]>
Commit | Line | Data |
---|---|---|
ca557f44 AC |
1 | /* Target-struct-independent code to start (run) and stop an inferior |
2 | process. | |
8926118c | 3 | |
ecd75fc8 | 4 | Copyright (C) 1986-2014 Free Software Foundation, Inc. |
c906108c | 5 | |
c5aa993b | 6 | This file is part of GDB. |
c906108c | 7 | |
c5aa993b JM |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 10 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 11 | (at your option) any later version. |
c906108c | 12 | |
c5aa993b JM |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
c906108c | 17 | |
c5aa993b | 18 | You should have received a copy of the GNU General Public License |
a9762ec7 | 19 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
20 | |
21 | #include "defs.h" | |
0e9f083f | 22 | #include <string.h> |
c906108c SS |
23 | #include <ctype.h> |
24 | #include "symtab.h" | |
25 | #include "frame.h" | |
26 | #include "inferior.h" | |
60250e8b | 27 | #include "exceptions.h" |
c906108c | 28 | #include "breakpoint.h" |
03f2053f | 29 | #include "gdb_wait.h" |
c906108c SS |
30 | #include "gdbcore.h" |
31 | #include "gdbcmd.h" | |
210661e7 | 32 | #include "cli/cli-script.h" |
c906108c SS |
33 | #include "target.h" |
34 | #include "gdbthread.h" | |
35 | #include "annotate.h" | |
1adeb98a | 36 | #include "symfile.h" |
7a292a7a | 37 | #include "top.h" |
c906108c | 38 | #include <signal.h> |
2acceee2 | 39 | #include "inf-loop.h" |
4e052eda | 40 | #include "regcache.h" |
fd0407d6 | 41 | #include "value.h" |
06600e06 | 42 | #include "observer.h" |
f636b87d | 43 | #include "language.h" |
a77053c2 | 44 | #include "solib.h" |
f17517ea | 45 | #include "main.h" |
186c406b TT |
46 | #include "dictionary.h" |
47 | #include "block.h" | |
9f976b41 | 48 | #include "gdb_assert.h" |
034dad6f | 49 | #include "mi/mi-common.h" |
4f8d22e3 | 50 | #include "event-top.h" |
96429cc8 | 51 | #include "record.h" |
d02ed0bb | 52 | #include "record-full.h" |
edb3359d | 53 | #include "inline-frame.h" |
4efc6507 | 54 | #include "jit.h" |
06cd862c | 55 | #include "tracepoint.h" |
be34f849 | 56 | #include "continuations.h" |
b4a14fd0 | 57 | #include "interps.h" |
1bfeeb0f | 58 | #include "skip.h" |
28106bc2 SDJ |
59 | #include "probe.h" |
60 | #include "objfiles.h" | |
de0bea00 | 61 | #include "completer.h" |
9107fc8d | 62 | #include "target-descriptions.h" |
f15cb84a | 63 | #include "target-dcache.h" |
c906108c SS |
64 | |
65 | /* Prototypes for local functions */ | |
66 | ||
96baa820 | 67 | static void signals_info (char *, int); |
c906108c | 68 | |
96baa820 | 69 | static void handle_command (char *, int); |
c906108c | 70 | |
2ea28649 | 71 | static void sig_print_info (enum gdb_signal); |
c906108c | 72 | |
96baa820 | 73 | static void sig_print_header (void); |
c906108c | 74 | |
74b7792f | 75 | static void resume_cleanups (void *); |
c906108c | 76 | |
96baa820 | 77 | static int hook_stop_stub (void *); |
c906108c | 78 | |
96baa820 JM |
79 | static int restore_selected_frame (void *); |
80 | ||
4ef3f3be | 81 | static int follow_fork (void); |
96baa820 JM |
82 | |
83 | static void set_schedlock_func (char *args, int from_tty, | |
488f131b | 84 | struct cmd_list_element *c); |
96baa820 | 85 | |
a289b8f6 JK |
86 | static int currently_stepping (struct thread_info *tp); |
87 | ||
96baa820 JM |
88 | static void xdb_handle_command (char *args, int from_tty); |
89 | ||
33d62d64 JK |
90 | static void print_exited_reason (int exitstatus); |
91 | ||
2ea28649 | 92 | static void print_signal_exited_reason (enum gdb_signal siggnal); |
33d62d64 JK |
93 | |
94 | static void print_no_history_reason (void); | |
95 | ||
2ea28649 | 96 | static void print_signal_received_reason (enum gdb_signal siggnal); |
33d62d64 JK |
97 | |
98 | static void print_end_stepping_range_reason (void); | |
99 | ||
96baa820 | 100 | void _initialize_infrun (void); |
43ff13b4 | 101 | |
e58b0e63 PA |
102 | void nullify_last_target_wait_ptid (void); |
103 | ||
2c03e5be | 104 | static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *); |
2484c66b UW |
105 | |
106 | static void insert_step_resume_breakpoint_at_caller (struct frame_info *); | |
107 | ||
2484c66b UW |
108 | static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR); |
109 | ||
5fbbeb29 CF |
110 | /* When set, stop the 'step' command if we enter a function which has |
111 | no line number information. The normal behavior is that we step | |
112 | over such function. */ | |
113 | int step_stop_if_no_debug = 0; | |
920d2a44 AC |
114 | static void |
115 | show_step_stop_if_no_debug (struct ui_file *file, int from_tty, | |
116 | struct cmd_list_element *c, const char *value) | |
117 | { | |
118 | fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value); | |
119 | } | |
5fbbeb29 | 120 | |
1777feb0 | 121 | /* In asynchronous mode, but simulating synchronous execution. */ |
96baa820 | 122 | |
43ff13b4 JM |
123 | int sync_execution = 0; |
124 | ||
b9f437de PA |
125 | /* proceed and normal_stop use this to notify the user when the |
126 | inferior stopped in a different thread than it had been running | |
127 | in. */ | |
96baa820 | 128 | |
39f77062 | 129 | static ptid_t previous_inferior_ptid; |
7a292a7a | 130 | |
07107ca6 LM |
131 | /* If set (default for legacy reasons), when following a fork, GDB |
132 | will detach from one of the fork branches, child or parent. | |
133 | Exactly which branch is detached depends on 'set follow-fork-mode' | |
134 | setting. */ | |
135 | ||
136 | static int detach_fork = 1; | |
6c95b8df | 137 | |
237fc4c9 PA |
138 | int debug_displaced = 0; |
139 | static void | |
140 | show_debug_displaced (struct ui_file *file, int from_tty, | |
141 | struct cmd_list_element *c, const char *value) | |
142 | { | |
143 | fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value); | |
144 | } | |
145 | ||
ccce17b0 | 146 | unsigned int debug_infrun = 0; |
920d2a44 AC |
147 | static void |
148 | show_debug_infrun (struct ui_file *file, int from_tty, | |
149 | struct cmd_list_element *c, const char *value) | |
150 | { | |
151 | fprintf_filtered (file, _("Inferior debugging is %s.\n"), value); | |
152 | } | |
527159b7 | 153 | |
03583c20 UW |
154 | |
155 | /* Support for disabling address space randomization. */ | |
156 | ||
157 | int disable_randomization = 1; | |
158 | ||
159 | static void | |
160 | show_disable_randomization (struct ui_file *file, int from_tty, | |
161 | struct cmd_list_element *c, const char *value) | |
162 | { | |
163 | if (target_supports_disable_randomization ()) | |
164 | fprintf_filtered (file, | |
165 | _("Disabling randomization of debuggee's " | |
166 | "virtual address space is %s.\n"), | |
167 | value); | |
168 | else | |
169 | fputs_filtered (_("Disabling randomization of debuggee's " | |
170 | "virtual address space is unsupported on\n" | |
171 | "this platform.\n"), file); | |
172 | } | |
173 | ||
174 | static void | |
175 | set_disable_randomization (char *args, int from_tty, | |
176 | struct cmd_list_element *c) | |
177 | { | |
178 | if (!target_supports_disable_randomization ()) | |
179 | error (_("Disabling randomization of debuggee's " | |
180 | "virtual address space is unsupported on\n" | |
181 | "this platform.")); | |
182 | } | |
183 | ||
d32dc48e PA |
184 | /* User interface for non-stop mode. */ |
185 | ||
186 | int non_stop = 0; | |
187 | static int non_stop_1 = 0; | |
188 | ||
189 | static void | |
190 | set_non_stop (char *args, int from_tty, | |
191 | struct cmd_list_element *c) | |
192 | { | |
193 | if (target_has_execution) | |
194 | { | |
195 | non_stop_1 = non_stop; | |
196 | error (_("Cannot change this setting while the inferior is running.")); | |
197 | } | |
198 | ||
199 | non_stop = non_stop_1; | |
200 | } | |
201 | ||
202 | static void | |
203 | show_non_stop (struct ui_file *file, int from_tty, | |
204 | struct cmd_list_element *c, const char *value) | |
205 | { | |
206 | fprintf_filtered (file, | |
207 | _("Controlling the inferior in non-stop mode is %s.\n"), | |
208 | value); | |
209 | } | |
210 | ||
d914c394 SS |
211 | /* "Observer mode" is somewhat like a more extreme version of |
212 | non-stop, in which all GDB operations that might affect the | |
213 | target's execution have been disabled. */ | |
214 | ||
d914c394 SS |
215 | int observer_mode = 0; |
216 | static int observer_mode_1 = 0; | |
217 | ||
218 | static void | |
219 | set_observer_mode (char *args, int from_tty, | |
220 | struct cmd_list_element *c) | |
221 | { | |
d914c394 SS |
222 | if (target_has_execution) |
223 | { | |
224 | observer_mode_1 = observer_mode; | |
225 | error (_("Cannot change this setting while the inferior is running.")); | |
226 | } | |
227 | ||
228 | observer_mode = observer_mode_1; | |
229 | ||
230 | may_write_registers = !observer_mode; | |
231 | may_write_memory = !observer_mode; | |
232 | may_insert_breakpoints = !observer_mode; | |
233 | may_insert_tracepoints = !observer_mode; | |
234 | /* We can insert fast tracepoints in or out of observer mode, | |
235 | but enable them if we're going into this mode. */ | |
236 | if (observer_mode) | |
237 | may_insert_fast_tracepoints = 1; | |
238 | may_stop = !observer_mode; | |
239 | update_target_permissions (); | |
240 | ||
241 | /* Going *into* observer mode we must force non-stop, then | |
242 | going out we leave it that way. */ | |
243 | if (observer_mode) | |
244 | { | |
245 | target_async_permitted = 1; | |
246 | pagination_enabled = 0; | |
247 | non_stop = non_stop_1 = 1; | |
248 | } | |
249 | ||
250 | if (from_tty) | |
251 | printf_filtered (_("Observer mode is now %s.\n"), | |
252 | (observer_mode ? "on" : "off")); | |
253 | } | |
254 | ||
255 | static void | |
256 | show_observer_mode (struct ui_file *file, int from_tty, | |
257 | struct cmd_list_element *c, const char *value) | |
258 | { | |
259 | fprintf_filtered (file, _("Observer mode is %s.\n"), value); | |
260 | } | |
261 | ||
262 | /* This updates the value of observer mode based on changes in | |
263 | permissions. Note that we are deliberately ignoring the values of | |
264 | may-write-registers and may-write-memory, since the user may have | |
265 | reason to enable these during a session, for instance to turn on a | |
266 | debugging-related global. */ | |
267 | ||
268 | void | |
269 | update_observer_mode (void) | |
270 | { | |
271 | int newval; | |
272 | ||
273 | newval = (!may_insert_breakpoints | |
274 | && !may_insert_tracepoints | |
275 | && may_insert_fast_tracepoints | |
276 | && !may_stop | |
277 | && non_stop); | |
278 | ||
279 | /* Let the user know if things change. */ | |
280 | if (newval != observer_mode) | |
281 | printf_filtered (_("Observer mode is now %s.\n"), | |
282 | (newval ? "on" : "off")); | |
283 | ||
284 | observer_mode = observer_mode_1 = newval; | |
285 | } | |
c2c6d25f | 286 | |
c906108c SS |
287 | /* Tables of how to react to signals; the user sets them. */ |
288 | ||
289 | static unsigned char *signal_stop; | |
290 | static unsigned char *signal_print; | |
291 | static unsigned char *signal_program; | |
292 | ||
ab04a2af TT |
293 | /* Table of signals that are registered with "catch signal". A |
294 | non-zero entry indicates that the signal is caught by some "catch | |
295 | signal" command. This has size GDB_SIGNAL_LAST, to accommodate all | |
296 | signals. */ | |
297 | static unsigned char *signal_catch; | |
298 | ||
2455069d UW |
299 | /* Table of signals that the target may silently handle. |
300 | This is automatically determined from the flags above, | |
301 | and simply cached here. */ | |
302 | static unsigned char *signal_pass; | |
303 | ||
c906108c SS |
304 | #define SET_SIGS(nsigs,sigs,flags) \ |
305 | do { \ | |
306 | int signum = (nsigs); \ | |
307 | while (signum-- > 0) \ | |
308 | if ((sigs)[signum]) \ | |
309 | (flags)[signum] = 1; \ | |
310 | } while (0) | |
311 | ||
312 | #define UNSET_SIGS(nsigs,sigs,flags) \ | |
313 | do { \ | |
314 | int signum = (nsigs); \ | |
315 | while (signum-- > 0) \ | |
316 | if ((sigs)[signum]) \ | |
317 | (flags)[signum] = 0; \ | |
318 | } while (0) | |
319 | ||
9b224c5e PA |
320 | /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of |
321 | this function is to avoid exporting `signal_program'. */ | |
322 | ||
323 | void | |
324 | update_signals_program_target (void) | |
325 | { | |
a493e3e2 | 326 | target_program_signals ((int) GDB_SIGNAL_LAST, signal_program); |
9b224c5e PA |
327 | } |
328 | ||
1777feb0 | 329 | /* Value to pass to target_resume() to cause all threads to resume. */ |
39f77062 | 330 | |
edb3359d | 331 | #define RESUME_ALL minus_one_ptid |
c906108c SS |
332 | |
333 | /* Command list pointer for the "stop" placeholder. */ | |
334 | ||
335 | static struct cmd_list_element *stop_command; | |
336 | ||
c906108c SS |
337 | /* Function inferior was in as of last step command. */ |
338 | ||
339 | static struct symbol *step_start_function; | |
340 | ||
c906108c SS |
341 | /* Nonzero if we want to give control to the user when we're notified |
342 | of shared library events by the dynamic linker. */ | |
628fe4e4 | 343 | int stop_on_solib_events; |
f9e14852 GB |
344 | |
345 | /* Enable or disable optional shared library event breakpoints | |
346 | as appropriate when the above flag is changed. */ | |
347 | ||
348 | static void | |
349 | set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c) | |
350 | { | |
351 | update_solib_breakpoints (); | |
352 | } | |
353 | ||
920d2a44 AC |
354 | static void |
355 | show_stop_on_solib_events (struct ui_file *file, int from_tty, | |
356 | struct cmd_list_element *c, const char *value) | |
357 | { | |
358 | fprintf_filtered (file, _("Stopping for shared library events is %s.\n"), | |
359 | value); | |
360 | } | |
c906108c | 361 | |
c906108c SS |
362 | /* Nonzero means expecting a trace trap |
363 | and should stop the inferior and return silently when it happens. */ | |
364 | ||
365 | int stop_after_trap; | |
366 | ||
642fd101 DE |
367 | /* Save register contents here when executing a "finish" command or are |
368 | about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set. | |
c906108c SS |
369 | Thus this contains the return value from the called function (assuming |
370 | values are returned in a register). */ | |
371 | ||
72cec141 | 372 | struct regcache *stop_registers; |
c906108c | 373 | |
c906108c SS |
374 | /* Nonzero after stop if current stack frame should be printed. */ |
375 | ||
376 | static int stop_print_frame; | |
377 | ||
e02bc4cc | 378 | /* This is a cached copy of the pid/waitstatus of the last event |
9a4105ab AC |
379 | returned by target_wait()/deprecated_target_wait_hook(). This |
380 | information is returned by get_last_target_status(). */ | |
39f77062 | 381 | static ptid_t target_last_wait_ptid; |
e02bc4cc DS |
382 | static struct target_waitstatus target_last_waitstatus; |
383 | ||
0d1e5fa7 PA |
384 | static void context_switch (ptid_t ptid); |
385 | ||
4e1c45ea | 386 | void init_thread_stepping_state (struct thread_info *tss); |
0d1e5fa7 | 387 | |
7a76f5b8 | 388 | static void init_infwait_state (void); |
a474d7c2 | 389 | |
53904c9e AC |
390 | static const char follow_fork_mode_child[] = "child"; |
391 | static const char follow_fork_mode_parent[] = "parent"; | |
392 | ||
40478521 | 393 | static const char *const follow_fork_mode_kind_names[] = { |
53904c9e AC |
394 | follow_fork_mode_child, |
395 | follow_fork_mode_parent, | |
396 | NULL | |
ef346e04 | 397 | }; |
c906108c | 398 | |
53904c9e | 399 | static const char *follow_fork_mode_string = follow_fork_mode_parent; |
920d2a44 AC |
400 | static void |
401 | show_follow_fork_mode_string (struct ui_file *file, int from_tty, | |
402 | struct cmd_list_element *c, const char *value) | |
403 | { | |
3e43a32a MS |
404 | fprintf_filtered (file, |
405 | _("Debugger response to a program " | |
406 | "call of fork or vfork is \"%s\".\n"), | |
920d2a44 AC |
407 | value); |
408 | } | |
c906108c SS |
409 | \f |
410 | ||
e58b0e63 PA |
411 | /* Tell the target to follow the fork we're stopped at. Returns true |
412 | if the inferior should be resumed; false, if the target for some | |
413 | reason decided it's best not to resume. */ | |
414 | ||
6604731b | 415 | static int |
4ef3f3be | 416 | follow_fork (void) |
c906108c | 417 | { |
ea1dd7bc | 418 | int follow_child = (follow_fork_mode_string == follow_fork_mode_child); |
e58b0e63 PA |
419 | int should_resume = 1; |
420 | struct thread_info *tp; | |
421 | ||
422 | /* Copy user stepping state to the new inferior thread. FIXME: the | |
423 | followed fork child thread should have a copy of most of the | |
4e3990f4 DE |
424 | parent thread structure's run control related fields, not just these. |
425 | Initialized to avoid "may be used uninitialized" warnings from gcc. */ | |
426 | struct breakpoint *step_resume_breakpoint = NULL; | |
186c406b | 427 | struct breakpoint *exception_resume_breakpoint = NULL; |
4e3990f4 DE |
428 | CORE_ADDR step_range_start = 0; |
429 | CORE_ADDR step_range_end = 0; | |
430 | struct frame_id step_frame_id = { 0 }; | |
17b2616c | 431 | struct interp *command_interp = NULL; |
e58b0e63 PA |
432 | |
433 | if (!non_stop) | |
434 | { | |
435 | ptid_t wait_ptid; | |
436 | struct target_waitstatus wait_status; | |
437 | ||
438 | /* Get the last target status returned by target_wait(). */ | |
439 | get_last_target_status (&wait_ptid, &wait_status); | |
440 | ||
441 | /* If not stopped at a fork event, then there's nothing else to | |
442 | do. */ | |
443 | if (wait_status.kind != TARGET_WAITKIND_FORKED | |
444 | && wait_status.kind != TARGET_WAITKIND_VFORKED) | |
445 | return 1; | |
446 | ||
447 | /* Check if we switched over from WAIT_PTID, since the event was | |
448 | reported. */ | |
449 | if (!ptid_equal (wait_ptid, minus_one_ptid) | |
450 | && !ptid_equal (inferior_ptid, wait_ptid)) | |
451 | { | |
452 | /* We did. Switch back to WAIT_PTID thread, to tell the | |
453 | target to follow it (in either direction). We'll | |
454 | afterwards refuse to resume, and inform the user what | |
455 | happened. */ | |
456 | switch_to_thread (wait_ptid); | |
457 | should_resume = 0; | |
458 | } | |
459 | } | |
460 | ||
461 | tp = inferior_thread (); | |
462 | ||
463 | /* If there were any forks/vforks that were caught and are now to be | |
464 | followed, then do so now. */ | |
465 | switch (tp->pending_follow.kind) | |
466 | { | |
467 | case TARGET_WAITKIND_FORKED: | |
468 | case TARGET_WAITKIND_VFORKED: | |
469 | { | |
470 | ptid_t parent, child; | |
471 | ||
472 | /* If the user did a next/step, etc, over a fork call, | |
473 | preserve the stepping state in the fork child. */ | |
474 | if (follow_child && should_resume) | |
475 | { | |
8358c15c JK |
476 | step_resume_breakpoint = clone_momentary_breakpoint |
477 | (tp->control.step_resume_breakpoint); | |
16c381f0 JK |
478 | step_range_start = tp->control.step_range_start; |
479 | step_range_end = tp->control.step_range_end; | |
480 | step_frame_id = tp->control.step_frame_id; | |
186c406b TT |
481 | exception_resume_breakpoint |
482 | = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint); | |
17b2616c | 483 | command_interp = tp->control.command_interp; |
e58b0e63 PA |
484 | |
485 | /* For now, delete the parent's sr breakpoint, otherwise, | |
486 | parent/child sr breakpoints are considered duplicates, | |
487 | and the child version will not be installed. Remove | |
488 | this when the breakpoints module becomes aware of | |
489 | inferiors and address spaces. */ | |
490 | delete_step_resume_breakpoint (tp); | |
16c381f0 JK |
491 | tp->control.step_range_start = 0; |
492 | tp->control.step_range_end = 0; | |
493 | tp->control.step_frame_id = null_frame_id; | |
186c406b | 494 | delete_exception_resume_breakpoint (tp); |
17b2616c | 495 | tp->control.command_interp = NULL; |
e58b0e63 PA |
496 | } |
497 | ||
498 | parent = inferior_ptid; | |
499 | child = tp->pending_follow.value.related_pid; | |
500 | ||
501 | /* Tell the target to do whatever is necessary to follow | |
502 | either parent or child. */ | |
07107ca6 | 503 | if (target_follow_fork (follow_child, detach_fork)) |
e58b0e63 PA |
504 | { |
505 | /* Target refused to follow, or there's some other reason | |
506 | we shouldn't resume. */ | |
507 | should_resume = 0; | |
508 | } | |
509 | else | |
510 | { | |
511 | /* This pending follow fork event is now handled, one way | |
512 | or another. The previous selected thread may be gone | |
513 | from the lists by now, but if it is still around, need | |
514 | to clear the pending follow request. */ | |
e09875d4 | 515 | tp = find_thread_ptid (parent); |
e58b0e63 PA |
516 | if (tp) |
517 | tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS; | |
518 | ||
519 | /* This makes sure we don't try to apply the "Switched | |
520 | over from WAIT_PID" logic above. */ | |
521 | nullify_last_target_wait_ptid (); | |
522 | ||
1777feb0 | 523 | /* If we followed the child, switch to it... */ |
e58b0e63 PA |
524 | if (follow_child) |
525 | { | |
526 | switch_to_thread (child); | |
527 | ||
528 | /* ... and preserve the stepping state, in case the | |
529 | user was stepping over the fork call. */ | |
530 | if (should_resume) | |
531 | { | |
532 | tp = inferior_thread (); | |
8358c15c JK |
533 | tp->control.step_resume_breakpoint |
534 | = step_resume_breakpoint; | |
16c381f0 JK |
535 | tp->control.step_range_start = step_range_start; |
536 | tp->control.step_range_end = step_range_end; | |
537 | tp->control.step_frame_id = step_frame_id; | |
186c406b TT |
538 | tp->control.exception_resume_breakpoint |
539 | = exception_resume_breakpoint; | |
17b2616c | 540 | tp->control.command_interp = command_interp; |
e58b0e63 PA |
541 | } |
542 | else | |
543 | { | |
544 | /* If we get here, it was because we're trying to | |
545 | resume from a fork catchpoint, but, the user | |
546 | has switched threads away from the thread that | |
547 | forked. In that case, the resume command | |
548 | issued is most likely not applicable to the | |
549 | child, so just warn, and refuse to resume. */ | |
3e43a32a MS |
550 | warning (_("Not resuming: switched threads " |
551 | "before following fork child.\n")); | |
e58b0e63 PA |
552 | } |
553 | ||
554 | /* Reset breakpoints in the child as appropriate. */ | |
555 | follow_inferior_reset_breakpoints (); | |
556 | } | |
557 | else | |
558 | switch_to_thread (parent); | |
559 | } | |
560 | } | |
561 | break; | |
562 | case TARGET_WAITKIND_SPURIOUS: | |
563 | /* Nothing to follow. */ | |
564 | break; | |
565 | default: | |
566 | internal_error (__FILE__, __LINE__, | |
567 | "Unexpected pending_follow.kind %d\n", | |
568 | tp->pending_follow.kind); | |
569 | break; | |
570 | } | |
c906108c | 571 | |
e58b0e63 | 572 | return should_resume; |
c906108c SS |
573 | } |
574 | ||
6604731b DJ |
575 | void |
576 | follow_inferior_reset_breakpoints (void) | |
c906108c | 577 | { |
4e1c45ea PA |
578 | struct thread_info *tp = inferior_thread (); |
579 | ||
6604731b DJ |
580 | /* Was there a step_resume breakpoint? (There was if the user |
581 | did a "next" at the fork() call.) If so, explicitly reset its | |
582 | thread number. | |
583 | ||
584 | step_resumes are a form of bp that are made to be per-thread. | |
585 | Since we created the step_resume bp when the parent process | |
586 | was being debugged, and now are switching to the child process, | |
587 | from the breakpoint package's viewpoint, that's a switch of | |
588 | "threads". We must update the bp's notion of which thread | |
589 | it is for, or it'll be ignored when it triggers. */ | |
590 | ||
8358c15c JK |
591 | if (tp->control.step_resume_breakpoint) |
592 | breakpoint_re_set_thread (tp->control.step_resume_breakpoint); | |
6604731b | 593 | |
186c406b TT |
594 | if (tp->control.exception_resume_breakpoint) |
595 | breakpoint_re_set_thread (tp->control.exception_resume_breakpoint); | |
596 | ||
6604731b DJ |
597 | /* Reinsert all breakpoints in the child. The user may have set |
598 | breakpoints after catching the fork, in which case those | |
599 | were never set in the child, but only in the parent. This makes | |
600 | sure the inserted breakpoints match the breakpoint list. */ | |
601 | ||
602 | breakpoint_re_set (); | |
603 | insert_breakpoints (); | |
c906108c | 604 | } |
c906108c | 605 | |
6c95b8df PA |
606 | /* The child has exited or execed: resume threads of the parent the |
607 | user wanted to be executing. */ | |
608 | ||
609 | static int | |
610 | proceed_after_vfork_done (struct thread_info *thread, | |
611 | void *arg) | |
612 | { | |
613 | int pid = * (int *) arg; | |
614 | ||
615 | if (ptid_get_pid (thread->ptid) == pid | |
616 | && is_running (thread->ptid) | |
617 | && !is_executing (thread->ptid) | |
618 | && !thread->stop_requested | |
a493e3e2 | 619 | && thread->suspend.stop_signal == GDB_SIGNAL_0) |
6c95b8df PA |
620 | { |
621 | if (debug_infrun) | |
622 | fprintf_unfiltered (gdb_stdlog, | |
623 | "infrun: resuming vfork parent thread %s\n", | |
624 | target_pid_to_str (thread->ptid)); | |
625 | ||
626 | switch_to_thread (thread->ptid); | |
627 | clear_proceed_status (); | |
a493e3e2 | 628 | proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0); |
6c95b8df PA |
629 | } |
630 | ||
631 | return 0; | |
632 | } | |
633 | ||
634 | /* Called whenever we notice an exec or exit event, to handle | |
635 | detaching or resuming a vfork parent. */ | |
636 | ||
637 | static void | |
638 | handle_vfork_child_exec_or_exit (int exec) | |
639 | { | |
640 | struct inferior *inf = current_inferior (); | |
641 | ||
642 | if (inf->vfork_parent) | |
643 | { | |
644 | int resume_parent = -1; | |
645 | ||
646 | /* This exec or exit marks the end of the shared memory region | |
647 | between the parent and the child. If the user wanted to | |
648 | detach from the parent, now is the time. */ | |
649 | ||
650 | if (inf->vfork_parent->pending_detach) | |
651 | { | |
652 | struct thread_info *tp; | |
653 | struct cleanup *old_chain; | |
654 | struct program_space *pspace; | |
655 | struct address_space *aspace; | |
656 | ||
1777feb0 | 657 | /* follow-fork child, detach-on-fork on. */ |
6c95b8df | 658 | |
68c9da30 PA |
659 | inf->vfork_parent->pending_detach = 0; |
660 | ||
f50f4e56 PA |
661 | if (!exec) |
662 | { | |
663 | /* If we're handling a child exit, then inferior_ptid | |
664 | points at the inferior's pid, not to a thread. */ | |
665 | old_chain = save_inferior_ptid (); | |
666 | save_current_program_space (); | |
667 | save_current_inferior (); | |
668 | } | |
669 | else | |
670 | old_chain = save_current_space_and_thread (); | |
6c95b8df PA |
671 | |
672 | /* We're letting loose of the parent. */ | |
673 | tp = any_live_thread_of_process (inf->vfork_parent->pid); | |
674 | switch_to_thread (tp->ptid); | |
675 | ||
676 | /* We're about to detach from the parent, which implicitly | |
677 | removes breakpoints from its address space. There's a | |
678 | catch here: we want to reuse the spaces for the child, | |
679 | but, parent/child are still sharing the pspace at this | |
680 | point, although the exec in reality makes the kernel give | |
681 | the child a fresh set of new pages. The problem here is | |
682 | that the breakpoints module being unaware of this, would | |
683 | likely chose the child process to write to the parent | |
684 | address space. Swapping the child temporarily away from | |
685 | the spaces has the desired effect. Yes, this is "sort | |
686 | of" a hack. */ | |
687 | ||
688 | pspace = inf->pspace; | |
689 | aspace = inf->aspace; | |
690 | inf->aspace = NULL; | |
691 | inf->pspace = NULL; | |
692 | ||
693 | if (debug_infrun || info_verbose) | |
694 | { | |
695 | target_terminal_ours (); | |
696 | ||
697 | if (exec) | |
698 | fprintf_filtered (gdb_stdlog, | |
3e43a32a MS |
699 | "Detaching vfork parent process " |
700 | "%d after child exec.\n", | |
6c95b8df PA |
701 | inf->vfork_parent->pid); |
702 | else | |
703 | fprintf_filtered (gdb_stdlog, | |
3e43a32a MS |
704 | "Detaching vfork parent process " |
705 | "%d after child exit.\n", | |
6c95b8df PA |
706 | inf->vfork_parent->pid); |
707 | } | |
708 | ||
709 | target_detach (NULL, 0); | |
710 | ||
711 | /* Put it back. */ | |
712 | inf->pspace = pspace; | |
713 | inf->aspace = aspace; | |
714 | ||
715 | do_cleanups (old_chain); | |
716 | } | |
717 | else if (exec) | |
718 | { | |
719 | /* We're staying attached to the parent, so, really give the | |
720 | child a new address space. */ | |
721 | inf->pspace = add_program_space (maybe_new_address_space ()); | |
722 | inf->aspace = inf->pspace->aspace; | |
723 | inf->removable = 1; | |
724 | set_current_program_space (inf->pspace); | |
725 | ||
726 | resume_parent = inf->vfork_parent->pid; | |
727 | ||
728 | /* Break the bonds. */ | |
729 | inf->vfork_parent->vfork_child = NULL; | |
730 | } | |
731 | else | |
732 | { | |
733 | struct cleanup *old_chain; | |
734 | struct program_space *pspace; | |
735 | ||
736 | /* If this is a vfork child exiting, then the pspace and | |
737 | aspaces were shared with the parent. Since we're | |
738 | reporting the process exit, we'll be mourning all that is | |
739 | found in the address space, and switching to null_ptid, | |
740 | preparing to start a new inferior. But, since we don't | |
741 | want to clobber the parent's address/program spaces, we | |
742 | go ahead and create a new one for this exiting | |
743 | inferior. */ | |
744 | ||
745 | /* Switch to null_ptid, so that clone_program_space doesn't want | |
746 | to read the selected frame of a dead process. */ | |
747 | old_chain = save_inferior_ptid (); | |
748 | inferior_ptid = null_ptid; | |
749 | ||
750 | /* This inferior is dead, so avoid giving the breakpoints | |
751 | module the option to write through to it (cloning a | |
752 | program space resets breakpoints). */ | |
753 | inf->aspace = NULL; | |
754 | inf->pspace = NULL; | |
755 | pspace = add_program_space (maybe_new_address_space ()); | |
756 | set_current_program_space (pspace); | |
757 | inf->removable = 1; | |
7dcd53a0 | 758 | inf->symfile_flags = SYMFILE_NO_READ; |
6c95b8df PA |
759 | clone_program_space (pspace, inf->vfork_parent->pspace); |
760 | inf->pspace = pspace; | |
761 | inf->aspace = pspace->aspace; | |
762 | ||
763 | /* Put back inferior_ptid. We'll continue mourning this | |
1777feb0 | 764 | inferior. */ |
6c95b8df PA |
765 | do_cleanups (old_chain); |
766 | ||
767 | resume_parent = inf->vfork_parent->pid; | |
768 | /* Break the bonds. */ | |
769 | inf->vfork_parent->vfork_child = NULL; | |
770 | } | |
771 | ||
772 | inf->vfork_parent = NULL; | |
773 | ||
774 | gdb_assert (current_program_space == inf->pspace); | |
775 | ||
776 | if (non_stop && resume_parent != -1) | |
777 | { | |
778 | /* If the user wanted the parent to be running, let it go | |
779 | free now. */ | |
780 | struct cleanup *old_chain = make_cleanup_restore_current_thread (); | |
781 | ||
782 | if (debug_infrun) | |
3e43a32a MS |
783 | fprintf_unfiltered (gdb_stdlog, |
784 | "infrun: resuming vfork parent process %d\n", | |
6c95b8df PA |
785 | resume_parent); |
786 | ||
787 | iterate_over_threads (proceed_after_vfork_done, &resume_parent); | |
788 | ||
789 | do_cleanups (old_chain); | |
790 | } | |
791 | } | |
792 | } | |
793 | ||
eb6c553b | 794 | /* Enum strings for "set|show follow-exec-mode". */ |
6c95b8df PA |
795 | |
796 | static const char follow_exec_mode_new[] = "new"; | |
797 | static const char follow_exec_mode_same[] = "same"; | |
40478521 | 798 | static const char *const follow_exec_mode_names[] = |
6c95b8df PA |
799 | { |
800 | follow_exec_mode_new, | |
801 | follow_exec_mode_same, | |
802 | NULL, | |
803 | }; | |
804 | ||
805 | static const char *follow_exec_mode_string = follow_exec_mode_same; | |
806 | static void | |
807 | show_follow_exec_mode_string (struct ui_file *file, int from_tty, | |
808 | struct cmd_list_element *c, const char *value) | |
809 | { | |
810 | fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value); | |
811 | } | |
812 | ||
1777feb0 | 813 | /* EXECD_PATHNAME is assumed to be non-NULL. */ |
1adeb98a | 814 | |
c906108c | 815 | static void |
3a3e9ee3 | 816 | follow_exec (ptid_t pid, char *execd_pathname) |
c906108c | 817 | { |
4e1c45ea | 818 | struct thread_info *th = inferior_thread (); |
6c95b8df | 819 | struct inferior *inf = current_inferior (); |
7a292a7a | 820 | |
c906108c SS |
821 | /* This is an exec event that we actually wish to pay attention to. |
822 | Refresh our symbol table to the newly exec'd program, remove any | |
823 | momentary bp's, etc. | |
824 | ||
825 | If there are breakpoints, they aren't really inserted now, | |
826 | since the exec() transformed our inferior into a fresh set | |
827 | of instructions. | |
828 | ||
829 | We want to preserve symbolic breakpoints on the list, since | |
830 | we have hopes that they can be reset after the new a.out's | |
831 | symbol table is read. | |
832 | ||
833 | However, any "raw" breakpoints must be removed from the list | |
834 | (e.g., the solib bp's), since their address is probably invalid | |
835 | now. | |
836 | ||
837 | And, we DON'T want to call delete_breakpoints() here, since | |
838 | that may write the bp's "shadow contents" (the instruction | |
839 | value that was overwritten witha TRAP instruction). Since | |
1777feb0 | 840 | we now have a new a.out, those shadow contents aren't valid. */ |
6c95b8df PA |
841 | |
842 | mark_breakpoints_out (); | |
843 | ||
c906108c SS |
844 | update_breakpoints_after_exec (); |
845 | ||
846 | /* If there was one, it's gone now. We cannot truly step-to-next | |
1777feb0 | 847 | statement through an exec(). */ |
8358c15c | 848 | th->control.step_resume_breakpoint = NULL; |
186c406b | 849 | th->control.exception_resume_breakpoint = NULL; |
16c381f0 JK |
850 | th->control.step_range_start = 0; |
851 | th->control.step_range_end = 0; | |
c906108c | 852 | |
a75724bc PA |
853 | /* The target reports the exec event to the main thread, even if |
854 | some other thread does the exec, and even if the main thread was | |
855 | already stopped --- if debugging in non-stop mode, it's possible | |
856 | the user had the main thread held stopped in the previous image | |
857 | --- release it now. This is the same behavior as step-over-exec | |
858 | with scheduler-locking on in all-stop mode. */ | |
859 | th->stop_requested = 0; | |
860 | ||
1777feb0 | 861 | /* What is this a.out's name? */ |
6c95b8df PA |
862 | printf_unfiltered (_("%s is executing new program: %s\n"), |
863 | target_pid_to_str (inferior_ptid), | |
864 | execd_pathname); | |
c906108c SS |
865 | |
866 | /* We've followed the inferior through an exec. Therefore, the | |
1777feb0 | 867 | inferior has essentially been killed & reborn. */ |
7a292a7a | 868 | |
c906108c | 869 | gdb_flush (gdb_stdout); |
6ca15a4b PA |
870 | |
871 | breakpoint_init_inferior (inf_execd); | |
e85a822c DJ |
872 | |
873 | if (gdb_sysroot && *gdb_sysroot) | |
874 | { | |
875 | char *name = alloca (strlen (gdb_sysroot) | |
876 | + strlen (execd_pathname) | |
877 | + 1); | |
abbb1732 | 878 | |
e85a822c DJ |
879 | strcpy (name, gdb_sysroot); |
880 | strcat (name, execd_pathname); | |
881 | execd_pathname = name; | |
882 | } | |
c906108c | 883 | |
cce9b6bf PA |
884 | /* Reset the shared library package. This ensures that we get a |
885 | shlib event when the child reaches "_start", at which point the | |
886 | dld will have had a chance to initialize the child. */ | |
887 | /* Also, loading a symbol file below may trigger symbol lookups, and | |
888 | we don't want those to be satisfied by the libraries of the | |
889 | previous incarnation of this process. */ | |
890 | no_shared_libraries (NULL, 0); | |
891 | ||
6c95b8df PA |
892 | if (follow_exec_mode_string == follow_exec_mode_new) |
893 | { | |
894 | struct program_space *pspace; | |
6c95b8df PA |
895 | |
896 | /* The user wants to keep the old inferior and program spaces | |
897 | around. Create a new fresh one, and switch to it. */ | |
898 | ||
899 | inf = add_inferior (current_inferior ()->pid); | |
900 | pspace = add_program_space (maybe_new_address_space ()); | |
901 | inf->pspace = pspace; | |
902 | inf->aspace = pspace->aspace; | |
903 | ||
904 | exit_inferior_num_silent (current_inferior ()->num); | |
905 | ||
906 | set_current_inferior (inf); | |
907 | set_current_program_space (pspace); | |
908 | } | |
9107fc8d PA |
909 | else |
910 | { | |
911 | /* The old description may no longer be fit for the new image. | |
912 | E.g, a 64-bit process exec'ed a 32-bit process. Clear the | |
913 | old description; we'll read a new one below. No need to do | |
914 | this on "follow-exec-mode new", as the old inferior stays | |
915 | around (its description is later cleared/refetched on | |
916 | restart). */ | |
917 | target_clear_description (); | |
918 | } | |
6c95b8df PA |
919 | |
920 | gdb_assert (current_program_space == inf->pspace); | |
921 | ||
1777feb0 | 922 | /* That a.out is now the one to use. */ |
6c95b8df PA |
923 | exec_file_attach (execd_pathname, 0); |
924 | ||
c1e56572 JK |
925 | /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE |
926 | (Position Independent Executable) main symbol file will get applied by | |
927 | solib_create_inferior_hook below. breakpoint_re_set would fail to insert | |
928 | the breakpoints with the zero displacement. */ | |
929 | ||
7dcd53a0 TT |
930 | symbol_file_add (execd_pathname, |
931 | (inf->symfile_flags | |
932 | | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET), | |
c1e56572 JK |
933 | NULL, 0); |
934 | ||
7dcd53a0 TT |
935 | if ((inf->symfile_flags & SYMFILE_NO_READ) == 0) |
936 | set_initial_language (); | |
c906108c | 937 | |
9107fc8d PA |
938 | /* If the target can specify a description, read it. Must do this |
939 | after flipping to the new executable (because the target supplied | |
940 | description must be compatible with the executable's | |
941 | architecture, and the old executable may e.g., be 32-bit, while | |
942 | the new one 64-bit), and before anything involving memory or | |
943 | registers. */ | |
944 | target_find_description (); | |
945 | ||
268a4a75 | 946 | solib_create_inferior_hook (0); |
c906108c | 947 | |
4efc6507 DE |
948 | jit_inferior_created_hook (); |
949 | ||
c1e56572 JK |
950 | breakpoint_re_set (); |
951 | ||
c906108c SS |
952 | /* Reinsert all breakpoints. (Those which were symbolic have |
953 | been reset to the proper address in the new a.out, thanks | |
1777feb0 | 954 | to symbol_file_command...). */ |
c906108c SS |
955 | insert_breakpoints (); |
956 | ||
957 | /* The next resume of this inferior should bring it to the shlib | |
958 | startup breakpoints. (If the user had also set bp's on | |
959 | "main" from the old (parent) process, then they'll auto- | |
1777feb0 | 960 | matically get reset there in the new process.). */ |
c906108c SS |
961 | } |
962 | ||
963 | /* Non-zero if we just simulating a single-step. This is needed | |
964 | because we cannot remove the breakpoints in the inferior process | |
965 | until after the `wait' in `wait_for_inferior'. */ | |
966 | static int singlestep_breakpoints_inserted_p = 0; | |
9f976b41 DJ |
967 | |
968 | /* The thread we inserted single-step breakpoints for. */ | |
969 | static ptid_t singlestep_ptid; | |
970 | ||
fd48f117 DJ |
971 | /* PC when we started this single-step. */ |
972 | static CORE_ADDR singlestep_pc; | |
973 | ||
31e77af2 PA |
974 | /* Info about an instruction that is being stepped over. Invalid if |
975 | ASPACE is NULL. */ | |
976 | ||
977 | struct step_over_info | |
978 | { | |
979 | /* The instruction's address space. */ | |
980 | struct address_space *aspace; | |
981 | ||
982 | /* The instruction's address. */ | |
983 | CORE_ADDR address; | |
984 | }; | |
985 | ||
986 | /* The step-over info of the location that is being stepped over. | |
987 | ||
988 | Note that with async/breakpoint always-inserted mode, a user might | |
989 | set a new breakpoint/watchpoint/etc. exactly while a breakpoint is | |
990 | being stepped over. As setting a new breakpoint inserts all | |
991 | breakpoints, we need to make sure the breakpoint being stepped over | |
992 | isn't inserted then. We do that by only clearing the step-over | |
993 | info when the step-over is actually finished (or aborted). | |
994 | ||
995 | Presently GDB can only step over one breakpoint at any given time. | |
996 | Given threads that can't run code in the same address space as the | |
997 | breakpoint's can't really miss the breakpoint, GDB could be taught | |
998 | to step-over at most one breakpoint per address space (so this info | |
999 | could move to the address space object if/when GDB is extended). | |
1000 | The set of breakpoints being stepped over will normally be much | |
1001 | smaller than the set of all breakpoints, so a flag in the | |
1002 | breakpoint location structure would be wasteful. A separate list | |
1003 | also saves complexity and run-time, as otherwise we'd have to go | |
1004 | through all breakpoint locations clearing their flag whenever we | |
1005 | start a new sequence. Similar considerations weigh against storing | |
1006 | this info in the thread object. Plus, not all step overs actually | |
1007 | have breakpoint locations -- e.g., stepping past a single-step | |
1008 | breakpoint, or stepping to complete a non-continuable | |
1009 | watchpoint. */ | |
1010 | static struct step_over_info step_over_info; | |
1011 | ||
1012 | /* Record the address of the breakpoint/instruction we're currently | |
1013 | stepping over. */ | |
1014 | ||
1015 | static void | |
1016 | set_step_over_info (struct address_space *aspace, CORE_ADDR address) | |
1017 | { | |
1018 | step_over_info.aspace = aspace; | |
1019 | step_over_info.address = address; | |
1020 | } | |
1021 | ||
1022 | /* Called when we're not longer stepping over a breakpoint / an | |
1023 | instruction, so all breakpoints are free to be (re)inserted. */ | |
1024 | ||
1025 | static void | |
1026 | clear_step_over_info (void) | |
1027 | { | |
1028 | step_over_info.aspace = NULL; | |
1029 | step_over_info.address = 0; | |
1030 | } | |
1031 | ||
1032 | /* See inferior.h. */ | |
1033 | ||
1034 | int | |
1035 | stepping_past_instruction_at (struct address_space *aspace, | |
1036 | CORE_ADDR address) | |
1037 | { | |
1038 | return (step_over_info.aspace != NULL | |
1039 | && breakpoint_address_match (aspace, address, | |
1040 | step_over_info.aspace, | |
1041 | step_over_info.address)); | |
1042 | } | |
1043 | ||
c906108c | 1044 | \f |
237fc4c9 PA |
1045 | /* Displaced stepping. */ |
1046 | ||
1047 | /* In non-stop debugging mode, we must take special care to manage | |
1048 | breakpoints properly; in particular, the traditional strategy for | |
1049 | stepping a thread past a breakpoint it has hit is unsuitable. | |
1050 | 'Displaced stepping' is a tactic for stepping one thread past a | |
1051 | breakpoint it has hit while ensuring that other threads running | |
1052 | concurrently will hit the breakpoint as they should. | |
1053 | ||
1054 | The traditional way to step a thread T off a breakpoint in a | |
1055 | multi-threaded program in all-stop mode is as follows: | |
1056 | ||
1057 | a0) Initially, all threads are stopped, and breakpoints are not | |
1058 | inserted. | |
1059 | a1) We single-step T, leaving breakpoints uninserted. | |
1060 | a2) We insert breakpoints, and resume all threads. | |
1061 | ||
1062 | In non-stop debugging, however, this strategy is unsuitable: we | |
1063 | don't want to have to stop all threads in the system in order to | |
1064 | continue or step T past a breakpoint. Instead, we use displaced | |
1065 | stepping: | |
1066 | ||
1067 | n0) Initially, T is stopped, other threads are running, and | |
1068 | breakpoints are inserted. | |
1069 | n1) We copy the instruction "under" the breakpoint to a separate | |
1070 | location, outside the main code stream, making any adjustments | |
1071 | to the instruction, register, and memory state as directed by | |
1072 | T's architecture. | |
1073 | n2) We single-step T over the instruction at its new location. | |
1074 | n3) We adjust the resulting register and memory state as directed | |
1075 | by T's architecture. This includes resetting T's PC to point | |
1076 | back into the main instruction stream. | |
1077 | n4) We resume T. | |
1078 | ||
1079 | This approach depends on the following gdbarch methods: | |
1080 | ||
1081 | - gdbarch_max_insn_length and gdbarch_displaced_step_location | |
1082 | indicate where to copy the instruction, and how much space must | |
1083 | be reserved there. We use these in step n1. | |
1084 | ||
1085 | - gdbarch_displaced_step_copy_insn copies a instruction to a new | |
1086 | address, and makes any necessary adjustments to the instruction, | |
1087 | register contents, and memory. We use this in step n1. | |
1088 | ||
1089 | - gdbarch_displaced_step_fixup adjusts registers and memory after | |
1090 | we have successfuly single-stepped the instruction, to yield the | |
1091 | same effect the instruction would have had if we had executed it | |
1092 | at its original address. We use this in step n3. | |
1093 | ||
1094 | - gdbarch_displaced_step_free_closure provides cleanup. | |
1095 | ||
1096 | The gdbarch_displaced_step_copy_insn and | |
1097 | gdbarch_displaced_step_fixup functions must be written so that | |
1098 | copying an instruction with gdbarch_displaced_step_copy_insn, | |
1099 | single-stepping across the copied instruction, and then applying | |
1100 | gdbarch_displaced_insn_fixup should have the same effects on the | |
1101 | thread's memory and registers as stepping the instruction in place | |
1102 | would have. Exactly which responsibilities fall to the copy and | |
1103 | which fall to the fixup is up to the author of those functions. | |
1104 | ||
1105 | See the comments in gdbarch.sh for details. | |
1106 | ||
1107 | Note that displaced stepping and software single-step cannot | |
1108 | currently be used in combination, although with some care I think | |
1109 | they could be made to. Software single-step works by placing | |
1110 | breakpoints on all possible subsequent instructions; if the | |
1111 | displaced instruction is a PC-relative jump, those breakpoints | |
1112 | could fall in very strange places --- on pages that aren't | |
1113 | executable, or at addresses that are not proper instruction | |
1114 | boundaries. (We do generally let other threads run while we wait | |
1115 | to hit the software single-step breakpoint, and they might | |
1116 | encounter such a corrupted instruction.) One way to work around | |
1117 | this would be to have gdbarch_displaced_step_copy_insn fully | |
1118 | simulate the effect of PC-relative instructions (and return NULL) | |
1119 | on architectures that use software single-stepping. | |
1120 | ||
1121 | In non-stop mode, we can have independent and simultaneous step | |
1122 | requests, so more than one thread may need to simultaneously step | |
1123 | over a breakpoint. The current implementation assumes there is | |
1124 | only one scratch space per process. In this case, we have to | |
1125 | serialize access to the scratch space. If thread A wants to step | |
1126 | over a breakpoint, but we are currently waiting for some other | |
1127 | thread to complete a displaced step, we leave thread A stopped and | |
1128 | place it in the displaced_step_request_queue. Whenever a displaced | |
1129 | step finishes, we pick the next thread in the queue and start a new | |
1130 | displaced step operation on it. See displaced_step_prepare and | |
1131 | displaced_step_fixup for details. */ | |
1132 | ||
237fc4c9 PA |
1133 | struct displaced_step_request |
1134 | { | |
1135 | ptid_t ptid; | |
1136 | struct displaced_step_request *next; | |
1137 | }; | |
1138 | ||
fc1cf338 PA |
1139 | /* Per-inferior displaced stepping state. */ |
1140 | struct displaced_step_inferior_state | |
1141 | { | |
1142 | /* Pointer to next in linked list. */ | |
1143 | struct displaced_step_inferior_state *next; | |
1144 | ||
1145 | /* The process this displaced step state refers to. */ | |
1146 | int pid; | |
1147 | ||
1148 | /* A queue of pending displaced stepping requests. One entry per | |
1149 | thread that needs to do a displaced step. */ | |
1150 | struct displaced_step_request *step_request_queue; | |
1151 | ||
1152 | /* If this is not null_ptid, this is the thread carrying out a | |
1153 | displaced single-step in process PID. This thread's state will | |
1154 | require fixing up once it has completed its step. */ | |
1155 | ptid_t step_ptid; | |
1156 | ||
1157 | /* The architecture the thread had when we stepped it. */ | |
1158 | struct gdbarch *step_gdbarch; | |
1159 | ||
1160 | /* The closure provided gdbarch_displaced_step_copy_insn, to be used | |
1161 | for post-step cleanup. */ | |
1162 | struct displaced_step_closure *step_closure; | |
1163 | ||
1164 | /* The address of the original instruction, and the copy we | |
1165 | made. */ | |
1166 | CORE_ADDR step_original, step_copy; | |
1167 | ||
1168 | /* Saved contents of copy area. */ | |
1169 | gdb_byte *step_saved_copy; | |
1170 | }; | |
1171 | ||
1172 | /* The list of states of processes involved in displaced stepping | |
1173 | presently. */ | |
1174 | static struct displaced_step_inferior_state *displaced_step_inferior_states; | |
1175 | ||
1176 | /* Get the displaced stepping state of process PID. */ | |
1177 | ||
1178 | static struct displaced_step_inferior_state * | |
1179 | get_displaced_stepping_state (int pid) | |
1180 | { | |
1181 | struct displaced_step_inferior_state *state; | |
1182 | ||
1183 | for (state = displaced_step_inferior_states; | |
1184 | state != NULL; | |
1185 | state = state->next) | |
1186 | if (state->pid == pid) | |
1187 | return state; | |
1188 | ||
1189 | return NULL; | |
1190 | } | |
1191 | ||
1192 | /* Add a new displaced stepping state for process PID to the displaced | |
1193 | stepping state list, or return a pointer to an already existing | |
1194 | entry, if it already exists. Never returns NULL. */ | |
1195 | ||
1196 | static struct displaced_step_inferior_state * | |
1197 | add_displaced_stepping_state (int pid) | |
1198 | { | |
1199 | struct displaced_step_inferior_state *state; | |
1200 | ||
1201 | for (state = displaced_step_inferior_states; | |
1202 | state != NULL; | |
1203 | state = state->next) | |
1204 | if (state->pid == pid) | |
1205 | return state; | |
237fc4c9 | 1206 | |
fc1cf338 PA |
1207 | state = xcalloc (1, sizeof (*state)); |
1208 | state->pid = pid; | |
1209 | state->next = displaced_step_inferior_states; | |
1210 | displaced_step_inferior_states = state; | |
237fc4c9 | 1211 | |
fc1cf338 PA |
1212 | return state; |
1213 | } | |
1214 | ||
a42244db YQ |
1215 | /* If inferior is in displaced stepping, and ADDR equals to starting address |
1216 | of copy area, return corresponding displaced_step_closure. Otherwise, | |
1217 | return NULL. */ | |
1218 | ||
1219 | struct displaced_step_closure* | |
1220 | get_displaced_step_closure_by_addr (CORE_ADDR addr) | |
1221 | { | |
1222 | struct displaced_step_inferior_state *displaced | |
1223 | = get_displaced_stepping_state (ptid_get_pid (inferior_ptid)); | |
1224 | ||
1225 | /* If checking the mode of displaced instruction in copy area. */ | |
1226 | if (displaced && !ptid_equal (displaced->step_ptid, null_ptid) | |
1227 | && (displaced->step_copy == addr)) | |
1228 | return displaced->step_closure; | |
1229 | ||
1230 | return NULL; | |
1231 | } | |
1232 | ||
fc1cf338 | 1233 | /* Remove the displaced stepping state of process PID. */ |
237fc4c9 | 1234 | |
fc1cf338 PA |
1235 | static void |
1236 | remove_displaced_stepping_state (int pid) | |
1237 | { | |
1238 | struct displaced_step_inferior_state *it, **prev_next_p; | |
237fc4c9 | 1239 | |
fc1cf338 PA |
1240 | gdb_assert (pid != 0); |
1241 | ||
1242 | it = displaced_step_inferior_states; | |
1243 | prev_next_p = &displaced_step_inferior_states; | |
1244 | while (it) | |
1245 | { | |
1246 | if (it->pid == pid) | |
1247 | { | |
1248 | *prev_next_p = it->next; | |
1249 | xfree (it); | |
1250 | return; | |
1251 | } | |
1252 | ||
1253 | prev_next_p = &it->next; | |
1254 | it = *prev_next_p; | |
1255 | } | |
1256 | } | |
1257 | ||
1258 | static void | |
1259 | infrun_inferior_exit (struct inferior *inf) | |
1260 | { | |
1261 | remove_displaced_stepping_state (inf->pid); | |
1262 | } | |
237fc4c9 | 1263 | |
fff08868 HZ |
1264 | /* If ON, and the architecture supports it, GDB will use displaced |
1265 | stepping to step over breakpoints. If OFF, or if the architecture | |
1266 | doesn't support it, GDB will instead use the traditional | |
1267 | hold-and-step approach. If AUTO (which is the default), GDB will | |
1268 | decide which technique to use to step over breakpoints depending on | |
1269 | which of all-stop or non-stop mode is active --- displaced stepping | |
1270 | in non-stop mode; hold-and-step in all-stop mode. */ | |
1271 | ||
72d0e2c5 | 1272 | static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO; |
fff08868 | 1273 | |
237fc4c9 PA |
1274 | static void |
1275 | show_can_use_displaced_stepping (struct ui_file *file, int from_tty, | |
1276 | struct cmd_list_element *c, | |
1277 | const char *value) | |
1278 | { | |
72d0e2c5 | 1279 | if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO) |
3e43a32a MS |
1280 | fprintf_filtered (file, |
1281 | _("Debugger's willingness to use displaced stepping " | |
1282 | "to step over breakpoints is %s (currently %s).\n"), | |
fff08868 HZ |
1283 | value, non_stop ? "on" : "off"); |
1284 | else | |
3e43a32a MS |
1285 | fprintf_filtered (file, |
1286 | _("Debugger's willingness to use displaced stepping " | |
1287 | "to step over breakpoints is %s.\n"), value); | |
237fc4c9 PA |
1288 | } |
1289 | ||
fff08868 HZ |
1290 | /* Return non-zero if displaced stepping can/should be used to step |
1291 | over breakpoints. */ | |
1292 | ||
237fc4c9 PA |
1293 | static int |
1294 | use_displaced_stepping (struct gdbarch *gdbarch) | |
1295 | { | |
72d0e2c5 YQ |
1296 | return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop) |
1297 | || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE) | |
96429cc8 | 1298 | && gdbarch_displaced_step_copy_insn_p (gdbarch) |
8213266a | 1299 | && find_record_target () == NULL); |
237fc4c9 PA |
1300 | } |
1301 | ||
1302 | /* Clean out any stray displaced stepping state. */ | |
1303 | static void | |
fc1cf338 | 1304 | displaced_step_clear (struct displaced_step_inferior_state *displaced) |
237fc4c9 PA |
1305 | { |
1306 | /* Indicate that there is no cleanup pending. */ | |
fc1cf338 | 1307 | displaced->step_ptid = null_ptid; |
237fc4c9 | 1308 | |
fc1cf338 | 1309 | if (displaced->step_closure) |
237fc4c9 | 1310 | { |
fc1cf338 PA |
1311 | gdbarch_displaced_step_free_closure (displaced->step_gdbarch, |
1312 | displaced->step_closure); | |
1313 | displaced->step_closure = NULL; | |
237fc4c9 PA |
1314 | } |
1315 | } | |
1316 | ||
1317 | static void | |
fc1cf338 | 1318 | displaced_step_clear_cleanup (void *arg) |
237fc4c9 | 1319 | { |
fc1cf338 PA |
1320 | struct displaced_step_inferior_state *state = arg; |
1321 | ||
1322 | displaced_step_clear (state); | |
237fc4c9 PA |
1323 | } |
1324 | ||
1325 | /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */ | |
1326 | void | |
1327 | displaced_step_dump_bytes (struct ui_file *file, | |
1328 | const gdb_byte *buf, | |
1329 | size_t len) | |
1330 | { | |
1331 | int i; | |
1332 | ||
1333 | for (i = 0; i < len; i++) | |
1334 | fprintf_unfiltered (file, "%02x ", buf[i]); | |
1335 | fputs_unfiltered ("\n", file); | |
1336 | } | |
1337 | ||
1338 | /* Prepare to single-step, using displaced stepping. | |
1339 | ||
1340 | Note that we cannot use displaced stepping when we have a signal to | |
1341 | deliver. If we have a signal to deliver and an instruction to step | |
1342 | over, then after the step, there will be no indication from the | |
1343 | target whether the thread entered a signal handler or ignored the | |
1344 | signal and stepped over the instruction successfully --- both cases | |
1345 | result in a simple SIGTRAP. In the first case we mustn't do a | |
1346 | fixup, and in the second case we must --- but we can't tell which. | |
1347 | Comments in the code for 'random signals' in handle_inferior_event | |
1348 | explain how we handle this case instead. | |
1349 | ||
1350 | Returns 1 if preparing was successful -- this thread is going to be | |
1351 | stepped now; or 0 if displaced stepping this thread got queued. */ | |
1352 | static int | |
1353 | displaced_step_prepare (ptid_t ptid) | |
1354 | { | |
ad53cd71 | 1355 | struct cleanup *old_cleanups, *ignore_cleanups; |
c1e36e3e | 1356 | struct thread_info *tp = find_thread_ptid (ptid); |
237fc4c9 PA |
1357 | struct regcache *regcache = get_thread_regcache (ptid); |
1358 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
1359 | CORE_ADDR original, copy; | |
1360 | ULONGEST len; | |
1361 | struct displaced_step_closure *closure; | |
fc1cf338 | 1362 | struct displaced_step_inferior_state *displaced; |
9e529e1d | 1363 | int status; |
237fc4c9 PA |
1364 | |
1365 | /* We should never reach this function if the architecture does not | |
1366 | support displaced stepping. */ | |
1367 | gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch)); | |
1368 | ||
c1e36e3e PA |
1369 | /* Disable range stepping while executing in the scratch pad. We |
1370 | want a single-step even if executing the displaced instruction in | |
1371 | the scratch buffer lands within the stepping range (e.g., a | |
1372 | jump/branch). */ | |
1373 | tp->control.may_range_step = 0; | |
1374 | ||
fc1cf338 PA |
1375 | /* We have to displaced step one thread at a time, as we only have |
1376 | access to a single scratch space per inferior. */ | |
237fc4c9 | 1377 | |
fc1cf338 PA |
1378 | displaced = add_displaced_stepping_state (ptid_get_pid (ptid)); |
1379 | ||
1380 | if (!ptid_equal (displaced->step_ptid, null_ptid)) | |
237fc4c9 PA |
1381 | { |
1382 | /* Already waiting for a displaced step to finish. Defer this | |
1383 | request and place in queue. */ | |
1384 | struct displaced_step_request *req, *new_req; | |
1385 | ||
1386 | if (debug_displaced) | |
1387 | fprintf_unfiltered (gdb_stdlog, | |
1388 | "displaced: defering step of %s\n", | |
1389 | target_pid_to_str (ptid)); | |
1390 | ||
1391 | new_req = xmalloc (sizeof (*new_req)); | |
1392 | new_req->ptid = ptid; | |
1393 | new_req->next = NULL; | |
1394 | ||
fc1cf338 | 1395 | if (displaced->step_request_queue) |
237fc4c9 | 1396 | { |
fc1cf338 | 1397 | for (req = displaced->step_request_queue; |
237fc4c9 PA |
1398 | req && req->next; |
1399 | req = req->next) | |
1400 | ; | |
1401 | req->next = new_req; | |
1402 | } | |
1403 | else | |
fc1cf338 | 1404 | displaced->step_request_queue = new_req; |
237fc4c9 PA |
1405 | |
1406 | return 0; | |
1407 | } | |
1408 | else | |
1409 | { | |
1410 | if (debug_displaced) | |
1411 | fprintf_unfiltered (gdb_stdlog, | |
1412 | "displaced: stepping %s now\n", | |
1413 | target_pid_to_str (ptid)); | |
1414 | } | |
1415 | ||
fc1cf338 | 1416 | displaced_step_clear (displaced); |
237fc4c9 | 1417 | |
ad53cd71 PA |
1418 | old_cleanups = save_inferior_ptid (); |
1419 | inferior_ptid = ptid; | |
1420 | ||
515630c5 | 1421 | original = regcache_read_pc (regcache); |
237fc4c9 PA |
1422 | |
1423 | copy = gdbarch_displaced_step_location (gdbarch); | |
1424 | len = gdbarch_max_insn_length (gdbarch); | |
1425 | ||
1426 | /* Save the original contents of the copy area. */ | |
fc1cf338 | 1427 | displaced->step_saved_copy = xmalloc (len); |
ad53cd71 | 1428 | ignore_cleanups = make_cleanup (free_current_contents, |
fc1cf338 | 1429 | &displaced->step_saved_copy); |
9e529e1d JK |
1430 | status = target_read_memory (copy, displaced->step_saved_copy, len); |
1431 | if (status != 0) | |
1432 | throw_error (MEMORY_ERROR, | |
1433 | _("Error accessing memory address %s (%s) for " | |
1434 | "displaced-stepping scratch space."), | |
1435 | paddress (gdbarch, copy), safe_strerror (status)); | |
237fc4c9 PA |
1436 | if (debug_displaced) |
1437 | { | |
5af949e3 UW |
1438 | fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ", |
1439 | paddress (gdbarch, copy)); | |
fc1cf338 PA |
1440 | displaced_step_dump_bytes (gdb_stdlog, |
1441 | displaced->step_saved_copy, | |
1442 | len); | |
237fc4c9 PA |
1443 | }; |
1444 | ||
1445 | closure = gdbarch_displaced_step_copy_insn (gdbarch, | |
ad53cd71 | 1446 | original, copy, regcache); |
237fc4c9 PA |
1447 | |
1448 | /* We don't support the fully-simulated case at present. */ | |
1449 | gdb_assert (closure); | |
1450 | ||
9f5a595d UW |
1451 | /* Save the information we need to fix things up if the step |
1452 | succeeds. */ | |
fc1cf338 PA |
1453 | displaced->step_ptid = ptid; |
1454 | displaced->step_gdbarch = gdbarch; | |
1455 | displaced->step_closure = closure; | |
1456 | displaced->step_original = original; | |
1457 | displaced->step_copy = copy; | |
9f5a595d | 1458 | |
fc1cf338 | 1459 | make_cleanup (displaced_step_clear_cleanup, displaced); |
237fc4c9 PA |
1460 | |
1461 | /* Resume execution at the copy. */ | |
515630c5 | 1462 | regcache_write_pc (regcache, copy); |
237fc4c9 | 1463 | |
ad53cd71 PA |
1464 | discard_cleanups (ignore_cleanups); |
1465 | ||
1466 | do_cleanups (old_cleanups); | |
237fc4c9 PA |
1467 | |
1468 | if (debug_displaced) | |
5af949e3 UW |
1469 | fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n", |
1470 | paddress (gdbarch, copy)); | |
237fc4c9 | 1471 | |
237fc4c9 PA |
1472 | return 1; |
1473 | } | |
1474 | ||
237fc4c9 | 1475 | static void |
3e43a32a MS |
1476 | write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, |
1477 | const gdb_byte *myaddr, int len) | |
237fc4c9 PA |
1478 | { |
1479 | struct cleanup *ptid_cleanup = save_inferior_ptid (); | |
abbb1732 | 1480 | |
237fc4c9 PA |
1481 | inferior_ptid = ptid; |
1482 | write_memory (memaddr, myaddr, len); | |
1483 | do_cleanups (ptid_cleanup); | |
1484 | } | |
1485 | ||
e2d96639 YQ |
1486 | /* Restore the contents of the copy area for thread PTID. */ |
1487 | ||
1488 | static void | |
1489 | displaced_step_restore (struct displaced_step_inferior_state *displaced, | |
1490 | ptid_t ptid) | |
1491 | { | |
1492 | ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch); | |
1493 | ||
1494 | write_memory_ptid (ptid, displaced->step_copy, | |
1495 | displaced->step_saved_copy, len); | |
1496 | if (debug_displaced) | |
1497 | fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n", | |
1498 | target_pid_to_str (ptid), | |
1499 | paddress (displaced->step_gdbarch, | |
1500 | displaced->step_copy)); | |
1501 | } | |
1502 | ||
237fc4c9 | 1503 | static void |
2ea28649 | 1504 | displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal) |
237fc4c9 PA |
1505 | { |
1506 | struct cleanup *old_cleanups; | |
fc1cf338 PA |
1507 | struct displaced_step_inferior_state *displaced |
1508 | = get_displaced_stepping_state (ptid_get_pid (event_ptid)); | |
1509 | ||
1510 | /* Was any thread of this process doing a displaced step? */ | |
1511 | if (displaced == NULL) | |
1512 | return; | |
237fc4c9 PA |
1513 | |
1514 | /* Was this event for the pid we displaced? */ | |
fc1cf338 PA |
1515 | if (ptid_equal (displaced->step_ptid, null_ptid) |
1516 | || ! ptid_equal (displaced->step_ptid, event_ptid)) | |
237fc4c9 PA |
1517 | return; |
1518 | ||
fc1cf338 | 1519 | old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced); |
237fc4c9 | 1520 | |
e2d96639 | 1521 | displaced_step_restore (displaced, displaced->step_ptid); |
237fc4c9 PA |
1522 | |
1523 | /* Did the instruction complete successfully? */ | |
a493e3e2 | 1524 | if (signal == GDB_SIGNAL_TRAP) |
237fc4c9 PA |
1525 | { |
1526 | /* Fix up the resulting state. */ | |
fc1cf338 PA |
1527 | gdbarch_displaced_step_fixup (displaced->step_gdbarch, |
1528 | displaced->step_closure, | |
1529 | displaced->step_original, | |
1530 | displaced->step_copy, | |
1531 | get_thread_regcache (displaced->step_ptid)); | |
237fc4c9 PA |
1532 | } |
1533 | else | |
1534 | { | |
1535 | /* Since the instruction didn't complete, all we can do is | |
1536 | relocate the PC. */ | |
515630c5 UW |
1537 | struct regcache *regcache = get_thread_regcache (event_ptid); |
1538 | CORE_ADDR pc = regcache_read_pc (regcache); | |
abbb1732 | 1539 | |
fc1cf338 | 1540 | pc = displaced->step_original + (pc - displaced->step_copy); |
515630c5 | 1541 | regcache_write_pc (regcache, pc); |
237fc4c9 PA |
1542 | } |
1543 | ||
1544 | do_cleanups (old_cleanups); | |
1545 | ||
fc1cf338 | 1546 | displaced->step_ptid = null_ptid; |
1c5cfe86 | 1547 | |
237fc4c9 | 1548 | /* Are there any pending displaced stepping requests? If so, run |
fc1cf338 PA |
1549 | one now. Leave the state object around, since we're likely to |
1550 | need it again soon. */ | |
1551 | while (displaced->step_request_queue) | |
237fc4c9 PA |
1552 | { |
1553 | struct displaced_step_request *head; | |
1554 | ptid_t ptid; | |
5af949e3 | 1555 | struct regcache *regcache; |
929dfd4f | 1556 | struct gdbarch *gdbarch; |
1c5cfe86 | 1557 | CORE_ADDR actual_pc; |
6c95b8df | 1558 | struct address_space *aspace; |
237fc4c9 | 1559 | |
fc1cf338 | 1560 | head = displaced->step_request_queue; |
237fc4c9 | 1561 | ptid = head->ptid; |
fc1cf338 | 1562 | displaced->step_request_queue = head->next; |
237fc4c9 PA |
1563 | xfree (head); |
1564 | ||
ad53cd71 PA |
1565 | context_switch (ptid); |
1566 | ||
5af949e3 UW |
1567 | regcache = get_thread_regcache (ptid); |
1568 | actual_pc = regcache_read_pc (regcache); | |
6c95b8df | 1569 | aspace = get_regcache_aspace (regcache); |
1c5cfe86 | 1570 | |
6c95b8df | 1571 | if (breakpoint_here_p (aspace, actual_pc)) |
ad53cd71 | 1572 | { |
1c5cfe86 PA |
1573 | if (debug_displaced) |
1574 | fprintf_unfiltered (gdb_stdlog, | |
1575 | "displaced: stepping queued %s now\n", | |
1576 | target_pid_to_str (ptid)); | |
1577 | ||
1578 | displaced_step_prepare (ptid); | |
1579 | ||
929dfd4f JB |
1580 | gdbarch = get_regcache_arch (regcache); |
1581 | ||
1c5cfe86 PA |
1582 | if (debug_displaced) |
1583 | { | |
929dfd4f | 1584 | CORE_ADDR actual_pc = regcache_read_pc (regcache); |
1c5cfe86 PA |
1585 | gdb_byte buf[4]; |
1586 | ||
5af949e3 UW |
1587 | fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ", |
1588 | paddress (gdbarch, actual_pc)); | |
1c5cfe86 PA |
1589 | read_memory (actual_pc, buf, sizeof (buf)); |
1590 | displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf)); | |
1591 | } | |
1592 | ||
fc1cf338 PA |
1593 | if (gdbarch_displaced_step_hw_singlestep (gdbarch, |
1594 | displaced->step_closure)) | |
a493e3e2 | 1595 | target_resume (ptid, 1, GDB_SIGNAL_0); |
99e40580 | 1596 | else |
a493e3e2 | 1597 | target_resume (ptid, 0, GDB_SIGNAL_0); |
1c5cfe86 PA |
1598 | |
1599 | /* Done, we're stepping a thread. */ | |
1600 | break; | |
ad53cd71 | 1601 | } |
1c5cfe86 PA |
1602 | else |
1603 | { | |
1604 | int step; | |
1605 | struct thread_info *tp = inferior_thread (); | |
1606 | ||
1607 | /* The breakpoint we were sitting under has since been | |
1608 | removed. */ | |
16c381f0 | 1609 | tp->control.trap_expected = 0; |
1c5cfe86 PA |
1610 | |
1611 | /* Go back to what we were trying to do. */ | |
1612 | step = currently_stepping (tp); | |
ad53cd71 | 1613 | |
1c5cfe86 | 1614 | if (debug_displaced) |
3e43a32a | 1615 | fprintf_unfiltered (gdb_stdlog, |
27d2932e | 1616 | "displaced: breakpoint is gone: %s, step(%d)\n", |
1c5cfe86 PA |
1617 | target_pid_to_str (tp->ptid), step); |
1618 | ||
a493e3e2 PA |
1619 | target_resume (ptid, step, GDB_SIGNAL_0); |
1620 | tp->suspend.stop_signal = GDB_SIGNAL_0; | |
1c5cfe86 PA |
1621 | |
1622 | /* This request was discarded. See if there's any other | |
1623 | thread waiting for its turn. */ | |
1624 | } | |
237fc4c9 PA |
1625 | } |
1626 | } | |
1627 | ||
5231c1fd PA |
1628 | /* Update global variables holding ptids to hold NEW_PTID if they were |
1629 | holding OLD_PTID. */ | |
1630 | static void | |
1631 | infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid) | |
1632 | { | |
1633 | struct displaced_step_request *it; | |
fc1cf338 | 1634 | struct displaced_step_inferior_state *displaced; |
5231c1fd PA |
1635 | |
1636 | if (ptid_equal (inferior_ptid, old_ptid)) | |
1637 | inferior_ptid = new_ptid; | |
1638 | ||
1639 | if (ptid_equal (singlestep_ptid, old_ptid)) | |
1640 | singlestep_ptid = new_ptid; | |
1641 | ||
fc1cf338 PA |
1642 | for (displaced = displaced_step_inferior_states; |
1643 | displaced; | |
1644 | displaced = displaced->next) | |
1645 | { | |
1646 | if (ptid_equal (displaced->step_ptid, old_ptid)) | |
1647 | displaced->step_ptid = new_ptid; | |
1648 | ||
1649 | for (it = displaced->step_request_queue; it; it = it->next) | |
1650 | if (ptid_equal (it->ptid, old_ptid)) | |
1651 | it->ptid = new_ptid; | |
1652 | } | |
5231c1fd PA |
1653 | } |
1654 | ||
237fc4c9 PA |
1655 | \f |
1656 | /* Resuming. */ | |
c906108c SS |
1657 | |
1658 | /* Things to clean up if we QUIT out of resume (). */ | |
c906108c | 1659 | static void |
74b7792f | 1660 | resume_cleanups (void *ignore) |
c906108c SS |
1661 | { |
1662 | normal_stop (); | |
1663 | } | |
1664 | ||
53904c9e AC |
1665 | static const char schedlock_off[] = "off"; |
1666 | static const char schedlock_on[] = "on"; | |
1667 | static const char schedlock_step[] = "step"; | |
40478521 | 1668 | static const char *const scheduler_enums[] = { |
ef346e04 AC |
1669 | schedlock_off, |
1670 | schedlock_on, | |
1671 | schedlock_step, | |
1672 | NULL | |
1673 | }; | |
920d2a44 AC |
1674 | static const char *scheduler_mode = schedlock_off; |
1675 | static void | |
1676 | show_scheduler_mode (struct ui_file *file, int from_tty, | |
1677 | struct cmd_list_element *c, const char *value) | |
1678 | { | |
3e43a32a MS |
1679 | fprintf_filtered (file, |
1680 | _("Mode for locking scheduler " | |
1681 | "during execution is \"%s\".\n"), | |
920d2a44 AC |
1682 | value); |
1683 | } | |
c906108c SS |
1684 | |
1685 | static void | |
96baa820 | 1686 | set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c) |
c906108c | 1687 | { |
eefe576e AC |
1688 | if (!target_can_lock_scheduler) |
1689 | { | |
1690 | scheduler_mode = schedlock_off; | |
1691 | error (_("Target '%s' cannot support this command."), target_shortname); | |
1692 | } | |
c906108c SS |
1693 | } |
1694 | ||
d4db2f36 PA |
1695 | /* True if execution commands resume all threads of all processes by |
1696 | default; otherwise, resume only threads of the current inferior | |
1697 | process. */ | |
1698 | int sched_multi = 0; | |
1699 | ||
2facfe5c DD |
1700 | /* Try to setup for software single stepping over the specified location. |
1701 | Return 1 if target_resume() should use hardware single step. | |
1702 | ||
1703 | GDBARCH the current gdbarch. | |
1704 | PC the location to step over. */ | |
1705 | ||
1706 | static int | |
1707 | maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc) | |
1708 | { | |
1709 | int hw_step = 1; | |
1710 | ||
f02253f1 HZ |
1711 | if (execution_direction == EXEC_FORWARD |
1712 | && gdbarch_software_single_step_p (gdbarch) | |
99e40580 | 1713 | && gdbarch_software_single_step (gdbarch, get_current_frame ())) |
2facfe5c | 1714 | { |
99e40580 UW |
1715 | hw_step = 0; |
1716 | /* Do not pull these breakpoints until after a `wait' in | |
1777feb0 | 1717 | `wait_for_inferior'. */ |
99e40580 UW |
1718 | singlestep_breakpoints_inserted_p = 1; |
1719 | singlestep_ptid = inferior_ptid; | |
1720 | singlestep_pc = pc; | |
2facfe5c DD |
1721 | } |
1722 | return hw_step; | |
1723 | } | |
c906108c | 1724 | |
09cee04b PA |
1725 | /* Return a ptid representing the set of threads that we will proceed, |
1726 | in the perspective of the user/frontend. We may actually resume | |
1727 | fewer threads at first, e.g., if a thread is stopped at a | |
b136cd05 PA |
1728 | breakpoint that needs stepping-off, but that should not be visible |
1729 | to the user/frontend, and neither should the frontend/user be | |
1730 | allowed to proceed any of the threads that happen to be stopped for | |
09cee04b PA |
1731 | internal run control handling, if a previous command wanted them |
1732 | resumed. */ | |
1733 | ||
1734 | ptid_t | |
1735 | user_visible_resume_ptid (int step) | |
1736 | { | |
1737 | /* By default, resume all threads of all processes. */ | |
1738 | ptid_t resume_ptid = RESUME_ALL; | |
1739 | ||
1740 | /* Maybe resume only all threads of the current process. */ | |
1741 | if (!sched_multi && target_supports_multi_process ()) | |
1742 | { | |
1743 | resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid)); | |
1744 | } | |
1745 | ||
1746 | /* Maybe resume a single thread after all. */ | |
1747 | if (non_stop) | |
1748 | { | |
1749 | /* With non-stop mode on, threads are always handled | |
1750 | individually. */ | |
1751 | resume_ptid = inferior_ptid; | |
1752 | } | |
1753 | else if ((scheduler_mode == schedlock_on) | |
1754 | || (scheduler_mode == schedlock_step | |
1755 | && (step || singlestep_breakpoints_inserted_p))) | |
1756 | { | |
1757 | /* User-settable 'scheduler' mode requires solo thread resume. */ | |
1758 | resume_ptid = inferior_ptid; | |
1759 | } | |
1760 | ||
1761 | return resume_ptid; | |
1762 | } | |
1763 | ||
c906108c SS |
1764 | /* Resume the inferior, but allow a QUIT. This is useful if the user |
1765 | wants to interrupt some lengthy single-stepping operation | |
1766 | (for child processes, the SIGINT goes to the inferior, and so | |
1767 | we get a SIGINT random_signal, but for remote debugging and perhaps | |
1768 | other targets, that's not true). | |
1769 | ||
1770 | STEP nonzero if we should step (zero to continue instead). | |
1771 | SIG is the signal to give the inferior (zero for none). */ | |
1772 | void | |
2ea28649 | 1773 | resume (int step, enum gdb_signal sig) |
c906108c | 1774 | { |
74b7792f | 1775 | struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0); |
515630c5 UW |
1776 | struct regcache *regcache = get_current_regcache (); |
1777 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
4e1c45ea | 1778 | struct thread_info *tp = inferior_thread (); |
515630c5 | 1779 | CORE_ADDR pc = regcache_read_pc (regcache); |
6c95b8df | 1780 | struct address_space *aspace = get_regcache_aspace (regcache); |
b0f16a3e | 1781 | ptid_t resume_ptid; |
c7e8a53c | 1782 | |
c906108c SS |
1783 | QUIT; |
1784 | ||
74609e71 YQ |
1785 | if (current_inferior ()->waiting_for_vfork_done) |
1786 | { | |
48f9886d PA |
1787 | /* Don't try to single-step a vfork parent that is waiting for |
1788 | the child to get out of the shared memory region (by exec'ing | |
1789 | or exiting). This is particularly important on software | |
1790 | single-step archs, as the child process would trip on the | |
1791 | software single step breakpoint inserted for the parent | |
1792 | process. Since the parent will not actually execute any | |
1793 | instruction until the child is out of the shared region (such | |
1794 | are vfork's semantics), it is safe to simply continue it. | |
1795 | Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for | |
1796 | the parent, and tell it to `keep_going', which automatically | |
1797 | re-sets it stepping. */ | |
74609e71 YQ |
1798 | if (debug_infrun) |
1799 | fprintf_unfiltered (gdb_stdlog, | |
1800 | "infrun: resume : clear step\n"); | |
1801 | step = 0; | |
1802 | } | |
1803 | ||
527159b7 | 1804 | if (debug_infrun) |
237fc4c9 | 1805 | fprintf_unfiltered (gdb_stdlog, |
c9737c08 | 1806 | "infrun: resume (step=%d, signal=%s), " |
0d9a9a5f | 1807 | "trap_expected=%d, current thread [%s] at %s\n", |
c9737c08 PA |
1808 | step, gdb_signal_to_symbol_string (sig), |
1809 | tp->control.trap_expected, | |
0d9a9a5f PA |
1810 | target_pid_to_str (inferior_ptid), |
1811 | paddress (gdbarch, pc)); | |
c906108c | 1812 | |
c2c6d25f JM |
1813 | /* Normally, by the time we reach `resume', the breakpoints are either |
1814 | removed or inserted, as appropriate. The exception is if we're sitting | |
1815 | at a permanent breakpoint; we need to step over it, but permanent | |
1816 | breakpoints can't be removed. So we have to test for it here. */ | |
6c95b8df | 1817 | if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here) |
6d350bb5 | 1818 | { |
515630c5 UW |
1819 | if (gdbarch_skip_permanent_breakpoint_p (gdbarch)) |
1820 | gdbarch_skip_permanent_breakpoint (gdbarch, regcache); | |
6d350bb5 | 1821 | else |
ac74f770 MS |
1822 | error (_("\ |
1823 | The program is stopped at a permanent breakpoint, but GDB does not know\n\ | |
1824 | how to step past a permanent breakpoint on this architecture. Try using\n\ | |
1825 | a command like `return' or `jump' to continue execution.")); | |
6d350bb5 | 1826 | } |
c2c6d25f | 1827 | |
c1e36e3e PA |
1828 | /* If we have a breakpoint to step over, make sure to do a single |
1829 | step only. Same if we have software watchpoints. */ | |
1830 | if (tp->control.trap_expected || bpstat_should_step ()) | |
1831 | tp->control.may_range_step = 0; | |
1832 | ||
237fc4c9 PA |
1833 | /* If enabled, step over breakpoints by executing a copy of the |
1834 | instruction at a different address. | |
1835 | ||
1836 | We can't use displaced stepping when we have a signal to deliver; | |
1837 | the comments for displaced_step_prepare explain why. The | |
1838 | comments in the handle_inferior event for dealing with 'random | |
74609e71 YQ |
1839 | signals' explain what we do instead. |
1840 | ||
1841 | We can't use displaced stepping when we are waiting for vfork_done | |
1842 | event, displaced stepping breaks the vfork child similarly as single | |
1843 | step software breakpoint. */ | |
515630c5 | 1844 | if (use_displaced_stepping (gdbarch) |
16c381f0 | 1845 | && (tp->control.trap_expected |
929dfd4f | 1846 | || (step && gdbarch_software_single_step_p (gdbarch))) |
a493e3e2 | 1847 | && sig == GDB_SIGNAL_0 |
74609e71 | 1848 | && !current_inferior ()->waiting_for_vfork_done) |
237fc4c9 | 1849 | { |
fc1cf338 PA |
1850 | struct displaced_step_inferior_state *displaced; |
1851 | ||
237fc4c9 | 1852 | if (!displaced_step_prepare (inferior_ptid)) |
d56b7306 VP |
1853 | { |
1854 | /* Got placed in displaced stepping queue. Will be resumed | |
1855 | later when all the currently queued displaced stepping | |
7f7efbd9 VP |
1856 | requests finish. The thread is not executing at this point, |
1857 | and the call to set_executing will be made later. But we | |
1858 | need to call set_running here, since from frontend point of view, | |
1859 | the thread is running. */ | |
1860 | set_running (inferior_ptid, 1); | |
d56b7306 VP |
1861 | discard_cleanups (old_cleanups); |
1862 | return; | |
1863 | } | |
99e40580 | 1864 | |
ca7781d2 LM |
1865 | /* Update pc to reflect the new address from which we will execute |
1866 | instructions due to displaced stepping. */ | |
1867 | pc = regcache_read_pc (get_thread_regcache (inferior_ptid)); | |
1868 | ||
fc1cf338 PA |
1869 | displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid)); |
1870 | step = gdbarch_displaced_step_hw_singlestep (gdbarch, | |
1871 | displaced->step_closure); | |
237fc4c9 PA |
1872 | } |
1873 | ||
2facfe5c | 1874 | /* Do we need to do it the hard way, w/temp breakpoints? */ |
99e40580 | 1875 | else if (step) |
2facfe5c | 1876 | step = maybe_software_singlestep (gdbarch, pc); |
c906108c | 1877 | |
30852783 UW |
1878 | /* Currently, our software single-step implementation leads to different |
1879 | results than hardware single-stepping in one situation: when stepping | |
1880 | into delivering a signal which has an associated signal handler, | |
1881 | hardware single-step will stop at the first instruction of the handler, | |
1882 | while software single-step will simply skip execution of the handler. | |
1883 | ||
1884 | For now, this difference in behavior is accepted since there is no | |
1885 | easy way to actually implement single-stepping into a signal handler | |
1886 | without kernel support. | |
1887 | ||
1888 | However, there is one scenario where this difference leads to follow-on | |
1889 | problems: if we're stepping off a breakpoint by removing all breakpoints | |
1890 | and then single-stepping. In this case, the software single-step | |
1891 | behavior means that even if there is a *breakpoint* in the signal | |
1892 | handler, GDB still would not stop. | |
1893 | ||
1894 | Fortunately, we can at least fix this particular issue. We detect | |
1895 | here the case where we are about to deliver a signal while software | |
1896 | single-stepping with breakpoints removed. In this situation, we | |
1897 | revert the decisions to remove all breakpoints and insert single- | |
1898 | step breakpoints, and instead we install a step-resume breakpoint | |
1899 | at the current address, deliver the signal without stepping, and | |
1900 | once we arrive back at the step-resume breakpoint, actually step | |
1901 | over the breakpoint we originally wanted to step over. */ | |
1902 | if (singlestep_breakpoints_inserted_p | |
a493e3e2 | 1903 | && tp->control.trap_expected && sig != GDB_SIGNAL_0) |
30852783 UW |
1904 | { |
1905 | /* If we have nested signals or a pending signal is delivered | |
1906 | immediately after a handler returns, might might already have | |
1907 | a step-resume breakpoint set on the earlier handler. We cannot | |
1908 | set another step-resume breakpoint; just continue on until the | |
1909 | original breakpoint is hit. */ | |
1910 | if (tp->control.step_resume_breakpoint == NULL) | |
1911 | { | |
2c03e5be | 1912 | insert_hp_step_resume_breakpoint_at_frame (get_current_frame ()); |
30852783 UW |
1913 | tp->step_after_step_resume_breakpoint = 1; |
1914 | } | |
1915 | ||
1916 | remove_single_step_breakpoints (); | |
1917 | singlestep_breakpoints_inserted_p = 0; | |
1918 | ||
31e77af2 | 1919 | clear_step_over_info (); |
30852783 | 1920 | tp->control.trap_expected = 0; |
31e77af2 PA |
1921 | |
1922 | insert_breakpoints (); | |
30852783 UW |
1923 | } |
1924 | ||
b0f16a3e SM |
1925 | /* If STEP is set, it's a request to use hardware stepping |
1926 | facilities. But in that case, we should never | |
1927 | use singlestep breakpoint. */ | |
1928 | gdb_assert (!(singlestep_breakpoints_inserted_p && step)); | |
dfcd3bfb | 1929 | |
b0f16a3e SM |
1930 | /* Decide the set of threads to ask the target to resume. Start |
1931 | by assuming everything will be resumed, than narrow the set | |
1932 | by applying increasingly restricting conditions. */ | |
1933 | resume_ptid = user_visible_resume_ptid (step); | |
cd76b0b7 | 1934 | |
b0f16a3e SM |
1935 | /* Maybe resume a single thread after all. */ |
1936 | if ((step || singlestep_breakpoints_inserted_p) | |
1937 | && tp->control.trap_expected) | |
1938 | { | |
1939 | /* We're allowing a thread to run past a breakpoint it has | |
1940 | hit, by single-stepping the thread with the breakpoint | |
1941 | removed. In which case, we need to single-step only this | |
1942 | thread, and keep others stopped, as they can miss this | |
1943 | breakpoint if allowed to run. */ | |
1944 | resume_ptid = inferior_ptid; | |
1945 | } | |
d4db2f36 | 1946 | |
b0f16a3e SM |
1947 | if (gdbarch_cannot_step_breakpoint (gdbarch)) |
1948 | { | |
1949 | /* Most targets can step a breakpoint instruction, thus | |
1950 | executing it normally. But if this one cannot, just | |
1951 | continue and we will hit it anyway. */ | |
1952 | if (step && breakpoint_inserted_here_p (aspace, pc)) | |
1953 | step = 0; | |
1954 | } | |
ef5cf84e | 1955 | |
b0f16a3e SM |
1956 | if (debug_displaced |
1957 | && use_displaced_stepping (gdbarch) | |
1958 | && tp->control.trap_expected) | |
1959 | { | |
1960 | struct regcache *resume_regcache = get_thread_regcache (resume_ptid); | |
1961 | struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache); | |
1962 | CORE_ADDR actual_pc = regcache_read_pc (resume_regcache); | |
1963 | gdb_byte buf[4]; | |
1964 | ||
1965 | fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ", | |
1966 | paddress (resume_gdbarch, actual_pc)); | |
1967 | read_memory (actual_pc, buf, sizeof (buf)); | |
1968 | displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf)); | |
1969 | } | |
237fc4c9 | 1970 | |
b0f16a3e SM |
1971 | if (tp->control.may_range_step) |
1972 | { | |
1973 | /* If we're resuming a thread with the PC out of the step | |
1974 | range, then we're doing some nested/finer run control | |
1975 | operation, like stepping the thread out of the dynamic | |
1976 | linker or the displaced stepping scratch pad. We | |
1977 | shouldn't have allowed a range step then. */ | |
1978 | gdb_assert (pc_in_thread_step_range (pc, tp)); | |
1979 | } | |
c1e36e3e | 1980 | |
b0f16a3e SM |
1981 | /* Install inferior's terminal modes. */ |
1982 | target_terminal_inferior (); | |
1983 | ||
1984 | /* Avoid confusing the next resume, if the next stop/resume | |
1985 | happens to apply to another thread. */ | |
1986 | tp->suspend.stop_signal = GDB_SIGNAL_0; | |
1987 | ||
1988 | /* Advise target which signals may be handled silently. If we have | |
1989 | removed breakpoints because we are stepping over one (which can | |
1990 | happen only if we are not using displaced stepping), we need to | |
1991 | receive all signals to avoid accidentally skipping a breakpoint | |
1992 | during execution of a signal handler. */ | |
1993 | if ((step || singlestep_breakpoints_inserted_p) | |
1994 | && tp->control.trap_expected | |
1995 | && !use_displaced_stepping (gdbarch)) | |
1996 | target_pass_signals (0, NULL); | |
1997 | else | |
1998 | target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass); | |
2455069d | 1999 | |
b0f16a3e | 2000 | target_resume (resume_ptid, step, sig); |
c906108c SS |
2001 | |
2002 | discard_cleanups (old_cleanups); | |
2003 | } | |
2004 | \f | |
237fc4c9 | 2005 | /* Proceeding. */ |
c906108c SS |
2006 | |
2007 | /* Clear out all variables saying what to do when inferior is continued. | |
2008 | First do this, then set the ones you want, then call `proceed'. */ | |
2009 | ||
a7212384 UW |
2010 | static void |
2011 | clear_proceed_status_thread (struct thread_info *tp) | |
c906108c | 2012 | { |
a7212384 UW |
2013 | if (debug_infrun) |
2014 | fprintf_unfiltered (gdb_stdlog, | |
2015 | "infrun: clear_proceed_status_thread (%s)\n", | |
2016 | target_pid_to_str (tp->ptid)); | |
d6b48e9c | 2017 | |
16c381f0 JK |
2018 | tp->control.trap_expected = 0; |
2019 | tp->control.step_range_start = 0; | |
2020 | tp->control.step_range_end = 0; | |
c1e36e3e | 2021 | tp->control.may_range_step = 0; |
16c381f0 JK |
2022 | tp->control.step_frame_id = null_frame_id; |
2023 | tp->control.step_stack_frame_id = null_frame_id; | |
2024 | tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE; | |
a7212384 | 2025 | tp->stop_requested = 0; |
4e1c45ea | 2026 | |
16c381f0 | 2027 | tp->control.stop_step = 0; |
32400beb | 2028 | |
16c381f0 | 2029 | tp->control.proceed_to_finish = 0; |
414c69f7 | 2030 | |
17b2616c PA |
2031 | tp->control.command_interp = NULL; |
2032 | ||
a7212384 | 2033 | /* Discard any remaining commands or status from previous stop. */ |
16c381f0 | 2034 | bpstat_clear (&tp->control.stop_bpstat); |
a7212384 | 2035 | } |
32400beb | 2036 | |
a7212384 UW |
2037 | static int |
2038 | clear_proceed_status_callback (struct thread_info *tp, void *data) | |
2039 | { | |
2040 | if (is_exited (tp->ptid)) | |
2041 | return 0; | |
d6b48e9c | 2042 | |
a7212384 UW |
2043 | clear_proceed_status_thread (tp); |
2044 | return 0; | |
2045 | } | |
2046 | ||
2047 | void | |
2048 | clear_proceed_status (void) | |
2049 | { | |
6c95b8df PA |
2050 | if (!non_stop) |
2051 | { | |
2052 | /* In all-stop mode, delete the per-thread status of all | |
2053 | threads, even if inferior_ptid is null_ptid, there may be | |
2054 | threads on the list. E.g., we may be launching a new | |
2055 | process, while selecting the executable. */ | |
2056 | iterate_over_threads (clear_proceed_status_callback, NULL); | |
2057 | } | |
2058 | ||
a7212384 UW |
2059 | if (!ptid_equal (inferior_ptid, null_ptid)) |
2060 | { | |
2061 | struct inferior *inferior; | |
2062 | ||
2063 | if (non_stop) | |
2064 | { | |
6c95b8df PA |
2065 | /* If in non-stop mode, only delete the per-thread status of |
2066 | the current thread. */ | |
a7212384 UW |
2067 | clear_proceed_status_thread (inferior_thread ()); |
2068 | } | |
6c95b8df | 2069 | |
d6b48e9c | 2070 | inferior = current_inferior (); |
16c381f0 | 2071 | inferior->control.stop_soon = NO_STOP_QUIETLY; |
4e1c45ea PA |
2072 | } |
2073 | ||
c906108c | 2074 | stop_after_trap = 0; |
f3b1572e | 2075 | |
31e77af2 PA |
2076 | clear_step_over_info (); |
2077 | ||
f3b1572e | 2078 | observer_notify_about_to_proceed (); |
c906108c | 2079 | |
d5c31457 UW |
2080 | if (stop_registers) |
2081 | { | |
2082 | regcache_xfree (stop_registers); | |
2083 | stop_registers = NULL; | |
2084 | } | |
c906108c SS |
2085 | } |
2086 | ||
99619bea PA |
2087 | /* Returns true if TP is still stopped at a breakpoint that needs |
2088 | stepping-over in order to make progress. If the breakpoint is gone | |
2089 | meanwhile, we can skip the whole step-over dance. */ | |
ea67f13b DJ |
2090 | |
2091 | static int | |
99619bea PA |
2092 | thread_still_needs_step_over (struct thread_info *tp) |
2093 | { | |
2094 | if (tp->stepping_over_breakpoint) | |
2095 | { | |
2096 | struct regcache *regcache = get_thread_regcache (tp->ptid); | |
2097 | ||
2098 | if (breakpoint_here_p (get_regcache_aspace (regcache), | |
2099 | regcache_read_pc (regcache))) | |
2100 | return 1; | |
2101 | ||
2102 | tp->stepping_over_breakpoint = 0; | |
2103 | } | |
2104 | ||
2105 | return 0; | |
2106 | } | |
2107 | ||
483805cf PA |
2108 | /* Returns true if scheduler locking applies. STEP indicates whether |
2109 | we're about to do a step/next-like command to a thread. */ | |
2110 | ||
2111 | static int | |
2112 | schedlock_applies (int step) | |
2113 | { | |
2114 | return (scheduler_mode == schedlock_on | |
2115 | || (scheduler_mode == schedlock_step | |
2116 | && step)); | |
2117 | } | |
2118 | ||
99619bea PA |
2119 | /* Look a thread other than EXCEPT that has previously reported a |
2120 | breakpoint event, and thus needs a step-over in order to make | |
2121 | progress. Returns NULL is none is found. STEP indicates whether | |
2122 | we're about to step the current thread, in order to decide whether | |
2123 | "set scheduler-locking step" applies. */ | |
2124 | ||
2125 | static struct thread_info * | |
2126 | find_thread_needs_step_over (int step, struct thread_info *except) | |
ea67f13b | 2127 | { |
99619bea | 2128 | struct thread_info *tp, *current; |
5a437975 DE |
2129 | |
2130 | /* With non-stop mode on, threads are always handled individually. */ | |
2131 | gdb_assert (! non_stop); | |
ea67f13b | 2132 | |
99619bea | 2133 | current = inferior_thread (); |
d4db2f36 | 2134 | |
99619bea PA |
2135 | /* If scheduler locking applies, we can avoid iterating over all |
2136 | threads. */ | |
483805cf | 2137 | if (schedlock_applies (step)) |
ea67f13b | 2138 | { |
99619bea PA |
2139 | if (except != current |
2140 | && thread_still_needs_step_over (current)) | |
2141 | return current; | |
515630c5 | 2142 | |
99619bea PA |
2143 | return NULL; |
2144 | } | |
0d9a9a5f | 2145 | |
99619bea PA |
2146 | ALL_THREADS (tp) |
2147 | { | |
2148 | /* Ignore the EXCEPT thread. */ | |
2149 | if (tp == except) | |
2150 | continue; | |
2151 | /* Ignore threads of processes we're not resuming. */ | |
2152 | if (!sched_multi | |
2153 | && ptid_get_pid (tp->ptid) != ptid_get_pid (inferior_ptid)) | |
2154 | continue; | |
2155 | ||
2156 | if (thread_still_needs_step_over (tp)) | |
2157 | return tp; | |
ea67f13b DJ |
2158 | } |
2159 | ||
99619bea | 2160 | return NULL; |
ea67f13b | 2161 | } |
e4846b08 | 2162 | |
c906108c SS |
2163 | /* Basic routine for continuing the program in various fashions. |
2164 | ||
2165 | ADDR is the address to resume at, or -1 for resume where stopped. | |
2166 | SIGGNAL is the signal to give it, or 0 for none, | |
c5aa993b | 2167 | or -1 for act according to how it stopped. |
c906108c | 2168 | STEP is nonzero if should trap after one instruction. |
c5aa993b JM |
2169 | -1 means return after that and print nothing. |
2170 | You should probably set various step_... variables | |
2171 | before calling here, if you are stepping. | |
c906108c SS |
2172 | |
2173 | You should call clear_proceed_status before calling proceed. */ | |
2174 | ||
2175 | void | |
2ea28649 | 2176 | proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step) |
c906108c | 2177 | { |
e58b0e63 PA |
2178 | struct regcache *regcache; |
2179 | struct gdbarch *gdbarch; | |
4e1c45ea | 2180 | struct thread_info *tp; |
e58b0e63 | 2181 | CORE_ADDR pc; |
6c95b8df | 2182 | struct address_space *aspace; |
c906108c | 2183 | |
e58b0e63 PA |
2184 | /* If we're stopped at a fork/vfork, follow the branch set by the |
2185 | "set follow-fork-mode" command; otherwise, we'll just proceed | |
2186 | resuming the current thread. */ | |
2187 | if (!follow_fork ()) | |
2188 | { | |
2189 | /* The target for some reason decided not to resume. */ | |
2190 | normal_stop (); | |
f148b27e PA |
2191 | if (target_can_async_p ()) |
2192 | inferior_event_handler (INF_EXEC_COMPLETE, NULL); | |
e58b0e63 PA |
2193 | return; |
2194 | } | |
2195 | ||
842951eb PA |
2196 | /* We'll update this if & when we switch to a new thread. */ |
2197 | previous_inferior_ptid = inferior_ptid; | |
2198 | ||
e58b0e63 PA |
2199 | regcache = get_current_regcache (); |
2200 | gdbarch = get_regcache_arch (regcache); | |
6c95b8df | 2201 | aspace = get_regcache_aspace (regcache); |
e58b0e63 | 2202 | pc = regcache_read_pc (regcache); |
2adfaa28 | 2203 | tp = inferior_thread (); |
e58b0e63 | 2204 | |
c906108c | 2205 | if (step > 0) |
515630c5 | 2206 | step_start_function = find_pc_function (pc); |
c906108c SS |
2207 | if (step < 0) |
2208 | stop_after_trap = 1; | |
2209 | ||
99619bea PA |
2210 | /* Fill in with reasonable starting values. */ |
2211 | init_thread_stepping_state (tp); | |
2212 | ||
2acceee2 | 2213 | if (addr == (CORE_ADDR) -1) |
c906108c | 2214 | { |
6c95b8df | 2215 | if (pc == stop_pc && breakpoint_here_p (aspace, pc) |
b2175913 | 2216 | && execution_direction != EXEC_REVERSE) |
3352ef37 AC |
2217 | /* There is a breakpoint at the address we will resume at, |
2218 | step one instruction before inserting breakpoints so that | |
2219 | we do not stop right away (and report a second hit at this | |
b2175913 MS |
2220 | breakpoint). |
2221 | ||
2222 | Note, we don't do this in reverse, because we won't | |
2223 | actually be executing the breakpoint insn anyway. | |
2224 | We'll be (un-)executing the previous instruction. */ | |
99619bea | 2225 | tp->stepping_over_breakpoint = 1; |
515630c5 UW |
2226 | else if (gdbarch_single_step_through_delay_p (gdbarch) |
2227 | && gdbarch_single_step_through_delay (gdbarch, | |
2228 | get_current_frame ())) | |
3352ef37 AC |
2229 | /* We stepped onto an instruction that needs to be stepped |
2230 | again before re-inserting the breakpoint, do so. */ | |
99619bea | 2231 | tp->stepping_over_breakpoint = 1; |
c906108c SS |
2232 | } |
2233 | else | |
2234 | { | |
515630c5 | 2235 | regcache_write_pc (regcache, addr); |
c906108c SS |
2236 | } |
2237 | ||
17b2616c PA |
2238 | /* Record the interpreter that issued the execution command that |
2239 | caused this thread to resume. If the top level interpreter is | |
2240 | MI/async, and the execution command was a CLI command | |
2241 | (next/step/etc.), we'll want to print stop event output to the MI | |
2242 | console channel (the stepped-to line, etc.), as if the user | |
2243 | entered the execution command on a real GDB console. */ | |
2244 | inferior_thread ()->control.command_interp = command_interp (); | |
2245 | ||
527159b7 | 2246 | if (debug_infrun) |
8a9de0e4 | 2247 | fprintf_unfiltered (gdb_stdlog, |
c9737c08 PA |
2248 | "infrun: proceed (addr=%s, signal=%s, step=%d)\n", |
2249 | paddress (gdbarch, addr), | |
2250 | gdb_signal_to_symbol_string (siggnal), step); | |
527159b7 | 2251 | |
94cc34af PA |
2252 | if (non_stop) |
2253 | /* In non-stop, each thread is handled individually. The context | |
2254 | must already be set to the right thread here. */ | |
2255 | ; | |
2256 | else | |
2257 | { | |
99619bea PA |
2258 | struct thread_info *step_over; |
2259 | ||
94cc34af PA |
2260 | /* In a multi-threaded task we may select another thread and |
2261 | then continue or step. | |
c906108c | 2262 | |
94cc34af PA |
2263 | But if the old thread was stopped at a breakpoint, it will |
2264 | immediately cause another breakpoint stop without any | |
2265 | execution (i.e. it will report a breakpoint hit incorrectly). | |
2266 | So we must step over it first. | |
c906108c | 2267 | |
99619bea PA |
2268 | Look for a thread other than the current (TP) that reported a |
2269 | breakpoint hit and hasn't been resumed yet since. */ | |
2270 | step_over = find_thread_needs_step_over (step, tp); | |
2271 | if (step_over != NULL) | |
2adfaa28 | 2272 | { |
99619bea PA |
2273 | if (debug_infrun) |
2274 | fprintf_unfiltered (gdb_stdlog, | |
2275 | "infrun: need to step-over [%s] first\n", | |
2276 | target_pid_to_str (step_over->ptid)); | |
2277 | ||
2278 | /* Store the prev_pc for the stepping thread too, needed by | |
2279 | switch_back_to_stepping thread. */ | |
2280 | tp->prev_pc = regcache_read_pc (get_current_regcache ()); | |
2281 | switch_to_thread (step_over->ptid); | |
2282 | tp = step_over; | |
2adfaa28 | 2283 | } |
94cc34af | 2284 | } |
c906108c | 2285 | |
31e77af2 PA |
2286 | /* If we need to step over a breakpoint, and we're not using |
2287 | displaced stepping to do so, insert all breakpoints (watchpoints, | |
2288 | etc.) but the one we're stepping over, step one instruction, and | |
2289 | then re-insert the breakpoint when that step is finished. */ | |
99619bea | 2290 | if (tp->stepping_over_breakpoint && !use_displaced_stepping (gdbarch)) |
30852783 | 2291 | { |
31e77af2 PA |
2292 | struct regcache *regcache = get_current_regcache (); |
2293 | ||
2294 | set_step_over_info (get_regcache_aspace (regcache), | |
2295 | regcache_read_pc (regcache)); | |
30852783 | 2296 | } |
31e77af2 PA |
2297 | else |
2298 | clear_step_over_info (); | |
30852783 | 2299 | |
31e77af2 | 2300 | insert_breakpoints (); |
30852783 | 2301 | |
99619bea PA |
2302 | tp->control.trap_expected = tp->stepping_over_breakpoint; |
2303 | ||
2020b7ab PA |
2304 | if (!non_stop) |
2305 | { | |
2306 | /* Pass the last stop signal to the thread we're resuming, | |
2307 | irrespective of whether the current thread is the thread that | |
2308 | got the last event or not. This was historically GDB's | |
2309 | behaviour before keeping a stop_signal per thread. */ | |
2310 | ||
2311 | struct thread_info *last_thread; | |
2312 | ptid_t last_ptid; | |
2313 | struct target_waitstatus last_status; | |
2314 | ||
2315 | get_last_target_status (&last_ptid, &last_status); | |
2316 | if (!ptid_equal (inferior_ptid, last_ptid) | |
2317 | && !ptid_equal (last_ptid, null_ptid) | |
2318 | && !ptid_equal (last_ptid, minus_one_ptid)) | |
2319 | { | |
e09875d4 | 2320 | last_thread = find_thread_ptid (last_ptid); |
2020b7ab PA |
2321 | if (last_thread) |
2322 | { | |
16c381f0 | 2323 | tp->suspend.stop_signal = last_thread->suspend.stop_signal; |
a493e3e2 | 2324 | last_thread->suspend.stop_signal = GDB_SIGNAL_0; |
2020b7ab PA |
2325 | } |
2326 | } | |
2327 | } | |
2328 | ||
a493e3e2 | 2329 | if (siggnal != GDB_SIGNAL_DEFAULT) |
16c381f0 | 2330 | tp->suspend.stop_signal = siggnal; |
c906108c SS |
2331 | /* If this signal should not be seen by program, |
2332 | give it zero. Used for debugging signals. */ | |
16c381f0 | 2333 | else if (!signal_program[tp->suspend.stop_signal]) |
a493e3e2 | 2334 | tp->suspend.stop_signal = GDB_SIGNAL_0; |
c906108c SS |
2335 | |
2336 | annotate_starting (); | |
2337 | ||
2338 | /* Make sure that output from GDB appears before output from the | |
2339 | inferior. */ | |
2340 | gdb_flush (gdb_stdout); | |
2341 | ||
e4846b08 JJ |
2342 | /* Refresh prev_pc value just prior to resuming. This used to be |
2343 | done in stop_stepping, however, setting prev_pc there did not handle | |
2344 | scenarios such as inferior function calls or returning from | |
2345 | a function via the return command. In those cases, the prev_pc | |
2346 | value was not set properly for subsequent commands. The prev_pc value | |
2347 | is used to initialize the starting line number in the ecs. With an | |
2348 | invalid value, the gdb next command ends up stopping at the position | |
2349 | represented by the next line table entry past our start position. | |
2350 | On platforms that generate one line table entry per line, this | |
2351 | is not a problem. However, on the ia64, the compiler generates | |
2352 | extraneous line table entries that do not increase the line number. | |
2353 | When we issue the gdb next command on the ia64 after an inferior call | |
2354 | or a return command, we often end up a few instructions forward, still | |
2355 | within the original line we started. | |
2356 | ||
d5cd6034 JB |
2357 | An attempt was made to refresh the prev_pc at the same time the |
2358 | execution_control_state is initialized (for instance, just before | |
2359 | waiting for an inferior event). But this approach did not work | |
2360 | because of platforms that use ptrace, where the pc register cannot | |
2361 | be read unless the inferior is stopped. At that point, we are not | |
2362 | guaranteed the inferior is stopped and so the regcache_read_pc() call | |
2363 | can fail. Setting the prev_pc value here ensures the value is updated | |
2364 | correctly when the inferior is stopped. */ | |
4e1c45ea | 2365 | tp->prev_pc = regcache_read_pc (get_current_regcache ()); |
e4846b08 | 2366 | |
59f0d5d9 PA |
2367 | /* Reset to normal state. */ |
2368 | init_infwait_state (); | |
2369 | ||
c906108c | 2370 | /* Resume inferior. */ |
99619bea | 2371 | resume (tp->control.trap_expected || step || bpstat_should_step (), |
0de5618e | 2372 | tp->suspend.stop_signal); |
c906108c SS |
2373 | |
2374 | /* Wait for it to stop (if not standalone) | |
2375 | and in any case decode why it stopped, and act accordingly. */ | |
43ff13b4 | 2376 | /* Do this only if we are not using the event loop, or if the target |
1777feb0 | 2377 | does not support asynchronous execution. */ |
362646f5 | 2378 | if (!target_can_async_p ()) |
43ff13b4 | 2379 | { |
e4c8541f | 2380 | wait_for_inferior (); |
43ff13b4 JM |
2381 | normal_stop (); |
2382 | } | |
c906108c | 2383 | } |
c906108c SS |
2384 | \f |
2385 | ||
2386 | /* Start remote-debugging of a machine over a serial link. */ | |
96baa820 | 2387 | |
c906108c | 2388 | void |
8621d6a9 | 2389 | start_remote (int from_tty) |
c906108c | 2390 | { |
d6b48e9c | 2391 | struct inferior *inferior; |
d6b48e9c PA |
2392 | |
2393 | inferior = current_inferior (); | |
16c381f0 | 2394 | inferior->control.stop_soon = STOP_QUIETLY_REMOTE; |
43ff13b4 | 2395 | |
1777feb0 | 2396 | /* Always go on waiting for the target, regardless of the mode. */ |
6426a772 | 2397 | /* FIXME: cagney/1999-09-23: At present it isn't possible to |
7e73cedf | 2398 | indicate to wait_for_inferior that a target should timeout if |
6426a772 JM |
2399 | nothing is returned (instead of just blocking). Because of this, |
2400 | targets expecting an immediate response need to, internally, set | |
2401 | things up so that the target_wait() is forced to eventually | |
1777feb0 | 2402 | timeout. */ |
6426a772 JM |
2403 | /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to |
2404 | differentiate to its caller what the state of the target is after | |
2405 | the initial open has been performed. Here we're assuming that | |
2406 | the target has stopped. It should be possible to eventually have | |
2407 | target_open() return to the caller an indication that the target | |
2408 | is currently running and GDB state should be set to the same as | |
1777feb0 | 2409 | for an async run. */ |
e4c8541f | 2410 | wait_for_inferior (); |
8621d6a9 DJ |
2411 | |
2412 | /* Now that the inferior has stopped, do any bookkeeping like | |
2413 | loading shared libraries. We want to do this before normal_stop, | |
2414 | so that the displayed frame is up to date. */ | |
2415 | post_create_inferior (¤t_target, from_tty); | |
2416 | ||
6426a772 | 2417 | normal_stop (); |
c906108c SS |
2418 | } |
2419 | ||
2420 | /* Initialize static vars when a new inferior begins. */ | |
2421 | ||
2422 | void | |
96baa820 | 2423 | init_wait_for_inferior (void) |
c906108c SS |
2424 | { |
2425 | /* These are meaningless until the first time through wait_for_inferior. */ | |
c906108c | 2426 | |
c906108c SS |
2427 | breakpoint_init_inferior (inf_starting); |
2428 | ||
c906108c | 2429 | clear_proceed_status (); |
9f976b41 | 2430 | |
ca005067 | 2431 | target_last_wait_ptid = minus_one_ptid; |
237fc4c9 | 2432 | |
842951eb | 2433 | previous_inferior_ptid = inferior_ptid; |
0d1e5fa7 PA |
2434 | init_infwait_state (); |
2435 | ||
edb3359d DJ |
2436 | /* Discard any skipped inlined frames. */ |
2437 | clear_inline_frame_state (minus_one_ptid); | |
2adfaa28 PA |
2438 | |
2439 | singlestep_ptid = null_ptid; | |
2440 | singlestep_pc = 0; | |
c906108c | 2441 | } |
237fc4c9 | 2442 | |
c906108c | 2443 | \f |
b83266a0 SS |
2444 | /* This enum encodes possible reasons for doing a target_wait, so that |
2445 | wfi can call target_wait in one place. (Ultimately the call will be | |
2446 | moved out of the infinite loop entirely.) */ | |
2447 | ||
c5aa993b JM |
2448 | enum infwait_states |
2449 | { | |
cd0fc7c3 | 2450 | infwait_normal_state, |
d983da9c | 2451 | infwait_step_watch_state, |
cd0fc7c3 | 2452 | infwait_nonstep_watch_state |
b83266a0 SS |
2453 | }; |
2454 | ||
0d1e5fa7 PA |
2455 | /* The PTID we'll do a target_wait on.*/ |
2456 | ptid_t waiton_ptid; | |
2457 | ||
2458 | /* Current inferior wait state. */ | |
8870954f | 2459 | static enum infwait_states infwait_state; |
cd0fc7c3 | 2460 | |
0d1e5fa7 PA |
2461 | /* Data to be passed around while handling an event. This data is |
2462 | discarded between events. */ | |
c5aa993b | 2463 | struct execution_control_state |
488f131b | 2464 | { |
0d1e5fa7 | 2465 | ptid_t ptid; |
4e1c45ea PA |
2466 | /* The thread that got the event, if this was a thread event; NULL |
2467 | otherwise. */ | |
2468 | struct thread_info *event_thread; | |
2469 | ||
488f131b | 2470 | struct target_waitstatus ws; |
7e324e48 | 2471 | int stop_func_filled_in; |
488f131b JB |
2472 | CORE_ADDR stop_func_start; |
2473 | CORE_ADDR stop_func_end; | |
2c02bd72 | 2474 | const char *stop_func_name; |
488f131b | 2475 | int wait_some_more; |
4f5d7f63 PA |
2476 | |
2477 | /* We were in infwait_step_watch_state or | |
2478 | infwait_nonstep_watch_state state, and the thread reported an | |
2479 | event. */ | |
2480 | int stepped_after_stopped_by_watchpoint; | |
2adfaa28 PA |
2481 | |
2482 | /* True if the event thread hit the single-step breakpoint of | |
2483 | another thread. Thus the event doesn't cause a stop, the thread | |
2484 | needs to be single-stepped past the single-step breakpoint before | |
2485 | we can switch back to the original stepping thread. */ | |
2486 | int hit_singlestep_breakpoint; | |
488f131b JB |
2487 | }; |
2488 | ||
ec9499be | 2489 | static void handle_inferior_event (struct execution_control_state *ecs); |
cd0fc7c3 | 2490 | |
568d6575 UW |
2491 | static void handle_step_into_function (struct gdbarch *gdbarch, |
2492 | struct execution_control_state *ecs); | |
2493 | static void handle_step_into_function_backward (struct gdbarch *gdbarch, | |
2494 | struct execution_control_state *ecs); | |
4f5d7f63 | 2495 | static void handle_signal_stop (struct execution_control_state *ecs); |
186c406b | 2496 | static void check_exception_resume (struct execution_control_state *, |
28106bc2 | 2497 | struct frame_info *); |
611c83ae | 2498 | |
104c1213 JM |
2499 | static void stop_stepping (struct execution_control_state *ecs); |
2500 | static void prepare_to_wait (struct execution_control_state *ecs); | |
d4f3574e | 2501 | static void keep_going (struct execution_control_state *ecs); |
94c57d6a | 2502 | static void process_event_stop_test (struct execution_control_state *ecs); |
c447ac0b | 2503 | static int switch_back_to_stepped_thread (struct execution_control_state *ecs); |
104c1213 | 2504 | |
252fbfc8 PA |
2505 | /* Callback for iterate over threads. If the thread is stopped, but |
2506 | the user/frontend doesn't know about that yet, go through | |
2507 | normal_stop, as if the thread had just stopped now. ARG points at | |
2508 | a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If | |
2509 | ptid_is_pid(PTID) is true, applies to all threads of the process | |
2510 | pointed at by PTID. Otherwise, apply only to the thread pointed by | |
2511 | PTID. */ | |
2512 | ||
2513 | static int | |
2514 | infrun_thread_stop_requested_callback (struct thread_info *info, void *arg) | |
2515 | { | |
2516 | ptid_t ptid = * (ptid_t *) arg; | |
2517 | ||
2518 | if ((ptid_equal (info->ptid, ptid) | |
2519 | || ptid_equal (minus_one_ptid, ptid) | |
2520 | || (ptid_is_pid (ptid) | |
2521 | && ptid_get_pid (ptid) == ptid_get_pid (info->ptid))) | |
2522 | && is_running (info->ptid) | |
2523 | && !is_executing (info->ptid)) | |
2524 | { | |
2525 | struct cleanup *old_chain; | |
2526 | struct execution_control_state ecss; | |
2527 | struct execution_control_state *ecs = &ecss; | |
2528 | ||
2529 | memset (ecs, 0, sizeof (*ecs)); | |
2530 | ||
2531 | old_chain = make_cleanup_restore_current_thread (); | |
2532 | ||
f15cb84a YQ |
2533 | overlay_cache_invalid = 1; |
2534 | /* Flush target cache before starting to handle each event. | |
2535 | Target was running and cache could be stale. This is just a | |
2536 | heuristic. Running threads may modify target memory, but we | |
2537 | don't get any event. */ | |
2538 | target_dcache_invalidate (); | |
2539 | ||
252fbfc8 PA |
2540 | /* Go through handle_inferior_event/normal_stop, so we always |
2541 | have consistent output as if the stop event had been | |
2542 | reported. */ | |
2543 | ecs->ptid = info->ptid; | |
e09875d4 | 2544 | ecs->event_thread = find_thread_ptid (info->ptid); |
252fbfc8 | 2545 | ecs->ws.kind = TARGET_WAITKIND_STOPPED; |
a493e3e2 | 2546 | ecs->ws.value.sig = GDB_SIGNAL_0; |
252fbfc8 PA |
2547 | |
2548 | handle_inferior_event (ecs); | |
2549 | ||
2550 | if (!ecs->wait_some_more) | |
2551 | { | |
2552 | struct thread_info *tp; | |
2553 | ||
2554 | normal_stop (); | |
2555 | ||
fa4cd53f | 2556 | /* Finish off the continuations. */ |
252fbfc8 | 2557 | tp = inferior_thread (); |
fa4cd53f PA |
2558 | do_all_intermediate_continuations_thread (tp, 1); |
2559 | do_all_continuations_thread (tp, 1); | |
252fbfc8 PA |
2560 | } |
2561 | ||
2562 | do_cleanups (old_chain); | |
2563 | } | |
2564 | ||
2565 | return 0; | |
2566 | } | |
2567 | ||
2568 | /* This function is attached as a "thread_stop_requested" observer. | |
2569 | Cleanup local state that assumed the PTID was to be resumed, and | |
2570 | report the stop to the frontend. */ | |
2571 | ||
2c0b251b | 2572 | static void |
252fbfc8 PA |
2573 | infrun_thread_stop_requested (ptid_t ptid) |
2574 | { | |
fc1cf338 | 2575 | struct displaced_step_inferior_state *displaced; |
252fbfc8 PA |
2576 | |
2577 | /* PTID was requested to stop. Remove it from the displaced | |
2578 | stepping queue, so we don't try to resume it automatically. */ | |
fc1cf338 PA |
2579 | |
2580 | for (displaced = displaced_step_inferior_states; | |
2581 | displaced; | |
2582 | displaced = displaced->next) | |
252fbfc8 | 2583 | { |
fc1cf338 | 2584 | struct displaced_step_request *it, **prev_next_p; |
252fbfc8 | 2585 | |
fc1cf338 PA |
2586 | it = displaced->step_request_queue; |
2587 | prev_next_p = &displaced->step_request_queue; | |
2588 | while (it) | |
252fbfc8 | 2589 | { |
fc1cf338 PA |
2590 | if (ptid_match (it->ptid, ptid)) |
2591 | { | |
2592 | *prev_next_p = it->next; | |
2593 | it->next = NULL; | |
2594 | xfree (it); | |
2595 | } | |
252fbfc8 | 2596 | else |
fc1cf338 PA |
2597 | { |
2598 | prev_next_p = &it->next; | |
2599 | } | |
252fbfc8 | 2600 | |
fc1cf338 | 2601 | it = *prev_next_p; |
252fbfc8 | 2602 | } |
252fbfc8 PA |
2603 | } |
2604 | ||
2605 | iterate_over_threads (infrun_thread_stop_requested_callback, &ptid); | |
2606 | } | |
2607 | ||
a07daef3 PA |
2608 | static void |
2609 | infrun_thread_thread_exit (struct thread_info *tp, int silent) | |
2610 | { | |
2611 | if (ptid_equal (target_last_wait_ptid, tp->ptid)) | |
2612 | nullify_last_target_wait_ptid (); | |
2613 | } | |
2614 | ||
4e1c45ea PA |
2615 | /* Callback for iterate_over_threads. */ |
2616 | ||
2617 | static int | |
2618 | delete_step_resume_breakpoint_callback (struct thread_info *info, void *data) | |
2619 | { | |
2620 | if (is_exited (info->ptid)) | |
2621 | return 0; | |
2622 | ||
2623 | delete_step_resume_breakpoint (info); | |
186c406b | 2624 | delete_exception_resume_breakpoint (info); |
4e1c45ea PA |
2625 | return 0; |
2626 | } | |
2627 | ||
2628 | /* In all-stop, delete the step resume breakpoint of any thread that | |
2629 | had one. In non-stop, delete the step resume breakpoint of the | |
2630 | thread that just stopped. */ | |
2631 | ||
2632 | static void | |
2633 | delete_step_thread_step_resume_breakpoint (void) | |
2634 | { | |
2635 | if (!target_has_execution | |
2636 | || ptid_equal (inferior_ptid, null_ptid)) | |
2637 | /* If the inferior has exited, we have already deleted the step | |
2638 | resume breakpoints out of GDB's lists. */ | |
2639 | return; | |
2640 | ||
2641 | if (non_stop) | |
2642 | { | |
2643 | /* If in non-stop mode, only delete the step-resume or | |
2644 | longjmp-resume breakpoint of the thread that just stopped | |
2645 | stepping. */ | |
2646 | struct thread_info *tp = inferior_thread (); | |
abbb1732 | 2647 | |
4e1c45ea | 2648 | delete_step_resume_breakpoint (tp); |
186c406b | 2649 | delete_exception_resume_breakpoint (tp); |
4e1c45ea PA |
2650 | } |
2651 | else | |
2652 | /* In all-stop mode, delete all step-resume and longjmp-resume | |
2653 | breakpoints of any thread that had them. */ | |
2654 | iterate_over_threads (delete_step_resume_breakpoint_callback, NULL); | |
2655 | } | |
2656 | ||
1777feb0 | 2657 | /* A cleanup wrapper. */ |
4e1c45ea PA |
2658 | |
2659 | static void | |
2660 | delete_step_thread_step_resume_breakpoint_cleanup (void *arg) | |
2661 | { | |
2662 | delete_step_thread_step_resume_breakpoint (); | |
2663 | } | |
2664 | ||
223698f8 DE |
2665 | /* Pretty print the results of target_wait, for debugging purposes. */ |
2666 | ||
2667 | static void | |
2668 | print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid, | |
2669 | const struct target_waitstatus *ws) | |
2670 | { | |
2671 | char *status_string = target_waitstatus_to_string (ws); | |
2672 | struct ui_file *tmp_stream = mem_fileopen (); | |
2673 | char *text; | |
223698f8 DE |
2674 | |
2675 | /* The text is split over several lines because it was getting too long. | |
2676 | Call fprintf_unfiltered (gdb_stdlog) once so that the text is still | |
2677 | output as a unit; we want only one timestamp printed if debug_timestamp | |
2678 | is set. */ | |
2679 | ||
2680 | fprintf_unfiltered (tmp_stream, | |
dfd4cc63 LM |
2681 | "infrun: target_wait (%d", ptid_get_pid (waiton_ptid)); |
2682 | if (ptid_get_pid (waiton_ptid) != -1) | |
223698f8 DE |
2683 | fprintf_unfiltered (tmp_stream, |
2684 | " [%s]", target_pid_to_str (waiton_ptid)); | |
2685 | fprintf_unfiltered (tmp_stream, ", status) =\n"); | |
2686 | fprintf_unfiltered (tmp_stream, | |
2687 | "infrun: %d [%s],\n", | |
dfd4cc63 LM |
2688 | ptid_get_pid (result_ptid), |
2689 | target_pid_to_str (result_ptid)); | |
223698f8 DE |
2690 | fprintf_unfiltered (tmp_stream, |
2691 | "infrun: %s\n", | |
2692 | status_string); | |
2693 | ||
759ef836 | 2694 | text = ui_file_xstrdup (tmp_stream, NULL); |
223698f8 DE |
2695 | |
2696 | /* This uses %s in part to handle %'s in the text, but also to avoid | |
2697 | a gcc error: the format attribute requires a string literal. */ | |
2698 | fprintf_unfiltered (gdb_stdlog, "%s", text); | |
2699 | ||
2700 | xfree (status_string); | |
2701 | xfree (text); | |
2702 | ui_file_delete (tmp_stream); | |
2703 | } | |
2704 | ||
24291992 PA |
2705 | /* Prepare and stabilize the inferior for detaching it. E.g., |
2706 | detaching while a thread is displaced stepping is a recipe for | |
2707 | crashing it, as nothing would readjust the PC out of the scratch | |
2708 | pad. */ | |
2709 | ||
2710 | void | |
2711 | prepare_for_detach (void) | |
2712 | { | |
2713 | struct inferior *inf = current_inferior (); | |
2714 | ptid_t pid_ptid = pid_to_ptid (inf->pid); | |
2715 | struct cleanup *old_chain_1; | |
2716 | struct displaced_step_inferior_state *displaced; | |
2717 | ||
2718 | displaced = get_displaced_stepping_state (inf->pid); | |
2719 | ||
2720 | /* Is any thread of this process displaced stepping? If not, | |
2721 | there's nothing else to do. */ | |
2722 | if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid)) | |
2723 | return; | |
2724 | ||
2725 | if (debug_infrun) | |
2726 | fprintf_unfiltered (gdb_stdlog, | |
2727 | "displaced-stepping in-process while detaching"); | |
2728 | ||
2729 | old_chain_1 = make_cleanup_restore_integer (&inf->detaching); | |
2730 | inf->detaching = 1; | |
2731 | ||
2732 | while (!ptid_equal (displaced->step_ptid, null_ptid)) | |
2733 | { | |
2734 | struct cleanup *old_chain_2; | |
2735 | struct execution_control_state ecss; | |
2736 | struct execution_control_state *ecs; | |
2737 | ||
2738 | ecs = &ecss; | |
2739 | memset (ecs, 0, sizeof (*ecs)); | |
2740 | ||
2741 | overlay_cache_invalid = 1; | |
f15cb84a YQ |
2742 | /* Flush target cache before starting to handle each event. |
2743 | Target was running and cache could be stale. This is just a | |
2744 | heuristic. Running threads may modify target memory, but we | |
2745 | don't get any event. */ | |
2746 | target_dcache_invalidate (); | |
24291992 | 2747 | |
24291992 PA |
2748 | if (deprecated_target_wait_hook) |
2749 | ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0); | |
2750 | else | |
2751 | ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0); | |
2752 | ||
2753 | if (debug_infrun) | |
2754 | print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws); | |
2755 | ||
2756 | /* If an error happens while handling the event, propagate GDB's | |
2757 | knowledge of the executing state to the frontend/user running | |
2758 | state. */ | |
3e43a32a MS |
2759 | old_chain_2 = make_cleanup (finish_thread_state_cleanup, |
2760 | &minus_one_ptid); | |
24291992 PA |
2761 | |
2762 | /* Now figure out what to do with the result of the result. */ | |
2763 | handle_inferior_event (ecs); | |
2764 | ||
2765 | /* No error, don't finish the state yet. */ | |
2766 | discard_cleanups (old_chain_2); | |
2767 | ||
2768 | /* Breakpoints and watchpoints are not installed on the target | |
2769 | at this point, and signals are passed directly to the | |
2770 | inferior, so this must mean the process is gone. */ | |
2771 | if (!ecs->wait_some_more) | |
2772 | { | |
2773 | discard_cleanups (old_chain_1); | |
2774 | error (_("Program exited while detaching")); | |
2775 | } | |
2776 | } | |
2777 | ||
2778 | discard_cleanups (old_chain_1); | |
2779 | } | |
2780 | ||
cd0fc7c3 | 2781 | /* Wait for control to return from inferior to debugger. |
ae123ec6 | 2782 | |
cd0fc7c3 SS |
2783 | If inferior gets a signal, we may decide to start it up again |
2784 | instead of returning. That is why there is a loop in this function. | |
2785 | When this function actually returns it means the inferior | |
2786 | should be left stopped and GDB should read more commands. */ | |
2787 | ||
2788 | void | |
e4c8541f | 2789 | wait_for_inferior (void) |
cd0fc7c3 SS |
2790 | { |
2791 | struct cleanup *old_cleanups; | |
c906108c | 2792 | |
527159b7 | 2793 | if (debug_infrun) |
ae123ec6 | 2794 | fprintf_unfiltered |
e4c8541f | 2795 | (gdb_stdlog, "infrun: wait_for_inferior ()\n"); |
527159b7 | 2796 | |
4e1c45ea PA |
2797 | old_cleanups = |
2798 | make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL); | |
cd0fc7c3 | 2799 | |
c906108c SS |
2800 | while (1) |
2801 | { | |
ae25568b PA |
2802 | struct execution_control_state ecss; |
2803 | struct execution_control_state *ecs = &ecss; | |
29f49a6a PA |
2804 | struct cleanup *old_chain; |
2805 | ||
ae25568b PA |
2806 | memset (ecs, 0, sizeof (*ecs)); |
2807 | ||
ec9499be | 2808 | overlay_cache_invalid = 1; |
ec9499be | 2809 | |
f15cb84a YQ |
2810 | /* Flush target cache before starting to handle each event. |
2811 | Target was running and cache could be stale. This is just a | |
2812 | heuristic. Running threads may modify target memory, but we | |
2813 | don't get any event. */ | |
2814 | target_dcache_invalidate (); | |
2815 | ||
9a4105ab | 2816 | if (deprecated_target_wait_hook) |
47608cb1 | 2817 | ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0); |
cd0fc7c3 | 2818 | else |
47608cb1 | 2819 | ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0); |
c906108c | 2820 | |
f00150c9 | 2821 | if (debug_infrun) |
223698f8 | 2822 | print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws); |
f00150c9 | 2823 | |
29f49a6a PA |
2824 | /* If an error happens while handling the event, propagate GDB's |
2825 | knowledge of the executing state to the frontend/user running | |
2826 | state. */ | |
2827 | old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid); | |
2828 | ||
cd0fc7c3 SS |
2829 | /* Now figure out what to do with the result of the result. */ |
2830 | handle_inferior_event (ecs); | |
c906108c | 2831 | |
29f49a6a PA |
2832 | /* No error, don't finish the state yet. */ |
2833 | discard_cleanups (old_chain); | |
2834 | ||
cd0fc7c3 SS |
2835 | if (!ecs->wait_some_more) |
2836 | break; | |
2837 | } | |
4e1c45ea | 2838 | |
cd0fc7c3 SS |
2839 | do_cleanups (old_cleanups); |
2840 | } | |
c906108c | 2841 | |
1777feb0 | 2842 | /* Asynchronous version of wait_for_inferior. It is called by the |
43ff13b4 | 2843 | event loop whenever a change of state is detected on the file |
1777feb0 MS |
2844 | descriptor corresponding to the target. It can be called more than |
2845 | once to complete a single execution command. In such cases we need | |
2846 | to keep the state in a global variable ECSS. If it is the last time | |
a474d7c2 PA |
2847 | that this function is called for a single execution command, then |
2848 | report to the user that the inferior has stopped, and do the | |
1777feb0 | 2849 | necessary cleanups. */ |
43ff13b4 JM |
2850 | |
2851 | void | |
fba45db2 | 2852 | fetch_inferior_event (void *client_data) |
43ff13b4 | 2853 | { |
0d1e5fa7 | 2854 | struct execution_control_state ecss; |
a474d7c2 | 2855 | struct execution_control_state *ecs = &ecss; |
4f8d22e3 | 2856 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); |
29f49a6a | 2857 | struct cleanup *ts_old_chain; |
4f8d22e3 | 2858 | int was_sync = sync_execution; |
0f641c01 | 2859 | int cmd_done = 0; |
43ff13b4 | 2860 | |
0d1e5fa7 PA |
2861 | memset (ecs, 0, sizeof (*ecs)); |
2862 | ||
c5187ac6 PA |
2863 | /* We're handling a live event, so make sure we're doing live |
2864 | debugging. If we're looking at traceframes while the target is | |
2865 | running, we're going to need to get back to that mode after | |
2866 | handling the event. */ | |
2867 | if (non_stop) | |
2868 | { | |
2869 | make_cleanup_restore_current_traceframe (); | |
e6e4e701 | 2870 | set_current_traceframe (-1); |
c5187ac6 PA |
2871 | } |
2872 | ||
4f8d22e3 PA |
2873 | if (non_stop) |
2874 | /* In non-stop mode, the user/frontend should not notice a thread | |
2875 | switch due to internal events. Make sure we reverse to the | |
2876 | user selected thread and frame after handling the event and | |
2877 | running any breakpoint commands. */ | |
2878 | make_cleanup_restore_current_thread (); | |
2879 | ||
ec9499be | 2880 | overlay_cache_invalid = 1; |
f15cb84a YQ |
2881 | /* Flush target cache before starting to handle each event. Target |
2882 | was running and cache could be stale. This is just a heuristic. | |
2883 | Running threads may modify target memory, but we don't get any | |
2884 | event. */ | |
2885 | target_dcache_invalidate (); | |
3dd5b83d | 2886 | |
32231432 PA |
2887 | make_cleanup_restore_integer (&execution_direction); |
2888 | execution_direction = target_execution_direction (); | |
2889 | ||
9a4105ab | 2890 | if (deprecated_target_wait_hook) |
a474d7c2 | 2891 | ecs->ptid = |
47608cb1 | 2892 | deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG); |
43ff13b4 | 2893 | else |
47608cb1 | 2894 | ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG); |
43ff13b4 | 2895 | |
f00150c9 | 2896 | if (debug_infrun) |
223698f8 | 2897 | print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws); |
f00150c9 | 2898 | |
29f49a6a PA |
2899 | /* If an error happens while handling the event, propagate GDB's |
2900 | knowledge of the executing state to the frontend/user running | |
2901 | state. */ | |
2902 | if (!non_stop) | |
2903 | ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid); | |
2904 | else | |
2905 | ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid); | |
2906 | ||
353d1d73 JK |
2907 | /* Get executed before make_cleanup_restore_current_thread above to apply |
2908 | still for the thread which has thrown the exception. */ | |
2909 | make_bpstat_clear_actions_cleanup (); | |
2910 | ||
43ff13b4 | 2911 | /* Now figure out what to do with the result of the result. */ |
a474d7c2 | 2912 | handle_inferior_event (ecs); |
43ff13b4 | 2913 | |
a474d7c2 | 2914 | if (!ecs->wait_some_more) |
43ff13b4 | 2915 | { |
d6b48e9c PA |
2916 | struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid)); |
2917 | ||
4e1c45ea | 2918 | delete_step_thread_step_resume_breakpoint (); |
f107f563 | 2919 | |
d6b48e9c | 2920 | /* We may not find an inferior if this was a process exit. */ |
16c381f0 | 2921 | if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY) |
83c265ab PA |
2922 | normal_stop (); |
2923 | ||
af679fd0 | 2924 | if (target_has_execution |
0e5bf2a8 | 2925 | && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED |
af679fd0 PA |
2926 | && ecs->ws.kind != TARGET_WAITKIND_EXITED |
2927 | && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED | |
2928 | && ecs->event_thread->step_multi | |
16c381f0 | 2929 | && ecs->event_thread->control.stop_step) |
c2d11a7d JM |
2930 | inferior_event_handler (INF_EXEC_CONTINUE, NULL); |
2931 | else | |
0f641c01 PA |
2932 | { |
2933 | inferior_event_handler (INF_EXEC_COMPLETE, NULL); | |
2934 | cmd_done = 1; | |
2935 | } | |
43ff13b4 | 2936 | } |
4f8d22e3 | 2937 | |
29f49a6a PA |
2938 | /* No error, don't finish the thread states yet. */ |
2939 | discard_cleanups (ts_old_chain); | |
2940 | ||
4f8d22e3 PA |
2941 | /* Revert thread and frame. */ |
2942 | do_cleanups (old_chain); | |
2943 | ||
2944 | /* If the inferior was in sync execution mode, and now isn't, | |
0f641c01 PA |
2945 | restore the prompt (a synchronous execution command has finished, |
2946 | and we're ready for input). */ | |
b4a14fd0 | 2947 | if (interpreter_async && was_sync && !sync_execution) |
4f8d22e3 | 2948 | display_gdb_prompt (0); |
0f641c01 PA |
2949 | |
2950 | if (cmd_done | |
2951 | && !was_sync | |
2952 | && exec_done_display_p | |
2953 | && (ptid_equal (inferior_ptid, null_ptid) | |
2954 | || !is_running (inferior_ptid))) | |
2955 | printf_unfiltered (_("completed.\n")); | |
43ff13b4 JM |
2956 | } |
2957 | ||
edb3359d DJ |
2958 | /* Record the frame and location we're currently stepping through. */ |
2959 | void | |
2960 | set_step_info (struct frame_info *frame, struct symtab_and_line sal) | |
2961 | { | |
2962 | struct thread_info *tp = inferior_thread (); | |
2963 | ||
16c381f0 JK |
2964 | tp->control.step_frame_id = get_frame_id (frame); |
2965 | tp->control.step_stack_frame_id = get_stack_frame_id (frame); | |
edb3359d DJ |
2966 | |
2967 | tp->current_symtab = sal.symtab; | |
2968 | tp->current_line = sal.line; | |
2969 | } | |
2970 | ||
0d1e5fa7 PA |
2971 | /* Clear context switchable stepping state. */ |
2972 | ||
2973 | void | |
4e1c45ea | 2974 | init_thread_stepping_state (struct thread_info *tss) |
0d1e5fa7 PA |
2975 | { |
2976 | tss->stepping_over_breakpoint = 0; | |
2977 | tss->step_after_step_resume_breakpoint = 0; | |
cd0fc7c3 SS |
2978 | } |
2979 | ||
c32c64b7 DE |
2980 | /* Set the cached copy of the last ptid/waitstatus. */ |
2981 | ||
2982 | static void | |
2983 | set_last_target_status (ptid_t ptid, struct target_waitstatus status) | |
2984 | { | |
2985 | target_last_wait_ptid = ptid; | |
2986 | target_last_waitstatus = status; | |
2987 | } | |
2988 | ||
e02bc4cc | 2989 | /* Return the cached copy of the last pid/waitstatus returned by |
9a4105ab AC |
2990 | target_wait()/deprecated_target_wait_hook(). The data is actually |
2991 | cached by handle_inferior_event(), which gets called immediately | |
2992 | after target_wait()/deprecated_target_wait_hook(). */ | |
e02bc4cc DS |
2993 | |
2994 | void | |
488f131b | 2995 | get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status) |
e02bc4cc | 2996 | { |
39f77062 | 2997 | *ptidp = target_last_wait_ptid; |
e02bc4cc DS |
2998 | *status = target_last_waitstatus; |
2999 | } | |
3000 | ||
ac264b3b MS |
3001 | void |
3002 | nullify_last_target_wait_ptid (void) | |
3003 | { | |
3004 | target_last_wait_ptid = minus_one_ptid; | |
3005 | } | |
3006 | ||
dcf4fbde | 3007 | /* Switch thread contexts. */ |
dd80620e MS |
3008 | |
3009 | static void | |
0d1e5fa7 | 3010 | context_switch (ptid_t ptid) |
dd80620e | 3011 | { |
4b51d87b | 3012 | if (debug_infrun && !ptid_equal (ptid, inferior_ptid)) |
fd48f117 DJ |
3013 | { |
3014 | fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ", | |
3015 | target_pid_to_str (inferior_ptid)); | |
3016 | fprintf_unfiltered (gdb_stdlog, "to %s\n", | |
0d1e5fa7 | 3017 | target_pid_to_str (ptid)); |
fd48f117 DJ |
3018 | } |
3019 | ||
0d1e5fa7 | 3020 | switch_to_thread (ptid); |
dd80620e MS |
3021 | } |
3022 | ||
4fa8626c DJ |
3023 | static void |
3024 | adjust_pc_after_break (struct execution_control_state *ecs) | |
3025 | { | |
24a73cce UW |
3026 | struct regcache *regcache; |
3027 | struct gdbarch *gdbarch; | |
6c95b8df | 3028 | struct address_space *aspace; |
118e6252 | 3029 | CORE_ADDR breakpoint_pc, decr_pc; |
4fa8626c | 3030 | |
4fa8626c DJ |
3031 | /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If |
3032 | we aren't, just return. | |
9709f61c DJ |
3033 | |
3034 | We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not | |
b798847d UW |
3035 | affected by gdbarch_decr_pc_after_break. Other waitkinds which are |
3036 | implemented by software breakpoints should be handled through the normal | |
3037 | breakpoint layer. | |
8fb3e588 | 3038 | |
4fa8626c DJ |
3039 | NOTE drow/2004-01-31: On some targets, breakpoints may generate |
3040 | different signals (SIGILL or SIGEMT for instance), but it is less | |
3041 | clear where the PC is pointing afterwards. It may not match | |
b798847d UW |
3042 | gdbarch_decr_pc_after_break. I don't know any specific target that |
3043 | generates these signals at breakpoints (the code has been in GDB since at | |
3044 | least 1992) so I can not guess how to handle them here. | |
8fb3e588 | 3045 | |
e6cf7916 UW |
3046 | In earlier versions of GDB, a target with |
3047 | gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a | |
b798847d UW |
3048 | watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any |
3049 | target with both of these set in GDB history, and it seems unlikely to be | |
3050 | correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */ | |
4fa8626c DJ |
3051 | |
3052 | if (ecs->ws.kind != TARGET_WAITKIND_STOPPED) | |
3053 | return; | |
3054 | ||
a493e3e2 | 3055 | if (ecs->ws.value.sig != GDB_SIGNAL_TRAP) |
4fa8626c DJ |
3056 | return; |
3057 | ||
4058b839 PA |
3058 | /* In reverse execution, when a breakpoint is hit, the instruction |
3059 | under it has already been de-executed. The reported PC always | |
3060 | points at the breakpoint address, so adjusting it further would | |
3061 | be wrong. E.g., consider this case on a decr_pc_after_break == 1 | |
3062 | architecture: | |
3063 | ||
3064 | B1 0x08000000 : INSN1 | |
3065 | B2 0x08000001 : INSN2 | |
3066 | 0x08000002 : INSN3 | |
3067 | PC -> 0x08000003 : INSN4 | |
3068 | ||
3069 | Say you're stopped at 0x08000003 as above. Reverse continuing | |
3070 | from that point should hit B2 as below. Reading the PC when the | |
3071 | SIGTRAP is reported should read 0x08000001 and INSN2 should have | |
3072 | been de-executed already. | |
3073 | ||
3074 | B1 0x08000000 : INSN1 | |
3075 | B2 PC -> 0x08000001 : INSN2 | |
3076 | 0x08000002 : INSN3 | |
3077 | 0x08000003 : INSN4 | |
3078 | ||
3079 | We can't apply the same logic as for forward execution, because | |
3080 | we would wrongly adjust the PC to 0x08000000, since there's a | |
3081 | breakpoint at PC - 1. We'd then report a hit on B1, although | |
3082 | INSN1 hadn't been de-executed yet. Doing nothing is the correct | |
3083 | behaviour. */ | |
3084 | if (execution_direction == EXEC_REVERSE) | |
3085 | return; | |
3086 | ||
24a73cce UW |
3087 | /* If this target does not decrement the PC after breakpoints, then |
3088 | we have nothing to do. */ | |
3089 | regcache = get_thread_regcache (ecs->ptid); | |
3090 | gdbarch = get_regcache_arch (regcache); | |
118e6252 MM |
3091 | |
3092 | decr_pc = target_decr_pc_after_break (gdbarch); | |
3093 | if (decr_pc == 0) | |
24a73cce UW |
3094 | return; |
3095 | ||
6c95b8df PA |
3096 | aspace = get_regcache_aspace (regcache); |
3097 | ||
8aad930b AC |
3098 | /* Find the location where (if we've hit a breakpoint) the |
3099 | breakpoint would be. */ | |
118e6252 | 3100 | breakpoint_pc = regcache_read_pc (regcache) - decr_pc; |
8aad930b | 3101 | |
1c5cfe86 PA |
3102 | /* Check whether there actually is a software breakpoint inserted at |
3103 | that location. | |
3104 | ||
3105 | If in non-stop mode, a race condition is possible where we've | |
3106 | removed a breakpoint, but stop events for that breakpoint were | |
3107 | already queued and arrive later. To suppress those spurious | |
3108 | SIGTRAPs, we keep a list of such breakpoint locations for a bit, | |
3109 | and retire them after a number of stop events are reported. */ | |
6c95b8df PA |
3110 | if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc) |
3111 | || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc))) | |
8aad930b | 3112 | { |
77f9e713 | 3113 | struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL); |
abbb1732 | 3114 | |
8213266a | 3115 | if (record_full_is_used ()) |
77f9e713 | 3116 | record_full_gdb_operation_disable_set (); |
96429cc8 | 3117 | |
1c0fdd0e UW |
3118 | /* When using hardware single-step, a SIGTRAP is reported for both |
3119 | a completed single-step and a software breakpoint. Need to | |
3120 | differentiate between the two, as the latter needs adjusting | |
3121 | but the former does not. | |
3122 | ||
3123 | The SIGTRAP can be due to a completed hardware single-step only if | |
3124 | - we didn't insert software single-step breakpoints | |
3125 | - the thread to be examined is still the current thread | |
3126 | - this thread is currently being stepped | |
3127 | ||
3128 | If any of these events did not occur, we must have stopped due | |
3129 | to hitting a software breakpoint, and have to back up to the | |
3130 | breakpoint address. | |
3131 | ||
3132 | As a special case, we could have hardware single-stepped a | |
3133 | software breakpoint. In this case (prev_pc == breakpoint_pc), | |
3134 | we also need to back up to the breakpoint address. */ | |
3135 | ||
3136 | if (singlestep_breakpoints_inserted_p | |
3137 | || !ptid_equal (ecs->ptid, inferior_ptid) | |
4e1c45ea PA |
3138 | || !currently_stepping (ecs->event_thread) |
3139 | || ecs->event_thread->prev_pc == breakpoint_pc) | |
515630c5 | 3140 | regcache_write_pc (regcache, breakpoint_pc); |
96429cc8 | 3141 | |
77f9e713 | 3142 | do_cleanups (old_cleanups); |
8aad930b | 3143 | } |
4fa8626c DJ |
3144 | } |
3145 | ||
7a76f5b8 | 3146 | static void |
0d1e5fa7 PA |
3147 | init_infwait_state (void) |
3148 | { | |
3149 | waiton_ptid = pid_to_ptid (-1); | |
3150 | infwait_state = infwait_normal_state; | |
3151 | } | |
3152 | ||
edb3359d DJ |
3153 | static int |
3154 | stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id) | |
3155 | { | |
3156 | for (frame = get_prev_frame (frame); | |
3157 | frame != NULL; | |
3158 | frame = get_prev_frame (frame)) | |
3159 | { | |
3160 | if (frame_id_eq (get_frame_id (frame), step_frame_id)) | |
3161 | return 1; | |
3162 | if (get_frame_type (frame) != INLINE_FRAME) | |
3163 | break; | |
3164 | } | |
3165 | ||
3166 | return 0; | |
3167 | } | |
3168 | ||
a96d9b2e SDJ |
3169 | /* Auxiliary function that handles syscall entry/return events. |
3170 | It returns 1 if the inferior should keep going (and GDB | |
3171 | should ignore the event), or 0 if the event deserves to be | |
3172 | processed. */ | |
ca2163eb | 3173 | |
a96d9b2e | 3174 | static int |
ca2163eb | 3175 | handle_syscall_event (struct execution_control_state *ecs) |
a96d9b2e | 3176 | { |
ca2163eb | 3177 | struct regcache *regcache; |
ca2163eb PA |
3178 | int syscall_number; |
3179 | ||
3180 | if (!ptid_equal (ecs->ptid, inferior_ptid)) | |
3181 | context_switch (ecs->ptid); | |
3182 | ||
3183 | regcache = get_thread_regcache (ecs->ptid); | |
f90263c1 | 3184 | syscall_number = ecs->ws.value.syscall_number; |
ca2163eb PA |
3185 | stop_pc = regcache_read_pc (regcache); |
3186 | ||
a96d9b2e SDJ |
3187 | if (catch_syscall_enabled () > 0 |
3188 | && catching_syscall_number (syscall_number) > 0) | |
3189 | { | |
3190 | if (debug_infrun) | |
3191 | fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n", | |
3192 | syscall_number); | |
a96d9b2e | 3193 | |
16c381f0 | 3194 | ecs->event_thread->control.stop_bpstat |
6c95b8df | 3195 | = bpstat_stop_status (get_regcache_aspace (regcache), |
09ac7c10 | 3196 | stop_pc, ecs->ptid, &ecs->ws); |
ab04a2af | 3197 | |
ce12b012 | 3198 | if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat)) |
ca2163eb PA |
3199 | { |
3200 | /* Catchpoint hit. */ | |
ca2163eb PA |
3201 | return 0; |
3202 | } | |
a96d9b2e | 3203 | } |
ca2163eb PA |
3204 | |
3205 | /* If no catchpoint triggered for this, then keep going. */ | |
ca2163eb PA |
3206 | keep_going (ecs); |
3207 | return 1; | |
a96d9b2e SDJ |
3208 | } |
3209 | ||
7e324e48 GB |
3210 | /* Lazily fill in the execution_control_state's stop_func_* fields. */ |
3211 | ||
3212 | static void | |
3213 | fill_in_stop_func (struct gdbarch *gdbarch, | |
3214 | struct execution_control_state *ecs) | |
3215 | { | |
3216 | if (!ecs->stop_func_filled_in) | |
3217 | { | |
3218 | /* Don't care about return value; stop_func_start and stop_func_name | |
3219 | will both be 0 if it doesn't work. */ | |
3220 | find_pc_partial_function (stop_pc, &ecs->stop_func_name, | |
3221 | &ecs->stop_func_start, &ecs->stop_func_end); | |
3222 | ecs->stop_func_start | |
3223 | += gdbarch_deprecated_function_start_offset (gdbarch); | |
3224 | ||
591a12a1 UW |
3225 | if (gdbarch_skip_entrypoint_p (gdbarch)) |
3226 | ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch, | |
3227 | ecs->stop_func_start); | |
3228 | ||
7e324e48 GB |
3229 | ecs->stop_func_filled_in = 1; |
3230 | } | |
3231 | } | |
3232 | ||
4f5d7f63 PA |
3233 | |
3234 | /* Return the STOP_SOON field of the inferior pointed at by PTID. */ | |
3235 | ||
3236 | static enum stop_kind | |
3237 | get_inferior_stop_soon (ptid_t ptid) | |
3238 | { | |
3239 | struct inferior *inf = find_inferior_pid (ptid_get_pid (ptid)); | |
3240 | ||
3241 | gdb_assert (inf != NULL); | |
3242 | return inf->control.stop_soon; | |
3243 | } | |
3244 | ||
05ba8510 PA |
3245 | /* Given an execution control state that has been freshly filled in by |
3246 | an event from the inferior, figure out what it means and take | |
3247 | appropriate action. | |
3248 | ||
3249 | The alternatives are: | |
3250 | ||
3251 | 1) stop_stepping and return; to really stop and return to the | |
3252 | debugger. | |
3253 | ||
3254 | 2) keep_going and return; to wait for the next event (set | |
3255 | ecs->event_thread->stepping_over_breakpoint to 1 to single step | |
3256 | once). */ | |
c906108c | 3257 | |
ec9499be | 3258 | static void |
96baa820 | 3259 | handle_inferior_event (struct execution_control_state *ecs) |
cd0fc7c3 | 3260 | { |
d6b48e9c PA |
3261 | enum stop_kind stop_soon; |
3262 | ||
28736962 PA |
3263 | if (ecs->ws.kind == TARGET_WAITKIND_IGNORE) |
3264 | { | |
3265 | /* We had an event in the inferior, but we are not interested in | |
3266 | handling it at this level. The lower layers have already | |
3267 | done what needs to be done, if anything. | |
3268 | ||
3269 | One of the possible circumstances for this is when the | |
3270 | inferior produces output for the console. The inferior has | |
3271 | not stopped, and we are ignoring the event. Another possible | |
3272 | circumstance is any event which the lower level knows will be | |
3273 | reported multiple times without an intervening resume. */ | |
3274 | if (debug_infrun) | |
3275 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n"); | |
3276 | prepare_to_wait (ecs); | |
3277 | return; | |
3278 | } | |
3279 | ||
0e5bf2a8 PA |
3280 | if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED |
3281 | && target_can_async_p () && !sync_execution) | |
3282 | { | |
3283 | /* There were no unwaited-for children left in the target, but, | |
3284 | we're not synchronously waiting for events either. Just | |
3285 | ignore. Otherwise, if we were running a synchronous | |
3286 | execution command, we need to cancel it and give the user | |
3287 | back the terminal. */ | |
3288 | if (debug_infrun) | |
3289 | fprintf_unfiltered (gdb_stdlog, | |
3290 | "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n"); | |
3291 | prepare_to_wait (ecs); | |
3292 | return; | |
3293 | } | |
3294 | ||
1777feb0 | 3295 | /* Cache the last pid/waitstatus. */ |
c32c64b7 | 3296 | set_last_target_status (ecs->ptid, ecs->ws); |
e02bc4cc | 3297 | |
ca005067 | 3298 | /* Always clear state belonging to the previous time we stopped. */ |
aa7d318d | 3299 | stop_stack_dummy = STOP_NONE; |
ca005067 | 3300 | |
0e5bf2a8 PA |
3301 | if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED) |
3302 | { | |
3303 | /* No unwaited-for children left. IOW, all resumed children | |
3304 | have exited. */ | |
3305 | if (debug_infrun) | |
3306 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n"); | |
3307 | ||
3308 | stop_print_frame = 0; | |
3309 | stop_stepping (ecs); | |
3310 | return; | |
3311 | } | |
3312 | ||
8c90c137 | 3313 | if (ecs->ws.kind != TARGET_WAITKIND_EXITED |
64776a0b | 3314 | && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED) |
359f5fe6 PA |
3315 | { |
3316 | ecs->event_thread = find_thread_ptid (ecs->ptid); | |
3317 | /* If it's a new thread, add it to the thread database. */ | |
3318 | if (ecs->event_thread == NULL) | |
3319 | ecs->event_thread = add_thread (ecs->ptid); | |
c1e36e3e PA |
3320 | |
3321 | /* Disable range stepping. If the next step request could use a | |
3322 | range, this will be end up re-enabled then. */ | |
3323 | ecs->event_thread->control.may_range_step = 0; | |
359f5fe6 | 3324 | } |
88ed393a JK |
3325 | |
3326 | /* Dependent on valid ECS->EVENT_THREAD. */ | |
3327 | adjust_pc_after_break (ecs); | |
3328 | ||
3329 | /* Dependent on the current PC value modified by adjust_pc_after_break. */ | |
3330 | reinit_frame_cache (); | |
3331 | ||
28736962 PA |
3332 | breakpoint_retire_moribund (); |
3333 | ||
2b009048 DJ |
3334 | /* First, distinguish signals caused by the debugger from signals |
3335 | that have to do with the program's own actions. Note that | |
3336 | breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending | |
3337 | on the operating system version. Here we detect when a SIGILL or | |
3338 | SIGEMT is really a breakpoint and change it to SIGTRAP. We do | |
3339 | something similar for SIGSEGV, since a SIGSEGV will be generated | |
3340 | when we're trying to execute a breakpoint instruction on a | |
3341 | non-executable stack. This happens for call dummy breakpoints | |
3342 | for architectures like SPARC that place call dummies on the | |
3343 | stack. */ | |
2b009048 | 3344 | if (ecs->ws.kind == TARGET_WAITKIND_STOPPED |
a493e3e2 PA |
3345 | && (ecs->ws.value.sig == GDB_SIGNAL_ILL |
3346 | || ecs->ws.value.sig == GDB_SIGNAL_SEGV | |
3347 | || ecs->ws.value.sig == GDB_SIGNAL_EMT)) | |
2b009048 | 3348 | { |
de0a0249 UW |
3349 | struct regcache *regcache = get_thread_regcache (ecs->ptid); |
3350 | ||
3351 | if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), | |
3352 | regcache_read_pc (regcache))) | |
3353 | { | |
3354 | if (debug_infrun) | |
3355 | fprintf_unfiltered (gdb_stdlog, | |
3356 | "infrun: Treating signal as SIGTRAP\n"); | |
a493e3e2 | 3357 | ecs->ws.value.sig = GDB_SIGNAL_TRAP; |
de0a0249 | 3358 | } |
2b009048 DJ |
3359 | } |
3360 | ||
28736962 PA |
3361 | /* Mark the non-executing threads accordingly. In all-stop, all |
3362 | threads of all processes are stopped when we get any event | |
3363 | reported. In non-stop mode, only the event thread stops. If | |
3364 | we're handling a process exit in non-stop mode, there's nothing | |
3365 | to do, as threads of the dead process are gone, and threads of | |
3366 | any other process were left running. */ | |
3367 | if (!non_stop) | |
3368 | set_executing (minus_one_ptid, 0); | |
3369 | else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED | |
3370 | && ecs->ws.kind != TARGET_WAITKIND_EXITED) | |
7aee8dc2 | 3371 | set_executing (ecs->ptid, 0); |
8c90c137 | 3372 | |
0d1e5fa7 | 3373 | switch (infwait_state) |
488f131b | 3374 | { |
488f131b | 3375 | case infwait_normal_state: |
527159b7 | 3376 | if (debug_infrun) |
8a9de0e4 | 3377 | fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n"); |
d983da9c DJ |
3378 | break; |
3379 | ||
3380 | case infwait_step_watch_state: | |
3381 | if (debug_infrun) | |
3382 | fprintf_unfiltered (gdb_stdlog, | |
3383 | "infrun: infwait_step_watch_state\n"); | |
3384 | ||
4f5d7f63 | 3385 | ecs->stepped_after_stopped_by_watchpoint = 1; |
488f131b | 3386 | break; |
b83266a0 | 3387 | |
488f131b | 3388 | case infwait_nonstep_watch_state: |
527159b7 | 3389 | if (debug_infrun) |
8a9de0e4 AC |
3390 | fprintf_unfiltered (gdb_stdlog, |
3391 | "infrun: infwait_nonstep_watch_state\n"); | |
488f131b | 3392 | insert_breakpoints (); |
c906108c | 3393 | |
488f131b JB |
3394 | /* FIXME-maybe: is this cleaner than setting a flag? Does it |
3395 | handle things like signals arriving and other things happening | |
3396 | in combination correctly? */ | |
4f5d7f63 | 3397 | ecs->stepped_after_stopped_by_watchpoint = 1; |
488f131b | 3398 | break; |
65e82032 AC |
3399 | |
3400 | default: | |
e2e0b3e5 | 3401 | internal_error (__FILE__, __LINE__, _("bad switch")); |
488f131b | 3402 | } |
ec9499be | 3403 | |
0d1e5fa7 | 3404 | infwait_state = infwait_normal_state; |
ec9499be | 3405 | waiton_ptid = pid_to_ptid (-1); |
c906108c | 3406 | |
488f131b JB |
3407 | switch (ecs->ws.kind) |
3408 | { | |
3409 | case TARGET_WAITKIND_LOADED: | |
527159b7 | 3410 | if (debug_infrun) |
8a9de0e4 | 3411 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n"); |
5c09a2c5 PA |
3412 | if (!ptid_equal (ecs->ptid, inferior_ptid)) |
3413 | context_switch (ecs->ptid); | |
b0f4b84b DJ |
3414 | /* Ignore gracefully during startup of the inferior, as it might |
3415 | be the shell which has just loaded some objects, otherwise | |
3416 | add the symbols for the newly loaded objects. Also ignore at | |
3417 | the beginning of an attach or remote session; we will query | |
3418 | the full list of libraries once the connection is | |
3419 | established. */ | |
4f5d7f63 PA |
3420 | |
3421 | stop_soon = get_inferior_stop_soon (ecs->ptid); | |
c0236d92 | 3422 | if (stop_soon == NO_STOP_QUIETLY) |
488f131b | 3423 | { |
edcc5120 TT |
3424 | struct regcache *regcache; |
3425 | ||
edcc5120 TT |
3426 | regcache = get_thread_regcache (ecs->ptid); |
3427 | ||
3428 | handle_solib_event (); | |
3429 | ||
3430 | ecs->event_thread->control.stop_bpstat | |
3431 | = bpstat_stop_status (get_regcache_aspace (regcache), | |
3432 | stop_pc, ecs->ptid, &ecs->ws); | |
ab04a2af | 3433 | |
ce12b012 | 3434 | if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat)) |
edcc5120 TT |
3435 | { |
3436 | /* A catchpoint triggered. */ | |
94c57d6a PA |
3437 | process_event_stop_test (ecs); |
3438 | return; | |
edcc5120 | 3439 | } |
488f131b | 3440 | |
b0f4b84b DJ |
3441 | /* If requested, stop when the dynamic linker notifies |
3442 | gdb of events. This allows the user to get control | |
3443 | and place breakpoints in initializer routines for | |
3444 | dynamically loaded objects (among other things). */ | |
a493e3e2 | 3445 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; |
b0f4b84b DJ |
3446 | if (stop_on_solib_events) |
3447 | { | |
55409f9d DJ |
3448 | /* Make sure we print "Stopped due to solib-event" in |
3449 | normal_stop. */ | |
3450 | stop_print_frame = 1; | |
3451 | ||
b0f4b84b DJ |
3452 | stop_stepping (ecs); |
3453 | return; | |
3454 | } | |
488f131b | 3455 | } |
b0f4b84b DJ |
3456 | |
3457 | /* If we are skipping through a shell, or through shared library | |
3458 | loading that we aren't interested in, resume the program. If | |
5c09a2c5 | 3459 | we're running the program normally, also resume. */ |
b0f4b84b DJ |
3460 | if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY) |
3461 | { | |
74960c60 VP |
3462 | /* Loading of shared libraries might have changed breakpoint |
3463 | addresses. Make sure new breakpoints are inserted. */ | |
0b02b92d UW |
3464 | if (stop_soon == NO_STOP_QUIETLY |
3465 | && !breakpoints_always_inserted_mode ()) | |
74960c60 | 3466 | insert_breakpoints (); |
a493e3e2 | 3467 | resume (0, GDB_SIGNAL_0); |
b0f4b84b DJ |
3468 | prepare_to_wait (ecs); |
3469 | return; | |
3470 | } | |
3471 | ||
5c09a2c5 PA |
3472 | /* But stop if we're attaching or setting up a remote |
3473 | connection. */ | |
3474 | if (stop_soon == STOP_QUIETLY_NO_SIGSTOP | |
3475 | || stop_soon == STOP_QUIETLY_REMOTE) | |
3476 | { | |
3477 | if (debug_infrun) | |
3478 | fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n"); | |
3479 | stop_stepping (ecs); | |
3480 | return; | |
3481 | } | |
3482 | ||
3483 | internal_error (__FILE__, __LINE__, | |
3484 | _("unhandled stop_soon: %d"), (int) stop_soon); | |
c5aa993b | 3485 | |
488f131b | 3486 | case TARGET_WAITKIND_SPURIOUS: |
527159b7 | 3487 | if (debug_infrun) |
8a9de0e4 | 3488 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n"); |
64776a0b | 3489 | if (!ptid_equal (ecs->ptid, inferior_ptid)) |
8b3ee56d | 3490 | context_switch (ecs->ptid); |
a493e3e2 | 3491 | resume (0, GDB_SIGNAL_0); |
488f131b JB |
3492 | prepare_to_wait (ecs); |
3493 | return; | |
c5aa993b | 3494 | |
488f131b | 3495 | case TARGET_WAITKIND_EXITED: |
940c3c06 | 3496 | case TARGET_WAITKIND_SIGNALLED: |
527159b7 | 3497 | if (debug_infrun) |
940c3c06 PA |
3498 | { |
3499 | if (ecs->ws.kind == TARGET_WAITKIND_EXITED) | |
3500 | fprintf_unfiltered (gdb_stdlog, | |
3501 | "infrun: TARGET_WAITKIND_EXITED\n"); | |
3502 | else | |
3503 | fprintf_unfiltered (gdb_stdlog, | |
3504 | "infrun: TARGET_WAITKIND_SIGNALLED\n"); | |
3505 | } | |
3506 | ||
fb66883a | 3507 | inferior_ptid = ecs->ptid; |
6c95b8df PA |
3508 | set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid))); |
3509 | set_current_program_space (current_inferior ()->pspace); | |
3510 | handle_vfork_child_exec_or_exit (0); | |
1777feb0 | 3511 | target_terminal_ours (); /* Must do this before mourn anyway. */ |
488f131b | 3512 | |
0c557179 SDJ |
3513 | /* Clearing any previous state of convenience variables. */ |
3514 | clear_exit_convenience_vars (); | |
3515 | ||
940c3c06 PA |
3516 | if (ecs->ws.kind == TARGET_WAITKIND_EXITED) |
3517 | { | |
3518 | /* Record the exit code in the convenience variable $_exitcode, so | |
3519 | that the user can inspect this again later. */ | |
3520 | set_internalvar_integer (lookup_internalvar ("_exitcode"), | |
3521 | (LONGEST) ecs->ws.value.integer); | |
3522 | ||
3523 | /* Also record this in the inferior itself. */ | |
3524 | current_inferior ()->has_exit_code = 1; | |
3525 | current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer; | |
8cf64490 | 3526 | |
98eb56a4 PA |
3527 | /* Support the --return-child-result option. */ |
3528 | return_child_result_value = ecs->ws.value.integer; | |
3529 | ||
940c3c06 PA |
3530 | print_exited_reason (ecs->ws.value.integer); |
3531 | } | |
3532 | else | |
0c557179 SDJ |
3533 | { |
3534 | struct regcache *regcache = get_thread_regcache (ecs->ptid); | |
3535 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
3536 | ||
3537 | if (gdbarch_gdb_signal_to_target_p (gdbarch)) | |
3538 | { | |
3539 | /* Set the value of the internal variable $_exitsignal, | |
3540 | which holds the signal uncaught by the inferior. */ | |
3541 | set_internalvar_integer (lookup_internalvar ("_exitsignal"), | |
3542 | gdbarch_gdb_signal_to_target (gdbarch, | |
3543 | ecs->ws.value.sig)); | |
3544 | } | |
3545 | else | |
3546 | { | |
3547 | /* We don't have access to the target's method used for | |
3548 | converting between signal numbers (GDB's internal | |
3549 | representation <-> target's representation). | |
3550 | Therefore, we cannot do a good job at displaying this | |
3551 | information to the user. It's better to just warn | |
3552 | her about it (if infrun debugging is enabled), and | |
3553 | give up. */ | |
3554 | if (debug_infrun) | |
3555 | fprintf_filtered (gdb_stdlog, _("\ | |
3556 | Cannot fill $_exitsignal with the correct signal number.\n")); | |
3557 | } | |
3558 | ||
3559 | print_signal_exited_reason (ecs->ws.value.sig); | |
3560 | } | |
8cf64490 | 3561 | |
488f131b JB |
3562 | gdb_flush (gdb_stdout); |
3563 | target_mourn_inferior (); | |
1c0fdd0e | 3564 | singlestep_breakpoints_inserted_p = 0; |
d03285ec | 3565 | cancel_single_step_breakpoints (); |
488f131b JB |
3566 | stop_print_frame = 0; |
3567 | stop_stepping (ecs); | |
3568 | return; | |
c5aa993b | 3569 | |
488f131b | 3570 | /* The following are the only cases in which we keep going; |
1777feb0 | 3571 | the above cases end in a continue or goto. */ |
488f131b | 3572 | case TARGET_WAITKIND_FORKED: |
deb3b17b | 3573 | case TARGET_WAITKIND_VFORKED: |
527159b7 | 3574 | if (debug_infrun) |
fed708ed PA |
3575 | { |
3576 | if (ecs->ws.kind == TARGET_WAITKIND_FORKED) | |
3577 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n"); | |
3578 | else | |
3579 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n"); | |
3580 | } | |
c906108c | 3581 | |
e2d96639 YQ |
3582 | /* Check whether the inferior is displaced stepping. */ |
3583 | { | |
3584 | struct regcache *regcache = get_thread_regcache (ecs->ptid); | |
3585 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
3586 | struct displaced_step_inferior_state *displaced | |
3587 | = get_displaced_stepping_state (ptid_get_pid (ecs->ptid)); | |
3588 | ||
3589 | /* If checking displaced stepping is supported, and thread | |
3590 | ecs->ptid is displaced stepping. */ | |
3591 | if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid)) | |
3592 | { | |
3593 | struct inferior *parent_inf | |
3594 | = find_inferior_pid (ptid_get_pid (ecs->ptid)); | |
3595 | struct regcache *child_regcache; | |
3596 | CORE_ADDR parent_pc; | |
3597 | ||
3598 | /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED, | |
3599 | indicating that the displaced stepping of syscall instruction | |
3600 | has been done. Perform cleanup for parent process here. Note | |
3601 | that this operation also cleans up the child process for vfork, | |
3602 | because their pages are shared. */ | |
a493e3e2 | 3603 | displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP); |
e2d96639 YQ |
3604 | |
3605 | if (ecs->ws.kind == TARGET_WAITKIND_FORKED) | |
3606 | { | |
3607 | /* Restore scratch pad for child process. */ | |
3608 | displaced_step_restore (displaced, ecs->ws.value.related_pid); | |
3609 | } | |
3610 | ||
3611 | /* Since the vfork/fork syscall instruction was executed in the scratchpad, | |
3612 | the child's PC is also within the scratchpad. Set the child's PC | |
3613 | to the parent's PC value, which has already been fixed up. | |
3614 | FIXME: we use the parent's aspace here, although we're touching | |
3615 | the child, because the child hasn't been added to the inferior | |
3616 | list yet at this point. */ | |
3617 | ||
3618 | child_regcache | |
3619 | = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid, | |
3620 | gdbarch, | |
3621 | parent_inf->aspace); | |
3622 | /* Read PC value of parent process. */ | |
3623 | parent_pc = regcache_read_pc (regcache); | |
3624 | ||
3625 | if (debug_displaced) | |
3626 | fprintf_unfiltered (gdb_stdlog, | |
3627 | "displaced: write child pc from %s to %s\n", | |
3628 | paddress (gdbarch, | |
3629 | regcache_read_pc (child_regcache)), | |
3630 | paddress (gdbarch, parent_pc)); | |
3631 | ||
3632 | regcache_write_pc (child_regcache, parent_pc); | |
3633 | } | |
3634 | } | |
3635 | ||
5a2901d9 | 3636 | if (!ptid_equal (ecs->ptid, inferior_ptid)) |
c3a01a22 | 3637 | context_switch (ecs->ptid); |
5a2901d9 | 3638 | |
b242c3c2 PA |
3639 | /* Immediately detach breakpoints from the child before there's |
3640 | any chance of letting the user delete breakpoints from the | |
3641 | breakpoint lists. If we don't do this early, it's easy to | |
3642 | leave left over traps in the child, vis: "break foo; catch | |
3643 | fork; c; <fork>; del; c; <child calls foo>". We only follow | |
3644 | the fork on the last `continue', and by that time the | |
3645 | breakpoint at "foo" is long gone from the breakpoint table. | |
3646 | If we vforked, then we don't need to unpatch here, since both | |
3647 | parent and child are sharing the same memory pages; we'll | |
3648 | need to unpatch at follow/detach time instead to be certain | |
3649 | that new breakpoints added between catchpoint hit time and | |
3650 | vfork follow are detached. */ | |
3651 | if (ecs->ws.kind != TARGET_WAITKIND_VFORKED) | |
3652 | { | |
b242c3c2 PA |
3653 | /* This won't actually modify the breakpoint list, but will |
3654 | physically remove the breakpoints from the child. */ | |
d80ee84f | 3655 | detach_breakpoints (ecs->ws.value.related_pid); |
b242c3c2 PA |
3656 | } |
3657 | ||
d03285ec UW |
3658 | if (singlestep_breakpoints_inserted_p) |
3659 | { | |
1777feb0 | 3660 | /* Pull the single step breakpoints out of the target. */ |
d03285ec UW |
3661 | remove_single_step_breakpoints (); |
3662 | singlestep_breakpoints_inserted_p = 0; | |
3663 | } | |
3664 | ||
e58b0e63 PA |
3665 | /* In case the event is caught by a catchpoint, remember that |
3666 | the event is to be followed at the next resume of the thread, | |
3667 | and not immediately. */ | |
3668 | ecs->event_thread->pending_follow = ecs->ws; | |
3669 | ||
fb14de7b | 3670 | stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid)); |
675bf4cb | 3671 | |
16c381f0 | 3672 | ecs->event_thread->control.stop_bpstat |
6c95b8df | 3673 | = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()), |
09ac7c10 | 3674 | stop_pc, ecs->ptid, &ecs->ws); |
675bf4cb | 3675 | |
ce12b012 PA |
3676 | /* If no catchpoint triggered for this, then keep going. Note |
3677 | that we're interested in knowing the bpstat actually causes a | |
3678 | stop, not just if it may explain the signal. Software | |
3679 | watchpoints, for example, always appear in the bpstat. */ | |
3680 | if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat)) | |
04e68871 | 3681 | { |
6c95b8df PA |
3682 | ptid_t parent; |
3683 | ptid_t child; | |
e58b0e63 | 3684 | int should_resume; |
3e43a32a MS |
3685 | int follow_child |
3686 | = (follow_fork_mode_string == follow_fork_mode_child); | |
e58b0e63 | 3687 | |
a493e3e2 | 3688 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; |
e58b0e63 PA |
3689 | |
3690 | should_resume = follow_fork (); | |
3691 | ||
6c95b8df PA |
3692 | parent = ecs->ptid; |
3693 | child = ecs->ws.value.related_pid; | |
3694 | ||
3695 | /* In non-stop mode, also resume the other branch. */ | |
3696 | if (non_stop && !detach_fork) | |
3697 | { | |
3698 | if (follow_child) | |
3699 | switch_to_thread (parent); | |
3700 | else | |
3701 | switch_to_thread (child); | |
3702 | ||
3703 | ecs->event_thread = inferior_thread (); | |
3704 | ecs->ptid = inferior_ptid; | |
3705 | keep_going (ecs); | |
3706 | } | |
3707 | ||
3708 | if (follow_child) | |
3709 | switch_to_thread (child); | |
3710 | else | |
3711 | switch_to_thread (parent); | |
3712 | ||
e58b0e63 PA |
3713 | ecs->event_thread = inferior_thread (); |
3714 | ecs->ptid = inferior_ptid; | |
3715 | ||
3716 | if (should_resume) | |
3717 | keep_going (ecs); | |
3718 | else | |
3719 | stop_stepping (ecs); | |
04e68871 DJ |
3720 | return; |
3721 | } | |
94c57d6a PA |
3722 | process_event_stop_test (ecs); |
3723 | return; | |
488f131b | 3724 | |
6c95b8df PA |
3725 | case TARGET_WAITKIND_VFORK_DONE: |
3726 | /* Done with the shared memory region. Re-insert breakpoints in | |
3727 | the parent, and keep going. */ | |
3728 | ||
3729 | if (debug_infrun) | |
3e43a32a MS |
3730 | fprintf_unfiltered (gdb_stdlog, |
3731 | "infrun: TARGET_WAITKIND_VFORK_DONE\n"); | |
6c95b8df PA |
3732 | |
3733 | if (!ptid_equal (ecs->ptid, inferior_ptid)) | |
3734 | context_switch (ecs->ptid); | |
3735 | ||
3736 | current_inferior ()->waiting_for_vfork_done = 0; | |
56710373 | 3737 | current_inferior ()->pspace->breakpoints_not_allowed = 0; |
6c95b8df PA |
3738 | /* This also takes care of reinserting breakpoints in the |
3739 | previously locked inferior. */ | |
3740 | keep_going (ecs); | |
3741 | return; | |
3742 | ||
488f131b | 3743 | case TARGET_WAITKIND_EXECD: |
527159b7 | 3744 | if (debug_infrun) |
fc5261f2 | 3745 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n"); |
488f131b | 3746 | |
5a2901d9 | 3747 | if (!ptid_equal (ecs->ptid, inferior_ptid)) |
c3a01a22 | 3748 | context_switch (ecs->ptid); |
5a2901d9 | 3749 | |
d03285ec UW |
3750 | singlestep_breakpoints_inserted_p = 0; |
3751 | cancel_single_step_breakpoints (); | |
3752 | ||
fb14de7b | 3753 | stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid)); |
795e548f | 3754 | |
6c95b8df PA |
3755 | /* Do whatever is necessary to the parent branch of the vfork. */ |
3756 | handle_vfork_child_exec_or_exit (1); | |
3757 | ||
795e548f PA |
3758 | /* This causes the eventpoints and symbol table to be reset. |
3759 | Must do this now, before trying to determine whether to | |
3760 | stop. */ | |
71b43ef8 | 3761 | follow_exec (inferior_ptid, ecs->ws.value.execd_pathname); |
795e548f | 3762 | |
16c381f0 | 3763 | ecs->event_thread->control.stop_bpstat |
6c95b8df | 3764 | = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()), |
09ac7c10 | 3765 | stop_pc, ecs->ptid, &ecs->ws); |
795e548f | 3766 | |
71b43ef8 PA |
3767 | /* Note that this may be referenced from inside |
3768 | bpstat_stop_status above, through inferior_has_execd. */ | |
3769 | xfree (ecs->ws.value.execd_pathname); | |
3770 | ecs->ws.value.execd_pathname = NULL; | |
3771 | ||
04e68871 | 3772 | /* If no catchpoint triggered for this, then keep going. */ |
ce12b012 | 3773 | if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat)) |
04e68871 | 3774 | { |
a493e3e2 | 3775 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; |
04e68871 DJ |
3776 | keep_going (ecs); |
3777 | return; | |
3778 | } | |
94c57d6a PA |
3779 | process_event_stop_test (ecs); |
3780 | return; | |
488f131b | 3781 | |
b4dc5ffa MK |
3782 | /* Be careful not to try to gather much state about a thread |
3783 | that's in a syscall. It's frequently a losing proposition. */ | |
488f131b | 3784 | case TARGET_WAITKIND_SYSCALL_ENTRY: |
527159b7 | 3785 | if (debug_infrun) |
3e43a32a MS |
3786 | fprintf_unfiltered (gdb_stdlog, |
3787 | "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n"); | |
1777feb0 | 3788 | /* Getting the current syscall number. */ |
94c57d6a PA |
3789 | if (handle_syscall_event (ecs) == 0) |
3790 | process_event_stop_test (ecs); | |
3791 | return; | |
c906108c | 3792 | |
488f131b JB |
3793 | /* Before examining the threads further, step this thread to |
3794 | get it entirely out of the syscall. (We get notice of the | |
3795 | event when the thread is just on the verge of exiting a | |
3796 | syscall. Stepping one instruction seems to get it back | |
b4dc5ffa | 3797 | into user code.) */ |
488f131b | 3798 | case TARGET_WAITKIND_SYSCALL_RETURN: |
527159b7 | 3799 | if (debug_infrun) |
3e43a32a MS |
3800 | fprintf_unfiltered (gdb_stdlog, |
3801 | "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n"); | |
94c57d6a PA |
3802 | if (handle_syscall_event (ecs) == 0) |
3803 | process_event_stop_test (ecs); | |
3804 | return; | |
c906108c | 3805 | |
488f131b | 3806 | case TARGET_WAITKIND_STOPPED: |
527159b7 | 3807 | if (debug_infrun) |
8a9de0e4 | 3808 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n"); |
16c381f0 | 3809 | ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig; |
4f5d7f63 PA |
3810 | handle_signal_stop (ecs); |
3811 | return; | |
c906108c | 3812 | |
b2175913 | 3813 | case TARGET_WAITKIND_NO_HISTORY: |
4b4e080e PA |
3814 | if (debug_infrun) |
3815 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n"); | |
b2175913 | 3816 | /* Reverse execution: target ran out of history info. */ |
eab402df PA |
3817 | |
3818 | /* Pull the single step breakpoints out of the target. */ | |
3819 | if (singlestep_breakpoints_inserted_p) | |
3820 | { | |
3821 | if (!ptid_equal (ecs->ptid, inferior_ptid)) | |
3822 | context_switch (ecs->ptid); | |
3823 | remove_single_step_breakpoints (); | |
3824 | singlestep_breakpoints_inserted_p = 0; | |
3825 | } | |
fb14de7b | 3826 | stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid)); |
33d62d64 | 3827 | print_no_history_reason (); |
b2175913 MS |
3828 | stop_stepping (ecs); |
3829 | return; | |
488f131b | 3830 | } |
4f5d7f63 PA |
3831 | } |
3832 | ||
3833 | /* Come here when the program has stopped with a signal. */ | |
3834 | ||
3835 | static void | |
3836 | handle_signal_stop (struct execution_control_state *ecs) | |
3837 | { | |
3838 | struct frame_info *frame; | |
3839 | struct gdbarch *gdbarch; | |
3840 | int stopped_by_watchpoint; | |
3841 | enum stop_kind stop_soon; | |
3842 | int random_signal; | |
c906108c | 3843 | |
f0407826 DE |
3844 | gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED); |
3845 | ||
3846 | /* Do we need to clean up the state of a thread that has | |
3847 | completed a displaced single-step? (Doing so usually affects | |
3848 | the PC, so do it here, before we set stop_pc.) */ | |
3849 | displaced_step_fixup (ecs->ptid, | |
3850 | ecs->event_thread->suspend.stop_signal); | |
3851 | ||
3852 | /* If we either finished a single-step or hit a breakpoint, but | |
3853 | the user wanted this thread to be stopped, pretend we got a | |
3854 | SIG0 (generic unsignaled stop). */ | |
3855 | if (ecs->event_thread->stop_requested | |
3856 | && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP) | |
3857 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; | |
237fc4c9 | 3858 | |
515630c5 | 3859 | stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid)); |
488f131b | 3860 | |
527159b7 | 3861 | if (debug_infrun) |
237fc4c9 | 3862 | { |
5af949e3 UW |
3863 | struct regcache *regcache = get_thread_regcache (ecs->ptid); |
3864 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
7f82dfc7 JK |
3865 | struct cleanup *old_chain = save_inferior_ptid (); |
3866 | ||
3867 | inferior_ptid = ecs->ptid; | |
5af949e3 UW |
3868 | |
3869 | fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n", | |
3870 | paddress (gdbarch, stop_pc)); | |
d92524f1 | 3871 | if (target_stopped_by_watchpoint ()) |
237fc4c9 PA |
3872 | { |
3873 | CORE_ADDR addr; | |
abbb1732 | 3874 | |
237fc4c9 PA |
3875 | fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n"); |
3876 | ||
3877 | if (target_stopped_data_address (¤t_target, &addr)) | |
3878 | fprintf_unfiltered (gdb_stdlog, | |
5af949e3 UW |
3879 | "infrun: stopped data address = %s\n", |
3880 | paddress (gdbarch, addr)); | |
237fc4c9 PA |
3881 | else |
3882 | fprintf_unfiltered (gdb_stdlog, | |
3883 | "infrun: (no data address available)\n"); | |
3884 | } | |
7f82dfc7 JK |
3885 | |
3886 | do_cleanups (old_chain); | |
237fc4c9 | 3887 | } |
527159b7 | 3888 | |
36fa8042 PA |
3889 | /* This is originated from start_remote(), start_inferior() and |
3890 | shared libraries hook functions. */ | |
3891 | stop_soon = get_inferior_stop_soon (ecs->ptid); | |
3892 | if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE) | |
3893 | { | |
3894 | if (!ptid_equal (ecs->ptid, inferior_ptid)) | |
3895 | context_switch (ecs->ptid); | |
3896 | if (debug_infrun) | |
3897 | fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n"); | |
3898 | stop_print_frame = 1; | |
3899 | stop_stepping (ecs); | |
3900 | return; | |
3901 | } | |
3902 | ||
3903 | if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP | |
3904 | && stop_after_trap) | |
3905 | { | |
3906 | if (!ptid_equal (ecs->ptid, inferior_ptid)) | |
3907 | context_switch (ecs->ptid); | |
3908 | if (debug_infrun) | |
3909 | fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n"); | |
3910 | stop_print_frame = 0; | |
3911 | stop_stepping (ecs); | |
3912 | return; | |
3913 | } | |
3914 | ||
3915 | /* This originates from attach_command(). We need to overwrite | |
3916 | the stop_signal here, because some kernels don't ignore a | |
3917 | SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call. | |
3918 | See more comments in inferior.h. On the other hand, if we | |
3919 | get a non-SIGSTOP, report it to the user - assume the backend | |
3920 | will handle the SIGSTOP if it should show up later. | |
3921 | ||
3922 | Also consider that the attach is complete when we see a | |
3923 | SIGTRAP. Some systems (e.g. Windows), and stubs supporting | |
3924 | target extended-remote report it instead of a SIGSTOP | |
3925 | (e.g. gdbserver). We already rely on SIGTRAP being our | |
3926 | signal, so this is no exception. | |
3927 | ||
3928 | Also consider that the attach is complete when we see a | |
3929 | GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell | |
3930 | the target to stop all threads of the inferior, in case the | |
3931 | low level attach operation doesn't stop them implicitly. If | |
3932 | they weren't stopped implicitly, then the stub will report a | |
3933 | GDB_SIGNAL_0, meaning: stopped for no particular reason | |
3934 | other than GDB's request. */ | |
3935 | if (stop_soon == STOP_QUIETLY_NO_SIGSTOP | |
3936 | && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP | |
3937 | || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP | |
3938 | || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0)) | |
3939 | { | |
3940 | stop_print_frame = 1; | |
3941 | stop_stepping (ecs); | |
3942 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; | |
3943 | return; | |
3944 | } | |
3945 | ||
488f131b | 3946 | /* See if something interesting happened to the non-current thread. If |
b40c7d58 DJ |
3947 | so, then switch to that thread. */ |
3948 | if (!ptid_equal (ecs->ptid, inferior_ptid)) | |
488f131b | 3949 | { |
527159b7 | 3950 | if (debug_infrun) |
8a9de0e4 | 3951 | fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n"); |
527159b7 | 3952 | |
0d1e5fa7 | 3953 | context_switch (ecs->ptid); |
c5aa993b | 3954 | |
9a4105ab AC |
3955 | if (deprecated_context_hook) |
3956 | deprecated_context_hook (pid_to_thread_id (ecs->ptid)); | |
488f131b | 3957 | } |
c906108c | 3958 | |
568d6575 UW |
3959 | /* At this point, get hold of the now-current thread's frame. */ |
3960 | frame = get_current_frame (); | |
3961 | gdbarch = get_frame_arch (frame); | |
3962 | ||
2adfaa28 | 3963 | /* Pull the single step breakpoints out of the target. */ |
1c0fdd0e | 3964 | if (singlestep_breakpoints_inserted_p) |
488f131b | 3965 | { |
2adfaa28 PA |
3966 | /* However, before doing so, if this single-step breakpoint was |
3967 | actually for another thread, set this thread up for moving | |
3968 | past it. */ | |
3969 | if (!ptid_equal (ecs->ptid, singlestep_ptid) | |
3970 | && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP) | |
3971 | { | |
3972 | struct regcache *regcache; | |
3973 | struct address_space *aspace; | |
3974 | CORE_ADDR pc; | |
3975 | ||
3976 | regcache = get_thread_regcache (ecs->ptid); | |
3977 | aspace = get_regcache_aspace (regcache); | |
3978 | pc = regcache_read_pc (regcache); | |
3979 | if (single_step_breakpoint_inserted_here_p (aspace, pc)) | |
3980 | { | |
3981 | if (debug_infrun) | |
3982 | { | |
3983 | fprintf_unfiltered (gdb_stdlog, | |
3984 | "infrun: [%s] hit step over single-step" | |
3985 | " breakpoint of [%s]\n", | |
3986 | target_pid_to_str (ecs->ptid), | |
3987 | target_pid_to_str (singlestep_ptid)); | |
3988 | } | |
3989 | ecs->hit_singlestep_breakpoint = 1; | |
3990 | } | |
3991 | } | |
3992 | ||
e0cd558a | 3993 | remove_single_step_breakpoints (); |
488f131b JB |
3994 | singlestep_breakpoints_inserted_p = 0; |
3995 | } | |
c906108c | 3996 | |
4f5d7f63 | 3997 | if (ecs->stepped_after_stopped_by_watchpoint) |
d983da9c DJ |
3998 | stopped_by_watchpoint = 0; |
3999 | else | |
4000 | stopped_by_watchpoint = watchpoints_triggered (&ecs->ws); | |
4001 | ||
4002 | /* If necessary, step over this watchpoint. We'll be back to display | |
4003 | it in a moment. */ | |
4004 | if (stopped_by_watchpoint | |
d92524f1 | 4005 | && (target_have_steppable_watchpoint |
568d6575 | 4006 | || gdbarch_have_nonsteppable_watchpoint (gdbarch))) |
488f131b | 4007 | { |
488f131b JB |
4008 | /* At this point, we are stopped at an instruction which has |
4009 | attempted to write to a piece of memory under control of | |
4010 | a watchpoint. The instruction hasn't actually executed | |
4011 | yet. If we were to evaluate the watchpoint expression | |
4012 | now, we would get the old value, and therefore no change | |
4013 | would seem to have occurred. | |
4014 | ||
4015 | In order to make watchpoints work `right', we really need | |
4016 | to complete the memory write, and then evaluate the | |
d983da9c DJ |
4017 | watchpoint expression. We do this by single-stepping the |
4018 | target. | |
4019 | ||
4020 | It may not be necessary to disable the watchpoint to stop over | |
4021 | it. For example, the PA can (with some kernel cooperation) | |
4022 | single step over a watchpoint without disabling the watchpoint. | |
4023 | ||
4024 | It is far more common to need to disable a watchpoint to step | |
4025 | the inferior over it. If we have non-steppable watchpoints, | |
4026 | we must disable the current watchpoint; it's simplest to | |
4027 | disable all watchpoints and breakpoints. */ | |
2facfe5c DD |
4028 | int hw_step = 1; |
4029 | ||
d92524f1 | 4030 | if (!target_have_steppable_watchpoint) |
2455069d UW |
4031 | { |
4032 | remove_breakpoints (); | |
4033 | /* See comment in resume why we need to stop bypassing signals | |
4034 | while breakpoints have been removed. */ | |
4035 | target_pass_signals (0, NULL); | |
4036 | } | |
2facfe5c | 4037 | /* Single step */ |
568d6575 | 4038 | hw_step = maybe_software_singlestep (gdbarch, stop_pc); |
a493e3e2 | 4039 | target_resume (ecs->ptid, hw_step, GDB_SIGNAL_0); |
0d1e5fa7 | 4040 | waiton_ptid = ecs->ptid; |
d92524f1 | 4041 | if (target_have_steppable_watchpoint) |
0d1e5fa7 | 4042 | infwait_state = infwait_step_watch_state; |
d983da9c | 4043 | else |
0d1e5fa7 | 4044 | infwait_state = infwait_nonstep_watch_state; |
488f131b JB |
4045 | prepare_to_wait (ecs); |
4046 | return; | |
4047 | } | |
4048 | ||
4e1c45ea | 4049 | ecs->event_thread->stepping_over_breakpoint = 0; |
16c381f0 JK |
4050 | bpstat_clear (&ecs->event_thread->control.stop_bpstat); |
4051 | ecs->event_thread->control.stop_step = 0; | |
488f131b | 4052 | stop_print_frame = 1; |
488f131b | 4053 | stopped_by_random_signal = 0; |
488f131b | 4054 | |
edb3359d DJ |
4055 | /* Hide inlined functions starting here, unless we just performed stepi or |
4056 | nexti. After stepi and nexti, always show the innermost frame (not any | |
4057 | inline function call sites). */ | |
16c381f0 | 4058 | if (ecs->event_thread->control.step_range_end != 1) |
0574c78f GB |
4059 | { |
4060 | struct address_space *aspace = | |
4061 | get_regcache_aspace (get_thread_regcache (ecs->ptid)); | |
4062 | ||
4063 | /* skip_inline_frames is expensive, so we avoid it if we can | |
4064 | determine that the address is one where functions cannot have | |
4065 | been inlined. This improves performance with inferiors that | |
4066 | load a lot of shared libraries, because the solib event | |
4067 | breakpoint is defined as the address of a function (i.e. not | |
4068 | inline). Note that we have to check the previous PC as well | |
4069 | as the current one to catch cases when we have just | |
4070 | single-stepped off a breakpoint prior to reinstating it. | |
4071 | Note that we're assuming that the code we single-step to is | |
4072 | not inline, but that's not definitive: there's nothing | |
4073 | preventing the event breakpoint function from containing | |
4074 | inlined code, and the single-step ending up there. If the | |
4075 | user had set a breakpoint on that inlined code, the missing | |
4076 | skip_inline_frames call would break things. Fortunately | |
4077 | that's an extremely unlikely scenario. */ | |
09ac7c10 | 4078 | if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws) |
a210c238 MR |
4079 | && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP |
4080 | && ecs->event_thread->control.trap_expected | |
4081 | && pc_at_non_inline_function (aspace, | |
4082 | ecs->event_thread->prev_pc, | |
09ac7c10 | 4083 | &ecs->ws))) |
1c5a993e MR |
4084 | { |
4085 | skip_inline_frames (ecs->ptid); | |
4086 | ||
4087 | /* Re-fetch current thread's frame in case that invalidated | |
4088 | the frame cache. */ | |
4089 | frame = get_current_frame (); | |
4090 | gdbarch = get_frame_arch (frame); | |
4091 | } | |
0574c78f | 4092 | } |
edb3359d | 4093 | |
a493e3e2 | 4094 | if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP |
16c381f0 | 4095 | && ecs->event_thread->control.trap_expected |
568d6575 | 4096 | && gdbarch_single_step_through_delay_p (gdbarch) |
4e1c45ea | 4097 | && currently_stepping (ecs->event_thread)) |
3352ef37 | 4098 | { |
b50d7442 | 4099 | /* We're trying to step off a breakpoint. Turns out that we're |
3352ef37 | 4100 | also on an instruction that needs to be stepped multiple |
1777feb0 | 4101 | times before it's been fully executing. E.g., architectures |
3352ef37 AC |
4102 | with a delay slot. It needs to be stepped twice, once for |
4103 | the instruction and once for the delay slot. */ | |
4104 | int step_through_delay | |
568d6575 | 4105 | = gdbarch_single_step_through_delay (gdbarch, frame); |
abbb1732 | 4106 | |
527159b7 | 4107 | if (debug_infrun && step_through_delay) |
8a9de0e4 | 4108 | fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n"); |
16c381f0 JK |
4109 | if (ecs->event_thread->control.step_range_end == 0 |
4110 | && step_through_delay) | |
3352ef37 AC |
4111 | { |
4112 | /* The user issued a continue when stopped at a breakpoint. | |
4113 | Set up for another trap and get out of here. */ | |
4e1c45ea | 4114 | ecs->event_thread->stepping_over_breakpoint = 1; |
3352ef37 AC |
4115 | keep_going (ecs); |
4116 | return; | |
4117 | } | |
4118 | else if (step_through_delay) | |
4119 | { | |
4120 | /* The user issued a step when stopped at a breakpoint. | |
4121 | Maybe we should stop, maybe we should not - the delay | |
4122 | slot *might* correspond to a line of source. In any | |
ca67fcb8 VP |
4123 | case, don't decide that here, just set |
4124 | ecs->stepping_over_breakpoint, making sure we | |
4125 | single-step again before breakpoints are re-inserted. */ | |
4e1c45ea | 4126 | ecs->event_thread->stepping_over_breakpoint = 1; |
3352ef37 AC |
4127 | } |
4128 | } | |
4129 | ||
ab04a2af TT |
4130 | /* See if there is a breakpoint/watchpoint/catchpoint/etc. that |
4131 | handles this event. */ | |
4132 | ecs->event_thread->control.stop_bpstat | |
4133 | = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()), | |
4134 | stop_pc, ecs->ptid, &ecs->ws); | |
db82e815 | 4135 | |
ab04a2af TT |
4136 | /* Following in case break condition called a |
4137 | function. */ | |
4138 | stop_print_frame = 1; | |
73dd234f | 4139 | |
ab04a2af TT |
4140 | /* This is where we handle "moribund" watchpoints. Unlike |
4141 | software breakpoints traps, hardware watchpoint traps are | |
4142 | always distinguishable from random traps. If no high-level | |
4143 | watchpoint is associated with the reported stop data address | |
4144 | anymore, then the bpstat does not explain the signal --- | |
4145 | simply make sure to ignore it if `stopped_by_watchpoint' is | |
4146 | set. */ | |
4147 | ||
4148 | if (debug_infrun | |
4149 | && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP | |
47591c29 | 4150 | && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat, |
427cd150 | 4151 | GDB_SIGNAL_TRAP) |
ab04a2af TT |
4152 | && stopped_by_watchpoint) |
4153 | fprintf_unfiltered (gdb_stdlog, | |
4154 | "infrun: no user watchpoint explains " | |
4155 | "watchpoint SIGTRAP, ignoring\n"); | |
73dd234f | 4156 | |
bac7d97b | 4157 | /* NOTE: cagney/2003-03-29: These checks for a random signal |
ab04a2af TT |
4158 | at one stage in the past included checks for an inferior |
4159 | function call's call dummy's return breakpoint. The original | |
4160 | comment, that went with the test, read: | |
03cebad2 | 4161 | |
ab04a2af TT |
4162 | ``End of a stack dummy. Some systems (e.g. Sony news) give |
4163 | another signal besides SIGTRAP, so check here as well as | |
4164 | above.'' | |
73dd234f | 4165 | |
ab04a2af TT |
4166 | If someone ever tries to get call dummys on a |
4167 | non-executable stack to work (where the target would stop | |
4168 | with something like a SIGSEGV), then those tests might need | |
4169 | to be re-instated. Given, however, that the tests were only | |
4170 | enabled when momentary breakpoints were not being used, I | |
4171 | suspect that it won't be the case. | |
488f131b | 4172 | |
ab04a2af TT |
4173 | NOTE: kettenis/2004-02-05: Indeed such checks don't seem to |
4174 | be necessary for call dummies on a non-executable stack on | |
4175 | SPARC. */ | |
488f131b | 4176 | |
bac7d97b | 4177 | /* See if the breakpoints module can explain the signal. */ |
47591c29 PA |
4178 | random_signal |
4179 | = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat, | |
4180 | ecs->event_thread->suspend.stop_signal); | |
bac7d97b PA |
4181 | |
4182 | /* If not, perhaps stepping/nexting can. */ | |
4183 | if (random_signal) | |
4184 | random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP | |
4185 | && currently_stepping (ecs->event_thread)); | |
ab04a2af | 4186 | |
2adfaa28 PA |
4187 | /* Perhaps the thread hit a single-step breakpoint of _another_ |
4188 | thread. Single-step breakpoints are transparent to the | |
4189 | breakpoints module. */ | |
4190 | if (random_signal) | |
4191 | random_signal = !ecs->hit_singlestep_breakpoint; | |
4192 | ||
bac7d97b PA |
4193 | /* No? Perhaps we got a moribund watchpoint. */ |
4194 | if (random_signal) | |
4195 | random_signal = !stopped_by_watchpoint; | |
ab04a2af | 4196 | |
488f131b JB |
4197 | /* For the program's own signals, act according to |
4198 | the signal handling tables. */ | |
4199 | ||
ce12b012 | 4200 | if (random_signal) |
488f131b JB |
4201 | { |
4202 | /* Signal not for debugging purposes. */ | |
4203 | int printed = 0; | |
24291992 | 4204 | struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid)); |
c9737c08 | 4205 | enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal; |
488f131b | 4206 | |
527159b7 | 4207 | if (debug_infrun) |
c9737c08 PA |
4208 | fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n", |
4209 | gdb_signal_to_symbol_string (stop_signal)); | |
527159b7 | 4210 | |
488f131b JB |
4211 | stopped_by_random_signal = 1; |
4212 | ||
16c381f0 | 4213 | if (signal_print[ecs->event_thread->suspend.stop_signal]) |
488f131b JB |
4214 | { |
4215 | printed = 1; | |
4216 | target_terminal_ours_for_output (); | |
16c381f0 JK |
4217 | print_signal_received_reason |
4218 | (ecs->event_thread->suspend.stop_signal); | |
488f131b | 4219 | } |
252fbfc8 PA |
4220 | /* Always stop on signals if we're either just gaining control |
4221 | of the program, or the user explicitly requested this thread | |
4222 | to remain stopped. */ | |
d6b48e9c | 4223 | if (stop_soon != NO_STOP_QUIETLY |
252fbfc8 | 4224 | || ecs->event_thread->stop_requested |
24291992 | 4225 | || (!inf->detaching |
16c381f0 | 4226 | && signal_stop_state (ecs->event_thread->suspend.stop_signal))) |
488f131b JB |
4227 | { |
4228 | stop_stepping (ecs); | |
4229 | return; | |
4230 | } | |
4231 | /* If not going to stop, give terminal back | |
4232 | if we took it away. */ | |
4233 | else if (printed) | |
4234 | target_terminal_inferior (); | |
4235 | ||
4236 | /* Clear the signal if it should not be passed. */ | |
16c381f0 | 4237 | if (signal_program[ecs->event_thread->suspend.stop_signal] == 0) |
a493e3e2 | 4238 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; |
488f131b | 4239 | |
fb14de7b | 4240 | if (ecs->event_thread->prev_pc == stop_pc |
16c381f0 | 4241 | && ecs->event_thread->control.trap_expected |
8358c15c | 4242 | && ecs->event_thread->control.step_resume_breakpoint == NULL) |
68f53502 AC |
4243 | { |
4244 | /* We were just starting a new sequence, attempting to | |
4245 | single-step off of a breakpoint and expecting a SIGTRAP. | |
237fc4c9 | 4246 | Instead this signal arrives. This signal will take us out |
68f53502 AC |
4247 | of the stepping range so GDB needs to remember to, when |
4248 | the signal handler returns, resume stepping off that | |
4249 | breakpoint. */ | |
4250 | /* To simplify things, "continue" is forced to use the same | |
4251 | code paths as single-step - set a breakpoint at the | |
4252 | signal return address and then, once hit, step off that | |
4253 | breakpoint. */ | |
237fc4c9 PA |
4254 | if (debug_infrun) |
4255 | fprintf_unfiltered (gdb_stdlog, | |
4256 | "infrun: signal arrived while stepping over " | |
4257 | "breakpoint\n"); | |
d3169d93 | 4258 | |
2c03e5be | 4259 | insert_hp_step_resume_breakpoint_at_frame (frame); |
4e1c45ea | 4260 | ecs->event_thread->step_after_step_resume_breakpoint = 1; |
2455069d UW |
4261 | /* Reset trap_expected to ensure breakpoints are re-inserted. */ |
4262 | ecs->event_thread->control.trap_expected = 0; | |
d137e6dc PA |
4263 | |
4264 | /* If we were nexting/stepping some other thread, switch to | |
4265 | it, so that we don't continue it, losing control. */ | |
4266 | if (!switch_back_to_stepped_thread (ecs)) | |
4267 | keep_going (ecs); | |
9d799f85 | 4268 | return; |
68f53502 | 4269 | } |
9d799f85 | 4270 | |
16c381f0 | 4271 | if (ecs->event_thread->control.step_range_end != 0 |
a493e3e2 | 4272 | && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0 |
ce4c476a | 4273 | && pc_in_thread_step_range (stop_pc, ecs->event_thread) |
edb3359d | 4274 | && frame_id_eq (get_stack_frame_id (frame), |
16c381f0 | 4275 | ecs->event_thread->control.step_stack_frame_id) |
8358c15c | 4276 | && ecs->event_thread->control.step_resume_breakpoint == NULL) |
d303a6c7 AC |
4277 | { |
4278 | /* The inferior is about to take a signal that will take it | |
4279 | out of the single step range. Set a breakpoint at the | |
4280 | current PC (which is presumably where the signal handler | |
4281 | will eventually return) and then allow the inferior to | |
4282 | run free. | |
4283 | ||
4284 | Note that this is only needed for a signal delivered | |
4285 | while in the single-step range. Nested signals aren't a | |
4286 | problem as they eventually all return. */ | |
237fc4c9 PA |
4287 | if (debug_infrun) |
4288 | fprintf_unfiltered (gdb_stdlog, | |
4289 | "infrun: signal may take us out of " | |
4290 | "single-step range\n"); | |
4291 | ||
2c03e5be | 4292 | insert_hp_step_resume_breakpoint_at_frame (frame); |
2455069d UW |
4293 | /* Reset trap_expected to ensure breakpoints are re-inserted. */ |
4294 | ecs->event_thread->control.trap_expected = 0; | |
9d799f85 AC |
4295 | keep_going (ecs); |
4296 | return; | |
d303a6c7 | 4297 | } |
9d799f85 AC |
4298 | |
4299 | /* Note: step_resume_breakpoint may be non-NULL. This occures | |
4300 | when either there's a nested signal, or when there's a | |
4301 | pending signal enabled just as the signal handler returns | |
4302 | (leaving the inferior at the step-resume-breakpoint without | |
4303 | actually executing it). Either way continue until the | |
4304 | breakpoint is really hit. */ | |
c447ac0b PA |
4305 | |
4306 | if (!switch_back_to_stepped_thread (ecs)) | |
4307 | { | |
4308 | if (debug_infrun) | |
4309 | fprintf_unfiltered (gdb_stdlog, | |
4310 | "infrun: random signal, keep going\n"); | |
4311 | ||
4312 | keep_going (ecs); | |
4313 | } | |
4314 | return; | |
488f131b | 4315 | } |
94c57d6a PA |
4316 | |
4317 | process_event_stop_test (ecs); | |
4318 | } | |
4319 | ||
4320 | /* Come here when we've got some debug event / signal we can explain | |
4321 | (IOW, not a random signal), and test whether it should cause a | |
4322 | stop, or whether we should resume the inferior (transparently). | |
4323 | E.g., could be a breakpoint whose condition evaluates false; we | |
4324 | could be still stepping within the line; etc. */ | |
4325 | ||
4326 | static void | |
4327 | process_event_stop_test (struct execution_control_state *ecs) | |
4328 | { | |
4329 | struct symtab_and_line stop_pc_sal; | |
4330 | struct frame_info *frame; | |
4331 | struct gdbarch *gdbarch; | |
cdaa5b73 PA |
4332 | CORE_ADDR jmp_buf_pc; |
4333 | struct bpstat_what what; | |
94c57d6a | 4334 | |
cdaa5b73 | 4335 | /* Handle cases caused by hitting a breakpoint. */ |
611c83ae | 4336 | |
cdaa5b73 PA |
4337 | frame = get_current_frame (); |
4338 | gdbarch = get_frame_arch (frame); | |
fcf3daef | 4339 | |
cdaa5b73 | 4340 | what = bpstat_what (ecs->event_thread->control.stop_bpstat); |
611c83ae | 4341 | |
cdaa5b73 PA |
4342 | if (what.call_dummy) |
4343 | { | |
4344 | stop_stack_dummy = what.call_dummy; | |
4345 | } | |
186c406b | 4346 | |
cdaa5b73 PA |
4347 | /* If we hit an internal event that triggers symbol changes, the |
4348 | current frame will be invalidated within bpstat_what (e.g., if we | |
4349 | hit an internal solib event). Re-fetch it. */ | |
4350 | frame = get_current_frame (); | |
4351 | gdbarch = get_frame_arch (frame); | |
e2e4d78b | 4352 | |
cdaa5b73 PA |
4353 | switch (what.main_action) |
4354 | { | |
4355 | case BPSTAT_WHAT_SET_LONGJMP_RESUME: | |
4356 | /* If we hit the breakpoint at longjmp while stepping, we | |
4357 | install a momentary breakpoint at the target of the | |
4358 | jmp_buf. */ | |
186c406b | 4359 | |
cdaa5b73 PA |
4360 | if (debug_infrun) |
4361 | fprintf_unfiltered (gdb_stdlog, | |
4362 | "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n"); | |
186c406b | 4363 | |
cdaa5b73 | 4364 | ecs->event_thread->stepping_over_breakpoint = 1; |
611c83ae | 4365 | |
cdaa5b73 PA |
4366 | if (what.is_longjmp) |
4367 | { | |
4368 | struct value *arg_value; | |
4369 | ||
4370 | /* If we set the longjmp breakpoint via a SystemTap probe, | |
4371 | then use it to extract the arguments. The destination PC | |
4372 | is the third argument to the probe. */ | |
4373 | arg_value = probe_safe_evaluate_at_pc (frame, 2); | |
4374 | if (arg_value) | |
4375 | jmp_buf_pc = value_as_address (arg_value); | |
4376 | else if (!gdbarch_get_longjmp_target_p (gdbarch) | |
4377 | || !gdbarch_get_longjmp_target (gdbarch, | |
4378 | frame, &jmp_buf_pc)) | |
e2e4d78b | 4379 | { |
cdaa5b73 PA |
4380 | if (debug_infrun) |
4381 | fprintf_unfiltered (gdb_stdlog, | |
4382 | "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME " | |
4383 | "(!gdbarch_get_longjmp_target)\n"); | |
4384 | keep_going (ecs); | |
4385 | return; | |
e2e4d78b | 4386 | } |
e2e4d78b | 4387 | |
cdaa5b73 PA |
4388 | /* Insert a breakpoint at resume address. */ |
4389 | insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc); | |
4390 | } | |
4391 | else | |
4392 | check_exception_resume (ecs, frame); | |
4393 | keep_going (ecs); | |
4394 | return; | |
e81a37f7 | 4395 | |
cdaa5b73 PA |
4396 | case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME: |
4397 | { | |
4398 | struct frame_info *init_frame; | |
e81a37f7 | 4399 | |
cdaa5b73 | 4400 | /* There are several cases to consider. |
c906108c | 4401 | |
cdaa5b73 PA |
4402 | 1. The initiating frame no longer exists. In this case we |
4403 | must stop, because the exception or longjmp has gone too | |
4404 | far. | |
2c03e5be | 4405 | |
cdaa5b73 PA |
4406 | 2. The initiating frame exists, and is the same as the |
4407 | current frame. We stop, because the exception or longjmp | |
4408 | has been caught. | |
2c03e5be | 4409 | |
cdaa5b73 PA |
4410 | 3. The initiating frame exists and is different from the |
4411 | current frame. This means the exception or longjmp has | |
4412 | been caught beneath the initiating frame, so keep going. | |
c906108c | 4413 | |
cdaa5b73 PA |
4414 | 4. longjmp breakpoint has been placed just to protect |
4415 | against stale dummy frames and user is not interested in | |
4416 | stopping around longjmps. */ | |
c5aa993b | 4417 | |
cdaa5b73 PA |
4418 | if (debug_infrun) |
4419 | fprintf_unfiltered (gdb_stdlog, | |
4420 | "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n"); | |
c5aa993b | 4421 | |
cdaa5b73 PA |
4422 | gdb_assert (ecs->event_thread->control.exception_resume_breakpoint |
4423 | != NULL); | |
4424 | delete_exception_resume_breakpoint (ecs->event_thread); | |
c5aa993b | 4425 | |
cdaa5b73 PA |
4426 | if (what.is_longjmp) |
4427 | { | |
4428 | check_longjmp_breakpoint_for_call_dummy (ecs->event_thread->num); | |
c5aa993b | 4429 | |
cdaa5b73 | 4430 | if (!frame_id_p (ecs->event_thread->initiating_frame)) |
e5ef252a | 4431 | { |
cdaa5b73 PA |
4432 | /* Case 4. */ |
4433 | keep_going (ecs); | |
4434 | return; | |
e5ef252a | 4435 | } |
cdaa5b73 | 4436 | } |
c5aa993b | 4437 | |
cdaa5b73 | 4438 | init_frame = frame_find_by_id (ecs->event_thread->initiating_frame); |
527159b7 | 4439 | |
cdaa5b73 PA |
4440 | if (init_frame) |
4441 | { | |
4442 | struct frame_id current_id | |
4443 | = get_frame_id (get_current_frame ()); | |
4444 | if (frame_id_eq (current_id, | |
4445 | ecs->event_thread->initiating_frame)) | |
4446 | { | |
4447 | /* Case 2. Fall through. */ | |
4448 | } | |
4449 | else | |
4450 | { | |
4451 | /* Case 3. */ | |
4452 | keep_going (ecs); | |
4453 | return; | |
4454 | } | |
68f53502 | 4455 | } |
488f131b | 4456 | |
cdaa5b73 PA |
4457 | /* For Cases 1 and 2, remove the step-resume breakpoint, if it |
4458 | exists. */ | |
4459 | delete_step_resume_breakpoint (ecs->event_thread); | |
e5ef252a | 4460 | |
cdaa5b73 PA |
4461 | ecs->event_thread->control.stop_step = 1; |
4462 | print_end_stepping_range_reason (); | |
4463 | stop_stepping (ecs); | |
4464 | } | |
4465 | return; | |
e5ef252a | 4466 | |
cdaa5b73 PA |
4467 | case BPSTAT_WHAT_SINGLE: |
4468 | if (debug_infrun) | |
4469 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n"); | |
4470 | ecs->event_thread->stepping_over_breakpoint = 1; | |
4471 | /* Still need to check other stuff, at least the case where we | |
4472 | are stepping and step out of the right range. */ | |
4473 | break; | |
e5ef252a | 4474 | |
cdaa5b73 PA |
4475 | case BPSTAT_WHAT_STEP_RESUME: |
4476 | if (debug_infrun) | |
4477 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n"); | |
e5ef252a | 4478 | |
cdaa5b73 PA |
4479 | delete_step_resume_breakpoint (ecs->event_thread); |
4480 | if (ecs->event_thread->control.proceed_to_finish | |
4481 | && execution_direction == EXEC_REVERSE) | |
4482 | { | |
4483 | struct thread_info *tp = ecs->event_thread; | |
4484 | ||
4485 | /* We are finishing a function in reverse, and just hit the | |
4486 | step-resume breakpoint at the start address of the | |
4487 | function, and we're almost there -- just need to back up | |
4488 | by one more single-step, which should take us back to the | |
4489 | function call. */ | |
4490 | tp->control.step_range_start = tp->control.step_range_end = 1; | |
4491 | keep_going (ecs); | |
e5ef252a | 4492 | return; |
cdaa5b73 PA |
4493 | } |
4494 | fill_in_stop_func (gdbarch, ecs); | |
4495 | if (stop_pc == ecs->stop_func_start | |
4496 | && execution_direction == EXEC_REVERSE) | |
4497 | { | |
4498 | /* We are stepping over a function call in reverse, and just | |
4499 | hit the step-resume breakpoint at the start address of | |
4500 | the function. Go back to single-stepping, which should | |
4501 | take us back to the function call. */ | |
4502 | ecs->event_thread->stepping_over_breakpoint = 1; | |
4503 | keep_going (ecs); | |
4504 | return; | |
4505 | } | |
4506 | break; | |
e5ef252a | 4507 | |
cdaa5b73 PA |
4508 | case BPSTAT_WHAT_STOP_NOISY: |
4509 | if (debug_infrun) | |
4510 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n"); | |
4511 | stop_print_frame = 1; | |
e5ef252a | 4512 | |
99619bea PA |
4513 | /* Assume the thread stopped for a breapoint. We'll still check |
4514 | whether a/the breakpoint is there when the thread is next | |
4515 | resumed. */ | |
4516 | ecs->event_thread->stepping_over_breakpoint = 1; | |
e5ef252a | 4517 | |
cdaa5b73 PA |
4518 | stop_stepping (ecs); |
4519 | return; | |
e5ef252a | 4520 | |
cdaa5b73 PA |
4521 | case BPSTAT_WHAT_STOP_SILENT: |
4522 | if (debug_infrun) | |
4523 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n"); | |
4524 | stop_print_frame = 0; | |
e5ef252a | 4525 | |
99619bea PA |
4526 | /* Assume the thread stopped for a breapoint. We'll still check |
4527 | whether a/the breakpoint is there when the thread is next | |
4528 | resumed. */ | |
4529 | ecs->event_thread->stepping_over_breakpoint = 1; | |
cdaa5b73 PA |
4530 | stop_stepping (ecs); |
4531 | return; | |
4532 | ||
4533 | case BPSTAT_WHAT_HP_STEP_RESUME: | |
4534 | if (debug_infrun) | |
4535 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n"); | |
4536 | ||
4537 | delete_step_resume_breakpoint (ecs->event_thread); | |
4538 | if (ecs->event_thread->step_after_step_resume_breakpoint) | |
4539 | { | |
4540 | /* Back when the step-resume breakpoint was inserted, we | |
4541 | were trying to single-step off a breakpoint. Go back to | |
4542 | doing that. */ | |
4543 | ecs->event_thread->step_after_step_resume_breakpoint = 0; | |
4544 | ecs->event_thread->stepping_over_breakpoint = 1; | |
4545 | keep_going (ecs); | |
4546 | return; | |
e5ef252a | 4547 | } |
cdaa5b73 PA |
4548 | break; |
4549 | ||
4550 | case BPSTAT_WHAT_KEEP_CHECKING: | |
4551 | break; | |
e5ef252a | 4552 | } |
c906108c | 4553 | |
cdaa5b73 PA |
4554 | /* We come here if we hit a breakpoint but should not stop for it. |
4555 | Possibly we also were stepping and should stop for that. So fall | |
4556 | through and test for stepping. But, if not stepping, do not | |
4557 | stop. */ | |
c906108c | 4558 | |
a7212384 UW |
4559 | /* In all-stop mode, if we're currently stepping but have stopped in |
4560 | some other thread, we need to switch back to the stepped thread. */ | |
c447ac0b PA |
4561 | if (switch_back_to_stepped_thread (ecs)) |
4562 | return; | |
776f04fa | 4563 | |
8358c15c | 4564 | if (ecs->event_thread->control.step_resume_breakpoint) |
488f131b | 4565 | { |
527159b7 | 4566 | if (debug_infrun) |
d3169d93 DJ |
4567 | fprintf_unfiltered (gdb_stdlog, |
4568 | "infrun: step-resume breakpoint is inserted\n"); | |
527159b7 | 4569 | |
488f131b JB |
4570 | /* Having a step-resume breakpoint overrides anything |
4571 | else having to do with stepping commands until | |
4572 | that breakpoint is reached. */ | |
488f131b JB |
4573 | keep_going (ecs); |
4574 | return; | |
4575 | } | |
c5aa993b | 4576 | |
16c381f0 | 4577 | if (ecs->event_thread->control.step_range_end == 0) |
488f131b | 4578 | { |
527159b7 | 4579 | if (debug_infrun) |
8a9de0e4 | 4580 | fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n"); |
488f131b | 4581 | /* Likewise if we aren't even stepping. */ |
488f131b JB |
4582 | keep_going (ecs); |
4583 | return; | |
4584 | } | |
c5aa993b | 4585 | |
4b7703ad JB |
4586 | /* Re-fetch current thread's frame in case the code above caused |
4587 | the frame cache to be re-initialized, making our FRAME variable | |
4588 | a dangling pointer. */ | |
4589 | frame = get_current_frame (); | |
628fe4e4 | 4590 | gdbarch = get_frame_arch (frame); |
7e324e48 | 4591 | fill_in_stop_func (gdbarch, ecs); |
4b7703ad | 4592 | |
488f131b | 4593 | /* If stepping through a line, keep going if still within it. |
c906108c | 4594 | |
488f131b JB |
4595 | Note that step_range_end is the address of the first instruction |
4596 | beyond the step range, and NOT the address of the last instruction | |
31410e84 MS |
4597 | within it! |
4598 | ||
4599 | Note also that during reverse execution, we may be stepping | |
4600 | through a function epilogue and therefore must detect when | |
4601 | the current-frame changes in the middle of a line. */ | |
4602 | ||
ce4c476a | 4603 | if (pc_in_thread_step_range (stop_pc, ecs->event_thread) |
31410e84 | 4604 | && (execution_direction != EXEC_REVERSE |
388a8562 | 4605 | || frame_id_eq (get_frame_id (frame), |
16c381f0 | 4606 | ecs->event_thread->control.step_frame_id))) |
488f131b | 4607 | { |
527159b7 | 4608 | if (debug_infrun) |
5af949e3 UW |
4609 | fprintf_unfiltered |
4610 | (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n", | |
16c381f0 JK |
4611 | paddress (gdbarch, ecs->event_thread->control.step_range_start), |
4612 | paddress (gdbarch, ecs->event_thread->control.step_range_end)); | |
b2175913 | 4613 | |
c1e36e3e PA |
4614 | /* Tentatively re-enable range stepping; `resume' disables it if |
4615 | necessary (e.g., if we're stepping over a breakpoint or we | |
4616 | have software watchpoints). */ | |
4617 | ecs->event_thread->control.may_range_step = 1; | |
4618 | ||
b2175913 MS |
4619 | /* When stepping backward, stop at beginning of line range |
4620 | (unless it's the function entry point, in which case | |
4621 | keep going back to the call point). */ | |
16c381f0 | 4622 | if (stop_pc == ecs->event_thread->control.step_range_start |
b2175913 MS |
4623 | && stop_pc != ecs->stop_func_start |
4624 | && execution_direction == EXEC_REVERSE) | |
4625 | { | |
16c381f0 | 4626 | ecs->event_thread->control.stop_step = 1; |
33d62d64 | 4627 | print_end_stepping_range_reason (); |
b2175913 MS |
4628 | stop_stepping (ecs); |
4629 | } | |
4630 | else | |
4631 | keep_going (ecs); | |
4632 | ||
488f131b JB |
4633 | return; |
4634 | } | |
c5aa993b | 4635 | |
488f131b | 4636 | /* We stepped out of the stepping range. */ |
c906108c | 4637 | |
488f131b | 4638 | /* If we are stepping at the source level and entered the runtime |
388a8562 MS |
4639 | loader dynamic symbol resolution code... |
4640 | ||
4641 | EXEC_FORWARD: we keep on single stepping until we exit the run | |
4642 | time loader code and reach the callee's address. | |
4643 | ||
4644 | EXEC_REVERSE: we've already executed the callee (backward), and | |
4645 | the runtime loader code is handled just like any other | |
4646 | undebuggable function call. Now we need only keep stepping | |
4647 | backward through the trampoline code, and that's handled further | |
4648 | down, so there is nothing for us to do here. */ | |
4649 | ||
4650 | if (execution_direction != EXEC_REVERSE | |
16c381f0 | 4651 | && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE |
cfd8ab24 | 4652 | && in_solib_dynsym_resolve_code (stop_pc)) |
488f131b | 4653 | { |
4c8c40e6 | 4654 | CORE_ADDR pc_after_resolver = |
568d6575 | 4655 | gdbarch_skip_solib_resolver (gdbarch, stop_pc); |
c906108c | 4656 | |
527159b7 | 4657 | if (debug_infrun) |
3e43a32a MS |
4658 | fprintf_unfiltered (gdb_stdlog, |
4659 | "infrun: stepped into dynsym resolve code\n"); | |
527159b7 | 4660 | |
488f131b JB |
4661 | if (pc_after_resolver) |
4662 | { | |
4663 | /* Set up a step-resume breakpoint at the address | |
4664 | indicated by SKIP_SOLIB_RESOLVER. */ | |
4665 | struct symtab_and_line sr_sal; | |
abbb1732 | 4666 | |
fe39c653 | 4667 | init_sal (&sr_sal); |
488f131b | 4668 | sr_sal.pc = pc_after_resolver; |
6c95b8df | 4669 | sr_sal.pspace = get_frame_program_space (frame); |
488f131b | 4670 | |
a6d9a66e UW |
4671 | insert_step_resume_breakpoint_at_sal (gdbarch, |
4672 | sr_sal, null_frame_id); | |
c5aa993b | 4673 | } |
c906108c | 4674 | |
488f131b JB |
4675 | keep_going (ecs); |
4676 | return; | |
4677 | } | |
c906108c | 4678 | |
16c381f0 JK |
4679 | if (ecs->event_thread->control.step_range_end != 1 |
4680 | && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE | |
4681 | || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL) | |
568d6575 | 4682 | && get_frame_type (frame) == SIGTRAMP_FRAME) |
488f131b | 4683 | { |
527159b7 | 4684 | if (debug_infrun) |
3e43a32a MS |
4685 | fprintf_unfiltered (gdb_stdlog, |
4686 | "infrun: stepped into signal trampoline\n"); | |
42edda50 | 4687 | /* The inferior, while doing a "step" or "next", has ended up in |
8fb3e588 AC |
4688 | a signal trampoline (either by a signal being delivered or by |
4689 | the signal handler returning). Just single-step until the | |
4690 | inferior leaves the trampoline (either by calling the handler | |
4691 | or returning). */ | |
488f131b JB |
4692 | keep_going (ecs); |
4693 | return; | |
4694 | } | |
c906108c | 4695 | |
14132e89 MR |
4696 | /* If we're in the return path from a shared library trampoline, |
4697 | we want to proceed through the trampoline when stepping. */ | |
4698 | /* macro/2012-04-25: This needs to come before the subroutine | |
4699 | call check below as on some targets return trampolines look | |
4700 | like subroutine calls (MIPS16 return thunks). */ | |
4701 | if (gdbarch_in_solib_return_trampoline (gdbarch, | |
4702 | stop_pc, ecs->stop_func_name) | |
4703 | && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE) | |
4704 | { | |
4705 | /* Determine where this trampoline returns. */ | |
4706 | CORE_ADDR real_stop_pc; | |
4707 | ||
4708 | real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc); | |
4709 | ||
4710 | if (debug_infrun) | |
4711 | fprintf_unfiltered (gdb_stdlog, | |
4712 | "infrun: stepped into solib return tramp\n"); | |
4713 | ||
4714 | /* Only proceed through if we know where it's going. */ | |
4715 | if (real_stop_pc) | |
4716 | { | |
4717 | /* And put the step-breakpoint there and go until there. */ | |
4718 | struct symtab_and_line sr_sal; | |
4719 | ||
4720 | init_sal (&sr_sal); /* initialize to zeroes */ | |
4721 | sr_sal.pc = real_stop_pc; | |
4722 | sr_sal.section = find_pc_overlay (sr_sal.pc); | |
4723 | sr_sal.pspace = get_frame_program_space (frame); | |
4724 | ||
4725 | /* Do not specify what the fp should be when we stop since | |
4726 | on some machines the prologue is where the new fp value | |
4727 | is established. */ | |
4728 | insert_step_resume_breakpoint_at_sal (gdbarch, | |
4729 | sr_sal, null_frame_id); | |
4730 | ||
4731 | /* Restart without fiddling with the step ranges or | |
4732 | other state. */ | |
4733 | keep_going (ecs); | |
4734 | return; | |
4735 | } | |
4736 | } | |
4737 | ||
c17eaafe DJ |
4738 | /* Check for subroutine calls. The check for the current frame |
4739 | equalling the step ID is not necessary - the check of the | |
4740 | previous frame's ID is sufficient - but it is a common case and | |
4741 | cheaper than checking the previous frame's ID. | |
14e60db5 DJ |
4742 | |
4743 | NOTE: frame_id_eq will never report two invalid frame IDs as | |
4744 | being equal, so to get into this block, both the current and | |
4745 | previous frame must have valid frame IDs. */ | |
005ca36a JB |
4746 | /* The outer_frame_id check is a heuristic to detect stepping |
4747 | through startup code. If we step over an instruction which | |
4748 | sets the stack pointer from an invalid value to a valid value, | |
4749 | we may detect that as a subroutine call from the mythical | |
4750 | "outermost" function. This could be fixed by marking | |
4751 | outermost frames as !stack_p,code_p,special_p. Then the | |
4752 | initial outermost frame, before sp was valid, would | |
ce6cca6d | 4753 | have code_addr == &_start. See the comment in frame_id_eq |
005ca36a | 4754 | for more. */ |
edb3359d | 4755 | if (!frame_id_eq (get_stack_frame_id (frame), |
16c381f0 | 4756 | ecs->event_thread->control.step_stack_frame_id) |
005ca36a | 4757 | && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()), |
16c381f0 JK |
4758 | ecs->event_thread->control.step_stack_frame_id) |
4759 | && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id, | |
005ca36a JB |
4760 | outer_frame_id) |
4761 | || step_start_function != find_pc_function (stop_pc)))) | |
488f131b | 4762 | { |
95918acb | 4763 | CORE_ADDR real_stop_pc; |
8fb3e588 | 4764 | |
527159b7 | 4765 | if (debug_infrun) |
8a9de0e4 | 4766 | fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n"); |
527159b7 | 4767 | |
16c381f0 JK |
4768 | if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE) |
4769 | || ((ecs->event_thread->control.step_range_end == 1) | |
d80b854b | 4770 | && in_prologue (gdbarch, ecs->event_thread->prev_pc, |
4e1c45ea | 4771 | ecs->stop_func_start))) |
95918acb AC |
4772 | { |
4773 | /* I presume that step_over_calls is only 0 when we're | |
4774 | supposed to be stepping at the assembly language level | |
4775 | ("stepi"). Just stop. */ | |
4776 | /* Also, maybe we just did a "nexti" inside a prolog, so we | |
4777 | thought it was a subroutine call but it was not. Stop as | |
4778 | well. FENN */ | |
388a8562 | 4779 | /* And this works the same backward as frontward. MVS */ |
16c381f0 | 4780 | ecs->event_thread->control.stop_step = 1; |
33d62d64 | 4781 | print_end_stepping_range_reason (); |
95918acb AC |
4782 | stop_stepping (ecs); |
4783 | return; | |
4784 | } | |
8fb3e588 | 4785 | |
388a8562 MS |
4786 | /* Reverse stepping through solib trampolines. */ |
4787 | ||
4788 | if (execution_direction == EXEC_REVERSE | |
16c381f0 | 4789 | && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE |
388a8562 MS |
4790 | && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc) |
4791 | || (ecs->stop_func_start == 0 | |
4792 | && in_solib_dynsym_resolve_code (stop_pc)))) | |
4793 | { | |
4794 | /* Any solib trampoline code can be handled in reverse | |
4795 | by simply continuing to single-step. We have already | |
4796 | executed the solib function (backwards), and a few | |
4797 | steps will take us back through the trampoline to the | |
4798 | caller. */ | |
4799 | keep_going (ecs); | |
4800 | return; | |
4801 | } | |
4802 | ||
16c381f0 | 4803 | if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL) |
8567c30f | 4804 | { |
b2175913 MS |
4805 | /* We're doing a "next". |
4806 | ||
4807 | Normal (forward) execution: set a breakpoint at the | |
4808 | callee's return address (the address at which the caller | |
4809 | will resume). | |
4810 | ||
4811 | Reverse (backward) execution. set the step-resume | |
4812 | breakpoint at the start of the function that we just | |
4813 | stepped into (backwards), and continue to there. When we | |
6130d0b7 | 4814 | get there, we'll need to single-step back to the caller. */ |
b2175913 MS |
4815 | |
4816 | if (execution_direction == EXEC_REVERSE) | |
4817 | { | |
acf9414f JK |
4818 | /* If we're already at the start of the function, we've either |
4819 | just stepped backward into a single instruction function, | |
4820 | or stepped back out of a signal handler to the first instruction | |
4821 | of the function. Just keep going, which will single-step back | |
4822 | to the caller. */ | |
58c48e72 | 4823 | if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0) |
acf9414f JK |
4824 | { |
4825 | struct symtab_and_line sr_sal; | |
4826 | ||
4827 | /* Normal function call return (static or dynamic). */ | |
4828 | init_sal (&sr_sal); | |
4829 | sr_sal.pc = ecs->stop_func_start; | |
4830 | sr_sal.pspace = get_frame_program_space (frame); | |
4831 | insert_step_resume_breakpoint_at_sal (gdbarch, | |
4832 | sr_sal, null_frame_id); | |
4833 | } | |
b2175913 MS |
4834 | } |
4835 | else | |
568d6575 | 4836 | insert_step_resume_breakpoint_at_caller (frame); |
b2175913 | 4837 | |
8567c30f AC |
4838 | keep_going (ecs); |
4839 | return; | |
4840 | } | |
a53c66de | 4841 | |
95918acb | 4842 | /* If we are in a function call trampoline (a stub between the |
8fb3e588 AC |
4843 | calling routine and the real function), locate the real |
4844 | function. That's what tells us (a) whether we want to step | |
4845 | into it at all, and (b) what prologue we want to run to the | |
4846 | end of, if we do step into it. */ | |
568d6575 | 4847 | real_stop_pc = skip_language_trampoline (frame, stop_pc); |
95918acb | 4848 | if (real_stop_pc == 0) |
568d6575 | 4849 | real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc); |
95918acb AC |
4850 | if (real_stop_pc != 0) |
4851 | ecs->stop_func_start = real_stop_pc; | |
8fb3e588 | 4852 | |
db5f024e | 4853 | if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc)) |
1b2bfbb9 RC |
4854 | { |
4855 | struct symtab_and_line sr_sal; | |
abbb1732 | 4856 | |
1b2bfbb9 RC |
4857 | init_sal (&sr_sal); |
4858 | sr_sal.pc = ecs->stop_func_start; | |
6c95b8df | 4859 | sr_sal.pspace = get_frame_program_space (frame); |
1b2bfbb9 | 4860 | |
a6d9a66e UW |
4861 | insert_step_resume_breakpoint_at_sal (gdbarch, |
4862 | sr_sal, null_frame_id); | |
8fb3e588 AC |
4863 | keep_going (ecs); |
4864 | return; | |
1b2bfbb9 RC |
4865 | } |
4866 | ||
95918acb | 4867 | /* If we have line number information for the function we are |
1bfeeb0f JL |
4868 | thinking of stepping into and the function isn't on the skip |
4869 | list, step into it. | |
95918acb | 4870 | |
8fb3e588 AC |
4871 | If there are several symtabs at that PC (e.g. with include |
4872 | files), just want to know whether *any* of them have line | |
4873 | numbers. find_pc_line handles this. */ | |
95918acb AC |
4874 | { |
4875 | struct symtab_and_line tmp_sal; | |
8fb3e588 | 4876 | |
95918acb | 4877 | tmp_sal = find_pc_line (ecs->stop_func_start, 0); |
2b914b52 | 4878 | if (tmp_sal.line != 0 |
85817405 JK |
4879 | && !function_name_is_marked_for_skip (ecs->stop_func_name, |
4880 | &tmp_sal)) | |
95918acb | 4881 | { |
b2175913 | 4882 | if (execution_direction == EXEC_REVERSE) |
568d6575 | 4883 | handle_step_into_function_backward (gdbarch, ecs); |
b2175913 | 4884 | else |
568d6575 | 4885 | handle_step_into_function (gdbarch, ecs); |
95918acb AC |
4886 | return; |
4887 | } | |
4888 | } | |
4889 | ||
4890 | /* If we have no line number and the step-stop-if-no-debug is | |
8fb3e588 AC |
4891 | set, we stop the step so that the user has a chance to switch |
4892 | in assembly mode. */ | |
16c381f0 | 4893 | if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE |
078130d0 | 4894 | && step_stop_if_no_debug) |
95918acb | 4895 | { |
16c381f0 | 4896 | ecs->event_thread->control.stop_step = 1; |
33d62d64 | 4897 | print_end_stepping_range_reason (); |
95918acb AC |
4898 | stop_stepping (ecs); |
4899 | return; | |
4900 | } | |
4901 | ||
b2175913 MS |
4902 | if (execution_direction == EXEC_REVERSE) |
4903 | { | |
acf9414f JK |
4904 | /* If we're already at the start of the function, we've either just |
4905 | stepped backward into a single instruction function without line | |
4906 | number info, or stepped back out of a signal handler to the first | |
4907 | instruction of the function without line number info. Just keep | |
4908 | going, which will single-step back to the caller. */ | |
4909 | if (ecs->stop_func_start != stop_pc) | |
4910 | { | |
4911 | /* Set a breakpoint at callee's start address. | |
4912 | From there we can step once and be back in the caller. */ | |
4913 | struct symtab_and_line sr_sal; | |
abbb1732 | 4914 | |
acf9414f JK |
4915 | init_sal (&sr_sal); |
4916 | sr_sal.pc = ecs->stop_func_start; | |
4917 | sr_sal.pspace = get_frame_program_space (frame); | |
4918 | insert_step_resume_breakpoint_at_sal (gdbarch, | |
4919 | sr_sal, null_frame_id); | |
4920 | } | |
b2175913 MS |
4921 | } |
4922 | else | |
4923 | /* Set a breakpoint at callee's return address (the address | |
4924 | at which the caller will resume). */ | |
568d6575 | 4925 | insert_step_resume_breakpoint_at_caller (frame); |
b2175913 | 4926 | |
95918acb | 4927 | keep_going (ecs); |
488f131b | 4928 | return; |
488f131b | 4929 | } |
c906108c | 4930 | |
fdd654f3 MS |
4931 | /* Reverse stepping through solib trampolines. */ |
4932 | ||
4933 | if (execution_direction == EXEC_REVERSE | |
16c381f0 | 4934 | && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE) |
fdd654f3 MS |
4935 | { |
4936 | if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc) | |
4937 | || (ecs->stop_func_start == 0 | |
4938 | && in_solib_dynsym_resolve_code (stop_pc))) | |
4939 | { | |
4940 | /* Any solib trampoline code can be handled in reverse | |
4941 | by simply continuing to single-step. We have already | |
4942 | executed the solib function (backwards), and a few | |
4943 | steps will take us back through the trampoline to the | |
4944 | caller. */ | |
4945 | keep_going (ecs); | |
4946 | return; | |
4947 | } | |
4948 | else if (in_solib_dynsym_resolve_code (stop_pc)) | |
4949 | { | |
4950 | /* Stepped backward into the solib dynsym resolver. | |
4951 | Set a breakpoint at its start and continue, then | |
4952 | one more step will take us out. */ | |
4953 | struct symtab_and_line sr_sal; | |
abbb1732 | 4954 | |
fdd654f3 MS |
4955 | init_sal (&sr_sal); |
4956 | sr_sal.pc = ecs->stop_func_start; | |
9d1807c3 | 4957 | sr_sal.pspace = get_frame_program_space (frame); |
fdd654f3 MS |
4958 | insert_step_resume_breakpoint_at_sal (gdbarch, |
4959 | sr_sal, null_frame_id); | |
4960 | keep_going (ecs); | |
4961 | return; | |
4962 | } | |
4963 | } | |
4964 | ||
2afb61aa | 4965 | stop_pc_sal = find_pc_line (stop_pc, 0); |
7ed0fe66 | 4966 | |
1b2bfbb9 RC |
4967 | /* NOTE: tausq/2004-05-24: This if block used to be done before all |
4968 | the trampoline processing logic, however, there are some trampolines | |
4969 | that have no names, so we should do trampoline handling first. */ | |
16c381f0 | 4970 | if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE |
7ed0fe66 | 4971 | && ecs->stop_func_name == NULL |
2afb61aa | 4972 | && stop_pc_sal.line == 0) |
1b2bfbb9 | 4973 | { |
527159b7 | 4974 | if (debug_infrun) |
3e43a32a MS |
4975 | fprintf_unfiltered (gdb_stdlog, |
4976 | "infrun: stepped into undebuggable function\n"); | |
527159b7 | 4977 | |
1b2bfbb9 | 4978 | /* The inferior just stepped into, or returned to, an |
7ed0fe66 DJ |
4979 | undebuggable function (where there is no debugging information |
4980 | and no line number corresponding to the address where the | |
1b2bfbb9 RC |
4981 | inferior stopped). Since we want to skip this kind of code, |
4982 | we keep going until the inferior returns from this | |
14e60db5 DJ |
4983 | function - unless the user has asked us not to (via |
4984 | set step-mode) or we no longer know how to get back | |
4985 | to the call site. */ | |
4986 | if (step_stop_if_no_debug | |
c7ce8faa | 4987 | || !frame_id_p (frame_unwind_caller_id (frame))) |
1b2bfbb9 RC |
4988 | { |
4989 | /* If we have no line number and the step-stop-if-no-debug | |
4990 | is set, we stop the step so that the user has a chance to | |
4991 | switch in assembly mode. */ | |
16c381f0 | 4992 | ecs->event_thread->control.stop_step = 1; |
33d62d64 | 4993 | print_end_stepping_range_reason (); |
1b2bfbb9 RC |
4994 | stop_stepping (ecs); |
4995 | return; | |
4996 | } | |
4997 | else | |
4998 | { | |
4999 | /* Set a breakpoint at callee's return address (the address | |
5000 | at which the caller will resume). */ | |
568d6575 | 5001 | insert_step_resume_breakpoint_at_caller (frame); |
1b2bfbb9 RC |
5002 | keep_going (ecs); |
5003 | return; | |
5004 | } | |
5005 | } | |
5006 | ||
16c381f0 | 5007 | if (ecs->event_thread->control.step_range_end == 1) |
1b2bfbb9 RC |
5008 | { |
5009 | /* It is stepi or nexti. We always want to stop stepping after | |
5010 | one instruction. */ | |
527159b7 | 5011 | if (debug_infrun) |
8a9de0e4 | 5012 | fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n"); |
16c381f0 | 5013 | ecs->event_thread->control.stop_step = 1; |
33d62d64 | 5014 | print_end_stepping_range_reason (); |
1b2bfbb9 RC |
5015 | stop_stepping (ecs); |
5016 | return; | |
5017 | } | |
5018 | ||
2afb61aa | 5019 | if (stop_pc_sal.line == 0) |
488f131b JB |
5020 | { |
5021 | /* We have no line number information. That means to stop | |
5022 | stepping (does this always happen right after one instruction, | |
5023 | when we do "s" in a function with no line numbers, | |
5024 | or can this happen as a result of a return or longjmp?). */ | |
527159b7 | 5025 | if (debug_infrun) |
8a9de0e4 | 5026 | fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n"); |
16c381f0 | 5027 | ecs->event_thread->control.stop_step = 1; |
33d62d64 | 5028 | print_end_stepping_range_reason (); |
488f131b JB |
5029 | stop_stepping (ecs); |
5030 | return; | |
5031 | } | |
c906108c | 5032 | |
edb3359d DJ |
5033 | /* Look for "calls" to inlined functions, part one. If the inline |
5034 | frame machinery detected some skipped call sites, we have entered | |
5035 | a new inline function. */ | |
5036 | ||
5037 | if (frame_id_eq (get_frame_id (get_current_frame ()), | |
16c381f0 | 5038 | ecs->event_thread->control.step_frame_id) |
edb3359d DJ |
5039 | && inline_skipped_frames (ecs->ptid)) |
5040 | { | |
5041 | struct symtab_and_line call_sal; | |
5042 | ||
5043 | if (debug_infrun) | |
5044 | fprintf_unfiltered (gdb_stdlog, | |
5045 | "infrun: stepped into inlined function\n"); | |
5046 | ||
5047 | find_frame_sal (get_current_frame (), &call_sal); | |
5048 | ||
16c381f0 | 5049 | if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL) |
edb3359d DJ |
5050 | { |
5051 | /* For "step", we're going to stop. But if the call site | |
5052 | for this inlined function is on the same source line as | |
5053 | we were previously stepping, go down into the function | |
5054 | first. Otherwise stop at the call site. */ | |
5055 | ||
5056 | if (call_sal.line == ecs->event_thread->current_line | |
5057 | && call_sal.symtab == ecs->event_thread->current_symtab) | |
5058 | step_into_inline_frame (ecs->ptid); | |
5059 | ||
16c381f0 | 5060 | ecs->event_thread->control.stop_step = 1; |
33d62d64 | 5061 | print_end_stepping_range_reason (); |
edb3359d DJ |
5062 | stop_stepping (ecs); |
5063 | return; | |
5064 | } | |
5065 | else | |
5066 | { | |
5067 | /* For "next", we should stop at the call site if it is on a | |
5068 | different source line. Otherwise continue through the | |
5069 | inlined function. */ | |
5070 | if (call_sal.line == ecs->event_thread->current_line | |
5071 | && call_sal.symtab == ecs->event_thread->current_symtab) | |
5072 | keep_going (ecs); | |
5073 | else | |
5074 | { | |
16c381f0 | 5075 | ecs->event_thread->control.stop_step = 1; |
33d62d64 | 5076 | print_end_stepping_range_reason (); |
edb3359d DJ |
5077 | stop_stepping (ecs); |
5078 | } | |
5079 | return; | |
5080 | } | |
5081 | } | |
5082 | ||
5083 | /* Look for "calls" to inlined functions, part two. If we are still | |
5084 | in the same real function we were stepping through, but we have | |
5085 | to go further up to find the exact frame ID, we are stepping | |
5086 | through a more inlined call beyond its call site. */ | |
5087 | ||
5088 | if (get_frame_type (get_current_frame ()) == INLINE_FRAME | |
5089 | && !frame_id_eq (get_frame_id (get_current_frame ()), | |
16c381f0 | 5090 | ecs->event_thread->control.step_frame_id) |
edb3359d | 5091 | && stepped_in_from (get_current_frame (), |
16c381f0 | 5092 | ecs->event_thread->control.step_frame_id)) |
edb3359d DJ |
5093 | { |
5094 | if (debug_infrun) | |
5095 | fprintf_unfiltered (gdb_stdlog, | |
5096 | "infrun: stepping through inlined function\n"); | |
5097 | ||
16c381f0 | 5098 | if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL) |
edb3359d DJ |
5099 | keep_going (ecs); |
5100 | else | |
5101 | { | |
16c381f0 | 5102 | ecs->event_thread->control.stop_step = 1; |
33d62d64 | 5103 | print_end_stepping_range_reason (); |
edb3359d DJ |
5104 | stop_stepping (ecs); |
5105 | } | |
5106 | return; | |
5107 | } | |
5108 | ||
2afb61aa | 5109 | if ((stop_pc == stop_pc_sal.pc) |
4e1c45ea PA |
5110 | && (ecs->event_thread->current_line != stop_pc_sal.line |
5111 | || ecs->event_thread->current_symtab != stop_pc_sal.symtab)) | |
488f131b JB |
5112 | { |
5113 | /* We are at the start of a different line. So stop. Note that | |
5114 | we don't stop if we step into the middle of a different line. | |
5115 | That is said to make things like for (;;) statements work | |
5116 | better. */ | |
527159b7 | 5117 | if (debug_infrun) |
3e43a32a MS |
5118 | fprintf_unfiltered (gdb_stdlog, |
5119 | "infrun: stepped to a different line\n"); | |
16c381f0 | 5120 | ecs->event_thread->control.stop_step = 1; |
33d62d64 | 5121 | print_end_stepping_range_reason (); |
488f131b JB |
5122 | stop_stepping (ecs); |
5123 | return; | |
5124 | } | |
c906108c | 5125 | |
488f131b | 5126 | /* We aren't done stepping. |
c906108c | 5127 | |
488f131b JB |
5128 | Optimize by setting the stepping range to the line. |
5129 | (We might not be in the original line, but if we entered a | |
5130 | new line in mid-statement, we continue stepping. This makes | |
5131 | things like for(;;) statements work better.) */ | |
c906108c | 5132 | |
16c381f0 JK |
5133 | ecs->event_thread->control.step_range_start = stop_pc_sal.pc; |
5134 | ecs->event_thread->control.step_range_end = stop_pc_sal.end; | |
c1e36e3e | 5135 | ecs->event_thread->control.may_range_step = 1; |
edb3359d | 5136 | set_step_info (frame, stop_pc_sal); |
488f131b | 5137 | |
527159b7 | 5138 | if (debug_infrun) |
8a9de0e4 | 5139 | fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n"); |
488f131b | 5140 | keep_going (ecs); |
104c1213 JM |
5141 | } |
5142 | ||
c447ac0b PA |
5143 | /* In all-stop mode, if we're currently stepping but have stopped in |
5144 | some other thread, we may need to switch back to the stepped | |
5145 | thread. Returns true we set the inferior running, false if we left | |
5146 | it stopped (and the event needs further processing). */ | |
5147 | ||
5148 | static int | |
5149 | switch_back_to_stepped_thread (struct execution_control_state *ecs) | |
5150 | { | |
5151 | if (!non_stop) | |
5152 | { | |
5153 | struct thread_info *tp; | |
99619bea | 5154 | struct thread_info *stepping_thread; |
483805cf | 5155 | struct thread_info *step_over; |
99619bea PA |
5156 | |
5157 | /* If any thread is blocked on some internal breakpoint, and we | |
5158 | simply need to step over that breakpoint to get it going | |
5159 | again, do that first. */ | |
5160 | ||
5161 | /* However, if we see an event for the stepping thread, then we | |
5162 | know all other threads have been moved past their breakpoints | |
5163 | already. Let the caller check whether the step is finished, | |
5164 | etc., before deciding to move it past a breakpoint. */ | |
5165 | if (ecs->event_thread->control.step_range_end != 0) | |
5166 | return 0; | |
5167 | ||
5168 | /* Check if the current thread is blocked on an incomplete | |
5169 | step-over, interrupted by a random signal. */ | |
5170 | if (ecs->event_thread->control.trap_expected | |
5171 | && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP) | |
c447ac0b | 5172 | { |
99619bea PA |
5173 | if (debug_infrun) |
5174 | { | |
5175 | fprintf_unfiltered (gdb_stdlog, | |
5176 | "infrun: need to finish step-over of [%s]\n", | |
5177 | target_pid_to_str (ecs->event_thread->ptid)); | |
5178 | } | |
5179 | keep_going (ecs); | |
5180 | return 1; | |
5181 | } | |
2adfaa28 | 5182 | |
99619bea PA |
5183 | /* Check if the current thread is blocked by a single-step |
5184 | breakpoint of another thread. */ | |
5185 | if (ecs->hit_singlestep_breakpoint) | |
5186 | { | |
5187 | if (debug_infrun) | |
5188 | { | |
5189 | fprintf_unfiltered (gdb_stdlog, | |
5190 | "infrun: need to step [%s] over single-step " | |
5191 | "breakpoint\n", | |
5192 | target_pid_to_str (ecs->ptid)); | |
5193 | } | |
5194 | keep_going (ecs); | |
5195 | return 1; | |
5196 | } | |
5197 | ||
483805cf PA |
5198 | /* Otherwise, we no longer expect a trap in the current thread. |
5199 | Clear the trap_expected flag before switching back -- this is | |
5200 | what keep_going does as well, if we call it. */ | |
5201 | ecs->event_thread->control.trap_expected = 0; | |
5202 | ||
5203 | /* If scheduler locking applies even if not stepping, there's no | |
5204 | need to walk over threads. Above we've checked whether the | |
5205 | current thread is stepping. If some other thread not the | |
5206 | event thread is stepping, then it must be that scheduler | |
5207 | locking is not in effect. */ | |
5208 | if (schedlock_applies (0)) | |
5209 | return 0; | |
5210 | ||
5211 | /* Look for the stepping/nexting thread, and check if any other | |
5212 | thread other than the stepping thread needs to start a | |
5213 | step-over. Do all step-overs before actually proceeding with | |
5214 | step/next/etc. */ | |
5215 | stepping_thread = NULL; | |
5216 | step_over = NULL; | |
5217 | ALL_THREADS (tp) | |
5218 | { | |
5219 | /* Ignore threads of processes we're not resuming. */ | |
5220 | if (!sched_multi | |
5221 | && ptid_get_pid (tp->ptid) != ptid_get_pid (inferior_ptid)) | |
5222 | continue; | |
5223 | ||
5224 | /* When stepping over a breakpoint, we lock all threads | |
5225 | except the one that needs to move past the breakpoint. | |
5226 | If a non-event thread has this set, the "incomplete | |
5227 | step-over" check above should have caught it earlier. */ | |
5228 | gdb_assert (!tp->control.trap_expected); | |
5229 | ||
5230 | /* Did we find the stepping thread? */ | |
5231 | if (tp->control.step_range_end) | |
5232 | { | |
5233 | /* Yep. There should only one though. */ | |
5234 | gdb_assert (stepping_thread == NULL); | |
5235 | ||
5236 | /* The event thread is handled at the top, before we | |
5237 | enter this loop. */ | |
5238 | gdb_assert (tp != ecs->event_thread); | |
5239 | ||
5240 | /* If some thread other than the event thread is | |
5241 | stepping, then scheduler locking can't be in effect, | |
5242 | otherwise we wouldn't have resumed the current event | |
5243 | thread in the first place. */ | |
5244 | gdb_assert (!schedlock_applies (1)); | |
5245 | ||
5246 | stepping_thread = tp; | |
5247 | } | |
5248 | else if (thread_still_needs_step_over (tp)) | |
5249 | { | |
5250 | step_over = tp; | |
5251 | ||
5252 | /* At the top we've returned early if the event thread | |
5253 | is stepping. If some other thread not the event | |
5254 | thread is stepping, then scheduler locking can't be | |
5255 | in effect, and we can resume this thread. No need to | |
5256 | keep looking for the stepping thread then. */ | |
5257 | break; | |
5258 | } | |
5259 | } | |
99619bea | 5260 | |
483805cf | 5261 | if (step_over != NULL) |
99619bea | 5262 | { |
483805cf | 5263 | tp = step_over; |
99619bea | 5264 | if (debug_infrun) |
c447ac0b | 5265 | { |
99619bea PA |
5266 | fprintf_unfiltered (gdb_stdlog, |
5267 | "infrun: need to step-over [%s]\n", | |
5268 | target_pid_to_str (tp->ptid)); | |
c447ac0b PA |
5269 | } |
5270 | ||
483805cf | 5271 | /* Only the stepping thread should have this set. */ |
99619bea PA |
5272 | gdb_assert (tp->control.step_range_end == 0); |
5273 | ||
99619bea PA |
5274 | ecs->ptid = tp->ptid; |
5275 | ecs->event_thread = tp; | |
5276 | switch_to_thread (ecs->ptid); | |
5277 | keep_going (ecs); | |
5278 | return 1; | |
5279 | } | |
5280 | ||
483805cf | 5281 | if (stepping_thread != NULL) |
99619bea PA |
5282 | { |
5283 | struct frame_info *frame; | |
5284 | struct gdbarch *gdbarch; | |
5285 | ||
483805cf PA |
5286 | tp = stepping_thread; |
5287 | ||
c447ac0b PA |
5288 | /* If the stepping thread exited, then don't try to switch |
5289 | back and resume it, which could fail in several different | |
5290 | ways depending on the target. Instead, just keep going. | |
5291 | ||
5292 | We can find a stepping dead thread in the thread list in | |
5293 | two cases: | |
5294 | ||
5295 | - The target supports thread exit events, and when the | |
5296 | target tries to delete the thread from the thread list, | |
5297 | inferior_ptid pointed at the exiting thread. In such | |
5298 | case, calling delete_thread does not really remove the | |
5299 | thread from the list; instead, the thread is left listed, | |
5300 | with 'exited' state. | |
5301 | ||
5302 | - The target's debug interface does not support thread | |
5303 | exit events, and so we have no idea whatsoever if the | |
5304 | previously stepping thread is still alive. For that | |
5305 | reason, we need to synchronously query the target | |
5306 | now. */ | |
5307 | if (is_exited (tp->ptid) | |
5308 | || !target_thread_alive (tp->ptid)) | |
5309 | { | |
5310 | if (debug_infrun) | |
5311 | fprintf_unfiltered (gdb_stdlog, | |
5312 | "infrun: not switching back to " | |
5313 | "stepped thread, it has vanished\n"); | |
5314 | ||
5315 | delete_thread (tp->ptid); | |
5316 | keep_going (ecs); | |
5317 | return 1; | |
5318 | } | |
5319 | ||
c447ac0b PA |
5320 | if (debug_infrun) |
5321 | fprintf_unfiltered (gdb_stdlog, | |
5322 | "infrun: switching back to stepped thread\n"); | |
5323 | ||
5324 | ecs->event_thread = tp; | |
5325 | ecs->ptid = tp->ptid; | |
5326 | context_switch (ecs->ptid); | |
2adfaa28 PA |
5327 | |
5328 | stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid)); | |
5329 | frame = get_current_frame (); | |
5330 | gdbarch = get_frame_arch (frame); | |
5331 | ||
5332 | /* If the PC of the thread we were trying to single-step has | |
99619bea PA |
5333 | changed, then that thread has trapped or been signaled, |
5334 | but the event has not been reported to GDB yet. Re-poll | |
5335 | the target looking for this particular thread's event | |
5336 | (i.e. temporarily enable schedlock) by: | |
2adfaa28 PA |
5337 | |
5338 | - setting a break at the current PC | |
5339 | - resuming that particular thread, only (by setting | |
5340 | trap expected) | |
5341 | ||
5342 | This prevents us continuously moving the single-step | |
5343 | breakpoint forward, one instruction at a time, | |
5344 | overstepping. */ | |
5345 | ||
5346 | if (gdbarch_software_single_step_p (gdbarch) | |
5347 | && stop_pc != tp->prev_pc) | |
5348 | { | |
5349 | if (debug_infrun) | |
5350 | fprintf_unfiltered (gdb_stdlog, | |
5351 | "infrun: expected thread advanced also\n"); | |
5352 | ||
5353 | insert_single_step_breakpoint (get_frame_arch (frame), | |
5354 | get_frame_address_space (frame), | |
5355 | stop_pc); | |
5356 | singlestep_breakpoints_inserted_p = 1; | |
5357 | ecs->event_thread->control.trap_expected = 1; | |
5358 | singlestep_ptid = inferior_ptid; | |
5359 | singlestep_pc = stop_pc; | |
5360 | ||
5361 | resume (0, GDB_SIGNAL_0); | |
5362 | prepare_to_wait (ecs); | |
5363 | } | |
5364 | else | |
5365 | { | |
5366 | if (debug_infrun) | |
5367 | fprintf_unfiltered (gdb_stdlog, | |
5368 | "infrun: expected thread still " | |
5369 | "hasn't advanced\n"); | |
5370 | keep_going (ecs); | |
5371 | } | |
5372 | ||
c447ac0b PA |
5373 | return 1; |
5374 | } | |
5375 | } | |
5376 | return 0; | |
5377 | } | |
5378 | ||
b3444185 | 5379 | /* Is thread TP in the middle of single-stepping? */ |
104c1213 | 5380 | |
a289b8f6 | 5381 | static int |
b3444185 | 5382 | currently_stepping (struct thread_info *tp) |
a7212384 | 5383 | { |
8358c15c JK |
5384 | return ((tp->control.step_range_end |
5385 | && tp->control.step_resume_breakpoint == NULL) | |
5386 | || tp->control.trap_expected | |
8358c15c | 5387 | || bpstat_should_step ()); |
a7212384 UW |
5388 | } |
5389 | ||
b2175913 MS |
5390 | /* Inferior has stepped into a subroutine call with source code that |
5391 | we should not step over. Do step to the first line of code in | |
5392 | it. */ | |
c2c6d25f JM |
5393 | |
5394 | static void | |
568d6575 UW |
5395 | handle_step_into_function (struct gdbarch *gdbarch, |
5396 | struct execution_control_state *ecs) | |
c2c6d25f JM |
5397 | { |
5398 | struct symtab *s; | |
2afb61aa | 5399 | struct symtab_and_line stop_func_sal, sr_sal; |
c2c6d25f | 5400 | |
7e324e48 GB |
5401 | fill_in_stop_func (gdbarch, ecs); |
5402 | ||
c2c6d25f JM |
5403 | s = find_pc_symtab (stop_pc); |
5404 | if (s && s->language != language_asm) | |
568d6575 | 5405 | ecs->stop_func_start = gdbarch_skip_prologue (gdbarch, |
b2175913 | 5406 | ecs->stop_func_start); |
c2c6d25f | 5407 | |
2afb61aa | 5408 | stop_func_sal = find_pc_line (ecs->stop_func_start, 0); |
c2c6d25f JM |
5409 | /* Use the step_resume_break to step until the end of the prologue, |
5410 | even if that involves jumps (as it seems to on the vax under | |
5411 | 4.2). */ | |
5412 | /* If the prologue ends in the middle of a source line, continue to | |
5413 | the end of that source line (if it is still within the function). | |
5414 | Otherwise, just go to end of prologue. */ | |
2afb61aa PA |
5415 | if (stop_func_sal.end |
5416 | && stop_func_sal.pc != ecs->stop_func_start | |
5417 | && stop_func_sal.end < ecs->stop_func_end) | |
5418 | ecs->stop_func_start = stop_func_sal.end; | |
c2c6d25f | 5419 | |
2dbd5e30 KB |
5420 | /* Architectures which require breakpoint adjustment might not be able |
5421 | to place a breakpoint at the computed address. If so, the test | |
5422 | ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust | |
5423 | ecs->stop_func_start to an address at which a breakpoint may be | |
5424 | legitimately placed. | |
8fb3e588 | 5425 | |
2dbd5e30 KB |
5426 | Note: kevinb/2004-01-19: On FR-V, if this adjustment is not |
5427 | made, GDB will enter an infinite loop when stepping through | |
5428 | optimized code consisting of VLIW instructions which contain | |
5429 | subinstructions corresponding to different source lines. On | |
5430 | FR-V, it's not permitted to place a breakpoint on any but the | |
5431 | first subinstruction of a VLIW instruction. When a breakpoint is | |
5432 | set, GDB will adjust the breakpoint address to the beginning of | |
5433 | the VLIW instruction. Thus, we need to make the corresponding | |
5434 | adjustment here when computing the stop address. */ | |
8fb3e588 | 5435 | |
568d6575 | 5436 | if (gdbarch_adjust_breakpoint_address_p (gdbarch)) |
2dbd5e30 KB |
5437 | { |
5438 | ecs->stop_func_start | |
568d6575 | 5439 | = gdbarch_adjust_breakpoint_address (gdbarch, |
8fb3e588 | 5440 | ecs->stop_func_start); |
2dbd5e30 KB |
5441 | } |
5442 | ||
c2c6d25f JM |
5443 | if (ecs->stop_func_start == stop_pc) |
5444 | { | |
5445 | /* We are already there: stop now. */ | |
16c381f0 | 5446 | ecs->event_thread->control.stop_step = 1; |
33d62d64 | 5447 | print_end_stepping_range_reason (); |
c2c6d25f JM |
5448 | stop_stepping (ecs); |
5449 | return; | |
5450 | } | |
5451 | else | |
5452 | { | |
5453 | /* Put the step-breakpoint there and go until there. */ | |
fe39c653 | 5454 | init_sal (&sr_sal); /* initialize to zeroes */ |
c2c6d25f JM |
5455 | sr_sal.pc = ecs->stop_func_start; |
5456 | sr_sal.section = find_pc_overlay (ecs->stop_func_start); | |
6c95b8df | 5457 | sr_sal.pspace = get_frame_program_space (get_current_frame ()); |
44cbf7b5 | 5458 | |
c2c6d25f | 5459 | /* Do not specify what the fp should be when we stop since on |
488f131b JB |
5460 | some machines the prologue is where the new fp value is |
5461 | established. */ | |
a6d9a66e | 5462 | insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id); |
c2c6d25f JM |
5463 | |
5464 | /* And make sure stepping stops right away then. */ | |
16c381f0 JK |
5465 | ecs->event_thread->control.step_range_end |
5466 | = ecs->event_thread->control.step_range_start; | |
c2c6d25f JM |
5467 | } |
5468 | keep_going (ecs); | |
5469 | } | |
d4f3574e | 5470 | |
b2175913 MS |
5471 | /* Inferior has stepped backward into a subroutine call with source |
5472 | code that we should not step over. Do step to the beginning of the | |
5473 | last line of code in it. */ | |
5474 | ||
5475 | static void | |
568d6575 UW |
5476 | handle_step_into_function_backward (struct gdbarch *gdbarch, |
5477 | struct execution_control_state *ecs) | |
b2175913 MS |
5478 | { |
5479 | struct symtab *s; | |
167e4384 | 5480 | struct symtab_and_line stop_func_sal; |
b2175913 | 5481 | |
7e324e48 GB |
5482 | fill_in_stop_func (gdbarch, ecs); |
5483 | ||
b2175913 MS |
5484 | s = find_pc_symtab (stop_pc); |
5485 | if (s && s->language != language_asm) | |
568d6575 | 5486 | ecs->stop_func_start = gdbarch_skip_prologue (gdbarch, |
b2175913 MS |
5487 | ecs->stop_func_start); |
5488 | ||
5489 | stop_func_sal = find_pc_line (stop_pc, 0); | |
5490 | ||
5491 | /* OK, we're just going to keep stepping here. */ | |
5492 | if (stop_func_sal.pc == stop_pc) | |
5493 | { | |
5494 | /* We're there already. Just stop stepping now. */ | |
16c381f0 | 5495 | ecs->event_thread->control.stop_step = 1; |
33d62d64 | 5496 | print_end_stepping_range_reason (); |
b2175913 MS |
5497 | stop_stepping (ecs); |
5498 | } | |
5499 | else | |
5500 | { | |
5501 | /* Else just reset the step range and keep going. | |
5502 | No step-resume breakpoint, they don't work for | |
5503 | epilogues, which can have multiple entry paths. */ | |
16c381f0 JK |
5504 | ecs->event_thread->control.step_range_start = stop_func_sal.pc; |
5505 | ecs->event_thread->control.step_range_end = stop_func_sal.end; | |
b2175913 MS |
5506 | keep_going (ecs); |
5507 | } | |
5508 | return; | |
5509 | } | |
5510 | ||
d3169d93 | 5511 | /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID. |
44cbf7b5 AC |
5512 | This is used to both functions and to skip over code. */ |
5513 | ||
5514 | static void | |
2c03e5be PA |
5515 | insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch, |
5516 | struct symtab_and_line sr_sal, | |
5517 | struct frame_id sr_id, | |
5518 | enum bptype sr_type) | |
44cbf7b5 | 5519 | { |
611c83ae PA |
5520 | /* There should never be more than one step-resume or longjmp-resume |
5521 | breakpoint per thread, so we should never be setting a new | |
44cbf7b5 | 5522 | step_resume_breakpoint when one is already active. */ |
8358c15c | 5523 | gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL); |
2c03e5be | 5524 | gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume); |
d3169d93 DJ |
5525 | |
5526 | if (debug_infrun) | |
5527 | fprintf_unfiltered (gdb_stdlog, | |
5af949e3 UW |
5528 | "infrun: inserting step-resume breakpoint at %s\n", |
5529 | paddress (gdbarch, sr_sal.pc)); | |
d3169d93 | 5530 | |
8358c15c | 5531 | inferior_thread ()->control.step_resume_breakpoint |
2c03e5be PA |
5532 | = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type); |
5533 | } | |
5534 | ||
9da8c2a0 | 5535 | void |
2c03e5be PA |
5536 | insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch, |
5537 | struct symtab_and_line sr_sal, | |
5538 | struct frame_id sr_id) | |
5539 | { | |
5540 | insert_step_resume_breakpoint_at_sal_1 (gdbarch, | |
5541 | sr_sal, sr_id, | |
5542 | bp_step_resume); | |
44cbf7b5 | 5543 | } |
7ce450bd | 5544 | |
2c03e5be PA |
5545 | /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc. |
5546 | This is used to skip a potential signal handler. | |
7ce450bd | 5547 | |
14e60db5 DJ |
5548 | This is called with the interrupted function's frame. The signal |
5549 | handler, when it returns, will resume the interrupted function at | |
5550 | RETURN_FRAME.pc. */ | |
d303a6c7 AC |
5551 | |
5552 | static void | |
2c03e5be | 5553 | insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame) |
d303a6c7 AC |
5554 | { |
5555 | struct symtab_and_line sr_sal; | |
a6d9a66e | 5556 | struct gdbarch *gdbarch; |
d303a6c7 | 5557 | |
f4c1edd8 | 5558 | gdb_assert (return_frame != NULL); |
d303a6c7 AC |
5559 | init_sal (&sr_sal); /* initialize to zeros */ |
5560 | ||
a6d9a66e | 5561 | gdbarch = get_frame_arch (return_frame); |
568d6575 | 5562 | sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame)); |
d303a6c7 | 5563 | sr_sal.section = find_pc_overlay (sr_sal.pc); |
6c95b8df | 5564 | sr_sal.pspace = get_frame_program_space (return_frame); |
d303a6c7 | 5565 | |
2c03e5be PA |
5566 | insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal, |
5567 | get_stack_frame_id (return_frame), | |
5568 | bp_hp_step_resume); | |
d303a6c7 AC |
5569 | } |
5570 | ||
2c03e5be PA |
5571 | /* Insert a "step-resume breakpoint" at the previous frame's PC. This |
5572 | is used to skip a function after stepping into it (for "next" or if | |
5573 | the called function has no debugging information). | |
14e60db5 DJ |
5574 | |
5575 | The current function has almost always been reached by single | |
5576 | stepping a call or return instruction. NEXT_FRAME belongs to the | |
5577 | current function, and the breakpoint will be set at the caller's | |
5578 | resume address. | |
5579 | ||
5580 | This is a separate function rather than reusing | |
2c03e5be | 5581 | insert_hp_step_resume_breakpoint_at_frame in order to avoid |
14e60db5 | 5582 | get_prev_frame, which may stop prematurely (see the implementation |
c7ce8faa | 5583 | of frame_unwind_caller_id for an example). */ |
14e60db5 DJ |
5584 | |
5585 | static void | |
5586 | insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame) | |
5587 | { | |
5588 | struct symtab_and_line sr_sal; | |
a6d9a66e | 5589 | struct gdbarch *gdbarch; |
14e60db5 DJ |
5590 | |
5591 | /* We shouldn't have gotten here if we don't know where the call site | |
5592 | is. */ | |
c7ce8faa | 5593 | gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame))); |
14e60db5 DJ |
5594 | |
5595 | init_sal (&sr_sal); /* initialize to zeros */ | |
5596 | ||
a6d9a66e | 5597 | gdbarch = frame_unwind_caller_arch (next_frame); |
c7ce8faa DJ |
5598 | sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, |
5599 | frame_unwind_caller_pc (next_frame)); | |
14e60db5 | 5600 | sr_sal.section = find_pc_overlay (sr_sal.pc); |
6c95b8df | 5601 | sr_sal.pspace = frame_unwind_program_space (next_frame); |
14e60db5 | 5602 | |
a6d9a66e | 5603 | insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, |
c7ce8faa | 5604 | frame_unwind_caller_id (next_frame)); |
14e60db5 DJ |
5605 | } |
5606 | ||
611c83ae PA |
5607 | /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a |
5608 | new breakpoint at the target of a jmp_buf. The handling of | |
5609 | longjmp-resume uses the same mechanisms used for handling | |
5610 | "step-resume" breakpoints. */ | |
5611 | ||
5612 | static void | |
a6d9a66e | 5613 | insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc) |
611c83ae | 5614 | { |
e81a37f7 TT |
5615 | /* There should never be more than one longjmp-resume breakpoint per |
5616 | thread, so we should never be setting a new | |
611c83ae | 5617 | longjmp_resume_breakpoint when one is already active. */ |
e81a37f7 | 5618 | gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL); |
611c83ae PA |
5619 | |
5620 | if (debug_infrun) | |
5621 | fprintf_unfiltered (gdb_stdlog, | |
5af949e3 UW |
5622 | "infrun: inserting longjmp-resume breakpoint at %s\n", |
5623 | paddress (gdbarch, pc)); | |
611c83ae | 5624 | |
e81a37f7 | 5625 | inferior_thread ()->control.exception_resume_breakpoint = |
a6d9a66e | 5626 | set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume); |
611c83ae PA |
5627 | } |
5628 | ||
186c406b TT |
5629 | /* Insert an exception resume breakpoint. TP is the thread throwing |
5630 | the exception. The block B is the block of the unwinder debug hook | |
5631 | function. FRAME is the frame corresponding to the call to this | |
5632 | function. SYM is the symbol of the function argument holding the | |
5633 | target PC of the exception. */ | |
5634 | ||
5635 | static void | |
5636 | insert_exception_resume_breakpoint (struct thread_info *tp, | |
5637 | struct block *b, | |
5638 | struct frame_info *frame, | |
5639 | struct symbol *sym) | |
5640 | { | |
bfd189b1 | 5641 | volatile struct gdb_exception e; |
186c406b TT |
5642 | |
5643 | /* We want to ignore errors here. */ | |
5644 | TRY_CATCH (e, RETURN_MASK_ERROR) | |
5645 | { | |
5646 | struct symbol *vsym; | |
5647 | struct value *value; | |
5648 | CORE_ADDR handler; | |
5649 | struct breakpoint *bp; | |
5650 | ||
5651 | vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL); | |
5652 | value = read_var_value (vsym, frame); | |
5653 | /* If the value was optimized out, revert to the old behavior. */ | |
5654 | if (! value_optimized_out (value)) | |
5655 | { | |
5656 | handler = value_as_address (value); | |
5657 | ||
5658 | if (debug_infrun) | |
5659 | fprintf_unfiltered (gdb_stdlog, | |
5660 | "infrun: exception resume at %lx\n", | |
5661 | (unsigned long) handler); | |
5662 | ||
5663 | bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame), | |
5664 | handler, bp_exception_resume); | |
c70a6932 JK |
5665 | |
5666 | /* set_momentary_breakpoint_at_pc invalidates FRAME. */ | |
5667 | frame = NULL; | |
5668 | ||
186c406b TT |
5669 | bp->thread = tp->num; |
5670 | inferior_thread ()->control.exception_resume_breakpoint = bp; | |
5671 | } | |
5672 | } | |
5673 | } | |
5674 | ||
28106bc2 SDJ |
5675 | /* A helper for check_exception_resume that sets an |
5676 | exception-breakpoint based on a SystemTap probe. */ | |
5677 | ||
5678 | static void | |
5679 | insert_exception_resume_from_probe (struct thread_info *tp, | |
729662a5 | 5680 | const struct bound_probe *probe, |
28106bc2 SDJ |
5681 | struct frame_info *frame) |
5682 | { | |
5683 | struct value *arg_value; | |
5684 | CORE_ADDR handler; | |
5685 | struct breakpoint *bp; | |
5686 | ||
5687 | arg_value = probe_safe_evaluate_at_pc (frame, 1); | |
5688 | if (!arg_value) | |
5689 | return; | |
5690 | ||
5691 | handler = value_as_address (arg_value); | |
5692 | ||
5693 | if (debug_infrun) | |
5694 | fprintf_unfiltered (gdb_stdlog, | |
5695 | "infrun: exception resume at %s\n", | |
6bac7473 | 5696 | paddress (get_objfile_arch (probe->objfile), |
28106bc2 SDJ |
5697 | handler)); |
5698 | ||
5699 | bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame), | |
5700 | handler, bp_exception_resume); | |
5701 | bp->thread = tp->num; | |
5702 | inferior_thread ()->control.exception_resume_breakpoint = bp; | |
5703 | } | |
5704 | ||
186c406b TT |
5705 | /* This is called when an exception has been intercepted. Check to |
5706 | see whether the exception's destination is of interest, and if so, | |
5707 | set an exception resume breakpoint there. */ | |
5708 | ||
5709 | static void | |
5710 | check_exception_resume (struct execution_control_state *ecs, | |
28106bc2 | 5711 | struct frame_info *frame) |
186c406b | 5712 | { |
bfd189b1 | 5713 | volatile struct gdb_exception e; |
729662a5 | 5714 | struct bound_probe probe; |
28106bc2 SDJ |
5715 | struct symbol *func; |
5716 | ||
5717 | /* First see if this exception unwinding breakpoint was set via a | |
5718 | SystemTap probe point. If so, the probe has two arguments: the | |
5719 | CFA and the HANDLER. We ignore the CFA, extract the handler, and | |
5720 | set a breakpoint there. */ | |
6bac7473 | 5721 | probe = find_probe_by_pc (get_frame_pc (frame)); |
729662a5 | 5722 | if (probe.probe) |
28106bc2 | 5723 | { |
729662a5 | 5724 | insert_exception_resume_from_probe (ecs->event_thread, &probe, frame); |
28106bc2 SDJ |
5725 | return; |
5726 | } | |
5727 | ||
5728 | func = get_frame_function (frame); | |
5729 | if (!func) | |
5730 | return; | |
186c406b TT |
5731 | |
5732 | TRY_CATCH (e, RETURN_MASK_ERROR) | |
5733 | { | |
5734 | struct block *b; | |
8157b174 | 5735 | struct block_iterator iter; |
186c406b TT |
5736 | struct symbol *sym; |
5737 | int argno = 0; | |
5738 | ||
5739 | /* The exception breakpoint is a thread-specific breakpoint on | |
5740 | the unwinder's debug hook, declared as: | |
5741 | ||
5742 | void _Unwind_DebugHook (void *cfa, void *handler); | |
5743 | ||
5744 | The CFA argument indicates the frame to which control is | |
5745 | about to be transferred. HANDLER is the destination PC. | |
5746 | ||
5747 | We ignore the CFA and set a temporary breakpoint at HANDLER. | |
5748 | This is not extremely efficient but it avoids issues in gdb | |
5749 | with computing the DWARF CFA, and it also works even in weird | |
5750 | cases such as throwing an exception from inside a signal | |
5751 | handler. */ | |
5752 | ||
5753 | b = SYMBOL_BLOCK_VALUE (func); | |
5754 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
5755 | { | |
5756 | if (!SYMBOL_IS_ARGUMENT (sym)) | |
5757 | continue; | |
5758 | ||
5759 | if (argno == 0) | |
5760 | ++argno; | |
5761 | else | |
5762 | { | |
5763 | insert_exception_resume_breakpoint (ecs->event_thread, | |
5764 | b, frame, sym); | |
5765 | break; | |
5766 | } | |
5767 | } | |
5768 | } | |
5769 | } | |
5770 | ||
104c1213 JM |
5771 | static void |
5772 | stop_stepping (struct execution_control_state *ecs) | |
5773 | { | |
527159b7 | 5774 | if (debug_infrun) |
8a9de0e4 | 5775 | fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n"); |
527159b7 | 5776 | |
31e77af2 PA |
5777 | clear_step_over_info (); |
5778 | ||
cd0fc7c3 SS |
5779 | /* Let callers know we don't want to wait for the inferior anymore. */ |
5780 | ecs->wait_some_more = 0; | |
5781 | } | |
5782 | ||
a9ba6bae PA |
5783 | /* Called when we should continue running the inferior, because the |
5784 | current event doesn't cause a user visible stop. This does the | |
5785 | resuming part; waiting for the next event is done elsewhere. */ | |
d4f3574e SS |
5786 | |
5787 | static void | |
5788 | keep_going (struct execution_control_state *ecs) | |
5789 | { | |
c4dbc9af PA |
5790 | /* Make sure normal_stop is called if we get a QUIT handled before |
5791 | reaching resume. */ | |
5792 | struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0); | |
5793 | ||
d4f3574e | 5794 | /* Save the pc before execution, to compare with pc after stop. */ |
fb14de7b UW |
5795 | ecs->event_thread->prev_pc |
5796 | = regcache_read_pc (get_thread_regcache (ecs->ptid)); | |
d4f3574e | 5797 | |
16c381f0 | 5798 | if (ecs->event_thread->control.trap_expected |
a493e3e2 | 5799 | && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP) |
d4f3574e | 5800 | { |
a9ba6bae PA |
5801 | /* We haven't yet gotten our trap, and either: intercepted a |
5802 | non-signal event (e.g., a fork); or took a signal which we | |
5803 | are supposed to pass through to the inferior. Simply | |
5804 | continue. */ | |
c4dbc9af | 5805 | discard_cleanups (old_cleanups); |
2020b7ab | 5806 | resume (currently_stepping (ecs->event_thread), |
16c381f0 | 5807 | ecs->event_thread->suspend.stop_signal); |
d4f3574e SS |
5808 | } |
5809 | else | |
5810 | { | |
31e77af2 PA |
5811 | volatile struct gdb_exception e; |
5812 | struct regcache *regcache = get_current_regcache (); | |
5813 | ||
d4f3574e | 5814 | /* Either the trap was not expected, but we are continuing |
a9ba6bae PA |
5815 | anyway (if we got a signal, the user asked it be passed to |
5816 | the child) | |
5817 | -- or -- | |
5818 | We got our expected trap, but decided we should resume from | |
5819 | it. | |
d4f3574e | 5820 | |
a9ba6bae | 5821 | We're going to run this baby now! |
d4f3574e | 5822 | |
c36b740a VP |
5823 | Note that insert_breakpoints won't try to re-insert |
5824 | already inserted breakpoints. Therefore, we don't | |
5825 | care if breakpoints were already inserted, or not. */ | |
a9ba6bae | 5826 | |
31e77af2 PA |
5827 | /* If we need to step over a breakpoint, and we're not using |
5828 | displaced stepping to do so, insert all breakpoints | |
5829 | (watchpoints, etc.) but the one we're stepping over, step one | |
5830 | instruction, and then re-insert the breakpoint when that step | |
5831 | is finished. */ | |
2adfaa28 | 5832 | if ((ecs->hit_singlestep_breakpoint |
99619bea | 5833 | || thread_still_needs_step_over (ecs->event_thread)) |
31e77af2 | 5834 | && !use_displaced_stepping (get_regcache_arch (regcache))) |
45e8c884 | 5835 | { |
31e77af2 PA |
5836 | set_step_over_info (get_regcache_aspace (regcache), |
5837 | regcache_read_pc (regcache)); | |
45e8c884 VP |
5838 | } |
5839 | else | |
31e77af2 | 5840 | clear_step_over_info (); |
abbb1732 | 5841 | |
31e77af2 PA |
5842 | /* Stop stepping if inserting breakpoints fails. */ |
5843 | TRY_CATCH (e, RETURN_MASK_ERROR) | |
5844 | { | |
5845 | insert_breakpoints (); | |
5846 | } | |
5847 | if (e.reason < 0) | |
5848 | { | |
5849 | exception_print (gdb_stderr, e); | |
5850 | stop_stepping (ecs); | |
5851 | return; | |
d4f3574e SS |
5852 | } |
5853 | ||
16c381f0 | 5854 | ecs->event_thread->control.trap_expected |
2adfaa28 PA |
5855 | = (ecs->event_thread->stepping_over_breakpoint |
5856 | || ecs->hit_singlestep_breakpoint); | |
d4f3574e | 5857 | |
a9ba6bae PA |
5858 | /* Do not deliver GDB_SIGNAL_TRAP (except when the user |
5859 | explicitly specifies that such a signal should be delivered | |
5860 | to the target program). Typically, that would occur when a | |
5861 | user is debugging a target monitor on a simulator: the target | |
5862 | monitor sets a breakpoint; the simulator encounters this | |
5863 | breakpoint and halts the simulation handing control to GDB; | |
5864 | GDB, noting that the stop address doesn't map to any known | |
5865 | breakpoint, returns control back to the simulator; the | |
5866 | simulator then delivers the hardware equivalent of a | |
5867 | GDB_SIGNAL_TRAP to the program being debugged. */ | |
a493e3e2 | 5868 | if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP |
16c381f0 | 5869 | && !signal_program[ecs->event_thread->suspend.stop_signal]) |
a493e3e2 | 5870 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; |
d4f3574e | 5871 | |
c4dbc9af | 5872 | discard_cleanups (old_cleanups); |
2020b7ab | 5873 | resume (currently_stepping (ecs->event_thread), |
16c381f0 | 5874 | ecs->event_thread->suspend.stop_signal); |
d4f3574e SS |
5875 | } |
5876 | ||
488f131b | 5877 | prepare_to_wait (ecs); |
d4f3574e SS |
5878 | } |
5879 | ||
104c1213 JM |
5880 | /* This function normally comes after a resume, before |
5881 | handle_inferior_event exits. It takes care of any last bits of | |
5882 | housekeeping, and sets the all-important wait_some_more flag. */ | |
cd0fc7c3 | 5883 | |
104c1213 JM |
5884 | static void |
5885 | prepare_to_wait (struct execution_control_state *ecs) | |
cd0fc7c3 | 5886 | { |
527159b7 | 5887 | if (debug_infrun) |
8a9de0e4 | 5888 | fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n"); |
104c1213 | 5889 | |
104c1213 JM |
5890 | /* This is the old end of the while loop. Let everybody know we |
5891 | want to wait for the inferior some more and get called again | |
5892 | soon. */ | |
5893 | ecs->wait_some_more = 1; | |
c906108c | 5894 | } |
11cf8741 | 5895 | |
33d62d64 JK |
5896 | /* Several print_*_reason functions to print why the inferior has stopped. |
5897 | We always print something when the inferior exits, or receives a signal. | |
5898 | The rest of the cases are dealt with later on in normal_stop and | |
5899 | print_it_typical. Ideally there should be a call to one of these | |
5900 | print_*_reason functions functions from handle_inferior_event each time | |
5901 | stop_stepping is called. */ | |
5902 | ||
5903 | /* Print why the inferior has stopped. | |
5904 | We are done with a step/next/si/ni command, print why the inferior has | |
5905 | stopped. For now print nothing. Print a message only if not in the middle | |
5906 | of doing a "step n" operation for n > 1. */ | |
5907 | ||
5908 | static void | |
5909 | print_end_stepping_range_reason (void) | |
5910 | { | |
16c381f0 JK |
5911 | if ((!inferior_thread ()->step_multi |
5912 | || !inferior_thread ()->control.stop_step) | |
79a45e25 PA |
5913 | && ui_out_is_mi_like_p (current_uiout)) |
5914 | ui_out_field_string (current_uiout, "reason", | |
33d62d64 JK |
5915 | async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE)); |
5916 | } | |
5917 | ||
5918 | /* The inferior was terminated by a signal, print why it stopped. */ | |
5919 | ||
11cf8741 | 5920 | static void |
2ea28649 | 5921 | print_signal_exited_reason (enum gdb_signal siggnal) |
11cf8741 | 5922 | { |
79a45e25 PA |
5923 | struct ui_out *uiout = current_uiout; |
5924 | ||
33d62d64 JK |
5925 | annotate_signalled (); |
5926 | if (ui_out_is_mi_like_p (uiout)) | |
5927 | ui_out_field_string | |
5928 | (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED)); | |
5929 | ui_out_text (uiout, "\nProgram terminated with signal "); | |
5930 | annotate_signal_name (); | |
5931 | ui_out_field_string (uiout, "signal-name", | |
2ea28649 | 5932 | gdb_signal_to_name (siggnal)); |
33d62d64 JK |
5933 | annotate_signal_name_end (); |
5934 | ui_out_text (uiout, ", "); | |
5935 | annotate_signal_string (); | |
5936 | ui_out_field_string (uiout, "signal-meaning", | |
2ea28649 | 5937 | gdb_signal_to_string (siggnal)); |
33d62d64 JK |
5938 | annotate_signal_string_end (); |
5939 | ui_out_text (uiout, ".\n"); | |
5940 | ui_out_text (uiout, "The program no longer exists.\n"); | |
5941 | } | |
5942 | ||
5943 | /* The inferior program is finished, print why it stopped. */ | |
5944 | ||
5945 | static void | |
5946 | print_exited_reason (int exitstatus) | |
5947 | { | |
fda326dd TT |
5948 | struct inferior *inf = current_inferior (); |
5949 | const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid)); | |
79a45e25 | 5950 | struct ui_out *uiout = current_uiout; |
fda326dd | 5951 | |
33d62d64 JK |
5952 | annotate_exited (exitstatus); |
5953 | if (exitstatus) | |
5954 | { | |
5955 | if (ui_out_is_mi_like_p (uiout)) | |
5956 | ui_out_field_string (uiout, "reason", | |
5957 | async_reason_lookup (EXEC_ASYNC_EXITED)); | |
fda326dd TT |
5958 | ui_out_text (uiout, "[Inferior "); |
5959 | ui_out_text (uiout, plongest (inf->num)); | |
5960 | ui_out_text (uiout, " ("); | |
5961 | ui_out_text (uiout, pidstr); | |
5962 | ui_out_text (uiout, ") exited with code "); | |
33d62d64 | 5963 | ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus); |
fda326dd | 5964 | ui_out_text (uiout, "]\n"); |
33d62d64 JK |
5965 | } |
5966 | else | |
11cf8741 | 5967 | { |
9dc5e2a9 | 5968 | if (ui_out_is_mi_like_p (uiout)) |
034dad6f | 5969 | ui_out_field_string |
33d62d64 | 5970 | (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY)); |
fda326dd TT |
5971 | ui_out_text (uiout, "[Inferior "); |
5972 | ui_out_text (uiout, plongest (inf->num)); | |
5973 | ui_out_text (uiout, " ("); | |
5974 | ui_out_text (uiout, pidstr); | |
5975 | ui_out_text (uiout, ") exited normally]\n"); | |
33d62d64 | 5976 | } |
33d62d64 JK |
5977 | } |
5978 | ||
5979 | /* Signal received, print why the inferior has stopped. The signal table | |
1777feb0 | 5980 | tells us to print about it. */ |
33d62d64 JK |
5981 | |
5982 | static void | |
2ea28649 | 5983 | print_signal_received_reason (enum gdb_signal siggnal) |
33d62d64 | 5984 | { |
79a45e25 PA |
5985 | struct ui_out *uiout = current_uiout; |
5986 | ||
33d62d64 JK |
5987 | annotate_signal (); |
5988 | ||
a493e3e2 | 5989 | if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout)) |
33d62d64 JK |
5990 | { |
5991 | struct thread_info *t = inferior_thread (); | |
5992 | ||
5993 | ui_out_text (uiout, "\n["); | |
5994 | ui_out_field_string (uiout, "thread-name", | |
5995 | target_pid_to_str (t->ptid)); | |
5996 | ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num); | |
5997 | ui_out_text (uiout, " stopped"); | |
5998 | } | |
5999 | else | |
6000 | { | |
6001 | ui_out_text (uiout, "\nProgram received signal "); | |
8b93c638 | 6002 | annotate_signal_name (); |
33d62d64 JK |
6003 | if (ui_out_is_mi_like_p (uiout)) |
6004 | ui_out_field_string | |
6005 | (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED)); | |
488f131b | 6006 | ui_out_field_string (uiout, "signal-name", |
2ea28649 | 6007 | gdb_signal_to_name (siggnal)); |
8b93c638 JM |
6008 | annotate_signal_name_end (); |
6009 | ui_out_text (uiout, ", "); | |
6010 | annotate_signal_string (); | |
488f131b | 6011 | ui_out_field_string (uiout, "signal-meaning", |
2ea28649 | 6012 | gdb_signal_to_string (siggnal)); |
8b93c638 | 6013 | annotate_signal_string_end (); |
33d62d64 JK |
6014 | } |
6015 | ui_out_text (uiout, ".\n"); | |
6016 | } | |
252fbfc8 | 6017 | |
33d62d64 JK |
6018 | /* Reverse execution: target ran out of history info, print why the inferior |
6019 | has stopped. */ | |
252fbfc8 | 6020 | |
33d62d64 JK |
6021 | static void |
6022 | print_no_history_reason (void) | |
6023 | { | |
79a45e25 | 6024 | ui_out_text (current_uiout, "\nNo more reverse-execution history.\n"); |
11cf8741 | 6025 | } |
43ff13b4 | 6026 | |
0c7e1a46 PA |
6027 | /* Print current location without a level number, if we have changed |
6028 | functions or hit a breakpoint. Print source line if we have one. | |
6029 | bpstat_print contains the logic deciding in detail what to print, | |
6030 | based on the event(s) that just occurred. */ | |
6031 | ||
6032 | void | |
6033 | print_stop_event (struct target_waitstatus *ws) | |
6034 | { | |
6035 | int bpstat_ret; | |
6036 | int source_flag; | |
6037 | int do_frame_printing = 1; | |
6038 | struct thread_info *tp = inferior_thread (); | |
6039 | ||
6040 | bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind); | |
6041 | switch (bpstat_ret) | |
6042 | { | |
6043 | case PRINT_UNKNOWN: | |
6044 | /* FIXME: cagney/2002-12-01: Given that a frame ID does (or | |
6045 | should) carry around the function and does (or should) use | |
6046 | that when doing a frame comparison. */ | |
6047 | if (tp->control.stop_step | |
6048 | && frame_id_eq (tp->control.step_frame_id, | |
6049 | get_frame_id (get_current_frame ())) | |
6050 | && step_start_function == find_pc_function (stop_pc)) | |
6051 | { | |
6052 | /* Finished step, just print source line. */ | |
6053 | source_flag = SRC_LINE; | |
6054 | } | |
6055 | else | |
6056 | { | |
6057 | /* Print location and source line. */ | |
6058 | source_flag = SRC_AND_LOC; | |
6059 | } | |
6060 | break; | |
6061 | case PRINT_SRC_AND_LOC: | |
6062 | /* Print location and source line. */ | |
6063 | source_flag = SRC_AND_LOC; | |
6064 | break; | |
6065 | case PRINT_SRC_ONLY: | |
6066 | source_flag = SRC_LINE; | |
6067 | break; | |
6068 | case PRINT_NOTHING: | |
6069 | /* Something bogus. */ | |
6070 | source_flag = SRC_LINE; | |
6071 | do_frame_printing = 0; | |
6072 | break; | |
6073 | default: | |
6074 | internal_error (__FILE__, __LINE__, _("Unknown value.")); | |
6075 | } | |
6076 | ||
6077 | /* The behavior of this routine with respect to the source | |
6078 | flag is: | |
6079 | SRC_LINE: Print only source line | |
6080 | LOCATION: Print only location | |
6081 | SRC_AND_LOC: Print location and source line. */ | |
6082 | if (do_frame_printing) | |
6083 | print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1); | |
6084 | ||
6085 | /* Display the auto-display expressions. */ | |
6086 | do_displays (); | |
6087 | } | |
6088 | ||
c906108c SS |
6089 | /* Here to return control to GDB when the inferior stops for real. |
6090 | Print appropriate messages, remove breakpoints, give terminal our modes. | |
6091 | ||
6092 | STOP_PRINT_FRAME nonzero means print the executing frame | |
6093 | (pc, function, args, file, line number and line text). | |
6094 | BREAKPOINTS_FAILED nonzero means stop was due to error | |
6095 | attempting to insert breakpoints. */ | |
6096 | ||
6097 | void | |
96baa820 | 6098 | normal_stop (void) |
c906108c | 6099 | { |
73b65bb0 DJ |
6100 | struct target_waitstatus last; |
6101 | ptid_t last_ptid; | |
29f49a6a | 6102 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); |
73b65bb0 DJ |
6103 | |
6104 | get_last_target_status (&last_ptid, &last); | |
6105 | ||
29f49a6a PA |
6106 | /* If an exception is thrown from this point on, make sure to |
6107 | propagate GDB's knowledge of the executing state to the | |
6108 | frontend/user running state. A QUIT is an easy exception to see | |
6109 | here, so do this before any filtered output. */ | |
c35b1492 PA |
6110 | if (!non_stop) |
6111 | make_cleanup (finish_thread_state_cleanup, &minus_one_ptid); | |
6112 | else if (last.kind != TARGET_WAITKIND_SIGNALLED | |
0e5bf2a8 PA |
6113 | && last.kind != TARGET_WAITKIND_EXITED |
6114 | && last.kind != TARGET_WAITKIND_NO_RESUMED) | |
c35b1492 | 6115 | make_cleanup (finish_thread_state_cleanup, &inferior_ptid); |
29f49a6a | 6116 | |
c906108c SS |
6117 | /* As with the notification of thread events, we want to delay |
6118 | notifying the user that we've switched thread context until | |
6119 | the inferior actually stops. | |
6120 | ||
73b65bb0 DJ |
6121 | There's no point in saying anything if the inferior has exited. |
6122 | Note that SIGNALLED here means "exited with a signal", not | |
b65dc60b PA |
6123 | "received a signal". |
6124 | ||
6125 | Also skip saying anything in non-stop mode. In that mode, as we | |
6126 | don't want GDB to switch threads behind the user's back, to avoid | |
6127 | races where the user is typing a command to apply to thread x, | |
6128 | but GDB switches to thread y before the user finishes entering | |
6129 | the command, fetch_inferior_event installs a cleanup to restore | |
6130 | the current thread back to the thread the user had selected right | |
6131 | after this event is handled, so we're not really switching, only | |
6132 | informing of a stop. */ | |
4f8d22e3 PA |
6133 | if (!non_stop |
6134 | && !ptid_equal (previous_inferior_ptid, inferior_ptid) | |
73b65bb0 DJ |
6135 | && target_has_execution |
6136 | && last.kind != TARGET_WAITKIND_SIGNALLED | |
0e5bf2a8 PA |
6137 | && last.kind != TARGET_WAITKIND_EXITED |
6138 | && last.kind != TARGET_WAITKIND_NO_RESUMED) | |
c906108c SS |
6139 | { |
6140 | target_terminal_ours_for_output (); | |
a3f17187 | 6141 | printf_filtered (_("[Switching to %s]\n"), |
c95310c6 | 6142 | target_pid_to_str (inferior_ptid)); |
b8fa951a | 6143 | annotate_thread_changed (); |
39f77062 | 6144 | previous_inferior_ptid = inferior_ptid; |
c906108c | 6145 | } |
c906108c | 6146 | |
0e5bf2a8 PA |
6147 | if (last.kind == TARGET_WAITKIND_NO_RESUMED) |
6148 | { | |
6149 | gdb_assert (sync_execution || !target_can_async_p ()); | |
6150 | ||
6151 | target_terminal_ours_for_output (); | |
6152 | printf_filtered (_("No unwaited-for children left.\n")); | |
6153 | } | |
6154 | ||
74960c60 | 6155 | if (!breakpoints_always_inserted_mode () && target_has_execution) |
c906108c SS |
6156 | { |
6157 | if (remove_breakpoints ()) | |
6158 | { | |
6159 | target_terminal_ours_for_output (); | |
3e43a32a MS |
6160 | printf_filtered (_("Cannot remove breakpoints because " |
6161 | "program is no longer writable.\nFurther " | |
6162 | "execution is probably impossible.\n")); | |
c906108c SS |
6163 | } |
6164 | } | |
c906108c | 6165 | |
c906108c SS |
6166 | /* If an auto-display called a function and that got a signal, |
6167 | delete that auto-display to avoid an infinite recursion. */ | |
6168 | ||
6169 | if (stopped_by_random_signal) | |
6170 | disable_current_display (); | |
6171 | ||
6172 | /* Don't print a message if in the middle of doing a "step n" | |
6173 | operation for n > 1 */ | |
af679fd0 PA |
6174 | if (target_has_execution |
6175 | && last.kind != TARGET_WAITKIND_SIGNALLED | |
6176 | && last.kind != TARGET_WAITKIND_EXITED | |
6177 | && inferior_thread ()->step_multi | |
16c381f0 | 6178 | && inferior_thread ()->control.stop_step) |
c906108c SS |
6179 | goto done; |
6180 | ||
6181 | target_terminal_ours (); | |
0f641c01 | 6182 | async_enable_stdin (); |
c906108c | 6183 | |
7abfe014 DJ |
6184 | /* Set the current source location. This will also happen if we |
6185 | display the frame below, but the current SAL will be incorrect | |
6186 | during a user hook-stop function. */ | |
d729566a | 6187 | if (has_stack_frames () && !stop_stack_dummy) |
5166082f | 6188 | set_current_sal_from_frame (get_current_frame ()); |
7abfe014 | 6189 | |
dd7e2d2b PA |
6190 | /* Let the user/frontend see the threads as stopped. */ |
6191 | do_cleanups (old_chain); | |
6192 | ||
6193 | /* Look up the hook_stop and run it (CLI internally handles problem | |
6194 | of stop_command's pre-hook not existing). */ | |
6195 | if (stop_command) | |
6196 | catch_errors (hook_stop_stub, stop_command, | |
6197 | "Error while running hook_stop:\n", RETURN_MASK_ALL); | |
6198 | ||
d729566a | 6199 | if (!has_stack_frames ()) |
d51fd4c8 | 6200 | goto done; |
c906108c | 6201 | |
32400beb PA |
6202 | if (last.kind == TARGET_WAITKIND_SIGNALLED |
6203 | || last.kind == TARGET_WAITKIND_EXITED) | |
6204 | goto done; | |
6205 | ||
c906108c SS |
6206 | /* Select innermost stack frame - i.e., current frame is frame 0, |
6207 | and current location is based on that. | |
6208 | Don't do this on return from a stack dummy routine, | |
1777feb0 | 6209 | or if the program has exited. */ |
c906108c SS |
6210 | |
6211 | if (!stop_stack_dummy) | |
6212 | { | |
0f7d239c | 6213 | select_frame (get_current_frame ()); |
c906108c | 6214 | |
d01a8610 AS |
6215 | /* If --batch-silent is enabled then there's no need to print the current |
6216 | source location, and to try risks causing an error message about | |
6217 | missing source files. */ | |
6218 | if (stop_print_frame && !batch_silent) | |
0c7e1a46 | 6219 | print_stop_event (&last); |
c906108c SS |
6220 | } |
6221 | ||
6222 | /* Save the function value return registers, if we care. | |
6223 | We might be about to restore their previous contents. */ | |
9da8c2a0 PA |
6224 | if (inferior_thread ()->control.proceed_to_finish |
6225 | && execution_direction != EXEC_REVERSE) | |
d5c31457 UW |
6226 | { |
6227 | /* This should not be necessary. */ | |
6228 | if (stop_registers) | |
6229 | regcache_xfree (stop_registers); | |
6230 | ||
6231 | /* NB: The copy goes through to the target picking up the value of | |
6232 | all the registers. */ | |
6233 | stop_registers = regcache_dup (get_current_regcache ()); | |
6234 | } | |
c906108c | 6235 | |
aa7d318d | 6236 | if (stop_stack_dummy == STOP_STACK_DUMMY) |
c906108c | 6237 | { |
b89667eb DE |
6238 | /* Pop the empty frame that contains the stack dummy. |
6239 | This also restores inferior state prior to the call | |
16c381f0 | 6240 | (struct infcall_suspend_state). */ |
b89667eb | 6241 | struct frame_info *frame = get_current_frame (); |
abbb1732 | 6242 | |
b89667eb DE |
6243 | gdb_assert (get_frame_type (frame) == DUMMY_FRAME); |
6244 | frame_pop (frame); | |
3e43a32a MS |
6245 | /* frame_pop() calls reinit_frame_cache as the last thing it |
6246 | does which means there's currently no selected frame. We | |
6247 | don't need to re-establish a selected frame if the dummy call | |
6248 | returns normally, that will be done by | |
6249 | restore_infcall_control_state. However, we do have to handle | |
6250 | the case where the dummy call is returning after being | |
6251 | stopped (e.g. the dummy call previously hit a breakpoint). | |
6252 | We can't know which case we have so just always re-establish | |
6253 | a selected frame here. */ | |
0f7d239c | 6254 | select_frame (get_current_frame ()); |
c906108c SS |
6255 | } |
6256 | ||
c906108c SS |
6257 | done: |
6258 | annotate_stopped (); | |
41d2bdb4 PA |
6259 | |
6260 | /* Suppress the stop observer if we're in the middle of: | |
6261 | ||
6262 | - a step n (n > 1), as there still more steps to be done. | |
6263 | ||
6264 | - a "finish" command, as the observer will be called in | |
6265 | finish_command_continuation, so it can include the inferior | |
6266 | function's return value. | |
6267 | ||
6268 | - calling an inferior function, as we pretend we inferior didn't | |
6269 | run at all. The return value of the call is handled by the | |
6270 | expression evaluator, through call_function_by_hand. */ | |
6271 | ||
6272 | if (!target_has_execution | |
6273 | || last.kind == TARGET_WAITKIND_SIGNALLED | |
6274 | || last.kind == TARGET_WAITKIND_EXITED | |
0e5bf2a8 | 6275 | || last.kind == TARGET_WAITKIND_NO_RESUMED |
2ca0b532 PA |
6276 | || (!(inferior_thread ()->step_multi |
6277 | && inferior_thread ()->control.stop_step) | |
16c381f0 JK |
6278 | && !(inferior_thread ()->control.stop_bpstat |
6279 | && inferior_thread ()->control.proceed_to_finish) | |
6280 | && !inferior_thread ()->control.in_infcall)) | |
347bddb7 PA |
6281 | { |
6282 | if (!ptid_equal (inferior_ptid, null_ptid)) | |
16c381f0 | 6283 | observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat, |
1d33d6ba | 6284 | stop_print_frame); |
347bddb7 | 6285 | else |
1d33d6ba | 6286 | observer_notify_normal_stop (NULL, stop_print_frame); |
347bddb7 | 6287 | } |
347bddb7 | 6288 | |
48844aa6 PA |
6289 | if (target_has_execution) |
6290 | { | |
6291 | if (last.kind != TARGET_WAITKIND_SIGNALLED | |
6292 | && last.kind != TARGET_WAITKIND_EXITED) | |
6293 | /* Delete the breakpoint we stopped at, if it wants to be deleted. | |
6294 | Delete any breakpoint that is to be deleted at the next stop. */ | |
16c381f0 | 6295 | breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat); |
94cc34af | 6296 | } |
6c95b8df PA |
6297 | |
6298 | /* Try to get rid of automatically added inferiors that are no | |
6299 | longer needed. Keeping those around slows down things linearly. | |
6300 | Note that this never removes the current inferior. */ | |
6301 | prune_inferiors (); | |
c906108c SS |
6302 | } |
6303 | ||
6304 | static int | |
96baa820 | 6305 | hook_stop_stub (void *cmd) |
c906108c | 6306 | { |
5913bcb0 | 6307 | execute_cmd_pre_hook ((struct cmd_list_element *) cmd); |
c906108c SS |
6308 | return (0); |
6309 | } | |
6310 | \f | |
c5aa993b | 6311 | int |
96baa820 | 6312 | signal_stop_state (int signo) |
c906108c | 6313 | { |
d6b48e9c | 6314 | return signal_stop[signo]; |
c906108c SS |
6315 | } |
6316 | ||
c5aa993b | 6317 | int |
96baa820 | 6318 | signal_print_state (int signo) |
c906108c SS |
6319 | { |
6320 | return signal_print[signo]; | |
6321 | } | |
6322 | ||
c5aa993b | 6323 | int |
96baa820 | 6324 | signal_pass_state (int signo) |
c906108c SS |
6325 | { |
6326 | return signal_program[signo]; | |
6327 | } | |
6328 | ||
2455069d UW |
6329 | static void |
6330 | signal_cache_update (int signo) | |
6331 | { | |
6332 | if (signo == -1) | |
6333 | { | |
a493e3e2 | 6334 | for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++) |
2455069d UW |
6335 | signal_cache_update (signo); |
6336 | ||
6337 | return; | |
6338 | } | |
6339 | ||
6340 | signal_pass[signo] = (signal_stop[signo] == 0 | |
6341 | && signal_print[signo] == 0 | |
ab04a2af TT |
6342 | && signal_program[signo] == 1 |
6343 | && signal_catch[signo] == 0); | |
2455069d UW |
6344 | } |
6345 | ||
488f131b | 6346 | int |
7bda5e4a | 6347 | signal_stop_update (int signo, int state) |
d4f3574e SS |
6348 | { |
6349 | int ret = signal_stop[signo]; | |
abbb1732 | 6350 | |
d4f3574e | 6351 | signal_stop[signo] = state; |
2455069d | 6352 | signal_cache_update (signo); |
d4f3574e SS |
6353 | return ret; |
6354 | } | |
6355 | ||
488f131b | 6356 | int |
7bda5e4a | 6357 | signal_print_update (int signo, int state) |
d4f3574e SS |
6358 | { |
6359 | int ret = signal_print[signo]; | |
abbb1732 | 6360 | |
d4f3574e | 6361 | signal_print[signo] = state; |
2455069d | 6362 | signal_cache_update (signo); |
d4f3574e SS |
6363 | return ret; |
6364 | } | |
6365 | ||
488f131b | 6366 | int |
7bda5e4a | 6367 | signal_pass_update (int signo, int state) |
d4f3574e SS |
6368 | { |
6369 | int ret = signal_program[signo]; | |
abbb1732 | 6370 | |
d4f3574e | 6371 | signal_program[signo] = state; |
2455069d | 6372 | signal_cache_update (signo); |
d4f3574e SS |
6373 | return ret; |
6374 | } | |
6375 | ||
ab04a2af TT |
6376 | /* Update the global 'signal_catch' from INFO and notify the |
6377 | target. */ | |
6378 | ||
6379 | void | |
6380 | signal_catch_update (const unsigned int *info) | |
6381 | { | |
6382 | int i; | |
6383 | ||
6384 | for (i = 0; i < GDB_SIGNAL_LAST; ++i) | |
6385 | signal_catch[i] = info[i] > 0; | |
6386 | signal_cache_update (-1); | |
6387 | target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass); | |
6388 | } | |
6389 | ||
c906108c | 6390 | static void |
96baa820 | 6391 | sig_print_header (void) |
c906108c | 6392 | { |
3e43a32a MS |
6393 | printf_filtered (_("Signal Stop\tPrint\tPass " |
6394 | "to program\tDescription\n")); | |
c906108c SS |
6395 | } |
6396 | ||
6397 | static void | |
2ea28649 | 6398 | sig_print_info (enum gdb_signal oursig) |
c906108c | 6399 | { |
2ea28649 | 6400 | const char *name = gdb_signal_to_name (oursig); |
c906108c | 6401 | int name_padding = 13 - strlen (name); |
96baa820 | 6402 | |
c906108c SS |
6403 | if (name_padding <= 0) |
6404 | name_padding = 0; | |
6405 | ||
6406 | printf_filtered ("%s", name); | |
488f131b | 6407 | printf_filtered ("%*.*s ", name_padding, name_padding, " "); |
c906108c SS |
6408 | printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No"); |
6409 | printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No"); | |
6410 | printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No"); | |
2ea28649 | 6411 | printf_filtered ("%s\n", gdb_signal_to_string (oursig)); |
c906108c SS |
6412 | } |
6413 | ||
6414 | /* Specify how various signals in the inferior should be handled. */ | |
6415 | ||
6416 | static void | |
96baa820 | 6417 | handle_command (char *args, int from_tty) |
c906108c SS |
6418 | { |
6419 | char **argv; | |
6420 | int digits, wordlen; | |
6421 | int sigfirst, signum, siglast; | |
2ea28649 | 6422 | enum gdb_signal oursig; |
c906108c SS |
6423 | int allsigs; |
6424 | int nsigs; | |
6425 | unsigned char *sigs; | |
6426 | struct cleanup *old_chain; | |
6427 | ||
6428 | if (args == NULL) | |
6429 | { | |
e2e0b3e5 | 6430 | error_no_arg (_("signal to handle")); |
c906108c SS |
6431 | } |
6432 | ||
1777feb0 | 6433 | /* Allocate and zero an array of flags for which signals to handle. */ |
c906108c | 6434 | |
a493e3e2 | 6435 | nsigs = (int) GDB_SIGNAL_LAST; |
c906108c SS |
6436 | sigs = (unsigned char *) alloca (nsigs); |
6437 | memset (sigs, 0, nsigs); | |
6438 | ||
1777feb0 | 6439 | /* Break the command line up into args. */ |
c906108c | 6440 | |
d1a41061 | 6441 | argv = gdb_buildargv (args); |
7a292a7a | 6442 | old_chain = make_cleanup_freeargv (argv); |
c906108c SS |
6443 | |
6444 | /* Walk through the args, looking for signal oursigs, signal names, and | |
6445 | actions. Signal numbers and signal names may be interspersed with | |
6446 | actions, with the actions being performed for all signals cumulatively | |
1777feb0 | 6447 | specified. Signal ranges can be specified as <LOW>-<HIGH>. */ |
c906108c SS |
6448 | |
6449 | while (*argv != NULL) | |
6450 | { | |
6451 | wordlen = strlen (*argv); | |
6452 | for (digits = 0; isdigit ((*argv)[digits]); digits++) | |
6453 | {; | |
6454 | } | |
6455 | allsigs = 0; | |
6456 | sigfirst = siglast = -1; | |
6457 | ||
6458 | if (wordlen >= 1 && !strncmp (*argv, "all", wordlen)) | |
6459 | { | |
6460 | /* Apply action to all signals except those used by the | |
1777feb0 | 6461 | debugger. Silently skip those. */ |
c906108c SS |
6462 | allsigs = 1; |
6463 | sigfirst = 0; | |
6464 | siglast = nsigs - 1; | |
6465 | } | |
6466 | else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen)) | |
6467 | { | |
6468 | SET_SIGS (nsigs, sigs, signal_stop); | |
6469 | SET_SIGS (nsigs, sigs, signal_print); | |
6470 | } | |
6471 | else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen)) | |
6472 | { | |
6473 | UNSET_SIGS (nsigs, sigs, signal_program); | |
6474 | } | |
6475 | else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen)) | |
6476 | { | |
6477 | SET_SIGS (nsigs, sigs, signal_print); | |
6478 | } | |
6479 | else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen)) | |
6480 | { | |
6481 | SET_SIGS (nsigs, sigs, signal_program); | |
6482 | } | |
6483 | else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen)) | |
6484 | { | |
6485 | UNSET_SIGS (nsigs, sigs, signal_stop); | |
6486 | } | |
6487 | else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen)) | |
6488 | { | |
6489 | SET_SIGS (nsigs, sigs, signal_program); | |
6490 | } | |
6491 | else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen)) | |
6492 | { | |
6493 | UNSET_SIGS (nsigs, sigs, signal_print); | |
6494 | UNSET_SIGS (nsigs, sigs, signal_stop); | |
6495 | } | |
6496 | else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen)) | |
6497 | { | |
6498 | UNSET_SIGS (nsigs, sigs, signal_program); | |
6499 | } | |
6500 | else if (digits > 0) | |
6501 | { | |
6502 | /* It is numeric. The numeric signal refers to our own | |
6503 | internal signal numbering from target.h, not to host/target | |
6504 | signal number. This is a feature; users really should be | |
6505 | using symbolic names anyway, and the common ones like | |
6506 | SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */ | |
6507 | ||
6508 | sigfirst = siglast = (int) | |
2ea28649 | 6509 | gdb_signal_from_command (atoi (*argv)); |
c906108c SS |
6510 | if ((*argv)[digits] == '-') |
6511 | { | |
6512 | siglast = (int) | |
2ea28649 | 6513 | gdb_signal_from_command (atoi ((*argv) + digits + 1)); |
c906108c SS |
6514 | } |
6515 | if (sigfirst > siglast) | |
6516 | { | |
1777feb0 | 6517 | /* Bet he didn't figure we'd think of this case... */ |
c906108c SS |
6518 | signum = sigfirst; |
6519 | sigfirst = siglast; | |
6520 | siglast = signum; | |
6521 | } | |
6522 | } | |
6523 | else | |
6524 | { | |
2ea28649 | 6525 | oursig = gdb_signal_from_name (*argv); |
a493e3e2 | 6526 | if (oursig != GDB_SIGNAL_UNKNOWN) |
c906108c SS |
6527 | { |
6528 | sigfirst = siglast = (int) oursig; | |
6529 | } | |
6530 | else | |
6531 | { | |
6532 | /* Not a number and not a recognized flag word => complain. */ | |
8a3fe4f8 | 6533 | error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv); |
c906108c SS |
6534 | } |
6535 | } | |
6536 | ||
6537 | /* If any signal numbers or symbol names were found, set flags for | |
1777feb0 | 6538 | which signals to apply actions to. */ |
c906108c SS |
6539 | |
6540 | for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++) | |
6541 | { | |
2ea28649 | 6542 | switch ((enum gdb_signal) signum) |
c906108c | 6543 | { |
a493e3e2 PA |
6544 | case GDB_SIGNAL_TRAP: |
6545 | case GDB_SIGNAL_INT: | |
c906108c SS |
6546 | if (!allsigs && !sigs[signum]) |
6547 | { | |
9e2f0ad4 | 6548 | if (query (_("%s is used by the debugger.\n\ |
3e43a32a | 6549 | Are you sure you want to change it? "), |
2ea28649 | 6550 | gdb_signal_to_name ((enum gdb_signal) signum))) |
c906108c SS |
6551 | { |
6552 | sigs[signum] = 1; | |
6553 | } | |
6554 | else | |
6555 | { | |
a3f17187 | 6556 | printf_unfiltered (_("Not confirmed, unchanged.\n")); |
c906108c SS |
6557 | gdb_flush (gdb_stdout); |
6558 | } | |
6559 | } | |
6560 | break; | |
a493e3e2 PA |
6561 | case GDB_SIGNAL_0: |
6562 | case GDB_SIGNAL_DEFAULT: | |
6563 | case GDB_SIGNAL_UNKNOWN: | |
c906108c SS |
6564 | /* Make sure that "all" doesn't print these. */ |
6565 | break; | |
6566 | default: | |
6567 | sigs[signum] = 1; | |
6568 | break; | |
6569 | } | |
6570 | } | |
6571 | ||
6572 | argv++; | |
6573 | } | |
6574 | ||
3a031f65 PA |
6575 | for (signum = 0; signum < nsigs; signum++) |
6576 | if (sigs[signum]) | |
6577 | { | |
2455069d | 6578 | signal_cache_update (-1); |
a493e3e2 PA |
6579 | target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass); |
6580 | target_program_signals ((int) GDB_SIGNAL_LAST, signal_program); | |
c906108c | 6581 | |
3a031f65 PA |
6582 | if (from_tty) |
6583 | { | |
6584 | /* Show the results. */ | |
6585 | sig_print_header (); | |
6586 | for (; signum < nsigs; signum++) | |
6587 | if (sigs[signum]) | |
6588 | sig_print_info (signum); | |
6589 | } | |
6590 | ||
6591 | break; | |
6592 | } | |
c906108c SS |
6593 | |
6594 | do_cleanups (old_chain); | |
6595 | } | |
6596 | ||
de0bea00 MF |
6597 | /* Complete the "handle" command. */ |
6598 | ||
6599 | static VEC (char_ptr) * | |
6600 | handle_completer (struct cmd_list_element *ignore, | |
6f937416 | 6601 | const char *text, const char *word) |
de0bea00 MF |
6602 | { |
6603 | VEC (char_ptr) *vec_signals, *vec_keywords, *return_val; | |
6604 | static const char * const keywords[] = | |
6605 | { | |
6606 | "all", | |
6607 | "stop", | |
6608 | "ignore", | |
6609 | "print", | |
6610 | "pass", | |
6611 | "nostop", | |
6612 | "noignore", | |
6613 | "noprint", | |
6614 | "nopass", | |
6615 | NULL, | |
6616 | }; | |
6617 | ||
6618 | vec_signals = signal_completer (ignore, text, word); | |
6619 | vec_keywords = complete_on_enum (keywords, word, word); | |
6620 | ||
6621 | return_val = VEC_merge (char_ptr, vec_signals, vec_keywords); | |
6622 | VEC_free (char_ptr, vec_signals); | |
6623 | VEC_free (char_ptr, vec_keywords); | |
6624 | return return_val; | |
6625 | } | |
6626 | ||
c906108c | 6627 | static void |
96baa820 | 6628 | xdb_handle_command (char *args, int from_tty) |
c906108c SS |
6629 | { |
6630 | char **argv; | |
6631 | struct cleanup *old_chain; | |
6632 | ||
d1a41061 PP |
6633 | if (args == NULL) |
6634 | error_no_arg (_("xdb command")); | |
6635 | ||
1777feb0 | 6636 | /* Break the command line up into args. */ |
c906108c | 6637 | |
d1a41061 | 6638 | argv = gdb_buildargv (args); |
7a292a7a | 6639 | old_chain = make_cleanup_freeargv (argv); |
c906108c SS |
6640 | if (argv[1] != (char *) NULL) |
6641 | { | |
6642 | char *argBuf; | |
6643 | int bufLen; | |
6644 | ||
6645 | bufLen = strlen (argv[0]) + 20; | |
6646 | argBuf = (char *) xmalloc (bufLen); | |
6647 | if (argBuf) | |
6648 | { | |
6649 | int validFlag = 1; | |
2ea28649 | 6650 | enum gdb_signal oursig; |
c906108c | 6651 | |
2ea28649 | 6652 | oursig = gdb_signal_from_name (argv[0]); |
c906108c SS |
6653 | memset (argBuf, 0, bufLen); |
6654 | if (strcmp (argv[1], "Q") == 0) | |
6655 | sprintf (argBuf, "%s %s", argv[0], "noprint"); | |
6656 | else | |
6657 | { | |
6658 | if (strcmp (argv[1], "s") == 0) | |
6659 | { | |
6660 | if (!signal_stop[oursig]) | |
6661 | sprintf (argBuf, "%s %s", argv[0], "stop"); | |
6662 | else | |
6663 | sprintf (argBuf, "%s %s", argv[0], "nostop"); | |
6664 | } | |
6665 | else if (strcmp (argv[1], "i") == 0) | |
6666 | { | |
6667 | if (!signal_program[oursig]) | |
6668 | sprintf (argBuf, "%s %s", argv[0], "pass"); | |
6669 | else | |
6670 | sprintf (argBuf, "%s %s", argv[0], "nopass"); | |
6671 | } | |
6672 | else if (strcmp (argv[1], "r") == 0) | |
6673 | { | |
6674 | if (!signal_print[oursig]) | |
6675 | sprintf (argBuf, "%s %s", argv[0], "print"); | |
6676 | else | |
6677 | sprintf (argBuf, "%s %s", argv[0], "noprint"); | |
6678 | } | |
6679 | else | |
6680 | validFlag = 0; | |
6681 | } | |
6682 | if (validFlag) | |
6683 | handle_command (argBuf, from_tty); | |
6684 | else | |
a3f17187 | 6685 | printf_filtered (_("Invalid signal handling flag.\n")); |
c906108c | 6686 | if (argBuf) |
b8c9b27d | 6687 | xfree (argBuf); |
c906108c SS |
6688 | } |
6689 | } | |
6690 | do_cleanups (old_chain); | |
6691 | } | |
6692 | ||
2ea28649 PA |
6693 | enum gdb_signal |
6694 | gdb_signal_from_command (int num) | |
ed01b82c PA |
6695 | { |
6696 | if (num >= 1 && num <= 15) | |
2ea28649 | 6697 | return (enum gdb_signal) num; |
ed01b82c PA |
6698 | error (_("Only signals 1-15 are valid as numeric signals.\n\ |
6699 | Use \"info signals\" for a list of symbolic signals.")); | |
6700 | } | |
6701 | ||
c906108c SS |
6702 | /* Print current contents of the tables set by the handle command. |
6703 | It is possible we should just be printing signals actually used | |
6704 | by the current target (but for things to work right when switching | |
6705 | targets, all signals should be in the signal tables). */ | |
6706 | ||
6707 | static void | |
96baa820 | 6708 | signals_info (char *signum_exp, int from_tty) |
c906108c | 6709 | { |
2ea28649 | 6710 | enum gdb_signal oursig; |
abbb1732 | 6711 | |
c906108c SS |
6712 | sig_print_header (); |
6713 | ||
6714 | if (signum_exp) | |
6715 | { | |
6716 | /* First see if this is a symbol name. */ | |
2ea28649 | 6717 | oursig = gdb_signal_from_name (signum_exp); |
a493e3e2 | 6718 | if (oursig == GDB_SIGNAL_UNKNOWN) |
c906108c SS |
6719 | { |
6720 | /* No, try numeric. */ | |
6721 | oursig = | |
2ea28649 | 6722 | gdb_signal_from_command (parse_and_eval_long (signum_exp)); |
c906108c SS |
6723 | } |
6724 | sig_print_info (oursig); | |
6725 | return; | |
6726 | } | |
6727 | ||
6728 | printf_filtered ("\n"); | |
6729 | /* These ugly casts brought to you by the native VAX compiler. */ | |
a493e3e2 PA |
6730 | for (oursig = GDB_SIGNAL_FIRST; |
6731 | (int) oursig < (int) GDB_SIGNAL_LAST; | |
2ea28649 | 6732 | oursig = (enum gdb_signal) ((int) oursig + 1)) |
c906108c SS |
6733 | { |
6734 | QUIT; | |
6735 | ||
a493e3e2 PA |
6736 | if (oursig != GDB_SIGNAL_UNKNOWN |
6737 | && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0) | |
c906108c SS |
6738 | sig_print_info (oursig); |
6739 | } | |
6740 | ||
3e43a32a MS |
6741 | printf_filtered (_("\nUse the \"handle\" command " |
6742 | "to change these tables.\n")); | |
c906108c | 6743 | } |
4aa995e1 | 6744 | |
c709acd1 PA |
6745 | /* Check if it makes sense to read $_siginfo from the current thread |
6746 | at this point. If not, throw an error. */ | |
6747 | ||
6748 | static void | |
6749 | validate_siginfo_access (void) | |
6750 | { | |
6751 | /* No current inferior, no siginfo. */ | |
6752 | if (ptid_equal (inferior_ptid, null_ptid)) | |
6753 | error (_("No thread selected.")); | |
6754 | ||
6755 | /* Don't try to read from a dead thread. */ | |
6756 | if (is_exited (inferior_ptid)) | |
6757 | error (_("The current thread has terminated")); | |
6758 | ||
6759 | /* ... or from a spinning thread. */ | |
6760 | if (is_running (inferior_ptid)) | |
6761 | error (_("Selected thread is running.")); | |
6762 | } | |
6763 | ||
4aa995e1 PA |
6764 | /* The $_siginfo convenience variable is a bit special. We don't know |
6765 | for sure the type of the value until we actually have a chance to | |
7a9dd1b2 | 6766 | fetch the data. The type can change depending on gdbarch, so it is |
4aa995e1 PA |
6767 | also dependent on which thread you have selected. |
6768 | ||
6769 | 1. making $_siginfo be an internalvar that creates a new value on | |
6770 | access. | |
6771 | ||
6772 | 2. making the value of $_siginfo be an lval_computed value. */ | |
6773 | ||
6774 | /* This function implements the lval_computed support for reading a | |
6775 | $_siginfo value. */ | |
6776 | ||
6777 | static void | |
6778 | siginfo_value_read (struct value *v) | |
6779 | { | |
6780 | LONGEST transferred; | |
6781 | ||
c709acd1 PA |
6782 | validate_siginfo_access (); |
6783 | ||
4aa995e1 PA |
6784 | transferred = |
6785 | target_read (¤t_target, TARGET_OBJECT_SIGNAL_INFO, | |
6786 | NULL, | |
6787 | value_contents_all_raw (v), | |
6788 | value_offset (v), | |
6789 | TYPE_LENGTH (value_type (v))); | |
6790 | ||
6791 | if (transferred != TYPE_LENGTH (value_type (v))) | |
6792 | error (_("Unable to read siginfo")); | |
6793 | } | |
6794 | ||
6795 | /* This function implements the lval_computed support for writing a | |
6796 | $_siginfo value. */ | |
6797 | ||
6798 | static void | |
6799 | siginfo_value_write (struct value *v, struct value *fromval) | |
6800 | { | |
6801 | LONGEST transferred; | |
6802 | ||
c709acd1 PA |
6803 | validate_siginfo_access (); |
6804 | ||
4aa995e1 PA |
6805 | transferred = target_write (¤t_target, |
6806 | TARGET_OBJECT_SIGNAL_INFO, | |
6807 | NULL, | |
6808 | value_contents_all_raw (fromval), | |
6809 | value_offset (v), | |
6810 | TYPE_LENGTH (value_type (fromval))); | |
6811 | ||
6812 | if (transferred != TYPE_LENGTH (value_type (fromval))) | |
6813 | error (_("Unable to write siginfo")); | |
6814 | } | |
6815 | ||
c8f2448a | 6816 | static const struct lval_funcs siginfo_value_funcs = |
4aa995e1 PA |
6817 | { |
6818 | siginfo_value_read, | |
6819 | siginfo_value_write | |
6820 | }; | |
6821 | ||
6822 | /* Return a new value with the correct type for the siginfo object of | |
78267919 UW |
6823 | the current thread using architecture GDBARCH. Return a void value |
6824 | if there's no object available. */ | |
4aa995e1 | 6825 | |
2c0b251b | 6826 | static struct value * |
22d2b532 SDJ |
6827 | siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var, |
6828 | void *ignore) | |
4aa995e1 | 6829 | { |
4aa995e1 | 6830 | if (target_has_stack |
78267919 UW |
6831 | && !ptid_equal (inferior_ptid, null_ptid) |
6832 | && gdbarch_get_siginfo_type_p (gdbarch)) | |
4aa995e1 | 6833 | { |
78267919 | 6834 | struct type *type = gdbarch_get_siginfo_type (gdbarch); |
abbb1732 | 6835 | |
78267919 | 6836 | return allocate_computed_value (type, &siginfo_value_funcs, NULL); |
4aa995e1 PA |
6837 | } |
6838 | ||
78267919 | 6839 | return allocate_value (builtin_type (gdbarch)->builtin_void); |
4aa995e1 PA |
6840 | } |
6841 | ||
c906108c | 6842 | \f |
16c381f0 JK |
6843 | /* infcall_suspend_state contains state about the program itself like its |
6844 | registers and any signal it received when it last stopped. | |
6845 | This state must be restored regardless of how the inferior function call | |
6846 | ends (either successfully, or after it hits a breakpoint or signal) | |
6847 | if the program is to properly continue where it left off. */ | |
6848 | ||
6849 | struct infcall_suspend_state | |
7a292a7a | 6850 | { |
16c381f0 | 6851 | struct thread_suspend_state thread_suspend; |
dd80ea3c | 6852 | #if 0 /* Currently unused and empty structures are not valid C. */ |
16c381f0 | 6853 | struct inferior_suspend_state inferior_suspend; |
dd80ea3c | 6854 | #endif |
16c381f0 JK |
6855 | |
6856 | /* Other fields: */ | |
7a292a7a | 6857 | CORE_ADDR stop_pc; |
b89667eb | 6858 | struct regcache *registers; |
1736ad11 | 6859 | |
35515841 | 6860 | /* Format of SIGINFO_DATA or NULL if it is not present. */ |
1736ad11 JK |
6861 | struct gdbarch *siginfo_gdbarch; |
6862 | ||
6863 | /* The inferior format depends on SIGINFO_GDBARCH and it has a length of | |
6864 | TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the | |
6865 | content would be invalid. */ | |
6866 | gdb_byte *siginfo_data; | |
b89667eb DE |
6867 | }; |
6868 | ||
16c381f0 JK |
6869 | struct infcall_suspend_state * |
6870 | save_infcall_suspend_state (void) | |
b89667eb | 6871 | { |
16c381f0 | 6872 | struct infcall_suspend_state *inf_state; |
b89667eb | 6873 | struct thread_info *tp = inferior_thread (); |
974a734b | 6874 | #if 0 |
16c381f0 | 6875 | struct inferior *inf = current_inferior (); |
974a734b | 6876 | #endif |
1736ad11 JK |
6877 | struct regcache *regcache = get_current_regcache (); |
6878 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
6879 | gdb_byte *siginfo_data = NULL; | |
6880 | ||
6881 | if (gdbarch_get_siginfo_type_p (gdbarch)) | |
6882 | { | |
6883 | struct type *type = gdbarch_get_siginfo_type (gdbarch); | |
6884 | size_t len = TYPE_LENGTH (type); | |
6885 | struct cleanup *back_to; | |
6886 | ||
6887 | siginfo_data = xmalloc (len); | |
6888 | back_to = make_cleanup (xfree, siginfo_data); | |
6889 | ||
6890 | if (target_read (¤t_target, TARGET_OBJECT_SIGNAL_INFO, NULL, | |
6891 | siginfo_data, 0, len) == len) | |
6892 | discard_cleanups (back_to); | |
6893 | else | |
6894 | { | |
6895 | /* Errors ignored. */ | |
6896 | do_cleanups (back_to); | |
6897 | siginfo_data = NULL; | |
6898 | } | |
6899 | } | |
6900 | ||
41bf6aca | 6901 | inf_state = XCNEW (struct infcall_suspend_state); |
1736ad11 JK |
6902 | |
6903 | if (siginfo_data) | |
6904 | { | |
6905 | inf_state->siginfo_gdbarch = gdbarch; | |
6906 | inf_state->siginfo_data = siginfo_data; | |
6907 | } | |
b89667eb | 6908 | |
16c381f0 | 6909 | inf_state->thread_suspend = tp->suspend; |
dd80ea3c | 6910 | #if 0 /* Currently unused and empty structures are not valid C. */ |
16c381f0 | 6911 | inf_state->inferior_suspend = inf->suspend; |
dd80ea3c | 6912 | #endif |
16c381f0 | 6913 | |
35515841 | 6914 | /* run_inferior_call will not use the signal due to its `proceed' call with |
a493e3e2 PA |
6915 | GDB_SIGNAL_0 anyway. */ |
6916 | tp->suspend.stop_signal = GDB_SIGNAL_0; | |
35515841 | 6917 | |
b89667eb DE |
6918 | inf_state->stop_pc = stop_pc; |
6919 | ||
1736ad11 | 6920 | inf_state->registers = regcache_dup (regcache); |
b89667eb DE |
6921 | |
6922 | return inf_state; | |
6923 | } | |
6924 | ||
6925 | /* Restore inferior session state to INF_STATE. */ | |
6926 | ||
6927 | void | |
16c381f0 | 6928 | restore_infcall_suspend_state (struct infcall_suspend_state *inf_state) |
b89667eb DE |
6929 | { |
6930 | struct thread_info *tp = inferior_thread (); | |
974a734b | 6931 | #if 0 |
16c381f0 | 6932 | struct inferior *inf = current_inferior (); |
974a734b | 6933 | #endif |
1736ad11 JK |
6934 | struct regcache *regcache = get_current_regcache (); |
6935 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
b89667eb | 6936 | |
16c381f0 | 6937 | tp->suspend = inf_state->thread_suspend; |
dd80ea3c | 6938 | #if 0 /* Currently unused and empty structures are not valid C. */ |
16c381f0 | 6939 | inf->suspend = inf_state->inferior_suspend; |
dd80ea3c | 6940 | #endif |
16c381f0 | 6941 | |
b89667eb DE |
6942 | stop_pc = inf_state->stop_pc; |
6943 | ||
1736ad11 JK |
6944 | if (inf_state->siginfo_gdbarch == gdbarch) |
6945 | { | |
6946 | struct type *type = gdbarch_get_siginfo_type (gdbarch); | |
1736ad11 JK |
6947 | |
6948 | /* Errors ignored. */ | |
6949 | target_write (¤t_target, TARGET_OBJECT_SIGNAL_INFO, NULL, | |
6acef6cd | 6950 | inf_state->siginfo_data, 0, TYPE_LENGTH (type)); |
1736ad11 JK |
6951 | } |
6952 | ||
b89667eb DE |
6953 | /* The inferior can be gone if the user types "print exit(0)" |
6954 | (and perhaps other times). */ | |
6955 | if (target_has_execution) | |
6956 | /* NB: The register write goes through to the target. */ | |
1736ad11 | 6957 | regcache_cpy (regcache, inf_state->registers); |
803b5f95 | 6958 | |
16c381f0 | 6959 | discard_infcall_suspend_state (inf_state); |
b89667eb DE |
6960 | } |
6961 | ||
6962 | static void | |
16c381f0 | 6963 | do_restore_infcall_suspend_state_cleanup (void *state) |
b89667eb | 6964 | { |
16c381f0 | 6965 | restore_infcall_suspend_state (state); |
b89667eb DE |
6966 | } |
6967 | ||
6968 | struct cleanup * | |
16c381f0 JK |
6969 | make_cleanup_restore_infcall_suspend_state |
6970 | (struct infcall_suspend_state *inf_state) | |
b89667eb | 6971 | { |
16c381f0 | 6972 | return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state); |
b89667eb DE |
6973 | } |
6974 | ||
6975 | void | |
16c381f0 | 6976 | discard_infcall_suspend_state (struct infcall_suspend_state *inf_state) |
b89667eb DE |
6977 | { |
6978 | regcache_xfree (inf_state->registers); | |
803b5f95 | 6979 | xfree (inf_state->siginfo_data); |
b89667eb DE |
6980 | xfree (inf_state); |
6981 | } | |
6982 | ||
6983 | struct regcache * | |
16c381f0 | 6984 | get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state) |
b89667eb DE |
6985 | { |
6986 | return inf_state->registers; | |
6987 | } | |
6988 | ||
16c381f0 JK |
6989 | /* infcall_control_state contains state regarding gdb's control of the |
6990 | inferior itself like stepping control. It also contains session state like | |
6991 | the user's currently selected frame. */ | |
b89667eb | 6992 | |
16c381f0 | 6993 | struct infcall_control_state |
b89667eb | 6994 | { |
16c381f0 JK |
6995 | struct thread_control_state thread_control; |
6996 | struct inferior_control_state inferior_control; | |
d82142e2 JK |
6997 | |
6998 | /* Other fields: */ | |
6999 | enum stop_stack_kind stop_stack_dummy; | |
7000 | int stopped_by_random_signal; | |
7a292a7a | 7001 | int stop_after_trap; |
7a292a7a | 7002 | |
b89667eb | 7003 | /* ID if the selected frame when the inferior function call was made. */ |
101dcfbe | 7004 | struct frame_id selected_frame_id; |
7a292a7a SS |
7005 | }; |
7006 | ||
c906108c | 7007 | /* Save all of the information associated with the inferior<==>gdb |
b89667eb | 7008 | connection. */ |
c906108c | 7009 | |
16c381f0 JK |
7010 | struct infcall_control_state * |
7011 | save_infcall_control_state (void) | |
c906108c | 7012 | { |
16c381f0 | 7013 | struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status)); |
4e1c45ea | 7014 | struct thread_info *tp = inferior_thread (); |
d6b48e9c | 7015 | struct inferior *inf = current_inferior (); |
7a292a7a | 7016 | |
16c381f0 JK |
7017 | inf_status->thread_control = tp->control; |
7018 | inf_status->inferior_control = inf->control; | |
d82142e2 | 7019 | |
8358c15c | 7020 | tp->control.step_resume_breakpoint = NULL; |
5b79abe7 | 7021 | tp->control.exception_resume_breakpoint = NULL; |
8358c15c | 7022 | |
16c381f0 JK |
7023 | /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of |
7024 | chain. If caller's caller is walking the chain, they'll be happier if we | |
7025 | hand them back the original chain when restore_infcall_control_state is | |
7026 | called. */ | |
7027 | tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat); | |
d82142e2 JK |
7028 | |
7029 | /* Other fields: */ | |
7030 | inf_status->stop_stack_dummy = stop_stack_dummy; | |
7031 | inf_status->stopped_by_random_signal = stopped_by_random_signal; | |
7032 | inf_status->stop_after_trap = stop_after_trap; | |
c5aa993b | 7033 | |
206415a3 | 7034 | inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL)); |
b89667eb | 7035 | |
7a292a7a | 7036 | return inf_status; |
c906108c SS |
7037 | } |
7038 | ||
c906108c | 7039 | static int |
96baa820 | 7040 | restore_selected_frame (void *args) |
c906108c | 7041 | { |
488f131b | 7042 | struct frame_id *fid = (struct frame_id *) args; |
c906108c | 7043 | struct frame_info *frame; |
c906108c | 7044 | |
101dcfbe | 7045 | frame = frame_find_by_id (*fid); |
c906108c | 7046 | |
aa0cd9c1 AC |
7047 | /* If inf_status->selected_frame_id is NULL, there was no previously |
7048 | selected frame. */ | |
101dcfbe | 7049 | if (frame == NULL) |
c906108c | 7050 | { |
8a3fe4f8 | 7051 | warning (_("Unable to restore previously selected frame.")); |
c906108c SS |
7052 | return 0; |
7053 | } | |
7054 | ||
0f7d239c | 7055 | select_frame (frame); |
c906108c SS |
7056 | |
7057 | return (1); | |
7058 | } | |
7059 | ||
b89667eb DE |
7060 | /* Restore inferior session state to INF_STATUS. */ |
7061 | ||
c906108c | 7062 | void |
16c381f0 | 7063 | restore_infcall_control_state (struct infcall_control_state *inf_status) |
c906108c | 7064 | { |
4e1c45ea | 7065 | struct thread_info *tp = inferior_thread (); |
d6b48e9c | 7066 | struct inferior *inf = current_inferior (); |
4e1c45ea | 7067 | |
8358c15c JK |
7068 | if (tp->control.step_resume_breakpoint) |
7069 | tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop; | |
7070 | ||
5b79abe7 TT |
7071 | if (tp->control.exception_resume_breakpoint) |
7072 | tp->control.exception_resume_breakpoint->disposition | |
7073 | = disp_del_at_next_stop; | |
7074 | ||
d82142e2 | 7075 | /* Handle the bpstat_copy of the chain. */ |
16c381f0 | 7076 | bpstat_clear (&tp->control.stop_bpstat); |
d82142e2 | 7077 | |
16c381f0 JK |
7078 | tp->control = inf_status->thread_control; |
7079 | inf->control = inf_status->inferior_control; | |
d82142e2 JK |
7080 | |
7081 | /* Other fields: */ | |
7082 | stop_stack_dummy = inf_status->stop_stack_dummy; | |
7083 | stopped_by_random_signal = inf_status->stopped_by_random_signal; | |
7084 | stop_after_trap = inf_status->stop_after_trap; | |
c906108c | 7085 | |
b89667eb | 7086 | if (target_has_stack) |
c906108c | 7087 | { |
c906108c | 7088 | /* The point of catch_errors is that if the stack is clobbered, |
101dcfbe AC |
7089 | walking the stack might encounter a garbage pointer and |
7090 | error() trying to dereference it. */ | |
488f131b JB |
7091 | if (catch_errors |
7092 | (restore_selected_frame, &inf_status->selected_frame_id, | |
7093 | "Unable to restore previously selected frame:\n", | |
7094 | RETURN_MASK_ERROR) == 0) | |
c906108c SS |
7095 | /* Error in restoring the selected frame. Select the innermost |
7096 | frame. */ | |
0f7d239c | 7097 | select_frame (get_current_frame ()); |
c906108c | 7098 | } |
c906108c | 7099 | |
72cec141 | 7100 | xfree (inf_status); |
7a292a7a | 7101 | } |
c906108c | 7102 | |
74b7792f | 7103 | static void |
16c381f0 | 7104 | do_restore_infcall_control_state_cleanup (void *sts) |
74b7792f | 7105 | { |
16c381f0 | 7106 | restore_infcall_control_state (sts); |
74b7792f AC |
7107 | } |
7108 | ||
7109 | struct cleanup * | |
16c381f0 JK |
7110 | make_cleanup_restore_infcall_control_state |
7111 | (struct infcall_control_state *inf_status) | |
74b7792f | 7112 | { |
16c381f0 | 7113 | return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status); |
74b7792f AC |
7114 | } |
7115 | ||
c906108c | 7116 | void |
16c381f0 | 7117 | discard_infcall_control_state (struct infcall_control_state *inf_status) |
7a292a7a | 7118 | { |
8358c15c JK |
7119 | if (inf_status->thread_control.step_resume_breakpoint) |
7120 | inf_status->thread_control.step_resume_breakpoint->disposition | |
7121 | = disp_del_at_next_stop; | |
7122 | ||
5b79abe7 TT |
7123 | if (inf_status->thread_control.exception_resume_breakpoint) |
7124 | inf_status->thread_control.exception_resume_breakpoint->disposition | |
7125 | = disp_del_at_next_stop; | |
7126 | ||
1777feb0 | 7127 | /* See save_infcall_control_state for info on stop_bpstat. */ |
16c381f0 | 7128 | bpstat_clear (&inf_status->thread_control.stop_bpstat); |
8358c15c | 7129 | |
72cec141 | 7130 | xfree (inf_status); |
7a292a7a | 7131 | } |
b89667eb | 7132 | \f |
ca6724c1 KB |
7133 | /* restore_inferior_ptid() will be used by the cleanup machinery |
7134 | to restore the inferior_ptid value saved in a call to | |
7135 | save_inferior_ptid(). */ | |
ce696e05 KB |
7136 | |
7137 | static void | |
7138 | restore_inferior_ptid (void *arg) | |
7139 | { | |
7140 | ptid_t *saved_ptid_ptr = arg; | |
abbb1732 | 7141 | |
ce696e05 KB |
7142 | inferior_ptid = *saved_ptid_ptr; |
7143 | xfree (arg); | |
7144 | } | |
7145 | ||
7146 | /* Save the value of inferior_ptid so that it may be restored by a | |
7147 | later call to do_cleanups(). Returns the struct cleanup pointer | |
7148 | needed for later doing the cleanup. */ | |
7149 | ||
7150 | struct cleanup * | |
7151 | save_inferior_ptid (void) | |
7152 | { | |
7153 | ptid_t *saved_ptid_ptr; | |
7154 | ||
7155 | saved_ptid_ptr = xmalloc (sizeof (ptid_t)); | |
7156 | *saved_ptid_ptr = inferior_ptid; | |
7157 | return make_cleanup (restore_inferior_ptid, saved_ptid_ptr); | |
7158 | } | |
0c557179 SDJ |
7159 | |
7160 | /* See inferior.h. */ | |
7161 | ||
7162 | void | |
7163 | clear_exit_convenience_vars (void) | |
7164 | { | |
7165 | clear_internalvar (lookup_internalvar ("_exitsignal")); | |
7166 | clear_internalvar (lookup_internalvar ("_exitcode")); | |
7167 | } | |
c5aa993b | 7168 | \f |
488f131b | 7169 | |
b2175913 MS |
7170 | /* User interface for reverse debugging: |
7171 | Set exec-direction / show exec-direction commands | |
7172 | (returns error unless target implements to_set_exec_direction method). */ | |
7173 | ||
32231432 | 7174 | int execution_direction = EXEC_FORWARD; |
b2175913 MS |
7175 | static const char exec_forward[] = "forward"; |
7176 | static const char exec_reverse[] = "reverse"; | |
7177 | static const char *exec_direction = exec_forward; | |
40478521 | 7178 | static const char *const exec_direction_names[] = { |
b2175913 MS |
7179 | exec_forward, |
7180 | exec_reverse, | |
7181 | NULL | |
7182 | }; | |
7183 | ||
7184 | static void | |
7185 | set_exec_direction_func (char *args, int from_tty, | |
7186 | struct cmd_list_element *cmd) | |
7187 | { | |
7188 | if (target_can_execute_reverse) | |
7189 | { | |
7190 | if (!strcmp (exec_direction, exec_forward)) | |
7191 | execution_direction = EXEC_FORWARD; | |
7192 | else if (!strcmp (exec_direction, exec_reverse)) | |
7193 | execution_direction = EXEC_REVERSE; | |
7194 | } | |
8bbed405 MS |
7195 | else |
7196 | { | |
7197 | exec_direction = exec_forward; | |
7198 | error (_("Target does not support this operation.")); | |
7199 | } | |
b2175913 MS |
7200 | } |
7201 | ||
7202 | static void | |
7203 | show_exec_direction_func (struct ui_file *out, int from_tty, | |
7204 | struct cmd_list_element *cmd, const char *value) | |
7205 | { | |
7206 | switch (execution_direction) { | |
7207 | case EXEC_FORWARD: | |
7208 | fprintf_filtered (out, _("Forward.\n")); | |
7209 | break; | |
7210 | case EXEC_REVERSE: | |
7211 | fprintf_filtered (out, _("Reverse.\n")); | |
7212 | break; | |
b2175913 | 7213 | default: |
d8b34453 PA |
7214 | internal_error (__FILE__, __LINE__, |
7215 | _("bogus execution_direction value: %d"), | |
7216 | (int) execution_direction); | |
b2175913 MS |
7217 | } |
7218 | } | |
7219 | ||
d4db2f36 PA |
7220 | static void |
7221 | show_schedule_multiple (struct ui_file *file, int from_tty, | |
7222 | struct cmd_list_element *c, const char *value) | |
7223 | { | |
3e43a32a MS |
7224 | fprintf_filtered (file, _("Resuming the execution of threads " |
7225 | "of all processes is %s.\n"), value); | |
d4db2f36 | 7226 | } |
ad52ddc6 | 7227 | |
22d2b532 SDJ |
7228 | /* Implementation of `siginfo' variable. */ |
7229 | ||
7230 | static const struct internalvar_funcs siginfo_funcs = | |
7231 | { | |
7232 | siginfo_make_value, | |
7233 | NULL, | |
7234 | NULL | |
7235 | }; | |
7236 | ||
c906108c | 7237 | void |
96baa820 | 7238 | _initialize_infrun (void) |
c906108c | 7239 | { |
52f0bd74 AC |
7240 | int i; |
7241 | int numsigs; | |
de0bea00 | 7242 | struct cmd_list_element *c; |
c906108c | 7243 | |
1bedd215 AC |
7244 | add_info ("signals", signals_info, _("\ |
7245 | What debugger does when program gets various signals.\n\ | |
7246 | Specify a signal as argument to print info on that signal only.")); | |
c906108c SS |
7247 | add_info_alias ("handle", "signals", 0); |
7248 | ||
de0bea00 | 7249 | c = add_com ("handle", class_run, handle_command, _("\ |
dfbd5e7b | 7250 | Specify how to handle signals.\n\ |
486c7739 | 7251 | Usage: handle SIGNAL [ACTIONS]\n\ |
c906108c | 7252 | Args are signals and actions to apply to those signals.\n\ |
dfbd5e7b | 7253 | If no actions are specified, the current settings for the specified signals\n\ |
486c7739 MF |
7254 | will be displayed instead.\n\ |
7255 | \n\ | |
c906108c SS |
7256 | Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\ |
7257 | from 1-15 are allowed for compatibility with old versions of GDB.\n\ | |
7258 | Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\ | |
7259 | The special arg \"all\" is recognized to mean all signals except those\n\ | |
1bedd215 | 7260 | used by the debugger, typically SIGTRAP and SIGINT.\n\ |
486c7739 | 7261 | \n\ |
1bedd215 | 7262 | Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\ |
c906108c SS |
7263 | \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\ |
7264 | Stop means reenter debugger if this signal happens (implies print).\n\ | |
7265 | Print means print a message if this signal happens.\n\ | |
7266 | Pass means let program see this signal; otherwise program doesn't know.\n\ | |
7267 | Ignore is a synonym for nopass and noignore is a synonym for pass.\n\ | |
dfbd5e7b PA |
7268 | Pass and Stop may be combined.\n\ |
7269 | \n\ | |
7270 | Multiple signals may be specified. Signal numbers and signal names\n\ | |
7271 | may be interspersed with actions, with the actions being performed for\n\ | |
7272 | all signals cumulatively specified.")); | |
de0bea00 | 7273 | set_cmd_completer (c, handle_completer); |
486c7739 | 7274 | |
c906108c SS |
7275 | if (xdb_commands) |
7276 | { | |
1bedd215 AC |
7277 | add_com ("lz", class_info, signals_info, _("\ |
7278 | What debugger does when program gets various signals.\n\ | |
7279 | Specify a signal as argument to print info on that signal only.")); | |
7280 | add_com ("z", class_run, xdb_handle_command, _("\ | |
7281 | Specify how to handle a signal.\n\ | |
c906108c SS |
7282 | Args are signals and actions to apply to those signals.\n\ |
7283 | Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\ | |
7284 | from 1-15 are allowed for compatibility with old versions of GDB.\n\ | |
7285 | Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\ | |
7286 | The special arg \"all\" is recognized to mean all signals except those\n\ | |
1bedd215 | 7287 | used by the debugger, typically SIGTRAP and SIGINT.\n\ |
cce7e648 | 7288 | Recognized actions include \"s\" (toggles between stop and nostop),\n\ |
c906108c SS |
7289 | \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \ |
7290 | nopass), \"Q\" (noprint)\n\ | |
7291 | Stop means reenter debugger if this signal happens (implies print).\n\ | |
7292 | Print means print a message if this signal happens.\n\ | |
7293 | Pass means let program see this signal; otherwise program doesn't know.\n\ | |
7294 | Ignore is a synonym for nopass and noignore is a synonym for pass.\n\ | |
1bedd215 | 7295 | Pass and Stop may be combined.")); |
c906108c SS |
7296 | } |
7297 | ||
7298 | if (!dbx_commands) | |
1a966eab AC |
7299 | stop_command = add_cmd ("stop", class_obscure, |
7300 | not_just_help_class_command, _("\ | |
7301 | There is no `stop' command, but you can set a hook on `stop'.\n\ | |
c906108c | 7302 | This allows you to set a list of commands to be run each time execution\n\ |
1a966eab | 7303 | of the program stops."), &cmdlist); |
c906108c | 7304 | |
ccce17b0 | 7305 | add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\ |
85c07804 AC |
7306 | Set inferior debugging."), _("\ |
7307 | Show inferior debugging."), _("\ | |
7308 | When non-zero, inferior specific debugging is enabled."), | |
ccce17b0 YQ |
7309 | NULL, |
7310 | show_debug_infrun, | |
7311 | &setdebuglist, &showdebuglist); | |
527159b7 | 7312 | |
3e43a32a MS |
7313 | add_setshow_boolean_cmd ("displaced", class_maintenance, |
7314 | &debug_displaced, _("\ | |
237fc4c9 PA |
7315 | Set displaced stepping debugging."), _("\ |
7316 | Show displaced stepping debugging."), _("\ | |
7317 | When non-zero, displaced stepping specific debugging is enabled."), | |
7318 | NULL, | |
7319 | show_debug_displaced, | |
7320 | &setdebuglist, &showdebuglist); | |
7321 | ||
ad52ddc6 PA |
7322 | add_setshow_boolean_cmd ("non-stop", no_class, |
7323 | &non_stop_1, _("\ | |
7324 | Set whether gdb controls the inferior in non-stop mode."), _("\ | |
7325 | Show whether gdb controls the inferior in non-stop mode."), _("\ | |
7326 | When debugging a multi-threaded program and this setting is\n\ | |
7327 | off (the default, also called all-stop mode), when one thread stops\n\ | |
7328 | (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\ | |
7329 | all other threads in the program while you interact with the thread of\n\ | |
7330 | interest. When you continue or step a thread, you can allow the other\n\ | |
7331 | threads to run, or have them remain stopped, but while you inspect any\n\ | |
7332 | thread's state, all threads stop.\n\ | |
7333 | \n\ | |
7334 | In non-stop mode, when one thread stops, other threads can continue\n\ | |
7335 | to run freely. You'll be able to step each thread independently,\n\ | |
7336 | leave it stopped or free to run as needed."), | |
7337 | set_non_stop, | |
7338 | show_non_stop, | |
7339 | &setlist, | |
7340 | &showlist); | |
7341 | ||
a493e3e2 | 7342 | numsigs = (int) GDB_SIGNAL_LAST; |
488f131b | 7343 | signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs); |
c906108c SS |
7344 | signal_print = (unsigned char *) |
7345 | xmalloc (sizeof (signal_print[0]) * numsigs); | |
7346 | signal_program = (unsigned char *) | |
7347 | xmalloc (sizeof (signal_program[0]) * numsigs); | |
ab04a2af TT |
7348 | signal_catch = (unsigned char *) |
7349 | xmalloc (sizeof (signal_catch[0]) * numsigs); | |
2455069d UW |
7350 | signal_pass = (unsigned char *) |
7351 | xmalloc (sizeof (signal_program[0]) * numsigs); | |
c906108c SS |
7352 | for (i = 0; i < numsigs; i++) |
7353 | { | |
7354 | signal_stop[i] = 1; | |
7355 | signal_print[i] = 1; | |
7356 | signal_program[i] = 1; | |
ab04a2af | 7357 | signal_catch[i] = 0; |
c906108c SS |
7358 | } |
7359 | ||
7360 | /* Signals caused by debugger's own actions | |
7361 | should not be given to the program afterwards. */ | |
a493e3e2 PA |
7362 | signal_program[GDB_SIGNAL_TRAP] = 0; |
7363 | signal_program[GDB_SIGNAL_INT] = 0; | |
c906108c SS |
7364 | |
7365 | /* Signals that are not errors should not normally enter the debugger. */ | |
a493e3e2 PA |
7366 | signal_stop[GDB_SIGNAL_ALRM] = 0; |
7367 | signal_print[GDB_SIGNAL_ALRM] = 0; | |
7368 | signal_stop[GDB_SIGNAL_VTALRM] = 0; | |
7369 | signal_print[GDB_SIGNAL_VTALRM] = 0; | |
7370 | signal_stop[GDB_SIGNAL_PROF] = 0; | |
7371 | signal_print[GDB_SIGNAL_PROF] = 0; | |
7372 | signal_stop[GDB_SIGNAL_CHLD] = 0; | |
7373 | signal_print[GDB_SIGNAL_CHLD] = 0; | |
7374 | signal_stop[GDB_SIGNAL_IO] = 0; | |
7375 | signal_print[GDB_SIGNAL_IO] = 0; | |
7376 | signal_stop[GDB_SIGNAL_POLL] = 0; | |
7377 | signal_print[GDB_SIGNAL_POLL] = 0; | |
7378 | signal_stop[GDB_SIGNAL_URG] = 0; | |
7379 | signal_print[GDB_SIGNAL_URG] = 0; | |
7380 | signal_stop[GDB_SIGNAL_WINCH] = 0; | |
7381 | signal_print[GDB_SIGNAL_WINCH] = 0; | |
7382 | signal_stop[GDB_SIGNAL_PRIO] = 0; | |
7383 | signal_print[GDB_SIGNAL_PRIO] = 0; | |
c906108c | 7384 | |
cd0fc7c3 SS |
7385 | /* These signals are used internally by user-level thread |
7386 | implementations. (See signal(5) on Solaris.) Like the above | |
7387 | signals, a healthy program receives and handles them as part of | |
7388 | its normal operation. */ | |
a493e3e2 PA |
7389 | signal_stop[GDB_SIGNAL_LWP] = 0; |
7390 | signal_print[GDB_SIGNAL_LWP] = 0; | |
7391 | signal_stop[GDB_SIGNAL_WAITING] = 0; | |
7392 | signal_print[GDB_SIGNAL_WAITING] = 0; | |
7393 | signal_stop[GDB_SIGNAL_CANCEL] = 0; | |
7394 | signal_print[GDB_SIGNAL_CANCEL] = 0; | |
cd0fc7c3 | 7395 | |
2455069d UW |
7396 | /* Update cached state. */ |
7397 | signal_cache_update (-1); | |
7398 | ||
85c07804 AC |
7399 | add_setshow_zinteger_cmd ("stop-on-solib-events", class_support, |
7400 | &stop_on_solib_events, _("\ | |
7401 | Set stopping for shared library events."), _("\ | |
7402 | Show stopping for shared library events."), _("\ | |
c906108c SS |
7403 | If nonzero, gdb will give control to the user when the dynamic linker\n\ |
7404 | notifies gdb of shared library events. The most common event of interest\n\ | |
85c07804 | 7405 | to the user would be loading/unloading of a new library."), |
f9e14852 | 7406 | set_stop_on_solib_events, |
920d2a44 | 7407 | show_stop_on_solib_events, |
85c07804 | 7408 | &setlist, &showlist); |
c906108c | 7409 | |
7ab04401 AC |
7410 | add_setshow_enum_cmd ("follow-fork-mode", class_run, |
7411 | follow_fork_mode_kind_names, | |
7412 | &follow_fork_mode_string, _("\ | |
7413 | Set debugger response to a program call of fork or vfork."), _("\ | |
7414 | Show debugger response to a program call of fork or vfork."), _("\ | |
c906108c SS |
7415 | A fork or vfork creates a new process. follow-fork-mode can be:\n\ |
7416 | parent - the original process is debugged after a fork\n\ | |
7417 | child - the new process is debugged after a fork\n\ | |
ea1dd7bc | 7418 | The unfollowed process will continue to run.\n\ |
7ab04401 AC |
7419 | By default, the debugger will follow the parent process."), |
7420 | NULL, | |
920d2a44 | 7421 | show_follow_fork_mode_string, |
7ab04401 AC |
7422 | &setlist, &showlist); |
7423 | ||
6c95b8df PA |
7424 | add_setshow_enum_cmd ("follow-exec-mode", class_run, |
7425 | follow_exec_mode_names, | |
7426 | &follow_exec_mode_string, _("\ | |
7427 | Set debugger response to a program call of exec."), _("\ | |
7428 | Show debugger response to a program call of exec."), _("\ | |
7429 | An exec call replaces the program image of a process.\n\ | |
7430 | \n\ | |
7431 | follow-exec-mode can be:\n\ | |
7432 | \n\ | |
cce7e648 | 7433 | new - the debugger creates a new inferior and rebinds the process\n\ |
6c95b8df PA |
7434 | to this new inferior. The program the process was running before\n\ |
7435 | the exec call can be restarted afterwards by restarting the original\n\ | |
7436 | inferior.\n\ | |
7437 | \n\ | |
7438 | same - the debugger keeps the process bound to the same inferior.\n\ | |
7439 | The new executable image replaces the previous executable loaded in\n\ | |
7440 | the inferior. Restarting the inferior after the exec call restarts\n\ | |
7441 | the executable the process was running after the exec call.\n\ | |
7442 | \n\ | |
7443 | By default, the debugger will use the same inferior."), | |
7444 | NULL, | |
7445 | show_follow_exec_mode_string, | |
7446 | &setlist, &showlist); | |
7447 | ||
7ab04401 AC |
7448 | add_setshow_enum_cmd ("scheduler-locking", class_run, |
7449 | scheduler_enums, &scheduler_mode, _("\ | |
7450 | Set mode for locking scheduler during execution."), _("\ | |
7451 | Show mode for locking scheduler during execution."), _("\ | |
c906108c SS |
7452 | off == no locking (threads may preempt at any time)\n\ |
7453 | on == full locking (no thread except the current thread may run)\n\ | |
7454 | step == scheduler locked during every single-step operation.\n\ | |
7455 | In this mode, no other thread may run during a step command.\n\ | |
7ab04401 AC |
7456 | Other threads may run while stepping over a function call ('next')."), |
7457 | set_schedlock_func, /* traps on target vector */ | |
920d2a44 | 7458 | show_scheduler_mode, |
7ab04401 | 7459 | &setlist, &showlist); |
5fbbeb29 | 7460 | |
d4db2f36 PA |
7461 | add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\ |
7462 | Set mode for resuming threads of all processes."), _("\ | |
7463 | Show mode for resuming threads of all processes."), _("\ | |
7464 | When on, execution commands (such as 'continue' or 'next') resume all\n\ | |
7465 | threads of all processes. When off (which is the default), execution\n\ | |
7466 | commands only resume the threads of the current process. The set of\n\ | |
7467 | threads that are resumed is further refined by the scheduler-locking\n\ | |
7468 | mode (see help set scheduler-locking)."), | |
7469 | NULL, | |
7470 | show_schedule_multiple, | |
7471 | &setlist, &showlist); | |
7472 | ||
5bf193a2 AC |
7473 | add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\ |
7474 | Set mode of the step operation."), _("\ | |
7475 | Show mode of the step operation."), _("\ | |
7476 | When set, doing a step over a function without debug line information\n\ | |
7477 | will stop at the first instruction of that function. Otherwise, the\n\ | |
7478 | function is skipped and the step command stops at a different source line."), | |
7479 | NULL, | |
920d2a44 | 7480 | show_step_stop_if_no_debug, |
5bf193a2 | 7481 | &setlist, &showlist); |
ca6724c1 | 7482 | |
72d0e2c5 YQ |
7483 | add_setshow_auto_boolean_cmd ("displaced-stepping", class_run, |
7484 | &can_use_displaced_stepping, _("\ | |
237fc4c9 PA |
7485 | Set debugger's willingness to use displaced stepping."), _("\ |
7486 | Show debugger's willingness to use displaced stepping."), _("\ | |
fff08868 HZ |
7487 | If on, gdb will use displaced stepping to step over breakpoints if it is\n\ |
7488 | supported by the target architecture. If off, gdb will not use displaced\n\ | |
7489 | stepping to step over breakpoints, even if such is supported by the target\n\ | |
7490 | architecture. If auto (which is the default), gdb will use displaced stepping\n\ | |
7491 | if the target architecture supports it and non-stop mode is active, but will not\n\ | |
7492 | use it in all-stop mode (see help set non-stop)."), | |
72d0e2c5 YQ |
7493 | NULL, |
7494 | show_can_use_displaced_stepping, | |
7495 | &setlist, &showlist); | |
237fc4c9 | 7496 | |
b2175913 MS |
7497 | add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names, |
7498 | &exec_direction, _("Set direction of execution.\n\ | |
7499 | Options are 'forward' or 'reverse'."), | |
7500 | _("Show direction of execution (forward/reverse)."), | |
7501 | _("Tells gdb whether to execute forward or backward."), | |
7502 | set_exec_direction_func, show_exec_direction_func, | |
7503 | &setlist, &showlist); | |
7504 | ||
6c95b8df PA |
7505 | /* Set/show detach-on-fork: user-settable mode. */ |
7506 | ||
7507 | add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\ | |
7508 | Set whether gdb will detach the child of a fork."), _("\ | |
7509 | Show whether gdb will detach the child of a fork."), _("\ | |
7510 | Tells gdb whether to detach the child of a fork."), | |
7511 | NULL, NULL, &setlist, &showlist); | |
7512 | ||
03583c20 UW |
7513 | /* Set/show disable address space randomization mode. */ |
7514 | ||
7515 | add_setshow_boolean_cmd ("disable-randomization", class_support, | |
7516 | &disable_randomization, _("\ | |
7517 | Set disabling of debuggee's virtual address space randomization."), _("\ | |
7518 | Show disabling of debuggee's virtual address space randomization."), _("\ | |
7519 | When this mode is on (which is the default), randomization of the virtual\n\ | |
7520 | address space is disabled. Standalone programs run with the randomization\n\ | |
7521 | enabled by default on some platforms."), | |
7522 | &set_disable_randomization, | |
7523 | &show_disable_randomization, | |
7524 | &setlist, &showlist); | |
7525 | ||
ca6724c1 | 7526 | /* ptid initializations */ |
ca6724c1 KB |
7527 | inferior_ptid = null_ptid; |
7528 | target_last_wait_ptid = minus_one_ptid; | |
5231c1fd PA |
7529 | |
7530 | observer_attach_thread_ptid_changed (infrun_thread_ptid_changed); | |
252fbfc8 | 7531 | observer_attach_thread_stop_requested (infrun_thread_stop_requested); |
a07daef3 | 7532 | observer_attach_thread_exit (infrun_thread_thread_exit); |
fc1cf338 | 7533 | observer_attach_inferior_exit (infrun_inferior_exit); |
4aa995e1 PA |
7534 | |
7535 | /* Explicitly create without lookup, since that tries to create a | |
7536 | value with a void typed value, and when we get here, gdbarch | |
7537 | isn't initialized yet. At this point, we're quite sure there | |
7538 | isn't another convenience variable of the same name. */ | |
22d2b532 | 7539 | create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL); |
d914c394 SS |
7540 | |
7541 | add_setshow_boolean_cmd ("observer", no_class, | |
7542 | &observer_mode_1, _("\ | |
7543 | Set whether gdb controls the inferior in observer mode."), _("\ | |
7544 | Show whether gdb controls the inferior in observer mode."), _("\ | |
7545 | In observer mode, GDB can get data from the inferior, but not\n\ | |
7546 | affect its execution. Registers and memory may not be changed,\n\ | |
7547 | breakpoints may not be set, and the program cannot be interrupted\n\ | |
7548 | or signalled."), | |
7549 | set_observer_mode, | |
7550 | show_observer_mode, | |
7551 | &setlist, | |
7552 | &showlist); | |
c906108c | 7553 | } |