]>
Commit | Line | Data |
---|---|---|
ca557f44 AC |
1 | /* Target-struct-independent code to start (run) and stop an inferior |
2 | process. | |
8926118c | 3 | |
e2882c85 | 4 | Copyright (C) 1986-2018 Free Software Foundation, Inc. |
c906108c | 5 | |
c5aa993b | 6 | This file is part of GDB. |
c906108c | 7 | |
c5aa993b JM |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 10 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 11 | (at your option) any later version. |
c906108c | 12 | |
c5aa993b JM |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
c906108c | 17 | |
c5aa993b | 18 | You should have received a copy of the GNU General Public License |
a9762ec7 | 19 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
20 | |
21 | #include "defs.h" | |
45741a9c | 22 | #include "infrun.h" |
c906108c SS |
23 | #include <ctype.h> |
24 | #include "symtab.h" | |
25 | #include "frame.h" | |
26 | #include "inferior.h" | |
27 | #include "breakpoint.h" | |
03f2053f | 28 | #include "gdb_wait.h" |
c906108c SS |
29 | #include "gdbcore.h" |
30 | #include "gdbcmd.h" | |
210661e7 | 31 | #include "cli/cli-script.h" |
c906108c SS |
32 | #include "target.h" |
33 | #include "gdbthread.h" | |
34 | #include "annotate.h" | |
1adeb98a | 35 | #include "symfile.h" |
7a292a7a | 36 | #include "top.h" |
c906108c | 37 | #include <signal.h> |
2acceee2 | 38 | #include "inf-loop.h" |
4e052eda | 39 | #include "regcache.h" |
fd0407d6 | 40 | #include "value.h" |
76727919 | 41 | #include "observable.h" |
f636b87d | 42 | #include "language.h" |
a77053c2 | 43 | #include "solib.h" |
f17517ea | 44 | #include "main.h" |
186c406b TT |
45 | #include "dictionary.h" |
46 | #include "block.h" | |
034dad6f | 47 | #include "mi/mi-common.h" |
4f8d22e3 | 48 | #include "event-top.h" |
96429cc8 | 49 | #include "record.h" |
d02ed0bb | 50 | #include "record-full.h" |
edb3359d | 51 | #include "inline-frame.h" |
4efc6507 | 52 | #include "jit.h" |
06cd862c | 53 | #include "tracepoint.h" |
be34f849 | 54 | #include "continuations.h" |
b4a14fd0 | 55 | #include "interps.h" |
1bfeeb0f | 56 | #include "skip.h" |
28106bc2 SDJ |
57 | #include "probe.h" |
58 | #include "objfiles.h" | |
de0bea00 | 59 | #include "completer.h" |
9107fc8d | 60 | #include "target-descriptions.h" |
f15cb84a | 61 | #include "target-dcache.h" |
d83ad864 | 62 | #include "terminal.h" |
ff862be4 | 63 | #include "solist.h" |
372316f1 | 64 | #include "event-loop.h" |
243a9253 | 65 | #include "thread-fsm.h" |
8d297bbf | 66 | #include "common/enum-flags.h" |
5ed8105e PA |
67 | #include "progspace-and-thread.h" |
68 | #include "common/gdb_optional.h" | |
46a62268 | 69 | #include "arch-utils.h" |
c906108c SS |
70 | |
71 | /* Prototypes for local functions */ | |
72 | ||
2ea28649 | 73 | static void sig_print_info (enum gdb_signal); |
c906108c | 74 | |
96baa820 | 75 | static void sig_print_header (void); |
c906108c | 76 | |
4ef3f3be | 77 | static int follow_fork (void); |
96baa820 | 78 | |
d83ad864 DB |
79 | static int follow_fork_inferior (int follow_child, int detach_fork); |
80 | ||
81 | static void follow_inferior_reset_breakpoints (void); | |
82 | ||
a289b8f6 JK |
83 | static int currently_stepping (struct thread_info *tp); |
84 | ||
e58b0e63 PA |
85 | void nullify_last_target_wait_ptid (void); |
86 | ||
2c03e5be | 87 | static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *); |
2484c66b UW |
88 | |
89 | static void insert_step_resume_breakpoint_at_caller (struct frame_info *); | |
90 | ||
2484c66b UW |
91 | static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR); |
92 | ||
8550d3b3 YQ |
93 | static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc); |
94 | ||
aff4e175 AB |
95 | static void resume (gdb_signal sig); |
96 | ||
372316f1 PA |
97 | /* Asynchronous signal handler registered as event loop source for |
98 | when we have pending events ready to be passed to the core. */ | |
99 | static struct async_event_handler *infrun_async_inferior_event_token; | |
100 | ||
101 | /* Stores whether infrun_async was previously enabled or disabled. | |
102 | Starts off as -1, indicating "never enabled/disabled". */ | |
103 | static int infrun_is_async = -1; | |
104 | ||
105 | /* See infrun.h. */ | |
106 | ||
107 | void | |
108 | infrun_async (int enable) | |
109 | { | |
110 | if (infrun_is_async != enable) | |
111 | { | |
112 | infrun_is_async = enable; | |
113 | ||
114 | if (debug_infrun) | |
115 | fprintf_unfiltered (gdb_stdlog, | |
116 | "infrun: infrun_async(%d)\n", | |
117 | enable); | |
118 | ||
119 | if (enable) | |
120 | mark_async_event_handler (infrun_async_inferior_event_token); | |
121 | else | |
122 | clear_async_event_handler (infrun_async_inferior_event_token); | |
123 | } | |
124 | } | |
125 | ||
0b333c5e PA |
126 | /* See infrun.h. */ |
127 | ||
128 | void | |
129 | mark_infrun_async_event_handler (void) | |
130 | { | |
131 | mark_async_event_handler (infrun_async_inferior_event_token); | |
132 | } | |
133 | ||
5fbbeb29 CF |
134 | /* When set, stop the 'step' command if we enter a function which has |
135 | no line number information. The normal behavior is that we step | |
136 | over such function. */ | |
137 | int step_stop_if_no_debug = 0; | |
920d2a44 AC |
138 | static void |
139 | show_step_stop_if_no_debug (struct ui_file *file, int from_tty, | |
140 | struct cmd_list_element *c, const char *value) | |
141 | { | |
142 | fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value); | |
143 | } | |
5fbbeb29 | 144 | |
b9f437de PA |
145 | /* proceed and normal_stop use this to notify the user when the |
146 | inferior stopped in a different thread than it had been running | |
147 | in. */ | |
96baa820 | 148 | |
39f77062 | 149 | static ptid_t previous_inferior_ptid; |
7a292a7a | 150 | |
07107ca6 LM |
151 | /* If set (default for legacy reasons), when following a fork, GDB |
152 | will detach from one of the fork branches, child or parent. | |
153 | Exactly which branch is detached depends on 'set follow-fork-mode' | |
154 | setting. */ | |
155 | ||
156 | static int detach_fork = 1; | |
6c95b8df | 157 | |
237fc4c9 PA |
158 | int debug_displaced = 0; |
159 | static void | |
160 | show_debug_displaced (struct ui_file *file, int from_tty, | |
161 | struct cmd_list_element *c, const char *value) | |
162 | { | |
163 | fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value); | |
164 | } | |
165 | ||
ccce17b0 | 166 | unsigned int debug_infrun = 0; |
920d2a44 AC |
167 | static void |
168 | show_debug_infrun (struct ui_file *file, int from_tty, | |
169 | struct cmd_list_element *c, const char *value) | |
170 | { | |
171 | fprintf_filtered (file, _("Inferior debugging is %s.\n"), value); | |
172 | } | |
527159b7 | 173 | |
03583c20 UW |
174 | |
175 | /* Support for disabling address space randomization. */ | |
176 | ||
177 | int disable_randomization = 1; | |
178 | ||
179 | static void | |
180 | show_disable_randomization (struct ui_file *file, int from_tty, | |
181 | struct cmd_list_element *c, const char *value) | |
182 | { | |
183 | if (target_supports_disable_randomization ()) | |
184 | fprintf_filtered (file, | |
185 | _("Disabling randomization of debuggee's " | |
186 | "virtual address space is %s.\n"), | |
187 | value); | |
188 | else | |
189 | fputs_filtered (_("Disabling randomization of debuggee's " | |
190 | "virtual address space is unsupported on\n" | |
191 | "this platform.\n"), file); | |
192 | } | |
193 | ||
194 | static void | |
eb4c3f4a | 195 | set_disable_randomization (const char *args, int from_tty, |
03583c20 UW |
196 | struct cmd_list_element *c) |
197 | { | |
198 | if (!target_supports_disable_randomization ()) | |
199 | error (_("Disabling randomization of debuggee's " | |
200 | "virtual address space is unsupported on\n" | |
201 | "this platform.")); | |
202 | } | |
203 | ||
d32dc48e PA |
204 | /* User interface for non-stop mode. */ |
205 | ||
206 | int non_stop = 0; | |
207 | static int non_stop_1 = 0; | |
208 | ||
209 | static void | |
eb4c3f4a | 210 | set_non_stop (const char *args, int from_tty, |
d32dc48e PA |
211 | struct cmd_list_element *c) |
212 | { | |
213 | if (target_has_execution) | |
214 | { | |
215 | non_stop_1 = non_stop; | |
216 | error (_("Cannot change this setting while the inferior is running.")); | |
217 | } | |
218 | ||
219 | non_stop = non_stop_1; | |
220 | } | |
221 | ||
222 | static void | |
223 | show_non_stop (struct ui_file *file, int from_tty, | |
224 | struct cmd_list_element *c, const char *value) | |
225 | { | |
226 | fprintf_filtered (file, | |
227 | _("Controlling the inferior in non-stop mode is %s.\n"), | |
228 | value); | |
229 | } | |
230 | ||
d914c394 SS |
231 | /* "Observer mode" is somewhat like a more extreme version of |
232 | non-stop, in which all GDB operations that might affect the | |
233 | target's execution have been disabled. */ | |
234 | ||
d914c394 SS |
235 | int observer_mode = 0; |
236 | static int observer_mode_1 = 0; | |
237 | ||
238 | static void | |
eb4c3f4a | 239 | set_observer_mode (const char *args, int from_tty, |
d914c394 SS |
240 | struct cmd_list_element *c) |
241 | { | |
d914c394 SS |
242 | if (target_has_execution) |
243 | { | |
244 | observer_mode_1 = observer_mode; | |
245 | error (_("Cannot change this setting while the inferior is running.")); | |
246 | } | |
247 | ||
248 | observer_mode = observer_mode_1; | |
249 | ||
250 | may_write_registers = !observer_mode; | |
251 | may_write_memory = !observer_mode; | |
252 | may_insert_breakpoints = !observer_mode; | |
253 | may_insert_tracepoints = !observer_mode; | |
254 | /* We can insert fast tracepoints in or out of observer mode, | |
255 | but enable them if we're going into this mode. */ | |
256 | if (observer_mode) | |
257 | may_insert_fast_tracepoints = 1; | |
258 | may_stop = !observer_mode; | |
259 | update_target_permissions (); | |
260 | ||
261 | /* Going *into* observer mode we must force non-stop, then | |
262 | going out we leave it that way. */ | |
263 | if (observer_mode) | |
264 | { | |
d914c394 SS |
265 | pagination_enabled = 0; |
266 | non_stop = non_stop_1 = 1; | |
267 | } | |
268 | ||
269 | if (from_tty) | |
270 | printf_filtered (_("Observer mode is now %s.\n"), | |
271 | (observer_mode ? "on" : "off")); | |
272 | } | |
273 | ||
274 | static void | |
275 | show_observer_mode (struct ui_file *file, int from_tty, | |
276 | struct cmd_list_element *c, const char *value) | |
277 | { | |
278 | fprintf_filtered (file, _("Observer mode is %s.\n"), value); | |
279 | } | |
280 | ||
281 | /* This updates the value of observer mode based on changes in | |
282 | permissions. Note that we are deliberately ignoring the values of | |
283 | may-write-registers and may-write-memory, since the user may have | |
284 | reason to enable these during a session, for instance to turn on a | |
285 | debugging-related global. */ | |
286 | ||
287 | void | |
288 | update_observer_mode (void) | |
289 | { | |
290 | int newval; | |
291 | ||
292 | newval = (!may_insert_breakpoints | |
293 | && !may_insert_tracepoints | |
294 | && may_insert_fast_tracepoints | |
295 | && !may_stop | |
296 | && non_stop); | |
297 | ||
298 | /* Let the user know if things change. */ | |
299 | if (newval != observer_mode) | |
300 | printf_filtered (_("Observer mode is now %s.\n"), | |
301 | (newval ? "on" : "off")); | |
302 | ||
303 | observer_mode = observer_mode_1 = newval; | |
304 | } | |
c2c6d25f | 305 | |
c906108c SS |
306 | /* Tables of how to react to signals; the user sets them. */ |
307 | ||
308 | static unsigned char *signal_stop; | |
309 | static unsigned char *signal_print; | |
310 | static unsigned char *signal_program; | |
311 | ||
ab04a2af TT |
312 | /* Table of signals that are registered with "catch signal". A |
313 | non-zero entry indicates that the signal is caught by some "catch | |
314 | signal" command. This has size GDB_SIGNAL_LAST, to accommodate all | |
315 | signals. */ | |
316 | static unsigned char *signal_catch; | |
317 | ||
2455069d UW |
318 | /* Table of signals that the target may silently handle. |
319 | This is automatically determined from the flags above, | |
320 | and simply cached here. */ | |
321 | static unsigned char *signal_pass; | |
322 | ||
c906108c SS |
323 | #define SET_SIGS(nsigs,sigs,flags) \ |
324 | do { \ | |
325 | int signum = (nsigs); \ | |
326 | while (signum-- > 0) \ | |
327 | if ((sigs)[signum]) \ | |
328 | (flags)[signum] = 1; \ | |
329 | } while (0) | |
330 | ||
331 | #define UNSET_SIGS(nsigs,sigs,flags) \ | |
332 | do { \ | |
333 | int signum = (nsigs); \ | |
334 | while (signum-- > 0) \ | |
335 | if ((sigs)[signum]) \ | |
336 | (flags)[signum] = 0; \ | |
337 | } while (0) | |
338 | ||
9b224c5e PA |
339 | /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of |
340 | this function is to avoid exporting `signal_program'. */ | |
341 | ||
342 | void | |
343 | update_signals_program_target (void) | |
344 | { | |
a493e3e2 | 345 | target_program_signals ((int) GDB_SIGNAL_LAST, signal_program); |
9b224c5e PA |
346 | } |
347 | ||
1777feb0 | 348 | /* Value to pass to target_resume() to cause all threads to resume. */ |
39f77062 | 349 | |
edb3359d | 350 | #define RESUME_ALL minus_one_ptid |
c906108c SS |
351 | |
352 | /* Command list pointer for the "stop" placeholder. */ | |
353 | ||
354 | static struct cmd_list_element *stop_command; | |
355 | ||
c906108c SS |
356 | /* Nonzero if we want to give control to the user when we're notified |
357 | of shared library events by the dynamic linker. */ | |
628fe4e4 | 358 | int stop_on_solib_events; |
f9e14852 GB |
359 | |
360 | /* Enable or disable optional shared library event breakpoints | |
361 | as appropriate when the above flag is changed. */ | |
362 | ||
363 | static void | |
eb4c3f4a TT |
364 | set_stop_on_solib_events (const char *args, |
365 | int from_tty, struct cmd_list_element *c) | |
f9e14852 GB |
366 | { |
367 | update_solib_breakpoints (); | |
368 | } | |
369 | ||
920d2a44 AC |
370 | static void |
371 | show_stop_on_solib_events (struct ui_file *file, int from_tty, | |
372 | struct cmd_list_element *c, const char *value) | |
373 | { | |
374 | fprintf_filtered (file, _("Stopping for shared library events is %s.\n"), | |
375 | value); | |
376 | } | |
c906108c | 377 | |
c906108c SS |
378 | /* Nonzero after stop if current stack frame should be printed. */ |
379 | ||
380 | static int stop_print_frame; | |
381 | ||
e02bc4cc | 382 | /* This is a cached copy of the pid/waitstatus of the last event |
9a4105ab AC |
383 | returned by target_wait()/deprecated_target_wait_hook(). This |
384 | information is returned by get_last_target_status(). */ | |
39f77062 | 385 | static ptid_t target_last_wait_ptid; |
e02bc4cc DS |
386 | static struct target_waitstatus target_last_waitstatus; |
387 | ||
4e1c45ea | 388 | void init_thread_stepping_state (struct thread_info *tss); |
0d1e5fa7 | 389 | |
53904c9e AC |
390 | static const char follow_fork_mode_child[] = "child"; |
391 | static const char follow_fork_mode_parent[] = "parent"; | |
392 | ||
40478521 | 393 | static const char *const follow_fork_mode_kind_names[] = { |
53904c9e AC |
394 | follow_fork_mode_child, |
395 | follow_fork_mode_parent, | |
396 | NULL | |
ef346e04 | 397 | }; |
c906108c | 398 | |
53904c9e | 399 | static const char *follow_fork_mode_string = follow_fork_mode_parent; |
920d2a44 AC |
400 | static void |
401 | show_follow_fork_mode_string (struct ui_file *file, int from_tty, | |
402 | struct cmd_list_element *c, const char *value) | |
403 | { | |
3e43a32a MS |
404 | fprintf_filtered (file, |
405 | _("Debugger response to a program " | |
406 | "call of fork or vfork is \"%s\".\n"), | |
920d2a44 AC |
407 | value); |
408 | } | |
c906108c SS |
409 | \f |
410 | ||
d83ad864 DB |
411 | /* Handle changes to the inferior list based on the type of fork, |
412 | which process is being followed, and whether the other process | |
413 | should be detached. On entry inferior_ptid must be the ptid of | |
414 | the fork parent. At return inferior_ptid is the ptid of the | |
415 | followed inferior. */ | |
416 | ||
417 | static int | |
418 | follow_fork_inferior (int follow_child, int detach_fork) | |
419 | { | |
420 | int has_vforked; | |
79639e11 | 421 | ptid_t parent_ptid, child_ptid; |
d83ad864 DB |
422 | |
423 | has_vforked = (inferior_thread ()->pending_follow.kind | |
424 | == TARGET_WAITKIND_VFORKED); | |
79639e11 PA |
425 | parent_ptid = inferior_ptid; |
426 | child_ptid = inferior_thread ()->pending_follow.value.related_pid; | |
d83ad864 DB |
427 | |
428 | if (has_vforked | |
429 | && !non_stop /* Non-stop always resumes both branches. */ | |
3b12939d | 430 | && current_ui->prompt_state == PROMPT_BLOCKED |
d83ad864 DB |
431 | && !(follow_child || detach_fork || sched_multi)) |
432 | { | |
433 | /* The parent stays blocked inside the vfork syscall until the | |
434 | child execs or exits. If we don't let the child run, then | |
435 | the parent stays blocked. If we're telling the parent to run | |
436 | in the foreground, the user will not be able to ctrl-c to get | |
437 | back the terminal, effectively hanging the debug session. */ | |
438 | fprintf_filtered (gdb_stderr, _("\ | |
439 | Can not resume the parent process over vfork in the foreground while\n\ | |
440 | holding the child stopped. Try \"set detach-on-fork\" or \ | |
441 | \"set schedule-multiple\".\n")); | |
442 | /* FIXME output string > 80 columns. */ | |
443 | return 1; | |
444 | } | |
445 | ||
446 | if (!follow_child) | |
447 | { | |
448 | /* Detach new forked process? */ | |
449 | if (detach_fork) | |
450 | { | |
d83ad864 DB |
451 | /* Before detaching from the child, remove all breakpoints |
452 | from it. If we forked, then this has already been taken | |
453 | care of by infrun.c. If we vforked however, any | |
454 | breakpoint inserted in the parent is visible in the | |
455 | child, even those added while stopped in a vfork | |
456 | catchpoint. This will remove the breakpoints from the | |
457 | parent also, but they'll be reinserted below. */ | |
458 | if (has_vforked) | |
459 | { | |
460 | /* Keep breakpoints list in sync. */ | |
00431a78 | 461 | remove_breakpoints_inf (current_inferior ()); |
d83ad864 DB |
462 | } |
463 | ||
f67c0c91 | 464 | if (print_inferior_events) |
d83ad864 | 465 | { |
8dd06f7a | 466 | /* Ensure that we have a process ptid. */ |
e99b03dc | 467 | ptid_t process_ptid = ptid_t (child_ptid.pid ()); |
8dd06f7a | 468 | |
223ffa71 | 469 | target_terminal::ours_for_output (); |
d83ad864 | 470 | fprintf_filtered (gdb_stdlog, |
f67c0c91 | 471 | _("[Detaching after %s from child %s]\n"), |
6f259a23 | 472 | has_vforked ? "vfork" : "fork", |
8dd06f7a | 473 | target_pid_to_str (process_ptid)); |
d83ad864 DB |
474 | } |
475 | } | |
476 | else | |
477 | { | |
478 | struct inferior *parent_inf, *child_inf; | |
d83ad864 DB |
479 | |
480 | /* Add process to GDB's tables. */ | |
e99b03dc | 481 | child_inf = add_inferior (child_ptid.pid ()); |
d83ad864 DB |
482 | |
483 | parent_inf = current_inferior (); | |
484 | child_inf->attach_flag = parent_inf->attach_flag; | |
485 | copy_terminal_info (child_inf, parent_inf); | |
486 | child_inf->gdbarch = parent_inf->gdbarch; | |
487 | copy_inferior_target_desc_info (child_inf, parent_inf); | |
488 | ||
5ed8105e | 489 | scoped_restore_current_pspace_and_thread restore_pspace_thread; |
d83ad864 | 490 | |
79639e11 | 491 | inferior_ptid = child_ptid; |
f67c0c91 | 492 | add_thread_silent (inferior_ptid); |
2a00d7ce | 493 | set_current_inferior (child_inf); |
d83ad864 DB |
494 | child_inf->symfile_flags = SYMFILE_NO_READ; |
495 | ||
496 | /* If this is a vfork child, then the address-space is | |
497 | shared with the parent. */ | |
498 | if (has_vforked) | |
499 | { | |
500 | child_inf->pspace = parent_inf->pspace; | |
501 | child_inf->aspace = parent_inf->aspace; | |
502 | ||
503 | /* The parent will be frozen until the child is done | |
504 | with the shared region. Keep track of the | |
505 | parent. */ | |
506 | child_inf->vfork_parent = parent_inf; | |
507 | child_inf->pending_detach = 0; | |
508 | parent_inf->vfork_child = child_inf; | |
509 | parent_inf->pending_detach = 0; | |
510 | } | |
511 | else | |
512 | { | |
513 | child_inf->aspace = new_address_space (); | |
564b1e3f | 514 | child_inf->pspace = new program_space (child_inf->aspace); |
d83ad864 DB |
515 | child_inf->removable = 1; |
516 | set_current_program_space (child_inf->pspace); | |
517 | clone_program_space (child_inf->pspace, parent_inf->pspace); | |
518 | ||
519 | /* Let the shared library layer (e.g., solib-svr4) learn | |
520 | about this new process, relocate the cloned exec, pull | |
521 | in shared libraries, and install the solib event | |
522 | breakpoint. If a "cloned-VM" event was propagated | |
523 | better throughout the core, this wouldn't be | |
524 | required. */ | |
525 | solib_create_inferior_hook (0); | |
526 | } | |
d83ad864 DB |
527 | } |
528 | ||
529 | if (has_vforked) | |
530 | { | |
531 | struct inferior *parent_inf; | |
532 | ||
533 | parent_inf = current_inferior (); | |
534 | ||
535 | /* If we detached from the child, then we have to be careful | |
536 | to not insert breakpoints in the parent until the child | |
537 | is done with the shared memory region. However, if we're | |
538 | staying attached to the child, then we can and should | |
539 | insert breakpoints, so that we can debug it. A | |
540 | subsequent child exec or exit is enough to know when does | |
541 | the child stops using the parent's address space. */ | |
542 | parent_inf->waiting_for_vfork_done = detach_fork; | |
543 | parent_inf->pspace->breakpoints_not_allowed = detach_fork; | |
544 | } | |
545 | } | |
546 | else | |
547 | { | |
548 | /* Follow the child. */ | |
549 | struct inferior *parent_inf, *child_inf; | |
550 | struct program_space *parent_pspace; | |
551 | ||
f67c0c91 | 552 | if (print_inferior_events) |
d83ad864 | 553 | { |
f67c0c91 SDJ |
554 | std::string parent_pid = target_pid_to_str (parent_ptid); |
555 | std::string child_pid = target_pid_to_str (child_ptid); | |
556 | ||
223ffa71 | 557 | target_terminal::ours_for_output (); |
6f259a23 | 558 | fprintf_filtered (gdb_stdlog, |
f67c0c91 SDJ |
559 | _("[Attaching after %s %s to child %s]\n"), |
560 | parent_pid.c_str (), | |
6f259a23 | 561 | has_vforked ? "vfork" : "fork", |
f67c0c91 | 562 | child_pid.c_str ()); |
d83ad864 DB |
563 | } |
564 | ||
565 | /* Add the new inferior first, so that the target_detach below | |
566 | doesn't unpush the target. */ | |
567 | ||
e99b03dc | 568 | child_inf = add_inferior (child_ptid.pid ()); |
d83ad864 DB |
569 | |
570 | parent_inf = current_inferior (); | |
571 | child_inf->attach_flag = parent_inf->attach_flag; | |
572 | copy_terminal_info (child_inf, parent_inf); | |
573 | child_inf->gdbarch = parent_inf->gdbarch; | |
574 | copy_inferior_target_desc_info (child_inf, parent_inf); | |
575 | ||
576 | parent_pspace = parent_inf->pspace; | |
577 | ||
578 | /* If we're vforking, we want to hold on to the parent until the | |
579 | child exits or execs. At child exec or exit time we can | |
580 | remove the old breakpoints from the parent and detach or | |
581 | resume debugging it. Otherwise, detach the parent now; we'll | |
582 | want to reuse it's program/address spaces, but we can't set | |
583 | them to the child before removing breakpoints from the | |
584 | parent, otherwise, the breakpoints module could decide to | |
585 | remove breakpoints from the wrong process (since they'd be | |
586 | assigned to the same address space). */ | |
587 | ||
588 | if (has_vforked) | |
589 | { | |
590 | gdb_assert (child_inf->vfork_parent == NULL); | |
591 | gdb_assert (parent_inf->vfork_child == NULL); | |
592 | child_inf->vfork_parent = parent_inf; | |
593 | child_inf->pending_detach = 0; | |
594 | parent_inf->vfork_child = child_inf; | |
595 | parent_inf->pending_detach = detach_fork; | |
596 | parent_inf->waiting_for_vfork_done = 0; | |
597 | } | |
598 | else if (detach_fork) | |
6f259a23 | 599 | { |
f67c0c91 | 600 | if (print_inferior_events) |
6f259a23 | 601 | { |
8dd06f7a | 602 | /* Ensure that we have a process ptid. */ |
e99b03dc | 603 | ptid_t process_ptid = ptid_t (parent_ptid.pid ()); |
8dd06f7a | 604 | |
223ffa71 | 605 | target_terminal::ours_for_output (); |
6f259a23 | 606 | fprintf_filtered (gdb_stdlog, |
f67c0c91 SDJ |
607 | _("[Detaching after fork from " |
608 | "parent %s]\n"), | |
8dd06f7a | 609 | target_pid_to_str (process_ptid)); |
6f259a23 DB |
610 | } |
611 | ||
6e1e1966 | 612 | target_detach (parent_inf, 0); |
6f259a23 | 613 | } |
d83ad864 DB |
614 | |
615 | /* Note that the detach above makes PARENT_INF dangling. */ | |
616 | ||
617 | /* Add the child thread to the appropriate lists, and switch to | |
618 | this new thread, before cloning the program space, and | |
619 | informing the solib layer about this new process. */ | |
620 | ||
79639e11 | 621 | inferior_ptid = child_ptid; |
f67c0c91 | 622 | add_thread_silent (inferior_ptid); |
2a00d7ce | 623 | set_current_inferior (child_inf); |
d83ad864 DB |
624 | |
625 | /* If this is a vfork child, then the address-space is shared | |
626 | with the parent. If we detached from the parent, then we can | |
627 | reuse the parent's program/address spaces. */ | |
628 | if (has_vforked || detach_fork) | |
629 | { | |
630 | child_inf->pspace = parent_pspace; | |
631 | child_inf->aspace = child_inf->pspace->aspace; | |
632 | } | |
633 | else | |
634 | { | |
635 | child_inf->aspace = new_address_space (); | |
564b1e3f | 636 | child_inf->pspace = new program_space (child_inf->aspace); |
d83ad864 DB |
637 | child_inf->removable = 1; |
638 | child_inf->symfile_flags = SYMFILE_NO_READ; | |
639 | set_current_program_space (child_inf->pspace); | |
640 | clone_program_space (child_inf->pspace, parent_pspace); | |
641 | ||
642 | /* Let the shared library layer (e.g., solib-svr4) learn | |
643 | about this new process, relocate the cloned exec, pull in | |
644 | shared libraries, and install the solib event breakpoint. | |
645 | If a "cloned-VM" event was propagated better throughout | |
646 | the core, this wouldn't be required. */ | |
647 | solib_create_inferior_hook (0); | |
648 | } | |
649 | } | |
650 | ||
651 | return target_follow_fork (follow_child, detach_fork); | |
652 | } | |
653 | ||
e58b0e63 PA |
654 | /* Tell the target to follow the fork we're stopped at. Returns true |
655 | if the inferior should be resumed; false, if the target for some | |
656 | reason decided it's best not to resume. */ | |
657 | ||
6604731b | 658 | static int |
4ef3f3be | 659 | follow_fork (void) |
c906108c | 660 | { |
ea1dd7bc | 661 | int follow_child = (follow_fork_mode_string == follow_fork_mode_child); |
e58b0e63 PA |
662 | int should_resume = 1; |
663 | struct thread_info *tp; | |
664 | ||
665 | /* Copy user stepping state to the new inferior thread. FIXME: the | |
666 | followed fork child thread should have a copy of most of the | |
4e3990f4 DE |
667 | parent thread structure's run control related fields, not just these. |
668 | Initialized to avoid "may be used uninitialized" warnings from gcc. */ | |
669 | struct breakpoint *step_resume_breakpoint = NULL; | |
186c406b | 670 | struct breakpoint *exception_resume_breakpoint = NULL; |
4e3990f4 DE |
671 | CORE_ADDR step_range_start = 0; |
672 | CORE_ADDR step_range_end = 0; | |
673 | struct frame_id step_frame_id = { 0 }; | |
8980e177 | 674 | struct thread_fsm *thread_fsm = NULL; |
e58b0e63 PA |
675 | |
676 | if (!non_stop) | |
677 | { | |
678 | ptid_t wait_ptid; | |
679 | struct target_waitstatus wait_status; | |
680 | ||
681 | /* Get the last target status returned by target_wait(). */ | |
682 | get_last_target_status (&wait_ptid, &wait_status); | |
683 | ||
684 | /* If not stopped at a fork event, then there's nothing else to | |
685 | do. */ | |
686 | if (wait_status.kind != TARGET_WAITKIND_FORKED | |
687 | && wait_status.kind != TARGET_WAITKIND_VFORKED) | |
688 | return 1; | |
689 | ||
690 | /* Check if we switched over from WAIT_PTID, since the event was | |
691 | reported. */ | |
00431a78 PA |
692 | if (wait_ptid != minus_one_ptid |
693 | && inferior_ptid != wait_ptid) | |
e58b0e63 PA |
694 | { |
695 | /* We did. Switch back to WAIT_PTID thread, to tell the | |
696 | target to follow it (in either direction). We'll | |
697 | afterwards refuse to resume, and inform the user what | |
698 | happened. */ | |
00431a78 PA |
699 | thread_info *wait_thread |
700 | = find_thread_ptid (wait_ptid); | |
701 | switch_to_thread (wait_thread); | |
e58b0e63 PA |
702 | should_resume = 0; |
703 | } | |
704 | } | |
705 | ||
706 | tp = inferior_thread (); | |
707 | ||
708 | /* If there were any forks/vforks that were caught and are now to be | |
709 | followed, then do so now. */ | |
710 | switch (tp->pending_follow.kind) | |
711 | { | |
712 | case TARGET_WAITKIND_FORKED: | |
713 | case TARGET_WAITKIND_VFORKED: | |
714 | { | |
715 | ptid_t parent, child; | |
716 | ||
717 | /* If the user did a next/step, etc, over a fork call, | |
718 | preserve the stepping state in the fork child. */ | |
719 | if (follow_child && should_resume) | |
720 | { | |
8358c15c JK |
721 | step_resume_breakpoint = clone_momentary_breakpoint |
722 | (tp->control.step_resume_breakpoint); | |
16c381f0 JK |
723 | step_range_start = tp->control.step_range_start; |
724 | step_range_end = tp->control.step_range_end; | |
725 | step_frame_id = tp->control.step_frame_id; | |
186c406b TT |
726 | exception_resume_breakpoint |
727 | = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint); | |
8980e177 | 728 | thread_fsm = tp->thread_fsm; |
e58b0e63 PA |
729 | |
730 | /* For now, delete the parent's sr breakpoint, otherwise, | |
731 | parent/child sr breakpoints are considered duplicates, | |
732 | and the child version will not be installed. Remove | |
733 | this when the breakpoints module becomes aware of | |
734 | inferiors and address spaces. */ | |
735 | delete_step_resume_breakpoint (tp); | |
16c381f0 JK |
736 | tp->control.step_range_start = 0; |
737 | tp->control.step_range_end = 0; | |
738 | tp->control.step_frame_id = null_frame_id; | |
186c406b | 739 | delete_exception_resume_breakpoint (tp); |
8980e177 | 740 | tp->thread_fsm = NULL; |
e58b0e63 PA |
741 | } |
742 | ||
743 | parent = inferior_ptid; | |
744 | child = tp->pending_follow.value.related_pid; | |
745 | ||
d83ad864 DB |
746 | /* Set up inferior(s) as specified by the caller, and tell the |
747 | target to do whatever is necessary to follow either parent | |
748 | or child. */ | |
749 | if (follow_fork_inferior (follow_child, detach_fork)) | |
e58b0e63 PA |
750 | { |
751 | /* Target refused to follow, or there's some other reason | |
752 | we shouldn't resume. */ | |
753 | should_resume = 0; | |
754 | } | |
755 | else | |
756 | { | |
757 | /* This pending follow fork event is now handled, one way | |
758 | or another. The previous selected thread may be gone | |
759 | from the lists by now, but if it is still around, need | |
760 | to clear the pending follow request. */ | |
e09875d4 | 761 | tp = find_thread_ptid (parent); |
e58b0e63 PA |
762 | if (tp) |
763 | tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS; | |
764 | ||
765 | /* This makes sure we don't try to apply the "Switched | |
766 | over from WAIT_PID" logic above. */ | |
767 | nullify_last_target_wait_ptid (); | |
768 | ||
1777feb0 | 769 | /* If we followed the child, switch to it... */ |
e58b0e63 PA |
770 | if (follow_child) |
771 | { | |
00431a78 PA |
772 | thread_info *child_thr = find_thread_ptid (child); |
773 | switch_to_thread (child_thr); | |
e58b0e63 PA |
774 | |
775 | /* ... and preserve the stepping state, in case the | |
776 | user was stepping over the fork call. */ | |
777 | if (should_resume) | |
778 | { | |
779 | tp = inferior_thread (); | |
8358c15c JK |
780 | tp->control.step_resume_breakpoint |
781 | = step_resume_breakpoint; | |
16c381f0 JK |
782 | tp->control.step_range_start = step_range_start; |
783 | tp->control.step_range_end = step_range_end; | |
784 | tp->control.step_frame_id = step_frame_id; | |
186c406b TT |
785 | tp->control.exception_resume_breakpoint |
786 | = exception_resume_breakpoint; | |
8980e177 | 787 | tp->thread_fsm = thread_fsm; |
e58b0e63 PA |
788 | } |
789 | else | |
790 | { | |
791 | /* If we get here, it was because we're trying to | |
792 | resume from a fork catchpoint, but, the user | |
793 | has switched threads away from the thread that | |
794 | forked. In that case, the resume command | |
795 | issued is most likely not applicable to the | |
796 | child, so just warn, and refuse to resume. */ | |
3e43a32a | 797 | warning (_("Not resuming: switched threads " |
fd7dcb94 | 798 | "before following fork child.")); |
e58b0e63 PA |
799 | } |
800 | ||
801 | /* Reset breakpoints in the child as appropriate. */ | |
802 | follow_inferior_reset_breakpoints (); | |
803 | } | |
e58b0e63 PA |
804 | } |
805 | } | |
806 | break; | |
807 | case TARGET_WAITKIND_SPURIOUS: | |
808 | /* Nothing to follow. */ | |
809 | break; | |
810 | default: | |
811 | internal_error (__FILE__, __LINE__, | |
812 | "Unexpected pending_follow.kind %d\n", | |
813 | tp->pending_follow.kind); | |
814 | break; | |
815 | } | |
c906108c | 816 | |
e58b0e63 | 817 | return should_resume; |
c906108c SS |
818 | } |
819 | ||
d83ad864 | 820 | static void |
6604731b | 821 | follow_inferior_reset_breakpoints (void) |
c906108c | 822 | { |
4e1c45ea PA |
823 | struct thread_info *tp = inferior_thread (); |
824 | ||
6604731b DJ |
825 | /* Was there a step_resume breakpoint? (There was if the user |
826 | did a "next" at the fork() call.) If so, explicitly reset its | |
a1aa2221 LM |
827 | thread number. Cloned step_resume breakpoints are disabled on |
828 | creation, so enable it here now that it is associated with the | |
829 | correct thread. | |
6604731b DJ |
830 | |
831 | step_resumes are a form of bp that are made to be per-thread. | |
832 | Since we created the step_resume bp when the parent process | |
833 | was being debugged, and now are switching to the child process, | |
834 | from the breakpoint package's viewpoint, that's a switch of | |
835 | "threads". We must update the bp's notion of which thread | |
836 | it is for, or it'll be ignored when it triggers. */ | |
837 | ||
8358c15c | 838 | if (tp->control.step_resume_breakpoint) |
a1aa2221 LM |
839 | { |
840 | breakpoint_re_set_thread (tp->control.step_resume_breakpoint); | |
841 | tp->control.step_resume_breakpoint->loc->enabled = 1; | |
842 | } | |
6604731b | 843 | |
a1aa2221 | 844 | /* Treat exception_resume breakpoints like step_resume breakpoints. */ |
186c406b | 845 | if (tp->control.exception_resume_breakpoint) |
a1aa2221 LM |
846 | { |
847 | breakpoint_re_set_thread (tp->control.exception_resume_breakpoint); | |
848 | tp->control.exception_resume_breakpoint->loc->enabled = 1; | |
849 | } | |
186c406b | 850 | |
6604731b DJ |
851 | /* Reinsert all breakpoints in the child. The user may have set |
852 | breakpoints after catching the fork, in which case those | |
853 | were never set in the child, but only in the parent. This makes | |
854 | sure the inserted breakpoints match the breakpoint list. */ | |
855 | ||
856 | breakpoint_re_set (); | |
857 | insert_breakpoints (); | |
c906108c | 858 | } |
c906108c | 859 | |
6c95b8df PA |
860 | /* The child has exited or execed: resume threads of the parent the |
861 | user wanted to be executing. */ | |
862 | ||
863 | static int | |
864 | proceed_after_vfork_done (struct thread_info *thread, | |
865 | void *arg) | |
866 | { | |
867 | int pid = * (int *) arg; | |
868 | ||
00431a78 PA |
869 | if (thread->ptid.pid () == pid |
870 | && thread->state == THREAD_RUNNING | |
871 | && !thread->executing | |
6c95b8df | 872 | && !thread->stop_requested |
a493e3e2 | 873 | && thread->suspend.stop_signal == GDB_SIGNAL_0) |
6c95b8df PA |
874 | { |
875 | if (debug_infrun) | |
876 | fprintf_unfiltered (gdb_stdlog, | |
877 | "infrun: resuming vfork parent thread %s\n", | |
878 | target_pid_to_str (thread->ptid)); | |
879 | ||
00431a78 | 880 | switch_to_thread (thread); |
70509625 | 881 | clear_proceed_status (0); |
64ce06e4 | 882 | proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT); |
6c95b8df PA |
883 | } |
884 | ||
885 | return 0; | |
886 | } | |
887 | ||
5ed8105e PA |
888 | /* Save/restore inferior_ptid, current program space and current |
889 | inferior. Only use this if the current context points at an exited | |
890 | inferior (and therefore there's no current thread to save). */ | |
891 | class scoped_restore_exited_inferior | |
892 | { | |
893 | public: | |
894 | scoped_restore_exited_inferior () | |
895 | : m_saved_ptid (&inferior_ptid) | |
896 | {} | |
897 | ||
898 | private: | |
899 | scoped_restore_tmpl<ptid_t> m_saved_ptid; | |
900 | scoped_restore_current_program_space m_pspace; | |
901 | scoped_restore_current_inferior m_inferior; | |
902 | }; | |
903 | ||
6c95b8df PA |
904 | /* Called whenever we notice an exec or exit event, to handle |
905 | detaching or resuming a vfork parent. */ | |
906 | ||
907 | static void | |
908 | handle_vfork_child_exec_or_exit (int exec) | |
909 | { | |
910 | struct inferior *inf = current_inferior (); | |
911 | ||
912 | if (inf->vfork_parent) | |
913 | { | |
914 | int resume_parent = -1; | |
915 | ||
916 | /* This exec or exit marks the end of the shared memory region | |
917 | between the parent and the child. If the user wanted to | |
918 | detach from the parent, now is the time. */ | |
919 | ||
920 | if (inf->vfork_parent->pending_detach) | |
921 | { | |
922 | struct thread_info *tp; | |
6c95b8df PA |
923 | struct program_space *pspace; |
924 | struct address_space *aspace; | |
925 | ||
1777feb0 | 926 | /* follow-fork child, detach-on-fork on. */ |
6c95b8df | 927 | |
68c9da30 PA |
928 | inf->vfork_parent->pending_detach = 0; |
929 | ||
5ed8105e PA |
930 | gdb::optional<scoped_restore_exited_inferior> |
931 | maybe_restore_inferior; | |
932 | gdb::optional<scoped_restore_current_pspace_and_thread> | |
933 | maybe_restore_thread; | |
934 | ||
935 | /* If we're handling a child exit, then inferior_ptid points | |
936 | at the inferior's pid, not to a thread. */ | |
f50f4e56 | 937 | if (!exec) |
5ed8105e | 938 | maybe_restore_inferior.emplace (); |
f50f4e56 | 939 | else |
5ed8105e | 940 | maybe_restore_thread.emplace (); |
6c95b8df PA |
941 | |
942 | /* We're letting loose of the parent. */ | |
00431a78 PA |
943 | tp = any_live_thread_of_inferior (inf->vfork_parent); |
944 | switch_to_thread (tp); | |
6c95b8df PA |
945 | |
946 | /* We're about to detach from the parent, which implicitly | |
947 | removes breakpoints from its address space. There's a | |
948 | catch here: we want to reuse the spaces for the child, | |
949 | but, parent/child are still sharing the pspace at this | |
950 | point, although the exec in reality makes the kernel give | |
951 | the child a fresh set of new pages. The problem here is | |
952 | that the breakpoints module being unaware of this, would | |
953 | likely chose the child process to write to the parent | |
954 | address space. Swapping the child temporarily away from | |
955 | the spaces has the desired effect. Yes, this is "sort | |
956 | of" a hack. */ | |
957 | ||
958 | pspace = inf->pspace; | |
959 | aspace = inf->aspace; | |
960 | inf->aspace = NULL; | |
961 | inf->pspace = NULL; | |
962 | ||
f67c0c91 | 963 | if (print_inferior_events) |
6c95b8df | 964 | { |
f67c0c91 | 965 | const char *pidstr |
f2907e49 | 966 | = target_pid_to_str (ptid_t (inf->vfork_parent->pid)); |
f67c0c91 | 967 | |
223ffa71 | 968 | target_terminal::ours_for_output (); |
6c95b8df PA |
969 | |
970 | if (exec) | |
6f259a23 DB |
971 | { |
972 | fprintf_filtered (gdb_stdlog, | |
f67c0c91 SDJ |
973 | _("[Detaching vfork parent %s " |
974 | "after child exec]\n"), pidstr); | |
6f259a23 | 975 | } |
6c95b8df | 976 | else |
6f259a23 DB |
977 | { |
978 | fprintf_filtered (gdb_stdlog, | |
f67c0c91 SDJ |
979 | _("[Detaching vfork parent %s " |
980 | "after child exit]\n"), pidstr); | |
6f259a23 | 981 | } |
6c95b8df PA |
982 | } |
983 | ||
6e1e1966 | 984 | target_detach (inf->vfork_parent, 0); |
6c95b8df PA |
985 | |
986 | /* Put it back. */ | |
987 | inf->pspace = pspace; | |
988 | inf->aspace = aspace; | |
6c95b8df PA |
989 | } |
990 | else if (exec) | |
991 | { | |
992 | /* We're staying attached to the parent, so, really give the | |
993 | child a new address space. */ | |
564b1e3f | 994 | inf->pspace = new program_space (maybe_new_address_space ()); |
6c95b8df PA |
995 | inf->aspace = inf->pspace->aspace; |
996 | inf->removable = 1; | |
997 | set_current_program_space (inf->pspace); | |
998 | ||
999 | resume_parent = inf->vfork_parent->pid; | |
1000 | ||
1001 | /* Break the bonds. */ | |
1002 | inf->vfork_parent->vfork_child = NULL; | |
1003 | } | |
1004 | else | |
1005 | { | |
6c95b8df PA |
1006 | struct program_space *pspace; |
1007 | ||
1008 | /* If this is a vfork child exiting, then the pspace and | |
1009 | aspaces were shared with the parent. Since we're | |
1010 | reporting the process exit, we'll be mourning all that is | |
1011 | found in the address space, and switching to null_ptid, | |
1012 | preparing to start a new inferior. But, since we don't | |
1013 | want to clobber the parent's address/program spaces, we | |
1014 | go ahead and create a new one for this exiting | |
1015 | inferior. */ | |
1016 | ||
5ed8105e PA |
1017 | /* Switch to null_ptid while running clone_program_space, so |
1018 | that clone_program_space doesn't want to read the | |
1019 | selected frame of a dead process. */ | |
1020 | scoped_restore restore_ptid | |
1021 | = make_scoped_restore (&inferior_ptid, null_ptid); | |
6c95b8df PA |
1022 | |
1023 | /* This inferior is dead, so avoid giving the breakpoints | |
1024 | module the option to write through to it (cloning a | |
1025 | program space resets breakpoints). */ | |
1026 | inf->aspace = NULL; | |
1027 | inf->pspace = NULL; | |
564b1e3f | 1028 | pspace = new program_space (maybe_new_address_space ()); |
6c95b8df PA |
1029 | set_current_program_space (pspace); |
1030 | inf->removable = 1; | |
7dcd53a0 | 1031 | inf->symfile_flags = SYMFILE_NO_READ; |
6c95b8df PA |
1032 | clone_program_space (pspace, inf->vfork_parent->pspace); |
1033 | inf->pspace = pspace; | |
1034 | inf->aspace = pspace->aspace; | |
1035 | ||
6c95b8df PA |
1036 | resume_parent = inf->vfork_parent->pid; |
1037 | /* Break the bonds. */ | |
1038 | inf->vfork_parent->vfork_child = NULL; | |
1039 | } | |
1040 | ||
1041 | inf->vfork_parent = NULL; | |
1042 | ||
1043 | gdb_assert (current_program_space == inf->pspace); | |
1044 | ||
1045 | if (non_stop && resume_parent != -1) | |
1046 | { | |
1047 | /* If the user wanted the parent to be running, let it go | |
1048 | free now. */ | |
5ed8105e | 1049 | scoped_restore_current_thread restore_thread; |
6c95b8df PA |
1050 | |
1051 | if (debug_infrun) | |
3e43a32a MS |
1052 | fprintf_unfiltered (gdb_stdlog, |
1053 | "infrun: resuming vfork parent process %d\n", | |
6c95b8df PA |
1054 | resume_parent); |
1055 | ||
1056 | iterate_over_threads (proceed_after_vfork_done, &resume_parent); | |
6c95b8df PA |
1057 | } |
1058 | } | |
1059 | } | |
1060 | ||
eb6c553b | 1061 | /* Enum strings for "set|show follow-exec-mode". */ |
6c95b8df PA |
1062 | |
1063 | static const char follow_exec_mode_new[] = "new"; | |
1064 | static const char follow_exec_mode_same[] = "same"; | |
40478521 | 1065 | static const char *const follow_exec_mode_names[] = |
6c95b8df PA |
1066 | { |
1067 | follow_exec_mode_new, | |
1068 | follow_exec_mode_same, | |
1069 | NULL, | |
1070 | }; | |
1071 | ||
1072 | static const char *follow_exec_mode_string = follow_exec_mode_same; | |
1073 | static void | |
1074 | show_follow_exec_mode_string (struct ui_file *file, int from_tty, | |
1075 | struct cmd_list_element *c, const char *value) | |
1076 | { | |
1077 | fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value); | |
1078 | } | |
1079 | ||
ecf45d2c | 1080 | /* EXEC_FILE_TARGET is assumed to be non-NULL. */ |
1adeb98a | 1081 | |
c906108c | 1082 | static void |
ecf45d2c | 1083 | follow_exec (ptid_t ptid, char *exec_file_target) |
c906108c | 1084 | { |
95e50b27 | 1085 | struct thread_info *th, *tmp; |
6c95b8df | 1086 | struct inferior *inf = current_inferior (); |
e99b03dc | 1087 | int pid = ptid.pid (); |
94585166 | 1088 | ptid_t process_ptid; |
7a292a7a | 1089 | |
c906108c SS |
1090 | /* This is an exec event that we actually wish to pay attention to. |
1091 | Refresh our symbol table to the newly exec'd program, remove any | |
1092 | momentary bp's, etc. | |
1093 | ||
1094 | If there are breakpoints, they aren't really inserted now, | |
1095 | since the exec() transformed our inferior into a fresh set | |
1096 | of instructions. | |
1097 | ||
1098 | We want to preserve symbolic breakpoints on the list, since | |
1099 | we have hopes that they can be reset after the new a.out's | |
1100 | symbol table is read. | |
1101 | ||
1102 | However, any "raw" breakpoints must be removed from the list | |
1103 | (e.g., the solib bp's), since their address is probably invalid | |
1104 | now. | |
1105 | ||
1106 | And, we DON'T want to call delete_breakpoints() here, since | |
1107 | that may write the bp's "shadow contents" (the instruction | |
1108 | value that was overwritten witha TRAP instruction). Since | |
1777feb0 | 1109 | we now have a new a.out, those shadow contents aren't valid. */ |
6c95b8df PA |
1110 | |
1111 | mark_breakpoints_out (); | |
1112 | ||
95e50b27 PA |
1113 | /* The target reports the exec event to the main thread, even if |
1114 | some other thread does the exec, and even if the main thread was | |
1115 | stopped or already gone. We may still have non-leader threads of | |
1116 | the process on our list. E.g., on targets that don't have thread | |
1117 | exit events (like remote); or on native Linux in non-stop mode if | |
1118 | there were only two threads in the inferior and the non-leader | |
1119 | one is the one that execs (and nothing forces an update of the | |
1120 | thread list up to here). When debugging remotely, it's best to | |
1121 | avoid extra traffic, when possible, so avoid syncing the thread | |
1122 | list with the target, and instead go ahead and delete all threads | |
1123 | of the process but one that reported the event. Note this must | |
1124 | be done before calling update_breakpoints_after_exec, as | |
1125 | otherwise clearing the threads' resources would reference stale | |
1126 | thread breakpoints -- it may have been one of these threads that | |
1127 | stepped across the exec. We could just clear their stepping | |
1128 | states, but as long as we're iterating, might as well delete | |
1129 | them. Deleting them now rather than at the next user-visible | |
1130 | stop provides a nicer sequence of events for user and MI | |
1131 | notifications. */ | |
8a06aea7 | 1132 | ALL_THREADS_SAFE (th, tmp) |
d7e15655 | 1133 | if (th->ptid.pid () == pid && th->ptid != ptid) |
00431a78 | 1134 | delete_thread (th); |
95e50b27 PA |
1135 | |
1136 | /* We also need to clear any left over stale state for the | |
1137 | leader/event thread. E.g., if there was any step-resume | |
1138 | breakpoint or similar, it's gone now. We cannot truly | |
1139 | step-to-next statement through an exec(). */ | |
1140 | th = inferior_thread (); | |
8358c15c | 1141 | th->control.step_resume_breakpoint = NULL; |
186c406b | 1142 | th->control.exception_resume_breakpoint = NULL; |
34b7e8a6 | 1143 | th->control.single_step_breakpoints = NULL; |
16c381f0 JK |
1144 | th->control.step_range_start = 0; |
1145 | th->control.step_range_end = 0; | |
c906108c | 1146 | |
95e50b27 PA |
1147 | /* The user may have had the main thread held stopped in the |
1148 | previous image (e.g., schedlock on, or non-stop). Release | |
1149 | it now. */ | |
a75724bc PA |
1150 | th->stop_requested = 0; |
1151 | ||
95e50b27 PA |
1152 | update_breakpoints_after_exec (); |
1153 | ||
1777feb0 | 1154 | /* What is this a.out's name? */ |
f2907e49 | 1155 | process_ptid = ptid_t (pid); |
6c95b8df | 1156 | printf_unfiltered (_("%s is executing new program: %s\n"), |
94585166 | 1157 | target_pid_to_str (process_ptid), |
ecf45d2c | 1158 | exec_file_target); |
c906108c SS |
1159 | |
1160 | /* We've followed the inferior through an exec. Therefore, the | |
1777feb0 | 1161 | inferior has essentially been killed & reborn. */ |
7a292a7a | 1162 | |
c906108c | 1163 | gdb_flush (gdb_stdout); |
6ca15a4b PA |
1164 | |
1165 | breakpoint_init_inferior (inf_execd); | |
e85a822c | 1166 | |
797bc1cb TT |
1167 | gdb::unique_xmalloc_ptr<char> exec_file_host |
1168 | = exec_file_find (exec_file_target, NULL); | |
ff862be4 | 1169 | |
ecf45d2c SL |
1170 | /* If we were unable to map the executable target pathname onto a host |
1171 | pathname, tell the user that. Otherwise GDB's subsequent behavior | |
1172 | is confusing. Maybe it would even be better to stop at this point | |
1173 | so that the user can specify a file manually before continuing. */ | |
1174 | if (exec_file_host == NULL) | |
1175 | warning (_("Could not load symbols for executable %s.\n" | |
1176 | "Do you need \"set sysroot\"?"), | |
1177 | exec_file_target); | |
c906108c | 1178 | |
cce9b6bf PA |
1179 | /* Reset the shared library package. This ensures that we get a |
1180 | shlib event when the child reaches "_start", at which point the | |
1181 | dld will have had a chance to initialize the child. */ | |
1182 | /* Also, loading a symbol file below may trigger symbol lookups, and | |
1183 | we don't want those to be satisfied by the libraries of the | |
1184 | previous incarnation of this process. */ | |
1185 | no_shared_libraries (NULL, 0); | |
1186 | ||
6c95b8df PA |
1187 | if (follow_exec_mode_string == follow_exec_mode_new) |
1188 | { | |
6c95b8df PA |
1189 | /* The user wants to keep the old inferior and program spaces |
1190 | around. Create a new fresh one, and switch to it. */ | |
1191 | ||
17d8546e DB |
1192 | /* Do exit processing for the original inferior before adding |
1193 | the new inferior so we don't have two active inferiors with | |
1194 | the same ptid, which can confuse find_inferior_ptid. */ | |
057302ce | 1195 | exit_inferior_silent (current_inferior ()); |
17d8546e | 1196 | |
94585166 DB |
1197 | inf = add_inferior_with_spaces (); |
1198 | inf->pid = pid; | |
ecf45d2c | 1199 | target_follow_exec (inf, exec_file_target); |
6c95b8df PA |
1200 | |
1201 | set_current_inferior (inf); | |
94585166 | 1202 | set_current_program_space (inf->pspace); |
6c95b8df | 1203 | } |
9107fc8d PA |
1204 | else |
1205 | { | |
1206 | /* The old description may no longer be fit for the new image. | |
1207 | E.g, a 64-bit process exec'ed a 32-bit process. Clear the | |
1208 | old description; we'll read a new one below. No need to do | |
1209 | this on "follow-exec-mode new", as the old inferior stays | |
1210 | around (its description is later cleared/refetched on | |
1211 | restart). */ | |
1212 | target_clear_description (); | |
1213 | } | |
6c95b8df PA |
1214 | |
1215 | gdb_assert (current_program_space == inf->pspace); | |
1216 | ||
ecf45d2c SL |
1217 | /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used |
1218 | because the proper displacement for a PIE (Position Independent | |
1219 | Executable) main symbol file will only be computed by | |
1220 | solib_create_inferior_hook below. breakpoint_re_set would fail | |
1221 | to insert the breakpoints with the zero displacement. */ | |
797bc1cb | 1222 | try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET); |
c906108c | 1223 | |
9107fc8d PA |
1224 | /* If the target can specify a description, read it. Must do this |
1225 | after flipping to the new executable (because the target supplied | |
1226 | description must be compatible with the executable's | |
1227 | architecture, and the old executable may e.g., be 32-bit, while | |
1228 | the new one 64-bit), and before anything involving memory or | |
1229 | registers. */ | |
1230 | target_find_description (); | |
1231 | ||
bf93d7ba SM |
1232 | /* The add_thread call ends up reading registers, so do it after updating the |
1233 | target description. */ | |
1234 | if (follow_exec_mode_string == follow_exec_mode_new) | |
1235 | add_thread (ptid); | |
1236 | ||
268a4a75 | 1237 | solib_create_inferior_hook (0); |
c906108c | 1238 | |
4efc6507 DE |
1239 | jit_inferior_created_hook (); |
1240 | ||
c1e56572 JK |
1241 | breakpoint_re_set (); |
1242 | ||
c906108c SS |
1243 | /* Reinsert all breakpoints. (Those which were symbolic have |
1244 | been reset to the proper address in the new a.out, thanks | |
1777feb0 | 1245 | to symbol_file_command...). */ |
c906108c SS |
1246 | insert_breakpoints (); |
1247 | ||
1248 | /* The next resume of this inferior should bring it to the shlib | |
1249 | startup breakpoints. (If the user had also set bp's on | |
1250 | "main" from the old (parent) process, then they'll auto- | |
1777feb0 | 1251 | matically get reset there in the new process.). */ |
c906108c SS |
1252 | } |
1253 | ||
c2829269 PA |
1254 | /* The queue of threads that need to do a step-over operation to get |
1255 | past e.g., a breakpoint. What technique is used to step over the | |
1256 | breakpoint/watchpoint does not matter -- all threads end up in the | |
1257 | same queue, to maintain rough temporal order of execution, in order | |
1258 | to avoid starvation, otherwise, we could e.g., find ourselves | |
1259 | constantly stepping the same couple threads past their breakpoints | |
1260 | over and over, if the single-step finish fast enough. */ | |
1261 | struct thread_info *step_over_queue_head; | |
1262 | ||
6c4cfb24 PA |
1263 | /* Bit flags indicating what the thread needs to step over. */ |
1264 | ||
8d297bbf | 1265 | enum step_over_what_flag |
6c4cfb24 PA |
1266 | { |
1267 | /* Step over a breakpoint. */ | |
1268 | STEP_OVER_BREAKPOINT = 1, | |
1269 | ||
1270 | /* Step past a non-continuable watchpoint, in order to let the | |
1271 | instruction execute so we can evaluate the watchpoint | |
1272 | expression. */ | |
1273 | STEP_OVER_WATCHPOINT = 2 | |
1274 | }; | |
8d297bbf | 1275 | DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what); |
6c4cfb24 | 1276 | |
963f9c80 | 1277 | /* Info about an instruction that is being stepped over. */ |
31e77af2 PA |
1278 | |
1279 | struct step_over_info | |
1280 | { | |
963f9c80 PA |
1281 | /* If we're stepping past a breakpoint, this is the address space |
1282 | and address of the instruction the breakpoint is set at. We'll | |
1283 | skip inserting all breakpoints here. Valid iff ASPACE is | |
1284 | non-NULL. */ | |
8b86c959 | 1285 | const address_space *aspace; |
31e77af2 | 1286 | CORE_ADDR address; |
963f9c80 PA |
1287 | |
1288 | /* The instruction being stepped over triggers a nonsteppable | |
1289 | watchpoint. If true, we'll skip inserting watchpoints. */ | |
1290 | int nonsteppable_watchpoint_p; | |
21edc42f YQ |
1291 | |
1292 | /* The thread's global number. */ | |
1293 | int thread; | |
31e77af2 PA |
1294 | }; |
1295 | ||
1296 | /* The step-over info of the location that is being stepped over. | |
1297 | ||
1298 | Note that with async/breakpoint always-inserted mode, a user might | |
1299 | set a new breakpoint/watchpoint/etc. exactly while a breakpoint is | |
1300 | being stepped over. As setting a new breakpoint inserts all | |
1301 | breakpoints, we need to make sure the breakpoint being stepped over | |
1302 | isn't inserted then. We do that by only clearing the step-over | |
1303 | info when the step-over is actually finished (or aborted). | |
1304 | ||
1305 | Presently GDB can only step over one breakpoint at any given time. | |
1306 | Given threads that can't run code in the same address space as the | |
1307 | breakpoint's can't really miss the breakpoint, GDB could be taught | |
1308 | to step-over at most one breakpoint per address space (so this info | |
1309 | could move to the address space object if/when GDB is extended). | |
1310 | The set of breakpoints being stepped over will normally be much | |
1311 | smaller than the set of all breakpoints, so a flag in the | |
1312 | breakpoint location structure would be wasteful. A separate list | |
1313 | also saves complexity and run-time, as otherwise we'd have to go | |
1314 | through all breakpoint locations clearing their flag whenever we | |
1315 | start a new sequence. Similar considerations weigh against storing | |
1316 | this info in the thread object. Plus, not all step overs actually | |
1317 | have breakpoint locations -- e.g., stepping past a single-step | |
1318 | breakpoint, or stepping to complete a non-continuable | |
1319 | watchpoint. */ | |
1320 | static struct step_over_info step_over_info; | |
1321 | ||
1322 | /* Record the address of the breakpoint/instruction we're currently | |
ce0db137 DE |
1323 | stepping over. |
1324 | N.B. We record the aspace and address now, instead of say just the thread, | |
1325 | because when we need the info later the thread may be running. */ | |
31e77af2 PA |
1326 | |
1327 | static void | |
8b86c959 | 1328 | set_step_over_info (const address_space *aspace, CORE_ADDR address, |
21edc42f YQ |
1329 | int nonsteppable_watchpoint_p, |
1330 | int thread) | |
31e77af2 PA |
1331 | { |
1332 | step_over_info.aspace = aspace; | |
1333 | step_over_info.address = address; | |
963f9c80 | 1334 | step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p; |
21edc42f | 1335 | step_over_info.thread = thread; |
31e77af2 PA |
1336 | } |
1337 | ||
1338 | /* Called when we're not longer stepping over a breakpoint / an | |
1339 | instruction, so all breakpoints are free to be (re)inserted. */ | |
1340 | ||
1341 | static void | |
1342 | clear_step_over_info (void) | |
1343 | { | |
372316f1 PA |
1344 | if (debug_infrun) |
1345 | fprintf_unfiltered (gdb_stdlog, | |
1346 | "infrun: clear_step_over_info\n"); | |
31e77af2 PA |
1347 | step_over_info.aspace = NULL; |
1348 | step_over_info.address = 0; | |
963f9c80 | 1349 | step_over_info.nonsteppable_watchpoint_p = 0; |
21edc42f | 1350 | step_over_info.thread = -1; |
31e77af2 PA |
1351 | } |
1352 | ||
7f89fd65 | 1353 | /* See infrun.h. */ |
31e77af2 PA |
1354 | |
1355 | int | |
1356 | stepping_past_instruction_at (struct address_space *aspace, | |
1357 | CORE_ADDR address) | |
1358 | { | |
1359 | return (step_over_info.aspace != NULL | |
1360 | && breakpoint_address_match (aspace, address, | |
1361 | step_over_info.aspace, | |
1362 | step_over_info.address)); | |
1363 | } | |
1364 | ||
963f9c80 PA |
1365 | /* See infrun.h. */ |
1366 | ||
21edc42f YQ |
1367 | int |
1368 | thread_is_stepping_over_breakpoint (int thread) | |
1369 | { | |
1370 | return (step_over_info.thread != -1 | |
1371 | && thread == step_over_info.thread); | |
1372 | } | |
1373 | ||
1374 | /* See infrun.h. */ | |
1375 | ||
963f9c80 PA |
1376 | int |
1377 | stepping_past_nonsteppable_watchpoint (void) | |
1378 | { | |
1379 | return step_over_info.nonsteppable_watchpoint_p; | |
1380 | } | |
1381 | ||
6cc83d2a PA |
1382 | /* Returns true if step-over info is valid. */ |
1383 | ||
1384 | static int | |
1385 | step_over_info_valid_p (void) | |
1386 | { | |
963f9c80 PA |
1387 | return (step_over_info.aspace != NULL |
1388 | || stepping_past_nonsteppable_watchpoint ()); | |
6cc83d2a PA |
1389 | } |
1390 | ||
c906108c | 1391 | \f |
237fc4c9 PA |
1392 | /* Displaced stepping. */ |
1393 | ||
1394 | /* In non-stop debugging mode, we must take special care to manage | |
1395 | breakpoints properly; in particular, the traditional strategy for | |
1396 | stepping a thread past a breakpoint it has hit is unsuitable. | |
1397 | 'Displaced stepping' is a tactic for stepping one thread past a | |
1398 | breakpoint it has hit while ensuring that other threads running | |
1399 | concurrently will hit the breakpoint as they should. | |
1400 | ||
1401 | The traditional way to step a thread T off a breakpoint in a | |
1402 | multi-threaded program in all-stop mode is as follows: | |
1403 | ||
1404 | a0) Initially, all threads are stopped, and breakpoints are not | |
1405 | inserted. | |
1406 | a1) We single-step T, leaving breakpoints uninserted. | |
1407 | a2) We insert breakpoints, and resume all threads. | |
1408 | ||
1409 | In non-stop debugging, however, this strategy is unsuitable: we | |
1410 | don't want to have to stop all threads in the system in order to | |
1411 | continue or step T past a breakpoint. Instead, we use displaced | |
1412 | stepping: | |
1413 | ||
1414 | n0) Initially, T is stopped, other threads are running, and | |
1415 | breakpoints are inserted. | |
1416 | n1) We copy the instruction "under" the breakpoint to a separate | |
1417 | location, outside the main code stream, making any adjustments | |
1418 | to the instruction, register, and memory state as directed by | |
1419 | T's architecture. | |
1420 | n2) We single-step T over the instruction at its new location. | |
1421 | n3) We adjust the resulting register and memory state as directed | |
1422 | by T's architecture. This includes resetting T's PC to point | |
1423 | back into the main instruction stream. | |
1424 | n4) We resume T. | |
1425 | ||
1426 | This approach depends on the following gdbarch methods: | |
1427 | ||
1428 | - gdbarch_max_insn_length and gdbarch_displaced_step_location | |
1429 | indicate where to copy the instruction, and how much space must | |
1430 | be reserved there. We use these in step n1. | |
1431 | ||
1432 | - gdbarch_displaced_step_copy_insn copies a instruction to a new | |
1433 | address, and makes any necessary adjustments to the instruction, | |
1434 | register contents, and memory. We use this in step n1. | |
1435 | ||
1436 | - gdbarch_displaced_step_fixup adjusts registers and memory after | |
1437 | we have successfuly single-stepped the instruction, to yield the | |
1438 | same effect the instruction would have had if we had executed it | |
1439 | at its original address. We use this in step n3. | |
1440 | ||
237fc4c9 PA |
1441 | The gdbarch_displaced_step_copy_insn and |
1442 | gdbarch_displaced_step_fixup functions must be written so that | |
1443 | copying an instruction with gdbarch_displaced_step_copy_insn, | |
1444 | single-stepping across the copied instruction, and then applying | |
1445 | gdbarch_displaced_insn_fixup should have the same effects on the | |
1446 | thread's memory and registers as stepping the instruction in place | |
1447 | would have. Exactly which responsibilities fall to the copy and | |
1448 | which fall to the fixup is up to the author of those functions. | |
1449 | ||
1450 | See the comments in gdbarch.sh for details. | |
1451 | ||
1452 | Note that displaced stepping and software single-step cannot | |
1453 | currently be used in combination, although with some care I think | |
1454 | they could be made to. Software single-step works by placing | |
1455 | breakpoints on all possible subsequent instructions; if the | |
1456 | displaced instruction is a PC-relative jump, those breakpoints | |
1457 | could fall in very strange places --- on pages that aren't | |
1458 | executable, or at addresses that are not proper instruction | |
1459 | boundaries. (We do generally let other threads run while we wait | |
1460 | to hit the software single-step breakpoint, and they might | |
1461 | encounter such a corrupted instruction.) One way to work around | |
1462 | this would be to have gdbarch_displaced_step_copy_insn fully | |
1463 | simulate the effect of PC-relative instructions (and return NULL) | |
1464 | on architectures that use software single-stepping. | |
1465 | ||
1466 | In non-stop mode, we can have independent and simultaneous step | |
1467 | requests, so more than one thread may need to simultaneously step | |
1468 | over a breakpoint. The current implementation assumes there is | |
1469 | only one scratch space per process. In this case, we have to | |
1470 | serialize access to the scratch space. If thread A wants to step | |
1471 | over a breakpoint, but we are currently waiting for some other | |
1472 | thread to complete a displaced step, we leave thread A stopped and | |
1473 | place it in the displaced_step_request_queue. Whenever a displaced | |
1474 | step finishes, we pick the next thread in the queue and start a new | |
1475 | displaced step operation on it. See displaced_step_prepare and | |
1476 | displaced_step_fixup for details. */ | |
1477 | ||
cfba9872 SM |
1478 | /* Default destructor for displaced_step_closure. */ |
1479 | ||
1480 | displaced_step_closure::~displaced_step_closure () = default; | |
1481 | ||
fc1cf338 PA |
1482 | /* Per-inferior displaced stepping state. */ |
1483 | struct displaced_step_inferior_state | |
1484 | { | |
1485 | /* Pointer to next in linked list. */ | |
1486 | struct displaced_step_inferior_state *next; | |
1487 | ||
1488 | /* The process this displaced step state refers to. */ | |
00431a78 | 1489 | inferior *inf; |
fc1cf338 | 1490 | |
3fc8eb30 PA |
1491 | /* True if preparing a displaced step ever failed. If so, we won't |
1492 | try displaced stepping for this inferior again. */ | |
1493 | int failed_before; | |
1494 | ||
00431a78 | 1495 | /* If this is not nullptr, this is the thread carrying out a |
fc1cf338 PA |
1496 | displaced single-step in process PID. This thread's state will |
1497 | require fixing up once it has completed its step. */ | |
00431a78 | 1498 | thread_info *step_thread; |
fc1cf338 PA |
1499 | |
1500 | /* The architecture the thread had when we stepped it. */ | |
1501 | struct gdbarch *step_gdbarch; | |
1502 | ||
1503 | /* The closure provided gdbarch_displaced_step_copy_insn, to be used | |
1504 | for post-step cleanup. */ | |
1505 | struct displaced_step_closure *step_closure; | |
1506 | ||
1507 | /* The address of the original instruction, and the copy we | |
1508 | made. */ | |
1509 | CORE_ADDR step_original, step_copy; | |
1510 | ||
1511 | /* Saved contents of copy area. */ | |
1512 | gdb_byte *step_saved_copy; | |
1513 | }; | |
1514 | ||
1515 | /* The list of states of processes involved in displaced stepping | |
1516 | presently. */ | |
1517 | static struct displaced_step_inferior_state *displaced_step_inferior_states; | |
1518 | ||
1519 | /* Get the displaced stepping state of process PID. */ | |
1520 | ||
1521 | static struct displaced_step_inferior_state * | |
00431a78 | 1522 | get_displaced_stepping_state (inferior *inf) |
fc1cf338 PA |
1523 | { |
1524 | struct displaced_step_inferior_state *state; | |
1525 | ||
1526 | for (state = displaced_step_inferior_states; | |
1527 | state != NULL; | |
1528 | state = state->next) | |
00431a78 | 1529 | if (state->inf == inf) |
fc1cf338 PA |
1530 | return state; |
1531 | ||
1532 | return NULL; | |
1533 | } | |
1534 | ||
372316f1 PA |
1535 | /* Returns true if any inferior has a thread doing a displaced |
1536 | step. */ | |
1537 | ||
1538 | static int | |
1539 | displaced_step_in_progress_any_inferior (void) | |
1540 | { | |
1541 | struct displaced_step_inferior_state *state; | |
1542 | ||
1543 | for (state = displaced_step_inferior_states; | |
1544 | state != NULL; | |
1545 | state = state->next) | |
00431a78 | 1546 | if (state->step_thread != nullptr) |
372316f1 PA |
1547 | return 1; |
1548 | ||
1549 | return 0; | |
1550 | } | |
1551 | ||
c0987663 YQ |
1552 | /* Return true if thread represented by PTID is doing a displaced |
1553 | step. */ | |
1554 | ||
1555 | static int | |
00431a78 | 1556 | displaced_step_in_progress_thread (thread_info *thread) |
c0987663 YQ |
1557 | { |
1558 | struct displaced_step_inferior_state *displaced; | |
1559 | ||
00431a78 | 1560 | gdb_assert (thread != NULL); |
c0987663 | 1561 | |
00431a78 | 1562 | displaced = get_displaced_stepping_state (thread->inf); |
c0987663 | 1563 | |
00431a78 | 1564 | return (displaced != NULL && displaced->step_thread == thread); |
c0987663 YQ |
1565 | } |
1566 | ||
8f572e5c PA |
1567 | /* Return true if process PID has a thread doing a displaced step. */ |
1568 | ||
1569 | static int | |
00431a78 | 1570 | displaced_step_in_progress (inferior *inf) |
8f572e5c PA |
1571 | { |
1572 | struct displaced_step_inferior_state *displaced; | |
1573 | ||
00431a78 PA |
1574 | displaced = get_displaced_stepping_state (inf); |
1575 | if (displaced != NULL && displaced->step_thread != nullptr) | |
8f572e5c PA |
1576 | return 1; |
1577 | ||
1578 | return 0; | |
1579 | } | |
1580 | ||
fc1cf338 PA |
1581 | /* Add a new displaced stepping state for process PID to the displaced |
1582 | stepping state list, or return a pointer to an already existing | |
1583 | entry, if it already exists. Never returns NULL. */ | |
1584 | ||
1585 | static struct displaced_step_inferior_state * | |
00431a78 | 1586 | add_displaced_stepping_state (inferior *inf) |
fc1cf338 PA |
1587 | { |
1588 | struct displaced_step_inferior_state *state; | |
1589 | ||
1590 | for (state = displaced_step_inferior_states; | |
1591 | state != NULL; | |
1592 | state = state->next) | |
00431a78 | 1593 | if (state->inf == inf) |
fc1cf338 | 1594 | return state; |
237fc4c9 | 1595 | |
8d749320 | 1596 | state = XCNEW (struct displaced_step_inferior_state); |
00431a78 | 1597 | state->inf = inf; |
fc1cf338 PA |
1598 | state->next = displaced_step_inferior_states; |
1599 | displaced_step_inferior_states = state; | |
237fc4c9 | 1600 | |
fc1cf338 PA |
1601 | return state; |
1602 | } | |
1603 | ||
a42244db YQ |
1604 | /* If inferior is in displaced stepping, and ADDR equals to starting address |
1605 | of copy area, return corresponding displaced_step_closure. Otherwise, | |
1606 | return NULL. */ | |
1607 | ||
1608 | struct displaced_step_closure* | |
1609 | get_displaced_step_closure_by_addr (CORE_ADDR addr) | |
1610 | { | |
1611 | struct displaced_step_inferior_state *displaced | |
00431a78 | 1612 | = get_displaced_stepping_state (current_inferior ()); |
a42244db YQ |
1613 | |
1614 | /* If checking the mode of displaced instruction in copy area. */ | |
00431a78 PA |
1615 | if (displaced != NULL |
1616 | && displaced->step_thread != nullptr | |
1617 | && displaced->step_copy == addr) | |
a42244db YQ |
1618 | return displaced->step_closure; |
1619 | ||
1620 | return NULL; | |
1621 | } | |
1622 | ||
fc1cf338 | 1623 | /* Remove the displaced stepping state of process PID. */ |
237fc4c9 | 1624 | |
fc1cf338 | 1625 | static void |
00431a78 | 1626 | remove_displaced_stepping_state (inferior *inf) |
fc1cf338 PA |
1627 | { |
1628 | struct displaced_step_inferior_state *it, **prev_next_p; | |
237fc4c9 | 1629 | |
00431a78 | 1630 | gdb_assert (inf != nullptr); |
fc1cf338 PA |
1631 | |
1632 | it = displaced_step_inferior_states; | |
1633 | prev_next_p = &displaced_step_inferior_states; | |
1634 | while (it) | |
1635 | { | |
00431a78 | 1636 | if (it->inf == inf) |
fc1cf338 PA |
1637 | { |
1638 | *prev_next_p = it->next; | |
1639 | xfree (it); | |
1640 | return; | |
1641 | } | |
1642 | ||
1643 | prev_next_p = &it->next; | |
1644 | it = *prev_next_p; | |
1645 | } | |
1646 | } | |
1647 | ||
1648 | static void | |
1649 | infrun_inferior_exit (struct inferior *inf) | |
1650 | { | |
00431a78 | 1651 | remove_displaced_stepping_state (inf); |
fc1cf338 | 1652 | } |
237fc4c9 | 1653 | |
fff08868 HZ |
1654 | /* If ON, and the architecture supports it, GDB will use displaced |
1655 | stepping to step over breakpoints. If OFF, or if the architecture | |
1656 | doesn't support it, GDB will instead use the traditional | |
1657 | hold-and-step approach. If AUTO (which is the default), GDB will | |
1658 | decide which technique to use to step over breakpoints depending on | |
1659 | which of all-stop or non-stop mode is active --- displaced stepping | |
1660 | in non-stop mode; hold-and-step in all-stop mode. */ | |
1661 | ||
72d0e2c5 | 1662 | static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO; |
fff08868 | 1663 | |
237fc4c9 PA |
1664 | static void |
1665 | show_can_use_displaced_stepping (struct ui_file *file, int from_tty, | |
1666 | struct cmd_list_element *c, | |
1667 | const char *value) | |
1668 | { | |
72d0e2c5 | 1669 | if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO) |
3e43a32a MS |
1670 | fprintf_filtered (file, |
1671 | _("Debugger's willingness to use displaced stepping " | |
1672 | "to step over breakpoints is %s (currently %s).\n"), | |
fbea99ea | 1673 | value, target_is_non_stop_p () ? "on" : "off"); |
fff08868 | 1674 | else |
3e43a32a MS |
1675 | fprintf_filtered (file, |
1676 | _("Debugger's willingness to use displaced stepping " | |
1677 | "to step over breakpoints is %s.\n"), value); | |
237fc4c9 PA |
1678 | } |
1679 | ||
fff08868 | 1680 | /* Return non-zero if displaced stepping can/should be used to step |
3fc8eb30 | 1681 | over breakpoints of thread TP. */ |
fff08868 | 1682 | |
237fc4c9 | 1683 | static int |
3fc8eb30 | 1684 | use_displaced_stepping (struct thread_info *tp) |
237fc4c9 | 1685 | { |
00431a78 | 1686 | struct regcache *regcache = get_thread_regcache (tp); |
ac7936df | 1687 | struct gdbarch *gdbarch = regcache->arch (); |
3fc8eb30 PA |
1688 | struct displaced_step_inferior_state *displaced_state; |
1689 | ||
00431a78 | 1690 | displaced_state = get_displaced_stepping_state (tp->inf); |
3fc8eb30 | 1691 | |
fbea99ea PA |
1692 | return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO |
1693 | && target_is_non_stop_p ()) | |
72d0e2c5 | 1694 | || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE) |
96429cc8 | 1695 | && gdbarch_displaced_step_copy_insn_p (gdbarch) |
3fc8eb30 PA |
1696 | && find_record_target () == NULL |
1697 | && (displaced_state == NULL | |
1698 | || !displaced_state->failed_before)); | |
237fc4c9 PA |
1699 | } |
1700 | ||
1701 | /* Clean out any stray displaced stepping state. */ | |
1702 | static void | |
fc1cf338 | 1703 | displaced_step_clear (struct displaced_step_inferior_state *displaced) |
237fc4c9 PA |
1704 | { |
1705 | /* Indicate that there is no cleanup pending. */ | |
00431a78 | 1706 | displaced->step_thread = nullptr; |
237fc4c9 | 1707 | |
cfba9872 | 1708 | delete displaced->step_closure; |
6d45d4b4 | 1709 | displaced->step_closure = NULL; |
237fc4c9 PA |
1710 | } |
1711 | ||
1712 | static void | |
fc1cf338 | 1713 | displaced_step_clear_cleanup (void *arg) |
237fc4c9 | 1714 | { |
9a3c8263 SM |
1715 | struct displaced_step_inferior_state *state |
1716 | = (struct displaced_step_inferior_state *) arg; | |
fc1cf338 PA |
1717 | |
1718 | displaced_step_clear (state); | |
237fc4c9 PA |
1719 | } |
1720 | ||
1721 | /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */ | |
1722 | void | |
1723 | displaced_step_dump_bytes (struct ui_file *file, | |
1724 | const gdb_byte *buf, | |
1725 | size_t len) | |
1726 | { | |
1727 | int i; | |
1728 | ||
1729 | for (i = 0; i < len; i++) | |
1730 | fprintf_unfiltered (file, "%02x ", buf[i]); | |
1731 | fputs_unfiltered ("\n", file); | |
1732 | } | |
1733 | ||
1734 | /* Prepare to single-step, using displaced stepping. | |
1735 | ||
1736 | Note that we cannot use displaced stepping when we have a signal to | |
1737 | deliver. If we have a signal to deliver and an instruction to step | |
1738 | over, then after the step, there will be no indication from the | |
1739 | target whether the thread entered a signal handler or ignored the | |
1740 | signal and stepped over the instruction successfully --- both cases | |
1741 | result in a simple SIGTRAP. In the first case we mustn't do a | |
1742 | fixup, and in the second case we must --- but we can't tell which. | |
1743 | Comments in the code for 'random signals' in handle_inferior_event | |
1744 | explain how we handle this case instead. | |
1745 | ||
1746 | Returns 1 if preparing was successful -- this thread is going to be | |
7f03bd92 PA |
1747 | stepped now; 0 if displaced stepping this thread got queued; or -1 |
1748 | if this instruction can't be displaced stepped. */ | |
1749 | ||
237fc4c9 | 1750 | static int |
00431a78 | 1751 | displaced_step_prepare_throw (thread_info *tp) |
237fc4c9 | 1752 | { |
2989a365 | 1753 | struct cleanup *ignore_cleanups; |
00431a78 | 1754 | regcache *regcache = get_thread_regcache (tp); |
ac7936df | 1755 | struct gdbarch *gdbarch = regcache->arch (); |
8b86c959 | 1756 | const address_space *aspace = regcache->aspace (); |
237fc4c9 PA |
1757 | CORE_ADDR original, copy; |
1758 | ULONGEST len; | |
1759 | struct displaced_step_closure *closure; | |
fc1cf338 | 1760 | struct displaced_step_inferior_state *displaced; |
9e529e1d | 1761 | int status; |
237fc4c9 PA |
1762 | |
1763 | /* We should never reach this function if the architecture does not | |
1764 | support displaced stepping. */ | |
1765 | gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch)); | |
1766 | ||
c2829269 PA |
1767 | /* Nor if the thread isn't meant to step over a breakpoint. */ |
1768 | gdb_assert (tp->control.trap_expected); | |
1769 | ||
c1e36e3e PA |
1770 | /* Disable range stepping while executing in the scratch pad. We |
1771 | want a single-step even if executing the displaced instruction in | |
1772 | the scratch buffer lands within the stepping range (e.g., a | |
1773 | jump/branch). */ | |
1774 | tp->control.may_range_step = 0; | |
1775 | ||
fc1cf338 PA |
1776 | /* We have to displaced step one thread at a time, as we only have |
1777 | access to a single scratch space per inferior. */ | |
237fc4c9 | 1778 | |
00431a78 | 1779 | displaced = add_displaced_stepping_state (tp->inf); |
fc1cf338 | 1780 | |
00431a78 | 1781 | if (displaced->step_thread != nullptr) |
237fc4c9 PA |
1782 | { |
1783 | /* Already waiting for a displaced step to finish. Defer this | |
1784 | request and place in queue. */ | |
237fc4c9 PA |
1785 | |
1786 | if (debug_displaced) | |
1787 | fprintf_unfiltered (gdb_stdlog, | |
c2829269 | 1788 | "displaced: deferring step of %s\n", |
00431a78 | 1789 | target_pid_to_str (tp->ptid)); |
237fc4c9 | 1790 | |
c2829269 | 1791 | thread_step_over_chain_enqueue (tp); |
237fc4c9 PA |
1792 | return 0; |
1793 | } | |
1794 | else | |
1795 | { | |
1796 | if (debug_displaced) | |
1797 | fprintf_unfiltered (gdb_stdlog, | |
1798 | "displaced: stepping %s now\n", | |
00431a78 | 1799 | target_pid_to_str (tp->ptid)); |
237fc4c9 PA |
1800 | } |
1801 | ||
fc1cf338 | 1802 | displaced_step_clear (displaced); |
237fc4c9 | 1803 | |
00431a78 PA |
1804 | scoped_restore_current_thread restore_thread; |
1805 | ||
1806 | switch_to_thread (tp); | |
ad53cd71 | 1807 | |
515630c5 | 1808 | original = regcache_read_pc (regcache); |
237fc4c9 PA |
1809 | |
1810 | copy = gdbarch_displaced_step_location (gdbarch); | |
1811 | len = gdbarch_max_insn_length (gdbarch); | |
1812 | ||
d35ae833 PA |
1813 | if (breakpoint_in_range_p (aspace, copy, len)) |
1814 | { | |
1815 | /* There's a breakpoint set in the scratch pad location range | |
1816 | (which is usually around the entry point). We'd either | |
1817 | install it before resuming, which would overwrite/corrupt the | |
1818 | scratch pad, or if it was already inserted, this displaced | |
1819 | step would overwrite it. The latter is OK in the sense that | |
1820 | we already assume that no thread is going to execute the code | |
1821 | in the scratch pad range (after initial startup) anyway, but | |
1822 | the former is unacceptable. Simply punt and fallback to | |
1823 | stepping over this breakpoint in-line. */ | |
1824 | if (debug_displaced) | |
1825 | { | |
1826 | fprintf_unfiltered (gdb_stdlog, | |
1827 | "displaced: breakpoint set in scratch pad. " | |
1828 | "Stepping over breakpoint in-line instead.\n"); | |
1829 | } | |
1830 | ||
d35ae833 PA |
1831 | return -1; |
1832 | } | |
1833 | ||
237fc4c9 | 1834 | /* Save the original contents of the copy area. */ |
224c3ddb | 1835 | displaced->step_saved_copy = (gdb_byte *) xmalloc (len); |
ad53cd71 | 1836 | ignore_cleanups = make_cleanup (free_current_contents, |
fc1cf338 | 1837 | &displaced->step_saved_copy); |
9e529e1d JK |
1838 | status = target_read_memory (copy, displaced->step_saved_copy, len); |
1839 | if (status != 0) | |
1840 | throw_error (MEMORY_ERROR, | |
1841 | _("Error accessing memory address %s (%s) for " | |
1842 | "displaced-stepping scratch space."), | |
1843 | paddress (gdbarch, copy), safe_strerror (status)); | |
237fc4c9 PA |
1844 | if (debug_displaced) |
1845 | { | |
5af949e3 UW |
1846 | fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ", |
1847 | paddress (gdbarch, copy)); | |
fc1cf338 PA |
1848 | displaced_step_dump_bytes (gdb_stdlog, |
1849 | displaced->step_saved_copy, | |
1850 | len); | |
237fc4c9 PA |
1851 | }; |
1852 | ||
1853 | closure = gdbarch_displaced_step_copy_insn (gdbarch, | |
ad53cd71 | 1854 | original, copy, regcache); |
7f03bd92 PA |
1855 | if (closure == NULL) |
1856 | { | |
1857 | /* The architecture doesn't know how or want to displaced step | |
1858 | this instruction or instruction sequence. Fallback to | |
1859 | stepping over the breakpoint in-line. */ | |
2989a365 | 1860 | do_cleanups (ignore_cleanups); |
7f03bd92 PA |
1861 | return -1; |
1862 | } | |
237fc4c9 | 1863 | |
9f5a595d UW |
1864 | /* Save the information we need to fix things up if the step |
1865 | succeeds. */ | |
00431a78 | 1866 | displaced->step_thread = tp; |
fc1cf338 PA |
1867 | displaced->step_gdbarch = gdbarch; |
1868 | displaced->step_closure = closure; | |
1869 | displaced->step_original = original; | |
1870 | displaced->step_copy = copy; | |
9f5a595d | 1871 | |
fc1cf338 | 1872 | make_cleanup (displaced_step_clear_cleanup, displaced); |
237fc4c9 PA |
1873 | |
1874 | /* Resume execution at the copy. */ | |
515630c5 | 1875 | regcache_write_pc (regcache, copy); |
237fc4c9 | 1876 | |
ad53cd71 PA |
1877 | discard_cleanups (ignore_cleanups); |
1878 | ||
237fc4c9 | 1879 | if (debug_displaced) |
5af949e3 UW |
1880 | fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n", |
1881 | paddress (gdbarch, copy)); | |
237fc4c9 | 1882 | |
237fc4c9 PA |
1883 | return 1; |
1884 | } | |
1885 | ||
3fc8eb30 PA |
1886 | /* Wrapper for displaced_step_prepare_throw that disabled further |
1887 | attempts at displaced stepping if we get a memory error. */ | |
1888 | ||
1889 | static int | |
00431a78 | 1890 | displaced_step_prepare (thread_info *thread) |
3fc8eb30 PA |
1891 | { |
1892 | int prepared = -1; | |
1893 | ||
1894 | TRY | |
1895 | { | |
00431a78 | 1896 | prepared = displaced_step_prepare_throw (thread); |
3fc8eb30 PA |
1897 | } |
1898 | CATCH (ex, RETURN_MASK_ERROR) | |
1899 | { | |
1900 | struct displaced_step_inferior_state *displaced_state; | |
1901 | ||
16b41842 PA |
1902 | if (ex.error != MEMORY_ERROR |
1903 | && ex.error != NOT_SUPPORTED_ERROR) | |
3fc8eb30 PA |
1904 | throw_exception (ex); |
1905 | ||
1906 | if (debug_infrun) | |
1907 | { | |
1908 | fprintf_unfiltered (gdb_stdlog, | |
1909 | "infrun: disabling displaced stepping: %s\n", | |
1910 | ex.message); | |
1911 | } | |
1912 | ||
1913 | /* Be verbose if "set displaced-stepping" is "on", silent if | |
1914 | "auto". */ | |
1915 | if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE) | |
1916 | { | |
fd7dcb94 | 1917 | warning (_("disabling displaced stepping: %s"), |
3fc8eb30 PA |
1918 | ex.message); |
1919 | } | |
1920 | ||
1921 | /* Disable further displaced stepping attempts. */ | |
1922 | displaced_state | |
00431a78 | 1923 | = get_displaced_stepping_state (thread->inf); |
3fc8eb30 PA |
1924 | displaced_state->failed_before = 1; |
1925 | } | |
1926 | END_CATCH | |
1927 | ||
1928 | return prepared; | |
1929 | } | |
1930 | ||
237fc4c9 | 1931 | static void |
3e43a32a MS |
1932 | write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, |
1933 | const gdb_byte *myaddr, int len) | |
237fc4c9 | 1934 | { |
2989a365 | 1935 | scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); |
abbb1732 | 1936 | |
237fc4c9 PA |
1937 | inferior_ptid = ptid; |
1938 | write_memory (memaddr, myaddr, len); | |
237fc4c9 PA |
1939 | } |
1940 | ||
e2d96639 YQ |
1941 | /* Restore the contents of the copy area for thread PTID. */ |
1942 | ||
1943 | static void | |
1944 | displaced_step_restore (struct displaced_step_inferior_state *displaced, | |
1945 | ptid_t ptid) | |
1946 | { | |
1947 | ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch); | |
1948 | ||
1949 | write_memory_ptid (ptid, displaced->step_copy, | |
1950 | displaced->step_saved_copy, len); | |
1951 | if (debug_displaced) | |
1952 | fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n", | |
1953 | target_pid_to_str (ptid), | |
1954 | paddress (displaced->step_gdbarch, | |
1955 | displaced->step_copy)); | |
1956 | } | |
1957 | ||
372316f1 PA |
1958 | /* If we displaced stepped an instruction successfully, adjust |
1959 | registers and memory to yield the same effect the instruction would | |
1960 | have had if we had executed it at its original address, and return | |
1961 | 1. If the instruction didn't complete, relocate the PC and return | |
1962 | -1. If the thread wasn't displaced stepping, return 0. */ | |
1963 | ||
1964 | static int | |
00431a78 | 1965 | displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal) |
237fc4c9 PA |
1966 | { |
1967 | struct cleanup *old_cleanups; | |
fc1cf338 | 1968 | struct displaced_step_inferior_state *displaced |
00431a78 | 1969 | = get_displaced_stepping_state (event_thread->inf); |
372316f1 | 1970 | int ret; |
fc1cf338 PA |
1971 | |
1972 | /* Was any thread of this process doing a displaced step? */ | |
1973 | if (displaced == NULL) | |
372316f1 | 1974 | return 0; |
237fc4c9 | 1975 | |
00431a78 PA |
1976 | /* Was this event for the thread we displaced? */ |
1977 | if (displaced->step_thread != event_thread) | |
372316f1 | 1978 | return 0; |
237fc4c9 | 1979 | |
fc1cf338 | 1980 | old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced); |
237fc4c9 | 1981 | |
00431a78 | 1982 | displaced_step_restore (displaced, displaced->step_thread->ptid); |
237fc4c9 | 1983 | |
cb71640d PA |
1984 | /* Fixup may need to read memory/registers. Switch to the thread |
1985 | that we're fixing up. Also, target_stopped_by_watchpoint checks | |
1986 | the current thread. */ | |
00431a78 | 1987 | switch_to_thread (event_thread); |
cb71640d | 1988 | |
237fc4c9 | 1989 | /* Did the instruction complete successfully? */ |
cb71640d PA |
1990 | if (signal == GDB_SIGNAL_TRAP |
1991 | && !(target_stopped_by_watchpoint () | |
1992 | && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch) | |
1993 | || target_have_steppable_watchpoint))) | |
237fc4c9 PA |
1994 | { |
1995 | /* Fix up the resulting state. */ | |
fc1cf338 PA |
1996 | gdbarch_displaced_step_fixup (displaced->step_gdbarch, |
1997 | displaced->step_closure, | |
1998 | displaced->step_original, | |
1999 | displaced->step_copy, | |
00431a78 | 2000 | get_thread_regcache (displaced->step_thread)); |
372316f1 | 2001 | ret = 1; |
237fc4c9 PA |
2002 | } |
2003 | else | |
2004 | { | |
2005 | /* Since the instruction didn't complete, all we can do is | |
2006 | relocate the PC. */ | |
00431a78 | 2007 | struct regcache *regcache = get_thread_regcache (event_thread); |
515630c5 | 2008 | CORE_ADDR pc = regcache_read_pc (regcache); |
abbb1732 | 2009 | |
fc1cf338 | 2010 | pc = displaced->step_original + (pc - displaced->step_copy); |
515630c5 | 2011 | regcache_write_pc (regcache, pc); |
372316f1 | 2012 | ret = -1; |
237fc4c9 PA |
2013 | } |
2014 | ||
2015 | do_cleanups (old_cleanups); | |
2016 | ||
00431a78 | 2017 | displaced->step_thread = nullptr; |
372316f1 PA |
2018 | |
2019 | return ret; | |
c2829269 | 2020 | } |
1c5cfe86 | 2021 | |
4d9d9d04 PA |
2022 | /* Data to be passed around while handling an event. This data is |
2023 | discarded between events. */ | |
2024 | struct execution_control_state | |
2025 | { | |
2026 | ptid_t ptid; | |
2027 | /* The thread that got the event, if this was a thread event; NULL | |
2028 | otherwise. */ | |
2029 | struct thread_info *event_thread; | |
2030 | ||
2031 | struct target_waitstatus ws; | |
2032 | int stop_func_filled_in; | |
2033 | CORE_ADDR stop_func_start; | |
2034 | CORE_ADDR stop_func_end; | |
2035 | const char *stop_func_name; | |
2036 | int wait_some_more; | |
2037 | ||
2038 | /* True if the event thread hit the single-step breakpoint of | |
2039 | another thread. Thus the event doesn't cause a stop, the thread | |
2040 | needs to be single-stepped past the single-step breakpoint before | |
2041 | we can switch back to the original stepping thread. */ | |
2042 | int hit_singlestep_breakpoint; | |
2043 | }; | |
2044 | ||
2045 | /* Clear ECS and set it to point at TP. */ | |
c2829269 PA |
2046 | |
2047 | static void | |
4d9d9d04 PA |
2048 | reset_ecs (struct execution_control_state *ecs, struct thread_info *tp) |
2049 | { | |
2050 | memset (ecs, 0, sizeof (*ecs)); | |
2051 | ecs->event_thread = tp; | |
2052 | ecs->ptid = tp->ptid; | |
2053 | } | |
2054 | ||
2055 | static void keep_going_pass_signal (struct execution_control_state *ecs); | |
2056 | static void prepare_to_wait (struct execution_control_state *ecs); | |
2ac7589c | 2057 | static int keep_going_stepped_thread (struct thread_info *tp); |
8d297bbf | 2058 | static step_over_what thread_still_needs_step_over (struct thread_info *tp); |
4d9d9d04 PA |
2059 | |
2060 | /* Are there any pending step-over requests? If so, run all we can | |
2061 | now and return true. Otherwise, return false. */ | |
2062 | ||
2063 | static int | |
c2829269 PA |
2064 | start_step_over (void) |
2065 | { | |
2066 | struct thread_info *tp, *next; | |
2067 | ||
372316f1 PA |
2068 | /* Don't start a new step-over if we already have an in-line |
2069 | step-over operation ongoing. */ | |
2070 | if (step_over_info_valid_p ()) | |
2071 | return 0; | |
2072 | ||
c2829269 | 2073 | for (tp = step_over_queue_head; tp != NULL; tp = next) |
237fc4c9 | 2074 | { |
4d9d9d04 PA |
2075 | struct execution_control_state ecss; |
2076 | struct execution_control_state *ecs = &ecss; | |
8d297bbf | 2077 | step_over_what step_what; |
372316f1 | 2078 | int must_be_in_line; |
c2829269 | 2079 | |
c65d6b55 PA |
2080 | gdb_assert (!tp->stop_requested); |
2081 | ||
c2829269 | 2082 | next = thread_step_over_chain_next (tp); |
237fc4c9 | 2083 | |
c2829269 PA |
2084 | /* If this inferior already has a displaced step in process, |
2085 | don't start a new one. */ | |
00431a78 | 2086 | if (displaced_step_in_progress (tp->inf)) |
c2829269 PA |
2087 | continue; |
2088 | ||
372316f1 PA |
2089 | step_what = thread_still_needs_step_over (tp); |
2090 | must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT) | |
2091 | || ((step_what & STEP_OVER_BREAKPOINT) | |
3fc8eb30 | 2092 | && !use_displaced_stepping (tp))); |
372316f1 PA |
2093 | |
2094 | /* We currently stop all threads of all processes to step-over | |
2095 | in-line. If we need to start a new in-line step-over, let | |
2096 | any pending displaced steps finish first. */ | |
2097 | if (must_be_in_line && displaced_step_in_progress_any_inferior ()) | |
2098 | return 0; | |
2099 | ||
c2829269 PA |
2100 | thread_step_over_chain_remove (tp); |
2101 | ||
2102 | if (step_over_queue_head == NULL) | |
2103 | { | |
2104 | if (debug_infrun) | |
2105 | fprintf_unfiltered (gdb_stdlog, | |
2106 | "infrun: step-over queue now empty\n"); | |
2107 | } | |
2108 | ||
372316f1 PA |
2109 | if (tp->control.trap_expected |
2110 | || tp->resumed | |
2111 | || tp->executing) | |
ad53cd71 | 2112 | { |
4d9d9d04 PA |
2113 | internal_error (__FILE__, __LINE__, |
2114 | "[%s] has inconsistent state: " | |
372316f1 | 2115 | "trap_expected=%d, resumed=%d, executing=%d\n", |
4d9d9d04 PA |
2116 | target_pid_to_str (tp->ptid), |
2117 | tp->control.trap_expected, | |
372316f1 | 2118 | tp->resumed, |
4d9d9d04 | 2119 | tp->executing); |
ad53cd71 | 2120 | } |
1c5cfe86 | 2121 | |
4d9d9d04 PA |
2122 | if (debug_infrun) |
2123 | fprintf_unfiltered (gdb_stdlog, | |
2124 | "infrun: resuming [%s] for step-over\n", | |
2125 | target_pid_to_str (tp->ptid)); | |
2126 | ||
2127 | /* keep_going_pass_signal skips the step-over if the breakpoint | |
2128 | is no longer inserted. In all-stop, we want to keep looking | |
2129 | for a thread that needs a step-over instead of resuming TP, | |
2130 | because we wouldn't be able to resume anything else until the | |
2131 | target stops again. In non-stop, the resume always resumes | |
2132 | only TP, so it's OK to let the thread resume freely. */ | |
fbea99ea | 2133 | if (!target_is_non_stop_p () && !step_what) |
4d9d9d04 | 2134 | continue; |
8550d3b3 | 2135 | |
00431a78 | 2136 | switch_to_thread (tp); |
4d9d9d04 PA |
2137 | reset_ecs (ecs, tp); |
2138 | keep_going_pass_signal (ecs); | |
1c5cfe86 | 2139 | |
4d9d9d04 PA |
2140 | if (!ecs->wait_some_more) |
2141 | error (_("Command aborted.")); | |
1c5cfe86 | 2142 | |
372316f1 PA |
2143 | gdb_assert (tp->resumed); |
2144 | ||
2145 | /* If we started a new in-line step-over, we're done. */ | |
2146 | if (step_over_info_valid_p ()) | |
2147 | { | |
2148 | gdb_assert (tp->control.trap_expected); | |
2149 | return 1; | |
2150 | } | |
2151 | ||
fbea99ea | 2152 | if (!target_is_non_stop_p ()) |
4d9d9d04 PA |
2153 | { |
2154 | /* On all-stop, shouldn't have resumed unless we needed a | |
2155 | step over. */ | |
2156 | gdb_assert (tp->control.trap_expected | |
2157 | || tp->step_after_step_resume_breakpoint); | |
2158 | ||
2159 | /* With remote targets (at least), in all-stop, we can't | |
2160 | issue any further remote commands until the program stops | |
2161 | again. */ | |
2162 | return 1; | |
1c5cfe86 | 2163 | } |
c2829269 | 2164 | |
4d9d9d04 PA |
2165 | /* Either the thread no longer needed a step-over, or a new |
2166 | displaced stepping sequence started. Even in the latter | |
2167 | case, continue looking. Maybe we can also start another | |
2168 | displaced step on a thread of other process. */ | |
237fc4c9 | 2169 | } |
4d9d9d04 PA |
2170 | |
2171 | return 0; | |
237fc4c9 PA |
2172 | } |
2173 | ||
5231c1fd PA |
2174 | /* Update global variables holding ptids to hold NEW_PTID if they were |
2175 | holding OLD_PTID. */ | |
2176 | static void | |
2177 | infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid) | |
2178 | { | |
d7e15655 | 2179 | if (inferior_ptid == old_ptid) |
5231c1fd | 2180 | inferior_ptid = new_ptid; |
5231c1fd PA |
2181 | } |
2182 | ||
237fc4c9 | 2183 | \f |
c906108c | 2184 | |
53904c9e AC |
2185 | static const char schedlock_off[] = "off"; |
2186 | static const char schedlock_on[] = "on"; | |
2187 | static const char schedlock_step[] = "step"; | |
f2665db5 | 2188 | static const char schedlock_replay[] = "replay"; |
40478521 | 2189 | static const char *const scheduler_enums[] = { |
ef346e04 AC |
2190 | schedlock_off, |
2191 | schedlock_on, | |
2192 | schedlock_step, | |
f2665db5 | 2193 | schedlock_replay, |
ef346e04 AC |
2194 | NULL |
2195 | }; | |
f2665db5 | 2196 | static const char *scheduler_mode = schedlock_replay; |
920d2a44 AC |
2197 | static void |
2198 | show_scheduler_mode (struct ui_file *file, int from_tty, | |
2199 | struct cmd_list_element *c, const char *value) | |
2200 | { | |
3e43a32a MS |
2201 | fprintf_filtered (file, |
2202 | _("Mode for locking scheduler " | |
2203 | "during execution is \"%s\".\n"), | |
920d2a44 AC |
2204 | value); |
2205 | } | |
c906108c SS |
2206 | |
2207 | static void | |
eb4c3f4a | 2208 | set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c) |
c906108c | 2209 | { |
eefe576e AC |
2210 | if (!target_can_lock_scheduler) |
2211 | { | |
2212 | scheduler_mode = schedlock_off; | |
2213 | error (_("Target '%s' cannot support this command."), target_shortname); | |
2214 | } | |
c906108c SS |
2215 | } |
2216 | ||
d4db2f36 PA |
2217 | /* True if execution commands resume all threads of all processes by |
2218 | default; otherwise, resume only threads of the current inferior | |
2219 | process. */ | |
2220 | int sched_multi = 0; | |
2221 | ||
2facfe5c DD |
2222 | /* Try to setup for software single stepping over the specified location. |
2223 | Return 1 if target_resume() should use hardware single step. | |
2224 | ||
2225 | GDBARCH the current gdbarch. | |
2226 | PC the location to step over. */ | |
2227 | ||
2228 | static int | |
2229 | maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc) | |
2230 | { | |
2231 | int hw_step = 1; | |
2232 | ||
f02253f1 | 2233 | if (execution_direction == EXEC_FORWARD |
93f9a11f YQ |
2234 | && gdbarch_software_single_step_p (gdbarch)) |
2235 | hw_step = !insert_single_step_breakpoints (gdbarch); | |
2236 | ||
2facfe5c DD |
2237 | return hw_step; |
2238 | } | |
c906108c | 2239 | |
f3263aa4 PA |
2240 | /* See infrun.h. */ |
2241 | ||
09cee04b PA |
2242 | ptid_t |
2243 | user_visible_resume_ptid (int step) | |
2244 | { | |
f3263aa4 | 2245 | ptid_t resume_ptid; |
09cee04b | 2246 | |
09cee04b PA |
2247 | if (non_stop) |
2248 | { | |
2249 | /* With non-stop mode on, threads are always handled | |
2250 | individually. */ | |
2251 | resume_ptid = inferior_ptid; | |
2252 | } | |
2253 | else if ((scheduler_mode == schedlock_on) | |
03d46957 | 2254 | || (scheduler_mode == schedlock_step && step)) |
09cee04b | 2255 | { |
f3263aa4 PA |
2256 | /* User-settable 'scheduler' mode requires solo thread |
2257 | resume. */ | |
09cee04b PA |
2258 | resume_ptid = inferior_ptid; |
2259 | } | |
f2665db5 MM |
2260 | else if ((scheduler_mode == schedlock_replay) |
2261 | && target_record_will_replay (minus_one_ptid, execution_direction)) | |
2262 | { | |
2263 | /* User-settable 'scheduler' mode requires solo thread resume in replay | |
2264 | mode. */ | |
2265 | resume_ptid = inferior_ptid; | |
2266 | } | |
f3263aa4 PA |
2267 | else if (!sched_multi && target_supports_multi_process ()) |
2268 | { | |
2269 | /* Resume all threads of the current process (and none of other | |
2270 | processes). */ | |
e99b03dc | 2271 | resume_ptid = ptid_t (inferior_ptid.pid ()); |
f3263aa4 PA |
2272 | } |
2273 | else | |
2274 | { | |
2275 | /* Resume all threads of all processes. */ | |
2276 | resume_ptid = RESUME_ALL; | |
2277 | } | |
09cee04b PA |
2278 | |
2279 | return resume_ptid; | |
2280 | } | |
2281 | ||
fbea99ea PA |
2282 | /* Return a ptid representing the set of threads that we will resume, |
2283 | in the perspective of the target, assuming run control handling | |
2284 | does not require leaving some threads stopped (e.g., stepping past | |
2285 | breakpoint). USER_STEP indicates whether we're about to start the | |
2286 | target for a stepping command. */ | |
2287 | ||
2288 | static ptid_t | |
2289 | internal_resume_ptid (int user_step) | |
2290 | { | |
2291 | /* In non-stop, we always control threads individually. Note that | |
2292 | the target may always work in non-stop mode even with "set | |
2293 | non-stop off", in which case user_visible_resume_ptid could | |
2294 | return a wildcard ptid. */ | |
2295 | if (target_is_non_stop_p ()) | |
2296 | return inferior_ptid; | |
2297 | else | |
2298 | return user_visible_resume_ptid (user_step); | |
2299 | } | |
2300 | ||
64ce06e4 PA |
2301 | /* Wrapper for target_resume, that handles infrun-specific |
2302 | bookkeeping. */ | |
2303 | ||
2304 | static void | |
2305 | do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig) | |
2306 | { | |
2307 | struct thread_info *tp = inferior_thread (); | |
2308 | ||
c65d6b55 PA |
2309 | gdb_assert (!tp->stop_requested); |
2310 | ||
64ce06e4 | 2311 | /* Install inferior's terminal modes. */ |
223ffa71 | 2312 | target_terminal::inferior (); |
64ce06e4 PA |
2313 | |
2314 | /* Avoid confusing the next resume, if the next stop/resume | |
2315 | happens to apply to another thread. */ | |
2316 | tp->suspend.stop_signal = GDB_SIGNAL_0; | |
2317 | ||
8f572e5c PA |
2318 | /* Advise target which signals may be handled silently. |
2319 | ||
2320 | If we have removed breakpoints because we are stepping over one | |
2321 | in-line (in any thread), we need to receive all signals to avoid | |
2322 | accidentally skipping a breakpoint during execution of a signal | |
2323 | handler. | |
2324 | ||
2325 | Likewise if we're displaced stepping, otherwise a trap for a | |
2326 | breakpoint in a signal handler might be confused with the | |
2327 | displaced step finishing. We don't make the displaced_step_fixup | |
2328 | step distinguish the cases instead, because: | |
2329 | ||
2330 | - a backtrace while stopped in the signal handler would show the | |
2331 | scratch pad as frame older than the signal handler, instead of | |
2332 | the real mainline code. | |
2333 | ||
2334 | - when the thread is later resumed, the signal handler would | |
2335 | return to the scratch pad area, which would no longer be | |
2336 | valid. */ | |
2337 | if (step_over_info_valid_p () | |
00431a78 | 2338 | || displaced_step_in_progress (tp->inf)) |
64ce06e4 PA |
2339 | target_pass_signals (0, NULL); |
2340 | else | |
2341 | target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass); | |
2342 | ||
2343 | target_resume (resume_ptid, step, sig); | |
85ad3aaf PA |
2344 | |
2345 | target_commit_resume (); | |
64ce06e4 PA |
2346 | } |
2347 | ||
d930703d | 2348 | /* Resume the inferior. SIG is the signal to give the inferior |
71d378ae PA |
2349 | (GDB_SIGNAL_0 for none). Note: don't call this directly; instead |
2350 | call 'resume', which handles exceptions. */ | |
c906108c | 2351 | |
71d378ae PA |
2352 | static void |
2353 | resume_1 (enum gdb_signal sig) | |
c906108c | 2354 | { |
515630c5 | 2355 | struct regcache *regcache = get_current_regcache (); |
ac7936df | 2356 | struct gdbarch *gdbarch = regcache->arch (); |
4e1c45ea | 2357 | struct thread_info *tp = inferior_thread (); |
515630c5 | 2358 | CORE_ADDR pc = regcache_read_pc (regcache); |
8b86c959 | 2359 | const address_space *aspace = regcache->aspace (); |
b0f16a3e | 2360 | ptid_t resume_ptid; |
856e7dd6 PA |
2361 | /* This represents the user's step vs continue request. When |
2362 | deciding whether "set scheduler-locking step" applies, it's the | |
2363 | user's intention that counts. */ | |
2364 | const int user_step = tp->control.stepping_command; | |
64ce06e4 PA |
2365 | /* This represents what we'll actually request the target to do. |
2366 | This can decay from a step to a continue, if e.g., we need to | |
2367 | implement single-stepping with breakpoints (software | |
2368 | single-step). */ | |
6b403daa | 2369 | int step; |
c7e8a53c | 2370 | |
c65d6b55 | 2371 | gdb_assert (!tp->stop_requested); |
c2829269 PA |
2372 | gdb_assert (!thread_is_in_step_over_chain (tp)); |
2373 | ||
372316f1 PA |
2374 | if (tp->suspend.waitstatus_pending_p) |
2375 | { | |
2376 | if (debug_infrun) | |
2377 | { | |
23fdd69e SM |
2378 | std::string statstr |
2379 | = target_waitstatus_to_string (&tp->suspend.waitstatus); | |
372316f1 | 2380 | |
372316f1 | 2381 | fprintf_unfiltered (gdb_stdlog, |
23fdd69e SM |
2382 | "infrun: resume: thread %s has pending wait " |
2383 | "status %s (currently_stepping=%d).\n", | |
2384 | target_pid_to_str (tp->ptid), statstr.c_str (), | |
372316f1 | 2385 | currently_stepping (tp)); |
372316f1 PA |
2386 | } |
2387 | ||
2388 | tp->resumed = 1; | |
2389 | ||
2390 | /* FIXME: What should we do if we are supposed to resume this | |
2391 | thread with a signal? Maybe we should maintain a queue of | |
2392 | pending signals to deliver. */ | |
2393 | if (sig != GDB_SIGNAL_0) | |
2394 | { | |
fd7dcb94 | 2395 | warning (_("Couldn't deliver signal %s to %s."), |
372316f1 PA |
2396 | gdb_signal_to_name (sig), target_pid_to_str (tp->ptid)); |
2397 | } | |
2398 | ||
2399 | tp->suspend.stop_signal = GDB_SIGNAL_0; | |
372316f1 PA |
2400 | |
2401 | if (target_can_async_p ()) | |
9516f85a AB |
2402 | { |
2403 | target_async (1); | |
2404 | /* Tell the event loop we have an event to process. */ | |
2405 | mark_async_event_handler (infrun_async_inferior_event_token); | |
2406 | } | |
372316f1 PA |
2407 | return; |
2408 | } | |
2409 | ||
2410 | tp->stepped_breakpoint = 0; | |
2411 | ||
6b403daa PA |
2412 | /* Depends on stepped_breakpoint. */ |
2413 | step = currently_stepping (tp); | |
2414 | ||
74609e71 YQ |
2415 | if (current_inferior ()->waiting_for_vfork_done) |
2416 | { | |
48f9886d PA |
2417 | /* Don't try to single-step a vfork parent that is waiting for |
2418 | the child to get out of the shared memory region (by exec'ing | |
2419 | or exiting). This is particularly important on software | |
2420 | single-step archs, as the child process would trip on the | |
2421 | software single step breakpoint inserted for the parent | |
2422 | process. Since the parent will not actually execute any | |
2423 | instruction until the child is out of the shared region (such | |
2424 | are vfork's semantics), it is safe to simply continue it. | |
2425 | Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for | |
2426 | the parent, and tell it to `keep_going', which automatically | |
2427 | re-sets it stepping. */ | |
74609e71 YQ |
2428 | if (debug_infrun) |
2429 | fprintf_unfiltered (gdb_stdlog, | |
2430 | "infrun: resume : clear step\n"); | |
a09dd441 | 2431 | step = 0; |
74609e71 YQ |
2432 | } |
2433 | ||
527159b7 | 2434 | if (debug_infrun) |
237fc4c9 | 2435 | fprintf_unfiltered (gdb_stdlog, |
c9737c08 | 2436 | "infrun: resume (step=%d, signal=%s), " |
0d9a9a5f | 2437 | "trap_expected=%d, current thread [%s] at %s\n", |
c9737c08 PA |
2438 | step, gdb_signal_to_symbol_string (sig), |
2439 | tp->control.trap_expected, | |
0d9a9a5f PA |
2440 | target_pid_to_str (inferior_ptid), |
2441 | paddress (gdbarch, pc)); | |
c906108c | 2442 | |
c2c6d25f JM |
2443 | /* Normally, by the time we reach `resume', the breakpoints are either |
2444 | removed or inserted, as appropriate. The exception is if we're sitting | |
2445 | at a permanent breakpoint; we need to step over it, but permanent | |
2446 | breakpoints can't be removed. So we have to test for it here. */ | |
6c95b8df | 2447 | if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here) |
6d350bb5 | 2448 | { |
af48d08f PA |
2449 | if (sig != GDB_SIGNAL_0) |
2450 | { | |
2451 | /* We have a signal to pass to the inferior. The resume | |
2452 | may, or may not take us to the signal handler. If this | |
2453 | is a step, we'll need to stop in the signal handler, if | |
2454 | there's one, (if the target supports stepping into | |
2455 | handlers), or in the next mainline instruction, if | |
2456 | there's no handler. If this is a continue, we need to be | |
2457 | sure to run the handler with all breakpoints inserted. | |
2458 | In all cases, set a breakpoint at the current address | |
2459 | (where the handler returns to), and once that breakpoint | |
2460 | is hit, resume skipping the permanent breakpoint. If | |
2461 | that breakpoint isn't hit, then we've stepped into the | |
2462 | signal handler (or hit some other event). We'll delete | |
2463 | the step-resume breakpoint then. */ | |
2464 | ||
2465 | if (debug_infrun) | |
2466 | fprintf_unfiltered (gdb_stdlog, | |
2467 | "infrun: resume: skipping permanent breakpoint, " | |
2468 | "deliver signal first\n"); | |
2469 | ||
2470 | clear_step_over_info (); | |
2471 | tp->control.trap_expected = 0; | |
2472 | ||
2473 | if (tp->control.step_resume_breakpoint == NULL) | |
2474 | { | |
2475 | /* Set a "high-priority" step-resume, as we don't want | |
2476 | user breakpoints at PC to trigger (again) when this | |
2477 | hits. */ | |
2478 | insert_hp_step_resume_breakpoint_at_frame (get_current_frame ()); | |
2479 | gdb_assert (tp->control.step_resume_breakpoint->loc->permanent); | |
2480 | ||
2481 | tp->step_after_step_resume_breakpoint = step; | |
2482 | } | |
2483 | ||
2484 | insert_breakpoints (); | |
2485 | } | |
2486 | else | |
2487 | { | |
2488 | /* There's no signal to pass, we can go ahead and skip the | |
2489 | permanent breakpoint manually. */ | |
2490 | if (debug_infrun) | |
2491 | fprintf_unfiltered (gdb_stdlog, | |
2492 | "infrun: resume: skipping permanent breakpoint\n"); | |
2493 | gdbarch_skip_permanent_breakpoint (gdbarch, regcache); | |
2494 | /* Update pc to reflect the new address from which we will | |
2495 | execute instructions. */ | |
2496 | pc = regcache_read_pc (regcache); | |
2497 | ||
2498 | if (step) | |
2499 | { | |
2500 | /* We've already advanced the PC, so the stepping part | |
2501 | is done. Now we need to arrange for a trap to be | |
2502 | reported to handle_inferior_event. Set a breakpoint | |
2503 | at the current PC, and run to it. Don't update | |
2504 | prev_pc, because if we end in | |
44a1ee51 PA |
2505 | switch_back_to_stepped_thread, we want the "expected |
2506 | thread advanced also" branch to be taken. IOW, we | |
2507 | don't want this thread to step further from PC | |
af48d08f | 2508 | (overstep). */ |
1ac806b8 | 2509 | gdb_assert (!step_over_info_valid_p ()); |
af48d08f PA |
2510 | insert_single_step_breakpoint (gdbarch, aspace, pc); |
2511 | insert_breakpoints (); | |
2512 | ||
fbea99ea | 2513 | resume_ptid = internal_resume_ptid (user_step); |
1ac806b8 | 2514 | do_target_resume (resume_ptid, 0, GDB_SIGNAL_0); |
372316f1 | 2515 | tp->resumed = 1; |
af48d08f PA |
2516 | return; |
2517 | } | |
2518 | } | |
6d350bb5 | 2519 | } |
c2c6d25f | 2520 | |
c1e36e3e PA |
2521 | /* If we have a breakpoint to step over, make sure to do a single |
2522 | step only. Same if we have software watchpoints. */ | |
2523 | if (tp->control.trap_expected || bpstat_should_step ()) | |
2524 | tp->control.may_range_step = 0; | |
2525 | ||
237fc4c9 PA |
2526 | /* If enabled, step over breakpoints by executing a copy of the |
2527 | instruction at a different address. | |
2528 | ||
2529 | We can't use displaced stepping when we have a signal to deliver; | |
2530 | the comments for displaced_step_prepare explain why. The | |
2531 | comments in the handle_inferior event for dealing with 'random | |
74609e71 YQ |
2532 | signals' explain what we do instead. |
2533 | ||
2534 | We can't use displaced stepping when we are waiting for vfork_done | |
2535 | event, displaced stepping breaks the vfork child similarly as single | |
2536 | step software breakpoint. */ | |
3fc8eb30 PA |
2537 | if (tp->control.trap_expected |
2538 | && use_displaced_stepping (tp) | |
cb71640d | 2539 | && !step_over_info_valid_p () |
a493e3e2 | 2540 | && sig == GDB_SIGNAL_0 |
74609e71 | 2541 | && !current_inferior ()->waiting_for_vfork_done) |
237fc4c9 | 2542 | { |
00431a78 | 2543 | int prepared = displaced_step_prepare (tp); |
fc1cf338 | 2544 | |
3fc8eb30 | 2545 | if (prepared == 0) |
d56b7306 | 2546 | { |
4d9d9d04 PA |
2547 | if (debug_infrun) |
2548 | fprintf_unfiltered (gdb_stdlog, | |
2549 | "Got placed in step-over queue\n"); | |
2550 | ||
2551 | tp->control.trap_expected = 0; | |
d56b7306 VP |
2552 | return; |
2553 | } | |
3fc8eb30 PA |
2554 | else if (prepared < 0) |
2555 | { | |
2556 | /* Fallback to stepping over the breakpoint in-line. */ | |
2557 | ||
2558 | if (target_is_non_stop_p ()) | |
2559 | stop_all_threads (); | |
2560 | ||
a01bda52 | 2561 | set_step_over_info (regcache->aspace (), |
21edc42f | 2562 | regcache_read_pc (regcache), 0, tp->global_num); |
3fc8eb30 PA |
2563 | |
2564 | step = maybe_software_singlestep (gdbarch, pc); | |
2565 | ||
2566 | insert_breakpoints (); | |
2567 | } | |
2568 | else if (prepared > 0) | |
2569 | { | |
2570 | struct displaced_step_inferior_state *displaced; | |
99e40580 | 2571 | |
3fc8eb30 PA |
2572 | /* Update pc to reflect the new address from which we will |
2573 | execute instructions due to displaced stepping. */ | |
00431a78 | 2574 | pc = regcache_read_pc (get_thread_regcache (tp)); |
ca7781d2 | 2575 | |
00431a78 | 2576 | displaced = get_displaced_stepping_state (tp->inf); |
3fc8eb30 PA |
2577 | step = gdbarch_displaced_step_hw_singlestep (gdbarch, |
2578 | displaced->step_closure); | |
2579 | } | |
237fc4c9 PA |
2580 | } |
2581 | ||
2facfe5c | 2582 | /* Do we need to do it the hard way, w/temp breakpoints? */ |
99e40580 | 2583 | else if (step) |
2facfe5c | 2584 | step = maybe_software_singlestep (gdbarch, pc); |
c906108c | 2585 | |
30852783 UW |
2586 | /* Currently, our software single-step implementation leads to different |
2587 | results than hardware single-stepping in one situation: when stepping | |
2588 | into delivering a signal which has an associated signal handler, | |
2589 | hardware single-step will stop at the first instruction of the handler, | |
2590 | while software single-step will simply skip execution of the handler. | |
2591 | ||
2592 | For now, this difference in behavior is accepted since there is no | |
2593 | easy way to actually implement single-stepping into a signal handler | |
2594 | without kernel support. | |
2595 | ||
2596 | However, there is one scenario where this difference leads to follow-on | |
2597 | problems: if we're stepping off a breakpoint by removing all breakpoints | |
2598 | and then single-stepping. In this case, the software single-step | |
2599 | behavior means that even if there is a *breakpoint* in the signal | |
2600 | handler, GDB still would not stop. | |
2601 | ||
2602 | Fortunately, we can at least fix this particular issue. We detect | |
2603 | here the case where we are about to deliver a signal while software | |
2604 | single-stepping with breakpoints removed. In this situation, we | |
2605 | revert the decisions to remove all breakpoints and insert single- | |
2606 | step breakpoints, and instead we install a step-resume breakpoint | |
2607 | at the current address, deliver the signal without stepping, and | |
2608 | once we arrive back at the step-resume breakpoint, actually step | |
2609 | over the breakpoint we originally wanted to step over. */ | |
34b7e8a6 | 2610 | if (thread_has_single_step_breakpoints_set (tp) |
6cc83d2a PA |
2611 | && sig != GDB_SIGNAL_0 |
2612 | && step_over_info_valid_p ()) | |
30852783 UW |
2613 | { |
2614 | /* If we have nested signals or a pending signal is delivered | |
2615 | immediately after a handler returns, might might already have | |
2616 | a step-resume breakpoint set on the earlier handler. We cannot | |
2617 | set another step-resume breakpoint; just continue on until the | |
2618 | original breakpoint is hit. */ | |
2619 | if (tp->control.step_resume_breakpoint == NULL) | |
2620 | { | |
2c03e5be | 2621 | insert_hp_step_resume_breakpoint_at_frame (get_current_frame ()); |
30852783 UW |
2622 | tp->step_after_step_resume_breakpoint = 1; |
2623 | } | |
2624 | ||
34b7e8a6 | 2625 | delete_single_step_breakpoints (tp); |
30852783 | 2626 | |
31e77af2 | 2627 | clear_step_over_info (); |
30852783 | 2628 | tp->control.trap_expected = 0; |
31e77af2 PA |
2629 | |
2630 | insert_breakpoints (); | |
30852783 UW |
2631 | } |
2632 | ||
b0f16a3e SM |
2633 | /* If STEP is set, it's a request to use hardware stepping |
2634 | facilities. But in that case, we should never | |
2635 | use singlestep breakpoint. */ | |
34b7e8a6 | 2636 | gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step)); |
dfcd3bfb | 2637 | |
fbea99ea | 2638 | /* Decide the set of threads to ask the target to resume. */ |
1946c4cc | 2639 | if (tp->control.trap_expected) |
b0f16a3e SM |
2640 | { |
2641 | /* We're allowing a thread to run past a breakpoint it has | |
1946c4cc YQ |
2642 | hit, either by single-stepping the thread with the breakpoint |
2643 | removed, or by displaced stepping, with the breakpoint inserted. | |
2644 | In the former case, we need to single-step only this thread, | |
2645 | and keep others stopped, as they can miss this breakpoint if | |
2646 | allowed to run. That's not really a problem for displaced | |
2647 | stepping, but, we still keep other threads stopped, in case | |
2648 | another thread is also stopped for a breakpoint waiting for | |
2649 | its turn in the displaced stepping queue. */ | |
b0f16a3e SM |
2650 | resume_ptid = inferior_ptid; |
2651 | } | |
fbea99ea PA |
2652 | else |
2653 | resume_ptid = internal_resume_ptid (user_step); | |
d4db2f36 | 2654 | |
7f5ef605 PA |
2655 | if (execution_direction != EXEC_REVERSE |
2656 | && step && breakpoint_inserted_here_p (aspace, pc)) | |
b0f16a3e | 2657 | { |
372316f1 PA |
2658 | /* There are two cases where we currently need to step a |
2659 | breakpoint instruction when we have a signal to deliver: | |
2660 | ||
2661 | - See handle_signal_stop where we handle random signals that | |
2662 | could take out us out of the stepping range. Normally, in | |
2663 | that case we end up continuing (instead of stepping) over the | |
7f5ef605 PA |
2664 | signal handler with a breakpoint at PC, but there are cases |
2665 | where we should _always_ single-step, even if we have a | |
2666 | step-resume breakpoint, like when a software watchpoint is | |
2667 | set. Assuming single-stepping and delivering a signal at the | |
2668 | same time would takes us to the signal handler, then we could | |
2669 | have removed the breakpoint at PC to step over it. However, | |
2670 | some hardware step targets (like e.g., Mac OS) can't step | |
2671 | into signal handlers, and for those, we need to leave the | |
2672 | breakpoint at PC inserted, as otherwise if the handler | |
2673 | recurses and executes PC again, it'll miss the breakpoint. | |
2674 | So we leave the breakpoint inserted anyway, but we need to | |
2675 | record that we tried to step a breakpoint instruction, so | |
372316f1 PA |
2676 | that adjust_pc_after_break doesn't end up confused. |
2677 | ||
2678 | - In non-stop if we insert a breakpoint (e.g., a step-resume) | |
2679 | in one thread after another thread that was stepping had been | |
2680 | momentarily paused for a step-over. When we re-resume the | |
2681 | stepping thread, it may be resumed from that address with a | |
2682 | breakpoint that hasn't trapped yet. Seen with | |
2683 | gdb.threads/non-stop-fair-events.exp, on targets that don't | |
2684 | do displaced stepping. */ | |
2685 | ||
2686 | if (debug_infrun) | |
2687 | fprintf_unfiltered (gdb_stdlog, | |
2688 | "infrun: resume: [%s] stepped breakpoint\n", | |
2689 | target_pid_to_str (tp->ptid)); | |
7f5ef605 PA |
2690 | |
2691 | tp->stepped_breakpoint = 1; | |
2692 | ||
b0f16a3e SM |
2693 | /* Most targets can step a breakpoint instruction, thus |
2694 | executing it normally. But if this one cannot, just | |
2695 | continue and we will hit it anyway. */ | |
7f5ef605 | 2696 | if (gdbarch_cannot_step_breakpoint (gdbarch)) |
b0f16a3e SM |
2697 | step = 0; |
2698 | } | |
ef5cf84e | 2699 | |
b0f16a3e | 2700 | if (debug_displaced |
cb71640d | 2701 | && tp->control.trap_expected |
3fc8eb30 | 2702 | && use_displaced_stepping (tp) |
cb71640d | 2703 | && !step_over_info_valid_p ()) |
b0f16a3e | 2704 | { |
00431a78 | 2705 | struct regcache *resume_regcache = get_thread_regcache (tp); |
ac7936df | 2706 | struct gdbarch *resume_gdbarch = resume_regcache->arch (); |
b0f16a3e SM |
2707 | CORE_ADDR actual_pc = regcache_read_pc (resume_regcache); |
2708 | gdb_byte buf[4]; | |
2709 | ||
2710 | fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ", | |
2711 | paddress (resume_gdbarch, actual_pc)); | |
2712 | read_memory (actual_pc, buf, sizeof (buf)); | |
2713 | displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf)); | |
2714 | } | |
237fc4c9 | 2715 | |
b0f16a3e SM |
2716 | if (tp->control.may_range_step) |
2717 | { | |
2718 | /* If we're resuming a thread with the PC out of the step | |
2719 | range, then we're doing some nested/finer run control | |
2720 | operation, like stepping the thread out of the dynamic | |
2721 | linker or the displaced stepping scratch pad. We | |
2722 | shouldn't have allowed a range step then. */ | |
2723 | gdb_assert (pc_in_thread_step_range (pc, tp)); | |
2724 | } | |
c1e36e3e | 2725 | |
64ce06e4 | 2726 | do_target_resume (resume_ptid, step, sig); |
372316f1 | 2727 | tp->resumed = 1; |
c906108c | 2728 | } |
71d378ae PA |
2729 | |
2730 | /* Resume the inferior. SIG is the signal to give the inferior | |
2731 | (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that | |
2732 | rolls back state on error. */ | |
2733 | ||
aff4e175 | 2734 | static void |
71d378ae PA |
2735 | resume (gdb_signal sig) |
2736 | { | |
2737 | TRY | |
2738 | { | |
2739 | resume_1 (sig); | |
2740 | } | |
2741 | CATCH (ex, RETURN_MASK_ALL) | |
2742 | { | |
2743 | /* If resuming is being aborted for any reason, delete any | |
2744 | single-step breakpoint resume_1 may have created, to avoid | |
2745 | confusing the following resumption, and to avoid leaving | |
2746 | single-step breakpoints perturbing other threads, in case | |
2747 | we're running in non-stop mode. */ | |
2748 | if (inferior_ptid != null_ptid) | |
2749 | delete_single_step_breakpoints (inferior_thread ()); | |
2750 | throw_exception (ex); | |
2751 | } | |
2752 | END_CATCH | |
2753 | } | |
2754 | ||
c906108c | 2755 | \f |
237fc4c9 | 2756 | /* Proceeding. */ |
c906108c | 2757 | |
4c2f2a79 PA |
2758 | /* See infrun.h. */ |
2759 | ||
2760 | /* Counter that tracks number of user visible stops. This can be used | |
2761 | to tell whether a command has proceeded the inferior past the | |
2762 | current location. This allows e.g., inferior function calls in | |
2763 | breakpoint commands to not interrupt the command list. When the | |
2764 | call finishes successfully, the inferior is standing at the same | |
2765 | breakpoint as if nothing happened (and so we don't call | |
2766 | normal_stop). */ | |
2767 | static ULONGEST current_stop_id; | |
2768 | ||
2769 | /* See infrun.h. */ | |
2770 | ||
2771 | ULONGEST | |
2772 | get_stop_id (void) | |
2773 | { | |
2774 | return current_stop_id; | |
2775 | } | |
2776 | ||
2777 | /* Called when we report a user visible stop. */ | |
2778 | ||
2779 | static void | |
2780 | new_stop_id (void) | |
2781 | { | |
2782 | current_stop_id++; | |
2783 | } | |
2784 | ||
c906108c SS |
2785 | /* Clear out all variables saying what to do when inferior is continued. |
2786 | First do this, then set the ones you want, then call `proceed'. */ | |
2787 | ||
a7212384 UW |
2788 | static void |
2789 | clear_proceed_status_thread (struct thread_info *tp) | |
c906108c | 2790 | { |
a7212384 UW |
2791 | if (debug_infrun) |
2792 | fprintf_unfiltered (gdb_stdlog, | |
2793 | "infrun: clear_proceed_status_thread (%s)\n", | |
2794 | target_pid_to_str (tp->ptid)); | |
d6b48e9c | 2795 | |
372316f1 PA |
2796 | /* If we're starting a new sequence, then the previous finished |
2797 | single-step is no longer relevant. */ | |
2798 | if (tp->suspend.waitstatus_pending_p) | |
2799 | { | |
2800 | if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP) | |
2801 | { | |
2802 | if (debug_infrun) | |
2803 | fprintf_unfiltered (gdb_stdlog, | |
2804 | "infrun: clear_proceed_status: pending " | |
2805 | "event of %s was a finished step. " | |
2806 | "Discarding.\n", | |
2807 | target_pid_to_str (tp->ptid)); | |
2808 | ||
2809 | tp->suspend.waitstatus_pending_p = 0; | |
2810 | tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON; | |
2811 | } | |
2812 | else if (debug_infrun) | |
2813 | { | |
23fdd69e SM |
2814 | std::string statstr |
2815 | = target_waitstatus_to_string (&tp->suspend.waitstatus); | |
372316f1 | 2816 | |
372316f1 PA |
2817 | fprintf_unfiltered (gdb_stdlog, |
2818 | "infrun: clear_proceed_status_thread: thread %s " | |
2819 | "has pending wait status %s " | |
2820 | "(currently_stepping=%d).\n", | |
23fdd69e | 2821 | target_pid_to_str (tp->ptid), statstr.c_str (), |
372316f1 | 2822 | currently_stepping (tp)); |
372316f1 PA |
2823 | } |
2824 | } | |
2825 | ||
70509625 PA |
2826 | /* If this signal should not be seen by program, give it zero. |
2827 | Used for debugging signals. */ | |
2828 | if (!signal_pass_state (tp->suspend.stop_signal)) | |
2829 | tp->suspend.stop_signal = GDB_SIGNAL_0; | |
2830 | ||
243a9253 PA |
2831 | thread_fsm_delete (tp->thread_fsm); |
2832 | tp->thread_fsm = NULL; | |
2833 | ||
16c381f0 JK |
2834 | tp->control.trap_expected = 0; |
2835 | tp->control.step_range_start = 0; | |
2836 | tp->control.step_range_end = 0; | |
c1e36e3e | 2837 | tp->control.may_range_step = 0; |
16c381f0 JK |
2838 | tp->control.step_frame_id = null_frame_id; |
2839 | tp->control.step_stack_frame_id = null_frame_id; | |
2840 | tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE; | |
885eeb5b | 2841 | tp->control.step_start_function = NULL; |
a7212384 | 2842 | tp->stop_requested = 0; |
4e1c45ea | 2843 | |
16c381f0 | 2844 | tp->control.stop_step = 0; |
32400beb | 2845 | |
16c381f0 | 2846 | tp->control.proceed_to_finish = 0; |
414c69f7 | 2847 | |
856e7dd6 | 2848 | tp->control.stepping_command = 0; |
17b2616c | 2849 | |
a7212384 | 2850 | /* Discard any remaining commands or status from previous stop. */ |
16c381f0 | 2851 | bpstat_clear (&tp->control.stop_bpstat); |
a7212384 | 2852 | } |
32400beb | 2853 | |
a7212384 | 2854 | void |
70509625 | 2855 | clear_proceed_status (int step) |
a7212384 | 2856 | { |
f2665db5 MM |
2857 | /* With scheduler-locking replay, stop replaying other threads if we're |
2858 | not replaying the user-visible resume ptid. | |
2859 | ||
2860 | This is a convenience feature to not require the user to explicitly | |
2861 | stop replaying the other threads. We're assuming that the user's | |
2862 | intent is to resume tracing the recorded process. */ | |
2863 | if (!non_stop && scheduler_mode == schedlock_replay | |
2864 | && target_record_is_replaying (minus_one_ptid) | |
2865 | && !target_record_will_replay (user_visible_resume_ptid (step), | |
2866 | execution_direction)) | |
2867 | target_record_stop_replaying (); | |
2868 | ||
6c95b8df PA |
2869 | if (!non_stop) |
2870 | { | |
70509625 PA |
2871 | struct thread_info *tp; |
2872 | ptid_t resume_ptid; | |
2873 | ||
2874 | resume_ptid = user_visible_resume_ptid (step); | |
2875 | ||
2876 | /* In all-stop mode, delete the per-thread status of all threads | |
2877 | we're about to resume, implicitly and explicitly. */ | |
2878 | ALL_NON_EXITED_THREADS (tp) | |
2879 | { | |
26a57c92 | 2880 | if (!tp->ptid.matches (resume_ptid)) |
70509625 PA |
2881 | continue; |
2882 | clear_proceed_status_thread (tp); | |
2883 | } | |
6c95b8df PA |
2884 | } |
2885 | ||
d7e15655 | 2886 | if (inferior_ptid != null_ptid) |
a7212384 UW |
2887 | { |
2888 | struct inferior *inferior; | |
2889 | ||
2890 | if (non_stop) | |
2891 | { | |
6c95b8df PA |
2892 | /* If in non-stop mode, only delete the per-thread status of |
2893 | the current thread. */ | |
a7212384 UW |
2894 | clear_proceed_status_thread (inferior_thread ()); |
2895 | } | |
6c95b8df | 2896 | |
d6b48e9c | 2897 | inferior = current_inferior (); |
16c381f0 | 2898 | inferior->control.stop_soon = NO_STOP_QUIETLY; |
4e1c45ea PA |
2899 | } |
2900 | ||
76727919 | 2901 | gdb::observers::about_to_proceed.notify (); |
c906108c SS |
2902 | } |
2903 | ||
99619bea PA |
2904 | /* Returns true if TP is still stopped at a breakpoint that needs |
2905 | stepping-over in order to make progress. If the breakpoint is gone | |
2906 | meanwhile, we can skip the whole step-over dance. */ | |
ea67f13b DJ |
2907 | |
2908 | static int | |
6c4cfb24 | 2909 | thread_still_needs_step_over_bp (struct thread_info *tp) |
99619bea PA |
2910 | { |
2911 | if (tp->stepping_over_breakpoint) | |
2912 | { | |
00431a78 | 2913 | struct regcache *regcache = get_thread_regcache (tp); |
99619bea | 2914 | |
a01bda52 | 2915 | if (breakpoint_here_p (regcache->aspace (), |
af48d08f PA |
2916 | regcache_read_pc (regcache)) |
2917 | == ordinary_breakpoint_here) | |
99619bea PA |
2918 | return 1; |
2919 | ||
2920 | tp->stepping_over_breakpoint = 0; | |
2921 | } | |
2922 | ||
2923 | return 0; | |
2924 | } | |
2925 | ||
6c4cfb24 PA |
2926 | /* Check whether thread TP still needs to start a step-over in order |
2927 | to make progress when resumed. Returns an bitwise or of enum | |
2928 | step_over_what bits, indicating what needs to be stepped over. */ | |
2929 | ||
8d297bbf | 2930 | static step_over_what |
6c4cfb24 PA |
2931 | thread_still_needs_step_over (struct thread_info *tp) |
2932 | { | |
8d297bbf | 2933 | step_over_what what = 0; |
6c4cfb24 PA |
2934 | |
2935 | if (thread_still_needs_step_over_bp (tp)) | |
2936 | what |= STEP_OVER_BREAKPOINT; | |
2937 | ||
2938 | if (tp->stepping_over_watchpoint | |
2939 | && !target_have_steppable_watchpoint) | |
2940 | what |= STEP_OVER_WATCHPOINT; | |
2941 | ||
2942 | return what; | |
2943 | } | |
2944 | ||
483805cf PA |
2945 | /* Returns true if scheduler locking applies. STEP indicates whether |
2946 | we're about to do a step/next-like command to a thread. */ | |
2947 | ||
2948 | static int | |
856e7dd6 | 2949 | schedlock_applies (struct thread_info *tp) |
483805cf PA |
2950 | { |
2951 | return (scheduler_mode == schedlock_on | |
2952 | || (scheduler_mode == schedlock_step | |
f2665db5 MM |
2953 | && tp->control.stepping_command) |
2954 | || (scheduler_mode == schedlock_replay | |
2955 | && target_record_will_replay (minus_one_ptid, | |
2956 | execution_direction))); | |
483805cf PA |
2957 | } |
2958 | ||
c906108c SS |
2959 | /* Basic routine for continuing the program in various fashions. |
2960 | ||
2961 | ADDR is the address to resume at, or -1 for resume where stopped. | |
aff4e175 AB |
2962 | SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none, |
2963 | or GDB_SIGNAL_DEFAULT for act according to how it stopped. | |
c906108c SS |
2964 | |
2965 | You should call clear_proceed_status before calling proceed. */ | |
2966 | ||
2967 | void | |
64ce06e4 | 2968 | proceed (CORE_ADDR addr, enum gdb_signal siggnal) |
c906108c | 2969 | { |
e58b0e63 PA |
2970 | struct regcache *regcache; |
2971 | struct gdbarch *gdbarch; | |
4e1c45ea | 2972 | struct thread_info *tp; |
e58b0e63 | 2973 | CORE_ADDR pc; |
4d9d9d04 PA |
2974 | ptid_t resume_ptid; |
2975 | struct execution_control_state ecss; | |
2976 | struct execution_control_state *ecs = &ecss; | |
4d9d9d04 | 2977 | int started; |
c906108c | 2978 | |
e58b0e63 PA |
2979 | /* If we're stopped at a fork/vfork, follow the branch set by the |
2980 | "set follow-fork-mode" command; otherwise, we'll just proceed | |
2981 | resuming the current thread. */ | |
2982 | if (!follow_fork ()) | |
2983 | { | |
2984 | /* The target for some reason decided not to resume. */ | |
2985 | normal_stop (); | |
f148b27e PA |
2986 | if (target_can_async_p ()) |
2987 | inferior_event_handler (INF_EXEC_COMPLETE, NULL); | |
e58b0e63 PA |
2988 | return; |
2989 | } | |
2990 | ||
842951eb PA |
2991 | /* We'll update this if & when we switch to a new thread. */ |
2992 | previous_inferior_ptid = inferior_ptid; | |
2993 | ||
e58b0e63 | 2994 | regcache = get_current_regcache (); |
ac7936df | 2995 | gdbarch = regcache->arch (); |
8b86c959 YQ |
2996 | const address_space *aspace = regcache->aspace (); |
2997 | ||
e58b0e63 | 2998 | pc = regcache_read_pc (regcache); |
2adfaa28 | 2999 | tp = inferior_thread (); |
e58b0e63 | 3000 | |
99619bea PA |
3001 | /* Fill in with reasonable starting values. */ |
3002 | init_thread_stepping_state (tp); | |
3003 | ||
c2829269 PA |
3004 | gdb_assert (!thread_is_in_step_over_chain (tp)); |
3005 | ||
2acceee2 | 3006 | if (addr == (CORE_ADDR) -1) |
c906108c | 3007 | { |
f2ffa92b | 3008 | if (pc == tp->suspend.stop_pc |
af48d08f | 3009 | && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here |
b2175913 | 3010 | && execution_direction != EXEC_REVERSE) |
3352ef37 AC |
3011 | /* There is a breakpoint at the address we will resume at, |
3012 | step one instruction before inserting breakpoints so that | |
3013 | we do not stop right away (and report a second hit at this | |
b2175913 MS |
3014 | breakpoint). |
3015 | ||
3016 | Note, we don't do this in reverse, because we won't | |
3017 | actually be executing the breakpoint insn anyway. | |
3018 | We'll be (un-)executing the previous instruction. */ | |
99619bea | 3019 | tp->stepping_over_breakpoint = 1; |
515630c5 UW |
3020 | else if (gdbarch_single_step_through_delay_p (gdbarch) |
3021 | && gdbarch_single_step_through_delay (gdbarch, | |
3022 | get_current_frame ())) | |
3352ef37 AC |
3023 | /* We stepped onto an instruction that needs to be stepped |
3024 | again before re-inserting the breakpoint, do so. */ | |
99619bea | 3025 | tp->stepping_over_breakpoint = 1; |
c906108c SS |
3026 | } |
3027 | else | |
3028 | { | |
515630c5 | 3029 | regcache_write_pc (regcache, addr); |
c906108c SS |
3030 | } |
3031 | ||
70509625 PA |
3032 | if (siggnal != GDB_SIGNAL_DEFAULT) |
3033 | tp->suspend.stop_signal = siggnal; | |
3034 | ||
4d9d9d04 PA |
3035 | resume_ptid = user_visible_resume_ptid (tp->control.stepping_command); |
3036 | ||
3037 | /* If an exception is thrown from this point on, make sure to | |
3038 | propagate GDB's knowledge of the executing state to the | |
3039 | frontend/user running state. */ | |
731f534f | 3040 | scoped_finish_thread_state finish_state (resume_ptid); |
4d9d9d04 PA |
3041 | |
3042 | /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer | |
3043 | threads (e.g., we might need to set threads stepping over | |
3044 | breakpoints first), from the user/frontend's point of view, all | |
3045 | threads in RESUME_PTID are now running. Unless we're calling an | |
3046 | inferior function, as in that case we pretend the inferior | |
3047 | doesn't run at all. */ | |
3048 | if (!tp->control.in_infcall) | |
3049 | set_running (resume_ptid, 1); | |
17b2616c | 3050 | |
527159b7 | 3051 | if (debug_infrun) |
8a9de0e4 | 3052 | fprintf_unfiltered (gdb_stdlog, |
64ce06e4 | 3053 | "infrun: proceed (addr=%s, signal=%s)\n", |
c9737c08 | 3054 | paddress (gdbarch, addr), |
64ce06e4 | 3055 | gdb_signal_to_symbol_string (siggnal)); |
527159b7 | 3056 | |
4d9d9d04 PA |
3057 | annotate_starting (); |
3058 | ||
3059 | /* Make sure that output from GDB appears before output from the | |
3060 | inferior. */ | |
3061 | gdb_flush (gdb_stdout); | |
3062 | ||
d930703d PA |
3063 | /* Since we've marked the inferior running, give it the terminal. A |
3064 | QUIT/Ctrl-C from here on is forwarded to the target (which can | |
3065 | still detect attempts to unblock a stuck connection with repeated | |
3066 | Ctrl-C from within target_pass_ctrlc). */ | |
3067 | target_terminal::inferior (); | |
3068 | ||
4d9d9d04 PA |
3069 | /* In a multi-threaded task we may select another thread and |
3070 | then continue or step. | |
3071 | ||
3072 | But if a thread that we're resuming had stopped at a breakpoint, | |
3073 | it will immediately cause another breakpoint stop without any | |
3074 | execution (i.e. it will report a breakpoint hit incorrectly). So | |
3075 | we must step over it first. | |
3076 | ||
3077 | Look for threads other than the current (TP) that reported a | |
3078 | breakpoint hit and haven't been resumed yet since. */ | |
3079 | ||
3080 | /* If scheduler locking applies, we can avoid iterating over all | |
3081 | threads. */ | |
3082 | if (!non_stop && !schedlock_applies (tp)) | |
94cc34af | 3083 | { |
4d9d9d04 PA |
3084 | struct thread_info *current = tp; |
3085 | ||
3086 | ALL_NON_EXITED_THREADS (tp) | |
3087 | { | |
3088 | /* Ignore the current thread here. It's handled | |
3089 | afterwards. */ | |
3090 | if (tp == current) | |
3091 | continue; | |
99619bea | 3092 | |
4d9d9d04 | 3093 | /* Ignore threads of processes we're not resuming. */ |
26a57c92 | 3094 | if (!tp->ptid.matches (resume_ptid)) |
4d9d9d04 | 3095 | continue; |
c906108c | 3096 | |
4d9d9d04 PA |
3097 | if (!thread_still_needs_step_over (tp)) |
3098 | continue; | |
3099 | ||
3100 | gdb_assert (!thread_is_in_step_over_chain (tp)); | |
c906108c | 3101 | |
99619bea PA |
3102 | if (debug_infrun) |
3103 | fprintf_unfiltered (gdb_stdlog, | |
3104 | "infrun: need to step-over [%s] first\n", | |
4d9d9d04 | 3105 | target_pid_to_str (tp->ptid)); |
99619bea | 3106 | |
4d9d9d04 | 3107 | thread_step_over_chain_enqueue (tp); |
2adfaa28 | 3108 | } |
31e77af2 | 3109 | |
4d9d9d04 | 3110 | tp = current; |
30852783 UW |
3111 | } |
3112 | ||
4d9d9d04 PA |
3113 | /* Enqueue the current thread last, so that we move all other |
3114 | threads over their breakpoints first. */ | |
3115 | if (tp->stepping_over_breakpoint) | |
3116 | thread_step_over_chain_enqueue (tp); | |
30852783 | 3117 | |
4d9d9d04 PA |
3118 | /* If the thread isn't started, we'll still need to set its prev_pc, |
3119 | so that switch_back_to_stepped_thread knows the thread hasn't | |
3120 | advanced. Must do this before resuming any thread, as in | |
3121 | all-stop/remote, once we resume we can't send any other packet | |
3122 | until the target stops again. */ | |
3123 | tp->prev_pc = regcache_read_pc (regcache); | |
99619bea | 3124 | |
a9bc57b9 TT |
3125 | { |
3126 | scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume (); | |
85ad3aaf | 3127 | |
a9bc57b9 | 3128 | started = start_step_over (); |
c906108c | 3129 | |
a9bc57b9 TT |
3130 | if (step_over_info_valid_p ()) |
3131 | { | |
3132 | /* Either this thread started a new in-line step over, or some | |
3133 | other thread was already doing one. In either case, don't | |
3134 | resume anything else until the step-over is finished. */ | |
3135 | } | |
3136 | else if (started && !target_is_non_stop_p ()) | |
3137 | { | |
3138 | /* A new displaced stepping sequence was started. In all-stop, | |
3139 | we can't talk to the target anymore until it next stops. */ | |
3140 | } | |
3141 | else if (!non_stop && target_is_non_stop_p ()) | |
3142 | { | |
3143 | /* In all-stop, but the target is always in non-stop mode. | |
3144 | Start all other threads that are implicitly resumed too. */ | |
3145 | ALL_NON_EXITED_THREADS (tp) | |
fbea99ea PA |
3146 | { |
3147 | /* Ignore threads of processes we're not resuming. */ | |
26a57c92 | 3148 | if (!tp->ptid.matches (resume_ptid)) |
fbea99ea PA |
3149 | continue; |
3150 | ||
3151 | if (tp->resumed) | |
3152 | { | |
3153 | if (debug_infrun) | |
3154 | fprintf_unfiltered (gdb_stdlog, | |
3155 | "infrun: proceed: [%s] resumed\n", | |
3156 | target_pid_to_str (tp->ptid)); | |
3157 | gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p); | |
3158 | continue; | |
3159 | } | |
3160 | ||
3161 | if (thread_is_in_step_over_chain (tp)) | |
3162 | { | |
3163 | if (debug_infrun) | |
3164 | fprintf_unfiltered (gdb_stdlog, | |
3165 | "infrun: proceed: [%s] needs step-over\n", | |
3166 | target_pid_to_str (tp->ptid)); | |
3167 | continue; | |
3168 | } | |
3169 | ||
3170 | if (debug_infrun) | |
3171 | fprintf_unfiltered (gdb_stdlog, | |
3172 | "infrun: proceed: resuming %s\n", | |
3173 | target_pid_to_str (tp->ptid)); | |
3174 | ||
3175 | reset_ecs (ecs, tp); | |
00431a78 | 3176 | switch_to_thread (tp); |
fbea99ea PA |
3177 | keep_going_pass_signal (ecs); |
3178 | if (!ecs->wait_some_more) | |
fd7dcb94 | 3179 | error (_("Command aborted.")); |
fbea99ea | 3180 | } |
a9bc57b9 TT |
3181 | } |
3182 | else if (!tp->resumed && !thread_is_in_step_over_chain (tp)) | |
3183 | { | |
3184 | /* The thread wasn't started, and isn't queued, run it now. */ | |
3185 | reset_ecs (ecs, tp); | |
00431a78 | 3186 | switch_to_thread (tp); |
a9bc57b9 TT |
3187 | keep_going_pass_signal (ecs); |
3188 | if (!ecs->wait_some_more) | |
3189 | error (_("Command aborted.")); | |
3190 | } | |
3191 | } | |
c906108c | 3192 | |
85ad3aaf PA |
3193 | target_commit_resume (); |
3194 | ||
731f534f | 3195 | finish_state.release (); |
c906108c | 3196 | |
0b333c5e PA |
3197 | /* Tell the event loop to wait for it to stop. If the target |
3198 | supports asynchronous execution, it'll do this from within | |
3199 | target_resume. */ | |
362646f5 | 3200 | if (!target_can_async_p ()) |
0b333c5e | 3201 | mark_async_event_handler (infrun_async_inferior_event_token); |
c906108c | 3202 | } |
c906108c SS |
3203 | \f |
3204 | ||
3205 | /* Start remote-debugging of a machine over a serial link. */ | |
96baa820 | 3206 | |
c906108c | 3207 | void |
8621d6a9 | 3208 | start_remote (int from_tty) |
c906108c | 3209 | { |
d6b48e9c | 3210 | struct inferior *inferior; |
d6b48e9c PA |
3211 | |
3212 | inferior = current_inferior (); | |
16c381f0 | 3213 | inferior->control.stop_soon = STOP_QUIETLY_REMOTE; |
43ff13b4 | 3214 | |
1777feb0 | 3215 | /* Always go on waiting for the target, regardless of the mode. */ |
6426a772 | 3216 | /* FIXME: cagney/1999-09-23: At present it isn't possible to |
7e73cedf | 3217 | indicate to wait_for_inferior that a target should timeout if |
6426a772 JM |
3218 | nothing is returned (instead of just blocking). Because of this, |
3219 | targets expecting an immediate response need to, internally, set | |
3220 | things up so that the target_wait() is forced to eventually | |
1777feb0 | 3221 | timeout. */ |
6426a772 JM |
3222 | /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to |
3223 | differentiate to its caller what the state of the target is after | |
3224 | the initial open has been performed. Here we're assuming that | |
3225 | the target has stopped. It should be possible to eventually have | |
3226 | target_open() return to the caller an indication that the target | |
3227 | is currently running and GDB state should be set to the same as | |
1777feb0 | 3228 | for an async run. */ |
e4c8541f | 3229 | wait_for_inferior (); |
8621d6a9 DJ |
3230 | |
3231 | /* Now that the inferior has stopped, do any bookkeeping like | |
3232 | loading shared libraries. We want to do this before normal_stop, | |
3233 | so that the displayed frame is up to date. */ | |
8b88a78e | 3234 | post_create_inferior (current_top_target (), from_tty); |
8621d6a9 | 3235 | |
6426a772 | 3236 | normal_stop (); |
c906108c SS |
3237 | } |
3238 | ||
3239 | /* Initialize static vars when a new inferior begins. */ | |
3240 | ||
3241 | void | |
96baa820 | 3242 | init_wait_for_inferior (void) |
c906108c SS |
3243 | { |
3244 | /* These are meaningless until the first time through wait_for_inferior. */ | |
c906108c | 3245 | |
c906108c SS |
3246 | breakpoint_init_inferior (inf_starting); |
3247 | ||
70509625 | 3248 | clear_proceed_status (0); |
9f976b41 | 3249 | |
ca005067 | 3250 | target_last_wait_ptid = minus_one_ptid; |
237fc4c9 | 3251 | |
842951eb | 3252 | previous_inferior_ptid = inferior_ptid; |
0d1e5fa7 | 3253 | |
edb3359d DJ |
3254 | /* Discard any skipped inlined frames. */ |
3255 | clear_inline_frame_state (minus_one_ptid); | |
c906108c | 3256 | } |
237fc4c9 | 3257 | |
c906108c | 3258 | \f |
488f131b | 3259 | |
ec9499be | 3260 | static void handle_inferior_event (struct execution_control_state *ecs); |
cd0fc7c3 | 3261 | |
568d6575 UW |
3262 | static void handle_step_into_function (struct gdbarch *gdbarch, |
3263 | struct execution_control_state *ecs); | |
3264 | static void handle_step_into_function_backward (struct gdbarch *gdbarch, | |
3265 | struct execution_control_state *ecs); | |
4f5d7f63 | 3266 | static void handle_signal_stop (struct execution_control_state *ecs); |
186c406b | 3267 | static void check_exception_resume (struct execution_control_state *, |
28106bc2 | 3268 | struct frame_info *); |
611c83ae | 3269 | |
bdc36728 | 3270 | static void end_stepping_range (struct execution_control_state *ecs); |
22bcd14b | 3271 | static void stop_waiting (struct execution_control_state *ecs); |
d4f3574e | 3272 | static void keep_going (struct execution_control_state *ecs); |
94c57d6a | 3273 | static void process_event_stop_test (struct execution_control_state *ecs); |
c447ac0b | 3274 | static int switch_back_to_stepped_thread (struct execution_control_state *ecs); |
104c1213 | 3275 | |
252fbfc8 PA |
3276 | /* This function is attached as a "thread_stop_requested" observer. |
3277 | Cleanup local state that assumed the PTID was to be resumed, and | |
3278 | report the stop to the frontend. */ | |
3279 | ||
2c0b251b | 3280 | static void |
252fbfc8 PA |
3281 | infrun_thread_stop_requested (ptid_t ptid) |
3282 | { | |
c2829269 | 3283 | struct thread_info *tp; |
252fbfc8 | 3284 | |
c65d6b55 PA |
3285 | /* PTID was requested to stop. If the thread was already stopped, |
3286 | but the user/frontend doesn't know about that yet (e.g., the | |
3287 | thread had been temporarily paused for some step-over), set up | |
3288 | for reporting the stop now. */ | |
c2829269 | 3289 | ALL_NON_EXITED_THREADS (tp) |
26a57c92 | 3290 | if (tp->ptid.matches (ptid)) |
c2829269 | 3291 | { |
c65d6b55 PA |
3292 | if (tp->state != THREAD_RUNNING) |
3293 | continue; | |
3294 | if (tp->executing) | |
3295 | continue; | |
3296 | ||
3297 | /* Remove matching threads from the step-over queue, so | |
3298 | start_step_over doesn't try to resume them | |
3299 | automatically. */ | |
c2829269 PA |
3300 | if (thread_is_in_step_over_chain (tp)) |
3301 | thread_step_over_chain_remove (tp); | |
252fbfc8 | 3302 | |
c65d6b55 PA |
3303 | /* If the thread is stopped, but the user/frontend doesn't |
3304 | know about that yet, queue a pending event, as if the | |
3305 | thread had just stopped now. Unless the thread already had | |
3306 | a pending event. */ | |
3307 | if (!tp->suspend.waitstatus_pending_p) | |
3308 | { | |
3309 | tp->suspend.waitstatus_pending_p = 1; | |
3310 | tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED; | |
3311 | tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0; | |
3312 | } | |
3313 | ||
3314 | /* Clear the inline-frame state, since we're re-processing the | |
3315 | stop. */ | |
3316 | clear_inline_frame_state (tp->ptid); | |
3317 | ||
3318 | /* If this thread was paused because some other thread was | |
3319 | doing an inline-step over, let that finish first. Once | |
3320 | that happens, we'll restart all threads and consume pending | |
3321 | stop events then. */ | |
3322 | if (step_over_info_valid_p ()) | |
3323 | continue; | |
3324 | ||
3325 | /* Otherwise we can process the (new) pending event now. Set | |
3326 | it so this pending event is considered by | |
3327 | do_target_wait. */ | |
3328 | tp->resumed = 1; | |
3329 | } | |
252fbfc8 PA |
3330 | } |
3331 | ||
a07daef3 PA |
3332 | static void |
3333 | infrun_thread_thread_exit (struct thread_info *tp, int silent) | |
3334 | { | |
d7e15655 | 3335 | if (target_last_wait_ptid == tp->ptid) |
a07daef3 PA |
3336 | nullify_last_target_wait_ptid (); |
3337 | } | |
3338 | ||
0cbcdb96 PA |
3339 | /* Delete the step resume, single-step and longjmp/exception resume |
3340 | breakpoints of TP. */ | |
4e1c45ea | 3341 | |
0cbcdb96 PA |
3342 | static void |
3343 | delete_thread_infrun_breakpoints (struct thread_info *tp) | |
4e1c45ea | 3344 | { |
0cbcdb96 PA |
3345 | delete_step_resume_breakpoint (tp); |
3346 | delete_exception_resume_breakpoint (tp); | |
34b7e8a6 | 3347 | delete_single_step_breakpoints (tp); |
4e1c45ea PA |
3348 | } |
3349 | ||
0cbcdb96 PA |
3350 | /* If the target still has execution, call FUNC for each thread that |
3351 | just stopped. In all-stop, that's all the non-exited threads; in | |
3352 | non-stop, that's the current thread, only. */ | |
3353 | ||
3354 | typedef void (*for_each_just_stopped_thread_callback_func) | |
3355 | (struct thread_info *tp); | |
4e1c45ea PA |
3356 | |
3357 | static void | |
0cbcdb96 | 3358 | for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func) |
4e1c45ea | 3359 | { |
d7e15655 | 3360 | if (!target_has_execution || inferior_ptid == null_ptid) |
4e1c45ea PA |
3361 | return; |
3362 | ||
fbea99ea | 3363 | if (target_is_non_stop_p ()) |
4e1c45ea | 3364 | { |
0cbcdb96 PA |
3365 | /* If in non-stop mode, only the current thread stopped. */ |
3366 | func (inferior_thread ()); | |
4e1c45ea PA |
3367 | } |
3368 | else | |
0cbcdb96 PA |
3369 | { |
3370 | struct thread_info *tp; | |
3371 | ||
3372 | /* In all-stop mode, all threads have stopped. */ | |
3373 | ALL_NON_EXITED_THREADS (tp) | |
3374 | { | |
3375 | func (tp); | |
3376 | } | |
3377 | } | |
3378 | } | |
3379 | ||
3380 | /* Delete the step resume and longjmp/exception resume breakpoints of | |
3381 | the threads that just stopped. */ | |
3382 | ||
3383 | static void | |
3384 | delete_just_stopped_threads_infrun_breakpoints (void) | |
3385 | { | |
3386 | for_each_just_stopped_thread (delete_thread_infrun_breakpoints); | |
34b7e8a6 PA |
3387 | } |
3388 | ||
3389 | /* Delete the single-step breakpoints of the threads that just | |
3390 | stopped. */ | |
7c16b83e | 3391 | |
34b7e8a6 PA |
3392 | static void |
3393 | delete_just_stopped_threads_single_step_breakpoints (void) | |
3394 | { | |
3395 | for_each_just_stopped_thread (delete_single_step_breakpoints); | |
4e1c45ea PA |
3396 | } |
3397 | ||
1777feb0 | 3398 | /* A cleanup wrapper. */ |
4e1c45ea PA |
3399 | |
3400 | static void | |
0cbcdb96 | 3401 | delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg) |
4e1c45ea | 3402 | { |
0cbcdb96 | 3403 | delete_just_stopped_threads_infrun_breakpoints (); |
4e1c45ea PA |
3404 | } |
3405 | ||
221e1a37 | 3406 | /* See infrun.h. */ |
223698f8 | 3407 | |
221e1a37 | 3408 | void |
223698f8 DE |
3409 | print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid, |
3410 | const struct target_waitstatus *ws) | |
3411 | { | |
23fdd69e | 3412 | std::string status_string = target_waitstatus_to_string (ws); |
d7e74731 | 3413 | string_file stb; |
223698f8 DE |
3414 | |
3415 | /* The text is split over several lines because it was getting too long. | |
3416 | Call fprintf_unfiltered (gdb_stdlog) once so that the text is still | |
3417 | output as a unit; we want only one timestamp printed if debug_timestamp | |
3418 | is set. */ | |
3419 | ||
d7e74731 | 3420 | stb.printf ("infrun: target_wait (%d.%ld.%ld", |
e99b03dc | 3421 | waiton_ptid.pid (), |
e38504b3 | 3422 | waiton_ptid.lwp (), |
cc6bcb54 | 3423 | waiton_ptid.tid ()); |
e99b03dc | 3424 | if (waiton_ptid.pid () != -1) |
d7e74731 PA |
3425 | stb.printf (" [%s]", target_pid_to_str (waiton_ptid)); |
3426 | stb.printf (", status) =\n"); | |
3427 | stb.printf ("infrun: %d.%ld.%ld [%s],\n", | |
e99b03dc | 3428 | result_ptid.pid (), |
e38504b3 | 3429 | result_ptid.lwp (), |
cc6bcb54 | 3430 | result_ptid.tid (), |
d7e74731 | 3431 | target_pid_to_str (result_ptid)); |
23fdd69e | 3432 | stb.printf ("infrun: %s\n", status_string.c_str ()); |
223698f8 DE |
3433 | |
3434 | /* This uses %s in part to handle %'s in the text, but also to avoid | |
3435 | a gcc error: the format attribute requires a string literal. */ | |
d7e74731 | 3436 | fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ()); |
223698f8 DE |
3437 | } |
3438 | ||
372316f1 PA |
3439 | /* Select a thread at random, out of those which are resumed and have |
3440 | had events. */ | |
3441 | ||
3442 | static struct thread_info * | |
3443 | random_pending_event_thread (ptid_t waiton_ptid) | |
3444 | { | |
3445 | struct thread_info *event_tp; | |
3446 | int num_events = 0; | |
3447 | int random_selector; | |
3448 | ||
3449 | /* First see how many events we have. Count only resumed threads | |
3450 | that have an event pending. */ | |
3451 | ALL_NON_EXITED_THREADS (event_tp) | |
26a57c92 | 3452 | if (event_tp->ptid.matches (waiton_ptid) |
372316f1 PA |
3453 | && event_tp->resumed |
3454 | && event_tp->suspend.waitstatus_pending_p) | |
3455 | num_events++; | |
3456 | ||
3457 | if (num_events == 0) | |
3458 | return NULL; | |
3459 | ||
3460 | /* Now randomly pick a thread out of those that have had events. */ | |
3461 | random_selector = (int) | |
3462 | ((num_events * (double) rand ()) / (RAND_MAX + 1.0)); | |
3463 | ||
3464 | if (debug_infrun && num_events > 1) | |
3465 | fprintf_unfiltered (gdb_stdlog, | |
3466 | "infrun: Found %d events, selecting #%d\n", | |
3467 | num_events, random_selector); | |
3468 | ||
3469 | /* Select the Nth thread that has had an event. */ | |
3470 | ALL_NON_EXITED_THREADS (event_tp) | |
26a57c92 | 3471 | if (event_tp->ptid.matches (waiton_ptid) |
372316f1 PA |
3472 | && event_tp->resumed |
3473 | && event_tp->suspend.waitstatus_pending_p) | |
3474 | if (random_selector-- == 0) | |
3475 | break; | |
3476 | ||
3477 | return event_tp; | |
3478 | } | |
3479 | ||
3480 | /* Wrapper for target_wait that first checks whether threads have | |
3481 | pending statuses to report before actually asking the target for | |
3482 | more events. */ | |
3483 | ||
3484 | static ptid_t | |
3485 | do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options) | |
3486 | { | |
3487 | ptid_t event_ptid; | |
3488 | struct thread_info *tp; | |
3489 | ||
3490 | /* First check if there is a resumed thread with a wait status | |
3491 | pending. */ | |
d7e15655 | 3492 | if (ptid == minus_one_ptid || ptid.is_pid ()) |
372316f1 PA |
3493 | { |
3494 | tp = random_pending_event_thread (ptid); | |
3495 | } | |
3496 | else | |
3497 | { | |
3498 | if (debug_infrun) | |
3499 | fprintf_unfiltered (gdb_stdlog, | |
3500 | "infrun: Waiting for specific thread %s.\n", | |
3501 | target_pid_to_str (ptid)); | |
3502 | ||
3503 | /* We have a specific thread to check. */ | |
3504 | tp = find_thread_ptid (ptid); | |
3505 | gdb_assert (tp != NULL); | |
3506 | if (!tp->suspend.waitstatus_pending_p) | |
3507 | tp = NULL; | |
3508 | } | |
3509 | ||
3510 | if (tp != NULL | |
3511 | && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT | |
3512 | || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)) | |
3513 | { | |
00431a78 | 3514 | struct regcache *regcache = get_thread_regcache (tp); |
ac7936df | 3515 | struct gdbarch *gdbarch = regcache->arch (); |
372316f1 PA |
3516 | CORE_ADDR pc; |
3517 | int discard = 0; | |
3518 | ||
3519 | pc = regcache_read_pc (regcache); | |
3520 | ||
3521 | if (pc != tp->suspend.stop_pc) | |
3522 | { | |
3523 | if (debug_infrun) | |
3524 | fprintf_unfiltered (gdb_stdlog, | |
3525 | "infrun: PC of %s changed. was=%s, now=%s\n", | |
3526 | target_pid_to_str (tp->ptid), | |
defd2172 | 3527 | paddress (gdbarch, tp->suspend.stop_pc), |
372316f1 PA |
3528 | paddress (gdbarch, pc)); |
3529 | discard = 1; | |
3530 | } | |
a01bda52 | 3531 | else if (!breakpoint_inserted_here_p (regcache->aspace (), pc)) |
372316f1 PA |
3532 | { |
3533 | if (debug_infrun) | |
3534 | fprintf_unfiltered (gdb_stdlog, | |
3535 | "infrun: previous breakpoint of %s, at %s gone\n", | |
3536 | target_pid_to_str (tp->ptid), | |
3537 | paddress (gdbarch, pc)); | |
3538 | ||
3539 | discard = 1; | |
3540 | } | |
3541 | ||
3542 | if (discard) | |
3543 | { | |
3544 | if (debug_infrun) | |
3545 | fprintf_unfiltered (gdb_stdlog, | |
3546 | "infrun: pending event of %s cancelled.\n", | |
3547 | target_pid_to_str (tp->ptid)); | |
3548 | ||
3549 | tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS; | |
3550 | tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON; | |
3551 | } | |
3552 | } | |
3553 | ||
3554 | if (tp != NULL) | |
3555 | { | |
3556 | if (debug_infrun) | |
3557 | { | |
23fdd69e SM |
3558 | std::string statstr |
3559 | = target_waitstatus_to_string (&tp->suspend.waitstatus); | |
372316f1 | 3560 | |
372316f1 PA |
3561 | fprintf_unfiltered (gdb_stdlog, |
3562 | "infrun: Using pending wait status %s for %s.\n", | |
23fdd69e | 3563 | statstr.c_str (), |
372316f1 | 3564 | target_pid_to_str (tp->ptid)); |
372316f1 PA |
3565 | } |
3566 | ||
3567 | /* Now that we've selected our final event LWP, un-adjust its PC | |
3568 | if it was a software breakpoint (and the target doesn't | |
3569 | always adjust the PC itself). */ | |
3570 | if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT | |
3571 | && !target_supports_stopped_by_sw_breakpoint ()) | |
3572 | { | |
3573 | struct regcache *regcache; | |
3574 | struct gdbarch *gdbarch; | |
3575 | int decr_pc; | |
3576 | ||
00431a78 | 3577 | regcache = get_thread_regcache (tp); |
ac7936df | 3578 | gdbarch = regcache->arch (); |
372316f1 PA |
3579 | |
3580 | decr_pc = gdbarch_decr_pc_after_break (gdbarch); | |
3581 | if (decr_pc != 0) | |
3582 | { | |
3583 | CORE_ADDR pc; | |
3584 | ||
3585 | pc = regcache_read_pc (regcache); | |
3586 | regcache_write_pc (regcache, pc + decr_pc); | |
3587 | } | |
3588 | } | |
3589 | ||
3590 | tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON; | |
3591 | *status = tp->suspend.waitstatus; | |
3592 | tp->suspend.waitstatus_pending_p = 0; | |
3593 | ||
3594 | /* Wake up the event loop again, until all pending events are | |
3595 | processed. */ | |
3596 | if (target_is_async_p ()) | |
3597 | mark_async_event_handler (infrun_async_inferior_event_token); | |
3598 | return tp->ptid; | |
3599 | } | |
3600 | ||
3601 | /* But if we don't find one, we'll have to wait. */ | |
3602 | ||
3603 | if (deprecated_target_wait_hook) | |
3604 | event_ptid = deprecated_target_wait_hook (ptid, status, options); | |
3605 | else | |
3606 | event_ptid = target_wait (ptid, status, options); | |
3607 | ||
3608 | return event_ptid; | |
3609 | } | |
3610 | ||
24291992 PA |
3611 | /* Prepare and stabilize the inferior for detaching it. E.g., |
3612 | detaching while a thread is displaced stepping is a recipe for | |
3613 | crashing it, as nothing would readjust the PC out of the scratch | |
3614 | pad. */ | |
3615 | ||
3616 | void | |
3617 | prepare_for_detach (void) | |
3618 | { | |
3619 | struct inferior *inf = current_inferior (); | |
f2907e49 | 3620 | ptid_t pid_ptid = ptid_t (inf->pid); |
24291992 | 3621 | |
00431a78 | 3622 | displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf); |
24291992 PA |
3623 | |
3624 | /* Is any thread of this process displaced stepping? If not, | |
3625 | there's nothing else to do. */ | |
00431a78 | 3626 | if (displaced == NULL || displaced->step_thread == nullptr) |
24291992 PA |
3627 | return; |
3628 | ||
3629 | if (debug_infrun) | |
3630 | fprintf_unfiltered (gdb_stdlog, | |
3631 | "displaced-stepping in-process while detaching"); | |
3632 | ||
9bcb1f16 | 3633 | scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true); |
24291992 | 3634 | |
00431a78 | 3635 | while (displaced->step_thread != nullptr) |
24291992 | 3636 | { |
24291992 PA |
3637 | struct execution_control_state ecss; |
3638 | struct execution_control_state *ecs; | |
3639 | ||
3640 | ecs = &ecss; | |
3641 | memset (ecs, 0, sizeof (*ecs)); | |
3642 | ||
3643 | overlay_cache_invalid = 1; | |
f15cb84a YQ |
3644 | /* Flush target cache before starting to handle each event. |
3645 | Target was running and cache could be stale. This is just a | |
3646 | heuristic. Running threads may modify target memory, but we | |
3647 | don't get any event. */ | |
3648 | target_dcache_invalidate (); | |
24291992 | 3649 | |
372316f1 | 3650 | ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0); |
24291992 PA |
3651 | |
3652 | if (debug_infrun) | |
3653 | print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws); | |
3654 | ||
3655 | /* If an error happens while handling the event, propagate GDB's | |
3656 | knowledge of the executing state to the frontend/user running | |
3657 | state. */ | |
731f534f | 3658 | scoped_finish_thread_state finish_state (minus_one_ptid); |
24291992 PA |
3659 | |
3660 | /* Now figure out what to do with the result of the result. */ | |
3661 | handle_inferior_event (ecs); | |
3662 | ||
3663 | /* No error, don't finish the state yet. */ | |
731f534f | 3664 | finish_state.release (); |
24291992 PA |
3665 | |
3666 | /* Breakpoints and watchpoints are not installed on the target | |
3667 | at this point, and signals are passed directly to the | |
3668 | inferior, so this must mean the process is gone. */ | |
3669 | if (!ecs->wait_some_more) | |
3670 | { | |
9bcb1f16 | 3671 | restore_detaching.release (); |
24291992 PA |
3672 | error (_("Program exited while detaching")); |
3673 | } | |
3674 | } | |
3675 | ||
9bcb1f16 | 3676 | restore_detaching.release (); |
24291992 PA |
3677 | } |
3678 | ||
cd0fc7c3 | 3679 | /* Wait for control to return from inferior to debugger. |
ae123ec6 | 3680 | |
cd0fc7c3 SS |
3681 | If inferior gets a signal, we may decide to start it up again |
3682 | instead of returning. That is why there is a loop in this function. | |
3683 | When this function actually returns it means the inferior | |
3684 | should be left stopped and GDB should read more commands. */ | |
3685 | ||
3686 | void | |
e4c8541f | 3687 | wait_for_inferior (void) |
cd0fc7c3 SS |
3688 | { |
3689 | struct cleanup *old_cleanups; | |
c906108c | 3690 | |
527159b7 | 3691 | if (debug_infrun) |
ae123ec6 | 3692 | fprintf_unfiltered |
e4c8541f | 3693 | (gdb_stdlog, "infrun: wait_for_inferior ()\n"); |
527159b7 | 3694 | |
0cbcdb96 PA |
3695 | old_cleanups |
3696 | = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, | |
3697 | NULL); | |
cd0fc7c3 | 3698 | |
e6f5c25b PA |
3699 | /* If an error happens while handling the event, propagate GDB's |
3700 | knowledge of the executing state to the frontend/user running | |
3701 | state. */ | |
731f534f | 3702 | scoped_finish_thread_state finish_state (minus_one_ptid); |
e6f5c25b | 3703 | |
c906108c SS |
3704 | while (1) |
3705 | { | |
ae25568b PA |
3706 | struct execution_control_state ecss; |
3707 | struct execution_control_state *ecs = &ecss; | |
963f9c80 | 3708 | ptid_t waiton_ptid = minus_one_ptid; |
29f49a6a | 3709 | |
ae25568b PA |
3710 | memset (ecs, 0, sizeof (*ecs)); |
3711 | ||
ec9499be | 3712 | overlay_cache_invalid = 1; |
ec9499be | 3713 | |
f15cb84a YQ |
3714 | /* Flush target cache before starting to handle each event. |
3715 | Target was running and cache could be stale. This is just a | |
3716 | heuristic. Running threads may modify target memory, but we | |
3717 | don't get any event. */ | |
3718 | target_dcache_invalidate (); | |
3719 | ||
372316f1 | 3720 | ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0); |
c906108c | 3721 | |
f00150c9 | 3722 | if (debug_infrun) |
223698f8 | 3723 | print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws); |
f00150c9 | 3724 | |
cd0fc7c3 SS |
3725 | /* Now figure out what to do with the result of the result. */ |
3726 | handle_inferior_event (ecs); | |
c906108c | 3727 | |
cd0fc7c3 SS |
3728 | if (!ecs->wait_some_more) |
3729 | break; | |
3730 | } | |
4e1c45ea | 3731 | |
e6f5c25b | 3732 | /* No error, don't finish the state yet. */ |
731f534f | 3733 | finish_state.release (); |
e6f5c25b | 3734 | |
cd0fc7c3 SS |
3735 | do_cleanups (old_cleanups); |
3736 | } | |
c906108c | 3737 | |
d3d4baed PA |
3738 | /* Cleanup that reinstalls the readline callback handler, if the |
3739 | target is running in the background. If while handling the target | |
3740 | event something triggered a secondary prompt, like e.g., a | |
3741 | pagination prompt, we'll have removed the callback handler (see | |
3742 | gdb_readline_wrapper_line). Need to do this as we go back to the | |
3743 | event loop, ready to process further input. Note this has no | |
3744 | effect if the handler hasn't actually been removed, because calling | |
3745 | rl_callback_handler_install resets the line buffer, thus losing | |
3746 | input. */ | |
3747 | ||
3748 | static void | |
3749 | reinstall_readline_callback_handler_cleanup (void *arg) | |
3750 | { | |
3b12939d PA |
3751 | struct ui *ui = current_ui; |
3752 | ||
3753 | if (!ui->async) | |
6c400b59 PA |
3754 | { |
3755 | /* We're not going back to the top level event loop yet. Don't | |
3756 | install the readline callback, as it'd prep the terminal, | |
3757 | readline-style (raw, noecho) (e.g., --batch). We'll install | |
3758 | it the next time the prompt is displayed, when we're ready | |
3759 | for input. */ | |
3760 | return; | |
3761 | } | |
3762 | ||
3b12939d | 3763 | if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED) |
d3d4baed PA |
3764 | gdb_rl_callback_handler_reinstall (); |
3765 | } | |
3766 | ||
243a9253 PA |
3767 | /* Clean up the FSMs of threads that are now stopped. In non-stop, |
3768 | that's just the event thread. In all-stop, that's all threads. */ | |
3769 | ||
3770 | static void | |
3771 | clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs) | |
3772 | { | |
3773 | struct thread_info *thr = ecs->event_thread; | |
3774 | ||
3775 | if (thr != NULL && thr->thread_fsm != NULL) | |
8980e177 | 3776 | thread_fsm_clean_up (thr->thread_fsm, thr); |
243a9253 PA |
3777 | |
3778 | if (!non_stop) | |
3779 | { | |
3780 | ALL_NON_EXITED_THREADS (thr) | |
3781 | { | |
3782 | if (thr->thread_fsm == NULL) | |
3783 | continue; | |
3784 | if (thr == ecs->event_thread) | |
3785 | continue; | |
3786 | ||
00431a78 | 3787 | switch_to_thread (thr); |
8980e177 | 3788 | thread_fsm_clean_up (thr->thread_fsm, thr); |
243a9253 PA |
3789 | } |
3790 | ||
3791 | if (ecs->event_thread != NULL) | |
00431a78 | 3792 | switch_to_thread (ecs->event_thread); |
243a9253 PA |
3793 | } |
3794 | } | |
3795 | ||
3b12939d PA |
3796 | /* Helper for all_uis_check_sync_execution_done that works on the |
3797 | current UI. */ | |
3798 | ||
3799 | static void | |
3800 | check_curr_ui_sync_execution_done (void) | |
3801 | { | |
3802 | struct ui *ui = current_ui; | |
3803 | ||
3804 | if (ui->prompt_state == PROMPT_NEEDED | |
3805 | && ui->async | |
3806 | && !gdb_in_secondary_prompt_p (ui)) | |
3807 | { | |
223ffa71 | 3808 | target_terminal::ours (); |
76727919 | 3809 | gdb::observers::sync_execution_done.notify (); |
3eb7562a | 3810 | ui_register_input_event_handler (ui); |
3b12939d PA |
3811 | } |
3812 | } | |
3813 | ||
3814 | /* See infrun.h. */ | |
3815 | ||
3816 | void | |
3817 | all_uis_check_sync_execution_done (void) | |
3818 | { | |
0e454242 | 3819 | SWITCH_THRU_ALL_UIS () |
3b12939d PA |
3820 | { |
3821 | check_curr_ui_sync_execution_done (); | |
3822 | } | |
3823 | } | |
3824 | ||
a8836c93 PA |
3825 | /* See infrun.h. */ |
3826 | ||
3827 | void | |
3828 | all_uis_on_sync_execution_starting (void) | |
3829 | { | |
0e454242 | 3830 | SWITCH_THRU_ALL_UIS () |
a8836c93 PA |
3831 | { |
3832 | if (current_ui->prompt_state == PROMPT_NEEDED) | |
3833 | async_disable_stdin (); | |
3834 | } | |
3835 | } | |
3836 | ||
1777feb0 | 3837 | /* Asynchronous version of wait_for_inferior. It is called by the |
43ff13b4 | 3838 | event loop whenever a change of state is detected on the file |
1777feb0 MS |
3839 | descriptor corresponding to the target. It can be called more than |
3840 | once to complete a single execution command. In such cases we need | |
3841 | to keep the state in a global variable ECSS. If it is the last time | |
a474d7c2 PA |
3842 | that this function is called for a single execution command, then |
3843 | report to the user that the inferior has stopped, and do the | |
1777feb0 | 3844 | necessary cleanups. */ |
43ff13b4 JM |
3845 | |
3846 | void | |
fba45db2 | 3847 | fetch_inferior_event (void *client_data) |
43ff13b4 | 3848 | { |
0d1e5fa7 | 3849 | struct execution_control_state ecss; |
a474d7c2 | 3850 | struct execution_control_state *ecs = &ecss; |
4f8d22e3 | 3851 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); |
0f641c01 | 3852 | int cmd_done = 0; |
963f9c80 | 3853 | ptid_t waiton_ptid = minus_one_ptid; |
43ff13b4 | 3854 | |
0d1e5fa7 PA |
3855 | memset (ecs, 0, sizeof (*ecs)); |
3856 | ||
c61db772 PA |
3857 | /* Events are always processed with the main UI as current UI. This |
3858 | way, warnings, debug output, etc. are always consistently sent to | |
3859 | the main console. */ | |
4b6749b9 | 3860 | scoped_restore save_ui = make_scoped_restore (¤t_ui, main_ui); |
c61db772 | 3861 | |
d3d4baed PA |
3862 | /* End up with readline processing input, if necessary. */ |
3863 | make_cleanup (reinstall_readline_callback_handler_cleanup, NULL); | |
3864 | ||
c5187ac6 PA |
3865 | /* We're handling a live event, so make sure we're doing live |
3866 | debugging. If we're looking at traceframes while the target is | |
3867 | running, we're going to need to get back to that mode after | |
3868 | handling the event. */ | |
6f14adc5 | 3869 | gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe; |
c5187ac6 PA |
3870 | if (non_stop) |
3871 | { | |
6f14adc5 | 3872 | maybe_restore_traceframe.emplace (); |
e6e4e701 | 3873 | set_current_traceframe (-1); |
c5187ac6 PA |
3874 | } |
3875 | ||
5ed8105e PA |
3876 | gdb::optional<scoped_restore_current_thread> maybe_restore_thread; |
3877 | ||
4f8d22e3 PA |
3878 | if (non_stop) |
3879 | /* In non-stop mode, the user/frontend should not notice a thread | |
3880 | switch due to internal events. Make sure we reverse to the | |
3881 | user selected thread and frame after handling the event and | |
3882 | running any breakpoint commands. */ | |
5ed8105e | 3883 | maybe_restore_thread.emplace (); |
4f8d22e3 | 3884 | |
ec9499be | 3885 | overlay_cache_invalid = 1; |
f15cb84a YQ |
3886 | /* Flush target cache before starting to handle each event. Target |
3887 | was running and cache could be stale. This is just a heuristic. | |
3888 | Running threads may modify target memory, but we don't get any | |
3889 | event. */ | |
3890 | target_dcache_invalidate (); | |
3dd5b83d | 3891 | |
b7b633e9 TT |
3892 | scoped_restore save_exec_dir |
3893 | = make_scoped_restore (&execution_direction, target_execution_direction ()); | |
32231432 | 3894 | |
0b333c5e PA |
3895 | ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, |
3896 | target_can_async_p () ? TARGET_WNOHANG : 0); | |
43ff13b4 | 3897 | |
f00150c9 | 3898 | if (debug_infrun) |
223698f8 | 3899 | print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws); |
f00150c9 | 3900 | |
29f49a6a PA |
3901 | /* If an error happens while handling the event, propagate GDB's |
3902 | knowledge of the executing state to the frontend/user running | |
3903 | state. */ | |
731f534f PA |
3904 | ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid; |
3905 | scoped_finish_thread_state finish_state (finish_ptid); | |
29f49a6a | 3906 | |
353d1d73 JK |
3907 | /* Get executed before make_cleanup_restore_current_thread above to apply |
3908 | still for the thread which has thrown the exception. */ | |
731f534f | 3909 | struct cleanup *ts_old_chain = make_bpstat_clear_actions_cleanup (); |
353d1d73 | 3910 | |
7c16b83e PA |
3911 | make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL); |
3912 | ||
43ff13b4 | 3913 | /* Now figure out what to do with the result of the result. */ |
a474d7c2 | 3914 | handle_inferior_event (ecs); |
43ff13b4 | 3915 | |
a474d7c2 | 3916 | if (!ecs->wait_some_more) |
43ff13b4 | 3917 | { |
c9657e70 | 3918 | struct inferior *inf = find_inferior_ptid (ecs->ptid); |
243a9253 PA |
3919 | int should_stop = 1; |
3920 | struct thread_info *thr = ecs->event_thread; | |
d6b48e9c | 3921 | |
0cbcdb96 | 3922 | delete_just_stopped_threads_infrun_breakpoints (); |
f107f563 | 3923 | |
243a9253 PA |
3924 | if (thr != NULL) |
3925 | { | |
3926 | struct thread_fsm *thread_fsm = thr->thread_fsm; | |
3927 | ||
3928 | if (thread_fsm != NULL) | |
8980e177 | 3929 | should_stop = thread_fsm_should_stop (thread_fsm, thr); |
243a9253 PA |
3930 | } |
3931 | ||
3932 | if (!should_stop) | |
3933 | { | |
3934 | keep_going (ecs); | |
3935 | } | |
c2d11a7d | 3936 | else |
0f641c01 | 3937 | { |
1840d81a AB |
3938 | int should_notify_stop = 1; |
3939 | int proceeded = 0; | |
3940 | ||
243a9253 PA |
3941 | clean_up_just_stopped_threads_fsms (ecs); |
3942 | ||
388a7084 PA |
3943 | if (thr != NULL && thr->thread_fsm != NULL) |
3944 | { | |
3945 | should_notify_stop | |
3946 | = thread_fsm_should_notify_stop (thr->thread_fsm); | |
3947 | } | |
3948 | ||
3949 | if (should_notify_stop) | |
3950 | { | |
3951 | /* We may not find an inferior if this was a process exit. */ | |
3952 | if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY) | |
4c2f2a79 | 3953 | proceeded = normal_stop (); |
1840d81a | 3954 | } |
243a9253 | 3955 | |
1840d81a AB |
3956 | if (!proceeded) |
3957 | { | |
3958 | inferior_event_handler (INF_EXEC_COMPLETE, NULL); | |
3959 | cmd_done = 1; | |
388a7084 | 3960 | } |
0f641c01 | 3961 | } |
43ff13b4 | 3962 | } |
4f8d22e3 | 3963 | |
29f49a6a PA |
3964 | discard_cleanups (ts_old_chain); |
3965 | ||
731f534f PA |
3966 | /* No error, don't finish the thread states yet. */ |
3967 | finish_state.release (); | |
3968 | ||
4f8d22e3 PA |
3969 | /* Revert thread and frame. */ |
3970 | do_cleanups (old_chain); | |
3971 | ||
3b12939d PA |
3972 | /* If a UI was in sync execution mode, and now isn't, restore its |
3973 | prompt (a synchronous execution command has finished, and we're | |
3974 | ready for input). */ | |
3975 | all_uis_check_sync_execution_done (); | |
0f641c01 PA |
3976 | |
3977 | if (cmd_done | |
0f641c01 | 3978 | && exec_done_display_p |
00431a78 PA |
3979 | && (inferior_ptid == null_ptid |
3980 | || inferior_thread ()->state != THREAD_RUNNING)) | |
0f641c01 | 3981 | printf_unfiltered (_("completed.\n")); |
43ff13b4 JM |
3982 | } |
3983 | ||
edb3359d DJ |
3984 | /* Record the frame and location we're currently stepping through. */ |
3985 | void | |
3986 | set_step_info (struct frame_info *frame, struct symtab_and_line sal) | |
3987 | { | |
3988 | struct thread_info *tp = inferior_thread (); | |
3989 | ||
16c381f0 JK |
3990 | tp->control.step_frame_id = get_frame_id (frame); |
3991 | tp->control.step_stack_frame_id = get_stack_frame_id (frame); | |
edb3359d DJ |
3992 | |
3993 | tp->current_symtab = sal.symtab; | |
3994 | tp->current_line = sal.line; | |
3995 | } | |
3996 | ||
0d1e5fa7 PA |
3997 | /* Clear context switchable stepping state. */ |
3998 | ||
3999 | void | |
4e1c45ea | 4000 | init_thread_stepping_state (struct thread_info *tss) |
0d1e5fa7 | 4001 | { |
7f5ef605 | 4002 | tss->stepped_breakpoint = 0; |
0d1e5fa7 | 4003 | tss->stepping_over_breakpoint = 0; |
963f9c80 | 4004 | tss->stepping_over_watchpoint = 0; |
0d1e5fa7 | 4005 | tss->step_after_step_resume_breakpoint = 0; |
cd0fc7c3 SS |
4006 | } |
4007 | ||
c32c64b7 DE |
4008 | /* Set the cached copy of the last ptid/waitstatus. */ |
4009 | ||
6efcd9a8 | 4010 | void |
c32c64b7 DE |
4011 | set_last_target_status (ptid_t ptid, struct target_waitstatus status) |
4012 | { | |
4013 | target_last_wait_ptid = ptid; | |
4014 | target_last_waitstatus = status; | |
4015 | } | |
4016 | ||
e02bc4cc | 4017 | /* Return the cached copy of the last pid/waitstatus returned by |
9a4105ab AC |
4018 | target_wait()/deprecated_target_wait_hook(). The data is actually |
4019 | cached by handle_inferior_event(), which gets called immediately | |
4020 | after target_wait()/deprecated_target_wait_hook(). */ | |
e02bc4cc DS |
4021 | |
4022 | void | |
488f131b | 4023 | get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status) |
e02bc4cc | 4024 | { |
39f77062 | 4025 | *ptidp = target_last_wait_ptid; |
e02bc4cc DS |
4026 | *status = target_last_waitstatus; |
4027 | } | |
4028 | ||
ac264b3b MS |
4029 | void |
4030 | nullify_last_target_wait_ptid (void) | |
4031 | { | |
4032 | target_last_wait_ptid = minus_one_ptid; | |
4033 | } | |
4034 | ||
dcf4fbde | 4035 | /* Switch thread contexts. */ |
dd80620e MS |
4036 | |
4037 | static void | |
00431a78 | 4038 | context_switch (execution_control_state *ecs) |
dd80620e | 4039 | { |
00431a78 PA |
4040 | if (debug_infrun |
4041 | && ecs->ptid != inferior_ptid | |
4042 | && ecs->event_thread != inferior_thread ()) | |
fd48f117 DJ |
4043 | { |
4044 | fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ", | |
4045 | target_pid_to_str (inferior_ptid)); | |
4046 | fprintf_unfiltered (gdb_stdlog, "to %s\n", | |
00431a78 | 4047 | target_pid_to_str (ecs->ptid)); |
fd48f117 DJ |
4048 | } |
4049 | ||
00431a78 | 4050 | switch_to_thread (ecs->event_thread); |
dd80620e MS |
4051 | } |
4052 | ||
d8dd4d5f PA |
4053 | /* If the target can't tell whether we've hit breakpoints |
4054 | (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP, | |
4055 | check whether that could have been caused by a breakpoint. If so, | |
4056 | adjust the PC, per gdbarch_decr_pc_after_break. */ | |
4057 | ||
4fa8626c | 4058 | static void |
d8dd4d5f PA |
4059 | adjust_pc_after_break (struct thread_info *thread, |
4060 | struct target_waitstatus *ws) | |
4fa8626c | 4061 | { |
24a73cce UW |
4062 | struct regcache *regcache; |
4063 | struct gdbarch *gdbarch; | |
118e6252 | 4064 | CORE_ADDR breakpoint_pc, decr_pc; |
4fa8626c | 4065 | |
4fa8626c DJ |
4066 | /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If |
4067 | we aren't, just return. | |
9709f61c DJ |
4068 | |
4069 | We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not | |
b798847d UW |
4070 | affected by gdbarch_decr_pc_after_break. Other waitkinds which are |
4071 | implemented by software breakpoints should be handled through the normal | |
4072 | breakpoint layer. | |
8fb3e588 | 4073 | |
4fa8626c DJ |
4074 | NOTE drow/2004-01-31: On some targets, breakpoints may generate |
4075 | different signals (SIGILL or SIGEMT for instance), but it is less | |
4076 | clear where the PC is pointing afterwards. It may not match | |
b798847d UW |
4077 | gdbarch_decr_pc_after_break. I don't know any specific target that |
4078 | generates these signals at breakpoints (the code has been in GDB since at | |
4079 | least 1992) so I can not guess how to handle them here. | |
8fb3e588 | 4080 | |
e6cf7916 UW |
4081 | In earlier versions of GDB, a target with |
4082 | gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a | |
b798847d UW |
4083 | watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any |
4084 | target with both of these set in GDB history, and it seems unlikely to be | |
4085 | correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */ | |
4fa8626c | 4086 | |
d8dd4d5f | 4087 | if (ws->kind != TARGET_WAITKIND_STOPPED) |
4fa8626c DJ |
4088 | return; |
4089 | ||
d8dd4d5f | 4090 | if (ws->value.sig != GDB_SIGNAL_TRAP) |
4fa8626c DJ |
4091 | return; |
4092 | ||
4058b839 PA |
4093 | /* In reverse execution, when a breakpoint is hit, the instruction |
4094 | under it has already been de-executed. The reported PC always | |
4095 | points at the breakpoint address, so adjusting it further would | |
4096 | be wrong. E.g., consider this case on a decr_pc_after_break == 1 | |
4097 | architecture: | |
4098 | ||
4099 | B1 0x08000000 : INSN1 | |
4100 | B2 0x08000001 : INSN2 | |
4101 | 0x08000002 : INSN3 | |
4102 | PC -> 0x08000003 : INSN4 | |
4103 | ||
4104 | Say you're stopped at 0x08000003 as above. Reverse continuing | |
4105 | from that point should hit B2 as below. Reading the PC when the | |
4106 | SIGTRAP is reported should read 0x08000001 and INSN2 should have | |
4107 | been de-executed already. | |
4108 | ||
4109 | B1 0x08000000 : INSN1 | |
4110 | B2 PC -> 0x08000001 : INSN2 | |
4111 | 0x08000002 : INSN3 | |
4112 | 0x08000003 : INSN4 | |
4113 | ||
4114 | We can't apply the same logic as for forward execution, because | |
4115 | we would wrongly adjust the PC to 0x08000000, since there's a | |
4116 | breakpoint at PC - 1. We'd then report a hit on B1, although | |
4117 | INSN1 hadn't been de-executed yet. Doing nothing is the correct | |
4118 | behaviour. */ | |
4119 | if (execution_direction == EXEC_REVERSE) | |
4120 | return; | |
4121 | ||
1cf4d951 PA |
4122 | /* If the target can tell whether the thread hit a SW breakpoint, |
4123 | trust it. Targets that can tell also adjust the PC | |
4124 | themselves. */ | |
4125 | if (target_supports_stopped_by_sw_breakpoint ()) | |
4126 | return; | |
4127 | ||
4128 | /* Note that relying on whether a breakpoint is planted in memory to | |
4129 | determine this can fail. E.g,. the breakpoint could have been | |
4130 | removed since. Or the thread could have been told to step an | |
4131 | instruction the size of a breakpoint instruction, and only | |
4132 | _after_ was a breakpoint inserted at its address. */ | |
4133 | ||
24a73cce UW |
4134 | /* If this target does not decrement the PC after breakpoints, then |
4135 | we have nothing to do. */ | |
00431a78 | 4136 | regcache = get_thread_regcache (thread); |
ac7936df | 4137 | gdbarch = regcache->arch (); |
118e6252 | 4138 | |
527a273a | 4139 | decr_pc = gdbarch_decr_pc_after_break (gdbarch); |
118e6252 | 4140 | if (decr_pc == 0) |
24a73cce UW |
4141 | return; |
4142 | ||
8b86c959 | 4143 | const address_space *aspace = regcache->aspace (); |
6c95b8df | 4144 | |
8aad930b AC |
4145 | /* Find the location where (if we've hit a breakpoint) the |
4146 | breakpoint would be. */ | |
118e6252 | 4147 | breakpoint_pc = regcache_read_pc (regcache) - decr_pc; |
8aad930b | 4148 | |
1cf4d951 PA |
4149 | /* If the target can't tell whether a software breakpoint triggered, |
4150 | fallback to figuring it out based on breakpoints we think were | |
4151 | inserted in the target, and on whether the thread was stepped or | |
4152 | continued. */ | |
4153 | ||
1c5cfe86 PA |
4154 | /* Check whether there actually is a software breakpoint inserted at |
4155 | that location. | |
4156 | ||
4157 | If in non-stop mode, a race condition is possible where we've | |
4158 | removed a breakpoint, but stop events for that breakpoint were | |
4159 | already queued and arrive later. To suppress those spurious | |
4160 | SIGTRAPs, we keep a list of such breakpoint locations for a bit, | |
1cf4d951 PA |
4161 | and retire them after a number of stop events are reported. Note |
4162 | this is an heuristic and can thus get confused. The real fix is | |
4163 | to get the "stopped by SW BP and needs adjustment" info out of | |
4164 | the target/kernel (and thus never reach here; see above). */ | |
6c95b8df | 4165 | if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc) |
fbea99ea PA |
4166 | || (target_is_non_stop_p () |
4167 | && moribund_breakpoint_here_p (aspace, breakpoint_pc))) | |
8aad930b | 4168 | { |
07036511 | 4169 | gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable; |
abbb1732 | 4170 | |
8213266a | 4171 | if (record_full_is_used ()) |
07036511 TT |
4172 | restore_operation_disable.emplace |
4173 | (record_full_gdb_operation_disable_set ()); | |
96429cc8 | 4174 | |
1c0fdd0e UW |
4175 | /* When using hardware single-step, a SIGTRAP is reported for both |
4176 | a completed single-step and a software breakpoint. Need to | |
4177 | differentiate between the two, as the latter needs adjusting | |
4178 | but the former does not. | |
4179 | ||
4180 | The SIGTRAP can be due to a completed hardware single-step only if | |
4181 | - we didn't insert software single-step breakpoints | |
1c0fdd0e UW |
4182 | - this thread is currently being stepped |
4183 | ||
4184 | If any of these events did not occur, we must have stopped due | |
4185 | to hitting a software breakpoint, and have to back up to the | |
4186 | breakpoint address. | |
4187 | ||
4188 | As a special case, we could have hardware single-stepped a | |
4189 | software breakpoint. In this case (prev_pc == breakpoint_pc), | |
4190 | we also need to back up to the breakpoint address. */ | |
4191 | ||
d8dd4d5f PA |
4192 | if (thread_has_single_step_breakpoints_set (thread) |
4193 | || !currently_stepping (thread) | |
4194 | || (thread->stepped_breakpoint | |
4195 | && thread->prev_pc == breakpoint_pc)) | |
515630c5 | 4196 | regcache_write_pc (regcache, breakpoint_pc); |
8aad930b | 4197 | } |
4fa8626c DJ |
4198 | } |
4199 | ||
edb3359d DJ |
4200 | static int |
4201 | stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id) | |
4202 | { | |
4203 | for (frame = get_prev_frame (frame); | |
4204 | frame != NULL; | |
4205 | frame = get_prev_frame (frame)) | |
4206 | { | |
4207 | if (frame_id_eq (get_frame_id (frame), step_frame_id)) | |
4208 | return 1; | |
4209 | if (get_frame_type (frame) != INLINE_FRAME) | |
4210 | break; | |
4211 | } | |
4212 | ||
4213 | return 0; | |
4214 | } | |
4215 | ||
c65d6b55 PA |
4216 | /* If the event thread has the stop requested flag set, pretend it |
4217 | stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to | |
4218 | target_stop). */ | |
4219 | ||
4220 | static bool | |
4221 | handle_stop_requested (struct execution_control_state *ecs) | |
4222 | { | |
4223 | if (ecs->event_thread->stop_requested) | |
4224 | { | |
4225 | ecs->ws.kind = TARGET_WAITKIND_STOPPED; | |
4226 | ecs->ws.value.sig = GDB_SIGNAL_0; | |
4227 | handle_signal_stop (ecs); | |
4228 | return true; | |
4229 | } | |
4230 | return false; | |
4231 | } | |
4232 | ||
a96d9b2e SDJ |
4233 | /* Auxiliary function that handles syscall entry/return events. |
4234 | It returns 1 if the inferior should keep going (and GDB | |
4235 | should ignore the event), or 0 if the event deserves to be | |
4236 | processed. */ | |
ca2163eb | 4237 | |
a96d9b2e | 4238 | static int |
ca2163eb | 4239 | handle_syscall_event (struct execution_control_state *ecs) |
a96d9b2e | 4240 | { |
ca2163eb | 4241 | struct regcache *regcache; |
ca2163eb PA |
4242 | int syscall_number; |
4243 | ||
00431a78 | 4244 | context_switch (ecs); |
ca2163eb | 4245 | |
00431a78 | 4246 | regcache = get_thread_regcache (ecs->event_thread); |
f90263c1 | 4247 | syscall_number = ecs->ws.value.syscall_number; |
f2ffa92b | 4248 | ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache); |
ca2163eb | 4249 | |
a96d9b2e SDJ |
4250 | if (catch_syscall_enabled () > 0 |
4251 | && catching_syscall_number (syscall_number) > 0) | |
4252 | { | |
4253 | if (debug_infrun) | |
4254 | fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n", | |
4255 | syscall_number); | |
a96d9b2e | 4256 | |
16c381f0 | 4257 | ecs->event_thread->control.stop_bpstat |
a01bda52 | 4258 | = bpstat_stop_status (regcache->aspace (), |
f2ffa92b PA |
4259 | ecs->event_thread->suspend.stop_pc, |
4260 | ecs->event_thread, &ecs->ws); | |
ab04a2af | 4261 | |
c65d6b55 PA |
4262 | if (handle_stop_requested (ecs)) |
4263 | return 0; | |
4264 | ||
ce12b012 | 4265 | if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat)) |
ca2163eb PA |
4266 | { |
4267 | /* Catchpoint hit. */ | |
ca2163eb PA |
4268 | return 0; |
4269 | } | |
a96d9b2e | 4270 | } |
ca2163eb | 4271 | |
c65d6b55 PA |
4272 | if (handle_stop_requested (ecs)) |
4273 | return 0; | |
4274 | ||
ca2163eb | 4275 | /* If no catchpoint triggered for this, then keep going. */ |
ca2163eb PA |
4276 | keep_going (ecs); |
4277 | return 1; | |
a96d9b2e SDJ |
4278 | } |
4279 | ||
7e324e48 GB |
4280 | /* Lazily fill in the execution_control_state's stop_func_* fields. */ |
4281 | ||
4282 | static void | |
4283 | fill_in_stop_func (struct gdbarch *gdbarch, | |
4284 | struct execution_control_state *ecs) | |
4285 | { | |
4286 | if (!ecs->stop_func_filled_in) | |
4287 | { | |
4288 | /* Don't care about return value; stop_func_start and stop_func_name | |
4289 | will both be 0 if it doesn't work. */ | |
59adbf5d KB |
4290 | find_function_entry_range_from_pc (ecs->event_thread->suspend.stop_pc, |
4291 | &ecs->stop_func_name, | |
4292 | &ecs->stop_func_start, | |
4293 | &ecs->stop_func_end); | |
7e324e48 GB |
4294 | ecs->stop_func_start |
4295 | += gdbarch_deprecated_function_start_offset (gdbarch); | |
4296 | ||
591a12a1 UW |
4297 | if (gdbarch_skip_entrypoint_p (gdbarch)) |
4298 | ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch, | |
4299 | ecs->stop_func_start); | |
4300 | ||
7e324e48 GB |
4301 | ecs->stop_func_filled_in = 1; |
4302 | } | |
4303 | } | |
4304 | ||
4f5d7f63 | 4305 | |
00431a78 | 4306 | /* Return the STOP_SOON field of the inferior pointed at by ECS. */ |
4f5d7f63 PA |
4307 | |
4308 | static enum stop_kind | |
00431a78 | 4309 | get_inferior_stop_soon (execution_control_state *ecs) |
4f5d7f63 | 4310 | { |
00431a78 | 4311 | struct inferior *inf = find_inferior_ptid (ecs->ptid); |
4f5d7f63 PA |
4312 | |
4313 | gdb_assert (inf != NULL); | |
4314 | return inf->control.stop_soon; | |
4315 | } | |
4316 | ||
372316f1 PA |
4317 | /* Wait for one event. Store the resulting waitstatus in WS, and |
4318 | return the event ptid. */ | |
4319 | ||
4320 | static ptid_t | |
4321 | wait_one (struct target_waitstatus *ws) | |
4322 | { | |
4323 | ptid_t event_ptid; | |
4324 | ptid_t wait_ptid = minus_one_ptid; | |
4325 | ||
4326 | overlay_cache_invalid = 1; | |
4327 | ||
4328 | /* Flush target cache before starting to handle each event. | |
4329 | Target was running and cache could be stale. This is just a | |
4330 | heuristic. Running threads may modify target memory, but we | |
4331 | don't get any event. */ | |
4332 | target_dcache_invalidate (); | |
4333 | ||
4334 | if (deprecated_target_wait_hook) | |
4335 | event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0); | |
4336 | else | |
4337 | event_ptid = target_wait (wait_ptid, ws, 0); | |
4338 | ||
4339 | if (debug_infrun) | |
4340 | print_target_wait_results (wait_ptid, event_ptid, ws); | |
4341 | ||
4342 | return event_ptid; | |
4343 | } | |
4344 | ||
4345 | /* Generate a wrapper for target_stopped_by_REASON that works on PTID | |
4346 | instead of the current thread. */ | |
4347 | #define THREAD_STOPPED_BY(REASON) \ | |
4348 | static int \ | |
4349 | thread_stopped_by_ ## REASON (ptid_t ptid) \ | |
4350 | { \ | |
2989a365 | 4351 | scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \ |
372316f1 PA |
4352 | inferior_ptid = ptid; \ |
4353 | \ | |
2989a365 | 4354 | return target_stopped_by_ ## REASON (); \ |
372316f1 PA |
4355 | } |
4356 | ||
4357 | /* Generate thread_stopped_by_watchpoint. */ | |
4358 | THREAD_STOPPED_BY (watchpoint) | |
4359 | /* Generate thread_stopped_by_sw_breakpoint. */ | |
4360 | THREAD_STOPPED_BY (sw_breakpoint) | |
4361 | /* Generate thread_stopped_by_hw_breakpoint. */ | |
4362 | THREAD_STOPPED_BY (hw_breakpoint) | |
4363 | ||
372316f1 PA |
4364 | /* Save the thread's event and stop reason to process it later. */ |
4365 | ||
4366 | static void | |
4367 | save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws) | |
4368 | { | |
372316f1 PA |
4369 | if (debug_infrun) |
4370 | { | |
23fdd69e | 4371 | std::string statstr = target_waitstatus_to_string (ws); |
372316f1 | 4372 | |
372316f1 PA |
4373 | fprintf_unfiltered (gdb_stdlog, |
4374 | "infrun: saving status %s for %d.%ld.%ld\n", | |
23fdd69e | 4375 | statstr.c_str (), |
e99b03dc | 4376 | tp->ptid.pid (), |
e38504b3 | 4377 | tp->ptid.lwp (), |
cc6bcb54 | 4378 | tp->ptid.tid ()); |
372316f1 PA |
4379 | } |
4380 | ||
4381 | /* Record for later. */ | |
4382 | tp->suspend.waitstatus = *ws; | |
4383 | tp->suspend.waitstatus_pending_p = 1; | |
4384 | ||
00431a78 | 4385 | struct regcache *regcache = get_thread_regcache (tp); |
8b86c959 | 4386 | const address_space *aspace = regcache->aspace (); |
372316f1 PA |
4387 | |
4388 | if (ws->kind == TARGET_WAITKIND_STOPPED | |
4389 | && ws->value.sig == GDB_SIGNAL_TRAP) | |
4390 | { | |
4391 | CORE_ADDR pc = regcache_read_pc (regcache); | |
4392 | ||
4393 | adjust_pc_after_break (tp, &tp->suspend.waitstatus); | |
4394 | ||
4395 | if (thread_stopped_by_watchpoint (tp->ptid)) | |
4396 | { | |
4397 | tp->suspend.stop_reason | |
4398 | = TARGET_STOPPED_BY_WATCHPOINT; | |
4399 | } | |
4400 | else if (target_supports_stopped_by_sw_breakpoint () | |
4401 | && thread_stopped_by_sw_breakpoint (tp->ptid)) | |
4402 | { | |
4403 | tp->suspend.stop_reason | |
4404 | = TARGET_STOPPED_BY_SW_BREAKPOINT; | |
4405 | } | |
4406 | else if (target_supports_stopped_by_hw_breakpoint () | |
4407 | && thread_stopped_by_hw_breakpoint (tp->ptid)) | |
4408 | { | |
4409 | tp->suspend.stop_reason | |
4410 | = TARGET_STOPPED_BY_HW_BREAKPOINT; | |
4411 | } | |
4412 | else if (!target_supports_stopped_by_hw_breakpoint () | |
4413 | && hardware_breakpoint_inserted_here_p (aspace, | |
4414 | pc)) | |
4415 | { | |
4416 | tp->suspend.stop_reason | |
4417 | = TARGET_STOPPED_BY_HW_BREAKPOINT; | |
4418 | } | |
4419 | else if (!target_supports_stopped_by_sw_breakpoint () | |
4420 | && software_breakpoint_inserted_here_p (aspace, | |
4421 | pc)) | |
4422 | { | |
4423 | tp->suspend.stop_reason | |
4424 | = TARGET_STOPPED_BY_SW_BREAKPOINT; | |
4425 | } | |
4426 | else if (!thread_has_single_step_breakpoints_set (tp) | |
4427 | && currently_stepping (tp)) | |
4428 | { | |
4429 | tp->suspend.stop_reason | |
4430 | = TARGET_STOPPED_BY_SINGLE_STEP; | |
4431 | } | |
4432 | } | |
4433 | } | |
4434 | ||
65706a29 PA |
4435 | /* A cleanup that disables thread create/exit events. */ |
4436 | ||
4437 | static void | |
4438 | disable_thread_events (void *arg) | |
4439 | { | |
4440 | target_thread_events (0); | |
4441 | } | |
4442 | ||
6efcd9a8 | 4443 | /* See infrun.h. */ |
372316f1 | 4444 | |
6efcd9a8 | 4445 | void |
372316f1 PA |
4446 | stop_all_threads (void) |
4447 | { | |
4448 | /* We may need multiple passes to discover all threads. */ | |
4449 | int pass; | |
4450 | int iterations = 0; | |
372316f1 PA |
4451 | struct cleanup *old_chain; |
4452 | ||
fbea99ea | 4453 | gdb_assert (target_is_non_stop_p ()); |
372316f1 PA |
4454 | |
4455 | if (debug_infrun) | |
4456 | fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n"); | |
4457 | ||
00431a78 | 4458 | scoped_restore_current_thread restore_thread; |
372316f1 | 4459 | |
65706a29 | 4460 | target_thread_events (1); |
00431a78 | 4461 | old_chain = make_cleanup (disable_thread_events, NULL); |
65706a29 | 4462 | |
372316f1 PA |
4463 | /* Request threads to stop, and then wait for the stops. Because |
4464 | threads we already know about can spawn more threads while we're | |
4465 | trying to stop them, and we only learn about new threads when we | |
4466 | update the thread list, do this in a loop, and keep iterating | |
4467 | until two passes find no threads that need to be stopped. */ | |
4468 | for (pass = 0; pass < 2; pass++, iterations++) | |
4469 | { | |
4470 | if (debug_infrun) | |
4471 | fprintf_unfiltered (gdb_stdlog, | |
4472 | "infrun: stop_all_threads, pass=%d, " | |
4473 | "iterations=%d\n", pass, iterations); | |
4474 | while (1) | |
4475 | { | |
4476 | ptid_t event_ptid; | |
4477 | struct target_waitstatus ws; | |
4478 | int need_wait = 0; | |
4479 | struct thread_info *t; | |
4480 | ||
4481 | update_thread_list (); | |
4482 | ||
4483 | /* Go through all threads looking for threads that we need | |
4484 | to tell the target to stop. */ | |
4485 | ALL_NON_EXITED_THREADS (t) | |
4486 | { | |
4487 | if (t->executing) | |
4488 | { | |
4489 | /* If already stopping, don't request a stop again. | |
4490 | We just haven't seen the notification yet. */ | |
4491 | if (!t->stop_requested) | |
4492 | { | |
4493 | if (debug_infrun) | |
4494 | fprintf_unfiltered (gdb_stdlog, | |
4495 | "infrun: %s executing, " | |
4496 | "need stop\n", | |
4497 | target_pid_to_str (t->ptid)); | |
4498 | target_stop (t->ptid); | |
4499 | t->stop_requested = 1; | |
4500 | } | |
4501 | else | |
4502 | { | |
4503 | if (debug_infrun) | |
4504 | fprintf_unfiltered (gdb_stdlog, | |
4505 | "infrun: %s executing, " | |
4506 | "already stopping\n", | |
4507 | target_pid_to_str (t->ptid)); | |
4508 | } | |
4509 | ||
4510 | if (t->stop_requested) | |
4511 | need_wait = 1; | |
4512 | } | |
4513 | else | |
4514 | { | |
4515 | if (debug_infrun) | |
4516 | fprintf_unfiltered (gdb_stdlog, | |
4517 | "infrun: %s not executing\n", | |
4518 | target_pid_to_str (t->ptid)); | |
4519 | ||
4520 | /* The thread may be not executing, but still be | |
4521 | resumed with a pending status to process. */ | |
4522 | t->resumed = 0; | |
4523 | } | |
4524 | } | |
4525 | ||
4526 | if (!need_wait) | |
4527 | break; | |
4528 | ||
4529 | /* If we find new threads on the second iteration, restart | |
4530 | over. We want to see two iterations in a row with all | |
4531 | threads stopped. */ | |
4532 | if (pass > 0) | |
4533 | pass = -1; | |
4534 | ||
4535 | event_ptid = wait_one (&ws); | |
00431a78 | 4536 | |
372316f1 PA |
4537 | if (ws.kind == TARGET_WAITKIND_NO_RESUMED) |
4538 | { | |
4539 | /* All resumed threads exited. */ | |
4540 | } | |
65706a29 PA |
4541 | else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED |
4542 | || ws.kind == TARGET_WAITKIND_EXITED | |
372316f1 PA |
4543 | || ws.kind == TARGET_WAITKIND_SIGNALLED) |
4544 | { | |
4545 | if (debug_infrun) | |
4546 | { | |
f2907e49 | 4547 | ptid_t ptid = ptid_t (ws.value.integer); |
372316f1 PA |
4548 | |
4549 | fprintf_unfiltered (gdb_stdlog, | |
4550 | "infrun: %s exited while " | |
4551 | "stopping threads\n", | |
4552 | target_pid_to_str (ptid)); | |
4553 | } | |
4554 | } | |
4555 | else | |
4556 | { | |
00431a78 | 4557 | inferior *inf; |
6efcd9a8 | 4558 | |
372316f1 PA |
4559 | t = find_thread_ptid (event_ptid); |
4560 | if (t == NULL) | |
4561 | t = add_thread (event_ptid); | |
4562 | ||
4563 | t->stop_requested = 0; | |
4564 | t->executing = 0; | |
4565 | t->resumed = 0; | |
4566 | t->control.may_range_step = 0; | |
4567 | ||
6efcd9a8 PA |
4568 | /* This may be the first time we see the inferior report |
4569 | a stop. */ | |
4570 | inf = find_inferior_ptid (event_ptid); | |
4571 | if (inf->needs_setup) | |
4572 | { | |
4573 | switch_to_thread_no_regs (t); | |
4574 | setup_inferior (0); | |
4575 | } | |
4576 | ||
372316f1 PA |
4577 | if (ws.kind == TARGET_WAITKIND_STOPPED |
4578 | && ws.value.sig == GDB_SIGNAL_0) | |
4579 | { | |
4580 | /* We caught the event that we intended to catch, so | |
4581 | there's no event pending. */ | |
4582 | t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE; | |
4583 | t->suspend.waitstatus_pending_p = 0; | |
4584 | ||
00431a78 | 4585 | if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0) |
372316f1 PA |
4586 | { |
4587 | /* Add it back to the step-over queue. */ | |
4588 | if (debug_infrun) | |
4589 | { | |
4590 | fprintf_unfiltered (gdb_stdlog, | |
4591 | "infrun: displaced-step of %s " | |
4592 | "canceled: adding back to the " | |
4593 | "step-over queue\n", | |
4594 | target_pid_to_str (t->ptid)); | |
4595 | } | |
4596 | t->control.trap_expected = 0; | |
4597 | thread_step_over_chain_enqueue (t); | |
4598 | } | |
4599 | } | |
4600 | else | |
4601 | { | |
4602 | enum gdb_signal sig; | |
4603 | struct regcache *regcache; | |
372316f1 PA |
4604 | |
4605 | if (debug_infrun) | |
4606 | { | |
23fdd69e | 4607 | std::string statstr = target_waitstatus_to_string (&ws); |
372316f1 | 4608 | |
372316f1 PA |
4609 | fprintf_unfiltered (gdb_stdlog, |
4610 | "infrun: target_wait %s, saving " | |
4611 | "status for %d.%ld.%ld\n", | |
23fdd69e | 4612 | statstr.c_str (), |
e99b03dc | 4613 | t->ptid.pid (), |
e38504b3 | 4614 | t->ptid.lwp (), |
cc6bcb54 | 4615 | t->ptid.tid ()); |
372316f1 PA |
4616 | } |
4617 | ||
4618 | /* Record for later. */ | |
4619 | save_waitstatus (t, &ws); | |
4620 | ||
4621 | sig = (ws.kind == TARGET_WAITKIND_STOPPED | |
4622 | ? ws.value.sig : GDB_SIGNAL_0); | |
4623 | ||
00431a78 | 4624 | if (displaced_step_fixup (t, sig) < 0) |
372316f1 PA |
4625 | { |
4626 | /* Add it back to the step-over queue. */ | |
4627 | t->control.trap_expected = 0; | |
4628 | thread_step_over_chain_enqueue (t); | |
4629 | } | |
4630 | ||
00431a78 | 4631 | regcache = get_thread_regcache (t); |
372316f1 PA |
4632 | t->suspend.stop_pc = regcache_read_pc (regcache); |
4633 | ||
4634 | if (debug_infrun) | |
4635 | { | |
4636 | fprintf_unfiltered (gdb_stdlog, | |
4637 | "infrun: saved stop_pc=%s for %s " | |
4638 | "(currently_stepping=%d)\n", | |
4639 | paddress (target_gdbarch (), | |
4640 | t->suspend.stop_pc), | |
4641 | target_pid_to_str (t->ptid), | |
4642 | currently_stepping (t)); | |
4643 | } | |
4644 | } | |
4645 | } | |
4646 | } | |
4647 | } | |
4648 | ||
4649 | do_cleanups (old_chain); | |
4650 | ||
4651 | if (debug_infrun) | |
4652 | fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n"); | |
4653 | } | |
4654 | ||
f4836ba9 PA |
4655 | /* Handle a TARGET_WAITKIND_NO_RESUMED event. */ |
4656 | ||
4657 | static int | |
4658 | handle_no_resumed (struct execution_control_state *ecs) | |
4659 | { | |
4660 | struct inferior *inf; | |
4661 | struct thread_info *thread; | |
4662 | ||
3b12939d | 4663 | if (target_can_async_p ()) |
f4836ba9 | 4664 | { |
3b12939d PA |
4665 | struct ui *ui; |
4666 | int any_sync = 0; | |
f4836ba9 | 4667 | |
3b12939d PA |
4668 | ALL_UIS (ui) |
4669 | { | |
4670 | if (ui->prompt_state == PROMPT_BLOCKED) | |
4671 | { | |
4672 | any_sync = 1; | |
4673 | break; | |
4674 | } | |
4675 | } | |
4676 | if (!any_sync) | |
4677 | { | |
4678 | /* There were no unwaited-for children left in the target, but, | |
4679 | we're not synchronously waiting for events either. Just | |
4680 | ignore. */ | |
4681 | ||
4682 | if (debug_infrun) | |
4683 | fprintf_unfiltered (gdb_stdlog, | |
4684 | "infrun: TARGET_WAITKIND_NO_RESUMED " | |
4685 | "(ignoring: bg)\n"); | |
4686 | prepare_to_wait (ecs); | |
4687 | return 1; | |
4688 | } | |
f4836ba9 PA |
4689 | } |
4690 | ||
4691 | /* Otherwise, if we were running a synchronous execution command, we | |
4692 | may need to cancel it and give the user back the terminal. | |
4693 | ||
4694 | In non-stop mode, the target can't tell whether we've already | |
4695 | consumed previous stop events, so it can end up sending us a | |
4696 | no-resumed event like so: | |
4697 | ||
4698 | #0 - thread 1 is left stopped | |
4699 | ||
4700 | #1 - thread 2 is resumed and hits breakpoint | |
4701 | -> TARGET_WAITKIND_STOPPED | |
4702 | ||
4703 | #2 - thread 3 is resumed and exits | |
4704 | this is the last resumed thread, so | |
4705 | -> TARGET_WAITKIND_NO_RESUMED | |
4706 | ||
4707 | #3 - gdb processes stop for thread 2 and decides to re-resume | |
4708 | it. | |
4709 | ||
4710 | #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event. | |
4711 | thread 2 is now resumed, so the event should be ignored. | |
4712 | ||
4713 | IOW, if the stop for thread 2 doesn't end a foreground command, | |
4714 | then we need to ignore the following TARGET_WAITKIND_NO_RESUMED | |
4715 | event. But it could be that the event meant that thread 2 itself | |
4716 | (or whatever other thread was the last resumed thread) exited. | |
4717 | ||
4718 | To address this we refresh the thread list and check whether we | |
4719 | have resumed threads _now_. In the example above, this removes | |
4720 | thread 3 from the thread list. If thread 2 was re-resumed, we | |
4721 | ignore this event. If we find no thread resumed, then we cancel | |
4722 | the synchronous command show "no unwaited-for " to the user. */ | |
4723 | update_thread_list (); | |
4724 | ||
4725 | ALL_NON_EXITED_THREADS (thread) | |
4726 | { | |
4727 | if (thread->executing | |
4728 | || thread->suspend.waitstatus_pending_p) | |
4729 | { | |
4730 | /* There were no unwaited-for children left in the target at | |
4731 | some point, but there are now. Just ignore. */ | |
4732 | if (debug_infrun) | |
4733 | fprintf_unfiltered (gdb_stdlog, | |
4734 | "infrun: TARGET_WAITKIND_NO_RESUMED " | |
4735 | "(ignoring: found resumed)\n"); | |
4736 | prepare_to_wait (ecs); | |
4737 | return 1; | |
4738 | } | |
4739 | } | |
4740 | ||
4741 | /* Note however that we may find no resumed thread because the whole | |
4742 | process exited meanwhile (thus updating the thread list results | |
4743 | in an empty thread list). In this case we know we'll be getting | |
4744 | a process exit event shortly. */ | |
4745 | ALL_INFERIORS (inf) | |
4746 | { | |
4747 | if (inf->pid == 0) | |
4748 | continue; | |
4749 | ||
00431a78 | 4750 | thread_info *thread = any_live_thread_of_inferior (inf); |
f4836ba9 PA |
4751 | if (thread == NULL) |
4752 | { | |
4753 | if (debug_infrun) | |
4754 | fprintf_unfiltered (gdb_stdlog, | |
4755 | "infrun: TARGET_WAITKIND_NO_RESUMED " | |
4756 | "(expect process exit)\n"); | |
4757 | prepare_to_wait (ecs); | |
4758 | return 1; | |
4759 | } | |
4760 | } | |
4761 | ||
4762 | /* Go ahead and report the event. */ | |
4763 | return 0; | |
4764 | } | |
4765 | ||
05ba8510 PA |
4766 | /* Given an execution control state that has been freshly filled in by |
4767 | an event from the inferior, figure out what it means and take | |
4768 | appropriate action. | |
4769 | ||
4770 | The alternatives are: | |
4771 | ||
22bcd14b | 4772 | 1) stop_waiting and return; to really stop and return to the |
05ba8510 PA |
4773 | debugger. |
4774 | ||
4775 | 2) keep_going and return; to wait for the next event (set | |
4776 | ecs->event_thread->stepping_over_breakpoint to 1 to single step | |
4777 | once). */ | |
c906108c | 4778 | |
ec9499be | 4779 | static void |
0b6e5e10 | 4780 | handle_inferior_event_1 (struct execution_control_state *ecs) |
cd0fc7c3 | 4781 | { |
d6b48e9c PA |
4782 | enum stop_kind stop_soon; |
4783 | ||
28736962 PA |
4784 | if (ecs->ws.kind == TARGET_WAITKIND_IGNORE) |
4785 | { | |
4786 | /* We had an event in the inferior, but we are not interested in | |
4787 | handling it at this level. The lower layers have already | |
4788 | done what needs to be done, if anything. | |
4789 | ||
4790 | One of the possible circumstances for this is when the | |
4791 | inferior produces output for the console. The inferior has | |
4792 | not stopped, and we are ignoring the event. Another possible | |
4793 | circumstance is any event which the lower level knows will be | |
4794 | reported multiple times without an intervening resume. */ | |
4795 | if (debug_infrun) | |
4796 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n"); | |
4797 | prepare_to_wait (ecs); | |
4798 | return; | |
4799 | } | |
4800 | ||
65706a29 PA |
4801 | if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED) |
4802 | { | |
4803 | if (debug_infrun) | |
4804 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n"); | |
4805 | prepare_to_wait (ecs); | |
4806 | return; | |
4807 | } | |
4808 | ||
0e5bf2a8 | 4809 | if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED |
f4836ba9 PA |
4810 | && handle_no_resumed (ecs)) |
4811 | return; | |
0e5bf2a8 | 4812 | |
1777feb0 | 4813 | /* Cache the last pid/waitstatus. */ |
c32c64b7 | 4814 | set_last_target_status (ecs->ptid, ecs->ws); |
e02bc4cc | 4815 | |
ca005067 | 4816 | /* Always clear state belonging to the previous time we stopped. */ |
aa7d318d | 4817 | stop_stack_dummy = STOP_NONE; |
ca005067 | 4818 | |
0e5bf2a8 PA |
4819 | if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED) |
4820 | { | |
4821 | /* No unwaited-for children left. IOW, all resumed children | |
4822 | have exited. */ | |
4823 | if (debug_infrun) | |
4824 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n"); | |
4825 | ||
4826 | stop_print_frame = 0; | |
22bcd14b | 4827 | stop_waiting (ecs); |
0e5bf2a8 PA |
4828 | return; |
4829 | } | |
4830 | ||
8c90c137 | 4831 | if (ecs->ws.kind != TARGET_WAITKIND_EXITED |
64776a0b | 4832 | && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED) |
359f5fe6 PA |
4833 | { |
4834 | ecs->event_thread = find_thread_ptid (ecs->ptid); | |
4835 | /* If it's a new thread, add it to the thread database. */ | |
4836 | if (ecs->event_thread == NULL) | |
4837 | ecs->event_thread = add_thread (ecs->ptid); | |
c1e36e3e PA |
4838 | |
4839 | /* Disable range stepping. If the next step request could use a | |
4840 | range, this will be end up re-enabled then. */ | |
4841 | ecs->event_thread->control.may_range_step = 0; | |
359f5fe6 | 4842 | } |
88ed393a JK |
4843 | |
4844 | /* Dependent on valid ECS->EVENT_THREAD. */ | |
d8dd4d5f | 4845 | adjust_pc_after_break (ecs->event_thread, &ecs->ws); |
88ed393a JK |
4846 | |
4847 | /* Dependent on the current PC value modified by adjust_pc_after_break. */ | |
4848 | reinit_frame_cache (); | |
4849 | ||
28736962 PA |
4850 | breakpoint_retire_moribund (); |
4851 | ||
2b009048 DJ |
4852 | /* First, distinguish signals caused by the debugger from signals |
4853 | that have to do with the program's own actions. Note that | |
4854 | breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending | |
4855 | on the operating system version. Here we detect when a SIGILL or | |
4856 | SIGEMT is really a breakpoint and change it to SIGTRAP. We do | |
4857 | something similar for SIGSEGV, since a SIGSEGV will be generated | |
4858 | when we're trying to execute a breakpoint instruction on a | |
4859 | non-executable stack. This happens for call dummy breakpoints | |
4860 | for architectures like SPARC that place call dummies on the | |
4861 | stack. */ | |
2b009048 | 4862 | if (ecs->ws.kind == TARGET_WAITKIND_STOPPED |
a493e3e2 PA |
4863 | && (ecs->ws.value.sig == GDB_SIGNAL_ILL |
4864 | || ecs->ws.value.sig == GDB_SIGNAL_SEGV | |
4865 | || ecs->ws.value.sig == GDB_SIGNAL_EMT)) | |
2b009048 | 4866 | { |
00431a78 | 4867 | struct regcache *regcache = get_thread_regcache (ecs->event_thread); |
de0a0249 | 4868 | |
a01bda52 | 4869 | if (breakpoint_inserted_here_p (regcache->aspace (), |
de0a0249 UW |
4870 | regcache_read_pc (regcache))) |
4871 | { | |
4872 | if (debug_infrun) | |
4873 | fprintf_unfiltered (gdb_stdlog, | |
4874 | "infrun: Treating signal as SIGTRAP\n"); | |
a493e3e2 | 4875 | ecs->ws.value.sig = GDB_SIGNAL_TRAP; |
de0a0249 | 4876 | } |
2b009048 DJ |
4877 | } |
4878 | ||
28736962 PA |
4879 | /* Mark the non-executing threads accordingly. In all-stop, all |
4880 | threads of all processes are stopped when we get any event | |
e1316e60 | 4881 | reported. In non-stop mode, only the event thread stops. */ |
372316f1 PA |
4882 | { |
4883 | ptid_t mark_ptid; | |
4884 | ||
fbea99ea | 4885 | if (!target_is_non_stop_p ()) |
372316f1 PA |
4886 | mark_ptid = minus_one_ptid; |
4887 | else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED | |
4888 | || ecs->ws.kind == TARGET_WAITKIND_EXITED) | |
4889 | { | |
4890 | /* If we're handling a process exit in non-stop mode, even | |
4891 | though threads haven't been deleted yet, one would think | |
4892 | that there is nothing to do, as threads of the dead process | |
4893 | will be soon deleted, and threads of any other process were | |
4894 | left running. However, on some targets, threads survive a | |
4895 | process exit event. E.g., for the "checkpoint" command, | |
4896 | when the current checkpoint/fork exits, linux-fork.c | |
4897 | automatically switches to another fork from within | |
4898 | target_mourn_inferior, by associating the same | |
4899 | inferior/thread to another fork. We haven't mourned yet at | |
4900 | this point, but we must mark any threads left in the | |
4901 | process as not-executing so that finish_thread_state marks | |
4902 | them stopped (in the user's perspective) if/when we present | |
4903 | the stop to the user. */ | |
e99b03dc | 4904 | mark_ptid = ptid_t (ecs->ptid.pid ()); |
372316f1 PA |
4905 | } |
4906 | else | |
4907 | mark_ptid = ecs->ptid; | |
4908 | ||
4909 | set_executing (mark_ptid, 0); | |
4910 | ||
4911 | /* Likewise the resumed flag. */ | |
4912 | set_resumed (mark_ptid, 0); | |
4913 | } | |
8c90c137 | 4914 | |
488f131b JB |
4915 | switch (ecs->ws.kind) |
4916 | { | |
4917 | case TARGET_WAITKIND_LOADED: | |
527159b7 | 4918 | if (debug_infrun) |
8a9de0e4 | 4919 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n"); |
00431a78 | 4920 | context_switch (ecs); |
b0f4b84b DJ |
4921 | /* Ignore gracefully during startup of the inferior, as it might |
4922 | be the shell which has just loaded some objects, otherwise | |
4923 | add the symbols for the newly loaded objects. Also ignore at | |
4924 | the beginning of an attach or remote session; we will query | |
4925 | the full list of libraries once the connection is | |
4926 | established. */ | |
4f5d7f63 | 4927 | |
00431a78 | 4928 | stop_soon = get_inferior_stop_soon (ecs); |
c0236d92 | 4929 | if (stop_soon == NO_STOP_QUIETLY) |
488f131b | 4930 | { |
edcc5120 TT |
4931 | struct regcache *regcache; |
4932 | ||
00431a78 | 4933 | regcache = get_thread_regcache (ecs->event_thread); |
edcc5120 TT |
4934 | |
4935 | handle_solib_event (); | |
4936 | ||
4937 | ecs->event_thread->control.stop_bpstat | |
a01bda52 | 4938 | = bpstat_stop_status (regcache->aspace (), |
f2ffa92b PA |
4939 | ecs->event_thread->suspend.stop_pc, |
4940 | ecs->event_thread, &ecs->ws); | |
ab04a2af | 4941 | |
c65d6b55 PA |
4942 | if (handle_stop_requested (ecs)) |
4943 | return; | |
4944 | ||
ce12b012 | 4945 | if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat)) |
edcc5120 TT |
4946 | { |
4947 | /* A catchpoint triggered. */ | |
94c57d6a PA |
4948 | process_event_stop_test (ecs); |
4949 | return; | |
edcc5120 | 4950 | } |
488f131b | 4951 | |
b0f4b84b DJ |
4952 | /* If requested, stop when the dynamic linker notifies |
4953 | gdb of events. This allows the user to get control | |
4954 | and place breakpoints in initializer routines for | |
4955 | dynamically loaded objects (among other things). */ | |
a493e3e2 | 4956 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; |
b0f4b84b DJ |
4957 | if (stop_on_solib_events) |
4958 | { | |
55409f9d DJ |
4959 | /* Make sure we print "Stopped due to solib-event" in |
4960 | normal_stop. */ | |
4961 | stop_print_frame = 1; | |
4962 | ||
22bcd14b | 4963 | stop_waiting (ecs); |
b0f4b84b DJ |
4964 | return; |
4965 | } | |
488f131b | 4966 | } |
b0f4b84b DJ |
4967 | |
4968 | /* If we are skipping through a shell, or through shared library | |
4969 | loading that we aren't interested in, resume the program. If | |
5c09a2c5 | 4970 | we're running the program normally, also resume. */ |
b0f4b84b DJ |
4971 | if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY) |
4972 | { | |
74960c60 VP |
4973 | /* Loading of shared libraries might have changed breakpoint |
4974 | addresses. Make sure new breakpoints are inserted. */ | |
a25a5a45 | 4975 | if (stop_soon == NO_STOP_QUIETLY) |
74960c60 | 4976 | insert_breakpoints (); |
64ce06e4 | 4977 | resume (GDB_SIGNAL_0); |
b0f4b84b DJ |
4978 | prepare_to_wait (ecs); |
4979 | return; | |
4980 | } | |
4981 | ||
5c09a2c5 PA |
4982 | /* But stop if we're attaching or setting up a remote |
4983 | connection. */ | |
4984 | if (stop_soon == STOP_QUIETLY_NO_SIGSTOP | |
4985 | || stop_soon == STOP_QUIETLY_REMOTE) | |
4986 | { | |
4987 | if (debug_infrun) | |
4988 | fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n"); | |
22bcd14b | 4989 | stop_waiting (ecs); |
5c09a2c5 PA |
4990 | return; |
4991 | } | |
4992 | ||
4993 | internal_error (__FILE__, __LINE__, | |
4994 | _("unhandled stop_soon: %d"), (int) stop_soon); | |
c5aa993b | 4995 | |
488f131b | 4996 | case TARGET_WAITKIND_SPURIOUS: |
527159b7 | 4997 | if (debug_infrun) |
8a9de0e4 | 4998 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n"); |
c65d6b55 PA |
4999 | if (handle_stop_requested (ecs)) |
5000 | return; | |
00431a78 | 5001 | context_switch (ecs); |
64ce06e4 | 5002 | resume (GDB_SIGNAL_0); |
488f131b JB |
5003 | prepare_to_wait (ecs); |
5004 | return; | |
c5aa993b | 5005 | |
65706a29 PA |
5006 | case TARGET_WAITKIND_THREAD_CREATED: |
5007 | if (debug_infrun) | |
5008 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n"); | |
c65d6b55 PA |
5009 | if (handle_stop_requested (ecs)) |
5010 | return; | |
00431a78 | 5011 | context_switch (ecs); |
65706a29 PA |
5012 | if (!switch_back_to_stepped_thread (ecs)) |
5013 | keep_going (ecs); | |
5014 | return; | |
5015 | ||
488f131b | 5016 | case TARGET_WAITKIND_EXITED: |
940c3c06 | 5017 | case TARGET_WAITKIND_SIGNALLED: |
527159b7 | 5018 | if (debug_infrun) |
940c3c06 PA |
5019 | { |
5020 | if (ecs->ws.kind == TARGET_WAITKIND_EXITED) | |
5021 | fprintf_unfiltered (gdb_stdlog, | |
5022 | "infrun: TARGET_WAITKIND_EXITED\n"); | |
5023 | else | |
5024 | fprintf_unfiltered (gdb_stdlog, | |
5025 | "infrun: TARGET_WAITKIND_SIGNALLED\n"); | |
5026 | } | |
5027 | ||
fb66883a | 5028 | inferior_ptid = ecs->ptid; |
c9657e70 | 5029 | set_current_inferior (find_inferior_ptid (ecs->ptid)); |
6c95b8df PA |
5030 | set_current_program_space (current_inferior ()->pspace); |
5031 | handle_vfork_child_exec_or_exit (0); | |
223ffa71 | 5032 | target_terminal::ours (); /* Must do this before mourn anyway. */ |
488f131b | 5033 | |
0c557179 SDJ |
5034 | /* Clearing any previous state of convenience variables. */ |
5035 | clear_exit_convenience_vars (); | |
5036 | ||
940c3c06 PA |
5037 | if (ecs->ws.kind == TARGET_WAITKIND_EXITED) |
5038 | { | |
5039 | /* Record the exit code in the convenience variable $_exitcode, so | |
5040 | that the user can inspect this again later. */ | |
5041 | set_internalvar_integer (lookup_internalvar ("_exitcode"), | |
5042 | (LONGEST) ecs->ws.value.integer); | |
5043 | ||
5044 | /* Also record this in the inferior itself. */ | |
5045 | current_inferior ()->has_exit_code = 1; | |
5046 | current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer; | |
8cf64490 | 5047 | |
98eb56a4 PA |
5048 | /* Support the --return-child-result option. */ |
5049 | return_child_result_value = ecs->ws.value.integer; | |
5050 | ||
76727919 | 5051 | gdb::observers::exited.notify (ecs->ws.value.integer); |
940c3c06 PA |
5052 | } |
5053 | else | |
0c557179 | 5054 | { |
00431a78 | 5055 | struct gdbarch *gdbarch = current_inferior ()->gdbarch; |
0c557179 SDJ |
5056 | |
5057 | if (gdbarch_gdb_signal_to_target_p (gdbarch)) | |
5058 | { | |
5059 | /* Set the value of the internal variable $_exitsignal, | |
5060 | which holds the signal uncaught by the inferior. */ | |
5061 | set_internalvar_integer (lookup_internalvar ("_exitsignal"), | |
5062 | gdbarch_gdb_signal_to_target (gdbarch, | |
5063 | ecs->ws.value.sig)); | |
5064 | } | |
5065 | else | |
5066 | { | |
5067 | /* We don't have access to the target's method used for | |
5068 | converting between signal numbers (GDB's internal | |
5069 | representation <-> target's representation). | |
5070 | Therefore, we cannot do a good job at displaying this | |
5071 | information to the user. It's better to just warn | |
5072 | her about it (if infrun debugging is enabled), and | |
5073 | give up. */ | |
5074 | if (debug_infrun) | |
5075 | fprintf_filtered (gdb_stdlog, _("\ | |
5076 | Cannot fill $_exitsignal with the correct signal number.\n")); | |
5077 | } | |
5078 | ||
76727919 | 5079 | gdb::observers::signal_exited.notify (ecs->ws.value.sig); |
0c557179 | 5080 | } |
8cf64490 | 5081 | |
488f131b | 5082 | gdb_flush (gdb_stdout); |
bc1e6c81 | 5083 | target_mourn_inferior (inferior_ptid); |
488f131b | 5084 | stop_print_frame = 0; |
22bcd14b | 5085 | stop_waiting (ecs); |
488f131b | 5086 | return; |
c5aa993b | 5087 | |
488f131b | 5088 | /* The following are the only cases in which we keep going; |
1777feb0 | 5089 | the above cases end in a continue or goto. */ |
488f131b | 5090 | case TARGET_WAITKIND_FORKED: |
deb3b17b | 5091 | case TARGET_WAITKIND_VFORKED: |
527159b7 | 5092 | if (debug_infrun) |
fed708ed PA |
5093 | { |
5094 | if (ecs->ws.kind == TARGET_WAITKIND_FORKED) | |
5095 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n"); | |
5096 | else | |
5097 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n"); | |
5098 | } | |
c906108c | 5099 | |
e2d96639 YQ |
5100 | /* Check whether the inferior is displaced stepping. */ |
5101 | { | |
00431a78 | 5102 | struct regcache *regcache = get_thread_regcache (ecs->event_thread); |
ac7936df | 5103 | struct gdbarch *gdbarch = regcache->arch (); |
e2d96639 YQ |
5104 | |
5105 | /* If checking displaced stepping is supported, and thread | |
5106 | ecs->ptid is displaced stepping. */ | |
00431a78 | 5107 | if (displaced_step_in_progress_thread (ecs->event_thread)) |
e2d96639 YQ |
5108 | { |
5109 | struct inferior *parent_inf | |
c9657e70 | 5110 | = find_inferior_ptid (ecs->ptid); |
e2d96639 YQ |
5111 | struct regcache *child_regcache; |
5112 | CORE_ADDR parent_pc; | |
5113 | ||
5114 | /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED, | |
5115 | indicating that the displaced stepping of syscall instruction | |
5116 | has been done. Perform cleanup for parent process here. Note | |
5117 | that this operation also cleans up the child process for vfork, | |
5118 | because their pages are shared. */ | |
00431a78 | 5119 | displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP); |
c2829269 PA |
5120 | /* Start a new step-over in another thread if there's one |
5121 | that needs it. */ | |
5122 | start_step_over (); | |
e2d96639 YQ |
5123 | |
5124 | if (ecs->ws.kind == TARGET_WAITKIND_FORKED) | |
5125 | { | |
c0987663 | 5126 | struct displaced_step_inferior_state *displaced |
00431a78 | 5127 | = get_displaced_stepping_state (parent_inf); |
c0987663 | 5128 | |
e2d96639 YQ |
5129 | /* Restore scratch pad for child process. */ |
5130 | displaced_step_restore (displaced, ecs->ws.value.related_pid); | |
5131 | } | |
5132 | ||
5133 | /* Since the vfork/fork syscall instruction was executed in the scratchpad, | |
5134 | the child's PC is also within the scratchpad. Set the child's PC | |
5135 | to the parent's PC value, which has already been fixed up. | |
5136 | FIXME: we use the parent's aspace here, although we're touching | |
5137 | the child, because the child hasn't been added to the inferior | |
5138 | list yet at this point. */ | |
5139 | ||
5140 | child_regcache | |
5141 | = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid, | |
5142 | gdbarch, | |
5143 | parent_inf->aspace); | |
5144 | /* Read PC value of parent process. */ | |
5145 | parent_pc = regcache_read_pc (regcache); | |
5146 | ||
5147 | if (debug_displaced) | |
5148 | fprintf_unfiltered (gdb_stdlog, | |
5149 | "displaced: write child pc from %s to %s\n", | |
5150 | paddress (gdbarch, | |
5151 | regcache_read_pc (child_regcache)), | |
5152 | paddress (gdbarch, parent_pc)); | |
5153 | ||
5154 | regcache_write_pc (child_regcache, parent_pc); | |
5155 | } | |
5156 | } | |
5157 | ||
00431a78 | 5158 | context_switch (ecs); |
5a2901d9 | 5159 | |
b242c3c2 PA |
5160 | /* Immediately detach breakpoints from the child before there's |
5161 | any chance of letting the user delete breakpoints from the | |
5162 | breakpoint lists. If we don't do this early, it's easy to | |
5163 | leave left over traps in the child, vis: "break foo; catch | |
5164 | fork; c; <fork>; del; c; <child calls foo>". We only follow | |
5165 | the fork on the last `continue', and by that time the | |
5166 | breakpoint at "foo" is long gone from the breakpoint table. | |
5167 | If we vforked, then we don't need to unpatch here, since both | |
5168 | parent and child are sharing the same memory pages; we'll | |
5169 | need to unpatch at follow/detach time instead to be certain | |
5170 | that new breakpoints added between catchpoint hit time and | |
5171 | vfork follow are detached. */ | |
5172 | if (ecs->ws.kind != TARGET_WAITKIND_VFORKED) | |
5173 | { | |
b242c3c2 PA |
5174 | /* This won't actually modify the breakpoint list, but will |
5175 | physically remove the breakpoints from the child. */ | |
d80ee84f | 5176 | detach_breakpoints (ecs->ws.value.related_pid); |
b242c3c2 PA |
5177 | } |
5178 | ||
34b7e8a6 | 5179 | delete_just_stopped_threads_single_step_breakpoints (); |
d03285ec | 5180 | |
e58b0e63 PA |
5181 | /* In case the event is caught by a catchpoint, remember that |
5182 | the event is to be followed at the next resume of the thread, | |
5183 | and not immediately. */ | |
5184 | ecs->event_thread->pending_follow = ecs->ws; | |
5185 | ||
f2ffa92b PA |
5186 | ecs->event_thread->suspend.stop_pc |
5187 | = regcache_read_pc (get_thread_regcache (ecs->event_thread)); | |
675bf4cb | 5188 | |
16c381f0 | 5189 | ecs->event_thread->control.stop_bpstat |
a01bda52 | 5190 | = bpstat_stop_status (get_current_regcache ()->aspace (), |
f2ffa92b PA |
5191 | ecs->event_thread->suspend.stop_pc, |
5192 | ecs->event_thread, &ecs->ws); | |
675bf4cb | 5193 | |
c65d6b55 PA |
5194 | if (handle_stop_requested (ecs)) |
5195 | return; | |
5196 | ||
ce12b012 PA |
5197 | /* If no catchpoint triggered for this, then keep going. Note |
5198 | that we're interested in knowing the bpstat actually causes a | |
5199 | stop, not just if it may explain the signal. Software | |
5200 | watchpoints, for example, always appear in the bpstat. */ | |
5201 | if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat)) | |
04e68871 | 5202 | { |
e58b0e63 | 5203 | int should_resume; |
3e43a32a MS |
5204 | int follow_child |
5205 | = (follow_fork_mode_string == follow_fork_mode_child); | |
e58b0e63 | 5206 | |
a493e3e2 | 5207 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; |
e58b0e63 PA |
5208 | |
5209 | should_resume = follow_fork (); | |
5210 | ||
00431a78 PA |
5211 | thread_info *parent = ecs->event_thread; |
5212 | thread_info *child = find_thread_ptid (ecs->ws.value.related_pid); | |
6c95b8df | 5213 | |
a2077e25 PA |
5214 | /* At this point, the parent is marked running, and the |
5215 | child is marked stopped. */ | |
5216 | ||
5217 | /* If not resuming the parent, mark it stopped. */ | |
5218 | if (follow_child && !detach_fork && !non_stop && !sched_multi) | |
00431a78 | 5219 | parent->set_running (false); |
a2077e25 PA |
5220 | |
5221 | /* If resuming the child, mark it running. */ | |
5222 | if (follow_child || (!detach_fork && (non_stop || sched_multi))) | |
00431a78 | 5223 | child->set_running (true); |
a2077e25 | 5224 | |
6c95b8df | 5225 | /* In non-stop mode, also resume the other branch. */ |
fbea99ea PA |
5226 | if (!detach_fork && (non_stop |
5227 | || (sched_multi && target_is_non_stop_p ()))) | |
6c95b8df PA |
5228 | { |
5229 | if (follow_child) | |
5230 | switch_to_thread (parent); | |
5231 | else | |
5232 | switch_to_thread (child); | |
5233 | ||
5234 | ecs->event_thread = inferior_thread (); | |
5235 | ecs->ptid = inferior_ptid; | |
5236 | keep_going (ecs); | |
5237 | } | |
5238 | ||
5239 | if (follow_child) | |
5240 | switch_to_thread (child); | |
5241 | else | |
5242 | switch_to_thread (parent); | |
5243 | ||
e58b0e63 PA |
5244 | ecs->event_thread = inferior_thread (); |
5245 | ecs->ptid = inferior_ptid; | |
5246 | ||
5247 | if (should_resume) | |
5248 | keep_going (ecs); | |
5249 | else | |
22bcd14b | 5250 | stop_waiting (ecs); |
04e68871 DJ |
5251 | return; |
5252 | } | |
94c57d6a PA |
5253 | process_event_stop_test (ecs); |
5254 | return; | |
488f131b | 5255 | |
6c95b8df PA |
5256 | case TARGET_WAITKIND_VFORK_DONE: |
5257 | /* Done with the shared memory region. Re-insert breakpoints in | |
5258 | the parent, and keep going. */ | |
5259 | ||
5260 | if (debug_infrun) | |
3e43a32a MS |
5261 | fprintf_unfiltered (gdb_stdlog, |
5262 | "infrun: TARGET_WAITKIND_VFORK_DONE\n"); | |
6c95b8df | 5263 | |
00431a78 | 5264 | context_switch (ecs); |
6c95b8df PA |
5265 | |
5266 | current_inferior ()->waiting_for_vfork_done = 0; | |
56710373 | 5267 | current_inferior ()->pspace->breakpoints_not_allowed = 0; |
c65d6b55 PA |
5268 | |
5269 | if (handle_stop_requested (ecs)) | |
5270 | return; | |
5271 | ||
6c95b8df PA |
5272 | /* This also takes care of reinserting breakpoints in the |
5273 | previously locked inferior. */ | |
5274 | keep_going (ecs); | |
5275 | return; | |
5276 | ||
488f131b | 5277 | case TARGET_WAITKIND_EXECD: |
527159b7 | 5278 | if (debug_infrun) |
fc5261f2 | 5279 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n"); |
488f131b | 5280 | |
cbd2b4e3 PA |
5281 | /* Note we can't read registers yet (the stop_pc), because we |
5282 | don't yet know the inferior's post-exec architecture. | |
5283 | 'stop_pc' is explicitly read below instead. */ | |
00431a78 | 5284 | switch_to_thread_no_regs (ecs->event_thread); |
5a2901d9 | 5285 | |
6c95b8df PA |
5286 | /* Do whatever is necessary to the parent branch of the vfork. */ |
5287 | handle_vfork_child_exec_or_exit (1); | |
5288 | ||
795e548f PA |
5289 | /* This causes the eventpoints and symbol table to be reset. |
5290 | Must do this now, before trying to determine whether to | |
5291 | stop. */ | |
71b43ef8 | 5292 | follow_exec (inferior_ptid, ecs->ws.value.execd_pathname); |
795e548f | 5293 | |
17d8546e DB |
5294 | /* In follow_exec we may have deleted the original thread and |
5295 | created a new one. Make sure that the event thread is the | |
5296 | execd thread for that case (this is a nop otherwise). */ | |
5297 | ecs->event_thread = inferior_thread (); | |
5298 | ||
f2ffa92b PA |
5299 | ecs->event_thread->suspend.stop_pc |
5300 | = regcache_read_pc (get_thread_regcache (ecs->event_thread)); | |
ecdc3a72 | 5301 | |
16c381f0 | 5302 | ecs->event_thread->control.stop_bpstat |
a01bda52 | 5303 | = bpstat_stop_status (get_current_regcache ()->aspace (), |
f2ffa92b PA |
5304 | ecs->event_thread->suspend.stop_pc, |
5305 | ecs->event_thread, &ecs->ws); | |
795e548f | 5306 | |
71b43ef8 PA |
5307 | /* Note that this may be referenced from inside |
5308 | bpstat_stop_status above, through inferior_has_execd. */ | |
5309 | xfree (ecs->ws.value.execd_pathname); | |
5310 | ecs->ws.value.execd_pathname = NULL; | |
5311 | ||
c65d6b55 PA |
5312 | if (handle_stop_requested (ecs)) |
5313 | return; | |
5314 | ||
04e68871 | 5315 | /* If no catchpoint triggered for this, then keep going. */ |
ce12b012 | 5316 | if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat)) |
04e68871 | 5317 | { |
a493e3e2 | 5318 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; |
04e68871 DJ |
5319 | keep_going (ecs); |
5320 | return; | |
5321 | } | |
94c57d6a PA |
5322 | process_event_stop_test (ecs); |
5323 | return; | |
488f131b | 5324 | |
b4dc5ffa MK |
5325 | /* Be careful not to try to gather much state about a thread |
5326 | that's in a syscall. It's frequently a losing proposition. */ | |
488f131b | 5327 | case TARGET_WAITKIND_SYSCALL_ENTRY: |
527159b7 | 5328 | if (debug_infrun) |
3e43a32a MS |
5329 | fprintf_unfiltered (gdb_stdlog, |
5330 | "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n"); | |
1777feb0 | 5331 | /* Getting the current syscall number. */ |
94c57d6a PA |
5332 | if (handle_syscall_event (ecs) == 0) |
5333 | process_event_stop_test (ecs); | |
5334 | return; | |
c906108c | 5335 | |
488f131b JB |
5336 | /* Before examining the threads further, step this thread to |
5337 | get it entirely out of the syscall. (We get notice of the | |
5338 | event when the thread is just on the verge of exiting a | |
5339 | syscall. Stepping one instruction seems to get it back | |
b4dc5ffa | 5340 | into user code.) */ |
488f131b | 5341 | case TARGET_WAITKIND_SYSCALL_RETURN: |
527159b7 | 5342 | if (debug_infrun) |
3e43a32a MS |
5343 | fprintf_unfiltered (gdb_stdlog, |
5344 | "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n"); | |
94c57d6a PA |
5345 | if (handle_syscall_event (ecs) == 0) |
5346 | process_event_stop_test (ecs); | |
5347 | return; | |
c906108c | 5348 | |
488f131b | 5349 | case TARGET_WAITKIND_STOPPED: |
527159b7 | 5350 | if (debug_infrun) |
8a9de0e4 | 5351 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n"); |
4f5d7f63 PA |
5352 | handle_signal_stop (ecs); |
5353 | return; | |
c906108c | 5354 | |
b2175913 | 5355 | case TARGET_WAITKIND_NO_HISTORY: |
4b4e080e PA |
5356 | if (debug_infrun) |
5357 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n"); | |
b2175913 | 5358 | /* Reverse execution: target ran out of history info. */ |
eab402df | 5359 | |
d1988021 | 5360 | /* Switch to the stopped thread. */ |
00431a78 | 5361 | context_switch (ecs); |
d1988021 MM |
5362 | if (debug_infrun) |
5363 | fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n"); | |
5364 | ||
34b7e8a6 | 5365 | delete_just_stopped_threads_single_step_breakpoints (); |
f2ffa92b PA |
5366 | ecs->event_thread->suspend.stop_pc |
5367 | = regcache_read_pc (get_thread_regcache (inferior_thread ())); | |
c65d6b55 PA |
5368 | |
5369 | if (handle_stop_requested (ecs)) | |
5370 | return; | |
5371 | ||
76727919 | 5372 | gdb::observers::no_history.notify (); |
22bcd14b | 5373 | stop_waiting (ecs); |
b2175913 | 5374 | return; |
488f131b | 5375 | } |
4f5d7f63 PA |
5376 | } |
5377 | ||
0b6e5e10 JB |
5378 | /* A wrapper around handle_inferior_event_1, which also makes sure |
5379 | that all temporary struct value objects that were created during | |
5380 | the handling of the event get deleted at the end. */ | |
5381 | ||
5382 | static void | |
5383 | handle_inferior_event (struct execution_control_state *ecs) | |
5384 | { | |
5385 | struct value *mark = value_mark (); | |
5386 | ||
5387 | handle_inferior_event_1 (ecs); | |
5388 | /* Purge all temporary values created during the event handling, | |
5389 | as it could be a long time before we return to the command level | |
5390 | where such values would otherwise be purged. */ | |
5391 | value_free_to_mark (mark); | |
5392 | } | |
5393 | ||
372316f1 PA |
5394 | /* Restart threads back to what they were trying to do back when we |
5395 | paused them for an in-line step-over. The EVENT_THREAD thread is | |
5396 | ignored. */ | |
4d9d9d04 PA |
5397 | |
5398 | static void | |
372316f1 PA |
5399 | restart_threads (struct thread_info *event_thread) |
5400 | { | |
5401 | struct thread_info *tp; | |
372316f1 PA |
5402 | |
5403 | /* In case the instruction just stepped spawned a new thread. */ | |
5404 | update_thread_list (); | |
5405 | ||
5406 | ALL_NON_EXITED_THREADS (tp) | |
5407 | { | |
5408 | if (tp == event_thread) | |
5409 | { | |
5410 | if (debug_infrun) | |
5411 | fprintf_unfiltered (gdb_stdlog, | |
5412 | "infrun: restart threads: " | |
5413 | "[%s] is event thread\n", | |
5414 | target_pid_to_str (tp->ptid)); | |
5415 | continue; | |
5416 | } | |
5417 | ||
5418 | if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall)) | |
5419 | { | |
5420 | if (debug_infrun) | |
5421 | fprintf_unfiltered (gdb_stdlog, | |
5422 | "infrun: restart threads: " | |
5423 | "[%s] not meant to be running\n", | |
5424 | target_pid_to_str (tp->ptid)); | |
5425 | continue; | |
5426 | } | |
5427 | ||
5428 | if (tp->resumed) | |
5429 | { | |
5430 | if (debug_infrun) | |
5431 | fprintf_unfiltered (gdb_stdlog, | |
5432 | "infrun: restart threads: [%s] resumed\n", | |
5433 | target_pid_to_str (tp->ptid)); | |
5434 | gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p); | |
5435 | continue; | |
5436 | } | |
5437 | ||
5438 | if (thread_is_in_step_over_chain (tp)) | |
5439 | { | |
5440 | if (debug_infrun) | |
5441 | fprintf_unfiltered (gdb_stdlog, | |
5442 | "infrun: restart threads: " | |
5443 | "[%s] needs step-over\n", | |
5444 | target_pid_to_str (tp->ptid)); | |
5445 | gdb_assert (!tp->resumed); | |
5446 | continue; | |
5447 | } | |
5448 | ||
5449 | ||
5450 | if (tp->suspend.waitstatus_pending_p) | |
5451 | { | |
5452 | if (debug_infrun) | |
5453 | fprintf_unfiltered (gdb_stdlog, | |
5454 | "infrun: restart threads: " | |
5455 | "[%s] has pending status\n", | |
5456 | target_pid_to_str (tp->ptid)); | |
5457 | tp->resumed = 1; | |
5458 | continue; | |
5459 | } | |
5460 | ||
c65d6b55 PA |
5461 | gdb_assert (!tp->stop_requested); |
5462 | ||
372316f1 PA |
5463 | /* If some thread needs to start a step-over at this point, it |
5464 | should still be in the step-over queue, and thus skipped | |
5465 | above. */ | |
5466 | if (thread_still_needs_step_over (tp)) | |
5467 | { | |
5468 | internal_error (__FILE__, __LINE__, | |
5469 | "thread [%s] needs a step-over, but not in " | |
5470 | "step-over queue\n", | |
5471 | target_pid_to_str (tp->ptid)); | |
5472 | } | |
5473 | ||
5474 | if (currently_stepping (tp)) | |
5475 | { | |
5476 | if (debug_infrun) | |
5477 | fprintf_unfiltered (gdb_stdlog, | |
5478 | "infrun: restart threads: [%s] was stepping\n", | |
5479 | target_pid_to_str (tp->ptid)); | |
5480 | keep_going_stepped_thread (tp); | |
5481 | } | |
5482 | else | |
5483 | { | |
5484 | struct execution_control_state ecss; | |
5485 | struct execution_control_state *ecs = &ecss; | |
5486 | ||
5487 | if (debug_infrun) | |
5488 | fprintf_unfiltered (gdb_stdlog, | |
5489 | "infrun: restart threads: [%s] continuing\n", | |
5490 | target_pid_to_str (tp->ptid)); | |
5491 | reset_ecs (ecs, tp); | |
00431a78 | 5492 | switch_to_thread (tp); |
372316f1 PA |
5493 | keep_going_pass_signal (ecs); |
5494 | } | |
5495 | } | |
5496 | } | |
5497 | ||
5498 | /* Callback for iterate_over_threads. Find a resumed thread that has | |
5499 | a pending waitstatus. */ | |
5500 | ||
5501 | static int | |
5502 | resumed_thread_with_pending_status (struct thread_info *tp, | |
5503 | void *arg) | |
5504 | { | |
5505 | return (tp->resumed | |
5506 | && tp->suspend.waitstatus_pending_p); | |
5507 | } | |
5508 | ||
5509 | /* Called when we get an event that may finish an in-line or | |
5510 | out-of-line (displaced stepping) step-over started previously. | |
5511 | Return true if the event is processed and we should go back to the | |
5512 | event loop; false if the caller should continue processing the | |
5513 | event. */ | |
5514 | ||
5515 | static int | |
4d9d9d04 PA |
5516 | finish_step_over (struct execution_control_state *ecs) |
5517 | { | |
372316f1 PA |
5518 | int had_step_over_info; |
5519 | ||
00431a78 | 5520 | displaced_step_fixup (ecs->event_thread, |
4d9d9d04 PA |
5521 | ecs->event_thread->suspend.stop_signal); |
5522 | ||
372316f1 PA |
5523 | had_step_over_info = step_over_info_valid_p (); |
5524 | ||
5525 | if (had_step_over_info) | |
4d9d9d04 PA |
5526 | { |
5527 | /* If we're stepping over a breakpoint with all threads locked, | |
5528 | then only the thread that was stepped should be reporting | |
5529 | back an event. */ | |
5530 | gdb_assert (ecs->event_thread->control.trap_expected); | |
5531 | ||
c65d6b55 | 5532 | clear_step_over_info (); |
4d9d9d04 PA |
5533 | } |
5534 | ||
fbea99ea | 5535 | if (!target_is_non_stop_p ()) |
372316f1 | 5536 | return 0; |
4d9d9d04 PA |
5537 | |
5538 | /* Start a new step-over in another thread if there's one that | |
5539 | needs it. */ | |
5540 | start_step_over (); | |
372316f1 PA |
5541 | |
5542 | /* If we were stepping over a breakpoint before, and haven't started | |
5543 | a new in-line step-over sequence, then restart all other threads | |
5544 | (except the event thread). We can't do this in all-stop, as then | |
5545 | e.g., we wouldn't be able to issue any other remote packet until | |
5546 | these other threads stop. */ | |
5547 | if (had_step_over_info && !step_over_info_valid_p ()) | |
5548 | { | |
5549 | struct thread_info *pending; | |
5550 | ||
5551 | /* If we only have threads with pending statuses, the restart | |
5552 | below won't restart any thread and so nothing re-inserts the | |
5553 | breakpoint we just stepped over. But we need it inserted | |
5554 | when we later process the pending events, otherwise if | |
5555 | another thread has a pending event for this breakpoint too, | |
5556 | we'd discard its event (because the breakpoint that | |
5557 | originally caused the event was no longer inserted). */ | |
00431a78 | 5558 | context_switch (ecs); |
372316f1 PA |
5559 | insert_breakpoints (); |
5560 | ||
5561 | restart_threads (ecs->event_thread); | |
5562 | ||
5563 | /* If we have events pending, go through handle_inferior_event | |
5564 | again, picking up a pending event at random. This avoids | |
5565 | thread starvation. */ | |
5566 | ||
5567 | /* But not if we just stepped over a watchpoint in order to let | |
5568 | the instruction execute so we can evaluate its expression. | |
5569 | The set of watchpoints that triggered is recorded in the | |
5570 | breakpoint objects themselves (see bp->watchpoint_triggered). | |
5571 | If we processed another event first, that other event could | |
5572 | clobber this info. */ | |
5573 | if (ecs->event_thread->stepping_over_watchpoint) | |
5574 | return 0; | |
5575 | ||
5576 | pending = iterate_over_threads (resumed_thread_with_pending_status, | |
5577 | NULL); | |
5578 | if (pending != NULL) | |
5579 | { | |
5580 | struct thread_info *tp = ecs->event_thread; | |
5581 | struct regcache *regcache; | |
5582 | ||
5583 | if (debug_infrun) | |
5584 | { | |
5585 | fprintf_unfiltered (gdb_stdlog, | |
5586 | "infrun: found resumed threads with " | |
5587 | "pending events, saving status\n"); | |
5588 | } | |
5589 | ||
5590 | gdb_assert (pending != tp); | |
5591 | ||
5592 | /* Record the event thread's event for later. */ | |
5593 | save_waitstatus (tp, &ecs->ws); | |
5594 | /* This was cleared early, by handle_inferior_event. Set it | |
5595 | so this pending event is considered by | |
5596 | do_target_wait. */ | |
5597 | tp->resumed = 1; | |
5598 | ||
5599 | gdb_assert (!tp->executing); | |
5600 | ||
00431a78 | 5601 | regcache = get_thread_regcache (tp); |
372316f1 PA |
5602 | tp->suspend.stop_pc = regcache_read_pc (regcache); |
5603 | ||
5604 | if (debug_infrun) | |
5605 | { | |
5606 | fprintf_unfiltered (gdb_stdlog, | |
5607 | "infrun: saved stop_pc=%s for %s " | |
5608 | "(currently_stepping=%d)\n", | |
5609 | paddress (target_gdbarch (), | |
5610 | tp->suspend.stop_pc), | |
5611 | target_pid_to_str (tp->ptid), | |
5612 | currently_stepping (tp)); | |
5613 | } | |
5614 | ||
5615 | /* This in-line step-over finished; clear this so we won't | |
5616 | start a new one. This is what handle_signal_stop would | |
5617 | do, if we returned false. */ | |
5618 | tp->stepping_over_breakpoint = 0; | |
5619 | ||
5620 | /* Wake up the event loop again. */ | |
5621 | mark_async_event_handler (infrun_async_inferior_event_token); | |
5622 | ||
5623 | prepare_to_wait (ecs); | |
5624 | return 1; | |
5625 | } | |
5626 | } | |
5627 | ||
5628 | return 0; | |
4d9d9d04 PA |
5629 | } |
5630 | ||
4f5d7f63 PA |
5631 | /* Come here when the program has stopped with a signal. */ |
5632 | ||
5633 | static void | |
5634 | handle_signal_stop (struct execution_control_state *ecs) | |
5635 | { | |
5636 | struct frame_info *frame; | |
5637 | struct gdbarch *gdbarch; | |
5638 | int stopped_by_watchpoint; | |
5639 | enum stop_kind stop_soon; | |
5640 | int random_signal; | |
c906108c | 5641 | |
f0407826 DE |
5642 | gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED); |
5643 | ||
c65d6b55 PA |
5644 | ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig; |
5645 | ||
f0407826 DE |
5646 | /* Do we need to clean up the state of a thread that has |
5647 | completed a displaced single-step? (Doing so usually affects | |
5648 | the PC, so do it here, before we set stop_pc.) */ | |
372316f1 PA |
5649 | if (finish_step_over (ecs)) |
5650 | return; | |
f0407826 DE |
5651 | |
5652 | /* If we either finished a single-step or hit a breakpoint, but | |
5653 | the user wanted this thread to be stopped, pretend we got a | |
5654 | SIG0 (generic unsignaled stop). */ | |
5655 | if (ecs->event_thread->stop_requested | |
5656 | && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP) | |
5657 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; | |
237fc4c9 | 5658 | |
f2ffa92b PA |
5659 | ecs->event_thread->suspend.stop_pc |
5660 | = regcache_read_pc (get_thread_regcache (ecs->event_thread)); | |
488f131b | 5661 | |
527159b7 | 5662 | if (debug_infrun) |
237fc4c9 | 5663 | { |
00431a78 | 5664 | struct regcache *regcache = get_thread_regcache (ecs->event_thread); |
ac7936df | 5665 | struct gdbarch *gdbarch = regcache->arch (); |
2989a365 | 5666 | scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); |
7f82dfc7 JK |
5667 | |
5668 | inferior_ptid = ecs->ptid; | |
5af949e3 UW |
5669 | |
5670 | fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n", | |
f2ffa92b PA |
5671 | paddress (gdbarch, |
5672 | ecs->event_thread->suspend.stop_pc)); | |
d92524f1 | 5673 | if (target_stopped_by_watchpoint ()) |
237fc4c9 PA |
5674 | { |
5675 | CORE_ADDR addr; | |
abbb1732 | 5676 | |
237fc4c9 PA |
5677 | fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n"); |
5678 | ||
8b88a78e | 5679 | if (target_stopped_data_address (current_top_target (), &addr)) |
237fc4c9 | 5680 | fprintf_unfiltered (gdb_stdlog, |
5af949e3 UW |
5681 | "infrun: stopped data address = %s\n", |
5682 | paddress (gdbarch, addr)); | |
237fc4c9 PA |
5683 | else |
5684 | fprintf_unfiltered (gdb_stdlog, | |
5685 | "infrun: (no data address available)\n"); | |
5686 | } | |
5687 | } | |
527159b7 | 5688 | |
36fa8042 PA |
5689 | /* This is originated from start_remote(), start_inferior() and |
5690 | shared libraries hook functions. */ | |
00431a78 | 5691 | stop_soon = get_inferior_stop_soon (ecs); |
36fa8042 PA |
5692 | if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE) |
5693 | { | |
00431a78 | 5694 | context_switch (ecs); |
36fa8042 PA |
5695 | if (debug_infrun) |
5696 | fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n"); | |
5697 | stop_print_frame = 1; | |
22bcd14b | 5698 | stop_waiting (ecs); |
36fa8042 PA |
5699 | return; |
5700 | } | |
5701 | ||
36fa8042 PA |
5702 | /* This originates from attach_command(). We need to overwrite |
5703 | the stop_signal here, because some kernels don't ignore a | |
5704 | SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call. | |
5705 | See more comments in inferior.h. On the other hand, if we | |
5706 | get a non-SIGSTOP, report it to the user - assume the backend | |
5707 | will handle the SIGSTOP if it should show up later. | |
5708 | ||
5709 | Also consider that the attach is complete when we see a | |
5710 | SIGTRAP. Some systems (e.g. Windows), and stubs supporting | |
5711 | target extended-remote report it instead of a SIGSTOP | |
5712 | (e.g. gdbserver). We already rely on SIGTRAP being our | |
5713 | signal, so this is no exception. | |
5714 | ||
5715 | Also consider that the attach is complete when we see a | |
5716 | GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell | |
5717 | the target to stop all threads of the inferior, in case the | |
5718 | low level attach operation doesn't stop them implicitly. If | |
5719 | they weren't stopped implicitly, then the stub will report a | |
5720 | GDB_SIGNAL_0, meaning: stopped for no particular reason | |
5721 | other than GDB's request. */ | |
5722 | if (stop_soon == STOP_QUIETLY_NO_SIGSTOP | |
5723 | && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP | |
5724 | || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP | |
5725 | || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0)) | |
5726 | { | |
5727 | stop_print_frame = 1; | |
22bcd14b | 5728 | stop_waiting (ecs); |
36fa8042 PA |
5729 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; |
5730 | return; | |
5731 | } | |
5732 | ||
488f131b | 5733 | /* See if something interesting happened to the non-current thread. If |
b40c7d58 | 5734 | so, then switch to that thread. */ |
d7e15655 | 5735 | if (ecs->ptid != inferior_ptid) |
488f131b | 5736 | { |
527159b7 | 5737 | if (debug_infrun) |
8a9de0e4 | 5738 | fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n"); |
527159b7 | 5739 | |
00431a78 | 5740 | context_switch (ecs); |
c5aa993b | 5741 | |
9a4105ab | 5742 | if (deprecated_context_hook) |
00431a78 | 5743 | deprecated_context_hook (ecs->event_thread->global_num); |
488f131b | 5744 | } |
c906108c | 5745 | |
568d6575 UW |
5746 | /* At this point, get hold of the now-current thread's frame. */ |
5747 | frame = get_current_frame (); | |
5748 | gdbarch = get_frame_arch (frame); | |
5749 | ||
2adfaa28 | 5750 | /* Pull the single step breakpoints out of the target. */ |
af48d08f | 5751 | if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP) |
488f131b | 5752 | { |
af48d08f | 5753 | struct regcache *regcache; |
af48d08f | 5754 | CORE_ADDR pc; |
2adfaa28 | 5755 | |
00431a78 | 5756 | regcache = get_thread_regcache (ecs->event_thread); |
8b86c959 YQ |
5757 | const address_space *aspace = regcache->aspace (); |
5758 | ||
af48d08f | 5759 | pc = regcache_read_pc (regcache); |
34b7e8a6 | 5760 | |
af48d08f PA |
5761 | /* However, before doing so, if this single-step breakpoint was |
5762 | actually for another thread, set this thread up for moving | |
5763 | past it. */ | |
5764 | if (!thread_has_single_step_breakpoint_here (ecs->event_thread, | |
5765 | aspace, pc)) | |
5766 | { | |
5767 | if (single_step_breakpoint_inserted_here_p (aspace, pc)) | |
2adfaa28 PA |
5768 | { |
5769 | if (debug_infrun) | |
5770 | { | |
5771 | fprintf_unfiltered (gdb_stdlog, | |
af48d08f | 5772 | "infrun: [%s] hit another thread's " |
34b7e8a6 PA |
5773 | "single-step breakpoint\n", |
5774 | target_pid_to_str (ecs->ptid)); | |
2adfaa28 | 5775 | } |
af48d08f PA |
5776 | ecs->hit_singlestep_breakpoint = 1; |
5777 | } | |
5778 | } | |
5779 | else | |
5780 | { | |
5781 | if (debug_infrun) | |
5782 | { | |
5783 | fprintf_unfiltered (gdb_stdlog, | |
5784 | "infrun: [%s] hit its " | |
5785 | "single-step breakpoint\n", | |
5786 | target_pid_to_str (ecs->ptid)); | |
2adfaa28 PA |
5787 | } |
5788 | } | |
488f131b | 5789 | } |
af48d08f | 5790 | delete_just_stopped_threads_single_step_breakpoints (); |
c906108c | 5791 | |
963f9c80 PA |
5792 | if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP |
5793 | && ecs->event_thread->control.trap_expected | |
5794 | && ecs->event_thread->stepping_over_watchpoint) | |
d983da9c DJ |
5795 | stopped_by_watchpoint = 0; |
5796 | else | |
5797 | stopped_by_watchpoint = watchpoints_triggered (&ecs->ws); | |
5798 | ||
5799 | /* If necessary, step over this watchpoint. We'll be back to display | |
5800 | it in a moment. */ | |
5801 | if (stopped_by_watchpoint | |
d92524f1 | 5802 | && (target_have_steppable_watchpoint |
568d6575 | 5803 | || gdbarch_have_nonsteppable_watchpoint (gdbarch))) |
488f131b | 5804 | { |
488f131b JB |
5805 | /* At this point, we are stopped at an instruction which has |
5806 | attempted to write to a piece of memory under control of | |
5807 | a watchpoint. The instruction hasn't actually executed | |
5808 | yet. If we were to evaluate the watchpoint expression | |
5809 | now, we would get the old value, and therefore no change | |
5810 | would seem to have occurred. | |
5811 | ||
5812 | In order to make watchpoints work `right', we really need | |
5813 | to complete the memory write, and then evaluate the | |
d983da9c DJ |
5814 | watchpoint expression. We do this by single-stepping the |
5815 | target. | |
5816 | ||
7f89fd65 | 5817 | It may not be necessary to disable the watchpoint to step over |
d983da9c DJ |
5818 | it. For example, the PA can (with some kernel cooperation) |
5819 | single step over a watchpoint without disabling the watchpoint. | |
5820 | ||
5821 | It is far more common to need to disable a watchpoint to step | |
5822 | the inferior over it. If we have non-steppable watchpoints, | |
5823 | we must disable the current watchpoint; it's simplest to | |
963f9c80 PA |
5824 | disable all watchpoints. |
5825 | ||
5826 | Any breakpoint at PC must also be stepped over -- if there's | |
5827 | one, it will have already triggered before the watchpoint | |
5828 | triggered, and we either already reported it to the user, or | |
5829 | it didn't cause a stop and we called keep_going. In either | |
5830 | case, if there was a breakpoint at PC, we must be trying to | |
5831 | step past it. */ | |
5832 | ecs->event_thread->stepping_over_watchpoint = 1; | |
5833 | keep_going (ecs); | |
488f131b JB |
5834 | return; |
5835 | } | |
5836 | ||
4e1c45ea | 5837 | ecs->event_thread->stepping_over_breakpoint = 0; |
963f9c80 | 5838 | ecs->event_thread->stepping_over_watchpoint = 0; |
16c381f0 JK |
5839 | bpstat_clear (&ecs->event_thread->control.stop_bpstat); |
5840 | ecs->event_thread->control.stop_step = 0; | |
488f131b | 5841 | stop_print_frame = 1; |
488f131b | 5842 | stopped_by_random_signal = 0; |
ddfe970e | 5843 | bpstat stop_chain = NULL; |
488f131b | 5844 | |
edb3359d DJ |
5845 | /* Hide inlined functions starting here, unless we just performed stepi or |
5846 | nexti. After stepi and nexti, always show the innermost frame (not any | |
5847 | inline function call sites). */ | |
16c381f0 | 5848 | if (ecs->event_thread->control.step_range_end != 1) |
0574c78f | 5849 | { |
00431a78 PA |
5850 | const address_space *aspace |
5851 | = get_thread_regcache (ecs->event_thread)->aspace (); | |
0574c78f GB |
5852 | |
5853 | /* skip_inline_frames is expensive, so we avoid it if we can | |
5854 | determine that the address is one where functions cannot have | |
5855 | been inlined. This improves performance with inferiors that | |
5856 | load a lot of shared libraries, because the solib event | |
5857 | breakpoint is defined as the address of a function (i.e. not | |
5858 | inline). Note that we have to check the previous PC as well | |
5859 | as the current one to catch cases when we have just | |
5860 | single-stepped off a breakpoint prior to reinstating it. | |
5861 | Note that we're assuming that the code we single-step to is | |
5862 | not inline, but that's not definitive: there's nothing | |
5863 | preventing the event breakpoint function from containing | |
5864 | inlined code, and the single-step ending up there. If the | |
5865 | user had set a breakpoint on that inlined code, the missing | |
5866 | skip_inline_frames call would break things. Fortunately | |
5867 | that's an extremely unlikely scenario. */ | |
f2ffa92b PA |
5868 | if (!pc_at_non_inline_function (aspace, |
5869 | ecs->event_thread->suspend.stop_pc, | |
5870 | &ecs->ws) | |
a210c238 MR |
5871 | && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP |
5872 | && ecs->event_thread->control.trap_expected | |
5873 | && pc_at_non_inline_function (aspace, | |
5874 | ecs->event_thread->prev_pc, | |
09ac7c10 | 5875 | &ecs->ws))) |
1c5a993e | 5876 | { |
f2ffa92b PA |
5877 | stop_chain = build_bpstat_chain (aspace, |
5878 | ecs->event_thread->suspend.stop_pc, | |
5879 | &ecs->ws); | |
00431a78 | 5880 | skip_inline_frames (ecs->event_thread, stop_chain); |
1c5a993e MR |
5881 | |
5882 | /* Re-fetch current thread's frame in case that invalidated | |
5883 | the frame cache. */ | |
5884 | frame = get_current_frame (); | |
5885 | gdbarch = get_frame_arch (frame); | |
5886 | } | |
0574c78f | 5887 | } |
edb3359d | 5888 | |
a493e3e2 | 5889 | if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP |
16c381f0 | 5890 | && ecs->event_thread->control.trap_expected |
568d6575 | 5891 | && gdbarch_single_step_through_delay_p (gdbarch) |
4e1c45ea | 5892 | && currently_stepping (ecs->event_thread)) |
3352ef37 | 5893 | { |
b50d7442 | 5894 | /* We're trying to step off a breakpoint. Turns out that we're |
3352ef37 | 5895 | also on an instruction that needs to be stepped multiple |
1777feb0 | 5896 | times before it's been fully executing. E.g., architectures |
3352ef37 AC |
5897 | with a delay slot. It needs to be stepped twice, once for |
5898 | the instruction and once for the delay slot. */ | |
5899 | int step_through_delay | |
568d6575 | 5900 | = gdbarch_single_step_through_delay (gdbarch, frame); |
abbb1732 | 5901 | |
527159b7 | 5902 | if (debug_infrun && step_through_delay) |
8a9de0e4 | 5903 | fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n"); |
16c381f0 JK |
5904 | if (ecs->event_thread->control.step_range_end == 0 |
5905 | && step_through_delay) | |
3352ef37 AC |
5906 | { |
5907 | /* The user issued a continue when stopped at a breakpoint. | |
5908 | Set up for another trap and get out of here. */ | |
4e1c45ea | 5909 | ecs->event_thread->stepping_over_breakpoint = 1; |
3352ef37 AC |
5910 | keep_going (ecs); |
5911 | return; | |
5912 | } | |
5913 | else if (step_through_delay) | |
5914 | { | |
5915 | /* The user issued a step when stopped at a breakpoint. | |
5916 | Maybe we should stop, maybe we should not - the delay | |
5917 | slot *might* correspond to a line of source. In any | |
ca67fcb8 VP |
5918 | case, don't decide that here, just set |
5919 | ecs->stepping_over_breakpoint, making sure we | |
5920 | single-step again before breakpoints are re-inserted. */ | |
4e1c45ea | 5921 | ecs->event_thread->stepping_over_breakpoint = 1; |
3352ef37 AC |
5922 | } |
5923 | } | |
5924 | ||
ab04a2af TT |
5925 | /* See if there is a breakpoint/watchpoint/catchpoint/etc. that |
5926 | handles this event. */ | |
5927 | ecs->event_thread->control.stop_bpstat | |
a01bda52 | 5928 | = bpstat_stop_status (get_current_regcache ()->aspace (), |
f2ffa92b PA |
5929 | ecs->event_thread->suspend.stop_pc, |
5930 | ecs->event_thread, &ecs->ws, stop_chain); | |
db82e815 | 5931 | |
ab04a2af TT |
5932 | /* Following in case break condition called a |
5933 | function. */ | |
5934 | stop_print_frame = 1; | |
73dd234f | 5935 | |
ab04a2af TT |
5936 | /* This is where we handle "moribund" watchpoints. Unlike |
5937 | software breakpoints traps, hardware watchpoint traps are | |
5938 | always distinguishable from random traps. If no high-level | |
5939 | watchpoint is associated with the reported stop data address | |
5940 | anymore, then the bpstat does not explain the signal --- | |
5941 | simply make sure to ignore it if `stopped_by_watchpoint' is | |
5942 | set. */ | |
5943 | ||
5944 | if (debug_infrun | |
5945 | && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP | |
47591c29 | 5946 | && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat, |
427cd150 | 5947 | GDB_SIGNAL_TRAP) |
ab04a2af TT |
5948 | && stopped_by_watchpoint) |
5949 | fprintf_unfiltered (gdb_stdlog, | |
5950 | "infrun: no user watchpoint explains " | |
5951 | "watchpoint SIGTRAP, ignoring\n"); | |
73dd234f | 5952 | |
bac7d97b | 5953 | /* NOTE: cagney/2003-03-29: These checks for a random signal |
ab04a2af TT |
5954 | at one stage in the past included checks for an inferior |
5955 | function call's call dummy's return breakpoint. The original | |
5956 | comment, that went with the test, read: | |
03cebad2 | 5957 | |
ab04a2af TT |
5958 | ``End of a stack dummy. Some systems (e.g. Sony news) give |
5959 | another signal besides SIGTRAP, so check here as well as | |
5960 | above.'' | |
73dd234f | 5961 | |
ab04a2af TT |
5962 | If someone ever tries to get call dummys on a |
5963 | non-executable stack to work (where the target would stop | |
5964 | with something like a SIGSEGV), then those tests might need | |
5965 | to be re-instated. Given, however, that the tests were only | |
5966 | enabled when momentary breakpoints were not being used, I | |
5967 | suspect that it won't be the case. | |
488f131b | 5968 | |
ab04a2af TT |
5969 | NOTE: kettenis/2004-02-05: Indeed such checks don't seem to |
5970 | be necessary for call dummies on a non-executable stack on | |
5971 | SPARC. */ | |
488f131b | 5972 | |
bac7d97b | 5973 | /* See if the breakpoints module can explain the signal. */ |
47591c29 PA |
5974 | random_signal |
5975 | = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat, | |
5976 | ecs->event_thread->suspend.stop_signal); | |
bac7d97b | 5977 | |
1cf4d951 PA |
5978 | /* Maybe this was a trap for a software breakpoint that has since |
5979 | been removed. */ | |
5980 | if (random_signal && target_stopped_by_sw_breakpoint ()) | |
5981 | { | |
f2ffa92b PA |
5982 | if (program_breakpoint_here_p (gdbarch, |
5983 | ecs->event_thread->suspend.stop_pc)) | |
1cf4d951 PA |
5984 | { |
5985 | struct regcache *regcache; | |
5986 | int decr_pc; | |
5987 | ||
5988 | /* Re-adjust PC to what the program would see if GDB was not | |
5989 | debugging it. */ | |
00431a78 | 5990 | regcache = get_thread_regcache (ecs->event_thread); |
527a273a | 5991 | decr_pc = gdbarch_decr_pc_after_break (gdbarch); |
1cf4d951 PA |
5992 | if (decr_pc != 0) |
5993 | { | |
07036511 TT |
5994 | gdb::optional<scoped_restore_tmpl<int>> |
5995 | restore_operation_disable; | |
1cf4d951 PA |
5996 | |
5997 | if (record_full_is_used ()) | |
07036511 TT |
5998 | restore_operation_disable.emplace |
5999 | (record_full_gdb_operation_disable_set ()); | |
1cf4d951 | 6000 | |
f2ffa92b PA |
6001 | regcache_write_pc (regcache, |
6002 | ecs->event_thread->suspend.stop_pc + decr_pc); | |
1cf4d951 PA |
6003 | } |
6004 | } | |
6005 | else | |
6006 | { | |
6007 | /* A delayed software breakpoint event. Ignore the trap. */ | |
6008 | if (debug_infrun) | |
6009 | fprintf_unfiltered (gdb_stdlog, | |
6010 | "infrun: delayed software breakpoint " | |
6011 | "trap, ignoring\n"); | |
6012 | random_signal = 0; | |
6013 | } | |
6014 | } | |
6015 | ||
6016 | /* Maybe this was a trap for a hardware breakpoint/watchpoint that | |
6017 | has since been removed. */ | |
6018 | if (random_signal && target_stopped_by_hw_breakpoint ()) | |
6019 | { | |
6020 | /* A delayed hardware breakpoint event. Ignore the trap. */ | |
6021 | if (debug_infrun) | |
6022 | fprintf_unfiltered (gdb_stdlog, | |
6023 | "infrun: delayed hardware breakpoint/watchpoint " | |
6024 | "trap, ignoring\n"); | |
6025 | random_signal = 0; | |
6026 | } | |
6027 | ||
bac7d97b PA |
6028 | /* If not, perhaps stepping/nexting can. */ |
6029 | if (random_signal) | |
6030 | random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP | |
6031 | && currently_stepping (ecs->event_thread)); | |
ab04a2af | 6032 | |
2adfaa28 PA |
6033 | /* Perhaps the thread hit a single-step breakpoint of _another_ |
6034 | thread. Single-step breakpoints are transparent to the | |
6035 | breakpoints module. */ | |
6036 | if (random_signal) | |
6037 | random_signal = !ecs->hit_singlestep_breakpoint; | |
6038 | ||
bac7d97b PA |
6039 | /* No? Perhaps we got a moribund watchpoint. */ |
6040 | if (random_signal) | |
6041 | random_signal = !stopped_by_watchpoint; | |
ab04a2af | 6042 | |
c65d6b55 PA |
6043 | /* Always stop if the user explicitly requested this thread to |
6044 | remain stopped. */ | |
6045 | if (ecs->event_thread->stop_requested) | |
6046 | { | |
6047 | random_signal = 1; | |
6048 | if (debug_infrun) | |
6049 | fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n"); | |
6050 | } | |
6051 | ||
488f131b JB |
6052 | /* For the program's own signals, act according to |
6053 | the signal handling tables. */ | |
6054 | ||
ce12b012 | 6055 | if (random_signal) |
488f131b JB |
6056 | { |
6057 | /* Signal not for debugging purposes. */ | |
c9657e70 | 6058 | struct inferior *inf = find_inferior_ptid (ecs->ptid); |
c9737c08 | 6059 | enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal; |
488f131b | 6060 | |
527159b7 | 6061 | if (debug_infrun) |
c9737c08 PA |
6062 | fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n", |
6063 | gdb_signal_to_symbol_string (stop_signal)); | |
527159b7 | 6064 | |
488f131b JB |
6065 | stopped_by_random_signal = 1; |
6066 | ||
252fbfc8 PA |
6067 | /* Always stop on signals if we're either just gaining control |
6068 | of the program, or the user explicitly requested this thread | |
6069 | to remain stopped. */ | |
d6b48e9c | 6070 | if (stop_soon != NO_STOP_QUIETLY |
252fbfc8 | 6071 | || ecs->event_thread->stop_requested |
24291992 | 6072 | || (!inf->detaching |
16c381f0 | 6073 | && signal_stop_state (ecs->event_thread->suspend.stop_signal))) |
488f131b | 6074 | { |
22bcd14b | 6075 | stop_waiting (ecs); |
488f131b JB |
6076 | return; |
6077 | } | |
b57bacec PA |
6078 | |
6079 | /* Notify observers the signal has "handle print" set. Note we | |
6080 | returned early above if stopping; normal_stop handles the | |
6081 | printing in that case. */ | |
6082 | if (signal_print[ecs->event_thread->suspend.stop_signal]) | |
6083 | { | |
6084 | /* The signal table tells us to print about this signal. */ | |
223ffa71 | 6085 | target_terminal::ours_for_output (); |
76727919 | 6086 | gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal); |
223ffa71 | 6087 | target_terminal::inferior (); |
b57bacec | 6088 | } |
488f131b JB |
6089 | |
6090 | /* Clear the signal if it should not be passed. */ | |
16c381f0 | 6091 | if (signal_program[ecs->event_thread->suspend.stop_signal] == 0) |
a493e3e2 | 6092 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; |
488f131b | 6093 | |
f2ffa92b | 6094 | if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc |
16c381f0 | 6095 | && ecs->event_thread->control.trap_expected |
8358c15c | 6096 | && ecs->event_thread->control.step_resume_breakpoint == NULL) |
68f53502 AC |
6097 | { |
6098 | /* We were just starting a new sequence, attempting to | |
6099 | single-step off of a breakpoint and expecting a SIGTRAP. | |
237fc4c9 | 6100 | Instead this signal arrives. This signal will take us out |
68f53502 AC |
6101 | of the stepping range so GDB needs to remember to, when |
6102 | the signal handler returns, resume stepping off that | |
6103 | breakpoint. */ | |
6104 | /* To simplify things, "continue" is forced to use the same | |
6105 | code paths as single-step - set a breakpoint at the | |
6106 | signal return address and then, once hit, step off that | |
6107 | breakpoint. */ | |
237fc4c9 PA |
6108 | if (debug_infrun) |
6109 | fprintf_unfiltered (gdb_stdlog, | |
6110 | "infrun: signal arrived while stepping over " | |
6111 | "breakpoint\n"); | |
d3169d93 | 6112 | |
2c03e5be | 6113 | insert_hp_step_resume_breakpoint_at_frame (frame); |
4e1c45ea | 6114 | ecs->event_thread->step_after_step_resume_breakpoint = 1; |
2455069d UW |
6115 | /* Reset trap_expected to ensure breakpoints are re-inserted. */ |
6116 | ecs->event_thread->control.trap_expected = 0; | |
d137e6dc PA |
6117 | |
6118 | /* If we were nexting/stepping some other thread, switch to | |
6119 | it, so that we don't continue it, losing control. */ | |
6120 | if (!switch_back_to_stepped_thread (ecs)) | |
6121 | keep_going (ecs); | |
9d799f85 | 6122 | return; |
68f53502 | 6123 | } |
9d799f85 | 6124 | |
e5f8a7cc | 6125 | if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0 |
f2ffa92b PA |
6126 | && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc, |
6127 | ecs->event_thread) | |
e5f8a7cc | 6128 | || ecs->event_thread->control.step_range_end == 1) |
edb3359d | 6129 | && frame_id_eq (get_stack_frame_id (frame), |
16c381f0 | 6130 | ecs->event_thread->control.step_stack_frame_id) |
8358c15c | 6131 | && ecs->event_thread->control.step_resume_breakpoint == NULL) |
d303a6c7 AC |
6132 | { |
6133 | /* The inferior is about to take a signal that will take it | |
6134 | out of the single step range. Set a breakpoint at the | |
6135 | current PC (which is presumably where the signal handler | |
6136 | will eventually return) and then allow the inferior to | |
6137 | run free. | |
6138 | ||
6139 | Note that this is only needed for a signal delivered | |
6140 | while in the single-step range. Nested signals aren't a | |
6141 | problem as they eventually all return. */ | |
237fc4c9 PA |
6142 | if (debug_infrun) |
6143 | fprintf_unfiltered (gdb_stdlog, | |
6144 | "infrun: signal may take us out of " | |
6145 | "single-step range\n"); | |
6146 | ||
372316f1 | 6147 | clear_step_over_info (); |
2c03e5be | 6148 | insert_hp_step_resume_breakpoint_at_frame (frame); |
e5f8a7cc | 6149 | ecs->event_thread->step_after_step_resume_breakpoint = 1; |
2455069d UW |
6150 | /* Reset trap_expected to ensure breakpoints are re-inserted. */ |
6151 | ecs->event_thread->control.trap_expected = 0; | |
9d799f85 AC |
6152 | keep_going (ecs); |
6153 | return; | |
d303a6c7 | 6154 | } |
9d799f85 AC |
6155 | |
6156 | /* Note: step_resume_breakpoint may be non-NULL. This occures | |
6157 | when either there's a nested signal, or when there's a | |
6158 | pending signal enabled just as the signal handler returns | |
6159 | (leaving the inferior at the step-resume-breakpoint without | |
6160 | actually executing it). Either way continue until the | |
6161 | breakpoint is really hit. */ | |
c447ac0b PA |
6162 | |
6163 | if (!switch_back_to_stepped_thread (ecs)) | |
6164 | { | |
6165 | if (debug_infrun) | |
6166 | fprintf_unfiltered (gdb_stdlog, | |
6167 | "infrun: random signal, keep going\n"); | |
6168 | ||
6169 | keep_going (ecs); | |
6170 | } | |
6171 | return; | |
488f131b | 6172 | } |
94c57d6a PA |
6173 | |
6174 | process_event_stop_test (ecs); | |
6175 | } | |
6176 | ||
6177 | /* Come here when we've got some debug event / signal we can explain | |
6178 | (IOW, not a random signal), and test whether it should cause a | |
6179 | stop, or whether we should resume the inferior (transparently). | |
6180 | E.g., could be a breakpoint whose condition evaluates false; we | |
6181 | could be still stepping within the line; etc. */ | |
6182 | ||
6183 | static void | |
6184 | process_event_stop_test (struct execution_control_state *ecs) | |
6185 | { | |
6186 | struct symtab_and_line stop_pc_sal; | |
6187 | struct frame_info *frame; | |
6188 | struct gdbarch *gdbarch; | |
cdaa5b73 PA |
6189 | CORE_ADDR jmp_buf_pc; |
6190 | struct bpstat_what what; | |
94c57d6a | 6191 | |
cdaa5b73 | 6192 | /* Handle cases caused by hitting a breakpoint. */ |
611c83ae | 6193 | |
cdaa5b73 PA |
6194 | frame = get_current_frame (); |
6195 | gdbarch = get_frame_arch (frame); | |
fcf3daef | 6196 | |
cdaa5b73 | 6197 | what = bpstat_what (ecs->event_thread->control.stop_bpstat); |
611c83ae | 6198 | |
cdaa5b73 PA |
6199 | if (what.call_dummy) |
6200 | { | |
6201 | stop_stack_dummy = what.call_dummy; | |
6202 | } | |
186c406b | 6203 | |
243a9253 PA |
6204 | /* A few breakpoint types have callbacks associated (e.g., |
6205 | bp_jit_event). Run them now. */ | |
6206 | bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat); | |
6207 | ||
cdaa5b73 PA |
6208 | /* If we hit an internal event that triggers symbol changes, the |
6209 | current frame will be invalidated within bpstat_what (e.g., if we | |
6210 | hit an internal solib event). Re-fetch it. */ | |
6211 | frame = get_current_frame (); | |
6212 | gdbarch = get_frame_arch (frame); | |
e2e4d78b | 6213 | |
cdaa5b73 PA |
6214 | switch (what.main_action) |
6215 | { | |
6216 | case BPSTAT_WHAT_SET_LONGJMP_RESUME: | |
6217 | /* If we hit the breakpoint at longjmp while stepping, we | |
6218 | install a momentary breakpoint at the target of the | |
6219 | jmp_buf. */ | |
186c406b | 6220 | |
cdaa5b73 PA |
6221 | if (debug_infrun) |
6222 | fprintf_unfiltered (gdb_stdlog, | |
6223 | "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n"); | |
186c406b | 6224 | |
cdaa5b73 | 6225 | ecs->event_thread->stepping_over_breakpoint = 1; |
611c83ae | 6226 | |
cdaa5b73 PA |
6227 | if (what.is_longjmp) |
6228 | { | |
6229 | struct value *arg_value; | |
6230 | ||
6231 | /* If we set the longjmp breakpoint via a SystemTap probe, | |
6232 | then use it to extract the arguments. The destination PC | |
6233 | is the third argument to the probe. */ | |
6234 | arg_value = probe_safe_evaluate_at_pc (frame, 2); | |
6235 | if (arg_value) | |
8fa0c4f8 AA |
6236 | { |
6237 | jmp_buf_pc = value_as_address (arg_value); | |
6238 | jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc); | |
6239 | } | |
cdaa5b73 PA |
6240 | else if (!gdbarch_get_longjmp_target_p (gdbarch) |
6241 | || !gdbarch_get_longjmp_target (gdbarch, | |
6242 | frame, &jmp_buf_pc)) | |
e2e4d78b | 6243 | { |
cdaa5b73 PA |
6244 | if (debug_infrun) |
6245 | fprintf_unfiltered (gdb_stdlog, | |
6246 | "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME " | |
6247 | "(!gdbarch_get_longjmp_target)\n"); | |
6248 | keep_going (ecs); | |
6249 | return; | |
e2e4d78b | 6250 | } |
e2e4d78b | 6251 | |
cdaa5b73 PA |
6252 | /* Insert a breakpoint at resume address. */ |
6253 | insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc); | |
6254 | } | |
6255 | else | |
6256 | check_exception_resume (ecs, frame); | |
6257 | keep_going (ecs); | |
6258 | return; | |
e81a37f7 | 6259 | |
cdaa5b73 PA |
6260 | case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME: |
6261 | { | |
6262 | struct frame_info *init_frame; | |
e81a37f7 | 6263 | |
cdaa5b73 | 6264 | /* There are several cases to consider. |
c906108c | 6265 | |
cdaa5b73 PA |
6266 | 1. The initiating frame no longer exists. In this case we |
6267 | must stop, because the exception or longjmp has gone too | |
6268 | far. | |
2c03e5be | 6269 | |
cdaa5b73 PA |
6270 | 2. The initiating frame exists, and is the same as the |
6271 | current frame. We stop, because the exception or longjmp | |
6272 | has been caught. | |
2c03e5be | 6273 | |
cdaa5b73 PA |
6274 | 3. The initiating frame exists and is different from the |
6275 | current frame. This means the exception or longjmp has | |
6276 | been caught beneath the initiating frame, so keep going. | |
c906108c | 6277 | |
cdaa5b73 PA |
6278 | 4. longjmp breakpoint has been placed just to protect |
6279 | against stale dummy frames and user is not interested in | |
6280 | stopping around longjmps. */ | |
c5aa993b | 6281 | |
cdaa5b73 PA |
6282 | if (debug_infrun) |
6283 | fprintf_unfiltered (gdb_stdlog, | |
6284 | "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n"); | |
c5aa993b | 6285 | |
cdaa5b73 PA |
6286 | gdb_assert (ecs->event_thread->control.exception_resume_breakpoint |
6287 | != NULL); | |
6288 | delete_exception_resume_breakpoint (ecs->event_thread); | |
c5aa993b | 6289 | |
cdaa5b73 PA |
6290 | if (what.is_longjmp) |
6291 | { | |
b67a2c6f | 6292 | check_longjmp_breakpoint_for_call_dummy (ecs->event_thread); |
c5aa993b | 6293 | |
cdaa5b73 | 6294 | if (!frame_id_p (ecs->event_thread->initiating_frame)) |
e5ef252a | 6295 | { |
cdaa5b73 PA |
6296 | /* Case 4. */ |
6297 | keep_going (ecs); | |
6298 | return; | |
e5ef252a | 6299 | } |
cdaa5b73 | 6300 | } |
c5aa993b | 6301 | |
cdaa5b73 | 6302 | init_frame = frame_find_by_id (ecs->event_thread->initiating_frame); |
527159b7 | 6303 | |
cdaa5b73 PA |
6304 | if (init_frame) |
6305 | { | |
6306 | struct frame_id current_id | |
6307 | = get_frame_id (get_current_frame ()); | |
6308 | if (frame_id_eq (current_id, | |
6309 | ecs->event_thread->initiating_frame)) | |
6310 | { | |
6311 | /* Case 2. Fall through. */ | |
6312 | } | |
6313 | else | |
6314 | { | |
6315 | /* Case 3. */ | |
6316 | keep_going (ecs); | |
6317 | return; | |
6318 | } | |
68f53502 | 6319 | } |
488f131b | 6320 | |
cdaa5b73 PA |
6321 | /* For Cases 1 and 2, remove the step-resume breakpoint, if it |
6322 | exists. */ | |
6323 | delete_step_resume_breakpoint (ecs->event_thread); | |
e5ef252a | 6324 | |
bdc36728 | 6325 | end_stepping_range (ecs); |
cdaa5b73 PA |
6326 | } |
6327 | return; | |
e5ef252a | 6328 | |
cdaa5b73 PA |
6329 | case BPSTAT_WHAT_SINGLE: |
6330 | if (debug_infrun) | |
6331 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n"); | |
6332 | ecs->event_thread->stepping_over_breakpoint = 1; | |
6333 | /* Still need to check other stuff, at least the case where we | |
6334 | are stepping and step out of the right range. */ | |
6335 | break; | |
e5ef252a | 6336 | |
cdaa5b73 PA |
6337 | case BPSTAT_WHAT_STEP_RESUME: |
6338 | if (debug_infrun) | |
6339 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n"); | |
e5ef252a | 6340 | |
cdaa5b73 PA |
6341 | delete_step_resume_breakpoint (ecs->event_thread); |
6342 | if (ecs->event_thread->control.proceed_to_finish | |
6343 | && execution_direction == EXEC_REVERSE) | |
6344 | { | |
6345 | struct thread_info *tp = ecs->event_thread; | |
6346 | ||
6347 | /* We are finishing a function in reverse, and just hit the | |
6348 | step-resume breakpoint at the start address of the | |
6349 | function, and we're almost there -- just need to back up | |
6350 | by one more single-step, which should take us back to the | |
6351 | function call. */ | |
6352 | tp->control.step_range_start = tp->control.step_range_end = 1; | |
6353 | keep_going (ecs); | |
e5ef252a | 6354 | return; |
cdaa5b73 PA |
6355 | } |
6356 | fill_in_stop_func (gdbarch, ecs); | |
f2ffa92b | 6357 | if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start |
cdaa5b73 PA |
6358 | && execution_direction == EXEC_REVERSE) |
6359 | { | |
6360 | /* We are stepping over a function call in reverse, and just | |
6361 | hit the step-resume breakpoint at the start address of | |
6362 | the function. Go back to single-stepping, which should | |
6363 | take us back to the function call. */ | |
6364 | ecs->event_thread->stepping_over_breakpoint = 1; | |
6365 | keep_going (ecs); | |
6366 | return; | |
6367 | } | |
6368 | break; | |
e5ef252a | 6369 | |
cdaa5b73 PA |
6370 | case BPSTAT_WHAT_STOP_NOISY: |
6371 | if (debug_infrun) | |
6372 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n"); | |
6373 | stop_print_frame = 1; | |
e5ef252a | 6374 | |
99619bea PA |
6375 | /* Assume the thread stopped for a breapoint. We'll still check |
6376 | whether a/the breakpoint is there when the thread is next | |
6377 | resumed. */ | |
6378 | ecs->event_thread->stepping_over_breakpoint = 1; | |
e5ef252a | 6379 | |
22bcd14b | 6380 | stop_waiting (ecs); |
cdaa5b73 | 6381 | return; |
e5ef252a | 6382 | |
cdaa5b73 PA |
6383 | case BPSTAT_WHAT_STOP_SILENT: |
6384 | if (debug_infrun) | |
6385 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n"); | |
6386 | stop_print_frame = 0; | |
e5ef252a | 6387 | |
99619bea PA |
6388 | /* Assume the thread stopped for a breapoint. We'll still check |
6389 | whether a/the breakpoint is there when the thread is next | |
6390 | resumed. */ | |
6391 | ecs->event_thread->stepping_over_breakpoint = 1; | |
22bcd14b | 6392 | stop_waiting (ecs); |
cdaa5b73 PA |
6393 | return; |
6394 | ||
6395 | case BPSTAT_WHAT_HP_STEP_RESUME: | |
6396 | if (debug_infrun) | |
6397 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n"); | |
6398 | ||
6399 | delete_step_resume_breakpoint (ecs->event_thread); | |
6400 | if (ecs->event_thread->step_after_step_resume_breakpoint) | |
6401 | { | |
6402 | /* Back when the step-resume breakpoint was inserted, we | |
6403 | were trying to single-step off a breakpoint. Go back to | |
6404 | doing that. */ | |
6405 | ecs->event_thread->step_after_step_resume_breakpoint = 0; | |
6406 | ecs->event_thread->stepping_over_breakpoint = 1; | |
6407 | keep_going (ecs); | |
6408 | return; | |
e5ef252a | 6409 | } |
cdaa5b73 PA |
6410 | break; |
6411 | ||
6412 | case BPSTAT_WHAT_KEEP_CHECKING: | |
6413 | break; | |
e5ef252a | 6414 | } |
c906108c | 6415 | |
af48d08f PA |
6416 | /* If we stepped a permanent breakpoint and we had a high priority |
6417 | step-resume breakpoint for the address we stepped, but we didn't | |
6418 | hit it, then we must have stepped into the signal handler. The | |
6419 | step-resume was only necessary to catch the case of _not_ | |
6420 | stepping into the handler, so delete it, and fall through to | |
6421 | checking whether the step finished. */ | |
6422 | if (ecs->event_thread->stepped_breakpoint) | |
6423 | { | |
6424 | struct breakpoint *sr_bp | |
6425 | = ecs->event_thread->control.step_resume_breakpoint; | |
6426 | ||
8d707a12 PA |
6427 | if (sr_bp != NULL |
6428 | && sr_bp->loc->permanent | |
af48d08f PA |
6429 | && sr_bp->type == bp_hp_step_resume |
6430 | && sr_bp->loc->address == ecs->event_thread->prev_pc) | |
6431 | { | |
6432 | if (debug_infrun) | |
6433 | fprintf_unfiltered (gdb_stdlog, | |
6434 | "infrun: stepped permanent breakpoint, stopped in " | |
6435 | "handler\n"); | |
6436 | delete_step_resume_breakpoint (ecs->event_thread); | |
6437 | ecs->event_thread->step_after_step_resume_breakpoint = 0; | |
6438 | } | |
6439 | } | |
6440 | ||
cdaa5b73 PA |
6441 | /* We come here if we hit a breakpoint but should not stop for it. |
6442 | Possibly we also were stepping and should stop for that. So fall | |
6443 | through and test for stepping. But, if not stepping, do not | |
6444 | stop. */ | |
c906108c | 6445 | |
a7212384 UW |
6446 | /* In all-stop mode, if we're currently stepping but have stopped in |
6447 | some other thread, we need to switch back to the stepped thread. */ | |
c447ac0b PA |
6448 | if (switch_back_to_stepped_thread (ecs)) |
6449 | return; | |
776f04fa | 6450 | |
8358c15c | 6451 | if (ecs->event_thread->control.step_resume_breakpoint) |
488f131b | 6452 | { |
527159b7 | 6453 | if (debug_infrun) |
d3169d93 DJ |
6454 | fprintf_unfiltered (gdb_stdlog, |
6455 | "infrun: step-resume breakpoint is inserted\n"); | |
527159b7 | 6456 | |
488f131b JB |
6457 | /* Having a step-resume breakpoint overrides anything |
6458 | else having to do with stepping commands until | |
6459 | that breakpoint is reached. */ | |
488f131b JB |
6460 | keep_going (ecs); |
6461 | return; | |
6462 | } | |
c5aa993b | 6463 | |
16c381f0 | 6464 | if (ecs->event_thread->control.step_range_end == 0) |
488f131b | 6465 | { |
527159b7 | 6466 | if (debug_infrun) |
8a9de0e4 | 6467 | fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n"); |
488f131b | 6468 | /* Likewise if we aren't even stepping. */ |
488f131b JB |
6469 | keep_going (ecs); |
6470 | return; | |
6471 | } | |
c5aa993b | 6472 | |
4b7703ad JB |
6473 | /* Re-fetch current thread's frame in case the code above caused |
6474 | the frame cache to be re-initialized, making our FRAME variable | |
6475 | a dangling pointer. */ | |
6476 | frame = get_current_frame (); | |
628fe4e4 | 6477 | gdbarch = get_frame_arch (frame); |
7e324e48 | 6478 | fill_in_stop_func (gdbarch, ecs); |
4b7703ad | 6479 | |
488f131b | 6480 | /* If stepping through a line, keep going if still within it. |
c906108c | 6481 | |
488f131b JB |
6482 | Note that step_range_end is the address of the first instruction |
6483 | beyond the step range, and NOT the address of the last instruction | |
31410e84 MS |
6484 | within it! |
6485 | ||
6486 | Note also that during reverse execution, we may be stepping | |
6487 | through a function epilogue and therefore must detect when | |
6488 | the current-frame changes in the middle of a line. */ | |
6489 | ||
f2ffa92b PA |
6490 | if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc, |
6491 | ecs->event_thread) | |
31410e84 | 6492 | && (execution_direction != EXEC_REVERSE |
388a8562 | 6493 | || frame_id_eq (get_frame_id (frame), |
16c381f0 | 6494 | ecs->event_thread->control.step_frame_id))) |
488f131b | 6495 | { |
527159b7 | 6496 | if (debug_infrun) |
5af949e3 UW |
6497 | fprintf_unfiltered |
6498 | (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n", | |
16c381f0 JK |
6499 | paddress (gdbarch, ecs->event_thread->control.step_range_start), |
6500 | paddress (gdbarch, ecs->event_thread->control.step_range_end)); | |
b2175913 | 6501 | |
c1e36e3e PA |
6502 | /* Tentatively re-enable range stepping; `resume' disables it if |
6503 | necessary (e.g., if we're stepping over a breakpoint or we | |
6504 | have software watchpoints). */ | |
6505 | ecs->event_thread->control.may_range_step = 1; | |
6506 | ||
b2175913 MS |
6507 | /* When stepping backward, stop at beginning of line range |
6508 | (unless it's the function entry point, in which case | |
6509 | keep going back to the call point). */ | |
f2ffa92b | 6510 | CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc; |
16c381f0 | 6511 | if (stop_pc == ecs->event_thread->control.step_range_start |
b2175913 MS |
6512 | && stop_pc != ecs->stop_func_start |
6513 | && execution_direction == EXEC_REVERSE) | |
bdc36728 | 6514 | end_stepping_range (ecs); |
b2175913 MS |
6515 | else |
6516 | keep_going (ecs); | |
6517 | ||
488f131b JB |
6518 | return; |
6519 | } | |
c5aa993b | 6520 | |
488f131b | 6521 | /* We stepped out of the stepping range. */ |
c906108c | 6522 | |
488f131b | 6523 | /* If we are stepping at the source level and entered the runtime |
388a8562 MS |
6524 | loader dynamic symbol resolution code... |
6525 | ||
6526 | EXEC_FORWARD: we keep on single stepping until we exit the run | |
6527 | time loader code and reach the callee's address. | |
6528 | ||
6529 | EXEC_REVERSE: we've already executed the callee (backward), and | |
6530 | the runtime loader code is handled just like any other | |
6531 | undebuggable function call. Now we need only keep stepping | |
6532 | backward through the trampoline code, and that's handled further | |
6533 | down, so there is nothing for us to do here. */ | |
6534 | ||
6535 | if (execution_direction != EXEC_REVERSE | |
16c381f0 | 6536 | && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE |
f2ffa92b | 6537 | && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc)) |
488f131b | 6538 | { |
4c8c40e6 | 6539 | CORE_ADDR pc_after_resolver = |
f2ffa92b PA |
6540 | gdbarch_skip_solib_resolver (gdbarch, |
6541 | ecs->event_thread->suspend.stop_pc); | |
c906108c | 6542 | |
527159b7 | 6543 | if (debug_infrun) |
3e43a32a MS |
6544 | fprintf_unfiltered (gdb_stdlog, |
6545 | "infrun: stepped into dynsym resolve code\n"); | |
527159b7 | 6546 | |
488f131b JB |
6547 | if (pc_after_resolver) |
6548 | { | |
6549 | /* Set up a step-resume breakpoint at the address | |
6550 | indicated by SKIP_SOLIB_RESOLVER. */ | |
51abb421 | 6551 | symtab_and_line sr_sal; |
488f131b | 6552 | sr_sal.pc = pc_after_resolver; |
6c95b8df | 6553 | sr_sal.pspace = get_frame_program_space (frame); |
488f131b | 6554 | |
a6d9a66e UW |
6555 | insert_step_resume_breakpoint_at_sal (gdbarch, |
6556 | sr_sal, null_frame_id); | |
c5aa993b | 6557 | } |
c906108c | 6558 | |
488f131b JB |
6559 | keep_going (ecs); |
6560 | return; | |
6561 | } | |
c906108c | 6562 | |
1d509aa6 MM |
6563 | /* Step through an indirect branch thunk. */ |
6564 | if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE | |
f2ffa92b PA |
6565 | && gdbarch_in_indirect_branch_thunk (gdbarch, |
6566 | ecs->event_thread->suspend.stop_pc)) | |
1d509aa6 MM |
6567 | { |
6568 | if (debug_infrun) | |
6569 | fprintf_unfiltered (gdb_stdlog, | |
6570 | "infrun: stepped into indirect branch thunk\n"); | |
6571 | keep_going (ecs); | |
6572 | return; | |
6573 | } | |
6574 | ||
16c381f0 JK |
6575 | if (ecs->event_thread->control.step_range_end != 1 |
6576 | && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE | |
6577 | || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL) | |
568d6575 | 6578 | && get_frame_type (frame) == SIGTRAMP_FRAME) |
488f131b | 6579 | { |
527159b7 | 6580 | if (debug_infrun) |
3e43a32a MS |
6581 | fprintf_unfiltered (gdb_stdlog, |
6582 | "infrun: stepped into signal trampoline\n"); | |
42edda50 | 6583 | /* The inferior, while doing a "step" or "next", has ended up in |
8fb3e588 AC |
6584 | a signal trampoline (either by a signal being delivered or by |
6585 | the signal handler returning). Just single-step until the | |
6586 | inferior leaves the trampoline (either by calling the handler | |
6587 | or returning). */ | |
488f131b JB |
6588 | keep_going (ecs); |
6589 | return; | |
6590 | } | |
c906108c | 6591 | |
14132e89 MR |
6592 | /* If we're in the return path from a shared library trampoline, |
6593 | we want to proceed through the trampoline when stepping. */ | |
6594 | /* macro/2012-04-25: This needs to come before the subroutine | |
6595 | call check below as on some targets return trampolines look | |
6596 | like subroutine calls (MIPS16 return thunks). */ | |
6597 | if (gdbarch_in_solib_return_trampoline (gdbarch, | |
f2ffa92b PA |
6598 | ecs->event_thread->suspend.stop_pc, |
6599 | ecs->stop_func_name) | |
14132e89 MR |
6600 | && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE) |
6601 | { | |
6602 | /* Determine where this trampoline returns. */ | |
f2ffa92b PA |
6603 | CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc; |
6604 | CORE_ADDR real_stop_pc | |
6605 | = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc); | |
14132e89 MR |
6606 | |
6607 | if (debug_infrun) | |
6608 | fprintf_unfiltered (gdb_stdlog, | |
6609 | "infrun: stepped into solib return tramp\n"); | |
6610 | ||
6611 | /* Only proceed through if we know where it's going. */ | |
6612 | if (real_stop_pc) | |
6613 | { | |
6614 | /* And put the step-breakpoint there and go until there. */ | |
51abb421 | 6615 | symtab_and_line sr_sal; |
14132e89 MR |
6616 | sr_sal.pc = real_stop_pc; |
6617 | sr_sal.section = find_pc_overlay (sr_sal.pc); | |
6618 | sr_sal.pspace = get_frame_program_space (frame); | |
6619 | ||
6620 | /* Do not specify what the fp should be when we stop since | |
6621 | on some machines the prologue is where the new fp value | |
6622 | is established. */ | |
6623 | insert_step_resume_breakpoint_at_sal (gdbarch, | |
6624 | sr_sal, null_frame_id); | |
6625 | ||
6626 | /* Restart without fiddling with the step ranges or | |
6627 | other state. */ | |
6628 | keep_going (ecs); | |
6629 | return; | |
6630 | } | |
6631 | } | |
6632 | ||
c17eaafe DJ |
6633 | /* Check for subroutine calls. The check for the current frame |
6634 | equalling the step ID is not necessary - the check of the | |
6635 | previous frame's ID is sufficient - but it is a common case and | |
6636 | cheaper than checking the previous frame's ID. | |
14e60db5 DJ |
6637 | |
6638 | NOTE: frame_id_eq will never report two invalid frame IDs as | |
6639 | being equal, so to get into this block, both the current and | |
6640 | previous frame must have valid frame IDs. */ | |
005ca36a JB |
6641 | /* The outer_frame_id check is a heuristic to detect stepping |
6642 | through startup code. If we step over an instruction which | |
6643 | sets the stack pointer from an invalid value to a valid value, | |
6644 | we may detect that as a subroutine call from the mythical | |
6645 | "outermost" function. This could be fixed by marking | |
6646 | outermost frames as !stack_p,code_p,special_p. Then the | |
6647 | initial outermost frame, before sp was valid, would | |
ce6cca6d | 6648 | have code_addr == &_start. See the comment in frame_id_eq |
005ca36a | 6649 | for more. */ |
edb3359d | 6650 | if (!frame_id_eq (get_stack_frame_id (frame), |
16c381f0 | 6651 | ecs->event_thread->control.step_stack_frame_id) |
005ca36a | 6652 | && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()), |
16c381f0 JK |
6653 | ecs->event_thread->control.step_stack_frame_id) |
6654 | && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id, | |
005ca36a | 6655 | outer_frame_id) |
885eeb5b | 6656 | || (ecs->event_thread->control.step_start_function |
f2ffa92b | 6657 | != find_pc_function (ecs->event_thread->suspend.stop_pc))))) |
488f131b | 6658 | { |
f2ffa92b | 6659 | CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc; |
95918acb | 6660 | CORE_ADDR real_stop_pc; |
8fb3e588 | 6661 | |
527159b7 | 6662 | if (debug_infrun) |
8a9de0e4 | 6663 | fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n"); |
527159b7 | 6664 | |
b7a084be | 6665 | if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE) |
95918acb AC |
6666 | { |
6667 | /* I presume that step_over_calls is only 0 when we're | |
6668 | supposed to be stepping at the assembly language level | |
6669 | ("stepi"). Just stop. */ | |
388a8562 | 6670 | /* And this works the same backward as frontward. MVS */ |
bdc36728 | 6671 | end_stepping_range (ecs); |
95918acb AC |
6672 | return; |
6673 | } | |
8fb3e588 | 6674 | |
388a8562 MS |
6675 | /* Reverse stepping through solib trampolines. */ |
6676 | ||
6677 | if (execution_direction == EXEC_REVERSE | |
16c381f0 | 6678 | && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE |
388a8562 MS |
6679 | && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc) |
6680 | || (ecs->stop_func_start == 0 | |
6681 | && in_solib_dynsym_resolve_code (stop_pc)))) | |
6682 | { | |
6683 | /* Any solib trampoline code can be handled in reverse | |
6684 | by simply continuing to single-step. We have already | |
6685 | executed the solib function (backwards), and a few | |
6686 | steps will take us back through the trampoline to the | |
6687 | caller. */ | |
6688 | keep_going (ecs); | |
6689 | return; | |
6690 | } | |
6691 | ||
16c381f0 | 6692 | if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL) |
8567c30f | 6693 | { |
b2175913 MS |
6694 | /* We're doing a "next". |
6695 | ||
6696 | Normal (forward) execution: set a breakpoint at the | |
6697 | callee's return address (the address at which the caller | |
6698 | will resume). | |
6699 | ||
6700 | Reverse (backward) execution. set the step-resume | |
6701 | breakpoint at the start of the function that we just | |
6702 | stepped into (backwards), and continue to there. When we | |
6130d0b7 | 6703 | get there, we'll need to single-step back to the caller. */ |
b2175913 MS |
6704 | |
6705 | if (execution_direction == EXEC_REVERSE) | |
6706 | { | |
acf9414f JK |
6707 | /* If we're already at the start of the function, we've either |
6708 | just stepped backward into a single instruction function, | |
6709 | or stepped back out of a signal handler to the first instruction | |
6710 | of the function. Just keep going, which will single-step back | |
6711 | to the caller. */ | |
58c48e72 | 6712 | if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0) |
acf9414f | 6713 | { |
acf9414f | 6714 | /* Normal function call return (static or dynamic). */ |
51abb421 | 6715 | symtab_and_line sr_sal; |
acf9414f JK |
6716 | sr_sal.pc = ecs->stop_func_start; |
6717 | sr_sal.pspace = get_frame_program_space (frame); | |
6718 | insert_step_resume_breakpoint_at_sal (gdbarch, | |
6719 | sr_sal, null_frame_id); | |
6720 | } | |
b2175913 MS |
6721 | } |
6722 | else | |
568d6575 | 6723 | insert_step_resume_breakpoint_at_caller (frame); |
b2175913 | 6724 | |
8567c30f AC |
6725 | keep_going (ecs); |
6726 | return; | |
6727 | } | |
a53c66de | 6728 | |
95918acb | 6729 | /* If we are in a function call trampoline (a stub between the |
8fb3e588 AC |
6730 | calling routine and the real function), locate the real |
6731 | function. That's what tells us (a) whether we want to step | |
6732 | into it at all, and (b) what prologue we want to run to the | |
6733 | end of, if we do step into it. */ | |
568d6575 | 6734 | real_stop_pc = skip_language_trampoline (frame, stop_pc); |
95918acb | 6735 | if (real_stop_pc == 0) |
568d6575 | 6736 | real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc); |
95918acb AC |
6737 | if (real_stop_pc != 0) |
6738 | ecs->stop_func_start = real_stop_pc; | |
8fb3e588 | 6739 | |
db5f024e | 6740 | if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc)) |
1b2bfbb9 | 6741 | { |
51abb421 | 6742 | symtab_and_line sr_sal; |
1b2bfbb9 | 6743 | sr_sal.pc = ecs->stop_func_start; |
6c95b8df | 6744 | sr_sal.pspace = get_frame_program_space (frame); |
1b2bfbb9 | 6745 | |
a6d9a66e UW |
6746 | insert_step_resume_breakpoint_at_sal (gdbarch, |
6747 | sr_sal, null_frame_id); | |
8fb3e588 AC |
6748 | keep_going (ecs); |
6749 | return; | |
1b2bfbb9 RC |
6750 | } |
6751 | ||
95918acb | 6752 | /* If we have line number information for the function we are |
1bfeeb0f JL |
6753 | thinking of stepping into and the function isn't on the skip |
6754 | list, step into it. | |
95918acb | 6755 | |
8fb3e588 AC |
6756 | If there are several symtabs at that PC (e.g. with include |
6757 | files), just want to know whether *any* of them have line | |
6758 | numbers. find_pc_line handles this. */ | |
95918acb AC |
6759 | { |
6760 | struct symtab_and_line tmp_sal; | |
8fb3e588 | 6761 | |
95918acb | 6762 | tmp_sal = find_pc_line (ecs->stop_func_start, 0); |
2b914b52 | 6763 | if (tmp_sal.line != 0 |
85817405 | 6764 | && !function_name_is_marked_for_skip (ecs->stop_func_name, |
de7985c3 | 6765 | tmp_sal)) |
95918acb | 6766 | { |
b2175913 | 6767 | if (execution_direction == EXEC_REVERSE) |
568d6575 | 6768 | handle_step_into_function_backward (gdbarch, ecs); |
b2175913 | 6769 | else |
568d6575 | 6770 | handle_step_into_function (gdbarch, ecs); |
95918acb AC |
6771 | return; |
6772 | } | |
6773 | } | |
6774 | ||
6775 | /* If we have no line number and the step-stop-if-no-debug is | |
8fb3e588 AC |
6776 | set, we stop the step so that the user has a chance to switch |
6777 | in assembly mode. */ | |
16c381f0 | 6778 | if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE |
078130d0 | 6779 | && step_stop_if_no_debug) |
95918acb | 6780 | { |
bdc36728 | 6781 | end_stepping_range (ecs); |
95918acb AC |
6782 | return; |
6783 | } | |
6784 | ||
b2175913 MS |
6785 | if (execution_direction == EXEC_REVERSE) |
6786 | { | |
acf9414f JK |
6787 | /* If we're already at the start of the function, we've either just |
6788 | stepped backward into a single instruction function without line | |
6789 | number info, or stepped back out of a signal handler to the first | |
6790 | instruction of the function without line number info. Just keep | |
6791 | going, which will single-step back to the caller. */ | |
6792 | if (ecs->stop_func_start != stop_pc) | |
6793 | { | |
6794 | /* Set a breakpoint at callee's start address. | |
6795 | From there we can step once and be back in the caller. */ | |
51abb421 | 6796 | symtab_and_line sr_sal; |
acf9414f JK |
6797 | sr_sal.pc = ecs->stop_func_start; |
6798 | sr_sal.pspace = get_frame_program_space (frame); | |
6799 | insert_step_resume_breakpoint_at_sal (gdbarch, | |
6800 | sr_sal, null_frame_id); | |
6801 | } | |
b2175913 MS |
6802 | } |
6803 | else | |
6804 | /* Set a breakpoint at callee's return address (the address | |
6805 | at which the caller will resume). */ | |
568d6575 | 6806 | insert_step_resume_breakpoint_at_caller (frame); |
b2175913 | 6807 | |
95918acb | 6808 | keep_going (ecs); |
488f131b | 6809 | return; |
488f131b | 6810 | } |
c906108c | 6811 | |
fdd654f3 MS |
6812 | /* Reverse stepping through solib trampolines. */ |
6813 | ||
6814 | if (execution_direction == EXEC_REVERSE | |
16c381f0 | 6815 | && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE) |
fdd654f3 | 6816 | { |
f2ffa92b PA |
6817 | CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc; |
6818 | ||
fdd654f3 MS |
6819 | if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc) |
6820 | || (ecs->stop_func_start == 0 | |
6821 | && in_solib_dynsym_resolve_code (stop_pc))) | |
6822 | { | |
6823 | /* Any solib trampoline code can be handled in reverse | |
6824 | by simply continuing to single-step. We have already | |
6825 | executed the solib function (backwards), and a few | |
6826 | steps will take us back through the trampoline to the | |
6827 | caller. */ | |
6828 | keep_going (ecs); | |
6829 | return; | |
6830 | } | |
6831 | else if (in_solib_dynsym_resolve_code (stop_pc)) | |
6832 | { | |
6833 | /* Stepped backward into the solib dynsym resolver. | |
6834 | Set a breakpoint at its start and continue, then | |
6835 | one more step will take us out. */ | |
51abb421 | 6836 | symtab_and_line sr_sal; |
fdd654f3 | 6837 | sr_sal.pc = ecs->stop_func_start; |
9d1807c3 | 6838 | sr_sal.pspace = get_frame_program_space (frame); |
fdd654f3 MS |
6839 | insert_step_resume_breakpoint_at_sal (gdbarch, |
6840 | sr_sal, null_frame_id); | |
6841 | keep_going (ecs); | |
6842 | return; | |
6843 | } | |
6844 | } | |
6845 | ||
f2ffa92b | 6846 | stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0); |
7ed0fe66 | 6847 | |
1b2bfbb9 RC |
6848 | /* NOTE: tausq/2004-05-24: This if block used to be done before all |
6849 | the trampoline processing logic, however, there are some trampolines | |
6850 | that have no names, so we should do trampoline handling first. */ | |
16c381f0 | 6851 | if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE |
7ed0fe66 | 6852 | && ecs->stop_func_name == NULL |
2afb61aa | 6853 | && stop_pc_sal.line == 0) |
1b2bfbb9 | 6854 | { |
527159b7 | 6855 | if (debug_infrun) |
3e43a32a MS |
6856 | fprintf_unfiltered (gdb_stdlog, |
6857 | "infrun: stepped into undebuggable function\n"); | |
527159b7 | 6858 | |
1b2bfbb9 | 6859 | /* The inferior just stepped into, or returned to, an |
7ed0fe66 DJ |
6860 | undebuggable function (where there is no debugging information |
6861 | and no line number corresponding to the address where the | |
1b2bfbb9 RC |
6862 | inferior stopped). Since we want to skip this kind of code, |
6863 | we keep going until the inferior returns from this | |
14e60db5 DJ |
6864 | function - unless the user has asked us not to (via |
6865 | set step-mode) or we no longer know how to get back | |
6866 | to the call site. */ | |
6867 | if (step_stop_if_no_debug | |
c7ce8faa | 6868 | || !frame_id_p (frame_unwind_caller_id (frame))) |
1b2bfbb9 RC |
6869 | { |
6870 | /* If we have no line number and the step-stop-if-no-debug | |
6871 | is set, we stop the step so that the user has a chance to | |
6872 | switch in assembly mode. */ | |
bdc36728 | 6873 | end_stepping_range (ecs); |
1b2bfbb9 RC |
6874 | return; |
6875 | } | |
6876 | else | |
6877 | { | |
6878 | /* Set a breakpoint at callee's return address (the address | |
6879 | at which the caller will resume). */ | |
568d6575 | 6880 | insert_step_resume_breakpoint_at_caller (frame); |
1b2bfbb9 RC |
6881 | keep_going (ecs); |
6882 | return; | |
6883 | } | |
6884 | } | |
6885 | ||
16c381f0 | 6886 | if (ecs->event_thread->control.step_range_end == 1) |
1b2bfbb9 RC |
6887 | { |
6888 | /* It is stepi or nexti. We always want to stop stepping after | |
6889 | one instruction. */ | |
527159b7 | 6890 | if (debug_infrun) |
8a9de0e4 | 6891 | fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n"); |
bdc36728 | 6892 | end_stepping_range (ecs); |
1b2bfbb9 RC |
6893 | return; |
6894 | } | |
6895 | ||
2afb61aa | 6896 | if (stop_pc_sal.line == 0) |
488f131b JB |
6897 | { |
6898 | /* We have no line number information. That means to stop | |
6899 | stepping (does this always happen right after one instruction, | |
6900 | when we do "s" in a function with no line numbers, | |
6901 | or can this happen as a result of a return or longjmp?). */ | |
527159b7 | 6902 | if (debug_infrun) |
8a9de0e4 | 6903 | fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n"); |
bdc36728 | 6904 | end_stepping_range (ecs); |
488f131b JB |
6905 | return; |
6906 | } | |
c906108c | 6907 | |
edb3359d DJ |
6908 | /* Look for "calls" to inlined functions, part one. If the inline |
6909 | frame machinery detected some skipped call sites, we have entered | |
6910 | a new inline function. */ | |
6911 | ||
6912 | if (frame_id_eq (get_frame_id (get_current_frame ()), | |
16c381f0 | 6913 | ecs->event_thread->control.step_frame_id) |
00431a78 | 6914 | && inline_skipped_frames (ecs->event_thread)) |
edb3359d | 6915 | { |
edb3359d DJ |
6916 | if (debug_infrun) |
6917 | fprintf_unfiltered (gdb_stdlog, | |
6918 | "infrun: stepped into inlined function\n"); | |
6919 | ||
51abb421 | 6920 | symtab_and_line call_sal = find_frame_sal (get_current_frame ()); |
edb3359d | 6921 | |
16c381f0 | 6922 | if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL) |
edb3359d DJ |
6923 | { |
6924 | /* For "step", we're going to stop. But if the call site | |
6925 | for this inlined function is on the same source line as | |
6926 | we were previously stepping, go down into the function | |
6927 | first. Otherwise stop at the call site. */ | |
6928 | ||
6929 | if (call_sal.line == ecs->event_thread->current_line | |
6930 | && call_sal.symtab == ecs->event_thread->current_symtab) | |
00431a78 | 6931 | step_into_inline_frame (ecs->event_thread); |
edb3359d | 6932 | |
bdc36728 | 6933 | end_stepping_range (ecs); |
edb3359d DJ |
6934 | return; |
6935 | } | |
6936 | else | |
6937 | { | |
6938 | /* For "next", we should stop at the call site if it is on a | |
6939 | different source line. Otherwise continue through the | |
6940 | inlined function. */ | |
6941 | if (call_sal.line == ecs->event_thread->current_line | |
6942 | && call_sal.symtab == ecs->event_thread->current_symtab) | |
6943 | keep_going (ecs); | |
6944 | else | |
bdc36728 | 6945 | end_stepping_range (ecs); |
edb3359d DJ |
6946 | return; |
6947 | } | |
6948 | } | |
6949 | ||
6950 | /* Look for "calls" to inlined functions, part two. If we are still | |
6951 | in the same real function we were stepping through, but we have | |
6952 | to go further up to find the exact frame ID, we are stepping | |
6953 | through a more inlined call beyond its call site. */ | |
6954 | ||
6955 | if (get_frame_type (get_current_frame ()) == INLINE_FRAME | |
6956 | && !frame_id_eq (get_frame_id (get_current_frame ()), | |
16c381f0 | 6957 | ecs->event_thread->control.step_frame_id) |
edb3359d | 6958 | && stepped_in_from (get_current_frame (), |
16c381f0 | 6959 | ecs->event_thread->control.step_frame_id)) |
edb3359d DJ |
6960 | { |
6961 | if (debug_infrun) | |
6962 | fprintf_unfiltered (gdb_stdlog, | |
6963 | "infrun: stepping through inlined function\n"); | |
6964 | ||
16c381f0 | 6965 | if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL) |
edb3359d DJ |
6966 | keep_going (ecs); |
6967 | else | |
bdc36728 | 6968 | end_stepping_range (ecs); |
edb3359d DJ |
6969 | return; |
6970 | } | |
6971 | ||
f2ffa92b | 6972 | if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc) |
4e1c45ea PA |
6973 | && (ecs->event_thread->current_line != stop_pc_sal.line |
6974 | || ecs->event_thread->current_symtab != stop_pc_sal.symtab)) | |
488f131b JB |
6975 | { |
6976 | /* We are at the start of a different line. So stop. Note that | |
6977 | we don't stop if we step into the middle of a different line. | |
6978 | That is said to make things like for (;;) statements work | |
6979 | better. */ | |
527159b7 | 6980 | if (debug_infrun) |
3e43a32a MS |
6981 | fprintf_unfiltered (gdb_stdlog, |
6982 | "infrun: stepped to a different line\n"); | |
bdc36728 | 6983 | end_stepping_range (ecs); |
488f131b JB |
6984 | return; |
6985 | } | |
c906108c | 6986 | |
488f131b | 6987 | /* We aren't done stepping. |
c906108c | 6988 | |
488f131b JB |
6989 | Optimize by setting the stepping range to the line. |
6990 | (We might not be in the original line, but if we entered a | |
6991 | new line in mid-statement, we continue stepping. This makes | |
6992 | things like for(;;) statements work better.) */ | |
c906108c | 6993 | |
16c381f0 JK |
6994 | ecs->event_thread->control.step_range_start = stop_pc_sal.pc; |
6995 | ecs->event_thread->control.step_range_end = stop_pc_sal.end; | |
c1e36e3e | 6996 | ecs->event_thread->control.may_range_step = 1; |
edb3359d | 6997 | set_step_info (frame, stop_pc_sal); |
488f131b | 6998 | |
527159b7 | 6999 | if (debug_infrun) |
8a9de0e4 | 7000 | fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n"); |
488f131b | 7001 | keep_going (ecs); |
104c1213 JM |
7002 | } |
7003 | ||
c447ac0b PA |
7004 | /* In all-stop mode, if we're currently stepping but have stopped in |
7005 | some other thread, we may need to switch back to the stepped | |
7006 | thread. Returns true we set the inferior running, false if we left | |
7007 | it stopped (and the event needs further processing). */ | |
7008 | ||
7009 | static int | |
7010 | switch_back_to_stepped_thread (struct execution_control_state *ecs) | |
7011 | { | |
fbea99ea | 7012 | if (!target_is_non_stop_p ()) |
c447ac0b PA |
7013 | { |
7014 | struct thread_info *tp; | |
99619bea PA |
7015 | struct thread_info *stepping_thread; |
7016 | ||
7017 | /* If any thread is blocked on some internal breakpoint, and we | |
7018 | simply need to step over that breakpoint to get it going | |
7019 | again, do that first. */ | |
7020 | ||
7021 | /* However, if we see an event for the stepping thread, then we | |
7022 | know all other threads have been moved past their breakpoints | |
7023 | already. Let the caller check whether the step is finished, | |
7024 | etc., before deciding to move it past a breakpoint. */ | |
7025 | if (ecs->event_thread->control.step_range_end != 0) | |
7026 | return 0; | |
7027 | ||
7028 | /* Check if the current thread is blocked on an incomplete | |
7029 | step-over, interrupted by a random signal. */ | |
7030 | if (ecs->event_thread->control.trap_expected | |
7031 | && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP) | |
c447ac0b | 7032 | { |
99619bea PA |
7033 | if (debug_infrun) |
7034 | { | |
7035 | fprintf_unfiltered (gdb_stdlog, | |
7036 | "infrun: need to finish step-over of [%s]\n", | |
7037 | target_pid_to_str (ecs->event_thread->ptid)); | |
7038 | } | |
7039 | keep_going (ecs); | |
7040 | return 1; | |
7041 | } | |
2adfaa28 | 7042 | |
99619bea PA |
7043 | /* Check if the current thread is blocked by a single-step |
7044 | breakpoint of another thread. */ | |
7045 | if (ecs->hit_singlestep_breakpoint) | |
7046 | { | |
7047 | if (debug_infrun) | |
7048 | { | |
7049 | fprintf_unfiltered (gdb_stdlog, | |
7050 | "infrun: need to step [%s] over single-step " | |
7051 | "breakpoint\n", | |
7052 | target_pid_to_str (ecs->ptid)); | |
7053 | } | |
7054 | keep_going (ecs); | |
7055 | return 1; | |
7056 | } | |
7057 | ||
4d9d9d04 PA |
7058 | /* If this thread needs yet another step-over (e.g., stepping |
7059 | through a delay slot), do it first before moving on to | |
7060 | another thread. */ | |
7061 | if (thread_still_needs_step_over (ecs->event_thread)) | |
7062 | { | |
7063 | if (debug_infrun) | |
7064 | { | |
7065 | fprintf_unfiltered (gdb_stdlog, | |
7066 | "infrun: thread [%s] still needs step-over\n", | |
7067 | target_pid_to_str (ecs->event_thread->ptid)); | |
7068 | } | |
7069 | keep_going (ecs); | |
7070 | return 1; | |
7071 | } | |
70509625 | 7072 | |
483805cf PA |
7073 | /* If scheduler locking applies even if not stepping, there's no |
7074 | need to walk over threads. Above we've checked whether the | |
7075 | current thread is stepping. If some other thread not the | |
7076 | event thread is stepping, then it must be that scheduler | |
7077 | locking is not in effect. */ | |
856e7dd6 | 7078 | if (schedlock_applies (ecs->event_thread)) |
483805cf PA |
7079 | return 0; |
7080 | ||
4d9d9d04 PA |
7081 | /* Otherwise, we no longer expect a trap in the current thread. |
7082 | Clear the trap_expected flag before switching back -- this is | |
7083 | what keep_going does as well, if we call it. */ | |
7084 | ecs->event_thread->control.trap_expected = 0; | |
7085 | ||
7086 | /* Likewise, clear the signal if it should not be passed. */ | |
7087 | if (!signal_program[ecs->event_thread->suspend.stop_signal]) | |
7088 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; | |
7089 | ||
7090 | /* Do all pending step-overs before actually proceeding with | |
483805cf | 7091 | step/next/etc. */ |
4d9d9d04 PA |
7092 | if (start_step_over ()) |
7093 | { | |
7094 | prepare_to_wait (ecs); | |
7095 | return 1; | |
7096 | } | |
7097 | ||
7098 | /* Look for the stepping/nexting thread. */ | |
483805cf | 7099 | stepping_thread = NULL; |
4d9d9d04 | 7100 | |
034f788c | 7101 | ALL_NON_EXITED_THREADS (tp) |
483805cf | 7102 | { |
fbea99ea PA |
7103 | /* Ignore threads of processes the caller is not |
7104 | resuming. */ | |
483805cf | 7105 | if (!sched_multi |
e99b03dc | 7106 | && tp->ptid.pid () != ecs->ptid.pid ()) |
483805cf PA |
7107 | continue; |
7108 | ||
7109 | /* When stepping over a breakpoint, we lock all threads | |
7110 | except the one that needs to move past the breakpoint. | |
7111 | If a non-event thread has this set, the "incomplete | |
7112 | step-over" check above should have caught it earlier. */ | |
372316f1 PA |
7113 | if (tp->control.trap_expected) |
7114 | { | |
7115 | internal_error (__FILE__, __LINE__, | |
7116 | "[%s] has inconsistent state: " | |
7117 | "trap_expected=%d\n", | |
7118 | target_pid_to_str (tp->ptid), | |
7119 | tp->control.trap_expected); | |
7120 | } | |
483805cf PA |
7121 | |
7122 | /* Did we find the stepping thread? */ | |
7123 | if (tp->control.step_range_end) | |
7124 | { | |
7125 | /* Yep. There should only one though. */ | |
7126 | gdb_assert (stepping_thread == NULL); | |
7127 | ||
7128 | /* The event thread is handled at the top, before we | |
7129 | enter this loop. */ | |
7130 | gdb_assert (tp != ecs->event_thread); | |
7131 | ||
7132 | /* If some thread other than the event thread is | |
7133 | stepping, then scheduler locking can't be in effect, | |
7134 | otherwise we wouldn't have resumed the current event | |
7135 | thread in the first place. */ | |
856e7dd6 | 7136 | gdb_assert (!schedlock_applies (tp)); |
483805cf PA |
7137 | |
7138 | stepping_thread = tp; | |
7139 | } | |
99619bea PA |
7140 | } |
7141 | ||
483805cf | 7142 | if (stepping_thread != NULL) |
99619bea | 7143 | { |
c447ac0b PA |
7144 | if (debug_infrun) |
7145 | fprintf_unfiltered (gdb_stdlog, | |
7146 | "infrun: switching back to stepped thread\n"); | |
7147 | ||
2ac7589c PA |
7148 | if (keep_going_stepped_thread (stepping_thread)) |
7149 | { | |
7150 | prepare_to_wait (ecs); | |
7151 | return 1; | |
7152 | } | |
7153 | } | |
7154 | } | |
2adfaa28 | 7155 | |
2ac7589c PA |
7156 | return 0; |
7157 | } | |
2adfaa28 | 7158 | |
2ac7589c PA |
7159 | /* Set a previously stepped thread back to stepping. Returns true on |
7160 | success, false if the resume is not possible (e.g., the thread | |
7161 | vanished). */ | |
7162 | ||
7163 | static int | |
7164 | keep_going_stepped_thread (struct thread_info *tp) | |
7165 | { | |
7166 | struct frame_info *frame; | |
2ac7589c PA |
7167 | struct execution_control_state ecss; |
7168 | struct execution_control_state *ecs = &ecss; | |
2adfaa28 | 7169 | |
2ac7589c PA |
7170 | /* If the stepping thread exited, then don't try to switch back and |
7171 | resume it, which could fail in several different ways depending | |
7172 | on the target. Instead, just keep going. | |
2adfaa28 | 7173 | |
2ac7589c PA |
7174 | We can find a stepping dead thread in the thread list in two |
7175 | cases: | |
2adfaa28 | 7176 | |
2ac7589c PA |
7177 | - The target supports thread exit events, and when the target |
7178 | tries to delete the thread from the thread list, inferior_ptid | |
7179 | pointed at the exiting thread. In such case, calling | |
7180 | delete_thread does not really remove the thread from the list; | |
7181 | instead, the thread is left listed, with 'exited' state. | |
64ce06e4 | 7182 | |
2ac7589c PA |
7183 | - The target's debug interface does not support thread exit |
7184 | events, and so we have no idea whatsoever if the previously | |
7185 | stepping thread is still alive. For that reason, we need to | |
7186 | synchronously query the target now. */ | |
2adfaa28 | 7187 | |
00431a78 | 7188 | if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid)) |
2ac7589c PA |
7189 | { |
7190 | if (debug_infrun) | |
7191 | fprintf_unfiltered (gdb_stdlog, | |
7192 | "infrun: not resuming previously " | |
7193 | "stepped thread, it has vanished\n"); | |
7194 | ||
00431a78 | 7195 | delete_thread (tp); |
2ac7589c | 7196 | return 0; |
c447ac0b | 7197 | } |
2ac7589c PA |
7198 | |
7199 | if (debug_infrun) | |
7200 | fprintf_unfiltered (gdb_stdlog, | |
7201 | "infrun: resuming previously stepped thread\n"); | |
7202 | ||
7203 | reset_ecs (ecs, tp); | |
00431a78 | 7204 | switch_to_thread (tp); |
2ac7589c | 7205 | |
f2ffa92b | 7206 | tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp)); |
2ac7589c | 7207 | frame = get_current_frame (); |
2ac7589c PA |
7208 | |
7209 | /* If the PC of the thread we were trying to single-step has | |
7210 | changed, then that thread has trapped or been signaled, but the | |
7211 | event has not been reported to GDB yet. Re-poll the target | |
7212 | looking for this particular thread's event (i.e. temporarily | |
7213 | enable schedlock) by: | |
7214 | ||
7215 | - setting a break at the current PC | |
7216 | - resuming that particular thread, only (by setting trap | |
7217 | expected) | |
7218 | ||
7219 | This prevents us continuously moving the single-step breakpoint | |
7220 | forward, one instruction at a time, overstepping. */ | |
7221 | ||
f2ffa92b | 7222 | if (tp->suspend.stop_pc != tp->prev_pc) |
2ac7589c PA |
7223 | { |
7224 | ptid_t resume_ptid; | |
7225 | ||
7226 | if (debug_infrun) | |
7227 | fprintf_unfiltered (gdb_stdlog, | |
7228 | "infrun: expected thread advanced also (%s -> %s)\n", | |
7229 | paddress (target_gdbarch (), tp->prev_pc), | |
f2ffa92b | 7230 | paddress (target_gdbarch (), tp->suspend.stop_pc)); |
2ac7589c PA |
7231 | |
7232 | /* Clear the info of the previous step-over, as it's no longer | |
7233 | valid (if the thread was trying to step over a breakpoint, it | |
7234 | has already succeeded). It's what keep_going would do too, | |
7235 | if we called it. Do this before trying to insert the sss | |
7236 | breakpoint, otherwise if we were previously trying to step | |
7237 | over this exact address in another thread, the breakpoint is | |
7238 | skipped. */ | |
7239 | clear_step_over_info (); | |
7240 | tp->control.trap_expected = 0; | |
7241 | ||
7242 | insert_single_step_breakpoint (get_frame_arch (frame), | |
7243 | get_frame_address_space (frame), | |
f2ffa92b | 7244 | tp->suspend.stop_pc); |
2ac7589c | 7245 | |
372316f1 | 7246 | tp->resumed = 1; |
fbea99ea | 7247 | resume_ptid = internal_resume_ptid (tp->control.stepping_command); |
2ac7589c PA |
7248 | do_target_resume (resume_ptid, 0, GDB_SIGNAL_0); |
7249 | } | |
7250 | else | |
7251 | { | |
7252 | if (debug_infrun) | |
7253 | fprintf_unfiltered (gdb_stdlog, | |
7254 | "infrun: expected thread still hasn't advanced\n"); | |
7255 | ||
7256 | keep_going_pass_signal (ecs); | |
7257 | } | |
7258 | return 1; | |
c447ac0b PA |
7259 | } |
7260 | ||
8b061563 PA |
7261 | /* Is thread TP in the middle of (software or hardware) |
7262 | single-stepping? (Note the result of this function must never be | |
7263 | passed directly as target_resume's STEP parameter.) */ | |
104c1213 | 7264 | |
a289b8f6 | 7265 | static int |
b3444185 | 7266 | currently_stepping (struct thread_info *tp) |
a7212384 | 7267 | { |
8358c15c JK |
7268 | return ((tp->control.step_range_end |
7269 | && tp->control.step_resume_breakpoint == NULL) | |
7270 | || tp->control.trap_expected | |
af48d08f | 7271 | || tp->stepped_breakpoint |
8358c15c | 7272 | || bpstat_should_step ()); |
a7212384 UW |
7273 | } |
7274 | ||
b2175913 MS |
7275 | /* Inferior has stepped into a subroutine call with source code that |
7276 | we should not step over. Do step to the first line of code in | |
7277 | it. */ | |
c2c6d25f JM |
7278 | |
7279 | static void | |
568d6575 UW |
7280 | handle_step_into_function (struct gdbarch *gdbarch, |
7281 | struct execution_control_state *ecs) | |
c2c6d25f | 7282 | { |
7e324e48 GB |
7283 | fill_in_stop_func (gdbarch, ecs); |
7284 | ||
f2ffa92b PA |
7285 | compunit_symtab *cust |
7286 | = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc); | |
43f3e411 | 7287 | if (cust != NULL && compunit_language (cust) != language_asm) |
46a62268 YQ |
7288 | ecs->stop_func_start |
7289 | = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start); | |
c2c6d25f | 7290 | |
51abb421 | 7291 | symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0); |
c2c6d25f JM |
7292 | /* Use the step_resume_break to step until the end of the prologue, |
7293 | even if that involves jumps (as it seems to on the vax under | |
7294 | 4.2). */ | |
7295 | /* If the prologue ends in the middle of a source line, continue to | |
7296 | the end of that source line (if it is still within the function). | |
7297 | Otherwise, just go to end of prologue. */ | |
2afb61aa PA |
7298 | if (stop_func_sal.end |
7299 | && stop_func_sal.pc != ecs->stop_func_start | |
7300 | && stop_func_sal.end < ecs->stop_func_end) | |
7301 | ecs->stop_func_start = stop_func_sal.end; | |
c2c6d25f | 7302 | |
2dbd5e30 KB |
7303 | /* Architectures which require breakpoint adjustment might not be able |
7304 | to place a breakpoint at the computed address. If so, the test | |
7305 | ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust | |
7306 | ecs->stop_func_start to an address at which a breakpoint may be | |
7307 | legitimately placed. | |
8fb3e588 | 7308 | |
2dbd5e30 KB |
7309 | Note: kevinb/2004-01-19: On FR-V, if this adjustment is not |
7310 | made, GDB will enter an infinite loop when stepping through | |
7311 | optimized code consisting of VLIW instructions which contain | |
7312 | subinstructions corresponding to different source lines. On | |
7313 | FR-V, it's not permitted to place a breakpoint on any but the | |
7314 | first subinstruction of a VLIW instruction. When a breakpoint is | |
7315 | set, GDB will adjust the breakpoint address to the beginning of | |
7316 | the VLIW instruction. Thus, we need to make the corresponding | |
7317 | adjustment here when computing the stop address. */ | |
8fb3e588 | 7318 | |
568d6575 | 7319 | if (gdbarch_adjust_breakpoint_address_p (gdbarch)) |
2dbd5e30 KB |
7320 | { |
7321 | ecs->stop_func_start | |
568d6575 | 7322 | = gdbarch_adjust_breakpoint_address (gdbarch, |
8fb3e588 | 7323 | ecs->stop_func_start); |
2dbd5e30 KB |
7324 | } |
7325 | ||
f2ffa92b | 7326 | if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc) |
c2c6d25f JM |
7327 | { |
7328 | /* We are already there: stop now. */ | |
bdc36728 | 7329 | end_stepping_range (ecs); |
c2c6d25f JM |
7330 | return; |
7331 | } | |
7332 | else | |
7333 | { | |
7334 | /* Put the step-breakpoint there and go until there. */ | |
51abb421 | 7335 | symtab_and_line sr_sal; |
c2c6d25f JM |
7336 | sr_sal.pc = ecs->stop_func_start; |
7337 | sr_sal.section = find_pc_overlay (ecs->stop_func_start); | |
6c95b8df | 7338 | sr_sal.pspace = get_frame_program_space (get_current_frame ()); |
44cbf7b5 | 7339 | |
c2c6d25f | 7340 | /* Do not specify what the fp should be when we stop since on |
488f131b JB |
7341 | some machines the prologue is where the new fp value is |
7342 | established. */ | |
a6d9a66e | 7343 | insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id); |
c2c6d25f JM |
7344 | |
7345 | /* And make sure stepping stops right away then. */ | |
16c381f0 JK |
7346 | ecs->event_thread->control.step_range_end |
7347 | = ecs->event_thread->control.step_range_start; | |
c2c6d25f JM |
7348 | } |
7349 | keep_going (ecs); | |
7350 | } | |
d4f3574e | 7351 | |
b2175913 MS |
7352 | /* Inferior has stepped backward into a subroutine call with source |
7353 | code that we should not step over. Do step to the beginning of the | |
7354 | last line of code in it. */ | |
7355 | ||
7356 | static void | |
568d6575 UW |
7357 | handle_step_into_function_backward (struct gdbarch *gdbarch, |
7358 | struct execution_control_state *ecs) | |
b2175913 | 7359 | { |
43f3e411 | 7360 | struct compunit_symtab *cust; |
167e4384 | 7361 | struct symtab_and_line stop_func_sal; |
b2175913 | 7362 | |
7e324e48 GB |
7363 | fill_in_stop_func (gdbarch, ecs); |
7364 | ||
f2ffa92b | 7365 | cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc); |
43f3e411 | 7366 | if (cust != NULL && compunit_language (cust) != language_asm) |
46a62268 YQ |
7367 | ecs->stop_func_start |
7368 | = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start); | |
b2175913 | 7369 | |
f2ffa92b | 7370 | stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0); |
b2175913 MS |
7371 | |
7372 | /* OK, we're just going to keep stepping here. */ | |
f2ffa92b | 7373 | if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc) |
b2175913 MS |
7374 | { |
7375 | /* We're there already. Just stop stepping now. */ | |
bdc36728 | 7376 | end_stepping_range (ecs); |
b2175913 MS |
7377 | } |
7378 | else | |
7379 | { | |
7380 | /* Else just reset the step range and keep going. | |
7381 | No step-resume breakpoint, they don't work for | |
7382 | epilogues, which can have multiple entry paths. */ | |
16c381f0 JK |
7383 | ecs->event_thread->control.step_range_start = stop_func_sal.pc; |
7384 | ecs->event_thread->control.step_range_end = stop_func_sal.end; | |
b2175913 MS |
7385 | keep_going (ecs); |
7386 | } | |
7387 | return; | |
7388 | } | |
7389 | ||
d3169d93 | 7390 | /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID. |
44cbf7b5 AC |
7391 | This is used to both functions and to skip over code. */ |
7392 | ||
7393 | static void | |
2c03e5be PA |
7394 | insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch, |
7395 | struct symtab_and_line sr_sal, | |
7396 | struct frame_id sr_id, | |
7397 | enum bptype sr_type) | |
44cbf7b5 | 7398 | { |
611c83ae PA |
7399 | /* There should never be more than one step-resume or longjmp-resume |
7400 | breakpoint per thread, so we should never be setting a new | |
44cbf7b5 | 7401 | step_resume_breakpoint when one is already active. */ |
8358c15c | 7402 | gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL); |
2c03e5be | 7403 | gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume); |
d3169d93 DJ |
7404 | |
7405 | if (debug_infrun) | |
7406 | fprintf_unfiltered (gdb_stdlog, | |
5af949e3 UW |
7407 | "infrun: inserting step-resume breakpoint at %s\n", |
7408 | paddress (gdbarch, sr_sal.pc)); | |
d3169d93 | 7409 | |
8358c15c | 7410 | inferior_thread ()->control.step_resume_breakpoint |
454dafbd | 7411 | = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release (); |
2c03e5be PA |
7412 | } |
7413 | ||
9da8c2a0 | 7414 | void |
2c03e5be PA |
7415 | insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch, |
7416 | struct symtab_and_line sr_sal, | |
7417 | struct frame_id sr_id) | |
7418 | { | |
7419 | insert_step_resume_breakpoint_at_sal_1 (gdbarch, | |
7420 | sr_sal, sr_id, | |
7421 | bp_step_resume); | |
44cbf7b5 | 7422 | } |
7ce450bd | 7423 | |
2c03e5be PA |
7424 | /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc. |
7425 | This is used to skip a potential signal handler. | |
7ce450bd | 7426 | |
14e60db5 DJ |
7427 | This is called with the interrupted function's frame. The signal |
7428 | handler, when it returns, will resume the interrupted function at | |
7429 | RETURN_FRAME.pc. */ | |
d303a6c7 AC |
7430 | |
7431 | static void | |
2c03e5be | 7432 | insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame) |
d303a6c7 | 7433 | { |
f4c1edd8 | 7434 | gdb_assert (return_frame != NULL); |
d303a6c7 | 7435 | |
51abb421 PA |
7436 | struct gdbarch *gdbarch = get_frame_arch (return_frame); |
7437 | ||
7438 | symtab_and_line sr_sal; | |
568d6575 | 7439 | sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame)); |
d303a6c7 | 7440 | sr_sal.section = find_pc_overlay (sr_sal.pc); |
6c95b8df | 7441 | sr_sal.pspace = get_frame_program_space (return_frame); |
d303a6c7 | 7442 | |
2c03e5be PA |
7443 | insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal, |
7444 | get_stack_frame_id (return_frame), | |
7445 | bp_hp_step_resume); | |
d303a6c7 AC |
7446 | } |
7447 | ||
2c03e5be PA |
7448 | /* Insert a "step-resume breakpoint" at the previous frame's PC. This |
7449 | is used to skip a function after stepping into it (for "next" or if | |
7450 | the called function has no debugging information). | |
14e60db5 DJ |
7451 | |
7452 | The current function has almost always been reached by single | |
7453 | stepping a call or return instruction. NEXT_FRAME belongs to the | |
7454 | current function, and the breakpoint will be set at the caller's | |
7455 | resume address. | |
7456 | ||
7457 | This is a separate function rather than reusing | |
2c03e5be | 7458 | insert_hp_step_resume_breakpoint_at_frame in order to avoid |
14e60db5 | 7459 | get_prev_frame, which may stop prematurely (see the implementation |
c7ce8faa | 7460 | of frame_unwind_caller_id for an example). */ |
14e60db5 DJ |
7461 | |
7462 | static void | |
7463 | insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame) | |
7464 | { | |
14e60db5 DJ |
7465 | /* We shouldn't have gotten here if we don't know where the call site |
7466 | is. */ | |
c7ce8faa | 7467 | gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame))); |
14e60db5 | 7468 | |
51abb421 | 7469 | struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame); |
14e60db5 | 7470 | |
51abb421 | 7471 | symtab_and_line sr_sal; |
c7ce8faa DJ |
7472 | sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, |
7473 | frame_unwind_caller_pc (next_frame)); | |
14e60db5 | 7474 | sr_sal.section = find_pc_overlay (sr_sal.pc); |
6c95b8df | 7475 | sr_sal.pspace = frame_unwind_program_space (next_frame); |
14e60db5 | 7476 | |
a6d9a66e | 7477 | insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, |
c7ce8faa | 7478 | frame_unwind_caller_id (next_frame)); |
14e60db5 DJ |
7479 | } |
7480 | ||
611c83ae PA |
7481 | /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a |
7482 | new breakpoint at the target of a jmp_buf. The handling of | |
7483 | longjmp-resume uses the same mechanisms used for handling | |
7484 | "step-resume" breakpoints. */ | |
7485 | ||
7486 | static void | |
a6d9a66e | 7487 | insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc) |
611c83ae | 7488 | { |
e81a37f7 TT |
7489 | /* There should never be more than one longjmp-resume breakpoint per |
7490 | thread, so we should never be setting a new | |
611c83ae | 7491 | longjmp_resume_breakpoint when one is already active. */ |
e81a37f7 | 7492 | gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL); |
611c83ae PA |
7493 | |
7494 | if (debug_infrun) | |
7495 | fprintf_unfiltered (gdb_stdlog, | |
5af949e3 UW |
7496 | "infrun: inserting longjmp-resume breakpoint at %s\n", |
7497 | paddress (gdbarch, pc)); | |
611c83ae | 7498 | |
e81a37f7 | 7499 | inferior_thread ()->control.exception_resume_breakpoint = |
454dafbd | 7500 | set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release (); |
611c83ae PA |
7501 | } |
7502 | ||
186c406b TT |
7503 | /* Insert an exception resume breakpoint. TP is the thread throwing |
7504 | the exception. The block B is the block of the unwinder debug hook | |
7505 | function. FRAME is the frame corresponding to the call to this | |
7506 | function. SYM is the symbol of the function argument holding the | |
7507 | target PC of the exception. */ | |
7508 | ||
7509 | static void | |
7510 | insert_exception_resume_breakpoint (struct thread_info *tp, | |
3977b71f | 7511 | const struct block *b, |
186c406b TT |
7512 | struct frame_info *frame, |
7513 | struct symbol *sym) | |
7514 | { | |
492d29ea | 7515 | TRY |
186c406b | 7516 | { |
63e43d3a | 7517 | struct block_symbol vsym; |
186c406b TT |
7518 | struct value *value; |
7519 | CORE_ADDR handler; | |
7520 | struct breakpoint *bp; | |
7521 | ||
de63c46b PA |
7522 | vsym = lookup_symbol_search_name (SYMBOL_SEARCH_NAME (sym), |
7523 | b, VAR_DOMAIN); | |
63e43d3a | 7524 | value = read_var_value (vsym.symbol, vsym.block, frame); |
186c406b TT |
7525 | /* If the value was optimized out, revert to the old behavior. */ |
7526 | if (! value_optimized_out (value)) | |
7527 | { | |
7528 | handler = value_as_address (value); | |
7529 | ||
7530 | if (debug_infrun) | |
7531 | fprintf_unfiltered (gdb_stdlog, | |
7532 | "infrun: exception resume at %lx\n", | |
7533 | (unsigned long) handler); | |
7534 | ||
7535 | bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame), | |
454dafbd TT |
7536 | handler, |
7537 | bp_exception_resume).release (); | |
c70a6932 JK |
7538 | |
7539 | /* set_momentary_breakpoint_at_pc invalidates FRAME. */ | |
7540 | frame = NULL; | |
7541 | ||
5d5658a1 | 7542 | bp->thread = tp->global_num; |
186c406b TT |
7543 | inferior_thread ()->control.exception_resume_breakpoint = bp; |
7544 | } | |
7545 | } | |
492d29ea PA |
7546 | CATCH (e, RETURN_MASK_ERROR) |
7547 | { | |
7548 | /* We want to ignore errors here. */ | |
7549 | } | |
7550 | END_CATCH | |
186c406b TT |
7551 | } |
7552 | ||
28106bc2 SDJ |
7553 | /* A helper for check_exception_resume that sets an |
7554 | exception-breakpoint based on a SystemTap probe. */ | |
7555 | ||
7556 | static void | |
7557 | insert_exception_resume_from_probe (struct thread_info *tp, | |
729662a5 | 7558 | const struct bound_probe *probe, |
28106bc2 SDJ |
7559 | struct frame_info *frame) |
7560 | { | |
7561 | struct value *arg_value; | |
7562 | CORE_ADDR handler; | |
7563 | struct breakpoint *bp; | |
7564 | ||
7565 | arg_value = probe_safe_evaluate_at_pc (frame, 1); | |
7566 | if (!arg_value) | |
7567 | return; | |
7568 | ||
7569 | handler = value_as_address (arg_value); | |
7570 | ||
7571 | if (debug_infrun) | |
7572 | fprintf_unfiltered (gdb_stdlog, | |
7573 | "infrun: exception resume at %s\n", | |
6bac7473 | 7574 | paddress (get_objfile_arch (probe->objfile), |
28106bc2 SDJ |
7575 | handler)); |
7576 | ||
7577 | bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame), | |
454dafbd | 7578 | handler, bp_exception_resume).release (); |
5d5658a1 | 7579 | bp->thread = tp->global_num; |
28106bc2 SDJ |
7580 | inferior_thread ()->control.exception_resume_breakpoint = bp; |
7581 | } | |
7582 | ||
186c406b TT |
7583 | /* This is called when an exception has been intercepted. Check to |
7584 | see whether the exception's destination is of interest, and if so, | |
7585 | set an exception resume breakpoint there. */ | |
7586 | ||
7587 | static void | |
7588 | check_exception_resume (struct execution_control_state *ecs, | |
28106bc2 | 7589 | struct frame_info *frame) |
186c406b | 7590 | { |
729662a5 | 7591 | struct bound_probe probe; |
28106bc2 SDJ |
7592 | struct symbol *func; |
7593 | ||
7594 | /* First see if this exception unwinding breakpoint was set via a | |
7595 | SystemTap probe point. If so, the probe has two arguments: the | |
7596 | CFA and the HANDLER. We ignore the CFA, extract the handler, and | |
7597 | set a breakpoint there. */ | |
6bac7473 | 7598 | probe = find_probe_by_pc (get_frame_pc (frame)); |
935676c9 | 7599 | if (probe.prob) |
28106bc2 | 7600 | { |
729662a5 | 7601 | insert_exception_resume_from_probe (ecs->event_thread, &probe, frame); |
28106bc2 SDJ |
7602 | return; |
7603 | } | |
7604 | ||
7605 | func = get_frame_function (frame); | |
7606 | if (!func) | |
7607 | return; | |
186c406b | 7608 | |
492d29ea | 7609 | TRY |
186c406b | 7610 | { |
3977b71f | 7611 | const struct block *b; |
8157b174 | 7612 | struct block_iterator iter; |
186c406b TT |
7613 | struct symbol *sym; |
7614 | int argno = 0; | |
7615 | ||
7616 | /* The exception breakpoint is a thread-specific breakpoint on | |
7617 | the unwinder's debug hook, declared as: | |
7618 | ||
7619 | void _Unwind_DebugHook (void *cfa, void *handler); | |
7620 | ||
7621 | The CFA argument indicates the frame to which control is | |
7622 | about to be transferred. HANDLER is the destination PC. | |
7623 | ||
7624 | We ignore the CFA and set a temporary breakpoint at HANDLER. | |
7625 | This is not extremely efficient but it avoids issues in gdb | |
7626 | with computing the DWARF CFA, and it also works even in weird | |
7627 | cases such as throwing an exception from inside a signal | |
7628 | handler. */ | |
7629 | ||
7630 | b = SYMBOL_BLOCK_VALUE (func); | |
7631 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
7632 | { | |
7633 | if (!SYMBOL_IS_ARGUMENT (sym)) | |
7634 | continue; | |
7635 | ||
7636 | if (argno == 0) | |
7637 | ++argno; | |
7638 | else | |
7639 | { | |
7640 | insert_exception_resume_breakpoint (ecs->event_thread, | |
7641 | b, frame, sym); | |
7642 | break; | |
7643 | } | |
7644 | } | |
7645 | } | |
492d29ea PA |
7646 | CATCH (e, RETURN_MASK_ERROR) |
7647 | { | |
7648 | } | |
7649 | END_CATCH | |
186c406b TT |
7650 | } |
7651 | ||
104c1213 | 7652 | static void |
22bcd14b | 7653 | stop_waiting (struct execution_control_state *ecs) |
104c1213 | 7654 | { |
527159b7 | 7655 | if (debug_infrun) |
22bcd14b | 7656 | fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n"); |
527159b7 | 7657 | |
cd0fc7c3 SS |
7658 | /* Let callers know we don't want to wait for the inferior anymore. */ |
7659 | ecs->wait_some_more = 0; | |
fbea99ea PA |
7660 | |
7661 | /* If all-stop, but the target is always in non-stop mode, stop all | |
7662 | threads now that we're presenting the stop to the user. */ | |
7663 | if (!non_stop && target_is_non_stop_p ()) | |
7664 | stop_all_threads (); | |
cd0fc7c3 SS |
7665 | } |
7666 | ||
4d9d9d04 PA |
7667 | /* Like keep_going, but passes the signal to the inferior, even if the |
7668 | signal is set to nopass. */ | |
d4f3574e SS |
7669 | |
7670 | static void | |
4d9d9d04 | 7671 | keep_going_pass_signal (struct execution_control_state *ecs) |
d4f3574e | 7672 | { |
d7e15655 | 7673 | gdb_assert (ecs->event_thread->ptid == inferior_ptid); |
372316f1 | 7674 | gdb_assert (!ecs->event_thread->resumed); |
4d9d9d04 | 7675 | |
d4f3574e | 7676 | /* Save the pc before execution, to compare with pc after stop. */ |
fb14de7b | 7677 | ecs->event_thread->prev_pc |
00431a78 | 7678 | = regcache_read_pc (get_thread_regcache (ecs->event_thread)); |
d4f3574e | 7679 | |
4d9d9d04 | 7680 | if (ecs->event_thread->control.trap_expected) |
d4f3574e | 7681 | { |
4d9d9d04 PA |
7682 | struct thread_info *tp = ecs->event_thread; |
7683 | ||
7684 | if (debug_infrun) | |
7685 | fprintf_unfiltered (gdb_stdlog, | |
7686 | "infrun: %s has trap_expected set, " | |
7687 | "resuming to collect trap\n", | |
7688 | target_pid_to_str (tp->ptid)); | |
7689 | ||
a9ba6bae PA |
7690 | /* We haven't yet gotten our trap, and either: intercepted a |
7691 | non-signal event (e.g., a fork); or took a signal which we | |
7692 | are supposed to pass through to the inferior. Simply | |
7693 | continue. */ | |
64ce06e4 | 7694 | resume (ecs->event_thread->suspend.stop_signal); |
d4f3574e | 7695 | } |
372316f1 PA |
7696 | else if (step_over_info_valid_p ()) |
7697 | { | |
7698 | /* Another thread is stepping over a breakpoint in-line. If | |
7699 | this thread needs a step-over too, queue the request. In | |
7700 | either case, this resume must be deferred for later. */ | |
7701 | struct thread_info *tp = ecs->event_thread; | |
7702 | ||
7703 | if (ecs->hit_singlestep_breakpoint | |
7704 | || thread_still_needs_step_over (tp)) | |
7705 | { | |
7706 | if (debug_infrun) | |
7707 | fprintf_unfiltered (gdb_stdlog, | |
7708 | "infrun: step-over already in progress: " | |
7709 | "step-over for %s deferred\n", | |
7710 | target_pid_to_str (tp->ptid)); | |
7711 | thread_step_over_chain_enqueue (tp); | |
7712 | } | |
7713 | else | |
7714 | { | |
7715 | if (debug_infrun) | |
7716 | fprintf_unfiltered (gdb_stdlog, | |
7717 | "infrun: step-over in progress: " | |
7718 | "resume of %s deferred\n", | |
7719 | target_pid_to_str (tp->ptid)); | |
7720 | } | |
372316f1 | 7721 | } |
d4f3574e SS |
7722 | else |
7723 | { | |
31e77af2 | 7724 | struct regcache *regcache = get_current_regcache (); |
963f9c80 PA |
7725 | int remove_bp; |
7726 | int remove_wps; | |
8d297bbf | 7727 | step_over_what step_what; |
31e77af2 | 7728 | |
d4f3574e | 7729 | /* Either the trap was not expected, but we are continuing |
a9ba6bae PA |
7730 | anyway (if we got a signal, the user asked it be passed to |
7731 | the child) | |
7732 | -- or -- | |
7733 | We got our expected trap, but decided we should resume from | |
7734 | it. | |
d4f3574e | 7735 | |
a9ba6bae | 7736 | We're going to run this baby now! |
d4f3574e | 7737 | |
c36b740a VP |
7738 | Note that insert_breakpoints won't try to re-insert |
7739 | already inserted breakpoints. Therefore, we don't | |
7740 | care if breakpoints were already inserted, or not. */ | |
a9ba6bae | 7741 | |
31e77af2 PA |
7742 | /* If we need to step over a breakpoint, and we're not using |
7743 | displaced stepping to do so, insert all breakpoints | |
7744 | (watchpoints, etc.) but the one we're stepping over, step one | |
7745 | instruction, and then re-insert the breakpoint when that step | |
7746 | is finished. */ | |
963f9c80 | 7747 | |
6c4cfb24 PA |
7748 | step_what = thread_still_needs_step_over (ecs->event_thread); |
7749 | ||
963f9c80 | 7750 | remove_bp = (ecs->hit_singlestep_breakpoint |
6c4cfb24 PA |
7751 | || (step_what & STEP_OVER_BREAKPOINT)); |
7752 | remove_wps = (step_what & STEP_OVER_WATCHPOINT); | |
963f9c80 | 7753 | |
cb71640d PA |
7754 | /* We can't use displaced stepping if we need to step past a |
7755 | watchpoint. The instruction copied to the scratch pad would | |
7756 | still trigger the watchpoint. */ | |
7757 | if (remove_bp | |
3fc8eb30 | 7758 | && (remove_wps || !use_displaced_stepping (ecs->event_thread))) |
45e8c884 | 7759 | { |
a01bda52 | 7760 | set_step_over_info (regcache->aspace (), |
21edc42f YQ |
7761 | regcache_read_pc (regcache), remove_wps, |
7762 | ecs->event_thread->global_num); | |
45e8c884 | 7763 | } |
963f9c80 | 7764 | else if (remove_wps) |
21edc42f | 7765 | set_step_over_info (NULL, 0, remove_wps, -1); |
372316f1 PA |
7766 | |
7767 | /* If we now need to do an in-line step-over, we need to stop | |
7768 | all other threads. Note this must be done before | |
7769 | insert_breakpoints below, because that removes the breakpoint | |
7770 | we're about to step over, otherwise other threads could miss | |
7771 | it. */ | |
fbea99ea | 7772 | if (step_over_info_valid_p () && target_is_non_stop_p ()) |
372316f1 | 7773 | stop_all_threads (); |
abbb1732 | 7774 | |
31e77af2 | 7775 | /* Stop stepping if inserting breakpoints fails. */ |
492d29ea | 7776 | TRY |
31e77af2 PA |
7777 | { |
7778 | insert_breakpoints (); | |
7779 | } | |
492d29ea | 7780 | CATCH (e, RETURN_MASK_ERROR) |
31e77af2 PA |
7781 | { |
7782 | exception_print (gdb_stderr, e); | |
22bcd14b | 7783 | stop_waiting (ecs); |
bdf2a94a | 7784 | clear_step_over_info (); |
31e77af2 | 7785 | return; |
d4f3574e | 7786 | } |
492d29ea | 7787 | END_CATCH |
d4f3574e | 7788 | |
963f9c80 | 7789 | ecs->event_thread->control.trap_expected = (remove_bp || remove_wps); |
d4f3574e | 7790 | |
64ce06e4 | 7791 | resume (ecs->event_thread->suspend.stop_signal); |
d4f3574e SS |
7792 | } |
7793 | ||
488f131b | 7794 | prepare_to_wait (ecs); |
d4f3574e SS |
7795 | } |
7796 | ||
4d9d9d04 PA |
7797 | /* Called when we should continue running the inferior, because the |
7798 | current event doesn't cause a user visible stop. This does the | |
7799 | resuming part; waiting for the next event is done elsewhere. */ | |
7800 | ||
7801 | static void | |
7802 | keep_going (struct execution_control_state *ecs) | |
7803 | { | |
7804 | if (ecs->event_thread->control.trap_expected | |
7805 | && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP) | |
7806 | ecs->event_thread->control.trap_expected = 0; | |
7807 | ||
7808 | if (!signal_program[ecs->event_thread->suspend.stop_signal]) | |
7809 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; | |
7810 | keep_going_pass_signal (ecs); | |
7811 | } | |
7812 | ||
104c1213 JM |
7813 | /* This function normally comes after a resume, before |
7814 | handle_inferior_event exits. It takes care of any last bits of | |
7815 | housekeeping, and sets the all-important wait_some_more flag. */ | |
cd0fc7c3 | 7816 | |
104c1213 JM |
7817 | static void |
7818 | prepare_to_wait (struct execution_control_state *ecs) | |
cd0fc7c3 | 7819 | { |
527159b7 | 7820 | if (debug_infrun) |
8a9de0e4 | 7821 | fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n"); |
104c1213 | 7822 | |
104c1213 | 7823 | ecs->wait_some_more = 1; |
0b333c5e PA |
7824 | |
7825 | if (!target_is_async_p ()) | |
7826 | mark_infrun_async_event_handler (); | |
c906108c | 7827 | } |
11cf8741 | 7828 | |
fd664c91 | 7829 | /* We are done with the step range of a step/next/si/ni command. |
b57bacec | 7830 | Called once for each n of a "step n" operation. */ |
fd664c91 PA |
7831 | |
7832 | static void | |
bdc36728 | 7833 | end_stepping_range (struct execution_control_state *ecs) |
fd664c91 | 7834 | { |
bdc36728 | 7835 | ecs->event_thread->control.stop_step = 1; |
bdc36728 | 7836 | stop_waiting (ecs); |
fd664c91 PA |
7837 | } |
7838 | ||
33d62d64 JK |
7839 | /* Several print_*_reason functions to print why the inferior has stopped. |
7840 | We always print something when the inferior exits, or receives a signal. | |
7841 | The rest of the cases are dealt with later on in normal_stop and | |
7842 | print_it_typical. Ideally there should be a call to one of these | |
7843 | print_*_reason functions functions from handle_inferior_event each time | |
22bcd14b | 7844 | stop_waiting is called. |
33d62d64 | 7845 | |
fd664c91 PA |
7846 | Note that we don't call these directly, instead we delegate that to |
7847 | the interpreters, through observers. Interpreters then call these | |
7848 | with whatever uiout is right. */ | |
33d62d64 | 7849 | |
fd664c91 PA |
7850 | void |
7851 | print_end_stepping_range_reason (struct ui_out *uiout) | |
33d62d64 | 7852 | { |
fd664c91 | 7853 | /* For CLI-like interpreters, print nothing. */ |
33d62d64 | 7854 | |
112e8700 | 7855 | if (uiout->is_mi_like_p ()) |
fd664c91 | 7856 | { |
112e8700 | 7857 | uiout->field_string ("reason", |
fd664c91 PA |
7858 | async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE)); |
7859 | } | |
7860 | } | |
33d62d64 | 7861 | |
fd664c91 PA |
7862 | void |
7863 | print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal) | |
11cf8741 | 7864 | { |
33d62d64 | 7865 | annotate_signalled (); |
112e8700 SM |
7866 | if (uiout->is_mi_like_p ()) |
7867 | uiout->field_string | |
7868 | ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED)); | |
7869 | uiout->text ("\nProgram terminated with signal "); | |
33d62d64 | 7870 | annotate_signal_name (); |
112e8700 | 7871 | uiout->field_string ("signal-name", |
2ea28649 | 7872 | gdb_signal_to_name (siggnal)); |
33d62d64 | 7873 | annotate_signal_name_end (); |
112e8700 | 7874 | uiout->text (", "); |
33d62d64 | 7875 | annotate_signal_string (); |
112e8700 | 7876 | uiout->field_string ("signal-meaning", |
2ea28649 | 7877 | gdb_signal_to_string (siggnal)); |
33d62d64 | 7878 | annotate_signal_string_end (); |
112e8700 SM |
7879 | uiout->text (".\n"); |
7880 | uiout->text ("The program no longer exists.\n"); | |
33d62d64 JK |
7881 | } |
7882 | ||
fd664c91 PA |
7883 | void |
7884 | print_exited_reason (struct ui_out *uiout, int exitstatus) | |
33d62d64 | 7885 | { |
fda326dd | 7886 | struct inferior *inf = current_inferior (); |
f2907e49 | 7887 | const char *pidstr = target_pid_to_str (ptid_t (inf->pid)); |
fda326dd | 7888 | |
33d62d64 JK |
7889 | annotate_exited (exitstatus); |
7890 | if (exitstatus) | |
7891 | { | |
112e8700 SM |
7892 | if (uiout->is_mi_like_p ()) |
7893 | uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED)); | |
7894 | uiout->text ("[Inferior "); | |
7895 | uiout->text (plongest (inf->num)); | |
7896 | uiout->text (" ("); | |
7897 | uiout->text (pidstr); | |
7898 | uiout->text (") exited with code "); | |
7899 | uiout->field_fmt ("exit-code", "0%o", (unsigned int) exitstatus); | |
7900 | uiout->text ("]\n"); | |
33d62d64 JK |
7901 | } |
7902 | else | |
11cf8741 | 7903 | { |
112e8700 SM |
7904 | if (uiout->is_mi_like_p ()) |
7905 | uiout->field_string | |
7906 | ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY)); | |
7907 | uiout->text ("[Inferior "); | |
7908 | uiout->text (plongest (inf->num)); | |
7909 | uiout->text (" ("); | |
7910 | uiout->text (pidstr); | |
7911 | uiout->text (") exited normally]\n"); | |
33d62d64 | 7912 | } |
33d62d64 JK |
7913 | } |
7914 | ||
012b3a21 WT |
7915 | /* Some targets/architectures can do extra processing/display of |
7916 | segmentation faults. E.g., Intel MPX boundary faults. | |
7917 | Call the architecture dependent function to handle the fault. */ | |
7918 | ||
7919 | static void | |
7920 | handle_segmentation_fault (struct ui_out *uiout) | |
7921 | { | |
7922 | struct regcache *regcache = get_current_regcache (); | |
ac7936df | 7923 | struct gdbarch *gdbarch = regcache->arch (); |
012b3a21 WT |
7924 | |
7925 | if (gdbarch_handle_segmentation_fault_p (gdbarch)) | |
7926 | gdbarch_handle_segmentation_fault (gdbarch, uiout); | |
7927 | } | |
7928 | ||
fd664c91 PA |
7929 | void |
7930 | print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal) | |
33d62d64 | 7931 | { |
f303dbd6 PA |
7932 | struct thread_info *thr = inferior_thread (); |
7933 | ||
33d62d64 JK |
7934 | annotate_signal (); |
7935 | ||
112e8700 | 7936 | if (uiout->is_mi_like_p ()) |
f303dbd6 PA |
7937 | ; |
7938 | else if (show_thread_that_caused_stop ()) | |
33d62d64 | 7939 | { |
f303dbd6 | 7940 | const char *name; |
33d62d64 | 7941 | |
112e8700 SM |
7942 | uiout->text ("\nThread "); |
7943 | uiout->field_fmt ("thread-id", "%s", print_thread_id (thr)); | |
f303dbd6 PA |
7944 | |
7945 | name = thr->name != NULL ? thr->name : target_thread_name (thr); | |
7946 | if (name != NULL) | |
7947 | { | |
112e8700 SM |
7948 | uiout->text (" \""); |
7949 | uiout->field_fmt ("name", "%s", name); | |
7950 | uiout->text ("\""); | |
f303dbd6 | 7951 | } |
33d62d64 | 7952 | } |
f303dbd6 | 7953 | else |
112e8700 | 7954 | uiout->text ("\nProgram"); |
f303dbd6 | 7955 | |
112e8700 SM |
7956 | if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ()) |
7957 | uiout->text (" stopped"); | |
33d62d64 JK |
7958 | else |
7959 | { | |
112e8700 | 7960 | uiout->text (" received signal "); |
8b93c638 | 7961 | annotate_signal_name (); |
112e8700 SM |
7962 | if (uiout->is_mi_like_p ()) |
7963 | uiout->field_string | |
7964 | ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED)); | |
7965 | uiout->field_string ("signal-name", gdb_signal_to_name (siggnal)); | |
8b93c638 | 7966 | annotate_signal_name_end (); |
112e8700 | 7967 | uiout->text (", "); |
8b93c638 | 7968 | annotate_signal_string (); |
112e8700 | 7969 | uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal)); |
012b3a21 WT |
7970 | |
7971 | if (siggnal == GDB_SIGNAL_SEGV) | |
7972 | handle_segmentation_fault (uiout); | |
7973 | ||
8b93c638 | 7974 | annotate_signal_string_end (); |
33d62d64 | 7975 | } |
112e8700 | 7976 | uiout->text (".\n"); |
33d62d64 | 7977 | } |
252fbfc8 | 7978 | |
fd664c91 PA |
7979 | void |
7980 | print_no_history_reason (struct ui_out *uiout) | |
33d62d64 | 7981 | { |
112e8700 | 7982 | uiout->text ("\nNo more reverse-execution history.\n"); |
11cf8741 | 7983 | } |
43ff13b4 | 7984 | |
0c7e1a46 PA |
7985 | /* Print current location without a level number, if we have changed |
7986 | functions or hit a breakpoint. Print source line if we have one. | |
7987 | bpstat_print contains the logic deciding in detail what to print, | |
7988 | based on the event(s) that just occurred. */ | |
7989 | ||
243a9253 PA |
7990 | static void |
7991 | print_stop_location (struct target_waitstatus *ws) | |
0c7e1a46 PA |
7992 | { |
7993 | int bpstat_ret; | |
f486487f | 7994 | enum print_what source_flag; |
0c7e1a46 PA |
7995 | int do_frame_printing = 1; |
7996 | struct thread_info *tp = inferior_thread (); | |
7997 | ||
7998 | bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind); | |
7999 | switch (bpstat_ret) | |
8000 | { | |
8001 | case PRINT_UNKNOWN: | |
8002 | /* FIXME: cagney/2002-12-01: Given that a frame ID does (or | |
8003 | should) carry around the function and does (or should) use | |
8004 | that when doing a frame comparison. */ | |
8005 | if (tp->control.stop_step | |
8006 | && frame_id_eq (tp->control.step_frame_id, | |
8007 | get_frame_id (get_current_frame ())) | |
f2ffa92b PA |
8008 | && (tp->control.step_start_function |
8009 | == find_pc_function (tp->suspend.stop_pc))) | |
0c7e1a46 PA |
8010 | { |
8011 | /* Finished step, just print source line. */ | |
8012 | source_flag = SRC_LINE; | |
8013 | } | |
8014 | else | |
8015 | { | |
8016 | /* Print location and source line. */ | |
8017 | source_flag = SRC_AND_LOC; | |
8018 | } | |
8019 | break; | |
8020 | case PRINT_SRC_AND_LOC: | |
8021 | /* Print location and source line. */ | |
8022 | source_flag = SRC_AND_LOC; | |
8023 | break; | |
8024 | case PRINT_SRC_ONLY: | |
8025 | source_flag = SRC_LINE; | |
8026 | break; | |
8027 | case PRINT_NOTHING: | |
8028 | /* Something bogus. */ | |
8029 | source_flag = SRC_LINE; | |
8030 | do_frame_printing = 0; | |
8031 | break; | |
8032 | default: | |
8033 | internal_error (__FILE__, __LINE__, _("Unknown value.")); | |
8034 | } | |
8035 | ||
8036 | /* The behavior of this routine with respect to the source | |
8037 | flag is: | |
8038 | SRC_LINE: Print only source line | |
8039 | LOCATION: Print only location | |
8040 | SRC_AND_LOC: Print location and source line. */ | |
8041 | if (do_frame_printing) | |
8042 | print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1); | |
243a9253 PA |
8043 | } |
8044 | ||
243a9253 PA |
8045 | /* See infrun.h. */ |
8046 | ||
8047 | void | |
8048 | print_stop_event (struct ui_out *uiout) | |
8049 | { | |
243a9253 PA |
8050 | struct target_waitstatus last; |
8051 | ptid_t last_ptid; | |
8052 | struct thread_info *tp; | |
8053 | ||
8054 | get_last_target_status (&last_ptid, &last); | |
8055 | ||
67ad9399 TT |
8056 | { |
8057 | scoped_restore save_uiout = make_scoped_restore (¤t_uiout, uiout); | |
0c7e1a46 | 8058 | |
67ad9399 | 8059 | print_stop_location (&last); |
243a9253 | 8060 | |
67ad9399 TT |
8061 | /* Display the auto-display expressions. */ |
8062 | do_displays (); | |
8063 | } | |
243a9253 PA |
8064 | |
8065 | tp = inferior_thread (); | |
8066 | if (tp->thread_fsm != NULL | |
8067 | && thread_fsm_finished_p (tp->thread_fsm)) | |
8068 | { | |
8069 | struct return_value_info *rv; | |
8070 | ||
8071 | rv = thread_fsm_return_value (tp->thread_fsm); | |
8072 | if (rv != NULL) | |
8073 | print_return_value (uiout, rv); | |
8074 | } | |
0c7e1a46 PA |
8075 | } |
8076 | ||
388a7084 PA |
8077 | /* See infrun.h. */ |
8078 | ||
8079 | void | |
8080 | maybe_remove_breakpoints (void) | |
8081 | { | |
8082 | if (!breakpoints_should_be_inserted_now () && target_has_execution) | |
8083 | { | |
8084 | if (remove_breakpoints ()) | |
8085 | { | |
223ffa71 | 8086 | target_terminal::ours_for_output (); |
388a7084 PA |
8087 | printf_filtered (_("Cannot remove breakpoints because " |
8088 | "program is no longer writable.\nFurther " | |
8089 | "execution is probably impossible.\n")); | |
8090 | } | |
8091 | } | |
8092 | } | |
8093 | ||
4c2f2a79 PA |
8094 | /* The execution context that just caused a normal stop. */ |
8095 | ||
8096 | struct stop_context | |
8097 | { | |
8098 | /* The stop ID. */ | |
8099 | ULONGEST stop_id; | |
c906108c | 8100 | |
4c2f2a79 | 8101 | /* The event PTID. */ |
c906108c | 8102 | |
4c2f2a79 PA |
8103 | ptid_t ptid; |
8104 | ||
8105 | /* If stopp for a thread event, this is the thread that caused the | |
8106 | stop. */ | |
8107 | struct thread_info *thread; | |
8108 | ||
8109 | /* The inferior that caused the stop. */ | |
8110 | int inf_num; | |
8111 | }; | |
8112 | ||
8113 | /* Returns a new stop context. If stopped for a thread event, this | |
8114 | takes a strong reference to the thread. */ | |
8115 | ||
8116 | static struct stop_context * | |
8117 | save_stop_context (void) | |
8118 | { | |
224c3ddb | 8119 | struct stop_context *sc = XNEW (struct stop_context); |
4c2f2a79 PA |
8120 | |
8121 | sc->stop_id = get_stop_id (); | |
8122 | sc->ptid = inferior_ptid; | |
8123 | sc->inf_num = current_inferior ()->num; | |
8124 | ||
d7e15655 | 8125 | if (inferior_ptid != null_ptid) |
4c2f2a79 PA |
8126 | { |
8127 | /* Take a strong reference so that the thread can't be deleted | |
8128 | yet. */ | |
8129 | sc->thread = inferior_thread (); | |
803bdfe4 | 8130 | sc->thread->incref (); |
4c2f2a79 PA |
8131 | } |
8132 | else | |
8133 | sc->thread = NULL; | |
8134 | ||
8135 | return sc; | |
8136 | } | |
8137 | ||
8138 | /* Release a stop context previously created with save_stop_context. | |
8139 | Releases the strong reference to the thread as well. */ | |
8140 | ||
8141 | static void | |
8142 | release_stop_context_cleanup (void *arg) | |
8143 | { | |
9a3c8263 | 8144 | struct stop_context *sc = (struct stop_context *) arg; |
4c2f2a79 PA |
8145 | |
8146 | if (sc->thread != NULL) | |
803bdfe4 | 8147 | sc->thread->decref (); |
4c2f2a79 PA |
8148 | xfree (sc); |
8149 | } | |
8150 | ||
8151 | /* Return true if the current context no longer matches the saved stop | |
8152 | context. */ | |
8153 | ||
8154 | static int | |
8155 | stop_context_changed (struct stop_context *prev) | |
8156 | { | |
d7e15655 | 8157 | if (prev->ptid != inferior_ptid) |
4c2f2a79 PA |
8158 | return 1; |
8159 | if (prev->inf_num != current_inferior ()->num) | |
8160 | return 1; | |
8161 | if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED) | |
8162 | return 1; | |
8163 | if (get_stop_id () != prev->stop_id) | |
8164 | return 1; | |
8165 | return 0; | |
8166 | } | |
8167 | ||
8168 | /* See infrun.h. */ | |
8169 | ||
8170 | int | |
96baa820 | 8171 | normal_stop (void) |
c906108c | 8172 | { |
73b65bb0 DJ |
8173 | struct target_waitstatus last; |
8174 | ptid_t last_ptid; | |
8175 | ||
8176 | get_last_target_status (&last_ptid, &last); | |
8177 | ||
4c2f2a79 PA |
8178 | new_stop_id (); |
8179 | ||
29f49a6a PA |
8180 | /* If an exception is thrown from this point on, make sure to |
8181 | propagate GDB's knowledge of the executing state to the | |
8182 | frontend/user running state. A QUIT is an easy exception to see | |
8183 | here, so do this before any filtered output. */ | |
731f534f PA |
8184 | |
8185 | gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state; | |
8186 | ||
c35b1492 | 8187 | if (!non_stop) |
731f534f | 8188 | maybe_finish_thread_state.emplace (minus_one_ptid); |
e1316e60 PA |
8189 | else if (last.kind == TARGET_WAITKIND_SIGNALLED |
8190 | || last.kind == TARGET_WAITKIND_EXITED) | |
8191 | { | |
8192 | /* On some targets, we may still have live threads in the | |
8193 | inferior when we get a process exit event. E.g., for | |
8194 | "checkpoint", when the current checkpoint/fork exits, | |
8195 | linux-fork.c automatically switches to another fork from | |
8196 | within target_mourn_inferior. */ | |
731f534f PA |
8197 | if (inferior_ptid != null_ptid) |
8198 | maybe_finish_thread_state.emplace (ptid_t (inferior_ptid.pid ())); | |
e1316e60 PA |
8199 | } |
8200 | else if (last.kind != TARGET_WAITKIND_NO_RESUMED) | |
731f534f | 8201 | maybe_finish_thread_state.emplace (inferior_ptid); |
29f49a6a | 8202 | |
b57bacec PA |
8203 | /* As we're presenting a stop, and potentially removing breakpoints, |
8204 | update the thread list so we can tell whether there are threads | |
8205 | running on the target. With target remote, for example, we can | |
8206 | only learn about new threads when we explicitly update the thread | |
8207 | list. Do this before notifying the interpreters about signal | |
8208 | stops, end of stepping ranges, etc., so that the "new thread" | |
8209 | output is emitted before e.g., "Program received signal FOO", | |
8210 | instead of after. */ | |
8211 | update_thread_list (); | |
8212 | ||
8213 | if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal) | |
76727919 | 8214 | gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal); |
b57bacec | 8215 | |
c906108c SS |
8216 | /* As with the notification of thread events, we want to delay |
8217 | notifying the user that we've switched thread context until | |
8218 | the inferior actually stops. | |
8219 | ||
73b65bb0 DJ |
8220 | There's no point in saying anything if the inferior has exited. |
8221 | Note that SIGNALLED here means "exited with a signal", not | |
b65dc60b PA |
8222 | "received a signal". |
8223 | ||
8224 | Also skip saying anything in non-stop mode. In that mode, as we | |
8225 | don't want GDB to switch threads behind the user's back, to avoid | |
8226 | races where the user is typing a command to apply to thread x, | |
8227 | but GDB switches to thread y before the user finishes entering | |
8228 | the command, fetch_inferior_event installs a cleanup to restore | |
8229 | the current thread back to the thread the user had selected right | |
8230 | after this event is handled, so we're not really switching, only | |
8231 | informing of a stop. */ | |
4f8d22e3 | 8232 | if (!non_stop |
731f534f | 8233 | && previous_inferior_ptid != inferior_ptid |
73b65bb0 DJ |
8234 | && target_has_execution |
8235 | && last.kind != TARGET_WAITKIND_SIGNALLED | |
0e5bf2a8 PA |
8236 | && last.kind != TARGET_WAITKIND_EXITED |
8237 | && last.kind != TARGET_WAITKIND_NO_RESUMED) | |
c906108c | 8238 | { |
0e454242 | 8239 | SWITCH_THRU_ALL_UIS () |
3b12939d | 8240 | { |
223ffa71 | 8241 | target_terminal::ours_for_output (); |
3b12939d PA |
8242 | printf_filtered (_("[Switching to %s]\n"), |
8243 | target_pid_to_str (inferior_ptid)); | |
8244 | annotate_thread_changed (); | |
8245 | } | |
39f77062 | 8246 | previous_inferior_ptid = inferior_ptid; |
c906108c | 8247 | } |
c906108c | 8248 | |
0e5bf2a8 PA |
8249 | if (last.kind == TARGET_WAITKIND_NO_RESUMED) |
8250 | { | |
0e454242 | 8251 | SWITCH_THRU_ALL_UIS () |
3b12939d PA |
8252 | if (current_ui->prompt_state == PROMPT_BLOCKED) |
8253 | { | |
223ffa71 | 8254 | target_terminal::ours_for_output (); |
3b12939d PA |
8255 | printf_filtered (_("No unwaited-for children left.\n")); |
8256 | } | |
0e5bf2a8 PA |
8257 | } |
8258 | ||
b57bacec | 8259 | /* Note: this depends on the update_thread_list call above. */ |
388a7084 | 8260 | maybe_remove_breakpoints (); |
c906108c | 8261 | |
c906108c SS |
8262 | /* If an auto-display called a function and that got a signal, |
8263 | delete that auto-display to avoid an infinite recursion. */ | |
8264 | ||
8265 | if (stopped_by_random_signal) | |
8266 | disable_current_display (); | |
8267 | ||
0e454242 | 8268 | SWITCH_THRU_ALL_UIS () |
3b12939d PA |
8269 | { |
8270 | async_enable_stdin (); | |
8271 | } | |
c906108c | 8272 | |
388a7084 | 8273 | /* Let the user/frontend see the threads as stopped. */ |
731f534f | 8274 | maybe_finish_thread_state.reset (); |
388a7084 PA |
8275 | |
8276 | /* Select innermost stack frame - i.e., current frame is frame 0, | |
8277 | and current location is based on that. Handle the case where the | |
8278 | dummy call is returning after being stopped. E.g. the dummy call | |
8279 | previously hit a breakpoint. (If the dummy call returns | |
8280 | normally, we won't reach here.) Do this before the stop hook is | |
8281 | run, so that it doesn't get to see the temporary dummy frame, | |
8282 | which is not where we'll present the stop. */ | |
8283 | if (has_stack_frames ()) | |
8284 | { | |
8285 | if (stop_stack_dummy == STOP_STACK_DUMMY) | |
8286 | { | |
8287 | /* Pop the empty frame that contains the stack dummy. This | |
8288 | also restores inferior state prior to the call (struct | |
8289 | infcall_suspend_state). */ | |
8290 | struct frame_info *frame = get_current_frame (); | |
8291 | ||
8292 | gdb_assert (get_frame_type (frame) == DUMMY_FRAME); | |
8293 | frame_pop (frame); | |
8294 | /* frame_pop calls reinit_frame_cache as the last thing it | |
8295 | does which means there's now no selected frame. */ | |
8296 | } | |
8297 | ||
8298 | select_frame (get_current_frame ()); | |
8299 | ||
8300 | /* Set the current source location. */ | |
8301 | set_current_sal_from_frame (get_current_frame ()); | |
8302 | } | |
dd7e2d2b PA |
8303 | |
8304 | /* Look up the hook_stop and run it (CLI internally handles problem | |
8305 | of stop_command's pre-hook not existing). */ | |
4c2f2a79 PA |
8306 | if (stop_command != NULL) |
8307 | { | |
8308 | struct stop_context *saved_context = save_stop_context (); | |
8309 | struct cleanup *old_chain | |
8310 | = make_cleanup (release_stop_context_cleanup, saved_context); | |
8311 | ||
bf469271 PA |
8312 | TRY |
8313 | { | |
8314 | execute_cmd_pre_hook (stop_command); | |
8315 | } | |
8316 | CATCH (ex, RETURN_MASK_ALL) | |
8317 | { | |
8318 | exception_fprintf (gdb_stderr, ex, | |
8319 | "Error while running hook_stop:\n"); | |
8320 | } | |
8321 | END_CATCH | |
4c2f2a79 PA |
8322 | |
8323 | /* If the stop hook resumes the target, then there's no point in | |
8324 | trying to notify about the previous stop; its context is | |
8325 | gone. Likewise if the command switches thread or inferior -- | |
8326 | the observers would print a stop for the wrong | |
8327 | thread/inferior. */ | |
8328 | if (stop_context_changed (saved_context)) | |
8329 | { | |
8330 | do_cleanups (old_chain); | |
8331 | return 1; | |
8332 | } | |
8333 | do_cleanups (old_chain); | |
8334 | } | |
dd7e2d2b | 8335 | |
388a7084 PA |
8336 | /* Notify observers about the stop. This is where the interpreters |
8337 | print the stop event. */ | |
d7e15655 | 8338 | if (inferior_ptid != null_ptid) |
76727919 | 8339 | gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat, |
388a7084 PA |
8340 | stop_print_frame); |
8341 | else | |
76727919 | 8342 | gdb::observers::normal_stop.notify (NULL, stop_print_frame); |
347bddb7 | 8343 | |
243a9253 PA |
8344 | annotate_stopped (); |
8345 | ||
48844aa6 PA |
8346 | if (target_has_execution) |
8347 | { | |
8348 | if (last.kind != TARGET_WAITKIND_SIGNALLED | |
8349 | && last.kind != TARGET_WAITKIND_EXITED) | |
8350 | /* Delete the breakpoint we stopped at, if it wants to be deleted. | |
8351 | Delete any breakpoint that is to be deleted at the next stop. */ | |
16c381f0 | 8352 | breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat); |
94cc34af | 8353 | } |
6c95b8df PA |
8354 | |
8355 | /* Try to get rid of automatically added inferiors that are no | |
8356 | longer needed. Keeping those around slows down things linearly. | |
8357 | Note that this never removes the current inferior. */ | |
8358 | prune_inferiors (); | |
4c2f2a79 PA |
8359 | |
8360 | return 0; | |
c906108c | 8361 | } |
c906108c | 8362 | \f |
c5aa993b | 8363 | int |
96baa820 | 8364 | signal_stop_state (int signo) |
c906108c | 8365 | { |
d6b48e9c | 8366 | return signal_stop[signo]; |
c906108c SS |
8367 | } |
8368 | ||
c5aa993b | 8369 | int |
96baa820 | 8370 | signal_print_state (int signo) |
c906108c SS |
8371 | { |
8372 | return signal_print[signo]; | |
8373 | } | |
8374 | ||
c5aa993b | 8375 | int |
96baa820 | 8376 | signal_pass_state (int signo) |
c906108c SS |
8377 | { |
8378 | return signal_program[signo]; | |
8379 | } | |
8380 | ||
2455069d UW |
8381 | static void |
8382 | signal_cache_update (int signo) | |
8383 | { | |
8384 | if (signo == -1) | |
8385 | { | |
a493e3e2 | 8386 | for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++) |
2455069d UW |
8387 | signal_cache_update (signo); |
8388 | ||
8389 | return; | |
8390 | } | |
8391 | ||
8392 | signal_pass[signo] = (signal_stop[signo] == 0 | |
8393 | && signal_print[signo] == 0 | |
ab04a2af TT |
8394 | && signal_program[signo] == 1 |
8395 | && signal_catch[signo] == 0); | |
2455069d UW |
8396 | } |
8397 | ||
488f131b | 8398 | int |
7bda5e4a | 8399 | signal_stop_update (int signo, int state) |
d4f3574e SS |
8400 | { |
8401 | int ret = signal_stop[signo]; | |
abbb1732 | 8402 | |
d4f3574e | 8403 | signal_stop[signo] = state; |
2455069d | 8404 | signal_cache_update (signo); |
d4f3574e SS |
8405 | return ret; |
8406 | } | |
8407 | ||
488f131b | 8408 | int |
7bda5e4a | 8409 | signal_print_update (int signo, int state) |
d4f3574e SS |
8410 | { |
8411 | int ret = signal_print[signo]; | |
abbb1732 | 8412 | |
d4f3574e | 8413 | signal_print[signo] = state; |
2455069d | 8414 | signal_cache_update (signo); |
d4f3574e SS |
8415 | return ret; |
8416 | } | |
8417 | ||
488f131b | 8418 | int |
7bda5e4a | 8419 | signal_pass_update (int signo, int state) |
d4f3574e SS |
8420 | { |
8421 | int ret = signal_program[signo]; | |
abbb1732 | 8422 | |
d4f3574e | 8423 | signal_program[signo] = state; |
2455069d | 8424 | signal_cache_update (signo); |
d4f3574e SS |
8425 | return ret; |
8426 | } | |
8427 | ||
ab04a2af TT |
8428 | /* Update the global 'signal_catch' from INFO and notify the |
8429 | target. */ | |
8430 | ||
8431 | void | |
8432 | signal_catch_update (const unsigned int *info) | |
8433 | { | |
8434 | int i; | |
8435 | ||
8436 | for (i = 0; i < GDB_SIGNAL_LAST; ++i) | |
8437 | signal_catch[i] = info[i] > 0; | |
8438 | signal_cache_update (-1); | |
8439 | target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass); | |
8440 | } | |
8441 | ||
c906108c | 8442 | static void |
96baa820 | 8443 | sig_print_header (void) |
c906108c | 8444 | { |
3e43a32a MS |
8445 | printf_filtered (_("Signal Stop\tPrint\tPass " |
8446 | "to program\tDescription\n")); | |
c906108c SS |
8447 | } |
8448 | ||
8449 | static void | |
2ea28649 | 8450 | sig_print_info (enum gdb_signal oursig) |
c906108c | 8451 | { |
2ea28649 | 8452 | const char *name = gdb_signal_to_name (oursig); |
c906108c | 8453 | int name_padding = 13 - strlen (name); |
96baa820 | 8454 | |
c906108c SS |
8455 | if (name_padding <= 0) |
8456 | name_padding = 0; | |
8457 | ||
8458 | printf_filtered ("%s", name); | |
488f131b | 8459 | printf_filtered ("%*.*s ", name_padding, name_padding, " "); |
c906108c SS |
8460 | printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No"); |
8461 | printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No"); | |
8462 | printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No"); | |
2ea28649 | 8463 | printf_filtered ("%s\n", gdb_signal_to_string (oursig)); |
c906108c SS |
8464 | } |
8465 | ||
8466 | /* Specify how various signals in the inferior should be handled. */ | |
8467 | ||
8468 | static void | |
0b39b52e | 8469 | handle_command (const char *args, int from_tty) |
c906108c | 8470 | { |
c906108c SS |
8471 | int digits, wordlen; |
8472 | int sigfirst, signum, siglast; | |
2ea28649 | 8473 | enum gdb_signal oursig; |
c906108c SS |
8474 | int allsigs; |
8475 | int nsigs; | |
8476 | unsigned char *sigs; | |
c906108c SS |
8477 | |
8478 | if (args == NULL) | |
8479 | { | |
e2e0b3e5 | 8480 | error_no_arg (_("signal to handle")); |
c906108c SS |
8481 | } |
8482 | ||
1777feb0 | 8483 | /* Allocate and zero an array of flags for which signals to handle. */ |
c906108c | 8484 | |
a493e3e2 | 8485 | nsigs = (int) GDB_SIGNAL_LAST; |
c906108c SS |
8486 | sigs = (unsigned char *) alloca (nsigs); |
8487 | memset (sigs, 0, nsigs); | |
8488 | ||
1777feb0 | 8489 | /* Break the command line up into args. */ |
c906108c | 8490 | |
773a1edc | 8491 | gdb_argv built_argv (args); |
c906108c SS |
8492 | |
8493 | /* Walk through the args, looking for signal oursigs, signal names, and | |
8494 | actions. Signal numbers and signal names may be interspersed with | |
8495 | actions, with the actions being performed for all signals cumulatively | |
1777feb0 | 8496 | specified. Signal ranges can be specified as <LOW>-<HIGH>. */ |
c906108c | 8497 | |
773a1edc | 8498 | for (char *arg : built_argv) |
c906108c | 8499 | { |
773a1edc TT |
8500 | wordlen = strlen (arg); |
8501 | for (digits = 0; isdigit (arg[digits]); digits++) | |
c906108c SS |
8502 | {; |
8503 | } | |
8504 | allsigs = 0; | |
8505 | sigfirst = siglast = -1; | |
8506 | ||
773a1edc | 8507 | if (wordlen >= 1 && !strncmp (arg, "all", wordlen)) |
c906108c SS |
8508 | { |
8509 | /* Apply action to all signals except those used by the | |
1777feb0 | 8510 | debugger. Silently skip those. */ |
c906108c SS |
8511 | allsigs = 1; |
8512 | sigfirst = 0; | |
8513 | siglast = nsigs - 1; | |
8514 | } | |
773a1edc | 8515 | else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen)) |
c906108c SS |
8516 | { |
8517 | SET_SIGS (nsigs, sigs, signal_stop); | |
8518 | SET_SIGS (nsigs, sigs, signal_print); | |
8519 | } | |
773a1edc | 8520 | else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen)) |
c906108c SS |
8521 | { |
8522 | UNSET_SIGS (nsigs, sigs, signal_program); | |
8523 | } | |
773a1edc | 8524 | else if (wordlen >= 2 && !strncmp (arg, "print", wordlen)) |
c906108c SS |
8525 | { |
8526 | SET_SIGS (nsigs, sigs, signal_print); | |
8527 | } | |
773a1edc | 8528 | else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen)) |
c906108c SS |
8529 | { |
8530 | SET_SIGS (nsigs, sigs, signal_program); | |
8531 | } | |
773a1edc | 8532 | else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen)) |
c906108c SS |
8533 | { |
8534 | UNSET_SIGS (nsigs, sigs, signal_stop); | |
8535 | } | |
773a1edc | 8536 | else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen)) |
c906108c SS |
8537 | { |
8538 | SET_SIGS (nsigs, sigs, signal_program); | |
8539 | } | |
773a1edc | 8540 | else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen)) |
c906108c SS |
8541 | { |
8542 | UNSET_SIGS (nsigs, sigs, signal_print); | |
8543 | UNSET_SIGS (nsigs, sigs, signal_stop); | |
8544 | } | |
773a1edc | 8545 | else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen)) |
c906108c SS |
8546 | { |
8547 | UNSET_SIGS (nsigs, sigs, signal_program); | |
8548 | } | |
8549 | else if (digits > 0) | |
8550 | { | |
8551 | /* It is numeric. The numeric signal refers to our own | |
8552 | internal signal numbering from target.h, not to host/target | |
8553 | signal number. This is a feature; users really should be | |
8554 | using symbolic names anyway, and the common ones like | |
8555 | SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */ | |
8556 | ||
8557 | sigfirst = siglast = (int) | |
773a1edc TT |
8558 | gdb_signal_from_command (atoi (arg)); |
8559 | if (arg[digits] == '-') | |
c906108c SS |
8560 | { |
8561 | siglast = (int) | |
773a1edc | 8562 | gdb_signal_from_command (atoi (arg + digits + 1)); |
c906108c SS |
8563 | } |
8564 | if (sigfirst > siglast) | |
8565 | { | |
1777feb0 | 8566 | /* Bet he didn't figure we'd think of this case... */ |
c906108c SS |
8567 | signum = sigfirst; |
8568 | sigfirst = siglast; | |
8569 | siglast = signum; | |
8570 | } | |
8571 | } | |
8572 | else | |
8573 | { | |
773a1edc | 8574 | oursig = gdb_signal_from_name (arg); |
a493e3e2 | 8575 | if (oursig != GDB_SIGNAL_UNKNOWN) |
c906108c SS |
8576 | { |
8577 | sigfirst = siglast = (int) oursig; | |
8578 | } | |
8579 | else | |
8580 | { | |
8581 | /* Not a number and not a recognized flag word => complain. */ | |
773a1edc | 8582 | error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg); |
c906108c SS |
8583 | } |
8584 | } | |
8585 | ||
8586 | /* If any signal numbers or symbol names were found, set flags for | |
1777feb0 | 8587 | which signals to apply actions to. */ |
c906108c SS |
8588 | |
8589 | for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++) | |
8590 | { | |
2ea28649 | 8591 | switch ((enum gdb_signal) signum) |
c906108c | 8592 | { |
a493e3e2 PA |
8593 | case GDB_SIGNAL_TRAP: |
8594 | case GDB_SIGNAL_INT: | |
c906108c SS |
8595 | if (!allsigs && !sigs[signum]) |
8596 | { | |
9e2f0ad4 | 8597 | if (query (_("%s is used by the debugger.\n\ |
3e43a32a | 8598 | Are you sure you want to change it? "), |
2ea28649 | 8599 | gdb_signal_to_name ((enum gdb_signal) signum))) |
c906108c SS |
8600 | { |
8601 | sigs[signum] = 1; | |
8602 | } | |
8603 | else | |
8604 | { | |
a3f17187 | 8605 | printf_unfiltered (_("Not confirmed, unchanged.\n")); |
c906108c SS |
8606 | gdb_flush (gdb_stdout); |
8607 | } | |
8608 | } | |
8609 | break; | |
a493e3e2 PA |
8610 | case GDB_SIGNAL_0: |
8611 | case GDB_SIGNAL_DEFAULT: | |
8612 | case GDB_SIGNAL_UNKNOWN: | |
c906108c SS |
8613 | /* Make sure that "all" doesn't print these. */ |
8614 | break; | |
8615 | default: | |
8616 | sigs[signum] = 1; | |
8617 | break; | |
8618 | } | |
8619 | } | |
c906108c SS |
8620 | } |
8621 | ||
3a031f65 PA |
8622 | for (signum = 0; signum < nsigs; signum++) |
8623 | if (sigs[signum]) | |
8624 | { | |
2455069d | 8625 | signal_cache_update (-1); |
a493e3e2 PA |
8626 | target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass); |
8627 | target_program_signals ((int) GDB_SIGNAL_LAST, signal_program); | |
c906108c | 8628 | |
3a031f65 PA |
8629 | if (from_tty) |
8630 | { | |
8631 | /* Show the results. */ | |
8632 | sig_print_header (); | |
8633 | for (; signum < nsigs; signum++) | |
8634 | if (sigs[signum]) | |
aead7601 | 8635 | sig_print_info ((enum gdb_signal) signum); |
3a031f65 PA |
8636 | } |
8637 | ||
8638 | break; | |
8639 | } | |
c906108c SS |
8640 | } |
8641 | ||
de0bea00 MF |
8642 | /* Complete the "handle" command. */ |
8643 | ||
eb3ff9a5 | 8644 | static void |
de0bea00 | 8645 | handle_completer (struct cmd_list_element *ignore, |
eb3ff9a5 | 8646 | completion_tracker &tracker, |
6f937416 | 8647 | const char *text, const char *word) |
de0bea00 | 8648 | { |
de0bea00 MF |
8649 | static const char * const keywords[] = |
8650 | { | |
8651 | "all", | |
8652 | "stop", | |
8653 | "ignore", | |
8654 | "print", | |
8655 | "pass", | |
8656 | "nostop", | |
8657 | "noignore", | |
8658 | "noprint", | |
8659 | "nopass", | |
8660 | NULL, | |
8661 | }; | |
8662 | ||
eb3ff9a5 PA |
8663 | signal_completer (ignore, tracker, text, word); |
8664 | complete_on_enum (tracker, keywords, word, word); | |
de0bea00 MF |
8665 | } |
8666 | ||
2ea28649 PA |
8667 | enum gdb_signal |
8668 | gdb_signal_from_command (int num) | |
ed01b82c PA |
8669 | { |
8670 | if (num >= 1 && num <= 15) | |
2ea28649 | 8671 | return (enum gdb_signal) num; |
ed01b82c PA |
8672 | error (_("Only signals 1-15 are valid as numeric signals.\n\ |
8673 | Use \"info signals\" for a list of symbolic signals.")); | |
8674 | } | |
8675 | ||
c906108c SS |
8676 | /* Print current contents of the tables set by the handle command. |
8677 | It is possible we should just be printing signals actually used | |
8678 | by the current target (but for things to work right when switching | |
8679 | targets, all signals should be in the signal tables). */ | |
8680 | ||
8681 | static void | |
1d12d88f | 8682 | info_signals_command (const char *signum_exp, int from_tty) |
c906108c | 8683 | { |
2ea28649 | 8684 | enum gdb_signal oursig; |
abbb1732 | 8685 | |
c906108c SS |
8686 | sig_print_header (); |
8687 | ||
8688 | if (signum_exp) | |
8689 | { | |
8690 | /* First see if this is a symbol name. */ | |
2ea28649 | 8691 | oursig = gdb_signal_from_name (signum_exp); |
a493e3e2 | 8692 | if (oursig == GDB_SIGNAL_UNKNOWN) |
c906108c SS |
8693 | { |
8694 | /* No, try numeric. */ | |
8695 | oursig = | |
2ea28649 | 8696 | gdb_signal_from_command (parse_and_eval_long (signum_exp)); |
c906108c SS |
8697 | } |
8698 | sig_print_info (oursig); | |
8699 | return; | |
8700 | } | |
8701 | ||
8702 | printf_filtered ("\n"); | |
8703 | /* These ugly casts brought to you by the native VAX compiler. */ | |
a493e3e2 PA |
8704 | for (oursig = GDB_SIGNAL_FIRST; |
8705 | (int) oursig < (int) GDB_SIGNAL_LAST; | |
2ea28649 | 8706 | oursig = (enum gdb_signal) ((int) oursig + 1)) |
c906108c SS |
8707 | { |
8708 | QUIT; | |
8709 | ||
a493e3e2 PA |
8710 | if (oursig != GDB_SIGNAL_UNKNOWN |
8711 | && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0) | |
c906108c SS |
8712 | sig_print_info (oursig); |
8713 | } | |
8714 | ||
3e43a32a MS |
8715 | printf_filtered (_("\nUse the \"handle\" command " |
8716 | "to change these tables.\n")); | |
c906108c | 8717 | } |
4aa995e1 PA |
8718 | |
8719 | /* The $_siginfo convenience variable is a bit special. We don't know | |
8720 | for sure the type of the value until we actually have a chance to | |
7a9dd1b2 | 8721 | fetch the data. The type can change depending on gdbarch, so it is |
4aa995e1 PA |
8722 | also dependent on which thread you have selected. |
8723 | ||
8724 | 1. making $_siginfo be an internalvar that creates a new value on | |
8725 | access. | |
8726 | ||
8727 | 2. making the value of $_siginfo be an lval_computed value. */ | |
8728 | ||
8729 | /* This function implements the lval_computed support for reading a | |
8730 | $_siginfo value. */ | |
8731 | ||
8732 | static void | |
8733 | siginfo_value_read (struct value *v) | |
8734 | { | |
8735 | LONGEST transferred; | |
8736 | ||
a911d87a PA |
8737 | /* If we can access registers, so can we access $_siginfo. Likewise |
8738 | vice versa. */ | |
8739 | validate_registers_access (); | |
c709acd1 | 8740 | |
4aa995e1 | 8741 | transferred = |
8b88a78e | 8742 | target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, |
4aa995e1 PA |
8743 | NULL, |
8744 | value_contents_all_raw (v), | |
8745 | value_offset (v), | |
8746 | TYPE_LENGTH (value_type (v))); | |
8747 | ||
8748 | if (transferred != TYPE_LENGTH (value_type (v))) | |
8749 | error (_("Unable to read siginfo")); | |
8750 | } | |
8751 | ||
8752 | /* This function implements the lval_computed support for writing a | |
8753 | $_siginfo value. */ | |
8754 | ||
8755 | static void | |
8756 | siginfo_value_write (struct value *v, struct value *fromval) | |
8757 | { | |
8758 | LONGEST transferred; | |
8759 | ||
a911d87a PA |
8760 | /* If we can access registers, so can we access $_siginfo. Likewise |
8761 | vice versa. */ | |
8762 | validate_registers_access (); | |
c709acd1 | 8763 | |
8b88a78e | 8764 | transferred = target_write (current_top_target (), |
4aa995e1 PA |
8765 | TARGET_OBJECT_SIGNAL_INFO, |
8766 | NULL, | |
8767 | value_contents_all_raw (fromval), | |
8768 | value_offset (v), | |
8769 | TYPE_LENGTH (value_type (fromval))); | |
8770 | ||
8771 | if (transferred != TYPE_LENGTH (value_type (fromval))) | |
8772 | error (_("Unable to write siginfo")); | |
8773 | } | |
8774 | ||
c8f2448a | 8775 | static const struct lval_funcs siginfo_value_funcs = |
4aa995e1 PA |
8776 | { |
8777 | siginfo_value_read, | |
8778 | siginfo_value_write | |
8779 | }; | |
8780 | ||
8781 | /* Return a new value with the correct type for the siginfo object of | |
78267919 UW |
8782 | the current thread using architecture GDBARCH. Return a void value |
8783 | if there's no object available. */ | |
4aa995e1 | 8784 | |
2c0b251b | 8785 | static struct value * |
22d2b532 SDJ |
8786 | siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var, |
8787 | void *ignore) | |
4aa995e1 | 8788 | { |
4aa995e1 | 8789 | if (target_has_stack |
d7e15655 | 8790 | && inferior_ptid != null_ptid |
78267919 | 8791 | && gdbarch_get_siginfo_type_p (gdbarch)) |
4aa995e1 | 8792 | { |
78267919 | 8793 | struct type *type = gdbarch_get_siginfo_type (gdbarch); |
abbb1732 | 8794 | |
78267919 | 8795 | return allocate_computed_value (type, &siginfo_value_funcs, NULL); |
4aa995e1 PA |
8796 | } |
8797 | ||
78267919 | 8798 | return allocate_value (builtin_type (gdbarch)->builtin_void); |
4aa995e1 PA |
8799 | } |
8800 | ||
c906108c | 8801 | \f |
16c381f0 JK |
8802 | /* infcall_suspend_state contains state about the program itself like its |
8803 | registers and any signal it received when it last stopped. | |
8804 | This state must be restored regardless of how the inferior function call | |
8805 | ends (either successfully, or after it hits a breakpoint or signal) | |
8806 | if the program is to properly continue where it left off. */ | |
8807 | ||
8808 | struct infcall_suspend_state | |
7a292a7a | 8809 | { |
16c381f0 | 8810 | struct thread_suspend_state thread_suspend; |
16c381f0 JK |
8811 | |
8812 | /* Other fields: */ | |
daf6667d | 8813 | readonly_detached_regcache *registers; |
1736ad11 | 8814 | |
35515841 | 8815 | /* Format of SIGINFO_DATA or NULL if it is not present. */ |
1736ad11 JK |
8816 | struct gdbarch *siginfo_gdbarch; |
8817 | ||
8818 | /* The inferior format depends on SIGINFO_GDBARCH and it has a length of | |
8819 | TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the | |
8820 | content would be invalid. */ | |
8821 | gdb_byte *siginfo_data; | |
b89667eb DE |
8822 | }; |
8823 | ||
16c381f0 JK |
8824 | struct infcall_suspend_state * |
8825 | save_infcall_suspend_state (void) | |
b89667eb | 8826 | { |
16c381f0 | 8827 | struct infcall_suspend_state *inf_state; |
b89667eb | 8828 | struct thread_info *tp = inferior_thread (); |
1736ad11 | 8829 | struct regcache *regcache = get_current_regcache (); |
ac7936df | 8830 | struct gdbarch *gdbarch = regcache->arch (); |
1736ad11 JK |
8831 | gdb_byte *siginfo_data = NULL; |
8832 | ||
8833 | if (gdbarch_get_siginfo_type_p (gdbarch)) | |
8834 | { | |
8835 | struct type *type = gdbarch_get_siginfo_type (gdbarch); | |
8836 | size_t len = TYPE_LENGTH (type); | |
8837 | struct cleanup *back_to; | |
8838 | ||
224c3ddb | 8839 | siginfo_data = (gdb_byte *) xmalloc (len); |
1736ad11 JK |
8840 | back_to = make_cleanup (xfree, siginfo_data); |
8841 | ||
8b88a78e | 8842 | if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL, |
1736ad11 JK |
8843 | siginfo_data, 0, len) == len) |
8844 | discard_cleanups (back_to); | |
8845 | else | |
8846 | { | |
8847 | /* Errors ignored. */ | |
8848 | do_cleanups (back_to); | |
8849 | siginfo_data = NULL; | |
8850 | } | |
8851 | } | |
8852 | ||
41bf6aca | 8853 | inf_state = XCNEW (struct infcall_suspend_state); |
1736ad11 JK |
8854 | |
8855 | if (siginfo_data) | |
8856 | { | |
8857 | inf_state->siginfo_gdbarch = gdbarch; | |
8858 | inf_state->siginfo_data = siginfo_data; | |
8859 | } | |
b89667eb | 8860 | |
16c381f0 | 8861 | inf_state->thread_suspend = tp->suspend; |
16c381f0 | 8862 | |
35515841 | 8863 | /* run_inferior_call will not use the signal due to its `proceed' call with |
a493e3e2 PA |
8864 | GDB_SIGNAL_0 anyway. */ |
8865 | tp->suspend.stop_signal = GDB_SIGNAL_0; | |
35515841 | 8866 | |
daf6667d | 8867 | inf_state->registers = new readonly_detached_regcache (*regcache); |
b89667eb DE |
8868 | |
8869 | return inf_state; | |
8870 | } | |
8871 | ||
8872 | /* Restore inferior session state to INF_STATE. */ | |
8873 | ||
8874 | void | |
16c381f0 | 8875 | restore_infcall_suspend_state (struct infcall_suspend_state *inf_state) |
b89667eb DE |
8876 | { |
8877 | struct thread_info *tp = inferior_thread (); | |
1736ad11 | 8878 | struct regcache *regcache = get_current_regcache (); |
ac7936df | 8879 | struct gdbarch *gdbarch = regcache->arch (); |
b89667eb | 8880 | |
16c381f0 | 8881 | tp->suspend = inf_state->thread_suspend; |
16c381f0 | 8882 | |
1736ad11 JK |
8883 | if (inf_state->siginfo_gdbarch == gdbarch) |
8884 | { | |
8885 | struct type *type = gdbarch_get_siginfo_type (gdbarch); | |
1736ad11 JK |
8886 | |
8887 | /* Errors ignored. */ | |
8b88a78e | 8888 | target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL, |
6acef6cd | 8889 | inf_state->siginfo_data, 0, TYPE_LENGTH (type)); |
1736ad11 JK |
8890 | } |
8891 | ||
b89667eb DE |
8892 | /* The inferior can be gone if the user types "print exit(0)" |
8893 | (and perhaps other times). */ | |
8894 | if (target_has_execution) | |
8895 | /* NB: The register write goes through to the target. */ | |
fc5b8736 | 8896 | regcache->restore (inf_state->registers); |
803b5f95 | 8897 | |
16c381f0 | 8898 | discard_infcall_suspend_state (inf_state); |
b89667eb DE |
8899 | } |
8900 | ||
8901 | static void | |
16c381f0 | 8902 | do_restore_infcall_suspend_state_cleanup (void *state) |
b89667eb | 8903 | { |
9a3c8263 | 8904 | restore_infcall_suspend_state ((struct infcall_suspend_state *) state); |
b89667eb DE |
8905 | } |
8906 | ||
8907 | struct cleanup * | |
16c381f0 JK |
8908 | make_cleanup_restore_infcall_suspend_state |
8909 | (struct infcall_suspend_state *inf_state) | |
b89667eb | 8910 | { |
16c381f0 | 8911 | return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state); |
b89667eb DE |
8912 | } |
8913 | ||
8914 | void | |
16c381f0 | 8915 | discard_infcall_suspend_state (struct infcall_suspend_state *inf_state) |
b89667eb | 8916 | { |
c0e383c6 | 8917 | delete inf_state->registers; |
803b5f95 | 8918 | xfree (inf_state->siginfo_data); |
b89667eb DE |
8919 | xfree (inf_state); |
8920 | } | |
8921 | ||
daf6667d | 8922 | readonly_detached_regcache * |
16c381f0 | 8923 | get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state) |
b89667eb DE |
8924 | { |
8925 | return inf_state->registers; | |
8926 | } | |
8927 | ||
16c381f0 JK |
8928 | /* infcall_control_state contains state regarding gdb's control of the |
8929 | inferior itself like stepping control. It also contains session state like | |
8930 | the user's currently selected frame. */ | |
b89667eb | 8931 | |
16c381f0 | 8932 | struct infcall_control_state |
b89667eb | 8933 | { |
16c381f0 JK |
8934 | struct thread_control_state thread_control; |
8935 | struct inferior_control_state inferior_control; | |
d82142e2 JK |
8936 | |
8937 | /* Other fields: */ | |
8938 | enum stop_stack_kind stop_stack_dummy; | |
8939 | int stopped_by_random_signal; | |
7a292a7a | 8940 | |
b89667eb | 8941 | /* ID if the selected frame when the inferior function call was made. */ |
101dcfbe | 8942 | struct frame_id selected_frame_id; |
7a292a7a SS |
8943 | }; |
8944 | ||
c906108c | 8945 | /* Save all of the information associated with the inferior<==>gdb |
b89667eb | 8946 | connection. */ |
c906108c | 8947 | |
16c381f0 JK |
8948 | struct infcall_control_state * |
8949 | save_infcall_control_state (void) | |
c906108c | 8950 | { |
8d749320 SM |
8951 | struct infcall_control_state *inf_status = |
8952 | XNEW (struct infcall_control_state); | |
4e1c45ea | 8953 | struct thread_info *tp = inferior_thread (); |
d6b48e9c | 8954 | struct inferior *inf = current_inferior (); |
7a292a7a | 8955 | |
16c381f0 JK |
8956 | inf_status->thread_control = tp->control; |
8957 | inf_status->inferior_control = inf->control; | |
d82142e2 | 8958 | |
8358c15c | 8959 | tp->control.step_resume_breakpoint = NULL; |
5b79abe7 | 8960 | tp->control.exception_resume_breakpoint = NULL; |
8358c15c | 8961 | |
16c381f0 JK |
8962 | /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of |
8963 | chain. If caller's caller is walking the chain, they'll be happier if we | |
8964 | hand them back the original chain when restore_infcall_control_state is | |
8965 | called. */ | |
8966 | tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat); | |
d82142e2 JK |
8967 | |
8968 | /* Other fields: */ | |
8969 | inf_status->stop_stack_dummy = stop_stack_dummy; | |
8970 | inf_status->stopped_by_random_signal = stopped_by_random_signal; | |
c5aa993b | 8971 | |
206415a3 | 8972 | inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL)); |
b89667eb | 8973 | |
7a292a7a | 8974 | return inf_status; |
c906108c SS |
8975 | } |
8976 | ||
bf469271 PA |
8977 | static void |
8978 | restore_selected_frame (const frame_id &fid) | |
c906108c | 8979 | { |
bf469271 | 8980 | frame_info *frame = frame_find_by_id (fid); |
c906108c | 8981 | |
aa0cd9c1 AC |
8982 | /* If inf_status->selected_frame_id is NULL, there was no previously |
8983 | selected frame. */ | |
101dcfbe | 8984 | if (frame == NULL) |
c906108c | 8985 | { |
8a3fe4f8 | 8986 | warning (_("Unable to restore previously selected frame.")); |
bf469271 | 8987 | return; |
c906108c SS |
8988 | } |
8989 | ||
0f7d239c | 8990 | select_frame (frame); |
c906108c SS |
8991 | } |
8992 | ||
b89667eb DE |
8993 | /* Restore inferior session state to INF_STATUS. */ |
8994 | ||
c906108c | 8995 | void |
16c381f0 | 8996 | restore_infcall_control_state (struct infcall_control_state *inf_status) |
c906108c | 8997 | { |
4e1c45ea | 8998 | struct thread_info *tp = inferior_thread (); |
d6b48e9c | 8999 | struct inferior *inf = current_inferior (); |
4e1c45ea | 9000 | |
8358c15c JK |
9001 | if (tp->control.step_resume_breakpoint) |
9002 | tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop; | |
9003 | ||
5b79abe7 TT |
9004 | if (tp->control.exception_resume_breakpoint) |
9005 | tp->control.exception_resume_breakpoint->disposition | |
9006 | = disp_del_at_next_stop; | |
9007 | ||
d82142e2 | 9008 | /* Handle the bpstat_copy of the chain. */ |
16c381f0 | 9009 | bpstat_clear (&tp->control.stop_bpstat); |
d82142e2 | 9010 | |
16c381f0 JK |
9011 | tp->control = inf_status->thread_control; |
9012 | inf->control = inf_status->inferior_control; | |
d82142e2 JK |
9013 | |
9014 | /* Other fields: */ | |
9015 | stop_stack_dummy = inf_status->stop_stack_dummy; | |
9016 | stopped_by_random_signal = inf_status->stopped_by_random_signal; | |
c906108c | 9017 | |
b89667eb | 9018 | if (target_has_stack) |
c906108c | 9019 | { |
bf469271 | 9020 | /* The point of the try/catch is that if the stack is clobbered, |
101dcfbe AC |
9021 | walking the stack might encounter a garbage pointer and |
9022 | error() trying to dereference it. */ | |
bf469271 PA |
9023 | TRY |
9024 | { | |
9025 | restore_selected_frame (inf_status->selected_frame_id); | |
9026 | } | |
9027 | CATCH (ex, RETURN_MASK_ERROR) | |
9028 | { | |
9029 | exception_fprintf (gdb_stderr, ex, | |
9030 | "Unable to restore previously selected frame:\n"); | |
9031 | /* Error in restoring the selected frame. Select the | |
9032 | innermost frame. */ | |
9033 | select_frame (get_current_frame ()); | |
9034 | } | |
9035 | END_CATCH | |
c906108c | 9036 | } |
c906108c | 9037 | |
72cec141 | 9038 | xfree (inf_status); |
7a292a7a | 9039 | } |
c906108c | 9040 | |
74b7792f | 9041 | static void |
16c381f0 | 9042 | do_restore_infcall_control_state_cleanup (void *sts) |
74b7792f | 9043 | { |
9a3c8263 | 9044 | restore_infcall_control_state ((struct infcall_control_state *) sts); |
74b7792f AC |
9045 | } |
9046 | ||
9047 | struct cleanup * | |
16c381f0 JK |
9048 | make_cleanup_restore_infcall_control_state |
9049 | (struct infcall_control_state *inf_status) | |
74b7792f | 9050 | { |
16c381f0 | 9051 | return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status); |
74b7792f AC |
9052 | } |
9053 | ||
c906108c | 9054 | void |
16c381f0 | 9055 | discard_infcall_control_state (struct infcall_control_state *inf_status) |
7a292a7a | 9056 | { |
8358c15c JK |
9057 | if (inf_status->thread_control.step_resume_breakpoint) |
9058 | inf_status->thread_control.step_resume_breakpoint->disposition | |
9059 | = disp_del_at_next_stop; | |
9060 | ||
5b79abe7 TT |
9061 | if (inf_status->thread_control.exception_resume_breakpoint) |
9062 | inf_status->thread_control.exception_resume_breakpoint->disposition | |
9063 | = disp_del_at_next_stop; | |
9064 | ||
1777feb0 | 9065 | /* See save_infcall_control_state for info on stop_bpstat. */ |
16c381f0 | 9066 | bpstat_clear (&inf_status->thread_control.stop_bpstat); |
8358c15c | 9067 | |
72cec141 | 9068 | xfree (inf_status); |
7a292a7a | 9069 | } |
b89667eb | 9070 | \f |
7f89fd65 | 9071 | /* See infrun.h. */ |
0c557179 SDJ |
9072 | |
9073 | void | |
9074 | clear_exit_convenience_vars (void) | |
9075 | { | |
9076 | clear_internalvar (lookup_internalvar ("_exitsignal")); | |
9077 | clear_internalvar (lookup_internalvar ("_exitcode")); | |
9078 | } | |
c5aa993b | 9079 | \f |
488f131b | 9080 | |
b2175913 MS |
9081 | /* User interface for reverse debugging: |
9082 | Set exec-direction / show exec-direction commands | |
9083 | (returns error unless target implements to_set_exec_direction method). */ | |
9084 | ||
170742de | 9085 | enum exec_direction_kind execution_direction = EXEC_FORWARD; |
b2175913 MS |
9086 | static const char exec_forward[] = "forward"; |
9087 | static const char exec_reverse[] = "reverse"; | |
9088 | static const char *exec_direction = exec_forward; | |
40478521 | 9089 | static const char *const exec_direction_names[] = { |
b2175913 MS |
9090 | exec_forward, |
9091 | exec_reverse, | |
9092 | NULL | |
9093 | }; | |
9094 | ||
9095 | static void | |
eb4c3f4a | 9096 | set_exec_direction_func (const char *args, int from_tty, |
b2175913 MS |
9097 | struct cmd_list_element *cmd) |
9098 | { | |
9099 | if (target_can_execute_reverse) | |
9100 | { | |
9101 | if (!strcmp (exec_direction, exec_forward)) | |
9102 | execution_direction = EXEC_FORWARD; | |
9103 | else if (!strcmp (exec_direction, exec_reverse)) | |
9104 | execution_direction = EXEC_REVERSE; | |
9105 | } | |
8bbed405 MS |
9106 | else |
9107 | { | |
9108 | exec_direction = exec_forward; | |
9109 | error (_("Target does not support this operation.")); | |
9110 | } | |
b2175913 MS |
9111 | } |
9112 | ||
9113 | static void | |
9114 | show_exec_direction_func (struct ui_file *out, int from_tty, | |
9115 | struct cmd_list_element *cmd, const char *value) | |
9116 | { | |
9117 | switch (execution_direction) { | |
9118 | case EXEC_FORWARD: | |
9119 | fprintf_filtered (out, _("Forward.\n")); | |
9120 | break; | |
9121 | case EXEC_REVERSE: | |
9122 | fprintf_filtered (out, _("Reverse.\n")); | |
9123 | break; | |
b2175913 | 9124 | default: |
d8b34453 PA |
9125 | internal_error (__FILE__, __LINE__, |
9126 | _("bogus execution_direction value: %d"), | |
9127 | (int) execution_direction); | |
b2175913 MS |
9128 | } |
9129 | } | |
9130 | ||
d4db2f36 PA |
9131 | static void |
9132 | show_schedule_multiple (struct ui_file *file, int from_tty, | |
9133 | struct cmd_list_element *c, const char *value) | |
9134 | { | |
3e43a32a MS |
9135 | fprintf_filtered (file, _("Resuming the execution of threads " |
9136 | "of all processes is %s.\n"), value); | |
d4db2f36 | 9137 | } |
ad52ddc6 | 9138 | |
22d2b532 SDJ |
9139 | /* Implementation of `siginfo' variable. */ |
9140 | ||
9141 | static const struct internalvar_funcs siginfo_funcs = | |
9142 | { | |
9143 | siginfo_make_value, | |
9144 | NULL, | |
9145 | NULL | |
9146 | }; | |
9147 | ||
372316f1 PA |
9148 | /* Callback for infrun's target events source. This is marked when a |
9149 | thread has a pending status to process. */ | |
9150 | ||
9151 | static void | |
9152 | infrun_async_inferior_event_handler (gdb_client_data data) | |
9153 | { | |
372316f1 PA |
9154 | inferior_event_handler (INF_REG_EVENT, NULL); |
9155 | } | |
9156 | ||
c906108c | 9157 | void |
96baa820 | 9158 | _initialize_infrun (void) |
c906108c | 9159 | { |
52f0bd74 AC |
9160 | int i; |
9161 | int numsigs; | |
de0bea00 | 9162 | struct cmd_list_element *c; |
c906108c | 9163 | |
372316f1 PA |
9164 | /* Register extra event sources in the event loop. */ |
9165 | infrun_async_inferior_event_token | |
9166 | = create_async_event_handler (infrun_async_inferior_event_handler, NULL); | |
9167 | ||
11db9430 | 9168 | add_info ("signals", info_signals_command, _("\ |
1bedd215 AC |
9169 | What debugger does when program gets various signals.\n\ |
9170 | Specify a signal as argument to print info on that signal only.")); | |
c906108c SS |
9171 | add_info_alias ("handle", "signals", 0); |
9172 | ||
de0bea00 | 9173 | c = add_com ("handle", class_run, handle_command, _("\ |
dfbd5e7b | 9174 | Specify how to handle signals.\n\ |
486c7739 | 9175 | Usage: handle SIGNAL [ACTIONS]\n\ |
c906108c | 9176 | Args are signals and actions to apply to those signals.\n\ |
dfbd5e7b | 9177 | If no actions are specified, the current settings for the specified signals\n\ |
486c7739 MF |
9178 | will be displayed instead.\n\ |
9179 | \n\ | |
c906108c SS |
9180 | Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\ |
9181 | from 1-15 are allowed for compatibility with old versions of GDB.\n\ | |
9182 | Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\ | |
9183 | The special arg \"all\" is recognized to mean all signals except those\n\ | |
1bedd215 | 9184 | used by the debugger, typically SIGTRAP and SIGINT.\n\ |
486c7739 | 9185 | \n\ |
1bedd215 | 9186 | Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\ |
c906108c SS |
9187 | \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\ |
9188 | Stop means reenter debugger if this signal happens (implies print).\n\ | |
9189 | Print means print a message if this signal happens.\n\ | |
9190 | Pass means let program see this signal; otherwise program doesn't know.\n\ | |
9191 | Ignore is a synonym for nopass and noignore is a synonym for pass.\n\ | |
dfbd5e7b PA |
9192 | Pass and Stop may be combined.\n\ |
9193 | \n\ | |
9194 | Multiple signals may be specified. Signal numbers and signal names\n\ | |
9195 | may be interspersed with actions, with the actions being performed for\n\ | |
9196 | all signals cumulatively specified.")); | |
de0bea00 | 9197 | set_cmd_completer (c, handle_completer); |
486c7739 | 9198 | |
c906108c | 9199 | if (!dbx_commands) |
1a966eab AC |
9200 | stop_command = add_cmd ("stop", class_obscure, |
9201 | not_just_help_class_command, _("\ | |
9202 | There is no `stop' command, but you can set a hook on `stop'.\n\ | |
c906108c | 9203 | This allows you to set a list of commands to be run each time execution\n\ |
1a966eab | 9204 | of the program stops."), &cmdlist); |
c906108c | 9205 | |
ccce17b0 | 9206 | add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\ |
85c07804 AC |
9207 | Set inferior debugging."), _("\ |
9208 | Show inferior debugging."), _("\ | |
9209 | When non-zero, inferior specific debugging is enabled."), | |
ccce17b0 YQ |
9210 | NULL, |
9211 | show_debug_infrun, | |
9212 | &setdebuglist, &showdebuglist); | |
527159b7 | 9213 | |
3e43a32a MS |
9214 | add_setshow_boolean_cmd ("displaced", class_maintenance, |
9215 | &debug_displaced, _("\ | |
237fc4c9 PA |
9216 | Set displaced stepping debugging."), _("\ |
9217 | Show displaced stepping debugging."), _("\ | |
9218 | When non-zero, displaced stepping specific debugging is enabled."), | |
9219 | NULL, | |
9220 | show_debug_displaced, | |
9221 | &setdebuglist, &showdebuglist); | |
9222 | ||
ad52ddc6 PA |
9223 | add_setshow_boolean_cmd ("non-stop", no_class, |
9224 | &non_stop_1, _("\ | |
9225 | Set whether gdb controls the inferior in non-stop mode."), _("\ | |
9226 | Show whether gdb controls the inferior in non-stop mode."), _("\ | |
9227 | When debugging a multi-threaded program and this setting is\n\ | |
9228 | off (the default, also called all-stop mode), when one thread stops\n\ | |
9229 | (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\ | |
9230 | all other threads in the program while you interact with the thread of\n\ | |
9231 | interest. When you continue or step a thread, you can allow the other\n\ | |
9232 | threads to run, or have them remain stopped, but while you inspect any\n\ | |
9233 | thread's state, all threads stop.\n\ | |
9234 | \n\ | |
9235 | In non-stop mode, when one thread stops, other threads can continue\n\ | |
9236 | to run freely. You'll be able to step each thread independently,\n\ | |
9237 | leave it stopped or free to run as needed."), | |
9238 | set_non_stop, | |
9239 | show_non_stop, | |
9240 | &setlist, | |
9241 | &showlist); | |
9242 | ||
a493e3e2 | 9243 | numsigs = (int) GDB_SIGNAL_LAST; |
8d749320 SM |
9244 | signal_stop = XNEWVEC (unsigned char, numsigs); |
9245 | signal_print = XNEWVEC (unsigned char, numsigs); | |
9246 | signal_program = XNEWVEC (unsigned char, numsigs); | |
9247 | signal_catch = XNEWVEC (unsigned char, numsigs); | |
9248 | signal_pass = XNEWVEC (unsigned char, numsigs); | |
c906108c SS |
9249 | for (i = 0; i < numsigs; i++) |
9250 | { | |
9251 | signal_stop[i] = 1; | |
9252 | signal_print[i] = 1; | |
9253 | signal_program[i] = 1; | |
ab04a2af | 9254 | signal_catch[i] = 0; |
c906108c SS |
9255 | } |
9256 | ||
4d9d9d04 PA |
9257 | /* Signals caused by debugger's own actions should not be given to |
9258 | the program afterwards. | |
9259 | ||
9260 | Do not deliver GDB_SIGNAL_TRAP by default, except when the user | |
9261 | explicitly specifies that it should be delivered to the target | |
9262 | program. Typically, that would occur when a user is debugging a | |
9263 | target monitor on a simulator: the target monitor sets a | |
9264 | breakpoint; the simulator encounters this breakpoint and halts | |
9265 | the simulation handing control to GDB; GDB, noting that the stop | |
9266 | address doesn't map to any known breakpoint, returns control back | |
9267 | to the simulator; the simulator then delivers the hardware | |
9268 | equivalent of a GDB_SIGNAL_TRAP to the program being | |
9269 | debugged. */ | |
a493e3e2 PA |
9270 | signal_program[GDB_SIGNAL_TRAP] = 0; |
9271 | signal_program[GDB_SIGNAL_INT] = 0; | |
c906108c SS |
9272 | |
9273 | /* Signals that are not errors should not normally enter the debugger. */ | |
a493e3e2 PA |
9274 | signal_stop[GDB_SIGNAL_ALRM] = 0; |
9275 | signal_print[GDB_SIGNAL_ALRM] = 0; | |
9276 | signal_stop[GDB_SIGNAL_VTALRM] = 0; | |
9277 | signal_print[GDB_SIGNAL_VTALRM] = 0; | |
9278 | signal_stop[GDB_SIGNAL_PROF] = 0; | |
9279 | signal_print[GDB_SIGNAL_PROF] = 0; | |
9280 | signal_stop[GDB_SIGNAL_CHLD] = 0; | |
9281 | signal_print[GDB_SIGNAL_CHLD] = 0; | |
9282 | signal_stop[GDB_SIGNAL_IO] = 0; | |
9283 | signal_print[GDB_SIGNAL_IO] = 0; | |
9284 | signal_stop[GDB_SIGNAL_POLL] = 0; | |
9285 | signal_print[GDB_SIGNAL_POLL] = 0; | |
9286 | signal_stop[GDB_SIGNAL_URG] = 0; | |
9287 | signal_print[GDB_SIGNAL_URG] = 0; | |
9288 | signal_stop[GDB_SIGNAL_WINCH] = 0; | |
9289 | signal_print[GDB_SIGNAL_WINCH] = 0; | |
9290 | signal_stop[GDB_SIGNAL_PRIO] = 0; | |
9291 | signal_print[GDB_SIGNAL_PRIO] = 0; | |
c906108c | 9292 | |
cd0fc7c3 SS |
9293 | /* These signals are used internally by user-level thread |
9294 | implementations. (See signal(5) on Solaris.) Like the above | |
9295 | signals, a healthy program receives and handles them as part of | |
9296 | its normal operation. */ | |
a493e3e2 PA |
9297 | signal_stop[GDB_SIGNAL_LWP] = 0; |
9298 | signal_print[GDB_SIGNAL_LWP] = 0; | |
9299 | signal_stop[GDB_SIGNAL_WAITING] = 0; | |
9300 | signal_print[GDB_SIGNAL_WAITING] = 0; | |
9301 | signal_stop[GDB_SIGNAL_CANCEL] = 0; | |
9302 | signal_print[GDB_SIGNAL_CANCEL] = 0; | |
bc7b765a JB |
9303 | signal_stop[GDB_SIGNAL_LIBRT] = 0; |
9304 | signal_print[GDB_SIGNAL_LIBRT] = 0; | |
cd0fc7c3 | 9305 | |
2455069d UW |
9306 | /* Update cached state. */ |
9307 | signal_cache_update (-1); | |
9308 | ||
85c07804 AC |
9309 | add_setshow_zinteger_cmd ("stop-on-solib-events", class_support, |
9310 | &stop_on_solib_events, _("\ | |
9311 | Set stopping for shared library events."), _("\ | |
9312 | Show stopping for shared library events."), _("\ | |
c906108c SS |
9313 | If nonzero, gdb will give control to the user when the dynamic linker\n\ |
9314 | notifies gdb of shared library events. The most common event of interest\n\ | |
85c07804 | 9315 | to the user would be loading/unloading of a new library."), |
f9e14852 | 9316 | set_stop_on_solib_events, |
920d2a44 | 9317 | show_stop_on_solib_events, |
85c07804 | 9318 | &setlist, &showlist); |
c906108c | 9319 | |
7ab04401 AC |
9320 | add_setshow_enum_cmd ("follow-fork-mode", class_run, |
9321 | follow_fork_mode_kind_names, | |
9322 | &follow_fork_mode_string, _("\ | |
9323 | Set debugger response to a program call of fork or vfork."), _("\ | |
9324 | Show debugger response to a program call of fork or vfork."), _("\ | |
c906108c SS |
9325 | A fork or vfork creates a new process. follow-fork-mode can be:\n\ |
9326 | parent - the original process is debugged after a fork\n\ | |
9327 | child - the new process is debugged after a fork\n\ | |
ea1dd7bc | 9328 | The unfollowed process will continue to run.\n\ |
7ab04401 AC |
9329 | By default, the debugger will follow the parent process."), |
9330 | NULL, | |
920d2a44 | 9331 | show_follow_fork_mode_string, |
7ab04401 AC |
9332 | &setlist, &showlist); |
9333 | ||
6c95b8df PA |
9334 | add_setshow_enum_cmd ("follow-exec-mode", class_run, |
9335 | follow_exec_mode_names, | |
9336 | &follow_exec_mode_string, _("\ | |
9337 | Set debugger response to a program call of exec."), _("\ | |
9338 | Show debugger response to a program call of exec."), _("\ | |
9339 | An exec call replaces the program image of a process.\n\ | |
9340 | \n\ | |
9341 | follow-exec-mode can be:\n\ | |
9342 | \n\ | |
cce7e648 | 9343 | new - the debugger creates a new inferior and rebinds the process\n\ |
6c95b8df PA |
9344 | to this new inferior. The program the process was running before\n\ |
9345 | the exec call can be restarted afterwards by restarting the original\n\ | |
9346 | inferior.\n\ | |
9347 | \n\ | |
9348 | same - the debugger keeps the process bound to the same inferior.\n\ | |
9349 | The new executable image replaces the previous executable loaded in\n\ | |
9350 | the inferior. Restarting the inferior after the exec call restarts\n\ | |
9351 | the executable the process was running after the exec call.\n\ | |
9352 | \n\ | |
9353 | By default, the debugger will use the same inferior."), | |
9354 | NULL, | |
9355 | show_follow_exec_mode_string, | |
9356 | &setlist, &showlist); | |
9357 | ||
7ab04401 AC |
9358 | add_setshow_enum_cmd ("scheduler-locking", class_run, |
9359 | scheduler_enums, &scheduler_mode, _("\ | |
9360 | Set mode for locking scheduler during execution."), _("\ | |
9361 | Show mode for locking scheduler during execution."), _("\ | |
f2665db5 MM |
9362 | off == no locking (threads may preempt at any time)\n\ |
9363 | on == full locking (no thread except the current thread may run)\n\ | |
9364 | This applies to both normal execution and replay mode.\n\ | |
9365 | step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\ | |
9366 | In this mode, other threads may run during other commands.\n\ | |
9367 | This applies to both normal execution and replay mode.\n\ | |
9368 | replay == scheduler locked in replay mode and unlocked during normal execution."), | |
7ab04401 | 9369 | set_schedlock_func, /* traps on target vector */ |
920d2a44 | 9370 | show_scheduler_mode, |
7ab04401 | 9371 | &setlist, &showlist); |
5fbbeb29 | 9372 | |
d4db2f36 PA |
9373 | add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\ |
9374 | Set mode for resuming threads of all processes."), _("\ | |
9375 | Show mode for resuming threads of all processes."), _("\ | |
9376 | When on, execution commands (such as 'continue' or 'next') resume all\n\ | |
9377 | threads of all processes. When off (which is the default), execution\n\ | |
9378 | commands only resume the threads of the current process. The set of\n\ | |
9379 | threads that are resumed is further refined by the scheduler-locking\n\ | |
9380 | mode (see help set scheduler-locking)."), | |
9381 | NULL, | |
9382 | show_schedule_multiple, | |
9383 | &setlist, &showlist); | |
9384 | ||
5bf193a2 AC |
9385 | add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\ |
9386 | Set mode of the step operation."), _("\ | |
9387 | Show mode of the step operation."), _("\ | |
9388 | When set, doing a step over a function without debug line information\n\ | |
9389 | will stop at the first instruction of that function. Otherwise, the\n\ | |
9390 | function is skipped and the step command stops at a different source line."), | |
9391 | NULL, | |
920d2a44 | 9392 | show_step_stop_if_no_debug, |
5bf193a2 | 9393 | &setlist, &showlist); |
ca6724c1 | 9394 | |
72d0e2c5 YQ |
9395 | add_setshow_auto_boolean_cmd ("displaced-stepping", class_run, |
9396 | &can_use_displaced_stepping, _("\ | |
237fc4c9 PA |
9397 | Set debugger's willingness to use displaced stepping."), _("\ |
9398 | Show debugger's willingness to use displaced stepping."), _("\ | |
fff08868 HZ |
9399 | If on, gdb will use displaced stepping to step over breakpoints if it is\n\ |
9400 | supported by the target architecture. If off, gdb will not use displaced\n\ | |
9401 | stepping to step over breakpoints, even if such is supported by the target\n\ | |
9402 | architecture. If auto (which is the default), gdb will use displaced stepping\n\ | |
9403 | if the target architecture supports it and non-stop mode is active, but will not\n\ | |
9404 | use it in all-stop mode (see help set non-stop)."), | |
72d0e2c5 YQ |
9405 | NULL, |
9406 | show_can_use_displaced_stepping, | |
9407 | &setlist, &showlist); | |
237fc4c9 | 9408 | |
b2175913 MS |
9409 | add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names, |
9410 | &exec_direction, _("Set direction of execution.\n\ | |
9411 | Options are 'forward' or 'reverse'."), | |
9412 | _("Show direction of execution (forward/reverse)."), | |
9413 | _("Tells gdb whether to execute forward or backward."), | |
9414 | set_exec_direction_func, show_exec_direction_func, | |
9415 | &setlist, &showlist); | |
9416 | ||
6c95b8df PA |
9417 | /* Set/show detach-on-fork: user-settable mode. */ |
9418 | ||
9419 | add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\ | |
9420 | Set whether gdb will detach the child of a fork."), _("\ | |
9421 | Show whether gdb will detach the child of a fork."), _("\ | |
9422 | Tells gdb whether to detach the child of a fork."), | |
9423 | NULL, NULL, &setlist, &showlist); | |
9424 | ||
03583c20 UW |
9425 | /* Set/show disable address space randomization mode. */ |
9426 | ||
9427 | add_setshow_boolean_cmd ("disable-randomization", class_support, | |
9428 | &disable_randomization, _("\ | |
9429 | Set disabling of debuggee's virtual address space randomization."), _("\ | |
9430 | Show disabling of debuggee's virtual address space randomization."), _("\ | |
9431 | When this mode is on (which is the default), randomization of the virtual\n\ | |
9432 | address space is disabled. Standalone programs run with the randomization\n\ | |
9433 | enabled by default on some platforms."), | |
9434 | &set_disable_randomization, | |
9435 | &show_disable_randomization, | |
9436 | &setlist, &showlist); | |
9437 | ||
ca6724c1 | 9438 | /* ptid initializations */ |
ca6724c1 KB |
9439 | inferior_ptid = null_ptid; |
9440 | target_last_wait_ptid = minus_one_ptid; | |
5231c1fd | 9441 | |
76727919 TT |
9442 | gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed); |
9443 | gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested); | |
9444 | gdb::observers::thread_exit.attach (infrun_thread_thread_exit); | |
9445 | gdb::observers::inferior_exit.attach (infrun_inferior_exit); | |
4aa995e1 PA |
9446 | |
9447 | /* Explicitly create without lookup, since that tries to create a | |
9448 | value with a void typed value, and when we get here, gdbarch | |
9449 | isn't initialized yet. At this point, we're quite sure there | |
9450 | isn't another convenience variable of the same name. */ | |
22d2b532 | 9451 | create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL); |
d914c394 SS |
9452 | |
9453 | add_setshow_boolean_cmd ("observer", no_class, | |
9454 | &observer_mode_1, _("\ | |
9455 | Set whether gdb controls the inferior in observer mode."), _("\ | |
9456 | Show whether gdb controls the inferior in observer mode."), _("\ | |
9457 | In observer mode, GDB can get data from the inferior, but not\n\ | |
9458 | affect its execution. Registers and memory may not be changed,\n\ | |
9459 | breakpoints may not be set, and the program cannot be interrupted\n\ | |
9460 | or signalled."), | |
9461 | set_observer_mode, | |
9462 | show_observer_mode, | |
9463 | &setlist, | |
9464 | &showlist); | |
c906108c | 9465 | } |