||
c906108c SS |
8263 | /* As with the notification of thread events, we want to delay |
8264 | notifying the user that we've switched thread context until | |
8265 | the inferior actually stops. | |
8266 | ||
73b65bb0 DJ |
8267 | There's no point in saying anything if the inferior has exited. |
8268 | Note that SIGNALLED here means "exited with a signal", not | |
b65dc60b PA |
8269 | "received a signal". |
8270 | ||
8271 | Also skip saying anything in non-stop mode. In that mode, as we | |
8272 | don't want GDB to switch threads behind the user's back, to avoid | |
8273 | races where the user is typing a command to apply to thread x, | |
8274 | but GDB switches to thread y before the user finishes entering | |
8275 | the command, fetch_inferior_event installs a cleanup to restore | |
8276 | the current thread back to the thread the user had selected right | |
8277 | after this event is handled, so we're not really switching, only | |
8278 | informing of a stop. */ | |
4f8d22e3 PA |
8279 | if (!non_stop |
8280 | && !ptid_equal (previous_inferior_ptid, inferior_ptid) | |
73b65bb0 DJ |
8281 | && target_has_execution |
8282 | && last.kind != TARGET_WAITKIND_SIGNALLED | |
0e5bf2a8 PA |
8283 | && last.kind != TARGET_WAITKIND_EXITED |
8284 | && last.kind != TARGET_WAITKIND_NO_RESUMED) | |
c906108c | 8285 | { |
3b12939d PA |
8286 | SWITCH_THRU_ALL_UIS (state) |
8287 | { | |
8288 | target_terminal_ours_for_output (); | |
8289 | printf_filtered (_("[Switching to %s]\n"), | |
8290 | target_pid_to_str (inferior_ptid)); | |
8291 | annotate_thread_changed (); | |
8292 | } | |
39f77062 | 8293 | previous_inferior_ptid = inferior_ptid; |
c906108c | 8294 | } |
c906108c | 8295 | |
0e5bf2a8 PA |
8296 | if (last.kind == TARGET_WAITKIND_NO_RESUMED) |
8297 | { | |
3b12939d PA |
8298 | SWITCH_THRU_ALL_UIS (state) |
8299 | if (current_ui->prompt_state == PROMPT_BLOCKED) | |
8300 | { | |
8301 | target_terminal_ours_for_output (); | |
8302 | printf_filtered (_("No unwaited-for children left.\n")); | |
8303 | } | |
0e5bf2a8 PA |
8304 | } |
8305 | ||
b57bacec | 8306 | /* Note: this depends on the update_thread_list call above. */ |
388a7084 | 8307 | maybe_remove_breakpoints (); |
c906108c | 8308 | |
c906108c SS |
8309 | /* If an auto-display called a function and that got a signal, |
8310 | delete that auto-display to avoid an infinite recursion. */ | |
8311 | ||
8312 | if (stopped_by_random_signal) | |
8313 | disable_current_display (); | |
8314 | ||
3b12939d PA |
8315 | SWITCH_THRU_ALL_UIS (state) |
8316 | { | |
8317 | async_enable_stdin (); | |
8318 | } | |
c906108c | 8319 | |
388a7084 PA |
8320 | /* Let the user/frontend see the threads as stopped. */ |
8321 | do_cleanups (old_chain); | |
8322 | ||
8323 | /* Select innermost stack frame - i.e., current frame is frame 0, | |
8324 | and current location is based on that. Handle the case where the | |
8325 | dummy call is returning after being stopped. E.g. the dummy call | |
8326 | previously hit a breakpoint. (If the dummy call returns | |
8327 | normally, we won't reach here.) Do this before the stop hook is | |
8328 | run, so that it doesn't get to see the temporary dummy frame, | |
8329 | which is not where we'll present the stop. */ | |
8330 | if (has_stack_frames ()) | |
8331 | { | |
8332 | if (stop_stack_dummy == STOP_STACK_DUMMY) | |
8333 | { | |
8334 | /* Pop the empty frame that contains the stack dummy. This | |
8335 | also restores inferior state prior to the call (struct | |
8336 | infcall_suspend_state). */ | |
8337 | struct frame_info *frame = get_current_frame (); | |
8338 | ||
8339 | gdb_assert (get_frame_type (frame) == DUMMY_FRAME); | |
8340 | frame_pop (frame); | |
8341 | /* frame_pop calls reinit_frame_cache as the last thing it | |
8342 | does which means there's now no selected frame. */ | |
8343 | } | |
8344 | ||
8345 | select_frame (get_current_frame ()); | |
8346 | ||
8347 | /* Set the current source location. */ | |
8348 | set_current_sal_from_frame (get_current_frame ()); | |
8349 | } | |
dd7e2d2b PA |
8350 | |
8351 | /* Look up the hook_stop and run it (CLI internally handles problem | |
8352 | of stop_command's pre-hook not existing). */ | |
4c2f2a79 PA |
8353 | if (stop_command != NULL) |
8354 | { | |
8355 | struct stop_context *saved_context = save_stop_context (); | |
8356 | struct cleanup *old_chain | |
8357 | = make_cleanup (release_stop_context_cleanup, saved_context); | |
8358 | ||
8359 | catch_errors (hook_stop_stub, stop_command, | |
8360 | "Error while running hook_stop:\n", RETURN_MASK_ALL); | |
8361 | ||
8362 | /* If the stop hook resumes the target, then there's no point in | |
8363 | trying to notify about the previous stop; its context is | |
8364 | gone. Likewise if the command switches thread or inferior -- | |
8365 | the observers would print a stop for the wrong | |
8366 | thread/inferior. */ | |
8367 | if (stop_context_changed (saved_context)) | |
8368 | { | |
8369 | do_cleanups (old_chain); | |
8370 | return 1; | |
8371 | } | |
8372 | do_cleanups (old_chain); | |
8373 | } | |
dd7e2d2b | 8374 | |
388a7084 PA |
8375 | /* Notify observers about the stop. This is where the interpreters |
8376 | print the stop event. */ | |
8377 | if (!ptid_equal (inferior_ptid, null_ptid)) | |
8378 | observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat, | |
8379 | stop_print_frame); | |
8380 | else | |
8381 | observer_notify_normal_stop (NULL, stop_print_frame); | |
347bddb7 | 8382 | |
243a9253 PA |
8383 | annotate_stopped (); |
8384 | ||
48844aa6 PA |
8385 | if (target_has_execution) |
8386 | { | |
8387 | if (last.kind != TARGET_WAITKIND_SIGNALLED | |
8388 | && last.kind != TARGET_WAITKIND_EXITED) | |
8389 | /* Delete the breakpoint we stopped at, if it wants to be deleted. | |
8390 | Delete any breakpoint that is to be deleted at the next stop. */ | |
16c381f0 | 8391 | breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat); |
94cc34af | 8392 | } |
6c95b8df PA |
8393 | |
8394 | /* Try to get rid of automatically added inferiors that are no | |
8395 | longer needed. Keeping those around slows down things linearly. | |
8396 | Note that this never removes the current inferior. */ | |
8397 | prune_inferiors (); | |
4c2f2a79 PA |
8398 | |
8399 | return 0; | |
c906108c SS |
8400 | } |
8401 | ||
8402 | static int | |
96baa820 | 8403 | hook_stop_stub (void *cmd) |
c906108c | 8404 | { |
5913bcb0 | 8405 | execute_cmd_pre_hook ((struct cmd_list_element *) cmd); |
c906108c SS |
8406 | return (0); |
8407 | } | |
8408 | \f | |
c5aa993b | 8409 | int |
96baa820 | 8410 | signal_stop_state (int signo) |
c906108c | 8411 | { |
d6b48e9c | 8412 | return signal_stop[signo]; |
c906108c SS |
8413 | } |
8414 | ||
c5aa993b | 8415 | int |
96baa820 | 8416 | signal_print_state (int signo) |
c906108c SS |
8417 | { |
8418 | return signal_print[signo]; | |
8419 | } | |
8420 | ||
c5aa993b | 8421 | int |
96baa820 | 8422 | signal_pass_state (int signo) |
c906108c SS |
8423 | { |
8424 | return signal_program[signo]; | |
8425 | } | |
8426 | ||
2455069d UW |
8427 | static void |
8428 | signal_cache_update (int signo) | |
8429 | { | |
8430 | if (signo == -1) | |
8431 | { | |
a493e3e2 | 8432 | for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++) |
2455069d UW |
8433 | signal_cache_update (signo); |
8434 | ||
8435 | return; | |
8436 | } | |
8437 | ||
8438 | signal_pass[signo] = (signal_stop[signo] == 0 | |
8439 | && signal_print[signo] == 0 | |
ab04a2af TT |
8440 | && signal_program[signo] == 1 |
8441 | && signal_catch[signo] == 0); | |
2455069d UW |
8442 | } |
8443 | ||
488f131b | 8444 | int |
7bda5e4a | 8445 | signal_stop_update (int signo, int state) |
d4f3574e SS |
8446 | { |
8447 | int ret = signal_stop[signo]; | |
abbb1732 | 8448 | |
d4f3574e | 8449 | signal_stop[signo] = state; |
2455069d | 8450 | signal_cache_update (signo); |
d4f3574e SS |
8451 | return ret; |
8452 | } | |
8453 | ||
488f131b | 8454 | int |
7bda5e4a | 8455 | signal_print_update (int signo, int state) |
d4f3574e SS |
8456 | { |
8457 | int ret = signal_print[signo]; | |
abbb1732 | 8458 | |
d4f3574e | 8459 | signal_print[signo] = state; |
2455069d | 8460 | signal_cache_update (signo); |
d4f3574e SS |
8461 | return ret; |
8462 | } | |
8463 | ||
488f131b | 8464 | int |
7bda5e4a | 8465 | signal_pass_update (int signo, int state) |
d4f3574e SS |
8466 | { |
8467 | int ret = signal_program[signo]; | |
abbb1732 | 8468 | |
d4f3574e | 8469 | signal_program[signo] = state; |
2455069d | 8470 | signal_cache_update (signo); |
d4f3574e SS |
8471 | return ret; |
8472 | } | |
8473 | ||
ab04a2af TT |
8474 | /* Update the global 'signal_catch' from INFO and notify the |
8475 | target. */ | |
8476 | ||
8477 | void | |
8478 | signal_catch_update (const unsigned int *info) | |
8479 | { | |
8480 | int i; | |
8481 | ||
8482 | for (i = 0; i < GDB_SIGNAL_LAST; ++i) | |
8483 | signal_catch[i] = info[i] > 0; | |
8484 | signal_cache_update (-1); | |
8485 | target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass); | |
8486 | } | |
8487 | ||
c906108c | 8488 | static void |
96baa820 | 8489 | sig_print_header (void) |
c906108c | 8490 | { |
3e43a32a MS |
8491 | printf_filtered (_("Signal Stop\tPrint\tPass " |
8492 | "to program\tDescription\n")); | |
c906108c SS |
8493 | } |
8494 | ||
8495 | static void | |
2ea28649 | 8496 | sig_print_info (enum gdb_signal oursig) |
c906108c | 8497 | { |
2ea28649 | 8498 | const char *name = gdb_signal_to_name (oursig); |
c906108c | 8499 | int name_padding = 13 - strlen (name); |
96baa820 | 8500 | |
c906108c SS |
8501 | if (name_padding <= 0) |
8502 | name_padding = 0; | |
8503 | ||
8504 | printf_filtered ("%s", name); | |
488f131b | 8505 | printf_filtered ("%*.*s ", name_padding, name_padding, " "); |
c906108c SS |
8506 | printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No"); |
8507 | printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No"); | |
8508 | printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No"); | |
2ea28649 | 8509 | printf_filtered ("%s\n", gdb_signal_to_string (oursig)); |
c906108c SS |
8510 | } |
8511 | ||
8512 | /* Specify how various signals in the inferior should be handled. */ | |
8513 | ||
8514 | static void | |
96baa820 | 8515 | handle_command (char *args, int from_tty) |
c906108c SS |
8516 | { |
8517 | char **argv; | |
8518 | int digits, wordlen; | |
8519 | int sigfirst, signum, siglast; | |
2ea28649 | 8520 | enum gdb_signal oursig; |
c906108c SS |
8521 | int allsigs; |
8522 | int nsigs; | |
8523 | unsigned char *sigs; | |
8524 | struct cleanup *old_chain; | |
8525 | ||
8526 | if (args == NULL) | |
8527 | { | |
e2e0b3e5 | 8528 | error_no_arg (_("signal to handle")); |
c906108c SS |
8529 | } |
8530 | ||
1777feb0 | 8531 | /* Allocate and zero an array of flags for which signals to handle. */ |
c906108c | 8532 | |
a493e3e2 | 8533 | nsigs = (int) GDB_SIGNAL_LAST; |
c906108c SS |
8534 | sigs = (unsigned char *) alloca (nsigs); |
8535 | memset (sigs, 0, nsigs); | |
8536 | ||
1777feb0 | 8537 | /* Break the command line up into args. */ |
c906108c | 8538 | |
d1a41061 | 8539 | argv = gdb_buildargv (args); |
7a292a7a | 8540 | old_chain = make_cleanup_freeargv (argv); |
c906108c SS |
8541 | |
8542 | /* Walk through the args, looking for signal oursigs, signal names, and | |
8543 | actions. Signal numbers and signal names may be interspersed with | |
8544 | actions, with the actions being performed for all signals cumulatively | |
1777feb0 | 8545 | specified. Signal ranges can be specified as <LOW>-<HIGH>. */ |
c906108c SS |
8546 | |
8547 | while (*argv != NULL) | |
8548 | { | |
8549 | wordlen = strlen (*argv); | |
8550 | for (digits = 0; isdigit ((*argv)[digits]); digits++) | |
8551 | {; | |
8552 | } | |
8553 | allsigs = 0; | |
8554 | sigfirst = siglast = -1; | |
8555 | ||
8556 | if (wordlen >= 1 && !strncmp (*argv, "all", wordlen)) | |
8557 | { | |
8558 | /* Apply action to all signals except those used by the | |
1777feb0 | 8559 | debugger. Silently skip those. */ |
c906108c SS |
8560 | allsigs = 1; |
8561 | sigfirst = 0; | |
8562 | siglast = nsigs - 1; | |
8563 | } | |
8564 | else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen)) | |
8565 | { | |
8566 | SET_SIGS (nsigs, sigs, signal_stop); | |
8567 | SET_SIGS (nsigs, sigs, signal_print); | |
8568 | } | |
8569 | else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen)) | |
8570 | { | |
8571 | UNSET_SIGS (nsigs, sigs, signal_program); | |
8572 | } | |
8573 | else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen)) | |
8574 | { | |
8575 | SET_SIGS (nsigs, sigs, signal_print); | |
8576 | } | |
8577 | else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen)) | |
8578 | { | |
8579 | SET_SIGS (nsigs, sigs, signal_program); | |
8580 | } | |
8581 | else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen)) | |
8582 | { | |
8583 | UNSET_SIGS (nsigs, sigs, signal_stop); | |
8584 | } | |
8585 | else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen)) | |
8586 | { | |
8587 | SET_SIGS (nsigs, sigs, signal_program); | |
8588 | } | |
8589 | else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen)) | |
8590 | { | |
8591 | UNSET_SIGS (nsigs, sigs, signal_print); | |
8592 | UNSET_SIGS (nsigs, sigs, signal_stop); | |
8593 | } | |
8594 | else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen)) | |
8595 | { | |
8596 | UNSET_SIGS (nsigs, sigs, signal_program); | |
8597 | } | |
8598 | else if (digits > 0) | |
8599 | { | |
8600 | /* It is numeric. The numeric signal refers to our own | |
8601 | internal signal numbering from target.h, not to host/target | |
8602 | signal number. This is a feature; users really should be | |
8603 | using symbolic names anyway, and the common ones like | |
8604 | SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */ | |
8605 | ||
8606 | sigfirst = siglast = (int) | |
2ea28649 | 8607 | gdb_signal_from_command (atoi (*argv)); |
c906108c SS |
8608 | if ((*argv)[digits] == '-') |
8609 | { | |
8610 | siglast = (int) | |
2ea28649 | 8611 | gdb_signal_from_command (atoi ((*argv) + digits + 1)); |
c906108c SS |
8612 | } |
8613 | if (sigfirst > siglast) | |
8614 | { | |
1777feb0 | 8615 | /* Bet he didn't figure we'd think of this case... */ |
c906108c SS |
8616 | signum = sigfirst; |
8617 | sigfirst = siglast; | |
8618 | siglast = signum; | |
8619 | } | |
8620 | } | |
8621 | else | |
8622 | { | |
2ea28649 | 8623 | oursig = gdb_signal_from_name (*argv); |
a493e3e2 | 8624 | if (oursig != GDB_SIGNAL_UNKNOWN) |
c906108c SS |
8625 | { |
8626 | sigfirst = siglast = (int) oursig; | |
8627 | } | |
8628 | else | |
8629 | { | |
8630 | /* Not a number and not a recognized flag word => complain. */ | |
8a3fe4f8 | 8631 | error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv); |
c906108c SS |
8632 | } |
8633 | } | |
8634 | ||
8635 | /* If any signal numbers or symbol names were found, set flags for | |
1777feb0 | 8636 | which signals to apply actions to. */ |
c906108c SS |
8637 | |
8638 | for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++) | |
8639 | { | |
2ea28649 | 8640 | switch ((enum gdb_signal) signum) |
c906108c | 8641 | { |
a493e3e2 PA |
8642 | case GDB_SIGNAL_TRAP: |
8643 | case GDB_SIGNAL_INT: | |
c906108c SS |
8644 | if (!allsigs && !sigs[signum]) |
8645 | { | |
9e2f0ad4 | 8646 | if (query (_("%s is used by the debugger.\n\ |
3e43a32a | 8647 | Are you sure you want to change it? "), |
2ea28649 | 8648 | gdb_signal_to_name ((enum gdb_signal) signum))) |
c906108c SS |
8649 | { |
8650 | sigs[signum] = 1; | |
8651 | } | |
8652 | else | |
8653 | { | |
a3f17187 | 8654 | printf_unfiltered (_("Not confirmed, unchanged.\n")); |
c906108c SS |
8655 | gdb_flush (gdb_stdout); |
8656 | } | |
8657 | } | |
8658 | break; | |
a493e3e2 PA |
8659 | case GDB_SIGNAL_0: |
8660 | case GDB_SIGNAL_DEFAULT: | |
8661 | case GDB_SIGNAL_UNKNOWN: | |
c906108c SS |
8662 | /* Make sure that "all" doesn't print these. */ |
8663 | break; | |
8664 | default: | |
8665 | sigs[signum] = 1; | |
8666 | break; | |
8667 | } | |
8668 | } | |
8669 | ||
8670 | argv++; | |
8671 | } | |
8672 | ||
3a031f65 PA |
8673 | for (signum = 0; signum < nsigs; signum++) |
8674 | if (sigs[signum]) | |
8675 | { | |
2455069d | 8676 | signal_cache_update (-1); |
a493e3e2 PA |
8677 | target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass); |
8678 | target_program_signals ((int) GDB_SIGNAL_LAST, signal_program); | |
c906108c | 8679 | |
3a031f65 PA |
8680 | if (from_tty) |
8681 | { | |
8682 | /* Show the results. */ | |
8683 | sig_print_header (); | |
8684 | for (; signum < nsigs; signum++) | |
8685 | if (sigs[signum]) | |
aead7601 | 8686 | sig_print_info ((enum gdb_signal) signum); |
3a031f65 PA |
8687 | } |
8688 | ||
8689 | break; | |
8690 | } | |
c906108c SS |
8691 | |
8692 | do_cleanups (old_chain); | |
8693 | } | |
8694 | ||
de0bea00 MF |
8695 | /* Complete the "handle" command. */ |
8696 | ||
8697 | static VEC (char_ptr) * | |
8698 | handle_completer (struct cmd_list_element *ignore, | |
6f937416 | 8699 | const char *text, const char *word) |
de0bea00 MF |
8700 | { |
8701 | VEC (char_ptr) *vec_signals, *vec_keywords, *return_val; | |
8702 | static const char * const keywords[] = | |
8703 | { | |
8704 | "all", | |
8705 | "stop", | |
8706 | "ignore", | |
8707 | "print", | |
8708 | "pass", | |
8709 | "nostop", | |
8710 | "noignore", | |
8711 | "noprint", | |
8712 | "nopass", | |
8713 | NULL, | |
8714 | }; | |
8715 | ||
8716 | vec_signals = signal_completer (ignore, text, word); | |
8717 | vec_keywords = complete_on_enum (keywords, word, word); | |
8718 | ||
8719 | return_val = VEC_merge (char_ptr, vec_signals, vec_keywords); | |
8720 | VEC_free (char_ptr, vec_signals); | |
8721 | VEC_free (char_ptr, vec_keywords); | |
8722 | return return_val; | |
8723 | } | |
8724 | ||
2ea28649 PA |
8725 | enum gdb_signal |
8726 | gdb_signal_from_command (int num) | |
ed01b82c PA |
8727 | { |
8728 | if (num >= 1 && num <= 15) | |
2ea28649 | 8729 | return (enum gdb_signal) num; |
ed01b82c PA |
8730 | error (_("Only signals 1-15 are valid as numeric signals.\n\ |
8731 | Use \"info signals\" for a list of symbolic signals.")); | |
8732 | } | |
8733 | ||
c906108c SS |
8734 | /* Print current contents of the tables set by the handle command. |
8735 | It is possible we should just be printing signals actually used | |
8736 | by the current target (but for things to work right when switching | |
8737 | targets, all signals should be in the signal tables). */ | |
8738 | ||
8739 | static void | |
96baa820 | 8740 | signals_info (char *signum_exp, int from_tty) |
c906108c | 8741 | { |
2ea28649 | 8742 | enum gdb_signal oursig; |
abbb1732 | 8743 | |
c906108c SS |
8744 | sig_print_header (); |
8745 | ||
8746 | if (signum_exp) | |
8747 | { | |
8748 | /* First see if this is a symbol name. */ | |
2ea28649 | 8749 | oursig = gdb_signal_from_name (signum_exp); |
a493e3e2 | 8750 | if (oursig == GDB_SIGNAL_UNKNOWN) |
c906108c SS |
8751 | { |
8752 | /* No, try numeric. */ | |
8753 | oursig = | |
2ea28649 | 8754 | gdb_signal_from_command (parse_and_eval_long (signum_exp)); |
c906108c SS |
8755 | } |
8756 | sig_print_info (oursig); | |
8757 | return; | |
8758 | } | |
8759 | ||
8760 | printf_filtered ("\n"); | |
8761 | /* These ugly casts brought to you by the native VAX compiler. */ | |
a493e3e2 PA |
8762 | for (oursig = GDB_SIGNAL_FIRST; |
8763 | (int) oursig < (int) GDB_SIGNAL_LAST; | |
2ea28649 | 8764 | oursig = (enum gdb_signal) ((int) oursig + 1)) |
c906108c SS |
8765 | { |
8766 | QUIT; | |
8767 | ||
a493e3e2 PA |
8768 | if (oursig != GDB_SIGNAL_UNKNOWN |
8769 | && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0) | |
c906108c SS |
8770 | sig_print_info (oursig); |
8771 | } | |
8772 | ||
3e43a32a MS |
8773 | printf_filtered (_("\nUse the \"handle\" command " |
8774 | "to change these tables.\n")); | |
c906108c | 8775 | } |
4aa995e1 PA |
8776 | |
8777 | /* The $_siginfo convenience variable is a bit special. We don't know | |
8778 | for sure the type of the value until we actually have a chance to | |
7a9dd1b2 | 8779 | fetch the data. The type can change depending on gdbarch, so it is |
4aa995e1 PA |
8780 | also dependent on which thread you have selected. |
8781 | ||
8782 | 1. making $_siginfo be an internalvar that creates a new value on | |
8783 | access. | |
8784 | ||
8785 | 2. making the value of $_siginfo be an lval_computed value. */ | |
8786 | ||
8787 | /* This function implements the lval_computed support for reading a | |
8788 | $_siginfo value. */ | |
8789 | ||
8790 | static void | |
8791 | siginfo_value_read (struct value *v) | |
8792 | { | |
8793 | LONGEST transferred; | |
8794 | ||
a911d87a PA |
8795 | /* If we can access registers, so can we access $_siginfo. Likewise |
8796 | vice versa. */ | |
8797 | validate_registers_access (); | |
c709acd1 | 8798 | |
4aa995e1 PA |
8799 | transferred = |
8800 | target_read (¤t_target, TARGET_OBJECT_SIGNAL_INFO, | |
8801 | NULL, | |
8802 | value_contents_all_raw (v), | |
8803 | value_offset (v), | |
8804 | TYPE_LENGTH (value_type (v))); | |
8805 | ||
8806 | if (transferred != TYPE_LENGTH (value_type (v))) | |
8807 | error (_("Unable to read siginfo")); | |
8808 | } | |
8809 | ||
8810 | /* This function implements the lval_computed support for writing a | |
8811 | $_siginfo value. */ | |
8812 | ||
8813 | static void | |
8814 | siginfo_value_write (struct value *v, struct value *fromval) | |
8815 | { | |
8816 | LONGEST transferred; | |
8817 | ||
a911d87a PA |
8818 | /* If we can access registers, so can we access $_siginfo. Likewise |
8819 | vice versa. */ | |
8820 | validate_registers_access (); | |
c709acd1 | 8821 | |
4aa995e1 PA |
8822 | transferred = target_write (¤t_target, |
8823 | TARGET_OBJECT_SIGNAL_INFO, | |
8824 | NULL, | |
8825 | value_contents_all_raw (fromval), | |
8826 | value_offset (v), | |
8827 | TYPE_LENGTH (value_type (fromval))); | |
8828 | ||
8829 | if (transferred != TYPE_LENGTH (value_type (fromval))) | |
8830 | error (_("Unable to write siginfo")); | |
8831 | } | |
8832 | ||
c8f2448a | 8833 | static const struct lval_funcs siginfo_value_funcs = |
4aa995e1 PA |
8834 | { |
8835 | siginfo_value_read, | |
8836 | siginfo_value_write | |
8837 | }; | |
8838 | ||
8839 | /* Return a new value with the correct type for the siginfo object of | |
78267919 UW |
8840 | the current thread using architecture GDBARCH. Return a void value |
8841 | if there's no object available. */ | |
4aa995e1 | 8842 | |
2c0b251b | 8843 | static struct value * |
22d2b532 SDJ |
8844 | siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var, |
8845 | void *ignore) | |
4aa995e1 | 8846 | { |
4aa995e1 | 8847 | if (target_has_stack |
78267919 UW |
8848 | && !ptid_equal (inferior_ptid, null_ptid) |
8849 | && gdbarch_get_siginfo_type_p (gdbarch)) | |
4aa995e1 | 8850 | { |
78267919 | 8851 | struct type *type = gdbarch_get_siginfo_type (gdbarch); |
abbb1732 | 8852 | |
78267919 | 8853 | return allocate_computed_value (type, &siginfo_value_funcs, NULL); |
4aa995e1 PA |
8854 | } |
8855 | ||
78267919 | 8856 | return allocate_value (builtin_type (gdbarch)->builtin_void); |
4aa995e1 PA |
8857 | } |
8858 | ||
c906108c | 8859 | \f |
16c381f0 JK |
8860 | /* infcall_suspend_state contains state about the program itself like its |
8861 | registers and any signal it received when it last stopped. | |
8862 | This state must be restored regardless of how the inferior function call | |
8863 | ends (either successfully, or after it hits a breakpoint or signal) | |
8864 | if the program is to properly continue where it left off. */ | |
8865 | ||
8866 | struct infcall_suspend_state | |
7a292a7a | 8867 | { |
16c381f0 | 8868 | struct thread_suspend_state thread_suspend; |
16c381f0 JK |
8869 | |
8870 | /* Other fields: */ | |
7a292a7a | 8871 | CORE_ADDR stop_pc; |
b89667eb | 8872 | struct regcache *registers; |
1736ad11 | 8873 | |
35515841 | 8874 | /* Format of SIGINFO_DATA or NULL if it is not present. */ |
1736ad11 JK |
8875 | struct gdbarch *siginfo_gdbarch; |
8876 | ||
8877 | /* The inferior format depends on SIGINFO_GDBARCH and it has a length of | |
8878 | TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the | |
8879 | content would be invalid. */ | |
8880 | gdb_byte *siginfo_data; | |
b89667eb DE |
8881 | }; |
8882 | ||
16c381f0 JK |
8883 | struct infcall_suspend_state * |
8884 | save_infcall_suspend_state (void) | |
b89667eb | 8885 | { |
16c381f0 | 8886 | struct infcall_suspend_state *inf_state; |
b89667eb | 8887 | struct thread_info *tp = inferior_thread (); |
1736ad11 JK |
8888 | struct regcache *regcache = get_current_regcache (); |
8889 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
8890 | gdb_byte *siginfo_data = NULL; | |
8891 | ||
8892 | if (gdbarch_get_siginfo_type_p (gdbarch)) | |
8893 | { | |
8894 | struct type *type = gdbarch_get_siginfo_type (gdbarch); | |
8895 | size_t len = TYPE_LENGTH (type); | |
8896 | struct cleanup *back_to; | |
8897 | ||
224c3ddb | 8898 | siginfo_data = (gdb_byte *) xmalloc (len); |
1736ad11 JK |
8899 | back_to = make_cleanup (xfree, siginfo_data); |
8900 | ||
8901 | if (target_read (¤t_target, TARGET_OBJECT_SIGNAL_INFO, NULL, | |
8902 | siginfo_data, 0, len) == len) | |
8903 | discard_cleanups (back_to); | |
8904 | else | |
8905 | { | |
8906 | /* Errors ignored. */ | |
8907 | do_cleanups (back_to); | |
8908 | siginfo_data = NULL; | |
8909 | } | |
8910 | } | |
8911 | ||
41bf6aca | 8912 | inf_state = XCNEW (struct infcall_suspend_state); |
1736ad11 JK |
8913 | |
8914 | if (siginfo_data) | |
8915 | { | |
8916 | inf_state->siginfo_gdbarch = gdbarch; | |
8917 | inf_state->siginfo_data = siginfo_data; | |
8918 | } | |
b89667eb | 8919 | |
16c381f0 | 8920 | inf_state->thread_suspend = tp->suspend; |
16c381f0 | 8921 | |
35515841 | 8922 | /* run_inferior_call will not use the signal due to its `proceed' call with |
a493e3e2 PA |
8923 | GDB_SIGNAL_0 anyway. */ |
8924 | tp->suspend.stop_signal = GDB_SIGNAL_0; | |
35515841 | 8925 | |
b89667eb DE |
8926 | inf_state->stop_pc = stop_pc; |
8927 | ||
1736ad11 | 8928 | inf_state->registers = regcache_dup (regcache); |
b89667eb DE |
8929 | |
8930 | return inf_state; | |
8931 | } | |
8932 | ||
8933 | /* Restore inferior session state to INF_STATE. */ | |
8934 | ||
8935 | void | |
16c381f0 | 8936 | restore_infcall_suspend_state (struct infcall_suspend_state *inf_state) |
b89667eb DE |
8937 | { |
8938 | struct thread_info *tp = inferior_thread (); | |
1736ad11 JK |
8939 | struct regcache *regcache = get_current_regcache (); |
8940 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
b89667eb | 8941 | |
16c381f0 | 8942 | tp->suspend = inf_state->thread_suspend; |
16c381f0 | 8943 | |
b89667eb DE |
8944 | stop_pc = inf_state->stop_pc; |
8945 | ||
1736ad11 JK |
8946 | if (inf_state->siginfo_gdbarch == gdbarch) |
8947 | { | |
8948 | struct type *type = gdbarch_get_siginfo_type (gdbarch); | |
1736ad11 JK |
8949 | |
8950 | /* Errors ignored. */ | |
8951 | target_write (¤t_target, TARGET_OBJECT_SIGNAL_INFO, NULL, | |
6acef6cd | 8952 | inf_state->siginfo_data, 0, TYPE_LENGTH (type)); |
1736ad11 JK |
8953 | } |
8954 | ||
b89667eb DE |
8955 | /* The inferior can be gone if the user types "print exit(0)" |
8956 | (and perhaps other times). */ | |
8957 | if (target_has_execution) | |
8958 | /* NB: The register write goes through to the target. */ | |
1736ad11 | 8959 | regcache_cpy (regcache, inf_state->registers); |
803b5f95 | 8960 | |
16c381f0 | 8961 | discard_infcall_suspend_state (inf_state); |
b89667eb DE |
8962 | } |
8963 | ||
8964 | static void | |
16c381f0 | 8965 | do_restore_infcall_suspend_state_cleanup (void *state) |
b89667eb | 8966 | { |
9a3c8263 | 8967 | restore_infcall_suspend_state ((struct infcall_suspend_state *) state); |
b89667eb DE |
8968 | } |
8969 | ||
8970 | struct cleanup * | |
16c381f0 JK |
8971 | make_cleanup_restore_infcall_suspend_state |
8972 | (struct infcall_suspend_state *inf_state) | |
b89667eb | 8973 | { |
16c381f0 | 8974 | return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state); |
b89667eb DE |
8975 | } |
8976 | ||
8977 | void | |
16c381f0 | 8978 | discard_infcall_suspend_state (struct infcall_suspend_state *inf_state) |
b89667eb DE |
8979 | { |
8980 | regcache_xfree (inf_state->registers); | |
803b5f95 | 8981 | xfree (inf_state->siginfo_data); |
b89667eb DE |
8982 | xfree (inf_state); |
8983 | } | |
8984 | ||
8985 | struct regcache * | |
16c381f0 | 8986 | get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state) |
b89667eb DE |
8987 | { |
8988 | return inf_state->registers; | |
8989 | } | |
8990 | ||
16c381f0 JK |
8991 | /* infcall_control_state contains state regarding gdb's control of the |
8992 | inferior itself like stepping control. It also contains session state like | |
8993 | the user's currently selected frame. */ | |
b89667eb | 8994 | |
16c381f0 | 8995 | struct infcall_control_state |
b89667eb | 8996 | { |
16c381f0 JK |
8997 | struct thread_control_state thread_control; |
8998 | struct inferior_control_state inferior_control; | |
d82142e2 JK |
8999 | |
9000 | /* Other fields: */ | |
9001 | enum stop_stack_kind stop_stack_dummy; | |
9002 | int stopped_by_random_signal; | |
7a292a7a | 9003 | |
b89667eb | 9004 | /* ID if the selected frame when the inferior function call was made. */ |
101dcfbe | 9005 | struct frame_id selected_frame_id; |
7a292a7a SS |
9006 | }; |
9007 | ||
c906108c | 9008 | /* Save all of the information associated with the inferior<==>gdb |
b89667eb | 9009 | connection. */ |
c906108c | 9010 | |
16c381f0 JK |
9011 | struct infcall_control_state * |
9012 | save_infcall_control_state (void) | |
c906108c | 9013 | { |
8d749320 SM |
9014 | struct infcall_control_state *inf_status = |
9015 | XNEW (struct infcall_control_state); | |
4e1c45ea | 9016 | struct thread_info *tp = inferior_thread (); |
d6b48e9c | 9017 | struct inferior *inf = current_inferior (); |
7a292a7a | 9018 | |
16c381f0 JK |
9019 | inf_status->thread_control = tp->control; |
9020 | inf_status->inferior_control = inf->control; | |
d82142e2 | 9021 | |
8358c15c | 9022 | tp->control.step_resume_breakpoint = NULL; |
5b79abe7 | 9023 | tp->control.exception_resume_breakpoint = NULL; |
8358c15c | 9024 | |
16c381f0 JK |
9025 | /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of |
9026 | chain. If caller's caller is walking the chain, they'll be happier if we | |
9027 | hand them back the original chain when restore_infcall_control_state is | |
9028 | called. */ | |
9029 | tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat); | |
d82142e2 JK |
9030 | |
9031 | /* Other fields: */ | |
9032 | inf_status->stop_stack_dummy = stop_stack_dummy; | |
9033 | inf_status->stopped_by_random_signal = stopped_by_random_signal; | |
c5aa993b | 9034 | |
206415a3 | 9035 | inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL)); |
b89667eb | 9036 | |
7a292a7a | 9037 | return inf_status; |
c906108c SS |
9038 | } |
9039 | ||
c906108c | 9040 | static int |
96baa820 | 9041 | restore_selected_frame (void *args) |
c906108c | 9042 | { |
488f131b | 9043 | struct frame_id *fid = (struct frame_id *) args; |
c906108c | 9044 | struct frame_info *frame; |
c906108c | 9045 | |
101dcfbe | 9046 | frame = frame_find_by_id (*fid); |
c906108c | 9047 | |
aa0cd9c1 AC |
9048 | /* If inf_status->selected_frame_id is NULL, there was no previously |
9049 | selected frame. */ | |
101dcfbe | 9050 | if (frame == NULL) |
c906108c | 9051 | { |
8a3fe4f8 | 9052 | warning (_("Unable to restore previously selected frame.")); |
c906108c SS |
9053 | return 0; |
9054 | } | |
9055 | ||
0f7d239c | 9056 | select_frame (frame); |
c906108c SS |
9057 | |
9058 | return (1); | |
9059 | } | |
9060 | ||
b89667eb DE |
9061 | /* Restore inferior session state to INF_STATUS. */ |
9062 | ||
c906108c | 9063 | void |
16c381f0 | 9064 | restore_infcall_control_state (struct infcall_control_state *inf_status) |
c906108c | 9065 | { |
4e1c45ea | 9066 | struct thread_info *tp = inferior_thread (); |
d6b48e9c | 9067 | struct inferior *inf = current_inferior (); |
4e1c45ea | 9068 | |
8358c15c JK |
9069 | if (tp->control.step_resume_breakpoint) |
9070 | tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop; | |
9071 | ||
5b79abe7 TT |
9072 | if (tp->control.exception_resume_breakpoint) |
9073 | tp->control.exception_resume_breakpoint->disposition | |
9074 | = disp_del_at_next_stop; | |
9075 | ||
d82142e2 | 9076 | /* Handle the bpstat_copy of the chain. */ |
16c381f0 | 9077 | bpstat_clear (&tp->control.stop_bpstat); |
d82142e2 | 9078 | |
16c381f0 JK |
9079 | tp->control = inf_status->thread_control; |
9080 | inf->control = inf_status->inferior_control; | |
d82142e2 JK |
9081 | |
9082 | /* Other fields: */ | |
9083 | stop_stack_dummy = inf_status->stop_stack_dummy; | |
9084 | stopped_by_random_signal = inf_status->stopped_by_random_signal; | |
c906108c | 9085 | |
b89667eb | 9086 | if (target_has_stack) |
c906108c | 9087 | { |
c906108c | 9088 | /* The point of catch_errors is that if the stack is clobbered, |
101dcfbe AC |
9089 | walking the stack might encounter a garbage pointer and |
9090 | error() trying to dereference it. */ | |
488f131b JB |
9091 | if (catch_errors |
9092 | (restore_selected_frame, &inf_status->selected_frame_id, | |
9093 | "Unable to restore previously selected frame:\n", | |
9094 | RETURN_MASK_ERROR) == 0) | |
c906108c SS |
9095 | /* Error in restoring the selected frame. Select the innermost |
9096 | frame. */ | |
0f7d239c | 9097 | select_frame (get_current_frame ()); |
c906108c | 9098 | } |
c906108c | 9099 | |
72cec141 | 9100 | xfree (inf_status); |
7a292a7a | 9101 | } |
c906108c | 9102 | |
74b7792f | 9103 | static void |
16c381f0 | 9104 | do_restore_infcall_control_state_cleanup (void *sts) |
74b7792f | 9105 | { |
9a3c8263 | 9106 | restore_infcall_control_state ((struct infcall_control_state *) sts); |
74b7792f AC |
9107 | } |
9108 | ||
9109 | struct cleanup * | |
16c381f0 JK |
9110 | make_cleanup_restore_infcall_control_state |
9111 | (struct infcall_control_state *inf_status) | |
74b7792f | 9112 | { |
16c381f0 | 9113 | return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status); |
74b7792f AC |
9114 | } |
9115 | ||
c906108c | 9116 | void |
16c381f0 | 9117 | discard_infcall_control_state (struct infcall_control_state *inf_status) |
7a292a7a | 9118 | { |
8358c15c JK |
9119 | if (inf_status->thread_control.step_resume_breakpoint) |
9120 | inf_status->thread_control.step_resume_breakpoint->disposition | |
9121 | = disp_del_at_next_stop; | |
9122 | ||
5b79abe7 TT |
9123 | if (inf_status->thread_control.exception_resume_breakpoint) |
9124 | inf_status->thread_control.exception_resume_breakpoint->disposition | |
9125 | = disp_del_at_next_stop; | |
9126 | ||
1777feb0 | 9127 | /* See save_infcall_control_state for info on stop_bpstat. */ |
16c381f0 | 9128 | bpstat_clear (&inf_status->thread_control.stop_bpstat); |
8358c15c | 9129 | |
72cec141 | 9130 | xfree (inf_status); |
7a292a7a | 9131 | } |
b89667eb | 9132 | \f |
ca6724c1 KB |
9133 | /* restore_inferior_ptid() will be used by the cleanup machinery |
9134 | to restore the inferior_ptid value saved in a call to | |
9135 | save_inferior_ptid(). */ | |
ce696e05 KB |
9136 | |
9137 | static void | |
9138 | restore_inferior_ptid (void *arg) | |
9139 | { | |
9a3c8263 | 9140 | ptid_t *saved_ptid_ptr = (ptid_t *) arg; |
abbb1732 | 9141 | |
ce696e05 KB |
9142 | inferior_ptid = *saved_ptid_ptr; |
9143 | xfree (arg); | |
9144 | } | |
9145 | ||
9146 | /* Save the value of inferior_ptid so that it may be restored by a | |
9147 | later call to do_cleanups(). Returns the struct cleanup pointer | |
9148 | needed for later doing the cleanup. */ | |
9149 | ||
9150 | struct cleanup * | |
9151 | save_inferior_ptid (void) | |
9152 | { | |
8d749320 | 9153 | ptid_t *saved_ptid_ptr = XNEW (ptid_t); |
ce696e05 | 9154 | |
ce696e05 KB |
9155 | *saved_ptid_ptr = inferior_ptid; |
9156 | return make_cleanup (restore_inferior_ptid, saved_ptid_ptr); | |
9157 | } | |
0c557179 | 9158 | |
7f89fd65 | 9159 | /* See infrun.h. */ |
0c557179 SDJ |
9160 | |
9161 | void | |
9162 | clear_exit_convenience_vars (void) | |
9163 | { | |
9164 | clear_internalvar (lookup_internalvar ("_exitsignal")); | |
9165 | clear_internalvar (lookup_internalvar ("_exitcode")); | |
9166 | } | |
c5aa993b | 9167 | \f |
488f131b | 9168 | |
b2175913 MS |
9169 | /* User interface for reverse debugging: |
9170 | Set exec-direction / show exec-direction commands | |
9171 | (returns error unless target implements to_set_exec_direction method). */ | |
9172 | ||
170742de | 9173 | enum exec_direction_kind execution_direction = EXEC_FORWARD; |
b2175913 MS |
9174 | static const char exec_forward[] = "forward"; |
9175 | static const char exec_reverse[] = "reverse"; | |
9176 | static const char *exec_direction = exec_forward; | |
40478521 | 9177 | static const char *const exec_direction_names[] = { |
b2175913 MS |
9178 | exec_forward, |
9179 | exec_reverse, | |
9180 | NULL | |
9181 | }; | |
9182 | ||
9183 | static void | |
9184 | set_exec_direction_func (char *args, int from_tty, | |
9185 | struct cmd_list_element *cmd) | |
9186 | { | |
9187 | if (target_can_execute_reverse) | |
9188 | { | |
9189 | if (!strcmp (exec_direction, exec_forward)) | |
9190 | execution_direction = EXEC_FORWARD; | |
9191 | else if (!strcmp (exec_direction, exec_reverse)) | |
9192 | execution_direction = EXEC_REVERSE; | |
9193 | } | |
8bbed405 MS |
9194 | else |
9195 | { | |
9196 | exec_direction = exec_forward; | |
9197 | error (_("Target does not support this operation.")); | |
9198 | } | |
b2175913 MS |
9199 | } |
9200 | ||
9201 | static void | |
9202 | show_exec_direction_func (struct ui_file *out, int from_tty, | |
9203 | struct cmd_list_element *cmd, const char *value) | |
9204 | { | |
9205 | switch (execution_direction) { | |
9206 | case EXEC_FORWARD: | |
9207 | fprintf_filtered (out, _("Forward.\n")); | |
9208 | break; | |
9209 | case EXEC_REVERSE: | |
9210 | fprintf_filtered (out, _("Reverse.\n")); | |
9211 | break; | |
b2175913 | 9212 | default: |
d8b34453 PA |
9213 | internal_error (__FILE__, __LINE__, |
9214 | _("bogus execution_direction value: %d"), | |
9215 | (int) execution_direction); | |
b2175913 MS |
9216 | } |
9217 | } | |
9218 | ||
d4db2f36 PA |
9219 | static void |
9220 | show_schedule_multiple (struct ui_file *file, int from_tty, | |
9221 | struct cmd_list_element *c, const char *value) | |
9222 | { | |
3e43a32a MS |
9223 | fprintf_filtered (file, _("Resuming the execution of threads " |
9224 | "of all processes is %s.\n"), value); | |
d4db2f36 | 9225 | } |
ad52ddc6 | 9226 | |
22d2b532 SDJ |
9227 | /* Implementation of `siginfo' variable. */ |
9228 | ||
9229 | static const struct internalvar_funcs siginfo_funcs = | |
9230 | { | |
9231 | siginfo_make_value, | |
9232 | NULL, | |
9233 | NULL | |
9234 | }; | |
9235 | ||
372316f1 PA |
9236 | /* Callback for infrun's target events source. This is marked when a |
9237 | thread has a pending status to process. */ | |
9238 | ||
9239 | static void | |
9240 | infrun_async_inferior_event_handler (gdb_client_data data) | |
9241 | { | |
372316f1 PA |
9242 | inferior_event_handler (INF_REG_EVENT, NULL); |
9243 | } | |
9244 | ||
c906108c | 9245 | void |
96baa820 | 9246 | _initialize_infrun (void) |
c906108c | 9247 | { |
52f0bd74 AC |
9248 | int i; |
9249 | int numsigs; | |
de0bea00 | 9250 | struct cmd_list_element *c; |
c906108c | 9251 | |
372316f1 PA |
9252 | /* Register extra event sources in the event loop. */ |
9253 | infrun_async_inferior_event_token | |
9254 | = create_async_event_handler (infrun_async_inferior_event_handler, NULL); | |
9255 | ||
1bedd215 AC |
9256 | add_info ("signals", signals_info, _("\ |
9257 | What debugger does when program gets various signals.\n\ | |
9258 | Specify a signal as argument to print info on that signal only.")); | |
c906108c SS |
9259 | add_info_alias ("handle", "signals", 0); |
9260 | ||
de0bea00 | 9261 | c = add_com ("handle", class_run, handle_command, _("\ |
dfbd5e7b | 9262 | Specify how to handle signals.\n\ |
486c7739 | 9263 | Usage: handle SIGNAL [ACTIONS]\n\ |
c906108c | 9264 | Args are signals and actions to apply to those signals.\n\ |
dfbd5e7b | 9265 | If no actions are specified, the current settings for the specified signals\n\ |
486c7739 MF |
9266 | will be displayed instead.\n\ |
9267 | \n\ | |
c906108c SS |
9268 | Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\ |
9269 | from 1-15 are allowed for compatibility with old versions of GDB.\n\ | |
9270 | Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\ | |
9271 | The special arg \"all\" is recognized to mean all signals except those\n\ | |
1bedd215 | 9272 | used by the debugger, typically SIGTRAP and SIGINT.\n\ |
486c7739 | 9273 | \n\ |
1bedd215 | 9274 | Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\ |
c906108c SS |
9275 | \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\ |
9276 | Stop means reenter debugger if this signal happens (implies print).\n\ | |
9277 | Print means print a message if this signal happens.\n\ | |
9278 | Pass means let program see this signal; otherwise program doesn't know.\n\ | |
9279 | Ignore is a synonym for nopass and noignore is a synonym for pass.\n\ | |
dfbd5e7b PA |
9280 | Pass and Stop may be combined.\n\ |
9281 | \n\ | |
9282 | Multiple signals may be specified. Signal numbers and signal names\n\ | |
9283 | may be interspersed with actions, with the actions being performed for\n\ | |
9284 | all signals cumulatively specified.")); | |
de0bea00 | 9285 | set_cmd_completer (c, handle_completer); |
486c7739 | 9286 | |
c906108c | 9287 | if (!dbx_commands) |
1a966eab AC |
9288 | stop_command = add_cmd ("stop", class_obscure, |
9289 | not_just_help_class_command, _("\ | |
9290 | There is no `stop' command, but you can set a hook on `stop'.\n\ | |
c906108c | 9291 | This allows you to set a list of commands to be run each time execution\n\ |
1a966eab | 9292 | of the program stops."), &cmdlist); |
c906108c | 9293 | |
ccce17b0 | 9294 | add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\ |
85c07804 AC |
9295 | Set inferior debugging."), _("\ |
9296 | Show inferior debugging."), _("\ | |
9297 | When non-zero, inferior specific debugging is enabled."), | |
ccce17b0 YQ |
9298 | NULL, |
9299 | show_debug_infrun, | |
9300 | &setdebuglist, &showdebuglist); | |
527159b7 | 9301 | |
3e43a32a MS |
9302 | add_setshow_boolean_cmd ("displaced", class_maintenance, |
9303 | &debug_displaced, _("\ | |
237fc4c9 PA |
9304 | Set displaced stepping debugging."), _("\ |
9305 | Show displaced stepping debugging."), _("\ | |
9306 | When non-zero, displaced stepping specific debugging is enabled."), | |
9307 | NULL, | |
9308 | show_debug_displaced, | |
9309 | &setdebuglist, &showdebuglist); | |
9310 | ||
ad52ddc6 PA |
9311 | add_setshow_boolean_cmd ("non-stop", no_class, |
9312 | &non_stop_1, _("\ | |
9313 | Set whether gdb controls the inferior in non-stop mode."), _("\ | |
9314 | Show whether gdb controls the inferior in non-stop mode."), _("\ | |
9315 | When debugging a multi-threaded program and this setting is\n\ | |
9316 | off (the default, also called all-stop mode), when one thread stops\n\ | |
9317 | (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\ | |
9318 | all other threads in the program while you interact with the thread of\n\ | |
9319 | interest. When you continue or step a thread, you can allow the other\n\ | |
9320 | threads to run, or have them remain stopped, but while you inspect any\n\ | |
9321 | thread's state, all threads stop.\n\ | |
9322 | \n\ | |
9323 | In non-stop mode, when one thread stops, other threads can continue\n\ | |
9324 | to run freely. You'll be able to step each thread independently,\n\ | |
9325 | leave it stopped or free to run as needed."), | |
9326 | set_non_stop, | |
9327 | show_non_stop, | |
9328 | &setlist, | |
9329 | &showlist); | |
9330 | ||
a493e3e2 | 9331 | numsigs = (int) GDB_SIGNAL_LAST; |
8d749320 SM |
9332 | signal_stop = XNEWVEC (unsigned char, numsigs); |
9333 | signal_print = XNEWVEC (unsigned char, numsigs); | |
9334 | signal_program = XNEWVEC (unsigned char, numsigs); | |
9335 | signal_catch = XNEWVEC (unsigned char, numsigs); | |
9336 | signal_pass = XNEWVEC (unsigned char, numsigs); | |
c906108c SS |
9337 | for (i = 0; i < numsigs; i++) |
9338 | { | |
9339 | signal_stop[i] = 1; | |
9340 | signal_print[i] = 1; | |
9341 | signal_program[i] = 1; | |
ab04a2af | 9342 | signal_catch[i] = 0; |
c906108c SS |
9343 | } |
9344 | ||
4d9d9d04 PA |
9345 | /* Signals caused by debugger's own actions should not be given to |
9346 | the program afterwards. | |
9347 | ||
9348 | Do not deliver GDB_SIGNAL_TRAP by default, except when the user | |
9349 | explicitly specifies that it should be delivered to the target | |
9350 | program. Typically, that would occur when a user is debugging a | |
9351 | target monitor on a simulator: the target monitor sets a | |
9352 | breakpoint; the simulator encounters this breakpoint and halts | |
9353 | the simulation handing control to GDB; GDB, noting that the stop | |
9354 | address doesn't map to any known breakpoint, returns control back | |
9355 | to the simulator; the simulator then delivers the hardware | |
9356 | equivalent of a GDB_SIGNAL_TRAP to the program being | |
9357 | debugged. */ | |
a493e3e2 PA |
9358 | signal_program[GDB_SIGNAL_TRAP] = 0; |
9359 | signal_program[GDB_SIGNAL_INT] = 0; | |
c906108c SS |
9360 | |
9361 | /* Signals that are not errors should not normally enter the debugger. */ | |
a493e3e2 PA |
9362 | signal_stop[GDB_SIGNAL_ALRM] = 0; |
9363 | signal_print[GDB_SIGNAL_ALRM] = 0; | |
9364 | signal_stop[GDB_SIGNAL_VTALRM] = 0; | |
9365 | signal_print[GDB_SIGNAL_VTALRM] = 0; | |
9366 | signal_stop[GDB_SIGNAL_PROF] = 0; | |
9367 | signal_print[GDB_SIGNAL_PROF] = 0; | |
9368 | signal_stop[GDB_SIGNAL_CHLD] = 0; | |
9369 | signal_print[GDB_SIGNAL_CHLD] = 0; | |
9370 | signal_stop[GDB_SIGNAL_IO] = 0; | |
9371 | signal_print[GDB_SIGNAL_IO] = 0; | |
9372 | signal_stop[GDB_SIGNAL_POLL] = 0; | |
9373 | signal_print[GDB_SIGNAL_POLL] = 0; | |
9374 | signal_stop[GDB_SIGNAL_URG] = 0; | |
9375 | signal_print[GDB_SIGNAL_URG] = 0; | |
9376 | signal_stop[GDB_SIGNAL_WINCH] = 0; | |
9377 | signal_print[GDB_SIGNAL_WINCH] = 0; | |
9378 | signal_stop[GDB_SIGNAL_PRIO] = 0; | |
9379 | signal_print[GDB_SIGNAL_PRIO] = 0; | |
c906108c | 9380 | |
cd0fc7c3 SS |
9381 | /* These signals are used internally by user-level thread |
9382 | implementations. (See signal(5) on Solaris.) Like the above | |
9383 | signals, a healthy program receives and handles them as part of | |
9384 | its normal operation. */ | |
a493e3e2 PA |
9385 | signal_stop[GDB_SIGNAL_LWP] = 0; |
9386 | signal_print[GDB_SIGNAL_LWP] = 0; | |
9387 | signal_stop[GDB_SIGNAL_WAITING] = 0; | |
9388 | signal_print[GDB_SIGNAL_WAITING] = 0; | |
9389 | signal_stop[GDB_SIGNAL_CANCEL] = 0; | |
9390 | signal_print[GDB_SIGNAL_CANCEL] = 0; | |
bc7b765a JB |
9391 | signal_stop[GDB_SIGNAL_LIBRT] = 0; |
9392 | signal_print[GDB_SIGNAL_LIBRT] = 0; | |
cd0fc7c3 | 9393 | |
2455069d UW |
9394 | /* Update cached state. */ |
9395 | signal_cache_update (-1); | |
9396 | ||
85c07804 AC |
9397 | add_setshow_zinteger_cmd ("stop-on-solib-events", class_support, |
9398 | &stop_on_solib_events, _("\ | |
9399 | Set stopping for shared library events."), _("\ | |
9400 | Show stopping for shared library events."), _("\ | |
c906108c SS |
9401 | If nonzero, gdb will give control to the user when the dynamic linker\n\ |
9402 | notifies gdb of shared library events. The most common event of interest\n\ | |
85c07804 | 9403 | to the user would be loading/unloading of a new library."), |
f9e14852 | 9404 | set_stop_on_solib_events, |
920d2a44 | 9405 | show_stop_on_solib_events, |
85c07804 | 9406 | &setlist, &showlist); |
c906108c | 9407 | |
7ab04401 AC |
9408 | add_setshow_enum_cmd ("follow-fork-mode", class_run, |
9409 | follow_fork_mode_kind_names, | |
9410 | &follow_fork_mode_string, _("\ | |
9411 | Set debugger response to a program call of fork or vfork."), _("\ | |
9412 | Show debugger response to a program call of fork or vfork."), _("\ | |
c906108c SS |
9413 | A fork or vfork creates a new process. follow-fork-mode can be:\n\ |
9414 | parent - the original process is debugged after a fork\n\ | |
9415 | child - the new process is debugged after a fork\n\ | |
ea1dd7bc | 9416 | The unfollowed process will continue to run.\n\ |
7ab04401 AC |
9417 | By default, the debugger will follow the parent process."), |
9418 | NULL, | |
920d2a44 | 9419 | show_follow_fork_mode_string, |
7ab04401 AC |
9420 | &setlist, &showlist); |
9421 | ||
6c95b8df PA |
9422 | add_setshow_enum_cmd ("follow-exec-mode", class_run, |
9423 | follow_exec_mode_names, | |
9424 | &follow_exec_mode_string, _("\ | |
9425 | Set debugger response to a program call of exec."), _("\ | |
9426 | Show debugger response to a program call of exec."), _("\ | |
9427 | An exec call replaces the program image of a process.\n\ | |
9428 | \n\ | |
9429 | follow-exec-mode can be:\n\ | |
9430 | \n\ | |
cce7e648 | 9431 | new - the debugger creates a new inferior and rebinds the process\n\ |
6c95b8df PA |
9432 | to this new inferior. The program the process was running before\n\ |
9433 | the exec call can be restarted afterwards by restarting the original\n\ | |
9434 | inferior.\n\ | |
9435 | \n\ | |
9436 | same - the debugger keeps the process bound to the same inferior.\n\ | |
9437 | The new executable image replaces the previous executable loaded in\n\ | |
9438 | the inferior. Restarting the inferior after the exec call restarts\n\ | |
9439 | the executable the process was running after the exec call.\n\ | |
9440 | \n\ | |
9441 | By default, the debugger will use the same inferior."), | |
9442 | NULL, | |
9443 | show_follow_exec_mode_string, | |
9444 | &setlist, &showlist); | |
9445 | ||
7ab04401 AC |
9446 | add_setshow_enum_cmd ("scheduler-locking", class_run, |
9447 | scheduler_enums, &scheduler_mode, _("\ | |
9448 | Set mode for locking scheduler during execution."), _("\ | |
9449 | Show mode for locking scheduler during execution."), _("\ | |
f2665db5 MM |
9450 | off == no locking (threads may preempt at any time)\n\ |
9451 | on == full locking (no thread except the current thread may run)\n\ | |
9452 | This applies to both normal execution and replay mode.\n\ | |
9453 | step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\ | |
9454 | In this mode, other threads may run during other commands.\n\ | |
9455 | This applies to both normal execution and replay mode.\n\ | |
9456 | replay == scheduler locked in replay mode and unlocked during normal execution."), | |
7ab04401 | 9457 | set_schedlock_func, /* traps on target vector */ |
920d2a44 | 9458 | show_scheduler_mode, |
7ab04401 | 9459 | &setlist, &showlist); |
5fbbeb29 | 9460 | |
d4db2f36 PA |
9461 | add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\ |
9462 | Set mode for resuming threads of all processes."), _("\ | |
9463 | Show mode for resuming threads of all processes."), _("\ | |
9464 | When on, execution commands (such as 'continue' or 'next') resume all\n\ | |
9465 | threads of all processes. When off (which is the default), execution\n\ | |
9466 | commands only resume the threads of the current process. The set of\n\ | |
9467 | threads that are resumed is further refined by the scheduler-locking\n\ | |
9468 | mode (see help set scheduler-locking)."), | |
9469 | NULL, | |
9470 | show_schedule_multiple, | |
9471 | &setlist, &showlist); | |
9472 | ||
5bf193a2 AC |
9473 | add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\ |
9474 | Set mode of the step operation."), _("\ | |
9475 | Show mode of the step operation."), _("\ | |
9476 | When set, doing a step over a function without debug line information\n\ | |
9477 | will stop at the first instruction of that function. Otherwise, the\n\ | |
9478 | function is skipped and the step command stops at a different source line."), | |
9479 | NULL, | |
920d2a44 | 9480 | show_step_stop_if_no_debug, |
5bf193a2 | 9481 | &setlist, &showlist); |
ca6724c1 | 9482 | |
72d0e2c5 YQ |
9483 | add_setshow_auto_boolean_cmd ("displaced-stepping", class_run, |
9484 | &can_use_displaced_stepping, _("\ | |
237fc4c9 PA |
9485 | Set debugger's willingness to use displaced stepping."), _("\ |
9486 | Show debugger's willingness to use displaced stepping."), _("\ | |
fff08868 HZ |
9487 | If on, gdb will use displaced stepping to step over breakpoints if it is\n\ |
9488 | supported by the target architecture. If off, gdb will not use displaced\n\ | |
9489 | stepping to step over breakpoints, even if such is supported by the target\n\ | |
9490 | architecture. If auto (which is the default), gdb will use displaced stepping\n\ | |
9491 | if the target architecture supports it and non-stop mode is active, but will not\n\ | |
9492 | use it in all-stop mode (see help set non-stop)."), | |
72d0e2c5 YQ |
9493 | NULL, |
9494 | show_can_use_displaced_stepping, | |
9495 | &setlist, &showlist); | |
237fc4c9 | 9496 | |
b2175913 MS |
9497 | add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names, |
9498 | &exec_direction, _("Set direction of execution.\n\ | |
9499 | Options are 'forward' or 'reverse'."), | |
9500 | _("Show direction of execution (forward/reverse)."), | |
9501 | _("Tells gdb whether to execute forward or backward."), | |
9502 | set_exec_direction_func, show_exec_direction_func, | |
9503 | &setlist, &showlist); | |
9504 | ||
6c95b8df PA |
9505 | /* Set/show detach-on-fork: user-settable mode. */ |
9506 | ||
9507 | add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\ | |
9508 | Set whether gdb will detach the child of a fork."), _("\ | |
9509 | Show whether gdb will detach the child of a fork."), _("\ | |
9510 | Tells gdb whether to detach the child of a fork."), | |
9511 | NULL, NULL, &setlist, &showlist); | |
9512 | ||
03583c20 UW |
9513 | /* Set/show disable address space randomization mode. */ |
9514 | ||
9515 | add_setshow_boolean_cmd ("disable-randomization", class_support, | |
9516 | &disable_randomization, _("\ | |
9517 | Set disabling of debuggee's virtual address space randomization."), _("\ | |
9518 | Show disabling of debuggee's virtual address space randomization."), _("\ | |
9519 | When this mode is on (which is the default), randomization of the virtual\n\ | |
9520 | address space is disabled. Standalone programs run with the randomization\n\ | |
9521 | enabled by default on some platforms."), | |
9522 | &set_disable_randomization, | |
9523 | &show_disable_randomization, | |
9524 | &setlist, &showlist); | |
9525 | ||
ca6724c1 | 9526 | /* ptid initializations */ |
ca6724c1 KB |
9527 | inferior_ptid = null_ptid; |
9528 | target_last_wait_ptid = minus_one_ptid; | |
5231c1fd PA |
9529 | |
9530 | observer_attach_thread_ptid_changed (infrun_thread_ptid_changed); | |
252fbfc8 | 9531 | observer_attach_thread_stop_requested (infrun_thread_stop_requested); |
a07daef3 | 9532 | observer_attach_thread_exit (infrun_thread_thread_exit); |
fc1cf338 | 9533 | observer_attach_inferior_exit (infrun_inferior_exit); |
4aa995e1 PA |
9534 | |
9535 | /* Explicitly create without lookup, since that tries to create a | |
9536 | value with a void typed value, and when we get here, gdbarch | |
9537 | isn't initialized yet. At this point, we're quite sure there | |
9538 | isn't another convenience variable of the same name. */ | |
22d2b532 | 9539 | create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL); |
d914c394 SS |
9540 | |
9541 | add_setshow_boolean_cmd ("observer", no_class, | |
9542 | &observer_mode_1, _("\ | |
9543 | Set whether gdb controls the inferior in observer mode."), _("\ | |
9544 | Show whether gdb controls the inferior in observer mode."), _("\ | |
9545 | In observer mode, GDB can get data from the inferior, but not\n\ | |
9546 | affect its execution. Registers and memory may not be changed,\n\ | |
9547 | breakpoints may not be set, and the program cannot be interrupted\n\ | |
9548 | or signalled."), | |
9549 | set_observer_mode, | |
9550 | show_observer_mode, | |
9551 | &setlist, | |
9552 | &showlist); | |
c906108c | 9553 | } |