]>
Commit | Line | Data |
---|---|---|
ca557f44 AC |
1 | /* Target-struct-independent code to start (run) and stop an inferior |
2 | process. | |
8926118c AC |
3 | |
4 | Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, | |
c6f0559b AC |
5 | 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free |
6 | Software Foundation, Inc. | |
c906108c | 7 | |
c5aa993b | 8 | This file is part of GDB. |
c906108c | 9 | |
c5aa993b JM |
10 | This program is free software; you can redistribute it and/or modify |
11 | it under the terms of the GNU General Public License as published by | |
12 | the Free Software Foundation; either version 2 of the License, or | |
13 | (at your option) any later version. | |
c906108c | 14 | |
c5aa993b JM |
15 | This program is distributed in the hope that it will be useful, |
16 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
17 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
18 | GNU General Public License for more details. | |
c906108c | 19 | |
c5aa993b JM |
20 | You should have received a copy of the GNU General Public License |
21 | along with this program; if not, write to the Free Software | |
22 | Foundation, Inc., 59 Temple Place - Suite 330, | |
23 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
24 | |
25 | #include "defs.h" | |
26 | #include "gdb_string.h" | |
27 | #include <ctype.h> | |
28 | #include "symtab.h" | |
29 | #include "frame.h" | |
30 | #include "inferior.h" | |
31 | #include "breakpoint.h" | |
03f2053f | 32 | #include "gdb_wait.h" |
c906108c SS |
33 | #include "gdbcore.h" |
34 | #include "gdbcmd.h" | |
210661e7 | 35 | #include "cli/cli-script.h" |
c906108c SS |
36 | #include "target.h" |
37 | #include "gdbthread.h" | |
38 | #include "annotate.h" | |
1adeb98a | 39 | #include "symfile.h" |
7a292a7a | 40 | #include "top.h" |
c906108c | 41 | #include <signal.h> |
2acceee2 | 42 | #include "inf-loop.h" |
4e052eda | 43 | #include "regcache.h" |
fd0407d6 | 44 | #include "value.h" |
06600e06 | 45 | #include "observer.h" |
f636b87d | 46 | #include "language.h" |
9f976b41 | 47 | #include "gdb_assert.h" |
c906108c SS |
48 | |
49 | /* Prototypes for local functions */ | |
50 | ||
96baa820 | 51 | static void signals_info (char *, int); |
c906108c | 52 | |
96baa820 | 53 | static void handle_command (char *, int); |
c906108c | 54 | |
96baa820 | 55 | static void sig_print_info (enum target_signal); |
c906108c | 56 | |
96baa820 | 57 | static void sig_print_header (void); |
c906108c | 58 | |
74b7792f | 59 | static void resume_cleanups (void *); |
c906108c | 60 | |
96baa820 | 61 | static int hook_stop_stub (void *); |
c906108c | 62 | |
96baa820 JM |
63 | static int restore_selected_frame (void *); |
64 | ||
65 | static void build_infrun (void); | |
66 | ||
4ef3f3be | 67 | static int follow_fork (void); |
96baa820 JM |
68 | |
69 | static void set_schedlock_func (char *args, int from_tty, | |
488f131b | 70 | struct cmd_list_element *c); |
96baa820 | 71 | |
96baa820 JM |
72 | struct execution_control_state; |
73 | ||
74 | static int currently_stepping (struct execution_control_state *ecs); | |
75 | ||
76 | static void xdb_handle_command (char *args, int from_tty); | |
77 | ||
ea67f13b DJ |
78 | static int prepare_to_proceed (void); |
79 | ||
96baa820 | 80 | void _initialize_infrun (void); |
43ff13b4 | 81 | |
c906108c SS |
82 | int inferior_ignoring_startup_exec_events = 0; |
83 | int inferior_ignoring_leading_exec_events = 0; | |
84 | ||
5fbbeb29 CF |
85 | /* When set, stop the 'step' command if we enter a function which has |
86 | no line number information. The normal behavior is that we step | |
87 | over such function. */ | |
88 | int step_stop_if_no_debug = 0; | |
89 | ||
43ff13b4 | 90 | /* In asynchronous mode, but simulating synchronous execution. */ |
96baa820 | 91 | |
43ff13b4 JM |
92 | int sync_execution = 0; |
93 | ||
c906108c SS |
94 | /* wait_for_inferior and normal_stop use this to notify the user |
95 | when the inferior stopped in a different thread than it had been | |
96baa820 JM |
96 | running in. */ |
97 | ||
39f77062 | 98 | static ptid_t previous_inferior_ptid; |
7a292a7a SS |
99 | |
100 | /* This is true for configurations that may follow through execl() and | |
101 | similar functions. At present this is only true for HP-UX native. */ | |
102 | ||
103 | #ifndef MAY_FOLLOW_EXEC | |
104 | #define MAY_FOLLOW_EXEC (0) | |
c906108c SS |
105 | #endif |
106 | ||
7a292a7a SS |
107 | static int may_follow_exec = MAY_FOLLOW_EXEC; |
108 | ||
d4f3574e SS |
109 | /* If the program uses ELF-style shared libraries, then calls to |
110 | functions in shared libraries go through stubs, which live in a | |
111 | table called the PLT (Procedure Linkage Table). The first time the | |
112 | function is called, the stub sends control to the dynamic linker, | |
113 | which looks up the function's real address, patches the stub so | |
114 | that future calls will go directly to the function, and then passes | |
115 | control to the function. | |
116 | ||
117 | If we are stepping at the source level, we don't want to see any of | |
118 | this --- we just want to skip over the stub and the dynamic linker. | |
119 | The simple approach is to single-step until control leaves the | |
120 | dynamic linker. | |
121 | ||
ca557f44 AC |
122 | However, on some systems (e.g., Red Hat's 5.2 distribution) the |
123 | dynamic linker calls functions in the shared C library, so you | |
124 | can't tell from the PC alone whether the dynamic linker is still | |
125 | running. In this case, we use a step-resume breakpoint to get us | |
126 | past the dynamic linker, as if we were using "next" to step over a | |
127 | function call. | |
d4f3574e SS |
128 | |
129 | IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic | |
130 | linker code or not. Normally, this means we single-step. However, | |
131 | if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an | |
132 | address where we can place a step-resume breakpoint to get past the | |
133 | linker's symbol resolution function. | |
134 | ||
135 | IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a | |
136 | pretty portable way, by comparing the PC against the address ranges | |
137 | of the dynamic linker's sections. | |
138 | ||
139 | SKIP_SOLIB_RESOLVER is generally going to be system-specific, since | |
140 | it depends on internal details of the dynamic linker. It's usually | |
141 | not too hard to figure out where to put a breakpoint, but it | |
142 | certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of | |
143 | sanity checking. If it can't figure things out, returning zero and | |
144 | getting the (possibly confusing) stepping behavior is better than | |
145 | signalling an error, which will obscure the change in the | |
146 | inferior's state. */ | |
c906108c SS |
147 | |
148 | #ifndef IN_SOLIB_DYNSYM_RESOLVE_CODE | |
149 | #define IN_SOLIB_DYNSYM_RESOLVE_CODE(pc) 0 | |
150 | #endif | |
151 | ||
c906108c SS |
152 | /* This function returns TRUE if pc is the address of an instruction |
153 | that lies within the dynamic linker (such as the event hook, or the | |
154 | dld itself). | |
155 | ||
156 | This function must be used only when a dynamic linker event has | |
157 | been caught, and the inferior is being stepped out of the hook, or | |
158 | undefined results are guaranteed. */ | |
159 | ||
160 | #ifndef SOLIB_IN_DYNAMIC_LINKER | |
161 | #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0 | |
162 | #endif | |
163 | ||
c906108c SS |
164 | /* On some systems, the PC may be left pointing at an instruction that won't |
165 | actually be executed. This is usually indicated by a bit in the PSW. If | |
166 | we find ourselves in such a state, then we step the target beyond the | |
167 | nullified instruction before returning control to the user so as to avoid | |
168 | confusion. */ | |
169 | ||
170 | #ifndef INSTRUCTION_NULLIFIED | |
171 | #define INSTRUCTION_NULLIFIED 0 | |
172 | #endif | |
173 | ||
c2c6d25f JM |
174 | /* We can't step off a permanent breakpoint in the ordinary way, because we |
175 | can't remove it. Instead, we have to advance the PC to the next | |
176 | instruction. This macro should expand to a pointer to a function that | |
177 | does that, or zero if we have no such function. If we don't have a | |
178 | definition for it, we have to report an error. */ | |
488f131b | 179 | #ifndef SKIP_PERMANENT_BREAKPOINT |
c2c6d25f JM |
180 | #define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint) |
181 | static void | |
c2d11a7d | 182 | default_skip_permanent_breakpoint (void) |
c2c6d25f | 183 | { |
255e7dbf | 184 | error ("\ |
c2c6d25f JM |
185 | The program is stopped at a permanent breakpoint, but GDB does not know\n\ |
186 | how to step past a permanent breakpoint on this architecture. Try using\n\ | |
255e7dbf | 187 | a command like `return' or `jump' to continue execution."); |
c2c6d25f JM |
188 | } |
189 | #endif | |
488f131b | 190 | |
c2c6d25f | 191 | |
7a292a7a SS |
192 | /* Convert the #defines into values. This is temporary until wfi control |
193 | flow is completely sorted out. */ | |
194 | ||
195 | #ifndef HAVE_STEPPABLE_WATCHPOINT | |
196 | #define HAVE_STEPPABLE_WATCHPOINT 0 | |
197 | #else | |
198 | #undef HAVE_STEPPABLE_WATCHPOINT | |
199 | #define HAVE_STEPPABLE_WATCHPOINT 1 | |
200 | #endif | |
201 | ||
692590c1 MS |
202 | #ifndef CANNOT_STEP_HW_WATCHPOINTS |
203 | #define CANNOT_STEP_HW_WATCHPOINTS 0 | |
204 | #else | |
205 | #undef CANNOT_STEP_HW_WATCHPOINTS | |
206 | #define CANNOT_STEP_HW_WATCHPOINTS 1 | |
207 | #endif | |
208 | ||
c906108c SS |
209 | /* Tables of how to react to signals; the user sets them. */ |
210 | ||
211 | static unsigned char *signal_stop; | |
212 | static unsigned char *signal_print; | |
213 | static unsigned char *signal_program; | |
214 | ||
215 | #define SET_SIGS(nsigs,sigs,flags) \ | |
216 | do { \ | |
217 | int signum = (nsigs); \ | |
218 | while (signum-- > 0) \ | |
219 | if ((sigs)[signum]) \ | |
220 | (flags)[signum] = 1; \ | |
221 | } while (0) | |
222 | ||
223 | #define UNSET_SIGS(nsigs,sigs,flags) \ | |
224 | do { \ | |
225 | int signum = (nsigs); \ | |
226 | while (signum-- > 0) \ | |
227 | if ((sigs)[signum]) \ | |
228 | (flags)[signum] = 0; \ | |
229 | } while (0) | |
230 | ||
39f77062 KB |
231 | /* Value to pass to target_resume() to cause all threads to resume */ |
232 | ||
233 | #define RESUME_ALL (pid_to_ptid (-1)) | |
c906108c SS |
234 | |
235 | /* Command list pointer for the "stop" placeholder. */ | |
236 | ||
237 | static struct cmd_list_element *stop_command; | |
238 | ||
239 | /* Nonzero if breakpoints are now inserted in the inferior. */ | |
240 | ||
241 | static int breakpoints_inserted; | |
242 | ||
243 | /* Function inferior was in as of last step command. */ | |
244 | ||
245 | static struct symbol *step_start_function; | |
246 | ||
247 | /* Nonzero if we are expecting a trace trap and should proceed from it. */ | |
248 | ||
249 | static int trap_expected; | |
250 | ||
251 | #ifdef SOLIB_ADD | |
252 | /* Nonzero if we want to give control to the user when we're notified | |
253 | of shared library events by the dynamic linker. */ | |
254 | static int stop_on_solib_events; | |
255 | #endif | |
256 | ||
c906108c SS |
257 | /* Nonzero means expecting a trace trap |
258 | and should stop the inferior and return silently when it happens. */ | |
259 | ||
260 | int stop_after_trap; | |
261 | ||
262 | /* Nonzero means expecting a trap and caller will handle it themselves. | |
263 | It is used after attach, due to attaching to a process; | |
264 | when running in the shell before the child program has been exec'd; | |
265 | and when running some kinds of remote stuff (FIXME?). */ | |
266 | ||
c0236d92 | 267 | enum stop_kind stop_soon; |
c906108c SS |
268 | |
269 | /* Nonzero if proceed is being used for a "finish" command or a similar | |
270 | situation when stop_registers should be saved. */ | |
271 | ||
272 | int proceed_to_finish; | |
273 | ||
274 | /* Save register contents here when about to pop a stack dummy frame, | |
275 | if-and-only-if proceed_to_finish is set. | |
276 | Thus this contains the return value from the called function (assuming | |
277 | values are returned in a register). */ | |
278 | ||
72cec141 | 279 | struct regcache *stop_registers; |
c906108c SS |
280 | |
281 | /* Nonzero if program stopped due to error trying to insert breakpoints. */ | |
282 | ||
283 | static int breakpoints_failed; | |
284 | ||
285 | /* Nonzero after stop if current stack frame should be printed. */ | |
286 | ||
287 | static int stop_print_frame; | |
288 | ||
289 | static struct breakpoint *step_resume_breakpoint = NULL; | |
c906108c SS |
290 | |
291 | /* On some platforms (e.g., HP-UX), hardware watchpoints have bad | |
292 | interactions with an inferior that is running a kernel function | |
293 | (aka, a system call or "syscall"). wait_for_inferior therefore | |
294 | may have a need to know when the inferior is in a syscall. This | |
295 | is a count of the number of inferior threads which are known to | |
296 | currently be running in a syscall. */ | |
297 | static int number_of_threads_in_syscalls; | |
298 | ||
e02bc4cc | 299 | /* This is a cached copy of the pid/waitstatus of the last event |
9a4105ab AC |
300 | returned by target_wait()/deprecated_target_wait_hook(). This |
301 | information is returned by get_last_target_status(). */ | |
39f77062 | 302 | static ptid_t target_last_wait_ptid; |
e02bc4cc DS |
303 | static struct target_waitstatus target_last_waitstatus; |
304 | ||
c906108c SS |
305 | /* This is used to remember when a fork, vfork or exec event |
306 | was caught by a catchpoint, and thus the event is to be | |
307 | followed at the next resume of the inferior, and not | |
308 | immediately. */ | |
309 | static struct | |
488f131b JB |
310 | { |
311 | enum target_waitkind kind; | |
312 | struct | |
c906108c | 313 | { |
488f131b | 314 | int parent_pid; |
488f131b | 315 | int child_pid; |
c906108c | 316 | } |
488f131b JB |
317 | fork_event; |
318 | char *execd_pathname; | |
319 | } | |
c906108c SS |
320 | pending_follow; |
321 | ||
53904c9e AC |
322 | static const char follow_fork_mode_child[] = "child"; |
323 | static const char follow_fork_mode_parent[] = "parent"; | |
324 | ||
488f131b | 325 | static const char *follow_fork_mode_kind_names[] = { |
53904c9e AC |
326 | follow_fork_mode_child, |
327 | follow_fork_mode_parent, | |
328 | NULL | |
ef346e04 | 329 | }; |
c906108c | 330 | |
53904c9e | 331 | static const char *follow_fork_mode_string = follow_fork_mode_parent; |
c906108c SS |
332 | \f |
333 | ||
6604731b | 334 | static int |
4ef3f3be | 335 | follow_fork (void) |
c906108c | 336 | { |
ea1dd7bc | 337 | int follow_child = (follow_fork_mode_string == follow_fork_mode_child); |
c906108c | 338 | |
6604731b | 339 | return target_follow_fork (follow_child); |
c906108c SS |
340 | } |
341 | ||
6604731b DJ |
342 | void |
343 | follow_inferior_reset_breakpoints (void) | |
c906108c | 344 | { |
6604731b DJ |
345 | /* Was there a step_resume breakpoint? (There was if the user |
346 | did a "next" at the fork() call.) If so, explicitly reset its | |
347 | thread number. | |
348 | ||
349 | step_resumes are a form of bp that are made to be per-thread. | |
350 | Since we created the step_resume bp when the parent process | |
351 | was being debugged, and now are switching to the child process, | |
352 | from the breakpoint package's viewpoint, that's a switch of | |
353 | "threads". We must update the bp's notion of which thread | |
354 | it is for, or it'll be ignored when it triggers. */ | |
355 | ||
356 | if (step_resume_breakpoint) | |
357 | breakpoint_re_set_thread (step_resume_breakpoint); | |
358 | ||
359 | /* Reinsert all breakpoints in the child. The user may have set | |
360 | breakpoints after catching the fork, in which case those | |
361 | were never set in the child, but only in the parent. This makes | |
362 | sure the inserted breakpoints match the breakpoint list. */ | |
363 | ||
364 | breakpoint_re_set (); | |
365 | insert_breakpoints (); | |
c906108c | 366 | } |
c906108c | 367 | |
1adeb98a FN |
368 | /* EXECD_PATHNAME is assumed to be non-NULL. */ |
369 | ||
c906108c | 370 | static void |
96baa820 | 371 | follow_exec (int pid, char *execd_pathname) |
c906108c | 372 | { |
c906108c | 373 | int saved_pid = pid; |
7a292a7a SS |
374 | struct target_ops *tgt; |
375 | ||
376 | if (!may_follow_exec) | |
377 | return; | |
c906108c | 378 | |
c906108c SS |
379 | /* This is an exec event that we actually wish to pay attention to. |
380 | Refresh our symbol table to the newly exec'd program, remove any | |
381 | momentary bp's, etc. | |
382 | ||
383 | If there are breakpoints, they aren't really inserted now, | |
384 | since the exec() transformed our inferior into a fresh set | |
385 | of instructions. | |
386 | ||
387 | We want to preserve symbolic breakpoints on the list, since | |
388 | we have hopes that they can be reset after the new a.out's | |
389 | symbol table is read. | |
390 | ||
391 | However, any "raw" breakpoints must be removed from the list | |
392 | (e.g., the solib bp's), since their address is probably invalid | |
393 | now. | |
394 | ||
395 | And, we DON'T want to call delete_breakpoints() here, since | |
396 | that may write the bp's "shadow contents" (the instruction | |
397 | value that was overwritten witha TRAP instruction). Since | |
398 | we now have a new a.out, those shadow contents aren't valid. */ | |
399 | update_breakpoints_after_exec (); | |
400 | ||
401 | /* If there was one, it's gone now. We cannot truly step-to-next | |
402 | statement through an exec(). */ | |
403 | step_resume_breakpoint = NULL; | |
404 | step_range_start = 0; | |
405 | step_range_end = 0; | |
406 | ||
c906108c SS |
407 | /* What is this a.out's name? */ |
408 | printf_unfiltered ("Executing new program: %s\n", execd_pathname); | |
409 | ||
410 | /* We've followed the inferior through an exec. Therefore, the | |
411 | inferior has essentially been killed & reborn. */ | |
7a292a7a SS |
412 | |
413 | /* First collect the run target in effect. */ | |
414 | tgt = find_run_target (); | |
415 | /* If we can't find one, things are in a very strange state... */ | |
416 | if (tgt == NULL) | |
417 | error ("Could find run target to save before following exec"); | |
418 | ||
c906108c SS |
419 | gdb_flush (gdb_stdout); |
420 | target_mourn_inferior (); | |
39f77062 | 421 | inferior_ptid = pid_to_ptid (saved_pid); |
488f131b | 422 | /* Because mourn_inferior resets inferior_ptid. */ |
7a292a7a | 423 | push_target (tgt); |
c906108c SS |
424 | |
425 | /* That a.out is now the one to use. */ | |
426 | exec_file_attach (execd_pathname, 0); | |
427 | ||
428 | /* And also is where symbols can be found. */ | |
1adeb98a | 429 | symbol_file_add_main (execd_pathname, 0); |
c906108c SS |
430 | |
431 | /* Reset the shared library package. This ensures that we get | |
432 | a shlib event when the child reaches "_start", at which point | |
433 | the dld will have had a chance to initialize the child. */ | |
7a292a7a | 434 | #if defined(SOLIB_RESTART) |
c906108c | 435 | SOLIB_RESTART (); |
7a292a7a SS |
436 | #endif |
437 | #ifdef SOLIB_CREATE_INFERIOR_HOOK | |
39f77062 | 438 | SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid)); |
7a292a7a | 439 | #endif |
c906108c SS |
440 | |
441 | /* Reinsert all breakpoints. (Those which were symbolic have | |
442 | been reset to the proper address in the new a.out, thanks | |
443 | to symbol_file_command...) */ | |
444 | insert_breakpoints (); | |
445 | ||
446 | /* The next resume of this inferior should bring it to the shlib | |
447 | startup breakpoints. (If the user had also set bp's on | |
448 | "main" from the old (parent) process, then they'll auto- | |
449 | matically get reset there in the new process.) */ | |
c906108c SS |
450 | } |
451 | ||
452 | /* Non-zero if we just simulating a single-step. This is needed | |
453 | because we cannot remove the breakpoints in the inferior process | |
454 | until after the `wait' in `wait_for_inferior'. */ | |
455 | static int singlestep_breakpoints_inserted_p = 0; | |
9f976b41 DJ |
456 | |
457 | /* The thread we inserted single-step breakpoints for. */ | |
458 | static ptid_t singlestep_ptid; | |
459 | ||
460 | /* If another thread hit the singlestep breakpoint, we save the original | |
461 | thread here so that we can resume single-stepping it later. */ | |
462 | static ptid_t saved_singlestep_ptid; | |
463 | static int stepping_past_singlestep_breakpoint; | |
c906108c SS |
464 | \f |
465 | ||
466 | /* Things to clean up if we QUIT out of resume (). */ | |
c906108c | 467 | static void |
74b7792f | 468 | resume_cleanups (void *ignore) |
c906108c SS |
469 | { |
470 | normal_stop (); | |
471 | } | |
472 | ||
53904c9e AC |
473 | static const char schedlock_off[] = "off"; |
474 | static const char schedlock_on[] = "on"; | |
475 | static const char schedlock_step[] = "step"; | |
476 | static const char *scheduler_mode = schedlock_off; | |
488f131b | 477 | static const char *scheduler_enums[] = { |
ef346e04 AC |
478 | schedlock_off, |
479 | schedlock_on, | |
480 | schedlock_step, | |
481 | NULL | |
482 | }; | |
c906108c SS |
483 | |
484 | static void | |
96baa820 | 485 | set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c) |
c906108c | 486 | { |
cb1a6d5f AC |
487 | /* NOTE: cagney/2002-03-17: The deprecated_add_show_from_set() |
488 | function clones the set command passed as a parameter. The clone | |
489 | operation will include (BUG?) any ``set'' command callback, if | |
490 | present. Commands like ``info set'' call all the ``show'' | |
491 | command callbacks. Unfortunately, for ``show'' commands cloned | |
492 | from ``set'', this includes callbacks belonging to ``set'' | |
493 | commands. Making this worse, this only occures if | |
494 | deprecated_add_show_from_set() is called after add_cmd_sfunc() | |
495 | (BUG?). */ | |
1868c04e | 496 | if (cmd_type (c) == set_cmd) |
c906108c SS |
497 | if (!target_can_lock_scheduler) |
498 | { | |
499 | scheduler_mode = schedlock_off; | |
488f131b | 500 | error ("Target '%s' cannot support this command.", target_shortname); |
c906108c SS |
501 | } |
502 | } | |
503 | ||
504 | ||
505 | /* Resume the inferior, but allow a QUIT. This is useful if the user | |
506 | wants to interrupt some lengthy single-stepping operation | |
507 | (for child processes, the SIGINT goes to the inferior, and so | |
508 | we get a SIGINT random_signal, but for remote debugging and perhaps | |
509 | other targets, that's not true). | |
510 | ||
511 | STEP nonzero if we should step (zero to continue instead). | |
512 | SIG is the signal to give the inferior (zero for none). */ | |
513 | void | |
96baa820 | 514 | resume (int step, enum target_signal sig) |
c906108c SS |
515 | { |
516 | int should_resume = 1; | |
74b7792f | 517 | struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0); |
c906108c SS |
518 | QUIT; |
519 | ||
ef5cf84e MS |
520 | /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */ |
521 | ||
c906108c | 522 | |
692590c1 MS |
523 | /* Some targets (e.g. Solaris x86) have a kernel bug when stepping |
524 | over an instruction that causes a page fault without triggering | |
525 | a hardware watchpoint. The kernel properly notices that it shouldn't | |
526 | stop, because the hardware watchpoint is not triggered, but it forgets | |
527 | the step request and continues the program normally. | |
528 | Work around the problem by removing hardware watchpoints if a step is | |
529 | requested, GDB will check for a hardware watchpoint trigger after the | |
530 | step anyway. */ | |
531 | if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted) | |
532 | remove_hw_watchpoints (); | |
488f131b | 533 | |
692590c1 | 534 | |
c2c6d25f JM |
535 | /* Normally, by the time we reach `resume', the breakpoints are either |
536 | removed or inserted, as appropriate. The exception is if we're sitting | |
537 | at a permanent breakpoint; we need to step over it, but permanent | |
538 | breakpoints can't be removed. So we have to test for it here. */ | |
539 | if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here) | |
540 | SKIP_PERMANENT_BREAKPOINT (); | |
541 | ||
b0ed3589 | 542 | if (SOFTWARE_SINGLE_STEP_P () && step) |
c906108c SS |
543 | { |
544 | /* Do it the hard way, w/temp breakpoints */ | |
c5aa993b | 545 | SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ ); |
c906108c SS |
546 | /* ...and don't ask hardware to do it. */ |
547 | step = 0; | |
548 | /* and do not pull these breakpoints until after a `wait' in | |
549 | `wait_for_inferior' */ | |
550 | singlestep_breakpoints_inserted_p = 1; | |
9f976b41 | 551 | singlestep_ptid = inferior_ptid; |
c906108c SS |
552 | } |
553 | ||
c906108c | 554 | /* If there were any forks/vforks/execs that were caught and are |
6604731b | 555 | now to be followed, then do so. */ |
c906108c SS |
556 | switch (pending_follow.kind) |
557 | { | |
6604731b DJ |
558 | case TARGET_WAITKIND_FORKED: |
559 | case TARGET_WAITKIND_VFORKED: | |
c906108c | 560 | pending_follow.kind = TARGET_WAITKIND_SPURIOUS; |
6604731b DJ |
561 | if (follow_fork ()) |
562 | should_resume = 0; | |
c906108c SS |
563 | break; |
564 | ||
6604731b | 565 | case TARGET_WAITKIND_EXECD: |
c906108c | 566 | /* follow_exec is called as soon as the exec event is seen. */ |
6604731b | 567 | pending_follow.kind = TARGET_WAITKIND_SPURIOUS; |
c906108c SS |
568 | break; |
569 | ||
570 | default: | |
571 | break; | |
572 | } | |
c906108c SS |
573 | |
574 | /* Install inferior's terminal modes. */ | |
575 | target_terminal_inferior (); | |
576 | ||
577 | if (should_resume) | |
578 | { | |
39f77062 | 579 | ptid_t resume_ptid; |
dfcd3bfb | 580 | |
488f131b | 581 | resume_ptid = RESUME_ALL; /* Default */ |
ef5cf84e | 582 | |
8fb3e588 AC |
583 | if ((step || singlestep_breakpoints_inserted_p) |
584 | && (stepping_past_singlestep_breakpoint | |
585 | || (!breakpoints_inserted && breakpoint_here_p (read_pc ())))) | |
c906108c | 586 | { |
ef5cf84e MS |
587 | /* Stepping past a breakpoint without inserting breakpoints. |
588 | Make sure only the current thread gets to step, so that | |
589 | other threads don't sneak past breakpoints while they are | |
590 | not inserted. */ | |
c906108c | 591 | |
ef5cf84e | 592 | resume_ptid = inferior_ptid; |
c906108c | 593 | } |
ef5cf84e | 594 | |
8fb3e588 AC |
595 | if ((scheduler_mode == schedlock_on) |
596 | || (scheduler_mode == schedlock_step | |
597 | && (step || singlestep_breakpoints_inserted_p))) | |
c906108c | 598 | { |
ef5cf84e | 599 | /* User-settable 'scheduler' mode requires solo thread resume. */ |
488f131b | 600 | resume_ptid = inferior_ptid; |
c906108c | 601 | } |
ef5cf84e | 602 | |
c4ed33b9 AC |
603 | if (CANNOT_STEP_BREAKPOINT) |
604 | { | |
605 | /* Most targets can step a breakpoint instruction, thus | |
606 | executing it normally. But if this one cannot, just | |
607 | continue and we will hit it anyway. */ | |
608 | if (step && breakpoints_inserted && breakpoint_here_p (read_pc ())) | |
609 | step = 0; | |
610 | } | |
39f77062 | 611 | target_resume (resume_ptid, step, sig); |
c906108c SS |
612 | } |
613 | ||
614 | discard_cleanups (old_cleanups); | |
615 | } | |
616 | \f | |
617 | ||
618 | /* Clear out all variables saying what to do when inferior is continued. | |
619 | First do this, then set the ones you want, then call `proceed'. */ | |
620 | ||
621 | void | |
96baa820 | 622 | clear_proceed_status (void) |
c906108c SS |
623 | { |
624 | trap_expected = 0; | |
625 | step_range_start = 0; | |
626 | step_range_end = 0; | |
aa0cd9c1 | 627 | step_frame_id = null_frame_id; |
5fbbeb29 | 628 | step_over_calls = STEP_OVER_UNDEBUGGABLE; |
c906108c | 629 | stop_after_trap = 0; |
c0236d92 | 630 | stop_soon = NO_STOP_QUIETLY; |
c906108c SS |
631 | proceed_to_finish = 0; |
632 | breakpoint_proceeded = 1; /* We're about to proceed... */ | |
633 | ||
634 | /* Discard any remaining commands or status from previous stop. */ | |
635 | bpstat_clear (&stop_bpstat); | |
636 | } | |
637 | ||
ea67f13b DJ |
638 | /* This should be suitable for any targets that support threads. */ |
639 | ||
640 | static int | |
641 | prepare_to_proceed (void) | |
642 | { | |
643 | ptid_t wait_ptid; | |
644 | struct target_waitstatus wait_status; | |
645 | ||
646 | /* Get the last target status returned by target_wait(). */ | |
647 | get_last_target_status (&wait_ptid, &wait_status); | |
648 | ||
649 | /* Make sure we were stopped either at a breakpoint, or because | |
650 | of a Ctrl-C. */ | |
651 | if (wait_status.kind != TARGET_WAITKIND_STOPPED | |
8fb3e588 AC |
652 | || (wait_status.value.sig != TARGET_SIGNAL_TRAP |
653 | && wait_status.value.sig != TARGET_SIGNAL_INT)) | |
ea67f13b DJ |
654 | { |
655 | return 0; | |
656 | } | |
657 | ||
658 | if (!ptid_equal (wait_ptid, minus_one_ptid) | |
659 | && !ptid_equal (inferior_ptid, wait_ptid)) | |
660 | { | |
661 | /* Switched over from WAIT_PID. */ | |
662 | CORE_ADDR wait_pc = read_pc_pid (wait_ptid); | |
663 | ||
664 | if (wait_pc != read_pc ()) | |
665 | { | |
666 | /* Switch back to WAIT_PID thread. */ | |
667 | inferior_ptid = wait_ptid; | |
668 | ||
669 | /* FIXME: This stuff came from switch_to_thread() in | |
670 | thread.c (which should probably be a public function). */ | |
671 | flush_cached_frames (); | |
672 | registers_changed (); | |
673 | stop_pc = wait_pc; | |
674 | select_frame (get_current_frame ()); | |
675 | } | |
676 | ||
8fb3e588 AC |
677 | /* We return 1 to indicate that there is a breakpoint here, |
678 | so we need to step over it before continuing to avoid | |
679 | hitting it straight away. */ | |
680 | if (breakpoint_here_p (wait_pc)) | |
681 | return 1; | |
ea67f13b DJ |
682 | } |
683 | ||
684 | return 0; | |
8fb3e588 | 685 | |
ea67f13b | 686 | } |
e4846b08 JJ |
687 | |
688 | /* Record the pc of the program the last time it stopped. This is | |
689 | just used internally by wait_for_inferior, but need to be preserved | |
690 | over calls to it and cleared when the inferior is started. */ | |
691 | static CORE_ADDR prev_pc; | |
692 | ||
c906108c SS |
693 | /* Basic routine for continuing the program in various fashions. |
694 | ||
695 | ADDR is the address to resume at, or -1 for resume where stopped. | |
696 | SIGGNAL is the signal to give it, or 0 for none, | |
c5aa993b | 697 | or -1 for act according to how it stopped. |
c906108c | 698 | STEP is nonzero if should trap after one instruction. |
c5aa993b JM |
699 | -1 means return after that and print nothing. |
700 | You should probably set various step_... variables | |
701 | before calling here, if you are stepping. | |
c906108c SS |
702 | |
703 | You should call clear_proceed_status before calling proceed. */ | |
704 | ||
705 | void | |
96baa820 | 706 | proceed (CORE_ADDR addr, enum target_signal siggnal, int step) |
c906108c SS |
707 | { |
708 | int oneproc = 0; | |
709 | ||
710 | if (step > 0) | |
711 | step_start_function = find_pc_function (read_pc ()); | |
712 | if (step < 0) | |
713 | stop_after_trap = 1; | |
714 | ||
2acceee2 | 715 | if (addr == (CORE_ADDR) -1) |
c906108c SS |
716 | { |
717 | /* If there is a breakpoint at the address we will resume at, | |
c5aa993b JM |
718 | step one instruction before inserting breakpoints |
719 | so that we do not stop right away (and report a second | |
c906108c SS |
720 | hit at this breakpoint). */ |
721 | ||
722 | if (read_pc () == stop_pc && breakpoint_here_p (read_pc ())) | |
723 | oneproc = 1; | |
724 | ||
725 | #ifndef STEP_SKIPS_DELAY | |
726 | #define STEP_SKIPS_DELAY(pc) (0) | |
727 | #define STEP_SKIPS_DELAY_P (0) | |
728 | #endif | |
729 | /* Check breakpoint_here_p first, because breakpoint_here_p is fast | |
c5aa993b JM |
730 | (it just checks internal GDB data structures) and STEP_SKIPS_DELAY |
731 | is slow (it needs to read memory from the target). */ | |
c906108c SS |
732 | if (STEP_SKIPS_DELAY_P |
733 | && breakpoint_here_p (read_pc () + 4) | |
734 | && STEP_SKIPS_DELAY (read_pc ())) | |
735 | oneproc = 1; | |
736 | } | |
737 | else | |
738 | { | |
739 | write_pc (addr); | |
c906108c SS |
740 | } |
741 | ||
c906108c SS |
742 | /* In a multi-threaded task we may select another thread |
743 | and then continue or step. | |
744 | ||
745 | But if the old thread was stopped at a breakpoint, it | |
746 | will immediately cause another breakpoint stop without | |
747 | any execution (i.e. it will report a breakpoint hit | |
748 | incorrectly). So we must step over it first. | |
749 | ||
ea67f13b | 750 | prepare_to_proceed checks the current thread against the thread |
c906108c SS |
751 | that reported the most recent event. If a step-over is required |
752 | it returns TRUE and sets the current thread to the old thread. */ | |
ea67f13b DJ |
753 | if (prepare_to_proceed () && breakpoint_here_p (read_pc ())) |
754 | oneproc = 1; | |
c906108c | 755 | |
c906108c SS |
756 | if (oneproc) |
757 | /* We will get a trace trap after one instruction. | |
758 | Continue it automatically and insert breakpoints then. */ | |
759 | trap_expected = 1; | |
760 | else | |
761 | { | |
81d0cc19 GS |
762 | insert_breakpoints (); |
763 | /* If we get here there was no call to error() in | |
8fb3e588 | 764 | insert breakpoints -- so they were inserted. */ |
c906108c SS |
765 | breakpoints_inserted = 1; |
766 | } | |
767 | ||
768 | if (siggnal != TARGET_SIGNAL_DEFAULT) | |
769 | stop_signal = siggnal; | |
770 | /* If this signal should not be seen by program, | |
771 | give it zero. Used for debugging signals. */ | |
772 | else if (!signal_program[stop_signal]) | |
773 | stop_signal = TARGET_SIGNAL_0; | |
774 | ||
775 | annotate_starting (); | |
776 | ||
777 | /* Make sure that output from GDB appears before output from the | |
778 | inferior. */ | |
779 | gdb_flush (gdb_stdout); | |
780 | ||
e4846b08 JJ |
781 | /* Refresh prev_pc value just prior to resuming. This used to be |
782 | done in stop_stepping, however, setting prev_pc there did not handle | |
783 | scenarios such as inferior function calls or returning from | |
784 | a function via the return command. In those cases, the prev_pc | |
785 | value was not set properly for subsequent commands. The prev_pc value | |
786 | is used to initialize the starting line number in the ecs. With an | |
787 | invalid value, the gdb next command ends up stopping at the position | |
788 | represented by the next line table entry past our start position. | |
789 | On platforms that generate one line table entry per line, this | |
790 | is not a problem. However, on the ia64, the compiler generates | |
791 | extraneous line table entries that do not increase the line number. | |
792 | When we issue the gdb next command on the ia64 after an inferior call | |
793 | or a return command, we often end up a few instructions forward, still | |
794 | within the original line we started. | |
795 | ||
796 | An attempt was made to have init_execution_control_state () refresh | |
797 | the prev_pc value before calculating the line number. This approach | |
798 | did not work because on platforms that use ptrace, the pc register | |
799 | cannot be read unless the inferior is stopped. At that point, we | |
800 | are not guaranteed the inferior is stopped and so the read_pc () | |
801 | call can fail. Setting the prev_pc value here ensures the value is | |
8fb3e588 | 802 | updated correctly when the inferior is stopped. */ |
e4846b08 JJ |
803 | prev_pc = read_pc (); |
804 | ||
c906108c SS |
805 | /* Resume inferior. */ |
806 | resume (oneproc || step || bpstat_should_step (), stop_signal); | |
807 | ||
808 | /* Wait for it to stop (if not standalone) | |
809 | and in any case decode why it stopped, and act accordingly. */ | |
43ff13b4 JM |
810 | /* Do this only if we are not using the event loop, or if the target |
811 | does not support asynchronous execution. */ | |
362646f5 | 812 | if (!target_can_async_p ()) |
43ff13b4 JM |
813 | { |
814 | wait_for_inferior (); | |
815 | normal_stop (); | |
816 | } | |
c906108c | 817 | } |
c906108c SS |
818 | \f |
819 | ||
820 | /* Start remote-debugging of a machine over a serial link. */ | |
96baa820 | 821 | |
c906108c | 822 | void |
96baa820 | 823 | start_remote (void) |
c906108c SS |
824 | { |
825 | init_thread_list (); | |
826 | init_wait_for_inferior (); | |
c0236d92 | 827 | stop_soon = STOP_QUIETLY; |
c906108c | 828 | trap_expected = 0; |
43ff13b4 | 829 | |
6426a772 JM |
830 | /* Always go on waiting for the target, regardless of the mode. */ |
831 | /* FIXME: cagney/1999-09-23: At present it isn't possible to | |
7e73cedf | 832 | indicate to wait_for_inferior that a target should timeout if |
6426a772 JM |
833 | nothing is returned (instead of just blocking). Because of this, |
834 | targets expecting an immediate response need to, internally, set | |
835 | things up so that the target_wait() is forced to eventually | |
836 | timeout. */ | |
837 | /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to | |
838 | differentiate to its caller what the state of the target is after | |
839 | the initial open has been performed. Here we're assuming that | |
840 | the target has stopped. It should be possible to eventually have | |
841 | target_open() return to the caller an indication that the target | |
842 | is currently running and GDB state should be set to the same as | |
843 | for an async run. */ | |
844 | wait_for_inferior (); | |
845 | normal_stop (); | |
c906108c SS |
846 | } |
847 | ||
848 | /* Initialize static vars when a new inferior begins. */ | |
849 | ||
850 | void | |
96baa820 | 851 | init_wait_for_inferior (void) |
c906108c SS |
852 | { |
853 | /* These are meaningless until the first time through wait_for_inferior. */ | |
854 | prev_pc = 0; | |
c906108c | 855 | |
c906108c SS |
856 | breakpoints_inserted = 0; |
857 | breakpoint_init_inferior (inf_starting); | |
858 | ||
859 | /* Don't confuse first call to proceed(). */ | |
860 | stop_signal = TARGET_SIGNAL_0; | |
861 | ||
862 | /* The first resume is not following a fork/vfork/exec. */ | |
863 | pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */ | |
c906108c SS |
864 | |
865 | /* See wait_for_inferior's handling of SYSCALL_ENTRY/RETURN events. */ | |
866 | number_of_threads_in_syscalls = 0; | |
867 | ||
868 | clear_proceed_status (); | |
9f976b41 DJ |
869 | |
870 | stepping_past_singlestep_breakpoint = 0; | |
c906108c | 871 | } |
c906108c | 872 | \f |
b83266a0 SS |
873 | /* This enum encodes possible reasons for doing a target_wait, so that |
874 | wfi can call target_wait in one place. (Ultimately the call will be | |
875 | moved out of the infinite loop entirely.) */ | |
876 | ||
c5aa993b JM |
877 | enum infwait_states |
878 | { | |
cd0fc7c3 SS |
879 | infwait_normal_state, |
880 | infwait_thread_hop_state, | |
881 | infwait_nullified_state, | |
882 | infwait_nonstep_watch_state | |
b83266a0 SS |
883 | }; |
884 | ||
11cf8741 JM |
885 | /* Why did the inferior stop? Used to print the appropriate messages |
886 | to the interface from within handle_inferior_event(). */ | |
887 | enum inferior_stop_reason | |
888 | { | |
889 | /* We don't know why. */ | |
890 | STOP_UNKNOWN, | |
891 | /* Step, next, nexti, stepi finished. */ | |
892 | END_STEPPING_RANGE, | |
893 | /* Found breakpoint. */ | |
894 | BREAKPOINT_HIT, | |
895 | /* Inferior terminated by signal. */ | |
896 | SIGNAL_EXITED, | |
897 | /* Inferior exited. */ | |
898 | EXITED, | |
899 | /* Inferior received signal, and user asked to be notified. */ | |
900 | SIGNAL_RECEIVED | |
901 | }; | |
902 | ||
cd0fc7c3 SS |
903 | /* This structure contains what used to be local variables in |
904 | wait_for_inferior. Probably many of them can return to being | |
905 | locals in handle_inferior_event. */ | |
906 | ||
c5aa993b | 907 | struct execution_control_state |
488f131b JB |
908 | { |
909 | struct target_waitstatus ws; | |
910 | struct target_waitstatus *wp; | |
911 | int another_trap; | |
912 | int random_signal; | |
913 | CORE_ADDR stop_func_start; | |
914 | CORE_ADDR stop_func_end; | |
915 | char *stop_func_name; | |
916 | struct symtab_and_line sal; | |
488f131b JB |
917 | int current_line; |
918 | struct symtab *current_symtab; | |
919 | int handling_longjmp; /* FIXME */ | |
920 | ptid_t ptid; | |
921 | ptid_t saved_inferior_ptid; | |
68f53502 | 922 | int step_after_step_resume_breakpoint; |
488f131b JB |
923 | int stepping_through_solib_after_catch; |
924 | bpstat stepping_through_solib_catchpoints; | |
925 | int enable_hw_watchpoints_after_wait; | |
488f131b JB |
926 | int new_thread_event; |
927 | struct target_waitstatus tmpstatus; | |
928 | enum infwait_states infwait_state; | |
929 | ptid_t waiton_ptid; | |
930 | int wait_some_more; | |
931 | }; | |
932 | ||
933 | void init_execution_control_state (struct execution_control_state *ecs); | |
934 | ||
935 | void handle_inferior_event (struct execution_control_state *ecs); | |
cd0fc7c3 | 936 | |
c2c6d25f | 937 | static void step_into_function (struct execution_control_state *ecs); |
44cbf7b5 AC |
938 | static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame); |
939 | static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal, | |
940 | struct frame_id sr_id); | |
104c1213 JM |
941 | static void stop_stepping (struct execution_control_state *ecs); |
942 | static void prepare_to_wait (struct execution_control_state *ecs); | |
d4f3574e | 943 | static void keep_going (struct execution_control_state *ecs); |
488f131b JB |
944 | static void print_stop_reason (enum inferior_stop_reason stop_reason, |
945 | int stop_info); | |
104c1213 | 946 | |
cd0fc7c3 SS |
947 | /* Wait for control to return from inferior to debugger. |
948 | If inferior gets a signal, we may decide to start it up again | |
949 | instead of returning. That is why there is a loop in this function. | |
950 | When this function actually returns it means the inferior | |
951 | should be left stopped and GDB should read more commands. */ | |
952 | ||
953 | void | |
96baa820 | 954 | wait_for_inferior (void) |
cd0fc7c3 SS |
955 | { |
956 | struct cleanup *old_cleanups; | |
957 | struct execution_control_state ecss; | |
958 | struct execution_control_state *ecs; | |
c906108c | 959 | |
8601f500 | 960 | old_cleanups = make_cleanup (delete_step_resume_breakpoint, |
c906108c | 961 | &step_resume_breakpoint); |
cd0fc7c3 SS |
962 | |
963 | /* wfi still stays in a loop, so it's OK just to take the address of | |
964 | a local to get the ecs pointer. */ | |
965 | ecs = &ecss; | |
966 | ||
967 | /* Fill in with reasonable starting values. */ | |
968 | init_execution_control_state (ecs); | |
969 | ||
c906108c | 970 | /* We'll update this if & when we switch to a new thread. */ |
39f77062 | 971 | previous_inferior_ptid = inferior_ptid; |
c906108c | 972 | |
cd0fc7c3 SS |
973 | overlay_cache_invalid = 1; |
974 | ||
975 | /* We have to invalidate the registers BEFORE calling target_wait | |
976 | because they can be loaded from the target while in target_wait. | |
977 | This makes remote debugging a bit more efficient for those | |
978 | targets that provide critical registers as part of their normal | |
979 | status mechanism. */ | |
980 | ||
981 | registers_changed (); | |
b83266a0 | 982 | |
c906108c SS |
983 | while (1) |
984 | { | |
9a4105ab AC |
985 | if (deprecated_target_wait_hook) |
986 | ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp); | |
cd0fc7c3 | 987 | else |
39f77062 | 988 | ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp); |
c906108c | 989 | |
cd0fc7c3 SS |
990 | /* Now figure out what to do with the result of the result. */ |
991 | handle_inferior_event (ecs); | |
c906108c | 992 | |
cd0fc7c3 SS |
993 | if (!ecs->wait_some_more) |
994 | break; | |
995 | } | |
996 | do_cleanups (old_cleanups); | |
997 | } | |
c906108c | 998 | |
43ff13b4 JM |
999 | /* Asynchronous version of wait_for_inferior. It is called by the |
1000 | event loop whenever a change of state is detected on the file | |
1001 | descriptor corresponding to the target. It can be called more than | |
1002 | once to complete a single execution command. In such cases we need | |
1003 | to keep the state in a global variable ASYNC_ECSS. If it is the | |
1004 | last time that this function is called for a single execution | |
1005 | command, then report to the user that the inferior has stopped, and | |
1006 | do the necessary cleanups. */ | |
1007 | ||
1008 | struct execution_control_state async_ecss; | |
1009 | struct execution_control_state *async_ecs; | |
1010 | ||
1011 | void | |
fba45db2 | 1012 | fetch_inferior_event (void *client_data) |
43ff13b4 JM |
1013 | { |
1014 | static struct cleanup *old_cleanups; | |
1015 | ||
c5aa993b | 1016 | async_ecs = &async_ecss; |
43ff13b4 JM |
1017 | |
1018 | if (!async_ecs->wait_some_more) | |
1019 | { | |
488f131b | 1020 | old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint, |
c5aa993b | 1021 | &step_resume_breakpoint); |
43ff13b4 JM |
1022 | |
1023 | /* Fill in with reasonable starting values. */ | |
1024 | init_execution_control_state (async_ecs); | |
1025 | ||
43ff13b4 | 1026 | /* We'll update this if & when we switch to a new thread. */ |
39f77062 | 1027 | previous_inferior_ptid = inferior_ptid; |
43ff13b4 JM |
1028 | |
1029 | overlay_cache_invalid = 1; | |
1030 | ||
1031 | /* We have to invalidate the registers BEFORE calling target_wait | |
c5aa993b JM |
1032 | because they can be loaded from the target while in target_wait. |
1033 | This makes remote debugging a bit more efficient for those | |
1034 | targets that provide critical registers as part of their normal | |
1035 | status mechanism. */ | |
43ff13b4 JM |
1036 | |
1037 | registers_changed (); | |
1038 | } | |
1039 | ||
9a4105ab | 1040 | if (deprecated_target_wait_hook) |
488f131b | 1041 | async_ecs->ptid = |
9a4105ab | 1042 | deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp); |
43ff13b4 | 1043 | else |
39f77062 | 1044 | async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp); |
43ff13b4 JM |
1045 | |
1046 | /* Now figure out what to do with the result of the result. */ | |
1047 | handle_inferior_event (async_ecs); | |
1048 | ||
1049 | if (!async_ecs->wait_some_more) | |
1050 | { | |
adf40b2e | 1051 | /* Do only the cleanups that have been added by this |
488f131b JB |
1052 | function. Let the continuations for the commands do the rest, |
1053 | if there are any. */ | |
43ff13b4 JM |
1054 | do_exec_cleanups (old_cleanups); |
1055 | normal_stop (); | |
c2d11a7d JM |
1056 | if (step_multi && stop_step) |
1057 | inferior_event_handler (INF_EXEC_CONTINUE, NULL); | |
1058 | else | |
1059 | inferior_event_handler (INF_EXEC_COMPLETE, NULL); | |
43ff13b4 JM |
1060 | } |
1061 | } | |
1062 | ||
cd0fc7c3 SS |
1063 | /* Prepare an execution control state for looping through a |
1064 | wait_for_inferior-type loop. */ | |
1065 | ||
1066 | void | |
96baa820 | 1067 | init_execution_control_state (struct execution_control_state *ecs) |
cd0fc7c3 | 1068 | { |
c2d11a7d | 1069 | /* ecs->another_trap? */ |
cd0fc7c3 | 1070 | ecs->random_signal = 0; |
68f53502 | 1071 | ecs->step_after_step_resume_breakpoint = 0; |
cd0fc7c3 | 1072 | ecs->handling_longjmp = 0; /* FIXME */ |
cd0fc7c3 SS |
1073 | ecs->stepping_through_solib_after_catch = 0; |
1074 | ecs->stepping_through_solib_catchpoints = NULL; | |
1075 | ecs->enable_hw_watchpoints_after_wait = 0; | |
cd0fc7c3 SS |
1076 | ecs->sal = find_pc_line (prev_pc, 0); |
1077 | ecs->current_line = ecs->sal.line; | |
1078 | ecs->current_symtab = ecs->sal.symtab; | |
1079 | ecs->infwait_state = infwait_normal_state; | |
39f77062 | 1080 | ecs->waiton_ptid = pid_to_ptid (-1); |
cd0fc7c3 SS |
1081 | ecs->wp = &(ecs->ws); |
1082 | } | |
1083 | ||
e02bc4cc | 1084 | /* Return the cached copy of the last pid/waitstatus returned by |
9a4105ab AC |
1085 | target_wait()/deprecated_target_wait_hook(). The data is actually |
1086 | cached by handle_inferior_event(), which gets called immediately | |
1087 | after target_wait()/deprecated_target_wait_hook(). */ | |
e02bc4cc DS |
1088 | |
1089 | void | |
488f131b | 1090 | get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status) |
e02bc4cc | 1091 | { |
39f77062 | 1092 | *ptidp = target_last_wait_ptid; |
e02bc4cc DS |
1093 | *status = target_last_waitstatus; |
1094 | } | |
1095 | ||
dd80620e MS |
1096 | /* Switch thread contexts, maintaining "infrun state". */ |
1097 | ||
1098 | static void | |
1099 | context_switch (struct execution_control_state *ecs) | |
1100 | { | |
1101 | /* Caution: it may happen that the new thread (or the old one!) | |
1102 | is not in the thread list. In this case we must not attempt | |
1103 | to "switch context", or we run the risk that our context may | |
1104 | be lost. This may happen as a result of the target module | |
1105 | mishandling thread creation. */ | |
1106 | ||
1107 | if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid)) | |
488f131b | 1108 | { /* Perform infrun state context switch: */ |
dd80620e | 1109 | /* Save infrun state for the old thread. */ |
0ce3d317 | 1110 | save_infrun_state (inferior_ptid, prev_pc, |
dd80620e | 1111 | trap_expected, step_resume_breakpoint, |
15960608 | 1112 | step_range_start, |
aa0cd9c1 | 1113 | step_range_end, &step_frame_id, |
dd80620e MS |
1114 | ecs->handling_longjmp, ecs->another_trap, |
1115 | ecs->stepping_through_solib_after_catch, | |
1116 | ecs->stepping_through_solib_catchpoints, | |
f2c9ca08 | 1117 | ecs->current_line, ecs->current_symtab); |
dd80620e MS |
1118 | |
1119 | /* Load infrun state for the new thread. */ | |
0ce3d317 | 1120 | load_infrun_state (ecs->ptid, &prev_pc, |
dd80620e | 1121 | &trap_expected, &step_resume_breakpoint, |
15960608 | 1122 | &step_range_start, |
aa0cd9c1 | 1123 | &step_range_end, &step_frame_id, |
dd80620e MS |
1124 | &ecs->handling_longjmp, &ecs->another_trap, |
1125 | &ecs->stepping_through_solib_after_catch, | |
1126 | &ecs->stepping_through_solib_catchpoints, | |
f2c9ca08 | 1127 | &ecs->current_line, &ecs->current_symtab); |
dd80620e MS |
1128 | } |
1129 | inferior_ptid = ecs->ptid; | |
1130 | } | |
1131 | ||
4fa8626c DJ |
1132 | static void |
1133 | adjust_pc_after_break (struct execution_control_state *ecs) | |
1134 | { | |
8aad930b | 1135 | CORE_ADDR breakpoint_pc; |
4fa8626c DJ |
1136 | |
1137 | /* If this target does not decrement the PC after breakpoints, then | |
1138 | we have nothing to do. */ | |
1139 | if (DECR_PC_AFTER_BREAK == 0) | |
1140 | return; | |
1141 | ||
1142 | /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If | |
1143 | we aren't, just return. | |
9709f61c DJ |
1144 | |
1145 | We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not | |
1146 | affected by DECR_PC_AFTER_BREAK. Other waitkinds which are implemented | |
1147 | by software breakpoints should be handled through the normal breakpoint | |
1148 | layer. | |
8fb3e588 | 1149 | |
4fa8626c DJ |
1150 | NOTE drow/2004-01-31: On some targets, breakpoints may generate |
1151 | different signals (SIGILL or SIGEMT for instance), but it is less | |
1152 | clear where the PC is pointing afterwards. It may not match | |
1153 | DECR_PC_AFTER_BREAK. I don't know any specific target that generates | |
1154 | these signals at breakpoints (the code has been in GDB since at least | |
1155 | 1992) so I can not guess how to handle them here. | |
8fb3e588 | 1156 | |
4fa8626c DJ |
1157 | In earlier versions of GDB, a target with HAVE_NONSTEPPABLE_WATCHPOINTS |
1158 | would have the PC after hitting a watchpoint affected by | |
1159 | DECR_PC_AFTER_BREAK. I haven't found any target with both of these set | |
1160 | in GDB history, and it seems unlikely to be correct, so | |
1161 | HAVE_NONSTEPPABLE_WATCHPOINTS is not checked here. */ | |
1162 | ||
1163 | if (ecs->ws.kind != TARGET_WAITKIND_STOPPED) | |
1164 | return; | |
1165 | ||
1166 | if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP) | |
1167 | return; | |
1168 | ||
8aad930b AC |
1169 | /* Find the location where (if we've hit a breakpoint) the |
1170 | breakpoint would be. */ | |
1171 | breakpoint_pc = read_pc_pid (ecs->ptid) - DECR_PC_AFTER_BREAK; | |
1172 | ||
1173 | if (SOFTWARE_SINGLE_STEP_P ()) | |
1174 | { | |
1175 | /* When using software single-step, a SIGTRAP can only indicate | |
8fb3e588 AC |
1176 | an inserted breakpoint. This actually makes things |
1177 | easier. */ | |
8aad930b AC |
1178 | if (singlestep_breakpoints_inserted_p) |
1179 | /* When software single stepping, the instruction at [prev_pc] | |
1180 | is never a breakpoint, but the instruction following | |
1181 | [prev_pc] (in program execution order) always is. Assume | |
1182 | that following instruction was reached and hence a software | |
1183 | breakpoint was hit. */ | |
1184 | write_pc_pid (breakpoint_pc, ecs->ptid); | |
1185 | else if (software_breakpoint_inserted_here_p (breakpoint_pc)) | |
1186 | /* The inferior was free running (i.e., no single-step | |
1187 | breakpoints inserted) and it hit a software breakpoint. */ | |
1188 | write_pc_pid (breakpoint_pc, ecs->ptid); | |
1189 | } | |
1190 | else | |
1191 | { | |
1192 | /* When using hardware single-step, a SIGTRAP is reported for | |
8fb3e588 AC |
1193 | both a completed single-step and a software breakpoint. Need |
1194 | to differentiate between the two as the latter needs | |
1195 | adjusting but the former does not. */ | |
8aad930b AC |
1196 | if (currently_stepping (ecs)) |
1197 | { | |
1198 | if (prev_pc == breakpoint_pc | |
1199 | && software_breakpoint_inserted_here_p (breakpoint_pc)) | |
1200 | /* Hardware single-stepped a software breakpoint (as | |
1201 | occures when the inferior is resumed with PC pointing | |
1202 | at not-yet-hit software breakpoint). Since the | |
1203 | breakpoint really is executed, the inferior needs to be | |
1204 | backed up to the breakpoint address. */ | |
1205 | write_pc_pid (breakpoint_pc, ecs->ptid); | |
1206 | } | |
1207 | else | |
1208 | { | |
1209 | if (software_breakpoint_inserted_here_p (breakpoint_pc)) | |
1210 | /* The inferior was free running (i.e., no hardware | |
1211 | single-step and no possibility of a false SIGTRAP) and | |
1212 | hit a software breakpoint. */ | |
1213 | write_pc_pid (breakpoint_pc, ecs->ptid); | |
1214 | } | |
1215 | } | |
4fa8626c DJ |
1216 | } |
1217 | ||
cd0fc7c3 SS |
1218 | /* Given an execution control state that has been freshly filled in |
1219 | by an event from the inferior, figure out what it means and take | |
1220 | appropriate action. */ | |
c906108c | 1221 | |
7270d8f2 OF |
1222 | int stepped_after_stopped_by_watchpoint; |
1223 | ||
cd0fc7c3 | 1224 | void |
96baa820 | 1225 | handle_inferior_event (struct execution_control_state *ecs) |
cd0fc7c3 | 1226 | { |
65e82032 AC |
1227 | /* NOTE: cagney/2003-03-28: If you're looking at this code and |
1228 | thinking that the variable stepped_after_stopped_by_watchpoint | |
1229 | isn't used, then you're wrong! The macro STOPPED_BY_WATCHPOINT, | |
1230 | defined in the file "config/pa/nm-hppah.h", accesses the variable | |
1231 | indirectly. Mutter something rude about the HP merge. */ | |
c8edd8b4 | 1232 | int sw_single_step_trap_p = 0; |
8fb3e588 | 1233 | int stopped_by_watchpoint = -1; /* Mark as unknown. */ |
cd0fc7c3 | 1234 | |
e02bc4cc | 1235 | /* Cache the last pid/waitstatus. */ |
39f77062 | 1236 | target_last_wait_ptid = ecs->ptid; |
e02bc4cc DS |
1237 | target_last_waitstatus = *ecs->wp; |
1238 | ||
4fa8626c DJ |
1239 | adjust_pc_after_break (ecs); |
1240 | ||
488f131b JB |
1241 | switch (ecs->infwait_state) |
1242 | { | |
1243 | case infwait_thread_hop_state: | |
1244 | /* Cancel the waiton_ptid. */ | |
1245 | ecs->waiton_ptid = pid_to_ptid (-1); | |
65e82032 AC |
1246 | /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event |
1247 | is serviced in this loop, below. */ | |
1248 | if (ecs->enable_hw_watchpoints_after_wait) | |
1249 | { | |
1250 | TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid)); | |
1251 | ecs->enable_hw_watchpoints_after_wait = 0; | |
1252 | } | |
1253 | stepped_after_stopped_by_watchpoint = 0; | |
1254 | break; | |
b83266a0 | 1255 | |
488f131b JB |
1256 | case infwait_normal_state: |
1257 | /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event | |
1258 | is serviced in this loop, below. */ | |
1259 | if (ecs->enable_hw_watchpoints_after_wait) | |
1260 | { | |
1261 | TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid)); | |
1262 | ecs->enable_hw_watchpoints_after_wait = 0; | |
1263 | } | |
1264 | stepped_after_stopped_by_watchpoint = 0; | |
1265 | break; | |
b83266a0 | 1266 | |
488f131b | 1267 | case infwait_nullified_state: |
65e82032 | 1268 | stepped_after_stopped_by_watchpoint = 0; |
488f131b | 1269 | break; |
b83266a0 | 1270 | |
488f131b JB |
1271 | case infwait_nonstep_watch_state: |
1272 | insert_breakpoints (); | |
c906108c | 1273 | |
488f131b JB |
1274 | /* FIXME-maybe: is this cleaner than setting a flag? Does it |
1275 | handle things like signals arriving and other things happening | |
1276 | in combination correctly? */ | |
1277 | stepped_after_stopped_by_watchpoint = 1; | |
1278 | break; | |
65e82032 AC |
1279 | |
1280 | default: | |
1281 | internal_error (__FILE__, __LINE__, "bad switch"); | |
488f131b JB |
1282 | } |
1283 | ecs->infwait_state = infwait_normal_state; | |
c906108c | 1284 | |
488f131b | 1285 | flush_cached_frames (); |
c906108c | 1286 | |
488f131b | 1287 | /* If it's a new process, add it to the thread database */ |
c906108c | 1288 | |
488f131b | 1289 | ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid) |
b9b5d7ea | 1290 | && !ptid_equal (ecs->ptid, minus_one_ptid) |
488f131b JB |
1291 | && !in_thread_list (ecs->ptid)); |
1292 | ||
1293 | if (ecs->ws.kind != TARGET_WAITKIND_EXITED | |
1294 | && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event) | |
1295 | { | |
1296 | add_thread (ecs->ptid); | |
c906108c | 1297 | |
488f131b JB |
1298 | ui_out_text (uiout, "[New "); |
1299 | ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid)); | |
1300 | ui_out_text (uiout, "]\n"); | |
488f131b | 1301 | } |
c906108c | 1302 | |
488f131b JB |
1303 | switch (ecs->ws.kind) |
1304 | { | |
1305 | case TARGET_WAITKIND_LOADED: | |
1306 | /* Ignore gracefully during startup of the inferior, as it | |
1307 | might be the shell which has just loaded some objects, | |
1308 | otherwise add the symbols for the newly loaded objects. */ | |
c906108c | 1309 | #ifdef SOLIB_ADD |
c0236d92 | 1310 | if (stop_soon == NO_STOP_QUIETLY) |
488f131b JB |
1311 | { |
1312 | /* Remove breakpoints, SOLIB_ADD might adjust | |
1313 | breakpoint addresses via breakpoint_re_set. */ | |
1314 | if (breakpoints_inserted) | |
1315 | remove_breakpoints (); | |
c906108c | 1316 | |
488f131b JB |
1317 | /* Check for any newly added shared libraries if we're |
1318 | supposed to be adding them automatically. Switch | |
1319 | terminal for any messages produced by | |
1320 | breakpoint_re_set. */ | |
1321 | target_terminal_ours_for_output (); | |
aff6338a | 1322 | /* NOTE: cagney/2003-11-25: Make certain that the target |
8fb3e588 AC |
1323 | stack's section table is kept up-to-date. Architectures, |
1324 | (e.g., PPC64), use the section table to perform | |
1325 | operations such as address => section name and hence | |
1326 | require the table to contain all sections (including | |
1327 | those found in shared libraries). */ | |
aff6338a | 1328 | /* NOTE: cagney/2003-11-25: Pass current_target and not |
8fb3e588 AC |
1329 | exec_ops to SOLIB_ADD. This is because current GDB is |
1330 | only tooled to propagate section_table changes out from | |
1331 | the "current_target" (see target_resize_to_sections), and | |
1332 | not up from the exec stratum. This, of course, isn't | |
1333 | right. "infrun.c" should only interact with the | |
1334 | exec/process stratum, instead relying on the target stack | |
1335 | to propagate relevant changes (stop, section table | |
1336 | changed, ...) up to other layers. */ | |
aff6338a | 1337 | SOLIB_ADD (NULL, 0, ¤t_target, auto_solib_add); |
488f131b JB |
1338 | target_terminal_inferior (); |
1339 | ||
1340 | /* Reinsert breakpoints and continue. */ | |
1341 | if (breakpoints_inserted) | |
1342 | insert_breakpoints (); | |
1343 | } | |
c906108c | 1344 | #endif |
488f131b JB |
1345 | resume (0, TARGET_SIGNAL_0); |
1346 | prepare_to_wait (ecs); | |
1347 | return; | |
c5aa993b | 1348 | |
488f131b JB |
1349 | case TARGET_WAITKIND_SPURIOUS: |
1350 | resume (0, TARGET_SIGNAL_0); | |
1351 | prepare_to_wait (ecs); | |
1352 | return; | |
c5aa993b | 1353 | |
488f131b JB |
1354 | case TARGET_WAITKIND_EXITED: |
1355 | target_terminal_ours (); /* Must do this before mourn anyway */ | |
1356 | print_stop_reason (EXITED, ecs->ws.value.integer); | |
1357 | ||
1358 | /* Record the exit code in the convenience variable $_exitcode, so | |
1359 | that the user can inspect this again later. */ | |
1360 | set_internalvar (lookup_internalvar ("_exitcode"), | |
1361 | value_from_longest (builtin_type_int, | |
1362 | (LONGEST) ecs->ws.value.integer)); | |
1363 | gdb_flush (gdb_stdout); | |
1364 | target_mourn_inferior (); | |
1365 | singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */ | |
1366 | stop_print_frame = 0; | |
1367 | stop_stepping (ecs); | |
1368 | return; | |
c5aa993b | 1369 | |
488f131b JB |
1370 | case TARGET_WAITKIND_SIGNALLED: |
1371 | stop_print_frame = 0; | |
1372 | stop_signal = ecs->ws.value.sig; | |
1373 | target_terminal_ours (); /* Must do this before mourn anyway */ | |
c5aa993b | 1374 | |
488f131b JB |
1375 | /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't |
1376 | reach here unless the inferior is dead. However, for years | |
1377 | target_kill() was called here, which hints that fatal signals aren't | |
1378 | really fatal on some systems. If that's true, then some changes | |
1379 | may be needed. */ | |
1380 | target_mourn_inferior (); | |
c906108c | 1381 | |
488f131b JB |
1382 | print_stop_reason (SIGNAL_EXITED, stop_signal); |
1383 | singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */ | |
1384 | stop_stepping (ecs); | |
1385 | return; | |
c906108c | 1386 | |
488f131b JB |
1387 | /* The following are the only cases in which we keep going; |
1388 | the above cases end in a continue or goto. */ | |
1389 | case TARGET_WAITKIND_FORKED: | |
deb3b17b | 1390 | case TARGET_WAITKIND_VFORKED: |
488f131b JB |
1391 | stop_signal = TARGET_SIGNAL_TRAP; |
1392 | pending_follow.kind = ecs->ws.kind; | |
1393 | ||
8e7d2c16 DJ |
1394 | pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid); |
1395 | pending_follow.fork_event.child_pid = ecs->ws.value.related_pid; | |
c906108c | 1396 | |
488f131b | 1397 | stop_pc = read_pc (); |
675bf4cb | 1398 | |
00d4360e | 1399 | stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0); |
675bf4cb | 1400 | |
488f131b | 1401 | ecs->random_signal = !bpstat_explains_signal (stop_bpstat); |
04e68871 DJ |
1402 | |
1403 | /* If no catchpoint triggered for this, then keep going. */ | |
1404 | if (ecs->random_signal) | |
1405 | { | |
1406 | stop_signal = TARGET_SIGNAL_0; | |
1407 | keep_going (ecs); | |
1408 | return; | |
1409 | } | |
488f131b JB |
1410 | goto process_event_stop_test; |
1411 | ||
1412 | case TARGET_WAITKIND_EXECD: | |
1413 | stop_signal = TARGET_SIGNAL_TRAP; | |
1414 | ||
7d2830a3 | 1415 | /* NOTE drow/2002-12-05: This code should be pushed down into the |
8fb3e588 AC |
1416 | target_wait function. Until then following vfork on HP/UX 10.20 |
1417 | is probably broken by this. Of course, it's broken anyway. */ | |
488f131b JB |
1418 | /* Is this a target which reports multiple exec events per actual |
1419 | call to exec()? (HP-UX using ptrace does, for example.) If so, | |
1420 | ignore all but the last one. Just resume the exec'r, and wait | |
1421 | for the next exec event. */ | |
1422 | if (inferior_ignoring_leading_exec_events) | |
1423 | { | |
1424 | inferior_ignoring_leading_exec_events--; | |
1425 | if (pending_follow.kind == TARGET_WAITKIND_VFORKED) | |
1426 | ENSURE_VFORKING_PARENT_REMAINS_STOPPED (pending_follow.fork_event. | |
1427 | parent_pid); | |
1428 | target_resume (ecs->ptid, 0, TARGET_SIGNAL_0); | |
1429 | prepare_to_wait (ecs); | |
1430 | return; | |
1431 | } | |
1432 | inferior_ignoring_leading_exec_events = | |
1433 | target_reported_exec_events_per_exec_call () - 1; | |
1434 | ||
1435 | pending_follow.execd_pathname = | |
1436 | savestring (ecs->ws.value.execd_pathname, | |
1437 | strlen (ecs->ws.value.execd_pathname)); | |
1438 | ||
488f131b JB |
1439 | /* This causes the eventpoints and symbol table to be reset. Must |
1440 | do this now, before trying to determine whether to stop. */ | |
1441 | follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname); | |
1442 | xfree (pending_follow.execd_pathname); | |
c906108c | 1443 | |
488f131b JB |
1444 | stop_pc = read_pc_pid (ecs->ptid); |
1445 | ecs->saved_inferior_ptid = inferior_ptid; | |
1446 | inferior_ptid = ecs->ptid; | |
675bf4cb | 1447 | |
00d4360e | 1448 | stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0); |
675bf4cb | 1449 | |
488f131b JB |
1450 | ecs->random_signal = !bpstat_explains_signal (stop_bpstat); |
1451 | inferior_ptid = ecs->saved_inferior_ptid; | |
04e68871 DJ |
1452 | |
1453 | /* If no catchpoint triggered for this, then keep going. */ | |
1454 | if (ecs->random_signal) | |
1455 | { | |
1456 | stop_signal = TARGET_SIGNAL_0; | |
1457 | keep_going (ecs); | |
1458 | return; | |
1459 | } | |
488f131b JB |
1460 | goto process_event_stop_test; |
1461 | ||
1462 | /* These syscall events are returned on HP-UX, as part of its | |
1463 | implementation of page-protection-based "hardware" watchpoints. | |
1464 | HP-UX has unfortunate interactions between page-protections and | |
1465 | some system calls. Our solution is to disable hardware watches | |
1466 | when a system call is entered, and reenable them when the syscall | |
1467 | completes. The downside of this is that we may miss the precise | |
1468 | point at which a watched piece of memory is modified. "Oh well." | |
1469 | ||
1470 | Note that we may have multiple threads running, which may each | |
1471 | enter syscalls at roughly the same time. Since we don't have a | |
1472 | good notion currently of whether a watched piece of memory is | |
1473 | thread-private, we'd best not have any page-protections active | |
1474 | when any thread is in a syscall. Thus, we only want to reenable | |
1475 | hardware watches when no threads are in a syscall. | |
1476 | ||
1477 | Also, be careful not to try to gather much state about a thread | |
1478 | that's in a syscall. It's frequently a losing proposition. */ | |
1479 | case TARGET_WAITKIND_SYSCALL_ENTRY: | |
1480 | number_of_threads_in_syscalls++; | |
1481 | if (number_of_threads_in_syscalls == 1) | |
1482 | { | |
1483 | TARGET_DISABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid)); | |
1484 | } | |
1485 | resume (0, TARGET_SIGNAL_0); | |
1486 | prepare_to_wait (ecs); | |
1487 | return; | |
c906108c | 1488 | |
488f131b JB |
1489 | /* Before examining the threads further, step this thread to |
1490 | get it entirely out of the syscall. (We get notice of the | |
1491 | event when the thread is just on the verge of exiting a | |
1492 | syscall. Stepping one instruction seems to get it back | |
1493 | into user code.) | |
c906108c | 1494 | |
488f131b JB |
1495 | Note that although the logical place to reenable h/w watches |
1496 | is here, we cannot. We cannot reenable them before stepping | |
1497 | the thread (this causes the next wait on the thread to hang). | |
c4093a6a | 1498 | |
488f131b JB |
1499 | Nor can we enable them after stepping until we've done a wait. |
1500 | Thus, we simply set the flag ecs->enable_hw_watchpoints_after_wait | |
1501 | here, which will be serviced immediately after the target | |
1502 | is waited on. */ | |
1503 | case TARGET_WAITKIND_SYSCALL_RETURN: | |
1504 | target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); | |
1505 | ||
1506 | if (number_of_threads_in_syscalls > 0) | |
1507 | { | |
1508 | number_of_threads_in_syscalls--; | |
1509 | ecs->enable_hw_watchpoints_after_wait = | |
1510 | (number_of_threads_in_syscalls == 0); | |
1511 | } | |
1512 | prepare_to_wait (ecs); | |
1513 | return; | |
c906108c | 1514 | |
488f131b JB |
1515 | case TARGET_WAITKIND_STOPPED: |
1516 | stop_signal = ecs->ws.value.sig; | |
1517 | break; | |
c906108c | 1518 | |
488f131b JB |
1519 | /* We had an event in the inferior, but we are not interested |
1520 | in handling it at this level. The lower layers have already | |
8e7d2c16 | 1521 | done what needs to be done, if anything. |
8fb3e588 AC |
1522 | |
1523 | One of the possible circumstances for this is when the | |
1524 | inferior produces output for the console. The inferior has | |
1525 | not stopped, and we are ignoring the event. Another possible | |
1526 | circumstance is any event which the lower level knows will be | |
1527 | reported multiple times without an intervening resume. */ | |
488f131b | 1528 | case TARGET_WAITKIND_IGNORE: |
8e7d2c16 | 1529 | prepare_to_wait (ecs); |
488f131b JB |
1530 | return; |
1531 | } | |
c906108c | 1532 | |
488f131b JB |
1533 | /* We may want to consider not doing a resume here in order to give |
1534 | the user a chance to play with the new thread. It might be good | |
1535 | to make that a user-settable option. */ | |
c906108c | 1536 | |
488f131b JB |
1537 | /* At this point, all threads are stopped (happens automatically in |
1538 | either the OS or the native code). Therefore we need to continue | |
1539 | all threads in order to make progress. */ | |
1540 | if (ecs->new_thread_event) | |
1541 | { | |
1542 | target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0); | |
1543 | prepare_to_wait (ecs); | |
1544 | return; | |
1545 | } | |
c906108c | 1546 | |
488f131b JB |
1547 | stop_pc = read_pc_pid (ecs->ptid); |
1548 | ||
9f976b41 DJ |
1549 | if (stepping_past_singlestep_breakpoint) |
1550 | { | |
8fb3e588 AC |
1551 | gdb_assert (SOFTWARE_SINGLE_STEP_P () |
1552 | && singlestep_breakpoints_inserted_p); | |
9f976b41 DJ |
1553 | gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid)); |
1554 | gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid)); | |
1555 | ||
1556 | stepping_past_singlestep_breakpoint = 0; | |
1557 | ||
1558 | /* We've either finished single-stepping past the single-step | |
8fb3e588 AC |
1559 | breakpoint, or stopped for some other reason. It would be nice if |
1560 | we could tell, but we can't reliably. */ | |
9f976b41 | 1561 | if (stop_signal == TARGET_SIGNAL_TRAP) |
8fb3e588 | 1562 | { |
9f976b41 DJ |
1563 | /* Pull the single step breakpoints out of the target. */ |
1564 | SOFTWARE_SINGLE_STEP (0, 0); | |
1565 | singlestep_breakpoints_inserted_p = 0; | |
1566 | ||
1567 | ecs->random_signal = 0; | |
1568 | ||
1569 | ecs->ptid = saved_singlestep_ptid; | |
1570 | context_switch (ecs); | |
9a4105ab AC |
1571 | if (deprecated_context_hook) |
1572 | deprecated_context_hook (pid_to_thread_id (ecs->ptid)); | |
9f976b41 DJ |
1573 | |
1574 | resume (1, TARGET_SIGNAL_0); | |
1575 | prepare_to_wait (ecs); | |
1576 | return; | |
1577 | } | |
1578 | } | |
1579 | ||
1580 | stepping_past_singlestep_breakpoint = 0; | |
1581 | ||
488f131b JB |
1582 | /* See if a thread hit a thread-specific breakpoint that was meant for |
1583 | another thread. If so, then step that thread past the breakpoint, | |
1584 | and continue it. */ | |
1585 | ||
1586 | if (stop_signal == TARGET_SIGNAL_TRAP) | |
1587 | { | |
9f976b41 DJ |
1588 | int thread_hop_needed = 0; |
1589 | ||
f8d40ec8 JB |
1590 | /* Check if a regular breakpoint has been hit before checking |
1591 | for a potential single step breakpoint. Otherwise, GDB will | |
1592 | not see this breakpoint hit when stepping onto breakpoints. */ | |
4fa8626c | 1593 | if (breakpoints_inserted && breakpoint_here_p (stop_pc)) |
488f131b | 1594 | { |
c5aa993b | 1595 | ecs->random_signal = 0; |
4fa8626c | 1596 | if (!breakpoint_thread_match (stop_pc, ecs->ptid)) |
9f976b41 DJ |
1597 | thread_hop_needed = 1; |
1598 | } | |
1599 | else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p) | |
1600 | { | |
1601 | ecs->random_signal = 0; | |
1602 | /* The call to in_thread_list is necessary because PTIDs sometimes | |
1603 | change when we go from single-threaded to multi-threaded. If | |
1604 | the singlestep_ptid is still in the list, assume that it is | |
1605 | really different from ecs->ptid. */ | |
1606 | if (!ptid_equal (singlestep_ptid, ecs->ptid) | |
1607 | && in_thread_list (singlestep_ptid)) | |
1608 | { | |
1609 | thread_hop_needed = 1; | |
1610 | stepping_past_singlestep_breakpoint = 1; | |
1611 | saved_singlestep_ptid = singlestep_ptid; | |
1612 | } | |
1613 | } | |
1614 | ||
1615 | if (thread_hop_needed) | |
8fb3e588 AC |
1616 | { |
1617 | int remove_status; | |
1618 | ||
1619 | /* Saw a breakpoint, but it was hit by the wrong thread. | |
1620 | Just continue. */ | |
1621 | ||
1622 | if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p) | |
488f131b | 1623 | { |
8fb3e588 AC |
1624 | /* Pull the single step breakpoints out of the target. */ |
1625 | SOFTWARE_SINGLE_STEP (0, 0); | |
1626 | singlestep_breakpoints_inserted_p = 0; | |
1627 | } | |
1628 | ||
1629 | remove_status = remove_breakpoints (); | |
1630 | /* Did we fail to remove breakpoints? If so, try | |
1631 | to set the PC past the bp. (There's at least | |
1632 | one situation in which we can fail to remove | |
1633 | the bp's: On HP-UX's that use ttrace, we can't | |
1634 | change the address space of a vforking child | |
1635 | process until the child exits (well, okay, not | |
1636 | then either :-) or execs. */ | |
1637 | if (remove_status != 0) | |
1638 | { | |
1639 | /* FIXME! This is obviously non-portable! */ | |
1640 | write_pc_pid (stop_pc + 4, ecs->ptid); | |
1641 | /* We need to restart all the threads now, | |
1642 | * unles we're running in scheduler-locked mode. | |
1643 | * Use currently_stepping to determine whether to | |
1644 | * step or continue. | |
1645 | */ | |
1646 | /* FIXME MVS: is there any reason not to call resume()? */ | |
1647 | if (scheduler_mode == schedlock_on) | |
1648 | target_resume (ecs->ptid, | |
1649 | currently_stepping (ecs), TARGET_SIGNAL_0); | |
488f131b | 1650 | else |
8fb3e588 AC |
1651 | target_resume (RESUME_ALL, |
1652 | currently_stepping (ecs), TARGET_SIGNAL_0); | |
1653 | prepare_to_wait (ecs); | |
1654 | return; | |
1655 | } | |
1656 | else | |
1657 | { /* Single step */ | |
1658 | breakpoints_inserted = 0; | |
1659 | if (!ptid_equal (inferior_ptid, ecs->ptid)) | |
1660 | context_switch (ecs); | |
1661 | ecs->waiton_ptid = ecs->ptid; | |
1662 | ecs->wp = &(ecs->ws); | |
1663 | ecs->another_trap = 1; | |
1664 | ||
1665 | ecs->infwait_state = infwait_thread_hop_state; | |
1666 | keep_going (ecs); | |
1667 | registers_changed (); | |
1668 | return; | |
1669 | } | |
488f131b | 1670 | } |
f8d40ec8 | 1671 | else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p) |
8fb3e588 AC |
1672 | { |
1673 | sw_single_step_trap_p = 1; | |
1674 | ecs->random_signal = 0; | |
1675 | } | |
488f131b JB |
1676 | } |
1677 | else | |
1678 | ecs->random_signal = 1; | |
c906108c | 1679 | |
488f131b | 1680 | /* See if something interesting happened to the non-current thread. If |
b40c7d58 DJ |
1681 | so, then switch to that thread. */ |
1682 | if (!ptid_equal (ecs->ptid, inferior_ptid)) | |
488f131b | 1683 | { |
488f131b | 1684 | context_switch (ecs); |
c5aa993b | 1685 | |
9a4105ab AC |
1686 | if (deprecated_context_hook) |
1687 | deprecated_context_hook (pid_to_thread_id (ecs->ptid)); | |
c5aa993b | 1688 | |
488f131b JB |
1689 | flush_cached_frames (); |
1690 | } | |
c906108c | 1691 | |
488f131b JB |
1692 | if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p) |
1693 | { | |
1694 | /* Pull the single step breakpoints out of the target. */ | |
1695 | SOFTWARE_SINGLE_STEP (0, 0); | |
1696 | singlestep_breakpoints_inserted_p = 0; | |
1697 | } | |
c906108c | 1698 | |
488f131b JB |
1699 | /* If PC is pointing at a nullified instruction, then step beyond |
1700 | it so that the user won't be confused when GDB appears to be ready | |
1701 | to execute it. */ | |
c906108c | 1702 | |
488f131b JB |
1703 | /* if (INSTRUCTION_NULLIFIED && currently_stepping (ecs)) */ |
1704 | if (INSTRUCTION_NULLIFIED) | |
1705 | { | |
1706 | registers_changed (); | |
1707 | target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); | |
c906108c | 1708 | |
488f131b JB |
1709 | /* We may have received a signal that we want to pass to |
1710 | the inferior; therefore, we must not clobber the waitstatus | |
1711 | in WS. */ | |
c906108c | 1712 | |
488f131b JB |
1713 | ecs->infwait_state = infwait_nullified_state; |
1714 | ecs->waiton_ptid = ecs->ptid; | |
1715 | ecs->wp = &(ecs->tmpstatus); | |
1716 | prepare_to_wait (ecs); | |
1717 | return; | |
1718 | } | |
c906108c | 1719 | |
488f131b JB |
1720 | /* It may not be necessary to disable the watchpoint to stop over |
1721 | it. For example, the PA can (with some kernel cooperation) | |
1722 | single step over a watchpoint without disabling the watchpoint. */ | |
1723 | if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws)) | |
1724 | { | |
1725 | resume (1, 0); | |
1726 | prepare_to_wait (ecs); | |
1727 | return; | |
1728 | } | |
c906108c | 1729 | |
488f131b JB |
1730 | /* It is far more common to need to disable a watchpoint to step |
1731 | the inferior over it. FIXME. What else might a debug | |
1732 | register or page protection watchpoint scheme need here? */ | |
1733 | if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws)) | |
1734 | { | |
1735 | /* At this point, we are stopped at an instruction which has | |
1736 | attempted to write to a piece of memory under control of | |
1737 | a watchpoint. The instruction hasn't actually executed | |
1738 | yet. If we were to evaluate the watchpoint expression | |
1739 | now, we would get the old value, and therefore no change | |
1740 | would seem to have occurred. | |
1741 | ||
1742 | In order to make watchpoints work `right', we really need | |
1743 | to complete the memory write, and then evaluate the | |
1744 | watchpoint expression. The following code does that by | |
1745 | removing the watchpoint (actually, all watchpoints and | |
1746 | breakpoints), single-stepping the target, re-inserting | |
1747 | watchpoints, and then falling through to let normal | |
1748 | single-step processing handle proceed. Since this | |
1749 | includes evaluating watchpoints, things will come to a | |
1750 | stop in the correct manner. */ | |
1751 | ||
488f131b JB |
1752 | remove_breakpoints (); |
1753 | registers_changed (); | |
1754 | target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */ | |
c5aa993b | 1755 | |
488f131b JB |
1756 | ecs->waiton_ptid = ecs->ptid; |
1757 | ecs->wp = &(ecs->ws); | |
1758 | ecs->infwait_state = infwait_nonstep_watch_state; | |
1759 | prepare_to_wait (ecs); | |
1760 | return; | |
1761 | } | |
1762 | ||
1763 | /* It may be possible to simply continue after a watchpoint. */ | |
1764 | if (HAVE_CONTINUABLE_WATCHPOINT) | |
00d4360e | 1765 | stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws); |
488f131b JB |
1766 | |
1767 | ecs->stop_func_start = 0; | |
1768 | ecs->stop_func_end = 0; | |
1769 | ecs->stop_func_name = 0; | |
1770 | /* Don't care about return value; stop_func_start and stop_func_name | |
1771 | will both be 0 if it doesn't work. */ | |
1772 | find_pc_partial_function (stop_pc, &ecs->stop_func_name, | |
1773 | &ecs->stop_func_start, &ecs->stop_func_end); | |
782263ab | 1774 | ecs->stop_func_start += DEPRECATED_FUNCTION_START_OFFSET; |
488f131b JB |
1775 | ecs->another_trap = 0; |
1776 | bpstat_clear (&stop_bpstat); | |
1777 | stop_step = 0; | |
1778 | stop_stack_dummy = 0; | |
1779 | stop_print_frame = 1; | |
1780 | ecs->random_signal = 0; | |
1781 | stopped_by_random_signal = 0; | |
1782 | breakpoints_failed = 0; | |
1783 | ||
1784 | /* Look at the cause of the stop, and decide what to do. | |
1785 | The alternatives are: | |
1786 | 1) break; to really stop and return to the debugger, | |
1787 | 2) drop through to start up again | |
1788 | (set ecs->another_trap to 1 to single step once) | |
1789 | 3) set ecs->random_signal to 1, and the decision between 1 and 2 | |
1790 | will be made according to the signal handling tables. */ | |
1791 | ||
1792 | /* First, distinguish signals caused by the debugger from signals | |
03cebad2 MK |
1793 | that have to do with the program's own actions. Note that |
1794 | breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending | |
1795 | on the operating system version. Here we detect when a SIGILL or | |
1796 | SIGEMT is really a breakpoint and change it to SIGTRAP. We do | |
1797 | something similar for SIGSEGV, since a SIGSEGV will be generated | |
1798 | when we're trying to execute a breakpoint instruction on a | |
1799 | non-executable stack. This happens for call dummy breakpoints | |
1800 | for architectures like SPARC that place call dummies on the | |
1801 | stack. */ | |
488f131b JB |
1802 | |
1803 | if (stop_signal == TARGET_SIGNAL_TRAP | |
8fb3e588 AC |
1804 | || (breakpoints_inserted |
1805 | && (stop_signal == TARGET_SIGNAL_ILL | |
1806 | || stop_signal == TARGET_SIGNAL_SEGV | |
1807 | || stop_signal == TARGET_SIGNAL_EMT)) | |
1808 | || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP) | |
488f131b JB |
1809 | { |
1810 | if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap) | |
1811 | { | |
1812 | stop_print_frame = 0; | |
1813 | stop_stepping (ecs); | |
1814 | return; | |
1815 | } | |
c54cfec8 EZ |
1816 | |
1817 | /* This is originated from start_remote(), start_inferior() and | |
1818 | shared libraries hook functions. */ | |
c0236d92 | 1819 | if (stop_soon == STOP_QUIETLY) |
488f131b JB |
1820 | { |
1821 | stop_stepping (ecs); | |
1822 | return; | |
1823 | } | |
1824 | ||
c54cfec8 EZ |
1825 | /* This originates from attach_command(). We need to overwrite |
1826 | the stop_signal here, because some kernels don't ignore a | |
1827 | SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call. | |
1828 | See more comments in inferior.h. */ | |
c0236d92 | 1829 | if (stop_soon == STOP_QUIETLY_NO_SIGSTOP) |
c54cfec8 EZ |
1830 | { |
1831 | stop_stepping (ecs); | |
1832 | if (stop_signal == TARGET_SIGNAL_STOP) | |
1833 | stop_signal = TARGET_SIGNAL_0; | |
1834 | return; | |
1835 | } | |
1836 | ||
d303a6c7 AC |
1837 | /* Don't even think about breakpoints if just proceeded over a |
1838 | breakpoint. */ | |
1839 | if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected) | |
488f131b JB |
1840 | bpstat_clear (&stop_bpstat); |
1841 | else | |
1842 | { | |
1843 | /* See if there is a breakpoint at the current PC. */ | |
8fb3e588 | 1844 | stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, |
00d4360e | 1845 | stopped_by_watchpoint); |
488f131b | 1846 | |
488f131b JB |
1847 | /* Following in case break condition called a |
1848 | function. */ | |
1849 | stop_print_frame = 1; | |
1850 | } | |
1851 | ||
73dd234f | 1852 | /* NOTE: cagney/2003-03-29: These two checks for a random signal |
8fb3e588 AC |
1853 | at one stage in the past included checks for an inferior |
1854 | function call's call dummy's return breakpoint. The original | |
1855 | comment, that went with the test, read: | |
73dd234f | 1856 | |
8fb3e588 AC |
1857 | ``End of a stack dummy. Some systems (e.g. Sony news) give |
1858 | another signal besides SIGTRAP, so check here as well as | |
1859 | above.'' | |
73dd234f AC |
1860 | |
1861 | If someone ever tries to get get call dummys on a | |
1862 | non-executable stack to work (where the target would stop | |
03cebad2 MK |
1863 | with something like a SIGSEGV), then those tests might need |
1864 | to be re-instated. Given, however, that the tests were only | |
73dd234f | 1865 | enabled when momentary breakpoints were not being used, I |
03cebad2 MK |
1866 | suspect that it won't be the case. |
1867 | ||
8fb3e588 AC |
1868 | NOTE: kettenis/2004-02-05: Indeed such checks don't seem to |
1869 | be necessary for call dummies on a non-executable stack on | |
1870 | SPARC. */ | |
73dd234f | 1871 | |
488f131b JB |
1872 | if (stop_signal == TARGET_SIGNAL_TRAP) |
1873 | ecs->random_signal | |
1874 | = !(bpstat_explains_signal (stop_bpstat) | |
1875 | || trap_expected | |
488f131b | 1876 | || (step_range_end && step_resume_breakpoint == NULL)); |
488f131b JB |
1877 | else |
1878 | { | |
73dd234f | 1879 | ecs->random_signal = !bpstat_explains_signal (stop_bpstat); |
488f131b JB |
1880 | if (!ecs->random_signal) |
1881 | stop_signal = TARGET_SIGNAL_TRAP; | |
1882 | } | |
1883 | } | |
1884 | ||
1885 | /* When we reach this point, we've pretty much decided | |
1886 | that the reason for stopping must've been a random | |
1887 | (unexpected) signal. */ | |
1888 | ||
1889 | else | |
1890 | ecs->random_signal = 1; | |
488f131b | 1891 | |
04e68871 | 1892 | process_event_stop_test: |
488f131b JB |
1893 | /* For the program's own signals, act according to |
1894 | the signal handling tables. */ | |
1895 | ||
1896 | if (ecs->random_signal) | |
1897 | { | |
1898 | /* Signal not for debugging purposes. */ | |
1899 | int printed = 0; | |
1900 | ||
1901 | stopped_by_random_signal = 1; | |
1902 | ||
1903 | if (signal_print[stop_signal]) | |
1904 | { | |
1905 | printed = 1; | |
1906 | target_terminal_ours_for_output (); | |
1907 | print_stop_reason (SIGNAL_RECEIVED, stop_signal); | |
1908 | } | |
1909 | if (signal_stop[stop_signal]) | |
1910 | { | |
1911 | stop_stepping (ecs); | |
1912 | return; | |
1913 | } | |
1914 | /* If not going to stop, give terminal back | |
1915 | if we took it away. */ | |
1916 | else if (printed) | |
1917 | target_terminal_inferior (); | |
1918 | ||
1919 | /* Clear the signal if it should not be passed. */ | |
1920 | if (signal_program[stop_signal] == 0) | |
1921 | stop_signal = TARGET_SIGNAL_0; | |
1922 | ||
68f53502 AC |
1923 | if (prev_pc == read_pc () |
1924 | && !breakpoints_inserted | |
1925 | && breakpoint_here_p (read_pc ()) | |
1926 | && step_resume_breakpoint == NULL) | |
1927 | { | |
1928 | /* We were just starting a new sequence, attempting to | |
1929 | single-step off of a breakpoint and expecting a SIGTRAP. | |
1930 | Intead this signal arrives. This signal will take us out | |
1931 | of the stepping range so GDB needs to remember to, when | |
1932 | the signal handler returns, resume stepping off that | |
1933 | breakpoint. */ | |
1934 | /* To simplify things, "continue" is forced to use the same | |
1935 | code paths as single-step - set a breakpoint at the | |
1936 | signal return address and then, once hit, step off that | |
1937 | breakpoint. */ | |
44cbf7b5 | 1938 | insert_step_resume_breakpoint_at_frame (get_current_frame ()); |
68f53502 AC |
1939 | ecs->step_after_step_resume_breakpoint = 1; |
1940 | } | |
1941 | else if (step_range_end != 0 | |
1942 | && stop_signal != TARGET_SIGNAL_0 | |
1943 | && stop_pc >= step_range_start && stop_pc < step_range_end | |
1944 | && frame_id_eq (get_frame_id (get_current_frame ()), | |
1945 | step_frame_id)) | |
d303a6c7 AC |
1946 | { |
1947 | /* The inferior is about to take a signal that will take it | |
1948 | out of the single step range. Set a breakpoint at the | |
1949 | current PC (which is presumably where the signal handler | |
1950 | will eventually return) and then allow the inferior to | |
1951 | run free. | |
1952 | ||
1953 | Note that this is only needed for a signal delivered | |
1954 | while in the single-step range. Nested signals aren't a | |
1955 | problem as they eventually all return. */ | |
44cbf7b5 | 1956 | insert_step_resume_breakpoint_at_frame (get_current_frame ()); |
d303a6c7 | 1957 | } |
488f131b JB |
1958 | keep_going (ecs); |
1959 | return; | |
1960 | } | |
1961 | ||
1962 | /* Handle cases caused by hitting a breakpoint. */ | |
1963 | { | |
1964 | CORE_ADDR jmp_buf_pc; | |
1965 | struct bpstat_what what; | |
1966 | ||
1967 | what = bpstat_what (stop_bpstat); | |
1968 | ||
1969 | if (what.call_dummy) | |
1970 | { | |
1971 | stop_stack_dummy = 1; | |
c5aa993b | 1972 | } |
c906108c | 1973 | |
488f131b | 1974 | switch (what.main_action) |
c5aa993b | 1975 | { |
488f131b JB |
1976 | case BPSTAT_WHAT_SET_LONGJMP_RESUME: |
1977 | /* If we hit the breakpoint at longjmp, disable it for the | |
1978 | duration of this command. Then, install a temporary | |
1979 | breakpoint at the target of the jmp_buf. */ | |
1980 | disable_longjmp_breakpoint (); | |
1981 | remove_breakpoints (); | |
1982 | breakpoints_inserted = 0; | |
1983 | if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc)) | |
c5aa993b | 1984 | { |
488f131b | 1985 | keep_going (ecs); |
104c1213 | 1986 | return; |
c5aa993b | 1987 | } |
488f131b JB |
1988 | |
1989 | /* Need to blow away step-resume breakpoint, as it | |
1990 | interferes with us */ | |
1991 | if (step_resume_breakpoint != NULL) | |
104c1213 | 1992 | { |
488f131b | 1993 | delete_step_resume_breakpoint (&step_resume_breakpoint); |
104c1213 | 1994 | } |
c906108c | 1995 | |
8fb3e588 | 1996 | set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id); |
488f131b JB |
1997 | ecs->handling_longjmp = 1; /* FIXME */ |
1998 | keep_going (ecs); | |
1999 | return; | |
c906108c | 2000 | |
488f131b JB |
2001 | case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME: |
2002 | case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE: | |
2003 | remove_breakpoints (); | |
2004 | breakpoints_inserted = 0; | |
488f131b JB |
2005 | disable_longjmp_breakpoint (); |
2006 | ecs->handling_longjmp = 0; /* FIXME */ | |
2007 | if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME) | |
2008 | break; | |
2009 | /* else fallthrough */ | |
2010 | ||
2011 | case BPSTAT_WHAT_SINGLE: | |
2012 | if (breakpoints_inserted) | |
c5aa993b | 2013 | { |
488f131b | 2014 | remove_breakpoints (); |
c5aa993b | 2015 | } |
488f131b JB |
2016 | breakpoints_inserted = 0; |
2017 | ecs->another_trap = 1; | |
2018 | /* Still need to check other stuff, at least the case | |
2019 | where we are stepping and step out of the right range. */ | |
2020 | break; | |
c906108c | 2021 | |
488f131b JB |
2022 | case BPSTAT_WHAT_STOP_NOISY: |
2023 | stop_print_frame = 1; | |
c906108c | 2024 | |
d303a6c7 AC |
2025 | /* We are about to nuke the step_resume_breakpointt via the |
2026 | cleanup chain, so no need to worry about it here. */ | |
c5aa993b | 2027 | |
488f131b JB |
2028 | stop_stepping (ecs); |
2029 | return; | |
c5aa993b | 2030 | |
488f131b JB |
2031 | case BPSTAT_WHAT_STOP_SILENT: |
2032 | stop_print_frame = 0; | |
c5aa993b | 2033 | |
d303a6c7 AC |
2034 | /* We are about to nuke the step_resume_breakpoin via the |
2035 | cleanup chain, so no need to worry about it here. */ | |
c5aa993b | 2036 | |
488f131b | 2037 | stop_stepping (ecs); |
e441088d | 2038 | return; |
c5aa993b | 2039 | |
488f131b JB |
2040 | case BPSTAT_WHAT_STEP_RESUME: |
2041 | /* This proably demands a more elegant solution, but, yeah | |
2042 | right... | |
c5aa993b | 2043 | |
488f131b JB |
2044 | This function's use of the simple variable |
2045 | step_resume_breakpoint doesn't seem to accomodate | |
2046 | simultaneously active step-resume bp's, although the | |
2047 | breakpoint list certainly can. | |
c5aa993b | 2048 | |
488f131b JB |
2049 | If we reach here and step_resume_breakpoint is already |
2050 | NULL, then apparently we have multiple active | |
2051 | step-resume bp's. We'll just delete the breakpoint we | |
2052 | stopped at, and carry on. | |
2053 | ||
2054 | Correction: what the code currently does is delete a | |
2055 | step-resume bp, but it makes no effort to ensure that | |
2056 | the one deleted is the one currently stopped at. MVS */ | |
c5aa993b | 2057 | |
488f131b JB |
2058 | if (step_resume_breakpoint == NULL) |
2059 | { | |
2060 | step_resume_breakpoint = | |
2061 | bpstat_find_step_resume_breakpoint (stop_bpstat); | |
2062 | } | |
2063 | delete_step_resume_breakpoint (&step_resume_breakpoint); | |
68f53502 AC |
2064 | if (ecs->step_after_step_resume_breakpoint) |
2065 | { | |
2066 | /* Back when the step-resume breakpoint was inserted, we | |
2067 | were trying to single-step off a breakpoint. Go back | |
2068 | to doing that. */ | |
2069 | ecs->step_after_step_resume_breakpoint = 0; | |
2070 | remove_breakpoints (); | |
2071 | breakpoints_inserted = 0; | |
2072 | ecs->another_trap = 1; | |
2073 | keep_going (ecs); | |
2074 | return; | |
2075 | } | |
488f131b JB |
2076 | break; |
2077 | ||
2078 | case BPSTAT_WHAT_THROUGH_SIGTRAMP: | |
488f131b JB |
2079 | /* If were waiting for a trap, hitting the step_resume_break |
2080 | doesn't count as getting it. */ | |
2081 | if (trap_expected) | |
2082 | ecs->another_trap = 1; | |
2083 | break; | |
2084 | ||
2085 | case BPSTAT_WHAT_CHECK_SHLIBS: | |
2086 | case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK: | |
2087 | #ifdef SOLIB_ADD | |
c906108c | 2088 | { |
488f131b JB |
2089 | /* Remove breakpoints, we eventually want to step over the |
2090 | shlib event breakpoint, and SOLIB_ADD might adjust | |
2091 | breakpoint addresses via breakpoint_re_set. */ | |
2092 | if (breakpoints_inserted) | |
2093 | remove_breakpoints (); | |
c5aa993b | 2094 | breakpoints_inserted = 0; |
488f131b JB |
2095 | |
2096 | /* Check for any newly added shared libraries if we're | |
2097 | supposed to be adding them automatically. Switch | |
2098 | terminal for any messages produced by | |
2099 | breakpoint_re_set. */ | |
2100 | target_terminal_ours_for_output (); | |
aff6338a | 2101 | /* NOTE: cagney/2003-11-25: Make certain that the target |
8fb3e588 AC |
2102 | stack's section table is kept up-to-date. Architectures, |
2103 | (e.g., PPC64), use the section table to perform | |
2104 | operations such as address => section name and hence | |
2105 | require the table to contain all sections (including | |
2106 | those found in shared libraries). */ | |
aff6338a | 2107 | /* NOTE: cagney/2003-11-25: Pass current_target and not |
8fb3e588 AC |
2108 | exec_ops to SOLIB_ADD. This is because current GDB is |
2109 | only tooled to propagate section_table changes out from | |
2110 | the "current_target" (see target_resize_to_sections), and | |
2111 | not up from the exec stratum. This, of course, isn't | |
2112 | right. "infrun.c" should only interact with the | |
2113 | exec/process stratum, instead relying on the target stack | |
2114 | to propagate relevant changes (stop, section table | |
2115 | changed, ...) up to other layers. */ | |
aff6338a | 2116 | SOLIB_ADD (NULL, 0, ¤t_target, auto_solib_add); |
488f131b JB |
2117 | target_terminal_inferior (); |
2118 | ||
2119 | /* Try to reenable shared library breakpoints, additional | |
2120 | code segments in shared libraries might be mapped in now. */ | |
2121 | re_enable_breakpoints_in_shlibs (); | |
2122 | ||
2123 | /* If requested, stop when the dynamic linker notifies | |
2124 | gdb of events. This allows the user to get control | |
2125 | and place breakpoints in initializer routines for | |
2126 | dynamically loaded objects (among other things). */ | |
877522db | 2127 | if (stop_on_solib_events || stop_stack_dummy) |
d4f3574e | 2128 | { |
488f131b | 2129 | stop_stepping (ecs); |
d4f3574e SS |
2130 | return; |
2131 | } | |
c5aa993b | 2132 | |
488f131b JB |
2133 | /* If we stopped due to an explicit catchpoint, then the |
2134 | (see above) call to SOLIB_ADD pulled in any symbols | |
2135 | from a newly-loaded library, if appropriate. | |
2136 | ||
2137 | We do want the inferior to stop, but not where it is | |
2138 | now, which is in the dynamic linker callback. Rather, | |
2139 | we would like it stop in the user's program, just after | |
2140 | the call that caused this catchpoint to trigger. That | |
2141 | gives the user a more useful vantage from which to | |
2142 | examine their program's state. */ | |
8fb3e588 AC |
2143 | else if (what.main_action |
2144 | == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK) | |
c906108c | 2145 | { |
488f131b JB |
2146 | /* ??rehrauer: If I could figure out how to get the |
2147 | right return PC from here, we could just set a temp | |
2148 | breakpoint and resume. I'm not sure we can without | |
2149 | cracking open the dld's shared libraries and sniffing | |
2150 | their unwind tables and text/data ranges, and that's | |
2151 | not a terribly portable notion. | |
2152 | ||
2153 | Until that time, we must step the inferior out of the | |
2154 | dld callback, and also out of the dld itself (and any | |
2155 | code or stubs in libdld.sl, such as "shl_load" and | |
2156 | friends) until we reach non-dld code. At that point, | |
2157 | we can stop stepping. */ | |
2158 | bpstat_get_triggered_catchpoints (stop_bpstat, | |
2159 | &ecs-> | |
2160 | stepping_through_solib_catchpoints); | |
2161 | ecs->stepping_through_solib_after_catch = 1; | |
2162 | ||
2163 | /* Be sure to lift all breakpoints, so the inferior does | |
2164 | actually step past this point... */ | |
2165 | ecs->another_trap = 1; | |
2166 | break; | |
c906108c | 2167 | } |
c5aa993b | 2168 | else |
c5aa993b | 2169 | { |
488f131b | 2170 | /* We want to step over this breakpoint, then keep going. */ |
c5aa993b | 2171 | ecs->another_trap = 1; |
488f131b | 2172 | break; |
c5aa993b | 2173 | } |
488f131b JB |
2174 | } |
2175 | #endif | |
2176 | break; | |
c906108c | 2177 | |
488f131b JB |
2178 | case BPSTAT_WHAT_LAST: |
2179 | /* Not a real code, but listed here to shut up gcc -Wall. */ | |
c906108c | 2180 | |
488f131b JB |
2181 | case BPSTAT_WHAT_KEEP_CHECKING: |
2182 | break; | |
2183 | } | |
2184 | } | |
c906108c | 2185 | |
488f131b JB |
2186 | /* We come here if we hit a breakpoint but should not |
2187 | stop for it. Possibly we also were stepping | |
2188 | and should stop for that. So fall through and | |
2189 | test for stepping. But, if not stepping, | |
2190 | do not stop. */ | |
c906108c | 2191 | |
488f131b JB |
2192 | /* Are we stepping to get the inferior out of the dynamic |
2193 | linker's hook (and possibly the dld itself) after catching | |
2194 | a shlib event? */ | |
2195 | if (ecs->stepping_through_solib_after_catch) | |
2196 | { | |
2197 | #if defined(SOLIB_ADD) | |
2198 | /* Have we reached our destination? If not, keep going. */ | |
2199 | if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc)) | |
2200 | { | |
2201 | ecs->another_trap = 1; | |
2202 | keep_going (ecs); | |
104c1213 | 2203 | return; |
488f131b JB |
2204 | } |
2205 | #endif | |
2206 | /* Else, stop and report the catchpoint(s) whose triggering | |
2207 | caused us to begin stepping. */ | |
2208 | ecs->stepping_through_solib_after_catch = 0; | |
2209 | bpstat_clear (&stop_bpstat); | |
2210 | stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints); | |
2211 | bpstat_clear (&ecs->stepping_through_solib_catchpoints); | |
2212 | stop_print_frame = 1; | |
2213 | stop_stepping (ecs); | |
2214 | return; | |
2215 | } | |
c906108c | 2216 | |
488f131b JB |
2217 | if (step_resume_breakpoint) |
2218 | { | |
2219 | /* Having a step-resume breakpoint overrides anything | |
2220 | else having to do with stepping commands until | |
2221 | that breakpoint is reached. */ | |
488f131b JB |
2222 | keep_going (ecs); |
2223 | return; | |
2224 | } | |
c5aa993b | 2225 | |
488f131b JB |
2226 | if (step_range_end == 0) |
2227 | { | |
2228 | /* Likewise if we aren't even stepping. */ | |
488f131b JB |
2229 | keep_going (ecs); |
2230 | return; | |
2231 | } | |
c5aa993b | 2232 | |
488f131b | 2233 | /* If stepping through a line, keep going if still within it. |
c906108c | 2234 | |
488f131b JB |
2235 | Note that step_range_end is the address of the first instruction |
2236 | beyond the step range, and NOT the address of the last instruction | |
2237 | within it! */ | |
2238 | if (stop_pc >= step_range_start && stop_pc < step_range_end) | |
2239 | { | |
488f131b JB |
2240 | keep_going (ecs); |
2241 | return; | |
2242 | } | |
c5aa993b | 2243 | |
488f131b | 2244 | /* We stepped out of the stepping range. */ |
c906108c | 2245 | |
488f131b JB |
2246 | /* If we are stepping at the source level and entered the runtime |
2247 | loader dynamic symbol resolution code, we keep on single stepping | |
2248 | until we exit the run time loader code and reach the callee's | |
2249 | address. */ | |
2250 | if (step_over_calls == STEP_OVER_UNDEBUGGABLE | |
2251 | && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)) | |
2252 | { | |
4c8c40e6 MK |
2253 | CORE_ADDR pc_after_resolver = |
2254 | gdbarch_skip_solib_resolver (current_gdbarch, stop_pc); | |
c906108c | 2255 | |
488f131b JB |
2256 | if (pc_after_resolver) |
2257 | { | |
2258 | /* Set up a step-resume breakpoint at the address | |
2259 | indicated by SKIP_SOLIB_RESOLVER. */ | |
2260 | struct symtab_and_line sr_sal; | |
fe39c653 | 2261 | init_sal (&sr_sal); |
488f131b JB |
2262 | sr_sal.pc = pc_after_resolver; |
2263 | ||
44cbf7b5 | 2264 | insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id); |
c5aa993b | 2265 | } |
c906108c | 2266 | |
488f131b JB |
2267 | keep_going (ecs); |
2268 | return; | |
2269 | } | |
c906108c | 2270 | |
42edda50 AC |
2271 | if (step_range_end != 1 |
2272 | && (step_over_calls == STEP_OVER_UNDEBUGGABLE | |
2273 | || step_over_calls == STEP_OVER_ALL) | |
2274 | && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME) | |
488f131b | 2275 | { |
42edda50 | 2276 | /* The inferior, while doing a "step" or "next", has ended up in |
8fb3e588 AC |
2277 | a signal trampoline (either by a signal being delivered or by |
2278 | the signal handler returning). Just single-step until the | |
2279 | inferior leaves the trampoline (either by calling the handler | |
2280 | or returning). */ | |
488f131b JB |
2281 | keep_going (ecs); |
2282 | return; | |
2283 | } | |
c906108c | 2284 | |
8fb3e588 | 2285 | if (frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id)) |
488f131b JB |
2286 | { |
2287 | /* It's a subroutine call. */ | |
95918acb | 2288 | CORE_ADDR real_stop_pc; |
8fb3e588 | 2289 | |
95918acb AC |
2290 | if ((step_over_calls == STEP_OVER_NONE) |
2291 | || ((step_range_end == 1) | |
2292 | && in_prologue (prev_pc, ecs->stop_func_start))) | |
2293 | { | |
2294 | /* I presume that step_over_calls is only 0 when we're | |
2295 | supposed to be stepping at the assembly language level | |
2296 | ("stepi"). Just stop. */ | |
2297 | /* Also, maybe we just did a "nexti" inside a prolog, so we | |
2298 | thought it was a subroutine call but it was not. Stop as | |
2299 | well. FENN */ | |
2300 | stop_step = 1; | |
2301 | print_stop_reason (END_STEPPING_RANGE, 0); | |
2302 | stop_stepping (ecs); | |
2303 | return; | |
2304 | } | |
8fb3e588 | 2305 | |
8567c30f AC |
2306 | if (step_over_calls == STEP_OVER_ALL) |
2307 | { | |
2308 | /* We're doing a "next", set a breakpoint at callee's return | |
2309 | address (the address at which the caller will | |
2310 | resume). */ | |
44cbf7b5 | 2311 | insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ())); |
8567c30f AC |
2312 | keep_going (ecs); |
2313 | return; | |
2314 | } | |
a53c66de | 2315 | |
95918acb | 2316 | /* If we are in a function call trampoline (a stub between the |
8fb3e588 AC |
2317 | calling routine and the real function), locate the real |
2318 | function. That's what tells us (a) whether we want to step | |
2319 | into it at all, and (b) what prologue we want to run to the | |
2320 | end of, if we do step into it. */ | |
95918acb AC |
2321 | real_stop_pc = skip_language_trampoline (stop_pc); |
2322 | if (real_stop_pc == 0) | |
2323 | real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc); | |
2324 | if (real_stop_pc != 0) | |
2325 | ecs->stop_func_start = real_stop_pc; | |
8fb3e588 | 2326 | |
1b2bfbb9 RC |
2327 | if (IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)) |
2328 | { | |
2329 | struct symtab_and_line sr_sal; | |
2330 | init_sal (&sr_sal); | |
2331 | sr_sal.pc = ecs->stop_func_start; | |
2332 | ||
44cbf7b5 | 2333 | insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id); |
8fb3e588 AC |
2334 | keep_going (ecs); |
2335 | return; | |
1b2bfbb9 RC |
2336 | } |
2337 | ||
95918acb | 2338 | /* If we have line number information for the function we are |
8fb3e588 | 2339 | thinking of stepping into, step into it. |
95918acb | 2340 | |
8fb3e588 AC |
2341 | If there are several symtabs at that PC (e.g. with include |
2342 | files), just want to know whether *any* of them have line | |
2343 | numbers. find_pc_line handles this. */ | |
95918acb AC |
2344 | { |
2345 | struct symtab_and_line tmp_sal; | |
8fb3e588 | 2346 | |
95918acb AC |
2347 | tmp_sal = find_pc_line (ecs->stop_func_start, 0); |
2348 | if (tmp_sal.line != 0) | |
2349 | { | |
2350 | step_into_function (ecs); | |
2351 | return; | |
2352 | } | |
2353 | } | |
2354 | ||
2355 | /* If we have no line number and the step-stop-if-no-debug is | |
8fb3e588 AC |
2356 | set, we stop the step so that the user has a chance to switch |
2357 | in assembly mode. */ | |
95918acb AC |
2358 | if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug) |
2359 | { | |
2360 | stop_step = 1; | |
2361 | print_stop_reason (END_STEPPING_RANGE, 0); | |
2362 | stop_stepping (ecs); | |
2363 | return; | |
2364 | } | |
2365 | ||
2366 | /* Set a breakpoint at callee's return address (the address at | |
8fb3e588 | 2367 | which the caller will resume). */ |
44cbf7b5 | 2368 | insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ())); |
95918acb | 2369 | keep_going (ecs); |
488f131b | 2370 | return; |
488f131b | 2371 | } |
c906108c | 2372 | |
488f131b JB |
2373 | /* If we're in the return path from a shared library trampoline, |
2374 | we want to proceed through the trampoline when stepping. */ | |
2375 | if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name)) | |
2376 | { | |
488f131b | 2377 | /* Determine where this trampoline returns. */ |
5cf4d23a | 2378 | CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc); |
c906108c | 2379 | |
488f131b | 2380 | /* Only proceed through if we know where it's going. */ |
d764a824 | 2381 | if (real_stop_pc) |
488f131b JB |
2382 | { |
2383 | /* And put the step-breakpoint there and go until there. */ | |
2384 | struct symtab_and_line sr_sal; | |
2385 | ||
fe39c653 | 2386 | init_sal (&sr_sal); /* initialize to zeroes */ |
d764a824 | 2387 | sr_sal.pc = real_stop_pc; |
488f131b | 2388 | sr_sal.section = find_pc_overlay (sr_sal.pc); |
44cbf7b5 AC |
2389 | |
2390 | /* Do not specify what the fp should be when we stop since | |
2391 | on some machines the prologue is where the new fp value | |
2392 | is established. */ | |
2393 | insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id); | |
c906108c | 2394 | |
488f131b JB |
2395 | /* Restart without fiddling with the step ranges or |
2396 | other state. */ | |
2397 | keep_going (ecs); | |
2398 | return; | |
2399 | } | |
2400 | } | |
c906108c | 2401 | |
1b2bfbb9 RC |
2402 | /* NOTE: tausq/2004-05-24: This if block used to be done before all |
2403 | the trampoline processing logic, however, there are some trampolines | |
2404 | that have no names, so we should do trampoline handling first. */ | |
2405 | if (step_over_calls == STEP_OVER_UNDEBUGGABLE | |
2406 | && ecs->stop_func_name == NULL) | |
2407 | { | |
2408 | /* The inferior just stepped into, or returned to, an | |
2409 | undebuggable function (where there is no symbol, not even a | |
2410 | minimal symbol, corresponding to the address where the | |
2411 | inferior stopped). Since we want to skip this kind of code, | |
2412 | we keep going until the inferior returns from this | |
2413 | function. */ | |
2414 | if (step_stop_if_no_debug) | |
2415 | { | |
2416 | /* If we have no line number and the step-stop-if-no-debug | |
2417 | is set, we stop the step so that the user has a chance to | |
2418 | switch in assembly mode. */ | |
2419 | stop_step = 1; | |
2420 | print_stop_reason (END_STEPPING_RANGE, 0); | |
2421 | stop_stepping (ecs); | |
2422 | return; | |
2423 | } | |
2424 | else | |
2425 | { | |
2426 | /* Set a breakpoint at callee's return address (the address | |
2427 | at which the caller will resume). */ | |
44cbf7b5 | 2428 | insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ())); |
1b2bfbb9 RC |
2429 | keep_going (ecs); |
2430 | return; | |
2431 | } | |
2432 | } | |
2433 | ||
2434 | if (step_range_end == 1) | |
2435 | { | |
2436 | /* It is stepi or nexti. We always want to stop stepping after | |
2437 | one instruction. */ | |
2438 | stop_step = 1; | |
2439 | print_stop_reason (END_STEPPING_RANGE, 0); | |
2440 | stop_stepping (ecs); | |
2441 | return; | |
2442 | } | |
2443 | ||
2444 | ecs->sal = find_pc_line (stop_pc, 0); | |
2445 | ||
488f131b JB |
2446 | if (ecs->sal.line == 0) |
2447 | { | |
2448 | /* We have no line number information. That means to stop | |
2449 | stepping (does this always happen right after one instruction, | |
2450 | when we do "s" in a function with no line numbers, | |
2451 | or can this happen as a result of a return or longjmp?). */ | |
2452 | stop_step = 1; | |
2453 | print_stop_reason (END_STEPPING_RANGE, 0); | |
2454 | stop_stepping (ecs); | |
2455 | return; | |
2456 | } | |
c906108c | 2457 | |
488f131b JB |
2458 | if ((stop_pc == ecs->sal.pc) |
2459 | && (ecs->current_line != ecs->sal.line | |
2460 | || ecs->current_symtab != ecs->sal.symtab)) | |
2461 | { | |
2462 | /* We are at the start of a different line. So stop. Note that | |
2463 | we don't stop if we step into the middle of a different line. | |
2464 | That is said to make things like for (;;) statements work | |
2465 | better. */ | |
2466 | stop_step = 1; | |
2467 | print_stop_reason (END_STEPPING_RANGE, 0); | |
2468 | stop_stepping (ecs); | |
2469 | return; | |
2470 | } | |
c906108c | 2471 | |
488f131b | 2472 | /* We aren't done stepping. |
c906108c | 2473 | |
488f131b JB |
2474 | Optimize by setting the stepping range to the line. |
2475 | (We might not be in the original line, but if we entered a | |
2476 | new line in mid-statement, we continue stepping. This makes | |
2477 | things like for(;;) statements work better.) */ | |
c906108c | 2478 | |
488f131b | 2479 | if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end) |
c5aa993b | 2480 | { |
488f131b JB |
2481 | /* If this is the last line of the function, don't keep stepping |
2482 | (it would probably step us out of the function). | |
2483 | This is particularly necessary for a one-line function, | |
2484 | in which after skipping the prologue we better stop even though | |
2485 | we will be in mid-line. */ | |
2486 | stop_step = 1; | |
2487 | print_stop_reason (END_STEPPING_RANGE, 0); | |
2488 | stop_stepping (ecs); | |
2489 | return; | |
c5aa993b | 2490 | } |
488f131b JB |
2491 | step_range_start = ecs->sal.pc; |
2492 | step_range_end = ecs->sal.end; | |
aa0cd9c1 | 2493 | step_frame_id = get_frame_id (get_current_frame ()); |
488f131b JB |
2494 | ecs->current_line = ecs->sal.line; |
2495 | ecs->current_symtab = ecs->sal.symtab; | |
2496 | ||
aa0cd9c1 AC |
2497 | /* In the case where we just stepped out of a function into the |
2498 | middle of a line of the caller, continue stepping, but | |
2499 | step_frame_id must be modified to current frame */ | |
65815ea1 AC |
2500 | #if 0 |
2501 | /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too | |
2502 | generous. It will trigger on things like a step into a frameless | |
2503 | stackless leaf function. I think the logic should instead look | |
2504 | at the unwound frame ID has that should give a more robust | |
2505 | indication of what happened. */ | |
8fb3e588 AC |
2506 | if (step - ID == current - ID) |
2507 | still stepping in same function; | |
2508 | else if (step - ID == unwind (current - ID)) | |
2509 | stepped into a function; | |
2510 | else | |
2511 | stepped out of a function; | |
2512 | /* Of course this assumes that the frame ID unwind code is robust | |
2513 | and we're willing to introduce frame unwind logic into this | |
2514 | function. Fortunately, those days are nearly upon us. */ | |
65815ea1 | 2515 | #endif |
488f131b | 2516 | { |
aa0cd9c1 AC |
2517 | struct frame_id current_frame = get_frame_id (get_current_frame ()); |
2518 | if (!(frame_id_inner (current_frame, step_frame_id))) | |
2519 | step_frame_id = current_frame; | |
488f131b | 2520 | } |
c906108c | 2521 | |
488f131b | 2522 | keep_going (ecs); |
104c1213 JM |
2523 | } |
2524 | ||
2525 | /* Are we in the middle of stepping? */ | |
2526 | ||
2527 | static int | |
2528 | currently_stepping (struct execution_control_state *ecs) | |
2529 | { | |
d303a6c7 | 2530 | return ((!ecs->handling_longjmp |
104c1213 JM |
2531 | && ((step_range_end && step_resume_breakpoint == NULL) |
2532 | || trap_expected)) | |
2533 | || ecs->stepping_through_solib_after_catch | |
2534 | || bpstat_should_step ()); | |
2535 | } | |
c906108c | 2536 | |
c2c6d25f JM |
2537 | /* Subroutine call with source code we should not step over. Do step |
2538 | to the first line of code in it. */ | |
2539 | ||
2540 | static void | |
2541 | step_into_function (struct execution_control_state *ecs) | |
2542 | { | |
2543 | struct symtab *s; | |
2544 | struct symtab_and_line sr_sal; | |
2545 | ||
2546 | s = find_pc_symtab (stop_pc); | |
2547 | if (s && s->language != language_asm) | |
2548 | ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start); | |
2549 | ||
2550 | ecs->sal = find_pc_line (ecs->stop_func_start, 0); | |
2551 | /* Use the step_resume_break to step until the end of the prologue, | |
2552 | even if that involves jumps (as it seems to on the vax under | |
2553 | 4.2). */ | |
2554 | /* If the prologue ends in the middle of a source line, continue to | |
2555 | the end of that source line (if it is still within the function). | |
2556 | Otherwise, just go to end of prologue. */ | |
c2c6d25f JM |
2557 | if (ecs->sal.end |
2558 | && ecs->sal.pc != ecs->stop_func_start | |
2559 | && ecs->sal.end < ecs->stop_func_end) | |
2560 | ecs->stop_func_start = ecs->sal.end; | |
c2c6d25f | 2561 | |
2dbd5e30 KB |
2562 | /* Architectures which require breakpoint adjustment might not be able |
2563 | to place a breakpoint at the computed address. If so, the test | |
2564 | ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust | |
2565 | ecs->stop_func_start to an address at which a breakpoint may be | |
2566 | legitimately placed. | |
8fb3e588 | 2567 | |
2dbd5e30 KB |
2568 | Note: kevinb/2004-01-19: On FR-V, if this adjustment is not |
2569 | made, GDB will enter an infinite loop when stepping through | |
2570 | optimized code consisting of VLIW instructions which contain | |
2571 | subinstructions corresponding to different source lines. On | |
2572 | FR-V, it's not permitted to place a breakpoint on any but the | |
2573 | first subinstruction of a VLIW instruction. When a breakpoint is | |
2574 | set, GDB will adjust the breakpoint address to the beginning of | |
2575 | the VLIW instruction. Thus, we need to make the corresponding | |
2576 | adjustment here when computing the stop address. */ | |
8fb3e588 | 2577 | |
2dbd5e30 KB |
2578 | if (gdbarch_adjust_breakpoint_address_p (current_gdbarch)) |
2579 | { | |
2580 | ecs->stop_func_start | |
2581 | = gdbarch_adjust_breakpoint_address (current_gdbarch, | |
8fb3e588 | 2582 | ecs->stop_func_start); |
2dbd5e30 KB |
2583 | } |
2584 | ||
c2c6d25f JM |
2585 | if (ecs->stop_func_start == stop_pc) |
2586 | { | |
2587 | /* We are already there: stop now. */ | |
2588 | stop_step = 1; | |
488f131b | 2589 | print_stop_reason (END_STEPPING_RANGE, 0); |
c2c6d25f JM |
2590 | stop_stepping (ecs); |
2591 | return; | |
2592 | } | |
2593 | else | |
2594 | { | |
2595 | /* Put the step-breakpoint there and go until there. */ | |
fe39c653 | 2596 | init_sal (&sr_sal); /* initialize to zeroes */ |
c2c6d25f JM |
2597 | sr_sal.pc = ecs->stop_func_start; |
2598 | sr_sal.section = find_pc_overlay (ecs->stop_func_start); | |
44cbf7b5 | 2599 | |
c2c6d25f | 2600 | /* Do not specify what the fp should be when we stop since on |
488f131b JB |
2601 | some machines the prologue is where the new fp value is |
2602 | established. */ | |
44cbf7b5 | 2603 | insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id); |
c2c6d25f JM |
2604 | |
2605 | /* And make sure stepping stops right away then. */ | |
2606 | step_range_end = step_range_start; | |
2607 | } | |
2608 | keep_going (ecs); | |
2609 | } | |
d4f3574e | 2610 | |
44cbf7b5 AC |
2611 | /* Insert a "step resume breakpoint" at SR_SAL with frame ID SR_ID. |
2612 | This is used to both functions and to skip over code. */ | |
2613 | ||
2614 | static void | |
2615 | insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal, | |
2616 | struct frame_id sr_id) | |
2617 | { | |
2618 | /* There should never be more than one step-resume breakpoint per | |
2619 | thread, so we should never be setting a new | |
2620 | step_resume_breakpoint when one is already active. */ | |
2621 | gdb_assert (step_resume_breakpoint == NULL); | |
2622 | step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id, | |
2623 | bp_step_resume); | |
2624 | if (breakpoints_inserted) | |
2625 | insert_breakpoints (); | |
2626 | } | |
2627 | ||
7ce450bd AC |
2628 | /* Insert a "step resume breakpoint" at RETURN_FRAME.pc. This is used |
2629 | to skip a function (next, skip-no-debug) or signal. It's assumed | |
2630 | that the function/signal handler being skipped eventually returns | |
2631 | to the breakpoint inserted at RETURN_FRAME.pc. | |
2632 | ||
2633 | For the skip-function case, the function may have been reached by | |
2634 | either single stepping a call / return / signal-return instruction, | |
2635 | or by hitting a breakpoint. In all cases, the RETURN_FRAME belongs | |
2636 | to the skip-function's caller. | |
2637 | ||
2638 | For the signals case, this is called with the interrupted | |
2639 | function's frame. The signal handler, when it returns, will resume | |
2640 | the interrupted function at RETURN_FRAME.pc. */ | |
d303a6c7 AC |
2641 | |
2642 | static void | |
44cbf7b5 | 2643 | insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame) |
d303a6c7 AC |
2644 | { |
2645 | struct symtab_and_line sr_sal; | |
2646 | ||
d303a6c7 AC |
2647 | init_sal (&sr_sal); /* initialize to zeros */ |
2648 | ||
7ce450bd | 2649 | sr_sal.pc = ADDR_BITS_REMOVE (get_frame_pc (return_frame)); |
d303a6c7 AC |
2650 | sr_sal.section = find_pc_overlay (sr_sal.pc); |
2651 | ||
44cbf7b5 | 2652 | insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame)); |
d303a6c7 AC |
2653 | } |
2654 | ||
104c1213 JM |
2655 | static void |
2656 | stop_stepping (struct execution_control_state *ecs) | |
2657 | { | |
cd0fc7c3 SS |
2658 | /* Let callers know we don't want to wait for the inferior anymore. */ |
2659 | ecs->wait_some_more = 0; | |
2660 | } | |
2661 | ||
d4f3574e SS |
2662 | /* This function handles various cases where we need to continue |
2663 | waiting for the inferior. */ | |
2664 | /* (Used to be the keep_going: label in the old wait_for_inferior) */ | |
2665 | ||
2666 | static void | |
2667 | keep_going (struct execution_control_state *ecs) | |
2668 | { | |
d4f3574e | 2669 | /* Save the pc before execution, to compare with pc after stop. */ |
488f131b | 2670 | prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */ |
d4f3574e | 2671 | |
d4f3574e SS |
2672 | /* If we did not do break;, it means we should keep running the |
2673 | inferior and not return to debugger. */ | |
2674 | ||
2675 | if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP) | |
2676 | { | |
2677 | /* We took a signal (which we are supposed to pass through to | |
488f131b JB |
2678 | the inferior, else we'd have done a break above) and we |
2679 | haven't yet gotten our trap. Simply continue. */ | |
d4f3574e SS |
2680 | resume (currently_stepping (ecs), stop_signal); |
2681 | } | |
2682 | else | |
2683 | { | |
2684 | /* Either the trap was not expected, but we are continuing | |
488f131b JB |
2685 | anyway (the user asked that this signal be passed to the |
2686 | child) | |
2687 | -- or -- | |
2688 | The signal was SIGTRAP, e.g. it was our signal, but we | |
2689 | decided we should resume from it. | |
d4f3574e | 2690 | |
68f53502 | 2691 | We're going to run this baby now! */ |
d4f3574e | 2692 | |
68f53502 | 2693 | if (!breakpoints_inserted && !ecs->another_trap) |
d4f3574e SS |
2694 | { |
2695 | breakpoints_failed = insert_breakpoints (); | |
2696 | if (breakpoints_failed) | |
2697 | { | |
2698 | stop_stepping (ecs); | |
2699 | return; | |
2700 | } | |
2701 | breakpoints_inserted = 1; | |
2702 | } | |
2703 | ||
2704 | trap_expected = ecs->another_trap; | |
2705 | ||
2706 | /* Do not deliver SIGNAL_TRAP (except when the user explicitly | |
488f131b JB |
2707 | specifies that such a signal should be delivered to the |
2708 | target program). | |
2709 | ||
2710 | Typically, this would occure when a user is debugging a | |
2711 | target monitor on a simulator: the target monitor sets a | |
2712 | breakpoint; the simulator encounters this break-point and | |
2713 | halts the simulation handing control to GDB; GDB, noteing | |
2714 | that the break-point isn't valid, returns control back to the | |
2715 | simulator; the simulator then delivers the hardware | |
2716 | equivalent of a SIGNAL_TRAP to the program being debugged. */ | |
2717 | ||
2718 | if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal]) | |
d4f3574e SS |
2719 | stop_signal = TARGET_SIGNAL_0; |
2720 | ||
d4f3574e SS |
2721 | |
2722 | resume (currently_stepping (ecs), stop_signal); | |
2723 | } | |
2724 | ||
488f131b | 2725 | prepare_to_wait (ecs); |
d4f3574e SS |
2726 | } |
2727 | ||
104c1213 JM |
2728 | /* This function normally comes after a resume, before |
2729 | handle_inferior_event exits. It takes care of any last bits of | |
2730 | housekeeping, and sets the all-important wait_some_more flag. */ | |
cd0fc7c3 | 2731 | |
104c1213 JM |
2732 | static void |
2733 | prepare_to_wait (struct execution_control_state *ecs) | |
cd0fc7c3 | 2734 | { |
104c1213 JM |
2735 | if (ecs->infwait_state == infwait_normal_state) |
2736 | { | |
2737 | overlay_cache_invalid = 1; | |
2738 | ||
2739 | /* We have to invalidate the registers BEFORE calling | |
488f131b JB |
2740 | target_wait because they can be loaded from the target while |
2741 | in target_wait. This makes remote debugging a bit more | |
2742 | efficient for those targets that provide critical registers | |
2743 | as part of their normal status mechanism. */ | |
104c1213 JM |
2744 | |
2745 | registers_changed (); | |
39f77062 | 2746 | ecs->waiton_ptid = pid_to_ptid (-1); |
104c1213 JM |
2747 | ecs->wp = &(ecs->ws); |
2748 | } | |
2749 | /* This is the old end of the while loop. Let everybody know we | |
2750 | want to wait for the inferior some more and get called again | |
2751 | soon. */ | |
2752 | ecs->wait_some_more = 1; | |
c906108c | 2753 | } |
11cf8741 JM |
2754 | |
2755 | /* Print why the inferior has stopped. We always print something when | |
2756 | the inferior exits, or receives a signal. The rest of the cases are | |
2757 | dealt with later on in normal_stop() and print_it_typical(). Ideally | |
2758 | there should be a call to this function from handle_inferior_event() | |
2759 | each time stop_stepping() is called.*/ | |
2760 | static void | |
2761 | print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info) | |
2762 | { | |
2763 | switch (stop_reason) | |
2764 | { | |
2765 | case STOP_UNKNOWN: | |
2766 | /* We don't deal with these cases from handle_inferior_event() | |
2767 | yet. */ | |
2768 | break; | |
2769 | case END_STEPPING_RANGE: | |
2770 | /* We are done with a step/next/si/ni command. */ | |
2771 | /* For now print nothing. */ | |
fb40c209 | 2772 | /* Print a message only if not in the middle of doing a "step n" |
488f131b | 2773 | operation for n > 1 */ |
fb40c209 | 2774 | if (!step_multi || !stop_step) |
9dc5e2a9 | 2775 | if (ui_out_is_mi_like_p (uiout)) |
fb40c209 | 2776 | ui_out_field_string (uiout, "reason", "end-stepping-range"); |
11cf8741 JM |
2777 | break; |
2778 | case BREAKPOINT_HIT: | |
2779 | /* We found a breakpoint. */ | |
2780 | /* For now print nothing. */ | |
2781 | break; | |
2782 | case SIGNAL_EXITED: | |
2783 | /* The inferior was terminated by a signal. */ | |
8b93c638 | 2784 | annotate_signalled (); |
9dc5e2a9 | 2785 | if (ui_out_is_mi_like_p (uiout)) |
fb40c209 | 2786 | ui_out_field_string (uiout, "reason", "exited-signalled"); |
8b93c638 JM |
2787 | ui_out_text (uiout, "\nProgram terminated with signal "); |
2788 | annotate_signal_name (); | |
488f131b JB |
2789 | ui_out_field_string (uiout, "signal-name", |
2790 | target_signal_to_name (stop_info)); | |
8b93c638 JM |
2791 | annotate_signal_name_end (); |
2792 | ui_out_text (uiout, ", "); | |
2793 | annotate_signal_string (); | |
488f131b JB |
2794 | ui_out_field_string (uiout, "signal-meaning", |
2795 | target_signal_to_string (stop_info)); | |
8b93c638 JM |
2796 | annotate_signal_string_end (); |
2797 | ui_out_text (uiout, ".\n"); | |
2798 | ui_out_text (uiout, "The program no longer exists.\n"); | |
11cf8741 JM |
2799 | break; |
2800 | case EXITED: | |
2801 | /* The inferior program is finished. */ | |
8b93c638 JM |
2802 | annotate_exited (stop_info); |
2803 | if (stop_info) | |
2804 | { | |
9dc5e2a9 | 2805 | if (ui_out_is_mi_like_p (uiout)) |
fb40c209 | 2806 | ui_out_field_string (uiout, "reason", "exited"); |
8b93c638 | 2807 | ui_out_text (uiout, "\nProgram exited with code "); |
488f131b JB |
2808 | ui_out_field_fmt (uiout, "exit-code", "0%o", |
2809 | (unsigned int) stop_info); | |
8b93c638 JM |
2810 | ui_out_text (uiout, ".\n"); |
2811 | } | |
2812 | else | |
2813 | { | |
9dc5e2a9 | 2814 | if (ui_out_is_mi_like_p (uiout)) |
fb40c209 | 2815 | ui_out_field_string (uiout, "reason", "exited-normally"); |
8b93c638 JM |
2816 | ui_out_text (uiout, "\nProgram exited normally.\n"); |
2817 | } | |
11cf8741 JM |
2818 | break; |
2819 | case SIGNAL_RECEIVED: | |
2820 | /* Signal received. The signal table tells us to print about | |
2821 | it. */ | |
8b93c638 JM |
2822 | annotate_signal (); |
2823 | ui_out_text (uiout, "\nProgram received signal "); | |
2824 | annotate_signal_name (); | |
84c6c83c KS |
2825 | if (ui_out_is_mi_like_p (uiout)) |
2826 | ui_out_field_string (uiout, "reason", "signal-received"); | |
488f131b JB |
2827 | ui_out_field_string (uiout, "signal-name", |
2828 | target_signal_to_name (stop_info)); | |
8b93c638 JM |
2829 | annotate_signal_name_end (); |
2830 | ui_out_text (uiout, ", "); | |
2831 | annotate_signal_string (); | |
488f131b JB |
2832 | ui_out_field_string (uiout, "signal-meaning", |
2833 | target_signal_to_string (stop_info)); | |
8b93c638 JM |
2834 | annotate_signal_string_end (); |
2835 | ui_out_text (uiout, ".\n"); | |
11cf8741 JM |
2836 | break; |
2837 | default: | |
8e65ff28 AC |
2838 | internal_error (__FILE__, __LINE__, |
2839 | "print_stop_reason: unrecognized enum value"); | |
11cf8741 JM |
2840 | break; |
2841 | } | |
2842 | } | |
c906108c | 2843 | \f |
43ff13b4 | 2844 | |
c906108c SS |
2845 | /* Here to return control to GDB when the inferior stops for real. |
2846 | Print appropriate messages, remove breakpoints, give terminal our modes. | |
2847 | ||
2848 | STOP_PRINT_FRAME nonzero means print the executing frame | |
2849 | (pc, function, args, file, line number and line text). | |
2850 | BREAKPOINTS_FAILED nonzero means stop was due to error | |
2851 | attempting to insert breakpoints. */ | |
2852 | ||
2853 | void | |
96baa820 | 2854 | normal_stop (void) |
c906108c | 2855 | { |
73b65bb0 DJ |
2856 | struct target_waitstatus last; |
2857 | ptid_t last_ptid; | |
2858 | ||
2859 | get_last_target_status (&last_ptid, &last); | |
2860 | ||
c906108c SS |
2861 | /* As with the notification of thread events, we want to delay |
2862 | notifying the user that we've switched thread context until | |
2863 | the inferior actually stops. | |
2864 | ||
73b65bb0 DJ |
2865 | There's no point in saying anything if the inferior has exited. |
2866 | Note that SIGNALLED here means "exited with a signal", not | |
2867 | "received a signal". */ | |
488f131b | 2868 | if (!ptid_equal (previous_inferior_ptid, inferior_ptid) |
73b65bb0 DJ |
2869 | && target_has_execution |
2870 | && last.kind != TARGET_WAITKIND_SIGNALLED | |
2871 | && last.kind != TARGET_WAITKIND_EXITED) | |
c906108c SS |
2872 | { |
2873 | target_terminal_ours_for_output (); | |
c3f6f71d | 2874 | printf_filtered ("[Switching to %s]\n", |
39f77062 KB |
2875 | target_pid_or_tid_to_str (inferior_ptid)); |
2876 | previous_inferior_ptid = inferior_ptid; | |
c906108c | 2877 | } |
c906108c | 2878 | |
4fa8626c | 2879 | /* NOTE drow/2004-01-17: Is this still necessary? */ |
c906108c SS |
2880 | /* Make sure that the current_frame's pc is correct. This |
2881 | is a correction for setting up the frame info before doing | |
2882 | DECR_PC_AFTER_BREAK */ | |
b87efeee AC |
2883 | if (target_has_execution) |
2884 | /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to | |
2885 | DECR_PC_AFTER_BREAK, the program counter can change. Ask the | |
2886 | frame code to check for this and sort out any resultant mess. | |
2887 | DECR_PC_AFTER_BREAK needs to just go away. */ | |
2f107107 | 2888 | deprecated_update_frame_pc_hack (get_current_frame (), read_pc ()); |
c906108c | 2889 | |
c906108c SS |
2890 | if (target_has_execution && breakpoints_inserted) |
2891 | { | |
2892 | if (remove_breakpoints ()) | |
2893 | { | |
2894 | target_terminal_ours_for_output (); | |
2895 | printf_filtered ("Cannot remove breakpoints because "); | |
2896 | printf_filtered ("program is no longer writable.\n"); | |
2897 | printf_filtered ("It might be running in another process.\n"); | |
2898 | printf_filtered ("Further execution is probably impossible.\n"); | |
2899 | } | |
2900 | } | |
2901 | breakpoints_inserted = 0; | |
2902 | ||
2903 | /* Delete the breakpoint we stopped at, if it wants to be deleted. | |
2904 | Delete any breakpoint that is to be deleted at the next stop. */ | |
2905 | ||
2906 | breakpoint_auto_delete (stop_bpstat); | |
2907 | ||
2908 | /* If an auto-display called a function and that got a signal, | |
2909 | delete that auto-display to avoid an infinite recursion. */ | |
2910 | ||
2911 | if (stopped_by_random_signal) | |
2912 | disable_current_display (); | |
2913 | ||
2914 | /* Don't print a message if in the middle of doing a "step n" | |
2915 | operation for n > 1 */ | |
2916 | if (step_multi && stop_step) | |
2917 | goto done; | |
2918 | ||
2919 | target_terminal_ours (); | |
2920 | ||
5913bcb0 AC |
2921 | /* Look up the hook_stop and run it (CLI internally handles problem |
2922 | of stop_command's pre-hook not existing). */ | |
2923 | if (stop_command) | |
2924 | catch_errors (hook_stop_stub, stop_command, | |
2925 | "Error while running hook_stop:\n", RETURN_MASK_ALL); | |
c906108c SS |
2926 | |
2927 | if (!target_has_stack) | |
2928 | { | |
2929 | ||
2930 | goto done; | |
2931 | } | |
2932 | ||
2933 | /* Select innermost stack frame - i.e., current frame is frame 0, | |
2934 | and current location is based on that. | |
2935 | Don't do this on return from a stack dummy routine, | |
2936 | or if the program has exited. */ | |
2937 | ||
2938 | if (!stop_stack_dummy) | |
2939 | { | |
0f7d239c | 2940 | select_frame (get_current_frame ()); |
c906108c SS |
2941 | |
2942 | /* Print current location without a level number, if | |
c5aa993b JM |
2943 | we have changed functions or hit a breakpoint. |
2944 | Print source line if we have one. | |
2945 | bpstat_print() contains the logic deciding in detail | |
2946 | what to print, based on the event(s) that just occurred. */ | |
c906108c | 2947 | |
6e7f8b9c | 2948 | if (stop_print_frame && deprecated_selected_frame) |
c906108c SS |
2949 | { |
2950 | int bpstat_ret; | |
2951 | int source_flag; | |
917317f4 | 2952 | int do_frame_printing = 1; |
c906108c SS |
2953 | |
2954 | bpstat_ret = bpstat_print (stop_bpstat); | |
917317f4 JM |
2955 | switch (bpstat_ret) |
2956 | { | |
2957 | case PRINT_UNKNOWN: | |
aa0cd9c1 | 2958 | /* FIXME: cagney/2002-12-01: Given that a frame ID does |
8fb3e588 AC |
2959 | (or should) carry around the function and does (or |
2960 | should) use that when doing a frame comparison. */ | |
917317f4 | 2961 | if (stop_step |
aa0cd9c1 AC |
2962 | && frame_id_eq (step_frame_id, |
2963 | get_frame_id (get_current_frame ())) | |
917317f4 | 2964 | && step_start_function == find_pc_function (stop_pc)) |
488f131b | 2965 | source_flag = SRC_LINE; /* finished step, just print source line */ |
917317f4 | 2966 | else |
488f131b | 2967 | source_flag = SRC_AND_LOC; /* print location and source line */ |
917317f4 JM |
2968 | break; |
2969 | case PRINT_SRC_AND_LOC: | |
488f131b | 2970 | source_flag = SRC_AND_LOC; /* print location and source line */ |
917317f4 JM |
2971 | break; |
2972 | case PRINT_SRC_ONLY: | |
c5394b80 | 2973 | source_flag = SRC_LINE; |
917317f4 JM |
2974 | break; |
2975 | case PRINT_NOTHING: | |
488f131b | 2976 | source_flag = SRC_LINE; /* something bogus */ |
917317f4 JM |
2977 | do_frame_printing = 0; |
2978 | break; | |
2979 | default: | |
488f131b | 2980 | internal_error (__FILE__, __LINE__, "Unknown value."); |
917317f4 | 2981 | } |
fb40c209 | 2982 | /* For mi, have the same behavior every time we stop: |
488f131b | 2983 | print everything but the source line. */ |
9dc5e2a9 | 2984 | if (ui_out_is_mi_like_p (uiout)) |
fb40c209 | 2985 | source_flag = LOC_AND_ADDRESS; |
c906108c | 2986 | |
9dc5e2a9 | 2987 | if (ui_out_is_mi_like_p (uiout)) |
39f77062 | 2988 | ui_out_field_int (uiout, "thread-id", |
488f131b | 2989 | pid_to_thread_id (inferior_ptid)); |
c906108c SS |
2990 | /* The behavior of this routine with respect to the source |
2991 | flag is: | |
c5394b80 JM |
2992 | SRC_LINE: Print only source line |
2993 | LOCATION: Print only location | |
2994 | SRC_AND_LOC: Print location and source line */ | |
917317f4 | 2995 | if (do_frame_printing) |
b04f3ab4 | 2996 | print_stack_frame (get_selected_frame (NULL), 0, source_flag); |
c906108c SS |
2997 | |
2998 | /* Display the auto-display expressions. */ | |
2999 | do_displays (); | |
3000 | } | |
3001 | } | |
3002 | ||
3003 | /* Save the function value return registers, if we care. | |
3004 | We might be about to restore their previous contents. */ | |
3005 | if (proceed_to_finish) | |
72cec141 AC |
3006 | /* NB: The copy goes through to the target picking up the value of |
3007 | all the registers. */ | |
3008 | regcache_cpy (stop_registers, current_regcache); | |
c906108c SS |
3009 | |
3010 | if (stop_stack_dummy) | |
3011 | { | |
dbe9fe58 AC |
3012 | /* Pop the empty frame that contains the stack dummy. POP_FRAME |
3013 | ends with a setting of the current frame, so we can use that | |
3014 | next. */ | |
3015 | frame_pop (get_current_frame ()); | |
c906108c | 3016 | /* Set stop_pc to what it was before we called the function. |
c5aa993b JM |
3017 | Can't rely on restore_inferior_status because that only gets |
3018 | called if we don't stop in the called function. */ | |
c906108c | 3019 | stop_pc = read_pc (); |
0f7d239c | 3020 | select_frame (get_current_frame ()); |
c906108c SS |
3021 | } |
3022 | ||
c906108c SS |
3023 | done: |
3024 | annotate_stopped (); | |
7a464420 | 3025 | observer_notify_normal_stop (stop_bpstat); |
c906108c SS |
3026 | } |
3027 | ||
3028 | static int | |
96baa820 | 3029 | hook_stop_stub (void *cmd) |
c906108c | 3030 | { |
5913bcb0 | 3031 | execute_cmd_pre_hook ((struct cmd_list_element *) cmd); |
c906108c SS |
3032 | return (0); |
3033 | } | |
3034 | \f | |
c5aa993b | 3035 | int |
96baa820 | 3036 | signal_stop_state (int signo) |
c906108c SS |
3037 | { |
3038 | return signal_stop[signo]; | |
3039 | } | |
3040 | ||
c5aa993b | 3041 | int |
96baa820 | 3042 | signal_print_state (int signo) |
c906108c SS |
3043 | { |
3044 | return signal_print[signo]; | |
3045 | } | |
3046 | ||
c5aa993b | 3047 | int |
96baa820 | 3048 | signal_pass_state (int signo) |
c906108c SS |
3049 | { |
3050 | return signal_program[signo]; | |
3051 | } | |
3052 | ||
488f131b | 3053 | int |
7bda5e4a | 3054 | signal_stop_update (int signo, int state) |
d4f3574e SS |
3055 | { |
3056 | int ret = signal_stop[signo]; | |
3057 | signal_stop[signo] = state; | |
3058 | return ret; | |
3059 | } | |
3060 | ||
488f131b | 3061 | int |
7bda5e4a | 3062 | signal_print_update (int signo, int state) |
d4f3574e SS |
3063 | { |
3064 | int ret = signal_print[signo]; | |
3065 | signal_print[signo] = state; | |
3066 | return ret; | |
3067 | } | |
3068 | ||
488f131b | 3069 | int |
7bda5e4a | 3070 | signal_pass_update (int signo, int state) |
d4f3574e SS |
3071 | { |
3072 | int ret = signal_program[signo]; | |
3073 | signal_program[signo] = state; | |
3074 | return ret; | |
3075 | } | |
3076 | ||
c906108c | 3077 | static void |
96baa820 | 3078 | sig_print_header (void) |
c906108c SS |
3079 | { |
3080 | printf_filtered ("\ | |
3081 | Signal Stop\tPrint\tPass to program\tDescription\n"); | |
3082 | } | |
3083 | ||
3084 | static void | |
96baa820 | 3085 | sig_print_info (enum target_signal oursig) |
c906108c SS |
3086 | { |
3087 | char *name = target_signal_to_name (oursig); | |
3088 | int name_padding = 13 - strlen (name); | |
96baa820 | 3089 | |
c906108c SS |
3090 | if (name_padding <= 0) |
3091 | name_padding = 0; | |
3092 | ||
3093 | printf_filtered ("%s", name); | |
488f131b | 3094 | printf_filtered ("%*.*s ", name_padding, name_padding, " "); |
c906108c SS |
3095 | printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No"); |
3096 | printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No"); | |
3097 | printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No"); | |
3098 | printf_filtered ("%s\n", target_signal_to_string (oursig)); | |
3099 | } | |
3100 | ||
3101 | /* Specify how various signals in the inferior should be handled. */ | |
3102 | ||
3103 | static void | |
96baa820 | 3104 | handle_command (char *args, int from_tty) |
c906108c SS |
3105 | { |
3106 | char **argv; | |
3107 | int digits, wordlen; | |
3108 | int sigfirst, signum, siglast; | |
3109 | enum target_signal oursig; | |
3110 | int allsigs; | |
3111 | int nsigs; | |
3112 | unsigned char *sigs; | |
3113 | struct cleanup *old_chain; | |
3114 | ||
3115 | if (args == NULL) | |
3116 | { | |
3117 | error_no_arg ("signal to handle"); | |
3118 | } | |
3119 | ||
3120 | /* Allocate and zero an array of flags for which signals to handle. */ | |
3121 | ||
3122 | nsigs = (int) TARGET_SIGNAL_LAST; | |
3123 | sigs = (unsigned char *) alloca (nsigs); | |
3124 | memset (sigs, 0, nsigs); | |
3125 | ||
3126 | /* Break the command line up into args. */ | |
3127 | ||
3128 | argv = buildargv (args); | |
3129 | if (argv == NULL) | |
3130 | { | |
3131 | nomem (0); | |
3132 | } | |
7a292a7a | 3133 | old_chain = make_cleanup_freeargv (argv); |
c906108c SS |
3134 | |
3135 | /* Walk through the args, looking for signal oursigs, signal names, and | |
3136 | actions. Signal numbers and signal names may be interspersed with | |
3137 | actions, with the actions being performed for all signals cumulatively | |
3138 | specified. Signal ranges can be specified as <LOW>-<HIGH>. */ | |
3139 | ||
3140 | while (*argv != NULL) | |
3141 | { | |
3142 | wordlen = strlen (*argv); | |
3143 | for (digits = 0; isdigit ((*argv)[digits]); digits++) | |
3144 | {; | |
3145 | } | |
3146 | allsigs = 0; | |
3147 | sigfirst = siglast = -1; | |
3148 | ||
3149 | if (wordlen >= 1 && !strncmp (*argv, "all", wordlen)) | |
3150 | { | |
3151 | /* Apply action to all signals except those used by the | |
3152 | debugger. Silently skip those. */ | |
3153 | allsigs = 1; | |
3154 | sigfirst = 0; | |
3155 | siglast = nsigs - 1; | |
3156 | } | |
3157 | else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen)) | |
3158 | { | |
3159 | SET_SIGS (nsigs, sigs, signal_stop); | |
3160 | SET_SIGS (nsigs, sigs, signal_print); | |
3161 | } | |
3162 | else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen)) | |
3163 | { | |
3164 | UNSET_SIGS (nsigs, sigs, signal_program); | |
3165 | } | |
3166 | else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen)) | |
3167 | { | |
3168 | SET_SIGS (nsigs, sigs, signal_print); | |
3169 | } | |
3170 | else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen)) | |
3171 | { | |
3172 | SET_SIGS (nsigs, sigs, signal_program); | |
3173 | } | |
3174 | else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen)) | |
3175 | { | |
3176 | UNSET_SIGS (nsigs, sigs, signal_stop); | |
3177 | } | |
3178 | else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen)) | |
3179 | { | |
3180 | SET_SIGS (nsigs, sigs, signal_program); | |
3181 | } | |
3182 | else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen)) | |
3183 | { | |
3184 | UNSET_SIGS (nsigs, sigs, signal_print); | |
3185 | UNSET_SIGS (nsigs, sigs, signal_stop); | |
3186 | } | |
3187 | else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen)) | |
3188 | { | |
3189 | UNSET_SIGS (nsigs, sigs, signal_program); | |
3190 | } | |
3191 | else if (digits > 0) | |
3192 | { | |
3193 | /* It is numeric. The numeric signal refers to our own | |
3194 | internal signal numbering from target.h, not to host/target | |
3195 | signal number. This is a feature; users really should be | |
3196 | using symbolic names anyway, and the common ones like | |
3197 | SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */ | |
3198 | ||
3199 | sigfirst = siglast = (int) | |
3200 | target_signal_from_command (atoi (*argv)); | |
3201 | if ((*argv)[digits] == '-') | |
3202 | { | |
3203 | siglast = (int) | |
3204 | target_signal_from_command (atoi ((*argv) + digits + 1)); | |
3205 | } | |
3206 | if (sigfirst > siglast) | |
3207 | { | |
3208 | /* Bet he didn't figure we'd think of this case... */ | |
3209 | signum = sigfirst; | |
3210 | sigfirst = siglast; | |
3211 | siglast = signum; | |
3212 | } | |
3213 | } | |
3214 | else | |
3215 | { | |
3216 | oursig = target_signal_from_name (*argv); | |
3217 | if (oursig != TARGET_SIGNAL_UNKNOWN) | |
3218 | { | |
3219 | sigfirst = siglast = (int) oursig; | |
3220 | } | |
3221 | else | |
3222 | { | |
3223 | /* Not a number and not a recognized flag word => complain. */ | |
3224 | error ("Unrecognized or ambiguous flag word: \"%s\".", *argv); | |
3225 | } | |
3226 | } | |
3227 | ||
3228 | /* If any signal numbers or symbol names were found, set flags for | |
c5aa993b | 3229 | which signals to apply actions to. */ |
c906108c SS |
3230 | |
3231 | for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++) | |
3232 | { | |
3233 | switch ((enum target_signal) signum) | |
3234 | { | |
3235 | case TARGET_SIGNAL_TRAP: | |
3236 | case TARGET_SIGNAL_INT: | |
3237 | if (!allsigs && !sigs[signum]) | |
3238 | { | |
3239 | if (query ("%s is used by the debugger.\n\ | |
488f131b | 3240 | Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum))) |
c906108c SS |
3241 | { |
3242 | sigs[signum] = 1; | |
3243 | } | |
3244 | else | |
3245 | { | |
3246 | printf_unfiltered ("Not confirmed, unchanged.\n"); | |
3247 | gdb_flush (gdb_stdout); | |
3248 | } | |
3249 | } | |
3250 | break; | |
3251 | case TARGET_SIGNAL_0: | |
3252 | case TARGET_SIGNAL_DEFAULT: | |
3253 | case TARGET_SIGNAL_UNKNOWN: | |
3254 | /* Make sure that "all" doesn't print these. */ | |
3255 | break; | |
3256 | default: | |
3257 | sigs[signum] = 1; | |
3258 | break; | |
3259 | } | |
3260 | } | |
3261 | ||
3262 | argv++; | |
3263 | } | |
3264 | ||
39f77062 | 3265 | target_notice_signals (inferior_ptid); |
c906108c SS |
3266 | |
3267 | if (from_tty) | |
3268 | { | |
3269 | /* Show the results. */ | |
3270 | sig_print_header (); | |
3271 | for (signum = 0; signum < nsigs; signum++) | |
3272 | { | |
3273 | if (sigs[signum]) | |
3274 | { | |
3275 | sig_print_info (signum); | |
3276 | } | |
3277 | } | |
3278 | } | |
3279 | ||
3280 | do_cleanups (old_chain); | |
3281 | } | |
3282 | ||
3283 | static void | |
96baa820 | 3284 | xdb_handle_command (char *args, int from_tty) |
c906108c SS |
3285 | { |
3286 | char **argv; | |
3287 | struct cleanup *old_chain; | |
3288 | ||
3289 | /* Break the command line up into args. */ | |
3290 | ||
3291 | argv = buildargv (args); | |
3292 | if (argv == NULL) | |
3293 | { | |
3294 | nomem (0); | |
3295 | } | |
7a292a7a | 3296 | old_chain = make_cleanup_freeargv (argv); |
c906108c SS |
3297 | if (argv[1] != (char *) NULL) |
3298 | { | |
3299 | char *argBuf; | |
3300 | int bufLen; | |
3301 | ||
3302 | bufLen = strlen (argv[0]) + 20; | |
3303 | argBuf = (char *) xmalloc (bufLen); | |
3304 | if (argBuf) | |
3305 | { | |
3306 | int validFlag = 1; | |
3307 | enum target_signal oursig; | |
3308 | ||
3309 | oursig = target_signal_from_name (argv[0]); | |
3310 | memset (argBuf, 0, bufLen); | |
3311 | if (strcmp (argv[1], "Q") == 0) | |
3312 | sprintf (argBuf, "%s %s", argv[0], "noprint"); | |
3313 | else | |
3314 | { | |
3315 | if (strcmp (argv[1], "s") == 0) | |
3316 | { | |
3317 | if (!signal_stop[oursig]) | |
3318 | sprintf (argBuf, "%s %s", argv[0], "stop"); | |
3319 | else | |
3320 | sprintf (argBuf, "%s %s", argv[0], "nostop"); | |
3321 | } | |
3322 | else if (strcmp (argv[1], "i") == 0) | |
3323 | { | |
3324 | if (!signal_program[oursig]) | |
3325 | sprintf (argBuf, "%s %s", argv[0], "pass"); | |
3326 | else | |
3327 | sprintf (argBuf, "%s %s", argv[0], "nopass"); | |
3328 | } | |
3329 | else if (strcmp (argv[1], "r") == 0) | |
3330 | { | |
3331 | if (!signal_print[oursig]) | |
3332 | sprintf (argBuf, "%s %s", argv[0], "print"); | |
3333 | else | |
3334 | sprintf (argBuf, "%s %s", argv[0], "noprint"); | |
3335 | } | |
3336 | else | |
3337 | validFlag = 0; | |
3338 | } | |
3339 | if (validFlag) | |
3340 | handle_command (argBuf, from_tty); | |
3341 | else | |
3342 | printf_filtered ("Invalid signal handling flag.\n"); | |
3343 | if (argBuf) | |
b8c9b27d | 3344 | xfree (argBuf); |
c906108c SS |
3345 | } |
3346 | } | |
3347 | do_cleanups (old_chain); | |
3348 | } | |
3349 | ||
3350 | /* Print current contents of the tables set by the handle command. | |
3351 | It is possible we should just be printing signals actually used | |
3352 | by the current target (but for things to work right when switching | |
3353 | targets, all signals should be in the signal tables). */ | |
3354 | ||
3355 | static void | |
96baa820 | 3356 | signals_info (char *signum_exp, int from_tty) |
c906108c SS |
3357 | { |
3358 | enum target_signal oursig; | |
3359 | sig_print_header (); | |
3360 | ||
3361 | if (signum_exp) | |
3362 | { | |
3363 | /* First see if this is a symbol name. */ | |
3364 | oursig = target_signal_from_name (signum_exp); | |
3365 | if (oursig == TARGET_SIGNAL_UNKNOWN) | |
3366 | { | |
3367 | /* No, try numeric. */ | |
3368 | oursig = | |
bb518678 | 3369 | target_signal_from_command (parse_and_eval_long (signum_exp)); |
c906108c SS |
3370 | } |
3371 | sig_print_info (oursig); | |
3372 | return; | |
3373 | } | |
3374 | ||
3375 | printf_filtered ("\n"); | |
3376 | /* These ugly casts brought to you by the native VAX compiler. */ | |
3377 | for (oursig = TARGET_SIGNAL_FIRST; | |
3378 | (int) oursig < (int) TARGET_SIGNAL_LAST; | |
3379 | oursig = (enum target_signal) ((int) oursig + 1)) | |
3380 | { | |
3381 | QUIT; | |
3382 | ||
3383 | if (oursig != TARGET_SIGNAL_UNKNOWN | |
488f131b | 3384 | && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0) |
c906108c SS |
3385 | sig_print_info (oursig); |
3386 | } | |
3387 | ||
3388 | printf_filtered ("\nUse the \"handle\" command to change these tables.\n"); | |
3389 | } | |
3390 | \f | |
7a292a7a SS |
3391 | struct inferior_status |
3392 | { | |
3393 | enum target_signal stop_signal; | |
3394 | CORE_ADDR stop_pc; | |
3395 | bpstat stop_bpstat; | |
3396 | int stop_step; | |
3397 | int stop_stack_dummy; | |
3398 | int stopped_by_random_signal; | |
3399 | int trap_expected; | |
3400 | CORE_ADDR step_range_start; | |
3401 | CORE_ADDR step_range_end; | |
aa0cd9c1 | 3402 | struct frame_id step_frame_id; |
5fbbeb29 | 3403 | enum step_over_calls_kind step_over_calls; |
7a292a7a SS |
3404 | CORE_ADDR step_resume_break_address; |
3405 | int stop_after_trap; | |
c0236d92 | 3406 | int stop_soon; |
72cec141 | 3407 | struct regcache *stop_registers; |
7a292a7a SS |
3408 | |
3409 | /* These are here because if call_function_by_hand has written some | |
3410 | registers and then decides to call error(), we better not have changed | |
3411 | any registers. */ | |
72cec141 | 3412 | struct regcache *registers; |
7a292a7a | 3413 | |
101dcfbe AC |
3414 | /* A frame unique identifier. */ |
3415 | struct frame_id selected_frame_id; | |
3416 | ||
7a292a7a SS |
3417 | int breakpoint_proceeded; |
3418 | int restore_stack_info; | |
3419 | int proceed_to_finish; | |
3420 | }; | |
3421 | ||
7a292a7a | 3422 | void |
96baa820 JM |
3423 | write_inferior_status_register (struct inferior_status *inf_status, int regno, |
3424 | LONGEST val) | |
7a292a7a | 3425 | { |
3acba339 | 3426 | int size = register_size (current_gdbarch, regno); |
7a292a7a SS |
3427 | void *buf = alloca (size); |
3428 | store_signed_integer (buf, size, val); | |
0818c12a | 3429 | regcache_raw_write (inf_status->registers, regno, buf); |
7a292a7a SS |
3430 | } |
3431 | ||
c906108c SS |
3432 | /* Save all of the information associated with the inferior<==>gdb |
3433 | connection. INF_STATUS is a pointer to a "struct inferior_status" | |
3434 | (defined in inferior.h). */ | |
3435 | ||
7a292a7a | 3436 | struct inferior_status * |
96baa820 | 3437 | save_inferior_status (int restore_stack_info) |
c906108c | 3438 | { |
72cec141 | 3439 | struct inferior_status *inf_status = XMALLOC (struct inferior_status); |
7a292a7a | 3440 | |
c906108c SS |
3441 | inf_status->stop_signal = stop_signal; |
3442 | inf_status->stop_pc = stop_pc; | |
3443 | inf_status->stop_step = stop_step; | |
3444 | inf_status->stop_stack_dummy = stop_stack_dummy; | |
3445 | inf_status->stopped_by_random_signal = stopped_by_random_signal; | |
3446 | inf_status->trap_expected = trap_expected; | |
3447 | inf_status->step_range_start = step_range_start; | |
3448 | inf_status->step_range_end = step_range_end; | |
aa0cd9c1 | 3449 | inf_status->step_frame_id = step_frame_id; |
c906108c SS |
3450 | inf_status->step_over_calls = step_over_calls; |
3451 | inf_status->stop_after_trap = stop_after_trap; | |
c0236d92 | 3452 | inf_status->stop_soon = stop_soon; |
c906108c SS |
3453 | /* Save original bpstat chain here; replace it with copy of chain. |
3454 | If caller's caller is walking the chain, they'll be happier if we | |
7a292a7a SS |
3455 | hand them back the original chain when restore_inferior_status is |
3456 | called. */ | |
c906108c SS |
3457 | inf_status->stop_bpstat = stop_bpstat; |
3458 | stop_bpstat = bpstat_copy (stop_bpstat); | |
3459 | inf_status->breakpoint_proceeded = breakpoint_proceeded; | |
3460 | inf_status->restore_stack_info = restore_stack_info; | |
3461 | inf_status->proceed_to_finish = proceed_to_finish; | |
c5aa993b | 3462 | |
72cec141 | 3463 | inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers); |
c906108c | 3464 | |
72cec141 | 3465 | inf_status->registers = regcache_dup (current_regcache); |
c906108c | 3466 | |
7a424e99 | 3467 | inf_status->selected_frame_id = get_frame_id (deprecated_selected_frame); |
7a292a7a | 3468 | return inf_status; |
c906108c SS |
3469 | } |
3470 | ||
c906108c | 3471 | static int |
96baa820 | 3472 | restore_selected_frame (void *args) |
c906108c | 3473 | { |
488f131b | 3474 | struct frame_id *fid = (struct frame_id *) args; |
c906108c | 3475 | struct frame_info *frame; |
c906108c | 3476 | |
101dcfbe | 3477 | frame = frame_find_by_id (*fid); |
c906108c | 3478 | |
aa0cd9c1 AC |
3479 | /* If inf_status->selected_frame_id is NULL, there was no previously |
3480 | selected frame. */ | |
101dcfbe | 3481 | if (frame == NULL) |
c906108c SS |
3482 | { |
3483 | warning ("Unable to restore previously selected frame.\n"); | |
3484 | return 0; | |
3485 | } | |
3486 | ||
0f7d239c | 3487 | select_frame (frame); |
c906108c SS |
3488 | |
3489 | return (1); | |
3490 | } | |
3491 | ||
3492 | void | |
96baa820 | 3493 | restore_inferior_status (struct inferior_status *inf_status) |
c906108c SS |
3494 | { |
3495 | stop_signal = inf_status->stop_signal; | |
3496 | stop_pc = inf_status->stop_pc; | |
3497 | stop_step = inf_status->stop_step; | |
3498 | stop_stack_dummy = inf_status->stop_stack_dummy; | |
3499 | stopped_by_random_signal = inf_status->stopped_by_random_signal; | |
3500 | trap_expected = inf_status->trap_expected; | |
3501 | step_range_start = inf_status->step_range_start; | |
3502 | step_range_end = inf_status->step_range_end; | |
aa0cd9c1 | 3503 | step_frame_id = inf_status->step_frame_id; |
c906108c SS |
3504 | step_over_calls = inf_status->step_over_calls; |
3505 | stop_after_trap = inf_status->stop_after_trap; | |
c0236d92 | 3506 | stop_soon = inf_status->stop_soon; |
c906108c SS |
3507 | bpstat_clear (&stop_bpstat); |
3508 | stop_bpstat = inf_status->stop_bpstat; | |
3509 | breakpoint_proceeded = inf_status->breakpoint_proceeded; | |
3510 | proceed_to_finish = inf_status->proceed_to_finish; | |
3511 | ||
72cec141 AC |
3512 | /* FIXME: Is the restore of stop_registers always needed. */ |
3513 | regcache_xfree (stop_registers); | |
3514 | stop_registers = inf_status->stop_registers; | |
c906108c SS |
3515 | |
3516 | /* The inferior can be gone if the user types "print exit(0)" | |
3517 | (and perhaps other times). */ | |
3518 | if (target_has_execution) | |
72cec141 AC |
3519 | /* NB: The register write goes through to the target. */ |
3520 | regcache_cpy (current_regcache, inf_status->registers); | |
3521 | regcache_xfree (inf_status->registers); | |
c906108c | 3522 | |
c906108c SS |
3523 | /* FIXME: If we are being called after stopping in a function which |
3524 | is called from gdb, we should not be trying to restore the | |
3525 | selected frame; it just prints a spurious error message (The | |
3526 | message is useful, however, in detecting bugs in gdb (like if gdb | |
3527 | clobbers the stack)). In fact, should we be restoring the | |
3528 | inferior status at all in that case? . */ | |
3529 | ||
3530 | if (target_has_stack && inf_status->restore_stack_info) | |
3531 | { | |
c906108c | 3532 | /* The point of catch_errors is that if the stack is clobbered, |
101dcfbe AC |
3533 | walking the stack might encounter a garbage pointer and |
3534 | error() trying to dereference it. */ | |
488f131b JB |
3535 | if (catch_errors |
3536 | (restore_selected_frame, &inf_status->selected_frame_id, | |
3537 | "Unable to restore previously selected frame:\n", | |
3538 | RETURN_MASK_ERROR) == 0) | |
c906108c SS |
3539 | /* Error in restoring the selected frame. Select the innermost |
3540 | frame. */ | |
0f7d239c | 3541 | select_frame (get_current_frame ()); |
c906108c SS |
3542 | |
3543 | } | |
c906108c | 3544 | |
72cec141 | 3545 | xfree (inf_status); |
7a292a7a | 3546 | } |
c906108c | 3547 | |
74b7792f AC |
3548 | static void |
3549 | do_restore_inferior_status_cleanup (void *sts) | |
3550 | { | |
3551 | restore_inferior_status (sts); | |
3552 | } | |
3553 | ||
3554 | struct cleanup * | |
3555 | make_cleanup_restore_inferior_status (struct inferior_status *inf_status) | |
3556 | { | |
3557 | return make_cleanup (do_restore_inferior_status_cleanup, inf_status); | |
3558 | } | |
3559 | ||
c906108c | 3560 | void |
96baa820 | 3561 | discard_inferior_status (struct inferior_status *inf_status) |
7a292a7a SS |
3562 | { |
3563 | /* See save_inferior_status for info on stop_bpstat. */ | |
3564 | bpstat_clear (&inf_status->stop_bpstat); | |
72cec141 AC |
3565 | regcache_xfree (inf_status->registers); |
3566 | regcache_xfree (inf_status->stop_registers); | |
3567 | xfree (inf_status); | |
7a292a7a SS |
3568 | } |
3569 | ||
47932f85 DJ |
3570 | int |
3571 | inferior_has_forked (int pid, int *child_pid) | |
3572 | { | |
3573 | struct target_waitstatus last; | |
3574 | ptid_t last_ptid; | |
3575 | ||
3576 | get_last_target_status (&last_ptid, &last); | |
3577 | ||
3578 | if (last.kind != TARGET_WAITKIND_FORKED) | |
3579 | return 0; | |
3580 | ||
3581 | if (ptid_get_pid (last_ptid) != pid) | |
3582 | return 0; | |
3583 | ||
3584 | *child_pid = last.value.related_pid; | |
3585 | return 1; | |
3586 | } | |
3587 | ||
3588 | int | |
3589 | inferior_has_vforked (int pid, int *child_pid) | |
3590 | { | |
3591 | struct target_waitstatus last; | |
3592 | ptid_t last_ptid; | |
3593 | ||
3594 | get_last_target_status (&last_ptid, &last); | |
3595 | ||
3596 | if (last.kind != TARGET_WAITKIND_VFORKED) | |
3597 | return 0; | |
3598 | ||
3599 | if (ptid_get_pid (last_ptid) != pid) | |
3600 | return 0; | |
3601 | ||
3602 | *child_pid = last.value.related_pid; | |
3603 | return 1; | |
3604 | } | |
3605 | ||
3606 | int | |
3607 | inferior_has_execd (int pid, char **execd_pathname) | |
3608 | { | |
3609 | struct target_waitstatus last; | |
3610 | ptid_t last_ptid; | |
3611 | ||
3612 | get_last_target_status (&last_ptid, &last); | |
3613 | ||
3614 | if (last.kind != TARGET_WAITKIND_EXECD) | |
3615 | return 0; | |
3616 | ||
3617 | if (ptid_get_pid (last_ptid) != pid) | |
3618 | return 0; | |
3619 | ||
3620 | *execd_pathname = xstrdup (last.value.execd_pathname); | |
3621 | return 1; | |
3622 | } | |
3623 | ||
ca6724c1 KB |
3624 | /* Oft used ptids */ |
3625 | ptid_t null_ptid; | |
3626 | ptid_t minus_one_ptid; | |
3627 | ||
3628 | /* Create a ptid given the necessary PID, LWP, and TID components. */ | |
488f131b | 3629 | |
ca6724c1 KB |
3630 | ptid_t |
3631 | ptid_build (int pid, long lwp, long tid) | |
3632 | { | |
3633 | ptid_t ptid; | |
3634 | ||
3635 | ptid.pid = pid; | |
3636 | ptid.lwp = lwp; | |
3637 | ptid.tid = tid; | |
3638 | return ptid; | |
3639 | } | |
3640 | ||
3641 | /* Create a ptid from just a pid. */ | |
3642 | ||
3643 | ptid_t | |
3644 | pid_to_ptid (int pid) | |
3645 | { | |
3646 | return ptid_build (pid, 0, 0); | |
3647 | } | |
3648 | ||
3649 | /* Fetch the pid (process id) component from a ptid. */ | |
3650 | ||
3651 | int | |
3652 | ptid_get_pid (ptid_t ptid) | |
3653 | { | |
3654 | return ptid.pid; | |
3655 | } | |
3656 | ||
3657 | /* Fetch the lwp (lightweight process) component from a ptid. */ | |
3658 | ||
3659 | long | |
3660 | ptid_get_lwp (ptid_t ptid) | |
3661 | { | |
3662 | return ptid.lwp; | |
3663 | } | |
3664 | ||
3665 | /* Fetch the tid (thread id) component from a ptid. */ | |
3666 | ||
3667 | long | |
3668 | ptid_get_tid (ptid_t ptid) | |
3669 | { | |
3670 | return ptid.tid; | |
3671 | } | |
3672 | ||
3673 | /* ptid_equal() is used to test equality of two ptids. */ | |
3674 | ||
3675 | int | |
3676 | ptid_equal (ptid_t ptid1, ptid_t ptid2) | |
3677 | { | |
3678 | return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp | |
488f131b | 3679 | && ptid1.tid == ptid2.tid); |
ca6724c1 KB |
3680 | } |
3681 | ||
3682 | /* restore_inferior_ptid() will be used by the cleanup machinery | |
3683 | to restore the inferior_ptid value saved in a call to | |
3684 | save_inferior_ptid(). */ | |
ce696e05 KB |
3685 | |
3686 | static void | |
3687 | restore_inferior_ptid (void *arg) | |
3688 | { | |
3689 | ptid_t *saved_ptid_ptr = arg; | |
3690 | inferior_ptid = *saved_ptid_ptr; | |
3691 | xfree (arg); | |
3692 | } | |
3693 | ||
3694 | /* Save the value of inferior_ptid so that it may be restored by a | |
3695 | later call to do_cleanups(). Returns the struct cleanup pointer | |
3696 | needed for later doing the cleanup. */ | |
3697 | ||
3698 | struct cleanup * | |
3699 | save_inferior_ptid (void) | |
3700 | { | |
3701 | ptid_t *saved_ptid_ptr; | |
3702 | ||
3703 | saved_ptid_ptr = xmalloc (sizeof (ptid_t)); | |
3704 | *saved_ptid_ptr = inferior_ptid; | |
3705 | return make_cleanup (restore_inferior_ptid, saved_ptid_ptr); | |
3706 | } | |
c5aa993b | 3707 | \f |
488f131b | 3708 | |
7a292a7a | 3709 | static void |
96baa820 | 3710 | build_infrun (void) |
7a292a7a | 3711 | { |
72cec141 | 3712 | stop_registers = regcache_xmalloc (current_gdbarch); |
7a292a7a | 3713 | } |
c906108c | 3714 | |
c906108c | 3715 | void |
96baa820 | 3716 | _initialize_infrun (void) |
c906108c | 3717 | { |
52f0bd74 AC |
3718 | int i; |
3719 | int numsigs; | |
c906108c SS |
3720 | struct cmd_list_element *c; |
3721 | ||
046a4708 AC |
3722 | DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers); |
3723 | deprecated_register_gdbarch_swap (NULL, 0, build_infrun); | |
0f71a2f6 | 3724 | |
c906108c SS |
3725 | add_info ("signals", signals_info, |
3726 | "What debugger does when program gets various signals.\n\ | |
3727 | Specify a signal as argument to print info on that signal only."); | |
3728 | add_info_alias ("handle", "signals", 0); | |
3729 | ||
3730 | add_com ("handle", class_run, handle_command, | |
3731 | concat ("Specify how to handle a signal.\n\ | |
3732 | Args are signals and actions to apply to those signals.\n\ | |
3733 | Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\ | |
3734 | from 1-15 are allowed for compatibility with old versions of GDB.\n\ | |
3735 | Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\ | |
3736 | The special arg \"all\" is recognized to mean all signals except those\n\ | |
488f131b | 3737 | used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\ |
c906108c SS |
3738 | \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\ |
3739 | Stop means reenter debugger if this signal happens (implies print).\n\ | |
3740 | Print means print a message if this signal happens.\n\ | |
3741 | Pass means let program see this signal; otherwise program doesn't know.\n\ | |
3742 | Ignore is a synonym for nopass and noignore is a synonym for pass.\n\ | |
3743 | Pass and Stop may be combined.", NULL)); | |
3744 | if (xdb_commands) | |
3745 | { | |
3746 | add_com ("lz", class_info, signals_info, | |
3747 | "What debugger does when program gets various signals.\n\ | |
3748 | Specify a signal as argument to print info on that signal only."); | |
3749 | add_com ("z", class_run, xdb_handle_command, | |
3750 | concat ("Specify how to handle a signal.\n\ | |
3751 | Args are signals and actions to apply to those signals.\n\ | |
3752 | Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\ | |
3753 | from 1-15 are allowed for compatibility with old versions of GDB.\n\ | |
3754 | Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\ | |
3755 | The special arg \"all\" is recognized to mean all signals except those\n\ | |
488f131b | 3756 | used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"s\" (toggles between stop and nostop), \n\ |
c906108c SS |
3757 | \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \ |
3758 | nopass), \"Q\" (noprint)\n\ | |
3759 | Stop means reenter debugger if this signal happens (implies print).\n\ | |
3760 | Print means print a message if this signal happens.\n\ | |
3761 | Pass means let program see this signal; otherwise program doesn't know.\n\ | |
3762 | Ignore is a synonym for nopass and noignore is a synonym for pass.\n\ | |
3763 | Pass and Stop may be combined.", NULL)); | |
3764 | } | |
3765 | ||
3766 | if (!dbx_commands) | |
488f131b JB |
3767 | stop_command = |
3768 | add_cmd ("stop", class_obscure, not_just_help_class_command, "There is no `stop' command, but you can set a hook on `stop'.\n\ | |
c906108c SS |
3769 | This allows you to set a list of commands to be run each time execution\n\ |
3770 | of the program stops.", &cmdlist); | |
3771 | ||
3772 | numsigs = (int) TARGET_SIGNAL_LAST; | |
488f131b | 3773 | signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs); |
c906108c SS |
3774 | signal_print = (unsigned char *) |
3775 | xmalloc (sizeof (signal_print[0]) * numsigs); | |
3776 | signal_program = (unsigned char *) | |
3777 | xmalloc (sizeof (signal_program[0]) * numsigs); | |
3778 | for (i = 0; i < numsigs; i++) | |
3779 | { | |
3780 | signal_stop[i] = 1; | |
3781 | signal_print[i] = 1; | |
3782 | signal_program[i] = 1; | |
3783 | } | |
3784 | ||
3785 | /* Signals caused by debugger's own actions | |
3786 | should not be given to the program afterwards. */ | |
3787 | signal_program[TARGET_SIGNAL_TRAP] = 0; | |
3788 | signal_program[TARGET_SIGNAL_INT] = 0; | |
3789 | ||
3790 | /* Signals that are not errors should not normally enter the debugger. */ | |
3791 | signal_stop[TARGET_SIGNAL_ALRM] = 0; | |
3792 | signal_print[TARGET_SIGNAL_ALRM] = 0; | |
3793 | signal_stop[TARGET_SIGNAL_VTALRM] = 0; | |
3794 | signal_print[TARGET_SIGNAL_VTALRM] = 0; | |
3795 | signal_stop[TARGET_SIGNAL_PROF] = 0; | |
3796 | signal_print[TARGET_SIGNAL_PROF] = 0; | |
3797 | signal_stop[TARGET_SIGNAL_CHLD] = 0; | |
3798 | signal_print[TARGET_SIGNAL_CHLD] = 0; | |
3799 | signal_stop[TARGET_SIGNAL_IO] = 0; | |
3800 | signal_print[TARGET_SIGNAL_IO] = 0; | |
3801 | signal_stop[TARGET_SIGNAL_POLL] = 0; | |
3802 | signal_print[TARGET_SIGNAL_POLL] = 0; | |
3803 | signal_stop[TARGET_SIGNAL_URG] = 0; | |
3804 | signal_print[TARGET_SIGNAL_URG] = 0; | |
3805 | signal_stop[TARGET_SIGNAL_WINCH] = 0; | |
3806 | signal_print[TARGET_SIGNAL_WINCH] = 0; | |
3807 | ||
cd0fc7c3 SS |
3808 | /* These signals are used internally by user-level thread |
3809 | implementations. (See signal(5) on Solaris.) Like the above | |
3810 | signals, a healthy program receives and handles them as part of | |
3811 | its normal operation. */ | |
3812 | signal_stop[TARGET_SIGNAL_LWP] = 0; | |
3813 | signal_print[TARGET_SIGNAL_LWP] = 0; | |
3814 | signal_stop[TARGET_SIGNAL_WAITING] = 0; | |
3815 | signal_print[TARGET_SIGNAL_WAITING] = 0; | |
3816 | signal_stop[TARGET_SIGNAL_CANCEL] = 0; | |
3817 | signal_print[TARGET_SIGNAL_CANCEL] = 0; | |
3818 | ||
c906108c | 3819 | #ifdef SOLIB_ADD |
cb1a6d5f | 3820 | deprecated_add_show_from_set |
c906108c SS |
3821 | (add_set_cmd ("stop-on-solib-events", class_support, var_zinteger, |
3822 | (char *) &stop_on_solib_events, | |
3823 | "Set stopping for shared library events.\n\ | |
3824 | If nonzero, gdb will give control to the user when the dynamic linker\n\ | |
3825 | notifies gdb of shared library events. The most common event of interest\n\ | |
488f131b | 3826 | to the user would be loading/unloading of a new library.\n", &setlist), &showlist); |
c906108c SS |
3827 | #endif |
3828 | ||
3829 | c = add_set_enum_cmd ("follow-fork-mode", | |
3830 | class_run, | |
488f131b | 3831 | follow_fork_mode_kind_names, &follow_fork_mode_string, |
c906108c SS |
3832 | "Set debugger response to a program call of fork \ |
3833 | or vfork.\n\ | |
3834 | A fork or vfork creates a new process. follow-fork-mode can be:\n\ | |
3835 | parent - the original process is debugged after a fork\n\ | |
3836 | child - the new process is debugged after a fork\n\ | |
ea1dd7bc | 3837 | The unfollowed process will continue to run.\n\ |
488f131b | 3838 | By default, the debugger will follow the parent process.", &setlist); |
cb1a6d5f | 3839 | deprecated_add_show_from_set (c, &showlist); |
c906108c | 3840 | |
488f131b | 3841 | c = add_set_enum_cmd ("scheduler-locking", class_run, scheduler_enums, /* array of string names */ |
1ed2a135 | 3842 | &scheduler_mode, /* current mode */ |
c906108c SS |
3843 | "Set mode for locking scheduler during execution.\n\ |
3844 | off == no locking (threads may preempt at any time)\n\ | |
3845 | on == full locking (no thread except the current thread may run)\n\ | |
3846 | step == scheduler locked during every single-step operation.\n\ | |
3847 | In this mode, no other thread may run during a step command.\n\ | |
488f131b | 3848 | Other threads may run while stepping over a function call ('next').", &setlist); |
c906108c | 3849 | |
9f60d481 | 3850 | set_cmd_sfunc (c, set_schedlock_func); /* traps on target vector */ |
cb1a6d5f | 3851 | deprecated_add_show_from_set (c, &showlist); |
5fbbeb29 CF |
3852 | |
3853 | c = add_set_cmd ("step-mode", class_run, | |
488f131b JB |
3854 | var_boolean, (char *) &step_stop_if_no_debug, |
3855 | "Set mode of the step operation. When set, doing a step over a\n\ | |
5fbbeb29 CF |
3856 | function without debug line information will stop at the first\n\ |
3857 | instruction of that function. Otherwise, the function is skipped and\n\ | |
488f131b | 3858 | the step command stops at a different source line.", &setlist); |
cb1a6d5f | 3859 | deprecated_add_show_from_set (c, &showlist); |
ca6724c1 KB |
3860 | |
3861 | /* ptid initializations */ | |
3862 | null_ptid = ptid_build (0, 0, 0); | |
3863 | minus_one_ptid = ptid_build (-1, 0, 0); | |
3864 | inferior_ptid = null_ptid; | |
3865 | target_last_wait_ptid = minus_one_ptid; | |
c906108c | 3866 | } |