]>
Commit | Line | Data |
---|---|---|
ca557f44 AC |
1 | /* Target-struct-independent code to start (run) and stop an inferior |
2 | process. | |
8926118c | 3 | |
b811d2c2 | 4 | Copyright (C) 1986-2020 Free Software Foundation, Inc. |
c906108c | 5 | |
c5aa993b | 6 | This file is part of GDB. |
c906108c | 7 | |
c5aa993b JM |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 10 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 11 | (at your option) any later version. |
c906108c | 12 | |
c5aa993b JM |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
c906108c | 17 | |
c5aa993b | 18 | You should have received a copy of the GNU General Public License |
a9762ec7 | 19 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
20 | |
21 | #include "defs.h" | |
45741a9c | 22 | #include "infrun.h" |
c906108c SS |
23 | #include <ctype.h> |
24 | #include "symtab.h" | |
25 | #include "frame.h" | |
26 | #include "inferior.h" | |
27 | #include "breakpoint.h" | |
c906108c SS |
28 | #include "gdbcore.h" |
29 | #include "gdbcmd.h" | |
30 | #include "target.h" | |
31 | #include "gdbthread.h" | |
32 | #include "annotate.h" | |
1adeb98a | 33 | #include "symfile.h" |
7a292a7a | 34 | #include "top.h" |
2acceee2 | 35 | #include "inf-loop.h" |
4e052eda | 36 | #include "regcache.h" |
fd0407d6 | 37 | #include "value.h" |
76727919 | 38 | #include "observable.h" |
f636b87d | 39 | #include "language.h" |
a77053c2 | 40 | #include "solib.h" |
f17517ea | 41 | #include "main.h" |
186c406b | 42 | #include "block.h" |
034dad6f | 43 | #include "mi/mi-common.h" |
4f8d22e3 | 44 | #include "event-top.h" |
96429cc8 | 45 | #include "record.h" |
d02ed0bb | 46 | #include "record-full.h" |
edb3359d | 47 | #include "inline-frame.h" |
4efc6507 | 48 | #include "jit.h" |
06cd862c | 49 | #include "tracepoint.h" |
1bfeeb0f | 50 | #include "skip.h" |
28106bc2 SDJ |
51 | #include "probe.h" |
52 | #include "objfiles.h" | |
de0bea00 | 53 | #include "completer.h" |
9107fc8d | 54 | #include "target-descriptions.h" |
f15cb84a | 55 | #include "target-dcache.h" |
d83ad864 | 56 | #include "terminal.h" |
ff862be4 | 57 | #include "solist.h" |
372316f1 | 58 | #include "event-loop.h" |
243a9253 | 59 | #include "thread-fsm.h" |
268a13a5 | 60 | #include "gdbsupport/enum-flags.h" |
5ed8105e | 61 | #include "progspace-and-thread.h" |
268a13a5 | 62 | #include "gdbsupport/gdb_optional.h" |
46a62268 | 63 | #include "arch-utils.h" |
268a13a5 TT |
64 | #include "gdbsupport/scope-exit.h" |
65 | #include "gdbsupport/forward-scope-exit.h" | |
c906108c SS |
66 | |
67 | /* Prototypes for local functions */ | |
68 | ||
2ea28649 | 69 | static void sig_print_info (enum gdb_signal); |
c906108c | 70 | |
96baa820 | 71 | static void sig_print_header (void); |
c906108c | 72 | |
4ef3f3be | 73 | static int follow_fork (void); |
96baa820 | 74 | |
d83ad864 DB |
75 | static int follow_fork_inferior (int follow_child, int detach_fork); |
76 | ||
77 | static void follow_inferior_reset_breakpoints (void); | |
78 | ||
a289b8f6 JK |
79 | static int currently_stepping (struct thread_info *tp); |
80 | ||
e58b0e63 PA |
81 | void nullify_last_target_wait_ptid (void); |
82 | ||
2c03e5be | 83 | static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *); |
2484c66b UW |
84 | |
85 | static void insert_step_resume_breakpoint_at_caller (struct frame_info *); | |
86 | ||
2484c66b UW |
87 | static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR); |
88 | ||
8550d3b3 YQ |
89 | static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc); |
90 | ||
aff4e175 AB |
91 | static void resume (gdb_signal sig); |
92 | ||
372316f1 PA |
93 | /* Asynchronous signal handler registered as event loop source for |
94 | when we have pending events ready to be passed to the core. */ | |
95 | static struct async_event_handler *infrun_async_inferior_event_token; | |
96 | ||
97 | /* Stores whether infrun_async was previously enabled or disabled. | |
98 | Starts off as -1, indicating "never enabled/disabled". */ | |
99 | static int infrun_is_async = -1; | |
100 | ||
101 | /* See infrun.h. */ | |
102 | ||
103 | void | |
104 | infrun_async (int enable) | |
105 | { | |
106 | if (infrun_is_async != enable) | |
107 | { | |
108 | infrun_is_async = enable; | |
109 | ||
110 | if (debug_infrun) | |
111 | fprintf_unfiltered (gdb_stdlog, | |
112 | "infrun: infrun_async(%d)\n", | |
113 | enable); | |
114 | ||
115 | if (enable) | |
116 | mark_async_event_handler (infrun_async_inferior_event_token); | |
117 | else | |
118 | clear_async_event_handler (infrun_async_inferior_event_token); | |
119 | } | |
120 | } | |
121 | ||
0b333c5e PA |
122 | /* See infrun.h. */ |
123 | ||
124 | void | |
125 | mark_infrun_async_event_handler (void) | |
126 | { | |
127 | mark_async_event_handler (infrun_async_inferior_event_token); | |
128 | } | |
129 | ||
5fbbeb29 CF |
130 | /* When set, stop the 'step' command if we enter a function which has |
131 | no line number information. The normal behavior is that we step | |
132 | over such function. */ | |
491144b5 | 133 | bool step_stop_if_no_debug = false; |
920d2a44 AC |
134 | static void |
135 | show_step_stop_if_no_debug (struct ui_file *file, int from_tty, | |
136 | struct cmd_list_element *c, const char *value) | |
137 | { | |
138 | fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value); | |
139 | } | |
5fbbeb29 | 140 | |
b9f437de PA |
141 | /* proceed and normal_stop use this to notify the user when the |
142 | inferior stopped in a different thread than it had been running | |
143 | in. */ | |
96baa820 | 144 | |
39f77062 | 145 | static ptid_t previous_inferior_ptid; |
7a292a7a | 146 | |
07107ca6 LM |
147 | /* If set (default for legacy reasons), when following a fork, GDB |
148 | will detach from one of the fork branches, child or parent. | |
149 | Exactly which branch is detached depends on 'set follow-fork-mode' | |
150 | setting. */ | |
151 | ||
491144b5 | 152 | static bool detach_fork = true; |
6c95b8df | 153 | |
491144b5 | 154 | bool debug_displaced = false; |
237fc4c9 PA |
155 | static void |
156 | show_debug_displaced (struct ui_file *file, int from_tty, | |
157 | struct cmd_list_element *c, const char *value) | |
158 | { | |
159 | fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value); | |
160 | } | |
161 | ||
ccce17b0 | 162 | unsigned int debug_infrun = 0; |
920d2a44 AC |
163 | static void |
164 | show_debug_infrun (struct ui_file *file, int from_tty, | |
165 | struct cmd_list_element *c, const char *value) | |
166 | { | |
167 | fprintf_filtered (file, _("Inferior debugging is %s.\n"), value); | |
168 | } | |
527159b7 | 169 | |
03583c20 UW |
170 | |
171 | /* Support for disabling address space randomization. */ | |
172 | ||
491144b5 | 173 | bool disable_randomization = true; |
03583c20 UW |
174 | |
175 | static void | |
176 | show_disable_randomization (struct ui_file *file, int from_tty, | |
177 | struct cmd_list_element *c, const char *value) | |
178 | { | |
179 | if (target_supports_disable_randomization ()) | |
180 | fprintf_filtered (file, | |
181 | _("Disabling randomization of debuggee's " | |
182 | "virtual address space is %s.\n"), | |
183 | value); | |
184 | else | |
185 | fputs_filtered (_("Disabling randomization of debuggee's " | |
186 | "virtual address space is unsupported on\n" | |
187 | "this platform.\n"), file); | |
188 | } | |
189 | ||
190 | static void | |
eb4c3f4a | 191 | set_disable_randomization (const char *args, int from_tty, |
03583c20 UW |
192 | struct cmd_list_element *c) |
193 | { | |
194 | if (!target_supports_disable_randomization ()) | |
195 | error (_("Disabling randomization of debuggee's " | |
196 | "virtual address space is unsupported on\n" | |
197 | "this platform.")); | |
198 | } | |
199 | ||
d32dc48e PA |
200 | /* User interface for non-stop mode. */ |
201 | ||
491144b5 CB |
202 | bool non_stop = false; |
203 | static bool non_stop_1 = false; | |
d32dc48e PA |
204 | |
205 | static void | |
eb4c3f4a | 206 | set_non_stop (const char *args, int from_tty, |
d32dc48e PA |
207 | struct cmd_list_element *c) |
208 | { | |
209 | if (target_has_execution) | |
210 | { | |
211 | non_stop_1 = non_stop; | |
212 | error (_("Cannot change this setting while the inferior is running.")); | |
213 | } | |
214 | ||
215 | non_stop = non_stop_1; | |
216 | } | |
217 | ||
218 | static void | |
219 | show_non_stop (struct ui_file *file, int from_tty, | |
220 | struct cmd_list_element *c, const char *value) | |
221 | { | |
222 | fprintf_filtered (file, | |
223 | _("Controlling the inferior in non-stop mode is %s.\n"), | |
224 | value); | |
225 | } | |
226 | ||
d914c394 SS |
227 | /* "Observer mode" is somewhat like a more extreme version of |
228 | non-stop, in which all GDB operations that might affect the | |
229 | target's execution have been disabled. */ | |
230 | ||
491144b5 CB |
231 | bool observer_mode = false; |
232 | static bool observer_mode_1 = false; | |
d914c394 SS |
233 | |
234 | static void | |
eb4c3f4a | 235 | set_observer_mode (const char *args, int from_tty, |
d914c394 SS |
236 | struct cmd_list_element *c) |
237 | { | |
d914c394 SS |
238 | if (target_has_execution) |
239 | { | |
240 | observer_mode_1 = observer_mode; | |
241 | error (_("Cannot change this setting while the inferior is running.")); | |
242 | } | |
243 | ||
244 | observer_mode = observer_mode_1; | |
245 | ||
246 | may_write_registers = !observer_mode; | |
247 | may_write_memory = !observer_mode; | |
248 | may_insert_breakpoints = !observer_mode; | |
249 | may_insert_tracepoints = !observer_mode; | |
250 | /* We can insert fast tracepoints in or out of observer mode, | |
251 | but enable them if we're going into this mode. */ | |
252 | if (observer_mode) | |
491144b5 | 253 | may_insert_fast_tracepoints = true; |
d914c394 SS |
254 | may_stop = !observer_mode; |
255 | update_target_permissions (); | |
256 | ||
257 | /* Going *into* observer mode we must force non-stop, then | |
258 | going out we leave it that way. */ | |
259 | if (observer_mode) | |
260 | { | |
d914c394 | 261 | pagination_enabled = 0; |
491144b5 | 262 | non_stop = non_stop_1 = true; |
d914c394 SS |
263 | } |
264 | ||
265 | if (from_tty) | |
266 | printf_filtered (_("Observer mode is now %s.\n"), | |
267 | (observer_mode ? "on" : "off")); | |
268 | } | |
269 | ||
270 | static void | |
271 | show_observer_mode (struct ui_file *file, int from_tty, | |
272 | struct cmd_list_element *c, const char *value) | |
273 | { | |
274 | fprintf_filtered (file, _("Observer mode is %s.\n"), value); | |
275 | } | |
276 | ||
277 | /* This updates the value of observer mode based on changes in | |
278 | permissions. Note that we are deliberately ignoring the values of | |
279 | may-write-registers and may-write-memory, since the user may have | |
280 | reason to enable these during a session, for instance to turn on a | |
281 | debugging-related global. */ | |
282 | ||
283 | void | |
284 | update_observer_mode (void) | |
285 | { | |
491144b5 CB |
286 | bool newval = (!may_insert_breakpoints |
287 | && !may_insert_tracepoints | |
288 | && may_insert_fast_tracepoints | |
289 | && !may_stop | |
290 | && non_stop); | |
d914c394 SS |
291 | |
292 | /* Let the user know if things change. */ | |
293 | if (newval != observer_mode) | |
294 | printf_filtered (_("Observer mode is now %s.\n"), | |
295 | (newval ? "on" : "off")); | |
296 | ||
297 | observer_mode = observer_mode_1 = newval; | |
298 | } | |
c2c6d25f | 299 | |
c906108c SS |
300 | /* Tables of how to react to signals; the user sets them. */ |
301 | ||
adc6a863 PA |
302 | static unsigned char signal_stop[GDB_SIGNAL_LAST]; |
303 | static unsigned char signal_print[GDB_SIGNAL_LAST]; | |
304 | static unsigned char signal_program[GDB_SIGNAL_LAST]; | |
c906108c | 305 | |
ab04a2af TT |
306 | /* Table of signals that are registered with "catch signal". A |
307 | non-zero entry indicates that the signal is caught by some "catch | |
adc6a863 PA |
308 | signal" command. */ |
309 | static unsigned char signal_catch[GDB_SIGNAL_LAST]; | |
ab04a2af | 310 | |
2455069d UW |
311 | /* Table of signals that the target may silently handle. |
312 | This is automatically determined from the flags above, | |
313 | and simply cached here. */ | |
adc6a863 | 314 | static unsigned char signal_pass[GDB_SIGNAL_LAST]; |
2455069d | 315 | |
c906108c SS |
316 | #define SET_SIGS(nsigs,sigs,flags) \ |
317 | do { \ | |
318 | int signum = (nsigs); \ | |
319 | while (signum-- > 0) \ | |
320 | if ((sigs)[signum]) \ | |
321 | (flags)[signum] = 1; \ | |
322 | } while (0) | |
323 | ||
324 | #define UNSET_SIGS(nsigs,sigs,flags) \ | |
325 | do { \ | |
326 | int signum = (nsigs); \ | |
327 | while (signum-- > 0) \ | |
328 | if ((sigs)[signum]) \ | |
329 | (flags)[signum] = 0; \ | |
330 | } while (0) | |
331 | ||
9b224c5e PA |
332 | /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of |
333 | this function is to avoid exporting `signal_program'. */ | |
334 | ||
335 | void | |
336 | update_signals_program_target (void) | |
337 | { | |
adc6a863 | 338 | target_program_signals (signal_program); |
9b224c5e PA |
339 | } |
340 | ||
1777feb0 | 341 | /* Value to pass to target_resume() to cause all threads to resume. */ |
39f77062 | 342 | |
edb3359d | 343 | #define RESUME_ALL minus_one_ptid |
c906108c SS |
344 | |
345 | /* Command list pointer for the "stop" placeholder. */ | |
346 | ||
347 | static struct cmd_list_element *stop_command; | |
348 | ||
c906108c SS |
349 | /* Nonzero if we want to give control to the user when we're notified |
350 | of shared library events by the dynamic linker. */ | |
628fe4e4 | 351 | int stop_on_solib_events; |
f9e14852 GB |
352 | |
353 | /* Enable or disable optional shared library event breakpoints | |
354 | as appropriate when the above flag is changed. */ | |
355 | ||
356 | static void | |
eb4c3f4a TT |
357 | set_stop_on_solib_events (const char *args, |
358 | int from_tty, struct cmd_list_element *c) | |
f9e14852 GB |
359 | { |
360 | update_solib_breakpoints (); | |
361 | } | |
362 | ||
920d2a44 AC |
363 | static void |
364 | show_stop_on_solib_events (struct ui_file *file, int from_tty, | |
365 | struct cmd_list_element *c, const char *value) | |
366 | { | |
367 | fprintf_filtered (file, _("Stopping for shared library events is %s.\n"), | |
368 | value); | |
369 | } | |
c906108c | 370 | |
c906108c SS |
371 | /* Nonzero after stop if current stack frame should be printed. */ |
372 | ||
373 | static int stop_print_frame; | |
374 | ||
e02bc4cc | 375 | /* This is a cached copy of the pid/waitstatus of the last event |
9a4105ab AC |
376 | returned by target_wait()/deprecated_target_wait_hook(). This |
377 | information is returned by get_last_target_status(). */ | |
39f77062 | 378 | static ptid_t target_last_wait_ptid; |
e02bc4cc DS |
379 | static struct target_waitstatus target_last_waitstatus; |
380 | ||
4e1c45ea | 381 | void init_thread_stepping_state (struct thread_info *tss); |
0d1e5fa7 | 382 | |
53904c9e AC |
383 | static const char follow_fork_mode_child[] = "child"; |
384 | static const char follow_fork_mode_parent[] = "parent"; | |
385 | ||
40478521 | 386 | static const char *const follow_fork_mode_kind_names[] = { |
53904c9e AC |
387 | follow_fork_mode_child, |
388 | follow_fork_mode_parent, | |
389 | NULL | |
ef346e04 | 390 | }; |
c906108c | 391 | |
53904c9e | 392 | static const char *follow_fork_mode_string = follow_fork_mode_parent; |
920d2a44 AC |
393 | static void |
394 | show_follow_fork_mode_string (struct ui_file *file, int from_tty, | |
395 | struct cmd_list_element *c, const char *value) | |
396 | { | |
3e43a32a MS |
397 | fprintf_filtered (file, |
398 | _("Debugger response to a program " | |
399 | "call of fork or vfork is \"%s\".\n"), | |
920d2a44 AC |
400 | value); |
401 | } | |
c906108c SS |
402 | \f |
403 | ||
d83ad864 DB |
404 | /* Handle changes to the inferior list based on the type of fork, |
405 | which process is being followed, and whether the other process | |
406 | should be detached. On entry inferior_ptid must be the ptid of | |
407 | the fork parent. At return inferior_ptid is the ptid of the | |
408 | followed inferior. */ | |
409 | ||
410 | static int | |
411 | follow_fork_inferior (int follow_child, int detach_fork) | |
412 | { | |
413 | int has_vforked; | |
79639e11 | 414 | ptid_t parent_ptid, child_ptid; |
d83ad864 DB |
415 | |
416 | has_vforked = (inferior_thread ()->pending_follow.kind | |
417 | == TARGET_WAITKIND_VFORKED); | |
79639e11 PA |
418 | parent_ptid = inferior_ptid; |
419 | child_ptid = inferior_thread ()->pending_follow.value.related_pid; | |
d83ad864 DB |
420 | |
421 | if (has_vforked | |
422 | && !non_stop /* Non-stop always resumes both branches. */ | |
3b12939d | 423 | && current_ui->prompt_state == PROMPT_BLOCKED |
d83ad864 DB |
424 | && !(follow_child || detach_fork || sched_multi)) |
425 | { | |
426 | /* The parent stays blocked inside the vfork syscall until the | |
427 | child execs or exits. If we don't let the child run, then | |
428 | the parent stays blocked. If we're telling the parent to run | |
429 | in the foreground, the user will not be able to ctrl-c to get | |
430 | back the terminal, effectively hanging the debug session. */ | |
431 | fprintf_filtered (gdb_stderr, _("\ | |
432 | Can not resume the parent process over vfork in the foreground while\n\ | |
433 | holding the child stopped. Try \"set detach-on-fork\" or \ | |
434 | \"set schedule-multiple\".\n")); | |
d83ad864 DB |
435 | return 1; |
436 | } | |
437 | ||
438 | if (!follow_child) | |
439 | { | |
440 | /* Detach new forked process? */ | |
441 | if (detach_fork) | |
442 | { | |
d83ad864 DB |
443 | /* Before detaching from the child, remove all breakpoints |
444 | from it. If we forked, then this has already been taken | |
445 | care of by infrun.c. If we vforked however, any | |
446 | breakpoint inserted in the parent is visible in the | |
447 | child, even those added while stopped in a vfork | |
448 | catchpoint. This will remove the breakpoints from the | |
449 | parent also, but they'll be reinserted below. */ | |
450 | if (has_vforked) | |
451 | { | |
452 | /* Keep breakpoints list in sync. */ | |
00431a78 | 453 | remove_breakpoints_inf (current_inferior ()); |
d83ad864 DB |
454 | } |
455 | ||
f67c0c91 | 456 | if (print_inferior_events) |
d83ad864 | 457 | { |
8dd06f7a | 458 | /* Ensure that we have a process ptid. */ |
e99b03dc | 459 | ptid_t process_ptid = ptid_t (child_ptid.pid ()); |
8dd06f7a | 460 | |
223ffa71 | 461 | target_terminal::ours_for_output (); |
d83ad864 | 462 | fprintf_filtered (gdb_stdlog, |
f67c0c91 | 463 | _("[Detaching after %s from child %s]\n"), |
6f259a23 | 464 | has_vforked ? "vfork" : "fork", |
a068643d | 465 | target_pid_to_str (process_ptid).c_str ()); |
d83ad864 DB |
466 | } |
467 | } | |
468 | else | |
469 | { | |
470 | struct inferior *parent_inf, *child_inf; | |
d83ad864 DB |
471 | |
472 | /* Add process to GDB's tables. */ | |
e99b03dc | 473 | child_inf = add_inferior (child_ptid.pid ()); |
d83ad864 DB |
474 | |
475 | parent_inf = current_inferior (); | |
476 | child_inf->attach_flag = parent_inf->attach_flag; | |
477 | copy_terminal_info (child_inf, parent_inf); | |
478 | child_inf->gdbarch = parent_inf->gdbarch; | |
479 | copy_inferior_target_desc_info (child_inf, parent_inf); | |
480 | ||
5ed8105e | 481 | scoped_restore_current_pspace_and_thread restore_pspace_thread; |
d83ad864 | 482 | |
79639e11 | 483 | inferior_ptid = child_ptid; |
f67c0c91 | 484 | add_thread_silent (inferior_ptid); |
2a00d7ce | 485 | set_current_inferior (child_inf); |
d83ad864 DB |
486 | child_inf->symfile_flags = SYMFILE_NO_READ; |
487 | ||
488 | /* If this is a vfork child, then the address-space is | |
489 | shared with the parent. */ | |
490 | if (has_vforked) | |
491 | { | |
492 | child_inf->pspace = parent_inf->pspace; | |
493 | child_inf->aspace = parent_inf->aspace; | |
494 | ||
495 | /* The parent will be frozen until the child is done | |
496 | with the shared region. Keep track of the | |
497 | parent. */ | |
498 | child_inf->vfork_parent = parent_inf; | |
499 | child_inf->pending_detach = 0; | |
500 | parent_inf->vfork_child = child_inf; | |
501 | parent_inf->pending_detach = 0; | |
502 | } | |
503 | else | |
504 | { | |
505 | child_inf->aspace = new_address_space (); | |
564b1e3f | 506 | child_inf->pspace = new program_space (child_inf->aspace); |
d83ad864 DB |
507 | child_inf->removable = 1; |
508 | set_current_program_space (child_inf->pspace); | |
509 | clone_program_space (child_inf->pspace, parent_inf->pspace); | |
510 | ||
511 | /* Let the shared library layer (e.g., solib-svr4) learn | |
512 | about this new process, relocate the cloned exec, pull | |
513 | in shared libraries, and install the solib event | |
514 | breakpoint. If a "cloned-VM" event was propagated | |
515 | better throughout the core, this wouldn't be | |
516 | required. */ | |
517 | solib_create_inferior_hook (0); | |
518 | } | |
d83ad864 DB |
519 | } |
520 | ||
521 | if (has_vforked) | |
522 | { | |
523 | struct inferior *parent_inf; | |
524 | ||
525 | parent_inf = current_inferior (); | |
526 | ||
527 | /* If we detached from the child, then we have to be careful | |
528 | to not insert breakpoints in the parent until the child | |
529 | is done with the shared memory region. However, if we're | |
530 | staying attached to the child, then we can and should | |
531 | insert breakpoints, so that we can debug it. A | |
532 | subsequent child exec or exit is enough to know when does | |
533 | the child stops using the parent's address space. */ | |
534 | parent_inf->waiting_for_vfork_done = detach_fork; | |
535 | parent_inf->pspace->breakpoints_not_allowed = detach_fork; | |
536 | } | |
537 | } | |
538 | else | |
539 | { | |
540 | /* Follow the child. */ | |
541 | struct inferior *parent_inf, *child_inf; | |
542 | struct program_space *parent_pspace; | |
543 | ||
f67c0c91 | 544 | if (print_inferior_events) |
d83ad864 | 545 | { |
f67c0c91 SDJ |
546 | std::string parent_pid = target_pid_to_str (parent_ptid); |
547 | std::string child_pid = target_pid_to_str (child_ptid); | |
548 | ||
223ffa71 | 549 | target_terminal::ours_for_output (); |
6f259a23 | 550 | fprintf_filtered (gdb_stdlog, |
f67c0c91 SDJ |
551 | _("[Attaching after %s %s to child %s]\n"), |
552 | parent_pid.c_str (), | |
6f259a23 | 553 | has_vforked ? "vfork" : "fork", |
f67c0c91 | 554 | child_pid.c_str ()); |
d83ad864 DB |
555 | } |
556 | ||
557 | /* Add the new inferior first, so that the target_detach below | |
558 | doesn't unpush the target. */ | |
559 | ||
e99b03dc | 560 | child_inf = add_inferior (child_ptid.pid ()); |
d83ad864 DB |
561 | |
562 | parent_inf = current_inferior (); | |
563 | child_inf->attach_flag = parent_inf->attach_flag; | |
564 | copy_terminal_info (child_inf, parent_inf); | |
565 | child_inf->gdbarch = parent_inf->gdbarch; | |
566 | copy_inferior_target_desc_info (child_inf, parent_inf); | |
567 | ||
568 | parent_pspace = parent_inf->pspace; | |
569 | ||
570 | /* If we're vforking, we want to hold on to the parent until the | |
571 | child exits or execs. At child exec or exit time we can | |
572 | remove the old breakpoints from the parent and detach or | |
573 | resume debugging it. Otherwise, detach the parent now; we'll | |
574 | want to reuse it's program/address spaces, but we can't set | |
575 | them to the child before removing breakpoints from the | |
576 | parent, otherwise, the breakpoints module could decide to | |
577 | remove breakpoints from the wrong process (since they'd be | |
578 | assigned to the same address space). */ | |
579 | ||
580 | if (has_vforked) | |
581 | { | |
582 | gdb_assert (child_inf->vfork_parent == NULL); | |
583 | gdb_assert (parent_inf->vfork_child == NULL); | |
584 | child_inf->vfork_parent = parent_inf; | |
585 | child_inf->pending_detach = 0; | |
586 | parent_inf->vfork_child = child_inf; | |
587 | parent_inf->pending_detach = detach_fork; | |
588 | parent_inf->waiting_for_vfork_done = 0; | |
589 | } | |
590 | else if (detach_fork) | |
6f259a23 | 591 | { |
f67c0c91 | 592 | if (print_inferior_events) |
6f259a23 | 593 | { |
8dd06f7a | 594 | /* Ensure that we have a process ptid. */ |
e99b03dc | 595 | ptid_t process_ptid = ptid_t (parent_ptid.pid ()); |
8dd06f7a | 596 | |
223ffa71 | 597 | target_terminal::ours_for_output (); |
6f259a23 | 598 | fprintf_filtered (gdb_stdlog, |
f67c0c91 SDJ |
599 | _("[Detaching after fork from " |
600 | "parent %s]\n"), | |
a068643d | 601 | target_pid_to_str (process_ptid).c_str ()); |
6f259a23 DB |
602 | } |
603 | ||
6e1e1966 | 604 | target_detach (parent_inf, 0); |
6f259a23 | 605 | } |
d83ad864 DB |
606 | |
607 | /* Note that the detach above makes PARENT_INF dangling. */ | |
608 | ||
609 | /* Add the child thread to the appropriate lists, and switch to | |
610 | this new thread, before cloning the program space, and | |
611 | informing the solib layer about this new process. */ | |
612 | ||
79639e11 | 613 | inferior_ptid = child_ptid; |
f67c0c91 | 614 | add_thread_silent (inferior_ptid); |
2a00d7ce | 615 | set_current_inferior (child_inf); |
d83ad864 DB |
616 | |
617 | /* If this is a vfork child, then the address-space is shared | |
618 | with the parent. If we detached from the parent, then we can | |
619 | reuse the parent's program/address spaces. */ | |
620 | if (has_vforked || detach_fork) | |
621 | { | |
622 | child_inf->pspace = parent_pspace; | |
623 | child_inf->aspace = child_inf->pspace->aspace; | |
624 | } | |
625 | else | |
626 | { | |
627 | child_inf->aspace = new_address_space (); | |
564b1e3f | 628 | child_inf->pspace = new program_space (child_inf->aspace); |
d83ad864 DB |
629 | child_inf->removable = 1; |
630 | child_inf->symfile_flags = SYMFILE_NO_READ; | |
631 | set_current_program_space (child_inf->pspace); | |
632 | clone_program_space (child_inf->pspace, parent_pspace); | |
633 | ||
634 | /* Let the shared library layer (e.g., solib-svr4) learn | |
635 | about this new process, relocate the cloned exec, pull in | |
636 | shared libraries, and install the solib event breakpoint. | |
637 | If a "cloned-VM" event was propagated better throughout | |
638 | the core, this wouldn't be required. */ | |
639 | solib_create_inferior_hook (0); | |
640 | } | |
641 | } | |
642 | ||
643 | return target_follow_fork (follow_child, detach_fork); | |
644 | } | |
645 | ||
e58b0e63 PA |
646 | /* Tell the target to follow the fork we're stopped at. Returns true |
647 | if the inferior should be resumed; false, if the target for some | |
648 | reason decided it's best not to resume. */ | |
649 | ||
6604731b | 650 | static int |
4ef3f3be | 651 | follow_fork (void) |
c906108c | 652 | { |
ea1dd7bc | 653 | int follow_child = (follow_fork_mode_string == follow_fork_mode_child); |
e58b0e63 PA |
654 | int should_resume = 1; |
655 | struct thread_info *tp; | |
656 | ||
657 | /* Copy user stepping state to the new inferior thread. FIXME: the | |
658 | followed fork child thread should have a copy of most of the | |
4e3990f4 DE |
659 | parent thread structure's run control related fields, not just these. |
660 | Initialized to avoid "may be used uninitialized" warnings from gcc. */ | |
661 | struct breakpoint *step_resume_breakpoint = NULL; | |
186c406b | 662 | struct breakpoint *exception_resume_breakpoint = NULL; |
4e3990f4 DE |
663 | CORE_ADDR step_range_start = 0; |
664 | CORE_ADDR step_range_end = 0; | |
665 | struct frame_id step_frame_id = { 0 }; | |
8980e177 | 666 | struct thread_fsm *thread_fsm = NULL; |
e58b0e63 PA |
667 | |
668 | if (!non_stop) | |
669 | { | |
670 | ptid_t wait_ptid; | |
671 | struct target_waitstatus wait_status; | |
672 | ||
673 | /* Get the last target status returned by target_wait(). */ | |
674 | get_last_target_status (&wait_ptid, &wait_status); | |
675 | ||
676 | /* If not stopped at a fork event, then there's nothing else to | |
677 | do. */ | |
678 | if (wait_status.kind != TARGET_WAITKIND_FORKED | |
679 | && wait_status.kind != TARGET_WAITKIND_VFORKED) | |
680 | return 1; | |
681 | ||
682 | /* Check if we switched over from WAIT_PTID, since the event was | |
683 | reported. */ | |
00431a78 PA |
684 | if (wait_ptid != minus_one_ptid |
685 | && inferior_ptid != wait_ptid) | |
e58b0e63 PA |
686 | { |
687 | /* We did. Switch back to WAIT_PTID thread, to tell the | |
688 | target to follow it (in either direction). We'll | |
689 | afterwards refuse to resume, and inform the user what | |
690 | happened. */ | |
00431a78 PA |
691 | thread_info *wait_thread |
692 | = find_thread_ptid (wait_ptid); | |
693 | switch_to_thread (wait_thread); | |
e58b0e63 PA |
694 | should_resume = 0; |
695 | } | |
696 | } | |
697 | ||
698 | tp = inferior_thread (); | |
699 | ||
700 | /* If there were any forks/vforks that were caught and are now to be | |
701 | followed, then do so now. */ | |
702 | switch (tp->pending_follow.kind) | |
703 | { | |
704 | case TARGET_WAITKIND_FORKED: | |
705 | case TARGET_WAITKIND_VFORKED: | |
706 | { | |
707 | ptid_t parent, child; | |
708 | ||
709 | /* If the user did a next/step, etc, over a fork call, | |
710 | preserve the stepping state in the fork child. */ | |
711 | if (follow_child && should_resume) | |
712 | { | |
8358c15c JK |
713 | step_resume_breakpoint = clone_momentary_breakpoint |
714 | (tp->control.step_resume_breakpoint); | |
16c381f0 JK |
715 | step_range_start = tp->control.step_range_start; |
716 | step_range_end = tp->control.step_range_end; | |
717 | step_frame_id = tp->control.step_frame_id; | |
186c406b TT |
718 | exception_resume_breakpoint |
719 | = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint); | |
8980e177 | 720 | thread_fsm = tp->thread_fsm; |
e58b0e63 PA |
721 | |
722 | /* For now, delete the parent's sr breakpoint, otherwise, | |
723 | parent/child sr breakpoints are considered duplicates, | |
724 | and the child version will not be installed. Remove | |
725 | this when the breakpoints module becomes aware of | |
726 | inferiors and address spaces. */ | |
727 | delete_step_resume_breakpoint (tp); | |
16c381f0 JK |
728 | tp->control.step_range_start = 0; |
729 | tp->control.step_range_end = 0; | |
730 | tp->control.step_frame_id = null_frame_id; | |
186c406b | 731 | delete_exception_resume_breakpoint (tp); |
8980e177 | 732 | tp->thread_fsm = NULL; |
e58b0e63 PA |
733 | } |
734 | ||
735 | parent = inferior_ptid; | |
736 | child = tp->pending_follow.value.related_pid; | |
737 | ||
d83ad864 DB |
738 | /* Set up inferior(s) as specified by the caller, and tell the |
739 | target to do whatever is necessary to follow either parent | |
740 | or child. */ | |
741 | if (follow_fork_inferior (follow_child, detach_fork)) | |
e58b0e63 PA |
742 | { |
743 | /* Target refused to follow, or there's some other reason | |
744 | we shouldn't resume. */ | |
745 | should_resume = 0; | |
746 | } | |
747 | else | |
748 | { | |
749 | /* This pending follow fork event is now handled, one way | |
750 | or another. The previous selected thread may be gone | |
751 | from the lists by now, but if it is still around, need | |
752 | to clear the pending follow request. */ | |
e09875d4 | 753 | tp = find_thread_ptid (parent); |
e58b0e63 PA |
754 | if (tp) |
755 | tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS; | |
756 | ||
757 | /* This makes sure we don't try to apply the "Switched | |
758 | over from WAIT_PID" logic above. */ | |
759 | nullify_last_target_wait_ptid (); | |
760 | ||
1777feb0 | 761 | /* If we followed the child, switch to it... */ |
e58b0e63 PA |
762 | if (follow_child) |
763 | { | |
00431a78 PA |
764 | thread_info *child_thr = find_thread_ptid (child); |
765 | switch_to_thread (child_thr); | |
e58b0e63 PA |
766 | |
767 | /* ... and preserve the stepping state, in case the | |
768 | user was stepping over the fork call. */ | |
769 | if (should_resume) | |
770 | { | |
771 | tp = inferior_thread (); | |
8358c15c JK |
772 | tp->control.step_resume_breakpoint |
773 | = step_resume_breakpoint; | |
16c381f0 JK |
774 | tp->control.step_range_start = step_range_start; |
775 | tp->control.step_range_end = step_range_end; | |
776 | tp->control.step_frame_id = step_frame_id; | |
186c406b TT |
777 | tp->control.exception_resume_breakpoint |
778 | = exception_resume_breakpoint; | |
8980e177 | 779 | tp->thread_fsm = thread_fsm; |
e58b0e63 PA |
780 | } |
781 | else | |
782 | { | |
783 | /* If we get here, it was because we're trying to | |
784 | resume from a fork catchpoint, but, the user | |
785 | has switched threads away from the thread that | |
786 | forked. In that case, the resume command | |
787 | issued is most likely not applicable to the | |
788 | child, so just warn, and refuse to resume. */ | |
3e43a32a | 789 | warning (_("Not resuming: switched threads " |
fd7dcb94 | 790 | "before following fork child.")); |
e58b0e63 PA |
791 | } |
792 | ||
793 | /* Reset breakpoints in the child as appropriate. */ | |
794 | follow_inferior_reset_breakpoints (); | |
795 | } | |
e58b0e63 PA |
796 | } |
797 | } | |
798 | break; | |
799 | case TARGET_WAITKIND_SPURIOUS: | |
800 | /* Nothing to follow. */ | |
801 | break; | |
802 | default: | |
803 | internal_error (__FILE__, __LINE__, | |
804 | "Unexpected pending_follow.kind %d\n", | |
805 | tp->pending_follow.kind); | |
806 | break; | |
807 | } | |
c906108c | 808 | |
e58b0e63 | 809 | return should_resume; |
c906108c SS |
810 | } |
811 | ||
d83ad864 | 812 | static void |
6604731b | 813 | follow_inferior_reset_breakpoints (void) |
c906108c | 814 | { |
4e1c45ea PA |
815 | struct thread_info *tp = inferior_thread (); |
816 | ||
6604731b DJ |
817 | /* Was there a step_resume breakpoint? (There was if the user |
818 | did a "next" at the fork() call.) If so, explicitly reset its | |
a1aa2221 LM |
819 | thread number. Cloned step_resume breakpoints are disabled on |
820 | creation, so enable it here now that it is associated with the | |
821 | correct thread. | |
6604731b DJ |
822 | |
823 | step_resumes are a form of bp that are made to be per-thread. | |
824 | Since we created the step_resume bp when the parent process | |
825 | was being debugged, and now are switching to the child process, | |
826 | from the breakpoint package's viewpoint, that's a switch of | |
827 | "threads". We must update the bp's notion of which thread | |
828 | it is for, or it'll be ignored when it triggers. */ | |
829 | ||
8358c15c | 830 | if (tp->control.step_resume_breakpoint) |
a1aa2221 LM |
831 | { |
832 | breakpoint_re_set_thread (tp->control.step_resume_breakpoint); | |
833 | tp->control.step_resume_breakpoint->loc->enabled = 1; | |
834 | } | |
6604731b | 835 | |
a1aa2221 | 836 | /* Treat exception_resume breakpoints like step_resume breakpoints. */ |
186c406b | 837 | if (tp->control.exception_resume_breakpoint) |
a1aa2221 LM |
838 | { |
839 | breakpoint_re_set_thread (tp->control.exception_resume_breakpoint); | |
840 | tp->control.exception_resume_breakpoint->loc->enabled = 1; | |
841 | } | |
186c406b | 842 | |
6604731b DJ |
843 | /* Reinsert all breakpoints in the child. The user may have set |
844 | breakpoints after catching the fork, in which case those | |
845 | were never set in the child, but only in the parent. This makes | |
846 | sure the inserted breakpoints match the breakpoint list. */ | |
847 | ||
848 | breakpoint_re_set (); | |
849 | insert_breakpoints (); | |
c906108c | 850 | } |
c906108c | 851 | |
6c95b8df PA |
852 | /* The child has exited or execed: resume threads of the parent the |
853 | user wanted to be executing. */ | |
854 | ||
855 | static int | |
856 | proceed_after_vfork_done (struct thread_info *thread, | |
857 | void *arg) | |
858 | { | |
859 | int pid = * (int *) arg; | |
860 | ||
00431a78 PA |
861 | if (thread->ptid.pid () == pid |
862 | && thread->state == THREAD_RUNNING | |
863 | && !thread->executing | |
6c95b8df | 864 | && !thread->stop_requested |
a493e3e2 | 865 | && thread->suspend.stop_signal == GDB_SIGNAL_0) |
6c95b8df PA |
866 | { |
867 | if (debug_infrun) | |
868 | fprintf_unfiltered (gdb_stdlog, | |
869 | "infrun: resuming vfork parent thread %s\n", | |
a068643d | 870 | target_pid_to_str (thread->ptid).c_str ()); |
6c95b8df | 871 | |
00431a78 | 872 | switch_to_thread (thread); |
70509625 | 873 | clear_proceed_status (0); |
64ce06e4 | 874 | proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT); |
6c95b8df PA |
875 | } |
876 | ||
877 | return 0; | |
878 | } | |
879 | ||
5ed8105e PA |
880 | /* Save/restore inferior_ptid, current program space and current |
881 | inferior. Only use this if the current context points at an exited | |
882 | inferior (and therefore there's no current thread to save). */ | |
883 | class scoped_restore_exited_inferior | |
884 | { | |
885 | public: | |
886 | scoped_restore_exited_inferior () | |
887 | : m_saved_ptid (&inferior_ptid) | |
888 | {} | |
889 | ||
890 | private: | |
891 | scoped_restore_tmpl<ptid_t> m_saved_ptid; | |
892 | scoped_restore_current_program_space m_pspace; | |
893 | scoped_restore_current_inferior m_inferior; | |
894 | }; | |
895 | ||
6c95b8df PA |
896 | /* Called whenever we notice an exec or exit event, to handle |
897 | detaching or resuming a vfork parent. */ | |
898 | ||
899 | static void | |
900 | handle_vfork_child_exec_or_exit (int exec) | |
901 | { | |
902 | struct inferior *inf = current_inferior (); | |
903 | ||
904 | if (inf->vfork_parent) | |
905 | { | |
906 | int resume_parent = -1; | |
907 | ||
908 | /* This exec or exit marks the end of the shared memory region | |
b73715df TV |
909 | between the parent and the child. Break the bonds. */ |
910 | inferior *vfork_parent = inf->vfork_parent; | |
911 | inf->vfork_parent->vfork_child = NULL; | |
912 | inf->vfork_parent = NULL; | |
6c95b8df | 913 | |
b73715df TV |
914 | /* If the user wanted to detach from the parent, now is the |
915 | time. */ | |
916 | if (vfork_parent->pending_detach) | |
6c95b8df PA |
917 | { |
918 | struct thread_info *tp; | |
6c95b8df PA |
919 | struct program_space *pspace; |
920 | struct address_space *aspace; | |
921 | ||
1777feb0 | 922 | /* follow-fork child, detach-on-fork on. */ |
6c95b8df | 923 | |
b73715df | 924 | vfork_parent->pending_detach = 0; |
68c9da30 | 925 | |
5ed8105e PA |
926 | gdb::optional<scoped_restore_exited_inferior> |
927 | maybe_restore_inferior; | |
928 | gdb::optional<scoped_restore_current_pspace_and_thread> | |
929 | maybe_restore_thread; | |
930 | ||
931 | /* If we're handling a child exit, then inferior_ptid points | |
932 | at the inferior's pid, not to a thread. */ | |
f50f4e56 | 933 | if (!exec) |
5ed8105e | 934 | maybe_restore_inferior.emplace (); |
f50f4e56 | 935 | else |
5ed8105e | 936 | maybe_restore_thread.emplace (); |
6c95b8df PA |
937 | |
938 | /* We're letting loose of the parent. */ | |
b73715df | 939 | tp = any_live_thread_of_inferior (vfork_parent); |
00431a78 | 940 | switch_to_thread (tp); |
6c95b8df PA |
941 | |
942 | /* We're about to detach from the parent, which implicitly | |
943 | removes breakpoints from its address space. There's a | |
944 | catch here: we want to reuse the spaces for the child, | |
945 | but, parent/child are still sharing the pspace at this | |
946 | point, although the exec in reality makes the kernel give | |
947 | the child a fresh set of new pages. The problem here is | |
948 | that the breakpoints module being unaware of this, would | |
949 | likely chose the child process to write to the parent | |
950 | address space. Swapping the child temporarily away from | |
951 | the spaces has the desired effect. Yes, this is "sort | |
952 | of" a hack. */ | |
953 | ||
954 | pspace = inf->pspace; | |
955 | aspace = inf->aspace; | |
956 | inf->aspace = NULL; | |
957 | inf->pspace = NULL; | |
958 | ||
f67c0c91 | 959 | if (print_inferior_events) |
6c95b8df | 960 | { |
a068643d | 961 | std::string pidstr |
b73715df | 962 | = target_pid_to_str (ptid_t (vfork_parent->pid)); |
f67c0c91 | 963 | |
223ffa71 | 964 | target_terminal::ours_for_output (); |
6c95b8df PA |
965 | |
966 | if (exec) | |
6f259a23 DB |
967 | { |
968 | fprintf_filtered (gdb_stdlog, | |
f67c0c91 | 969 | _("[Detaching vfork parent %s " |
a068643d | 970 | "after child exec]\n"), pidstr.c_str ()); |
6f259a23 | 971 | } |
6c95b8df | 972 | else |
6f259a23 DB |
973 | { |
974 | fprintf_filtered (gdb_stdlog, | |
f67c0c91 | 975 | _("[Detaching vfork parent %s " |
a068643d | 976 | "after child exit]\n"), pidstr.c_str ()); |
6f259a23 | 977 | } |
6c95b8df PA |
978 | } |
979 | ||
b73715df | 980 | target_detach (vfork_parent, 0); |
6c95b8df PA |
981 | |
982 | /* Put it back. */ | |
983 | inf->pspace = pspace; | |
984 | inf->aspace = aspace; | |
6c95b8df PA |
985 | } |
986 | else if (exec) | |
987 | { | |
988 | /* We're staying attached to the parent, so, really give the | |
989 | child a new address space. */ | |
564b1e3f | 990 | inf->pspace = new program_space (maybe_new_address_space ()); |
6c95b8df PA |
991 | inf->aspace = inf->pspace->aspace; |
992 | inf->removable = 1; | |
993 | set_current_program_space (inf->pspace); | |
994 | ||
b73715df | 995 | resume_parent = vfork_parent->pid; |
6c95b8df PA |
996 | } |
997 | else | |
998 | { | |
6c95b8df PA |
999 | struct program_space *pspace; |
1000 | ||
1001 | /* If this is a vfork child exiting, then the pspace and | |
1002 | aspaces were shared with the parent. Since we're | |
1003 | reporting the process exit, we'll be mourning all that is | |
1004 | found in the address space, and switching to null_ptid, | |
1005 | preparing to start a new inferior. But, since we don't | |
1006 | want to clobber the parent's address/program spaces, we | |
1007 | go ahead and create a new one for this exiting | |
1008 | inferior. */ | |
1009 | ||
5ed8105e PA |
1010 | /* Switch to null_ptid while running clone_program_space, so |
1011 | that clone_program_space doesn't want to read the | |
1012 | selected frame of a dead process. */ | |
1013 | scoped_restore restore_ptid | |
1014 | = make_scoped_restore (&inferior_ptid, null_ptid); | |
6c95b8df PA |
1015 | |
1016 | /* This inferior is dead, so avoid giving the breakpoints | |
1017 | module the option to write through to it (cloning a | |
1018 | program space resets breakpoints). */ | |
1019 | inf->aspace = NULL; | |
1020 | inf->pspace = NULL; | |
564b1e3f | 1021 | pspace = new program_space (maybe_new_address_space ()); |
6c95b8df PA |
1022 | set_current_program_space (pspace); |
1023 | inf->removable = 1; | |
7dcd53a0 | 1024 | inf->symfile_flags = SYMFILE_NO_READ; |
b73715df | 1025 | clone_program_space (pspace, vfork_parent->pspace); |
6c95b8df PA |
1026 | inf->pspace = pspace; |
1027 | inf->aspace = pspace->aspace; | |
1028 | ||
b73715df | 1029 | resume_parent = vfork_parent->pid; |
6c95b8df PA |
1030 | } |
1031 | ||
6c95b8df PA |
1032 | gdb_assert (current_program_space == inf->pspace); |
1033 | ||
1034 | if (non_stop && resume_parent != -1) | |
1035 | { | |
1036 | /* If the user wanted the parent to be running, let it go | |
1037 | free now. */ | |
5ed8105e | 1038 | scoped_restore_current_thread restore_thread; |
6c95b8df PA |
1039 | |
1040 | if (debug_infrun) | |
3e43a32a MS |
1041 | fprintf_unfiltered (gdb_stdlog, |
1042 | "infrun: resuming vfork parent process %d\n", | |
6c95b8df PA |
1043 | resume_parent); |
1044 | ||
1045 | iterate_over_threads (proceed_after_vfork_done, &resume_parent); | |
6c95b8df PA |
1046 | } |
1047 | } | |
1048 | } | |
1049 | ||
eb6c553b | 1050 | /* Enum strings for "set|show follow-exec-mode". */ |
6c95b8df PA |
1051 | |
1052 | static const char follow_exec_mode_new[] = "new"; | |
1053 | static const char follow_exec_mode_same[] = "same"; | |
40478521 | 1054 | static const char *const follow_exec_mode_names[] = |
6c95b8df PA |
1055 | { |
1056 | follow_exec_mode_new, | |
1057 | follow_exec_mode_same, | |
1058 | NULL, | |
1059 | }; | |
1060 | ||
1061 | static const char *follow_exec_mode_string = follow_exec_mode_same; | |
1062 | static void | |
1063 | show_follow_exec_mode_string (struct ui_file *file, int from_tty, | |
1064 | struct cmd_list_element *c, const char *value) | |
1065 | { | |
1066 | fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value); | |
1067 | } | |
1068 | ||
ecf45d2c | 1069 | /* EXEC_FILE_TARGET is assumed to be non-NULL. */ |
1adeb98a | 1070 | |
c906108c | 1071 | static void |
4ca51187 | 1072 | follow_exec (ptid_t ptid, const char *exec_file_target) |
c906108c | 1073 | { |
6c95b8df | 1074 | struct inferior *inf = current_inferior (); |
e99b03dc | 1075 | int pid = ptid.pid (); |
94585166 | 1076 | ptid_t process_ptid; |
7a292a7a | 1077 | |
65d2b333 PW |
1078 | /* Switch terminal for any messages produced e.g. by |
1079 | breakpoint_re_set. */ | |
1080 | target_terminal::ours_for_output (); | |
1081 | ||
c906108c SS |
1082 | /* This is an exec event that we actually wish to pay attention to. |
1083 | Refresh our symbol table to the newly exec'd program, remove any | |
1084 | momentary bp's, etc. | |
1085 | ||
1086 | If there are breakpoints, they aren't really inserted now, | |
1087 | since the exec() transformed our inferior into a fresh set | |
1088 | of instructions. | |
1089 | ||
1090 | We want to preserve symbolic breakpoints on the list, since | |
1091 | we have hopes that they can be reset after the new a.out's | |
1092 | symbol table is read. | |
1093 | ||
1094 | However, any "raw" breakpoints must be removed from the list | |
1095 | (e.g., the solib bp's), since their address is probably invalid | |
1096 | now. | |
1097 | ||
1098 | And, we DON'T want to call delete_breakpoints() here, since | |
1099 | that may write the bp's "shadow contents" (the instruction | |
85102364 | 1100 | value that was overwritten with a TRAP instruction). Since |
1777feb0 | 1101 | we now have a new a.out, those shadow contents aren't valid. */ |
6c95b8df PA |
1102 | |
1103 | mark_breakpoints_out (); | |
1104 | ||
95e50b27 PA |
1105 | /* The target reports the exec event to the main thread, even if |
1106 | some other thread does the exec, and even if the main thread was | |
1107 | stopped or already gone. We may still have non-leader threads of | |
1108 | the process on our list. E.g., on targets that don't have thread | |
1109 | exit events (like remote); or on native Linux in non-stop mode if | |
1110 | there were only two threads in the inferior and the non-leader | |
1111 | one is the one that execs (and nothing forces an update of the | |
1112 | thread list up to here). When debugging remotely, it's best to | |
1113 | avoid extra traffic, when possible, so avoid syncing the thread | |
1114 | list with the target, and instead go ahead and delete all threads | |
1115 | of the process but one that reported the event. Note this must | |
1116 | be done before calling update_breakpoints_after_exec, as | |
1117 | otherwise clearing the threads' resources would reference stale | |
1118 | thread breakpoints -- it may have been one of these threads that | |
1119 | stepped across the exec. We could just clear their stepping | |
1120 | states, but as long as we're iterating, might as well delete | |
1121 | them. Deleting them now rather than at the next user-visible | |
1122 | stop provides a nicer sequence of events for user and MI | |
1123 | notifications. */ | |
08036331 | 1124 | for (thread_info *th : all_threads_safe ()) |
d7e15655 | 1125 | if (th->ptid.pid () == pid && th->ptid != ptid) |
00431a78 | 1126 | delete_thread (th); |
95e50b27 PA |
1127 | |
1128 | /* We also need to clear any left over stale state for the | |
1129 | leader/event thread. E.g., if there was any step-resume | |
1130 | breakpoint or similar, it's gone now. We cannot truly | |
1131 | step-to-next statement through an exec(). */ | |
08036331 | 1132 | thread_info *th = inferior_thread (); |
8358c15c | 1133 | th->control.step_resume_breakpoint = NULL; |
186c406b | 1134 | th->control.exception_resume_breakpoint = NULL; |
34b7e8a6 | 1135 | th->control.single_step_breakpoints = NULL; |
16c381f0 JK |
1136 | th->control.step_range_start = 0; |
1137 | th->control.step_range_end = 0; | |
c906108c | 1138 | |
95e50b27 PA |
1139 | /* The user may have had the main thread held stopped in the |
1140 | previous image (e.g., schedlock on, or non-stop). Release | |
1141 | it now. */ | |
a75724bc PA |
1142 | th->stop_requested = 0; |
1143 | ||
95e50b27 PA |
1144 | update_breakpoints_after_exec (); |
1145 | ||
1777feb0 | 1146 | /* What is this a.out's name? */ |
f2907e49 | 1147 | process_ptid = ptid_t (pid); |
6c95b8df | 1148 | printf_unfiltered (_("%s is executing new program: %s\n"), |
a068643d | 1149 | target_pid_to_str (process_ptid).c_str (), |
ecf45d2c | 1150 | exec_file_target); |
c906108c SS |
1151 | |
1152 | /* We've followed the inferior through an exec. Therefore, the | |
1777feb0 | 1153 | inferior has essentially been killed & reborn. */ |
7a292a7a | 1154 | |
6ca15a4b | 1155 | breakpoint_init_inferior (inf_execd); |
e85a822c | 1156 | |
797bc1cb TT |
1157 | gdb::unique_xmalloc_ptr<char> exec_file_host |
1158 | = exec_file_find (exec_file_target, NULL); | |
ff862be4 | 1159 | |
ecf45d2c SL |
1160 | /* If we were unable to map the executable target pathname onto a host |
1161 | pathname, tell the user that. Otherwise GDB's subsequent behavior | |
1162 | is confusing. Maybe it would even be better to stop at this point | |
1163 | so that the user can specify a file manually before continuing. */ | |
1164 | if (exec_file_host == NULL) | |
1165 | warning (_("Could not load symbols for executable %s.\n" | |
1166 | "Do you need \"set sysroot\"?"), | |
1167 | exec_file_target); | |
c906108c | 1168 | |
cce9b6bf PA |
1169 | /* Reset the shared library package. This ensures that we get a |
1170 | shlib event when the child reaches "_start", at which point the | |
1171 | dld will have had a chance to initialize the child. */ | |
1172 | /* Also, loading a symbol file below may trigger symbol lookups, and | |
1173 | we don't want those to be satisfied by the libraries of the | |
1174 | previous incarnation of this process. */ | |
1175 | no_shared_libraries (NULL, 0); | |
1176 | ||
6c95b8df PA |
1177 | if (follow_exec_mode_string == follow_exec_mode_new) |
1178 | { | |
6c95b8df PA |
1179 | /* The user wants to keep the old inferior and program spaces |
1180 | around. Create a new fresh one, and switch to it. */ | |
1181 | ||
35ed81d4 SM |
1182 | /* Do exit processing for the original inferior before setting the new |
1183 | inferior's pid. Having two inferiors with the same pid would confuse | |
1184 | find_inferior_p(t)id. Transfer the terminal state and info from the | |
1185 | old to the new inferior. */ | |
1186 | inf = add_inferior_with_spaces (); | |
1187 | swap_terminal_info (inf, current_inferior ()); | |
057302ce | 1188 | exit_inferior_silent (current_inferior ()); |
17d8546e | 1189 | |
94585166 | 1190 | inf->pid = pid; |
ecf45d2c | 1191 | target_follow_exec (inf, exec_file_target); |
6c95b8df PA |
1192 | |
1193 | set_current_inferior (inf); | |
94585166 | 1194 | set_current_program_space (inf->pspace); |
c4c17fb0 | 1195 | add_thread (ptid); |
6c95b8df | 1196 | } |
9107fc8d PA |
1197 | else |
1198 | { | |
1199 | /* The old description may no longer be fit for the new image. | |
1200 | E.g, a 64-bit process exec'ed a 32-bit process. Clear the | |
1201 | old description; we'll read a new one below. No need to do | |
1202 | this on "follow-exec-mode new", as the old inferior stays | |
1203 | around (its description is later cleared/refetched on | |
1204 | restart). */ | |
1205 | target_clear_description (); | |
1206 | } | |
6c95b8df PA |
1207 | |
1208 | gdb_assert (current_program_space == inf->pspace); | |
1209 | ||
ecf45d2c SL |
1210 | /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used |
1211 | because the proper displacement for a PIE (Position Independent | |
1212 | Executable) main symbol file will only be computed by | |
1213 | solib_create_inferior_hook below. breakpoint_re_set would fail | |
1214 | to insert the breakpoints with the zero displacement. */ | |
797bc1cb | 1215 | try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET); |
c906108c | 1216 | |
9107fc8d PA |
1217 | /* If the target can specify a description, read it. Must do this |
1218 | after flipping to the new executable (because the target supplied | |
1219 | description must be compatible with the executable's | |
1220 | architecture, and the old executable may e.g., be 32-bit, while | |
1221 | the new one 64-bit), and before anything involving memory or | |
1222 | registers. */ | |
1223 | target_find_description (); | |
1224 | ||
268a4a75 | 1225 | solib_create_inferior_hook (0); |
c906108c | 1226 | |
4efc6507 DE |
1227 | jit_inferior_created_hook (); |
1228 | ||
c1e56572 JK |
1229 | breakpoint_re_set (); |
1230 | ||
c906108c SS |
1231 | /* Reinsert all breakpoints. (Those which were symbolic have |
1232 | been reset to the proper address in the new a.out, thanks | |
1777feb0 | 1233 | to symbol_file_command...). */ |
c906108c SS |
1234 | insert_breakpoints (); |
1235 | ||
1236 | /* The next resume of this inferior should bring it to the shlib | |
1237 | startup breakpoints. (If the user had also set bp's on | |
1238 | "main" from the old (parent) process, then they'll auto- | |
1777feb0 | 1239 | matically get reset there in the new process.). */ |
c906108c SS |
1240 | } |
1241 | ||
c2829269 PA |
1242 | /* The queue of threads that need to do a step-over operation to get |
1243 | past e.g., a breakpoint. What technique is used to step over the | |
1244 | breakpoint/watchpoint does not matter -- all threads end up in the | |
1245 | same queue, to maintain rough temporal order of execution, in order | |
1246 | to avoid starvation, otherwise, we could e.g., find ourselves | |
1247 | constantly stepping the same couple threads past their breakpoints | |
1248 | over and over, if the single-step finish fast enough. */ | |
1249 | struct thread_info *step_over_queue_head; | |
1250 | ||
6c4cfb24 PA |
1251 | /* Bit flags indicating what the thread needs to step over. */ |
1252 | ||
8d297bbf | 1253 | enum step_over_what_flag |
6c4cfb24 PA |
1254 | { |
1255 | /* Step over a breakpoint. */ | |
1256 | STEP_OVER_BREAKPOINT = 1, | |
1257 | ||
1258 | /* Step past a non-continuable watchpoint, in order to let the | |
1259 | instruction execute so we can evaluate the watchpoint | |
1260 | expression. */ | |
1261 | STEP_OVER_WATCHPOINT = 2 | |
1262 | }; | |
8d297bbf | 1263 | DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what); |
6c4cfb24 | 1264 | |
963f9c80 | 1265 | /* Info about an instruction that is being stepped over. */ |
31e77af2 PA |
1266 | |
1267 | struct step_over_info | |
1268 | { | |
963f9c80 PA |
1269 | /* If we're stepping past a breakpoint, this is the address space |
1270 | and address of the instruction the breakpoint is set at. We'll | |
1271 | skip inserting all breakpoints here. Valid iff ASPACE is | |
1272 | non-NULL. */ | |
8b86c959 | 1273 | const address_space *aspace; |
31e77af2 | 1274 | CORE_ADDR address; |
963f9c80 PA |
1275 | |
1276 | /* The instruction being stepped over triggers a nonsteppable | |
1277 | watchpoint. If true, we'll skip inserting watchpoints. */ | |
1278 | int nonsteppable_watchpoint_p; | |
21edc42f YQ |
1279 | |
1280 | /* The thread's global number. */ | |
1281 | int thread; | |
31e77af2 PA |
1282 | }; |
1283 | ||
1284 | /* The step-over info of the location that is being stepped over. | |
1285 | ||
1286 | Note that with async/breakpoint always-inserted mode, a user might | |
1287 | set a new breakpoint/watchpoint/etc. exactly while a breakpoint is | |
1288 | being stepped over. As setting a new breakpoint inserts all | |
1289 | breakpoints, we need to make sure the breakpoint being stepped over | |
1290 | isn't inserted then. We do that by only clearing the step-over | |
1291 | info when the step-over is actually finished (or aborted). | |
1292 | ||
1293 | Presently GDB can only step over one breakpoint at any given time. | |
1294 | Given threads that can't run code in the same address space as the | |
1295 | breakpoint's can't really miss the breakpoint, GDB could be taught | |
1296 | to step-over at most one breakpoint per address space (so this info | |
1297 | could move to the address space object if/when GDB is extended). | |
1298 | The set of breakpoints being stepped over will normally be much | |
1299 | smaller than the set of all breakpoints, so a flag in the | |
1300 | breakpoint location structure would be wasteful. A separate list | |
1301 | also saves complexity and run-time, as otherwise we'd have to go | |
1302 | through all breakpoint locations clearing their flag whenever we | |
1303 | start a new sequence. Similar considerations weigh against storing | |
1304 | this info in the thread object. Plus, not all step overs actually | |
1305 | have breakpoint locations -- e.g., stepping past a single-step | |
1306 | breakpoint, or stepping to complete a non-continuable | |
1307 | watchpoint. */ | |
1308 | static struct step_over_info step_over_info; | |
1309 | ||
1310 | /* Record the address of the breakpoint/instruction we're currently | |
ce0db137 DE |
1311 | stepping over. |
1312 | N.B. We record the aspace and address now, instead of say just the thread, | |
1313 | because when we need the info later the thread may be running. */ | |
31e77af2 PA |
1314 | |
1315 | static void | |
8b86c959 | 1316 | set_step_over_info (const address_space *aspace, CORE_ADDR address, |
21edc42f YQ |
1317 | int nonsteppable_watchpoint_p, |
1318 | int thread) | |
31e77af2 PA |
1319 | { |
1320 | step_over_info.aspace = aspace; | |
1321 | step_over_info.address = address; | |
963f9c80 | 1322 | step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p; |
21edc42f | 1323 | step_over_info.thread = thread; |
31e77af2 PA |
1324 | } |
1325 | ||
1326 | /* Called when we're not longer stepping over a breakpoint / an | |
1327 | instruction, so all breakpoints are free to be (re)inserted. */ | |
1328 | ||
1329 | static void | |
1330 | clear_step_over_info (void) | |
1331 | { | |
372316f1 PA |
1332 | if (debug_infrun) |
1333 | fprintf_unfiltered (gdb_stdlog, | |
1334 | "infrun: clear_step_over_info\n"); | |
31e77af2 PA |
1335 | step_over_info.aspace = NULL; |
1336 | step_over_info.address = 0; | |
963f9c80 | 1337 | step_over_info.nonsteppable_watchpoint_p = 0; |
21edc42f | 1338 | step_over_info.thread = -1; |
31e77af2 PA |
1339 | } |
1340 | ||
7f89fd65 | 1341 | /* See infrun.h. */ |
31e77af2 PA |
1342 | |
1343 | int | |
1344 | stepping_past_instruction_at (struct address_space *aspace, | |
1345 | CORE_ADDR address) | |
1346 | { | |
1347 | return (step_over_info.aspace != NULL | |
1348 | && breakpoint_address_match (aspace, address, | |
1349 | step_over_info.aspace, | |
1350 | step_over_info.address)); | |
1351 | } | |
1352 | ||
963f9c80 PA |
1353 | /* See infrun.h. */ |
1354 | ||
21edc42f YQ |
1355 | int |
1356 | thread_is_stepping_over_breakpoint (int thread) | |
1357 | { | |
1358 | return (step_over_info.thread != -1 | |
1359 | && thread == step_over_info.thread); | |
1360 | } | |
1361 | ||
1362 | /* See infrun.h. */ | |
1363 | ||
963f9c80 PA |
1364 | int |
1365 | stepping_past_nonsteppable_watchpoint (void) | |
1366 | { | |
1367 | return step_over_info.nonsteppable_watchpoint_p; | |
1368 | } | |
1369 | ||
6cc83d2a PA |
1370 | /* Returns true if step-over info is valid. */ |
1371 | ||
1372 | static int | |
1373 | step_over_info_valid_p (void) | |
1374 | { | |
963f9c80 PA |
1375 | return (step_over_info.aspace != NULL |
1376 | || stepping_past_nonsteppable_watchpoint ()); | |
6cc83d2a PA |
1377 | } |
1378 | ||
c906108c | 1379 | \f |
237fc4c9 PA |
1380 | /* Displaced stepping. */ |
1381 | ||
1382 | /* In non-stop debugging mode, we must take special care to manage | |
1383 | breakpoints properly; in particular, the traditional strategy for | |
1384 | stepping a thread past a breakpoint it has hit is unsuitable. | |
1385 | 'Displaced stepping' is a tactic for stepping one thread past a | |
1386 | breakpoint it has hit while ensuring that other threads running | |
1387 | concurrently will hit the breakpoint as they should. | |
1388 | ||
1389 | The traditional way to step a thread T off a breakpoint in a | |
1390 | multi-threaded program in all-stop mode is as follows: | |
1391 | ||
1392 | a0) Initially, all threads are stopped, and breakpoints are not | |
1393 | inserted. | |
1394 | a1) We single-step T, leaving breakpoints uninserted. | |
1395 | a2) We insert breakpoints, and resume all threads. | |
1396 | ||
1397 | In non-stop debugging, however, this strategy is unsuitable: we | |
1398 | don't want to have to stop all threads in the system in order to | |
1399 | continue or step T past a breakpoint. Instead, we use displaced | |
1400 | stepping: | |
1401 | ||
1402 | n0) Initially, T is stopped, other threads are running, and | |
1403 | breakpoints are inserted. | |
1404 | n1) We copy the instruction "under" the breakpoint to a separate | |
1405 | location, outside the main code stream, making any adjustments | |
1406 | to the instruction, register, and memory state as directed by | |
1407 | T's architecture. | |
1408 | n2) We single-step T over the instruction at its new location. | |
1409 | n3) We adjust the resulting register and memory state as directed | |
1410 | by T's architecture. This includes resetting T's PC to point | |
1411 | back into the main instruction stream. | |
1412 | n4) We resume T. | |
1413 | ||
1414 | This approach depends on the following gdbarch methods: | |
1415 | ||
1416 | - gdbarch_max_insn_length and gdbarch_displaced_step_location | |
1417 | indicate where to copy the instruction, and how much space must | |
1418 | be reserved there. We use these in step n1. | |
1419 | ||
1420 | - gdbarch_displaced_step_copy_insn copies a instruction to a new | |
1421 | address, and makes any necessary adjustments to the instruction, | |
1422 | register contents, and memory. We use this in step n1. | |
1423 | ||
1424 | - gdbarch_displaced_step_fixup adjusts registers and memory after | |
85102364 | 1425 | we have successfully single-stepped the instruction, to yield the |
237fc4c9 PA |
1426 | same effect the instruction would have had if we had executed it |
1427 | at its original address. We use this in step n3. | |
1428 | ||
237fc4c9 PA |
1429 | The gdbarch_displaced_step_copy_insn and |
1430 | gdbarch_displaced_step_fixup functions must be written so that | |
1431 | copying an instruction with gdbarch_displaced_step_copy_insn, | |
1432 | single-stepping across the copied instruction, and then applying | |
1433 | gdbarch_displaced_insn_fixup should have the same effects on the | |
1434 | thread's memory and registers as stepping the instruction in place | |
1435 | would have. Exactly which responsibilities fall to the copy and | |
1436 | which fall to the fixup is up to the author of those functions. | |
1437 | ||
1438 | See the comments in gdbarch.sh for details. | |
1439 | ||
1440 | Note that displaced stepping and software single-step cannot | |
1441 | currently be used in combination, although with some care I think | |
1442 | they could be made to. Software single-step works by placing | |
1443 | breakpoints on all possible subsequent instructions; if the | |
1444 | displaced instruction is a PC-relative jump, those breakpoints | |
1445 | could fall in very strange places --- on pages that aren't | |
1446 | executable, or at addresses that are not proper instruction | |
1447 | boundaries. (We do generally let other threads run while we wait | |
1448 | to hit the software single-step breakpoint, and they might | |
1449 | encounter such a corrupted instruction.) One way to work around | |
1450 | this would be to have gdbarch_displaced_step_copy_insn fully | |
1451 | simulate the effect of PC-relative instructions (and return NULL) | |
1452 | on architectures that use software single-stepping. | |
1453 | ||
1454 | In non-stop mode, we can have independent and simultaneous step | |
1455 | requests, so more than one thread may need to simultaneously step | |
1456 | over a breakpoint. The current implementation assumes there is | |
1457 | only one scratch space per process. In this case, we have to | |
1458 | serialize access to the scratch space. If thread A wants to step | |
1459 | over a breakpoint, but we are currently waiting for some other | |
1460 | thread to complete a displaced step, we leave thread A stopped and | |
1461 | place it in the displaced_step_request_queue. Whenever a displaced | |
1462 | step finishes, we pick the next thread in the queue and start a new | |
1463 | displaced step operation on it. See displaced_step_prepare and | |
1464 | displaced_step_fixup for details. */ | |
1465 | ||
cfba9872 SM |
1466 | /* Default destructor for displaced_step_closure. */ |
1467 | ||
1468 | displaced_step_closure::~displaced_step_closure () = default; | |
1469 | ||
fc1cf338 PA |
1470 | /* Get the displaced stepping state of process PID. */ |
1471 | ||
39a36629 | 1472 | static displaced_step_inferior_state * |
00431a78 | 1473 | get_displaced_stepping_state (inferior *inf) |
fc1cf338 | 1474 | { |
d20172fc | 1475 | return &inf->displaced_step_state; |
fc1cf338 PA |
1476 | } |
1477 | ||
372316f1 PA |
1478 | /* Returns true if any inferior has a thread doing a displaced |
1479 | step. */ | |
1480 | ||
39a36629 SM |
1481 | static bool |
1482 | displaced_step_in_progress_any_inferior () | |
372316f1 | 1483 | { |
d20172fc | 1484 | for (inferior *i : all_inferiors ()) |
39a36629 | 1485 | { |
d20172fc | 1486 | if (i->displaced_step_state.step_thread != nullptr) |
39a36629 SM |
1487 | return true; |
1488 | } | |
372316f1 | 1489 | |
39a36629 | 1490 | return false; |
372316f1 PA |
1491 | } |
1492 | ||
c0987663 YQ |
1493 | /* Return true if thread represented by PTID is doing a displaced |
1494 | step. */ | |
1495 | ||
1496 | static int | |
00431a78 | 1497 | displaced_step_in_progress_thread (thread_info *thread) |
c0987663 | 1498 | { |
00431a78 | 1499 | gdb_assert (thread != NULL); |
c0987663 | 1500 | |
d20172fc | 1501 | return get_displaced_stepping_state (thread->inf)->step_thread == thread; |
c0987663 YQ |
1502 | } |
1503 | ||
8f572e5c PA |
1504 | /* Return true if process PID has a thread doing a displaced step. */ |
1505 | ||
1506 | static int | |
00431a78 | 1507 | displaced_step_in_progress (inferior *inf) |
8f572e5c | 1508 | { |
d20172fc | 1509 | return get_displaced_stepping_state (inf)->step_thread != nullptr; |
fc1cf338 PA |
1510 | } |
1511 | ||
a42244db YQ |
1512 | /* If inferior is in displaced stepping, and ADDR equals to starting address |
1513 | of copy area, return corresponding displaced_step_closure. Otherwise, | |
1514 | return NULL. */ | |
1515 | ||
1516 | struct displaced_step_closure* | |
1517 | get_displaced_step_closure_by_addr (CORE_ADDR addr) | |
1518 | { | |
d20172fc | 1519 | displaced_step_inferior_state *displaced |
00431a78 | 1520 | = get_displaced_stepping_state (current_inferior ()); |
a42244db YQ |
1521 | |
1522 | /* If checking the mode of displaced instruction in copy area. */ | |
d20172fc | 1523 | if (displaced->step_thread != nullptr |
00431a78 | 1524 | && displaced->step_copy == addr) |
a42244db YQ |
1525 | return displaced->step_closure; |
1526 | ||
1527 | return NULL; | |
1528 | } | |
1529 | ||
fc1cf338 PA |
1530 | static void |
1531 | infrun_inferior_exit (struct inferior *inf) | |
1532 | { | |
d20172fc | 1533 | inf->displaced_step_state.reset (); |
fc1cf338 | 1534 | } |
237fc4c9 | 1535 | |
fff08868 HZ |
1536 | /* If ON, and the architecture supports it, GDB will use displaced |
1537 | stepping to step over breakpoints. If OFF, or if the architecture | |
1538 | doesn't support it, GDB will instead use the traditional | |
1539 | hold-and-step approach. If AUTO (which is the default), GDB will | |
1540 | decide which technique to use to step over breakpoints depending on | |
1541 | which of all-stop or non-stop mode is active --- displaced stepping | |
1542 | in non-stop mode; hold-and-step in all-stop mode. */ | |
1543 | ||
72d0e2c5 | 1544 | static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO; |
fff08868 | 1545 | |
237fc4c9 PA |
1546 | static void |
1547 | show_can_use_displaced_stepping (struct ui_file *file, int from_tty, | |
1548 | struct cmd_list_element *c, | |
1549 | const char *value) | |
1550 | { | |
72d0e2c5 | 1551 | if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO) |
3e43a32a MS |
1552 | fprintf_filtered (file, |
1553 | _("Debugger's willingness to use displaced stepping " | |
1554 | "to step over breakpoints is %s (currently %s).\n"), | |
fbea99ea | 1555 | value, target_is_non_stop_p () ? "on" : "off"); |
fff08868 | 1556 | else |
3e43a32a MS |
1557 | fprintf_filtered (file, |
1558 | _("Debugger's willingness to use displaced stepping " | |
1559 | "to step over breakpoints is %s.\n"), value); | |
237fc4c9 PA |
1560 | } |
1561 | ||
fff08868 | 1562 | /* Return non-zero if displaced stepping can/should be used to step |
3fc8eb30 | 1563 | over breakpoints of thread TP. */ |
fff08868 | 1564 | |
237fc4c9 | 1565 | static int |
3fc8eb30 | 1566 | use_displaced_stepping (struct thread_info *tp) |
237fc4c9 | 1567 | { |
00431a78 | 1568 | struct regcache *regcache = get_thread_regcache (tp); |
ac7936df | 1569 | struct gdbarch *gdbarch = regcache->arch (); |
d20172fc SM |
1570 | displaced_step_inferior_state *displaced_state |
1571 | = get_displaced_stepping_state (tp->inf); | |
3fc8eb30 | 1572 | |
fbea99ea PA |
1573 | return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO |
1574 | && target_is_non_stop_p ()) | |
72d0e2c5 | 1575 | || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE) |
96429cc8 | 1576 | && gdbarch_displaced_step_copy_insn_p (gdbarch) |
3fc8eb30 | 1577 | && find_record_target () == NULL |
d20172fc | 1578 | && !displaced_state->failed_before); |
237fc4c9 PA |
1579 | } |
1580 | ||
1581 | /* Clean out any stray displaced stepping state. */ | |
1582 | static void | |
fc1cf338 | 1583 | displaced_step_clear (struct displaced_step_inferior_state *displaced) |
237fc4c9 PA |
1584 | { |
1585 | /* Indicate that there is no cleanup pending. */ | |
00431a78 | 1586 | displaced->step_thread = nullptr; |
237fc4c9 | 1587 | |
cfba9872 | 1588 | delete displaced->step_closure; |
6d45d4b4 | 1589 | displaced->step_closure = NULL; |
237fc4c9 PA |
1590 | } |
1591 | ||
9799571e TT |
1592 | /* A cleanup that wraps displaced_step_clear. */ |
1593 | using displaced_step_clear_cleanup | |
1594 | = FORWARD_SCOPE_EXIT (displaced_step_clear); | |
237fc4c9 PA |
1595 | |
1596 | /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */ | |
1597 | void | |
1598 | displaced_step_dump_bytes (struct ui_file *file, | |
1599 | const gdb_byte *buf, | |
1600 | size_t len) | |
1601 | { | |
1602 | int i; | |
1603 | ||
1604 | for (i = 0; i < len; i++) | |
1605 | fprintf_unfiltered (file, "%02x ", buf[i]); | |
1606 | fputs_unfiltered ("\n", file); | |
1607 | } | |
1608 | ||
1609 | /* Prepare to single-step, using displaced stepping. | |
1610 | ||
1611 | Note that we cannot use displaced stepping when we have a signal to | |
1612 | deliver. If we have a signal to deliver and an instruction to step | |
1613 | over, then after the step, there will be no indication from the | |
1614 | target whether the thread entered a signal handler or ignored the | |
1615 | signal and stepped over the instruction successfully --- both cases | |
1616 | result in a simple SIGTRAP. In the first case we mustn't do a | |
1617 | fixup, and in the second case we must --- but we can't tell which. | |
1618 | Comments in the code for 'random signals' in handle_inferior_event | |
1619 | explain how we handle this case instead. | |
1620 | ||
1621 | Returns 1 if preparing was successful -- this thread is going to be | |
7f03bd92 PA |
1622 | stepped now; 0 if displaced stepping this thread got queued; or -1 |
1623 | if this instruction can't be displaced stepped. */ | |
1624 | ||
237fc4c9 | 1625 | static int |
00431a78 | 1626 | displaced_step_prepare_throw (thread_info *tp) |
237fc4c9 | 1627 | { |
00431a78 | 1628 | regcache *regcache = get_thread_regcache (tp); |
ac7936df | 1629 | struct gdbarch *gdbarch = regcache->arch (); |
8b86c959 | 1630 | const address_space *aspace = regcache->aspace (); |
237fc4c9 PA |
1631 | CORE_ADDR original, copy; |
1632 | ULONGEST len; | |
1633 | struct displaced_step_closure *closure; | |
9e529e1d | 1634 | int status; |
237fc4c9 PA |
1635 | |
1636 | /* We should never reach this function if the architecture does not | |
1637 | support displaced stepping. */ | |
1638 | gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch)); | |
1639 | ||
c2829269 PA |
1640 | /* Nor if the thread isn't meant to step over a breakpoint. */ |
1641 | gdb_assert (tp->control.trap_expected); | |
1642 | ||
c1e36e3e PA |
1643 | /* Disable range stepping while executing in the scratch pad. We |
1644 | want a single-step even if executing the displaced instruction in | |
1645 | the scratch buffer lands within the stepping range (e.g., a | |
1646 | jump/branch). */ | |
1647 | tp->control.may_range_step = 0; | |
1648 | ||
fc1cf338 PA |
1649 | /* We have to displaced step one thread at a time, as we only have |
1650 | access to a single scratch space per inferior. */ | |
237fc4c9 | 1651 | |
d20172fc SM |
1652 | displaced_step_inferior_state *displaced |
1653 | = get_displaced_stepping_state (tp->inf); | |
fc1cf338 | 1654 | |
00431a78 | 1655 | if (displaced->step_thread != nullptr) |
237fc4c9 PA |
1656 | { |
1657 | /* Already waiting for a displaced step to finish. Defer this | |
1658 | request and place in queue. */ | |
237fc4c9 PA |
1659 | |
1660 | if (debug_displaced) | |
1661 | fprintf_unfiltered (gdb_stdlog, | |
c2829269 | 1662 | "displaced: deferring step of %s\n", |
a068643d | 1663 | target_pid_to_str (tp->ptid).c_str ()); |
237fc4c9 | 1664 | |
c2829269 | 1665 | thread_step_over_chain_enqueue (tp); |
237fc4c9 PA |
1666 | return 0; |
1667 | } | |
1668 | else | |
1669 | { | |
1670 | if (debug_displaced) | |
1671 | fprintf_unfiltered (gdb_stdlog, | |
1672 | "displaced: stepping %s now\n", | |
a068643d | 1673 | target_pid_to_str (tp->ptid).c_str ()); |
237fc4c9 PA |
1674 | } |
1675 | ||
fc1cf338 | 1676 | displaced_step_clear (displaced); |
237fc4c9 | 1677 | |
00431a78 PA |
1678 | scoped_restore_current_thread restore_thread; |
1679 | ||
1680 | switch_to_thread (tp); | |
ad53cd71 | 1681 | |
515630c5 | 1682 | original = regcache_read_pc (regcache); |
237fc4c9 PA |
1683 | |
1684 | copy = gdbarch_displaced_step_location (gdbarch); | |
1685 | len = gdbarch_max_insn_length (gdbarch); | |
1686 | ||
d35ae833 PA |
1687 | if (breakpoint_in_range_p (aspace, copy, len)) |
1688 | { | |
1689 | /* There's a breakpoint set in the scratch pad location range | |
1690 | (which is usually around the entry point). We'd either | |
1691 | install it before resuming, which would overwrite/corrupt the | |
1692 | scratch pad, or if it was already inserted, this displaced | |
1693 | step would overwrite it. The latter is OK in the sense that | |
1694 | we already assume that no thread is going to execute the code | |
1695 | in the scratch pad range (after initial startup) anyway, but | |
1696 | the former is unacceptable. Simply punt and fallback to | |
1697 | stepping over this breakpoint in-line. */ | |
1698 | if (debug_displaced) | |
1699 | { | |
1700 | fprintf_unfiltered (gdb_stdlog, | |
1701 | "displaced: breakpoint set in scratch pad. " | |
1702 | "Stepping over breakpoint in-line instead.\n"); | |
1703 | } | |
1704 | ||
d35ae833 PA |
1705 | return -1; |
1706 | } | |
1707 | ||
237fc4c9 | 1708 | /* Save the original contents of the copy area. */ |
d20172fc SM |
1709 | displaced->step_saved_copy.resize (len); |
1710 | status = target_read_memory (copy, displaced->step_saved_copy.data (), len); | |
9e529e1d JK |
1711 | if (status != 0) |
1712 | throw_error (MEMORY_ERROR, | |
1713 | _("Error accessing memory address %s (%s) for " | |
1714 | "displaced-stepping scratch space."), | |
1715 | paddress (gdbarch, copy), safe_strerror (status)); | |
237fc4c9 PA |
1716 | if (debug_displaced) |
1717 | { | |
5af949e3 UW |
1718 | fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ", |
1719 | paddress (gdbarch, copy)); | |
fc1cf338 | 1720 | displaced_step_dump_bytes (gdb_stdlog, |
d20172fc | 1721 | displaced->step_saved_copy.data (), |
fc1cf338 | 1722 | len); |
237fc4c9 PA |
1723 | }; |
1724 | ||
1725 | closure = gdbarch_displaced_step_copy_insn (gdbarch, | |
ad53cd71 | 1726 | original, copy, regcache); |
7f03bd92 PA |
1727 | if (closure == NULL) |
1728 | { | |
1729 | /* The architecture doesn't know how or want to displaced step | |
1730 | this instruction or instruction sequence. Fallback to | |
1731 | stepping over the breakpoint in-line. */ | |
7f03bd92 PA |
1732 | return -1; |
1733 | } | |
237fc4c9 | 1734 | |
9f5a595d UW |
1735 | /* Save the information we need to fix things up if the step |
1736 | succeeds. */ | |
00431a78 | 1737 | displaced->step_thread = tp; |
fc1cf338 PA |
1738 | displaced->step_gdbarch = gdbarch; |
1739 | displaced->step_closure = closure; | |
1740 | displaced->step_original = original; | |
1741 | displaced->step_copy = copy; | |
9f5a595d | 1742 | |
9799571e TT |
1743 | { |
1744 | displaced_step_clear_cleanup cleanup (displaced); | |
237fc4c9 | 1745 | |
9799571e TT |
1746 | /* Resume execution at the copy. */ |
1747 | regcache_write_pc (regcache, copy); | |
237fc4c9 | 1748 | |
9799571e TT |
1749 | cleanup.release (); |
1750 | } | |
ad53cd71 | 1751 | |
237fc4c9 | 1752 | if (debug_displaced) |
5af949e3 UW |
1753 | fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n", |
1754 | paddress (gdbarch, copy)); | |
237fc4c9 | 1755 | |
237fc4c9 PA |
1756 | return 1; |
1757 | } | |
1758 | ||
3fc8eb30 PA |
1759 | /* Wrapper for displaced_step_prepare_throw that disabled further |
1760 | attempts at displaced stepping if we get a memory error. */ | |
1761 | ||
1762 | static int | |
00431a78 | 1763 | displaced_step_prepare (thread_info *thread) |
3fc8eb30 PA |
1764 | { |
1765 | int prepared = -1; | |
1766 | ||
a70b8144 | 1767 | try |
3fc8eb30 | 1768 | { |
00431a78 | 1769 | prepared = displaced_step_prepare_throw (thread); |
3fc8eb30 | 1770 | } |
230d2906 | 1771 | catch (const gdb_exception_error &ex) |
3fc8eb30 PA |
1772 | { |
1773 | struct displaced_step_inferior_state *displaced_state; | |
1774 | ||
16b41842 PA |
1775 | if (ex.error != MEMORY_ERROR |
1776 | && ex.error != NOT_SUPPORTED_ERROR) | |
eedc3f4f | 1777 | throw; |
3fc8eb30 PA |
1778 | |
1779 | if (debug_infrun) | |
1780 | { | |
1781 | fprintf_unfiltered (gdb_stdlog, | |
1782 | "infrun: disabling displaced stepping: %s\n", | |
3d6e9d23 | 1783 | ex.what ()); |
3fc8eb30 PA |
1784 | } |
1785 | ||
1786 | /* Be verbose if "set displaced-stepping" is "on", silent if | |
1787 | "auto". */ | |
1788 | if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE) | |
1789 | { | |
fd7dcb94 | 1790 | warning (_("disabling displaced stepping: %s"), |
3d6e9d23 | 1791 | ex.what ()); |
3fc8eb30 PA |
1792 | } |
1793 | ||
1794 | /* Disable further displaced stepping attempts. */ | |
1795 | displaced_state | |
00431a78 | 1796 | = get_displaced_stepping_state (thread->inf); |
3fc8eb30 PA |
1797 | displaced_state->failed_before = 1; |
1798 | } | |
3fc8eb30 PA |
1799 | |
1800 | return prepared; | |
1801 | } | |
1802 | ||
237fc4c9 | 1803 | static void |
3e43a32a MS |
1804 | write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, |
1805 | const gdb_byte *myaddr, int len) | |
237fc4c9 | 1806 | { |
2989a365 | 1807 | scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); |
abbb1732 | 1808 | |
237fc4c9 PA |
1809 | inferior_ptid = ptid; |
1810 | write_memory (memaddr, myaddr, len); | |
237fc4c9 PA |
1811 | } |
1812 | ||
e2d96639 YQ |
1813 | /* Restore the contents of the copy area for thread PTID. */ |
1814 | ||
1815 | static void | |
1816 | displaced_step_restore (struct displaced_step_inferior_state *displaced, | |
1817 | ptid_t ptid) | |
1818 | { | |
1819 | ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch); | |
1820 | ||
1821 | write_memory_ptid (ptid, displaced->step_copy, | |
d20172fc | 1822 | displaced->step_saved_copy.data (), len); |
e2d96639 YQ |
1823 | if (debug_displaced) |
1824 | fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n", | |
a068643d | 1825 | target_pid_to_str (ptid).c_str (), |
e2d96639 YQ |
1826 | paddress (displaced->step_gdbarch, |
1827 | displaced->step_copy)); | |
1828 | } | |
1829 | ||
372316f1 PA |
1830 | /* If we displaced stepped an instruction successfully, adjust |
1831 | registers and memory to yield the same effect the instruction would | |
1832 | have had if we had executed it at its original address, and return | |
1833 | 1. If the instruction didn't complete, relocate the PC and return | |
1834 | -1. If the thread wasn't displaced stepping, return 0. */ | |
1835 | ||
1836 | static int | |
00431a78 | 1837 | displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal) |
237fc4c9 | 1838 | { |
fc1cf338 | 1839 | struct displaced_step_inferior_state *displaced |
00431a78 | 1840 | = get_displaced_stepping_state (event_thread->inf); |
372316f1 | 1841 | int ret; |
fc1cf338 | 1842 | |
00431a78 PA |
1843 | /* Was this event for the thread we displaced? */ |
1844 | if (displaced->step_thread != event_thread) | |
372316f1 | 1845 | return 0; |
237fc4c9 | 1846 | |
9799571e | 1847 | displaced_step_clear_cleanup cleanup (displaced); |
237fc4c9 | 1848 | |
00431a78 | 1849 | displaced_step_restore (displaced, displaced->step_thread->ptid); |
237fc4c9 | 1850 | |
cb71640d PA |
1851 | /* Fixup may need to read memory/registers. Switch to the thread |
1852 | that we're fixing up. Also, target_stopped_by_watchpoint checks | |
1853 | the current thread. */ | |
00431a78 | 1854 | switch_to_thread (event_thread); |
cb71640d | 1855 | |
237fc4c9 | 1856 | /* Did the instruction complete successfully? */ |
cb71640d PA |
1857 | if (signal == GDB_SIGNAL_TRAP |
1858 | && !(target_stopped_by_watchpoint () | |
1859 | && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch) | |
1860 | || target_have_steppable_watchpoint))) | |
237fc4c9 PA |
1861 | { |
1862 | /* Fix up the resulting state. */ | |
fc1cf338 PA |
1863 | gdbarch_displaced_step_fixup (displaced->step_gdbarch, |
1864 | displaced->step_closure, | |
1865 | displaced->step_original, | |
1866 | displaced->step_copy, | |
00431a78 | 1867 | get_thread_regcache (displaced->step_thread)); |
372316f1 | 1868 | ret = 1; |
237fc4c9 PA |
1869 | } |
1870 | else | |
1871 | { | |
1872 | /* Since the instruction didn't complete, all we can do is | |
1873 | relocate the PC. */ | |
00431a78 | 1874 | struct regcache *regcache = get_thread_regcache (event_thread); |
515630c5 | 1875 | CORE_ADDR pc = regcache_read_pc (regcache); |
abbb1732 | 1876 | |
fc1cf338 | 1877 | pc = displaced->step_original + (pc - displaced->step_copy); |
515630c5 | 1878 | regcache_write_pc (regcache, pc); |
372316f1 | 1879 | ret = -1; |
237fc4c9 PA |
1880 | } |
1881 | ||
372316f1 | 1882 | return ret; |
c2829269 | 1883 | } |
1c5cfe86 | 1884 | |
4d9d9d04 PA |
1885 | /* Data to be passed around while handling an event. This data is |
1886 | discarded between events. */ | |
1887 | struct execution_control_state | |
1888 | { | |
1889 | ptid_t ptid; | |
1890 | /* The thread that got the event, if this was a thread event; NULL | |
1891 | otherwise. */ | |
1892 | struct thread_info *event_thread; | |
1893 | ||
1894 | struct target_waitstatus ws; | |
1895 | int stop_func_filled_in; | |
1896 | CORE_ADDR stop_func_start; | |
1897 | CORE_ADDR stop_func_end; | |
1898 | const char *stop_func_name; | |
1899 | int wait_some_more; | |
1900 | ||
1901 | /* True if the event thread hit the single-step breakpoint of | |
1902 | another thread. Thus the event doesn't cause a stop, the thread | |
1903 | needs to be single-stepped past the single-step breakpoint before | |
1904 | we can switch back to the original stepping thread. */ | |
1905 | int hit_singlestep_breakpoint; | |
1906 | }; | |
1907 | ||
1908 | /* Clear ECS and set it to point at TP. */ | |
c2829269 PA |
1909 | |
1910 | static void | |
4d9d9d04 PA |
1911 | reset_ecs (struct execution_control_state *ecs, struct thread_info *tp) |
1912 | { | |
1913 | memset (ecs, 0, sizeof (*ecs)); | |
1914 | ecs->event_thread = tp; | |
1915 | ecs->ptid = tp->ptid; | |
1916 | } | |
1917 | ||
1918 | static void keep_going_pass_signal (struct execution_control_state *ecs); | |
1919 | static void prepare_to_wait (struct execution_control_state *ecs); | |
2ac7589c | 1920 | static int keep_going_stepped_thread (struct thread_info *tp); |
8d297bbf | 1921 | static step_over_what thread_still_needs_step_over (struct thread_info *tp); |
4d9d9d04 PA |
1922 | |
1923 | /* Are there any pending step-over requests? If so, run all we can | |
1924 | now and return true. Otherwise, return false. */ | |
1925 | ||
1926 | static int | |
c2829269 PA |
1927 | start_step_over (void) |
1928 | { | |
1929 | struct thread_info *tp, *next; | |
1930 | ||
372316f1 PA |
1931 | /* Don't start a new step-over if we already have an in-line |
1932 | step-over operation ongoing. */ | |
1933 | if (step_over_info_valid_p ()) | |
1934 | return 0; | |
1935 | ||
c2829269 | 1936 | for (tp = step_over_queue_head; tp != NULL; tp = next) |
237fc4c9 | 1937 | { |
4d9d9d04 PA |
1938 | struct execution_control_state ecss; |
1939 | struct execution_control_state *ecs = &ecss; | |
8d297bbf | 1940 | step_over_what step_what; |
372316f1 | 1941 | int must_be_in_line; |
c2829269 | 1942 | |
c65d6b55 PA |
1943 | gdb_assert (!tp->stop_requested); |
1944 | ||
c2829269 | 1945 | next = thread_step_over_chain_next (tp); |
237fc4c9 | 1946 | |
c2829269 PA |
1947 | /* If this inferior already has a displaced step in process, |
1948 | don't start a new one. */ | |
00431a78 | 1949 | if (displaced_step_in_progress (tp->inf)) |
c2829269 PA |
1950 | continue; |
1951 | ||
372316f1 PA |
1952 | step_what = thread_still_needs_step_over (tp); |
1953 | must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT) | |
1954 | || ((step_what & STEP_OVER_BREAKPOINT) | |
3fc8eb30 | 1955 | && !use_displaced_stepping (tp))); |
372316f1 PA |
1956 | |
1957 | /* We currently stop all threads of all processes to step-over | |
1958 | in-line. If we need to start a new in-line step-over, let | |
1959 | any pending displaced steps finish first. */ | |
1960 | if (must_be_in_line && displaced_step_in_progress_any_inferior ()) | |
1961 | return 0; | |
1962 | ||
c2829269 PA |
1963 | thread_step_over_chain_remove (tp); |
1964 | ||
1965 | if (step_over_queue_head == NULL) | |
1966 | { | |
1967 | if (debug_infrun) | |
1968 | fprintf_unfiltered (gdb_stdlog, | |
1969 | "infrun: step-over queue now empty\n"); | |
1970 | } | |
1971 | ||
372316f1 PA |
1972 | if (tp->control.trap_expected |
1973 | || tp->resumed | |
1974 | || tp->executing) | |
ad53cd71 | 1975 | { |
4d9d9d04 PA |
1976 | internal_error (__FILE__, __LINE__, |
1977 | "[%s] has inconsistent state: " | |
372316f1 | 1978 | "trap_expected=%d, resumed=%d, executing=%d\n", |
a068643d | 1979 | target_pid_to_str (tp->ptid).c_str (), |
4d9d9d04 | 1980 | tp->control.trap_expected, |
372316f1 | 1981 | tp->resumed, |
4d9d9d04 | 1982 | tp->executing); |
ad53cd71 | 1983 | } |
1c5cfe86 | 1984 | |
4d9d9d04 PA |
1985 | if (debug_infrun) |
1986 | fprintf_unfiltered (gdb_stdlog, | |
1987 | "infrun: resuming [%s] for step-over\n", | |
a068643d | 1988 | target_pid_to_str (tp->ptid).c_str ()); |
4d9d9d04 PA |
1989 | |
1990 | /* keep_going_pass_signal skips the step-over if the breakpoint | |
1991 | is no longer inserted. In all-stop, we want to keep looking | |
1992 | for a thread that needs a step-over instead of resuming TP, | |
1993 | because we wouldn't be able to resume anything else until the | |
1994 | target stops again. In non-stop, the resume always resumes | |
1995 | only TP, so it's OK to let the thread resume freely. */ | |
fbea99ea | 1996 | if (!target_is_non_stop_p () && !step_what) |
4d9d9d04 | 1997 | continue; |
8550d3b3 | 1998 | |
00431a78 | 1999 | switch_to_thread (tp); |
4d9d9d04 PA |
2000 | reset_ecs (ecs, tp); |
2001 | keep_going_pass_signal (ecs); | |
1c5cfe86 | 2002 | |
4d9d9d04 PA |
2003 | if (!ecs->wait_some_more) |
2004 | error (_("Command aborted.")); | |
1c5cfe86 | 2005 | |
372316f1 PA |
2006 | gdb_assert (tp->resumed); |
2007 | ||
2008 | /* If we started a new in-line step-over, we're done. */ | |
2009 | if (step_over_info_valid_p ()) | |
2010 | { | |
2011 | gdb_assert (tp->control.trap_expected); | |
2012 | return 1; | |
2013 | } | |
2014 | ||
fbea99ea | 2015 | if (!target_is_non_stop_p ()) |
4d9d9d04 PA |
2016 | { |
2017 | /* On all-stop, shouldn't have resumed unless we needed a | |
2018 | step over. */ | |
2019 | gdb_assert (tp->control.trap_expected | |
2020 | || tp->step_after_step_resume_breakpoint); | |
2021 | ||
2022 | /* With remote targets (at least), in all-stop, we can't | |
2023 | issue any further remote commands until the program stops | |
2024 | again. */ | |
2025 | return 1; | |
1c5cfe86 | 2026 | } |
c2829269 | 2027 | |
4d9d9d04 PA |
2028 | /* Either the thread no longer needed a step-over, or a new |
2029 | displaced stepping sequence started. Even in the latter | |
2030 | case, continue looking. Maybe we can also start another | |
2031 | displaced step on a thread of other process. */ | |
237fc4c9 | 2032 | } |
4d9d9d04 PA |
2033 | |
2034 | return 0; | |
237fc4c9 PA |
2035 | } |
2036 | ||
5231c1fd PA |
2037 | /* Update global variables holding ptids to hold NEW_PTID if they were |
2038 | holding OLD_PTID. */ | |
2039 | static void | |
2040 | infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid) | |
2041 | { | |
d7e15655 | 2042 | if (inferior_ptid == old_ptid) |
5231c1fd | 2043 | inferior_ptid = new_ptid; |
5231c1fd PA |
2044 | } |
2045 | ||
237fc4c9 | 2046 | \f |
c906108c | 2047 | |
53904c9e AC |
2048 | static const char schedlock_off[] = "off"; |
2049 | static const char schedlock_on[] = "on"; | |
2050 | static const char schedlock_step[] = "step"; | |
f2665db5 | 2051 | static const char schedlock_replay[] = "replay"; |
40478521 | 2052 | static const char *const scheduler_enums[] = { |
ef346e04 AC |
2053 | schedlock_off, |
2054 | schedlock_on, | |
2055 | schedlock_step, | |
f2665db5 | 2056 | schedlock_replay, |
ef346e04 AC |
2057 | NULL |
2058 | }; | |
f2665db5 | 2059 | static const char *scheduler_mode = schedlock_replay; |
920d2a44 AC |
2060 | static void |
2061 | show_scheduler_mode (struct ui_file *file, int from_tty, | |
2062 | struct cmd_list_element *c, const char *value) | |
2063 | { | |
3e43a32a MS |
2064 | fprintf_filtered (file, |
2065 | _("Mode for locking scheduler " | |
2066 | "during execution is \"%s\".\n"), | |
920d2a44 AC |
2067 | value); |
2068 | } | |
c906108c SS |
2069 | |
2070 | static void | |
eb4c3f4a | 2071 | set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c) |
c906108c | 2072 | { |
eefe576e AC |
2073 | if (!target_can_lock_scheduler) |
2074 | { | |
2075 | scheduler_mode = schedlock_off; | |
2076 | error (_("Target '%s' cannot support this command."), target_shortname); | |
2077 | } | |
c906108c SS |
2078 | } |
2079 | ||
d4db2f36 PA |
2080 | /* True if execution commands resume all threads of all processes by |
2081 | default; otherwise, resume only threads of the current inferior | |
2082 | process. */ | |
491144b5 | 2083 | bool sched_multi = false; |
d4db2f36 | 2084 | |
2facfe5c DD |
2085 | /* Try to setup for software single stepping over the specified location. |
2086 | Return 1 if target_resume() should use hardware single step. | |
2087 | ||
2088 | GDBARCH the current gdbarch. | |
2089 | PC the location to step over. */ | |
2090 | ||
2091 | static int | |
2092 | maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc) | |
2093 | { | |
2094 | int hw_step = 1; | |
2095 | ||
f02253f1 | 2096 | if (execution_direction == EXEC_FORWARD |
93f9a11f YQ |
2097 | && gdbarch_software_single_step_p (gdbarch)) |
2098 | hw_step = !insert_single_step_breakpoints (gdbarch); | |
2099 | ||
2facfe5c DD |
2100 | return hw_step; |
2101 | } | |
c906108c | 2102 | |
f3263aa4 PA |
2103 | /* See infrun.h. */ |
2104 | ||
09cee04b PA |
2105 | ptid_t |
2106 | user_visible_resume_ptid (int step) | |
2107 | { | |
f3263aa4 | 2108 | ptid_t resume_ptid; |
09cee04b | 2109 | |
09cee04b PA |
2110 | if (non_stop) |
2111 | { | |
2112 | /* With non-stop mode on, threads are always handled | |
2113 | individually. */ | |
2114 | resume_ptid = inferior_ptid; | |
2115 | } | |
2116 | else if ((scheduler_mode == schedlock_on) | |
03d46957 | 2117 | || (scheduler_mode == schedlock_step && step)) |
09cee04b | 2118 | { |
f3263aa4 PA |
2119 | /* User-settable 'scheduler' mode requires solo thread |
2120 | resume. */ | |
09cee04b PA |
2121 | resume_ptid = inferior_ptid; |
2122 | } | |
f2665db5 MM |
2123 | else if ((scheduler_mode == schedlock_replay) |
2124 | && target_record_will_replay (minus_one_ptid, execution_direction)) | |
2125 | { | |
2126 | /* User-settable 'scheduler' mode requires solo thread resume in replay | |
2127 | mode. */ | |
2128 | resume_ptid = inferior_ptid; | |
2129 | } | |
f3263aa4 PA |
2130 | else if (!sched_multi && target_supports_multi_process ()) |
2131 | { | |
2132 | /* Resume all threads of the current process (and none of other | |
2133 | processes). */ | |
e99b03dc | 2134 | resume_ptid = ptid_t (inferior_ptid.pid ()); |
f3263aa4 PA |
2135 | } |
2136 | else | |
2137 | { | |
2138 | /* Resume all threads of all processes. */ | |
2139 | resume_ptid = RESUME_ALL; | |
2140 | } | |
09cee04b PA |
2141 | |
2142 | return resume_ptid; | |
2143 | } | |
2144 | ||
fbea99ea PA |
2145 | /* Return a ptid representing the set of threads that we will resume, |
2146 | in the perspective of the target, assuming run control handling | |
2147 | does not require leaving some threads stopped (e.g., stepping past | |
2148 | breakpoint). USER_STEP indicates whether we're about to start the | |
2149 | target for a stepping command. */ | |
2150 | ||
2151 | static ptid_t | |
2152 | internal_resume_ptid (int user_step) | |
2153 | { | |
2154 | /* In non-stop, we always control threads individually. Note that | |
2155 | the target may always work in non-stop mode even with "set | |
2156 | non-stop off", in which case user_visible_resume_ptid could | |
2157 | return a wildcard ptid. */ | |
2158 | if (target_is_non_stop_p ()) | |
2159 | return inferior_ptid; | |
2160 | else | |
2161 | return user_visible_resume_ptid (user_step); | |
2162 | } | |
2163 | ||
64ce06e4 PA |
2164 | /* Wrapper for target_resume, that handles infrun-specific |
2165 | bookkeeping. */ | |
2166 | ||
2167 | static void | |
2168 | do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig) | |
2169 | { | |
2170 | struct thread_info *tp = inferior_thread (); | |
2171 | ||
c65d6b55 PA |
2172 | gdb_assert (!tp->stop_requested); |
2173 | ||
64ce06e4 | 2174 | /* Install inferior's terminal modes. */ |
223ffa71 | 2175 | target_terminal::inferior (); |
64ce06e4 PA |
2176 | |
2177 | /* Avoid confusing the next resume, if the next stop/resume | |
2178 | happens to apply to another thread. */ | |
2179 | tp->suspend.stop_signal = GDB_SIGNAL_0; | |
2180 | ||
8f572e5c PA |
2181 | /* Advise target which signals may be handled silently. |
2182 | ||
2183 | If we have removed breakpoints because we are stepping over one | |
2184 | in-line (in any thread), we need to receive all signals to avoid | |
2185 | accidentally skipping a breakpoint during execution of a signal | |
2186 | handler. | |
2187 | ||
2188 | Likewise if we're displaced stepping, otherwise a trap for a | |
2189 | breakpoint in a signal handler might be confused with the | |
2190 | displaced step finishing. We don't make the displaced_step_fixup | |
2191 | step distinguish the cases instead, because: | |
2192 | ||
2193 | - a backtrace while stopped in the signal handler would show the | |
2194 | scratch pad as frame older than the signal handler, instead of | |
2195 | the real mainline code. | |
2196 | ||
2197 | - when the thread is later resumed, the signal handler would | |
2198 | return to the scratch pad area, which would no longer be | |
2199 | valid. */ | |
2200 | if (step_over_info_valid_p () | |
00431a78 | 2201 | || displaced_step_in_progress (tp->inf)) |
adc6a863 | 2202 | target_pass_signals ({}); |
64ce06e4 | 2203 | else |
adc6a863 | 2204 | target_pass_signals (signal_pass); |
64ce06e4 PA |
2205 | |
2206 | target_resume (resume_ptid, step, sig); | |
85ad3aaf PA |
2207 | |
2208 | target_commit_resume (); | |
64ce06e4 PA |
2209 | } |
2210 | ||
d930703d | 2211 | /* Resume the inferior. SIG is the signal to give the inferior |
71d378ae PA |
2212 | (GDB_SIGNAL_0 for none). Note: don't call this directly; instead |
2213 | call 'resume', which handles exceptions. */ | |
c906108c | 2214 | |
71d378ae PA |
2215 | static void |
2216 | resume_1 (enum gdb_signal sig) | |
c906108c | 2217 | { |
515630c5 | 2218 | struct regcache *regcache = get_current_regcache (); |
ac7936df | 2219 | struct gdbarch *gdbarch = regcache->arch (); |
4e1c45ea | 2220 | struct thread_info *tp = inferior_thread (); |
515630c5 | 2221 | CORE_ADDR pc = regcache_read_pc (regcache); |
8b86c959 | 2222 | const address_space *aspace = regcache->aspace (); |
b0f16a3e | 2223 | ptid_t resume_ptid; |
856e7dd6 PA |
2224 | /* This represents the user's step vs continue request. When |
2225 | deciding whether "set scheduler-locking step" applies, it's the | |
2226 | user's intention that counts. */ | |
2227 | const int user_step = tp->control.stepping_command; | |
64ce06e4 PA |
2228 | /* This represents what we'll actually request the target to do. |
2229 | This can decay from a step to a continue, if e.g., we need to | |
2230 | implement single-stepping with breakpoints (software | |
2231 | single-step). */ | |
6b403daa | 2232 | int step; |
c7e8a53c | 2233 | |
c65d6b55 | 2234 | gdb_assert (!tp->stop_requested); |
c2829269 PA |
2235 | gdb_assert (!thread_is_in_step_over_chain (tp)); |
2236 | ||
372316f1 PA |
2237 | if (tp->suspend.waitstatus_pending_p) |
2238 | { | |
2239 | if (debug_infrun) | |
2240 | { | |
23fdd69e SM |
2241 | std::string statstr |
2242 | = target_waitstatus_to_string (&tp->suspend.waitstatus); | |
372316f1 | 2243 | |
372316f1 | 2244 | fprintf_unfiltered (gdb_stdlog, |
23fdd69e SM |
2245 | "infrun: resume: thread %s has pending wait " |
2246 | "status %s (currently_stepping=%d).\n", | |
a068643d TT |
2247 | target_pid_to_str (tp->ptid).c_str (), |
2248 | statstr.c_str (), | |
372316f1 | 2249 | currently_stepping (tp)); |
372316f1 PA |
2250 | } |
2251 | ||
2252 | tp->resumed = 1; | |
2253 | ||
2254 | /* FIXME: What should we do if we are supposed to resume this | |
2255 | thread with a signal? Maybe we should maintain a queue of | |
2256 | pending signals to deliver. */ | |
2257 | if (sig != GDB_SIGNAL_0) | |
2258 | { | |
fd7dcb94 | 2259 | warning (_("Couldn't deliver signal %s to %s."), |
a068643d TT |
2260 | gdb_signal_to_name (sig), |
2261 | target_pid_to_str (tp->ptid).c_str ()); | |
372316f1 PA |
2262 | } |
2263 | ||
2264 | tp->suspend.stop_signal = GDB_SIGNAL_0; | |
372316f1 PA |
2265 | |
2266 | if (target_can_async_p ()) | |
9516f85a AB |
2267 | { |
2268 | target_async (1); | |
2269 | /* Tell the event loop we have an event to process. */ | |
2270 | mark_async_event_handler (infrun_async_inferior_event_token); | |
2271 | } | |
372316f1 PA |
2272 | return; |
2273 | } | |
2274 | ||
2275 | tp->stepped_breakpoint = 0; | |
2276 | ||
6b403daa PA |
2277 | /* Depends on stepped_breakpoint. */ |
2278 | step = currently_stepping (tp); | |
2279 | ||
74609e71 YQ |
2280 | if (current_inferior ()->waiting_for_vfork_done) |
2281 | { | |
48f9886d PA |
2282 | /* Don't try to single-step a vfork parent that is waiting for |
2283 | the child to get out of the shared memory region (by exec'ing | |
2284 | or exiting). This is particularly important on software | |
2285 | single-step archs, as the child process would trip on the | |
2286 | software single step breakpoint inserted for the parent | |
2287 | process. Since the parent will not actually execute any | |
2288 | instruction until the child is out of the shared region (such | |
2289 | are vfork's semantics), it is safe to simply continue it. | |
2290 | Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for | |
2291 | the parent, and tell it to `keep_going', which automatically | |
2292 | re-sets it stepping. */ | |
74609e71 YQ |
2293 | if (debug_infrun) |
2294 | fprintf_unfiltered (gdb_stdlog, | |
2295 | "infrun: resume : clear step\n"); | |
a09dd441 | 2296 | step = 0; |
74609e71 YQ |
2297 | } |
2298 | ||
527159b7 | 2299 | if (debug_infrun) |
237fc4c9 | 2300 | fprintf_unfiltered (gdb_stdlog, |
c9737c08 | 2301 | "infrun: resume (step=%d, signal=%s), " |
0d9a9a5f | 2302 | "trap_expected=%d, current thread [%s] at %s\n", |
c9737c08 PA |
2303 | step, gdb_signal_to_symbol_string (sig), |
2304 | tp->control.trap_expected, | |
a068643d | 2305 | target_pid_to_str (inferior_ptid).c_str (), |
0d9a9a5f | 2306 | paddress (gdbarch, pc)); |
c906108c | 2307 | |
c2c6d25f JM |
2308 | /* Normally, by the time we reach `resume', the breakpoints are either |
2309 | removed or inserted, as appropriate. The exception is if we're sitting | |
2310 | at a permanent breakpoint; we need to step over it, but permanent | |
2311 | breakpoints can't be removed. So we have to test for it here. */ | |
6c95b8df | 2312 | if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here) |
6d350bb5 | 2313 | { |
af48d08f PA |
2314 | if (sig != GDB_SIGNAL_0) |
2315 | { | |
2316 | /* We have a signal to pass to the inferior. The resume | |
2317 | may, or may not take us to the signal handler. If this | |
2318 | is a step, we'll need to stop in the signal handler, if | |
2319 | there's one, (if the target supports stepping into | |
2320 | handlers), or in the next mainline instruction, if | |
2321 | there's no handler. If this is a continue, we need to be | |
2322 | sure to run the handler with all breakpoints inserted. | |
2323 | In all cases, set a breakpoint at the current address | |
2324 | (where the handler returns to), and once that breakpoint | |
2325 | is hit, resume skipping the permanent breakpoint. If | |
2326 | that breakpoint isn't hit, then we've stepped into the | |
2327 | signal handler (or hit some other event). We'll delete | |
2328 | the step-resume breakpoint then. */ | |
2329 | ||
2330 | if (debug_infrun) | |
2331 | fprintf_unfiltered (gdb_stdlog, | |
2332 | "infrun: resume: skipping permanent breakpoint, " | |
2333 | "deliver signal first\n"); | |
2334 | ||
2335 | clear_step_over_info (); | |
2336 | tp->control.trap_expected = 0; | |
2337 | ||
2338 | if (tp->control.step_resume_breakpoint == NULL) | |
2339 | { | |
2340 | /* Set a "high-priority" step-resume, as we don't want | |
2341 | user breakpoints at PC to trigger (again) when this | |
2342 | hits. */ | |
2343 | insert_hp_step_resume_breakpoint_at_frame (get_current_frame ()); | |
2344 | gdb_assert (tp->control.step_resume_breakpoint->loc->permanent); | |
2345 | ||
2346 | tp->step_after_step_resume_breakpoint = step; | |
2347 | } | |
2348 | ||
2349 | insert_breakpoints (); | |
2350 | } | |
2351 | else | |
2352 | { | |
2353 | /* There's no signal to pass, we can go ahead and skip the | |
2354 | permanent breakpoint manually. */ | |
2355 | if (debug_infrun) | |
2356 | fprintf_unfiltered (gdb_stdlog, | |
2357 | "infrun: resume: skipping permanent breakpoint\n"); | |
2358 | gdbarch_skip_permanent_breakpoint (gdbarch, regcache); | |
2359 | /* Update pc to reflect the new address from which we will | |
2360 | execute instructions. */ | |
2361 | pc = regcache_read_pc (regcache); | |
2362 | ||
2363 | if (step) | |
2364 | { | |
2365 | /* We've already advanced the PC, so the stepping part | |
2366 | is done. Now we need to arrange for a trap to be | |
2367 | reported to handle_inferior_event. Set a breakpoint | |
2368 | at the current PC, and run to it. Don't update | |
2369 | prev_pc, because if we end in | |
44a1ee51 PA |
2370 | switch_back_to_stepped_thread, we want the "expected |
2371 | thread advanced also" branch to be taken. IOW, we | |
2372 | don't want this thread to step further from PC | |
af48d08f | 2373 | (overstep). */ |
1ac806b8 | 2374 | gdb_assert (!step_over_info_valid_p ()); |
af48d08f PA |
2375 | insert_single_step_breakpoint (gdbarch, aspace, pc); |
2376 | insert_breakpoints (); | |
2377 | ||
fbea99ea | 2378 | resume_ptid = internal_resume_ptid (user_step); |
1ac806b8 | 2379 | do_target_resume (resume_ptid, 0, GDB_SIGNAL_0); |
372316f1 | 2380 | tp->resumed = 1; |
af48d08f PA |
2381 | return; |
2382 | } | |
2383 | } | |
6d350bb5 | 2384 | } |
c2c6d25f | 2385 | |
c1e36e3e PA |
2386 | /* If we have a breakpoint to step over, make sure to do a single |
2387 | step only. Same if we have software watchpoints. */ | |
2388 | if (tp->control.trap_expected || bpstat_should_step ()) | |
2389 | tp->control.may_range_step = 0; | |
2390 | ||
237fc4c9 PA |
2391 | /* If enabled, step over breakpoints by executing a copy of the |
2392 | instruction at a different address. | |
2393 | ||
2394 | We can't use displaced stepping when we have a signal to deliver; | |
2395 | the comments for displaced_step_prepare explain why. The | |
2396 | comments in the handle_inferior event for dealing with 'random | |
74609e71 YQ |
2397 | signals' explain what we do instead. |
2398 | ||
2399 | We can't use displaced stepping when we are waiting for vfork_done | |
2400 | event, displaced stepping breaks the vfork child similarly as single | |
2401 | step software breakpoint. */ | |
3fc8eb30 PA |
2402 | if (tp->control.trap_expected |
2403 | && use_displaced_stepping (tp) | |
cb71640d | 2404 | && !step_over_info_valid_p () |
a493e3e2 | 2405 | && sig == GDB_SIGNAL_0 |
74609e71 | 2406 | && !current_inferior ()->waiting_for_vfork_done) |
237fc4c9 | 2407 | { |
00431a78 | 2408 | int prepared = displaced_step_prepare (tp); |
fc1cf338 | 2409 | |
3fc8eb30 | 2410 | if (prepared == 0) |
d56b7306 | 2411 | { |
4d9d9d04 PA |
2412 | if (debug_infrun) |
2413 | fprintf_unfiltered (gdb_stdlog, | |
2414 | "Got placed in step-over queue\n"); | |
2415 | ||
2416 | tp->control.trap_expected = 0; | |
d56b7306 VP |
2417 | return; |
2418 | } | |
3fc8eb30 PA |
2419 | else if (prepared < 0) |
2420 | { | |
2421 | /* Fallback to stepping over the breakpoint in-line. */ | |
2422 | ||
2423 | if (target_is_non_stop_p ()) | |
2424 | stop_all_threads (); | |
2425 | ||
a01bda52 | 2426 | set_step_over_info (regcache->aspace (), |
21edc42f | 2427 | regcache_read_pc (regcache), 0, tp->global_num); |
3fc8eb30 PA |
2428 | |
2429 | step = maybe_software_singlestep (gdbarch, pc); | |
2430 | ||
2431 | insert_breakpoints (); | |
2432 | } | |
2433 | else if (prepared > 0) | |
2434 | { | |
2435 | struct displaced_step_inferior_state *displaced; | |
99e40580 | 2436 | |
3fc8eb30 PA |
2437 | /* Update pc to reflect the new address from which we will |
2438 | execute instructions due to displaced stepping. */ | |
00431a78 | 2439 | pc = regcache_read_pc (get_thread_regcache (tp)); |
ca7781d2 | 2440 | |
00431a78 | 2441 | displaced = get_displaced_stepping_state (tp->inf); |
3fc8eb30 PA |
2442 | step = gdbarch_displaced_step_hw_singlestep (gdbarch, |
2443 | displaced->step_closure); | |
2444 | } | |
237fc4c9 PA |
2445 | } |
2446 | ||
2facfe5c | 2447 | /* Do we need to do it the hard way, w/temp breakpoints? */ |
99e40580 | 2448 | else if (step) |
2facfe5c | 2449 | step = maybe_software_singlestep (gdbarch, pc); |
c906108c | 2450 | |
30852783 UW |
2451 | /* Currently, our software single-step implementation leads to different |
2452 | results than hardware single-stepping in one situation: when stepping | |
2453 | into delivering a signal which has an associated signal handler, | |
2454 | hardware single-step will stop at the first instruction of the handler, | |
2455 | while software single-step will simply skip execution of the handler. | |
2456 | ||
2457 | For now, this difference in behavior is accepted since there is no | |
2458 | easy way to actually implement single-stepping into a signal handler | |
2459 | without kernel support. | |
2460 | ||
2461 | However, there is one scenario where this difference leads to follow-on | |
2462 | problems: if we're stepping off a breakpoint by removing all breakpoints | |
2463 | and then single-stepping. In this case, the software single-step | |
2464 | behavior means that even if there is a *breakpoint* in the signal | |
2465 | handler, GDB still would not stop. | |
2466 | ||
2467 | Fortunately, we can at least fix this particular issue. We detect | |
2468 | here the case where we are about to deliver a signal while software | |
2469 | single-stepping with breakpoints removed. In this situation, we | |
2470 | revert the decisions to remove all breakpoints and insert single- | |
2471 | step breakpoints, and instead we install a step-resume breakpoint | |
2472 | at the current address, deliver the signal without stepping, and | |
2473 | once we arrive back at the step-resume breakpoint, actually step | |
2474 | over the breakpoint we originally wanted to step over. */ | |
34b7e8a6 | 2475 | if (thread_has_single_step_breakpoints_set (tp) |
6cc83d2a PA |
2476 | && sig != GDB_SIGNAL_0 |
2477 | && step_over_info_valid_p ()) | |
30852783 UW |
2478 | { |
2479 | /* If we have nested signals or a pending signal is delivered | |
2480 | immediately after a handler returns, might might already have | |
2481 | a step-resume breakpoint set on the earlier handler. We cannot | |
2482 | set another step-resume breakpoint; just continue on until the | |
2483 | original breakpoint is hit. */ | |
2484 | if (tp->control.step_resume_breakpoint == NULL) | |
2485 | { | |
2c03e5be | 2486 | insert_hp_step_resume_breakpoint_at_frame (get_current_frame ()); |
30852783 UW |
2487 | tp->step_after_step_resume_breakpoint = 1; |
2488 | } | |
2489 | ||
34b7e8a6 | 2490 | delete_single_step_breakpoints (tp); |
30852783 | 2491 | |
31e77af2 | 2492 | clear_step_over_info (); |
30852783 | 2493 | tp->control.trap_expected = 0; |
31e77af2 PA |
2494 | |
2495 | insert_breakpoints (); | |
30852783 UW |
2496 | } |
2497 | ||
b0f16a3e SM |
2498 | /* If STEP is set, it's a request to use hardware stepping |
2499 | facilities. But in that case, we should never | |
2500 | use singlestep breakpoint. */ | |
34b7e8a6 | 2501 | gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step)); |
dfcd3bfb | 2502 | |
fbea99ea | 2503 | /* Decide the set of threads to ask the target to resume. */ |
1946c4cc | 2504 | if (tp->control.trap_expected) |
b0f16a3e SM |
2505 | { |
2506 | /* We're allowing a thread to run past a breakpoint it has | |
1946c4cc YQ |
2507 | hit, either by single-stepping the thread with the breakpoint |
2508 | removed, or by displaced stepping, with the breakpoint inserted. | |
2509 | In the former case, we need to single-step only this thread, | |
2510 | and keep others stopped, as they can miss this breakpoint if | |
2511 | allowed to run. That's not really a problem for displaced | |
2512 | stepping, but, we still keep other threads stopped, in case | |
2513 | another thread is also stopped for a breakpoint waiting for | |
2514 | its turn in the displaced stepping queue. */ | |
b0f16a3e SM |
2515 | resume_ptid = inferior_ptid; |
2516 | } | |
fbea99ea PA |
2517 | else |
2518 | resume_ptid = internal_resume_ptid (user_step); | |
d4db2f36 | 2519 | |
7f5ef605 PA |
2520 | if (execution_direction != EXEC_REVERSE |
2521 | && step && breakpoint_inserted_here_p (aspace, pc)) | |
b0f16a3e | 2522 | { |
372316f1 PA |
2523 | /* There are two cases where we currently need to step a |
2524 | breakpoint instruction when we have a signal to deliver: | |
2525 | ||
2526 | - See handle_signal_stop where we handle random signals that | |
2527 | could take out us out of the stepping range. Normally, in | |
2528 | that case we end up continuing (instead of stepping) over the | |
7f5ef605 PA |
2529 | signal handler with a breakpoint at PC, but there are cases |
2530 | where we should _always_ single-step, even if we have a | |
2531 | step-resume breakpoint, like when a software watchpoint is | |
2532 | set. Assuming single-stepping and delivering a signal at the | |
2533 | same time would takes us to the signal handler, then we could | |
2534 | have removed the breakpoint at PC to step over it. However, | |
2535 | some hardware step targets (like e.g., Mac OS) can't step | |
2536 | into signal handlers, and for those, we need to leave the | |
2537 | breakpoint at PC inserted, as otherwise if the handler | |
2538 | recurses and executes PC again, it'll miss the breakpoint. | |
2539 | So we leave the breakpoint inserted anyway, but we need to | |
2540 | record that we tried to step a breakpoint instruction, so | |
372316f1 PA |
2541 | that adjust_pc_after_break doesn't end up confused. |
2542 | ||
2543 | - In non-stop if we insert a breakpoint (e.g., a step-resume) | |
2544 | in one thread after another thread that was stepping had been | |
2545 | momentarily paused for a step-over. When we re-resume the | |
2546 | stepping thread, it may be resumed from that address with a | |
2547 | breakpoint that hasn't trapped yet. Seen with | |
2548 | gdb.threads/non-stop-fair-events.exp, on targets that don't | |
2549 | do displaced stepping. */ | |
2550 | ||
2551 | if (debug_infrun) | |
2552 | fprintf_unfiltered (gdb_stdlog, | |
2553 | "infrun: resume: [%s] stepped breakpoint\n", | |
a068643d | 2554 | target_pid_to_str (tp->ptid).c_str ()); |
7f5ef605 PA |
2555 | |
2556 | tp->stepped_breakpoint = 1; | |
2557 | ||
b0f16a3e SM |
2558 | /* Most targets can step a breakpoint instruction, thus |
2559 | executing it normally. But if this one cannot, just | |
2560 | continue and we will hit it anyway. */ | |
7f5ef605 | 2561 | if (gdbarch_cannot_step_breakpoint (gdbarch)) |
b0f16a3e SM |
2562 | step = 0; |
2563 | } | |
ef5cf84e | 2564 | |
b0f16a3e | 2565 | if (debug_displaced |
cb71640d | 2566 | && tp->control.trap_expected |
3fc8eb30 | 2567 | && use_displaced_stepping (tp) |
cb71640d | 2568 | && !step_over_info_valid_p ()) |
b0f16a3e | 2569 | { |
00431a78 | 2570 | struct regcache *resume_regcache = get_thread_regcache (tp); |
ac7936df | 2571 | struct gdbarch *resume_gdbarch = resume_regcache->arch (); |
b0f16a3e SM |
2572 | CORE_ADDR actual_pc = regcache_read_pc (resume_regcache); |
2573 | gdb_byte buf[4]; | |
2574 | ||
2575 | fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ", | |
2576 | paddress (resume_gdbarch, actual_pc)); | |
2577 | read_memory (actual_pc, buf, sizeof (buf)); | |
2578 | displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf)); | |
2579 | } | |
237fc4c9 | 2580 | |
b0f16a3e SM |
2581 | if (tp->control.may_range_step) |
2582 | { | |
2583 | /* If we're resuming a thread with the PC out of the step | |
2584 | range, then we're doing some nested/finer run control | |
2585 | operation, like stepping the thread out of the dynamic | |
2586 | linker or the displaced stepping scratch pad. We | |
2587 | shouldn't have allowed a range step then. */ | |
2588 | gdb_assert (pc_in_thread_step_range (pc, tp)); | |
2589 | } | |
c1e36e3e | 2590 | |
64ce06e4 | 2591 | do_target_resume (resume_ptid, step, sig); |
372316f1 | 2592 | tp->resumed = 1; |
c906108c | 2593 | } |
71d378ae PA |
2594 | |
2595 | /* Resume the inferior. SIG is the signal to give the inferior | |
2596 | (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that | |
2597 | rolls back state on error. */ | |
2598 | ||
aff4e175 | 2599 | static void |
71d378ae PA |
2600 | resume (gdb_signal sig) |
2601 | { | |
a70b8144 | 2602 | try |
71d378ae PA |
2603 | { |
2604 | resume_1 (sig); | |
2605 | } | |
230d2906 | 2606 | catch (const gdb_exception &ex) |
71d378ae PA |
2607 | { |
2608 | /* If resuming is being aborted for any reason, delete any | |
2609 | single-step breakpoint resume_1 may have created, to avoid | |
2610 | confusing the following resumption, and to avoid leaving | |
2611 | single-step breakpoints perturbing other threads, in case | |
2612 | we're running in non-stop mode. */ | |
2613 | if (inferior_ptid != null_ptid) | |
2614 | delete_single_step_breakpoints (inferior_thread ()); | |
eedc3f4f | 2615 | throw; |
71d378ae | 2616 | } |
71d378ae PA |
2617 | } |
2618 | ||
c906108c | 2619 | \f |
237fc4c9 | 2620 | /* Proceeding. */ |
c906108c | 2621 | |
4c2f2a79 PA |
2622 | /* See infrun.h. */ |
2623 | ||
2624 | /* Counter that tracks number of user visible stops. This can be used | |
2625 | to tell whether a command has proceeded the inferior past the | |
2626 | current location. This allows e.g., inferior function calls in | |
2627 | breakpoint commands to not interrupt the command list. When the | |
2628 | call finishes successfully, the inferior is standing at the same | |
2629 | breakpoint as if nothing happened (and so we don't call | |
2630 | normal_stop). */ | |
2631 | static ULONGEST current_stop_id; | |
2632 | ||
2633 | /* See infrun.h. */ | |
2634 | ||
2635 | ULONGEST | |
2636 | get_stop_id (void) | |
2637 | { | |
2638 | return current_stop_id; | |
2639 | } | |
2640 | ||
2641 | /* Called when we report a user visible stop. */ | |
2642 | ||
2643 | static void | |
2644 | new_stop_id (void) | |
2645 | { | |
2646 | current_stop_id++; | |
2647 | } | |
2648 | ||
c906108c SS |
2649 | /* Clear out all variables saying what to do when inferior is continued. |
2650 | First do this, then set the ones you want, then call `proceed'. */ | |
2651 | ||
a7212384 UW |
2652 | static void |
2653 | clear_proceed_status_thread (struct thread_info *tp) | |
c906108c | 2654 | { |
a7212384 UW |
2655 | if (debug_infrun) |
2656 | fprintf_unfiltered (gdb_stdlog, | |
2657 | "infrun: clear_proceed_status_thread (%s)\n", | |
a068643d | 2658 | target_pid_to_str (tp->ptid).c_str ()); |
d6b48e9c | 2659 | |
372316f1 PA |
2660 | /* If we're starting a new sequence, then the previous finished |
2661 | single-step is no longer relevant. */ | |
2662 | if (tp->suspend.waitstatus_pending_p) | |
2663 | { | |
2664 | if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP) | |
2665 | { | |
2666 | if (debug_infrun) | |
2667 | fprintf_unfiltered (gdb_stdlog, | |
2668 | "infrun: clear_proceed_status: pending " | |
2669 | "event of %s was a finished step. " | |
2670 | "Discarding.\n", | |
a068643d | 2671 | target_pid_to_str (tp->ptid).c_str ()); |
372316f1 PA |
2672 | |
2673 | tp->suspend.waitstatus_pending_p = 0; | |
2674 | tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON; | |
2675 | } | |
2676 | else if (debug_infrun) | |
2677 | { | |
23fdd69e SM |
2678 | std::string statstr |
2679 | = target_waitstatus_to_string (&tp->suspend.waitstatus); | |
372316f1 | 2680 | |
372316f1 PA |
2681 | fprintf_unfiltered (gdb_stdlog, |
2682 | "infrun: clear_proceed_status_thread: thread %s " | |
2683 | "has pending wait status %s " | |
2684 | "(currently_stepping=%d).\n", | |
a068643d TT |
2685 | target_pid_to_str (tp->ptid).c_str (), |
2686 | statstr.c_str (), | |
372316f1 | 2687 | currently_stepping (tp)); |
372316f1 PA |
2688 | } |
2689 | } | |
2690 | ||
70509625 PA |
2691 | /* If this signal should not be seen by program, give it zero. |
2692 | Used for debugging signals. */ | |
2693 | if (!signal_pass_state (tp->suspend.stop_signal)) | |
2694 | tp->suspend.stop_signal = GDB_SIGNAL_0; | |
2695 | ||
46e3ed7f | 2696 | delete tp->thread_fsm; |
243a9253 PA |
2697 | tp->thread_fsm = NULL; |
2698 | ||
16c381f0 JK |
2699 | tp->control.trap_expected = 0; |
2700 | tp->control.step_range_start = 0; | |
2701 | tp->control.step_range_end = 0; | |
c1e36e3e | 2702 | tp->control.may_range_step = 0; |
16c381f0 JK |
2703 | tp->control.step_frame_id = null_frame_id; |
2704 | tp->control.step_stack_frame_id = null_frame_id; | |
2705 | tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE; | |
885eeb5b | 2706 | tp->control.step_start_function = NULL; |
a7212384 | 2707 | tp->stop_requested = 0; |
4e1c45ea | 2708 | |
16c381f0 | 2709 | tp->control.stop_step = 0; |
32400beb | 2710 | |
16c381f0 | 2711 | tp->control.proceed_to_finish = 0; |
414c69f7 | 2712 | |
856e7dd6 | 2713 | tp->control.stepping_command = 0; |
17b2616c | 2714 | |
a7212384 | 2715 | /* Discard any remaining commands or status from previous stop. */ |
16c381f0 | 2716 | bpstat_clear (&tp->control.stop_bpstat); |
a7212384 | 2717 | } |
32400beb | 2718 | |
a7212384 | 2719 | void |
70509625 | 2720 | clear_proceed_status (int step) |
a7212384 | 2721 | { |
f2665db5 MM |
2722 | /* With scheduler-locking replay, stop replaying other threads if we're |
2723 | not replaying the user-visible resume ptid. | |
2724 | ||
2725 | This is a convenience feature to not require the user to explicitly | |
2726 | stop replaying the other threads. We're assuming that the user's | |
2727 | intent is to resume tracing the recorded process. */ | |
2728 | if (!non_stop && scheduler_mode == schedlock_replay | |
2729 | && target_record_is_replaying (minus_one_ptid) | |
2730 | && !target_record_will_replay (user_visible_resume_ptid (step), | |
2731 | execution_direction)) | |
2732 | target_record_stop_replaying (); | |
2733 | ||
08036331 | 2734 | if (!non_stop && inferior_ptid != null_ptid) |
6c95b8df | 2735 | { |
08036331 | 2736 | ptid_t resume_ptid = user_visible_resume_ptid (step); |
70509625 PA |
2737 | |
2738 | /* In all-stop mode, delete the per-thread status of all threads | |
2739 | we're about to resume, implicitly and explicitly. */ | |
08036331 PA |
2740 | for (thread_info *tp : all_non_exited_threads (resume_ptid)) |
2741 | clear_proceed_status_thread (tp); | |
6c95b8df PA |
2742 | } |
2743 | ||
d7e15655 | 2744 | if (inferior_ptid != null_ptid) |
a7212384 UW |
2745 | { |
2746 | struct inferior *inferior; | |
2747 | ||
2748 | if (non_stop) | |
2749 | { | |
6c95b8df PA |
2750 | /* If in non-stop mode, only delete the per-thread status of |
2751 | the current thread. */ | |
a7212384 UW |
2752 | clear_proceed_status_thread (inferior_thread ()); |
2753 | } | |
6c95b8df | 2754 | |
d6b48e9c | 2755 | inferior = current_inferior (); |
16c381f0 | 2756 | inferior->control.stop_soon = NO_STOP_QUIETLY; |
4e1c45ea PA |
2757 | } |
2758 | ||
76727919 | 2759 | gdb::observers::about_to_proceed.notify (); |
c906108c SS |
2760 | } |
2761 | ||
99619bea PA |
2762 | /* Returns true if TP is still stopped at a breakpoint that needs |
2763 | stepping-over in order to make progress. If the breakpoint is gone | |
2764 | meanwhile, we can skip the whole step-over dance. */ | |
ea67f13b DJ |
2765 | |
2766 | static int | |
6c4cfb24 | 2767 | thread_still_needs_step_over_bp (struct thread_info *tp) |
99619bea PA |
2768 | { |
2769 | if (tp->stepping_over_breakpoint) | |
2770 | { | |
00431a78 | 2771 | struct regcache *regcache = get_thread_regcache (tp); |
99619bea | 2772 | |
a01bda52 | 2773 | if (breakpoint_here_p (regcache->aspace (), |
af48d08f PA |
2774 | regcache_read_pc (regcache)) |
2775 | == ordinary_breakpoint_here) | |
99619bea PA |
2776 | return 1; |
2777 | ||
2778 | tp->stepping_over_breakpoint = 0; | |
2779 | } | |
2780 | ||
2781 | return 0; | |
2782 | } | |
2783 | ||
6c4cfb24 PA |
2784 | /* Check whether thread TP still needs to start a step-over in order |
2785 | to make progress when resumed. Returns an bitwise or of enum | |
2786 | step_over_what bits, indicating what needs to be stepped over. */ | |
2787 | ||
8d297bbf | 2788 | static step_over_what |
6c4cfb24 PA |
2789 | thread_still_needs_step_over (struct thread_info *tp) |
2790 | { | |
8d297bbf | 2791 | step_over_what what = 0; |
6c4cfb24 PA |
2792 | |
2793 | if (thread_still_needs_step_over_bp (tp)) | |
2794 | what |= STEP_OVER_BREAKPOINT; | |
2795 | ||
2796 | if (tp->stepping_over_watchpoint | |
2797 | && !target_have_steppable_watchpoint) | |
2798 | what |= STEP_OVER_WATCHPOINT; | |
2799 | ||
2800 | return what; | |
2801 | } | |
2802 | ||
483805cf PA |
2803 | /* Returns true if scheduler locking applies. STEP indicates whether |
2804 | we're about to do a step/next-like command to a thread. */ | |
2805 | ||
2806 | static int | |
856e7dd6 | 2807 | schedlock_applies (struct thread_info *tp) |
483805cf PA |
2808 | { |
2809 | return (scheduler_mode == schedlock_on | |
2810 | || (scheduler_mode == schedlock_step | |
f2665db5 MM |
2811 | && tp->control.stepping_command) |
2812 | || (scheduler_mode == schedlock_replay | |
2813 | && target_record_will_replay (minus_one_ptid, | |
2814 | execution_direction))); | |
483805cf PA |
2815 | } |
2816 | ||
c906108c SS |
2817 | /* Basic routine for continuing the program in various fashions. |
2818 | ||
2819 | ADDR is the address to resume at, or -1 for resume where stopped. | |
aff4e175 AB |
2820 | SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none, |
2821 | or GDB_SIGNAL_DEFAULT for act according to how it stopped. | |
c906108c SS |
2822 | |
2823 | You should call clear_proceed_status before calling proceed. */ | |
2824 | ||
2825 | void | |
64ce06e4 | 2826 | proceed (CORE_ADDR addr, enum gdb_signal siggnal) |
c906108c | 2827 | { |
e58b0e63 PA |
2828 | struct regcache *regcache; |
2829 | struct gdbarch *gdbarch; | |
e58b0e63 | 2830 | CORE_ADDR pc; |
4d9d9d04 PA |
2831 | ptid_t resume_ptid; |
2832 | struct execution_control_state ecss; | |
2833 | struct execution_control_state *ecs = &ecss; | |
4d9d9d04 | 2834 | int started; |
c906108c | 2835 | |
e58b0e63 PA |
2836 | /* If we're stopped at a fork/vfork, follow the branch set by the |
2837 | "set follow-fork-mode" command; otherwise, we'll just proceed | |
2838 | resuming the current thread. */ | |
2839 | if (!follow_fork ()) | |
2840 | { | |
2841 | /* The target for some reason decided not to resume. */ | |
2842 | normal_stop (); | |
f148b27e PA |
2843 | if (target_can_async_p ()) |
2844 | inferior_event_handler (INF_EXEC_COMPLETE, NULL); | |
e58b0e63 PA |
2845 | return; |
2846 | } | |
2847 | ||
842951eb PA |
2848 | /* We'll update this if & when we switch to a new thread. */ |
2849 | previous_inferior_ptid = inferior_ptid; | |
2850 | ||
e58b0e63 | 2851 | regcache = get_current_regcache (); |
ac7936df | 2852 | gdbarch = regcache->arch (); |
8b86c959 YQ |
2853 | const address_space *aspace = regcache->aspace (); |
2854 | ||
e58b0e63 | 2855 | pc = regcache_read_pc (regcache); |
08036331 | 2856 | thread_info *cur_thr = inferior_thread (); |
e58b0e63 | 2857 | |
99619bea | 2858 | /* Fill in with reasonable starting values. */ |
08036331 | 2859 | init_thread_stepping_state (cur_thr); |
99619bea | 2860 | |
08036331 | 2861 | gdb_assert (!thread_is_in_step_over_chain (cur_thr)); |
c2829269 | 2862 | |
2acceee2 | 2863 | if (addr == (CORE_ADDR) -1) |
c906108c | 2864 | { |
08036331 | 2865 | if (pc == cur_thr->suspend.stop_pc |
af48d08f | 2866 | && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here |
b2175913 | 2867 | && execution_direction != EXEC_REVERSE) |
3352ef37 AC |
2868 | /* There is a breakpoint at the address we will resume at, |
2869 | step one instruction before inserting breakpoints so that | |
2870 | we do not stop right away (and report a second hit at this | |
b2175913 MS |
2871 | breakpoint). |
2872 | ||
2873 | Note, we don't do this in reverse, because we won't | |
2874 | actually be executing the breakpoint insn anyway. | |
2875 | We'll be (un-)executing the previous instruction. */ | |
08036331 | 2876 | cur_thr->stepping_over_breakpoint = 1; |
515630c5 UW |
2877 | else if (gdbarch_single_step_through_delay_p (gdbarch) |
2878 | && gdbarch_single_step_through_delay (gdbarch, | |
2879 | get_current_frame ())) | |
3352ef37 AC |
2880 | /* We stepped onto an instruction that needs to be stepped |
2881 | again before re-inserting the breakpoint, do so. */ | |
08036331 | 2882 | cur_thr->stepping_over_breakpoint = 1; |
c906108c SS |
2883 | } |
2884 | else | |
2885 | { | |
515630c5 | 2886 | regcache_write_pc (regcache, addr); |
c906108c SS |
2887 | } |
2888 | ||
70509625 | 2889 | if (siggnal != GDB_SIGNAL_DEFAULT) |
08036331 | 2890 | cur_thr->suspend.stop_signal = siggnal; |
70509625 | 2891 | |
08036331 | 2892 | resume_ptid = user_visible_resume_ptid (cur_thr->control.stepping_command); |
4d9d9d04 PA |
2893 | |
2894 | /* If an exception is thrown from this point on, make sure to | |
2895 | propagate GDB's knowledge of the executing state to the | |
2896 | frontend/user running state. */ | |
731f534f | 2897 | scoped_finish_thread_state finish_state (resume_ptid); |
4d9d9d04 PA |
2898 | |
2899 | /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer | |
2900 | threads (e.g., we might need to set threads stepping over | |
2901 | breakpoints first), from the user/frontend's point of view, all | |
2902 | threads in RESUME_PTID are now running. Unless we're calling an | |
2903 | inferior function, as in that case we pretend the inferior | |
2904 | doesn't run at all. */ | |
08036331 | 2905 | if (!cur_thr->control.in_infcall) |
4d9d9d04 | 2906 | set_running (resume_ptid, 1); |
17b2616c | 2907 | |
527159b7 | 2908 | if (debug_infrun) |
8a9de0e4 | 2909 | fprintf_unfiltered (gdb_stdlog, |
64ce06e4 | 2910 | "infrun: proceed (addr=%s, signal=%s)\n", |
c9737c08 | 2911 | paddress (gdbarch, addr), |
64ce06e4 | 2912 | gdb_signal_to_symbol_string (siggnal)); |
527159b7 | 2913 | |
4d9d9d04 PA |
2914 | annotate_starting (); |
2915 | ||
2916 | /* Make sure that output from GDB appears before output from the | |
2917 | inferior. */ | |
2918 | gdb_flush (gdb_stdout); | |
2919 | ||
d930703d PA |
2920 | /* Since we've marked the inferior running, give it the terminal. A |
2921 | QUIT/Ctrl-C from here on is forwarded to the target (which can | |
2922 | still detect attempts to unblock a stuck connection with repeated | |
2923 | Ctrl-C from within target_pass_ctrlc). */ | |
2924 | target_terminal::inferior (); | |
2925 | ||
4d9d9d04 PA |
2926 | /* In a multi-threaded task we may select another thread and |
2927 | then continue or step. | |
2928 | ||
2929 | But if a thread that we're resuming had stopped at a breakpoint, | |
2930 | it will immediately cause another breakpoint stop without any | |
2931 | execution (i.e. it will report a breakpoint hit incorrectly). So | |
2932 | we must step over it first. | |
2933 | ||
2934 | Look for threads other than the current (TP) that reported a | |
2935 | breakpoint hit and haven't been resumed yet since. */ | |
2936 | ||
2937 | /* If scheduler locking applies, we can avoid iterating over all | |
2938 | threads. */ | |
08036331 | 2939 | if (!non_stop && !schedlock_applies (cur_thr)) |
94cc34af | 2940 | { |
08036331 PA |
2941 | for (thread_info *tp : all_non_exited_threads (resume_ptid)) |
2942 | { | |
4d9d9d04 PA |
2943 | /* Ignore the current thread here. It's handled |
2944 | afterwards. */ | |
08036331 | 2945 | if (tp == cur_thr) |
4d9d9d04 | 2946 | continue; |
c906108c | 2947 | |
4d9d9d04 PA |
2948 | if (!thread_still_needs_step_over (tp)) |
2949 | continue; | |
2950 | ||
2951 | gdb_assert (!thread_is_in_step_over_chain (tp)); | |
c906108c | 2952 | |
99619bea PA |
2953 | if (debug_infrun) |
2954 | fprintf_unfiltered (gdb_stdlog, | |
2955 | "infrun: need to step-over [%s] first\n", | |
a068643d | 2956 | target_pid_to_str (tp->ptid).c_str ()); |
99619bea | 2957 | |
4d9d9d04 | 2958 | thread_step_over_chain_enqueue (tp); |
2adfaa28 | 2959 | } |
30852783 UW |
2960 | } |
2961 | ||
4d9d9d04 PA |
2962 | /* Enqueue the current thread last, so that we move all other |
2963 | threads over their breakpoints first. */ | |
08036331 PA |
2964 | if (cur_thr->stepping_over_breakpoint) |
2965 | thread_step_over_chain_enqueue (cur_thr); | |
30852783 | 2966 | |
4d9d9d04 PA |
2967 | /* If the thread isn't started, we'll still need to set its prev_pc, |
2968 | so that switch_back_to_stepped_thread knows the thread hasn't | |
2969 | advanced. Must do this before resuming any thread, as in | |
2970 | all-stop/remote, once we resume we can't send any other packet | |
2971 | until the target stops again. */ | |
08036331 | 2972 | cur_thr->prev_pc = regcache_read_pc (regcache); |
99619bea | 2973 | |
a9bc57b9 TT |
2974 | { |
2975 | scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume (); | |
85ad3aaf | 2976 | |
a9bc57b9 | 2977 | started = start_step_over (); |
c906108c | 2978 | |
a9bc57b9 TT |
2979 | if (step_over_info_valid_p ()) |
2980 | { | |
2981 | /* Either this thread started a new in-line step over, or some | |
2982 | other thread was already doing one. In either case, don't | |
2983 | resume anything else until the step-over is finished. */ | |
2984 | } | |
2985 | else if (started && !target_is_non_stop_p ()) | |
2986 | { | |
2987 | /* A new displaced stepping sequence was started. In all-stop, | |
2988 | we can't talk to the target anymore until it next stops. */ | |
2989 | } | |
2990 | else if (!non_stop && target_is_non_stop_p ()) | |
2991 | { | |
2992 | /* In all-stop, but the target is always in non-stop mode. | |
2993 | Start all other threads that are implicitly resumed too. */ | |
08036331 | 2994 | for (thread_info *tp : all_non_exited_threads (resume_ptid)) |
fbea99ea | 2995 | { |
fbea99ea PA |
2996 | if (tp->resumed) |
2997 | { | |
2998 | if (debug_infrun) | |
2999 | fprintf_unfiltered (gdb_stdlog, | |
3000 | "infrun: proceed: [%s] resumed\n", | |
a068643d | 3001 | target_pid_to_str (tp->ptid).c_str ()); |
fbea99ea PA |
3002 | gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p); |
3003 | continue; | |
3004 | } | |
3005 | ||
3006 | if (thread_is_in_step_over_chain (tp)) | |
3007 | { | |
3008 | if (debug_infrun) | |
3009 | fprintf_unfiltered (gdb_stdlog, | |
3010 | "infrun: proceed: [%s] needs step-over\n", | |
a068643d | 3011 | target_pid_to_str (tp->ptid).c_str ()); |
fbea99ea PA |
3012 | continue; |
3013 | } | |
3014 | ||
3015 | if (debug_infrun) | |
3016 | fprintf_unfiltered (gdb_stdlog, | |
3017 | "infrun: proceed: resuming %s\n", | |
a068643d | 3018 | target_pid_to_str (tp->ptid).c_str ()); |
fbea99ea PA |
3019 | |
3020 | reset_ecs (ecs, tp); | |
00431a78 | 3021 | switch_to_thread (tp); |
fbea99ea PA |
3022 | keep_going_pass_signal (ecs); |
3023 | if (!ecs->wait_some_more) | |
fd7dcb94 | 3024 | error (_("Command aborted.")); |
fbea99ea | 3025 | } |
a9bc57b9 | 3026 | } |
08036331 | 3027 | else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr)) |
a9bc57b9 TT |
3028 | { |
3029 | /* The thread wasn't started, and isn't queued, run it now. */ | |
08036331 PA |
3030 | reset_ecs (ecs, cur_thr); |
3031 | switch_to_thread (cur_thr); | |
a9bc57b9 TT |
3032 | keep_going_pass_signal (ecs); |
3033 | if (!ecs->wait_some_more) | |
3034 | error (_("Command aborted.")); | |
3035 | } | |
3036 | } | |
c906108c | 3037 | |
85ad3aaf PA |
3038 | target_commit_resume (); |
3039 | ||
731f534f | 3040 | finish_state.release (); |
c906108c | 3041 | |
873657b9 PA |
3042 | /* If we've switched threads above, switch back to the previously |
3043 | current thread. We don't want the user to see a different | |
3044 | selected thread. */ | |
3045 | switch_to_thread (cur_thr); | |
3046 | ||
0b333c5e PA |
3047 | /* Tell the event loop to wait for it to stop. If the target |
3048 | supports asynchronous execution, it'll do this from within | |
3049 | target_resume. */ | |
362646f5 | 3050 | if (!target_can_async_p ()) |
0b333c5e | 3051 | mark_async_event_handler (infrun_async_inferior_event_token); |
c906108c | 3052 | } |
c906108c SS |
3053 | \f |
3054 | ||
3055 | /* Start remote-debugging of a machine over a serial link. */ | |
96baa820 | 3056 | |
c906108c | 3057 | void |
8621d6a9 | 3058 | start_remote (int from_tty) |
c906108c | 3059 | { |
d6b48e9c | 3060 | struct inferior *inferior; |
d6b48e9c PA |
3061 | |
3062 | inferior = current_inferior (); | |
16c381f0 | 3063 | inferior->control.stop_soon = STOP_QUIETLY_REMOTE; |
43ff13b4 | 3064 | |
1777feb0 | 3065 | /* Always go on waiting for the target, regardless of the mode. */ |
6426a772 | 3066 | /* FIXME: cagney/1999-09-23: At present it isn't possible to |
7e73cedf | 3067 | indicate to wait_for_inferior that a target should timeout if |
6426a772 JM |
3068 | nothing is returned (instead of just blocking). Because of this, |
3069 | targets expecting an immediate response need to, internally, set | |
3070 | things up so that the target_wait() is forced to eventually | |
1777feb0 | 3071 | timeout. */ |
6426a772 JM |
3072 | /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to |
3073 | differentiate to its caller what the state of the target is after | |
3074 | the initial open has been performed. Here we're assuming that | |
3075 | the target has stopped. It should be possible to eventually have | |
3076 | target_open() return to the caller an indication that the target | |
3077 | is currently running and GDB state should be set to the same as | |
1777feb0 | 3078 | for an async run. */ |
e4c8541f | 3079 | wait_for_inferior (); |
8621d6a9 DJ |
3080 | |
3081 | /* Now that the inferior has stopped, do any bookkeeping like | |
3082 | loading shared libraries. We want to do this before normal_stop, | |
3083 | so that the displayed frame is up to date. */ | |
8b88a78e | 3084 | post_create_inferior (current_top_target (), from_tty); |
8621d6a9 | 3085 | |
6426a772 | 3086 | normal_stop (); |
c906108c SS |
3087 | } |
3088 | ||
3089 | /* Initialize static vars when a new inferior begins. */ | |
3090 | ||
3091 | void | |
96baa820 | 3092 | init_wait_for_inferior (void) |
c906108c SS |
3093 | { |
3094 | /* These are meaningless until the first time through wait_for_inferior. */ | |
c906108c | 3095 | |
c906108c SS |
3096 | breakpoint_init_inferior (inf_starting); |
3097 | ||
70509625 | 3098 | clear_proceed_status (0); |
9f976b41 | 3099 | |
ca005067 | 3100 | target_last_wait_ptid = minus_one_ptid; |
237fc4c9 | 3101 | |
842951eb | 3102 | previous_inferior_ptid = inferior_ptid; |
c906108c | 3103 | } |
237fc4c9 | 3104 | |
c906108c | 3105 | \f |
488f131b | 3106 | |
ec9499be | 3107 | static void handle_inferior_event (struct execution_control_state *ecs); |
cd0fc7c3 | 3108 | |
568d6575 UW |
3109 | static void handle_step_into_function (struct gdbarch *gdbarch, |
3110 | struct execution_control_state *ecs); | |
3111 | static void handle_step_into_function_backward (struct gdbarch *gdbarch, | |
3112 | struct execution_control_state *ecs); | |
4f5d7f63 | 3113 | static void handle_signal_stop (struct execution_control_state *ecs); |
186c406b | 3114 | static void check_exception_resume (struct execution_control_state *, |
28106bc2 | 3115 | struct frame_info *); |
611c83ae | 3116 | |
bdc36728 | 3117 | static void end_stepping_range (struct execution_control_state *ecs); |
22bcd14b | 3118 | static void stop_waiting (struct execution_control_state *ecs); |
d4f3574e | 3119 | static void keep_going (struct execution_control_state *ecs); |
94c57d6a | 3120 | static void process_event_stop_test (struct execution_control_state *ecs); |
c447ac0b | 3121 | static int switch_back_to_stepped_thread (struct execution_control_state *ecs); |
104c1213 | 3122 | |
252fbfc8 PA |
3123 | /* This function is attached as a "thread_stop_requested" observer. |
3124 | Cleanup local state that assumed the PTID was to be resumed, and | |
3125 | report the stop to the frontend. */ | |
3126 | ||
2c0b251b | 3127 | static void |
252fbfc8 PA |
3128 | infrun_thread_stop_requested (ptid_t ptid) |
3129 | { | |
c65d6b55 PA |
3130 | /* PTID was requested to stop. If the thread was already stopped, |
3131 | but the user/frontend doesn't know about that yet (e.g., the | |
3132 | thread had been temporarily paused for some step-over), set up | |
3133 | for reporting the stop now. */ | |
08036331 PA |
3134 | for (thread_info *tp : all_threads (ptid)) |
3135 | { | |
3136 | if (tp->state != THREAD_RUNNING) | |
3137 | continue; | |
3138 | if (tp->executing) | |
3139 | continue; | |
c65d6b55 | 3140 | |
08036331 PA |
3141 | /* Remove matching threads from the step-over queue, so |
3142 | start_step_over doesn't try to resume them | |
3143 | automatically. */ | |
3144 | if (thread_is_in_step_over_chain (tp)) | |
3145 | thread_step_over_chain_remove (tp); | |
c65d6b55 | 3146 | |
08036331 PA |
3147 | /* If the thread is stopped, but the user/frontend doesn't |
3148 | know about that yet, queue a pending event, as if the | |
3149 | thread had just stopped now. Unless the thread already had | |
3150 | a pending event. */ | |
3151 | if (!tp->suspend.waitstatus_pending_p) | |
3152 | { | |
3153 | tp->suspend.waitstatus_pending_p = 1; | |
3154 | tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED; | |
3155 | tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0; | |
3156 | } | |
c65d6b55 | 3157 | |
08036331 PA |
3158 | /* Clear the inline-frame state, since we're re-processing the |
3159 | stop. */ | |
3160 | clear_inline_frame_state (tp->ptid); | |
c65d6b55 | 3161 | |
08036331 PA |
3162 | /* If this thread was paused because some other thread was |
3163 | doing an inline-step over, let that finish first. Once | |
3164 | that happens, we'll restart all threads and consume pending | |
3165 | stop events then. */ | |
3166 | if (step_over_info_valid_p ()) | |
3167 | continue; | |
3168 | ||
3169 | /* Otherwise we can process the (new) pending event now. Set | |
3170 | it so this pending event is considered by | |
3171 | do_target_wait. */ | |
3172 | tp->resumed = 1; | |
3173 | } | |
252fbfc8 PA |
3174 | } |
3175 | ||
a07daef3 PA |
3176 | static void |
3177 | infrun_thread_thread_exit (struct thread_info *tp, int silent) | |
3178 | { | |
d7e15655 | 3179 | if (target_last_wait_ptid == tp->ptid) |
a07daef3 PA |
3180 | nullify_last_target_wait_ptid (); |
3181 | } | |
3182 | ||
0cbcdb96 PA |
3183 | /* Delete the step resume, single-step and longjmp/exception resume |
3184 | breakpoints of TP. */ | |
4e1c45ea | 3185 | |
0cbcdb96 PA |
3186 | static void |
3187 | delete_thread_infrun_breakpoints (struct thread_info *tp) | |
4e1c45ea | 3188 | { |
0cbcdb96 PA |
3189 | delete_step_resume_breakpoint (tp); |
3190 | delete_exception_resume_breakpoint (tp); | |
34b7e8a6 | 3191 | delete_single_step_breakpoints (tp); |
4e1c45ea PA |
3192 | } |
3193 | ||
0cbcdb96 PA |
3194 | /* If the target still has execution, call FUNC for each thread that |
3195 | just stopped. In all-stop, that's all the non-exited threads; in | |
3196 | non-stop, that's the current thread, only. */ | |
3197 | ||
3198 | typedef void (*for_each_just_stopped_thread_callback_func) | |
3199 | (struct thread_info *tp); | |
4e1c45ea PA |
3200 | |
3201 | static void | |
0cbcdb96 | 3202 | for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func) |
4e1c45ea | 3203 | { |
d7e15655 | 3204 | if (!target_has_execution || inferior_ptid == null_ptid) |
4e1c45ea PA |
3205 | return; |
3206 | ||
fbea99ea | 3207 | if (target_is_non_stop_p ()) |
4e1c45ea | 3208 | { |
0cbcdb96 PA |
3209 | /* If in non-stop mode, only the current thread stopped. */ |
3210 | func (inferior_thread ()); | |
4e1c45ea PA |
3211 | } |
3212 | else | |
0cbcdb96 | 3213 | { |
0cbcdb96 | 3214 | /* In all-stop mode, all threads have stopped. */ |
08036331 PA |
3215 | for (thread_info *tp : all_non_exited_threads ()) |
3216 | func (tp); | |
0cbcdb96 PA |
3217 | } |
3218 | } | |
3219 | ||
3220 | /* Delete the step resume and longjmp/exception resume breakpoints of | |
3221 | the threads that just stopped. */ | |
3222 | ||
3223 | static void | |
3224 | delete_just_stopped_threads_infrun_breakpoints (void) | |
3225 | { | |
3226 | for_each_just_stopped_thread (delete_thread_infrun_breakpoints); | |
34b7e8a6 PA |
3227 | } |
3228 | ||
3229 | /* Delete the single-step breakpoints of the threads that just | |
3230 | stopped. */ | |
7c16b83e | 3231 | |
34b7e8a6 PA |
3232 | static void |
3233 | delete_just_stopped_threads_single_step_breakpoints (void) | |
3234 | { | |
3235 | for_each_just_stopped_thread (delete_single_step_breakpoints); | |
4e1c45ea PA |
3236 | } |
3237 | ||
221e1a37 | 3238 | /* See infrun.h. */ |
223698f8 | 3239 | |
221e1a37 | 3240 | void |
223698f8 DE |
3241 | print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid, |
3242 | const struct target_waitstatus *ws) | |
3243 | { | |
23fdd69e | 3244 | std::string status_string = target_waitstatus_to_string (ws); |
d7e74731 | 3245 | string_file stb; |
223698f8 DE |
3246 | |
3247 | /* The text is split over several lines because it was getting too long. | |
3248 | Call fprintf_unfiltered (gdb_stdlog) once so that the text is still | |
3249 | output as a unit; we want only one timestamp printed if debug_timestamp | |
3250 | is set. */ | |
3251 | ||
d7e74731 | 3252 | stb.printf ("infrun: target_wait (%d.%ld.%ld", |
e99b03dc | 3253 | waiton_ptid.pid (), |
e38504b3 | 3254 | waiton_ptid.lwp (), |
cc6bcb54 | 3255 | waiton_ptid.tid ()); |
e99b03dc | 3256 | if (waiton_ptid.pid () != -1) |
a068643d | 3257 | stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ()); |
d7e74731 PA |
3258 | stb.printf (", status) =\n"); |
3259 | stb.printf ("infrun: %d.%ld.%ld [%s],\n", | |
e99b03dc | 3260 | result_ptid.pid (), |
e38504b3 | 3261 | result_ptid.lwp (), |
cc6bcb54 | 3262 | result_ptid.tid (), |
a068643d | 3263 | target_pid_to_str (result_ptid).c_str ()); |
23fdd69e | 3264 | stb.printf ("infrun: %s\n", status_string.c_str ()); |
223698f8 DE |
3265 | |
3266 | /* This uses %s in part to handle %'s in the text, but also to avoid | |
3267 | a gcc error: the format attribute requires a string literal. */ | |
d7e74731 | 3268 | fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ()); |
223698f8 DE |
3269 | } |
3270 | ||
372316f1 PA |
3271 | /* Select a thread at random, out of those which are resumed and have |
3272 | had events. */ | |
3273 | ||
3274 | static struct thread_info * | |
3275 | random_pending_event_thread (ptid_t waiton_ptid) | |
3276 | { | |
372316f1 | 3277 | int num_events = 0; |
08036331 PA |
3278 | |
3279 | auto has_event = [] (thread_info *tp) | |
3280 | { | |
3281 | return (tp->resumed | |
3282 | && tp->suspend.waitstatus_pending_p); | |
3283 | }; | |
372316f1 PA |
3284 | |
3285 | /* First see how many events we have. Count only resumed threads | |
3286 | that have an event pending. */ | |
08036331 PA |
3287 | for (thread_info *tp : all_non_exited_threads (waiton_ptid)) |
3288 | if (has_event (tp)) | |
372316f1 PA |
3289 | num_events++; |
3290 | ||
3291 | if (num_events == 0) | |
3292 | return NULL; | |
3293 | ||
3294 | /* Now randomly pick a thread out of those that have had events. */ | |
08036331 PA |
3295 | int random_selector = (int) ((num_events * (double) rand ()) |
3296 | / (RAND_MAX + 1.0)); | |
372316f1 PA |
3297 | |
3298 | if (debug_infrun && num_events > 1) | |
3299 | fprintf_unfiltered (gdb_stdlog, | |
3300 | "infrun: Found %d events, selecting #%d\n", | |
3301 | num_events, random_selector); | |
3302 | ||
3303 | /* Select the Nth thread that has had an event. */ | |
08036331 PA |
3304 | for (thread_info *tp : all_non_exited_threads (waiton_ptid)) |
3305 | if (has_event (tp)) | |
372316f1 | 3306 | if (random_selector-- == 0) |
08036331 | 3307 | return tp; |
372316f1 | 3308 | |
08036331 | 3309 | gdb_assert_not_reached ("event thread not found"); |
372316f1 PA |
3310 | } |
3311 | ||
3312 | /* Wrapper for target_wait that first checks whether threads have | |
3313 | pending statuses to report before actually asking the target for | |
3314 | more events. */ | |
3315 | ||
3316 | static ptid_t | |
3317 | do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options) | |
3318 | { | |
3319 | ptid_t event_ptid; | |
3320 | struct thread_info *tp; | |
3321 | ||
3322 | /* First check if there is a resumed thread with a wait status | |
3323 | pending. */ | |
d7e15655 | 3324 | if (ptid == minus_one_ptid || ptid.is_pid ()) |
372316f1 PA |
3325 | { |
3326 | tp = random_pending_event_thread (ptid); | |
3327 | } | |
3328 | else | |
3329 | { | |
3330 | if (debug_infrun) | |
3331 | fprintf_unfiltered (gdb_stdlog, | |
3332 | "infrun: Waiting for specific thread %s.\n", | |
a068643d | 3333 | target_pid_to_str (ptid).c_str ()); |
372316f1 PA |
3334 | |
3335 | /* We have a specific thread to check. */ | |
3336 | tp = find_thread_ptid (ptid); | |
3337 | gdb_assert (tp != NULL); | |
3338 | if (!tp->suspend.waitstatus_pending_p) | |
3339 | tp = NULL; | |
3340 | } | |
3341 | ||
3342 | if (tp != NULL | |
3343 | && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT | |
3344 | || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)) | |
3345 | { | |
00431a78 | 3346 | struct regcache *regcache = get_thread_regcache (tp); |
ac7936df | 3347 | struct gdbarch *gdbarch = regcache->arch (); |
372316f1 PA |
3348 | CORE_ADDR pc; |
3349 | int discard = 0; | |
3350 | ||
3351 | pc = regcache_read_pc (regcache); | |
3352 | ||
3353 | if (pc != tp->suspend.stop_pc) | |
3354 | { | |
3355 | if (debug_infrun) | |
3356 | fprintf_unfiltered (gdb_stdlog, | |
3357 | "infrun: PC of %s changed. was=%s, now=%s\n", | |
a068643d | 3358 | target_pid_to_str (tp->ptid).c_str (), |
defd2172 | 3359 | paddress (gdbarch, tp->suspend.stop_pc), |
372316f1 PA |
3360 | paddress (gdbarch, pc)); |
3361 | discard = 1; | |
3362 | } | |
a01bda52 | 3363 | else if (!breakpoint_inserted_here_p (regcache->aspace (), pc)) |
372316f1 PA |
3364 | { |
3365 | if (debug_infrun) | |
3366 | fprintf_unfiltered (gdb_stdlog, | |
3367 | "infrun: previous breakpoint of %s, at %s gone\n", | |
a068643d | 3368 | target_pid_to_str (tp->ptid).c_str (), |
372316f1 PA |
3369 | paddress (gdbarch, pc)); |
3370 | ||
3371 | discard = 1; | |
3372 | } | |
3373 | ||
3374 | if (discard) | |
3375 | { | |
3376 | if (debug_infrun) | |
3377 | fprintf_unfiltered (gdb_stdlog, | |
3378 | "infrun: pending event of %s cancelled.\n", | |
a068643d | 3379 | target_pid_to_str (tp->ptid).c_str ()); |
372316f1 PA |
3380 | |
3381 | tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS; | |
3382 | tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON; | |
3383 | } | |
3384 | } | |
3385 | ||
3386 | if (tp != NULL) | |
3387 | { | |
3388 | if (debug_infrun) | |
3389 | { | |
23fdd69e SM |
3390 | std::string statstr |
3391 | = target_waitstatus_to_string (&tp->suspend.waitstatus); | |
372316f1 | 3392 | |
372316f1 PA |
3393 | fprintf_unfiltered (gdb_stdlog, |
3394 | "infrun: Using pending wait status %s for %s.\n", | |
23fdd69e | 3395 | statstr.c_str (), |
a068643d | 3396 | target_pid_to_str (tp->ptid).c_str ()); |
372316f1 PA |
3397 | } |
3398 | ||
3399 | /* Now that we've selected our final event LWP, un-adjust its PC | |
3400 | if it was a software breakpoint (and the target doesn't | |
3401 | always adjust the PC itself). */ | |
3402 | if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT | |
3403 | && !target_supports_stopped_by_sw_breakpoint ()) | |
3404 | { | |
3405 | struct regcache *regcache; | |
3406 | struct gdbarch *gdbarch; | |
3407 | int decr_pc; | |
3408 | ||
00431a78 | 3409 | regcache = get_thread_regcache (tp); |
ac7936df | 3410 | gdbarch = regcache->arch (); |
372316f1 PA |
3411 | |
3412 | decr_pc = gdbarch_decr_pc_after_break (gdbarch); | |
3413 | if (decr_pc != 0) | |
3414 | { | |
3415 | CORE_ADDR pc; | |
3416 | ||
3417 | pc = regcache_read_pc (regcache); | |
3418 | regcache_write_pc (regcache, pc + decr_pc); | |
3419 | } | |
3420 | } | |
3421 | ||
3422 | tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON; | |
3423 | *status = tp->suspend.waitstatus; | |
3424 | tp->suspend.waitstatus_pending_p = 0; | |
3425 | ||
3426 | /* Wake up the event loop again, until all pending events are | |
3427 | processed. */ | |
3428 | if (target_is_async_p ()) | |
3429 | mark_async_event_handler (infrun_async_inferior_event_token); | |
3430 | return tp->ptid; | |
3431 | } | |
3432 | ||
3433 | /* But if we don't find one, we'll have to wait. */ | |
3434 | ||
3435 | if (deprecated_target_wait_hook) | |
3436 | event_ptid = deprecated_target_wait_hook (ptid, status, options); | |
3437 | else | |
3438 | event_ptid = target_wait (ptid, status, options); | |
3439 | ||
3440 | return event_ptid; | |
3441 | } | |
3442 | ||
24291992 PA |
3443 | /* Prepare and stabilize the inferior for detaching it. E.g., |
3444 | detaching while a thread is displaced stepping is a recipe for | |
3445 | crashing it, as nothing would readjust the PC out of the scratch | |
3446 | pad. */ | |
3447 | ||
3448 | void | |
3449 | prepare_for_detach (void) | |
3450 | { | |
3451 | struct inferior *inf = current_inferior (); | |
f2907e49 | 3452 | ptid_t pid_ptid = ptid_t (inf->pid); |
24291992 | 3453 | |
00431a78 | 3454 | displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf); |
24291992 PA |
3455 | |
3456 | /* Is any thread of this process displaced stepping? If not, | |
3457 | there's nothing else to do. */ | |
d20172fc | 3458 | if (displaced->step_thread == nullptr) |
24291992 PA |
3459 | return; |
3460 | ||
3461 | if (debug_infrun) | |
3462 | fprintf_unfiltered (gdb_stdlog, | |
3463 | "displaced-stepping in-process while detaching"); | |
3464 | ||
9bcb1f16 | 3465 | scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true); |
24291992 | 3466 | |
00431a78 | 3467 | while (displaced->step_thread != nullptr) |
24291992 | 3468 | { |
24291992 PA |
3469 | struct execution_control_state ecss; |
3470 | struct execution_control_state *ecs; | |
3471 | ||
3472 | ecs = &ecss; | |
3473 | memset (ecs, 0, sizeof (*ecs)); | |
3474 | ||
3475 | overlay_cache_invalid = 1; | |
f15cb84a YQ |
3476 | /* Flush target cache before starting to handle each event. |
3477 | Target was running and cache could be stale. This is just a | |
3478 | heuristic. Running threads may modify target memory, but we | |
3479 | don't get any event. */ | |
3480 | target_dcache_invalidate (); | |
24291992 | 3481 | |
372316f1 | 3482 | ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0); |
24291992 PA |
3483 | |
3484 | if (debug_infrun) | |
3485 | print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws); | |
3486 | ||
3487 | /* If an error happens while handling the event, propagate GDB's | |
3488 | knowledge of the executing state to the frontend/user running | |
3489 | state. */ | |
731f534f | 3490 | scoped_finish_thread_state finish_state (minus_one_ptid); |
24291992 PA |
3491 | |
3492 | /* Now figure out what to do with the result of the result. */ | |
3493 | handle_inferior_event (ecs); | |
3494 | ||
3495 | /* No error, don't finish the state yet. */ | |
731f534f | 3496 | finish_state.release (); |
24291992 PA |
3497 | |
3498 | /* Breakpoints and watchpoints are not installed on the target | |
3499 | at this point, and signals are passed directly to the | |
3500 | inferior, so this must mean the process is gone. */ | |
3501 | if (!ecs->wait_some_more) | |
3502 | { | |
9bcb1f16 | 3503 | restore_detaching.release (); |
24291992 PA |
3504 | error (_("Program exited while detaching")); |
3505 | } | |
3506 | } | |
3507 | ||
9bcb1f16 | 3508 | restore_detaching.release (); |
24291992 PA |
3509 | } |
3510 | ||
cd0fc7c3 | 3511 | /* Wait for control to return from inferior to debugger. |
ae123ec6 | 3512 | |
cd0fc7c3 SS |
3513 | If inferior gets a signal, we may decide to start it up again |
3514 | instead of returning. That is why there is a loop in this function. | |
3515 | When this function actually returns it means the inferior | |
3516 | should be left stopped and GDB should read more commands. */ | |
3517 | ||
3518 | void | |
e4c8541f | 3519 | wait_for_inferior (void) |
cd0fc7c3 | 3520 | { |
527159b7 | 3521 | if (debug_infrun) |
ae123ec6 | 3522 | fprintf_unfiltered |
e4c8541f | 3523 | (gdb_stdlog, "infrun: wait_for_inferior ()\n"); |
527159b7 | 3524 | |
4c41382a | 3525 | SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); }; |
cd0fc7c3 | 3526 | |
e6f5c25b PA |
3527 | /* If an error happens while handling the event, propagate GDB's |
3528 | knowledge of the executing state to the frontend/user running | |
3529 | state. */ | |
731f534f | 3530 | scoped_finish_thread_state finish_state (minus_one_ptid); |
e6f5c25b | 3531 | |
c906108c SS |
3532 | while (1) |
3533 | { | |
ae25568b PA |
3534 | struct execution_control_state ecss; |
3535 | struct execution_control_state *ecs = &ecss; | |
963f9c80 | 3536 | ptid_t waiton_ptid = minus_one_ptid; |
29f49a6a | 3537 | |
ae25568b PA |
3538 | memset (ecs, 0, sizeof (*ecs)); |
3539 | ||
ec9499be | 3540 | overlay_cache_invalid = 1; |
ec9499be | 3541 | |
f15cb84a YQ |
3542 | /* Flush target cache before starting to handle each event. |
3543 | Target was running and cache could be stale. This is just a | |
3544 | heuristic. Running threads may modify target memory, but we | |
3545 | don't get any event. */ | |
3546 | target_dcache_invalidate (); | |
3547 | ||
372316f1 | 3548 | ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0); |
c906108c | 3549 | |
f00150c9 | 3550 | if (debug_infrun) |
223698f8 | 3551 | print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws); |
f00150c9 | 3552 | |
cd0fc7c3 SS |
3553 | /* Now figure out what to do with the result of the result. */ |
3554 | handle_inferior_event (ecs); | |
c906108c | 3555 | |
cd0fc7c3 SS |
3556 | if (!ecs->wait_some_more) |
3557 | break; | |
3558 | } | |
4e1c45ea | 3559 | |
e6f5c25b | 3560 | /* No error, don't finish the state yet. */ |
731f534f | 3561 | finish_state.release (); |
cd0fc7c3 | 3562 | } |
c906108c | 3563 | |
d3d4baed PA |
3564 | /* Cleanup that reinstalls the readline callback handler, if the |
3565 | target is running in the background. If while handling the target | |
3566 | event something triggered a secondary prompt, like e.g., a | |
3567 | pagination prompt, we'll have removed the callback handler (see | |
3568 | gdb_readline_wrapper_line). Need to do this as we go back to the | |
3569 | event loop, ready to process further input. Note this has no | |
3570 | effect if the handler hasn't actually been removed, because calling | |
3571 | rl_callback_handler_install resets the line buffer, thus losing | |
3572 | input. */ | |
3573 | ||
3574 | static void | |
d238133d | 3575 | reinstall_readline_callback_handler_cleanup () |
d3d4baed | 3576 | { |
3b12939d PA |
3577 | struct ui *ui = current_ui; |
3578 | ||
3579 | if (!ui->async) | |
6c400b59 PA |
3580 | { |
3581 | /* We're not going back to the top level event loop yet. Don't | |
3582 | install the readline callback, as it'd prep the terminal, | |
3583 | readline-style (raw, noecho) (e.g., --batch). We'll install | |
3584 | it the next time the prompt is displayed, when we're ready | |
3585 | for input. */ | |
3586 | return; | |
3587 | } | |
3588 | ||
3b12939d | 3589 | if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED) |
d3d4baed PA |
3590 | gdb_rl_callback_handler_reinstall (); |
3591 | } | |
3592 | ||
243a9253 PA |
3593 | /* Clean up the FSMs of threads that are now stopped. In non-stop, |
3594 | that's just the event thread. In all-stop, that's all threads. */ | |
3595 | ||
3596 | static void | |
3597 | clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs) | |
3598 | { | |
08036331 PA |
3599 | if (ecs->event_thread != NULL |
3600 | && ecs->event_thread->thread_fsm != NULL) | |
46e3ed7f | 3601 | ecs->event_thread->thread_fsm->clean_up (ecs->event_thread); |
243a9253 PA |
3602 | |
3603 | if (!non_stop) | |
3604 | { | |
08036331 | 3605 | for (thread_info *thr : all_non_exited_threads ()) |
243a9253 PA |
3606 | { |
3607 | if (thr->thread_fsm == NULL) | |
3608 | continue; | |
3609 | if (thr == ecs->event_thread) | |
3610 | continue; | |
3611 | ||
00431a78 | 3612 | switch_to_thread (thr); |
46e3ed7f | 3613 | thr->thread_fsm->clean_up (thr); |
243a9253 PA |
3614 | } |
3615 | ||
3616 | if (ecs->event_thread != NULL) | |
00431a78 | 3617 | switch_to_thread (ecs->event_thread); |
243a9253 PA |
3618 | } |
3619 | } | |
3620 | ||
3b12939d PA |
3621 | /* Helper for all_uis_check_sync_execution_done that works on the |
3622 | current UI. */ | |
3623 | ||
3624 | static void | |
3625 | check_curr_ui_sync_execution_done (void) | |
3626 | { | |
3627 | struct ui *ui = current_ui; | |
3628 | ||
3629 | if (ui->prompt_state == PROMPT_NEEDED | |
3630 | && ui->async | |
3631 | && !gdb_in_secondary_prompt_p (ui)) | |
3632 | { | |
223ffa71 | 3633 | target_terminal::ours (); |
76727919 | 3634 | gdb::observers::sync_execution_done.notify (); |
3eb7562a | 3635 | ui_register_input_event_handler (ui); |
3b12939d PA |
3636 | } |
3637 | } | |
3638 | ||
3639 | /* See infrun.h. */ | |
3640 | ||
3641 | void | |
3642 | all_uis_check_sync_execution_done (void) | |
3643 | { | |
0e454242 | 3644 | SWITCH_THRU_ALL_UIS () |
3b12939d PA |
3645 | { |
3646 | check_curr_ui_sync_execution_done (); | |
3647 | } | |
3648 | } | |
3649 | ||
a8836c93 PA |
3650 | /* See infrun.h. */ |
3651 | ||
3652 | void | |
3653 | all_uis_on_sync_execution_starting (void) | |
3654 | { | |
0e454242 | 3655 | SWITCH_THRU_ALL_UIS () |
a8836c93 PA |
3656 | { |
3657 | if (current_ui->prompt_state == PROMPT_NEEDED) | |
3658 | async_disable_stdin (); | |
3659 | } | |
3660 | } | |
3661 | ||
1777feb0 | 3662 | /* Asynchronous version of wait_for_inferior. It is called by the |
43ff13b4 | 3663 | event loop whenever a change of state is detected on the file |
1777feb0 MS |
3664 | descriptor corresponding to the target. It can be called more than |
3665 | once to complete a single execution command. In such cases we need | |
3666 | to keep the state in a global variable ECSS. If it is the last time | |
a474d7c2 PA |
3667 | that this function is called for a single execution command, then |
3668 | report to the user that the inferior has stopped, and do the | |
1777feb0 | 3669 | necessary cleanups. */ |
43ff13b4 JM |
3670 | |
3671 | void | |
fba45db2 | 3672 | fetch_inferior_event (void *client_data) |
43ff13b4 | 3673 | { |
0d1e5fa7 | 3674 | struct execution_control_state ecss; |
a474d7c2 | 3675 | struct execution_control_state *ecs = &ecss; |
0f641c01 | 3676 | int cmd_done = 0; |
963f9c80 | 3677 | ptid_t waiton_ptid = minus_one_ptid; |
43ff13b4 | 3678 | |
0d1e5fa7 PA |
3679 | memset (ecs, 0, sizeof (*ecs)); |
3680 | ||
c61db772 PA |
3681 | /* Events are always processed with the main UI as current UI. This |
3682 | way, warnings, debug output, etc. are always consistently sent to | |
3683 | the main console. */ | |
4b6749b9 | 3684 | scoped_restore save_ui = make_scoped_restore (¤t_ui, main_ui); |
c61db772 | 3685 | |
d3d4baed | 3686 | /* End up with readline processing input, if necessary. */ |
d238133d TT |
3687 | { |
3688 | SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); }; | |
3689 | ||
3690 | /* We're handling a live event, so make sure we're doing live | |
3691 | debugging. If we're looking at traceframes while the target is | |
3692 | running, we're going to need to get back to that mode after | |
3693 | handling the event. */ | |
3694 | gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe; | |
3695 | if (non_stop) | |
3696 | { | |
3697 | maybe_restore_traceframe.emplace (); | |
3698 | set_current_traceframe (-1); | |
3699 | } | |
43ff13b4 | 3700 | |
873657b9 PA |
3701 | /* The user/frontend should not notice a thread switch due to |
3702 | internal events. Make sure we revert to the user selected | |
3703 | thread and frame after handling the event and running any | |
3704 | breakpoint commands. */ | |
3705 | scoped_restore_current_thread restore_thread; | |
d238133d TT |
3706 | |
3707 | overlay_cache_invalid = 1; | |
3708 | /* Flush target cache before starting to handle each event. Target | |
3709 | was running and cache could be stale. This is just a heuristic. | |
3710 | Running threads may modify target memory, but we don't get any | |
3711 | event. */ | |
3712 | target_dcache_invalidate (); | |
3713 | ||
3714 | scoped_restore save_exec_dir | |
3715 | = make_scoped_restore (&execution_direction, | |
3716 | target_execution_direction ()); | |
3717 | ||
3718 | ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, | |
3719 | target_can_async_p () ? TARGET_WNOHANG : 0); | |
3720 | ||
3721 | if (debug_infrun) | |
3722 | print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws); | |
3723 | ||
3724 | /* If an error happens while handling the event, propagate GDB's | |
3725 | knowledge of the executing state to the frontend/user running | |
3726 | state. */ | |
3727 | ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid; | |
3728 | scoped_finish_thread_state finish_state (finish_ptid); | |
3729 | ||
979a0d13 | 3730 | /* Get executed before scoped_restore_current_thread above to apply |
d238133d TT |
3731 | still for the thread which has thrown the exception. */ |
3732 | auto defer_bpstat_clear | |
3733 | = make_scope_exit (bpstat_clear_actions); | |
3734 | auto defer_delete_threads | |
3735 | = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints); | |
3736 | ||
3737 | /* Now figure out what to do with the result of the result. */ | |
3738 | handle_inferior_event (ecs); | |
3739 | ||
3740 | if (!ecs->wait_some_more) | |
3741 | { | |
3742 | struct inferior *inf = find_inferior_ptid (ecs->ptid); | |
3743 | int should_stop = 1; | |
3744 | struct thread_info *thr = ecs->event_thread; | |
d6b48e9c | 3745 | |
d238133d | 3746 | delete_just_stopped_threads_infrun_breakpoints (); |
f107f563 | 3747 | |
d238133d TT |
3748 | if (thr != NULL) |
3749 | { | |
3750 | struct thread_fsm *thread_fsm = thr->thread_fsm; | |
243a9253 | 3751 | |
d238133d | 3752 | if (thread_fsm != NULL) |
46e3ed7f | 3753 | should_stop = thread_fsm->should_stop (thr); |
d238133d | 3754 | } |
243a9253 | 3755 | |
d238133d TT |
3756 | if (!should_stop) |
3757 | { | |
3758 | keep_going (ecs); | |
3759 | } | |
3760 | else | |
3761 | { | |
46e3ed7f | 3762 | bool should_notify_stop = true; |
d238133d | 3763 | int proceeded = 0; |
1840d81a | 3764 | |
d238133d | 3765 | clean_up_just_stopped_threads_fsms (ecs); |
243a9253 | 3766 | |
d238133d | 3767 | if (thr != NULL && thr->thread_fsm != NULL) |
46e3ed7f | 3768 | should_notify_stop = thr->thread_fsm->should_notify_stop (); |
388a7084 | 3769 | |
d238133d TT |
3770 | if (should_notify_stop) |
3771 | { | |
3772 | /* We may not find an inferior if this was a process exit. */ | |
3773 | if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY) | |
3774 | proceeded = normal_stop (); | |
3775 | } | |
243a9253 | 3776 | |
d238133d TT |
3777 | if (!proceeded) |
3778 | { | |
3779 | inferior_event_handler (INF_EXEC_COMPLETE, NULL); | |
3780 | cmd_done = 1; | |
3781 | } | |
873657b9 PA |
3782 | |
3783 | /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the | |
3784 | previously selected thread is gone. We have two | |
3785 | choices - switch to no thread selected, or restore the | |
3786 | previously selected thread (now exited). We chose the | |
3787 | later, just because that's what GDB used to do. After | |
3788 | this, "info threads" says "The current thread <Thread | |
3789 | ID 2> has terminated." instead of "No thread | |
3790 | selected.". */ | |
3791 | if (!non_stop | |
3792 | && cmd_done | |
3793 | && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED) | |
3794 | restore_thread.dont_restore (); | |
d238133d TT |
3795 | } |
3796 | } | |
4f8d22e3 | 3797 | |
d238133d TT |
3798 | defer_delete_threads.release (); |
3799 | defer_bpstat_clear.release (); | |
29f49a6a | 3800 | |
d238133d TT |
3801 | /* No error, don't finish the thread states yet. */ |
3802 | finish_state.release (); | |
731f534f | 3803 | |
d238133d TT |
3804 | /* This scope is used to ensure that readline callbacks are |
3805 | reinstalled here. */ | |
3806 | } | |
4f8d22e3 | 3807 | |
3b12939d PA |
3808 | /* If a UI was in sync execution mode, and now isn't, restore its |
3809 | prompt (a synchronous execution command has finished, and we're | |
3810 | ready for input). */ | |
3811 | all_uis_check_sync_execution_done (); | |
0f641c01 PA |
3812 | |
3813 | if (cmd_done | |
0f641c01 | 3814 | && exec_done_display_p |
00431a78 PA |
3815 | && (inferior_ptid == null_ptid |
3816 | || inferior_thread ()->state != THREAD_RUNNING)) | |
0f641c01 | 3817 | printf_unfiltered (_("completed.\n")); |
43ff13b4 JM |
3818 | } |
3819 | ||
edb3359d DJ |
3820 | /* Record the frame and location we're currently stepping through. */ |
3821 | void | |
3822 | set_step_info (struct frame_info *frame, struct symtab_and_line sal) | |
3823 | { | |
3824 | struct thread_info *tp = inferior_thread (); | |
3825 | ||
16c381f0 JK |
3826 | tp->control.step_frame_id = get_frame_id (frame); |
3827 | tp->control.step_stack_frame_id = get_stack_frame_id (frame); | |
edb3359d DJ |
3828 | |
3829 | tp->current_symtab = sal.symtab; | |
3830 | tp->current_line = sal.line; | |
3831 | } | |
3832 | ||
0d1e5fa7 PA |
3833 | /* Clear context switchable stepping state. */ |
3834 | ||
3835 | void | |
4e1c45ea | 3836 | init_thread_stepping_state (struct thread_info *tss) |
0d1e5fa7 | 3837 | { |
7f5ef605 | 3838 | tss->stepped_breakpoint = 0; |
0d1e5fa7 | 3839 | tss->stepping_over_breakpoint = 0; |
963f9c80 | 3840 | tss->stepping_over_watchpoint = 0; |
0d1e5fa7 | 3841 | tss->step_after_step_resume_breakpoint = 0; |
cd0fc7c3 SS |
3842 | } |
3843 | ||
c32c64b7 DE |
3844 | /* Set the cached copy of the last ptid/waitstatus. */ |
3845 | ||
6efcd9a8 | 3846 | void |
c32c64b7 DE |
3847 | set_last_target_status (ptid_t ptid, struct target_waitstatus status) |
3848 | { | |
3849 | target_last_wait_ptid = ptid; | |
3850 | target_last_waitstatus = status; | |
3851 | } | |
3852 | ||
e02bc4cc | 3853 | /* Return the cached copy of the last pid/waitstatus returned by |
9a4105ab AC |
3854 | target_wait()/deprecated_target_wait_hook(). The data is actually |
3855 | cached by handle_inferior_event(), which gets called immediately | |
3856 | after target_wait()/deprecated_target_wait_hook(). */ | |
e02bc4cc DS |
3857 | |
3858 | void | |
488f131b | 3859 | get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status) |
e02bc4cc | 3860 | { |
39f77062 | 3861 | *ptidp = target_last_wait_ptid; |
e02bc4cc DS |
3862 | *status = target_last_waitstatus; |
3863 | } | |
3864 | ||
ac264b3b MS |
3865 | void |
3866 | nullify_last_target_wait_ptid (void) | |
3867 | { | |
3868 | target_last_wait_ptid = minus_one_ptid; | |
3869 | } | |
3870 | ||
dcf4fbde | 3871 | /* Switch thread contexts. */ |
dd80620e MS |
3872 | |
3873 | static void | |
00431a78 | 3874 | context_switch (execution_control_state *ecs) |
dd80620e | 3875 | { |
00431a78 PA |
3876 | if (debug_infrun |
3877 | && ecs->ptid != inferior_ptid | |
3878 | && ecs->event_thread != inferior_thread ()) | |
fd48f117 DJ |
3879 | { |
3880 | fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ", | |
a068643d | 3881 | target_pid_to_str (inferior_ptid).c_str ()); |
fd48f117 | 3882 | fprintf_unfiltered (gdb_stdlog, "to %s\n", |
a068643d | 3883 | target_pid_to_str (ecs->ptid).c_str ()); |
fd48f117 DJ |
3884 | } |
3885 | ||
00431a78 | 3886 | switch_to_thread (ecs->event_thread); |
dd80620e MS |
3887 | } |
3888 | ||
d8dd4d5f PA |
3889 | /* If the target can't tell whether we've hit breakpoints |
3890 | (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP, | |
3891 | check whether that could have been caused by a breakpoint. If so, | |
3892 | adjust the PC, per gdbarch_decr_pc_after_break. */ | |
3893 | ||
4fa8626c | 3894 | static void |
d8dd4d5f PA |
3895 | adjust_pc_after_break (struct thread_info *thread, |
3896 | struct target_waitstatus *ws) | |
4fa8626c | 3897 | { |
24a73cce UW |
3898 | struct regcache *regcache; |
3899 | struct gdbarch *gdbarch; | |
118e6252 | 3900 | CORE_ADDR breakpoint_pc, decr_pc; |
4fa8626c | 3901 | |
4fa8626c DJ |
3902 | /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If |
3903 | we aren't, just return. | |
9709f61c DJ |
3904 | |
3905 | We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not | |
b798847d UW |
3906 | affected by gdbarch_decr_pc_after_break. Other waitkinds which are |
3907 | implemented by software breakpoints should be handled through the normal | |
3908 | breakpoint layer. | |
8fb3e588 | 3909 | |
4fa8626c DJ |
3910 | NOTE drow/2004-01-31: On some targets, breakpoints may generate |
3911 | different signals (SIGILL or SIGEMT for instance), but it is less | |
3912 | clear where the PC is pointing afterwards. It may not match | |
b798847d UW |
3913 | gdbarch_decr_pc_after_break. I don't know any specific target that |
3914 | generates these signals at breakpoints (the code has been in GDB since at | |
3915 | least 1992) so I can not guess how to handle them here. | |
8fb3e588 | 3916 | |
e6cf7916 UW |
3917 | In earlier versions of GDB, a target with |
3918 | gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a | |
b798847d UW |
3919 | watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any |
3920 | target with both of these set in GDB history, and it seems unlikely to be | |
3921 | correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */ | |
4fa8626c | 3922 | |
d8dd4d5f | 3923 | if (ws->kind != TARGET_WAITKIND_STOPPED) |
4fa8626c DJ |
3924 | return; |
3925 | ||
d8dd4d5f | 3926 | if (ws->value.sig != GDB_SIGNAL_TRAP) |
4fa8626c DJ |
3927 | return; |
3928 | ||
4058b839 PA |
3929 | /* In reverse execution, when a breakpoint is hit, the instruction |
3930 | under it has already been de-executed. The reported PC always | |
3931 | points at the breakpoint address, so adjusting it further would | |
3932 | be wrong. E.g., consider this case on a decr_pc_after_break == 1 | |
3933 | architecture: | |
3934 | ||
3935 | B1 0x08000000 : INSN1 | |
3936 | B2 0x08000001 : INSN2 | |
3937 | 0x08000002 : INSN3 | |
3938 | PC -> 0x08000003 : INSN4 | |
3939 | ||
3940 | Say you're stopped at 0x08000003 as above. Reverse continuing | |
3941 | from that point should hit B2 as below. Reading the PC when the | |
3942 | SIGTRAP is reported should read 0x08000001 and INSN2 should have | |
3943 | been de-executed already. | |
3944 | ||
3945 | B1 0x08000000 : INSN1 | |
3946 | B2 PC -> 0x08000001 : INSN2 | |
3947 | 0x08000002 : INSN3 | |
3948 | 0x08000003 : INSN4 | |
3949 | ||
3950 | We can't apply the same logic as for forward execution, because | |
3951 | we would wrongly adjust the PC to 0x08000000, since there's a | |
3952 | breakpoint at PC - 1. We'd then report a hit on B1, although | |
3953 | INSN1 hadn't been de-executed yet. Doing nothing is the correct | |
3954 | behaviour. */ | |
3955 | if (execution_direction == EXEC_REVERSE) | |
3956 | return; | |
3957 | ||
1cf4d951 PA |
3958 | /* If the target can tell whether the thread hit a SW breakpoint, |
3959 | trust it. Targets that can tell also adjust the PC | |
3960 | themselves. */ | |
3961 | if (target_supports_stopped_by_sw_breakpoint ()) | |
3962 | return; | |
3963 | ||
3964 | /* Note that relying on whether a breakpoint is planted in memory to | |
3965 | determine this can fail. E.g,. the breakpoint could have been | |
3966 | removed since. Or the thread could have been told to step an | |
3967 | instruction the size of a breakpoint instruction, and only | |
3968 | _after_ was a breakpoint inserted at its address. */ | |
3969 | ||
24a73cce UW |
3970 | /* If this target does not decrement the PC after breakpoints, then |
3971 | we have nothing to do. */ | |
00431a78 | 3972 | regcache = get_thread_regcache (thread); |
ac7936df | 3973 | gdbarch = regcache->arch (); |
118e6252 | 3974 | |
527a273a | 3975 | decr_pc = gdbarch_decr_pc_after_break (gdbarch); |
118e6252 | 3976 | if (decr_pc == 0) |
24a73cce UW |
3977 | return; |
3978 | ||
8b86c959 | 3979 | const address_space *aspace = regcache->aspace (); |
6c95b8df | 3980 | |
8aad930b AC |
3981 | /* Find the location where (if we've hit a breakpoint) the |
3982 | breakpoint would be. */ | |
118e6252 | 3983 | breakpoint_pc = regcache_read_pc (regcache) - decr_pc; |
8aad930b | 3984 | |
1cf4d951 PA |
3985 | /* If the target can't tell whether a software breakpoint triggered, |
3986 | fallback to figuring it out based on breakpoints we think were | |
3987 | inserted in the target, and on whether the thread was stepped or | |
3988 | continued. */ | |
3989 | ||
1c5cfe86 PA |
3990 | /* Check whether there actually is a software breakpoint inserted at |
3991 | that location. | |
3992 | ||
3993 | If in non-stop mode, a race condition is possible where we've | |
3994 | removed a breakpoint, but stop events for that breakpoint were | |
3995 | already queued and arrive later. To suppress those spurious | |
3996 | SIGTRAPs, we keep a list of such breakpoint locations for a bit, | |
1cf4d951 PA |
3997 | and retire them after a number of stop events are reported. Note |
3998 | this is an heuristic and can thus get confused. The real fix is | |
3999 | to get the "stopped by SW BP and needs adjustment" info out of | |
4000 | the target/kernel (and thus never reach here; see above). */ | |
6c95b8df | 4001 | if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc) |
fbea99ea PA |
4002 | || (target_is_non_stop_p () |
4003 | && moribund_breakpoint_here_p (aspace, breakpoint_pc))) | |
8aad930b | 4004 | { |
07036511 | 4005 | gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable; |
abbb1732 | 4006 | |
8213266a | 4007 | if (record_full_is_used ()) |
07036511 TT |
4008 | restore_operation_disable.emplace |
4009 | (record_full_gdb_operation_disable_set ()); | |
96429cc8 | 4010 | |
1c0fdd0e UW |
4011 | /* When using hardware single-step, a SIGTRAP is reported for both |
4012 | a completed single-step and a software breakpoint. Need to | |
4013 | differentiate between the two, as the latter needs adjusting | |
4014 | but the former does not. | |
4015 | ||
4016 | The SIGTRAP can be due to a completed hardware single-step only if | |
4017 | - we didn't insert software single-step breakpoints | |
1c0fdd0e UW |
4018 | - this thread is currently being stepped |
4019 | ||
4020 | If any of these events did not occur, we must have stopped due | |
4021 | to hitting a software breakpoint, and have to back up to the | |
4022 | breakpoint address. | |
4023 | ||
4024 | As a special case, we could have hardware single-stepped a | |
4025 | software breakpoint. In this case (prev_pc == breakpoint_pc), | |
4026 | we also need to back up to the breakpoint address. */ | |
4027 | ||
d8dd4d5f PA |
4028 | if (thread_has_single_step_breakpoints_set (thread) |
4029 | || !currently_stepping (thread) | |
4030 | || (thread->stepped_breakpoint | |
4031 | && thread->prev_pc == breakpoint_pc)) | |
515630c5 | 4032 | regcache_write_pc (regcache, breakpoint_pc); |
8aad930b | 4033 | } |
4fa8626c DJ |
4034 | } |
4035 | ||
edb3359d DJ |
4036 | static int |
4037 | stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id) | |
4038 | { | |
4039 | for (frame = get_prev_frame (frame); | |
4040 | frame != NULL; | |
4041 | frame = get_prev_frame (frame)) | |
4042 | { | |
4043 | if (frame_id_eq (get_frame_id (frame), step_frame_id)) | |
4044 | return 1; | |
4045 | if (get_frame_type (frame) != INLINE_FRAME) | |
4046 | break; | |
4047 | } | |
4048 | ||
4049 | return 0; | |
4050 | } | |
4051 | ||
4a4c04f1 BE |
4052 | /* Look for an inline frame that is marked for skip. |
4053 | If PREV_FRAME is TRUE start at the previous frame, | |
4054 | otherwise start at the current frame. Stop at the | |
4055 | first non-inline frame, or at the frame where the | |
4056 | step started. */ | |
4057 | ||
4058 | static bool | |
4059 | inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp) | |
4060 | { | |
4061 | struct frame_info *frame = get_current_frame (); | |
4062 | ||
4063 | if (prev_frame) | |
4064 | frame = get_prev_frame (frame); | |
4065 | ||
4066 | for (; frame != NULL; frame = get_prev_frame (frame)) | |
4067 | { | |
4068 | const char *fn = NULL; | |
4069 | symtab_and_line sal; | |
4070 | struct symbol *sym; | |
4071 | ||
4072 | if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id)) | |
4073 | break; | |
4074 | if (get_frame_type (frame) != INLINE_FRAME) | |
4075 | break; | |
4076 | ||
4077 | sal = find_frame_sal (frame); | |
4078 | sym = get_frame_function (frame); | |
4079 | ||
4080 | if (sym != NULL) | |
4081 | fn = sym->print_name (); | |
4082 | ||
4083 | if (sal.line != 0 | |
4084 | && function_name_is_marked_for_skip (fn, sal)) | |
4085 | return true; | |
4086 | } | |
4087 | ||
4088 | return false; | |
4089 | } | |
4090 | ||
c65d6b55 PA |
4091 | /* If the event thread has the stop requested flag set, pretend it |
4092 | stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to | |
4093 | target_stop). */ | |
4094 | ||
4095 | static bool | |
4096 | handle_stop_requested (struct execution_control_state *ecs) | |
4097 | { | |
4098 | if (ecs->event_thread->stop_requested) | |
4099 | { | |
4100 | ecs->ws.kind = TARGET_WAITKIND_STOPPED; | |
4101 | ecs->ws.value.sig = GDB_SIGNAL_0; | |
4102 | handle_signal_stop (ecs); | |
4103 | return true; | |
4104 | } | |
4105 | return false; | |
4106 | } | |
4107 | ||
a96d9b2e SDJ |
4108 | /* Auxiliary function that handles syscall entry/return events. |
4109 | It returns 1 if the inferior should keep going (and GDB | |
4110 | should ignore the event), or 0 if the event deserves to be | |
4111 | processed. */ | |
ca2163eb | 4112 | |
a96d9b2e | 4113 | static int |
ca2163eb | 4114 | handle_syscall_event (struct execution_control_state *ecs) |
a96d9b2e | 4115 | { |
ca2163eb | 4116 | struct regcache *regcache; |
ca2163eb PA |
4117 | int syscall_number; |
4118 | ||
00431a78 | 4119 | context_switch (ecs); |
ca2163eb | 4120 | |
00431a78 | 4121 | regcache = get_thread_regcache (ecs->event_thread); |
f90263c1 | 4122 | syscall_number = ecs->ws.value.syscall_number; |
f2ffa92b | 4123 | ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache); |
ca2163eb | 4124 | |
a96d9b2e SDJ |
4125 | if (catch_syscall_enabled () > 0 |
4126 | && catching_syscall_number (syscall_number) > 0) | |
4127 | { | |
4128 | if (debug_infrun) | |
4129 | fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n", | |
4130 | syscall_number); | |
a96d9b2e | 4131 | |
16c381f0 | 4132 | ecs->event_thread->control.stop_bpstat |
a01bda52 | 4133 | = bpstat_stop_status (regcache->aspace (), |
f2ffa92b PA |
4134 | ecs->event_thread->suspend.stop_pc, |
4135 | ecs->event_thread, &ecs->ws); | |
ab04a2af | 4136 | |
c65d6b55 PA |
4137 | if (handle_stop_requested (ecs)) |
4138 | return 0; | |
4139 | ||
ce12b012 | 4140 | if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat)) |
ca2163eb PA |
4141 | { |
4142 | /* Catchpoint hit. */ | |
ca2163eb PA |
4143 | return 0; |
4144 | } | |
a96d9b2e | 4145 | } |
ca2163eb | 4146 | |
c65d6b55 PA |
4147 | if (handle_stop_requested (ecs)) |
4148 | return 0; | |
4149 | ||
ca2163eb | 4150 | /* If no catchpoint triggered for this, then keep going. */ |
ca2163eb PA |
4151 | keep_going (ecs); |
4152 | return 1; | |
a96d9b2e SDJ |
4153 | } |
4154 | ||
7e324e48 GB |
4155 | /* Lazily fill in the execution_control_state's stop_func_* fields. */ |
4156 | ||
4157 | static void | |
4158 | fill_in_stop_func (struct gdbarch *gdbarch, | |
4159 | struct execution_control_state *ecs) | |
4160 | { | |
4161 | if (!ecs->stop_func_filled_in) | |
4162 | { | |
98a617f8 KB |
4163 | const block *block; |
4164 | ||
7e324e48 GB |
4165 | /* Don't care about return value; stop_func_start and stop_func_name |
4166 | will both be 0 if it doesn't work. */ | |
98a617f8 KB |
4167 | find_pc_partial_function (ecs->event_thread->suspend.stop_pc, |
4168 | &ecs->stop_func_name, | |
4169 | &ecs->stop_func_start, | |
4170 | &ecs->stop_func_end, | |
4171 | &block); | |
4172 | ||
4173 | /* The call to find_pc_partial_function, above, will set | |
4174 | stop_func_start and stop_func_end to the start and end | |
4175 | of the range containing the stop pc. If this range | |
4176 | contains the entry pc for the block (which is always the | |
4177 | case for contiguous blocks), advance stop_func_start past | |
4178 | the function's start offset and entrypoint. Note that | |
4179 | stop_func_start is NOT advanced when in a range of a | |
4180 | non-contiguous block that does not contain the entry pc. */ | |
4181 | if (block != nullptr | |
4182 | && ecs->stop_func_start <= BLOCK_ENTRY_PC (block) | |
4183 | && BLOCK_ENTRY_PC (block) < ecs->stop_func_end) | |
4184 | { | |
4185 | ecs->stop_func_start | |
4186 | += gdbarch_deprecated_function_start_offset (gdbarch); | |
4187 | ||
4188 | if (gdbarch_skip_entrypoint_p (gdbarch)) | |
4189 | ecs->stop_func_start | |
4190 | = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start); | |
4191 | } | |
591a12a1 | 4192 | |
7e324e48 GB |
4193 | ecs->stop_func_filled_in = 1; |
4194 | } | |
4195 | } | |
4196 | ||
4f5d7f63 | 4197 | |
00431a78 | 4198 | /* Return the STOP_SOON field of the inferior pointed at by ECS. */ |
4f5d7f63 PA |
4199 | |
4200 | static enum stop_kind | |
00431a78 | 4201 | get_inferior_stop_soon (execution_control_state *ecs) |
4f5d7f63 | 4202 | { |
00431a78 | 4203 | struct inferior *inf = find_inferior_ptid (ecs->ptid); |
4f5d7f63 PA |
4204 | |
4205 | gdb_assert (inf != NULL); | |
4206 | return inf->control.stop_soon; | |
4207 | } | |
4208 | ||
372316f1 PA |
4209 | /* Wait for one event. Store the resulting waitstatus in WS, and |
4210 | return the event ptid. */ | |
4211 | ||
4212 | static ptid_t | |
4213 | wait_one (struct target_waitstatus *ws) | |
4214 | { | |
4215 | ptid_t event_ptid; | |
4216 | ptid_t wait_ptid = minus_one_ptid; | |
4217 | ||
4218 | overlay_cache_invalid = 1; | |
4219 | ||
4220 | /* Flush target cache before starting to handle each event. | |
4221 | Target was running and cache could be stale. This is just a | |
4222 | heuristic. Running threads may modify target memory, but we | |
4223 | don't get any event. */ | |
4224 | target_dcache_invalidate (); | |
4225 | ||
4226 | if (deprecated_target_wait_hook) | |
4227 | event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0); | |
4228 | else | |
4229 | event_ptid = target_wait (wait_ptid, ws, 0); | |
4230 | ||
4231 | if (debug_infrun) | |
4232 | print_target_wait_results (wait_ptid, event_ptid, ws); | |
4233 | ||
4234 | return event_ptid; | |
4235 | } | |
4236 | ||
4237 | /* Generate a wrapper for target_stopped_by_REASON that works on PTID | |
4238 | instead of the current thread. */ | |
4239 | #define THREAD_STOPPED_BY(REASON) \ | |
4240 | static int \ | |
4241 | thread_stopped_by_ ## REASON (ptid_t ptid) \ | |
4242 | { \ | |
2989a365 | 4243 | scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \ |
372316f1 PA |
4244 | inferior_ptid = ptid; \ |
4245 | \ | |
2989a365 | 4246 | return target_stopped_by_ ## REASON (); \ |
372316f1 PA |
4247 | } |
4248 | ||
4249 | /* Generate thread_stopped_by_watchpoint. */ | |
4250 | THREAD_STOPPED_BY (watchpoint) | |
4251 | /* Generate thread_stopped_by_sw_breakpoint. */ | |
4252 | THREAD_STOPPED_BY (sw_breakpoint) | |
4253 | /* Generate thread_stopped_by_hw_breakpoint. */ | |
4254 | THREAD_STOPPED_BY (hw_breakpoint) | |
4255 | ||
372316f1 PA |
4256 | /* Save the thread's event and stop reason to process it later. */ |
4257 | ||
4258 | static void | |
4259 | save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws) | |
4260 | { | |
372316f1 PA |
4261 | if (debug_infrun) |
4262 | { | |
23fdd69e | 4263 | std::string statstr = target_waitstatus_to_string (ws); |
372316f1 | 4264 | |
372316f1 PA |
4265 | fprintf_unfiltered (gdb_stdlog, |
4266 | "infrun: saving status %s for %d.%ld.%ld\n", | |
23fdd69e | 4267 | statstr.c_str (), |
e99b03dc | 4268 | tp->ptid.pid (), |
e38504b3 | 4269 | tp->ptid.lwp (), |
cc6bcb54 | 4270 | tp->ptid.tid ()); |
372316f1 PA |
4271 | } |
4272 | ||
4273 | /* Record for later. */ | |
4274 | tp->suspend.waitstatus = *ws; | |
4275 | tp->suspend.waitstatus_pending_p = 1; | |
4276 | ||
00431a78 | 4277 | struct regcache *regcache = get_thread_regcache (tp); |
8b86c959 | 4278 | const address_space *aspace = regcache->aspace (); |
372316f1 PA |
4279 | |
4280 | if (ws->kind == TARGET_WAITKIND_STOPPED | |
4281 | && ws->value.sig == GDB_SIGNAL_TRAP) | |
4282 | { | |
4283 | CORE_ADDR pc = regcache_read_pc (regcache); | |
4284 | ||
4285 | adjust_pc_after_break (tp, &tp->suspend.waitstatus); | |
4286 | ||
4287 | if (thread_stopped_by_watchpoint (tp->ptid)) | |
4288 | { | |
4289 | tp->suspend.stop_reason | |
4290 | = TARGET_STOPPED_BY_WATCHPOINT; | |
4291 | } | |
4292 | else if (target_supports_stopped_by_sw_breakpoint () | |
4293 | && thread_stopped_by_sw_breakpoint (tp->ptid)) | |
4294 | { | |
4295 | tp->suspend.stop_reason | |
4296 | = TARGET_STOPPED_BY_SW_BREAKPOINT; | |
4297 | } | |
4298 | else if (target_supports_stopped_by_hw_breakpoint () | |
4299 | && thread_stopped_by_hw_breakpoint (tp->ptid)) | |
4300 | { | |
4301 | tp->suspend.stop_reason | |
4302 | = TARGET_STOPPED_BY_HW_BREAKPOINT; | |
4303 | } | |
4304 | else if (!target_supports_stopped_by_hw_breakpoint () | |
4305 | && hardware_breakpoint_inserted_here_p (aspace, | |
4306 | pc)) | |
4307 | { | |
4308 | tp->suspend.stop_reason | |
4309 | = TARGET_STOPPED_BY_HW_BREAKPOINT; | |
4310 | } | |
4311 | else if (!target_supports_stopped_by_sw_breakpoint () | |
4312 | && software_breakpoint_inserted_here_p (aspace, | |
4313 | pc)) | |
4314 | { | |
4315 | tp->suspend.stop_reason | |
4316 | = TARGET_STOPPED_BY_SW_BREAKPOINT; | |
4317 | } | |
4318 | else if (!thread_has_single_step_breakpoints_set (tp) | |
4319 | && currently_stepping (tp)) | |
4320 | { | |
4321 | tp->suspend.stop_reason | |
4322 | = TARGET_STOPPED_BY_SINGLE_STEP; | |
4323 | } | |
4324 | } | |
4325 | } | |
4326 | ||
6efcd9a8 | 4327 | /* See infrun.h. */ |
372316f1 | 4328 | |
6efcd9a8 | 4329 | void |
372316f1 PA |
4330 | stop_all_threads (void) |
4331 | { | |
4332 | /* We may need multiple passes to discover all threads. */ | |
4333 | int pass; | |
4334 | int iterations = 0; | |
372316f1 | 4335 | |
fbea99ea | 4336 | gdb_assert (target_is_non_stop_p ()); |
372316f1 PA |
4337 | |
4338 | if (debug_infrun) | |
4339 | fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n"); | |
4340 | ||
00431a78 | 4341 | scoped_restore_current_thread restore_thread; |
372316f1 | 4342 | |
65706a29 | 4343 | target_thread_events (1); |
9885e6bb | 4344 | SCOPE_EXIT { target_thread_events (0); }; |
65706a29 | 4345 | |
372316f1 PA |
4346 | /* Request threads to stop, and then wait for the stops. Because |
4347 | threads we already know about can spawn more threads while we're | |
4348 | trying to stop them, and we only learn about new threads when we | |
4349 | update the thread list, do this in a loop, and keep iterating | |
4350 | until two passes find no threads that need to be stopped. */ | |
4351 | for (pass = 0; pass < 2; pass++, iterations++) | |
4352 | { | |
4353 | if (debug_infrun) | |
4354 | fprintf_unfiltered (gdb_stdlog, | |
4355 | "infrun: stop_all_threads, pass=%d, " | |
4356 | "iterations=%d\n", pass, iterations); | |
4357 | while (1) | |
4358 | { | |
4359 | ptid_t event_ptid; | |
4360 | struct target_waitstatus ws; | |
4361 | int need_wait = 0; | |
372316f1 PA |
4362 | |
4363 | update_thread_list (); | |
4364 | ||
4365 | /* Go through all threads looking for threads that we need | |
4366 | to tell the target to stop. */ | |
08036331 | 4367 | for (thread_info *t : all_non_exited_threads ()) |
372316f1 PA |
4368 | { |
4369 | if (t->executing) | |
4370 | { | |
4371 | /* If already stopping, don't request a stop again. | |
4372 | We just haven't seen the notification yet. */ | |
4373 | if (!t->stop_requested) | |
4374 | { | |
4375 | if (debug_infrun) | |
4376 | fprintf_unfiltered (gdb_stdlog, | |
4377 | "infrun: %s executing, " | |
4378 | "need stop\n", | |
a068643d | 4379 | target_pid_to_str (t->ptid).c_str ()); |
372316f1 PA |
4380 | target_stop (t->ptid); |
4381 | t->stop_requested = 1; | |
4382 | } | |
4383 | else | |
4384 | { | |
4385 | if (debug_infrun) | |
4386 | fprintf_unfiltered (gdb_stdlog, | |
4387 | "infrun: %s executing, " | |
4388 | "already stopping\n", | |
a068643d | 4389 | target_pid_to_str (t->ptid).c_str ()); |
372316f1 PA |
4390 | } |
4391 | ||
4392 | if (t->stop_requested) | |
4393 | need_wait = 1; | |
4394 | } | |
4395 | else | |
4396 | { | |
4397 | if (debug_infrun) | |
4398 | fprintf_unfiltered (gdb_stdlog, | |
4399 | "infrun: %s not executing\n", | |
a068643d | 4400 | target_pid_to_str (t->ptid).c_str ()); |
372316f1 PA |
4401 | |
4402 | /* The thread may be not executing, but still be | |
4403 | resumed with a pending status to process. */ | |
4404 | t->resumed = 0; | |
4405 | } | |
4406 | } | |
4407 | ||
4408 | if (!need_wait) | |
4409 | break; | |
4410 | ||
4411 | /* If we find new threads on the second iteration, restart | |
4412 | over. We want to see two iterations in a row with all | |
4413 | threads stopped. */ | |
4414 | if (pass > 0) | |
4415 | pass = -1; | |
4416 | ||
4417 | event_ptid = wait_one (&ws); | |
c29705b7 | 4418 | if (debug_infrun) |
372316f1 | 4419 | { |
c29705b7 PW |
4420 | fprintf_unfiltered (gdb_stdlog, |
4421 | "infrun: stop_all_threads %s %s\n", | |
4422 | target_waitstatus_to_string (&ws).c_str (), | |
4423 | target_pid_to_str (event_ptid).c_str ()); | |
372316f1 | 4424 | } |
372316f1 | 4425 | |
c29705b7 PW |
4426 | if (ws.kind == TARGET_WAITKIND_NO_RESUMED |
4427 | || ws.kind == TARGET_WAITKIND_THREAD_EXITED | |
4428 | || ws.kind == TARGET_WAITKIND_EXITED | |
4429 | || ws.kind == TARGET_WAITKIND_SIGNALLED) | |
4430 | { | |
4431 | /* All resumed threads exited | |
4432 | or one thread/process exited/signalled. */ | |
372316f1 PA |
4433 | } |
4434 | else | |
4435 | { | |
08036331 | 4436 | thread_info *t = find_thread_ptid (event_ptid); |
372316f1 PA |
4437 | if (t == NULL) |
4438 | t = add_thread (event_ptid); | |
4439 | ||
4440 | t->stop_requested = 0; | |
4441 | t->executing = 0; | |
4442 | t->resumed = 0; | |
4443 | t->control.may_range_step = 0; | |
4444 | ||
6efcd9a8 PA |
4445 | /* This may be the first time we see the inferior report |
4446 | a stop. */ | |
08036331 | 4447 | inferior *inf = find_inferior_ptid (event_ptid); |
6efcd9a8 PA |
4448 | if (inf->needs_setup) |
4449 | { | |
4450 | switch_to_thread_no_regs (t); | |
4451 | setup_inferior (0); | |
4452 | } | |
4453 | ||
372316f1 PA |
4454 | if (ws.kind == TARGET_WAITKIND_STOPPED |
4455 | && ws.value.sig == GDB_SIGNAL_0) | |
4456 | { | |
4457 | /* We caught the event that we intended to catch, so | |
4458 | there's no event pending. */ | |
4459 | t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE; | |
4460 | t->suspend.waitstatus_pending_p = 0; | |
4461 | ||
00431a78 | 4462 | if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0) |
372316f1 PA |
4463 | { |
4464 | /* Add it back to the step-over queue. */ | |
4465 | if (debug_infrun) | |
4466 | { | |
4467 | fprintf_unfiltered (gdb_stdlog, | |
4468 | "infrun: displaced-step of %s " | |
4469 | "canceled: adding back to the " | |
4470 | "step-over queue\n", | |
a068643d | 4471 | target_pid_to_str (t->ptid).c_str ()); |
372316f1 PA |
4472 | } |
4473 | t->control.trap_expected = 0; | |
4474 | thread_step_over_chain_enqueue (t); | |
4475 | } | |
4476 | } | |
4477 | else | |
4478 | { | |
4479 | enum gdb_signal sig; | |
4480 | struct regcache *regcache; | |
372316f1 PA |
4481 | |
4482 | if (debug_infrun) | |
4483 | { | |
23fdd69e | 4484 | std::string statstr = target_waitstatus_to_string (&ws); |
372316f1 | 4485 | |
372316f1 PA |
4486 | fprintf_unfiltered (gdb_stdlog, |
4487 | "infrun: target_wait %s, saving " | |
4488 | "status for %d.%ld.%ld\n", | |
23fdd69e | 4489 | statstr.c_str (), |
e99b03dc | 4490 | t->ptid.pid (), |
e38504b3 | 4491 | t->ptid.lwp (), |
cc6bcb54 | 4492 | t->ptid.tid ()); |
372316f1 PA |
4493 | } |
4494 | ||
4495 | /* Record for later. */ | |
4496 | save_waitstatus (t, &ws); | |
4497 | ||
4498 | sig = (ws.kind == TARGET_WAITKIND_STOPPED | |
4499 | ? ws.value.sig : GDB_SIGNAL_0); | |
4500 | ||
00431a78 | 4501 | if (displaced_step_fixup (t, sig) < 0) |
372316f1 PA |
4502 | { |
4503 | /* Add it back to the step-over queue. */ | |
4504 | t->control.trap_expected = 0; | |
4505 | thread_step_over_chain_enqueue (t); | |
4506 | } | |
4507 | ||
00431a78 | 4508 | regcache = get_thread_regcache (t); |
372316f1 PA |
4509 | t->suspend.stop_pc = regcache_read_pc (regcache); |
4510 | ||
4511 | if (debug_infrun) | |
4512 | { | |
4513 | fprintf_unfiltered (gdb_stdlog, | |
4514 | "infrun: saved stop_pc=%s for %s " | |
4515 | "(currently_stepping=%d)\n", | |
4516 | paddress (target_gdbarch (), | |
4517 | t->suspend.stop_pc), | |
a068643d | 4518 | target_pid_to_str (t->ptid).c_str (), |
372316f1 PA |
4519 | currently_stepping (t)); |
4520 | } | |
4521 | } | |
4522 | } | |
4523 | } | |
4524 | } | |
4525 | ||
372316f1 PA |
4526 | if (debug_infrun) |
4527 | fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n"); | |
4528 | } | |
4529 | ||
f4836ba9 PA |
4530 | /* Handle a TARGET_WAITKIND_NO_RESUMED event. */ |
4531 | ||
4532 | static int | |
4533 | handle_no_resumed (struct execution_control_state *ecs) | |
4534 | { | |
3b12939d | 4535 | if (target_can_async_p ()) |
f4836ba9 | 4536 | { |
3b12939d PA |
4537 | struct ui *ui; |
4538 | int any_sync = 0; | |
f4836ba9 | 4539 | |
3b12939d PA |
4540 | ALL_UIS (ui) |
4541 | { | |
4542 | if (ui->prompt_state == PROMPT_BLOCKED) | |
4543 | { | |
4544 | any_sync = 1; | |
4545 | break; | |
4546 | } | |
4547 | } | |
4548 | if (!any_sync) | |
4549 | { | |
4550 | /* There were no unwaited-for children left in the target, but, | |
4551 | we're not synchronously waiting for events either. Just | |
4552 | ignore. */ | |
4553 | ||
4554 | if (debug_infrun) | |
4555 | fprintf_unfiltered (gdb_stdlog, | |
4556 | "infrun: TARGET_WAITKIND_NO_RESUMED " | |
4557 | "(ignoring: bg)\n"); | |
4558 | prepare_to_wait (ecs); | |
4559 | return 1; | |
4560 | } | |
f4836ba9 PA |
4561 | } |
4562 | ||
4563 | /* Otherwise, if we were running a synchronous execution command, we | |
4564 | may need to cancel it and give the user back the terminal. | |
4565 | ||
4566 | In non-stop mode, the target can't tell whether we've already | |
4567 | consumed previous stop events, so it can end up sending us a | |
4568 | no-resumed event like so: | |
4569 | ||
4570 | #0 - thread 1 is left stopped | |
4571 | ||
4572 | #1 - thread 2 is resumed and hits breakpoint | |
4573 | -> TARGET_WAITKIND_STOPPED | |
4574 | ||
4575 | #2 - thread 3 is resumed and exits | |
4576 | this is the last resumed thread, so | |
4577 | -> TARGET_WAITKIND_NO_RESUMED | |
4578 | ||
4579 | #3 - gdb processes stop for thread 2 and decides to re-resume | |
4580 | it. | |
4581 | ||
4582 | #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event. | |
4583 | thread 2 is now resumed, so the event should be ignored. | |
4584 | ||
4585 | IOW, if the stop for thread 2 doesn't end a foreground command, | |
4586 | then we need to ignore the following TARGET_WAITKIND_NO_RESUMED | |
4587 | event. But it could be that the event meant that thread 2 itself | |
4588 | (or whatever other thread was the last resumed thread) exited. | |
4589 | ||
4590 | To address this we refresh the thread list and check whether we | |
4591 | have resumed threads _now_. In the example above, this removes | |
4592 | thread 3 from the thread list. If thread 2 was re-resumed, we | |
4593 | ignore this event. If we find no thread resumed, then we cancel | |
4594 | the synchronous command show "no unwaited-for " to the user. */ | |
4595 | update_thread_list (); | |
4596 | ||
08036331 | 4597 | for (thread_info *thread : all_non_exited_threads ()) |
f4836ba9 PA |
4598 | { |
4599 | if (thread->executing | |
4600 | || thread->suspend.waitstatus_pending_p) | |
4601 | { | |
4602 | /* There were no unwaited-for children left in the target at | |
4603 | some point, but there are now. Just ignore. */ | |
4604 | if (debug_infrun) | |
4605 | fprintf_unfiltered (gdb_stdlog, | |
4606 | "infrun: TARGET_WAITKIND_NO_RESUMED " | |
4607 | "(ignoring: found resumed)\n"); | |
4608 | prepare_to_wait (ecs); | |
4609 | return 1; | |
4610 | } | |
4611 | } | |
4612 | ||
4613 | /* Note however that we may find no resumed thread because the whole | |
4614 | process exited meanwhile (thus updating the thread list results | |
4615 | in an empty thread list). In this case we know we'll be getting | |
4616 | a process exit event shortly. */ | |
08036331 | 4617 | for (inferior *inf : all_inferiors ()) |
f4836ba9 PA |
4618 | { |
4619 | if (inf->pid == 0) | |
4620 | continue; | |
4621 | ||
08036331 | 4622 | thread_info *thread = any_live_thread_of_inferior (inf); |
f4836ba9 PA |
4623 | if (thread == NULL) |
4624 | { | |
4625 | if (debug_infrun) | |
4626 | fprintf_unfiltered (gdb_stdlog, | |
4627 | "infrun: TARGET_WAITKIND_NO_RESUMED " | |
4628 | "(expect process exit)\n"); | |
4629 | prepare_to_wait (ecs); | |
4630 | return 1; | |
4631 | } | |
4632 | } | |
4633 | ||
4634 | /* Go ahead and report the event. */ | |
4635 | return 0; | |
4636 | } | |
4637 | ||
05ba8510 PA |
4638 | /* Given an execution control state that has been freshly filled in by |
4639 | an event from the inferior, figure out what it means and take | |
4640 | appropriate action. | |
4641 | ||
4642 | The alternatives are: | |
4643 | ||
22bcd14b | 4644 | 1) stop_waiting and return; to really stop and return to the |
05ba8510 PA |
4645 | debugger. |
4646 | ||
4647 | 2) keep_going and return; to wait for the next event (set | |
4648 | ecs->event_thread->stepping_over_breakpoint to 1 to single step | |
4649 | once). */ | |
c906108c | 4650 | |
ec9499be | 4651 | static void |
595915c1 | 4652 | handle_inferior_event (struct execution_control_state *ecs) |
cd0fc7c3 | 4653 | { |
595915c1 TT |
4654 | /* Make sure that all temporary struct value objects that were |
4655 | created during the handling of the event get deleted at the | |
4656 | end. */ | |
4657 | scoped_value_mark free_values; | |
4658 | ||
d6b48e9c PA |
4659 | enum stop_kind stop_soon; |
4660 | ||
c29705b7 PW |
4661 | if (debug_infrun) |
4662 | fprintf_unfiltered (gdb_stdlog, "infrun: handle_inferior_event %s\n", | |
4663 | target_waitstatus_to_string (&ecs->ws).c_str ()); | |
4664 | ||
28736962 PA |
4665 | if (ecs->ws.kind == TARGET_WAITKIND_IGNORE) |
4666 | { | |
4667 | /* We had an event in the inferior, but we are not interested in | |
4668 | handling it at this level. The lower layers have already | |
4669 | done what needs to be done, if anything. | |
4670 | ||
4671 | One of the possible circumstances for this is when the | |
4672 | inferior produces output for the console. The inferior has | |
4673 | not stopped, and we are ignoring the event. Another possible | |
4674 | circumstance is any event which the lower level knows will be | |
4675 | reported multiple times without an intervening resume. */ | |
28736962 PA |
4676 | prepare_to_wait (ecs); |
4677 | return; | |
4678 | } | |
4679 | ||
65706a29 PA |
4680 | if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED) |
4681 | { | |
65706a29 PA |
4682 | prepare_to_wait (ecs); |
4683 | return; | |
4684 | } | |
4685 | ||
0e5bf2a8 | 4686 | if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED |
f4836ba9 PA |
4687 | && handle_no_resumed (ecs)) |
4688 | return; | |
0e5bf2a8 | 4689 | |
1777feb0 | 4690 | /* Cache the last pid/waitstatus. */ |
c32c64b7 | 4691 | set_last_target_status (ecs->ptid, ecs->ws); |
e02bc4cc | 4692 | |
ca005067 | 4693 | /* Always clear state belonging to the previous time we stopped. */ |
aa7d318d | 4694 | stop_stack_dummy = STOP_NONE; |
ca005067 | 4695 | |
0e5bf2a8 PA |
4696 | if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED) |
4697 | { | |
4698 | /* No unwaited-for children left. IOW, all resumed children | |
4699 | have exited. */ | |
0e5bf2a8 | 4700 | stop_print_frame = 0; |
22bcd14b | 4701 | stop_waiting (ecs); |
0e5bf2a8 PA |
4702 | return; |
4703 | } | |
4704 | ||
8c90c137 | 4705 | if (ecs->ws.kind != TARGET_WAITKIND_EXITED |
64776a0b | 4706 | && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED) |
359f5fe6 PA |
4707 | { |
4708 | ecs->event_thread = find_thread_ptid (ecs->ptid); | |
4709 | /* If it's a new thread, add it to the thread database. */ | |
4710 | if (ecs->event_thread == NULL) | |
4711 | ecs->event_thread = add_thread (ecs->ptid); | |
c1e36e3e PA |
4712 | |
4713 | /* Disable range stepping. If the next step request could use a | |
4714 | range, this will be end up re-enabled then. */ | |
4715 | ecs->event_thread->control.may_range_step = 0; | |
359f5fe6 | 4716 | } |
88ed393a JK |
4717 | |
4718 | /* Dependent on valid ECS->EVENT_THREAD. */ | |
d8dd4d5f | 4719 | adjust_pc_after_break (ecs->event_thread, &ecs->ws); |
88ed393a JK |
4720 | |
4721 | /* Dependent on the current PC value modified by adjust_pc_after_break. */ | |
4722 | reinit_frame_cache (); | |
4723 | ||
28736962 PA |
4724 | breakpoint_retire_moribund (); |
4725 | ||
2b009048 DJ |
4726 | /* First, distinguish signals caused by the debugger from signals |
4727 | that have to do with the program's own actions. Note that | |
4728 | breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending | |
4729 | on the operating system version. Here we detect when a SIGILL or | |
4730 | SIGEMT is really a breakpoint and change it to SIGTRAP. We do | |
4731 | something similar for SIGSEGV, since a SIGSEGV will be generated | |
4732 | when we're trying to execute a breakpoint instruction on a | |
4733 | non-executable stack. This happens for call dummy breakpoints | |
4734 | for architectures like SPARC that place call dummies on the | |
4735 | stack. */ | |
2b009048 | 4736 | if (ecs->ws.kind == TARGET_WAITKIND_STOPPED |
a493e3e2 PA |
4737 | && (ecs->ws.value.sig == GDB_SIGNAL_ILL |
4738 | || ecs->ws.value.sig == GDB_SIGNAL_SEGV | |
4739 | || ecs->ws.value.sig == GDB_SIGNAL_EMT)) | |
2b009048 | 4740 | { |
00431a78 | 4741 | struct regcache *regcache = get_thread_regcache (ecs->event_thread); |
de0a0249 | 4742 | |
a01bda52 | 4743 | if (breakpoint_inserted_here_p (regcache->aspace (), |
de0a0249 UW |
4744 | regcache_read_pc (regcache))) |
4745 | { | |
4746 | if (debug_infrun) | |
4747 | fprintf_unfiltered (gdb_stdlog, | |
4748 | "infrun: Treating signal as SIGTRAP\n"); | |
a493e3e2 | 4749 | ecs->ws.value.sig = GDB_SIGNAL_TRAP; |
de0a0249 | 4750 | } |
2b009048 DJ |
4751 | } |
4752 | ||
28736962 PA |
4753 | /* Mark the non-executing threads accordingly. In all-stop, all |
4754 | threads of all processes are stopped when we get any event | |
e1316e60 | 4755 | reported. In non-stop mode, only the event thread stops. */ |
372316f1 PA |
4756 | { |
4757 | ptid_t mark_ptid; | |
4758 | ||
fbea99ea | 4759 | if (!target_is_non_stop_p ()) |
372316f1 PA |
4760 | mark_ptid = minus_one_ptid; |
4761 | else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED | |
4762 | || ecs->ws.kind == TARGET_WAITKIND_EXITED) | |
4763 | { | |
4764 | /* If we're handling a process exit in non-stop mode, even | |
4765 | though threads haven't been deleted yet, one would think | |
4766 | that there is nothing to do, as threads of the dead process | |
4767 | will be soon deleted, and threads of any other process were | |
4768 | left running. However, on some targets, threads survive a | |
4769 | process exit event. E.g., for the "checkpoint" command, | |
4770 | when the current checkpoint/fork exits, linux-fork.c | |
4771 | automatically switches to another fork from within | |
4772 | target_mourn_inferior, by associating the same | |
4773 | inferior/thread to another fork. We haven't mourned yet at | |
4774 | this point, but we must mark any threads left in the | |
4775 | process as not-executing so that finish_thread_state marks | |
4776 | them stopped (in the user's perspective) if/when we present | |
4777 | the stop to the user. */ | |
e99b03dc | 4778 | mark_ptid = ptid_t (ecs->ptid.pid ()); |
372316f1 PA |
4779 | } |
4780 | else | |
4781 | mark_ptid = ecs->ptid; | |
4782 | ||
4783 | set_executing (mark_ptid, 0); | |
4784 | ||
4785 | /* Likewise the resumed flag. */ | |
4786 | set_resumed (mark_ptid, 0); | |
4787 | } | |
8c90c137 | 4788 | |
488f131b JB |
4789 | switch (ecs->ws.kind) |
4790 | { | |
4791 | case TARGET_WAITKIND_LOADED: | |
00431a78 | 4792 | context_switch (ecs); |
b0f4b84b DJ |
4793 | /* Ignore gracefully during startup of the inferior, as it might |
4794 | be the shell which has just loaded some objects, otherwise | |
4795 | add the symbols for the newly loaded objects. Also ignore at | |
4796 | the beginning of an attach or remote session; we will query | |
4797 | the full list of libraries once the connection is | |
4798 | established. */ | |
4f5d7f63 | 4799 | |
00431a78 | 4800 | stop_soon = get_inferior_stop_soon (ecs); |
c0236d92 | 4801 | if (stop_soon == NO_STOP_QUIETLY) |
488f131b | 4802 | { |
edcc5120 TT |
4803 | struct regcache *regcache; |
4804 | ||
00431a78 | 4805 | regcache = get_thread_regcache (ecs->event_thread); |
edcc5120 TT |
4806 | |
4807 | handle_solib_event (); | |
4808 | ||
4809 | ecs->event_thread->control.stop_bpstat | |
a01bda52 | 4810 | = bpstat_stop_status (regcache->aspace (), |
f2ffa92b PA |
4811 | ecs->event_thread->suspend.stop_pc, |
4812 | ecs->event_thread, &ecs->ws); | |
ab04a2af | 4813 | |
c65d6b55 PA |
4814 | if (handle_stop_requested (ecs)) |
4815 | return; | |
4816 | ||
ce12b012 | 4817 | if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat)) |
edcc5120 TT |
4818 | { |
4819 | /* A catchpoint triggered. */ | |
94c57d6a PA |
4820 | process_event_stop_test (ecs); |
4821 | return; | |
edcc5120 | 4822 | } |
488f131b | 4823 | |
b0f4b84b DJ |
4824 | /* If requested, stop when the dynamic linker notifies |
4825 | gdb of events. This allows the user to get control | |
4826 | and place breakpoints in initializer routines for | |
4827 | dynamically loaded objects (among other things). */ | |
a493e3e2 | 4828 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; |
b0f4b84b DJ |
4829 | if (stop_on_solib_events) |
4830 | { | |
55409f9d DJ |
4831 | /* Make sure we print "Stopped due to solib-event" in |
4832 | normal_stop. */ | |
4833 | stop_print_frame = 1; | |
4834 | ||
22bcd14b | 4835 | stop_waiting (ecs); |
b0f4b84b DJ |
4836 | return; |
4837 | } | |
488f131b | 4838 | } |
b0f4b84b DJ |
4839 | |
4840 | /* If we are skipping through a shell, or through shared library | |
4841 | loading that we aren't interested in, resume the program. If | |
5c09a2c5 | 4842 | we're running the program normally, also resume. */ |
b0f4b84b DJ |
4843 | if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY) |
4844 | { | |
74960c60 VP |
4845 | /* Loading of shared libraries might have changed breakpoint |
4846 | addresses. Make sure new breakpoints are inserted. */ | |
a25a5a45 | 4847 | if (stop_soon == NO_STOP_QUIETLY) |
74960c60 | 4848 | insert_breakpoints (); |
64ce06e4 | 4849 | resume (GDB_SIGNAL_0); |
b0f4b84b DJ |
4850 | prepare_to_wait (ecs); |
4851 | return; | |
4852 | } | |
4853 | ||
5c09a2c5 PA |
4854 | /* But stop if we're attaching or setting up a remote |
4855 | connection. */ | |
4856 | if (stop_soon == STOP_QUIETLY_NO_SIGSTOP | |
4857 | || stop_soon == STOP_QUIETLY_REMOTE) | |
4858 | { | |
4859 | if (debug_infrun) | |
4860 | fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n"); | |
22bcd14b | 4861 | stop_waiting (ecs); |
5c09a2c5 PA |
4862 | return; |
4863 | } | |
4864 | ||
4865 | internal_error (__FILE__, __LINE__, | |
4866 | _("unhandled stop_soon: %d"), (int) stop_soon); | |
c5aa993b | 4867 | |
488f131b | 4868 | case TARGET_WAITKIND_SPURIOUS: |
c65d6b55 PA |
4869 | if (handle_stop_requested (ecs)) |
4870 | return; | |
00431a78 | 4871 | context_switch (ecs); |
64ce06e4 | 4872 | resume (GDB_SIGNAL_0); |
488f131b JB |
4873 | prepare_to_wait (ecs); |
4874 | return; | |
c5aa993b | 4875 | |
65706a29 | 4876 | case TARGET_WAITKIND_THREAD_CREATED: |
c65d6b55 PA |
4877 | if (handle_stop_requested (ecs)) |
4878 | return; | |
00431a78 | 4879 | context_switch (ecs); |
65706a29 PA |
4880 | if (!switch_back_to_stepped_thread (ecs)) |
4881 | keep_going (ecs); | |
4882 | return; | |
4883 | ||
488f131b | 4884 | case TARGET_WAITKIND_EXITED: |
940c3c06 | 4885 | case TARGET_WAITKIND_SIGNALLED: |
fb66883a | 4886 | inferior_ptid = ecs->ptid; |
c9657e70 | 4887 | set_current_inferior (find_inferior_ptid (ecs->ptid)); |
6c95b8df PA |
4888 | set_current_program_space (current_inferior ()->pspace); |
4889 | handle_vfork_child_exec_or_exit (0); | |
223ffa71 | 4890 | target_terminal::ours (); /* Must do this before mourn anyway. */ |
488f131b | 4891 | |
0c557179 SDJ |
4892 | /* Clearing any previous state of convenience variables. */ |
4893 | clear_exit_convenience_vars (); | |
4894 | ||
940c3c06 PA |
4895 | if (ecs->ws.kind == TARGET_WAITKIND_EXITED) |
4896 | { | |
4897 | /* Record the exit code in the convenience variable $_exitcode, so | |
4898 | that the user can inspect this again later. */ | |
4899 | set_internalvar_integer (lookup_internalvar ("_exitcode"), | |
4900 | (LONGEST) ecs->ws.value.integer); | |
4901 | ||
4902 | /* Also record this in the inferior itself. */ | |
4903 | current_inferior ()->has_exit_code = 1; | |
4904 | current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer; | |
8cf64490 | 4905 | |
98eb56a4 PA |
4906 | /* Support the --return-child-result option. */ |
4907 | return_child_result_value = ecs->ws.value.integer; | |
4908 | ||
76727919 | 4909 | gdb::observers::exited.notify (ecs->ws.value.integer); |
940c3c06 PA |
4910 | } |
4911 | else | |
0c557179 | 4912 | { |
00431a78 | 4913 | struct gdbarch *gdbarch = current_inferior ()->gdbarch; |
0c557179 SDJ |
4914 | |
4915 | if (gdbarch_gdb_signal_to_target_p (gdbarch)) | |
4916 | { | |
4917 | /* Set the value of the internal variable $_exitsignal, | |
4918 | which holds the signal uncaught by the inferior. */ | |
4919 | set_internalvar_integer (lookup_internalvar ("_exitsignal"), | |
4920 | gdbarch_gdb_signal_to_target (gdbarch, | |
4921 | ecs->ws.value.sig)); | |
4922 | } | |
4923 | else | |
4924 | { | |
4925 | /* We don't have access to the target's method used for | |
4926 | converting between signal numbers (GDB's internal | |
4927 | representation <-> target's representation). | |
4928 | Therefore, we cannot do a good job at displaying this | |
4929 | information to the user. It's better to just warn | |
4930 | her about it (if infrun debugging is enabled), and | |
4931 | give up. */ | |
4932 | if (debug_infrun) | |
4933 | fprintf_filtered (gdb_stdlog, _("\ | |
4934 | Cannot fill $_exitsignal with the correct signal number.\n")); | |
4935 | } | |
4936 | ||
76727919 | 4937 | gdb::observers::signal_exited.notify (ecs->ws.value.sig); |
0c557179 | 4938 | } |
8cf64490 | 4939 | |
488f131b | 4940 | gdb_flush (gdb_stdout); |
bc1e6c81 | 4941 | target_mourn_inferior (inferior_ptid); |
488f131b | 4942 | stop_print_frame = 0; |
22bcd14b | 4943 | stop_waiting (ecs); |
488f131b | 4944 | return; |
c5aa993b | 4945 | |
488f131b | 4946 | /* The following are the only cases in which we keep going; |
1777feb0 | 4947 | the above cases end in a continue or goto. */ |
488f131b | 4948 | case TARGET_WAITKIND_FORKED: |
deb3b17b | 4949 | case TARGET_WAITKIND_VFORKED: |
e2d96639 YQ |
4950 | /* Check whether the inferior is displaced stepping. */ |
4951 | { | |
00431a78 | 4952 | struct regcache *regcache = get_thread_regcache (ecs->event_thread); |
ac7936df | 4953 | struct gdbarch *gdbarch = regcache->arch (); |
e2d96639 YQ |
4954 | |
4955 | /* If checking displaced stepping is supported, and thread | |
4956 | ecs->ptid is displaced stepping. */ | |
00431a78 | 4957 | if (displaced_step_in_progress_thread (ecs->event_thread)) |
e2d96639 YQ |
4958 | { |
4959 | struct inferior *parent_inf | |
c9657e70 | 4960 | = find_inferior_ptid (ecs->ptid); |
e2d96639 YQ |
4961 | struct regcache *child_regcache; |
4962 | CORE_ADDR parent_pc; | |
4963 | ||
4964 | /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED, | |
4965 | indicating that the displaced stepping of syscall instruction | |
4966 | has been done. Perform cleanup for parent process here. Note | |
4967 | that this operation also cleans up the child process for vfork, | |
4968 | because their pages are shared. */ | |
00431a78 | 4969 | displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP); |
c2829269 PA |
4970 | /* Start a new step-over in another thread if there's one |
4971 | that needs it. */ | |
4972 | start_step_over (); | |
e2d96639 YQ |
4973 | |
4974 | if (ecs->ws.kind == TARGET_WAITKIND_FORKED) | |
4975 | { | |
c0987663 | 4976 | struct displaced_step_inferior_state *displaced |
00431a78 | 4977 | = get_displaced_stepping_state (parent_inf); |
c0987663 | 4978 | |
e2d96639 YQ |
4979 | /* Restore scratch pad for child process. */ |
4980 | displaced_step_restore (displaced, ecs->ws.value.related_pid); | |
4981 | } | |
4982 | ||
4983 | /* Since the vfork/fork syscall instruction was executed in the scratchpad, | |
4984 | the child's PC is also within the scratchpad. Set the child's PC | |
4985 | to the parent's PC value, which has already been fixed up. | |
4986 | FIXME: we use the parent's aspace here, although we're touching | |
4987 | the child, because the child hasn't been added to the inferior | |
4988 | list yet at this point. */ | |
4989 | ||
4990 | child_regcache | |
4991 | = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid, | |
4992 | gdbarch, | |
4993 | parent_inf->aspace); | |
4994 | /* Read PC value of parent process. */ | |
4995 | parent_pc = regcache_read_pc (regcache); | |
4996 | ||
4997 | if (debug_displaced) | |
4998 | fprintf_unfiltered (gdb_stdlog, | |
4999 | "displaced: write child pc from %s to %s\n", | |
5000 | paddress (gdbarch, | |
5001 | regcache_read_pc (child_regcache)), | |
5002 | paddress (gdbarch, parent_pc)); | |
5003 | ||
5004 | regcache_write_pc (child_regcache, parent_pc); | |
5005 | } | |
5006 | } | |
5007 | ||
00431a78 | 5008 | context_switch (ecs); |
5a2901d9 | 5009 | |
b242c3c2 PA |
5010 | /* Immediately detach breakpoints from the child before there's |
5011 | any chance of letting the user delete breakpoints from the | |
5012 | breakpoint lists. If we don't do this early, it's easy to | |
5013 | leave left over traps in the child, vis: "break foo; catch | |
5014 | fork; c; <fork>; del; c; <child calls foo>". We only follow | |
5015 | the fork on the last `continue', and by that time the | |
5016 | breakpoint at "foo" is long gone from the breakpoint table. | |
5017 | If we vforked, then we don't need to unpatch here, since both | |
5018 | parent and child are sharing the same memory pages; we'll | |
5019 | need to unpatch at follow/detach time instead to be certain | |
5020 | that new breakpoints added between catchpoint hit time and | |
5021 | vfork follow are detached. */ | |
5022 | if (ecs->ws.kind != TARGET_WAITKIND_VFORKED) | |
5023 | { | |
b242c3c2 PA |
5024 | /* This won't actually modify the breakpoint list, but will |
5025 | physically remove the breakpoints from the child. */ | |
d80ee84f | 5026 | detach_breakpoints (ecs->ws.value.related_pid); |
b242c3c2 PA |
5027 | } |
5028 | ||
34b7e8a6 | 5029 | delete_just_stopped_threads_single_step_breakpoints (); |
d03285ec | 5030 | |
e58b0e63 PA |
5031 | /* In case the event is caught by a catchpoint, remember that |
5032 | the event is to be followed at the next resume of the thread, | |
5033 | and not immediately. */ | |
5034 | ecs->event_thread->pending_follow = ecs->ws; | |
5035 | ||
f2ffa92b PA |
5036 | ecs->event_thread->suspend.stop_pc |
5037 | = regcache_read_pc (get_thread_regcache (ecs->event_thread)); | |
675bf4cb | 5038 | |
16c381f0 | 5039 | ecs->event_thread->control.stop_bpstat |
a01bda52 | 5040 | = bpstat_stop_status (get_current_regcache ()->aspace (), |
f2ffa92b PA |
5041 | ecs->event_thread->suspend.stop_pc, |
5042 | ecs->event_thread, &ecs->ws); | |
675bf4cb | 5043 | |
c65d6b55 PA |
5044 | if (handle_stop_requested (ecs)) |
5045 | return; | |
5046 | ||
ce12b012 PA |
5047 | /* If no catchpoint triggered for this, then keep going. Note |
5048 | that we're interested in knowing the bpstat actually causes a | |
5049 | stop, not just if it may explain the signal. Software | |
5050 | watchpoints, for example, always appear in the bpstat. */ | |
5051 | if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat)) | |
04e68871 | 5052 | { |
e58b0e63 | 5053 | int should_resume; |
3e43a32a MS |
5054 | int follow_child |
5055 | = (follow_fork_mode_string == follow_fork_mode_child); | |
e58b0e63 | 5056 | |
a493e3e2 | 5057 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; |
e58b0e63 PA |
5058 | |
5059 | should_resume = follow_fork (); | |
5060 | ||
00431a78 PA |
5061 | thread_info *parent = ecs->event_thread; |
5062 | thread_info *child = find_thread_ptid (ecs->ws.value.related_pid); | |
6c95b8df | 5063 | |
a2077e25 PA |
5064 | /* At this point, the parent is marked running, and the |
5065 | child is marked stopped. */ | |
5066 | ||
5067 | /* If not resuming the parent, mark it stopped. */ | |
5068 | if (follow_child && !detach_fork && !non_stop && !sched_multi) | |
00431a78 | 5069 | parent->set_running (false); |
a2077e25 PA |
5070 | |
5071 | /* If resuming the child, mark it running. */ | |
5072 | if (follow_child || (!detach_fork && (non_stop || sched_multi))) | |
00431a78 | 5073 | child->set_running (true); |
a2077e25 | 5074 | |
6c95b8df | 5075 | /* In non-stop mode, also resume the other branch. */ |
fbea99ea PA |
5076 | if (!detach_fork && (non_stop |
5077 | || (sched_multi && target_is_non_stop_p ()))) | |
6c95b8df PA |
5078 | { |
5079 | if (follow_child) | |
5080 | switch_to_thread (parent); | |
5081 | else | |
5082 | switch_to_thread (child); | |
5083 | ||
5084 | ecs->event_thread = inferior_thread (); | |
5085 | ecs->ptid = inferior_ptid; | |
5086 | keep_going (ecs); | |
5087 | } | |
5088 | ||
5089 | if (follow_child) | |
5090 | switch_to_thread (child); | |
5091 | else | |
5092 | switch_to_thread (parent); | |
5093 | ||
e58b0e63 PA |
5094 | ecs->event_thread = inferior_thread (); |
5095 | ecs->ptid = inferior_ptid; | |
5096 | ||
5097 | if (should_resume) | |
5098 | keep_going (ecs); | |
5099 | else | |
22bcd14b | 5100 | stop_waiting (ecs); |
04e68871 DJ |
5101 | return; |
5102 | } | |
94c57d6a PA |
5103 | process_event_stop_test (ecs); |
5104 | return; | |
488f131b | 5105 | |
6c95b8df PA |
5106 | case TARGET_WAITKIND_VFORK_DONE: |
5107 | /* Done with the shared memory region. Re-insert breakpoints in | |
5108 | the parent, and keep going. */ | |
5109 | ||
00431a78 | 5110 | context_switch (ecs); |
6c95b8df PA |
5111 | |
5112 | current_inferior ()->waiting_for_vfork_done = 0; | |
56710373 | 5113 | current_inferior ()->pspace->breakpoints_not_allowed = 0; |
c65d6b55 PA |
5114 | |
5115 | if (handle_stop_requested (ecs)) | |
5116 | return; | |
5117 | ||
6c95b8df PA |
5118 | /* This also takes care of reinserting breakpoints in the |
5119 | previously locked inferior. */ | |
5120 | keep_going (ecs); | |
5121 | return; | |
5122 | ||
488f131b | 5123 | case TARGET_WAITKIND_EXECD: |
488f131b | 5124 | |
cbd2b4e3 PA |
5125 | /* Note we can't read registers yet (the stop_pc), because we |
5126 | don't yet know the inferior's post-exec architecture. | |
5127 | 'stop_pc' is explicitly read below instead. */ | |
00431a78 | 5128 | switch_to_thread_no_regs (ecs->event_thread); |
5a2901d9 | 5129 | |
6c95b8df PA |
5130 | /* Do whatever is necessary to the parent branch of the vfork. */ |
5131 | handle_vfork_child_exec_or_exit (1); | |
5132 | ||
795e548f PA |
5133 | /* This causes the eventpoints and symbol table to be reset. |
5134 | Must do this now, before trying to determine whether to | |
5135 | stop. */ | |
71b43ef8 | 5136 | follow_exec (inferior_ptid, ecs->ws.value.execd_pathname); |
795e548f | 5137 | |
17d8546e DB |
5138 | /* In follow_exec we may have deleted the original thread and |
5139 | created a new one. Make sure that the event thread is the | |
5140 | execd thread for that case (this is a nop otherwise). */ | |
5141 | ecs->event_thread = inferior_thread (); | |
5142 | ||
f2ffa92b PA |
5143 | ecs->event_thread->suspend.stop_pc |
5144 | = regcache_read_pc (get_thread_regcache (ecs->event_thread)); | |
ecdc3a72 | 5145 | |
16c381f0 | 5146 | ecs->event_thread->control.stop_bpstat |
a01bda52 | 5147 | = bpstat_stop_status (get_current_regcache ()->aspace (), |
f2ffa92b PA |
5148 | ecs->event_thread->suspend.stop_pc, |
5149 | ecs->event_thread, &ecs->ws); | |
795e548f | 5150 | |
71b43ef8 PA |
5151 | /* Note that this may be referenced from inside |
5152 | bpstat_stop_status above, through inferior_has_execd. */ | |
5153 | xfree (ecs->ws.value.execd_pathname); | |
5154 | ecs->ws.value.execd_pathname = NULL; | |
5155 | ||
c65d6b55 PA |
5156 | if (handle_stop_requested (ecs)) |
5157 | return; | |
5158 | ||
04e68871 | 5159 | /* If no catchpoint triggered for this, then keep going. */ |
ce12b012 | 5160 | if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat)) |
04e68871 | 5161 | { |
a493e3e2 | 5162 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; |
04e68871 DJ |
5163 | keep_going (ecs); |
5164 | return; | |
5165 | } | |
94c57d6a PA |
5166 | process_event_stop_test (ecs); |
5167 | return; | |
488f131b | 5168 | |
b4dc5ffa MK |
5169 | /* Be careful not to try to gather much state about a thread |
5170 | that's in a syscall. It's frequently a losing proposition. */ | |
488f131b | 5171 | case TARGET_WAITKIND_SYSCALL_ENTRY: |
1777feb0 | 5172 | /* Getting the current syscall number. */ |
94c57d6a PA |
5173 | if (handle_syscall_event (ecs) == 0) |
5174 | process_event_stop_test (ecs); | |
5175 | return; | |
c906108c | 5176 | |
488f131b JB |
5177 | /* Before examining the threads further, step this thread to |
5178 | get it entirely out of the syscall. (We get notice of the | |
5179 | event when the thread is just on the verge of exiting a | |
5180 | syscall. Stepping one instruction seems to get it back | |
b4dc5ffa | 5181 | into user code.) */ |
488f131b | 5182 | case TARGET_WAITKIND_SYSCALL_RETURN: |
94c57d6a PA |
5183 | if (handle_syscall_event (ecs) == 0) |
5184 | process_event_stop_test (ecs); | |
5185 | return; | |
c906108c | 5186 | |
488f131b | 5187 | case TARGET_WAITKIND_STOPPED: |
4f5d7f63 PA |
5188 | handle_signal_stop (ecs); |
5189 | return; | |
c906108c | 5190 | |
b2175913 MS |
5191 | case TARGET_WAITKIND_NO_HISTORY: |
5192 | /* Reverse execution: target ran out of history info. */ | |
eab402df | 5193 | |
d1988021 | 5194 | /* Switch to the stopped thread. */ |
00431a78 | 5195 | context_switch (ecs); |
d1988021 MM |
5196 | if (debug_infrun) |
5197 | fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n"); | |
5198 | ||
34b7e8a6 | 5199 | delete_just_stopped_threads_single_step_breakpoints (); |
f2ffa92b PA |
5200 | ecs->event_thread->suspend.stop_pc |
5201 | = regcache_read_pc (get_thread_regcache (inferior_thread ())); | |
c65d6b55 PA |
5202 | |
5203 | if (handle_stop_requested (ecs)) | |
5204 | return; | |
5205 | ||
76727919 | 5206 | gdb::observers::no_history.notify (); |
22bcd14b | 5207 | stop_waiting (ecs); |
b2175913 | 5208 | return; |
488f131b | 5209 | } |
4f5d7f63 PA |
5210 | } |
5211 | ||
372316f1 PA |
5212 | /* Restart threads back to what they were trying to do back when we |
5213 | paused them for an in-line step-over. The EVENT_THREAD thread is | |
5214 | ignored. */ | |
4d9d9d04 PA |
5215 | |
5216 | static void | |
372316f1 PA |
5217 | restart_threads (struct thread_info *event_thread) |
5218 | { | |
372316f1 PA |
5219 | /* In case the instruction just stepped spawned a new thread. */ |
5220 | update_thread_list (); | |
5221 | ||
08036331 | 5222 | for (thread_info *tp : all_non_exited_threads ()) |
372316f1 PA |
5223 | { |
5224 | if (tp == event_thread) | |
5225 | { | |
5226 | if (debug_infrun) | |
5227 | fprintf_unfiltered (gdb_stdlog, | |
5228 | "infrun: restart threads: " | |
5229 | "[%s] is event thread\n", | |
a068643d | 5230 | target_pid_to_str (tp->ptid).c_str ()); |
372316f1 PA |
5231 | continue; |
5232 | } | |
5233 | ||
5234 | if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall)) | |
5235 | { | |
5236 | if (debug_infrun) | |
5237 | fprintf_unfiltered (gdb_stdlog, | |
5238 | "infrun: restart threads: " | |
5239 | "[%s] not meant to be running\n", | |
a068643d | 5240 | target_pid_to_str (tp->ptid).c_str ()); |
372316f1 PA |
5241 | continue; |
5242 | } | |
5243 | ||
5244 | if (tp->resumed) | |
5245 | { | |
5246 | if (debug_infrun) | |
5247 | fprintf_unfiltered (gdb_stdlog, | |
5248 | "infrun: restart threads: [%s] resumed\n", | |
a068643d | 5249 | target_pid_to_str (tp->ptid).c_str ()); |
372316f1 PA |
5250 | gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p); |
5251 | continue; | |
5252 | } | |
5253 | ||
5254 | if (thread_is_in_step_over_chain (tp)) | |
5255 | { | |
5256 | if (debug_infrun) | |
5257 | fprintf_unfiltered (gdb_stdlog, | |
5258 | "infrun: restart threads: " | |
5259 | "[%s] needs step-over\n", | |
a068643d | 5260 | target_pid_to_str (tp->ptid).c_str ()); |
372316f1 PA |
5261 | gdb_assert (!tp->resumed); |
5262 | continue; | |
5263 | } | |
5264 | ||
5265 | ||
5266 | if (tp->suspend.waitstatus_pending_p) | |
5267 | { | |
5268 | if (debug_infrun) | |
5269 | fprintf_unfiltered (gdb_stdlog, | |
5270 | "infrun: restart threads: " | |
5271 | "[%s] has pending status\n", | |
a068643d | 5272 | target_pid_to_str (tp->ptid).c_str ()); |
372316f1 PA |
5273 | tp->resumed = 1; |
5274 | continue; | |
5275 | } | |
5276 | ||
c65d6b55 PA |
5277 | gdb_assert (!tp->stop_requested); |
5278 | ||
372316f1 PA |
5279 | /* If some thread needs to start a step-over at this point, it |
5280 | should still be in the step-over queue, and thus skipped | |
5281 | above. */ | |
5282 | if (thread_still_needs_step_over (tp)) | |
5283 | { | |
5284 | internal_error (__FILE__, __LINE__, | |
5285 | "thread [%s] needs a step-over, but not in " | |
5286 | "step-over queue\n", | |
a068643d | 5287 | target_pid_to_str (tp->ptid).c_str ()); |
372316f1 PA |
5288 | } |
5289 | ||
5290 | if (currently_stepping (tp)) | |
5291 | { | |
5292 | if (debug_infrun) | |
5293 | fprintf_unfiltered (gdb_stdlog, | |
5294 | "infrun: restart threads: [%s] was stepping\n", | |
a068643d | 5295 | target_pid_to_str (tp->ptid).c_str ()); |
372316f1 PA |
5296 | keep_going_stepped_thread (tp); |
5297 | } | |
5298 | else | |
5299 | { | |
5300 | struct execution_control_state ecss; | |
5301 | struct execution_control_state *ecs = &ecss; | |
5302 | ||
5303 | if (debug_infrun) | |
5304 | fprintf_unfiltered (gdb_stdlog, | |
5305 | "infrun: restart threads: [%s] continuing\n", | |
a068643d | 5306 | target_pid_to_str (tp->ptid).c_str ()); |
372316f1 | 5307 | reset_ecs (ecs, tp); |
00431a78 | 5308 | switch_to_thread (tp); |
372316f1 PA |
5309 | keep_going_pass_signal (ecs); |
5310 | } | |
5311 | } | |
5312 | } | |
5313 | ||
5314 | /* Callback for iterate_over_threads. Find a resumed thread that has | |
5315 | a pending waitstatus. */ | |
5316 | ||
5317 | static int | |
5318 | resumed_thread_with_pending_status (struct thread_info *tp, | |
5319 | void *arg) | |
5320 | { | |
5321 | return (tp->resumed | |
5322 | && tp->suspend.waitstatus_pending_p); | |
5323 | } | |
5324 | ||
5325 | /* Called when we get an event that may finish an in-line or | |
5326 | out-of-line (displaced stepping) step-over started previously. | |
5327 | Return true if the event is processed and we should go back to the | |
5328 | event loop; false if the caller should continue processing the | |
5329 | event. */ | |
5330 | ||
5331 | static int | |
4d9d9d04 PA |
5332 | finish_step_over (struct execution_control_state *ecs) |
5333 | { | |
372316f1 PA |
5334 | int had_step_over_info; |
5335 | ||
00431a78 | 5336 | displaced_step_fixup (ecs->event_thread, |
4d9d9d04 PA |
5337 | ecs->event_thread->suspend.stop_signal); |
5338 | ||
372316f1 PA |
5339 | had_step_over_info = step_over_info_valid_p (); |
5340 | ||
5341 | if (had_step_over_info) | |
4d9d9d04 PA |
5342 | { |
5343 | /* If we're stepping over a breakpoint with all threads locked, | |
5344 | then only the thread that was stepped should be reporting | |
5345 | back an event. */ | |
5346 | gdb_assert (ecs->event_thread->control.trap_expected); | |
5347 | ||
c65d6b55 | 5348 | clear_step_over_info (); |
4d9d9d04 PA |
5349 | } |
5350 | ||
fbea99ea | 5351 | if (!target_is_non_stop_p ()) |
372316f1 | 5352 | return 0; |
4d9d9d04 PA |
5353 | |
5354 | /* Start a new step-over in another thread if there's one that | |
5355 | needs it. */ | |
5356 | start_step_over (); | |
372316f1 PA |
5357 | |
5358 | /* If we were stepping over a breakpoint before, and haven't started | |
5359 | a new in-line step-over sequence, then restart all other threads | |
5360 | (except the event thread). We can't do this in all-stop, as then | |
5361 | e.g., we wouldn't be able to issue any other remote packet until | |
5362 | these other threads stop. */ | |
5363 | if (had_step_over_info && !step_over_info_valid_p ()) | |
5364 | { | |
5365 | struct thread_info *pending; | |
5366 | ||
5367 | /* If we only have threads with pending statuses, the restart | |
5368 | below won't restart any thread and so nothing re-inserts the | |
5369 | breakpoint we just stepped over. But we need it inserted | |
5370 | when we later process the pending events, otherwise if | |
5371 | another thread has a pending event for this breakpoint too, | |
5372 | we'd discard its event (because the breakpoint that | |
5373 | originally caused the event was no longer inserted). */ | |
00431a78 | 5374 | context_switch (ecs); |
372316f1 PA |
5375 | insert_breakpoints (); |
5376 | ||
5377 | restart_threads (ecs->event_thread); | |
5378 | ||
5379 | /* If we have events pending, go through handle_inferior_event | |
5380 | again, picking up a pending event at random. This avoids | |
5381 | thread starvation. */ | |
5382 | ||
5383 | /* But not if we just stepped over a watchpoint in order to let | |
5384 | the instruction execute so we can evaluate its expression. | |
5385 | The set of watchpoints that triggered is recorded in the | |
5386 | breakpoint objects themselves (see bp->watchpoint_triggered). | |
5387 | If we processed another event first, that other event could | |
5388 | clobber this info. */ | |
5389 | if (ecs->event_thread->stepping_over_watchpoint) | |
5390 | return 0; | |
5391 | ||
5392 | pending = iterate_over_threads (resumed_thread_with_pending_status, | |
5393 | NULL); | |
5394 | if (pending != NULL) | |
5395 | { | |
5396 | struct thread_info *tp = ecs->event_thread; | |
5397 | struct regcache *regcache; | |
5398 | ||
5399 | if (debug_infrun) | |
5400 | { | |
5401 | fprintf_unfiltered (gdb_stdlog, | |
5402 | "infrun: found resumed threads with " | |
5403 | "pending events, saving status\n"); | |
5404 | } | |
5405 | ||
5406 | gdb_assert (pending != tp); | |
5407 | ||
5408 | /* Record the event thread's event for later. */ | |
5409 | save_waitstatus (tp, &ecs->ws); | |
5410 | /* This was cleared early, by handle_inferior_event. Set it | |
5411 | so this pending event is considered by | |
5412 | do_target_wait. */ | |
5413 | tp->resumed = 1; | |
5414 | ||
5415 | gdb_assert (!tp->executing); | |
5416 | ||
00431a78 | 5417 | regcache = get_thread_regcache (tp); |
372316f1 PA |
5418 | tp->suspend.stop_pc = regcache_read_pc (regcache); |
5419 | ||
5420 | if (debug_infrun) | |
5421 | { | |
5422 | fprintf_unfiltered (gdb_stdlog, | |
5423 | "infrun: saved stop_pc=%s for %s " | |
5424 | "(currently_stepping=%d)\n", | |
5425 | paddress (target_gdbarch (), | |
5426 | tp->suspend.stop_pc), | |
a068643d | 5427 | target_pid_to_str (tp->ptid).c_str (), |
372316f1 PA |
5428 | currently_stepping (tp)); |
5429 | } | |
5430 | ||
5431 | /* This in-line step-over finished; clear this so we won't | |
5432 | start a new one. This is what handle_signal_stop would | |
5433 | do, if we returned false. */ | |
5434 | tp->stepping_over_breakpoint = 0; | |
5435 | ||
5436 | /* Wake up the event loop again. */ | |
5437 | mark_async_event_handler (infrun_async_inferior_event_token); | |
5438 | ||
5439 | prepare_to_wait (ecs); | |
5440 | return 1; | |
5441 | } | |
5442 | } | |
5443 | ||
5444 | return 0; | |
4d9d9d04 PA |
5445 | } |
5446 | ||
4f5d7f63 PA |
5447 | /* Come here when the program has stopped with a signal. */ |
5448 | ||
5449 | static void | |
5450 | handle_signal_stop (struct execution_control_state *ecs) | |
5451 | { | |
5452 | struct frame_info *frame; | |
5453 | struct gdbarch *gdbarch; | |
5454 | int stopped_by_watchpoint; | |
5455 | enum stop_kind stop_soon; | |
5456 | int random_signal; | |
c906108c | 5457 | |
f0407826 DE |
5458 | gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED); |
5459 | ||
c65d6b55 PA |
5460 | ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig; |
5461 | ||
f0407826 DE |
5462 | /* Do we need to clean up the state of a thread that has |
5463 | completed a displaced single-step? (Doing so usually affects | |
5464 | the PC, so do it here, before we set stop_pc.) */ | |
372316f1 PA |
5465 | if (finish_step_over (ecs)) |
5466 | return; | |
f0407826 DE |
5467 | |
5468 | /* If we either finished a single-step or hit a breakpoint, but | |
5469 | the user wanted this thread to be stopped, pretend we got a | |
5470 | SIG0 (generic unsignaled stop). */ | |
5471 | if (ecs->event_thread->stop_requested | |
5472 | && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP) | |
5473 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; | |
237fc4c9 | 5474 | |
f2ffa92b PA |
5475 | ecs->event_thread->suspend.stop_pc |
5476 | = regcache_read_pc (get_thread_regcache (ecs->event_thread)); | |
488f131b | 5477 | |
527159b7 | 5478 | if (debug_infrun) |
237fc4c9 | 5479 | { |
00431a78 | 5480 | struct regcache *regcache = get_thread_regcache (ecs->event_thread); |
b926417a | 5481 | struct gdbarch *reg_gdbarch = regcache->arch (); |
2989a365 | 5482 | scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); |
7f82dfc7 JK |
5483 | |
5484 | inferior_ptid = ecs->ptid; | |
5af949e3 UW |
5485 | |
5486 | fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n", | |
b926417a | 5487 | paddress (reg_gdbarch, |
f2ffa92b | 5488 | ecs->event_thread->suspend.stop_pc)); |
d92524f1 | 5489 | if (target_stopped_by_watchpoint ()) |
237fc4c9 PA |
5490 | { |
5491 | CORE_ADDR addr; | |
abbb1732 | 5492 | |
237fc4c9 PA |
5493 | fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n"); |
5494 | ||
8b88a78e | 5495 | if (target_stopped_data_address (current_top_target (), &addr)) |
237fc4c9 | 5496 | fprintf_unfiltered (gdb_stdlog, |
5af949e3 | 5497 | "infrun: stopped data address = %s\n", |
b926417a | 5498 | paddress (reg_gdbarch, addr)); |
237fc4c9 PA |
5499 | else |
5500 | fprintf_unfiltered (gdb_stdlog, | |
5501 | "infrun: (no data address available)\n"); | |
5502 | } | |
5503 | } | |
527159b7 | 5504 | |
36fa8042 PA |
5505 | /* This is originated from start_remote(), start_inferior() and |
5506 | shared libraries hook functions. */ | |
00431a78 | 5507 | stop_soon = get_inferior_stop_soon (ecs); |
36fa8042 PA |
5508 | if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE) |
5509 | { | |
00431a78 | 5510 | context_switch (ecs); |
36fa8042 PA |
5511 | if (debug_infrun) |
5512 | fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n"); | |
5513 | stop_print_frame = 1; | |
22bcd14b | 5514 | stop_waiting (ecs); |
36fa8042 PA |
5515 | return; |
5516 | } | |
5517 | ||
36fa8042 PA |
5518 | /* This originates from attach_command(). We need to overwrite |
5519 | the stop_signal here, because some kernels don't ignore a | |
5520 | SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call. | |
5521 | See more comments in inferior.h. On the other hand, if we | |
5522 | get a non-SIGSTOP, report it to the user - assume the backend | |
5523 | will handle the SIGSTOP if it should show up later. | |
5524 | ||
5525 | Also consider that the attach is complete when we see a | |
5526 | SIGTRAP. Some systems (e.g. Windows), and stubs supporting | |
5527 | target extended-remote report it instead of a SIGSTOP | |
5528 | (e.g. gdbserver). We already rely on SIGTRAP being our | |
5529 | signal, so this is no exception. | |
5530 | ||
5531 | Also consider that the attach is complete when we see a | |
5532 | GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell | |
5533 | the target to stop all threads of the inferior, in case the | |
5534 | low level attach operation doesn't stop them implicitly. If | |
5535 | they weren't stopped implicitly, then the stub will report a | |
5536 | GDB_SIGNAL_0, meaning: stopped for no particular reason | |
5537 | other than GDB's request. */ | |
5538 | if (stop_soon == STOP_QUIETLY_NO_SIGSTOP | |
5539 | && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP | |
5540 | || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP | |
5541 | || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0)) | |
5542 | { | |
5543 | stop_print_frame = 1; | |
22bcd14b | 5544 | stop_waiting (ecs); |
36fa8042 PA |
5545 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; |
5546 | return; | |
5547 | } | |
5548 | ||
488f131b | 5549 | /* See if something interesting happened to the non-current thread. If |
b40c7d58 | 5550 | so, then switch to that thread. */ |
d7e15655 | 5551 | if (ecs->ptid != inferior_ptid) |
488f131b | 5552 | { |
527159b7 | 5553 | if (debug_infrun) |
8a9de0e4 | 5554 | fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n"); |
527159b7 | 5555 | |
00431a78 | 5556 | context_switch (ecs); |
c5aa993b | 5557 | |
9a4105ab | 5558 | if (deprecated_context_hook) |
00431a78 | 5559 | deprecated_context_hook (ecs->event_thread->global_num); |
488f131b | 5560 | } |
c906108c | 5561 | |
568d6575 UW |
5562 | /* At this point, get hold of the now-current thread's frame. */ |
5563 | frame = get_current_frame (); | |
5564 | gdbarch = get_frame_arch (frame); | |
5565 | ||
2adfaa28 | 5566 | /* Pull the single step breakpoints out of the target. */ |
af48d08f | 5567 | if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP) |
488f131b | 5568 | { |
af48d08f | 5569 | struct regcache *regcache; |
af48d08f | 5570 | CORE_ADDR pc; |
2adfaa28 | 5571 | |
00431a78 | 5572 | regcache = get_thread_regcache (ecs->event_thread); |
8b86c959 YQ |
5573 | const address_space *aspace = regcache->aspace (); |
5574 | ||
af48d08f | 5575 | pc = regcache_read_pc (regcache); |
34b7e8a6 | 5576 | |
af48d08f PA |
5577 | /* However, before doing so, if this single-step breakpoint was |
5578 | actually for another thread, set this thread up for moving | |
5579 | past it. */ | |
5580 | if (!thread_has_single_step_breakpoint_here (ecs->event_thread, | |
5581 | aspace, pc)) | |
5582 | { | |
5583 | if (single_step_breakpoint_inserted_here_p (aspace, pc)) | |
2adfaa28 PA |
5584 | { |
5585 | if (debug_infrun) | |
5586 | { | |
5587 | fprintf_unfiltered (gdb_stdlog, | |
af48d08f | 5588 | "infrun: [%s] hit another thread's " |
34b7e8a6 | 5589 | "single-step breakpoint\n", |
a068643d | 5590 | target_pid_to_str (ecs->ptid).c_str ()); |
2adfaa28 | 5591 | } |
af48d08f PA |
5592 | ecs->hit_singlestep_breakpoint = 1; |
5593 | } | |
5594 | } | |
5595 | else | |
5596 | { | |
5597 | if (debug_infrun) | |
5598 | { | |
5599 | fprintf_unfiltered (gdb_stdlog, | |
5600 | "infrun: [%s] hit its " | |
5601 | "single-step breakpoint\n", | |
a068643d | 5602 | target_pid_to_str (ecs->ptid).c_str ()); |
2adfaa28 PA |
5603 | } |
5604 | } | |
488f131b | 5605 | } |
af48d08f | 5606 | delete_just_stopped_threads_single_step_breakpoints (); |
c906108c | 5607 | |
963f9c80 PA |
5608 | if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP |
5609 | && ecs->event_thread->control.trap_expected | |
5610 | && ecs->event_thread->stepping_over_watchpoint) | |
d983da9c DJ |
5611 | stopped_by_watchpoint = 0; |
5612 | else | |
5613 | stopped_by_watchpoint = watchpoints_triggered (&ecs->ws); | |
5614 | ||
5615 | /* If necessary, step over this watchpoint. We'll be back to display | |
5616 | it in a moment. */ | |
5617 | if (stopped_by_watchpoint | |
d92524f1 | 5618 | && (target_have_steppable_watchpoint |
568d6575 | 5619 | || gdbarch_have_nonsteppable_watchpoint (gdbarch))) |
488f131b | 5620 | { |
488f131b JB |
5621 | /* At this point, we are stopped at an instruction which has |
5622 | attempted to write to a piece of memory under control of | |
5623 | a watchpoint. The instruction hasn't actually executed | |
5624 | yet. If we were to evaluate the watchpoint expression | |
5625 | now, we would get the old value, and therefore no change | |
5626 | would seem to have occurred. | |
5627 | ||
5628 | In order to make watchpoints work `right', we really need | |
5629 | to complete the memory write, and then evaluate the | |
d983da9c DJ |
5630 | watchpoint expression. We do this by single-stepping the |
5631 | target. | |
5632 | ||
7f89fd65 | 5633 | It may not be necessary to disable the watchpoint to step over |
d983da9c DJ |
5634 | it. For example, the PA can (with some kernel cooperation) |
5635 | single step over a watchpoint without disabling the watchpoint. | |
5636 | ||
5637 | It is far more common to need to disable a watchpoint to step | |
5638 | the inferior over it. If we have non-steppable watchpoints, | |
5639 | we must disable the current watchpoint; it's simplest to | |
963f9c80 PA |
5640 | disable all watchpoints. |
5641 | ||
5642 | Any breakpoint at PC must also be stepped over -- if there's | |
5643 | one, it will have already triggered before the watchpoint | |
5644 | triggered, and we either already reported it to the user, or | |
5645 | it didn't cause a stop and we called keep_going. In either | |
5646 | case, if there was a breakpoint at PC, we must be trying to | |
5647 | step past it. */ | |
5648 | ecs->event_thread->stepping_over_watchpoint = 1; | |
5649 | keep_going (ecs); | |
488f131b JB |
5650 | return; |
5651 | } | |
5652 | ||
4e1c45ea | 5653 | ecs->event_thread->stepping_over_breakpoint = 0; |
963f9c80 | 5654 | ecs->event_thread->stepping_over_watchpoint = 0; |
16c381f0 JK |
5655 | bpstat_clear (&ecs->event_thread->control.stop_bpstat); |
5656 | ecs->event_thread->control.stop_step = 0; | |
488f131b | 5657 | stop_print_frame = 1; |
488f131b | 5658 | stopped_by_random_signal = 0; |
ddfe970e | 5659 | bpstat stop_chain = NULL; |
488f131b | 5660 | |
edb3359d DJ |
5661 | /* Hide inlined functions starting here, unless we just performed stepi or |
5662 | nexti. After stepi and nexti, always show the innermost frame (not any | |
5663 | inline function call sites). */ | |
16c381f0 | 5664 | if (ecs->event_thread->control.step_range_end != 1) |
0574c78f | 5665 | { |
00431a78 PA |
5666 | const address_space *aspace |
5667 | = get_thread_regcache (ecs->event_thread)->aspace (); | |
0574c78f GB |
5668 | |
5669 | /* skip_inline_frames is expensive, so we avoid it if we can | |
5670 | determine that the address is one where functions cannot have | |
5671 | been inlined. This improves performance with inferiors that | |
5672 | load a lot of shared libraries, because the solib event | |
5673 | breakpoint is defined as the address of a function (i.e. not | |
5674 | inline). Note that we have to check the previous PC as well | |
5675 | as the current one to catch cases when we have just | |
5676 | single-stepped off a breakpoint prior to reinstating it. | |
5677 | Note that we're assuming that the code we single-step to is | |
5678 | not inline, but that's not definitive: there's nothing | |
5679 | preventing the event breakpoint function from containing | |
5680 | inlined code, and the single-step ending up there. If the | |
5681 | user had set a breakpoint on that inlined code, the missing | |
5682 | skip_inline_frames call would break things. Fortunately | |
5683 | that's an extremely unlikely scenario. */ | |
f2ffa92b PA |
5684 | if (!pc_at_non_inline_function (aspace, |
5685 | ecs->event_thread->suspend.stop_pc, | |
5686 | &ecs->ws) | |
a210c238 MR |
5687 | && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP |
5688 | && ecs->event_thread->control.trap_expected | |
5689 | && pc_at_non_inline_function (aspace, | |
5690 | ecs->event_thread->prev_pc, | |
09ac7c10 | 5691 | &ecs->ws))) |
1c5a993e | 5692 | { |
f2ffa92b PA |
5693 | stop_chain = build_bpstat_chain (aspace, |
5694 | ecs->event_thread->suspend.stop_pc, | |
5695 | &ecs->ws); | |
00431a78 | 5696 | skip_inline_frames (ecs->event_thread, stop_chain); |
1c5a993e MR |
5697 | |
5698 | /* Re-fetch current thread's frame in case that invalidated | |
5699 | the frame cache. */ | |
5700 | frame = get_current_frame (); | |
5701 | gdbarch = get_frame_arch (frame); | |
5702 | } | |
0574c78f | 5703 | } |
edb3359d | 5704 | |
a493e3e2 | 5705 | if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP |
16c381f0 | 5706 | && ecs->event_thread->control.trap_expected |
568d6575 | 5707 | && gdbarch_single_step_through_delay_p (gdbarch) |
4e1c45ea | 5708 | && currently_stepping (ecs->event_thread)) |
3352ef37 | 5709 | { |
b50d7442 | 5710 | /* We're trying to step off a breakpoint. Turns out that we're |
3352ef37 | 5711 | also on an instruction that needs to be stepped multiple |
1777feb0 | 5712 | times before it's been fully executing. E.g., architectures |
3352ef37 AC |
5713 | with a delay slot. It needs to be stepped twice, once for |
5714 | the instruction and once for the delay slot. */ | |
5715 | int step_through_delay | |
568d6575 | 5716 | = gdbarch_single_step_through_delay (gdbarch, frame); |
abbb1732 | 5717 | |
527159b7 | 5718 | if (debug_infrun && step_through_delay) |
8a9de0e4 | 5719 | fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n"); |
16c381f0 JK |
5720 | if (ecs->event_thread->control.step_range_end == 0 |
5721 | && step_through_delay) | |
3352ef37 AC |
5722 | { |
5723 | /* The user issued a continue when stopped at a breakpoint. | |
5724 | Set up for another trap and get out of here. */ | |
4e1c45ea | 5725 | ecs->event_thread->stepping_over_breakpoint = 1; |
3352ef37 AC |
5726 | keep_going (ecs); |
5727 | return; | |
5728 | } | |
5729 | else if (step_through_delay) | |
5730 | { | |
5731 | /* The user issued a step when stopped at a breakpoint. | |
5732 | Maybe we should stop, maybe we should not - the delay | |
5733 | slot *might* correspond to a line of source. In any | |
ca67fcb8 VP |
5734 | case, don't decide that here, just set |
5735 | ecs->stepping_over_breakpoint, making sure we | |
5736 | single-step again before breakpoints are re-inserted. */ | |
4e1c45ea | 5737 | ecs->event_thread->stepping_over_breakpoint = 1; |
3352ef37 AC |
5738 | } |
5739 | } | |
5740 | ||
ab04a2af TT |
5741 | /* See if there is a breakpoint/watchpoint/catchpoint/etc. that |
5742 | handles this event. */ | |
5743 | ecs->event_thread->control.stop_bpstat | |
a01bda52 | 5744 | = bpstat_stop_status (get_current_regcache ()->aspace (), |
f2ffa92b PA |
5745 | ecs->event_thread->suspend.stop_pc, |
5746 | ecs->event_thread, &ecs->ws, stop_chain); | |
db82e815 | 5747 | |
ab04a2af TT |
5748 | /* Following in case break condition called a |
5749 | function. */ | |
5750 | stop_print_frame = 1; | |
73dd234f | 5751 | |
ab04a2af TT |
5752 | /* This is where we handle "moribund" watchpoints. Unlike |
5753 | software breakpoints traps, hardware watchpoint traps are | |
5754 | always distinguishable from random traps. If no high-level | |
5755 | watchpoint is associated with the reported stop data address | |
5756 | anymore, then the bpstat does not explain the signal --- | |
5757 | simply make sure to ignore it if `stopped_by_watchpoint' is | |
5758 | set. */ | |
5759 | ||
5760 | if (debug_infrun | |
5761 | && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP | |
47591c29 | 5762 | && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat, |
427cd150 | 5763 | GDB_SIGNAL_TRAP) |
ab04a2af TT |
5764 | && stopped_by_watchpoint) |
5765 | fprintf_unfiltered (gdb_stdlog, | |
5766 | "infrun: no user watchpoint explains " | |
5767 | "watchpoint SIGTRAP, ignoring\n"); | |
73dd234f | 5768 | |
bac7d97b | 5769 | /* NOTE: cagney/2003-03-29: These checks for a random signal |
ab04a2af TT |
5770 | at one stage in the past included checks for an inferior |
5771 | function call's call dummy's return breakpoint. The original | |
5772 | comment, that went with the test, read: | |
03cebad2 | 5773 | |
ab04a2af TT |
5774 | ``End of a stack dummy. Some systems (e.g. Sony news) give |
5775 | another signal besides SIGTRAP, so check here as well as | |
5776 | above.'' | |
73dd234f | 5777 | |
ab04a2af TT |
5778 | If someone ever tries to get call dummys on a |
5779 | non-executable stack to work (where the target would stop | |
5780 | with something like a SIGSEGV), then those tests might need | |
5781 | to be re-instated. Given, however, that the tests were only | |
5782 | enabled when momentary breakpoints were not being used, I | |
5783 | suspect that it won't be the case. | |
488f131b | 5784 | |
ab04a2af TT |
5785 | NOTE: kettenis/2004-02-05: Indeed such checks don't seem to |
5786 | be necessary for call dummies on a non-executable stack on | |
5787 | SPARC. */ | |
488f131b | 5788 | |
bac7d97b | 5789 | /* See if the breakpoints module can explain the signal. */ |
47591c29 PA |
5790 | random_signal |
5791 | = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat, | |
5792 | ecs->event_thread->suspend.stop_signal); | |
bac7d97b | 5793 | |
1cf4d951 PA |
5794 | /* Maybe this was a trap for a software breakpoint that has since |
5795 | been removed. */ | |
5796 | if (random_signal && target_stopped_by_sw_breakpoint ()) | |
5797 | { | |
f2ffa92b PA |
5798 | if (program_breakpoint_here_p (gdbarch, |
5799 | ecs->event_thread->suspend.stop_pc)) | |
1cf4d951 PA |
5800 | { |
5801 | struct regcache *regcache; | |
5802 | int decr_pc; | |
5803 | ||
5804 | /* Re-adjust PC to what the program would see if GDB was not | |
5805 | debugging it. */ | |
00431a78 | 5806 | regcache = get_thread_regcache (ecs->event_thread); |
527a273a | 5807 | decr_pc = gdbarch_decr_pc_after_break (gdbarch); |
1cf4d951 PA |
5808 | if (decr_pc != 0) |
5809 | { | |
07036511 TT |
5810 | gdb::optional<scoped_restore_tmpl<int>> |
5811 | restore_operation_disable; | |
1cf4d951 PA |
5812 | |
5813 | if (record_full_is_used ()) | |
07036511 TT |
5814 | restore_operation_disable.emplace |
5815 | (record_full_gdb_operation_disable_set ()); | |
1cf4d951 | 5816 | |
f2ffa92b PA |
5817 | regcache_write_pc (regcache, |
5818 | ecs->event_thread->suspend.stop_pc + decr_pc); | |
1cf4d951 PA |
5819 | } |
5820 | } | |
5821 | else | |
5822 | { | |
5823 | /* A delayed software breakpoint event. Ignore the trap. */ | |
5824 | if (debug_infrun) | |
5825 | fprintf_unfiltered (gdb_stdlog, | |
5826 | "infrun: delayed software breakpoint " | |
5827 | "trap, ignoring\n"); | |
5828 | random_signal = 0; | |
5829 | } | |
5830 | } | |
5831 | ||
5832 | /* Maybe this was a trap for a hardware breakpoint/watchpoint that | |
5833 | has since been removed. */ | |
5834 | if (random_signal && target_stopped_by_hw_breakpoint ()) | |
5835 | { | |
5836 | /* A delayed hardware breakpoint event. Ignore the trap. */ | |
5837 | if (debug_infrun) | |
5838 | fprintf_unfiltered (gdb_stdlog, | |
5839 | "infrun: delayed hardware breakpoint/watchpoint " | |
5840 | "trap, ignoring\n"); | |
5841 | random_signal = 0; | |
5842 | } | |
5843 | ||
bac7d97b PA |
5844 | /* If not, perhaps stepping/nexting can. */ |
5845 | if (random_signal) | |
5846 | random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP | |
5847 | && currently_stepping (ecs->event_thread)); | |
ab04a2af | 5848 | |
2adfaa28 PA |
5849 | /* Perhaps the thread hit a single-step breakpoint of _another_ |
5850 | thread. Single-step breakpoints are transparent to the | |
5851 | breakpoints module. */ | |
5852 | if (random_signal) | |
5853 | random_signal = !ecs->hit_singlestep_breakpoint; | |
5854 | ||
bac7d97b PA |
5855 | /* No? Perhaps we got a moribund watchpoint. */ |
5856 | if (random_signal) | |
5857 | random_signal = !stopped_by_watchpoint; | |
ab04a2af | 5858 | |
c65d6b55 PA |
5859 | /* Always stop if the user explicitly requested this thread to |
5860 | remain stopped. */ | |
5861 | if (ecs->event_thread->stop_requested) | |
5862 | { | |
5863 | random_signal = 1; | |
5864 | if (debug_infrun) | |
5865 | fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n"); | |
5866 | } | |
5867 | ||
488f131b JB |
5868 | /* For the program's own signals, act according to |
5869 | the signal handling tables. */ | |
5870 | ||
ce12b012 | 5871 | if (random_signal) |
488f131b JB |
5872 | { |
5873 | /* Signal not for debugging purposes. */ | |
c9657e70 | 5874 | struct inferior *inf = find_inferior_ptid (ecs->ptid); |
c9737c08 | 5875 | enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal; |
488f131b | 5876 | |
527159b7 | 5877 | if (debug_infrun) |
c9737c08 PA |
5878 | fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n", |
5879 | gdb_signal_to_symbol_string (stop_signal)); | |
527159b7 | 5880 | |
488f131b JB |
5881 | stopped_by_random_signal = 1; |
5882 | ||
252fbfc8 PA |
5883 | /* Always stop on signals if we're either just gaining control |
5884 | of the program, or the user explicitly requested this thread | |
5885 | to remain stopped. */ | |
d6b48e9c | 5886 | if (stop_soon != NO_STOP_QUIETLY |
252fbfc8 | 5887 | || ecs->event_thread->stop_requested |
24291992 | 5888 | || (!inf->detaching |
16c381f0 | 5889 | && signal_stop_state (ecs->event_thread->suspend.stop_signal))) |
488f131b | 5890 | { |
22bcd14b | 5891 | stop_waiting (ecs); |
488f131b JB |
5892 | return; |
5893 | } | |
b57bacec PA |
5894 | |
5895 | /* Notify observers the signal has "handle print" set. Note we | |
5896 | returned early above if stopping; normal_stop handles the | |
5897 | printing in that case. */ | |
5898 | if (signal_print[ecs->event_thread->suspend.stop_signal]) | |
5899 | { | |
5900 | /* The signal table tells us to print about this signal. */ | |
223ffa71 | 5901 | target_terminal::ours_for_output (); |
76727919 | 5902 | gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal); |
223ffa71 | 5903 | target_terminal::inferior (); |
b57bacec | 5904 | } |
488f131b JB |
5905 | |
5906 | /* Clear the signal if it should not be passed. */ | |
16c381f0 | 5907 | if (signal_program[ecs->event_thread->suspend.stop_signal] == 0) |
a493e3e2 | 5908 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; |
488f131b | 5909 | |
f2ffa92b | 5910 | if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc |
16c381f0 | 5911 | && ecs->event_thread->control.trap_expected |
8358c15c | 5912 | && ecs->event_thread->control.step_resume_breakpoint == NULL) |
68f53502 AC |
5913 | { |
5914 | /* We were just starting a new sequence, attempting to | |
5915 | single-step off of a breakpoint and expecting a SIGTRAP. | |
237fc4c9 | 5916 | Instead this signal arrives. This signal will take us out |
68f53502 AC |
5917 | of the stepping range so GDB needs to remember to, when |
5918 | the signal handler returns, resume stepping off that | |
5919 | breakpoint. */ | |
5920 | /* To simplify things, "continue" is forced to use the same | |
5921 | code paths as single-step - set a breakpoint at the | |
5922 | signal return address and then, once hit, step off that | |
5923 | breakpoint. */ | |
237fc4c9 PA |
5924 | if (debug_infrun) |
5925 | fprintf_unfiltered (gdb_stdlog, | |
5926 | "infrun: signal arrived while stepping over " | |
5927 | "breakpoint\n"); | |
d3169d93 | 5928 | |
2c03e5be | 5929 | insert_hp_step_resume_breakpoint_at_frame (frame); |
4e1c45ea | 5930 | ecs->event_thread->step_after_step_resume_breakpoint = 1; |
2455069d UW |
5931 | /* Reset trap_expected to ensure breakpoints are re-inserted. */ |
5932 | ecs->event_thread->control.trap_expected = 0; | |
d137e6dc PA |
5933 | |
5934 | /* If we were nexting/stepping some other thread, switch to | |
5935 | it, so that we don't continue it, losing control. */ | |
5936 | if (!switch_back_to_stepped_thread (ecs)) | |
5937 | keep_going (ecs); | |
9d799f85 | 5938 | return; |
68f53502 | 5939 | } |
9d799f85 | 5940 | |
e5f8a7cc | 5941 | if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0 |
f2ffa92b PA |
5942 | && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc, |
5943 | ecs->event_thread) | |
e5f8a7cc | 5944 | || ecs->event_thread->control.step_range_end == 1) |
edb3359d | 5945 | && frame_id_eq (get_stack_frame_id (frame), |
16c381f0 | 5946 | ecs->event_thread->control.step_stack_frame_id) |
8358c15c | 5947 | && ecs->event_thread->control.step_resume_breakpoint == NULL) |
d303a6c7 AC |
5948 | { |
5949 | /* The inferior is about to take a signal that will take it | |
5950 | out of the single step range. Set a breakpoint at the | |
5951 | current PC (which is presumably where the signal handler | |
5952 | will eventually return) and then allow the inferior to | |
5953 | run free. | |
5954 | ||
5955 | Note that this is only needed for a signal delivered | |
5956 | while in the single-step range. Nested signals aren't a | |
5957 | problem as they eventually all return. */ | |
237fc4c9 PA |
5958 | if (debug_infrun) |
5959 | fprintf_unfiltered (gdb_stdlog, | |
5960 | "infrun: signal may take us out of " | |
5961 | "single-step range\n"); | |
5962 | ||
372316f1 | 5963 | clear_step_over_info (); |
2c03e5be | 5964 | insert_hp_step_resume_breakpoint_at_frame (frame); |
e5f8a7cc | 5965 | ecs->event_thread->step_after_step_resume_breakpoint = 1; |
2455069d UW |
5966 | /* Reset trap_expected to ensure breakpoints are re-inserted. */ |
5967 | ecs->event_thread->control.trap_expected = 0; | |
9d799f85 AC |
5968 | keep_going (ecs); |
5969 | return; | |
d303a6c7 | 5970 | } |
9d799f85 | 5971 | |
85102364 | 5972 | /* Note: step_resume_breakpoint may be non-NULL. This occurs |
9d799f85 AC |
5973 | when either there's a nested signal, or when there's a |
5974 | pending signal enabled just as the signal handler returns | |
5975 | (leaving the inferior at the step-resume-breakpoint without | |
5976 | actually executing it). Either way continue until the | |
5977 | breakpoint is really hit. */ | |
c447ac0b PA |
5978 | |
5979 | if (!switch_back_to_stepped_thread (ecs)) | |
5980 | { | |
5981 | if (debug_infrun) | |
5982 | fprintf_unfiltered (gdb_stdlog, | |
5983 | "infrun: random signal, keep going\n"); | |
5984 | ||
5985 | keep_going (ecs); | |
5986 | } | |
5987 | return; | |
488f131b | 5988 | } |
94c57d6a PA |
5989 | |
5990 | process_event_stop_test (ecs); | |
5991 | } | |
5992 | ||
5993 | /* Come here when we've got some debug event / signal we can explain | |
5994 | (IOW, not a random signal), and test whether it should cause a | |
5995 | stop, or whether we should resume the inferior (transparently). | |
5996 | E.g., could be a breakpoint whose condition evaluates false; we | |
5997 | could be still stepping within the line; etc. */ | |
5998 | ||
5999 | static void | |
6000 | process_event_stop_test (struct execution_control_state *ecs) | |
6001 | { | |
6002 | struct symtab_and_line stop_pc_sal; | |
6003 | struct frame_info *frame; | |
6004 | struct gdbarch *gdbarch; | |
cdaa5b73 PA |
6005 | CORE_ADDR jmp_buf_pc; |
6006 | struct bpstat_what what; | |
94c57d6a | 6007 | |
cdaa5b73 | 6008 | /* Handle cases caused by hitting a breakpoint. */ |
611c83ae | 6009 | |
cdaa5b73 PA |
6010 | frame = get_current_frame (); |
6011 | gdbarch = get_frame_arch (frame); | |
fcf3daef | 6012 | |
cdaa5b73 | 6013 | what = bpstat_what (ecs->event_thread->control.stop_bpstat); |
611c83ae | 6014 | |
cdaa5b73 PA |
6015 | if (what.call_dummy) |
6016 | { | |
6017 | stop_stack_dummy = what.call_dummy; | |
6018 | } | |
186c406b | 6019 | |
243a9253 PA |
6020 | /* A few breakpoint types have callbacks associated (e.g., |
6021 | bp_jit_event). Run them now. */ | |
6022 | bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat); | |
6023 | ||
cdaa5b73 PA |
6024 | /* If we hit an internal event that triggers symbol changes, the |
6025 | current frame will be invalidated within bpstat_what (e.g., if we | |
6026 | hit an internal solib event). Re-fetch it. */ | |
6027 | frame = get_current_frame (); | |
6028 | gdbarch = get_frame_arch (frame); | |
e2e4d78b | 6029 | |
cdaa5b73 PA |
6030 | switch (what.main_action) |
6031 | { | |
6032 | case BPSTAT_WHAT_SET_LONGJMP_RESUME: | |
6033 | /* If we hit the breakpoint at longjmp while stepping, we | |
6034 | install a momentary breakpoint at the target of the | |
6035 | jmp_buf. */ | |
186c406b | 6036 | |
cdaa5b73 PA |
6037 | if (debug_infrun) |
6038 | fprintf_unfiltered (gdb_stdlog, | |
6039 | "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n"); | |
186c406b | 6040 | |
cdaa5b73 | 6041 | ecs->event_thread->stepping_over_breakpoint = 1; |
611c83ae | 6042 | |
cdaa5b73 PA |
6043 | if (what.is_longjmp) |
6044 | { | |
6045 | struct value *arg_value; | |
6046 | ||
6047 | /* If we set the longjmp breakpoint via a SystemTap probe, | |
6048 | then use it to extract the arguments. The destination PC | |
6049 | is the third argument to the probe. */ | |
6050 | arg_value = probe_safe_evaluate_at_pc (frame, 2); | |
6051 | if (arg_value) | |
8fa0c4f8 AA |
6052 | { |
6053 | jmp_buf_pc = value_as_address (arg_value); | |
6054 | jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc); | |
6055 | } | |
cdaa5b73 PA |
6056 | else if (!gdbarch_get_longjmp_target_p (gdbarch) |
6057 | || !gdbarch_get_longjmp_target (gdbarch, | |
6058 | frame, &jmp_buf_pc)) | |
e2e4d78b | 6059 | { |
cdaa5b73 PA |
6060 | if (debug_infrun) |
6061 | fprintf_unfiltered (gdb_stdlog, | |
6062 | "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME " | |
6063 | "(!gdbarch_get_longjmp_target)\n"); | |
6064 | keep_going (ecs); | |
6065 | return; | |
e2e4d78b | 6066 | } |
e2e4d78b | 6067 | |
cdaa5b73 PA |
6068 | /* Insert a breakpoint at resume address. */ |
6069 | insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc); | |
6070 | } | |
6071 | else | |
6072 | check_exception_resume (ecs, frame); | |
6073 | keep_going (ecs); | |
6074 | return; | |
e81a37f7 | 6075 | |
cdaa5b73 PA |
6076 | case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME: |
6077 | { | |
6078 | struct frame_info *init_frame; | |
e81a37f7 | 6079 | |
cdaa5b73 | 6080 | /* There are several cases to consider. |
c906108c | 6081 | |
cdaa5b73 PA |
6082 | 1. The initiating frame no longer exists. In this case we |
6083 | must stop, because the exception or longjmp has gone too | |
6084 | far. | |
2c03e5be | 6085 | |
cdaa5b73 PA |
6086 | 2. The initiating frame exists, and is the same as the |
6087 | current frame. We stop, because the exception or longjmp | |
6088 | has been caught. | |
2c03e5be | 6089 | |
cdaa5b73 PA |
6090 | 3. The initiating frame exists and is different from the |
6091 | current frame. This means the exception or longjmp has | |
6092 | been caught beneath the initiating frame, so keep going. | |
c906108c | 6093 | |
cdaa5b73 PA |
6094 | 4. longjmp breakpoint has been placed just to protect |
6095 | against stale dummy frames and user is not interested in | |
6096 | stopping around longjmps. */ | |
c5aa993b | 6097 | |
cdaa5b73 PA |
6098 | if (debug_infrun) |
6099 | fprintf_unfiltered (gdb_stdlog, | |
6100 | "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n"); | |
c5aa993b | 6101 | |
cdaa5b73 PA |
6102 | gdb_assert (ecs->event_thread->control.exception_resume_breakpoint |
6103 | != NULL); | |
6104 | delete_exception_resume_breakpoint (ecs->event_thread); | |
c5aa993b | 6105 | |
cdaa5b73 PA |
6106 | if (what.is_longjmp) |
6107 | { | |
b67a2c6f | 6108 | check_longjmp_breakpoint_for_call_dummy (ecs->event_thread); |
c5aa993b | 6109 | |
cdaa5b73 | 6110 | if (!frame_id_p (ecs->event_thread->initiating_frame)) |
e5ef252a | 6111 | { |
cdaa5b73 PA |
6112 | /* Case 4. */ |
6113 | keep_going (ecs); | |
6114 | return; | |
e5ef252a | 6115 | } |
cdaa5b73 | 6116 | } |
c5aa993b | 6117 | |
cdaa5b73 | 6118 | init_frame = frame_find_by_id (ecs->event_thread->initiating_frame); |
527159b7 | 6119 | |
cdaa5b73 PA |
6120 | if (init_frame) |
6121 | { | |
6122 | struct frame_id current_id | |
6123 | = get_frame_id (get_current_frame ()); | |
6124 | if (frame_id_eq (current_id, | |
6125 | ecs->event_thread->initiating_frame)) | |
6126 | { | |
6127 | /* Case 2. Fall through. */ | |
6128 | } | |
6129 | else | |
6130 | { | |
6131 | /* Case 3. */ | |
6132 | keep_going (ecs); | |
6133 | return; | |
6134 | } | |
68f53502 | 6135 | } |
488f131b | 6136 | |
cdaa5b73 PA |
6137 | /* For Cases 1 and 2, remove the step-resume breakpoint, if it |
6138 | exists. */ | |
6139 | delete_step_resume_breakpoint (ecs->event_thread); | |
e5ef252a | 6140 | |
bdc36728 | 6141 | end_stepping_range (ecs); |
cdaa5b73 PA |
6142 | } |
6143 | return; | |
e5ef252a | 6144 | |
cdaa5b73 PA |
6145 | case BPSTAT_WHAT_SINGLE: |
6146 | if (debug_infrun) | |
6147 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n"); | |
6148 | ecs->event_thread->stepping_over_breakpoint = 1; | |
6149 | /* Still need to check other stuff, at least the case where we | |
6150 | are stepping and step out of the right range. */ | |
6151 | break; | |
e5ef252a | 6152 | |
cdaa5b73 PA |
6153 | case BPSTAT_WHAT_STEP_RESUME: |
6154 | if (debug_infrun) | |
6155 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n"); | |
e5ef252a | 6156 | |
cdaa5b73 PA |
6157 | delete_step_resume_breakpoint (ecs->event_thread); |
6158 | if (ecs->event_thread->control.proceed_to_finish | |
6159 | && execution_direction == EXEC_REVERSE) | |
6160 | { | |
6161 | struct thread_info *tp = ecs->event_thread; | |
6162 | ||
6163 | /* We are finishing a function in reverse, and just hit the | |
6164 | step-resume breakpoint at the start address of the | |
6165 | function, and we're almost there -- just need to back up | |
6166 | by one more single-step, which should take us back to the | |
6167 | function call. */ | |
6168 | tp->control.step_range_start = tp->control.step_range_end = 1; | |
6169 | keep_going (ecs); | |
e5ef252a | 6170 | return; |
cdaa5b73 PA |
6171 | } |
6172 | fill_in_stop_func (gdbarch, ecs); | |
f2ffa92b | 6173 | if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start |
cdaa5b73 PA |
6174 | && execution_direction == EXEC_REVERSE) |
6175 | { | |
6176 | /* We are stepping over a function call in reverse, and just | |
6177 | hit the step-resume breakpoint at the start address of | |
6178 | the function. Go back to single-stepping, which should | |
6179 | take us back to the function call. */ | |
6180 | ecs->event_thread->stepping_over_breakpoint = 1; | |
6181 | keep_going (ecs); | |
6182 | return; | |
6183 | } | |
6184 | break; | |
e5ef252a | 6185 | |
cdaa5b73 PA |
6186 | case BPSTAT_WHAT_STOP_NOISY: |
6187 | if (debug_infrun) | |
6188 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n"); | |
6189 | stop_print_frame = 1; | |
e5ef252a | 6190 | |
99619bea PA |
6191 | /* Assume the thread stopped for a breapoint. We'll still check |
6192 | whether a/the breakpoint is there when the thread is next | |
6193 | resumed. */ | |
6194 | ecs->event_thread->stepping_over_breakpoint = 1; | |
e5ef252a | 6195 | |
22bcd14b | 6196 | stop_waiting (ecs); |
cdaa5b73 | 6197 | return; |
e5ef252a | 6198 | |
cdaa5b73 PA |
6199 | case BPSTAT_WHAT_STOP_SILENT: |
6200 | if (debug_infrun) | |
6201 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n"); | |
6202 | stop_print_frame = 0; | |
e5ef252a | 6203 | |
99619bea PA |
6204 | /* Assume the thread stopped for a breapoint. We'll still check |
6205 | whether a/the breakpoint is there when the thread is next | |
6206 | resumed. */ | |
6207 | ecs->event_thread->stepping_over_breakpoint = 1; | |
22bcd14b | 6208 | stop_waiting (ecs); |
cdaa5b73 PA |
6209 | return; |
6210 | ||
6211 | case BPSTAT_WHAT_HP_STEP_RESUME: | |
6212 | if (debug_infrun) | |
6213 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n"); | |
6214 | ||
6215 | delete_step_resume_breakpoint (ecs->event_thread); | |
6216 | if (ecs->event_thread->step_after_step_resume_breakpoint) | |
6217 | { | |
6218 | /* Back when the step-resume breakpoint was inserted, we | |
6219 | were trying to single-step off a breakpoint. Go back to | |
6220 | doing that. */ | |
6221 | ecs->event_thread->step_after_step_resume_breakpoint = 0; | |
6222 | ecs->event_thread->stepping_over_breakpoint = 1; | |
6223 | keep_going (ecs); | |
6224 | return; | |
e5ef252a | 6225 | } |
cdaa5b73 PA |
6226 | break; |
6227 | ||
6228 | case BPSTAT_WHAT_KEEP_CHECKING: | |
6229 | break; | |
e5ef252a | 6230 | } |
c906108c | 6231 | |
af48d08f PA |
6232 | /* If we stepped a permanent breakpoint and we had a high priority |
6233 | step-resume breakpoint for the address we stepped, but we didn't | |
6234 | hit it, then we must have stepped into the signal handler. The | |
6235 | step-resume was only necessary to catch the case of _not_ | |
6236 | stepping into the handler, so delete it, and fall through to | |
6237 | checking whether the step finished. */ | |
6238 | if (ecs->event_thread->stepped_breakpoint) | |
6239 | { | |
6240 | struct breakpoint *sr_bp | |
6241 | = ecs->event_thread->control.step_resume_breakpoint; | |
6242 | ||
8d707a12 PA |
6243 | if (sr_bp != NULL |
6244 | && sr_bp->loc->permanent | |
af48d08f PA |
6245 | && sr_bp->type == bp_hp_step_resume |
6246 | && sr_bp->loc->address == ecs->event_thread->prev_pc) | |
6247 | { | |
6248 | if (debug_infrun) | |
6249 | fprintf_unfiltered (gdb_stdlog, | |
6250 | "infrun: stepped permanent breakpoint, stopped in " | |
6251 | "handler\n"); | |
6252 | delete_step_resume_breakpoint (ecs->event_thread); | |
6253 | ecs->event_thread->step_after_step_resume_breakpoint = 0; | |
6254 | } | |
6255 | } | |
6256 | ||
cdaa5b73 PA |
6257 | /* We come here if we hit a breakpoint but should not stop for it. |
6258 | Possibly we also were stepping and should stop for that. So fall | |
6259 | through and test for stepping. But, if not stepping, do not | |
6260 | stop. */ | |
c906108c | 6261 | |
a7212384 UW |
6262 | /* In all-stop mode, if we're currently stepping but have stopped in |
6263 | some other thread, we need to switch back to the stepped thread. */ | |
c447ac0b PA |
6264 | if (switch_back_to_stepped_thread (ecs)) |
6265 | return; | |
776f04fa | 6266 | |
8358c15c | 6267 | if (ecs->event_thread->control.step_resume_breakpoint) |
488f131b | 6268 | { |
527159b7 | 6269 | if (debug_infrun) |
d3169d93 DJ |
6270 | fprintf_unfiltered (gdb_stdlog, |
6271 | "infrun: step-resume breakpoint is inserted\n"); | |
527159b7 | 6272 | |
488f131b JB |
6273 | /* Having a step-resume breakpoint overrides anything |
6274 | else having to do with stepping commands until | |
6275 | that breakpoint is reached. */ | |
488f131b JB |
6276 | keep_going (ecs); |
6277 | return; | |
6278 | } | |
c5aa993b | 6279 | |
16c381f0 | 6280 | if (ecs->event_thread->control.step_range_end == 0) |
488f131b | 6281 | { |
527159b7 | 6282 | if (debug_infrun) |
8a9de0e4 | 6283 | fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n"); |
488f131b | 6284 | /* Likewise if we aren't even stepping. */ |
488f131b JB |
6285 | keep_going (ecs); |
6286 | return; | |
6287 | } | |
c5aa993b | 6288 | |
4b7703ad JB |
6289 | /* Re-fetch current thread's frame in case the code above caused |
6290 | the frame cache to be re-initialized, making our FRAME variable | |
6291 | a dangling pointer. */ | |
6292 | frame = get_current_frame (); | |
628fe4e4 | 6293 | gdbarch = get_frame_arch (frame); |
7e324e48 | 6294 | fill_in_stop_func (gdbarch, ecs); |
4b7703ad | 6295 | |
488f131b | 6296 | /* If stepping through a line, keep going if still within it. |
c906108c | 6297 | |
488f131b JB |
6298 | Note that step_range_end is the address of the first instruction |
6299 | beyond the step range, and NOT the address of the last instruction | |
31410e84 MS |
6300 | within it! |
6301 | ||
6302 | Note also that during reverse execution, we may be stepping | |
6303 | through a function epilogue and therefore must detect when | |
6304 | the current-frame changes in the middle of a line. */ | |
6305 | ||
f2ffa92b PA |
6306 | if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc, |
6307 | ecs->event_thread) | |
31410e84 | 6308 | && (execution_direction != EXEC_REVERSE |
388a8562 | 6309 | || frame_id_eq (get_frame_id (frame), |
16c381f0 | 6310 | ecs->event_thread->control.step_frame_id))) |
488f131b | 6311 | { |
527159b7 | 6312 | if (debug_infrun) |
5af949e3 UW |
6313 | fprintf_unfiltered |
6314 | (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n", | |
16c381f0 JK |
6315 | paddress (gdbarch, ecs->event_thread->control.step_range_start), |
6316 | paddress (gdbarch, ecs->event_thread->control.step_range_end)); | |
b2175913 | 6317 | |
c1e36e3e PA |
6318 | /* Tentatively re-enable range stepping; `resume' disables it if |
6319 | necessary (e.g., if we're stepping over a breakpoint or we | |
6320 | have software watchpoints). */ | |
6321 | ecs->event_thread->control.may_range_step = 1; | |
6322 | ||
b2175913 MS |
6323 | /* When stepping backward, stop at beginning of line range |
6324 | (unless it's the function entry point, in which case | |
6325 | keep going back to the call point). */ | |
f2ffa92b | 6326 | CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc; |
16c381f0 | 6327 | if (stop_pc == ecs->event_thread->control.step_range_start |
b2175913 MS |
6328 | && stop_pc != ecs->stop_func_start |
6329 | && execution_direction == EXEC_REVERSE) | |
bdc36728 | 6330 | end_stepping_range (ecs); |
b2175913 MS |
6331 | else |
6332 | keep_going (ecs); | |
6333 | ||
488f131b JB |
6334 | return; |
6335 | } | |
c5aa993b | 6336 | |
488f131b | 6337 | /* We stepped out of the stepping range. */ |
c906108c | 6338 | |
488f131b | 6339 | /* If we are stepping at the source level and entered the runtime |
388a8562 MS |
6340 | loader dynamic symbol resolution code... |
6341 | ||
6342 | EXEC_FORWARD: we keep on single stepping until we exit the run | |
6343 | time loader code and reach the callee's address. | |
6344 | ||
6345 | EXEC_REVERSE: we've already executed the callee (backward), and | |
6346 | the runtime loader code is handled just like any other | |
6347 | undebuggable function call. Now we need only keep stepping | |
6348 | backward through the trampoline code, and that's handled further | |
6349 | down, so there is nothing for us to do here. */ | |
6350 | ||
6351 | if (execution_direction != EXEC_REVERSE | |
16c381f0 | 6352 | && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE |
f2ffa92b | 6353 | && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc)) |
488f131b | 6354 | { |
4c8c40e6 | 6355 | CORE_ADDR pc_after_resolver = |
f2ffa92b PA |
6356 | gdbarch_skip_solib_resolver (gdbarch, |
6357 | ecs->event_thread->suspend.stop_pc); | |
c906108c | 6358 | |
527159b7 | 6359 | if (debug_infrun) |
3e43a32a MS |
6360 | fprintf_unfiltered (gdb_stdlog, |
6361 | "infrun: stepped into dynsym resolve code\n"); | |
527159b7 | 6362 | |
488f131b JB |
6363 | if (pc_after_resolver) |
6364 | { | |
6365 | /* Set up a step-resume breakpoint at the address | |
6366 | indicated by SKIP_SOLIB_RESOLVER. */ | |
51abb421 | 6367 | symtab_and_line sr_sal; |
488f131b | 6368 | sr_sal.pc = pc_after_resolver; |
6c95b8df | 6369 | sr_sal.pspace = get_frame_program_space (frame); |
488f131b | 6370 | |
a6d9a66e UW |
6371 | insert_step_resume_breakpoint_at_sal (gdbarch, |
6372 | sr_sal, null_frame_id); | |
c5aa993b | 6373 | } |
c906108c | 6374 | |
488f131b JB |
6375 | keep_going (ecs); |
6376 | return; | |
6377 | } | |
c906108c | 6378 | |
1d509aa6 MM |
6379 | /* Step through an indirect branch thunk. */ |
6380 | if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE | |
f2ffa92b PA |
6381 | && gdbarch_in_indirect_branch_thunk (gdbarch, |
6382 | ecs->event_thread->suspend.stop_pc)) | |
1d509aa6 MM |
6383 | { |
6384 | if (debug_infrun) | |
6385 | fprintf_unfiltered (gdb_stdlog, | |
6386 | "infrun: stepped into indirect branch thunk\n"); | |
6387 | keep_going (ecs); | |
6388 | return; | |
6389 | } | |
6390 | ||
16c381f0 JK |
6391 | if (ecs->event_thread->control.step_range_end != 1 |
6392 | && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE | |
6393 | || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL) | |
568d6575 | 6394 | && get_frame_type (frame) == SIGTRAMP_FRAME) |
488f131b | 6395 | { |
527159b7 | 6396 | if (debug_infrun) |
3e43a32a MS |
6397 | fprintf_unfiltered (gdb_stdlog, |
6398 | "infrun: stepped into signal trampoline\n"); | |
42edda50 | 6399 | /* The inferior, while doing a "step" or "next", has ended up in |
8fb3e588 AC |
6400 | a signal trampoline (either by a signal being delivered or by |
6401 | the signal handler returning). Just single-step until the | |
6402 | inferior leaves the trampoline (either by calling the handler | |
6403 | or returning). */ | |
488f131b JB |
6404 | keep_going (ecs); |
6405 | return; | |
6406 | } | |
c906108c | 6407 | |
14132e89 MR |
6408 | /* If we're in the return path from a shared library trampoline, |
6409 | we want to proceed through the trampoline when stepping. */ | |
6410 | /* macro/2012-04-25: This needs to come before the subroutine | |
6411 | call check below as on some targets return trampolines look | |
6412 | like subroutine calls (MIPS16 return thunks). */ | |
6413 | if (gdbarch_in_solib_return_trampoline (gdbarch, | |
f2ffa92b PA |
6414 | ecs->event_thread->suspend.stop_pc, |
6415 | ecs->stop_func_name) | |
14132e89 MR |
6416 | && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE) |
6417 | { | |
6418 | /* Determine where this trampoline returns. */ | |
f2ffa92b PA |
6419 | CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc; |
6420 | CORE_ADDR real_stop_pc | |
6421 | = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc); | |
14132e89 MR |
6422 | |
6423 | if (debug_infrun) | |
6424 | fprintf_unfiltered (gdb_stdlog, | |
6425 | "infrun: stepped into solib return tramp\n"); | |
6426 | ||
6427 | /* Only proceed through if we know where it's going. */ | |
6428 | if (real_stop_pc) | |
6429 | { | |
6430 | /* And put the step-breakpoint there and go until there. */ | |
51abb421 | 6431 | symtab_and_line sr_sal; |
14132e89 MR |
6432 | sr_sal.pc = real_stop_pc; |
6433 | sr_sal.section = find_pc_overlay (sr_sal.pc); | |
6434 | sr_sal.pspace = get_frame_program_space (frame); | |
6435 | ||
6436 | /* Do not specify what the fp should be when we stop since | |
6437 | on some machines the prologue is where the new fp value | |
6438 | is established. */ | |
6439 | insert_step_resume_breakpoint_at_sal (gdbarch, | |
6440 | sr_sal, null_frame_id); | |
6441 | ||
6442 | /* Restart without fiddling with the step ranges or | |
6443 | other state. */ | |
6444 | keep_going (ecs); | |
6445 | return; | |
6446 | } | |
6447 | } | |
6448 | ||
c17eaafe DJ |
6449 | /* Check for subroutine calls. The check for the current frame |
6450 | equalling the step ID is not necessary - the check of the | |
6451 | previous frame's ID is sufficient - but it is a common case and | |
6452 | cheaper than checking the previous frame's ID. | |
14e60db5 DJ |
6453 | |
6454 | NOTE: frame_id_eq will never report two invalid frame IDs as | |
6455 | being equal, so to get into this block, both the current and | |
6456 | previous frame must have valid frame IDs. */ | |
005ca36a JB |
6457 | /* The outer_frame_id check is a heuristic to detect stepping |
6458 | through startup code. If we step over an instruction which | |
6459 | sets the stack pointer from an invalid value to a valid value, | |
6460 | we may detect that as a subroutine call from the mythical | |
6461 | "outermost" function. This could be fixed by marking | |
6462 | outermost frames as !stack_p,code_p,special_p. Then the | |
6463 | initial outermost frame, before sp was valid, would | |
ce6cca6d | 6464 | have code_addr == &_start. See the comment in frame_id_eq |
005ca36a | 6465 | for more. */ |
edb3359d | 6466 | if (!frame_id_eq (get_stack_frame_id (frame), |
16c381f0 | 6467 | ecs->event_thread->control.step_stack_frame_id) |
005ca36a | 6468 | && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()), |
16c381f0 JK |
6469 | ecs->event_thread->control.step_stack_frame_id) |
6470 | && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id, | |
005ca36a | 6471 | outer_frame_id) |
885eeb5b | 6472 | || (ecs->event_thread->control.step_start_function |
f2ffa92b | 6473 | != find_pc_function (ecs->event_thread->suspend.stop_pc))))) |
488f131b | 6474 | { |
f2ffa92b | 6475 | CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc; |
95918acb | 6476 | CORE_ADDR real_stop_pc; |
8fb3e588 | 6477 | |
527159b7 | 6478 | if (debug_infrun) |
8a9de0e4 | 6479 | fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n"); |
527159b7 | 6480 | |
b7a084be | 6481 | if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE) |
95918acb AC |
6482 | { |
6483 | /* I presume that step_over_calls is only 0 when we're | |
6484 | supposed to be stepping at the assembly language level | |
6485 | ("stepi"). Just stop. */ | |
388a8562 | 6486 | /* And this works the same backward as frontward. MVS */ |
bdc36728 | 6487 | end_stepping_range (ecs); |
95918acb AC |
6488 | return; |
6489 | } | |
8fb3e588 | 6490 | |
388a8562 MS |
6491 | /* Reverse stepping through solib trampolines. */ |
6492 | ||
6493 | if (execution_direction == EXEC_REVERSE | |
16c381f0 | 6494 | && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE |
388a8562 MS |
6495 | && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc) |
6496 | || (ecs->stop_func_start == 0 | |
6497 | && in_solib_dynsym_resolve_code (stop_pc)))) | |
6498 | { | |
6499 | /* Any solib trampoline code can be handled in reverse | |
6500 | by simply continuing to single-step. We have already | |
6501 | executed the solib function (backwards), and a few | |
6502 | steps will take us back through the trampoline to the | |
6503 | caller. */ | |
6504 | keep_going (ecs); | |
6505 | return; | |
6506 | } | |
6507 | ||
16c381f0 | 6508 | if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL) |
8567c30f | 6509 | { |
b2175913 MS |
6510 | /* We're doing a "next". |
6511 | ||
6512 | Normal (forward) execution: set a breakpoint at the | |
6513 | callee's return address (the address at which the caller | |
6514 | will resume). | |
6515 | ||
6516 | Reverse (backward) execution. set the step-resume | |
6517 | breakpoint at the start of the function that we just | |
6518 | stepped into (backwards), and continue to there. When we | |
6130d0b7 | 6519 | get there, we'll need to single-step back to the caller. */ |
b2175913 MS |
6520 | |
6521 | if (execution_direction == EXEC_REVERSE) | |
6522 | { | |
acf9414f JK |
6523 | /* If we're already at the start of the function, we've either |
6524 | just stepped backward into a single instruction function, | |
6525 | or stepped back out of a signal handler to the first instruction | |
6526 | of the function. Just keep going, which will single-step back | |
6527 | to the caller. */ | |
58c48e72 | 6528 | if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0) |
acf9414f | 6529 | { |
acf9414f | 6530 | /* Normal function call return (static or dynamic). */ |
51abb421 | 6531 | symtab_and_line sr_sal; |
acf9414f JK |
6532 | sr_sal.pc = ecs->stop_func_start; |
6533 | sr_sal.pspace = get_frame_program_space (frame); | |
6534 | insert_step_resume_breakpoint_at_sal (gdbarch, | |
6535 | sr_sal, null_frame_id); | |
6536 | } | |
b2175913 MS |
6537 | } |
6538 | else | |
568d6575 | 6539 | insert_step_resume_breakpoint_at_caller (frame); |
b2175913 | 6540 | |
8567c30f AC |
6541 | keep_going (ecs); |
6542 | return; | |
6543 | } | |
a53c66de | 6544 | |
95918acb | 6545 | /* If we are in a function call trampoline (a stub between the |
8fb3e588 AC |
6546 | calling routine and the real function), locate the real |
6547 | function. That's what tells us (a) whether we want to step | |
6548 | into it at all, and (b) what prologue we want to run to the | |
6549 | end of, if we do step into it. */ | |
568d6575 | 6550 | real_stop_pc = skip_language_trampoline (frame, stop_pc); |
95918acb | 6551 | if (real_stop_pc == 0) |
568d6575 | 6552 | real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc); |
95918acb AC |
6553 | if (real_stop_pc != 0) |
6554 | ecs->stop_func_start = real_stop_pc; | |
8fb3e588 | 6555 | |
db5f024e | 6556 | if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc)) |
1b2bfbb9 | 6557 | { |
51abb421 | 6558 | symtab_and_line sr_sal; |
1b2bfbb9 | 6559 | sr_sal.pc = ecs->stop_func_start; |
6c95b8df | 6560 | sr_sal.pspace = get_frame_program_space (frame); |
1b2bfbb9 | 6561 | |
a6d9a66e UW |
6562 | insert_step_resume_breakpoint_at_sal (gdbarch, |
6563 | sr_sal, null_frame_id); | |
8fb3e588 AC |
6564 | keep_going (ecs); |
6565 | return; | |
1b2bfbb9 RC |
6566 | } |
6567 | ||
95918acb | 6568 | /* If we have line number information for the function we are |
1bfeeb0f JL |
6569 | thinking of stepping into and the function isn't on the skip |
6570 | list, step into it. | |
95918acb | 6571 | |
8fb3e588 AC |
6572 | If there are several symtabs at that PC (e.g. with include |
6573 | files), just want to know whether *any* of them have line | |
6574 | numbers. find_pc_line handles this. */ | |
95918acb AC |
6575 | { |
6576 | struct symtab_and_line tmp_sal; | |
8fb3e588 | 6577 | |
95918acb | 6578 | tmp_sal = find_pc_line (ecs->stop_func_start, 0); |
2b914b52 | 6579 | if (tmp_sal.line != 0 |
85817405 | 6580 | && !function_name_is_marked_for_skip (ecs->stop_func_name, |
4a4c04f1 BE |
6581 | tmp_sal) |
6582 | && !inline_frame_is_marked_for_skip (true, ecs->event_thread)) | |
95918acb | 6583 | { |
b2175913 | 6584 | if (execution_direction == EXEC_REVERSE) |
568d6575 | 6585 | handle_step_into_function_backward (gdbarch, ecs); |
b2175913 | 6586 | else |
568d6575 | 6587 | handle_step_into_function (gdbarch, ecs); |
95918acb AC |
6588 | return; |
6589 | } | |
6590 | } | |
6591 | ||
6592 | /* If we have no line number and the step-stop-if-no-debug is | |
8fb3e588 AC |
6593 | set, we stop the step so that the user has a chance to switch |
6594 | in assembly mode. */ | |
16c381f0 | 6595 | if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE |
078130d0 | 6596 | && step_stop_if_no_debug) |
95918acb | 6597 | { |
bdc36728 | 6598 | end_stepping_range (ecs); |
95918acb AC |
6599 | return; |
6600 | } | |
6601 | ||
b2175913 MS |
6602 | if (execution_direction == EXEC_REVERSE) |
6603 | { | |
acf9414f JK |
6604 | /* If we're already at the start of the function, we've either just |
6605 | stepped backward into a single instruction function without line | |
6606 | number info, or stepped back out of a signal handler to the first | |
6607 | instruction of the function without line number info. Just keep | |
6608 | going, which will single-step back to the caller. */ | |
6609 | if (ecs->stop_func_start != stop_pc) | |
6610 | { | |
6611 | /* Set a breakpoint at callee's start address. | |
6612 | From there we can step once and be back in the caller. */ | |
51abb421 | 6613 | symtab_and_line sr_sal; |
acf9414f JK |
6614 | sr_sal.pc = ecs->stop_func_start; |
6615 | sr_sal.pspace = get_frame_program_space (frame); | |
6616 | insert_step_resume_breakpoint_at_sal (gdbarch, | |
6617 | sr_sal, null_frame_id); | |
6618 | } | |
b2175913 MS |
6619 | } |
6620 | else | |
6621 | /* Set a breakpoint at callee's return address (the address | |
6622 | at which the caller will resume). */ | |
568d6575 | 6623 | insert_step_resume_breakpoint_at_caller (frame); |
b2175913 | 6624 | |
95918acb | 6625 | keep_going (ecs); |
488f131b | 6626 | return; |
488f131b | 6627 | } |
c906108c | 6628 | |
fdd654f3 MS |
6629 | /* Reverse stepping through solib trampolines. */ |
6630 | ||
6631 | if (execution_direction == EXEC_REVERSE | |
16c381f0 | 6632 | && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE) |
fdd654f3 | 6633 | { |
f2ffa92b PA |
6634 | CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc; |
6635 | ||
fdd654f3 MS |
6636 | if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc) |
6637 | || (ecs->stop_func_start == 0 | |
6638 | && in_solib_dynsym_resolve_code (stop_pc))) | |
6639 | { | |
6640 | /* Any solib trampoline code can be handled in reverse | |
6641 | by simply continuing to single-step. We have already | |
6642 | executed the solib function (backwards), and a few | |
6643 | steps will take us back through the trampoline to the | |
6644 | caller. */ | |
6645 | keep_going (ecs); | |
6646 | return; | |
6647 | } | |
6648 | else if (in_solib_dynsym_resolve_code (stop_pc)) | |
6649 | { | |
6650 | /* Stepped backward into the solib dynsym resolver. | |
6651 | Set a breakpoint at its start and continue, then | |
6652 | one more step will take us out. */ | |
51abb421 | 6653 | symtab_and_line sr_sal; |
fdd654f3 | 6654 | sr_sal.pc = ecs->stop_func_start; |
9d1807c3 | 6655 | sr_sal.pspace = get_frame_program_space (frame); |
fdd654f3 MS |
6656 | insert_step_resume_breakpoint_at_sal (gdbarch, |
6657 | sr_sal, null_frame_id); | |
6658 | keep_going (ecs); | |
6659 | return; | |
6660 | } | |
6661 | } | |
6662 | ||
f2ffa92b | 6663 | stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0); |
7ed0fe66 | 6664 | |
1b2bfbb9 RC |
6665 | /* NOTE: tausq/2004-05-24: This if block used to be done before all |
6666 | the trampoline processing logic, however, there are some trampolines | |
6667 | that have no names, so we should do trampoline handling first. */ | |
16c381f0 | 6668 | if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE |
7ed0fe66 | 6669 | && ecs->stop_func_name == NULL |
2afb61aa | 6670 | && stop_pc_sal.line == 0) |
1b2bfbb9 | 6671 | { |
527159b7 | 6672 | if (debug_infrun) |
3e43a32a MS |
6673 | fprintf_unfiltered (gdb_stdlog, |
6674 | "infrun: stepped into undebuggable function\n"); | |
527159b7 | 6675 | |
1b2bfbb9 | 6676 | /* The inferior just stepped into, or returned to, an |
7ed0fe66 DJ |
6677 | undebuggable function (where there is no debugging information |
6678 | and no line number corresponding to the address where the | |
1b2bfbb9 RC |
6679 | inferior stopped). Since we want to skip this kind of code, |
6680 | we keep going until the inferior returns from this | |
14e60db5 DJ |
6681 | function - unless the user has asked us not to (via |
6682 | set step-mode) or we no longer know how to get back | |
6683 | to the call site. */ | |
6684 | if (step_stop_if_no_debug | |
c7ce8faa | 6685 | || !frame_id_p (frame_unwind_caller_id (frame))) |
1b2bfbb9 RC |
6686 | { |
6687 | /* If we have no line number and the step-stop-if-no-debug | |
6688 | is set, we stop the step so that the user has a chance to | |
6689 | switch in assembly mode. */ | |
bdc36728 | 6690 | end_stepping_range (ecs); |
1b2bfbb9 RC |
6691 | return; |
6692 | } | |
6693 | else | |
6694 | { | |
6695 | /* Set a breakpoint at callee's return address (the address | |
6696 | at which the caller will resume). */ | |
568d6575 | 6697 | insert_step_resume_breakpoint_at_caller (frame); |
1b2bfbb9 RC |
6698 | keep_going (ecs); |
6699 | return; | |
6700 | } | |
6701 | } | |
6702 | ||
16c381f0 | 6703 | if (ecs->event_thread->control.step_range_end == 1) |
1b2bfbb9 RC |
6704 | { |
6705 | /* It is stepi or nexti. We always want to stop stepping after | |
6706 | one instruction. */ | |
527159b7 | 6707 | if (debug_infrun) |
8a9de0e4 | 6708 | fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n"); |
bdc36728 | 6709 | end_stepping_range (ecs); |
1b2bfbb9 RC |
6710 | return; |
6711 | } | |
6712 | ||
2afb61aa | 6713 | if (stop_pc_sal.line == 0) |
488f131b JB |
6714 | { |
6715 | /* We have no line number information. That means to stop | |
6716 | stepping (does this always happen right after one instruction, | |
6717 | when we do "s" in a function with no line numbers, | |
6718 | or can this happen as a result of a return or longjmp?). */ | |
527159b7 | 6719 | if (debug_infrun) |
8a9de0e4 | 6720 | fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n"); |
bdc36728 | 6721 | end_stepping_range (ecs); |
488f131b JB |
6722 | return; |
6723 | } | |
c906108c | 6724 | |
edb3359d DJ |
6725 | /* Look for "calls" to inlined functions, part one. If the inline |
6726 | frame machinery detected some skipped call sites, we have entered | |
6727 | a new inline function. */ | |
6728 | ||
6729 | if (frame_id_eq (get_frame_id (get_current_frame ()), | |
16c381f0 | 6730 | ecs->event_thread->control.step_frame_id) |
00431a78 | 6731 | && inline_skipped_frames (ecs->event_thread)) |
edb3359d | 6732 | { |
edb3359d DJ |
6733 | if (debug_infrun) |
6734 | fprintf_unfiltered (gdb_stdlog, | |
6735 | "infrun: stepped into inlined function\n"); | |
6736 | ||
51abb421 | 6737 | symtab_and_line call_sal = find_frame_sal (get_current_frame ()); |
edb3359d | 6738 | |
16c381f0 | 6739 | if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL) |
edb3359d DJ |
6740 | { |
6741 | /* For "step", we're going to stop. But if the call site | |
6742 | for this inlined function is on the same source line as | |
6743 | we were previously stepping, go down into the function | |
6744 | first. Otherwise stop at the call site. */ | |
6745 | ||
6746 | if (call_sal.line == ecs->event_thread->current_line | |
6747 | && call_sal.symtab == ecs->event_thread->current_symtab) | |
4a4c04f1 BE |
6748 | { |
6749 | step_into_inline_frame (ecs->event_thread); | |
6750 | if (inline_frame_is_marked_for_skip (false, ecs->event_thread)) | |
6751 | { | |
6752 | keep_going (ecs); | |
6753 | return; | |
6754 | } | |
6755 | } | |
edb3359d | 6756 | |
bdc36728 | 6757 | end_stepping_range (ecs); |
edb3359d DJ |
6758 | return; |
6759 | } | |
6760 | else | |
6761 | { | |
6762 | /* For "next", we should stop at the call site if it is on a | |
6763 | different source line. Otherwise continue through the | |
6764 | inlined function. */ | |
6765 | if (call_sal.line == ecs->event_thread->current_line | |
6766 | && call_sal.symtab == ecs->event_thread->current_symtab) | |
6767 | keep_going (ecs); | |
6768 | else | |
bdc36728 | 6769 | end_stepping_range (ecs); |
edb3359d DJ |
6770 | return; |
6771 | } | |
6772 | } | |
6773 | ||
6774 | /* Look for "calls" to inlined functions, part two. If we are still | |
6775 | in the same real function we were stepping through, but we have | |
6776 | to go further up to find the exact frame ID, we are stepping | |
6777 | through a more inlined call beyond its call site. */ | |
6778 | ||
6779 | if (get_frame_type (get_current_frame ()) == INLINE_FRAME | |
6780 | && !frame_id_eq (get_frame_id (get_current_frame ()), | |
16c381f0 | 6781 | ecs->event_thread->control.step_frame_id) |
edb3359d | 6782 | && stepped_in_from (get_current_frame (), |
16c381f0 | 6783 | ecs->event_thread->control.step_frame_id)) |
edb3359d DJ |
6784 | { |
6785 | if (debug_infrun) | |
6786 | fprintf_unfiltered (gdb_stdlog, | |
6787 | "infrun: stepping through inlined function\n"); | |
6788 | ||
4a4c04f1 BE |
6789 | if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL |
6790 | || inline_frame_is_marked_for_skip (false, ecs->event_thread)) | |
edb3359d DJ |
6791 | keep_going (ecs); |
6792 | else | |
bdc36728 | 6793 | end_stepping_range (ecs); |
edb3359d DJ |
6794 | return; |
6795 | } | |
6796 | ||
f2ffa92b | 6797 | if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc) |
4e1c45ea PA |
6798 | && (ecs->event_thread->current_line != stop_pc_sal.line |
6799 | || ecs->event_thread->current_symtab != stop_pc_sal.symtab)) | |
488f131b JB |
6800 | { |
6801 | /* We are at the start of a different line. So stop. Note that | |
6802 | we don't stop if we step into the middle of a different line. | |
6803 | That is said to make things like for (;;) statements work | |
6804 | better. */ | |
527159b7 | 6805 | if (debug_infrun) |
3e43a32a MS |
6806 | fprintf_unfiltered (gdb_stdlog, |
6807 | "infrun: stepped to a different line\n"); | |
bdc36728 | 6808 | end_stepping_range (ecs); |
488f131b JB |
6809 | return; |
6810 | } | |
c906108c | 6811 | |
488f131b | 6812 | /* We aren't done stepping. |
c906108c | 6813 | |
488f131b JB |
6814 | Optimize by setting the stepping range to the line. |
6815 | (We might not be in the original line, but if we entered a | |
6816 | new line in mid-statement, we continue stepping. This makes | |
6817 | things like for(;;) statements work better.) */ | |
c906108c | 6818 | |
16c381f0 JK |
6819 | ecs->event_thread->control.step_range_start = stop_pc_sal.pc; |
6820 | ecs->event_thread->control.step_range_end = stop_pc_sal.end; | |
c1e36e3e | 6821 | ecs->event_thread->control.may_range_step = 1; |
edb3359d | 6822 | set_step_info (frame, stop_pc_sal); |
488f131b | 6823 | |
527159b7 | 6824 | if (debug_infrun) |
8a9de0e4 | 6825 | fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n"); |
488f131b | 6826 | keep_going (ecs); |
104c1213 JM |
6827 | } |
6828 | ||
c447ac0b PA |
6829 | /* In all-stop mode, if we're currently stepping but have stopped in |
6830 | some other thread, we may need to switch back to the stepped | |
6831 | thread. Returns true we set the inferior running, false if we left | |
6832 | it stopped (and the event needs further processing). */ | |
6833 | ||
6834 | static int | |
6835 | switch_back_to_stepped_thread (struct execution_control_state *ecs) | |
6836 | { | |
fbea99ea | 6837 | if (!target_is_non_stop_p ()) |
c447ac0b | 6838 | { |
99619bea PA |
6839 | struct thread_info *stepping_thread; |
6840 | ||
6841 | /* If any thread is blocked on some internal breakpoint, and we | |
6842 | simply need to step over that breakpoint to get it going | |
6843 | again, do that first. */ | |
6844 | ||
6845 | /* However, if we see an event for the stepping thread, then we | |
6846 | know all other threads have been moved past their breakpoints | |
6847 | already. Let the caller check whether the step is finished, | |
6848 | etc., before deciding to move it past a breakpoint. */ | |
6849 | if (ecs->event_thread->control.step_range_end != 0) | |
6850 | return 0; | |
6851 | ||
6852 | /* Check if the current thread is blocked on an incomplete | |
6853 | step-over, interrupted by a random signal. */ | |
6854 | if (ecs->event_thread->control.trap_expected | |
6855 | && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP) | |
c447ac0b | 6856 | { |
99619bea PA |
6857 | if (debug_infrun) |
6858 | { | |
6859 | fprintf_unfiltered (gdb_stdlog, | |
6860 | "infrun: need to finish step-over of [%s]\n", | |
a068643d | 6861 | target_pid_to_str (ecs->event_thread->ptid).c_str ()); |
99619bea PA |
6862 | } |
6863 | keep_going (ecs); | |
6864 | return 1; | |
6865 | } | |
2adfaa28 | 6866 | |
99619bea PA |
6867 | /* Check if the current thread is blocked by a single-step |
6868 | breakpoint of another thread. */ | |
6869 | if (ecs->hit_singlestep_breakpoint) | |
6870 | { | |
6871 | if (debug_infrun) | |
6872 | { | |
6873 | fprintf_unfiltered (gdb_stdlog, | |
6874 | "infrun: need to step [%s] over single-step " | |
6875 | "breakpoint\n", | |
a068643d | 6876 | target_pid_to_str (ecs->ptid).c_str ()); |
99619bea PA |
6877 | } |
6878 | keep_going (ecs); | |
6879 | return 1; | |
6880 | } | |
6881 | ||
4d9d9d04 PA |
6882 | /* If this thread needs yet another step-over (e.g., stepping |
6883 | through a delay slot), do it first before moving on to | |
6884 | another thread. */ | |
6885 | if (thread_still_needs_step_over (ecs->event_thread)) | |
6886 | { | |
6887 | if (debug_infrun) | |
6888 | { | |
6889 | fprintf_unfiltered (gdb_stdlog, | |
6890 | "infrun: thread [%s] still needs step-over\n", | |
a068643d | 6891 | target_pid_to_str (ecs->event_thread->ptid).c_str ()); |
4d9d9d04 PA |
6892 | } |
6893 | keep_going (ecs); | |
6894 | return 1; | |
6895 | } | |
70509625 | 6896 | |
483805cf PA |
6897 | /* If scheduler locking applies even if not stepping, there's no |
6898 | need to walk over threads. Above we've checked whether the | |
6899 | current thread is stepping. If some other thread not the | |
6900 | event thread is stepping, then it must be that scheduler | |
6901 | locking is not in effect. */ | |
856e7dd6 | 6902 | if (schedlock_applies (ecs->event_thread)) |
483805cf PA |
6903 | return 0; |
6904 | ||
4d9d9d04 PA |
6905 | /* Otherwise, we no longer expect a trap in the current thread. |
6906 | Clear the trap_expected flag before switching back -- this is | |
6907 | what keep_going does as well, if we call it. */ | |
6908 | ecs->event_thread->control.trap_expected = 0; | |
6909 | ||
6910 | /* Likewise, clear the signal if it should not be passed. */ | |
6911 | if (!signal_program[ecs->event_thread->suspend.stop_signal]) | |
6912 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; | |
6913 | ||
6914 | /* Do all pending step-overs before actually proceeding with | |
483805cf | 6915 | step/next/etc. */ |
4d9d9d04 PA |
6916 | if (start_step_over ()) |
6917 | { | |
6918 | prepare_to_wait (ecs); | |
6919 | return 1; | |
6920 | } | |
6921 | ||
6922 | /* Look for the stepping/nexting thread. */ | |
483805cf | 6923 | stepping_thread = NULL; |
4d9d9d04 | 6924 | |
08036331 | 6925 | for (thread_info *tp : all_non_exited_threads ()) |
483805cf | 6926 | { |
fbea99ea PA |
6927 | /* Ignore threads of processes the caller is not |
6928 | resuming. */ | |
483805cf | 6929 | if (!sched_multi |
e99b03dc | 6930 | && tp->ptid.pid () != ecs->ptid.pid ()) |
483805cf PA |
6931 | continue; |
6932 | ||
6933 | /* When stepping over a breakpoint, we lock all threads | |
6934 | except the one that needs to move past the breakpoint. | |
6935 | If a non-event thread has this set, the "incomplete | |
6936 | step-over" check above should have caught it earlier. */ | |
372316f1 PA |
6937 | if (tp->control.trap_expected) |
6938 | { | |
6939 | internal_error (__FILE__, __LINE__, | |
6940 | "[%s] has inconsistent state: " | |
6941 | "trap_expected=%d\n", | |
a068643d | 6942 | target_pid_to_str (tp->ptid).c_str (), |
372316f1 PA |
6943 | tp->control.trap_expected); |
6944 | } | |
483805cf PA |
6945 | |
6946 | /* Did we find the stepping thread? */ | |
6947 | if (tp->control.step_range_end) | |
6948 | { | |
6949 | /* Yep. There should only one though. */ | |
6950 | gdb_assert (stepping_thread == NULL); | |
6951 | ||
6952 | /* The event thread is handled at the top, before we | |
6953 | enter this loop. */ | |
6954 | gdb_assert (tp != ecs->event_thread); | |
6955 | ||
6956 | /* If some thread other than the event thread is | |
6957 | stepping, then scheduler locking can't be in effect, | |
6958 | otherwise we wouldn't have resumed the current event | |
6959 | thread in the first place. */ | |
856e7dd6 | 6960 | gdb_assert (!schedlock_applies (tp)); |
483805cf PA |
6961 | |
6962 | stepping_thread = tp; | |
6963 | } | |
99619bea PA |
6964 | } |
6965 | ||
483805cf | 6966 | if (stepping_thread != NULL) |
99619bea | 6967 | { |
c447ac0b PA |
6968 | if (debug_infrun) |
6969 | fprintf_unfiltered (gdb_stdlog, | |
6970 | "infrun: switching back to stepped thread\n"); | |
6971 | ||
2ac7589c PA |
6972 | if (keep_going_stepped_thread (stepping_thread)) |
6973 | { | |
6974 | prepare_to_wait (ecs); | |
6975 | return 1; | |
6976 | } | |
6977 | } | |
6978 | } | |
2adfaa28 | 6979 | |
2ac7589c PA |
6980 | return 0; |
6981 | } | |
2adfaa28 | 6982 | |
2ac7589c PA |
6983 | /* Set a previously stepped thread back to stepping. Returns true on |
6984 | success, false if the resume is not possible (e.g., the thread | |
6985 | vanished). */ | |
6986 | ||
6987 | static int | |
6988 | keep_going_stepped_thread (struct thread_info *tp) | |
6989 | { | |
6990 | struct frame_info *frame; | |
2ac7589c PA |
6991 | struct execution_control_state ecss; |
6992 | struct execution_control_state *ecs = &ecss; | |
2adfaa28 | 6993 | |
2ac7589c PA |
6994 | /* If the stepping thread exited, then don't try to switch back and |
6995 | resume it, which could fail in several different ways depending | |
6996 | on the target. Instead, just keep going. | |
2adfaa28 | 6997 | |
2ac7589c PA |
6998 | We can find a stepping dead thread in the thread list in two |
6999 | cases: | |
2adfaa28 | 7000 | |
2ac7589c PA |
7001 | - The target supports thread exit events, and when the target |
7002 | tries to delete the thread from the thread list, inferior_ptid | |
7003 | pointed at the exiting thread. In such case, calling | |
7004 | delete_thread does not really remove the thread from the list; | |
7005 | instead, the thread is left listed, with 'exited' state. | |
64ce06e4 | 7006 | |
2ac7589c PA |
7007 | - The target's debug interface does not support thread exit |
7008 | events, and so we have no idea whatsoever if the previously | |
7009 | stepping thread is still alive. For that reason, we need to | |
7010 | synchronously query the target now. */ | |
2adfaa28 | 7011 | |
00431a78 | 7012 | if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid)) |
2ac7589c PA |
7013 | { |
7014 | if (debug_infrun) | |
7015 | fprintf_unfiltered (gdb_stdlog, | |
7016 | "infrun: not resuming previously " | |
7017 | "stepped thread, it has vanished\n"); | |
7018 | ||
00431a78 | 7019 | delete_thread (tp); |
2ac7589c | 7020 | return 0; |
c447ac0b | 7021 | } |
2ac7589c PA |
7022 | |
7023 | if (debug_infrun) | |
7024 | fprintf_unfiltered (gdb_stdlog, | |
7025 | "infrun: resuming previously stepped thread\n"); | |
7026 | ||
7027 | reset_ecs (ecs, tp); | |
00431a78 | 7028 | switch_to_thread (tp); |
2ac7589c | 7029 | |
f2ffa92b | 7030 | tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp)); |
2ac7589c | 7031 | frame = get_current_frame (); |
2ac7589c PA |
7032 | |
7033 | /* If the PC of the thread we were trying to single-step has | |
7034 | changed, then that thread has trapped or been signaled, but the | |
7035 | event has not been reported to GDB yet. Re-poll the target | |
7036 | looking for this particular thread's event (i.e. temporarily | |
7037 | enable schedlock) by: | |
7038 | ||
7039 | - setting a break at the current PC | |
7040 | - resuming that particular thread, only (by setting trap | |
7041 | expected) | |
7042 | ||
7043 | This prevents us continuously moving the single-step breakpoint | |
7044 | forward, one instruction at a time, overstepping. */ | |
7045 | ||
f2ffa92b | 7046 | if (tp->suspend.stop_pc != tp->prev_pc) |
2ac7589c PA |
7047 | { |
7048 | ptid_t resume_ptid; | |
7049 | ||
7050 | if (debug_infrun) | |
7051 | fprintf_unfiltered (gdb_stdlog, | |
7052 | "infrun: expected thread advanced also (%s -> %s)\n", | |
7053 | paddress (target_gdbarch (), tp->prev_pc), | |
f2ffa92b | 7054 | paddress (target_gdbarch (), tp->suspend.stop_pc)); |
2ac7589c PA |
7055 | |
7056 | /* Clear the info of the previous step-over, as it's no longer | |
7057 | valid (if the thread was trying to step over a breakpoint, it | |
7058 | has already succeeded). It's what keep_going would do too, | |
7059 | if we called it. Do this before trying to insert the sss | |
7060 | breakpoint, otherwise if we were previously trying to step | |
7061 | over this exact address in another thread, the breakpoint is | |
7062 | skipped. */ | |
7063 | clear_step_over_info (); | |
7064 | tp->control.trap_expected = 0; | |
7065 | ||
7066 | insert_single_step_breakpoint (get_frame_arch (frame), | |
7067 | get_frame_address_space (frame), | |
f2ffa92b | 7068 | tp->suspend.stop_pc); |
2ac7589c | 7069 | |
372316f1 | 7070 | tp->resumed = 1; |
fbea99ea | 7071 | resume_ptid = internal_resume_ptid (tp->control.stepping_command); |
2ac7589c PA |
7072 | do_target_resume (resume_ptid, 0, GDB_SIGNAL_0); |
7073 | } | |
7074 | else | |
7075 | { | |
7076 | if (debug_infrun) | |
7077 | fprintf_unfiltered (gdb_stdlog, | |
7078 | "infrun: expected thread still hasn't advanced\n"); | |
7079 | ||
7080 | keep_going_pass_signal (ecs); | |
7081 | } | |
7082 | return 1; | |
c447ac0b PA |
7083 | } |
7084 | ||
8b061563 PA |
7085 | /* Is thread TP in the middle of (software or hardware) |
7086 | single-stepping? (Note the result of this function must never be | |
7087 | passed directly as target_resume's STEP parameter.) */ | |
104c1213 | 7088 | |
a289b8f6 | 7089 | static int |
b3444185 | 7090 | currently_stepping (struct thread_info *tp) |
a7212384 | 7091 | { |
8358c15c JK |
7092 | return ((tp->control.step_range_end |
7093 | && tp->control.step_resume_breakpoint == NULL) | |
7094 | || tp->control.trap_expected | |
af48d08f | 7095 | || tp->stepped_breakpoint |
8358c15c | 7096 | || bpstat_should_step ()); |
a7212384 UW |
7097 | } |
7098 | ||
b2175913 MS |
7099 | /* Inferior has stepped into a subroutine call with source code that |
7100 | we should not step over. Do step to the first line of code in | |
7101 | it. */ | |
c2c6d25f JM |
7102 | |
7103 | static void | |
568d6575 UW |
7104 | handle_step_into_function (struct gdbarch *gdbarch, |
7105 | struct execution_control_state *ecs) | |
c2c6d25f | 7106 | { |
7e324e48 GB |
7107 | fill_in_stop_func (gdbarch, ecs); |
7108 | ||
f2ffa92b PA |
7109 | compunit_symtab *cust |
7110 | = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc); | |
43f3e411 | 7111 | if (cust != NULL && compunit_language (cust) != language_asm) |
46a62268 YQ |
7112 | ecs->stop_func_start |
7113 | = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start); | |
c2c6d25f | 7114 | |
51abb421 | 7115 | symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0); |
c2c6d25f JM |
7116 | /* Use the step_resume_break to step until the end of the prologue, |
7117 | even if that involves jumps (as it seems to on the vax under | |
7118 | 4.2). */ | |
7119 | /* If the prologue ends in the middle of a source line, continue to | |
7120 | the end of that source line (if it is still within the function). | |
7121 | Otherwise, just go to end of prologue. */ | |
2afb61aa PA |
7122 | if (stop_func_sal.end |
7123 | && stop_func_sal.pc != ecs->stop_func_start | |
7124 | && stop_func_sal.end < ecs->stop_func_end) | |
7125 | ecs->stop_func_start = stop_func_sal.end; | |
c2c6d25f | 7126 | |
2dbd5e30 KB |
7127 | /* Architectures which require breakpoint adjustment might not be able |
7128 | to place a breakpoint at the computed address. If so, the test | |
7129 | ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust | |
7130 | ecs->stop_func_start to an address at which a breakpoint may be | |
7131 | legitimately placed. | |
8fb3e588 | 7132 | |
2dbd5e30 KB |
7133 | Note: kevinb/2004-01-19: On FR-V, if this adjustment is not |
7134 | made, GDB will enter an infinite loop when stepping through | |
7135 | optimized code consisting of VLIW instructions which contain | |
7136 | subinstructions corresponding to different source lines. On | |
7137 | FR-V, it's not permitted to place a breakpoint on any but the | |
7138 | first subinstruction of a VLIW instruction. When a breakpoint is | |
7139 | set, GDB will adjust the breakpoint address to the beginning of | |
7140 | the VLIW instruction. Thus, we need to make the corresponding | |
7141 | adjustment here when computing the stop address. */ | |
8fb3e588 | 7142 | |
568d6575 | 7143 | if (gdbarch_adjust_breakpoint_address_p (gdbarch)) |
2dbd5e30 KB |
7144 | { |
7145 | ecs->stop_func_start | |
568d6575 | 7146 | = gdbarch_adjust_breakpoint_address (gdbarch, |
8fb3e588 | 7147 | ecs->stop_func_start); |
2dbd5e30 KB |
7148 | } |
7149 | ||
f2ffa92b | 7150 | if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc) |
c2c6d25f JM |
7151 | { |
7152 | /* We are already there: stop now. */ | |
bdc36728 | 7153 | end_stepping_range (ecs); |
c2c6d25f JM |
7154 | return; |
7155 | } | |
7156 | else | |
7157 | { | |
7158 | /* Put the step-breakpoint there and go until there. */ | |
51abb421 | 7159 | symtab_and_line sr_sal; |
c2c6d25f JM |
7160 | sr_sal.pc = ecs->stop_func_start; |
7161 | sr_sal.section = find_pc_overlay (ecs->stop_func_start); | |
6c95b8df | 7162 | sr_sal.pspace = get_frame_program_space (get_current_frame ()); |
44cbf7b5 | 7163 | |
c2c6d25f | 7164 | /* Do not specify what the fp should be when we stop since on |
488f131b JB |
7165 | some machines the prologue is where the new fp value is |
7166 | established. */ | |
a6d9a66e | 7167 | insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id); |
c2c6d25f JM |
7168 | |
7169 | /* And make sure stepping stops right away then. */ | |
16c381f0 JK |
7170 | ecs->event_thread->control.step_range_end |
7171 | = ecs->event_thread->control.step_range_start; | |
c2c6d25f JM |
7172 | } |
7173 | keep_going (ecs); | |
7174 | } | |
d4f3574e | 7175 | |
b2175913 MS |
7176 | /* Inferior has stepped backward into a subroutine call with source |
7177 | code that we should not step over. Do step to the beginning of the | |
7178 | last line of code in it. */ | |
7179 | ||
7180 | static void | |
568d6575 UW |
7181 | handle_step_into_function_backward (struct gdbarch *gdbarch, |
7182 | struct execution_control_state *ecs) | |
b2175913 | 7183 | { |
43f3e411 | 7184 | struct compunit_symtab *cust; |
167e4384 | 7185 | struct symtab_and_line stop_func_sal; |
b2175913 | 7186 | |
7e324e48 GB |
7187 | fill_in_stop_func (gdbarch, ecs); |
7188 | ||
f2ffa92b | 7189 | cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc); |
43f3e411 | 7190 | if (cust != NULL && compunit_language (cust) != language_asm) |
46a62268 YQ |
7191 | ecs->stop_func_start |
7192 | = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start); | |
b2175913 | 7193 | |
f2ffa92b | 7194 | stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0); |
b2175913 MS |
7195 | |
7196 | /* OK, we're just going to keep stepping here. */ | |
f2ffa92b | 7197 | if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc) |
b2175913 MS |
7198 | { |
7199 | /* We're there already. Just stop stepping now. */ | |
bdc36728 | 7200 | end_stepping_range (ecs); |
b2175913 MS |
7201 | } |
7202 | else | |
7203 | { | |
7204 | /* Else just reset the step range and keep going. | |
7205 | No step-resume breakpoint, they don't work for | |
7206 | epilogues, which can have multiple entry paths. */ | |
16c381f0 JK |
7207 | ecs->event_thread->control.step_range_start = stop_func_sal.pc; |
7208 | ecs->event_thread->control.step_range_end = stop_func_sal.end; | |
b2175913 MS |
7209 | keep_going (ecs); |
7210 | } | |
7211 | return; | |
7212 | } | |
7213 | ||
d3169d93 | 7214 | /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID. |
44cbf7b5 AC |
7215 | This is used to both functions and to skip over code. */ |
7216 | ||
7217 | static void | |
2c03e5be PA |
7218 | insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch, |
7219 | struct symtab_and_line sr_sal, | |
7220 | struct frame_id sr_id, | |
7221 | enum bptype sr_type) | |
44cbf7b5 | 7222 | { |
611c83ae PA |
7223 | /* There should never be more than one step-resume or longjmp-resume |
7224 | breakpoint per thread, so we should never be setting a new | |
44cbf7b5 | 7225 | step_resume_breakpoint when one is already active. */ |
8358c15c | 7226 | gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL); |
2c03e5be | 7227 | gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume); |
d3169d93 DJ |
7228 | |
7229 | if (debug_infrun) | |
7230 | fprintf_unfiltered (gdb_stdlog, | |
5af949e3 UW |
7231 | "infrun: inserting step-resume breakpoint at %s\n", |
7232 | paddress (gdbarch, sr_sal.pc)); | |
d3169d93 | 7233 | |
8358c15c | 7234 | inferior_thread ()->control.step_resume_breakpoint |
454dafbd | 7235 | = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release (); |
2c03e5be PA |
7236 | } |
7237 | ||
9da8c2a0 | 7238 | void |
2c03e5be PA |
7239 | insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch, |
7240 | struct symtab_and_line sr_sal, | |
7241 | struct frame_id sr_id) | |
7242 | { | |
7243 | insert_step_resume_breakpoint_at_sal_1 (gdbarch, | |
7244 | sr_sal, sr_id, | |
7245 | bp_step_resume); | |
44cbf7b5 | 7246 | } |
7ce450bd | 7247 | |
2c03e5be PA |
7248 | /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc. |
7249 | This is used to skip a potential signal handler. | |
7ce450bd | 7250 | |
14e60db5 DJ |
7251 | This is called with the interrupted function's frame. The signal |
7252 | handler, when it returns, will resume the interrupted function at | |
7253 | RETURN_FRAME.pc. */ | |
d303a6c7 AC |
7254 | |
7255 | static void | |
2c03e5be | 7256 | insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame) |
d303a6c7 | 7257 | { |
f4c1edd8 | 7258 | gdb_assert (return_frame != NULL); |
d303a6c7 | 7259 | |
51abb421 PA |
7260 | struct gdbarch *gdbarch = get_frame_arch (return_frame); |
7261 | ||
7262 | symtab_and_line sr_sal; | |
568d6575 | 7263 | sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame)); |
d303a6c7 | 7264 | sr_sal.section = find_pc_overlay (sr_sal.pc); |
6c95b8df | 7265 | sr_sal.pspace = get_frame_program_space (return_frame); |
d303a6c7 | 7266 | |
2c03e5be PA |
7267 | insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal, |
7268 | get_stack_frame_id (return_frame), | |
7269 | bp_hp_step_resume); | |
d303a6c7 AC |
7270 | } |
7271 | ||
2c03e5be PA |
7272 | /* Insert a "step-resume breakpoint" at the previous frame's PC. This |
7273 | is used to skip a function after stepping into it (for "next" or if | |
7274 | the called function has no debugging information). | |
14e60db5 DJ |
7275 | |
7276 | The current function has almost always been reached by single | |
7277 | stepping a call or return instruction. NEXT_FRAME belongs to the | |
7278 | current function, and the breakpoint will be set at the caller's | |
7279 | resume address. | |
7280 | ||
7281 | This is a separate function rather than reusing | |
2c03e5be | 7282 | insert_hp_step_resume_breakpoint_at_frame in order to avoid |
14e60db5 | 7283 | get_prev_frame, which may stop prematurely (see the implementation |
c7ce8faa | 7284 | of frame_unwind_caller_id for an example). */ |
14e60db5 DJ |
7285 | |
7286 | static void | |
7287 | insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame) | |
7288 | { | |
14e60db5 DJ |
7289 | /* We shouldn't have gotten here if we don't know where the call site |
7290 | is. */ | |
c7ce8faa | 7291 | gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame))); |
14e60db5 | 7292 | |
51abb421 | 7293 | struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame); |
14e60db5 | 7294 | |
51abb421 | 7295 | symtab_and_line sr_sal; |
c7ce8faa DJ |
7296 | sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, |
7297 | frame_unwind_caller_pc (next_frame)); | |
14e60db5 | 7298 | sr_sal.section = find_pc_overlay (sr_sal.pc); |
6c95b8df | 7299 | sr_sal.pspace = frame_unwind_program_space (next_frame); |
14e60db5 | 7300 | |
a6d9a66e | 7301 | insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, |
c7ce8faa | 7302 | frame_unwind_caller_id (next_frame)); |
14e60db5 DJ |
7303 | } |
7304 | ||
611c83ae PA |
7305 | /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a |
7306 | new breakpoint at the target of a jmp_buf. The handling of | |
7307 | longjmp-resume uses the same mechanisms used for handling | |
7308 | "step-resume" breakpoints. */ | |
7309 | ||
7310 | static void | |
a6d9a66e | 7311 | insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc) |
611c83ae | 7312 | { |
e81a37f7 TT |
7313 | /* There should never be more than one longjmp-resume breakpoint per |
7314 | thread, so we should never be setting a new | |
611c83ae | 7315 | longjmp_resume_breakpoint when one is already active. */ |
e81a37f7 | 7316 | gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL); |
611c83ae PA |
7317 | |
7318 | if (debug_infrun) | |
7319 | fprintf_unfiltered (gdb_stdlog, | |
5af949e3 UW |
7320 | "infrun: inserting longjmp-resume breakpoint at %s\n", |
7321 | paddress (gdbarch, pc)); | |
611c83ae | 7322 | |
e81a37f7 | 7323 | inferior_thread ()->control.exception_resume_breakpoint = |
454dafbd | 7324 | set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release (); |
611c83ae PA |
7325 | } |
7326 | ||
186c406b TT |
7327 | /* Insert an exception resume breakpoint. TP is the thread throwing |
7328 | the exception. The block B is the block of the unwinder debug hook | |
7329 | function. FRAME is the frame corresponding to the call to this | |
7330 | function. SYM is the symbol of the function argument holding the | |
7331 | target PC of the exception. */ | |
7332 | ||
7333 | static void | |
7334 | insert_exception_resume_breakpoint (struct thread_info *tp, | |
3977b71f | 7335 | const struct block *b, |
186c406b TT |
7336 | struct frame_info *frame, |
7337 | struct symbol *sym) | |
7338 | { | |
a70b8144 | 7339 | try |
186c406b | 7340 | { |
63e43d3a | 7341 | struct block_symbol vsym; |
186c406b TT |
7342 | struct value *value; |
7343 | CORE_ADDR handler; | |
7344 | struct breakpoint *bp; | |
7345 | ||
987012b8 | 7346 | vsym = lookup_symbol_search_name (sym->search_name (), |
de63c46b | 7347 | b, VAR_DOMAIN); |
63e43d3a | 7348 | value = read_var_value (vsym.symbol, vsym.block, frame); |
186c406b TT |
7349 | /* If the value was optimized out, revert to the old behavior. */ |
7350 | if (! value_optimized_out (value)) | |
7351 | { | |
7352 | handler = value_as_address (value); | |
7353 | ||
7354 | if (debug_infrun) | |
7355 | fprintf_unfiltered (gdb_stdlog, | |
7356 | "infrun: exception resume at %lx\n", | |
7357 | (unsigned long) handler); | |
7358 | ||
7359 | bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame), | |
454dafbd TT |
7360 | handler, |
7361 | bp_exception_resume).release (); | |
c70a6932 JK |
7362 | |
7363 | /* set_momentary_breakpoint_at_pc invalidates FRAME. */ | |
7364 | frame = NULL; | |
7365 | ||
5d5658a1 | 7366 | bp->thread = tp->global_num; |
186c406b TT |
7367 | inferior_thread ()->control.exception_resume_breakpoint = bp; |
7368 | } | |
7369 | } | |
230d2906 | 7370 | catch (const gdb_exception_error &e) |
492d29ea PA |
7371 | { |
7372 | /* We want to ignore errors here. */ | |
7373 | } | |
186c406b TT |
7374 | } |
7375 | ||
28106bc2 SDJ |
7376 | /* A helper for check_exception_resume that sets an |
7377 | exception-breakpoint based on a SystemTap probe. */ | |
7378 | ||
7379 | static void | |
7380 | insert_exception_resume_from_probe (struct thread_info *tp, | |
729662a5 | 7381 | const struct bound_probe *probe, |
28106bc2 SDJ |
7382 | struct frame_info *frame) |
7383 | { | |
7384 | struct value *arg_value; | |
7385 | CORE_ADDR handler; | |
7386 | struct breakpoint *bp; | |
7387 | ||
7388 | arg_value = probe_safe_evaluate_at_pc (frame, 1); | |
7389 | if (!arg_value) | |
7390 | return; | |
7391 | ||
7392 | handler = value_as_address (arg_value); | |
7393 | ||
7394 | if (debug_infrun) | |
7395 | fprintf_unfiltered (gdb_stdlog, | |
7396 | "infrun: exception resume at %s\n", | |
6bac7473 | 7397 | paddress (get_objfile_arch (probe->objfile), |
28106bc2 SDJ |
7398 | handler)); |
7399 | ||
7400 | bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame), | |
454dafbd | 7401 | handler, bp_exception_resume).release (); |
5d5658a1 | 7402 | bp->thread = tp->global_num; |
28106bc2 SDJ |
7403 | inferior_thread ()->control.exception_resume_breakpoint = bp; |
7404 | } | |
7405 | ||
186c406b TT |
7406 | /* This is called when an exception has been intercepted. Check to |
7407 | see whether the exception's destination is of interest, and if so, | |
7408 | set an exception resume breakpoint there. */ | |
7409 | ||
7410 | static void | |
7411 | check_exception_resume (struct execution_control_state *ecs, | |
28106bc2 | 7412 | struct frame_info *frame) |
186c406b | 7413 | { |
729662a5 | 7414 | struct bound_probe probe; |
28106bc2 SDJ |
7415 | struct symbol *func; |
7416 | ||
7417 | /* First see if this exception unwinding breakpoint was set via a | |
7418 | SystemTap probe point. If so, the probe has two arguments: the | |
7419 | CFA and the HANDLER. We ignore the CFA, extract the handler, and | |
7420 | set a breakpoint there. */ | |
6bac7473 | 7421 | probe = find_probe_by_pc (get_frame_pc (frame)); |
935676c9 | 7422 | if (probe.prob) |
28106bc2 | 7423 | { |
729662a5 | 7424 | insert_exception_resume_from_probe (ecs->event_thread, &probe, frame); |
28106bc2 SDJ |
7425 | return; |
7426 | } | |
7427 | ||
7428 | func = get_frame_function (frame); | |
7429 | if (!func) | |
7430 | return; | |
186c406b | 7431 | |
a70b8144 | 7432 | try |
186c406b | 7433 | { |
3977b71f | 7434 | const struct block *b; |
8157b174 | 7435 | struct block_iterator iter; |
186c406b TT |
7436 | struct symbol *sym; |
7437 | int argno = 0; | |
7438 | ||
7439 | /* The exception breakpoint is a thread-specific breakpoint on | |
7440 | the unwinder's debug hook, declared as: | |
7441 | ||
7442 | void _Unwind_DebugHook (void *cfa, void *handler); | |
7443 | ||
7444 | The CFA argument indicates the frame to which control is | |
7445 | about to be transferred. HANDLER is the destination PC. | |
7446 | ||
7447 | We ignore the CFA and set a temporary breakpoint at HANDLER. | |
7448 | This is not extremely efficient but it avoids issues in gdb | |
7449 | with computing the DWARF CFA, and it also works even in weird | |
7450 | cases such as throwing an exception from inside a signal | |
7451 | handler. */ | |
7452 | ||
7453 | b = SYMBOL_BLOCK_VALUE (func); | |
7454 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
7455 | { | |
7456 | if (!SYMBOL_IS_ARGUMENT (sym)) | |
7457 | continue; | |
7458 | ||
7459 | if (argno == 0) | |
7460 | ++argno; | |
7461 | else | |
7462 | { | |
7463 | insert_exception_resume_breakpoint (ecs->event_thread, | |
7464 | b, frame, sym); | |
7465 | break; | |
7466 | } | |
7467 | } | |
7468 | } | |
230d2906 | 7469 | catch (const gdb_exception_error &e) |
492d29ea PA |
7470 | { |
7471 | } | |
186c406b TT |
7472 | } |
7473 | ||
104c1213 | 7474 | static void |
22bcd14b | 7475 | stop_waiting (struct execution_control_state *ecs) |
104c1213 | 7476 | { |
527159b7 | 7477 | if (debug_infrun) |
22bcd14b | 7478 | fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n"); |
527159b7 | 7479 | |
cd0fc7c3 SS |
7480 | /* Let callers know we don't want to wait for the inferior anymore. */ |
7481 | ecs->wait_some_more = 0; | |
fbea99ea PA |
7482 | |
7483 | /* If all-stop, but the target is always in non-stop mode, stop all | |
7484 | threads now that we're presenting the stop to the user. */ | |
7485 | if (!non_stop && target_is_non_stop_p ()) | |
7486 | stop_all_threads (); | |
cd0fc7c3 SS |
7487 | } |
7488 | ||
4d9d9d04 PA |
7489 | /* Like keep_going, but passes the signal to the inferior, even if the |
7490 | signal is set to nopass. */ | |
d4f3574e SS |
7491 | |
7492 | static void | |
4d9d9d04 | 7493 | keep_going_pass_signal (struct execution_control_state *ecs) |
d4f3574e | 7494 | { |
d7e15655 | 7495 | gdb_assert (ecs->event_thread->ptid == inferior_ptid); |
372316f1 | 7496 | gdb_assert (!ecs->event_thread->resumed); |
4d9d9d04 | 7497 | |
d4f3574e | 7498 | /* Save the pc before execution, to compare with pc after stop. */ |
fb14de7b | 7499 | ecs->event_thread->prev_pc |
00431a78 | 7500 | = regcache_read_pc (get_thread_regcache (ecs->event_thread)); |
d4f3574e | 7501 | |
4d9d9d04 | 7502 | if (ecs->event_thread->control.trap_expected) |
d4f3574e | 7503 | { |
4d9d9d04 PA |
7504 | struct thread_info *tp = ecs->event_thread; |
7505 | ||
7506 | if (debug_infrun) | |
7507 | fprintf_unfiltered (gdb_stdlog, | |
7508 | "infrun: %s has trap_expected set, " | |
7509 | "resuming to collect trap\n", | |
a068643d | 7510 | target_pid_to_str (tp->ptid).c_str ()); |
4d9d9d04 | 7511 | |
a9ba6bae PA |
7512 | /* We haven't yet gotten our trap, and either: intercepted a |
7513 | non-signal event (e.g., a fork); or took a signal which we | |
7514 | are supposed to pass through to the inferior. Simply | |
7515 | continue. */ | |
64ce06e4 | 7516 | resume (ecs->event_thread->suspend.stop_signal); |
d4f3574e | 7517 | } |
372316f1 PA |
7518 | else if (step_over_info_valid_p ()) |
7519 | { | |
7520 | /* Another thread is stepping over a breakpoint in-line. If | |
7521 | this thread needs a step-over too, queue the request. In | |
7522 | either case, this resume must be deferred for later. */ | |
7523 | struct thread_info *tp = ecs->event_thread; | |
7524 | ||
7525 | if (ecs->hit_singlestep_breakpoint | |
7526 | || thread_still_needs_step_over (tp)) | |
7527 | { | |
7528 | if (debug_infrun) | |
7529 | fprintf_unfiltered (gdb_stdlog, | |
7530 | "infrun: step-over already in progress: " | |
7531 | "step-over for %s deferred\n", | |
a068643d | 7532 | target_pid_to_str (tp->ptid).c_str ()); |
372316f1 PA |
7533 | thread_step_over_chain_enqueue (tp); |
7534 | } | |
7535 | else | |
7536 | { | |
7537 | if (debug_infrun) | |
7538 | fprintf_unfiltered (gdb_stdlog, | |
7539 | "infrun: step-over in progress: " | |
7540 | "resume of %s deferred\n", | |
a068643d | 7541 | target_pid_to_str (tp->ptid).c_str ()); |
372316f1 | 7542 | } |
372316f1 | 7543 | } |
d4f3574e SS |
7544 | else |
7545 | { | |
31e77af2 | 7546 | struct regcache *regcache = get_current_regcache (); |
963f9c80 PA |
7547 | int remove_bp; |
7548 | int remove_wps; | |
8d297bbf | 7549 | step_over_what step_what; |
31e77af2 | 7550 | |
d4f3574e | 7551 | /* Either the trap was not expected, but we are continuing |
a9ba6bae PA |
7552 | anyway (if we got a signal, the user asked it be passed to |
7553 | the child) | |
7554 | -- or -- | |
7555 | We got our expected trap, but decided we should resume from | |
7556 | it. | |
d4f3574e | 7557 | |
a9ba6bae | 7558 | We're going to run this baby now! |
d4f3574e | 7559 | |
c36b740a VP |
7560 | Note that insert_breakpoints won't try to re-insert |
7561 | already inserted breakpoints. Therefore, we don't | |
7562 | care if breakpoints were already inserted, or not. */ | |
a9ba6bae | 7563 | |
31e77af2 PA |
7564 | /* If we need to step over a breakpoint, and we're not using |
7565 | displaced stepping to do so, insert all breakpoints | |
7566 | (watchpoints, etc.) but the one we're stepping over, step one | |
7567 | instruction, and then re-insert the breakpoint when that step | |
7568 | is finished. */ | |
963f9c80 | 7569 | |
6c4cfb24 PA |
7570 | step_what = thread_still_needs_step_over (ecs->event_thread); |
7571 | ||
963f9c80 | 7572 | remove_bp = (ecs->hit_singlestep_breakpoint |
6c4cfb24 PA |
7573 | || (step_what & STEP_OVER_BREAKPOINT)); |
7574 | remove_wps = (step_what & STEP_OVER_WATCHPOINT); | |
963f9c80 | 7575 | |
cb71640d PA |
7576 | /* We can't use displaced stepping if we need to step past a |
7577 | watchpoint. The instruction copied to the scratch pad would | |
7578 | still trigger the watchpoint. */ | |
7579 | if (remove_bp | |
3fc8eb30 | 7580 | && (remove_wps || !use_displaced_stepping (ecs->event_thread))) |
45e8c884 | 7581 | { |
a01bda52 | 7582 | set_step_over_info (regcache->aspace (), |
21edc42f YQ |
7583 | regcache_read_pc (regcache), remove_wps, |
7584 | ecs->event_thread->global_num); | |
45e8c884 | 7585 | } |
963f9c80 | 7586 | else if (remove_wps) |
21edc42f | 7587 | set_step_over_info (NULL, 0, remove_wps, -1); |
372316f1 PA |
7588 | |
7589 | /* If we now need to do an in-line step-over, we need to stop | |
7590 | all other threads. Note this must be done before | |
7591 | insert_breakpoints below, because that removes the breakpoint | |
7592 | we're about to step over, otherwise other threads could miss | |
7593 | it. */ | |
fbea99ea | 7594 | if (step_over_info_valid_p () && target_is_non_stop_p ()) |
372316f1 | 7595 | stop_all_threads (); |
abbb1732 | 7596 | |
31e77af2 | 7597 | /* Stop stepping if inserting breakpoints fails. */ |
a70b8144 | 7598 | try |
31e77af2 PA |
7599 | { |
7600 | insert_breakpoints (); | |
7601 | } | |
230d2906 | 7602 | catch (const gdb_exception_error &e) |
31e77af2 PA |
7603 | { |
7604 | exception_print (gdb_stderr, e); | |
22bcd14b | 7605 | stop_waiting (ecs); |
bdf2a94a | 7606 | clear_step_over_info (); |
31e77af2 | 7607 | return; |
d4f3574e SS |
7608 | } |
7609 | ||
963f9c80 | 7610 | ecs->event_thread->control.trap_expected = (remove_bp || remove_wps); |
d4f3574e | 7611 | |
64ce06e4 | 7612 | resume (ecs->event_thread->suspend.stop_signal); |
d4f3574e SS |
7613 | } |
7614 | ||
488f131b | 7615 | prepare_to_wait (ecs); |
d4f3574e SS |
7616 | } |
7617 | ||
4d9d9d04 PA |
7618 | /* Called when we should continue running the inferior, because the |
7619 | current event doesn't cause a user visible stop. This does the | |
7620 | resuming part; waiting for the next event is done elsewhere. */ | |
7621 | ||
7622 | static void | |
7623 | keep_going (struct execution_control_state *ecs) | |
7624 | { | |
7625 | if (ecs->event_thread->control.trap_expected | |
7626 | && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP) | |
7627 | ecs->event_thread->control.trap_expected = 0; | |
7628 | ||
7629 | if (!signal_program[ecs->event_thread->suspend.stop_signal]) | |
7630 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; | |
7631 | keep_going_pass_signal (ecs); | |
7632 | } | |
7633 | ||
104c1213 JM |
7634 | /* This function normally comes after a resume, before |
7635 | handle_inferior_event exits. It takes care of any last bits of | |
7636 | housekeeping, and sets the all-important wait_some_more flag. */ | |
cd0fc7c3 | 7637 | |
104c1213 JM |
7638 | static void |
7639 | prepare_to_wait (struct execution_control_state *ecs) | |
cd0fc7c3 | 7640 | { |
527159b7 | 7641 | if (debug_infrun) |
8a9de0e4 | 7642 | fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n"); |
104c1213 | 7643 | |
104c1213 | 7644 | ecs->wait_some_more = 1; |
0b333c5e PA |
7645 | |
7646 | if (!target_is_async_p ()) | |
7647 | mark_infrun_async_event_handler (); | |
c906108c | 7648 | } |
11cf8741 | 7649 | |
fd664c91 | 7650 | /* We are done with the step range of a step/next/si/ni command. |
b57bacec | 7651 | Called once for each n of a "step n" operation. */ |
fd664c91 PA |
7652 | |
7653 | static void | |
bdc36728 | 7654 | end_stepping_range (struct execution_control_state *ecs) |
fd664c91 | 7655 | { |
bdc36728 | 7656 | ecs->event_thread->control.stop_step = 1; |
bdc36728 | 7657 | stop_waiting (ecs); |
fd664c91 PA |
7658 | } |
7659 | ||
33d62d64 JK |
7660 | /* Several print_*_reason functions to print why the inferior has stopped. |
7661 | We always print something when the inferior exits, or receives a signal. | |
7662 | The rest of the cases are dealt with later on in normal_stop and | |
7663 | print_it_typical. Ideally there should be a call to one of these | |
7664 | print_*_reason functions functions from handle_inferior_event each time | |
22bcd14b | 7665 | stop_waiting is called. |
33d62d64 | 7666 | |
fd664c91 PA |
7667 | Note that we don't call these directly, instead we delegate that to |
7668 | the interpreters, through observers. Interpreters then call these | |
7669 | with whatever uiout is right. */ | |
33d62d64 | 7670 | |
fd664c91 PA |
7671 | void |
7672 | print_end_stepping_range_reason (struct ui_out *uiout) | |
33d62d64 | 7673 | { |
fd664c91 | 7674 | /* For CLI-like interpreters, print nothing. */ |
33d62d64 | 7675 | |
112e8700 | 7676 | if (uiout->is_mi_like_p ()) |
fd664c91 | 7677 | { |
112e8700 | 7678 | uiout->field_string ("reason", |
fd664c91 PA |
7679 | async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE)); |
7680 | } | |
7681 | } | |
33d62d64 | 7682 | |
fd664c91 PA |
7683 | void |
7684 | print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal) | |
11cf8741 | 7685 | { |
33d62d64 | 7686 | annotate_signalled (); |
112e8700 SM |
7687 | if (uiout->is_mi_like_p ()) |
7688 | uiout->field_string | |
7689 | ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED)); | |
7690 | uiout->text ("\nProgram terminated with signal "); | |
33d62d64 | 7691 | annotate_signal_name (); |
112e8700 | 7692 | uiout->field_string ("signal-name", |
2ea28649 | 7693 | gdb_signal_to_name (siggnal)); |
33d62d64 | 7694 | annotate_signal_name_end (); |
112e8700 | 7695 | uiout->text (", "); |
33d62d64 | 7696 | annotate_signal_string (); |
112e8700 | 7697 | uiout->field_string ("signal-meaning", |
2ea28649 | 7698 | gdb_signal_to_string (siggnal)); |
33d62d64 | 7699 | annotate_signal_string_end (); |
112e8700 SM |
7700 | uiout->text (".\n"); |
7701 | uiout->text ("The program no longer exists.\n"); | |
33d62d64 JK |
7702 | } |
7703 | ||
fd664c91 PA |
7704 | void |
7705 | print_exited_reason (struct ui_out *uiout, int exitstatus) | |
33d62d64 | 7706 | { |
fda326dd | 7707 | struct inferior *inf = current_inferior (); |
a068643d | 7708 | std::string pidstr = target_pid_to_str (ptid_t (inf->pid)); |
fda326dd | 7709 | |
33d62d64 JK |
7710 | annotate_exited (exitstatus); |
7711 | if (exitstatus) | |
7712 | { | |
112e8700 SM |
7713 | if (uiout->is_mi_like_p ()) |
7714 | uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED)); | |
6a831f06 PA |
7715 | std::string exit_code_str |
7716 | = string_printf ("0%o", (unsigned int) exitstatus); | |
7717 | uiout->message ("[Inferior %s (%s) exited with code %pF]\n", | |
7718 | plongest (inf->num), pidstr.c_str (), | |
7719 | string_field ("exit-code", exit_code_str.c_str ())); | |
33d62d64 JK |
7720 | } |
7721 | else | |
11cf8741 | 7722 | { |
112e8700 SM |
7723 | if (uiout->is_mi_like_p ()) |
7724 | uiout->field_string | |
7725 | ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY)); | |
6a831f06 PA |
7726 | uiout->message ("[Inferior %s (%s) exited normally]\n", |
7727 | plongest (inf->num), pidstr.c_str ()); | |
33d62d64 | 7728 | } |
33d62d64 JK |
7729 | } |
7730 | ||
012b3a21 WT |
7731 | /* Some targets/architectures can do extra processing/display of |
7732 | segmentation faults. E.g., Intel MPX boundary faults. | |
7733 | Call the architecture dependent function to handle the fault. */ | |
7734 | ||
7735 | static void | |
7736 | handle_segmentation_fault (struct ui_out *uiout) | |
7737 | { | |
7738 | struct regcache *regcache = get_current_regcache (); | |
ac7936df | 7739 | struct gdbarch *gdbarch = regcache->arch (); |
012b3a21 WT |
7740 | |
7741 | if (gdbarch_handle_segmentation_fault_p (gdbarch)) | |
7742 | gdbarch_handle_segmentation_fault (gdbarch, uiout); | |
7743 | } | |
7744 | ||
fd664c91 PA |
7745 | void |
7746 | print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal) | |
33d62d64 | 7747 | { |
f303dbd6 PA |
7748 | struct thread_info *thr = inferior_thread (); |
7749 | ||
33d62d64 JK |
7750 | annotate_signal (); |
7751 | ||
112e8700 | 7752 | if (uiout->is_mi_like_p ()) |
f303dbd6 PA |
7753 | ; |
7754 | else if (show_thread_that_caused_stop ()) | |
33d62d64 | 7755 | { |
f303dbd6 | 7756 | const char *name; |
33d62d64 | 7757 | |
112e8700 | 7758 | uiout->text ("\nThread "); |
33eca680 | 7759 | uiout->field_string ("thread-id", print_thread_id (thr)); |
f303dbd6 PA |
7760 | |
7761 | name = thr->name != NULL ? thr->name : target_thread_name (thr); | |
7762 | if (name != NULL) | |
7763 | { | |
112e8700 | 7764 | uiout->text (" \""); |
33eca680 | 7765 | uiout->field_string ("name", name); |
112e8700 | 7766 | uiout->text ("\""); |
f303dbd6 | 7767 | } |
33d62d64 | 7768 | } |
f303dbd6 | 7769 | else |
112e8700 | 7770 | uiout->text ("\nProgram"); |
f303dbd6 | 7771 | |
112e8700 SM |
7772 | if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ()) |
7773 | uiout->text (" stopped"); | |
33d62d64 JK |
7774 | else |
7775 | { | |
112e8700 | 7776 | uiout->text (" received signal "); |
8b93c638 | 7777 | annotate_signal_name (); |
112e8700 SM |
7778 | if (uiout->is_mi_like_p ()) |
7779 | uiout->field_string | |
7780 | ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED)); | |
7781 | uiout->field_string ("signal-name", gdb_signal_to_name (siggnal)); | |
8b93c638 | 7782 | annotate_signal_name_end (); |
112e8700 | 7783 | uiout->text (", "); |
8b93c638 | 7784 | annotate_signal_string (); |
112e8700 | 7785 | uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal)); |
012b3a21 WT |
7786 | |
7787 | if (siggnal == GDB_SIGNAL_SEGV) | |
7788 | handle_segmentation_fault (uiout); | |
7789 | ||
8b93c638 | 7790 | annotate_signal_string_end (); |
33d62d64 | 7791 | } |
112e8700 | 7792 | uiout->text (".\n"); |
33d62d64 | 7793 | } |
252fbfc8 | 7794 | |
fd664c91 PA |
7795 | void |
7796 | print_no_history_reason (struct ui_out *uiout) | |
33d62d64 | 7797 | { |
112e8700 | 7798 | uiout->text ("\nNo more reverse-execution history.\n"); |
11cf8741 | 7799 | } |
43ff13b4 | 7800 | |
0c7e1a46 PA |
7801 | /* Print current location without a level number, if we have changed |
7802 | functions or hit a breakpoint. Print source line if we have one. | |
7803 | bpstat_print contains the logic deciding in detail what to print, | |
7804 | based on the event(s) that just occurred. */ | |
7805 | ||
243a9253 PA |
7806 | static void |
7807 | print_stop_location (struct target_waitstatus *ws) | |
0c7e1a46 PA |
7808 | { |
7809 | int bpstat_ret; | |
f486487f | 7810 | enum print_what source_flag; |
0c7e1a46 PA |
7811 | int do_frame_printing = 1; |
7812 | struct thread_info *tp = inferior_thread (); | |
7813 | ||
7814 | bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind); | |
7815 | switch (bpstat_ret) | |
7816 | { | |
7817 | case PRINT_UNKNOWN: | |
7818 | /* FIXME: cagney/2002-12-01: Given that a frame ID does (or | |
7819 | should) carry around the function and does (or should) use | |
7820 | that when doing a frame comparison. */ | |
7821 | if (tp->control.stop_step | |
7822 | && frame_id_eq (tp->control.step_frame_id, | |
7823 | get_frame_id (get_current_frame ())) | |
f2ffa92b PA |
7824 | && (tp->control.step_start_function |
7825 | == find_pc_function (tp->suspend.stop_pc))) | |
0c7e1a46 PA |
7826 | { |
7827 | /* Finished step, just print source line. */ | |
7828 | source_flag = SRC_LINE; | |
7829 | } | |
7830 | else | |
7831 | { | |
7832 | /* Print location and source line. */ | |
7833 | source_flag = SRC_AND_LOC; | |
7834 | } | |
7835 | break; | |
7836 | case PRINT_SRC_AND_LOC: | |
7837 | /* Print location and source line. */ | |
7838 | source_flag = SRC_AND_LOC; | |
7839 | break; | |
7840 | case PRINT_SRC_ONLY: | |
7841 | source_flag = SRC_LINE; | |
7842 | break; | |
7843 | case PRINT_NOTHING: | |
7844 | /* Something bogus. */ | |
7845 | source_flag = SRC_LINE; | |
7846 | do_frame_printing = 0; | |
7847 | break; | |
7848 | default: | |
7849 | internal_error (__FILE__, __LINE__, _("Unknown value.")); | |
7850 | } | |
7851 | ||
7852 | /* The behavior of this routine with respect to the source | |
7853 | flag is: | |
7854 | SRC_LINE: Print only source line | |
7855 | LOCATION: Print only location | |
7856 | SRC_AND_LOC: Print location and source line. */ | |
7857 | if (do_frame_printing) | |
7858 | print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1); | |
243a9253 PA |
7859 | } |
7860 | ||
243a9253 PA |
7861 | /* See infrun.h. */ |
7862 | ||
7863 | void | |
4c7d57e7 | 7864 | print_stop_event (struct ui_out *uiout, bool displays) |
243a9253 | 7865 | { |
243a9253 PA |
7866 | struct target_waitstatus last; |
7867 | ptid_t last_ptid; | |
7868 | struct thread_info *tp; | |
7869 | ||
7870 | get_last_target_status (&last_ptid, &last); | |
7871 | ||
67ad9399 TT |
7872 | { |
7873 | scoped_restore save_uiout = make_scoped_restore (¤t_uiout, uiout); | |
0c7e1a46 | 7874 | |
67ad9399 | 7875 | print_stop_location (&last); |
243a9253 | 7876 | |
67ad9399 | 7877 | /* Display the auto-display expressions. */ |
4c7d57e7 TT |
7878 | if (displays) |
7879 | do_displays (); | |
67ad9399 | 7880 | } |
243a9253 PA |
7881 | |
7882 | tp = inferior_thread (); | |
7883 | if (tp->thread_fsm != NULL | |
46e3ed7f | 7884 | && tp->thread_fsm->finished_p ()) |
243a9253 PA |
7885 | { |
7886 | struct return_value_info *rv; | |
7887 | ||
46e3ed7f | 7888 | rv = tp->thread_fsm->return_value (); |
243a9253 PA |
7889 | if (rv != NULL) |
7890 | print_return_value (uiout, rv); | |
7891 | } | |
0c7e1a46 PA |
7892 | } |
7893 | ||
388a7084 PA |
7894 | /* See infrun.h. */ |
7895 | ||
7896 | void | |
7897 | maybe_remove_breakpoints (void) | |
7898 | { | |
7899 | if (!breakpoints_should_be_inserted_now () && target_has_execution) | |
7900 | { | |
7901 | if (remove_breakpoints ()) | |
7902 | { | |
223ffa71 | 7903 | target_terminal::ours_for_output (); |
388a7084 PA |
7904 | printf_filtered (_("Cannot remove breakpoints because " |
7905 | "program is no longer writable.\nFurther " | |
7906 | "execution is probably impossible.\n")); | |
7907 | } | |
7908 | } | |
7909 | } | |
7910 | ||
4c2f2a79 PA |
7911 | /* The execution context that just caused a normal stop. */ |
7912 | ||
7913 | struct stop_context | |
7914 | { | |
2d844eaf TT |
7915 | stop_context (); |
7916 | ~stop_context (); | |
7917 | ||
7918 | DISABLE_COPY_AND_ASSIGN (stop_context); | |
7919 | ||
7920 | bool changed () const; | |
7921 | ||
4c2f2a79 PA |
7922 | /* The stop ID. */ |
7923 | ULONGEST stop_id; | |
c906108c | 7924 | |
4c2f2a79 | 7925 | /* The event PTID. */ |
c906108c | 7926 | |
4c2f2a79 PA |
7927 | ptid_t ptid; |
7928 | ||
7929 | /* If stopp for a thread event, this is the thread that caused the | |
7930 | stop. */ | |
7931 | struct thread_info *thread; | |
7932 | ||
7933 | /* The inferior that caused the stop. */ | |
7934 | int inf_num; | |
7935 | }; | |
7936 | ||
2d844eaf | 7937 | /* Initializes a new stop context. If stopped for a thread event, this |
4c2f2a79 PA |
7938 | takes a strong reference to the thread. */ |
7939 | ||
2d844eaf | 7940 | stop_context::stop_context () |
4c2f2a79 | 7941 | { |
2d844eaf TT |
7942 | stop_id = get_stop_id (); |
7943 | ptid = inferior_ptid; | |
7944 | inf_num = current_inferior ()->num; | |
4c2f2a79 | 7945 | |
d7e15655 | 7946 | if (inferior_ptid != null_ptid) |
4c2f2a79 PA |
7947 | { |
7948 | /* Take a strong reference so that the thread can't be deleted | |
7949 | yet. */ | |
2d844eaf TT |
7950 | thread = inferior_thread (); |
7951 | thread->incref (); | |
4c2f2a79 PA |
7952 | } |
7953 | else | |
2d844eaf | 7954 | thread = NULL; |
4c2f2a79 PA |
7955 | } |
7956 | ||
7957 | /* Release a stop context previously created with save_stop_context. | |
7958 | Releases the strong reference to the thread as well. */ | |
7959 | ||
2d844eaf | 7960 | stop_context::~stop_context () |
4c2f2a79 | 7961 | { |
2d844eaf TT |
7962 | if (thread != NULL) |
7963 | thread->decref (); | |
4c2f2a79 PA |
7964 | } |
7965 | ||
7966 | /* Return true if the current context no longer matches the saved stop | |
7967 | context. */ | |
7968 | ||
2d844eaf TT |
7969 | bool |
7970 | stop_context::changed () const | |
7971 | { | |
7972 | if (ptid != inferior_ptid) | |
7973 | return true; | |
7974 | if (inf_num != current_inferior ()->num) | |
7975 | return true; | |
7976 | if (thread != NULL && thread->state != THREAD_STOPPED) | |
7977 | return true; | |
7978 | if (get_stop_id () != stop_id) | |
7979 | return true; | |
7980 | return false; | |
4c2f2a79 PA |
7981 | } |
7982 | ||
7983 | /* See infrun.h. */ | |
7984 | ||
7985 | int | |
96baa820 | 7986 | normal_stop (void) |
c906108c | 7987 | { |
73b65bb0 DJ |
7988 | struct target_waitstatus last; |
7989 | ptid_t last_ptid; | |
7990 | ||
7991 | get_last_target_status (&last_ptid, &last); | |
7992 | ||
4c2f2a79 PA |
7993 | new_stop_id (); |
7994 | ||
29f49a6a PA |
7995 | /* If an exception is thrown from this point on, make sure to |
7996 | propagate GDB's knowledge of the executing state to the | |
7997 | frontend/user running state. A QUIT is an easy exception to see | |
7998 | here, so do this before any filtered output. */ | |
731f534f PA |
7999 | |
8000 | gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state; | |
8001 | ||
c35b1492 | 8002 | if (!non_stop) |
731f534f | 8003 | maybe_finish_thread_state.emplace (minus_one_ptid); |
e1316e60 PA |
8004 | else if (last.kind == TARGET_WAITKIND_SIGNALLED |
8005 | || last.kind == TARGET_WAITKIND_EXITED) | |
8006 | { | |
8007 | /* On some targets, we may still have live threads in the | |
8008 | inferior when we get a process exit event. E.g., for | |
8009 | "checkpoint", when the current checkpoint/fork exits, | |
8010 | linux-fork.c automatically switches to another fork from | |
8011 | within target_mourn_inferior. */ | |
731f534f PA |
8012 | if (inferior_ptid != null_ptid) |
8013 | maybe_finish_thread_state.emplace (ptid_t (inferior_ptid.pid ())); | |
e1316e60 PA |
8014 | } |
8015 | else if (last.kind != TARGET_WAITKIND_NO_RESUMED) | |
731f534f | 8016 | maybe_finish_thread_state.emplace (inferior_ptid); |
29f49a6a | 8017 | |
b57bacec PA |
8018 | /* As we're presenting a stop, and potentially removing breakpoints, |
8019 | update the thread list so we can tell whether there are threads | |
8020 | running on the target. With target remote, for example, we can | |
8021 | only learn about new threads when we explicitly update the thread | |
8022 | list. Do this before notifying the interpreters about signal | |
8023 | stops, end of stepping ranges, etc., so that the "new thread" | |
8024 | output is emitted before e.g., "Program received signal FOO", | |
8025 | instead of after. */ | |
8026 | update_thread_list (); | |
8027 | ||
8028 | if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal) | |
76727919 | 8029 | gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal); |
b57bacec | 8030 | |
c906108c SS |
8031 | /* As with the notification of thread events, we want to delay |
8032 | notifying the user that we've switched thread context until | |
8033 | the inferior actually stops. | |
8034 | ||
73b65bb0 DJ |
8035 | There's no point in saying anything if the inferior has exited. |
8036 | Note that SIGNALLED here means "exited with a signal", not | |
b65dc60b PA |
8037 | "received a signal". |
8038 | ||
8039 | Also skip saying anything in non-stop mode. In that mode, as we | |
8040 | don't want GDB to switch threads behind the user's back, to avoid | |
8041 | races where the user is typing a command to apply to thread x, | |
8042 | but GDB switches to thread y before the user finishes entering | |
8043 | the command, fetch_inferior_event installs a cleanup to restore | |
8044 | the current thread back to the thread the user had selected right | |
8045 | after this event is handled, so we're not really switching, only | |
8046 | informing of a stop. */ | |
4f8d22e3 | 8047 | if (!non_stop |
731f534f | 8048 | && previous_inferior_ptid != inferior_ptid |
73b65bb0 DJ |
8049 | && target_has_execution |
8050 | && last.kind != TARGET_WAITKIND_SIGNALLED | |
0e5bf2a8 PA |
8051 | && last.kind != TARGET_WAITKIND_EXITED |
8052 | && last.kind != TARGET_WAITKIND_NO_RESUMED) | |
c906108c | 8053 | { |
0e454242 | 8054 | SWITCH_THRU_ALL_UIS () |
3b12939d | 8055 | { |
223ffa71 | 8056 | target_terminal::ours_for_output (); |
3b12939d | 8057 | printf_filtered (_("[Switching to %s]\n"), |
a068643d | 8058 | target_pid_to_str (inferior_ptid).c_str ()); |
3b12939d PA |
8059 | annotate_thread_changed (); |
8060 | } | |
39f77062 | 8061 | previous_inferior_ptid = inferior_ptid; |
c906108c | 8062 | } |
c906108c | 8063 | |
0e5bf2a8 PA |
8064 | if (last.kind == TARGET_WAITKIND_NO_RESUMED) |
8065 | { | |
0e454242 | 8066 | SWITCH_THRU_ALL_UIS () |
3b12939d PA |
8067 | if (current_ui->prompt_state == PROMPT_BLOCKED) |
8068 | { | |
223ffa71 | 8069 | target_terminal::ours_for_output (); |
3b12939d PA |
8070 | printf_filtered (_("No unwaited-for children left.\n")); |
8071 | } | |
0e5bf2a8 PA |
8072 | } |
8073 | ||
b57bacec | 8074 | /* Note: this depends on the update_thread_list call above. */ |
388a7084 | 8075 | maybe_remove_breakpoints (); |
c906108c | 8076 | |
c906108c SS |
8077 | /* If an auto-display called a function and that got a signal, |
8078 | delete that auto-display to avoid an infinite recursion. */ | |
8079 | ||
8080 | if (stopped_by_random_signal) | |
8081 | disable_current_display (); | |
8082 | ||
0e454242 | 8083 | SWITCH_THRU_ALL_UIS () |
3b12939d PA |
8084 | { |
8085 | async_enable_stdin (); | |
8086 | } | |
c906108c | 8087 | |
388a7084 | 8088 | /* Let the user/frontend see the threads as stopped. */ |
731f534f | 8089 | maybe_finish_thread_state.reset (); |
388a7084 PA |
8090 | |
8091 | /* Select innermost stack frame - i.e., current frame is frame 0, | |
8092 | and current location is based on that. Handle the case where the | |
8093 | dummy call is returning after being stopped. E.g. the dummy call | |
8094 | previously hit a breakpoint. (If the dummy call returns | |
8095 | normally, we won't reach here.) Do this before the stop hook is | |
8096 | run, so that it doesn't get to see the temporary dummy frame, | |
8097 | which is not where we'll present the stop. */ | |
8098 | if (has_stack_frames ()) | |
8099 | { | |
8100 | if (stop_stack_dummy == STOP_STACK_DUMMY) | |
8101 | { | |
8102 | /* Pop the empty frame that contains the stack dummy. This | |
8103 | also restores inferior state prior to the call (struct | |
8104 | infcall_suspend_state). */ | |
8105 | struct frame_info *frame = get_current_frame (); | |
8106 | ||
8107 | gdb_assert (get_frame_type (frame) == DUMMY_FRAME); | |
8108 | frame_pop (frame); | |
8109 | /* frame_pop calls reinit_frame_cache as the last thing it | |
8110 | does which means there's now no selected frame. */ | |
8111 | } | |
8112 | ||
8113 | select_frame (get_current_frame ()); | |
8114 | ||
8115 | /* Set the current source location. */ | |
8116 | set_current_sal_from_frame (get_current_frame ()); | |
8117 | } | |
dd7e2d2b PA |
8118 | |
8119 | /* Look up the hook_stop and run it (CLI internally handles problem | |
8120 | of stop_command's pre-hook not existing). */ | |
4c2f2a79 PA |
8121 | if (stop_command != NULL) |
8122 | { | |
2d844eaf | 8123 | stop_context saved_context; |
4c2f2a79 | 8124 | |
a70b8144 | 8125 | try |
bf469271 PA |
8126 | { |
8127 | execute_cmd_pre_hook (stop_command); | |
8128 | } | |
230d2906 | 8129 | catch (const gdb_exception &ex) |
bf469271 PA |
8130 | { |
8131 | exception_fprintf (gdb_stderr, ex, | |
8132 | "Error while running hook_stop:\n"); | |
8133 | } | |
4c2f2a79 PA |
8134 | |
8135 | /* If the stop hook resumes the target, then there's no point in | |
8136 | trying to notify about the previous stop; its context is | |
8137 | gone. Likewise if the command switches thread or inferior -- | |
8138 | the observers would print a stop for the wrong | |
8139 | thread/inferior. */ | |
2d844eaf TT |
8140 | if (saved_context.changed ()) |
8141 | return 1; | |
4c2f2a79 | 8142 | } |
dd7e2d2b | 8143 | |
388a7084 PA |
8144 | /* Notify observers about the stop. This is where the interpreters |
8145 | print the stop event. */ | |
d7e15655 | 8146 | if (inferior_ptid != null_ptid) |
76727919 | 8147 | gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat, |
388a7084 PA |
8148 | stop_print_frame); |
8149 | else | |
76727919 | 8150 | gdb::observers::normal_stop.notify (NULL, stop_print_frame); |
347bddb7 | 8151 | |
243a9253 PA |
8152 | annotate_stopped (); |
8153 | ||
48844aa6 PA |
8154 | if (target_has_execution) |
8155 | { | |
8156 | if (last.kind != TARGET_WAITKIND_SIGNALLED | |
fe726667 PA |
8157 | && last.kind != TARGET_WAITKIND_EXITED |
8158 | && last.kind != TARGET_WAITKIND_NO_RESUMED) | |
48844aa6 PA |
8159 | /* Delete the breakpoint we stopped at, if it wants to be deleted. |
8160 | Delete any breakpoint that is to be deleted at the next stop. */ | |
16c381f0 | 8161 | breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat); |
94cc34af | 8162 | } |
6c95b8df PA |
8163 | |
8164 | /* Try to get rid of automatically added inferiors that are no | |
8165 | longer needed. Keeping those around slows down things linearly. | |
8166 | Note that this never removes the current inferior. */ | |
8167 | prune_inferiors (); | |
4c2f2a79 PA |
8168 | |
8169 | return 0; | |
c906108c | 8170 | } |
c906108c | 8171 | \f |
c5aa993b | 8172 | int |
96baa820 | 8173 | signal_stop_state (int signo) |
c906108c | 8174 | { |
d6b48e9c | 8175 | return signal_stop[signo]; |
c906108c SS |
8176 | } |
8177 | ||
c5aa993b | 8178 | int |
96baa820 | 8179 | signal_print_state (int signo) |
c906108c SS |
8180 | { |
8181 | return signal_print[signo]; | |
8182 | } | |
8183 | ||
c5aa993b | 8184 | int |
96baa820 | 8185 | signal_pass_state (int signo) |
c906108c SS |
8186 | { |
8187 | return signal_program[signo]; | |
8188 | } | |
8189 | ||
2455069d UW |
8190 | static void |
8191 | signal_cache_update (int signo) | |
8192 | { | |
8193 | if (signo == -1) | |
8194 | { | |
a493e3e2 | 8195 | for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++) |
2455069d UW |
8196 | signal_cache_update (signo); |
8197 | ||
8198 | return; | |
8199 | } | |
8200 | ||
8201 | signal_pass[signo] = (signal_stop[signo] == 0 | |
8202 | && signal_print[signo] == 0 | |
ab04a2af TT |
8203 | && signal_program[signo] == 1 |
8204 | && signal_catch[signo] == 0); | |
2455069d UW |
8205 | } |
8206 | ||
488f131b | 8207 | int |
7bda5e4a | 8208 | signal_stop_update (int signo, int state) |
d4f3574e SS |
8209 | { |
8210 | int ret = signal_stop[signo]; | |
abbb1732 | 8211 | |
d4f3574e | 8212 | signal_stop[signo] = state; |
2455069d | 8213 | signal_cache_update (signo); |
d4f3574e SS |
8214 | return ret; |
8215 | } | |
8216 | ||
488f131b | 8217 | int |
7bda5e4a | 8218 | signal_print_update (int signo, int state) |
d4f3574e SS |
8219 | { |
8220 | int ret = signal_print[signo]; | |
abbb1732 | 8221 | |
d4f3574e | 8222 | signal_print[signo] = state; |
2455069d | 8223 | signal_cache_update (signo); |
d4f3574e SS |
8224 | return ret; |
8225 | } | |
8226 | ||
488f131b | 8227 | int |
7bda5e4a | 8228 | signal_pass_update (int signo, int state) |
d4f3574e SS |
8229 | { |
8230 | int ret = signal_program[signo]; | |
abbb1732 | 8231 | |
d4f3574e | 8232 | signal_program[signo] = state; |
2455069d | 8233 | signal_cache_update (signo); |
d4f3574e SS |
8234 | return ret; |
8235 | } | |
8236 | ||
ab04a2af TT |
8237 | /* Update the global 'signal_catch' from INFO and notify the |
8238 | target. */ | |
8239 | ||
8240 | void | |
8241 | signal_catch_update (const unsigned int *info) | |
8242 | { | |
8243 | int i; | |
8244 | ||
8245 | for (i = 0; i < GDB_SIGNAL_LAST; ++i) | |
8246 | signal_catch[i] = info[i] > 0; | |
8247 | signal_cache_update (-1); | |
adc6a863 | 8248 | target_pass_signals (signal_pass); |
ab04a2af TT |
8249 | } |
8250 | ||
c906108c | 8251 | static void |
96baa820 | 8252 | sig_print_header (void) |
c906108c | 8253 | { |
3e43a32a MS |
8254 | printf_filtered (_("Signal Stop\tPrint\tPass " |
8255 | "to program\tDescription\n")); | |
c906108c SS |
8256 | } |
8257 | ||
8258 | static void | |
2ea28649 | 8259 | sig_print_info (enum gdb_signal oursig) |
c906108c | 8260 | { |
2ea28649 | 8261 | const char *name = gdb_signal_to_name (oursig); |
c906108c | 8262 | int name_padding = 13 - strlen (name); |
96baa820 | 8263 | |
c906108c SS |
8264 | if (name_padding <= 0) |
8265 | name_padding = 0; | |
8266 | ||
8267 | printf_filtered ("%s", name); | |
488f131b | 8268 | printf_filtered ("%*.*s ", name_padding, name_padding, " "); |
c906108c SS |
8269 | printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No"); |
8270 | printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No"); | |
8271 | printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No"); | |
2ea28649 | 8272 | printf_filtered ("%s\n", gdb_signal_to_string (oursig)); |
c906108c SS |
8273 | } |
8274 | ||
8275 | /* Specify how various signals in the inferior should be handled. */ | |
8276 | ||
8277 | static void | |
0b39b52e | 8278 | handle_command (const char *args, int from_tty) |
c906108c | 8279 | { |
c906108c | 8280 | int digits, wordlen; |
b926417a | 8281 | int sigfirst, siglast; |
2ea28649 | 8282 | enum gdb_signal oursig; |
c906108c | 8283 | int allsigs; |
c906108c SS |
8284 | |
8285 | if (args == NULL) | |
8286 | { | |
e2e0b3e5 | 8287 | error_no_arg (_("signal to handle")); |
c906108c SS |
8288 | } |
8289 | ||
1777feb0 | 8290 | /* Allocate and zero an array of flags for which signals to handle. */ |
c906108c | 8291 | |
adc6a863 PA |
8292 | const size_t nsigs = GDB_SIGNAL_LAST; |
8293 | unsigned char sigs[nsigs] {}; | |
c906108c | 8294 | |
1777feb0 | 8295 | /* Break the command line up into args. */ |
c906108c | 8296 | |
773a1edc | 8297 | gdb_argv built_argv (args); |
c906108c SS |
8298 | |
8299 | /* Walk through the args, looking for signal oursigs, signal names, and | |
8300 | actions. Signal numbers and signal names may be interspersed with | |
8301 | actions, with the actions being performed for all signals cumulatively | |
1777feb0 | 8302 | specified. Signal ranges can be specified as <LOW>-<HIGH>. */ |
c906108c | 8303 | |
773a1edc | 8304 | for (char *arg : built_argv) |
c906108c | 8305 | { |
773a1edc TT |
8306 | wordlen = strlen (arg); |
8307 | for (digits = 0; isdigit (arg[digits]); digits++) | |
c906108c SS |
8308 | {; |
8309 | } | |
8310 | allsigs = 0; | |
8311 | sigfirst = siglast = -1; | |
8312 | ||
773a1edc | 8313 | if (wordlen >= 1 && !strncmp (arg, "all", wordlen)) |
c906108c SS |
8314 | { |
8315 | /* Apply action to all signals except those used by the | |
1777feb0 | 8316 | debugger. Silently skip those. */ |
c906108c SS |
8317 | allsigs = 1; |
8318 | sigfirst = 0; | |
8319 | siglast = nsigs - 1; | |
8320 | } | |
773a1edc | 8321 | else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen)) |
c906108c SS |
8322 | { |
8323 | SET_SIGS (nsigs, sigs, signal_stop); | |
8324 | SET_SIGS (nsigs, sigs, signal_print); | |
8325 | } | |
773a1edc | 8326 | else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen)) |
c906108c SS |
8327 | { |
8328 | UNSET_SIGS (nsigs, sigs, signal_program); | |
8329 | } | |
773a1edc | 8330 | else if (wordlen >= 2 && !strncmp (arg, "print", wordlen)) |
c906108c SS |
8331 | { |
8332 | SET_SIGS (nsigs, sigs, signal_print); | |
8333 | } | |
773a1edc | 8334 | else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen)) |
c906108c SS |
8335 | { |
8336 | SET_SIGS (nsigs, sigs, signal_program); | |
8337 | } | |
773a1edc | 8338 | else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen)) |
c906108c SS |
8339 | { |
8340 | UNSET_SIGS (nsigs, sigs, signal_stop); | |
8341 | } | |
773a1edc | 8342 | else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen)) |
c906108c SS |
8343 | { |
8344 | SET_SIGS (nsigs, sigs, signal_program); | |
8345 | } | |
773a1edc | 8346 | else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen)) |
c906108c SS |
8347 | { |
8348 | UNSET_SIGS (nsigs, sigs, signal_print); | |
8349 | UNSET_SIGS (nsigs, sigs, signal_stop); | |
8350 | } | |
773a1edc | 8351 | else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen)) |
c906108c SS |
8352 | { |
8353 | UNSET_SIGS (nsigs, sigs, signal_program); | |
8354 | } | |
8355 | else if (digits > 0) | |
8356 | { | |
8357 | /* It is numeric. The numeric signal refers to our own | |
8358 | internal signal numbering from target.h, not to host/target | |
8359 | signal number. This is a feature; users really should be | |
8360 | using symbolic names anyway, and the common ones like | |
8361 | SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */ | |
8362 | ||
8363 | sigfirst = siglast = (int) | |
773a1edc TT |
8364 | gdb_signal_from_command (atoi (arg)); |
8365 | if (arg[digits] == '-') | |
c906108c SS |
8366 | { |
8367 | siglast = (int) | |
773a1edc | 8368 | gdb_signal_from_command (atoi (arg + digits + 1)); |
c906108c SS |
8369 | } |
8370 | if (sigfirst > siglast) | |
8371 | { | |
1777feb0 | 8372 | /* Bet he didn't figure we'd think of this case... */ |
b926417a | 8373 | std::swap (sigfirst, siglast); |
c906108c SS |
8374 | } |
8375 | } | |
8376 | else | |
8377 | { | |
773a1edc | 8378 | oursig = gdb_signal_from_name (arg); |
a493e3e2 | 8379 | if (oursig != GDB_SIGNAL_UNKNOWN) |
c906108c SS |
8380 | { |
8381 | sigfirst = siglast = (int) oursig; | |
8382 | } | |
8383 | else | |
8384 | { | |
8385 | /* Not a number and not a recognized flag word => complain. */ | |
773a1edc | 8386 | error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg); |
c906108c SS |
8387 | } |
8388 | } | |
8389 | ||
8390 | /* If any signal numbers or symbol names were found, set flags for | |
1777feb0 | 8391 | which signals to apply actions to. */ |
c906108c | 8392 | |
b926417a | 8393 | for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++) |
c906108c | 8394 | { |
2ea28649 | 8395 | switch ((enum gdb_signal) signum) |
c906108c | 8396 | { |
a493e3e2 PA |
8397 | case GDB_SIGNAL_TRAP: |
8398 | case GDB_SIGNAL_INT: | |
c906108c SS |
8399 | if (!allsigs && !sigs[signum]) |
8400 | { | |
9e2f0ad4 | 8401 | if (query (_("%s is used by the debugger.\n\ |
3e43a32a | 8402 | Are you sure you want to change it? "), |
2ea28649 | 8403 | gdb_signal_to_name ((enum gdb_signal) signum))) |
c906108c SS |
8404 | { |
8405 | sigs[signum] = 1; | |
8406 | } | |
8407 | else | |
c119e040 | 8408 | printf_unfiltered (_("Not confirmed, unchanged.\n")); |
c906108c SS |
8409 | } |
8410 | break; | |
a493e3e2 PA |
8411 | case GDB_SIGNAL_0: |
8412 | case GDB_SIGNAL_DEFAULT: | |
8413 | case GDB_SIGNAL_UNKNOWN: | |
c906108c SS |
8414 | /* Make sure that "all" doesn't print these. */ |
8415 | break; | |
8416 | default: | |
8417 | sigs[signum] = 1; | |
8418 | break; | |
8419 | } | |
8420 | } | |
c906108c SS |
8421 | } |
8422 | ||
b926417a | 8423 | for (int signum = 0; signum < nsigs; signum++) |
3a031f65 PA |
8424 | if (sigs[signum]) |
8425 | { | |
2455069d | 8426 | signal_cache_update (-1); |
adc6a863 PA |
8427 | target_pass_signals (signal_pass); |
8428 | target_program_signals (signal_program); | |
c906108c | 8429 | |
3a031f65 PA |
8430 | if (from_tty) |
8431 | { | |
8432 | /* Show the results. */ | |
8433 | sig_print_header (); | |
8434 | for (; signum < nsigs; signum++) | |
8435 | if (sigs[signum]) | |
aead7601 | 8436 | sig_print_info ((enum gdb_signal) signum); |
3a031f65 PA |
8437 | } |
8438 | ||
8439 | break; | |
8440 | } | |
c906108c SS |
8441 | } |
8442 | ||
de0bea00 MF |
8443 | /* Complete the "handle" command. */ |
8444 | ||
eb3ff9a5 | 8445 | static void |
de0bea00 | 8446 | handle_completer (struct cmd_list_element *ignore, |
eb3ff9a5 | 8447 | completion_tracker &tracker, |
6f937416 | 8448 | const char *text, const char *word) |
de0bea00 | 8449 | { |
de0bea00 MF |
8450 | static const char * const keywords[] = |
8451 | { | |
8452 | "all", | |
8453 | "stop", | |
8454 | "ignore", | |
8455 | "print", | |
8456 | "pass", | |
8457 | "nostop", | |
8458 | "noignore", | |
8459 | "noprint", | |
8460 | "nopass", | |
8461 | NULL, | |
8462 | }; | |
8463 | ||
eb3ff9a5 PA |
8464 | signal_completer (ignore, tracker, text, word); |
8465 | complete_on_enum (tracker, keywords, word, word); | |
de0bea00 MF |
8466 | } |
8467 | ||
2ea28649 PA |
8468 | enum gdb_signal |
8469 | gdb_signal_from_command (int num) | |
ed01b82c PA |
8470 | { |
8471 | if (num >= 1 && num <= 15) | |
2ea28649 | 8472 | return (enum gdb_signal) num; |
ed01b82c PA |
8473 | error (_("Only signals 1-15 are valid as numeric signals.\n\ |
8474 | Use \"info signals\" for a list of symbolic signals.")); | |
8475 | } | |
8476 | ||
c906108c SS |
8477 | /* Print current contents of the tables set by the handle command. |
8478 | It is possible we should just be printing signals actually used | |
8479 | by the current target (but for things to work right when switching | |
8480 | targets, all signals should be in the signal tables). */ | |
8481 | ||
8482 | static void | |
1d12d88f | 8483 | info_signals_command (const char *signum_exp, int from_tty) |
c906108c | 8484 | { |
2ea28649 | 8485 | enum gdb_signal oursig; |
abbb1732 | 8486 | |
c906108c SS |
8487 | sig_print_header (); |
8488 | ||
8489 | if (signum_exp) | |
8490 | { | |
8491 | /* First see if this is a symbol name. */ | |
2ea28649 | 8492 | oursig = gdb_signal_from_name (signum_exp); |
a493e3e2 | 8493 | if (oursig == GDB_SIGNAL_UNKNOWN) |
c906108c SS |
8494 | { |
8495 | /* No, try numeric. */ | |
8496 | oursig = | |
2ea28649 | 8497 | gdb_signal_from_command (parse_and_eval_long (signum_exp)); |
c906108c SS |
8498 | } |
8499 | sig_print_info (oursig); | |
8500 | return; | |
8501 | } | |
8502 | ||
8503 | printf_filtered ("\n"); | |
8504 | /* These ugly casts brought to you by the native VAX compiler. */ | |
a493e3e2 PA |
8505 | for (oursig = GDB_SIGNAL_FIRST; |
8506 | (int) oursig < (int) GDB_SIGNAL_LAST; | |
2ea28649 | 8507 | oursig = (enum gdb_signal) ((int) oursig + 1)) |
c906108c SS |
8508 | { |
8509 | QUIT; | |
8510 | ||
a493e3e2 PA |
8511 | if (oursig != GDB_SIGNAL_UNKNOWN |
8512 | && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0) | |
c906108c SS |
8513 | sig_print_info (oursig); |
8514 | } | |
8515 | ||
3e43a32a MS |
8516 | printf_filtered (_("\nUse the \"handle\" command " |
8517 | "to change these tables.\n")); | |
c906108c | 8518 | } |
4aa995e1 PA |
8519 | |
8520 | /* The $_siginfo convenience variable is a bit special. We don't know | |
8521 | for sure the type of the value until we actually have a chance to | |
7a9dd1b2 | 8522 | fetch the data. The type can change depending on gdbarch, so it is |
4aa995e1 PA |
8523 | also dependent on which thread you have selected. |
8524 | ||
8525 | 1. making $_siginfo be an internalvar that creates a new value on | |
8526 | access. | |
8527 | ||
8528 | 2. making the value of $_siginfo be an lval_computed value. */ | |
8529 | ||
8530 | /* This function implements the lval_computed support for reading a | |
8531 | $_siginfo value. */ | |
8532 | ||
8533 | static void | |
8534 | siginfo_value_read (struct value *v) | |
8535 | { | |
8536 | LONGEST transferred; | |
8537 | ||
a911d87a PA |
8538 | /* If we can access registers, so can we access $_siginfo. Likewise |
8539 | vice versa. */ | |
8540 | validate_registers_access (); | |
c709acd1 | 8541 | |
4aa995e1 | 8542 | transferred = |
8b88a78e | 8543 | target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, |
4aa995e1 PA |
8544 | NULL, |
8545 | value_contents_all_raw (v), | |
8546 | value_offset (v), | |
8547 | TYPE_LENGTH (value_type (v))); | |
8548 | ||
8549 | if (transferred != TYPE_LENGTH (value_type (v))) | |
8550 | error (_("Unable to read siginfo")); | |
8551 | } | |
8552 | ||
8553 | /* This function implements the lval_computed support for writing a | |
8554 | $_siginfo value. */ | |
8555 | ||
8556 | static void | |
8557 | siginfo_value_write (struct value *v, struct value *fromval) | |
8558 | { | |
8559 | LONGEST transferred; | |
8560 | ||
a911d87a PA |
8561 | /* If we can access registers, so can we access $_siginfo. Likewise |
8562 | vice versa. */ | |
8563 | validate_registers_access (); | |
c709acd1 | 8564 | |
8b88a78e | 8565 | transferred = target_write (current_top_target (), |
4aa995e1 PA |
8566 | TARGET_OBJECT_SIGNAL_INFO, |
8567 | NULL, | |
8568 | value_contents_all_raw (fromval), | |
8569 | value_offset (v), | |
8570 | TYPE_LENGTH (value_type (fromval))); | |
8571 | ||
8572 | if (transferred != TYPE_LENGTH (value_type (fromval))) | |
8573 | error (_("Unable to write siginfo")); | |
8574 | } | |
8575 | ||
c8f2448a | 8576 | static const struct lval_funcs siginfo_value_funcs = |
4aa995e1 PA |
8577 | { |
8578 | siginfo_value_read, | |
8579 | siginfo_value_write | |
8580 | }; | |
8581 | ||
8582 | /* Return a new value with the correct type for the siginfo object of | |
78267919 UW |
8583 | the current thread using architecture GDBARCH. Return a void value |
8584 | if there's no object available. */ | |
4aa995e1 | 8585 | |
2c0b251b | 8586 | static struct value * |
22d2b532 SDJ |
8587 | siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var, |
8588 | void *ignore) | |
4aa995e1 | 8589 | { |
4aa995e1 | 8590 | if (target_has_stack |
d7e15655 | 8591 | && inferior_ptid != null_ptid |
78267919 | 8592 | && gdbarch_get_siginfo_type_p (gdbarch)) |
4aa995e1 | 8593 | { |
78267919 | 8594 | struct type *type = gdbarch_get_siginfo_type (gdbarch); |
abbb1732 | 8595 | |
78267919 | 8596 | return allocate_computed_value (type, &siginfo_value_funcs, NULL); |
4aa995e1 PA |
8597 | } |
8598 | ||
78267919 | 8599 | return allocate_value (builtin_type (gdbarch)->builtin_void); |
4aa995e1 PA |
8600 | } |
8601 | ||
c906108c | 8602 | \f |
16c381f0 JK |
8603 | /* infcall_suspend_state contains state about the program itself like its |
8604 | registers and any signal it received when it last stopped. | |
8605 | This state must be restored regardless of how the inferior function call | |
8606 | ends (either successfully, or after it hits a breakpoint or signal) | |
8607 | if the program is to properly continue where it left off. */ | |
8608 | ||
6bf78e29 | 8609 | class infcall_suspend_state |
7a292a7a | 8610 | { |
6bf78e29 AB |
8611 | public: |
8612 | /* Capture state from GDBARCH, TP, and REGCACHE that must be restored | |
8613 | once the inferior function call has finished. */ | |
8614 | infcall_suspend_state (struct gdbarch *gdbarch, | |
8615 | const struct thread_info *tp, | |
8616 | struct regcache *regcache) | |
8617 | : m_thread_suspend (tp->suspend), | |
8618 | m_registers (new readonly_detached_regcache (*regcache)) | |
8619 | { | |
8620 | gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data; | |
8621 | ||
8622 | if (gdbarch_get_siginfo_type_p (gdbarch)) | |
8623 | { | |
8624 | struct type *type = gdbarch_get_siginfo_type (gdbarch); | |
8625 | size_t len = TYPE_LENGTH (type); | |
8626 | ||
8627 | siginfo_data.reset ((gdb_byte *) xmalloc (len)); | |
8628 | ||
8629 | if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL, | |
8630 | siginfo_data.get (), 0, len) != len) | |
8631 | { | |
8632 | /* Errors ignored. */ | |
8633 | siginfo_data.reset (nullptr); | |
8634 | } | |
8635 | } | |
8636 | ||
8637 | if (siginfo_data) | |
8638 | { | |
8639 | m_siginfo_gdbarch = gdbarch; | |
8640 | m_siginfo_data = std::move (siginfo_data); | |
8641 | } | |
8642 | } | |
8643 | ||
8644 | /* Return a pointer to the stored register state. */ | |
16c381f0 | 8645 | |
6bf78e29 AB |
8646 | readonly_detached_regcache *registers () const |
8647 | { | |
8648 | return m_registers.get (); | |
8649 | } | |
8650 | ||
8651 | /* Restores the stored state into GDBARCH, TP, and REGCACHE. */ | |
8652 | ||
8653 | void restore (struct gdbarch *gdbarch, | |
8654 | struct thread_info *tp, | |
8655 | struct regcache *regcache) const | |
8656 | { | |
8657 | tp->suspend = m_thread_suspend; | |
8658 | ||
8659 | if (m_siginfo_gdbarch == gdbarch) | |
8660 | { | |
8661 | struct type *type = gdbarch_get_siginfo_type (gdbarch); | |
8662 | ||
8663 | /* Errors ignored. */ | |
8664 | target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL, | |
8665 | m_siginfo_data.get (), 0, TYPE_LENGTH (type)); | |
8666 | } | |
8667 | ||
8668 | /* The inferior can be gone if the user types "print exit(0)" | |
8669 | (and perhaps other times). */ | |
8670 | if (target_has_execution) | |
8671 | /* NB: The register write goes through to the target. */ | |
8672 | regcache->restore (registers ()); | |
8673 | } | |
8674 | ||
8675 | private: | |
8676 | /* How the current thread stopped before the inferior function call was | |
8677 | executed. */ | |
8678 | struct thread_suspend_state m_thread_suspend; | |
8679 | ||
8680 | /* The registers before the inferior function call was executed. */ | |
8681 | std::unique_ptr<readonly_detached_regcache> m_registers; | |
1736ad11 | 8682 | |
35515841 | 8683 | /* Format of SIGINFO_DATA or NULL if it is not present. */ |
6bf78e29 | 8684 | struct gdbarch *m_siginfo_gdbarch = nullptr; |
1736ad11 JK |
8685 | |
8686 | /* The inferior format depends on SIGINFO_GDBARCH and it has a length of | |
8687 | TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the | |
8688 | content would be invalid. */ | |
6bf78e29 | 8689 | gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data; |
b89667eb DE |
8690 | }; |
8691 | ||
cb524840 TT |
8692 | infcall_suspend_state_up |
8693 | save_infcall_suspend_state () | |
b89667eb | 8694 | { |
b89667eb | 8695 | struct thread_info *tp = inferior_thread (); |
1736ad11 | 8696 | struct regcache *regcache = get_current_regcache (); |
ac7936df | 8697 | struct gdbarch *gdbarch = regcache->arch (); |
1736ad11 | 8698 | |
6bf78e29 AB |
8699 | infcall_suspend_state_up inf_state |
8700 | (new struct infcall_suspend_state (gdbarch, tp, regcache)); | |
1736ad11 | 8701 | |
6bf78e29 AB |
8702 | /* Having saved the current state, adjust the thread state, discarding |
8703 | any stop signal information. The stop signal is not useful when | |
8704 | starting an inferior function call, and run_inferior_call will not use | |
8705 | the signal due to its `proceed' call with GDB_SIGNAL_0. */ | |
a493e3e2 | 8706 | tp->suspend.stop_signal = GDB_SIGNAL_0; |
35515841 | 8707 | |
b89667eb DE |
8708 | return inf_state; |
8709 | } | |
8710 | ||
8711 | /* Restore inferior session state to INF_STATE. */ | |
8712 | ||
8713 | void | |
16c381f0 | 8714 | restore_infcall_suspend_state (struct infcall_suspend_state *inf_state) |
b89667eb DE |
8715 | { |
8716 | struct thread_info *tp = inferior_thread (); | |
1736ad11 | 8717 | struct regcache *regcache = get_current_regcache (); |
ac7936df | 8718 | struct gdbarch *gdbarch = regcache->arch (); |
b89667eb | 8719 | |
6bf78e29 | 8720 | inf_state->restore (gdbarch, tp, regcache); |
16c381f0 | 8721 | discard_infcall_suspend_state (inf_state); |
b89667eb DE |
8722 | } |
8723 | ||
b89667eb | 8724 | void |
16c381f0 | 8725 | discard_infcall_suspend_state (struct infcall_suspend_state *inf_state) |
b89667eb | 8726 | { |
dd848631 | 8727 | delete inf_state; |
b89667eb DE |
8728 | } |
8729 | ||
daf6667d | 8730 | readonly_detached_regcache * |
16c381f0 | 8731 | get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state) |
b89667eb | 8732 | { |
6bf78e29 | 8733 | return inf_state->registers (); |
b89667eb DE |
8734 | } |
8735 | ||
16c381f0 JK |
8736 | /* infcall_control_state contains state regarding gdb's control of the |
8737 | inferior itself like stepping control. It also contains session state like | |
8738 | the user's currently selected frame. */ | |
b89667eb | 8739 | |
16c381f0 | 8740 | struct infcall_control_state |
b89667eb | 8741 | { |
16c381f0 JK |
8742 | struct thread_control_state thread_control; |
8743 | struct inferior_control_state inferior_control; | |
d82142e2 JK |
8744 | |
8745 | /* Other fields: */ | |
ee841dd8 TT |
8746 | enum stop_stack_kind stop_stack_dummy = STOP_NONE; |
8747 | int stopped_by_random_signal = 0; | |
7a292a7a | 8748 | |
b89667eb | 8749 | /* ID if the selected frame when the inferior function call was made. */ |
ee841dd8 | 8750 | struct frame_id selected_frame_id {}; |
7a292a7a SS |
8751 | }; |
8752 | ||
c906108c | 8753 | /* Save all of the information associated with the inferior<==>gdb |
b89667eb | 8754 | connection. */ |
c906108c | 8755 | |
cb524840 TT |
8756 | infcall_control_state_up |
8757 | save_infcall_control_state () | |
c906108c | 8758 | { |
cb524840 | 8759 | infcall_control_state_up inf_status (new struct infcall_control_state); |
4e1c45ea | 8760 | struct thread_info *tp = inferior_thread (); |
d6b48e9c | 8761 | struct inferior *inf = current_inferior (); |
7a292a7a | 8762 | |
16c381f0 JK |
8763 | inf_status->thread_control = tp->control; |
8764 | inf_status->inferior_control = inf->control; | |
d82142e2 | 8765 | |
8358c15c | 8766 | tp->control.step_resume_breakpoint = NULL; |
5b79abe7 | 8767 | tp->control.exception_resume_breakpoint = NULL; |
8358c15c | 8768 | |
16c381f0 JK |
8769 | /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of |
8770 | chain. If caller's caller is walking the chain, they'll be happier if we | |
8771 | hand them back the original chain when restore_infcall_control_state is | |
8772 | called. */ | |
8773 | tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat); | |
d82142e2 JK |
8774 | |
8775 | /* Other fields: */ | |
8776 | inf_status->stop_stack_dummy = stop_stack_dummy; | |
8777 | inf_status->stopped_by_random_signal = stopped_by_random_signal; | |
c5aa993b | 8778 | |
206415a3 | 8779 | inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL)); |
b89667eb | 8780 | |
7a292a7a | 8781 | return inf_status; |
c906108c SS |
8782 | } |
8783 | ||
bf469271 PA |
8784 | static void |
8785 | restore_selected_frame (const frame_id &fid) | |
c906108c | 8786 | { |
bf469271 | 8787 | frame_info *frame = frame_find_by_id (fid); |
c906108c | 8788 | |
aa0cd9c1 AC |
8789 | /* If inf_status->selected_frame_id is NULL, there was no previously |
8790 | selected frame. */ | |
101dcfbe | 8791 | if (frame == NULL) |
c906108c | 8792 | { |
8a3fe4f8 | 8793 | warning (_("Unable to restore previously selected frame.")); |
bf469271 | 8794 | return; |
c906108c SS |
8795 | } |
8796 | ||
0f7d239c | 8797 | select_frame (frame); |
c906108c SS |
8798 | } |
8799 | ||
b89667eb DE |
8800 | /* Restore inferior session state to INF_STATUS. */ |
8801 | ||
c906108c | 8802 | void |
16c381f0 | 8803 | restore_infcall_control_state (struct infcall_control_state *inf_status) |
c906108c | 8804 | { |
4e1c45ea | 8805 | struct thread_info *tp = inferior_thread (); |
d6b48e9c | 8806 | struct inferior *inf = current_inferior (); |
4e1c45ea | 8807 | |
8358c15c JK |
8808 | if (tp->control.step_resume_breakpoint) |
8809 | tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop; | |
8810 | ||
5b79abe7 TT |
8811 | if (tp->control.exception_resume_breakpoint) |
8812 | tp->control.exception_resume_breakpoint->disposition | |
8813 | = disp_del_at_next_stop; | |
8814 | ||
d82142e2 | 8815 | /* Handle the bpstat_copy of the chain. */ |
16c381f0 | 8816 | bpstat_clear (&tp->control.stop_bpstat); |
d82142e2 | 8817 | |
16c381f0 JK |
8818 | tp->control = inf_status->thread_control; |
8819 | inf->control = inf_status->inferior_control; | |
d82142e2 JK |
8820 | |
8821 | /* Other fields: */ | |
8822 | stop_stack_dummy = inf_status->stop_stack_dummy; | |
8823 | stopped_by_random_signal = inf_status->stopped_by_random_signal; | |
c906108c | 8824 | |
b89667eb | 8825 | if (target_has_stack) |
c906108c | 8826 | { |
bf469271 | 8827 | /* The point of the try/catch is that if the stack is clobbered, |
101dcfbe AC |
8828 | walking the stack might encounter a garbage pointer and |
8829 | error() trying to dereference it. */ | |
a70b8144 | 8830 | try |
bf469271 PA |
8831 | { |
8832 | restore_selected_frame (inf_status->selected_frame_id); | |
8833 | } | |
230d2906 | 8834 | catch (const gdb_exception_error &ex) |
bf469271 PA |
8835 | { |
8836 | exception_fprintf (gdb_stderr, ex, | |
8837 | "Unable to restore previously selected frame:\n"); | |
8838 | /* Error in restoring the selected frame. Select the | |
8839 | innermost frame. */ | |
8840 | select_frame (get_current_frame ()); | |
8841 | } | |
c906108c | 8842 | } |
c906108c | 8843 | |
ee841dd8 | 8844 | delete inf_status; |
7a292a7a | 8845 | } |
c906108c SS |
8846 | |
8847 | void | |
16c381f0 | 8848 | discard_infcall_control_state (struct infcall_control_state *inf_status) |
7a292a7a | 8849 | { |
8358c15c JK |
8850 | if (inf_status->thread_control.step_resume_breakpoint) |
8851 | inf_status->thread_control.step_resume_breakpoint->disposition | |
8852 | = disp_del_at_next_stop; | |
8853 | ||
5b79abe7 TT |
8854 | if (inf_status->thread_control.exception_resume_breakpoint) |
8855 | inf_status->thread_control.exception_resume_breakpoint->disposition | |
8856 | = disp_del_at_next_stop; | |
8857 | ||
1777feb0 | 8858 | /* See save_infcall_control_state for info on stop_bpstat. */ |
16c381f0 | 8859 | bpstat_clear (&inf_status->thread_control.stop_bpstat); |
8358c15c | 8860 | |
ee841dd8 | 8861 | delete inf_status; |
7a292a7a | 8862 | } |
b89667eb | 8863 | \f |
7f89fd65 | 8864 | /* See infrun.h. */ |
0c557179 SDJ |
8865 | |
8866 | void | |
8867 | clear_exit_convenience_vars (void) | |
8868 | { | |
8869 | clear_internalvar (lookup_internalvar ("_exitsignal")); | |
8870 | clear_internalvar (lookup_internalvar ("_exitcode")); | |
8871 | } | |
c5aa993b | 8872 | \f |
488f131b | 8873 | |
b2175913 MS |
8874 | /* User interface for reverse debugging: |
8875 | Set exec-direction / show exec-direction commands | |
8876 | (returns error unless target implements to_set_exec_direction method). */ | |
8877 | ||
170742de | 8878 | enum exec_direction_kind execution_direction = EXEC_FORWARD; |
b2175913 MS |
8879 | static const char exec_forward[] = "forward"; |
8880 | static const char exec_reverse[] = "reverse"; | |
8881 | static const char *exec_direction = exec_forward; | |
40478521 | 8882 | static const char *const exec_direction_names[] = { |
b2175913 MS |
8883 | exec_forward, |
8884 | exec_reverse, | |
8885 | NULL | |
8886 | }; | |
8887 | ||
8888 | static void | |
eb4c3f4a | 8889 | set_exec_direction_func (const char *args, int from_tty, |
b2175913 MS |
8890 | struct cmd_list_element *cmd) |
8891 | { | |
8892 | if (target_can_execute_reverse) | |
8893 | { | |
8894 | if (!strcmp (exec_direction, exec_forward)) | |
8895 | execution_direction = EXEC_FORWARD; | |
8896 | else if (!strcmp (exec_direction, exec_reverse)) | |
8897 | execution_direction = EXEC_REVERSE; | |
8898 | } | |
8bbed405 MS |
8899 | else |
8900 | { | |
8901 | exec_direction = exec_forward; | |
8902 | error (_("Target does not support this operation.")); | |
8903 | } | |
b2175913 MS |
8904 | } |
8905 | ||
8906 | static void | |
8907 | show_exec_direction_func (struct ui_file *out, int from_tty, | |
8908 | struct cmd_list_element *cmd, const char *value) | |
8909 | { | |
8910 | switch (execution_direction) { | |
8911 | case EXEC_FORWARD: | |
8912 | fprintf_filtered (out, _("Forward.\n")); | |
8913 | break; | |
8914 | case EXEC_REVERSE: | |
8915 | fprintf_filtered (out, _("Reverse.\n")); | |
8916 | break; | |
b2175913 | 8917 | default: |
d8b34453 PA |
8918 | internal_error (__FILE__, __LINE__, |
8919 | _("bogus execution_direction value: %d"), | |
8920 | (int) execution_direction); | |
b2175913 MS |
8921 | } |
8922 | } | |
8923 | ||
d4db2f36 PA |
8924 | static void |
8925 | show_schedule_multiple (struct ui_file *file, int from_tty, | |
8926 | struct cmd_list_element *c, const char *value) | |
8927 | { | |
3e43a32a MS |
8928 | fprintf_filtered (file, _("Resuming the execution of threads " |
8929 | "of all processes is %s.\n"), value); | |
d4db2f36 | 8930 | } |
ad52ddc6 | 8931 | |
22d2b532 SDJ |
8932 | /* Implementation of `siginfo' variable. */ |
8933 | ||
8934 | static const struct internalvar_funcs siginfo_funcs = | |
8935 | { | |
8936 | siginfo_make_value, | |
8937 | NULL, | |
8938 | NULL | |
8939 | }; | |
8940 | ||
372316f1 PA |
8941 | /* Callback for infrun's target events source. This is marked when a |
8942 | thread has a pending status to process. */ | |
8943 | ||
8944 | static void | |
8945 | infrun_async_inferior_event_handler (gdb_client_data data) | |
8946 | { | |
372316f1 PA |
8947 | inferior_event_handler (INF_REG_EVENT, NULL); |
8948 | } | |
8949 | ||
c906108c | 8950 | void |
96baa820 | 8951 | _initialize_infrun (void) |
c906108c | 8952 | { |
de0bea00 | 8953 | struct cmd_list_element *c; |
c906108c | 8954 | |
372316f1 PA |
8955 | /* Register extra event sources in the event loop. */ |
8956 | infrun_async_inferior_event_token | |
8957 | = create_async_event_handler (infrun_async_inferior_event_handler, NULL); | |
8958 | ||
11db9430 | 8959 | add_info ("signals", info_signals_command, _("\ |
1bedd215 AC |
8960 | What debugger does when program gets various signals.\n\ |
8961 | Specify a signal as argument to print info on that signal only.")); | |
c906108c SS |
8962 | add_info_alias ("handle", "signals", 0); |
8963 | ||
de0bea00 | 8964 | c = add_com ("handle", class_run, handle_command, _("\ |
dfbd5e7b | 8965 | Specify how to handle signals.\n\ |
486c7739 | 8966 | Usage: handle SIGNAL [ACTIONS]\n\ |
c906108c | 8967 | Args are signals and actions to apply to those signals.\n\ |
dfbd5e7b | 8968 | If no actions are specified, the current settings for the specified signals\n\ |
486c7739 MF |
8969 | will be displayed instead.\n\ |
8970 | \n\ | |
c906108c SS |
8971 | Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\ |
8972 | from 1-15 are allowed for compatibility with old versions of GDB.\n\ | |
8973 | Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\ | |
8974 | The special arg \"all\" is recognized to mean all signals except those\n\ | |
1bedd215 | 8975 | used by the debugger, typically SIGTRAP and SIGINT.\n\ |
486c7739 | 8976 | \n\ |
1bedd215 | 8977 | Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\ |
c906108c SS |
8978 | \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\ |
8979 | Stop means reenter debugger if this signal happens (implies print).\n\ | |
8980 | Print means print a message if this signal happens.\n\ | |
8981 | Pass means let program see this signal; otherwise program doesn't know.\n\ | |
8982 | Ignore is a synonym for nopass and noignore is a synonym for pass.\n\ | |
dfbd5e7b PA |
8983 | Pass and Stop may be combined.\n\ |
8984 | \n\ | |
8985 | Multiple signals may be specified. Signal numbers and signal names\n\ | |
8986 | may be interspersed with actions, with the actions being performed for\n\ | |
8987 | all signals cumulatively specified.")); | |
de0bea00 | 8988 | set_cmd_completer (c, handle_completer); |
486c7739 | 8989 | |
c906108c | 8990 | if (!dbx_commands) |
1a966eab AC |
8991 | stop_command = add_cmd ("stop", class_obscure, |
8992 | not_just_help_class_command, _("\ | |
8993 | There is no `stop' command, but you can set a hook on `stop'.\n\ | |
c906108c | 8994 | This allows you to set a list of commands to be run each time execution\n\ |
1a966eab | 8995 | of the program stops."), &cmdlist); |
c906108c | 8996 | |
ccce17b0 | 8997 | add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\ |
85c07804 AC |
8998 | Set inferior debugging."), _("\ |
8999 | Show inferior debugging."), _("\ | |
9000 | When non-zero, inferior specific debugging is enabled."), | |
ccce17b0 YQ |
9001 | NULL, |
9002 | show_debug_infrun, | |
9003 | &setdebuglist, &showdebuglist); | |
527159b7 | 9004 | |
3e43a32a MS |
9005 | add_setshow_boolean_cmd ("displaced", class_maintenance, |
9006 | &debug_displaced, _("\ | |
237fc4c9 PA |
9007 | Set displaced stepping debugging."), _("\ |
9008 | Show displaced stepping debugging."), _("\ | |
9009 | When non-zero, displaced stepping specific debugging is enabled."), | |
9010 | NULL, | |
9011 | show_debug_displaced, | |
9012 | &setdebuglist, &showdebuglist); | |
9013 | ||
ad52ddc6 PA |
9014 | add_setshow_boolean_cmd ("non-stop", no_class, |
9015 | &non_stop_1, _("\ | |
9016 | Set whether gdb controls the inferior in non-stop mode."), _("\ | |
9017 | Show whether gdb controls the inferior in non-stop mode."), _("\ | |
9018 | When debugging a multi-threaded program and this setting is\n\ | |
9019 | off (the default, also called all-stop mode), when one thread stops\n\ | |
9020 | (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\ | |
9021 | all other threads in the program while you interact with the thread of\n\ | |
9022 | interest. When you continue or step a thread, you can allow the other\n\ | |
9023 | threads to run, or have them remain stopped, but while you inspect any\n\ | |
9024 | thread's state, all threads stop.\n\ | |
9025 | \n\ | |
9026 | In non-stop mode, when one thread stops, other threads can continue\n\ | |
9027 | to run freely. You'll be able to step each thread independently,\n\ | |
9028 | leave it stopped or free to run as needed."), | |
9029 | set_non_stop, | |
9030 | show_non_stop, | |
9031 | &setlist, | |
9032 | &showlist); | |
9033 | ||
adc6a863 | 9034 | for (size_t i = 0; i < GDB_SIGNAL_LAST; i++) |
c906108c SS |
9035 | { |
9036 | signal_stop[i] = 1; | |
9037 | signal_print[i] = 1; | |
9038 | signal_program[i] = 1; | |
ab04a2af | 9039 | signal_catch[i] = 0; |
c906108c SS |
9040 | } |
9041 | ||
4d9d9d04 PA |
9042 | /* Signals caused by debugger's own actions should not be given to |
9043 | the program afterwards. | |
9044 | ||
9045 | Do not deliver GDB_SIGNAL_TRAP by default, except when the user | |
9046 | explicitly specifies that it should be delivered to the target | |
9047 | program. Typically, that would occur when a user is debugging a | |
9048 | target monitor on a simulator: the target monitor sets a | |
9049 | breakpoint; the simulator encounters this breakpoint and halts | |
9050 | the simulation handing control to GDB; GDB, noting that the stop | |
9051 | address doesn't map to any known breakpoint, returns control back | |
9052 | to the simulator; the simulator then delivers the hardware | |
9053 | equivalent of a GDB_SIGNAL_TRAP to the program being | |
9054 | debugged. */ | |
a493e3e2 PA |
9055 | signal_program[GDB_SIGNAL_TRAP] = 0; |
9056 | signal_program[GDB_SIGNAL_INT] = 0; | |
c906108c SS |
9057 | |
9058 | /* Signals that are not errors should not normally enter the debugger. */ | |
a493e3e2 PA |
9059 | signal_stop[GDB_SIGNAL_ALRM] = 0; |
9060 | signal_print[GDB_SIGNAL_ALRM] = 0; | |
9061 | signal_stop[GDB_SIGNAL_VTALRM] = 0; | |
9062 | signal_print[GDB_SIGNAL_VTALRM] = 0; | |
9063 | signal_stop[GDB_SIGNAL_PROF] = 0; | |
9064 | signal_print[GDB_SIGNAL_PROF] = 0; | |
9065 | signal_stop[GDB_SIGNAL_CHLD] = 0; | |
9066 | signal_print[GDB_SIGNAL_CHLD] = 0; | |
9067 | signal_stop[GDB_SIGNAL_IO] = 0; | |
9068 | signal_print[GDB_SIGNAL_IO] = 0; | |
9069 | signal_stop[GDB_SIGNAL_POLL] = 0; | |
9070 | signal_print[GDB_SIGNAL_POLL] = 0; | |
9071 | signal_stop[GDB_SIGNAL_URG] = 0; | |
9072 | signal_print[GDB_SIGNAL_URG] = 0; | |
9073 | signal_stop[GDB_SIGNAL_WINCH] = 0; | |
9074 | signal_print[GDB_SIGNAL_WINCH] = 0; | |
9075 | signal_stop[GDB_SIGNAL_PRIO] = 0; | |
9076 | signal_print[GDB_SIGNAL_PRIO] = 0; | |
c906108c | 9077 | |
cd0fc7c3 SS |
9078 | /* These signals are used internally by user-level thread |
9079 | implementations. (See signal(5) on Solaris.) Like the above | |
9080 | signals, a healthy program receives and handles them as part of | |
9081 | its normal operation. */ | |
a493e3e2 PA |
9082 | signal_stop[GDB_SIGNAL_LWP] = 0; |
9083 | signal_print[GDB_SIGNAL_LWP] = 0; | |
9084 | signal_stop[GDB_SIGNAL_WAITING] = 0; | |
9085 | signal_print[GDB_SIGNAL_WAITING] = 0; | |
9086 | signal_stop[GDB_SIGNAL_CANCEL] = 0; | |
9087 | signal_print[GDB_SIGNAL_CANCEL] = 0; | |
bc7b765a JB |
9088 | signal_stop[GDB_SIGNAL_LIBRT] = 0; |
9089 | signal_print[GDB_SIGNAL_LIBRT] = 0; | |
cd0fc7c3 | 9090 | |
2455069d UW |
9091 | /* Update cached state. */ |
9092 | signal_cache_update (-1); | |
9093 | ||
85c07804 AC |
9094 | add_setshow_zinteger_cmd ("stop-on-solib-events", class_support, |
9095 | &stop_on_solib_events, _("\ | |
9096 | Set stopping for shared library events."), _("\ | |
9097 | Show stopping for shared library events."), _("\ | |
c906108c SS |
9098 | If nonzero, gdb will give control to the user when the dynamic linker\n\ |
9099 | notifies gdb of shared library events. The most common event of interest\n\ | |
85c07804 | 9100 | to the user would be loading/unloading of a new library."), |
f9e14852 | 9101 | set_stop_on_solib_events, |
920d2a44 | 9102 | show_stop_on_solib_events, |
85c07804 | 9103 | &setlist, &showlist); |
c906108c | 9104 | |
7ab04401 AC |
9105 | add_setshow_enum_cmd ("follow-fork-mode", class_run, |
9106 | follow_fork_mode_kind_names, | |
9107 | &follow_fork_mode_string, _("\ | |
9108 | Set debugger response to a program call of fork or vfork."), _("\ | |
9109 | Show debugger response to a program call of fork or vfork."), _("\ | |
c906108c SS |
9110 | A fork or vfork creates a new process. follow-fork-mode can be:\n\ |
9111 | parent - the original process is debugged after a fork\n\ | |
9112 | child - the new process is debugged after a fork\n\ | |
ea1dd7bc | 9113 | The unfollowed process will continue to run.\n\ |
7ab04401 AC |
9114 | By default, the debugger will follow the parent process."), |
9115 | NULL, | |
920d2a44 | 9116 | show_follow_fork_mode_string, |
7ab04401 AC |
9117 | &setlist, &showlist); |
9118 | ||
6c95b8df PA |
9119 | add_setshow_enum_cmd ("follow-exec-mode", class_run, |
9120 | follow_exec_mode_names, | |
9121 | &follow_exec_mode_string, _("\ | |
9122 | Set debugger response to a program call of exec."), _("\ | |
9123 | Show debugger response to a program call of exec."), _("\ | |
9124 | An exec call replaces the program image of a process.\n\ | |
9125 | \n\ | |
9126 | follow-exec-mode can be:\n\ | |
9127 | \n\ | |
cce7e648 | 9128 | new - the debugger creates a new inferior and rebinds the process\n\ |
6c95b8df PA |
9129 | to this new inferior. The program the process was running before\n\ |
9130 | the exec call can be restarted afterwards by restarting the original\n\ | |
9131 | inferior.\n\ | |
9132 | \n\ | |
9133 | same - the debugger keeps the process bound to the same inferior.\n\ | |
9134 | The new executable image replaces the previous executable loaded in\n\ | |
9135 | the inferior. Restarting the inferior after the exec call restarts\n\ | |
9136 | the executable the process was running after the exec call.\n\ | |
9137 | \n\ | |
9138 | By default, the debugger will use the same inferior."), | |
9139 | NULL, | |
9140 | show_follow_exec_mode_string, | |
9141 | &setlist, &showlist); | |
9142 | ||
7ab04401 AC |
9143 | add_setshow_enum_cmd ("scheduler-locking", class_run, |
9144 | scheduler_enums, &scheduler_mode, _("\ | |
9145 | Set mode for locking scheduler during execution."), _("\ | |
9146 | Show mode for locking scheduler during execution."), _("\ | |
f2665db5 MM |
9147 | off == no locking (threads may preempt at any time)\n\ |
9148 | on == full locking (no thread except the current thread may run)\n\ | |
9149 | This applies to both normal execution and replay mode.\n\ | |
9150 | step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\ | |
9151 | In this mode, other threads may run during other commands.\n\ | |
9152 | This applies to both normal execution and replay mode.\n\ | |
9153 | replay == scheduler locked in replay mode and unlocked during normal execution."), | |
7ab04401 | 9154 | set_schedlock_func, /* traps on target vector */ |
920d2a44 | 9155 | show_scheduler_mode, |
7ab04401 | 9156 | &setlist, &showlist); |
5fbbeb29 | 9157 | |
d4db2f36 PA |
9158 | add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\ |
9159 | Set mode for resuming threads of all processes."), _("\ | |
9160 | Show mode for resuming threads of all processes."), _("\ | |
9161 | When on, execution commands (such as 'continue' or 'next') resume all\n\ | |
9162 | threads of all processes. When off (which is the default), execution\n\ | |
9163 | commands only resume the threads of the current process. The set of\n\ | |
9164 | threads that are resumed is further refined by the scheduler-locking\n\ | |
9165 | mode (see help set scheduler-locking)."), | |
9166 | NULL, | |
9167 | show_schedule_multiple, | |
9168 | &setlist, &showlist); | |
9169 | ||
5bf193a2 AC |
9170 | add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\ |
9171 | Set mode of the step operation."), _("\ | |
9172 | Show mode of the step operation."), _("\ | |
9173 | When set, doing a step over a function without debug line information\n\ | |
9174 | will stop at the first instruction of that function. Otherwise, the\n\ | |
9175 | function is skipped and the step command stops at a different source line."), | |
9176 | NULL, | |
920d2a44 | 9177 | show_step_stop_if_no_debug, |
5bf193a2 | 9178 | &setlist, &showlist); |
ca6724c1 | 9179 | |
72d0e2c5 YQ |
9180 | add_setshow_auto_boolean_cmd ("displaced-stepping", class_run, |
9181 | &can_use_displaced_stepping, _("\ | |
237fc4c9 PA |
9182 | Set debugger's willingness to use displaced stepping."), _("\ |
9183 | Show debugger's willingness to use displaced stepping."), _("\ | |
fff08868 HZ |
9184 | If on, gdb will use displaced stepping to step over breakpoints if it is\n\ |
9185 | supported by the target architecture. If off, gdb will not use displaced\n\ | |
9186 | stepping to step over breakpoints, even if such is supported by the target\n\ | |
9187 | architecture. If auto (which is the default), gdb will use displaced stepping\n\ | |
9188 | if the target architecture supports it and non-stop mode is active, but will not\n\ | |
9189 | use it in all-stop mode (see help set non-stop)."), | |
72d0e2c5 YQ |
9190 | NULL, |
9191 | show_can_use_displaced_stepping, | |
9192 | &setlist, &showlist); | |
237fc4c9 | 9193 | |
b2175913 MS |
9194 | add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names, |
9195 | &exec_direction, _("Set direction of execution.\n\ | |
9196 | Options are 'forward' or 'reverse'."), | |
9197 | _("Show direction of execution (forward/reverse)."), | |
9198 | _("Tells gdb whether to execute forward or backward."), | |
9199 | set_exec_direction_func, show_exec_direction_func, | |
9200 | &setlist, &showlist); | |
9201 | ||
6c95b8df PA |
9202 | /* Set/show detach-on-fork: user-settable mode. */ |
9203 | ||
9204 | add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\ | |
9205 | Set whether gdb will detach the child of a fork."), _("\ | |
9206 | Show whether gdb will detach the child of a fork."), _("\ | |
9207 | Tells gdb whether to detach the child of a fork."), | |
9208 | NULL, NULL, &setlist, &showlist); | |
9209 | ||
03583c20 UW |
9210 | /* Set/show disable address space randomization mode. */ |
9211 | ||
9212 | add_setshow_boolean_cmd ("disable-randomization", class_support, | |
9213 | &disable_randomization, _("\ | |
9214 | Set disabling of debuggee's virtual address space randomization."), _("\ | |
9215 | Show disabling of debuggee's virtual address space randomization."), _("\ | |
9216 | When this mode is on (which is the default), randomization of the virtual\n\ | |
9217 | address space is disabled. Standalone programs run with the randomization\n\ | |
9218 | enabled by default on some platforms."), | |
9219 | &set_disable_randomization, | |
9220 | &show_disable_randomization, | |
9221 | &setlist, &showlist); | |
9222 | ||
ca6724c1 | 9223 | /* ptid initializations */ |
ca6724c1 KB |
9224 | inferior_ptid = null_ptid; |
9225 | target_last_wait_ptid = minus_one_ptid; | |
5231c1fd | 9226 | |
76727919 TT |
9227 | gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed); |
9228 | gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested); | |
9229 | gdb::observers::thread_exit.attach (infrun_thread_thread_exit); | |
9230 | gdb::observers::inferior_exit.attach (infrun_inferior_exit); | |
4aa995e1 PA |
9231 | |
9232 | /* Explicitly create without lookup, since that tries to create a | |
9233 | value with a void typed value, and when we get here, gdbarch | |
9234 | isn't initialized yet. At this point, we're quite sure there | |
9235 | isn't another convenience variable of the same name. */ | |
22d2b532 | 9236 | create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL); |
d914c394 SS |
9237 | |
9238 | add_setshow_boolean_cmd ("observer", no_class, | |
9239 | &observer_mode_1, _("\ | |
9240 | Set whether gdb controls the inferior in observer mode."), _("\ | |
9241 | Show whether gdb controls the inferior in observer mode."), _("\ | |
9242 | In observer mode, GDB can get data from the inferior, but not\n\ | |
9243 | affect its execution. Registers and memory may not be changed,\n\ | |
9244 | breakpoints may not be set, and the program cannot be interrupted\n\ | |
9245 | or signalled."), | |
9246 | set_observer_mode, | |
9247 | show_observer_mode, | |
9248 | &setlist, | |
9249 | &showlist); | |
c906108c | 9250 | } |