]> Git Repo - binutils.git/blame - gdb/infrun.c
PR 13503
[binutils.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
0b302171 4 Copyright (C) 1986-2012 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
22#include "gdb_string.h"
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
60250e8b 27#include "exceptions.h"
c906108c 28#include "breakpoint.h"
03f2053f 29#include "gdb_wait.h"
c906108c
SS
30#include "gdbcore.h"
31#include "gdbcmd.h"
210661e7 32#include "cli/cli-script.h"
c906108c
SS
33#include "target.h"
34#include "gdbthread.h"
35#include "annotate.h"
1adeb98a 36#include "symfile.h"
7a292a7a 37#include "top.h"
c906108c 38#include <signal.h>
2acceee2 39#include "inf-loop.h"
4e052eda 40#include "regcache.h"
fd0407d6 41#include "value.h"
06600e06 42#include "observer.h"
f636b87d 43#include "language.h"
a77053c2 44#include "solib.h"
f17517ea 45#include "main.h"
186c406b
TT
46#include "dictionary.h"
47#include "block.h"
9f976b41 48#include "gdb_assert.h"
034dad6f 49#include "mi/mi-common.h"
4f8d22e3 50#include "event-top.h"
96429cc8 51#include "record.h"
edb3359d 52#include "inline-frame.h"
4efc6507 53#include "jit.h"
06cd862c 54#include "tracepoint.h"
be34f849 55#include "continuations.h"
b4a14fd0 56#include "interps.h"
1bfeeb0f 57#include "skip.h"
28106bc2
SDJ
58#include "probe.h"
59#include "objfiles.h"
c906108c
SS
60
61/* Prototypes for local functions */
62
96baa820 63static void signals_info (char *, int);
c906108c 64
96baa820 65static void handle_command (char *, int);
c906108c 66
2ea28649 67static void sig_print_info (enum gdb_signal);
c906108c 68
96baa820 69static void sig_print_header (void);
c906108c 70
74b7792f 71static void resume_cleanups (void *);
c906108c 72
96baa820 73static int hook_stop_stub (void *);
c906108c 74
96baa820
JM
75static int restore_selected_frame (void *);
76
4ef3f3be 77static int follow_fork (void);
96baa820
JM
78
79static void set_schedlock_func (char *args, int from_tty,
488f131b 80 struct cmd_list_element *c);
96baa820 81
a289b8f6
JK
82static int currently_stepping (struct thread_info *tp);
83
b3444185
PA
84static int currently_stepping_or_nexting_callback (struct thread_info *tp,
85 void *data);
a7212384 86
96baa820
JM
87static void xdb_handle_command (char *args, int from_tty);
88
6a6b96b9 89static int prepare_to_proceed (int);
ea67f13b 90
33d62d64
JK
91static void print_exited_reason (int exitstatus);
92
2ea28649 93static void print_signal_exited_reason (enum gdb_signal siggnal);
33d62d64
JK
94
95static void print_no_history_reason (void);
96
2ea28649 97static void print_signal_received_reason (enum gdb_signal siggnal);
33d62d64
JK
98
99static void print_end_stepping_range_reason (void);
100
96baa820 101void _initialize_infrun (void);
43ff13b4 102
e58b0e63
PA
103void nullify_last_target_wait_ptid (void);
104
2c03e5be 105static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
106
107static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
108
2484c66b
UW
109static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
110
5fbbeb29
CF
111/* When set, stop the 'step' command if we enter a function which has
112 no line number information. The normal behavior is that we step
113 over such function. */
114int step_stop_if_no_debug = 0;
920d2a44
AC
115static void
116show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
117 struct cmd_list_element *c, const char *value)
118{
119 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
120}
5fbbeb29 121
1777feb0 122/* In asynchronous mode, but simulating synchronous execution. */
96baa820 123
43ff13b4
JM
124int sync_execution = 0;
125
c906108c
SS
126/* wait_for_inferior and normal_stop use this to notify the user
127 when the inferior stopped in a different thread than it had been
96baa820
JM
128 running in. */
129
39f77062 130static ptid_t previous_inferior_ptid;
7a292a7a 131
6c95b8df
PA
132/* Default behavior is to detach newly forked processes (legacy). */
133int detach_fork = 1;
134
237fc4c9
PA
135int debug_displaced = 0;
136static void
137show_debug_displaced (struct ui_file *file, int from_tty,
138 struct cmd_list_element *c, const char *value)
139{
140 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
141}
142
628fe4e4 143int debug_infrun = 0;
920d2a44
AC
144static void
145show_debug_infrun (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147{
148 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
149}
527159b7 150
03583c20
UW
151
152/* Support for disabling address space randomization. */
153
154int disable_randomization = 1;
155
156static void
157show_disable_randomization (struct ui_file *file, int from_tty,
158 struct cmd_list_element *c, const char *value)
159{
160 if (target_supports_disable_randomization ())
161 fprintf_filtered (file,
162 _("Disabling randomization of debuggee's "
163 "virtual address space is %s.\n"),
164 value);
165 else
166 fputs_filtered (_("Disabling randomization of debuggee's "
167 "virtual address space is unsupported on\n"
168 "this platform.\n"), file);
169}
170
171static void
172set_disable_randomization (char *args, int from_tty,
173 struct cmd_list_element *c)
174{
175 if (!target_supports_disable_randomization ())
176 error (_("Disabling randomization of debuggee's "
177 "virtual address space is unsupported on\n"
178 "this platform."));
179}
180
181
d4f3574e
SS
182/* If the program uses ELF-style shared libraries, then calls to
183 functions in shared libraries go through stubs, which live in a
184 table called the PLT (Procedure Linkage Table). The first time the
185 function is called, the stub sends control to the dynamic linker,
186 which looks up the function's real address, patches the stub so
187 that future calls will go directly to the function, and then passes
188 control to the function.
189
190 If we are stepping at the source level, we don't want to see any of
191 this --- we just want to skip over the stub and the dynamic linker.
192 The simple approach is to single-step until control leaves the
193 dynamic linker.
194
ca557f44
AC
195 However, on some systems (e.g., Red Hat's 5.2 distribution) the
196 dynamic linker calls functions in the shared C library, so you
197 can't tell from the PC alone whether the dynamic linker is still
198 running. In this case, we use a step-resume breakpoint to get us
199 past the dynamic linker, as if we were using "next" to step over a
200 function call.
d4f3574e 201
cfd8ab24 202 in_solib_dynsym_resolve_code() says whether we're in the dynamic
d4f3574e
SS
203 linker code or not. Normally, this means we single-step. However,
204 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
205 address where we can place a step-resume breakpoint to get past the
206 linker's symbol resolution function.
207
cfd8ab24 208 in_solib_dynsym_resolve_code() can generally be implemented in a
d4f3574e
SS
209 pretty portable way, by comparing the PC against the address ranges
210 of the dynamic linker's sections.
211
212 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
213 it depends on internal details of the dynamic linker. It's usually
214 not too hard to figure out where to put a breakpoint, but it
215 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
216 sanity checking. If it can't figure things out, returning zero and
217 getting the (possibly confusing) stepping behavior is better than
218 signalling an error, which will obscure the change in the
219 inferior's state. */
c906108c 220
c906108c
SS
221/* This function returns TRUE if pc is the address of an instruction
222 that lies within the dynamic linker (such as the event hook, or the
223 dld itself).
224
225 This function must be used only when a dynamic linker event has
226 been caught, and the inferior is being stepped out of the hook, or
227 undefined results are guaranteed. */
228
229#ifndef SOLIB_IN_DYNAMIC_LINKER
230#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
231#endif
232
d914c394
SS
233/* "Observer mode" is somewhat like a more extreme version of
234 non-stop, in which all GDB operations that might affect the
235 target's execution have been disabled. */
236
237static int non_stop_1 = 0;
238
239int observer_mode = 0;
240static int observer_mode_1 = 0;
241
242static void
243set_observer_mode (char *args, int from_tty,
244 struct cmd_list_element *c)
245{
246 extern int pagination_enabled;
247
248 if (target_has_execution)
249 {
250 observer_mode_1 = observer_mode;
251 error (_("Cannot change this setting while the inferior is running."));
252 }
253
254 observer_mode = observer_mode_1;
255
256 may_write_registers = !observer_mode;
257 may_write_memory = !observer_mode;
258 may_insert_breakpoints = !observer_mode;
259 may_insert_tracepoints = !observer_mode;
260 /* We can insert fast tracepoints in or out of observer mode,
261 but enable them if we're going into this mode. */
262 if (observer_mode)
263 may_insert_fast_tracepoints = 1;
264 may_stop = !observer_mode;
265 update_target_permissions ();
266
267 /* Going *into* observer mode we must force non-stop, then
268 going out we leave it that way. */
269 if (observer_mode)
270 {
271 target_async_permitted = 1;
272 pagination_enabled = 0;
273 non_stop = non_stop_1 = 1;
274 }
275
276 if (from_tty)
277 printf_filtered (_("Observer mode is now %s.\n"),
278 (observer_mode ? "on" : "off"));
279}
280
281static void
282show_observer_mode (struct ui_file *file, int from_tty,
283 struct cmd_list_element *c, const char *value)
284{
285 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
286}
287
288/* This updates the value of observer mode based on changes in
289 permissions. Note that we are deliberately ignoring the values of
290 may-write-registers and may-write-memory, since the user may have
291 reason to enable these during a session, for instance to turn on a
292 debugging-related global. */
293
294void
295update_observer_mode (void)
296{
297 int newval;
298
299 newval = (!may_insert_breakpoints
300 && !may_insert_tracepoints
301 && may_insert_fast_tracepoints
302 && !may_stop
303 && non_stop);
304
305 /* Let the user know if things change. */
306 if (newval != observer_mode)
307 printf_filtered (_("Observer mode is now %s.\n"),
308 (newval ? "on" : "off"));
309
310 observer_mode = observer_mode_1 = newval;
311}
c2c6d25f 312
c906108c
SS
313/* Tables of how to react to signals; the user sets them. */
314
315static unsigned char *signal_stop;
316static unsigned char *signal_print;
317static unsigned char *signal_program;
318
2455069d
UW
319/* Table of signals that the target may silently handle.
320 This is automatically determined from the flags above,
321 and simply cached here. */
322static unsigned char *signal_pass;
323
c906108c
SS
324#define SET_SIGS(nsigs,sigs,flags) \
325 do { \
326 int signum = (nsigs); \
327 while (signum-- > 0) \
328 if ((sigs)[signum]) \
329 (flags)[signum] = 1; \
330 } while (0)
331
332#define UNSET_SIGS(nsigs,sigs,flags) \
333 do { \
334 int signum = (nsigs); \
335 while (signum-- > 0) \
336 if ((sigs)[signum]) \
337 (flags)[signum] = 0; \
338 } while (0)
339
9b224c5e
PA
340/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
341 this function is to avoid exporting `signal_program'. */
342
343void
344update_signals_program_target (void)
345{
a493e3e2 346 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
347}
348
1777feb0 349/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 350
edb3359d 351#define RESUME_ALL minus_one_ptid
c906108c
SS
352
353/* Command list pointer for the "stop" placeholder. */
354
355static struct cmd_list_element *stop_command;
356
c906108c
SS
357/* Function inferior was in as of last step command. */
358
359static struct symbol *step_start_function;
360
c906108c
SS
361/* Nonzero if we want to give control to the user when we're notified
362 of shared library events by the dynamic linker. */
628fe4e4 363int stop_on_solib_events;
920d2a44
AC
364static void
365show_stop_on_solib_events (struct ui_file *file, int from_tty,
366 struct cmd_list_element *c, const char *value)
367{
368 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
369 value);
370}
c906108c 371
c906108c
SS
372/* Nonzero means expecting a trace trap
373 and should stop the inferior and return silently when it happens. */
374
375int stop_after_trap;
376
642fd101
DE
377/* Save register contents here when executing a "finish" command or are
378 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
379 Thus this contains the return value from the called function (assuming
380 values are returned in a register). */
381
72cec141 382struct regcache *stop_registers;
c906108c 383
c906108c
SS
384/* Nonzero after stop if current stack frame should be printed. */
385
386static int stop_print_frame;
387
e02bc4cc 388/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
389 returned by target_wait()/deprecated_target_wait_hook(). This
390 information is returned by get_last_target_status(). */
39f77062 391static ptid_t target_last_wait_ptid;
e02bc4cc
DS
392static struct target_waitstatus target_last_waitstatus;
393
0d1e5fa7
PA
394static void context_switch (ptid_t ptid);
395
4e1c45ea 396void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7
PA
397
398void init_infwait_state (void);
a474d7c2 399
53904c9e
AC
400static const char follow_fork_mode_child[] = "child";
401static const char follow_fork_mode_parent[] = "parent";
402
40478521 403static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
404 follow_fork_mode_child,
405 follow_fork_mode_parent,
406 NULL
ef346e04 407};
c906108c 408
53904c9e 409static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
410static void
411show_follow_fork_mode_string (struct ui_file *file, int from_tty,
412 struct cmd_list_element *c, const char *value)
413{
3e43a32a
MS
414 fprintf_filtered (file,
415 _("Debugger response to a program "
416 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
417 value);
418}
c906108c
SS
419\f
420
e58b0e63
PA
421/* Tell the target to follow the fork we're stopped at. Returns true
422 if the inferior should be resumed; false, if the target for some
423 reason decided it's best not to resume. */
424
6604731b 425static int
4ef3f3be 426follow_fork (void)
c906108c 427{
ea1dd7bc 428 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
429 int should_resume = 1;
430 struct thread_info *tp;
431
432 /* Copy user stepping state to the new inferior thread. FIXME: the
433 followed fork child thread should have a copy of most of the
4e3990f4
DE
434 parent thread structure's run control related fields, not just these.
435 Initialized to avoid "may be used uninitialized" warnings from gcc. */
436 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 437 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
438 CORE_ADDR step_range_start = 0;
439 CORE_ADDR step_range_end = 0;
440 struct frame_id step_frame_id = { 0 };
e58b0e63
PA
441
442 if (!non_stop)
443 {
444 ptid_t wait_ptid;
445 struct target_waitstatus wait_status;
446
447 /* Get the last target status returned by target_wait(). */
448 get_last_target_status (&wait_ptid, &wait_status);
449
450 /* If not stopped at a fork event, then there's nothing else to
451 do. */
452 if (wait_status.kind != TARGET_WAITKIND_FORKED
453 && wait_status.kind != TARGET_WAITKIND_VFORKED)
454 return 1;
455
456 /* Check if we switched over from WAIT_PTID, since the event was
457 reported. */
458 if (!ptid_equal (wait_ptid, minus_one_ptid)
459 && !ptid_equal (inferior_ptid, wait_ptid))
460 {
461 /* We did. Switch back to WAIT_PTID thread, to tell the
462 target to follow it (in either direction). We'll
463 afterwards refuse to resume, and inform the user what
464 happened. */
465 switch_to_thread (wait_ptid);
466 should_resume = 0;
467 }
468 }
469
470 tp = inferior_thread ();
471
472 /* If there were any forks/vforks that were caught and are now to be
473 followed, then do so now. */
474 switch (tp->pending_follow.kind)
475 {
476 case TARGET_WAITKIND_FORKED:
477 case TARGET_WAITKIND_VFORKED:
478 {
479 ptid_t parent, child;
480
481 /* If the user did a next/step, etc, over a fork call,
482 preserve the stepping state in the fork child. */
483 if (follow_child && should_resume)
484 {
8358c15c
JK
485 step_resume_breakpoint = clone_momentary_breakpoint
486 (tp->control.step_resume_breakpoint);
16c381f0
JK
487 step_range_start = tp->control.step_range_start;
488 step_range_end = tp->control.step_range_end;
489 step_frame_id = tp->control.step_frame_id;
186c406b
TT
490 exception_resume_breakpoint
491 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
e58b0e63
PA
492
493 /* For now, delete the parent's sr breakpoint, otherwise,
494 parent/child sr breakpoints are considered duplicates,
495 and the child version will not be installed. Remove
496 this when the breakpoints module becomes aware of
497 inferiors and address spaces. */
498 delete_step_resume_breakpoint (tp);
16c381f0
JK
499 tp->control.step_range_start = 0;
500 tp->control.step_range_end = 0;
501 tp->control.step_frame_id = null_frame_id;
186c406b 502 delete_exception_resume_breakpoint (tp);
e58b0e63
PA
503 }
504
505 parent = inferior_ptid;
506 child = tp->pending_follow.value.related_pid;
507
508 /* Tell the target to do whatever is necessary to follow
509 either parent or child. */
510 if (target_follow_fork (follow_child))
511 {
512 /* Target refused to follow, or there's some other reason
513 we shouldn't resume. */
514 should_resume = 0;
515 }
516 else
517 {
518 /* This pending follow fork event is now handled, one way
519 or another. The previous selected thread may be gone
520 from the lists by now, but if it is still around, need
521 to clear the pending follow request. */
e09875d4 522 tp = find_thread_ptid (parent);
e58b0e63
PA
523 if (tp)
524 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
525
526 /* This makes sure we don't try to apply the "Switched
527 over from WAIT_PID" logic above. */
528 nullify_last_target_wait_ptid ();
529
1777feb0 530 /* If we followed the child, switch to it... */
e58b0e63
PA
531 if (follow_child)
532 {
533 switch_to_thread (child);
534
535 /* ... and preserve the stepping state, in case the
536 user was stepping over the fork call. */
537 if (should_resume)
538 {
539 tp = inferior_thread ();
8358c15c
JK
540 tp->control.step_resume_breakpoint
541 = step_resume_breakpoint;
16c381f0
JK
542 tp->control.step_range_start = step_range_start;
543 tp->control.step_range_end = step_range_end;
544 tp->control.step_frame_id = step_frame_id;
186c406b
TT
545 tp->control.exception_resume_breakpoint
546 = exception_resume_breakpoint;
e58b0e63
PA
547 }
548 else
549 {
550 /* If we get here, it was because we're trying to
551 resume from a fork catchpoint, but, the user
552 has switched threads away from the thread that
553 forked. In that case, the resume command
554 issued is most likely not applicable to the
555 child, so just warn, and refuse to resume. */
3e43a32a
MS
556 warning (_("Not resuming: switched threads "
557 "before following fork child.\n"));
e58b0e63
PA
558 }
559
560 /* Reset breakpoints in the child as appropriate. */
561 follow_inferior_reset_breakpoints ();
562 }
563 else
564 switch_to_thread (parent);
565 }
566 }
567 break;
568 case TARGET_WAITKIND_SPURIOUS:
569 /* Nothing to follow. */
570 break;
571 default:
572 internal_error (__FILE__, __LINE__,
573 "Unexpected pending_follow.kind %d\n",
574 tp->pending_follow.kind);
575 break;
576 }
c906108c 577
e58b0e63 578 return should_resume;
c906108c
SS
579}
580
6604731b
DJ
581void
582follow_inferior_reset_breakpoints (void)
c906108c 583{
4e1c45ea
PA
584 struct thread_info *tp = inferior_thread ();
585
6604731b
DJ
586 /* Was there a step_resume breakpoint? (There was if the user
587 did a "next" at the fork() call.) If so, explicitly reset its
588 thread number.
589
590 step_resumes are a form of bp that are made to be per-thread.
591 Since we created the step_resume bp when the parent process
592 was being debugged, and now are switching to the child process,
593 from the breakpoint package's viewpoint, that's a switch of
594 "threads". We must update the bp's notion of which thread
595 it is for, or it'll be ignored when it triggers. */
596
8358c15c
JK
597 if (tp->control.step_resume_breakpoint)
598 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
6604731b 599
186c406b
TT
600 if (tp->control.exception_resume_breakpoint)
601 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
602
6604731b
DJ
603 /* Reinsert all breakpoints in the child. The user may have set
604 breakpoints after catching the fork, in which case those
605 were never set in the child, but only in the parent. This makes
606 sure the inserted breakpoints match the breakpoint list. */
607
608 breakpoint_re_set ();
609 insert_breakpoints ();
c906108c 610}
c906108c 611
6c95b8df
PA
612/* The child has exited or execed: resume threads of the parent the
613 user wanted to be executing. */
614
615static int
616proceed_after_vfork_done (struct thread_info *thread,
617 void *arg)
618{
619 int pid = * (int *) arg;
620
621 if (ptid_get_pid (thread->ptid) == pid
622 && is_running (thread->ptid)
623 && !is_executing (thread->ptid)
624 && !thread->stop_requested
a493e3e2 625 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
626 {
627 if (debug_infrun)
628 fprintf_unfiltered (gdb_stdlog,
629 "infrun: resuming vfork parent thread %s\n",
630 target_pid_to_str (thread->ptid));
631
632 switch_to_thread (thread->ptid);
633 clear_proceed_status ();
a493e3e2 634 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
6c95b8df
PA
635 }
636
637 return 0;
638}
639
640/* Called whenever we notice an exec or exit event, to handle
641 detaching or resuming a vfork parent. */
642
643static void
644handle_vfork_child_exec_or_exit (int exec)
645{
646 struct inferior *inf = current_inferior ();
647
648 if (inf->vfork_parent)
649 {
650 int resume_parent = -1;
651
652 /* This exec or exit marks the end of the shared memory region
653 between the parent and the child. If the user wanted to
654 detach from the parent, now is the time. */
655
656 if (inf->vfork_parent->pending_detach)
657 {
658 struct thread_info *tp;
659 struct cleanup *old_chain;
660 struct program_space *pspace;
661 struct address_space *aspace;
662
1777feb0 663 /* follow-fork child, detach-on-fork on. */
6c95b8df
PA
664
665 old_chain = make_cleanup_restore_current_thread ();
666
667 /* We're letting loose of the parent. */
668 tp = any_live_thread_of_process (inf->vfork_parent->pid);
669 switch_to_thread (tp->ptid);
670
671 /* We're about to detach from the parent, which implicitly
672 removes breakpoints from its address space. There's a
673 catch here: we want to reuse the spaces for the child,
674 but, parent/child are still sharing the pspace at this
675 point, although the exec in reality makes the kernel give
676 the child a fresh set of new pages. The problem here is
677 that the breakpoints module being unaware of this, would
678 likely chose the child process to write to the parent
679 address space. Swapping the child temporarily away from
680 the spaces has the desired effect. Yes, this is "sort
681 of" a hack. */
682
683 pspace = inf->pspace;
684 aspace = inf->aspace;
685 inf->aspace = NULL;
686 inf->pspace = NULL;
687
688 if (debug_infrun || info_verbose)
689 {
690 target_terminal_ours ();
691
692 if (exec)
693 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
694 "Detaching vfork parent process "
695 "%d after child exec.\n",
6c95b8df
PA
696 inf->vfork_parent->pid);
697 else
698 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
699 "Detaching vfork parent process "
700 "%d after child exit.\n",
6c95b8df
PA
701 inf->vfork_parent->pid);
702 }
703
704 target_detach (NULL, 0);
705
706 /* Put it back. */
707 inf->pspace = pspace;
708 inf->aspace = aspace;
709
710 do_cleanups (old_chain);
711 }
712 else if (exec)
713 {
714 /* We're staying attached to the parent, so, really give the
715 child a new address space. */
716 inf->pspace = add_program_space (maybe_new_address_space ());
717 inf->aspace = inf->pspace->aspace;
718 inf->removable = 1;
719 set_current_program_space (inf->pspace);
720
721 resume_parent = inf->vfork_parent->pid;
722
723 /* Break the bonds. */
724 inf->vfork_parent->vfork_child = NULL;
725 }
726 else
727 {
728 struct cleanup *old_chain;
729 struct program_space *pspace;
730
731 /* If this is a vfork child exiting, then the pspace and
732 aspaces were shared with the parent. Since we're
733 reporting the process exit, we'll be mourning all that is
734 found in the address space, and switching to null_ptid,
735 preparing to start a new inferior. But, since we don't
736 want to clobber the parent's address/program spaces, we
737 go ahead and create a new one for this exiting
738 inferior. */
739
740 /* Switch to null_ptid, so that clone_program_space doesn't want
741 to read the selected frame of a dead process. */
742 old_chain = save_inferior_ptid ();
743 inferior_ptid = null_ptid;
744
745 /* This inferior is dead, so avoid giving the breakpoints
746 module the option to write through to it (cloning a
747 program space resets breakpoints). */
748 inf->aspace = NULL;
749 inf->pspace = NULL;
750 pspace = add_program_space (maybe_new_address_space ());
751 set_current_program_space (pspace);
752 inf->removable = 1;
7dcd53a0 753 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
754 clone_program_space (pspace, inf->vfork_parent->pspace);
755 inf->pspace = pspace;
756 inf->aspace = pspace->aspace;
757
758 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 759 inferior. */
6c95b8df
PA
760 do_cleanups (old_chain);
761
762 resume_parent = inf->vfork_parent->pid;
763 /* Break the bonds. */
764 inf->vfork_parent->vfork_child = NULL;
765 }
766
767 inf->vfork_parent = NULL;
768
769 gdb_assert (current_program_space == inf->pspace);
770
771 if (non_stop && resume_parent != -1)
772 {
773 /* If the user wanted the parent to be running, let it go
774 free now. */
775 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
776
777 if (debug_infrun)
3e43a32a
MS
778 fprintf_unfiltered (gdb_stdlog,
779 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
780 resume_parent);
781
782 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
783
784 do_cleanups (old_chain);
785 }
786 }
787}
788
789/* Enum strings for "set|show displaced-stepping". */
790
791static const char follow_exec_mode_new[] = "new";
792static const char follow_exec_mode_same[] = "same";
40478521 793static const char *const follow_exec_mode_names[] =
6c95b8df
PA
794{
795 follow_exec_mode_new,
796 follow_exec_mode_same,
797 NULL,
798};
799
800static const char *follow_exec_mode_string = follow_exec_mode_same;
801static void
802show_follow_exec_mode_string (struct ui_file *file, int from_tty,
803 struct cmd_list_element *c, const char *value)
804{
805 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
806}
807
1777feb0 808/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 809
c906108c 810static void
3a3e9ee3 811follow_exec (ptid_t pid, char *execd_pathname)
c906108c 812{
4e1c45ea 813 struct thread_info *th = inferior_thread ();
6c95b8df 814 struct inferior *inf = current_inferior ();
7a292a7a 815
c906108c
SS
816 /* This is an exec event that we actually wish to pay attention to.
817 Refresh our symbol table to the newly exec'd program, remove any
818 momentary bp's, etc.
819
820 If there are breakpoints, they aren't really inserted now,
821 since the exec() transformed our inferior into a fresh set
822 of instructions.
823
824 We want to preserve symbolic breakpoints on the list, since
825 we have hopes that they can be reset after the new a.out's
826 symbol table is read.
827
828 However, any "raw" breakpoints must be removed from the list
829 (e.g., the solib bp's), since their address is probably invalid
830 now.
831
832 And, we DON'T want to call delete_breakpoints() here, since
833 that may write the bp's "shadow contents" (the instruction
834 value that was overwritten witha TRAP instruction). Since
1777feb0 835 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
836
837 mark_breakpoints_out ();
838
c906108c
SS
839 update_breakpoints_after_exec ();
840
841 /* If there was one, it's gone now. We cannot truly step-to-next
1777feb0 842 statement through an exec(). */
8358c15c 843 th->control.step_resume_breakpoint = NULL;
186c406b 844 th->control.exception_resume_breakpoint = NULL;
16c381f0
JK
845 th->control.step_range_start = 0;
846 th->control.step_range_end = 0;
c906108c 847
a75724bc
PA
848 /* The target reports the exec event to the main thread, even if
849 some other thread does the exec, and even if the main thread was
850 already stopped --- if debugging in non-stop mode, it's possible
851 the user had the main thread held stopped in the previous image
852 --- release it now. This is the same behavior as step-over-exec
853 with scheduler-locking on in all-stop mode. */
854 th->stop_requested = 0;
855
1777feb0 856 /* What is this a.out's name? */
6c95b8df
PA
857 printf_unfiltered (_("%s is executing new program: %s\n"),
858 target_pid_to_str (inferior_ptid),
859 execd_pathname);
c906108c
SS
860
861 /* We've followed the inferior through an exec. Therefore, the
1777feb0 862 inferior has essentially been killed & reborn. */
7a292a7a 863
c906108c 864 gdb_flush (gdb_stdout);
6ca15a4b
PA
865
866 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
867
868 if (gdb_sysroot && *gdb_sysroot)
869 {
870 char *name = alloca (strlen (gdb_sysroot)
871 + strlen (execd_pathname)
872 + 1);
abbb1732 873
e85a822c
DJ
874 strcpy (name, gdb_sysroot);
875 strcat (name, execd_pathname);
876 execd_pathname = name;
877 }
c906108c 878
cce9b6bf
PA
879 /* Reset the shared library package. This ensures that we get a
880 shlib event when the child reaches "_start", at which point the
881 dld will have had a chance to initialize the child. */
882 /* Also, loading a symbol file below may trigger symbol lookups, and
883 we don't want those to be satisfied by the libraries of the
884 previous incarnation of this process. */
885 no_shared_libraries (NULL, 0);
886
6c95b8df
PA
887 if (follow_exec_mode_string == follow_exec_mode_new)
888 {
889 struct program_space *pspace;
6c95b8df
PA
890
891 /* The user wants to keep the old inferior and program spaces
892 around. Create a new fresh one, and switch to it. */
893
894 inf = add_inferior (current_inferior ()->pid);
895 pspace = add_program_space (maybe_new_address_space ());
896 inf->pspace = pspace;
897 inf->aspace = pspace->aspace;
898
899 exit_inferior_num_silent (current_inferior ()->num);
900
901 set_current_inferior (inf);
902 set_current_program_space (pspace);
903 }
904
905 gdb_assert (current_program_space == inf->pspace);
906
1777feb0 907 /* That a.out is now the one to use. */
6c95b8df
PA
908 exec_file_attach (execd_pathname, 0);
909
c1e56572
JK
910 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
911 (Position Independent Executable) main symbol file will get applied by
912 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
913 the breakpoints with the zero displacement. */
914
7dcd53a0
TT
915 symbol_file_add (execd_pathname,
916 (inf->symfile_flags
917 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
c1e56572
JK
918 NULL, 0);
919
7dcd53a0
TT
920 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
921 set_initial_language ();
c906108c 922
7a292a7a 923#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 924 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2 925#else
268a4a75 926 solib_create_inferior_hook (0);
7a292a7a 927#endif
c906108c 928
4efc6507
DE
929 jit_inferior_created_hook ();
930
c1e56572
JK
931 breakpoint_re_set ();
932
c906108c
SS
933 /* Reinsert all breakpoints. (Those which were symbolic have
934 been reset to the proper address in the new a.out, thanks
1777feb0 935 to symbol_file_command...). */
c906108c
SS
936 insert_breakpoints ();
937
938 /* The next resume of this inferior should bring it to the shlib
939 startup breakpoints. (If the user had also set bp's on
940 "main" from the old (parent) process, then they'll auto-
1777feb0 941 matically get reset there in the new process.). */
c906108c
SS
942}
943
944/* Non-zero if we just simulating a single-step. This is needed
945 because we cannot remove the breakpoints in the inferior process
946 until after the `wait' in `wait_for_inferior'. */
947static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
948
949/* The thread we inserted single-step breakpoints for. */
950static ptid_t singlestep_ptid;
951
fd48f117
DJ
952/* PC when we started this single-step. */
953static CORE_ADDR singlestep_pc;
954
9f976b41
DJ
955/* If another thread hit the singlestep breakpoint, we save the original
956 thread here so that we can resume single-stepping it later. */
957static ptid_t saved_singlestep_ptid;
958static int stepping_past_singlestep_breakpoint;
6a6b96b9 959
ca67fcb8
VP
960/* If not equal to null_ptid, this means that after stepping over breakpoint
961 is finished, we need to switch to deferred_step_ptid, and step it.
962
963 The use case is when one thread has hit a breakpoint, and then the user
1777feb0 964 has switched to another thread and issued 'step'. We need to step over
ca67fcb8
VP
965 breakpoint in the thread which hit the breakpoint, but then continue
966 stepping the thread user has selected. */
967static ptid_t deferred_step_ptid;
c906108c 968\f
237fc4c9
PA
969/* Displaced stepping. */
970
971/* In non-stop debugging mode, we must take special care to manage
972 breakpoints properly; in particular, the traditional strategy for
973 stepping a thread past a breakpoint it has hit is unsuitable.
974 'Displaced stepping' is a tactic for stepping one thread past a
975 breakpoint it has hit while ensuring that other threads running
976 concurrently will hit the breakpoint as they should.
977
978 The traditional way to step a thread T off a breakpoint in a
979 multi-threaded program in all-stop mode is as follows:
980
981 a0) Initially, all threads are stopped, and breakpoints are not
982 inserted.
983 a1) We single-step T, leaving breakpoints uninserted.
984 a2) We insert breakpoints, and resume all threads.
985
986 In non-stop debugging, however, this strategy is unsuitable: we
987 don't want to have to stop all threads in the system in order to
988 continue or step T past a breakpoint. Instead, we use displaced
989 stepping:
990
991 n0) Initially, T is stopped, other threads are running, and
992 breakpoints are inserted.
993 n1) We copy the instruction "under" the breakpoint to a separate
994 location, outside the main code stream, making any adjustments
995 to the instruction, register, and memory state as directed by
996 T's architecture.
997 n2) We single-step T over the instruction at its new location.
998 n3) We adjust the resulting register and memory state as directed
999 by T's architecture. This includes resetting T's PC to point
1000 back into the main instruction stream.
1001 n4) We resume T.
1002
1003 This approach depends on the following gdbarch methods:
1004
1005 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1006 indicate where to copy the instruction, and how much space must
1007 be reserved there. We use these in step n1.
1008
1009 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1010 address, and makes any necessary adjustments to the instruction,
1011 register contents, and memory. We use this in step n1.
1012
1013 - gdbarch_displaced_step_fixup adjusts registers and memory after
1014 we have successfuly single-stepped the instruction, to yield the
1015 same effect the instruction would have had if we had executed it
1016 at its original address. We use this in step n3.
1017
1018 - gdbarch_displaced_step_free_closure provides cleanup.
1019
1020 The gdbarch_displaced_step_copy_insn and
1021 gdbarch_displaced_step_fixup functions must be written so that
1022 copying an instruction with gdbarch_displaced_step_copy_insn,
1023 single-stepping across the copied instruction, and then applying
1024 gdbarch_displaced_insn_fixup should have the same effects on the
1025 thread's memory and registers as stepping the instruction in place
1026 would have. Exactly which responsibilities fall to the copy and
1027 which fall to the fixup is up to the author of those functions.
1028
1029 See the comments in gdbarch.sh for details.
1030
1031 Note that displaced stepping and software single-step cannot
1032 currently be used in combination, although with some care I think
1033 they could be made to. Software single-step works by placing
1034 breakpoints on all possible subsequent instructions; if the
1035 displaced instruction is a PC-relative jump, those breakpoints
1036 could fall in very strange places --- on pages that aren't
1037 executable, or at addresses that are not proper instruction
1038 boundaries. (We do generally let other threads run while we wait
1039 to hit the software single-step breakpoint, and they might
1040 encounter such a corrupted instruction.) One way to work around
1041 this would be to have gdbarch_displaced_step_copy_insn fully
1042 simulate the effect of PC-relative instructions (and return NULL)
1043 on architectures that use software single-stepping.
1044
1045 In non-stop mode, we can have independent and simultaneous step
1046 requests, so more than one thread may need to simultaneously step
1047 over a breakpoint. The current implementation assumes there is
1048 only one scratch space per process. In this case, we have to
1049 serialize access to the scratch space. If thread A wants to step
1050 over a breakpoint, but we are currently waiting for some other
1051 thread to complete a displaced step, we leave thread A stopped and
1052 place it in the displaced_step_request_queue. Whenever a displaced
1053 step finishes, we pick the next thread in the queue and start a new
1054 displaced step operation on it. See displaced_step_prepare and
1055 displaced_step_fixup for details. */
1056
237fc4c9
PA
1057struct displaced_step_request
1058{
1059 ptid_t ptid;
1060 struct displaced_step_request *next;
1061};
1062
fc1cf338
PA
1063/* Per-inferior displaced stepping state. */
1064struct displaced_step_inferior_state
1065{
1066 /* Pointer to next in linked list. */
1067 struct displaced_step_inferior_state *next;
1068
1069 /* The process this displaced step state refers to. */
1070 int pid;
1071
1072 /* A queue of pending displaced stepping requests. One entry per
1073 thread that needs to do a displaced step. */
1074 struct displaced_step_request *step_request_queue;
1075
1076 /* If this is not null_ptid, this is the thread carrying out a
1077 displaced single-step in process PID. This thread's state will
1078 require fixing up once it has completed its step. */
1079 ptid_t step_ptid;
1080
1081 /* The architecture the thread had when we stepped it. */
1082 struct gdbarch *step_gdbarch;
1083
1084 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1085 for post-step cleanup. */
1086 struct displaced_step_closure *step_closure;
1087
1088 /* The address of the original instruction, and the copy we
1089 made. */
1090 CORE_ADDR step_original, step_copy;
1091
1092 /* Saved contents of copy area. */
1093 gdb_byte *step_saved_copy;
1094};
1095
1096/* The list of states of processes involved in displaced stepping
1097 presently. */
1098static struct displaced_step_inferior_state *displaced_step_inferior_states;
1099
1100/* Get the displaced stepping state of process PID. */
1101
1102static struct displaced_step_inferior_state *
1103get_displaced_stepping_state (int pid)
1104{
1105 struct displaced_step_inferior_state *state;
1106
1107 for (state = displaced_step_inferior_states;
1108 state != NULL;
1109 state = state->next)
1110 if (state->pid == pid)
1111 return state;
1112
1113 return NULL;
1114}
1115
1116/* Add a new displaced stepping state for process PID to the displaced
1117 stepping state list, or return a pointer to an already existing
1118 entry, if it already exists. Never returns NULL. */
1119
1120static struct displaced_step_inferior_state *
1121add_displaced_stepping_state (int pid)
1122{
1123 struct displaced_step_inferior_state *state;
1124
1125 for (state = displaced_step_inferior_states;
1126 state != NULL;
1127 state = state->next)
1128 if (state->pid == pid)
1129 return state;
237fc4c9 1130
fc1cf338
PA
1131 state = xcalloc (1, sizeof (*state));
1132 state->pid = pid;
1133 state->next = displaced_step_inferior_states;
1134 displaced_step_inferior_states = state;
237fc4c9 1135
fc1cf338
PA
1136 return state;
1137}
1138
a42244db
YQ
1139/* If inferior is in displaced stepping, and ADDR equals to starting address
1140 of copy area, return corresponding displaced_step_closure. Otherwise,
1141 return NULL. */
1142
1143struct displaced_step_closure*
1144get_displaced_step_closure_by_addr (CORE_ADDR addr)
1145{
1146 struct displaced_step_inferior_state *displaced
1147 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1148
1149 /* If checking the mode of displaced instruction in copy area. */
1150 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1151 && (displaced->step_copy == addr))
1152 return displaced->step_closure;
1153
1154 return NULL;
1155}
1156
fc1cf338 1157/* Remove the displaced stepping state of process PID. */
237fc4c9 1158
fc1cf338
PA
1159static void
1160remove_displaced_stepping_state (int pid)
1161{
1162 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1163
fc1cf338
PA
1164 gdb_assert (pid != 0);
1165
1166 it = displaced_step_inferior_states;
1167 prev_next_p = &displaced_step_inferior_states;
1168 while (it)
1169 {
1170 if (it->pid == pid)
1171 {
1172 *prev_next_p = it->next;
1173 xfree (it);
1174 return;
1175 }
1176
1177 prev_next_p = &it->next;
1178 it = *prev_next_p;
1179 }
1180}
1181
1182static void
1183infrun_inferior_exit (struct inferior *inf)
1184{
1185 remove_displaced_stepping_state (inf->pid);
1186}
237fc4c9 1187
fff08868
HZ
1188/* Enum strings for "set|show displaced-stepping". */
1189
1190static const char can_use_displaced_stepping_auto[] = "auto";
1191static const char can_use_displaced_stepping_on[] = "on";
1192static const char can_use_displaced_stepping_off[] = "off";
40478521 1193static const char *const can_use_displaced_stepping_enum[] =
fff08868
HZ
1194{
1195 can_use_displaced_stepping_auto,
1196 can_use_displaced_stepping_on,
1197 can_use_displaced_stepping_off,
1198 NULL,
1199};
1200
1201/* If ON, and the architecture supports it, GDB will use displaced
1202 stepping to step over breakpoints. If OFF, or if the architecture
1203 doesn't support it, GDB will instead use the traditional
1204 hold-and-step approach. If AUTO (which is the default), GDB will
1205 decide which technique to use to step over breakpoints depending on
1206 which of all-stop or non-stop mode is active --- displaced stepping
1207 in non-stop mode; hold-and-step in all-stop mode. */
1208
1209static const char *can_use_displaced_stepping =
1210 can_use_displaced_stepping_auto;
1211
237fc4c9
PA
1212static void
1213show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1214 struct cmd_list_element *c,
1215 const char *value)
1216{
fff08868 1217 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
3e43a32a
MS
1218 fprintf_filtered (file,
1219 _("Debugger's willingness to use displaced stepping "
1220 "to step over breakpoints is %s (currently %s).\n"),
fff08868
HZ
1221 value, non_stop ? "on" : "off");
1222 else
3e43a32a
MS
1223 fprintf_filtered (file,
1224 _("Debugger's willingness to use displaced stepping "
1225 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1226}
1227
fff08868
HZ
1228/* Return non-zero if displaced stepping can/should be used to step
1229 over breakpoints. */
1230
237fc4c9
PA
1231static int
1232use_displaced_stepping (struct gdbarch *gdbarch)
1233{
fff08868
HZ
1234 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
1235 && non_stop)
1236 || can_use_displaced_stepping == can_use_displaced_stepping_on)
96429cc8
HZ
1237 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1238 && !RECORD_IS_USED);
237fc4c9
PA
1239}
1240
1241/* Clean out any stray displaced stepping state. */
1242static void
fc1cf338 1243displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1244{
1245 /* Indicate that there is no cleanup pending. */
fc1cf338 1246 displaced->step_ptid = null_ptid;
237fc4c9 1247
fc1cf338 1248 if (displaced->step_closure)
237fc4c9 1249 {
fc1cf338
PA
1250 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1251 displaced->step_closure);
1252 displaced->step_closure = NULL;
237fc4c9
PA
1253 }
1254}
1255
1256static void
fc1cf338 1257displaced_step_clear_cleanup (void *arg)
237fc4c9 1258{
fc1cf338
PA
1259 struct displaced_step_inferior_state *state = arg;
1260
1261 displaced_step_clear (state);
237fc4c9
PA
1262}
1263
1264/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1265void
1266displaced_step_dump_bytes (struct ui_file *file,
1267 const gdb_byte *buf,
1268 size_t len)
1269{
1270 int i;
1271
1272 for (i = 0; i < len; i++)
1273 fprintf_unfiltered (file, "%02x ", buf[i]);
1274 fputs_unfiltered ("\n", file);
1275}
1276
1277/* Prepare to single-step, using displaced stepping.
1278
1279 Note that we cannot use displaced stepping when we have a signal to
1280 deliver. If we have a signal to deliver and an instruction to step
1281 over, then after the step, there will be no indication from the
1282 target whether the thread entered a signal handler or ignored the
1283 signal and stepped over the instruction successfully --- both cases
1284 result in a simple SIGTRAP. In the first case we mustn't do a
1285 fixup, and in the second case we must --- but we can't tell which.
1286 Comments in the code for 'random signals' in handle_inferior_event
1287 explain how we handle this case instead.
1288
1289 Returns 1 if preparing was successful -- this thread is going to be
1290 stepped now; or 0 if displaced stepping this thread got queued. */
1291static int
1292displaced_step_prepare (ptid_t ptid)
1293{
ad53cd71 1294 struct cleanup *old_cleanups, *ignore_cleanups;
237fc4c9
PA
1295 struct regcache *regcache = get_thread_regcache (ptid);
1296 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1297 CORE_ADDR original, copy;
1298 ULONGEST len;
1299 struct displaced_step_closure *closure;
fc1cf338 1300 struct displaced_step_inferior_state *displaced;
9e529e1d 1301 int status;
237fc4c9
PA
1302
1303 /* We should never reach this function if the architecture does not
1304 support displaced stepping. */
1305 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1306
fc1cf338
PA
1307 /* We have to displaced step one thread at a time, as we only have
1308 access to a single scratch space per inferior. */
237fc4c9 1309
fc1cf338
PA
1310 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1311
1312 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1313 {
1314 /* Already waiting for a displaced step to finish. Defer this
1315 request and place in queue. */
1316 struct displaced_step_request *req, *new_req;
1317
1318 if (debug_displaced)
1319 fprintf_unfiltered (gdb_stdlog,
1320 "displaced: defering step of %s\n",
1321 target_pid_to_str (ptid));
1322
1323 new_req = xmalloc (sizeof (*new_req));
1324 new_req->ptid = ptid;
1325 new_req->next = NULL;
1326
fc1cf338 1327 if (displaced->step_request_queue)
237fc4c9 1328 {
fc1cf338 1329 for (req = displaced->step_request_queue;
237fc4c9
PA
1330 req && req->next;
1331 req = req->next)
1332 ;
1333 req->next = new_req;
1334 }
1335 else
fc1cf338 1336 displaced->step_request_queue = new_req;
237fc4c9
PA
1337
1338 return 0;
1339 }
1340 else
1341 {
1342 if (debug_displaced)
1343 fprintf_unfiltered (gdb_stdlog,
1344 "displaced: stepping %s now\n",
1345 target_pid_to_str (ptid));
1346 }
1347
fc1cf338 1348 displaced_step_clear (displaced);
237fc4c9 1349
ad53cd71
PA
1350 old_cleanups = save_inferior_ptid ();
1351 inferior_ptid = ptid;
1352
515630c5 1353 original = regcache_read_pc (regcache);
237fc4c9
PA
1354
1355 copy = gdbarch_displaced_step_location (gdbarch);
1356 len = gdbarch_max_insn_length (gdbarch);
1357
1358 /* Save the original contents of the copy area. */
fc1cf338 1359 displaced->step_saved_copy = xmalloc (len);
ad53cd71 1360 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1361 &displaced->step_saved_copy);
9e529e1d
JK
1362 status = target_read_memory (copy, displaced->step_saved_copy, len);
1363 if (status != 0)
1364 throw_error (MEMORY_ERROR,
1365 _("Error accessing memory address %s (%s) for "
1366 "displaced-stepping scratch space."),
1367 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1368 if (debug_displaced)
1369 {
5af949e3
UW
1370 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1371 paddress (gdbarch, copy));
fc1cf338
PA
1372 displaced_step_dump_bytes (gdb_stdlog,
1373 displaced->step_saved_copy,
1374 len);
237fc4c9
PA
1375 };
1376
1377 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1378 original, copy, regcache);
237fc4c9
PA
1379
1380 /* We don't support the fully-simulated case at present. */
1381 gdb_assert (closure);
1382
9f5a595d
UW
1383 /* Save the information we need to fix things up if the step
1384 succeeds. */
fc1cf338
PA
1385 displaced->step_ptid = ptid;
1386 displaced->step_gdbarch = gdbarch;
1387 displaced->step_closure = closure;
1388 displaced->step_original = original;
1389 displaced->step_copy = copy;
9f5a595d 1390
fc1cf338 1391 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1392
1393 /* Resume execution at the copy. */
515630c5 1394 regcache_write_pc (regcache, copy);
237fc4c9 1395
ad53cd71
PA
1396 discard_cleanups (ignore_cleanups);
1397
1398 do_cleanups (old_cleanups);
237fc4c9
PA
1399
1400 if (debug_displaced)
5af949e3
UW
1401 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1402 paddress (gdbarch, copy));
237fc4c9 1403
237fc4c9
PA
1404 return 1;
1405}
1406
237fc4c9 1407static void
3e43a32a
MS
1408write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1409 const gdb_byte *myaddr, int len)
237fc4c9
PA
1410{
1411 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1412
237fc4c9
PA
1413 inferior_ptid = ptid;
1414 write_memory (memaddr, myaddr, len);
1415 do_cleanups (ptid_cleanup);
1416}
1417
e2d96639
YQ
1418/* Restore the contents of the copy area for thread PTID. */
1419
1420static void
1421displaced_step_restore (struct displaced_step_inferior_state *displaced,
1422 ptid_t ptid)
1423{
1424 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1425
1426 write_memory_ptid (ptid, displaced->step_copy,
1427 displaced->step_saved_copy, len);
1428 if (debug_displaced)
1429 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1430 target_pid_to_str (ptid),
1431 paddress (displaced->step_gdbarch,
1432 displaced->step_copy));
1433}
1434
237fc4c9 1435static void
2ea28649 1436displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1437{
1438 struct cleanup *old_cleanups;
fc1cf338
PA
1439 struct displaced_step_inferior_state *displaced
1440 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1441
1442 /* Was any thread of this process doing a displaced step? */
1443 if (displaced == NULL)
1444 return;
237fc4c9
PA
1445
1446 /* Was this event for the pid we displaced? */
fc1cf338
PA
1447 if (ptid_equal (displaced->step_ptid, null_ptid)
1448 || ! ptid_equal (displaced->step_ptid, event_ptid))
237fc4c9
PA
1449 return;
1450
fc1cf338 1451 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1452
e2d96639 1453 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9
PA
1454
1455 /* Did the instruction complete successfully? */
a493e3e2 1456 if (signal == GDB_SIGNAL_TRAP)
237fc4c9
PA
1457 {
1458 /* Fix up the resulting state. */
fc1cf338
PA
1459 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1460 displaced->step_closure,
1461 displaced->step_original,
1462 displaced->step_copy,
1463 get_thread_regcache (displaced->step_ptid));
237fc4c9
PA
1464 }
1465 else
1466 {
1467 /* Since the instruction didn't complete, all we can do is
1468 relocate the PC. */
515630c5
UW
1469 struct regcache *regcache = get_thread_regcache (event_ptid);
1470 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1471
fc1cf338 1472 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1473 regcache_write_pc (regcache, pc);
237fc4c9
PA
1474 }
1475
1476 do_cleanups (old_cleanups);
1477
fc1cf338 1478 displaced->step_ptid = null_ptid;
1c5cfe86 1479
237fc4c9 1480 /* Are there any pending displaced stepping requests? If so, run
fc1cf338
PA
1481 one now. Leave the state object around, since we're likely to
1482 need it again soon. */
1483 while (displaced->step_request_queue)
237fc4c9
PA
1484 {
1485 struct displaced_step_request *head;
1486 ptid_t ptid;
5af949e3 1487 struct regcache *regcache;
929dfd4f 1488 struct gdbarch *gdbarch;
1c5cfe86 1489 CORE_ADDR actual_pc;
6c95b8df 1490 struct address_space *aspace;
237fc4c9 1491
fc1cf338 1492 head = displaced->step_request_queue;
237fc4c9 1493 ptid = head->ptid;
fc1cf338 1494 displaced->step_request_queue = head->next;
237fc4c9
PA
1495 xfree (head);
1496
ad53cd71
PA
1497 context_switch (ptid);
1498
5af949e3
UW
1499 regcache = get_thread_regcache (ptid);
1500 actual_pc = regcache_read_pc (regcache);
6c95b8df 1501 aspace = get_regcache_aspace (regcache);
1c5cfe86 1502
6c95b8df 1503 if (breakpoint_here_p (aspace, actual_pc))
ad53cd71 1504 {
1c5cfe86
PA
1505 if (debug_displaced)
1506 fprintf_unfiltered (gdb_stdlog,
1507 "displaced: stepping queued %s now\n",
1508 target_pid_to_str (ptid));
1509
1510 displaced_step_prepare (ptid);
1511
929dfd4f
JB
1512 gdbarch = get_regcache_arch (regcache);
1513
1c5cfe86
PA
1514 if (debug_displaced)
1515 {
929dfd4f 1516 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
1517 gdb_byte buf[4];
1518
5af949e3
UW
1519 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1520 paddress (gdbarch, actual_pc));
1c5cfe86
PA
1521 read_memory (actual_pc, buf, sizeof (buf));
1522 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1523 }
1524
fc1cf338
PA
1525 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1526 displaced->step_closure))
a493e3e2 1527 target_resume (ptid, 1, GDB_SIGNAL_0);
99e40580 1528 else
a493e3e2 1529 target_resume (ptid, 0, GDB_SIGNAL_0);
1c5cfe86
PA
1530
1531 /* Done, we're stepping a thread. */
1532 break;
ad53cd71 1533 }
1c5cfe86
PA
1534 else
1535 {
1536 int step;
1537 struct thread_info *tp = inferior_thread ();
1538
1539 /* The breakpoint we were sitting under has since been
1540 removed. */
16c381f0 1541 tp->control.trap_expected = 0;
1c5cfe86
PA
1542
1543 /* Go back to what we were trying to do. */
1544 step = currently_stepping (tp);
ad53cd71 1545
1c5cfe86 1546 if (debug_displaced)
3e43a32a 1547 fprintf_unfiltered (gdb_stdlog,
27d2932e 1548 "displaced: breakpoint is gone: %s, step(%d)\n",
1c5cfe86
PA
1549 target_pid_to_str (tp->ptid), step);
1550
a493e3e2
PA
1551 target_resume (ptid, step, GDB_SIGNAL_0);
1552 tp->suspend.stop_signal = GDB_SIGNAL_0;
1c5cfe86
PA
1553
1554 /* This request was discarded. See if there's any other
1555 thread waiting for its turn. */
1556 }
237fc4c9
PA
1557 }
1558}
1559
5231c1fd
PA
1560/* Update global variables holding ptids to hold NEW_PTID if they were
1561 holding OLD_PTID. */
1562static void
1563infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1564{
1565 struct displaced_step_request *it;
fc1cf338 1566 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
1567
1568 if (ptid_equal (inferior_ptid, old_ptid))
1569 inferior_ptid = new_ptid;
1570
1571 if (ptid_equal (singlestep_ptid, old_ptid))
1572 singlestep_ptid = new_ptid;
1573
5231c1fd
PA
1574 if (ptid_equal (deferred_step_ptid, old_ptid))
1575 deferred_step_ptid = new_ptid;
1576
fc1cf338
PA
1577 for (displaced = displaced_step_inferior_states;
1578 displaced;
1579 displaced = displaced->next)
1580 {
1581 if (ptid_equal (displaced->step_ptid, old_ptid))
1582 displaced->step_ptid = new_ptid;
1583
1584 for (it = displaced->step_request_queue; it; it = it->next)
1585 if (ptid_equal (it->ptid, old_ptid))
1586 it->ptid = new_ptid;
1587 }
5231c1fd
PA
1588}
1589
237fc4c9
PA
1590\f
1591/* Resuming. */
c906108c
SS
1592
1593/* Things to clean up if we QUIT out of resume (). */
c906108c 1594static void
74b7792f 1595resume_cleanups (void *ignore)
c906108c
SS
1596{
1597 normal_stop ();
1598}
1599
53904c9e
AC
1600static const char schedlock_off[] = "off";
1601static const char schedlock_on[] = "on";
1602static const char schedlock_step[] = "step";
40478521 1603static const char *const scheduler_enums[] = {
ef346e04
AC
1604 schedlock_off,
1605 schedlock_on,
1606 schedlock_step,
1607 NULL
1608};
920d2a44
AC
1609static const char *scheduler_mode = schedlock_off;
1610static void
1611show_scheduler_mode (struct ui_file *file, int from_tty,
1612 struct cmd_list_element *c, const char *value)
1613{
3e43a32a
MS
1614 fprintf_filtered (file,
1615 _("Mode for locking scheduler "
1616 "during execution is \"%s\".\n"),
920d2a44
AC
1617 value);
1618}
c906108c
SS
1619
1620static void
96baa820 1621set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1622{
eefe576e
AC
1623 if (!target_can_lock_scheduler)
1624 {
1625 scheduler_mode = schedlock_off;
1626 error (_("Target '%s' cannot support this command."), target_shortname);
1627 }
c906108c
SS
1628}
1629
d4db2f36
PA
1630/* True if execution commands resume all threads of all processes by
1631 default; otherwise, resume only threads of the current inferior
1632 process. */
1633int sched_multi = 0;
1634
2facfe5c
DD
1635/* Try to setup for software single stepping over the specified location.
1636 Return 1 if target_resume() should use hardware single step.
1637
1638 GDBARCH the current gdbarch.
1639 PC the location to step over. */
1640
1641static int
1642maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1643{
1644 int hw_step = 1;
1645
f02253f1
HZ
1646 if (execution_direction == EXEC_FORWARD
1647 && gdbarch_software_single_step_p (gdbarch)
99e40580 1648 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 1649 {
99e40580
UW
1650 hw_step = 0;
1651 /* Do not pull these breakpoints until after a `wait' in
1777feb0 1652 `wait_for_inferior'. */
99e40580
UW
1653 singlestep_breakpoints_inserted_p = 1;
1654 singlestep_ptid = inferior_ptid;
1655 singlestep_pc = pc;
2facfe5c
DD
1656 }
1657 return hw_step;
1658}
c906108c 1659
09cee04b
PA
1660/* Return a ptid representing the set of threads that we will proceed,
1661 in the perspective of the user/frontend. We may actually resume
1662 fewer threads at first, e.g., if a thread is stopped at a
b136cd05
PA
1663 breakpoint that needs stepping-off, but that should not be visible
1664 to the user/frontend, and neither should the frontend/user be
1665 allowed to proceed any of the threads that happen to be stopped for
09cee04b
PA
1666 internal run control handling, if a previous command wanted them
1667 resumed. */
1668
1669ptid_t
1670user_visible_resume_ptid (int step)
1671{
1672 /* By default, resume all threads of all processes. */
1673 ptid_t resume_ptid = RESUME_ALL;
1674
1675 /* Maybe resume only all threads of the current process. */
1676 if (!sched_multi && target_supports_multi_process ())
1677 {
1678 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1679 }
1680
1681 /* Maybe resume a single thread after all. */
1682 if (non_stop)
1683 {
1684 /* With non-stop mode on, threads are always handled
1685 individually. */
1686 resume_ptid = inferior_ptid;
1687 }
1688 else if ((scheduler_mode == schedlock_on)
1689 || (scheduler_mode == schedlock_step
1690 && (step || singlestep_breakpoints_inserted_p)))
1691 {
1692 /* User-settable 'scheduler' mode requires solo thread resume. */
1693 resume_ptid = inferior_ptid;
1694 }
1695
1696 return resume_ptid;
1697}
1698
c906108c
SS
1699/* Resume the inferior, but allow a QUIT. This is useful if the user
1700 wants to interrupt some lengthy single-stepping operation
1701 (for child processes, the SIGINT goes to the inferior, and so
1702 we get a SIGINT random_signal, but for remote debugging and perhaps
1703 other targets, that's not true).
1704
1705 STEP nonzero if we should step (zero to continue instead).
1706 SIG is the signal to give the inferior (zero for none). */
1707void
2ea28649 1708resume (int step, enum gdb_signal sig)
c906108c
SS
1709{
1710 int should_resume = 1;
74b7792f 1711 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
1712 struct regcache *regcache = get_current_regcache ();
1713 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 1714 struct thread_info *tp = inferior_thread ();
515630c5 1715 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 1716 struct address_space *aspace = get_regcache_aspace (regcache);
c7e8a53c 1717
c906108c
SS
1718 QUIT;
1719
74609e71
YQ
1720 if (current_inferior ()->waiting_for_vfork_done)
1721 {
48f9886d
PA
1722 /* Don't try to single-step a vfork parent that is waiting for
1723 the child to get out of the shared memory region (by exec'ing
1724 or exiting). This is particularly important on software
1725 single-step archs, as the child process would trip on the
1726 software single step breakpoint inserted for the parent
1727 process. Since the parent will not actually execute any
1728 instruction until the child is out of the shared region (such
1729 are vfork's semantics), it is safe to simply continue it.
1730 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1731 the parent, and tell it to `keep_going', which automatically
1732 re-sets it stepping. */
74609e71
YQ
1733 if (debug_infrun)
1734 fprintf_unfiltered (gdb_stdlog,
1735 "infrun: resume : clear step\n");
1736 step = 0;
1737 }
1738
527159b7 1739 if (debug_infrun)
237fc4c9
PA
1740 fprintf_unfiltered (gdb_stdlog,
1741 "infrun: resume (step=%d, signal=%d), "
0d9a9a5f
PA
1742 "trap_expected=%d, current thread [%s] at %s\n",
1743 step, sig, tp->control.trap_expected,
1744 target_pid_to_str (inferior_ptid),
1745 paddress (gdbarch, pc));
c906108c 1746
c2c6d25f
JM
1747 /* Normally, by the time we reach `resume', the breakpoints are either
1748 removed or inserted, as appropriate. The exception is if we're sitting
1749 at a permanent breakpoint; we need to step over it, but permanent
1750 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 1751 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 1752 {
515630c5
UW
1753 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1754 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5 1755 else
ac74f770
MS
1756 error (_("\
1757The program is stopped at a permanent breakpoint, but GDB does not know\n\
1758how to step past a permanent breakpoint on this architecture. Try using\n\
1759a command like `return' or `jump' to continue execution."));
6d350bb5 1760 }
c2c6d25f 1761
237fc4c9
PA
1762 /* If enabled, step over breakpoints by executing a copy of the
1763 instruction at a different address.
1764
1765 We can't use displaced stepping when we have a signal to deliver;
1766 the comments for displaced_step_prepare explain why. The
1767 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
1768 signals' explain what we do instead.
1769
1770 We can't use displaced stepping when we are waiting for vfork_done
1771 event, displaced stepping breaks the vfork child similarly as single
1772 step software breakpoint. */
515630c5 1773 if (use_displaced_stepping (gdbarch)
16c381f0 1774 && (tp->control.trap_expected
929dfd4f 1775 || (step && gdbarch_software_single_step_p (gdbarch)))
a493e3e2 1776 && sig == GDB_SIGNAL_0
74609e71 1777 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 1778 {
fc1cf338
PA
1779 struct displaced_step_inferior_state *displaced;
1780
237fc4c9 1781 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
1782 {
1783 /* Got placed in displaced stepping queue. Will be resumed
1784 later when all the currently queued displaced stepping
7f7efbd9
VP
1785 requests finish. The thread is not executing at this point,
1786 and the call to set_executing will be made later. But we
1787 need to call set_running here, since from frontend point of view,
1788 the thread is running. */
1789 set_running (inferior_ptid, 1);
d56b7306
VP
1790 discard_cleanups (old_cleanups);
1791 return;
1792 }
99e40580 1793
ca7781d2
LM
1794 /* Update pc to reflect the new address from which we will execute
1795 instructions due to displaced stepping. */
1796 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
1797
fc1cf338
PA
1798 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1799 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1800 displaced->step_closure);
237fc4c9
PA
1801 }
1802
2facfe5c 1803 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 1804 else if (step)
2facfe5c 1805 step = maybe_software_singlestep (gdbarch, pc);
c906108c 1806
30852783
UW
1807 /* Currently, our software single-step implementation leads to different
1808 results than hardware single-stepping in one situation: when stepping
1809 into delivering a signal which has an associated signal handler,
1810 hardware single-step will stop at the first instruction of the handler,
1811 while software single-step will simply skip execution of the handler.
1812
1813 For now, this difference in behavior is accepted since there is no
1814 easy way to actually implement single-stepping into a signal handler
1815 without kernel support.
1816
1817 However, there is one scenario where this difference leads to follow-on
1818 problems: if we're stepping off a breakpoint by removing all breakpoints
1819 and then single-stepping. In this case, the software single-step
1820 behavior means that even if there is a *breakpoint* in the signal
1821 handler, GDB still would not stop.
1822
1823 Fortunately, we can at least fix this particular issue. We detect
1824 here the case where we are about to deliver a signal while software
1825 single-stepping with breakpoints removed. In this situation, we
1826 revert the decisions to remove all breakpoints and insert single-
1827 step breakpoints, and instead we install a step-resume breakpoint
1828 at the current address, deliver the signal without stepping, and
1829 once we arrive back at the step-resume breakpoint, actually step
1830 over the breakpoint we originally wanted to step over. */
1831 if (singlestep_breakpoints_inserted_p
a493e3e2 1832 && tp->control.trap_expected && sig != GDB_SIGNAL_0)
30852783
UW
1833 {
1834 /* If we have nested signals or a pending signal is delivered
1835 immediately after a handler returns, might might already have
1836 a step-resume breakpoint set on the earlier handler. We cannot
1837 set another step-resume breakpoint; just continue on until the
1838 original breakpoint is hit. */
1839 if (tp->control.step_resume_breakpoint == NULL)
1840 {
2c03e5be 1841 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
1842 tp->step_after_step_resume_breakpoint = 1;
1843 }
1844
1845 remove_single_step_breakpoints ();
1846 singlestep_breakpoints_inserted_p = 0;
1847
1848 insert_breakpoints ();
1849 tp->control.trap_expected = 0;
1850 }
1851
c906108c
SS
1852 if (should_resume)
1853 {
39f77062 1854 ptid_t resume_ptid;
dfcd3bfb 1855
cd76b0b7
VP
1856 /* If STEP is set, it's a request to use hardware stepping
1857 facilities. But in that case, we should never
1858 use singlestep breakpoint. */
1859 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1860
d4db2f36
PA
1861 /* Decide the set of threads to ask the target to resume. Start
1862 by assuming everything will be resumed, than narrow the set
1863 by applying increasingly restricting conditions. */
09cee04b 1864 resume_ptid = user_visible_resume_ptid (step);
d4db2f36
PA
1865
1866 /* Maybe resume a single thread after all. */
cd76b0b7
VP
1867 if (singlestep_breakpoints_inserted_p
1868 && stepping_past_singlestep_breakpoint)
c906108c 1869 {
cd76b0b7
VP
1870 /* The situation here is as follows. In thread T1 we wanted to
1871 single-step. Lacking hardware single-stepping we've
1872 set breakpoint at the PC of the next instruction -- call it
1873 P. After resuming, we've hit that breakpoint in thread T2.
1874 Now we've removed original breakpoint, inserted breakpoint
1875 at P+1, and try to step to advance T2 past breakpoint.
1876 We need to step only T2, as if T1 is allowed to freely run,
1877 it can run past P, and if other threads are allowed to run,
1878 they can hit breakpoint at P+1, and nested hits of single-step
1879 breakpoints is not something we'd want -- that's complicated
1880 to support, and has no value. */
1881 resume_ptid = inferior_ptid;
1882 }
d4db2f36 1883 else if ((step || singlestep_breakpoints_inserted_p)
16c381f0 1884 && tp->control.trap_expected)
cd76b0b7 1885 {
74960c60
VP
1886 /* We're allowing a thread to run past a breakpoint it has
1887 hit, by single-stepping the thread with the breakpoint
1888 removed. In which case, we need to single-step only this
1889 thread, and keep others stopped, as they can miss this
1890 breakpoint if allowed to run.
1891
1892 The current code actually removes all breakpoints when
1893 doing this, not just the one being stepped over, so if we
1894 let other threads run, we can actually miss any
1895 breakpoint, not just the one at PC. */
ef5cf84e 1896 resume_ptid = inferior_ptid;
c906108c 1897 }
ef5cf84e 1898
515630c5 1899 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1900 {
1901 /* Most targets can step a breakpoint instruction, thus
1902 executing it normally. But if this one cannot, just
1903 continue and we will hit it anyway. */
6c95b8df 1904 if (step && breakpoint_inserted_here_p (aspace, pc))
c4ed33b9
AC
1905 step = 0;
1906 }
237fc4c9
PA
1907
1908 if (debug_displaced
515630c5 1909 && use_displaced_stepping (gdbarch)
16c381f0 1910 && tp->control.trap_expected)
237fc4c9 1911 {
515630c5 1912 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
5af949e3 1913 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
515630c5 1914 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1915 gdb_byte buf[4];
1916
5af949e3
UW
1917 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1918 paddress (resume_gdbarch, actual_pc));
237fc4c9
PA
1919 read_memory (actual_pc, buf, sizeof (buf));
1920 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1921 }
1922
e58b0e63
PA
1923 /* Install inferior's terminal modes. */
1924 target_terminal_inferior ();
1925
2020b7ab
PA
1926 /* Avoid confusing the next resume, if the next stop/resume
1927 happens to apply to another thread. */
a493e3e2 1928 tp->suspend.stop_signal = GDB_SIGNAL_0;
607cecd2 1929
2455069d
UW
1930 /* Advise target which signals may be handled silently. If we have
1931 removed breakpoints because we are stepping over one (which can
1932 happen only if we are not using displaced stepping), we need to
1933 receive all signals to avoid accidentally skipping a breakpoint
1934 during execution of a signal handler. */
1935 if ((step || singlestep_breakpoints_inserted_p)
1936 && tp->control.trap_expected
1937 && !use_displaced_stepping (gdbarch))
1938 target_pass_signals (0, NULL);
1939 else
a493e3e2 1940 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2455069d 1941
607cecd2 1942 target_resume (resume_ptid, step, sig);
c906108c
SS
1943 }
1944
1945 discard_cleanups (old_cleanups);
1946}
1947\f
237fc4c9 1948/* Proceeding. */
c906108c
SS
1949
1950/* Clear out all variables saying what to do when inferior is continued.
1951 First do this, then set the ones you want, then call `proceed'. */
1952
a7212384
UW
1953static void
1954clear_proceed_status_thread (struct thread_info *tp)
c906108c 1955{
a7212384
UW
1956 if (debug_infrun)
1957 fprintf_unfiltered (gdb_stdlog,
1958 "infrun: clear_proceed_status_thread (%s)\n",
1959 target_pid_to_str (tp->ptid));
d6b48e9c 1960
16c381f0
JK
1961 tp->control.trap_expected = 0;
1962 tp->control.step_range_start = 0;
1963 tp->control.step_range_end = 0;
1964 tp->control.step_frame_id = null_frame_id;
1965 tp->control.step_stack_frame_id = null_frame_id;
1966 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
a7212384 1967 tp->stop_requested = 0;
4e1c45ea 1968
16c381f0 1969 tp->control.stop_step = 0;
32400beb 1970
16c381f0 1971 tp->control.proceed_to_finish = 0;
414c69f7 1972
a7212384 1973 /* Discard any remaining commands or status from previous stop. */
16c381f0 1974 bpstat_clear (&tp->control.stop_bpstat);
a7212384 1975}
32400beb 1976
a7212384
UW
1977static int
1978clear_proceed_status_callback (struct thread_info *tp, void *data)
1979{
1980 if (is_exited (tp->ptid))
1981 return 0;
d6b48e9c 1982
a7212384
UW
1983 clear_proceed_status_thread (tp);
1984 return 0;
1985}
1986
1987void
1988clear_proceed_status (void)
1989{
6c95b8df
PA
1990 if (!non_stop)
1991 {
1992 /* In all-stop mode, delete the per-thread status of all
1993 threads, even if inferior_ptid is null_ptid, there may be
1994 threads on the list. E.g., we may be launching a new
1995 process, while selecting the executable. */
1996 iterate_over_threads (clear_proceed_status_callback, NULL);
1997 }
1998
a7212384
UW
1999 if (!ptid_equal (inferior_ptid, null_ptid))
2000 {
2001 struct inferior *inferior;
2002
2003 if (non_stop)
2004 {
6c95b8df
PA
2005 /* If in non-stop mode, only delete the per-thread status of
2006 the current thread. */
a7212384
UW
2007 clear_proceed_status_thread (inferior_thread ());
2008 }
6c95b8df 2009
d6b48e9c 2010 inferior = current_inferior ();
16c381f0 2011 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2012 }
2013
c906108c 2014 stop_after_trap = 0;
f3b1572e
PA
2015
2016 observer_notify_about_to_proceed ();
c906108c 2017
d5c31457
UW
2018 if (stop_registers)
2019 {
2020 regcache_xfree (stop_registers);
2021 stop_registers = NULL;
2022 }
c906108c
SS
2023}
2024
5a437975
DE
2025/* Check the current thread against the thread that reported the most recent
2026 event. If a step-over is required return TRUE and set the current thread
2027 to the old thread. Otherwise return FALSE.
2028
1777feb0 2029 This should be suitable for any targets that support threads. */
ea67f13b
DJ
2030
2031static int
6a6b96b9 2032prepare_to_proceed (int step)
ea67f13b
DJ
2033{
2034 ptid_t wait_ptid;
2035 struct target_waitstatus wait_status;
5a437975
DE
2036 int schedlock_enabled;
2037
2038 /* With non-stop mode on, threads are always handled individually. */
2039 gdb_assert (! non_stop);
ea67f13b
DJ
2040
2041 /* Get the last target status returned by target_wait(). */
2042 get_last_target_status (&wait_ptid, &wait_status);
2043
6a6b96b9 2044 /* Make sure we were stopped at a breakpoint. */
ea67f13b 2045 if (wait_status.kind != TARGET_WAITKIND_STOPPED
a493e3e2
PA
2046 || (wait_status.value.sig != GDB_SIGNAL_TRAP
2047 && wait_status.value.sig != GDB_SIGNAL_ILL
2048 && wait_status.value.sig != GDB_SIGNAL_SEGV
2049 && wait_status.value.sig != GDB_SIGNAL_EMT))
ea67f13b
DJ
2050 {
2051 return 0;
2052 }
2053
5a437975
DE
2054 schedlock_enabled = (scheduler_mode == schedlock_on
2055 || (scheduler_mode == schedlock_step
2056 && step));
2057
d4db2f36
PA
2058 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2059 if (schedlock_enabled)
2060 return 0;
2061
2062 /* Don't switch over if we're about to resume some other process
2063 other than WAIT_PTID's, and schedule-multiple is off. */
2064 if (!sched_multi
2065 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2066 return 0;
2067
6a6b96b9 2068 /* Switched over from WAIT_PID. */
ea67f13b 2069 if (!ptid_equal (wait_ptid, minus_one_ptid)
d4db2f36 2070 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 2071 {
515630c5
UW
2072 struct regcache *regcache = get_thread_regcache (wait_ptid);
2073
6c95b8df
PA
2074 if (breakpoint_here_p (get_regcache_aspace (regcache),
2075 regcache_read_pc (regcache)))
ea67f13b 2076 {
515630c5
UW
2077 /* If stepping, remember current thread to switch back to. */
2078 if (step)
2079 deferred_step_ptid = inferior_ptid;
ea67f13b 2080
515630c5
UW
2081 /* Switch back to WAIT_PID thread. */
2082 switch_to_thread (wait_ptid);
6a6b96b9 2083
0d9a9a5f
PA
2084 if (debug_infrun)
2085 fprintf_unfiltered (gdb_stdlog,
2086 "infrun: prepare_to_proceed (step=%d), "
2087 "switched to [%s]\n",
2088 step, target_pid_to_str (inferior_ptid));
2089
515630c5
UW
2090 /* We return 1 to indicate that there is a breakpoint here,
2091 so we need to step over it before continuing to avoid
1777feb0 2092 hitting it straight away. */
515630c5
UW
2093 return 1;
2094 }
ea67f13b
DJ
2095 }
2096
2097 return 0;
ea67f13b 2098}
e4846b08 2099
c906108c
SS
2100/* Basic routine for continuing the program in various fashions.
2101
2102 ADDR is the address to resume at, or -1 for resume where stopped.
2103 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2104 or -1 for act according to how it stopped.
c906108c 2105 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2106 -1 means return after that and print nothing.
2107 You should probably set various step_... variables
2108 before calling here, if you are stepping.
c906108c
SS
2109
2110 You should call clear_proceed_status before calling proceed. */
2111
2112void
2ea28649 2113proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
c906108c 2114{
e58b0e63
PA
2115 struct regcache *regcache;
2116 struct gdbarch *gdbarch;
4e1c45ea 2117 struct thread_info *tp;
e58b0e63 2118 CORE_ADDR pc;
6c95b8df 2119 struct address_space *aspace;
c906108c
SS
2120 int oneproc = 0;
2121
e58b0e63
PA
2122 /* If we're stopped at a fork/vfork, follow the branch set by the
2123 "set follow-fork-mode" command; otherwise, we'll just proceed
2124 resuming the current thread. */
2125 if (!follow_fork ())
2126 {
2127 /* The target for some reason decided not to resume. */
2128 normal_stop ();
f148b27e
PA
2129 if (target_can_async_p ())
2130 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2131 return;
2132 }
2133
842951eb
PA
2134 /* We'll update this if & when we switch to a new thread. */
2135 previous_inferior_ptid = inferior_ptid;
2136
e58b0e63
PA
2137 regcache = get_current_regcache ();
2138 gdbarch = get_regcache_arch (regcache);
6c95b8df 2139 aspace = get_regcache_aspace (regcache);
e58b0e63
PA
2140 pc = regcache_read_pc (regcache);
2141
c906108c 2142 if (step > 0)
515630c5 2143 step_start_function = find_pc_function (pc);
c906108c
SS
2144 if (step < 0)
2145 stop_after_trap = 1;
2146
2acceee2 2147 if (addr == (CORE_ADDR) -1)
c906108c 2148 {
6c95b8df 2149 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
b2175913 2150 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2151 /* There is a breakpoint at the address we will resume at,
2152 step one instruction before inserting breakpoints so that
2153 we do not stop right away (and report a second hit at this
b2175913
MS
2154 breakpoint).
2155
2156 Note, we don't do this in reverse, because we won't
2157 actually be executing the breakpoint insn anyway.
2158 We'll be (un-)executing the previous instruction. */
2159
c906108c 2160 oneproc = 1;
515630c5
UW
2161 else if (gdbarch_single_step_through_delay_p (gdbarch)
2162 && gdbarch_single_step_through_delay (gdbarch,
2163 get_current_frame ()))
3352ef37
AC
2164 /* We stepped onto an instruction that needs to be stepped
2165 again before re-inserting the breakpoint, do so. */
c906108c
SS
2166 oneproc = 1;
2167 }
2168 else
2169 {
515630c5 2170 regcache_write_pc (regcache, addr);
c906108c
SS
2171 }
2172
527159b7 2173 if (debug_infrun)
8a9de0e4 2174 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
2175 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
2176 paddress (gdbarch, addr), siggnal, step);
527159b7 2177
94cc34af
PA
2178 if (non_stop)
2179 /* In non-stop, each thread is handled individually. The context
2180 must already be set to the right thread here. */
2181 ;
2182 else
2183 {
2184 /* In a multi-threaded task we may select another thread and
2185 then continue or step.
c906108c 2186
94cc34af
PA
2187 But if the old thread was stopped at a breakpoint, it will
2188 immediately cause another breakpoint stop without any
2189 execution (i.e. it will report a breakpoint hit incorrectly).
2190 So we must step over it first.
c906108c 2191
94cc34af
PA
2192 prepare_to_proceed checks the current thread against the
2193 thread that reported the most recent event. If a step-over
2194 is required it returns TRUE and sets the current thread to
1777feb0 2195 the old thread. */
94cc34af
PA
2196 if (prepare_to_proceed (step))
2197 oneproc = 1;
2198 }
c906108c 2199
4e1c45ea
PA
2200 /* prepare_to_proceed may change the current thread. */
2201 tp = inferior_thread ();
2202
30852783
UW
2203 if (oneproc)
2204 {
2205 tp->control.trap_expected = 1;
2206 /* If displaced stepping is enabled, we can step over the
2207 breakpoint without hitting it, so leave all breakpoints
2208 inserted. Otherwise we need to disable all breakpoints, step
2209 one instruction, and then re-add them when that step is
2210 finished. */
2211 if (!use_displaced_stepping (gdbarch))
2212 remove_breakpoints ();
2213 }
2214
2215 /* We can insert breakpoints if we're not trying to step over one,
2216 or if we are stepping over one but we're using displaced stepping
2217 to do so. */
2218 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2219 insert_breakpoints ();
2220
2020b7ab
PA
2221 if (!non_stop)
2222 {
2223 /* Pass the last stop signal to the thread we're resuming,
2224 irrespective of whether the current thread is the thread that
2225 got the last event or not. This was historically GDB's
2226 behaviour before keeping a stop_signal per thread. */
2227
2228 struct thread_info *last_thread;
2229 ptid_t last_ptid;
2230 struct target_waitstatus last_status;
2231
2232 get_last_target_status (&last_ptid, &last_status);
2233 if (!ptid_equal (inferior_ptid, last_ptid)
2234 && !ptid_equal (last_ptid, null_ptid)
2235 && !ptid_equal (last_ptid, minus_one_ptid))
2236 {
e09875d4 2237 last_thread = find_thread_ptid (last_ptid);
2020b7ab
PA
2238 if (last_thread)
2239 {
16c381f0 2240 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
a493e3e2 2241 last_thread->suspend.stop_signal = GDB_SIGNAL_0;
2020b7ab
PA
2242 }
2243 }
2244 }
2245
a493e3e2 2246 if (siggnal != GDB_SIGNAL_DEFAULT)
16c381f0 2247 tp->suspend.stop_signal = siggnal;
c906108c
SS
2248 /* If this signal should not be seen by program,
2249 give it zero. Used for debugging signals. */
16c381f0 2250 else if (!signal_program[tp->suspend.stop_signal])
a493e3e2 2251 tp->suspend.stop_signal = GDB_SIGNAL_0;
c906108c
SS
2252
2253 annotate_starting ();
2254
2255 /* Make sure that output from GDB appears before output from the
2256 inferior. */
2257 gdb_flush (gdb_stdout);
2258
e4846b08
JJ
2259 /* Refresh prev_pc value just prior to resuming. This used to be
2260 done in stop_stepping, however, setting prev_pc there did not handle
2261 scenarios such as inferior function calls or returning from
2262 a function via the return command. In those cases, the prev_pc
2263 value was not set properly for subsequent commands. The prev_pc value
2264 is used to initialize the starting line number in the ecs. With an
2265 invalid value, the gdb next command ends up stopping at the position
2266 represented by the next line table entry past our start position.
2267 On platforms that generate one line table entry per line, this
2268 is not a problem. However, on the ia64, the compiler generates
2269 extraneous line table entries that do not increase the line number.
2270 When we issue the gdb next command on the ia64 after an inferior call
2271 or a return command, we often end up a few instructions forward, still
2272 within the original line we started.
2273
d5cd6034
JB
2274 An attempt was made to refresh the prev_pc at the same time the
2275 execution_control_state is initialized (for instance, just before
2276 waiting for an inferior event). But this approach did not work
2277 because of platforms that use ptrace, where the pc register cannot
2278 be read unless the inferior is stopped. At that point, we are not
2279 guaranteed the inferior is stopped and so the regcache_read_pc() call
2280 can fail. Setting the prev_pc value here ensures the value is updated
2281 correctly when the inferior is stopped. */
4e1c45ea 2282 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 2283
59f0d5d9 2284 /* Fill in with reasonable starting values. */
4e1c45ea 2285 init_thread_stepping_state (tp);
59f0d5d9 2286
59f0d5d9
PA
2287 /* Reset to normal state. */
2288 init_infwait_state ();
2289
c906108c 2290 /* Resume inferior. */
16c381f0 2291 resume (oneproc || step || bpstat_should_step (), tp->suspend.stop_signal);
c906108c
SS
2292
2293 /* Wait for it to stop (if not standalone)
2294 and in any case decode why it stopped, and act accordingly. */
43ff13b4 2295 /* Do this only if we are not using the event loop, or if the target
1777feb0 2296 does not support asynchronous execution. */
362646f5 2297 if (!target_can_async_p ())
43ff13b4 2298 {
e4c8541f 2299 wait_for_inferior ();
43ff13b4
JM
2300 normal_stop ();
2301 }
c906108c 2302}
c906108c
SS
2303\f
2304
2305/* Start remote-debugging of a machine over a serial link. */
96baa820 2306
c906108c 2307void
8621d6a9 2308start_remote (int from_tty)
c906108c 2309{
d6b48e9c 2310 struct inferior *inferior;
d6b48e9c
PA
2311
2312 inferior = current_inferior ();
16c381f0 2313 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 2314
1777feb0 2315 /* Always go on waiting for the target, regardless of the mode. */
6426a772 2316 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 2317 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
2318 nothing is returned (instead of just blocking). Because of this,
2319 targets expecting an immediate response need to, internally, set
2320 things up so that the target_wait() is forced to eventually
1777feb0 2321 timeout. */
6426a772
JM
2322 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2323 differentiate to its caller what the state of the target is after
2324 the initial open has been performed. Here we're assuming that
2325 the target has stopped. It should be possible to eventually have
2326 target_open() return to the caller an indication that the target
2327 is currently running and GDB state should be set to the same as
1777feb0 2328 for an async run. */
e4c8541f 2329 wait_for_inferior ();
8621d6a9
DJ
2330
2331 /* Now that the inferior has stopped, do any bookkeeping like
2332 loading shared libraries. We want to do this before normal_stop,
2333 so that the displayed frame is up to date. */
2334 post_create_inferior (&current_target, from_tty);
2335
6426a772 2336 normal_stop ();
c906108c
SS
2337}
2338
2339/* Initialize static vars when a new inferior begins. */
2340
2341void
96baa820 2342init_wait_for_inferior (void)
c906108c
SS
2343{
2344 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 2345
c906108c
SS
2346 breakpoint_init_inferior (inf_starting);
2347
c906108c 2348 clear_proceed_status ();
9f976b41
DJ
2349
2350 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 2351 deferred_step_ptid = null_ptid;
ca005067
DJ
2352
2353 target_last_wait_ptid = minus_one_ptid;
237fc4c9 2354
842951eb 2355 previous_inferior_ptid = inferior_ptid;
0d1e5fa7
PA
2356 init_infwait_state ();
2357
edb3359d
DJ
2358 /* Discard any skipped inlined frames. */
2359 clear_inline_frame_state (minus_one_ptid);
c906108c 2360}
237fc4c9 2361
c906108c 2362\f
b83266a0
SS
2363/* This enum encodes possible reasons for doing a target_wait, so that
2364 wfi can call target_wait in one place. (Ultimately the call will be
2365 moved out of the infinite loop entirely.) */
2366
c5aa993b
JM
2367enum infwait_states
2368{
cd0fc7c3
SS
2369 infwait_normal_state,
2370 infwait_thread_hop_state,
d983da9c 2371 infwait_step_watch_state,
cd0fc7c3 2372 infwait_nonstep_watch_state
b83266a0
SS
2373};
2374
0d1e5fa7
PA
2375/* The PTID we'll do a target_wait on.*/
2376ptid_t waiton_ptid;
2377
2378/* Current inferior wait state. */
2379enum infwait_states infwait_state;
cd0fc7c3 2380
0d1e5fa7
PA
2381/* Data to be passed around while handling an event. This data is
2382 discarded between events. */
c5aa993b 2383struct execution_control_state
488f131b 2384{
0d1e5fa7 2385 ptid_t ptid;
4e1c45ea
PA
2386 /* The thread that got the event, if this was a thread event; NULL
2387 otherwise. */
2388 struct thread_info *event_thread;
2389
488f131b 2390 struct target_waitstatus ws;
488f131b 2391 int random_signal;
7e324e48 2392 int stop_func_filled_in;
488f131b
JB
2393 CORE_ADDR stop_func_start;
2394 CORE_ADDR stop_func_end;
2c02bd72 2395 const char *stop_func_name;
488f131b
JB
2396 int wait_some_more;
2397};
2398
ec9499be 2399static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 2400
568d6575
UW
2401static void handle_step_into_function (struct gdbarch *gdbarch,
2402 struct execution_control_state *ecs);
2403static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2404 struct execution_control_state *ecs);
186c406b 2405static void check_exception_resume (struct execution_control_state *,
28106bc2 2406 struct frame_info *);
611c83ae 2407
104c1213
JM
2408static void stop_stepping (struct execution_control_state *ecs);
2409static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 2410static void keep_going (struct execution_control_state *ecs);
104c1213 2411
252fbfc8
PA
2412/* Callback for iterate over threads. If the thread is stopped, but
2413 the user/frontend doesn't know about that yet, go through
2414 normal_stop, as if the thread had just stopped now. ARG points at
2415 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2416 ptid_is_pid(PTID) is true, applies to all threads of the process
2417 pointed at by PTID. Otherwise, apply only to the thread pointed by
2418 PTID. */
2419
2420static int
2421infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2422{
2423 ptid_t ptid = * (ptid_t *) arg;
2424
2425 if ((ptid_equal (info->ptid, ptid)
2426 || ptid_equal (minus_one_ptid, ptid)
2427 || (ptid_is_pid (ptid)
2428 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2429 && is_running (info->ptid)
2430 && !is_executing (info->ptid))
2431 {
2432 struct cleanup *old_chain;
2433 struct execution_control_state ecss;
2434 struct execution_control_state *ecs = &ecss;
2435
2436 memset (ecs, 0, sizeof (*ecs));
2437
2438 old_chain = make_cleanup_restore_current_thread ();
2439
2440 switch_to_thread (info->ptid);
2441
2442 /* Go through handle_inferior_event/normal_stop, so we always
2443 have consistent output as if the stop event had been
2444 reported. */
2445 ecs->ptid = info->ptid;
e09875d4 2446 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8 2447 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
a493e3e2 2448 ecs->ws.value.sig = GDB_SIGNAL_0;
252fbfc8
PA
2449
2450 handle_inferior_event (ecs);
2451
2452 if (!ecs->wait_some_more)
2453 {
2454 struct thread_info *tp;
2455
2456 normal_stop ();
2457
fa4cd53f 2458 /* Finish off the continuations. */
252fbfc8 2459 tp = inferior_thread ();
fa4cd53f
PA
2460 do_all_intermediate_continuations_thread (tp, 1);
2461 do_all_continuations_thread (tp, 1);
252fbfc8
PA
2462 }
2463
2464 do_cleanups (old_chain);
2465 }
2466
2467 return 0;
2468}
2469
2470/* This function is attached as a "thread_stop_requested" observer.
2471 Cleanup local state that assumed the PTID was to be resumed, and
2472 report the stop to the frontend. */
2473
2c0b251b 2474static void
252fbfc8
PA
2475infrun_thread_stop_requested (ptid_t ptid)
2476{
fc1cf338 2477 struct displaced_step_inferior_state *displaced;
252fbfc8
PA
2478
2479 /* PTID was requested to stop. Remove it from the displaced
2480 stepping queue, so we don't try to resume it automatically. */
fc1cf338
PA
2481
2482 for (displaced = displaced_step_inferior_states;
2483 displaced;
2484 displaced = displaced->next)
252fbfc8 2485 {
fc1cf338 2486 struct displaced_step_request *it, **prev_next_p;
252fbfc8 2487
fc1cf338
PA
2488 it = displaced->step_request_queue;
2489 prev_next_p = &displaced->step_request_queue;
2490 while (it)
252fbfc8 2491 {
fc1cf338
PA
2492 if (ptid_match (it->ptid, ptid))
2493 {
2494 *prev_next_p = it->next;
2495 it->next = NULL;
2496 xfree (it);
2497 }
252fbfc8 2498 else
fc1cf338
PA
2499 {
2500 prev_next_p = &it->next;
2501 }
252fbfc8 2502
fc1cf338 2503 it = *prev_next_p;
252fbfc8 2504 }
252fbfc8
PA
2505 }
2506
2507 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2508}
2509
a07daef3
PA
2510static void
2511infrun_thread_thread_exit (struct thread_info *tp, int silent)
2512{
2513 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2514 nullify_last_target_wait_ptid ();
2515}
2516
4e1c45ea
PA
2517/* Callback for iterate_over_threads. */
2518
2519static int
2520delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2521{
2522 if (is_exited (info->ptid))
2523 return 0;
2524
2525 delete_step_resume_breakpoint (info);
186c406b 2526 delete_exception_resume_breakpoint (info);
4e1c45ea
PA
2527 return 0;
2528}
2529
2530/* In all-stop, delete the step resume breakpoint of any thread that
2531 had one. In non-stop, delete the step resume breakpoint of the
2532 thread that just stopped. */
2533
2534static void
2535delete_step_thread_step_resume_breakpoint (void)
2536{
2537 if (!target_has_execution
2538 || ptid_equal (inferior_ptid, null_ptid))
2539 /* If the inferior has exited, we have already deleted the step
2540 resume breakpoints out of GDB's lists. */
2541 return;
2542
2543 if (non_stop)
2544 {
2545 /* If in non-stop mode, only delete the step-resume or
2546 longjmp-resume breakpoint of the thread that just stopped
2547 stepping. */
2548 struct thread_info *tp = inferior_thread ();
abbb1732 2549
4e1c45ea 2550 delete_step_resume_breakpoint (tp);
186c406b 2551 delete_exception_resume_breakpoint (tp);
4e1c45ea
PA
2552 }
2553 else
2554 /* In all-stop mode, delete all step-resume and longjmp-resume
2555 breakpoints of any thread that had them. */
2556 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2557}
2558
1777feb0 2559/* A cleanup wrapper. */
4e1c45ea
PA
2560
2561static void
2562delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2563{
2564 delete_step_thread_step_resume_breakpoint ();
2565}
2566
223698f8
DE
2567/* Pretty print the results of target_wait, for debugging purposes. */
2568
2569static void
2570print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2571 const struct target_waitstatus *ws)
2572{
2573 char *status_string = target_waitstatus_to_string (ws);
2574 struct ui_file *tmp_stream = mem_fileopen ();
2575 char *text;
223698f8
DE
2576
2577 /* The text is split over several lines because it was getting too long.
2578 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2579 output as a unit; we want only one timestamp printed if debug_timestamp
2580 is set. */
2581
2582 fprintf_unfiltered (tmp_stream,
2583 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2584 if (PIDGET (waiton_ptid) != -1)
2585 fprintf_unfiltered (tmp_stream,
2586 " [%s]", target_pid_to_str (waiton_ptid));
2587 fprintf_unfiltered (tmp_stream, ", status) =\n");
2588 fprintf_unfiltered (tmp_stream,
2589 "infrun: %d [%s],\n",
2590 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2591 fprintf_unfiltered (tmp_stream,
2592 "infrun: %s\n",
2593 status_string);
2594
759ef836 2595 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
2596
2597 /* This uses %s in part to handle %'s in the text, but also to avoid
2598 a gcc error: the format attribute requires a string literal. */
2599 fprintf_unfiltered (gdb_stdlog, "%s", text);
2600
2601 xfree (status_string);
2602 xfree (text);
2603 ui_file_delete (tmp_stream);
2604}
2605
24291992
PA
2606/* Prepare and stabilize the inferior for detaching it. E.g.,
2607 detaching while a thread is displaced stepping is a recipe for
2608 crashing it, as nothing would readjust the PC out of the scratch
2609 pad. */
2610
2611void
2612prepare_for_detach (void)
2613{
2614 struct inferior *inf = current_inferior ();
2615 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2616 struct cleanup *old_chain_1;
2617 struct displaced_step_inferior_state *displaced;
2618
2619 displaced = get_displaced_stepping_state (inf->pid);
2620
2621 /* Is any thread of this process displaced stepping? If not,
2622 there's nothing else to do. */
2623 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2624 return;
2625
2626 if (debug_infrun)
2627 fprintf_unfiltered (gdb_stdlog,
2628 "displaced-stepping in-process while detaching");
2629
2630 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2631 inf->detaching = 1;
2632
2633 while (!ptid_equal (displaced->step_ptid, null_ptid))
2634 {
2635 struct cleanup *old_chain_2;
2636 struct execution_control_state ecss;
2637 struct execution_control_state *ecs;
2638
2639 ecs = &ecss;
2640 memset (ecs, 0, sizeof (*ecs));
2641
2642 overlay_cache_invalid = 1;
2643
24291992
PA
2644 if (deprecated_target_wait_hook)
2645 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2646 else
2647 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2648
2649 if (debug_infrun)
2650 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2651
2652 /* If an error happens while handling the event, propagate GDB's
2653 knowledge of the executing state to the frontend/user running
2654 state. */
3e43a32a
MS
2655 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2656 &minus_one_ptid);
24291992 2657
4d533103
PA
2658 /* In non-stop mode, each thread is handled individually.
2659 Switch early, so the global state is set correctly for this
2660 thread. */
2661 if (non_stop
2662 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2663 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2664 context_switch (ecs->ptid);
2665
24291992
PA
2666 /* Now figure out what to do with the result of the result. */
2667 handle_inferior_event (ecs);
2668
2669 /* No error, don't finish the state yet. */
2670 discard_cleanups (old_chain_2);
2671
2672 /* Breakpoints and watchpoints are not installed on the target
2673 at this point, and signals are passed directly to the
2674 inferior, so this must mean the process is gone. */
2675 if (!ecs->wait_some_more)
2676 {
2677 discard_cleanups (old_chain_1);
2678 error (_("Program exited while detaching"));
2679 }
2680 }
2681
2682 discard_cleanups (old_chain_1);
2683}
2684
cd0fc7c3 2685/* Wait for control to return from inferior to debugger.
ae123ec6 2686
cd0fc7c3
SS
2687 If inferior gets a signal, we may decide to start it up again
2688 instead of returning. That is why there is a loop in this function.
2689 When this function actually returns it means the inferior
2690 should be left stopped and GDB should read more commands. */
2691
2692void
e4c8541f 2693wait_for_inferior (void)
cd0fc7c3
SS
2694{
2695 struct cleanup *old_cleanups;
c906108c 2696
527159b7 2697 if (debug_infrun)
ae123ec6 2698 fprintf_unfiltered
e4c8541f 2699 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 2700
4e1c45ea
PA
2701 old_cleanups =
2702 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
cd0fc7c3 2703
c906108c
SS
2704 while (1)
2705 {
ae25568b
PA
2706 struct execution_control_state ecss;
2707 struct execution_control_state *ecs = &ecss;
29f49a6a
PA
2708 struct cleanup *old_chain;
2709
ae25568b
PA
2710 memset (ecs, 0, sizeof (*ecs));
2711
ec9499be 2712 overlay_cache_invalid = 1;
ec9499be 2713
9a4105ab 2714 if (deprecated_target_wait_hook)
47608cb1 2715 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 2716 else
47608cb1 2717 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 2718
f00150c9 2719 if (debug_infrun)
223698f8 2720 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2721
29f49a6a
PA
2722 /* If an error happens while handling the event, propagate GDB's
2723 knowledge of the executing state to the frontend/user running
2724 state. */
2725 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2726
cd0fc7c3
SS
2727 /* Now figure out what to do with the result of the result. */
2728 handle_inferior_event (ecs);
c906108c 2729
29f49a6a
PA
2730 /* No error, don't finish the state yet. */
2731 discard_cleanups (old_chain);
2732
cd0fc7c3
SS
2733 if (!ecs->wait_some_more)
2734 break;
2735 }
4e1c45ea 2736
cd0fc7c3
SS
2737 do_cleanups (old_cleanups);
2738}
c906108c 2739
1777feb0 2740/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 2741 event loop whenever a change of state is detected on the file
1777feb0
MS
2742 descriptor corresponding to the target. It can be called more than
2743 once to complete a single execution command. In such cases we need
2744 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
2745 that this function is called for a single execution command, then
2746 report to the user that the inferior has stopped, and do the
1777feb0 2747 necessary cleanups. */
43ff13b4
JM
2748
2749void
fba45db2 2750fetch_inferior_event (void *client_data)
43ff13b4 2751{
0d1e5fa7 2752 struct execution_control_state ecss;
a474d7c2 2753 struct execution_control_state *ecs = &ecss;
4f8d22e3 2754 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 2755 struct cleanup *ts_old_chain;
4f8d22e3 2756 int was_sync = sync_execution;
0f641c01 2757 int cmd_done = 0;
43ff13b4 2758
0d1e5fa7
PA
2759 memset (ecs, 0, sizeof (*ecs));
2760
c5187ac6
PA
2761 /* We're handling a live event, so make sure we're doing live
2762 debugging. If we're looking at traceframes while the target is
2763 running, we're going to need to get back to that mode after
2764 handling the event. */
2765 if (non_stop)
2766 {
2767 make_cleanup_restore_current_traceframe ();
e6e4e701 2768 set_current_traceframe (-1);
c5187ac6
PA
2769 }
2770
4f8d22e3
PA
2771 if (non_stop)
2772 /* In non-stop mode, the user/frontend should not notice a thread
2773 switch due to internal events. Make sure we reverse to the
2774 user selected thread and frame after handling the event and
2775 running any breakpoint commands. */
2776 make_cleanup_restore_current_thread ();
2777
ec9499be 2778 overlay_cache_invalid = 1;
3dd5b83d 2779
32231432
PA
2780 make_cleanup_restore_integer (&execution_direction);
2781 execution_direction = target_execution_direction ();
2782
9a4105ab 2783 if (deprecated_target_wait_hook)
a474d7c2 2784 ecs->ptid =
47608cb1 2785 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2786 else
47608cb1 2787 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2788
f00150c9 2789 if (debug_infrun)
223698f8 2790 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2791
94cc34af
PA
2792 if (non_stop
2793 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
0e5bf2a8 2794 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
94cc34af
PA
2795 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2796 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2797 /* In non-stop mode, each thread is handled individually. Switch
2798 early, so the global state is set correctly for this
2799 thread. */
2800 context_switch (ecs->ptid);
2801
29f49a6a
PA
2802 /* If an error happens while handling the event, propagate GDB's
2803 knowledge of the executing state to the frontend/user running
2804 state. */
2805 if (!non_stop)
2806 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2807 else
2808 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2809
353d1d73
JK
2810 /* Get executed before make_cleanup_restore_current_thread above to apply
2811 still for the thread which has thrown the exception. */
2812 make_bpstat_clear_actions_cleanup ();
2813
43ff13b4 2814 /* Now figure out what to do with the result of the result. */
a474d7c2 2815 handle_inferior_event (ecs);
43ff13b4 2816
a474d7c2 2817 if (!ecs->wait_some_more)
43ff13b4 2818 {
d6b48e9c
PA
2819 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2820
4e1c45ea 2821 delete_step_thread_step_resume_breakpoint ();
f107f563 2822
d6b48e9c 2823 /* We may not find an inferior if this was a process exit. */
16c381f0 2824 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
2825 normal_stop ();
2826
af679fd0 2827 if (target_has_execution
0e5bf2a8 2828 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
af679fd0
PA
2829 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2830 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2831 && ecs->event_thread->step_multi
16c381f0 2832 && ecs->event_thread->control.stop_step)
c2d11a7d
JM
2833 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2834 else
0f641c01
PA
2835 {
2836 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2837 cmd_done = 1;
2838 }
43ff13b4 2839 }
4f8d22e3 2840
29f49a6a
PA
2841 /* No error, don't finish the thread states yet. */
2842 discard_cleanups (ts_old_chain);
2843
4f8d22e3
PA
2844 /* Revert thread and frame. */
2845 do_cleanups (old_chain);
2846
2847 /* If the inferior was in sync execution mode, and now isn't,
0f641c01
PA
2848 restore the prompt (a synchronous execution command has finished,
2849 and we're ready for input). */
b4a14fd0 2850 if (interpreter_async && was_sync && !sync_execution)
4f8d22e3 2851 display_gdb_prompt (0);
0f641c01
PA
2852
2853 if (cmd_done
2854 && !was_sync
2855 && exec_done_display_p
2856 && (ptid_equal (inferior_ptid, null_ptid)
2857 || !is_running (inferior_ptid)))
2858 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
2859}
2860
edb3359d
DJ
2861/* Record the frame and location we're currently stepping through. */
2862void
2863set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2864{
2865 struct thread_info *tp = inferior_thread ();
2866
16c381f0
JK
2867 tp->control.step_frame_id = get_frame_id (frame);
2868 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
2869
2870 tp->current_symtab = sal.symtab;
2871 tp->current_line = sal.line;
2872}
2873
0d1e5fa7
PA
2874/* Clear context switchable stepping state. */
2875
2876void
4e1c45ea 2877init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7
PA
2878{
2879 tss->stepping_over_breakpoint = 0;
2880 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
2881}
2882
e02bc4cc 2883/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
2884 target_wait()/deprecated_target_wait_hook(). The data is actually
2885 cached by handle_inferior_event(), which gets called immediately
2886 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
2887
2888void
488f131b 2889get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 2890{
39f77062 2891 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
2892 *status = target_last_waitstatus;
2893}
2894
ac264b3b
MS
2895void
2896nullify_last_target_wait_ptid (void)
2897{
2898 target_last_wait_ptid = minus_one_ptid;
2899}
2900
dcf4fbde 2901/* Switch thread contexts. */
dd80620e
MS
2902
2903static void
0d1e5fa7 2904context_switch (ptid_t ptid)
dd80620e 2905{
4b51d87b 2906 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
2907 {
2908 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2909 target_pid_to_str (inferior_ptid));
2910 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 2911 target_pid_to_str (ptid));
fd48f117
DJ
2912 }
2913
0d1e5fa7 2914 switch_to_thread (ptid);
dd80620e
MS
2915}
2916
4fa8626c
DJ
2917static void
2918adjust_pc_after_break (struct execution_control_state *ecs)
2919{
24a73cce
UW
2920 struct regcache *regcache;
2921 struct gdbarch *gdbarch;
6c95b8df 2922 struct address_space *aspace;
8aad930b 2923 CORE_ADDR breakpoint_pc;
4fa8626c 2924
4fa8626c
DJ
2925 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2926 we aren't, just return.
9709f61c
DJ
2927
2928 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
2929 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2930 implemented by software breakpoints should be handled through the normal
2931 breakpoint layer.
8fb3e588 2932
4fa8626c
DJ
2933 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2934 different signals (SIGILL or SIGEMT for instance), but it is less
2935 clear where the PC is pointing afterwards. It may not match
b798847d
UW
2936 gdbarch_decr_pc_after_break. I don't know any specific target that
2937 generates these signals at breakpoints (the code has been in GDB since at
2938 least 1992) so I can not guess how to handle them here.
8fb3e588 2939
e6cf7916
UW
2940 In earlier versions of GDB, a target with
2941 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
2942 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2943 target with both of these set in GDB history, and it seems unlikely to be
2944 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
2945
2946 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2947 return;
2948
a493e3e2 2949 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
2950 return;
2951
4058b839
PA
2952 /* In reverse execution, when a breakpoint is hit, the instruction
2953 under it has already been de-executed. The reported PC always
2954 points at the breakpoint address, so adjusting it further would
2955 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2956 architecture:
2957
2958 B1 0x08000000 : INSN1
2959 B2 0x08000001 : INSN2
2960 0x08000002 : INSN3
2961 PC -> 0x08000003 : INSN4
2962
2963 Say you're stopped at 0x08000003 as above. Reverse continuing
2964 from that point should hit B2 as below. Reading the PC when the
2965 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2966 been de-executed already.
2967
2968 B1 0x08000000 : INSN1
2969 B2 PC -> 0x08000001 : INSN2
2970 0x08000002 : INSN3
2971 0x08000003 : INSN4
2972
2973 We can't apply the same logic as for forward execution, because
2974 we would wrongly adjust the PC to 0x08000000, since there's a
2975 breakpoint at PC - 1. We'd then report a hit on B1, although
2976 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2977 behaviour. */
2978 if (execution_direction == EXEC_REVERSE)
2979 return;
2980
24a73cce
UW
2981 /* If this target does not decrement the PC after breakpoints, then
2982 we have nothing to do. */
2983 regcache = get_thread_regcache (ecs->ptid);
2984 gdbarch = get_regcache_arch (regcache);
2985 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2986 return;
2987
6c95b8df
PA
2988 aspace = get_regcache_aspace (regcache);
2989
8aad930b
AC
2990 /* Find the location where (if we've hit a breakpoint) the
2991 breakpoint would be. */
515630c5
UW
2992 breakpoint_pc = regcache_read_pc (regcache)
2993 - gdbarch_decr_pc_after_break (gdbarch);
8aad930b 2994
1c5cfe86
PA
2995 /* Check whether there actually is a software breakpoint inserted at
2996 that location.
2997
2998 If in non-stop mode, a race condition is possible where we've
2999 removed a breakpoint, but stop events for that breakpoint were
3000 already queued and arrive later. To suppress those spurious
3001 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3002 and retire them after a number of stop events are reported. */
6c95b8df
PA
3003 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3004 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 3005 {
96429cc8 3006 struct cleanup *old_cleanups = NULL;
abbb1732 3007
96429cc8
HZ
3008 if (RECORD_IS_USED)
3009 old_cleanups = record_gdb_operation_disable_set ();
3010
1c0fdd0e
UW
3011 /* When using hardware single-step, a SIGTRAP is reported for both
3012 a completed single-step and a software breakpoint. Need to
3013 differentiate between the two, as the latter needs adjusting
3014 but the former does not.
3015
3016 The SIGTRAP can be due to a completed hardware single-step only if
3017 - we didn't insert software single-step breakpoints
3018 - the thread to be examined is still the current thread
3019 - this thread is currently being stepped
3020
3021 If any of these events did not occur, we must have stopped due
3022 to hitting a software breakpoint, and have to back up to the
3023 breakpoint address.
3024
3025 As a special case, we could have hardware single-stepped a
3026 software breakpoint. In this case (prev_pc == breakpoint_pc),
3027 we also need to back up to the breakpoint address. */
3028
3029 if (singlestep_breakpoints_inserted_p
3030 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
3031 || !currently_stepping (ecs->event_thread)
3032 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 3033 regcache_write_pc (regcache, breakpoint_pc);
96429cc8
HZ
3034
3035 if (RECORD_IS_USED)
3036 do_cleanups (old_cleanups);
8aad930b 3037 }
4fa8626c
DJ
3038}
3039
0d1e5fa7
PA
3040void
3041init_infwait_state (void)
3042{
3043 waiton_ptid = pid_to_ptid (-1);
3044 infwait_state = infwait_normal_state;
3045}
3046
94cc34af
PA
3047void
3048error_is_running (void)
3049{
3e43a32a
MS
3050 error (_("Cannot execute this command while "
3051 "the selected thread is running."));
94cc34af
PA
3052}
3053
3054void
3055ensure_not_running (void)
3056{
3057 if (is_running (inferior_ptid))
3058 error_is_running ();
3059}
3060
edb3359d
DJ
3061static int
3062stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3063{
3064 for (frame = get_prev_frame (frame);
3065 frame != NULL;
3066 frame = get_prev_frame (frame))
3067 {
3068 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3069 return 1;
3070 if (get_frame_type (frame) != INLINE_FRAME)
3071 break;
3072 }
3073
3074 return 0;
3075}
3076
a96d9b2e
SDJ
3077/* Auxiliary function that handles syscall entry/return events.
3078 It returns 1 if the inferior should keep going (and GDB
3079 should ignore the event), or 0 if the event deserves to be
3080 processed. */
ca2163eb 3081
a96d9b2e 3082static int
ca2163eb 3083handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 3084{
ca2163eb
PA
3085 struct regcache *regcache;
3086 struct gdbarch *gdbarch;
3087 int syscall_number;
3088
3089 if (!ptid_equal (ecs->ptid, inferior_ptid))
3090 context_switch (ecs->ptid);
3091
3092 regcache = get_thread_regcache (ecs->ptid);
3093 gdbarch = get_regcache_arch (regcache);
f90263c1 3094 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
3095 stop_pc = regcache_read_pc (regcache);
3096
a96d9b2e
SDJ
3097 if (catch_syscall_enabled () > 0
3098 && catching_syscall_number (syscall_number) > 0)
3099 {
3100 if (debug_infrun)
3101 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3102 syscall_number);
a96d9b2e 3103
16c381f0 3104 ecs->event_thread->control.stop_bpstat
6c95b8df 3105 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 3106 stop_pc, ecs->ptid, &ecs->ws);
16c381f0
JK
3107 ecs->random_signal
3108 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
a96d9b2e 3109
ca2163eb
PA
3110 if (!ecs->random_signal)
3111 {
3112 /* Catchpoint hit. */
a493e3e2 3113 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
ca2163eb
PA
3114 return 0;
3115 }
a96d9b2e 3116 }
ca2163eb
PA
3117
3118 /* If no catchpoint triggered for this, then keep going. */
a493e3e2 3119 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
ca2163eb
PA
3120 keep_going (ecs);
3121 return 1;
a96d9b2e
SDJ
3122}
3123
7e324e48
GB
3124/* Clear the supplied execution_control_state's stop_func_* fields. */
3125
3126static void
3127clear_stop_func (struct execution_control_state *ecs)
3128{
3129 ecs->stop_func_filled_in = 0;
3130 ecs->stop_func_start = 0;
3131 ecs->stop_func_end = 0;
3132 ecs->stop_func_name = NULL;
3133}
3134
3135/* Lazily fill in the execution_control_state's stop_func_* fields. */
3136
3137static void
3138fill_in_stop_func (struct gdbarch *gdbarch,
3139 struct execution_control_state *ecs)
3140{
3141 if (!ecs->stop_func_filled_in)
3142 {
3143 /* Don't care about return value; stop_func_start and stop_func_name
3144 will both be 0 if it doesn't work. */
3145 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3146 &ecs->stop_func_start, &ecs->stop_func_end);
3147 ecs->stop_func_start
3148 += gdbarch_deprecated_function_start_offset (gdbarch);
3149
3150 ecs->stop_func_filled_in = 1;
3151 }
3152}
3153
cd0fc7c3
SS
3154/* Given an execution control state that has been freshly filled in
3155 by an event from the inferior, figure out what it means and take
3156 appropriate action. */
c906108c 3157
ec9499be 3158static void
96baa820 3159handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 3160{
568d6575
UW
3161 struct frame_info *frame;
3162 struct gdbarch *gdbarch;
d983da9c
DJ
3163 int stopped_by_watchpoint;
3164 int stepped_after_stopped_by_watchpoint = 0;
2afb61aa 3165 struct symtab_and_line stop_pc_sal;
d6b48e9c
PA
3166 enum stop_kind stop_soon;
3167
28736962
PA
3168 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3169 {
3170 /* We had an event in the inferior, but we are not interested in
3171 handling it at this level. The lower layers have already
3172 done what needs to be done, if anything.
3173
3174 One of the possible circumstances for this is when the
3175 inferior produces output for the console. The inferior has
3176 not stopped, and we are ignoring the event. Another possible
3177 circumstance is any event which the lower level knows will be
3178 reported multiple times without an intervening resume. */
3179 if (debug_infrun)
3180 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3181 prepare_to_wait (ecs);
3182 return;
3183 }
3184
0e5bf2a8
PA
3185 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3186 && target_can_async_p () && !sync_execution)
3187 {
3188 /* There were no unwaited-for children left in the target, but,
3189 we're not synchronously waiting for events either. Just
3190 ignore. Otherwise, if we were running a synchronous
3191 execution command, we need to cancel it and give the user
3192 back the terminal. */
3193 if (debug_infrun)
3194 fprintf_unfiltered (gdb_stdlog,
3195 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3196 prepare_to_wait (ecs);
3197 return;
3198 }
3199
d6b48e9c 3200 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
0e5bf2a8
PA
3201 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3202 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
d6b48e9c
PA
3203 {
3204 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
abbb1732 3205
d6b48e9c 3206 gdb_assert (inf);
16c381f0 3207 stop_soon = inf->control.stop_soon;
d6b48e9c
PA
3208 }
3209 else
3210 stop_soon = NO_STOP_QUIETLY;
cd0fc7c3 3211
1777feb0 3212 /* Cache the last pid/waitstatus. */
39f77062 3213 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 3214 target_last_waitstatus = ecs->ws;
e02bc4cc 3215
ca005067 3216 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 3217 stop_stack_dummy = STOP_NONE;
ca005067 3218
0e5bf2a8
PA
3219 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3220 {
3221 /* No unwaited-for children left. IOW, all resumed children
3222 have exited. */
3223 if (debug_infrun)
3224 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3225
3226 stop_print_frame = 0;
3227 stop_stepping (ecs);
3228 return;
3229 }
3230
8c90c137 3231 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
359f5fe6
PA
3232 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3233 && !ptid_equal (ecs->ptid, minus_one_ptid))
3234 {
3235 ecs->event_thread = find_thread_ptid (ecs->ptid);
3236 /* If it's a new thread, add it to the thread database. */
3237 if (ecs->event_thread == NULL)
3238 ecs->event_thread = add_thread (ecs->ptid);
3239 }
88ed393a
JK
3240
3241 /* Dependent on valid ECS->EVENT_THREAD. */
3242 adjust_pc_after_break (ecs);
3243
3244 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3245 reinit_frame_cache ();
3246
28736962
PA
3247 breakpoint_retire_moribund ();
3248
2b009048
DJ
3249 /* First, distinguish signals caused by the debugger from signals
3250 that have to do with the program's own actions. Note that
3251 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3252 on the operating system version. Here we detect when a SIGILL or
3253 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3254 something similar for SIGSEGV, since a SIGSEGV will be generated
3255 when we're trying to execute a breakpoint instruction on a
3256 non-executable stack. This happens for call dummy breakpoints
3257 for architectures like SPARC that place call dummies on the
3258 stack. */
2b009048 3259 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
3260 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3261 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3262 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 3263 {
de0a0249
UW
3264 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3265
3266 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3267 regcache_read_pc (regcache)))
3268 {
3269 if (debug_infrun)
3270 fprintf_unfiltered (gdb_stdlog,
3271 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 3272 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 3273 }
2b009048
DJ
3274 }
3275
28736962
PA
3276 /* Mark the non-executing threads accordingly. In all-stop, all
3277 threads of all processes are stopped when we get any event
3278 reported. In non-stop mode, only the event thread stops. If
3279 we're handling a process exit in non-stop mode, there's nothing
3280 to do, as threads of the dead process are gone, and threads of
3281 any other process were left running. */
3282 if (!non_stop)
3283 set_executing (minus_one_ptid, 0);
3284 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3285 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
7aee8dc2 3286 set_executing (ecs->ptid, 0);
8c90c137 3287
0d1e5fa7 3288 switch (infwait_state)
488f131b
JB
3289 {
3290 case infwait_thread_hop_state:
527159b7 3291 if (debug_infrun)
8a9de0e4 3292 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
65e82032 3293 break;
b83266a0 3294
488f131b 3295 case infwait_normal_state:
527159b7 3296 if (debug_infrun)
8a9de0e4 3297 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
3298 break;
3299
3300 case infwait_step_watch_state:
3301 if (debug_infrun)
3302 fprintf_unfiltered (gdb_stdlog,
3303 "infrun: infwait_step_watch_state\n");
3304
3305 stepped_after_stopped_by_watchpoint = 1;
488f131b 3306 break;
b83266a0 3307
488f131b 3308 case infwait_nonstep_watch_state:
527159b7 3309 if (debug_infrun)
8a9de0e4
AC
3310 fprintf_unfiltered (gdb_stdlog,
3311 "infrun: infwait_nonstep_watch_state\n");
488f131b 3312 insert_breakpoints ();
c906108c 3313
488f131b
JB
3314 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3315 handle things like signals arriving and other things happening
3316 in combination correctly? */
3317 stepped_after_stopped_by_watchpoint = 1;
3318 break;
65e82032
AC
3319
3320 default:
e2e0b3e5 3321 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 3322 }
ec9499be 3323
0d1e5fa7 3324 infwait_state = infwait_normal_state;
ec9499be 3325 waiton_ptid = pid_to_ptid (-1);
c906108c 3326
488f131b
JB
3327 switch (ecs->ws.kind)
3328 {
3329 case TARGET_WAITKIND_LOADED:
527159b7 3330 if (debug_infrun)
8a9de0e4 3331 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
3332 /* Ignore gracefully during startup of the inferior, as it might
3333 be the shell which has just loaded some objects, otherwise
3334 add the symbols for the newly loaded objects. Also ignore at
3335 the beginning of an attach or remote session; we will query
3336 the full list of libraries once the connection is
3337 established. */
c0236d92 3338 if (stop_soon == NO_STOP_QUIETLY)
488f131b 3339 {
edcc5120
TT
3340 struct regcache *regcache;
3341
3342 if (!ptid_equal (ecs->ptid, inferior_ptid))
3343 context_switch (ecs->ptid);
3344 regcache = get_thread_regcache (ecs->ptid);
3345
3346 handle_solib_event ();
3347
3348 ecs->event_thread->control.stop_bpstat
3349 = bpstat_stop_status (get_regcache_aspace (regcache),
3350 stop_pc, ecs->ptid, &ecs->ws);
3351 ecs->random_signal
3352 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3353
3354 if (!ecs->random_signal)
3355 {
3356 /* A catchpoint triggered. */
a493e3e2 3357 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
edcc5120
TT
3358 goto process_event_stop_test;
3359 }
488f131b 3360
b0f4b84b
DJ
3361 /* If requested, stop when the dynamic linker notifies
3362 gdb of events. This allows the user to get control
3363 and place breakpoints in initializer routines for
3364 dynamically loaded objects (among other things). */
a493e3e2 3365 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
3366 if (stop_on_solib_events)
3367 {
55409f9d
DJ
3368 /* Make sure we print "Stopped due to solib-event" in
3369 normal_stop. */
3370 stop_print_frame = 1;
3371
b0f4b84b
DJ
3372 stop_stepping (ecs);
3373 return;
3374 }
488f131b 3375 }
b0f4b84b
DJ
3376
3377 /* If we are skipping through a shell, or through shared library
3378 loading that we aren't interested in, resume the program. If
3379 we're running the program normally, also resume. But stop if
3380 we're attaching or setting up a remote connection. */
3381 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3382 {
74960c60
VP
3383 /* Loading of shared libraries might have changed breakpoint
3384 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
3385 if (stop_soon == NO_STOP_QUIETLY
3386 && !breakpoints_always_inserted_mode ())
74960c60 3387 insert_breakpoints ();
a493e3e2 3388 resume (0, GDB_SIGNAL_0);
b0f4b84b
DJ
3389 prepare_to_wait (ecs);
3390 return;
3391 }
3392
3393 break;
c5aa993b 3394
488f131b 3395 case TARGET_WAITKIND_SPURIOUS:
527159b7 3396 if (debug_infrun)
8a9de0e4 3397 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
a493e3e2 3398 resume (0, GDB_SIGNAL_0);
488f131b
JB
3399 prepare_to_wait (ecs);
3400 return;
c5aa993b 3401
488f131b 3402 case TARGET_WAITKIND_EXITED:
527159b7 3403 if (debug_infrun)
8a9de0e4 3404 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
fb66883a 3405 inferior_ptid = ecs->ptid;
6c95b8df
PA
3406 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3407 set_current_program_space (current_inferior ()->pspace);
3408 handle_vfork_child_exec_or_exit (0);
1777feb0 3409 target_terminal_ours (); /* Must do this before mourn anyway. */
33d62d64 3410 print_exited_reason (ecs->ws.value.integer);
488f131b
JB
3411
3412 /* Record the exit code in the convenience variable $_exitcode, so
3413 that the user can inspect this again later. */
4fa62494
UW
3414 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3415 (LONGEST) ecs->ws.value.integer);
8cf64490
TT
3416
3417 /* Also record this in the inferior itself. */
3418 current_inferior ()->has_exit_code = 1;
3419 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3420
488f131b
JB
3421 gdb_flush (gdb_stdout);
3422 target_mourn_inferior ();
1c0fdd0e 3423 singlestep_breakpoints_inserted_p = 0;
d03285ec 3424 cancel_single_step_breakpoints ();
488f131b
JB
3425 stop_print_frame = 0;
3426 stop_stepping (ecs);
3427 return;
c5aa993b 3428
488f131b 3429 case TARGET_WAITKIND_SIGNALLED:
527159b7 3430 if (debug_infrun)
8a9de0e4 3431 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
fb66883a 3432 inferior_ptid = ecs->ptid;
6c95b8df
PA
3433 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3434 set_current_program_space (current_inferior ()->pspace);
3435 handle_vfork_child_exec_or_exit (0);
488f131b 3436 stop_print_frame = 0;
1777feb0 3437 target_terminal_ours (); /* Must do this before mourn anyway. */
c5aa993b 3438
488f131b
JB
3439 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
3440 reach here unless the inferior is dead. However, for years
3441 target_kill() was called here, which hints that fatal signals aren't
3442 really fatal on some systems. If that's true, then some changes
1777feb0 3443 may be needed. */
488f131b 3444 target_mourn_inferior ();
c906108c 3445
33d62d64 3446 print_signal_exited_reason (ecs->ws.value.sig);
1c0fdd0e 3447 singlestep_breakpoints_inserted_p = 0;
d03285ec 3448 cancel_single_step_breakpoints ();
488f131b
JB
3449 stop_stepping (ecs);
3450 return;
c906108c 3451
488f131b 3452 /* The following are the only cases in which we keep going;
1777feb0 3453 the above cases end in a continue or goto. */
488f131b 3454 case TARGET_WAITKIND_FORKED:
deb3b17b 3455 case TARGET_WAITKIND_VFORKED:
527159b7 3456 if (debug_infrun)
8a9de0e4 3457 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
c906108c 3458
e2d96639
YQ
3459 /* Check whether the inferior is displaced stepping. */
3460 {
3461 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3462 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3463 struct displaced_step_inferior_state *displaced
3464 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3465
3466 /* If checking displaced stepping is supported, and thread
3467 ecs->ptid is displaced stepping. */
3468 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3469 {
3470 struct inferior *parent_inf
3471 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3472 struct regcache *child_regcache;
3473 CORE_ADDR parent_pc;
3474
3475 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3476 indicating that the displaced stepping of syscall instruction
3477 has been done. Perform cleanup for parent process here. Note
3478 that this operation also cleans up the child process for vfork,
3479 because their pages are shared. */
a493e3e2 3480 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
e2d96639
YQ
3481
3482 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3483 {
3484 /* Restore scratch pad for child process. */
3485 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3486 }
3487
3488 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3489 the child's PC is also within the scratchpad. Set the child's PC
3490 to the parent's PC value, which has already been fixed up.
3491 FIXME: we use the parent's aspace here, although we're touching
3492 the child, because the child hasn't been added to the inferior
3493 list yet at this point. */
3494
3495 child_regcache
3496 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3497 gdbarch,
3498 parent_inf->aspace);
3499 /* Read PC value of parent process. */
3500 parent_pc = regcache_read_pc (regcache);
3501
3502 if (debug_displaced)
3503 fprintf_unfiltered (gdb_stdlog,
3504 "displaced: write child pc from %s to %s\n",
3505 paddress (gdbarch,
3506 regcache_read_pc (child_regcache)),
3507 paddress (gdbarch, parent_pc));
3508
3509 regcache_write_pc (child_regcache, parent_pc);
3510 }
3511 }
3512
5a2901d9 3513 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 3514 context_switch (ecs->ptid);
5a2901d9 3515
b242c3c2
PA
3516 /* Immediately detach breakpoints from the child before there's
3517 any chance of letting the user delete breakpoints from the
3518 breakpoint lists. If we don't do this early, it's easy to
3519 leave left over traps in the child, vis: "break foo; catch
3520 fork; c; <fork>; del; c; <child calls foo>". We only follow
3521 the fork on the last `continue', and by that time the
3522 breakpoint at "foo" is long gone from the breakpoint table.
3523 If we vforked, then we don't need to unpatch here, since both
3524 parent and child are sharing the same memory pages; we'll
3525 need to unpatch at follow/detach time instead to be certain
3526 that new breakpoints added between catchpoint hit time and
3527 vfork follow are detached. */
3528 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3529 {
3530 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
3531
3532 /* This won't actually modify the breakpoint list, but will
3533 physically remove the breakpoints from the child. */
3534 detach_breakpoints (child_pid);
3535 }
3536
d03285ec
UW
3537 if (singlestep_breakpoints_inserted_p)
3538 {
1777feb0 3539 /* Pull the single step breakpoints out of the target. */
d03285ec
UW
3540 remove_single_step_breakpoints ();
3541 singlestep_breakpoints_inserted_p = 0;
3542 }
3543
e58b0e63
PA
3544 /* In case the event is caught by a catchpoint, remember that
3545 the event is to be followed at the next resume of the thread,
3546 and not immediately. */
3547 ecs->event_thread->pending_follow = ecs->ws;
3548
fb14de7b 3549 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 3550
16c381f0 3551 ecs->event_thread->control.stop_bpstat
6c95b8df 3552 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 3553 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 3554
67822962
PA
3555 /* Note that we're interested in knowing the bpstat actually
3556 causes a stop, not just if it may explain the signal.
3557 Software watchpoints, for example, always appear in the
3558 bpstat. */
16c381f0
JK
3559 ecs->random_signal
3560 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
04e68871
DJ
3561
3562 /* If no catchpoint triggered for this, then keep going. */
3563 if (ecs->random_signal)
3564 {
6c95b8df
PA
3565 ptid_t parent;
3566 ptid_t child;
e58b0e63 3567 int should_resume;
3e43a32a
MS
3568 int follow_child
3569 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 3570
a493e3e2 3571 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
3572
3573 should_resume = follow_fork ();
3574
6c95b8df
PA
3575 parent = ecs->ptid;
3576 child = ecs->ws.value.related_pid;
3577
3578 /* In non-stop mode, also resume the other branch. */
3579 if (non_stop && !detach_fork)
3580 {
3581 if (follow_child)
3582 switch_to_thread (parent);
3583 else
3584 switch_to_thread (child);
3585
3586 ecs->event_thread = inferior_thread ();
3587 ecs->ptid = inferior_ptid;
3588 keep_going (ecs);
3589 }
3590
3591 if (follow_child)
3592 switch_to_thread (child);
3593 else
3594 switch_to_thread (parent);
3595
e58b0e63
PA
3596 ecs->event_thread = inferior_thread ();
3597 ecs->ptid = inferior_ptid;
3598
3599 if (should_resume)
3600 keep_going (ecs);
3601 else
3602 stop_stepping (ecs);
04e68871
DJ
3603 return;
3604 }
a493e3e2 3605 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
488f131b
JB
3606 goto process_event_stop_test;
3607
6c95b8df
PA
3608 case TARGET_WAITKIND_VFORK_DONE:
3609 /* Done with the shared memory region. Re-insert breakpoints in
3610 the parent, and keep going. */
3611
3612 if (debug_infrun)
3e43a32a
MS
3613 fprintf_unfiltered (gdb_stdlog,
3614 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
3615
3616 if (!ptid_equal (ecs->ptid, inferior_ptid))
3617 context_switch (ecs->ptid);
3618
3619 current_inferior ()->waiting_for_vfork_done = 0;
56710373 3620 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
3621 /* This also takes care of reinserting breakpoints in the
3622 previously locked inferior. */
3623 keep_going (ecs);
3624 return;
3625
488f131b 3626 case TARGET_WAITKIND_EXECD:
527159b7 3627 if (debug_infrun)
fc5261f2 3628 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 3629
5a2901d9 3630 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 3631 context_switch (ecs->ptid);
5a2901d9 3632
d03285ec
UW
3633 singlestep_breakpoints_inserted_p = 0;
3634 cancel_single_step_breakpoints ();
3635
fb14de7b 3636 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 3637
6c95b8df
PA
3638 /* Do whatever is necessary to the parent branch of the vfork. */
3639 handle_vfork_child_exec_or_exit (1);
3640
795e548f
PA
3641 /* This causes the eventpoints and symbol table to be reset.
3642 Must do this now, before trying to determine whether to
3643 stop. */
71b43ef8 3644 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 3645
16c381f0 3646 ecs->event_thread->control.stop_bpstat
6c95b8df 3647 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 3648 stop_pc, ecs->ptid, &ecs->ws);
16c381f0
JK
3649 ecs->random_signal
3650 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
795e548f 3651
71b43ef8
PA
3652 /* Note that this may be referenced from inside
3653 bpstat_stop_status above, through inferior_has_execd. */
3654 xfree (ecs->ws.value.execd_pathname);
3655 ecs->ws.value.execd_pathname = NULL;
3656
04e68871
DJ
3657 /* If no catchpoint triggered for this, then keep going. */
3658 if (ecs->random_signal)
3659 {
a493e3e2 3660 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
3661 keep_going (ecs);
3662 return;
3663 }
a493e3e2 3664 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
488f131b
JB
3665 goto process_event_stop_test;
3666
b4dc5ffa
MK
3667 /* Be careful not to try to gather much state about a thread
3668 that's in a syscall. It's frequently a losing proposition. */
488f131b 3669 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 3670 if (debug_infrun)
3e43a32a
MS
3671 fprintf_unfiltered (gdb_stdlog,
3672 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 3673 /* Getting the current syscall number. */
ca2163eb 3674 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3675 return;
3676 goto process_event_stop_test;
c906108c 3677
488f131b
JB
3678 /* Before examining the threads further, step this thread to
3679 get it entirely out of the syscall. (We get notice of the
3680 event when the thread is just on the verge of exiting a
3681 syscall. Stepping one instruction seems to get it back
b4dc5ffa 3682 into user code.) */
488f131b 3683 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 3684 if (debug_infrun)
3e43a32a
MS
3685 fprintf_unfiltered (gdb_stdlog,
3686 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
ca2163eb 3687 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3688 return;
3689 goto process_event_stop_test;
c906108c 3690
488f131b 3691 case TARGET_WAITKIND_STOPPED:
527159b7 3692 if (debug_infrun)
8a9de0e4 3693 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 3694 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
488f131b 3695 break;
c906108c 3696
b2175913 3697 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
3698 if (debug_infrun)
3699 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 3700 /* Reverse execution: target ran out of history info. */
fb14de7b 3701 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
33d62d64 3702 print_no_history_reason ();
b2175913
MS
3703 stop_stepping (ecs);
3704 return;
488f131b 3705 }
c906108c 3706
2020b7ab 3707 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
252fbfc8
PA
3708 {
3709 /* Do we need to clean up the state of a thread that has
3710 completed a displaced single-step? (Doing so usually affects
3711 the PC, so do it here, before we set stop_pc.) */
16c381f0
JK
3712 displaced_step_fixup (ecs->ptid,
3713 ecs->event_thread->suspend.stop_signal);
252fbfc8
PA
3714
3715 /* If we either finished a single-step or hit a breakpoint, but
3716 the user wanted this thread to be stopped, pretend we got a
3717 SIG0 (generic unsignaled stop). */
3718
3719 if (ecs->event_thread->stop_requested
a493e3e2
PA
3720 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3721 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
252fbfc8 3722 }
237fc4c9 3723
515630c5 3724 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 3725
527159b7 3726 if (debug_infrun)
237fc4c9 3727 {
5af949e3
UW
3728 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3729 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
3730 struct cleanup *old_chain = save_inferior_ptid ();
3731
3732 inferior_ptid = ecs->ptid;
5af949e3
UW
3733
3734 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3735 paddress (gdbarch, stop_pc));
d92524f1 3736 if (target_stopped_by_watchpoint ())
237fc4c9
PA
3737 {
3738 CORE_ADDR addr;
abbb1732 3739
237fc4c9
PA
3740 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3741
3742 if (target_stopped_data_address (&current_target, &addr))
3743 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
3744 "infrun: stopped data address = %s\n",
3745 paddress (gdbarch, addr));
237fc4c9
PA
3746 else
3747 fprintf_unfiltered (gdb_stdlog,
3748 "infrun: (no data address available)\n");
3749 }
7f82dfc7
JK
3750
3751 do_cleanups (old_chain);
237fc4c9 3752 }
527159b7 3753
9f976b41
DJ
3754 if (stepping_past_singlestep_breakpoint)
3755 {
1c0fdd0e 3756 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
3757 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3758 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3759
3760 stepping_past_singlestep_breakpoint = 0;
3761
3762 /* We've either finished single-stepping past the single-step
8fb3e588
AC
3763 breakpoint, or stopped for some other reason. It would be nice if
3764 we could tell, but we can't reliably. */
a493e3e2 3765 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
8fb3e588 3766 {
527159b7 3767 if (debug_infrun)
3e43a32a
MS
3768 fprintf_unfiltered (gdb_stdlog,
3769 "infrun: stepping_past_"
3770 "singlestep_breakpoint\n");
9f976b41 3771 /* Pull the single step breakpoints out of the target. */
e0cd558a 3772 remove_single_step_breakpoints ();
9f976b41
DJ
3773 singlestep_breakpoints_inserted_p = 0;
3774
3775 ecs->random_signal = 0;
16c381f0 3776 ecs->event_thread->control.trap_expected = 0;
9f976b41 3777
0d1e5fa7 3778 context_switch (saved_singlestep_ptid);
9a4105ab
AC
3779 if (deprecated_context_hook)
3780 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41 3781
a493e3e2 3782 resume (1, GDB_SIGNAL_0);
9f976b41
DJ
3783 prepare_to_wait (ecs);
3784 return;
3785 }
3786 }
3787
ca67fcb8 3788 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 3789 {
94cc34af
PA
3790 /* In non-stop mode, there's never a deferred_step_ptid set. */
3791 gdb_assert (!non_stop);
3792
6a6b96b9
UW
3793 /* If we stopped for some other reason than single-stepping, ignore
3794 the fact that we were supposed to switch back. */
a493e3e2 3795 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
6a6b96b9
UW
3796 {
3797 if (debug_infrun)
3798 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 3799 "infrun: handling deferred step\n");
6a6b96b9
UW
3800
3801 /* Pull the single step breakpoints out of the target. */
3802 if (singlestep_breakpoints_inserted_p)
3803 {
3804 remove_single_step_breakpoints ();
3805 singlestep_breakpoints_inserted_p = 0;
3806 }
3807
cd3da28e
PA
3808 ecs->event_thread->control.trap_expected = 0;
3809
d25f45d9 3810 context_switch (deferred_step_ptid);
ca67fcb8 3811 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3812 /* Suppress spurious "Switching to ..." message. */
3813 previous_inferior_ptid = inferior_ptid;
3814
a493e3e2 3815 resume (1, GDB_SIGNAL_0);
6a6b96b9
UW
3816 prepare_to_wait (ecs);
3817 return;
3818 }
ca67fcb8
VP
3819
3820 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3821 }
3822
488f131b
JB
3823 /* See if a thread hit a thread-specific breakpoint that was meant for
3824 another thread. If so, then step that thread past the breakpoint,
3825 and continue it. */
3826
a493e3e2 3827 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 3828 {
9f976b41 3829 int thread_hop_needed = 0;
cf00dfa7
VP
3830 struct address_space *aspace =
3831 get_regcache_aspace (get_thread_regcache (ecs->ptid));
9f976b41 3832
f8d40ec8 3833 /* Check if a regular breakpoint has been hit before checking
1777feb0 3834 for a potential single step breakpoint. Otherwise, GDB will
f8d40ec8 3835 not see this breakpoint hit when stepping onto breakpoints. */
6c95b8df 3836 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
488f131b 3837 {
c5aa993b 3838 ecs->random_signal = 0;
6c95b8df 3839 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
9f976b41
DJ
3840 thread_hop_needed = 1;
3841 }
1c0fdd0e 3842 else if (singlestep_breakpoints_inserted_p)
9f976b41 3843 {
fd48f117
DJ
3844 /* We have not context switched yet, so this should be true
3845 no matter which thread hit the singlestep breakpoint. */
3846 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3847 if (debug_infrun)
3848 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3849 "trap for %s\n",
3850 target_pid_to_str (ecs->ptid));
3851
9f976b41
DJ
3852 ecs->random_signal = 0;
3853 /* The call to in_thread_list is necessary because PTIDs sometimes
3854 change when we go from single-threaded to multi-threaded. If
3855 the singlestep_ptid is still in the list, assume that it is
3856 really different from ecs->ptid. */
3857 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3858 && in_thread_list (singlestep_ptid))
3859 {
fd48f117
DJ
3860 /* If the PC of the thread we were trying to single-step
3861 has changed, discard this event (which we were going
3862 to ignore anyway), and pretend we saw that thread
3863 trap. This prevents us continuously moving the
3864 single-step breakpoint forward, one instruction at a
3865 time. If the PC has changed, then the thread we were
3866 trying to single-step has trapped or been signalled,
3867 but the event has not been reported to GDB yet.
3868
3869 There might be some cases where this loses signal
3870 information, if a signal has arrived at exactly the
3871 same time that the PC changed, but this is the best
3872 we can do with the information available. Perhaps we
3873 should arrange to report all events for all threads
3874 when they stop, or to re-poll the remote looking for
3875 this particular thread (i.e. temporarily enable
3876 schedlock). */
515630c5
UW
3877
3878 CORE_ADDR new_singlestep_pc
3879 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3880
3881 if (new_singlestep_pc != singlestep_pc)
fd48f117 3882 {
2ea28649 3883 enum gdb_signal stop_signal;
2020b7ab 3884
fd48f117
DJ
3885 if (debug_infrun)
3886 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3887 " but expected thread advanced also\n");
3888
3889 /* The current context still belongs to
3890 singlestep_ptid. Don't swap here, since that's
3891 the context we want to use. Just fudge our
3892 state and continue. */
16c381f0 3893 stop_signal = ecs->event_thread->suspend.stop_signal;
a493e3e2 3894 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
fd48f117 3895 ecs->ptid = singlestep_ptid;
e09875d4 3896 ecs->event_thread = find_thread_ptid (ecs->ptid);
16c381f0 3897 ecs->event_thread->suspend.stop_signal = stop_signal;
515630c5 3898 stop_pc = new_singlestep_pc;
fd48f117
DJ
3899 }
3900 else
3901 {
3902 if (debug_infrun)
3903 fprintf_unfiltered (gdb_stdlog,
3904 "infrun: unexpected thread\n");
3905
3906 thread_hop_needed = 1;
3907 stepping_past_singlestep_breakpoint = 1;
3908 saved_singlestep_ptid = singlestep_ptid;
3909 }
9f976b41
DJ
3910 }
3911 }
3912
3913 if (thread_hop_needed)
8fb3e588 3914 {
9f5a595d 3915 struct regcache *thread_regcache;
237fc4c9 3916 int remove_status = 0;
8fb3e588 3917
527159b7 3918 if (debug_infrun)
8a9de0e4 3919 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 3920
b3444185
PA
3921 /* Switch context before touching inferior memory, the
3922 previous thread may have exited. */
3923 if (!ptid_equal (inferior_ptid, ecs->ptid))
3924 context_switch (ecs->ptid);
3925
8fb3e588 3926 /* Saw a breakpoint, but it was hit by the wrong thread.
1777feb0 3927 Just continue. */
8fb3e588 3928
1c0fdd0e 3929 if (singlestep_breakpoints_inserted_p)
488f131b 3930 {
1777feb0 3931 /* Pull the single step breakpoints out of the target. */
e0cd558a 3932 remove_single_step_breakpoints ();
8fb3e588
AC
3933 singlestep_breakpoints_inserted_p = 0;
3934 }
3935
237fc4c9
PA
3936 /* If the arch can displace step, don't remove the
3937 breakpoints. */
9f5a595d
UW
3938 thread_regcache = get_thread_regcache (ecs->ptid);
3939 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
3940 remove_status = remove_breakpoints ();
3941
8fb3e588
AC
3942 /* Did we fail to remove breakpoints? If so, try
3943 to set the PC past the bp. (There's at least
3944 one situation in which we can fail to remove
3945 the bp's: On HP-UX's that use ttrace, we can't
3946 change the address space of a vforking child
3947 process until the child exits (well, okay, not
1777feb0 3948 then either :-) or execs. */
8fb3e588 3949 if (remove_status != 0)
9d9cd7ac 3950 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
3951 else
3952 { /* Single step */
94cc34af
PA
3953 if (!non_stop)
3954 {
3955 /* Only need to require the next event from this
3956 thread in all-stop mode. */
3957 waiton_ptid = ecs->ptid;
3958 infwait_state = infwait_thread_hop_state;
3959 }
8fb3e588 3960
4e1c45ea 3961 ecs->event_thread->stepping_over_breakpoint = 1;
8fb3e588 3962 keep_going (ecs);
8fb3e588
AC
3963 return;
3964 }
488f131b 3965 }
1c0fdd0e 3966 else if (singlestep_breakpoints_inserted_p)
8fb3e588 3967 {
8fb3e588
AC
3968 ecs->random_signal = 0;
3969 }
488f131b
JB
3970 }
3971 else
3972 ecs->random_signal = 1;
c906108c 3973
488f131b 3974 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
3975 so, then switch to that thread. */
3976 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 3977 {
527159b7 3978 if (debug_infrun)
8a9de0e4 3979 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 3980
0d1e5fa7 3981 context_switch (ecs->ptid);
c5aa993b 3982
9a4105ab
AC
3983 if (deprecated_context_hook)
3984 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 3985 }
c906108c 3986
568d6575
UW
3987 /* At this point, get hold of the now-current thread's frame. */
3988 frame = get_current_frame ();
3989 gdbarch = get_frame_arch (frame);
3990
1c0fdd0e 3991 if (singlestep_breakpoints_inserted_p)
488f131b 3992 {
1777feb0 3993 /* Pull the single step breakpoints out of the target. */
e0cd558a 3994 remove_single_step_breakpoints ();
488f131b
JB
3995 singlestep_breakpoints_inserted_p = 0;
3996 }
c906108c 3997
d983da9c
DJ
3998 if (stepped_after_stopped_by_watchpoint)
3999 stopped_by_watchpoint = 0;
4000 else
4001 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4002
4003 /* If necessary, step over this watchpoint. We'll be back to display
4004 it in a moment. */
4005 if (stopped_by_watchpoint
d92524f1 4006 && (target_have_steppable_watchpoint
568d6575 4007 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 4008 {
488f131b
JB
4009 /* At this point, we are stopped at an instruction which has
4010 attempted to write to a piece of memory under control of
4011 a watchpoint. The instruction hasn't actually executed
4012 yet. If we were to evaluate the watchpoint expression
4013 now, we would get the old value, and therefore no change
4014 would seem to have occurred.
4015
4016 In order to make watchpoints work `right', we really need
4017 to complete the memory write, and then evaluate the
d983da9c
DJ
4018 watchpoint expression. We do this by single-stepping the
4019 target.
4020
4021 It may not be necessary to disable the watchpoint to stop over
4022 it. For example, the PA can (with some kernel cooperation)
4023 single step over a watchpoint without disabling the watchpoint.
4024
4025 It is far more common to need to disable a watchpoint to step
4026 the inferior over it. If we have non-steppable watchpoints,
4027 we must disable the current watchpoint; it's simplest to
4028 disable all watchpoints and breakpoints. */
2facfe5c
DD
4029 int hw_step = 1;
4030
d92524f1 4031 if (!target_have_steppable_watchpoint)
2455069d
UW
4032 {
4033 remove_breakpoints ();
4034 /* See comment in resume why we need to stop bypassing signals
4035 while breakpoints have been removed. */
4036 target_pass_signals (0, NULL);
4037 }
2facfe5c 4038 /* Single step */
568d6575 4039 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
a493e3e2 4040 target_resume (ecs->ptid, hw_step, GDB_SIGNAL_0);
0d1e5fa7 4041 waiton_ptid = ecs->ptid;
d92524f1 4042 if (target_have_steppable_watchpoint)
0d1e5fa7 4043 infwait_state = infwait_step_watch_state;
d983da9c 4044 else
0d1e5fa7 4045 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
4046 prepare_to_wait (ecs);
4047 return;
4048 }
4049
7e324e48 4050 clear_stop_func (ecs);
4e1c45ea 4051 ecs->event_thread->stepping_over_breakpoint = 0;
16c381f0
JK
4052 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4053 ecs->event_thread->control.stop_step = 0;
488f131b
JB
4054 stop_print_frame = 1;
4055 ecs->random_signal = 0;
4056 stopped_by_random_signal = 0;
488f131b 4057
edb3359d
DJ
4058 /* Hide inlined functions starting here, unless we just performed stepi or
4059 nexti. After stepi and nexti, always show the innermost frame (not any
4060 inline function call sites). */
16c381f0 4061 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
4062 {
4063 struct address_space *aspace =
4064 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4065
4066 /* skip_inline_frames is expensive, so we avoid it if we can
4067 determine that the address is one where functions cannot have
4068 been inlined. This improves performance with inferiors that
4069 load a lot of shared libraries, because the solib event
4070 breakpoint is defined as the address of a function (i.e. not
4071 inline). Note that we have to check the previous PC as well
4072 as the current one to catch cases when we have just
4073 single-stepped off a breakpoint prior to reinstating it.
4074 Note that we're assuming that the code we single-step to is
4075 not inline, but that's not definitive: there's nothing
4076 preventing the event breakpoint function from containing
4077 inlined code, and the single-step ending up there. If the
4078 user had set a breakpoint on that inlined code, the missing
4079 skip_inline_frames call would break things. Fortunately
4080 that's an extremely unlikely scenario. */
09ac7c10 4081 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a493e3e2 4082 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
0574c78f
GB
4083 && ecs->event_thread->control.trap_expected
4084 && pc_at_non_inline_function (aspace,
09ac7c10
TT
4085 ecs->event_thread->prev_pc,
4086 &ecs->ws)))
0574c78f
GB
4087 skip_inline_frames (ecs->ptid);
4088 }
edb3359d 4089
a493e3e2 4090 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 4091 && ecs->event_thread->control.trap_expected
568d6575 4092 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 4093 && currently_stepping (ecs->event_thread))
3352ef37 4094 {
b50d7442 4095 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 4096 also on an instruction that needs to be stepped multiple
1777feb0 4097 times before it's been fully executing. E.g., architectures
3352ef37
AC
4098 with a delay slot. It needs to be stepped twice, once for
4099 the instruction and once for the delay slot. */
4100 int step_through_delay
568d6575 4101 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 4102
527159b7 4103 if (debug_infrun && step_through_delay)
8a9de0e4 4104 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
4105 if (ecs->event_thread->control.step_range_end == 0
4106 && step_through_delay)
3352ef37
AC
4107 {
4108 /* The user issued a continue when stopped at a breakpoint.
4109 Set up for another trap and get out of here. */
4e1c45ea 4110 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4111 keep_going (ecs);
4112 return;
4113 }
4114 else if (step_through_delay)
4115 {
4116 /* The user issued a step when stopped at a breakpoint.
4117 Maybe we should stop, maybe we should not - the delay
4118 slot *might* correspond to a line of source. In any
ca67fcb8
VP
4119 case, don't decide that here, just set
4120 ecs->stepping_over_breakpoint, making sure we
4121 single-step again before breakpoints are re-inserted. */
4e1c45ea 4122 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4123 }
4124 }
4125
488f131b
JB
4126 /* Look at the cause of the stop, and decide what to do.
4127 The alternatives are:
0d1e5fa7
PA
4128 1) stop_stepping and return; to really stop and return to the debugger,
4129 2) keep_going and return to start up again
4e1c45ea 4130 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
488f131b
JB
4131 3) set ecs->random_signal to 1, and the decision between 1 and 2
4132 will be made according to the signal handling tables. */
4133
a493e3e2 4134 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
b0f4b84b
DJ
4135 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
4136 || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 4137 {
a493e3e2 4138 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 4139 && stop_after_trap)
488f131b 4140 {
527159b7 4141 if (debug_infrun)
8a9de0e4 4142 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
4143 stop_print_frame = 0;
4144 stop_stepping (ecs);
4145 return;
4146 }
c54cfec8
EZ
4147
4148 /* This is originated from start_remote(), start_inferior() and
4149 shared libraries hook functions. */
b0f4b84b 4150 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 4151 {
527159b7 4152 if (debug_infrun)
8a9de0e4 4153 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
4154 stop_stepping (ecs);
4155 return;
4156 }
4157
c54cfec8 4158 /* This originates from attach_command(). We need to overwrite
a0d21d28
PA
4159 the stop_signal here, because some kernels don't ignore a
4160 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4161 See more comments in inferior.h. On the other hand, if we
a0ef4274 4162 get a non-SIGSTOP, report it to the user - assume the backend
a0d21d28
PA
4163 will handle the SIGSTOP if it should show up later.
4164
4165 Also consider that the attach is complete when we see a
4166 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4167 target extended-remote report it instead of a SIGSTOP
4168 (e.g. gdbserver). We already rely on SIGTRAP being our
e0ba6746
PA
4169 signal, so this is no exception.
4170
4171 Also consider that the attach is complete when we see a
a493e3e2 4172 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
e0ba6746
PA
4173 the target to stop all threads of the inferior, in case the
4174 low level attach operation doesn't stop them implicitly. If
4175 they weren't stopped implicitly, then the stub will report a
a493e3e2 4176 GDB_SIGNAL_0, meaning: stopped for no particular reason
e0ba6746 4177 other than GDB's request. */
a0ef4274 4178 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
a493e3e2
PA
4179 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4180 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4181 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
c54cfec8
EZ
4182 {
4183 stop_stepping (ecs);
a493e3e2 4184 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
c54cfec8
EZ
4185 return;
4186 }
4187
09ac7c10
TT
4188 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4189 handles this event. */
16c381f0 4190 ecs->event_thread->control.stop_bpstat
6c95b8df 4191 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 4192 stop_pc, ecs->ptid, &ecs->ws);
6c95b8df 4193
fba57f8f
VP
4194 /* Following in case break condition called a
4195 function. */
4196 stop_print_frame = 1;
488f131b 4197
db82e815
PA
4198 /* This is where we handle "moribund" watchpoints. Unlike
4199 software breakpoints traps, hardware watchpoint traps are
4200 always distinguishable from random traps. If no high-level
4201 watchpoint is associated with the reported stop data address
4202 anymore, then the bpstat does not explain the signal ---
4203 simply make sure to ignore it if `stopped_by_watchpoint' is
4204 set. */
4205
4206 if (debug_infrun
a493e3e2 4207 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 4208 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
db82e815 4209 && stopped_by_watchpoint)
3e43a32a
MS
4210 fprintf_unfiltered (gdb_stdlog,
4211 "infrun: no user watchpoint explains "
4212 "watchpoint SIGTRAP, ignoring\n");
db82e815 4213
73dd234f 4214 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
4215 at one stage in the past included checks for an inferior
4216 function call's call dummy's return breakpoint. The original
4217 comment, that went with the test, read:
73dd234f 4218
8fb3e588
AC
4219 ``End of a stack dummy. Some systems (e.g. Sony news) give
4220 another signal besides SIGTRAP, so check here as well as
4221 above.''
73dd234f 4222
8002d778 4223 If someone ever tries to get call dummys on a
73dd234f 4224 non-executable stack to work (where the target would stop
03cebad2
MK
4225 with something like a SIGSEGV), then those tests might need
4226 to be re-instated. Given, however, that the tests were only
73dd234f 4227 enabled when momentary breakpoints were not being used, I
03cebad2
MK
4228 suspect that it won't be the case.
4229
8fb3e588
AC
4230 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4231 be necessary for call dummies on a non-executable stack on
4232 SPARC. */
73dd234f 4233
a493e3e2 4234 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 4235 ecs->random_signal
16c381f0 4236 = !(bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
db82e815 4237 || stopped_by_watchpoint
16c381f0
JK
4238 || ecs->event_thread->control.trap_expected
4239 || (ecs->event_thread->control.step_range_end
8358c15c
JK
4240 && (ecs->event_thread->control.step_resume_breakpoint
4241 == NULL)));
488f131b
JB
4242 else
4243 {
16c381f0
JK
4244 ecs->random_signal = !bpstat_explains_signal
4245 (ecs->event_thread->control.stop_bpstat);
488f131b 4246 if (!ecs->random_signal)
a493e3e2 4247 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
488f131b
JB
4248 }
4249 }
4250
4251 /* When we reach this point, we've pretty much decided
4252 that the reason for stopping must've been a random
1777feb0 4253 (unexpected) signal. */
488f131b
JB
4254
4255 else
4256 ecs->random_signal = 1;
488f131b 4257
04e68871 4258process_event_stop_test:
568d6575
UW
4259
4260 /* Re-fetch current thread's frame in case we did a
4261 "goto process_event_stop_test" above. */
4262 frame = get_current_frame ();
4263 gdbarch = get_frame_arch (frame);
4264
488f131b
JB
4265 /* For the program's own signals, act according to
4266 the signal handling tables. */
4267
4268 if (ecs->random_signal)
4269 {
4270 /* Signal not for debugging purposes. */
4271 int printed = 0;
24291992 4272 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
488f131b 4273
527159b7 4274 if (debug_infrun)
2020b7ab 4275 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
16c381f0 4276 ecs->event_thread->suspend.stop_signal);
527159b7 4277
488f131b
JB
4278 stopped_by_random_signal = 1;
4279
16c381f0 4280 if (signal_print[ecs->event_thread->suspend.stop_signal])
488f131b
JB
4281 {
4282 printed = 1;
4283 target_terminal_ours_for_output ();
16c381f0
JK
4284 print_signal_received_reason
4285 (ecs->event_thread->suspend.stop_signal);
488f131b 4286 }
252fbfc8
PA
4287 /* Always stop on signals if we're either just gaining control
4288 of the program, or the user explicitly requested this thread
4289 to remain stopped. */
d6b48e9c 4290 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 4291 || ecs->event_thread->stop_requested
24291992 4292 || (!inf->detaching
16c381f0 4293 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b
JB
4294 {
4295 stop_stepping (ecs);
4296 return;
4297 }
4298 /* If not going to stop, give terminal back
4299 if we took it away. */
4300 else if (printed)
4301 target_terminal_inferior ();
4302
4303 /* Clear the signal if it should not be passed. */
16c381f0 4304 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 4305 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 4306
fb14de7b 4307 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 4308 && ecs->event_thread->control.trap_expected
8358c15c 4309 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
4310 {
4311 /* We were just starting a new sequence, attempting to
4312 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 4313 Instead this signal arrives. This signal will take us out
68f53502
AC
4314 of the stepping range so GDB needs to remember to, when
4315 the signal handler returns, resume stepping off that
4316 breakpoint. */
4317 /* To simplify things, "continue" is forced to use the same
4318 code paths as single-step - set a breakpoint at the
4319 signal return address and then, once hit, step off that
4320 breakpoint. */
237fc4c9
PA
4321 if (debug_infrun)
4322 fprintf_unfiltered (gdb_stdlog,
4323 "infrun: signal arrived while stepping over "
4324 "breakpoint\n");
d3169d93 4325
2c03e5be 4326 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 4327 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
4328 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4329 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4330 keep_going (ecs);
4331 return;
68f53502 4332 }
9d799f85 4333
16c381f0 4334 if (ecs->event_thread->control.step_range_end != 0
a493e3e2 4335 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
16c381f0
JK
4336 && (ecs->event_thread->control.step_range_start <= stop_pc
4337 && stop_pc < ecs->event_thread->control.step_range_end)
edb3359d 4338 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 4339 ecs->event_thread->control.step_stack_frame_id)
8358c15c 4340 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
4341 {
4342 /* The inferior is about to take a signal that will take it
4343 out of the single step range. Set a breakpoint at the
4344 current PC (which is presumably where the signal handler
4345 will eventually return) and then allow the inferior to
4346 run free.
4347
4348 Note that this is only needed for a signal delivered
4349 while in the single-step range. Nested signals aren't a
4350 problem as they eventually all return. */
237fc4c9
PA
4351 if (debug_infrun)
4352 fprintf_unfiltered (gdb_stdlog,
4353 "infrun: signal may take us out of "
4354 "single-step range\n");
4355
2c03e5be 4356 insert_hp_step_resume_breakpoint_at_frame (frame);
2455069d
UW
4357 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4358 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4359 keep_going (ecs);
4360 return;
d303a6c7 4361 }
9d799f85
AC
4362
4363 /* Note: step_resume_breakpoint may be non-NULL. This occures
4364 when either there's a nested signal, or when there's a
4365 pending signal enabled just as the signal handler returns
4366 (leaving the inferior at the step-resume-breakpoint without
4367 actually executing it). Either way continue until the
4368 breakpoint is really hit. */
488f131b
JB
4369 keep_going (ecs);
4370 return;
4371 }
4372
4373 /* Handle cases caused by hitting a breakpoint. */
4374 {
4375 CORE_ADDR jmp_buf_pc;
4376 struct bpstat_what what;
4377
16c381f0 4378 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
488f131b
JB
4379
4380 if (what.call_dummy)
4381 {
aa7d318d 4382 stop_stack_dummy = what.call_dummy;
c5aa993b 4383 }
c906108c 4384
628fe4e4
JK
4385 /* If we hit an internal event that triggers symbol changes, the
4386 current frame will be invalidated within bpstat_what (e.g., if
4387 we hit an internal solib event). Re-fetch it. */
4388 frame = get_current_frame ();
4389 gdbarch = get_frame_arch (frame);
4390
488f131b 4391 switch (what.main_action)
c5aa993b 4392 {
488f131b 4393 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
611c83ae
PA
4394 /* If we hit the breakpoint at longjmp while stepping, we
4395 install a momentary breakpoint at the target of the
4396 jmp_buf. */
4397
4398 if (debug_infrun)
4399 fprintf_unfiltered (gdb_stdlog,
4400 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4401
4e1c45ea 4402 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 4403
186c406b 4404 if (what.is_longjmp)
c5aa993b 4405 {
28106bc2
SDJ
4406 struct value *arg_value;
4407
4408 /* If we set the longjmp breakpoint via a SystemTap probe,
4409 then use it to extract the arguments. The destination
4410 PC is the third argument to the probe. */
4411 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4412 if (arg_value)
4413 jmp_buf_pc = value_as_address (arg_value);
4414 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4415 || !gdbarch_get_longjmp_target (gdbarch,
4416 frame, &jmp_buf_pc))
186c406b
TT
4417 {
4418 if (debug_infrun)
3e43a32a
MS
4419 fprintf_unfiltered (gdb_stdlog,
4420 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4421 "(!gdbarch_get_longjmp_target)\n");
186c406b
TT
4422 keep_going (ecs);
4423 return;
4424 }
488f131b 4425
186c406b
TT
4426 /* We're going to replace the current step-resume breakpoint
4427 with a longjmp-resume breakpoint. */
4428 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae 4429
186c406b
TT
4430 /* Insert a breakpoint at resume address. */
4431 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4432 }
4433 else
28106bc2 4434 check_exception_resume (ecs, frame);
488f131b
JB
4435 keep_going (ecs);
4436 return;
c906108c 4437
488f131b 4438 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
527159b7 4439 if (debug_infrun)
611c83ae
PA
4440 fprintf_unfiltered (gdb_stdlog,
4441 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4442
186c406b
TT
4443 if (what.is_longjmp)
4444 {
4445 gdb_assert (ecs->event_thread->control.step_resume_breakpoint
4446 != NULL);
4447 delete_step_resume_breakpoint (ecs->event_thread);
4448 }
4449 else
4450 {
4451 /* There are several cases to consider.
4452
4453 1. The initiating frame no longer exists. In this case
4454 we must stop, because the exception has gone too far.
4455
4456 2. The initiating frame exists, and is the same as the
4457 current frame. We stop, because the exception has been
4458 caught.
4459
4460 3. The initiating frame exists and is different from
4461 the current frame. This means the exception has been
4462 caught beneath the initiating frame, so keep going. */
4463 struct frame_info *init_frame
4464 = frame_find_by_id (ecs->event_thread->initiating_frame);
4465
4466 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4467 != NULL);
4468 delete_exception_resume_breakpoint (ecs->event_thread);
4469
4470 if (init_frame)
4471 {
4472 struct frame_id current_id
4473 = get_frame_id (get_current_frame ());
4474 if (frame_id_eq (current_id,
4475 ecs->event_thread->initiating_frame))
4476 {
4477 /* Case 2. Fall through. */
4478 }
4479 else
4480 {
4481 /* Case 3. */
4482 keep_going (ecs);
4483 return;
4484 }
4485 }
4486
4487 /* For Cases 1 and 2, remove the step-resume breakpoint,
4488 if it exists. */
4489 delete_step_resume_breakpoint (ecs->event_thread);
4490 }
611c83ae 4491
16c381f0 4492 ecs->event_thread->control.stop_step = 1;
33d62d64 4493 print_end_stepping_range_reason ();
611c83ae
PA
4494 stop_stepping (ecs);
4495 return;
488f131b
JB
4496
4497 case BPSTAT_WHAT_SINGLE:
527159b7 4498 if (debug_infrun)
8802d8ed 4499 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4e1c45ea 4500 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b
JB
4501 /* Still need to check other stuff, at least the case
4502 where we are stepping and step out of the right range. */
4503 break;
c906108c 4504
2c03e5be
PA
4505 case BPSTAT_WHAT_STEP_RESUME:
4506 if (debug_infrun)
4507 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4508
4509 delete_step_resume_breakpoint (ecs->event_thread);
9da8c2a0
PA
4510 if (ecs->event_thread->control.proceed_to_finish
4511 && execution_direction == EXEC_REVERSE)
4512 {
4513 struct thread_info *tp = ecs->event_thread;
4514
4515 /* We are finishing a function in reverse, and just hit
4516 the step-resume breakpoint at the start address of the
4517 function, and we're almost there -- just need to back
4518 up by one more single-step, which should take us back
4519 to the function call. */
4520 tp->control.step_range_start = tp->control.step_range_end = 1;
4521 keep_going (ecs);
4522 return;
4523 }
7e324e48 4524 fill_in_stop_func (gdbarch, ecs);
2c03e5be
PA
4525 if (stop_pc == ecs->stop_func_start
4526 && execution_direction == EXEC_REVERSE)
4527 {
4528 /* We are stepping over a function call in reverse, and
4529 just hit the step-resume breakpoint at the start
4530 address of the function. Go back to single-stepping,
4531 which should take us back to the function call. */
4532 ecs->event_thread->stepping_over_breakpoint = 1;
4533 keep_going (ecs);
4534 return;
4535 }
4536 break;
4537
488f131b 4538 case BPSTAT_WHAT_STOP_NOISY:
527159b7 4539 if (debug_infrun)
8802d8ed 4540 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
488f131b 4541 stop_print_frame = 1;
c906108c 4542
d303a6c7
AC
4543 /* We are about to nuke the step_resume_breakpointt via the
4544 cleanup chain, so no need to worry about it here. */
c5aa993b 4545
488f131b
JB
4546 stop_stepping (ecs);
4547 return;
c5aa993b 4548
488f131b 4549 case BPSTAT_WHAT_STOP_SILENT:
527159b7 4550 if (debug_infrun)
8802d8ed 4551 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
488f131b 4552 stop_print_frame = 0;
c5aa993b 4553
d303a6c7
AC
4554 /* We are about to nuke the step_resume_breakpoin via the
4555 cleanup chain, so no need to worry about it here. */
c5aa993b 4556
488f131b 4557 stop_stepping (ecs);
e441088d 4558 return;
c5aa993b 4559
2c03e5be 4560 case BPSTAT_WHAT_HP_STEP_RESUME:
527159b7 4561 if (debug_infrun)
2c03e5be 4562 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
527159b7 4563
4e1c45ea
PA
4564 delete_step_resume_breakpoint (ecs->event_thread);
4565 if (ecs->event_thread->step_after_step_resume_breakpoint)
68f53502
AC
4566 {
4567 /* Back when the step-resume breakpoint was inserted, we
4568 were trying to single-step off a breakpoint. Go back
4569 to doing that. */
4e1c45ea
PA
4570 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4571 ecs->event_thread->stepping_over_breakpoint = 1;
68f53502
AC
4572 keep_going (ecs);
4573 return;
4574 }
488f131b
JB
4575 break;
4576
488f131b
JB
4577 case BPSTAT_WHAT_KEEP_CHECKING:
4578 break;
4579 }
4580 }
c906108c 4581
488f131b
JB
4582 /* We come here if we hit a breakpoint but should not
4583 stop for it. Possibly we also were stepping
4584 and should stop for that. So fall through and
4585 test for stepping. But, if not stepping,
4586 do not stop. */
c906108c 4587
a7212384
UW
4588 /* In all-stop mode, if we're currently stepping but have stopped in
4589 some other thread, we need to switch back to the stepped thread. */
4590 if (!non_stop)
4591 {
4592 struct thread_info *tp;
abbb1732 4593
b3444185 4594 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
a7212384
UW
4595 ecs->event_thread);
4596 if (tp)
4597 {
4598 /* However, if the current thread is blocked on some internal
4599 breakpoint, and we simply need to step over that breakpoint
4600 to get it going again, do that first. */
16c381f0 4601 if ((ecs->event_thread->control.trap_expected
a493e3e2 4602 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
a7212384
UW
4603 || ecs->event_thread->stepping_over_breakpoint)
4604 {
4605 keep_going (ecs);
4606 return;
4607 }
4608
66852e9c
PA
4609 /* If the stepping thread exited, then don't try to switch
4610 back and resume it, which could fail in several different
4611 ways depending on the target. Instead, just keep going.
4612
4613 We can find a stepping dead thread in the thread list in
4614 two cases:
4615
4616 - The target supports thread exit events, and when the
4617 target tries to delete the thread from the thread list,
4618 inferior_ptid pointed at the exiting thread. In such
4619 case, calling delete_thread does not really remove the
4620 thread from the list; instead, the thread is left listed,
4621 with 'exited' state.
4622
4623 - The target's debug interface does not support thread
4624 exit events, and so we have no idea whatsoever if the
4625 previously stepping thread is still alive. For that
4626 reason, we need to synchronously query the target
4627 now. */
b3444185
PA
4628 if (is_exited (tp->ptid)
4629 || !target_thread_alive (tp->ptid))
4630 {
4631 if (debug_infrun)
3e43a32a
MS
4632 fprintf_unfiltered (gdb_stdlog,
4633 "infrun: not switching back to "
4634 "stepped thread, it has vanished\n");
b3444185
PA
4635
4636 delete_thread (tp->ptid);
4637 keep_going (ecs);
4638 return;
4639 }
4640
a7212384
UW
4641 /* Otherwise, we no longer expect a trap in the current thread.
4642 Clear the trap_expected flag before switching back -- this is
4643 what keep_going would do as well, if we called it. */
16c381f0 4644 ecs->event_thread->control.trap_expected = 0;
a7212384
UW
4645
4646 if (debug_infrun)
4647 fprintf_unfiltered (gdb_stdlog,
4648 "infrun: switching back to stepped thread\n");
4649
4650 ecs->event_thread = tp;
4651 ecs->ptid = tp->ptid;
4652 context_switch (ecs->ptid);
4653 keep_going (ecs);
4654 return;
4655 }
4656 }
4657
8358c15c 4658 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 4659 {
527159b7 4660 if (debug_infrun)
d3169d93
DJ
4661 fprintf_unfiltered (gdb_stdlog,
4662 "infrun: step-resume breakpoint is inserted\n");
527159b7 4663
488f131b
JB
4664 /* Having a step-resume breakpoint overrides anything
4665 else having to do with stepping commands until
4666 that breakpoint is reached. */
488f131b
JB
4667 keep_going (ecs);
4668 return;
4669 }
c5aa993b 4670
16c381f0 4671 if (ecs->event_thread->control.step_range_end == 0)
488f131b 4672 {
527159b7 4673 if (debug_infrun)
8a9de0e4 4674 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 4675 /* Likewise if we aren't even stepping. */
488f131b
JB
4676 keep_going (ecs);
4677 return;
4678 }
c5aa993b 4679
4b7703ad
JB
4680 /* Re-fetch current thread's frame in case the code above caused
4681 the frame cache to be re-initialized, making our FRAME variable
4682 a dangling pointer. */
4683 frame = get_current_frame ();
628fe4e4 4684 gdbarch = get_frame_arch (frame);
7e324e48 4685 fill_in_stop_func (gdbarch, ecs);
4b7703ad 4686
488f131b 4687 /* If stepping through a line, keep going if still within it.
c906108c 4688
488f131b
JB
4689 Note that step_range_end is the address of the first instruction
4690 beyond the step range, and NOT the address of the last instruction
31410e84
MS
4691 within it!
4692
4693 Note also that during reverse execution, we may be stepping
4694 through a function epilogue and therefore must detect when
4695 the current-frame changes in the middle of a line. */
4696
16c381f0
JK
4697 if (stop_pc >= ecs->event_thread->control.step_range_start
4698 && stop_pc < ecs->event_thread->control.step_range_end
31410e84 4699 && (execution_direction != EXEC_REVERSE
388a8562 4700 || frame_id_eq (get_frame_id (frame),
16c381f0 4701 ecs->event_thread->control.step_frame_id)))
488f131b 4702 {
527159b7 4703 if (debug_infrun)
5af949e3
UW
4704 fprintf_unfiltered
4705 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
4706 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4707 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913
MS
4708
4709 /* When stepping backward, stop at beginning of line range
4710 (unless it's the function entry point, in which case
4711 keep going back to the call point). */
16c381f0 4712 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
4713 && stop_pc != ecs->stop_func_start
4714 && execution_direction == EXEC_REVERSE)
4715 {
16c381f0 4716 ecs->event_thread->control.stop_step = 1;
33d62d64 4717 print_end_stepping_range_reason ();
b2175913
MS
4718 stop_stepping (ecs);
4719 }
4720 else
4721 keep_going (ecs);
4722
488f131b
JB
4723 return;
4724 }
c5aa993b 4725
488f131b 4726 /* We stepped out of the stepping range. */
c906108c 4727
488f131b 4728 /* If we are stepping at the source level and entered the runtime
388a8562
MS
4729 loader dynamic symbol resolution code...
4730
4731 EXEC_FORWARD: we keep on single stepping until we exit the run
4732 time loader code and reach the callee's address.
4733
4734 EXEC_REVERSE: we've already executed the callee (backward), and
4735 the runtime loader code is handled just like any other
4736 undebuggable function call. Now we need only keep stepping
4737 backward through the trampoline code, and that's handled further
4738 down, so there is nothing for us to do here. */
4739
4740 if (execution_direction != EXEC_REVERSE
16c381f0 4741 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 4742 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 4743 {
4c8c40e6 4744 CORE_ADDR pc_after_resolver =
568d6575 4745 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 4746
527159b7 4747 if (debug_infrun)
3e43a32a
MS
4748 fprintf_unfiltered (gdb_stdlog,
4749 "infrun: stepped into dynsym resolve code\n");
527159b7 4750
488f131b
JB
4751 if (pc_after_resolver)
4752 {
4753 /* Set up a step-resume breakpoint at the address
4754 indicated by SKIP_SOLIB_RESOLVER. */
4755 struct symtab_and_line sr_sal;
abbb1732 4756
fe39c653 4757 init_sal (&sr_sal);
488f131b 4758 sr_sal.pc = pc_after_resolver;
6c95b8df 4759 sr_sal.pspace = get_frame_program_space (frame);
488f131b 4760
a6d9a66e
UW
4761 insert_step_resume_breakpoint_at_sal (gdbarch,
4762 sr_sal, null_frame_id);
c5aa993b 4763 }
c906108c 4764
488f131b
JB
4765 keep_going (ecs);
4766 return;
4767 }
c906108c 4768
16c381f0
JK
4769 if (ecs->event_thread->control.step_range_end != 1
4770 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4771 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 4772 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 4773 {
527159b7 4774 if (debug_infrun)
3e43a32a
MS
4775 fprintf_unfiltered (gdb_stdlog,
4776 "infrun: stepped into signal trampoline\n");
42edda50 4777 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
4778 a signal trampoline (either by a signal being delivered or by
4779 the signal handler returning). Just single-step until the
4780 inferior leaves the trampoline (either by calling the handler
4781 or returning). */
488f131b
JB
4782 keep_going (ecs);
4783 return;
4784 }
c906108c 4785
14132e89
MR
4786 /* If we're in the return path from a shared library trampoline,
4787 we want to proceed through the trampoline when stepping. */
4788 /* macro/2012-04-25: This needs to come before the subroutine
4789 call check below as on some targets return trampolines look
4790 like subroutine calls (MIPS16 return thunks). */
4791 if (gdbarch_in_solib_return_trampoline (gdbarch,
4792 stop_pc, ecs->stop_func_name)
4793 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4794 {
4795 /* Determine where this trampoline returns. */
4796 CORE_ADDR real_stop_pc;
4797
4798 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4799
4800 if (debug_infrun)
4801 fprintf_unfiltered (gdb_stdlog,
4802 "infrun: stepped into solib return tramp\n");
4803
4804 /* Only proceed through if we know where it's going. */
4805 if (real_stop_pc)
4806 {
4807 /* And put the step-breakpoint there and go until there. */
4808 struct symtab_and_line sr_sal;
4809
4810 init_sal (&sr_sal); /* initialize to zeroes */
4811 sr_sal.pc = real_stop_pc;
4812 sr_sal.section = find_pc_overlay (sr_sal.pc);
4813 sr_sal.pspace = get_frame_program_space (frame);
4814
4815 /* Do not specify what the fp should be when we stop since
4816 on some machines the prologue is where the new fp value
4817 is established. */
4818 insert_step_resume_breakpoint_at_sal (gdbarch,
4819 sr_sal, null_frame_id);
4820
4821 /* Restart without fiddling with the step ranges or
4822 other state. */
4823 keep_going (ecs);
4824 return;
4825 }
4826 }
4827
c17eaafe
DJ
4828 /* Check for subroutine calls. The check for the current frame
4829 equalling the step ID is not necessary - the check of the
4830 previous frame's ID is sufficient - but it is a common case and
4831 cheaper than checking the previous frame's ID.
14e60db5
DJ
4832
4833 NOTE: frame_id_eq will never report two invalid frame IDs as
4834 being equal, so to get into this block, both the current and
4835 previous frame must have valid frame IDs. */
005ca36a
JB
4836 /* The outer_frame_id check is a heuristic to detect stepping
4837 through startup code. If we step over an instruction which
4838 sets the stack pointer from an invalid value to a valid value,
4839 we may detect that as a subroutine call from the mythical
4840 "outermost" function. This could be fixed by marking
4841 outermost frames as !stack_p,code_p,special_p. Then the
4842 initial outermost frame, before sp was valid, would
ce6cca6d 4843 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 4844 for more. */
edb3359d 4845 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 4846 ecs->event_thread->control.step_stack_frame_id)
005ca36a 4847 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
4848 ecs->event_thread->control.step_stack_frame_id)
4849 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a
JB
4850 outer_frame_id)
4851 || step_start_function != find_pc_function (stop_pc))))
488f131b 4852 {
95918acb 4853 CORE_ADDR real_stop_pc;
8fb3e588 4854
527159b7 4855 if (debug_infrun)
8a9de0e4 4856 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 4857
16c381f0
JK
4858 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4859 || ((ecs->event_thread->control.step_range_end == 1)
d80b854b 4860 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4e1c45ea 4861 ecs->stop_func_start)))
95918acb
AC
4862 {
4863 /* I presume that step_over_calls is only 0 when we're
4864 supposed to be stepping at the assembly language level
4865 ("stepi"). Just stop. */
4866 /* Also, maybe we just did a "nexti" inside a prolog, so we
4867 thought it was a subroutine call but it was not. Stop as
4868 well. FENN */
388a8562 4869 /* And this works the same backward as frontward. MVS */
16c381f0 4870 ecs->event_thread->control.stop_step = 1;
33d62d64 4871 print_end_stepping_range_reason ();
95918acb
AC
4872 stop_stepping (ecs);
4873 return;
4874 }
8fb3e588 4875
388a8562
MS
4876 /* Reverse stepping through solib trampolines. */
4877
4878 if (execution_direction == EXEC_REVERSE
16c381f0 4879 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
4880 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4881 || (ecs->stop_func_start == 0
4882 && in_solib_dynsym_resolve_code (stop_pc))))
4883 {
4884 /* Any solib trampoline code can be handled in reverse
4885 by simply continuing to single-step. We have already
4886 executed the solib function (backwards), and a few
4887 steps will take us back through the trampoline to the
4888 caller. */
4889 keep_going (ecs);
4890 return;
4891 }
4892
16c381f0 4893 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 4894 {
b2175913
MS
4895 /* We're doing a "next".
4896
4897 Normal (forward) execution: set a breakpoint at the
4898 callee's return address (the address at which the caller
4899 will resume).
4900
4901 Reverse (backward) execution. set the step-resume
4902 breakpoint at the start of the function that we just
4903 stepped into (backwards), and continue to there. When we
6130d0b7 4904 get there, we'll need to single-step back to the caller. */
b2175913
MS
4905
4906 if (execution_direction == EXEC_REVERSE)
4907 {
4908 struct symtab_and_line sr_sal;
3067f6e5 4909
388a8562
MS
4910 /* Normal function call return (static or dynamic). */
4911 init_sal (&sr_sal);
4912 sr_sal.pc = ecs->stop_func_start;
6c95b8df
PA
4913 sr_sal.pspace = get_frame_program_space (frame);
4914 insert_step_resume_breakpoint_at_sal (gdbarch,
4915 sr_sal, null_frame_id);
b2175913
MS
4916 }
4917 else
568d6575 4918 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4919
8567c30f
AC
4920 keep_going (ecs);
4921 return;
4922 }
a53c66de 4923
95918acb 4924 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
4925 calling routine and the real function), locate the real
4926 function. That's what tells us (a) whether we want to step
4927 into it at all, and (b) what prologue we want to run to the
4928 end of, if we do step into it. */
568d6575 4929 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 4930 if (real_stop_pc == 0)
568d6575 4931 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
4932 if (real_stop_pc != 0)
4933 ecs->stop_func_start = real_stop_pc;
8fb3e588 4934
db5f024e 4935 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
4936 {
4937 struct symtab_and_line sr_sal;
abbb1732 4938
1b2bfbb9
RC
4939 init_sal (&sr_sal);
4940 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4941 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 4942
a6d9a66e
UW
4943 insert_step_resume_breakpoint_at_sal (gdbarch,
4944 sr_sal, null_frame_id);
8fb3e588
AC
4945 keep_going (ecs);
4946 return;
1b2bfbb9
RC
4947 }
4948
95918acb 4949 /* If we have line number information for the function we are
1bfeeb0f
JL
4950 thinking of stepping into and the function isn't on the skip
4951 list, step into it.
95918acb 4952
8fb3e588
AC
4953 If there are several symtabs at that PC (e.g. with include
4954 files), just want to know whether *any* of them have line
4955 numbers. find_pc_line handles this. */
95918acb
AC
4956 {
4957 struct symtab_and_line tmp_sal;
8fb3e588 4958
95918acb 4959 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52
JB
4960 if (tmp_sal.line != 0
4961 && !function_pc_is_marked_for_skip (ecs->stop_func_start))
95918acb 4962 {
b2175913 4963 if (execution_direction == EXEC_REVERSE)
568d6575 4964 handle_step_into_function_backward (gdbarch, ecs);
b2175913 4965 else
568d6575 4966 handle_step_into_function (gdbarch, ecs);
95918acb
AC
4967 return;
4968 }
4969 }
4970
4971 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
4972 set, we stop the step so that the user has a chance to switch
4973 in assembly mode. */
16c381f0 4974 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 4975 && step_stop_if_no_debug)
95918acb 4976 {
16c381f0 4977 ecs->event_thread->control.stop_step = 1;
33d62d64 4978 print_end_stepping_range_reason ();
95918acb
AC
4979 stop_stepping (ecs);
4980 return;
4981 }
4982
b2175913
MS
4983 if (execution_direction == EXEC_REVERSE)
4984 {
4985 /* Set a breakpoint at callee's start address.
4986 From there we can step once and be back in the caller. */
4987 struct symtab_and_line sr_sal;
abbb1732 4988
b2175913
MS
4989 init_sal (&sr_sal);
4990 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4991 sr_sal.pspace = get_frame_program_space (frame);
a6d9a66e
UW
4992 insert_step_resume_breakpoint_at_sal (gdbarch,
4993 sr_sal, null_frame_id);
b2175913
MS
4994 }
4995 else
4996 /* Set a breakpoint at callee's return address (the address
4997 at which the caller will resume). */
568d6575 4998 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4999
95918acb 5000 keep_going (ecs);
488f131b 5001 return;
488f131b 5002 }
c906108c 5003
fdd654f3
MS
5004 /* Reverse stepping through solib trampolines. */
5005
5006 if (execution_direction == EXEC_REVERSE
16c381f0 5007 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
5008 {
5009 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5010 || (ecs->stop_func_start == 0
5011 && in_solib_dynsym_resolve_code (stop_pc)))
5012 {
5013 /* Any solib trampoline code can be handled in reverse
5014 by simply continuing to single-step. We have already
5015 executed the solib function (backwards), and a few
5016 steps will take us back through the trampoline to the
5017 caller. */
5018 keep_going (ecs);
5019 return;
5020 }
5021 else if (in_solib_dynsym_resolve_code (stop_pc))
5022 {
5023 /* Stepped backward into the solib dynsym resolver.
5024 Set a breakpoint at its start and continue, then
5025 one more step will take us out. */
5026 struct symtab_and_line sr_sal;
abbb1732 5027
fdd654f3
MS
5028 init_sal (&sr_sal);
5029 sr_sal.pc = ecs->stop_func_start;
9d1807c3 5030 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
5031 insert_step_resume_breakpoint_at_sal (gdbarch,
5032 sr_sal, null_frame_id);
5033 keep_going (ecs);
5034 return;
5035 }
5036 }
5037
2afb61aa 5038 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 5039
1b2bfbb9
RC
5040 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5041 the trampoline processing logic, however, there are some trampolines
5042 that have no names, so we should do trampoline handling first. */
16c381f0 5043 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 5044 && ecs->stop_func_name == NULL
2afb61aa 5045 && stop_pc_sal.line == 0)
1b2bfbb9 5046 {
527159b7 5047 if (debug_infrun)
3e43a32a
MS
5048 fprintf_unfiltered (gdb_stdlog,
5049 "infrun: stepped into undebuggable function\n");
527159b7 5050
1b2bfbb9 5051 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
5052 undebuggable function (where there is no debugging information
5053 and no line number corresponding to the address where the
1b2bfbb9
RC
5054 inferior stopped). Since we want to skip this kind of code,
5055 we keep going until the inferior returns from this
14e60db5
DJ
5056 function - unless the user has asked us not to (via
5057 set step-mode) or we no longer know how to get back
5058 to the call site. */
5059 if (step_stop_if_no_debug
c7ce8faa 5060 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
5061 {
5062 /* If we have no line number and the step-stop-if-no-debug
5063 is set, we stop the step so that the user has a chance to
5064 switch in assembly mode. */
16c381f0 5065 ecs->event_thread->control.stop_step = 1;
33d62d64 5066 print_end_stepping_range_reason ();
1b2bfbb9
RC
5067 stop_stepping (ecs);
5068 return;
5069 }
5070 else
5071 {
5072 /* Set a breakpoint at callee's return address (the address
5073 at which the caller will resume). */
568d6575 5074 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
5075 keep_going (ecs);
5076 return;
5077 }
5078 }
5079
16c381f0 5080 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
5081 {
5082 /* It is stepi or nexti. We always want to stop stepping after
5083 one instruction. */
527159b7 5084 if (debug_infrun)
8a9de0e4 5085 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
16c381f0 5086 ecs->event_thread->control.stop_step = 1;
33d62d64 5087 print_end_stepping_range_reason ();
1b2bfbb9
RC
5088 stop_stepping (ecs);
5089 return;
5090 }
5091
2afb61aa 5092 if (stop_pc_sal.line == 0)
488f131b
JB
5093 {
5094 /* We have no line number information. That means to stop
5095 stepping (does this always happen right after one instruction,
5096 when we do "s" in a function with no line numbers,
5097 or can this happen as a result of a return or longjmp?). */
527159b7 5098 if (debug_infrun)
8a9de0e4 5099 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
16c381f0 5100 ecs->event_thread->control.stop_step = 1;
33d62d64 5101 print_end_stepping_range_reason ();
488f131b
JB
5102 stop_stepping (ecs);
5103 return;
5104 }
c906108c 5105
edb3359d
DJ
5106 /* Look for "calls" to inlined functions, part one. If the inline
5107 frame machinery detected some skipped call sites, we have entered
5108 a new inline function. */
5109
5110 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5111 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
5112 && inline_skipped_frames (ecs->ptid))
5113 {
5114 struct symtab_and_line call_sal;
5115
5116 if (debug_infrun)
5117 fprintf_unfiltered (gdb_stdlog,
5118 "infrun: stepped into inlined function\n");
5119
5120 find_frame_sal (get_current_frame (), &call_sal);
5121
16c381f0 5122 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
5123 {
5124 /* For "step", we're going to stop. But if the call site
5125 for this inlined function is on the same source line as
5126 we were previously stepping, go down into the function
5127 first. Otherwise stop at the call site. */
5128
5129 if (call_sal.line == ecs->event_thread->current_line
5130 && call_sal.symtab == ecs->event_thread->current_symtab)
5131 step_into_inline_frame (ecs->ptid);
5132
16c381f0 5133 ecs->event_thread->control.stop_step = 1;
33d62d64 5134 print_end_stepping_range_reason ();
edb3359d
DJ
5135 stop_stepping (ecs);
5136 return;
5137 }
5138 else
5139 {
5140 /* For "next", we should stop at the call site if it is on a
5141 different source line. Otherwise continue through the
5142 inlined function. */
5143 if (call_sal.line == ecs->event_thread->current_line
5144 && call_sal.symtab == ecs->event_thread->current_symtab)
5145 keep_going (ecs);
5146 else
5147 {
16c381f0 5148 ecs->event_thread->control.stop_step = 1;
33d62d64 5149 print_end_stepping_range_reason ();
edb3359d
DJ
5150 stop_stepping (ecs);
5151 }
5152 return;
5153 }
5154 }
5155
5156 /* Look for "calls" to inlined functions, part two. If we are still
5157 in the same real function we were stepping through, but we have
5158 to go further up to find the exact frame ID, we are stepping
5159 through a more inlined call beyond its call site. */
5160
5161 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5162 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5163 ecs->event_thread->control.step_frame_id)
edb3359d 5164 && stepped_in_from (get_current_frame (),
16c381f0 5165 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
5166 {
5167 if (debug_infrun)
5168 fprintf_unfiltered (gdb_stdlog,
5169 "infrun: stepping through inlined function\n");
5170
16c381f0 5171 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
5172 keep_going (ecs);
5173 else
5174 {
16c381f0 5175 ecs->event_thread->control.stop_step = 1;
33d62d64 5176 print_end_stepping_range_reason ();
edb3359d
DJ
5177 stop_stepping (ecs);
5178 }
5179 return;
5180 }
5181
2afb61aa 5182 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
5183 && (ecs->event_thread->current_line != stop_pc_sal.line
5184 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
5185 {
5186 /* We are at the start of a different line. So stop. Note that
5187 we don't stop if we step into the middle of a different line.
5188 That is said to make things like for (;;) statements work
5189 better. */
527159b7 5190 if (debug_infrun)
3e43a32a
MS
5191 fprintf_unfiltered (gdb_stdlog,
5192 "infrun: stepped to a different line\n");
16c381f0 5193 ecs->event_thread->control.stop_step = 1;
33d62d64 5194 print_end_stepping_range_reason ();
488f131b
JB
5195 stop_stepping (ecs);
5196 return;
5197 }
c906108c 5198
488f131b 5199 /* We aren't done stepping.
c906108c 5200
488f131b
JB
5201 Optimize by setting the stepping range to the line.
5202 (We might not be in the original line, but if we entered a
5203 new line in mid-statement, we continue stepping. This makes
5204 things like for(;;) statements work better.) */
c906108c 5205
16c381f0
JK
5206 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5207 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
edb3359d 5208 set_step_info (frame, stop_pc_sal);
488f131b 5209
527159b7 5210 if (debug_infrun)
8a9de0e4 5211 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 5212 keep_going (ecs);
104c1213
JM
5213}
5214
b3444185 5215/* Is thread TP in the middle of single-stepping? */
104c1213 5216
a289b8f6 5217static int
b3444185 5218currently_stepping (struct thread_info *tp)
a7212384 5219{
8358c15c
JK
5220 return ((tp->control.step_range_end
5221 && tp->control.step_resume_breakpoint == NULL)
5222 || tp->control.trap_expected
8358c15c 5223 || bpstat_should_step ());
a7212384
UW
5224}
5225
b3444185
PA
5226/* Returns true if any thread *but* the one passed in "data" is in the
5227 middle of stepping or of handling a "next". */
a7212384 5228
104c1213 5229static int
b3444185 5230currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
104c1213 5231{
b3444185
PA
5232 if (tp == data)
5233 return 0;
5234
16c381f0 5235 return (tp->control.step_range_end
ede1849f 5236 || tp->control.trap_expected);
104c1213 5237}
c906108c 5238
b2175913
MS
5239/* Inferior has stepped into a subroutine call with source code that
5240 we should not step over. Do step to the first line of code in
5241 it. */
c2c6d25f
JM
5242
5243static void
568d6575
UW
5244handle_step_into_function (struct gdbarch *gdbarch,
5245 struct execution_control_state *ecs)
c2c6d25f
JM
5246{
5247 struct symtab *s;
2afb61aa 5248 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 5249
7e324e48
GB
5250 fill_in_stop_func (gdbarch, ecs);
5251
c2c6d25f
JM
5252 s = find_pc_symtab (stop_pc);
5253 if (s && s->language != language_asm)
568d6575 5254 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 5255 ecs->stop_func_start);
c2c6d25f 5256
2afb61aa 5257 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
5258 /* Use the step_resume_break to step until the end of the prologue,
5259 even if that involves jumps (as it seems to on the vax under
5260 4.2). */
5261 /* If the prologue ends in the middle of a source line, continue to
5262 the end of that source line (if it is still within the function).
5263 Otherwise, just go to end of prologue. */
2afb61aa
PA
5264 if (stop_func_sal.end
5265 && stop_func_sal.pc != ecs->stop_func_start
5266 && stop_func_sal.end < ecs->stop_func_end)
5267 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 5268
2dbd5e30
KB
5269 /* Architectures which require breakpoint adjustment might not be able
5270 to place a breakpoint at the computed address. If so, the test
5271 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5272 ecs->stop_func_start to an address at which a breakpoint may be
5273 legitimately placed.
8fb3e588 5274
2dbd5e30
KB
5275 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5276 made, GDB will enter an infinite loop when stepping through
5277 optimized code consisting of VLIW instructions which contain
5278 subinstructions corresponding to different source lines. On
5279 FR-V, it's not permitted to place a breakpoint on any but the
5280 first subinstruction of a VLIW instruction. When a breakpoint is
5281 set, GDB will adjust the breakpoint address to the beginning of
5282 the VLIW instruction. Thus, we need to make the corresponding
5283 adjustment here when computing the stop address. */
8fb3e588 5284
568d6575 5285 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
5286 {
5287 ecs->stop_func_start
568d6575 5288 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 5289 ecs->stop_func_start);
2dbd5e30
KB
5290 }
5291
c2c6d25f
JM
5292 if (ecs->stop_func_start == stop_pc)
5293 {
5294 /* We are already there: stop now. */
16c381f0 5295 ecs->event_thread->control.stop_step = 1;
33d62d64 5296 print_end_stepping_range_reason ();
c2c6d25f
JM
5297 stop_stepping (ecs);
5298 return;
5299 }
5300 else
5301 {
5302 /* Put the step-breakpoint there and go until there. */
fe39c653 5303 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
5304 sr_sal.pc = ecs->stop_func_start;
5305 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 5306 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 5307
c2c6d25f 5308 /* Do not specify what the fp should be when we stop since on
488f131b
JB
5309 some machines the prologue is where the new fp value is
5310 established. */
a6d9a66e 5311 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
5312
5313 /* And make sure stepping stops right away then. */
16c381f0
JK
5314 ecs->event_thread->control.step_range_end
5315 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
5316 }
5317 keep_going (ecs);
5318}
d4f3574e 5319
b2175913
MS
5320/* Inferior has stepped backward into a subroutine call with source
5321 code that we should not step over. Do step to the beginning of the
5322 last line of code in it. */
5323
5324static void
568d6575
UW
5325handle_step_into_function_backward (struct gdbarch *gdbarch,
5326 struct execution_control_state *ecs)
b2175913
MS
5327{
5328 struct symtab *s;
167e4384 5329 struct symtab_and_line stop_func_sal;
b2175913 5330
7e324e48
GB
5331 fill_in_stop_func (gdbarch, ecs);
5332
b2175913
MS
5333 s = find_pc_symtab (stop_pc);
5334 if (s && s->language != language_asm)
568d6575 5335 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
5336 ecs->stop_func_start);
5337
5338 stop_func_sal = find_pc_line (stop_pc, 0);
5339
5340 /* OK, we're just going to keep stepping here. */
5341 if (stop_func_sal.pc == stop_pc)
5342 {
5343 /* We're there already. Just stop stepping now. */
16c381f0 5344 ecs->event_thread->control.stop_step = 1;
33d62d64 5345 print_end_stepping_range_reason ();
b2175913
MS
5346 stop_stepping (ecs);
5347 }
5348 else
5349 {
5350 /* Else just reset the step range and keep going.
5351 No step-resume breakpoint, they don't work for
5352 epilogues, which can have multiple entry paths. */
16c381f0
JK
5353 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5354 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
5355 keep_going (ecs);
5356 }
5357 return;
5358}
5359
d3169d93 5360/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
5361 This is used to both functions and to skip over code. */
5362
5363static void
2c03e5be
PA
5364insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5365 struct symtab_and_line sr_sal,
5366 struct frame_id sr_id,
5367 enum bptype sr_type)
44cbf7b5 5368{
611c83ae
PA
5369 /* There should never be more than one step-resume or longjmp-resume
5370 breakpoint per thread, so we should never be setting a new
44cbf7b5 5371 step_resume_breakpoint when one is already active. */
8358c15c 5372 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 5373 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
5374
5375 if (debug_infrun)
5376 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5377 "infrun: inserting step-resume breakpoint at %s\n",
5378 paddress (gdbarch, sr_sal.pc));
d3169d93 5379
8358c15c 5380 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
5381 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5382}
5383
9da8c2a0 5384void
2c03e5be
PA
5385insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5386 struct symtab_and_line sr_sal,
5387 struct frame_id sr_id)
5388{
5389 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5390 sr_sal, sr_id,
5391 bp_step_resume);
44cbf7b5 5392}
7ce450bd 5393
2c03e5be
PA
5394/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5395 This is used to skip a potential signal handler.
7ce450bd 5396
14e60db5
DJ
5397 This is called with the interrupted function's frame. The signal
5398 handler, when it returns, will resume the interrupted function at
5399 RETURN_FRAME.pc. */
d303a6c7
AC
5400
5401static void
2c03e5be 5402insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
5403{
5404 struct symtab_and_line sr_sal;
a6d9a66e 5405 struct gdbarch *gdbarch;
d303a6c7 5406
f4c1edd8 5407 gdb_assert (return_frame != NULL);
d303a6c7
AC
5408 init_sal (&sr_sal); /* initialize to zeros */
5409
a6d9a66e 5410 gdbarch = get_frame_arch (return_frame);
568d6575 5411 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 5412 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5413 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 5414
2c03e5be
PA
5415 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5416 get_stack_frame_id (return_frame),
5417 bp_hp_step_resume);
d303a6c7
AC
5418}
5419
2c03e5be
PA
5420/* Insert a "step-resume breakpoint" at the previous frame's PC. This
5421 is used to skip a function after stepping into it (for "next" or if
5422 the called function has no debugging information).
14e60db5
DJ
5423
5424 The current function has almost always been reached by single
5425 stepping a call or return instruction. NEXT_FRAME belongs to the
5426 current function, and the breakpoint will be set at the caller's
5427 resume address.
5428
5429 This is a separate function rather than reusing
2c03e5be 5430 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 5431 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 5432 of frame_unwind_caller_id for an example). */
14e60db5
DJ
5433
5434static void
5435insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5436{
5437 struct symtab_and_line sr_sal;
a6d9a66e 5438 struct gdbarch *gdbarch;
14e60db5
DJ
5439
5440 /* We shouldn't have gotten here if we don't know where the call site
5441 is. */
c7ce8faa 5442 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
5443
5444 init_sal (&sr_sal); /* initialize to zeros */
5445
a6d9a66e 5446 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
5447 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5448 frame_unwind_caller_pc (next_frame));
14e60db5 5449 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5450 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 5451
a6d9a66e 5452 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 5453 frame_unwind_caller_id (next_frame));
14e60db5
DJ
5454}
5455
611c83ae
PA
5456/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5457 new breakpoint at the target of a jmp_buf. The handling of
5458 longjmp-resume uses the same mechanisms used for handling
5459 "step-resume" breakpoints. */
5460
5461static void
a6d9a66e 5462insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae
PA
5463{
5464 /* There should never be more than one step-resume or longjmp-resume
5465 breakpoint per thread, so we should never be setting a new
5466 longjmp_resume_breakpoint when one is already active. */
8358c15c 5467 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
611c83ae
PA
5468
5469 if (debug_infrun)
5470 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5471 "infrun: inserting longjmp-resume breakpoint at %s\n",
5472 paddress (gdbarch, pc));
611c83ae 5473
8358c15c 5474 inferior_thread ()->control.step_resume_breakpoint =
a6d9a66e 5475 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
5476}
5477
186c406b
TT
5478/* Insert an exception resume breakpoint. TP is the thread throwing
5479 the exception. The block B is the block of the unwinder debug hook
5480 function. FRAME is the frame corresponding to the call to this
5481 function. SYM is the symbol of the function argument holding the
5482 target PC of the exception. */
5483
5484static void
5485insert_exception_resume_breakpoint (struct thread_info *tp,
5486 struct block *b,
5487 struct frame_info *frame,
5488 struct symbol *sym)
5489{
bfd189b1 5490 volatile struct gdb_exception e;
186c406b
TT
5491
5492 /* We want to ignore errors here. */
5493 TRY_CATCH (e, RETURN_MASK_ERROR)
5494 {
5495 struct symbol *vsym;
5496 struct value *value;
5497 CORE_ADDR handler;
5498 struct breakpoint *bp;
5499
5500 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5501 value = read_var_value (vsym, frame);
5502 /* If the value was optimized out, revert to the old behavior. */
5503 if (! value_optimized_out (value))
5504 {
5505 handler = value_as_address (value);
5506
5507 if (debug_infrun)
5508 fprintf_unfiltered (gdb_stdlog,
5509 "infrun: exception resume at %lx\n",
5510 (unsigned long) handler);
5511
5512 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5513 handler, bp_exception_resume);
c70a6932
JK
5514
5515 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
5516 frame = NULL;
5517
186c406b
TT
5518 bp->thread = tp->num;
5519 inferior_thread ()->control.exception_resume_breakpoint = bp;
5520 }
5521 }
5522}
5523
28106bc2
SDJ
5524/* A helper for check_exception_resume that sets an
5525 exception-breakpoint based on a SystemTap probe. */
5526
5527static void
5528insert_exception_resume_from_probe (struct thread_info *tp,
5529 const struct probe *probe,
5530 struct objfile *objfile,
5531 struct frame_info *frame)
5532{
5533 struct value *arg_value;
5534 CORE_ADDR handler;
5535 struct breakpoint *bp;
5536
5537 arg_value = probe_safe_evaluate_at_pc (frame, 1);
5538 if (!arg_value)
5539 return;
5540
5541 handler = value_as_address (arg_value);
5542
5543 if (debug_infrun)
5544 fprintf_unfiltered (gdb_stdlog,
5545 "infrun: exception resume at %s\n",
5546 paddress (get_objfile_arch (objfile),
5547 handler));
5548
5549 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5550 handler, bp_exception_resume);
5551 bp->thread = tp->num;
5552 inferior_thread ()->control.exception_resume_breakpoint = bp;
5553}
5554
186c406b
TT
5555/* This is called when an exception has been intercepted. Check to
5556 see whether the exception's destination is of interest, and if so,
5557 set an exception resume breakpoint there. */
5558
5559static void
5560check_exception_resume (struct execution_control_state *ecs,
28106bc2 5561 struct frame_info *frame)
186c406b 5562{
bfd189b1 5563 volatile struct gdb_exception e;
28106bc2
SDJ
5564 struct objfile *objfile;
5565 const struct probe *probe;
5566 struct symbol *func;
5567
5568 /* First see if this exception unwinding breakpoint was set via a
5569 SystemTap probe point. If so, the probe has two arguments: the
5570 CFA and the HANDLER. We ignore the CFA, extract the handler, and
5571 set a breakpoint there. */
5572 probe = find_probe_by_pc (get_frame_pc (frame), &objfile);
5573 if (probe)
5574 {
5575 insert_exception_resume_from_probe (ecs->event_thread, probe,
5576 objfile, frame);
5577 return;
5578 }
5579
5580 func = get_frame_function (frame);
5581 if (!func)
5582 return;
186c406b
TT
5583
5584 TRY_CATCH (e, RETURN_MASK_ERROR)
5585 {
5586 struct block *b;
8157b174 5587 struct block_iterator iter;
186c406b
TT
5588 struct symbol *sym;
5589 int argno = 0;
5590
5591 /* The exception breakpoint is a thread-specific breakpoint on
5592 the unwinder's debug hook, declared as:
5593
5594 void _Unwind_DebugHook (void *cfa, void *handler);
5595
5596 The CFA argument indicates the frame to which control is
5597 about to be transferred. HANDLER is the destination PC.
5598
5599 We ignore the CFA and set a temporary breakpoint at HANDLER.
5600 This is not extremely efficient but it avoids issues in gdb
5601 with computing the DWARF CFA, and it also works even in weird
5602 cases such as throwing an exception from inside a signal
5603 handler. */
5604
5605 b = SYMBOL_BLOCK_VALUE (func);
5606 ALL_BLOCK_SYMBOLS (b, iter, sym)
5607 {
5608 if (!SYMBOL_IS_ARGUMENT (sym))
5609 continue;
5610
5611 if (argno == 0)
5612 ++argno;
5613 else
5614 {
5615 insert_exception_resume_breakpoint (ecs->event_thread,
5616 b, frame, sym);
5617 break;
5618 }
5619 }
5620 }
5621}
5622
104c1213
JM
5623static void
5624stop_stepping (struct execution_control_state *ecs)
5625{
527159b7 5626 if (debug_infrun)
8a9de0e4 5627 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 5628
cd0fc7c3
SS
5629 /* Let callers know we don't want to wait for the inferior anymore. */
5630 ecs->wait_some_more = 0;
5631}
5632
d4f3574e
SS
5633/* This function handles various cases where we need to continue
5634 waiting for the inferior. */
1777feb0 5635/* (Used to be the keep_going: label in the old wait_for_inferior). */
d4f3574e
SS
5636
5637static void
5638keep_going (struct execution_control_state *ecs)
5639{
c4dbc9af
PA
5640 /* Make sure normal_stop is called if we get a QUIT handled before
5641 reaching resume. */
5642 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5643
d4f3574e 5644 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
5645 ecs->event_thread->prev_pc
5646 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 5647
d4f3574e
SS
5648 /* If we did not do break;, it means we should keep running the
5649 inferior and not return to debugger. */
5650
16c381f0 5651 if (ecs->event_thread->control.trap_expected
a493e3e2 5652 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
d4f3574e
SS
5653 {
5654 /* We took a signal (which we are supposed to pass through to
4e1c45ea
PA
5655 the inferior, else we'd not get here) and we haven't yet
5656 gotten our trap. Simply continue. */
c4dbc9af
PA
5657
5658 discard_cleanups (old_cleanups);
2020b7ab 5659 resume (currently_stepping (ecs->event_thread),
16c381f0 5660 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5661 }
5662 else
5663 {
5664 /* Either the trap was not expected, but we are continuing
488f131b
JB
5665 anyway (the user asked that this signal be passed to the
5666 child)
5667 -- or --
5668 The signal was SIGTRAP, e.g. it was our signal, but we
5669 decided we should resume from it.
d4f3574e 5670
c36b740a 5671 We're going to run this baby now!
d4f3574e 5672
c36b740a
VP
5673 Note that insert_breakpoints won't try to re-insert
5674 already inserted breakpoints. Therefore, we don't
5675 care if breakpoints were already inserted, or not. */
5676
4e1c45ea 5677 if (ecs->event_thread->stepping_over_breakpoint)
45e8c884 5678 {
9f5a595d 5679 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
abbb1732 5680
9f5a595d 5681 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
5682 /* Since we can't do a displaced step, we have to remove
5683 the breakpoint while we step it. To keep things
5684 simple, we remove them all. */
5685 remove_breakpoints ();
45e8c884
VP
5686 }
5687 else
d4f3574e 5688 {
bfd189b1 5689 volatile struct gdb_exception e;
abbb1732 5690
569631c6
UW
5691 /* Stop stepping when inserting breakpoints
5692 has failed. */
e236ba44
VP
5693 TRY_CATCH (e, RETURN_MASK_ERROR)
5694 {
5695 insert_breakpoints ();
5696 }
5697 if (e.reason < 0)
d4f3574e 5698 {
97bd5475 5699 exception_print (gdb_stderr, e);
d4f3574e
SS
5700 stop_stepping (ecs);
5701 return;
5702 }
d4f3574e
SS
5703 }
5704
16c381f0
JK
5705 ecs->event_thread->control.trap_expected
5706 = ecs->event_thread->stepping_over_breakpoint;
d4f3574e
SS
5707
5708 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
5709 specifies that such a signal should be delivered to the
5710 target program).
5711
5712 Typically, this would occure when a user is debugging a
5713 target monitor on a simulator: the target monitor sets a
5714 breakpoint; the simulator encounters this break-point and
5715 halts the simulation handing control to GDB; GDB, noteing
5716 that the break-point isn't valid, returns control back to the
5717 simulator; the simulator then delivers the hardware
1777feb0 5718 equivalent of a SIGNAL_TRAP to the program being debugged. */
488f131b 5719
a493e3e2 5720 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5721 && !signal_program[ecs->event_thread->suspend.stop_signal])
a493e3e2 5722 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
d4f3574e 5723
c4dbc9af 5724 discard_cleanups (old_cleanups);
2020b7ab 5725 resume (currently_stepping (ecs->event_thread),
16c381f0 5726 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5727 }
5728
488f131b 5729 prepare_to_wait (ecs);
d4f3574e
SS
5730}
5731
104c1213
JM
5732/* This function normally comes after a resume, before
5733 handle_inferior_event exits. It takes care of any last bits of
5734 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 5735
104c1213
JM
5736static void
5737prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 5738{
527159b7 5739 if (debug_infrun)
8a9de0e4 5740 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 5741
104c1213
JM
5742 /* This is the old end of the while loop. Let everybody know we
5743 want to wait for the inferior some more and get called again
5744 soon. */
5745 ecs->wait_some_more = 1;
c906108c 5746}
11cf8741 5747
33d62d64
JK
5748/* Several print_*_reason functions to print why the inferior has stopped.
5749 We always print something when the inferior exits, or receives a signal.
5750 The rest of the cases are dealt with later on in normal_stop and
5751 print_it_typical. Ideally there should be a call to one of these
5752 print_*_reason functions functions from handle_inferior_event each time
5753 stop_stepping is called. */
5754
5755/* Print why the inferior has stopped.
5756 We are done with a step/next/si/ni command, print why the inferior has
5757 stopped. For now print nothing. Print a message only if not in the middle
5758 of doing a "step n" operation for n > 1. */
5759
5760static void
5761print_end_stepping_range_reason (void)
5762{
16c381f0
JK
5763 if ((!inferior_thread ()->step_multi
5764 || !inferior_thread ()->control.stop_step)
79a45e25
PA
5765 && ui_out_is_mi_like_p (current_uiout))
5766 ui_out_field_string (current_uiout, "reason",
33d62d64
JK
5767 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5768}
5769
5770/* The inferior was terminated by a signal, print why it stopped. */
5771
11cf8741 5772static void
2ea28649 5773print_signal_exited_reason (enum gdb_signal siggnal)
11cf8741 5774{
79a45e25
PA
5775 struct ui_out *uiout = current_uiout;
5776
33d62d64
JK
5777 annotate_signalled ();
5778 if (ui_out_is_mi_like_p (uiout))
5779 ui_out_field_string
5780 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5781 ui_out_text (uiout, "\nProgram terminated with signal ");
5782 annotate_signal_name ();
5783 ui_out_field_string (uiout, "signal-name",
2ea28649 5784 gdb_signal_to_name (siggnal));
33d62d64
JK
5785 annotate_signal_name_end ();
5786 ui_out_text (uiout, ", ");
5787 annotate_signal_string ();
5788 ui_out_field_string (uiout, "signal-meaning",
2ea28649 5789 gdb_signal_to_string (siggnal));
33d62d64
JK
5790 annotate_signal_string_end ();
5791 ui_out_text (uiout, ".\n");
5792 ui_out_text (uiout, "The program no longer exists.\n");
5793}
5794
5795/* The inferior program is finished, print why it stopped. */
5796
5797static void
5798print_exited_reason (int exitstatus)
5799{
fda326dd
TT
5800 struct inferior *inf = current_inferior ();
5801 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
79a45e25 5802 struct ui_out *uiout = current_uiout;
fda326dd 5803
33d62d64
JK
5804 annotate_exited (exitstatus);
5805 if (exitstatus)
5806 {
5807 if (ui_out_is_mi_like_p (uiout))
5808 ui_out_field_string (uiout, "reason",
5809 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
5810 ui_out_text (uiout, "[Inferior ");
5811 ui_out_text (uiout, plongest (inf->num));
5812 ui_out_text (uiout, " (");
5813 ui_out_text (uiout, pidstr);
5814 ui_out_text (uiout, ") exited with code ");
33d62d64 5815 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 5816 ui_out_text (uiout, "]\n");
33d62d64
JK
5817 }
5818 else
11cf8741 5819 {
9dc5e2a9 5820 if (ui_out_is_mi_like_p (uiout))
034dad6f 5821 ui_out_field_string
33d62d64 5822 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
5823 ui_out_text (uiout, "[Inferior ");
5824 ui_out_text (uiout, plongest (inf->num));
5825 ui_out_text (uiout, " (");
5826 ui_out_text (uiout, pidstr);
5827 ui_out_text (uiout, ") exited normally]\n");
33d62d64
JK
5828 }
5829 /* Support the --return-child-result option. */
5830 return_child_result_value = exitstatus;
5831}
5832
5833/* Signal received, print why the inferior has stopped. The signal table
1777feb0 5834 tells us to print about it. */
33d62d64
JK
5835
5836static void
2ea28649 5837print_signal_received_reason (enum gdb_signal siggnal)
33d62d64 5838{
79a45e25
PA
5839 struct ui_out *uiout = current_uiout;
5840
33d62d64
JK
5841 annotate_signal ();
5842
a493e3e2 5843 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
33d62d64
JK
5844 {
5845 struct thread_info *t = inferior_thread ();
5846
5847 ui_out_text (uiout, "\n[");
5848 ui_out_field_string (uiout, "thread-name",
5849 target_pid_to_str (t->ptid));
5850 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5851 ui_out_text (uiout, " stopped");
5852 }
5853 else
5854 {
5855 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 5856 annotate_signal_name ();
33d62d64
JK
5857 if (ui_out_is_mi_like_p (uiout))
5858 ui_out_field_string
5859 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 5860 ui_out_field_string (uiout, "signal-name",
2ea28649 5861 gdb_signal_to_name (siggnal));
8b93c638
JM
5862 annotate_signal_name_end ();
5863 ui_out_text (uiout, ", ");
5864 annotate_signal_string ();
488f131b 5865 ui_out_field_string (uiout, "signal-meaning",
2ea28649 5866 gdb_signal_to_string (siggnal));
8b93c638 5867 annotate_signal_string_end ();
33d62d64
JK
5868 }
5869 ui_out_text (uiout, ".\n");
5870}
252fbfc8 5871
33d62d64
JK
5872/* Reverse execution: target ran out of history info, print why the inferior
5873 has stopped. */
252fbfc8 5874
33d62d64
JK
5875static void
5876print_no_history_reason (void)
5877{
79a45e25 5878 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
11cf8741 5879}
43ff13b4 5880
c906108c
SS
5881/* Here to return control to GDB when the inferior stops for real.
5882 Print appropriate messages, remove breakpoints, give terminal our modes.
5883
5884 STOP_PRINT_FRAME nonzero means print the executing frame
5885 (pc, function, args, file, line number and line text).
5886 BREAKPOINTS_FAILED nonzero means stop was due to error
5887 attempting to insert breakpoints. */
5888
5889void
96baa820 5890normal_stop (void)
c906108c 5891{
73b65bb0
DJ
5892 struct target_waitstatus last;
5893 ptid_t last_ptid;
29f49a6a 5894 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
5895
5896 get_last_target_status (&last_ptid, &last);
5897
29f49a6a
PA
5898 /* If an exception is thrown from this point on, make sure to
5899 propagate GDB's knowledge of the executing state to the
5900 frontend/user running state. A QUIT is an easy exception to see
5901 here, so do this before any filtered output. */
c35b1492
PA
5902 if (!non_stop)
5903 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5904 else if (last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
5905 && last.kind != TARGET_WAITKIND_EXITED
5906 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 5907 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 5908
4f8d22e3
PA
5909 /* In non-stop mode, we don't want GDB to switch threads behind the
5910 user's back, to avoid races where the user is typing a command to
5911 apply to thread x, but GDB switches to thread y before the user
5912 finishes entering the command. */
5913
c906108c
SS
5914 /* As with the notification of thread events, we want to delay
5915 notifying the user that we've switched thread context until
5916 the inferior actually stops.
5917
73b65bb0
DJ
5918 There's no point in saying anything if the inferior has exited.
5919 Note that SIGNALLED here means "exited with a signal", not
5920 "received a signal". */
4f8d22e3
PA
5921 if (!non_stop
5922 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
5923 && target_has_execution
5924 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
5925 && last.kind != TARGET_WAITKIND_EXITED
5926 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c
SS
5927 {
5928 target_terminal_ours_for_output ();
a3f17187 5929 printf_filtered (_("[Switching to %s]\n"),
c95310c6 5930 target_pid_to_str (inferior_ptid));
b8fa951a 5931 annotate_thread_changed ();
39f77062 5932 previous_inferior_ptid = inferior_ptid;
c906108c 5933 }
c906108c 5934
0e5bf2a8
PA
5935 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
5936 {
5937 gdb_assert (sync_execution || !target_can_async_p ());
5938
5939 target_terminal_ours_for_output ();
5940 printf_filtered (_("No unwaited-for children left.\n"));
5941 }
5942
74960c60 5943 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
5944 {
5945 if (remove_breakpoints ())
5946 {
5947 target_terminal_ours_for_output ();
3e43a32a
MS
5948 printf_filtered (_("Cannot remove breakpoints because "
5949 "program is no longer writable.\nFurther "
5950 "execution is probably impossible.\n"));
c906108c
SS
5951 }
5952 }
c906108c 5953
c906108c
SS
5954 /* If an auto-display called a function and that got a signal,
5955 delete that auto-display to avoid an infinite recursion. */
5956
5957 if (stopped_by_random_signal)
5958 disable_current_display ();
5959
5960 /* Don't print a message if in the middle of doing a "step n"
5961 operation for n > 1 */
af679fd0
PA
5962 if (target_has_execution
5963 && last.kind != TARGET_WAITKIND_SIGNALLED
5964 && last.kind != TARGET_WAITKIND_EXITED
5965 && inferior_thread ()->step_multi
16c381f0 5966 && inferior_thread ()->control.stop_step)
c906108c
SS
5967 goto done;
5968
5969 target_terminal_ours ();
0f641c01 5970 async_enable_stdin ();
c906108c 5971
7abfe014
DJ
5972 /* Set the current source location. This will also happen if we
5973 display the frame below, but the current SAL will be incorrect
5974 during a user hook-stop function. */
d729566a 5975 if (has_stack_frames () && !stop_stack_dummy)
7abfe014
DJ
5976 set_current_sal_from_frame (get_current_frame (), 1);
5977
dd7e2d2b
PA
5978 /* Let the user/frontend see the threads as stopped. */
5979 do_cleanups (old_chain);
5980
5981 /* Look up the hook_stop and run it (CLI internally handles problem
5982 of stop_command's pre-hook not existing). */
5983 if (stop_command)
5984 catch_errors (hook_stop_stub, stop_command,
5985 "Error while running hook_stop:\n", RETURN_MASK_ALL);
5986
d729566a 5987 if (!has_stack_frames ())
d51fd4c8 5988 goto done;
c906108c 5989
32400beb
PA
5990 if (last.kind == TARGET_WAITKIND_SIGNALLED
5991 || last.kind == TARGET_WAITKIND_EXITED)
5992 goto done;
5993
c906108c
SS
5994 /* Select innermost stack frame - i.e., current frame is frame 0,
5995 and current location is based on that.
5996 Don't do this on return from a stack dummy routine,
1777feb0 5997 or if the program has exited. */
c906108c
SS
5998
5999 if (!stop_stack_dummy)
6000 {
0f7d239c 6001 select_frame (get_current_frame ());
c906108c
SS
6002
6003 /* Print current location without a level number, if
c5aa993b
JM
6004 we have changed functions or hit a breakpoint.
6005 Print source line if we have one.
6006 bpstat_print() contains the logic deciding in detail
1777feb0 6007 what to print, based on the event(s) that just occurred. */
c906108c 6008
d01a8610
AS
6009 /* If --batch-silent is enabled then there's no need to print the current
6010 source location, and to try risks causing an error message about
6011 missing source files. */
6012 if (stop_print_frame && !batch_silent)
c906108c
SS
6013 {
6014 int bpstat_ret;
6015 int source_flag;
917317f4 6016 int do_frame_printing = 1;
347bddb7 6017 struct thread_info *tp = inferior_thread ();
c906108c 6018
36dfb11c 6019 bpstat_ret = bpstat_print (tp->control.stop_bpstat, last.kind);
917317f4
JM
6020 switch (bpstat_ret)
6021 {
6022 case PRINT_UNKNOWN:
aa0cd9c1 6023 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
6024 (or should) carry around the function and does (or
6025 should) use that when doing a frame comparison. */
16c381f0
JK
6026 if (tp->control.stop_step
6027 && frame_id_eq (tp->control.step_frame_id,
aa0cd9c1 6028 get_frame_id (get_current_frame ()))
917317f4 6029 && step_start_function == find_pc_function (stop_pc))
1777feb0
MS
6030 source_flag = SRC_LINE; /* Finished step, just
6031 print source line. */
917317f4 6032 else
1777feb0
MS
6033 source_flag = SRC_AND_LOC; /* Print location and
6034 source line. */
917317f4
JM
6035 break;
6036 case PRINT_SRC_AND_LOC:
1777feb0
MS
6037 source_flag = SRC_AND_LOC; /* Print location and
6038 source line. */
917317f4
JM
6039 break;
6040 case PRINT_SRC_ONLY:
c5394b80 6041 source_flag = SRC_LINE;
917317f4
JM
6042 break;
6043 case PRINT_NOTHING:
488f131b 6044 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
6045 do_frame_printing = 0;
6046 break;
6047 default:
e2e0b3e5 6048 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 6049 }
c906108c
SS
6050
6051 /* The behavior of this routine with respect to the source
6052 flag is:
c5394b80
JM
6053 SRC_LINE: Print only source line
6054 LOCATION: Print only location
1777feb0 6055 SRC_AND_LOC: Print location and source line. */
917317f4 6056 if (do_frame_printing)
b04f3ab4 6057 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
6058
6059 /* Display the auto-display expressions. */
6060 do_displays ();
6061 }
6062 }
6063
6064 /* Save the function value return registers, if we care.
6065 We might be about to restore their previous contents. */
9da8c2a0
PA
6066 if (inferior_thread ()->control.proceed_to_finish
6067 && execution_direction != EXEC_REVERSE)
d5c31457
UW
6068 {
6069 /* This should not be necessary. */
6070 if (stop_registers)
6071 regcache_xfree (stop_registers);
6072
6073 /* NB: The copy goes through to the target picking up the value of
6074 all the registers. */
6075 stop_registers = regcache_dup (get_current_regcache ());
6076 }
c906108c 6077
aa7d318d 6078 if (stop_stack_dummy == STOP_STACK_DUMMY)
c906108c 6079 {
b89667eb
DE
6080 /* Pop the empty frame that contains the stack dummy.
6081 This also restores inferior state prior to the call
16c381f0 6082 (struct infcall_suspend_state). */
b89667eb 6083 struct frame_info *frame = get_current_frame ();
abbb1732 6084
b89667eb
DE
6085 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6086 frame_pop (frame);
3e43a32a
MS
6087 /* frame_pop() calls reinit_frame_cache as the last thing it
6088 does which means there's currently no selected frame. We
6089 don't need to re-establish a selected frame if the dummy call
6090 returns normally, that will be done by
6091 restore_infcall_control_state. However, we do have to handle
6092 the case where the dummy call is returning after being
6093 stopped (e.g. the dummy call previously hit a breakpoint).
6094 We can't know which case we have so just always re-establish
6095 a selected frame here. */
0f7d239c 6096 select_frame (get_current_frame ());
c906108c
SS
6097 }
6098
c906108c
SS
6099done:
6100 annotate_stopped ();
41d2bdb4
PA
6101
6102 /* Suppress the stop observer if we're in the middle of:
6103
6104 - a step n (n > 1), as there still more steps to be done.
6105
6106 - a "finish" command, as the observer will be called in
6107 finish_command_continuation, so it can include the inferior
6108 function's return value.
6109
6110 - calling an inferior function, as we pretend we inferior didn't
6111 run at all. The return value of the call is handled by the
6112 expression evaluator, through call_function_by_hand. */
6113
6114 if (!target_has_execution
6115 || last.kind == TARGET_WAITKIND_SIGNALLED
6116 || last.kind == TARGET_WAITKIND_EXITED
0e5bf2a8 6117 || last.kind == TARGET_WAITKIND_NO_RESUMED
2ca0b532
PA
6118 || (!(inferior_thread ()->step_multi
6119 && inferior_thread ()->control.stop_step)
16c381f0
JK
6120 && !(inferior_thread ()->control.stop_bpstat
6121 && inferior_thread ()->control.proceed_to_finish)
6122 && !inferior_thread ()->control.in_infcall))
347bddb7
PA
6123 {
6124 if (!ptid_equal (inferior_ptid, null_ptid))
16c381f0 6125 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
1d33d6ba 6126 stop_print_frame);
347bddb7 6127 else
1d33d6ba 6128 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 6129 }
347bddb7 6130
48844aa6
PA
6131 if (target_has_execution)
6132 {
6133 if (last.kind != TARGET_WAITKIND_SIGNALLED
6134 && last.kind != TARGET_WAITKIND_EXITED)
6135 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6136 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 6137 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 6138 }
6c95b8df
PA
6139
6140 /* Try to get rid of automatically added inferiors that are no
6141 longer needed. Keeping those around slows down things linearly.
6142 Note that this never removes the current inferior. */
6143 prune_inferiors ();
c906108c
SS
6144}
6145
6146static int
96baa820 6147hook_stop_stub (void *cmd)
c906108c 6148{
5913bcb0 6149 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
6150 return (0);
6151}
6152\f
c5aa993b 6153int
96baa820 6154signal_stop_state (int signo)
c906108c 6155{
d6b48e9c 6156 return signal_stop[signo];
c906108c
SS
6157}
6158
c5aa993b 6159int
96baa820 6160signal_print_state (int signo)
c906108c
SS
6161{
6162 return signal_print[signo];
6163}
6164
c5aa993b 6165int
96baa820 6166signal_pass_state (int signo)
c906108c
SS
6167{
6168 return signal_program[signo];
6169}
6170
2455069d
UW
6171static void
6172signal_cache_update (int signo)
6173{
6174 if (signo == -1)
6175 {
a493e3e2 6176 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
6177 signal_cache_update (signo);
6178
6179 return;
6180 }
6181
6182 signal_pass[signo] = (signal_stop[signo] == 0
6183 && signal_print[signo] == 0
6184 && signal_program[signo] == 1);
6185}
6186
488f131b 6187int
7bda5e4a 6188signal_stop_update (int signo, int state)
d4f3574e
SS
6189{
6190 int ret = signal_stop[signo];
abbb1732 6191
d4f3574e 6192 signal_stop[signo] = state;
2455069d 6193 signal_cache_update (signo);
d4f3574e
SS
6194 return ret;
6195}
6196
488f131b 6197int
7bda5e4a 6198signal_print_update (int signo, int state)
d4f3574e
SS
6199{
6200 int ret = signal_print[signo];
abbb1732 6201
d4f3574e 6202 signal_print[signo] = state;
2455069d 6203 signal_cache_update (signo);
d4f3574e
SS
6204 return ret;
6205}
6206
488f131b 6207int
7bda5e4a 6208signal_pass_update (int signo, int state)
d4f3574e
SS
6209{
6210 int ret = signal_program[signo];
abbb1732 6211
d4f3574e 6212 signal_program[signo] = state;
2455069d 6213 signal_cache_update (signo);
d4f3574e
SS
6214 return ret;
6215}
6216
c906108c 6217static void
96baa820 6218sig_print_header (void)
c906108c 6219{
3e43a32a
MS
6220 printf_filtered (_("Signal Stop\tPrint\tPass "
6221 "to program\tDescription\n"));
c906108c
SS
6222}
6223
6224static void
2ea28649 6225sig_print_info (enum gdb_signal oursig)
c906108c 6226{
2ea28649 6227 const char *name = gdb_signal_to_name (oursig);
c906108c 6228 int name_padding = 13 - strlen (name);
96baa820 6229
c906108c
SS
6230 if (name_padding <= 0)
6231 name_padding = 0;
6232
6233 printf_filtered ("%s", name);
488f131b 6234 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
6235 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6236 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6237 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 6238 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
6239}
6240
6241/* Specify how various signals in the inferior should be handled. */
6242
6243static void
96baa820 6244handle_command (char *args, int from_tty)
c906108c
SS
6245{
6246 char **argv;
6247 int digits, wordlen;
6248 int sigfirst, signum, siglast;
2ea28649 6249 enum gdb_signal oursig;
c906108c
SS
6250 int allsigs;
6251 int nsigs;
6252 unsigned char *sigs;
6253 struct cleanup *old_chain;
6254
6255 if (args == NULL)
6256 {
e2e0b3e5 6257 error_no_arg (_("signal to handle"));
c906108c
SS
6258 }
6259
1777feb0 6260 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 6261
a493e3e2 6262 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
6263 sigs = (unsigned char *) alloca (nsigs);
6264 memset (sigs, 0, nsigs);
6265
1777feb0 6266 /* Break the command line up into args. */
c906108c 6267
d1a41061 6268 argv = gdb_buildargv (args);
7a292a7a 6269 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6270
6271 /* Walk through the args, looking for signal oursigs, signal names, and
6272 actions. Signal numbers and signal names may be interspersed with
6273 actions, with the actions being performed for all signals cumulatively
1777feb0 6274 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
6275
6276 while (*argv != NULL)
6277 {
6278 wordlen = strlen (*argv);
6279 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6280 {;
6281 }
6282 allsigs = 0;
6283 sigfirst = siglast = -1;
6284
6285 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6286 {
6287 /* Apply action to all signals except those used by the
1777feb0 6288 debugger. Silently skip those. */
c906108c
SS
6289 allsigs = 1;
6290 sigfirst = 0;
6291 siglast = nsigs - 1;
6292 }
6293 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6294 {
6295 SET_SIGS (nsigs, sigs, signal_stop);
6296 SET_SIGS (nsigs, sigs, signal_print);
6297 }
6298 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6299 {
6300 UNSET_SIGS (nsigs, sigs, signal_program);
6301 }
6302 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6303 {
6304 SET_SIGS (nsigs, sigs, signal_print);
6305 }
6306 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6307 {
6308 SET_SIGS (nsigs, sigs, signal_program);
6309 }
6310 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6311 {
6312 UNSET_SIGS (nsigs, sigs, signal_stop);
6313 }
6314 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6315 {
6316 SET_SIGS (nsigs, sigs, signal_program);
6317 }
6318 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6319 {
6320 UNSET_SIGS (nsigs, sigs, signal_print);
6321 UNSET_SIGS (nsigs, sigs, signal_stop);
6322 }
6323 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6324 {
6325 UNSET_SIGS (nsigs, sigs, signal_program);
6326 }
6327 else if (digits > 0)
6328 {
6329 /* It is numeric. The numeric signal refers to our own
6330 internal signal numbering from target.h, not to host/target
6331 signal number. This is a feature; users really should be
6332 using symbolic names anyway, and the common ones like
6333 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6334
6335 sigfirst = siglast = (int)
2ea28649 6336 gdb_signal_from_command (atoi (*argv));
c906108c
SS
6337 if ((*argv)[digits] == '-')
6338 {
6339 siglast = (int)
2ea28649 6340 gdb_signal_from_command (atoi ((*argv) + digits + 1));
c906108c
SS
6341 }
6342 if (sigfirst > siglast)
6343 {
1777feb0 6344 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
6345 signum = sigfirst;
6346 sigfirst = siglast;
6347 siglast = signum;
6348 }
6349 }
6350 else
6351 {
2ea28649 6352 oursig = gdb_signal_from_name (*argv);
a493e3e2 6353 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
6354 {
6355 sigfirst = siglast = (int) oursig;
6356 }
6357 else
6358 {
6359 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 6360 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
6361 }
6362 }
6363
6364 /* If any signal numbers or symbol names were found, set flags for
1777feb0 6365 which signals to apply actions to. */
c906108c
SS
6366
6367 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6368 {
2ea28649 6369 switch ((enum gdb_signal) signum)
c906108c 6370 {
a493e3e2
PA
6371 case GDB_SIGNAL_TRAP:
6372 case GDB_SIGNAL_INT:
c906108c
SS
6373 if (!allsigs && !sigs[signum])
6374 {
9e2f0ad4 6375 if (query (_("%s is used by the debugger.\n\
3e43a32a 6376Are you sure you want to change it? "),
2ea28649 6377 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
6378 {
6379 sigs[signum] = 1;
6380 }
6381 else
6382 {
a3f17187 6383 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
6384 gdb_flush (gdb_stdout);
6385 }
6386 }
6387 break;
a493e3e2
PA
6388 case GDB_SIGNAL_0:
6389 case GDB_SIGNAL_DEFAULT:
6390 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
6391 /* Make sure that "all" doesn't print these. */
6392 break;
6393 default:
6394 sigs[signum] = 1;
6395 break;
6396 }
6397 }
6398
6399 argv++;
6400 }
6401
3a031f65
PA
6402 for (signum = 0; signum < nsigs; signum++)
6403 if (sigs[signum])
6404 {
2455069d 6405 signal_cache_update (-1);
a493e3e2
PA
6406 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6407 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 6408
3a031f65
PA
6409 if (from_tty)
6410 {
6411 /* Show the results. */
6412 sig_print_header ();
6413 for (; signum < nsigs; signum++)
6414 if (sigs[signum])
6415 sig_print_info (signum);
6416 }
6417
6418 break;
6419 }
c906108c
SS
6420
6421 do_cleanups (old_chain);
6422}
6423
6424static void
96baa820 6425xdb_handle_command (char *args, int from_tty)
c906108c
SS
6426{
6427 char **argv;
6428 struct cleanup *old_chain;
6429
d1a41061
PP
6430 if (args == NULL)
6431 error_no_arg (_("xdb command"));
6432
1777feb0 6433 /* Break the command line up into args. */
c906108c 6434
d1a41061 6435 argv = gdb_buildargv (args);
7a292a7a 6436 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6437 if (argv[1] != (char *) NULL)
6438 {
6439 char *argBuf;
6440 int bufLen;
6441
6442 bufLen = strlen (argv[0]) + 20;
6443 argBuf = (char *) xmalloc (bufLen);
6444 if (argBuf)
6445 {
6446 int validFlag = 1;
2ea28649 6447 enum gdb_signal oursig;
c906108c 6448
2ea28649 6449 oursig = gdb_signal_from_name (argv[0]);
c906108c
SS
6450 memset (argBuf, 0, bufLen);
6451 if (strcmp (argv[1], "Q") == 0)
6452 sprintf (argBuf, "%s %s", argv[0], "noprint");
6453 else
6454 {
6455 if (strcmp (argv[1], "s") == 0)
6456 {
6457 if (!signal_stop[oursig])
6458 sprintf (argBuf, "%s %s", argv[0], "stop");
6459 else
6460 sprintf (argBuf, "%s %s", argv[0], "nostop");
6461 }
6462 else if (strcmp (argv[1], "i") == 0)
6463 {
6464 if (!signal_program[oursig])
6465 sprintf (argBuf, "%s %s", argv[0], "pass");
6466 else
6467 sprintf (argBuf, "%s %s", argv[0], "nopass");
6468 }
6469 else if (strcmp (argv[1], "r") == 0)
6470 {
6471 if (!signal_print[oursig])
6472 sprintf (argBuf, "%s %s", argv[0], "print");
6473 else
6474 sprintf (argBuf, "%s %s", argv[0], "noprint");
6475 }
6476 else
6477 validFlag = 0;
6478 }
6479 if (validFlag)
6480 handle_command (argBuf, from_tty);
6481 else
a3f17187 6482 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 6483 if (argBuf)
b8c9b27d 6484 xfree (argBuf);
c906108c
SS
6485 }
6486 }
6487 do_cleanups (old_chain);
6488}
6489
2ea28649
PA
6490enum gdb_signal
6491gdb_signal_from_command (int num)
ed01b82c
PA
6492{
6493 if (num >= 1 && num <= 15)
2ea28649 6494 return (enum gdb_signal) num;
ed01b82c
PA
6495 error (_("Only signals 1-15 are valid as numeric signals.\n\
6496Use \"info signals\" for a list of symbolic signals."));
6497}
6498
c906108c
SS
6499/* Print current contents of the tables set by the handle command.
6500 It is possible we should just be printing signals actually used
6501 by the current target (but for things to work right when switching
6502 targets, all signals should be in the signal tables). */
6503
6504static void
96baa820 6505signals_info (char *signum_exp, int from_tty)
c906108c 6506{
2ea28649 6507 enum gdb_signal oursig;
abbb1732 6508
c906108c
SS
6509 sig_print_header ();
6510
6511 if (signum_exp)
6512 {
6513 /* First see if this is a symbol name. */
2ea28649 6514 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 6515 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
6516 {
6517 /* No, try numeric. */
6518 oursig =
2ea28649 6519 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
6520 }
6521 sig_print_info (oursig);
6522 return;
6523 }
6524
6525 printf_filtered ("\n");
6526 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
6527 for (oursig = GDB_SIGNAL_FIRST;
6528 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 6529 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
6530 {
6531 QUIT;
6532
a493e3e2
PA
6533 if (oursig != GDB_SIGNAL_UNKNOWN
6534 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
6535 sig_print_info (oursig);
6536 }
6537
3e43a32a
MS
6538 printf_filtered (_("\nUse the \"handle\" command "
6539 "to change these tables.\n"));
c906108c 6540}
4aa995e1 6541
c709acd1
PA
6542/* Check if it makes sense to read $_siginfo from the current thread
6543 at this point. If not, throw an error. */
6544
6545static void
6546validate_siginfo_access (void)
6547{
6548 /* No current inferior, no siginfo. */
6549 if (ptid_equal (inferior_ptid, null_ptid))
6550 error (_("No thread selected."));
6551
6552 /* Don't try to read from a dead thread. */
6553 if (is_exited (inferior_ptid))
6554 error (_("The current thread has terminated"));
6555
6556 /* ... or from a spinning thread. */
6557 if (is_running (inferior_ptid))
6558 error (_("Selected thread is running."));
6559}
6560
4aa995e1
PA
6561/* The $_siginfo convenience variable is a bit special. We don't know
6562 for sure the type of the value until we actually have a chance to
7a9dd1b2 6563 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
6564 also dependent on which thread you have selected.
6565
6566 1. making $_siginfo be an internalvar that creates a new value on
6567 access.
6568
6569 2. making the value of $_siginfo be an lval_computed value. */
6570
6571/* This function implements the lval_computed support for reading a
6572 $_siginfo value. */
6573
6574static void
6575siginfo_value_read (struct value *v)
6576{
6577 LONGEST transferred;
6578
c709acd1
PA
6579 validate_siginfo_access ();
6580
4aa995e1
PA
6581 transferred =
6582 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6583 NULL,
6584 value_contents_all_raw (v),
6585 value_offset (v),
6586 TYPE_LENGTH (value_type (v)));
6587
6588 if (transferred != TYPE_LENGTH (value_type (v)))
6589 error (_("Unable to read siginfo"));
6590}
6591
6592/* This function implements the lval_computed support for writing a
6593 $_siginfo value. */
6594
6595static void
6596siginfo_value_write (struct value *v, struct value *fromval)
6597{
6598 LONGEST transferred;
6599
c709acd1
PA
6600 validate_siginfo_access ();
6601
4aa995e1
PA
6602 transferred = target_write (&current_target,
6603 TARGET_OBJECT_SIGNAL_INFO,
6604 NULL,
6605 value_contents_all_raw (fromval),
6606 value_offset (v),
6607 TYPE_LENGTH (value_type (fromval)));
6608
6609 if (transferred != TYPE_LENGTH (value_type (fromval)))
6610 error (_("Unable to write siginfo"));
6611}
6612
c8f2448a 6613static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
6614 {
6615 siginfo_value_read,
6616 siginfo_value_write
6617 };
6618
6619/* Return a new value with the correct type for the siginfo object of
78267919
UW
6620 the current thread using architecture GDBARCH. Return a void value
6621 if there's no object available. */
4aa995e1 6622
2c0b251b 6623static struct value *
22d2b532
SDJ
6624siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
6625 void *ignore)
4aa995e1 6626{
4aa995e1 6627 if (target_has_stack
78267919
UW
6628 && !ptid_equal (inferior_ptid, null_ptid)
6629 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 6630 {
78267919 6631 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 6632
78267919 6633 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
6634 }
6635
78267919 6636 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
6637}
6638
c906108c 6639\f
16c381f0
JK
6640/* infcall_suspend_state contains state about the program itself like its
6641 registers and any signal it received when it last stopped.
6642 This state must be restored regardless of how the inferior function call
6643 ends (either successfully, or after it hits a breakpoint or signal)
6644 if the program is to properly continue where it left off. */
6645
6646struct infcall_suspend_state
7a292a7a 6647{
16c381f0
JK
6648 struct thread_suspend_state thread_suspend;
6649 struct inferior_suspend_state inferior_suspend;
6650
6651 /* Other fields: */
7a292a7a 6652 CORE_ADDR stop_pc;
b89667eb 6653 struct regcache *registers;
1736ad11 6654
35515841 6655 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
6656 struct gdbarch *siginfo_gdbarch;
6657
6658 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6659 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6660 content would be invalid. */
6661 gdb_byte *siginfo_data;
b89667eb
DE
6662};
6663
16c381f0
JK
6664struct infcall_suspend_state *
6665save_infcall_suspend_state (void)
b89667eb 6666{
16c381f0 6667 struct infcall_suspend_state *inf_state;
b89667eb 6668 struct thread_info *tp = inferior_thread ();
16c381f0 6669 struct inferior *inf = current_inferior ();
1736ad11
JK
6670 struct regcache *regcache = get_current_regcache ();
6671 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6672 gdb_byte *siginfo_data = NULL;
6673
6674 if (gdbarch_get_siginfo_type_p (gdbarch))
6675 {
6676 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6677 size_t len = TYPE_LENGTH (type);
6678 struct cleanup *back_to;
6679
6680 siginfo_data = xmalloc (len);
6681 back_to = make_cleanup (xfree, siginfo_data);
6682
6683 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6684 siginfo_data, 0, len) == len)
6685 discard_cleanups (back_to);
6686 else
6687 {
6688 /* Errors ignored. */
6689 do_cleanups (back_to);
6690 siginfo_data = NULL;
6691 }
6692 }
6693
16c381f0 6694 inf_state = XZALLOC (struct infcall_suspend_state);
1736ad11
JK
6695
6696 if (siginfo_data)
6697 {
6698 inf_state->siginfo_gdbarch = gdbarch;
6699 inf_state->siginfo_data = siginfo_data;
6700 }
b89667eb 6701
16c381f0
JK
6702 inf_state->thread_suspend = tp->suspend;
6703 inf_state->inferior_suspend = inf->suspend;
6704
35515841 6705 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
6706 GDB_SIGNAL_0 anyway. */
6707 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 6708
b89667eb
DE
6709 inf_state->stop_pc = stop_pc;
6710
1736ad11 6711 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
6712
6713 return inf_state;
6714}
6715
6716/* Restore inferior session state to INF_STATE. */
6717
6718void
16c381f0 6719restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6720{
6721 struct thread_info *tp = inferior_thread ();
16c381f0 6722 struct inferior *inf = current_inferior ();
1736ad11
JK
6723 struct regcache *regcache = get_current_regcache ();
6724 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 6725
16c381f0
JK
6726 tp->suspend = inf_state->thread_suspend;
6727 inf->suspend = inf_state->inferior_suspend;
6728
b89667eb
DE
6729 stop_pc = inf_state->stop_pc;
6730
1736ad11
JK
6731 if (inf_state->siginfo_gdbarch == gdbarch)
6732 {
6733 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6734 size_t len = TYPE_LENGTH (type);
6735
6736 /* Errors ignored. */
6737 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6738 inf_state->siginfo_data, 0, len);
6739 }
6740
b89667eb
DE
6741 /* The inferior can be gone if the user types "print exit(0)"
6742 (and perhaps other times). */
6743 if (target_has_execution)
6744 /* NB: The register write goes through to the target. */
1736ad11 6745 regcache_cpy (regcache, inf_state->registers);
803b5f95 6746
16c381f0 6747 discard_infcall_suspend_state (inf_state);
b89667eb
DE
6748}
6749
6750static void
16c381f0 6751do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 6752{
16c381f0 6753 restore_infcall_suspend_state (state);
b89667eb
DE
6754}
6755
6756struct cleanup *
16c381f0
JK
6757make_cleanup_restore_infcall_suspend_state
6758 (struct infcall_suspend_state *inf_state)
b89667eb 6759{
16c381f0 6760 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
6761}
6762
6763void
16c381f0 6764discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6765{
6766 regcache_xfree (inf_state->registers);
803b5f95 6767 xfree (inf_state->siginfo_data);
b89667eb
DE
6768 xfree (inf_state);
6769}
6770
6771struct regcache *
16c381f0 6772get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
6773{
6774 return inf_state->registers;
6775}
6776
16c381f0
JK
6777/* infcall_control_state contains state regarding gdb's control of the
6778 inferior itself like stepping control. It also contains session state like
6779 the user's currently selected frame. */
b89667eb 6780
16c381f0 6781struct infcall_control_state
b89667eb 6782{
16c381f0
JK
6783 struct thread_control_state thread_control;
6784 struct inferior_control_state inferior_control;
d82142e2
JK
6785
6786 /* Other fields: */
6787 enum stop_stack_kind stop_stack_dummy;
6788 int stopped_by_random_signal;
7a292a7a 6789 int stop_after_trap;
7a292a7a 6790
b89667eb 6791 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 6792 struct frame_id selected_frame_id;
7a292a7a
SS
6793};
6794
c906108c 6795/* Save all of the information associated with the inferior<==>gdb
b89667eb 6796 connection. */
c906108c 6797
16c381f0
JK
6798struct infcall_control_state *
6799save_infcall_control_state (void)
c906108c 6800{
16c381f0 6801 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
4e1c45ea 6802 struct thread_info *tp = inferior_thread ();
d6b48e9c 6803 struct inferior *inf = current_inferior ();
7a292a7a 6804
16c381f0
JK
6805 inf_status->thread_control = tp->control;
6806 inf_status->inferior_control = inf->control;
d82142e2 6807
8358c15c 6808 tp->control.step_resume_breakpoint = NULL;
5b79abe7 6809 tp->control.exception_resume_breakpoint = NULL;
8358c15c 6810
16c381f0
JK
6811 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6812 chain. If caller's caller is walking the chain, they'll be happier if we
6813 hand them back the original chain when restore_infcall_control_state is
6814 called. */
6815 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
6816
6817 /* Other fields: */
6818 inf_status->stop_stack_dummy = stop_stack_dummy;
6819 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6820 inf_status->stop_after_trap = stop_after_trap;
c5aa993b 6821
206415a3 6822 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 6823
7a292a7a 6824 return inf_status;
c906108c
SS
6825}
6826
c906108c 6827static int
96baa820 6828restore_selected_frame (void *args)
c906108c 6829{
488f131b 6830 struct frame_id *fid = (struct frame_id *) args;
c906108c 6831 struct frame_info *frame;
c906108c 6832
101dcfbe 6833 frame = frame_find_by_id (*fid);
c906108c 6834
aa0cd9c1
AC
6835 /* If inf_status->selected_frame_id is NULL, there was no previously
6836 selected frame. */
101dcfbe 6837 if (frame == NULL)
c906108c 6838 {
8a3fe4f8 6839 warning (_("Unable to restore previously selected frame."));
c906108c
SS
6840 return 0;
6841 }
6842
0f7d239c 6843 select_frame (frame);
c906108c
SS
6844
6845 return (1);
6846}
6847
b89667eb
DE
6848/* Restore inferior session state to INF_STATUS. */
6849
c906108c 6850void
16c381f0 6851restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 6852{
4e1c45ea 6853 struct thread_info *tp = inferior_thread ();
d6b48e9c 6854 struct inferior *inf = current_inferior ();
4e1c45ea 6855
8358c15c
JK
6856 if (tp->control.step_resume_breakpoint)
6857 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6858
5b79abe7
TT
6859 if (tp->control.exception_resume_breakpoint)
6860 tp->control.exception_resume_breakpoint->disposition
6861 = disp_del_at_next_stop;
6862
d82142e2 6863 /* Handle the bpstat_copy of the chain. */
16c381f0 6864 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 6865
16c381f0
JK
6866 tp->control = inf_status->thread_control;
6867 inf->control = inf_status->inferior_control;
d82142e2
JK
6868
6869 /* Other fields: */
6870 stop_stack_dummy = inf_status->stop_stack_dummy;
6871 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6872 stop_after_trap = inf_status->stop_after_trap;
c906108c 6873
b89667eb 6874 if (target_has_stack)
c906108c 6875 {
c906108c 6876 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
6877 walking the stack might encounter a garbage pointer and
6878 error() trying to dereference it. */
488f131b
JB
6879 if (catch_errors
6880 (restore_selected_frame, &inf_status->selected_frame_id,
6881 "Unable to restore previously selected frame:\n",
6882 RETURN_MASK_ERROR) == 0)
c906108c
SS
6883 /* Error in restoring the selected frame. Select the innermost
6884 frame. */
0f7d239c 6885 select_frame (get_current_frame ());
c906108c 6886 }
c906108c 6887
72cec141 6888 xfree (inf_status);
7a292a7a 6889}
c906108c 6890
74b7792f 6891static void
16c381f0 6892do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 6893{
16c381f0 6894 restore_infcall_control_state (sts);
74b7792f
AC
6895}
6896
6897struct cleanup *
16c381f0
JK
6898make_cleanup_restore_infcall_control_state
6899 (struct infcall_control_state *inf_status)
74b7792f 6900{
16c381f0 6901 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
6902}
6903
c906108c 6904void
16c381f0 6905discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 6906{
8358c15c
JK
6907 if (inf_status->thread_control.step_resume_breakpoint)
6908 inf_status->thread_control.step_resume_breakpoint->disposition
6909 = disp_del_at_next_stop;
6910
5b79abe7
TT
6911 if (inf_status->thread_control.exception_resume_breakpoint)
6912 inf_status->thread_control.exception_resume_breakpoint->disposition
6913 = disp_del_at_next_stop;
6914
1777feb0 6915 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 6916 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 6917
72cec141 6918 xfree (inf_status);
7a292a7a 6919}
b89667eb 6920\f
0723dbf5
PA
6921int
6922ptid_match (ptid_t ptid, ptid_t filter)
6923{
0723dbf5
PA
6924 if (ptid_equal (filter, minus_one_ptid))
6925 return 1;
6926 if (ptid_is_pid (filter)
6927 && ptid_get_pid (ptid) == ptid_get_pid (filter))
6928 return 1;
6929 else if (ptid_equal (ptid, filter))
6930 return 1;
6931
6932 return 0;
6933}
6934
ca6724c1
KB
6935/* restore_inferior_ptid() will be used by the cleanup machinery
6936 to restore the inferior_ptid value saved in a call to
6937 save_inferior_ptid(). */
ce696e05
KB
6938
6939static void
6940restore_inferior_ptid (void *arg)
6941{
6942 ptid_t *saved_ptid_ptr = arg;
abbb1732 6943
ce696e05
KB
6944 inferior_ptid = *saved_ptid_ptr;
6945 xfree (arg);
6946}
6947
6948/* Save the value of inferior_ptid so that it may be restored by a
6949 later call to do_cleanups(). Returns the struct cleanup pointer
6950 needed for later doing the cleanup. */
6951
6952struct cleanup *
6953save_inferior_ptid (void)
6954{
6955 ptid_t *saved_ptid_ptr;
6956
6957 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
6958 *saved_ptid_ptr = inferior_ptid;
6959 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
6960}
c5aa993b 6961\f
488f131b 6962
b2175913
MS
6963/* User interface for reverse debugging:
6964 Set exec-direction / show exec-direction commands
6965 (returns error unless target implements to_set_exec_direction method). */
6966
32231432 6967int execution_direction = EXEC_FORWARD;
b2175913
MS
6968static const char exec_forward[] = "forward";
6969static const char exec_reverse[] = "reverse";
6970static const char *exec_direction = exec_forward;
40478521 6971static const char *const exec_direction_names[] = {
b2175913
MS
6972 exec_forward,
6973 exec_reverse,
6974 NULL
6975};
6976
6977static void
6978set_exec_direction_func (char *args, int from_tty,
6979 struct cmd_list_element *cmd)
6980{
6981 if (target_can_execute_reverse)
6982 {
6983 if (!strcmp (exec_direction, exec_forward))
6984 execution_direction = EXEC_FORWARD;
6985 else if (!strcmp (exec_direction, exec_reverse))
6986 execution_direction = EXEC_REVERSE;
6987 }
8bbed405
MS
6988 else
6989 {
6990 exec_direction = exec_forward;
6991 error (_("Target does not support this operation."));
6992 }
b2175913
MS
6993}
6994
6995static void
6996show_exec_direction_func (struct ui_file *out, int from_tty,
6997 struct cmd_list_element *cmd, const char *value)
6998{
6999 switch (execution_direction) {
7000 case EXEC_FORWARD:
7001 fprintf_filtered (out, _("Forward.\n"));
7002 break;
7003 case EXEC_REVERSE:
7004 fprintf_filtered (out, _("Reverse.\n"));
7005 break;
b2175913 7006 default:
d8b34453
PA
7007 internal_error (__FILE__, __LINE__,
7008 _("bogus execution_direction value: %d"),
7009 (int) execution_direction);
b2175913
MS
7010 }
7011}
7012
7013/* User interface for non-stop mode. */
7014
ad52ddc6 7015int non_stop = 0;
ad52ddc6
PA
7016
7017static void
7018set_non_stop (char *args, int from_tty,
7019 struct cmd_list_element *c)
7020{
7021 if (target_has_execution)
7022 {
7023 non_stop_1 = non_stop;
7024 error (_("Cannot change this setting while the inferior is running."));
7025 }
7026
7027 non_stop = non_stop_1;
7028}
7029
7030static void
7031show_non_stop (struct ui_file *file, int from_tty,
7032 struct cmd_list_element *c, const char *value)
7033{
7034 fprintf_filtered (file,
7035 _("Controlling the inferior in non-stop mode is %s.\n"),
7036 value);
7037}
7038
d4db2f36
PA
7039static void
7040show_schedule_multiple (struct ui_file *file, int from_tty,
7041 struct cmd_list_element *c, const char *value)
7042{
3e43a32a
MS
7043 fprintf_filtered (file, _("Resuming the execution of threads "
7044 "of all processes is %s.\n"), value);
d4db2f36 7045}
ad52ddc6 7046
22d2b532
SDJ
7047/* Implementation of `siginfo' variable. */
7048
7049static const struct internalvar_funcs siginfo_funcs =
7050{
7051 siginfo_make_value,
7052 NULL,
7053 NULL
7054};
7055
c906108c 7056void
96baa820 7057_initialize_infrun (void)
c906108c 7058{
52f0bd74
AC
7059 int i;
7060 int numsigs;
c906108c 7061
1bedd215
AC
7062 add_info ("signals", signals_info, _("\
7063What debugger does when program gets various signals.\n\
7064Specify a signal as argument to print info on that signal only."));
c906108c
SS
7065 add_info_alias ("handle", "signals", 0);
7066
1bedd215
AC
7067 add_com ("handle", class_run, handle_command, _("\
7068Specify how to handle a signal.\n\
c906108c
SS
7069Args are signals and actions to apply to those signals.\n\
7070Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7071from 1-15 are allowed for compatibility with old versions of GDB.\n\
7072Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7073The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
7074used by the debugger, typically SIGTRAP and SIGINT.\n\
7075Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
7076\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7077Stop means reenter debugger if this signal happens (implies print).\n\
7078Print means print a message if this signal happens.\n\
7079Pass means let program see this signal; otherwise program doesn't know.\n\
7080Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 7081Pass and Stop may be combined."));
c906108c
SS
7082 if (xdb_commands)
7083 {
1bedd215
AC
7084 add_com ("lz", class_info, signals_info, _("\
7085What debugger does when program gets various signals.\n\
7086Specify a signal as argument to print info on that signal only."));
7087 add_com ("z", class_run, xdb_handle_command, _("\
7088Specify how to handle a signal.\n\
c906108c
SS
7089Args are signals and actions to apply to those signals.\n\
7090Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7091from 1-15 are allowed for compatibility with old versions of GDB.\n\
7092Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7093The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7094used by the debugger, typically SIGTRAP and SIGINT.\n\
cce7e648 7095Recognized actions include \"s\" (toggles between stop and nostop),\n\
c906108c
SS
7096\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7097nopass), \"Q\" (noprint)\n\
7098Stop means reenter debugger if this signal happens (implies print).\n\
7099Print means print a message if this signal happens.\n\
7100Pass means let program see this signal; otherwise program doesn't know.\n\
7101Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 7102Pass and Stop may be combined."));
c906108c
SS
7103 }
7104
7105 if (!dbx_commands)
1a966eab
AC
7106 stop_command = add_cmd ("stop", class_obscure,
7107 not_just_help_class_command, _("\
7108There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 7109This allows you to set a list of commands to be run each time execution\n\
1a966eab 7110of the program stops."), &cmdlist);
c906108c 7111
85c07804
AC
7112 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7113Set inferior debugging."), _("\
7114Show inferior debugging."), _("\
7115When non-zero, inferior specific debugging is enabled."),
7116 NULL,
920d2a44 7117 show_debug_infrun,
85c07804 7118 &setdebuglist, &showdebuglist);
527159b7 7119
3e43a32a
MS
7120 add_setshow_boolean_cmd ("displaced", class_maintenance,
7121 &debug_displaced, _("\
237fc4c9
PA
7122Set displaced stepping debugging."), _("\
7123Show displaced stepping debugging."), _("\
7124When non-zero, displaced stepping specific debugging is enabled."),
7125 NULL,
7126 show_debug_displaced,
7127 &setdebuglist, &showdebuglist);
7128
ad52ddc6
PA
7129 add_setshow_boolean_cmd ("non-stop", no_class,
7130 &non_stop_1, _("\
7131Set whether gdb controls the inferior in non-stop mode."), _("\
7132Show whether gdb controls the inferior in non-stop mode."), _("\
7133When debugging a multi-threaded program and this setting is\n\
7134off (the default, also called all-stop mode), when one thread stops\n\
7135(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7136all other threads in the program while you interact with the thread of\n\
7137interest. When you continue or step a thread, you can allow the other\n\
7138threads to run, or have them remain stopped, but while you inspect any\n\
7139thread's state, all threads stop.\n\
7140\n\
7141In non-stop mode, when one thread stops, other threads can continue\n\
7142to run freely. You'll be able to step each thread independently,\n\
7143leave it stopped or free to run as needed."),
7144 set_non_stop,
7145 show_non_stop,
7146 &setlist,
7147 &showlist);
7148
a493e3e2 7149 numsigs = (int) GDB_SIGNAL_LAST;
488f131b 7150 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
7151 signal_print = (unsigned char *)
7152 xmalloc (sizeof (signal_print[0]) * numsigs);
7153 signal_program = (unsigned char *)
7154 xmalloc (sizeof (signal_program[0]) * numsigs);
2455069d
UW
7155 signal_pass = (unsigned char *)
7156 xmalloc (sizeof (signal_program[0]) * numsigs);
c906108c
SS
7157 for (i = 0; i < numsigs; i++)
7158 {
7159 signal_stop[i] = 1;
7160 signal_print[i] = 1;
7161 signal_program[i] = 1;
7162 }
7163
7164 /* Signals caused by debugger's own actions
7165 should not be given to the program afterwards. */
a493e3e2
PA
7166 signal_program[GDB_SIGNAL_TRAP] = 0;
7167 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
7168
7169 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
7170 signal_stop[GDB_SIGNAL_ALRM] = 0;
7171 signal_print[GDB_SIGNAL_ALRM] = 0;
7172 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7173 signal_print[GDB_SIGNAL_VTALRM] = 0;
7174 signal_stop[GDB_SIGNAL_PROF] = 0;
7175 signal_print[GDB_SIGNAL_PROF] = 0;
7176 signal_stop[GDB_SIGNAL_CHLD] = 0;
7177 signal_print[GDB_SIGNAL_CHLD] = 0;
7178 signal_stop[GDB_SIGNAL_IO] = 0;
7179 signal_print[GDB_SIGNAL_IO] = 0;
7180 signal_stop[GDB_SIGNAL_POLL] = 0;
7181 signal_print[GDB_SIGNAL_POLL] = 0;
7182 signal_stop[GDB_SIGNAL_URG] = 0;
7183 signal_print[GDB_SIGNAL_URG] = 0;
7184 signal_stop[GDB_SIGNAL_WINCH] = 0;
7185 signal_print[GDB_SIGNAL_WINCH] = 0;
7186 signal_stop[GDB_SIGNAL_PRIO] = 0;
7187 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 7188
cd0fc7c3
SS
7189 /* These signals are used internally by user-level thread
7190 implementations. (See signal(5) on Solaris.) Like the above
7191 signals, a healthy program receives and handles them as part of
7192 its normal operation. */
a493e3e2
PA
7193 signal_stop[GDB_SIGNAL_LWP] = 0;
7194 signal_print[GDB_SIGNAL_LWP] = 0;
7195 signal_stop[GDB_SIGNAL_WAITING] = 0;
7196 signal_print[GDB_SIGNAL_WAITING] = 0;
7197 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7198 signal_print[GDB_SIGNAL_CANCEL] = 0;
cd0fc7c3 7199
2455069d
UW
7200 /* Update cached state. */
7201 signal_cache_update (-1);
7202
85c07804
AC
7203 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7204 &stop_on_solib_events, _("\
7205Set stopping for shared library events."), _("\
7206Show stopping for shared library events."), _("\
c906108c
SS
7207If nonzero, gdb will give control to the user when the dynamic linker\n\
7208notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
7209to the user would be loading/unloading of a new library."),
7210 NULL,
920d2a44 7211 show_stop_on_solib_events,
85c07804 7212 &setlist, &showlist);
c906108c 7213
7ab04401
AC
7214 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7215 follow_fork_mode_kind_names,
7216 &follow_fork_mode_string, _("\
7217Set debugger response to a program call of fork or vfork."), _("\
7218Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
7219A fork or vfork creates a new process. follow-fork-mode can be:\n\
7220 parent - the original process is debugged after a fork\n\
7221 child - the new process is debugged after a fork\n\
ea1dd7bc 7222The unfollowed process will continue to run.\n\
7ab04401
AC
7223By default, the debugger will follow the parent process."),
7224 NULL,
920d2a44 7225 show_follow_fork_mode_string,
7ab04401
AC
7226 &setlist, &showlist);
7227
6c95b8df
PA
7228 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7229 follow_exec_mode_names,
7230 &follow_exec_mode_string, _("\
7231Set debugger response to a program call of exec."), _("\
7232Show debugger response to a program call of exec."), _("\
7233An exec call replaces the program image of a process.\n\
7234\n\
7235follow-exec-mode can be:\n\
7236\n\
cce7e648 7237 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
7238to this new inferior. The program the process was running before\n\
7239the exec call can be restarted afterwards by restarting the original\n\
7240inferior.\n\
7241\n\
7242 same - the debugger keeps the process bound to the same inferior.\n\
7243The new executable image replaces the previous executable loaded in\n\
7244the inferior. Restarting the inferior after the exec call restarts\n\
7245the executable the process was running after the exec call.\n\
7246\n\
7247By default, the debugger will use the same inferior."),
7248 NULL,
7249 show_follow_exec_mode_string,
7250 &setlist, &showlist);
7251
7ab04401
AC
7252 add_setshow_enum_cmd ("scheduler-locking", class_run,
7253 scheduler_enums, &scheduler_mode, _("\
7254Set mode for locking scheduler during execution."), _("\
7255Show mode for locking scheduler during execution."), _("\
c906108c
SS
7256off == no locking (threads may preempt at any time)\n\
7257on == full locking (no thread except the current thread may run)\n\
7258step == scheduler locked during every single-step operation.\n\
7259 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
7260 Other threads may run while stepping over a function call ('next')."),
7261 set_schedlock_func, /* traps on target vector */
920d2a44 7262 show_scheduler_mode,
7ab04401 7263 &setlist, &showlist);
5fbbeb29 7264
d4db2f36
PA
7265 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7266Set mode for resuming threads of all processes."), _("\
7267Show mode for resuming threads of all processes."), _("\
7268When on, execution commands (such as 'continue' or 'next') resume all\n\
7269threads of all processes. When off (which is the default), execution\n\
7270commands only resume the threads of the current process. The set of\n\
7271threads that are resumed is further refined by the scheduler-locking\n\
7272mode (see help set scheduler-locking)."),
7273 NULL,
7274 show_schedule_multiple,
7275 &setlist, &showlist);
7276
5bf193a2
AC
7277 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7278Set mode of the step operation."), _("\
7279Show mode of the step operation."), _("\
7280When set, doing a step over a function without debug line information\n\
7281will stop at the first instruction of that function. Otherwise, the\n\
7282function is skipped and the step command stops at a different source line."),
7283 NULL,
920d2a44 7284 show_step_stop_if_no_debug,
5bf193a2 7285 &setlist, &showlist);
ca6724c1 7286
fff08868
HZ
7287 add_setshow_enum_cmd ("displaced-stepping", class_run,
7288 can_use_displaced_stepping_enum,
7289 &can_use_displaced_stepping, _("\
237fc4c9
PA
7290Set debugger's willingness to use displaced stepping."), _("\
7291Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
7292If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7293supported by the target architecture. If off, gdb will not use displaced\n\
7294stepping to step over breakpoints, even if such is supported by the target\n\
7295architecture. If auto (which is the default), gdb will use displaced stepping\n\
7296if the target architecture supports it and non-stop mode is active, but will not\n\
7297use it in all-stop mode (see help set non-stop)."),
7298 NULL,
7299 show_can_use_displaced_stepping,
7300 &setlist, &showlist);
237fc4c9 7301
b2175913
MS
7302 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7303 &exec_direction, _("Set direction of execution.\n\
7304Options are 'forward' or 'reverse'."),
7305 _("Show direction of execution (forward/reverse)."),
7306 _("Tells gdb whether to execute forward or backward."),
7307 set_exec_direction_func, show_exec_direction_func,
7308 &setlist, &showlist);
7309
6c95b8df
PA
7310 /* Set/show detach-on-fork: user-settable mode. */
7311
7312 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7313Set whether gdb will detach the child of a fork."), _("\
7314Show whether gdb will detach the child of a fork."), _("\
7315Tells gdb whether to detach the child of a fork."),
7316 NULL, NULL, &setlist, &showlist);
7317
03583c20
UW
7318 /* Set/show disable address space randomization mode. */
7319
7320 add_setshow_boolean_cmd ("disable-randomization", class_support,
7321 &disable_randomization, _("\
7322Set disabling of debuggee's virtual address space randomization."), _("\
7323Show disabling of debuggee's virtual address space randomization."), _("\
7324When this mode is on (which is the default), randomization of the virtual\n\
7325address space is disabled. Standalone programs run with the randomization\n\
7326enabled by default on some platforms."),
7327 &set_disable_randomization,
7328 &show_disable_randomization,
7329 &setlist, &showlist);
7330
ca6724c1 7331 /* ptid initializations */
ca6724c1
KB
7332 inferior_ptid = null_ptid;
7333 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
7334
7335 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 7336 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 7337 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 7338 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
7339
7340 /* Explicitly create without lookup, since that tries to create a
7341 value with a void typed value, and when we get here, gdbarch
7342 isn't initialized yet. At this point, we're quite sure there
7343 isn't another convenience variable of the same name. */
22d2b532 7344 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
7345
7346 add_setshow_boolean_cmd ("observer", no_class,
7347 &observer_mode_1, _("\
7348Set whether gdb controls the inferior in observer mode."), _("\
7349Show whether gdb controls the inferior in observer mode."), _("\
7350In observer mode, GDB can get data from the inferior, but not\n\
7351affect its execution. Registers and memory may not be changed,\n\
7352breakpoints may not be set, and the program cannot be interrupted\n\
7353or signalled."),
7354 set_observer_mode,
7355 show_observer_mode,
7356 &setlist,
7357 &showlist);
c906108c 7358}
This page took 3.519386 seconds and 4 git commands to generate.