]>
Commit | Line | Data |
---|---|---|
ca557f44 AC |
1 | /* Target-struct-independent code to start (run) and stop an inferior |
2 | process. | |
8926118c | 3 | |
b811d2c2 | 4 | Copyright (C) 1986-2020 Free Software Foundation, Inc. |
c906108c | 5 | |
c5aa993b | 6 | This file is part of GDB. |
c906108c | 7 | |
c5aa993b JM |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 10 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 11 | (at your option) any later version. |
c906108c | 12 | |
c5aa993b JM |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
c906108c | 17 | |
c5aa993b | 18 | You should have received a copy of the GNU General Public License |
a9762ec7 | 19 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
20 | |
21 | #include "defs.h" | |
45741a9c | 22 | #include "infrun.h" |
c906108c SS |
23 | #include <ctype.h> |
24 | #include "symtab.h" | |
25 | #include "frame.h" | |
26 | #include "inferior.h" | |
27 | #include "breakpoint.h" | |
c906108c SS |
28 | #include "gdbcore.h" |
29 | #include "gdbcmd.h" | |
30 | #include "target.h" | |
31 | #include "gdbthread.h" | |
32 | #include "annotate.h" | |
1adeb98a | 33 | #include "symfile.h" |
7a292a7a | 34 | #include "top.h" |
2acceee2 | 35 | #include "inf-loop.h" |
4e052eda | 36 | #include "regcache.h" |
fd0407d6 | 37 | #include "value.h" |
76727919 | 38 | #include "observable.h" |
f636b87d | 39 | #include "language.h" |
a77053c2 | 40 | #include "solib.h" |
f17517ea | 41 | #include "main.h" |
186c406b | 42 | #include "block.h" |
034dad6f | 43 | #include "mi/mi-common.h" |
4f8d22e3 | 44 | #include "event-top.h" |
96429cc8 | 45 | #include "record.h" |
d02ed0bb | 46 | #include "record-full.h" |
edb3359d | 47 | #include "inline-frame.h" |
4efc6507 | 48 | #include "jit.h" |
06cd862c | 49 | #include "tracepoint.h" |
1bfeeb0f | 50 | #include "skip.h" |
28106bc2 SDJ |
51 | #include "probe.h" |
52 | #include "objfiles.h" | |
de0bea00 | 53 | #include "completer.h" |
9107fc8d | 54 | #include "target-descriptions.h" |
f15cb84a | 55 | #include "target-dcache.h" |
d83ad864 | 56 | #include "terminal.h" |
ff862be4 | 57 | #include "solist.h" |
372316f1 | 58 | #include "event-loop.h" |
243a9253 | 59 | #include "thread-fsm.h" |
268a13a5 | 60 | #include "gdbsupport/enum-flags.h" |
5ed8105e | 61 | #include "progspace-and-thread.h" |
268a13a5 | 62 | #include "gdbsupport/gdb_optional.h" |
46a62268 | 63 | #include "arch-utils.h" |
268a13a5 TT |
64 | #include "gdbsupport/scope-exit.h" |
65 | #include "gdbsupport/forward-scope-exit.h" | |
c906108c SS |
66 | |
67 | /* Prototypes for local functions */ | |
68 | ||
2ea28649 | 69 | static void sig_print_info (enum gdb_signal); |
c906108c | 70 | |
96baa820 | 71 | static void sig_print_header (void); |
c906108c | 72 | |
4ef3f3be | 73 | static int follow_fork (void); |
96baa820 | 74 | |
d83ad864 DB |
75 | static int follow_fork_inferior (int follow_child, int detach_fork); |
76 | ||
77 | static void follow_inferior_reset_breakpoints (void); | |
78 | ||
a289b8f6 JK |
79 | static int currently_stepping (struct thread_info *tp); |
80 | ||
2c03e5be | 81 | static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *); |
2484c66b UW |
82 | |
83 | static void insert_step_resume_breakpoint_at_caller (struct frame_info *); | |
84 | ||
2484c66b UW |
85 | static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR); |
86 | ||
8550d3b3 YQ |
87 | static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc); |
88 | ||
aff4e175 AB |
89 | static void resume (gdb_signal sig); |
90 | ||
372316f1 PA |
91 | /* Asynchronous signal handler registered as event loop source for |
92 | when we have pending events ready to be passed to the core. */ | |
93 | static struct async_event_handler *infrun_async_inferior_event_token; | |
94 | ||
95 | /* Stores whether infrun_async was previously enabled or disabled. | |
96 | Starts off as -1, indicating "never enabled/disabled". */ | |
97 | static int infrun_is_async = -1; | |
98 | ||
99 | /* See infrun.h. */ | |
100 | ||
101 | void | |
102 | infrun_async (int enable) | |
103 | { | |
104 | if (infrun_is_async != enable) | |
105 | { | |
106 | infrun_is_async = enable; | |
107 | ||
108 | if (debug_infrun) | |
109 | fprintf_unfiltered (gdb_stdlog, | |
110 | "infrun: infrun_async(%d)\n", | |
111 | enable); | |
112 | ||
113 | if (enable) | |
114 | mark_async_event_handler (infrun_async_inferior_event_token); | |
115 | else | |
116 | clear_async_event_handler (infrun_async_inferior_event_token); | |
117 | } | |
118 | } | |
119 | ||
0b333c5e PA |
120 | /* See infrun.h. */ |
121 | ||
122 | void | |
123 | mark_infrun_async_event_handler (void) | |
124 | { | |
125 | mark_async_event_handler (infrun_async_inferior_event_token); | |
126 | } | |
127 | ||
5fbbeb29 CF |
128 | /* When set, stop the 'step' command if we enter a function which has |
129 | no line number information. The normal behavior is that we step | |
130 | over such function. */ | |
491144b5 | 131 | bool step_stop_if_no_debug = false; |
920d2a44 AC |
132 | static void |
133 | show_step_stop_if_no_debug (struct ui_file *file, int from_tty, | |
134 | struct cmd_list_element *c, const char *value) | |
135 | { | |
136 | fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value); | |
137 | } | |
5fbbeb29 | 138 | |
b9f437de PA |
139 | /* proceed and normal_stop use this to notify the user when the |
140 | inferior stopped in a different thread than it had been running | |
141 | in. */ | |
96baa820 | 142 | |
39f77062 | 143 | static ptid_t previous_inferior_ptid; |
7a292a7a | 144 | |
07107ca6 LM |
145 | /* If set (default for legacy reasons), when following a fork, GDB |
146 | will detach from one of the fork branches, child or parent. | |
147 | Exactly which branch is detached depends on 'set follow-fork-mode' | |
148 | setting. */ | |
149 | ||
491144b5 | 150 | static bool detach_fork = true; |
6c95b8df | 151 | |
491144b5 | 152 | bool debug_displaced = false; |
237fc4c9 PA |
153 | static void |
154 | show_debug_displaced (struct ui_file *file, int from_tty, | |
155 | struct cmd_list_element *c, const char *value) | |
156 | { | |
157 | fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value); | |
158 | } | |
159 | ||
ccce17b0 | 160 | unsigned int debug_infrun = 0; |
920d2a44 AC |
161 | static void |
162 | show_debug_infrun (struct ui_file *file, int from_tty, | |
163 | struct cmd_list_element *c, const char *value) | |
164 | { | |
165 | fprintf_filtered (file, _("Inferior debugging is %s.\n"), value); | |
166 | } | |
527159b7 | 167 | |
03583c20 UW |
168 | |
169 | /* Support for disabling address space randomization. */ | |
170 | ||
491144b5 | 171 | bool disable_randomization = true; |
03583c20 UW |
172 | |
173 | static void | |
174 | show_disable_randomization (struct ui_file *file, int from_tty, | |
175 | struct cmd_list_element *c, const char *value) | |
176 | { | |
177 | if (target_supports_disable_randomization ()) | |
178 | fprintf_filtered (file, | |
179 | _("Disabling randomization of debuggee's " | |
180 | "virtual address space is %s.\n"), | |
181 | value); | |
182 | else | |
183 | fputs_filtered (_("Disabling randomization of debuggee's " | |
184 | "virtual address space is unsupported on\n" | |
185 | "this platform.\n"), file); | |
186 | } | |
187 | ||
188 | static void | |
eb4c3f4a | 189 | set_disable_randomization (const char *args, int from_tty, |
03583c20 UW |
190 | struct cmd_list_element *c) |
191 | { | |
192 | if (!target_supports_disable_randomization ()) | |
193 | error (_("Disabling randomization of debuggee's " | |
194 | "virtual address space is unsupported on\n" | |
195 | "this platform.")); | |
196 | } | |
197 | ||
d32dc48e PA |
198 | /* User interface for non-stop mode. */ |
199 | ||
491144b5 CB |
200 | bool non_stop = false; |
201 | static bool non_stop_1 = false; | |
d32dc48e PA |
202 | |
203 | static void | |
eb4c3f4a | 204 | set_non_stop (const char *args, int from_tty, |
d32dc48e PA |
205 | struct cmd_list_element *c) |
206 | { | |
207 | if (target_has_execution) | |
208 | { | |
209 | non_stop_1 = non_stop; | |
210 | error (_("Cannot change this setting while the inferior is running.")); | |
211 | } | |
212 | ||
213 | non_stop = non_stop_1; | |
214 | } | |
215 | ||
216 | static void | |
217 | show_non_stop (struct ui_file *file, int from_tty, | |
218 | struct cmd_list_element *c, const char *value) | |
219 | { | |
220 | fprintf_filtered (file, | |
221 | _("Controlling the inferior in non-stop mode is %s.\n"), | |
222 | value); | |
223 | } | |
224 | ||
d914c394 SS |
225 | /* "Observer mode" is somewhat like a more extreme version of |
226 | non-stop, in which all GDB operations that might affect the | |
227 | target's execution have been disabled. */ | |
228 | ||
491144b5 CB |
229 | bool observer_mode = false; |
230 | static bool observer_mode_1 = false; | |
d914c394 SS |
231 | |
232 | static void | |
eb4c3f4a | 233 | set_observer_mode (const char *args, int from_tty, |
d914c394 SS |
234 | struct cmd_list_element *c) |
235 | { | |
d914c394 SS |
236 | if (target_has_execution) |
237 | { | |
238 | observer_mode_1 = observer_mode; | |
239 | error (_("Cannot change this setting while the inferior is running.")); | |
240 | } | |
241 | ||
242 | observer_mode = observer_mode_1; | |
243 | ||
244 | may_write_registers = !observer_mode; | |
245 | may_write_memory = !observer_mode; | |
246 | may_insert_breakpoints = !observer_mode; | |
247 | may_insert_tracepoints = !observer_mode; | |
248 | /* We can insert fast tracepoints in or out of observer mode, | |
249 | but enable them if we're going into this mode. */ | |
250 | if (observer_mode) | |
491144b5 | 251 | may_insert_fast_tracepoints = true; |
d914c394 SS |
252 | may_stop = !observer_mode; |
253 | update_target_permissions (); | |
254 | ||
255 | /* Going *into* observer mode we must force non-stop, then | |
256 | going out we leave it that way. */ | |
257 | if (observer_mode) | |
258 | { | |
d914c394 | 259 | pagination_enabled = 0; |
491144b5 | 260 | non_stop = non_stop_1 = true; |
d914c394 SS |
261 | } |
262 | ||
263 | if (from_tty) | |
264 | printf_filtered (_("Observer mode is now %s.\n"), | |
265 | (observer_mode ? "on" : "off")); | |
266 | } | |
267 | ||
268 | static void | |
269 | show_observer_mode (struct ui_file *file, int from_tty, | |
270 | struct cmd_list_element *c, const char *value) | |
271 | { | |
272 | fprintf_filtered (file, _("Observer mode is %s.\n"), value); | |
273 | } | |
274 | ||
275 | /* This updates the value of observer mode based on changes in | |
276 | permissions. Note that we are deliberately ignoring the values of | |
277 | may-write-registers and may-write-memory, since the user may have | |
278 | reason to enable these during a session, for instance to turn on a | |
279 | debugging-related global. */ | |
280 | ||
281 | void | |
282 | update_observer_mode (void) | |
283 | { | |
491144b5 CB |
284 | bool newval = (!may_insert_breakpoints |
285 | && !may_insert_tracepoints | |
286 | && may_insert_fast_tracepoints | |
287 | && !may_stop | |
288 | && non_stop); | |
d914c394 SS |
289 | |
290 | /* Let the user know if things change. */ | |
291 | if (newval != observer_mode) | |
292 | printf_filtered (_("Observer mode is now %s.\n"), | |
293 | (newval ? "on" : "off")); | |
294 | ||
295 | observer_mode = observer_mode_1 = newval; | |
296 | } | |
c2c6d25f | 297 | |
c906108c SS |
298 | /* Tables of how to react to signals; the user sets them. */ |
299 | ||
adc6a863 PA |
300 | static unsigned char signal_stop[GDB_SIGNAL_LAST]; |
301 | static unsigned char signal_print[GDB_SIGNAL_LAST]; | |
302 | static unsigned char signal_program[GDB_SIGNAL_LAST]; | |
c906108c | 303 | |
ab04a2af TT |
304 | /* Table of signals that are registered with "catch signal". A |
305 | non-zero entry indicates that the signal is caught by some "catch | |
adc6a863 PA |
306 | signal" command. */ |
307 | static unsigned char signal_catch[GDB_SIGNAL_LAST]; | |
ab04a2af | 308 | |
2455069d UW |
309 | /* Table of signals that the target may silently handle. |
310 | This is automatically determined from the flags above, | |
311 | and simply cached here. */ | |
adc6a863 | 312 | static unsigned char signal_pass[GDB_SIGNAL_LAST]; |
2455069d | 313 | |
c906108c SS |
314 | #define SET_SIGS(nsigs,sigs,flags) \ |
315 | do { \ | |
316 | int signum = (nsigs); \ | |
317 | while (signum-- > 0) \ | |
318 | if ((sigs)[signum]) \ | |
319 | (flags)[signum] = 1; \ | |
320 | } while (0) | |
321 | ||
322 | #define UNSET_SIGS(nsigs,sigs,flags) \ | |
323 | do { \ | |
324 | int signum = (nsigs); \ | |
325 | while (signum-- > 0) \ | |
326 | if ((sigs)[signum]) \ | |
327 | (flags)[signum] = 0; \ | |
328 | } while (0) | |
329 | ||
9b224c5e PA |
330 | /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of |
331 | this function is to avoid exporting `signal_program'. */ | |
332 | ||
333 | void | |
334 | update_signals_program_target (void) | |
335 | { | |
adc6a863 | 336 | target_program_signals (signal_program); |
9b224c5e PA |
337 | } |
338 | ||
1777feb0 | 339 | /* Value to pass to target_resume() to cause all threads to resume. */ |
39f77062 | 340 | |
edb3359d | 341 | #define RESUME_ALL minus_one_ptid |
c906108c SS |
342 | |
343 | /* Command list pointer for the "stop" placeholder. */ | |
344 | ||
345 | static struct cmd_list_element *stop_command; | |
346 | ||
c906108c SS |
347 | /* Nonzero if we want to give control to the user when we're notified |
348 | of shared library events by the dynamic linker. */ | |
628fe4e4 | 349 | int stop_on_solib_events; |
f9e14852 GB |
350 | |
351 | /* Enable or disable optional shared library event breakpoints | |
352 | as appropriate when the above flag is changed. */ | |
353 | ||
354 | static void | |
eb4c3f4a TT |
355 | set_stop_on_solib_events (const char *args, |
356 | int from_tty, struct cmd_list_element *c) | |
f9e14852 GB |
357 | { |
358 | update_solib_breakpoints (); | |
359 | } | |
360 | ||
920d2a44 AC |
361 | static void |
362 | show_stop_on_solib_events (struct ui_file *file, int from_tty, | |
363 | struct cmd_list_element *c, const char *value) | |
364 | { | |
365 | fprintf_filtered (file, _("Stopping for shared library events is %s.\n"), | |
366 | value); | |
367 | } | |
c906108c | 368 | |
c906108c SS |
369 | /* Nonzero after stop if current stack frame should be printed. */ |
370 | ||
371 | static int stop_print_frame; | |
372 | ||
e02bc4cc | 373 | /* This is a cached copy of the pid/waitstatus of the last event |
9a4105ab AC |
374 | returned by target_wait()/deprecated_target_wait_hook(). This |
375 | information is returned by get_last_target_status(). */ | |
39f77062 | 376 | static ptid_t target_last_wait_ptid; |
e02bc4cc DS |
377 | static struct target_waitstatus target_last_waitstatus; |
378 | ||
4e1c45ea | 379 | void init_thread_stepping_state (struct thread_info *tss); |
0d1e5fa7 | 380 | |
53904c9e AC |
381 | static const char follow_fork_mode_child[] = "child"; |
382 | static const char follow_fork_mode_parent[] = "parent"; | |
383 | ||
40478521 | 384 | static const char *const follow_fork_mode_kind_names[] = { |
53904c9e AC |
385 | follow_fork_mode_child, |
386 | follow_fork_mode_parent, | |
387 | NULL | |
ef346e04 | 388 | }; |
c906108c | 389 | |
53904c9e | 390 | static const char *follow_fork_mode_string = follow_fork_mode_parent; |
920d2a44 AC |
391 | static void |
392 | show_follow_fork_mode_string (struct ui_file *file, int from_tty, | |
393 | struct cmd_list_element *c, const char *value) | |
394 | { | |
3e43a32a MS |
395 | fprintf_filtered (file, |
396 | _("Debugger response to a program " | |
397 | "call of fork or vfork is \"%s\".\n"), | |
920d2a44 AC |
398 | value); |
399 | } | |
c906108c SS |
400 | \f |
401 | ||
d83ad864 DB |
402 | /* Handle changes to the inferior list based on the type of fork, |
403 | which process is being followed, and whether the other process | |
404 | should be detached. On entry inferior_ptid must be the ptid of | |
405 | the fork parent. At return inferior_ptid is the ptid of the | |
406 | followed inferior. */ | |
407 | ||
408 | static int | |
409 | follow_fork_inferior (int follow_child, int detach_fork) | |
410 | { | |
411 | int has_vforked; | |
79639e11 | 412 | ptid_t parent_ptid, child_ptid; |
d83ad864 DB |
413 | |
414 | has_vforked = (inferior_thread ()->pending_follow.kind | |
415 | == TARGET_WAITKIND_VFORKED); | |
79639e11 PA |
416 | parent_ptid = inferior_ptid; |
417 | child_ptid = inferior_thread ()->pending_follow.value.related_pid; | |
d83ad864 DB |
418 | |
419 | if (has_vforked | |
420 | && !non_stop /* Non-stop always resumes both branches. */ | |
3b12939d | 421 | && current_ui->prompt_state == PROMPT_BLOCKED |
d83ad864 DB |
422 | && !(follow_child || detach_fork || sched_multi)) |
423 | { | |
424 | /* The parent stays blocked inside the vfork syscall until the | |
425 | child execs or exits. If we don't let the child run, then | |
426 | the parent stays blocked. If we're telling the parent to run | |
427 | in the foreground, the user will not be able to ctrl-c to get | |
428 | back the terminal, effectively hanging the debug session. */ | |
429 | fprintf_filtered (gdb_stderr, _("\ | |
430 | Can not resume the parent process over vfork in the foreground while\n\ | |
431 | holding the child stopped. Try \"set detach-on-fork\" or \ | |
432 | \"set schedule-multiple\".\n")); | |
d83ad864 DB |
433 | return 1; |
434 | } | |
435 | ||
436 | if (!follow_child) | |
437 | { | |
438 | /* Detach new forked process? */ | |
439 | if (detach_fork) | |
440 | { | |
d83ad864 DB |
441 | /* Before detaching from the child, remove all breakpoints |
442 | from it. If we forked, then this has already been taken | |
443 | care of by infrun.c. If we vforked however, any | |
444 | breakpoint inserted in the parent is visible in the | |
445 | child, even those added while stopped in a vfork | |
446 | catchpoint. This will remove the breakpoints from the | |
447 | parent also, but they'll be reinserted below. */ | |
448 | if (has_vforked) | |
449 | { | |
450 | /* Keep breakpoints list in sync. */ | |
00431a78 | 451 | remove_breakpoints_inf (current_inferior ()); |
d83ad864 DB |
452 | } |
453 | ||
f67c0c91 | 454 | if (print_inferior_events) |
d83ad864 | 455 | { |
8dd06f7a | 456 | /* Ensure that we have a process ptid. */ |
e99b03dc | 457 | ptid_t process_ptid = ptid_t (child_ptid.pid ()); |
8dd06f7a | 458 | |
223ffa71 | 459 | target_terminal::ours_for_output (); |
d83ad864 | 460 | fprintf_filtered (gdb_stdlog, |
f67c0c91 | 461 | _("[Detaching after %s from child %s]\n"), |
6f259a23 | 462 | has_vforked ? "vfork" : "fork", |
a068643d | 463 | target_pid_to_str (process_ptid).c_str ()); |
d83ad864 DB |
464 | } |
465 | } | |
466 | else | |
467 | { | |
468 | struct inferior *parent_inf, *child_inf; | |
d83ad864 DB |
469 | |
470 | /* Add process to GDB's tables. */ | |
e99b03dc | 471 | child_inf = add_inferior (child_ptid.pid ()); |
d83ad864 DB |
472 | |
473 | parent_inf = current_inferior (); | |
474 | child_inf->attach_flag = parent_inf->attach_flag; | |
475 | copy_terminal_info (child_inf, parent_inf); | |
476 | child_inf->gdbarch = parent_inf->gdbarch; | |
477 | copy_inferior_target_desc_info (child_inf, parent_inf); | |
478 | ||
5ed8105e | 479 | scoped_restore_current_pspace_and_thread restore_pspace_thread; |
d83ad864 | 480 | |
79639e11 | 481 | inferior_ptid = child_ptid; |
f67c0c91 | 482 | add_thread_silent (inferior_ptid); |
2a00d7ce | 483 | set_current_inferior (child_inf); |
d83ad864 DB |
484 | child_inf->symfile_flags = SYMFILE_NO_READ; |
485 | ||
486 | /* If this is a vfork child, then the address-space is | |
487 | shared with the parent. */ | |
488 | if (has_vforked) | |
489 | { | |
490 | child_inf->pspace = parent_inf->pspace; | |
491 | child_inf->aspace = parent_inf->aspace; | |
492 | ||
493 | /* The parent will be frozen until the child is done | |
494 | with the shared region. Keep track of the | |
495 | parent. */ | |
496 | child_inf->vfork_parent = parent_inf; | |
497 | child_inf->pending_detach = 0; | |
498 | parent_inf->vfork_child = child_inf; | |
499 | parent_inf->pending_detach = 0; | |
500 | } | |
501 | else | |
502 | { | |
503 | child_inf->aspace = new_address_space (); | |
564b1e3f | 504 | child_inf->pspace = new program_space (child_inf->aspace); |
d83ad864 DB |
505 | child_inf->removable = 1; |
506 | set_current_program_space (child_inf->pspace); | |
507 | clone_program_space (child_inf->pspace, parent_inf->pspace); | |
508 | ||
509 | /* Let the shared library layer (e.g., solib-svr4) learn | |
510 | about this new process, relocate the cloned exec, pull | |
511 | in shared libraries, and install the solib event | |
512 | breakpoint. If a "cloned-VM" event was propagated | |
513 | better throughout the core, this wouldn't be | |
514 | required. */ | |
515 | solib_create_inferior_hook (0); | |
516 | } | |
d83ad864 DB |
517 | } |
518 | ||
519 | if (has_vforked) | |
520 | { | |
521 | struct inferior *parent_inf; | |
522 | ||
523 | parent_inf = current_inferior (); | |
524 | ||
525 | /* If we detached from the child, then we have to be careful | |
526 | to not insert breakpoints in the parent until the child | |
527 | is done with the shared memory region. However, if we're | |
528 | staying attached to the child, then we can and should | |
529 | insert breakpoints, so that we can debug it. A | |
530 | subsequent child exec or exit is enough to know when does | |
531 | the child stops using the parent's address space. */ | |
532 | parent_inf->waiting_for_vfork_done = detach_fork; | |
533 | parent_inf->pspace->breakpoints_not_allowed = detach_fork; | |
534 | } | |
535 | } | |
536 | else | |
537 | { | |
538 | /* Follow the child. */ | |
539 | struct inferior *parent_inf, *child_inf; | |
540 | struct program_space *parent_pspace; | |
541 | ||
f67c0c91 | 542 | if (print_inferior_events) |
d83ad864 | 543 | { |
f67c0c91 SDJ |
544 | std::string parent_pid = target_pid_to_str (parent_ptid); |
545 | std::string child_pid = target_pid_to_str (child_ptid); | |
546 | ||
223ffa71 | 547 | target_terminal::ours_for_output (); |
6f259a23 | 548 | fprintf_filtered (gdb_stdlog, |
f67c0c91 SDJ |
549 | _("[Attaching after %s %s to child %s]\n"), |
550 | parent_pid.c_str (), | |
6f259a23 | 551 | has_vforked ? "vfork" : "fork", |
f67c0c91 | 552 | child_pid.c_str ()); |
d83ad864 DB |
553 | } |
554 | ||
555 | /* Add the new inferior first, so that the target_detach below | |
556 | doesn't unpush the target. */ | |
557 | ||
e99b03dc | 558 | child_inf = add_inferior (child_ptid.pid ()); |
d83ad864 DB |
559 | |
560 | parent_inf = current_inferior (); | |
561 | child_inf->attach_flag = parent_inf->attach_flag; | |
562 | copy_terminal_info (child_inf, parent_inf); | |
563 | child_inf->gdbarch = parent_inf->gdbarch; | |
564 | copy_inferior_target_desc_info (child_inf, parent_inf); | |
565 | ||
566 | parent_pspace = parent_inf->pspace; | |
567 | ||
568 | /* If we're vforking, we want to hold on to the parent until the | |
569 | child exits or execs. At child exec or exit time we can | |
570 | remove the old breakpoints from the parent and detach or | |
571 | resume debugging it. Otherwise, detach the parent now; we'll | |
572 | want to reuse it's program/address spaces, but we can't set | |
573 | them to the child before removing breakpoints from the | |
574 | parent, otherwise, the breakpoints module could decide to | |
575 | remove breakpoints from the wrong process (since they'd be | |
576 | assigned to the same address space). */ | |
577 | ||
578 | if (has_vforked) | |
579 | { | |
580 | gdb_assert (child_inf->vfork_parent == NULL); | |
581 | gdb_assert (parent_inf->vfork_child == NULL); | |
582 | child_inf->vfork_parent = parent_inf; | |
583 | child_inf->pending_detach = 0; | |
584 | parent_inf->vfork_child = child_inf; | |
585 | parent_inf->pending_detach = detach_fork; | |
586 | parent_inf->waiting_for_vfork_done = 0; | |
587 | } | |
588 | else if (detach_fork) | |
6f259a23 | 589 | { |
f67c0c91 | 590 | if (print_inferior_events) |
6f259a23 | 591 | { |
8dd06f7a | 592 | /* Ensure that we have a process ptid. */ |
e99b03dc | 593 | ptid_t process_ptid = ptid_t (parent_ptid.pid ()); |
8dd06f7a | 594 | |
223ffa71 | 595 | target_terminal::ours_for_output (); |
6f259a23 | 596 | fprintf_filtered (gdb_stdlog, |
f67c0c91 SDJ |
597 | _("[Detaching after fork from " |
598 | "parent %s]\n"), | |
a068643d | 599 | target_pid_to_str (process_ptid).c_str ()); |
6f259a23 DB |
600 | } |
601 | ||
6e1e1966 | 602 | target_detach (parent_inf, 0); |
6f259a23 | 603 | } |
d83ad864 DB |
604 | |
605 | /* Note that the detach above makes PARENT_INF dangling. */ | |
606 | ||
607 | /* Add the child thread to the appropriate lists, and switch to | |
608 | this new thread, before cloning the program space, and | |
609 | informing the solib layer about this new process. */ | |
610 | ||
79639e11 | 611 | inferior_ptid = child_ptid; |
f67c0c91 | 612 | add_thread_silent (inferior_ptid); |
2a00d7ce | 613 | set_current_inferior (child_inf); |
d83ad864 DB |
614 | |
615 | /* If this is a vfork child, then the address-space is shared | |
616 | with the parent. If we detached from the parent, then we can | |
617 | reuse the parent's program/address spaces. */ | |
618 | if (has_vforked || detach_fork) | |
619 | { | |
620 | child_inf->pspace = parent_pspace; | |
621 | child_inf->aspace = child_inf->pspace->aspace; | |
622 | } | |
623 | else | |
624 | { | |
625 | child_inf->aspace = new_address_space (); | |
564b1e3f | 626 | child_inf->pspace = new program_space (child_inf->aspace); |
d83ad864 DB |
627 | child_inf->removable = 1; |
628 | child_inf->symfile_flags = SYMFILE_NO_READ; | |
629 | set_current_program_space (child_inf->pspace); | |
630 | clone_program_space (child_inf->pspace, parent_pspace); | |
631 | ||
632 | /* Let the shared library layer (e.g., solib-svr4) learn | |
633 | about this new process, relocate the cloned exec, pull in | |
634 | shared libraries, and install the solib event breakpoint. | |
635 | If a "cloned-VM" event was propagated better throughout | |
636 | the core, this wouldn't be required. */ | |
637 | solib_create_inferior_hook (0); | |
638 | } | |
639 | } | |
640 | ||
641 | return target_follow_fork (follow_child, detach_fork); | |
642 | } | |
643 | ||
e58b0e63 PA |
644 | /* Tell the target to follow the fork we're stopped at. Returns true |
645 | if the inferior should be resumed; false, if the target for some | |
646 | reason decided it's best not to resume. */ | |
647 | ||
6604731b | 648 | static int |
4ef3f3be | 649 | follow_fork (void) |
c906108c | 650 | { |
ea1dd7bc | 651 | int follow_child = (follow_fork_mode_string == follow_fork_mode_child); |
e58b0e63 PA |
652 | int should_resume = 1; |
653 | struct thread_info *tp; | |
654 | ||
655 | /* Copy user stepping state to the new inferior thread. FIXME: the | |
656 | followed fork child thread should have a copy of most of the | |
4e3990f4 DE |
657 | parent thread structure's run control related fields, not just these. |
658 | Initialized to avoid "may be used uninitialized" warnings from gcc. */ | |
659 | struct breakpoint *step_resume_breakpoint = NULL; | |
186c406b | 660 | struct breakpoint *exception_resume_breakpoint = NULL; |
4e3990f4 DE |
661 | CORE_ADDR step_range_start = 0; |
662 | CORE_ADDR step_range_end = 0; | |
663 | struct frame_id step_frame_id = { 0 }; | |
8980e177 | 664 | struct thread_fsm *thread_fsm = NULL; |
e58b0e63 PA |
665 | |
666 | if (!non_stop) | |
667 | { | |
668 | ptid_t wait_ptid; | |
669 | struct target_waitstatus wait_status; | |
670 | ||
671 | /* Get the last target status returned by target_wait(). */ | |
672 | get_last_target_status (&wait_ptid, &wait_status); | |
673 | ||
674 | /* If not stopped at a fork event, then there's nothing else to | |
675 | do. */ | |
676 | if (wait_status.kind != TARGET_WAITKIND_FORKED | |
677 | && wait_status.kind != TARGET_WAITKIND_VFORKED) | |
678 | return 1; | |
679 | ||
680 | /* Check if we switched over from WAIT_PTID, since the event was | |
681 | reported. */ | |
00431a78 PA |
682 | if (wait_ptid != minus_one_ptid |
683 | && inferior_ptid != wait_ptid) | |
e58b0e63 PA |
684 | { |
685 | /* We did. Switch back to WAIT_PTID thread, to tell the | |
686 | target to follow it (in either direction). We'll | |
687 | afterwards refuse to resume, and inform the user what | |
688 | happened. */ | |
00431a78 PA |
689 | thread_info *wait_thread |
690 | = find_thread_ptid (wait_ptid); | |
691 | switch_to_thread (wait_thread); | |
e58b0e63 PA |
692 | should_resume = 0; |
693 | } | |
694 | } | |
695 | ||
696 | tp = inferior_thread (); | |
697 | ||
698 | /* If there were any forks/vforks that were caught and are now to be | |
699 | followed, then do so now. */ | |
700 | switch (tp->pending_follow.kind) | |
701 | { | |
702 | case TARGET_WAITKIND_FORKED: | |
703 | case TARGET_WAITKIND_VFORKED: | |
704 | { | |
705 | ptid_t parent, child; | |
706 | ||
707 | /* If the user did a next/step, etc, over a fork call, | |
708 | preserve the stepping state in the fork child. */ | |
709 | if (follow_child && should_resume) | |
710 | { | |
8358c15c JK |
711 | step_resume_breakpoint = clone_momentary_breakpoint |
712 | (tp->control.step_resume_breakpoint); | |
16c381f0 JK |
713 | step_range_start = tp->control.step_range_start; |
714 | step_range_end = tp->control.step_range_end; | |
715 | step_frame_id = tp->control.step_frame_id; | |
186c406b TT |
716 | exception_resume_breakpoint |
717 | = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint); | |
8980e177 | 718 | thread_fsm = tp->thread_fsm; |
e58b0e63 PA |
719 | |
720 | /* For now, delete the parent's sr breakpoint, otherwise, | |
721 | parent/child sr breakpoints are considered duplicates, | |
722 | and the child version will not be installed. Remove | |
723 | this when the breakpoints module becomes aware of | |
724 | inferiors and address spaces. */ | |
725 | delete_step_resume_breakpoint (tp); | |
16c381f0 JK |
726 | tp->control.step_range_start = 0; |
727 | tp->control.step_range_end = 0; | |
728 | tp->control.step_frame_id = null_frame_id; | |
186c406b | 729 | delete_exception_resume_breakpoint (tp); |
8980e177 | 730 | tp->thread_fsm = NULL; |
e58b0e63 PA |
731 | } |
732 | ||
733 | parent = inferior_ptid; | |
734 | child = tp->pending_follow.value.related_pid; | |
735 | ||
d83ad864 DB |
736 | /* Set up inferior(s) as specified by the caller, and tell the |
737 | target to do whatever is necessary to follow either parent | |
738 | or child. */ | |
739 | if (follow_fork_inferior (follow_child, detach_fork)) | |
e58b0e63 PA |
740 | { |
741 | /* Target refused to follow, or there's some other reason | |
742 | we shouldn't resume. */ | |
743 | should_resume = 0; | |
744 | } | |
745 | else | |
746 | { | |
747 | /* This pending follow fork event is now handled, one way | |
748 | or another. The previous selected thread may be gone | |
749 | from the lists by now, but if it is still around, need | |
750 | to clear the pending follow request. */ | |
e09875d4 | 751 | tp = find_thread_ptid (parent); |
e58b0e63 PA |
752 | if (tp) |
753 | tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS; | |
754 | ||
755 | /* This makes sure we don't try to apply the "Switched | |
756 | over from WAIT_PID" logic above. */ | |
757 | nullify_last_target_wait_ptid (); | |
758 | ||
1777feb0 | 759 | /* If we followed the child, switch to it... */ |
e58b0e63 PA |
760 | if (follow_child) |
761 | { | |
00431a78 PA |
762 | thread_info *child_thr = find_thread_ptid (child); |
763 | switch_to_thread (child_thr); | |
e58b0e63 PA |
764 | |
765 | /* ... and preserve the stepping state, in case the | |
766 | user was stepping over the fork call. */ | |
767 | if (should_resume) | |
768 | { | |
769 | tp = inferior_thread (); | |
8358c15c JK |
770 | tp->control.step_resume_breakpoint |
771 | = step_resume_breakpoint; | |
16c381f0 JK |
772 | tp->control.step_range_start = step_range_start; |
773 | tp->control.step_range_end = step_range_end; | |
774 | tp->control.step_frame_id = step_frame_id; | |
186c406b TT |
775 | tp->control.exception_resume_breakpoint |
776 | = exception_resume_breakpoint; | |
8980e177 | 777 | tp->thread_fsm = thread_fsm; |
e58b0e63 PA |
778 | } |
779 | else | |
780 | { | |
781 | /* If we get here, it was because we're trying to | |
782 | resume from a fork catchpoint, but, the user | |
783 | has switched threads away from the thread that | |
784 | forked. In that case, the resume command | |
785 | issued is most likely not applicable to the | |
786 | child, so just warn, and refuse to resume. */ | |
3e43a32a | 787 | warning (_("Not resuming: switched threads " |
fd7dcb94 | 788 | "before following fork child.")); |
e58b0e63 PA |
789 | } |
790 | ||
791 | /* Reset breakpoints in the child as appropriate. */ | |
792 | follow_inferior_reset_breakpoints (); | |
793 | } | |
e58b0e63 PA |
794 | } |
795 | } | |
796 | break; | |
797 | case TARGET_WAITKIND_SPURIOUS: | |
798 | /* Nothing to follow. */ | |
799 | break; | |
800 | default: | |
801 | internal_error (__FILE__, __LINE__, | |
802 | "Unexpected pending_follow.kind %d\n", | |
803 | tp->pending_follow.kind); | |
804 | break; | |
805 | } | |
c906108c | 806 | |
e58b0e63 | 807 | return should_resume; |
c906108c SS |
808 | } |
809 | ||
d83ad864 | 810 | static void |
6604731b | 811 | follow_inferior_reset_breakpoints (void) |
c906108c | 812 | { |
4e1c45ea PA |
813 | struct thread_info *tp = inferior_thread (); |
814 | ||
6604731b DJ |
815 | /* Was there a step_resume breakpoint? (There was if the user |
816 | did a "next" at the fork() call.) If so, explicitly reset its | |
a1aa2221 LM |
817 | thread number. Cloned step_resume breakpoints are disabled on |
818 | creation, so enable it here now that it is associated with the | |
819 | correct thread. | |
6604731b DJ |
820 | |
821 | step_resumes are a form of bp that are made to be per-thread. | |
822 | Since we created the step_resume bp when the parent process | |
823 | was being debugged, and now are switching to the child process, | |
824 | from the breakpoint package's viewpoint, that's a switch of | |
825 | "threads". We must update the bp's notion of which thread | |
826 | it is for, or it'll be ignored when it triggers. */ | |
827 | ||
8358c15c | 828 | if (tp->control.step_resume_breakpoint) |
a1aa2221 LM |
829 | { |
830 | breakpoint_re_set_thread (tp->control.step_resume_breakpoint); | |
831 | tp->control.step_resume_breakpoint->loc->enabled = 1; | |
832 | } | |
6604731b | 833 | |
a1aa2221 | 834 | /* Treat exception_resume breakpoints like step_resume breakpoints. */ |
186c406b | 835 | if (tp->control.exception_resume_breakpoint) |
a1aa2221 LM |
836 | { |
837 | breakpoint_re_set_thread (tp->control.exception_resume_breakpoint); | |
838 | tp->control.exception_resume_breakpoint->loc->enabled = 1; | |
839 | } | |
186c406b | 840 | |
6604731b DJ |
841 | /* Reinsert all breakpoints in the child. The user may have set |
842 | breakpoints after catching the fork, in which case those | |
843 | were never set in the child, but only in the parent. This makes | |
844 | sure the inserted breakpoints match the breakpoint list. */ | |
845 | ||
846 | breakpoint_re_set (); | |
847 | insert_breakpoints (); | |
c906108c | 848 | } |
c906108c | 849 | |
6c95b8df PA |
850 | /* The child has exited or execed: resume threads of the parent the |
851 | user wanted to be executing. */ | |
852 | ||
853 | static int | |
854 | proceed_after_vfork_done (struct thread_info *thread, | |
855 | void *arg) | |
856 | { | |
857 | int pid = * (int *) arg; | |
858 | ||
00431a78 PA |
859 | if (thread->ptid.pid () == pid |
860 | && thread->state == THREAD_RUNNING | |
861 | && !thread->executing | |
6c95b8df | 862 | && !thread->stop_requested |
a493e3e2 | 863 | && thread->suspend.stop_signal == GDB_SIGNAL_0) |
6c95b8df PA |
864 | { |
865 | if (debug_infrun) | |
866 | fprintf_unfiltered (gdb_stdlog, | |
867 | "infrun: resuming vfork parent thread %s\n", | |
a068643d | 868 | target_pid_to_str (thread->ptid).c_str ()); |
6c95b8df | 869 | |
00431a78 | 870 | switch_to_thread (thread); |
70509625 | 871 | clear_proceed_status (0); |
64ce06e4 | 872 | proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT); |
6c95b8df PA |
873 | } |
874 | ||
875 | return 0; | |
876 | } | |
877 | ||
5ed8105e PA |
878 | /* Save/restore inferior_ptid, current program space and current |
879 | inferior. Only use this if the current context points at an exited | |
880 | inferior (and therefore there's no current thread to save). */ | |
881 | class scoped_restore_exited_inferior | |
882 | { | |
883 | public: | |
884 | scoped_restore_exited_inferior () | |
885 | : m_saved_ptid (&inferior_ptid) | |
886 | {} | |
887 | ||
888 | private: | |
889 | scoped_restore_tmpl<ptid_t> m_saved_ptid; | |
890 | scoped_restore_current_program_space m_pspace; | |
891 | scoped_restore_current_inferior m_inferior; | |
892 | }; | |
893 | ||
6c95b8df PA |
894 | /* Called whenever we notice an exec or exit event, to handle |
895 | detaching or resuming a vfork parent. */ | |
896 | ||
897 | static void | |
898 | handle_vfork_child_exec_or_exit (int exec) | |
899 | { | |
900 | struct inferior *inf = current_inferior (); | |
901 | ||
902 | if (inf->vfork_parent) | |
903 | { | |
904 | int resume_parent = -1; | |
905 | ||
906 | /* This exec or exit marks the end of the shared memory region | |
b73715df TV |
907 | between the parent and the child. Break the bonds. */ |
908 | inferior *vfork_parent = inf->vfork_parent; | |
909 | inf->vfork_parent->vfork_child = NULL; | |
910 | inf->vfork_parent = NULL; | |
6c95b8df | 911 | |
b73715df TV |
912 | /* If the user wanted to detach from the parent, now is the |
913 | time. */ | |
914 | if (vfork_parent->pending_detach) | |
6c95b8df PA |
915 | { |
916 | struct thread_info *tp; | |
6c95b8df PA |
917 | struct program_space *pspace; |
918 | struct address_space *aspace; | |
919 | ||
1777feb0 | 920 | /* follow-fork child, detach-on-fork on. */ |
6c95b8df | 921 | |
b73715df | 922 | vfork_parent->pending_detach = 0; |
68c9da30 | 923 | |
5ed8105e PA |
924 | gdb::optional<scoped_restore_exited_inferior> |
925 | maybe_restore_inferior; | |
926 | gdb::optional<scoped_restore_current_pspace_and_thread> | |
927 | maybe_restore_thread; | |
928 | ||
929 | /* If we're handling a child exit, then inferior_ptid points | |
930 | at the inferior's pid, not to a thread. */ | |
f50f4e56 | 931 | if (!exec) |
5ed8105e | 932 | maybe_restore_inferior.emplace (); |
f50f4e56 | 933 | else |
5ed8105e | 934 | maybe_restore_thread.emplace (); |
6c95b8df PA |
935 | |
936 | /* We're letting loose of the parent. */ | |
b73715df | 937 | tp = any_live_thread_of_inferior (vfork_parent); |
00431a78 | 938 | switch_to_thread (tp); |
6c95b8df PA |
939 | |
940 | /* We're about to detach from the parent, which implicitly | |
941 | removes breakpoints from its address space. There's a | |
942 | catch here: we want to reuse the spaces for the child, | |
943 | but, parent/child are still sharing the pspace at this | |
944 | point, although the exec in reality makes the kernel give | |
945 | the child a fresh set of new pages. The problem here is | |
946 | that the breakpoints module being unaware of this, would | |
947 | likely chose the child process to write to the parent | |
948 | address space. Swapping the child temporarily away from | |
949 | the spaces has the desired effect. Yes, this is "sort | |
950 | of" a hack. */ | |
951 | ||
952 | pspace = inf->pspace; | |
953 | aspace = inf->aspace; | |
954 | inf->aspace = NULL; | |
955 | inf->pspace = NULL; | |
956 | ||
f67c0c91 | 957 | if (print_inferior_events) |
6c95b8df | 958 | { |
a068643d | 959 | std::string pidstr |
b73715df | 960 | = target_pid_to_str (ptid_t (vfork_parent->pid)); |
f67c0c91 | 961 | |
223ffa71 | 962 | target_terminal::ours_for_output (); |
6c95b8df PA |
963 | |
964 | if (exec) | |
6f259a23 DB |
965 | { |
966 | fprintf_filtered (gdb_stdlog, | |
f67c0c91 | 967 | _("[Detaching vfork parent %s " |
a068643d | 968 | "after child exec]\n"), pidstr.c_str ()); |
6f259a23 | 969 | } |
6c95b8df | 970 | else |
6f259a23 DB |
971 | { |
972 | fprintf_filtered (gdb_stdlog, | |
f67c0c91 | 973 | _("[Detaching vfork parent %s " |
a068643d | 974 | "after child exit]\n"), pidstr.c_str ()); |
6f259a23 | 975 | } |
6c95b8df PA |
976 | } |
977 | ||
b73715df | 978 | target_detach (vfork_parent, 0); |
6c95b8df PA |
979 | |
980 | /* Put it back. */ | |
981 | inf->pspace = pspace; | |
982 | inf->aspace = aspace; | |
6c95b8df PA |
983 | } |
984 | else if (exec) | |
985 | { | |
986 | /* We're staying attached to the parent, so, really give the | |
987 | child a new address space. */ | |
564b1e3f | 988 | inf->pspace = new program_space (maybe_new_address_space ()); |
6c95b8df PA |
989 | inf->aspace = inf->pspace->aspace; |
990 | inf->removable = 1; | |
991 | set_current_program_space (inf->pspace); | |
992 | ||
b73715df | 993 | resume_parent = vfork_parent->pid; |
6c95b8df PA |
994 | } |
995 | else | |
996 | { | |
6c95b8df PA |
997 | struct program_space *pspace; |
998 | ||
999 | /* If this is a vfork child exiting, then the pspace and | |
1000 | aspaces were shared with the parent. Since we're | |
1001 | reporting the process exit, we'll be mourning all that is | |
1002 | found in the address space, and switching to null_ptid, | |
1003 | preparing to start a new inferior. But, since we don't | |
1004 | want to clobber the parent's address/program spaces, we | |
1005 | go ahead and create a new one for this exiting | |
1006 | inferior. */ | |
1007 | ||
5ed8105e PA |
1008 | /* Switch to null_ptid while running clone_program_space, so |
1009 | that clone_program_space doesn't want to read the | |
1010 | selected frame of a dead process. */ | |
1011 | scoped_restore restore_ptid | |
1012 | = make_scoped_restore (&inferior_ptid, null_ptid); | |
6c95b8df PA |
1013 | |
1014 | /* This inferior is dead, so avoid giving the breakpoints | |
1015 | module the option to write through to it (cloning a | |
1016 | program space resets breakpoints). */ | |
1017 | inf->aspace = NULL; | |
1018 | inf->pspace = NULL; | |
564b1e3f | 1019 | pspace = new program_space (maybe_new_address_space ()); |
6c95b8df PA |
1020 | set_current_program_space (pspace); |
1021 | inf->removable = 1; | |
7dcd53a0 | 1022 | inf->symfile_flags = SYMFILE_NO_READ; |
b73715df | 1023 | clone_program_space (pspace, vfork_parent->pspace); |
6c95b8df PA |
1024 | inf->pspace = pspace; |
1025 | inf->aspace = pspace->aspace; | |
1026 | ||
b73715df | 1027 | resume_parent = vfork_parent->pid; |
6c95b8df PA |
1028 | } |
1029 | ||
6c95b8df PA |
1030 | gdb_assert (current_program_space == inf->pspace); |
1031 | ||
1032 | if (non_stop && resume_parent != -1) | |
1033 | { | |
1034 | /* If the user wanted the parent to be running, let it go | |
1035 | free now. */ | |
5ed8105e | 1036 | scoped_restore_current_thread restore_thread; |
6c95b8df PA |
1037 | |
1038 | if (debug_infrun) | |
3e43a32a MS |
1039 | fprintf_unfiltered (gdb_stdlog, |
1040 | "infrun: resuming vfork parent process %d\n", | |
6c95b8df PA |
1041 | resume_parent); |
1042 | ||
1043 | iterate_over_threads (proceed_after_vfork_done, &resume_parent); | |
6c95b8df PA |
1044 | } |
1045 | } | |
1046 | } | |
1047 | ||
eb6c553b | 1048 | /* Enum strings for "set|show follow-exec-mode". */ |
6c95b8df PA |
1049 | |
1050 | static const char follow_exec_mode_new[] = "new"; | |
1051 | static const char follow_exec_mode_same[] = "same"; | |
40478521 | 1052 | static const char *const follow_exec_mode_names[] = |
6c95b8df PA |
1053 | { |
1054 | follow_exec_mode_new, | |
1055 | follow_exec_mode_same, | |
1056 | NULL, | |
1057 | }; | |
1058 | ||
1059 | static const char *follow_exec_mode_string = follow_exec_mode_same; | |
1060 | static void | |
1061 | show_follow_exec_mode_string (struct ui_file *file, int from_tty, | |
1062 | struct cmd_list_element *c, const char *value) | |
1063 | { | |
1064 | fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value); | |
1065 | } | |
1066 | ||
ecf45d2c | 1067 | /* EXEC_FILE_TARGET is assumed to be non-NULL. */ |
1adeb98a | 1068 | |
c906108c | 1069 | static void |
4ca51187 | 1070 | follow_exec (ptid_t ptid, const char *exec_file_target) |
c906108c | 1071 | { |
6c95b8df | 1072 | struct inferior *inf = current_inferior (); |
e99b03dc | 1073 | int pid = ptid.pid (); |
94585166 | 1074 | ptid_t process_ptid; |
7a292a7a | 1075 | |
65d2b333 PW |
1076 | /* Switch terminal for any messages produced e.g. by |
1077 | breakpoint_re_set. */ | |
1078 | target_terminal::ours_for_output (); | |
1079 | ||
c906108c SS |
1080 | /* This is an exec event that we actually wish to pay attention to. |
1081 | Refresh our symbol table to the newly exec'd program, remove any | |
1082 | momentary bp's, etc. | |
1083 | ||
1084 | If there are breakpoints, they aren't really inserted now, | |
1085 | since the exec() transformed our inferior into a fresh set | |
1086 | of instructions. | |
1087 | ||
1088 | We want to preserve symbolic breakpoints on the list, since | |
1089 | we have hopes that they can be reset after the new a.out's | |
1090 | symbol table is read. | |
1091 | ||
1092 | However, any "raw" breakpoints must be removed from the list | |
1093 | (e.g., the solib bp's), since their address is probably invalid | |
1094 | now. | |
1095 | ||
1096 | And, we DON'T want to call delete_breakpoints() here, since | |
1097 | that may write the bp's "shadow contents" (the instruction | |
85102364 | 1098 | value that was overwritten with a TRAP instruction). Since |
1777feb0 | 1099 | we now have a new a.out, those shadow contents aren't valid. */ |
6c95b8df PA |
1100 | |
1101 | mark_breakpoints_out (); | |
1102 | ||
95e50b27 PA |
1103 | /* The target reports the exec event to the main thread, even if |
1104 | some other thread does the exec, and even if the main thread was | |
1105 | stopped or already gone. We may still have non-leader threads of | |
1106 | the process on our list. E.g., on targets that don't have thread | |
1107 | exit events (like remote); or on native Linux in non-stop mode if | |
1108 | there were only two threads in the inferior and the non-leader | |
1109 | one is the one that execs (and nothing forces an update of the | |
1110 | thread list up to here). When debugging remotely, it's best to | |
1111 | avoid extra traffic, when possible, so avoid syncing the thread | |
1112 | list with the target, and instead go ahead and delete all threads | |
1113 | of the process but one that reported the event. Note this must | |
1114 | be done before calling update_breakpoints_after_exec, as | |
1115 | otherwise clearing the threads' resources would reference stale | |
1116 | thread breakpoints -- it may have been one of these threads that | |
1117 | stepped across the exec. We could just clear their stepping | |
1118 | states, but as long as we're iterating, might as well delete | |
1119 | them. Deleting them now rather than at the next user-visible | |
1120 | stop provides a nicer sequence of events for user and MI | |
1121 | notifications. */ | |
08036331 | 1122 | for (thread_info *th : all_threads_safe ()) |
d7e15655 | 1123 | if (th->ptid.pid () == pid && th->ptid != ptid) |
00431a78 | 1124 | delete_thread (th); |
95e50b27 PA |
1125 | |
1126 | /* We also need to clear any left over stale state for the | |
1127 | leader/event thread. E.g., if there was any step-resume | |
1128 | breakpoint or similar, it's gone now. We cannot truly | |
1129 | step-to-next statement through an exec(). */ | |
08036331 | 1130 | thread_info *th = inferior_thread (); |
8358c15c | 1131 | th->control.step_resume_breakpoint = NULL; |
186c406b | 1132 | th->control.exception_resume_breakpoint = NULL; |
34b7e8a6 | 1133 | th->control.single_step_breakpoints = NULL; |
16c381f0 JK |
1134 | th->control.step_range_start = 0; |
1135 | th->control.step_range_end = 0; | |
c906108c | 1136 | |
95e50b27 PA |
1137 | /* The user may have had the main thread held stopped in the |
1138 | previous image (e.g., schedlock on, or non-stop). Release | |
1139 | it now. */ | |
a75724bc PA |
1140 | th->stop_requested = 0; |
1141 | ||
95e50b27 PA |
1142 | update_breakpoints_after_exec (); |
1143 | ||
1777feb0 | 1144 | /* What is this a.out's name? */ |
f2907e49 | 1145 | process_ptid = ptid_t (pid); |
6c95b8df | 1146 | printf_unfiltered (_("%s is executing new program: %s\n"), |
a068643d | 1147 | target_pid_to_str (process_ptid).c_str (), |
ecf45d2c | 1148 | exec_file_target); |
c906108c SS |
1149 | |
1150 | /* We've followed the inferior through an exec. Therefore, the | |
1777feb0 | 1151 | inferior has essentially been killed & reborn. */ |
7a292a7a | 1152 | |
6ca15a4b | 1153 | breakpoint_init_inferior (inf_execd); |
e85a822c | 1154 | |
797bc1cb TT |
1155 | gdb::unique_xmalloc_ptr<char> exec_file_host |
1156 | = exec_file_find (exec_file_target, NULL); | |
ff862be4 | 1157 | |
ecf45d2c SL |
1158 | /* If we were unable to map the executable target pathname onto a host |
1159 | pathname, tell the user that. Otherwise GDB's subsequent behavior | |
1160 | is confusing. Maybe it would even be better to stop at this point | |
1161 | so that the user can specify a file manually before continuing. */ | |
1162 | if (exec_file_host == NULL) | |
1163 | warning (_("Could not load symbols for executable %s.\n" | |
1164 | "Do you need \"set sysroot\"?"), | |
1165 | exec_file_target); | |
c906108c | 1166 | |
cce9b6bf PA |
1167 | /* Reset the shared library package. This ensures that we get a |
1168 | shlib event when the child reaches "_start", at which point the | |
1169 | dld will have had a chance to initialize the child. */ | |
1170 | /* Also, loading a symbol file below may trigger symbol lookups, and | |
1171 | we don't want those to be satisfied by the libraries of the | |
1172 | previous incarnation of this process. */ | |
1173 | no_shared_libraries (NULL, 0); | |
1174 | ||
6c95b8df PA |
1175 | if (follow_exec_mode_string == follow_exec_mode_new) |
1176 | { | |
6c95b8df PA |
1177 | /* The user wants to keep the old inferior and program spaces |
1178 | around. Create a new fresh one, and switch to it. */ | |
1179 | ||
35ed81d4 SM |
1180 | /* Do exit processing for the original inferior before setting the new |
1181 | inferior's pid. Having two inferiors with the same pid would confuse | |
1182 | find_inferior_p(t)id. Transfer the terminal state and info from the | |
1183 | old to the new inferior. */ | |
1184 | inf = add_inferior_with_spaces (); | |
1185 | swap_terminal_info (inf, current_inferior ()); | |
057302ce | 1186 | exit_inferior_silent (current_inferior ()); |
17d8546e | 1187 | |
94585166 | 1188 | inf->pid = pid; |
ecf45d2c | 1189 | target_follow_exec (inf, exec_file_target); |
6c95b8df PA |
1190 | |
1191 | set_current_inferior (inf); | |
94585166 | 1192 | set_current_program_space (inf->pspace); |
c4c17fb0 | 1193 | add_thread (ptid); |
6c95b8df | 1194 | } |
9107fc8d PA |
1195 | else |
1196 | { | |
1197 | /* The old description may no longer be fit for the new image. | |
1198 | E.g, a 64-bit process exec'ed a 32-bit process. Clear the | |
1199 | old description; we'll read a new one below. No need to do | |
1200 | this on "follow-exec-mode new", as the old inferior stays | |
1201 | around (its description is later cleared/refetched on | |
1202 | restart). */ | |
1203 | target_clear_description (); | |
1204 | } | |
6c95b8df PA |
1205 | |
1206 | gdb_assert (current_program_space == inf->pspace); | |
1207 | ||
ecf45d2c SL |
1208 | /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used |
1209 | because the proper displacement for a PIE (Position Independent | |
1210 | Executable) main symbol file will only be computed by | |
1211 | solib_create_inferior_hook below. breakpoint_re_set would fail | |
1212 | to insert the breakpoints with the zero displacement. */ | |
797bc1cb | 1213 | try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET); |
c906108c | 1214 | |
9107fc8d PA |
1215 | /* If the target can specify a description, read it. Must do this |
1216 | after flipping to the new executable (because the target supplied | |
1217 | description must be compatible with the executable's | |
1218 | architecture, and the old executable may e.g., be 32-bit, while | |
1219 | the new one 64-bit), and before anything involving memory or | |
1220 | registers. */ | |
1221 | target_find_description (); | |
1222 | ||
268a4a75 | 1223 | solib_create_inferior_hook (0); |
c906108c | 1224 | |
4efc6507 DE |
1225 | jit_inferior_created_hook (); |
1226 | ||
c1e56572 JK |
1227 | breakpoint_re_set (); |
1228 | ||
c906108c SS |
1229 | /* Reinsert all breakpoints. (Those which were symbolic have |
1230 | been reset to the proper address in the new a.out, thanks | |
1777feb0 | 1231 | to symbol_file_command...). */ |
c906108c SS |
1232 | insert_breakpoints (); |
1233 | ||
1234 | /* The next resume of this inferior should bring it to the shlib | |
1235 | startup breakpoints. (If the user had also set bp's on | |
1236 | "main" from the old (parent) process, then they'll auto- | |
1777feb0 | 1237 | matically get reset there in the new process.). */ |
c906108c SS |
1238 | } |
1239 | ||
c2829269 PA |
1240 | /* The queue of threads that need to do a step-over operation to get |
1241 | past e.g., a breakpoint. What technique is used to step over the | |
1242 | breakpoint/watchpoint does not matter -- all threads end up in the | |
1243 | same queue, to maintain rough temporal order of execution, in order | |
1244 | to avoid starvation, otherwise, we could e.g., find ourselves | |
1245 | constantly stepping the same couple threads past their breakpoints | |
1246 | over and over, if the single-step finish fast enough. */ | |
1247 | struct thread_info *step_over_queue_head; | |
1248 | ||
6c4cfb24 PA |
1249 | /* Bit flags indicating what the thread needs to step over. */ |
1250 | ||
8d297bbf | 1251 | enum step_over_what_flag |
6c4cfb24 PA |
1252 | { |
1253 | /* Step over a breakpoint. */ | |
1254 | STEP_OVER_BREAKPOINT = 1, | |
1255 | ||
1256 | /* Step past a non-continuable watchpoint, in order to let the | |
1257 | instruction execute so we can evaluate the watchpoint | |
1258 | expression. */ | |
1259 | STEP_OVER_WATCHPOINT = 2 | |
1260 | }; | |
8d297bbf | 1261 | DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what); |
6c4cfb24 | 1262 | |
963f9c80 | 1263 | /* Info about an instruction that is being stepped over. */ |
31e77af2 PA |
1264 | |
1265 | struct step_over_info | |
1266 | { | |
963f9c80 PA |
1267 | /* If we're stepping past a breakpoint, this is the address space |
1268 | and address of the instruction the breakpoint is set at. We'll | |
1269 | skip inserting all breakpoints here. Valid iff ASPACE is | |
1270 | non-NULL. */ | |
8b86c959 | 1271 | const address_space *aspace; |
31e77af2 | 1272 | CORE_ADDR address; |
963f9c80 PA |
1273 | |
1274 | /* The instruction being stepped over triggers a nonsteppable | |
1275 | watchpoint. If true, we'll skip inserting watchpoints. */ | |
1276 | int nonsteppable_watchpoint_p; | |
21edc42f YQ |
1277 | |
1278 | /* The thread's global number. */ | |
1279 | int thread; | |
31e77af2 PA |
1280 | }; |
1281 | ||
1282 | /* The step-over info of the location that is being stepped over. | |
1283 | ||
1284 | Note that with async/breakpoint always-inserted mode, a user might | |
1285 | set a new breakpoint/watchpoint/etc. exactly while a breakpoint is | |
1286 | being stepped over. As setting a new breakpoint inserts all | |
1287 | breakpoints, we need to make sure the breakpoint being stepped over | |
1288 | isn't inserted then. We do that by only clearing the step-over | |
1289 | info when the step-over is actually finished (or aborted). | |
1290 | ||
1291 | Presently GDB can only step over one breakpoint at any given time. | |
1292 | Given threads that can't run code in the same address space as the | |
1293 | breakpoint's can't really miss the breakpoint, GDB could be taught | |
1294 | to step-over at most one breakpoint per address space (so this info | |
1295 | could move to the address space object if/when GDB is extended). | |
1296 | The set of breakpoints being stepped over will normally be much | |
1297 | smaller than the set of all breakpoints, so a flag in the | |
1298 | breakpoint location structure would be wasteful. A separate list | |
1299 | also saves complexity and run-time, as otherwise we'd have to go | |
1300 | through all breakpoint locations clearing their flag whenever we | |
1301 | start a new sequence. Similar considerations weigh against storing | |
1302 | this info in the thread object. Plus, not all step overs actually | |
1303 | have breakpoint locations -- e.g., stepping past a single-step | |
1304 | breakpoint, or stepping to complete a non-continuable | |
1305 | watchpoint. */ | |
1306 | static struct step_over_info step_over_info; | |
1307 | ||
1308 | /* Record the address of the breakpoint/instruction we're currently | |
ce0db137 DE |
1309 | stepping over. |
1310 | N.B. We record the aspace and address now, instead of say just the thread, | |
1311 | because when we need the info later the thread may be running. */ | |
31e77af2 PA |
1312 | |
1313 | static void | |
8b86c959 | 1314 | set_step_over_info (const address_space *aspace, CORE_ADDR address, |
21edc42f YQ |
1315 | int nonsteppable_watchpoint_p, |
1316 | int thread) | |
31e77af2 PA |
1317 | { |
1318 | step_over_info.aspace = aspace; | |
1319 | step_over_info.address = address; | |
963f9c80 | 1320 | step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p; |
21edc42f | 1321 | step_over_info.thread = thread; |
31e77af2 PA |
1322 | } |
1323 | ||
1324 | /* Called when we're not longer stepping over a breakpoint / an | |
1325 | instruction, so all breakpoints are free to be (re)inserted. */ | |
1326 | ||
1327 | static void | |
1328 | clear_step_over_info (void) | |
1329 | { | |
372316f1 PA |
1330 | if (debug_infrun) |
1331 | fprintf_unfiltered (gdb_stdlog, | |
1332 | "infrun: clear_step_over_info\n"); | |
31e77af2 PA |
1333 | step_over_info.aspace = NULL; |
1334 | step_over_info.address = 0; | |
963f9c80 | 1335 | step_over_info.nonsteppable_watchpoint_p = 0; |
21edc42f | 1336 | step_over_info.thread = -1; |
31e77af2 PA |
1337 | } |
1338 | ||
7f89fd65 | 1339 | /* See infrun.h. */ |
31e77af2 PA |
1340 | |
1341 | int | |
1342 | stepping_past_instruction_at (struct address_space *aspace, | |
1343 | CORE_ADDR address) | |
1344 | { | |
1345 | return (step_over_info.aspace != NULL | |
1346 | && breakpoint_address_match (aspace, address, | |
1347 | step_over_info.aspace, | |
1348 | step_over_info.address)); | |
1349 | } | |
1350 | ||
963f9c80 PA |
1351 | /* See infrun.h. */ |
1352 | ||
21edc42f YQ |
1353 | int |
1354 | thread_is_stepping_over_breakpoint (int thread) | |
1355 | { | |
1356 | return (step_over_info.thread != -1 | |
1357 | && thread == step_over_info.thread); | |
1358 | } | |
1359 | ||
1360 | /* See infrun.h. */ | |
1361 | ||
963f9c80 PA |
1362 | int |
1363 | stepping_past_nonsteppable_watchpoint (void) | |
1364 | { | |
1365 | return step_over_info.nonsteppable_watchpoint_p; | |
1366 | } | |
1367 | ||
6cc83d2a PA |
1368 | /* Returns true if step-over info is valid. */ |
1369 | ||
1370 | static int | |
1371 | step_over_info_valid_p (void) | |
1372 | { | |
963f9c80 PA |
1373 | return (step_over_info.aspace != NULL |
1374 | || stepping_past_nonsteppable_watchpoint ()); | |
6cc83d2a PA |
1375 | } |
1376 | ||
c906108c | 1377 | \f |
237fc4c9 PA |
1378 | /* Displaced stepping. */ |
1379 | ||
1380 | /* In non-stop debugging mode, we must take special care to manage | |
1381 | breakpoints properly; in particular, the traditional strategy for | |
1382 | stepping a thread past a breakpoint it has hit is unsuitable. | |
1383 | 'Displaced stepping' is a tactic for stepping one thread past a | |
1384 | breakpoint it has hit while ensuring that other threads running | |
1385 | concurrently will hit the breakpoint as they should. | |
1386 | ||
1387 | The traditional way to step a thread T off a breakpoint in a | |
1388 | multi-threaded program in all-stop mode is as follows: | |
1389 | ||
1390 | a0) Initially, all threads are stopped, and breakpoints are not | |
1391 | inserted. | |
1392 | a1) We single-step T, leaving breakpoints uninserted. | |
1393 | a2) We insert breakpoints, and resume all threads. | |
1394 | ||
1395 | In non-stop debugging, however, this strategy is unsuitable: we | |
1396 | don't want to have to stop all threads in the system in order to | |
1397 | continue or step T past a breakpoint. Instead, we use displaced | |
1398 | stepping: | |
1399 | ||
1400 | n0) Initially, T is stopped, other threads are running, and | |
1401 | breakpoints are inserted. | |
1402 | n1) We copy the instruction "under" the breakpoint to a separate | |
1403 | location, outside the main code stream, making any adjustments | |
1404 | to the instruction, register, and memory state as directed by | |
1405 | T's architecture. | |
1406 | n2) We single-step T over the instruction at its new location. | |
1407 | n3) We adjust the resulting register and memory state as directed | |
1408 | by T's architecture. This includes resetting T's PC to point | |
1409 | back into the main instruction stream. | |
1410 | n4) We resume T. | |
1411 | ||
1412 | This approach depends on the following gdbarch methods: | |
1413 | ||
1414 | - gdbarch_max_insn_length and gdbarch_displaced_step_location | |
1415 | indicate where to copy the instruction, and how much space must | |
1416 | be reserved there. We use these in step n1. | |
1417 | ||
1418 | - gdbarch_displaced_step_copy_insn copies a instruction to a new | |
1419 | address, and makes any necessary adjustments to the instruction, | |
1420 | register contents, and memory. We use this in step n1. | |
1421 | ||
1422 | - gdbarch_displaced_step_fixup adjusts registers and memory after | |
85102364 | 1423 | we have successfully single-stepped the instruction, to yield the |
237fc4c9 PA |
1424 | same effect the instruction would have had if we had executed it |
1425 | at its original address. We use this in step n3. | |
1426 | ||
237fc4c9 PA |
1427 | The gdbarch_displaced_step_copy_insn and |
1428 | gdbarch_displaced_step_fixup functions must be written so that | |
1429 | copying an instruction with gdbarch_displaced_step_copy_insn, | |
1430 | single-stepping across the copied instruction, and then applying | |
1431 | gdbarch_displaced_insn_fixup should have the same effects on the | |
1432 | thread's memory and registers as stepping the instruction in place | |
1433 | would have. Exactly which responsibilities fall to the copy and | |
1434 | which fall to the fixup is up to the author of those functions. | |
1435 | ||
1436 | See the comments in gdbarch.sh for details. | |
1437 | ||
1438 | Note that displaced stepping and software single-step cannot | |
1439 | currently be used in combination, although with some care I think | |
1440 | they could be made to. Software single-step works by placing | |
1441 | breakpoints on all possible subsequent instructions; if the | |
1442 | displaced instruction is a PC-relative jump, those breakpoints | |
1443 | could fall in very strange places --- on pages that aren't | |
1444 | executable, or at addresses that are not proper instruction | |
1445 | boundaries. (We do generally let other threads run while we wait | |
1446 | to hit the software single-step breakpoint, and they might | |
1447 | encounter such a corrupted instruction.) One way to work around | |
1448 | this would be to have gdbarch_displaced_step_copy_insn fully | |
1449 | simulate the effect of PC-relative instructions (and return NULL) | |
1450 | on architectures that use software single-stepping. | |
1451 | ||
1452 | In non-stop mode, we can have independent and simultaneous step | |
1453 | requests, so more than one thread may need to simultaneously step | |
1454 | over a breakpoint. The current implementation assumes there is | |
1455 | only one scratch space per process. In this case, we have to | |
1456 | serialize access to the scratch space. If thread A wants to step | |
1457 | over a breakpoint, but we are currently waiting for some other | |
1458 | thread to complete a displaced step, we leave thread A stopped and | |
1459 | place it in the displaced_step_request_queue. Whenever a displaced | |
1460 | step finishes, we pick the next thread in the queue and start a new | |
1461 | displaced step operation on it. See displaced_step_prepare and | |
1462 | displaced_step_fixup for details. */ | |
1463 | ||
cfba9872 SM |
1464 | /* Default destructor for displaced_step_closure. */ |
1465 | ||
1466 | displaced_step_closure::~displaced_step_closure () = default; | |
1467 | ||
fc1cf338 PA |
1468 | /* Get the displaced stepping state of process PID. */ |
1469 | ||
39a36629 | 1470 | static displaced_step_inferior_state * |
00431a78 | 1471 | get_displaced_stepping_state (inferior *inf) |
fc1cf338 | 1472 | { |
d20172fc | 1473 | return &inf->displaced_step_state; |
fc1cf338 PA |
1474 | } |
1475 | ||
372316f1 PA |
1476 | /* Returns true if any inferior has a thread doing a displaced |
1477 | step. */ | |
1478 | ||
39a36629 SM |
1479 | static bool |
1480 | displaced_step_in_progress_any_inferior () | |
372316f1 | 1481 | { |
d20172fc | 1482 | for (inferior *i : all_inferiors ()) |
39a36629 | 1483 | { |
d20172fc | 1484 | if (i->displaced_step_state.step_thread != nullptr) |
39a36629 SM |
1485 | return true; |
1486 | } | |
372316f1 | 1487 | |
39a36629 | 1488 | return false; |
372316f1 PA |
1489 | } |
1490 | ||
c0987663 YQ |
1491 | /* Return true if thread represented by PTID is doing a displaced |
1492 | step. */ | |
1493 | ||
1494 | static int | |
00431a78 | 1495 | displaced_step_in_progress_thread (thread_info *thread) |
c0987663 | 1496 | { |
00431a78 | 1497 | gdb_assert (thread != NULL); |
c0987663 | 1498 | |
d20172fc | 1499 | return get_displaced_stepping_state (thread->inf)->step_thread == thread; |
c0987663 YQ |
1500 | } |
1501 | ||
8f572e5c PA |
1502 | /* Return true if process PID has a thread doing a displaced step. */ |
1503 | ||
1504 | static int | |
00431a78 | 1505 | displaced_step_in_progress (inferior *inf) |
8f572e5c | 1506 | { |
d20172fc | 1507 | return get_displaced_stepping_state (inf)->step_thread != nullptr; |
fc1cf338 PA |
1508 | } |
1509 | ||
a42244db YQ |
1510 | /* If inferior is in displaced stepping, and ADDR equals to starting address |
1511 | of copy area, return corresponding displaced_step_closure. Otherwise, | |
1512 | return NULL. */ | |
1513 | ||
1514 | struct displaced_step_closure* | |
1515 | get_displaced_step_closure_by_addr (CORE_ADDR addr) | |
1516 | { | |
d20172fc | 1517 | displaced_step_inferior_state *displaced |
00431a78 | 1518 | = get_displaced_stepping_state (current_inferior ()); |
a42244db YQ |
1519 | |
1520 | /* If checking the mode of displaced instruction in copy area. */ | |
d20172fc | 1521 | if (displaced->step_thread != nullptr |
00431a78 | 1522 | && displaced->step_copy == addr) |
a42244db YQ |
1523 | return displaced->step_closure; |
1524 | ||
1525 | return NULL; | |
1526 | } | |
1527 | ||
fc1cf338 PA |
1528 | static void |
1529 | infrun_inferior_exit (struct inferior *inf) | |
1530 | { | |
d20172fc | 1531 | inf->displaced_step_state.reset (); |
fc1cf338 | 1532 | } |
237fc4c9 | 1533 | |
fff08868 HZ |
1534 | /* If ON, and the architecture supports it, GDB will use displaced |
1535 | stepping to step over breakpoints. If OFF, or if the architecture | |
1536 | doesn't support it, GDB will instead use the traditional | |
1537 | hold-and-step approach. If AUTO (which is the default), GDB will | |
1538 | decide which technique to use to step over breakpoints depending on | |
1539 | which of all-stop or non-stop mode is active --- displaced stepping | |
1540 | in non-stop mode; hold-and-step in all-stop mode. */ | |
1541 | ||
72d0e2c5 | 1542 | static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO; |
fff08868 | 1543 | |
237fc4c9 PA |
1544 | static void |
1545 | show_can_use_displaced_stepping (struct ui_file *file, int from_tty, | |
1546 | struct cmd_list_element *c, | |
1547 | const char *value) | |
1548 | { | |
72d0e2c5 | 1549 | if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO) |
3e43a32a MS |
1550 | fprintf_filtered (file, |
1551 | _("Debugger's willingness to use displaced stepping " | |
1552 | "to step over breakpoints is %s (currently %s).\n"), | |
fbea99ea | 1553 | value, target_is_non_stop_p () ? "on" : "off"); |
fff08868 | 1554 | else |
3e43a32a MS |
1555 | fprintf_filtered (file, |
1556 | _("Debugger's willingness to use displaced stepping " | |
1557 | "to step over breakpoints is %s.\n"), value); | |
237fc4c9 PA |
1558 | } |
1559 | ||
fff08868 | 1560 | /* Return non-zero if displaced stepping can/should be used to step |
3fc8eb30 | 1561 | over breakpoints of thread TP. */ |
fff08868 | 1562 | |
237fc4c9 | 1563 | static int |
3fc8eb30 | 1564 | use_displaced_stepping (struct thread_info *tp) |
237fc4c9 | 1565 | { |
00431a78 | 1566 | struct regcache *regcache = get_thread_regcache (tp); |
ac7936df | 1567 | struct gdbarch *gdbarch = regcache->arch (); |
d20172fc SM |
1568 | displaced_step_inferior_state *displaced_state |
1569 | = get_displaced_stepping_state (tp->inf); | |
3fc8eb30 | 1570 | |
fbea99ea PA |
1571 | return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO |
1572 | && target_is_non_stop_p ()) | |
72d0e2c5 | 1573 | || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE) |
96429cc8 | 1574 | && gdbarch_displaced_step_copy_insn_p (gdbarch) |
3fc8eb30 | 1575 | && find_record_target () == NULL |
d20172fc | 1576 | && !displaced_state->failed_before); |
237fc4c9 PA |
1577 | } |
1578 | ||
1579 | /* Clean out any stray displaced stepping state. */ | |
1580 | static void | |
fc1cf338 | 1581 | displaced_step_clear (struct displaced_step_inferior_state *displaced) |
237fc4c9 PA |
1582 | { |
1583 | /* Indicate that there is no cleanup pending. */ | |
00431a78 | 1584 | displaced->step_thread = nullptr; |
237fc4c9 | 1585 | |
cfba9872 | 1586 | delete displaced->step_closure; |
6d45d4b4 | 1587 | displaced->step_closure = NULL; |
237fc4c9 PA |
1588 | } |
1589 | ||
9799571e TT |
1590 | /* A cleanup that wraps displaced_step_clear. */ |
1591 | using displaced_step_clear_cleanup | |
1592 | = FORWARD_SCOPE_EXIT (displaced_step_clear); | |
237fc4c9 PA |
1593 | |
1594 | /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */ | |
1595 | void | |
1596 | displaced_step_dump_bytes (struct ui_file *file, | |
1597 | const gdb_byte *buf, | |
1598 | size_t len) | |
1599 | { | |
1600 | int i; | |
1601 | ||
1602 | for (i = 0; i < len; i++) | |
1603 | fprintf_unfiltered (file, "%02x ", buf[i]); | |
1604 | fputs_unfiltered ("\n", file); | |
1605 | } | |
1606 | ||
1607 | /* Prepare to single-step, using displaced stepping. | |
1608 | ||
1609 | Note that we cannot use displaced stepping when we have a signal to | |
1610 | deliver. If we have a signal to deliver and an instruction to step | |
1611 | over, then after the step, there will be no indication from the | |
1612 | target whether the thread entered a signal handler or ignored the | |
1613 | signal and stepped over the instruction successfully --- both cases | |
1614 | result in a simple SIGTRAP. In the first case we mustn't do a | |
1615 | fixup, and in the second case we must --- but we can't tell which. | |
1616 | Comments in the code for 'random signals' in handle_inferior_event | |
1617 | explain how we handle this case instead. | |
1618 | ||
1619 | Returns 1 if preparing was successful -- this thread is going to be | |
7f03bd92 PA |
1620 | stepped now; 0 if displaced stepping this thread got queued; or -1 |
1621 | if this instruction can't be displaced stepped. */ | |
1622 | ||
237fc4c9 | 1623 | static int |
00431a78 | 1624 | displaced_step_prepare_throw (thread_info *tp) |
237fc4c9 | 1625 | { |
00431a78 | 1626 | regcache *regcache = get_thread_regcache (tp); |
ac7936df | 1627 | struct gdbarch *gdbarch = regcache->arch (); |
8b86c959 | 1628 | const address_space *aspace = regcache->aspace (); |
237fc4c9 PA |
1629 | CORE_ADDR original, copy; |
1630 | ULONGEST len; | |
1631 | struct displaced_step_closure *closure; | |
9e529e1d | 1632 | int status; |
237fc4c9 PA |
1633 | |
1634 | /* We should never reach this function if the architecture does not | |
1635 | support displaced stepping. */ | |
1636 | gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch)); | |
1637 | ||
c2829269 PA |
1638 | /* Nor if the thread isn't meant to step over a breakpoint. */ |
1639 | gdb_assert (tp->control.trap_expected); | |
1640 | ||
c1e36e3e PA |
1641 | /* Disable range stepping while executing in the scratch pad. We |
1642 | want a single-step even if executing the displaced instruction in | |
1643 | the scratch buffer lands within the stepping range (e.g., a | |
1644 | jump/branch). */ | |
1645 | tp->control.may_range_step = 0; | |
1646 | ||
fc1cf338 PA |
1647 | /* We have to displaced step one thread at a time, as we only have |
1648 | access to a single scratch space per inferior. */ | |
237fc4c9 | 1649 | |
d20172fc SM |
1650 | displaced_step_inferior_state *displaced |
1651 | = get_displaced_stepping_state (tp->inf); | |
fc1cf338 | 1652 | |
00431a78 | 1653 | if (displaced->step_thread != nullptr) |
237fc4c9 PA |
1654 | { |
1655 | /* Already waiting for a displaced step to finish. Defer this | |
1656 | request and place in queue. */ | |
237fc4c9 PA |
1657 | |
1658 | if (debug_displaced) | |
1659 | fprintf_unfiltered (gdb_stdlog, | |
c2829269 | 1660 | "displaced: deferring step of %s\n", |
a068643d | 1661 | target_pid_to_str (tp->ptid).c_str ()); |
237fc4c9 | 1662 | |
c2829269 | 1663 | thread_step_over_chain_enqueue (tp); |
237fc4c9 PA |
1664 | return 0; |
1665 | } | |
1666 | else | |
1667 | { | |
1668 | if (debug_displaced) | |
1669 | fprintf_unfiltered (gdb_stdlog, | |
1670 | "displaced: stepping %s now\n", | |
a068643d | 1671 | target_pid_to_str (tp->ptid).c_str ()); |
237fc4c9 PA |
1672 | } |
1673 | ||
fc1cf338 | 1674 | displaced_step_clear (displaced); |
237fc4c9 | 1675 | |
00431a78 PA |
1676 | scoped_restore_current_thread restore_thread; |
1677 | ||
1678 | switch_to_thread (tp); | |
ad53cd71 | 1679 | |
515630c5 | 1680 | original = regcache_read_pc (regcache); |
237fc4c9 PA |
1681 | |
1682 | copy = gdbarch_displaced_step_location (gdbarch); | |
1683 | len = gdbarch_max_insn_length (gdbarch); | |
1684 | ||
d35ae833 PA |
1685 | if (breakpoint_in_range_p (aspace, copy, len)) |
1686 | { | |
1687 | /* There's a breakpoint set in the scratch pad location range | |
1688 | (which is usually around the entry point). We'd either | |
1689 | install it before resuming, which would overwrite/corrupt the | |
1690 | scratch pad, or if it was already inserted, this displaced | |
1691 | step would overwrite it. The latter is OK in the sense that | |
1692 | we already assume that no thread is going to execute the code | |
1693 | in the scratch pad range (after initial startup) anyway, but | |
1694 | the former is unacceptable. Simply punt and fallback to | |
1695 | stepping over this breakpoint in-line. */ | |
1696 | if (debug_displaced) | |
1697 | { | |
1698 | fprintf_unfiltered (gdb_stdlog, | |
1699 | "displaced: breakpoint set in scratch pad. " | |
1700 | "Stepping over breakpoint in-line instead.\n"); | |
1701 | } | |
1702 | ||
d35ae833 PA |
1703 | return -1; |
1704 | } | |
1705 | ||
237fc4c9 | 1706 | /* Save the original contents of the copy area. */ |
d20172fc SM |
1707 | displaced->step_saved_copy.resize (len); |
1708 | status = target_read_memory (copy, displaced->step_saved_copy.data (), len); | |
9e529e1d JK |
1709 | if (status != 0) |
1710 | throw_error (MEMORY_ERROR, | |
1711 | _("Error accessing memory address %s (%s) for " | |
1712 | "displaced-stepping scratch space."), | |
1713 | paddress (gdbarch, copy), safe_strerror (status)); | |
237fc4c9 PA |
1714 | if (debug_displaced) |
1715 | { | |
5af949e3 UW |
1716 | fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ", |
1717 | paddress (gdbarch, copy)); | |
fc1cf338 | 1718 | displaced_step_dump_bytes (gdb_stdlog, |
d20172fc | 1719 | displaced->step_saved_copy.data (), |
fc1cf338 | 1720 | len); |
237fc4c9 PA |
1721 | }; |
1722 | ||
1723 | closure = gdbarch_displaced_step_copy_insn (gdbarch, | |
ad53cd71 | 1724 | original, copy, regcache); |
7f03bd92 PA |
1725 | if (closure == NULL) |
1726 | { | |
1727 | /* The architecture doesn't know how or want to displaced step | |
1728 | this instruction or instruction sequence. Fallback to | |
1729 | stepping over the breakpoint in-line. */ | |
7f03bd92 PA |
1730 | return -1; |
1731 | } | |
237fc4c9 | 1732 | |
9f5a595d UW |
1733 | /* Save the information we need to fix things up if the step |
1734 | succeeds. */ | |
00431a78 | 1735 | displaced->step_thread = tp; |
fc1cf338 PA |
1736 | displaced->step_gdbarch = gdbarch; |
1737 | displaced->step_closure = closure; | |
1738 | displaced->step_original = original; | |
1739 | displaced->step_copy = copy; | |
9f5a595d | 1740 | |
9799571e TT |
1741 | { |
1742 | displaced_step_clear_cleanup cleanup (displaced); | |
237fc4c9 | 1743 | |
9799571e TT |
1744 | /* Resume execution at the copy. */ |
1745 | regcache_write_pc (regcache, copy); | |
237fc4c9 | 1746 | |
9799571e TT |
1747 | cleanup.release (); |
1748 | } | |
ad53cd71 | 1749 | |
237fc4c9 | 1750 | if (debug_displaced) |
5af949e3 UW |
1751 | fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n", |
1752 | paddress (gdbarch, copy)); | |
237fc4c9 | 1753 | |
237fc4c9 PA |
1754 | return 1; |
1755 | } | |
1756 | ||
3fc8eb30 PA |
1757 | /* Wrapper for displaced_step_prepare_throw that disabled further |
1758 | attempts at displaced stepping if we get a memory error. */ | |
1759 | ||
1760 | static int | |
00431a78 | 1761 | displaced_step_prepare (thread_info *thread) |
3fc8eb30 PA |
1762 | { |
1763 | int prepared = -1; | |
1764 | ||
a70b8144 | 1765 | try |
3fc8eb30 | 1766 | { |
00431a78 | 1767 | prepared = displaced_step_prepare_throw (thread); |
3fc8eb30 | 1768 | } |
230d2906 | 1769 | catch (const gdb_exception_error &ex) |
3fc8eb30 PA |
1770 | { |
1771 | struct displaced_step_inferior_state *displaced_state; | |
1772 | ||
16b41842 PA |
1773 | if (ex.error != MEMORY_ERROR |
1774 | && ex.error != NOT_SUPPORTED_ERROR) | |
eedc3f4f | 1775 | throw; |
3fc8eb30 PA |
1776 | |
1777 | if (debug_infrun) | |
1778 | { | |
1779 | fprintf_unfiltered (gdb_stdlog, | |
1780 | "infrun: disabling displaced stepping: %s\n", | |
3d6e9d23 | 1781 | ex.what ()); |
3fc8eb30 PA |
1782 | } |
1783 | ||
1784 | /* Be verbose if "set displaced-stepping" is "on", silent if | |
1785 | "auto". */ | |
1786 | if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE) | |
1787 | { | |
fd7dcb94 | 1788 | warning (_("disabling displaced stepping: %s"), |
3d6e9d23 | 1789 | ex.what ()); |
3fc8eb30 PA |
1790 | } |
1791 | ||
1792 | /* Disable further displaced stepping attempts. */ | |
1793 | displaced_state | |
00431a78 | 1794 | = get_displaced_stepping_state (thread->inf); |
3fc8eb30 PA |
1795 | displaced_state->failed_before = 1; |
1796 | } | |
3fc8eb30 PA |
1797 | |
1798 | return prepared; | |
1799 | } | |
1800 | ||
237fc4c9 | 1801 | static void |
3e43a32a MS |
1802 | write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, |
1803 | const gdb_byte *myaddr, int len) | |
237fc4c9 | 1804 | { |
2989a365 | 1805 | scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); |
abbb1732 | 1806 | |
237fc4c9 PA |
1807 | inferior_ptid = ptid; |
1808 | write_memory (memaddr, myaddr, len); | |
237fc4c9 PA |
1809 | } |
1810 | ||
e2d96639 YQ |
1811 | /* Restore the contents of the copy area for thread PTID. */ |
1812 | ||
1813 | static void | |
1814 | displaced_step_restore (struct displaced_step_inferior_state *displaced, | |
1815 | ptid_t ptid) | |
1816 | { | |
1817 | ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch); | |
1818 | ||
1819 | write_memory_ptid (ptid, displaced->step_copy, | |
d20172fc | 1820 | displaced->step_saved_copy.data (), len); |
e2d96639 YQ |
1821 | if (debug_displaced) |
1822 | fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n", | |
a068643d | 1823 | target_pid_to_str (ptid).c_str (), |
e2d96639 YQ |
1824 | paddress (displaced->step_gdbarch, |
1825 | displaced->step_copy)); | |
1826 | } | |
1827 | ||
372316f1 PA |
1828 | /* If we displaced stepped an instruction successfully, adjust |
1829 | registers and memory to yield the same effect the instruction would | |
1830 | have had if we had executed it at its original address, and return | |
1831 | 1. If the instruction didn't complete, relocate the PC and return | |
1832 | -1. If the thread wasn't displaced stepping, return 0. */ | |
1833 | ||
1834 | static int | |
00431a78 | 1835 | displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal) |
237fc4c9 | 1836 | { |
fc1cf338 | 1837 | struct displaced_step_inferior_state *displaced |
00431a78 | 1838 | = get_displaced_stepping_state (event_thread->inf); |
372316f1 | 1839 | int ret; |
fc1cf338 | 1840 | |
00431a78 PA |
1841 | /* Was this event for the thread we displaced? */ |
1842 | if (displaced->step_thread != event_thread) | |
372316f1 | 1843 | return 0; |
237fc4c9 | 1844 | |
9799571e | 1845 | displaced_step_clear_cleanup cleanup (displaced); |
237fc4c9 | 1846 | |
00431a78 | 1847 | displaced_step_restore (displaced, displaced->step_thread->ptid); |
237fc4c9 | 1848 | |
cb71640d PA |
1849 | /* Fixup may need to read memory/registers. Switch to the thread |
1850 | that we're fixing up. Also, target_stopped_by_watchpoint checks | |
1851 | the current thread. */ | |
00431a78 | 1852 | switch_to_thread (event_thread); |
cb71640d | 1853 | |
237fc4c9 | 1854 | /* Did the instruction complete successfully? */ |
cb71640d PA |
1855 | if (signal == GDB_SIGNAL_TRAP |
1856 | && !(target_stopped_by_watchpoint () | |
1857 | && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch) | |
1858 | || target_have_steppable_watchpoint))) | |
237fc4c9 PA |
1859 | { |
1860 | /* Fix up the resulting state. */ | |
fc1cf338 PA |
1861 | gdbarch_displaced_step_fixup (displaced->step_gdbarch, |
1862 | displaced->step_closure, | |
1863 | displaced->step_original, | |
1864 | displaced->step_copy, | |
00431a78 | 1865 | get_thread_regcache (displaced->step_thread)); |
372316f1 | 1866 | ret = 1; |
237fc4c9 PA |
1867 | } |
1868 | else | |
1869 | { | |
1870 | /* Since the instruction didn't complete, all we can do is | |
1871 | relocate the PC. */ | |
00431a78 | 1872 | struct regcache *regcache = get_thread_regcache (event_thread); |
515630c5 | 1873 | CORE_ADDR pc = regcache_read_pc (regcache); |
abbb1732 | 1874 | |
fc1cf338 | 1875 | pc = displaced->step_original + (pc - displaced->step_copy); |
515630c5 | 1876 | regcache_write_pc (regcache, pc); |
372316f1 | 1877 | ret = -1; |
237fc4c9 PA |
1878 | } |
1879 | ||
372316f1 | 1880 | return ret; |
c2829269 | 1881 | } |
1c5cfe86 | 1882 | |
4d9d9d04 PA |
1883 | /* Data to be passed around while handling an event. This data is |
1884 | discarded between events. */ | |
1885 | struct execution_control_state | |
1886 | { | |
1887 | ptid_t ptid; | |
1888 | /* The thread that got the event, if this was a thread event; NULL | |
1889 | otherwise. */ | |
1890 | struct thread_info *event_thread; | |
1891 | ||
1892 | struct target_waitstatus ws; | |
1893 | int stop_func_filled_in; | |
1894 | CORE_ADDR stop_func_start; | |
1895 | CORE_ADDR stop_func_end; | |
1896 | const char *stop_func_name; | |
1897 | int wait_some_more; | |
1898 | ||
1899 | /* True if the event thread hit the single-step breakpoint of | |
1900 | another thread. Thus the event doesn't cause a stop, the thread | |
1901 | needs to be single-stepped past the single-step breakpoint before | |
1902 | we can switch back to the original stepping thread. */ | |
1903 | int hit_singlestep_breakpoint; | |
1904 | }; | |
1905 | ||
1906 | /* Clear ECS and set it to point at TP. */ | |
c2829269 PA |
1907 | |
1908 | static void | |
4d9d9d04 PA |
1909 | reset_ecs (struct execution_control_state *ecs, struct thread_info *tp) |
1910 | { | |
1911 | memset (ecs, 0, sizeof (*ecs)); | |
1912 | ecs->event_thread = tp; | |
1913 | ecs->ptid = tp->ptid; | |
1914 | } | |
1915 | ||
1916 | static void keep_going_pass_signal (struct execution_control_state *ecs); | |
1917 | static void prepare_to_wait (struct execution_control_state *ecs); | |
2ac7589c | 1918 | static int keep_going_stepped_thread (struct thread_info *tp); |
8d297bbf | 1919 | static step_over_what thread_still_needs_step_over (struct thread_info *tp); |
4d9d9d04 PA |
1920 | |
1921 | /* Are there any pending step-over requests? If so, run all we can | |
1922 | now and return true. Otherwise, return false. */ | |
1923 | ||
1924 | static int | |
c2829269 PA |
1925 | start_step_over (void) |
1926 | { | |
1927 | struct thread_info *tp, *next; | |
1928 | ||
372316f1 PA |
1929 | /* Don't start a new step-over if we already have an in-line |
1930 | step-over operation ongoing. */ | |
1931 | if (step_over_info_valid_p ()) | |
1932 | return 0; | |
1933 | ||
c2829269 | 1934 | for (tp = step_over_queue_head; tp != NULL; tp = next) |
237fc4c9 | 1935 | { |
4d9d9d04 PA |
1936 | struct execution_control_state ecss; |
1937 | struct execution_control_state *ecs = &ecss; | |
8d297bbf | 1938 | step_over_what step_what; |
372316f1 | 1939 | int must_be_in_line; |
c2829269 | 1940 | |
c65d6b55 PA |
1941 | gdb_assert (!tp->stop_requested); |
1942 | ||
c2829269 | 1943 | next = thread_step_over_chain_next (tp); |
237fc4c9 | 1944 | |
c2829269 PA |
1945 | /* If this inferior already has a displaced step in process, |
1946 | don't start a new one. */ | |
00431a78 | 1947 | if (displaced_step_in_progress (tp->inf)) |
c2829269 PA |
1948 | continue; |
1949 | ||
372316f1 PA |
1950 | step_what = thread_still_needs_step_over (tp); |
1951 | must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT) | |
1952 | || ((step_what & STEP_OVER_BREAKPOINT) | |
3fc8eb30 | 1953 | && !use_displaced_stepping (tp))); |
372316f1 PA |
1954 | |
1955 | /* We currently stop all threads of all processes to step-over | |
1956 | in-line. If we need to start a new in-line step-over, let | |
1957 | any pending displaced steps finish first. */ | |
1958 | if (must_be_in_line && displaced_step_in_progress_any_inferior ()) | |
1959 | return 0; | |
1960 | ||
c2829269 PA |
1961 | thread_step_over_chain_remove (tp); |
1962 | ||
1963 | if (step_over_queue_head == NULL) | |
1964 | { | |
1965 | if (debug_infrun) | |
1966 | fprintf_unfiltered (gdb_stdlog, | |
1967 | "infrun: step-over queue now empty\n"); | |
1968 | } | |
1969 | ||
372316f1 PA |
1970 | if (tp->control.trap_expected |
1971 | || tp->resumed | |
1972 | || tp->executing) | |
ad53cd71 | 1973 | { |
4d9d9d04 PA |
1974 | internal_error (__FILE__, __LINE__, |
1975 | "[%s] has inconsistent state: " | |
372316f1 | 1976 | "trap_expected=%d, resumed=%d, executing=%d\n", |
a068643d | 1977 | target_pid_to_str (tp->ptid).c_str (), |
4d9d9d04 | 1978 | tp->control.trap_expected, |
372316f1 | 1979 | tp->resumed, |
4d9d9d04 | 1980 | tp->executing); |
ad53cd71 | 1981 | } |
1c5cfe86 | 1982 | |
4d9d9d04 PA |
1983 | if (debug_infrun) |
1984 | fprintf_unfiltered (gdb_stdlog, | |
1985 | "infrun: resuming [%s] for step-over\n", | |
a068643d | 1986 | target_pid_to_str (tp->ptid).c_str ()); |
4d9d9d04 PA |
1987 | |
1988 | /* keep_going_pass_signal skips the step-over if the breakpoint | |
1989 | is no longer inserted. In all-stop, we want to keep looking | |
1990 | for a thread that needs a step-over instead of resuming TP, | |
1991 | because we wouldn't be able to resume anything else until the | |
1992 | target stops again. In non-stop, the resume always resumes | |
1993 | only TP, so it's OK to let the thread resume freely. */ | |
fbea99ea | 1994 | if (!target_is_non_stop_p () && !step_what) |
4d9d9d04 | 1995 | continue; |
8550d3b3 | 1996 | |
00431a78 | 1997 | switch_to_thread (tp); |
4d9d9d04 PA |
1998 | reset_ecs (ecs, tp); |
1999 | keep_going_pass_signal (ecs); | |
1c5cfe86 | 2000 | |
4d9d9d04 PA |
2001 | if (!ecs->wait_some_more) |
2002 | error (_("Command aborted.")); | |
1c5cfe86 | 2003 | |
372316f1 PA |
2004 | gdb_assert (tp->resumed); |
2005 | ||
2006 | /* If we started a new in-line step-over, we're done. */ | |
2007 | if (step_over_info_valid_p ()) | |
2008 | { | |
2009 | gdb_assert (tp->control.trap_expected); | |
2010 | return 1; | |
2011 | } | |
2012 | ||
fbea99ea | 2013 | if (!target_is_non_stop_p ()) |
4d9d9d04 PA |
2014 | { |
2015 | /* On all-stop, shouldn't have resumed unless we needed a | |
2016 | step over. */ | |
2017 | gdb_assert (tp->control.trap_expected | |
2018 | || tp->step_after_step_resume_breakpoint); | |
2019 | ||
2020 | /* With remote targets (at least), in all-stop, we can't | |
2021 | issue any further remote commands until the program stops | |
2022 | again. */ | |
2023 | return 1; | |
1c5cfe86 | 2024 | } |
c2829269 | 2025 | |
4d9d9d04 PA |
2026 | /* Either the thread no longer needed a step-over, or a new |
2027 | displaced stepping sequence started. Even in the latter | |
2028 | case, continue looking. Maybe we can also start another | |
2029 | displaced step on a thread of other process. */ | |
237fc4c9 | 2030 | } |
4d9d9d04 PA |
2031 | |
2032 | return 0; | |
237fc4c9 PA |
2033 | } |
2034 | ||
5231c1fd PA |
2035 | /* Update global variables holding ptids to hold NEW_PTID if they were |
2036 | holding OLD_PTID. */ | |
2037 | static void | |
2038 | infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid) | |
2039 | { | |
d7e15655 | 2040 | if (inferior_ptid == old_ptid) |
5231c1fd | 2041 | inferior_ptid = new_ptid; |
5231c1fd PA |
2042 | } |
2043 | ||
237fc4c9 | 2044 | \f |
c906108c | 2045 | |
53904c9e AC |
2046 | static const char schedlock_off[] = "off"; |
2047 | static const char schedlock_on[] = "on"; | |
2048 | static const char schedlock_step[] = "step"; | |
f2665db5 | 2049 | static const char schedlock_replay[] = "replay"; |
40478521 | 2050 | static const char *const scheduler_enums[] = { |
ef346e04 AC |
2051 | schedlock_off, |
2052 | schedlock_on, | |
2053 | schedlock_step, | |
f2665db5 | 2054 | schedlock_replay, |
ef346e04 AC |
2055 | NULL |
2056 | }; | |
f2665db5 | 2057 | static const char *scheduler_mode = schedlock_replay; |
920d2a44 AC |
2058 | static void |
2059 | show_scheduler_mode (struct ui_file *file, int from_tty, | |
2060 | struct cmd_list_element *c, const char *value) | |
2061 | { | |
3e43a32a MS |
2062 | fprintf_filtered (file, |
2063 | _("Mode for locking scheduler " | |
2064 | "during execution is \"%s\".\n"), | |
920d2a44 AC |
2065 | value); |
2066 | } | |
c906108c SS |
2067 | |
2068 | static void | |
eb4c3f4a | 2069 | set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c) |
c906108c | 2070 | { |
eefe576e AC |
2071 | if (!target_can_lock_scheduler) |
2072 | { | |
2073 | scheduler_mode = schedlock_off; | |
2074 | error (_("Target '%s' cannot support this command."), target_shortname); | |
2075 | } | |
c906108c SS |
2076 | } |
2077 | ||
d4db2f36 PA |
2078 | /* True if execution commands resume all threads of all processes by |
2079 | default; otherwise, resume only threads of the current inferior | |
2080 | process. */ | |
491144b5 | 2081 | bool sched_multi = false; |
d4db2f36 | 2082 | |
2facfe5c DD |
2083 | /* Try to setup for software single stepping over the specified location. |
2084 | Return 1 if target_resume() should use hardware single step. | |
2085 | ||
2086 | GDBARCH the current gdbarch. | |
2087 | PC the location to step over. */ | |
2088 | ||
2089 | static int | |
2090 | maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc) | |
2091 | { | |
2092 | int hw_step = 1; | |
2093 | ||
f02253f1 | 2094 | if (execution_direction == EXEC_FORWARD |
93f9a11f YQ |
2095 | && gdbarch_software_single_step_p (gdbarch)) |
2096 | hw_step = !insert_single_step_breakpoints (gdbarch); | |
2097 | ||
2facfe5c DD |
2098 | return hw_step; |
2099 | } | |
c906108c | 2100 | |
f3263aa4 PA |
2101 | /* See infrun.h. */ |
2102 | ||
09cee04b PA |
2103 | ptid_t |
2104 | user_visible_resume_ptid (int step) | |
2105 | { | |
f3263aa4 | 2106 | ptid_t resume_ptid; |
09cee04b | 2107 | |
09cee04b PA |
2108 | if (non_stop) |
2109 | { | |
2110 | /* With non-stop mode on, threads are always handled | |
2111 | individually. */ | |
2112 | resume_ptid = inferior_ptid; | |
2113 | } | |
2114 | else if ((scheduler_mode == schedlock_on) | |
03d46957 | 2115 | || (scheduler_mode == schedlock_step && step)) |
09cee04b | 2116 | { |
f3263aa4 PA |
2117 | /* User-settable 'scheduler' mode requires solo thread |
2118 | resume. */ | |
09cee04b PA |
2119 | resume_ptid = inferior_ptid; |
2120 | } | |
f2665db5 MM |
2121 | else if ((scheduler_mode == schedlock_replay) |
2122 | && target_record_will_replay (minus_one_ptid, execution_direction)) | |
2123 | { | |
2124 | /* User-settable 'scheduler' mode requires solo thread resume in replay | |
2125 | mode. */ | |
2126 | resume_ptid = inferior_ptid; | |
2127 | } | |
f3263aa4 PA |
2128 | else if (!sched_multi && target_supports_multi_process ()) |
2129 | { | |
2130 | /* Resume all threads of the current process (and none of other | |
2131 | processes). */ | |
e99b03dc | 2132 | resume_ptid = ptid_t (inferior_ptid.pid ()); |
f3263aa4 PA |
2133 | } |
2134 | else | |
2135 | { | |
2136 | /* Resume all threads of all processes. */ | |
2137 | resume_ptid = RESUME_ALL; | |
2138 | } | |
09cee04b PA |
2139 | |
2140 | return resume_ptid; | |
2141 | } | |
2142 | ||
fbea99ea PA |
2143 | /* Return a ptid representing the set of threads that we will resume, |
2144 | in the perspective of the target, assuming run control handling | |
2145 | does not require leaving some threads stopped (e.g., stepping past | |
2146 | breakpoint). USER_STEP indicates whether we're about to start the | |
2147 | target for a stepping command. */ | |
2148 | ||
2149 | static ptid_t | |
2150 | internal_resume_ptid (int user_step) | |
2151 | { | |
2152 | /* In non-stop, we always control threads individually. Note that | |
2153 | the target may always work in non-stop mode even with "set | |
2154 | non-stop off", in which case user_visible_resume_ptid could | |
2155 | return a wildcard ptid. */ | |
2156 | if (target_is_non_stop_p ()) | |
2157 | return inferior_ptid; | |
2158 | else | |
2159 | return user_visible_resume_ptid (user_step); | |
2160 | } | |
2161 | ||
64ce06e4 PA |
2162 | /* Wrapper for target_resume, that handles infrun-specific |
2163 | bookkeeping. */ | |
2164 | ||
2165 | static void | |
2166 | do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig) | |
2167 | { | |
2168 | struct thread_info *tp = inferior_thread (); | |
2169 | ||
c65d6b55 PA |
2170 | gdb_assert (!tp->stop_requested); |
2171 | ||
64ce06e4 | 2172 | /* Install inferior's terminal modes. */ |
223ffa71 | 2173 | target_terminal::inferior (); |
64ce06e4 PA |
2174 | |
2175 | /* Avoid confusing the next resume, if the next stop/resume | |
2176 | happens to apply to another thread. */ | |
2177 | tp->suspend.stop_signal = GDB_SIGNAL_0; | |
2178 | ||
8f572e5c PA |
2179 | /* Advise target which signals may be handled silently. |
2180 | ||
2181 | If we have removed breakpoints because we are stepping over one | |
2182 | in-line (in any thread), we need to receive all signals to avoid | |
2183 | accidentally skipping a breakpoint during execution of a signal | |
2184 | handler. | |
2185 | ||
2186 | Likewise if we're displaced stepping, otherwise a trap for a | |
2187 | breakpoint in a signal handler might be confused with the | |
2188 | displaced step finishing. We don't make the displaced_step_fixup | |
2189 | step distinguish the cases instead, because: | |
2190 | ||
2191 | - a backtrace while stopped in the signal handler would show the | |
2192 | scratch pad as frame older than the signal handler, instead of | |
2193 | the real mainline code. | |
2194 | ||
2195 | - when the thread is later resumed, the signal handler would | |
2196 | return to the scratch pad area, which would no longer be | |
2197 | valid. */ | |
2198 | if (step_over_info_valid_p () | |
00431a78 | 2199 | || displaced_step_in_progress (tp->inf)) |
adc6a863 | 2200 | target_pass_signals ({}); |
64ce06e4 | 2201 | else |
adc6a863 | 2202 | target_pass_signals (signal_pass); |
64ce06e4 PA |
2203 | |
2204 | target_resume (resume_ptid, step, sig); | |
85ad3aaf PA |
2205 | |
2206 | target_commit_resume (); | |
64ce06e4 PA |
2207 | } |
2208 | ||
d930703d | 2209 | /* Resume the inferior. SIG is the signal to give the inferior |
71d378ae PA |
2210 | (GDB_SIGNAL_0 for none). Note: don't call this directly; instead |
2211 | call 'resume', which handles exceptions. */ | |
c906108c | 2212 | |
71d378ae PA |
2213 | static void |
2214 | resume_1 (enum gdb_signal sig) | |
c906108c | 2215 | { |
515630c5 | 2216 | struct regcache *regcache = get_current_regcache (); |
ac7936df | 2217 | struct gdbarch *gdbarch = regcache->arch (); |
4e1c45ea | 2218 | struct thread_info *tp = inferior_thread (); |
515630c5 | 2219 | CORE_ADDR pc = regcache_read_pc (regcache); |
8b86c959 | 2220 | const address_space *aspace = regcache->aspace (); |
b0f16a3e | 2221 | ptid_t resume_ptid; |
856e7dd6 PA |
2222 | /* This represents the user's step vs continue request. When |
2223 | deciding whether "set scheduler-locking step" applies, it's the | |
2224 | user's intention that counts. */ | |
2225 | const int user_step = tp->control.stepping_command; | |
64ce06e4 PA |
2226 | /* This represents what we'll actually request the target to do. |
2227 | This can decay from a step to a continue, if e.g., we need to | |
2228 | implement single-stepping with breakpoints (software | |
2229 | single-step). */ | |
6b403daa | 2230 | int step; |
c7e8a53c | 2231 | |
c65d6b55 | 2232 | gdb_assert (!tp->stop_requested); |
c2829269 PA |
2233 | gdb_assert (!thread_is_in_step_over_chain (tp)); |
2234 | ||
372316f1 PA |
2235 | if (tp->suspend.waitstatus_pending_p) |
2236 | { | |
2237 | if (debug_infrun) | |
2238 | { | |
23fdd69e SM |
2239 | std::string statstr |
2240 | = target_waitstatus_to_string (&tp->suspend.waitstatus); | |
372316f1 | 2241 | |
372316f1 | 2242 | fprintf_unfiltered (gdb_stdlog, |
23fdd69e SM |
2243 | "infrun: resume: thread %s has pending wait " |
2244 | "status %s (currently_stepping=%d).\n", | |
a068643d TT |
2245 | target_pid_to_str (tp->ptid).c_str (), |
2246 | statstr.c_str (), | |
372316f1 | 2247 | currently_stepping (tp)); |
372316f1 PA |
2248 | } |
2249 | ||
2250 | tp->resumed = 1; | |
2251 | ||
2252 | /* FIXME: What should we do if we are supposed to resume this | |
2253 | thread with a signal? Maybe we should maintain a queue of | |
2254 | pending signals to deliver. */ | |
2255 | if (sig != GDB_SIGNAL_0) | |
2256 | { | |
fd7dcb94 | 2257 | warning (_("Couldn't deliver signal %s to %s."), |
a068643d TT |
2258 | gdb_signal_to_name (sig), |
2259 | target_pid_to_str (tp->ptid).c_str ()); | |
372316f1 PA |
2260 | } |
2261 | ||
2262 | tp->suspend.stop_signal = GDB_SIGNAL_0; | |
372316f1 PA |
2263 | |
2264 | if (target_can_async_p ()) | |
9516f85a AB |
2265 | { |
2266 | target_async (1); | |
2267 | /* Tell the event loop we have an event to process. */ | |
2268 | mark_async_event_handler (infrun_async_inferior_event_token); | |
2269 | } | |
372316f1 PA |
2270 | return; |
2271 | } | |
2272 | ||
2273 | tp->stepped_breakpoint = 0; | |
2274 | ||
6b403daa PA |
2275 | /* Depends on stepped_breakpoint. */ |
2276 | step = currently_stepping (tp); | |
2277 | ||
74609e71 YQ |
2278 | if (current_inferior ()->waiting_for_vfork_done) |
2279 | { | |
48f9886d PA |
2280 | /* Don't try to single-step a vfork parent that is waiting for |
2281 | the child to get out of the shared memory region (by exec'ing | |
2282 | or exiting). This is particularly important on software | |
2283 | single-step archs, as the child process would trip on the | |
2284 | software single step breakpoint inserted for the parent | |
2285 | process. Since the parent will not actually execute any | |
2286 | instruction until the child is out of the shared region (such | |
2287 | are vfork's semantics), it is safe to simply continue it. | |
2288 | Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for | |
2289 | the parent, and tell it to `keep_going', which automatically | |
2290 | re-sets it stepping. */ | |
74609e71 YQ |
2291 | if (debug_infrun) |
2292 | fprintf_unfiltered (gdb_stdlog, | |
2293 | "infrun: resume : clear step\n"); | |
a09dd441 | 2294 | step = 0; |
74609e71 YQ |
2295 | } |
2296 | ||
527159b7 | 2297 | if (debug_infrun) |
237fc4c9 | 2298 | fprintf_unfiltered (gdb_stdlog, |
c9737c08 | 2299 | "infrun: resume (step=%d, signal=%s), " |
0d9a9a5f | 2300 | "trap_expected=%d, current thread [%s] at %s\n", |
c9737c08 PA |
2301 | step, gdb_signal_to_symbol_string (sig), |
2302 | tp->control.trap_expected, | |
a068643d | 2303 | target_pid_to_str (inferior_ptid).c_str (), |
0d9a9a5f | 2304 | paddress (gdbarch, pc)); |
c906108c | 2305 | |
c2c6d25f JM |
2306 | /* Normally, by the time we reach `resume', the breakpoints are either |
2307 | removed or inserted, as appropriate. The exception is if we're sitting | |
2308 | at a permanent breakpoint; we need to step over it, but permanent | |
2309 | breakpoints can't be removed. So we have to test for it here. */ | |
6c95b8df | 2310 | if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here) |
6d350bb5 | 2311 | { |
af48d08f PA |
2312 | if (sig != GDB_SIGNAL_0) |
2313 | { | |
2314 | /* We have a signal to pass to the inferior. The resume | |
2315 | may, or may not take us to the signal handler. If this | |
2316 | is a step, we'll need to stop in the signal handler, if | |
2317 | there's one, (if the target supports stepping into | |
2318 | handlers), or in the next mainline instruction, if | |
2319 | there's no handler. If this is a continue, we need to be | |
2320 | sure to run the handler with all breakpoints inserted. | |
2321 | In all cases, set a breakpoint at the current address | |
2322 | (where the handler returns to), and once that breakpoint | |
2323 | is hit, resume skipping the permanent breakpoint. If | |
2324 | that breakpoint isn't hit, then we've stepped into the | |
2325 | signal handler (or hit some other event). We'll delete | |
2326 | the step-resume breakpoint then. */ | |
2327 | ||
2328 | if (debug_infrun) | |
2329 | fprintf_unfiltered (gdb_stdlog, | |
2330 | "infrun: resume: skipping permanent breakpoint, " | |
2331 | "deliver signal first\n"); | |
2332 | ||
2333 | clear_step_over_info (); | |
2334 | tp->control.trap_expected = 0; | |
2335 | ||
2336 | if (tp->control.step_resume_breakpoint == NULL) | |
2337 | { | |
2338 | /* Set a "high-priority" step-resume, as we don't want | |
2339 | user breakpoints at PC to trigger (again) when this | |
2340 | hits. */ | |
2341 | insert_hp_step_resume_breakpoint_at_frame (get_current_frame ()); | |
2342 | gdb_assert (tp->control.step_resume_breakpoint->loc->permanent); | |
2343 | ||
2344 | tp->step_after_step_resume_breakpoint = step; | |
2345 | } | |
2346 | ||
2347 | insert_breakpoints (); | |
2348 | } | |
2349 | else | |
2350 | { | |
2351 | /* There's no signal to pass, we can go ahead and skip the | |
2352 | permanent breakpoint manually. */ | |
2353 | if (debug_infrun) | |
2354 | fprintf_unfiltered (gdb_stdlog, | |
2355 | "infrun: resume: skipping permanent breakpoint\n"); | |
2356 | gdbarch_skip_permanent_breakpoint (gdbarch, regcache); | |
2357 | /* Update pc to reflect the new address from which we will | |
2358 | execute instructions. */ | |
2359 | pc = regcache_read_pc (regcache); | |
2360 | ||
2361 | if (step) | |
2362 | { | |
2363 | /* We've already advanced the PC, so the stepping part | |
2364 | is done. Now we need to arrange for a trap to be | |
2365 | reported to handle_inferior_event. Set a breakpoint | |
2366 | at the current PC, and run to it. Don't update | |
2367 | prev_pc, because if we end in | |
44a1ee51 PA |
2368 | switch_back_to_stepped_thread, we want the "expected |
2369 | thread advanced also" branch to be taken. IOW, we | |
2370 | don't want this thread to step further from PC | |
af48d08f | 2371 | (overstep). */ |
1ac806b8 | 2372 | gdb_assert (!step_over_info_valid_p ()); |
af48d08f PA |
2373 | insert_single_step_breakpoint (gdbarch, aspace, pc); |
2374 | insert_breakpoints (); | |
2375 | ||
fbea99ea | 2376 | resume_ptid = internal_resume_ptid (user_step); |
1ac806b8 | 2377 | do_target_resume (resume_ptid, 0, GDB_SIGNAL_0); |
372316f1 | 2378 | tp->resumed = 1; |
af48d08f PA |
2379 | return; |
2380 | } | |
2381 | } | |
6d350bb5 | 2382 | } |
c2c6d25f | 2383 | |
c1e36e3e PA |
2384 | /* If we have a breakpoint to step over, make sure to do a single |
2385 | step only. Same if we have software watchpoints. */ | |
2386 | if (tp->control.trap_expected || bpstat_should_step ()) | |
2387 | tp->control.may_range_step = 0; | |
2388 | ||
237fc4c9 PA |
2389 | /* If enabled, step over breakpoints by executing a copy of the |
2390 | instruction at a different address. | |
2391 | ||
2392 | We can't use displaced stepping when we have a signal to deliver; | |
2393 | the comments for displaced_step_prepare explain why. The | |
2394 | comments in the handle_inferior event for dealing with 'random | |
74609e71 YQ |
2395 | signals' explain what we do instead. |
2396 | ||
2397 | We can't use displaced stepping when we are waiting for vfork_done | |
2398 | event, displaced stepping breaks the vfork child similarly as single | |
2399 | step software breakpoint. */ | |
3fc8eb30 PA |
2400 | if (tp->control.trap_expected |
2401 | && use_displaced_stepping (tp) | |
cb71640d | 2402 | && !step_over_info_valid_p () |
a493e3e2 | 2403 | && sig == GDB_SIGNAL_0 |
74609e71 | 2404 | && !current_inferior ()->waiting_for_vfork_done) |
237fc4c9 | 2405 | { |
00431a78 | 2406 | int prepared = displaced_step_prepare (tp); |
fc1cf338 | 2407 | |
3fc8eb30 | 2408 | if (prepared == 0) |
d56b7306 | 2409 | { |
4d9d9d04 PA |
2410 | if (debug_infrun) |
2411 | fprintf_unfiltered (gdb_stdlog, | |
2412 | "Got placed in step-over queue\n"); | |
2413 | ||
2414 | tp->control.trap_expected = 0; | |
d56b7306 VP |
2415 | return; |
2416 | } | |
3fc8eb30 PA |
2417 | else if (prepared < 0) |
2418 | { | |
2419 | /* Fallback to stepping over the breakpoint in-line. */ | |
2420 | ||
2421 | if (target_is_non_stop_p ()) | |
2422 | stop_all_threads (); | |
2423 | ||
a01bda52 | 2424 | set_step_over_info (regcache->aspace (), |
21edc42f | 2425 | regcache_read_pc (regcache), 0, tp->global_num); |
3fc8eb30 PA |
2426 | |
2427 | step = maybe_software_singlestep (gdbarch, pc); | |
2428 | ||
2429 | insert_breakpoints (); | |
2430 | } | |
2431 | else if (prepared > 0) | |
2432 | { | |
2433 | struct displaced_step_inferior_state *displaced; | |
99e40580 | 2434 | |
3fc8eb30 PA |
2435 | /* Update pc to reflect the new address from which we will |
2436 | execute instructions due to displaced stepping. */ | |
00431a78 | 2437 | pc = regcache_read_pc (get_thread_regcache (tp)); |
ca7781d2 | 2438 | |
00431a78 | 2439 | displaced = get_displaced_stepping_state (tp->inf); |
3fc8eb30 PA |
2440 | step = gdbarch_displaced_step_hw_singlestep (gdbarch, |
2441 | displaced->step_closure); | |
2442 | } | |
237fc4c9 PA |
2443 | } |
2444 | ||
2facfe5c | 2445 | /* Do we need to do it the hard way, w/temp breakpoints? */ |
99e40580 | 2446 | else if (step) |
2facfe5c | 2447 | step = maybe_software_singlestep (gdbarch, pc); |
c906108c | 2448 | |
30852783 UW |
2449 | /* Currently, our software single-step implementation leads to different |
2450 | results than hardware single-stepping in one situation: when stepping | |
2451 | into delivering a signal which has an associated signal handler, | |
2452 | hardware single-step will stop at the first instruction of the handler, | |
2453 | while software single-step will simply skip execution of the handler. | |
2454 | ||
2455 | For now, this difference in behavior is accepted since there is no | |
2456 | easy way to actually implement single-stepping into a signal handler | |
2457 | without kernel support. | |
2458 | ||
2459 | However, there is one scenario where this difference leads to follow-on | |
2460 | problems: if we're stepping off a breakpoint by removing all breakpoints | |
2461 | and then single-stepping. In this case, the software single-step | |
2462 | behavior means that even if there is a *breakpoint* in the signal | |
2463 | handler, GDB still would not stop. | |
2464 | ||
2465 | Fortunately, we can at least fix this particular issue. We detect | |
2466 | here the case where we are about to deliver a signal while software | |
2467 | single-stepping with breakpoints removed. In this situation, we | |
2468 | revert the decisions to remove all breakpoints and insert single- | |
2469 | step breakpoints, and instead we install a step-resume breakpoint | |
2470 | at the current address, deliver the signal without stepping, and | |
2471 | once we arrive back at the step-resume breakpoint, actually step | |
2472 | over the breakpoint we originally wanted to step over. */ | |
34b7e8a6 | 2473 | if (thread_has_single_step_breakpoints_set (tp) |
6cc83d2a PA |
2474 | && sig != GDB_SIGNAL_0 |
2475 | && step_over_info_valid_p ()) | |
30852783 UW |
2476 | { |
2477 | /* If we have nested signals or a pending signal is delivered | |
2478 | immediately after a handler returns, might might already have | |
2479 | a step-resume breakpoint set on the earlier handler. We cannot | |
2480 | set another step-resume breakpoint; just continue on until the | |
2481 | original breakpoint is hit. */ | |
2482 | if (tp->control.step_resume_breakpoint == NULL) | |
2483 | { | |
2c03e5be | 2484 | insert_hp_step_resume_breakpoint_at_frame (get_current_frame ()); |
30852783 UW |
2485 | tp->step_after_step_resume_breakpoint = 1; |
2486 | } | |
2487 | ||
34b7e8a6 | 2488 | delete_single_step_breakpoints (tp); |
30852783 | 2489 | |
31e77af2 | 2490 | clear_step_over_info (); |
30852783 | 2491 | tp->control.trap_expected = 0; |
31e77af2 PA |
2492 | |
2493 | insert_breakpoints (); | |
30852783 UW |
2494 | } |
2495 | ||
b0f16a3e SM |
2496 | /* If STEP is set, it's a request to use hardware stepping |
2497 | facilities. But in that case, we should never | |
2498 | use singlestep breakpoint. */ | |
34b7e8a6 | 2499 | gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step)); |
dfcd3bfb | 2500 | |
fbea99ea | 2501 | /* Decide the set of threads to ask the target to resume. */ |
1946c4cc | 2502 | if (tp->control.trap_expected) |
b0f16a3e SM |
2503 | { |
2504 | /* We're allowing a thread to run past a breakpoint it has | |
1946c4cc YQ |
2505 | hit, either by single-stepping the thread with the breakpoint |
2506 | removed, or by displaced stepping, with the breakpoint inserted. | |
2507 | In the former case, we need to single-step only this thread, | |
2508 | and keep others stopped, as they can miss this breakpoint if | |
2509 | allowed to run. That's not really a problem for displaced | |
2510 | stepping, but, we still keep other threads stopped, in case | |
2511 | another thread is also stopped for a breakpoint waiting for | |
2512 | its turn in the displaced stepping queue. */ | |
b0f16a3e SM |
2513 | resume_ptid = inferior_ptid; |
2514 | } | |
fbea99ea PA |
2515 | else |
2516 | resume_ptid = internal_resume_ptid (user_step); | |
d4db2f36 | 2517 | |
7f5ef605 PA |
2518 | if (execution_direction != EXEC_REVERSE |
2519 | && step && breakpoint_inserted_here_p (aspace, pc)) | |
b0f16a3e | 2520 | { |
372316f1 PA |
2521 | /* There are two cases where we currently need to step a |
2522 | breakpoint instruction when we have a signal to deliver: | |
2523 | ||
2524 | - See handle_signal_stop where we handle random signals that | |
2525 | could take out us out of the stepping range. Normally, in | |
2526 | that case we end up continuing (instead of stepping) over the | |
7f5ef605 PA |
2527 | signal handler with a breakpoint at PC, but there are cases |
2528 | where we should _always_ single-step, even if we have a | |
2529 | step-resume breakpoint, like when a software watchpoint is | |
2530 | set. Assuming single-stepping and delivering a signal at the | |
2531 | same time would takes us to the signal handler, then we could | |
2532 | have removed the breakpoint at PC to step over it. However, | |
2533 | some hardware step targets (like e.g., Mac OS) can't step | |
2534 | into signal handlers, and for those, we need to leave the | |
2535 | breakpoint at PC inserted, as otherwise if the handler | |
2536 | recurses and executes PC again, it'll miss the breakpoint. | |
2537 | So we leave the breakpoint inserted anyway, but we need to | |
2538 | record that we tried to step a breakpoint instruction, so | |
372316f1 PA |
2539 | that adjust_pc_after_break doesn't end up confused. |
2540 | ||
2541 | - In non-stop if we insert a breakpoint (e.g., a step-resume) | |
2542 | in one thread after another thread that was stepping had been | |
2543 | momentarily paused for a step-over. When we re-resume the | |
2544 | stepping thread, it may be resumed from that address with a | |
2545 | breakpoint that hasn't trapped yet. Seen with | |
2546 | gdb.threads/non-stop-fair-events.exp, on targets that don't | |
2547 | do displaced stepping. */ | |
2548 | ||
2549 | if (debug_infrun) | |
2550 | fprintf_unfiltered (gdb_stdlog, | |
2551 | "infrun: resume: [%s] stepped breakpoint\n", | |
a068643d | 2552 | target_pid_to_str (tp->ptid).c_str ()); |
7f5ef605 PA |
2553 | |
2554 | tp->stepped_breakpoint = 1; | |
2555 | ||
b0f16a3e SM |
2556 | /* Most targets can step a breakpoint instruction, thus |
2557 | executing it normally. But if this one cannot, just | |
2558 | continue and we will hit it anyway. */ | |
7f5ef605 | 2559 | if (gdbarch_cannot_step_breakpoint (gdbarch)) |
b0f16a3e SM |
2560 | step = 0; |
2561 | } | |
ef5cf84e | 2562 | |
b0f16a3e | 2563 | if (debug_displaced |
cb71640d | 2564 | && tp->control.trap_expected |
3fc8eb30 | 2565 | && use_displaced_stepping (tp) |
cb71640d | 2566 | && !step_over_info_valid_p ()) |
b0f16a3e | 2567 | { |
00431a78 | 2568 | struct regcache *resume_regcache = get_thread_regcache (tp); |
ac7936df | 2569 | struct gdbarch *resume_gdbarch = resume_regcache->arch (); |
b0f16a3e SM |
2570 | CORE_ADDR actual_pc = regcache_read_pc (resume_regcache); |
2571 | gdb_byte buf[4]; | |
2572 | ||
2573 | fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ", | |
2574 | paddress (resume_gdbarch, actual_pc)); | |
2575 | read_memory (actual_pc, buf, sizeof (buf)); | |
2576 | displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf)); | |
2577 | } | |
237fc4c9 | 2578 | |
b0f16a3e SM |
2579 | if (tp->control.may_range_step) |
2580 | { | |
2581 | /* If we're resuming a thread with the PC out of the step | |
2582 | range, then we're doing some nested/finer run control | |
2583 | operation, like stepping the thread out of the dynamic | |
2584 | linker or the displaced stepping scratch pad. We | |
2585 | shouldn't have allowed a range step then. */ | |
2586 | gdb_assert (pc_in_thread_step_range (pc, tp)); | |
2587 | } | |
c1e36e3e | 2588 | |
64ce06e4 | 2589 | do_target_resume (resume_ptid, step, sig); |
372316f1 | 2590 | tp->resumed = 1; |
c906108c | 2591 | } |
71d378ae PA |
2592 | |
2593 | /* Resume the inferior. SIG is the signal to give the inferior | |
2594 | (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that | |
2595 | rolls back state on error. */ | |
2596 | ||
aff4e175 | 2597 | static void |
71d378ae PA |
2598 | resume (gdb_signal sig) |
2599 | { | |
a70b8144 | 2600 | try |
71d378ae PA |
2601 | { |
2602 | resume_1 (sig); | |
2603 | } | |
230d2906 | 2604 | catch (const gdb_exception &ex) |
71d378ae PA |
2605 | { |
2606 | /* If resuming is being aborted for any reason, delete any | |
2607 | single-step breakpoint resume_1 may have created, to avoid | |
2608 | confusing the following resumption, and to avoid leaving | |
2609 | single-step breakpoints perturbing other threads, in case | |
2610 | we're running in non-stop mode. */ | |
2611 | if (inferior_ptid != null_ptid) | |
2612 | delete_single_step_breakpoints (inferior_thread ()); | |
eedc3f4f | 2613 | throw; |
71d378ae | 2614 | } |
71d378ae PA |
2615 | } |
2616 | ||
c906108c | 2617 | \f |
237fc4c9 | 2618 | /* Proceeding. */ |
c906108c | 2619 | |
4c2f2a79 PA |
2620 | /* See infrun.h. */ |
2621 | ||
2622 | /* Counter that tracks number of user visible stops. This can be used | |
2623 | to tell whether a command has proceeded the inferior past the | |
2624 | current location. This allows e.g., inferior function calls in | |
2625 | breakpoint commands to not interrupt the command list. When the | |
2626 | call finishes successfully, the inferior is standing at the same | |
2627 | breakpoint as if nothing happened (and so we don't call | |
2628 | normal_stop). */ | |
2629 | static ULONGEST current_stop_id; | |
2630 | ||
2631 | /* See infrun.h. */ | |
2632 | ||
2633 | ULONGEST | |
2634 | get_stop_id (void) | |
2635 | { | |
2636 | return current_stop_id; | |
2637 | } | |
2638 | ||
2639 | /* Called when we report a user visible stop. */ | |
2640 | ||
2641 | static void | |
2642 | new_stop_id (void) | |
2643 | { | |
2644 | current_stop_id++; | |
2645 | } | |
2646 | ||
c906108c SS |
2647 | /* Clear out all variables saying what to do when inferior is continued. |
2648 | First do this, then set the ones you want, then call `proceed'. */ | |
2649 | ||
a7212384 UW |
2650 | static void |
2651 | clear_proceed_status_thread (struct thread_info *tp) | |
c906108c | 2652 | { |
a7212384 UW |
2653 | if (debug_infrun) |
2654 | fprintf_unfiltered (gdb_stdlog, | |
2655 | "infrun: clear_proceed_status_thread (%s)\n", | |
a068643d | 2656 | target_pid_to_str (tp->ptid).c_str ()); |
d6b48e9c | 2657 | |
372316f1 PA |
2658 | /* If we're starting a new sequence, then the previous finished |
2659 | single-step is no longer relevant. */ | |
2660 | if (tp->suspend.waitstatus_pending_p) | |
2661 | { | |
2662 | if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP) | |
2663 | { | |
2664 | if (debug_infrun) | |
2665 | fprintf_unfiltered (gdb_stdlog, | |
2666 | "infrun: clear_proceed_status: pending " | |
2667 | "event of %s was a finished step. " | |
2668 | "Discarding.\n", | |
a068643d | 2669 | target_pid_to_str (tp->ptid).c_str ()); |
372316f1 PA |
2670 | |
2671 | tp->suspend.waitstatus_pending_p = 0; | |
2672 | tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON; | |
2673 | } | |
2674 | else if (debug_infrun) | |
2675 | { | |
23fdd69e SM |
2676 | std::string statstr |
2677 | = target_waitstatus_to_string (&tp->suspend.waitstatus); | |
372316f1 | 2678 | |
372316f1 PA |
2679 | fprintf_unfiltered (gdb_stdlog, |
2680 | "infrun: clear_proceed_status_thread: thread %s " | |
2681 | "has pending wait status %s " | |
2682 | "(currently_stepping=%d).\n", | |
a068643d TT |
2683 | target_pid_to_str (tp->ptid).c_str (), |
2684 | statstr.c_str (), | |
372316f1 | 2685 | currently_stepping (tp)); |
372316f1 PA |
2686 | } |
2687 | } | |
2688 | ||
70509625 PA |
2689 | /* If this signal should not be seen by program, give it zero. |
2690 | Used for debugging signals. */ | |
2691 | if (!signal_pass_state (tp->suspend.stop_signal)) | |
2692 | tp->suspend.stop_signal = GDB_SIGNAL_0; | |
2693 | ||
46e3ed7f | 2694 | delete tp->thread_fsm; |
243a9253 PA |
2695 | tp->thread_fsm = NULL; |
2696 | ||
16c381f0 JK |
2697 | tp->control.trap_expected = 0; |
2698 | tp->control.step_range_start = 0; | |
2699 | tp->control.step_range_end = 0; | |
c1e36e3e | 2700 | tp->control.may_range_step = 0; |
16c381f0 JK |
2701 | tp->control.step_frame_id = null_frame_id; |
2702 | tp->control.step_stack_frame_id = null_frame_id; | |
2703 | tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE; | |
885eeb5b | 2704 | tp->control.step_start_function = NULL; |
a7212384 | 2705 | tp->stop_requested = 0; |
4e1c45ea | 2706 | |
16c381f0 | 2707 | tp->control.stop_step = 0; |
32400beb | 2708 | |
16c381f0 | 2709 | tp->control.proceed_to_finish = 0; |
414c69f7 | 2710 | |
856e7dd6 | 2711 | tp->control.stepping_command = 0; |
17b2616c | 2712 | |
a7212384 | 2713 | /* Discard any remaining commands or status from previous stop. */ |
16c381f0 | 2714 | bpstat_clear (&tp->control.stop_bpstat); |
a7212384 | 2715 | } |
32400beb | 2716 | |
a7212384 | 2717 | void |
70509625 | 2718 | clear_proceed_status (int step) |
a7212384 | 2719 | { |
f2665db5 MM |
2720 | /* With scheduler-locking replay, stop replaying other threads if we're |
2721 | not replaying the user-visible resume ptid. | |
2722 | ||
2723 | This is a convenience feature to not require the user to explicitly | |
2724 | stop replaying the other threads. We're assuming that the user's | |
2725 | intent is to resume tracing the recorded process. */ | |
2726 | if (!non_stop && scheduler_mode == schedlock_replay | |
2727 | && target_record_is_replaying (minus_one_ptid) | |
2728 | && !target_record_will_replay (user_visible_resume_ptid (step), | |
2729 | execution_direction)) | |
2730 | target_record_stop_replaying (); | |
2731 | ||
08036331 | 2732 | if (!non_stop && inferior_ptid != null_ptid) |
6c95b8df | 2733 | { |
08036331 | 2734 | ptid_t resume_ptid = user_visible_resume_ptid (step); |
70509625 PA |
2735 | |
2736 | /* In all-stop mode, delete the per-thread status of all threads | |
2737 | we're about to resume, implicitly and explicitly. */ | |
08036331 PA |
2738 | for (thread_info *tp : all_non_exited_threads (resume_ptid)) |
2739 | clear_proceed_status_thread (tp); | |
6c95b8df PA |
2740 | } |
2741 | ||
d7e15655 | 2742 | if (inferior_ptid != null_ptid) |
a7212384 UW |
2743 | { |
2744 | struct inferior *inferior; | |
2745 | ||
2746 | if (non_stop) | |
2747 | { | |
6c95b8df PA |
2748 | /* If in non-stop mode, only delete the per-thread status of |
2749 | the current thread. */ | |
a7212384 UW |
2750 | clear_proceed_status_thread (inferior_thread ()); |
2751 | } | |
6c95b8df | 2752 | |
d6b48e9c | 2753 | inferior = current_inferior (); |
16c381f0 | 2754 | inferior->control.stop_soon = NO_STOP_QUIETLY; |
4e1c45ea PA |
2755 | } |
2756 | ||
76727919 | 2757 | gdb::observers::about_to_proceed.notify (); |
c906108c SS |
2758 | } |
2759 | ||
99619bea PA |
2760 | /* Returns true if TP is still stopped at a breakpoint that needs |
2761 | stepping-over in order to make progress. If the breakpoint is gone | |
2762 | meanwhile, we can skip the whole step-over dance. */ | |
ea67f13b DJ |
2763 | |
2764 | static int | |
6c4cfb24 | 2765 | thread_still_needs_step_over_bp (struct thread_info *tp) |
99619bea PA |
2766 | { |
2767 | if (tp->stepping_over_breakpoint) | |
2768 | { | |
00431a78 | 2769 | struct regcache *regcache = get_thread_regcache (tp); |
99619bea | 2770 | |
a01bda52 | 2771 | if (breakpoint_here_p (regcache->aspace (), |
af48d08f PA |
2772 | regcache_read_pc (regcache)) |
2773 | == ordinary_breakpoint_here) | |
99619bea PA |
2774 | return 1; |
2775 | ||
2776 | tp->stepping_over_breakpoint = 0; | |
2777 | } | |
2778 | ||
2779 | return 0; | |
2780 | } | |
2781 | ||
6c4cfb24 PA |
2782 | /* Check whether thread TP still needs to start a step-over in order |
2783 | to make progress when resumed. Returns an bitwise or of enum | |
2784 | step_over_what bits, indicating what needs to be stepped over. */ | |
2785 | ||
8d297bbf | 2786 | static step_over_what |
6c4cfb24 PA |
2787 | thread_still_needs_step_over (struct thread_info *tp) |
2788 | { | |
8d297bbf | 2789 | step_over_what what = 0; |
6c4cfb24 PA |
2790 | |
2791 | if (thread_still_needs_step_over_bp (tp)) | |
2792 | what |= STEP_OVER_BREAKPOINT; | |
2793 | ||
2794 | if (tp->stepping_over_watchpoint | |
2795 | && !target_have_steppable_watchpoint) | |
2796 | what |= STEP_OVER_WATCHPOINT; | |
2797 | ||
2798 | return what; | |
2799 | } | |
2800 | ||
483805cf PA |
2801 | /* Returns true if scheduler locking applies. STEP indicates whether |
2802 | we're about to do a step/next-like command to a thread. */ | |
2803 | ||
2804 | static int | |
856e7dd6 | 2805 | schedlock_applies (struct thread_info *tp) |
483805cf PA |
2806 | { |
2807 | return (scheduler_mode == schedlock_on | |
2808 | || (scheduler_mode == schedlock_step | |
f2665db5 MM |
2809 | && tp->control.stepping_command) |
2810 | || (scheduler_mode == schedlock_replay | |
2811 | && target_record_will_replay (minus_one_ptid, | |
2812 | execution_direction))); | |
483805cf PA |
2813 | } |
2814 | ||
c906108c SS |
2815 | /* Basic routine for continuing the program in various fashions. |
2816 | ||
2817 | ADDR is the address to resume at, or -1 for resume where stopped. | |
aff4e175 AB |
2818 | SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none, |
2819 | or GDB_SIGNAL_DEFAULT for act according to how it stopped. | |
c906108c SS |
2820 | |
2821 | You should call clear_proceed_status before calling proceed. */ | |
2822 | ||
2823 | void | |
64ce06e4 | 2824 | proceed (CORE_ADDR addr, enum gdb_signal siggnal) |
c906108c | 2825 | { |
e58b0e63 PA |
2826 | struct regcache *regcache; |
2827 | struct gdbarch *gdbarch; | |
e58b0e63 | 2828 | CORE_ADDR pc; |
4d9d9d04 PA |
2829 | ptid_t resume_ptid; |
2830 | struct execution_control_state ecss; | |
2831 | struct execution_control_state *ecs = &ecss; | |
4d9d9d04 | 2832 | int started; |
c906108c | 2833 | |
e58b0e63 PA |
2834 | /* If we're stopped at a fork/vfork, follow the branch set by the |
2835 | "set follow-fork-mode" command; otherwise, we'll just proceed | |
2836 | resuming the current thread. */ | |
2837 | if (!follow_fork ()) | |
2838 | { | |
2839 | /* The target for some reason decided not to resume. */ | |
2840 | normal_stop (); | |
f148b27e PA |
2841 | if (target_can_async_p ()) |
2842 | inferior_event_handler (INF_EXEC_COMPLETE, NULL); | |
e58b0e63 PA |
2843 | return; |
2844 | } | |
2845 | ||
842951eb PA |
2846 | /* We'll update this if & when we switch to a new thread. */ |
2847 | previous_inferior_ptid = inferior_ptid; | |
2848 | ||
e58b0e63 | 2849 | regcache = get_current_regcache (); |
ac7936df | 2850 | gdbarch = regcache->arch (); |
8b86c959 YQ |
2851 | const address_space *aspace = regcache->aspace (); |
2852 | ||
e58b0e63 | 2853 | pc = regcache_read_pc (regcache); |
08036331 | 2854 | thread_info *cur_thr = inferior_thread (); |
e58b0e63 | 2855 | |
99619bea | 2856 | /* Fill in with reasonable starting values. */ |
08036331 | 2857 | init_thread_stepping_state (cur_thr); |
99619bea | 2858 | |
08036331 | 2859 | gdb_assert (!thread_is_in_step_over_chain (cur_thr)); |
c2829269 | 2860 | |
2acceee2 | 2861 | if (addr == (CORE_ADDR) -1) |
c906108c | 2862 | { |
08036331 | 2863 | if (pc == cur_thr->suspend.stop_pc |
af48d08f | 2864 | && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here |
b2175913 | 2865 | && execution_direction != EXEC_REVERSE) |
3352ef37 AC |
2866 | /* There is a breakpoint at the address we will resume at, |
2867 | step one instruction before inserting breakpoints so that | |
2868 | we do not stop right away (and report a second hit at this | |
b2175913 MS |
2869 | breakpoint). |
2870 | ||
2871 | Note, we don't do this in reverse, because we won't | |
2872 | actually be executing the breakpoint insn anyway. | |
2873 | We'll be (un-)executing the previous instruction. */ | |
08036331 | 2874 | cur_thr->stepping_over_breakpoint = 1; |
515630c5 UW |
2875 | else if (gdbarch_single_step_through_delay_p (gdbarch) |
2876 | && gdbarch_single_step_through_delay (gdbarch, | |
2877 | get_current_frame ())) | |
3352ef37 AC |
2878 | /* We stepped onto an instruction that needs to be stepped |
2879 | again before re-inserting the breakpoint, do so. */ | |
08036331 | 2880 | cur_thr->stepping_over_breakpoint = 1; |
c906108c SS |
2881 | } |
2882 | else | |
2883 | { | |
515630c5 | 2884 | regcache_write_pc (regcache, addr); |
c906108c SS |
2885 | } |
2886 | ||
70509625 | 2887 | if (siggnal != GDB_SIGNAL_DEFAULT) |
08036331 | 2888 | cur_thr->suspend.stop_signal = siggnal; |
70509625 | 2889 | |
08036331 | 2890 | resume_ptid = user_visible_resume_ptid (cur_thr->control.stepping_command); |
4d9d9d04 PA |
2891 | |
2892 | /* If an exception is thrown from this point on, make sure to | |
2893 | propagate GDB's knowledge of the executing state to the | |
2894 | frontend/user running state. */ | |
731f534f | 2895 | scoped_finish_thread_state finish_state (resume_ptid); |
4d9d9d04 PA |
2896 | |
2897 | /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer | |
2898 | threads (e.g., we might need to set threads stepping over | |
2899 | breakpoints first), from the user/frontend's point of view, all | |
2900 | threads in RESUME_PTID are now running. Unless we're calling an | |
2901 | inferior function, as in that case we pretend the inferior | |
2902 | doesn't run at all. */ | |
08036331 | 2903 | if (!cur_thr->control.in_infcall) |
4d9d9d04 | 2904 | set_running (resume_ptid, 1); |
17b2616c | 2905 | |
527159b7 | 2906 | if (debug_infrun) |
8a9de0e4 | 2907 | fprintf_unfiltered (gdb_stdlog, |
64ce06e4 | 2908 | "infrun: proceed (addr=%s, signal=%s)\n", |
c9737c08 | 2909 | paddress (gdbarch, addr), |
64ce06e4 | 2910 | gdb_signal_to_symbol_string (siggnal)); |
527159b7 | 2911 | |
4d9d9d04 PA |
2912 | annotate_starting (); |
2913 | ||
2914 | /* Make sure that output from GDB appears before output from the | |
2915 | inferior. */ | |
2916 | gdb_flush (gdb_stdout); | |
2917 | ||
d930703d PA |
2918 | /* Since we've marked the inferior running, give it the terminal. A |
2919 | QUIT/Ctrl-C from here on is forwarded to the target (which can | |
2920 | still detect attempts to unblock a stuck connection with repeated | |
2921 | Ctrl-C from within target_pass_ctrlc). */ | |
2922 | target_terminal::inferior (); | |
2923 | ||
4d9d9d04 PA |
2924 | /* In a multi-threaded task we may select another thread and |
2925 | then continue or step. | |
2926 | ||
2927 | But if a thread that we're resuming had stopped at a breakpoint, | |
2928 | it will immediately cause another breakpoint stop without any | |
2929 | execution (i.e. it will report a breakpoint hit incorrectly). So | |
2930 | we must step over it first. | |
2931 | ||
2932 | Look for threads other than the current (TP) that reported a | |
2933 | breakpoint hit and haven't been resumed yet since. */ | |
2934 | ||
2935 | /* If scheduler locking applies, we can avoid iterating over all | |
2936 | threads. */ | |
08036331 | 2937 | if (!non_stop && !schedlock_applies (cur_thr)) |
94cc34af | 2938 | { |
08036331 PA |
2939 | for (thread_info *tp : all_non_exited_threads (resume_ptid)) |
2940 | { | |
f3f8ece4 PA |
2941 | switch_to_thread_no_regs (tp); |
2942 | ||
4d9d9d04 PA |
2943 | /* Ignore the current thread here. It's handled |
2944 | afterwards. */ | |
08036331 | 2945 | if (tp == cur_thr) |
4d9d9d04 | 2946 | continue; |
c906108c | 2947 | |
4d9d9d04 PA |
2948 | if (!thread_still_needs_step_over (tp)) |
2949 | continue; | |
2950 | ||
2951 | gdb_assert (!thread_is_in_step_over_chain (tp)); | |
c906108c | 2952 | |
99619bea PA |
2953 | if (debug_infrun) |
2954 | fprintf_unfiltered (gdb_stdlog, | |
2955 | "infrun: need to step-over [%s] first\n", | |
a068643d | 2956 | target_pid_to_str (tp->ptid).c_str ()); |
99619bea | 2957 | |
4d9d9d04 | 2958 | thread_step_over_chain_enqueue (tp); |
2adfaa28 | 2959 | } |
f3f8ece4 PA |
2960 | |
2961 | switch_to_thread (cur_thr); | |
30852783 UW |
2962 | } |
2963 | ||
4d9d9d04 PA |
2964 | /* Enqueue the current thread last, so that we move all other |
2965 | threads over their breakpoints first. */ | |
08036331 PA |
2966 | if (cur_thr->stepping_over_breakpoint) |
2967 | thread_step_over_chain_enqueue (cur_thr); | |
30852783 | 2968 | |
4d9d9d04 PA |
2969 | /* If the thread isn't started, we'll still need to set its prev_pc, |
2970 | so that switch_back_to_stepped_thread knows the thread hasn't | |
2971 | advanced. Must do this before resuming any thread, as in | |
2972 | all-stop/remote, once we resume we can't send any other packet | |
2973 | until the target stops again. */ | |
08036331 | 2974 | cur_thr->prev_pc = regcache_read_pc (regcache); |
99619bea | 2975 | |
a9bc57b9 TT |
2976 | { |
2977 | scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume (); | |
85ad3aaf | 2978 | |
a9bc57b9 | 2979 | started = start_step_over (); |
c906108c | 2980 | |
a9bc57b9 TT |
2981 | if (step_over_info_valid_p ()) |
2982 | { | |
2983 | /* Either this thread started a new in-line step over, or some | |
2984 | other thread was already doing one. In either case, don't | |
2985 | resume anything else until the step-over is finished. */ | |
2986 | } | |
2987 | else if (started && !target_is_non_stop_p ()) | |
2988 | { | |
2989 | /* A new displaced stepping sequence was started. In all-stop, | |
2990 | we can't talk to the target anymore until it next stops. */ | |
2991 | } | |
2992 | else if (!non_stop && target_is_non_stop_p ()) | |
2993 | { | |
2994 | /* In all-stop, but the target is always in non-stop mode. | |
2995 | Start all other threads that are implicitly resumed too. */ | |
08036331 | 2996 | for (thread_info *tp : all_non_exited_threads (resume_ptid)) |
fbea99ea | 2997 | { |
f3f8ece4 PA |
2998 | switch_to_thread_no_regs (tp); |
2999 | ||
fbea99ea PA |
3000 | if (tp->resumed) |
3001 | { | |
3002 | if (debug_infrun) | |
3003 | fprintf_unfiltered (gdb_stdlog, | |
3004 | "infrun: proceed: [%s] resumed\n", | |
a068643d | 3005 | target_pid_to_str (tp->ptid).c_str ()); |
fbea99ea PA |
3006 | gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p); |
3007 | continue; | |
3008 | } | |
3009 | ||
3010 | if (thread_is_in_step_over_chain (tp)) | |
3011 | { | |
3012 | if (debug_infrun) | |
3013 | fprintf_unfiltered (gdb_stdlog, | |
3014 | "infrun: proceed: [%s] needs step-over\n", | |
a068643d | 3015 | target_pid_to_str (tp->ptid).c_str ()); |
fbea99ea PA |
3016 | continue; |
3017 | } | |
3018 | ||
3019 | if (debug_infrun) | |
3020 | fprintf_unfiltered (gdb_stdlog, | |
3021 | "infrun: proceed: resuming %s\n", | |
a068643d | 3022 | target_pid_to_str (tp->ptid).c_str ()); |
fbea99ea PA |
3023 | |
3024 | reset_ecs (ecs, tp); | |
00431a78 | 3025 | switch_to_thread (tp); |
fbea99ea PA |
3026 | keep_going_pass_signal (ecs); |
3027 | if (!ecs->wait_some_more) | |
fd7dcb94 | 3028 | error (_("Command aborted.")); |
fbea99ea | 3029 | } |
a9bc57b9 | 3030 | } |
08036331 | 3031 | else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr)) |
a9bc57b9 TT |
3032 | { |
3033 | /* The thread wasn't started, and isn't queued, run it now. */ | |
08036331 PA |
3034 | reset_ecs (ecs, cur_thr); |
3035 | switch_to_thread (cur_thr); | |
a9bc57b9 TT |
3036 | keep_going_pass_signal (ecs); |
3037 | if (!ecs->wait_some_more) | |
3038 | error (_("Command aborted.")); | |
3039 | } | |
3040 | } | |
c906108c | 3041 | |
85ad3aaf PA |
3042 | target_commit_resume (); |
3043 | ||
731f534f | 3044 | finish_state.release (); |
c906108c | 3045 | |
873657b9 PA |
3046 | /* If we've switched threads above, switch back to the previously |
3047 | current thread. We don't want the user to see a different | |
3048 | selected thread. */ | |
3049 | switch_to_thread (cur_thr); | |
3050 | ||
0b333c5e PA |
3051 | /* Tell the event loop to wait for it to stop. If the target |
3052 | supports asynchronous execution, it'll do this from within | |
3053 | target_resume. */ | |
362646f5 | 3054 | if (!target_can_async_p ()) |
0b333c5e | 3055 | mark_async_event_handler (infrun_async_inferior_event_token); |
c906108c | 3056 | } |
c906108c SS |
3057 | \f |
3058 | ||
3059 | /* Start remote-debugging of a machine over a serial link. */ | |
96baa820 | 3060 | |
c906108c | 3061 | void |
8621d6a9 | 3062 | start_remote (int from_tty) |
c906108c | 3063 | { |
d6b48e9c | 3064 | struct inferior *inferior; |
d6b48e9c PA |
3065 | |
3066 | inferior = current_inferior (); | |
16c381f0 | 3067 | inferior->control.stop_soon = STOP_QUIETLY_REMOTE; |
43ff13b4 | 3068 | |
1777feb0 | 3069 | /* Always go on waiting for the target, regardless of the mode. */ |
6426a772 | 3070 | /* FIXME: cagney/1999-09-23: At present it isn't possible to |
7e73cedf | 3071 | indicate to wait_for_inferior that a target should timeout if |
6426a772 JM |
3072 | nothing is returned (instead of just blocking). Because of this, |
3073 | targets expecting an immediate response need to, internally, set | |
3074 | things up so that the target_wait() is forced to eventually | |
1777feb0 | 3075 | timeout. */ |
6426a772 JM |
3076 | /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to |
3077 | differentiate to its caller what the state of the target is after | |
3078 | the initial open has been performed. Here we're assuming that | |
3079 | the target has stopped. It should be possible to eventually have | |
3080 | target_open() return to the caller an indication that the target | |
3081 | is currently running and GDB state should be set to the same as | |
1777feb0 | 3082 | for an async run. */ |
e4c8541f | 3083 | wait_for_inferior (); |
8621d6a9 DJ |
3084 | |
3085 | /* Now that the inferior has stopped, do any bookkeeping like | |
3086 | loading shared libraries. We want to do this before normal_stop, | |
3087 | so that the displayed frame is up to date. */ | |
8b88a78e | 3088 | post_create_inferior (current_top_target (), from_tty); |
8621d6a9 | 3089 | |
6426a772 | 3090 | normal_stop (); |
c906108c SS |
3091 | } |
3092 | ||
3093 | /* Initialize static vars when a new inferior begins. */ | |
3094 | ||
3095 | void | |
96baa820 | 3096 | init_wait_for_inferior (void) |
c906108c SS |
3097 | { |
3098 | /* These are meaningless until the first time through wait_for_inferior. */ | |
c906108c | 3099 | |
c906108c SS |
3100 | breakpoint_init_inferior (inf_starting); |
3101 | ||
70509625 | 3102 | clear_proceed_status (0); |
9f976b41 | 3103 | |
ab1ddbcf | 3104 | nullify_last_target_wait_ptid (); |
237fc4c9 | 3105 | |
842951eb | 3106 | previous_inferior_ptid = inferior_ptid; |
c906108c | 3107 | } |
237fc4c9 | 3108 | |
c906108c | 3109 | \f |
488f131b | 3110 | |
ec9499be | 3111 | static void handle_inferior_event (struct execution_control_state *ecs); |
cd0fc7c3 | 3112 | |
568d6575 UW |
3113 | static void handle_step_into_function (struct gdbarch *gdbarch, |
3114 | struct execution_control_state *ecs); | |
3115 | static void handle_step_into_function_backward (struct gdbarch *gdbarch, | |
3116 | struct execution_control_state *ecs); | |
4f5d7f63 | 3117 | static void handle_signal_stop (struct execution_control_state *ecs); |
186c406b | 3118 | static void check_exception_resume (struct execution_control_state *, |
28106bc2 | 3119 | struct frame_info *); |
611c83ae | 3120 | |
bdc36728 | 3121 | static void end_stepping_range (struct execution_control_state *ecs); |
22bcd14b | 3122 | static void stop_waiting (struct execution_control_state *ecs); |
d4f3574e | 3123 | static void keep_going (struct execution_control_state *ecs); |
94c57d6a | 3124 | static void process_event_stop_test (struct execution_control_state *ecs); |
c447ac0b | 3125 | static int switch_back_to_stepped_thread (struct execution_control_state *ecs); |
104c1213 | 3126 | |
252fbfc8 PA |
3127 | /* This function is attached as a "thread_stop_requested" observer. |
3128 | Cleanup local state that assumed the PTID was to be resumed, and | |
3129 | report the stop to the frontend. */ | |
3130 | ||
2c0b251b | 3131 | static void |
252fbfc8 PA |
3132 | infrun_thread_stop_requested (ptid_t ptid) |
3133 | { | |
c65d6b55 PA |
3134 | /* PTID was requested to stop. If the thread was already stopped, |
3135 | but the user/frontend doesn't know about that yet (e.g., the | |
3136 | thread had been temporarily paused for some step-over), set up | |
3137 | for reporting the stop now. */ | |
08036331 PA |
3138 | for (thread_info *tp : all_threads (ptid)) |
3139 | { | |
3140 | if (tp->state != THREAD_RUNNING) | |
3141 | continue; | |
3142 | if (tp->executing) | |
3143 | continue; | |
c65d6b55 | 3144 | |
08036331 PA |
3145 | /* Remove matching threads from the step-over queue, so |
3146 | start_step_over doesn't try to resume them | |
3147 | automatically. */ | |
3148 | if (thread_is_in_step_over_chain (tp)) | |
3149 | thread_step_over_chain_remove (tp); | |
c65d6b55 | 3150 | |
08036331 PA |
3151 | /* If the thread is stopped, but the user/frontend doesn't |
3152 | know about that yet, queue a pending event, as if the | |
3153 | thread had just stopped now. Unless the thread already had | |
3154 | a pending event. */ | |
3155 | if (!tp->suspend.waitstatus_pending_p) | |
3156 | { | |
3157 | tp->suspend.waitstatus_pending_p = 1; | |
3158 | tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED; | |
3159 | tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0; | |
3160 | } | |
c65d6b55 | 3161 | |
08036331 PA |
3162 | /* Clear the inline-frame state, since we're re-processing the |
3163 | stop. */ | |
3164 | clear_inline_frame_state (tp->ptid); | |
c65d6b55 | 3165 | |
08036331 PA |
3166 | /* If this thread was paused because some other thread was |
3167 | doing an inline-step over, let that finish first. Once | |
3168 | that happens, we'll restart all threads and consume pending | |
3169 | stop events then. */ | |
3170 | if (step_over_info_valid_p ()) | |
3171 | continue; | |
3172 | ||
3173 | /* Otherwise we can process the (new) pending event now. Set | |
3174 | it so this pending event is considered by | |
3175 | do_target_wait. */ | |
3176 | tp->resumed = 1; | |
3177 | } | |
252fbfc8 PA |
3178 | } |
3179 | ||
a07daef3 PA |
3180 | static void |
3181 | infrun_thread_thread_exit (struct thread_info *tp, int silent) | |
3182 | { | |
d7e15655 | 3183 | if (target_last_wait_ptid == tp->ptid) |
a07daef3 PA |
3184 | nullify_last_target_wait_ptid (); |
3185 | } | |
3186 | ||
0cbcdb96 PA |
3187 | /* Delete the step resume, single-step and longjmp/exception resume |
3188 | breakpoints of TP. */ | |
4e1c45ea | 3189 | |
0cbcdb96 PA |
3190 | static void |
3191 | delete_thread_infrun_breakpoints (struct thread_info *tp) | |
4e1c45ea | 3192 | { |
0cbcdb96 PA |
3193 | delete_step_resume_breakpoint (tp); |
3194 | delete_exception_resume_breakpoint (tp); | |
34b7e8a6 | 3195 | delete_single_step_breakpoints (tp); |
4e1c45ea PA |
3196 | } |
3197 | ||
0cbcdb96 PA |
3198 | /* If the target still has execution, call FUNC for each thread that |
3199 | just stopped. In all-stop, that's all the non-exited threads; in | |
3200 | non-stop, that's the current thread, only. */ | |
3201 | ||
3202 | typedef void (*for_each_just_stopped_thread_callback_func) | |
3203 | (struct thread_info *tp); | |
4e1c45ea PA |
3204 | |
3205 | static void | |
0cbcdb96 | 3206 | for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func) |
4e1c45ea | 3207 | { |
d7e15655 | 3208 | if (!target_has_execution || inferior_ptid == null_ptid) |
4e1c45ea PA |
3209 | return; |
3210 | ||
fbea99ea | 3211 | if (target_is_non_stop_p ()) |
4e1c45ea | 3212 | { |
0cbcdb96 PA |
3213 | /* If in non-stop mode, only the current thread stopped. */ |
3214 | func (inferior_thread ()); | |
4e1c45ea PA |
3215 | } |
3216 | else | |
0cbcdb96 | 3217 | { |
0cbcdb96 | 3218 | /* In all-stop mode, all threads have stopped. */ |
08036331 PA |
3219 | for (thread_info *tp : all_non_exited_threads ()) |
3220 | func (tp); | |
0cbcdb96 PA |
3221 | } |
3222 | } | |
3223 | ||
3224 | /* Delete the step resume and longjmp/exception resume breakpoints of | |
3225 | the threads that just stopped. */ | |
3226 | ||
3227 | static void | |
3228 | delete_just_stopped_threads_infrun_breakpoints (void) | |
3229 | { | |
3230 | for_each_just_stopped_thread (delete_thread_infrun_breakpoints); | |
34b7e8a6 PA |
3231 | } |
3232 | ||
3233 | /* Delete the single-step breakpoints of the threads that just | |
3234 | stopped. */ | |
7c16b83e | 3235 | |
34b7e8a6 PA |
3236 | static void |
3237 | delete_just_stopped_threads_single_step_breakpoints (void) | |
3238 | { | |
3239 | for_each_just_stopped_thread (delete_single_step_breakpoints); | |
4e1c45ea PA |
3240 | } |
3241 | ||
221e1a37 | 3242 | /* See infrun.h. */ |
223698f8 | 3243 | |
221e1a37 | 3244 | void |
223698f8 DE |
3245 | print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid, |
3246 | const struct target_waitstatus *ws) | |
3247 | { | |
23fdd69e | 3248 | std::string status_string = target_waitstatus_to_string (ws); |
d7e74731 | 3249 | string_file stb; |
223698f8 DE |
3250 | |
3251 | /* The text is split over several lines because it was getting too long. | |
3252 | Call fprintf_unfiltered (gdb_stdlog) once so that the text is still | |
3253 | output as a unit; we want only one timestamp printed if debug_timestamp | |
3254 | is set. */ | |
3255 | ||
d7e74731 | 3256 | stb.printf ("infrun: target_wait (%d.%ld.%ld", |
e99b03dc | 3257 | waiton_ptid.pid (), |
e38504b3 | 3258 | waiton_ptid.lwp (), |
cc6bcb54 | 3259 | waiton_ptid.tid ()); |
e99b03dc | 3260 | if (waiton_ptid.pid () != -1) |
a068643d | 3261 | stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ()); |
d7e74731 PA |
3262 | stb.printf (", status) =\n"); |
3263 | stb.printf ("infrun: %d.%ld.%ld [%s],\n", | |
e99b03dc | 3264 | result_ptid.pid (), |
e38504b3 | 3265 | result_ptid.lwp (), |
cc6bcb54 | 3266 | result_ptid.tid (), |
a068643d | 3267 | target_pid_to_str (result_ptid).c_str ()); |
23fdd69e | 3268 | stb.printf ("infrun: %s\n", status_string.c_str ()); |
223698f8 DE |
3269 | |
3270 | /* This uses %s in part to handle %'s in the text, but also to avoid | |
3271 | a gcc error: the format attribute requires a string literal. */ | |
d7e74731 | 3272 | fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ()); |
223698f8 DE |
3273 | } |
3274 | ||
372316f1 PA |
3275 | /* Select a thread at random, out of those which are resumed and have |
3276 | had events. */ | |
3277 | ||
3278 | static struct thread_info * | |
3279 | random_pending_event_thread (ptid_t waiton_ptid) | |
3280 | { | |
372316f1 | 3281 | int num_events = 0; |
08036331 PA |
3282 | |
3283 | auto has_event = [] (thread_info *tp) | |
3284 | { | |
3285 | return (tp->resumed | |
3286 | && tp->suspend.waitstatus_pending_p); | |
3287 | }; | |
372316f1 PA |
3288 | |
3289 | /* First see how many events we have. Count only resumed threads | |
3290 | that have an event pending. */ | |
08036331 PA |
3291 | for (thread_info *tp : all_non_exited_threads (waiton_ptid)) |
3292 | if (has_event (tp)) | |
372316f1 PA |
3293 | num_events++; |
3294 | ||
3295 | if (num_events == 0) | |
3296 | return NULL; | |
3297 | ||
3298 | /* Now randomly pick a thread out of those that have had events. */ | |
08036331 PA |
3299 | int random_selector = (int) ((num_events * (double) rand ()) |
3300 | / (RAND_MAX + 1.0)); | |
372316f1 PA |
3301 | |
3302 | if (debug_infrun && num_events > 1) | |
3303 | fprintf_unfiltered (gdb_stdlog, | |
3304 | "infrun: Found %d events, selecting #%d\n", | |
3305 | num_events, random_selector); | |
3306 | ||
3307 | /* Select the Nth thread that has had an event. */ | |
08036331 PA |
3308 | for (thread_info *tp : all_non_exited_threads (waiton_ptid)) |
3309 | if (has_event (tp)) | |
372316f1 | 3310 | if (random_selector-- == 0) |
08036331 | 3311 | return tp; |
372316f1 | 3312 | |
08036331 | 3313 | gdb_assert_not_reached ("event thread not found"); |
372316f1 PA |
3314 | } |
3315 | ||
3316 | /* Wrapper for target_wait that first checks whether threads have | |
3317 | pending statuses to report before actually asking the target for | |
3318 | more events. */ | |
3319 | ||
3320 | static ptid_t | |
3321 | do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options) | |
3322 | { | |
3323 | ptid_t event_ptid; | |
3324 | struct thread_info *tp; | |
3325 | ||
3326 | /* First check if there is a resumed thread with a wait status | |
3327 | pending. */ | |
d7e15655 | 3328 | if (ptid == minus_one_ptid || ptid.is_pid ()) |
372316f1 PA |
3329 | { |
3330 | tp = random_pending_event_thread (ptid); | |
3331 | } | |
3332 | else | |
3333 | { | |
3334 | if (debug_infrun) | |
3335 | fprintf_unfiltered (gdb_stdlog, | |
3336 | "infrun: Waiting for specific thread %s.\n", | |
a068643d | 3337 | target_pid_to_str (ptid).c_str ()); |
372316f1 PA |
3338 | |
3339 | /* We have a specific thread to check. */ | |
3340 | tp = find_thread_ptid (ptid); | |
3341 | gdb_assert (tp != NULL); | |
3342 | if (!tp->suspend.waitstatus_pending_p) | |
3343 | tp = NULL; | |
3344 | } | |
3345 | ||
3346 | if (tp != NULL | |
3347 | && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT | |
3348 | || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)) | |
3349 | { | |
00431a78 | 3350 | struct regcache *regcache = get_thread_regcache (tp); |
ac7936df | 3351 | struct gdbarch *gdbarch = regcache->arch (); |
372316f1 PA |
3352 | CORE_ADDR pc; |
3353 | int discard = 0; | |
3354 | ||
3355 | pc = regcache_read_pc (regcache); | |
3356 | ||
3357 | if (pc != tp->suspend.stop_pc) | |
3358 | { | |
3359 | if (debug_infrun) | |
3360 | fprintf_unfiltered (gdb_stdlog, | |
3361 | "infrun: PC of %s changed. was=%s, now=%s\n", | |
a068643d | 3362 | target_pid_to_str (tp->ptid).c_str (), |
defd2172 | 3363 | paddress (gdbarch, tp->suspend.stop_pc), |
372316f1 PA |
3364 | paddress (gdbarch, pc)); |
3365 | discard = 1; | |
3366 | } | |
a01bda52 | 3367 | else if (!breakpoint_inserted_here_p (regcache->aspace (), pc)) |
372316f1 PA |
3368 | { |
3369 | if (debug_infrun) | |
3370 | fprintf_unfiltered (gdb_stdlog, | |
3371 | "infrun: previous breakpoint of %s, at %s gone\n", | |
a068643d | 3372 | target_pid_to_str (tp->ptid).c_str (), |
372316f1 PA |
3373 | paddress (gdbarch, pc)); |
3374 | ||
3375 | discard = 1; | |
3376 | } | |
3377 | ||
3378 | if (discard) | |
3379 | { | |
3380 | if (debug_infrun) | |
3381 | fprintf_unfiltered (gdb_stdlog, | |
3382 | "infrun: pending event of %s cancelled.\n", | |
a068643d | 3383 | target_pid_to_str (tp->ptid).c_str ()); |
372316f1 PA |
3384 | |
3385 | tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS; | |
3386 | tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON; | |
3387 | } | |
3388 | } | |
3389 | ||
3390 | if (tp != NULL) | |
3391 | { | |
3392 | if (debug_infrun) | |
3393 | { | |
23fdd69e SM |
3394 | std::string statstr |
3395 | = target_waitstatus_to_string (&tp->suspend.waitstatus); | |
372316f1 | 3396 | |
372316f1 PA |
3397 | fprintf_unfiltered (gdb_stdlog, |
3398 | "infrun: Using pending wait status %s for %s.\n", | |
23fdd69e | 3399 | statstr.c_str (), |
a068643d | 3400 | target_pid_to_str (tp->ptid).c_str ()); |
372316f1 PA |
3401 | } |
3402 | ||
3403 | /* Now that we've selected our final event LWP, un-adjust its PC | |
3404 | if it was a software breakpoint (and the target doesn't | |
3405 | always adjust the PC itself). */ | |
3406 | if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT | |
3407 | && !target_supports_stopped_by_sw_breakpoint ()) | |
3408 | { | |
3409 | struct regcache *regcache; | |
3410 | struct gdbarch *gdbarch; | |
3411 | int decr_pc; | |
3412 | ||
00431a78 | 3413 | regcache = get_thread_regcache (tp); |
ac7936df | 3414 | gdbarch = regcache->arch (); |
372316f1 PA |
3415 | |
3416 | decr_pc = gdbarch_decr_pc_after_break (gdbarch); | |
3417 | if (decr_pc != 0) | |
3418 | { | |
3419 | CORE_ADDR pc; | |
3420 | ||
3421 | pc = regcache_read_pc (regcache); | |
3422 | regcache_write_pc (regcache, pc + decr_pc); | |
3423 | } | |
3424 | } | |
3425 | ||
3426 | tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON; | |
3427 | *status = tp->suspend.waitstatus; | |
3428 | tp->suspend.waitstatus_pending_p = 0; | |
3429 | ||
3430 | /* Wake up the event loop again, until all pending events are | |
3431 | processed. */ | |
3432 | if (target_is_async_p ()) | |
3433 | mark_async_event_handler (infrun_async_inferior_event_token); | |
3434 | return tp->ptid; | |
3435 | } | |
3436 | ||
3437 | /* But if we don't find one, we'll have to wait. */ | |
3438 | ||
3439 | if (deprecated_target_wait_hook) | |
3440 | event_ptid = deprecated_target_wait_hook (ptid, status, options); | |
3441 | else | |
3442 | event_ptid = target_wait (ptid, status, options); | |
3443 | ||
3444 | return event_ptid; | |
3445 | } | |
3446 | ||
24291992 PA |
3447 | /* Prepare and stabilize the inferior for detaching it. E.g., |
3448 | detaching while a thread is displaced stepping is a recipe for | |
3449 | crashing it, as nothing would readjust the PC out of the scratch | |
3450 | pad. */ | |
3451 | ||
3452 | void | |
3453 | prepare_for_detach (void) | |
3454 | { | |
3455 | struct inferior *inf = current_inferior (); | |
f2907e49 | 3456 | ptid_t pid_ptid = ptid_t (inf->pid); |
24291992 | 3457 | |
00431a78 | 3458 | displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf); |
24291992 PA |
3459 | |
3460 | /* Is any thread of this process displaced stepping? If not, | |
3461 | there's nothing else to do. */ | |
d20172fc | 3462 | if (displaced->step_thread == nullptr) |
24291992 PA |
3463 | return; |
3464 | ||
3465 | if (debug_infrun) | |
3466 | fprintf_unfiltered (gdb_stdlog, | |
3467 | "displaced-stepping in-process while detaching"); | |
3468 | ||
9bcb1f16 | 3469 | scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true); |
24291992 | 3470 | |
00431a78 | 3471 | while (displaced->step_thread != nullptr) |
24291992 | 3472 | { |
24291992 PA |
3473 | struct execution_control_state ecss; |
3474 | struct execution_control_state *ecs; | |
3475 | ||
3476 | ecs = &ecss; | |
3477 | memset (ecs, 0, sizeof (*ecs)); | |
3478 | ||
3479 | overlay_cache_invalid = 1; | |
f15cb84a YQ |
3480 | /* Flush target cache before starting to handle each event. |
3481 | Target was running and cache could be stale. This is just a | |
3482 | heuristic. Running threads may modify target memory, but we | |
3483 | don't get any event. */ | |
3484 | target_dcache_invalidate (); | |
24291992 | 3485 | |
372316f1 | 3486 | ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0); |
24291992 PA |
3487 | |
3488 | if (debug_infrun) | |
3489 | print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws); | |
3490 | ||
3491 | /* If an error happens while handling the event, propagate GDB's | |
3492 | knowledge of the executing state to the frontend/user running | |
3493 | state. */ | |
731f534f | 3494 | scoped_finish_thread_state finish_state (minus_one_ptid); |
24291992 PA |
3495 | |
3496 | /* Now figure out what to do with the result of the result. */ | |
3497 | handle_inferior_event (ecs); | |
3498 | ||
3499 | /* No error, don't finish the state yet. */ | |
731f534f | 3500 | finish_state.release (); |
24291992 PA |
3501 | |
3502 | /* Breakpoints and watchpoints are not installed on the target | |
3503 | at this point, and signals are passed directly to the | |
3504 | inferior, so this must mean the process is gone. */ | |
3505 | if (!ecs->wait_some_more) | |
3506 | { | |
9bcb1f16 | 3507 | restore_detaching.release (); |
24291992 PA |
3508 | error (_("Program exited while detaching")); |
3509 | } | |
3510 | } | |
3511 | ||
9bcb1f16 | 3512 | restore_detaching.release (); |
24291992 PA |
3513 | } |
3514 | ||
cd0fc7c3 | 3515 | /* Wait for control to return from inferior to debugger. |
ae123ec6 | 3516 | |
cd0fc7c3 SS |
3517 | If inferior gets a signal, we may decide to start it up again |
3518 | instead of returning. That is why there is a loop in this function. | |
3519 | When this function actually returns it means the inferior | |
3520 | should be left stopped and GDB should read more commands. */ | |
3521 | ||
3522 | void | |
e4c8541f | 3523 | wait_for_inferior (void) |
cd0fc7c3 | 3524 | { |
527159b7 | 3525 | if (debug_infrun) |
ae123ec6 | 3526 | fprintf_unfiltered |
e4c8541f | 3527 | (gdb_stdlog, "infrun: wait_for_inferior ()\n"); |
527159b7 | 3528 | |
4c41382a | 3529 | SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); }; |
cd0fc7c3 | 3530 | |
e6f5c25b PA |
3531 | /* If an error happens while handling the event, propagate GDB's |
3532 | knowledge of the executing state to the frontend/user running | |
3533 | state. */ | |
731f534f | 3534 | scoped_finish_thread_state finish_state (minus_one_ptid); |
e6f5c25b | 3535 | |
c906108c SS |
3536 | while (1) |
3537 | { | |
ae25568b PA |
3538 | struct execution_control_state ecss; |
3539 | struct execution_control_state *ecs = &ecss; | |
963f9c80 | 3540 | ptid_t waiton_ptid = minus_one_ptid; |
29f49a6a | 3541 | |
ae25568b PA |
3542 | memset (ecs, 0, sizeof (*ecs)); |
3543 | ||
ec9499be | 3544 | overlay_cache_invalid = 1; |
ec9499be | 3545 | |
f15cb84a YQ |
3546 | /* Flush target cache before starting to handle each event. |
3547 | Target was running and cache could be stale. This is just a | |
3548 | heuristic. Running threads may modify target memory, but we | |
3549 | don't get any event. */ | |
3550 | target_dcache_invalidate (); | |
3551 | ||
372316f1 | 3552 | ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0); |
c906108c | 3553 | |
f00150c9 | 3554 | if (debug_infrun) |
223698f8 | 3555 | print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws); |
f00150c9 | 3556 | |
cd0fc7c3 SS |
3557 | /* Now figure out what to do with the result of the result. */ |
3558 | handle_inferior_event (ecs); | |
c906108c | 3559 | |
cd0fc7c3 SS |
3560 | if (!ecs->wait_some_more) |
3561 | break; | |
3562 | } | |
4e1c45ea | 3563 | |
e6f5c25b | 3564 | /* No error, don't finish the state yet. */ |
731f534f | 3565 | finish_state.release (); |
cd0fc7c3 | 3566 | } |
c906108c | 3567 | |
d3d4baed PA |
3568 | /* Cleanup that reinstalls the readline callback handler, if the |
3569 | target is running in the background. If while handling the target | |
3570 | event something triggered a secondary prompt, like e.g., a | |
3571 | pagination prompt, we'll have removed the callback handler (see | |
3572 | gdb_readline_wrapper_line). Need to do this as we go back to the | |
3573 | event loop, ready to process further input. Note this has no | |
3574 | effect if the handler hasn't actually been removed, because calling | |
3575 | rl_callback_handler_install resets the line buffer, thus losing | |
3576 | input. */ | |
3577 | ||
3578 | static void | |
d238133d | 3579 | reinstall_readline_callback_handler_cleanup () |
d3d4baed | 3580 | { |
3b12939d PA |
3581 | struct ui *ui = current_ui; |
3582 | ||
3583 | if (!ui->async) | |
6c400b59 PA |
3584 | { |
3585 | /* We're not going back to the top level event loop yet. Don't | |
3586 | install the readline callback, as it'd prep the terminal, | |
3587 | readline-style (raw, noecho) (e.g., --batch). We'll install | |
3588 | it the next time the prompt is displayed, when we're ready | |
3589 | for input. */ | |
3590 | return; | |
3591 | } | |
3592 | ||
3b12939d | 3593 | if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED) |
d3d4baed PA |
3594 | gdb_rl_callback_handler_reinstall (); |
3595 | } | |
3596 | ||
243a9253 PA |
3597 | /* Clean up the FSMs of threads that are now stopped. In non-stop, |
3598 | that's just the event thread. In all-stop, that's all threads. */ | |
3599 | ||
3600 | static void | |
3601 | clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs) | |
3602 | { | |
08036331 PA |
3603 | if (ecs->event_thread != NULL |
3604 | && ecs->event_thread->thread_fsm != NULL) | |
46e3ed7f | 3605 | ecs->event_thread->thread_fsm->clean_up (ecs->event_thread); |
243a9253 PA |
3606 | |
3607 | if (!non_stop) | |
3608 | { | |
08036331 | 3609 | for (thread_info *thr : all_non_exited_threads ()) |
243a9253 PA |
3610 | { |
3611 | if (thr->thread_fsm == NULL) | |
3612 | continue; | |
3613 | if (thr == ecs->event_thread) | |
3614 | continue; | |
3615 | ||
00431a78 | 3616 | switch_to_thread (thr); |
46e3ed7f | 3617 | thr->thread_fsm->clean_up (thr); |
243a9253 PA |
3618 | } |
3619 | ||
3620 | if (ecs->event_thread != NULL) | |
00431a78 | 3621 | switch_to_thread (ecs->event_thread); |
243a9253 PA |
3622 | } |
3623 | } | |
3624 | ||
3b12939d PA |
3625 | /* Helper for all_uis_check_sync_execution_done that works on the |
3626 | current UI. */ | |
3627 | ||
3628 | static void | |
3629 | check_curr_ui_sync_execution_done (void) | |
3630 | { | |
3631 | struct ui *ui = current_ui; | |
3632 | ||
3633 | if (ui->prompt_state == PROMPT_NEEDED | |
3634 | && ui->async | |
3635 | && !gdb_in_secondary_prompt_p (ui)) | |
3636 | { | |
223ffa71 | 3637 | target_terminal::ours (); |
76727919 | 3638 | gdb::observers::sync_execution_done.notify (); |
3eb7562a | 3639 | ui_register_input_event_handler (ui); |
3b12939d PA |
3640 | } |
3641 | } | |
3642 | ||
3643 | /* See infrun.h. */ | |
3644 | ||
3645 | void | |
3646 | all_uis_check_sync_execution_done (void) | |
3647 | { | |
0e454242 | 3648 | SWITCH_THRU_ALL_UIS () |
3b12939d PA |
3649 | { |
3650 | check_curr_ui_sync_execution_done (); | |
3651 | } | |
3652 | } | |
3653 | ||
a8836c93 PA |
3654 | /* See infrun.h. */ |
3655 | ||
3656 | void | |
3657 | all_uis_on_sync_execution_starting (void) | |
3658 | { | |
0e454242 | 3659 | SWITCH_THRU_ALL_UIS () |
a8836c93 PA |
3660 | { |
3661 | if (current_ui->prompt_state == PROMPT_NEEDED) | |
3662 | async_disable_stdin (); | |
3663 | } | |
3664 | } | |
3665 | ||
1777feb0 | 3666 | /* Asynchronous version of wait_for_inferior. It is called by the |
43ff13b4 | 3667 | event loop whenever a change of state is detected on the file |
1777feb0 MS |
3668 | descriptor corresponding to the target. It can be called more than |
3669 | once to complete a single execution command. In such cases we need | |
3670 | to keep the state in a global variable ECSS. If it is the last time | |
a474d7c2 PA |
3671 | that this function is called for a single execution command, then |
3672 | report to the user that the inferior has stopped, and do the | |
1777feb0 | 3673 | necessary cleanups. */ |
43ff13b4 JM |
3674 | |
3675 | void | |
fba45db2 | 3676 | fetch_inferior_event (void *client_data) |
43ff13b4 | 3677 | { |
0d1e5fa7 | 3678 | struct execution_control_state ecss; |
a474d7c2 | 3679 | struct execution_control_state *ecs = &ecss; |
0f641c01 | 3680 | int cmd_done = 0; |
963f9c80 | 3681 | ptid_t waiton_ptid = minus_one_ptid; |
43ff13b4 | 3682 | |
0d1e5fa7 PA |
3683 | memset (ecs, 0, sizeof (*ecs)); |
3684 | ||
c61db772 PA |
3685 | /* Events are always processed with the main UI as current UI. This |
3686 | way, warnings, debug output, etc. are always consistently sent to | |
3687 | the main console. */ | |
4b6749b9 | 3688 | scoped_restore save_ui = make_scoped_restore (¤t_ui, main_ui); |
c61db772 | 3689 | |
d3d4baed | 3690 | /* End up with readline processing input, if necessary. */ |
d238133d TT |
3691 | { |
3692 | SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); }; | |
3693 | ||
3694 | /* We're handling a live event, so make sure we're doing live | |
3695 | debugging. If we're looking at traceframes while the target is | |
3696 | running, we're going to need to get back to that mode after | |
3697 | handling the event. */ | |
3698 | gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe; | |
3699 | if (non_stop) | |
3700 | { | |
3701 | maybe_restore_traceframe.emplace (); | |
3702 | set_current_traceframe (-1); | |
3703 | } | |
43ff13b4 | 3704 | |
873657b9 PA |
3705 | /* The user/frontend should not notice a thread switch due to |
3706 | internal events. Make sure we revert to the user selected | |
3707 | thread and frame after handling the event and running any | |
3708 | breakpoint commands. */ | |
3709 | scoped_restore_current_thread restore_thread; | |
d238133d TT |
3710 | |
3711 | overlay_cache_invalid = 1; | |
3712 | /* Flush target cache before starting to handle each event. Target | |
3713 | was running and cache could be stale. This is just a heuristic. | |
3714 | Running threads may modify target memory, but we don't get any | |
3715 | event. */ | |
3716 | target_dcache_invalidate (); | |
3717 | ||
3718 | scoped_restore save_exec_dir | |
3719 | = make_scoped_restore (&execution_direction, | |
3720 | target_execution_direction ()); | |
3721 | ||
3722 | ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, | |
3723 | target_can_async_p () ? TARGET_WNOHANG : 0); | |
3724 | ||
3725 | if (debug_infrun) | |
3726 | print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws); | |
3727 | ||
3728 | /* If an error happens while handling the event, propagate GDB's | |
3729 | knowledge of the executing state to the frontend/user running | |
3730 | state. */ | |
3731 | ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid; | |
3732 | scoped_finish_thread_state finish_state (finish_ptid); | |
3733 | ||
979a0d13 | 3734 | /* Get executed before scoped_restore_current_thread above to apply |
d238133d TT |
3735 | still for the thread which has thrown the exception. */ |
3736 | auto defer_bpstat_clear | |
3737 | = make_scope_exit (bpstat_clear_actions); | |
3738 | auto defer_delete_threads | |
3739 | = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints); | |
3740 | ||
3741 | /* Now figure out what to do with the result of the result. */ | |
3742 | handle_inferior_event (ecs); | |
3743 | ||
3744 | if (!ecs->wait_some_more) | |
3745 | { | |
3746 | struct inferior *inf = find_inferior_ptid (ecs->ptid); | |
3747 | int should_stop = 1; | |
3748 | struct thread_info *thr = ecs->event_thread; | |
d6b48e9c | 3749 | |
d238133d | 3750 | delete_just_stopped_threads_infrun_breakpoints (); |
f107f563 | 3751 | |
d238133d TT |
3752 | if (thr != NULL) |
3753 | { | |
3754 | struct thread_fsm *thread_fsm = thr->thread_fsm; | |
243a9253 | 3755 | |
d238133d | 3756 | if (thread_fsm != NULL) |
46e3ed7f | 3757 | should_stop = thread_fsm->should_stop (thr); |
d238133d | 3758 | } |
243a9253 | 3759 | |
d238133d TT |
3760 | if (!should_stop) |
3761 | { | |
3762 | keep_going (ecs); | |
3763 | } | |
3764 | else | |
3765 | { | |
46e3ed7f | 3766 | bool should_notify_stop = true; |
d238133d | 3767 | int proceeded = 0; |
1840d81a | 3768 | |
d238133d | 3769 | clean_up_just_stopped_threads_fsms (ecs); |
243a9253 | 3770 | |
d238133d | 3771 | if (thr != NULL && thr->thread_fsm != NULL) |
46e3ed7f | 3772 | should_notify_stop = thr->thread_fsm->should_notify_stop (); |
388a7084 | 3773 | |
d238133d TT |
3774 | if (should_notify_stop) |
3775 | { | |
3776 | /* We may not find an inferior if this was a process exit. */ | |
3777 | if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY) | |
3778 | proceeded = normal_stop (); | |
3779 | } | |
243a9253 | 3780 | |
d238133d TT |
3781 | if (!proceeded) |
3782 | { | |
3783 | inferior_event_handler (INF_EXEC_COMPLETE, NULL); | |
3784 | cmd_done = 1; | |
3785 | } | |
873657b9 PA |
3786 | |
3787 | /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the | |
3788 | previously selected thread is gone. We have two | |
3789 | choices - switch to no thread selected, or restore the | |
3790 | previously selected thread (now exited). We chose the | |
3791 | later, just because that's what GDB used to do. After | |
3792 | this, "info threads" says "The current thread <Thread | |
3793 | ID 2> has terminated." instead of "No thread | |
3794 | selected.". */ | |
3795 | if (!non_stop | |
3796 | && cmd_done | |
3797 | && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED) | |
3798 | restore_thread.dont_restore (); | |
d238133d TT |
3799 | } |
3800 | } | |
4f8d22e3 | 3801 | |
d238133d TT |
3802 | defer_delete_threads.release (); |
3803 | defer_bpstat_clear.release (); | |
29f49a6a | 3804 | |
d238133d TT |
3805 | /* No error, don't finish the thread states yet. */ |
3806 | finish_state.release (); | |
731f534f | 3807 | |
d238133d TT |
3808 | /* This scope is used to ensure that readline callbacks are |
3809 | reinstalled here. */ | |
3810 | } | |
4f8d22e3 | 3811 | |
3b12939d PA |
3812 | /* If a UI was in sync execution mode, and now isn't, restore its |
3813 | prompt (a synchronous execution command has finished, and we're | |
3814 | ready for input). */ | |
3815 | all_uis_check_sync_execution_done (); | |
0f641c01 PA |
3816 | |
3817 | if (cmd_done | |
0f641c01 | 3818 | && exec_done_display_p |
00431a78 PA |
3819 | && (inferior_ptid == null_ptid |
3820 | || inferior_thread ()->state != THREAD_RUNNING)) | |
0f641c01 | 3821 | printf_unfiltered (_("completed.\n")); |
43ff13b4 JM |
3822 | } |
3823 | ||
edb3359d DJ |
3824 | /* Record the frame and location we're currently stepping through. */ |
3825 | void | |
3826 | set_step_info (struct frame_info *frame, struct symtab_and_line sal) | |
3827 | { | |
3828 | struct thread_info *tp = inferior_thread (); | |
3829 | ||
16c381f0 JK |
3830 | tp->control.step_frame_id = get_frame_id (frame); |
3831 | tp->control.step_stack_frame_id = get_stack_frame_id (frame); | |
edb3359d DJ |
3832 | |
3833 | tp->current_symtab = sal.symtab; | |
3834 | tp->current_line = sal.line; | |
3835 | } | |
3836 | ||
0d1e5fa7 PA |
3837 | /* Clear context switchable stepping state. */ |
3838 | ||
3839 | void | |
4e1c45ea | 3840 | init_thread_stepping_state (struct thread_info *tss) |
0d1e5fa7 | 3841 | { |
7f5ef605 | 3842 | tss->stepped_breakpoint = 0; |
0d1e5fa7 | 3843 | tss->stepping_over_breakpoint = 0; |
963f9c80 | 3844 | tss->stepping_over_watchpoint = 0; |
0d1e5fa7 | 3845 | tss->step_after_step_resume_breakpoint = 0; |
cd0fc7c3 SS |
3846 | } |
3847 | ||
ab1ddbcf | 3848 | /* See infrun.h. */ |
c32c64b7 | 3849 | |
6efcd9a8 | 3850 | void |
c32c64b7 DE |
3851 | set_last_target_status (ptid_t ptid, struct target_waitstatus status) |
3852 | { | |
3853 | target_last_wait_ptid = ptid; | |
3854 | target_last_waitstatus = status; | |
3855 | } | |
3856 | ||
ab1ddbcf | 3857 | /* See infrun.h. */ |
e02bc4cc DS |
3858 | |
3859 | void | |
ab1ddbcf | 3860 | get_last_target_status (ptid_t *ptid, struct target_waitstatus *status) |
e02bc4cc | 3861 | { |
ab1ddbcf PA |
3862 | if (ptid != nullptr) |
3863 | *ptid = target_last_wait_ptid; | |
3864 | if (status != nullptr) | |
3865 | *status = target_last_waitstatus; | |
e02bc4cc DS |
3866 | } |
3867 | ||
ab1ddbcf PA |
3868 | /* See infrun.h. */ |
3869 | ||
ac264b3b MS |
3870 | void |
3871 | nullify_last_target_wait_ptid (void) | |
3872 | { | |
3873 | target_last_wait_ptid = minus_one_ptid; | |
ab1ddbcf | 3874 | target_last_waitstatus = {}; |
ac264b3b MS |
3875 | } |
3876 | ||
dcf4fbde | 3877 | /* Switch thread contexts. */ |
dd80620e MS |
3878 | |
3879 | static void | |
00431a78 | 3880 | context_switch (execution_control_state *ecs) |
dd80620e | 3881 | { |
00431a78 PA |
3882 | if (debug_infrun |
3883 | && ecs->ptid != inferior_ptid | |
3884 | && ecs->event_thread != inferior_thread ()) | |
fd48f117 DJ |
3885 | { |
3886 | fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ", | |
a068643d | 3887 | target_pid_to_str (inferior_ptid).c_str ()); |
fd48f117 | 3888 | fprintf_unfiltered (gdb_stdlog, "to %s\n", |
a068643d | 3889 | target_pid_to_str (ecs->ptid).c_str ()); |
fd48f117 DJ |
3890 | } |
3891 | ||
00431a78 | 3892 | switch_to_thread (ecs->event_thread); |
dd80620e MS |
3893 | } |
3894 | ||
d8dd4d5f PA |
3895 | /* If the target can't tell whether we've hit breakpoints |
3896 | (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP, | |
3897 | check whether that could have been caused by a breakpoint. If so, | |
3898 | adjust the PC, per gdbarch_decr_pc_after_break. */ | |
3899 | ||
4fa8626c | 3900 | static void |
d8dd4d5f PA |
3901 | adjust_pc_after_break (struct thread_info *thread, |
3902 | struct target_waitstatus *ws) | |
4fa8626c | 3903 | { |
24a73cce UW |
3904 | struct regcache *regcache; |
3905 | struct gdbarch *gdbarch; | |
118e6252 | 3906 | CORE_ADDR breakpoint_pc, decr_pc; |
4fa8626c | 3907 | |
4fa8626c DJ |
3908 | /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If |
3909 | we aren't, just return. | |
9709f61c DJ |
3910 | |
3911 | We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not | |
b798847d UW |
3912 | affected by gdbarch_decr_pc_after_break. Other waitkinds which are |
3913 | implemented by software breakpoints should be handled through the normal | |
3914 | breakpoint layer. | |
8fb3e588 | 3915 | |
4fa8626c DJ |
3916 | NOTE drow/2004-01-31: On some targets, breakpoints may generate |
3917 | different signals (SIGILL or SIGEMT for instance), but it is less | |
3918 | clear where the PC is pointing afterwards. It may not match | |
b798847d UW |
3919 | gdbarch_decr_pc_after_break. I don't know any specific target that |
3920 | generates these signals at breakpoints (the code has been in GDB since at | |
3921 | least 1992) so I can not guess how to handle them here. | |
8fb3e588 | 3922 | |
e6cf7916 UW |
3923 | In earlier versions of GDB, a target with |
3924 | gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a | |
b798847d UW |
3925 | watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any |
3926 | target with both of these set in GDB history, and it seems unlikely to be | |
3927 | correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */ | |
4fa8626c | 3928 | |
d8dd4d5f | 3929 | if (ws->kind != TARGET_WAITKIND_STOPPED) |
4fa8626c DJ |
3930 | return; |
3931 | ||
d8dd4d5f | 3932 | if (ws->value.sig != GDB_SIGNAL_TRAP) |
4fa8626c DJ |
3933 | return; |
3934 | ||
4058b839 PA |
3935 | /* In reverse execution, when a breakpoint is hit, the instruction |
3936 | under it has already been de-executed. The reported PC always | |
3937 | points at the breakpoint address, so adjusting it further would | |
3938 | be wrong. E.g., consider this case on a decr_pc_after_break == 1 | |
3939 | architecture: | |
3940 | ||
3941 | B1 0x08000000 : INSN1 | |
3942 | B2 0x08000001 : INSN2 | |
3943 | 0x08000002 : INSN3 | |
3944 | PC -> 0x08000003 : INSN4 | |
3945 | ||
3946 | Say you're stopped at 0x08000003 as above. Reverse continuing | |
3947 | from that point should hit B2 as below. Reading the PC when the | |
3948 | SIGTRAP is reported should read 0x08000001 and INSN2 should have | |
3949 | been de-executed already. | |
3950 | ||
3951 | B1 0x08000000 : INSN1 | |
3952 | B2 PC -> 0x08000001 : INSN2 | |
3953 | 0x08000002 : INSN3 | |
3954 | 0x08000003 : INSN4 | |
3955 | ||
3956 | We can't apply the same logic as for forward execution, because | |
3957 | we would wrongly adjust the PC to 0x08000000, since there's a | |
3958 | breakpoint at PC - 1. We'd then report a hit on B1, although | |
3959 | INSN1 hadn't been de-executed yet. Doing nothing is the correct | |
3960 | behaviour. */ | |
3961 | if (execution_direction == EXEC_REVERSE) | |
3962 | return; | |
3963 | ||
1cf4d951 PA |
3964 | /* If the target can tell whether the thread hit a SW breakpoint, |
3965 | trust it. Targets that can tell also adjust the PC | |
3966 | themselves. */ | |
3967 | if (target_supports_stopped_by_sw_breakpoint ()) | |
3968 | return; | |
3969 | ||
3970 | /* Note that relying on whether a breakpoint is planted in memory to | |
3971 | determine this can fail. E.g,. the breakpoint could have been | |
3972 | removed since. Or the thread could have been told to step an | |
3973 | instruction the size of a breakpoint instruction, and only | |
3974 | _after_ was a breakpoint inserted at its address. */ | |
3975 | ||
24a73cce UW |
3976 | /* If this target does not decrement the PC after breakpoints, then |
3977 | we have nothing to do. */ | |
00431a78 | 3978 | regcache = get_thread_regcache (thread); |
ac7936df | 3979 | gdbarch = regcache->arch (); |
118e6252 | 3980 | |
527a273a | 3981 | decr_pc = gdbarch_decr_pc_after_break (gdbarch); |
118e6252 | 3982 | if (decr_pc == 0) |
24a73cce UW |
3983 | return; |
3984 | ||
8b86c959 | 3985 | const address_space *aspace = regcache->aspace (); |
6c95b8df | 3986 | |
8aad930b AC |
3987 | /* Find the location where (if we've hit a breakpoint) the |
3988 | breakpoint would be. */ | |
118e6252 | 3989 | breakpoint_pc = regcache_read_pc (regcache) - decr_pc; |
8aad930b | 3990 | |
1cf4d951 PA |
3991 | /* If the target can't tell whether a software breakpoint triggered, |
3992 | fallback to figuring it out based on breakpoints we think were | |
3993 | inserted in the target, and on whether the thread was stepped or | |
3994 | continued. */ | |
3995 | ||
1c5cfe86 PA |
3996 | /* Check whether there actually is a software breakpoint inserted at |
3997 | that location. | |
3998 | ||
3999 | If in non-stop mode, a race condition is possible where we've | |
4000 | removed a breakpoint, but stop events for that breakpoint were | |
4001 | already queued and arrive later. To suppress those spurious | |
4002 | SIGTRAPs, we keep a list of such breakpoint locations for a bit, | |
1cf4d951 PA |
4003 | and retire them after a number of stop events are reported. Note |
4004 | this is an heuristic and can thus get confused. The real fix is | |
4005 | to get the "stopped by SW BP and needs adjustment" info out of | |
4006 | the target/kernel (and thus never reach here; see above). */ | |
6c95b8df | 4007 | if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc) |
fbea99ea PA |
4008 | || (target_is_non_stop_p () |
4009 | && moribund_breakpoint_here_p (aspace, breakpoint_pc))) | |
8aad930b | 4010 | { |
07036511 | 4011 | gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable; |
abbb1732 | 4012 | |
8213266a | 4013 | if (record_full_is_used ()) |
07036511 TT |
4014 | restore_operation_disable.emplace |
4015 | (record_full_gdb_operation_disable_set ()); | |
96429cc8 | 4016 | |
1c0fdd0e UW |
4017 | /* When using hardware single-step, a SIGTRAP is reported for both |
4018 | a completed single-step and a software breakpoint. Need to | |
4019 | differentiate between the two, as the latter needs adjusting | |
4020 | but the former does not. | |
4021 | ||
4022 | The SIGTRAP can be due to a completed hardware single-step only if | |
4023 | - we didn't insert software single-step breakpoints | |
1c0fdd0e UW |
4024 | - this thread is currently being stepped |
4025 | ||
4026 | If any of these events did not occur, we must have stopped due | |
4027 | to hitting a software breakpoint, and have to back up to the | |
4028 | breakpoint address. | |
4029 | ||
4030 | As a special case, we could have hardware single-stepped a | |
4031 | software breakpoint. In this case (prev_pc == breakpoint_pc), | |
4032 | we also need to back up to the breakpoint address. */ | |
4033 | ||
d8dd4d5f PA |
4034 | if (thread_has_single_step_breakpoints_set (thread) |
4035 | || !currently_stepping (thread) | |
4036 | || (thread->stepped_breakpoint | |
4037 | && thread->prev_pc == breakpoint_pc)) | |
515630c5 | 4038 | regcache_write_pc (regcache, breakpoint_pc); |
8aad930b | 4039 | } |
4fa8626c DJ |
4040 | } |
4041 | ||
edb3359d DJ |
4042 | static int |
4043 | stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id) | |
4044 | { | |
4045 | for (frame = get_prev_frame (frame); | |
4046 | frame != NULL; | |
4047 | frame = get_prev_frame (frame)) | |
4048 | { | |
4049 | if (frame_id_eq (get_frame_id (frame), step_frame_id)) | |
4050 | return 1; | |
4051 | if (get_frame_type (frame) != INLINE_FRAME) | |
4052 | break; | |
4053 | } | |
4054 | ||
4055 | return 0; | |
4056 | } | |
4057 | ||
4a4c04f1 BE |
4058 | /* Look for an inline frame that is marked for skip. |
4059 | If PREV_FRAME is TRUE start at the previous frame, | |
4060 | otherwise start at the current frame. Stop at the | |
4061 | first non-inline frame, or at the frame where the | |
4062 | step started. */ | |
4063 | ||
4064 | static bool | |
4065 | inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp) | |
4066 | { | |
4067 | struct frame_info *frame = get_current_frame (); | |
4068 | ||
4069 | if (prev_frame) | |
4070 | frame = get_prev_frame (frame); | |
4071 | ||
4072 | for (; frame != NULL; frame = get_prev_frame (frame)) | |
4073 | { | |
4074 | const char *fn = NULL; | |
4075 | symtab_and_line sal; | |
4076 | struct symbol *sym; | |
4077 | ||
4078 | if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id)) | |
4079 | break; | |
4080 | if (get_frame_type (frame) != INLINE_FRAME) | |
4081 | break; | |
4082 | ||
4083 | sal = find_frame_sal (frame); | |
4084 | sym = get_frame_function (frame); | |
4085 | ||
4086 | if (sym != NULL) | |
4087 | fn = sym->print_name (); | |
4088 | ||
4089 | if (sal.line != 0 | |
4090 | && function_name_is_marked_for_skip (fn, sal)) | |
4091 | return true; | |
4092 | } | |
4093 | ||
4094 | return false; | |
4095 | } | |
4096 | ||
c65d6b55 PA |
4097 | /* If the event thread has the stop requested flag set, pretend it |
4098 | stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to | |
4099 | target_stop). */ | |
4100 | ||
4101 | static bool | |
4102 | handle_stop_requested (struct execution_control_state *ecs) | |
4103 | { | |
4104 | if (ecs->event_thread->stop_requested) | |
4105 | { | |
4106 | ecs->ws.kind = TARGET_WAITKIND_STOPPED; | |
4107 | ecs->ws.value.sig = GDB_SIGNAL_0; | |
4108 | handle_signal_stop (ecs); | |
4109 | return true; | |
4110 | } | |
4111 | return false; | |
4112 | } | |
4113 | ||
a96d9b2e SDJ |
4114 | /* Auxiliary function that handles syscall entry/return events. |
4115 | It returns 1 if the inferior should keep going (and GDB | |
4116 | should ignore the event), or 0 if the event deserves to be | |
4117 | processed. */ | |
ca2163eb | 4118 | |
a96d9b2e | 4119 | static int |
ca2163eb | 4120 | handle_syscall_event (struct execution_control_state *ecs) |
a96d9b2e | 4121 | { |
ca2163eb | 4122 | struct regcache *regcache; |
ca2163eb PA |
4123 | int syscall_number; |
4124 | ||
00431a78 | 4125 | context_switch (ecs); |
ca2163eb | 4126 | |
00431a78 | 4127 | regcache = get_thread_regcache (ecs->event_thread); |
f90263c1 | 4128 | syscall_number = ecs->ws.value.syscall_number; |
f2ffa92b | 4129 | ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache); |
ca2163eb | 4130 | |
a96d9b2e SDJ |
4131 | if (catch_syscall_enabled () > 0 |
4132 | && catching_syscall_number (syscall_number) > 0) | |
4133 | { | |
4134 | if (debug_infrun) | |
4135 | fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n", | |
4136 | syscall_number); | |
a96d9b2e | 4137 | |
16c381f0 | 4138 | ecs->event_thread->control.stop_bpstat |
a01bda52 | 4139 | = bpstat_stop_status (regcache->aspace (), |
f2ffa92b PA |
4140 | ecs->event_thread->suspend.stop_pc, |
4141 | ecs->event_thread, &ecs->ws); | |
ab04a2af | 4142 | |
c65d6b55 PA |
4143 | if (handle_stop_requested (ecs)) |
4144 | return 0; | |
4145 | ||
ce12b012 | 4146 | if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat)) |
ca2163eb PA |
4147 | { |
4148 | /* Catchpoint hit. */ | |
ca2163eb PA |
4149 | return 0; |
4150 | } | |
a96d9b2e | 4151 | } |
ca2163eb | 4152 | |
c65d6b55 PA |
4153 | if (handle_stop_requested (ecs)) |
4154 | return 0; | |
4155 | ||
ca2163eb | 4156 | /* If no catchpoint triggered for this, then keep going. */ |
ca2163eb PA |
4157 | keep_going (ecs); |
4158 | return 1; | |
a96d9b2e SDJ |
4159 | } |
4160 | ||
7e324e48 GB |
4161 | /* Lazily fill in the execution_control_state's stop_func_* fields. */ |
4162 | ||
4163 | static void | |
4164 | fill_in_stop_func (struct gdbarch *gdbarch, | |
4165 | struct execution_control_state *ecs) | |
4166 | { | |
4167 | if (!ecs->stop_func_filled_in) | |
4168 | { | |
98a617f8 KB |
4169 | const block *block; |
4170 | ||
7e324e48 GB |
4171 | /* Don't care about return value; stop_func_start and stop_func_name |
4172 | will both be 0 if it doesn't work. */ | |
98a617f8 KB |
4173 | find_pc_partial_function (ecs->event_thread->suspend.stop_pc, |
4174 | &ecs->stop_func_name, | |
4175 | &ecs->stop_func_start, | |
4176 | &ecs->stop_func_end, | |
4177 | &block); | |
4178 | ||
4179 | /* The call to find_pc_partial_function, above, will set | |
4180 | stop_func_start and stop_func_end to the start and end | |
4181 | of the range containing the stop pc. If this range | |
4182 | contains the entry pc for the block (which is always the | |
4183 | case for contiguous blocks), advance stop_func_start past | |
4184 | the function's start offset and entrypoint. Note that | |
4185 | stop_func_start is NOT advanced when in a range of a | |
4186 | non-contiguous block that does not contain the entry pc. */ | |
4187 | if (block != nullptr | |
4188 | && ecs->stop_func_start <= BLOCK_ENTRY_PC (block) | |
4189 | && BLOCK_ENTRY_PC (block) < ecs->stop_func_end) | |
4190 | { | |
4191 | ecs->stop_func_start | |
4192 | += gdbarch_deprecated_function_start_offset (gdbarch); | |
4193 | ||
4194 | if (gdbarch_skip_entrypoint_p (gdbarch)) | |
4195 | ecs->stop_func_start | |
4196 | = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start); | |
4197 | } | |
591a12a1 | 4198 | |
7e324e48 GB |
4199 | ecs->stop_func_filled_in = 1; |
4200 | } | |
4201 | } | |
4202 | ||
4f5d7f63 | 4203 | |
00431a78 | 4204 | /* Return the STOP_SOON field of the inferior pointed at by ECS. */ |
4f5d7f63 PA |
4205 | |
4206 | static enum stop_kind | |
00431a78 | 4207 | get_inferior_stop_soon (execution_control_state *ecs) |
4f5d7f63 | 4208 | { |
00431a78 | 4209 | struct inferior *inf = find_inferior_ptid (ecs->ptid); |
4f5d7f63 PA |
4210 | |
4211 | gdb_assert (inf != NULL); | |
4212 | return inf->control.stop_soon; | |
4213 | } | |
4214 | ||
372316f1 PA |
4215 | /* Wait for one event. Store the resulting waitstatus in WS, and |
4216 | return the event ptid. */ | |
4217 | ||
4218 | static ptid_t | |
4219 | wait_one (struct target_waitstatus *ws) | |
4220 | { | |
4221 | ptid_t event_ptid; | |
4222 | ptid_t wait_ptid = minus_one_ptid; | |
4223 | ||
4224 | overlay_cache_invalid = 1; | |
4225 | ||
4226 | /* Flush target cache before starting to handle each event. | |
4227 | Target was running and cache could be stale. This is just a | |
4228 | heuristic. Running threads may modify target memory, but we | |
4229 | don't get any event. */ | |
4230 | target_dcache_invalidate (); | |
4231 | ||
4232 | if (deprecated_target_wait_hook) | |
4233 | event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0); | |
4234 | else | |
4235 | event_ptid = target_wait (wait_ptid, ws, 0); | |
4236 | ||
4237 | if (debug_infrun) | |
4238 | print_target_wait_results (wait_ptid, event_ptid, ws); | |
4239 | ||
4240 | return event_ptid; | |
4241 | } | |
4242 | ||
4243 | /* Generate a wrapper for target_stopped_by_REASON that works on PTID | |
4244 | instead of the current thread. */ | |
4245 | #define THREAD_STOPPED_BY(REASON) \ | |
4246 | static int \ | |
4247 | thread_stopped_by_ ## REASON (ptid_t ptid) \ | |
4248 | { \ | |
2989a365 | 4249 | scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \ |
372316f1 PA |
4250 | inferior_ptid = ptid; \ |
4251 | \ | |
2989a365 | 4252 | return target_stopped_by_ ## REASON (); \ |
372316f1 PA |
4253 | } |
4254 | ||
4255 | /* Generate thread_stopped_by_watchpoint. */ | |
4256 | THREAD_STOPPED_BY (watchpoint) | |
4257 | /* Generate thread_stopped_by_sw_breakpoint. */ | |
4258 | THREAD_STOPPED_BY (sw_breakpoint) | |
4259 | /* Generate thread_stopped_by_hw_breakpoint. */ | |
4260 | THREAD_STOPPED_BY (hw_breakpoint) | |
4261 | ||
372316f1 PA |
4262 | /* Save the thread's event and stop reason to process it later. */ |
4263 | ||
4264 | static void | |
4265 | save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws) | |
4266 | { | |
372316f1 PA |
4267 | if (debug_infrun) |
4268 | { | |
23fdd69e | 4269 | std::string statstr = target_waitstatus_to_string (ws); |
372316f1 | 4270 | |
372316f1 PA |
4271 | fprintf_unfiltered (gdb_stdlog, |
4272 | "infrun: saving status %s for %d.%ld.%ld\n", | |
23fdd69e | 4273 | statstr.c_str (), |
e99b03dc | 4274 | tp->ptid.pid (), |
e38504b3 | 4275 | tp->ptid.lwp (), |
cc6bcb54 | 4276 | tp->ptid.tid ()); |
372316f1 PA |
4277 | } |
4278 | ||
4279 | /* Record for later. */ | |
4280 | tp->suspend.waitstatus = *ws; | |
4281 | tp->suspend.waitstatus_pending_p = 1; | |
4282 | ||
00431a78 | 4283 | struct regcache *regcache = get_thread_regcache (tp); |
8b86c959 | 4284 | const address_space *aspace = regcache->aspace (); |
372316f1 PA |
4285 | |
4286 | if (ws->kind == TARGET_WAITKIND_STOPPED | |
4287 | && ws->value.sig == GDB_SIGNAL_TRAP) | |
4288 | { | |
4289 | CORE_ADDR pc = regcache_read_pc (regcache); | |
4290 | ||
4291 | adjust_pc_after_break (tp, &tp->suspend.waitstatus); | |
4292 | ||
4293 | if (thread_stopped_by_watchpoint (tp->ptid)) | |
4294 | { | |
4295 | tp->suspend.stop_reason | |
4296 | = TARGET_STOPPED_BY_WATCHPOINT; | |
4297 | } | |
4298 | else if (target_supports_stopped_by_sw_breakpoint () | |
4299 | && thread_stopped_by_sw_breakpoint (tp->ptid)) | |
4300 | { | |
4301 | tp->suspend.stop_reason | |
4302 | = TARGET_STOPPED_BY_SW_BREAKPOINT; | |
4303 | } | |
4304 | else if (target_supports_stopped_by_hw_breakpoint () | |
4305 | && thread_stopped_by_hw_breakpoint (tp->ptid)) | |
4306 | { | |
4307 | tp->suspend.stop_reason | |
4308 | = TARGET_STOPPED_BY_HW_BREAKPOINT; | |
4309 | } | |
4310 | else if (!target_supports_stopped_by_hw_breakpoint () | |
4311 | && hardware_breakpoint_inserted_here_p (aspace, | |
4312 | pc)) | |
4313 | { | |
4314 | tp->suspend.stop_reason | |
4315 | = TARGET_STOPPED_BY_HW_BREAKPOINT; | |
4316 | } | |
4317 | else if (!target_supports_stopped_by_sw_breakpoint () | |
4318 | && software_breakpoint_inserted_here_p (aspace, | |
4319 | pc)) | |
4320 | { | |
4321 | tp->suspend.stop_reason | |
4322 | = TARGET_STOPPED_BY_SW_BREAKPOINT; | |
4323 | } | |
4324 | else if (!thread_has_single_step_breakpoints_set (tp) | |
4325 | && currently_stepping (tp)) | |
4326 | { | |
4327 | tp->suspend.stop_reason | |
4328 | = TARGET_STOPPED_BY_SINGLE_STEP; | |
4329 | } | |
4330 | } | |
4331 | } | |
4332 | ||
6efcd9a8 | 4333 | /* See infrun.h. */ |
372316f1 | 4334 | |
6efcd9a8 | 4335 | void |
372316f1 PA |
4336 | stop_all_threads (void) |
4337 | { | |
4338 | /* We may need multiple passes to discover all threads. */ | |
4339 | int pass; | |
4340 | int iterations = 0; | |
372316f1 | 4341 | |
fbea99ea | 4342 | gdb_assert (target_is_non_stop_p ()); |
372316f1 PA |
4343 | |
4344 | if (debug_infrun) | |
4345 | fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n"); | |
4346 | ||
00431a78 | 4347 | scoped_restore_current_thread restore_thread; |
372316f1 | 4348 | |
65706a29 | 4349 | target_thread_events (1); |
9885e6bb | 4350 | SCOPE_EXIT { target_thread_events (0); }; |
65706a29 | 4351 | |
372316f1 PA |
4352 | /* Request threads to stop, and then wait for the stops. Because |
4353 | threads we already know about can spawn more threads while we're | |
4354 | trying to stop them, and we only learn about new threads when we | |
4355 | update the thread list, do this in a loop, and keep iterating | |
4356 | until two passes find no threads that need to be stopped. */ | |
4357 | for (pass = 0; pass < 2; pass++, iterations++) | |
4358 | { | |
4359 | if (debug_infrun) | |
4360 | fprintf_unfiltered (gdb_stdlog, | |
4361 | "infrun: stop_all_threads, pass=%d, " | |
4362 | "iterations=%d\n", pass, iterations); | |
4363 | while (1) | |
4364 | { | |
4365 | ptid_t event_ptid; | |
4366 | struct target_waitstatus ws; | |
4367 | int need_wait = 0; | |
372316f1 PA |
4368 | |
4369 | update_thread_list (); | |
4370 | ||
4371 | /* Go through all threads looking for threads that we need | |
4372 | to tell the target to stop. */ | |
08036331 | 4373 | for (thread_info *t : all_non_exited_threads ()) |
372316f1 PA |
4374 | { |
4375 | if (t->executing) | |
4376 | { | |
4377 | /* If already stopping, don't request a stop again. | |
4378 | We just haven't seen the notification yet. */ | |
4379 | if (!t->stop_requested) | |
4380 | { | |
4381 | if (debug_infrun) | |
4382 | fprintf_unfiltered (gdb_stdlog, | |
4383 | "infrun: %s executing, " | |
4384 | "need stop\n", | |
a068643d | 4385 | target_pid_to_str (t->ptid).c_str ()); |
f3f8ece4 | 4386 | switch_to_thread_no_regs (t); |
372316f1 PA |
4387 | target_stop (t->ptid); |
4388 | t->stop_requested = 1; | |
4389 | } | |
4390 | else | |
4391 | { | |
4392 | if (debug_infrun) | |
4393 | fprintf_unfiltered (gdb_stdlog, | |
4394 | "infrun: %s executing, " | |
4395 | "already stopping\n", | |
a068643d | 4396 | target_pid_to_str (t->ptid).c_str ()); |
372316f1 PA |
4397 | } |
4398 | ||
4399 | if (t->stop_requested) | |
4400 | need_wait = 1; | |
4401 | } | |
4402 | else | |
4403 | { | |
4404 | if (debug_infrun) | |
4405 | fprintf_unfiltered (gdb_stdlog, | |
4406 | "infrun: %s not executing\n", | |
a068643d | 4407 | target_pid_to_str (t->ptid).c_str ()); |
372316f1 PA |
4408 | |
4409 | /* The thread may be not executing, but still be | |
4410 | resumed with a pending status to process. */ | |
4411 | t->resumed = 0; | |
4412 | } | |
4413 | } | |
4414 | ||
4415 | if (!need_wait) | |
4416 | break; | |
4417 | ||
4418 | /* If we find new threads on the second iteration, restart | |
4419 | over. We want to see two iterations in a row with all | |
4420 | threads stopped. */ | |
4421 | if (pass > 0) | |
4422 | pass = -1; | |
4423 | ||
4424 | event_ptid = wait_one (&ws); | |
c29705b7 | 4425 | if (debug_infrun) |
372316f1 | 4426 | { |
c29705b7 PW |
4427 | fprintf_unfiltered (gdb_stdlog, |
4428 | "infrun: stop_all_threads %s %s\n", | |
4429 | target_waitstatus_to_string (&ws).c_str (), | |
4430 | target_pid_to_str (event_ptid).c_str ()); | |
372316f1 | 4431 | } |
372316f1 | 4432 | |
c29705b7 PW |
4433 | if (ws.kind == TARGET_WAITKIND_NO_RESUMED |
4434 | || ws.kind == TARGET_WAITKIND_THREAD_EXITED | |
4435 | || ws.kind == TARGET_WAITKIND_EXITED | |
4436 | || ws.kind == TARGET_WAITKIND_SIGNALLED) | |
4437 | { | |
4438 | /* All resumed threads exited | |
4439 | or one thread/process exited/signalled. */ | |
372316f1 PA |
4440 | } |
4441 | else | |
4442 | { | |
08036331 | 4443 | thread_info *t = find_thread_ptid (event_ptid); |
372316f1 PA |
4444 | if (t == NULL) |
4445 | t = add_thread (event_ptid); | |
4446 | ||
4447 | t->stop_requested = 0; | |
4448 | t->executing = 0; | |
4449 | t->resumed = 0; | |
4450 | t->control.may_range_step = 0; | |
4451 | ||
6efcd9a8 PA |
4452 | /* This may be the first time we see the inferior report |
4453 | a stop. */ | |
08036331 | 4454 | inferior *inf = find_inferior_ptid (event_ptid); |
6efcd9a8 PA |
4455 | if (inf->needs_setup) |
4456 | { | |
4457 | switch_to_thread_no_regs (t); | |
4458 | setup_inferior (0); | |
4459 | } | |
4460 | ||
372316f1 PA |
4461 | if (ws.kind == TARGET_WAITKIND_STOPPED |
4462 | && ws.value.sig == GDB_SIGNAL_0) | |
4463 | { | |
4464 | /* We caught the event that we intended to catch, so | |
4465 | there's no event pending. */ | |
4466 | t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE; | |
4467 | t->suspend.waitstatus_pending_p = 0; | |
4468 | ||
00431a78 | 4469 | if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0) |
372316f1 PA |
4470 | { |
4471 | /* Add it back to the step-over queue. */ | |
4472 | if (debug_infrun) | |
4473 | { | |
4474 | fprintf_unfiltered (gdb_stdlog, | |
4475 | "infrun: displaced-step of %s " | |
4476 | "canceled: adding back to the " | |
4477 | "step-over queue\n", | |
a068643d | 4478 | target_pid_to_str (t->ptid).c_str ()); |
372316f1 PA |
4479 | } |
4480 | t->control.trap_expected = 0; | |
4481 | thread_step_over_chain_enqueue (t); | |
4482 | } | |
4483 | } | |
4484 | else | |
4485 | { | |
4486 | enum gdb_signal sig; | |
4487 | struct regcache *regcache; | |
372316f1 PA |
4488 | |
4489 | if (debug_infrun) | |
4490 | { | |
23fdd69e | 4491 | std::string statstr = target_waitstatus_to_string (&ws); |
372316f1 | 4492 | |
372316f1 PA |
4493 | fprintf_unfiltered (gdb_stdlog, |
4494 | "infrun: target_wait %s, saving " | |
4495 | "status for %d.%ld.%ld\n", | |
23fdd69e | 4496 | statstr.c_str (), |
e99b03dc | 4497 | t->ptid.pid (), |
e38504b3 | 4498 | t->ptid.lwp (), |
cc6bcb54 | 4499 | t->ptid.tid ()); |
372316f1 PA |
4500 | } |
4501 | ||
4502 | /* Record for later. */ | |
4503 | save_waitstatus (t, &ws); | |
4504 | ||
4505 | sig = (ws.kind == TARGET_WAITKIND_STOPPED | |
4506 | ? ws.value.sig : GDB_SIGNAL_0); | |
4507 | ||
00431a78 | 4508 | if (displaced_step_fixup (t, sig) < 0) |
372316f1 PA |
4509 | { |
4510 | /* Add it back to the step-over queue. */ | |
4511 | t->control.trap_expected = 0; | |
4512 | thread_step_over_chain_enqueue (t); | |
4513 | } | |
4514 | ||
00431a78 | 4515 | regcache = get_thread_regcache (t); |
372316f1 PA |
4516 | t->suspend.stop_pc = regcache_read_pc (regcache); |
4517 | ||
4518 | if (debug_infrun) | |
4519 | { | |
4520 | fprintf_unfiltered (gdb_stdlog, | |
4521 | "infrun: saved stop_pc=%s for %s " | |
4522 | "(currently_stepping=%d)\n", | |
4523 | paddress (target_gdbarch (), | |
4524 | t->suspend.stop_pc), | |
a068643d | 4525 | target_pid_to_str (t->ptid).c_str (), |
372316f1 PA |
4526 | currently_stepping (t)); |
4527 | } | |
4528 | } | |
4529 | } | |
4530 | } | |
4531 | } | |
4532 | ||
372316f1 PA |
4533 | if (debug_infrun) |
4534 | fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n"); | |
4535 | } | |
4536 | ||
f4836ba9 PA |
4537 | /* Handle a TARGET_WAITKIND_NO_RESUMED event. */ |
4538 | ||
4539 | static int | |
4540 | handle_no_resumed (struct execution_control_state *ecs) | |
4541 | { | |
3b12939d | 4542 | if (target_can_async_p ()) |
f4836ba9 | 4543 | { |
3b12939d PA |
4544 | struct ui *ui; |
4545 | int any_sync = 0; | |
f4836ba9 | 4546 | |
3b12939d PA |
4547 | ALL_UIS (ui) |
4548 | { | |
4549 | if (ui->prompt_state == PROMPT_BLOCKED) | |
4550 | { | |
4551 | any_sync = 1; | |
4552 | break; | |
4553 | } | |
4554 | } | |
4555 | if (!any_sync) | |
4556 | { | |
4557 | /* There were no unwaited-for children left in the target, but, | |
4558 | we're not synchronously waiting for events either. Just | |
4559 | ignore. */ | |
4560 | ||
4561 | if (debug_infrun) | |
4562 | fprintf_unfiltered (gdb_stdlog, | |
4563 | "infrun: TARGET_WAITKIND_NO_RESUMED " | |
4564 | "(ignoring: bg)\n"); | |
4565 | prepare_to_wait (ecs); | |
4566 | return 1; | |
4567 | } | |
f4836ba9 PA |
4568 | } |
4569 | ||
4570 | /* Otherwise, if we were running a synchronous execution command, we | |
4571 | may need to cancel it and give the user back the terminal. | |
4572 | ||
4573 | In non-stop mode, the target can't tell whether we've already | |
4574 | consumed previous stop events, so it can end up sending us a | |
4575 | no-resumed event like so: | |
4576 | ||
4577 | #0 - thread 1 is left stopped | |
4578 | ||
4579 | #1 - thread 2 is resumed and hits breakpoint | |
4580 | -> TARGET_WAITKIND_STOPPED | |
4581 | ||
4582 | #2 - thread 3 is resumed and exits | |
4583 | this is the last resumed thread, so | |
4584 | -> TARGET_WAITKIND_NO_RESUMED | |
4585 | ||
4586 | #3 - gdb processes stop for thread 2 and decides to re-resume | |
4587 | it. | |
4588 | ||
4589 | #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event. | |
4590 | thread 2 is now resumed, so the event should be ignored. | |
4591 | ||
4592 | IOW, if the stop for thread 2 doesn't end a foreground command, | |
4593 | then we need to ignore the following TARGET_WAITKIND_NO_RESUMED | |
4594 | event. But it could be that the event meant that thread 2 itself | |
4595 | (or whatever other thread was the last resumed thread) exited. | |
4596 | ||
4597 | To address this we refresh the thread list and check whether we | |
4598 | have resumed threads _now_. In the example above, this removes | |
4599 | thread 3 from the thread list. If thread 2 was re-resumed, we | |
4600 | ignore this event. If we find no thread resumed, then we cancel | |
4601 | the synchronous command show "no unwaited-for " to the user. */ | |
4602 | update_thread_list (); | |
4603 | ||
08036331 | 4604 | for (thread_info *thread : all_non_exited_threads ()) |
f4836ba9 PA |
4605 | { |
4606 | if (thread->executing | |
4607 | || thread->suspend.waitstatus_pending_p) | |
4608 | { | |
4609 | /* There were no unwaited-for children left in the target at | |
4610 | some point, but there are now. Just ignore. */ | |
4611 | if (debug_infrun) | |
4612 | fprintf_unfiltered (gdb_stdlog, | |
4613 | "infrun: TARGET_WAITKIND_NO_RESUMED " | |
4614 | "(ignoring: found resumed)\n"); | |
4615 | prepare_to_wait (ecs); | |
4616 | return 1; | |
4617 | } | |
4618 | } | |
4619 | ||
4620 | /* Note however that we may find no resumed thread because the whole | |
4621 | process exited meanwhile (thus updating the thread list results | |
4622 | in an empty thread list). In this case we know we'll be getting | |
4623 | a process exit event shortly. */ | |
735fc2ca | 4624 | for (inferior *inf : all_non_exited_inferiors ()) |
f4836ba9 | 4625 | { |
08036331 | 4626 | thread_info *thread = any_live_thread_of_inferior (inf); |
f4836ba9 PA |
4627 | if (thread == NULL) |
4628 | { | |
4629 | if (debug_infrun) | |
4630 | fprintf_unfiltered (gdb_stdlog, | |
4631 | "infrun: TARGET_WAITKIND_NO_RESUMED " | |
4632 | "(expect process exit)\n"); | |
4633 | prepare_to_wait (ecs); | |
4634 | return 1; | |
4635 | } | |
4636 | } | |
4637 | ||
4638 | /* Go ahead and report the event. */ | |
4639 | return 0; | |
4640 | } | |
4641 | ||
05ba8510 PA |
4642 | /* Given an execution control state that has been freshly filled in by |
4643 | an event from the inferior, figure out what it means and take | |
4644 | appropriate action. | |
4645 | ||
4646 | The alternatives are: | |
4647 | ||
22bcd14b | 4648 | 1) stop_waiting and return; to really stop and return to the |
05ba8510 PA |
4649 | debugger. |
4650 | ||
4651 | 2) keep_going and return; to wait for the next event (set | |
4652 | ecs->event_thread->stepping_over_breakpoint to 1 to single step | |
4653 | once). */ | |
c906108c | 4654 | |
ec9499be | 4655 | static void |
595915c1 | 4656 | handle_inferior_event (struct execution_control_state *ecs) |
cd0fc7c3 | 4657 | { |
595915c1 TT |
4658 | /* Make sure that all temporary struct value objects that were |
4659 | created during the handling of the event get deleted at the | |
4660 | end. */ | |
4661 | scoped_value_mark free_values; | |
4662 | ||
d6b48e9c PA |
4663 | enum stop_kind stop_soon; |
4664 | ||
c29705b7 PW |
4665 | if (debug_infrun) |
4666 | fprintf_unfiltered (gdb_stdlog, "infrun: handle_inferior_event %s\n", | |
4667 | target_waitstatus_to_string (&ecs->ws).c_str ()); | |
4668 | ||
28736962 PA |
4669 | if (ecs->ws.kind == TARGET_WAITKIND_IGNORE) |
4670 | { | |
4671 | /* We had an event in the inferior, but we are not interested in | |
4672 | handling it at this level. The lower layers have already | |
4673 | done what needs to be done, if anything. | |
4674 | ||
4675 | One of the possible circumstances for this is when the | |
4676 | inferior produces output for the console. The inferior has | |
4677 | not stopped, and we are ignoring the event. Another possible | |
4678 | circumstance is any event which the lower level knows will be | |
4679 | reported multiple times without an intervening resume. */ | |
28736962 PA |
4680 | prepare_to_wait (ecs); |
4681 | return; | |
4682 | } | |
4683 | ||
65706a29 PA |
4684 | if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED) |
4685 | { | |
65706a29 PA |
4686 | prepare_to_wait (ecs); |
4687 | return; | |
4688 | } | |
4689 | ||
0e5bf2a8 | 4690 | if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED |
f4836ba9 PA |
4691 | && handle_no_resumed (ecs)) |
4692 | return; | |
0e5bf2a8 | 4693 | |
1777feb0 | 4694 | /* Cache the last pid/waitstatus. */ |
c32c64b7 | 4695 | set_last_target_status (ecs->ptid, ecs->ws); |
e02bc4cc | 4696 | |
ca005067 | 4697 | /* Always clear state belonging to the previous time we stopped. */ |
aa7d318d | 4698 | stop_stack_dummy = STOP_NONE; |
ca005067 | 4699 | |
0e5bf2a8 PA |
4700 | if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED) |
4701 | { | |
4702 | /* No unwaited-for children left. IOW, all resumed children | |
4703 | have exited. */ | |
0e5bf2a8 | 4704 | stop_print_frame = 0; |
22bcd14b | 4705 | stop_waiting (ecs); |
0e5bf2a8 PA |
4706 | return; |
4707 | } | |
4708 | ||
8c90c137 | 4709 | if (ecs->ws.kind != TARGET_WAITKIND_EXITED |
64776a0b | 4710 | && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED) |
359f5fe6 PA |
4711 | { |
4712 | ecs->event_thread = find_thread_ptid (ecs->ptid); | |
4713 | /* If it's a new thread, add it to the thread database. */ | |
4714 | if (ecs->event_thread == NULL) | |
4715 | ecs->event_thread = add_thread (ecs->ptid); | |
c1e36e3e PA |
4716 | |
4717 | /* Disable range stepping. If the next step request could use a | |
4718 | range, this will be end up re-enabled then. */ | |
4719 | ecs->event_thread->control.may_range_step = 0; | |
359f5fe6 | 4720 | } |
88ed393a JK |
4721 | |
4722 | /* Dependent on valid ECS->EVENT_THREAD. */ | |
d8dd4d5f | 4723 | adjust_pc_after_break (ecs->event_thread, &ecs->ws); |
88ed393a JK |
4724 | |
4725 | /* Dependent on the current PC value modified by adjust_pc_after_break. */ | |
4726 | reinit_frame_cache (); | |
4727 | ||
28736962 PA |
4728 | breakpoint_retire_moribund (); |
4729 | ||
2b009048 DJ |
4730 | /* First, distinguish signals caused by the debugger from signals |
4731 | that have to do with the program's own actions. Note that | |
4732 | breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending | |
4733 | on the operating system version. Here we detect when a SIGILL or | |
4734 | SIGEMT is really a breakpoint and change it to SIGTRAP. We do | |
4735 | something similar for SIGSEGV, since a SIGSEGV will be generated | |
4736 | when we're trying to execute a breakpoint instruction on a | |
4737 | non-executable stack. This happens for call dummy breakpoints | |
4738 | for architectures like SPARC that place call dummies on the | |
4739 | stack. */ | |
2b009048 | 4740 | if (ecs->ws.kind == TARGET_WAITKIND_STOPPED |
a493e3e2 PA |
4741 | && (ecs->ws.value.sig == GDB_SIGNAL_ILL |
4742 | || ecs->ws.value.sig == GDB_SIGNAL_SEGV | |
4743 | || ecs->ws.value.sig == GDB_SIGNAL_EMT)) | |
2b009048 | 4744 | { |
00431a78 | 4745 | struct regcache *regcache = get_thread_regcache (ecs->event_thread); |
de0a0249 | 4746 | |
a01bda52 | 4747 | if (breakpoint_inserted_here_p (regcache->aspace (), |
de0a0249 UW |
4748 | regcache_read_pc (regcache))) |
4749 | { | |
4750 | if (debug_infrun) | |
4751 | fprintf_unfiltered (gdb_stdlog, | |
4752 | "infrun: Treating signal as SIGTRAP\n"); | |
a493e3e2 | 4753 | ecs->ws.value.sig = GDB_SIGNAL_TRAP; |
de0a0249 | 4754 | } |
2b009048 DJ |
4755 | } |
4756 | ||
28736962 PA |
4757 | /* Mark the non-executing threads accordingly. In all-stop, all |
4758 | threads of all processes are stopped when we get any event | |
e1316e60 | 4759 | reported. In non-stop mode, only the event thread stops. */ |
372316f1 PA |
4760 | { |
4761 | ptid_t mark_ptid; | |
4762 | ||
fbea99ea | 4763 | if (!target_is_non_stop_p ()) |
372316f1 PA |
4764 | mark_ptid = minus_one_ptid; |
4765 | else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED | |
4766 | || ecs->ws.kind == TARGET_WAITKIND_EXITED) | |
4767 | { | |
4768 | /* If we're handling a process exit in non-stop mode, even | |
4769 | though threads haven't been deleted yet, one would think | |
4770 | that there is nothing to do, as threads of the dead process | |
4771 | will be soon deleted, and threads of any other process were | |
4772 | left running. However, on some targets, threads survive a | |
4773 | process exit event. E.g., for the "checkpoint" command, | |
4774 | when the current checkpoint/fork exits, linux-fork.c | |
4775 | automatically switches to another fork from within | |
4776 | target_mourn_inferior, by associating the same | |
4777 | inferior/thread to another fork. We haven't mourned yet at | |
4778 | this point, but we must mark any threads left in the | |
4779 | process as not-executing so that finish_thread_state marks | |
4780 | them stopped (in the user's perspective) if/when we present | |
4781 | the stop to the user. */ | |
e99b03dc | 4782 | mark_ptid = ptid_t (ecs->ptid.pid ()); |
372316f1 PA |
4783 | } |
4784 | else | |
4785 | mark_ptid = ecs->ptid; | |
4786 | ||
4787 | set_executing (mark_ptid, 0); | |
4788 | ||
4789 | /* Likewise the resumed flag. */ | |
4790 | set_resumed (mark_ptid, 0); | |
4791 | } | |
8c90c137 | 4792 | |
488f131b JB |
4793 | switch (ecs->ws.kind) |
4794 | { | |
4795 | case TARGET_WAITKIND_LOADED: | |
00431a78 | 4796 | context_switch (ecs); |
b0f4b84b DJ |
4797 | /* Ignore gracefully during startup of the inferior, as it might |
4798 | be the shell which has just loaded some objects, otherwise | |
4799 | add the symbols for the newly loaded objects. Also ignore at | |
4800 | the beginning of an attach or remote session; we will query | |
4801 | the full list of libraries once the connection is | |
4802 | established. */ | |
4f5d7f63 | 4803 | |
00431a78 | 4804 | stop_soon = get_inferior_stop_soon (ecs); |
c0236d92 | 4805 | if (stop_soon == NO_STOP_QUIETLY) |
488f131b | 4806 | { |
edcc5120 TT |
4807 | struct regcache *regcache; |
4808 | ||
00431a78 | 4809 | regcache = get_thread_regcache (ecs->event_thread); |
edcc5120 TT |
4810 | |
4811 | handle_solib_event (); | |
4812 | ||
4813 | ecs->event_thread->control.stop_bpstat | |
a01bda52 | 4814 | = bpstat_stop_status (regcache->aspace (), |
f2ffa92b PA |
4815 | ecs->event_thread->suspend.stop_pc, |
4816 | ecs->event_thread, &ecs->ws); | |
ab04a2af | 4817 | |
c65d6b55 PA |
4818 | if (handle_stop_requested (ecs)) |
4819 | return; | |
4820 | ||
ce12b012 | 4821 | if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat)) |
edcc5120 TT |
4822 | { |
4823 | /* A catchpoint triggered. */ | |
94c57d6a PA |
4824 | process_event_stop_test (ecs); |
4825 | return; | |
edcc5120 | 4826 | } |
488f131b | 4827 | |
b0f4b84b DJ |
4828 | /* If requested, stop when the dynamic linker notifies |
4829 | gdb of events. This allows the user to get control | |
4830 | and place breakpoints in initializer routines for | |
4831 | dynamically loaded objects (among other things). */ | |
a493e3e2 | 4832 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; |
b0f4b84b DJ |
4833 | if (stop_on_solib_events) |
4834 | { | |
55409f9d DJ |
4835 | /* Make sure we print "Stopped due to solib-event" in |
4836 | normal_stop. */ | |
4837 | stop_print_frame = 1; | |
4838 | ||
22bcd14b | 4839 | stop_waiting (ecs); |
b0f4b84b DJ |
4840 | return; |
4841 | } | |
488f131b | 4842 | } |
b0f4b84b DJ |
4843 | |
4844 | /* If we are skipping through a shell, or through shared library | |
4845 | loading that we aren't interested in, resume the program. If | |
5c09a2c5 | 4846 | we're running the program normally, also resume. */ |
b0f4b84b DJ |
4847 | if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY) |
4848 | { | |
74960c60 VP |
4849 | /* Loading of shared libraries might have changed breakpoint |
4850 | addresses. Make sure new breakpoints are inserted. */ | |
a25a5a45 | 4851 | if (stop_soon == NO_STOP_QUIETLY) |
74960c60 | 4852 | insert_breakpoints (); |
64ce06e4 | 4853 | resume (GDB_SIGNAL_0); |
b0f4b84b DJ |
4854 | prepare_to_wait (ecs); |
4855 | return; | |
4856 | } | |
4857 | ||
5c09a2c5 PA |
4858 | /* But stop if we're attaching or setting up a remote |
4859 | connection. */ | |
4860 | if (stop_soon == STOP_QUIETLY_NO_SIGSTOP | |
4861 | || stop_soon == STOP_QUIETLY_REMOTE) | |
4862 | { | |
4863 | if (debug_infrun) | |
4864 | fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n"); | |
22bcd14b | 4865 | stop_waiting (ecs); |
5c09a2c5 PA |
4866 | return; |
4867 | } | |
4868 | ||
4869 | internal_error (__FILE__, __LINE__, | |
4870 | _("unhandled stop_soon: %d"), (int) stop_soon); | |
c5aa993b | 4871 | |
488f131b | 4872 | case TARGET_WAITKIND_SPURIOUS: |
c65d6b55 PA |
4873 | if (handle_stop_requested (ecs)) |
4874 | return; | |
00431a78 | 4875 | context_switch (ecs); |
64ce06e4 | 4876 | resume (GDB_SIGNAL_0); |
488f131b JB |
4877 | prepare_to_wait (ecs); |
4878 | return; | |
c5aa993b | 4879 | |
65706a29 | 4880 | case TARGET_WAITKIND_THREAD_CREATED: |
c65d6b55 PA |
4881 | if (handle_stop_requested (ecs)) |
4882 | return; | |
00431a78 | 4883 | context_switch (ecs); |
65706a29 PA |
4884 | if (!switch_back_to_stepped_thread (ecs)) |
4885 | keep_going (ecs); | |
4886 | return; | |
4887 | ||
488f131b | 4888 | case TARGET_WAITKIND_EXITED: |
940c3c06 | 4889 | case TARGET_WAITKIND_SIGNALLED: |
fb66883a | 4890 | inferior_ptid = ecs->ptid; |
c9657e70 | 4891 | set_current_inferior (find_inferior_ptid (ecs->ptid)); |
6c95b8df PA |
4892 | set_current_program_space (current_inferior ()->pspace); |
4893 | handle_vfork_child_exec_or_exit (0); | |
223ffa71 | 4894 | target_terminal::ours (); /* Must do this before mourn anyway. */ |
488f131b | 4895 | |
0c557179 SDJ |
4896 | /* Clearing any previous state of convenience variables. */ |
4897 | clear_exit_convenience_vars (); | |
4898 | ||
940c3c06 PA |
4899 | if (ecs->ws.kind == TARGET_WAITKIND_EXITED) |
4900 | { | |
4901 | /* Record the exit code in the convenience variable $_exitcode, so | |
4902 | that the user can inspect this again later. */ | |
4903 | set_internalvar_integer (lookup_internalvar ("_exitcode"), | |
4904 | (LONGEST) ecs->ws.value.integer); | |
4905 | ||
4906 | /* Also record this in the inferior itself. */ | |
4907 | current_inferior ()->has_exit_code = 1; | |
4908 | current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer; | |
8cf64490 | 4909 | |
98eb56a4 PA |
4910 | /* Support the --return-child-result option. */ |
4911 | return_child_result_value = ecs->ws.value.integer; | |
4912 | ||
76727919 | 4913 | gdb::observers::exited.notify (ecs->ws.value.integer); |
940c3c06 PA |
4914 | } |
4915 | else | |
0c557179 | 4916 | { |
00431a78 | 4917 | struct gdbarch *gdbarch = current_inferior ()->gdbarch; |
0c557179 SDJ |
4918 | |
4919 | if (gdbarch_gdb_signal_to_target_p (gdbarch)) | |
4920 | { | |
4921 | /* Set the value of the internal variable $_exitsignal, | |
4922 | which holds the signal uncaught by the inferior. */ | |
4923 | set_internalvar_integer (lookup_internalvar ("_exitsignal"), | |
4924 | gdbarch_gdb_signal_to_target (gdbarch, | |
4925 | ecs->ws.value.sig)); | |
4926 | } | |
4927 | else | |
4928 | { | |
4929 | /* We don't have access to the target's method used for | |
4930 | converting between signal numbers (GDB's internal | |
4931 | representation <-> target's representation). | |
4932 | Therefore, we cannot do a good job at displaying this | |
4933 | information to the user. It's better to just warn | |
4934 | her about it (if infrun debugging is enabled), and | |
4935 | give up. */ | |
4936 | if (debug_infrun) | |
4937 | fprintf_filtered (gdb_stdlog, _("\ | |
4938 | Cannot fill $_exitsignal with the correct signal number.\n")); | |
4939 | } | |
4940 | ||
76727919 | 4941 | gdb::observers::signal_exited.notify (ecs->ws.value.sig); |
0c557179 | 4942 | } |
8cf64490 | 4943 | |
488f131b | 4944 | gdb_flush (gdb_stdout); |
bc1e6c81 | 4945 | target_mourn_inferior (inferior_ptid); |
488f131b | 4946 | stop_print_frame = 0; |
22bcd14b | 4947 | stop_waiting (ecs); |
488f131b | 4948 | return; |
c5aa993b | 4949 | |
488f131b | 4950 | /* The following are the only cases in which we keep going; |
1777feb0 | 4951 | the above cases end in a continue or goto. */ |
488f131b | 4952 | case TARGET_WAITKIND_FORKED: |
deb3b17b | 4953 | case TARGET_WAITKIND_VFORKED: |
e2d96639 YQ |
4954 | /* Check whether the inferior is displaced stepping. */ |
4955 | { | |
00431a78 | 4956 | struct regcache *regcache = get_thread_regcache (ecs->event_thread); |
ac7936df | 4957 | struct gdbarch *gdbarch = regcache->arch (); |
e2d96639 YQ |
4958 | |
4959 | /* If checking displaced stepping is supported, and thread | |
4960 | ecs->ptid is displaced stepping. */ | |
00431a78 | 4961 | if (displaced_step_in_progress_thread (ecs->event_thread)) |
e2d96639 YQ |
4962 | { |
4963 | struct inferior *parent_inf | |
c9657e70 | 4964 | = find_inferior_ptid (ecs->ptid); |
e2d96639 YQ |
4965 | struct regcache *child_regcache; |
4966 | CORE_ADDR parent_pc; | |
4967 | ||
4968 | /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED, | |
4969 | indicating that the displaced stepping of syscall instruction | |
4970 | has been done. Perform cleanup for parent process here. Note | |
4971 | that this operation also cleans up the child process for vfork, | |
4972 | because their pages are shared. */ | |
00431a78 | 4973 | displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP); |
c2829269 PA |
4974 | /* Start a new step-over in another thread if there's one |
4975 | that needs it. */ | |
4976 | start_step_over (); | |
e2d96639 YQ |
4977 | |
4978 | if (ecs->ws.kind == TARGET_WAITKIND_FORKED) | |
4979 | { | |
c0987663 | 4980 | struct displaced_step_inferior_state *displaced |
00431a78 | 4981 | = get_displaced_stepping_state (parent_inf); |
c0987663 | 4982 | |
e2d96639 YQ |
4983 | /* Restore scratch pad for child process. */ |
4984 | displaced_step_restore (displaced, ecs->ws.value.related_pid); | |
4985 | } | |
4986 | ||
4987 | /* Since the vfork/fork syscall instruction was executed in the scratchpad, | |
4988 | the child's PC is also within the scratchpad. Set the child's PC | |
4989 | to the parent's PC value, which has already been fixed up. | |
4990 | FIXME: we use the parent's aspace here, although we're touching | |
4991 | the child, because the child hasn't been added to the inferior | |
4992 | list yet at this point. */ | |
4993 | ||
4994 | child_regcache | |
4995 | = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid, | |
4996 | gdbarch, | |
4997 | parent_inf->aspace); | |
4998 | /* Read PC value of parent process. */ | |
4999 | parent_pc = regcache_read_pc (regcache); | |
5000 | ||
5001 | if (debug_displaced) | |
5002 | fprintf_unfiltered (gdb_stdlog, | |
5003 | "displaced: write child pc from %s to %s\n", | |
5004 | paddress (gdbarch, | |
5005 | regcache_read_pc (child_regcache)), | |
5006 | paddress (gdbarch, parent_pc)); | |
5007 | ||
5008 | regcache_write_pc (child_regcache, parent_pc); | |
5009 | } | |
5010 | } | |
5011 | ||
00431a78 | 5012 | context_switch (ecs); |
5a2901d9 | 5013 | |
b242c3c2 PA |
5014 | /* Immediately detach breakpoints from the child before there's |
5015 | any chance of letting the user delete breakpoints from the | |
5016 | breakpoint lists. If we don't do this early, it's easy to | |
5017 | leave left over traps in the child, vis: "break foo; catch | |
5018 | fork; c; <fork>; del; c; <child calls foo>". We only follow | |
5019 | the fork on the last `continue', and by that time the | |
5020 | breakpoint at "foo" is long gone from the breakpoint table. | |
5021 | If we vforked, then we don't need to unpatch here, since both | |
5022 | parent and child are sharing the same memory pages; we'll | |
5023 | need to unpatch at follow/detach time instead to be certain | |
5024 | that new breakpoints added between catchpoint hit time and | |
5025 | vfork follow are detached. */ | |
5026 | if (ecs->ws.kind != TARGET_WAITKIND_VFORKED) | |
5027 | { | |
b242c3c2 PA |
5028 | /* This won't actually modify the breakpoint list, but will |
5029 | physically remove the breakpoints from the child. */ | |
d80ee84f | 5030 | detach_breakpoints (ecs->ws.value.related_pid); |
b242c3c2 PA |
5031 | } |
5032 | ||
34b7e8a6 | 5033 | delete_just_stopped_threads_single_step_breakpoints (); |
d03285ec | 5034 | |
e58b0e63 PA |
5035 | /* In case the event is caught by a catchpoint, remember that |
5036 | the event is to be followed at the next resume of the thread, | |
5037 | and not immediately. */ | |
5038 | ecs->event_thread->pending_follow = ecs->ws; | |
5039 | ||
f2ffa92b PA |
5040 | ecs->event_thread->suspend.stop_pc |
5041 | = regcache_read_pc (get_thread_regcache (ecs->event_thread)); | |
675bf4cb | 5042 | |
16c381f0 | 5043 | ecs->event_thread->control.stop_bpstat |
a01bda52 | 5044 | = bpstat_stop_status (get_current_regcache ()->aspace (), |
f2ffa92b PA |
5045 | ecs->event_thread->suspend.stop_pc, |
5046 | ecs->event_thread, &ecs->ws); | |
675bf4cb | 5047 | |
c65d6b55 PA |
5048 | if (handle_stop_requested (ecs)) |
5049 | return; | |
5050 | ||
ce12b012 PA |
5051 | /* If no catchpoint triggered for this, then keep going. Note |
5052 | that we're interested in knowing the bpstat actually causes a | |
5053 | stop, not just if it may explain the signal. Software | |
5054 | watchpoints, for example, always appear in the bpstat. */ | |
5055 | if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat)) | |
04e68871 | 5056 | { |
e58b0e63 | 5057 | int should_resume; |
3e43a32a MS |
5058 | int follow_child |
5059 | = (follow_fork_mode_string == follow_fork_mode_child); | |
e58b0e63 | 5060 | |
a493e3e2 | 5061 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; |
e58b0e63 PA |
5062 | |
5063 | should_resume = follow_fork (); | |
5064 | ||
00431a78 PA |
5065 | thread_info *parent = ecs->event_thread; |
5066 | thread_info *child = find_thread_ptid (ecs->ws.value.related_pid); | |
6c95b8df | 5067 | |
a2077e25 PA |
5068 | /* At this point, the parent is marked running, and the |
5069 | child is marked stopped. */ | |
5070 | ||
5071 | /* If not resuming the parent, mark it stopped. */ | |
5072 | if (follow_child && !detach_fork && !non_stop && !sched_multi) | |
00431a78 | 5073 | parent->set_running (false); |
a2077e25 PA |
5074 | |
5075 | /* If resuming the child, mark it running. */ | |
5076 | if (follow_child || (!detach_fork && (non_stop || sched_multi))) | |
00431a78 | 5077 | child->set_running (true); |
a2077e25 | 5078 | |
6c95b8df | 5079 | /* In non-stop mode, also resume the other branch. */ |
fbea99ea PA |
5080 | if (!detach_fork && (non_stop |
5081 | || (sched_multi && target_is_non_stop_p ()))) | |
6c95b8df PA |
5082 | { |
5083 | if (follow_child) | |
5084 | switch_to_thread (parent); | |
5085 | else | |
5086 | switch_to_thread (child); | |
5087 | ||
5088 | ecs->event_thread = inferior_thread (); | |
5089 | ecs->ptid = inferior_ptid; | |
5090 | keep_going (ecs); | |
5091 | } | |
5092 | ||
5093 | if (follow_child) | |
5094 | switch_to_thread (child); | |
5095 | else | |
5096 | switch_to_thread (parent); | |
5097 | ||
e58b0e63 PA |
5098 | ecs->event_thread = inferior_thread (); |
5099 | ecs->ptid = inferior_ptid; | |
5100 | ||
5101 | if (should_resume) | |
5102 | keep_going (ecs); | |
5103 | else | |
22bcd14b | 5104 | stop_waiting (ecs); |
04e68871 DJ |
5105 | return; |
5106 | } | |
94c57d6a PA |
5107 | process_event_stop_test (ecs); |
5108 | return; | |
488f131b | 5109 | |
6c95b8df PA |
5110 | case TARGET_WAITKIND_VFORK_DONE: |
5111 | /* Done with the shared memory region. Re-insert breakpoints in | |
5112 | the parent, and keep going. */ | |
5113 | ||
00431a78 | 5114 | context_switch (ecs); |
6c95b8df PA |
5115 | |
5116 | current_inferior ()->waiting_for_vfork_done = 0; | |
56710373 | 5117 | current_inferior ()->pspace->breakpoints_not_allowed = 0; |
c65d6b55 PA |
5118 | |
5119 | if (handle_stop_requested (ecs)) | |
5120 | return; | |
5121 | ||
6c95b8df PA |
5122 | /* This also takes care of reinserting breakpoints in the |
5123 | previously locked inferior. */ | |
5124 | keep_going (ecs); | |
5125 | return; | |
5126 | ||
488f131b | 5127 | case TARGET_WAITKIND_EXECD: |
488f131b | 5128 | |
cbd2b4e3 PA |
5129 | /* Note we can't read registers yet (the stop_pc), because we |
5130 | don't yet know the inferior's post-exec architecture. | |
5131 | 'stop_pc' is explicitly read below instead. */ | |
00431a78 | 5132 | switch_to_thread_no_regs (ecs->event_thread); |
5a2901d9 | 5133 | |
6c95b8df PA |
5134 | /* Do whatever is necessary to the parent branch of the vfork. */ |
5135 | handle_vfork_child_exec_or_exit (1); | |
5136 | ||
795e548f PA |
5137 | /* This causes the eventpoints and symbol table to be reset. |
5138 | Must do this now, before trying to determine whether to | |
5139 | stop. */ | |
71b43ef8 | 5140 | follow_exec (inferior_ptid, ecs->ws.value.execd_pathname); |
795e548f | 5141 | |
17d8546e DB |
5142 | /* In follow_exec we may have deleted the original thread and |
5143 | created a new one. Make sure that the event thread is the | |
5144 | execd thread for that case (this is a nop otherwise). */ | |
5145 | ecs->event_thread = inferior_thread (); | |
5146 | ||
f2ffa92b PA |
5147 | ecs->event_thread->suspend.stop_pc |
5148 | = regcache_read_pc (get_thread_regcache (ecs->event_thread)); | |
ecdc3a72 | 5149 | |
16c381f0 | 5150 | ecs->event_thread->control.stop_bpstat |
a01bda52 | 5151 | = bpstat_stop_status (get_current_regcache ()->aspace (), |
f2ffa92b PA |
5152 | ecs->event_thread->suspend.stop_pc, |
5153 | ecs->event_thread, &ecs->ws); | |
795e548f | 5154 | |
71b43ef8 PA |
5155 | /* Note that this may be referenced from inside |
5156 | bpstat_stop_status above, through inferior_has_execd. */ | |
5157 | xfree (ecs->ws.value.execd_pathname); | |
5158 | ecs->ws.value.execd_pathname = NULL; | |
5159 | ||
c65d6b55 PA |
5160 | if (handle_stop_requested (ecs)) |
5161 | return; | |
5162 | ||
04e68871 | 5163 | /* If no catchpoint triggered for this, then keep going. */ |
ce12b012 | 5164 | if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat)) |
04e68871 | 5165 | { |
a493e3e2 | 5166 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; |
04e68871 DJ |
5167 | keep_going (ecs); |
5168 | return; | |
5169 | } | |
94c57d6a PA |
5170 | process_event_stop_test (ecs); |
5171 | return; | |
488f131b | 5172 | |
b4dc5ffa MK |
5173 | /* Be careful not to try to gather much state about a thread |
5174 | that's in a syscall. It's frequently a losing proposition. */ | |
488f131b | 5175 | case TARGET_WAITKIND_SYSCALL_ENTRY: |
1777feb0 | 5176 | /* Getting the current syscall number. */ |
94c57d6a PA |
5177 | if (handle_syscall_event (ecs) == 0) |
5178 | process_event_stop_test (ecs); | |
5179 | return; | |
c906108c | 5180 | |
488f131b JB |
5181 | /* Before examining the threads further, step this thread to |
5182 | get it entirely out of the syscall. (We get notice of the | |
5183 | event when the thread is just on the verge of exiting a | |
5184 | syscall. Stepping one instruction seems to get it back | |
b4dc5ffa | 5185 | into user code.) */ |
488f131b | 5186 | case TARGET_WAITKIND_SYSCALL_RETURN: |
94c57d6a PA |
5187 | if (handle_syscall_event (ecs) == 0) |
5188 | process_event_stop_test (ecs); | |
5189 | return; | |
c906108c | 5190 | |
488f131b | 5191 | case TARGET_WAITKIND_STOPPED: |
4f5d7f63 PA |
5192 | handle_signal_stop (ecs); |
5193 | return; | |
c906108c | 5194 | |
b2175913 MS |
5195 | case TARGET_WAITKIND_NO_HISTORY: |
5196 | /* Reverse execution: target ran out of history info. */ | |
eab402df | 5197 | |
d1988021 | 5198 | /* Switch to the stopped thread. */ |
00431a78 | 5199 | context_switch (ecs); |
d1988021 MM |
5200 | if (debug_infrun) |
5201 | fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n"); | |
5202 | ||
34b7e8a6 | 5203 | delete_just_stopped_threads_single_step_breakpoints (); |
f2ffa92b PA |
5204 | ecs->event_thread->suspend.stop_pc |
5205 | = regcache_read_pc (get_thread_regcache (inferior_thread ())); | |
c65d6b55 PA |
5206 | |
5207 | if (handle_stop_requested (ecs)) | |
5208 | return; | |
5209 | ||
76727919 | 5210 | gdb::observers::no_history.notify (); |
22bcd14b | 5211 | stop_waiting (ecs); |
b2175913 | 5212 | return; |
488f131b | 5213 | } |
4f5d7f63 PA |
5214 | } |
5215 | ||
372316f1 PA |
5216 | /* Restart threads back to what they were trying to do back when we |
5217 | paused them for an in-line step-over. The EVENT_THREAD thread is | |
5218 | ignored. */ | |
4d9d9d04 PA |
5219 | |
5220 | static void | |
372316f1 PA |
5221 | restart_threads (struct thread_info *event_thread) |
5222 | { | |
372316f1 PA |
5223 | /* In case the instruction just stepped spawned a new thread. */ |
5224 | update_thread_list (); | |
5225 | ||
08036331 | 5226 | for (thread_info *tp : all_non_exited_threads ()) |
372316f1 | 5227 | { |
f3f8ece4 PA |
5228 | switch_to_thread_no_regs (tp); |
5229 | ||
372316f1 PA |
5230 | if (tp == event_thread) |
5231 | { | |
5232 | if (debug_infrun) | |
5233 | fprintf_unfiltered (gdb_stdlog, | |
5234 | "infrun: restart threads: " | |
5235 | "[%s] is event thread\n", | |
a068643d | 5236 | target_pid_to_str (tp->ptid).c_str ()); |
372316f1 PA |
5237 | continue; |
5238 | } | |
5239 | ||
5240 | if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall)) | |
5241 | { | |
5242 | if (debug_infrun) | |
5243 | fprintf_unfiltered (gdb_stdlog, | |
5244 | "infrun: restart threads: " | |
5245 | "[%s] not meant to be running\n", | |
a068643d | 5246 | target_pid_to_str (tp->ptid).c_str ()); |
372316f1 PA |
5247 | continue; |
5248 | } | |
5249 | ||
5250 | if (tp->resumed) | |
5251 | { | |
5252 | if (debug_infrun) | |
5253 | fprintf_unfiltered (gdb_stdlog, | |
5254 | "infrun: restart threads: [%s] resumed\n", | |
a068643d | 5255 | target_pid_to_str (tp->ptid).c_str ()); |
372316f1 PA |
5256 | gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p); |
5257 | continue; | |
5258 | } | |
5259 | ||
5260 | if (thread_is_in_step_over_chain (tp)) | |
5261 | { | |
5262 | if (debug_infrun) | |
5263 | fprintf_unfiltered (gdb_stdlog, | |
5264 | "infrun: restart threads: " | |
5265 | "[%s] needs step-over\n", | |
a068643d | 5266 | target_pid_to_str (tp->ptid).c_str ()); |
372316f1 PA |
5267 | gdb_assert (!tp->resumed); |
5268 | continue; | |
5269 | } | |
5270 | ||
5271 | ||
5272 | if (tp->suspend.waitstatus_pending_p) | |
5273 | { | |
5274 | if (debug_infrun) | |
5275 | fprintf_unfiltered (gdb_stdlog, | |
5276 | "infrun: restart threads: " | |
5277 | "[%s] has pending status\n", | |
a068643d | 5278 | target_pid_to_str (tp->ptid).c_str ()); |
372316f1 PA |
5279 | tp->resumed = 1; |
5280 | continue; | |
5281 | } | |
5282 | ||
c65d6b55 PA |
5283 | gdb_assert (!tp->stop_requested); |
5284 | ||
372316f1 PA |
5285 | /* If some thread needs to start a step-over at this point, it |
5286 | should still be in the step-over queue, and thus skipped | |
5287 | above. */ | |
5288 | if (thread_still_needs_step_over (tp)) | |
5289 | { | |
5290 | internal_error (__FILE__, __LINE__, | |
5291 | "thread [%s] needs a step-over, but not in " | |
5292 | "step-over queue\n", | |
a068643d | 5293 | target_pid_to_str (tp->ptid).c_str ()); |
372316f1 PA |
5294 | } |
5295 | ||
5296 | if (currently_stepping (tp)) | |
5297 | { | |
5298 | if (debug_infrun) | |
5299 | fprintf_unfiltered (gdb_stdlog, | |
5300 | "infrun: restart threads: [%s] was stepping\n", | |
a068643d | 5301 | target_pid_to_str (tp->ptid).c_str ()); |
372316f1 PA |
5302 | keep_going_stepped_thread (tp); |
5303 | } | |
5304 | else | |
5305 | { | |
5306 | struct execution_control_state ecss; | |
5307 | struct execution_control_state *ecs = &ecss; | |
5308 | ||
5309 | if (debug_infrun) | |
5310 | fprintf_unfiltered (gdb_stdlog, | |
5311 | "infrun: restart threads: [%s] continuing\n", | |
a068643d | 5312 | target_pid_to_str (tp->ptid).c_str ()); |
372316f1 | 5313 | reset_ecs (ecs, tp); |
00431a78 | 5314 | switch_to_thread (tp); |
372316f1 PA |
5315 | keep_going_pass_signal (ecs); |
5316 | } | |
5317 | } | |
5318 | } | |
5319 | ||
5320 | /* Callback for iterate_over_threads. Find a resumed thread that has | |
5321 | a pending waitstatus. */ | |
5322 | ||
5323 | static int | |
5324 | resumed_thread_with_pending_status (struct thread_info *tp, | |
5325 | void *arg) | |
5326 | { | |
5327 | return (tp->resumed | |
5328 | && tp->suspend.waitstatus_pending_p); | |
5329 | } | |
5330 | ||
5331 | /* Called when we get an event that may finish an in-line or | |
5332 | out-of-line (displaced stepping) step-over started previously. | |
5333 | Return true if the event is processed and we should go back to the | |
5334 | event loop; false if the caller should continue processing the | |
5335 | event. */ | |
5336 | ||
5337 | static int | |
4d9d9d04 PA |
5338 | finish_step_over (struct execution_control_state *ecs) |
5339 | { | |
372316f1 PA |
5340 | int had_step_over_info; |
5341 | ||
00431a78 | 5342 | displaced_step_fixup (ecs->event_thread, |
4d9d9d04 PA |
5343 | ecs->event_thread->suspend.stop_signal); |
5344 | ||
372316f1 PA |
5345 | had_step_over_info = step_over_info_valid_p (); |
5346 | ||
5347 | if (had_step_over_info) | |
4d9d9d04 PA |
5348 | { |
5349 | /* If we're stepping over a breakpoint with all threads locked, | |
5350 | then only the thread that was stepped should be reporting | |
5351 | back an event. */ | |
5352 | gdb_assert (ecs->event_thread->control.trap_expected); | |
5353 | ||
c65d6b55 | 5354 | clear_step_over_info (); |
4d9d9d04 PA |
5355 | } |
5356 | ||
fbea99ea | 5357 | if (!target_is_non_stop_p ()) |
372316f1 | 5358 | return 0; |
4d9d9d04 PA |
5359 | |
5360 | /* Start a new step-over in another thread if there's one that | |
5361 | needs it. */ | |
5362 | start_step_over (); | |
372316f1 PA |
5363 | |
5364 | /* If we were stepping over a breakpoint before, and haven't started | |
5365 | a new in-line step-over sequence, then restart all other threads | |
5366 | (except the event thread). We can't do this in all-stop, as then | |
5367 | e.g., we wouldn't be able to issue any other remote packet until | |
5368 | these other threads stop. */ | |
5369 | if (had_step_over_info && !step_over_info_valid_p ()) | |
5370 | { | |
5371 | struct thread_info *pending; | |
5372 | ||
5373 | /* If we only have threads with pending statuses, the restart | |
5374 | below won't restart any thread and so nothing re-inserts the | |
5375 | breakpoint we just stepped over. But we need it inserted | |
5376 | when we later process the pending events, otherwise if | |
5377 | another thread has a pending event for this breakpoint too, | |
5378 | we'd discard its event (because the breakpoint that | |
5379 | originally caused the event was no longer inserted). */ | |
00431a78 | 5380 | context_switch (ecs); |
372316f1 PA |
5381 | insert_breakpoints (); |
5382 | ||
5383 | restart_threads (ecs->event_thread); | |
5384 | ||
5385 | /* If we have events pending, go through handle_inferior_event | |
5386 | again, picking up a pending event at random. This avoids | |
5387 | thread starvation. */ | |
5388 | ||
5389 | /* But not if we just stepped over a watchpoint in order to let | |
5390 | the instruction execute so we can evaluate its expression. | |
5391 | The set of watchpoints that triggered is recorded in the | |
5392 | breakpoint objects themselves (see bp->watchpoint_triggered). | |
5393 | If we processed another event first, that other event could | |
5394 | clobber this info. */ | |
5395 | if (ecs->event_thread->stepping_over_watchpoint) | |
5396 | return 0; | |
5397 | ||
5398 | pending = iterate_over_threads (resumed_thread_with_pending_status, | |
5399 | NULL); | |
5400 | if (pending != NULL) | |
5401 | { | |
5402 | struct thread_info *tp = ecs->event_thread; | |
5403 | struct regcache *regcache; | |
5404 | ||
5405 | if (debug_infrun) | |
5406 | { | |
5407 | fprintf_unfiltered (gdb_stdlog, | |
5408 | "infrun: found resumed threads with " | |
5409 | "pending events, saving status\n"); | |
5410 | } | |
5411 | ||
5412 | gdb_assert (pending != tp); | |
5413 | ||
5414 | /* Record the event thread's event for later. */ | |
5415 | save_waitstatus (tp, &ecs->ws); | |
5416 | /* This was cleared early, by handle_inferior_event. Set it | |
5417 | so this pending event is considered by | |
5418 | do_target_wait. */ | |
5419 | tp->resumed = 1; | |
5420 | ||
5421 | gdb_assert (!tp->executing); | |
5422 | ||
00431a78 | 5423 | regcache = get_thread_regcache (tp); |
372316f1 PA |
5424 | tp->suspend.stop_pc = regcache_read_pc (regcache); |
5425 | ||
5426 | if (debug_infrun) | |
5427 | { | |
5428 | fprintf_unfiltered (gdb_stdlog, | |
5429 | "infrun: saved stop_pc=%s for %s " | |
5430 | "(currently_stepping=%d)\n", | |
5431 | paddress (target_gdbarch (), | |
5432 | tp->suspend.stop_pc), | |
a068643d | 5433 | target_pid_to_str (tp->ptid).c_str (), |
372316f1 PA |
5434 | currently_stepping (tp)); |
5435 | } | |
5436 | ||
5437 | /* This in-line step-over finished; clear this so we won't | |
5438 | start a new one. This is what handle_signal_stop would | |
5439 | do, if we returned false. */ | |
5440 | tp->stepping_over_breakpoint = 0; | |
5441 | ||
5442 | /* Wake up the event loop again. */ | |
5443 | mark_async_event_handler (infrun_async_inferior_event_token); | |
5444 | ||
5445 | prepare_to_wait (ecs); | |
5446 | return 1; | |
5447 | } | |
5448 | } | |
5449 | ||
5450 | return 0; | |
4d9d9d04 PA |
5451 | } |
5452 | ||
4f5d7f63 PA |
5453 | /* Come here when the program has stopped with a signal. */ |
5454 | ||
5455 | static void | |
5456 | handle_signal_stop (struct execution_control_state *ecs) | |
5457 | { | |
5458 | struct frame_info *frame; | |
5459 | struct gdbarch *gdbarch; | |
5460 | int stopped_by_watchpoint; | |
5461 | enum stop_kind stop_soon; | |
5462 | int random_signal; | |
c906108c | 5463 | |
f0407826 DE |
5464 | gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED); |
5465 | ||
c65d6b55 PA |
5466 | ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig; |
5467 | ||
f0407826 DE |
5468 | /* Do we need to clean up the state of a thread that has |
5469 | completed a displaced single-step? (Doing so usually affects | |
5470 | the PC, so do it here, before we set stop_pc.) */ | |
372316f1 PA |
5471 | if (finish_step_over (ecs)) |
5472 | return; | |
f0407826 DE |
5473 | |
5474 | /* If we either finished a single-step or hit a breakpoint, but | |
5475 | the user wanted this thread to be stopped, pretend we got a | |
5476 | SIG0 (generic unsignaled stop). */ | |
5477 | if (ecs->event_thread->stop_requested | |
5478 | && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP) | |
5479 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; | |
237fc4c9 | 5480 | |
f2ffa92b PA |
5481 | ecs->event_thread->suspend.stop_pc |
5482 | = regcache_read_pc (get_thread_regcache (ecs->event_thread)); | |
488f131b | 5483 | |
527159b7 | 5484 | if (debug_infrun) |
237fc4c9 | 5485 | { |
00431a78 | 5486 | struct regcache *regcache = get_thread_regcache (ecs->event_thread); |
b926417a | 5487 | struct gdbarch *reg_gdbarch = regcache->arch (); |
7f82dfc7 | 5488 | |
f3f8ece4 | 5489 | switch_to_thread (ecs->event_thread); |
5af949e3 UW |
5490 | |
5491 | fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n", | |
b926417a | 5492 | paddress (reg_gdbarch, |
f2ffa92b | 5493 | ecs->event_thread->suspend.stop_pc)); |
d92524f1 | 5494 | if (target_stopped_by_watchpoint ()) |
237fc4c9 PA |
5495 | { |
5496 | CORE_ADDR addr; | |
abbb1732 | 5497 | |
237fc4c9 PA |
5498 | fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n"); |
5499 | ||
8b88a78e | 5500 | if (target_stopped_data_address (current_top_target (), &addr)) |
237fc4c9 | 5501 | fprintf_unfiltered (gdb_stdlog, |
5af949e3 | 5502 | "infrun: stopped data address = %s\n", |
b926417a | 5503 | paddress (reg_gdbarch, addr)); |
237fc4c9 PA |
5504 | else |
5505 | fprintf_unfiltered (gdb_stdlog, | |
5506 | "infrun: (no data address available)\n"); | |
5507 | } | |
5508 | } | |
527159b7 | 5509 | |
36fa8042 PA |
5510 | /* This is originated from start_remote(), start_inferior() and |
5511 | shared libraries hook functions. */ | |
00431a78 | 5512 | stop_soon = get_inferior_stop_soon (ecs); |
36fa8042 PA |
5513 | if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE) |
5514 | { | |
00431a78 | 5515 | context_switch (ecs); |
36fa8042 PA |
5516 | if (debug_infrun) |
5517 | fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n"); | |
5518 | stop_print_frame = 1; | |
22bcd14b | 5519 | stop_waiting (ecs); |
36fa8042 PA |
5520 | return; |
5521 | } | |
5522 | ||
36fa8042 PA |
5523 | /* This originates from attach_command(). We need to overwrite |
5524 | the stop_signal here, because some kernels don't ignore a | |
5525 | SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call. | |
5526 | See more comments in inferior.h. On the other hand, if we | |
5527 | get a non-SIGSTOP, report it to the user - assume the backend | |
5528 | will handle the SIGSTOP if it should show up later. | |
5529 | ||
5530 | Also consider that the attach is complete when we see a | |
5531 | SIGTRAP. Some systems (e.g. Windows), and stubs supporting | |
5532 | target extended-remote report it instead of a SIGSTOP | |
5533 | (e.g. gdbserver). We already rely on SIGTRAP being our | |
5534 | signal, so this is no exception. | |
5535 | ||
5536 | Also consider that the attach is complete when we see a | |
5537 | GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell | |
5538 | the target to stop all threads of the inferior, in case the | |
5539 | low level attach operation doesn't stop them implicitly. If | |
5540 | they weren't stopped implicitly, then the stub will report a | |
5541 | GDB_SIGNAL_0, meaning: stopped for no particular reason | |
5542 | other than GDB's request. */ | |
5543 | if (stop_soon == STOP_QUIETLY_NO_SIGSTOP | |
5544 | && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP | |
5545 | || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP | |
5546 | || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0)) | |
5547 | { | |
5548 | stop_print_frame = 1; | |
22bcd14b | 5549 | stop_waiting (ecs); |
36fa8042 PA |
5550 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; |
5551 | return; | |
5552 | } | |
5553 | ||
488f131b | 5554 | /* See if something interesting happened to the non-current thread. If |
b40c7d58 | 5555 | so, then switch to that thread. */ |
d7e15655 | 5556 | if (ecs->ptid != inferior_ptid) |
488f131b | 5557 | { |
527159b7 | 5558 | if (debug_infrun) |
8a9de0e4 | 5559 | fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n"); |
527159b7 | 5560 | |
00431a78 | 5561 | context_switch (ecs); |
c5aa993b | 5562 | |
9a4105ab | 5563 | if (deprecated_context_hook) |
00431a78 | 5564 | deprecated_context_hook (ecs->event_thread->global_num); |
488f131b | 5565 | } |
c906108c | 5566 | |
568d6575 UW |
5567 | /* At this point, get hold of the now-current thread's frame. */ |
5568 | frame = get_current_frame (); | |
5569 | gdbarch = get_frame_arch (frame); | |
5570 | ||
2adfaa28 | 5571 | /* Pull the single step breakpoints out of the target. */ |
af48d08f | 5572 | if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP) |
488f131b | 5573 | { |
af48d08f | 5574 | struct regcache *regcache; |
af48d08f | 5575 | CORE_ADDR pc; |
2adfaa28 | 5576 | |
00431a78 | 5577 | regcache = get_thread_regcache (ecs->event_thread); |
8b86c959 YQ |
5578 | const address_space *aspace = regcache->aspace (); |
5579 | ||
af48d08f | 5580 | pc = regcache_read_pc (regcache); |
34b7e8a6 | 5581 | |
af48d08f PA |
5582 | /* However, before doing so, if this single-step breakpoint was |
5583 | actually for another thread, set this thread up for moving | |
5584 | past it. */ | |
5585 | if (!thread_has_single_step_breakpoint_here (ecs->event_thread, | |
5586 | aspace, pc)) | |
5587 | { | |
5588 | if (single_step_breakpoint_inserted_here_p (aspace, pc)) | |
2adfaa28 PA |
5589 | { |
5590 | if (debug_infrun) | |
5591 | { | |
5592 | fprintf_unfiltered (gdb_stdlog, | |
af48d08f | 5593 | "infrun: [%s] hit another thread's " |
34b7e8a6 | 5594 | "single-step breakpoint\n", |
a068643d | 5595 | target_pid_to_str (ecs->ptid).c_str ()); |
2adfaa28 | 5596 | } |
af48d08f PA |
5597 | ecs->hit_singlestep_breakpoint = 1; |
5598 | } | |
5599 | } | |
5600 | else | |
5601 | { | |
5602 | if (debug_infrun) | |
5603 | { | |
5604 | fprintf_unfiltered (gdb_stdlog, | |
5605 | "infrun: [%s] hit its " | |
5606 | "single-step breakpoint\n", | |
a068643d | 5607 | target_pid_to_str (ecs->ptid).c_str ()); |
2adfaa28 PA |
5608 | } |
5609 | } | |
488f131b | 5610 | } |
af48d08f | 5611 | delete_just_stopped_threads_single_step_breakpoints (); |
c906108c | 5612 | |
963f9c80 PA |
5613 | if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP |
5614 | && ecs->event_thread->control.trap_expected | |
5615 | && ecs->event_thread->stepping_over_watchpoint) | |
d983da9c DJ |
5616 | stopped_by_watchpoint = 0; |
5617 | else | |
5618 | stopped_by_watchpoint = watchpoints_triggered (&ecs->ws); | |
5619 | ||
5620 | /* If necessary, step over this watchpoint. We'll be back to display | |
5621 | it in a moment. */ | |
5622 | if (stopped_by_watchpoint | |
d92524f1 | 5623 | && (target_have_steppable_watchpoint |
568d6575 | 5624 | || gdbarch_have_nonsteppable_watchpoint (gdbarch))) |
488f131b | 5625 | { |
488f131b JB |
5626 | /* At this point, we are stopped at an instruction which has |
5627 | attempted to write to a piece of memory under control of | |
5628 | a watchpoint. The instruction hasn't actually executed | |
5629 | yet. If we were to evaluate the watchpoint expression | |
5630 | now, we would get the old value, and therefore no change | |
5631 | would seem to have occurred. | |
5632 | ||
5633 | In order to make watchpoints work `right', we really need | |
5634 | to complete the memory write, and then evaluate the | |
d983da9c DJ |
5635 | watchpoint expression. We do this by single-stepping the |
5636 | target. | |
5637 | ||
7f89fd65 | 5638 | It may not be necessary to disable the watchpoint to step over |
d983da9c DJ |
5639 | it. For example, the PA can (with some kernel cooperation) |
5640 | single step over a watchpoint without disabling the watchpoint. | |
5641 | ||
5642 | It is far more common to need to disable a watchpoint to step | |
5643 | the inferior over it. If we have non-steppable watchpoints, | |
5644 | we must disable the current watchpoint; it's simplest to | |
963f9c80 PA |
5645 | disable all watchpoints. |
5646 | ||
5647 | Any breakpoint at PC must also be stepped over -- if there's | |
5648 | one, it will have already triggered before the watchpoint | |
5649 | triggered, and we either already reported it to the user, or | |
5650 | it didn't cause a stop and we called keep_going. In either | |
5651 | case, if there was a breakpoint at PC, we must be trying to | |
5652 | step past it. */ | |
5653 | ecs->event_thread->stepping_over_watchpoint = 1; | |
5654 | keep_going (ecs); | |
488f131b JB |
5655 | return; |
5656 | } | |
5657 | ||
4e1c45ea | 5658 | ecs->event_thread->stepping_over_breakpoint = 0; |
963f9c80 | 5659 | ecs->event_thread->stepping_over_watchpoint = 0; |
16c381f0 JK |
5660 | bpstat_clear (&ecs->event_thread->control.stop_bpstat); |
5661 | ecs->event_thread->control.stop_step = 0; | |
488f131b | 5662 | stop_print_frame = 1; |
488f131b | 5663 | stopped_by_random_signal = 0; |
ddfe970e | 5664 | bpstat stop_chain = NULL; |
488f131b | 5665 | |
edb3359d DJ |
5666 | /* Hide inlined functions starting here, unless we just performed stepi or |
5667 | nexti. After stepi and nexti, always show the innermost frame (not any | |
5668 | inline function call sites). */ | |
16c381f0 | 5669 | if (ecs->event_thread->control.step_range_end != 1) |
0574c78f | 5670 | { |
00431a78 PA |
5671 | const address_space *aspace |
5672 | = get_thread_regcache (ecs->event_thread)->aspace (); | |
0574c78f GB |
5673 | |
5674 | /* skip_inline_frames is expensive, so we avoid it if we can | |
5675 | determine that the address is one where functions cannot have | |
5676 | been inlined. This improves performance with inferiors that | |
5677 | load a lot of shared libraries, because the solib event | |
5678 | breakpoint is defined as the address of a function (i.e. not | |
5679 | inline). Note that we have to check the previous PC as well | |
5680 | as the current one to catch cases when we have just | |
5681 | single-stepped off a breakpoint prior to reinstating it. | |
5682 | Note that we're assuming that the code we single-step to is | |
5683 | not inline, but that's not definitive: there's nothing | |
5684 | preventing the event breakpoint function from containing | |
5685 | inlined code, and the single-step ending up there. If the | |
5686 | user had set a breakpoint on that inlined code, the missing | |
5687 | skip_inline_frames call would break things. Fortunately | |
5688 | that's an extremely unlikely scenario. */ | |
f2ffa92b PA |
5689 | if (!pc_at_non_inline_function (aspace, |
5690 | ecs->event_thread->suspend.stop_pc, | |
5691 | &ecs->ws) | |
a210c238 MR |
5692 | && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP |
5693 | && ecs->event_thread->control.trap_expected | |
5694 | && pc_at_non_inline_function (aspace, | |
5695 | ecs->event_thread->prev_pc, | |
09ac7c10 | 5696 | &ecs->ws))) |
1c5a993e | 5697 | { |
f2ffa92b PA |
5698 | stop_chain = build_bpstat_chain (aspace, |
5699 | ecs->event_thread->suspend.stop_pc, | |
5700 | &ecs->ws); | |
00431a78 | 5701 | skip_inline_frames (ecs->event_thread, stop_chain); |
1c5a993e MR |
5702 | |
5703 | /* Re-fetch current thread's frame in case that invalidated | |
5704 | the frame cache. */ | |
5705 | frame = get_current_frame (); | |
5706 | gdbarch = get_frame_arch (frame); | |
5707 | } | |
0574c78f | 5708 | } |
edb3359d | 5709 | |
a493e3e2 | 5710 | if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP |
16c381f0 | 5711 | && ecs->event_thread->control.trap_expected |
568d6575 | 5712 | && gdbarch_single_step_through_delay_p (gdbarch) |
4e1c45ea | 5713 | && currently_stepping (ecs->event_thread)) |
3352ef37 | 5714 | { |
b50d7442 | 5715 | /* We're trying to step off a breakpoint. Turns out that we're |
3352ef37 | 5716 | also on an instruction that needs to be stepped multiple |
1777feb0 | 5717 | times before it's been fully executing. E.g., architectures |
3352ef37 AC |
5718 | with a delay slot. It needs to be stepped twice, once for |
5719 | the instruction and once for the delay slot. */ | |
5720 | int step_through_delay | |
568d6575 | 5721 | = gdbarch_single_step_through_delay (gdbarch, frame); |
abbb1732 | 5722 | |
527159b7 | 5723 | if (debug_infrun && step_through_delay) |
8a9de0e4 | 5724 | fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n"); |
16c381f0 JK |
5725 | if (ecs->event_thread->control.step_range_end == 0 |
5726 | && step_through_delay) | |
3352ef37 AC |
5727 | { |
5728 | /* The user issued a continue when stopped at a breakpoint. | |
5729 | Set up for another trap and get out of here. */ | |
4e1c45ea | 5730 | ecs->event_thread->stepping_over_breakpoint = 1; |
3352ef37 AC |
5731 | keep_going (ecs); |
5732 | return; | |
5733 | } | |
5734 | else if (step_through_delay) | |
5735 | { | |
5736 | /* The user issued a step when stopped at a breakpoint. | |
5737 | Maybe we should stop, maybe we should not - the delay | |
5738 | slot *might* correspond to a line of source. In any | |
ca67fcb8 VP |
5739 | case, don't decide that here, just set |
5740 | ecs->stepping_over_breakpoint, making sure we | |
5741 | single-step again before breakpoints are re-inserted. */ | |
4e1c45ea | 5742 | ecs->event_thread->stepping_over_breakpoint = 1; |
3352ef37 AC |
5743 | } |
5744 | } | |
5745 | ||
ab04a2af TT |
5746 | /* See if there is a breakpoint/watchpoint/catchpoint/etc. that |
5747 | handles this event. */ | |
5748 | ecs->event_thread->control.stop_bpstat | |
a01bda52 | 5749 | = bpstat_stop_status (get_current_regcache ()->aspace (), |
f2ffa92b PA |
5750 | ecs->event_thread->suspend.stop_pc, |
5751 | ecs->event_thread, &ecs->ws, stop_chain); | |
db82e815 | 5752 | |
ab04a2af TT |
5753 | /* Following in case break condition called a |
5754 | function. */ | |
5755 | stop_print_frame = 1; | |
73dd234f | 5756 | |
ab04a2af TT |
5757 | /* This is where we handle "moribund" watchpoints. Unlike |
5758 | software breakpoints traps, hardware watchpoint traps are | |
5759 | always distinguishable from random traps. If no high-level | |
5760 | watchpoint is associated with the reported stop data address | |
5761 | anymore, then the bpstat does not explain the signal --- | |
5762 | simply make sure to ignore it if `stopped_by_watchpoint' is | |
5763 | set. */ | |
5764 | ||
5765 | if (debug_infrun | |
5766 | && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP | |
47591c29 | 5767 | && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat, |
427cd150 | 5768 | GDB_SIGNAL_TRAP) |
ab04a2af TT |
5769 | && stopped_by_watchpoint) |
5770 | fprintf_unfiltered (gdb_stdlog, | |
5771 | "infrun: no user watchpoint explains " | |
5772 | "watchpoint SIGTRAP, ignoring\n"); | |
73dd234f | 5773 | |
bac7d97b | 5774 | /* NOTE: cagney/2003-03-29: These checks for a random signal |
ab04a2af TT |
5775 | at one stage in the past included checks for an inferior |
5776 | function call's call dummy's return breakpoint. The original | |
5777 | comment, that went with the test, read: | |
03cebad2 | 5778 | |
ab04a2af TT |
5779 | ``End of a stack dummy. Some systems (e.g. Sony news) give |
5780 | another signal besides SIGTRAP, so check here as well as | |
5781 | above.'' | |
73dd234f | 5782 | |
ab04a2af TT |
5783 | If someone ever tries to get call dummys on a |
5784 | non-executable stack to work (where the target would stop | |
5785 | with something like a SIGSEGV), then those tests might need | |
5786 | to be re-instated. Given, however, that the tests were only | |
5787 | enabled when momentary breakpoints were not being used, I | |
5788 | suspect that it won't be the case. | |
488f131b | 5789 | |
ab04a2af TT |
5790 | NOTE: kettenis/2004-02-05: Indeed such checks don't seem to |
5791 | be necessary for call dummies on a non-executable stack on | |
5792 | SPARC. */ | |
488f131b | 5793 | |
bac7d97b | 5794 | /* See if the breakpoints module can explain the signal. */ |
47591c29 PA |
5795 | random_signal |
5796 | = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat, | |
5797 | ecs->event_thread->suspend.stop_signal); | |
bac7d97b | 5798 | |
1cf4d951 PA |
5799 | /* Maybe this was a trap for a software breakpoint that has since |
5800 | been removed. */ | |
5801 | if (random_signal && target_stopped_by_sw_breakpoint ()) | |
5802 | { | |
f2ffa92b PA |
5803 | if (program_breakpoint_here_p (gdbarch, |
5804 | ecs->event_thread->suspend.stop_pc)) | |
1cf4d951 PA |
5805 | { |
5806 | struct regcache *regcache; | |
5807 | int decr_pc; | |
5808 | ||
5809 | /* Re-adjust PC to what the program would see if GDB was not | |
5810 | debugging it. */ | |
00431a78 | 5811 | regcache = get_thread_regcache (ecs->event_thread); |
527a273a | 5812 | decr_pc = gdbarch_decr_pc_after_break (gdbarch); |
1cf4d951 PA |
5813 | if (decr_pc != 0) |
5814 | { | |
07036511 TT |
5815 | gdb::optional<scoped_restore_tmpl<int>> |
5816 | restore_operation_disable; | |
1cf4d951 PA |
5817 | |
5818 | if (record_full_is_used ()) | |
07036511 TT |
5819 | restore_operation_disable.emplace |
5820 | (record_full_gdb_operation_disable_set ()); | |
1cf4d951 | 5821 | |
f2ffa92b PA |
5822 | regcache_write_pc (regcache, |
5823 | ecs->event_thread->suspend.stop_pc + decr_pc); | |
1cf4d951 PA |
5824 | } |
5825 | } | |
5826 | else | |
5827 | { | |
5828 | /* A delayed software breakpoint event. Ignore the trap. */ | |
5829 | if (debug_infrun) | |
5830 | fprintf_unfiltered (gdb_stdlog, | |
5831 | "infrun: delayed software breakpoint " | |
5832 | "trap, ignoring\n"); | |
5833 | random_signal = 0; | |
5834 | } | |
5835 | } | |
5836 | ||
5837 | /* Maybe this was a trap for a hardware breakpoint/watchpoint that | |
5838 | has since been removed. */ | |
5839 | if (random_signal && target_stopped_by_hw_breakpoint ()) | |
5840 | { | |
5841 | /* A delayed hardware breakpoint event. Ignore the trap. */ | |
5842 | if (debug_infrun) | |
5843 | fprintf_unfiltered (gdb_stdlog, | |
5844 | "infrun: delayed hardware breakpoint/watchpoint " | |
5845 | "trap, ignoring\n"); | |
5846 | random_signal = 0; | |
5847 | } | |
5848 | ||
bac7d97b PA |
5849 | /* If not, perhaps stepping/nexting can. */ |
5850 | if (random_signal) | |
5851 | random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP | |
5852 | && currently_stepping (ecs->event_thread)); | |
ab04a2af | 5853 | |
2adfaa28 PA |
5854 | /* Perhaps the thread hit a single-step breakpoint of _another_ |
5855 | thread. Single-step breakpoints are transparent to the | |
5856 | breakpoints module. */ | |
5857 | if (random_signal) | |
5858 | random_signal = !ecs->hit_singlestep_breakpoint; | |
5859 | ||
bac7d97b PA |
5860 | /* No? Perhaps we got a moribund watchpoint. */ |
5861 | if (random_signal) | |
5862 | random_signal = !stopped_by_watchpoint; | |
ab04a2af | 5863 | |
c65d6b55 PA |
5864 | /* Always stop if the user explicitly requested this thread to |
5865 | remain stopped. */ | |
5866 | if (ecs->event_thread->stop_requested) | |
5867 | { | |
5868 | random_signal = 1; | |
5869 | if (debug_infrun) | |
5870 | fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n"); | |
5871 | } | |
5872 | ||
488f131b JB |
5873 | /* For the program's own signals, act according to |
5874 | the signal handling tables. */ | |
5875 | ||
ce12b012 | 5876 | if (random_signal) |
488f131b JB |
5877 | { |
5878 | /* Signal not for debugging purposes. */ | |
c9657e70 | 5879 | struct inferior *inf = find_inferior_ptid (ecs->ptid); |
c9737c08 | 5880 | enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal; |
488f131b | 5881 | |
527159b7 | 5882 | if (debug_infrun) |
c9737c08 PA |
5883 | fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n", |
5884 | gdb_signal_to_symbol_string (stop_signal)); | |
527159b7 | 5885 | |
488f131b JB |
5886 | stopped_by_random_signal = 1; |
5887 | ||
252fbfc8 PA |
5888 | /* Always stop on signals if we're either just gaining control |
5889 | of the program, or the user explicitly requested this thread | |
5890 | to remain stopped. */ | |
d6b48e9c | 5891 | if (stop_soon != NO_STOP_QUIETLY |
252fbfc8 | 5892 | || ecs->event_thread->stop_requested |
24291992 | 5893 | || (!inf->detaching |
16c381f0 | 5894 | && signal_stop_state (ecs->event_thread->suspend.stop_signal))) |
488f131b | 5895 | { |
22bcd14b | 5896 | stop_waiting (ecs); |
488f131b JB |
5897 | return; |
5898 | } | |
b57bacec PA |
5899 | |
5900 | /* Notify observers the signal has "handle print" set. Note we | |
5901 | returned early above if stopping; normal_stop handles the | |
5902 | printing in that case. */ | |
5903 | if (signal_print[ecs->event_thread->suspend.stop_signal]) | |
5904 | { | |
5905 | /* The signal table tells us to print about this signal. */ | |
223ffa71 | 5906 | target_terminal::ours_for_output (); |
76727919 | 5907 | gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal); |
223ffa71 | 5908 | target_terminal::inferior (); |
b57bacec | 5909 | } |
488f131b JB |
5910 | |
5911 | /* Clear the signal if it should not be passed. */ | |
16c381f0 | 5912 | if (signal_program[ecs->event_thread->suspend.stop_signal] == 0) |
a493e3e2 | 5913 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; |
488f131b | 5914 | |
f2ffa92b | 5915 | if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc |
16c381f0 | 5916 | && ecs->event_thread->control.trap_expected |
8358c15c | 5917 | && ecs->event_thread->control.step_resume_breakpoint == NULL) |
68f53502 AC |
5918 | { |
5919 | /* We were just starting a new sequence, attempting to | |
5920 | single-step off of a breakpoint and expecting a SIGTRAP. | |
237fc4c9 | 5921 | Instead this signal arrives. This signal will take us out |
68f53502 AC |
5922 | of the stepping range so GDB needs to remember to, when |
5923 | the signal handler returns, resume stepping off that | |
5924 | breakpoint. */ | |
5925 | /* To simplify things, "continue" is forced to use the same | |
5926 | code paths as single-step - set a breakpoint at the | |
5927 | signal return address and then, once hit, step off that | |
5928 | breakpoint. */ | |
237fc4c9 PA |
5929 | if (debug_infrun) |
5930 | fprintf_unfiltered (gdb_stdlog, | |
5931 | "infrun: signal arrived while stepping over " | |
5932 | "breakpoint\n"); | |
d3169d93 | 5933 | |
2c03e5be | 5934 | insert_hp_step_resume_breakpoint_at_frame (frame); |
4e1c45ea | 5935 | ecs->event_thread->step_after_step_resume_breakpoint = 1; |
2455069d UW |
5936 | /* Reset trap_expected to ensure breakpoints are re-inserted. */ |
5937 | ecs->event_thread->control.trap_expected = 0; | |
d137e6dc PA |
5938 | |
5939 | /* If we were nexting/stepping some other thread, switch to | |
5940 | it, so that we don't continue it, losing control. */ | |
5941 | if (!switch_back_to_stepped_thread (ecs)) | |
5942 | keep_going (ecs); | |
9d799f85 | 5943 | return; |
68f53502 | 5944 | } |
9d799f85 | 5945 | |
e5f8a7cc | 5946 | if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0 |
f2ffa92b PA |
5947 | && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc, |
5948 | ecs->event_thread) | |
e5f8a7cc | 5949 | || ecs->event_thread->control.step_range_end == 1) |
edb3359d | 5950 | && frame_id_eq (get_stack_frame_id (frame), |
16c381f0 | 5951 | ecs->event_thread->control.step_stack_frame_id) |
8358c15c | 5952 | && ecs->event_thread->control.step_resume_breakpoint == NULL) |
d303a6c7 AC |
5953 | { |
5954 | /* The inferior is about to take a signal that will take it | |
5955 | out of the single step range. Set a breakpoint at the | |
5956 | current PC (which is presumably where the signal handler | |
5957 | will eventually return) and then allow the inferior to | |
5958 | run free. | |
5959 | ||
5960 | Note that this is only needed for a signal delivered | |
5961 | while in the single-step range. Nested signals aren't a | |
5962 | problem as they eventually all return. */ | |
237fc4c9 PA |
5963 | if (debug_infrun) |
5964 | fprintf_unfiltered (gdb_stdlog, | |
5965 | "infrun: signal may take us out of " | |
5966 | "single-step range\n"); | |
5967 | ||
372316f1 | 5968 | clear_step_over_info (); |
2c03e5be | 5969 | insert_hp_step_resume_breakpoint_at_frame (frame); |
e5f8a7cc | 5970 | ecs->event_thread->step_after_step_resume_breakpoint = 1; |
2455069d UW |
5971 | /* Reset trap_expected to ensure breakpoints are re-inserted. */ |
5972 | ecs->event_thread->control.trap_expected = 0; | |
9d799f85 AC |
5973 | keep_going (ecs); |
5974 | return; | |
d303a6c7 | 5975 | } |
9d799f85 | 5976 | |
85102364 | 5977 | /* Note: step_resume_breakpoint may be non-NULL. This occurs |
9d799f85 AC |
5978 | when either there's a nested signal, or when there's a |
5979 | pending signal enabled just as the signal handler returns | |
5980 | (leaving the inferior at the step-resume-breakpoint without | |
5981 | actually executing it). Either way continue until the | |
5982 | breakpoint is really hit. */ | |
c447ac0b PA |
5983 | |
5984 | if (!switch_back_to_stepped_thread (ecs)) | |
5985 | { | |
5986 | if (debug_infrun) | |
5987 | fprintf_unfiltered (gdb_stdlog, | |
5988 | "infrun: random signal, keep going\n"); | |
5989 | ||
5990 | keep_going (ecs); | |
5991 | } | |
5992 | return; | |
488f131b | 5993 | } |
94c57d6a PA |
5994 | |
5995 | process_event_stop_test (ecs); | |
5996 | } | |
5997 | ||
5998 | /* Come here when we've got some debug event / signal we can explain | |
5999 | (IOW, not a random signal), and test whether it should cause a | |
6000 | stop, or whether we should resume the inferior (transparently). | |
6001 | E.g., could be a breakpoint whose condition evaluates false; we | |
6002 | could be still stepping within the line; etc. */ | |
6003 | ||
6004 | static void | |
6005 | process_event_stop_test (struct execution_control_state *ecs) | |
6006 | { | |
6007 | struct symtab_and_line stop_pc_sal; | |
6008 | struct frame_info *frame; | |
6009 | struct gdbarch *gdbarch; | |
cdaa5b73 PA |
6010 | CORE_ADDR jmp_buf_pc; |
6011 | struct bpstat_what what; | |
94c57d6a | 6012 | |
cdaa5b73 | 6013 | /* Handle cases caused by hitting a breakpoint. */ |
611c83ae | 6014 | |
cdaa5b73 PA |
6015 | frame = get_current_frame (); |
6016 | gdbarch = get_frame_arch (frame); | |
fcf3daef | 6017 | |
cdaa5b73 | 6018 | what = bpstat_what (ecs->event_thread->control.stop_bpstat); |
611c83ae | 6019 | |
cdaa5b73 PA |
6020 | if (what.call_dummy) |
6021 | { | |
6022 | stop_stack_dummy = what.call_dummy; | |
6023 | } | |
186c406b | 6024 | |
243a9253 PA |
6025 | /* A few breakpoint types have callbacks associated (e.g., |
6026 | bp_jit_event). Run them now. */ | |
6027 | bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat); | |
6028 | ||
cdaa5b73 PA |
6029 | /* If we hit an internal event that triggers symbol changes, the |
6030 | current frame will be invalidated within bpstat_what (e.g., if we | |
6031 | hit an internal solib event). Re-fetch it. */ | |
6032 | frame = get_current_frame (); | |
6033 | gdbarch = get_frame_arch (frame); | |
e2e4d78b | 6034 | |
cdaa5b73 PA |
6035 | switch (what.main_action) |
6036 | { | |
6037 | case BPSTAT_WHAT_SET_LONGJMP_RESUME: | |
6038 | /* If we hit the breakpoint at longjmp while stepping, we | |
6039 | install a momentary breakpoint at the target of the | |
6040 | jmp_buf. */ | |
186c406b | 6041 | |
cdaa5b73 PA |
6042 | if (debug_infrun) |
6043 | fprintf_unfiltered (gdb_stdlog, | |
6044 | "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n"); | |
186c406b | 6045 | |
cdaa5b73 | 6046 | ecs->event_thread->stepping_over_breakpoint = 1; |
611c83ae | 6047 | |
cdaa5b73 PA |
6048 | if (what.is_longjmp) |
6049 | { | |
6050 | struct value *arg_value; | |
6051 | ||
6052 | /* If we set the longjmp breakpoint via a SystemTap probe, | |
6053 | then use it to extract the arguments. The destination PC | |
6054 | is the third argument to the probe. */ | |
6055 | arg_value = probe_safe_evaluate_at_pc (frame, 2); | |
6056 | if (arg_value) | |
8fa0c4f8 AA |
6057 | { |
6058 | jmp_buf_pc = value_as_address (arg_value); | |
6059 | jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc); | |
6060 | } | |
cdaa5b73 PA |
6061 | else if (!gdbarch_get_longjmp_target_p (gdbarch) |
6062 | || !gdbarch_get_longjmp_target (gdbarch, | |
6063 | frame, &jmp_buf_pc)) | |
e2e4d78b | 6064 | { |
cdaa5b73 PA |
6065 | if (debug_infrun) |
6066 | fprintf_unfiltered (gdb_stdlog, | |
6067 | "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME " | |
6068 | "(!gdbarch_get_longjmp_target)\n"); | |
6069 | keep_going (ecs); | |
6070 | return; | |
e2e4d78b | 6071 | } |
e2e4d78b | 6072 | |
cdaa5b73 PA |
6073 | /* Insert a breakpoint at resume address. */ |
6074 | insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc); | |
6075 | } | |
6076 | else | |
6077 | check_exception_resume (ecs, frame); | |
6078 | keep_going (ecs); | |
6079 | return; | |
e81a37f7 | 6080 | |
cdaa5b73 PA |
6081 | case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME: |
6082 | { | |
6083 | struct frame_info *init_frame; | |
e81a37f7 | 6084 | |
cdaa5b73 | 6085 | /* There are several cases to consider. |
c906108c | 6086 | |
cdaa5b73 PA |
6087 | 1. The initiating frame no longer exists. In this case we |
6088 | must stop, because the exception or longjmp has gone too | |
6089 | far. | |
2c03e5be | 6090 | |
cdaa5b73 PA |
6091 | 2. The initiating frame exists, and is the same as the |
6092 | current frame. We stop, because the exception or longjmp | |
6093 | has been caught. | |
2c03e5be | 6094 | |
cdaa5b73 PA |
6095 | 3. The initiating frame exists and is different from the |
6096 | current frame. This means the exception or longjmp has | |
6097 | been caught beneath the initiating frame, so keep going. | |
c906108c | 6098 | |
cdaa5b73 PA |
6099 | 4. longjmp breakpoint has been placed just to protect |
6100 | against stale dummy frames and user is not interested in | |
6101 | stopping around longjmps. */ | |
c5aa993b | 6102 | |
cdaa5b73 PA |
6103 | if (debug_infrun) |
6104 | fprintf_unfiltered (gdb_stdlog, | |
6105 | "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n"); | |
c5aa993b | 6106 | |
cdaa5b73 PA |
6107 | gdb_assert (ecs->event_thread->control.exception_resume_breakpoint |
6108 | != NULL); | |
6109 | delete_exception_resume_breakpoint (ecs->event_thread); | |
c5aa993b | 6110 | |
cdaa5b73 PA |
6111 | if (what.is_longjmp) |
6112 | { | |
b67a2c6f | 6113 | check_longjmp_breakpoint_for_call_dummy (ecs->event_thread); |
c5aa993b | 6114 | |
cdaa5b73 | 6115 | if (!frame_id_p (ecs->event_thread->initiating_frame)) |
e5ef252a | 6116 | { |
cdaa5b73 PA |
6117 | /* Case 4. */ |
6118 | keep_going (ecs); | |
6119 | return; | |
e5ef252a | 6120 | } |
cdaa5b73 | 6121 | } |
c5aa993b | 6122 | |
cdaa5b73 | 6123 | init_frame = frame_find_by_id (ecs->event_thread->initiating_frame); |
527159b7 | 6124 | |
cdaa5b73 PA |
6125 | if (init_frame) |
6126 | { | |
6127 | struct frame_id current_id | |
6128 | = get_frame_id (get_current_frame ()); | |
6129 | if (frame_id_eq (current_id, | |
6130 | ecs->event_thread->initiating_frame)) | |
6131 | { | |
6132 | /* Case 2. Fall through. */ | |
6133 | } | |
6134 | else | |
6135 | { | |
6136 | /* Case 3. */ | |
6137 | keep_going (ecs); | |
6138 | return; | |
6139 | } | |
68f53502 | 6140 | } |
488f131b | 6141 | |
cdaa5b73 PA |
6142 | /* For Cases 1 and 2, remove the step-resume breakpoint, if it |
6143 | exists. */ | |
6144 | delete_step_resume_breakpoint (ecs->event_thread); | |
e5ef252a | 6145 | |
bdc36728 | 6146 | end_stepping_range (ecs); |
cdaa5b73 PA |
6147 | } |
6148 | return; | |
e5ef252a | 6149 | |
cdaa5b73 PA |
6150 | case BPSTAT_WHAT_SINGLE: |
6151 | if (debug_infrun) | |
6152 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n"); | |
6153 | ecs->event_thread->stepping_over_breakpoint = 1; | |
6154 | /* Still need to check other stuff, at least the case where we | |
6155 | are stepping and step out of the right range. */ | |
6156 | break; | |
e5ef252a | 6157 | |
cdaa5b73 PA |
6158 | case BPSTAT_WHAT_STEP_RESUME: |
6159 | if (debug_infrun) | |
6160 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n"); | |
e5ef252a | 6161 | |
cdaa5b73 PA |
6162 | delete_step_resume_breakpoint (ecs->event_thread); |
6163 | if (ecs->event_thread->control.proceed_to_finish | |
6164 | && execution_direction == EXEC_REVERSE) | |
6165 | { | |
6166 | struct thread_info *tp = ecs->event_thread; | |
6167 | ||
6168 | /* We are finishing a function in reverse, and just hit the | |
6169 | step-resume breakpoint at the start address of the | |
6170 | function, and we're almost there -- just need to back up | |
6171 | by one more single-step, which should take us back to the | |
6172 | function call. */ | |
6173 | tp->control.step_range_start = tp->control.step_range_end = 1; | |
6174 | keep_going (ecs); | |
e5ef252a | 6175 | return; |
cdaa5b73 PA |
6176 | } |
6177 | fill_in_stop_func (gdbarch, ecs); | |
f2ffa92b | 6178 | if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start |
cdaa5b73 PA |
6179 | && execution_direction == EXEC_REVERSE) |
6180 | { | |
6181 | /* We are stepping over a function call in reverse, and just | |
6182 | hit the step-resume breakpoint at the start address of | |
6183 | the function. Go back to single-stepping, which should | |
6184 | take us back to the function call. */ | |
6185 | ecs->event_thread->stepping_over_breakpoint = 1; | |
6186 | keep_going (ecs); | |
6187 | return; | |
6188 | } | |
6189 | break; | |
e5ef252a | 6190 | |
cdaa5b73 PA |
6191 | case BPSTAT_WHAT_STOP_NOISY: |
6192 | if (debug_infrun) | |
6193 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n"); | |
6194 | stop_print_frame = 1; | |
e5ef252a | 6195 | |
99619bea PA |
6196 | /* Assume the thread stopped for a breapoint. We'll still check |
6197 | whether a/the breakpoint is there when the thread is next | |
6198 | resumed. */ | |
6199 | ecs->event_thread->stepping_over_breakpoint = 1; | |
e5ef252a | 6200 | |
22bcd14b | 6201 | stop_waiting (ecs); |
cdaa5b73 | 6202 | return; |
e5ef252a | 6203 | |
cdaa5b73 PA |
6204 | case BPSTAT_WHAT_STOP_SILENT: |
6205 | if (debug_infrun) | |
6206 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n"); | |
6207 | stop_print_frame = 0; | |
e5ef252a | 6208 | |
99619bea PA |
6209 | /* Assume the thread stopped for a breapoint. We'll still check |
6210 | whether a/the breakpoint is there when the thread is next | |
6211 | resumed. */ | |
6212 | ecs->event_thread->stepping_over_breakpoint = 1; | |
22bcd14b | 6213 | stop_waiting (ecs); |
cdaa5b73 PA |
6214 | return; |
6215 | ||
6216 | case BPSTAT_WHAT_HP_STEP_RESUME: | |
6217 | if (debug_infrun) | |
6218 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n"); | |
6219 | ||
6220 | delete_step_resume_breakpoint (ecs->event_thread); | |
6221 | if (ecs->event_thread->step_after_step_resume_breakpoint) | |
6222 | { | |
6223 | /* Back when the step-resume breakpoint was inserted, we | |
6224 | were trying to single-step off a breakpoint. Go back to | |
6225 | doing that. */ | |
6226 | ecs->event_thread->step_after_step_resume_breakpoint = 0; | |
6227 | ecs->event_thread->stepping_over_breakpoint = 1; | |
6228 | keep_going (ecs); | |
6229 | return; | |
e5ef252a | 6230 | } |
cdaa5b73 PA |
6231 | break; |
6232 | ||
6233 | case BPSTAT_WHAT_KEEP_CHECKING: | |
6234 | break; | |
e5ef252a | 6235 | } |
c906108c | 6236 | |
af48d08f PA |
6237 | /* If we stepped a permanent breakpoint and we had a high priority |
6238 | step-resume breakpoint for the address we stepped, but we didn't | |
6239 | hit it, then we must have stepped into the signal handler. The | |
6240 | step-resume was only necessary to catch the case of _not_ | |
6241 | stepping into the handler, so delete it, and fall through to | |
6242 | checking whether the step finished. */ | |
6243 | if (ecs->event_thread->stepped_breakpoint) | |
6244 | { | |
6245 | struct breakpoint *sr_bp | |
6246 | = ecs->event_thread->control.step_resume_breakpoint; | |
6247 | ||
8d707a12 PA |
6248 | if (sr_bp != NULL |
6249 | && sr_bp->loc->permanent | |
af48d08f PA |
6250 | && sr_bp->type == bp_hp_step_resume |
6251 | && sr_bp->loc->address == ecs->event_thread->prev_pc) | |
6252 | { | |
6253 | if (debug_infrun) | |
6254 | fprintf_unfiltered (gdb_stdlog, | |
6255 | "infrun: stepped permanent breakpoint, stopped in " | |
6256 | "handler\n"); | |
6257 | delete_step_resume_breakpoint (ecs->event_thread); | |
6258 | ecs->event_thread->step_after_step_resume_breakpoint = 0; | |
6259 | } | |
6260 | } | |
6261 | ||
cdaa5b73 PA |
6262 | /* We come here if we hit a breakpoint but should not stop for it. |
6263 | Possibly we also were stepping and should stop for that. So fall | |
6264 | through and test for stepping. But, if not stepping, do not | |
6265 | stop. */ | |
c906108c | 6266 | |
a7212384 UW |
6267 | /* In all-stop mode, if we're currently stepping but have stopped in |
6268 | some other thread, we need to switch back to the stepped thread. */ | |
c447ac0b PA |
6269 | if (switch_back_to_stepped_thread (ecs)) |
6270 | return; | |
776f04fa | 6271 | |
8358c15c | 6272 | if (ecs->event_thread->control.step_resume_breakpoint) |
488f131b | 6273 | { |
527159b7 | 6274 | if (debug_infrun) |
d3169d93 DJ |
6275 | fprintf_unfiltered (gdb_stdlog, |
6276 | "infrun: step-resume breakpoint is inserted\n"); | |
527159b7 | 6277 | |
488f131b JB |
6278 | /* Having a step-resume breakpoint overrides anything |
6279 | else having to do with stepping commands until | |
6280 | that breakpoint is reached. */ | |
488f131b JB |
6281 | keep_going (ecs); |
6282 | return; | |
6283 | } | |
c5aa993b | 6284 | |
16c381f0 | 6285 | if (ecs->event_thread->control.step_range_end == 0) |
488f131b | 6286 | { |
527159b7 | 6287 | if (debug_infrun) |
8a9de0e4 | 6288 | fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n"); |
488f131b | 6289 | /* Likewise if we aren't even stepping. */ |
488f131b JB |
6290 | keep_going (ecs); |
6291 | return; | |
6292 | } | |
c5aa993b | 6293 | |
4b7703ad JB |
6294 | /* Re-fetch current thread's frame in case the code above caused |
6295 | the frame cache to be re-initialized, making our FRAME variable | |
6296 | a dangling pointer. */ | |
6297 | frame = get_current_frame (); | |
628fe4e4 | 6298 | gdbarch = get_frame_arch (frame); |
7e324e48 | 6299 | fill_in_stop_func (gdbarch, ecs); |
4b7703ad | 6300 | |
488f131b | 6301 | /* If stepping through a line, keep going if still within it. |
c906108c | 6302 | |
488f131b JB |
6303 | Note that step_range_end is the address of the first instruction |
6304 | beyond the step range, and NOT the address of the last instruction | |
31410e84 MS |
6305 | within it! |
6306 | ||
6307 | Note also that during reverse execution, we may be stepping | |
6308 | through a function epilogue and therefore must detect when | |
6309 | the current-frame changes in the middle of a line. */ | |
6310 | ||
f2ffa92b PA |
6311 | if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc, |
6312 | ecs->event_thread) | |
31410e84 | 6313 | && (execution_direction != EXEC_REVERSE |
388a8562 | 6314 | || frame_id_eq (get_frame_id (frame), |
16c381f0 | 6315 | ecs->event_thread->control.step_frame_id))) |
488f131b | 6316 | { |
527159b7 | 6317 | if (debug_infrun) |
5af949e3 UW |
6318 | fprintf_unfiltered |
6319 | (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n", | |
16c381f0 JK |
6320 | paddress (gdbarch, ecs->event_thread->control.step_range_start), |
6321 | paddress (gdbarch, ecs->event_thread->control.step_range_end)); | |
b2175913 | 6322 | |
c1e36e3e PA |
6323 | /* Tentatively re-enable range stepping; `resume' disables it if |
6324 | necessary (e.g., if we're stepping over a breakpoint or we | |
6325 | have software watchpoints). */ | |
6326 | ecs->event_thread->control.may_range_step = 1; | |
6327 | ||
b2175913 MS |
6328 | /* When stepping backward, stop at beginning of line range |
6329 | (unless it's the function entry point, in which case | |
6330 | keep going back to the call point). */ | |
f2ffa92b | 6331 | CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc; |
16c381f0 | 6332 | if (stop_pc == ecs->event_thread->control.step_range_start |
b2175913 MS |
6333 | && stop_pc != ecs->stop_func_start |
6334 | && execution_direction == EXEC_REVERSE) | |
bdc36728 | 6335 | end_stepping_range (ecs); |
b2175913 MS |
6336 | else |
6337 | keep_going (ecs); | |
6338 | ||
488f131b JB |
6339 | return; |
6340 | } | |
c5aa993b | 6341 | |
488f131b | 6342 | /* We stepped out of the stepping range. */ |
c906108c | 6343 | |
488f131b | 6344 | /* If we are stepping at the source level and entered the runtime |
388a8562 MS |
6345 | loader dynamic symbol resolution code... |
6346 | ||
6347 | EXEC_FORWARD: we keep on single stepping until we exit the run | |
6348 | time loader code and reach the callee's address. | |
6349 | ||
6350 | EXEC_REVERSE: we've already executed the callee (backward), and | |
6351 | the runtime loader code is handled just like any other | |
6352 | undebuggable function call. Now we need only keep stepping | |
6353 | backward through the trampoline code, and that's handled further | |
6354 | down, so there is nothing for us to do here. */ | |
6355 | ||
6356 | if (execution_direction != EXEC_REVERSE | |
16c381f0 | 6357 | && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE |
f2ffa92b | 6358 | && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc)) |
488f131b | 6359 | { |
4c8c40e6 | 6360 | CORE_ADDR pc_after_resolver = |
f2ffa92b PA |
6361 | gdbarch_skip_solib_resolver (gdbarch, |
6362 | ecs->event_thread->suspend.stop_pc); | |
c906108c | 6363 | |
527159b7 | 6364 | if (debug_infrun) |
3e43a32a MS |
6365 | fprintf_unfiltered (gdb_stdlog, |
6366 | "infrun: stepped into dynsym resolve code\n"); | |
527159b7 | 6367 | |
488f131b JB |
6368 | if (pc_after_resolver) |
6369 | { | |
6370 | /* Set up a step-resume breakpoint at the address | |
6371 | indicated by SKIP_SOLIB_RESOLVER. */ | |
51abb421 | 6372 | symtab_and_line sr_sal; |
488f131b | 6373 | sr_sal.pc = pc_after_resolver; |
6c95b8df | 6374 | sr_sal.pspace = get_frame_program_space (frame); |
488f131b | 6375 | |
a6d9a66e UW |
6376 | insert_step_resume_breakpoint_at_sal (gdbarch, |
6377 | sr_sal, null_frame_id); | |
c5aa993b | 6378 | } |
c906108c | 6379 | |
488f131b JB |
6380 | keep_going (ecs); |
6381 | return; | |
6382 | } | |
c906108c | 6383 | |
1d509aa6 MM |
6384 | /* Step through an indirect branch thunk. */ |
6385 | if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE | |
f2ffa92b PA |
6386 | && gdbarch_in_indirect_branch_thunk (gdbarch, |
6387 | ecs->event_thread->suspend.stop_pc)) | |
1d509aa6 MM |
6388 | { |
6389 | if (debug_infrun) | |
6390 | fprintf_unfiltered (gdb_stdlog, | |
6391 | "infrun: stepped into indirect branch thunk\n"); | |
6392 | keep_going (ecs); | |
6393 | return; | |
6394 | } | |
6395 | ||
16c381f0 JK |
6396 | if (ecs->event_thread->control.step_range_end != 1 |
6397 | && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE | |
6398 | || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL) | |
568d6575 | 6399 | && get_frame_type (frame) == SIGTRAMP_FRAME) |
488f131b | 6400 | { |
527159b7 | 6401 | if (debug_infrun) |
3e43a32a MS |
6402 | fprintf_unfiltered (gdb_stdlog, |
6403 | "infrun: stepped into signal trampoline\n"); | |
42edda50 | 6404 | /* The inferior, while doing a "step" or "next", has ended up in |
8fb3e588 AC |
6405 | a signal trampoline (either by a signal being delivered or by |
6406 | the signal handler returning). Just single-step until the | |
6407 | inferior leaves the trampoline (either by calling the handler | |
6408 | or returning). */ | |
488f131b JB |
6409 | keep_going (ecs); |
6410 | return; | |
6411 | } | |
c906108c | 6412 | |
14132e89 MR |
6413 | /* If we're in the return path from a shared library trampoline, |
6414 | we want to proceed through the trampoline when stepping. */ | |
6415 | /* macro/2012-04-25: This needs to come before the subroutine | |
6416 | call check below as on some targets return trampolines look | |
6417 | like subroutine calls (MIPS16 return thunks). */ | |
6418 | if (gdbarch_in_solib_return_trampoline (gdbarch, | |
f2ffa92b PA |
6419 | ecs->event_thread->suspend.stop_pc, |
6420 | ecs->stop_func_name) | |
14132e89 MR |
6421 | && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE) |
6422 | { | |
6423 | /* Determine where this trampoline returns. */ | |
f2ffa92b PA |
6424 | CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc; |
6425 | CORE_ADDR real_stop_pc | |
6426 | = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc); | |
14132e89 MR |
6427 | |
6428 | if (debug_infrun) | |
6429 | fprintf_unfiltered (gdb_stdlog, | |
6430 | "infrun: stepped into solib return tramp\n"); | |
6431 | ||
6432 | /* Only proceed through if we know where it's going. */ | |
6433 | if (real_stop_pc) | |
6434 | { | |
6435 | /* And put the step-breakpoint there and go until there. */ | |
51abb421 | 6436 | symtab_and_line sr_sal; |
14132e89 MR |
6437 | sr_sal.pc = real_stop_pc; |
6438 | sr_sal.section = find_pc_overlay (sr_sal.pc); | |
6439 | sr_sal.pspace = get_frame_program_space (frame); | |
6440 | ||
6441 | /* Do not specify what the fp should be when we stop since | |
6442 | on some machines the prologue is where the new fp value | |
6443 | is established. */ | |
6444 | insert_step_resume_breakpoint_at_sal (gdbarch, | |
6445 | sr_sal, null_frame_id); | |
6446 | ||
6447 | /* Restart without fiddling with the step ranges or | |
6448 | other state. */ | |
6449 | keep_going (ecs); | |
6450 | return; | |
6451 | } | |
6452 | } | |
6453 | ||
c17eaafe DJ |
6454 | /* Check for subroutine calls. The check for the current frame |
6455 | equalling the step ID is not necessary - the check of the | |
6456 | previous frame's ID is sufficient - but it is a common case and | |
6457 | cheaper than checking the previous frame's ID. | |
14e60db5 DJ |
6458 | |
6459 | NOTE: frame_id_eq will never report two invalid frame IDs as | |
6460 | being equal, so to get into this block, both the current and | |
6461 | previous frame must have valid frame IDs. */ | |
005ca36a JB |
6462 | /* The outer_frame_id check is a heuristic to detect stepping |
6463 | through startup code. If we step over an instruction which | |
6464 | sets the stack pointer from an invalid value to a valid value, | |
6465 | we may detect that as a subroutine call from the mythical | |
6466 | "outermost" function. This could be fixed by marking | |
6467 | outermost frames as !stack_p,code_p,special_p. Then the | |
6468 | initial outermost frame, before sp was valid, would | |
ce6cca6d | 6469 | have code_addr == &_start. See the comment in frame_id_eq |
005ca36a | 6470 | for more. */ |
edb3359d | 6471 | if (!frame_id_eq (get_stack_frame_id (frame), |
16c381f0 | 6472 | ecs->event_thread->control.step_stack_frame_id) |
005ca36a | 6473 | && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()), |
16c381f0 JK |
6474 | ecs->event_thread->control.step_stack_frame_id) |
6475 | && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id, | |
005ca36a | 6476 | outer_frame_id) |
885eeb5b | 6477 | || (ecs->event_thread->control.step_start_function |
f2ffa92b | 6478 | != find_pc_function (ecs->event_thread->suspend.stop_pc))))) |
488f131b | 6479 | { |
f2ffa92b | 6480 | CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc; |
95918acb | 6481 | CORE_ADDR real_stop_pc; |
8fb3e588 | 6482 | |
527159b7 | 6483 | if (debug_infrun) |
8a9de0e4 | 6484 | fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n"); |
527159b7 | 6485 | |
b7a084be | 6486 | if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE) |
95918acb AC |
6487 | { |
6488 | /* I presume that step_over_calls is only 0 when we're | |
6489 | supposed to be stepping at the assembly language level | |
6490 | ("stepi"). Just stop. */ | |
388a8562 | 6491 | /* And this works the same backward as frontward. MVS */ |
bdc36728 | 6492 | end_stepping_range (ecs); |
95918acb AC |
6493 | return; |
6494 | } | |
8fb3e588 | 6495 | |
388a8562 MS |
6496 | /* Reverse stepping through solib trampolines. */ |
6497 | ||
6498 | if (execution_direction == EXEC_REVERSE | |
16c381f0 | 6499 | && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE |
388a8562 MS |
6500 | && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc) |
6501 | || (ecs->stop_func_start == 0 | |
6502 | && in_solib_dynsym_resolve_code (stop_pc)))) | |
6503 | { | |
6504 | /* Any solib trampoline code can be handled in reverse | |
6505 | by simply continuing to single-step. We have already | |
6506 | executed the solib function (backwards), and a few | |
6507 | steps will take us back through the trampoline to the | |
6508 | caller. */ | |
6509 | keep_going (ecs); | |
6510 | return; | |
6511 | } | |
6512 | ||
16c381f0 | 6513 | if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL) |
8567c30f | 6514 | { |
b2175913 MS |
6515 | /* We're doing a "next". |
6516 | ||
6517 | Normal (forward) execution: set a breakpoint at the | |
6518 | callee's return address (the address at which the caller | |
6519 | will resume). | |
6520 | ||
6521 | Reverse (backward) execution. set the step-resume | |
6522 | breakpoint at the start of the function that we just | |
6523 | stepped into (backwards), and continue to there. When we | |
6130d0b7 | 6524 | get there, we'll need to single-step back to the caller. */ |
b2175913 MS |
6525 | |
6526 | if (execution_direction == EXEC_REVERSE) | |
6527 | { | |
acf9414f JK |
6528 | /* If we're already at the start of the function, we've either |
6529 | just stepped backward into a single instruction function, | |
6530 | or stepped back out of a signal handler to the first instruction | |
6531 | of the function. Just keep going, which will single-step back | |
6532 | to the caller. */ | |
58c48e72 | 6533 | if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0) |
acf9414f | 6534 | { |
acf9414f | 6535 | /* Normal function call return (static or dynamic). */ |
51abb421 | 6536 | symtab_and_line sr_sal; |
acf9414f JK |
6537 | sr_sal.pc = ecs->stop_func_start; |
6538 | sr_sal.pspace = get_frame_program_space (frame); | |
6539 | insert_step_resume_breakpoint_at_sal (gdbarch, | |
6540 | sr_sal, null_frame_id); | |
6541 | } | |
b2175913 MS |
6542 | } |
6543 | else | |
568d6575 | 6544 | insert_step_resume_breakpoint_at_caller (frame); |
b2175913 | 6545 | |
8567c30f AC |
6546 | keep_going (ecs); |
6547 | return; | |
6548 | } | |
a53c66de | 6549 | |
95918acb | 6550 | /* If we are in a function call trampoline (a stub between the |
8fb3e588 AC |
6551 | calling routine and the real function), locate the real |
6552 | function. That's what tells us (a) whether we want to step | |
6553 | into it at all, and (b) what prologue we want to run to the | |
6554 | end of, if we do step into it. */ | |
568d6575 | 6555 | real_stop_pc = skip_language_trampoline (frame, stop_pc); |
95918acb | 6556 | if (real_stop_pc == 0) |
568d6575 | 6557 | real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc); |
95918acb AC |
6558 | if (real_stop_pc != 0) |
6559 | ecs->stop_func_start = real_stop_pc; | |
8fb3e588 | 6560 | |
db5f024e | 6561 | if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc)) |
1b2bfbb9 | 6562 | { |
51abb421 | 6563 | symtab_and_line sr_sal; |
1b2bfbb9 | 6564 | sr_sal.pc = ecs->stop_func_start; |
6c95b8df | 6565 | sr_sal.pspace = get_frame_program_space (frame); |
1b2bfbb9 | 6566 | |
a6d9a66e UW |
6567 | insert_step_resume_breakpoint_at_sal (gdbarch, |
6568 | sr_sal, null_frame_id); | |
8fb3e588 AC |
6569 | keep_going (ecs); |
6570 | return; | |
1b2bfbb9 RC |
6571 | } |
6572 | ||
95918acb | 6573 | /* If we have line number information for the function we are |
1bfeeb0f JL |
6574 | thinking of stepping into and the function isn't on the skip |
6575 | list, step into it. | |
95918acb | 6576 | |
8fb3e588 AC |
6577 | If there are several symtabs at that PC (e.g. with include |
6578 | files), just want to know whether *any* of them have line | |
6579 | numbers. find_pc_line handles this. */ | |
95918acb AC |
6580 | { |
6581 | struct symtab_and_line tmp_sal; | |
8fb3e588 | 6582 | |
95918acb | 6583 | tmp_sal = find_pc_line (ecs->stop_func_start, 0); |
2b914b52 | 6584 | if (tmp_sal.line != 0 |
85817405 | 6585 | && !function_name_is_marked_for_skip (ecs->stop_func_name, |
4a4c04f1 BE |
6586 | tmp_sal) |
6587 | && !inline_frame_is_marked_for_skip (true, ecs->event_thread)) | |
95918acb | 6588 | { |
b2175913 | 6589 | if (execution_direction == EXEC_REVERSE) |
568d6575 | 6590 | handle_step_into_function_backward (gdbarch, ecs); |
b2175913 | 6591 | else |
568d6575 | 6592 | handle_step_into_function (gdbarch, ecs); |
95918acb AC |
6593 | return; |
6594 | } | |
6595 | } | |
6596 | ||
6597 | /* If we have no line number and the step-stop-if-no-debug is | |
8fb3e588 AC |
6598 | set, we stop the step so that the user has a chance to switch |
6599 | in assembly mode. */ | |
16c381f0 | 6600 | if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE |
078130d0 | 6601 | && step_stop_if_no_debug) |
95918acb | 6602 | { |
bdc36728 | 6603 | end_stepping_range (ecs); |
95918acb AC |
6604 | return; |
6605 | } | |
6606 | ||
b2175913 MS |
6607 | if (execution_direction == EXEC_REVERSE) |
6608 | { | |
acf9414f JK |
6609 | /* If we're already at the start of the function, we've either just |
6610 | stepped backward into a single instruction function without line | |
6611 | number info, or stepped back out of a signal handler to the first | |
6612 | instruction of the function without line number info. Just keep | |
6613 | going, which will single-step back to the caller. */ | |
6614 | if (ecs->stop_func_start != stop_pc) | |
6615 | { | |
6616 | /* Set a breakpoint at callee's start address. | |
6617 | From there we can step once and be back in the caller. */ | |
51abb421 | 6618 | symtab_and_line sr_sal; |
acf9414f JK |
6619 | sr_sal.pc = ecs->stop_func_start; |
6620 | sr_sal.pspace = get_frame_program_space (frame); | |
6621 | insert_step_resume_breakpoint_at_sal (gdbarch, | |
6622 | sr_sal, null_frame_id); | |
6623 | } | |
b2175913 MS |
6624 | } |
6625 | else | |
6626 | /* Set a breakpoint at callee's return address (the address | |
6627 | at which the caller will resume). */ | |
568d6575 | 6628 | insert_step_resume_breakpoint_at_caller (frame); |
b2175913 | 6629 | |
95918acb | 6630 | keep_going (ecs); |
488f131b | 6631 | return; |
488f131b | 6632 | } |
c906108c | 6633 | |
fdd654f3 MS |
6634 | /* Reverse stepping through solib trampolines. */ |
6635 | ||
6636 | if (execution_direction == EXEC_REVERSE | |
16c381f0 | 6637 | && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE) |
fdd654f3 | 6638 | { |
f2ffa92b PA |
6639 | CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc; |
6640 | ||
fdd654f3 MS |
6641 | if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc) |
6642 | || (ecs->stop_func_start == 0 | |
6643 | && in_solib_dynsym_resolve_code (stop_pc))) | |
6644 | { | |
6645 | /* Any solib trampoline code can be handled in reverse | |
6646 | by simply continuing to single-step. We have already | |
6647 | executed the solib function (backwards), and a few | |
6648 | steps will take us back through the trampoline to the | |
6649 | caller. */ | |
6650 | keep_going (ecs); | |
6651 | return; | |
6652 | } | |
6653 | else if (in_solib_dynsym_resolve_code (stop_pc)) | |
6654 | { | |
6655 | /* Stepped backward into the solib dynsym resolver. | |
6656 | Set a breakpoint at its start and continue, then | |
6657 | one more step will take us out. */ | |
51abb421 | 6658 | symtab_and_line sr_sal; |
fdd654f3 | 6659 | sr_sal.pc = ecs->stop_func_start; |
9d1807c3 | 6660 | sr_sal.pspace = get_frame_program_space (frame); |
fdd654f3 MS |
6661 | insert_step_resume_breakpoint_at_sal (gdbarch, |
6662 | sr_sal, null_frame_id); | |
6663 | keep_going (ecs); | |
6664 | return; | |
6665 | } | |
6666 | } | |
6667 | ||
f2ffa92b | 6668 | stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0); |
7ed0fe66 | 6669 | |
1b2bfbb9 RC |
6670 | /* NOTE: tausq/2004-05-24: This if block used to be done before all |
6671 | the trampoline processing logic, however, there are some trampolines | |
6672 | that have no names, so we should do trampoline handling first. */ | |
16c381f0 | 6673 | if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE |
7ed0fe66 | 6674 | && ecs->stop_func_name == NULL |
2afb61aa | 6675 | && stop_pc_sal.line == 0) |
1b2bfbb9 | 6676 | { |
527159b7 | 6677 | if (debug_infrun) |
3e43a32a MS |
6678 | fprintf_unfiltered (gdb_stdlog, |
6679 | "infrun: stepped into undebuggable function\n"); | |
527159b7 | 6680 | |
1b2bfbb9 | 6681 | /* The inferior just stepped into, or returned to, an |
7ed0fe66 DJ |
6682 | undebuggable function (where there is no debugging information |
6683 | and no line number corresponding to the address where the | |
1b2bfbb9 RC |
6684 | inferior stopped). Since we want to skip this kind of code, |
6685 | we keep going until the inferior returns from this | |
14e60db5 DJ |
6686 | function - unless the user has asked us not to (via |
6687 | set step-mode) or we no longer know how to get back | |
6688 | to the call site. */ | |
6689 | if (step_stop_if_no_debug | |
c7ce8faa | 6690 | || !frame_id_p (frame_unwind_caller_id (frame))) |
1b2bfbb9 RC |
6691 | { |
6692 | /* If we have no line number and the step-stop-if-no-debug | |
6693 | is set, we stop the step so that the user has a chance to | |
6694 | switch in assembly mode. */ | |
bdc36728 | 6695 | end_stepping_range (ecs); |
1b2bfbb9 RC |
6696 | return; |
6697 | } | |
6698 | else | |
6699 | { | |
6700 | /* Set a breakpoint at callee's return address (the address | |
6701 | at which the caller will resume). */ | |
568d6575 | 6702 | insert_step_resume_breakpoint_at_caller (frame); |
1b2bfbb9 RC |
6703 | keep_going (ecs); |
6704 | return; | |
6705 | } | |
6706 | } | |
6707 | ||
16c381f0 | 6708 | if (ecs->event_thread->control.step_range_end == 1) |
1b2bfbb9 RC |
6709 | { |
6710 | /* It is stepi or nexti. We always want to stop stepping after | |
6711 | one instruction. */ | |
527159b7 | 6712 | if (debug_infrun) |
8a9de0e4 | 6713 | fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n"); |
bdc36728 | 6714 | end_stepping_range (ecs); |
1b2bfbb9 RC |
6715 | return; |
6716 | } | |
6717 | ||
2afb61aa | 6718 | if (stop_pc_sal.line == 0) |
488f131b JB |
6719 | { |
6720 | /* We have no line number information. That means to stop | |
6721 | stepping (does this always happen right after one instruction, | |
6722 | when we do "s" in a function with no line numbers, | |
6723 | or can this happen as a result of a return or longjmp?). */ | |
527159b7 | 6724 | if (debug_infrun) |
8a9de0e4 | 6725 | fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n"); |
bdc36728 | 6726 | end_stepping_range (ecs); |
488f131b JB |
6727 | return; |
6728 | } | |
c906108c | 6729 | |
edb3359d DJ |
6730 | /* Look for "calls" to inlined functions, part one. If the inline |
6731 | frame machinery detected some skipped call sites, we have entered | |
6732 | a new inline function. */ | |
6733 | ||
6734 | if (frame_id_eq (get_frame_id (get_current_frame ()), | |
16c381f0 | 6735 | ecs->event_thread->control.step_frame_id) |
00431a78 | 6736 | && inline_skipped_frames (ecs->event_thread)) |
edb3359d | 6737 | { |
edb3359d DJ |
6738 | if (debug_infrun) |
6739 | fprintf_unfiltered (gdb_stdlog, | |
6740 | "infrun: stepped into inlined function\n"); | |
6741 | ||
51abb421 | 6742 | symtab_and_line call_sal = find_frame_sal (get_current_frame ()); |
edb3359d | 6743 | |
16c381f0 | 6744 | if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL) |
edb3359d DJ |
6745 | { |
6746 | /* For "step", we're going to stop. But if the call site | |
6747 | for this inlined function is on the same source line as | |
6748 | we were previously stepping, go down into the function | |
6749 | first. Otherwise stop at the call site. */ | |
6750 | ||
6751 | if (call_sal.line == ecs->event_thread->current_line | |
6752 | && call_sal.symtab == ecs->event_thread->current_symtab) | |
4a4c04f1 BE |
6753 | { |
6754 | step_into_inline_frame (ecs->event_thread); | |
6755 | if (inline_frame_is_marked_for_skip (false, ecs->event_thread)) | |
6756 | { | |
6757 | keep_going (ecs); | |
6758 | return; | |
6759 | } | |
6760 | } | |
edb3359d | 6761 | |
bdc36728 | 6762 | end_stepping_range (ecs); |
edb3359d DJ |
6763 | return; |
6764 | } | |
6765 | else | |
6766 | { | |
6767 | /* For "next", we should stop at the call site if it is on a | |
6768 | different source line. Otherwise continue through the | |
6769 | inlined function. */ | |
6770 | if (call_sal.line == ecs->event_thread->current_line | |
6771 | && call_sal.symtab == ecs->event_thread->current_symtab) | |
6772 | keep_going (ecs); | |
6773 | else | |
bdc36728 | 6774 | end_stepping_range (ecs); |
edb3359d DJ |
6775 | return; |
6776 | } | |
6777 | } | |
6778 | ||
6779 | /* Look for "calls" to inlined functions, part two. If we are still | |
6780 | in the same real function we were stepping through, but we have | |
6781 | to go further up to find the exact frame ID, we are stepping | |
6782 | through a more inlined call beyond its call site. */ | |
6783 | ||
6784 | if (get_frame_type (get_current_frame ()) == INLINE_FRAME | |
6785 | && !frame_id_eq (get_frame_id (get_current_frame ()), | |
16c381f0 | 6786 | ecs->event_thread->control.step_frame_id) |
edb3359d | 6787 | && stepped_in_from (get_current_frame (), |
16c381f0 | 6788 | ecs->event_thread->control.step_frame_id)) |
edb3359d DJ |
6789 | { |
6790 | if (debug_infrun) | |
6791 | fprintf_unfiltered (gdb_stdlog, | |
6792 | "infrun: stepping through inlined function\n"); | |
6793 | ||
4a4c04f1 BE |
6794 | if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL |
6795 | || inline_frame_is_marked_for_skip (false, ecs->event_thread)) | |
edb3359d DJ |
6796 | keep_going (ecs); |
6797 | else | |
bdc36728 | 6798 | end_stepping_range (ecs); |
edb3359d DJ |
6799 | return; |
6800 | } | |
6801 | ||
f2ffa92b | 6802 | if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc) |
4e1c45ea PA |
6803 | && (ecs->event_thread->current_line != stop_pc_sal.line |
6804 | || ecs->event_thread->current_symtab != stop_pc_sal.symtab)) | |
488f131b JB |
6805 | { |
6806 | /* We are at the start of a different line. So stop. Note that | |
6807 | we don't stop if we step into the middle of a different line. | |
6808 | That is said to make things like for (;;) statements work | |
6809 | better. */ | |
527159b7 | 6810 | if (debug_infrun) |
3e43a32a MS |
6811 | fprintf_unfiltered (gdb_stdlog, |
6812 | "infrun: stepped to a different line\n"); | |
bdc36728 | 6813 | end_stepping_range (ecs); |
488f131b JB |
6814 | return; |
6815 | } | |
c906108c | 6816 | |
488f131b | 6817 | /* We aren't done stepping. |
c906108c | 6818 | |
488f131b JB |
6819 | Optimize by setting the stepping range to the line. |
6820 | (We might not be in the original line, but if we entered a | |
6821 | new line in mid-statement, we continue stepping. This makes | |
6822 | things like for(;;) statements work better.) */ | |
c906108c | 6823 | |
16c381f0 JK |
6824 | ecs->event_thread->control.step_range_start = stop_pc_sal.pc; |
6825 | ecs->event_thread->control.step_range_end = stop_pc_sal.end; | |
c1e36e3e | 6826 | ecs->event_thread->control.may_range_step = 1; |
edb3359d | 6827 | set_step_info (frame, stop_pc_sal); |
488f131b | 6828 | |
527159b7 | 6829 | if (debug_infrun) |
8a9de0e4 | 6830 | fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n"); |
488f131b | 6831 | keep_going (ecs); |
104c1213 JM |
6832 | } |
6833 | ||
c447ac0b PA |
6834 | /* In all-stop mode, if we're currently stepping but have stopped in |
6835 | some other thread, we may need to switch back to the stepped | |
6836 | thread. Returns true we set the inferior running, false if we left | |
6837 | it stopped (and the event needs further processing). */ | |
6838 | ||
6839 | static int | |
6840 | switch_back_to_stepped_thread (struct execution_control_state *ecs) | |
6841 | { | |
fbea99ea | 6842 | if (!target_is_non_stop_p ()) |
c447ac0b | 6843 | { |
99619bea PA |
6844 | struct thread_info *stepping_thread; |
6845 | ||
6846 | /* If any thread is blocked on some internal breakpoint, and we | |
6847 | simply need to step over that breakpoint to get it going | |
6848 | again, do that first. */ | |
6849 | ||
6850 | /* However, if we see an event for the stepping thread, then we | |
6851 | know all other threads have been moved past their breakpoints | |
6852 | already. Let the caller check whether the step is finished, | |
6853 | etc., before deciding to move it past a breakpoint. */ | |
6854 | if (ecs->event_thread->control.step_range_end != 0) | |
6855 | return 0; | |
6856 | ||
6857 | /* Check if the current thread is blocked on an incomplete | |
6858 | step-over, interrupted by a random signal. */ | |
6859 | if (ecs->event_thread->control.trap_expected | |
6860 | && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP) | |
c447ac0b | 6861 | { |
99619bea PA |
6862 | if (debug_infrun) |
6863 | { | |
6864 | fprintf_unfiltered (gdb_stdlog, | |
6865 | "infrun: need to finish step-over of [%s]\n", | |
a068643d | 6866 | target_pid_to_str (ecs->event_thread->ptid).c_str ()); |
99619bea PA |
6867 | } |
6868 | keep_going (ecs); | |
6869 | return 1; | |
6870 | } | |
2adfaa28 | 6871 | |
99619bea PA |
6872 | /* Check if the current thread is blocked by a single-step |
6873 | breakpoint of another thread. */ | |
6874 | if (ecs->hit_singlestep_breakpoint) | |
6875 | { | |
6876 | if (debug_infrun) | |
6877 | { | |
6878 | fprintf_unfiltered (gdb_stdlog, | |
6879 | "infrun: need to step [%s] over single-step " | |
6880 | "breakpoint\n", | |
a068643d | 6881 | target_pid_to_str (ecs->ptid).c_str ()); |
99619bea PA |
6882 | } |
6883 | keep_going (ecs); | |
6884 | return 1; | |
6885 | } | |
6886 | ||
4d9d9d04 PA |
6887 | /* If this thread needs yet another step-over (e.g., stepping |
6888 | through a delay slot), do it first before moving on to | |
6889 | another thread. */ | |
6890 | if (thread_still_needs_step_over (ecs->event_thread)) | |
6891 | { | |
6892 | if (debug_infrun) | |
6893 | { | |
6894 | fprintf_unfiltered (gdb_stdlog, | |
6895 | "infrun: thread [%s] still needs step-over\n", | |
a068643d | 6896 | target_pid_to_str (ecs->event_thread->ptid).c_str ()); |
4d9d9d04 PA |
6897 | } |
6898 | keep_going (ecs); | |
6899 | return 1; | |
6900 | } | |
70509625 | 6901 | |
483805cf PA |
6902 | /* If scheduler locking applies even if not stepping, there's no |
6903 | need to walk over threads. Above we've checked whether the | |
6904 | current thread is stepping. If some other thread not the | |
6905 | event thread is stepping, then it must be that scheduler | |
6906 | locking is not in effect. */ | |
856e7dd6 | 6907 | if (schedlock_applies (ecs->event_thread)) |
483805cf PA |
6908 | return 0; |
6909 | ||
4d9d9d04 PA |
6910 | /* Otherwise, we no longer expect a trap in the current thread. |
6911 | Clear the trap_expected flag before switching back -- this is | |
6912 | what keep_going does as well, if we call it. */ | |
6913 | ecs->event_thread->control.trap_expected = 0; | |
6914 | ||
6915 | /* Likewise, clear the signal if it should not be passed. */ | |
6916 | if (!signal_program[ecs->event_thread->suspend.stop_signal]) | |
6917 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; | |
6918 | ||
6919 | /* Do all pending step-overs before actually proceeding with | |
483805cf | 6920 | step/next/etc. */ |
4d9d9d04 PA |
6921 | if (start_step_over ()) |
6922 | { | |
6923 | prepare_to_wait (ecs); | |
6924 | return 1; | |
6925 | } | |
6926 | ||
6927 | /* Look for the stepping/nexting thread. */ | |
483805cf | 6928 | stepping_thread = NULL; |
4d9d9d04 | 6929 | |
08036331 | 6930 | for (thread_info *tp : all_non_exited_threads ()) |
483805cf | 6931 | { |
f3f8ece4 PA |
6932 | switch_to_thread_no_regs (tp); |
6933 | ||
fbea99ea PA |
6934 | /* Ignore threads of processes the caller is not |
6935 | resuming. */ | |
483805cf | 6936 | if (!sched_multi |
e99b03dc | 6937 | && tp->ptid.pid () != ecs->ptid.pid ()) |
483805cf PA |
6938 | continue; |
6939 | ||
6940 | /* When stepping over a breakpoint, we lock all threads | |
6941 | except the one that needs to move past the breakpoint. | |
6942 | If a non-event thread has this set, the "incomplete | |
6943 | step-over" check above should have caught it earlier. */ | |
372316f1 PA |
6944 | if (tp->control.trap_expected) |
6945 | { | |
6946 | internal_error (__FILE__, __LINE__, | |
6947 | "[%s] has inconsistent state: " | |
6948 | "trap_expected=%d\n", | |
a068643d | 6949 | target_pid_to_str (tp->ptid).c_str (), |
372316f1 PA |
6950 | tp->control.trap_expected); |
6951 | } | |
483805cf PA |
6952 | |
6953 | /* Did we find the stepping thread? */ | |
6954 | if (tp->control.step_range_end) | |
6955 | { | |
6956 | /* Yep. There should only one though. */ | |
6957 | gdb_assert (stepping_thread == NULL); | |
6958 | ||
6959 | /* The event thread is handled at the top, before we | |
6960 | enter this loop. */ | |
6961 | gdb_assert (tp != ecs->event_thread); | |
6962 | ||
6963 | /* If some thread other than the event thread is | |
6964 | stepping, then scheduler locking can't be in effect, | |
6965 | otherwise we wouldn't have resumed the current event | |
6966 | thread in the first place. */ | |
856e7dd6 | 6967 | gdb_assert (!schedlock_applies (tp)); |
483805cf PA |
6968 | |
6969 | stepping_thread = tp; | |
6970 | } | |
99619bea PA |
6971 | } |
6972 | ||
483805cf | 6973 | if (stepping_thread != NULL) |
99619bea | 6974 | { |
c447ac0b PA |
6975 | if (debug_infrun) |
6976 | fprintf_unfiltered (gdb_stdlog, | |
6977 | "infrun: switching back to stepped thread\n"); | |
6978 | ||
2ac7589c PA |
6979 | if (keep_going_stepped_thread (stepping_thread)) |
6980 | { | |
6981 | prepare_to_wait (ecs); | |
6982 | return 1; | |
6983 | } | |
6984 | } | |
f3f8ece4 PA |
6985 | |
6986 | switch_to_thread (ecs->event_thread); | |
2ac7589c | 6987 | } |
2adfaa28 | 6988 | |
2ac7589c PA |
6989 | return 0; |
6990 | } | |
2adfaa28 | 6991 | |
2ac7589c PA |
6992 | /* Set a previously stepped thread back to stepping. Returns true on |
6993 | success, false if the resume is not possible (e.g., the thread | |
6994 | vanished). */ | |
6995 | ||
6996 | static int | |
6997 | keep_going_stepped_thread (struct thread_info *tp) | |
6998 | { | |
6999 | struct frame_info *frame; | |
2ac7589c PA |
7000 | struct execution_control_state ecss; |
7001 | struct execution_control_state *ecs = &ecss; | |
2adfaa28 | 7002 | |
2ac7589c PA |
7003 | /* If the stepping thread exited, then don't try to switch back and |
7004 | resume it, which could fail in several different ways depending | |
7005 | on the target. Instead, just keep going. | |
2adfaa28 | 7006 | |
2ac7589c PA |
7007 | We can find a stepping dead thread in the thread list in two |
7008 | cases: | |
2adfaa28 | 7009 | |
2ac7589c PA |
7010 | - The target supports thread exit events, and when the target |
7011 | tries to delete the thread from the thread list, inferior_ptid | |
7012 | pointed at the exiting thread. In such case, calling | |
7013 | delete_thread does not really remove the thread from the list; | |
7014 | instead, the thread is left listed, with 'exited' state. | |
64ce06e4 | 7015 | |
2ac7589c PA |
7016 | - The target's debug interface does not support thread exit |
7017 | events, and so we have no idea whatsoever if the previously | |
7018 | stepping thread is still alive. For that reason, we need to | |
7019 | synchronously query the target now. */ | |
2adfaa28 | 7020 | |
00431a78 | 7021 | if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid)) |
2ac7589c PA |
7022 | { |
7023 | if (debug_infrun) | |
7024 | fprintf_unfiltered (gdb_stdlog, | |
7025 | "infrun: not resuming previously " | |
7026 | "stepped thread, it has vanished\n"); | |
7027 | ||
00431a78 | 7028 | delete_thread (tp); |
2ac7589c | 7029 | return 0; |
c447ac0b | 7030 | } |
2ac7589c PA |
7031 | |
7032 | if (debug_infrun) | |
7033 | fprintf_unfiltered (gdb_stdlog, | |
7034 | "infrun: resuming previously stepped thread\n"); | |
7035 | ||
7036 | reset_ecs (ecs, tp); | |
00431a78 | 7037 | switch_to_thread (tp); |
2ac7589c | 7038 | |
f2ffa92b | 7039 | tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp)); |
2ac7589c | 7040 | frame = get_current_frame (); |
2ac7589c PA |
7041 | |
7042 | /* If the PC of the thread we were trying to single-step has | |
7043 | changed, then that thread has trapped or been signaled, but the | |
7044 | event has not been reported to GDB yet. Re-poll the target | |
7045 | looking for this particular thread's event (i.e. temporarily | |
7046 | enable schedlock) by: | |
7047 | ||
7048 | - setting a break at the current PC | |
7049 | - resuming that particular thread, only (by setting trap | |
7050 | expected) | |
7051 | ||
7052 | This prevents us continuously moving the single-step breakpoint | |
7053 | forward, one instruction at a time, overstepping. */ | |
7054 | ||
f2ffa92b | 7055 | if (tp->suspend.stop_pc != tp->prev_pc) |
2ac7589c PA |
7056 | { |
7057 | ptid_t resume_ptid; | |
7058 | ||
7059 | if (debug_infrun) | |
7060 | fprintf_unfiltered (gdb_stdlog, | |
7061 | "infrun: expected thread advanced also (%s -> %s)\n", | |
7062 | paddress (target_gdbarch (), tp->prev_pc), | |
f2ffa92b | 7063 | paddress (target_gdbarch (), tp->suspend.stop_pc)); |
2ac7589c PA |
7064 | |
7065 | /* Clear the info of the previous step-over, as it's no longer | |
7066 | valid (if the thread was trying to step over a breakpoint, it | |
7067 | has already succeeded). It's what keep_going would do too, | |
7068 | if we called it. Do this before trying to insert the sss | |
7069 | breakpoint, otherwise if we were previously trying to step | |
7070 | over this exact address in another thread, the breakpoint is | |
7071 | skipped. */ | |
7072 | clear_step_over_info (); | |
7073 | tp->control.trap_expected = 0; | |
7074 | ||
7075 | insert_single_step_breakpoint (get_frame_arch (frame), | |
7076 | get_frame_address_space (frame), | |
f2ffa92b | 7077 | tp->suspend.stop_pc); |
2ac7589c | 7078 | |
372316f1 | 7079 | tp->resumed = 1; |
fbea99ea | 7080 | resume_ptid = internal_resume_ptid (tp->control.stepping_command); |
2ac7589c PA |
7081 | do_target_resume (resume_ptid, 0, GDB_SIGNAL_0); |
7082 | } | |
7083 | else | |
7084 | { | |
7085 | if (debug_infrun) | |
7086 | fprintf_unfiltered (gdb_stdlog, | |
7087 | "infrun: expected thread still hasn't advanced\n"); | |
7088 | ||
7089 | keep_going_pass_signal (ecs); | |
7090 | } | |
7091 | return 1; | |
c447ac0b PA |
7092 | } |
7093 | ||
8b061563 PA |
7094 | /* Is thread TP in the middle of (software or hardware) |
7095 | single-stepping? (Note the result of this function must never be | |
7096 | passed directly as target_resume's STEP parameter.) */ | |
104c1213 | 7097 | |
a289b8f6 | 7098 | static int |
b3444185 | 7099 | currently_stepping (struct thread_info *tp) |
a7212384 | 7100 | { |
8358c15c JK |
7101 | return ((tp->control.step_range_end |
7102 | && tp->control.step_resume_breakpoint == NULL) | |
7103 | || tp->control.trap_expected | |
af48d08f | 7104 | || tp->stepped_breakpoint |
8358c15c | 7105 | || bpstat_should_step ()); |
a7212384 UW |
7106 | } |
7107 | ||
b2175913 MS |
7108 | /* Inferior has stepped into a subroutine call with source code that |
7109 | we should not step over. Do step to the first line of code in | |
7110 | it. */ | |
c2c6d25f JM |
7111 | |
7112 | static void | |
568d6575 UW |
7113 | handle_step_into_function (struct gdbarch *gdbarch, |
7114 | struct execution_control_state *ecs) | |
c2c6d25f | 7115 | { |
7e324e48 GB |
7116 | fill_in_stop_func (gdbarch, ecs); |
7117 | ||
f2ffa92b PA |
7118 | compunit_symtab *cust |
7119 | = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc); | |
43f3e411 | 7120 | if (cust != NULL && compunit_language (cust) != language_asm) |
46a62268 YQ |
7121 | ecs->stop_func_start |
7122 | = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start); | |
c2c6d25f | 7123 | |
51abb421 | 7124 | symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0); |
c2c6d25f JM |
7125 | /* Use the step_resume_break to step until the end of the prologue, |
7126 | even if that involves jumps (as it seems to on the vax under | |
7127 | 4.2). */ | |
7128 | /* If the prologue ends in the middle of a source line, continue to | |
7129 | the end of that source line (if it is still within the function). | |
7130 | Otherwise, just go to end of prologue. */ | |
2afb61aa PA |
7131 | if (stop_func_sal.end |
7132 | && stop_func_sal.pc != ecs->stop_func_start | |
7133 | && stop_func_sal.end < ecs->stop_func_end) | |
7134 | ecs->stop_func_start = stop_func_sal.end; | |
c2c6d25f | 7135 | |
2dbd5e30 KB |
7136 | /* Architectures which require breakpoint adjustment might not be able |
7137 | to place a breakpoint at the computed address. If so, the test | |
7138 | ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust | |
7139 | ecs->stop_func_start to an address at which a breakpoint may be | |
7140 | legitimately placed. | |
8fb3e588 | 7141 | |
2dbd5e30 KB |
7142 | Note: kevinb/2004-01-19: On FR-V, if this adjustment is not |
7143 | made, GDB will enter an infinite loop when stepping through | |
7144 | optimized code consisting of VLIW instructions which contain | |
7145 | subinstructions corresponding to different source lines. On | |
7146 | FR-V, it's not permitted to place a breakpoint on any but the | |
7147 | first subinstruction of a VLIW instruction. When a breakpoint is | |
7148 | set, GDB will adjust the breakpoint address to the beginning of | |
7149 | the VLIW instruction. Thus, we need to make the corresponding | |
7150 | adjustment here when computing the stop address. */ | |
8fb3e588 | 7151 | |
568d6575 | 7152 | if (gdbarch_adjust_breakpoint_address_p (gdbarch)) |
2dbd5e30 KB |
7153 | { |
7154 | ecs->stop_func_start | |
568d6575 | 7155 | = gdbarch_adjust_breakpoint_address (gdbarch, |
8fb3e588 | 7156 | ecs->stop_func_start); |
2dbd5e30 KB |
7157 | } |
7158 | ||
f2ffa92b | 7159 | if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc) |
c2c6d25f JM |
7160 | { |
7161 | /* We are already there: stop now. */ | |
bdc36728 | 7162 | end_stepping_range (ecs); |
c2c6d25f JM |
7163 | return; |
7164 | } | |
7165 | else | |
7166 | { | |
7167 | /* Put the step-breakpoint there and go until there. */ | |
51abb421 | 7168 | symtab_and_line sr_sal; |
c2c6d25f JM |
7169 | sr_sal.pc = ecs->stop_func_start; |
7170 | sr_sal.section = find_pc_overlay (ecs->stop_func_start); | |
6c95b8df | 7171 | sr_sal.pspace = get_frame_program_space (get_current_frame ()); |
44cbf7b5 | 7172 | |
c2c6d25f | 7173 | /* Do not specify what the fp should be when we stop since on |
488f131b JB |
7174 | some machines the prologue is where the new fp value is |
7175 | established. */ | |
a6d9a66e | 7176 | insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id); |
c2c6d25f JM |
7177 | |
7178 | /* And make sure stepping stops right away then. */ | |
16c381f0 JK |
7179 | ecs->event_thread->control.step_range_end |
7180 | = ecs->event_thread->control.step_range_start; | |
c2c6d25f JM |
7181 | } |
7182 | keep_going (ecs); | |
7183 | } | |
d4f3574e | 7184 | |
b2175913 MS |
7185 | /* Inferior has stepped backward into a subroutine call with source |
7186 | code that we should not step over. Do step to the beginning of the | |
7187 | last line of code in it. */ | |
7188 | ||
7189 | static void | |
568d6575 UW |
7190 | handle_step_into_function_backward (struct gdbarch *gdbarch, |
7191 | struct execution_control_state *ecs) | |
b2175913 | 7192 | { |
43f3e411 | 7193 | struct compunit_symtab *cust; |
167e4384 | 7194 | struct symtab_and_line stop_func_sal; |
b2175913 | 7195 | |
7e324e48 GB |
7196 | fill_in_stop_func (gdbarch, ecs); |
7197 | ||
f2ffa92b | 7198 | cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc); |
43f3e411 | 7199 | if (cust != NULL && compunit_language (cust) != language_asm) |
46a62268 YQ |
7200 | ecs->stop_func_start |
7201 | = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start); | |
b2175913 | 7202 | |
f2ffa92b | 7203 | stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0); |
b2175913 MS |
7204 | |
7205 | /* OK, we're just going to keep stepping here. */ | |
f2ffa92b | 7206 | if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc) |
b2175913 MS |
7207 | { |
7208 | /* We're there already. Just stop stepping now. */ | |
bdc36728 | 7209 | end_stepping_range (ecs); |
b2175913 MS |
7210 | } |
7211 | else | |
7212 | { | |
7213 | /* Else just reset the step range and keep going. | |
7214 | No step-resume breakpoint, they don't work for | |
7215 | epilogues, which can have multiple entry paths. */ | |
16c381f0 JK |
7216 | ecs->event_thread->control.step_range_start = stop_func_sal.pc; |
7217 | ecs->event_thread->control.step_range_end = stop_func_sal.end; | |
b2175913 MS |
7218 | keep_going (ecs); |
7219 | } | |
7220 | return; | |
7221 | } | |
7222 | ||
d3169d93 | 7223 | /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID. |
44cbf7b5 AC |
7224 | This is used to both functions and to skip over code. */ |
7225 | ||
7226 | static void | |
2c03e5be PA |
7227 | insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch, |
7228 | struct symtab_and_line sr_sal, | |
7229 | struct frame_id sr_id, | |
7230 | enum bptype sr_type) | |
44cbf7b5 | 7231 | { |
611c83ae PA |
7232 | /* There should never be more than one step-resume or longjmp-resume |
7233 | breakpoint per thread, so we should never be setting a new | |
44cbf7b5 | 7234 | step_resume_breakpoint when one is already active. */ |
8358c15c | 7235 | gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL); |
2c03e5be | 7236 | gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume); |
d3169d93 DJ |
7237 | |
7238 | if (debug_infrun) | |
7239 | fprintf_unfiltered (gdb_stdlog, | |
5af949e3 UW |
7240 | "infrun: inserting step-resume breakpoint at %s\n", |
7241 | paddress (gdbarch, sr_sal.pc)); | |
d3169d93 | 7242 | |
8358c15c | 7243 | inferior_thread ()->control.step_resume_breakpoint |
454dafbd | 7244 | = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release (); |
2c03e5be PA |
7245 | } |
7246 | ||
9da8c2a0 | 7247 | void |
2c03e5be PA |
7248 | insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch, |
7249 | struct symtab_and_line sr_sal, | |
7250 | struct frame_id sr_id) | |
7251 | { | |
7252 | insert_step_resume_breakpoint_at_sal_1 (gdbarch, | |
7253 | sr_sal, sr_id, | |
7254 | bp_step_resume); | |
44cbf7b5 | 7255 | } |
7ce450bd | 7256 | |
2c03e5be PA |
7257 | /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc. |
7258 | This is used to skip a potential signal handler. | |
7ce450bd | 7259 | |
14e60db5 DJ |
7260 | This is called with the interrupted function's frame. The signal |
7261 | handler, when it returns, will resume the interrupted function at | |
7262 | RETURN_FRAME.pc. */ | |
d303a6c7 AC |
7263 | |
7264 | static void | |
2c03e5be | 7265 | insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame) |
d303a6c7 | 7266 | { |
f4c1edd8 | 7267 | gdb_assert (return_frame != NULL); |
d303a6c7 | 7268 | |
51abb421 PA |
7269 | struct gdbarch *gdbarch = get_frame_arch (return_frame); |
7270 | ||
7271 | symtab_and_line sr_sal; | |
568d6575 | 7272 | sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame)); |
d303a6c7 | 7273 | sr_sal.section = find_pc_overlay (sr_sal.pc); |
6c95b8df | 7274 | sr_sal.pspace = get_frame_program_space (return_frame); |
d303a6c7 | 7275 | |
2c03e5be PA |
7276 | insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal, |
7277 | get_stack_frame_id (return_frame), | |
7278 | bp_hp_step_resume); | |
d303a6c7 AC |
7279 | } |
7280 | ||
2c03e5be PA |
7281 | /* Insert a "step-resume breakpoint" at the previous frame's PC. This |
7282 | is used to skip a function after stepping into it (for "next" or if | |
7283 | the called function has no debugging information). | |
14e60db5 DJ |
7284 | |
7285 | The current function has almost always been reached by single | |
7286 | stepping a call or return instruction. NEXT_FRAME belongs to the | |
7287 | current function, and the breakpoint will be set at the caller's | |
7288 | resume address. | |
7289 | ||
7290 | This is a separate function rather than reusing | |
2c03e5be | 7291 | insert_hp_step_resume_breakpoint_at_frame in order to avoid |
14e60db5 | 7292 | get_prev_frame, which may stop prematurely (see the implementation |
c7ce8faa | 7293 | of frame_unwind_caller_id for an example). */ |
14e60db5 DJ |
7294 | |
7295 | static void | |
7296 | insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame) | |
7297 | { | |
14e60db5 DJ |
7298 | /* We shouldn't have gotten here if we don't know where the call site |
7299 | is. */ | |
c7ce8faa | 7300 | gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame))); |
14e60db5 | 7301 | |
51abb421 | 7302 | struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame); |
14e60db5 | 7303 | |
51abb421 | 7304 | symtab_and_line sr_sal; |
c7ce8faa DJ |
7305 | sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, |
7306 | frame_unwind_caller_pc (next_frame)); | |
14e60db5 | 7307 | sr_sal.section = find_pc_overlay (sr_sal.pc); |
6c95b8df | 7308 | sr_sal.pspace = frame_unwind_program_space (next_frame); |
14e60db5 | 7309 | |
a6d9a66e | 7310 | insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, |
c7ce8faa | 7311 | frame_unwind_caller_id (next_frame)); |
14e60db5 DJ |
7312 | } |
7313 | ||
611c83ae PA |
7314 | /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a |
7315 | new breakpoint at the target of a jmp_buf. The handling of | |
7316 | longjmp-resume uses the same mechanisms used for handling | |
7317 | "step-resume" breakpoints. */ | |
7318 | ||
7319 | static void | |
a6d9a66e | 7320 | insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc) |
611c83ae | 7321 | { |
e81a37f7 TT |
7322 | /* There should never be more than one longjmp-resume breakpoint per |
7323 | thread, so we should never be setting a new | |
611c83ae | 7324 | longjmp_resume_breakpoint when one is already active. */ |
e81a37f7 | 7325 | gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL); |
611c83ae PA |
7326 | |
7327 | if (debug_infrun) | |
7328 | fprintf_unfiltered (gdb_stdlog, | |
5af949e3 UW |
7329 | "infrun: inserting longjmp-resume breakpoint at %s\n", |
7330 | paddress (gdbarch, pc)); | |
611c83ae | 7331 | |
e81a37f7 | 7332 | inferior_thread ()->control.exception_resume_breakpoint = |
454dafbd | 7333 | set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release (); |
611c83ae PA |
7334 | } |
7335 | ||
186c406b TT |
7336 | /* Insert an exception resume breakpoint. TP is the thread throwing |
7337 | the exception. The block B is the block of the unwinder debug hook | |
7338 | function. FRAME is the frame corresponding to the call to this | |
7339 | function. SYM is the symbol of the function argument holding the | |
7340 | target PC of the exception. */ | |
7341 | ||
7342 | static void | |
7343 | insert_exception_resume_breakpoint (struct thread_info *tp, | |
3977b71f | 7344 | const struct block *b, |
186c406b TT |
7345 | struct frame_info *frame, |
7346 | struct symbol *sym) | |
7347 | { | |
a70b8144 | 7348 | try |
186c406b | 7349 | { |
63e43d3a | 7350 | struct block_symbol vsym; |
186c406b TT |
7351 | struct value *value; |
7352 | CORE_ADDR handler; | |
7353 | struct breakpoint *bp; | |
7354 | ||
987012b8 | 7355 | vsym = lookup_symbol_search_name (sym->search_name (), |
de63c46b | 7356 | b, VAR_DOMAIN); |
63e43d3a | 7357 | value = read_var_value (vsym.symbol, vsym.block, frame); |
186c406b TT |
7358 | /* If the value was optimized out, revert to the old behavior. */ |
7359 | if (! value_optimized_out (value)) | |
7360 | { | |
7361 | handler = value_as_address (value); | |
7362 | ||
7363 | if (debug_infrun) | |
7364 | fprintf_unfiltered (gdb_stdlog, | |
7365 | "infrun: exception resume at %lx\n", | |
7366 | (unsigned long) handler); | |
7367 | ||
7368 | bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame), | |
454dafbd TT |
7369 | handler, |
7370 | bp_exception_resume).release (); | |
c70a6932 JK |
7371 | |
7372 | /* set_momentary_breakpoint_at_pc invalidates FRAME. */ | |
7373 | frame = NULL; | |
7374 | ||
5d5658a1 | 7375 | bp->thread = tp->global_num; |
186c406b TT |
7376 | inferior_thread ()->control.exception_resume_breakpoint = bp; |
7377 | } | |
7378 | } | |
230d2906 | 7379 | catch (const gdb_exception_error &e) |
492d29ea PA |
7380 | { |
7381 | /* We want to ignore errors here. */ | |
7382 | } | |
186c406b TT |
7383 | } |
7384 | ||
28106bc2 SDJ |
7385 | /* A helper for check_exception_resume that sets an |
7386 | exception-breakpoint based on a SystemTap probe. */ | |
7387 | ||
7388 | static void | |
7389 | insert_exception_resume_from_probe (struct thread_info *tp, | |
729662a5 | 7390 | const struct bound_probe *probe, |
28106bc2 SDJ |
7391 | struct frame_info *frame) |
7392 | { | |
7393 | struct value *arg_value; | |
7394 | CORE_ADDR handler; | |
7395 | struct breakpoint *bp; | |
7396 | ||
7397 | arg_value = probe_safe_evaluate_at_pc (frame, 1); | |
7398 | if (!arg_value) | |
7399 | return; | |
7400 | ||
7401 | handler = value_as_address (arg_value); | |
7402 | ||
7403 | if (debug_infrun) | |
7404 | fprintf_unfiltered (gdb_stdlog, | |
7405 | "infrun: exception resume at %s\n", | |
6bac7473 | 7406 | paddress (get_objfile_arch (probe->objfile), |
28106bc2 SDJ |
7407 | handler)); |
7408 | ||
7409 | bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame), | |
454dafbd | 7410 | handler, bp_exception_resume).release (); |
5d5658a1 | 7411 | bp->thread = tp->global_num; |
28106bc2 SDJ |
7412 | inferior_thread ()->control.exception_resume_breakpoint = bp; |
7413 | } | |
7414 | ||
186c406b TT |
7415 | /* This is called when an exception has been intercepted. Check to |
7416 | see whether the exception's destination is of interest, and if so, | |
7417 | set an exception resume breakpoint there. */ | |
7418 | ||
7419 | static void | |
7420 | check_exception_resume (struct execution_control_state *ecs, | |
28106bc2 | 7421 | struct frame_info *frame) |
186c406b | 7422 | { |
729662a5 | 7423 | struct bound_probe probe; |
28106bc2 SDJ |
7424 | struct symbol *func; |
7425 | ||
7426 | /* First see if this exception unwinding breakpoint was set via a | |
7427 | SystemTap probe point. If so, the probe has two arguments: the | |
7428 | CFA and the HANDLER. We ignore the CFA, extract the handler, and | |
7429 | set a breakpoint there. */ | |
6bac7473 | 7430 | probe = find_probe_by_pc (get_frame_pc (frame)); |
935676c9 | 7431 | if (probe.prob) |
28106bc2 | 7432 | { |
729662a5 | 7433 | insert_exception_resume_from_probe (ecs->event_thread, &probe, frame); |
28106bc2 SDJ |
7434 | return; |
7435 | } | |
7436 | ||
7437 | func = get_frame_function (frame); | |
7438 | if (!func) | |
7439 | return; | |
186c406b | 7440 | |
a70b8144 | 7441 | try |
186c406b | 7442 | { |
3977b71f | 7443 | const struct block *b; |
8157b174 | 7444 | struct block_iterator iter; |
186c406b TT |
7445 | struct symbol *sym; |
7446 | int argno = 0; | |
7447 | ||
7448 | /* The exception breakpoint is a thread-specific breakpoint on | |
7449 | the unwinder's debug hook, declared as: | |
7450 | ||
7451 | void _Unwind_DebugHook (void *cfa, void *handler); | |
7452 | ||
7453 | The CFA argument indicates the frame to which control is | |
7454 | about to be transferred. HANDLER is the destination PC. | |
7455 | ||
7456 | We ignore the CFA and set a temporary breakpoint at HANDLER. | |
7457 | This is not extremely efficient but it avoids issues in gdb | |
7458 | with computing the DWARF CFA, and it also works even in weird | |
7459 | cases such as throwing an exception from inside a signal | |
7460 | handler. */ | |
7461 | ||
7462 | b = SYMBOL_BLOCK_VALUE (func); | |
7463 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
7464 | { | |
7465 | if (!SYMBOL_IS_ARGUMENT (sym)) | |
7466 | continue; | |
7467 | ||
7468 | if (argno == 0) | |
7469 | ++argno; | |
7470 | else | |
7471 | { | |
7472 | insert_exception_resume_breakpoint (ecs->event_thread, | |
7473 | b, frame, sym); | |
7474 | break; | |
7475 | } | |
7476 | } | |
7477 | } | |
230d2906 | 7478 | catch (const gdb_exception_error &e) |
492d29ea PA |
7479 | { |
7480 | } | |
186c406b TT |
7481 | } |
7482 | ||
104c1213 | 7483 | static void |
22bcd14b | 7484 | stop_waiting (struct execution_control_state *ecs) |
104c1213 | 7485 | { |
527159b7 | 7486 | if (debug_infrun) |
22bcd14b | 7487 | fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n"); |
527159b7 | 7488 | |
cd0fc7c3 SS |
7489 | /* Let callers know we don't want to wait for the inferior anymore. */ |
7490 | ecs->wait_some_more = 0; | |
fbea99ea PA |
7491 | |
7492 | /* If all-stop, but the target is always in non-stop mode, stop all | |
7493 | threads now that we're presenting the stop to the user. */ | |
7494 | if (!non_stop && target_is_non_stop_p ()) | |
7495 | stop_all_threads (); | |
cd0fc7c3 SS |
7496 | } |
7497 | ||
4d9d9d04 PA |
7498 | /* Like keep_going, but passes the signal to the inferior, even if the |
7499 | signal is set to nopass. */ | |
d4f3574e SS |
7500 | |
7501 | static void | |
4d9d9d04 | 7502 | keep_going_pass_signal (struct execution_control_state *ecs) |
d4f3574e | 7503 | { |
d7e15655 | 7504 | gdb_assert (ecs->event_thread->ptid == inferior_ptid); |
372316f1 | 7505 | gdb_assert (!ecs->event_thread->resumed); |
4d9d9d04 | 7506 | |
d4f3574e | 7507 | /* Save the pc before execution, to compare with pc after stop. */ |
fb14de7b | 7508 | ecs->event_thread->prev_pc |
00431a78 | 7509 | = regcache_read_pc (get_thread_regcache (ecs->event_thread)); |
d4f3574e | 7510 | |
4d9d9d04 | 7511 | if (ecs->event_thread->control.trap_expected) |
d4f3574e | 7512 | { |
4d9d9d04 PA |
7513 | struct thread_info *tp = ecs->event_thread; |
7514 | ||
7515 | if (debug_infrun) | |
7516 | fprintf_unfiltered (gdb_stdlog, | |
7517 | "infrun: %s has trap_expected set, " | |
7518 | "resuming to collect trap\n", | |
a068643d | 7519 | target_pid_to_str (tp->ptid).c_str ()); |
4d9d9d04 | 7520 | |
a9ba6bae PA |
7521 | /* We haven't yet gotten our trap, and either: intercepted a |
7522 | non-signal event (e.g., a fork); or took a signal which we | |
7523 | are supposed to pass through to the inferior. Simply | |
7524 | continue. */ | |
64ce06e4 | 7525 | resume (ecs->event_thread->suspend.stop_signal); |
d4f3574e | 7526 | } |
372316f1 PA |
7527 | else if (step_over_info_valid_p ()) |
7528 | { | |
7529 | /* Another thread is stepping over a breakpoint in-line. If | |
7530 | this thread needs a step-over too, queue the request. In | |
7531 | either case, this resume must be deferred for later. */ | |
7532 | struct thread_info *tp = ecs->event_thread; | |
7533 | ||
7534 | if (ecs->hit_singlestep_breakpoint | |
7535 | || thread_still_needs_step_over (tp)) | |
7536 | { | |
7537 | if (debug_infrun) | |
7538 | fprintf_unfiltered (gdb_stdlog, | |
7539 | "infrun: step-over already in progress: " | |
7540 | "step-over for %s deferred\n", | |
a068643d | 7541 | target_pid_to_str (tp->ptid).c_str ()); |
372316f1 PA |
7542 | thread_step_over_chain_enqueue (tp); |
7543 | } | |
7544 | else | |
7545 | { | |
7546 | if (debug_infrun) | |
7547 | fprintf_unfiltered (gdb_stdlog, | |
7548 | "infrun: step-over in progress: " | |
7549 | "resume of %s deferred\n", | |
a068643d | 7550 | target_pid_to_str (tp->ptid).c_str ()); |
372316f1 | 7551 | } |
372316f1 | 7552 | } |
d4f3574e SS |
7553 | else |
7554 | { | |
31e77af2 | 7555 | struct regcache *regcache = get_current_regcache (); |
963f9c80 PA |
7556 | int remove_bp; |
7557 | int remove_wps; | |
8d297bbf | 7558 | step_over_what step_what; |
31e77af2 | 7559 | |
d4f3574e | 7560 | /* Either the trap was not expected, but we are continuing |
a9ba6bae PA |
7561 | anyway (if we got a signal, the user asked it be passed to |
7562 | the child) | |
7563 | -- or -- | |
7564 | We got our expected trap, but decided we should resume from | |
7565 | it. | |
d4f3574e | 7566 | |
a9ba6bae | 7567 | We're going to run this baby now! |
d4f3574e | 7568 | |
c36b740a VP |
7569 | Note that insert_breakpoints won't try to re-insert |
7570 | already inserted breakpoints. Therefore, we don't | |
7571 | care if breakpoints were already inserted, or not. */ | |
a9ba6bae | 7572 | |
31e77af2 PA |
7573 | /* If we need to step over a breakpoint, and we're not using |
7574 | displaced stepping to do so, insert all breakpoints | |
7575 | (watchpoints, etc.) but the one we're stepping over, step one | |
7576 | instruction, and then re-insert the breakpoint when that step | |
7577 | is finished. */ | |
963f9c80 | 7578 | |
6c4cfb24 PA |
7579 | step_what = thread_still_needs_step_over (ecs->event_thread); |
7580 | ||
963f9c80 | 7581 | remove_bp = (ecs->hit_singlestep_breakpoint |
6c4cfb24 PA |
7582 | || (step_what & STEP_OVER_BREAKPOINT)); |
7583 | remove_wps = (step_what & STEP_OVER_WATCHPOINT); | |
963f9c80 | 7584 | |
cb71640d PA |
7585 | /* We can't use displaced stepping if we need to step past a |
7586 | watchpoint. The instruction copied to the scratch pad would | |
7587 | still trigger the watchpoint. */ | |
7588 | if (remove_bp | |
3fc8eb30 | 7589 | && (remove_wps || !use_displaced_stepping (ecs->event_thread))) |
45e8c884 | 7590 | { |
a01bda52 | 7591 | set_step_over_info (regcache->aspace (), |
21edc42f YQ |
7592 | regcache_read_pc (regcache), remove_wps, |
7593 | ecs->event_thread->global_num); | |
45e8c884 | 7594 | } |
963f9c80 | 7595 | else if (remove_wps) |
21edc42f | 7596 | set_step_over_info (NULL, 0, remove_wps, -1); |
372316f1 PA |
7597 | |
7598 | /* If we now need to do an in-line step-over, we need to stop | |
7599 | all other threads. Note this must be done before | |
7600 | insert_breakpoints below, because that removes the breakpoint | |
7601 | we're about to step over, otherwise other threads could miss | |
7602 | it. */ | |
fbea99ea | 7603 | if (step_over_info_valid_p () && target_is_non_stop_p ()) |
372316f1 | 7604 | stop_all_threads (); |
abbb1732 | 7605 | |
31e77af2 | 7606 | /* Stop stepping if inserting breakpoints fails. */ |
a70b8144 | 7607 | try |
31e77af2 PA |
7608 | { |
7609 | insert_breakpoints (); | |
7610 | } | |
230d2906 | 7611 | catch (const gdb_exception_error &e) |
31e77af2 PA |
7612 | { |
7613 | exception_print (gdb_stderr, e); | |
22bcd14b | 7614 | stop_waiting (ecs); |
bdf2a94a | 7615 | clear_step_over_info (); |
31e77af2 | 7616 | return; |
d4f3574e SS |
7617 | } |
7618 | ||
963f9c80 | 7619 | ecs->event_thread->control.trap_expected = (remove_bp || remove_wps); |
d4f3574e | 7620 | |
64ce06e4 | 7621 | resume (ecs->event_thread->suspend.stop_signal); |
d4f3574e SS |
7622 | } |
7623 | ||
488f131b | 7624 | prepare_to_wait (ecs); |
d4f3574e SS |
7625 | } |
7626 | ||
4d9d9d04 PA |
7627 | /* Called when we should continue running the inferior, because the |
7628 | current event doesn't cause a user visible stop. This does the | |
7629 | resuming part; waiting for the next event is done elsewhere. */ | |
7630 | ||
7631 | static void | |
7632 | keep_going (struct execution_control_state *ecs) | |
7633 | { | |
7634 | if (ecs->event_thread->control.trap_expected | |
7635 | && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP) | |
7636 | ecs->event_thread->control.trap_expected = 0; | |
7637 | ||
7638 | if (!signal_program[ecs->event_thread->suspend.stop_signal]) | |
7639 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; | |
7640 | keep_going_pass_signal (ecs); | |
7641 | } | |
7642 | ||
104c1213 JM |
7643 | /* This function normally comes after a resume, before |
7644 | handle_inferior_event exits. It takes care of any last bits of | |
7645 | housekeeping, and sets the all-important wait_some_more flag. */ | |
cd0fc7c3 | 7646 | |
104c1213 JM |
7647 | static void |
7648 | prepare_to_wait (struct execution_control_state *ecs) | |
cd0fc7c3 | 7649 | { |
527159b7 | 7650 | if (debug_infrun) |
8a9de0e4 | 7651 | fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n"); |
104c1213 | 7652 | |
104c1213 | 7653 | ecs->wait_some_more = 1; |
0b333c5e PA |
7654 | |
7655 | if (!target_is_async_p ()) | |
7656 | mark_infrun_async_event_handler (); | |
c906108c | 7657 | } |
11cf8741 | 7658 | |
fd664c91 | 7659 | /* We are done with the step range of a step/next/si/ni command. |
b57bacec | 7660 | Called once for each n of a "step n" operation. */ |
fd664c91 PA |
7661 | |
7662 | static void | |
bdc36728 | 7663 | end_stepping_range (struct execution_control_state *ecs) |
fd664c91 | 7664 | { |
bdc36728 | 7665 | ecs->event_thread->control.stop_step = 1; |
bdc36728 | 7666 | stop_waiting (ecs); |
fd664c91 PA |
7667 | } |
7668 | ||
33d62d64 JK |
7669 | /* Several print_*_reason functions to print why the inferior has stopped. |
7670 | We always print something when the inferior exits, or receives a signal. | |
7671 | The rest of the cases are dealt with later on in normal_stop and | |
7672 | print_it_typical. Ideally there should be a call to one of these | |
7673 | print_*_reason functions functions from handle_inferior_event each time | |
22bcd14b | 7674 | stop_waiting is called. |
33d62d64 | 7675 | |
fd664c91 PA |
7676 | Note that we don't call these directly, instead we delegate that to |
7677 | the interpreters, through observers. Interpreters then call these | |
7678 | with whatever uiout is right. */ | |
33d62d64 | 7679 | |
fd664c91 PA |
7680 | void |
7681 | print_end_stepping_range_reason (struct ui_out *uiout) | |
33d62d64 | 7682 | { |
fd664c91 | 7683 | /* For CLI-like interpreters, print nothing. */ |
33d62d64 | 7684 | |
112e8700 | 7685 | if (uiout->is_mi_like_p ()) |
fd664c91 | 7686 | { |
112e8700 | 7687 | uiout->field_string ("reason", |
fd664c91 PA |
7688 | async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE)); |
7689 | } | |
7690 | } | |
33d62d64 | 7691 | |
fd664c91 PA |
7692 | void |
7693 | print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal) | |
11cf8741 | 7694 | { |
33d62d64 | 7695 | annotate_signalled (); |
112e8700 SM |
7696 | if (uiout->is_mi_like_p ()) |
7697 | uiout->field_string | |
7698 | ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED)); | |
7699 | uiout->text ("\nProgram terminated with signal "); | |
33d62d64 | 7700 | annotate_signal_name (); |
112e8700 | 7701 | uiout->field_string ("signal-name", |
2ea28649 | 7702 | gdb_signal_to_name (siggnal)); |
33d62d64 | 7703 | annotate_signal_name_end (); |
112e8700 | 7704 | uiout->text (", "); |
33d62d64 | 7705 | annotate_signal_string (); |
112e8700 | 7706 | uiout->field_string ("signal-meaning", |
2ea28649 | 7707 | gdb_signal_to_string (siggnal)); |
33d62d64 | 7708 | annotate_signal_string_end (); |
112e8700 SM |
7709 | uiout->text (".\n"); |
7710 | uiout->text ("The program no longer exists.\n"); | |
33d62d64 JK |
7711 | } |
7712 | ||
fd664c91 PA |
7713 | void |
7714 | print_exited_reason (struct ui_out *uiout, int exitstatus) | |
33d62d64 | 7715 | { |
fda326dd | 7716 | struct inferior *inf = current_inferior (); |
a068643d | 7717 | std::string pidstr = target_pid_to_str (ptid_t (inf->pid)); |
fda326dd | 7718 | |
33d62d64 JK |
7719 | annotate_exited (exitstatus); |
7720 | if (exitstatus) | |
7721 | { | |
112e8700 SM |
7722 | if (uiout->is_mi_like_p ()) |
7723 | uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED)); | |
6a831f06 PA |
7724 | std::string exit_code_str |
7725 | = string_printf ("0%o", (unsigned int) exitstatus); | |
7726 | uiout->message ("[Inferior %s (%s) exited with code %pF]\n", | |
7727 | plongest (inf->num), pidstr.c_str (), | |
7728 | string_field ("exit-code", exit_code_str.c_str ())); | |
33d62d64 JK |
7729 | } |
7730 | else | |
11cf8741 | 7731 | { |
112e8700 SM |
7732 | if (uiout->is_mi_like_p ()) |
7733 | uiout->field_string | |
7734 | ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY)); | |
6a831f06 PA |
7735 | uiout->message ("[Inferior %s (%s) exited normally]\n", |
7736 | plongest (inf->num), pidstr.c_str ()); | |
33d62d64 | 7737 | } |
33d62d64 JK |
7738 | } |
7739 | ||
012b3a21 WT |
7740 | /* Some targets/architectures can do extra processing/display of |
7741 | segmentation faults. E.g., Intel MPX boundary faults. | |
7742 | Call the architecture dependent function to handle the fault. */ | |
7743 | ||
7744 | static void | |
7745 | handle_segmentation_fault (struct ui_out *uiout) | |
7746 | { | |
7747 | struct regcache *regcache = get_current_regcache (); | |
ac7936df | 7748 | struct gdbarch *gdbarch = regcache->arch (); |
012b3a21 WT |
7749 | |
7750 | if (gdbarch_handle_segmentation_fault_p (gdbarch)) | |
7751 | gdbarch_handle_segmentation_fault (gdbarch, uiout); | |
7752 | } | |
7753 | ||
fd664c91 PA |
7754 | void |
7755 | print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal) | |
33d62d64 | 7756 | { |
f303dbd6 PA |
7757 | struct thread_info *thr = inferior_thread (); |
7758 | ||
33d62d64 JK |
7759 | annotate_signal (); |
7760 | ||
112e8700 | 7761 | if (uiout->is_mi_like_p ()) |
f303dbd6 PA |
7762 | ; |
7763 | else if (show_thread_that_caused_stop ()) | |
33d62d64 | 7764 | { |
f303dbd6 | 7765 | const char *name; |
33d62d64 | 7766 | |
112e8700 | 7767 | uiout->text ("\nThread "); |
33eca680 | 7768 | uiout->field_string ("thread-id", print_thread_id (thr)); |
f303dbd6 PA |
7769 | |
7770 | name = thr->name != NULL ? thr->name : target_thread_name (thr); | |
7771 | if (name != NULL) | |
7772 | { | |
112e8700 | 7773 | uiout->text (" \""); |
33eca680 | 7774 | uiout->field_string ("name", name); |
112e8700 | 7775 | uiout->text ("\""); |
f303dbd6 | 7776 | } |
33d62d64 | 7777 | } |
f303dbd6 | 7778 | else |
112e8700 | 7779 | uiout->text ("\nProgram"); |
f303dbd6 | 7780 | |
112e8700 SM |
7781 | if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ()) |
7782 | uiout->text (" stopped"); | |
33d62d64 JK |
7783 | else |
7784 | { | |
112e8700 | 7785 | uiout->text (" received signal "); |
8b93c638 | 7786 | annotate_signal_name (); |
112e8700 SM |
7787 | if (uiout->is_mi_like_p ()) |
7788 | uiout->field_string | |
7789 | ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED)); | |
7790 | uiout->field_string ("signal-name", gdb_signal_to_name (siggnal)); | |
8b93c638 | 7791 | annotate_signal_name_end (); |
112e8700 | 7792 | uiout->text (", "); |
8b93c638 | 7793 | annotate_signal_string (); |
112e8700 | 7794 | uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal)); |
012b3a21 WT |
7795 | |
7796 | if (siggnal == GDB_SIGNAL_SEGV) | |
7797 | handle_segmentation_fault (uiout); | |
7798 | ||
8b93c638 | 7799 | annotate_signal_string_end (); |
33d62d64 | 7800 | } |
112e8700 | 7801 | uiout->text (".\n"); |
33d62d64 | 7802 | } |
252fbfc8 | 7803 | |
fd664c91 PA |
7804 | void |
7805 | print_no_history_reason (struct ui_out *uiout) | |
33d62d64 | 7806 | { |
112e8700 | 7807 | uiout->text ("\nNo more reverse-execution history.\n"); |
11cf8741 | 7808 | } |
43ff13b4 | 7809 | |
0c7e1a46 PA |
7810 | /* Print current location without a level number, if we have changed |
7811 | functions or hit a breakpoint. Print source line if we have one. | |
7812 | bpstat_print contains the logic deciding in detail what to print, | |
7813 | based on the event(s) that just occurred. */ | |
7814 | ||
243a9253 PA |
7815 | static void |
7816 | print_stop_location (struct target_waitstatus *ws) | |
0c7e1a46 PA |
7817 | { |
7818 | int bpstat_ret; | |
f486487f | 7819 | enum print_what source_flag; |
0c7e1a46 PA |
7820 | int do_frame_printing = 1; |
7821 | struct thread_info *tp = inferior_thread (); | |
7822 | ||
7823 | bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind); | |
7824 | switch (bpstat_ret) | |
7825 | { | |
7826 | case PRINT_UNKNOWN: | |
7827 | /* FIXME: cagney/2002-12-01: Given that a frame ID does (or | |
7828 | should) carry around the function and does (or should) use | |
7829 | that when doing a frame comparison. */ | |
7830 | if (tp->control.stop_step | |
7831 | && frame_id_eq (tp->control.step_frame_id, | |
7832 | get_frame_id (get_current_frame ())) | |
f2ffa92b PA |
7833 | && (tp->control.step_start_function |
7834 | == find_pc_function (tp->suspend.stop_pc))) | |
0c7e1a46 PA |
7835 | { |
7836 | /* Finished step, just print source line. */ | |
7837 | source_flag = SRC_LINE; | |
7838 | } | |
7839 | else | |
7840 | { | |
7841 | /* Print location and source line. */ | |
7842 | source_flag = SRC_AND_LOC; | |
7843 | } | |
7844 | break; | |
7845 | case PRINT_SRC_AND_LOC: | |
7846 | /* Print location and source line. */ | |
7847 | source_flag = SRC_AND_LOC; | |
7848 | break; | |
7849 | case PRINT_SRC_ONLY: | |
7850 | source_flag = SRC_LINE; | |
7851 | break; | |
7852 | case PRINT_NOTHING: | |
7853 | /* Something bogus. */ | |
7854 | source_flag = SRC_LINE; | |
7855 | do_frame_printing = 0; | |
7856 | break; | |
7857 | default: | |
7858 | internal_error (__FILE__, __LINE__, _("Unknown value.")); | |
7859 | } | |
7860 | ||
7861 | /* The behavior of this routine with respect to the source | |
7862 | flag is: | |
7863 | SRC_LINE: Print only source line | |
7864 | LOCATION: Print only location | |
7865 | SRC_AND_LOC: Print location and source line. */ | |
7866 | if (do_frame_printing) | |
7867 | print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1); | |
243a9253 PA |
7868 | } |
7869 | ||
243a9253 PA |
7870 | /* See infrun.h. */ |
7871 | ||
7872 | void | |
4c7d57e7 | 7873 | print_stop_event (struct ui_out *uiout, bool displays) |
243a9253 | 7874 | { |
243a9253 | 7875 | struct target_waitstatus last; |
243a9253 PA |
7876 | struct thread_info *tp; |
7877 | ||
ab1ddbcf | 7878 | get_last_target_status (nullptr, &last); |
243a9253 | 7879 | |
67ad9399 TT |
7880 | { |
7881 | scoped_restore save_uiout = make_scoped_restore (¤t_uiout, uiout); | |
0c7e1a46 | 7882 | |
67ad9399 | 7883 | print_stop_location (&last); |
243a9253 | 7884 | |
67ad9399 | 7885 | /* Display the auto-display expressions. */ |
4c7d57e7 TT |
7886 | if (displays) |
7887 | do_displays (); | |
67ad9399 | 7888 | } |
243a9253 PA |
7889 | |
7890 | tp = inferior_thread (); | |
7891 | if (tp->thread_fsm != NULL | |
46e3ed7f | 7892 | && tp->thread_fsm->finished_p ()) |
243a9253 PA |
7893 | { |
7894 | struct return_value_info *rv; | |
7895 | ||
46e3ed7f | 7896 | rv = tp->thread_fsm->return_value (); |
243a9253 PA |
7897 | if (rv != NULL) |
7898 | print_return_value (uiout, rv); | |
7899 | } | |
0c7e1a46 PA |
7900 | } |
7901 | ||
388a7084 PA |
7902 | /* See infrun.h. */ |
7903 | ||
7904 | void | |
7905 | maybe_remove_breakpoints (void) | |
7906 | { | |
7907 | if (!breakpoints_should_be_inserted_now () && target_has_execution) | |
7908 | { | |
7909 | if (remove_breakpoints ()) | |
7910 | { | |
223ffa71 | 7911 | target_terminal::ours_for_output (); |
388a7084 PA |
7912 | printf_filtered (_("Cannot remove breakpoints because " |
7913 | "program is no longer writable.\nFurther " | |
7914 | "execution is probably impossible.\n")); | |
7915 | } | |
7916 | } | |
7917 | } | |
7918 | ||
4c2f2a79 PA |
7919 | /* The execution context that just caused a normal stop. */ |
7920 | ||
7921 | struct stop_context | |
7922 | { | |
2d844eaf TT |
7923 | stop_context (); |
7924 | ~stop_context (); | |
7925 | ||
7926 | DISABLE_COPY_AND_ASSIGN (stop_context); | |
7927 | ||
7928 | bool changed () const; | |
7929 | ||
4c2f2a79 PA |
7930 | /* The stop ID. */ |
7931 | ULONGEST stop_id; | |
c906108c | 7932 | |
4c2f2a79 | 7933 | /* The event PTID. */ |
c906108c | 7934 | |
4c2f2a79 PA |
7935 | ptid_t ptid; |
7936 | ||
7937 | /* If stopp for a thread event, this is the thread that caused the | |
7938 | stop. */ | |
7939 | struct thread_info *thread; | |
7940 | ||
7941 | /* The inferior that caused the stop. */ | |
7942 | int inf_num; | |
7943 | }; | |
7944 | ||
2d844eaf | 7945 | /* Initializes a new stop context. If stopped for a thread event, this |
4c2f2a79 PA |
7946 | takes a strong reference to the thread. */ |
7947 | ||
2d844eaf | 7948 | stop_context::stop_context () |
4c2f2a79 | 7949 | { |
2d844eaf TT |
7950 | stop_id = get_stop_id (); |
7951 | ptid = inferior_ptid; | |
7952 | inf_num = current_inferior ()->num; | |
4c2f2a79 | 7953 | |
d7e15655 | 7954 | if (inferior_ptid != null_ptid) |
4c2f2a79 PA |
7955 | { |
7956 | /* Take a strong reference so that the thread can't be deleted | |
7957 | yet. */ | |
2d844eaf TT |
7958 | thread = inferior_thread (); |
7959 | thread->incref (); | |
4c2f2a79 PA |
7960 | } |
7961 | else | |
2d844eaf | 7962 | thread = NULL; |
4c2f2a79 PA |
7963 | } |
7964 | ||
7965 | /* Release a stop context previously created with save_stop_context. | |
7966 | Releases the strong reference to the thread as well. */ | |
7967 | ||
2d844eaf | 7968 | stop_context::~stop_context () |
4c2f2a79 | 7969 | { |
2d844eaf TT |
7970 | if (thread != NULL) |
7971 | thread->decref (); | |
4c2f2a79 PA |
7972 | } |
7973 | ||
7974 | /* Return true if the current context no longer matches the saved stop | |
7975 | context. */ | |
7976 | ||
2d844eaf TT |
7977 | bool |
7978 | stop_context::changed () const | |
7979 | { | |
7980 | if (ptid != inferior_ptid) | |
7981 | return true; | |
7982 | if (inf_num != current_inferior ()->num) | |
7983 | return true; | |
7984 | if (thread != NULL && thread->state != THREAD_STOPPED) | |
7985 | return true; | |
7986 | if (get_stop_id () != stop_id) | |
7987 | return true; | |
7988 | return false; | |
4c2f2a79 PA |
7989 | } |
7990 | ||
7991 | /* See infrun.h. */ | |
7992 | ||
7993 | int | |
96baa820 | 7994 | normal_stop (void) |
c906108c | 7995 | { |
73b65bb0 | 7996 | struct target_waitstatus last; |
73b65bb0 | 7997 | |
ab1ddbcf | 7998 | get_last_target_status (nullptr, &last); |
73b65bb0 | 7999 | |
4c2f2a79 PA |
8000 | new_stop_id (); |
8001 | ||
29f49a6a PA |
8002 | /* If an exception is thrown from this point on, make sure to |
8003 | propagate GDB's knowledge of the executing state to the | |
8004 | frontend/user running state. A QUIT is an easy exception to see | |
8005 | here, so do this before any filtered output. */ | |
731f534f PA |
8006 | |
8007 | gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state; | |
8008 | ||
c35b1492 | 8009 | if (!non_stop) |
731f534f | 8010 | maybe_finish_thread_state.emplace (minus_one_ptid); |
e1316e60 PA |
8011 | else if (last.kind == TARGET_WAITKIND_SIGNALLED |
8012 | || last.kind == TARGET_WAITKIND_EXITED) | |
8013 | { | |
8014 | /* On some targets, we may still have live threads in the | |
8015 | inferior when we get a process exit event. E.g., for | |
8016 | "checkpoint", when the current checkpoint/fork exits, | |
8017 | linux-fork.c automatically switches to another fork from | |
8018 | within target_mourn_inferior. */ | |
731f534f PA |
8019 | if (inferior_ptid != null_ptid) |
8020 | maybe_finish_thread_state.emplace (ptid_t (inferior_ptid.pid ())); | |
e1316e60 PA |
8021 | } |
8022 | else if (last.kind != TARGET_WAITKIND_NO_RESUMED) | |
731f534f | 8023 | maybe_finish_thread_state.emplace (inferior_ptid); |
29f49a6a | 8024 | |
b57bacec PA |
8025 | /* As we're presenting a stop, and potentially removing breakpoints, |
8026 | update the thread list so we can tell whether there are threads | |
8027 | running on the target. With target remote, for example, we can | |
8028 | only learn about new threads when we explicitly update the thread | |
8029 | list. Do this before notifying the interpreters about signal | |
8030 | stops, end of stepping ranges, etc., so that the "new thread" | |
8031 | output is emitted before e.g., "Program received signal FOO", | |
8032 | instead of after. */ | |
8033 | update_thread_list (); | |
8034 | ||
8035 | if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal) | |
76727919 | 8036 | gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal); |
b57bacec | 8037 | |
c906108c SS |
8038 | /* As with the notification of thread events, we want to delay |
8039 | notifying the user that we've switched thread context until | |
8040 | the inferior actually stops. | |
8041 | ||
73b65bb0 DJ |
8042 | There's no point in saying anything if the inferior has exited. |
8043 | Note that SIGNALLED here means "exited with a signal", not | |
b65dc60b PA |
8044 | "received a signal". |
8045 | ||
8046 | Also skip saying anything in non-stop mode. In that mode, as we | |
8047 | don't want GDB to switch threads behind the user's back, to avoid | |
8048 | races where the user is typing a command to apply to thread x, | |
8049 | but GDB switches to thread y before the user finishes entering | |
8050 | the command, fetch_inferior_event installs a cleanup to restore | |
8051 | the current thread back to the thread the user had selected right | |
8052 | after this event is handled, so we're not really switching, only | |
8053 | informing of a stop. */ | |
4f8d22e3 | 8054 | if (!non_stop |
731f534f | 8055 | && previous_inferior_ptid != inferior_ptid |
73b65bb0 DJ |
8056 | && target_has_execution |
8057 | && last.kind != TARGET_WAITKIND_SIGNALLED | |
0e5bf2a8 PA |
8058 | && last.kind != TARGET_WAITKIND_EXITED |
8059 | && last.kind != TARGET_WAITKIND_NO_RESUMED) | |
c906108c | 8060 | { |
0e454242 | 8061 | SWITCH_THRU_ALL_UIS () |
3b12939d | 8062 | { |
223ffa71 | 8063 | target_terminal::ours_for_output (); |
3b12939d | 8064 | printf_filtered (_("[Switching to %s]\n"), |
a068643d | 8065 | target_pid_to_str (inferior_ptid).c_str ()); |
3b12939d PA |
8066 | annotate_thread_changed (); |
8067 | } | |
39f77062 | 8068 | previous_inferior_ptid = inferior_ptid; |
c906108c | 8069 | } |
c906108c | 8070 | |
0e5bf2a8 PA |
8071 | if (last.kind == TARGET_WAITKIND_NO_RESUMED) |
8072 | { | |
0e454242 | 8073 | SWITCH_THRU_ALL_UIS () |
3b12939d PA |
8074 | if (current_ui->prompt_state == PROMPT_BLOCKED) |
8075 | { | |
223ffa71 | 8076 | target_terminal::ours_for_output (); |
3b12939d PA |
8077 | printf_filtered (_("No unwaited-for children left.\n")); |
8078 | } | |
0e5bf2a8 PA |
8079 | } |
8080 | ||
b57bacec | 8081 | /* Note: this depends on the update_thread_list call above. */ |
388a7084 | 8082 | maybe_remove_breakpoints (); |
c906108c | 8083 | |
c906108c SS |
8084 | /* If an auto-display called a function and that got a signal, |
8085 | delete that auto-display to avoid an infinite recursion. */ | |
8086 | ||
8087 | if (stopped_by_random_signal) | |
8088 | disable_current_display (); | |
8089 | ||
0e454242 | 8090 | SWITCH_THRU_ALL_UIS () |
3b12939d PA |
8091 | { |
8092 | async_enable_stdin (); | |
8093 | } | |
c906108c | 8094 | |
388a7084 | 8095 | /* Let the user/frontend see the threads as stopped. */ |
731f534f | 8096 | maybe_finish_thread_state.reset (); |
388a7084 PA |
8097 | |
8098 | /* Select innermost stack frame - i.e., current frame is frame 0, | |
8099 | and current location is based on that. Handle the case where the | |
8100 | dummy call is returning after being stopped. E.g. the dummy call | |
8101 | previously hit a breakpoint. (If the dummy call returns | |
8102 | normally, we won't reach here.) Do this before the stop hook is | |
8103 | run, so that it doesn't get to see the temporary dummy frame, | |
8104 | which is not where we'll present the stop. */ | |
8105 | if (has_stack_frames ()) | |
8106 | { | |
8107 | if (stop_stack_dummy == STOP_STACK_DUMMY) | |
8108 | { | |
8109 | /* Pop the empty frame that contains the stack dummy. This | |
8110 | also restores inferior state prior to the call (struct | |
8111 | infcall_suspend_state). */ | |
8112 | struct frame_info *frame = get_current_frame (); | |
8113 | ||
8114 | gdb_assert (get_frame_type (frame) == DUMMY_FRAME); | |
8115 | frame_pop (frame); | |
8116 | /* frame_pop calls reinit_frame_cache as the last thing it | |
8117 | does which means there's now no selected frame. */ | |
8118 | } | |
8119 | ||
8120 | select_frame (get_current_frame ()); | |
8121 | ||
8122 | /* Set the current source location. */ | |
8123 | set_current_sal_from_frame (get_current_frame ()); | |
8124 | } | |
dd7e2d2b PA |
8125 | |
8126 | /* Look up the hook_stop and run it (CLI internally handles problem | |
8127 | of stop_command's pre-hook not existing). */ | |
4c2f2a79 PA |
8128 | if (stop_command != NULL) |
8129 | { | |
2d844eaf | 8130 | stop_context saved_context; |
4c2f2a79 | 8131 | |
a70b8144 | 8132 | try |
bf469271 PA |
8133 | { |
8134 | execute_cmd_pre_hook (stop_command); | |
8135 | } | |
230d2906 | 8136 | catch (const gdb_exception &ex) |
bf469271 PA |
8137 | { |
8138 | exception_fprintf (gdb_stderr, ex, | |
8139 | "Error while running hook_stop:\n"); | |
8140 | } | |
4c2f2a79 PA |
8141 | |
8142 | /* If the stop hook resumes the target, then there's no point in | |
8143 | trying to notify about the previous stop; its context is | |
8144 | gone. Likewise if the command switches thread or inferior -- | |
8145 | the observers would print a stop for the wrong | |
8146 | thread/inferior. */ | |
2d844eaf TT |
8147 | if (saved_context.changed ()) |
8148 | return 1; | |
4c2f2a79 | 8149 | } |
dd7e2d2b | 8150 | |
388a7084 PA |
8151 | /* Notify observers about the stop. This is where the interpreters |
8152 | print the stop event. */ | |
d7e15655 | 8153 | if (inferior_ptid != null_ptid) |
76727919 | 8154 | gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat, |
388a7084 PA |
8155 | stop_print_frame); |
8156 | else | |
76727919 | 8157 | gdb::observers::normal_stop.notify (NULL, stop_print_frame); |
347bddb7 | 8158 | |
243a9253 PA |
8159 | annotate_stopped (); |
8160 | ||
48844aa6 PA |
8161 | if (target_has_execution) |
8162 | { | |
8163 | if (last.kind != TARGET_WAITKIND_SIGNALLED | |
fe726667 PA |
8164 | && last.kind != TARGET_WAITKIND_EXITED |
8165 | && last.kind != TARGET_WAITKIND_NO_RESUMED) | |
48844aa6 PA |
8166 | /* Delete the breakpoint we stopped at, if it wants to be deleted. |
8167 | Delete any breakpoint that is to be deleted at the next stop. */ | |
16c381f0 | 8168 | breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat); |
94cc34af | 8169 | } |
6c95b8df PA |
8170 | |
8171 | /* Try to get rid of automatically added inferiors that are no | |
8172 | longer needed. Keeping those around slows down things linearly. | |
8173 | Note that this never removes the current inferior. */ | |
8174 | prune_inferiors (); | |
4c2f2a79 PA |
8175 | |
8176 | return 0; | |
c906108c | 8177 | } |
c906108c | 8178 | \f |
c5aa993b | 8179 | int |
96baa820 | 8180 | signal_stop_state (int signo) |
c906108c | 8181 | { |
d6b48e9c | 8182 | return signal_stop[signo]; |
c906108c SS |
8183 | } |
8184 | ||
c5aa993b | 8185 | int |
96baa820 | 8186 | signal_print_state (int signo) |
c906108c SS |
8187 | { |
8188 | return signal_print[signo]; | |
8189 | } | |
8190 | ||
c5aa993b | 8191 | int |
96baa820 | 8192 | signal_pass_state (int signo) |
c906108c SS |
8193 | { |
8194 | return signal_program[signo]; | |
8195 | } | |
8196 | ||
2455069d UW |
8197 | static void |
8198 | signal_cache_update (int signo) | |
8199 | { | |
8200 | if (signo == -1) | |
8201 | { | |
a493e3e2 | 8202 | for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++) |
2455069d UW |
8203 | signal_cache_update (signo); |
8204 | ||
8205 | return; | |
8206 | } | |
8207 | ||
8208 | signal_pass[signo] = (signal_stop[signo] == 0 | |
8209 | && signal_print[signo] == 0 | |
ab04a2af TT |
8210 | && signal_program[signo] == 1 |
8211 | && signal_catch[signo] == 0); | |
2455069d UW |
8212 | } |
8213 | ||
488f131b | 8214 | int |
7bda5e4a | 8215 | signal_stop_update (int signo, int state) |
d4f3574e SS |
8216 | { |
8217 | int ret = signal_stop[signo]; | |
abbb1732 | 8218 | |
d4f3574e | 8219 | signal_stop[signo] = state; |
2455069d | 8220 | signal_cache_update (signo); |
d4f3574e SS |
8221 | return ret; |
8222 | } | |
8223 | ||
488f131b | 8224 | int |
7bda5e4a | 8225 | signal_print_update (int signo, int state) |
d4f3574e SS |
8226 | { |
8227 | int ret = signal_print[signo]; | |
abbb1732 | 8228 | |
d4f3574e | 8229 | signal_print[signo] = state; |
2455069d | 8230 | signal_cache_update (signo); |
d4f3574e SS |
8231 | return ret; |
8232 | } | |
8233 | ||
488f131b | 8234 | int |
7bda5e4a | 8235 | signal_pass_update (int signo, int state) |
d4f3574e SS |
8236 | { |
8237 | int ret = signal_program[signo]; | |
abbb1732 | 8238 | |
d4f3574e | 8239 | signal_program[signo] = state; |
2455069d | 8240 | signal_cache_update (signo); |
d4f3574e SS |
8241 | return ret; |
8242 | } | |
8243 | ||
ab04a2af TT |
8244 | /* Update the global 'signal_catch' from INFO and notify the |
8245 | target. */ | |
8246 | ||
8247 | void | |
8248 | signal_catch_update (const unsigned int *info) | |
8249 | { | |
8250 | int i; | |
8251 | ||
8252 | for (i = 0; i < GDB_SIGNAL_LAST; ++i) | |
8253 | signal_catch[i] = info[i] > 0; | |
8254 | signal_cache_update (-1); | |
adc6a863 | 8255 | target_pass_signals (signal_pass); |
ab04a2af TT |
8256 | } |
8257 | ||
c906108c | 8258 | static void |
96baa820 | 8259 | sig_print_header (void) |
c906108c | 8260 | { |
3e43a32a MS |
8261 | printf_filtered (_("Signal Stop\tPrint\tPass " |
8262 | "to program\tDescription\n")); | |
c906108c SS |
8263 | } |
8264 | ||
8265 | static void | |
2ea28649 | 8266 | sig_print_info (enum gdb_signal oursig) |
c906108c | 8267 | { |
2ea28649 | 8268 | const char *name = gdb_signal_to_name (oursig); |
c906108c | 8269 | int name_padding = 13 - strlen (name); |
96baa820 | 8270 | |
c906108c SS |
8271 | if (name_padding <= 0) |
8272 | name_padding = 0; | |
8273 | ||
8274 | printf_filtered ("%s", name); | |
488f131b | 8275 | printf_filtered ("%*.*s ", name_padding, name_padding, " "); |
c906108c SS |
8276 | printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No"); |
8277 | printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No"); | |
8278 | printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No"); | |
2ea28649 | 8279 | printf_filtered ("%s\n", gdb_signal_to_string (oursig)); |
c906108c SS |
8280 | } |
8281 | ||
8282 | /* Specify how various signals in the inferior should be handled. */ | |
8283 | ||
8284 | static void | |
0b39b52e | 8285 | handle_command (const char *args, int from_tty) |
c906108c | 8286 | { |
c906108c | 8287 | int digits, wordlen; |
b926417a | 8288 | int sigfirst, siglast; |
2ea28649 | 8289 | enum gdb_signal oursig; |
c906108c | 8290 | int allsigs; |
c906108c SS |
8291 | |
8292 | if (args == NULL) | |
8293 | { | |
e2e0b3e5 | 8294 | error_no_arg (_("signal to handle")); |
c906108c SS |
8295 | } |
8296 | ||
1777feb0 | 8297 | /* Allocate and zero an array of flags for which signals to handle. */ |
c906108c | 8298 | |
adc6a863 PA |
8299 | const size_t nsigs = GDB_SIGNAL_LAST; |
8300 | unsigned char sigs[nsigs] {}; | |
c906108c | 8301 | |
1777feb0 | 8302 | /* Break the command line up into args. */ |
c906108c | 8303 | |
773a1edc | 8304 | gdb_argv built_argv (args); |
c906108c SS |
8305 | |
8306 | /* Walk through the args, looking for signal oursigs, signal names, and | |
8307 | actions. Signal numbers and signal names may be interspersed with | |
8308 | actions, with the actions being performed for all signals cumulatively | |
1777feb0 | 8309 | specified. Signal ranges can be specified as <LOW>-<HIGH>. */ |
c906108c | 8310 | |
773a1edc | 8311 | for (char *arg : built_argv) |
c906108c | 8312 | { |
773a1edc TT |
8313 | wordlen = strlen (arg); |
8314 | for (digits = 0; isdigit (arg[digits]); digits++) | |
c906108c SS |
8315 | {; |
8316 | } | |
8317 | allsigs = 0; | |
8318 | sigfirst = siglast = -1; | |
8319 | ||
773a1edc | 8320 | if (wordlen >= 1 && !strncmp (arg, "all", wordlen)) |
c906108c SS |
8321 | { |
8322 | /* Apply action to all signals except those used by the | |
1777feb0 | 8323 | debugger. Silently skip those. */ |
c906108c SS |
8324 | allsigs = 1; |
8325 | sigfirst = 0; | |
8326 | siglast = nsigs - 1; | |
8327 | } | |
773a1edc | 8328 | else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen)) |
c906108c SS |
8329 | { |
8330 | SET_SIGS (nsigs, sigs, signal_stop); | |
8331 | SET_SIGS (nsigs, sigs, signal_print); | |
8332 | } | |
773a1edc | 8333 | else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen)) |
c906108c SS |
8334 | { |
8335 | UNSET_SIGS (nsigs, sigs, signal_program); | |
8336 | } | |
773a1edc | 8337 | else if (wordlen >= 2 && !strncmp (arg, "print", wordlen)) |
c906108c SS |
8338 | { |
8339 | SET_SIGS (nsigs, sigs, signal_print); | |
8340 | } | |
773a1edc | 8341 | else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen)) |
c906108c SS |
8342 | { |
8343 | SET_SIGS (nsigs, sigs, signal_program); | |
8344 | } | |
773a1edc | 8345 | else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen)) |
c906108c SS |
8346 | { |
8347 | UNSET_SIGS (nsigs, sigs, signal_stop); | |
8348 | } | |
773a1edc | 8349 | else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen)) |
c906108c SS |
8350 | { |
8351 | SET_SIGS (nsigs, sigs, signal_program); | |
8352 | } | |
773a1edc | 8353 | else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen)) |
c906108c SS |
8354 | { |
8355 | UNSET_SIGS (nsigs, sigs, signal_print); | |
8356 | UNSET_SIGS (nsigs, sigs, signal_stop); | |
8357 | } | |
773a1edc | 8358 | else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen)) |
c906108c SS |
8359 | { |
8360 | UNSET_SIGS (nsigs, sigs, signal_program); | |
8361 | } | |
8362 | else if (digits > 0) | |
8363 | { | |
8364 | /* It is numeric. The numeric signal refers to our own | |
8365 | internal signal numbering from target.h, not to host/target | |
8366 | signal number. This is a feature; users really should be | |
8367 | using symbolic names anyway, and the common ones like | |
8368 | SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */ | |
8369 | ||
8370 | sigfirst = siglast = (int) | |
773a1edc TT |
8371 | gdb_signal_from_command (atoi (arg)); |
8372 | if (arg[digits] == '-') | |
c906108c SS |
8373 | { |
8374 | siglast = (int) | |
773a1edc | 8375 | gdb_signal_from_command (atoi (arg + digits + 1)); |
c906108c SS |
8376 | } |
8377 | if (sigfirst > siglast) | |
8378 | { | |
1777feb0 | 8379 | /* Bet he didn't figure we'd think of this case... */ |
b926417a | 8380 | std::swap (sigfirst, siglast); |
c906108c SS |
8381 | } |
8382 | } | |
8383 | else | |
8384 | { | |
773a1edc | 8385 | oursig = gdb_signal_from_name (arg); |
a493e3e2 | 8386 | if (oursig != GDB_SIGNAL_UNKNOWN) |
c906108c SS |
8387 | { |
8388 | sigfirst = siglast = (int) oursig; | |
8389 | } | |
8390 | else | |
8391 | { | |
8392 | /* Not a number and not a recognized flag word => complain. */ | |
773a1edc | 8393 | error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg); |
c906108c SS |
8394 | } |
8395 | } | |
8396 | ||
8397 | /* If any signal numbers or symbol names were found, set flags for | |
1777feb0 | 8398 | which signals to apply actions to. */ |
c906108c | 8399 | |
b926417a | 8400 | for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++) |
c906108c | 8401 | { |
2ea28649 | 8402 | switch ((enum gdb_signal) signum) |
c906108c | 8403 | { |
a493e3e2 PA |
8404 | case GDB_SIGNAL_TRAP: |
8405 | case GDB_SIGNAL_INT: | |
c906108c SS |
8406 | if (!allsigs && !sigs[signum]) |
8407 | { | |
9e2f0ad4 | 8408 | if (query (_("%s is used by the debugger.\n\ |
3e43a32a | 8409 | Are you sure you want to change it? "), |
2ea28649 | 8410 | gdb_signal_to_name ((enum gdb_signal) signum))) |
c906108c SS |
8411 | { |
8412 | sigs[signum] = 1; | |
8413 | } | |
8414 | else | |
c119e040 | 8415 | printf_unfiltered (_("Not confirmed, unchanged.\n")); |
c906108c SS |
8416 | } |
8417 | break; | |
a493e3e2 PA |
8418 | case GDB_SIGNAL_0: |
8419 | case GDB_SIGNAL_DEFAULT: | |
8420 | case GDB_SIGNAL_UNKNOWN: | |
c906108c SS |
8421 | /* Make sure that "all" doesn't print these. */ |
8422 | break; | |
8423 | default: | |
8424 | sigs[signum] = 1; | |
8425 | break; | |
8426 | } | |
8427 | } | |
c906108c SS |
8428 | } |
8429 | ||
b926417a | 8430 | for (int signum = 0; signum < nsigs; signum++) |
3a031f65 PA |
8431 | if (sigs[signum]) |
8432 | { | |
2455069d | 8433 | signal_cache_update (-1); |
adc6a863 PA |
8434 | target_pass_signals (signal_pass); |
8435 | target_program_signals (signal_program); | |
c906108c | 8436 | |
3a031f65 PA |
8437 | if (from_tty) |
8438 | { | |
8439 | /* Show the results. */ | |
8440 | sig_print_header (); | |
8441 | for (; signum < nsigs; signum++) | |
8442 | if (sigs[signum]) | |
aead7601 | 8443 | sig_print_info ((enum gdb_signal) signum); |
3a031f65 PA |
8444 | } |
8445 | ||
8446 | break; | |
8447 | } | |
c906108c SS |
8448 | } |
8449 | ||
de0bea00 MF |
8450 | /* Complete the "handle" command. */ |
8451 | ||
eb3ff9a5 | 8452 | static void |
de0bea00 | 8453 | handle_completer (struct cmd_list_element *ignore, |
eb3ff9a5 | 8454 | completion_tracker &tracker, |
6f937416 | 8455 | const char *text, const char *word) |
de0bea00 | 8456 | { |
de0bea00 MF |
8457 | static const char * const keywords[] = |
8458 | { | |
8459 | "all", | |
8460 | "stop", | |
8461 | "ignore", | |
8462 | "print", | |
8463 | "pass", | |
8464 | "nostop", | |
8465 | "noignore", | |
8466 | "noprint", | |
8467 | "nopass", | |
8468 | NULL, | |
8469 | }; | |
8470 | ||
eb3ff9a5 PA |
8471 | signal_completer (ignore, tracker, text, word); |
8472 | complete_on_enum (tracker, keywords, word, word); | |
de0bea00 MF |
8473 | } |
8474 | ||
2ea28649 PA |
8475 | enum gdb_signal |
8476 | gdb_signal_from_command (int num) | |
ed01b82c PA |
8477 | { |
8478 | if (num >= 1 && num <= 15) | |
2ea28649 | 8479 | return (enum gdb_signal) num; |
ed01b82c PA |
8480 | error (_("Only signals 1-15 are valid as numeric signals.\n\ |
8481 | Use \"info signals\" for a list of symbolic signals.")); | |
8482 | } | |
8483 | ||
c906108c SS |
8484 | /* Print current contents of the tables set by the handle command. |
8485 | It is possible we should just be printing signals actually used | |
8486 | by the current target (but for things to work right when switching | |
8487 | targets, all signals should be in the signal tables). */ | |
8488 | ||
8489 | static void | |
1d12d88f | 8490 | info_signals_command (const char *signum_exp, int from_tty) |
c906108c | 8491 | { |
2ea28649 | 8492 | enum gdb_signal oursig; |
abbb1732 | 8493 | |
c906108c SS |
8494 | sig_print_header (); |
8495 | ||
8496 | if (signum_exp) | |
8497 | { | |
8498 | /* First see if this is a symbol name. */ | |
2ea28649 | 8499 | oursig = gdb_signal_from_name (signum_exp); |
a493e3e2 | 8500 | if (oursig == GDB_SIGNAL_UNKNOWN) |
c906108c SS |
8501 | { |
8502 | /* No, try numeric. */ | |
8503 | oursig = | |
2ea28649 | 8504 | gdb_signal_from_command (parse_and_eval_long (signum_exp)); |
c906108c SS |
8505 | } |
8506 | sig_print_info (oursig); | |
8507 | return; | |
8508 | } | |
8509 | ||
8510 | printf_filtered ("\n"); | |
8511 | /* These ugly casts brought to you by the native VAX compiler. */ | |
a493e3e2 PA |
8512 | for (oursig = GDB_SIGNAL_FIRST; |
8513 | (int) oursig < (int) GDB_SIGNAL_LAST; | |
2ea28649 | 8514 | oursig = (enum gdb_signal) ((int) oursig + 1)) |
c906108c SS |
8515 | { |
8516 | QUIT; | |
8517 | ||
a493e3e2 PA |
8518 | if (oursig != GDB_SIGNAL_UNKNOWN |
8519 | && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0) | |
c906108c SS |
8520 | sig_print_info (oursig); |
8521 | } | |
8522 | ||
3e43a32a MS |
8523 | printf_filtered (_("\nUse the \"handle\" command " |
8524 | "to change these tables.\n")); | |
c906108c | 8525 | } |
4aa995e1 PA |
8526 | |
8527 | /* The $_siginfo convenience variable is a bit special. We don't know | |
8528 | for sure the type of the value until we actually have a chance to | |
7a9dd1b2 | 8529 | fetch the data. The type can change depending on gdbarch, so it is |
4aa995e1 PA |
8530 | also dependent on which thread you have selected. |
8531 | ||
8532 | 1. making $_siginfo be an internalvar that creates a new value on | |
8533 | access. | |
8534 | ||
8535 | 2. making the value of $_siginfo be an lval_computed value. */ | |
8536 | ||
8537 | /* This function implements the lval_computed support for reading a | |
8538 | $_siginfo value. */ | |
8539 | ||
8540 | static void | |
8541 | siginfo_value_read (struct value *v) | |
8542 | { | |
8543 | LONGEST transferred; | |
8544 | ||
a911d87a PA |
8545 | /* If we can access registers, so can we access $_siginfo. Likewise |
8546 | vice versa. */ | |
8547 | validate_registers_access (); | |
c709acd1 | 8548 | |
4aa995e1 | 8549 | transferred = |
8b88a78e | 8550 | target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, |
4aa995e1 PA |
8551 | NULL, |
8552 | value_contents_all_raw (v), | |
8553 | value_offset (v), | |
8554 | TYPE_LENGTH (value_type (v))); | |
8555 | ||
8556 | if (transferred != TYPE_LENGTH (value_type (v))) | |
8557 | error (_("Unable to read siginfo")); | |
8558 | } | |
8559 | ||
8560 | /* This function implements the lval_computed support for writing a | |
8561 | $_siginfo value. */ | |
8562 | ||
8563 | static void | |
8564 | siginfo_value_write (struct value *v, struct value *fromval) | |
8565 | { | |
8566 | LONGEST transferred; | |
8567 | ||
a911d87a PA |
8568 | /* If we can access registers, so can we access $_siginfo. Likewise |
8569 | vice versa. */ | |
8570 | validate_registers_access (); | |
c709acd1 | 8571 | |
8b88a78e | 8572 | transferred = target_write (current_top_target (), |
4aa995e1 PA |
8573 | TARGET_OBJECT_SIGNAL_INFO, |
8574 | NULL, | |
8575 | value_contents_all_raw (fromval), | |
8576 | value_offset (v), | |
8577 | TYPE_LENGTH (value_type (fromval))); | |
8578 | ||
8579 | if (transferred != TYPE_LENGTH (value_type (fromval))) | |
8580 | error (_("Unable to write siginfo")); | |
8581 | } | |
8582 | ||
c8f2448a | 8583 | static const struct lval_funcs siginfo_value_funcs = |
4aa995e1 PA |
8584 | { |
8585 | siginfo_value_read, | |
8586 | siginfo_value_write | |
8587 | }; | |
8588 | ||
8589 | /* Return a new value with the correct type for the siginfo object of | |
78267919 UW |
8590 | the current thread using architecture GDBARCH. Return a void value |
8591 | if there's no object available. */ | |
4aa995e1 | 8592 | |
2c0b251b | 8593 | static struct value * |
22d2b532 SDJ |
8594 | siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var, |
8595 | void *ignore) | |
4aa995e1 | 8596 | { |
4aa995e1 | 8597 | if (target_has_stack |
d7e15655 | 8598 | && inferior_ptid != null_ptid |
78267919 | 8599 | && gdbarch_get_siginfo_type_p (gdbarch)) |
4aa995e1 | 8600 | { |
78267919 | 8601 | struct type *type = gdbarch_get_siginfo_type (gdbarch); |
abbb1732 | 8602 | |
78267919 | 8603 | return allocate_computed_value (type, &siginfo_value_funcs, NULL); |
4aa995e1 PA |
8604 | } |
8605 | ||
78267919 | 8606 | return allocate_value (builtin_type (gdbarch)->builtin_void); |
4aa995e1 PA |
8607 | } |
8608 | ||
c906108c | 8609 | \f |
16c381f0 JK |
8610 | /* infcall_suspend_state contains state about the program itself like its |
8611 | registers and any signal it received when it last stopped. | |
8612 | This state must be restored regardless of how the inferior function call | |
8613 | ends (either successfully, or after it hits a breakpoint or signal) | |
8614 | if the program is to properly continue where it left off. */ | |
8615 | ||
6bf78e29 | 8616 | class infcall_suspend_state |
7a292a7a | 8617 | { |
6bf78e29 AB |
8618 | public: |
8619 | /* Capture state from GDBARCH, TP, and REGCACHE that must be restored | |
8620 | once the inferior function call has finished. */ | |
8621 | infcall_suspend_state (struct gdbarch *gdbarch, | |
8622 | const struct thread_info *tp, | |
8623 | struct regcache *regcache) | |
8624 | : m_thread_suspend (tp->suspend), | |
8625 | m_registers (new readonly_detached_regcache (*regcache)) | |
8626 | { | |
8627 | gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data; | |
8628 | ||
8629 | if (gdbarch_get_siginfo_type_p (gdbarch)) | |
8630 | { | |
8631 | struct type *type = gdbarch_get_siginfo_type (gdbarch); | |
8632 | size_t len = TYPE_LENGTH (type); | |
8633 | ||
8634 | siginfo_data.reset ((gdb_byte *) xmalloc (len)); | |
8635 | ||
8636 | if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL, | |
8637 | siginfo_data.get (), 0, len) != len) | |
8638 | { | |
8639 | /* Errors ignored. */ | |
8640 | siginfo_data.reset (nullptr); | |
8641 | } | |
8642 | } | |
8643 | ||
8644 | if (siginfo_data) | |
8645 | { | |
8646 | m_siginfo_gdbarch = gdbarch; | |
8647 | m_siginfo_data = std::move (siginfo_data); | |
8648 | } | |
8649 | } | |
8650 | ||
8651 | /* Return a pointer to the stored register state. */ | |
16c381f0 | 8652 | |
6bf78e29 AB |
8653 | readonly_detached_regcache *registers () const |
8654 | { | |
8655 | return m_registers.get (); | |
8656 | } | |
8657 | ||
8658 | /* Restores the stored state into GDBARCH, TP, and REGCACHE. */ | |
8659 | ||
8660 | void restore (struct gdbarch *gdbarch, | |
8661 | struct thread_info *tp, | |
8662 | struct regcache *regcache) const | |
8663 | { | |
8664 | tp->suspend = m_thread_suspend; | |
8665 | ||
8666 | if (m_siginfo_gdbarch == gdbarch) | |
8667 | { | |
8668 | struct type *type = gdbarch_get_siginfo_type (gdbarch); | |
8669 | ||
8670 | /* Errors ignored. */ | |
8671 | target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL, | |
8672 | m_siginfo_data.get (), 0, TYPE_LENGTH (type)); | |
8673 | } | |
8674 | ||
8675 | /* The inferior can be gone if the user types "print exit(0)" | |
8676 | (and perhaps other times). */ | |
8677 | if (target_has_execution) | |
8678 | /* NB: The register write goes through to the target. */ | |
8679 | regcache->restore (registers ()); | |
8680 | } | |
8681 | ||
8682 | private: | |
8683 | /* How the current thread stopped before the inferior function call was | |
8684 | executed. */ | |
8685 | struct thread_suspend_state m_thread_suspend; | |
8686 | ||
8687 | /* The registers before the inferior function call was executed. */ | |
8688 | std::unique_ptr<readonly_detached_regcache> m_registers; | |
1736ad11 | 8689 | |
35515841 | 8690 | /* Format of SIGINFO_DATA or NULL if it is not present. */ |
6bf78e29 | 8691 | struct gdbarch *m_siginfo_gdbarch = nullptr; |
1736ad11 JK |
8692 | |
8693 | /* The inferior format depends on SIGINFO_GDBARCH and it has a length of | |
8694 | TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the | |
8695 | content would be invalid. */ | |
6bf78e29 | 8696 | gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data; |
b89667eb DE |
8697 | }; |
8698 | ||
cb524840 TT |
8699 | infcall_suspend_state_up |
8700 | save_infcall_suspend_state () | |
b89667eb | 8701 | { |
b89667eb | 8702 | struct thread_info *tp = inferior_thread (); |
1736ad11 | 8703 | struct regcache *regcache = get_current_regcache (); |
ac7936df | 8704 | struct gdbarch *gdbarch = regcache->arch (); |
1736ad11 | 8705 | |
6bf78e29 AB |
8706 | infcall_suspend_state_up inf_state |
8707 | (new struct infcall_suspend_state (gdbarch, tp, regcache)); | |
1736ad11 | 8708 | |
6bf78e29 AB |
8709 | /* Having saved the current state, adjust the thread state, discarding |
8710 | any stop signal information. The stop signal is not useful when | |
8711 | starting an inferior function call, and run_inferior_call will not use | |
8712 | the signal due to its `proceed' call with GDB_SIGNAL_0. */ | |
a493e3e2 | 8713 | tp->suspend.stop_signal = GDB_SIGNAL_0; |
35515841 | 8714 | |
b89667eb DE |
8715 | return inf_state; |
8716 | } | |
8717 | ||
8718 | /* Restore inferior session state to INF_STATE. */ | |
8719 | ||
8720 | void | |
16c381f0 | 8721 | restore_infcall_suspend_state (struct infcall_suspend_state *inf_state) |
b89667eb DE |
8722 | { |
8723 | struct thread_info *tp = inferior_thread (); | |
1736ad11 | 8724 | struct regcache *regcache = get_current_regcache (); |
ac7936df | 8725 | struct gdbarch *gdbarch = regcache->arch (); |
b89667eb | 8726 | |
6bf78e29 | 8727 | inf_state->restore (gdbarch, tp, regcache); |
16c381f0 | 8728 | discard_infcall_suspend_state (inf_state); |
b89667eb DE |
8729 | } |
8730 | ||
b89667eb | 8731 | void |
16c381f0 | 8732 | discard_infcall_suspend_state (struct infcall_suspend_state *inf_state) |
b89667eb | 8733 | { |
dd848631 | 8734 | delete inf_state; |
b89667eb DE |
8735 | } |
8736 | ||
daf6667d | 8737 | readonly_detached_regcache * |
16c381f0 | 8738 | get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state) |
b89667eb | 8739 | { |
6bf78e29 | 8740 | return inf_state->registers (); |
b89667eb DE |
8741 | } |
8742 | ||
16c381f0 JK |
8743 | /* infcall_control_state contains state regarding gdb's control of the |
8744 | inferior itself like stepping control. It also contains session state like | |
8745 | the user's currently selected frame. */ | |
b89667eb | 8746 | |
16c381f0 | 8747 | struct infcall_control_state |
b89667eb | 8748 | { |
16c381f0 JK |
8749 | struct thread_control_state thread_control; |
8750 | struct inferior_control_state inferior_control; | |
d82142e2 JK |
8751 | |
8752 | /* Other fields: */ | |
ee841dd8 TT |
8753 | enum stop_stack_kind stop_stack_dummy = STOP_NONE; |
8754 | int stopped_by_random_signal = 0; | |
7a292a7a | 8755 | |
b89667eb | 8756 | /* ID if the selected frame when the inferior function call was made. */ |
ee841dd8 | 8757 | struct frame_id selected_frame_id {}; |
7a292a7a SS |
8758 | }; |
8759 | ||
c906108c | 8760 | /* Save all of the information associated with the inferior<==>gdb |
b89667eb | 8761 | connection. */ |
c906108c | 8762 | |
cb524840 TT |
8763 | infcall_control_state_up |
8764 | save_infcall_control_state () | |
c906108c | 8765 | { |
cb524840 | 8766 | infcall_control_state_up inf_status (new struct infcall_control_state); |
4e1c45ea | 8767 | struct thread_info *tp = inferior_thread (); |
d6b48e9c | 8768 | struct inferior *inf = current_inferior (); |
7a292a7a | 8769 | |
16c381f0 JK |
8770 | inf_status->thread_control = tp->control; |
8771 | inf_status->inferior_control = inf->control; | |
d82142e2 | 8772 | |
8358c15c | 8773 | tp->control.step_resume_breakpoint = NULL; |
5b79abe7 | 8774 | tp->control.exception_resume_breakpoint = NULL; |
8358c15c | 8775 | |
16c381f0 JK |
8776 | /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of |
8777 | chain. If caller's caller is walking the chain, they'll be happier if we | |
8778 | hand them back the original chain when restore_infcall_control_state is | |
8779 | called. */ | |
8780 | tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat); | |
d82142e2 JK |
8781 | |
8782 | /* Other fields: */ | |
8783 | inf_status->stop_stack_dummy = stop_stack_dummy; | |
8784 | inf_status->stopped_by_random_signal = stopped_by_random_signal; | |
c5aa993b | 8785 | |
206415a3 | 8786 | inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL)); |
b89667eb | 8787 | |
7a292a7a | 8788 | return inf_status; |
c906108c SS |
8789 | } |
8790 | ||
bf469271 PA |
8791 | static void |
8792 | restore_selected_frame (const frame_id &fid) | |
c906108c | 8793 | { |
bf469271 | 8794 | frame_info *frame = frame_find_by_id (fid); |
c906108c | 8795 | |
aa0cd9c1 AC |
8796 | /* If inf_status->selected_frame_id is NULL, there was no previously |
8797 | selected frame. */ | |
101dcfbe | 8798 | if (frame == NULL) |
c906108c | 8799 | { |
8a3fe4f8 | 8800 | warning (_("Unable to restore previously selected frame.")); |
bf469271 | 8801 | return; |
c906108c SS |
8802 | } |
8803 | ||
0f7d239c | 8804 | select_frame (frame); |
c906108c SS |
8805 | } |
8806 | ||
b89667eb DE |
8807 | /* Restore inferior session state to INF_STATUS. */ |
8808 | ||
c906108c | 8809 | void |
16c381f0 | 8810 | restore_infcall_control_state (struct infcall_control_state *inf_status) |
c906108c | 8811 | { |
4e1c45ea | 8812 | struct thread_info *tp = inferior_thread (); |
d6b48e9c | 8813 | struct inferior *inf = current_inferior (); |
4e1c45ea | 8814 | |
8358c15c JK |
8815 | if (tp->control.step_resume_breakpoint) |
8816 | tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop; | |
8817 | ||
5b79abe7 TT |
8818 | if (tp->control.exception_resume_breakpoint) |
8819 | tp->control.exception_resume_breakpoint->disposition | |
8820 | = disp_del_at_next_stop; | |
8821 | ||
d82142e2 | 8822 | /* Handle the bpstat_copy of the chain. */ |
16c381f0 | 8823 | bpstat_clear (&tp->control.stop_bpstat); |
d82142e2 | 8824 | |
16c381f0 JK |
8825 | tp->control = inf_status->thread_control; |
8826 | inf->control = inf_status->inferior_control; | |
d82142e2 JK |
8827 | |
8828 | /* Other fields: */ | |
8829 | stop_stack_dummy = inf_status->stop_stack_dummy; | |
8830 | stopped_by_random_signal = inf_status->stopped_by_random_signal; | |
c906108c | 8831 | |
b89667eb | 8832 | if (target_has_stack) |
c906108c | 8833 | { |
bf469271 | 8834 | /* The point of the try/catch is that if the stack is clobbered, |
101dcfbe AC |
8835 | walking the stack might encounter a garbage pointer and |
8836 | error() trying to dereference it. */ | |
a70b8144 | 8837 | try |
bf469271 PA |
8838 | { |
8839 | restore_selected_frame (inf_status->selected_frame_id); | |
8840 | } | |
230d2906 | 8841 | catch (const gdb_exception_error &ex) |
bf469271 PA |
8842 | { |
8843 | exception_fprintf (gdb_stderr, ex, | |
8844 | "Unable to restore previously selected frame:\n"); | |
8845 | /* Error in restoring the selected frame. Select the | |
8846 | innermost frame. */ | |
8847 | select_frame (get_current_frame ()); | |
8848 | } | |
c906108c | 8849 | } |
c906108c | 8850 | |
ee841dd8 | 8851 | delete inf_status; |
7a292a7a | 8852 | } |
c906108c SS |
8853 | |
8854 | void | |
16c381f0 | 8855 | discard_infcall_control_state (struct infcall_control_state *inf_status) |
7a292a7a | 8856 | { |
8358c15c JK |
8857 | if (inf_status->thread_control.step_resume_breakpoint) |
8858 | inf_status->thread_control.step_resume_breakpoint->disposition | |
8859 | = disp_del_at_next_stop; | |
8860 | ||
5b79abe7 TT |
8861 | if (inf_status->thread_control.exception_resume_breakpoint) |
8862 | inf_status->thread_control.exception_resume_breakpoint->disposition | |
8863 | = disp_del_at_next_stop; | |
8864 | ||
1777feb0 | 8865 | /* See save_infcall_control_state for info on stop_bpstat. */ |
16c381f0 | 8866 | bpstat_clear (&inf_status->thread_control.stop_bpstat); |
8358c15c | 8867 | |
ee841dd8 | 8868 | delete inf_status; |
7a292a7a | 8869 | } |
b89667eb | 8870 | \f |
7f89fd65 | 8871 | /* See infrun.h. */ |
0c557179 SDJ |
8872 | |
8873 | void | |
8874 | clear_exit_convenience_vars (void) | |
8875 | { | |
8876 | clear_internalvar (lookup_internalvar ("_exitsignal")); | |
8877 | clear_internalvar (lookup_internalvar ("_exitcode")); | |
8878 | } | |
c5aa993b | 8879 | \f |
488f131b | 8880 | |
b2175913 MS |
8881 | /* User interface for reverse debugging: |
8882 | Set exec-direction / show exec-direction commands | |
8883 | (returns error unless target implements to_set_exec_direction method). */ | |
8884 | ||
170742de | 8885 | enum exec_direction_kind execution_direction = EXEC_FORWARD; |
b2175913 MS |
8886 | static const char exec_forward[] = "forward"; |
8887 | static const char exec_reverse[] = "reverse"; | |
8888 | static const char *exec_direction = exec_forward; | |
40478521 | 8889 | static const char *const exec_direction_names[] = { |
b2175913 MS |
8890 | exec_forward, |
8891 | exec_reverse, | |
8892 | NULL | |
8893 | }; | |
8894 | ||
8895 | static void | |
eb4c3f4a | 8896 | set_exec_direction_func (const char *args, int from_tty, |
b2175913 MS |
8897 | struct cmd_list_element *cmd) |
8898 | { | |
8899 | if (target_can_execute_reverse) | |
8900 | { | |
8901 | if (!strcmp (exec_direction, exec_forward)) | |
8902 | execution_direction = EXEC_FORWARD; | |
8903 | else if (!strcmp (exec_direction, exec_reverse)) | |
8904 | execution_direction = EXEC_REVERSE; | |
8905 | } | |
8bbed405 MS |
8906 | else |
8907 | { | |
8908 | exec_direction = exec_forward; | |
8909 | error (_("Target does not support this operation.")); | |
8910 | } | |
b2175913 MS |
8911 | } |
8912 | ||
8913 | static void | |
8914 | show_exec_direction_func (struct ui_file *out, int from_tty, | |
8915 | struct cmd_list_element *cmd, const char *value) | |
8916 | { | |
8917 | switch (execution_direction) { | |
8918 | case EXEC_FORWARD: | |
8919 | fprintf_filtered (out, _("Forward.\n")); | |
8920 | break; | |
8921 | case EXEC_REVERSE: | |
8922 | fprintf_filtered (out, _("Reverse.\n")); | |
8923 | break; | |
b2175913 | 8924 | default: |
d8b34453 PA |
8925 | internal_error (__FILE__, __LINE__, |
8926 | _("bogus execution_direction value: %d"), | |
8927 | (int) execution_direction); | |
b2175913 MS |
8928 | } |
8929 | } | |
8930 | ||
d4db2f36 PA |
8931 | static void |
8932 | show_schedule_multiple (struct ui_file *file, int from_tty, | |
8933 | struct cmd_list_element *c, const char *value) | |
8934 | { | |
3e43a32a MS |
8935 | fprintf_filtered (file, _("Resuming the execution of threads " |
8936 | "of all processes is %s.\n"), value); | |
d4db2f36 | 8937 | } |
ad52ddc6 | 8938 | |
22d2b532 SDJ |
8939 | /* Implementation of `siginfo' variable. */ |
8940 | ||
8941 | static const struct internalvar_funcs siginfo_funcs = | |
8942 | { | |
8943 | siginfo_make_value, | |
8944 | NULL, | |
8945 | NULL | |
8946 | }; | |
8947 | ||
372316f1 PA |
8948 | /* Callback for infrun's target events source. This is marked when a |
8949 | thread has a pending status to process. */ | |
8950 | ||
8951 | static void | |
8952 | infrun_async_inferior_event_handler (gdb_client_data data) | |
8953 | { | |
372316f1 PA |
8954 | inferior_event_handler (INF_REG_EVENT, NULL); |
8955 | } | |
8956 | ||
c906108c | 8957 | void |
96baa820 | 8958 | _initialize_infrun (void) |
c906108c | 8959 | { |
de0bea00 | 8960 | struct cmd_list_element *c; |
c906108c | 8961 | |
372316f1 PA |
8962 | /* Register extra event sources in the event loop. */ |
8963 | infrun_async_inferior_event_token | |
8964 | = create_async_event_handler (infrun_async_inferior_event_handler, NULL); | |
8965 | ||
11db9430 | 8966 | add_info ("signals", info_signals_command, _("\ |
1bedd215 AC |
8967 | What debugger does when program gets various signals.\n\ |
8968 | Specify a signal as argument to print info on that signal only.")); | |
c906108c SS |
8969 | add_info_alias ("handle", "signals", 0); |
8970 | ||
de0bea00 | 8971 | c = add_com ("handle", class_run, handle_command, _("\ |
dfbd5e7b | 8972 | Specify how to handle signals.\n\ |
486c7739 | 8973 | Usage: handle SIGNAL [ACTIONS]\n\ |
c906108c | 8974 | Args are signals and actions to apply to those signals.\n\ |
dfbd5e7b | 8975 | If no actions are specified, the current settings for the specified signals\n\ |
486c7739 MF |
8976 | will be displayed instead.\n\ |
8977 | \n\ | |
c906108c SS |
8978 | Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\ |
8979 | from 1-15 are allowed for compatibility with old versions of GDB.\n\ | |
8980 | Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\ | |
8981 | The special arg \"all\" is recognized to mean all signals except those\n\ | |
1bedd215 | 8982 | used by the debugger, typically SIGTRAP and SIGINT.\n\ |
486c7739 | 8983 | \n\ |
1bedd215 | 8984 | Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\ |
c906108c SS |
8985 | \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\ |
8986 | Stop means reenter debugger if this signal happens (implies print).\n\ | |
8987 | Print means print a message if this signal happens.\n\ | |
8988 | Pass means let program see this signal; otherwise program doesn't know.\n\ | |
8989 | Ignore is a synonym for nopass and noignore is a synonym for pass.\n\ | |
dfbd5e7b PA |
8990 | Pass and Stop may be combined.\n\ |
8991 | \n\ | |
8992 | Multiple signals may be specified. Signal numbers and signal names\n\ | |
8993 | may be interspersed with actions, with the actions being performed for\n\ | |
8994 | all signals cumulatively specified.")); | |
de0bea00 | 8995 | set_cmd_completer (c, handle_completer); |
486c7739 | 8996 | |
c906108c | 8997 | if (!dbx_commands) |
1a966eab AC |
8998 | stop_command = add_cmd ("stop", class_obscure, |
8999 | not_just_help_class_command, _("\ | |
9000 | There is no `stop' command, but you can set a hook on `stop'.\n\ | |
c906108c | 9001 | This allows you to set a list of commands to be run each time execution\n\ |
1a966eab | 9002 | of the program stops."), &cmdlist); |
c906108c | 9003 | |
ccce17b0 | 9004 | add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\ |
85c07804 AC |
9005 | Set inferior debugging."), _("\ |
9006 | Show inferior debugging."), _("\ | |
9007 | When non-zero, inferior specific debugging is enabled."), | |
ccce17b0 YQ |
9008 | NULL, |
9009 | show_debug_infrun, | |
9010 | &setdebuglist, &showdebuglist); | |
527159b7 | 9011 | |
3e43a32a MS |
9012 | add_setshow_boolean_cmd ("displaced", class_maintenance, |
9013 | &debug_displaced, _("\ | |
237fc4c9 PA |
9014 | Set displaced stepping debugging."), _("\ |
9015 | Show displaced stepping debugging."), _("\ | |
9016 | When non-zero, displaced stepping specific debugging is enabled."), | |
9017 | NULL, | |
9018 | show_debug_displaced, | |
9019 | &setdebuglist, &showdebuglist); | |
9020 | ||
ad52ddc6 PA |
9021 | add_setshow_boolean_cmd ("non-stop", no_class, |
9022 | &non_stop_1, _("\ | |
9023 | Set whether gdb controls the inferior in non-stop mode."), _("\ | |
9024 | Show whether gdb controls the inferior in non-stop mode."), _("\ | |
9025 | When debugging a multi-threaded program and this setting is\n\ | |
9026 | off (the default, also called all-stop mode), when one thread stops\n\ | |
9027 | (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\ | |
9028 | all other threads in the program while you interact with the thread of\n\ | |
9029 | interest. When you continue or step a thread, you can allow the other\n\ | |
9030 | threads to run, or have them remain stopped, but while you inspect any\n\ | |
9031 | thread's state, all threads stop.\n\ | |
9032 | \n\ | |
9033 | In non-stop mode, when one thread stops, other threads can continue\n\ | |
9034 | to run freely. You'll be able to step each thread independently,\n\ | |
9035 | leave it stopped or free to run as needed."), | |
9036 | set_non_stop, | |
9037 | show_non_stop, | |
9038 | &setlist, | |
9039 | &showlist); | |
9040 | ||
adc6a863 | 9041 | for (size_t i = 0; i < GDB_SIGNAL_LAST; i++) |
c906108c SS |
9042 | { |
9043 | signal_stop[i] = 1; | |
9044 | signal_print[i] = 1; | |
9045 | signal_program[i] = 1; | |
ab04a2af | 9046 | signal_catch[i] = 0; |
c906108c SS |
9047 | } |
9048 | ||
4d9d9d04 PA |
9049 | /* Signals caused by debugger's own actions should not be given to |
9050 | the program afterwards. | |
9051 | ||
9052 | Do not deliver GDB_SIGNAL_TRAP by default, except when the user | |
9053 | explicitly specifies that it should be delivered to the target | |
9054 | program. Typically, that would occur when a user is debugging a | |
9055 | target monitor on a simulator: the target monitor sets a | |
9056 | breakpoint; the simulator encounters this breakpoint and halts | |
9057 | the simulation handing control to GDB; GDB, noting that the stop | |
9058 | address doesn't map to any known breakpoint, returns control back | |
9059 | to the simulator; the simulator then delivers the hardware | |
9060 | equivalent of a GDB_SIGNAL_TRAP to the program being | |
9061 | debugged. */ | |
a493e3e2 PA |
9062 | signal_program[GDB_SIGNAL_TRAP] = 0; |
9063 | signal_program[GDB_SIGNAL_INT] = 0; | |
c906108c SS |
9064 | |
9065 | /* Signals that are not errors should not normally enter the debugger. */ | |
a493e3e2 PA |
9066 | signal_stop[GDB_SIGNAL_ALRM] = 0; |
9067 | signal_print[GDB_SIGNAL_ALRM] = 0; | |
9068 | signal_stop[GDB_SIGNAL_VTALRM] = 0; | |
9069 | signal_print[GDB_SIGNAL_VTALRM] = 0; | |
9070 | signal_stop[GDB_SIGNAL_PROF] = 0; | |
9071 | signal_print[GDB_SIGNAL_PROF] = 0; | |
9072 | signal_stop[GDB_SIGNAL_CHLD] = 0; | |
9073 | signal_print[GDB_SIGNAL_CHLD] = 0; | |
9074 | signal_stop[GDB_SIGNAL_IO] = 0; | |
9075 | signal_print[GDB_SIGNAL_IO] = 0; | |
9076 | signal_stop[GDB_SIGNAL_POLL] = 0; | |
9077 | signal_print[GDB_SIGNAL_POLL] = 0; | |
9078 | signal_stop[GDB_SIGNAL_URG] = 0; | |
9079 | signal_print[GDB_SIGNAL_URG] = 0; | |
9080 | signal_stop[GDB_SIGNAL_WINCH] = 0; | |
9081 | signal_print[GDB_SIGNAL_WINCH] = 0; | |
9082 | signal_stop[GDB_SIGNAL_PRIO] = 0; | |
9083 | signal_print[GDB_SIGNAL_PRIO] = 0; | |
c906108c | 9084 | |
cd0fc7c3 SS |
9085 | /* These signals are used internally by user-level thread |
9086 | implementations. (See signal(5) on Solaris.) Like the above | |
9087 | signals, a healthy program receives and handles them as part of | |
9088 | its normal operation. */ | |
a493e3e2 PA |
9089 | signal_stop[GDB_SIGNAL_LWP] = 0; |
9090 | signal_print[GDB_SIGNAL_LWP] = 0; | |
9091 | signal_stop[GDB_SIGNAL_WAITING] = 0; | |
9092 | signal_print[GDB_SIGNAL_WAITING] = 0; | |
9093 | signal_stop[GDB_SIGNAL_CANCEL] = 0; | |
9094 | signal_print[GDB_SIGNAL_CANCEL] = 0; | |
bc7b765a JB |
9095 | signal_stop[GDB_SIGNAL_LIBRT] = 0; |
9096 | signal_print[GDB_SIGNAL_LIBRT] = 0; | |
cd0fc7c3 | 9097 | |
2455069d UW |
9098 | /* Update cached state. */ |
9099 | signal_cache_update (-1); | |
9100 | ||
85c07804 AC |
9101 | add_setshow_zinteger_cmd ("stop-on-solib-events", class_support, |
9102 | &stop_on_solib_events, _("\ | |
9103 | Set stopping for shared library events."), _("\ | |
9104 | Show stopping for shared library events."), _("\ | |
c906108c SS |
9105 | If nonzero, gdb will give control to the user when the dynamic linker\n\ |
9106 | notifies gdb of shared library events. The most common event of interest\n\ | |
85c07804 | 9107 | to the user would be loading/unloading of a new library."), |
f9e14852 | 9108 | set_stop_on_solib_events, |
920d2a44 | 9109 | show_stop_on_solib_events, |
85c07804 | 9110 | &setlist, &showlist); |
c906108c | 9111 | |
7ab04401 AC |
9112 | add_setshow_enum_cmd ("follow-fork-mode", class_run, |
9113 | follow_fork_mode_kind_names, | |
9114 | &follow_fork_mode_string, _("\ | |
9115 | Set debugger response to a program call of fork or vfork."), _("\ | |
9116 | Show debugger response to a program call of fork or vfork."), _("\ | |
c906108c SS |
9117 | A fork or vfork creates a new process. follow-fork-mode can be:\n\ |
9118 | parent - the original process is debugged after a fork\n\ | |
9119 | child - the new process is debugged after a fork\n\ | |
ea1dd7bc | 9120 | The unfollowed process will continue to run.\n\ |
7ab04401 AC |
9121 | By default, the debugger will follow the parent process."), |
9122 | NULL, | |
920d2a44 | 9123 | show_follow_fork_mode_string, |
7ab04401 AC |
9124 | &setlist, &showlist); |
9125 | ||
6c95b8df PA |
9126 | add_setshow_enum_cmd ("follow-exec-mode", class_run, |
9127 | follow_exec_mode_names, | |
9128 | &follow_exec_mode_string, _("\ | |
9129 | Set debugger response to a program call of exec."), _("\ | |
9130 | Show debugger response to a program call of exec."), _("\ | |
9131 | An exec call replaces the program image of a process.\n\ | |
9132 | \n\ | |
9133 | follow-exec-mode can be:\n\ | |
9134 | \n\ | |
cce7e648 | 9135 | new - the debugger creates a new inferior and rebinds the process\n\ |
6c95b8df PA |
9136 | to this new inferior. The program the process was running before\n\ |
9137 | the exec call can be restarted afterwards by restarting the original\n\ | |
9138 | inferior.\n\ | |
9139 | \n\ | |
9140 | same - the debugger keeps the process bound to the same inferior.\n\ | |
9141 | The new executable image replaces the previous executable loaded in\n\ | |
9142 | the inferior. Restarting the inferior after the exec call restarts\n\ | |
9143 | the executable the process was running after the exec call.\n\ | |
9144 | \n\ | |
9145 | By default, the debugger will use the same inferior."), | |
9146 | NULL, | |
9147 | show_follow_exec_mode_string, | |
9148 | &setlist, &showlist); | |
9149 | ||
7ab04401 AC |
9150 | add_setshow_enum_cmd ("scheduler-locking", class_run, |
9151 | scheduler_enums, &scheduler_mode, _("\ | |
9152 | Set mode for locking scheduler during execution."), _("\ | |
9153 | Show mode for locking scheduler during execution."), _("\ | |
f2665db5 MM |
9154 | off == no locking (threads may preempt at any time)\n\ |
9155 | on == full locking (no thread except the current thread may run)\n\ | |
9156 | This applies to both normal execution and replay mode.\n\ | |
9157 | step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\ | |
9158 | In this mode, other threads may run during other commands.\n\ | |
9159 | This applies to both normal execution and replay mode.\n\ | |
9160 | replay == scheduler locked in replay mode and unlocked during normal execution."), | |
7ab04401 | 9161 | set_schedlock_func, /* traps on target vector */ |
920d2a44 | 9162 | show_scheduler_mode, |
7ab04401 | 9163 | &setlist, &showlist); |
5fbbeb29 | 9164 | |
d4db2f36 PA |
9165 | add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\ |
9166 | Set mode for resuming threads of all processes."), _("\ | |
9167 | Show mode for resuming threads of all processes."), _("\ | |
9168 | When on, execution commands (such as 'continue' or 'next') resume all\n\ | |
9169 | threads of all processes. When off (which is the default), execution\n\ | |
9170 | commands only resume the threads of the current process. The set of\n\ | |
9171 | threads that are resumed is further refined by the scheduler-locking\n\ | |
9172 | mode (see help set scheduler-locking)."), | |
9173 | NULL, | |
9174 | show_schedule_multiple, | |
9175 | &setlist, &showlist); | |
9176 | ||
5bf193a2 AC |
9177 | add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\ |
9178 | Set mode of the step operation."), _("\ | |
9179 | Show mode of the step operation."), _("\ | |
9180 | When set, doing a step over a function without debug line information\n\ | |
9181 | will stop at the first instruction of that function. Otherwise, the\n\ | |
9182 | function is skipped and the step command stops at a different source line."), | |
9183 | NULL, | |
920d2a44 | 9184 | show_step_stop_if_no_debug, |
5bf193a2 | 9185 | &setlist, &showlist); |
ca6724c1 | 9186 | |
72d0e2c5 YQ |
9187 | add_setshow_auto_boolean_cmd ("displaced-stepping", class_run, |
9188 | &can_use_displaced_stepping, _("\ | |
237fc4c9 PA |
9189 | Set debugger's willingness to use displaced stepping."), _("\ |
9190 | Show debugger's willingness to use displaced stepping."), _("\ | |
fff08868 HZ |
9191 | If on, gdb will use displaced stepping to step over breakpoints if it is\n\ |
9192 | supported by the target architecture. If off, gdb will not use displaced\n\ | |
9193 | stepping to step over breakpoints, even if such is supported by the target\n\ | |
9194 | architecture. If auto (which is the default), gdb will use displaced stepping\n\ | |
9195 | if the target architecture supports it and non-stop mode is active, but will not\n\ | |
9196 | use it in all-stop mode (see help set non-stop)."), | |
72d0e2c5 YQ |
9197 | NULL, |
9198 | show_can_use_displaced_stepping, | |
9199 | &setlist, &showlist); | |
237fc4c9 | 9200 | |
b2175913 MS |
9201 | add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names, |
9202 | &exec_direction, _("Set direction of execution.\n\ | |
9203 | Options are 'forward' or 'reverse'."), | |
9204 | _("Show direction of execution (forward/reverse)."), | |
9205 | _("Tells gdb whether to execute forward or backward."), | |
9206 | set_exec_direction_func, show_exec_direction_func, | |
9207 | &setlist, &showlist); | |
9208 | ||
6c95b8df PA |
9209 | /* Set/show detach-on-fork: user-settable mode. */ |
9210 | ||
9211 | add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\ | |
9212 | Set whether gdb will detach the child of a fork."), _("\ | |
9213 | Show whether gdb will detach the child of a fork."), _("\ | |
9214 | Tells gdb whether to detach the child of a fork."), | |
9215 | NULL, NULL, &setlist, &showlist); | |
9216 | ||
03583c20 UW |
9217 | /* Set/show disable address space randomization mode. */ |
9218 | ||
9219 | add_setshow_boolean_cmd ("disable-randomization", class_support, | |
9220 | &disable_randomization, _("\ | |
9221 | Set disabling of debuggee's virtual address space randomization."), _("\ | |
9222 | Show disabling of debuggee's virtual address space randomization."), _("\ | |
9223 | When this mode is on (which is the default), randomization of the virtual\n\ | |
9224 | address space is disabled. Standalone programs run with the randomization\n\ | |
9225 | enabled by default on some platforms."), | |
9226 | &set_disable_randomization, | |
9227 | &show_disable_randomization, | |
9228 | &setlist, &showlist); | |
9229 | ||
ca6724c1 | 9230 | /* ptid initializations */ |
ca6724c1 KB |
9231 | inferior_ptid = null_ptid; |
9232 | target_last_wait_ptid = minus_one_ptid; | |
5231c1fd | 9233 | |
76727919 TT |
9234 | gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed); |
9235 | gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested); | |
9236 | gdb::observers::thread_exit.attach (infrun_thread_thread_exit); | |
9237 | gdb::observers::inferior_exit.attach (infrun_inferior_exit); | |
4aa995e1 PA |
9238 | |
9239 | /* Explicitly create without lookup, since that tries to create a | |
9240 | value with a void typed value, and when we get here, gdbarch | |
9241 | isn't initialized yet. At this point, we're quite sure there | |
9242 | isn't another convenience variable of the same name. */ | |
22d2b532 | 9243 | create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL); |
d914c394 SS |
9244 | |
9245 | add_setshow_boolean_cmd ("observer", no_class, | |
9246 | &observer_mode_1, _("\ | |
9247 | Set whether gdb controls the inferior in observer mode."), _("\ | |
9248 | Show whether gdb controls the inferior in observer mode."), _("\ | |
9249 | In observer mode, GDB can get data from the inferior, but not\n\ | |
9250 | affect its execution. Registers and memory may not be changed,\n\ | |
9251 | breakpoints may not be set, and the program cannot be interrupted\n\ | |
9252 | or signalled."), | |
9253 | set_observer_mode, | |
9254 | show_observer_mode, | |
9255 | &setlist, | |
9256 | &showlist); | |
c906108c | 9257 | } |