]>
Commit | Line | Data |
---|---|---|
ca557f44 AC |
1 | /* Target-struct-independent code to start (run) and stop an inferior |
2 | process. | |
8926118c | 3 | |
61baf725 | 4 | Copyright (C) 1986-2017 Free Software Foundation, Inc. |
c906108c | 5 | |
c5aa993b | 6 | This file is part of GDB. |
c906108c | 7 | |
c5aa993b JM |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 10 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 11 | (at your option) any later version. |
c906108c | 12 | |
c5aa993b JM |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
c906108c | 17 | |
c5aa993b | 18 | You should have received a copy of the GNU General Public License |
a9762ec7 | 19 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
20 | |
21 | #include "defs.h" | |
45741a9c | 22 | #include "infrun.h" |
c906108c SS |
23 | #include <ctype.h> |
24 | #include "symtab.h" | |
25 | #include "frame.h" | |
26 | #include "inferior.h" | |
27 | #include "breakpoint.h" | |
03f2053f | 28 | #include "gdb_wait.h" |
c906108c SS |
29 | #include "gdbcore.h" |
30 | #include "gdbcmd.h" | |
210661e7 | 31 | #include "cli/cli-script.h" |
c906108c SS |
32 | #include "target.h" |
33 | #include "gdbthread.h" | |
34 | #include "annotate.h" | |
1adeb98a | 35 | #include "symfile.h" |
7a292a7a | 36 | #include "top.h" |
c906108c | 37 | #include <signal.h> |
2acceee2 | 38 | #include "inf-loop.h" |
4e052eda | 39 | #include "regcache.h" |
fd0407d6 | 40 | #include "value.h" |
06600e06 | 41 | #include "observer.h" |
f636b87d | 42 | #include "language.h" |
a77053c2 | 43 | #include "solib.h" |
f17517ea | 44 | #include "main.h" |
186c406b TT |
45 | #include "dictionary.h" |
46 | #include "block.h" | |
034dad6f | 47 | #include "mi/mi-common.h" |
4f8d22e3 | 48 | #include "event-top.h" |
96429cc8 | 49 | #include "record.h" |
d02ed0bb | 50 | #include "record-full.h" |
edb3359d | 51 | #include "inline-frame.h" |
4efc6507 | 52 | #include "jit.h" |
06cd862c | 53 | #include "tracepoint.h" |
be34f849 | 54 | #include "continuations.h" |
b4a14fd0 | 55 | #include "interps.h" |
1bfeeb0f | 56 | #include "skip.h" |
28106bc2 SDJ |
57 | #include "probe.h" |
58 | #include "objfiles.h" | |
de0bea00 | 59 | #include "completer.h" |
9107fc8d | 60 | #include "target-descriptions.h" |
f15cb84a | 61 | #include "target-dcache.h" |
d83ad864 | 62 | #include "terminal.h" |
ff862be4 | 63 | #include "solist.h" |
372316f1 | 64 | #include "event-loop.h" |
243a9253 | 65 | #include "thread-fsm.h" |
8d297bbf | 66 | #include "common/enum-flags.h" |
5ed8105e PA |
67 | #include "progspace-and-thread.h" |
68 | #include "common/gdb_optional.h" | |
46a62268 | 69 | #include "arch-utils.h" |
c906108c SS |
70 | |
71 | /* Prototypes for local functions */ | |
72 | ||
11db9430 | 73 | static void info_signals_command (char *, int); |
c906108c | 74 | |
96baa820 | 75 | static void handle_command (char *, int); |
c906108c | 76 | |
2ea28649 | 77 | static void sig_print_info (enum gdb_signal); |
c906108c | 78 | |
96baa820 | 79 | static void sig_print_header (void); |
c906108c | 80 | |
74b7792f | 81 | static void resume_cleanups (void *); |
c906108c | 82 | |
96baa820 | 83 | static int hook_stop_stub (void *); |
c906108c | 84 | |
96baa820 JM |
85 | static int restore_selected_frame (void *); |
86 | ||
4ef3f3be | 87 | static int follow_fork (void); |
96baa820 | 88 | |
d83ad864 DB |
89 | static int follow_fork_inferior (int follow_child, int detach_fork); |
90 | ||
91 | static void follow_inferior_reset_breakpoints (void); | |
92 | ||
96baa820 | 93 | static void set_schedlock_func (char *args, int from_tty, |
488f131b | 94 | struct cmd_list_element *c); |
96baa820 | 95 | |
a289b8f6 JK |
96 | static int currently_stepping (struct thread_info *tp); |
97 | ||
e58b0e63 PA |
98 | void nullify_last_target_wait_ptid (void); |
99 | ||
2c03e5be | 100 | static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *); |
2484c66b UW |
101 | |
102 | static void insert_step_resume_breakpoint_at_caller (struct frame_info *); | |
103 | ||
2484c66b UW |
104 | static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR); |
105 | ||
8550d3b3 YQ |
106 | static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc); |
107 | ||
372316f1 PA |
108 | /* Asynchronous signal handler registered as event loop source for |
109 | when we have pending events ready to be passed to the core. */ | |
110 | static struct async_event_handler *infrun_async_inferior_event_token; | |
111 | ||
112 | /* Stores whether infrun_async was previously enabled or disabled. | |
113 | Starts off as -1, indicating "never enabled/disabled". */ | |
114 | static int infrun_is_async = -1; | |
115 | ||
116 | /* See infrun.h. */ | |
117 | ||
118 | void | |
119 | infrun_async (int enable) | |
120 | { | |
121 | if (infrun_is_async != enable) | |
122 | { | |
123 | infrun_is_async = enable; | |
124 | ||
125 | if (debug_infrun) | |
126 | fprintf_unfiltered (gdb_stdlog, | |
127 | "infrun: infrun_async(%d)\n", | |
128 | enable); | |
129 | ||
130 | if (enable) | |
131 | mark_async_event_handler (infrun_async_inferior_event_token); | |
132 | else | |
133 | clear_async_event_handler (infrun_async_inferior_event_token); | |
134 | } | |
135 | } | |
136 | ||
0b333c5e PA |
137 | /* See infrun.h. */ |
138 | ||
139 | void | |
140 | mark_infrun_async_event_handler (void) | |
141 | { | |
142 | mark_async_event_handler (infrun_async_inferior_event_token); | |
143 | } | |
144 | ||
5fbbeb29 CF |
145 | /* When set, stop the 'step' command if we enter a function which has |
146 | no line number information. The normal behavior is that we step | |
147 | over such function. */ | |
148 | int step_stop_if_no_debug = 0; | |
920d2a44 AC |
149 | static void |
150 | show_step_stop_if_no_debug (struct ui_file *file, int from_tty, | |
151 | struct cmd_list_element *c, const char *value) | |
152 | { | |
153 | fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value); | |
154 | } | |
5fbbeb29 | 155 | |
b9f437de PA |
156 | /* proceed and normal_stop use this to notify the user when the |
157 | inferior stopped in a different thread than it had been running | |
158 | in. */ | |
96baa820 | 159 | |
39f77062 | 160 | static ptid_t previous_inferior_ptid; |
7a292a7a | 161 | |
07107ca6 LM |
162 | /* If set (default for legacy reasons), when following a fork, GDB |
163 | will detach from one of the fork branches, child or parent. | |
164 | Exactly which branch is detached depends on 'set follow-fork-mode' | |
165 | setting. */ | |
166 | ||
167 | static int detach_fork = 1; | |
6c95b8df | 168 | |
237fc4c9 PA |
169 | int debug_displaced = 0; |
170 | static void | |
171 | show_debug_displaced (struct ui_file *file, int from_tty, | |
172 | struct cmd_list_element *c, const char *value) | |
173 | { | |
174 | fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value); | |
175 | } | |
176 | ||
ccce17b0 | 177 | unsigned int debug_infrun = 0; |
920d2a44 AC |
178 | static void |
179 | show_debug_infrun (struct ui_file *file, int from_tty, | |
180 | struct cmd_list_element *c, const char *value) | |
181 | { | |
182 | fprintf_filtered (file, _("Inferior debugging is %s.\n"), value); | |
183 | } | |
527159b7 | 184 | |
03583c20 UW |
185 | |
186 | /* Support for disabling address space randomization. */ | |
187 | ||
188 | int disable_randomization = 1; | |
189 | ||
190 | static void | |
191 | show_disable_randomization (struct ui_file *file, int from_tty, | |
192 | struct cmd_list_element *c, const char *value) | |
193 | { | |
194 | if (target_supports_disable_randomization ()) | |
195 | fprintf_filtered (file, | |
196 | _("Disabling randomization of debuggee's " | |
197 | "virtual address space is %s.\n"), | |
198 | value); | |
199 | else | |
200 | fputs_filtered (_("Disabling randomization of debuggee's " | |
201 | "virtual address space is unsupported on\n" | |
202 | "this platform.\n"), file); | |
203 | } | |
204 | ||
205 | static void | |
206 | set_disable_randomization (char *args, int from_tty, | |
207 | struct cmd_list_element *c) | |
208 | { | |
209 | if (!target_supports_disable_randomization ()) | |
210 | error (_("Disabling randomization of debuggee's " | |
211 | "virtual address space is unsupported on\n" | |
212 | "this platform.")); | |
213 | } | |
214 | ||
d32dc48e PA |
215 | /* User interface for non-stop mode. */ |
216 | ||
217 | int non_stop = 0; | |
218 | static int non_stop_1 = 0; | |
219 | ||
220 | static void | |
221 | set_non_stop (char *args, int from_tty, | |
222 | struct cmd_list_element *c) | |
223 | { | |
224 | if (target_has_execution) | |
225 | { | |
226 | non_stop_1 = non_stop; | |
227 | error (_("Cannot change this setting while the inferior is running.")); | |
228 | } | |
229 | ||
230 | non_stop = non_stop_1; | |
231 | } | |
232 | ||
233 | static void | |
234 | show_non_stop (struct ui_file *file, int from_tty, | |
235 | struct cmd_list_element *c, const char *value) | |
236 | { | |
237 | fprintf_filtered (file, | |
238 | _("Controlling the inferior in non-stop mode is %s.\n"), | |
239 | value); | |
240 | } | |
241 | ||
d914c394 SS |
242 | /* "Observer mode" is somewhat like a more extreme version of |
243 | non-stop, in which all GDB operations that might affect the | |
244 | target's execution have been disabled. */ | |
245 | ||
d914c394 SS |
246 | int observer_mode = 0; |
247 | static int observer_mode_1 = 0; | |
248 | ||
249 | static void | |
250 | set_observer_mode (char *args, int from_tty, | |
251 | struct cmd_list_element *c) | |
252 | { | |
d914c394 SS |
253 | if (target_has_execution) |
254 | { | |
255 | observer_mode_1 = observer_mode; | |
256 | error (_("Cannot change this setting while the inferior is running.")); | |
257 | } | |
258 | ||
259 | observer_mode = observer_mode_1; | |
260 | ||
261 | may_write_registers = !observer_mode; | |
262 | may_write_memory = !observer_mode; | |
263 | may_insert_breakpoints = !observer_mode; | |
264 | may_insert_tracepoints = !observer_mode; | |
265 | /* We can insert fast tracepoints in or out of observer mode, | |
266 | but enable them if we're going into this mode. */ | |
267 | if (observer_mode) | |
268 | may_insert_fast_tracepoints = 1; | |
269 | may_stop = !observer_mode; | |
270 | update_target_permissions (); | |
271 | ||
272 | /* Going *into* observer mode we must force non-stop, then | |
273 | going out we leave it that way. */ | |
274 | if (observer_mode) | |
275 | { | |
d914c394 SS |
276 | pagination_enabled = 0; |
277 | non_stop = non_stop_1 = 1; | |
278 | } | |
279 | ||
280 | if (from_tty) | |
281 | printf_filtered (_("Observer mode is now %s.\n"), | |
282 | (observer_mode ? "on" : "off")); | |
283 | } | |
284 | ||
285 | static void | |
286 | show_observer_mode (struct ui_file *file, int from_tty, | |
287 | struct cmd_list_element *c, const char *value) | |
288 | { | |
289 | fprintf_filtered (file, _("Observer mode is %s.\n"), value); | |
290 | } | |
291 | ||
292 | /* This updates the value of observer mode based on changes in | |
293 | permissions. Note that we are deliberately ignoring the values of | |
294 | may-write-registers and may-write-memory, since the user may have | |
295 | reason to enable these during a session, for instance to turn on a | |
296 | debugging-related global. */ | |
297 | ||
298 | void | |
299 | update_observer_mode (void) | |
300 | { | |
301 | int newval; | |
302 | ||
303 | newval = (!may_insert_breakpoints | |
304 | && !may_insert_tracepoints | |
305 | && may_insert_fast_tracepoints | |
306 | && !may_stop | |
307 | && non_stop); | |
308 | ||
309 | /* Let the user know if things change. */ | |
310 | if (newval != observer_mode) | |
311 | printf_filtered (_("Observer mode is now %s.\n"), | |
312 | (newval ? "on" : "off")); | |
313 | ||
314 | observer_mode = observer_mode_1 = newval; | |
315 | } | |
c2c6d25f | 316 | |
c906108c SS |
317 | /* Tables of how to react to signals; the user sets them. */ |
318 | ||
319 | static unsigned char *signal_stop; | |
320 | static unsigned char *signal_print; | |
321 | static unsigned char *signal_program; | |
322 | ||
ab04a2af TT |
323 | /* Table of signals that are registered with "catch signal". A |
324 | non-zero entry indicates that the signal is caught by some "catch | |
325 | signal" command. This has size GDB_SIGNAL_LAST, to accommodate all | |
326 | signals. */ | |
327 | static unsigned char *signal_catch; | |
328 | ||
2455069d UW |
329 | /* Table of signals that the target may silently handle. |
330 | This is automatically determined from the flags above, | |
331 | and simply cached here. */ | |
332 | static unsigned char *signal_pass; | |
333 | ||
c906108c SS |
334 | #define SET_SIGS(nsigs,sigs,flags) \ |
335 | do { \ | |
336 | int signum = (nsigs); \ | |
337 | while (signum-- > 0) \ | |
338 | if ((sigs)[signum]) \ | |
339 | (flags)[signum] = 1; \ | |
340 | } while (0) | |
341 | ||
342 | #define UNSET_SIGS(nsigs,sigs,flags) \ | |
343 | do { \ | |
344 | int signum = (nsigs); \ | |
345 | while (signum-- > 0) \ | |
346 | if ((sigs)[signum]) \ | |
347 | (flags)[signum] = 0; \ | |
348 | } while (0) | |
349 | ||
9b224c5e PA |
350 | /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of |
351 | this function is to avoid exporting `signal_program'. */ | |
352 | ||
353 | void | |
354 | update_signals_program_target (void) | |
355 | { | |
a493e3e2 | 356 | target_program_signals ((int) GDB_SIGNAL_LAST, signal_program); |
9b224c5e PA |
357 | } |
358 | ||
1777feb0 | 359 | /* Value to pass to target_resume() to cause all threads to resume. */ |
39f77062 | 360 | |
edb3359d | 361 | #define RESUME_ALL minus_one_ptid |
c906108c SS |
362 | |
363 | /* Command list pointer for the "stop" placeholder. */ | |
364 | ||
365 | static struct cmd_list_element *stop_command; | |
366 | ||
c906108c SS |
367 | /* Nonzero if we want to give control to the user when we're notified |
368 | of shared library events by the dynamic linker. */ | |
628fe4e4 | 369 | int stop_on_solib_events; |
f9e14852 GB |
370 | |
371 | /* Enable or disable optional shared library event breakpoints | |
372 | as appropriate when the above flag is changed. */ | |
373 | ||
374 | static void | |
375 | set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c) | |
376 | { | |
377 | update_solib_breakpoints (); | |
378 | } | |
379 | ||
920d2a44 AC |
380 | static void |
381 | show_stop_on_solib_events (struct ui_file *file, int from_tty, | |
382 | struct cmd_list_element *c, const char *value) | |
383 | { | |
384 | fprintf_filtered (file, _("Stopping for shared library events is %s.\n"), | |
385 | value); | |
386 | } | |
c906108c | 387 | |
c906108c SS |
388 | /* Nonzero after stop if current stack frame should be printed. */ |
389 | ||
390 | static int stop_print_frame; | |
391 | ||
e02bc4cc | 392 | /* This is a cached copy of the pid/waitstatus of the last event |
9a4105ab AC |
393 | returned by target_wait()/deprecated_target_wait_hook(). This |
394 | information is returned by get_last_target_status(). */ | |
39f77062 | 395 | static ptid_t target_last_wait_ptid; |
e02bc4cc DS |
396 | static struct target_waitstatus target_last_waitstatus; |
397 | ||
0d1e5fa7 PA |
398 | static void context_switch (ptid_t ptid); |
399 | ||
4e1c45ea | 400 | void init_thread_stepping_state (struct thread_info *tss); |
0d1e5fa7 | 401 | |
53904c9e AC |
402 | static const char follow_fork_mode_child[] = "child"; |
403 | static const char follow_fork_mode_parent[] = "parent"; | |
404 | ||
40478521 | 405 | static const char *const follow_fork_mode_kind_names[] = { |
53904c9e AC |
406 | follow_fork_mode_child, |
407 | follow_fork_mode_parent, | |
408 | NULL | |
ef346e04 | 409 | }; |
c906108c | 410 | |
53904c9e | 411 | static const char *follow_fork_mode_string = follow_fork_mode_parent; |
920d2a44 AC |
412 | static void |
413 | show_follow_fork_mode_string (struct ui_file *file, int from_tty, | |
414 | struct cmd_list_element *c, const char *value) | |
415 | { | |
3e43a32a MS |
416 | fprintf_filtered (file, |
417 | _("Debugger response to a program " | |
418 | "call of fork or vfork is \"%s\".\n"), | |
920d2a44 AC |
419 | value); |
420 | } | |
c906108c SS |
421 | \f |
422 | ||
d83ad864 DB |
423 | /* Handle changes to the inferior list based on the type of fork, |
424 | which process is being followed, and whether the other process | |
425 | should be detached. On entry inferior_ptid must be the ptid of | |
426 | the fork parent. At return inferior_ptid is the ptid of the | |
427 | followed inferior. */ | |
428 | ||
429 | static int | |
430 | follow_fork_inferior (int follow_child, int detach_fork) | |
431 | { | |
432 | int has_vforked; | |
79639e11 | 433 | ptid_t parent_ptid, child_ptid; |
d83ad864 DB |
434 | |
435 | has_vforked = (inferior_thread ()->pending_follow.kind | |
436 | == TARGET_WAITKIND_VFORKED); | |
79639e11 PA |
437 | parent_ptid = inferior_ptid; |
438 | child_ptid = inferior_thread ()->pending_follow.value.related_pid; | |
d83ad864 DB |
439 | |
440 | if (has_vforked | |
441 | && !non_stop /* Non-stop always resumes both branches. */ | |
3b12939d | 442 | && current_ui->prompt_state == PROMPT_BLOCKED |
d83ad864 DB |
443 | && !(follow_child || detach_fork || sched_multi)) |
444 | { | |
445 | /* The parent stays blocked inside the vfork syscall until the | |
446 | child execs or exits. If we don't let the child run, then | |
447 | the parent stays blocked. If we're telling the parent to run | |
448 | in the foreground, the user will not be able to ctrl-c to get | |
449 | back the terminal, effectively hanging the debug session. */ | |
450 | fprintf_filtered (gdb_stderr, _("\ | |
451 | Can not resume the parent process over vfork in the foreground while\n\ | |
452 | holding the child stopped. Try \"set detach-on-fork\" or \ | |
453 | \"set schedule-multiple\".\n")); | |
454 | /* FIXME output string > 80 columns. */ | |
455 | return 1; | |
456 | } | |
457 | ||
458 | if (!follow_child) | |
459 | { | |
460 | /* Detach new forked process? */ | |
461 | if (detach_fork) | |
462 | { | |
d83ad864 DB |
463 | /* Before detaching from the child, remove all breakpoints |
464 | from it. If we forked, then this has already been taken | |
465 | care of by infrun.c. If we vforked however, any | |
466 | breakpoint inserted in the parent is visible in the | |
467 | child, even those added while stopped in a vfork | |
468 | catchpoint. This will remove the breakpoints from the | |
469 | parent also, but they'll be reinserted below. */ | |
470 | if (has_vforked) | |
471 | { | |
472 | /* Keep breakpoints list in sync. */ | |
473 | remove_breakpoints_pid (ptid_get_pid (inferior_ptid)); | |
474 | } | |
475 | ||
476 | if (info_verbose || debug_infrun) | |
477 | { | |
8dd06f7a DB |
478 | /* Ensure that we have a process ptid. */ |
479 | ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid)); | |
480 | ||
223ffa71 | 481 | target_terminal::ours_for_output (); |
d83ad864 | 482 | fprintf_filtered (gdb_stdlog, |
79639e11 | 483 | _("Detaching after %s from child %s.\n"), |
6f259a23 | 484 | has_vforked ? "vfork" : "fork", |
8dd06f7a | 485 | target_pid_to_str (process_ptid)); |
d83ad864 DB |
486 | } |
487 | } | |
488 | else | |
489 | { | |
490 | struct inferior *parent_inf, *child_inf; | |
d83ad864 DB |
491 | |
492 | /* Add process to GDB's tables. */ | |
79639e11 | 493 | child_inf = add_inferior (ptid_get_pid (child_ptid)); |
d83ad864 DB |
494 | |
495 | parent_inf = current_inferior (); | |
496 | child_inf->attach_flag = parent_inf->attach_flag; | |
497 | copy_terminal_info (child_inf, parent_inf); | |
498 | child_inf->gdbarch = parent_inf->gdbarch; | |
499 | copy_inferior_target_desc_info (child_inf, parent_inf); | |
500 | ||
5ed8105e | 501 | scoped_restore_current_pspace_and_thread restore_pspace_thread; |
d83ad864 | 502 | |
79639e11 | 503 | inferior_ptid = child_ptid; |
d83ad864 | 504 | add_thread (inferior_ptid); |
2a00d7ce | 505 | set_current_inferior (child_inf); |
d83ad864 DB |
506 | child_inf->symfile_flags = SYMFILE_NO_READ; |
507 | ||
508 | /* If this is a vfork child, then the address-space is | |
509 | shared with the parent. */ | |
510 | if (has_vforked) | |
511 | { | |
512 | child_inf->pspace = parent_inf->pspace; | |
513 | child_inf->aspace = parent_inf->aspace; | |
514 | ||
515 | /* The parent will be frozen until the child is done | |
516 | with the shared region. Keep track of the | |
517 | parent. */ | |
518 | child_inf->vfork_parent = parent_inf; | |
519 | child_inf->pending_detach = 0; | |
520 | parent_inf->vfork_child = child_inf; | |
521 | parent_inf->pending_detach = 0; | |
522 | } | |
523 | else | |
524 | { | |
525 | child_inf->aspace = new_address_space (); | |
526 | child_inf->pspace = add_program_space (child_inf->aspace); | |
527 | child_inf->removable = 1; | |
528 | set_current_program_space (child_inf->pspace); | |
529 | clone_program_space (child_inf->pspace, parent_inf->pspace); | |
530 | ||
531 | /* Let the shared library layer (e.g., solib-svr4) learn | |
532 | about this new process, relocate the cloned exec, pull | |
533 | in shared libraries, and install the solib event | |
534 | breakpoint. If a "cloned-VM" event was propagated | |
535 | better throughout the core, this wouldn't be | |
536 | required. */ | |
537 | solib_create_inferior_hook (0); | |
538 | } | |
d83ad864 DB |
539 | } |
540 | ||
541 | if (has_vforked) | |
542 | { | |
543 | struct inferior *parent_inf; | |
544 | ||
545 | parent_inf = current_inferior (); | |
546 | ||
547 | /* If we detached from the child, then we have to be careful | |
548 | to not insert breakpoints in the parent until the child | |
549 | is done with the shared memory region. However, if we're | |
550 | staying attached to the child, then we can and should | |
551 | insert breakpoints, so that we can debug it. A | |
552 | subsequent child exec or exit is enough to know when does | |
553 | the child stops using the parent's address space. */ | |
554 | parent_inf->waiting_for_vfork_done = detach_fork; | |
555 | parent_inf->pspace->breakpoints_not_allowed = detach_fork; | |
556 | } | |
557 | } | |
558 | else | |
559 | { | |
560 | /* Follow the child. */ | |
561 | struct inferior *parent_inf, *child_inf; | |
562 | struct program_space *parent_pspace; | |
563 | ||
564 | if (info_verbose || debug_infrun) | |
565 | { | |
223ffa71 | 566 | target_terminal::ours_for_output (); |
6f259a23 | 567 | fprintf_filtered (gdb_stdlog, |
79639e11 PA |
568 | _("Attaching after %s %s to child %s.\n"), |
569 | target_pid_to_str (parent_ptid), | |
6f259a23 | 570 | has_vforked ? "vfork" : "fork", |
79639e11 | 571 | target_pid_to_str (child_ptid)); |
d83ad864 DB |
572 | } |
573 | ||
574 | /* Add the new inferior first, so that the target_detach below | |
575 | doesn't unpush the target. */ | |
576 | ||
79639e11 | 577 | child_inf = add_inferior (ptid_get_pid (child_ptid)); |
d83ad864 DB |
578 | |
579 | parent_inf = current_inferior (); | |
580 | child_inf->attach_flag = parent_inf->attach_flag; | |
581 | copy_terminal_info (child_inf, parent_inf); | |
582 | child_inf->gdbarch = parent_inf->gdbarch; | |
583 | copy_inferior_target_desc_info (child_inf, parent_inf); | |
584 | ||
585 | parent_pspace = parent_inf->pspace; | |
586 | ||
587 | /* If we're vforking, we want to hold on to the parent until the | |
588 | child exits or execs. At child exec or exit time we can | |
589 | remove the old breakpoints from the parent and detach or | |
590 | resume debugging it. Otherwise, detach the parent now; we'll | |
591 | want to reuse it's program/address spaces, but we can't set | |
592 | them to the child before removing breakpoints from the | |
593 | parent, otherwise, the breakpoints module could decide to | |
594 | remove breakpoints from the wrong process (since they'd be | |
595 | assigned to the same address space). */ | |
596 | ||
597 | if (has_vforked) | |
598 | { | |
599 | gdb_assert (child_inf->vfork_parent == NULL); | |
600 | gdb_assert (parent_inf->vfork_child == NULL); | |
601 | child_inf->vfork_parent = parent_inf; | |
602 | child_inf->pending_detach = 0; | |
603 | parent_inf->vfork_child = child_inf; | |
604 | parent_inf->pending_detach = detach_fork; | |
605 | parent_inf->waiting_for_vfork_done = 0; | |
606 | } | |
607 | else if (detach_fork) | |
6f259a23 DB |
608 | { |
609 | if (info_verbose || debug_infrun) | |
610 | { | |
8dd06f7a DB |
611 | /* Ensure that we have a process ptid. */ |
612 | ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid)); | |
613 | ||
223ffa71 | 614 | target_terminal::ours_for_output (); |
6f259a23 DB |
615 | fprintf_filtered (gdb_stdlog, |
616 | _("Detaching after fork from " | |
79639e11 | 617 | "child %s.\n"), |
8dd06f7a | 618 | target_pid_to_str (process_ptid)); |
6f259a23 DB |
619 | } |
620 | ||
621 | target_detach (NULL, 0); | |
622 | } | |
d83ad864 DB |
623 | |
624 | /* Note that the detach above makes PARENT_INF dangling. */ | |
625 | ||
626 | /* Add the child thread to the appropriate lists, and switch to | |
627 | this new thread, before cloning the program space, and | |
628 | informing the solib layer about this new process. */ | |
629 | ||
79639e11 | 630 | inferior_ptid = child_ptid; |
d83ad864 | 631 | add_thread (inferior_ptid); |
2a00d7ce | 632 | set_current_inferior (child_inf); |
d83ad864 DB |
633 | |
634 | /* If this is a vfork child, then the address-space is shared | |
635 | with the parent. If we detached from the parent, then we can | |
636 | reuse the parent's program/address spaces. */ | |
637 | if (has_vforked || detach_fork) | |
638 | { | |
639 | child_inf->pspace = parent_pspace; | |
640 | child_inf->aspace = child_inf->pspace->aspace; | |
641 | } | |
642 | else | |
643 | { | |
644 | child_inf->aspace = new_address_space (); | |
645 | child_inf->pspace = add_program_space (child_inf->aspace); | |
646 | child_inf->removable = 1; | |
647 | child_inf->symfile_flags = SYMFILE_NO_READ; | |
648 | set_current_program_space (child_inf->pspace); | |
649 | clone_program_space (child_inf->pspace, parent_pspace); | |
650 | ||
651 | /* Let the shared library layer (e.g., solib-svr4) learn | |
652 | about this new process, relocate the cloned exec, pull in | |
653 | shared libraries, and install the solib event breakpoint. | |
654 | If a "cloned-VM" event was propagated better throughout | |
655 | the core, this wouldn't be required. */ | |
656 | solib_create_inferior_hook (0); | |
657 | } | |
658 | } | |
659 | ||
660 | return target_follow_fork (follow_child, detach_fork); | |
661 | } | |
662 | ||
e58b0e63 PA |
663 | /* Tell the target to follow the fork we're stopped at. Returns true |
664 | if the inferior should be resumed; false, if the target for some | |
665 | reason decided it's best not to resume. */ | |
666 | ||
6604731b | 667 | static int |
4ef3f3be | 668 | follow_fork (void) |
c906108c | 669 | { |
ea1dd7bc | 670 | int follow_child = (follow_fork_mode_string == follow_fork_mode_child); |
e58b0e63 PA |
671 | int should_resume = 1; |
672 | struct thread_info *tp; | |
673 | ||
674 | /* Copy user stepping state to the new inferior thread. FIXME: the | |
675 | followed fork child thread should have a copy of most of the | |
4e3990f4 DE |
676 | parent thread structure's run control related fields, not just these. |
677 | Initialized to avoid "may be used uninitialized" warnings from gcc. */ | |
678 | struct breakpoint *step_resume_breakpoint = NULL; | |
186c406b | 679 | struct breakpoint *exception_resume_breakpoint = NULL; |
4e3990f4 DE |
680 | CORE_ADDR step_range_start = 0; |
681 | CORE_ADDR step_range_end = 0; | |
682 | struct frame_id step_frame_id = { 0 }; | |
8980e177 | 683 | struct thread_fsm *thread_fsm = NULL; |
e58b0e63 PA |
684 | |
685 | if (!non_stop) | |
686 | { | |
687 | ptid_t wait_ptid; | |
688 | struct target_waitstatus wait_status; | |
689 | ||
690 | /* Get the last target status returned by target_wait(). */ | |
691 | get_last_target_status (&wait_ptid, &wait_status); | |
692 | ||
693 | /* If not stopped at a fork event, then there's nothing else to | |
694 | do. */ | |
695 | if (wait_status.kind != TARGET_WAITKIND_FORKED | |
696 | && wait_status.kind != TARGET_WAITKIND_VFORKED) | |
697 | return 1; | |
698 | ||
699 | /* Check if we switched over from WAIT_PTID, since the event was | |
700 | reported. */ | |
701 | if (!ptid_equal (wait_ptid, minus_one_ptid) | |
702 | && !ptid_equal (inferior_ptid, wait_ptid)) | |
703 | { | |
704 | /* We did. Switch back to WAIT_PTID thread, to tell the | |
705 | target to follow it (in either direction). We'll | |
706 | afterwards refuse to resume, and inform the user what | |
707 | happened. */ | |
708 | switch_to_thread (wait_ptid); | |
709 | should_resume = 0; | |
710 | } | |
711 | } | |
712 | ||
713 | tp = inferior_thread (); | |
714 | ||
715 | /* If there were any forks/vforks that were caught and are now to be | |
716 | followed, then do so now. */ | |
717 | switch (tp->pending_follow.kind) | |
718 | { | |
719 | case TARGET_WAITKIND_FORKED: | |
720 | case TARGET_WAITKIND_VFORKED: | |
721 | { | |
722 | ptid_t parent, child; | |
723 | ||
724 | /* If the user did a next/step, etc, over a fork call, | |
725 | preserve the stepping state in the fork child. */ | |
726 | if (follow_child && should_resume) | |
727 | { | |
8358c15c JK |
728 | step_resume_breakpoint = clone_momentary_breakpoint |
729 | (tp->control.step_resume_breakpoint); | |
16c381f0 JK |
730 | step_range_start = tp->control.step_range_start; |
731 | step_range_end = tp->control.step_range_end; | |
732 | step_frame_id = tp->control.step_frame_id; | |
186c406b TT |
733 | exception_resume_breakpoint |
734 | = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint); | |
8980e177 | 735 | thread_fsm = tp->thread_fsm; |
e58b0e63 PA |
736 | |
737 | /* For now, delete the parent's sr breakpoint, otherwise, | |
738 | parent/child sr breakpoints are considered duplicates, | |
739 | and the child version will not be installed. Remove | |
740 | this when the breakpoints module becomes aware of | |
741 | inferiors and address spaces. */ | |
742 | delete_step_resume_breakpoint (tp); | |
16c381f0 JK |
743 | tp->control.step_range_start = 0; |
744 | tp->control.step_range_end = 0; | |
745 | tp->control.step_frame_id = null_frame_id; | |
186c406b | 746 | delete_exception_resume_breakpoint (tp); |
8980e177 | 747 | tp->thread_fsm = NULL; |
e58b0e63 PA |
748 | } |
749 | ||
750 | parent = inferior_ptid; | |
751 | child = tp->pending_follow.value.related_pid; | |
752 | ||
d83ad864 DB |
753 | /* Set up inferior(s) as specified by the caller, and tell the |
754 | target to do whatever is necessary to follow either parent | |
755 | or child. */ | |
756 | if (follow_fork_inferior (follow_child, detach_fork)) | |
e58b0e63 PA |
757 | { |
758 | /* Target refused to follow, or there's some other reason | |
759 | we shouldn't resume. */ | |
760 | should_resume = 0; | |
761 | } | |
762 | else | |
763 | { | |
764 | /* This pending follow fork event is now handled, one way | |
765 | or another. The previous selected thread may be gone | |
766 | from the lists by now, but if it is still around, need | |
767 | to clear the pending follow request. */ | |
e09875d4 | 768 | tp = find_thread_ptid (parent); |
e58b0e63 PA |
769 | if (tp) |
770 | tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS; | |
771 | ||
772 | /* This makes sure we don't try to apply the "Switched | |
773 | over from WAIT_PID" logic above. */ | |
774 | nullify_last_target_wait_ptid (); | |
775 | ||
1777feb0 | 776 | /* If we followed the child, switch to it... */ |
e58b0e63 PA |
777 | if (follow_child) |
778 | { | |
779 | switch_to_thread (child); | |
780 | ||
781 | /* ... and preserve the stepping state, in case the | |
782 | user was stepping over the fork call. */ | |
783 | if (should_resume) | |
784 | { | |
785 | tp = inferior_thread (); | |
8358c15c JK |
786 | tp->control.step_resume_breakpoint |
787 | = step_resume_breakpoint; | |
16c381f0 JK |
788 | tp->control.step_range_start = step_range_start; |
789 | tp->control.step_range_end = step_range_end; | |
790 | tp->control.step_frame_id = step_frame_id; | |
186c406b TT |
791 | tp->control.exception_resume_breakpoint |
792 | = exception_resume_breakpoint; | |
8980e177 | 793 | tp->thread_fsm = thread_fsm; |
e58b0e63 PA |
794 | } |
795 | else | |
796 | { | |
797 | /* If we get here, it was because we're trying to | |
798 | resume from a fork catchpoint, but, the user | |
799 | has switched threads away from the thread that | |
800 | forked. In that case, the resume command | |
801 | issued is most likely not applicable to the | |
802 | child, so just warn, and refuse to resume. */ | |
3e43a32a | 803 | warning (_("Not resuming: switched threads " |
fd7dcb94 | 804 | "before following fork child.")); |
e58b0e63 PA |
805 | } |
806 | ||
807 | /* Reset breakpoints in the child as appropriate. */ | |
808 | follow_inferior_reset_breakpoints (); | |
809 | } | |
810 | else | |
811 | switch_to_thread (parent); | |
812 | } | |
813 | } | |
814 | break; | |
815 | case TARGET_WAITKIND_SPURIOUS: | |
816 | /* Nothing to follow. */ | |
817 | break; | |
818 | default: | |
819 | internal_error (__FILE__, __LINE__, | |
820 | "Unexpected pending_follow.kind %d\n", | |
821 | tp->pending_follow.kind); | |
822 | break; | |
823 | } | |
c906108c | 824 | |
e58b0e63 | 825 | return should_resume; |
c906108c SS |
826 | } |
827 | ||
d83ad864 | 828 | static void |
6604731b | 829 | follow_inferior_reset_breakpoints (void) |
c906108c | 830 | { |
4e1c45ea PA |
831 | struct thread_info *tp = inferior_thread (); |
832 | ||
6604731b DJ |
833 | /* Was there a step_resume breakpoint? (There was if the user |
834 | did a "next" at the fork() call.) If so, explicitly reset its | |
a1aa2221 LM |
835 | thread number. Cloned step_resume breakpoints are disabled on |
836 | creation, so enable it here now that it is associated with the | |
837 | correct thread. | |
6604731b DJ |
838 | |
839 | step_resumes are a form of bp that are made to be per-thread. | |
840 | Since we created the step_resume bp when the parent process | |
841 | was being debugged, and now are switching to the child process, | |
842 | from the breakpoint package's viewpoint, that's a switch of | |
843 | "threads". We must update the bp's notion of which thread | |
844 | it is for, or it'll be ignored when it triggers. */ | |
845 | ||
8358c15c | 846 | if (tp->control.step_resume_breakpoint) |
a1aa2221 LM |
847 | { |
848 | breakpoint_re_set_thread (tp->control.step_resume_breakpoint); | |
849 | tp->control.step_resume_breakpoint->loc->enabled = 1; | |
850 | } | |
6604731b | 851 | |
a1aa2221 | 852 | /* Treat exception_resume breakpoints like step_resume breakpoints. */ |
186c406b | 853 | if (tp->control.exception_resume_breakpoint) |
a1aa2221 LM |
854 | { |
855 | breakpoint_re_set_thread (tp->control.exception_resume_breakpoint); | |
856 | tp->control.exception_resume_breakpoint->loc->enabled = 1; | |
857 | } | |
186c406b | 858 | |
6604731b DJ |
859 | /* Reinsert all breakpoints in the child. The user may have set |
860 | breakpoints after catching the fork, in which case those | |
861 | were never set in the child, but only in the parent. This makes | |
862 | sure the inserted breakpoints match the breakpoint list. */ | |
863 | ||
864 | breakpoint_re_set (); | |
865 | insert_breakpoints (); | |
c906108c | 866 | } |
c906108c | 867 | |
6c95b8df PA |
868 | /* The child has exited or execed: resume threads of the parent the |
869 | user wanted to be executing. */ | |
870 | ||
871 | static int | |
872 | proceed_after_vfork_done (struct thread_info *thread, | |
873 | void *arg) | |
874 | { | |
875 | int pid = * (int *) arg; | |
876 | ||
877 | if (ptid_get_pid (thread->ptid) == pid | |
878 | && is_running (thread->ptid) | |
879 | && !is_executing (thread->ptid) | |
880 | && !thread->stop_requested | |
a493e3e2 | 881 | && thread->suspend.stop_signal == GDB_SIGNAL_0) |
6c95b8df PA |
882 | { |
883 | if (debug_infrun) | |
884 | fprintf_unfiltered (gdb_stdlog, | |
885 | "infrun: resuming vfork parent thread %s\n", | |
886 | target_pid_to_str (thread->ptid)); | |
887 | ||
888 | switch_to_thread (thread->ptid); | |
70509625 | 889 | clear_proceed_status (0); |
64ce06e4 | 890 | proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT); |
6c95b8df PA |
891 | } |
892 | ||
893 | return 0; | |
894 | } | |
895 | ||
5ed8105e PA |
896 | /* Save/restore inferior_ptid, current program space and current |
897 | inferior. Only use this if the current context points at an exited | |
898 | inferior (and therefore there's no current thread to save). */ | |
899 | class scoped_restore_exited_inferior | |
900 | { | |
901 | public: | |
902 | scoped_restore_exited_inferior () | |
903 | : m_saved_ptid (&inferior_ptid) | |
904 | {} | |
905 | ||
906 | private: | |
907 | scoped_restore_tmpl<ptid_t> m_saved_ptid; | |
908 | scoped_restore_current_program_space m_pspace; | |
909 | scoped_restore_current_inferior m_inferior; | |
910 | }; | |
911 | ||
6c95b8df PA |
912 | /* Called whenever we notice an exec or exit event, to handle |
913 | detaching or resuming a vfork parent. */ | |
914 | ||
915 | static void | |
916 | handle_vfork_child_exec_or_exit (int exec) | |
917 | { | |
918 | struct inferior *inf = current_inferior (); | |
919 | ||
920 | if (inf->vfork_parent) | |
921 | { | |
922 | int resume_parent = -1; | |
923 | ||
924 | /* This exec or exit marks the end of the shared memory region | |
925 | between the parent and the child. If the user wanted to | |
926 | detach from the parent, now is the time. */ | |
927 | ||
928 | if (inf->vfork_parent->pending_detach) | |
929 | { | |
930 | struct thread_info *tp; | |
6c95b8df PA |
931 | struct program_space *pspace; |
932 | struct address_space *aspace; | |
933 | ||
1777feb0 | 934 | /* follow-fork child, detach-on-fork on. */ |
6c95b8df | 935 | |
68c9da30 PA |
936 | inf->vfork_parent->pending_detach = 0; |
937 | ||
5ed8105e PA |
938 | gdb::optional<scoped_restore_exited_inferior> |
939 | maybe_restore_inferior; | |
940 | gdb::optional<scoped_restore_current_pspace_and_thread> | |
941 | maybe_restore_thread; | |
942 | ||
943 | /* If we're handling a child exit, then inferior_ptid points | |
944 | at the inferior's pid, not to a thread. */ | |
f50f4e56 | 945 | if (!exec) |
5ed8105e | 946 | maybe_restore_inferior.emplace (); |
f50f4e56 | 947 | else |
5ed8105e | 948 | maybe_restore_thread.emplace (); |
6c95b8df PA |
949 | |
950 | /* We're letting loose of the parent. */ | |
951 | tp = any_live_thread_of_process (inf->vfork_parent->pid); | |
952 | switch_to_thread (tp->ptid); | |
953 | ||
954 | /* We're about to detach from the parent, which implicitly | |
955 | removes breakpoints from its address space. There's a | |
956 | catch here: we want to reuse the spaces for the child, | |
957 | but, parent/child are still sharing the pspace at this | |
958 | point, although the exec in reality makes the kernel give | |
959 | the child a fresh set of new pages. The problem here is | |
960 | that the breakpoints module being unaware of this, would | |
961 | likely chose the child process to write to the parent | |
962 | address space. Swapping the child temporarily away from | |
963 | the spaces has the desired effect. Yes, this is "sort | |
964 | of" a hack. */ | |
965 | ||
966 | pspace = inf->pspace; | |
967 | aspace = inf->aspace; | |
968 | inf->aspace = NULL; | |
969 | inf->pspace = NULL; | |
970 | ||
971 | if (debug_infrun || info_verbose) | |
972 | { | |
223ffa71 | 973 | target_terminal::ours_for_output (); |
6c95b8df PA |
974 | |
975 | if (exec) | |
6f259a23 DB |
976 | { |
977 | fprintf_filtered (gdb_stdlog, | |
978 | _("Detaching vfork parent process " | |
979 | "%d after child exec.\n"), | |
980 | inf->vfork_parent->pid); | |
981 | } | |
6c95b8df | 982 | else |
6f259a23 DB |
983 | { |
984 | fprintf_filtered (gdb_stdlog, | |
985 | _("Detaching vfork parent process " | |
986 | "%d after child exit.\n"), | |
987 | inf->vfork_parent->pid); | |
988 | } | |
6c95b8df PA |
989 | } |
990 | ||
991 | target_detach (NULL, 0); | |
992 | ||
993 | /* Put it back. */ | |
994 | inf->pspace = pspace; | |
995 | inf->aspace = aspace; | |
6c95b8df PA |
996 | } |
997 | else if (exec) | |
998 | { | |
999 | /* We're staying attached to the parent, so, really give the | |
1000 | child a new address space. */ | |
1001 | inf->pspace = add_program_space (maybe_new_address_space ()); | |
1002 | inf->aspace = inf->pspace->aspace; | |
1003 | inf->removable = 1; | |
1004 | set_current_program_space (inf->pspace); | |
1005 | ||
1006 | resume_parent = inf->vfork_parent->pid; | |
1007 | ||
1008 | /* Break the bonds. */ | |
1009 | inf->vfork_parent->vfork_child = NULL; | |
1010 | } | |
1011 | else | |
1012 | { | |
6c95b8df PA |
1013 | struct program_space *pspace; |
1014 | ||
1015 | /* If this is a vfork child exiting, then the pspace and | |
1016 | aspaces were shared with the parent. Since we're | |
1017 | reporting the process exit, we'll be mourning all that is | |
1018 | found in the address space, and switching to null_ptid, | |
1019 | preparing to start a new inferior. But, since we don't | |
1020 | want to clobber the parent's address/program spaces, we | |
1021 | go ahead and create a new one for this exiting | |
1022 | inferior. */ | |
1023 | ||
5ed8105e PA |
1024 | /* Switch to null_ptid while running clone_program_space, so |
1025 | that clone_program_space doesn't want to read the | |
1026 | selected frame of a dead process. */ | |
1027 | scoped_restore restore_ptid | |
1028 | = make_scoped_restore (&inferior_ptid, null_ptid); | |
6c95b8df PA |
1029 | |
1030 | /* This inferior is dead, so avoid giving the breakpoints | |
1031 | module the option to write through to it (cloning a | |
1032 | program space resets breakpoints). */ | |
1033 | inf->aspace = NULL; | |
1034 | inf->pspace = NULL; | |
1035 | pspace = add_program_space (maybe_new_address_space ()); | |
1036 | set_current_program_space (pspace); | |
1037 | inf->removable = 1; | |
7dcd53a0 | 1038 | inf->symfile_flags = SYMFILE_NO_READ; |
6c95b8df PA |
1039 | clone_program_space (pspace, inf->vfork_parent->pspace); |
1040 | inf->pspace = pspace; | |
1041 | inf->aspace = pspace->aspace; | |
1042 | ||
6c95b8df PA |
1043 | resume_parent = inf->vfork_parent->pid; |
1044 | /* Break the bonds. */ | |
1045 | inf->vfork_parent->vfork_child = NULL; | |
1046 | } | |
1047 | ||
1048 | inf->vfork_parent = NULL; | |
1049 | ||
1050 | gdb_assert (current_program_space == inf->pspace); | |
1051 | ||
1052 | if (non_stop && resume_parent != -1) | |
1053 | { | |
1054 | /* If the user wanted the parent to be running, let it go | |
1055 | free now. */ | |
5ed8105e | 1056 | scoped_restore_current_thread restore_thread; |
6c95b8df PA |
1057 | |
1058 | if (debug_infrun) | |
3e43a32a MS |
1059 | fprintf_unfiltered (gdb_stdlog, |
1060 | "infrun: resuming vfork parent process %d\n", | |
6c95b8df PA |
1061 | resume_parent); |
1062 | ||
1063 | iterate_over_threads (proceed_after_vfork_done, &resume_parent); | |
6c95b8df PA |
1064 | } |
1065 | } | |
1066 | } | |
1067 | ||
eb6c553b | 1068 | /* Enum strings for "set|show follow-exec-mode". */ |
6c95b8df PA |
1069 | |
1070 | static const char follow_exec_mode_new[] = "new"; | |
1071 | static const char follow_exec_mode_same[] = "same"; | |
40478521 | 1072 | static const char *const follow_exec_mode_names[] = |
6c95b8df PA |
1073 | { |
1074 | follow_exec_mode_new, | |
1075 | follow_exec_mode_same, | |
1076 | NULL, | |
1077 | }; | |
1078 | ||
1079 | static const char *follow_exec_mode_string = follow_exec_mode_same; | |
1080 | static void | |
1081 | show_follow_exec_mode_string (struct ui_file *file, int from_tty, | |
1082 | struct cmd_list_element *c, const char *value) | |
1083 | { | |
1084 | fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value); | |
1085 | } | |
1086 | ||
ecf45d2c | 1087 | /* EXEC_FILE_TARGET is assumed to be non-NULL. */ |
1adeb98a | 1088 | |
c906108c | 1089 | static void |
ecf45d2c | 1090 | follow_exec (ptid_t ptid, char *exec_file_target) |
c906108c | 1091 | { |
95e50b27 | 1092 | struct thread_info *th, *tmp; |
6c95b8df | 1093 | struct inferior *inf = current_inferior (); |
95e50b27 | 1094 | int pid = ptid_get_pid (ptid); |
94585166 | 1095 | ptid_t process_ptid; |
ecf45d2c SL |
1096 | char *exec_file_host; |
1097 | struct cleanup *old_chain; | |
7a292a7a | 1098 | |
c906108c SS |
1099 | /* This is an exec event that we actually wish to pay attention to. |
1100 | Refresh our symbol table to the newly exec'd program, remove any | |
1101 | momentary bp's, etc. | |
1102 | ||
1103 | If there are breakpoints, they aren't really inserted now, | |
1104 | since the exec() transformed our inferior into a fresh set | |
1105 | of instructions. | |
1106 | ||
1107 | We want to preserve symbolic breakpoints on the list, since | |
1108 | we have hopes that they can be reset after the new a.out's | |
1109 | symbol table is read. | |
1110 | ||
1111 | However, any "raw" breakpoints must be removed from the list | |
1112 | (e.g., the solib bp's), since their address is probably invalid | |
1113 | now. | |
1114 | ||
1115 | And, we DON'T want to call delete_breakpoints() here, since | |
1116 | that may write the bp's "shadow contents" (the instruction | |
1117 | value that was overwritten witha TRAP instruction). Since | |
1777feb0 | 1118 | we now have a new a.out, those shadow contents aren't valid. */ |
6c95b8df PA |
1119 | |
1120 | mark_breakpoints_out (); | |
1121 | ||
95e50b27 PA |
1122 | /* The target reports the exec event to the main thread, even if |
1123 | some other thread does the exec, and even if the main thread was | |
1124 | stopped or already gone. We may still have non-leader threads of | |
1125 | the process on our list. E.g., on targets that don't have thread | |
1126 | exit events (like remote); or on native Linux in non-stop mode if | |
1127 | there were only two threads in the inferior and the non-leader | |
1128 | one is the one that execs (and nothing forces an update of the | |
1129 | thread list up to here). When debugging remotely, it's best to | |
1130 | avoid extra traffic, when possible, so avoid syncing the thread | |
1131 | list with the target, and instead go ahead and delete all threads | |
1132 | of the process but one that reported the event. Note this must | |
1133 | be done before calling update_breakpoints_after_exec, as | |
1134 | otherwise clearing the threads' resources would reference stale | |
1135 | thread breakpoints -- it may have been one of these threads that | |
1136 | stepped across the exec. We could just clear their stepping | |
1137 | states, but as long as we're iterating, might as well delete | |
1138 | them. Deleting them now rather than at the next user-visible | |
1139 | stop provides a nicer sequence of events for user and MI | |
1140 | notifications. */ | |
8a06aea7 | 1141 | ALL_THREADS_SAFE (th, tmp) |
95e50b27 PA |
1142 | if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid)) |
1143 | delete_thread (th->ptid); | |
1144 | ||
1145 | /* We also need to clear any left over stale state for the | |
1146 | leader/event thread. E.g., if there was any step-resume | |
1147 | breakpoint or similar, it's gone now. We cannot truly | |
1148 | step-to-next statement through an exec(). */ | |
1149 | th = inferior_thread (); | |
8358c15c | 1150 | th->control.step_resume_breakpoint = NULL; |
186c406b | 1151 | th->control.exception_resume_breakpoint = NULL; |
34b7e8a6 | 1152 | th->control.single_step_breakpoints = NULL; |
16c381f0 JK |
1153 | th->control.step_range_start = 0; |
1154 | th->control.step_range_end = 0; | |
c906108c | 1155 | |
95e50b27 PA |
1156 | /* The user may have had the main thread held stopped in the |
1157 | previous image (e.g., schedlock on, or non-stop). Release | |
1158 | it now. */ | |
a75724bc PA |
1159 | th->stop_requested = 0; |
1160 | ||
95e50b27 PA |
1161 | update_breakpoints_after_exec (); |
1162 | ||
1777feb0 | 1163 | /* What is this a.out's name? */ |
94585166 | 1164 | process_ptid = pid_to_ptid (pid); |
6c95b8df | 1165 | printf_unfiltered (_("%s is executing new program: %s\n"), |
94585166 | 1166 | target_pid_to_str (process_ptid), |
ecf45d2c | 1167 | exec_file_target); |
c906108c SS |
1168 | |
1169 | /* We've followed the inferior through an exec. Therefore, the | |
1777feb0 | 1170 | inferior has essentially been killed & reborn. */ |
7a292a7a | 1171 | |
c906108c | 1172 | gdb_flush (gdb_stdout); |
6ca15a4b PA |
1173 | |
1174 | breakpoint_init_inferior (inf_execd); | |
e85a822c | 1175 | |
ecf45d2c SL |
1176 | exec_file_host = exec_file_find (exec_file_target, NULL); |
1177 | old_chain = make_cleanup (xfree, exec_file_host); | |
ff862be4 | 1178 | |
ecf45d2c SL |
1179 | /* If we were unable to map the executable target pathname onto a host |
1180 | pathname, tell the user that. Otherwise GDB's subsequent behavior | |
1181 | is confusing. Maybe it would even be better to stop at this point | |
1182 | so that the user can specify a file manually before continuing. */ | |
1183 | if (exec_file_host == NULL) | |
1184 | warning (_("Could not load symbols for executable %s.\n" | |
1185 | "Do you need \"set sysroot\"?"), | |
1186 | exec_file_target); | |
c906108c | 1187 | |
cce9b6bf PA |
1188 | /* Reset the shared library package. This ensures that we get a |
1189 | shlib event when the child reaches "_start", at which point the | |
1190 | dld will have had a chance to initialize the child. */ | |
1191 | /* Also, loading a symbol file below may trigger symbol lookups, and | |
1192 | we don't want those to be satisfied by the libraries of the | |
1193 | previous incarnation of this process. */ | |
1194 | no_shared_libraries (NULL, 0); | |
1195 | ||
6c95b8df PA |
1196 | if (follow_exec_mode_string == follow_exec_mode_new) |
1197 | { | |
6c95b8df PA |
1198 | /* The user wants to keep the old inferior and program spaces |
1199 | around. Create a new fresh one, and switch to it. */ | |
1200 | ||
17d8546e DB |
1201 | /* Do exit processing for the original inferior before adding |
1202 | the new inferior so we don't have two active inferiors with | |
1203 | the same ptid, which can confuse find_inferior_ptid. */ | |
1204 | exit_inferior_num_silent (current_inferior ()->num); | |
1205 | ||
94585166 DB |
1206 | inf = add_inferior_with_spaces (); |
1207 | inf->pid = pid; | |
ecf45d2c | 1208 | target_follow_exec (inf, exec_file_target); |
6c95b8df PA |
1209 | |
1210 | set_current_inferior (inf); | |
94585166 | 1211 | set_current_program_space (inf->pspace); |
6c95b8df | 1212 | } |
9107fc8d PA |
1213 | else |
1214 | { | |
1215 | /* The old description may no longer be fit for the new image. | |
1216 | E.g, a 64-bit process exec'ed a 32-bit process. Clear the | |
1217 | old description; we'll read a new one below. No need to do | |
1218 | this on "follow-exec-mode new", as the old inferior stays | |
1219 | around (its description is later cleared/refetched on | |
1220 | restart). */ | |
1221 | target_clear_description (); | |
1222 | } | |
6c95b8df PA |
1223 | |
1224 | gdb_assert (current_program_space == inf->pspace); | |
1225 | ||
ecf45d2c SL |
1226 | /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used |
1227 | because the proper displacement for a PIE (Position Independent | |
1228 | Executable) main symbol file will only be computed by | |
1229 | solib_create_inferior_hook below. breakpoint_re_set would fail | |
1230 | to insert the breakpoints with the zero displacement. */ | |
1231 | try_open_exec_file (exec_file_host, inf, SYMFILE_DEFER_BP_RESET); | |
c1e56572 | 1232 | |
ecf45d2c | 1233 | do_cleanups (old_chain); |
c906108c | 1234 | |
9107fc8d PA |
1235 | /* If the target can specify a description, read it. Must do this |
1236 | after flipping to the new executable (because the target supplied | |
1237 | description must be compatible with the executable's | |
1238 | architecture, and the old executable may e.g., be 32-bit, while | |
1239 | the new one 64-bit), and before anything involving memory or | |
1240 | registers. */ | |
1241 | target_find_description (); | |
1242 | ||
bf93d7ba SM |
1243 | /* The add_thread call ends up reading registers, so do it after updating the |
1244 | target description. */ | |
1245 | if (follow_exec_mode_string == follow_exec_mode_new) | |
1246 | add_thread (ptid); | |
1247 | ||
268a4a75 | 1248 | solib_create_inferior_hook (0); |
c906108c | 1249 | |
4efc6507 DE |
1250 | jit_inferior_created_hook (); |
1251 | ||
c1e56572 JK |
1252 | breakpoint_re_set (); |
1253 | ||
c906108c SS |
1254 | /* Reinsert all breakpoints. (Those which were symbolic have |
1255 | been reset to the proper address in the new a.out, thanks | |
1777feb0 | 1256 | to symbol_file_command...). */ |
c906108c SS |
1257 | insert_breakpoints (); |
1258 | ||
1259 | /* The next resume of this inferior should bring it to the shlib | |
1260 | startup breakpoints. (If the user had also set bp's on | |
1261 | "main" from the old (parent) process, then they'll auto- | |
1777feb0 | 1262 | matically get reset there in the new process.). */ |
c906108c SS |
1263 | } |
1264 | ||
c2829269 PA |
1265 | /* The queue of threads that need to do a step-over operation to get |
1266 | past e.g., a breakpoint. What technique is used to step over the | |
1267 | breakpoint/watchpoint does not matter -- all threads end up in the | |
1268 | same queue, to maintain rough temporal order of execution, in order | |
1269 | to avoid starvation, otherwise, we could e.g., find ourselves | |
1270 | constantly stepping the same couple threads past their breakpoints | |
1271 | over and over, if the single-step finish fast enough. */ | |
1272 | struct thread_info *step_over_queue_head; | |
1273 | ||
6c4cfb24 PA |
1274 | /* Bit flags indicating what the thread needs to step over. */ |
1275 | ||
8d297bbf | 1276 | enum step_over_what_flag |
6c4cfb24 PA |
1277 | { |
1278 | /* Step over a breakpoint. */ | |
1279 | STEP_OVER_BREAKPOINT = 1, | |
1280 | ||
1281 | /* Step past a non-continuable watchpoint, in order to let the | |
1282 | instruction execute so we can evaluate the watchpoint | |
1283 | expression. */ | |
1284 | STEP_OVER_WATCHPOINT = 2 | |
1285 | }; | |
8d297bbf | 1286 | DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what); |
6c4cfb24 | 1287 | |
963f9c80 | 1288 | /* Info about an instruction that is being stepped over. */ |
31e77af2 PA |
1289 | |
1290 | struct step_over_info | |
1291 | { | |
963f9c80 PA |
1292 | /* If we're stepping past a breakpoint, this is the address space |
1293 | and address of the instruction the breakpoint is set at. We'll | |
1294 | skip inserting all breakpoints here. Valid iff ASPACE is | |
1295 | non-NULL. */ | |
31e77af2 | 1296 | struct address_space *aspace; |
31e77af2 | 1297 | CORE_ADDR address; |
963f9c80 PA |
1298 | |
1299 | /* The instruction being stepped over triggers a nonsteppable | |
1300 | watchpoint. If true, we'll skip inserting watchpoints. */ | |
1301 | int nonsteppable_watchpoint_p; | |
21edc42f YQ |
1302 | |
1303 | /* The thread's global number. */ | |
1304 | int thread; | |
31e77af2 PA |
1305 | }; |
1306 | ||
1307 | /* The step-over info of the location that is being stepped over. | |
1308 | ||
1309 | Note that with async/breakpoint always-inserted mode, a user might | |
1310 | set a new breakpoint/watchpoint/etc. exactly while a breakpoint is | |
1311 | being stepped over. As setting a new breakpoint inserts all | |
1312 | breakpoints, we need to make sure the breakpoint being stepped over | |
1313 | isn't inserted then. We do that by only clearing the step-over | |
1314 | info when the step-over is actually finished (or aborted). | |
1315 | ||
1316 | Presently GDB can only step over one breakpoint at any given time. | |
1317 | Given threads that can't run code in the same address space as the | |
1318 | breakpoint's can't really miss the breakpoint, GDB could be taught | |
1319 | to step-over at most one breakpoint per address space (so this info | |
1320 | could move to the address space object if/when GDB is extended). | |
1321 | The set of breakpoints being stepped over will normally be much | |
1322 | smaller than the set of all breakpoints, so a flag in the | |
1323 | breakpoint location structure would be wasteful. A separate list | |
1324 | also saves complexity and run-time, as otherwise we'd have to go | |
1325 | through all breakpoint locations clearing their flag whenever we | |
1326 | start a new sequence. Similar considerations weigh against storing | |
1327 | this info in the thread object. Plus, not all step overs actually | |
1328 | have breakpoint locations -- e.g., stepping past a single-step | |
1329 | breakpoint, or stepping to complete a non-continuable | |
1330 | watchpoint. */ | |
1331 | static struct step_over_info step_over_info; | |
1332 | ||
1333 | /* Record the address of the breakpoint/instruction we're currently | |
ce0db137 DE |
1334 | stepping over. |
1335 | N.B. We record the aspace and address now, instead of say just the thread, | |
1336 | because when we need the info later the thread may be running. */ | |
31e77af2 PA |
1337 | |
1338 | static void | |
963f9c80 | 1339 | set_step_over_info (struct address_space *aspace, CORE_ADDR address, |
21edc42f YQ |
1340 | int nonsteppable_watchpoint_p, |
1341 | int thread) | |
31e77af2 PA |
1342 | { |
1343 | step_over_info.aspace = aspace; | |
1344 | step_over_info.address = address; | |
963f9c80 | 1345 | step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p; |
21edc42f | 1346 | step_over_info.thread = thread; |
31e77af2 PA |
1347 | } |
1348 | ||
1349 | /* Called when we're not longer stepping over a breakpoint / an | |
1350 | instruction, so all breakpoints are free to be (re)inserted. */ | |
1351 | ||
1352 | static void | |
1353 | clear_step_over_info (void) | |
1354 | { | |
372316f1 PA |
1355 | if (debug_infrun) |
1356 | fprintf_unfiltered (gdb_stdlog, | |
1357 | "infrun: clear_step_over_info\n"); | |
31e77af2 PA |
1358 | step_over_info.aspace = NULL; |
1359 | step_over_info.address = 0; | |
963f9c80 | 1360 | step_over_info.nonsteppable_watchpoint_p = 0; |
21edc42f | 1361 | step_over_info.thread = -1; |
31e77af2 PA |
1362 | } |
1363 | ||
7f89fd65 | 1364 | /* See infrun.h. */ |
31e77af2 PA |
1365 | |
1366 | int | |
1367 | stepping_past_instruction_at (struct address_space *aspace, | |
1368 | CORE_ADDR address) | |
1369 | { | |
1370 | return (step_over_info.aspace != NULL | |
1371 | && breakpoint_address_match (aspace, address, | |
1372 | step_over_info.aspace, | |
1373 | step_over_info.address)); | |
1374 | } | |
1375 | ||
963f9c80 PA |
1376 | /* See infrun.h. */ |
1377 | ||
21edc42f YQ |
1378 | int |
1379 | thread_is_stepping_over_breakpoint (int thread) | |
1380 | { | |
1381 | return (step_over_info.thread != -1 | |
1382 | && thread == step_over_info.thread); | |
1383 | } | |
1384 | ||
1385 | /* See infrun.h. */ | |
1386 | ||
963f9c80 PA |
1387 | int |
1388 | stepping_past_nonsteppable_watchpoint (void) | |
1389 | { | |
1390 | return step_over_info.nonsteppable_watchpoint_p; | |
1391 | } | |
1392 | ||
6cc83d2a PA |
1393 | /* Returns true if step-over info is valid. */ |
1394 | ||
1395 | static int | |
1396 | step_over_info_valid_p (void) | |
1397 | { | |
963f9c80 PA |
1398 | return (step_over_info.aspace != NULL |
1399 | || stepping_past_nonsteppable_watchpoint ()); | |
6cc83d2a PA |
1400 | } |
1401 | ||
c906108c | 1402 | \f |
237fc4c9 PA |
1403 | /* Displaced stepping. */ |
1404 | ||
1405 | /* In non-stop debugging mode, we must take special care to manage | |
1406 | breakpoints properly; in particular, the traditional strategy for | |
1407 | stepping a thread past a breakpoint it has hit is unsuitable. | |
1408 | 'Displaced stepping' is a tactic for stepping one thread past a | |
1409 | breakpoint it has hit while ensuring that other threads running | |
1410 | concurrently will hit the breakpoint as they should. | |
1411 | ||
1412 | The traditional way to step a thread T off a breakpoint in a | |
1413 | multi-threaded program in all-stop mode is as follows: | |
1414 | ||
1415 | a0) Initially, all threads are stopped, and breakpoints are not | |
1416 | inserted. | |
1417 | a1) We single-step T, leaving breakpoints uninserted. | |
1418 | a2) We insert breakpoints, and resume all threads. | |
1419 | ||
1420 | In non-stop debugging, however, this strategy is unsuitable: we | |
1421 | don't want to have to stop all threads in the system in order to | |
1422 | continue or step T past a breakpoint. Instead, we use displaced | |
1423 | stepping: | |
1424 | ||
1425 | n0) Initially, T is stopped, other threads are running, and | |
1426 | breakpoints are inserted. | |
1427 | n1) We copy the instruction "under" the breakpoint to a separate | |
1428 | location, outside the main code stream, making any adjustments | |
1429 | to the instruction, register, and memory state as directed by | |
1430 | T's architecture. | |
1431 | n2) We single-step T over the instruction at its new location. | |
1432 | n3) We adjust the resulting register and memory state as directed | |
1433 | by T's architecture. This includes resetting T's PC to point | |
1434 | back into the main instruction stream. | |
1435 | n4) We resume T. | |
1436 | ||
1437 | This approach depends on the following gdbarch methods: | |
1438 | ||
1439 | - gdbarch_max_insn_length and gdbarch_displaced_step_location | |
1440 | indicate where to copy the instruction, and how much space must | |
1441 | be reserved there. We use these in step n1. | |
1442 | ||
1443 | - gdbarch_displaced_step_copy_insn copies a instruction to a new | |
1444 | address, and makes any necessary adjustments to the instruction, | |
1445 | register contents, and memory. We use this in step n1. | |
1446 | ||
1447 | - gdbarch_displaced_step_fixup adjusts registers and memory after | |
1448 | we have successfuly single-stepped the instruction, to yield the | |
1449 | same effect the instruction would have had if we had executed it | |
1450 | at its original address. We use this in step n3. | |
1451 | ||
1452 | - gdbarch_displaced_step_free_closure provides cleanup. | |
1453 | ||
1454 | The gdbarch_displaced_step_copy_insn and | |
1455 | gdbarch_displaced_step_fixup functions must be written so that | |
1456 | copying an instruction with gdbarch_displaced_step_copy_insn, | |
1457 | single-stepping across the copied instruction, and then applying | |
1458 | gdbarch_displaced_insn_fixup should have the same effects on the | |
1459 | thread's memory and registers as stepping the instruction in place | |
1460 | would have. Exactly which responsibilities fall to the copy and | |
1461 | which fall to the fixup is up to the author of those functions. | |
1462 | ||
1463 | See the comments in gdbarch.sh for details. | |
1464 | ||
1465 | Note that displaced stepping and software single-step cannot | |
1466 | currently be used in combination, although with some care I think | |
1467 | they could be made to. Software single-step works by placing | |
1468 | breakpoints on all possible subsequent instructions; if the | |
1469 | displaced instruction is a PC-relative jump, those breakpoints | |
1470 | could fall in very strange places --- on pages that aren't | |
1471 | executable, or at addresses that are not proper instruction | |
1472 | boundaries. (We do generally let other threads run while we wait | |
1473 | to hit the software single-step breakpoint, and they might | |
1474 | encounter such a corrupted instruction.) One way to work around | |
1475 | this would be to have gdbarch_displaced_step_copy_insn fully | |
1476 | simulate the effect of PC-relative instructions (and return NULL) | |
1477 | on architectures that use software single-stepping. | |
1478 | ||
1479 | In non-stop mode, we can have independent and simultaneous step | |
1480 | requests, so more than one thread may need to simultaneously step | |
1481 | over a breakpoint. The current implementation assumes there is | |
1482 | only one scratch space per process. In this case, we have to | |
1483 | serialize access to the scratch space. If thread A wants to step | |
1484 | over a breakpoint, but we are currently waiting for some other | |
1485 | thread to complete a displaced step, we leave thread A stopped and | |
1486 | place it in the displaced_step_request_queue. Whenever a displaced | |
1487 | step finishes, we pick the next thread in the queue and start a new | |
1488 | displaced step operation on it. See displaced_step_prepare and | |
1489 | displaced_step_fixup for details. */ | |
1490 | ||
fc1cf338 PA |
1491 | /* Per-inferior displaced stepping state. */ |
1492 | struct displaced_step_inferior_state | |
1493 | { | |
1494 | /* Pointer to next in linked list. */ | |
1495 | struct displaced_step_inferior_state *next; | |
1496 | ||
1497 | /* The process this displaced step state refers to. */ | |
1498 | int pid; | |
1499 | ||
3fc8eb30 PA |
1500 | /* True if preparing a displaced step ever failed. If so, we won't |
1501 | try displaced stepping for this inferior again. */ | |
1502 | int failed_before; | |
1503 | ||
fc1cf338 PA |
1504 | /* If this is not null_ptid, this is the thread carrying out a |
1505 | displaced single-step in process PID. This thread's state will | |
1506 | require fixing up once it has completed its step. */ | |
1507 | ptid_t step_ptid; | |
1508 | ||
1509 | /* The architecture the thread had when we stepped it. */ | |
1510 | struct gdbarch *step_gdbarch; | |
1511 | ||
1512 | /* The closure provided gdbarch_displaced_step_copy_insn, to be used | |
1513 | for post-step cleanup. */ | |
1514 | struct displaced_step_closure *step_closure; | |
1515 | ||
1516 | /* The address of the original instruction, and the copy we | |
1517 | made. */ | |
1518 | CORE_ADDR step_original, step_copy; | |
1519 | ||
1520 | /* Saved contents of copy area. */ | |
1521 | gdb_byte *step_saved_copy; | |
1522 | }; | |
1523 | ||
1524 | /* The list of states of processes involved in displaced stepping | |
1525 | presently. */ | |
1526 | static struct displaced_step_inferior_state *displaced_step_inferior_states; | |
1527 | ||
1528 | /* Get the displaced stepping state of process PID. */ | |
1529 | ||
1530 | static struct displaced_step_inferior_state * | |
1531 | get_displaced_stepping_state (int pid) | |
1532 | { | |
1533 | struct displaced_step_inferior_state *state; | |
1534 | ||
1535 | for (state = displaced_step_inferior_states; | |
1536 | state != NULL; | |
1537 | state = state->next) | |
1538 | if (state->pid == pid) | |
1539 | return state; | |
1540 | ||
1541 | return NULL; | |
1542 | } | |
1543 | ||
372316f1 PA |
1544 | /* Returns true if any inferior has a thread doing a displaced |
1545 | step. */ | |
1546 | ||
1547 | static int | |
1548 | displaced_step_in_progress_any_inferior (void) | |
1549 | { | |
1550 | struct displaced_step_inferior_state *state; | |
1551 | ||
1552 | for (state = displaced_step_inferior_states; | |
1553 | state != NULL; | |
1554 | state = state->next) | |
1555 | if (!ptid_equal (state->step_ptid, null_ptid)) | |
1556 | return 1; | |
1557 | ||
1558 | return 0; | |
1559 | } | |
1560 | ||
c0987663 YQ |
1561 | /* Return true if thread represented by PTID is doing a displaced |
1562 | step. */ | |
1563 | ||
1564 | static int | |
1565 | displaced_step_in_progress_thread (ptid_t ptid) | |
1566 | { | |
1567 | struct displaced_step_inferior_state *displaced; | |
1568 | ||
1569 | gdb_assert (!ptid_equal (ptid, null_ptid)); | |
1570 | ||
1571 | displaced = get_displaced_stepping_state (ptid_get_pid (ptid)); | |
1572 | ||
1573 | return (displaced != NULL && ptid_equal (displaced->step_ptid, ptid)); | |
1574 | } | |
1575 | ||
8f572e5c PA |
1576 | /* Return true if process PID has a thread doing a displaced step. */ |
1577 | ||
1578 | static int | |
1579 | displaced_step_in_progress (int pid) | |
1580 | { | |
1581 | struct displaced_step_inferior_state *displaced; | |
1582 | ||
1583 | displaced = get_displaced_stepping_state (pid); | |
1584 | if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid)) | |
1585 | return 1; | |
1586 | ||
1587 | return 0; | |
1588 | } | |
1589 | ||
fc1cf338 PA |
1590 | /* Add a new displaced stepping state for process PID to the displaced |
1591 | stepping state list, or return a pointer to an already existing | |
1592 | entry, if it already exists. Never returns NULL. */ | |
1593 | ||
1594 | static struct displaced_step_inferior_state * | |
1595 | add_displaced_stepping_state (int pid) | |
1596 | { | |
1597 | struct displaced_step_inferior_state *state; | |
1598 | ||
1599 | for (state = displaced_step_inferior_states; | |
1600 | state != NULL; | |
1601 | state = state->next) | |
1602 | if (state->pid == pid) | |
1603 | return state; | |
237fc4c9 | 1604 | |
8d749320 | 1605 | state = XCNEW (struct displaced_step_inferior_state); |
fc1cf338 PA |
1606 | state->pid = pid; |
1607 | state->next = displaced_step_inferior_states; | |
1608 | displaced_step_inferior_states = state; | |
237fc4c9 | 1609 | |
fc1cf338 PA |
1610 | return state; |
1611 | } | |
1612 | ||
a42244db YQ |
1613 | /* If inferior is in displaced stepping, and ADDR equals to starting address |
1614 | of copy area, return corresponding displaced_step_closure. Otherwise, | |
1615 | return NULL. */ | |
1616 | ||
1617 | struct displaced_step_closure* | |
1618 | get_displaced_step_closure_by_addr (CORE_ADDR addr) | |
1619 | { | |
1620 | struct displaced_step_inferior_state *displaced | |
1621 | = get_displaced_stepping_state (ptid_get_pid (inferior_ptid)); | |
1622 | ||
1623 | /* If checking the mode of displaced instruction in copy area. */ | |
1624 | if (displaced && !ptid_equal (displaced->step_ptid, null_ptid) | |
1625 | && (displaced->step_copy == addr)) | |
1626 | return displaced->step_closure; | |
1627 | ||
1628 | return NULL; | |
1629 | } | |
1630 | ||
fc1cf338 | 1631 | /* Remove the displaced stepping state of process PID. */ |
237fc4c9 | 1632 | |
fc1cf338 PA |
1633 | static void |
1634 | remove_displaced_stepping_state (int pid) | |
1635 | { | |
1636 | struct displaced_step_inferior_state *it, **prev_next_p; | |
237fc4c9 | 1637 | |
fc1cf338 PA |
1638 | gdb_assert (pid != 0); |
1639 | ||
1640 | it = displaced_step_inferior_states; | |
1641 | prev_next_p = &displaced_step_inferior_states; | |
1642 | while (it) | |
1643 | { | |
1644 | if (it->pid == pid) | |
1645 | { | |
1646 | *prev_next_p = it->next; | |
1647 | xfree (it); | |
1648 | return; | |
1649 | } | |
1650 | ||
1651 | prev_next_p = &it->next; | |
1652 | it = *prev_next_p; | |
1653 | } | |
1654 | } | |
1655 | ||
1656 | static void | |
1657 | infrun_inferior_exit (struct inferior *inf) | |
1658 | { | |
1659 | remove_displaced_stepping_state (inf->pid); | |
1660 | } | |
237fc4c9 | 1661 | |
fff08868 HZ |
1662 | /* If ON, and the architecture supports it, GDB will use displaced |
1663 | stepping to step over breakpoints. If OFF, or if the architecture | |
1664 | doesn't support it, GDB will instead use the traditional | |
1665 | hold-and-step approach. If AUTO (which is the default), GDB will | |
1666 | decide which technique to use to step over breakpoints depending on | |
1667 | which of all-stop or non-stop mode is active --- displaced stepping | |
1668 | in non-stop mode; hold-and-step in all-stop mode. */ | |
1669 | ||
72d0e2c5 | 1670 | static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO; |
fff08868 | 1671 | |
237fc4c9 PA |
1672 | static void |
1673 | show_can_use_displaced_stepping (struct ui_file *file, int from_tty, | |
1674 | struct cmd_list_element *c, | |
1675 | const char *value) | |
1676 | { | |
72d0e2c5 | 1677 | if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO) |
3e43a32a MS |
1678 | fprintf_filtered (file, |
1679 | _("Debugger's willingness to use displaced stepping " | |
1680 | "to step over breakpoints is %s (currently %s).\n"), | |
fbea99ea | 1681 | value, target_is_non_stop_p () ? "on" : "off"); |
fff08868 | 1682 | else |
3e43a32a MS |
1683 | fprintf_filtered (file, |
1684 | _("Debugger's willingness to use displaced stepping " | |
1685 | "to step over breakpoints is %s.\n"), value); | |
237fc4c9 PA |
1686 | } |
1687 | ||
fff08868 | 1688 | /* Return non-zero if displaced stepping can/should be used to step |
3fc8eb30 | 1689 | over breakpoints of thread TP. */ |
fff08868 | 1690 | |
237fc4c9 | 1691 | static int |
3fc8eb30 | 1692 | use_displaced_stepping (struct thread_info *tp) |
237fc4c9 | 1693 | { |
3fc8eb30 PA |
1694 | struct regcache *regcache = get_thread_regcache (tp->ptid); |
1695 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
1696 | struct displaced_step_inferior_state *displaced_state; | |
1697 | ||
1698 | displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid)); | |
1699 | ||
fbea99ea PA |
1700 | return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO |
1701 | && target_is_non_stop_p ()) | |
72d0e2c5 | 1702 | || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE) |
96429cc8 | 1703 | && gdbarch_displaced_step_copy_insn_p (gdbarch) |
3fc8eb30 PA |
1704 | && find_record_target () == NULL |
1705 | && (displaced_state == NULL | |
1706 | || !displaced_state->failed_before)); | |
237fc4c9 PA |
1707 | } |
1708 | ||
1709 | /* Clean out any stray displaced stepping state. */ | |
1710 | static void | |
fc1cf338 | 1711 | displaced_step_clear (struct displaced_step_inferior_state *displaced) |
237fc4c9 PA |
1712 | { |
1713 | /* Indicate that there is no cleanup pending. */ | |
fc1cf338 | 1714 | displaced->step_ptid = null_ptid; |
237fc4c9 | 1715 | |
6d45d4b4 SM |
1716 | xfree (displaced->step_closure); |
1717 | displaced->step_closure = NULL; | |
237fc4c9 PA |
1718 | } |
1719 | ||
1720 | static void | |
fc1cf338 | 1721 | displaced_step_clear_cleanup (void *arg) |
237fc4c9 | 1722 | { |
9a3c8263 SM |
1723 | struct displaced_step_inferior_state *state |
1724 | = (struct displaced_step_inferior_state *) arg; | |
fc1cf338 PA |
1725 | |
1726 | displaced_step_clear (state); | |
237fc4c9 PA |
1727 | } |
1728 | ||
1729 | /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */ | |
1730 | void | |
1731 | displaced_step_dump_bytes (struct ui_file *file, | |
1732 | const gdb_byte *buf, | |
1733 | size_t len) | |
1734 | { | |
1735 | int i; | |
1736 | ||
1737 | for (i = 0; i < len; i++) | |
1738 | fprintf_unfiltered (file, "%02x ", buf[i]); | |
1739 | fputs_unfiltered ("\n", file); | |
1740 | } | |
1741 | ||
1742 | /* Prepare to single-step, using displaced stepping. | |
1743 | ||
1744 | Note that we cannot use displaced stepping when we have a signal to | |
1745 | deliver. If we have a signal to deliver and an instruction to step | |
1746 | over, then after the step, there will be no indication from the | |
1747 | target whether the thread entered a signal handler or ignored the | |
1748 | signal and stepped over the instruction successfully --- both cases | |
1749 | result in a simple SIGTRAP. In the first case we mustn't do a | |
1750 | fixup, and in the second case we must --- but we can't tell which. | |
1751 | Comments in the code for 'random signals' in handle_inferior_event | |
1752 | explain how we handle this case instead. | |
1753 | ||
1754 | Returns 1 if preparing was successful -- this thread is going to be | |
7f03bd92 PA |
1755 | stepped now; 0 if displaced stepping this thread got queued; or -1 |
1756 | if this instruction can't be displaced stepped. */ | |
1757 | ||
237fc4c9 | 1758 | static int |
3fc8eb30 | 1759 | displaced_step_prepare_throw (ptid_t ptid) |
237fc4c9 | 1760 | { |
2989a365 | 1761 | struct cleanup *ignore_cleanups; |
c1e36e3e | 1762 | struct thread_info *tp = find_thread_ptid (ptid); |
237fc4c9 PA |
1763 | struct regcache *regcache = get_thread_regcache (ptid); |
1764 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
d35ae833 | 1765 | struct address_space *aspace = get_regcache_aspace (regcache); |
237fc4c9 PA |
1766 | CORE_ADDR original, copy; |
1767 | ULONGEST len; | |
1768 | struct displaced_step_closure *closure; | |
fc1cf338 | 1769 | struct displaced_step_inferior_state *displaced; |
9e529e1d | 1770 | int status; |
237fc4c9 PA |
1771 | |
1772 | /* We should never reach this function if the architecture does not | |
1773 | support displaced stepping. */ | |
1774 | gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch)); | |
1775 | ||
c2829269 PA |
1776 | /* Nor if the thread isn't meant to step over a breakpoint. */ |
1777 | gdb_assert (tp->control.trap_expected); | |
1778 | ||
c1e36e3e PA |
1779 | /* Disable range stepping while executing in the scratch pad. We |
1780 | want a single-step even if executing the displaced instruction in | |
1781 | the scratch buffer lands within the stepping range (e.g., a | |
1782 | jump/branch). */ | |
1783 | tp->control.may_range_step = 0; | |
1784 | ||
fc1cf338 PA |
1785 | /* We have to displaced step one thread at a time, as we only have |
1786 | access to a single scratch space per inferior. */ | |
237fc4c9 | 1787 | |
fc1cf338 PA |
1788 | displaced = add_displaced_stepping_state (ptid_get_pid (ptid)); |
1789 | ||
1790 | if (!ptid_equal (displaced->step_ptid, null_ptid)) | |
237fc4c9 PA |
1791 | { |
1792 | /* Already waiting for a displaced step to finish. Defer this | |
1793 | request and place in queue. */ | |
237fc4c9 PA |
1794 | |
1795 | if (debug_displaced) | |
1796 | fprintf_unfiltered (gdb_stdlog, | |
c2829269 | 1797 | "displaced: deferring step of %s\n", |
237fc4c9 PA |
1798 | target_pid_to_str (ptid)); |
1799 | ||
c2829269 | 1800 | thread_step_over_chain_enqueue (tp); |
237fc4c9 PA |
1801 | return 0; |
1802 | } | |
1803 | else | |
1804 | { | |
1805 | if (debug_displaced) | |
1806 | fprintf_unfiltered (gdb_stdlog, | |
1807 | "displaced: stepping %s now\n", | |
1808 | target_pid_to_str (ptid)); | |
1809 | } | |
1810 | ||
fc1cf338 | 1811 | displaced_step_clear (displaced); |
237fc4c9 | 1812 | |
2989a365 | 1813 | scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); |
ad53cd71 PA |
1814 | inferior_ptid = ptid; |
1815 | ||
515630c5 | 1816 | original = regcache_read_pc (regcache); |
237fc4c9 PA |
1817 | |
1818 | copy = gdbarch_displaced_step_location (gdbarch); | |
1819 | len = gdbarch_max_insn_length (gdbarch); | |
1820 | ||
d35ae833 PA |
1821 | if (breakpoint_in_range_p (aspace, copy, len)) |
1822 | { | |
1823 | /* There's a breakpoint set in the scratch pad location range | |
1824 | (which is usually around the entry point). We'd either | |
1825 | install it before resuming, which would overwrite/corrupt the | |
1826 | scratch pad, or if it was already inserted, this displaced | |
1827 | step would overwrite it. The latter is OK in the sense that | |
1828 | we already assume that no thread is going to execute the code | |
1829 | in the scratch pad range (after initial startup) anyway, but | |
1830 | the former is unacceptable. Simply punt and fallback to | |
1831 | stepping over this breakpoint in-line. */ | |
1832 | if (debug_displaced) | |
1833 | { | |
1834 | fprintf_unfiltered (gdb_stdlog, | |
1835 | "displaced: breakpoint set in scratch pad. " | |
1836 | "Stepping over breakpoint in-line instead.\n"); | |
1837 | } | |
1838 | ||
d35ae833 PA |
1839 | return -1; |
1840 | } | |
1841 | ||
237fc4c9 | 1842 | /* Save the original contents of the copy area. */ |
224c3ddb | 1843 | displaced->step_saved_copy = (gdb_byte *) xmalloc (len); |
ad53cd71 | 1844 | ignore_cleanups = make_cleanup (free_current_contents, |
fc1cf338 | 1845 | &displaced->step_saved_copy); |
9e529e1d JK |
1846 | status = target_read_memory (copy, displaced->step_saved_copy, len); |
1847 | if (status != 0) | |
1848 | throw_error (MEMORY_ERROR, | |
1849 | _("Error accessing memory address %s (%s) for " | |
1850 | "displaced-stepping scratch space."), | |
1851 | paddress (gdbarch, copy), safe_strerror (status)); | |
237fc4c9 PA |
1852 | if (debug_displaced) |
1853 | { | |
5af949e3 UW |
1854 | fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ", |
1855 | paddress (gdbarch, copy)); | |
fc1cf338 PA |
1856 | displaced_step_dump_bytes (gdb_stdlog, |
1857 | displaced->step_saved_copy, | |
1858 | len); | |
237fc4c9 PA |
1859 | }; |
1860 | ||
1861 | closure = gdbarch_displaced_step_copy_insn (gdbarch, | |
ad53cd71 | 1862 | original, copy, regcache); |
7f03bd92 PA |
1863 | if (closure == NULL) |
1864 | { | |
1865 | /* The architecture doesn't know how or want to displaced step | |
1866 | this instruction or instruction sequence. Fallback to | |
1867 | stepping over the breakpoint in-line. */ | |
2989a365 | 1868 | do_cleanups (ignore_cleanups); |
7f03bd92 PA |
1869 | return -1; |
1870 | } | |
237fc4c9 | 1871 | |
9f5a595d UW |
1872 | /* Save the information we need to fix things up if the step |
1873 | succeeds. */ | |
fc1cf338 PA |
1874 | displaced->step_ptid = ptid; |
1875 | displaced->step_gdbarch = gdbarch; | |
1876 | displaced->step_closure = closure; | |
1877 | displaced->step_original = original; | |
1878 | displaced->step_copy = copy; | |
9f5a595d | 1879 | |
fc1cf338 | 1880 | make_cleanup (displaced_step_clear_cleanup, displaced); |
237fc4c9 PA |
1881 | |
1882 | /* Resume execution at the copy. */ | |
515630c5 | 1883 | regcache_write_pc (regcache, copy); |
237fc4c9 | 1884 | |
ad53cd71 PA |
1885 | discard_cleanups (ignore_cleanups); |
1886 | ||
237fc4c9 | 1887 | if (debug_displaced) |
5af949e3 UW |
1888 | fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n", |
1889 | paddress (gdbarch, copy)); | |
237fc4c9 | 1890 | |
237fc4c9 PA |
1891 | return 1; |
1892 | } | |
1893 | ||
3fc8eb30 PA |
1894 | /* Wrapper for displaced_step_prepare_throw that disabled further |
1895 | attempts at displaced stepping if we get a memory error. */ | |
1896 | ||
1897 | static int | |
1898 | displaced_step_prepare (ptid_t ptid) | |
1899 | { | |
1900 | int prepared = -1; | |
1901 | ||
1902 | TRY | |
1903 | { | |
1904 | prepared = displaced_step_prepare_throw (ptid); | |
1905 | } | |
1906 | CATCH (ex, RETURN_MASK_ERROR) | |
1907 | { | |
1908 | struct displaced_step_inferior_state *displaced_state; | |
1909 | ||
16b41842 PA |
1910 | if (ex.error != MEMORY_ERROR |
1911 | && ex.error != NOT_SUPPORTED_ERROR) | |
3fc8eb30 PA |
1912 | throw_exception (ex); |
1913 | ||
1914 | if (debug_infrun) | |
1915 | { | |
1916 | fprintf_unfiltered (gdb_stdlog, | |
1917 | "infrun: disabling displaced stepping: %s\n", | |
1918 | ex.message); | |
1919 | } | |
1920 | ||
1921 | /* Be verbose if "set displaced-stepping" is "on", silent if | |
1922 | "auto". */ | |
1923 | if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE) | |
1924 | { | |
fd7dcb94 | 1925 | warning (_("disabling displaced stepping: %s"), |
3fc8eb30 PA |
1926 | ex.message); |
1927 | } | |
1928 | ||
1929 | /* Disable further displaced stepping attempts. */ | |
1930 | displaced_state | |
1931 | = get_displaced_stepping_state (ptid_get_pid (ptid)); | |
1932 | displaced_state->failed_before = 1; | |
1933 | } | |
1934 | END_CATCH | |
1935 | ||
1936 | return prepared; | |
1937 | } | |
1938 | ||
237fc4c9 | 1939 | static void |
3e43a32a MS |
1940 | write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, |
1941 | const gdb_byte *myaddr, int len) | |
237fc4c9 | 1942 | { |
2989a365 | 1943 | scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); |
abbb1732 | 1944 | |
237fc4c9 PA |
1945 | inferior_ptid = ptid; |
1946 | write_memory (memaddr, myaddr, len); | |
237fc4c9 PA |
1947 | } |
1948 | ||
e2d96639 YQ |
1949 | /* Restore the contents of the copy area for thread PTID. */ |
1950 | ||
1951 | static void | |
1952 | displaced_step_restore (struct displaced_step_inferior_state *displaced, | |
1953 | ptid_t ptid) | |
1954 | { | |
1955 | ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch); | |
1956 | ||
1957 | write_memory_ptid (ptid, displaced->step_copy, | |
1958 | displaced->step_saved_copy, len); | |
1959 | if (debug_displaced) | |
1960 | fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n", | |
1961 | target_pid_to_str (ptid), | |
1962 | paddress (displaced->step_gdbarch, | |
1963 | displaced->step_copy)); | |
1964 | } | |
1965 | ||
372316f1 PA |
1966 | /* If we displaced stepped an instruction successfully, adjust |
1967 | registers and memory to yield the same effect the instruction would | |
1968 | have had if we had executed it at its original address, and return | |
1969 | 1. If the instruction didn't complete, relocate the PC and return | |
1970 | -1. If the thread wasn't displaced stepping, return 0. */ | |
1971 | ||
1972 | static int | |
2ea28649 | 1973 | displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal) |
237fc4c9 PA |
1974 | { |
1975 | struct cleanup *old_cleanups; | |
fc1cf338 PA |
1976 | struct displaced_step_inferior_state *displaced |
1977 | = get_displaced_stepping_state (ptid_get_pid (event_ptid)); | |
372316f1 | 1978 | int ret; |
fc1cf338 PA |
1979 | |
1980 | /* Was any thread of this process doing a displaced step? */ | |
1981 | if (displaced == NULL) | |
372316f1 | 1982 | return 0; |
237fc4c9 PA |
1983 | |
1984 | /* Was this event for the pid we displaced? */ | |
fc1cf338 PA |
1985 | if (ptid_equal (displaced->step_ptid, null_ptid) |
1986 | || ! ptid_equal (displaced->step_ptid, event_ptid)) | |
372316f1 | 1987 | return 0; |
237fc4c9 | 1988 | |
fc1cf338 | 1989 | old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced); |
237fc4c9 | 1990 | |
e2d96639 | 1991 | displaced_step_restore (displaced, displaced->step_ptid); |
237fc4c9 | 1992 | |
cb71640d PA |
1993 | /* Fixup may need to read memory/registers. Switch to the thread |
1994 | that we're fixing up. Also, target_stopped_by_watchpoint checks | |
1995 | the current thread. */ | |
1996 | switch_to_thread (event_ptid); | |
1997 | ||
237fc4c9 | 1998 | /* Did the instruction complete successfully? */ |
cb71640d PA |
1999 | if (signal == GDB_SIGNAL_TRAP |
2000 | && !(target_stopped_by_watchpoint () | |
2001 | && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch) | |
2002 | || target_have_steppable_watchpoint))) | |
237fc4c9 PA |
2003 | { |
2004 | /* Fix up the resulting state. */ | |
fc1cf338 PA |
2005 | gdbarch_displaced_step_fixup (displaced->step_gdbarch, |
2006 | displaced->step_closure, | |
2007 | displaced->step_original, | |
2008 | displaced->step_copy, | |
2009 | get_thread_regcache (displaced->step_ptid)); | |
372316f1 | 2010 | ret = 1; |
237fc4c9 PA |
2011 | } |
2012 | else | |
2013 | { | |
2014 | /* Since the instruction didn't complete, all we can do is | |
2015 | relocate the PC. */ | |
515630c5 UW |
2016 | struct regcache *regcache = get_thread_regcache (event_ptid); |
2017 | CORE_ADDR pc = regcache_read_pc (regcache); | |
abbb1732 | 2018 | |
fc1cf338 | 2019 | pc = displaced->step_original + (pc - displaced->step_copy); |
515630c5 | 2020 | regcache_write_pc (regcache, pc); |
372316f1 | 2021 | ret = -1; |
237fc4c9 PA |
2022 | } |
2023 | ||
2024 | do_cleanups (old_cleanups); | |
2025 | ||
fc1cf338 | 2026 | displaced->step_ptid = null_ptid; |
372316f1 PA |
2027 | |
2028 | return ret; | |
c2829269 | 2029 | } |
1c5cfe86 | 2030 | |
4d9d9d04 PA |
2031 | /* Data to be passed around while handling an event. This data is |
2032 | discarded between events. */ | |
2033 | struct execution_control_state | |
2034 | { | |
2035 | ptid_t ptid; | |
2036 | /* The thread that got the event, if this was a thread event; NULL | |
2037 | otherwise. */ | |
2038 | struct thread_info *event_thread; | |
2039 | ||
2040 | struct target_waitstatus ws; | |
2041 | int stop_func_filled_in; | |
2042 | CORE_ADDR stop_func_start; | |
2043 | CORE_ADDR stop_func_end; | |
2044 | const char *stop_func_name; | |
2045 | int wait_some_more; | |
2046 | ||
2047 | /* True if the event thread hit the single-step breakpoint of | |
2048 | another thread. Thus the event doesn't cause a stop, the thread | |
2049 | needs to be single-stepped past the single-step breakpoint before | |
2050 | we can switch back to the original stepping thread. */ | |
2051 | int hit_singlestep_breakpoint; | |
2052 | }; | |
2053 | ||
2054 | /* Clear ECS and set it to point at TP. */ | |
c2829269 PA |
2055 | |
2056 | static void | |
4d9d9d04 PA |
2057 | reset_ecs (struct execution_control_state *ecs, struct thread_info *tp) |
2058 | { | |
2059 | memset (ecs, 0, sizeof (*ecs)); | |
2060 | ecs->event_thread = tp; | |
2061 | ecs->ptid = tp->ptid; | |
2062 | } | |
2063 | ||
2064 | static void keep_going_pass_signal (struct execution_control_state *ecs); | |
2065 | static void prepare_to_wait (struct execution_control_state *ecs); | |
2ac7589c | 2066 | static int keep_going_stepped_thread (struct thread_info *tp); |
8d297bbf | 2067 | static step_over_what thread_still_needs_step_over (struct thread_info *tp); |
4d9d9d04 PA |
2068 | |
2069 | /* Are there any pending step-over requests? If so, run all we can | |
2070 | now and return true. Otherwise, return false. */ | |
2071 | ||
2072 | static int | |
c2829269 PA |
2073 | start_step_over (void) |
2074 | { | |
2075 | struct thread_info *tp, *next; | |
2076 | ||
372316f1 PA |
2077 | /* Don't start a new step-over if we already have an in-line |
2078 | step-over operation ongoing. */ | |
2079 | if (step_over_info_valid_p ()) | |
2080 | return 0; | |
2081 | ||
c2829269 | 2082 | for (tp = step_over_queue_head; tp != NULL; tp = next) |
237fc4c9 | 2083 | { |
4d9d9d04 PA |
2084 | struct execution_control_state ecss; |
2085 | struct execution_control_state *ecs = &ecss; | |
8d297bbf | 2086 | step_over_what step_what; |
372316f1 | 2087 | int must_be_in_line; |
c2829269 | 2088 | |
c65d6b55 PA |
2089 | gdb_assert (!tp->stop_requested); |
2090 | ||
c2829269 | 2091 | next = thread_step_over_chain_next (tp); |
237fc4c9 | 2092 | |
c2829269 PA |
2093 | /* If this inferior already has a displaced step in process, |
2094 | don't start a new one. */ | |
4d9d9d04 | 2095 | if (displaced_step_in_progress (ptid_get_pid (tp->ptid))) |
c2829269 PA |
2096 | continue; |
2097 | ||
372316f1 PA |
2098 | step_what = thread_still_needs_step_over (tp); |
2099 | must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT) | |
2100 | || ((step_what & STEP_OVER_BREAKPOINT) | |
3fc8eb30 | 2101 | && !use_displaced_stepping (tp))); |
372316f1 PA |
2102 | |
2103 | /* We currently stop all threads of all processes to step-over | |
2104 | in-line. If we need to start a new in-line step-over, let | |
2105 | any pending displaced steps finish first. */ | |
2106 | if (must_be_in_line && displaced_step_in_progress_any_inferior ()) | |
2107 | return 0; | |
2108 | ||
c2829269 PA |
2109 | thread_step_over_chain_remove (tp); |
2110 | ||
2111 | if (step_over_queue_head == NULL) | |
2112 | { | |
2113 | if (debug_infrun) | |
2114 | fprintf_unfiltered (gdb_stdlog, | |
2115 | "infrun: step-over queue now empty\n"); | |
2116 | } | |
2117 | ||
372316f1 PA |
2118 | if (tp->control.trap_expected |
2119 | || tp->resumed | |
2120 | || tp->executing) | |
ad53cd71 | 2121 | { |
4d9d9d04 PA |
2122 | internal_error (__FILE__, __LINE__, |
2123 | "[%s] has inconsistent state: " | |
372316f1 | 2124 | "trap_expected=%d, resumed=%d, executing=%d\n", |
4d9d9d04 PA |
2125 | target_pid_to_str (tp->ptid), |
2126 | tp->control.trap_expected, | |
372316f1 | 2127 | tp->resumed, |
4d9d9d04 | 2128 | tp->executing); |
ad53cd71 | 2129 | } |
1c5cfe86 | 2130 | |
4d9d9d04 PA |
2131 | if (debug_infrun) |
2132 | fprintf_unfiltered (gdb_stdlog, | |
2133 | "infrun: resuming [%s] for step-over\n", | |
2134 | target_pid_to_str (tp->ptid)); | |
2135 | ||
2136 | /* keep_going_pass_signal skips the step-over if the breakpoint | |
2137 | is no longer inserted. In all-stop, we want to keep looking | |
2138 | for a thread that needs a step-over instead of resuming TP, | |
2139 | because we wouldn't be able to resume anything else until the | |
2140 | target stops again. In non-stop, the resume always resumes | |
2141 | only TP, so it's OK to let the thread resume freely. */ | |
fbea99ea | 2142 | if (!target_is_non_stop_p () && !step_what) |
4d9d9d04 | 2143 | continue; |
8550d3b3 | 2144 | |
4d9d9d04 PA |
2145 | switch_to_thread (tp->ptid); |
2146 | reset_ecs (ecs, tp); | |
2147 | keep_going_pass_signal (ecs); | |
1c5cfe86 | 2148 | |
4d9d9d04 PA |
2149 | if (!ecs->wait_some_more) |
2150 | error (_("Command aborted.")); | |
1c5cfe86 | 2151 | |
372316f1 PA |
2152 | gdb_assert (tp->resumed); |
2153 | ||
2154 | /* If we started a new in-line step-over, we're done. */ | |
2155 | if (step_over_info_valid_p ()) | |
2156 | { | |
2157 | gdb_assert (tp->control.trap_expected); | |
2158 | return 1; | |
2159 | } | |
2160 | ||
fbea99ea | 2161 | if (!target_is_non_stop_p ()) |
4d9d9d04 PA |
2162 | { |
2163 | /* On all-stop, shouldn't have resumed unless we needed a | |
2164 | step over. */ | |
2165 | gdb_assert (tp->control.trap_expected | |
2166 | || tp->step_after_step_resume_breakpoint); | |
2167 | ||
2168 | /* With remote targets (at least), in all-stop, we can't | |
2169 | issue any further remote commands until the program stops | |
2170 | again. */ | |
2171 | return 1; | |
1c5cfe86 | 2172 | } |
c2829269 | 2173 | |
4d9d9d04 PA |
2174 | /* Either the thread no longer needed a step-over, or a new |
2175 | displaced stepping sequence started. Even in the latter | |
2176 | case, continue looking. Maybe we can also start another | |
2177 | displaced step on a thread of other process. */ | |
237fc4c9 | 2178 | } |
4d9d9d04 PA |
2179 | |
2180 | return 0; | |
237fc4c9 PA |
2181 | } |
2182 | ||
5231c1fd PA |
2183 | /* Update global variables holding ptids to hold NEW_PTID if they were |
2184 | holding OLD_PTID. */ | |
2185 | static void | |
2186 | infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid) | |
2187 | { | |
fc1cf338 | 2188 | struct displaced_step_inferior_state *displaced; |
5231c1fd PA |
2189 | |
2190 | if (ptid_equal (inferior_ptid, old_ptid)) | |
2191 | inferior_ptid = new_ptid; | |
2192 | ||
fc1cf338 PA |
2193 | for (displaced = displaced_step_inferior_states; |
2194 | displaced; | |
2195 | displaced = displaced->next) | |
2196 | { | |
2197 | if (ptid_equal (displaced->step_ptid, old_ptid)) | |
2198 | displaced->step_ptid = new_ptid; | |
fc1cf338 | 2199 | } |
5231c1fd PA |
2200 | } |
2201 | ||
237fc4c9 PA |
2202 | \f |
2203 | /* Resuming. */ | |
c906108c SS |
2204 | |
2205 | /* Things to clean up if we QUIT out of resume (). */ | |
c906108c | 2206 | static void |
74b7792f | 2207 | resume_cleanups (void *ignore) |
c906108c | 2208 | { |
34b7e8a6 PA |
2209 | if (!ptid_equal (inferior_ptid, null_ptid)) |
2210 | delete_single_step_breakpoints (inferior_thread ()); | |
7c16b83e | 2211 | |
c906108c SS |
2212 | normal_stop (); |
2213 | } | |
2214 | ||
53904c9e AC |
2215 | static const char schedlock_off[] = "off"; |
2216 | static const char schedlock_on[] = "on"; | |
2217 | static const char schedlock_step[] = "step"; | |
f2665db5 | 2218 | static const char schedlock_replay[] = "replay"; |
40478521 | 2219 | static const char *const scheduler_enums[] = { |
ef346e04 AC |
2220 | schedlock_off, |
2221 | schedlock_on, | |
2222 | schedlock_step, | |
f2665db5 | 2223 | schedlock_replay, |
ef346e04 AC |
2224 | NULL |
2225 | }; | |
f2665db5 | 2226 | static const char *scheduler_mode = schedlock_replay; |
920d2a44 AC |
2227 | static void |
2228 | show_scheduler_mode (struct ui_file *file, int from_tty, | |
2229 | struct cmd_list_element *c, const char *value) | |
2230 | { | |
3e43a32a MS |
2231 | fprintf_filtered (file, |
2232 | _("Mode for locking scheduler " | |
2233 | "during execution is \"%s\".\n"), | |
920d2a44 AC |
2234 | value); |
2235 | } | |
c906108c SS |
2236 | |
2237 | static void | |
96baa820 | 2238 | set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c) |
c906108c | 2239 | { |
eefe576e AC |
2240 | if (!target_can_lock_scheduler) |
2241 | { | |
2242 | scheduler_mode = schedlock_off; | |
2243 | error (_("Target '%s' cannot support this command."), target_shortname); | |
2244 | } | |
c906108c SS |
2245 | } |
2246 | ||
d4db2f36 PA |
2247 | /* True if execution commands resume all threads of all processes by |
2248 | default; otherwise, resume only threads of the current inferior | |
2249 | process. */ | |
2250 | int sched_multi = 0; | |
2251 | ||
2facfe5c DD |
2252 | /* Try to setup for software single stepping over the specified location. |
2253 | Return 1 if target_resume() should use hardware single step. | |
2254 | ||
2255 | GDBARCH the current gdbarch. | |
2256 | PC the location to step over. */ | |
2257 | ||
2258 | static int | |
2259 | maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc) | |
2260 | { | |
2261 | int hw_step = 1; | |
2262 | ||
f02253f1 | 2263 | if (execution_direction == EXEC_FORWARD |
93f9a11f YQ |
2264 | && gdbarch_software_single_step_p (gdbarch)) |
2265 | hw_step = !insert_single_step_breakpoints (gdbarch); | |
2266 | ||
2facfe5c DD |
2267 | return hw_step; |
2268 | } | |
c906108c | 2269 | |
f3263aa4 PA |
2270 | /* See infrun.h. */ |
2271 | ||
09cee04b PA |
2272 | ptid_t |
2273 | user_visible_resume_ptid (int step) | |
2274 | { | |
f3263aa4 | 2275 | ptid_t resume_ptid; |
09cee04b | 2276 | |
09cee04b PA |
2277 | if (non_stop) |
2278 | { | |
2279 | /* With non-stop mode on, threads are always handled | |
2280 | individually. */ | |
2281 | resume_ptid = inferior_ptid; | |
2282 | } | |
2283 | else if ((scheduler_mode == schedlock_on) | |
03d46957 | 2284 | || (scheduler_mode == schedlock_step && step)) |
09cee04b | 2285 | { |
f3263aa4 PA |
2286 | /* User-settable 'scheduler' mode requires solo thread |
2287 | resume. */ | |
09cee04b PA |
2288 | resume_ptid = inferior_ptid; |
2289 | } | |
f2665db5 MM |
2290 | else if ((scheduler_mode == schedlock_replay) |
2291 | && target_record_will_replay (minus_one_ptid, execution_direction)) | |
2292 | { | |
2293 | /* User-settable 'scheduler' mode requires solo thread resume in replay | |
2294 | mode. */ | |
2295 | resume_ptid = inferior_ptid; | |
2296 | } | |
f3263aa4 PA |
2297 | else if (!sched_multi && target_supports_multi_process ()) |
2298 | { | |
2299 | /* Resume all threads of the current process (and none of other | |
2300 | processes). */ | |
2301 | resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid)); | |
2302 | } | |
2303 | else | |
2304 | { | |
2305 | /* Resume all threads of all processes. */ | |
2306 | resume_ptid = RESUME_ALL; | |
2307 | } | |
09cee04b PA |
2308 | |
2309 | return resume_ptid; | |
2310 | } | |
2311 | ||
fbea99ea PA |
2312 | /* Return a ptid representing the set of threads that we will resume, |
2313 | in the perspective of the target, assuming run control handling | |
2314 | does not require leaving some threads stopped (e.g., stepping past | |
2315 | breakpoint). USER_STEP indicates whether we're about to start the | |
2316 | target for a stepping command. */ | |
2317 | ||
2318 | static ptid_t | |
2319 | internal_resume_ptid (int user_step) | |
2320 | { | |
2321 | /* In non-stop, we always control threads individually. Note that | |
2322 | the target may always work in non-stop mode even with "set | |
2323 | non-stop off", in which case user_visible_resume_ptid could | |
2324 | return a wildcard ptid. */ | |
2325 | if (target_is_non_stop_p ()) | |
2326 | return inferior_ptid; | |
2327 | else | |
2328 | return user_visible_resume_ptid (user_step); | |
2329 | } | |
2330 | ||
64ce06e4 PA |
2331 | /* Wrapper for target_resume, that handles infrun-specific |
2332 | bookkeeping. */ | |
2333 | ||
2334 | static void | |
2335 | do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig) | |
2336 | { | |
2337 | struct thread_info *tp = inferior_thread (); | |
2338 | ||
c65d6b55 PA |
2339 | gdb_assert (!tp->stop_requested); |
2340 | ||
64ce06e4 | 2341 | /* Install inferior's terminal modes. */ |
223ffa71 | 2342 | target_terminal::inferior (); |
64ce06e4 PA |
2343 | |
2344 | /* Avoid confusing the next resume, if the next stop/resume | |
2345 | happens to apply to another thread. */ | |
2346 | tp->suspend.stop_signal = GDB_SIGNAL_0; | |
2347 | ||
8f572e5c PA |
2348 | /* Advise target which signals may be handled silently. |
2349 | ||
2350 | If we have removed breakpoints because we are stepping over one | |
2351 | in-line (in any thread), we need to receive all signals to avoid | |
2352 | accidentally skipping a breakpoint during execution of a signal | |
2353 | handler. | |
2354 | ||
2355 | Likewise if we're displaced stepping, otherwise a trap for a | |
2356 | breakpoint in a signal handler might be confused with the | |
2357 | displaced step finishing. We don't make the displaced_step_fixup | |
2358 | step distinguish the cases instead, because: | |
2359 | ||
2360 | - a backtrace while stopped in the signal handler would show the | |
2361 | scratch pad as frame older than the signal handler, instead of | |
2362 | the real mainline code. | |
2363 | ||
2364 | - when the thread is later resumed, the signal handler would | |
2365 | return to the scratch pad area, which would no longer be | |
2366 | valid. */ | |
2367 | if (step_over_info_valid_p () | |
2368 | || displaced_step_in_progress (ptid_get_pid (tp->ptid))) | |
64ce06e4 PA |
2369 | target_pass_signals (0, NULL); |
2370 | else | |
2371 | target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass); | |
2372 | ||
2373 | target_resume (resume_ptid, step, sig); | |
85ad3aaf PA |
2374 | |
2375 | target_commit_resume (); | |
64ce06e4 PA |
2376 | } |
2377 | ||
c906108c SS |
2378 | /* Resume the inferior, but allow a QUIT. This is useful if the user |
2379 | wants to interrupt some lengthy single-stepping operation | |
2380 | (for child processes, the SIGINT goes to the inferior, and so | |
2381 | we get a SIGINT random_signal, but for remote debugging and perhaps | |
2382 | other targets, that's not true). | |
2383 | ||
c906108c SS |
2384 | SIG is the signal to give the inferior (zero for none). */ |
2385 | void | |
64ce06e4 | 2386 | resume (enum gdb_signal sig) |
c906108c | 2387 | { |
74b7792f | 2388 | struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0); |
515630c5 UW |
2389 | struct regcache *regcache = get_current_regcache (); |
2390 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
4e1c45ea | 2391 | struct thread_info *tp = inferior_thread (); |
515630c5 | 2392 | CORE_ADDR pc = regcache_read_pc (regcache); |
6c95b8df | 2393 | struct address_space *aspace = get_regcache_aspace (regcache); |
b0f16a3e | 2394 | ptid_t resume_ptid; |
856e7dd6 PA |
2395 | /* This represents the user's step vs continue request. When |
2396 | deciding whether "set scheduler-locking step" applies, it's the | |
2397 | user's intention that counts. */ | |
2398 | const int user_step = tp->control.stepping_command; | |
64ce06e4 PA |
2399 | /* This represents what we'll actually request the target to do. |
2400 | This can decay from a step to a continue, if e.g., we need to | |
2401 | implement single-stepping with breakpoints (software | |
2402 | single-step). */ | |
6b403daa | 2403 | int step; |
c7e8a53c | 2404 | |
c65d6b55 | 2405 | gdb_assert (!tp->stop_requested); |
c2829269 PA |
2406 | gdb_assert (!thread_is_in_step_over_chain (tp)); |
2407 | ||
c906108c SS |
2408 | QUIT; |
2409 | ||
372316f1 PA |
2410 | if (tp->suspend.waitstatus_pending_p) |
2411 | { | |
2412 | if (debug_infrun) | |
2413 | { | |
23fdd69e SM |
2414 | std::string statstr |
2415 | = target_waitstatus_to_string (&tp->suspend.waitstatus); | |
372316f1 | 2416 | |
372316f1 | 2417 | fprintf_unfiltered (gdb_stdlog, |
23fdd69e SM |
2418 | "infrun: resume: thread %s has pending wait " |
2419 | "status %s (currently_stepping=%d).\n", | |
2420 | target_pid_to_str (tp->ptid), statstr.c_str (), | |
372316f1 | 2421 | currently_stepping (tp)); |
372316f1 PA |
2422 | } |
2423 | ||
2424 | tp->resumed = 1; | |
2425 | ||
2426 | /* FIXME: What should we do if we are supposed to resume this | |
2427 | thread with a signal? Maybe we should maintain a queue of | |
2428 | pending signals to deliver. */ | |
2429 | if (sig != GDB_SIGNAL_0) | |
2430 | { | |
fd7dcb94 | 2431 | warning (_("Couldn't deliver signal %s to %s."), |
372316f1 PA |
2432 | gdb_signal_to_name (sig), target_pid_to_str (tp->ptid)); |
2433 | } | |
2434 | ||
2435 | tp->suspend.stop_signal = GDB_SIGNAL_0; | |
2436 | discard_cleanups (old_cleanups); | |
2437 | ||
2438 | if (target_can_async_p ()) | |
2439 | target_async (1); | |
2440 | return; | |
2441 | } | |
2442 | ||
2443 | tp->stepped_breakpoint = 0; | |
2444 | ||
6b403daa PA |
2445 | /* Depends on stepped_breakpoint. */ |
2446 | step = currently_stepping (tp); | |
2447 | ||
74609e71 YQ |
2448 | if (current_inferior ()->waiting_for_vfork_done) |
2449 | { | |
48f9886d PA |
2450 | /* Don't try to single-step a vfork parent that is waiting for |
2451 | the child to get out of the shared memory region (by exec'ing | |
2452 | or exiting). This is particularly important on software | |
2453 | single-step archs, as the child process would trip on the | |
2454 | software single step breakpoint inserted for the parent | |
2455 | process. Since the parent will not actually execute any | |
2456 | instruction until the child is out of the shared region (such | |
2457 | are vfork's semantics), it is safe to simply continue it. | |
2458 | Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for | |
2459 | the parent, and tell it to `keep_going', which automatically | |
2460 | re-sets it stepping. */ | |
74609e71 YQ |
2461 | if (debug_infrun) |
2462 | fprintf_unfiltered (gdb_stdlog, | |
2463 | "infrun: resume : clear step\n"); | |
a09dd441 | 2464 | step = 0; |
74609e71 YQ |
2465 | } |
2466 | ||
527159b7 | 2467 | if (debug_infrun) |
237fc4c9 | 2468 | fprintf_unfiltered (gdb_stdlog, |
c9737c08 | 2469 | "infrun: resume (step=%d, signal=%s), " |
0d9a9a5f | 2470 | "trap_expected=%d, current thread [%s] at %s\n", |
c9737c08 PA |
2471 | step, gdb_signal_to_symbol_string (sig), |
2472 | tp->control.trap_expected, | |
0d9a9a5f PA |
2473 | target_pid_to_str (inferior_ptid), |
2474 | paddress (gdbarch, pc)); | |
c906108c | 2475 | |
c2c6d25f JM |
2476 | /* Normally, by the time we reach `resume', the breakpoints are either |
2477 | removed or inserted, as appropriate. The exception is if we're sitting | |
2478 | at a permanent breakpoint; we need to step over it, but permanent | |
2479 | breakpoints can't be removed. So we have to test for it here. */ | |
6c95b8df | 2480 | if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here) |
6d350bb5 | 2481 | { |
af48d08f PA |
2482 | if (sig != GDB_SIGNAL_0) |
2483 | { | |
2484 | /* We have a signal to pass to the inferior. The resume | |
2485 | may, or may not take us to the signal handler. If this | |
2486 | is a step, we'll need to stop in the signal handler, if | |
2487 | there's one, (if the target supports stepping into | |
2488 | handlers), or in the next mainline instruction, if | |
2489 | there's no handler. If this is a continue, we need to be | |
2490 | sure to run the handler with all breakpoints inserted. | |
2491 | In all cases, set a breakpoint at the current address | |
2492 | (where the handler returns to), and once that breakpoint | |
2493 | is hit, resume skipping the permanent breakpoint. If | |
2494 | that breakpoint isn't hit, then we've stepped into the | |
2495 | signal handler (or hit some other event). We'll delete | |
2496 | the step-resume breakpoint then. */ | |
2497 | ||
2498 | if (debug_infrun) | |
2499 | fprintf_unfiltered (gdb_stdlog, | |
2500 | "infrun: resume: skipping permanent breakpoint, " | |
2501 | "deliver signal first\n"); | |
2502 | ||
2503 | clear_step_over_info (); | |
2504 | tp->control.trap_expected = 0; | |
2505 | ||
2506 | if (tp->control.step_resume_breakpoint == NULL) | |
2507 | { | |
2508 | /* Set a "high-priority" step-resume, as we don't want | |
2509 | user breakpoints at PC to trigger (again) when this | |
2510 | hits. */ | |
2511 | insert_hp_step_resume_breakpoint_at_frame (get_current_frame ()); | |
2512 | gdb_assert (tp->control.step_resume_breakpoint->loc->permanent); | |
2513 | ||
2514 | tp->step_after_step_resume_breakpoint = step; | |
2515 | } | |
2516 | ||
2517 | insert_breakpoints (); | |
2518 | } | |
2519 | else | |
2520 | { | |
2521 | /* There's no signal to pass, we can go ahead and skip the | |
2522 | permanent breakpoint manually. */ | |
2523 | if (debug_infrun) | |
2524 | fprintf_unfiltered (gdb_stdlog, | |
2525 | "infrun: resume: skipping permanent breakpoint\n"); | |
2526 | gdbarch_skip_permanent_breakpoint (gdbarch, regcache); | |
2527 | /* Update pc to reflect the new address from which we will | |
2528 | execute instructions. */ | |
2529 | pc = regcache_read_pc (regcache); | |
2530 | ||
2531 | if (step) | |
2532 | { | |
2533 | /* We've already advanced the PC, so the stepping part | |
2534 | is done. Now we need to arrange for a trap to be | |
2535 | reported to handle_inferior_event. Set a breakpoint | |
2536 | at the current PC, and run to it. Don't update | |
2537 | prev_pc, because if we end in | |
44a1ee51 PA |
2538 | switch_back_to_stepped_thread, we want the "expected |
2539 | thread advanced also" branch to be taken. IOW, we | |
2540 | don't want this thread to step further from PC | |
af48d08f | 2541 | (overstep). */ |
1ac806b8 | 2542 | gdb_assert (!step_over_info_valid_p ()); |
af48d08f PA |
2543 | insert_single_step_breakpoint (gdbarch, aspace, pc); |
2544 | insert_breakpoints (); | |
2545 | ||
fbea99ea | 2546 | resume_ptid = internal_resume_ptid (user_step); |
1ac806b8 | 2547 | do_target_resume (resume_ptid, 0, GDB_SIGNAL_0); |
af48d08f | 2548 | discard_cleanups (old_cleanups); |
372316f1 | 2549 | tp->resumed = 1; |
af48d08f PA |
2550 | return; |
2551 | } | |
2552 | } | |
6d350bb5 | 2553 | } |
c2c6d25f | 2554 | |
c1e36e3e PA |
2555 | /* If we have a breakpoint to step over, make sure to do a single |
2556 | step only. Same if we have software watchpoints. */ | |
2557 | if (tp->control.trap_expected || bpstat_should_step ()) | |
2558 | tp->control.may_range_step = 0; | |
2559 | ||
237fc4c9 PA |
2560 | /* If enabled, step over breakpoints by executing a copy of the |
2561 | instruction at a different address. | |
2562 | ||
2563 | We can't use displaced stepping when we have a signal to deliver; | |
2564 | the comments for displaced_step_prepare explain why. The | |
2565 | comments in the handle_inferior event for dealing with 'random | |
74609e71 YQ |
2566 | signals' explain what we do instead. |
2567 | ||
2568 | We can't use displaced stepping when we are waiting for vfork_done | |
2569 | event, displaced stepping breaks the vfork child similarly as single | |
2570 | step software breakpoint. */ | |
3fc8eb30 PA |
2571 | if (tp->control.trap_expected |
2572 | && use_displaced_stepping (tp) | |
cb71640d | 2573 | && !step_over_info_valid_p () |
a493e3e2 | 2574 | && sig == GDB_SIGNAL_0 |
74609e71 | 2575 | && !current_inferior ()->waiting_for_vfork_done) |
237fc4c9 | 2576 | { |
3fc8eb30 | 2577 | int prepared = displaced_step_prepare (inferior_ptid); |
fc1cf338 | 2578 | |
3fc8eb30 | 2579 | if (prepared == 0) |
d56b7306 | 2580 | { |
4d9d9d04 PA |
2581 | if (debug_infrun) |
2582 | fprintf_unfiltered (gdb_stdlog, | |
2583 | "Got placed in step-over queue\n"); | |
2584 | ||
2585 | tp->control.trap_expected = 0; | |
d56b7306 VP |
2586 | discard_cleanups (old_cleanups); |
2587 | return; | |
2588 | } | |
3fc8eb30 PA |
2589 | else if (prepared < 0) |
2590 | { | |
2591 | /* Fallback to stepping over the breakpoint in-line. */ | |
2592 | ||
2593 | if (target_is_non_stop_p ()) | |
2594 | stop_all_threads (); | |
2595 | ||
2596 | set_step_over_info (get_regcache_aspace (regcache), | |
21edc42f | 2597 | regcache_read_pc (regcache), 0, tp->global_num); |
3fc8eb30 PA |
2598 | |
2599 | step = maybe_software_singlestep (gdbarch, pc); | |
2600 | ||
2601 | insert_breakpoints (); | |
2602 | } | |
2603 | else if (prepared > 0) | |
2604 | { | |
2605 | struct displaced_step_inferior_state *displaced; | |
99e40580 | 2606 | |
3fc8eb30 PA |
2607 | /* Update pc to reflect the new address from which we will |
2608 | execute instructions due to displaced stepping. */ | |
2609 | pc = regcache_read_pc (get_thread_regcache (inferior_ptid)); | |
ca7781d2 | 2610 | |
3fc8eb30 PA |
2611 | displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid)); |
2612 | step = gdbarch_displaced_step_hw_singlestep (gdbarch, | |
2613 | displaced->step_closure); | |
2614 | } | |
237fc4c9 PA |
2615 | } |
2616 | ||
2facfe5c | 2617 | /* Do we need to do it the hard way, w/temp breakpoints? */ |
99e40580 | 2618 | else if (step) |
2facfe5c | 2619 | step = maybe_software_singlestep (gdbarch, pc); |
c906108c | 2620 | |
30852783 UW |
2621 | /* Currently, our software single-step implementation leads to different |
2622 | results than hardware single-stepping in one situation: when stepping | |
2623 | into delivering a signal which has an associated signal handler, | |
2624 | hardware single-step will stop at the first instruction of the handler, | |
2625 | while software single-step will simply skip execution of the handler. | |
2626 | ||
2627 | For now, this difference in behavior is accepted since there is no | |
2628 | easy way to actually implement single-stepping into a signal handler | |
2629 | without kernel support. | |
2630 | ||
2631 | However, there is one scenario where this difference leads to follow-on | |
2632 | problems: if we're stepping off a breakpoint by removing all breakpoints | |
2633 | and then single-stepping. In this case, the software single-step | |
2634 | behavior means that even if there is a *breakpoint* in the signal | |
2635 | handler, GDB still would not stop. | |
2636 | ||
2637 | Fortunately, we can at least fix this particular issue. We detect | |
2638 | here the case where we are about to deliver a signal while software | |
2639 | single-stepping with breakpoints removed. In this situation, we | |
2640 | revert the decisions to remove all breakpoints and insert single- | |
2641 | step breakpoints, and instead we install a step-resume breakpoint | |
2642 | at the current address, deliver the signal without stepping, and | |
2643 | once we arrive back at the step-resume breakpoint, actually step | |
2644 | over the breakpoint we originally wanted to step over. */ | |
34b7e8a6 | 2645 | if (thread_has_single_step_breakpoints_set (tp) |
6cc83d2a PA |
2646 | && sig != GDB_SIGNAL_0 |
2647 | && step_over_info_valid_p ()) | |
30852783 UW |
2648 | { |
2649 | /* If we have nested signals or a pending signal is delivered | |
2650 | immediately after a handler returns, might might already have | |
2651 | a step-resume breakpoint set on the earlier handler. We cannot | |
2652 | set another step-resume breakpoint; just continue on until the | |
2653 | original breakpoint is hit. */ | |
2654 | if (tp->control.step_resume_breakpoint == NULL) | |
2655 | { | |
2c03e5be | 2656 | insert_hp_step_resume_breakpoint_at_frame (get_current_frame ()); |
30852783 UW |
2657 | tp->step_after_step_resume_breakpoint = 1; |
2658 | } | |
2659 | ||
34b7e8a6 | 2660 | delete_single_step_breakpoints (tp); |
30852783 | 2661 | |
31e77af2 | 2662 | clear_step_over_info (); |
30852783 | 2663 | tp->control.trap_expected = 0; |
31e77af2 PA |
2664 | |
2665 | insert_breakpoints (); | |
30852783 UW |
2666 | } |
2667 | ||
b0f16a3e SM |
2668 | /* If STEP is set, it's a request to use hardware stepping |
2669 | facilities. But in that case, we should never | |
2670 | use singlestep breakpoint. */ | |
34b7e8a6 | 2671 | gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step)); |
dfcd3bfb | 2672 | |
fbea99ea | 2673 | /* Decide the set of threads to ask the target to resume. */ |
1946c4cc | 2674 | if (tp->control.trap_expected) |
b0f16a3e SM |
2675 | { |
2676 | /* We're allowing a thread to run past a breakpoint it has | |
1946c4cc YQ |
2677 | hit, either by single-stepping the thread with the breakpoint |
2678 | removed, or by displaced stepping, with the breakpoint inserted. | |
2679 | In the former case, we need to single-step only this thread, | |
2680 | and keep others stopped, as they can miss this breakpoint if | |
2681 | allowed to run. That's not really a problem for displaced | |
2682 | stepping, but, we still keep other threads stopped, in case | |
2683 | another thread is also stopped for a breakpoint waiting for | |
2684 | its turn in the displaced stepping queue. */ | |
b0f16a3e SM |
2685 | resume_ptid = inferior_ptid; |
2686 | } | |
fbea99ea PA |
2687 | else |
2688 | resume_ptid = internal_resume_ptid (user_step); | |
d4db2f36 | 2689 | |
7f5ef605 PA |
2690 | if (execution_direction != EXEC_REVERSE |
2691 | && step && breakpoint_inserted_here_p (aspace, pc)) | |
b0f16a3e | 2692 | { |
372316f1 PA |
2693 | /* There are two cases where we currently need to step a |
2694 | breakpoint instruction when we have a signal to deliver: | |
2695 | ||
2696 | - See handle_signal_stop where we handle random signals that | |
2697 | could take out us out of the stepping range. Normally, in | |
2698 | that case we end up continuing (instead of stepping) over the | |
7f5ef605 PA |
2699 | signal handler with a breakpoint at PC, but there are cases |
2700 | where we should _always_ single-step, even if we have a | |
2701 | step-resume breakpoint, like when a software watchpoint is | |
2702 | set. Assuming single-stepping and delivering a signal at the | |
2703 | same time would takes us to the signal handler, then we could | |
2704 | have removed the breakpoint at PC to step over it. However, | |
2705 | some hardware step targets (like e.g., Mac OS) can't step | |
2706 | into signal handlers, and for those, we need to leave the | |
2707 | breakpoint at PC inserted, as otherwise if the handler | |
2708 | recurses and executes PC again, it'll miss the breakpoint. | |
2709 | So we leave the breakpoint inserted anyway, but we need to | |
2710 | record that we tried to step a breakpoint instruction, so | |
372316f1 PA |
2711 | that adjust_pc_after_break doesn't end up confused. |
2712 | ||
2713 | - In non-stop if we insert a breakpoint (e.g., a step-resume) | |
2714 | in one thread after another thread that was stepping had been | |
2715 | momentarily paused for a step-over. When we re-resume the | |
2716 | stepping thread, it may be resumed from that address with a | |
2717 | breakpoint that hasn't trapped yet. Seen with | |
2718 | gdb.threads/non-stop-fair-events.exp, on targets that don't | |
2719 | do displaced stepping. */ | |
2720 | ||
2721 | if (debug_infrun) | |
2722 | fprintf_unfiltered (gdb_stdlog, | |
2723 | "infrun: resume: [%s] stepped breakpoint\n", | |
2724 | target_pid_to_str (tp->ptid)); | |
7f5ef605 PA |
2725 | |
2726 | tp->stepped_breakpoint = 1; | |
2727 | ||
b0f16a3e SM |
2728 | /* Most targets can step a breakpoint instruction, thus |
2729 | executing it normally. But if this one cannot, just | |
2730 | continue and we will hit it anyway. */ | |
7f5ef605 | 2731 | if (gdbarch_cannot_step_breakpoint (gdbarch)) |
b0f16a3e SM |
2732 | step = 0; |
2733 | } | |
ef5cf84e | 2734 | |
b0f16a3e | 2735 | if (debug_displaced |
cb71640d | 2736 | && tp->control.trap_expected |
3fc8eb30 | 2737 | && use_displaced_stepping (tp) |
cb71640d | 2738 | && !step_over_info_valid_p ()) |
b0f16a3e | 2739 | { |
d9b67d9f | 2740 | struct regcache *resume_regcache = get_thread_regcache (tp->ptid); |
b0f16a3e SM |
2741 | struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache); |
2742 | CORE_ADDR actual_pc = regcache_read_pc (resume_regcache); | |
2743 | gdb_byte buf[4]; | |
2744 | ||
2745 | fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ", | |
2746 | paddress (resume_gdbarch, actual_pc)); | |
2747 | read_memory (actual_pc, buf, sizeof (buf)); | |
2748 | displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf)); | |
2749 | } | |
237fc4c9 | 2750 | |
b0f16a3e SM |
2751 | if (tp->control.may_range_step) |
2752 | { | |
2753 | /* If we're resuming a thread with the PC out of the step | |
2754 | range, then we're doing some nested/finer run control | |
2755 | operation, like stepping the thread out of the dynamic | |
2756 | linker or the displaced stepping scratch pad. We | |
2757 | shouldn't have allowed a range step then. */ | |
2758 | gdb_assert (pc_in_thread_step_range (pc, tp)); | |
2759 | } | |
c1e36e3e | 2760 | |
64ce06e4 | 2761 | do_target_resume (resume_ptid, step, sig); |
372316f1 | 2762 | tp->resumed = 1; |
c906108c SS |
2763 | discard_cleanups (old_cleanups); |
2764 | } | |
2765 | \f | |
237fc4c9 | 2766 | /* Proceeding. */ |
c906108c | 2767 | |
4c2f2a79 PA |
2768 | /* See infrun.h. */ |
2769 | ||
2770 | /* Counter that tracks number of user visible stops. This can be used | |
2771 | to tell whether a command has proceeded the inferior past the | |
2772 | current location. This allows e.g., inferior function calls in | |
2773 | breakpoint commands to not interrupt the command list. When the | |
2774 | call finishes successfully, the inferior is standing at the same | |
2775 | breakpoint as if nothing happened (and so we don't call | |
2776 | normal_stop). */ | |
2777 | static ULONGEST current_stop_id; | |
2778 | ||
2779 | /* See infrun.h. */ | |
2780 | ||
2781 | ULONGEST | |
2782 | get_stop_id (void) | |
2783 | { | |
2784 | return current_stop_id; | |
2785 | } | |
2786 | ||
2787 | /* Called when we report a user visible stop. */ | |
2788 | ||
2789 | static void | |
2790 | new_stop_id (void) | |
2791 | { | |
2792 | current_stop_id++; | |
2793 | } | |
2794 | ||
c906108c SS |
2795 | /* Clear out all variables saying what to do when inferior is continued. |
2796 | First do this, then set the ones you want, then call `proceed'. */ | |
2797 | ||
a7212384 UW |
2798 | static void |
2799 | clear_proceed_status_thread (struct thread_info *tp) | |
c906108c | 2800 | { |
a7212384 UW |
2801 | if (debug_infrun) |
2802 | fprintf_unfiltered (gdb_stdlog, | |
2803 | "infrun: clear_proceed_status_thread (%s)\n", | |
2804 | target_pid_to_str (tp->ptid)); | |
d6b48e9c | 2805 | |
372316f1 PA |
2806 | /* If we're starting a new sequence, then the previous finished |
2807 | single-step is no longer relevant. */ | |
2808 | if (tp->suspend.waitstatus_pending_p) | |
2809 | { | |
2810 | if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP) | |
2811 | { | |
2812 | if (debug_infrun) | |
2813 | fprintf_unfiltered (gdb_stdlog, | |
2814 | "infrun: clear_proceed_status: pending " | |
2815 | "event of %s was a finished step. " | |
2816 | "Discarding.\n", | |
2817 | target_pid_to_str (tp->ptid)); | |
2818 | ||
2819 | tp->suspend.waitstatus_pending_p = 0; | |
2820 | tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON; | |
2821 | } | |
2822 | else if (debug_infrun) | |
2823 | { | |
23fdd69e SM |
2824 | std::string statstr |
2825 | = target_waitstatus_to_string (&tp->suspend.waitstatus); | |
372316f1 | 2826 | |
372316f1 PA |
2827 | fprintf_unfiltered (gdb_stdlog, |
2828 | "infrun: clear_proceed_status_thread: thread %s " | |
2829 | "has pending wait status %s " | |
2830 | "(currently_stepping=%d).\n", | |
23fdd69e | 2831 | target_pid_to_str (tp->ptid), statstr.c_str (), |
372316f1 | 2832 | currently_stepping (tp)); |
372316f1 PA |
2833 | } |
2834 | } | |
2835 | ||
70509625 PA |
2836 | /* If this signal should not be seen by program, give it zero. |
2837 | Used for debugging signals. */ | |
2838 | if (!signal_pass_state (tp->suspend.stop_signal)) | |
2839 | tp->suspend.stop_signal = GDB_SIGNAL_0; | |
2840 | ||
243a9253 PA |
2841 | thread_fsm_delete (tp->thread_fsm); |
2842 | tp->thread_fsm = NULL; | |
2843 | ||
16c381f0 JK |
2844 | tp->control.trap_expected = 0; |
2845 | tp->control.step_range_start = 0; | |
2846 | tp->control.step_range_end = 0; | |
c1e36e3e | 2847 | tp->control.may_range_step = 0; |
16c381f0 JK |
2848 | tp->control.step_frame_id = null_frame_id; |
2849 | tp->control.step_stack_frame_id = null_frame_id; | |
2850 | tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE; | |
885eeb5b | 2851 | tp->control.step_start_function = NULL; |
a7212384 | 2852 | tp->stop_requested = 0; |
4e1c45ea | 2853 | |
16c381f0 | 2854 | tp->control.stop_step = 0; |
32400beb | 2855 | |
16c381f0 | 2856 | tp->control.proceed_to_finish = 0; |
414c69f7 | 2857 | |
856e7dd6 | 2858 | tp->control.stepping_command = 0; |
17b2616c | 2859 | |
a7212384 | 2860 | /* Discard any remaining commands or status from previous stop. */ |
16c381f0 | 2861 | bpstat_clear (&tp->control.stop_bpstat); |
a7212384 | 2862 | } |
32400beb | 2863 | |
a7212384 | 2864 | void |
70509625 | 2865 | clear_proceed_status (int step) |
a7212384 | 2866 | { |
f2665db5 MM |
2867 | /* With scheduler-locking replay, stop replaying other threads if we're |
2868 | not replaying the user-visible resume ptid. | |
2869 | ||
2870 | This is a convenience feature to not require the user to explicitly | |
2871 | stop replaying the other threads. We're assuming that the user's | |
2872 | intent is to resume tracing the recorded process. */ | |
2873 | if (!non_stop && scheduler_mode == schedlock_replay | |
2874 | && target_record_is_replaying (minus_one_ptid) | |
2875 | && !target_record_will_replay (user_visible_resume_ptid (step), | |
2876 | execution_direction)) | |
2877 | target_record_stop_replaying (); | |
2878 | ||
6c95b8df PA |
2879 | if (!non_stop) |
2880 | { | |
70509625 PA |
2881 | struct thread_info *tp; |
2882 | ptid_t resume_ptid; | |
2883 | ||
2884 | resume_ptid = user_visible_resume_ptid (step); | |
2885 | ||
2886 | /* In all-stop mode, delete the per-thread status of all threads | |
2887 | we're about to resume, implicitly and explicitly. */ | |
2888 | ALL_NON_EXITED_THREADS (tp) | |
2889 | { | |
2890 | if (!ptid_match (tp->ptid, resume_ptid)) | |
2891 | continue; | |
2892 | clear_proceed_status_thread (tp); | |
2893 | } | |
6c95b8df PA |
2894 | } |
2895 | ||
a7212384 UW |
2896 | if (!ptid_equal (inferior_ptid, null_ptid)) |
2897 | { | |
2898 | struct inferior *inferior; | |
2899 | ||
2900 | if (non_stop) | |
2901 | { | |
6c95b8df PA |
2902 | /* If in non-stop mode, only delete the per-thread status of |
2903 | the current thread. */ | |
a7212384 UW |
2904 | clear_proceed_status_thread (inferior_thread ()); |
2905 | } | |
6c95b8df | 2906 | |
d6b48e9c | 2907 | inferior = current_inferior (); |
16c381f0 | 2908 | inferior->control.stop_soon = NO_STOP_QUIETLY; |
4e1c45ea PA |
2909 | } |
2910 | ||
f3b1572e | 2911 | observer_notify_about_to_proceed (); |
c906108c SS |
2912 | } |
2913 | ||
99619bea PA |
2914 | /* Returns true if TP is still stopped at a breakpoint that needs |
2915 | stepping-over in order to make progress. If the breakpoint is gone | |
2916 | meanwhile, we can skip the whole step-over dance. */ | |
ea67f13b DJ |
2917 | |
2918 | static int | |
6c4cfb24 | 2919 | thread_still_needs_step_over_bp (struct thread_info *tp) |
99619bea PA |
2920 | { |
2921 | if (tp->stepping_over_breakpoint) | |
2922 | { | |
2923 | struct regcache *regcache = get_thread_regcache (tp->ptid); | |
2924 | ||
2925 | if (breakpoint_here_p (get_regcache_aspace (regcache), | |
af48d08f PA |
2926 | regcache_read_pc (regcache)) |
2927 | == ordinary_breakpoint_here) | |
99619bea PA |
2928 | return 1; |
2929 | ||
2930 | tp->stepping_over_breakpoint = 0; | |
2931 | } | |
2932 | ||
2933 | return 0; | |
2934 | } | |
2935 | ||
6c4cfb24 PA |
2936 | /* Check whether thread TP still needs to start a step-over in order |
2937 | to make progress when resumed. Returns an bitwise or of enum | |
2938 | step_over_what bits, indicating what needs to be stepped over. */ | |
2939 | ||
8d297bbf | 2940 | static step_over_what |
6c4cfb24 PA |
2941 | thread_still_needs_step_over (struct thread_info *tp) |
2942 | { | |
8d297bbf | 2943 | step_over_what what = 0; |
6c4cfb24 PA |
2944 | |
2945 | if (thread_still_needs_step_over_bp (tp)) | |
2946 | what |= STEP_OVER_BREAKPOINT; | |
2947 | ||
2948 | if (tp->stepping_over_watchpoint | |
2949 | && !target_have_steppable_watchpoint) | |
2950 | what |= STEP_OVER_WATCHPOINT; | |
2951 | ||
2952 | return what; | |
2953 | } | |
2954 | ||
483805cf PA |
2955 | /* Returns true if scheduler locking applies. STEP indicates whether |
2956 | we're about to do a step/next-like command to a thread. */ | |
2957 | ||
2958 | static int | |
856e7dd6 | 2959 | schedlock_applies (struct thread_info *tp) |
483805cf PA |
2960 | { |
2961 | return (scheduler_mode == schedlock_on | |
2962 | || (scheduler_mode == schedlock_step | |
f2665db5 MM |
2963 | && tp->control.stepping_command) |
2964 | || (scheduler_mode == schedlock_replay | |
2965 | && target_record_will_replay (minus_one_ptid, | |
2966 | execution_direction))); | |
483805cf PA |
2967 | } |
2968 | ||
c906108c SS |
2969 | /* Basic routine for continuing the program in various fashions. |
2970 | ||
2971 | ADDR is the address to resume at, or -1 for resume where stopped. | |
2972 | SIGGNAL is the signal to give it, or 0 for none, | |
c5aa993b | 2973 | or -1 for act according to how it stopped. |
c906108c | 2974 | STEP is nonzero if should trap after one instruction. |
c5aa993b JM |
2975 | -1 means return after that and print nothing. |
2976 | You should probably set various step_... variables | |
2977 | before calling here, if you are stepping. | |
c906108c SS |
2978 | |
2979 | You should call clear_proceed_status before calling proceed. */ | |
2980 | ||
2981 | void | |
64ce06e4 | 2982 | proceed (CORE_ADDR addr, enum gdb_signal siggnal) |
c906108c | 2983 | { |
e58b0e63 PA |
2984 | struct regcache *regcache; |
2985 | struct gdbarch *gdbarch; | |
4e1c45ea | 2986 | struct thread_info *tp; |
e58b0e63 | 2987 | CORE_ADDR pc; |
6c95b8df | 2988 | struct address_space *aspace; |
4d9d9d04 PA |
2989 | ptid_t resume_ptid; |
2990 | struct execution_control_state ecss; | |
2991 | struct execution_control_state *ecs = &ecss; | |
2992 | struct cleanup *old_chain; | |
2993 | int started; | |
c906108c | 2994 | |
e58b0e63 PA |
2995 | /* If we're stopped at a fork/vfork, follow the branch set by the |
2996 | "set follow-fork-mode" command; otherwise, we'll just proceed | |
2997 | resuming the current thread. */ | |
2998 | if (!follow_fork ()) | |
2999 | { | |
3000 | /* The target for some reason decided not to resume. */ | |
3001 | normal_stop (); | |
f148b27e PA |
3002 | if (target_can_async_p ()) |
3003 | inferior_event_handler (INF_EXEC_COMPLETE, NULL); | |
e58b0e63 PA |
3004 | return; |
3005 | } | |
3006 | ||
842951eb PA |
3007 | /* We'll update this if & when we switch to a new thread. */ |
3008 | previous_inferior_ptid = inferior_ptid; | |
3009 | ||
e58b0e63 PA |
3010 | regcache = get_current_regcache (); |
3011 | gdbarch = get_regcache_arch (regcache); | |
6c95b8df | 3012 | aspace = get_regcache_aspace (regcache); |
e58b0e63 | 3013 | pc = regcache_read_pc (regcache); |
2adfaa28 | 3014 | tp = inferior_thread (); |
e58b0e63 | 3015 | |
99619bea PA |
3016 | /* Fill in with reasonable starting values. */ |
3017 | init_thread_stepping_state (tp); | |
3018 | ||
c2829269 PA |
3019 | gdb_assert (!thread_is_in_step_over_chain (tp)); |
3020 | ||
2acceee2 | 3021 | if (addr == (CORE_ADDR) -1) |
c906108c | 3022 | { |
af48d08f PA |
3023 | if (pc == stop_pc |
3024 | && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here | |
b2175913 | 3025 | && execution_direction != EXEC_REVERSE) |
3352ef37 AC |
3026 | /* There is a breakpoint at the address we will resume at, |
3027 | step one instruction before inserting breakpoints so that | |
3028 | we do not stop right away (and report a second hit at this | |
b2175913 MS |
3029 | breakpoint). |
3030 | ||
3031 | Note, we don't do this in reverse, because we won't | |
3032 | actually be executing the breakpoint insn anyway. | |
3033 | We'll be (un-)executing the previous instruction. */ | |
99619bea | 3034 | tp->stepping_over_breakpoint = 1; |
515630c5 UW |
3035 | else if (gdbarch_single_step_through_delay_p (gdbarch) |
3036 | && gdbarch_single_step_through_delay (gdbarch, | |
3037 | get_current_frame ())) | |
3352ef37 AC |
3038 | /* We stepped onto an instruction that needs to be stepped |
3039 | again before re-inserting the breakpoint, do so. */ | |
99619bea | 3040 | tp->stepping_over_breakpoint = 1; |
c906108c SS |
3041 | } |
3042 | else | |
3043 | { | |
515630c5 | 3044 | regcache_write_pc (regcache, addr); |
c906108c SS |
3045 | } |
3046 | ||
70509625 PA |
3047 | if (siggnal != GDB_SIGNAL_DEFAULT) |
3048 | tp->suspend.stop_signal = siggnal; | |
3049 | ||
4d9d9d04 PA |
3050 | resume_ptid = user_visible_resume_ptid (tp->control.stepping_command); |
3051 | ||
3052 | /* If an exception is thrown from this point on, make sure to | |
3053 | propagate GDB's knowledge of the executing state to the | |
3054 | frontend/user running state. */ | |
3055 | old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid); | |
3056 | ||
3057 | /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer | |
3058 | threads (e.g., we might need to set threads stepping over | |
3059 | breakpoints first), from the user/frontend's point of view, all | |
3060 | threads in RESUME_PTID are now running. Unless we're calling an | |
3061 | inferior function, as in that case we pretend the inferior | |
3062 | doesn't run at all. */ | |
3063 | if (!tp->control.in_infcall) | |
3064 | set_running (resume_ptid, 1); | |
17b2616c | 3065 | |
527159b7 | 3066 | if (debug_infrun) |
8a9de0e4 | 3067 | fprintf_unfiltered (gdb_stdlog, |
64ce06e4 | 3068 | "infrun: proceed (addr=%s, signal=%s)\n", |
c9737c08 | 3069 | paddress (gdbarch, addr), |
64ce06e4 | 3070 | gdb_signal_to_symbol_string (siggnal)); |
527159b7 | 3071 | |
4d9d9d04 PA |
3072 | annotate_starting (); |
3073 | ||
3074 | /* Make sure that output from GDB appears before output from the | |
3075 | inferior. */ | |
3076 | gdb_flush (gdb_stdout); | |
3077 | ||
3078 | /* In a multi-threaded task we may select another thread and | |
3079 | then continue or step. | |
3080 | ||
3081 | But if a thread that we're resuming had stopped at a breakpoint, | |
3082 | it will immediately cause another breakpoint stop without any | |
3083 | execution (i.e. it will report a breakpoint hit incorrectly). So | |
3084 | we must step over it first. | |
3085 | ||
3086 | Look for threads other than the current (TP) that reported a | |
3087 | breakpoint hit and haven't been resumed yet since. */ | |
3088 | ||
3089 | /* If scheduler locking applies, we can avoid iterating over all | |
3090 | threads. */ | |
3091 | if (!non_stop && !schedlock_applies (tp)) | |
94cc34af | 3092 | { |
4d9d9d04 PA |
3093 | struct thread_info *current = tp; |
3094 | ||
3095 | ALL_NON_EXITED_THREADS (tp) | |
3096 | { | |
3097 | /* Ignore the current thread here. It's handled | |
3098 | afterwards. */ | |
3099 | if (tp == current) | |
3100 | continue; | |
99619bea | 3101 | |
4d9d9d04 PA |
3102 | /* Ignore threads of processes we're not resuming. */ |
3103 | if (!ptid_match (tp->ptid, resume_ptid)) | |
3104 | continue; | |
c906108c | 3105 | |
4d9d9d04 PA |
3106 | if (!thread_still_needs_step_over (tp)) |
3107 | continue; | |
3108 | ||
3109 | gdb_assert (!thread_is_in_step_over_chain (tp)); | |
c906108c | 3110 | |
99619bea PA |
3111 | if (debug_infrun) |
3112 | fprintf_unfiltered (gdb_stdlog, | |
3113 | "infrun: need to step-over [%s] first\n", | |
4d9d9d04 | 3114 | target_pid_to_str (tp->ptid)); |
99619bea | 3115 | |
4d9d9d04 | 3116 | thread_step_over_chain_enqueue (tp); |
2adfaa28 | 3117 | } |
31e77af2 | 3118 | |
4d9d9d04 | 3119 | tp = current; |
30852783 UW |
3120 | } |
3121 | ||
4d9d9d04 PA |
3122 | /* Enqueue the current thread last, so that we move all other |
3123 | threads over their breakpoints first. */ | |
3124 | if (tp->stepping_over_breakpoint) | |
3125 | thread_step_over_chain_enqueue (tp); | |
30852783 | 3126 | |
4d9d9d04 PA |
3127 | /* If the thread isn't started, we'll still need to set its prev_pc, |
3128 | so that switch_back_to_stepped_thread knows the thread hasn't | |
3129 | advanced. Must do this before resuming any thread, as in | |
3130 | all-stop/remote, once we resume we can't send any other packet | |
3131 | until the target stops again. */ | |
3132 | tp->prev_pc = regcache_read_pc (regcache); | |
99619bea | 3133 | |
a9bc57b9 TT |
3134 | { |
3135 | scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume (); | |
85ad3aaf | 3136 | |
a9bc57b9 | 3137 | started = start_step_over (); |
c906108c | 3138 | |
a9bc57b9 TT |
3139 | if (step_over_info_valid_p ()) |
3140 | { | |
3141 | /* Either this thread started a new in-line step over, or some | |
3142 | other thread was already doing one. In either case, don't | |
3143 | resume anything else until the step-over is finished. */ | |
3144 | } | |
3145 | else if (started && !target_is_non_stop_p ()) | |
3146 | { | |
3147 | /* A new displaced stepping sequence was started. In all-stop, | |
3148 | we can't talk to the target anymore until it next stops. */ | |
3149 | } | |
3150 | else if (!non_stop && target_is_non_stop_p ()) | |
3151 | { | |
3152 | /* In all-stop, but the target is always in non-stop mode. | |
3153 | Start all other threads that are implicitly resumed too. */ | |
3154 | ALL_NON_EXITED_THREADS (tp) | |
fbea99ea PA |
3155 | { |
3156 | /* Ignore threads of processes we're not resuming. */ | |
3157 | if (!ptid_match (tp->ptid, resume_ptid)) | |
3158 | continue; | |
3159 | ||
3160 | if (tp->resumed) | |
3161 | { | |
3162 | if (debug_infrun) | |
3163 | fprintf_unfiltered (gdb_stdlog, | |
3164 | "infrun: proceed: [%s] resumed\n", | |
3165 | target_pid_to_str (tp->ptid)); | |
3166 | gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p); | |
3167 | continue; | |
3168 | } | |
3169 | ||
3170 | if (thread_is_in_step_over_chain (tp)) | |
3171 | { | |
3172 | if (debug_infrun) | |
3173 | fprintf_unfiltered (gdb_stdlog, | |
3174 | "infrun: proceed: [%s] needs step-over\n", | |
3175 | target_pid_to_str (tp->ptid)); | |
3176 | continue; | |
3177 | } | |
3178 | ||
3179 | if (debug_infrun) | |
3180 | fprintf_unfiltered (gdb_stdlog, | |
3181 | "infrun: proceed: resuming %s\n", | |
3182 | target_pid_to_str (tp->ptid)); | |
3183 | ||
3184 | reset_ecs (ecs, tp); | |
3185 | switch_to_thread (tp->ptid); | |
3186 | keep_going_pass_signal (ecs); | |
3187 | if (!ecs->wait_some_more) | |
fd7dcb94 | 3188 | error (_("Command aborted.")); |
fbea99ea | 3189 | } |
a9bc57b9 TT |
3190 | } |
3191 | else if (!tp->resumed && !thread_is_in_step_over_chain (tp)) | |
3192 | { | |
3193 | /* The thread wasn't started, and isn't queued, run it now. */ | |
3194 | reset_ecs (ecs, tp); | |
3195 | switch_to_thread (tp->ptid); | |
3196 | keep_going_pass_signal (ecs); | |
3197 | if (!ecs->wait_some_more) | |
3198 | error (_("Command aborted.")); | |
3199 | } | |
3200 | } | |
c906108c | 3201 | |
85ad3aaf PA |
3202 | target_commit_resume (); |
3203 | ||
4d9d9d04 | 3204 | discard_cleanups (old_chain); |
c906108c | 3205 | |
0b333c5e PA |
3206 | /* Tell the event loop to wait for it to stop. If the target |
3207 | supports asynchronous execution, it'll do this from within | |
3208 | target_resume. */ | |
362646f5 | 3209 | if (!target_can_async_p ()) |
0b333c5e | 3210 | mark_async_event_handler (infrun_async_inferior_event_token); |
c906108c | 3211 | } |
c906108c SS |
3212 | \f |
3213 | ||
3214 | /* Start remote-debugging of a machine over a serial link. */ | |
96baa820 | 3215 | |
c906108c | 3216 | void |
8621d6a9 | 3217 | start_remote (int from_tty) |
c906108c | 3218 | { |
d6b48e9c | 3219 | struct inferior *inferior; |
d6b48e9c PA |
3220 | |
3221 | inferior = current_inferior (); | |
16c381f0 | 3222 | inferior->control.stop_soon = STOP_QUIETLY_REMOTE; |
43ff13b4 | 3223 | |
1777feb0 | 3224 | /* Always go on waiting for the target, regardless of the mode. */ |
6426a772 | 3225 | /* FIXME: cagney/1999-09-23: At present it isn't possible to |
7e73cedf | 3226 | indicate to wait_for_inferior that a target should timeout if |
6426a772 JM |
3227 | nothing is returned (instead of just blocking). Because of this, |
3228 | targets expecting an immediate response need to, internally, set | |
3229 | things up so that the target_wait() is forced to eventually | |
1777feb0 | 3230 | timeout. */ |
6426a772 JM |
3231 | /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to |
3232 | differentiate to its caller what the state of the target is after | |
3233 | the initial open has been performed. Here we're assuming that | |
3234 | the target has stopped. It should be possible to eventually have | |
3235 | target_open() return to the caller an indication that the target | |
3236 | is currently running and GDB state should be set to the same as | |
1777feb0 | 3237 | for an async run. */ |
e4c8541f | 3238 | wait_for_inferior (); |
8621d6a9 DJ |
3239 | |
3240 | /* Now that the inferior has stopped, do any bookkeeping like | |
3241 | loading shared libraries. We want to do this before normal_stop, | |
3242 | so that the displayed frame is up to date. */ | |
3243 | post_create_inferior (¤t_target, from_tty); | |
3244 | ||
6426a772 | 3245 | normal_stop (); |
c906108c SS |
3246 | } |
3247 | ||
3248 | /* Initialize static vars when a new inferior begins. */ | |
3249 | ||
3250 | void | |
96baa820 | 3251 | init_wait_for_inferior (void) |
c906108c SS |
3252 | { |
3253 | /* These are meaningless until the first time through wait_for_inferior. */ | |
c906108c | 3254 | |
c906108c SS |
3255 | breakpoint_init_inferior (inf_starting); |
3256 | ||
70509625 | 3257 | clear_proceed_status (0); |
9f976b41 | 3258 | |
ca005067 | 3259 | target_last_wait_ptid = minus_one_ptid; |
237fc4c9 | 3260 | |
842951eb | 3261 | previous_inferior_ptid = inferior_ptid; |
0d1e5fa7 | 3262 | |
edb3359d DJ |
3263 | /* Discard any skipped inlined frames. */ |
3264 | clear_inline_frame_state (minus_one_ptid); | |
c906108c | 3265 | } |
237fc4c9 | 3266 | |
c906108c | 3267 | \f |
488f131b | 3268 | |
ec9499be | 3269 | static void handle_inferior_event (struct execution_control_state *ecs); |
cd0fc7c3 | 3270 | |
568d6575 UW |
3271 | static void handle_step_into_function (struct gdbarch *gdbarch, |
3272 | struct execution_control_state *ecs); | |
3273 | static void handle_step_into_function_backward (struct gdbarch *gdbarch, | |
3274 | struct execution_control_state *ecs); | |
4f5d7f63 | 3275 | static void handle_signal_stop (struct execution_control_state *ecs); |
186c406b | 3276 | static void check_exception_resume (struct execution_control_state *, |
28106bc2 | 3277 | struct frame_info *); |
611c83ae | 3278 | |
bdc36728 | 3279 | static void end_stepping_range (struct execution_control_state *ecs); |
22bcd14b | 3280 | static void stop_waiting (struct execution_control_state *ecs); |
d4f3574e | 3281 | static void keep_going (struct execution_control_state *ecs); |
94c57d6a | 3282 | static void process_event_stop_test (struct execution_control_state *ecs); |
c447ac0b | 3283 | static int switch_back_to_stepped_thread (struct execution_control_state *ecs); |
104c1213 | 3284 | |
252fbfc8 PA |
3285 | /* This function is attached as a "thread_stop_requested" observer. |
3286 | Cleanup local state that assumed the PTID was to be resumed, and | |
3287 | report the stop to the frontend. */ | |
3288 | ||
2c0b251b | 3289 | static void |
252fbfc8 PA |
3290 | infrun_thread_stop_requested (ptid_t ptid) |
3291 | { | |
c2829269 | 3292 | struct thread_info *tp; |
252fbfc8 | 3293 | |
c65d6b55 PA |
3294 | /* PTID was requested to stop. If the thread was already stopped, |
3295 | but the user/frontend doesn't know about that yet (e.g., the | |
3296 | thread had been temporarily paused for some step-over), set up | |
3297 | for reporting the stop now. */ | |
c2829269 PA |
3298 | ALL_NON_EXITED_THREADS (tp) |
3299 | if (ptid_match (tp->ptid, ptid)) | |
3300 | { | |
c65d6b55 PA |
3301 | if (tp->state != THREAD_RUNNING) |
3302 | continue; | |
3303 | if (tp->executing) | |
3304 | continue; | |
3305 | ||
3306 | /* Remove matching threads from the step-over queue, so | |
3307 | start_step_over doesn't try to resume them | |
3308 | automatically. */ | |
c2829269 PA |
3309 | if (thread_is_in_step_over_chain (tp)) |
3310 | thread_step_over_chain_remove (tp); | |
252fbfc8 | 3311 | |
c65d6b55 PA |
3312 | /* If the thread is stopped, but the user/frontend doesn't |
3313 | know about that yet, queue a pending event, as if the | |
3314 | thread had just stopped now. Unless the thread already had | |
3315 | a pending event. */ | |
3316 | if (!tp->suspend.waitstatus_pending_p) | |
3317 | { | |
3318 | tp->suspend.waitstatus_pending_p = 1; | |
3319 | tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED; | |
3320 | tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0; | |
3321 | } | |
3322 | ||
3323 | /* Clear the inline-frame state, since we're re-processing the | |
3324 | stop. */ | |
3325 | clear_inline_frame_state (tp->ptid); | |
3326 | ||
3327 | /* If this thread was paused because some other thread was | |
3328 | doing an inline-step over, let that finish first. Once | |
3329 | that happens, we'll restart all threads and consume pending | |
3330 | stop events then. */ | |
3331 | if (step_over_info_valid_p ()) | |
3332 | continue; | |
3333 | ||
3334 | /* Otherwise we can process the (new) pending event now. Set | |
3335 | it so this pending event is considered by | |
3336 | do_target_wait. */ | |
3337 | tp->resumed = 1; | |
3338 | } | |
252fbfc8 PA |
3339 | } |
3340 | ||
a07daef3 PA |
3341 | static void |
3342 | infrun_thread_thread_exit (struct thread_info *tp, int silent) | |
3343 | { | |
3344 | if (ptid_equal (target_last_wait_ptid, tp->ptid)) | |
3345 | nullify_last_target_wait_ptid (); | |
3346 | } | |
3347 | ||
0cbcdb96 PA |
3348 | /* Delete the step resume, single-step and longjmp/exception resume |
3349 | breakpoints of TP. */ | |
4e1c45ea | 3350 | |
0cbcdb96 PA |
3351 | static void |
3352 | delete_thread_infrun_breakpoints (struct thread_info *tp) | |
4e1c45ea | 3353 | { |
0cbcdb96 PA |
3354 | delete_step_resume_breakpoint (tp); |
3355 | delete_exception_resume_breakpoint (tp); | |
34b7e8a6 | 3356 | delete_single_step_breakpoints (tp); |
4e1c45ea PA |
3357 | } |
3358 | ||
0cbcdb96 PA |
3359 | /* If the target still has execution, call FUNC for each thread that |
3360 | just stopped. In all-stop, that's all the non-exited threads; in | |
3361 | non-stop, that's the current thread, only. */ | |
3362 | ||
3363 | typedef void (*for_each_just_stopped_thread_callback_func) | |
3364 | (struct thread_info *tp); | |
4e1c45ea PA |
3365 | |
3366 | static void | |
0cbcdb96 | 3367 | for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func) |
4e1c45ea | 3368 | { |
0cbcdb96 | 3369 | if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid)) |
4e1c45ea PA |
3370 | return; |
3371 | ||
fbea99ea | 3372 | if (target_is_non_stop_p ()) |
4e1c45ea | 3373 | { |
0cbcdb96 PA |
3374 | /* If in non-stop mode, only the current thread stopped. */ |
3375 | func (inferior_thread ()); | |
4e1c45ea PA |
3376 | } |
3377 | else | |
0cbcdb96 PA |
3378 | { |
3379 | struct thread_info *tp; | |
3380 | ||
3381 | /* In all-stop mode, all threads have stopped. */ | |
3382 | ALL_NON_EXITED_THREADS (tp) | |
3383 | { | |
3384 | func (tp); | |
3385 | } | |
3386 | } | |
3387 | } | |
3388 | ||
3389 | /* Delete the step resume and longjmp/exception resume breakpoints of | |
3390 | the threads that just stopped. */ | |
3391 | ||
3392 | static void | |
3393 | delete_just_stopped_threads_infrun_breakpoints (void) | |
3394 | { | |
3395 | for_each_just_stopped_thread (delete_thread_infrun_breakpoints); | |
34b7e8a6 PA |
3396 | } |
3397 | ||
3398 | /* Delete the single-step breakpoints of the threads that just | |
3399 | stopped. */ | |
7c16b83e | 3400 | |
34b7e8a6 PA |
3401 | static void |
3402 | delete_just_stopped_threads_single_step_breakpoints (void) | |
3403 | { | |
3404 | for_each_just_stopped_thread (delete_single_step_breakpoints); | |
4e1c45ea PA |
3405 | } |
3406 | ||
1777feb0 | 3407 | /* A cleanup wrapper. */ |
4e1c45ea PA |
3408 | |
3409 | static void | |
0cbcdb96 | 3410 | delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg) |
4e1c45ea | 3411 | { |
0cbcdb96 | 3412 | delete_just_stopped_threads_infrun_breakpoints (); |
4e1c45ea PA |
3413 | } |
3414 | ||
221e1a37 | 3415 | /* See infrun.h. */ |
223698f8 | 3416 | |
221e1a37 | 3417 | void |
223698f8 DE |
3418 | print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid, |
3419 | const struct target_waitstatus *ws) | |
3420 | { | |
23fdd69e | 3421 | std::string status_string = target_waitstatus_to_string (ws); |
d7e74731 | 3422 | string_file stb; |
223698f8 DE |
3423 | |
3424 | /* The text is split over several lines because it was getting too long. | |
3425 | Call fprintf_unfiltered (gdb_stdlog) once so that the text is still | |
3426 | output as a unit; we want only one timestamp printed if debug_timestamp | |
3427 | is set. */ | |
3428 | ||
d7e74731 PA |
3429 | stb.printf ("infrun: target_wait (%d.%ld.%ld", |
3430 | ptid_get_pid (waiton_ptid), | |
3431 | ptid_get_lwp (waiton_ptid), | |
3432 | ptid_get_tid (waiton_ptid)); | |
dfd4cc63 | 3433 | if (ptid_get_pid (waiton_ptid) != -1) |
d7e74731 PA |
3434 | stb.printf (" [%s]", target_pid_to_str (waiton_ptid)); |
3435 | stb.printf (", status) =\n"); | |
3436 | stb.printf ("infrun: %d.%ld.%ld [%s],\n", | |
3437 | ptid_get_pid (result_ptid), | |
3438 | ptid_get_lwp (result_ptid), | |
3439 | ptid_get_tid (result_ptid), | |
3440 | target_pid_to_str (result_ptid)); | |
23fdd69e | 3441 | stb.printf ("infrun: %s\n", status_string.c_str ()); |
223698f8 DE |
3442 | |
3443 | /* This uses %s in part to handle %'s in the text, but also to avoid | |
3444 | a gcc error: the format attribute requires a string literal. */ | |
d7e74731 | 3445 | fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ()); |
223698f8 DE |
3446 | } |
3447 | ||
372316f1 PA |
3448 | /* Select a thread at random, out of those which are resumed and have |
3449 | had events. */ | |
3450 | ||
3451 | static struct thread_info * | |
3452 | random_pending_event_thread (ptid_t waiton_ptid) | |
3453 | { | |
3454 | struct thread_info *event_tp; | |
3455 | int num_events = 0; | |
3456 | int random_selector; | |
3457 | ||
3458 | /* First see how many events we have. Count only resumed threads | |
3459 | that have an event pending. */ | |
3460 | ALL_NON_EXITED_THREADS (event_tp) | |
3461 | if (ptid_match (event_tp->ptid, waiton_ptid) | |
3462 | && event_tp->resumed | |
3463 | && event_tp->suspend.waitstatus_pending_p) | |
3464 | num_events++; | |
3465 | ||
3466 | if (num_events == 0) | |
3467 | return NULL; | |
3468 | ||
3469 | /* Now randomly pick a thread out of those that have had events. */ | |
3470 | random_selector = (int) | |
3471 | ((num_events * (double) rand ()) / (RAND_MAX + 1.0)); | |
3472 | ||
3473 | if (debug_infrun && num_events > 1) | |
3474 | fprintf_unfiltered (gdb_stdlog, | |
3475 | "infrun: Found %d events, selecting #%d\n", | |
3476 | num_events, random_selector); | |
3477 | ||
3478 | /* Select the Nth thread that has had an event. */ | |
3479 | ALL_NON_EXITED_THREADS (event_tp) | |
3480 | if (ptid_match (event_tp->ptid, waiton_ptid) | |
3481 | && event_tp->resumed | |
3482 | && event_tp->suspend.waitstatus_pending_p) | |
3483 | if (random_selector-- == 0) | |
3484 | break; | |
3485 | ||
3486 | return event_tp; | |
3487 | } | |
3488 | ||
3489 | /* Wrapper for target_wait that first checks whether threads have | |
3490 | pending statuses to report before actually asking the target for | |
3491 | more events. */ | |
3492 | ||
3493 | static ptid_t | |
3494 | do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options) | |
3495 | { | |
3496 | ptid_t event_ptid; | |
3497 | struct thread_info *tp; | |
3498 | ||
3499 | /* First check if there is a resumed thread with a wait status | |
3500 | pending. */ | |
3501 | if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid)) | |
3502 | { | |
3503 | tp = random_pending_event_thread (ptid); | |
3504 | } | |
3505 | else | |
3506 | { | |
3507 | if (debug_infrun) | |
3508 | fprintf_unfiltered (gdb_stdlog, | |
3509 | "infrun: Waiting for specific thread %s.\n", | |
3510 | target_pid_to_str (ptid)); | |
3511 | ||
3512 | /* We have a specific thread to check. */ | |
3513 | tp = find_thread_ptid (ptid); | |
3514 | gdb_assert (tp != NULL); | |
3515 | if (!tp->suspend.waitstatus_pending_p) | |
3516 | tp = NULL; | |
3517 | } | |
3518 | ||
3519 | if (tp != NULL | |
3520 | && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT | |
3521 | || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)) | |
3522 | { | |
3523 | struct regcache *regcache = get_thread_regcache (tp->ptid); | |
3524 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
3525 | CORE_ADDR pc; | |
3526 | int discard = 0; | |
3527 | ||
3528 | pc = regcache_read_pc (regcache); | |
3529 | ||
3530 | if (pc != tp->suspend.stop_pc) | |
3531 | { | |
3532 | if (debug_infrun) | |
3533 | fprintf_unfiltered (gdb_stdlog, | |
3534 | "infrun: PC of %s changed. was=%s, now=%s\n", | |
3535 | target_pid_to_str (tp->ptid), | |
3536 | paddress (gdbarch, tp->prev_pc), | |
3537 | paddress (gdbarch, pc)); | |
3538 | discard = 1; | |
3539 | } | |
3540 | else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc)) | |
3541 | { | |
3542 | if (debug_infrun) | |
3543 | fprintf_unfiltered (gdb_stdlog, | |
3544 | "infrun: previous breakpoint of %s, at %s gone\n", | |
3545 | target_pid_to_str (tp->ptid), | |
3546 | paddress (gdbarch, pc)); | |
3547 | ||
3548 | discard = 1; | |
3549 | } | |
3550 | ||
3551 | if (discard) | |
3552 | { | |
3553 | if (debug_infrun) | |
3554 | fprintf_unfiltered (gdb_stdlog, | |
3555 | "infrun: pending event of %s cancelled.\n", | |
3556 | target_pid_to_str (tp->ptid)); | |
3557 | ||
3558 | tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS; | |
3559 | tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON; | |
3560 | } | |
3561 | } | |
3562 | ||
3563 | if (tp != NULL) | |
3564 | { | |
3565 | if (debug_infrun) | |
3566 | { | |
23fdd69e SM |
3567 | std::string statstr |
3568 | = target_waitstatus_to_string (&tp->suspend.waitstatus); | |
372316f1 | 3569 | |
372316f1 PA |
3570 | fprintf_unfiltered (gdb_stdlog, |
3571 | "infrun: Using pending wait status %s for %s.\n", | |
23fdd69e | 3572 | statstr.c_str (), |
372316f1 | 3573 | target_pid_to_str (tp->ptid)); |
372316f1 PA |
3574 | } |
3575 | ||
3576 | /* Now that we've selected our final event LWP, un-adjust its PC | |
3577 | if it was a software breakpoint (and the target doesn't | |
3578 | always adjust the PC itself). */ | |
3579 | if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT | |
3580 | && !target_supports_stopped_by_sw_breakpoint ()) | |
3581 | { | |
3582 | struct regcache *regcache; | |
3583 | struct gdbarch *gdbarch; | |
3584 | int decr_pc; | |
3585 | ||
3586 | regcache = get_thread_regcache (tp->ptid); | |
3587 | gdbarch = get_regcache_arch (regcache); | |
3588 | ||
3589 | decr_pc = gdbarch_decr_pc_after_break (gdbarch); | |
3590 | if (decr_pc != 0) | |
3591 | { | |
3592 | CORE_ADDR pc; | |
3593 | ||
3594 | pc = regcache_read_pc (regcache); | |
3595 | regcache_write_pc (regcache, pc + decr_pc); | |
3596 | } | |
3597 | } | |
3598 | ||
3599 | tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON; | |
3600 | *status = tp->suspend.waitstatus; | |
3601 | tp->suspend.waitstatus_pending_p = 0; | |
3602 | ||
3603 | /* Wake up the event loop again, until all pending events are | |
3604 | processed. */ | |
3605 | if (target_is_async_p ()) | |
3606 | mark_async_event_handler (infrun_async_inferior_event_token); | |
3607 | return tp->ptid; | |
3608 | } | |
3609 | ||
3610 | /* But if we don't find one, we'll have to wait. */ | |
3611 | ||
3612 | if (deprecated_target_wait_hook) | |
3613 | event_ptid = deprecated_target_wait_hook (ptid, status, options); | |
3614 | else | |
3615 | event_ptid = target_wait (ptid, status, options); | |
3616 | ||
3617 | return event_ptid; | |
3618 | } | |
3619 | ||
24291992 PA |
3620 | /* Prepare and stabilize the inferior for detaching it. E.g., |
3621 | detaching while a thread is displaced stepping is a recipe for | |
3622 | crashing it, as nothing would readjust the PC out of the scratch | |
3623 | pad. */ | |
3624 | ||
3625 | void | |
3626 | prepare_for_detach (void) | |
3627 | { | |
3628 | struct inferior *inf = current_inferior (); | |
3629 | ptid_t pid_ptid = pid_to_ptid (inf->pid); | |
24291992 PA |
3630 | struct displaced_step_inferior_state *displaced; |
3631 | ||
3632 | displaced = get_displaced_stepping_state (inf->pid); | |
3633 | ||
3634 | /* Is any thread of this process displaced stepping? If not, | |
3635 | there's nothing else to do. */ | |
3636 | if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid)) | |
3637 | return; | |
3638 | ||
3639 | if (debug_infrun) | |
3640 | fprintf_unfiltered (gdb_stdlog, | |
3641 | "displaced-stepping in-process while detaching"); | |
3642 | ||
9bcb1f16 | 3643 | scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true); |
24291992 PA |
3644 | |
3645 | while (!ptid_equal (displaced->step_ptid, null_ptid)) | |
3646 | { | |
3647 | struct cleanup *old_chain_2; | |
3648 | struct execution_control_state ecss; | |
3649 | struct execution_control_state *ecs; | |
3650 | ||
3651 | ecs = &ecss; | |
3652 | memset (ecs, 0, sizeof (*ecs)); | |
3653 | ||
3654 | overlay_cache_invalid = 1; | |
f15cb84a YQ |
3655 | /* Flush target cache before starting to handle each event. |
3656 | Target was running and cache could be stale. This is just a | |
3657 | heuristic. Running threads may modify target memory, but we | |
3658 | don't get any event. */ | |
3659 | target_dcache_invalidate (); | |
24291992 | 3660 | |
372316f1 | 3661 | ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0); |
24291992 PA |
3662 | |
3663 | if (debug_infrun) | |
3664 | print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws); | |
3665 | ||
3666 | /* If an error happens while handling the event, propagate GDB's | |
3667 | knowledge of the executing state to the frontend/user running | |
3668 | state. */ | |
3e43a32a MS |
3669 | old_chain_2 = make_cleanup (finish_thread_state_cleanup, |
3670 | &minus_one_ptid); | |
24291992 PA |
3671 | |
3672 | /* Now figure out what to do with the result of the result. */ | |
3673 | handle_inferior_event (ecs); | |
3674 | ||
3675 | /* No error, don't finish the state yet. */ | |
3676 | discard_cleanups (old_chain_2); | |
3677 | ||
3678 | /* Breakpoints and watchpoints are not installed on the target | |
3679 | at this point, and signals are passed directly to the | |
3680 | inferior, so this must mean the process is gone. */ | |
3681 | if (!ecs->wait_some_more) | |
3682 | { | |
9bcb1f16 | 3683 | restore_detaching.release (); |
24291992 PA |
3684 | error (_("Program exited while detaching")); |
3685 | } | |
3686 | } | |
3687 | ||
9bcb1f16 | 3688 | restore_detaching.release (); |
24291992 PA |
3689 | } |
3690 | ||
cd0fc7c3 | 3691 | /* Wait for control to return from inferior to debugger. |
ae123ec6 | 3692 | |
cd0fc7c3 SS |
3693 | If inferior gets a signal, we may decide to start it up again |
3694 | instead of returning. That is why there is a loop in this function. | |
3695 | When this function actually returns it means the inferior | |
3696 | should be left stopped and GDB should read more commands. */ | |
3697 | ||
3698 | void | |
e4c8541f | 3699 | wait_for_inferior (void) |
cd0fc7c3 SS |
3700 | { |
3701 | struct cleanup *old_cleanups; | |
e6f5c25b | 3702 | struct cleanup *thread_state_chain; |
c906108c | 3703 | |
527159b7 | 3704 | if (debug_infrun) |
ae123ec6 | 3705 | fprintf_unfiltered |
e4c8541f | 3706 | (gdb_stdlog, "infrun: wait_for_inferior ()\n"); |
527159b7 | 3707 | |
0cbcdb96 PA |
3708 | old_cleanups |
3709 | = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, | |
3710 | NULL); | |
cd0fc7c3 | 3711 | |
e6f5c25b PA |
3712 | /* If an error happens while handling the event, propagate GDB's |
3713 | knowledge of the executing state to the frontend/user running | |
3714 | state. */ | |
3715 | thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid); | |
3716 | ||
c906108c SS |
3717 | while (1) |
3718 | { | |
ae25568b PA |
3719 | struct execution_control_state ecss; |
3720 | struct execution_control_state *ecs = &ecss; | |
963f9c80 | 3721 | ptid_t waiton_ptid = minus_one_ptid; |
29f49a6a | 3722 | |
ae25568b PA |
3723 | memset (ecs, 0, sizeof (*ecs)); |
3724 | ||
ec9499be | 3725 | overlay_cache_invalid = 1; |
ec9499be | 3726 | |
f15cb84a YQ |
3727 | /* Flush target cache before starting to handle each event. |
3728 | Target was running and cache could be stale. This is just a | |
3729 | heuristic. Running threads may modify target memory, but we | |
3730 | don't get any event. */ | |
3731 | target_dcache_invalidate (); | |
3732 | ||
372316f1 | 3733 | ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0); |
c906108c | 3734 | |
f00150c9 | 3735 | if (debug_infrun) |
223698f8 | 3736 | print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws); |
f00150c9 | 3737 | |
cd0fc7c3 SS |
3738 | /* Now figure out what to do with the result of the result. */ |
3739 | handle_inferior_event (ecs); | |
c906108c | 3740 | |
cd0fc7c3 SS |
3741 | if (!ecs->wait_some_more) |
3742 | break; | |
3743 | } | |
4e1c45ea | 3744 | |
e6f5c25b PA |
3745 | /* No error, don't finish the state yet. */ |
3746 | discard_cleanups (thread_state_chain); | |
3747 | ||
cd0fc7c3 SS |
3748 | do_cleanups (old_cleanups); |
3749 | } | |
c906108c | 3750 | |
d3d4baed PA |
3751 | /* Cleanup that reinstalls the readline callback handler, if the |
3752 | target is running in the background. If while handling the target | |
3753 | event something triggered a secondary prompt, like e.g., a | |
3754 | pagination prompt, we'll have removed the callback handler (see | |
3755 | gdb_readline_wrapper_line). Need to do this as we go back to the | |
3756 | event loop, ready to process further input. Note this has no | |
3757 | effect if the handler hasn't actually been removed, because calling | |
3758 | rl_callback_handler_install resets the line buffer, thus losing | |
3759 | input. */ | |
3760 | ||
3761 | static void | |
3762 | reinstall_readline_callback_handler_cleanup (void *arg) | |
3763 | { | |
3b12939d PA |
3764 | struct ui *ui = current_ui; |
3765 | ||
3766 | if (!ui->async) | |
6c400b59 PA |
3767 | { |
3768 | /* We're not going back to the top level event loop yet. Don't | |
3769 | install the readline callback, as it'd prep the terminal, | |
3770 | readline-style (raw, noecho) (e.g., --batch). We'll install | |
3771 | it the next time the prompt is displayed, when we're ready | |
3772 | for input. */ | |
3773 | return; | |
3774 | } | |
3775 | ||
3b12939d | 3776 | if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED) |
d3d4baed PA |
3777 | gdb_rl_callback_handler_reinstall (); |
3778 | } | |
3779 | ||
243a9253 PA |
3780 | /* Clean up the FSMs of threads that are now stopped. In non-stop, |
3781 | that's just the event thread. In all-stop, that's all threads. */ | |
3782 | ||
3783 | static void | |
3784 | clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs) | |
3785 | { | |
3786 | struct thread_info *thr = ecs->event_thread; | |
3787 | ||
3788 | if (thr != NULL && thr->thread_fsm != NULL) | |
8980e177 | 3789 | thread_fsm_clean_up (thr->thread_fsm, thr); |
243a9253 PA |
3790 | |
3791 | if (!non_stop) | |
3792 | { | |
3793 | ALL_NON_EXITED_THREADS (thr) | |
3794 | { | |
3795 | if (thr->thread_fsm == NULL) | |
3796 | continue; | |
3797 | if (thr == ecs->event_thread) | |
3798 | continue; | |
3799 | ||
3800 | switch_to_thread (thr->ptid); | |
8980e177 | 3801 | thread_fsm_clean_up (thr->thread_fsm, thr); |
243a9253 PA |
3802 | } |
3803 | ||
3804 | if (ecs->event_thread != NULL) | |
3805 | switch_to_thread (ecs->event_thread->ptid); | |
3806 | } | |
3807 | } | |
3808 | ||
3b12939d PA |
3809 | /* Helper for all_uis_check_sync_execution_done that works on the |
3810 | current UI. */ | |
3811 | ||
3812 | static void | |
3813 | check_curr_ui_sync_execution_done (void) | |
3814 | { | |
3815 | struct ui *ui = current_ui; | |
3816 | ||
3817 | if (ui->prompt_state == PROMPT_NEEDED | |
3818 | && ui->async | |
3819 | && !gdb_in_secondary_prompt_p (ui)) | |
3820 | { | |
223ffa71 | 3821 | target_terminal::ours (); |
3b12939d | 3822 | observer_notify_sync_execution_done (); |
3eb7562a | 3823 | ui_register_input_event_handler (ui); |
3b12939d PA |
3824 | } |
3825 | } | |
3826 | ||
3827 | /* See infrun.h. */ | |
3828 | ||
3829 | void | |
3830 | all_uis_check_sync_execution_done (void) | |
3831 | { | |
0e454242 | 3832 | SWITCH_THRU_ALL_UIS () |
3b12939d PA |
3833 | { |
3834 | check_curr_ui_sync_execution_done (); | |
3835 | } | |
3836 | } | |
3837 | ||
a8836c93 PA |
3838 | /* See infrun.h. */ |
3839 | ||
3840 | void | |
3841 | all_uis_on_sync_execution_starting (void) | |
3842 | { | |
0e454242 | 3843 | SWITCH_THRU_ALL_UIS () |
a8836c93 PA |
3844 | { |
3845 | if (current_ui->prompt_state == PROMPT_NEEDED) | |
3846 | async_disable_stdin (); | |
3847 | } | |
3848 | } | |
3849 | ||
1777feb0 | 3850 | /* Asynchronous version of wait_for_inferior. It is called by the |
43ff13b4 | 3851 | event loop whenever a change of state is detected on the file |
1777feb0 MS |
3852 | descriptor corresponding to the target. It can be called more than |
3853 | once to complete a single execution command. In such cases we need | |
3854 | to keep the state in a global variable ECSS. If it is the last time | |
a474d7c2 PA |
3855 | that this function is called for a single execution command, then |
3856 | report to the user that the inferior has stopped, and do the | |
1777feb0 | 3857 | necessary cleanups. */ |
43ff13b4 JM |
3858 | |
3859 | void | |
fba45db2 | 3860 | fetch_inferior_event (void *client_data) |
43ff13b4 | 3861 | { |
0d1e5fa7 | 3862 | struct execution_control_state ecss; |
a474d7c2 | 3863 | struct execution_control_state *ecs = &ecss; |
4f8d22e3 | 3864 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); |
29f49a6a | 3865 | struct cleanup *ts_old_chain; |
0f641c01 | 3866 | int cmd_done = 0; |
963f9c80 | 3867 | ptid_t waiton_ptid = minus_one_ptid; |
43ff13b4 | 3868 | |
0d1e5fa7 PA |
3869 | memset (ecs, 0, sizeof (*ecs)); |
3870 | ||
c61db772 PA |
3871 | /* Events are always processed with the main UI as current UI. This |
3872 | way, warnings, debug output, etc. are always consistently sent to | |
3873 | the main console. */ | |
4b6749b9 | 3874 | scoped_restore save_ui = make_scoped_restore (¤t_ui, main_ui); |
c61db772 | 3875 | |
d3d4baed PA |
3876 | /* End up with readline processing input, if necessary. */ |
3877 | make_cleanup (reinstall_readline_callback_handler_cleanup, NULL); | |
3878 | ||
c5187ac6 PA |
3879 | /* We're handling a live event, so make sure we're doing live |
3880 | debugging. If we're looking at traceframes while the target is | |
3881 | running, we're going to need to get back to that mode after | |
3882 | handling the event. */ | |
3883 | if (non_stop) | |
3884 | { | |
3885 | make_cleanup_restore_current_traceframe (); | |
e6e4e701 | 3886 | set_current_traceframe (-1); |
c5187ac6 PA |
3887 | } |
3888 | ||
5ed8105e PA |
3889 | gdb::optional<scoped_restore_current_thread> maybe_restore_thread; |
3890 | ||
4f8d22e3 PA |
3891 | if (non_stop) |
3892 | /* In non-stop mode, the user/frontend should not notice a thread | |
3893 | switch due to internal events. Make sure we reverse to the | |
3894 | user selected thread and frame after handling the event and | |
3895 | running any breakpoint commands. */ | |
5ed8105e | 3896 | maybe_restore_thread.emplace (); |
4f8d22e3 | 3897 | |
ec9499be | 3898 | overlay_cache_invalid = 1; |
f15cb84a YQ |
3899 | /* Flush target cache before starting to handle each event. Target |
3900 | was running and cache could be stale. This is just a heuristic. | |
3901 | Running threads may modify target memory, but we don't get any | |
3902 | event. */ | |
3903 | target_dcache_invalidate (); | |
3dd5b83d | 3904 | |
b7b633e9 TT |
3905 | scoped_restore save_exec_dir |
3906 | = make_scoped_restore (&execution_direction, target_execution_direction ()); | |
32231432 | 3907 | |
0b333c5e PA |
3908 | ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, |
3909 | target_can_async_p () ? TARGET_WNOHANG : 0); | |
43ff13b4 | 3910 | |
f00150c9 | 3911 | if (debug_infrun) |
223698f8 | 3912 | print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws); |
f00150c9 | 3913 | |
29f49a6a PA |
3914 | /* If an error happens while handling the event, propagate GDB's |
3915 | knowledge of the executing state to the frontend/user running | |
3916 | state. */ | |
fbea99ea | 3917 | if (!target_is_non_stop_p ()) |
29f49a6a PA |
3918 | ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid); |
3919 | else | |
3920 | ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid); | |
3921 | ||
353d1d73 JK |
3922 | /* Get executed before make_cleanup_restore_current_thread above to apply |
3923 | still for the thread which has thrown the exception. */ | |
3924 | make_bpstat_clear_actions_cleanup (); | |
3925 | ||
7c16b83e PA |
3926 | make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL); |
3927 | ||
43ff13b4 | 3928 | /* Now figure out what to do with the result of the result. */ |
a474d7c2 | 3929 | handle_inferior_event (ecs); |
43ff13b4 | 3930 | |
a474d7c2 | 3931 | if (!ecs->wait_some_more) |
43ff13b4 | 3932 | { |
c9657e70 | 3933 | struct inferior *inf = find_inferior_ptid (ecs->ptid); |
243a9253 PA |
3934 | int should_stop = 1; |
3935 | struct thread_info *thr = ecs->event_thread; | |
388a7084 | 3936 | int should_notify_stop = 1; |
d6b48e9c | 3937 | |
0cbcdb96 | 3938 | delete_just_stopped_threads_infrun_breakpoints (); |
f107f563 | 3939 | |
243a9253 PA |
3940 | if (thr != NULL) |
3941 | { | |
3942 | struct thread_fsm *thread_fsm = thr->thread_fsm; | |
3943 | ||
3944 | if (thread_fsm != NULL) | |
8980e177 | 3945 | should_stop = thread_fsm_should_stop (thread_fsm, thr); |
243a9253 PA |
3946 | } |
3947 | ||
3948 | if (!should_stop) | |
3949 | { | |
3950 | keep_going (ecs); | |
3951 | } | |
c2d11a7d | 3952 | else |
0f641c01 | 3953 | { |
243a9253 PA |
3954 | clean_up_just_stopped_threads_fsms (ecs); |
3955 | ||
388a7084 PA |
3956 | if (thr != NULL && thr->thread_fsm != NULL) |
3957 | { | |
3958 | should_notify_stop | |
3959 | = thread_fsm_should_notify_stop (thr->thread_fsm); | |
3960 | } | |
3961 | ||
3962 | if (should_notify_stop) | |
3963 | { | |
4c2f2a79 PA |
3964 | int proceeded = 0; |
3965 | ||
388a7084 PA |
3966 | /* We may not find an inferior if this was a process exit. */ |
3967 | if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY) | |
4c2f2a79 | 3968 | proceeded = normal_stop (); |
243a9253 | 3969 | |
4c2f2a79 PA |
3970 | if (!proceeded) |
3971 | { | |
3972 | inferior_event_handler (INF_EXEC_COMPLETE, NULL); | |
3973 | cmd_done = 1; | |
3974 | } | |
388a7084 | 3975 | } |
0f641c01 | 3976 | } |
43ff13b4 | 3977 | } |
4f8d22e3 | 3978 | |
29f49a6a PA |
3979 | /* No error, don't finish the thread states yet. */ |
3980 | discard_cleanups (ts_old_chain); | |
3981 | ||
4f8d22e3 PA |
3982 | /* Revert thread and frame. */ |
3983 | do_cleanups (old_chain); | |
3984 | ||
3b12939d PA |
3985 | /* If a UI was in sync execution mode, and now isn't, restore its |
3986 | prompt (a synchronous execution command has finished, and we're | |
3987 | ready for input). */ | |
3988 | all_uis_check_sync_execution_done (); | |
0f641c01 PA |
3989 | |
3990 | if (cmd_done | |
0f641c01 PA |
3991 | && exec_done_display_p |
3992 | && (ptid_equal (inferior_ptid, null_ptid) | |
3993 | || !is_running (inferior_ptid))) | |
3994 | printf_unfiltered (_("completed.\n")); | |
43ff13b4 JM |
3995 | } |
3996 | ||
edb3359d DJ |
3997 | /* Record the frame and location we're currently stepping through. */ |
3998 | void | |
3999 | set_step_info (struct frame_info *frame, struct symtab_and_line sal) | |
4000 | { | |
4001 | struct thread_info *tp = inferior_thread (); | |
4002 | ||
16c381f0 JK |
4003 | tp->control.step_frame_id = get_frame_id (frame); |
4004 | tp->control.step_stack_frame_id = get_stack_frame_id (frame); | |
edb3359d DJ |
4005 | |
4006 | tp->current_symtab = sal.symtab; | |
4007 | tp->current_line = sal.line; | |
4008 | } | |
4009 | ||
0d1e5fa7 PA |
4010 | /* Clear context switchable stepping state. */ |
4011 | ||
4012 | void | |
4e1c45ea | 4013 | init_thread_stepping_state (struct thread_info *tss) |
0d1e5fa7 | 4014 | { |
7f5ef605 | 4015 | tss->stepped_breakpoint = 0; |
0d1e5fa7 | 4016 | tss->stepping_over_breakpoint = 0; |
963f9c80 | 4017 | tss->stepping_over_watchpoint = 0; |
0d1e5fa7 | 4018 | tss->step_after_step_resume_breakpoint = 0; |
cd0fc7c3 SS |
4019 | } |
4020 | ||
c32c64b7 DE |
4021 | /* Set the cached copy of the last ptid/waitstatus. */ |
4022 | ||
6efcd9a8 | 4023 | void |
c32c64b7 DE |
4024 | set_last_target_status (ptid_t ptid, struct target_waitstatus status) |
4025 | { | |
4026 | target_last_wait_ptid = ptid; | |
4027 | target_last_waitstatus = status; | |
4028 | } | |
4029 | ||
e02bc4cc | 4030 | /* Return the cached copy of the last pid/waitstatus returned by |
9a4105ab AC |
4031 | target_wait()/deprecated_target_wait_hook(). The data is actually |
4032 | cached by handle_inferior_event(), which gets called immediately | |
4033 | after target_wait()/deprecated_target_wait_hook(). */ | |
e02bc4cc DS |
4034 | |
4035 | void | |
488f131b | 4036 | get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status) |
e02bc4cc | 4037 | { |
39f77062 | 4038 | *ptidp = target_last_wait_ptid; |
e02bc4cc DS |
4039 | *status = target_last_waitstatus; |
4040 | } | |
4041 | ||
ac264b3b MS |
4042 | void |
4043 | nullify_last_target_wait_ptid (void) | |
4044 | { | |
4045 | target_last_wait_ptid = minus_one_ptid; | |
4046 | } | |
4047 | ||
dcf4fbde | 4048 | /* Switch thread contexts. */ |
dd80620e MS |
4049 | |
4050 | static void | |
0d1e5fa7 | 4051 | context_switch (ptid_t ptid) |
dd80620e | 4052 | { |
4b51d87b | 4053 | if (debug_infrun && !ptid_equal (ptid, inferior_ptid)) |
fd48f117 DJ |
4054 | { |
4055 | fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ", | |
4056 | target_pid_to_str (inferior_ptid)); | |
4057 | fprintf_unfiltered (gdb_stdlog, "to %s\n", | |
0d1e5fa7 | 4058 | target_pid_to_str (ptid)); |
fd48f117 DJ |
4059 | } |
4060 | ||
0d1e5fa7 | 4061 | switch_to_thread (ptid); |
dd80620e MS |
4062 | } |
4063 | ||
d8dd4d5f PA |
4064 | /* If the target can't tell whether we've hit breakpoints |
4065 | (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP, | |
4066 | check whether that could have been caused by a breakpoint. If so, | |
4067 | adjust the PC, per gdbarch_decr_pc_after_break. */ | |
4068 | ||
4fa8626c | 4069 | static void |
d8dd4d5f PA |
4070 | adjust_pc_after_break (struct thread_info *thread, |
4071 | struct target_waitstatus *ws) | |
4fa8626c | 4072 | { |
24a73cce UW |
4073 | struct regcache *regcache; |
4074 | struct gdbarch *gdbarch; | |
6c95b8df | 4075 | struct address_space *aspace; |
118e6252 | 4076 | CORE_ADDR breakpoint_pc, decr_pc; |
4fa8626c | 4077 | |
4fa8626c DJ |
4078 | /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If |
4079 | we aren't, just return. | |
9709f61c DJ |
4080 | |
4081 | We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not | |
b798847d UW |
4082 | affected by gdbarch_decr_pc_after_break. Other waitkinds which are |
4083 | implemented by software breakpoints should be handled through the normal | |
4084 | breakpoint layer. | |
8fb3e588 | 4085 | |
4fa8626c DJ |
4086 | NOTE drow/2004-01-31: On some targets, breakpoints may generate |
4087 | different signals (SIGILL or SIGEMT for instance), but it is less | |
4088 | clear where the PC is pointing afterwards. It may not match | |
b798847d UW |
4089 | gdbarch_decr_pc_after_break. I don't know any specific target that |
4090 | generates these signals at breakpoints (the code has been in GDB since at | |
4091 | least 1992) so I can not guess how to handle them here. | |
8fb3e588 | 4092 | |
e6cf7916 UW |
4093 | In earlier versions of GDB, a target with |
4094 | gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a | |
b798847d UW |
4095 | watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any |
4096 | target with both of these set in GDB history, and it seems unlikely to be | |
4097 | correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */ | |
4fa8626c | 4098 | |
d8dd4d5f | 4099 | if (ws->kind != TARGET_WAITKIND_STOPPED) |
4fa8626c DJ |
4100 | return; |
4101 | ||
d8dd4d5f | 4102 | if (ws->value.sig != GDB_SIGNAL_TRAP) |
4fa8626c DJ |
4103 | return; |
4104 | ||
4058b839 PA |
4105 | /* In reverse execution, when a breakpoint is hit, the instruction |
4106 | under it has already been de-executed. The reported PC always | |
4107 | points at the breakpoint address, so adjusting it further would | |
4108 | be wrong. E.g., consider this case on a decr_pc_after_break == 1 | |
4109 | architecture: | |
4110 | ||
4111 | B1 0x08000000 : INSN1 | |
4112 | B2 0x08000001 : INSN2 | |
4113 | 0x08000002 : INSN3 | |
4114 | PC -> 0x08000003 : INSN4 | |
4115 | ||
4116 | Say you're stopped at 0x08000003 as above. Reverse continuing | |
4117 | from that point should hit B2 as below. Reading the PC when the | |
4118 | SIGTRAP is reported should read 0x08000001 and INSN2 should have | |
4119 | been de-executed already. | |
4120 | ||
4121 | B1 0x08000000 : INSN1 | |
4122 | B2 PC -> 0x08000001 : INSN2 | |
4123 | 0x08000002 : INSN3 | |
4124 | 0x08000003 : INSN4 | |
4125 | ||
4126 | We can't apply the same logic as for forward execution, because | |
4127 | we would wrongly adjust the PC to 0x08000000, since there's a | |
4128 | breakpoint at PC - 1. We'd then report a hit on B1, although | |
4129 | INSN1 hadn't been de-executed yet. Doing nothing is the correct | |
4130 | behaviour. */ | |
4131 | if (execution_direction == EXEC_REVERSE) | |
4132 | return; | |
4133 | ||
1cf4d951 PA |
4134 | /* If the target can tell whether the thread hit a SW breakpoint, |
4135 | trust it. Targets that can tell also adjust the PC | |
4136 | themselves. */ | |
4137 | if (target_supports_stopped_by_sw_breakpoint ()) | |
4138 | return; | |
4139 | ||
4140 | /* Note that relying on whether a breakpoint is planted in memory to | |
4141 | determine this can fail. E.g,. the breakpoint could have been | |
4142 | removed since. Or the thread could have been told to step an | |
4143 | instruction the size of a breakpoint instruction, and only | |
4144 | _after_ was a breakpoint inserted at its address. */ | |
4145 | ||
24a73cce UW |
4146 | /* If this target does not decrement the PC after breakpoints, then |
4147 | we have nothing to do. */ | |
d8dd4d5f | 4148 | regcache = get_thread_regcache (thread->ptid); |
24a73cce | 4149 | gdbarch = get_regcache_arch (regcache); |
118e6252 | 4150 | |
527a273a | 4151 | decr_pc = gdbarch_decr_pc_after_break (gdbarch); |
118e6252 | 4152 | if (decr_pc == 0) |
24a73cce UW |
4153 | return; |
4154 | ||
6c95b8df PA |
4155 | aspace = get_regcache_aspace (regcache); |
4156 | ||
8aad930b AC |
4157 | /* Find the location where (if we've hit a breakpoint) the |
4158 | breakpoint would be. */ | |
118e6252 | 4159 | breakpoint_pc = regcache_read_pc (regcache) - decr_pc; |
8aad930b | 4160 | |
1cf4d951 PA |
4161 | /* If the target can't tell whether a software breakpoint triggered, |
4162 | fallback to figuring it out based on breakpoints we think were | |
4163 | inserted in the target, and on whether the thread was stepped or | |
4164 | continued. */ | |
4165 | ||
1c5cfe86 PA |
4166 | /* Check whether there actually is a software breakpoint inserted at |
4167 | that location. | |
4168 | ||
4169 | If in non-stop mode, a race condition is possible where we've | |
4170 | removed a breakpoint, but stop events for that breakpoint were | |
4171 | already queued and arrive later. To suppress those spurious | |
4172 | SIGTRAPs, we keep a list of such breakpoint locations for a bit, | |
1cf4d951 PA |
4173 | and retire them after a number of stop events are reported. Note |
4174 | this is an heuristic and can thus get confused. The real fix is | |
4175 | to get the "stopped by SW BP and needs adjustment" info out of | |
4176 | the target/kernel (and thus never reach here; see above). */ | |
6c95b8df | 4177 | if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc) |
fbea99ea PA |
4178 | || (target_is_non_stop_p () |
4179 | && moribund_breakpoint_here_p (aspace, breakpoint_pc))) | |
8aad930b | 4180 | { |
77f9e713 | 4181 | struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL); |
abbb1732 | 4182 | |
8213266a | 4183 | if (record_full_is_used ()) |
77f9e713 | 4184 | record_full_gdb_operation_disable_set (); |
96429cc8 | 4185 | |
1c0fdd0e UW |
4186 | /* When using hardware single-step, a SIGTRAP is reported for both |
4187 | a completed single-step and a software breakpoint. Need to | |
4188 | differentiate between the two, as the latter needs adjusting | |
4189 | but the former does not. | |
4190 | ||
4191 | The SIGTRAP can be due to a completed hardware single-step only if | |
4192 | - we didn't insert software single-step breakpoints | |
1c0fdd0e UW |
4193 | - this thread is currently being stepped |
4194 | ||
4195 | If any of these events did not occur, we must have stopped due | |
4196 | to hitting a software breakpoint, and have to back up to the | |
4197 | breakpoint address. | |
4198 | ||
4199 | As a special case, we could have hardware single-stepped a | |
4200 | software breakpoint. In this case (prev_pc == breakpoint_pc), | |
4201 | we also need to back up to the breakpoint address. */ | |
4202 | ||
d8dd4d5f PA |
4203 | if (thread_has_single_step_breakpoints_set (thread) |
4204 | || !currently_stepping (thread) | |
4205 | || (thread->stepped_breakpoint | |
4206 | && thread->prev_pc == breakpoint_pc)) | |
515630c5 | 4207 | regcache_write_pc (regcache, breakpoint_pc); |
96429cc8 | 4208 | |
77f9e713 | 4209 | do_cleanups (old_cleanups); |
8aad930b | 4210 | } |
4fa8626c DJ |
4211 | } |
4212 | ||
edb3359d DJ |
4213 | static int |
4214 | stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id) | |
4215 | { | |
4216 | for (frame = get_prev_frame (frame); | |
4217 | frame != NULL; | |
4218 | frame = get_prev_frame (frame)) | |
4219 | { | |
4220 | if (frame_id_eq (get_frame_id (frame), step_frame_id)) | |
4221 | return 1; | |
4222 | if (get_frame_type (frame) != INLINE_FRAME) | |
4223 | break; | |
4224 | } | |
4225 | ||
4226 | return 0; | |
4227 | } | |
4228 | ||
c65d6b55 PA |
4229 | /* If the event thread has the stop requested flag set, pretend it |
4230 | stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to | |
4231 | target_stop). */ | |
4232 | ||
4233 | static bool | |
4234 | handle_stop_requested (struct execution_control_state *ecs) | |
4235 | { | |
4236 | if (ecs->event_thread->stop_requested) | |
4237 | { | |
4238 | ecs->ws.kind = TARGET_WAITKIND_STOPPED; | |
4239 | ecs->ws.value.sig = GDB_SIGNAL_0; | |
4240 | handle_signal_stop (ecs); | |
4241 | return true; | |
4242 | } | |
4243 | return false; | |
4244 | } | |
4245 | ||
a96d9b2e SDJ |
4246 | /* Auxiliary function that handles syscall entry/return events. |
4247 | It returns 1 if the inferior should keep going (and GDB | |
4248 | should ignore the event), or 0 if the event deserves to be | |
4249 | processed. */ | |
ca2163eb | 4250 | |
a96d9b2e | 4251 | static int |
ca2163eb | 4252 | handle_syscall_event (struct execution_control_state *ecs) |
a96d9b2e | 4253 | { |
ca2163eb | 4254 | struct regcache *regcache; |
ca2163eb PA |
4255 | int syscall_number; |
4256 | ||
4257 | if (!ptid_equal (ecs->ptid, inferior_ptid)) | |
4258 | context_switch (ecs->ptid); | |
4259 | ||
4260 | regcache = get_thread_regcache (ecs->ptid); | |
f90263c1 | 4261 | syscall_number = ecs->ws.value.syscall_number; |
ca2163eb PA |
4262 | stop_pc = regcache_read_pc (regcache); |
4263 | ||
a96d9b2e SDJ |
4264 | if (catch_syscall_enabled () > 0 |
4265 | && catching_syscall_number (syscall_number) > 0) | |
4266 | { | |
4267 | if (debug_infrun) | |
4268 | fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n", | |
4269 | syscall_number); | |
a96d9b2e | 4270 | |
16c381f0 | 4271 | ecs->event_thread->control.stop_bpstat |
6c95b8df | 4272 | = bpstat_stop_status (get_regcache_aspace (regcache), |
09ac7c10 | 4273 | stop_pc, ecs->ptid, &ecs->ws); |
ab04a2af | 4274 | |
c65d6b55 PA |
4275 | if (handle_stop_requested (ecs)) |
4276 | return 0; | |
4277 | ||
ce12b012 | 4278 | if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat)) |
ca2163eb PA |
4279 | { |
4280 | /* Catchpoint hit. */ | |
ca2163eb PA |
4281 | return 0; |
4282 | } | |
a96d9b2e | 4283 | } |
ca2163eb | 4284 | |
c65d6b55 PA |
4285 | if (handle_stop_requested (ecs)) |
4286 | return 0; | |
4287 | ||
ca2163eb | 4288 | /* If no catchpoint triggered for this, then keep going. */ |
ca2163eb PA |
4289 | keep_going (ecs); |
4290 | return 1; | |
a96d9b2e SDJ |
4291 | } |
4292 | ||
7e324e48 GB |
4293 | /* Lazily fill in the execution_control_state's stop_func_* fields. */ |
4294 | ||
4295 | static void | |
4296 | fill_in_stop_func (struct gdbarch *gdbarch, | |
4297 | struct execution_control_state *ecs) | |
4298 | { | |
4299 | if (!ecs->stop_func_filled_in) | |
4300 | { | |
4301 | /* Don't care about return value; stop_func_start and stop_func_name | |
4302 | will both be 0 if it doesn't work. */ | |
4303 | find_pc_partial_function (stop_pc, &ecs->stop_func_name, | |
4304 | &ecs->stop_func_start, &ecs->stop_func_end); | |
4305 | ecs->stop_func_start | |
4306 | += gdbarch_deprecated_function_start_offset (gdbarch); | |
4307 | ||
591a12a1 UW |
4308 | if (gdbarch_skip_entrypoint_p (gdbarch)) |
4309 | ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch, | |
4310 | ecs->stop_func_start); | |
4311 | ||
7e324e48 GB |
4312 | ecs->stop_func_filled_in = 1; |
4313 | } | |
4314 | } | |
4315 | ||
4f5d7f63 PA |
4316 | |
4317 | /* Return the STOP_SOON field of the inferior pointed at by PTID. */ | |
4318 | ||
4319 | static enum stop_kind | |
4320 | get_inferior_stop_soon (ptid_t ptid) | |
4321 | { | |
c9657e70 | 4322 | struct inferior *inf = find_inferior_ptid (ptid); |
4f5d7f63 PA |
4323 | |
4324 | gdb_assert (inf != NULL); | |
4325 | return inf->control.stop_soon; | |
4326 | } | |
4327 | ||
372316f1 PA |
4328 | /* Wait for one event. Store the resulting waitstatus in WS, and |
4329 | return the event ptid. */ | |
4330 | ||
4331 | static ptid_t | |
4332 | wait_one (struct target_waitstatus *ws) | |
4333 | { | |
4334 | ptid_t event_ptid; | |
4335 | ptid_t wait_ptid = minus_one_ptid; | |
4336 | ||
4337 | overlay_cache_invalid = 1; | |
4338 | ||
4339 | /* Flush target cache before starting to handle each event. | |
4340 | Target was running and cache could be stale. This is just a | |
4341 | heuristic. Running threads may modify target memory, but we | |
4342 | don't get any event. */ | |
4343 | target_dcache_invalidate (); | |
4344 | ||
4345 | if (deprecated_target_wait_hook) | |
4346 | event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0); | |
4347 | else | |
4348 | event_ptid = target_wait (wait_ptid, ws, 0); | |
4349 | ||
4350 | if (debug_infrun) | |
4351 | print_target_wait_results (wait_ptid, event_ptid, ws); | |
4352 | ||
4353 | return event_ptid; | |
4354 | } | |
4355 | ||
4356 | /* Generate a wrapper for target_stopped_by_REASON that works on PTID | |
4357 | instead of the current thread. */ | |
4358 | #define THREAD_STOPPED_BY(REASON) \ | |
4359 | static int \ | |
4360 | thread_stopped_by_ ## REASON (ptid_t ptid) \ | |
4361 | { \ | |
2989a365 | 4362 | scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \ |
372316f1 PA |
4363 | inferior_ptid = ptid; \ |
4364 | \ | |
2989a365 | 4365 | return target_stopped_by_ ## REASON (); \ |
372316f1 PA |
4366 | } |
4367 | ||
4368 | /* Generate thread_stopped_by_watchpoint. */ | |
4369 | THREAD_STOPPED_BY (watchpoint) | |
4370 | /* Generate thread_stopped_by_sw_breakpoint. */ | |
4371 | THREAD_STOPPED_BY (sw_breakpoint) | |
4372 | /* Generate thread_stopped_by_hw_breakpoint. */ | |
4373 | THREAD_STOPPED_BY (hw_breakpoint) | |
4374 | ||
4375 | /* Cleanups that switches to the PTID pointed at by PTID_P. */ | |
4376 | ||
4377 | static void | |
4378 | switch_to_thread_cleanup (void *ptid_p) | |
4379 | { | |
4380 | ptid_t ptid = *(ptid_t *) ptid_p; | |
4381 | ||
4382 | switch_to_thread (ptid); | |
4383 | } | |
4384 | ||
4385 | /* Save the thread's event and stop reason to process it later. */ | |
4386 | ||
4387 | static void | |
4388 | save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws) | |
4389 | { | |
4390 | struct regcache *regcache; | |
4391 | struct address_space *aspace; | |
4392 | ||
4393 | if (debug_infrun) | |
4394 | { | |
23fdd69e | 4395 | std::string statstr = target_waitstatus_to_string (ws); |
372316f1 | 4396 | |
372316f1 PA |
4397 | fprintf_unfiltered (gdb_stdlog, |
4398 | "infrun: saving status %s for %d.%ld.%ld\n", | |
23fdd69e | 4399 | statstr.c_str (), |
372316f1 PA |
4400 | ptid_get_pid (tp->ptid), |
4401 | ptid_get_lwp (tp->ptid), | |
4402 | ptid_get_tid (tp->ptid)); | |
372316f1 PA |
4403 | } |
4404 | ||
4405 | /* Record for later. */ | |
4406 | tp->suspend.waitstatus = *ws; | |
4407 | tp->suspend.waitstatus_pending_p = 1; | |
4408 | ||
4409 | regcache = get_thread_regcache (tp->ptid); | |
4410 | aspace = get_regcache_aspace (regcache); | |
4411 | ||
4412 | if (ws->kind == TARGET_WAITKIND_STOPPED | |
4413 | && ws->value.sig == GDB_SIGNAL_TRAP) | |
4414 | { | |
4415 | CORE_ADDR pc = regcache_read_pc (regcache); | |
4416 | ||
4417 | adjust_pc_after_break (tp, &tp->suspend.waitstatus); | |
4418 | ||
4419 | if (thread_stopped_by_watchpoint (tp->ptid)) | |
4420 | { | |
4421 | tp->suspend.stop_reason | |
4422 | = TARGET_STOPPED_BY_WATCHPOINT; | |
4423 | } | |
4424 | else if (target_supports_stopped_by_sw_breakpoint () | |
4425 | && thread_stopped_by_sw_breakpoint (tp->ptid)) | |
4426 | { | |
4427 | tp->suspend.stop_reason | |
4428 | = TARGET_STOPPED_BY_SW_BREAKPOINT; | |
4429 | } | |
4430 | else if (target_supports_stopped_by_hw_breakpoint () | |
4431 | && thread_stopped_by_hw_breakpoint (tp->ptid)) | |
4432 | { | |
4433 | tp->suspend.stop_reason | |
4434 | = TARGET_STOPPED_BY_HW_BREAKPOINT; | |
4435 | } | |
4436 | else if (!target_supports_stopped_by_hw_breakpoint () | |
4437 | && hardware_breakpoint_inserted_here_p (aspace, | |
4438 | pc)) | |
4439 | { | |
4440 | tp->suspend.stop_reason | |
4441 | = TARGET_STOPPED_BY_HW_BREAKPOINT; | |
4442 | } | |
4443 | else if (!target_supports_stopped_by_sw_breakpoint () | |
4444 | && software_breakpoint_inserted_here_p (aspace, | |
4445 | pc)) | |
4446 | { | |
4447 | tp->suspend.stop_reason | |
4448 | = TARGET_STOPPED_BY_SW_BREAKPOINT; | |
4449 | } | |
4450 | else if (!thread_has_single_step_breakpoints_set (tp) | |
4451 | && currently_stepping (tp)) | |
4452 | { | |
4453 | tp->suspend.stop_reason | |
4454 | = TARGET_STOPPED_BY_SINGLE_STEP; | |
4455 | } | |
4456 | } | |
4457 | } | |
4458 | ||
65706a29 PA |
4459 | /* A cleanup that disables thread create/exit events. */ |
4460 | ||
4461 | static void | |
4462 | disable_thread_events (void *arg) | |
4463 | { | |
4464 | target_thread_events (0); | |
4465 | } | |
4466 | ||
6efcd9a8 | 4467 | /* See infrun.h. */ |
372316f1 | 4468 | |
6efcd9a8 | 4469 | void |
372316f1 PA |
4470 | stop_all_threads (void) |
4471 | { | |
4472 | /* We may need multiple passes to discover all threads. */ | |
4473 | int pass; | |
4474 | int iterations = 0; | |
4475 | ptid_t entry_ptid; | |
4476 | struct cleanup *old_chain; | |
4477 | ||
fbea99ea | 4478 | gdb_assert (target_is_non_stop_p ()); |
372316f1 PA |
4479 | |
4480 | if (debug_infrun) | |
4481 | fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n"); | |
4482 | ||
4483 | entry_ptid = inferior_ptid; | |
4484 | old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid); | |
4485 | ||
65706a29 PA |
4486 | target_thread_events (1); |
4487 | make_cleanup (disable_thread_events, NULL); | |
4488 | ||
372316f1 PA |
4489 | /* Request threads to stop, and then wait for the stops. Because |
4490 | threads we already know about can spawn more threads while we're | |
4491 | trying to stop them, and we only learn about new threads when we | |
4492 | update the thread list, do this in a loop, and keep iterating | |
4493 | until two passes find no threads that need to be stopped. */ | |
4494 | for (pass = 0; pass < 2; pass++, iterations++) | |
4495 | { | |
4496 | if (debug_infrun) | |
4497 | fprintf_unfiltered (gdb_stdlog, | |
4498 | "infrun: stop_all_threads, pass=%d, " | |
4499 | "iterations=%d\n", pass, iterations); | |
4500 | while (1) | |
4501 | { | |
4502 | ptid_t event_ptid; | |
4503 | struct target_waitstatus ws; | |
4504 | int need_wait = 0; | |
4505 | struct thread_info *t; | |
4506 | ||
4507 | update_thread_list (); | |
4508 | ||
4509 | /* Go through all threads looking for threads that we need | |
4510 | to tell the target to stop. */ | |
4511 | ALL_NON_EXITED_THREADS (t) | |
4512 | { | |
4513 | if (t->executing) | |
4514 | { | |
4515 | /* If already stopping, don't request a stop again. | |
4516 | We just haven't seen the notification yet. */ | |
4517 | if (!t->stop_requested) | |
4518 | { | |
4519 | if (debug_infrun) | |
4520 | fprintf_unfiltered (gdb_stdlog, | |
4521 | "infrun: %s executing, " | |
4522 | "need stop\n", | |
4523 | target_pid_to_str (t->ptid)); | |
4524 | target_stop (t->ptid); | |
4525 | t->stop_requested = 1; | |
4526 | } | |
4527 | else | |
4528 | { | |
4529 | if (debug_infrun) | |
4530 | fprintf_unfiltered (gdb_stdlog, | |
4531 | "infrun: %s executing, " | |
4532 | "already stopping\n", | |
4533 | target_pid_to_str (t->ptid)); | |
4534 | } | |
4535 | ||
4536 | if (t->stop_requested) | |
4537 | need_wait = 1; | |
4538 | } | |
4539 | else | |
4540 | { | |
4541 | if (debug_infrun) | |
4542 | fprintf_unfiltered (gdb_stdlog, | |
4543 | "infrun: %s not executing\n", | |
4544 | target_pid_to_str (t->ptid)); | |
4545 | ||
4546 | /* The thread may be not executing, but still be | |
4547 | resumed with a pending status to process. */ | |
4548 | t->resumed = 0; | |
4549 | } | |
4550 | } | |
4551 | ||
4552 | if (!need_wait) | |
4553 | break; | |
4554 | ||
4555 | /* If we find new threads on the second iteration, restart | |
4556 | over. We want to see two iterations in a row with all | |
4557 | threads stopped. */ | |
4558 | if (pass > 0) | |
4559 | pass = -1; | |
4560 | ||
4561 | event_ptid = wait_one (&ws); | |
4562 | if (ws.kind == TARGET_WAITKIND_NO_RESUMED) | |
4563 | { | |
4564 | /* All resumed threads exited. */ | |
4565 | } | |
65706a29 PA |
4566 | else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED |
4567 | || ws.kind == TARGET_WAITKIND_EXITED | |
372316f1 PA |
4568 | || ws.kind == TARGET_WAITKIND_SIGNALLED) |
4569 | { | |
4570 | if (debug_infrun) | |
4571 | { | |
4572 | ptid_t ptid = pid_to_ptid (ws.value.integer); | |
4573 | ||
4574 | fprintf_unfiltered (gdb_stdlog, | |
4575 | "infrun: %s exited while " | |
4576 | "stopping threads\n", | |
4577 | target_pid_to_str (ptid)); | |
4578 | } | |
4579 | } | |
4580 | else | |
4581 | { | |
6efcd9a8 PA |
4582 | struct inferior *inf; |
4583 | ||
372316f1 PA |
4584 | t = find_thread_ptid (event_ptid); |
4585 | if (t == NULL) | |
4586 | t = add_thread (event_ptid); | |
4587 | ||
4588 | t->stop_requested = 0; | |
4589 | t->executing = 0; | |
4590 | t->resumed = 0; | |
4591 | t->control.may_range_step = 0; | |
4592 | ||
6efcd9a8 PA |
4593 | /* This may be the first time we see the inferior report |
4594 | a stop. */ | |
4595 | inf = find_inferior_ptid (event_ptid); | |
4596 | if (inf->needs_setup) | |
4597 | { | |
4598 | switch_to_thread_no_regs (t); | |
4599 | setup_inferior (0); | |
4600 | } | |
4601 | ||
372316f1 PA |
4602 | if (ws.kind == TARGET_WAITKIND_STOPPED |
4603 | && ws.value.sig == GDB_SIGNAL_0) | |
4604 | { | |
4605 | /* We caught the event that we intended to catch, so | |
4606 | there's no event pending. */ | |
4607 | t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE; | |
4608 | t->suspend.waitstatus_pending_p = 0; | |
4609 | ||
4610 | if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0) | |
4611 | { | |
4612 | /* Add it back to the step-over queue. */ | |
4613 | if (debug_infrun) | |
4614 | { | |
4615 | fprintf_unfiltered (gdb_stdlog, | |
4616 | "infrun: displaced-step of %s " | |
4617 | "canceled: adding back to the " | |
4618 | "step-over queue\n", | |
4619 | target_pid_to_str (t->ptid)); | |
4620 | } | |
4621 | t->control.trap_expected = 0; | |
4622 | thread_step_over_chain_enqueue (t); | |
4623 | } | |
4624 | } | |
4625 | else | |
4626 | { | |
4627 | enum gdb_signal sig; | |
4628 | struct regcache *regcache; | |
372316f1 PA |
4629 | |
4630 | if (debug_infrun) | |
4631 | { | |
23fdd69e | 4632 | std::string statstr = target_waitstatus_to_string (&ws); |
372316f1 | 4633 | |
372316f1 PA |
4634 | fprintf_unfiltered (gdb_stdlog, |
4635 | "infrun: target_wait %s, saving " | |
4636 | "status for %d.%ld.%ld\n", | |
23fdd69e | 4637 | statstr.c_str (), |
372316f1 PA |
4638 | ptid_get_pid (t->ptid), |
4639 | ptid_get_lwp (t->ptid), | |
4640 | ptid_get_tid (t->ptid)); | |
372316f1 PA |
4641 | } |
4642 | ||
4643 | /* Record for later. */ | |
4644 | save_waitstatus (t, &ws); | |
4645 | ||
4646 | sig = (ws.kind == TARGET_WAITKIND_STOPPED | |
4647 | ? ws.value.sig : GDB_SIGNAL_0); | |
4648 | ||
4649 | if (displaced_step_fixup (t->ptid, sig) < 0) | |
4650 | { | |
4651 | /* Add it back to the step-over queue. */ | |
4652 | t->control.trap_expected = 0; | |
4653 | thread_step_over_chain_enqueue (t); | |
4654 | } | |
4655 | ||
4656 | regcache = get_thread_regcache (t->ptid); | |
4657 | t->suspend.stop_pc = regcache_read_pc (regcache); | |
4658 | ||
4659 | if (debug_infrun) | |
4660 | { | |
4661 | fprintf_unfiltered (gdb_stdlog, | |
4662 | "infrun: saved stop_pc=%s for %s " | |
4663 | "(currently_stepping=%d)\n", | |
4664 | paddress (target_gdbarch (), | |
4665 | t->suspend.stop_pc), | |
4666 | target_pid_to_str (t->ptid), | |
4667 | currently_stepping (t)); | |
4668 | } | |
4669 | } | |
4670 | } | |
4671 | } | |
4672 | } | |
4673 | ||
4674 | do_cleanups (old_chain); | |
4675 | ||
4676 | if (debug_infrun) | |
4677 | fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n"); | |
4678 | } | |
4679 | ||
f4836ba9 PA |
4680 | /* Handle a TARGET_WAITKIND_NO_RESUMED event. */ |
4681 | ||
4682 | static int | |
4683 | handle_no_resumed (struct execution_control_state *ecs) | |
4684 | { | |
4685 | struct inferior *inf; | |
4686 | struct thread_info *thread; | |
4687 | ||
3b12939d | 4688 | if (target_can_async_p ()) |
f4836ba9 | 4689 | { |
3b12939d PA |
4690 | struct ui *ui; |
4691 | int any_sync = 0; | |
f4836ba9 | 4692 | |
3b12939d PA |
4693 | ALL_UIS (ui) |
4694 | { | |
4695 | if (ui->prompt_state == PROMPT_BLOCKED) | |
4696 | { | |
4697 | any_sync = 1; | |
4698 | break; | |
4699 | } | |
4700 | } | |
4701 | if (!any_sync) | |
4702 | { | |
4703 | /* There were no unwaited-for children left in the target, but, | |
4704 | we're not synchronously waiting for events either. Just | |
4705 | ignore. */ | |
4706 | ||
4707 | if (debug_infrun) | |
4708 | fprintf_unfiltered (gdb_stdlog, | |
4709 | "infrun: TARGET_WAITKIND_NO_RESUMED " | |
4710 | "(ignoring: bg)\n"); | |
4711 | prepare_to_wait (ecs); | |
4712 | return 1; | |
4713 | } | |
f4836ba9 PA |
4714 | } |
4715 | ||
4716 | /* Otherwise, if we were running a synchronous execution command, we | |
4717 | may need to cancel it and give the user back the terminal. | |
4718 | ||
4719 | In non-stop mode, the target can't tell whether we've already | |
4720 | consumed previous stop events, so it can end up sending us a | |
4721 | no-resumed event like so: | |
4722 | ||
4723 | #0 - thread 1 is left stopped | |
4724 | ||
4725 | #1 - thread 2 is resumed and hits breakpoint | |
4726 | -> TARGET_WAITKIND_STOPPED | |
4727 | ||
4728 | #2 - thread 3 is resumed and exits | |
4729 | this is the last resumed thread, so | |
4730 | -> TARGET_WAITKIND_NO_RESUMED | |
4731 | ||
4732 | #3 - gdb processes stop for thread 2 and decides to re-resume | |
4733 | it. | |
4734 | ||
4735 | #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event. | |
4736 | thread 2 is now resumed, so the event should be ignored. | |
4737 | ||
4738 | IOW, if the stop for thread 2 doesn't end a foreground command, | |
4739 | then we need to ignore the following TARGET_WAITKIND_NO_RESUMED | |
4740 | event. But it could be that the event meant that thread 2 itself | |
4741 | (or whatever other thread was the last resumed thread) exited. | |
4742 | ||
4743 | To address this we refresh the thread list and check whether we | |
4744 | have resumed threads _now_. In the example above, this removes | |
4745 | thread 3 from the thread list. If thread 2 was re-resumed, we | |
4746 | ignore this event. If we find no thread resumed, then we cancel | |
4747 | the synchronous command show "no unwaited-for " to the user. */ | |
4748 | update_thread_list (); | |
4749 | ||
4750 | ALL_NON_EXITED_THREADS (thread) | |
4751 | { | |
4752 | if (thread->executing | |
4753 | || thread->suspend.waitstatus_pending_p) | |
4754 | { | |
4755 | /* There were no unwaited-for children left in the target at | |
4756 | some point, but there are now. Just ignore. */ | |
4757 | if (debug_infrun) | |
4758 | fprintf_unfiltered (gdb_stdlog, | |
4759 | "infrun: TARGET_WAITKIND_NO_RESUMED " | |
4760 | "(ignoring: found resumed)\n"); | |
4761 | prepare_to_wait (ecs); | |
4762 | return 1; | |
4763 | } | |
4764 | } | |
4765 | ||
4766 | /* Note however that we may find no resumed thread because the whole | |
4767 | process exited meanwhile (thus updating the thread list results | |
4768 | in an empty thread list). In this case we know we'll be getting | |
4769 | a process exit event shortly. */ | |
4770 | ALL_INFERIORS (inf) | |
4771 | { | |
4772 | if (inf->pid == 0) | |
4773 | continue; | |
4774 | ||
4775 | thread = any_live_thread_of_process (inf->pid); | |
4776 | if (thread == NULL) | |
4777 | { | |
4778 | if (debug_infrun) | |
4779 | fprintf_unfiltered (gdb_stdlog, | |
4780 | "infrun: TARGET_WAITKIND_NO_RESUMED " | |
4781 | "(expect process exit)\n"); | |
4782 | prepare_to_wait (ecs); | |
4783 | return 1; | |
4784 | } | |
4785 | } | |
4786 | ||
4787 | /* Go ahead and report the event. */ | |
4788 | return 0; | |
4789 | } | |
4790 | ||
05ba8510 PA |
4791 | /* Given an execution control state that has been freshly filled in by |
4792 | an event from the inferior, figure out what it means and take | |
4793 | appropriate action. | |
4794 | ||
4795 | The alternatives are: | |
4796 | ||
22bcd14b | 4797 | 1) stop_waiting and return; to really stop and return to the |
05ba8510 PA |
4798 | debugger. |
4799 | ||
4800 | 2) keep_going and return; to wait for the next event (set | |
4801 | ecs->event_thread->stepping_over_breakpoint to 1 to single step | |
4802 | once). */ | |
c906108c | 4803 | |
ec9499be | 4804 | static void |
0b6e5e10 | 4805 | handle_inferior_event_1 (struct execution_control_state *ecs) |
cd0fc7c3 | 4806 | { |
d6b48e9c PA |
4807 | enum stop_kind stop_soon; |
4808 | ||
28736962 PA |
4809 | if (ecs->ws.kind == TARGET_WAITKIND_IGNORE) |
4810 | { | |
4811 | /* We had an event in the inferior, but we are not interested in | |
4812 | handling it at this level. The lower layers have already | |
4813 | done what needs to be done, if anything. | |
4814 | ||
4815 | One of the possible circumstances for this is when the | |
4816 | inferior produces output for the console. The inferior has | |
4817 | not stopped, and we are ignoring the event. Another possible | |
4818 | circumstance is any event which the lower level knows will be | |
4819 | reported multiple times without an intervening resume. */ | |
4820 | if (debug_infrun) | |
4821 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n"); | |
4822 | prepare_to_wait (ecs); | |
4823 | return; | |
4824 | } | |
4825 | ||
65706a29 PA |
4826 | if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED) |
4827 | { | |
4828 | if (debug_infrun) | |
4829 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n"); | |
4830 | prepare_to_wait (ecs); | |
4831 | return; | |
4832 | } | |
4833 | ||
0e5bf2a8 | 4834 | if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED |
f4836ba9 PA |
4835 | && handle_no_resumed (ecs)) |
4836 | return; | |
0e5bf2a8 | 4837 | |
1777feb0 | 4838 | /* Cache the last pid/waitstatus. */ |
c32c64b7 | 4839 | set_last_target_status (ecs->ptid, ecs->ws); |
e02bc4cc | 4840 | |
ca005067 | 4841 | /* Always clear state belonging to the previous time we stopped. */ |
aa7d318d | 4842 | stop_stack_dummy = STOP_NONE; |
ca005067 | 4843 | |
0e5bf2a8 PA |
4844 | if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED) |
4845 | { | |
4846 | /* No unwaited-for children left. IOW, all resumed children | |
4847 | have exited. */ | |
4848 | if (debug_infrun) | |
4849 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n"); | |
4850 | ||
4851 | stop_print_frame = 0; | |
22bcd14b | 4852 | stop_waiting (ecs); |
0e5bf2a8 PA |
4853 | return; |
4854 | } | |
4855 | ||
8c90c137 | 4856 | if (ecs->ws.kind != TARGET_WAITKIND_EXITED |
64776a0b | 4857 | && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED) |
359f5fe6 PA |
4858 | { |
4859 | ecs->event_thread = find_thread_ptid (ecs->ptid); | |
4860 | /* If it's a new thread, add it to the thread database. */ | |
4861 | if (ecs->event_thread == NULL) | |
4862 | ecs->event_thread = add_thread (ecs->ptid); | |
c1e36e3e PA |
4863 | |
4864 | /* Disable range stepping. If the next step request could use a | |
4865 | range, this will be end up re-enabled then. */ | |
4866 | ecs->event_thread->control.may_range_step = 0; | |
359f5fe6 | 4867 | } |
88ed393a JK |
4868 | |
4869 | /* Dependent on valid ECS->EVENT_THREAD. */ | |
d8dd4d5f | 4870 | adjust_pc_after_break (ecs->event_thread, &ecs->ws); |
88ed393a JK |
4871 | |
4872 | /* Dependent on the current PC value modified by adjust_pc_after_break. */ | |
4873 | reinit_frame_cache (); | |
4874 | ||
28736962 PA |
4875 | breakpoint_retire_moribund (); |
4876 | ||
2b009048 DJ |
4877 | /* First, distinguish signals caused by the debugger from signals |
4878 | that have to do with the program's own actions. Note that | |
4879 | breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending | |
4880 | on the operating system version. Here we detect when a SIGILL or | |
4881 | SIGEMT is really a breakpoint and change it to SIGTRAP. We do | |
4882 | something similar for SIGSEGV, since a SIGSEGV will be generated | |
4883 | when we're trying to execute a breakpoint instruction on a | |
4884 | non-executable stack. This happens for call dummy breakpoints | |
4885 | for architectures like SPARC that place call dummies on the | |
4886 | stack. */ | |
2b009048 | 4887 | if (ecs->ws.kind == TARGET_WAITKIND_STOPPED |
a493e3e2 PA |
4888 | && (ecs->ws.value.sig == GDB_SIGNAL_ILL |
4889 | || ecs->ws.value.sig == GDB_SIGNAL_SEGV | |
4890 | || ecs->ws.value.sig == GDB_SIGNAL_EMT)) | |
2b009048 | 4891 | { |
de0a0249 UW |
4892 | struct regcache *regcache = get_thread_regcache (ecs->ptid); |
4893 | ||
4894 | if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), | |
4895 | regcache_read_pc (regcache))) | |
4896 | { | |
4897 | if (debug_infrun) | |
4898 | fprintf_unfiltered (gdb_stdlog, | |
4899 | "infrun: Treating signal as SIGTRAP\n"); | |
a493e3e2 | 4900 | ecs->ws.value.sig = GDB_SIGNAL_TRAP; |
de0a0249 | 4901 | } |
2b009048 DJ |
4902 | } |
4903 | ||
28736962 PA |
4904 | /* Mark the non-executing threads accordingly. In all-stop, all |
4905 | threads of all processes are stopped when we get any event | |
e1316e60 | 4906 | reported. In non-stop mode, only the event thread stops. */ |
372316f1 PA |
4907 | { |
4908 | ptid_t mark_ptid; | |
4909 | ||
fbea99ea | 4910 | if (!target_is_non_stop_p ()) |
372316f1 PA |
4911 | mark_ptid = minus_one_ptid; |
4912 | else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED | |
4913 | || ecs->ws.kind == TARGET_WAITKIND_EXITED) | |
4914 | { | |
4915 | /* If we're handling a process exit in non-stop mode, even | |
4916 | though threads haven't been deleted yet, one would think | |
4917 | that there is nothing to do, as threads of the dead process | |
4918 | will be soon deleted, and threads of any other process were | |
4919 | left running. However, on some targets, threads survive a | |
4920 | process exit event. E.g., for the "checkpoint" command, | |
4921 | when the current checkpoint/fork exits, linux-fork.c | |
4922 | automatically switches to another fork from within | |
4923 | target_mourn_inferior, by associating the same | |
4924 | inferior/thread to another fork. We haven't mourned yet at | |
4925 | this point, but we must mark any threads left in the | |
4926 | process as not-executing so that finish_thread_state marks | |
4927 | them stopped (in the user's perspective) if/when we present | |
4928 | the stop to the user. */ | |
4929 | mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid)); | |
4930 | } | |
4931 | else | |
4932 | mark_ptid = ecs->ptid; | |
4933 | ||
4934 | set_executing (mark_ptid, 0); | |
4935 | ||
4936 | /* Likewise the resumed flag. */ | |
4937 | set_resumed (mark_ptid, 0); | |
4938 | } | |
8c90c137 | 4939 | |
488f131b JB |
4940 | switch (ecs->ws.kind) |
4941 | { | |
4942 | case TARGET_WAITKIND_LOADED: | |
527159b7 | 4943 | if (debug_infrun) |
8a9de0e4 | 4944 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n"); |
5c09a2c5 PA |
4945 | if (!ptid_equal (ecs->ptid, inferior_ptid)) |
4946 | context_switch (ecs->ptid); | |
b0f4b84b DJ |
4947 | /* Ignore gracefully during startup of the inferior, as it might |
4948 | be the shell which has just loaded some objects, otherwise | |
4949 | add the symbols for the newly loaded objects. Also ignore at | |
4950 | the beginning of an attach or remote session; we will query | |
4951 | the full list of libraries once the connection is | |
4952 | established. */ | |
4f5d7f63 PA |
4953 | |
4954 | stop_soon = get_inferior_stop_soon (ecs->ptid); | |
c0236d92 | 4955 | if (stop_soon == NO_STOP_QUIETLY) |
488f131b | 4956 | { |
edcc5120 TT |
4957 | struct regcache *regcache; |
4958 | ||
edcc5120 TT |
4959 | regcache = get_thread_regcache (ecs->ptid); |
4960 | ||
4961 | handle_solib_event (); | |
4962 | ||
4963 | ecs->event_thread->control.stop_bpstat | |
4964 | = bpstat_stop_status (get_regcache_aspace (regcache), | |
4965 | stop_pc, ecs->ptid, &ecs->ws); | |
ab04a2af | 4966 | |
c65d6b55 PA |
4967 | if (handle_stop_requested (ecs)) |
4968 | return; | |
4969 | ||
ce12b012 | 4970 | if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat)) |
edcc5120 TT |
4971 | { |
4972 | /* A catchpoint triggered. */ | |
94c57d6a PA |
4973 | process_event_stop_test (ecs); |
4974 | return; | |
edcc5120 | 4975 | } |
488f131b | 4976 | |
b0f4b84b DJ |
4977 | /* If requested, stop when the dynamic linker notifies |
4978 | gdb of events. This allows the user to get control | |
4979 | and place breakpoints in initializer routines for | |
4980 | dynamically loaded objects (among other things). */ | |
a493e3e2 | 4981 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; |
b0f4b84b DJ |
4982 | if (stop_on_solib_events) |
4983 | { | |
55409f9d DJ |
4984 | /* Make sure we print "Stopped due to solib-event" in |
4985 | normal_stop. */ | |
4986 | stop_print_frame = 1; | |
4987 | ||
22bcd14b | 4988 | stop_waiting (ecs); |
b0f4b84b DJ |
4989 | return; |
4990 | } | |
488f131b | 4991 | } |
b0f4b84b DJ |
4992 | |
4993 | /* If we are skipping through a shell, or through shared library | |
4994 | loading that we aren't interested in, resume the program. If | |
5c09a2c5 | 4995 | we're running the program normally, also resume. */ |
b0f4b84b DJ |
4996 | if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY) |
4997 | { | |
74960c60 VP |
4998 | /* Loading of shared libraries might have changed breakpoint |
4999 | addresses. Make sure new breakpoints are inserted. */ | |
a25a5a45 | 5000 | if (stop_soon == NO_STOP_QUIETLY) |
74960c60 | 5001 | insert_breakpoints (); |
64ce06e4 | 5002 | resume (GDB_SIGNAL_0); |
b0f4b84b DJ |
5003 | prepare_to_wait (ecs); |
5004 | return; | |
5005 | } | |
5006 | ||
5c09a2c5 PA |
5007 | /* But stop if we're attaching or setting up a remote |
5008 | connection. */ | |
5009 | if (stop_soon == STOP_QUIETLY_NO_SIGSTOP | |
5010 | || stop_soon == STOP_QUIETLY_REMOTE) | |
5011 | { | |
5012 | if (debug_infrun) | |
5013 | fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n"); | |
22bcd14b | 5014 | stop_waiting (ecs); |
5c09a2c5 PA |
5015 | return; |
5016 | } | |
5017 | ||
5018 | internal_error (__FILE__, __LINE__, | |
5019 | _("unhandled stop_soon: %d"), (int) stop_soon); | |
c5aa993b | 5020 | |
488f131b | 5021 | case TARGET_WAITKIND_SPURIOUS: |
527159b7 | 5022 | if (debug_infrun) |
8a9de0e4 | 5023 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n"); |
c65d6b55 PA |
5024 | if (handle_stop_requested (ecs)) |
5025 | return; | |
64776a0b | 5026 | if (!ptid_equal (ecs->ptid, inferior_ptid)) |
8b3ee56d | 5027 | context_switch (ecs->ptid); |
64ce06e4 | 5028 | resume (GDB_SIGNAL_0); |
488f131b JB |
5029 | prepare_to_wait (ecs); |
5030 | return; | |
c5aa993b | 5031 | |
65706a29 PA |
5032 | case TARGET_WAITKIND_THREAD_CREATED: |
5033 | if (debug_infrun) | |
5034 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n"); | |
c65d6b55 PA |
5035 | if (handle_stop_requested (ecs)) |
5036 | return; | |
65706a29 PA |
5037 | if (!ptid_equal (ecs->ptid, inferior_ptid)) |
5038 | context_switch (ecs->ptid); | |
5039 | if (!switch_back_to_stepped_thread (ecs)) | |
5040 | keep_going (ecs); | |
5041 | return; | |
5042 | ||
488f131b | 5043 | case TARGET_WAITKIND_EXITED: |
940c3c06 | 5044 | case TARGET_WAITKIND_SIGNALLED: |
527159b7 | 5045 | if (debug_infrun) |
940c3c06 PA |
5046 | { |
5047 | if (ecs->ws.kind == TARGET_WAITKIND_EXITED) | |
5048 | fprintf_unfiltered (gdb_stdlog, | |
5049 | "infrun: TARGET_WAITKIND_EXITED\n"); | |
5050 | else | |
5051 | fprintf_unfiltered (gdb_stdlog, | |
5052 | "infrun: TARGET_WAITKIND_SIGNALLED\n"); | |
5053 | } | |
5054 | ||
fb66883a | 5055 | inferior_ptid = ecs->ptid; |
c9657e70 | 5056 | set_current_inferior (find_inferior_ptid (ecs->ptid)); |
6c95b8df PA |
5057 | set_current_program_space (current_inferior ()->pspace); |
5058 | handle_vfork_child_exec_or_exit (0); | |
223ffa71 | 5059 | target_terminal::ours (); /* Must do this before mourn anyway. */ |
488f131b | 5060 | |
0c557179 SDJ |
5061 | /* Clearing any previous state of convenience variables. */ |
5062 | clear_exit_convenience_vars (); | |
5063 | ||
940c3c06 PA |
5064 | if (ecs->ws.kind == TARGET_WAITKIND_EXITED) |
5065 | { | |
5066 | /* Record the exit code in the convenience variable $_exitcode, so | |
5067 | that the user can inspect this again later. */ | |
5068 | set_internalvar_integer (lookup_internalvar ("_exitcode"), | |
5069 | (LONGEST) ecs->ws.value.integer); | |
5070 | ||
5071 | /* Also record this in the inferior itself. */ | |
5072 | current_inferior ()->has_exit_code = 1; | |
5073 | current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer; | |
8cf64490 | 5074 | |
98eb56a4 PA |
5075 | /* Support the --return-child-result option. */ |
5076 | return_child_result_value = ecs->ws.value.integer; | |
5077 | ||
fd664c91 | 5078 | observer_notify_exited (ecs->ws.value.integer); |
940c3c06 PA |
5079 | } |
5080 | else | |
0c557179 SDJ |
5081 | { |
5082 | struct regcache *regcache = get_thread_regcache (ecs->ptid); | |
5083 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
5084 | ||
5085 | if (gdbarch_gdb_signal_to_target_p (gdbarch)) | |
5086 | { | |
5087 | /* Set the value of the internal variable $_exitsignal, | |
5088 | which holds the signal uncaught by the inferior. */ | |
5089 | set_internalvar_integer (lookup_internalvar ("_exitsignal"), | |
5090 | gdbarch_gdb_signal_to_target (gdbarch, | |
5091 | ecs->ws.value.sig)); | |
5092 | } | |
5093 | else | |
5094 | { | |
5095 | /* We don't have access to the target's method used for | |
5096 | converting between signal numbers (GDB's internal | |
5097 | representation <-> target's representation). | |
5098 | Therefore, we cannot do a good job at displaying this | |
5099 | information to the user. It's better to just warn | |
5100 | her about it (if infrun debugging is enabled), and | |
5101 | give up. */ | |
5102 | if (debug_infrun) | |
5103 | fprintf_filtered (gdb_stdlog, _("\ | |
5104 | Cannot fill $_exitsignal with the correct signal number.\n")); | |
5105 | } | |
5106 | ||
fd664c91 | 5107 | observer_notify_signal_exited (ecs->ws.value.sig); |
0c557179 | 5108 | } |
8cf64490 | 5109 | |
488f131b | 5110 | gdb_flush (gdb_stdout); |
bc1e6c81 | 5111 | target_mourn_inferior (inferior_ptid); |
488f131b | 5112 | stop_print_frame = 0; |
22bcd14b | 5113 | stop_waiting (ecs); |
488f131b | 5114 | return; |
c5aa993b | 5115 | |
488f131b | 5116 | /* The following are the only cases in which we keep going; |
1777feb0 | 5117 | the above cases end in a continue or goto. */ |
488f131b | 5118 | case TARGET_WAITKIND_FORKED: |
deb3b17b | 5119 | case TARGET_WAITKIND_VFORKED: |
527159b7 | 5120 | if (debug_infrun) |
fed708ed PA |
5121 | { |
5122 | if (ecs->ws.kind == TARGET_WAITKIND_FORKED) | |
5123 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n"); | |
5124 | else | |
5125 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n"); | |
5126 | } | |
c906108c | 5127 | |
e2d96639 YQ |
5128 | /* Check whether the inferior is displaced stepping. */ |
5129 | { | |
5130 | struct regcache *regcache = get_thread_regcache (ecs->ptid); | |
5131 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
e2d96639 YQ |
5132 | |
5133 | /* If checking displaced stepping is supported, and thread | |
5134 | ecs->ptid is displaced stepping. */ | |
c0987663 | 5135 | if (displaced_step_in_progress_thread (ecs->ptid)) |
e2d96639 YQ |
5136 | { |
5137 | struct inferior *parent_inf | |
c9657e70 | 5138 | = find_inferior_ptid (ecs->ptid); |
e2d96639 YQ |
5139 | struct regcache *child_regcache; |
5140 | CORE_ADDR parent_pc; | |
5141 | ||
5142 | /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED, | |
5143 | indicating that the displaced stepping of syscall instruction | |
5144 | has been done. Perform cleanup for parent process here. Note | |
5145 | that this operation also cleans up the child process for vfork, | |
5146 | because their pages are shared. */ | |
a493e3e2 | 5147 | displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP); |
c2829269 PA |
5148 | /* Start a new step-over in another thread if there's one |
5149 | that needs it. */ | |
5150 | start_step_over (); | |
e2d96639 YQ |
5151 | |
5152 | if (ecs->ws.kind == TARGET_WAITKIND_FORKED) | |
5153 | { | |
c0987663 YQ |
5154 | struct displaced_step_inferior_state *displaced |
5155 | = get_displaced_stepping_state (ptid_get_pid (ecs->ptid)); | |
5156 | ||
e2d96639 YQ |
5157 | /* Restore scratch pad for child process. */ |
5158 | displaced_step_restore (displaced, ecs->ws.value.related_pid); | |
5159 | } | |
5160 | ||
5161 | /* Since the vfork/fork syscall instruction was executed in the scratchpad, | |
5162 | the child's PC is also within the scratchpad. Set the child's PC | |
5163 | to the parent's PC value, which has already been fixed up. | |
5164 | FIXME: we use the parent's aspace here, although we're touching | |
5165 | the child, because the child hasn't been added to the inferior | |
5166 | list yet at this point. */ | |
5167 | ||
5168 | child_regcache | |
5169 | = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid, | |
5170 | gdbarch, | |
5171 | parent_inf->aspace); | |
5172 | /* Read PC value of parent process. */ | |
5173 | parent_pc = regcache_read_pc (regcache); | |
5174 | ||
5175 | if (debug_displaced) | |
5176 | fprintf_unfiltered (gdb_stdlog, | |
5177 | "displaced: write child pc from %s to %s\n", | |
5178 | paddress (gdbarch, | |
5179 | regcache_read_pc (child_regcache)), | |
5180 | paddress (gdbarch, parent_pc)); | |
5181 | ||
5182 | regcache_write_pc (child_regcache, parent_pc); | |
5183 | } | |
5184 | } | |
5185 | ||
5a2901d9 | 5186 | if (!ptid_equal (ecs->ptid, inferior_ptid)) |
c3a01a22 | 5187 | context_switch (ecs->ptid); |
5a2901d9 | 5188 | |
b242c3c2 PA |
5189 | /* Immediately detach breakpoints from the child before there's |
5190 | any chance of letting the user delete breakpoints from the | |
5191 | breakpoint lists. If we don't do this early, it's easy to | |
5192 | leave left over traps in the child, vis: "break foo; catch | |
5193 | fork; c; <fork>; del; c; <child calls foo>". We only follow | |
5194 | the fork on the last `continue', and by that time the | |
5195 | breakpoint at "foo" is long gone from the breakpoint table. | |
5196 | If we vforked, then we don't need to unpatch here, since both | |
5197 | parent and child are sharing the same memory pages; we'll | |
5198 | need to unpatch at follow/detach time instead to be certain | |
5199 | that new breakpoints added between catchpoint hit time and | |
5200 | vfork follow are detached. */ | |
5201 | if (ecs->ws.kind != TARGET_WAITKIND_VFORKED) | |
5202 | { | |
b242c3c2 PA |
5203 | /* This won't actually modify the breakpoint list, but will |
5204 | physically remove the breakpoints from the child. */ | |
d80ee84f | 5205 | detach_breakpoints (ecs->ws.value.related_pid); |
b242c3c2 PA |
5206 | } |
5207 | ||
34b7e8a6 | 5208 | delete_just_stopped_threads_single_step_breakpoints (); |
d03285ec | 5209 | |
e58b0e63 PA |
5210 | /* In case the event is caught by a catchpoint, remember that |
5211 | the event is to be followed at the next resume of the thread, | |
5212 | and not immediately. */ | |
5213 | ecs->event_thread->pending_follow = ecs->ws; | |
5214 | ||
fb14de7b | 5215 | stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid)); |
675bf4cb | 5216 | |
16c381f0 | 5217 | ecs->event_thread->control.stop_bpstat |
6c95b8df | 5218 | = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()), |
09ac7c10 | 5219 | stop_pc, ecs->ptid, &ecs->ws); |
675bf4cb | 5220 | |
c65d6b55 PA |
5221 | if (handle_stop_requested (ecs)) |
5222 | return; | |
5223 | ||
ce12b012 PA |
5224 | /* If no catchpoint triggered for this, then keep going. Note |
5225 | that we're interested in knowing the bpstat actually causes a | |
5226 | stop, not just if it may explain the signal. Software | |
5227 | watchpoints, for example, always appear in the bpstat. */ | |
5228 | if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat)) | |
04e68871 | 5229 | { |
6c95b8df PA |
5230 | ptid_t parent; |
5231 | ptid_t child; | |
e58b0e63 | 5232 | int should_resume; |
3e43a32a MS |
5233 | int follow_child |
5234 | = (follow_fork_mode_string == follow_fork_mode_child); | |
e58b0e63 | 5235 | |
a493e3e2 | 5236 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; |
e58b0e63 PA |
5237 | |
5238 | should_resume = follow_fork (); | |
5239 | ||
6c95b8df PA |
5240 | parent = ecs->ptid; |
5241 | child = ecs->ws.value.related_pid; | |
5242 | ||
a2077e25 PA |
5243 | /* At this point, the parent is marked running, and the |
5244 | child is marked stopped. */ | |
5245 | ||
5246 | /* If not resuming the parent, mark it stopped. */ | |
5247 | if (follow_child && !detach_fork && !non_stop && !sched_multi) | |
5248 | set_running (parent, 0); | |
5249 | ||
5250 | /* If resuming the child, mark it running. */ | |
5251 | if (follow_child || (!detach_fork && (non_stop || sched_multi))) | |
5252 | set_running (child, 1); | |
5253 | ||
6c95b8df | 5254 | /* In non-stop mode, also resume the other branch. */ |
fbea99ea PA |
5255 | if (!detach_fork && (non_stop |
5256 | || (sched_multi && target_is_non_stop_p ()))) | |
6c95b8df PA |
5257 | { |
5258 | if (follow_child) | |
5259 | switch_to_thread (parent); | |
5260 | else | |
5261 | switch_to_thread (child); | |
5262 | ||
5263 | ecs->event_thread = inferior_thread (); | |
5264 | ecs->ptid = inferior_ptid; | |
5265 | keep_going (ecs); | |
5266 | } | |
5267 | ||
5268 | if (follow_child) | |
5269 | switch_to_thread (child); | |
5270 | else | |
5271 | switch_to_thread (parent); | |
5272 | ||
e58b0e63 PA |
5273 | ecs->event_thread = inferior_thread (); |
5274 | ecs->ptid = inferior_ptid; | |
5275 | ||
5276 | if (should_resume) | |
5277 | keep_going (ecs); | |
5278 | else | |
22bcd14b | 5279 | stop_waiting (ecs); |
04e68871 DJ |
5280 | return; |
5281 | } | |
94c57d6a PA |
5282 | process_event_stop_test (ecs); |
5283 | return; | |
488f131b | 5284 | |
6c95b8df PA |
5285 | case TARGET_WAITKIND_VFORK_DONE: |
5286 | /* Done with the shared memory region. Re-insert breakpoints in | |
5287 | the parent, and keep going. */ | |
5288 | ||
5289 | if (debug_infrun) | |
3e43a32a MS |
5290 | fprintf_unfiltered (gdb_stdlog, |
5291 | "infrun: TARGET_WAITKIND_VFORK_DONE\n"); | |
6c95b8df PA |
5292 | |
5293 | if (!ptid_equal (ecs->ptid, inferior_ptid)) | |
5294 | context_switch (ecs->ptid); | |
5295 | ||
5296 | current_inferior ()->waiting_for_vfork_done = 0; | |
56710373 | 5297 | current_inferior ()->pspace->breakpoints_not_allowed = 0; |
c65d6b55 PA |
5298 | |
5299 | if (handle_stop_requested (ecs)) | |
5300 | return; | |
5301 | ||
6c95b8df PA |
5302 | /* This also takes care of reinserting breakpoints in the |
5303 | previously locked inferior. */ | |
5304 | keep_going (ecs); | |
5305 | return; | |
5306 | ||
488f131b | 5307 | case TARGET_WAITKIND_EXECD: |
527159b7 | 5308 | if (debug_infrun) |
fc5261f2 | 5309 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n"); |
488f131b | 5310 | |
5a2901d9 | 5311 | if (!ptid_equal (ecs->ptid, inferior_ptid)) |
c3a01a22 | 5312 | context_switch (ecs->ptid); |
5a2901d9 | 5313 | |
6c95b8df PA |
5314 | /* Do whatever is necessary to the parent branch of the vfork. */ |
5315 | handle_vfork_child_exec_or_exit (1); | |
5316 | ||
795e548f PA |
5317 | /* This causes the eventpoints and symbol table to be reset. |
5318 | Must do this now, before trying to determine whether to | |
5319 | stop. */ | |
71b43ef8 | 5320 | follow_exec (inferior_ptid, ecs->ws.value.execd_pathname); |
795e548f | 5321 | |
1bb7c059 SM |
5322 | stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid)); |
5323 | ||
17d8546e DB |
5324 | /* In follow_exec we may have deleted the original thread and |
5325 | created a new one. Make sure that the event thread is the | |
5326 | execd thread for that case (this is a nop otherwise). */ | |
5327 | ecs->event_thread = inferior_thread (); | |
5328 | ||
16c381f0 | 5329 | ecs->event_thread->control.stop_bpstat |
6c95b8df | 5330 | = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()), |
09ac7c10 | 5331 | stop_pc, ecs->ptid, &ecs->ws); |
795e548f | 5332 | |
71b43ef8 PA |
5333 | /* Note that this may be referenced from inside |
5334 | bpstat_stop_status above, through inferior_has_execd. */ | |
5335 | xfree (ecs->ws.value.execd_pathname); | |
5336 | ecs->ws.value.execd_pathname = NULL; | |
5337 | ||
c65d6b55 PA |
5338 | if (handle_stop_requested (ecs)) |
5339 | return; | |
5340 | ||
04e68871 | 5341 | /* If no catchpoint triggered for this, then keep going. */ |
ce12b012 | 5342 | if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat)) |
04e68871 | 5343 | { |
a493e3e2 | 5344 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; |
04e68871 DJ |
5345 | keep_going (ecs); |
5346 | return; | |
5347 | } | |
94c57d6a PA |
5348 | process_event_stop_test (ecs); |
5349 | return; | |
488f131b | 5350 | |
b4dc5ffa MK |
5351 | /* Be careful not to try to gather much state about a thread |
5352 | that's in a syscall. It's frequently a losing proposition. */ | |
488f131b | 5353 | case TARGET_WAITKIND_SYSCALL_ENTRY: |
527159b7 | 5354 | if (debug_infrun) |
3e43a32a MS |
5355 | fprintf_unfiltered (gdb_stdlog, |
5356 | "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n"); | |
1777feb0 | 5357 | /* Getting the current syscall number. */ |
94c57d6a PA |
5358 | if (handle_syscall_event (ecs) == 0) |
5359 | process_event_stop_test (ecs); | |
5360 | return; | |
c906108c | 5361 | |
488f131b JB |
5362 | /* Before examining the threads further, step this thread to |
5363 | get it entirely out of the syscall. (We get notice of the | |
5364 | event when the thread is just on the verge of exiting a | |
5365 | syscall. Stepping one instruction seems to get it back | |
b4dc5ffa | 5366 | into user code.) */ |
488f131b | 5367 | case TARGET_WAITKIND_SYSCALL_RETURN: |
527159b7 | 5368 | if (debug_infrun) |
3e43a32a MS |
5369 | fprintf_unfiltered (gdb_stdlog, |
5370 | "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n"); | |
94c57d6a PA |
5371 | if (handle_syscall_event (ecs) == 0) |
5372 | process_event_stop_test (ecs); | |
5373 | return; | |
c906108c | 5374 | |
488f131b | 5375 | case TARGET_WAITKIND_STOPPED: |
527159b7 | 5376 | if (debug_infrun) |
8a9de0e4 | 5377 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n"); |
4f5d7f63 PA |
5378 | handle_signal_stop (ecs); |
5379 | return; | |
c906108c | 5380 | |
b2175913 | 5381 | case TARGET_WAITKIND_NO_HISTORY: |
4b4e080e PA |
5382 | if (debug_infrun) |
5383 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n"); | |
b2175913 | 5384 | /* Reverse execution: target ran out of history info. */ |
eab402df | 5385 | |
d1988021 MM |
5386 | /* Switch to the stopped thread. */ |
5387 | if (!ptid_equal (ecs->ptid, inferior_ptid)) | |
5388 | context_switch (ecs->ptid); | |
5389 | if (debug_infrun) | |
5390 | fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n"); | |
5391 | ||
34b7e8a6 | 5392 | delete_just_stopped_threads_single_step_breakpoints (); |
d1988021 | 5393 | stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid)); |
c65d6b55 PA |
5394 | |
5395 | if (handle_stop_requested (ecs)) | |
5396 | return; | |
5397 | ||
fd664c91 | 5398 | observer_notify_no_history (); |
22bcd14b | 5399 | stop_waiting (ecs); |
b2175913 | 5400 | return; |
488f131b | 5401 | } |
4f5d7f63 PA |
5402 | } |
5403 | ||
0b6e5e10 JB |
5404 | /* A wrapper around handle_inferior_event_1, which also makes sure |
5405 | that all temporary struct value objects that were created during | |
5406 | the handling of the event get deleted at the end. */ | |
5407 | ||
5408 | static void | |
5409 | handle_inferior_event (struct execution_control_state *ecs) | |
5410 | { | |
5411 | struct value *mark = value_mark (); | |
5412 | ||
5413 | handle_inferior_event_1 (ecs); | |
5414 | /* Purge all temporary values created during the event handling, | |
5415 | as it could be a long time before we return to the command level | |
5416 | where such values would otherwise be purged. */ | |
5417 | value_free_to_mark (mark); | |
5418 | } | |
5419 | ||
372316f1 PA |
5420 | /* Restart threads back to what they were trying to do back when we |
5421 | paused them for an in-line step-over. The EVENT_THREAD thread is | |
5422 | ignored. */ | |
4d9d9d04 PA |
5423 | |
5424 | static void | |
372316f1 PA |
5425 | restart_threads (struct thread_info *event_thread) |
5426 | { | |
5427 | struct thread_info *tp; | |
372316f1 PA |
5428 | |
5429 | /* In case the instruction just stepped spawned a new thread. */ | |
5430 | update_thread_list (); | |
5431 | ||
5432 | ALL_NON_EXITED_THREADS (tp) | |
5433 | { | |
5434 | if (tp == event_thread) | |
5435 | { | |
5436 | if (debug_infrun) | |
5437 | fprintf_unfiltered (gdb_stdlog, | |
5438 | "infrun: restart threads: " | |
5439 | "[%s] is event thread\n", | |
5440 | target_pid_to_str (tp->ptid)); | |
5441 | continue; | |
5442 | } | |
5443 | ||
5444 | if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall)) | |
5445 | { | |
5446 | if (debug_infrun) | |
5447 | fprintf_unfiltered (gdb_stdlog, | |
5448 | "infrun: restart threads: " | |
5449 | "[%s] not meant to be running\n", | |
5450 | target_pid_to_str (tp->ptid)); | |
5451 | continue; | |
5452 | } | |
5453 | ||
5454 | if (tp->resumed) | |
5455 | { | |
5456 | if (debug_infrun) | |
5457 | fprintf_unfiltered (gdb_stdlog, | |
5458 | "infrun: restart threads: [%s] resumed\n", | |
5459 | target_pid_to_str (tp->ptid)); | |
5460 | gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p); | |
5461 | continue; | |
5462 | } | |
5463 | ||
5464 | if (thread_is_in_step_over_chain (tp)) | |
5465 | { | |
5466 | if (debug_infrun) | |
5467 | fprintf_unfiltered (gdb_stdlog, | |
5468 | "infrun: restart threads: " | |
5469 | "[%s] needs step-over\n", | |
5470 | target_pid_to_str (tp->ptid)); | |
5471 | gdb_assert (!tp->resumed); | |
5472 | continue; | |
5473 | } | |
5474 | ||
5475 | ||
5476 | if (tp->suspend.waitstatus_pending_p) | |
5477 | { | |
5478 | if (debug_infrun) | |
5479 | fprintf_unfiltered (gdb_stdlog, | |
5480 | "infrun: restart threads: " | |
5481 | "[%s] has pending status\n", | |
5482 | target_pid_to_str (tp->ptid)); | |
5483 | tp->resumed = 1; | |
5484 | continue; | |
5485 | } | |
5486 | ||
c65d6b55 PA |
5487 | gdb_assert (!tp->stop_requested); |
5488 | ||
372316f1 PA |
5489 | /* If some thread needs to start a step-over at this point, it |
5490 | should still be in the step-over queue, and thus skipped | |
5491 | above. */ | |
5492 | if (thread_still_needs_step_over (tp)) | |
5493 | { | |
5494 | internal_error (__FILE__, __LINE__, | |
5495 | "thread [%s] needs a step-over, but not in " | |
5496 | "step-over queue\n", | |
5497 | target_pid_to_str (tp->ptid)); | |
5498 | } | |
5499 | ||
5500 | if (currently_stepping (tp)) | |
5501 | { | |
5502 | if (debug_infrun) | |
5503 | fprintf_unfiltered (gdb_stdlog, | |
5504 | "infrun: restart threads: [%s] was stepping\n", | |
5505 | target_pid_to_str (tp->ptid)); | |
5506 | keep_going_stepped_thread (tp); | |
5507 | } | |
5508 | else | |
5509 | { | |
5510 | struct execution_control_state ecss; | |
5511 | struct execution_control_state *ecs = &ecss; | |
5512 | ||
5513 | if (debug_infrun) | |
5514 | fprintf_unfiltered (gdb_stdlog, | |
5515 | "infrun: restart threads: [%s] continuing\n", | |
5516 | target_pid_to_str (tp->ptid)); | |
5517 | reset_ecs (ecs, tp); | |
5518 | switch_to_thread (tp->ptid); | |
5519 | keep_going_pass_signal (ecs); | |
5520 | } | |
5521 | } | |
5522 | } | |
5523 | ||
5524 | /* Callback for iterate_over_threads. Find a resumed thread that has | |
5525 | a pending waitstatus. */ | |
5526 | ||
5527 | static int | |
5528 | resumed_thread_with_pending_status (struct thread_info *tp, | |
5529 | void *arg) | |
5530 | { | |
5531 | return (tp->resumed | |
5532 | && tp->suspend.waitstatus_pending_p); | |
5533 | } | |
5534 | ||
5535 | /* Called when we get an event that may finish an in-line or | |
5536 | out-of-line (displaced stepping) step-over started previously. | |
5537 | Return true if the event is processed and we should go back to the | |
5538 | event loop; false if the caller should continue processing the | |
5539 | event. */ | |
5540 | ||
5541 | static int | |
4d9d9d04 PA |
5542 | finish_step_over (struct execution_control_state *ecs) |
5543 | { | |
372316f1 PA |
5544 | int had_step_over_info; |
5545 | ||
4d9d9d04 PA |
5546 | displaced_step_fixup (ecs->ptid, |
5547 | ecs->event_thread->suspend.stop_signal); | |
5548 | ||
372316f1 PA |
5549 | had_step_over_info = step_over_info_valid_p (); |
5550 | ||
5551 | if (had_step_over_info) | |
4d9d9d04 PA |
5552 | { |
5553 | /* If we're stepping over a breakpoint with all threads locked, | |
5554 | then only the thread that was stepped should be reporting | |
5555 | back an event. */ | |
5556 | gdb_assert (ecs->event_thread->control.trap_expected); | |
5557 | ||
c65d6b55 | 5558 | clear_step_over_info (); |
4d9d9d04 PA |
5559 | } |
5560 | ||
fbea99ea | 5561 | if (!target_is_non_stop_p ()) |
372316f1 | 5562 | return 0; |
4d9d9d04 PA |
5563 | |
5564 | /* Start a new step-over in another thread if there's one that | |
5565 | needs it. */ | |
5566 | start_step_over (); | |
372316f1 PA |
5567 | |
5568 | /* If we were stepping over a breakpoint before, and haven't started | |
5569 | a new in-line step-over sequence, then restart all other threads | |
5570 | (except the event thread). We can't do this in all-stop, as then | |
5571 | e.g., we wouldn't be able to issue any other remote packet until | |
5572 | these other threads stop. */ | |
5573 | if (had_step_over_info && !step_over_info_valid_p ()) | |
5574 | { | |
5575 | struct thread_info *pending; | |
5576 | ||
5577 | /* If we only have threads with pending statuses, the restart | |
5578 | below won't restart any thread and so nothing re-inserts the | |
5579 | breakpoint we just stepped over. But we need it inserted | |
5580 | when we later process the pending events, otherwise if | |
5581 | another thread has a pending event for this breakpoint too, | |
5582 | we'd discard its event (because the breakpoint that | |
5583 | originally caused the event was no longer inserted). */ | |
5584 | context_switch (ecs->ptid); | |
5585 | insert_breakpoints (); | |
5586 | ||
5587 | restart_threads (ecs->event_thread); | |
5588 | ||
5589 | /* If we have events pending, go through handle_inferior_event | |
5590 | again, picking up a pending event at random. This avoids | |
5591 | thread starvation. */ | |
5592 | ||
5593 | /* But not if we just stepped over a watchpoint in order to let | |
5594 | the instruction execute so we can evaluate its expression. | |
5595 | The set of watchpoints that triggered is recorded in the | |
5596 | breakpoint objects themselves (see bp->watchpoint_triggered). | |
5597 | If we processed another event first, that other event could | |
5598 | clobber this info. */ | |
5599 | if (ecs->event_thread->stepping_over_watchpoint) | |
5600 | return 0; | |
5601 | ||
5602 | pending = iterate_over_threads (resumed_thread_with_pending_status, | |
5603 | NULL); | |
5604 | if (pending != NULL) | |
5605 | { | |
5606 | struct thread_info *tp = ecs->event_thread; | |
5607 | struct regcache *regcache; | |
5608 | ||
5609 | if (debug_infrun) | |
5610 | { | |
5611 | fprintf_unfiltered (gdb_stdlog, | |
5612 | "infrun: found resumed threads with " | |
5613 | "pending events, saving status\n"); | |
5614 | } | |
5615 | ||
5616 | gdb_assert (pending != tp); | |
5617 | ||
5618 | /* Record the event thread's event for later. */ | |
5619 | save_waitstatus (tp, &ecs->ws); | |
5620 | /* This was cleared early, by handle_inferior_event. Set it | |
5621 | so this pending event is considered by | |
5622 | do_target_wait. */ | |
5623 | tp->resumed = 1; | |
5624 | ||
5625 | gdb_assert (!tp->executing); | |
5626 | ||
5627 | regcache = get_thread_regcache (tp->ptid); | |
5628 | tp->suspend.stop_pc = regcache_read_pc (regcache); | |
5629 | ||
5630 | if (debug_infrun) | |
5631 | { | |
5632 | fprintf_unfiltered (gdb_stdlog, | |
5633 | "infrun: saved stop_pc=%s for %s " | |
5634 | "(currently_stepping=%d)\n", | |
5635 | paddress (target_gdbarch (), | |
5636 | tp->suspend.stop_pc), | |
5637 | target_pid_to_str (tp->ptid), | |
5638 | currently_stepping (tp)); | |
5639 | } | |
5640 | ||
5641 | /* This in-line step-over finished; clear this so we won't | |
5642 | start a new one. This is what handle_signal_stop would | |
5643 | do, if we returned false. */ | |
5644 | tp->stepping_over_breakpoint = 0; | |
5645 | ||
5646 | /* Wake up the event loop again. */ | |
5647 | mark_async_event_handler (infrun_async_inferior_event_token); | |
5648 | ||
5649 | prepare_to_wait (ecs); | |
5650 | return 1; | |
5651 | } | |
5652 | } | |
5653 | ||
5654 | return 0; | |
4d9d9d04 PA |
5655 | } |
5656 | ||
4f5d7f63 PA |
5657 | /* Come here when the program has stopped with a signal. */ |
5658 | ||
5659 | static void | |
5660 | handle_signal_stop (struct execution_control_state *ecs) | |
5661 | { | |
5662 | struct frame_info *frame; | |
5663 | struct gdbarch *gdbarch; | |
5664 | int stopped_by_watchpoint; | |
5665 | enum stop_kind stop_soon; | |
5666 | int random_signal; | |
c906108c | 5667 | |
f0407826 DE |
5668 | gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED); |
5669 | ||
c65d6b55 PA |
5670 | ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig; |
5671 | ||
f0407826 DE |
5672 | /* Do we need to clean up the state of a thread that has |
5673 | completed a displaced single-step? (Doing so usually affects | |
5674 | the PC, so do it here, before we set stop_pc.) */ | |
372316f1 PA |
5675 | if (finish_step_over (ecs)) |
5676 | return; | |
f0407826 DE |
5677 | |
5678 | /* If we either finished a single-step or hit a breakpoint, but | |
5679 | the user wanted this thread to be stopped, pretend we got a | |
5680 | SIG0 (generic unsignaled stop). */ | |
5681 | if (ecs->event_thread->stop_requested | |
5682 | && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP) | |
5683 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; | |
237fc4c9 | 5684 | |
515630c5 | 5685 | stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid)); |
488f131b | 5686 | |
527159b7 | 5687 | if (debug_infrun) |
237fc4c9 | 5688 | { |
5af949e3 UW |
5689 | struct regcache *regcache = get_thread_regcache (ecs->ptid); |
5690 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
2989a365 | 5691 | scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); |
7f82dfc7 JK |
5692 | |
5693 | inferior_ptid = ecs->ptid; | |
5af949e3 UW |
5694 | |
5695 | fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n", | |
5696 | paddress (gdbarch, stop_pc)); | |
d92524f1 | 5697 | if (target_stopped_by_watchpoint ()) |
237fc4c9 PA |
5698 | { |
5699 | CORE_ADDR addr; | |
abbb1732 | 5700 | |
237fc4c9 PA |
5701 | fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n"); |
5702 | ||
5703 | if (target_stopped_data_address (¤t_target, &addr)) | |
5704 | fprintf_unfiltered (gdb_stdlog, | |
5af949e3 UW |
5705 | "infrun: stopped data address = %s\n", |
5706 | paddress (gdbarch, addr)); | |
237fc4c9 PA |
5707 | else |
5708 | fprintf_unfiltered (gdb_stdlog, | |
5709 | "infrun: (no data address available)\n"); | |
5710 | } | |
5711 | } | |
527159b7 | 5712 | |
36fa8042 PA |
5713 | /* This is originated from start_remote(), start_inferior() and |
5714 | shared libraries hook functions. */ | |
5715 | stop_soon = get_inferior_stop_soon (ecs->ptid); | |
5716 | if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE) | |
5717 | { | |
5718 | if (!ptid_equal (ecs->ptid, inferior_ptid)) | |
5719 | context_switch (ecs->ptid); | |
5720 | if (debug_infrun) | |
5721 | fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n"); | |
5722 | stop_print_frame = 1; | |
22bcd14b | 5723 | stop_waiting (ecs); |
36fa8042 PA |
5724 | return; |
5725 | } | |
5726 | ||
36fa8042 PA |
5727 | /* This originates from attach_command(). We need to overwrite |
5728 | the stop_signal here, because some kernels don't ignore a | |
5729 | SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call. | |
5730 | See more comments in inferior.h. On the other hand, if we | |
5731 | get a non-SIGSTOP, report it to the user - assume the backend | |
5732 | will handle the SIGSTOP if it should show up later. | |
5733 | ||
5734 | Also consider that the attach is complete when we see a | |
5735 | SIGTRAP. Some systems (e.g. Windows), and stubs supporting | |
5736 | target extended-remote report it instead of a SIGSTOP | |
5737 | (e.g. gdbserver). We already rely on SIGTRAP being our | |
5738 | signal, so this is no exception. | |
5739 | ||
5740 | Also consider that the attach is complete when we see a | |
5741 | GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell | |
5742 | the target to stop all threads of the inferior, in case the | |
5743 | low level attach operation doesn't stop them implicitly. If | |
5744 | they weren't stopped implicitly, then the stub will report a | |
5745 | GDB_SIGNAL_0, meaning: stopped for no particular reason | |
5746 | other than GDB's request. */ | |
5747 | if (stop_soon == STOP_QUIETLY_NO_SIGSTOP | |
5748 | && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP | |
5749 | || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP | |
5750 | || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0)) | |
5751 | { | |
5752 | stop_print_frame = 1; | |
22bcd14b | 5753 | stop_waiting (ecs); |
36fa8042 PA |
5754 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; |
5755 | return; | |
5756 | } | |
5757 | ||
488f131b | 5758 | /* See if something interesting happened to the non-current thread. If |
b40c7d58 DJ |
5759 | so, then switch to that thread. */ |
5760 | if (!ptid_equal (ecs->ptid, inferior_ptid)) | |
488f131b | 5761 | { |
527159b7 | 5762 | if (debug_infrun) |
8a9de0e4 | 5763 | fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n"); |
527159b7 | 5764 | |
0d1e5fa7 | 5765 | context_switch (ecs->ptid); |
c5aa993b | 5766 | |
9a4105ab | 5767 | if (deprecated_context_hook) |
5d5658a1 | 5768 | deprecated_context_hook (ptid_to_global_thread_id (ecs->ptid)); |
488f131b | 5769 | } |
c906108c | 5770 | |
568d6575 UW |
5771 | /* At this point, get hold of the now-current thread's frame. */ |
5772 | frame = get_current_frame (); | |
5773 | gdbarch = get_frame_arch (frame); | |
5774 | ||
2adfaa28 | 5775 | /* Pull the single step breakpoints out of the target. */ |
af48d08f | 5776 | if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP) |
488f131b | 5777 | { |
af48d08f PA |
5778 | struct regcache *regcache; |
5779 | struct address_space *aspace; | |
5780 | CORE_ADDR pc; | |
2adfaa28 | 5781 | |
af48d08f PA |
5782 | regcache = get_thread_regcache (ecs->ptid); |
5783 | aspace = get_regcache_aspace (regcache); | |
5784 | pc = regcache_read_pc (regcache); | |
34b7e8a6 | 5785 | |
af48d08f PA |
5786 | /* However, before doing so, if this single-step breakpoint was |
5787 | actually for another thread, set this thread up for moving | |
5788 | past it. */ | |
5789 | if (!thread_has_single_step_breakpoint_here (ecs->event_thread, | |
5790 | aspace, pc)) | |
5791 | { | |
5792 | if (single_step_breakpoint_inserted_here_p (aspace, pc)) | |
2adfaa28 PA |
5793 | { |
5794 | if (debug_infrun) | |
5795 | { | |
5796 | fprintf_unfiltered (gdb_stdlog, | |
af48d08f | 5797 | "infrun: [%s] hit another thread's " |
34b7e8a6 PA |
5798 | "single-step breakpoint\n", |
5799 | target_pid_to_str (ecs->ptid)); | |
2adfaa28 | 5800 | } |
af48d08f PA |
5801 | ecs->hit_singlestep_breakpoint = 1; |
5802 | } | |
5803 | } | |
5804 | else | |
5805 | { | |
5806 | if (debug_infrun) | |
5807 | { | |
5808 | fprintf_unfiltered (gdb_stdlog, | |
5809 | "infrun: [%s] hit its " | |
5810 | "single-step breakpoint\n", | |
5811 | target_pid_to_str (ecs->ptid)); | |
2adfaa28 PA |
5812 | } |
5813 | } | |
488f131b | 5814 | } |
af48d08f | 5815 | delete_just_stopped_threads_single_step_breakpoints (); |
c906108c | 5816 | |
963f9c80 PA |
5817 | if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP |
5818 | && ecs->event_thread->control.trap_expected | |
5819 | && ecs->event_thread->stepping_over_watchpoint) | |
d983da9c DJ |
5820 | stopped_by_watchpoint = 0; |
5821 | else | |
5822 | stopped_by_watchpoint = watchpoints_triggered (&ecs->ws); | |
5823 | ||
5824 | /* If necessary, step over this watchpoint. We'll be back to display | |
5825 | it in a moment. */ | |
5826 | if (stopped_by_watchpoint | |
d92524f1 | 5827 | && (target_have_steppable_watchpoint |
568d6575 | 5828 | || gdbarch_have_nonsteppable_watchpoint (gdbarch))) |
488f131b | 5829 | { |
488f131b JB |
5830 | /* At this point, we are stopped at an instruction which has |
5831 | attempted to write to a piece of memory under control of | |
5832 | a watchpoint. The instruction hasn't actually executed | |
5833 | yet. If we were to evaluate the watchpoint expression | |
5834 | now, we would get the old value, and therefore no change | |
5835 | would seem to have occurred. | |
5836 | ||
5837 | In order to make watchpoints work `right', we really need | |
5838 | to complete the memory write, and then evaluate the | |
d983da9c DJ |
5839 | watchpoint expression. We do this by single-stepping the |
5840 | target. | |
5841 | ||
7f89fd65 | 5842 | It may not be necessary to disable the watchpoint to step over |
d983da9c DJ |
5843 | it. For example, the PA can (with some kernel cooperation) |
5844 | single step over a watchpoint without disabling the watchpoint. | |
5845 | ||
5846 | It is far more common to need to disable a watchpoint to step | |
5847 | the inferior over it. If we have non-steppable watchpoints, | |
5848 | we must disable the current watchpoint; it's simplest to | |
963f9c80 PA |
5849 | disable all watchpoints. |
5850 | ||
5851 | Any breakpoint at PC must also be stepped over -- if there's | |
5852 | one, it will have already triggered before the watchpoint | |
5853 | triggered, and we either already reported it to the user, or | |
5854 | it didn't cause a stop and we called keep_going. In either | |
5855 | case, if there was a breakpoint at PC, we must be trying to | |
5856 | step past it. */ | |
5857 | ecs->event_thread->stepping_over_watchpoint = 1; | |
5858 | keep_going (ecs); | |
488f131b JB |
5859 | return; |
5860 | } | |
5861 | ||
4e1c45ea | 5862 | ecs->event_thread->stepping_over_breakpoint = 0; |
963f9c80 | 5863 | ecs->event_thread->stepping_over_watchpoint = 0; |
16c381f0 JK |
5864 | bpstat_clear (&ecs->event_thread->control.stop_bpstat); |
5865 | ecs->event_thread->control.stop_step = 0; | |
488f131b | 5866 | stop_print_frame = 1; |
488f131b | 5867 | stopped_by_random_signal = 0; |
488f131b | 5868 | |
edb3359d DJ |
5869 | /* Hide inlined functions starting here, unless we just performed stepi or |
5870 | nexti. After stepi and nexti, always show the innermost frame (not any | |
5871 | inline function call sites). */ | |
16c381f0 | 5872 | if (ecs->event_thread->control.step_range_end != 1) |
0574c78f GB |
5873 | { |
5874 | struct address_space *aspace = | |
5875 | get_regcache_aspace (get_thread_regcache (ecs->ptid)); | |
5876 | ||
5877 | /* skip_inline_frames is expensive, so we avoid it if we can | |
5878 | determine that the address is one where functions cannot have | |
5879 | been inlined. This improves performance with inferiors that | |
5880 | load a lot of shared libraries, because the solib event | |
5881 | breakpoint is defined as the address of a function (i.e. not | |
5882 | inline). Note that we have to check the previous PC as well | |
5883 | as the current one to catch cases when we have just | |
5884 | single-stepped off a breakpoint prior to reinstating it. | |
5885 | Note that we're assuming that the code we single-step to is | |
5886 | not inline, but that's not definitive: there's nothing | |
5887 | preventing the event breakpoint function from containing | |
5888 | inlined code, and the single-step ending up there. If the | |
5889 | user had set a breakpoint on that inlined code, the missing | |
5890 | skip_inline_frames call would break things. Fortunately | |
5891 | that's an extremely unlikely scenario. */ | |
09ac7c10 | 5892 | if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws) |
a210c238 MR |
5893 | && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP |
5894 | && ecs->event_thread->control.trap_expected | |
5895 | && pc_at_non_inline_function (aspace, | |
5896 | ecs->event_thread->prev_pc, | |
09ac7c10 | 5897 | &ecs->ws))) |
1c5a993e MR |
5898 | { |
5899 | skip_inline_frames (ecs->ptid); | |
5900 | ||
5901 | /* Re-fetch current thread's frame in case that invalidated | |
5902 | the frame cache. */ | |
5903 | frame = get_current_frame (); | |
5904 | gdbarch = get_frame_arch (frame); | |
5905 | } | |
0574c78f | 5906 | } |
edb3359d | 5907 | |
a493e3e2 | 5908 | if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP |
16c381f0 | 5909 | && ecs->event_thread->control.trap_expected |
568d6575 | 5910 | && gdbarch_single_step_through_delay_p (gdbarch) |
4e1c45ea | 5911 | && currently_stepping (ecs->event_thread)) |
3352ef37 | 5912 | { |
b50d7442 | 5913 | /* We're trying to step off a breakpoint. Turns out that we're |
3352ef37 | 5914 | also on an instruction that needs to be stepped multiple |
1777feb0 | 5915 | times before it's been fully executing. E.g., architectures |
3352ef37 AC |
5916 | with a delay slot. It needs to be stepped twice, once for |
5917 | the instruction and once for the delay slot. */ | |
5918 | int step_through_delay | |
568d6575 | 5919 | = gdbarch_single_step_through_delay (gdbarch, frame); |
abbb1732 | 5920 | |
527159b7 | 5921 | if (debug_infrun && step_through_delay) |
8a9de0e4 | 5922 | fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n"); |
16c381f0 JK |
5923 | if (ecs->event_thread->control.step_range_end == 0 |
5924 | && step_through_delay) | |
3352ef37 AC |
5925 | { |
5926 | /* The user issued a continue when stopped at a breakpoint. | |
5927 | Set up for another trap and get out of here. */ | |
4e1c45ea | 5928 | ecs->event_thread->stepping_over_breakpoint = 1; |
3352ef37 AC |
5929 | keep_going (ecs); |
5930 | return; | |
5931 | } | |
5932 | else if (step_through_delay) | |
5933 | { | |
5934 | /* The user issued a step when stopped at a breakpoint. | |
5935 | Maybe we should stop, maybe we should not - the delay | |
5936 | slot *might* correspond to a line of source. In any | |
ca67fcb8 VP |
5937 | case, don't decide that here, just set |
5938 | ecs->stepping_over_breakpoint, making sure we | |
5939 | single-step again before breakpoints are re-inserted. */ | |
4e1c45ea | 5940 | ecs->event_thread->stepping_over_breakpoint = 1; |
3352ef37 AC |
5941 | } |
5942 | } | |
5943 | ||
ab04a2af TT |
5944 | /* See if there is a breakpoint/watchpoint/catchpoint/etc. that |
5945 | handles this event. */ | |
5946 | ecs->event_thread->control.stop_bpstat | |
5947 | = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()), | |
5948 | stop_pc, ecs->ptid, &ecs->ws); | |
db82e815 | 5949 | |
ab04a2af TT |
5950 | /* Following in case break condition called a |
5951 | function. */ | |
5952 | stop_print_frame = 1; | |
73dd234f | 5953 | |
ab04a2af TT |
5954 | /* This is where we handle "moribund" watchpoints. Unlike |
5955 | software breakpoints traps, hardware watchpoint traps are | |
5956 | always distinguishable from random traps. If no high-level | |
5957 | watchpoint is associated with the reported stop data address | |
5958 | anymore, then the bpstat does not explain the signal --- | |
5959 | simply make sure to ignore it if `stopped_by_watchpoint' is | |
5960 | set. */ | |
5961 | ||
5962 | if (debug_infrun | |
5963 | && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP | |
47591c29 | 5964 | && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat, |
427cd150 | 5965 | GDB_SIGNAL_TRAP) |
ab04a2af TT |
5966 | && stopped_by_watchpoint) |
5967 | fprintf_unfiltered (gdb_stdlog, | |
5968 | "infrun: no user watchpoint explains " | |
5969 | "watchpoint SIGTRAP, ignoring\n"); | |
73dd234f | 5970 | |
bac7d97b | 5971 | /* NOTE: cagney/2003-03-29: These checks for a random signal |
ab04a2af TT |
5972 | at one stage in the past included checks for an inferior |
5973 | function call's call dummy's return breakpoint. The original | |
5974 | comment, that went with the test, read: | |
03cebad2 | 5975 | |
ab04a2af TT |
5976 | ``End of a stack dummy. Some systems (e.g. Sony news) give |
5977 | another signal besides SIGTRAP, so check here as well as | |
5978 | above.'' | |
73dd234f | 5979 | |
ab04a2af TT |
5980 | If someone ever tries to get call dummys on a |
5981 | non-executable stack to work (where the target would stop | |
5982 | with something like a SIGSEGV), then those tests might need | |
5983 | to be re-instated. Given, however, that the tests were only | |
5984 | enabled when momentary breakpoints were not being used, I | |
5985 | suspect that it won't be the case. | |
488f131b | 5986 | |
ab04a2af TT |
5987 | NOTE: kettenis/2004-02-05: Indeed such checks don't seem to |
5988 | be necessary for call dummies on a non-executable stack on | |
5989 | SPARC. */ | |
488f131b | 5990 | |
bac7d97b | 5991 | /* See if the breakpoints module can explain the signal. */ |
47591c29 PA |
5992 | random_signal |
5993 | = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat, | |
5994 | ecs->event_thread->suspend.stop_signal); | |
bac7d97b | 5995 | |
1cf4d951 PA |
5996 | /* Maybe this was a trap for a software breakpoint that has since |
5997 | been removed. */ | |
5998 | if (random_signal && target_stopped_by_sw_breakpoint ()) | |
5999 | { | |
6000 | if (program_breakpoint_here_p (gdbarch, stop_pc)) | |
6001 | { | |
6002 | struct regcache *regcache; | |
6003 | int decr_pc; | |
6004 | ||
6005 | /* Re-adjust PC to what the program would see if GDB was not | |
6006 | debugging it. */ | |
6007 | regcache = get_thread_regcache (ecs->event_thread->ptid); | |
527a273a | 6008 | decr_pc = gdbarch_decr_pc_after_break (gdbarch); |
1cf4d951 PA |
6009 | if (decr_pc != 0) |
6010 | { | |
6011 | struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL); | |
6012 | ||
6013 | if (record_full_is_used ()) | |
6014 | record_full_gdb_operation_disable_set (); | |
6015 | ||
6016 | regcache_write_pc (regcache, stop_pc + decr_pc); | |
6017 | ||
6018 | do_cleanups (old_cleanups); | |
6019 | } | |
6020 | } | |
6021 | else | |
6022 | { | |
6023 | /* A delayed software breakpoint event. Ignore the trap. */ | |
6024 | if (debug_infrun) | |
6025 | fprintf_unfiltered (gdb_stdlog, | |
6026 | "infrun: delayed software breakpoint " | |
6027 | "trap, ignoring\n"); | |
6028 | random_signal = 0; | |
6029 | } | |
6030 | } | |
6031 | ||
6032 | /* Maybe this was a trap for a hardware breakpoint/watchpoint that | |
6033 | has since been removed. */ | |
6034 | if (random_signal && target_stopped_by_hw_breakpoint ()) | |
6035 | { | |
6036 | /* A delayed hardware breakpoint event. Ignore the trap. */ | |
6037 | if (debug_infrun) | |
6038 | fprintf_unfiltered (gdb_stdlog, | |
6039 | "infrun: delayed hardware breakpoint/watchpoint " | |
6040 | "trap, ignoring\n"); | |
6041 | random_signal = 0; | |
6042 | } | |
6043 | ||
bac7d97b PA |
6044 | /* If not, perhaps stepping/nexting can. */ |
6045 | if (random_signal) | |
6046 | random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP | |
6047 | && currently_stepping (ecs->event_thread)); | |
ab04a2af | 6048 | |
2adfaa28 PA |
6049 | /* Perhaps the thread hit a single-step breakpoint of _another_ |
6050 | thread. Single-step breakpoints are transparent to the | |
6051 | breakpoints module. */ | |
6052 | if (random_signal) | |
6053 | random_signal = !ecs->hit_singlestep_breakpoint; | |
6054 | ||
bac7d97b PA |
6055 | /* No? Perhaps we got a moribund watchpoint. */ |
6056 | if (random_signal) | |
6057 | random_signal = !stopped_by_watchpoint; | |
ab04a2af | 6058 | |
c65d6b55 PA |
6059 | /* Always stop if the user explicitly requested this thread to |
6060 | remain stopped. */ | |
6061 | if (ecs->event_thread->stop_requested) | |
6062 | { | |
6063 | random_signal = 1; | |
6064 | if (debug_infrun) | |
6065 | fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n"); | |
6066 | } | |
6067 | ||
488f131b JB |
6068 | /* For the program's own signals, act according to |
6069 | the signal handling tables. */ | |
6070 | ||
ce12b012 | 6071 | if (random_signal) |
488f131b JB |
6072 | { |
6073 | /* Signal not for debugging purposes. */ | |
c9657e70 | 6074 | struct inferior *inf = find_inferior_ptid (ecs->ptid); |
c9737c08 | 6075 | enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal; |
488f131b | 6076 | |
527159b7 | 6077 | if (debug_infrun) |
c9737c08 PA |
6078 | fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n", |
6079 | gdb_signal_to_symbol_string (stop_signal)); | |
527159b7 | 6080 | |
488f131b JB |
6081 | stopped_by_random_signal = 1; |
6082 | ||
252fbfc8 PA |
6083 | /* Always stop on signals if we're either just gaining control |
6084 | of the program, or the user explicitly requested this thread | |
6085 | to remain stopped. */ | |
d6b48e9c | 6086 | if (stop_soon != NO_STOP_QUIETLY |
252fbfc8 | 6087 | || ecs->event_thread->stop_requested |
24291992 | 6088 | || (!inf->detaching |
16c381f0 | 6089 | && signal_stop_state (ecs->event_thread->suspend.stop_signal))) |
488f131b | 6090 | { |
22bcd14b | 6091 | stop_waiting (ecs); |
488f131b JB |
6092 | return; |
6093 | } | |
b57bacec PA |
6094 | |
6095 | /* Notify observers the signal has "handle print" set. Note we | |
6096 | returned early above if stopping; normal_stop handles the | |
6097 | printing in that case. */ | |
6098 | if (signal_print[ecs->event_thread->suspend.stop_signal]) | |
6099 | { | |
6100 | /* The signal table tells us to print about this signal. */ | |
223ffa71 | 6101 | target_terminal::ours_for_output (); |
b57bacec | 6102 | observer_notify_signal_received (ecs->event_thread->suspend.stop_signal); |
223ffa71 | 6103 | target_terminal::inferior (); |
b57bacec | 6104 | } |
488f131b JB |
6105 | |
6106 | /* Clear the signal if it should not be passed. */ | |
16c381f0 | 6107 | if (signal_program[ecs->event_thread->suspend.stop_signal] == 0) |
a493e3e2 | 6108 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; |
488f131b | 6109 | |
fb14de7b | 6110 | if (ecs->event_thread->prev_pc == stop_pc |
16c381f0 | 6111 | && ecs->event_thread->control.trap_expected |
8358c15c | 6112 | && ecs->event_thread->control.step_resume_breakpoint == NULL) |
68f53502 AC |
6113 | { |
6114 | /* We were just starting a new sequence, attempting to | |
6115 | single-step off of a breakpoint and expecting a SIGTRAP. | |
237fc4c9 | 6116 | Instead this signal arrives. This signal will take us out |
68f53502 AC |
6117 | of the stepping range so GDB needs to remember to, when |
6118 | the signal handler returns, resume stepping off that | |
6119 | breakpoint. */ | |
6120 | /* To simplify things, "continue" is forced to use the same | |
6121 | code paths as single-step - set a breakpoint at the | |
6122 | signal return address and then, once hit, step off that | |
6123 | breakpoint. */ | |
237fc4c9 PA |
6124 | if (debug_infrun) |
6125 | fprintf_unfiltered (gdb_stdlog, | |
6126 | "infrun: signal arrived while stepping over " | |
6127 | "breakpoint\n"); | |
d3169d93 | 6128 | |
2c03e5be | 6129 | insert_hp_step_resume_breakpoint_at_frame (frame); |
4e1c45ea | 6130 | ecs->event_thread->step_after_step_resume_breakpoint = 1; |
2455069d UW |
6131 | /* Reset trap_expected to ensure breakpoints are re-inserted. */ |
6132 | ecs->event_thread->control.trap_expected = 0; | |
d137e6dc PA |
6133 | |
6134 | /* If we were nexting/stepping some other thread, switch to | |
6135 | it, so that we don't continue it, losing control. */ | |
6136 | if (!switch_back_to_stepped_thread (ecs)) | |
6137 | keep_going (ecs); | |
9d799f85 | 6138 | return; |
68f53502 | 6139 | } |
9d799f85 | 6140 | |
e5f8a7cc PA |
6141 | if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0 |
6142 | && (pc_in_thread_step_range (stop_pc, ecs->event_thread) | |
6143 | || ecs->event_thread->control.step_range_end == 1) | |
edb3359d | 6144 | && frame_id_eq (get_stack_frame_id (frame), |
16c381f0 | 6145 | ecs->event_thread->control.step_stack_frame_id) |
8358c15c | 6146 | && ecs->event_thread->control.step_resume_breakpoint == NULL) |
d303a6c7 AC |
6147 | { |
6148 | /* The inferior is about to take a signal that will take it | |
6149 | out of the single step range. Set a breakpoint at the | |
6150 | current PC (which is presumably where the signal handler | |
6151 | will eventually return) and then allow the inferior to | |
6152 | run free. | |
6153 | ||
6154 | Note that this is only needed for a signal delivered | |
6155 | while in the single-step range. Nested signals aren't a | |
6156 | problem as they eventually all return. */ | |
237fc4c9 PA |
6157 | if (debug_infrun) |
6158 | fprintf_unfiltered (gdb_stdlog, | |
6159 | "infrun: signal may take us out of " | |
6160 | "single-step range\n"); | |
6161 | ||
372316f1 | 6162 | clear_step_over_info (); |
2c03e5be | 6163 | insert_hp_step_resume_breakpoint_at_frame (frame); |
e5f8a7cc | 6164 | ecs->event_thread->step_after_step_resume_breakpoint = 1; |
2455069d UW |
6165 | /* Reset trap_expected to ensure breakpoints are re-inserted. */ |
6166 | ecs->event_thread->control.trap_expected = 0; | |
9d799f85 AC |
6167 | keep_going (ecs); |
6168 | return; | |
d303a6c7 | 6169 | } |
9d799f85 AC |
6170 | |
6171 | /* Note: step_resume_breakpoint may be non-NULL. This occures | |
6172 | when either there's a nested signal, or when there's a | |
6173 | pending signal enabled just as the signal handler returns | |
6174 | (leaving the inferior at the step-resume-breakpoint without | |
6175 | actually executing it). Either way continue until the | |
6176 | breakpoint is really hit. */ | |
c447ac0b PA |
6177 | |
6178 | if (!switch_back_to_stepped_thread (ecs)) | |
6179 | { | |
6180 | if (debug_infrun) | |
6181 | fprintf_unfiltered (gdb_stdlog, | |
6182 | "infrun: random signal, keep going\n"); | |
6183 | ||
6184 | keep_going (ecs); | |
6185 | } | |
6186 | return; | |
488f131b | 6187 | } |
94c57d6a PA |
6188 | |
6189 | process_event_stop_test (ecs); | |
6190 | } | |
6191 | ||
6192 | /* Come here when we've got some debug event / signal we can explain | |
6193 | (IOW, not a random signal), and test whether it should cause a | |
6194 | stop, or whether we should resume the inferior (transparently). | |
6195 | E.g., could be a breakpoint whose condition evaluates false; we | |
6196 | could be still stepping within the line; etc. */ | |
6197 | ||
6198 | static void | |
6199 | process_event_stop_test (struct execution_control_state *ecs) | |
6200 | { | |
6201 | struct symtab_and_line stop_pc_sal; | |
6202 | struct frame_info *frame; | |
6203 | struct gdbarch *gdbarch; | |
cdaa5b73 PA |
6204 | CORE_ADDR jmp_buf_pc; |
6205 | struct bpstat_what what; | |
94c57d6a | 6206 | |
cdaa5b73 | 6207 | /* Handle cases caused by hitting a breakpoint. */ |
611c83ae | 6208 | |
cdaa5b73 PA |
6209 | frame = get_current_frame (); |
6210 | gdbarch = get_frame_arch (frame); | |
fcf3daef | 6211 | |
cdaa5b73 | 6212 | what = bpstat_what (ecs->event_thread->control.stop_bpstat); |
611c83ae | 6213 | |
cdaa5b73 PA |
6214 | if (what.call_dummy) |
6215 | { | |
6216 | stop_stack_dummy = what.call_dummy; | |
6217 | } | |
186c406b | 6218 | |
243a9253 PA |
6219 | /* A few breakpoint types have callbacks associated (e.g., |
6220 | bp_jit_event). Run them now. */ | |
6221 | bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat); | |
6222 | ||
cdaa5b73 PA |
6223 | /* If we hit an internal event that triggers symbol changes, the |
6224 | current frame will be invalidated within bpstat_what (e.g., if we | |
6225 | hit an internal solib event). Re-fetch it. */ | |
6226 | frame = get_current_frame (); | |
6227 | gdbarch = get_frame_arch (frame); | |
e2e4d78b | 6228 | |
cdaa5b73 PA |
6229 | switch (what.main_action) |
6230 | { | |
6231 | case BPSTAT_WHAT_SET_LONGJMP_RESUME: | |
6232 | /* If we hit the breakpoint at longjmp while stepping, we | |
6233 | install a momentary breakpoint at the target of the | |
6234 | jmp_buf. */ | |
186c406b | 6235 | |
cdaa5b73 PA |
6236 | if (debug_infrun) |
6237 | fprintf_unfiltered (gdb_stdlog, | |
6238 | "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n"); | |
186c406b | 6239 | |
cdaa5b73 | 6240 | ecs->event_thread->stepping_over_breakpoint = 1; |
611c83ae | 6241 | |
cdaa5b73 PA |
6242 | if (what.is_longjmp) |
6243 | { | |
6244 | struct value *arg_value; | |
6245 | ||
6246 | /* If we set the longjmp breakpoint via a SystemTap probe, | |
6247 | then use it to extract the arguments. The destination PC | |
6248 | is the third argument to the probe. */ | |
6249 | arg_value = probe_safe_evaluate_at_pc (frame, 2); | |
6250 | if (arg_value) | |
8fa0c4f8 AA |
6251 | { |
6252 | jmp_buf_pc = value_as_address (arg_value); | |
6253 | jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc); | |
6254 | } | |
cdaa5b73 PA |
6255 | else if (!gdbarch_get_longjmp_target_p (gdbarch) |
6256 | || !gdbarch_get_longjmp_target (gdbarch, | |
6257 | frame, &jmp_buf_pc)) | |
e2e4d78b | 6258 | { |
cdaa5b73 PA |
6259 | if (debug_infrun) |
6260 | fprintf_unfiltered (gdb_stdlog, | |
6261 | "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME " | |
6262 | "(!gdbarch_get_longjmp_target)\n"); | |
6263 | keep_going (ecs); | |
6264 | return; | |
e2e4d78b | 6265 | } |
e2e4d78b | 6266 | |
cdaa5b73 PA |
6267 | /* Insert a breakpoint at resume address. */ |
6268 | insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc); | |
6269 | } | |
6270 | else | |
6271 | check_exception_resume (ecs, frame); | |
6272 | keep_going (ecs); | |
6273 | return; | |
e81a37f7 | 6274 | |
cdaa5b73 PA |
6275 | case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME: |
6276 | { | |
6277 | struct frame_info *init_frame; | |
e81a37f7 | 6278 | |
cdaa5b73 | 6279 | /* There are several cases to consider. |
c906108c | 6280 | |
cdaa5b73 PA |
6281 | 1. The initiating frame no longer exists. In this case we |
6282 | must stop, because the exception or longjmp has gone too | |
6283 | far. | |
2c03e5be | 6284 | |
cdaa5b73 PA |
6285 | 2. The initiating frame exists, and is the same as the |
6286 | current frame. We stop, because the exception or longjmp | |
6287 | has been caught. | |
2c03e5be | 6288 | |
cdaa5b73 PA |
6289 | 3. The initiating frame exists and is different from the |
6290 | current frame. This means the exception or longjmp has | |
6291 | been caught beneath the initiating frame, so keep going. | |
c906108c | 6292 | |
cdaa5b73 PA |
6293 | 4. longjmp breakpoint has been placed just to protect |
6294 | against stale dummy frames and user is not interested in | |
6295 | stopping around longjmps. */ | |
c5aa993b | 6296 | |
cdaa5b73 PA |
6297 | if (debug_infrun) |
6298 | fprintf_unfiltered (gdb_stdlog, | |
6299 | "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n"); | |
c5aa993b | 6300 | |
cdaa5b73 PA |
6301 | gdb_assert (ecs->event_thread->control.exception_resume_breakpoint |
6302 | != NULL); | |
6303 | delete_exception_resume_breakpoint (ecs->event_thread); | |
c5aa993b | 6304 | |
cdaa5b73 PA |
6305 | if (what.is_longjmp) |
6306 | { | |
b67a2c6f | 6307 | check_longjmp_breakpoint_for_call_dummy (ecs->event_thread); |
c5aa993b | 6308 | |
cdaa5b73 | 6309 | if (!frame_id_p (ecs->event_thread->initiating_frame)) |
e5ef252a | 6310 | { |
cdaa5b73 PA |
6311 | /* Case 4. */ |
6312 | keep_going (ecs); | |
6313 | return; | |
e5ef252a | 6314 | } |
cdaa5b73 | 6315 | } |
c5aa993b | 6316 | |
cdaa5b73 | 6317 | init_frame = frame_find_by_id (ecs->event_thread->initiating_frame); |
527159b7 | 6318 | |
cdaa5b73 PA |
6319 | if (init_frame) |
6320 | { | |
6321 | struct frame_id current_id | |
6322 | = get_frame_id (get_current_frame ()); | |
6323 | if (frame_id_eq (current_id, | |
6324 | ecs->event_thread->initiating_frame)) | |
6325 | { | |
6326 | /* Case 2. Fall through. */ | |
6327 | } | |
6328 | else | |
6329 | { | |
6330 | /* Case 3. */ | |
6331 | keep_going (ecs); | |
6332 | return; | |
6333 | } | |
68f53502 | 6334 | } |
488f131b | 6335 | |
cdaa5b73 PA |
6336 | /* For Cases 1 and 2, remove the step-resume breakpoint, if it |
6337 | exists. */ | |
6338 | delete_step_resume_breakpoint (ecs->event_thread); | |
e5ef252a | 6339 | |
bdc36728 | 6340 | end_stepping_range (ecs); |
cdaa5b73 PA |
6341 | } |
6342 | return; | |
e5ef252a | 6343 | |
cdaa5b73 PA |
6344 | case BPSTAT_WHAT_SINGLE: |
6345 | if (debug_infrun) | |
6346 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n"); | |
6347 | ecs->event_thread->stepping_over_breakpoint = 1; | |
6348 | /* Still need to check other stuff, at least the case where we | |
6349 | are stepping and step out of the right range. */ | |
6350 | break; | |
e5ef252a | 6351 | |
cdaa5b73 PA |
6352 | case BPSTAT_WHAT_STEP_RESUME: |
6353 | if (debug_infrun) | |
6354 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n"); | |
e5ef252a | 6355 | |
cdaa5b73 PA |
6356 | delete_step_resume_breakpoint (ecs->event_thread); |
6357 | if (ecs->event_thread->control.proceed_to_finish | |
6358 | && execution_direction == EXEC_REVERSE) | |
6359 | { | |
6360 | struct thread_info *tp = ecs->event_thread; | |
6361 | ||
6362 | /* We are finishing a function in reverse, and just hit the | |
6363 | step-resume breakpoint at the start address of the | |
6364 | function, and we're almost there -- just need to back up | |
6365 | by one more single-step, which should take us back to the | |
6366 | function call. */ | |
6367 | tp->control.step_range_start = tp->control.step_range_end = 1; | |
6368 | keep_going (ecs); | |
e5ef252a | 6369 | return; |
cdaa5b73 PA |
6370 | } |
6371 | fill_in_stop_func (gdbarch, ecs); | |
6372 | if (stop_pc == ecs->stop_func_start | |
6373 | && execution_direction == EXEC_REVERSE) | |
6374 | { | |
6375 | /* We are stepping over a function call in reverse, and just | |
6376 | hit the step-resume breakpoint at the start address of | |
6377 | the function. Go back to single-stepping, which should | |
6378 | take us back to the function call. */ | |
6379 | ecs->event_thread->stepping_over_breakpoint = 1; | |
6380 | keep_going (ecs); | |
6381 | return; | |
6382 | } | |
6383 | break; | |
e5ef252a | 6384 | |
cdaa5b73 PA |
6385 | case BPSTAT_WHAT_STOP_NOISY: |
6386 | if (debug_infrun) | |
6387 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n"); | |
6388 | stop_print_frame = 1; | |
e5ef252a | 6389 | |
99619bea PA |
6390 | /* Assume the thread stopped for a breapoint. We'll still check |
6391 | whether a/the breakpoint is there when the thread is next | |
6392 | resumed. */ | |
6393 | ecs->event_thread->stepping_over_breakpoint = 1; | |
e5ef252a | 6394 | |
22bcd14b | 6395 | stop_waiting (ecs); |
cdaa5b73 | 6396 | return; |
e5ef252a | 6397 | |
cdaa5b73 PA |
6398 | case BPSTAT_WHAT_STOP_SILENT: |
6399 | if (debug_infrun) | |
6400 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n"); | |
6401 | stop_print_frame = 0; | |
e5ef252a | 6402 | |
99619bea PA |
6403 | /* Assume the thread stopped for a breapoint. We'll still check |
6404 | whether a/the breakpoint is there when the thread is next | |
6405 | resumed. */ | |
6406 | ecs->event_thread->stepping_over_breakpoint = 1; | |
22bcd14b | 6407 | stop_waiting (ecs); |
cdaa5b73 PA |
6408 | return; |
6409 | ||
6410 | case BPSTAT_WHAT_HP_STEP_RESUME: | |
6411 | if (debug_infrun) | |
6412 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n"); | |
6413 | ||
6414 | delete_step_resume_breakpoint (ecs->event_thread); | |
6415 | if (ecs->event_thread->step_after_step_resume_breakpoint) | |
6416 | { | |
6417 | /* Back when the step-resume breakpoint was inserted, we | |
6418 | were trying to single-step off a breakpoint. Go back to | |
6419 | doing that. */ | |
6420 | ecs->event_thread->step_after_step_resume_breakpoint = 0; | |
6421 | ecs->event_thread->stepping_over_breakpoint = 1; | |
6422 | keep_going (ecs); | |
6423 | return; | |
e5ef252a | 6424 | } |
cdaa5b73 PA |
6425 | break; |
6426 | ||
6427 | case BPSTAT_WHAT_KEEP_CHECKING: | |
6428 | break; | |
e5ef252a | 6429 | } |
c906108c | 6430 | |
af48d08f PA |
6431 | /* If we stepped a permanent breakpoint and we had a high priority |
6432 | step-resume breakpoint for the address we stepped, but we didn't | |
6433 | hit it, then we must have stepped into the signal handler. The | |
6434 | step-resume was only necessary to catch the case of _not_ | |
6435 | stepping into the handler, so delete it, and fall through to | |
6436 | checking whether the step finished. */ | |
6437 | if (ecs->event_thread->stepped_breakpoint) | |
6438 | { | |
6439 | struct breakpoint *sr_bp | |
6440 | = ecs->event_thread->control.step_resume_breakpoint; | |
6441 | ||
8d707a12 PA |
6442 | if (sr_bp != NULL |
6443 | && sr_bp->loc->permanent | |
af48d08f PA |
6444 | && sr_bp->type == bp_hp_step_resume |
6445 | && sr_bp->loc->address == ecs->event_thread->prev_pc) | |
6446 | { | |
6447 | if (debug_infrun) | |
6448 | fprintf_unfiltered (gdb_stdlog, | |
6449 | "infrun: stepped permanent breakpoint, stopped in " | |
6450 | "handler\n"); | |
6451 | delete_step_resume_breakpoint (ecs->event_thread); | |
6452 | ecs->event_thread->step_after_step_resume_breakpoint = 0; | |
6453 | } | |
6454 | } | |
6455 | ||
cdaa5b73 PA |
6456 | /* We come here if we hit a breakpoint but should not stop for it. |
6457 | Possibly we also were stepping and should stop for that. So fall | |
6458 | through and test for stepping. But, if not stepping, do not | |
6459 | stop. */ | |
c906108c | 6460 | |
a7212384 UW |
6461 | /* In all-stop mode, if we're currently stepping but have stopped in |
6462 | some other thread, we need to switch back to the stepped thread. */ | |
c447ac0b PA |
6463 | if (switch_back_to_stepped_thread (ecs)) |
6464 | return; | |
776f04fa | 6465 | |
8358c15c | 6466 | if (ecs->event_thread->control.step_resume_breakpoint) |
488f131b | 6467 | { |
527159b7 | 6468 | if (debug_infrun) |
d3169d93 DJ |
6469 | fprintf_unfiltered (gdb_stdlog, |
6470 | "infrun: step-resume breakpoint is inserted\n"); | |
527159b7 | 6471 | |
488f131b JB |
6472 | /* Having a step-resume breakpoint overrides anything |
6473 | else having to do with stepping commands until | |
6474 | that breakpoint is reached. */ | |
488f131b JB |
6475 | keep_going (ecs); |
6476 | return; | |
6477 | } | |
c5aa993b | 6478 | |
16c381f0 | 6479 | if (ecs->event_thread->control.step_range_end == 0) |
488f131b | 6480 | { |
527159b7 | 6481 | if (debug_infrun) |
8a9de0e4 | 6482 | fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n"); |
488f131b | 6483 | /* Likewise if we aren't even stepping. */ |
488f131b JB |
6484 | keep_going (ecs); |
6485 | return; | |
6486 | } | |
c5aa993b | 6487 | |
4b7703ad JB |
6488 | /* Re-fetch current thread's frame in case the code above caused |
6489 | the frame cache to be re-initialized, making our FRAME variable | |
6490 | a dangling pointer. */ | |
6491 | frame = get_current_frame (); | |
628fe4e4 | 6492 | gdbarch = get_frame_arch (frame); |
7e324e48 | 6493 | fill_in_stop_func (gdbarch, ecs); |
4b7703ad | 6494 | |
488f131b | 6495 | /* If stepping through a line, keep going if still within it. |
c906108c | 6496 | |
488f131b JB |
6497 | Note that step_range_end is the address of the first instruction |
6498 | beyond the step range, and NOT the address of the last instruction | |
31410e84 MS |
6499 | within it! |
6500 | ||
6501 | Note also that during reverse execution, we may be stepping | |
6502 | through a function epilogue and therefore must detect when | |
6503 | the current-frame changes in the middle of a line. */ | |
6504 | ||
ce4c476a | 6505 | if (pc_in_thread_step_range (stop_pc, ecs->event_thread) |
31410e84 | 6506 | && (execution_direction != EXEC_REVERSE |
388a8562 | 6507 | || frame_id_eq (get_frame_id (frame), |
16c381f0 | 6508 | ecs->event_thread->control.step_frame_id))) |
488f131b | 6509 | { |
527159b7 | 6510 | if (debug_infrun) |
5af949e3 UW |
6511 | fprintf_unfiltered |
6512 | (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n", | |
16c381f0 JK |
6513 | paddress (gdbarch, ecs->event_thread->control.step_range_start), |
6514 | paddress (gdbarch, ecs->event_thread->control.step_range_end)); | |
b2175913 | 6515 | |
c1e36e3e PA |
6516 | /* Tentatively re-enable range stepping; `resume' disables it if |
6517 | necessary (e.g., if we're stepping over a breakpoint or we | |
6518 | have software watchpoints). */ | |
6519 | ecs->event_thread->control.may_range_step = 1; | |
6520 | ||
b2175913 MS |
6521 | /* When stepping backward, stop at beginning of line range |
6522 | (unless it's the function entry point, in which case | |
6523 | keep going back to the call point). */ | |
16c381f0 | 6524 | if (stop_pc == ecs->event_thread->control.step_range_start |
b2175913 MS |
6525 | && stop_pc != ecs->stop_func_start |
6526 | && execution_direction == EXEC_REVERSE) | |
bdc36728 | 6527 | end_stepping_range (ecs); |
b2175913 MS |
6528 | else |
6529 | keep_going (ecs); | |
6530 | ||
488f131b JB |
6531 | return; |
6532 | } | |
c5aa993b | 6533 | |
488f131b | 6534 | /* We stepped out of the stepping range. */ |
c906108c | 6535 | |
488f131b | 6536 | /* If we are stepping at the source level and entered the runtime |
388a8562 MS |
6537 | loader dynamic symbol resolution code... |
6538 | ||
6539 | EXEC_FORWARD: we keep on single stepping until we exit the run | |
6540 | time loader code and reach the callee's address. | |
6541 | ||
6542 | EXEC_REVERSE: we've already executed the callee (backward), and | |
6543 | the runtime loader code is handled just like any other | |
6544 | undebuggable function call. Now we need only keep stepping | |
6545 | backward through the trampoline code, and that's handled further | |
6546 | down, so there is nothing for us to do here. */ | |
6547 | ||
6548 | if (execution_direction != EXEC_REVERSE | |
16c381f0 | 6549 | && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE |
cfd8ab24 | 6550 | && in_solib_dynsym_resolve_code (stop_pc)) |
488f131b | 6551 | { |
4c8c40e6 | 6552 | CORE_ADDR pc_after_resolver = |
568d6575 | 6553 | gdbarch_skip_solib_resolver (gdbarch, stop_pc); |
c906108c | 6554 | |
527159b7 | 6555 | if (debug_infrun) |
3e43a32a MS |
6556 | fprintf_unfiltered (gdb_stdlog, |
6557 | "infrun: stepped into dynsym resolve code\n"); | |
527159b7 | 6558 | |
488f131b JB |
6559 | if (pc_after_resolver) |
6560 | { | |
6561 | /* Set up a step-resume breakpoint at the address | |
6562 | indicated by SKIP_SOLIB_RESOLVER. */ | |
51abb421 | 6563 | symtab_and_line sr_sal; |
488f131b | 6564 | sr_sal.pc = pc_after_resolver; |
6c95b8df | 6565 | sr_sal.pspace = get_frame_program_space (frame); |
488f131b | 6566 | |
a6d9a66e UW |
6567 | insert_step_resume_breakpoint_at_sal (gdbarch, |
6568 | sr_sal, null_frame_id); | |
c5aa993b | 6569 | } |
c906108c | 6570 | |
488f131b JB |
6571 | keep_going (ecs); |
6572 | return; | |
6573 | } | |
c906108c | 6574 | |
16c381f0 JK |
6575 | if (ecs->event_thread->control.step_range_end != 1 |
6576 | && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE | |
6577 | || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL) | |
568d6575 | 6578 | && get_frame_type (frame) == SIGTRAMP_FRAME) |
488f131b | 6579 | { |
527159b7 | 6580 | if (debug_infrun) |
3e43a32a MS |
6581 | fprintf_unfiltered (gdb_stdlog, |
6582 | "infrun: stepped into signal trampoline\n"); | |
42edda50 | 6583 | /* The inferior, while doing a "step" or "next", has ended up in |
8fb3e588 AC |
6584 | a signal trampoline (either by a signal being delivered or by |
6585 | the signal handler returning). Just single-step until the | |
6586 | inferior leaves the trampoline (either by calling the handler | |
6587 | or returning). */ | |
488f131b JB |
6588 | keep_going (ecs); |
6589 | return; | |
6590 | } | |
c906108c | 6591 | |
14132e89 MR |
6592 | /* If we're in the return path from a shared library trampoline, |
6593 | we want to proceed through the trampoline when stepping. */ | |
6594 | /* macro/2012-04-25: This needs to come before the subroutine | |
6595 | call check below as on some targets return trampolines look | |
6596 | like subroutine calls (MIPS16 return thunks). */ | |
6597 | if (gdbarch_in_solib_return_trampoline (gdbarch, | |
6598 | stop_pc, ecs->stop_func_name) | |
6599 | && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE) | |
6600 | { | |
6601 | /* Determine where this trampoline returns. */ | |
6602 | CORE_ADDR real_stop_pc; | |
6603 | ||
6604 | real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc); | |
6605 | ||
6606 | if (debug_infrun) | |
6607 | fprintf_unfiltered (gdb_stdlog, | |
6608 | "infrun: stepped into solib return tramp\n"); | |
6609 | ||
6610 | /* Only proceed through if we know where it's going. */ | |
6611 | if (real_stop_pc) | |
6612 | { | |
6613 | /* And put the step-breakpoint there and go until there. */ | |
51abb421 | 6614 | symtab_and_line sr_sal; |
14132e89 MR |
6615 | sr_sal.pc = real_stop_pc; |
6616 | sr_sal.section = find_pc_overlay (sr_sal.pc); | |
6617 | sr_sal.pspace = get_frame_program_space (frame); | |
6618 | ||
6619 | /* Do not specify what the fp should be when we stop since | |
6620 | on some machines the prologue is where the new fp value | |
6621 | is established. */ | |
6622 | insert_step_resume_breakpoint_at_sal (gdbarch, | |
6623 | sr_sal, null_frame_id); | |
6624 | ||
6625 | /* Restart without fiddling with the step ranges or | |
6626 | other state. */ | |
6627 | keep_going (ecs); | |
6628 | return; | |
6629 | } | |
6630 | } | |
6631 | ||
c17eaafe DJ |
6632 | /* Check for subroutine calls. The check for the current frame |
6633 | equalling the step ID is not necessary - the check of the | |
6634 | previous frame's ID is sufficient - but it is a common case and | |
6635 | cheaper than checking the previous frame's ID. | |
14e60db5 DJ |
6636 | |
6637 | NOTE: frame_id_eq will never report two invalid frame IDs as | |
6638 | being equal, so to get into this block, both the current and | |
6639 | previous frame must have valid frame IDs. */ | |
005ca36a JB |
6640 | /* The outer_frame_id check is a heuristic to detect stepping |
6641 | through startup code. If we step over an instruction which | |
6642 | sets the stack pointer from an invalid value to a valid value, | |
6643 | we may detect that as a subroutine call from the mythical | |
6644 | "outermost" function. This could be fixed by marking | |
6645 | outermost frames as !stack_p,code_p,special_p. Then the | |
6646 | initial outermost frame, before sp was valid, would | |
ce6cca6d | 6647 | have code_addr == &_start. See the comment in frame_id_eq |
005ca36a | 6648 | for more. */ |
edb3359d | 6649 | if (!frame_id_eq (get_stack_frame_id (frame), |
16c381f0 | 6650 | ecs->event_thread->control.step_stack_frame_id) |
005ca36a | 6651 | && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()), |
16c381f0 JK |
6652 | ecs->event_thread->control.step_stack_frame_id) |
6653 | && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id, | |
005ca36a | 6654 | outer_frame_id) |
885eeb5b PA |
6655 | || (ecs->event_thread->control.step_start_function |
6656 | != find_pc_function (stop_pc))))) | |
488f131b | 6657 | { |
95918acb | 6658 | CORE_ADDR real_stop_pc; |
8fb3e588 | 6659 | |
527159b7 | 6660 | if (debug_infrun) |
8a9de0e4 | 6661 | fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n"); |
527159b7 | 6662 | |
b7a084be | 6663 | if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE) |
95918acb AC |
6664 | { |
6665 | /* I presume that step_over_calls is only 0 when we're | |
6666 | supposed to be stepping at the assembly language level | |
6667 | ("stepi"). Just stop. */ | |
388a8562 | 6668 | /* And this works the same backward as frontward. MVS */ |
bdc36728 | 6669 | end_stepping_range (ecs); |
95918acb AC |
6670 | return; |
6671 | } | |
8fb3e588 | 6672 | |
388a8562 MS |
6673 | /* Reverse stepping through solib trampolines. */ |
6674 | ||
6675 | if (execution_direction == EXEC_REVERSE | |
16c381f0 | 6676 | && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE |
388a8562 MS |
6677 | && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc) |
6678 | || (ecs->stop_func_start == 0 | |
6679 | && in_solib_dynsym_resolve_code (stop_pc)))) | |
6680 | { | |
6681 | /* Any solib trampoline code can be handled in reverse | |
6682 | by simply continuing to single-step. We have already | |
6683 | executed the solib function (backwards), and a few | |
6684 | steps will take us back through the trampoline to the | |
6685 | caller. */ | |
6686 | keep_going (ecs); | |
6687 | return; | |
6688 | } | |
6689 | ||
16c381f0 | 6690 | if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL) |
8567c30f | 6691 | { |
b2175913 MS |
6692 | /* We're doing a "next". |
6693 | ||
6694 | Normal (forward) execution: set a breakpoint at the | |
6695 | callee's return address (the address at which the caller | |
6696 | will resume). | |
6697 | ||
6698 | Reverse (backward) execution. set the step-resume | |
6699 | breakpoint at the start of the function that we just | |
6700 | stepped into (backwards), and continue to there. When we | |
6130d0b7 | 6701 | get there, we'll need to single-step back to the caller. */ |
b2175913 MS |
6702 | |
6703 | if (execution_direction == EXEC_REVERSE) | |
6704 | { | |
acf9414f JK |
6705 | /* If we're already at the start of the function, we've either |
6706 | just stepped backward into a single instruction function, | |
6707 | or stepped back out of a signal handler to the first instruction | |
6708 | of the function. Just keep going, which will single-step back | |
6709 | to the caller. */ | |
58c48e72 | 6710 | if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0) |
acf9414f | 6711 | { |
acf9414f | 6712 | /* Normal function call return (static or dynamic). */ |
51abb421 | 6713 | symtab_and_line sr_sal; |
acf9414f JK |
6714 | sr_sal.pc = ecs->stop_func_start; |
6715 | sr_sal.pspace = get_frame_program_space (frame); | |
6716 | insert_step_resume_breakpoint_at_sal (gdbarch, | |
6717 | sr_sal, null_frame_id); | |
6718 | } | |
b2175913 MS |
6719 | } |
6720 | else | |
568d6575 | 6721 | insert_step_resume_breakpoint_at_caller (frame); |
b2175913 | 6722 | |
8567c30f AC |
6723 | keep_going (ecs); |
6724 | return; | |
6725 | } | |
a53c66de | 6726 | |
95918acb | 6727 | /* If we are in a function call trampoline (a stub between the |
8fb3e588 AC |
6728 | calling routine and the real function), locate the real |
6729 | function. That's what tells us (a) whether we want to step | |
6730 | into it at all, and (b) what prologue we want to run to the | |
6731 | end of, if we do step into it. */ | |
568d6575 | 6732 | real_stop_pc = skip_language_trampoline (frame, stop_pc); |
95918acb | 6733 | if (real_stop_pc == 0) |
568d6575 | 6734 | real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc); |
95918acb AC |
6735 | if (real_stop_pc != 0) |
6736 | ecs->stop_func_start = real_stop_pc; | |
8fb3e588 | 6737 | |
db5f024e | 6738 | if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc)) |
1b2bfbb9 | 6739 | { |
51abb421 | 6740 | symtab_and_line sr_sal; |
1b2bfbb9 | 6741 | sr_sal.pc = ecs->stop_func_start; |
6c95b8df | 6742 | sr_sal.pspace = get_frame_program_space (frame); |
1b2bfbb9 | 6743 | |
a6d9a66e UW |
6744 | insert_step_resume_breakpoint_at_sal (gdbarch, |
6745 | sr_sal, null_frame_id); | |
8fb3e588 AC |
6746 | keep_going (ecs); |
6747 | return; | |
1b2bfbb9 RC |
6748 | } |
6749 | ||
95918acb | 6750 | /* If we have line number information for the function we are |
1bfeeb0f JL |
6751 | thinking of stepping into and the function isn't on the skip |
6752 | list, step into it. | |
95918acb | 6753 | |
8fb3e588 AC |
6754 | If there are several symtabs at that PC (e.g. with include |
6755 | files), just want to know whether *any* of them have line | |
6756 | numbers. find_pc_line handles this. */ | |
95918acb AC |
6757 | { |
6758 | struct symtab_and_line tmp_sal; | |
8fb3e588 | 6759 | |
95918acb | 6760 | tmp_sal = find_pc_line (ecs->stop_func_start, 0); |
2b914b52 | 6761 | if (tmp_sal.line != 0 |
85817405 | 6762 | && !function_name_is_marked_for_skip (ecs->stop_func_name, |
de7985c3 | 6763 | tmp_sal)) |
95918acb | 6764 | { |
b2175913 | 6765 | if (execution_direction == EXEC_REVERSE) |
568d6575 | 6766 | handle_step_into_function_backward (gdbarch, ecs); |
b2175913 | 6767 | else |
568d6575 | 6768 | handle_step_into_function (gdbarch, ecs); |
95918acb AC |
6769 | return; |
6770 | } | |
6771 | } | |
6772 | ||
6773 | /* If we have no line number and the step-stop-if-no-debug is | |
8fb3e588 AC |
6774 | set, we stop the step so that the user has a chance to switch |
6775 | in assembly mode. */ | |
16c381f0 | 6776 | if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE |
078130d0 | 6777 | && step_stop_if_no_debug) |
95918acb | 6778 | { |
bdc36728 | 6779 | end_stepping_range (ecs); |
95918acb AC |
6780 | return; |
6781 | } | |
6782 | ||
b2175913 MS |
6783 | if (execution_direction == EXEC_REVERSE) |
6784 | { | |
acf9414f JK |
6785 | /* If we're already at the start of the function, we've either just |
6786 | stepped backward into a single instruction function without line | |
6787 | number info, or stepped back out of a signal handler to the first | |
6788 | instruction of the function without line number info. Just keep | |
6789 | going, which will single-step back to the caller. */ | |
6790 | if (ecs->stop_func_start != stop_pc) | |
6791 | { | |
6792 | /* Set a breakpoint at callee's start address. | |
6793 | From there we can step once and be back in the caller. */ | |
51abb421 | 6794 | symtab_and_line sr_sal; |
acf9414f JK |
6795 | sr_sal.pc = ecs->stop_func_start; |
6796 | sr_sal.pspace = get_frame_program_space (frame); | |
6797 | insert_step_resume_breakpoint_at_sal (gdbarch, | |
6798 | sr_sal, null_frame_id); | |
6799 | } | |
b2175913 MS |
6800 | } |
6801 | else | |
6802 | /* Set a breakpoint at callee's return address (the address | |
6803 | at which the caller will resume). */ | |
568d6575 | 6804 | insert_step_resume_breakpoint_at_caller (frame); |
b2175913 | 6805 | |
95918acb | 6806 | keep_going (ecs); |
488f131b | 6807 | return; |
488f131b | 6808 | } |
c906108c | 6809 | |
fdd654f3 MS |
6810 | /* Reverse stepping through solib trampolines. */ |
6811 | ||
6812 | if (execution_direction == EXEC_REVERSE | |
16c381f0 | 6813 | && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE) |
fdd654f3 MS |
6814 | { |
6815 | if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc) | |
6816 | || (ecs->stop_func_start == 0 | |
6817 | && in_solib_dynsym_resolve_code (stop_pc))) | |
6818 | { | |
6819 | /* Any solib trampoline code can be handled in reverse | |
6820 | by simply continuing to single-step. We have already | |
6821 | executed the solib function (backwards), and a few | |
6822 | steps will take us back through the trampoline to the | |
6823 | caller. */ | |
6824 | keep_going (ecs); | |
6825 | return; | |
6826 | } | |
6827 | else if (in_solib_dynsym_resolve_code (stop_pc)) | |
6828 | { | |
6829 | /* Stepped backward into the solib dynsym resolver. | |
6830 | Set a breakpoint at its start and continue, then | |
6831 | one more step will take us out. */ | |
51abb421 | 6832 | symtab_and_line sr_sal; |
fdd654f3 | 6833 | sr_sal.pc = ecs->stop_func_start; |
9d1807c3 | 6834 | sr_sal.pspace = get_frame_program_space (frame); |
fdd654f3 MS |
6835 | insert_step_resume_breakpoint_at_sal (gdbarch, |
6836 | sr_sal, null_frame_id); | |
6837 | keep_going (ecs); | |
6838 | return; | |
6839 | } | |
6840 | } | |
6841 | ||
2afb61aa | 6842 | stop_pc_sal = find_pc_line (stop_pc, 0); |
7ed0fe66 | 6843 | |
1b2bfbb9 RC |
6844 | /* NOTE: tausq/2004-05-24: This if block used to be done before all |
6845 | the trampoline processing logic, however, there are some trampolines | |
6846 | that have no names, so we should do trampoline handling first. */ | |
16c381f0 | 6847 | if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE |
7ed0fe66 | 6848 | && ecs->stop_func_name == NULL |
2afb61aa | 6849 | && stop_pc_sal.line == 0) |
1b2bfbb9 | 6850 | { |
527159b7 | 6851 | if (debug_infrun) |
3e43a32a MS |
6852 | fprintf_unfiltered (gdb_stdlog, |
6853 | "infrun: stepped into undebuggable function\n"); | |
527159b7 | 6854 | |
1b2bfbb9 | 6855 | /* The inferior just stepped into, or returned to, an |
7ed0fe66 DJ |
6856 | undebuggable function (where there is no debugging information |
6857 | and no line number corresponding to the address where the | |
1b2bfbb9 RC |
6858 | inferior stopped). Since we want to skip this kind of code, |
6859 | we keep going until the inferior returns from this | |
14e60db5 DJ |
6860 | function - unless the user has asked us not to (via |
6861 | set step-mode) or we no longer know how to get back | |
6862 | to the call site. */ | |
6863 | if (step_stop_if_no_debug | |
c7ce8faa | 6864 | || !frame_id_p (frame_unwind_caller_id (frame))) |
1b2bfbb9 RC |
6865 | { |
6866 | /* If we have no line number and the step-stop-if-no-debug | |
6867 | is set, we stop the step so that the user has a chance to | |
6868 | switch in assembly mode. */ | |
bdc36728 | 6869 | end_stepping_range (ecs); |
1b2bfbb9 RC |
6870 | return; |
6871 | } | |
6872 | else | |
6873 | { | |
6874 | /* Set a breakpoint at callee's return address (the address | |
6875 | at which the caller will resume). */ | |
568d6575 | 6876 | insert_step_resume_breakpoint_at_caller (frame); |
1b2bfbb9 RC |
6877 | keep_going (ecs); |
6878 | return; | |
6879 | } | |
6880 | } | |
6881 | ||
16c381f0 | 6882 | if (ecs->event_thread->control.step_range_end == 1) |
1b2bfbb9 RC |
6883 | { |
6884 | /* It is stepi or nexti. We always want to stop stepping after | |
6885 | one instruction. */ | |
527159b7 | 6886 | if (debug_infrun) |
8a9de0e4 | 6887 | fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n"); |
bdc36728 | 6888 | end_stepping_range (ecs); |
1b2bfbb9 RC |
6889 | return; |
6890 | } | |
6891 | ||
2afb61aa | 6892 | if (stop_pc_sal.line == 0) |
488f131b JB |
6893 | { |
6894 | /* We have no line number information. That means to stop | |
6895 | stepping (does this always happen right after one instruction, | |
6896 | when we do "s" in a function with no line numbers, | |
6897 | or can this happen as a result of a return or longjmp?). */ | |
527159b7 | 6898 | if (debug_infrun) |
8a9de0e4 | 6899 | fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n"); |
bdc36728 | 6900 | end_stepping_range (ecs); |
488f131b JB |
6901 | return; |
6902 | } | |
c906108c | 6903 | |
edb3359d DJ |
6904 | /* Look for "calls" to inlined functions, part one. If the inline |
6905 | frame machinery detected some skipped call sites, we have entered | |
6906 | a new inline function. */ | |
6907 | ||
6908 | if (frame_id_eq (get_frame_id (get_current_frame ()), | |
16c381f0 | 6909 | ecs->event_thread->control.step_frame_id) |
edb3359d DJ |
6910 | && inline_skipped_frames (ecs->ptid)) |
6911 | { | |
edb3359d DJ |
6912 | if (debug_infrun) |
6913 | fprintf_unfiltered (gdb_stdlog, | |
6914 | "infrun: stepped into inlined function\n"); | |
6915 | ||
51abb421 | 6916 | symtab_and_line call_sal = find_frame_sal (get_current_frame ()); |
edb3359d | 6917 | |
16c381f0 | 6918 | if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL) |
edb3359d DJ |
6919 | { |
6920 | /* For "step", we're going to stop. But if the call site | |
6921 | for this inlined function is on the same source line as | |
6922 | we were previously stepping, go down into the function | |
6923 | first. Otherwise stop at the call site. */ | |
6924 | ||
6925 | if (call_sal.line == ecs->event_thread->current_line | |
6926 | && call_sal.symtab == ecs->event_thread->current_symtab) | |
6927 | step_into_inline_frame (ecs->ptid); | |
6928 | ||
bdc36728 | 6929 | end_stepping_range (ecs); |
edb3359d DJ |
6930 | return; |
6931 | } | |
6932 | else | |
6933 | { | |
6934 | /* For "next", we should stop at the call site if it is on a | |
6935 | different source line. Otherwise continue through the | |
6936 | inlined function. */ | |
6937 | if (call_sal.line == ecs->event_thread->current_line | |
6938 | && call_sal.symtab == ecs->event_thread->current_symtab) | |
6939 | keep_going (ecs); | |
6940 | else | |
bdc36728 | 6941 | end_stepping_range (ecs); |
edb3359d DJ |
6942 | return; |
6943 | } | |
6944 | } | |
6945 | ||
6946 | /* Look for "calls" to inlined functions, part two. If we are still | |
6947 | in the same real function we were stepping through, but we have | |
6948 | to go further up to find the exact frame ID, we are stepping | |
6949 | through a more inlined call beyond its call site. */ | |
6950 | ||
6951 | if (get_frame_type (get_current_frame ()) == INLINE_FRAME | |
6952 | && !frame_id_eq (get_frame_id (get_current_frame ()), | |
16c381f0 | 6953 | ecs->event_thread->control.step_frame_id) |
edb3359d | 6954 | && stepped_in_from (get_current_frame (), |
16c381f0 | 6955 | ecs->event_thread->control.step_frame_id)) |
edb3359d DJ |
6956 | { |
6957 | if (debug_infrun) | |
6958 | fprintf_unfiltered (gdb_stdlog, | |
6959 | "infrun: stepping through inlined function\n"); | |
6960 | ||
16c381f0 | 6961 | if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL) |
edb3359d DJ |
6962 | keep_going (ecs); |
6963 | else | |
bdc36728 | 6964 | end_stepping_range (ecs); |
edb3359d DJ |
6965 | return; |
6966 | } | |
6967 | ||
2afb61aa | 6968 | if ((stop_pc == stop_pc_sal.pc) |
4e1c45ea PA |
6969 | && (ecs->event_thread->current_line != stop_pc_sal.line |
6970 | || ecs->event_thread->current_symtab != stop_pc_sal.symtab)) | |
488f131b JB |
6971 | { |
6972 | /* We are at the start of a different line. So stop. Note that | |
6973 | we don't stop if we step into the middle of a different line. | |
6974 | That is said to make things like for (;;) statements work | |
6975 | better. */ | |
527159b7 | 6976 | if (debug_infrun) |
3e43a32a MS |
6977 | fprintf_unfiltered (gdb_stdlog, |
6978 | "infrun: stepped to a different line\n"); | |
bdc36728 | 6979 | end_stepping_range (ecs); |
488f131b JB |
6980 | return; |
6981 | } | |
c906108c | 6982 | |
488f131b | 6983 | /* We aren't done stepping. |
c906108c | 6984 | |
488f131b JB |
6985 | Optimize by setting the stepping range to the line. |
6986 | (We might not be in the original line, but if we entered a | |
6987 | new line in mid-statement, we continue stepping. This makes | |
6988 | things like for(;;) statements work better.) */ | |
c906108c | 6989 | |
16c381f0 JK |
6990 | ecs->event_thread->control.step_range_start = stop_pc_sal.pc; |
6991 | ecs->event_thread->control.step_range_end = stop_pc_sal.end; | |
c1e36e3e | 6992 | ecs->event_thread->control.may_range_step = 1; |
edb3359d | 6993 | set_step_info (frame, stop_pc_sal); |
488f131b | 6994 | |
527159b7 | 6995 | if (debug_infrun) |
8a9de0e4 | 6996 | fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n"); |
488f131b | 6997 | keep_going (ecs); |
104c1213 JM |
6998 | } |
6999 | ||
c447ac0b PA |
7000 | /* In all-stop mode, if we're currently stepping but have stopped in |
7001 | some other thread, we may need to switch back to the stepped | |
7002 | thread. Returns true we set the inferior running, false if we left | |
7003 | it stopped (and the event needs further processing). */ | |
7004 | ||
7005 | static int | |
7006 | switch_back_to_stepped_thread (struct execution_control_state *ecs) | |
7007 | { | |
fbea99ea | 7008 | if (!target_is_non_stop_p ()) |
c447ac0b PA |
7009 | { |
7010 | struct thread_info *tp; | |
99619bea PA |
7011 | struct thread_info *stepping_thread; |
7012 | ||
7013 | /* If any thread is blocked on some internal breakpoint, and we | |
7014 | simply need to step over that breakpoint to get it going | |
7015 | again, do that first. */ | |
7016 | ||
7017 | /* However, if we see an event for the stepping thread, then we | |
7018 | know all other threads have been moved past their breakpoints | |
7019 | already. Let the caller check whether the step is finished, | |
7020 | etc., before deciding to move it past a breakpoint. */ | |
7021 | if (ecs->event_thread->control.step_range_end != 0) | |
7022 | return 0; | |
7023 | ||
7024 | /* Check if the current thread is blocked on an incomplete | |
7025 | step-over, interrupted by a random signal. */ | |
7026 | if (ecs->event_thread->control.trap_expected | |
7027 | && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP) | |
c447ac0b | 7028 | { |
99619bea PA |
7029 | if (debug_infrun) |
7030 | { | |
7031 | fprintf_unfiltered (gdb_stdlog, | |
7032 | "infrun: need to finish step-over of [%s]\n", | |
7033 | target_pid_to_str (ecs->event_thread->ptid)); | |
7034 | } | |
7035 | keep_going (ecs); | |
7036 | return 1; | |
7037 | } | |
2adfaa28 | 7038 | |
99619bea PA |
7039 | /* Check if the current thread is blocked by a single-step |
7040 | breakpoint of another thread. */ | |
7041 | if (ecs->hit_singlestep_breakpoint) | |
7042 | { | |
7043 | if (debug_infrun) | |
7044 | { | |
7045 | fprintf_unfiltered (gdb_stdlog, | |
7046 | "infrun: need to step [%s] over single-step " | |
7047 | "breakpoint\n", | |
7048 | target_pid_to_str (ecs->ptid)); | |
7049 | } | |
7050 | keep_going (ecs); | |
7051 | return 1; | |
7052 | } | |
7053 | ||
4d9d9d04 PA |
7054 | /* If this thread needs yet another step-over (e.g., stepping |
7055 | through a delay slot), do it first before moving on to | |
7056 | another thread. */ | |
7057 | if (thread_still_needs_step_over (ecs->event_thread)) | |
7058 | { | |
7059 | if (debug_infrun) | |
7060 | { | |
7061 | fprintf_unfiltered (gdb_stdlog, | |
7062 | "infrun: thread [%s] still needs step-over\n", | |
7063 | target_pid_to_str (ecs->event_thread->ptid)); | |
7064 | } | |
7065 | keep_going (ecs); | |
7066 | return 1; | |
7067 | } | |
70509625 | 7068 | |
483805cf PA |
7069 | /* If scheduler locking applies even if not stepping, there's no |
7070 | need to walk over threads. Above we've checked whether the | |
7071 | current thread is stepping. If some other thread not the | |
7072 | event thread is stepping, then it must be that scheduler | |
7073 | locking is not in effect. */ | |
856e7dd6 | 7074 | if (schedlock_applies (ecs->event_thread)) |
483805cf PA |
7075 | return 0; |
7076 | ||
4d9d9d04 PA |
7077 | /* Otherwise, we no longer expect a trap in the current thread. |
7078 | Clear the trap_expected flag before switching back -- this is | |
7079 | what keep_going does as well, if we call it. */ | |
7080 | ecs->event_thread->control.trap_expected = 0; | |
7081 | ||
7082 | /* Likewise, clear the signal if it should not be passed. */ | |
7083 | if (!signal_program[ecs->event_thread->suspend.stop_signal]) | |
7084 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; | |
7085 | ||
7086 | /* Do all pending step-overs before actually proceeding with | |
483805cf | 7087 | step/next/etc. */ |
4d9d9d04 PA |
7088 | if (start_step_over ()) |
7089 | { | |
7090 | prepare_to_wait (ecs); | |
7091 | return 1; | |
7092 | } | |
7093 | ||
7094 | /* Look for the stepping/nexting thread. */ | |
483805cf | 7095 | stepping_thread = NULL; |
4d9d9d04 | 7096 | |
034f788c | 7097 | ALL_NON_EXITED_THREADS (tp) |
483805cf | 7098 | { |
fbea99ea PA |
7099 | /* Ignore threads of processes the caller is not |
7100 | resuming. */ | |
483805cf | 7101 | if (!sched_multi |
1afd5965 | 7102 | && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid)) |
483805cf PA |
7103 | continue; |
7104 | ||
7105 | /* When stepping over a breakpoint, we lock all threads | |
7106 | except the one that needs to move past the breakpoint. | |
7107 | If a non-event thread has this set, the "incomplete | |
7108 | step-over" check above should have caught it earlier. */ | |
372316f1 PA |
7109 | if (tp->control.trap_expected) |
7110 | { | |
7111 | internal_error (__FILE__, __LINE__, | |
7112 | "[%s] has inconsistent state: " | |
7113 | "trap_expected=%d\n", | |
7114 | target_pid_to_str (tp->ptid), | |
7115 | tp->control.trap_expected); | |
7116 | } | |
483805cf PA |
7117 | |
7118 | /* Did we find the stepping thread? */ | |
7119 | if (tp->control.step_range_end) | |
7120 | { | |
7121 | /* Yep. There should only one though. */ | |
7122 | gdb_assert (stepping_thread == NULL); | |
7123 | ||
7124 | /* The event thread is handled at the top, before we | |
7125 | enter this loop. */ | |
7126 | gdb_assert (tp != ecs->event_thread); | |
7127 | ||
7128 | /* If some thread other than the event thread is | |
7129 | stepping, then scheduler locking can't be in effect, | |
7130 | otherwise we wouldn't have resumed the current event | |
7131 | thread in the first place. */ | |
856e7dd6 | 7132 | gdb_assert (!schedlock_applies (tp)); |
483805cf PA |
7133 | |
7134 | stepping_thread = tp; | |
7135 | } | |
99619bea PA |
7136 | } |
7137 | ||
483805cf | 7138 | if (stepping_thread != NULL) |
99619bea | 7139 | { |
c447ac0b PA |
7140 | if (debug_infrun) |
7141 | fprintf_unfiltered (gdb_stdlog, | |
7142 | "infrun: switching back to stepped thread\n"); | |
7143 | ||
2ac7589c PA |
7144 | if (keep_going_stepped_thread (stepping_thread)) |
7145 | { | |
7146 | prepare_to_wait (ecs); | |
7147 | return 1; | |
7148 | } | |
7149 | } | |
7150 | } | |
2adfaa28 | 7151 | |
2ac7589c PA |
7152 | return 0; |
7153 | } | |
2adfaa28 | 7154 | |
2ac7589c PA |
7155 | /* Set a previously stepped thread back to stepping. Returns true on |
7156 | success, false if the resume is not possible (e.g., the thread | |
7157 | vanished). */ | |
7158 | ||
7159 | static int | |
7160 | keep_going_stepped_thread (struct thread_info *tp) | |
7161 | { | |
7162 | struct frame_info *frame; | |
2ac7589c PA |
7163 | struct execution_control_state ecss; |
7164 | struct execution_control_state *ecs = &ecss; | |
2adfaa28 | 7165 | |
2ac7589c PA |
7166 | /* If the stepping thread exited, then don't try to switch back and |
7167 | resume it, which could fail in several different ways depending | |
7168 | on the target. Instead, just keep going. | |
2adfaa28 | 7169 | |
2ac7589c PA |
7170 | We can find a stepping dead thread in the thread list in two |
7171 | cases: | |
2adfaa28 | 7172 | |
2ac7589c PA |
7173 | - The target supports thread exit events, and when the target |
7174 | tries to delete the thread from the thread list, inferior_ptid | |
7175 | pointed at the exiting thread. In such case, calling | |
7176 | delete_thread does not really remove the thread from the list; | |
7177 | instead, the thread is left listed, with 'exited' state. | |
64ce06e4 | 7178 | |
2ac7589c PA |
7179 | - The target's debug interface does not support thread exit |
7180 | events, and so we have no idea whatsoever if the previously | |
7181 | stepping thread is still alive. For that reason, we need to | |
7182 | synchronously query the target now. */ | |
2adfaa28 | 7183 | |
2ac7589c PA |
7184 | if (is_exited (tp->ptid) |
7185 | || !target_thread_alive (tp->ptid)) | |
7186 | { | |
7187 | if (debug_infrun) | |
7188 | fprintf_unfiltered (gdb_stdlog, | |
7189 | "infrun: not resuming previously " | |
7190 | "stepped thread, it has vanished\n"); | |
7191 | ||
7192 | delete_thread (tp->ptid); | |
7193 | return 0; | |
c447ac0b | 7194 | } |
2ac7589c PA |
7195 | |
7196 | if (debug_infrun) | |
7197 | fprintf_unfiltered (gdb_stdlog, | |
7198 | "infrun: resuming previously stepped thread\n"); | |
7199 | ||
7200 | reset_ecs (ecs, tp); | |
7201 | switch_to_thread (tp->ptid); | |
7202 | ||
7203 | stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid)); | |
7204 | frame = get_current_frame (); | |
2ac7589c PA |
7205 | |
7206 | /* If the PC of the thread we were trying to single-step has | |
7207 | changed, then that thread has trapped or been signaled, but the | |
7208 | event has not been reported to GDB yet. Re-poll the target | |
7209 | looking for this particular thread's event (i.e. temporarily | |
7210 | enable schedlock) by: | |
7211 | ||
7212 | - setting a break at the current PC | |
7213 | - resuming that particular thread, only (by setting trap | |
7214 | expected) | |
7215 | ||
7216 | This prevents us continuously moving the single-step breakpoint | |
7217 | forward, one instruction at a time, overstepping. */ | |
7218 | ||
7219 | if (stop_pc != tp->prev_pc) | |
7220 | { | |
7221 | ptid_t resume_ptid; | |
7222 | ||
7223 | if (debug_infrun) | |
7224 | fprintf_unfiltered (gdb_stdlog, | |
7225 | "infrun: expected thread advanced also (%s -> %s)\n", | |
7226 | paddress (target_gdbarch (), tp->prev_pc), | |
7227 | paddress (target_gdbarch (), stop_pc)); | |
7228 | ||
7229 | /* Clear the info of the previous step-over, as it's no longer | |
7230 | valid (if the thread was trying to step over a breakpoint, it | |
7231 | has already succeeded). It's what keep_going would do too, | |
7232 | if we called it. Do this before trying to insert the sss | |
7233 | breakpoint, otherwise if we were previously trying to step | |
7234 | over this exact address in another thread, the breakpoint is | |
7235 | skipped. */ | |
7236 | clear_step_over_info (); | |
7237 | tp->control.trap_expected = 0; | |
7238 | ||
7239 | insert_single_step_breakpoint (get_frame_arch (frame), | |
7240 | get_frame_address_space (frame), | |
7241 | stop_pc); | |
7242 | ||
372316f1 | 7243 | tp->resumed = 1; |
fbea99ea | 7244 | resume_ptid = internal_resume_ptid (tp->control.stepping_command); |
2ac7589c PA |
7245 | do_target_resume (resume_ptid, 0, GDB_SIGNAL_0); |
7246 | } | |
7247 | else | |
7248 | { | |
7249 | if (debug_infrun) | |
7250 | fprintf_unfiltered (gdb_stdlog, | |
7251 | "infrun: expected thread still hasn't advanced\n"); | |
7252 | ||
7253 | keep_going_pass_signal (ecs); | |
7254 | } | |
7255 | return 1; | |
c447ac0b PA |
7256 | } |
7257 | ||
8b061563 PA |
7258 | /* Is thread TP in the middle of (software or hardware) |
7259 | single-stepping? (Note the result of this function must never be | |
7260 | passed directly as target_resume's STEP parameter.) */ | |
104c1213 | 7261 | |
a289b8f6 | 7262 | static int |
b3444185 | 7263 | currently_stepping (struct thread_info *tp) |
a7212384 | 7264 | { |
8358c15c JK |
7265 | return ((tp->control.step_range_end |
7266 | && tp->control.step_resume_breakpoint == NULL) | |
7267 | || tp->control.trap_expected | |
af48d08f | 7268 | || tp->stepped_breakpoint |
8358c15c | 7269 | || bpstat_should_step ()); |
a7212384 UW |
7270 | } |
7271 | ||
b2175913 MS |
7272 | /* Inferior has stepped into a subroutine call with source code that |
7273 | we should not step over. Do step to the first line of code in | |
7274 | it. */ | |
c2c6d25f JM |
7275 | |
7276 | static void | |
568d6575 UW |
7277 | handle_step_into_function (struct gdbarch *gdbarch, |
7278 | struct execution_control_state *ecs) | |
c2c6d25f | 7279 | { |
7e324e48 GB |
7280 | fill_in_stop_func (gdbarch, ecs); |
7281 | ||
51abb421 | 7282 | compunit_symtab *cust = find_pc_compunit_symtab (stop_pc); |
43f3e411 | 7283 | if (cust != NULL && compunit_language (cust) != language_asm) |
46a62268 YQ |
7284 | ecs->stop_func_start |
7285 | = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start); | |
c2c6d25f | 7286 | |
51abb421 | 7287 | symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0); |
c2c6d25f JM |
7288 | /* Use the step_resume_break to step until the end of the prologue, |
7289 | even if that involves jumps (as it seems to on the vax under | |
7290 | 4.2). */ | |
7291 | /* If the prologue ends in the middle of a source line, continue to | |
7292 | the end of that source line (if it is still within the function). | |
7293 | Otherwise, just go to end of prologue. */ | |
2afb61aa PA |
7294 | if (stop_func_sal.end |
7295 | && stop_func_sal.pc != ecs->stop_func_start | |
7296 | && stop_func_sal.end < ecs->stop_func_end) | |
7297 | ecs->stop_func_start = stop_func_sal.end; | |
c2c6d25f | 7298 | |
2dbd5e30 KB |
7299 | /* Architectures which require breakpoint adjustment might not be able |
7300 | to place a breakpoint at the computed address. If so, the test | |
7301 | ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust | |
7302 | ecs->stop_func_start to an address at which a breakpoint may be | |
7303 | legitimately placed. | |
8fb3e588 | 7304 | |
2dbd5e30 KB |
7305 | Note: kevinb/2004-01-19: On FR-V, if this adjustment is not |
7306 | made, GDB will enter an infinite loop when stepping through | |
7307 | optimized code consisting of VLIW instructions which contain | |
7308 | subinstructions corresponding to different source lines. On | |
7309 | FR-V, it's not permitted to place a breakpoint on any but the | |
7310 | first subinstruction of a VLIW instruction. When a breakpoint is | |
7311 | set, GDB will adjust the breakpoint address to the beginning of | |
7312 | the VLIW instruction. Thus, we need to make the corresponding | |
7313 | adjustment here when computing the stop address. */ | |
8fb3e588 | 7314 | |
568d6575 | 7315 | if (gdbarch_adjust_breakpoint_address_p (gdbarch)) |
2dbd5e30 KB |
7316 | { |
7317 | ecs->stop_func_start | |
568d6575 | 7318 | = gdbarch_adjust_breakpoint_address (gdbarch, |
8fb3e588 | 7319 | ecs->stop_func_start); |
2dbd5e30 KB |
7320 | } |
7321 | ||
c2c6d25f JM |
7322 | if (ecs->stop_func_start == stop_pc) |
7323 | { | |
7324 | /* We are already there: stop now. */ | |
bdc36728 | 7325 | end_stepping_range (ecs); |
c2c6d25f JM |
7326 | return; |
7327 | } | |
7328 | else | |
7329 | { | |
7330 | /* Put the step-breakpoint there and go until there. */ | |
51abb421 | 7331 | symtab_and_line sr_sal; |
c2c6d25f JM |
7332 | sr_sal.pc = ecs->stop_func_start; |
7333 | sr_sal.section = find_pc_overlay (ecs->stop_func_start); | |
6c95b8df | 7334 | sr_sal.pspace = get_frame_program_space (get_current_frame ()); |
44cbf7b5 | 7335 | |
c2c6d25f | 7336 | /* Do not specify what the fp should be when we stop since on |
488f131b JB |
7337 | some machines the prologue is where the new fp value is |
7338 | established. */ | |
a6d9a66e | 7339 | insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id); |
c2c6d25f JM |
7340 | |
7341 | /* And make sure stepping stops right away then. */ | |
16c381f0 JK |
7342 | ecs->event_thread->control.step_range_end |
7343 | = ecs->event_thread->control.step_range_start; | |
c2c6d25f JM |
7344 | } |
7345 | keep_going (ecs); | |
7346 | } | |
d4f3574e | 7347 | |
b2175913 MS |
7348 | /* Inferior has stepped backward into a subroutine call with source |
7349 | code that we should not step over. Do step to the beginning of the | |
7350 | last line of code in it. */ | |
7351 | ||
7352 | static void | |
568d6575 UW |
7353 | handle_step_into_function_backward (struct gdbarch *gdbarch, |
7354 | struct execution_control_state *ecs) | |
b2175913 | 7355 | { |
43f3e411 | 7356 | struct compunit_symtab *cust; |
167e4384 | 7357 | struct symtab_and_line stop_func_sal; |
b2175913 | 7358 | |
7e324e48 GB |
7359 | fill_in_stop_func (gdbarch, ecs); |
7360 | ||
43f3e411 DE |
7361 | cust = find_pc_compunit_symtab (stop_pc); |
7362 | if (cust != NULL && compunit_language (cust) != language_asm) | |
46a62268 YQ |
7363 | ecs->stop_func_start |
7364 | = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start); | |
b2175913 MS |
7365 | |
7366 | stop_func_sal = find_pc_line (stop_pc, 0); | |
7367 | ||
7368 | /* OK, we're just going to keep stepping here. */ | |
7369 | if (stop_func_sal.pc == stop_pc) | |
7370 | { | |
7371 | /* We're there already. Just stop stepping now. */ | |
bdc36728 | 7372 | end_stepping_range (ecs); |
b2175913 MS |
7373 | } |
7374 | else | |
7375 | { | |
7376 | /* Else just reset the step range and keep going. | |
7377 | No step-resume breakpoint, they don't work for | |
7378 | epilogues, which can have multiple entry paths. */ | |
16c381f0 JK |
7379 | ecs->event_thread->control.step_range_start = stop_func_sal.pc; |
7380 | ecs->event_thread->control.step_range_end = stop_func_sal.end; | |
b2175913 MS |
7381 | keep_going (ecs); |
7382 | } | |
7383 | return; | |
7384 | } | |
7385 | ||
d3169d93 | 7386 | /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID. |
44cbf7b5 AC |
7387 | This is used to both functions and to skip over code. */ |
7388 | ||
7389 | static void | |
2c03e5be PA |
7390 | insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch, |
7391 | struct symtab_and_line sr_sal, | |
7392 | struct frame_id sr_id, | |
7393 | enum bptype sr_type) | |
44cbf7b5 | 7394 | { |
611c83ae PA |
7395 | /* There should never be more than one step-resume or longjmp-resume |
7396 | breakpoint per thread, so we should never be setting a new | |
44cbf7b5 | 7397 | step_resume_breakpoint when one is already active. */ |
8358c15c | 7398 | gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL); |
2c03e5be | 7399 | gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume); |
d3169d93 DJ |
7400 | |
7401 | if (debug_infrun) | |
7402 | fprintf_unfiltered (gdb_stdlog, | |
5af949e3 UW |
7403 | "infrun: inserting step-resume breakpoint at %s\n", |
7404 | paddress (gdbarch, sr_sal.pc)); | |
d3169d93 | 7405 | |
8358c15c | 7406 | inferior_thread ()->control.step_resume_breakpoint |
2c03e5be PA |
7407 | = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type); |
7408 | } | |
7409 | ||
9da8c2a0 | 7410 | void |
2c03e5be PA |
7411 | insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch, |
7412 | struct symtab_and_line sr_sal, | |
7413 | struct frame_id sr_id) | |
7414 | { | |
7415 | insert_step_resume_breakpoint_at_sal_1 (gdbarch, | |
7416 | sr_sal, sr_id, | |
7417 | bp_step_resume); | |
44cbf7b5 | 7418 | } |
7ce450bd | 7419 | |
2c03e5be PA |
7420 | /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc. |
7421 | This is used to skip a potential signal handler. | |
7ce450bd | 7422 | |
14e60db5 DJ |
7423 | This is called with the interrupted function's frame. The signal |
7424 | handler, when it returns, will resume the interrupted function at | |
7425 | RETURN_FRAME.pc. */ | |
d303a6c7 AC |
7426 | |
7427 | static void | |
2c03e5be | 7428 | insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame) |
d303a6c7 | 7429 | { |
f4c1edd8 | 7430 | gdb_assert (return_frame != NULL); |
d303a6c7 | 7431 | |
51abb421 PA |
7432 | struct gdbarch *gdbarch = get_frame_arch (return_frame); |
7433 | ||
7434 | symtab_and_line sr_sal; | |
568d6575 | 7435 | sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame)); |
d303a6c7 | 7436 | sr_sal.section = find_pc_overlay (sr_sal.pc); |
6c95b8df | 7437 | sr_sal.pspace = get_frame_program_space (return_frame); |
d303a6c7 | 7438 | |
2c03e5be PA |
7439 | insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal, |
7440 | get_stack_frame_id (return_frame), | |
7441 | bp_hp_step_resume); | |
d303a6c7 AC |
7442 | } |
7443 | ||
2c03e5be PA |
7444 | /* Insert a "step-resume breakpoint" at the previous frame's PC. This |
7445 | is used to skip a function after stepping into it (for "next" or if | |
7446 | the called function has no debugging information). | |
14e60db5 DJ |
7447 | |
7448 | The current function has almost always been reached by single | |
7449 | stepping a call or return instruction. NEXT_FRAME belongs to the | |
7450 | current function, and the breakpoint will be set at the caller's | |
7451 | resume address. | |
7452 | ||
7453 | This is a separate function rather than reusing | |
2c03e5be | 7454 | insert_hp_step_resume_breakpoint_at_frame in order to avoid |
14e60db5 | 7455 | get_prev_frame, which may stop prematurely (see the implementation |
c7ce8faa | 7456 | of frame_unwind_caller_id for an example). */ |
14e60db5 DJ |
7457 | |
7458 | static void | |
7459 | insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame) | |
7460 | { | |
14e60db5 DJ |
7461 | /* We shouldn't have gotten here if we don't know where the call site |
7462 | is. */ | |
c7ce8faa | 7463 | gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame))); |
14e60db5 | 7464 | |
51abb421 | 7465 | struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame); |
14e60db5 | 7466 | |
51abb421 | 7467 | symtab_and_line sr_sal; |
c7ce8faa DJ |
7468 | sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, |
7469 | frame_unwind_caller_pc (next_frame)); | |
14e60db5 | 7470 | sr_sal.section = find_pc_overlay (sr_sal.pc); |
6c95b8df | 7471 | sr_sal.pspace = frame_unwind_program_space (next_frame); |
14e60db5 | 7472 | |
a6d9a66e | 7473 | insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, |
c7ce8faa | 7474 | frame_unwind_caller_id (next_frame)); |
14e60db5 DJ |
7475 | } |
7476 | ||
611c83ae PA |
7477 | /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a |
7478 | new breakpoint at the target of a jmp_buf. The handling of | |
7479 | longjmp-resume uses the same mechanisms used for handling | |
7480 | "step-resume" breakpoints. */ | |
7481 | ||
7482 | static void | |
a6d9a66e | 7483 | insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc) |
611c83ae | 7484 | { |
e81a37f7 TT |
7485 | /* There should never be more than one longjmp-resume breakpoint per |
7486 | thread, so we should never be setting a new | |
611c83ae | 7487 | longjmp_resume_breakpoint when one is already active. */ |
e81a37f7 | 7488 | gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL); |
611c83ae PA |
7489 | |
7490 | if (debug_infrun) | |
7491 | fprintf_unfiltered (gdb_stdlog, | |
5af949e3 UW |
7492 | "infrun: inserting longjmp-resume breakpoint at %s\n", |
7493 | paddress (gdbarch, pc)); | |
611c83ae | 7494 | |
e81a37f7 | 7495 | inferior_thread ()->control.exception_resume_breakpoint = |
a6d9a66e | 7496 | set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume); |
611c83ae PA |
7497 | } |
7498 | ||
186c406b TT |
7499 | /* Insert an exception resume breakpoint. TP is the thread throwing |
7500 | the exception. The block B is the block of the unwinder debug hook | |
7501 | function. FRAME is the frame corresponding to the call to this | |
7502 | function. SYM is the symbol of the function argument holding the | |
7503 | target PC of the exception. */ | |
7504 | ||
7505 | static void | |
7506 | insert_exception_resume_breakpoint (struct thread_info *tp, | |
3977b71f | 7507 | const struct block *b, |
186c406b TT |
7508 | struct frame_info *frame, |
7509 | struct symbol *sym) | |
7510 | { | |
492d29ea | 7511 | TRY |
186c406b | 7512 | { |
63e43d3a | 7513 | struct block_symbol vsym; |
186c406b TT |
7514 | struct value *value; |
7515 | CORE_ADDR handler; | |
7516 | struct breakpoint *bp; | |
7517 | ||
63e43d3a PMR |
7518 | vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL); |
7519 | value = read_var_value (vsym.symbol, vsym.block, frame); | |
186c406b TT |
7520 | /* If the value was optimized out, revert to the old behavior. */ |
7521 | if (! value_optimized_out (value)) | |
7522 | { | |
7523 | handler = value_as_address (value); | |
7524 | ||
7525 | if (debug_infrun) | |
7526 | fprintf_unfiltered (gdb_stdlog, | |
7527 | "infrun: exception resume at %lx\n", | |
7528 | (unsigned long) handler); | |
7529 | ||
7530 | bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame), | |
7531 | handler, bp_exception_resume); | |
c70a6932 JK |
7532 | |
7533 | /* set_momentary_breakpoint_at_pc invalidates FRAME. */ | |
7534 | frame = NULL; | |
7535 | ||
5d5658a1 | 7536 | bp->thread = tp->global_num; |
186c406b TT |
7537 | inferior_thread ()->control.exception_resume_breakpoint = bp; |
7538 | } | |
7539 | } | |
492d29ea PA |
7540 | CATCH (e, RETURN_MASK_ERROR) |
7541 | { | |
7542 | /* We want to ignore errors here. */ | |
7543 | } | |
7544 | END_CATCH | |
186c406b TT |
7545 | } |
7546 | ||
28106bc2 SDJ |
7547 | /* A helper for check_exception_resume that sets an |
7548 | exception-breakpoint based on a SystemTap probe. */ | |
7549 | ||
7550 | static void | |
7551 | insert_exception_resume_from_probe (struct thread_info *tp, | |
729662a5 | 7552 | const struct bound_probe *probe, |
28106bc2 SDJ |
7553 | struct frame_info *frame) |
7554 | { | |
7555 | struct value *arg_value; | |
7556 | CORE_ADDR handler; | |
7557 | struct breakpoint *bp; | |
7558 | ||
7559 | arg_value = probe_safe_evaluate_at_pc (frame, 1); | |
7560 | if (!arg_value) | |
7561 | return; | |
7562 | ||
7563 | handler = value_as_address (arg_value); | |
7564 | ||
7565 | if (debug_infrun) | |
7566 | fprintf_unfiltered (gdb_stdlog, | |
7567 | "infrun: exception resume at %s\n", | |
6bac7473 | 7568 | paddress (get_objfile_arch (probe->objfile), |
28106bc2 SDJ |
7569 | handler)); |
7570 | ||
7571 | bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame), | |
7572 | handler, bp_exception_resume); | |
5d5658a1 | 7573 | bp->thread = tp->global_num; |
28106bc2 SDJ |
7574 | inferior_thread ()->control.exception_resume_breakpoint = bp; |
7575 | } | |
7576 | ||
186c406b TT |
7577 | /* This is called when an exception has been intercepted. Check to |
7578 | see whether the exception's destination is of interest, and if so, | |
7579 | set an exception resume breakpoint there. */ | |
7580 | ||
7581 | static void | |
7582 | check_exception_resume (struct execution_control_state *ecs, | |
28106bc2 | 7583 | struct frame_info *frame) |
186c406b | 7584 | { |
729662a5 | 7585 | struct bound_probe probe; |
28106bc2 SDJ |
7586 | struct symbol *func; |
7587 | ||
7588 | /* First see if this exception unwinding breakpoint was set via a | |
7589 | SystemTap probe point. If so, the probe has two arguments: the | |
7590 | CFA and the HANDLER. We ignore the CFA, extract the handler, and | |
7591 | set a breakpoint there. */ | |
6bac7473 | 7592 | probe = find_probe_by_pc (get_frame_pc (frame)); |
729662a5 | 7593 | if (probe.probe) |
28106bc2 | 7594 | { |
729662a5 | 7595 | insert_exception_resume_from_probe (ecs->event_thread, &probe, frame); |
28106bc2 SDJ |
7596 | return; |
7597 | } | |
7598 | ||
7599 | func = get_frame_function (frame); | |
7600 | if (!func) | |
7601 | return; | |
186c406b | 7602 | |
492d29ea | 7603 | TRY |
186c406b | 7604 | { |
3977b71f | 7605 | const struct block *b; |
8157b174 | 7606 | struct block_iterator iter; |
186c406b TT |
7607 | struct symbol *sym; |
7608 | int argno = 0; | |
7609 | ||
7610 | /* The exception breakpoint is a thread-specific breakpoint on | |
7611 | the unwinder's debug hook, declared as: | |
7612 | ||
7613 | void _Unwind_DebugHook (void *cfa, void *handler); | |
7614 | ||
7615 | The CFA argument indicates the frame to which control is | |
7616 | about to be transferred. HANDLER is the destination PC. | |
7617 | ||
7618 | We ignore the CFA and set a temporary breakpoint at HANDLER. | |
7619 | This is not extremely efficient but it avoids issues in gdb | |
7620 | with computing the DWARF CFA, and it also works even in weird | |
7621 | cases such as throwing an exception from inside a signal | |
7622 | handler. */ | |
7623 | ||
7624 | b = SYMBOL_BLOCK_VALUE (func); | |
7625 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
7626 | { | |
7627 | if (!SYMBOL_IS_ARGUMENT (sym)) | |
7628 | continue; | |
7629 | ||
7630 | if (argno == 0) | |
7631 | ++argno; | |
7632 | else | |
7633 | { | |
7634 | insert_exception_resume_breakpoint (ecs->event_thread, | |
7635 | b, frame, sym); | |
7636 | break; | |
7637 | } | |
7638 | } | |
7639 | } | |
492d29ea PA |
7640 | CATCH (e, RETURN_MASK_ERROR) |
7641 | { | |
7642 | } | |
7643 | END_CATCH | |
186c406b TT |
7644 | } |
7645 | ||
104c1213 | 7646 | static void |
22bcd14b | 7647 | stop_waiting (struct execution_control_state *ecs) |
104c1213 | 7648 | { |
527159b7 | 7649 | if (debug_infrun) |
22bcd14b | 7650 | fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n"); |
527159b7 | 7651 | |
cd0fc7c3 SS |
7652 | /* Let callers know we don't want to wait for the inferior anymore. */ |
7653 | ecs->wait_some_more = 0; | |
fbea99ea PA |
7654 | |
7655 | /* If all-stop, but the target is always in non-stop mode, stop all | |
7656 | threads now that we're presenting the stop to the user. */ | |
7657 | if (!non_stop && target_is_non_stop_p ()) | |
7658 | stop_all_threads (); | |
cd0fc7c3 SS |
7659 | } |
7660 | ||
4d9d9d04 PA |
7661 | /* Like keep_going, but passes the signal to the inferior, even if the |
7662 | signal is set to nopass. */ | |
d4f3574e SS |
7663 | |
7664 | static void | |
4d9d9d04 | 7665 | keep_going_pass_signal (struct execution_control_state *ecs) |
d4f3574e | 7666 | { |
c4dbc9af PA |
7667 | /* Make sure normal_stop is called if we get a QUIT handled before |
7668 | reaching resume. */ | |
7669 | struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0); | |
7670 | ||
4d9d9d04 | 7671 | gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid)); |
372316f1 | 7672 | gdb_assert (!ecs->event_thread->resumed); |
4d9d9d04 | 7673 | |
d4f3574e | 7674 | /* Save the pc before execution, to compare with pc after stop. */ |
fb14de7b UW |
7675 | ecs->event_thread->prev_pc |
7676 | = regcache_read_pc (get_thread_regcache (ecs->ptid)); | |
d4f3574e | 7677 | |
4d9d9d04 | 7678 | if (ecs->event_thread->control.trap_expected) |
d4f3574e | 7679 | { |
4d9d9d04 PA |
7680 | struct thread_info *tp = ecs->event_thread; |
7681 | ||
7682 | if (debug_infrun) | |
7683 | fprintf_unfiltered (gdb_stdlog, | |
7684 | "infrun: %s has trap_expected set, " | |
7685 | "resuming to collect trap\n", | |
7686 | target_pid_to_str (tp->ptid)); | |
7687 | ||
a9ba6bae PA |
7688 | /* We haven't yet gotten our trap, and either: intercepted a |
7689 | non-signal event (e.g., a fork); or took a signal which we | |
7690 | are supposed to pass through to the inferior. Simply | |
7691 | continue. */ | |
c4dbc9af | 7692 | discard_cleanups (old_cleanups); |
64ce06e4 | 7693 | resume (ecs->event_thread->suspend.stop_signal); |
d4f3574e | 7694 | } |
372316f1 PA |
7695 | else if (step_over_info_valid_p ()) |
7696 | { | |
7697 | /* Another thread is stepping over a breakpoint in-line. If | |
7698 | this thread needs a step-over too, queue the request. In | |
7699 | either case, this resume must be deferred for later. */ | |
7700 | struct thread_info *tp = ecs->event_thread; | |
7701 | ||
7702 | if (ecs->hit_singlestep_breakpoint | |
7703 | || thread_still_needs_step_over (tp)) | |
7704 | { | |
7705 | if (debug_infrun) | |
7706 | fprintf_unfiltered (gdb_stdlog, | |
7707 | "infrun: step-over already in progress: " | |
7708 | "step-over for %s deferred\n", | |
7709 | target_pid_to_str (tp->ptid)); | |
7710 | thread_step_over_chain_enqueue (tp); | |
7711 | } | |
7712 | else | |
7713 | { | |
7714 | if (debug_infrun) | |
7715 | fprintf_unfiltered (gdb_stdlog, | |
7716 | "infrun: step-over in progress: " | |
7717 | "resume of %s deferred\n", | |
7718 | target_pid_to_str (tp->ptid)); | |
7719 | } | |
7720 | ||
7721 | discard_cleanups (old_cleanups); | |
7722 | } | |
d4f3574e SS |
7723 | else |
7724 | { | |
31e77af2 | 7725 | struct regcache *regcache = get_current_regcache (); |
963f9c80 PA |
7726 | int remove_bp; |
7727 | int remove_wps; | |
8d297bbf | 7728 | step_over_what step_what; |
31e77af2 | 7729 | |
d4f3574e | 7730 | /* Either the trap was not expected, but we are continuing |
a9ba6bae PA |
7731 | anyway (if we got a signal, the user asked it be passed to |
7732 | the child) | |
7733 | -- or -- | |
7734 | We got our expected trap, but decided we should resume from | |
7735 | it. | |
d4f3574e | 7736 | |
a9ba6bae | 7737 | We're going to run this baby now! |
d4f3574e | 7738 | |
c36b740a VP |
7739 | Note that insert_breakpoints won't try to re-insert |
7740 | already inserted breakpoints. Therefore, we don't | |
7741 | care if breakpoints were already inserted, or not. */ | |
a9ba6bae | 7742 | |
31e77af2 PA |
7743 | /* If we need to step over a breakpoint, and we're not using |
7744 | displaced stepping to do so, insert all breakpoints | |
7745 | (watchpoints, etc.) but the one we're stepping over, step one | |
7746 | instruction, and then re-insert the breakpoint when that step | |
7747 | is finished. */ | |
963f9c80 | 7748 | |
6c4cfb24 PA |
7749 | step_what = thread_still_needs_step_over (ecs->event_thread); |
7750 | ||
963f9c80 | 7751 | remove_bp = (ecs->hit_singlestep_breakpoint |
6c4cfb24 PA |
7752 | || (step_what & STEP_OVER_BREAKPOINT)); |
7753 | remove_wps = (step_what & STEP_OVER_WATCHPOINT); | |
963f9c80 | 7754 | |
cb71640d PA |
7755 | /* We can't use displaced stepping if we need to step past a |
7756 | watchpoint. The instruction copied to the scratch pad would | |
7757 | still trigger the watchpoint. */ | |
7758 | if (remove_bp | |
3fc8eb30 | 7759 | && (remove_wps || !use_displaced_stepping (ecs->event_thread))) |
45e8c884 | 7760 | { |
31e77af2 | 7761 | set_step_over_info (get_regcache_aspace (regcache), |
21edc42f YQ |
7762 | regcache_read_pc (regcache), remove_wps, |
7763 | ecs->event_thread->global_num); | |
45e8c884 | 7764 | } |
963f9c80 | 7765 | else if (remove_wps) |
21edc42f | 7766 | set_step_over_info (NULL, 0, remove_wps, -1); |
372316f1 PA |
7767 | |
7768 | /* If we now need to do an in-line step-over, we need to stop | |
7769 | all other threads. Note this must be done before | |
7770 | insert_breakpoints below, because that removes the breakpoint | |
7771 | we're about to step over, otherwise other threads could miss | |
7772 | it. */ | |
fbea99ea | 7773 | if (step_over_info_valid_p () && target_is_non_stop_p ()) |
372316f1 | 7774 | stop_all_threads (); |
abbb1732 | 7775 | |
31e77af2 | 7776 | /* Stop stepping if inserting breakpoints fails. */ |
492d29ea | 7777 | TRY |
31e77af2 PA |
7778 | { |
7779 | insert_breakpoints (); | |
7780 | } | |
492d29ea | 7781 | CATCH (e, RETURN_MASK_ERROR) |
31e77af2 PA |
7782 | { |
7783 | exception_print (gdb_stderr, e); | |
22bcd14b | 7784 | stop_waiting (ecs); |
de1fe8c8 | 7785 | discard_cleanups (old_cleanups); |
31e77af2 | 7786 | return; |
d4f3574e | 7787 | } |
492d29ea | 7788 | END_CATCH |
d4f3574e | 7789 | |
963f9c80 | 7790 | ecs->event_thread->control.trap_expected = (remove_bp || remove_wps); |
d4f3574e | 7791 | |
c4dbc9af | 7792 | discard_cleanups (old_cleanups); |
64ce06e4 | 7793 | resume (ecs->event_thread->suspend.stop_signal); |
d4f3574e SS |
7794 | } |
7795 | ||
488f131b | 7796 | prepare_to_wait (ecs); |
d4f3574e SS |
7797 | } |
7798 | ||
4d9d9d04 PA |
7799 | /* Called when we should continue running the inferior, because the |
7800 | current event doesn't cause a user visible stop. This does the | |
7801 | resuming part; waiting for the next event is done elsewhere. */ | |
7802 | ||
7803 | static void | |
7804 | keep_going (struct execution_control_state *ecs) | |
7805 | { | |
7806 | if (ecs->event_thread->control.trap_expected | |
7807 | && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP) | |
7808 | ecs->event_thread->control.trap_expected = 0; | |
7809 | ||
7810 | if (!signal_program[ecs->event_thread->suspend.stop_signal]) | |
7811 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; | |
7812 | keep_going_pass_signal (ecs); | |
7813 | } | |
7814 | ||
104c1213 JM |
7815 | /* This function normally comes after a resume, before |
7816 | handle_inferior_event exits. It takes care of any last bits of | |
7817 | housekeeping, and sets the all-important wait_some_more flag. */ | |
cd0fc7c3 | 7818 | |
104c1213 JM |
7819 | static void |
7820 | prepare_to_wait (struct execution_control_state *ecs) | |
cd0fc7c3 | 7821 | { |
527159b7 | 7822 | if (debug_infrun) |
8a9de0e4 | 7823 | fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n"); |
104c1213 | 7824 | |
104c1213 | 7825 | ecs->wait_some_more = 1; |
0b333c5e PA |
7826 | |
7827 | if (!target_is_async_p ()) | |
7828 | mark_infrun_async_event_handler (); | |
c906108c | 7829 | } |
11cf8741 | 7830 | |
fd664c91 | 7831 | /* We are done with the step range of a step/next/si/ni command. |
b57bacec | 7832 | Called once for each n of a "step n" operation. */ |
fd664c91 PA |
7833 | |
7834 | static void | |
bdc36728 | 7835 | end_stepping_range (struct execution_control_state *ecs) |
fd664c91 | 7836 | { |
bdc36728 | 7837 | ecs->event_thread->control.stop_step = 1; |
bdc36728 | 7838 | stop_waiting (ecs); |
fd664c91 PA |
7839 | } |
7840 | ||
33d62d64 JK |
7841 | /* Several print_*_reason functions to print why the inferior has stopped. |
7842 | We always print something when the inferior exits, or receives a signal. | |
7843 | The rest of the cases are dealt with later on in normal_stop and | |
7844 | print_it_typical. Ideally there should be a call to one of these | |
7845 | print_*_reason functions functions from handle_inferior_event each time | |
22bcd14b | 7846 | stop_waiting is called. |
33d62d64 | 7847 | |
fd664c91 PA |
7848 | Note that we don't call these directly, instead we delegate that to |
7849 | the interpreters, through observers. Interpreters then call these | |
7850 | with whatever uiout is right. */ | |
33d62d64 | 7851 | |
fd664c91 PA |
7852 | void |
7853 | print_end_stepping_range_reason (struct ui_out *uiout) | |
33d62d64 | 7854 | { |
fd664c91 | 7855 | /* For CLI-like interpreters, print nothing. */ |
33d62d64 | 7856 | |
112e8700 | 7857 | if (uiout->is_mi_like_p ()) |
fd664c91 | 7858 | { |
112e8700 | 7859 | uiout->field_string ("reason", |
fd664c91 PA |
7860 | async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE)); |
7861 | } | |
7862 | } | |
33d62d64 | 7863 | |
fd664c91 PA |
7864 | void |
7865 | print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal) | |
11cf8741 | 7866 | { |
33d62d64 | 7867 | annotate_signalled (); |
112e8700 SM |
7868 | if (uiout->is_mi_like_p ()) |
7869 | uiout->field_string | |
7870 | ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED)); | |
7871 | uiout->text ("\nProgram terminated with signal "); | |
33d62d64 | 7872 | annotate_signal_name (); |
112e8700 | 7873 | uiout->field_string ("signal-name", |
2ea28649 | 7874 | gdb_signal_to_name (siggnal)); |
33d62d64 | 7875 | annotate_signal_name_end (); |
112e8700 | 7876 | uiout->text (", "); |
33d62d64 | 7877 | annotate_signal_string (); |
112e8700 | 7878 | uiout->field_string ("signal-meaning", |
2ea28649 | 7879 | gdb_signal_to_string (siggnal)); |
33d62d64 | 7880 | annotate_signal_string_end (); |
112e8700 SM |
7881 | uiout->text (".\n"); |
7882 | uiout->text ("The program no longer exists.\n"); | |
33d62d64 JK |
7883 | } |
7884 | ||
fd664c91 PA |
7885 | void |
7886 | print_exited_reason (struct ui_out *uiout, int exitstatus) | |
33d62d64 | 7887 | { |
fda326dd TT |
7888 | struct inferior *inf = current_inferior (); |
7889 | const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid)); | |
7890 | ||
33d62d64 JK |
7891 | annotate_exited (exitstatus); |
7892 | if (exitstatus) | |
7893 | { | |
112e8700 SM |
7894 | if (uiout->is_mi_like_p ()) |
7895 | uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED)); | |
7896 | uiout->text ("[Inferior "); | |
7897 | uiout->text (plongest (inf->num)); | |
7898 | uiout->text (" ("); | |
7899 | uiout->text (pidstr); | |
7900 | uiout->text (") exited with code "); | |
7901 | uiout->field_fmt ("exit-code", "0%o", (unsigned int) exitstatus); | |
7902 | uiout->text ("]\n"); | |
33d62d64 JK |
7903 | } |
7904 | else | |
11cf8741 | 7905 | { |
112e8700 SM |
7906 | if (uiout->is_mi_like_p ()) |
7907 | uiout->field_string | |
7908 | ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY)); | |
7909 | uiout->text ("[Inferior "); | |
7910 | uiout->text (plongest (inf->num)); | |
7911 | uiout->text (" ("); | |
7912 | uiout->text (pidstr); | |
7913 | uiout->text (") exited normally]\n"); | |
33d62d64 | 7914 | } |
33d62d64 JK |
7915 | } |
7916 | ||
012b3a21 WT |
7917 | /* Some targets/architectures can do extra processing/display of |
7918 | segmentation faults. E.g., Intel MPX boundary faults. | |
7919 | Call the architecture dependent function to handle the fault. */ | |
7920 | ||
7921 | static void | |
7922 | handle_segmentation_fault (struct ui_out *uiout) | |
7923 | { | |
7924 | struct regcache *regcache = get_current_regcache (); | |
7925 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
7926 | ||
7927 | if (gdbarch_handle_segmentation_fault_p (gdbarch)) | |
7928 | gdbarch_handle_segmentation_fault (gdbarch, uiout); | |
7929 | } | |
7930 | ||
fd664c91 PA |
7931 | void |
7932 | print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal) | |
33d62d64 | 7933 | { |
f303dbd6 PA |
7934 | struct thread_info *thr = inferior_thread (); |
7935 | ||
33d62d64 JK |
7936 | annotate_signal (); |
7937 | ||
112e8700 | 7938 | if (uiout->is_mi_like_p ()) |
f303dbd6 PA |
7939 | ; |
7940 | else if (show_thread_that_caused_stop ()) | |
33d62d64 | 7941 | { |
f303dbd6 | 7942 | const char *name; |
33d62d64 | 7943 | |
112e8700 SM |
7944 | uiout->text ("\nThread "); |
7945 | uiout->field_fmt ("thread-id", "%s", print_thread_id (thr)); | |
f303dbd6 PA |
7946 | |
7947 | name = thr->name != NULL ? thr->name : target_thread_name (thr); | |
7948 | if (name != NULL) | |
7949 | { | |
112e8700 SM |
7950 | uiout->text (" \""); |
7951 | uiout->field_fmt ("name", "%s", name); | |
7952 | uiout->text ("\""); | |
f303dbd6 | 7953 | } |
33d62d64 | 7954 | } |
f303dbd6 | 7955 | else |
112e8700 | 7956 | uiout->text ("\nProgram"); |
f303dbd6 | 7957 | |
112e8700 SM |
7958 | if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ()) |
7959 | uiout->text (" stopped"); | |
33d62d64 JK |
7960 | else |
7961 | { | |
112e8700 | 7962 | uiout->text (" received signal "); |
8b93c638 | 7963 | annotate_signal_name (); |
112e8700 SM |
7964 | if (uiout->is_mi_like_p ()) |
7965 | uiout->field_string | |
7966 | ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED)); | |
7967 | uiout->field_string ("signal-name", gdb_signal_to_name (siggnal)); | |
8b93c638 | 7968 | annotate_signal_name_end (); |
112e8700 | 7969 | uiout->text (", "); |
8b93c638 | 7970 | annotate_signal_string (); |
112e8700 | 7971 | uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal)); |
012b3a21 WT |
7972 | |
7973 | if (siggnal == GDB_SIGNAL_SEGV) | |
7974 | handle_segmentation_fault (uiout); | |
7975 | ||
8b93c638 | 7976 | annotate_signal_string_end (); |
33d62d64 | 7977 | } |
112e8700 | 7978 | uiout->text (".\n"); |
33d62d64 | 7979 | } |
252fbfc8 | 7980 | |
fd664c91 PA |
7981 | void |
7982 | print_no_history_reason (struct ui_out *uiout) | |
33d62d64 | 7983 | { |
112e8700 | 7984 | uiout->text ("\nNo more reverse-execution history.\n"); |
11cf8741 | 7985 | } |
43ff13b4 | 7986 | |
0c7e1a46 PA |
7987 | /* Print current location without a level number, if we have changed |
7988 | functions or hit a breakpoint. Print source line if we have one. | |
7989 | bpstat_print contains the logic deciding in detail what to print, | |
7990 | based on the event(s) that just occurred. */ | |
7991 | ||
243a9253 PA |
7992 | static void |
7993 | print_stop_location (struct target_waitstatus *ws) | |
0c7e1a46 PA |
7994 | { |
7995 | int bpstat_ret; | |
f486487f | 7996 | enum print_what source_flag; |
0c7e1a46 PA |
7997 | int do_frame_printing = 1; |
7998 | struct thread_info *tp = inferior_thread (); | |
7999 | ||
8000 | bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind); | |
8001 | switch (bpstat_ret) | |
8002 | { | |
8003 | case PRINT_UNKNOWN: | |
8004 | /* FIXME: cagney/2002-12-01: Given that a frame ID does (or | |
8005 | should) carry around the function and does (or should) use | |
8006 | that when doing a frame comparison. */ | |
8007 | if (tp->control.stop_step | |
8008 | && frame_id_eq (tp->control.step_frame_id, | |
8009 | get_frame_id (get_current_frame ())) | |
885eeb5b | 8010 | && tp->control.step_start_function == find_pc_function (stop_pc)) |
0c7e1a46 PA |
8011 | { |
8012 | /* Finished step, just print source line. */ | |
8013 | source_flag = SRC_LINE; | |
8014 | } | |
8015 | else | |
8016 | { | |
8017 | /* Print location and source line. */ | |
8018 | source_flag = SRC_AND_LOC; | |
8019 | } | |
8020 | break; | |
8021 | case PRINT_SRC_AND_LOC: | |
8022 | /* Print location and source line. */ | |
8023 | source_flag = SRC_AND_LOC; | |
8024 | break; | |
8025 | case PRINT_SRC_ONLY: | |
8026 | source_flag = SRC_LINE; | |
8027 | break; | |
8028 | case PRINT_NOTHING: | |
8029 | /* Something bogus. */ | |
8030 | source_flag = SRC_LINE; | |
8031 | do_frame_printing = 0; | |
8032 | break; | |
8033 | default: | |
8034 | internal_error (__FILE__, __LINE__, _("Unknown value.")); | |
8035 | } | |
8036 | ||
8037 | /* The behavior of this routine with respect to the source | |
8038 | flag is: | |
8039 | SRC_LINE: Print only source line | |
8040 | LOCATION: Print only location | |
8041 | SRC_AND_LOC: Print location and source line. */ | |
8042 | if (do_frame_printing) | |
8043 | print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1); | |
243a9253 PA |
8044 | } |
8045 | ||
243a9253 PA |
8046 | /* See infrun.h. */ |
8047 | ||
8048 | void | |
8049 | print_stop_event (struct ui_out *uiout) | |
8050 | { | |
243a9253 PA |
8051 | struct target_waitstatus last; |
8052 | ptid_t last_ptid; | |
8053 | struct thread_info *tp; | |
8054 | ||
8055 | get_last_target_status (&last_ptid, &last); | |
8056 | ||
67ad9399 TT |
8057 | { |
8058 | scoped_restore save_uiout = make_scoped_restore (¤t_uiout, uiout); | |
0c7e1a46 | 8059 | |
67ad9399 | 8060 | print_stop_location (&last); |
243a9253 | 8061 | |
67ad9399 TT |
8062 | /* Display the auto-display expressions. */ |
8063 | do_displays (); | |
8064 | } | |
243a9253 PA |
8065 | |
8066 | tp = inferior_thread (); | |
8067 | if (tp->thread_fsm != NULL | |
8068 | && thread_fsm_finished_p (tp->thread_fsm)) | |
8069 | { | |
8070 | struct return_value_info *rv; | |
8071 | ||
8072 | rv = thread_fsm_return_value (tp->thread_fsm); | |
8073 | if (rv != NULL) | |
8074 | print_return_value (uiout, rv); | |
8075 | } | |
0c7e1a46 PA |
8076 | } |
8077 | ||
388a7084 PA |
8078 | /* See infrun.h. */ |
8079 | ||
8080 | void | |
8081 | maybe_remove_breakpoints (void) | |
8082 | { | |
8083 | if (!breakpoints_should_be_inserted_now () && target_has_execution) | |
8084 | { | |
8085 | if (remove_breakpoints ()) | |
8086 | { | |
223ffa71 | 8087 | target_terminal::ours_for_output (); |
388a7084 PA |
8088 | printf_filtered (_("Cannot remove breakpoints because " |
8089 | "program is no longer writable.\nFurther " | |
8090 | "execution is probably impossible.\n")); | |
8091 | } | |
8092 | } | |
8093 | } | |
8094 | ||
4c2f2a79 PA |
8095 | /* The execution context that just caused a normal stop. */ |
8096 | ||
8097 | struct stop_context | |
8098 | { | |
8099 | /* The stop ID. */ | |
8100 | ULONGEST stop_id; | |
c906108c | 8101 | |
4c2f2a79 | 8102 | /* The event PTID. */ |
c906108c | 8103 | |
4c2f2a79 PA |
8104 | ptid_t ptid; |
8105 | ||
8106 | /* If stopp for a thread event, this is the thread that caused the | |
8107 | stop. */ | |
8108 | struct thread_info *thread; | |
8109 | ||
8110 | /* The inferior that caused the stop. */ | |
8111 | int inf_num; | |
8112 | }; | |
8113 | ||
8114 | /* Returns a new stop context. If stopped for a thread event, this | |
8115 | takes a strong reference to the thread. */ | |
8116 | ||
8117 | static struct stop_context * | |
8118 | save_stop_context (void) | |
8119 | { | |
224c3ddb | 8120 | struct stop_context *sc = XNEW (struct stop_context); |
4c2f2a79 PA |
8121 | |
8122 | sc->stop_id = get_stop_id (); | |
8123 | sc->ptid = inferior_ptid; | |
8124 | sc->inf_num = current_inferior ()->num; | |
8125 | ||
8126 | if (!ptid_equal (inferior_ptid, null_ptid)) | |
8127 | { | |
8128 | /* Take a strong reference so that the thread can't be deleted | |
8129 | yet. */ | |
8130 | sc->thread = inferior_thread (); | |
803bdfe4 | 8131 | sc->thread->incref (); |
4c2f2a79 PA |
8132 | } |
8133 | else | |
8134 | sc->thread = NULL; | |
8135 | ||
8136 | return sc; | |
8137 | } | |
8138 | ||
8139 | /* Release a stop context previously created with save_stop_context. | |
8140 | Releases the strong reference to the thread as well. */ | |
8141 | ||
8142 | static void | |
8143 | release_stop_context_cleanup (void *arg) | |
8144 | { | |
9a3c8263 | 8145 | struct stop_context *sc = (struct stop_context *) arg; |
4c2f2a79 PA |
8146 | |
8147 | if (sc->thread != NULL) | |
803bdfe4 | 8148 | sc->thread->decref (); |
4c2f2a79 PA |
8149 | xfree (sc); |
8150 | } | |
8151 | ||
8152 | /* Return true if the current context no longer matches the saved stop | |
8153 | context. */ | |
8154 | ||
8155 | static int | |
8156 | stop_context_changed (struct stop_context *prev) | |
8157 | { | |
8158 | if (!ptid_equal (prev->ptid, inferior_ptid)) | |
8159 | return 1; | |
8160 | if (prev->inf_num != current_inferior ()->num) | |
8161 | return 1; | |
8162 | if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED) | |
8163 | return 1; | |
8164 | if (get_stop_id () != prev->stop_id) | |
8165 | return 1; | |
8166 | return 0; | |
8167 | } | |
8168 | ||
8169 | /* See infrun.h. */ | |
8170 | ||
8171 | int | |
96baa820 | 8172 | normal_stop (void) |
c906108c | 8173 | { |
73b65bb0 DJ |
8174 | struct target_waitstatus last; |
8175 | ptid_t last_ptid; | |
29f49a6a | 8176 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); |
e1316e60 | 8177 | ptid_t pid_ptid; |
73b65bb0 DJ |
8178 | |
8179 | get_last_target_status (&last_ptid, &last); | |
8180 | ||
4c2f2a79 PA |
8181 | new_stop_id (); |
8182 | ||
29f49a6a PA |
8183 | /* If an exception is thrown from this point on, make sure to |
8184 | propagate GDB's knowledge of the executing state to the | |
8185 | frontend/user running state. A QUIT is an easy exception to see | |
8186 | here, so do this before any filtered output. */ | |
c35b1492 PA |
8187 | if (!non_stop) |
8188 | make_cleanup (finish_thread_state_cleanup, &minus_one_ptid); | |
e1316e60 PA |
8189 | else if (last.kind == TARGET_WAITKIND_SIGNALLED |
8190 | || last.kind == TARGET_WAITKIND_EXITED) | |
8191 | { | |
8192 | /* On some targets, we may still have live threads in the | |
8193 | inferior when we get a process exit event. E.g., for | |
8194 | "checkpoint", when the current checkpoint/fork exits, | |
8195 | linux-fork.c automatically switches to another fork from | |
8196 | within target_mourn_inferior. */ | |
8197 | if (!ptid_equal (inferior_ptid, null_ptid)) | |
8198 | { | |
8199 | pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid)); | |
8200 | make_cleanup (finish_thread_state_cleanup, &pid_ptid); | |
8201 | } | |
8202 | } | |
8203 | else if (last.kind != TARGET_WAITKIND_NO_RESUMED) | |
c35b1492 | 8204 | make_cleanup (finish_thread_state_cleanup, &inferior_ptid); |
29f49a6a | 8205 | |
b57bacec PA |
8206 | /* As we're presenting a stop, and potentially removing breakpoints, |
8207 | update the thread list so we can tell whether there are threads | |
8208 | running on the target. With target remote, for example, we can | |
8209 | only learn about new threads when we explicitly update the thread | |
8210 | list. Do this before notifying the interpreters about signal | |
8211 | stops, end of stepping ranges, etc., so that the "new thread" | |
8212 | output is emitted before e.g., "Program received signal FOO", | |
8213 | instead of after. */ | |
8214 | update_thread_list (); | |
8215 | ||
8216 | if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal) | |
8217 | observer_notify_signal_received (inferior_thread ()->suspend.stop_signal); | |
8218 | ||
c906108c SS |
8219 | /* As with the notification of thread events, we want to delay |
8220 | notifying the user that we've switched thread context until | |
8221 | the inferior actually stops. | |
8222 | ||
73b65bb0 DJ |
8223 | There's no point in saying anything if the inferior has exited. |
8224 | Note that SIGNALLED here means "exited with a signal", not | |
b65dc60b PA |
8225 | "received a signal". |
8226 | ||
8227 | Also skip saying anything in non-stop mode. In that mode, as we | |
8228 | don't want GDB to switch threads behind the user's back, to avoid | |
8229 | races where the user is typing a command to apply to thread x, | |
8230 | but GDB switches to thread y before the user finishes entering | |
8231 | the command, fetch_inferior_event installs a cleanup to restore | |
8232 | the current thread back to the thread the user had selected right | |
8233 | after this event is handled, so we're not really switching, only | |
8234 | informing of a stop. */ | |
4f8d22e3 PA |
8235 | if (!non_stop |
8236 | && !ptid_equal (previous_inferior_ptid, inferior_ptid) | |
73b65bb0 DJ |
8237 | && target_has_execution |
8238 | && last.kind != TARGET_WAITKIND_SIGNALLED | |
0e5bf2a8 PA |
8239 | && last.kind != TARGET_WAITKIND_EXITED |
8240 | && last.kind != TARGET_WAITKIND_NO_RESUMED) | |
c906108c | 8241 | { |
0e454242 | 8242 | SWITCH_THRU_ALL_UIS () |
3b12939d | 8243 | { |
223ffa71 | 8244 | target_terminal::ours_for_output (); |
3b12939d PA |
8245 | printf_filtered (_("[Switching to %s]\n"), |
8246 | target_pid_to_str (inferior_ptid)); | |
8247 | annotate_thread_changed (); | |
8248 | } | |
39f77062 | 8249 | previous_inferior_ptid = inferior_ptid; |
c906108c | 8250 | } |
c906108c | 8251 | |
0e5bf2a8 PA |
8252 | if (last.kind == TARGET_WAITKIND_NO_RESUMED) |
8253 | { | |
0e454242 | 8254 | SWITCH_THRU_ALL_UIS () |
3b12939d PA |
8255 | if (current_ui->prompt_state == PROMPT_BLOCKED) |
8256 | { | |
223ffa71 | 8257 | target_terminal::ours_for_output (); |
3b12939d PA |
8258 | printf_filtered (_("No unwaited-for children left.\n")); |
8259 | } | |
0e5bf2a8 PA |
8260 | } |
8261 | ||
b57bacec | 8262 | /* Note: this depends on the update_thread_list call above. */ |
388a7084 | 8263 | maybe_remove_breakpoints (); |
c906108c | 8264 | |
c906108c SS |
8265 | /* If an auto-display called a function and that got a signal, |
8266 | delete that auto-display to avoid an infinite recursion. */ | |
8267 | ||
8268 | if (stopped_by_random_signal) | |
8269 | disable_current_display (); | |
8270 | ||
0e454242 | 8271 | SWITCH_THRU_ALL_UIS () |
3b12939d PA |
8272 | { |
8273 | async_enable_stdin (); | |
8274 | } | |
c906108c | 8275 | |
388a7084 PA |
8276 | /* Let the user/frontend see the threads as stopped. */ |
8277 | do_cleanups (old_chain); | |
8278 | ||
8279 | /* Select innermost stack frame - i.e., current frame is frame 0, | |
8280 | and current location is based on that. Handle the case where the | |
8281 | dummy call is returning after being stopped. E.g. the dummy call | |
8282 | previously hit a breakpoint. (If the dummy call returns | |
8283 | normally, we won't reach here.) Do this before the stop hook is | |
8284 | run, so that it doesn't get to see the temporary dummy frame, | |
8285 | which is not where we'll present the stop. */ | |
8286 | if (has_stack_frames ()) | |
8287 | { | |
8288 | if (stop_stack_dummy == STOP_STACK_DUMMY) | |
8289 | { | |
8290 | /* Pop the empty frame that contains the stack dummy. This | |
8291 | also restores inferior state prior to the call (struct | |
8292 | infcall_suspend_state). */ | |
8293 | struct frame_info *frame = get_current_frame (); | |
8294 | ||
8295 | gdb_assert (get_frame_type (frame) == DUMMY_FRAME); | |
8296 | frame_pop (frame); | |
8297 | /* frame_pop calls reinit_frame_cache as the last thing it | |
8298 | does which means there's now no selected frame. */ | |
8299 | } | |
8300 | ||
8301 | select_frame (get_current_frame ()); | |
8302 | ||
8303 | /* Set the current source location. */ | |
8304 | set_current_sal_from_frame (get_current_frame ()); | |
8305 | } | |
dd7e2d2b PA |
8306 | |
8307 | /* Look up the hook_stop and run it (CLI internally handles problem | |
8308 | of stop_command's pre-hook not existing). */ | |
4c2f2a79 PA |
8309 | if (stop_command != NULL) |
8310 | { | |
8311 | struct stop_context *saved_context = save_stop_context (); | |
8312 | struct cleanup *old_chain | |
8313 | = make_cleanup (release_stop_context_cleanup, saved_context); | |
8314 | ||
8315 | catch_errors (hook_stop_stub, stop_command, | |
8316 | "Error while running hook_stop:\n", RETURN_MASK_ALL); | |
8317 | ||
8318 | /* If the stop hook resumes the target, then there's no point in | |
8319 | trying to notify about the previous stop; its context is | |
8320 | gone. Likewise if the command switches thread or inferior -- | |
8321 | the observers would print a stop for the wrong | |
8322 | thread/inferior. */ | |
8323 | if (stop_context_changed (saved_context)) | |
8324 | { | |
8325 | do_cleanups (old_chain); | |
8326 | return 1; | |
8327 | } | |
8328 | do_cleanups (old_chain); | |
8329 | } | |
dd7e2d2b | 8330 | |
388a7084 PA |
8331 | /* Notify observers about the stop. This is where the interpreters |
8332 | print the stop event. */ | |
8333 | if (!ptid_equal (inferior_ptid, null_ptid)) | |
8334 | observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat, | |
8335 | stop_print_frame); | |
8336 | else | |
8337 | observer_notify_normal_stop (NULL, stop_print_frame); | |
347bddb7 | 8338 | |
243a9253 PA |
8339 | annotate_stopped (); |
8340 | ||
48844aa6 PA |
8341 | if (target_has_execution) |
8342 | { | |
8343 | if (last.kind != TARGET_WAITKIND_SIGNALLED | |
8344 | && last.kind != TARGET_WAITKIND_EXITED) | |
8345 | /* Delete the breakpoint we stopped at, if it wants to be deleted. | |
8346 | Delete any breakpoint that is to be deleted at the next stop. */ | |
16c381f0 | 8347 | breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat); |
94cc34af | 8348 | } |
6c95b8df PA |
8349 | |
8350 | /* Try to get rid of automatically added inferiors that are no | |
8351 | longer needed. Keeping those around slows down things linearly. | |
8352 | Note that this never removes the current inferior. */ | |
8353 | prune_inferiors (); | |
4c2f2a79 PA |
8354 | |
8355 | return 0; | |
c906108c SS |
8356 | } |
8357 | ||
8358 | static int | |
96baa820 | 8359 | hook_stop_stub (void *cmd) |
c906108c | 8360 | { |
5913bcb0 | 8361 | execute_cmd_pre_hook ((struct cmd_list_element *) cmd); |
c906108c SS |
8362 | return (0); |
8363 | } | |
8364 | \f | |
c5aa993b | 8365 | int |
96baa820 | 8366 | signal_stop_state (int signo) |
c906108c | 8367 | { |
d6b48e9c | 8368 | return signal_stop[signo]; |
c906108c SS |
8369 | } |
8370 | ||
c5aa993b | 8371 | int |
96baa820 | 8372 | signal_print_state (int signo) |
c906108c SS |
8373 | { |
8374 | return signal_print[signo]; | |
8375 | } | |
8376 | ||
c5aa993b | 8377 | int |
96baa820 | 8378 | signal_pass_state (int signo) |
c906108c SS |
8379 | { |
8380 | return signal_program[signo]; | |
8381 | } | |
8382 | ||
2455069d UW |
8383 | static void |
8384 | signal_cache_update (int signo) | |
8385 | { | |
8386 | if (signo == -1) | |
8387 | { | |
a493e3e2 | 8388 | for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++) |
2455069d UW |
8389 | signal_cache_update (signo); |
8390 | ||
8391 | return; | |
8392 | } | |
8393 | ||
8394 | signal_pass[signo] = (signal_stop[signo] == 0 | |
8395 | && signal_print[signo] == 0 | |
ab04a2af TT |
8396 | && signal_program[signo] == 1 |
8397 | && signal_catch[signo] == 0); | |
2455069d UW |
8398 | } |
8399 | ||
488f131b | 8400 | int |
7bda5e4a | 8401 | signal_stop_update (int signo, int state) |
d4f3574e SS |
8402 | { |
8403 | int ret = signal_stop[signo]; | |
abbb1732 | 8404 | |
d4f3574e | 8405 | signal_stop[signo] = state; |
2455069d | 8406 | signal_cache_update (signo); |
d4f3574e SS |
8407 | return ret; |
8408 | } | |
8409 | ||
488f131b | 8410 | int |
7bda5e4a | 8411 | signal_print_update (int signo, int state) |
d4f3574e SS |
8412 | { |
8413 | int ret = signal_print[signo]; | |
abbb1732 | 8414 | |
d4f3574e | 8415 | signal_print[signo] = state; |
2455069d | 8416 | signal_cache_update (signo); |
d4f3574e SS |
8417 | return ret; |
8418 | } | |
8419 | ||
488f131b | 8420 | int |
7bda5e4a | 8421 | signal_pass_update (int signo, int state) |
d4f3574e SS |
8422 | { |
8423 | int ret = signal_program[signo]; | |
abbb1732 | 8424 | |
d4f3574e | 8425 | signal_program[signo] = state; |
2455069d | 8426 | signal_cache_update (signo); |
d4f3574e SS |
8427 | return ret; |
8428 | } | |
8429 | ||
ab04a2af TT |
8430 | /* Update the global 'signal_catch' from INFO and notify the |
8431 | target. */ | |
8432 | ||
8433 | void | |
8434 | signal_catch_update (const unsigned int *info) | |
8435 | { | |
8436 | int i; | |
8437 | ||
8438 | for (i = 0; i < GDB_SIGNAL_LAST; ++i) | |
8439 | signal_catch[i] = info[i] > 0; | |
8440 | signal_cache_update (-1); | |
8441 | target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass); | |
8442 | } | |
8443 | ||
c906108c | 8444 | static void |
96baa820 | 8445 | sig_print_header (void) |
c906108c | 8446 | { |
3e43a32a MS |
8447 | printf_filtered (_("Signal Stop\tPrint\tPass " |
8448 | "to program\tDescription\n")); | |
c906108c SS |
8449 | } |
8450 | ||
8451 | static void | |
2ea28649 | 8452 | sig_print_info (enum gdb_signal oursig) |
c906108c | 8453 | { |
2ea28649 | 8454 | const char *name = gdb_signal_to_name (oursig); |
c906108c | 8455 | int name_padding = 13 - strlen (name); |
96baa820 | 8456 | |
c906108c SS |
8457 | if (name_padding <= 0) |
8458 | name_padding = 0; | |
8459 | ||
8460 | printf_filtered ("%s", name); | |
488f131b | 8461 | printf_filtered ("%*.*s ", name_padding, name_padding, " "); |
c906108c SS |
8462 | printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No"); |
8463 | printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No"); | |
8464 | printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No"); | |
2ea28649 | 8465 | printf_filtered ("%s\n", gdb_signal_to_string (oursig)); |
c906108c SS |
8466 | } |
8467 | ||
8468 | /* Specify how various signals in the inferior should be handled. */ | |
8469 | ||
8470 | static void | |
96baa820 | 8471 | handle_command (char *args, int from_tty) |
c906108c | 8472 | { |
c906108c SS |
8473 | int digits, wordlen; |
8474 | int sigfirst, signum, siglast; | |
2ea28649 | 8475 | enum gdb_signal oursig; |
c906108c SS |
8476 | int allsigs; |
8477 | int nsigs; | |
8478 | unsigned char *sigs; | |
c906108c SS |
8479 | |
8480 | if (args == NULL) | |
8481 | { | |
e2e0b3e5 | 8482 | error_no_arg (_("signal to handle")); |
c906108c SS |
8483 | } |
8484 | ||
1777feb0 | 8485 | /* Allocate and zero an array of flags for which signals to handle. */ |
c906108c | 8486 | |
a493e3e2 | 8487 | nsigs = (int) GDB_SIGNAL_LAST; |
c906108c SS |
8488 | sigs = (unsigned char *) alloca (nsigs); |
8489 | memset (sigs, 0, nsigs); | |
8490 | ||
1777feb0 | 8491 | /* Break the command line up into args. */ |
c906108c | 8492 | |
773a1edc | 8493 | gdb_argv built_argv (args); |
c906108c SS |
8494 | |
8495 | /* Walk through the args, looking for signal oursigs, signal names, and | |
8496 | actions. Signal numbers and signal names may be interspersed with | |
8497 | actions, with the actions being performed for all signals cumulatively | |
1777feb0 | 8498 | specified. Signal ranges can be specified as <LOW>-<HIGH>. */ |
c906108c | 8499 | |
773a1edc | 8500 | for (char *arg : built_argv) |
c906108c | 8501 | { |
773a1edc TT |
8502 | wordlen = strlen (arg); |
8503 | for (digits = 0; isdigit (arg[digits]); digits++) | |
c906108c SS |
8504 | {; |
8505 | } | |
8506 | allsigs = 0; | |
8507 | sigfirst = siglast = -1; | |
8508 | ||
773a1edc | 8509 | if (wordlen >= 1 && !strncmp (arg, "all", wordlen)) |
c906108c SS |
8510 | { |
8511 | /* Apply action to all signals except those used by the | |
1777feb0 | 8512 | debugger. Silently skip those. */ |
c906108c SS |
8513 | allsigs = 1; |
8514 | sigfirst = 0; | |
8515 | siglast = nsigs - 1; | |
8516 | } | |
773a1edc | 8517 | else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen)) |
c906108c SS |
8518 | { |
8519 | SET_SIGS (nsigs, sigs, signal_stop); | |
8520 | SET_SIGS (nsigs, sigs, signal_print); | |
8521 | } | |
773a1edc | 8522 | else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen)) |
c906108c SS |
8523 | { |
8524 | UNSET_SIGS (nsigs, sigs, signal_program); | |
8525 | } | |
773a1edc | 8526 | else if (wordlen >= 2 && !strncmp (arg, "print", wordlen)) |
c906108c SS |
8527 | { |
8528 | SET_SIGS (nsigs, sigs, signal_print); | |
8529 | } | |
773a1edc | 8530 | else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen)) |
c906108c SS |
8531 | { |
8532 | SET_SIGS (nsigs, sigs, signal_program); | |
8533 | } | |
773a1edc | 8534 | else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen)) |
c906108c SS |
8535 | { |
8536 | UNSET_SIGS (nsigs, sigs, signal_stop); | |
8537 | } | |
773a1edc | 8538 | else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen)) |
c906108c SS |
8539 | { |
8540 | SET_SIGS (nsigs, sigs, signal_program); | |
8541 | } | |
773a1edc | 8542 | else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen)) |
c906108c SS |
8543 | { |
8544 | UNSET_SIGS (nsigs, sigs, signal_print); | |
8545 | UNSET_SIGS (nsigs, sigs, signal_stop); | |
8546 | } | |
773a1edc | 8547 | else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen)) |
c906108c SS |
8548 | { |
8549 | UNSET_SIGS (nsigs, sigs, signal_program); | |
8550 | } | |
8551 | else if (digits > 0) | |
8552 | { | |
8553 | /* It is numeric. The numeric signal refers to our own | |
8554 | internal signal numbering from target.h, not to host/target | |
8555 | signal number. This is a feature; users really should be | |
8556 | using symbolic names anyway, and the common ones like | |
8557 | SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */ | |
8558 | ||
8559 | sigfirst = siglast = (int) | |
773a1edc TT |
8560 | gdb_signal_from_command (atoi (arg)); |
8561 | if (arg[digits] == '-') | |
c906108c SS |
8562 | { |
8563 | siglast = (int) | |
773a1edc | 8564 | gdb_signal_from_command (atoi (arg + digits + 1)); |
c906108c SS |
8565 | } |
8566 | if (sigfirst > siglast) | |
8567 | { | |
1777feb0 | 8568 | /* Bet he didn't figure we'd think of this case... */ |
c906108c SS |
8569 | signum = sigfirst; |
8570 | sigfirst = siglast; | |
8571 | siglast = signum; | |
8572 | } | |
8573 | } | |
8574 | else | |
8575 | { | |
773a1edc | 8576 | oursig = gdb_signal_from_name (arg); |
a493e3e2 | 8577 | if (oursig != GDB_SIGNAL_UNKNOWN) |
c906108c SS |
8578 | { |
8579 | sigfirst = siglast = (int) oursig; | |
8580 | } | |
8581 | else | |
8582 | { | |
8583 | /* Not a number and not a recognized flag word => complain. */ | |
773a1edc | 8584 | error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg); |
c906108c SS |
8585 | } |
8586 | } | |
8587 | ||
8588 | /* If any signal numbers or symbol names were found, set flags for | |
1777feb0 | 8589 | which signals to apply actions to. */ |
c906108c SS |
8590 | |
8591 | for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++) | |
8592 | { | |
2ea28649 | 8593 | switch ((enum gdb_signal) signum) |
c906108c | 8594 | { |
a493e3e2 PA |
8595 | case GDB_SIGNAL_TRAP: |
8596 | case GDB_SIGNAL_INT: | |
c906108c SS |
8597 | if (!allsigs && !sigs[signum]) |
8598 | { | |
9e2f0ad4 | 8599 | if (query (_("%s is used by the debugger.\n\ |
3e43a32a | 8600 | Are you sure you want to change it? "), |
2ea28649 | 8601 | gdb_signal_to_name ((enum gdb_signal) signum))) |
c906108c SS |
8602 | { |
8603 | sigs[signum] = 1; | |
8604 | } | |
8605 | else | |
8606 | { | |
a3f17187 | 8607 | printf_unfiltered (_("Not confirmed, unchanged.\n")); |
c906108c SS |
8608 | gdb_flush (gdb_stdout); |
8609 | } | |
8610 | } | |
8611 | break; | |
a493e3e2 PA |
8612 | case GDB_SIGNAL_0: |
8613 | case GDB_SIGNAL_DEFAULT: | |
8614 | case GDB_SIGNAL_UNKNOWN: | |
c906108c SS |
8615 | /* Make sure that "all" doesn't print these. */ |
8616 | break; | |
8617 | default: | |
8618 | sigs[signum] = 1; | |
8619 | break; | |
8620 | } | |
8621 | } | |
c906108c SS |
8622 | } |
8623 | ||
3a031f65 PA |
8624 | for (signum = 0; signum < nsigs; signum++) |
8625 | if (sigs[signum]) | |
8626 | { | |
2455069d | 8627 | signal_cache_update (-1); |
a493e3e2 PA |
8628 | target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass); |
8629 | target_program_signals ((int) GDB_SIGNAL_LAST, signal_program); | |
c906108c | 8630 | |
3a031f65 PA |
8631 | if (from_tty) |
8632 | { | |
8633 | /* Show the results. */ | |
8634 | sig_print_header (); | |
8635 | for (; signum < nsigs; signum++) | |
8636 | if (sigs[signum]) | |
aead7601 | 8637 | sig_print_info ((enum gdb_signal) signum); |
3a031f65 PA |
8638 | } |
8639 | ||
8640 | break; | |
8641 | } | |
c906108c SS |
8642 | } |
8643 | ||
de0bea00 MF |
8644 | /* Complete the "handle" command. */ |
8645 | ||
eb3ff9a5 | 8646 | static void |
de0bea00 | 8647 | handle_completer (struct cmd_list_element *ignore, |
eb3ff9a5 | 8648 | completion_tracker &tracker, |
6f937416 | 8649 | const char *text, const char *word) |
de0bea00 | 8650 | { |
de0bea00 MF |
8651 | static const char * const keywords[] = |
8652 | { | |
8653 | "all", | |
8654 | "stop", | |
8655 | "ignore", | |
8656 | "print", | |
8657 | "pass", | |
8658 | "nostop", | |
8659 | "noignore", | |
8660 | "noprint", | |
8661 | "nopass", | |
8662 | NULL, | |
8663 | }; | |
8664 | ||
eb3ff9a5 PA |
8665 | signal_completer (ignore, tracker, text, word); |
8666 | complete_on_enum (tracker, keywords, word, word); | |
de0bea00 MF |
8667 | } |
8668 | ||
2ea28649 PA |
8669 | enum gdb_signal |
8670 | gdb_signal_from_command (int num) | |
ed01b82c PA |
8671 | { |
8672 | if (num >= 1 && num <= 15) | |
2ea28649 | 8673 | return (enum gdb_signal) num; |
ed01b82c PA |
8674 | error (_("Only signals 1-15 are valid as numeric signals.\n\ |
8675 | Use \"info signals\" for a list of symbolic signals.")); | |
8676 | } | |
8677 | ||
c906108c SS |
8678 | /* Print current contents of the tables set by the handle command. |
8679 | It is possible we should just be printing signals actually used | |
8680 | by the current target (but for things to work right when switching | |
8681 | targets, all signals should be in the signal tables). */ | |
8682 | ||
8683 | static void | |
11db9430 | 8684 | info_signals_command (char *signum_exp, int from_tty) |
c906108c | 8685 | { |
2ea28649 | 8686 | enum gdb_signal oursig; |
abbb1732 | 8687 | |
c906108c SS |
8688 | sig_print_header (); |
8689 | ||
8690 | if (signum_exp) | |
8691 | { | |
8692 | /* First see if this is a symbol name. */ | |
2ea28649 | 8693 | oursig = gdb_signal_from_name (signum_exp); |
a493e3e2 | 8694 | if (oursig == GDB_SIGNAL_UNKNOWN) |
c906108c SS |
8695 | { |
8696 | /* No, try numeric. */ | |
8697 | oursig = | |
2ea28649 | 8698 | gdb_signal_from_command (parse_and_eval_long (signum_exp)); |
c906108c SS |
8699 | } |
8700 | sig_print_info (oursig); | |
8701 | return; | |
8702 | } | |
8703 | ||
8704 | printf_filtered ("\n"); | |
8705 | /* These ugly casts brought to you by the native VAX compiler. */ | |
a493e3e2 PA |
8706 | for (oursig = GDB_SIGNAL_FIRST; |
8707 | (int) oursig < (int) GDB_SIGNAL_LAST; | |
2ea28649 | 8708 | oursig = (enum gdb_signal) ((int) oursig + 1)) |
c906108c SS |
8709 | { |
8710 | QUIT; | |
8711 | ||
a493e3e2 PA |
8712 | if (oursig != GDB_SIGNAL_UNKNOWN |
8713 | && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0) | |
c906108c SS |
8714 | sig_print_info (oursig); |
8715 | } | |
8716 | ||
3e43a32a MS |
8717 | printf_filtered (_("\nUse the \"handle\" command " |
8718 | "to change these tables.\n")); | |
c906108c | 8719 | } |
4aa995e1 PA |
8720 | |
8721 | /* The $_siginfo convenience variable is a bit special. We don't know | |
8722 | for sure the type of the value until we actually have a chance to | |
7a9dd1b2 | 8723 | fetch the data. The type can change depending on gdbarch, so it is |
4aa995e1 PA |
8724 | also dependent on which thread you have selected. |
8725 | ||
8726 | 1. making $_siginfo be an internalvar that creates a new value on | |
8727 | access. | |
8728 | ||
8729 | 2. making the value of $_siginfo be an lval_computed value. */ | |
8730 | ||
8731 | /* This function implements the lval_computed support for reading a | |
8732 | $_siginfo value. */ | |
8733 | ||
8734 | static void | |
8735 | siginfo_value_read (struct value *v) | |
8736 | { | |
8737 | LONGEST transferred; | |
8738 | ||
a911d87a PA |
8739 | /* If we can access registers, so can we access $_siginfo. Likewise |
8740 | vice versa. */ | |
8741 | validate_registers_access (); | |
c709acd1 | 8742 | |
4aa995e1 PA |
8743 | transferred = |
8744 | target_read (¤t_target, TARGET_OBJECT_SIGNAL_INFO, | |
8745 | NULL, | |
8746 | value_contents_all_raw (v), | |
8747 | value_offset (v), | |
8748 | TYPE_LENGTH (value_type (v))); | |
8749 | ||
8750 | if (transferred != TYPE_LENGTH (value_type (v))) | |
8751 | error (_("Unable to read siginfo")); | |
8752 | } | |
8753 | ||
8754 | /* This function implements the lval_computed support for writing a | |
8755 | $_siginfo value. */ | |
8756 | ||
8757 | static void | |
8758 | siginfo_value_write (struct value *v, struct value *fromval) | |
8759 | { | |
8760 | LONGEST transferred; | |
8761 | ||
a911d87a PA |
8762 | /* If we can access registers, so can we access $_siginfo. Likewise |
8763 | vice versa. */ | |
8764 | validate_registers_access (); | |
c709acd1 | 8765 | |
4aa995e1 PA |
8766 | transferred = target_write (¤t_target, |
8767 | TARGET_OBJECT_SIGNAL_INFO, | |
8768 | NULL, | |
8769 | value_contents_all_raw (fromval), | |
8770 | value_offset (v), | |
8771 | TYPE_LENGTH (value_type (fromval))); | |
8772 | ||
8773 | if (transferred != TYPE_LENGTH (value_type (fromval))) | |
8774 | error (_("Unable to write siginfo")); | |
8775 | } | |
8776 | ||
c8f2448a | 8777 | static const struct lval_funcs siginfo_value_funcs = |
4aa995e1 PA |
8778 | { |
8779 | siginfo_value_read, | |
8780 | siginfo_value_write | |
8781 | }; | |
8782 | ||
8783 | /* Return a new value with the correct type for the siginfo object of | |
78267919 UW |
8784 | the current thread using architecture GDBARCH. Return a void value |
8785 | if there's no object available. */ | |
4aa995e1 | 8786 | |
2c0b251b | 8787 | static struct value * |
22d2b532 SDJ |
8788 | siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var, |
8789 | void *ignore) | |
4aa995e1 | 8790 | { |
4aa995e1 | 8791 | if (target_has_stack |
78267919 UW |
8792 | && !ptid_equal (inferior_ptid, null_ptid) |
8793 | && gdbarch_get_siginfo_type_p (gdbarch)) | |
4aa995e1 | 8794 | { |
78267919 | 8795 | struct type *type = gdbarch_get_siginfo_type (gdbarch); |
abbb1732 | 8796 | |
78267919 | 8797 | return allocate_computed_value (type, &siginfo_value_funcs, NULL); |
4aa995e1 PA |
8798 | } |
8799 | ||
78267919 | 8800 | return allocate_value (builtin_type (gdbarch)->builtin_void); |
4aa995e1 PA |
8801 | } |
8802 | ||
c906108c | 8803 | \f |
16c381f0 JK |
8804 | /* infcall_suspend_state contains state about the program itself like its |
8805 | registers and any signal it received when it last stopped. | |
8806 | This state must be restored regardless of how the inferior function call | |
8807 | ends (either successfully, or after it hits a breakpoint or signal) | |
8808 | if the program is to properly continue where it left off. */ | |
8809 | ||
8810 | struct infcall_suspend_state | |
7a292a7a | 8811 | { |
16c381f0 | 8812 | struct thread_suspend_state thread_suspend; |
16c381f0 JK |
8813 | |
8814 | /* Other fields: */ | |
7a292a7a | 8815 | CORE_ADDR stop_pc; |
b89667eb | 8816 | struct regcache *registers; |
1736ad11 | 8817 | |
35515841 | 8818 | /* Format of SIGINFO_DATA or NULL if it is not present. */ |
1736ad11 JK |
8819 | struct gdbarch *siginfo_gdbarch; |
8820 | ||
8821 | /* The inferior format depends on SIGINFO_GDBARCH and it has a length of | |
8822 | TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the | |
8823 | content would be invalid. */ | |
8824 | gdb_byte *siginfo_data; | |
b89667eb DE |
8825 | }; |
8826 | ||
16c381f0 JK |
8827 | struct infcall_suspend_state * |
8828 | save_infcall_suspend_state (void) | |
b89667eb | 8829 | { |
16c381f0 | 8830 | struct infcall_suspend_state *inf_state; |
b89667eb | 8831 | struct thread_info *tp = inferior_thread (); |
1736ad11 JK |
8832 | struct regcache *regcache = get_current_regcache (); |
8833 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
8834 | gdb_byte *siginfo_data = NULL; | |
8835 | ||
8836 | if (gdbarch_get_siginfo_type_p (gdbarch)) | |
8837 | { | |
8838 | struct type *type = gdbarch_get_siginfo_type (gdbarch); | |
8839 | size_t len = TYPE_LENGTH (type); | |
8840 | struct cleanup *back_to; | |
8841 | ||
224c3ddb | 8842 | siginfo_data = (gdb_byte *) xmalloc (len); |
1736ad11 JK |
8843 | back_to = make_cleanup (xfree, siginfo_data); |
8844 | ||
8845 | if (target_read (¤t_target, TARGET_OBJECT_SIGNAL_INFO, NULL, | |
8846 | siginfo_data, 0, len) == len) | |
8847 | discard_cleanups (back_to); | |
8848 | else | |
8849 | { | |
8850 | /* Errors ignored. */ | |
8851 | do_cleanups (back_to); | |
8852 | siginfo_data = NULL; | |
8853 | } | |
8854 | } | |
8855 | ||
41bf6aca | 8856 | inf_state = XCNEW (struct infcall_suspend_state); |
1736ad11 JK |
8857 | |
8858 | if (siginfo_data) | |
8859 | { | |
8860 | inf_state->siginfo_gdbarch = gdbarch; | |
8861 | inf_state->siginfo_data = siginfo_data; | |
8862 | } | |
b89667eb | 8863 | |
16c381f0 | 8864 | inf_state->thread_suspend = tp->suspend; |
16c381f0 | 8865 | |
35515841 | 8866 | /* run_inferior_call will not use the signal due to its `proceed' call with |
a493e3e2 PA |
8867 | GDB_SIGNAL_0 anyway. */ |
8868 | tp->suspend.stop_signal = GDB_SIGNAL_0; | |
35515841 | 8869 | |
b89667eb DE |
8870 | inf_state->stop_pc = stop_pc; |
8871 | ||
1736ad11 | 8872 | inf_state->registers = regcache_dup (regcache); |
b89667eb DE |
8873 | |
8874 | return inf_state; | |
8875 | } | |
8876 | ||
8877 | /* Restore inferior session state to INF_STATE. */ | |
8878 | ||
8879 | void | |
16c381f0 | 8880 | restore_infcall_suspend_state (struct infcall_suspend_state *inf_state) |
b89667eb DE |
8881 | { |
8882 | struct thread_info *tp = inferior_thread (); | |
1736ad11 JK |
8883 | struct regcache *regcache = get_current_regcache (); |
8884 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
b89667eb | 8885 | |
16c381f0 | 8886 | tp->suspend = inf_state->thread_suspend; |
16c381f0 | 8887 | |
b89667eb DE |
8888 | stop_pc = inf_state->stop_pc; |
8889 | ||
1736ad11 JK |
8890 | if (inf_state->siginfo_gdbarch == gdbarch) |
8891 | { | |
8892 | struct type *type = gdbarch_get_siginfo_type (gdbarch); | |
1736ad11 JK |
8893 | |
8894 | /* Errors ignored. */ | |
8895 | target_write (¤t_target, TARGET_OBJECT_SIGNAL_INFO, NULL, | |
6acef6cd | 8896 | inf_state->siginfo_data, 0, TYPE_LENGTH (type)); |
1736ad11 JK |
8897 | } |
8898 | ||
b89667eb DE |
8899 | /* The inferior can be gone if the user types "print exit(0)" |
8900 | (and perhaps other times). */ | |
8901 | if (target_has_execution) | |
8902 | /* NB: The register write goes through to the target. */ | |
1736ad11 | 8903 | regcache_cpy (regcache, inf_state->registers); |
803b5f95 | 8904 | |
16c381f0 | 8905 | discard_infcall_suspend_state (inf_state); |
b89667eb DE |
8906 | } |
8907 | ||
8908 | static void | |
16c381f0 | 8909 | do_restore_infcall_suspend_state_cleanup (void *state) |
b89667eb | 8910 | { |
9a3c8263 | 8911 | restore_infcall_suspend_state ((struct infcall_suspend_state *) state); |
b89667eb DE |
8912 | } |
8913 | ||
8914 | struct cleanup * | |
16c381f0 JK |
8915 | make_cleanup_restore_infcall_suspend_state |
8916 | (struct infcall_suspend_state *inf_state) | |
b89667eb | 8917 | { |
16c381f0 | 8918 | return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state); |
b89667eb DE |
8919 | } |
8920 | ||
8921 | void | |
16c381f0 | 8922 | discard_infcall_suspend_state (struct infcall_suspend_state *inf_state) |
b89667eb | 8923 | { |
c0e383c6 | 8924 | delete inf_state->registers; |
803b5f95 | 8925 | xfree (inf_state->siginfo_data); |
b89667eb DE |
8926 | xfree (inf_state); |
8927 | } | |
8928 | ||
8929 | struct regcache * | |
16c381f0 | 8930 | get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state) |
b89667eb DE |
8931 | { |
8932 | return inf_state->registers; | |
8933 | } | |
8934 | ||
16c381f0 JK |
8935 | /* infcall_control_state contains state regarding gdb's control of the |
8936 | inferior itself like stepping control. It also contains session state like | |
8937 | the user's currently selected frame. */ | |
b89667eb | 8938 | |
16c381f0 | 8939 | struct infcall_control_state |
b89667eb | 8940 | { |
16c381f0 JK |
8941 | struct thread_control_state thread_control; |
8942 | struct inferior_control_state inferior_control; | |
d82142e2 JK |
8943 | |
8944 | /* Other fields: */ | |
8945 | enum stop_stack_kind stop_stack_dummy; | |
8946 | int stopped_by_random_signal; | |
7a292a7a | 8947 | |
b89667eb | 8948 | /* ID if the selected frame when the inferior function call was made. */ |
101dcfbe | 8949 | struct frame_id selected_frame_id; |
7a292a7a SS |
8950 | }; |
8951 | ||
c906108c | 8952 | /* Save all of the information associated with the inferior<==>gdb |
b89667eb | 8953 | connection. */ |
c906108c | 8954 | |
16c381f0 JK |
8955 | struct infcall_control_state * |
8956 | save_infcall_control_state (void) | |
c906108c | 8957 | { |
8d749320 SM |
8958 | struct infcall_control_state *inf_status = |
8959 | XNEW (struct infcall_control_state); | |
4e1c45ea | 8960 | struct thread_info *tp = inferior_thread (); |
d6b48e9c | 8961 | struct inferior *inf = current_inferior (); |
7a292a7a | 8962 | |
16c381f0 JK |
8963 | inf_status->thread_control = tp->control; |
8964 | inf_status->inferior_control = inf->control; | |
d82142e2 | 8965 | |
8358c15c | 8966 | tp->control.step_resume_breakpoint = NULL; |
5b79abe7 | 8967 | tp->control.exception_resume_breakpoint = NULL; |
8358c15c | 8968 | |
16c381f0 JK |
8969 | /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of |
8970 | chain. If caller's caller is walking the chain, they'll be happier if we | |
8971 | hand them back the original chain when restore_infcall_control_state is | |
8972 | called. */ | |
8973 | tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat); | |
d82142e2 JK |
8974 | |
8975 | /* Other fields: */ | |
8976 | inf_status->stop_stack_dummy = stop_stack_dummy; | |
8977 | inf_status->stopped_by_random_signal = stopped_by_random_signal; | |
c5aa993b | 8978 | |
206415a3 | 8979 | inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL)); |
b89667eb | 8980 | |
7a292a7a | 8981 | return inf_status; |
c906108c SS |
8982 | } |
8983 | ||
c906108c | 8984 | static int |
96baa820 | 8985 | restore_selected_frame (void *args) |
c906108c | 8986 | { |
488f131b | 8987 | struct frame_id *fid = (struct frame_id *) args; |
c906108c | 8988 | struct frame_info *frame; |
c906108c | 8989 | |
101dcfbe | 8990 | frame = frame_find_by_id (*fid); |
c906108c | 8991 | |
aa0cd9c1 AC |
8992 | /* If inf_status->selected_frame_id is NULL, there was no previously |
8993 | selected frame. */ | |
101dcfbe | 8994 | if (frame == NULL) |
c906108c | 8995 | { |
8a3fe4f8 | 8996 | warning (_("Unable to restore previously selected frame.")); |
c906108c SS |
8997 | return 0; |
8998 | } | |
8999 | ||
0f7d239c | 9000 | select_frame (frame); |
c906108c SS |
9001 | |
9002 | return (1); | |
9003 | } | |
9004 | ||
b89667eb DE |
9005 | /* Restore inferior session state to INF_STATUS. */ |
9006 | ||
c906108c | 9007 | void |
16c381f0 | 9008 | restore_infcall_control_state (struct infcall_control_state *inf_status) |
c906108c | 9009 | { |
4e1c45ea | 9010 | struct thread_info *tp = inferior_thread (); |
d6b48e9c | 9011 | struct inferior *inf = current_inferior (); |
4e1c45ea | 9012 | |
8358c15c JK |
9013 | if (tp->control.step_resume_breakpoint) |
9014 | tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop; | |
9015 | ||
5b79abe7 TT |
9016 | if (tp->control.exception_resume_breakpoint) |
9017 | tp->control.exception_resume_breakpoint->disposition | |
9018 | = disp_del_at_next_stop; | |
9019 | ||
d82142e2 | 9020 | /* Handle the bpstat_copy of the chain. */ |
16c381f0 | 9021 | bpstat_clear (&tp->control.stop_bpstat); |
d82142e2 | 9022 | |
16c381f0 JK |
9023 | tp->control = inf_status->thread_control; |
9024 | inf->control = inf_status->inferior_control; | |
d82142e2 JK |
9025 | |
9026 | /* Other fields: */ | |
9027 | stop_stack_dummy = inf_status->stop_stack_dummy; | |
9028 | stopped_by_random_signal = inf_status->stopped_by_random_signal; | |
c906108c | 9029 | |
b89667eb | 9030 | if (target_has_stack) |
c906108c | 9031 | { |
c906108c | 9032 | /* The point of catch_errors is that if the stack is clobbered, |
101dcfbe AC |
9033 | walking the stack might encounter a garbage pointer and |
9034 | error() trying to dereference it. */ | |
488f131b JB |
9035 | if (catch_errors |
9036 | (restore_selected_frame, &inf_status->selected_frame_id, | |
9037 | "Unable to restore previously selected frame:\n", | |
9038 | RETURN_MASK_ERROR) == 0) | |
c906108c SS |
9039 | /* Error in restoring the selected frame. Select the innermost |
9040 | frame. */ | |
0f7d239c | 9041 | select_frame (get_current_frame ()); |
c906108c | 9042 | } |
c906108c | 9043 | |
72cec141 | 9044 | xfree (inf_status); |
7a292a7a | 9045 | } |
c906108c | 9046 | |
74b7792f | 9047 | static void |
16c381f0 | 9048 | do_restore_infcall_control_state_cleanup (void *sts) |
74b7792f | 9049 | { |
9a3c8263 | 9050 | restore_infcall_control_state ((struct infcall_control_state *) sts); |
74b7792f AC |
9051 | } |
9052 | ||
9053 | struct cleanup * | |
16c381f0 JK |
9054 | make_cleanup_restore_infcall_control_state |
9055 | (struct infcall_control_state *inf_status) | |
74b7792f | 9056 | { |
16c381f0 | 9057 | return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status); |
74b7792f AC |
9058 | } |
9059 | ||
c906108c | 9060 | void |
16c381f0 | 9061 | discard_infcall_control_state (struct infcall_control_state *inf_status) |
7a292a7a | 9062 | { |
8358c15c JK |
9063 | if (inf_status->thread_control.step_resume_breakpoint) |
9064 | inf_status->thread_control.step_resume_breakpoint->disposition | |
9065 | = disp_del_at_next_stop; | |
9066 | ||
5b79abe7 TT |
9067 | if (inf_status->thread_control.exception_resume_breakpoint) |
9068 | inf_status->thread_control.exception_resume_breakpoint->disposition | |
9069 | = disp_del_at_next_stop; | |
9070 | ||
1777feb0 | 9071 | /* See save_infcall_control_state for info on stop_bpstat. */ |
16c381f0 | 9072 | bpstat_clear (&inf_status->thread_control.stop_bpstat); |
8358c15c | 9073 | |
72cec141 | 9074 | xfree (inf_status); |
7a292a7a | 9075 | } |
b89667eb | 9076 | \f |
7f89fd65 | 9077 | /* See infrun.h. */ |
0c557179 SDJ |
9078 | |
9079 | void | |
9080 | clear_exit_convenience_vars (void) | |
9081 | { | |
9082 | clear_internalvar (lookup_internalvar ("_exitsignal")); | |
9083 | clear_internalvar (lookup_internalvar ("_exitcode")); | |
9084 | } | |
c5aa993b | 9085 | \f |
488f131b | 9086 | |
b2175913 MS |
9087 | /* User interface for reverse debugging: |
9088 | Set exec-direction / show exec-direction commands | |
9089 | (returns error unless target implements to_set_exec_direction method). */ | |
9090 | ||
170742de | 9091 | enum exec_direction_kind execution_direction = EXEC_FORWARD; |
b2175913 MS |
9092 | static const char exec_forward[] = "forward"; |
9093 | static const char exec_reverse[] = "reverse"; | |
9094 | static const char *exec_direction = exec_forward; | |
40478521 | 9095 | static const char *const exec_direction_names[] = { |
b2175913 MS |
9096 | exec_forward, |
9097 | exec_reverse, | |
9098 | NULL | |
9099 | }; | |
9100 | ||
9101 | static void | |
9102 | set_exec_direction_func (char *args, int from_tty, | |
9103 | struct cmd_list_element *cmd) | |
9104 | { | |
9105 | if (target_can_execute_reverse) | |
9106 | { | |
9107 | if (!strcmp (exec_direction, exec_forward)) | |
9108 | execution_direction = EXEC_FORWARD; | |
9109 | else if (!strcmp (exec_direction, exec_reverse)) | |
9110 | execution_direction = EXEC_REVERSE; | |
9111 | } | |
8bbed405 MS |
9112 | else |
9113 | { | |
9114 | exec_direction = exec_forward; | |
9115 | error (_("Target does not support this operation.")); | |
9116 | } | |
b2175913 MS |
9117 | } |
9118 | ||
9119 | static void | |
9120 | show_exec_direction_func (struct ui_file *out, int from_tty, | |
9121 | struct cmd_list_element *cmd, const char *value) | |
9122 | { | |
9123 | switch (execution_direction) { | |
9124 | case EXEC_FORWARD: | |
9125 | fprintf_filtered (out, _("Forward.\n")); | |
9126 | break; | |
9127 | case EXEC_REVERSE: | |
9128 | fprintf_filtered (out, _("Reverse.\n")); | |
9129 | break; | |
b2175913 | 9130 | default: |
d8b34453 PA |
9131 | internal_error (__FILE__, __LINE__, |
9132 | _("bogus execution_direction value: %d"), | |
9133 | (int) execution_direction); | |
b2175913 MS |
9134 | } |
9135 | } | |
9136 | ||
d4db2f36 PA |
9137 | static void |
9138 | show_schedule_multiple (struct ui_file *file, int from_tty, | |
9139 | struct cmd_list_element *c, const char *value) | |
9140 | { | |
3e43a32a MS |
9141 | fprintf_filtered (file, _("Resuming the execution of threads " |
9142 | "of all processes is %s.\n"), value); | |
d4db2f36 | 9143 | } |
ad52ddc6 | 9144 | |
22d2b532 SDJ |
9145 | /* Implementation of `siginfo' variable. */ |
9146 | ||
9147 | static const struct internalvar_funcs siginfo_funcs = | |
9148 | { | |
9149 | siginfo_make_value, | |
9150 | NULL, | |
9151 | NULL | |
9152 | }; | |
9153 | ||
372316f1 PA |
9154 | /* Callback for infrun's target events source. This is marked when a |
9155 | thread has a pending status to process. */ | |
9156 | ||
9157 | static void | |
9158 | infrun_async_inferior_event_handler (gdb_client_data data) | |
9159 | { | |
372316f1 PA |
9160 | inferior_event_handler (INF_REG_EVENT, NULL); |
9161 | } | |
9162 | ||
c906108c | 9163 | void |
96baa820 | 9164 | _initialize_infrun (void) |
c906108c | 9165 | { |
52f0bd74 AC |
9166 | int i; |
9167 | int numsigs; | |
de0bea00 | 9168 | struct cmd_list_element *c; |
c906108c | 9169 | |
372316f1 PA |
9170 | /* Register extra event sources in the event loop. */ |
9171 | infrun_async_inferior_event_token | |
9172 | = create_async_event_handler (infrun_async_inferior_event_handler, NULL); | |
9173 | ||
11db9430 | 9174 | add_info ("signals", info_signals_command, _("\ |
1bedd215 AC |
9175 | What debugger does when program gets various signals.\n\ |
9176 | Specify a signal as argument to print info on that signal only.")); | |
c906108c SS |
9177 | add_info_alias ("handle", "signals", 0); |
9178 | ||
de0bea00 | 9179 | c = add_com ("handle", class_run, handle_command, _("\ |
dfbd5e7b | 9180 | Specify how to handle signals.\n\ |
486c7739 | 9181 | Usage: handle SIGNAL [ACTIONS]\n\ |
c906108c | 9182 | Args are signals and actions to apply to those signals.\n\ |
dfbd5e7b | 9183 | If no actions are specified, the current settings for the specified signals\n\ |
486c7739 MF |
9184 | will be displayed instead.\n\ |
9185 | \n\ | |
c906108c SS |
9186 | Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\ |
9187 | from 1-15 are allowed for compatibility with old versions of GDB.\n\ | |
9188 | Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\ | |
9189 | The special arg \"all\" is recognized to mean all signals except those\n\ | |
1bedd215 | 9190 | used by the debugger, typically SIGTRAP and SIGINT.\n\ |
486c7739 | 9191 | \n\ |
1bedd215 | 9192 | Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\ |
c906108c SS |
9193 | \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\ |
9194 | Stop means reenter debugger if this signal happens (implies print).\n\ | |
9195 | Print means print a message if this signal happens.\n\ | |
9196 | Pass means let program see this signal; otherwise program doesn't know.\n\ | |
9197 | Ignore is a synonym for nopass and noignore is a synonym for pass.\n\ | |
dfbd5e7b PA |
9198 | Pass and Stop may be combined.\n\ |
9199 | \n\ | |
9200 | Multiple signals may be specified. Signal numbers and signal names\n\ | |
9201 | may be interspersed with actions, with the actions being performed for\n\ | |
9202 | all signals cumulatively specified.")); | |
de0bea00 | 9203 | set_cmd_completer (c, handle_completer); |
486c7739 | 9204 | |
c906108c | 9205 | if (!dbx_commands) |
1a966eab AC |
9206 | stop_command = add_cmd ("stop", class_obscure, |
9207 | not_just_help_class_command, _("\ | |
9208 | There is no `stop' command, but you can set a hook on `stop'.\n\ | |
c906108c | 9209 | This allows you to set a list of commands to be run each time execution\n\ |
1a966eab | 9210 | of the program stops."), &cmdlist); |
c906108c | 9211 | |
ccce17b0 | 9212 | add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\ |
85c07804 AC |
9213 | Set inferior debugging."), _("\ |
9214 | Show inferior debugging."), _("\ | |
9215 | When non-zero, inferior specific debugging is enabled."), | |
ccce17b0 YQ |
9216 | NULL, |
9217 | show_debug_infrun, | |
9218 | &setdebuglist, &showdebuglist); | |
527159b7 | 9219 | |
3e43a32a MS |
9220 | add_setshow_boolean_cmd ("displaced", class_maintenance, |
9221 | &debug_displaced, _("\ | |
237fc4c9 PA |
9222 | Set displaced stepping debugging."), _("\ |
9223 | Show displaced stepping debugging."), _("\ | |
9224 | When non-zero, displaced stepping specific debugging is enabled."), | |
9225 | NULL, | |
9226 | show_debug_displaced, | |
9227 | &setdebuglist, &showdebuglist); | |
9228 | ||
ad52ddc6 PA |
9229 | add_setshow_boolean_cmd ("non-stop", no_class, |
9230 | &non_stop_1, _("\ | |
9231 | Set whether gdb controls the inferior in non-stop mode."), _("\ | |
9232 | Show whether gdb controls the inferior in non-stop mode."), _("\ | |
9233 | When debugging a multi-threaded program and this setting is\n\ | |
9234 | off (the default, also called all-stop mode), when one thread stops\n\ | |
9235 | (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\ | |
9236 | all other threads in the program while you interact with the thread of\n\ | |
9237 | interest. When you continue or step a thread, you can allow the other\n\ | |
9238 | threads to run, or have them remain stopped, but while you inspect any\n\ | |
9239 | thread's state, all threads stop.\n\ | |
9240 | \n\ | |
9241 | In non-stop mode, when one thread stops, other threads can continue\n\ | |
9242 | to run freely. You'll be able to step each thread independently,\n\ | |
9243 | leave it stopped or free to run as needed."), | |
9244 | set_non_stop, | |
9245 | show_non_stop, | |
9246 | &setlist, | |
9247 | &showlist); | |
9248 | ||
a493e3e2 | 9249 | numsigs = (int) GDB_SIGNAL_LAST; |
8d749320 SM |
9250 | signal_stop = XNEWVEC (unsigned char, numsigs); |
9251 | signal_print = XNEWVEC (unsigned char, numsigs); | |
9252 | signal_program = XNEWVEC (unsigned char, numsigs); | |
9253 | signal_catch = XNEWVEC (unsigned char, numsigs); | |
9254 | signal_pass = XNEWVEC (unsigned char, numsigs); | |
c906108c SS |
9255 | for (i = 0; i < numsigs; i++) |
9256 | { | |
9257 | signal_stop[i] = 1; | |
9258 | signal_print[i] = 1; | |
9259 | signal_program[i] = 1; | |
ab04a2af | 9260 | signal_catch[i] = 0; |
c906108c SS |
9261 | } |
9262 | ||
4d9d9d04 PA |
9263 | /* Signals caused by debugger's own actions should not be given to |
9264 | the program afterwards. | |
9265 | ||
9266 | Do not deliver GDB_SIGNAL_TRAP by default, except when the user | |
9267 | explicitly specifies that it should be delivered to the target | |
9268 | program. Typically, that would occur when a user is debugging a | |
9269 | target monitor on a simulator: the target monitor sets a | |
9270 | breakpoint; the simulator encounters this breakpoint and halts | |
9271 | the simulation handing control to GDB; GDB, noting that the stop | |
9272 | address doesn't map to any known breakpoint, returns control back | |
9273 | to the simulator; the simulator then delivers the hardware | |
9274 | equivalent of a GDB_SIGNAL_TRAP to the program being | |
9275 | debugged. */ | |
a493e3e2 PA |
9276 | signal_program[GDB_SIGNAL_TRAP] = 0; |
9277 | signal_program[GDB_SIGNAL_INT] = 0; | |
c906108c SS |
9278 | |
9279 | /* Signals that are not errors should not normally enter the debugger. */ | |
a493e3e2 PA |
9280 | signal_stop[GDB_SIGNAL_ALRM] = 0; |
9281 | signal_print[GDB_SIGNAL_ALRM] = 0; | |
9282 | signal_stop[GDB_SIGNAL_VTALRM] = 0; | |
9283 | signal_print[GDB_SIGNAL_VTALRM] = 0; | |
9284 | signal_stop[GDB_SIGNAL_PROF] = 0; | |
9285 | signal_print[GDB_SIGNAL_PROF] = 0; | |
9286 | signal_stop[GDB_SIGNAL_CHLD] = 0; | |
9287 | signal_print[GDB_SIGNAL_CHLD] = 0; | |
9288 | signal_stop[GDB_SIGNAL_IO] = 0; | |
9289 | signal_print[GDB_SIGNAL_IO] = 0; | |
9290 | signal_stop[GDB_SIGNAL_POLL] = 0; | |
9291 | signal_print[GDB_SIGNAL_POLL] = 0; | |
9292 | signal_stop[GDB_SIGNAL_URG] = 0; | |
9293 | signal_print[GDB_SIGNAL_URG] = 0; | |
9294 | signal_stop[GDB_SIGNAL_WINCH] = 0; | |
9295 | signal_print[GDB_SIGNAL_WINCH] = 0; | |
9296 | signal_stop[GDB_SIGNAL_PRIO] = 0; | |
9297 | signal_print[GDB_SIGNAL_PRIO] = 0; | |
c906108c | 9298 | |
cd0fc7c3 SS |
9299 | /* These signals are used internally by user-level thread |
9300 | implementations. (See signal(5) on Solaris.) Like the above | |
9301 | signals, a healthy program receives and handles them as part of | |
9302 | its normal operation. */ | |
a493e3e2 PA |
9303 | signal_stop[GDB_SIGNAL_LWP] = 0; |
9304 | signal_print[GDB_SIGNAL_LWP] = 0; | |
9305 | signal_stop[GDB_SIGNAL_WAITING] = 0; | |
9306 | signal_print[GDB_SIGNAL_WAITING] = 0; | |
9307 | signal_stop[GDB_SIGNAL_CANCEL] = 0; | |
9308 | signal_print[GDB_SIGNAL_CANCEL] = 0; | |
bc7b765a JB |
9309 | signal_stop[GDB_SIGNAL_LIBRT] = 0; |
9310 | signal_print[GDB_SIGNAL_LIBRT] = 0; | |
cd0fc7c3 | 9311 | |
2455069d UW |
9312 | /* Update cached state. */ |
9313 | signal_cache_update (-1); | |
9314 | ||
85c07804 AC |
9315 | add_setshow_zinteger_cmd ("stop-on-solib-events", class_support, |
9316 | &stop_on_solib_events, _("\ | |
9317 | Set stopping for shared library events."), _("\ | |
9318 | Show stopping for shared library events."), _("\ | |
c906108c SS |
9319 | If nonzero, gdb will give control to the user when the dynamic linker\n\ |
9320 | notifies gdb of shared library events. The most common event of interest\n\ | |
85c07804 | 9321 | to the user would be loading/unloading of a new library."), |
f9e14852 | 9322 | set_stop_on_solib_events, |
920d2a44 | 9323 | show_stop_on_solib_events, |
85c07804 | 9324 | &setlist, &showlist); |
c906108c | 9325 | |
7ab04401 AC |
9326 | add_setshow_enum_cmd ("follow-fork-mode", class_run, |
9327 | follow_fork_mode_kind_names, | |
9328 | &follow_fork_mode_string, _("\ | |
9329 | Set debugger response to a program call of fork or vfork."), _("\ | |
9330 | Show debugger response to a program call of fork or vfork."), _("\ | |
c906108c SS |
9331 | A fork or vfork creates a new process. follow-fork-mode can be:\n\ |
9332 | parent - the original process is debugged after a fork\n\ | |
9333 | child - the new process is debugged after a fork\n\ | |
ea1dd7bc | 9334 | The unfollowed process will continue to run.\n\ |
7ab04401 AC |
9335 | By default, the debugger will follow the parent process."), |
9336 | NULL, | |
920d2a44 | 9337 | show_follow_fork_mode_string, |
7ab04401 AC |
9338 | &setlist, &showlist); |
9339 | ||
6c95b8df PA |
9340 | add_setshow_enum_cmd ("follow-exec-mode", class_run, |
9341 | follow_exec_mode_names, | |
9342 | &follow_exec_mode_string, _("\ | |
9343 | Set debugger response to a program call of exec."), _("\ | |
9344 | Show debugger response to a program call of exec."), _("\ | |
9345 | An exec call replaces the program image of a process.\n\ | |
9346 | \n\ | |
9347 | follow-exec-mode can be:\n\ | |
9348 | \n\ | |
cce7e648 | 9349 | new - the debugger creates a new inferior and rebinds the process\n\ |
6c95b8df PA |
9350 | to this new inferior. The program the process was running before\n\ |
9351 | the exec call can be restarted afterwards by restarting the original\n\ | |
9352 | inferior.\n\ | |
9353 | \n\ | |
9354 | same - the debugger keeps the process bound to the same inferior.\n\ | |
9355 | The new executable image replaces the previous executable loaded in\n\ | |
9356 | the inferior. Restarting the inferior after the exec call restarts\n\ | |
9357 | the executable the process was running after the exec call.\n\ | |
9358 | \n\ | |
9359 | By default, the debugger will use the same inferior."), | |
9360 | NULL, | |
9361 | show_follow_exec_mode_string, | |
9362 | &setlist, &showlist); | |
9363 | ||
7ab04401 AC |
9364 | add_setshow_enum_cmd ("scheduler-locking", class_run, |
9365 | scheduler_enums, &scheduler_mode, _("\ | |
9366 | Set mode for locking scheduler during execution."), _("\ | |
9367 | Show mode for locking scheduler during execution."), _("\ | |
f2665db5 MM |
9368 | off == no locking (threads may preempt at any time)\n\ |
9369 | on == full locking (no thread except the current thread may run)\n\ | |
9370 | This applies to both normal execution and replay mode.\n\ | |
9371 | step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\ | |
9372 | In this mode, other threads may run during other commands.\n\ | |
9373 | This applies to both normal execution and replay mode.\n\ | |
9374 | replay == scheduler locked in replay mode and unlocked during normal execution."), | |
7ab04401 | 9375 | set_schedlock_func, /* traps on target vector */ |
920d2a44 | 9376 | show_scheduler_mode, |
7ab04401 | 9377 | &setlist, &showlist); |
5fbbeb29 | 9378 | |
d4db2f36 PA |
9379 | add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\ |
9380 | Set mode for resuming threads of all processes."), _("\ | |
9381 | Show mode for resuming threads of all processes."), _("\ | |
9382 | When on, execution commands (such as 'continue' or 'next') resume all\n\ | |
9383 | threads of all processes. When off (which is the default), execution\n\ | |
9384 | commands only resume the threads of the current process. The set of\n\ | |
9385 | threads that are resumed is further refined by the scheduler-locking\n\ | |
9386 | mode (see help set scheduler-locking)."), | |
9387 | NULL, | |
9388 | show_schedule_multiple, | |
9389 | &setlist, &showlist); | |
9390 | ||
5bf193a2 AC |
9391 | add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\ |
9392 | Set mode of the step operation."), _("\ | |
9393 | Show mode of the step operation."), _("\ | |
9394 | When set, doing a step over a function without debug line information\n\ | |
9395 | will stop at the first instruction of that function. Otherwise, the\n\ | |
9396 | function is skipped and the step command stops at a different source line."), | |
9397 | NULL, | |
920d2a44 | 9398 | show_step_stop_if_no_debug, |
5bf193a2 | 9399 | &setlist, &showlist); |
ca6724c1 | 9400 | |
72d0e2c5 YQ |
9401 | add_setshow_auto_boolean_cmd ("displaced-stepping", class_run, |
9402 | &can_use_displaced_stepping, _("\ | |
237fc4c9 PA |
9403 | Set debugger's willingness to use displaced stepping."), _("\ |
9404 | Show debugger's willingness to use displaced stepping."), _("\ | |
fff08868 HZ |
9405 | If on, gdb will use displaced stepping to step over breakpoints if it is\n\ |
9406 | supported by the target architecture. If off, gdb will not use displaced\n\ | |
9407 | stepping to step over breakpoints, even if such is supported by the target\n\ | |
9408 | architecture. If auto (which is the default), gdb will use displaced stepping\n\ | |
9409 | if the target architecture supports it and non-stop mode is active, but will not\n\ | |
9410 | use it in all-stop mode (see help set non-stop)."), | |
72d0e2c5 YQ |
9411 | NULL, |
9412 | show_can_use_displaced_stepping, | |
9413 | &setlist, &showlist); | |
237fc4c9 | 9414 | |
b2175913 MS |
9415 | add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names, |
9416 | &exec_direction, _("Set direction of execution.\n\ | |
9417 | Options are 'forward' or 'reverse'."), | |
9418 | _("Show direction of execution (forward/reverse)."), | |
9419 | _("Tells gdb whether to execute forward or backward."), | |
9420 | set_exec_direction_func, show_exec_direction_func, | |
9421 | &setlist, &showlist); | |
9422 | ||
6c95b8df PA |
9423 | /* Set/show detach-on-fork: user-settable mode. */ |
9424 | ||
9425 | add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\ | |
9426 | Set whether gdb will detach the child of a fork."), _("\ | |
9427 | Show whether gdb will detach the child of a fork."), _("\ | |
9428 | Tells gdb whether to detach the child of a fork."), | |
9429 | NULL, NULL, &setlist, &showlist); | |
9430 | ||
03583c20 UW |
9431 | /* Set/show disable address space randomization mode. */ |
9432 | ||
9433 | add_setshow_boolean_cmd ("disable-randomization", class_support, | |
9434 | &disable_randomization, _("\ | |
9435 | Set disabling of debuggee's virtual address space randomization."), _("\ | |
9436 | Show disabling of debuggee's virtual address space randomization."), _("\ | |
9437 | When this mode is on (which is the default), randomization of the virtual\n\ | |
9438 | address space is disabled. Standalone programs run with the randomization\n\ | |
9439 | enabled by default on some platforms."), | |
9440 | &set_disable_randomization, | |
9441 | &show_disable_randomization, | |
9442 | &setlist, &showlist); | |
9443 | ||
ca6724c1 | 9444 | /* ptid initializations */ |
ca6724c1 KB |
9445 | inferior_ptid = null_ptid; |
9446 | target_last_wait_ptid = minus_one_ptid; | |
5231c1fd PA |
9447 | |
9448 | observer_attach_thread_ptid_changed (infrun_thread_ptid_changed); | |
252fbfc8 | 9449 | observer_attach_thread_stop_requested (infrun_thread_stop_requested); |
a07daef3 | 9450 | observer_attach_thread_exit (infrun_thread_thread_exit); |
fc1cf338 | 9451 | observer_attach_inferior_exit (infrun_inferior_exit); |
4aa995e1 PA |
9452 | |
9453 | /* Explicitly create without lookup, since that tries to create a | |
9454 | value with a void typed value, and when we get here, gdbarch | |
9455 | isn't initialized yet. At this point, we're quite sure there | |
9456 | isn't another convenience variable of the same name. */ | |
22d2b532 | 9457 | create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL); |
d914c394 SS |
9458 | |
9459 | add_setshow_boolean_cmd ("observer", no_class, | |
9460 | &observer_mode_1, _("\ | |
9461 | Set whether gdb controls the inferior in observer mode."), _("\ | |
9462 | Show whether gdb controls the inferior in observer mode."), _("\ | |
9463 | In observer mode, GDB can get data from the inferior, but not\n\ | |
9464 | affect its execution. Registers and memory may not be changed,\n\ | |
9465 | breakpoints may not be set, and the program cannot be interrupted\n\ | |
9466 | or signalled."), | |
9467 | set_observer_mode, | |
9468 | show_observer_mode, | |
9469 | &setlist, | |
9470 | &showlist); | |
c906108c | 9471 | } |