]>
Commit | Line | Data |
---|---|---|
ca557f44 AC |
1 | /* Target-struct-independent code to start (run) and stop an inferior |
2 | process. | |
8926118c | 3 | |
61baf725 | 4 | Copyright (C) 1986-2017 Free Software Foundation, Inc. |
c906108c | 5 | |
c5aa993b | 6 | This file is part of GDB. |
c906108c | 7 | |
c5aa993b JM |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 10 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 11 | (at your option) any later version. |
c906108c | 12 | |
c5aa993b JM |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
c906108c | 17 | |
c5aa993b | 18 | You should have received a copy of the GNU General Public License |
a9762ec7 | 19 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
20 | |
21 | #include "defs.h" | |
45741a9c | 22 | #include "infrun.h" |
c906108c SS |
23 | #include <ctype.h> |
24 | #include "symtab.h" | |
25 | #include "frame.h" | |
26 | #include "inferior.h" | |
27 | #include "breakpoint.h" | |
03f2053f | 28 | #include "gdb_wait.h" |
c906108c SS |
29 | #include "gdbcore.h" |
30 | #include "gdbcmd.h" | |
210661e7 | 31 | #include "cli/cli-script.h" |
c906108c SS |
32 | #include "target.h" |
33 | #include "gdbthread.h" | |
34 | #include "annotate.h" | |
1adeb98a | 35 | #include "symfile.h" |
7a292a7a | 36 | #include "top.h" |
c906108c | 37 | #include <signal.h> |
2acceee2 | 38 | #include "inf-loop.h" |
4e052eda | 39 | #include "regcache.h" |
fd0407d6 | 40 | #include "value.h" |
06600e06 | 41 | #include "observer.h" |
f636b87d | 42 | #include "language.h" |
a77053c2 | 43 | #include "solib.h" |
f17517ea | 44 | #include "main.h" |
186c406b TT |
45 | #include "dictionary.h" |
46 | #include "block.h" | |
034dad6f | 47 | #include "mi/mi-common.h" |
4f8d22e3 | 48 | #include "event-top.h" |
96429cc8 | 49 | #include "record.h" |
d02ed0bb | 50 | #include "record-full.h" |
edb3359d | 51 | #include "inline-frame.h" |
4efc6507 | 52 | #include "jit.h" |
06cd862c | 53 | #include "tracepoint.h" |
be34f849 | 54 | #include "continuations.h" |
b4a14fd0 | 55 | #include "interps.h" |
1bfeeb0f | 56 | #include "skip.h" |
28106bc2 SDJ |
57 | #include "probe.h" |
58 | #include "objfiles.h" | |
de0bea00 | 59 | #include "completer.h" |
9107fc8d | 60 | #include "target-descriptions.h" |
f15cb84a | 61 | #include "target-dcache.h" |
d83ad864 | 62 | #include "terminal.h" |
ff862be4 | 63 | #include "solist.h" |
372316f1 | 64 | #include "event-loop.h" |
243a9253 | 65 | #include "thread-fsm.h" |
8d297bbf | 66 | #include "common/enum-flags.h" |
5ed8105e PA |
67 | #include "progspace-and-thread.h" |
68 | #include "common/gdb_optional.h" | |
46a62268 | 69 | #include "arch-utils.h" |
c906108c SS |
70 | |
71 | /* Prototypes for local functions */ | |
72 | ||
2ea28649 | 73 | static void sig_print_info (enum gdb_signal); |
c906108c | 74 | |
96baa820 | 75 | static void sig_print_header (void); |
c906108c | 76 | |
4ef3f3be | 77 | static int follow_fork (void); |
96baa820 | 78 | |
d83ad864 DB |
79 | static int follow_fork_inferior (int follow_child, int detach_fork); |
80 | ||
81 | static void follow_inferior_reset_breakpoints (void); | |
82 | ||
a289b8f6 JK |
83 | static int currently_stepping (struct thread_info *tp); |
84 | ||
e58b0e63 PA |
85 | void nullify_last_target_wait_ptid (void); |
86 | ||
2c03e5be | 87 | static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *); |
2484c66b UW |
88 | |
89 | static void insert_step_resume_breakpoint_at_caller (struct frame_info *); | |
90 | ||
2484c66b UW |
91 | static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR); |
92 | ||
8550d3b3 YQ |
93 | static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc); |
94 | ||
372316f1 PA |
95 | /* Asynchronous signal handler registered as event loop source for |
96 | when we have pending events ready to be passed to the core. */ | |
97 | static struct async_event_handler *infrun_async_inferior_event_token; | |
98 | ||
99 | /* Stores whether infrun_async was previously enabled or disabled. | |
100 | Starts off as -1, indicating "never enabled/disabled". */ | |
101 | static int infrun_is_async = -1; | |
102 | ||
103 | /* See infrun.h. */ | |
104 | ||
105 | void | |
106 | infrun_async (int enable) | |
107 | { | |
108 | if (infrun_is_async != enable) | |
109 | { | |
110 | infrun_is_async = enable; | |
111 | ||
112 | if (debug_infrun) | |
113 | fprintf_unfiltered (gdb_stdlog, | |
114 | "infrun: infrun_async(%d)\n", | |
115 | enable); | |
116 | ||
117 | if (enable) | |
118 | mark_async_event_handler (infrun_async_inferior_event_token); | |
119 | else | |
120 | clear_async_event_handler (infrun_async_inferior_event_token); | |
121 | } | |
122 | } | |
123 | ||
0b333c5e PA |
124 | /* See infrun.h. */ |
125 | ||
126 | void | |
127 | mark_infrun_async_event_handler (void) | |
128 | { | |
129 | mark_async_event_handler (infrun_async_inferior_event_token); | |
130 | } | |
131 | ||
5fbbeb29 CF |
132 | /* When set, stop the 'step' command if we enter a function which has |
133 | no line number information. The normal behavior is that we step | |
134 | over such function. */ | |
135 | int step_stop_if_no_debug = 0; | |
920d2a44 AC |
136 | static void |
137 | show_step_stop_if_no_debug (struct ui_file *file, int from_tty, | |
138 | struct cmd_list_element *c, const char *value) | |
139 | { | |
140 | fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value); | |
141 | } | |
5fbbeb29 | 142 | |
b9f437de PA |
143 | /* proceed and normal_stop use this to notify the user when the |
144 | inferior stopped in a different thread than it had been running | |
145 | in. */ | |
96baa820 | 146 | |
39f77062 | 147 | static ptid_t previous_inferior_ptid; |
7a292a7a | 148 | |
07107ca6 LM |
149 | /* If set (default for legacy reasons), when following a fork, GDB |
150 | will detach from one of the fork branches, child or parent. | |
151 | Exactly which branch is detached depends on 'set follow-fork-mode' | |
152 | setting. */ | |
153 | ||
154 | static int detach_fork = 1; | |
6c95b8df | 155 | |
237fc4c9 PA |
156 | int debug_displaced = 0; |
157 | static void | |
158 | show_debug_displaced (struct ui_file *file, int from_tty, | |
159 | struct cmd_list_element *c, const char *value) | |
160 | { | |
161 | fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value); | |
162 | } | |
163 | ||
ccce17b0 | 164 | unsigned int debug_infrun = 0; |
920d2a44 AC |
165 | static void |
166 | show_debug_infrun (struct ui_file *file, int from_tty, | |
167 | struct cmd_list_element *c, const char *value) | |
168 | { | |
169 | fprintf_filtered (file, _("Inferior debugging is %s.\n"), value); | |
170 | } | |
527159b7 | 171 | |
03583c20 UW |
172 | |
173 | /* Support for disabling address space randomization. */ | |
174 | ||
175 | int disable_randomization = 1; | |
176 | ||
177 | static void | |
178 | show_disable_randomization (struct ui_file *file, int from_tty, | |
179 | struct cmd_list_element *c, const char *value) | |
180 | { | |
181 | if (target_supports_disable_randomization ()) | |
182 | fprintf_filtered (file, | |
183 | _("Disabling randomization of debuggee's " | |
184 | "virtual address space is %s.\n"), | |
185 | value); | |
186 | else | |
187 | fputs_filtered (_("Disabling randomization of debuggee's " | |
188 | "virtual address space is unsupported on\n" | |
189 | "this platform.\n"), file); | |
190 | } | |
191 | ||
192 | static void | |
eb4c3f4a | 193 | set_disable_randomization (const char *args, int from_tty, |
03583c20 UW |
194 | struct cmd_list_element *c) |
195 | { | |
196 | if (!target_supports_disable_randomization ()) | |
197 | error (_("Disabling randomization of debuggee's " | |
198 | "virtual address space is unsupported on\n" | |
199 | "this platform.")); | |
200 | } | |
201 | ||
d32dc48e PA |
202 | /* User interface for non-stop mode. */ |
203 | ||
204 | int non_stop = 0; | |
205 | static int non_stop_1 = 0; | |
206 | ||
207 | static void | |
eb4c3f4a | 208 | set_non_stop (const char *args, int from_tty, |
d32dc48e PA |
209 | struct cmd_list_element *c) |
210 | { | |
211 | if (target_has_execution) | |
212 | { | |
213 | non_stop_1 = non_stop; | |
214 | error (_("Cannot change this setting while the inferior is running.")); | |
215 | } | |
216 | ||
217 | non_stop = non_stop_1; | |
218 | } | |
219 | ||
220 | static void | |
221 | show_non_stop (struct ui_file *file, int from_tty, | |
222 | struct cmd_list_element *c, const char *value) | |
223 | { | |
224 | fprintf_filtered (file, | |
225 | _("Controlling the inferior in non-stop mode is %s.\n"), | |
226 | value); | |
227 | } | |
228 | ||
d914c394 SS |
229 | /* "Observer mode" is somewhat like a more extreme version of |
230 | non-stop, in which all GDB operations that might affect the | |
231 | target's execution have been disabled. */ | |
232 | ||
d914c394 SS |
233 | int observer_mode = 0; |
234 | static int observer_mode_1 = 0; | |
235 | ||
236 | static void | |
eb4c3f4a | 237 | set_observer_mode (const char *args, int from_tty, |
d914c394 SS |
238 | struct cmd_list_element *c) |
239 | { | |
d914c394 SS |
240 | if (target_has_execution) |
241 | { | |
242 | observer_mode_1 = observer_mode; | |
243 | error (_("Cannot change this setting while the inferior is running.")); | |
244 | } | |
245 | ||
246 | observer_mode = observer_mode_1; | |
247 | ||
248 | may_write_registers = !observer_mode; | |
249 | may_write_memory = !observer_mode; | |
250 | may_insert_breakpoints = !observer_mode; | |
251 | may_insert_tracepoints = !observer_mode; | |
252 | /* We can insert fast tracepoints in or out of observer mode, | |
253 | but enable them if we're going into this mode. */ | |
254 | if (observer_mode) | |
255 | may_insert_fast_tracepoints = 1; | |
256 | may_stop = !observer_mode; | |
257 | update_target_permissions (); | |
258 | ||
259 | /* Going *into* observer mode we must force non-stop, then | |
260 | going out we leave it that way. */ | |
261 | if (observer_mode) | |
262 | { | |
d914c394 SS |
263 | pagination_enabled = 0; |
264 | non_stop = non_stop_1 = 1; | |
265 | } | |
266 | ||
267 | if (from_tty) | |
268 | printf_filtered (_("Observer mode is now %s.\n"), | |
269 | (observer_mode ? "on" : "off")); | |
270 | } | |
271 | ||
272 | static void | |
273 | show_observer_mode (struct ui_file *file, int from_tty, | |
274 | struct cmd_list_element *c, const char *value) | |
275 | { | |
276 | fprintf_filtered (file, _("Observer mode is %s.\n"), value); | |
277 | } | |
278 | ||
279 | /* This updates the value of observer mode based on changes in | |
280 | permissions. Note that we are deliberately ignoring the values of | |
281 | may-write-registers and may-write-memory, since the user may have | |
282 | reason to enable these during a session, for instance to turn on a | |
283 | debugging-related global. */ | |
284 | ||
285 | void | |
286 | update_observer_mode (void) | |
287 | { | |
288 | int newval; | |
289 | ||
290 | newval = (!may_insert_breakpoints | |
291 | && !may_insert_tracepoints | |
292 | && may_insert_fast_tracepoints | |
293 | && !may_stop | |
294 | && non_stop); | |
295 | ||
296 | /* Let the user know if things change. */ | |
297 | if (newval != observer_mode) | |
298 | printf_filtered (_("Observer mode is now %s.\n"), | |
299 | (newval ? "on" : "off")); | |
300 | ||
301 | observer_mode = observer_mode_1 = newval; | |
302 | } | |
c2c6d25f | 303 | |
c906108c SS |
304 | /* Tables of how to react to signals; the user sets them. */ |
305 | ||
306 | static unsigned char *signal_stop; | |
307 | static unsigned char *signal_print; | |
308 | static unsigned char *signal_program; | |
309 | ||
ab04a2af TT |
310 | /* Table of signals that are registered with "catch signal". A |
311 | non-zero entry indicates that the signal is caught by some "catch | |
312 | signal" command. This has size GDB_SIGNAL_LAST, to accommodate all | |
313 | signals. */ | |
314 | static unsigned char *signal_catch; | |
315 | ||
2455069d UW |
316 | /* Table of signals that the target may silently handle. |
317 | This is automatically determined from the flags above, | |
318 | and simply cached here. */ | |
319 | static unsigned char *signal_pass; | |
320 | ||
c906108c SS |
321 | #define SET_SIGS(nsigs,sigs,flags) \ |
322 | do { \ | |
323 | int signum = (nsigs); \ | |
324 | while (signum-- > 0) \ | |
325 | if ((sigs)[signum]) \ | |
326 | (flags)[signum] = 1; \ | |
327 | } while (0) | |
328 | ||
329 | #define UNSET_SIGS(nsigs,sigs,flags) \ | |
330 | do { \ | |
331 | int signum = (nsigs); \ | |
332 | while (signum-- > 0) \ | |
333 | if ((sigs)[signum]) \ | |
334 | (flags)[signum] = 0; \ | |
335 | } while (0) | |
336 | ||
9b224c5e PA |
337 | /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of |
338 | this function is to avoid exporting `signal_program'. */ | |
339 | ||
340 | void | |
341 | update_signals_program_target (void) | |
342 | { | |
a493e3e2 | 343 | target_program_signals ((int) GDB_SIGNAL_LAST, signal_program); |
9b224c5e PA |
344 | } |
345 | ||
1777feb0 | 346 | /* Value to pass to target_resume() to cause all threads to resume. */ |
39f77062 | 347 | |
edb3359d | 348 | #define RESUME_ALL minus_one_ptid |
c906108c SS |
349 | |
350 | /* Command list pointer for the "stop" placeholder. */ | |
351 | ||
352 | static struct cmd_list_element *stop_command; | |
353 | ||
c906108c SS |
354 | /* Nonzero if we want to give control to the user when we're notified |
355 | of shared library events by the dynamic linker. */ | |
628fe4e4 | 356 | int stop_on_solib_events; |
f9e14852 GB |
357 | |
358 | /* Enable or disable optional shared library event breakpoints | |
359 | as appropriate when the above flag is changed. */ | |
360 | ||
361 | static void | |
eb4c3f4a TT |
362 | set_stop_on_solib_events (const char *args, |
363 | int from_tty, struct cmd_list_element *c) | |
f9e14852 GB |
364 | { |
365 | update_solib_breakpoints (); | |
366 | } | |
367 | ||
920d2a44 AC |
368 | static void |
369 | show_stop_on_solib_events (struct ui_file *file, int from_tty, | |
370 | struct cmd_list_element *c, const char *value) | |
371 | { | |
372 | fprintf_filtered (file, _("Stopping for shared library events is %s.\n"), | |
373 | value); | |
374 | } | |
c906108c | 375 | |
c906108c SS |
376 | /* Nonzero after stop if current stack frame should be printed. */ |
377 | ||
378 | static int stop_print_frame; | |
379 | ||
e02bc4cc | 380 | /* This is a cached copy of the pid/waitstatus of the last event |
9a4105ab AC |
381 | returned by target_wait()/deprecated_target_wait_hook(). This |
382 | information is returned by get_last_target_status(). */ | |
39f77062 | 383 | static ptid_t target_last_wait_ptid; |
e02bc4cc DS |
384 | static struct target_waitstatus target_last_waitstatus; |
385 | ||
0d1e5fa7 PA |
386 | static void context_switch (ptid_t ptid); |
387 | ||
4e1c45ea | 388 | void init_thread_stepping_state (struct thread_info *tss); |
0d1e5fa7 | 389 | |
53904c9e AC |
390 | static const char follow_fork_mode_child[] = "child"; |
391 | static const char follow_fork_mode_parent[] = "parent"; | |
392 | ||
40478521 | 393 | static const char *const follow_fork_mode_kind_names[] = { |
53904c9e AC |
394 | follow_fork_mode_child, |
395 | follow_fork_mode_parent, | |
396 | NULL | |
ef346e04 | 397 | }; |
c906108c | 398 | |
53904c9e | 399 | static const char *follow_fork_mode_string = follow_fork_mode_parent; |
920d2a44 AC |
400 | static void |
401 | show_follow_fork_mode_string (struct ui_file *file, int from_tty, | |
402 | struct cmd_list_element *c, const char *value) | |
403 | { | |
3e43a32a MS |
404 | fprintf_filtered (file, |
405 | _("Debugger response to a program " | |
406 | "call of fork or vfork is \"%s\".\n"), | |
920d2a44 AC |
407 | value); |
408 | } | |
c906108c SS |
409 | \f |
410 | ||
d83ad864 DB |
411 | /* Handle changes to the inferior list based on the type of fork, |
412 | which process is being followed, and whether the other process | |
413 | should be detached. On entry inferior_ptid must be the ptid of | |
414 | the fork parent. At return inferior_ptid is the ptid of the | |
415 | followed inferior. */ | |
416 | ||
417 | static int | |
418 | follow_fork_inferior (int follow_child, int detach_fork) | |
419 | { | |
420 | int has_vforked; | |
79639e11 | 421 | ptid_t parent_ptid, child_ptid; |
d83ad864 DB |
422 | |
423 | has_vforked = (inferior_thread ()->pending_follow.kind | |
424 | == TARGET_WAITKIND_VFORKED); | |
79639e11 PA |
425 | parent_ptid = inferior_ptid; |
426 | child_ptid = inferior_thread ()->pending_follow.value.related_pid; | |
d83ad864 DB |
427 | |
428 | if (has_vforked | |
429 | && !non_stop /* Non-stop always resumes both branches. */ | |
3b12939d | 430 | && current_ui->prompt_state == PROMPT_BLOCKED |
d83ad864 DB |
431 | && !(follow_child || detach_fork || sched_multi)) |
432 | { | |
433 | /* The parent stays blocked inside the vfork syscall until the | |
434 | child execs or exits. If we don't let the child run, then | |
435 | the parent stays blocked. If we're telling the parent to run | |
436 | in the foreground, the user will not be able to ctrl-c to get | |
437 | back the terminal, effectively hanging the debug session. */ | |
438 | fprintf_filtered (gdb_stderr, _("\ | |
439 | Can not resume the parent process over vfork in the foreground while\n\ | |
440 | holding the child stopped. Try \"set detach-on-fork\" or \ | |
441 | \"set schedule-multiple\".\n")); | |
442 | /* FIXME output string > 80 columns. */ | |
443 | return 1; | |
444 | } | |
445 | ||
446 | if (!follow_child) | |
447 | { | |
448 | /* Detach new forked process? */ | |
449 | if (detach_fork) | |
450 | { | |
d83ad864 DB |
451 | /* Before detaching from the child, remove all breakpoints |
452 | from it. If we forked, then this has already been taken | |
453 | care of by infrun.c. If we vforked however, any | |
454 | breakpoint inserted in the parent is visible in the | |
455 | child, even those added while stopped in a vfork | |
456 | catchpoint. This will remove the breakpoints from the | |
457 | parent also, but they'll be reinserted below. */ | |
458 | if (has_vforked) | |
459 | { | |
460 | /* Keep breakpoints list in sync. */ | |
461 | remove_breakpoints_pid (ptid_get_pid (inferior_ptid)); | |
462 | } | |
463 | ||
464 | if (info_verbose || debug_infrun) | |
465 | { | |
8dd06f7a DB |
466 | /* Ensure that we have a process ptid. */ |
467 | ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid)); | |
468 | ||
223ffa71 | 469 | target_terminal::ours_for_output (); |
d83ad864 | 470 | fprintf_filtered (gdb_stdlog, |
79639e11 | 471 | _("Detaching after %s from child %s.\n"), |
6f259a23 | 472 | has_vforked ? "vfork" : "fork", |
8dd06f7a | 473 | target_pid_to_str (process_ptid)); |
d83ad864 DB |
474 | } |
475 | } | |
476 | else | |
477 | { | |
478 | struct inferior *parent_inf, *child_inf; | |
d83ad864 DB |
479 | |
480 | /* Add process to GDB's tables. */ | |
79639e11 | 481 | child_inf = add_inferior (ptid_get_pid (child_ptid)); |
d83ad864 DB |
482 | |
483 | parent_inf = current_inferior (); | |
484 | child_inf->attach_flag = parent_inf->attach_flag; | |
485 | copy_terminal_info (child_inf, parent_inf); | |
486 | child_inf->gdbarch = parent_inf->gdbarch; | |
487 | copy_inferior_target_desc_info (child_inf, parent_inf); | |
488 | ||
5ed8105e | 489 | scoped_restore_current_pspace_and_thread restore_pspace_thread; |
d83ad864 | 490 | |
79639e11 | 491 | inferior_ptid = child_ptid; |
d83ad864 | 492 | add_thread (inferior_ptid); |
2a00d7ce | 493 | set_current_inferior (child_inf); |
d83ad864 DB |
494 | child_inf->symfile_flags = SYMFILE_NO_READ; |
495 | ||
496 | /* If this is a vfork child, then the address-space is | |
497 | shared with the parent. */ | |
498 | if (has_vforked) | |
499 | { | |
500 | child_inf->pspace = parent_inf->pspace; | |
501 | child_inf->aspace = parent_inf->aspace; | |
502 | ||
503 | /* The parent will be frozen until the child is done | |
504 | with the shared region. Keep track of the | |
505 | parent. */ | |
506 | child_inf->vfork_parent = parent_inf; | |
507 | child_inf->pending_detach = 0; | |
508 | parent_inf->vfork_child = child_inf; | |
509 | parent_inf->pending_detach = 0; | |
510 | } | |
511 | else | |
512 | { | |
513 | child_inf->aspace = new_address_space (); | |
514 | child_inf->pspace = add_program_space (child_inf->aspace); | |
515 | child_inf->removable = 1; | |
516 | set_current_program_space (child_inf->pspace); | |
517 | clone_program_space (child_inf->pspace, parent_inf->pspace); | |
518 | ||
519 | /* Let the shared library layer (e.g., solib-svr4) learn | |
520 | about this new process, relocate the cloned exec, pull | |
521 | in shared libraries, and install the solib event | |
522 | breakpoint. If a "cloned-VM" event was propagated | |
523 | better throughout the core, this wouldn't be | |
524 | required. */ | |
525 | solib_create_inferior_hook (0); | |
526 | } | |
d83ad864 DB |
527 | } |
528 | ||
529 | if (has_vforked) | |
530 | { | |
531 | struct inferior *parent_inf; | |
532 | ||
533 | parent_inf = current_inferior (); | |
534 | ||
535 | /* If we detached from the child, then we have to be careful | |
536 | to not insert breakpoints in the parent until the child | |
537 | is done with the shared memory region. However, if we're | |
538 | staying attached to the child, then we can and should | |
539 | insert breakpoints, so that we can debug it. A | |
540 | subsequent child exec or exit is enough to know when does | |
541 | the child stops using the parent's address space. */ | |
542 | parent_inf->waiting_for_vfork_done = detach_fork; | |
543 | parent_inf->pspace->breakpoints_not_allowed = detach_fork; | |
544 | } | |
545 | } | |
546 | else | |
547 | { | |
548 | /* Follow the child. */ | |
549 | struct inferior *parent_inf, *child_inf; | |
550 | struct program_space *parent_pspace; | |
551 | ||
552 | if (info_verbose || debug_infrun) | |
553 | { | |
223ffa71 | 554 | target_terminal::ours_for_output (); |
6f259a23 | 555 | fprintf_filtered (gdb_stdlog, |
79639e11 PA |
556 | _("Attaching after %s %s to child %s.\n"), |
557 | target_pid_to_str (parent_ptid), | |
6f259a23 | 558 | has_vforked ? "vfork" : "fork", |
79639e11 | 559 | target_pid_to_str (child_ptid)); |
d83ad864 DB |
560 | } |
561 | ||
562 | /* Add the new inferior first, so that the target_detach below | |
563 | doesn't unpush the target. */ | |
564 | ||
79639e11 | 565 | child_inf = add_inferior (ptid_get_pid (child_ptid)); |
d83ad864 DB |
566 | |
567 | parent_inf = current_inferior (); | |
568 | child_inf->attach_flag = parent_inf->attach_flag; | |
569 | copy_terminal_info (child_inf, parent_inf); | |
570 | child_inf->gdbarch = parent_inf->gdbarch; | |
571 | copy_inferior_target_desc_info (child_inf, parent_inf); | |
572 | ||
573 | parent_pspace = parent_inf->pspace; | |
574 | ||
575 | /* If we're vforking, we want to hold on to the parent until the | |
576 | child exits or execs. At child exec or exit time we can | |
577 | remove the old breakpoints from the parent and detach or | |
578 | resume debugging it. Otherwise, detach the parent now; we'll | |
579 | want to reuse it's program/address spaces, but we can't set | |
580 | them to the child before removing breakpoints from the | |
581 | parent, otherwise, the breakpoints module could decide to | |
582 | remove breakpoints from the wrong process (since they'd be | |
583 | assigned to the same address space). */ | |
584 | ||
585 | if (has_vforked) | |
586 | { | |
587 | gdb_assert (child_inf->vfork_parent == NULL); | |
588 | gdb_assert (parent_inf->vfork_child == NULL); | |
589 | child_inf->vfork_parent = parent_inf; | |
590 | child_inf->pending_detach = 0; | |
591 | parent_inf->vfork_child = child_inf; | |
592 | parent_inf->pending_detach = detach_fork; | |
593 | parent_inf->waiting_for_vfork_done = 0; | |
594 | } | |
595 | else if (detach_fork) | |
6f259a23 DB |
596 | { |
597 | if (info_verbose || debug_infrun) | |
598 | { | |
8dd06f7a DB |
599 | /* Ensure that we have a process ptid. */ |
600 | ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid)); | |
601 | ||
223ffa71 | 602 | target_terminal::ours_for_output (); |
6f259a23 DB |
603 | fprintf_filtered (gdb_stdlog, |
604 | _("Detaching after fork from " | |
79639e11 | 605 | "child %s.\n"), |
8dd06f7a | 606 | target_pid_to_str (process_ptid)); |
6f259a23 DB |
607 | } |
608 | ||
609 | target_detach (NULL, 0); | |
610 | } | |
d83ad864 DB |
611 | |
612 | /* Note that the detach above makes PARENT_INF dangling. */ | |
613 | ||
614 | /* Add the child thread to the appropriate lists, and switch to | |
615 | this new thread, before cloning the program space, and | |
616 | informing the solib layer about this new process. */ | |
617 | ||
79639e11 | 618 | inferior_ptid = child_ptid; |
d83ad864 | 619 | add_thread (inferior_ptid); |
2a00d7ce | 620 | set_current_inferior (child_inf); |
d83ad864 DB |
621 | |
622 | /* If this is a vfork child, then the address-space is shared | |
623 | with the parent. If we detached from the parent, then we can | |
624 | reuse the parent's program/address spaces. */ | |
625 | if (has_vforked || detach_fork) | |
626 | { | |
627 | child_inf->pspace = parent_pspace; | |
628 | child_inf->aspace = child_inf->pspace->aspace; | |
629 | } | |
630 | else | |
631 | { | |
632 | child_inf->aspace = new_address_space (); | |
633 | child_inf->pspace = add_program_space (child_inf->aspace); | |
634 | child_inf->removable = 1; | |
635 | child_inf->symfile_flags = SYMFILE_NO_READ; | |
636 | set_current_program_space (child_inf->pspace); | |
637 | clone_program_space (child_inf->pspace, parent_pspace); | |
638 | ||
639 | /* Let the shared library layer (e.g., solib-svr4) learn | |
640 | about this new process, relocate the cloned exec, pull in | |
641 | shared libraries, and install the solib event breakpoint. | |
642 | If a "cloned-VM" event was propagated better throughout | |
643 | the core, this wouldn't be required. */ | |
644 | solib_create_inferior_hook (0); | |
645 | } | |
646 | } | |
647 | ||
648 | return target_follow_fork (follow_child, detach_fork); | |
649 | } | |
650 | ||
e58b0e63 PA |
651 | /* Tell the target to follow the fork we're stopped at. Returns true |
652 | if the inferior should be resumed; false, if the target for some | |
653 | reason decided it's best not to resume. */ | |
654 | ||
6604731b | 655 | static int |
4ef3f3be | 656 | follow_fork (void) |
c906108c | 657 | { |
ea1dd7bc | 658 | int follow_child = (follow_fork_mode_string == follow_fork_mode_child); |
e58b0e63 PA |
659 | int should_resume = 1; |
660 | struct thread_info *tp; | |
661 | ||
662 | /* Copy user stepping state to the new inferior thread. FIXME: the | |
663 | followed fork child thread should have a copy of most of the | |
4e3990f4 DE |
664 | parent thread structure's run control related fields, not just these. |
665 | Initialized to avoid "may be used uninitialized" warnings from gcc. */ | |
666 | struct breakpoint *step_resume_breakpoint = NULL; | |
186c406b | 667 | struct breakpoint *exception_resume_breakpoint = NULL; |
4e3990f4 DE |
668 | CORE_ADDR step_range_start = 0; |
669 | CORE_ADDR step_range_end = 0; | |
670 | struct frame_id step_frame_id = { 0 }; | |
8980e177 | 671 | struct thread_fsm *thread_fsm = NULL; |
e58b0e63 PA |
672 | |
673 | if (!non_stop) | |
674 | { | |
675 | ptid_t wait_ptid; | |
676 | struct target_waitstatus wait_status; | |
677 | ||
678 | /* Get the last target status returned by target_wait(). */ | |
679 | get_last_target_status (&wait_ptid, &wait_status); | |
680 | ||
681 | /* If not stopped at a fork event, then there's nothing else to | |
682 | do. */ | |
683 | if (wait_status.kind != TARGET_WAITKIND_FORKED | |
684 | && wait_status.kind != TARGET_WAITKIND_VFORKED) | |
685 | return 1; | |
686 | ||
687 | /* Check if we switched over from WAIT_PTID, since the event was | |
688 | reported. */ | |
689 | if (!ptid_equal (wait_ptid, minus_one_ptid) | |
690 | && !ptid_equal (inferior_ptid, wait_ptid)) | |
691 | { | |
692 | /* We did. Switch back to WAIT_PTID thread, to tell the | |
693 | target to follow it (in either direction). We'll | |
694 | afterwards refuse to resume, and inform the user what | |
695 | happened. */ | |
696 | switch_to_thread (wait_ptid); | |
697 | should_resume = 0; | |
698 | } | |
699 | } | |
700 | ||
701 | tp = inferior_thread (); | |
702 | ||
703 | /* If there were any forks/vforks that were caught and are now to be | |
704 | followed, then do so now. */ | |
705 | switch (tp->pending_follow.kind) | |
706 | { | |
707 | case TARGET_WAITKIND_FORKED: | |
708 | case TARGET_WAITKIND_VFORKED: | |
709 | { | |
710 | ptid_t parent, child; | |
711 | ||
712 | /* If the user did a next/step, etc, over a fork call, | |
713 | preserve the stepping state in the fork child. */ | |
714 | if (follow_child && should_resume) | |
715 | { | |
8358c15c JK |
716 | step_resume_breakpoint = clone_momentary_breakpoint |
717 | (tp->control.step_resume_breakpoint); | |
16c381f0 JK |
718 | step_range_start = tp->control.step_range_start; |
719 | step_range_end = tp->control.step_range_end; | |
720 | step_frame_id = tp->control.step_frame_id; | |
186c406b TT |
721 | exception_resume_breakpoint |
722 | = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint); | |
8980e177 | 723 | thread_fsm = tp->thread_fsm; |
e58b0e63 PA |
724 | |
725 | /* For now, delete the parent's sr breakpoint, otherwise, | |
726 | parent/child sr breakpoints are considered duplicates, | |
727 | and the child version will not be installed. Remove | |
728 | this when the breakpoints module becomes aware of | |
729 | inferiors and address spaces. */ | |
730 | delete_step_resume_breakpoint (tp); | |
16c381f0 JK |
731 | tp->control.step_range_start = 0; |
732 | tp->control.step_range_end = 0; | |
733 | tp->control.step_frame_id = null_frame_id; | |
186c406b | 734 | delete_exception_resume_breakpoint (tp); |
8980e177 | 735 | tp->thread_fsm = NULL; |
e58b0e63 PA |
736 | } |
737 | ||
738 | parent = inferior_ptid; | |
739 | child = tp->pending_follow.value.related_pid; | |
740 | ||
d83ad864 DB |
741 | /* Set up inferior(s) as specified by the caller, and tell the |
742 | target to do whatever is necessary to follow either parent | |
743 | or child. */ | |
744 | if (follow_fork_inferior (follow_child, detach_fork)) | |
e58b0e63 PA |
745 | { |
746 | /* Target refused to follow, or there's some other reason | |
747 | we shouldn't resume. */ | |
748 | should_resume = 0; | |
749 | } | |
750 | else | |
751 | { | |
752 | /* This pending follow fork event is now handled, one way | |
753 | or another. The previous selected thread may be gone | |
754 | from the lists by now, but if it is still around, need | |
755 | to clear the pending follow request. */ | |
e09875d4 | 756 | tp = find_thread_ptid (parent); |
e58b0e63 PA |
757 | if (tp) |
758 | tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS; | |
759 | ||
760 | /* This makes sure we don't try to apply the "Switched | |
761 | over from WAIT_PID" logic above. */ | |
762 | nullify_last_target_wait_ptid (); | |
763 | ||
1777feb0 | 764 | /* If we followed the child, switch to it... */ |
e58b0e63 PA |
765 | if (follow_child) |
766 | { | |
767 | switch_to_thread (child); | |
768 | ||
769 | /* ... and preserve the stepping state, in case the | |
770 | user was stepping over the fork call. */ | |
771 | if (should_resume) | |
772 | { | |
773 | tp = inferior_thread (); | |
8358c15c JK |
774 | tp->control.step_resume_breakpoint |
775 | = step_resume_breakpoint; | |
16c381f0 JK |
776 | tp->control.step_range_start = step_range_start; |
777 | tp->control.step_range_end = step_range_end; | |
778 | tp->control.step_frame_id = step_frame_id; | |
186c406b TT |
779 | tp->control.exception_resume_breakpoint |
780 | = exception_resume_breakpoint; | |
8980e177 | 781 | tp->thread_fsm = thread_fsm; |
e58b0e63 PA |
782 | } |
783 | else | |
784 | { | |
785 | /* If we get here, it was because we're trying to | |
786 | resume from a fork catchpoint, but, the user | |
787 | has switched threads away from the thread that | |
788 | forked. In that case, the resume command | |
789 | issued is most likely not applicable to the | |
790 | child, so just warn, and refuse to resume. */ | |
3e43a32a | 791 | warning (_("Not resuming: switched threads " |
fd7dcb94 | 792 | "before following fork child.")); |
e58b0e63 PA |
793 | } |
794 | ||
795 | /* Reset breakpoints in the child as appropriate. */ | |
796 | follow_inferior_reset_breakpoints (); | |
797 | } | |
798 | else | |
799 | switch_to_thread (parent); | |
800 | } | |
801 | } | |
802 | break; | |
803 | case TARGET_WAITKIND_SPURIOUS: | |
804 | /* Nothing to follow. */ | |
805 | break; | |
806 | default: | |
807 | internal_error (__FILE__, __LINE__, | |
808 | "Unexpected pending_follow.kind %d\n", | |
809 | tp->pending_follow.kind); | |
810 | break; | |
811 | } | |
c906108c | 812 | |
e58b0e63 | 813 | return should_resume; |
c906108c SS |
814 | } |
815 | ||
d83ad864 | 816 | static void |
6604731b | 817 | follow_inferior_reset_breakpoints (void) |
c906108c | 818 | { |
4e1c45ea PA |
819 | struct thread_info *tp = inferior_thread (); |
820 | ||
6604731b DJ |
821 | /* Was there a step_resume breakpoint? (There was if the user |
822 | did a "next" at the fork() call.) If so, explicitly reset its | |
a1aa2221 LM |
823 | thread number. Cloned step_resume breakpoints are disabled on |
824 | creation, so enable it here now that it is associated with the | |
825 | correct thread. | |
6604731b DJ |
826 | |
827 | step_resumes are a form of bp that are made to be per-thread. | |
828 | Since we created the step_resume bp when the parent process | |
829 | was being debugged, and now are switching to the child process, | |
830 | from the breakpoint package's viewpoint, that's a switch of | |
831 | "threads". We must update the bp's notion of which thread | |
832 | it is for, or it'll be ignored when it triggers. */ | |
833 | ||
8358c15c | 834 | if (tp->control.step_resume_breakpoint) |
a1aa2221 LM |
835 | { |
836 | breakpoint_re_set_thread (tp->control.step_resume_breakpoint); | |
837 | tp->control.step_resume_breakpoint->loc->enabled = 1; | |
838 | } | |
6604731b | 839 | |
a1aa2221 | 840 | /* Treat exception_resume breakpoints like step_resume breakpoints. */ |
186c406b | 841 | if (tp->control.exception_resume_breakpoint) |
a1aa2221 LM |
842 | { |
843 | breakpoint_re_set_thread (tp->control.exception_resume_breakpoint); | |
844 | tp->control.exception_resume_breakpoint->loc->enabled = 1; | |
845 | } | |
186c406b | 846 | |
6604731b DJ |
847 | /* Reinsert all breakpoints in the child. The user may have set |
848 | breakpoints after catching the fork, in which case those | |
849 | were never set in the child, but only in the parent. This makes | |
850 | sure the inserted breakpoints match the breakpoint list. */ | |
851 | ||
852 | breakpoint_re_set (); | |
853 | insert_breakpoints (); | |
c906108c | 854 | } |
c906108c | 855 | |
6c95b8df PA |
856 | /* The child has exited or execed: resume threads of the parent the |
857 | user wanted to be executing. */ | |
858 | ||
859 | static int | |
860 | proceed_after_vfork_done (struct thread_info *thread, | |
861 | void *arg) | |
862 | { | |
863 | int pid = * (int *) arg; | |
864 | ||
865 | if (ptid_get_pid (thread->ptid) == pid | |
866 | && is_running (thread->ptid) | |
867 | && !is_executing (thread->ptid) | |
868 | && !thread->stop_requested | |
a493e3e2 | 869 | && thread->suspend.stop_signal == GDB_SIGNAL_0) |
6c95b8df PA |
870 | { |
871 | if (debug_infrun) | |
872 | fprintf_unfiltered (gdb_stdlog, | |
873 | "infrun: resuming vfork parent thread %s\n", | |
874 | target_pid_to_str (thread->ptid)); | |
875 | ||
876 | switch_to_thread (thread->ptid); | |
70509625 | 877 | clear_proceed_status (0); |
64ce06e4 | 878 | proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT); |
6c95b8df PA |
879 | } |
880 | ||
881 | return 0; | |
882 | } | |
883 | ||
5ed8105e PA |
884 | /* Save/restore inferior_ptid, current program space and current |
885 | inferior. Only use this if the current context points at an exited | |
886 | inferior (and therefore there's no current thread to save). */ | |
887 | class scoped_restore_exited_inferior | |
888 | { | |
889 | public: | |
890 | scoped_restore_exited_inferior () | |
891 | : m_saved_ptid (&inferior_ptid) | |
892 | {} | |
893 | ||
894 | private: | |
895 | scoped_restore_tmpl<ptid_t> m_saved_ptid; | |
896 | scoped_restore_current_program_space m_pspace; | |
897 | scoped_restore_current_inferior m_inferior; | |
898 | }; | |
899 | ||
6c95b8df PA |
900 | /* Called whenever we notice an exec or exit event, to handle |
901 | detaching or resuming a vfork parent. */ | |
902 | ||
903 | static void | |
904 | handle_vfork_child_exec_or_exit (int exec) | |
905 | { | |
906 | struct inferior *inf = current_inferior (); | |
907 | ||
908 | if (inf->vfork_parent) | |
909 | { | |
910 | int resume_parent = -1; | |
911 | ||
912 | /* This exec or exit marks the end of the shared memory region | |
913 | between the parent and the child. If the user wanted to | |
914 | detach from the parent, now is the time. */ | |
915 | ||
916 | if (inf->vfork_parent->pending_detach) | |
917 | { | |
918 | struct thread_info *tp; | |
6c95b8df PA |
919 | struct program_space *pspace; |
920 | struct address_space *aspace; | |
921 | ||
1777feb0 | 922 | /* follow-fork child, detach-on-fork on. */ |
6c95b8df | 923 | |
68c9da30 PA |
924 | inf->vfork_parent->pending_detach = 0; |
925 | ||
5ed8105e PA |
926 | gdb::optional<scoped_restore_exited_inferior> |
927 | maybe_restore_inferior; | |
928 | gdb::optional<scoped_restore_current_pspace_and_thread> | |
929 | maybe_restore_thread; | |
930 | ||
931 | /* If we're handling a child exit, then inferior_ptid points | |
932 | at the inferior's pid, not to a thread. */ | |
f50f4e56 | 933 | if (!exec) |
5ed8105e | 934 | maybe_restore_inferior.emplace (); |
f50f4e56 | 935 | else |
5ed8105e | 936 | maybe_restore_thread.emplace (); |
6c95b8df PA |
937 | |
938 | /* We're letting loose of the parent. */ | |
939 | tp = any_live_thread_of_process (inf->vfork_parent->pid); | |
940 | switch_to_thread (tp->ptid); | |
941 | ||
942 | /* We're about to detach from the parent, which implicitly | |
943 | removes breakpoints from its address space. There's a | |
944 | catch here: we want to reuse the spaces for the child, | |
945 | but, parent/child are still sharing the pspace at this | |
946 | point, although the exec in reality makes the kernel give | |
947 | the child a fresh set of new pages. The problem here is | |
948 | that the breakpoints module being unaware of this, would | |
949 | likely chose the child process to write to the parent | |
950 | address space. Swapping the child temporarily away from | |
951 | the spaces has the desired effect. Yes, this is "sort | |
952 | of" a hack. */ | |
953 | ||
954 | pspace = inf->pspace; | |
955 | aspace = inf->aspace; | |
956 | inf->aspace = NULL; | |
957 | inf->pspace = NULL; | |
958 | ||
959 | if (debug_infrun || info_verbose) | |
960 | { | |
223ffa71 | 961 | target_terminal::ours_for_output (); |
6c95b8df PA |
962 | |
963 | if (exec) | |
6f259a23 DB |
964 | { |
965 | fprintf_filtered (gdb_stdlog, | |
966 | _("Detaching vfork parent process " | |
967 | "%d after child exec.\n"), | |
968 | inf->vfork_parent->pid); | |
969 | } | |
6c95b8df | 970 | else |
6f259a23 DB |
971 | { |
972 | fprintf_filtered (gdb_stdlog, | |
973 | _("Detaching vfork parent process " | |
974 | "%d after child exit.\n"), | |
975 | inf->vfork_parent->pid); | |
976 | } | |
6c95b8df PA |
977 | } |
978 | ||
979 | target_detach (NULL, 0); | |
980 | ||
981 | /* Put it back. */ | |
982 | inf->pspace = pspace; | |
983 | inf->aspace = aspace; | |
6c95b8df PA |
984 | } |
985 | else if (exec) | |
986 | { | |
987 | /* We're staying attached to the parent, so, really give the | |
988 | child a new address space. */ | |
989 | inf->pspace = add_program_space (maybe_new_address_space ()); | |
990 | inf->aspace = inf->pspace->aspace; | |
991 | inf->removable = 1; | |
992 | set_current_program_space (inf->pspace); | |
993 | ||
994 | resume_parent = inf->vfork_parent->pid; | |
995 | ||
996 | /* Break the bonds. */ | |
997 | inf->vfork_parent->vfork_child = NULL; | |
998 | } | |
999 | else | |
1000 | { | |
6c95b8df PA |
1001 | struct program_space *pspace; |
1002 | ||
1003 | /* If this is a vfork child exiting, then the pspace and | |
1004 | aspaces were shared with the parent. Since we're | |
1005 | reporting the process exit, we'll be mourning all that is | |
1006 | found in the address space, and switching to null_ptid, | |
1007 | preparing to start a new inferior. But, since we don't | |
1008 | want to clobber the parent's address/program spaces, we | |
1009 | go ahead and create a new one for this exiting | |
1010 | inferior. */ | |
1011 | ||
5ed8105e PA |
1012 | /* Switch to null_ptid while running clone_program_space, so |
1013 | that clone_program_space doesn't want to read the | |
1014 | selected frame of a dead process. */ | |
1015 | scoped_restore restore_ptid | |
1016 | = make_scoped_restore (&inferior_ptid, null_ptid); | |
6c95b8df PA |
1017 | |
1018 | /* This inferior is dead, so avoid giving the breakpoints | |
1019 | module the option to write through to it (cloning a | |
1020 | program space resets breakpoints). */ | |
1021 | inf->aspace = NULL; | |
1022 | inf->pspace = NULL; | |
1023 | pspace = add_program_space (maybe_new_address_space ()); | |
1024 | set_current_program_space (pspace); | |
1025 | inf->removable = 1; | |
7dcd53a0 | 1026 | inf->symfile_flags = SYMFILE_NO_READ; |
6c95b8df PA |
1027 | clone_program_space (pspace, inf->vfork_parent->pspace); |
1028 | inf->pspace = pspace; | |
1029 | inf->aspace = pspace->aspace; | |
1030 | ||
6c95b8df PA |
1031 | resume_parent = inf->vfork_parent->pid; |
1032 | /* Break the bonds. */ | |
1033 | inf->vfork_parent->vfork_child = NULL; | |
1034 | } | |
1035 | ||
1036 | inf->vfork_parent = NULL; | |
1037 | ||
1038 | gdb_assert (current_program_space == inf->pspace); | |
1039 | ||
1040 | if (non_stop && resume_parent != -1) | |
1041 | { | |
1042 | /* If the user wanted the parent to be running, let it go | |
1043 | free now. */ | |
5ed8105e | 1044 | scoped_restore_current_thread restore_thread; |
6c95b8df PA |
1045 | |
1046 | if (debug_infrun) | |
3e43a32a MS |
1047 | fprintf_unfiltered (gdb_stdlog, |
1048 | "infrun: resuming vfork parent process %d\n", | |
6c95b8df PA |
1049 | resume_parent); |
1050 | ||
1051 | iterate_over_threads (proceed_after_vfork_done, &resume_parent); | |
6c95b8df PA |
1052 | } |
1053 | } | |
1054 | } | |
1055 | ||
eb6c553b | 1056 | /* Enum strings for "set|show follow-exec-mode". */ |
6c95b8df PA |
1057 | |
1058 | static const char follow_exec_mode_new[] = "new"; | |
1059 | static const char follow_exec_mode_same[] = "same"; | |
40478521 | 1060 | static const char *const follow_exec_mode_names[] = |
6c95b8df PA |
1061 | { |
1062 | follow_exec_mode_new, | |
1063 | follow_exec_mode_same, | |
1064 | NULL, | |
1065 | }; | |
1066 | ||
1067 | static const char *follow_exec_mode_string = follow_exec_mode_same; | |
1068 | static void | |
1069 | show_follow_exec_mode_string (struct ui_file *file, int from_tty, | |
1070 | struct cmd_list_element *c, const char *value) | |
1071 | { | |
1072 | fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value); | |
1073 | } | |
1074 | ||
ecf45d2c | 1075 | /* EXEC_FILE_TARGET is assumed to be non-NULL. */ |
1adeb98a | 1076 | |
c906108c | 1077 | static void |
ecf45d2c | 1078 | follow_exec (ptid_t ptid, char *exec_file_target) |
c906108c | 1079 | { |
95e50b27 | 1080 | struct thread_info *th, *tmp; |
6c95b8df | 1081 | struct inferior *inf = current_inferior (); |
95e50b27 | 1082 | int pid = ptid_get_pid (ptid); |
94585166 | 1083 | ptid_t process_ptid; |
ecf45d2c SL |
1084 | char *exec_file_host; |
1085 | struct cleanup *old_chain; | |
7a292a7a | 1086 | |
c906108c SS |
1087 | /* This is an exec event that we actually wish to pay attention to. |
1088 | Refresh our symbol table to the newly exec'd program, remove any | |
1089 | momentary bp's, etc. | |
1090 | ||
1091 | If there are breakpoints, they aren't really inserted now, | |
1092 | since the exec() transformed our inferior into a fresh set | |
1093 | of instructions. | |
1094 | ||
1095 | We want to preserve symbolic breakpoints on the list, since | |
1096 | we have hopes that they can be reset after the new a.out's | |
1097 | symbol table is read. | |
1098 | ||
1099 | However, any "raw" breakpoints must be removed from the list | |
1100 | (e.g., the solib bp's), since their address is probably invalid | |
1101 | now. | |
1102 | ||
1103 | And, we DON'T want to call delete_breakpoints() here, since | |
1104 | that may write the bp's "shadow contents" (the instruction | |
1105 | value that was overwritten witha TRAP instruction). Since | |
1777feb0 | 1106 | we now have a new a.out, those shadow contents aren't valid. */ |
6c95b8df PA |
1107 | |
1108 | mark_breakpoints_out (); | |
1109 | ||
95e50b27 PA |
1110 | /* The target reports the exec event to the main thread, even if |
1111 | some other thread does the exec, and even if the main thread was | |
1112 | stopped or already gone. We may still have non-leader threads of | |
1113 | the process on our list. E.g., on targets that don't have thread | |
1114 | exit events (like remote); or on native Linux in non-stop mode if | |
1115 | there were only two threads in the inferior and the non-leader | |
1116 | one is the one that execs (and nothing forces an update of the | |
1117 | thread list up to here). When debugging remotely, it's best to | |
1118 | avoid extra traffic, when possible, so avoid syncing the thread | |
1119 | list with the target, and instead go ahead and delete all threads | |
1120 | of the process but one that reported the event. Note this must | |
1121 | be done before calling update_breakpoints_after_exec, as | |
1122 | otherwise clearing the threads' resources would reference stale | |
1123 | thread breakpoints -- it may have been one of these threads that | |
1124 | stepped across the exec. We could just clear their stepping | |
1125 | states, but as long as we're iterating, might as well delete | |
1126 | them. Deleting them now rather than at the next user-visible | |
1127 | stop provides a nicer sequence of events for user and MI | |
1128 | notifications. */ | |
8a06aea7 | 1129 | ALL_THREADS_SAFE (th, tmp) |
95e50b27 PA |
1130 | if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid)) |
1131 | delete_thread (th->ptid); | |
1132 | ||
1133 | /* We also need to clear any left over stale state for the | |
1134 | leader/event thread. E.g., if there was any step-resume | |
1135 | breakpoint or similar, it's gone now. We cannot truly | |
1136 | step-to-next statement through an exec(). */ | |
1137 | th = inferior_thread (); | |
8358c15c | 1138 | th->control.step_resume_breakpoint = NULL; |
186c406b | 1139 | th->control.exception_resume_breakpoint = NULL; |
34b7e8a6 | 1140 | th->control.single_step_breakpoints = NULL; |
16c381f0 JK |
1141 | th->control.step_range_start = 0; |
1142 | th->control.step_range_end = 0; | |
c906108c | 1143 | |
95e50b27 PA |
1144 | /* The user may have had the main thread held stopped in the |
1145 | previous image (e.g., schedlock on, or non-stop). Release | |
1146 | it now. */ | |
a75724bc PA |
1147 | th->stop_requested = 0; |
1148 | ||
95e50b27 PA |
1149 | update_breakpoints_after_exec (); |
1150 | ||
1777feb0 | 1151 | /* What is this a.out's name? */ |
94585166 | 1152 | process_ptid = pid_to_ptid (pid); |
6c95b8df | 1153 | printf_unfiltered (_("%s is executing new program: %s\n"), |
94585166 | 1154 | target_pid_to_str (process_ptid), |
ecf45d2c | 1155 | exec_file_target); |
c906108c SS |
1156 | |
1157 | /* We've followed the inferior through an exec. Therefore, the | |
1777feb0 | 1158 | inferior has essentially been killed & reborn. */ |
7a292a7a | 1159 | |
c906108c | 1160 | gdb_flush (gdb_stdout); |
6ca15a4b PA |
1161 | |
1162 | breakpoint_init_inferior (inf_execd); | |
e85a822c | 1163 | |
ecf45d2c SL |
1164 | exec_file_host = exec_file_find (exec_file_target, NULL); |
1165 | old_chain = make_cleanup (xfree, exec_file_host); | |
ff862be4 | 1166 | |
ecf45d2c SL |
1167 | /* If we were unable to map the executable target pathname onto a host |
1168 | pathname, tell the user that. Otherwise GDB's subsequent behavior | |
1169 | is confusing. Maybe it would even be better to stop at this point | |
1170 | so that the user can specify a file manually before continuing. */ | |
1171 | if (exec_file_host == NULL) | |
1172 | warning (_("Could not load symbols for executable %s.\n" | |
1173 | "Do you need \"set sysroot\"?"), | |
1174 | exec_file_target); | |
c906108c | 1175 | |
cce9b6bf PA |
1176 | /* Reset the shared library package. This ensures that we get a |
1177 | shlib event when the child reaches "_start", at which point the | |
1178 | dld will have had a chance to initialize the child. */ | |
1179 | /* Also, loading a symbol file below may trigger symbol lookups, and | |
1180 | we don't want those to be satisfied by the libraries of the | |
1181 | previous incarnation of this process. */ | |
1182 | no_shared_libraries (NULL, 0); | |
1183 | ||
6c95b8df PA |
1184 | if (follow_exec_mode_string == follow_exec_mode_new) |
1185 | { | |
6c95b8df PA |
1186 | /* The user wants to keep the old inferior and program spaces |
1187 | around. Create a new fresh one, and switch to it. */ | |
1188 | ||
17d8546e DB |
1189 | /* Do exit processing for the original inferior before adding |
1190 | the new inferior so we don't have two active inferiors with | |
1191 | the same ptid, which can confuse find_inferior_ptid. */ | |
1192 | exit_inferior_num_silent (current_inferior ()->num); | |
1193 | ||
94585166 DB |
1194 | inf = add_inferior_with_spaces (); |
1195 | inf->pid = pid; | |
ecf45d2c | 1196 | target_follow_exec (inf, exec_file_target); |
6c95b8df PA |
1197 | |
1198 | set_current_inferior (inf); | |
94585166 | 1199 | set_current_program_space (inf->pspace); |
6c95b8df | 1200 | } |
9107fc8d PA |
1201 | else |
1202 | { | |
1203 | /* The old description may no longer be fit for the new image. | |
1204 | E.g, a 64-bit process exec'ed a 32-bit process. Clear the | |
1205 | old description; we'll read a new one below. No need to do | |
1206 | this on "follow-exec-mode new", as the old inferior stays | |
1207 | around (its description is later cleared/refetched on | |
1208 | restart). */ | |
1209 | target_clear_description (); | |
1210 | } | |
6c95b8df PA |
1211 | |
1212 | gdb_assert (current_program_space == inf->pspace); | |
1213 | ||
ecf45d2c SL |
1214 | /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used |
1215 | because the proper displacement for a PIE (Position Independent | |
1216 | Executable) main symbol file will only be computed by | |
1217 | solib_create_inferior_hook below. breakpoint_re_set would fail | |
1218 | to insert the breakpoints with the zero displacement. */ | |
1219 | try_open_exec_file (exec_file_host, inf, SYMFILE_DEFER_BP_RESET); | |
c1e56572 | 1220 | |
ecf45d2c | 1221 | do_cleanups (old_chain); |
c906108c | 1222 | |
9107fc8d PA |
1223 | /* If the target can specify a description, read it. Must do this |
1224 | after flipping to the new executable (because the target supplied | |
1225 | description must be compatible with the executable's | |
1226 | architecture, and the old executable may e.g., be 32-bit, while | |
1227 | the new one 64-bit), and before anything involving memory or | |
1228 | registers. */ | |
1229 | target_find_description (); | |
1230 | ||
bf93d7ba SM |
1231 | /* The add_thread call ends up reading registers, so do it after updating the |
1232 | target description. */ | |
1233 | if (follow_exec_mode_string == follow_exec_mode_new) | |
1234 | add_thread (ptid); | |
1235 | ||
268a4a75 | 1236 | solib_create_inferior_hook (0); |
c906108c | 1237 | |
4efc6507 DE |
1238 | jit_inferior_created_hook (); |
1239 | ||
c1e56572 JK |
1240 | breakpoint_re_set (); |
1241 | ||
c906108c SS |
1242 | /* Reinsert all breakpoints. (Those which were symbolic have |
1243 | been reset to the proper address in the new a.out, thanks | |
1777feb0 | 1244 | to symbol_file_command...). */ |
c906108c SS |
1245 | insert_breakpoints (); |
1246 | ||
1247 | /* The next resume of this inferior should bring it to the shlib | |
1248 | startup breakpoints. (If the user had also set bp's on | |
1249 | "main" from the old (parent) process, then they'll auto- | |
1777feb0 | 1250 | matically get reset there in the new process.). */ |
c906108c SS |
1251 | } |
1252 | ||
c2829269 PA |
1253 | /* The queue of threads that need to do a step-over operation to get |
1254 | past e.g., a breakpoint. What technique is used to step over the | |
1255 | breakpoint/watchpoint does not matter -- all threads end up in the | |
1256 | same queue, to maintain rough temporal order of execution, in order | |
1257 | to avoid starvation, otherwise, we could e.g., find ourselves | |
1258 | constantly stepping the same couple threads past their breakpoints | |
1259 | over and over, if the single-step finish fast enough. */ | |
1260 | struct thread_info *step_over_queue_head; | |
1261 | ||
6c4cfb24 PA |
1262 | /* Bit flags indicating what the thread needs to step over. */ |
1263 | ||
8d297bbf | 1264 | enum step_over_what_flag |
6c4cfb24 PA |
1265 | { |
1266 | /* Step over a breakpoint. */ | |
1267 | STEP_OVER_BREAKPOINT = 1, | |
1268 | ||
1269 | /* Step past a non-continuable watchpoint, in order to let the | |
1270 | instruction execute so we can evaluate the watchpoint | |
1271 | expression. */ | |
1272 | STEP_OVER_WATCHPOINT = 2 | |
1273 | }; | |
8d297bbf | 1274 | DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what); |
6c4cfb24 | 1275 | |
963f9c80 | 1276 | /* Info about an instruction that is being stepped over. */ |
31e77af2 PA |
1277 | |
1278 | struct step_over_info | |
1279 | { | |
963f9c80 PA |
1280 | /* If we're stepping past a breakpoint, this is the address space |
1281 | and address of the instruction the breakpoint is set at. We'll | |
1282 | skip inserting all breakpoints here. Valid iff ASPACE is | |
1283 | non-NULL. */ | |
8b86c959 | 1284 | const address_space *aspace; |
31e77af2 | 1285 | CORE_ADDR address; |
963f9c80 PA |
1286 | |
1287 | /* The instruction being stepped over triggers a nonsteppable | |
1288 | watchpoint. If true, we'll skip inserting watchpoints. */ | |
1289 | int nonsteppable_watchpoint_p; | |
21edc42f YQ |
1290 | |
1291 | /* The thread's global number. */ | |
1292 | int thread; | |
31e77af2 PA |
1293 | }; |
1294 | ||
1295 | /* The step-over info of the location that is being stepped over. | |
1296 | ||
1297 | Note that with async/breakpoint always-inserted mode, a user might | |
1298 | set a new breakpoint/watchpoint/etc. exactly while a breakpoint is | |
1299 | being stepped over. As setting a new breakpoint inserts all | |
1300 | breakpoints, we need to make sure the breakpoint being stepped over | |
1301 | isn't inserted then. We do that by only clearing the step-over | |
1302 | info when the step-over is actually finished (or aborted). | |
1303 | ||
1304 | Presently GDB can only step over one breakpoint at any given time. | |
1305 | Given threads that can't run code in the same address space as the | |
1306 | breakpoint's can't really miss the breakpoint, GDB could be taught | |
1307 | to step-over at most one breakpoint per address space (so this info | |
1308 | could move to the address space object if/when GDB is extended). | |
1309 | The set of breakpoints being stepped over will normally be much | |
1310 | smaller than the set of all breakpoints, so a flag in the | |
1311 | breakpoint location structure would be wasteful. A separate list | |
1312 | also saves complexity and run-time, as otherwise we'd have to go | |
1313 | through all breakpoint locations clearing their flag whenever we | |
1314 | start a new sequence. Similar considerations weigh against storing | |
1315 | this info in the thread object. Plus, not all step overs actually | |
1316 | have breakpoint locations -- e.g., stepping past a single-step | |
1317 | breakpoint, or stepping to complete a non-continuable | |
1318 | watchpoint. */ | |
1319 | static struct step_over_info step_over_info; | |
1320 | ||
1321 | /* Record the address of the breakpoint/instruction we're currently | |
ce0db137 DE |
1322 | stepping over. |
1323 | N.B. We record the aspace and address now, instead of say just the thread, | |
1324 | because when we need the info later the thread may be running. */ | |
31e77af2 PA |
1325 | |
1326 | static void | |
8b86c959 | 1327 | set_step_over_info (const address_space *aspace, CORE_ADDR address, |
21edc42f YQ |
1328 | int nonsteppable_watchpoint_p, |
1329 | int thread) | |
31e77af2 PA |
1330 | { |
1331 | step_over_info.aspace = aspace; | |
1332 | step_over_info.address = address; | |
963f9c80 | 1333 | step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p; |
21edc42f | 1334 | step_over_info.thread = thread; |
31e77af2 PA |
1335 | } |
1336 | ||
1337 | /* Called when we're not longer stepping over a breakpoint / an | |
1338 | instruction, so all breakpoints are free to be (re)inserted. */ | |
1339 | ||
1340 | static void | |
1341 | clear_step_over_info (void) | |
1342 | { | |
372316f1 PA |
1343 | if (debug_infrun) |
1344 | fprintf_unfiltered (gdb_stdlog, | |
1345 | "infrun: clear_step_over_info\n"); | |
31e77af2 PA |
1346 | step_over_info.aspace = NULL; |
1347 | step_over_info.address = 0; | |
963f9c80 | 1348 | step_over_info.nonsteppable_watchpoint_p = 0; |
21edc42f | 1349 | step_over_info.thread = -1; |
31e77af2 PA |
1350 | } |
1351 | ||
7f89fd65 | 1352 | /* See infrun.h. */ |
31e77af2 PA |
1353 | |
1354 | int | |
1355 | stepping_past_instruction_at (struct address_space *aspace, | |
1356 | CORE_ADDR address) | |
1357 | { | |
1358 | return (step_over_info.aspace != NULL | |
1359 | && breakpoint_address_match (aspace, address, | |
1360 | step_over_info.aspace, | |
1361 | step_over_info.address)); | |
1362 | } | |
1363 | ||
963f9c80 PA |
1364 | /* See infrun.h. */ |
1365 | ||
21edc42f YQ |
1366 | int |
1367 | thread_is_stepping_over_breakpoint (int thread) | |
1368 | { | |
1369 | return (step_over_info.thread != -1 | |
1370 | && thread == step_over_info.thread); | |
1371 | } | |
1372 | ||
1373 | /* See infrun.h. */ | |
1374 | ||
963f9c80 PA |
1375 | int |
1376 | stepping_past_nonsteppable_watchpoint (void) | |
1377 | { | |
1378 | return step_over_info.nonsteppable_watchpoint_p; | |
1379 | } | |
1380 | ||
6cc83d2a PA |
1381 | /* Returns true if step-over info is valid. */ |
1382 | ||
1383 | static int | |
1384 | step_over_info_valid_p (void) | |
1385 | { | |
963f9c80 PA |
1386 | return (step_over_info.aspace != NULL |
1387 | || stepping_past_nonsteppable_watchpoint ()); | |
6cc83d2a PA |
1388 | } |
1389 | ||
c906108c | 1390 | \f |
237fc4c9 PA |
1391 | /* Displaced stepping. */ |
1392 | ||
1393 | /* In non-stop debugging mode, we must take special care to manage | |
1394 | breakpoints properly; in particular, the traditional strategy for | |
1395 | stepping a thread past a breakpoint it has hit is unsuitable. | |
1396 | 'Displaced stepping' is a tactic for stepping one thread past a | |
1397 | breakpoint it has hit while ensuring that other threads running | |
1398 | concurrently will hit the breakpoint as they should. | |
1399 | ||
1400 | The traditional way to step a thread T off a breakpoint in a | |
1401 | multi-threaded program in all-stop mode is as follows: | |
1402 | ||
1403 | a0) Initially, all threads are stopped, and breakpoints are not | |
1404 | inserted. | |
1405 | a1) We single-step T, leaving breakpoints uninserted. | |
1406 | a2) We insert breakpoints, and resume all threads. | |
1407 | ||
1408 | In non-stop debugging, however, this strategy is unsuitable: we | |
1409 | don't want to have to stop all threads in the system in order to | |
1410 | continue or step T past a breakpoint. Instead, we use displaced | |
1411 | stepping: | |
1412 | ||
1413 | n0) Initially, T is stopped, other threads are running, and | |
1414 | breakpoints are inserted. | |
1415 | n1) We copy the instruction "under" the breakpoint to a separate | |
1416 | location, outside the main code stream, making any adjustments | |
1417 | to the instruction, register, and memory state as directed by | |
1418 | T's architecture. | |
1419 | n2) We single-step T over the instruction at its new location. | |
1420 | n3) We adjust the resulting register and memory state as directed | |
1421 | by T's architecture. This includes resetting T's PC to point | |
1422 | back into the main instruction stream. | |
1423 | n4) We resume T. | |
1424 | ||
1425 | This approach depends on the following gdbarch methods: | |
1426 | ||
1427 | - gdbarch_max_insn_length and gdbarch_displaced_step_location | |
1428 | indicate where to copy the instruction, and how much space must | |
1429 | be reserved there. We use these in step n1. | |
1430 | ||
1431 | - gdbarch_displaced_step_copy_insn copies a instruction to a new | |
1432 | address, and makes any necessary adjustments to the instruction, | |
1433 | register contents, and memory. We use this in step n1. | |
1434 | ||
1435 | - gdbarch_displaced_step_fixup adjusts registers and memory after | |
1436 | we have successfuly single-stepped the instruction, to yield the | |
1437 | same effect the instruction would have had if we had executed it | |
1438 | at its original address. We use this in step n3. | |
1439 | ||
237fc4c9 PA |
1440 | The gdbarch_displaced_step_copy_insn and |
1441 | gdbarch_displaced_step_fixup functions must be written so that | |
1442 | copying an instruction with gdbarch_displaced_step_copy_insn, | |
1443 | single-stepping across the copied instruction, and then applying | |
1444 | gdbarch_displaced_insn_fixup should have the same effects on the | |
1445 | thread's memory and registers as stepping the instruction in place | |
1446 | would have. Exactly which responsibilities fall to the copy and | |
1447 | which fall to the fixup is up to the author of those functions. | |
1448 | ||
1449 | See the comments in gdbarch.sh for details. | |
1450 | ||
1451 | Note that displaced stepping and software single-step cannot | |
1452 | currently be used in combination, although with some care I think | |
1453 | they could be made to. Software single-step works by placing | |
1454 | breakpoints on all possible subsequent instructions; if the | |
1455 | displaced instruction is a PC-relative jump, those breakpoints | |
1456 | could fall in very strange places --- on pages that aren't | |
1457 | executable, or at addresses that are not proper instruction | |
1458 | boundaries. (We do generally let other threads run while we wait | |
1459 | to hit the software single-step breakpoint, and they might | |
1460 | encounter such a corrupted instruction.) One way to work around | |
1461 | this would be to have gdbarch_displaced_step_copy_insn fully | |
1462 | simulate the effect of PC-relative instructions (and return NULL) | |
1463 | on architectures that use software single-stepping. | |
1464 | ||
1465 | In non-stop mode, we can have independent and simultaneous step | |
1466 | requests, so more than one thread may need to simultaneously step | |
1467 | over a breakpoint. The current implementation assumes there is | |
1468 | only one scratch space per process. In this case, we have to | |
1469 | serialize access to the scratch space. If thread A wants to step | |
1470 | over a breakpoint, but we are currently waiting for some other | |
1471 | thread to complete a displaced step, we leave thread A stopped and | |
1472 | place it in the displaced_step_request_queue. Whenever a displaced | |
1473 | step finishes, we pick the next thread in the queue and start a new | |
1474 | displaced step operation on it. See displaced_step_prepare and | |
1475 | displaced_step_fixup for details. */ | |
1476 | ||
cfba9872 SM |
1477 | /* Default destructor for displaced_step_closure. */ |
1478 | ||
1479 | displaced_step_closure::~displaced_step_closure () = default; | |
1480 | ||
fc1cf338 PA |
1481 | /* Per-inferior displaced stepping state. */ |
1482 | struct displaced_step_inferior_state | |
1483 | { | |
1484 | /* Pointer to next in linked list. */ | |
1485 | struct displaced_step_inferior_state *next; | |
1486 | ||
1487 | /* The process this displaced step state refers to. */ | |
1488 | int pid; | |
1489 | ||
3fc8eb30 PA |
1490 | /* True if preparing a displaced step ever failed. If so, we won't |
1491 | try displaced stepping for this inferior again. */ | |
1492 | int failed_before; | |
1493 | ||
fc1cf338 PA |
1494 | /* If this is not null_ptid, this is the thread carrying out a |
1495 | displaced single-step in process PID. This thread's state will | |
1496 | require fixing up once it has completed its step. */ | |
1497 | ptid_t step_ptid; | |
1498 | ||
1499 | /* The architecture the thread had when we stepped it. */ | |
1500 | struct gdbarch *step_gdbarch; | |
1501 | ||
1502 | /* The closure provided gdbarch_displaced_step_copy_insn, to be used | |
1503 | for post-step cleanup. */ | |
1504 | struct displaced_step_closure *step_closure; | |
1505 | ||
1506 | /* The address of the original instruction, and the copy we | |
1507 | made. */ | |
1508 | CORE_ADDR step_original, step_copy; | |
1509 | ||
1510 | /* Saved contents of copy area. */ | |
1511 | gdb_byte *step_saved_copy; | |
1512 | }; | |
1513 | ||
1514 | /* The list of states of processes involved in displaced stepping | |
1515 | presently. */ | |
1516 | static struct displaced_step_inferior_state *displaced_step_inferior_states; | |
1517 | ||
1518 | /* Get the displaced stepping state of process PID. */ | |
1519 | ||
1520 | static struct displaced_step_inferior_state * | |
1521 | get_displaced_stepping_state (int pid) | |
1522 | { | |
1523 | struct displaced_step_inferior_state *state; | |
1524 | ||
1525 | for (state = displaced_step_inferior_states; | |
1526 | state != NULL; | |
1527 | state = state->next) | |
1528 | if (state->pid == pid) | |
1529 | return state; | |
1530 | ||
1531 | return NULL; | |
1532 | } | |
1533 | ||
372316f1 PA |
1534 | /* Returns true if any inferior has a thread doing a displaced |
1535 | step. */ | |
1536 | ||
1537 | static int | |
1538 | displaced_step_in_progress_any_inferior (void) | |
1539 | { | |
1540 | struct displaced_step_inferior_state *state; | |
1541 | ||
1542 | for (state = displaced_step_inferior_states; | |
1543 | state != NULL; | |
1544 | state = state->next) | |
1545 | if (!ptid_equal (state->step_ptid, null_ptid)) | |
1546 | return 1; | |
1547 | ||
1548 | return 0; | |
1549 | } | |
1550 | ||
c0987663 YQ |
1551 | /* Return true if thread represented by PTID is doing a displaced |
1552 | step. */ | |
1553 | ||
1554 | static int | |
1555 | displaced_step_in_progress_thread (ptid_t ptid) | |
1556 | { | |
1557 | struct displaced_step_inferior_state *displaced; | |
1558 | ||
1559 | gdb_assert (!ptid_equal (ptid, null_ptid)); | |
1560 | ||
1561 | displaced = get_displaced_stepping_state (ptid_get_pid (ptid)); | |
1562 | ||
1563 | return (displaced != NULL && ptid_equal (displaced->step_ptid, ptid)); | |
1564 | } | |
1565 | ||
8f572e5c PA |
1566 | /* Return true if process PID has a thread doing a displaced step. */ |
1567 | ||
1568 | static int | |
1569 | displaced_step_in_progress (int pid) | |
1570 | { | |
1571 | struct displaced_step_inferior_state *displaced; | |
1572 | ||
1573 | displaced = get_displaced_stepping_state (pid); | |
1574 | if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid)) | |
1575 | return 1; | |
1576 | ||
1577 | return 0; | |
1578 | } | |
1579 | ||
fc1cf338 PA |
1580 | /* Add a new displaced stepping state for process PID to the displaced |
1581 | stepping state list, or return a pointer to an already existing | |
1582 | entry, if it already exists. Never returns NULL. */ | |
1583 | ||
1584 | static struct displaced_step_inferior_state * | |
1585 | add_displaced_stepping_state (int pid) | |
1586 | { | |
1587 | struct displaced_step_inferior_state *state; | |
1588 | ||
1589 | for (state = displaced_step_inferior_states; | |
1590 | state != NULL; | |
1591 | state = state->next) | |
1592 | if (state->pid == pid) | |
1593 | return state; | |
237fc4c9 | 1594 | |
8d749320 | 1595 | state = XCNEW (struct displaced_step_inferior_state); |
fc1cf338 PA |
1596 | state->pid = pid; |
1597 | state->next = displaced_step_inferior_states; | |
1598 | displaced_step_inferior_states = state; | |
237fc4c9 | 1599 | |
fc1cf338 PA |
1600 | return state; |
1601 | } | |
1602 | ||
a42244db YQ |
1603 | /* If inferior is in displaced stepping, and ADDR equals to starting address |
1604 | of copy area, return corresponding displaced_step_closure. Otherwise, | |
1605 | return NULL. */ | |
1606 | ||
1607 | struct displaced_step_closure* | |
1608 | get_displaced_step_closure_by_addr (CORE_ADDR addr) | |
1609 | { | |
1610 | struct displaced_step_inferior_state *displaced | |
1611 | = get_displaced_stepping_state (ptid_get_pid (inferior_ptid)); | |
1612 | ||
1613 | /* If checking the mode of displaced instruction in copy area. */ | |
1614 | if (displaced && !ptid_equal (displaced->step_ptid, null_ptid) | |
1615 | && (displaced->step_copy == addr)) | |
1616 | return displaced->step_closure; | |
1617 | ||
1618 | return NULL; | |
1619 | } | |
1620 | ||
fc1cf338 | 1621 | /* Remove the displaced stepping state of process PID. */ |
237fc4c9 | 1622 | |
fc1cf338 PA |
1623 | static void |
1624 | remove_displaced_stepping_state (int pid) | |
1625 | { | |
1626 | struct displaced_step_inferior_state *it, **prev_next_p; | |
237fc4c9 | 1627 | |
fc1cf338 PA |
1628 | gdb_assert (pid != 0); |
1629 | ||
1630 | it = displaced_step_inferior_states; | |
1631 | prev_next_p = &displaced_step_inferior_states; | |
1632 | while (it) | |
1633 | { | |
1634 | if (it->pid == pid) | |
1635 | { | |
1636 | *prev_next_p = it->next; | |
1637 | xfree (it); | |
1638 | return; | |
1639 | } | |
1640 | ||
1641 | prev_next_p = &it->next; | |
1642 | it = *prev_next_p; | |
1643 | } | |
1644 | } | |
1645 | ||
1646 | static void | |
1647 | infrun_inferior_exit (struct inferior *inf) | |
1648 | { | |
1649 | remove_displaced_stepping_state (inf->pid); | |
1650 | } | |
237fc4c9 | 1651 | |
fff08868 HZ |
1652 | /* If ON, and the architecture supports it, GDB will use displaced |
1653 | stepping to step over breakpoints. If OFF, or if the architecture | |
1654 | doesn't support it, GDB will instead use the traditional | |
1655 | hold-and-step approach. If AUTO (which is the default), GDB will | |
1656 | decide which technique to use to step over breakpoints depending on | |
1657 | which of all-stop or non-stop mode is active --- displaced stepping | |
1658 | in non-stop mode; hold-and-step in all-stop mode. */ | |
1659 | ||
72d0e2c5 | 1660 | static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO; |
fff08868 | 1661 | |
237fc4c9 PA |
1662 | static void |
1663 | show_can_use_displaced_stepping (struct ui_file *file, int from_tty, | |
1664 | struct cmd_list_element *c, | |
1665 | const char *value) | |
1666 | { | |
72d0e2c5 | 1667 | if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO) |
3e43a32a MS |
1668 | fprintf_filtered (file, |
1669 | _("Debugger's willingness to use displaced stepping " | |
1670 | "to step over breakpoints is %s (currently %s).\n"), | |
fbea99ea | 1671 | value, target_is_non_stop_p () ? "on" : "off"); |
fff08868 | 1672 | else |
3e43a32a MS |
1673 | fprintf_filtered (file, |
1674 | _("Debugger's willingness to use displaced stepping " | |
1675 | "to step over breakpoints is %s.\n"), value); | |
237fc4c9 PA |
1676 | } |
1677 | ||
fff08868 | 1678 | /* Return non-zero if displaced stepping can/should be used to step |
3fc8eb30 | 1679 | over breakpoints of thread TP. */ |
fff08868 | 1680 | |
237fc4c9 | 1681 | static int |
3fc8eb30 | 1682 | use_displaced_stepping (struct thread_info *tp) |
237fc4c9 | 1683 | { |
3fc8eb30 | 1684 | struct regcache *regcache = get_thread_regcache (tp->ptid); |
ac7936df | 1685 | struct gdbarch *gdbarch = regcache->arch (); |
3fc8eb30 PA |
1686 | struct displaced_step_inferior_state *displaced_state; |
1687 | ||
1688 | displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid)); | |
1689 | ||
fbea99ea PA |
1690 | return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO |
1691 | && target_is_non_stop_p ()) | |
72d0e2c5 | 1692 | || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE) |
96429cc8 | 1693 | && gdbarch_displaced_step_copy_insn_p (gdbarch) |
3fc8eb30 PA |
1694 | && find_record_target () == NULL |
1695 | && (displaced_state == NULL | |
1696 | || !displaced_state->failed_before)); | |
237fc4c9 PA |
1697 | } |
1698 | ||
1699 | /* Clean out any stray displaced stepping state. */ | |
1700 | static void | |
fc1cf338 | 1701 | displaced_step_clear (struct displaced_step_inferior_state *displaced) |
237fc4c9 PA |
1702 | { |
1703 | /* Indicate that there is no cleanup pending. */ | |
fc1cf338 | 1704 | displaced->step_ptid = null_ptid; |
237fc4c9 | 1705 | |
cfba9872 | 1706 | delete displaced->step_closure; |
6d45d4b4 | 1707 | displaced->step_closure = NULL; |
237fc4c9 PA |
1708 | } |
1709 | ||
1710 | static void | |
fc1cf338 | 1711 | displaced_step_clear_cleanup (void *arg) |
237fc4c9 | 1712 | { |
9a3c8263 SM |
1713 | struct displaced_step_inferior_state *state |
1714 | = (struct displaced_step_inferior_state *) arg; | |
fc1cf338 PA |
1715 | |
1716 | displaced_step_clear (state); | |
237fc4c9 PA |
1717 | } |
1718 | ||
1719 | /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */ | |
1720 | void | |
1721 | displaced_step_dump_bytes (struct ui_file *file, | |
1722 | const gdb_byte *buf, | |
1723 | size_t len) | |
1724 | { | |
1725 | int i; | |
1726 | ||
1727 | for (i = 0; i < len; i++) | |
1728 | fprintf_unfiltered (file, "%02x ", buf[i]); | |
1729 | fputs_unfiltered ("\n", file); | |
1730 | } | |
1731 | ||
1732 | /* Prepare to single-step, using displaced stepping. | |
1733 | ||
1734 | Note that we cannot use displaced stepping when we have a signal to | |
1735 | deliver. If we have a signal to deliver and an instruction to step | |
1736 | over, then after the step, there will be no indication from the | |
1737 | target whether the thread entered a signal handler or ignored the | |
1738 | signal and stepped over the instruction successfully --- both cases | |
1739 | result in a simple SIGTRAP. In the first case we mustn't do a | |
1740 | fixup, and in the second case we must --- but we can't tell which. | |
1741 | Comments in the code for 'random signals' in handle_inferior_event | |
1742 | explain how we handle this case instead. | |
1743 | ||
1744 | Returns 1 if preparing was successful -- this thread is going to be | |
7f03bd92 PA |
1745 | stepped now; 0 if displaced stepping this thread got queued; or -1 |
1746 | if this instruction can't be displaced stepped. */ | |
1747 | ||
237fc4c9 | 1748 | static int |
3fc8eb30 | 1749 | displaced_step_prepare_throw (ptid_t ptid) |
237fc4c9 | 1750 | { |
2989a365 | 1751 | struct cleanup *ignore_cleanups; |
c1e36e3e | 1752 | struct thread_info *tp = find_thread_ptid (ptid); |
237fc4c9 | 1753 | struct regcache *regcache = get_thread_regcache (ptid); |
ac7936df | 1754 | struct gdbarch *gdbarch = regcache->arch (); |
8b86c959 | 1755 | const address_space *aspace = regcache->aspace (); |
237fc4c9 PA |
1756 | CORE_ADDR original, copy; |
1757 | ULONGEST len; | |
1758 | struct displaced_step_closure *closure; | |
fc1cf338 | 1759 | struct displaced_step_inferior_state *displaced; |
9e529e1d | 1760 | int status; |
237fc4c9 PA |
1761 | |
1762 | /* We should never reach this function if the architecture does not | |
1763 | support displaced stepping. */ | |
1764 | gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch)); | |
1765 | ||
c2829269 PA |
1766 | /* Nor if the thread isn't meant to step over a breakpoint. */ |
1767 | gdb_assert (tp->control.trap_expected); | |
1768 | ||
c1e36e3e PA |
1769 | /* Disable range stepping while executing in the scratch pad. We |
1770 | want a single-step even if executing the displaced instruction in | |
1771 | the scratch buffer lands within the stepping range (e.g., a | |
1772 | jump/branch). */ | |
1773 | tp->control.may_range_step = 0; | |
1774 | ||
fc1cf338 PA |
1775 | /* We have to displaced step one thread at a time, as we only have |
1776 | access to a single scratch space per inferior. */ | |
237fc4c9 | 1777 | |
fc1cf338 PA |
1778 | displaced = add_displaced_stepping_state (ptid_get_pid (ptid)); |
1779 | ||
1780 | if (!ptid_equal (displaced->step_ptid, null_ptid)) | |
237fc4c9 PA |
1781 | { |
1782 | /* Already waiting for a displaced step to finish. Defer this | |
1783 | request and place in queue. */ | |
237fc4c9 PA |
1784 | |
1785 | if (debug_displaced) | |
1786 | fprintf_unfiltered (gdb_stdlog, | |
c2829269 | 1787 | "displaced: deferring step of %s\n", |
237fc4c9 PA |
1788 | target_pid_to_str (ptid)); |
1789 | ||
c2829269 | 1790 | thread_step_over_chain_enqueue (tp); |
237fc4c9 PA |
1791 | return 0; |
1792 | } | |
1793 | else | |
1794 | { | |
1795 | if (debug_displaced) | |
1796 | fprintf_unfiltered (gdb_stdlog, | |
1797 | "displaced: stepping %s now\n", | |
1798 | target_pid_to_str (ptid)); | |
1799 | } | |
1800 | ||
fc1cf338 | 1801 | displaced_step_clear (displaced); |
237fc4c9 | 1802 | |
2989a365 | 1803 | scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); |
ad53cd71 PA |
1804 | inferior_ptid = ptid; |
1805 | ||
515630c5 | 1806 | original = regcache_read_pc (regcache); |
237fc4c9 PA |
1807 | |
1808 | copy = gdbarch_displaced_step_location (gdbarch); | |
1809 | len = gdbarch_max_insn_length (gdbarch); | |
1810 | ||
d35ae833 PA |
1811 | if (breakpoint_in_range_p (aspace, copy, len)) |
1812 | { | |
1813 | /* There's a breakpoint set in the scratch pad location range | |
1814 | (which is usually around the entry point). We'd either | |
1815 | install it before resuming, which would overwrite/corrupt the | |
1816 | scratch pad, or if it was already inserted, this displaced | |
1817 | step would overwrite it. The latter is OK in the sense that | |
1818 | we already assume that no thread is going to execute the code | |
1819 | in the scratch pad range (after initial startup) anyway, but | |
1820 | the former is unacceptable. Simply punt and fallback to | |
1821 | stepping over this breakpoint in-line. */ | |
1822 | if (debug_displaced) | |
1823 | { | |
1824 | fprintf_unfiltered (gdb_stdlog, | |
1825 | "displaced: breakpoint set in scratch pad. " | |
1826 | "Stepping over breakpoint in-line instead.\n"); | |
1827 | } | |
1828 | ||
d35ae833 PA |
1829 | return -1; |
1830 | } | |
1831 | ||
237fc4c9 | 1832 | /* Save the original contents of the copy area. */ |
224c3ddb | 1833 | displaced->step_saved_copy = (gdb_byte *) xmalloc (len); |
ad53cd71 | 1834 | ignore_cleanups = make_cleanup (free_current_contents, |
fc1cf338 | 1835 | &displaced->step_saved_copy); |
9e529e1d JK |
1836 | status = target_read_memory (copy, displaced->step_saved_copy, len); |
1837 | if (status != 0) | |
1838 | throw_error (MEMORY_ERROR, | |
1839 | _("Error accessing memory address %s (%s) for " | |
1840 | "displaced-stepping scratch space."), | |
1841 | paddress (gdbarch, copy), safe_strerror (status)); | |
237fc4c9 PA |
1842 | if (debug_displaced) |
1843 | { | |
5af949e3 UW |
1844 | fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ", |
1845 | paddress (gdbarch, copy)); | |
fc1cf338 PA |
1846 | displaced_step_dump_bytes (gdb_stdlog, |
1847 | displaced->step_saved_copy, | |
1848 | len); | |
237fc4c9 PA |
1849 | }; |
1850 | ||
1851 | closure = gdbarch_displaced_step_copy_insn (gdbarch, | |
ad53cd71 | 1852 | original, copy, regcache); |
7f03bd92 PA |
1853 | if (closure == NULL) |
1854 | { | |
1855 | /* The architecture doesn't know how or want to displaced step | |
1856 | this instruction or instruction sequence. Fallback to | |
1857 | stepping over the breakpoint in-line. */ | |
2989a365 | 1858 | do_cleanups (ignore_cleanups); |
7f03bd92 PA |
1859 | return -1; |
1860 | } | |
237fc4c9 | 1861 | |
9f5a595d UW |
1862 | /* Save the information we need to fix things up if the step |
1863 | succeeds. */ | |
fc1cf338 PA |
1864 | displaced->step_ptid = ptid; |
1865 | displaced->step_gdbarch = gdbarch; | |
1866 | displaced->step_closure = closure; | |
1867 | displaced->step_original = original; | |
1868 | displaced->step_copy = copy; | |
9f5a595d | 1869 | |
fc1cf338 | 1870 | make_cleanup (displaced_step_clear_cleanup, displaced); |
237fc4c9 PA |
1871 | |
1872 | /* Resume execution at the copy. */ | |
515630c5 | 1873 | regcache_write_pc (regcache, copy); |
237fc4c9 | 1874 | |
ad53cd71 PA |
1875 | discard_cleanups (ignore_cleanups); |
1876 | ||
237fc4c9 | 1877 | if (debug_displaced) |
5af949e3 UW |
1878 | fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n", |
1879 | paddress (gdbarch, copy)); | |
237fc4c9 | 1880 | |
237fc4c9 PA |
1881 | return 1; |
1882 | } | |
1883 | ||
3fc8eb30 PA |
1884 | /* Wrapper for displaced_step_prepare_throw that disabled further |
1885 | attempts at displaced stepping if we get a memory error. */ | |
1886 | ||
1887 | static int | |
1888 | displaced_step_prepare (ptid_t ptid) | |
1889 | { | |
1890 | int prepared = -1; | |
1891 | ||
1892 | TRY | |
1893 | { | |
1894 | prepared = displaced_step_prepare_throw (ptid); | |
1895 | } | |
1896 | CATCH (ex, RETURN_MASK_ERROR) | |
1897 | { | |
1898 | struct displaced_step_inferior_state *displaced_state; | |
1899 | ||
16b41842 PA |
1900 | if (ex.error != MEMORY_ERROR |
1901 | && ex.error != NOT_SUPPORTED_ERROR) | |
3fc8eb30 PA |
1902 | throw_exception (ex); |
1903 | ||
1904 | if (debug_infrun) | |
1905 | { | |
1906 | fprintf_unfiltered (gdb_stdlog, | |
1907 | "infrun: disabling displaced stepping: %s\n", | |
1908 | ex.message); | |
1909 | } | |
1910 | ||
1911 | /* Be verbose if "set displaced-stepping" is "on", silent if | |
1912 | "auto". */ | |
1913 | if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE) | |
1914 | { | |
fd7dcb94 | 1915 | warning (_("disabling displaced stepping: %s"), |
3fc8eb30 PA |
1916 | ex.message); |
1917 | } | |
1918 | ||
1919 | /* Disable further displaced stepping attempts. */ | |
1920 | displaced_state | |
1921 | = get_displaced_stepping_state (ptid_get_pid (ptid)); | |
1922 | displaced_state->failed_before = 1; | |
1923 | } | |
1924 | END_CATCH | |
1925 | ||
1926 | return prepared; | |
1927 | } | |
1928 | ||
237fc4c9 | 1929 | static void |
3e43a32a MS |
1930 | write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, |
1931 | const gdb_byte *myaddr, int len) | |
237fc4c9 | 1932 | { |
2989a365 | 1933 | scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); |
abbb1732 | 1934 | |
237fc4c9 PA |
1935 | inferior_ptid = ptid; |
1936 | write_memory (memaddr, myaddr, len); | |
237fc4c9 PA |
1937 | } |
1938 | ||
e2d96639 YQ |
1939 | /* Restore the contents of the copy area for thread PTID. */ |
1940 | ||
1941 | static void | |
1942 | displaced_step_restore (struct displaced_step_inferior_state *displaced, | |
1943 | ptid_t ptid) | |
1944 | { | |
1945 | ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch); | |
1946 | ||
1947 | write_memory_ptid (ptid, displaced->step_copy, | |
1948 | displaced->step_saved_copy, len); | |
1949 | if (debug_displaced) | |
1950 | fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n", | |
1951 | target_pid_to_str (ptid), | |
1952 | paddress (displaced->step_gdbarch, | |
1953 | displaced->step_copy)); | |
1954 | } | |
1955 | ||
372316f1 PA |
1956 | /* If we displaced stepped an instruction successfully, adjust |
1957 | registers and memory to yield the same effect the instruction would | |
1958 | have had if we had executed it at its original address, and return | |
1959 | 1. If the instruction didn't complete, relocate the PC and return | |
1960 | -1. If the thread wasn't displaced stepping, return 0. */ | |
1961 | ||
1962 | static int | |
2ea28649 | 1963 | displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal) |
237fc4c9 PA |
1964 | { |
1965 | struct cleanup *old_cleanups; | |
fc1cf338 PA |
1966 | struct displaced_step_inferior_state *displaced |
1967 | = get_displaced_stepping_state (ptid_get_pid (event_ptid)); | |
372316f1 | 1968 | int ret; |
fc1cf338 PA |
1969 | |
1970 | /* Was any thread of this process doing a displaced step? */ | |
1971 | if (displaced == NULL) | |
372316f1 | 1972 | return 0; |
237fc4c9 PA |
1973 | |
1974 | /* Was this event for the pid we displaced? */ | |
fc1cf338 PA |
1975 | if (ptid_equal (displaced->step_ptid, null_ptid) |
1976 | || ! ptid_equal (displaced->step_ptid, event_ptid)) | |
372316f1 | 1977 | return 0; |
237fc4c9 | 1978 | |
fc1cf338 | 1979 | old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced); |
237fc4c9 | 1980 | |
e2d96639 | 1981 | displaced_step_restore (displaced, displaced->step_ptid); |
237fc4c9 | 1982 | |
cb71640d PA |
1983 | /* Fixup may need to read memory/registers. Switch to the thread |
1984 | that we're fixing up. Also, target_stopped_by_watchpoint checks | |
1985 | the current thread. */ | |
1986 | switch_to_thread (event_ptid); | |
1987 | ||
237fc4c9 | 1988 | /* Did the instruction complete successfully? */ |
cb71640d PA |
1989 | if (signal == GDB_SIGNAL_TRAP |
1990 | && !(target_stopped_by_watchpoint () | |
1991 | && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch) | |
1992 | || target_have_steppable_watchpoint))) | |
237fc4c9 PA |
1993 | { |
1994 | /* Fix up the resulting state. */ | |
fc1cf338 PA |
1995 | gdbarch_displaced_step_fixup (displaced->step_gdbarch, |
1996 | displaced->step_closure, | |
1997 | displaced->step_original, | |
1998 | displaced->step_copy, | |
1999 | get_thread_regcache (displaced->step_ptid)); | |
372316f1 | 2000 | ret = 1; |
237fc4c9 PA |
2001 | } |
2002 | else | |
2003 | { | |
2004 | /* Since the instruction didn't complete, all we can do is | |
2005 | relocate the PC. */ | |
515630c5 UW |
2006 | struct regcache *regcache = get_thread_regcache (event_ptid); |
2007 | CORE_ADDR pc = regcache_read_pc (regcache); | |
abbb1732 | 2008 | |
fc1cf338 | 2009 | pc = displaced->step_original + (pc - displaced->step_copy); |
515630c5 | 2010 | regcache_write_pc (regcache, pc); |
372316f1 | 2011 | ret = -1; |
237fc4c9 PA |
2012 | } |
2013 | ||
2014 | do_cleanups (old_cleanups); | |
2015 | ||
fc1cf338 | 2016 | displaced->step_ptid = null_ptid; |
372316f1 PA |
2017 | |
2018 | return ret; | |
c2829269 | 2019 | } |
1c5cfe86 | 2020 | |
4d9d9d04 PA |
2021 | /* Data to be passed around while handling an event. This data is |
2022 | discarded between events. */ | |
2023 | struct execution_control_state | |
2024 | { | |
2025 | ptid_t ptid; | |
2026 | /* The thread that got the event, if this was a thread event; NULL | |
2027 | otherwise. */ | |
2028 | struct thread_info *event_thread; | |
2029 | ||
2030 | struct target_waitstatus ws; | |
2031 | int stop_func_filled_in; | |
2032 | CORE_ADDR stop_func_start; | |
2033 | CORE_ADDR stop_func_end; | |
2034 | const char *stop_func_name; | |
2035 | int wait_some_more; | |
2036 | ||
2037 | /* True if the event thread hit the single-step breakpoint of | |
2038 | another thread. Thus the event doesn't cause a stop, the thread | |
2039 | needs to be single-stepped past the single-step breakpoint before | |
2040 | we can switch back to the original stepping thread. */ | |
2041 | int hit_singlestep_breakpoint; | |
2042 | }; | |
2043 | ||
2044 | /* Clear ECS and set it to point at TP. */ | |
c2829269 PA |
2045 | |
2046 | static void | |
4d9d9d04 PA |
2047 | reset_ecs (struct execution_control_state *ecs, struct thread_info *tp) |
2048 | { | |
2049 | memset (ecs, 0, sizeof (*ecs)); | |
2050 | ecs->event_thread = tp; | |
2051 | ecs->ptid = tp->ptid; | |
2052 | } | |
2053 | ||
2054 | static void keep_going_pass_signal (struct execution_control_state *ecs); | |
2055 | static void prepare_to_wait (struct execution_control_state *ecs); | |
2ac7589c | 2056 | static int keep_going_stepped_thread (struct thread_info *tp); |
8d297bbf | 2057 | static step_over_what thread_still_needs_step_over (struct thread_info *tp); |
4d9d9d04 PA |
2058 | |
2059 | /* Are there any pending step-over requests? If so, run all we can | |
2060 | now and return true. Otherwise, return false. */ | |
2061 | ||
2062 | static int | |
c2829269 PA |
2063 | start_step_over (void) |
2064 | { | |
2065 | struct thread_info *tp, *next; | |
2066 | ||
372316f1 PA |
2067 | /* Don't start a new step-over if we already have an in-line |
2068 | step-over operation ongoing. */ | |
2069 | if (step_over_info_valid_p ()) | |
2070 | return 0; | |
2071 | ||
c2829269 | 2072 | for (tp = step_over_queue_head; tp != NULL; tp = next) |
237fc4c9 | 2073 | { |
4d9d9d04 PA |
2074 | struct execution_control_state ecss; |
2075 | struct execution_control_state *ecs = &ecss; | |
8d297bbf | 2076 | step_over_what step_what; |
372316f1 | 2077 | int must_be_in_line; |
c2829269 | 2078 | |
c65d6b55 PA |
2079 | gdb_assert (!tp->stop_requested); |
2080 | ||
c2829269 | 2081 | next = thread_step_over_chain_next (tp); |
237fc4c9 | 2082 | |
c2829269 PA |
2083 | /* If this inferior already has a displaced step in process, |
2084 | don't start a new one. */ | |
4d9d9d04 | 2085 | if (displaced_step_in_progress (ptid_get_pid (tp->ptid))) |
c2829269 PA |
2086 | continue; |
2087 | ||
372316f1 PA |
2088 | step_what = thread_still_needs_step_over (tp); |
2089 | must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT) | |
2090 | || ((step_what & STEP_OVER_BREAKPOINT) | |
3fc8eb30 | 2091 | && !use_displaced_stepping (tp))); |
372316f1 PA |
2092 | |
2093 | /* We currently stop all threads of all processes to step-over | |
2094 | in-line. If we need to start a new in-line step-over, let | |
2095 | any pending displaced steps finish first. */ | |
2096 | if (must_be_in_line && displaced_step_in_progress_any_inferior ()) | |
2097 | return 0; | |
2098 | ||
c2829269 PA |
2099 | thread_step_over_chain_remove (tp); |
2100 | ||
2101 | if (step_over_queue_head == NULL) | |
2102 | { | |
2103 | if (debug_infrun) | |
2104 | fprintf_unfiltered (gdb_stdlog, | |
2105 | "infrun: step-over queue now empty\n"); | |
2106 | } | |
2107 | ||
372316f1 PA |
2108 | if (tp->control.trap_expected |
2109 | || tp->resumed | |
2110 | || tp->executing) | |
ad53cd71 | 2111 | { |
4d9d9d04 PA |
2112 | internal_error (__FILE__, __LINE__, |
2113 | "[%s] has inconsistent state: " | |
372316f1 | 2114 | "trap_expected=%d, resumed=%d, executing=%d\n", |
4d9d9d04 PA |
2115 | target_pid_to_str (tp->ptid), |
2116 | tp->control.trap_expected, | |
372316f1 | 2117 | tp->resumed, |
4d9d9d04 | 2118 | tp->executing); |
ad53cd71 | 2119 | } |
1c5cfe86 | 2120 | |
4d9d9d04 PA |
2121 | if (debug_infrun) |
2122 | fprintf_unfiltered (gdb_stdlog, | |
2123 | "infrun: resuming [%s] for step-over\n", | |
2124 | target_pid_to_str (tp->ptid)); | |
2125 | ||
2126 | /* keep_going_pass_signal skips the step-over if the breakpoint | |
2127 | is no longer inserted. In all-stop, we want to keep looking | |
2128 | for a thread that needs a step-over instead of resuming TP, | |
2129 | because we wouldn't be able to resume anything else until the | |
2130 | target stops again. In non-stop, the resume always resumes | |
2131 | only TP, so it's OK to let the thread resume freely. */ | |
fbea99ea | 2132 | if (!target_is_non_stop_p () && !step_what) |
4d9d9d04 | 2133 | continue; |
8550d3b3 | 2134 | |
4d9d9d04 PA |
2135 | switch_to_thread (tp->ptid); |
2136 | reset_ecs (ecs, tp); | |
2137 | keep_going_pass_signal (ecs); | |
1c5cfe86 | 2138 | |
4d9d9d04 PA |
2139 | if (!ecs->wait_some_more) |
2140 | error (_("Command aborted.")); | |
1c5cfe86 | 2141 | |
372316f1 PA |
2142 | gdb_assert (tp->resumed); |
2143 | ||
2144 | /* If we started a new in-line step-over, we're done. */ | |
2145 | if (step_over_info_valid_p ()) | |
2146 | { | |
2147 | gdb_assert (tp->control.trap_expected); | |
2148 | return 1; | |
2149 | } | |
2150 | ||
fbea99ea | 2151 | if (!target_is_non_stop_p ()) |
4d9d9d04 PA |
2152 | { |
2153 | /* On all-stop, shouldn't have resumed unless we needed a | |
2154 | step over. */ | |
2155 | gdb_assert (tp->control.trap_expected | |
2156 | || tp->step_after_step_resume_breakpoint); | |
2157 | ||
2158 | /* With remote targets (at least), in all-stop, we can't | |
2159 | issue any further remote commands until the program stops | |
2160 | again. */ | |
2161 | return 1; | |
1c5cfe86 | 2162 | } |
c2829269 | 2163 | |
4d9d9d04 PA |
2164 | /* Either the thread no longer needed a step-over, or a new |
2165 | displaced stepping sequence started. Even in the latter | |
2166 | case, continue looking. Maybe we can also start another | |
2167 | displaced step on a thread of other process. */ | |
237fc4c9 | 2168 | } |
4d9d9d04 PA |
2169 | |
2170 | return 0; | |
237fc4c9 PA |
2171 | } |
2172 | ||
5231c1fd PA |
2173 | /* Update global variables holding ptids to hold NEW_PTID if they were |
2174 | holding OLD_PTID. */ | |
2175 | static void | |
2176 | infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid) | |
2177 | { | |
fc1cf338 | 2178 | struct displaced_step_inferior_state *displaced; |
5231c1fd PA |
2179 | |
2180 | if (ptid_equal (inferior_ptid, old_ptid)) | |
2181 | inferior_ptid = new_ptid; | |
2182 | ||
fc1cf338 PA |
2183 | for (displaced = displaced_step_inferior_states; |
2184 | displaced; | |
2185 | displaced = displaced->next) | |
2186 | { | |
2187 | if (ptid_equal (displaced->step_ptid, old_ptid)) | |
2188 | displaced->step_ptid = new_ptid; | |
fc1cf338 | 2189 | } |
5231c1fd PA |
2190 | } |
2191 | ||
237fc4c9 | 2192 | \f |
c906108c | 2193 | |
53904c9e AC |
2194 | static const char schedlock_off[] = "off"; |
2195 | static const char schedlock_on[] = "on"; | |
2196 | static const char schedlock_step[] = "step"; | |
f2665db5 | 2197 | static const char schedlock_replay[] = "replay"; |
40478521 | 2198 | static const char *const scheduler_enums[] = { |
ef346e04 AC |
2199 | schedlock_off, |
2200 | schedlock_on, | |
2201 | schedlock_step, | |
f2665db5 | 2202 | schedlock_replay, |
ef346e04 AC |
2203 | NULL |
2204 | }; | |
f2665db5 | 2205 | static const char *scheduler_mode = schedlock_replay; |
920d2a44 AC |
2206 | static void |
2207 | show_scheduler_mode (struct ui_file *file, int from_tty, | |
2208 | struct cmd_list_element *c, const char *value) | |
2209 | { | |
3e43a32a MS |
2210 | fprintf_filtered (file, |
2211 | _("Mode for locking scheduler " | |
2212 | "during execution is \"%s\".\n"), | |
920d2a44 AC |
2213 | value); |
2214 | } | |
c906108c SS |
2215 | |
2216 | static void | |
eb4c3f4a | 2217 | set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c) |
c906108c | 2218 | { |
eefe576e AC |
2219 | if (!target_can_lock_scheduler) |
2220 | { | |
2221 | scheduler_mode = schedlock_off; | |
2222 | error (_("Target '%s' cannot support this command."), target_shortname); | |
2223 | } | |
c906108c SS |
2224 | } |
2225 | ||
d4db2f36 PA |
2226 | /* True if execution commands resume all threads of all processes by |
2227 | default; otherwise, resume only threads of the current inferior | |
2228 | process. */ | |
2229 | int sched_multi = 0; | |
2230 | ||
2facfe5c DD |
2231 | /* Try to setup for software single stepping over the specified location. |
2232 | Return 1 if target_resume() should use hardware single step. | |
2233 | ||
2234 | GDBARCH the current gdbarch. | |
2235 | PC the location to step over. */ | |
2236 | ||
2237 | static int | |
2238 | maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc) | |
2239 | { | |
2240 | int hw_step = 1; | |
2241 | ||
f02253f1 | 2242 | if (execution_direction == EXEC_FORWARD |
93f9a11f YQ |
2243 | && gdbarch_software_single_step_p (gdbarch)) |
2244 | hw_step = !insert_single_step_breakpoints (gdbarch); | |
2245 | ||
2facfe5c DD |
2246 | return hw_step; |
2247 | } | |
c906108c | 2248 | |
f3263aa4 PA |
2249 | /* See infrun.h. */ |
2250 | ||
09cee04b PA |
2251 | ptid_t |
2252 | user_visible_resume_ptid (int step) | |
2253 | { | |
f3263aa4 | 2254 | ptid_t resume_ptid; |
09cee04b | 2255 | |
09cee04b PA |
2256 | if (non_stop) |
2257 | { | |
2258 | /* With non-stop mode on, threads are always handled | |
2259 | individually. */ | |
2260 | resume_ptid = inferior_ptid; | |
2261 | } | |
2262 | else if ((scheduler_mode == schedlock_on) | |
03d46957 | 2263 | || (scheduler_mode == schedlock_step && step)) |
09cee04b | 2264 | { |
f3263aa4 PA |
2265 | /* User-settable 'scheduler' mode requires solo thread |
2266 | resume. */ | |
09cee04b PA |
2267 | resume_ptid = inferior_ptid; |
2268 | } | |
f2665db5 MM |
2269 | else if ((scheduler_mode == schedlock_replay) |
2270 | && target_record_will_replay (minus_one_ptid, execution_direction)) | |
2271 | { | |
2272 | /* User-settable 'scheduler' mode requires solo thread resume in replay | |
2273 | mode. */ | |
2274 | resume_ptid = inferior_ptid; | |
2275 | } | |
f3263aa4 PA |
2276 | else if (!sched_multi && target_supports_multi_process ()) |
2277 | { | |
2278 | /* Resume all threads of the current process (and none of other | |
2279 | processes). */ | |
2280 | resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid)); | |
2281 | } | |
2282 | else | |
2283 | { | |
2284 | /* Resume all threads of all processes. */ | |
2285 | resume_ptid = RESUME_ALL; | |
2286 | } | |
09cee04b PA |
2287 | |
2288 | return resume_ptid; | |
2289 | } | |
2290 | ||
fbea99ea PA |
2291 | /* Return a ptid representing the set of threads that we will resume, |
2292 | in the perspective of the target, assuming run control handling | |
2293 | does not require leaving some threads stopped (e.g., stepping past | |
2294 | breakpoint). USER_STEP indicates whether we're about to start the | |
2295 | target for a stepping command. */ | |
2296 | ||
2297 | static ptid_t | |
2298 | internal_resume_ptid (int user_step) | |
2299 | { | |
2300 | /* In non-stop, we always control threads individually. Note that | |
2301 | the target may always work in non-stop mode even with "set | |
2302 | non-stop off", in which case user_visible_resume_ptid could | |
2303 | return a wildcard ptid. */ | |
2304 | if (target_is_non_stop_p ()) | |
2305 | return inferior_ptid; | |
2306 | else | |
2307 | return user_visible_resume_ptid (user_step); | |
2308 | } | |
2309 | ||
64ce06e4 PA |
2310 | /* Wrapper for target_resume, that handles infrun-specific |
2311 | bookkeeping. */ | |
2312 | ||
2313 | static void | |
2314 | do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig) | |
2315 | { | |
2316 | struct thread_info *tp = inferior_thread (); | |
2317 | ||
c65d6b55 PA |
2318 | gdb_assert (!tp->stop_requested); |
2319 | ||
64ce06e4 | 2320 | /* Install inferior's terminal modes. */ |
223ffa71 | 2321 | target_terminal::inferior (); |
64ce06e4 PA |
2322 | |
2323 | /* Avoid confusing the next resume, if the next stop/resume | |
2324 | happens to apply to another thread. */ | |
2325 | tp->suspend.stop_signal = GDB_SIGNAL_0; | |
2326 | ||
8f572e5c PA |
2327 | /* Advise target which signals may be handled silently. |
2328 | ||
2329 | If we have removed breakpoints because we are stepping over one | |
2330 | in-line (in any thread), we need to receive all signals to avoid | |
2331 | accidentally skipping a breakpoint during execution of a signal | |
2332 | handler. | |
2333 | ||
2334 | Likewise if we're displaced stepping, otherwise a trap for a | |
2335 | breakpoint in a signal handler might be confused with the | |
2336 | displaced step finishing. We don't make the displaced_step_fixup | |
2337 | step distinguish the cases instead, because: | |
2338 | ||
2339 | - a backtrace while stopped in the signal handler would show the | |
2340 | scratch pad as frame older than the signal handler, instead of | |
2341 | the real mainline code. | |
2342 | ||
2343 | - when the thread is later resumed, the signal handler would | |
2344 | return to the scratch pad area, which would no longer be | |
2345 | valid. */ | |
2346 | if (step_over_info_valid_p () | |
2347 | || displaced_step_in_progress (ptid_get_pid (tp->ptid))) | |
64ce06e4 PA |
2348 | target_pass_signals (0, NULL); |
2349 | else | |
2350 | target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass); | |
2351 | ||
2352 | target_resume (resume_ptid, step, sig); | |
85ad3aaf PA |
2353 | |
2354 | target_commit_resume (); | |
64ce06e4 PA |
2355 | } |
2356 | ||
d930703d PA |
2357 | /* Resume the inferior. SIG is the signal to give the inferior |
2358 | (GDB_SIGNAL_0 for none). */ | |
c906108c | 2359 | |
c906108c | 2360 | void |
64ce06e4 | 2361 | resume (enum gdb_signal sig) |
c906108c | 2362 | { |
515630c5 | 2363 | struct regcache *regcache = get_current_regcache (); |
ac7936df | 2364 | struct gdbarch *gdbarch = regcache->arch (); |
4e1c45ea | 2365 | struct thread_info *tp = inferior_thread (); |
515630c5 | 2366 | CORE_ADDR pc = regcache_read_pc (regcache); |
8b86c959 | 2367 | const address_space *aspace = regcache->aspace (); |
b0f16a3e | 2368 | ptid_t resume_ptid; |
856e7dd6 PA |
2369 | /* This represents the user's step vs continue request. When |
2370 | deciding whether "set scheduler-locking step" applies, it's the | |
2371 | user's intention that counts. */ | |
2372 | const int user_step = tp->control.stepping_command; | |
64ce06e4 PA |
2373 | /* This represents what we'll actually request the target to do. |
2374 | This can decay from a step to a continue, if e.g., we need to | |
2375 | implement single-stepping with breakpoints (software | |
2376 | single-step). */ | |
6b403daa | 2377 | int step; |
c7e8a53c | 2378 | |
c65d6b55 | 2379 | gdb_assert (!tp->stop_requested); |
c2829269 PA |
2380 | gdb_assert (!thread_is_in_step_over_chain (tp)); |
2381 | ||
372316f1 PA |
2382 | if (tp->suspend.waitstatus_pending_p) |
2383 | { | |
2384 | if (debug_infrun) | |
2385 | { | |
23fdd69e SM |
2386 | std::string statstr |
2387 | = target_waitstatus_to_string (&tp->suspend.waitstatus); | |
372316f1 | 2388 | |
372316f1 | 2389 | fprintf_unfiltered (gdb_stdlog, |
23fdd69e SM |
2390 | "infrun: resume: thread %s has pending wait " |
2391 | "status %s (currently_stepping=%d).\n", | |
2392 | target_pid_to_str (tp->ptid), statstr.c_str (), | |
372316f1 | 2393 | currently_stepping (tp)); |
372316f1 PA |
2394 | } |
2395 | ||
2396 | tp->resumed = 1; | |
2397 | ||
2398 | /* FIXME: What should we do if we are supposed to resume this | |
2399 | thread with a signal? Maybe we should maintain a queue of | |
2400 | pending signals to deliver. */ | |
2401 | if (sig != GDB_SIGNAL_0) | |
2402 | { | |
fd7dcb94 | 2403 | warning (_("Couldn't deliver signal %s to %s."), |
372316f1 PA |
2404 | gdb_signal_to_name (sig), target_pid_to_str (tp->ptid)); |
2405 | } | |
2406 | ||
2407 | tp->suspend.stop_signal = GDB_SIGNAL_0; | |
372316f1 PA |
2408 | |
2409 | if (target_can_async_p ()) | |
2410 | target_async (1); | |
2411 | return; | |
2412 | } | |
2413 | ||
2414 | tp->stepped_breakpoint = 0; | |
2415 | ||
6b403daa PA |
2416 | /* Depends on stepped_breakpoint. */ |
2417 | step = currently_stepping (tp); | |
2418 | ||
74609e71 YQ |
2419 | if (current_inferior ()->waiting_for_vfork_done) |
2420 | { | |
48f9886d PA |
2421 | /* Don't try to single-step a vfork parent that is waiting for |
2422 | the child to get out of the shared memory region (by exec'ing | |
2423 | or exiting). This is particularly important on software | |
2424 | single-step archs, as the child process would trip on the | |
2425 | software single step breakpoint inserted for the parent | |
2426 | process. Since the parent will not actually execute any | |
2427 | instruction until the child is out of the shared region (such | |
2428 | are vfork's semantics), it is safe to simply continue it. | |
2429 | Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for | |
2430 | the parent, and tell it to `keep_going', which automatically | |
2431 | re-sets it stepping. */ | |
74609e71 YQ |
2432 | if (debug_infrun) |
2433 | fprintf_unfiltered (gdb_stdlog, | |
2434 | "infrun: resume : clear step\n"); | |
a09dd441 | 2435 | step = 0; |
74609e71 YQ |
2436 | } |
2437 | ||
527159b7 | 2438 | if (debug_infrun) |
237fc4c9 | 2439 | fprintf_unfiltered (gdb_stdlog, |
c9737c08 | 2440 | "infrun: resume (step=%d, signal=%s), " |
0d9a9a5f | 2441 | "trap_expected=%d, current thread [%s] at %s\n", |
c9737c08 PA |
2442 | step, gdb_signal_to_symbol_string (sig), |
2443 | tp->control.trap_expected, | |
0d9a9a5f PA |
2444 | target_pid_to_str (inferior_ptid), |
2445 | paddress (gdbarch, pc)); | |
c906108c | 2446 | |
c2c6d25f JM |
2447 | /* Normally, by the time we reach `resume', the breakpoints are either |
2448 | removed or inserted, as appropriate. The exception is if we're sitting | |
2449 | at a permanent breakpoint; we need to step over it, but permanent | |
2450 | breakpoints can't be removed. So we have to test for it here. */ | |
6c95b8df | 2451 | if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here) |
6d350bb5 | 2452 | { |
af48d08f PA |
2453 | if (sig != GDB_SIGNAL_0) |
2454 | { | |
2455 | /* We have a signal to pass to the inferior. The resume | |
2456 | may, or may not take us to the signal handler. If this | |
2457 | is a step, we'll need to stop in the signal handler, if | |
2458 | there's one, (if the target supports stepping into | |
2459 | handlers), or in the next mainline instruction, if | |
2460 | there's no handler. If this is a continue, we need to be | |
2461 | sure to run the handler with all breakpoints inserted. | |
2462 | In all cases, set a breakpoint at the current address | |
2463 | (where the handler returns to), and once that breakpoint | |
2464 | is hit, resume skipping the permanent breakpoint. If | |
2465 | that breakpoint isn't hit, then we've stepped into the | |
2466 | signal handler (or hit some other event). We'll delete | |
2467 | the step-resume breakpoint then. */ | |
2468 | ||
2469 | if (debug_infrun) | |
2470 | fprintf_unfiltered (gdb_stdlog, | |
2471 | "infrun: resume: skipping permanent breakpoint, " | |
2472 | "deliver signal first\n"); | |
2473 | ||
2474 | clear_step_over_info (); | |
2475 | tp->control.trap_expected = 0; | |
2476 | ||
2477 | if (tp->control.step_resume_breakpoint == NULL) | |
2478 | { | |
2479 | /* Set a "high-priority" step-resume, as we don't want | |
2480 | user breakpoints at PC to trigger (again) when this | |
2481 | hits. */ | |
2482 | insert_hp_step_resume_breakpoint_at_frame (get_current_frame ()); | |
2483 | gdb_assert (tp->control.step_resume_breakpoint->loc->permanent); | |
2484 | ||
2485 | tp->step_after_step_resume_breakpoint = step; | |
2486 | } | |
2487 | ||
2488 | insert_breakpoints (); | |
2489 | } | |
2490 | else | |
2491 | { | |
2492 | /* There's no signal to pass, we can go ahead and skip the | |
2493 | permanent breakpoint manually. */ | |
2494 | if (debug_infrun) | |
2495 | fprintf_unfiltered (gdb_stdlog, | |
2496 | "infrun: resume: skipping permanent breakpoint\n"); | |
2497 | gdbarch_skip_permanent_breakpoint (gdbarch, regcache); | |
2498 | /* Update pc to reflect the new address from which we will | |
2499 | execute instructions. */ | |
2500 | pc = regcache_read_pc (regcache); | |
2501 | ||
2502 | if (step) | |
2503 | { | |
2504 | /* We've already advanced the PC, so the stepping part | |
2505 | is done. Now we need to arrange for a trap to be | |
2506 | reported to handle_inferior_event. Set a breakpoint | |
2507 | at the current PC, and run to it. Don't update | |
2508 | prev_pc, because if we end in | |
44a1ee51 PA |
2509 | switch_back_to_stepped_thread, we want the "expected |
2510 | thread advanced also" branch to be taken. IOW, we | |
2511 | don't want this thread to step further from PC | |
af48d08f | 2512 | (overstep). */ |
1ac806b8 | 2513 | gdb_assert (!step_over_info_valid_p ()); |
af48d08f PA |
2514 | insert_single_step_breakpoint (gdbarch, aspace, pc); |
2515 | insert_breakpoints (); | |
2516 | ||
fbea99ea | 2517 | resume_ptid = internal_resume_ptid (user_step); |
1ac806b8 | 2518 | do_target_resume (resume_ptid, 0, GDB_SIGNAL_0); |
372316f1 | 2519 | tp->resumed = 1; |
af48d08f PA |
2520 | return; |
2521 | } | |
2522 | } | |
6d350bb5 | 2523 | } |
c2c6d25f | 2524 | |
c1e36e3e PA |
2525 | /* If we have a breakpoint to step over, make sure to do a single |
2526 | step only. Same if we have software watchpoints. */ | |
2527 | if (tp->control.trap_expected || bpstat_should_step ()) | |
2528 | tp->control.may_range_step = 0; | |
2529 | ||
237fc4c9 PA |
2530 | /* If enabled, step over breakpoints by executing a copy of the |
2531 | instruction at a different address. | |
2532 | ||
2533 | We can't use displaced stepping when we have a signal to deliver; | |
2534 | the comments for displaced_step_prepare explain why. The | |
2535 | comments in the handle_inferior event for dealing with 'random | |
74609e71 YQ |
2536 | signals' explain what we do instead. |
2537 | ||
2538 | We can't use displaced stepping when we are waiting for vfork_done | |
2539 | event, displaced stepping breaks the vfork child similarly as single | |
2540 | step software breakpoint. */ | |
3fc8eb30 PA |
2541 | if (tp->control.trap_expected |
2542 | && use_displaced_stepping (tp) | |
cb71640d | 2543 | && !step_over_info_valid_p () |
a493e3e2 | 2544 | && sig == GDB_SIGNAL_0 |
74609e71 | 2545 | && !current_inferior ()->waiting_for_vfork_done) |
237fc4c9 | 2546 | { |
3fc8eb30 | 2547 | int prepared = displaced_step_prepare (inferior_ptid); |
fc1cf338 | 2548 | |
3fc8eb30 | 2549 | if (prepared == 0) |
d56b7306 | 2550 | { |
4d9d9d04 PA |
2551 | if (debug_infrun) |
2552 | fprintf_unfiltered (gdb_stdlog, | |
2553 | "Got placed in step-over queue\n"); | |
2554 | ||
2555 | tp->control.trap_expected = 0; | |
d56b7306 VP |
2556 | return; |
2557 | } | |
3fc8eb30 PA |
2558 | else if (prepared < 0) |
2559 | { | |
2560 | /* Fallback to stepping over the breakpoint in-line. */ | |
2561 | ||
2562 | if (target_is_non_stop_p ()) | |
2563 | stop_all_threads (); | |
2564 | ||
a01bda52 | 2565 | set_step_over_info (regcache->aspace (), |
21edc42f | 2566 | regcache_read_pc (regcache), 0, tp->global_num); |
3fc8eb30 PA |
2567 | |
2568 | step = maybe_software_singlestep (gdbarch, pc); | |
2569 | ||
2570 | insert_breakpoints (); | |
2571 | } | |
2572 | else if (prepared > 0) | |
2573 | { | |
2574 | struct displaced_step_inferior_state *displaced; | |
99e40580 | 2575 | |
3fc8eb30 PA |
2576 | /* Update pc to reflect the new address from which we will |
2577 | execute instructions due to displaced stepping. */ | |
2578 | pc = regcache_read_pc (get_thread_regcache (inferior_ptid)); | |
ca7781d2 | 2579 | |
3fc8eb30 PA |
2580 | displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid)); |
2581 | step = gdbarch_displaced_step_hw_singlestep (gdbarch, | |
2582 | displaced->step_closure); | |
2583 | } | |
237fc4c9 PA |
2584 | } |
2585 | ||
2facfe5c | 2586 | /* Do we need to do it the hard way, w/temp breakpoints? */ |
99e40580 | 2587 | else if (step) |
2facfe5c | 2588 | step = maybe_software_singlestep (gdbarch, pc); |
c906108c | 2589 | |
30852783 UW |
2590 | /* Currently, our software single-step implementation leads to different |
2591 | results than hardware single-stepping in one situation: when stepping | |
2592 | into delivering a signal which has an associated signal handler, | |
2593 | hardware single-step will stop at the first instruction of the handler, | |
2594 | while software single-step will simply skip execution of the handler. | |
2595 | ||
2596 | For now, this difference in behavior is accepted since there is no | |
2597 | easy way to actually implement single-stepping into a signal handler | |
2598 | without kernel support. | |
2599 | ||
2600 | However, there is one scenario where this difference leads to follow-on | |
2601 | problems: if we're stepping off a breakpoint by removing all breakpoints | |
2602 | and then single-stepping. In this case, the software single-step | |
2603 | behavior means that even if there is a *breakpoint* in the signal | |
2604 | handler, GDB still would not stop. | |
2605 | ||
2606 | Fortunately, we can at least fix this particular issue. We detect | |
2607 | here the case where we are about to deliver a signal while software | |
2608 | single-stepping with breakpoints removed. In this situation, we | |
2609 | revert the decisions to remove all breakpoints and insert single- | |
2610 | step breakpoints, and instead we install a step-resume breakpoint | |
2611 | at the current address, deliver the signal without stepping, and | |
2612 | once we arrive back at the step-resume breakpoint, actually step | |
2613 | over the breakpoint we originally wanted to step over. */ | |
34b7e8a6 | 2614 | if (thread_has_single_step_breakpoints_set (tp) |
6cc83d2a PA |
2615 | && sig != GDB_SIGNAL_0 |
2616 | && step_over_info_valid_p ()) | |
30852783 UW |
2617 | { |
2618 | /* If we have nested signals or a pending signal is delivered | |
2619 | immediately after a handler returns, might might already have | |
2620 | a step-resume breakpoint set on the earlier handler. We cannot | |
2621 | set another step-resume breakpoint; just continue on until the | |
2622 | original breakpoint is hit. */ | |
2623 | if (tp->control.step_resume_breakpoint == NULL) | |
2624 | { | |
2c03e5be | 2625 | insert_hp_step_resume_breakpoint_at_frame (get_current_frame ()); |
30852783 UW |
2626 | tp->step_after_step_resume_breakpoint = 1; |
2627 | } | |
2628 | ||
34b7e8a6 | 2629 | delete_single_step_breakpoints (tp); |
30852783 | 2630 | |
31e77af2 | 2631 | clear_step_over_info (); |
30852783 | 2632 | tp->control.trap_expected = 0; |
31e77af2 PA |
2633 | |
2634 | insert_breakpoints (); | |
30852783 UW |
2635 | } |
2636 | ||
b0f16a3e SM |
2637 | /* If STEP is set, it's a request to use hardware stepping |
2638 | facilities. But in that case, we should never | |
2639 | use singlestep breakpoint. */ | |
34b7e8a6 | 2640 | gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step)); |
dfcd3bfb | 2641 | |
fbea99ea | 2642 | /* Decide the set of threads to ask the target to resume. */ |
1946c4cc | 2643 | if (tp->control.trap_expected) |
b0f16a3e SM |
2644 | { |
2645 | /* We're allowing a thread to run past a breakpoint it has | |
1946c4cc YQ |
2646 | hit, either by single-stepping the thread with the breakpoint |
2647 | removed, or by displaced stepping, with the breakpoint inserted. | |
2648 | In the former case, we need to single-step only this thread, | |
2649 | and keep others stopped, as they can miss this breakpoint if | |
2650 | allowed to run. That's not really a problem for displaced | |
2651 | stepping, but, we still keep other threads stopped, in case | |
2652 | another thread is also stopped for a breakpoint waiting for | |
2653 | its turn in the displaced stepping queue. */ | |
b0f16a3e SM |
2654 | resume_ptid = inferior_ptid; |
2655 | } | |
fbea99ea PA |
2656 | else |
2657 | resume_ptid = internal_resume_ptid (user_step); | |
d4db2f36 | 2658 | |
7f5ef605 PA |
2659 | if (execution_direction != EXEC_REVERSE |
2660 | && step && breakpoint_inserted_here_p (aspace, pc)) | |
b0f16a3e | 2661 | { |
372316f1 PA |
2662 | /* There are two cases where we currently need to step a |
2663 | breakpoint instruction when we have a signal to deliver: | |
2664 | ||
2665 | - See handle_signal_stop where we handle random signals that | |
2666 | could take out us out of the stepping range. Normally, in | |
2667 | that case we end up continuing (instead of stepping) over the | |
7f5ef605 PA |
2668 | signal handler with a breakpoint at PC, but there are cases |
2669 | where we should _always_ single-step, even if we have a | |
2670 | step-resume breakpoint, like when a software watchpoint is | |
2671 | set. Assuming single-stepping and delivering a signal at the | |
2672 | same time would takes us to the signal handler, then we could | |
2673 | have removed the breakpoint at PC to step over it. However, | |
2674 | some hardware step targets (like e.g., Mac OS) can't step | |
2675 | into signal handlers, and for those, we need to leave the | |
2676 | breakpoint at PC inserted, as otherwise if the handler | |
2677 | recurses and executes PC again, it'll miss the breakpoint. | |
2678 | So we leave the breakpoint inserted anyway, but we need to | |
2679 | record that we tried to step a breakpoint instruction, so | |
372316f1 PA |
2680 | that adjust_pc_after_break doesn't end up confused. |
2681 | ||
2682 | - In non-stop if we insert a breakpoint (e.g., a step-resume) | |
2683 | in one thread after another thread that was stepping had been | |
2684 | momentarily paused for a step-over. When we re-resume the | |
2685 | stepping thread, it may be resumed from that address with a | |
2686 | breakpoint that hasn't trapped yet. Seen with | |
2687 | gdb.threads/non-stop-fair-events.exp, on targets that don't | |
2688 | do displaced stepping. */ | |
2689 | ||
2690 | if (debug_infrun) | |
2691 | fprintf_unfiltered (gdb_stdlog, | |
2692 | "infrun: resume: [%s] stepped breakpoint\n", | |
2693 | target_pid_to_str (tp->ptid)); | |
7f5ef605 PA |
2694 | |
2695 | tp->stepped_breakpoint = 1; | |
2696 | ||
b0f16a3e SM |
2697 | /* Most targets can step a breakpoint instruction, thus |
2698 | executing it normally. But if this one cannot, just | |
2699 | continue and we will hit it anyway. */ | |
7f5ef605 | 2700 | if (gdbarch_cannot_step_breakpoint (gdbarch)) |
b0f16a3e SM |
2701 | step = 0; |
2702 | } | |
ef5cf84e | 2703 | |
b0f16a3e | 2704 | if (debug_displaced |
cb71640d | 2705 | && tp->control.trap_expected |
3fc8eb30 | 2706 | && use_displaced_stepping (tp) |
cb71640d | 2707 | && !step_over_info_valid_p ()) |
b0f16a3e | 2708 | { |
d9b67d9f | 2709 | struct regcache *resume_regcache = get_thread_regcache (tp->ptid); |
ac7936df | 2710 | struct gdbarch *resume_gdbarch = resume_regcache->arch (); |
b0f16a3e SM |
2711 | CORE_ADDR actual_pc = regcache_read_pc (resume_regcache); |
2712 | gdb_byte buf[4]; | |
2713 | ||
2714 | fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ", | |
2715 | paddress (resume_gdbarch, actual_pc)); | |
2716 | read_memory (actual_pc, buf, sizeof (buf)); | |
2717 | displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf)); | |
2718 | } | |
237fc4c9 | 2719 | |
b0f16a3e SM |
2720 | if (tp->control.may_range_step) |
2721 | { | |
2722 | /* If we're resuming a thread with the PC out of the step | |
2723 | range, then we're doing some nested/finer run control | |
2724 | operation, like stepping the thread out of the dynamic | |
2725 | linker or the displaced stepping scratch pad. We | |
2726 | shouldn't have allowed a range step then. */ | |
2727 | gdb_assert (pc_in_thread_step_range (pc, tp)); | |
2728 | } | |
c1e36e3e | 2729 | |
64ce06e4 | 2730 | do_target_resume (resume_ptid, step, sig); |
372316f1 | 2731 | tp->resumed = 1; |
c906108c SS |
2732 | } |
2733 | \f | |
237fc4c9 | 2734 | /* Proceeding. */ |
c906108c | 2735 | |
4c2f2a79 PA |
2736 | /* See infrun.h. */ |
2737 | ||
2738 | /* Counter that tracks number of user visible stops. This can be used | |
2739 | to tell whether a command has proceeded the inferior past the | |
2740 | current location. This allows e.g., inferior function calls in | |
2741 | breakpoint commands to not interrupt the command list. When the | |
2742 | call finishes successfully, the inferior is standing at the same | |
2743 | breakpoint as if nothing happened (and so we don't call | |
2744 | normal_stop). */ | |
2745 | static ULONGEST current_stop_id; | |
2746 | ||
2747 | /* See infrun.h. */ | |
2748 | ||
2749 | ULONGEST | |
2750 | get_stop_id (void) | |
2751 | { | |
2752 | return current_stop_id; | |
2753 | } | |
2754 | ||
2755 | /* Called when we report a user visible stop. */ | |
2756 | ||
2757 | static void | |
2758 | new_stop_id (void) | |
2759 | { | |
2760 | current_stop_id++; | |
2761 | } | |
2762 | ||
c906108c SS |
2763 | /* Clear out all variables saying what to do when inferior is continued. |
2764 | First do this, then set the ones you want, then call `proceed'. */ | |
2765 | ||
a7212384 UW |
2766 | static void |
2767 | clear_proceed_status_thread (struct thread_info *tp) | |
c906108c | 2768 | { |
a7212384 UW |
2769 | if (debug_infrun) |
2770 | fprintf_unfiltered (gdb_stdlog, | |
2771 | "infrun: clear_proceed_status_thread (%s)\n", | |
2772 | target_pid_to_str (tp->ptid)); | |
d6b48e9c | 2773 | |
372316f1 PA |
2774 | /* If we're starting a new sequence, then the previous finished |
2775 | single-step is no longer relevant. */ | |
2776 | if (tp->suspend.waitstatus_pending_p) | |
2777 | { | |
2778 | if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP) | |
2779 | { | |
2780 | if (debug_infrun) | |
2781 | fprintf_unfiltered (gdb_stdlog, | |
2782 | "infrun: clear_proceed_status: pending " | |
2783 | "event of %s was a finished step. " | |
2784 | "Discarding.\n", | |
2785 | target_pid_to_str (tp->ptid)); | |
2786 | ||
2787 | tp->suspend.waitstatus_pending_p = 0; | |
2788 | tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON; | |
2789 | } | |
2790 | else if (debug_infrun) | |
2791 | { | |
23fdd69e SM |
2792 | std::string statstr |
2793 | = target_waitstatus_to_string (&tp->suspend.waitstatus); | |
372316f1 | 2794 | |
372316f1 PA |
2795 | fprintf_unfiltered (gdb_stdlog, |
2796 | "infrun: clear_proceed_status_thread: thread %s " | |
2797 | "has pending wait status %s " | |
2798 | "(currently_stepping=%d).\n", | |
23fdd69e | 2799 | target_pid_to_str (tp->ptid), statstr.c_str (), |
372316f1 | 2800 | currently_stepping (tp)); |
372316f1 PA |
2801 | } |
2802 | } | |
2803 | ||
70509625 PA |
2804 | /* If this signal should not be seen by program, give it zero. |
2805 | Used for debugging signals. */ | |
2806 | if (!signal_pass_state (tp->suspend.stop_signal)) | |
2807 | tp->suspend.stop_signal = GDB_SIGNAL_0; | |
2808 | ||
243a9253 PA |
2809 | thread_fsm_delete (tp->thread_fsm); |
2810 | tp->thread_fsm = NULL; | |
2811 | ||
16c381f0 JK |
2812 | tp->control.trap_expected = 0; |
2813 | tp->control.step_range_start = 0; | |
2814 | tp->control.step_range_end = 0; | |
c1e36e3e | 2815 | tp->control.may_range_step = 0; |
16c381f0 JK |
2816 | tp->control.step_frame_id = null_frame_id; |
2817 | tp->control.step_stack_frame_id = null_frame_id; | |
2818 | tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE; | |
885eeb5b | 2819 | tp->control.step_start_function = NULL; |
a7212384 | 2820 | tp->stop_requested = 0; |
4e1c45ea | 2821 | |
16c381f0 | 2822 | tp->control.stop_step = 0; |
32400beb | 2823 | |
16c381f0 | 2824 | tp->control.proceed_to_finish = 0; |
414c69f7 | 2825 | |
856e7dd6 | 2826 | tp->control.stepping_command = 0; |
17b2616c | 2827 | |
a7212384 | 2828 | /* Discard any remaining commands or status from previous stop. */ |
16c381f0 | 2829 | bpstat_clear (&tp->control.stop_bpstat); |
a7212384 | 2830 | } |
32400beb | 2831 | |
a7212384 | 2832 | void |
70509625 | 2833 | clear_proceed_status (int step) |
a7212384 | 2834 | { |
f2665db5 MM |
2835 | /* With scheduler-locking replay, stop replaying other threads if we're |
2836 | not replaying the user-visible resume ptid. | |
2837 | ||
2838 | This is a convenience feature to not require the user to explicitly | |
2839 | stop replaying the other threads. We're assuming that the user's | |
2840 | intent is to resume tracing the recorded process. */ | |
2841 | if (!non_stop && scheduler_mode == schedlock_replay | |
2842 | && target_record_is_replaying (minus_one_ptid) | |
2843 | && !target_record_will_replay (user_visible_resume_ptid (step), | |
2844 | execution_direction)) | |
2845 | target_record_stop_replaying (); | |
2846 | ||
6c95b8df PA |
2847 | if (!non_stop) |
2848 | { | |
70509625 PA |
2849 | struct thread_info *tp; |
2850 | ptid_t resume_ptid; | |
2851 | ||
2852 | resume_ptid = user_visible_resume_ptid (step); | |
2853 | ||
2854 | /* In all-stop mode, delete the per-thread status of all threads | |
2855 | we're about to resume, implicitly and explicitly. */ | |
2856 | ALL_NON_EXITED_THREADS (tp) | |
2857 | { | |
2858 | if (!ptid_match (tp->ptid, resume_ptid)) | |
2859 | continue; | |
2860 | clear_proceed_status_thread (tp); | |
2861 | } | |
6c95b8df PA |
2862 | } |
2863 | ||
a7212384 UW |
2864 | if (!ptid_equal (inferior_ptid, null_ptid)) |
2865 | { | |
2866 | struct inferior *inferior; | |
2867 | ||
2868 | if (non_stop) | |
2869 | { | |
6c95b8df PA |
2870 | /* If in non-stop mode, only delete the per-thread status of |
2871 | the current thread. */ | |
a7212384 UW |
2872 | clear_proceed_status_thread (inferior_thread ()); |
2873 | } | |
6c95b8df | 2874 | |
d6b48e9c | 2875 | inferior = current_inferior (); |
16c381f0 | 2876 | inferior->control.stop_soon = NO_STOP_QUIETLY; |
4e1c45ea PA |
2877 | } |
2878 | ||
f3b1572e | 2879 | observer_notify_about_to_proceed (); |
c906108c SS |
2880 | } |
2881 | ||
99619bea PA |
2882 | /* Returns true if TP is still stopped at a breakpoint that needs |
2883 | stepping-over in order to make progress. If the breakpoint is gone | |
2884 | meanwhile, we can skip the whole step-over dance. */ | |
ea67f13b DJ |
2885 | |
2886 | static int | |
6c4cfb24 | 2887 | thread_still_needs_step_over_bp (struct thread_info *tp) |
99619bea PA |
2888 | { |
2889 | if (tp->stepping_over_breakpoint) | |
2890 | { | |
2891 | struct regcache *regcache = get_thread_regcache (tp->ptid); | |
2892 | ||
a01bda52 | 2893 | if (breakpoint_here_p (regcache->aspace (), |
af48d08f PA |
2894 | regcache_read_pc (regcache)) |
2895 | == ordinary_breakpoint_here) | |
99619bea PA |
2896 | return 1; |
2897 | ||
2898 | tp->stepping_over_breakpoint = 0; | |
2899 | } | |
2900 | ||
2901 | return 0; | |
2902 | } | |
2903 | ||
6c4cfb24 PA |
2904 | /* Check whether thread TP still needs to start a step-over in order |
2905 | to make progress when resumed. Returns an bitwise or of enum | |
2906 | step_over_what bits, indicating what needs to be stepped over. */ | |
2907 | ||
8d297bbf | 2908 | static step_over_what |
6c4cfb24 PA |
2909 | thread_still_needs_step_over (struct thread_info *tp) |
2910 | { | |
8d297bbf | 2911 | step_over_what what = 0; |
6c4cfb24 PA |
2912 | |
2913 | if (thread_still_needs_step_over_bp (tp)) | |
2914 | what |= STEP_OVER_BREAKPOINT; | |
2915 | ||
2916 | if (tp->stepping_over_watchpoint | |
2917 | && !target_have_steppable_watchpoint) | |
2918 | what |= STEP_OVER_WATCHPOINT; | |
2919 | ||
2920 | return what; | |
2921 | } | |
2922 | ||
483805cf PA |
2923 | /* Returns true if scheduler locking applies. STEP indicates whether |
2924 | we're about to do a step/next-like command to a thread. */ | |
2925 | ||
2926 | static int | |
856e7dd6 | 2927 | schedlock_applies (struct thread_info *tp) |
483805cf PA |
2928 | { |
2929 | return (scheduler_mode == schedlock_on | |
2930 | || (scheduler_mode == schedlock_step | |
f2665db5 MM |
2931 | && tp->control.stepping_command) |
2932 | || (scheduler_mode == schedlock_replay | |
2933 | && target_record_will_replay (minus_one_ptid, | |
2934 | execution_direction))); | |
483805cf PA |
2935 | } |
2936 | ||
c906108c SS |
2937 | /* Basic routine for continuing the program in various fashions. |
2938 | ||
2939 | ADDR is the address to resume at, or -1 for resume where stopped. | |
2940 | SIGGNAL is the signal to give it, or 0 for none, | |
c5aa993b | 2941 | or -1 for act according to how it stopped. |
c906108c | 2942 | STEP is nonzero if should trap after one instruction. |
c5aa993b JM |
2943 | -1 means return after that and print nothing. |
2944 | You should probably set various step_... variables | |
2945 | before calling here, if you are stepping. | |
c906108c SS |
2946 | |
2947 | You should call clear_proceed_status before calling proceed. */ | |
2948 | ||
2949 | void | |
64ce06e4 | 2950 | proceed (CORE_ADDR addr, enum gdb_signal siggnal) |
c906108c | 2951 | { |
e58b0e63 PA |
2952 | struct regcache *regcache; |
2953 | struct gdbarch *gdbarch; | |
4e1c45ea | 2954 | struct thread_info *tp; |
e58b0e63 | 2955 | CORE_ADDR pc; |
4d9d9d04 PA |
2956 | ptid_t resume_ptid; |
2957 | struct execution_control_state ecss; | |
2958 | struct execution_control_state *ecs = &ecss; | |
2959 | struct cleanup *old_chain; | |
2960 | int started; | |
c906108c | 2961 | |
e58b0e63 PA |
2962 | /* If we're stopped at a fork/vfork, follow the branch set by the |
2963 | "set follow-fork-mode" command; otherwise, we'll just proceed | |
2964 | resuming the current thread. */ | |
2965 | if (!follow_fork ()) | |
2966 | { | |
2967 | /* The target for some reason decided not to resume. */ | |
2968 | normal_stop (); | |
f148b27e PA |
2969 | if (target_can_async_p ()) |
2970 | inferior_event_handler (INF_EXEC_COMPLETE, NULL); | |
e58b0e63 PA |
2971 | return; |
2972 | } | |
2973 | ||
842951eb PA |
2974 | /* We'll update this if & when we switch to a new thread. */ |
2975 | previous_inferior_ptid = inferior_ptid; | |
2976 | ||
e58b0e63 | 2977 | regcache = get_current_regcache (); |
ac7936df | 2978 | gdbarch = regcache->arch (); |
8b86c959 YQ |
2979 | const address_space *aspace = regcache->aspace (); |
2980 | ||
e58b0e63 | 2981 | pc = regcache_read_pc (regcache); |
2adfaa28 | 2982 | tp = inferior_thread (); |
e58b0e63 | 2983 | |
99619bea PA |
2984 | /* Fill in with reasonable starting values. */ |
2985 | init_thread_stepping_state (tp); | |
2986 | ||
c2829269 PA |
2987 | gdb_assert (!thread_is_in_step_over_chain (tp)); |
2988 | ||
2acceee2 | 2989 | if (addr == (CORE_ADDR) -1) |
c906108c | 2990 | { |
af48d08f PA |
2991 | if (pc == stop_pc |
2992 | && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here | |
b2175913 | 2993 | && execution_direction != EXEC_REVERSE) |
3352ef37 AC |
2994 | /* There is a breakpoint at the address we will resume at, |
2995 | step one instruction before inserting breakpoints so that | |
2996 | we do not stop right away (and report a second hit at this | |
b2175913 MS |
2997 | breakpoint). |
2998 | ||
2999 | Note, we don't do this in reverse, because we won't | |
3000 | actually be executing the breakpoint insn anyway. | |
3001 | We'll be (un-)executing the previous instruction. */ | |
99619bea | 3002 | tp->stepping_over_breakpoint = 1; |
515630c5 UW |
3003 | else if (gdbarch_single_step_through_delay_p (gdbarch) |
3004 | && gdbarch_single_step_through_delay (gdbarch, | |
3005 | get_current_frame ())) | |
3352ef37 AC |
3006 | /* We stepped onto an instruction that needs to be stepped |
3007 | again before re-inserting the breakpoint, do so. */ | |
99619bea | 3008 | tp->stepping_over_breakpoint = 1; |
c906108c SS |
3009 | } |
3010 | else | |
3011 | { | |
515630c5 | 3012 | regcache_write_pc (regcache, addr); |
c906108c SS |
3013 | } |
3014 | ||
70509625 PA |
3015 | if (siggnal != GDB_SIGNAL_DEFAULT) |
3016 | tp->suspend.stop_signal = siggnal; | |
3017 | ||
4d9d9d04 PA |
3018 | resume_ptid = user_visible_resume_ptid (tp->control.stepping_command); |
3019 | ||
3020 | /* If an exception is thrown from this point on, make sure to | |
3021 | propagate GDB's knowledge of the executing state to the | |
3022 | frontend/user running state. */ | |
3023 | old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid); | |
3024 | ||
3025 | /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer | |
3026 | threads (e.g., we might need to set threads stepping over | |
3027 | breakpoints first), from the user/frontend's point of view, all | |
3028 | threads in RESUME_PTID are now running. Unless we're calling an | |
3029 | inferior function, as in that case we pretend the inferior | |
3030 | doesn't run at all. */ | |
3031 | if (!tp->control.in_infcall) | |
3032 | set_running (resume_ptid, 1); | |
17b2616c | 3033 | |
527159b7 | 3034 | if (debug_infrun) |
8a9de0e4 | 3035 | fprintf_unfiltered (gdb_stdlog, |
64ce06e4 | 3036 | "infrun: proceed (addr=%s, signal=%s)\n", |
c9737c08 | 3037 | paddress (gdbarch, addr), |
64ce06e4 | 3038 | gdb_signal_to_symbol_string (siggnal)); |
527159b7 | 3039 | |
4d9d9d04 PA |
3040 | annotate_starting (); |
3041 | ||
3042 | /* Make sure that output from GDB appears before output from the | |
3043 | inferior. */ | |
3044 | gdb_flush (gdb_stdout); | |
3045 | ||
d930703d PA |
3046 | /* Since we've marked the inferior running, give it the terminal. A |
3047 | QUIT/Ctrl-C from here on is forwarded to the target (which can | |
3048 | still detect attempts to unblock a stuck connection with repeated | |
3049 | Ctrl-C from within target_pass_ctrlc). */ | |
3050 | target_terminal::inferior (); | |
3051 | ||
4d9d9d04 PA |
3052 | /* In a multi-threaded task we may select another thread and |
3053 | then continue or step. | |
3054 | ||
3055 | But if a thread that we're resuming had stopped at a breakpoint, | |
3056 | it will immediately cause another breakpoint stop without any | |
3057 | execution (i.e. it will report a breakpoint hit incorrectly). So | |
3058 | we must step over it first. | |
3059 | ||
3060 | Look for threads other than the current (TP) that reported a | |
3061 | breakpoint hit and haven't been resumed yet since. */ | |
3062 | ||
3063 | /* If scheduler locking applies, we can avoid iterating over all | |
3064 | threads. */ | |
3065 | if (!non_stop && !schedlock_applies (tp)) | |
94cc34af | 3066 | { |
4d9d9d04 PA |
3067 | struct thread_info *current = tp; |
3068 | ||
3069 | ALL_NON_EXITED_THREADS (tp) | |
3070 | { | |
3071 | /* Ignore the current thread here. It's handled | |
3072 | afterwards. */ | |
3073 | if (tp == current) | |
3074 | continue; | |
99619bea | 3075 | |
4d9d9d04 PA |
3076 | /* Ignore threads of processes we're not resuming. */ |
3077 | if (!ptid_match (tp->ptid, resume_ptid)) | |
3078 | continue; | |
c906108c | 3079 | |
4d9d9d04 PA |
3080 | if (!thread_still_needs_step_over (tp)) |
3081 | continue; | |
3082 | ||
3083 | gdb_assert (!thread_is_in_step_over_chain (tp)); | |
c906108c | 3084 | |
99619bea PA |
3085 | if (debug_infrun) |
3086 | fprintf_unfiltered (gdb_stdlog, | |
3087 | "infrun: need to step-over [%s] first\n", | |
4d9d9d04 | 3088 | target_pid_to_str (tp->ptid)); |
99619bea | 3089 | |
4d9d9d04 | 3090 | thread_step_over_chain_enqueue (tp); |
2adfaa28 | 3091 | } |
31e77af2 | 3092 | |
4d9d9d04 | 3093 | tp = current; |
30852783 UW |
3094 | } |
3095 | ||
4d9d9d04 PA |
3096 | /* Enqueue the current thread last, so that we move all other |
3097 | threads over their breakpoints first. */ | |
3098 | if (tp->stepping_over_breakpoint) | |
3099 | thread_step_over_chain_enqueue (tp); | |
30852783 | 3100 | |
4d9d9d04 PA |
3101 | /* If the thread isn't started, we'll still need to set its prev_pc, |
3102 | so that switch_back_to_stepped_thread knows the thread hasn't | |
3103 | advanced. Must do this before resuming any thread, as in | |
3104 | all-stop/remote, once we resume we can't send any other packet | |
3105 | until the target stops again. */ | |
3106 | tp->prev_pc = regcache_read_pc (regcache); | |
99619bea | 3107 | |
a9bc57b9 TT |
3108 | { |
3109 | scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume (); | |
85ad3aaf | 3110 | |
a9bc57b9 | 3111 | started = start_step_over (); |
c906108c | 3112 | |
a9bc57b9 TT |
3113 | if (step_over_info_valid_p ()) |
3114 | { | |
3115 | /* Either this thread started a new in-line step over, or some | |
3116 | other thread was already doing one. In either case, don't | |
3117 | resume anything else until the step-over is finished. */ | |
3118 | } | |
3119 | else if (started && !target_is_non_stop_p ()) | |
3120 | { | |
3121 | /* A new displaced stepping sequence was started. In all-stop, | |
3122 | we can't talk to the target anymore until it next stops. */ | |
3123 | } | |
3124 | else if (!non_stop && target_is_non_stop_p ()) | |
3125 | { | |
3126 | /* In all-stop, but the target is always in non-stop mode. | |
3127 | Start all other threads that are implicitly resumed too. */ | |
3128 | ALL_NON_EXITED_THREADS (tp) | |
fbea99ea PA |
3129 | { |
3130 | /* Ignore threads of processes we're not resuming. */ | |
3131 | if (!ptid_match (tp->ptid, resume_ptid)) | |
3132 | continue; | |
3133 | ||
3134 | if (tp->resumed) | |
3135 | { | |
3136 | if (debug_infrun) | |
3137 | fprintf_unfiltered (gdb_stdlog, | |
3138 | "infrun: proceed: [%s] resumed\n", | |
3139 | target_pid_to_str (tp->ptid)); | |
3140 | gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p); | |
3141 | continue; | |
3142 | } | |
3143 | ||
3144 | if (thread_is_in_step_over_chain (tp)) | |
3145 | { | |
3146 | if (debug_infrun) | |
3147 | fprintf_unfiltered (gdb_stdlog, | |
3148 | "infrun: proceed: [%s] needs step-over\n", | |
3149 | target_pid_to_str (tp->ptid)); | |
3150 | continue; | |
3151 | } | |
3152 | ||
3153 | if (debug_infrun) | |
3154 | fprintf_unfiltered (gdb_stdlog, | |
3155 | "infrun: proceed: resuming %s\n", | |
3156 | target_pid_to_str (tp->ptid)); | |
3157 | ||
3158 | reset_ecs (ecs, tp); | |
3159 | switch_to_thread (tp->ptid); | |
3160 | keep_going_pass_signal (ecs); | |
3161 | if (!ecs->wait_some_more) | |
fd7dcb94 | 3162 | error (_("Command aborted.")); |
fbea99ea | 3163 | } |
a9bc57b9 TT |
3164 | } |
3165 | else if (!tp->resumed && !thread_is_in_step_over_chain (tp)) | |
3166 | { | |
3167 | /* The thread wasn't started, and isn't queued, run it now. */ | |
3168 | reset_ecs (ecs, tp); | |
3169 | switch_to_thread (tp->ptid); | |
3170 | keep_going_pass_signal (ecs); | |
3171 | if (!ecs->wait_some_more) | |
3172 | error (_("Command aborted.")); | |
3173 | } | |
3174 | } | |
c906108c | 3175 | |
85ad3aaf PA |
3176 | target_commit_resume (); |
3177 | ||
4d9d9d04 | 3178 | discard_cleanups (old_chain); |
c906108c | 3179 | |
0b333c5e PA |
3180 | /* Tell the event loop to wait for it to stop. If the target |
3181 | supports asynchronous execution, it'll do this from within | |
3182 | target_resume. */ | |
362646f5 | 3183 | if (!target_can_async_p ()) |
0b333c5e | 3184 | mark_async_event_handler (infrun_async_inferior_event_token); |
c906108c | 3185 | } |
c906108c SS |
3186 | \f |
3187 | ||
3188 | /* Start remote-debugging of a machine over a serial link. */ | |
96baa820 | 3189 | |
c906108c | 3190 | void |
8621d6a9 | 3191 | start_remote (int from_tty) |
c906108c | 3192 | { |
d6b48e9c | 3193 | struct inferior *inferior; |
d6b48e9c PA |
3194 | |
3195 | inferior = current_inferior (); | |
16c381f0 | 3196 | inferior->control.stop_soon = STOP_QUIETLY_REMOTE; |
43ff13b4 | 3197 | |
1777feb0 | 3198 | /* Always go on waiting for the target, regardless of the mode. */ |
6426a772 | 3199 | /* FIXME: cagney/1999-09-23: At present it isn't possible to |
7e73cedf | 3200 | indicate to wait_for_inferior that a target should timeout if |
6426a772 JM |
3201 | nothing is returned (instead of just blocking). Because of this, |
3202 | targets expecting an immediate response need to, internally, set | |
3203 | things up so that the target_wait() is forced to eventually | |
1777feb0 | 3204 | timeout. */ |
6426a772 JM |
3205 | /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to |
3206 | differentiate to its caller what the state of the target is after | |
3207 | the initial open has been performed. Here we're assuming that | |
3208 | the target has stopped. It should be possible to eventually have | |
3209 | target_open() return to the caller an indication that the target | |
3210 | is currently running and GDB state should be set to the same as | |
1777feb0 | 3211 | for an async run. */ |
e4c8541f | 3212 | wait_for_inferior (); |
8621d6a9 DJ |
3213 | |
3214 | /* Now that the inferior has stopped, do any bookkeeping like | |
3215 | loading shared libraries. We want to do this before normal_stop, | |
3216 | so that the displayed frame is up to date. */ | |
3217 | post_create_inferior (¤t_target, from_tty); | |
3218 | ||
6426a772 | 3219 | normal_stop (); |
c906108c SS |
3220 | } |
3221 | ||
3222 | /* Initialize static vars when a new inferior begins. */ | |
3223 | ||
3224 | void | |
96baa820 | 3225 | init_wait_for_inferior (void) |
c906108c SS |
3226 | { |
3227 | /* These are meaningless until the first time through wait_for_inferior. */ | |
c906108c | 3228 | |
c906108c SS |
3229 | breakpoint_init_inferior (inf_starting); |
3230 | ||
70509625 | 3231 | clear_proceed_status (0); |
9f976b41 | 3232 | |
ca005067 | 3233 | target_last_wait_ptid = minus_one_ptid; |
237fc4c9 | 3234 | |
842951eb | 3235 | previous_inferior_ptid = inferior_ptid; |
0d1e5fa7 | 3236 | |
edb3359d DJ |
3237 | /* Discard any skipped inlined frames. */ |
3238 | clear_inline_frame_state (minus_one_ptid); | |
c906108c | 3239 | } |
237fc4c9 | 3240 | |
c906108c | 3241 | \f |
488f131b | 3242 | |
ec9499be | 3243 | static void handle_inferior_event (struct execution_control_state *ecs); |
cd0fc7c3 | 3244 | |
568d6575 UW |
3245 | static void handle_step_into_function (struct gdbarch *gdbarch, |
3246 | struct execution_control_state *ecs); | |
3247 | static void handle_step_into_function_backward (struct gdbarch *gdbarch, | |
3248 | struct execution_control_state *ecs); | |
4f5d7f63 | 3249 | static void handle_signal_stop (struct execution_control_state *ecs); |
186c406b | 3250 | static void check_exception_resume (struct execution_control_state *, |
28106bc2 | 3251 | struct frame_info *); |
611c83ae | 3252 | |
bdc36728 | 3253 | static void end_stepping_range (struct execution_control_state *ecs); |
22bcd14b | 3254 | static void stop_waiting (struct execution_control_state *ecs); |
d4f3574e | 3255 | static void keep_going (struct execution_control_state *ecs); |
94c57d6a | 3256 | static void process_event_stop_test (struct execution_control_state *ecs); |
c447ac0b | 3257 | static int switch_back_to_stepped_thread (struct execution_control_state *ecs); |
104c1213 | 3258 | |
252fbfc8 PA |
3259 | /* This function is attached as a "thread_stop_requested" observer. |
3260 | Cleanup local state that assumed the PTID was to be resumed, and | |
3261 | report the stop to the frontend. */ | |
3262 | ||
2c0b251b | 3263 | static void |
252fbfc8 PA |
3264 | infrun_thread_stop_requested (ptid_t ptid) |
3265 | { | |
c2829269 | 3266 | struct thread_info *tp; |
252fbfc8 | 3267 | |
c65d6b55 PA |
3268 | /* PTID was requested to stop. If the thread was already stopped, |
3269 | but the user/frontend doesn't know about that yet (e.g., the | |
3270 | thread had been temporarily paused for some step-over), set up | |
3271 | for reporting the stop now. */ | |
c2829269 PA |
3272 | ALL_NON_EXITED_THREADS (tp) |
3273 | if (ptid_match (tp->ptid, ptid)) | |
3274 | { | |
c65d6b55 PA |
3275 | if (tp->state != THREAD_RUNNING) |
3276 | continue; | |
3277 | if (tp->executing) | |
3278 | continue; | |
3279 | ||
3280 | /* Remove matching threads from the step-over queue, so | |
3281 | start_step_over doesn't try to resume them | |
3282 | automatically. */ | |
c2829269 PA |
3283 | if (thread_is_in_step_over_chain (tp)) |
3284 | thread_step_over_chain_remove (tp); | |
252fbfc8 | 3285 | |
c65d6b55 PA |
3286 | /* If the thread is stopped, but the user/frontend doesn't |
3287 | know about that yet, queue a pending event, as if the | |
3288 | thread had just stopped now. Unless the thread already had | |
3289 | a pending event. */ | |
3290 | if (!tp->suspend.waitstatus_pending_p) | |
3291 | { | |
3292 | tp->suspend.waitstatus_pending_p = 1; | |
3293 | tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED; | |
3294 | tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0; | |
3295 | } | |
3296 | ||
3297 | /* Clear the inline-frame state, since we're re-processing the | |
3298 | stop. */ | |
3299 | clear_inline_frame_state (tp->ptid); | |
3300 | ||
3301 | /* If this thread was paused because some other thread was | |
3302 | doing an inline-step over, let that finish first. Once | |
3303 | that happens, we'll restart all threads and consume pending | |
3304 | stop events then. */ | |
3305 | if (step_over_info_valid_p ()) | |
3306 | continue; | |
3307 | ||
3308 | /* Otherwise we can process the (new) pending event now. Set | |
3309 | it so this pending event is considered by | |
3310 | do_target_wait. */ | |
3311 | tp->resumed = 1; | |
3312 | } | |
252fbfc8 PA |
3313 | } |
3314 | ||
a07daef3 PA |
3315 | static void |
3316 | infrun_thread_thread_exit (struct thread_info *tp, int silent) | |
3317 | { | |
3318 | if (ptid_equal (target_last_wait_ptid, tp->ptid)) | |
3319 | nullify_last_target_wait_ptid (); | |
3320 | } | |
3321 | ||
0cbcdb96 PA |
3322 | /* Delete the step resume, single-step and longjmp/exception resume |
3323 | breakpoints of TP. */ | |
4e1c45ea | 3324 | |
0cbcdb96 PA |
3325 | static void |
3326 | delete_thread_infrun_breakpoints (struct thread_info *tp) | |
4e1c45ea | 3327 | { |
0cbcdb96 PA |
3328 | delete_step_resume_breakpoint (tp); |
3329 | delete_exception_resume_breakpoint (tp); | |
34b7e8a6 | 3330 | delete_single_step_breakpoints (tp); |
4e1c45ea PA |
3331 | } |
3332 | ||
0cbcdb96 PA |
3333 | /* If the target still has execution, call FUNC for each thread that |
3334 | just stopped. In all-stop, that's all the non-exited threads; in | |
3335 | non-stop, that's the current thread, only. */ | |
3336 | ||
3337 | typedef void (*for_each_just_stopped_thread_callback_func) | |
3338 | (struct thread_info *tp); | |
4e1c45ea PA |
3339 | |
3340 | static void | |
0cbcdb96 | 3341 | for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func) |
4e1c45ea | 3342 | { |
0cbcdb96 | 3343 | if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid)) |
4e1c45ea PA |
3344 | return; |
3345 | ||
fbea99ea | 3346 | if (target_is_non_stop_p ()) |
4e1c45ea | 3347 | { |
0cbcdb96 PA |
3348 | /* If in non-stop mode, only the current thread stopped. */ |
3349 | func (inferior_thread ()); | |
4e1c45ea PA |
3350 | } |
3351 | else | |
0cbcdb96 PA |
3352 | { |
3353 | struct thread_info *tp; | |
3354 | ||
3355 | /* In all-stop mode, all threads have stopped. */ | |
3356 | ALL_NON_EXITED_THREADS (tp) | |
3357 | { | |
3358 | func (tp); | |
3359 | } | |
3360 | } | |
3361 | } | |
3362 | ||
3363 | /* Delete the step resume and longjmp/exception resume breakpoints of | |
3364 | the threads that just stopped. */ | |
3365 | ||
3366 | static void | |
3367 | delete_just_stopped_threads_infrun_breakpoints (void) | |
3368 | { | |
3369 | for_each_just_stopped_thread (delete_thread_infrun_breakpoints); | |
34b7e8a6 PA |
3370 | } |
3371 | ||
3372 | /* Delete the single-step breakpoints of the threads that just | |
3373 | stopped. */ | |
7c16b83e | 3374 | |
34b7e8a6 PA |
3375 | static void |
3376 | delete_just_stopped_threads_single_step_breakpoints (void) | |
3377 | { | |
3378 | for_each_just_stopped_thread (delete_single_step_breakpoints); | |
4e1c45ea PA |
3379 | } |
3380 | ||
1777feb0 | 3381 | /* A cleanup wrapper. */ |
4e1c45ea PA |
3382 | |
3383 | static void | |
0cbcdb96 | 3384 | delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg) |
4e1c45ea | 3385 | { |
0cbcdb96 | 3386 | delete_just_stopped_threads_infrun_breakpoints (); |
4e1c45ea PA |
3387 | } |
3388 | ||
221e1a37 | 3389 | /* See infrun.h. */ |
223698f8 | 3390 | |
221e1a37 | 3391 | void |
223698f8 DE |
3392 | print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid, |
3393 | const struct target_waitstatus *ws) | |
3394 | { | |
23fdd69e | 3395 | std::string status_string = target_waitstatus_to_string (ws); |
d7e74731 | 3396 | string_file stb; |
223698f8 DE |
3397 | |
3398 | /* The text is split over several lines because it was getting too long. | |
3399 | Call fprintf_unfiltered (gdb_stdlog) once so that the text is still | |
3400 | output as a unit; we want only one timestamp printed if debug_timestamp | |
3401 | is set. */ | |
3402 | ||
d7e74731 PA |
3403 | stb.printf ("infrun: target_wait (%d.%ld.%ld", |
3404 | ptid_get_pid (waiton_ptid), | |
3405 | ptid_get_lwp (waiton_ptid), | |
3406 | ptid_get_tid (waiton_ptid)); | |
dfd4cc63 | 3407 | if (ptid_get_pid (waiton_ptid) != -1) |
d7e74731 PA |
3408 | stb.printf (" [%s]", target_pid_to_str (waiton_ptid)); |
3409 | stb.printf (", status) =\n"); | |
3410 | stb.printf ("infrun: %d.%ld.%ld [%s],\n", | |
3411 | ptid_get_pid (result_ptid), | |
3412 | ptid_get_lwp (result_ptid), | |
3413 | ptid_get_tid (result_ptid), | |
3414 | target_pid_to_str (result_ptid)); | |
23fdd69e | 3415 | stb.printf ("infrun: %s\n", status_string.c_str ()); |
223698f8 DE |
3416 | |
3417 | /* This uses %s in part to handle %'s in the text, but also to avoid | |
3418 | a gcc error: the format attribute requires a string literal. */ | |
d7e74731 | 3419 | fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ()); |
223698f8 DE |
3420 | } |
3421 | ||
372316f1 PA |
3422 | /* Select a thread at random, out of those which are resumed and have |
3423 | had events. */ | |
3424 | ||
3425 | static struct thread_info * | |
3426 | random_pending_event_thread (ptid_t waiton_ptid) | |
3427 | { | |
3428 | struct thread_info *event_tp; | |
3429 | int num_events = 0; | |
3430 | int random_selector; | |
3431 | ||
3432 | /* First see how many events we have. Count only resumed threads | |
3433 | that have an event pending. */ | |
3434 | ALL_NON_EXITED_THREADS (event_tp) | |
3435 | if (ptid_match (event_tp->ptid, waiton_ptid) | |
3436 | && event_tp->resumed | |
3437 | && event_tp->suspend.waitstatus_pending_p) | |
3438 | num_events++; | |
3439 | ||
3440 | if (num_events == 0) | |
3441 | return NULL; | |
3442 | ||
3443 | /* Now randomly pick a thread out of those that have had events. */ | |
3444 | random_selector = (int) | |
3445 | ((num_events * (double) rand ()) / (RAND_MAX + 1.0)); | |
3446 | ||
3447 | if (debug_infrun && num_events > 1) | |
3448 | fprintf_unfiltered (gdb_stdlog, | |
3449 | "infrun: Found %d events, selecting #%d\n", | |
3450 | num_events, random_selector); | |
3451 | ||
3452 | /* Select the Nth thread that has had an event. */ | |
3453 | ALL_NON_EXITED_THREADS (event_tp) | |
3454 | if (ptid_match (event_tp->ptid, waiton_ptid) | |
3455 | && event_tp->resumed | |
3456 | && event_tp->suspend.waitstatus_pending_p) | |
3457 | if (random_selector-- == 0) | |
3458 | break; | |
3459 | ||
3460 | return event_tp; | |
3461 | } | |
3462 | ||
3463 | /* Wrapper for target_wait that first checks whether threads have | |
3464 | pending statuses to report before actually asking the target for | |
3465 | more events. */ | |
3466 | ||
3467 | static ptid_t | |
3468 | do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options) | |
3469 | { | |
3470 | ptid_t event_ptid; | |
3471 | struct thread_info *tp; | |
3472 | ||
3473 | /* First check if there is a resumed thread with a wait status | |
3474 | pending. */ | |
3475 | if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid)) | |
3476 | { | |
3477 | tp = random_pending_event_thread (ptid); | |
3478 | } | |
3479 | else | |
3480 | { | |
3481 | if (debug_infrun) | |
3482 | fprintf_unfiltered (gdb_stdlog, | |
3483 | "infrun: Waiting for specific thread %s.\n", | |
3484 | target_pid_to_str (ptid)); | |
3485 | ||
3486 | /* We have a specific thread to check. */ | |
3487 | tp = find_thread_ptid (ptid); | |
3488 | gdb_assert (tp != NULL); | |
3489 | if (!tp->suspend.waitstatus_pending_p) | |
3490 | tp = NULL; | |
3491 | } | |
3492 | ||
3493 | if (tp != NULL | |
3494 | && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT | |
3495 | || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)) | |
3496 | { | |
3497 | struct regcache *regcache = get_thread_regcache (tp->ptid); | |
ac7936df | 3498 | struct gdbarch *gdbarch = regcache->arch (); |
372316f1 PA |
3499 | CORE_ADDR pc; |
3500 | int discard = 0; | |
3501 | ||
3502 | pc = regcache_read_pc (regcache); | |
3503 | ||
3504 | if (pc != tp->suspend.stop_pc) | |
3505 | { | |
3506 | if (debug_infrun) | |
3507 | fprintf_unfiltered (gdb_stdlog, | |
3508 | "infrun: PC of %s changed. was=%s, now=%s\n", | |
3509 | target_pid_to_str (tp->ptid), | |
3510 | paddress (gdbarch, tp->prev_pc), | |
3511 | paddress (gdbarch, pc)); | |
3512 | discard = 1; | |
3513 | } | |
a01bda52 | 3514 | else if (!breakpoint_inserted_here_p (regcache->aspace (), pc)) |
372316f1 PA |
3515 | { |
3516 | if (debug_infrun) | |
3517 | fprintf_unfiltered (gdb_stdlog, | |
3518 | "infrun: previous breakpoint of %s, at %s gone\n", | |
3519 | target_pid_to_str (tp->ptid), | |
3520 | paddress (gdbarch, pc)); | |
3521 | ||
3522 | discard = 1; | |
3523 | } | |
3524 | ||
3525 | if (discard) | |
3526 | { | |
3527 | if (debug_infrun) | |
3528 | fprintf_unfiltered (gdb_stdlog, | |
3529 | "infrun: pending event of %s cancelled.\n", | |
3530 | target_pid_to_str (tp->ptid)); | |
3531 | ||
3532 | tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS; | |
3533 | tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON; | |
3534 | } | |
3535 | } | |
3536 | ||
3537 | if (tp != NULL) | |
3538 | { | |
3539 | if (debug_infrun) | |
3540 | { | |
23fdd69e SM |
3541 | std::string statstr |
3542 | = target_waitstatus_to_string (&tp->suspend.waitstatus); | |
372316f1 | 3543 | |
372316f1 PA |
3544 | fprintf_unfiltered (gdb_stdlog, |
3545 | "infrun: Using pending wait status %s for %s.\n", | |
23fdd69e | 3546 | statstr.c_str (), |
372316f1 | 3547 | target_pid_to_str (tp->ptid)); |
372316f1 PA |
3548 | } |
3549 | ||
3550 | /* Now that we've selected our final event LWP, un-adjust its PC | |
3551 | if it was a software breakpoint (and the target doesn't | |
3552 | always adjust the PC itself). */ | |
3553 | if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT | |
3554 | && !target_supports_stopped_by_sw_breakpoint ()) | |
3555 | { | |
3556 | struct regcache *regcache; | |
3557 | struct gdbarch *gdbarch; | |
3558 | int decr_pc; | |
3559 | ||
3560 | regcache = get_thread_regcache (tp->ptid); | |
ac7936df | 3561 | gdbarch = regcache->arch (); |
372316f1 PA |
3562 | |
3563 | decr_pc = gdbarch_decr_pc_after_break (gdbarch); | |
3564 | if (decr_pc != 0) | |
3565 | { | |
3566 | CORE_ADDR pc; | |
3567 | ||
3568 | pc = regcache_read_pc (regcache); | |
3569 | regcache_write_pc (regcache, pc + decr_pc); | |
3570 | } | |
3571 | } | |
3572 | ||
3573 | tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON; | |
3574 | *status = tp->suspend.waitstatus; | |
3575 | tp->suspend.waitstatus_pending_p = 0; | |
3576 | ||
3577 | /* Wake up the event loop again, until all pending events are | |
3578 | processed. */ | |
3579 | if (target_is_async_p ()) | |
3580 | mark_async_event_handler (infrun_async_inferior_event_token); | |
3581 | return tp->ptid; | |
3582 | } | |
3583 | ||
3584 | /* But if we don't find one, we'll have to wait. */ | |
3585 | ||
3586 | if (deprecated_target_wait_hook) | |
3587 | event_ptid = deprecated_target_wait_hook (ptid, status, options); | |
3588 | else | |
3589 | event_ptid = target_wait (ptid, status, options); | |
3590 | ||
3591 | return event_ptid; | |
3592 | } | |
3593 | ||
24291992 PA |
3594 | /* Prepare and stabilize the inferior for detaching it. E.g., |
3595 | detaching while a thread is displaced stepping is a recipe for | |
3596 | crashing it, as nothing would readjust the PC out of the scratch | |
3597 | pad. */ | |
3598 | ||
3599 | void | |
3600 | prepare_for_detach (void) | |
3601 | { | |
3602 | struct inferior *inf = current_inferior (); | |
3603 | ptid_t pid_ptid = pid_to_ptid (inf->pid); | |
24291992 PA |
3604 | struct displaced_step_inferior_state *displaced; |
3605 | ||
3606 | displaced = get_displaced_stepping_state (inf->pid); | |
3607 | ||
3608 | /* Is any thread of this process displaced stepping? If not, | |
3609 | there's nothing else to do. */ | |
3610 | if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid)) | |
3611 | return; | |
3612 | ||
3613 | if (debug_infrun) | |
3614 | fprintf_unfiltered (gdb_stdlog, | |
3615 | "displaced-stepping in-process while detaching"); | |
3616 | ||
9bcb1f16 | 3617 | scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true); |
24291992 PA |
3618 | |
3619 | while (!ptid_equal (displaced->step_ptid, null_ptid)) | |
3620 | { | |
3621 | struct cleanup *old_chain_2; | |
3622 | struct execution_control_state ecss; | |
3623 | struct execution_control_state *ecs; | |
3624 | ||
3625 | ecs = &ecss; | |
3626 | memset (ecs, 0, sizeof (*ecs)); | |
3627 | ||
3628 | overlay_cache_invalid = 1; | |
f15cb84a YQ |
3629 | /* Flush target cache before starting to handle each event. |
3630 | Target was running and cache could be stale. This is just a | |
3631 | heuristic. Running threads may modify target memory, but we | |
3632 | don't get any event. */ | |
3633 | target_dcache_invalidate (); | |
24291992 | 3634 | |
372316f1 | 3635 | ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0); |
24291992 PA |
3636 | |
3637 | if (debug_infrun) | |
3638 | print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws); | |
3639 | ||
3640 | /* If an error happens while handling the event, propagate GDB's | |
3641 | knowledge of the executing state to the frontend/user running | |
3642 | state. */ | |
3e43a32a MS |
3643 | old_chain_2 = make_cleanup (finish_thread_state_cleanup, |
3644 | &minus_one_ptid); | |
24291992 PA |
3645 | |
3646 | /* Now figure out what to do with the result of the result. */ | |
3647 | handle_inferior_event (ecs); | |
3648 | ||
3649 | /* No error, don't finish the state yet. */ | |
3650 | discard_cleanups (old_chain_2); | |
3651 | ||
3652 | /* Breakpoints and watchpoints are not installed on the target | |
3653 | at this point, and signals are passed directly to the | |
3654 | inferior, so this must mean the process is gone. */ | |
3655 | if (!ecs->wait_some_more) | |
3656 | { | |
9bcb1f16 | 3657 | restore_detaching.release (); |
24291992 PA |
3658 | error (_("Program exited while detaching")); |
3659 | } | |
3660 | } | |
3661 | ||
9bcb1f16 | 3662 | restore_detaching.release (); |
24291992 PA |
3663 | } |
3664 | ||
cd0fc7c3 | 3665 | /* Wait for control to return from inferior to debugger. |
ae123ec6 | 3666 | |
cd0fc7c3 SS |
3667 | If inferior gets a signal, we may decide to start it up again |
3668 | instead of returning. That is why there is a loop in this function. | |
3669 | When this function actually returns it means the inferior | |
3670 | should be left stopped and GDB should read more commands. */ | |
3671 | ||
3672 | void | |
e4c8541f | 3673 | wait_for_inferior (void) |
cd0fc7c3 SS |
3674 | { |
3675 | struct cleanup *old_cleanups; | |
e6f5c25b | 3676 | struct cleanup *thread_state_chain; |
c906108c | 3677 | |
527159b7 | 3678 | if (debug_infrun) |
ae123ec6 | 3679 | fprintf_unfiltered |
e4c8541f | 3680 | (gdb_stdlog, "infrun: wait_for_inferior ()\n"); |
527159b7 | 3681 | |
0cbcdb96 PA |
3682 | old_cleanups |
3683 | = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, | |
3684 | NULL); | |
cd0fc7c3 | 3685 | |
e6f5c25b PA |
3686 | /* If an error happens while handling the event, propagate GDB's |
3687 | knowledge of the executing state to the frontend/user running | |
3688 | state. */ | |
3689 | thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid); | |
3690 | ||
c906108c SS |
3691 | while (1) |
3692 | { | |
ae25568b PA |
3693 | struct execution_control_state ecss; |
3694 | struct execution_control_state *ecs = &ecss; | |
963f9c80 | 3695 | ptid_t waiton_ptid = minus_one_ptid; |
29f49a6a | 3696 | |
ae25568b PA |
3697 | memset (ecs, 0, sizeof (*ecs)); |
3698 | ||
ec9499be | 3699 | overlay_cache_invalid = 1; |
ec9499be | 3700 | |
f15cb84a YQ |
3701 | /* Flush target cache before starting to handle each event. |
3702 | Target was running and cache could be stale. This is just a | |
3703 | heuristic. Running threads may modify target memory, but we | |
3704 | don't get any event. */ | |
3705 | target_dcache_invalidate (); | |
3706 | ||
372316f1 | 3707 | ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0); |
c906108c | 3708 | |
f00150c9 | 3709 | if (debug_infrun) |
223698f8 | 3710 | print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws); |
f00150c9 | 3711 | |
cd0fc7c3 SS |
3712 | /* Now figure out what to do with the result of the result. */ |
3713 | handle_inferior_event (ecs); | |
c906108c | 3714 | |
cd0fc7c3 SS |
3715 | if (!ecs->wait_some_more) |
3716 | break; | |
3717 | } | |
4e1c45ea | 3718 | |
e6f5c25b PA |
3719 | /* No error, don't finish the state yet. */ |
3720 | discard_cleanups (thread_state_chain); | |
3721 | ||
cd0fc7c3 SS |
3722 | do_cleanups (old_cleanups); |
3723 | } | |
c906108c | 3724 | |
d3d4baed PA |
3725 | /* Cleanup that reinstalls the readline callback handler, if the |
3726 | target is running in the background. If while handling the target | |
3727 | event something triggered a secondary prompt, like e.g., a | |
3728 | pagination prompt, we'll have removed the callback handler (see | |
3729 | gdb_readline_wrapper_line). Need to do this as we go back to the | |
3730 | event loop, ready to process further input. Note this has no | |
3731 | effect if the handler hasn't actually been removed, because calling | |
3732 | rl_callback_handler_install resets the line buffer, thus losing | |
3733 | input. */ | |
3734 | ||
3735 | static void | |
3736 | reinstall_readline_callback_handler_cleanup (void *arg) | |
3737 | { | |
3b12939d PA |
3738 | struct ui *ui = current_ui; |
3739 | ||
3740 | if (!ui->async) | |
6c400b59 PA |
3741 | { |
3742 | /* We're not going back to the top level event loop yet. Don't | |
3743 | install the readline callback, as it'd prep the terminal, | |
3744 | readline-style (raw, noecho) (e.g., --batch). We'll install | |
3745 | it the next time the prompt is displayed, when we're ready | |
3746 | for input. */ | |
3747 | return; | |
3748 | } | |
3749 | ||
3b12939d | 3750 | if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED) |
d3d4baed PA |
3751 | gdb_rl_callback_handler_reinstall (); |
3752 | } | |
3753 | ||
243a9253 PA |
3754 | /* Clean up the FSMs of threads that are now stopped. In non-stop, |
3755 | that's just the event thread. In all-stop, that's all threads. */ | |
3756 | ||
3757 | static void | |
3758 | clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs) | |
3759 | { | |
3760 | struct thread_info *thr = ecs->event_thread; | |
3761 | ||
3762 | if (thr != NULL && thr->thread_fsm != NULL) | |
8980e177 | 3763 | thread_fsm_clean_up (thr->thread_fsm, thr); |
243a9253 PA |
3764 | |
3765 | if (!non_stop) | |
3766 | { | |
3767 | ALL_NON_EXITED_THREADS (thr) | |
3768 | { | |
3769 | if (thr->thread_fsm == NULL) | |
3770 | continue; | |
3771 | if (thr == ecs->event_thread) | |
3772 | continue; | |
3773 | ||
3774 | switch_to_thread (thr->ptid); | |
8980e177 | 3775 | thread_fsm_clean_up (thr->thread_fsm, thr); |
243a9253 PA |
3776 | } |
3777 | ||
3778 | if (ecs->event_thread != NULL) | |
3779 | switch_to_thread (ecs->event_thread->ptid); | |
3780 | } | |
3781 | } | |
3782 | ||
3b12939d PA |
3783 | /* Helper for all_uis_check_sync_execution_done that works on the |
3784 | current UI. */ | |
3785 | ||
3786 | static void | |
3787 | check_curr_ui_sync_execution_done (void) | |
3788 | { | |
3789 | struct ui *ui = current_ui; | |
3790 | ||
3791 | if (ui->prompt_state == PROMPT_NEEDED | |
3792 | && ui->async | |
3793 | && !gdb_in_secondary_prompt_p (ui)) | |
3794 | { | |
223ffa71 | 3795 | target_terminal::ours (); |
3b12939d | 3796 | observer_notify_sync_execution_done (); |
3eb7562a | 3797 | ui_register_input_event_handler (ui); |
3b12939d PA |
3798 | } |
3799 | } | |
3800 | ||
3801 | /* See infrun.h. */ | |
3802 | ||
3803 | void | |
3804 | all_uis_check_sync_execution_done (void) | |
3805 | { | |
0e454242 | 3806 | SWITCH_THRU_ALL_UIS () |
3b12939d PA |
3807 | { |
3808 | check_curr_ui_sync_execution_done (); | |
3809 | } | |
3810 | } | |
3811 | ||
a8836c93 PA |
3812 | /* See infrun.h. */ |
3813 | ||
3814 | void | |
3815 | all_uis_on_sync_execution_starting (void) | |
3816 | { | |
0e454242 | 3817 | SWITCH_THRU_ALL_UIS () |
a8836c93 PA |
3818 | { |
3819 | if (current_ui->prompt_state == PROMPT_NEEDED) | |
3820 | async_disable_stdin (); | |
3821 | } | |
3822 | } | |
3823 | ||
1777feb0 | 3824 | /* Asynchronous version of wait_for_inferior. It is called by the |
43ff13b4 | 3825 | event loop whenever a change of state is detected on the file |
1777feb0 MS |
3826 | descriptor corresponding to the target. It can be called more than |
3827 | once to complete a single execution command. In such cases we need | |
3828 | to keep the state in a global variable ECSS. If it is the last time | |
a474d7c2 PA |
3829 | that this function is called for a single execution command, then |
3830 | report to the user that the inferior has stopped, and do the | |
1777feb0 | 3831 | necessary cleanups. */ |
43ff13b4 JM |
3832 | |
3833 | void | |
fba45db2 | 3834 | fetch_inferior_event (void *client_data) |
43ff13b4 | 3835 | { |
0d1e5fa7 | 3836 | struct execution_control_state ecss; |
a474d7c2 | 3837 | struct execution_control_state *ecs = &ecss; |
4f8d22e3 | 3838 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); |
29f49a6a | 3839 | struct cleanup *ts_old_chain; |
0f641c01 | 3840 | int cmd_done = 0; |
963f9c80 | 3841 | ptid_t waiton_ptid = minus_one_ptid; |
43ff13b4 | 3842 | |
0d1e5fa7 PA |
3843 | memset (ecs, 0, sizeof (*ecs)); |
3844 | ||
c61db772 PA |
3845 | /* Events are always processed with the main UI as current UI. This |
3846 | way, warnings, debug output, etc. are always consistently sent to | |
3847 | the main console. */ | |
4b6749b9 | 3848 | scoped_restore save_ui = make_scoped_restore (¤t_ui, main_ui); |
c61db772 | 3849 | |
d3d4baed PA |
3850 | /* End up with readline processing input, if necessary. */ |
3851 | make_cleanup (reinstall_readline_callback_handler_cleanup, NULL); | |
3852 | ||
c5187ac6 PA |
3853 | /* We're handling a live event, so make sure we're doing live |
3854 | debugging. If we're looking at traceframes while the target is | |
3855 | running, we're going to need to get back to that mode after | |
3856 | handling the event. */ | |
3857 | if (non_stop) | |
3858 | { | |
3859 | make_cleanup_restore_current_traceframe (); | |
e6e4e701 | 3860 | set_current_traceframe (-1); |
c5187ac6 PA |
3861 | } |
3862 | ||
5ed8105e PA |
3863 | gdb::optional<scoped_restore_current_thread> maybe_restore_thread; |
3864 | ||
4f8d22e3 PA |
3865 | if (non_stop) |
3866 | /* In non-stop mode, the user/frontend should not notice a thread | |
3867 | switch due to internal events. Make sure we reverse to the | |
3868 | user selected thread and frame after handling the event and | |
3869 | running any breakpoint commands. */ | |
5ed8105e | 3870 | maybe_restore_thread.emplace (); |
4f8d22e3 | 3871 | |
ec9499be | 3872 | overlay_cache_invalid = 1; |
f15cb84a YQ |
3873 | /* Flush target cache before starting to handle each event. Target |
3874 | was running and cache could be stale. This is just a heuristic. | |
3875 | Running threads may modify target memory, but we don't get any | |
3876 | event. */ | |
3877 | target_dcache_invalidate (); | |
3dd5b83d | 3878 | |
b7b633e9 TT |
3879 | scoped_restore save_exec_dir |
3880 | = make_scoped_restore (&execution_direction, target_execution_direction ()); | |
32231432 | 3881 | |
0b333c5e PA |
3882 | ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, |
3883 | target_can_async_p () ? TARGET_WNOHANG : 0); | |
43ff13b4 | 3884 | |
f00150c9 | 3885 | if (debug_infrun) |
223698f8 | 3886 | print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws); |
f00150c9 | 3887 | |
29f49a6a PA |
3888 | /* If an error happens while handling the event, propagate GDB's |
3889 | knowledge of the executing state to the frontend/user running | |
3890 | state. */ | |
fbea99ea | 3891 | if (!target_is_non_stop_p ()) |
29f49a6a PA |
3892 | ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid); |
3893 | else | |
3894 | ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid); | |
3895 | ||
353d1d73 JK |
3896 | /* Get executed before make_cleanup_restore_current_thread above to apply |
3897 | still for the thread which has thrown the exception. */ | |
3898 | make_bpstat_clear_actions_cleanup (); | |
3899 | ||
7c16b83e PA |
3900 | make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL); |
3901 | ||
43ff13b4 | 3902 | /* Now figure out what to do with the result of the result. */ |
a474d7c2 | 3903 | handle_inferior_event (ecs); |
43ff13b4 | 3904 | |
a474d7c2 | 3905 | if (!ecs->wait_some_more) |
43ff13b4 | 3906 | { |
c9657e70 | 3907 | struct inferior *inf = find_inferior_ptid (ecs->ptid); |
243a9253 PA |
3908 | int should_stop = 1; |
3909 | struct thread_info *thr = ecs->event_thread; | |
388a7084 | 3910 | int should_notify_stop = 1; |
d6b48e9c | 3911 | |
0cbcdb96 | 3912 | delete_just_stopped_threads_infrun_breakpoints (); |
f107f563 | 3913 | |
243a9253 PA |
3914 | if (thr != NULL) |
3915 | { | |
3916 | struct thread_fsm *thread_fsm = thr->thread_fsm; | |
3917 | ||
3918 | if (thread_fsm != NULL) | |
8980e177 | 3919 | should_stop = thread_fsm_should_stop (thread_fsm, thr); |
243a9253 PA |
3920 | } |
3921 | ||
3922 | if (!should_stop) | |
3923 | { | |
3924 | keep_going (ecs); | |
3925 | } | |
c2d11a7d | 3926 | else |
0f641c01 | 3927 | { |
243a9253 PA |
3928 | clean_up_just_stopped_threads_fsms (ecs); |
3929 | ||
388a7084 PA |
3930 | if (thr != NULL && thr->thread_fsm != NULL) |
3931 | { | |
3932 | should_notify_stop | |
3933 | = thread_fsm_should_notify_stop (thr->thread_fsm); | |
3934 | } | |
3935 | ||
3936 | if (should_notify_stop) | |
3937 | { | |
4c2f2a79 PA |
3938 | int proceeded = 0; |
3939 | ||
388a7084 PA |
3940 | /* We may not find an inferior if this was a process exit. */ |
3941 | if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY) | |
4c2f2a79 | 3942 | proceeded = normal_stop (); |
243a9253 | 3943 | |
4c2f2a79 PA |
3944 | if (!proceeded) |
3945 | { | |
3946 | inferior_event_handler (INF_EXEC_COMPLETE, NULL); | |
3947 | cmd_done = 1; | |
3948 | } | |
388a7084 | 3949 | } |
0f641c01 | 3950 | } |
43ff13b4 | 3951 | } |
4f8d22e3 | 3952 | |
29f49a6a PA |
3953 | /* No error, don't finish the thread states yet. */ |
3954 | discard_cleanups (ts_old_chain); | |
3955 | ||
4f8d22e3 PA |
3956 | /* Revert thread and frame. */ |
3957 | do_cleanups (old_chain); | |
3958 | ||
3b12939d PA |
3959 | /* If a UI was in sync execution mode, and now isn't, restore its |
3960 | prompt (a synchronous execution command has finished, and we're | |
3961 | ready for input). */ | |
3962 | all_uis_check_sync_execution_done (); | |
0f641c01 PA |
3963 | |
3964 | if (cmd_done | |
0f641c01 PA |
3965 | && exec_done_display_p |
3966 | && (ptid_equal (inferior_ptid, null_ptid) | |
3967 | || !is_running (inferior_ptid))) | |
3968 | printf_unfiltered (_("completed.\n")); | |
43ff13b4 JM |
3969 | } |
3970 | ||
edb3359d DJ |
3971 | /* Record the frame and location we're currently stepping through. */ |
3972 | void | |
3973 | set_step_info (struct frame_info *frame, struct symtab_and_line sal) | |
3974 | { | |
3975 | struct thread_info *tp = inferior_thread (); | |
3976 | ||
16c381f0 JK |
3977 | tp->control.step_frame_id = get_frame_id (frame); |
3978 | tp->control.step_stack_frame_id = get_stack_frame_id (frame); | |
edb3359d DJ |
3979 | |
3980 | tp->current_symtab = sal.symtab; | |
3981 | tp->current_line = sal.line; | |
3982 | } | |
3983 | ||
0d1e5fa7 PA |
3984 | /* Clear context switchable stepping state. */ |
3985 | ||
3986 | void | |
4e1c45ea | 3987 | init_thread_stepping_state (struct thread_info *tss) |
0d1e5fa7 | 3988 | { |
7f5ef605 | 3989 | tss->stepped_breakpoint = 0; |
0d1e5fa7 | 3990 | tss->stepping_over_breakpoint = 0; |
963f9c80 | 3991 | tss->stepping_over_watchpoint = 0; |
0d1e5fa7 | 3992 | tss->step_after_step_resume_breakpoint = 0; |
cd0fc7c3 SS |
3993 | } |
3994 | ||
c32c64b7 DE |
3995 | /* Set the cached copy of the last ptid/waitstatus. */ |
3996 | ||
6efcd9a8 | 3997 | void |
c32c64b7 DE |
3998 | set_last_target_status (ptid_t ptid, struct target_waitstatus status) |
3999 | { | |
4000 | target_last_wait_ptid = ptid; | |
4001 | target_last_waitstatus = status; | |
4002 | } | |
4003 | ||
e02bc4cc | 4004 | /* Return the cached copy of the last pid/waitstatus returned by |
9a4105ab AC |
4005 | target_wait()/deprecated_target_wait_hook(). The data is actually |
4006 | cached by handle_inferior_event(), which gets called immediately | |
4007 | after target_wait()/deprecated_target_wait_hook(). */ | |
e02bc4cc DS |
4008 | |
4009 | void | |
488f131b | 4010 | get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status) |
e02bc4cc | 4011 | { |
39f77062 | 4012 | *ptidp = target_last_wait_ptid; |
e02bc4cc DS |
4013 | *status = target_last_waitstatus; |
4014 | } | |
4015 | ||
ac264b3b MS |
4016 | void |
4017 | nullify_last_target_wait_ptid (void) | |
4018 | { | |
4019 | target_last_wait_ptid = minus_one_ptid; | |
4020 | } | |
4021 | ||
dcf4fbde | 4022 | /* Switch thread contexts. */ |
dd80620e MS |
4023 | |
4024 | static void | |
0d1e5fa7 | 4025 | context_switch (ptid_t ptid) |
dd80620e | 4026 | { |
4b51d87b | 4027 | if (debug_infrun && !ptid_equal (ptid, inferior_ptid)) |
fd48f117 DJ |
4028 | { |
4029 | fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ", | |
4030 | target_pid_to_str (inferior_ptid)); | |
4031 | fprintf_unfiltered (gdb_stdlog, "to %s\n", | |
0d1e5fa7 | 4032 | target_pid_to_str (ptid)); |
fd48f117 DJ |
4033 | } |
4034 | ||
0d1e5fa7 | 4035 | switch_to_thread (ptid); |
dd80620e MS |
4036 | } |
4037 | ||
d8dd4d5f PA |
4038 | /* If the target can't tell whether we've hit breakpoints |
4039 | (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP, | |
4040 | check whether that could have been caused by a breakpoint. If so, | |
4041 | adjust the PC, per gdbarch_decr_pc_after_break. */ | |
4042 | ||
4fa8626c | 4043 | static void |
d8dd4d5f PA |
4044 | adjust_pc_after_break (struct thread_info *thread, |
4045 | struct target_waitstatus *ws) | |
4fa8626c | 4046 | { |
24a73cce UW |
4047 | struct regcache *regcache; |
4048 | struct gdbarch *gdbarch; | |
118e6252 | 4049 | CORE_ADDR breakpoint_pc, decr_pc; |
4fa8626c | 4050 | |
4fa8626c DJ |
4051 | /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If |
4052 | we aren't, just return. | |
9709f61c DJ |
4053 | |
4054 | We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not | |
b798847d UW |
4055 | affected by gdbarch_decr_pc_after_break. Other waitkinds which are |
4056 | implemented by software breakpoints should be handled through the normal | |
4057 | breakpoint layer. | |
8fb3e588 | 4058 | |
4fa8626c DJ |
4059 | NOTE drow/2004-01-31: On some targets, breakpoints may generate |
4060 | different signals (SIGILL or SIGEMT for instance), but it is less | |
4061 | clear where the PC is pointing afterwards. It may not match | |
b798847d UW |
4062 | gdbarch_decr_pc_after_break. I don't know any specific target that |
4063 | generates these signals at breakpoints (the code has been in GDB since at | |
4064 | least 1992) so I can not guess how to handle them here. | |
8fb3e588 | 4065 | |
e6cf7916 UW |
4066 | In earlier versions of GDB, a target with |
4067 | gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a | |
b798847d UW |
4068 | watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any |
4069 | target with both of these set in GDB history, and it seems unlikely to be | |
4070 | correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */ | |
4fa8626c | 4071 | |
d8dd4d5f | 4072 | if (ws->kind != TARGET_WAITKIND_STOPPED) |
4fa8626c DJ |
4073 | return; |
4074 | ||
d8dd4d5f | 4075 | if (ws->value.sig != GDB_SIGNAL_TRAP) |
4fa8626c DJ |
4076 | return; |
4077 | ||
4058b839 PA |
4078 | /* In reverse execution, when a breakpoint is hit, the instruction |
4079 | under it has already been de-executed. The reported PC always | |
4080 | points at the breakpoint address, so adjusting it further would | |
4081 | be wrong. E.g., consider this case on a decr_pc_after_break == 1 | |
4082 | architecture: | |
4083 | ||
4084 | B1 0x08000000 : INSN1 | |
4085 | B2 0x08000001 : INSN2 | |
4086 | 0x08000002 : INSN3 | |
4087 | PC -> 0x08000003 : INSN4 | |
4088 | ||
4089 | Say you're stopped at 0x08000003 as above. Reverse continuing | |
4090 | from that point should hit B2 as below. Reading the PC when the | |
4091 | SIGTRAP is reported should read 0x08000001 and INSN2 should have | |
4092 | been de-executed already. | |
4093 | ||
4094 | B1 0x08000000 : INSN1 | |
4095 | B2 PC -> 0x08000001 : INSN2 | |
4096 | 0x08000002 : INSN3 | |
4097 | 0x08000003 : INSN4 | |
4098 | ||
4099 | We can't apply the same logic as for forward execution, because | |
4100 | we would wrongly adjust the PC to 0x08000000, since there's a | |
4101 | breakpoint at PC - 1. We'd then report a hit on B1, although | |
4102 | INSN1 hadn't been de-executed yet. Doing nothing is the correct | |
4103 | behaviour. */ | |
4104 | if (execution_direction == EXEC_REVERSE) | |
4105 | return; | |
4106 | ||
1cf4d951 PA |
4107 | /* If the target can tell whether the thread hit a SW breakpoint, |
4108 | trust it. Targets that can tell also adjust the PC | |
4109 | themselves. */ | |
4110 | if (target_supports_stopped_by_sw_breakpoint ()) | |
4111 | return; | |
4112 | ||
4113 | /* Note that relying on whether a breakpoint is planted in memory to | |
4114 | determine this can fail. E.g,. the breakpoint could have been | |
4115 | removed since. Or the thread could have been told to step an | |
4116 | instruction the size of a breakpoint instruction, and only | |
4117 | _after_ was a breakpoint inserted at its address. */ | |
4118 | ||
24a73cce UW |
4119 | /* If this target does not decrement the PC after breakpoints, then |
4120 | we have nothing to do. */ | |
d8dd4d5f | 4121 | regcache = get_thread_regcache (thread->ptid); |
ac7936df | 4122 | gdbarch = regcache->arch (); |
118e6252 | 4123 | |
527a273a | 4124 | decr_pc = gdbarch_decr_pc_after_break (gdbarch); |
118e6252 | 4125 | if (decr_pc == 0) |
24a73cce UW |
4126 | return; |
4127 | ||
8b86c959 | 4128 | const address_space *aspace = regcache->aspace (); |
6c95b8df | 4129 | |
8aad930b AC |
4130 | /* Find the location where (if we've hit a breakpoint) the |
4131 | breakpoint would be. */ | |
118e6252 | 4132 | breakpoint_pc = regcache_read_pc (regcache) - decr_pc; |
8aad930b | 4133 | |
1cf4d951 PA |
4134 | /* If the target can't tell whether a software breakpoint triggered, |
4135 | fallback to figuring it out based on breakpoints we think were | |
4136 | inserted in the target, and on whether the thread was stepped or | |
4137 | continued. */ | |
4138 | ||
1c5cfe86 PA |
4139 | /* Check whether there actually is a software breakpoint inserted at |
4140 | that location. | |
4141 | ||
4142 | If in non-stop mode, a race condition is possible where we've | |
4143 | removed a breakpoint, but stop events for that breakpoint were | |
4144 | already queued and arrive later. To suppress those spurious | |
4145 | SIGTRAPs, we keep a list of such breakpoint locations for a bit, | |
1cf4d951 PA |
4146 | and retire them after a number of stop events are reported. Note |
4147 | this is an heuristic and can thus get confused. The real fix is | |
4148 | to get the "stopped by SW BP and needs adjustment" info out of | |
4149 | the target/kernel (and thus never reach here; see above). */ | |
6c95b8df | 4150 | if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc) |
fbea99ea PA |
4151 | || (target_is_non_stop_p () |
4152 | && moribund_breakpoint_here_p (aspace, breakpoint_pc))) | |
8aad930b | 4153 | { |
07036511 | 4154 | gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable; |
abbb1732 | 4155 | |
8213266a | 4156 | if (record_full_is_used ()) |
07036511 TT |
4157 | restore_operation_disable.emplace |
4158 | (record_full_gdb_operation_disable_set ()); | |
96429cc8 | 4159 | |
1c0fdd0e UW |
4160 | /* When using hardware single-step, a SIGTRAP is reported for both |
4161 | a completed single-step and a software breakpoint. Need to | |
4162 | differentiate between the two, as the latter needs adjusting | |
4163 | but the former does not. | |
4164 | ||
4165 | The SIGTRAP can be due to a completed hardware single-step only if | |
4166 | - we didn't insert software single-step breakpoints | |
1c0fdd0e UW |
4167 | - this thread is currently being stepped |
4168 | ||
4169 | If any of these events did not occur, we must have stopped due | |
4170 | to hitting a software breakpoint, and have to back up to the | |
4171 | breakpoint address. | |
4172 | ||
4173 | As a special case, we could have hardware single-stepped a | |
4174 | software breakpoint. In this case (prev_pc == breakpoint_pc), | |
4175 | we also need to back up to the breakpoint address. */ | |
4176 | ||
d8dd4d5f PA |
4177 | if (thread_has_single_step_breakpoints_set (thread) |
4178 | || !currently_stepping (thread) | |
4179 | || (thread->stepped_breakpoint | |
4180 | && thread->prev_pc == breakpoint_pc)) | |
515630c5 | 4181 | regcache_write_pc (regcache, breakpoint_pc); |
8aad930b | 4182 | } |
4fa8626c DJ |
4183 | } |
4184 | ||
edb3359d DJ |
4185 | static int |
4186 | stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id) | |
4187 | { | |
4188 | for (frame = get_prev_frame (frame); | |
4189 | frame != NULL; | |
4190 | frame = get_prev_frame (frame)) | |
4191 | { | |
4192 | if (frame_id_eq (get_frame_id (frame), step_frame_id)) | |
4193 | return 1; | |
4194 | if (get_frame_type (frame) != INLINE_FRAME) | |
4195 | break; | |
4196 | } | |
4197 | ||
4198 | return 0; | |
4199 | } | |
4200 | ||
c65d6b55 PA |
4201 | /* If the event thread has the stop requested flag set, pretend it |
4202 | stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to | |
4203 | target_stop). */ | |
4204 | ||
4205 | static bool | |
4206 | handle_stop_requested (struct execution_control_state *ecs) | |
4207 | { | |
4208 | if (ecs->event_thread->stop_requested) | |
4209 | { | |
4210 | ecs->ws.kind = TARGET_WAITKIND_STOPPED; | |
4211 | ecs->ws.value.sig = GDB_SIGNAL_0; | |
4212 | handle_signal_stop (ecs); | |
4213 | return true; | |
4214 | } | |
4215 | return false; | |
4216 | } | |
4217 | ||
a96d9b2e SDJ |
4218 | /* Auxiliary function that handles syscall entry/return events. |
4219 | It returns 1 if the inferior should keep going (and GDB | |
4220 | should ignore the event), or 0 if the event deserves to be | |
4221 | processed. */ | |
ca2163eb | 4222 | |
a96d9b2e | 4223 | static int |
ca2163eb | 4224 | handle_syscall_event (struct execution_control_state *ecs) |
a96d9b2e | 4225 | { |
ca2163eb | 4226 | struct regcache *regcache; |
ca2163eb PA |
4227 | int syscall_number; |
4228 | ||
4229 | if (!ptid_equal (ecs->ptid, inferior_ptid)) | |
4230 | context_switch (ecs->ptid); | |
4231 | ||
4232 | regcache = get_thread_regcache (ecs->ptid); | |
f90263c1 | 4233 | syscall_number = ecs->ws.value.syscall_number; |
ca2163eb PA |
4234 | stop_pc = regcache_read_pc (regcache); |
4235 | ||
a96d9b2e SDJ |
4236 | if (catch_syscall_enabled () > 0 |
4237 | && catching_syscall_number (syscall_number) > 0) | |
4238 | { | |
4239 | if (debug_infrun) | |
4240 | fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n", | |
4241 | syscall_number); | |
a96d9b2e | 4242 | |
16c381f0 | 4243 | ecs->event_thread->control.stop_bpstat |
a01bda52 | 4244 | = bpstat_stop_status (regcache->aspace (), |
09ac7c10 | 4245 | stop_pc, ecs->ptid, &ecs->ws); |
ab04a2af | 4246 | |
c65d6b55 PA |
4247 | if (handle_stop_requested (ecs)) |
4248 | return 0; | |
4249 | ||
ce12b012 | 4250 | if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat)) |
ca2163eb PA |
4251 | { |
4252 | /* Catchpoint hit. */ | |
ca2163eb PA |
4253 | return 0; |
4254 | } | |
a96d9b2e | 4255 | } |
ca2163eb | 4256 | |
c65d6b55 PA |
4257 | if (handle_stop_requested (ecs)) |
4258 | return 0; | |
4259 | ||
ca2163eb | 4260 | /* If no catchpoint triggered for this, then keep going. */ |
ca2163eb PA |
4261 | keep_going (ecs); |
4262 | return 1; | |
a96d9b2e SDJ |
4263 | } |
4264 | ||
7e324e48 GB |
4265 | /* Lazily fill in the execution_control_state's stop_func_* fields. */ |
4266 | ||
4267 | static void | |
4268 | fill_in_stop_func (struct gdbarch *gdbarch, | |
4269 | struct execution_control_state *ecs) | |
4270 | { | |
4271 | if (!ecs->stop_func_filled_in) | |
4272 | { | |
4273 | /* Don't care about return value; stop_func_start and stop_func_name | |
4274 | will both be 0 if it doesn't work. */ | |
4275 | find_pc_partial_function (stop_pc, &ecs->stop_func_name, | |
4276 | &ecs->stop_func_start, &ecs->stop_func_end); | |
4277 | ecs->stop_func_start | |
4278 | += gdbarch_deprecated_function_start_offset (gdbarch); | |
4279 | ||
591a12a1 UW |
4280 | if (gdbarch_skip_entrypoint_p (gdbarch)) |
4281 | ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch, | |
4282 | ecs->stop_func_start); | |
4283 | ||
7e324e48 GB |
4284 | ecs->stop_func_filled_in = 1; |
4285 | } | |
4286 | } | |
4287 | ||
4f5d7f63 PA |
4288 | |
4289 | /* Return the STOP_SOON field of the inferior pointed at by PTID. */ | |
4290 | ||
4291 | static enum stop_kind | |
4292 | get_inferior_stop_soon (ptid_t ptid) | |
4293 | { | |
c9657e70 | 4294 | struct inferior *inf = find_inferior_ptid (ptid); |
4f5d7f63 PA |
4295 | |
4296 | gdb_assert (inf != NULL); | |
4297 | return inf->control.stop_soon; | |
4298 | } | |
4299 | ||
372316f1 PA |
4300 | /* Wait for one event. Store the resulting waitstatus in WS, and |
4301 | return the event ptid. */ | |
4302 | ||
4303 | static ptid_t | |
4304 | wait_one (struct target_waitstatus *ws) | |
4305 | { | |
4306 | ptid_t event_ptid; | |
4307 | ptid_t wait_ptid = minus_one_ptid; | |
4308 | ||
4309 | overlay_cache_invalid = 1; | |
4310 | ||
4311 | /* Flush target cache before starting to handle each event. | |
4312 | Target was running and cache could be stale. This is just a | |
4313 | heuristic. Running threads may modify target memory, but we | |
4314 | don't get any event. */ | |
4315 | target_dcache_invalidate (); | |
4316 | ||
4317 | if (deprecated_target_wait_hook) | |
4318 | event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0); | |
4319 | else | |
4320 | event_ptid = target_wait (wait_ptid, ws, 0); | |
4321 | ||
4322 | if (debug_infrun) | |
4323 | print_target_wait_results (wait_ptid, event_ptid, ws); | |
4324 | ||
4325 | return event_ptid; | |
4326 | } | |
4327 | ||
4328 | /* Generate a wrapper for target_stopped_by_REASON that works on PTID | |
4329 | instead of the current thread. */ | |
4330 | #define THREAD_STOPPED_BY(REASON) \ | |
4331 | static int \ | |
4332 | thread_stopped_by_ ## REASON (ptid_t ptid) \ | |
4333 | { \ | |
2989a365 | 4334 | scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \ |
372316f1 PA |
4335 | inferior_ptid = ptid; \ |
4336 | \ | |
2989a365 | 4337 | return target_stopped_by_ ## REASON (); \ |
372316f1 PA |
4338 | } |
4339 | ||
4340 | /* Generate thread_stopped_by_watchpoint. */ | |
4341 | THREAD_STOPPED_BY (watchpoint) | |
4342 | /* Generate thread_stopped_by_sw_breakpoint. */ | |
4343 | THREAD_STOPPED_BY (sw_breakpoint) | |
4344 | /* Generate thread_stopped_by_hw_breakpoint. */ | |
4345 | THREAD_STOPPED_BY (hw_breakpoint) | |
4346 | ||
4347 | /* Cleanups that switches to the PTID pointed at by PTID_P. */ | |
4348 | ||
4349 | static void | |
4350 | switch_to_thread_cleanup (void *ptid_p) | |
4351 | { | |
4352 | ptid_t ptid = *(ptid_t *) ptid_p; | |
4353 | ||
4354 | switch_to_thread (ptid); | |
4355 | } | |
4356 | ||
4357 | /* Save the thread's event and stop reason to process it later. */ | |
4358 | ||
4359 | static void | |
4360 | save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws) | |
4361 | { | |
4362 | struct regcache *regcache; | |
372316f1 PA |
4363 | |
4364 | if (debug_infrun) | |
4365 | { | |
23fdd69e | 4366 | std::string statstr = target_waitstatus_to_string (ws); |
372316f1 | 4367 | |
372316f1 PA |
4368 | fprintf_unfiltered (gdb_stdlog, |
4369 | "infrun: saving status %s for %d.%ld.%ld\n", | |
23fdd69e | 4370 | statstr.c_str (), |
372316f1 PA |
4371 | ptid_get_pid (tp->ptid), |
4372 | ptid_get_lwp (tp->ptid), | |
4373 | ptid_get_tid (tp->ptid)); | |
372316f1 PA |
4374 | } |
4375 | ||
4376 | /* Record for later. */ | |
4377 | tp->suspend.waitstatus = *ws; | |
4378 | tp->suspend.waitstatus_pending_p = 1; | |
4379 | ||
4380 | regcache = get_thread_regcache (tp->ptid); | |
8b86c959 | 4381 | const address_space *aspace = regcache->aspace (); |
372316f1 PA |
4382 | |
4383 | if (ws->kind == TARGET_WAITKIND_STOPPED | |
4384 | && ws->value.sig == GDB_SIGNAL_TRAP) | |
4385 | { | |
4386 | CORE_ADDR pc = regcache_read_pc (regcache); | |
4387 | ||
4388 | adjust_pc_after_break (tp, &tp->suspend.waitstatus); | |
4389 | ||
4390 | if (thread_stopped_by_watchpoint (tp->ptid)) | |
4391 | { | |
4392 | tp->suspend.stop_reason | |
4393 | = TARGET_STOPPED_BY_WATCHPOINT; | |
4394 | } | |
4395 | else if (target_supports_stopped_by_sw_breakpoint () | |
4396 | && thread_stopped_by_sw_breakpoint (tp->ptid)) | |
4397 | { | |
4398 | tp->suspend.stop_reason | |
4399 | = TARGET_STOPPED_BY_SW_BREAKPOINT; | |
4400 | } | |
4401 | else if (target_supports_stopped_by_hw_breakpoint () | |
4402 | && thread_stopped_by_hw_breakpoint (tp->ptid)) | |
4403 | { | |
4404 | tp->suspend.stop_reason | |
4405 | = TARGET_STOPPED_BY_HW_BREAKPOINT; | |
4406 | } | |
4407 | else if (!target_supports_stopped_by_hw_breakpoint () | |
4408 | && hardware_breakpoint_inserted_here_p (aspace, | |
4409 | pc)) | |
4410 | { | |
4411 | tp->suspend.stop_reason | |
4412 | = TARGET_STOPPED_BY_HW_BREAKPOINT; | |
4413 | } | |
4414 | else if (!target_supports_stopped_by_sw_breakpoint () | |
4415 | && software_breakpoint_inserted_here_p (aspace, | |
4416 | pc)) | |
4417 | { | |
4418 | tp->suspend.stop_reason | |
4419 | = TARGET_STOPPED_BY_SW_BREAKPOINT; | |
4420 | } | |
4421 | else if (!thread_has_single_step_breakpoints_set (tp) | |
4422 | && currently_stepping (tp)) | |
4423 | { | |
4424 | tp->suspend.stop_reason | |
4425 | = TARGET_STOPPED_BY_SINGLE_STEP; | |
4426 | } | |
4427 | } | |
4428 | } | |
4429 | ||
65706a29 PA |
4430 | /* A cleanup that disables thread create/exit events. */ |
4431 | ||
4432 | static void | |
4433 | disable_thread_events (void *arg) | |
4434 | { | |
4435 | target_thread_events (0); | |
4436 | } | |
4437 | ||
6efcd9a8 | 4438 | /* See infrun.h. */ |
372316f1 | 4439 | |
6efcd9a8 | 4440 | void |
372316f1 PA |
4441 | stop_all_threads (void) |
4442 | { | |
4443 | /* We may need multiple passes to discover all threads. */ | |
4444 | int pass; | |
4445 | int iterations = 0; | |
4446 | ptid_t entry_ptid; | |
4447 | struct cleanup *old_chain; | |
4448 | ||
fbea99ea | 4449 | gdb_assert (target_is_non_stop_p ()); |
372316f1 PA |
4450 | |
4451 | if (debug_infrun) | |
4452 | fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n"); | |
4453 | ||
4454 | entry_ptid = inferior_ptid; | |
4455 | old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid); | |
4456 | ||
65706a29 PA |
4457 | target_thread_events (1); |
4458 | make_cleanup (disable_thread_events, NULL); | |
4459 | ||
372316f1 PA |
4460 | /* Request threads to stop, and then wait for the stops. Because |
4461 | threads we already know about can spawn more threads while we're | |
4462 | trying to stop them, and we only learn about new threads when we | |
4463 | update the thread list, do this in a loop, and keep iterating | |
4464 | until two passes find no threads that need to be stopped. */ | |
4465 | for (pass = 0; pass < 2; pass++, iterations++) | |
4466 | { | |
4467 | if (debug_infrun) | |
4468 | fprintf_unfiltered (gdb_stdlog, | |
4469 | "infrun: stop_all_threads, pass=%d, " | |
4470 | "iterations=%d\n", pass, iterations); | |
4471 | while (1) | |
4472 | { | |
4473 | ptid_t event_ptid; | |
4474 | struct target_waitstatus ws; | |
4475 | int need_wait = 0; | |
4476 | struct thread_info *t; | |
4477 | ||
4478 | update_thread_list (); | |
4479 | ||
4480 | /* Go through all threads looking for threads that we need | |
4481 | to tell the target to stop. */ | |
4482 | ALL_NON_EXITED_THREADS (t) | |
4483 | { | |
4484 | if (t->executing) | |
4485 | { | |
4486 | /* If already stopping, don't request a stop again. | |
4487 | We just haven't seen the notification yet. */ | |
4488 | if (!t->stop_requested) | |
4489 | { | |
4490 | if (debug_infrun) | |
4491 | fprintf_unfiltered (gdb_stdlog, | |
4492 | "infrun: %s executing, " | |
4493 | "need stop\n", | |
4494 | target_pid_to_str (t->ptid)); | |
4495 | target_stop (t->ptid); | |
4496 | t->stop_requested = 1; | |
4497 | } | |
4498 | else | |
4499 | { | |
4500 | if (debug_infrun) | |
4501 | fprintf_unfiltered (gdb_stdlog, | |
4502 | "infrun: %s executing, " | |
4503 | "already stopping\n", | |
4504 | target_pid_to_str (t->ptid)); | |
4505 | } | |
4506 | ||
4507 | if (t->stop_requested) | |
4508 | need_wait = 1; | |
4509 | } | |
4510 | else | |
4511 | { | |
4512 | if (debug_infrun) | |
4513 | fprintf_unfiltered (gdb_stdlog, | |
4514 | "infrun: %s not executing\n", | |
4515 | target_pid_to_str (t->ptid)); | |
4516 | ||
4517 | /* The thread may be not executing, but still be | |
4518 | resumed with a pending status to process. */ | |
4519 | t->resumed = 0; | |
4520 | } | |
4521 | } | |
4522 | ||
4523 | if (!need_wait) | |
4524 | break; | |
4525 | ||
4526 | /* If we find new threads on the second iteration, restart | |
4527 | over. We want to see two iterations in a row with all | |
4528 | threads stopped. */ | |
4529 | if (pass > 0) | |
4530 | pass = -1; | |
4531 | ||
4532 | event_ptid = wait_one (&ws); | |
4533 | if (ws.kind == TARGET_WAITKIND_NO_RESUMED) | |
4534 | { | |
4535 | /* All resumed threads exited. */ | |
4536 | } | |
65706a29 PA |
4537 | else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED |
4538 | || ws.kind == TARGET_WAITKIND_EXITED | |
372316f1 PA |
4539 | || ws.kind == TARGET_WAITKIND_SIGNALLED) |
4540 | { | |
4541 | if (debug_infrun) | |
4542 | { | |
4543 | ptid_t ptid = pid_to_ptid (ws.value.integer); | |
4544 | ||
4545 | fprintf_unfiltered (gdb_stdlog, | |
4546 | "infrun: %s exited while " | |
4547 | "stopping threads\n", | |
4548 | target_pid_to_str (ptid)); | |
4549 | } | |
4550 | } | |
4551 | else | |
4552 | { | |
6efcd9a8 PA |
4553 | struct inferior *inf; |
4554 | ||
372316f1 PA |
4555 | t = find_thread_ptid (event_ptid); |
4556 | if (t == NULL) | |
4557 | t = add_thread (event_ptid); | |
4558 | ||
4559 | t->stop_requested = 0; | |
4560 | t->executing = 0; | |
4561 | t->resumed = 0; | |
4562 | t->control.may_range_step = 0; | |
4563 | ||
6efcd9a8 PA |
4564 | /* This may be the first time we see the inferior report |
4565 | a stop. */ | |
4566 | inf = find_inferior_ptid (event_ptid); | |
4567 | if (inf->needs_setup) | |
4568 | { | |
4569 | switch_to_thread_no_regs (t); | |
4570 | setup_inferior (0); | |
4571 | } | |
4572 | ||
372316f1 PA |
4573 | if (ws.kind == TARGET_WAITKIND_STOPPED |
4574 | && ws.value.sig == GDB_SIGNAL_0) | |
4575 | { | |
4576 | /* We caught the event that we intended to catch, so | |
4577 | there's no event pending. */ | |
4578 | t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE; | |
4579 | t->suspend.waitstatus_pending_p = 0; | |
4580 | ||
4581 | if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0) | |
4582 | { | |
4583 | /* Add it back to the step-over queue. */ | |
4584 | if (debug_infrun) | |
4585 | { | |
4586 | fprintf_unfiltered (gdb_stdlog, | |
4587 | "infrun: displaced-step of %s " | |
4588 | "canceled: adding back to the " | |
4589 | "step-over queue\n", | |
4590 | target_pid_to_str (t->ptid)); | |
4591 | } | |
4592 | t->control.trap_expected = 0; | |
4593 | thread_step_over_chain_enqueue (t); | |
4594 | } | |
4595 | } | |
4596 | else | |
4597 | { | |
4598 | enum gdb_signal sig; | |
4599 | struct regcache *regcache; | |
372316f1 PA |
4600 | |
4601 | if (debug_infrun) | |
4602 | { | |
23fdd69e | 4603 | std::string statstr = target_waitstatus_to_string (&ws); |
372316f1 | 4604 | |
372316f1 PA |
4605 | fprintf_unfiltered (gdb_stdlog, |
4606 | "infrun: target_wait %s, saving " | |
4607 | "status for %d.%ld.%ld\n", | |
23fdd69e | 4608 | statstr.c_str (), |
372316f1 PA |
4609 | ptid_get_pid (t->ptid), |
4610 | ptid_get_lwp (t->ptid), | |
4611 | ptid_get_tid (t->ptid)); | |
372316f1 PA |
4612 | } |
4613 | ||
4614 | /* Record for later. */ | |
4615 | save_waitstatus (t, &ws); | |
4616 | ||
4617 | sig = (ws.kind == TARGET_WAITKIND_STOPPED | |
4618 | ? ws.value.sig : GDB_SIGNAL_0); | |
4619 | ||
4620 | if (displaced_step_fixup (t->ptid, sig) < 0) | |
4621 | { | |
4622 | /* Add it back to the step-over queue. */ | |
4623 | t->control.trap_expected = 0; | |
4624 | thread_step_over_chain_enqueue (t); | |
4625 | } | |
4626 | ||
4627 | regcache = get_thread_regcache (t->ptid); | |
4628 | t->suspend.stop_pc = regcache_read_pc (regcache); | |
4629 | ||
4630 | if (debug_infrun) | |
4631 | { | |
4632 | fprintf_unfiltered (gdb_stdlog, | |
4633 | "infrun: saved stop_pc=%s for %s " | |
4634 | "(currently_stepping=%d)\n", | |
4635 | paddress (target_gdbarch (), | |
4636 | t->suspend.stop_pc), | |
4637 | target_pid_to_str (t->ptid), | |
4638 | currently_stepping (t)); | |
4639 | } | |
4640 | } | |
4641 | } | |
4642 | } | |
4643 | } | |
4644 | ||
4645 | do_cleanups (old_chain); | |
4646 | ||
4647 | if (debug_infrun) | |
4648 | fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n"); | |
4649 | } | |
4650 | ||
f4836ba9 PA |
4651 | /* Handle a TARGET_WAITKIND_NO_RESUMED event. */ |
4652 | ||
4653 | static int | |
4654 | handle_no_resumed (struct execution_control_state *ecs) | |
4655 | { | |
4656 | struct inferior *inf; | |
4657 | struct thread_info *thread; | |
4658 | ||
3b12939d | 4659 | if (target_can_async_p ()) |
f4836ba9 | 4660 | { |
3b12939d PA |
4661 | struct ui *ui; |
4662 | int any_sync = 0; | |
f4836ba9 | 4663 | |
3b12939d PA |
4664 | ALL_UIS (ui) |
4665 | { | |
4666 | if (ui->prompt_state == PROMPT_BLOCKED) | |
4667 | { | |
4668 | any_sync = 1; | |
4669 | break; | |
4670 | } | |
4671 | } | |
4672 | if (!any_sync) | |
4673 | { | |
4674 | /* There were no unwaited-for children left in the target, but, | |
4675 | we're not synchronously waiting for events either. Just | |
4676 | ignore. */ | |
4677 | ||
4678 | if (debug_infrun) | |
4679 | fprintf_unfiltered (gdb_stdlog, | |
4680 | "infrun: TARGET_WAITKIND_NO_RESUMED " | |
4681 | "(ignoring: bg)\n"); | |
4682 | prepare_to_wait (ecs); | |
4683 | return 1; | |
4684 | } | |
f4836ba9 PA |
4685 | } |
4686 | ||
4687 | /* Otherwise, if we were running a synchronous execution command, we | |
4688 | may need to cancel it and give the user back the terminal. | |
4689 | ||
4690 | In non-stop mode, the target can't tell whether we've already | |
4691 | consumed previous stop events, so it can end up sending us a | |
4692 | no-resumed event like so: | |
4693 | ||
4694 | #0 - thread 1 is left stopped | |
4695 | ||
4696 | #1 - thread 2 is resumed and hits breakpoint | |
4697 | -> TARGET_WAITKIND_STOPPED | |
4698 | ||
4699 | #2 - thread 3 is resumed and exits | |
4700 | this is the last resumed thread, so | |
4701 | -> TARGET_WAITKIND_NO_RESUMED | |
4702 | ||
4703 | #3 - gdb processes stop for thread 2 and decides to re-resume | |
4704 | it. | |
4705 | ||
4706 | #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event. | |
4707 | thread 2 is now resumed, so the event should be ignored. | |
4708 | ||
4709 | IOW, if the stop for thread 2 doesn't end a foreground command, | |
4710 | then we need to ignore the following TARGET_WAITKIND_NO_RESUMED | |
4711 | event. But it could be that the event meant that thread 2 itself | |
4712 | (or whatever other thread was the last resumed thread) exited. | |
4713 | ||
4714 | To address this we refresh the thread list and check whether we | |
4715 | have resumed threads _now_. In the example above, this removes | |
4716 | thread 3 from the thread list. If thread 2 was re-resumed, we | |
4717 | ignore this event. If we find no thread resumed, then we cancel | |
4718 | the synchronous command show "no unwaited-for " to the user. */ | |
4719 | update_thread_list (); | |
4720 | ||
4721 | ALL_NON_EXITED_THREADS (thread) | |
4722 | { | |
4723 | if (thread->executing | |
4724 | || thread->suspend.waitstatus_pending_p) | |
4725 | { | |
4726 | /* There were no unwaited-for children left in the target at | |
4727 | some point, but there are now. Just ignore. */ | |
4728 | if (debug_infrun) | |
4729 | fprintf_unfiltered (gdb_stdlog, | |
4730 | "infrun: TARGET_WAITKIND_NO_RESUMED " | |
4731 | "(ignoring: found resumed)\n"); | |
4732 | prepare_to_wait (ecs); | |
4733 | return 1; | |
4734 | } | |
4735 | } | |
4736 | ||
4737 | /* Note however that we may find no resumed thread because the whole | |
4738 | process exited meanwhile (thus updating the thread list results | |
4739 | in an empty thread list). In this case we know we'll be getting | |
4740 | a process exit event shortly. */ | |
4741 | ALL_INFERIORS (inf) | |
4742 | { | |
4743 | if (inf->pid == 0) | |
4744 | continue; | |
4745 | ||
4746 | thread = any_live_thread_of_process (inf->pid); | |
4747 | if (thread == NULL) | |
4748 | { | |
4749 | if (debug_infrun) | |
4750 | fprintf_unfiltered (gdb_stdlog, | |
4751 | "infrun: TARGET_WAITKIND_NO_RESUMED " | |
4752 | "(expect process exit)\n"); | |
4753 | prepare_to_wait (ecs); | |
4754 | return 1; | |
4755 | } | |
4756 | } | |
4757 | ||
4758 | /* Go ahead and report the event. */ | |
4759 | return 0; | |
4760 | } | |
4761 | ||
05ba8510 PA |
4762 | /* Given an execution control state that has been freshly filled in by |
4763 | an event from the inferior, figure out what it means and take | |
4764 | appropriate action. | |
4765 | ||
4766 | The alternatives are: | |
4767 | ||
22bcd14b | 4768 | 1) stop_waiting and return; to really stop and return to the |
05ba8510 PA |
4769 | debugger. |
4770 | ||
4771 | 2) keep_going and return; to wait for the next event (set | |
4772 | ecs->event_thread->stepping_over_breakpoint to 1 to single step | |
4773 | once). */ | |
c906108c | 4774 | |
ec9499be | 4775 | static void |
0b6e5e10 | 4776 | handle_inferior_event_1 (struct execution_control_state *ecs) |
cd0fc7c3 | 4777 | { |
d6b48e9c PA |
4778 | enum stop_kind stop_soon; |
4779 | ||
28736962 PA |
4780 | if (ecs->ws.kind == TARGET_WAITKIND_IGNORE) |
4781 | { | |
4782 | /* We had an event in the inferior, but we are not interested in | |
4783 | handling it at this level. The lower layers have already | |
4784 | done what needs to be done, if anything. | |
4785 | ||
4786 | One of the possible circumstances for this is when the | |
4787 | inferior produces output for the console. The inferior has | |
4788 | not stopped, and we are ignoring the event. Another possible | |
4789 | circumstance is any event which the lower level knows will be | |
4790 | reported multiple times without an intervening resume. */ | |
4791 | if (debug_infrun) | |
4792 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n"); | |
4793 | prepare_to_wait (ecs); | |
4794 | return; | |
4795 | } | |
4796 | ||
65706a29 PA |
4797 | if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED) |
4798 | { | |
4799 | if (debug_infrun) | |
4800 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n"); | |
4801 | prepare_to_wait (ecs); | |
4802 | return; | |
4803 | } | |
4804 | ||
0e5bf2a8 | 4805 | if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED |
f4836ba9 PA |
4806 | && handle_no_resumed (ecs)) |
4807 | return; | |
0e5bf2a8 | 4808 | |
1777feb0 | 4809 | /* Cache the last pid/waitstatus. */ |
c32c64b7 | 4810 | set_last_target_status (ecs->ptid, ecs->ws); |
e02bc4cc | 4811 | |
ca005067 | 4812 | /* Always clear state belonging to the previous time we stopped. */ |
aa7d318d | 4813 | stop_stack_dummy = STOP_NONE; |
ca005067 | 4814 | |
0e5bf2a8 PA |
4815 | if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED) |
4816 | { | |
4817 | /* No unwaited-for children left. IOW, all resumed children | |
4818 | have exited. */ | |
4819 | if (debug_infrun) | |
4820 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n"); | |
4821 | ||
4822 | stop_print_frame = 0; | |
22bcd14b | 4823 | stop_waiting (ecs); |
0e5bf2a8 PA |
4824 | return; |
4825 | } | |
4826 | ||
8c90c137 | 4827 | if (ecs->ws.kind != TARGET_WAITKIND_EXITED |
64776a0b | 4828 | && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED) |
359f5fe6 PA |
4829 | { |
4830 | ecs->event_thread = find_thread_ptid (ecs->ptid); | |
4831 | /* If it's a new thread, add it to the thread database. */ | |
4832 | if (ecs->event_thread == NULL) | |
4833 | ecs->event_thread = add_thread (ecs->ptid); | |
c1e36e3e PA |
4834 | |
4835 | /* Disable range stepping. If the next step request could use a | |
4836 | range, this will be end up re-enabled then. */ | |
4837 | ecs->event_thread->control.may_range_step = 0; | |
359f5fe6 | 4838 | } |
88ed393a JK |
4839 | |
4840 | /* Dependent on valid ECS->EVENT_THREAD. */ | |
d8dd4d5f | 4841 | adjust_pc_after_break (ecs->event_thread, &ecs->ws); |
88ed393a JK |
4842 | |
4843 | /* Dependent on the current PC value modified by adjust_pc_after_break. */ | |
4844 | reinit_frame_cache (); | |
4845 | ||
28736962 PA |
4846 | breakpoint_retire_moribund (); |
4847 | ||
2b009048 DJ |
4848 | /* First, distinguish signals caused by the debugger from signals |
4849 | that have to do with the program's own actions. Note that | |
4850 | breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending | |
4851 | on the operating system version. Here we detect when a SIGILL or | |
4852 | SIGEMT is really a breakpoint and change it to SIGTRAP. We do | |
4853 | something similar for SIGSEGV, since a SIGSEGV will be generated | |
4854 | when we're trying to execute a breakpoint instruction on a | |
4855 | non-executable stack. This happens for call dummy breakpoints | |
4856 | for architectures like SPARC that place call dummies on the | |
4857 | stack. */ | |
2b009048 | 4858 | if (ecs->ws.kind == TARGET_WAITKIND_STOPPED |
a493e3e2 PA |
4859 | && (ecs->ws.value.sig == GDB_SIGNAL_ILL |
4860 | || ecs->ws.value.sig == GDB_SIGNAL_SEGV | |
4861 | || ecs->ws.value.sig == GDB_SIGNAL_EMT)) | |
2b009048 | 4862 | { |
de0a0249 UW |
4863 | struct regcache *regcache = get_thread_regcache (ecs->ptid); |
4864 | ||
a01bda52 | 4865 | if (breakpoint_inserted_here_p (regcache->aspace (), |
de0a0249 UW |
4866 | regcache_read_pc (regcache))) |
4867 | { | |
4868 | if (debug_infrun) | |
4869 | fprintf_unfiltered (gdb_stdlog, | |
4870 | "infrun: Treating signal as SIGTRAP\n"); | |
a493e3e2 | 4871 | ecs->ws.value.sig = GDB_SIGNAL_TRAP; |
de0a0249 | 4872 | } |
2b009048 DJ |
4873 | } |
4874 | ||
28736962 PA |
4875 | /* Mark the non-executing threads accordingly. In all-stop, all |
4876 | threads of all processes are stopped when we get any event | |
e1316e60 | 4877 | reported. In non-stop mode, only the event thread stops. */ |
372316f1 PA |
4878 | { |
4879 | ptid_t mark_ptid; | |
4880 | ||
fbea99ea | 4881 | if (!target_is_non_stop_p ()) |
372316f1 PA |
4882 | mark_ptid = minus_one_ptid; |
4883 | else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED | |
4884 | || ecs->ws.kind == TARGET_WAITKIND_EXITED) | |
4885 | { | |
4886 | /* If we're handling a process exit in non-stop mode, even | |
4887 | though threads haven't been deleted yet, one would think | |
4888 | that there is nothing to do, as threads of the dead process | |
4889 | will be soon deleted, and threads of any other process were | |
4890 | left running. However, on some targets, threads survive a | |
4891 | process exit event. E.g., for the "checkpoint" command, | |
4892 | when the current checkpoint/fork exits, linux-fork.c | |
4893 | automatically switches to another fork from within | |
4894 | target_mourn_inferior, by associating the same | |
4895 | inferior/thread to another fork. We haven't mourned yet at | |
4896 | this point, but we must mark any threads left in the | |
4897 | process as not-executing so that finish_thread_state marks | |
4898 | them stopped (in the user's perspective) if/when we present | |
4899 | the stop to the user. */ | |
4900 | mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid)); | |
4901 | } | |
4902 | else | |
4903 | mark_ptid = ecs->ptid; | |
4904 | ||
4905 | set_executing (mark_ptid, 0); | |
4906 | ||
4907 | /* Likewise the resumed flag. */ | |
4908 | set_resumed (mark_ptid, 0); | |
4909 | } | |
8c90c137 | 4910 | |
488f131b JB |
4911 | switch (ecs->ws.kind) |
4912 | { | |
4913 | case TARGET_WAITKIND_LOADED: | |
527159b7 | 4914 | if (debug_infrun) |
8a9de0e4 | 4915 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n"); |
5c09a2c5 PA |
4916 | if (!ptid_equal (ecs->ptid, inferior_ptid)) |
4917 | context_switch (ecs->ptid); | |
b0f4b84b DJ |
4918 | /* Ignore gracefully during startup of the inferior, as it might |
4919 | be the shell which has just loaded some objects, otherwise | |
4920 | add the symbols for the newly loaded objects. Also ignore at | |
4921 | the beginning of an attach or remote session; we will query | |
4922 | the full list of libraries once the connection is | |
4923 | established. */ | |
4f5d7f63 PA |
4924 | |
4925 | stop_soon = get_inferior_stop_soon (ecs->ptid); | |
c0236d92 | 4926 | if (stop_soon == NO_STOP_QUIETLY) |
488f131b | 4927 | { |
edcc5120 TT |
4928 | struct regcache *regcache; |
4929 | ||
edcc5120 TT |
4930 | regcache = get_thread_regcache (ecs->ptid); |
4931 | ||
4932 | handle_solib_event (); | |
4933 | ||
4934 | ecs->event_thread->control.stop_bpstat | |
a01bda52 | 4935 | = bpstat_stop_status (regcache->aspace (), |
edcc5120 | 4936 | stop_pc, ecs->ptid, &ecs->ws); |
ab04a2af | 4937 | |
c65d6b55 PA |
4938 | if (handle_stop_requested (ecs)) |
4939 | return; | |
4940 | ||
ce12b012 | 4941 | if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat)) |
edcc5120 TT |
4942 | { |
4943 | /* A catchpoint triggered. */ | |
94c57d6a PA |
4944 | process_event_stop_test (ecs); |
4945 | return; | |
edcc5120 | 4946 | } |
488f131b | 4947 | |
b0f4b84b DJ |
4948 | /* If requested, stop when the dynamic linker notifies |
4949 | gdb of events. This allows the user to get control | |
4950 | and place breakpoints in initializer routines for | |
4951 | dynamically loaded objects (among other things). */ | |
a493e3e2 | 4952 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; |
b0f4b84b DJ |
4953 | if (stop_on_solib_events) |
4954 | { | |
55409f9d DJ |
4955 | /* Make sure we print "Stopped due to solib-event" in |
4956 | normal_stop. */ | |
4957 | stop_print_frame = 1; | |
4958 | ||
22bcd14b | 4959 | stop_waiting (ecs); |
b0f4b84b DJ |
4960 | return; |
4961 | } | |
488f131b | 4962 | } |
b0f4b84b DJ |
4963 | |
4964 | /* If we are skipping through a shell, or through shared library | |
4965 | loading that we aren't interested in, resume the program. If | |
5c09a2c5 | 4966 | we're running the program normally, also resume. */ |
b0f4b84b DJ |
4967 | if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY) |
4968 | { | |
74960c60 VP |
4969 | /* Loading of shared libraries might have changed breakpoint |
4970 | addresses. Make sure new breakpoints are inserted. */ | |
a25a5a45 | 4971 | if (stop_soon == NO_STOP_QUIETLY) |
74960c60 | 4972 | insert_breakpoints (); |
64ce06e4 | 4973 | resume (GDB_SIGNAL_0); |
b0f4b84b DJ |
4974 | prepare_to_wait (ecs); |
4975 | return; | |
4976 | } | |
4977 | ||
5c09a2c5 PA |
4978 | /* But stop if we're attaching or setting up a remote |
4979 | connection. */ | |
4980 | if (stop_soon == STOP_QUIETLY_NO_SIGSTOP | |
4981 | || stop_soon == STOP_QUIETLY_REMOTE) | |
4982 | { | |
4983 | if (debug_infrun) | |
4984 | fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n"); | |
22bcd14b | 4985 | stop_waiting (ecs); |
5c09a2c5 PA |
4986 | return; |
4987 | } | |
4988 | ||
4989 | internal_error (__FILE__, __LINE__, | |
4990 | _("unhandled stop_soon: %d"), (int) stop_soon); | |
c5aa993b | 4991 | |
488f131b | 4992 | case TARGET_WAITKIND_SPURIOUS: |
527159b7 | 4993 | if (debug_infrun) |
8a9de0e4 | 4994 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n"); |
c65d6b55 PA |
4995 | if (handle_stop_requested (ecs)) |
4996 | return; | |
64776a0b | 4997 | if (!ptid_equal (ecs->ptid, inferior_ptid)) |
8b3ee56d | 4998 | context_switch (ecs->ptid); |
64ce06e4 | 4999 | resume (GDB_SIGNAL_0); |
488f131b JB |
5000 | prepare_to_wait (ecs); |
5001 | return; | |
c5aa993b | 5002 | |
65706a29 PA |
5003 | case TARGET_WAITKIND_THREAD_CREATED: |
5004 | if (debug_infrun) | |
5005 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n"); | |
c65d6b55 PA |
5006 | if (handle_stop_requested (ecs)) |
5007 | return; | |
65706a29 PA |
5008 | if (!ptid_equal (ecs->ptid, inferior_ptid)) |
5009 | context_switch (ecs->ptid); | |
5010 | if (!switch_back_to_stepped_thread (ecs)) | |
5011 | keep_going (ecs); | |
5012 | return; | |
5013 | ||
488f131b | 5014 | case TARGET_WAITKIND_EXITED: |
940c3c06 | 5015 | case TARGET_WAITKIND_SIGNALLED: |
527159b7 | 5016 | if (debug_infrun) |
940c3c06 PA |
5017 | { |
5018 | if (ecs->ws.kind == TARGET_WAITKIND_EXITED) | |
5019 | fprintf_unfiltered (gdb_stdlog, | |
5020 | "infrun: TARGET_WAITKIND_EXITED\n"); | |
5021 | else | |
5022 | fprintf_unfiltered (gdb_stdlog, | |
5023 | "infrun: TARGET_WAITKIND_SIGNALLED\n"); | |
5024 | } | |
5025 | ||
fb66883a | 5026 | inferior_ptid = ecs->ptid; |
c9657e70 | 5027 | set_current_inferior (find_inferior_ptid (ecs->ptid)); |
6c95b8df PA |
5028 | set_current_program_space (current_inferior ()->pspace); |
5029 | handle_vfork_child_exec_or_exit (0); | |
223ffa71 | 5030 | target_terminal::ours (); /* Must do this before mourn anyway. */ |
488f131b | 5031 | |
0c557179 SDJ |
5032 | /* Clearing any previous state of convenience variables. */ |
5033 | clear_exit_convenience_vars (); | |
5034 | ||
940c3c06 PA |
5035 | if (ecs->ws.kind == TARGET_WAITKIND_EXITED) |
5036 | { | |
5037 | /* Record the exit code in the convenience variable $_exitcode, so | |
5038 | that the user can inspect this again later. */ | |
5039 | set_internalvar_integer (lookup_internalvar ("_exitcode"), | |
5040 | (LONGEST) ecs->ws.value.integer); | |
5041 | ||
5042 | /* Also record this in the inferior itself. */ | |
5043 | current_inferior ()->has_exit_code = 1; | |
5044 | current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer; | |
8cf64490 | 5045 | |
98eb56a4 PA |
5046 | /* Support the --return-child-result option. */ |
5047 | return_child_result_value = ecs->ws.value.integer; | |
5048 | ||
fd664c91 | 5049 | observer_notify_exited (ecs->ws.value.integer); |
940c3c06 PA |
5050 | } |
5051 | else | |
0c557179 SDJ |
5052 | { |
5053 | struct regcache *regcache = get_thread_regcache (ecs->ptid); | |
ac7936df | 5054 | struct gdbarch *gdbarch = regcache->arch (); |
0c557179 SDJ |
5055 | |
5056 | if (gdbarch_gdb_signal_to_target_p (gdbarch)) | |
5057 | { | |
5058 | /* Set the value of the internal variable $_exitsignal, | |
5059 | which holds the signal uncaught by the inferior. */ | |
5060 | set_internalvar_integer (lookup_internalvar ("_exitsignal"), | |
5061 | gdbarch_gdb_signal_to_target (gdbarch, | |
5062 | ecs->ws.value.sig)); | |
5063 | } | |
5064 | else | |
5065 | { | |
5066 | /* We don't have access to the target's method used for | |
5067 | converting between signal numbers (GDB's internal | |
5068 | representation <-> target's representation). | |
5069 | Therefore, we cannot do a good job at displaying this | |
5070 | information to the user. It's better to just warn | |
5071 | her about it (if infrun debugging is enabled), and | |
5072 | give up. */ | |
5073 | if (debug_infrun) | |
5074 | fprintf_filtered (gdb_stdlog, _("\ | |
5075 | Cannot fill $_exitsignal with the correct signal number.\n")); | |
5076 | } | |
5077 | ||
fd664c91 | 5078 | observer_notify_signal_exited (ecs->ws.value.sig); |
0c557179 | 5079 | } |
8cf64490 | 5080 | |
488f131b | 5081 | gdb_flush (gdb_stdout); |
bc1e6c81 | 5082 | target_mourn_inferior (inferior_ptid); |
488f131b | 5083 | stop_print_frame = 0; |
22bcd14b | 5084 | stop_waiting (ecs); |
488f131b | 5085 | return; |
c5aa993b | 5086 | |
488f131b | 5087 | /* The following are the only cases in which we keep going; |
1777feb0 | 5088 | the above cases end in a continue or goto. */ |
488f131b | 5089 | case TARGET_WAITKIND_FORKED: |
deb3b17b | 5090 | case TARGET_WAITKIND_VFORKED: |
527159b7 | 5091 | if (debug_infrun) |
fed708ed PA |
5092 | { |
5093 | if (ecs->ws.kind == TARGET_WAITKIND_FORKED) | |
5094 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n"); | |
5095 | else | |
5096 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n"); | |
5097 | } | |
c906108c | 5098 | |
e2d96639 YQ |
5099 | /* Check whether the inferior is displaced stepping. */ |
5100 | { | |
5101 | struct regcache *regcache = get_thread_regcache (ecs->ptid); | |
ac7936df | 5102 | struct gdbarch *gdbarch = regcache->arch (); |
e2d96639 YQ |
5103 | |
5104 | /* If checking displaced stepping is supported, and thread | |
5105 | ecs->ptid is displaced stepping. */ | |
c0987663 | 5106 | if (displaced_step_in_progress_thread (ecs->ptid)) |
e2d96639 YQ |
5107 | { |
5108 | struct inferior *parent_inf | |
c9657e70 | 5109 | = find_inferior_ptid (ecs->ptid); |
e2d96639 YQ |
5110 | struct regcache *child_regcache; |
5111 | CORE_ADDR parent_pc; | |
5112 | ||
5113 | /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED, | |
5114 | indicating that the displaced stepping of syscall instruction | |
5115 | has been done. Perform cleanup for parent process here. Note | |
5116 | that this operation also cleans up the child process for vfork, | |
5117 | because their pages are shared. */ | |
a493e3e2 | 5118 | displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP); |
c2829269 PA |
5119 | /* Start a new step-over in another thread if there's one |
5120 | that needs it. */ | |
5121 | start_step_over (); | |
e2d96639 YQ |
5122 | |
5123 | if (ecs->ws.kind == TARGET_WAITKIND_FORKED) | |
5124 | { | |
c0987663 YQ |
5125 | struct displaced_step_inferior_state *displaced |
5126 | = get_displaced_stepping_state (ptid_get_pid (ecs->ptid)); | |
5127 | ||
e2d96639 YQ |
5128 | /* Restore scratch pad for child process. */ |
5129 | displaced_step_restore (displaced, ecs->ws.value.related_pid); | |
5130 | } | |
5131 | ||
5132 | /* Since the vfork/fork syscall instruction was executed in the scratchpad, | |
5133 | the child's PC is also within the scratchpad. Set the child's PC | |
5134 | to the parent's PC value, which has already been fixed up. | |
5135 | FIXME: we use the parent's aspace here, although we're touching | |
5136 | the child, because the child hasn't been added to the inferior | |
5137 | list yet at this point. */ | |
5138 | ||
5139 | child_regcache | |
5140 | = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid, | |
5141 | gdbarch, | |
5142 | parent_inf->aspace); | |
5143 | /* Read PC value of parent process. */ | |
5144 | parent_pc = regcache_read_pc (regcache); | |
5145 | ||
5146 | if (debug_displaced) | |
5147 | fprintf_unfiltered (gdb_stdlog, | |
5148 | "displaced: write child pc from %s to %s\n", | |
5149 | paddress (gdbarch, | |
5150 | regcache_read_pc (child_regcache)), | |
5151 | paddress (gdbarch, parent_pc)); | |
5152 | ||
5153 | regcache_write_pc (child_regcache, parent_pc); | |
5154 | } | |
5155 | } | |
5156 | ||
5a2901d9 | 5157 | if (!ptid_equal (ecs->ptid, inferior_ptid)) |
c3a01a22 | 5158 | context_switch (ecs->ptid); |
5a2901d9 | 5159 | |
b242c3c2 PA |
5160 | /* Immediately detach breakpoints from the child before there's |
5161 | any chance of letting the user delete breakpoints from the | |
5162 | breakpoint lists. If we don't do this early, it's easy to | |
5163 | leave left over traps in the child, vis: "break foo; catch | |
5164 | fork; c; <fork>; del; c; <child calls foo>". We only follow | |
5165 | the fork on the last `continue', and by that time the | |
5166 | breakpoint at "foo" is long gone from the breakpoint table. | |
5167 | If we vforked, then we don't need to unpatch here, since both | |
5168 | parent and child are sharing the same memory pages; we'll | |
5169 | need to unpatch at follow/detach time instead to be certain | |
5170 | that new breakpoints added between catchpoint hit time and | |
5171 | vfork follow are detached. */ | |
5172 | if (ecs->ws.kind != TARGET_WAITKIND_VFORKED) | |
5173 | { | |
b242c3c2 PA |
5174 | /* This won't actually modify the breakpoint list, but will |
5175 | physically remove the breakpoints from the child. */ | |
d80ee84f | 5176 | detach_breakpoints (ecs->ws.value.related_pid); |
b242c3c2 PA |
5177 | } |
5178 | ||
34b7e8a6 | 5179 | delete_just_stopped_threads_single_step_breakpoints (); |
d03285ec | 5180 | |
e58b0e63 PA |
5181 | /* In case the event is caught by a catchpoint, remember that |
5182 | the event is to be followed at the next resume of the thread, | |
5183 | and not immediately. */ | |
5184 | ecs->event_thread->pending_follow = ecs->ws; | |
5185 | ||
fb14de7b | 5186 | stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid)); |
675bf4cb | 5187 | |
16c381f0 | 5188 | ecs->event_thread->control.stop_bpstat |
a01bda52 | 5189 | = bpstat_stop_status (get_current_regcache ()->aspace (), |
09ac7c10 | 5190 | stop_pc, ecs->ptid, &ecs->ws); |
675bf4cb | 5191 | |
c65d6b55 PA |
5192 | if (handle_stop_requested (ecs)) |
5193 | return; | |
5194 | ||
ce12b012 PA |
5195 | /* If no catchpoint triggered for this, then keep going. Note |
5196 | that we're interested in knowing the bpstat actually causes a | |
5197 | stop, not just if it may explain the signal. Software | |
5198 | watchpoints, for example, always appear in the bpstat. */ | |
5199 | if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat)) | |
04e68871 | 5200 | { |
6c95b8df PA |
5201 | ptid_t parent; |
5202 | ptid_t child; | |
e58b0e63 | 5203 | int should_resume; |
3e43a32a MS |
5204 | int follow_child |
5205 | = (follow_fork_mode_string == follow_fork_mode_child); | |
e58b0e63 | 5206 | |
a493e3e2 | 5207 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; |
e58b0e63 PA |
5208 | |
5209 | should_resume = follow_fork (); | |
5210 | ||
6c95b8df PA |
5211 | parent = ecs->ptid; |
5212 | child = ecs->ws.value.related_pid; | |
5213 | ||
a2077e25 PA |
5214 | /* At this point, the parent is marked running, and the |
5215 | child is marked stopped. */ | |
5216 | ||
5217 | /* If not resuming the parent, mark it stopped. */ | |
5218 | if (follow_child && !detach_fork && !non_stop && !sched_multi) | |
5219 | set_running (parent, 0); | |
5220 | ||
5221 | /* If resuming the child, mark it running. */ | |
5222 | if (follow_child || (!detach_fork && (non_stop || sched_multi))) | |
5223 | set_running (child, 1); | |
5224 | ||
6c95b8df | 5225 | /* In non-stop mode, also resume the other branch. */ |
fbea99ea PA |
5226 | if (!detach_fork && (non_stop |
5227 | || (sched_multi && target_is_non_stop_p ()))) | |
6c95b8df PA |
5228 | { |
5229 | if (follow_child) | |
5230 | switch_to_thread (parent); | |
5231 | else | |
5232 | switch_to_thread (child); | |
5233 | ||
5234 | ecs->event_thread = inferior_thread (); | |
5235 | ecs->ptid = inferior_ptid; | |
5236 | keep_going (ecs); | |
5237 | } | |
5238 | ||
5239 | if (follow_child) | |
5240 | switch_to_thread (child); | |
5241 | else | |
5242 | switch_to_thread (parent); | |
5243 | ||
e58b0e63 PA |
5244 | ecs->event_thread = inferior_thread (); |
5245 | ecs->ptid = inferior_ptid; | |
5246 | ||
5247 | if (should_resume) | |
5248 | keep_going (ecs); | |
5249 | else | |
22bcd14b | 5250 | stop_waiting (ecs); |
04e68871 DJ |
5251 | return; |
5252 | } | |
94c57d6a PA |
5253 | process_event_stop_test (ecs); |
5254 | return; | |
488f131b | 5255 | |
6c95b8df PA |
5256 | case TARGET_WAITKIND_VFORK_DONE: |
5257 | /* Done with the shared memory region. Re-insert breakpoints in | |
5258 | the parent, and keep going. */ | |
5259 | ||
5260 | if (debug_infrun) | |
3e43a32a MS |
5261 | fprintf_unfiltered (gdb_stdlog, |
5262 | "infrun: TARGET_WAITKIND_VFORK_DONE\n"); | |
6c95b8df PA |
5263 | |
5264 | if (!ptid_equal (ecs->ptid, inferior_ptid)) | |
5265 | context_switch (ecs->ptid); | |
5266 | ||
5267 | current_inferior ()->waiting_for_vfork_done = 0; | |
56710373 | 5268 | current_inferior ()->pspace->breakpoints_not_allowed = 0; |
c65d6b55 PA |
5269 | |
5270 | if (handle_stop_requested (ecs)) | |
5271 | return; | |
5272 | ||
6c95b8df PA |
5273 | /* This also takes care of reinserting breakpoints in the |
5274 | previously locked inferior. */ | |
5275 | keep_going (ecs); | |
5276 | return; | |
5277 | ||
488f131b | 5278 | case TARGET_WAITKIND_EXECD: |
527159b7 | 5279 | if (debug_infrun) |
fc5261f2 | 5280 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n"); |
488f131b | 5281 | |
cbd2b4e3 PA |
5282 | /* Note we can't read registers yet (the stop_pc), because we |
5283 | don't yet know the inferior's post-exec architecture. | |
5284 | 'stop_pc' is explicitly read below instead. */ | |
5a2901d9 | 5285 | if (!ptid_equal (ecs->ptid, inferior_ptid)) |
cbd2b4e3 | 5286 | switch_to_thread_no_regs (ecs->event_thread); |
5a2901d9 | 5287 | |
6c95b8df PA |
5288 | /* Do whatever is necessary to the parent branch of the vfork. */ |
5289 | handle_vfork_child_exec_or_exit (1); | |
5290 | ||
795e548f PA |
5291 | /* This causes the eventpoints and symbol table to be reset. |
5292 | Must do this now, before trying to determine whether to | |
5293 | stop. */ | |
71b43ef8 | 5294 | follow_exec (inferior_ptid, ecs->ws.value.execd_pathname); |
795e548f | 5295 | |
1bb7c059 SM |
5296 | stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid)); |
5297 | ||
17d8546e DB |
5298 | /* In follow_exec we may have deleted the original thread and |
5299 | created a new one. Make sure that the event thread is the | |
5300 | execd thread for that case (this is a nop otherwise). */ | |
5301 | ecs->event_thread = inferior_thread (); | |
5302 | ||
16c381f0 | 5303 | ecs->event_thread->control.stop_bpstat |
a01bda52 | 5304 | = bpstat_stop_status (get_current_regcache ()->aspace (), |
09ac7c10 | 5305 | stop_pc, ecs->ptid, &ecs->ws); |
795e548f | 5306 | |
71b43ef8 PA |
5307 | /* Note that this may be referenced from inside |
5308 | bpstat_stop_status above, through inferior_has_execd. */ | |
5309 | xfree (ecs->ws.value.execd_pathname); | |
5310 | ecs->ws.value.execd_pathname = NULL; | |
5311 | ||
c65d6b55 PA |
5312 | if (handle_stop_requested (ecs)) |
5313 | return; | |
5314 | ||
04e68871 | 5315 | /* If no catchpoint triggered for this, then keep going. */ |
ce12b012 | 5316 | if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat)) |
04e68871 | 5317 | { |
a493e3e2 | 5318 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; |
04e68871 DJ |
5319 | keep_going (ecs); |
5320 | return; | |
5321 | } | |
94c57d6a PA |
5322 | process_event_stop_test (ecs); |
5323 | return; | |
488f131b | 5324 | |
b4dc5ffa MK |
5325 | /* Be careful not to try to gather much state about a thread |
5326 | that's in a syscall. It's frequently a losing proposition. */ | |
488f131b | 5327 | case TARGET_WAITKIND_SYSCALL_ENTRY: |
527159b7 | 5328 | if (debug_infrun) |
3e43a32a MS |
5329 | fprintf_unfiltered (gdb_stdlog, |
5330 | "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n"); | |
1777feb0 | 5331 | /* Getting the current syscall number. */ |
94c57d6a PA |
5332 | if (handle_syscall_event (ecs) == 0) |
5333 | process_event_stop_test (ecs); | |
5334 | return; | |
c906108c | 5335 | |
488f131b JB |
5336 | /* Before examining the threads further, step this thread to |
5337 | get it entirely out of the syscall. (We get notice of the | |
5338 | event when the thread is just on the verge of exiting a | |
5339 | syscall. Stepping one instruction seems to get it back | |
b4dc5ffa | 5340 | into user code.) */ |
488f131b | 5341 | case TARGET_WAITKIND_SYSCALL_RETURN: |
527159b7 | 5342 | if (debug_infrun) |
3e43a32a MS |
5343 | fprintf_unfiltered (gdb_stdlog, |
5344 | "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n"); | |
94c57d6a PA |
5345 | if (handle_syscall_event (ecs) == 0) |
5346 | process_event_stop_test (ecs); | |
5347 | return; | |
c906108c | 5348 | |
488f131b | 5349 | case TARGET_WAITKIND_STOPPED: |
527159b7 | 5350 | if (debug_infrun) |
8a9de0e4 | 5351 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n"); |
4f5d7f63 PA |
5352 | handle_signal_stop (ecs); |
5353 | return; | |
c906108c | 5354 | |
b2175913 | 5355 | case TARGET_WAITKIND_NO_HISTORY: |
4b4e080e PA |
5356 | if (debug_infrun) |
5357 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n"); | |
b2175913 | 5358 | /* Reverse execution: target ran out of history info. */ |
eab402df | 5359 | |
d1988021 MM |
5360 | /* Switch to the stopped thread. */ |
5361 | if (!ptid_equal (ecs->ptid, inferior_ptid)) | |
5362 | context_switch (ecs->ptid); | |
5363 | if (debug_infrun) | |
5364 | fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n"); | |
5365 | ||
34b7e8a6 | 5366 | delete_just_stopped_threads_single_step_breakpoints (); |
d1988021 | 5367 | stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid)); |
c65d6b55 PA |
5368 | |
5369 | if (handle_stop_requested (ecs)) | |
5370 | return; | |
5371 | ||
fd664c91 | 5372 | observer_notify_no_history (); |
22bcd14b | 5373 | stop_waiting (ecs); |
b2175913 | 5374 | return; |
488f131b | 5375 | } |
4f5d7f63 PA |
5376 | } |
5377 | ||
0b6e5e10 JB |
5378 | /* A wrapper around handle_inferior_event_1, which also makes sure |
5379 | that all temporary struct value objects that were created during | |
5380 | the handling of the event get deleted at the end. */ | |
5381 | ||
5382 | static void | |
5383 | handle_inferior_event (struct execution_control_state *ecs) | |
5384 | { | |
5385 | struct value *mark = value_mark (); | |
5386 | ||
5387 | handle_inferior_event_1 (ecs); | |
5388 | /* Purge all temporary values created during the event handling, | |
5389 | as it could be a long time before we return to the command level | |
5390 | where such values would otherwise be purged. */ | |
5391 | value_free_to_mark (mark); | |
5392 | } | |
5393 | ||
372316f1 PA |
5394 | /* Restart threads back to what they were trying to do back when we |
5395 | paused them for an in-line step-over. The EVENT_THREAD thread is | |
5396 | ignored. */ | |
4d9d9d04 PA |
5397 | |
5398 | static void | |
372316f1 PA |
5399 | restart_threads (struct thread_info *event_thread) |
5400 | { | |
5401 | struct thread_info *tp; | |
372316f1 PA |
5402 | |
5403 | /* In case the instruction just stepped spawned a new thread. */ | |
5404 | update_thread_list (); | |
5405 | ||
5406 | ALL_NON_EXITED_THREADS (tp) | |
5407 | { | |
5408 | if (tp == event_thread) | |
5409 | { | |
5410 | if (debug_infrun) | |
5411 | fprintf_unfiltered (gdb_stdlog, | |
5412 | "infrun: restart threads: " | |
5413 | "[%s] is event thread\n", | |
5414 | target_pid_to_str (tp->ptid)); | |
5415 | continue; | |
5416 | } | |
5417 | ||
5418 | if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall)) | |
5419 | { | |
5420 | if (debug_infrun) | |
5421 | fprintf_unfiltered (gdb_stdlog, | |
5422 | "infrun: restart threads: " | |
5423 | "[%s] not meant to be running\n", | |
5424 | target_pid_to_str (tp->ptid)); | |
5425 | continue; | |
5426 | } | |
5427 | ||
5428 | if (tp->resumed) | |
5429 | { | |
5430 | if (debug_infrun) | |
5431 | fprintf_unfiltered (gdb_stdlog, | |
5432 | "infrun: restart threads: [%s] resumed\n", | |
5433 | target_pid_to_str (tp->ptid)); | |
5434 | gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p); | |
5435 | continue; | |
5436 | } | |
5437 | ||
5438 | if (thread_is_in_step_over_chain (tp)) | |
5439 | { | |
5440 | if (debug_infrun) | |
5441 | fprintf_unfiltered (gdb_stdlog, | |
5442 | "infrun: restart threads: " | |
5443 | "[%s] needs step-over\n", | |
5444 | target_pid_to_str (tp->ptid)); | |
5445 | gdb_assert (!tp->resumed); | |
5446 | continue; | |
5447 | } | |
5448 | ||
5449 | ||
5450 | if (tp->suspend.waitstatus_pending_p) | |
5451 | { | |
5452 | if (debug_infrun) | |
5453 | fprintf_unfiltered (gdb_stdlog, | |
5454 | "infrun: restart threads: " | |
5455 | "[%s] has pending status\n", | |
5456 | target_pid_to_str (tp->ptid)); | |
5457 | tp->resumed = 1; | |
5458 | continue; | |
5459 | } | |
5460 | ||
c65d6b55 PA |
5461 | gdb_assert (!tp->stop_requested); |
5462 | ||
372316f1 PA |
5463 | /* If some thread needs to start a step-over at this point, it |
5464 | should still be in the step-over queue, and thus skipped | |
5465 | above. */ | |
5466 | if (thread_still_needs_step_over (tp)) | |
5467 | { | |
5468 | internal_error (__FILE__, __LINE__, | |
5469 | "thread [%s] needs a step-over, but not in " | |
5470 | "step-over queue\n", | |
5471 | target_pid_to_str (tp->ptid)); | |
5472 | } | |
5473 | ||
5474 | if (currently_stepping (tp)) | |
5475 | { | |
5476 | if (debug_infrun) | |
5477 | fprintf_unfiltered (gdb_stdlog, | |
5478 | "infrun: restart threads: [%s] was stepping\n", | |
5479 | target_pid_to_str (tp->ptid)); | |
5480 | keep_going_stepped_thread (tp); | |
5481 | } | |
5482 | else | |
5483 | { | |
5484 | struct execution_control_state ecss; | |
5485 | struct execution_control_state *ecs = &ecss; | |
5486 | ||
5487 | if (debug_infrun) | |
5488 | fprintf_unfiltered (gdb_stdlog, | |
5489 | "infrun: restart threads: [%s] continuing\n", | |
5490 | target_pid_to_str (tp->ptid)); | |
5491 | reset_ecs (ecs, tp); | |
5492 | switch_to_thread (tp->ptid); | |
5493 | keep_going_pass_signal (ecs); | |
5494 | } | |
5495 | } | |
5496 | } | |
5497 | ||
5498 | /* Callback for iterate_over_threads. Find a resumed thread that has | |
5499 | a pending waitstatus. */ | |
5500 | ||
5501 | static int | |
5502 | resumed_thread_with_pending_status (struct thread_info *tp, | |
5503 | void *arg) | |
5504 | { | |
5505 | return (tp->resumed | |
5506 | && tp->suspend.waitstatus_pending_p); | |
5507 | } | |
5508 | ||
5509 | /* Called when we get an event that may finish an in-line or | |
5510 | out-of-line (displaced stepping) step-over started previously. | |
5511 | Return true if the event is processed and we should go back to the | |
5512 | event loop; false if the caller should continue processing the | |
5513 | event. */ | |
5514 | ||
5515 | static int | |
4d9d9d04 PA |
5516 | finish_step_over (struct execution_control_state *ecs) |
5517 | { | |
372316f1 PA |
5518 | int had_step_over_info; |
5519 | ||
4d9d9d04 PA |
5520 | displaced_step_fixup (ecs->ptid, |
5521 | ecs->event_thread->suspend.stop_signal); | |
5522 | ||
372316f1 PA |
5523 | had_step_over_info = step_over_info_valid_p (); |
5524 | ||
5525 | if (had_step_over_info) | |
4d9d9d04 PA |
5526 | { |
5527 | /* If we're stepping over a breakpoint with all threads locked, | |
5528 | then only the thread that was stepped should be reporting | |
5529 | back an event. */ | |
5530 | gdb_assert (ecs->event_thread->control.trap_expected); | |
5531 | ||
c65d6b55 | 5532 | clear_step_over_info (); |
4d9d9d04 PA |
5533 | } |
5534 | ||
fbea99ea | 5535 | if (!target_is_non_stop_p ()) |
372316f1 | 5536 | return 0; |
4d9d9d04 PA |
5537 | |
5538 | /* Start a new step-over in another thread if there's one that | |
5539 | needs it. */ | |
5540 | start_step_over (); | |
372316f1 PA |
5541 | |
5542 | /* If we were stepping over a breakpoint before, and haven't started | |
5543 | a new in-line step-over sequence, then restart all other threads | |
5544 | (except the event thread). We can't do this in all-stop, as then | |
5545 | e.g., we wouldn't be able to issue any other remote packet until | |
5546 | these other threads stop. */ | |
5547 | if (had_step_over_info && !step_over_info_valid_p ()) | |
5548 | { | |
5549 | struct thread_info *pending; | |
5550 | ||
5551 | /* If we only have threads with pending statuses, the restart | |
5552 | below won't restart any thread and so nothing re-inserts the | |
5553 | breakpoint we just stepped over. But we need it inserted | |
5554 | when we later process the pending events, otherwise if | |
5555 | another thread has a pending event for this breakpoint too, | |
5556 | we'd discard its event (because the breakpoint that | |
5557 | originally caused the event was no longer inserted). */ | |
5558 | context_switch (ecs->ptid); | |
5559 | insert_breakpoints (); | |
5560 | ||
5561 | restart_threads (ecs->event_thread); | |
5562 | ||
5563 | /* If we have events pending, go through handle_inferior_event | |
5564 | again, picking up a pending event at random. This avoids | |
5565 | thread starvation. */ | |
5566 | ||
5567 | /* But not if we just stepped over a watchpoint in order to let | |
5568 | the instruction execute so we can evaluate its expression. | |
5569 | The set of watchpoints that triggered is recorded in the | |
5570 | breakpoint objects themselves (see bp->watchpoint_triggered). | |
5571 | If we processed another event first, that other event could | |
5572 | clobber this info. */ | |
5573 | if (ecs->event_thread->stepping_over_watchpoint) | |
5574 | return 0; | |
5575 | ||
5576 | pending = iterate_over_threads (resumed_thread_with_pending_status, | |
5577 | NULL); | |
5578 | if (pending != NULL) | |
5579 | { | |
5580 | struct thread_info *tp = ecs->event_thread; | |
5581 | struct regcache *regcache; | |
5582 | ||
5583 | if (debug_infrun) | |
5584 | { | |
5585 | fprintf_unfiltered (gdb_stdlog, | |
5586 | "infrun: found resumed threads with " | |
5587 | "pending events, saving status\n"); | |
5588 | } | |
5589 | ||
5590 | gdb_assert (pending != tp); | |
5591 | ||
5592 | /* Record the event thread's event for later. */ | |
5593 | save_waitstatus (tp, &ecs->ws); | |
5594 | /* This was cleared early, by handle_inferior_event. Set it | |
5595 | so this pending event is considered by | |
5596 | do_target_wait. */ | |
5597 | tp->resumed = 1; | |
5598 | ||
5599 | gdb_assert (!tp->executing); | |
5600 | ||
5601 | regcache = get_thread_regcache (tp->ptid); | |
5602 | tp->suspend.stop_pc = regcache_read_pc (regcache); | |
5603 | ||
5604 | if (debug_infrun) | |
5605 | { | |
5606 | fprintf_unfiltered (gdb_stdlog, | |
5607 | "infrun: saved stop_pc=%s for %s " | |
5608 | "(currently_stepping=%d)\n", | |
5609 | paddress (target_gdbarch (), | |
5610 | tp->suspend.stop_pc), | |
5611 | target_pid_to_str (tp->ptid), | |
5612 | currently_stepping (tp)); | |
5613 | } | |
5614 | ||
5615 | /* This in-line step-over finished; clear this so we won't | |
5616 | start a new one. This is what handle_signal_stop would | |
5617 | do, if we returned false. */ | |
5618 | tp->stepping_over_breakpoint = 0; | |
5619 | ||
5620 | /* Wake up the event loop again. */ | |
5621 | mark_async_event_handler (infrun_async_inferior_event_token); | |
5622 | ||
5623 | prepare_to_wait (ecs); | |
5624 | return 1; | |
5625 | } | |
5626 | } | |
5627 | ||
5628 | return 0; | |
4d9d9d04 PA |
5629 | } |
5630 | ||
4f5d7f63 PA |
5631 | /* Come here when the program has stopped with a signal. */ |
5632 | ||
5633 | static void | |
5634 | handle_signal_stop (struct execution_control_state *ecs) | |
5635 | { | |
5636 | struct frame_info *frame; | |
5637 | struct gdbarch *gdbarch; | |
5638 | int stopped_by_watchpoint; | |
5639 | enum stop_kind stop_soon; | |
5640 | int random_signal; | |
c906108c | 5641 | |
f0407826 DE |
5642 | gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED); |
5643 | ||
c65d6b55 PA |
5644 | ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig; |
5645 | ||
f0407826 DE |
5646 | /* Do we need to clean up the state of a thread that has |
5647 | completed a displaced single-step? (Doing so usually affects | |
5648 | the PC, so do it here, before we set stop_pc.) */ | |
372316f1 PA |
5649 | if (finish_step_over (ecs)) |
5650 | return; | |
f0407826 DE |
5651 | |
5652 | /* If we either finished a single-step or hit a breakpoint, but | |
5653 | the user wanted this thread to be stopped, pretend we got a | |
5654 | SIG0 (generic unsignaled stop). */ | |
5655 | if (ecs->event_thread->stop_requested | |
5656 | && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP) | |
5657 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; | |
237fc4c9 | 5658 | |
515630c5 | 5659 | stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid)); |
488f131b | 5660 | |
527159b7 | 5661 | if (debug_infrun) |
237fc4c9 | 5662 | { |
5af949e3 | 5663 | struct regcache *regcache = get_thread_regcache (ecs->ptid); |
ac7936df | 5664 | struct gdbarch *gdbarch = regcache->arch (); |
2989a365 | 5665 | scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); |
7f82dfc7 JK |
5666 | |
5667 | inferior_ptid = ecs->ptid; | |
5af949e3 UW |
5668 | |
5669 | fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n", | |
5670 | paddress (gdbarch, stop_pc)); | |
d92524f1 | 5671 | if (target_stopped_by_watchpoint ()) |
237fc4c9 PA |
5672 | { |
5673 | CORE_ADDR addr; | |
abbb1732 | 5674 | |
237fc4c9 PA |
5675 | fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n"); |
5676 | ||
5677 | if (target_stopped_data_address (¤t_target, &addr)) | |
5678 | fprintf_unfiltered (gdb_stdlog, | |
5af949e3 UW |
5679 | "infrun: stopped data address = %s\n", |
5680 | paddress (gdbarch, addr)); | |
237fc4c9 PA |
5681 | else |
5682 | fprintf_unfiltered (gdb_stdlog, | |
5683 | "infrun: (no data address available)\n"); | |
5684 | } | |
5685 | } | |
527159b7 | 5686 | |
36fa8042 PA |
5687 | /* This is originated from start_remote(), start_inferior() and |
5688 | shared libraries hook functions. */ | |
5689 | stop_soon = get_inferior_stop_soon (ecs->ptid); | |
5690 | if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE) | |
5691 | { | |
5692 | if (!ptid_equal (ecs->ptid, inferior_ptid)) | |
5693 | context_switch (ecs->ptid); | |
5694 | if (debug_infrun) | |
5695 | fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n"); | |
5696 | stop_print_frame = 1; | |
22bcd14b | 5697 | stop_waiting (ecs); |
36fa8042 PA |
5698 | return; |
5699 | } | |
5700 | ||
36fa8042 PA |
5701 | /* This originates from attach_command(). We need to overwrite |
5702 | the stop_signal here, because some kernels don't ignore a | |
5703 | SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call. | |
5704 | See more comments in inferior.h. On the other hand, if we | |
5705 | get a non-SIGSTOP, report it to the user - assume the backend | |
5706 | will handle the SIGSTOP if it should show up later. | |
5707 | ||
5708 | Also consider that the attach is complete when we see a | |
5709 | SIGTRAP. Some systems (e.g. Windows), and stubs supporting | |
5710 | target extended-remote report it instead of a SIGSTOP | |
5711 | (e.g. gdbserver). We already rely on SIGTRAP being our | |
5712 | signal, so this is no exception. | |
5713 | ||
5714 | Also consider that the attach is complete when we see a | |
5715 | GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell | |
5716 | the target to stop all threads of the inferior, in case the | |
5717 | low level attach operation doesn't stop them implicitly. If | |
5718 | they weren't stopped implicitly, then the stub will report a | |
5719 | GDB_SIGNAL_0, meaning: stopped for no particular reason | |
5720 | other than GDB's request. */ | |
5721 | if (stop_soon == STOP_QUIETLY_NO_SIGSTOP | |
5722 | && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP | |
5723 | || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP | |
5724 | || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0)) | |
5725 | { | |
5726 | stop_print_frame = 1; | |
22bcd14b | 5727 | stop_waiting (ecs); |
36fa8042 PA |
5728 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; |
5729 | return; | |
5730 | } | |
5731 | ||
488f131b | 5732 | /* See if something interesting happened to the non-current thread. If |
b40c7d58 DJ |
5733 | so, then switch to that thread. */ |
5734 | if (!ptid_equal (ecs->ptid, inferior_ptid)) | |
488f131b | 5735 | { |
527159b7 | 5736 | if (debug_infrun) |
8a9de0e4 | 5737 | fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n"); |
527159b7 | 5738 | |
0d1e5fa7 | 5739 | context_switch (ecs->ptid); |
c5aa993b | 5740 | |
9a4105ab | 5741 | if (deprecated_context_hook) |
5d5658a1 | 5742 | deprecated_context_hook (ptid_to_global_thread_id (ecs->ptid)); |
488f131b | 5743 | } |
c906108c | 5744 | |
568d6575 UW |
5745 | /* At this point, get hold of the now-current thread's frame. */ |
5746 | frame = get_current_frame (); | |
5747 | gdbarch = get_frame_arch (frame); | |
5748 | ||
2adfaa28 | 5749 | /* Pull the single step breakpoints out of the target. */ |
af48d08f | 5750 | if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP) |
488f131b | 5751 | { |
af48d08f | 5752 | struct regcache *regcache; |
af48d08f | 5753 | CORE_ADDR pc; |
2adfaa28 | 5754 | |
af48d08f | 5755 | regcache = get_thread_regcache (ecs->ptid); |
8b86c959 YQ |
5756 | const address_space *aspace = regcache->aspace (); |
5757 | ||
af48d08f | 5758 | pc = regcache_read_pc (regcache); |
34b7e8a6 | 5759 | |
af48d08f PA |
5760 | /* However, before doing so, if this single-step breakpoint was |
5761 | actually for another thread, set this thread up for moving | |
5762 | past it. */ | |
5763 | if (!thread_has_single_step_breakpoint_here (ecs->event_thread, | |
5764 | aspace, pc)) | |
5765 | { | |
5766 | if (single_step_breakpoint_inserted_here_p (aspace, pc)) | |
2adfaa28 PA |
5767 | { |
5768 | if (debug_infrun) | |
5769 | { | |
5770 | fprintf_unfiltered (gdb_stdlog, | |
af48d08f | 5771 | "infrun: [%s] hit another thread's " |
34b7e8a6 PA |
5772 | "single-step breakpoint\n", |
5773 | target_pid_to_str (ecs->ptid)); | |
2adfaa28 | 5774 | } |
af48d08f PA |
5775 | ecs->hit_singlestep_breakpoint = 1; |
5776 | } | |
5777 | } | |
5778 | else | |
5779 | { | |
5780 | if (debug_infrun) | |
5781 | { | |
5782 | fprintf_unfiltered (gdb_stdlog, | |
5783 | "infrun: [%s] hit its " | |
5784 | "single-step breakpoint\n", | |
5785 | target_pid_to_str (ecs->ptid)); | |
2adfaa28 PA |
5786 | } |
5787 | } | |
488f131b | 5788 | } |
af48d08f | 5789 | delete_just_stopped_threads_single_step_breakpoints (); |
c906108c | 5790 | |
963f9c80 PA |
5791 | if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP |
5792 | && ecs->event_thread->control.trap_expected | |
5793 | && ecs->event_thread->stepping_over_watchpoint) | |
d983da9c DJ |
5794 | stopped_by_watchpoint = 0; |
5795 | else | |
5796 | stopped_by_watchpoint = watchpoints_triggered (&ecs->ws); | |
5797 | ||
5798 | /* If necessary, step over this watchpoint. We'll be back to display | |
5799 | it in a moment. */ | |
5800 | if (stopped_by_watchpoint | |
d92524f1 | 5801 | && (target_have_steppable_watchpoint |
568d6575 | 5802 | || gdbarch_have_nonsteppable_watchpoint (gdbarch))) |
488f131b | 5803 | { |
488f131b JB |
5804 | /* At this point, we are stopped at an instruction which has |
5805 | attempted to write to a piece of memory under control of | |
5806 | a watchpoint. The instruction hasn't actually executed | |
5807 | yet. If we were to evaluate the watchpoint expression | |
5808 | now, we would get the old value, and therefore no change | |
5809 | would seem to have occurred. | |
5810 | ||
5811 | In order to make watchpoints work `right', we really need | |
5812 | to complete the memory write, and then evaluate the | |
d983da9c DJ |
5813 | watchpoint expression. We do this by single-stepping the |
5814 | target. | |
5815 | ||
7f89fd65 | 5816 | It may not be necessary to disable the watchpoint to step over |
d983da9c DJ |
5817 | it. For example, the PA can (with some kernel cooperation) |
5818 | single step over a watchpoint without disabling the watchpoint. | |
5819 | ||
5820 | It is far more common to need to disable a watchpoint to step | |
5821 | the inferior over it. If we have non-steppable watchpoints, | |
5822 | we must disable the current watchpoint; it's simplest to | |
963f9c80 PA |
5823 | disable all watchpoints. |
5824 | ||
5825 | Any breakpoint at PC must also be stepped over -- if there's | |
5826 | one, it will have already triggered before the watchpoint | |
5827 | triggered, and we either already reported it to the user, or | |
5828 | it didn't cause a stop and we called keep_going. In either | |
5829 | case, if there was a breakpoint at PC, we must be trying to | |
5830 | step past it. */ | |
5831 | ecs->event_thread->stepping_over_watchpoint = 1; | |
5832 | keep_going (ecs); | |
488f131b JB |
5833 | return; |
5834 | } | |
5835 | ||
4e1c45ea | 5836 | ecs->event_thread->stepping_over_breakpoint = 0; |
963f9c80 | 5837 | ecs->event_thread->stepping_over_watchpoint = 0; |
16c381f0 JK |
5838 | bpstat_clear (&ecs->event_thread->control.stop_bpstat); |
5839 | ecs->event_thread->control.stop_step = 0; | |
488f131b | 5840 | stop_print_frame = 1; |
488f131b | 5841 | stopped_by_random_signal = 0; |
488f131b | 5842 | |
edb3359d DJ |
5843 | /* Hide inlined functions starting here, unless we just performed stepi or |
5844 | nexti. After stepi and nexti, always show the innermost frame (not any | |
5845 | inline function call sites). */ | |
16c381f0 | 5846 | if (ecs->event_thread->control.step_range_end != 1) |
0574c78f | 5847 | { |
8b86c959 | 5848 | const address_space *aspace = |
a01bda52 | 5849 | get_thread_regcache (ecs->ptid)->aspace (); |
0574c78f GB |
5850 | |
5851 | /* skip_inline_frames is expensive, so we avoid it if we can | |
5852 | determine that the address is one where functions cannot have | |
5853 | been inlined. This improves performance with inferiors that | |
5854 | load a lot of shared libraries, because the solib event | |
5855 | breakpoint is defined as the address of a function (i.e. not | |
5856 | inline). Note that we have to check the previous PC as well | |
5857 | as the current one to catch cases when we have just | |
5858 | single-stepped off a breakpoint prior to reinstating it. | |
5859 | Note that we're assuming that the code we single-step to is | |
5860 | not inline, but that's not definitive: there's nothing | |
5861 | preventing the event breakpoint function from containing | |
5862 | inlined code, and the single-step ending up there. If the | |
5863 | user had set a breakpoint on that inlined code, the missing | |
5864 | skip_inline_frames call would break things. Fortunately | |
5865 | that's an extremely unlikely scenario. */ | |
09ac7c10 | 5866 | if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws) |
a210c238 MR |
5867 | && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP |
5868 | && ecs->event_thread->control.trap_expected | |
5869 | && pc_at_non_inline_function (aspace, | |
5870 | ecs->event_thread->prev_pc, | |
09ac7c10 | 5871 | &ecs->ws))) |
1c5a993e MR |
5872 | { |
5873 | skip_inline_frames (ecs->ptid); | |
5874 | ||
5875 | /* Re-fetch current thread's frame in case that invalidated | |
5876 | the frame cache. */ | |
5877 | frame = get_current_frame (); | |
5878 | gdbarch = get_frame_arch (frame); | |
5879 | } | |
0574c78f | 5880 | } |
edb3359d | 5881 | |
a493e3e2 | 5882 | if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP |
16c381f0 | 5883 | && ecs->event_thread->control.trap_expected |
568d6575 | 5884 | && gdbarch_single_step_through_delay_p (gdbarch) |
4e1c45ea | 5885 | && currently_stepping (ecs->event_thread)) |
3352ef37 | 5886 | { |
b50d7442 | 5887 | /* We're trying to step off a breakpoint. Turns out that we're |
3352ef37 | 5888 | also on an instruction that needs to be stepped multiple |
1777feb0 | 5889 | times before it's been fully executing. E.g., architectures |
3352ef37 AC |
5890 | with a delay slot. It needs to be stepped twice, once for |
5891 | the instruction and once for the delay slot. */ | |
5892 | int step_through_delay | |
568d6575 | 5893 | = gdbarch_single_step_through_delay (gdbarch, frame); |
abbb1732 | 5894 | |
527159b7 | 5895 | if (debug_infrun && step_through_delay) |
8a9de0e4 | 5896 | fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n"); |
16c381f0 JK |
5897 | if (ecs->event_thread->control.step_range_end == 0 |
5898 | && step_through_delay) | |
3352ef37 AC |
5899 | { |
5900 | /* The user issued a continue when stopped at a breakpoint. | |
5901 | Set up for another trap and get out of here. */ | |
4e1c45ea | 5902 | ecs->event_thread->stepping_over_breakpoint = 1; |
3352ef37 AC |
5903 | keep_going (ecs); |
5904 | return; | |
5905 | } | |
5906 | else if (step_through_delay) | |
5907 | { | |
5908 | /* The user issued a step when stopped at a breakpoint. | |
5909 | Maybe we should stop, maybe we should not - the delay | |
5910 | slot *might* correspond to a line of source. In any | |
ca67fcb8 VP |
5911 | case, don't decide that here, just set |
5912 | ecs->stepping_over_breakpoint, making sure we | |
5913 | single-step again before breakpoints are re-inserted. */ | |
4e1c45ea | 5914 | ecs->event_thread->stepping_over_breakpoint = 1; |
3352ef37 AC |
5915 | } |
5916 | } | |
5917 | ||
ab04a2af TT |
5918 | /* See if there is a breakpoint/watchpoint/catchpoint/etc. that |
5919 | handles this event. */ | |
5920 | ecs->event_thread->control.stop_bpstat | |
a01bda52 | 5921 | = bpstat_stop_status (get_current_regcache ()->aspace (), |
ab04a2af | 5922 | stop_pc, ecs->ptid, &ecs->ws); |
db82e815 | 5923 | |
ab04a2af TT |
5924 | /* Following in case break condition called a |
5925 | function. */ | |
5926 | stop_print_frame = 1; | |
73dd234f | 5927 | |
ab04a2af TT |
5928 | /* This is where we handle "moribund" watchpoints. Unlike |
5929 | software breakpoints traps, hardware watchpoint traps are | |
5930 | always distinguishable from random traps. If no high-level | |
5931 | watchpoint is associated with the reported stop data address | |
5932 | anymore, then the bpstat does not explain the signal --- | |
5933 | simply make sure to ignore it if `stopped_by_watchpoint' is | |
5934 | set. */ | |
5935 | ||
5936 | if (debug_infrun | |
5937 | && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP | |
47591c29 | 5938 | && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat, |
427cd150 | 5939 | GDB_SIGNAL_TRAP) |
ab04a2af TT |
5940 | && stopped_by_watchpoint) |
5941 | fprintf_unfiltered (gdb_stdlog, | |
5942 | "infrun: no user watchpoint explains " | |
5943 | "watchpoint SIGTRAP, ignoring\n"); | |
73dd234f | 5944 | |
bac7d97b | 5945 | /* NOTE: cagney/2003-03-29: These checks for a random signal |
ab04a2af TT |
5946 | at one stage in the past included checks for an inferior |
5947 | function call's call dummy's return breakpoint. The original | |
5948 | comment, that went with the test, read: | |
03cebad2 | 5949 | |
ab04a2af TT |
5950 | ``End of a stack dummy. Some systems (e.g. Sony news) give |
5951 | another signal besides SIGTRAP, so check here as well as | |
5952 | above.'' | |
73dd234f | 5953 | |
ab04a2af TT |
5954 | If someone ever tries to get call dummys on a |
5955 | non-executable stack to work (where the target would stop | |
5956 | with something like a SIGSEGV), then those tests might need | |
5957 | to be re-instated. Given, however, that the tests were only | |
5958 | enabled when momentary breakpoints were not being used, I | |
5959 | suspect that it won't be the case. | |
488f131b | 5960 | |
ab04a2af TT |
5961 | NOTE: kettenis/2004-02-05: Indeed such checks don't seem to |
5962 | be necessary for call dummies on a non-executable stack on | |
5963 | SPARC. */ | |
488f131b | 5964 | |
bac7d97b | 5965 | /* See if the breakpoints module can explain the signal. */ |
47591c29 PA |
5966 | random_signal |
5967 | = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat, | |
5968 | ecs->event_thread->suspend.stop_signal); | |
bac7d97b | 5969 | |
1cf4d951 PA |
5970 | /* Maybe this was a trap for a software breakpoint that has since |
5971 | been removed. */ | |
5972 | if (random_signal && target_stopped_by_sw_breakpoint ()) | |
5973 | { | |
5974 | if (program_breakpoint_here_p (gdbarch, stop_pc)) | |
5975 | { | |
5976 | struct regcache *regcache; | |
5977 | int decr_pc; | |
5978 | ||
5979 | /* Re-adjust PC to what the program would see if GDB was not | |
5980 | debugging it. */ | |
5981 | regcache = get_thread_regcache (ecs->event_thread->ptid); | |
527a273a | 5982 | decr_pc = gdbarch_decr_pc_after_break (gdbarch); |
1cf4d951 PA |
5983 | if (decr_pc != 0) |
5984 | { | |
07036511 TT |
5985 | gdb::optional<scoped_restore_tmpl<int>> |
5986 | restore_operation_disable; | |
1cf4d951 PA |
5987 | |
5988 | if (record_full_is_used ()) | |
07036511 TT |
5989 | restore_operation_disable.emplace |
5990 | (record_full_gdb_operation_disable_set ()); | |
1cf4d951 PA |
5991 | |
5992 | regcache_write_pc (regcache, stop_pc + decr_pc); | |
1cf4d951 PA |
5993 | } |
5994 | } | |
5995 | else | |
5996 | { | |
5997 | /* A delayed software breakpoint event. Ignore the trap. */ | |
5998 | if (debug_infrun) | |
5999 | fprintf_unfiltered (gdb_stdlog, | |
6000 | "infrun: delayed software breakpoint " | |
6001 | "trap, ignoring\n"); | |
6002 | random_signal = 0; | |
6003 | } | |
6004 | } | |
6005 | ||
6006 | /* Maybe this was a trap for a hardware breakpoint/watchpoint that | |
6007 | has since been removed. */ | |
6008 | if (random_signal && target_stopped_by_hw_breakpoint ()) | |
6009 | { | |
6010 | /* A delayed hardware breakpoint event. Ignore the trap. */ | |
6011 | if (debug_infrun) | |
6012 | fprintf_unfiltered (gdb_stdlog, | |
6013 | "infrun: delayed hardware breakpoint/watchpoint " | |
6014 | "trap, ignoring\n"); | |
6015 | random_signal = 0; | |
6016 | } | |
6017 | ||
bac7d97b PA |
6018 | /* If not, perhaps stepping/nexting can. */ |
6019 | if (random_signal) | |
6020 | random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP | |
6021 | && currently_stepping (ecs->event_thread)); | |
ab04a2af | 6022 | |
2adfaa28 PA |
6023 | /* Perhaps the thread hit a single-step breakpoint of _another_ |
6024 | thread. Single-step breakpoints are transparent to the | |
6025 | breakpoints module. */ | |
6026 | if (random_signal) | |
6027 | random_signal = !ecs->hit_singlestep_breakpoint; | |
6028 | ||
bac7d97b PA |
6029 | /* No? Perhaps we got a moribund watchpoint. */ |
6030 | if (random_signal) | |
6031 | random_signal = !stopped_by_watchpoint; | |
ab04a2af | 6032 | |
c65d6b55 PA |
6033 | /* Always stop if the user explicitly requested this thread to |
6034 | remain stopped. */ | |
6035 | if (ecs->event_thread->stop_requested) | |
6036 | { | |
6037 | random_signal = 1; | |
6038 | if (debug_infrun) | |
6039 | fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n"); | |
6040 | } | |
6041 | ||
488f131b JB |
6042 | /* For the program's own signals, act according to |
6043 | the signal handling tables. */ | |
6044 | ||
ce12b012 | 6045 | if (random_signal) |
488f131b JB |
6046 | { |
6047 | /* Signal not for debugging purposes. */ | |
c9657e70 | 6048 | struct inferior *inf = find_inferior_ptid (ecs->ptid); |
c9737c08 | 6049 | enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal; |
488f131b | 6050 | |
527159b7 | 6051 | if (debug_infrun) |
c9737c08 PA |
6052 | fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n", |
6053 | gdb_signal_to_symbol_string (stop_signal)); | |
527159b7 | 6054 | |
488f131b JB |
6055 | stopped_by_random_signal = 1; |
6056 | ||
252fbfc8 PA |
6057 | /* Always stop on signals if we're either just gaining control |
6058 | of the program, or the user explicitly requested this thread | |
6059 | to remain stopped. */ | |
d6b48e9c | 6060 | if (stop_soon != NO_STOP_QUIETLY |
252fbfc8 | 6061 | || ecs->event_thread->stop_requested |
24291992 | 6062 | || (!inf->detaching |
16c381f0 | 6063 | && signal_stop_state (ecs->event_thread->suspend.stop_signal))) |
488f131b | 6064 | { |
22bcd14b | 6065 | stop_waiting (ecs); |
488f131b JB |
6066 | return; |
6067 | } | |
b57bacec PA |
6068 | |
6069 | /* Notify observers the signal has "handle print" set. Note we | |
6070 | returned early above if stopping; normal_stop handles the | |
6071 | printing in that case. */ | |
6072 | if (signal_print[ecs->event_thread->suspend.stop_signal]) | |
6073 | { | |
6074 | /* The signal table tells us to print about this signal. */ | |
223ffa71 | 6075 | target_terminal::ours_for_output (); |
b57bacec | 6076 | observer_notify_signal_received (ecs->event_thread->suspend.stop_signal); |
223ffa71 | 6077 | target_terminal::inferior (); |
b57bacec | 6078 | } |
488f131b JB |
6079 | |
6080 | /* Clear the signal if it should not be passed. */ | |
16c381f0 | 6081 | if (signal_program[ecs->event_thread->suspend.stop_signal] == 0) |
a493e3e2 | 6082 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; |
488f131b | 6083 | |
fb14de7b | 6084 | if (ecs->event_thread->prev_pc == stop_pc |
16c381f0 | 6085 | && ecs->event_thread->control.trap_expected |
8358c15c | 6086 | && ecs->event_thread->control.step_resume_breakpoint == NULL) |
68f53502 AC |
6087 | { |
6088 | /* We were just starting a new sequence, attempting to | |
6089 | single-step off of a breakpoint and expecting a SIGTRAP. | |
237fc4c9 | 6090 | Instead this signal arrives. This signal will take us out |
68f53502 AC |
6091 | of the stepping range so GDB needs to remember to, when |
6092 | the signal handler returns, resume stepping off that | |
6093 | breakpoint. */ | |
6094 | /* To simplify things, "continue" is forced to use the same | |
6095 | code paths as single-step - set a breakpoint at the | |
6096 | signal return address and then, once hit, step off that | |
6097 | breakpoint. */ | |
237fc4c9 PA |
6098 | if (debug_infrun) |
6099 | fprintf_unfiltered (gdb_stdlog, | |
6100 | "infrun: signal arrived while stepping over " | |
6101 | "breakpoint\n"); | |
d3169d93 | 6102 | |
2c03e5be | 6103 | insert_hp_step_resume_breakpoint_at_frame (frame); |
4e1c45ea | 6104 | ecs->event_thread->step_after_step_resume_breakpoint = 1; |
2455069d UW |
6105 | /* Reset trap_expected to ensure breakpoints are re-inserted. */ |
6106 | ecs->event_thread->control.trap_expected = 0; | |
d137e6dc PA |
6107 | |
6108 | /* If we were nexting/stepping some other thread, switch to | |
6109 | it, so that we don't continue it, losing control. */ | |
6110 | if (!switch_back_to_stepped_thread (ecs)) | |
6111 | keep_going (ecs); | |
9d799f85 | 6112 | return; |
68f53502 | 6113 | } |
9d799f85 | 6114 | |
e5f8a7cc PA |
6115 | if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0 |
6116 | && (pc_in_thread_step_range (stop_pc, ecs->event_thread) | |
6117 | || ecs->event_thread->control.step_range_end == 1) | |
edb3359d | 6118 | && frame_id_eq (get_stack_frame_id (frame), |
16c381f0 | 6119 | ecs->event_thread->control.step_stack_frame_id) |
8358c15c | 6120 | && ecs->event_thread->control.step_resume_breakpoint == NULL) |
d303a6c7 AC |
6121 | { |
6122 | /* The inferior is about to take a signal that will take it | |
6123 | out of the single step range. Set a breakpoint at the | |
6124 | current PC (which is presumably where the signal handler | |
6125 | will eventually return) and then allow the inferior to | |
6126 | run free. | |
6127 | ||
6128 | Note that this is only needed for a signal delivered | |
6129 | while in the single-step range. Nested signals aren't a | |
6130 | problem as they eventually all return. */ | |
237fc4c9 PA |
6131 | if (debug_infrun) |
6132 | fprintf_unfiltered (gdb_stdlog, | |
6133 | "infrun: signal may take us out of " | |
6134 | "single-step range\n"); | |
6135 | ||
372316f1 | 6136 | clear_step_over_info (); |
2c03e5be | 6137 | insert_hp_step_resume_breakpoint_at_frame (frame); |
e5f8a7cc | 6138 | ecs->event_thread->step_after_step_resume_breakpoint = 1; |
2455069d UW |
6139 | /* Reset trap_expected to ensure breakpoints are re-inserted. */ |
6140 | ecs->event_thread->control.trap_expected = 0; | |
9d799f85 AC |
6141 | keep_going (ecs); |
6142 | return; | |
d303a6c7 | 6143 | } |
9d799f85 AC |
6144 | |
6145 | /* Note: step_resume_breakpoint may be non-NULL. This occures | |
6146 | when either there's a nested signal, or when there's a | |
6147 | pending signal enabled just as the signal handler returns | |
6148 | (leaving the inferior at the step-resume-breakpoint without | |
6149 | actually executing it). Either way continue until the | |
6150 | breakpoint is really hit. */ | |
c447ac0b PA |
6151 | |
6152 | if (!switch_back_to_stepped_thread (ecs)) | |
6153 | { | |
6154 | if (debug_infrun) | |
6155 | fprintf_unfiltered (gdb_stdlog, | |
6156 | "infrun: random signal, keep going\n"); | |
6157 | ||
6158 | keep_going (ecs); | |
6159 | } | |
6160 | return; | |
488f131b | 6161 | } |
94c57d6a PA |
6162 | |
6163 | process_event_stop_test (ecs); | |
6164 | } | |
6165 | ||
6166 | /* Come here when we've got some debug event / signal we can explain | |
6167 | (IOW, not a random signal), and test whether it should cause a | |
6168 | stop, or whether we should resume the inferior (transparently). | |
6169 | E.g., could be a breakpoint whose condition evaluates false; we | |
6170 | could be still stepping within the line; etc. */ | |
6171 | ||
6172 | static void | |
6173 | process_event_stop_test (struct execution_control_state *ecs) | |
6174 | { | |
6175 | struct symtab_and_line stop_pc_sal; | |
6176 | struct frame_info *frame; | |
6177 | struct gdbarch *gdbarch; | |
cdaa5b73 PA |
6178 | CORE_ADDR jmp_buf_pc; |
6179 | struct bpstat_what what; | |
94c57d6a | 6180 | |
cdaa5b73 | 6181 | /* Handle cases caused by hitting a breakpoint. */ |
611c83ae | 6182 | |
cdaa5b73 PA |
6183 | frame = get_current_frame (); |
6184 | gdbarch = get_frame_arch (frame); | |
fcf3daef | 6185 | |
cdaa5b73 | 6186 | what = bpstat_what (ecs->event_thread->control.stop_bpstat); |
611c83ae | 6187 | |
cdaa5b73 PA |
6188 | if (what.call_dummy) |
6189 | { | |
6190 | stop_stack_dummy = what.call_dummy; | |
6191 | } | |
186c406b | 6192 | |
243a9253 PA |
6193 | /* A few breakpoint types have callbacks associated (e.g., |
6194 | bp_jit_event). Run them now. */ | |
6195 | bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat); | |
6196 | ||
cdaa5b73 PA |
6197 | /* If we hit an internal event that triggers symbol changes, the |
6198 | current frame will be invalidated within bpstat_what (e.g., if we | |
6199 | hit an internal solib event). Re-fetch it. */ | |
6200 | frame = get_current_frame (); | |
6201 | gdbarch = get_frame_arch (frame); | |
e2e4d78b | 6202 | |
cdaa5b73 PA |
6203 | switch (what.main_action) |
6204 | { | |
6205 | case BPSTAT_WHAT_SET_LONGJMP_RESUME: | |
6206 | /* If we hit the breakpoint at longjmp while stepping, we | |
6207 | install a momentary breakpoint at the target of the | |
6208 | jmp_buf. */ | |
186c406b | 6209 | |
cdaa5b73 PA |
6210 | if (debug_infrun) |
6211 | fprintf_unfiltered (gdb_stdlog, | |
6212 | "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n"); | |
186c406b | 6213 | |
cdaa5b73 | 6214 | ecs->event_thread->stepping_over_breakpoint = 1; |
611c83ae | 6215 | |
cdaa5b73 PA |
6216 | if (what.is_longjmp) |
6217 | { | |
6218 | struct value *arg_value; | |
6219 | ||
6220 | /* If we set the longjmp breakpoint via a SystemTap probe, | |
6221 | then use it to extract the arguments. The destination PC | |
6222 | is the third argument to the probe. */ | |
6223 | arg_value = probe_safe_evaluate_at_pc (frame, 2); | |
6224 | if (arg_value) | |
8fa0c4f8 AA |
6225 | { |
6226 | jmp_buf_pc = value_as_address (arg_value); | |
6227 | jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc); | |
6228 | } | |
cdaa5b73 PA |
6229 | else if (!gdbarch_get_longjmp_target_p (gdbarch) |
6230 | || !gdbarch_get_longjmp_target (gdbarch, | |
6231 | frame, &jmp_buf_pc)) | |
e2e4d78b | 6232 | { |
cdaa5b73 PA |
6233 | if (debug_infrun) |
6234 | fprintf_unfiltered (gdb_stdlog, | |
6235 | "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME " | |
6236 | "(!gdbarch_get_longjmp_target)\n"); | |
6237 | keep_going (ecs); | |
6238 | return; | |
e2e4d78b | 6239 | } |
e2e4d78b | 6240 | |
cdaa5b73 PA |
6241 | /* Insert a breakpoint at resume address. */ |
6242 | insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc); | |
6243 | } | |
6244 | else | |
6245 | check_exception_resume (ecs, frame); | |
6246 | keep_going (ecs); | |
6247 | return; | |
e81a37f7 | 6248 | |
cdaa5b73 PA |
6249 | case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME: |
6250 | { | |
6251 | struct frame_info *init_frame; | |
e81a37f7 | 6252 | |
cdaa5b73 | 6253 | /* There are several cases to consider. |
c906108c | 6254 | |
cdaa5b73 PA |
6255 | 1. The initiating frame no longer exists. In this case we |
6256 | must stop, because the exception or longjmp has gone too | |
6257 | far. | |
2c03e5be | 6258 | |
cdaa5b73 PA |
6259 | 2. The initiating frame exists, and is the same as the |
6260 | current frame. We stop, because the exception or longjmp | |
6261 | has been caught. | |
2c03e5be | 6262 | |
cdaa5b73 PA |
6263 | 3. The initiating frame exists and is different from the |
6264 | current frame. This means the exception or longjmp has | |
6265 | been caught beneath the initiating frame, so keep going. | |
c906108c | 6266 | |
cdaa5b73 PA |
6267 | 4. longjmp breakpoint has been placed just to protect |
6268 | against stale dummy frames and user is not interested in | |
6269 | stopping around longjmps. */ | |
c5aa993b | 6270 | |
cdaa5b73 PA |
6271 | if (debug_infrun) |
6272 | fprintf_unfiltered (gdb_stdlog, | |
6273 | "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n"); | |
c5aa993b | 6274 | |
cdaa5b73 PA |
6275 | gdb_assert (ecs->event_thread->control.exception_resume_breakpoint |
6276 | != NULL); | |
6277 | delete_exception_resume_breakpoint (ecs->event_thread); | |
c5aa993b | 6278 | |
cdaa5b73 PA |
6279 | if (what.is_longjmp) |
6280 | { | |
b67a2c6f | 6281 | check_longjmp_breakpoint_for_call_dummy (ecs->event_thread); |
c5aa993b | 6282 | |
cdaa5b73 | 6283 | if (!frame_id_p (ecs->event_thread->initiating_frame)) |
e5ef252a | 6284 | { |
cdaa5b73 PA |
6285 | /* Case 4. */ |
6286 | keep_going (ecs); | |
6287 | return; | |
e5ef252a | 6288 | } |
cdaa5b73 | 6289 | } |
c5aa993b | 6290 | |
cdaa5b73 | 6291 | init_frame = frame_find_by_id (ecs->event_thread->initiating_frame); |
527159b7 | 6292 | |
cdaa5b73 PA |
6293 | if (init_frame) |
6294 | { | |
6295 | struct frame_id current_id | |
6296 | = get_frame_id (get_current_frame ()); | |
6297 | if (frame_id_eq (current_id, | |
6298 | ecs->event_thread->initiating_frame)) | |
6299 | { | |
6300 | /* Case 2. Fall through. */ | |
6301 | } | |
6302 | else | |
6303 | { | |
6304 | /* Case 3. */ | |
6305 | keep_going (ecs); | |
6306 | return; | |
6307 | } | |
68f53502 | 6308 | } |
488f131b | 6309 | |
cdaa5b73 PA |
6310 | /* For Cases 1 and 2, remove the step-resume breakpoint, if it |
6311 | exists. */ | |
6312 | delete_step_resume_breakpoint (ecs->event_thread); | |
e5ef252a | 6313 | |
bdc36728 | 6314 | end_stepping_range (ecs); |
cdaa5b73 PA |
6315 | } |
6316 | return; | |
e5ef252a | 6317 | |
cdaa5b73 PA |
6318 | case BPSTAT_WHAT_SINGLE: |
6319 | if (debug_infrun) | |
6320 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n"); | |
6321 | ecs->event_thread->stepping_over_breakpoint = 1; | |
6322 | /* Still need to check other stuff, at least the case where we | |
6323 | are stepping and step out of the right range. */ | |
6324 | break; | |
e5ef252a | 6325 | |
cdaa5b73 PA |
6326 | case BPSTAT_WHAT_STEP_RESUME: |
6327 | if (debug_infrun) | |
6328 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n"); | |
e5ef252a | 6329 | |
cdaa5b73 PA |
6330 | delete_step_resume_breakpoint (ecs->event_thread); |
6331 | if (ecs->event_thread->control.proceed_to_finish | |
6332 | && execution_direction == EXEC_REVERSE) | |
6333 | { | |
6334 | struct thread_info *tp = ecs->event_thread; | |
6335 | ||
6336 | /* We are finishing a function in reverse, and just hit the | |
6337 | step-resume breakpoint at the start address of the | |
6338 | function, and we're almost there -- just need to back up | |
6339 | by one more single-step, which should take us back to the | |
6340 | function call. */ | |
6341 | tp->control.step_range_start = tp->control.step_range_end = 1; | |
6342 | keep_going (ecs); | |
e5ef252a | 6343 | return; |
cdaa5b73 PA |
6344 | } |
6345 | fill_in_stop_func (gdbarch, ecs); | |
6346 | if (stop_pc == ecs->stop_func_start | |
6347 | && execution_direction == EXEC_REVERSE) | |
6348 | { | |
6349 | /* We are stepping over a function call in reverse, and just | |
6350 | hit the step-resume breakpoint at the start address of | |
6351 | the function. Go back to single-stepping, which should | |
6352 | take us back to the function call. */ | |
6353 | ecs->event_thread->stepping_over_breakpoint = 1; | |
6354 | keep_going (ecs); | |
6355 | return; | |
6356 | } | |
6357 | break; | |
e5ef252a | 6358 | |
cdaa5b73 PA |
6359 | case BPSTAT_WHAT_STOP_NOISY: |
6360 | if (debug_infrun) | |
6361 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n"); | |
6362 | stop_print_frame = 1; | |
e5ef252a | 6363 | |
99619bea PA |
6364 | /* Assume the thread stopped for a breapoint. We'll still check |
6365 | whether a/the breakpoint is there when the thread is next | |
6366 | resumed. */ | |
6367 | ecs->event_thread->stepping_over_breakpoint = 1; | |
e5ef252a | 6368 | |
22bcd14b | 6369 | stop_waiting (ecs); |
cdaa5b73 | 6370 | return; |
e5ef252a | 6371 | |
cdaa5b73 PA |
6372 | case BPSTAT_WHAT_STOP_SILENT: |
6373 | if (debug_infrun) | |
6374 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n"); | |
6375 | stop_print_frame = 0; | |
e5ef252a | 6376 | |
99619bea PA |
6377 | /* Assume the thread stopped for a breapoint. We'll still check |
6378 | whether a/the breakpoint is there when the thread is next | |
6379 | resumed. */ | |
6380 | ecs->event_thread->stepping_over_breakpoint = 1; | |
22bcd14b | 6381 | stop_waiting (ecs); |
cdaa5b73 PA |
6382 | return; |
6383 | ||
6384 | case BPSTAT_WHAT_HP_STEP_RESUME: | |
6385 | if (debug_infrun) | |
6386 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n"); | |
6387 | ||
6388 | delete_step_resume_breakpoint (ecs->event_thread); | |
6389 | if (ecs->event_thread->step_after_step_resume_breakpoint) | |
6390 | { | |
6391 | /* Back when the step-resume breakpoint was inserted, we | |
6392 | were trying to single-step off a breakpoint. Go back to | |
6393 | doing that. */ | |
6394 | ecs->event_thread->step_after_step_resume_breakpoint = 0; | |
6395 | ecs->event_thread->stepping_over_breakpoint = 1; | |
6396 | keep_going (ecs); | |
6397 | return; | |
e5ef252a | 6398 | } |
cdaa5b73 PA |
6399 | break; |
6400 | ||
6401 | case BPSTAT_WHAT_KEEP_CHECKING: | |
6402 | break; | |
e5ef252a | 6403 | } |
c906108c | 6404 | |
af48d08f PA |
6405 | /* If we stepped a permanent breakpoint and we had a high priority |
6406 | step-resume breakpoint for the address we stepped, but we didn't | |
6407 | hit it, then we must have stepped into the signal handler. The | |
6408 | step-resume was only necessary to catch the case of _not_ | |
6409 | stepping into the handler, so delete it, and fall through to | |
6410 | checking whether the step finished. */ | |
6411 | if (ecs->event_thread->stepped_breakpoint) | |
6412 | { | |
6413 | struct breakpoint *sr_bp | |
6414 | = ecs->event_thread->control.step_resume_breakpoint; | |
6415 | ||
8d707a12 PA |
6416 | if (sr_bp != NULL |
6417 | && sr_bp->loc->permanent | |
af48d08f PA |
6418 | && sr_bp->type == bp_hp_step_resume |
6419 | && sr_bp->loc->address == ecs->event_thread->prev_pc) | |
6420 | { | |
6421 | if (debug_infrun) | |
6422 | fprintf_unfiltered (gdb_stdlog, | |
6423 | "infrun: stepped permanent breakpoint, stopped in " | |
6424 | "handler\n"); | |
6425 | delete_step_resume_breakpoint (ecs->event_thread); | |
6426 | ecs->event_thread->step_after_step_resume_breakpoint = 0; | |
6427 | } | |
6428 | } | |
6429 | ||
cdaa5b73 PA |
6430 | /* We come here if we hit a breakpoint but should not stop for it. |
6431 | Possibly we also were stepping and should stop for that. So fall | |
6432 | through and test for stepping. But, if not stepping, do not | |
6433 | stop. */ | |
c906108c | 6434 | |
a7212384 UW |
6435 | /* In all-stop mode, if we're currently stepping but have stopped in |
6436 | some other thread, we need to switch back to the stepped thread. */ | |
c447ac0b PA |
6437 | if (switch_back_to_stepped_thread (ecs)) |
6438 | return; | |
776f04fa | 6439 | |
8358c15c | 6440 | if (ecs->event_thread->control.step_resume_breakpoint) |
488f131b | 6441 | { |
527159b7 | 6442 | if (debug_infrun) |
d3169d93 DJ |
6443 | fprintf_unfiltered (gdb_stdlog, |
6444 | "infrun: step-resume breakpoint is inserted\n"); | |
527159b7 | 6445 | |
488f131b JB |
6446 | /* Having a step-resume breakpoint overrides anything |
6447 | else having to do with stepping commands until | |
6448 | that breakpoint is reached. */ | |
488f131b JB |
6449 | keep_going (ecs); |
6450 | return; | |
6451 | } | |
c5aa993b | 6452 | |
16c381f0 | 6453 | if (ecs->event_thread->control.step_range_end == 0) |
488f131b | 6454 | { |
527159b7 | 6455 | if (debug_infrun) |
8a9de0e4 | 6456 | fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n"); |
488f131b | 6457 | /* Likewise if we aren't even stepping. */ |
488f131b JB |
6458 | keep_going (ecs); |
6459 | return; | |
6460 | } | |
c5aa993b | 6461 | |
4b7703ad JB |
6462 | /* Re-fetch current thread's frame in case the code above caused |
6463 | the frame cache to be re-initialized, making our FRAME variable | |
6464 | a dangling pointer. */ | |
6465 | frame = get_current_frame (); | |
628fe4e4 | 6466 | gdbarch = get_frame_arch (frame); |
7e324e48 | 6467 | fill_in_stop_func (gdbarch, ecs); |
4b7703ad | 6468 | |
488f131b | 6469 | /* If stepping through a line, keep going if still within it. |
c906108c | 6470 | |
488f131b JB |
6471 | Note that step_range_end is the address of the first instruction |
6472 | beyond the step range, and NOT the address of the last instruction | |
31410e84 MS |
6473 | within it! |
6474 | ||
6475 | Note also that during reverse execution, we may be stepping | |
6476 | through a function epilogue and therefore must detect when | |
6477 | the current-frame changes in the middle of a line. */ | |
6478 | ||
ce4c476a | 6479 | if (pc_in_thread_step_range (stop_pc, ecs->event_thread) |
31410e84 | 6480 | && (execution_direction != EXEC_REVERSE |
388a8562 | 6481 | || frame_id_eq (get_frame_id (frame), |
16c381f0 | 6482 | ecs->event_thread->control.step_frame_id))) |
488f131b | 6483 | { |
527159b7 | 6484 | if (debug_infrun) |
5af949e3 UW |
6485 | fprintf_unfiltered |
6486 | (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n", | |
16c381f0 JK |
6487 | paddress (gdbarch, ecs->event_thread->control.step_range_start), |
6488 | paddress (gdbarch, ecs->event_thread->control.step_range_end)); | |
b2175913 | 6489 | |
c1e36e3e PA |
6490 | /* Tentatively re-enable range stepping; `resume' disables it if |
6491 | necessary (e.g., if we're stepping over a breakpoint or we | |
6492 | have software watchpoints). */ | |
6493 | ecs->event_thread->control.may_range_step = 1; | |
6494 | ||
b2175913 MS |
6495 | /* When stepping backward, stop at beginning of line range |
6496 | (unless it's the function entry point, in which case | |
6497 | keep going back to the call point). */ | |
16c381f0 | 6498 | if (stop_pc == ecs->event_thread->control.step_range_start |
b2175913 MS |
6499 | && stop_pc != ecs->stop_func_start |
6500 | && execution_direction == EXEC_REVERSE) | |
bdc36728 | 6501 | end_stepping_range (ecs); |
b2175913 MS |
6502 | else |
6503 | keep_going (ecs); | |
6504 | ||
488f131b JB |
6505 | return; |
6506 | } | |
c5aa993b | 6507 | |
488f131b | 6508 | /* We stepped out of the stepping range. */ |
c906108c | 6509 | |
488f131b | 6510 | /* If we are stepping at the source level and entered the runtime |
388a8562 MS |
6511 | loader dynamic symbol resolution code... |
6512 | ||
6513 | EXEC_FORWARD: we keep on single stepping until we exit the run | |
6514 | time loader code and reach the callee's address. | |
6515 | ||
6516 | EXEC_REVERSE: we've already executed the callee (backward), and | |
6517 | the runtime loader code is handled just like any other | |
6518 | undebuggable function call. Now we need only keep stepping | |
6519 | backward through the trampoline code, and that's handled further | |
6520 | down, so there is nothing for us to do here. */ | |
6521 | ||
6522 | if (execution_direction != EXEC_REVERSE | |
16c381f0 | 6523 | && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE |
cfd8ab24 | 6524 | && in_solib_dynsym_resolve_code (stop_pc)) |
488f131b | 6525 | { |
4c8c40e6 | 6526 | CORE_ADDR pc_after_resolver = |
568d6575 | 6527 | gdbarch_skip_solib_resolver (gdbarch, stop_pc); |
c906108c | 6528 | |
527159b7 | 6529 | if (debug_infrun) |
3e43a32a MS |
6530 | fprintf_unfiltered (gdb_stdlog, |
6531 | "infrun: stepped into dynsym resolve code\n"); | |
527159b7 | 6532 | |
488f131b JB |
6533 | if (pc_after_resolver) |
6534 | { | |
6535 | /* Set up a step-resume breakpoint at the address | |
6536 | indicated by SKIP_SOLIB_RESOLVER. */ | |
51abb421 | 6537 | symtab_and_line sr_sal; |
488f131b | 6538 | sr_sal.pc = pc_after_resolver; |
6c95b8df | 6539 | sr_sal.pspace = get_frame_program_space (frame); |
488f131b | 6540 | |
a6d9a66e UW |
6541 | insert_step_resume_breakpoint_at_sal (gdbarch, |
6542 | sr_sal, null_frame_id); | |
c5aa993b | 6543 | } |
c906108c | 6544 | |
488f131b JB |
6545 | keep_going (ecs); |
6546 | return; | |
6547 | } | |
c906108c | 6548 | |
16c381f0 JK |
6549 | if (ecs->event_thread->control.step_range_end != 1 |
6550 | && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE | |
6551 | || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL) | |
568d6575 | 6552 | && get_frame_type (frame) == SIGTRAMP_FRAME) |
488f131b | 6553 | { |
527159b7 | 6554 | if (debug_infrun) |
3e43a32a MS |
6555 | fprintf_unfiltered (gdb_stdlog, |
6556 | "infrun: stepped into signal trampoline\n"); | |
42edda50 | 6557 | /* The inferior, while doing a "step" or "next", has ended up in |
8fb3e588 AC |
6558 | a signal trampoline (either by a signal being delivered or by |
6559 | the signal handler returning). Just single-step until the | |
6560 | inferior leaves the trampoline (either by calling the handler | |
6561 | or returning). */ | |
488f131b JB |
6562 | keep_going (ecs); |
6563 | return; | |
6564 | } | |
c906108c | 6565 | |
14132e89 MR |
6566 | /* If we're in the return path from a shared library trampoline, |
6567 | we want to proceed through the trampoline when stepping. */ | |
6568 | /* macro/2012-04-25: This needs to come before the subroutine | |
6569 | call check below as on some targets return trampolines look | |
6570 | like subroutine calls (MIPS16 return thunks). */ | |
6571 | if (gdbarch_in_solib_return_trampoline (gdbarch, | |
6572 | stop_pc, ecs->stop_func_name) | |
6573 | && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE) | |
6574 | { | |
6575 | /* Determine where this trampoline returns. */ | |
6576 | CORE_ADDR real_stop_pc; | |
6577 | ||
6578 | real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc); | |
6579 | ||
6580 | if (debug_infrun) | |
6581 | fprintf_unfiltered (gdb_stdlog, | |
6582 | "infrun: stepped into solib return tramp\n"); | |
6583 | ||
6584 | /* Only proceed through if we know where it's going. */ | |
6585 | if (real_stop_pc) | |
6586 | { | |
6587 | /* And put the step-breakpoint there and go until there. */ | |
51abb421 | 6588 | symtab_and_line sr_sal; |
14132e89 MR |
6589 | sr_sal.pc = real_stop_pc; |
6590 | sr_sal.section = find_pc_overlay (sr_sal.pc); | |
6591 | sr_sal.pspace = get_frame_program_space (frame); | |
6592 | ||
6593 | /* Do not specify what the fp should be when we stop since | |
6594 | on some machines the prologue is where the new fp value | |
6595 | is established. */ | |
6596 | insert_step_resume_breakpoint_at_sal (gdbarch, | |
6597 | sr_sal, null_frame_id); | |
6598 | ||
6599 | /* Restart without fiddling with the step ranges or | |
6600 | other state. */ | |
6601 | keep_going (ecs); | |
6602 | return; | |
6603 | } | |
6604 | } | |
6605 | ||
c17eaafe DJ |
6606 | /* Check for subroutine calls. The check for the current frame |
6607 | equalling the step ID is not necessary - the check of the | |
6608 | previous frame's ID is sufficient - but it is a common case and | |
6609 | cheaper than checking the previous frame's ID. | |
14e60db5 DJ |
6610 | |
6611 | NOTE: frame_id_eq will never report two invalid frame IDs as | |
6612 | being equal, so to get into this block, both the current and | |
6613 | previous frame must have valid frame IDs. */ | |
005ca36a JB |
6614 | /* The outer_frame_id check is a heuristic to detect stepping |
6615 | through startup code. If we step over an instruction which | |
6616 | sets the stack pointer from an invalid value to a valid value, | |
6617 | we may detect that as a subroutine call from the mythical | |
6618 | "outermost" function. This could be fixed by marking | |
6619 | outermost frames as !stack_p,code_p,special_p. Then the | |
6620 | initial outermost frame, before sp was valid, would | |
ce6cca6d | 6621 | have code_addr == &_start. See the comment in frame_id_eq |
005ca36a | 6622 | for more. */ |
edb3359d | 6623 | if (!frame_id_eq (get_stack_frame_id (frame), |
16c381f0 | 6624 | ecs->event_thread->control.step_stack_frame_id) |
005ca36a | 6625 | && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()), |
16c381f0 JK |
6626 | ecs->event_thread->control.step_stack_frame_id) |
6627 | && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id, | |
005ca36a | 6628 | outer_frame_id) |
885eeb5b PA |
6629 | || (ecs->event_thread->control.step_start_function |
6630 | != find_pc_function (stop_pc))))) | |
488f131b | 6631 | { |
95918acb | 6632 | CORE_ADDR real_stop_pc; |
8fb3e588 | 6633 | |
527159b7 | 6634 | if (debug_infrun) |
8a9de0e4 | 6635 | fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n"); |
527159b7 | 6636 | |
b7a084be | 6637 | if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE) |
95918acb AC |
6638 | { |
6639 | /* I presume that step_over_calls is only 0 when we're | |
6640 | supposed to be stepping at the assembly language level | |
6641 | ("stepi"). Just stop. */ | |
388a8562 | 6642 | /* And this works the same backward as frontward. MVS */ |
bdc36728 | 6643 | end_stepping_range (ecs); |
95918acb AC |
6644 | return; |
6645 | } | |
8fb3e588 | 6646 | |
388a8562 MS |
6647 | /* Reverse stepping through solib trampolines. */ |
6648 | ||
6649 | if (execution_direction == EXEC_REVERSE | |
16c381f0 | 6650 | && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE |
388a8562 MS |
6651 | && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc) |
6652 | || (ecs->stop_func_start == 0 | |
6653 | && in_solib_dynsym_resolve_code (stop_pc)))) | |
6654 | { | |
6655 | /* Any solib trampoline code can be handled in reverse | |
6656 | by simply continuing to single-step. We have already | |
6657 | executed the solib function (backwards), and a few | |
6658 | steps will take us back through the trampoline to the | |
6659 | caller. */ | |
6660 | keep_going (ecs); | |
6661 | return; | |
6662 | } | |
6663 | ||
16c381f0 | 6664 | if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL) |
8567c30f | 6665 | { |
b2175913 MS |
6666 | /* We're doing a "next". |
6667 | ||
6668 | Normal (forward) execution: set a breakpoint at the | |
6669 | callee's return address (the address at which the caller | |
6670 | will resume). | |
6671 | ||
6672 | Reverse (backward) execution. set the step-resume | |
6673 | breakpoint at the start of the function that we just | |
6674 | stepped into (backwards), and continue to there. When we | |
6130d0b7 | 6675 | get there, we'll need to single-step back to the caller. */ |
b2175913 MS |
6676 | |
6677 | if (execution_direction == EXEC_REVERSE) | |
6678 | { | |
acf9414f JK |
6679 | /* If we're already at the start of the function, we've either |
6680 | just stepped backward into a single instruction function, | |
6681 | or stepped back out of a signal handler to the first instruction | |
6682 | of the function. Just keep going, which will single-step back | |
6683 | to the caller. */ | |
58c48e72 | 6684 | if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0) |
acf9414f | 6685 | { |
acf9414f | 6686 | /* Normal function call return (static or dynamic). */ |
51abb421 | 6687 | symtab_and_line sr_sal; |
acf9414f JK |
6688 | sr_sal.pc = ecs->stop_func_start; |
6689 | sr_sal.pspace = get_frame_program_space (frame); | |
6690 | insert_step_resume_breakpoint_at_sal (gdbarch, | |
6691 | sr_sal, null_frame_id); | |
6692 | } | |
b2175913 MS |
6693 | } |
6694 | else | |
568d6575 | 6695 | insert_step_resume_breakpoint_at_caller (frame); |
b2175913 | 6696 | |
8567c30f AC |
6697 | keep_going (ecs); |
6698 | return; | |
6699 | } | |
a53c66de | 6700 | |
95918acb | 6701 | /* If we are in a function call trampoline (a stub between the |
8fb3e588 AC |
6702 | calling routine and the real function), locate the real |
6703 | function. That's what tells us (a) whether we want to step | |
6704 | into it at all, and (b) what prologue we want to run to the | |
6705 | end of, if we do step into it. */ | |
568d6575 | 6706 | real_stop_pc = skip_language_trampoline (frame, stop_pc); |
95918acb | 6707 | if (real_stop_pc == 0) |
568d6575 | 6708 | real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc); |
95918acb AC |
6709 | if (real_stop_pc != 0) |
6710 | ecs->stop_func_start = real_stop_pc; | |
8fb3e588 | 6711 | |
db5f024e | 6712 | if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc)) |
1b2bfbb9 | 6713 | { |
51abb421 | 6714 | symtab_and_line sr_sal; |
1b2bfbb9 | 6715 | sr_sal.pc = ecs->stop_func_start; |
6c95b8df | 6716 | sr_sal.pspace = get_frame_program_space (frame); |
1b2bfbb9 | 6717 | |
a6d9a66e UW |
6718 | insert_step_resume_breakpoint_at_sal (gdbarch, |
6719 | sr_sal, null_frame_id); | |
8fb3e588 AC |
6720 | keep_going (ecs); |
6721 | return; | |
1b2bfbb9 RC |
6722 | } |
6723 | ||
95918acb | 6724 | /* If we have line number information for the function we are |
1bfeeb0f JL |
6725 | thinking of stepping into and the function isn't on the skip |
6726 | list, step into it. | |
95918acb | 6727 | |
8fb3e588 AC |
6728 | If there are several symtabs at that PC (e.g. with include |
6729 | files), just want to know whether *any* of them have line | |
6730 | numbers. find_pc_line handles this. */ | |
95918acb AC |
6731 | { |
6732 | struct symtab_and_line tmp_sal; | |
8fb3e588 | 6733 | |
95918acb | 6734 | tmp_sal = find_pc_line (ecs->stop_func_start, 0); |
2b914b52 | 6735 | if (tmp_sal.line != 0 |
85817405 | 6736 | && !function_name_is_marked_for_skip (ecs->stop_func_name, |
de7985c3 | 6737 | tmp_sal)) |
95918acb | 6738 | { |
b2175913 | 6739 | if (execution_direction == EXEC_REVERSE) |
568d6575 | 6740 | handle_step_into_function_backward (gdbarch, ecs); |
b2175913 | 6741 | else |
568d6575 | 6742 | handle_step_into_function (gdbarch, ecs); |
95918acb AC |
6743 | return; |
6744 | } | |
6745 | } | |
6746 | ||
6747 | /* If we have no line number and the step-stop-if-no-debug is | |
8fb3e588 AC |
6748 | set, we stop the step so that the user has a chance to switch |
6749 | in assembly mode. */ | |
16c381f0 | 6750 | if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE |
078130d0 | 6751 | && step_stop_if_no_debug) |
95918acb | 6752 | { |
bdc36728 | 6753 | end_stepping_range (ecs); |
95918acb AC |
6754 | return; |
6755 | } | |
6756 | ||
b2175913 MS |
6757 | if (execution_direction == EXEC_REVERSE) |
6758 | { | |
acf9414f JK |
6759 | /* If we're already at the start of the function, we've either just |
6760 | stepped backward into a single instruction function without line | |
6761 | number info, or stepped back out of a signal handler to the first | |
6762 | instruction of the function without line number info. Just keep | |
6763 | going, which will single-step back to the caller. */ | |
6764 | if (ecs->stop_func_start != stop_pc) | |
6765 | { | |
6766 | /* Set a breakpoint at callee's start address. | |
6767 | From there we can step once and be back in the caller. */ | |
51abb421 | 6768 | symtab_and_line sr_sal; |
acf9414f JK |
6769 | sr_sal.pc = ecs->stop_func_start; |
6770 | sr_sal.pspace = get_frame_program_space (frame); | |
6771 | insert_step_resume_breakpoint_at_sal (gdbarch, | |
6772 | sr_sal, null_frame_id); | |
6773 | } | |
b2175913 MS |
6774 | } |
6775 | else | |
6776 | /* Set a breakpoint at callee's return address (the address | |
6777 | at which the caller will resume). */ | |
568d6575 | 6778 | insert_step_resume_breakpoint_at_caller (frame); |
b2175913 | 6779 | |
95918acb | 6780 | keep_going (ecs); |
488f131b | 6781 | return; |
488f131b | 6782 | } |
c906108c | 6783 | |
fdd654f3 MS |
6784 | /* Reverse stepping through solib trampolines. */ |
6785 | ||
6786 | if (execution_direction == EXEC_REVERSE | |
16c381f0 | 6787 | && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE) |
fdd654f3 MS |
6788 | { |
6789 | if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc) | |
6790 | || (ecs->stop_func_start == 0 | |
6791 | && in_solib_dynsym_resolve_code (stop_pc))) | |
6792 | { | |
6793 | /* Any solib trampoline code can be handled in reverse | |
6794 | by simply continuing to single-step. We have already | |
6795 | executed the solib function (backwards), and a few | |
6796 | steps will take us back through the trampoline to the | |
6797 | caller. */ | |
6798 | keep_going (ecs); | |
6799 | return; | |
6800 | } | |
6801 | else if (in_solib_dynsym_resolve_code (stop_pc)) | |
6802 | { | |
6803 | /* Stepped backward into the solib dynsym resolver. | |
6804 | Set a breakpoint at its start and continue, then | |
6805 | one more step will take us out. */ | |
51abb421 | 6806 | symtab_and_line sr_sal; |
fdd654f3 | 6807 | sr_sal.pc = ecs->stop_func_start; |
9d1807c3 | 6808 | sr_sal.pspace = get_frame_program_space (frame); |
fdd654f3 MS |
6809 | insert_step_resume_breakpoint_at_sal (gdbarch, |
6810 | sr_sal, null_frame_id); | |
6811 | keep_going (ecs); | |
6812 | return; | |
6813 | } | |
6814 | } | |
6815 | ||
2afb61aa | 6816 | stop_pc_sal = find_pc_line (stop_pc, 0); |
7ed0fe66 | 6817 | |
1b2bfbb9 RC |
6818 | /* NOTE: tausq/2004-05-24: This if block used to be done before all |
6819 | the trampoline processing logic, however, there are some trampolines | |
6820 | that have no names, so we should do trampoline handling first. */ | |
16c381f0 | 6821 | if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE |
7ed0fe66 | 6822 | && ecs->stop_func_name == NULL |
2afb61aa | 6823 | && stop_pc_sal.line == 0) |
1b2bfbb9 | 6824 | { |
527159b7 | 6825 | if (debug_infrun) |
3e43a32a MS |
6826 | fprintf_unfiltered (gdb_stdlog, |
6827 | "infrun: stepped into undebuggable function\n"); | |
527159b7 | 6828 | |
1b2bfbb9 | 6829 | /* The inferior just stepped into, or returned to, an |
7ed0fe66 DJ |
6830 | undebuggable function (where there is no debugging information |
6831 | and no line number corresponding to the address where the | |
1b2bfbb9 RC |
6832 | inferior stopped). Since we want to skip this kind of code, |
6833 | we keep going until the inferior returns from this | |
14e60db5 DJ |
6834 | function - unless the user has asked us not to (via |
6835 | set step-mode) or we no longer know how to get back | |
6836 | to the call site. */ | |
6837 | if (step_stop_if_no_debug | |
c7ce8faa | 6838 | || !frame_id_p (frame_unwind_caller_id (frame))) |
1b2bfbb9 RC |
6839 | { |
6840 | /* If we have no line number and the step-stop-if-no-debug | |
6841 | is set, we stop the step so that the user has a chance to | |
6842 | switch in assembly mode. */ | |
bdc36728 | 6843 | end_stepping_range (ecs); |
1b2bfbb9 RC |
6844 | return; |
6845 | } | |
6846 | else | |
6847 | { | |
6848 | /* Set a breakpoint at callee's return address (the address | |
6849 | at which the caller will resume). */ | |
568d6575 | 6850 | insert_step_resume_breakpoint_at_caller (frame); |
1b2bfbb9 RC |
6851 | keep_going (ecs); |
6852 | return; | |
6853 | } | |
6854 | } | |
6855 | ||
16c381f0 | 6856 | if (ecs->event_thread->control.step_range_end == 1) |
1b2bfbb9 RC |
6857 | { |
6858 | /* It is stepi or nexti. We always want to stop stepping after | |
6859 | one instruction. */ | |
527159b7 | 6860 | if (debug_infrun) |
8a9de0e4 | 6861 | fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n"); |
bdc36728 | 6862 | end_stepping_range (ecs); |
1b2bfbb9 RC |
6863 | return; |
6864 | } | |
6865 | ||
2afb61aa | 6866 | if (stop_pc_sal.line == 0) |
488f131b JB |
6867 | { |
6868 | /* We have no line number information. That means to stop | |
6869 | stepping (does this always happen right after one instruction, | |
6870 | when we do "s" in a function with no line numbers, | |
6871 | or can this happen as a result of a return or longjmp?). */ | |
527159b7 | 6872 | if (debug_infrun) |
8a9de0e4 | 6873 | fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n"); |
bdc36728 | 6874 | end_stepping_range (ecs); |
488f131b JB |
6875 | return; |
6876 | } | |
c906108c | 6877 | |
edb3359d DJ |
6878 | /* Look for "calls" to inlined functions, part one. If the inline |
6879 | frame machinery detected some skipped call sites, we have entered | |
6880 | a new inline function. */ | |
6881 | ||
6882 | if (frame_id_eq (get_frame_id (get_current_frame ()), | |
16c381f0 | 6883 | ecs->event_thread->control.step_frame_id) |
edb3359d DJ |
6884 | && inline_skipped_frames (ecs->ptid)) |
6885 | { | |
edb3359d DJ |
6886 | if (debug_infrun) |
6887 | fprintf_unfiltered (gdb_stdlog, | |
6888 | "infrun: stepped into inlined function\n"); | |
6889 | ||
51abb421 | 6890 | symtab_and_line call_sal = find_frame_sal (get_current_frame ()); |
edb3359d | 6891 | |
16c381f0 | 6892 | if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL) |
edb3359d DJ |
6893 | { |
6894 | /* For "step", we're going to stop. But if the call site | |
6895 | for this inlined function is on the same source line as | |
6896 | we were previously stepping, go down into the function | |
6897 | first. Otherwise stop at the call site. */ | |
6898 | ||
6899 | if (call_sal.line == ecs->event_thread->current_line | |
6900 | && call_sal.symtab == ecs->event_thread->current_symtab) | |
6901 | step_into_inline_frame (ecs->ptid); | |
6902 | ||
bdc36728 | 6903 | end_stepping_range (ecs); |
edb3359d DJ |
6904 | return; |
6905 | } | |
6906 | else | |
6907 | { | |
6908 | /* For "next", we should stop at the call site if it is on a | |
6909 | different source line. Otherwise continue through the | |
6910 | inlined function. */ | |
6911 | if (call_sal.line == ecs->event_thread->current_line | |
6912 | && call_sal.symtab == ecs->event_thread->current_symtab) | |
6913 | keep_going (ecs); | |
6914 | else | |
bdc36728 | 6915 | end_stepping_range (ecs); |
edb3359d DJ |
6916 | return; |
6917 | } | |
6918 | } | |
6919 | ||
6920 | /* Look for "calls" to inlined functions, part two. If we are still | |
6921 | in the same real function we were stepping through, but we have | |
6922 | to go further up to find the exact frame ID, we are stepping | |
6923 | through a more inlined call beyond its call site. */ | |
6924 | ||
6925 | if (get_frame_type (get_current_frame ()) == INLINE_FRAME | |
6926 | && !frame_id_eq (get_frame_id (get_current_frame ()), | |
16c381f0 | 6927 | ecs->event_thread->control.step_frame_id) |
edb3359d | 6928 | && stepped_in_from (get_current_frame (), |
16c381f0 | 6929 | ecs->event_thread->control.step_frame_id)) |
edb3359d DJ |
6930 | { |
6931 | if (debug_infrun) | |
6932 | fprintf_unfiltered (gdb_stdlog, | |
6933 | "infrun: stepping through inlined function\n"); | |
6934 | ||
16c381f0 | 6935 | if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL) |
edb3359d DJ |
6936 | keep_going (ecs); |
6937 | else | |
bdc36728 | 6938 | end_stepping_range (ecs); |
edb3359d DJ |
6939 | return; |
6940 | } | |
6941 | ||
2afb61aa | 6942 | if ((stop_pc == stop_pc_sal.pc) |
4e1c45ea PA |
6943 | && (ecs->event_thread->current_line != stop_pc_sal.line |
6944 | || ecs->event_thread->current_symtab != stop_pc_sal.symtab)) | |
488f131b JB |
6945 | { |
6946 | /* We are at the start of a different line. So stop. Note that | |
6947 | we don't stop if we step into the middle of a different line. | |
6948 | That is said to make things like for (;;) statements work | |
6949 | better. */ | |
527159b7 | 6950 | if (debug_infrun) |
3e43a32a MS |
6951 | fprintf_unfiltered (gdb_stdlog, |
6952 | "infrun: stepped to a different line\n"); | |
bdc36728 | 6953 | end_stepping_range (ecs); |
488f131b JB |
6954 | return; |
6955 | } | |
c906108c | 6956 | |
488f131b | 6957 | /* We aren't done stepping. |
c906108c | 6958 | |
488f131b JB |
6959 | Optimize by setting the stepping range to the line. |
6960 | (We might not be in the original line, but if we entered a | |
6961 | new line in mid-statement, we continue stepping. This makes | |
6962 | things like for(;;) statements work better.) */ | |
c906108c | 6963 | |
16c381f0 JK |
6964 | ecs->event_thread->control.step_range_start = stop_pc_sal.pc; |
6965 | ecs->event_thread->control.step_range_end = stop_pc_sal.end; | |
c1e36e3e | 6966 | ecs->event_thread->control.may_range_step = 1; |
edb3359d | 6967 | set_step_info (frame, stop_pc_sal); |
488f131b | 6968 | |
527159b7 | 6969 | if (debug_infrun) |
8a9de0e4 | 6970 | fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n"); |
488f131b | 6971 | keep_going (ecs); |
104c1213 JM |
6972 | } |
6973 | ||
c447ac0b PA |
6974 | /* In all-stop mode, if we're currently stepping but have stopped in |
6975 | some other thread, we may need to switch back to the stepped | |
6976 | thread. Returns true we set the inferior running, false if we left | |
6977 | it stopped (and the event needs further processing). */ | |
6978 | ||
6979 | static int | |
6980 | switch_back_to_stepped_thread (struct execution_control_state *ecs) | |
6981 | { | |
fbea99ea | 6982 | if (!target_is_non_stop_p ()) |
c447ac0b PA |
6983 | { |
6984 | struct thread_info *tp; | |
99619bea PA |
6985 | struct thread_info *stepping_thread; |
6986 | ||
6987 | /* If any thread is blocked on some internal breakpoint, and we | |
6988 | simply need to step over that breakpoint to get it going | |
6989 | again, do that first. */ | |
6990 | ||
6991 | /* However, if we see an event for the stepping thread, then we | |
6992 | know all other threads have been moved past their breakpoints | |
6993 | already. Let the caller check whether the step is finished, | |
6994 | etc., before deciding to move it past a breakpoint. */ | |
6995 | if (ecs->event_thread->control.step_range_end != 0) | |
6996 | return 0; | |
6997 | ||
6998 | /* Check if the current thread is blocked on an incomplete | |
6999 | step-over, interrupted by a random signal. */ | |
7000 | if (ecs->event_thread->control.trap_expected | |
7001 | && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP) | |
c447ac0b | 7002 | { |
99619bea PA |
7003 | if (debug_infrun) |
7004 | { | |
7005 | fprintf_unfiltered (gdb_stdlog, | |
7006 | "infrun: need to finish step-over of [%s]\n", | |
7007 | target_pid_to_str (ecs->event_thread->ptid)); | |
7008 | } | |
7009 | keep_going (ecs); | |
7010 | return 1; | |
7011 | } | |
2adfaa28 | 7012 | |
99619bea PA |
7013 | /* Check if the current thread is blocked by a single-step |
7014 | breakpoint of another thread. */ | |
7015 | if (ecs->hit_singlestep_breakpoint) | |
7016 | { | |
7017 | if (debug_infrun) | |
7018 | { | |
7019 | fprintf_unfiltered (gdb_stdlog, | |
7020 | "infrun: need to step [%s] over single-step " | |
7021 | "breakpoint\n", | |
7022 | target_pid_to_str (ecs->ptid)); | |
7023 | } | |
7024 | keep_going (ecs); | |
7025 | return 1; | |
7026 | } | |
7027 | ||
4d9d9d04 PA |
7028 | /* If this thread needs yet another step-over (e.g., stepping |
7029 | through a delay slot), do it first before moving on to | |
7030 | another thread. */ | |
7031 | if (thread_still_needs_step_over (ecs->event_thread)) | |
7032 | { | |
7033 | if (debug_infrun) | |
7034 | { | |
7035 | fprintf_unfiltered (gdb_stdlog, | |
7036 | "infrun: thread [%s] still needs step-over\n", | |
7037 | target_pid_to_str (ecs->event_thread->ptid)); | |
7038 | } | |
7039 | keep_going (ecs); | |
7040 | return 1; | |
7041 | } | |
70509625 | 7042 | |
483805cf PA |
7043 | /* If scheduler locking applies even if not stepping, there's no |
7044 | need to walk over threads. Above we've checked whether the | |
7045 | current thread is stepping. If some other thread not the | |
7046 | event thread is stepping, then it must be that scheduler | |
7047 | locking is not in effect. */ | |
856e7dd6 | 7048 | if (schedlock_applies (ecs->event_thread)) |
483805cf PA |
7049 | return 0; |
7050 | ||
4d9d9d04 PA |
7051 | /* Otherwise, we no longer expect a trap in the current thread. |
7052 | Clear the trap_expected flag before switching back -- this is | |
7053 | what keep_going does as well, if we call it. */ | |
7054 | ecs->event_thread->control.trap_expected = 0; | |
7055 | ||
7056 | /* Likewise, clear the signal if it should not be passed. */ | |
7057 | if (!signal_program[ecs->event_thread->suspend.stop_signal]) | |
7058 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; | |
7059 | ||
7060 | /* Do all pending step-overs before actually proceeding with | |
483805cf | 7061 | step/next/etc. */ |
4d9d9d04 PA |
7062 | if (start_step_over ()) |
7063 | { | |
7064 | prepare_to_wait (ecs); | |
7065 | return 1; | |
7066 | } | |
7067 | ||
7068 | /* Look for the stepping/nexting thread. */ | |
483805cf | 7069 | stepping_thread = NULL; |
4d9d9d04 | 7070 | |
034f788c | 7071 | ALL_NON_EXITED_THREADS (tp) |
483805cf | 7072 | { |
fbea99ea PA |
7073 | /* Ignore threads of processes the caller is not |
7074 | resuming. */ | |
483805cf | 7075 | if (!sched_multi |
1afd5965 | 7076 | && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid)) |
483805cf PA |
7077 | continue; |
7078 | ||
7079 | /* When stepping over a breakpoint, we lock all threads | |
7080 | except the one that needs to move past the breakpoint. | |
7081 | If a non-event thread has this set, the "incomplete | |
7082 | step-over" check above should have caught it earlier. */ | |
372316f1 PA |
7083 | if (tp->control.trap_expected) |
7084 | { | |
7085 | internal_error (__FILE__, __LINE__, | |
7086 | "[%s] has inconsistent state: " | |
7087 | "trap_expected=%d\n", | |
7088 | target_pid_to_str (tp->ptid), | |
7089 | tp->control.trap_expected); | |
7090 | } | |
483805cf PA |
7091 | |
7092 | /* Did we find the stepping thread? */ | |
7093 | if (tp->control.step_range_end) | |
7094 | { | |
7095 | /* Yep. There should only one though. */ | |
7096 | gdb_assert (stepping_thread == NULL); | |
7097 | ||
7098 | /* The event thread is handled at the top, before we | |
7099 | enter this loop. */ | |
7100 | gdb_assert (tp != ecs->event_thread); | |
7101 | ||
7102 | /* If some thread other than the event thread is | |
7103 | stepping, then scheduler locking can't be in effect, | |
7104 | otherwise we wouldn't have resumed the current event | |
7105 | thread in the first place. */ | |
856e7dd6 | 7106 | gdb_assert (!schedlock_applies (tp)); |
483805cf PA |
7107 | |
7108 | stepping_thread = tp; | |
7109 | } | |
99619bea PA |
7110 | } |
7111 | ||
483805cf | 7112 | if (stepping_thread != NULL) |
99619bea | 7113 | { |
c447ac0b PA |
7114 | if (debug_infrun) |
7115 | fprintf_unfiltered (gdb_stdlog, | |
7116 | "infrun: switching back to stepped thread\n"); | |
7117 | ||
2ac7589c PA |
7118 | if (keep_going_stepped_thread (stepping_thread)) |
7119 | { | |
7120 | prepare_to_wait (ecs); | |
7121 | return 1; | |
7122 | } | |
7123 | } | |
7124 | } | |
2adfaa28 | 7125 | |
2ac7589c PA |
7126 | return 0; |
7127 | } | |
2adfaa28 | 7128 | |
2ac7589c PA |
7129 | /* Set a previously stepped thread back to stepping. Returns true on |
7130 | success, false if the resume is not possible (e.g., the thread | |
7131 | vanished). */ | |
7132 | ||
7133 | static int | |
7134 | keep_going_stepped_thread (struct thread_info *tp) | |
7135 | { | |
7136 | struct frame_info *frame; | |
2ac7589c PA |
7137 | struct execution_control_state ecss; |
7138 | struct execution_control_state *ecs = &ecss; | |
2adfaa28 | 7139 | |
2ac7589c PA |
7140 | /* If the stepping thread exited, then don't try to switch back and |
7141 | resume it, which could fail in several different ways depending | |
7142 | on the target. Instead, just keep going. | |
2adfaa28 | 7143 | |
2ac7589c PA |
7144 | We can find a stepping dead thread in the thread list in two |
7145 | cases: | |
2adfaa28 | 7146 | |
2ac7589c PA |
7147 | - The target supports thread exit events, and when the target |
7148 | tries to delete the thread from the thread list, inferior_ptid | |
7149 | pointed at the exiting thread. In such case, calling | |
7150 | delete_thread does not really remove the thread from the list; | |
7151 | instead, the thread is left listed, with 'exited' state. | |
64ce06e4 | 7152 | |
2ac7589c PA |
7153 | - The target's debug interface does not support thread exit |
7154 | events, and so we have no idea whatsoever if the previously | |
7155 | stepping thread is still alive. For that reason, we need to | |
7156 | synchronously query the target now. */ | |
2adfaa28 | 7157 | |
2ac7589c PA |
7158 | if (is_exited (tp->ptid) |
7159 | || !target_thread_alive (tp->ptid)) | |
7160 | { | |
7161 | if (debug_infrun) | |
7162 | fprintf_unfiltered (gdb_stdlog, | |
7163 | "infrun: not resuming previously " | |
7164 | "stepped thread, it has vanished\n"); | |
7165 | ||
7166 | delete_thread (tp->ptid); | |
7167 | return 0; | |
c447ac0b | 7168 | } |
2ac7589c PA |
7169 | |
7170 | if (debug_infrun) | |
7171 | fprintf_unfiltered (gdb_stdlog, | |
7172 | "infrun: resuming previously stepped thread\n"); | |
7173 | ||
7174 | reset_ecs (ecs, tp); | |
7175 | switch_to_thread (tp->ptid); | |
7176 | ||
7177 | stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid)); | |
7178 | frame = get_current_frame (); | |
2ac7589c PA |
7179 | |
7180 | /* If the PC of the thread we were trying to single-step has | |
7181 | changed, then that thread has trapped or been signaled, but the | |
7182 | event has not been reported to GDB yet. Re-poll the target | |
7183 | looking for this particular thread's event (i.e. temporarily | |
7184 | enable schedlock) by: | |
7185 | ||
7186 | - setting a break at the current PC | |
7187 | - resuming that particular thread, only (by setting trap | |
7188 | expected) | |
7189 | ||
7190 | This prevents us continuously moving the single-step breakpoint | |
7191 | forward, one instruction at a time, overstepping. */ | |
7192 | ||
7193 | if (stop_pc != tp->prev_pc) | |
7194 | { | |
7195 | ptid_t resume_ptid; | |
7196 | ||
7197 | if (debug_infrun) | |
7198 | fprintf_unfiltered (gdb_stdlog, | |
7199 | "infrun: expected thread advanced also (%s -> %s)\n", | |
7200 | paddress (target_gdbarch (), tp->prev_pc), | |
7201 | paddress (target_gdbarch (), stop_pc)); | |
7202 | ||
7203 | /* Clear the info of the previous step-over, as it's no longer | |
7204 | valid (if the thread was trying to step over a breakpoint, it | |
7205 | has already succeeded). It's what keep_going would do too, | |
7206 | if we called it. Do this before trying to insert the sss | |
7207 | breakpoint, otherwise if we were previously trying to step | |
7208 | over this exact address in another thread, the breakpoint is | |
7209 | skipped. */ | |
7210 | clear_step_over_info (); | |
7211 | tp->control.trap_expected = 0; | |
7212 | ||
7213 | insert_single_step_breakpoint (get_frame_arch (frame), | |
7214 | get_frame_address_space (frame), | |
7215 | stop_pc); | |
7216 | ||
372316f1 | 7217 | tp->resumed = 1; |
fbea99ea | 7218 | resume_ptid = internal_resume_ptid (tp->control.stepping_command); |
2ac7589c PA |
7219 | do_target_resume (resume_ptid, 0, GDB_SIGNAL_0); |
7220 | } | |
7221 | else | |
7222 | { | |
7223 | if (debug_infrun) | |
7224 | fprintf_unfiltered (gdb_stdlog, | |
7225 | "infrun: expected thread still hasn't advanced\n"); | |
7226 | ||
7227 | keep_going_pass_signal (ecs); | |
7228 | } | |
7229 | return 1; | |
c447ac0b PA |
7230 | } |
7231 | ||
8b061563 PA |
7232 | /* Is thread TP in the middle of (software or hardware) |
7233 | single-stepping? (Note the result of this function must never be | |
7234 | passed directly as target_resume's STEP parameter.) */ | |
104c1213 | 7235 | |
a289b8f6 | 7236 | static int |
b3444185 | 7237 | currently_stepping (struct thread_info *tp) |
a7212384 | 7238 | { |
8358c15c JK |
7239 | return ((tp->control.step_range_end |
7240 | && tp->control.step_resume_breakpoint == NULL) | |
7241 | || tp->control.trap_expected | |
af48d08f | 7242 | || tp->stepped_breakpoint |
8358c15c | 7243 | || bpstat_should_step ()); |
a7212384 UW |
7244 | } |
7245 | ||
b2175913 MS |
7246 | /* Inferior has stepped into a subroutine call with source code that |
7247 | we should not step over. Do step to the first line of code in | |
7248 | it. */ | |
c2c6d25f JM |
7249 | |
7250 | static void | |
568d6575 UW |
7251 | handle_step_into_function (struct gdbarch *gdbarch, |
7252 | struct execution_control_state *ecs) | |
c2c6d25f | 7253 | { |
7e324e48 GB |
7254 | fill_in_stop_func (gdbarch, ecs); |
7255 | ||
51abb421 | 7256 | compunit_symtab *cust = find_pc_compunit_symtab (stop_pc); |
43f3e411 | 7257 | if (cust != NULL && compunit_language (cust) != language_asm) |
46a62268 YQ |
7258 | ecs->stop_func_start |
7259 | = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start); | |
c2c6d25f | 7260 | |
51abb421 | 7261 | symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0); |
c2c6d25f JM |
7262 | /* Use the step_resume_break to step until the end of the prologue, |
7263 | even if that involves jumps (as it seems to on the vax under | |
7264 | 4.2). */ | |
7265 | /* If the prologue ends in the middle of a source line, continue to | |
7266 | the end of that source line (if it is still within the function). | |
7267 | Otherwise, just go to end of prologue. */ | |
2afb61aa PA |
7268 | if (stop_func_sal.end |
7269 | && stop_func_sal.pc != ecs->stop_func_start | |
7270 | && stop_func_sal.end < ecs->stop_func_end) | |
7271 | ecs->stop_func_start = stop_func_sal.end; | |
c2c6d25f | 7272 | |
2dbd5e30 KB |
7273 | /* Architectures which require breakpoint adjustment might not be able |
7274 | to place a breakpoint at the computed address. If so, the test | |
7275 | ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust | |
7276 | ecs->stop_func_start to an address at which a breakpoint may be | |
7277 | legitimately placed. | |
8fb3e588 | 7278 | |
2dbd5e30 KB |
7279 | Note: kevinb/2004-01-19: On FR-V, if this adjustment is not |
7280 | made, GDB will enter an infinite loop when stepping through | |
7281 | optimized code consisting of VLIW instructions which contain | |
7282 | subinstructions corresponding to different source lines. On | |
7283 | FR-V, it's not permitted to place a breakpoint on any but the | |
7284 | first subinstruction of a VLIW instruction. When a breakpoint is | |
7285 | set, GDB will adjust the breakpoint address to the beginning of | |
7286 | the VLIW instruction. Thus, we need to make the corresponding | |
7287 | adjustment here when computing the stop address. */ | |
8fb3e588 | 7288 | |
568d6575 | 7289 | if (gdbarch_adjust_breakpoint_address_p (gdbarch)) |
2dbd5e30 KB |
7290 | { |
7291 | ecs->stop_func_start | |
568d6575 | 7292 | = gdbarch_adjust_breakpoint_address (gdbarch, |
8fb3e588 | 7293 | ecs->stop_func_start); |
2dbd5e30 KB |
7294 | } |
7295 | ||
c2c6d25f JM |
7296 | if (ecs->stop_func_start == stop_pc) |
7297 | { | |
7298 | /* We are already there: stop now. */ | |
bdc36728 | 7299 | end_stepping_range (ecs); |
c2c6d25f JM |
7300 | return; |
7301 | } | |
7302 | else | |
7303 | { | |
7304 | /* Put the step-breakpoint there and go until there. */ | |
51abb421 | 7305 | symtab_and_line sr_sal; |
c2c6d25f JM |
7306 | sr_sal.pc = ecs->stop_func_start; |
7307 | sr_sal.section = find_pc_overlay (ecs->stop_func_start); | |
6c95b8df | 7308 | sr_sal.pspace = get_frame_program_space (get_current_frame ()); |
44cbf7b5 | 7309 | |
c2c6d25f | 7310 | /* Do not specify what the fp should be when we stop since on |
488f131b JB |
7311 | some machines the prologue is where the new fp value is |
7312 | established. */ | |
a6d9a66e | 7313 | insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id); |
c2c6d25f JM |
7314 | |
7315 | /* And make sure stepping stops right away then. */ | |
16c381f0 JK |
7316 | ecs->event_thread->control.step_range_end |
7317 | = ecs->event_thread->control.step_range_start; | |
c2c6d25f JM |
7318 | } |
7319 | keep_going (ecs); | |
7320 | } | |
d4f3574e | 7321 | |
b2175913 MS |
7322 | /* Inferior has stepped backward into a subroutine call with source |
7323 | code that we should not step over. Do step to the beginning of the | |
7324 | last line of code in it. */ | |
7325 | ||
7326 | static void | |
568d6575 UW |
7327 | handle_step_into_function_backward (struct gdbarch *gdbarch, |
7328 | struct execution_control_state *ecs) | |
b2175913 | 7329 | { |
43f3e411 | 7330 | struct compunit_symtab *cust; |
167e4384 | 7331 | struct symtab_and_line stop_func_sal; |
b2175913 | 7332 | |
7e324e48 GB |
7333 | fill_in_stop_func (gdbarch, ecs); |
7334 | ||
43f3e411 DE |
7335 | cust = find_pc_compunit_symtab (stop_pc); |
7336 | if (cust != NULL && compunit_language (cust) != language_asm) | |
46a62268 YQ |
7337 | ecs->stop_func_start |
7338 | = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start); | |
b2175913 MS |
7339 | |
7340 | stop_func_sal = find_pc_line (stop_pc, 0); | |
7341 | ||
7342 | /* OK, we're just going to keep stepping here. */ | |
7343 | if (stop_func_sal.pc == stop_pc) | |
7344 | { | |
7345 | /* We're there already. Just stop stepping now. */ | |
bdc36728 | 7346 | end_stepping_range (ecs); |
b2175913 MS |
7347 | } |
7348 | else | |
7349 | { | |
7350 | /* Else just reset the step range and keep going. | |
7351 | No step-resume breakpoint, they don't work for | |
7352 | epilogues, which can have multiple entry paths. */ | |
16c381f0 JK |
7353 | ecs->event_thread->control.step_range_start = stop_func_sal.pc; |
7354 | ecs->event_thread->control.step_range_end = stop_func_sal.end; | |
b2175913 MS |
7355 | keep_going (ecs); |
7356 | } | |
7357 | return; | |
7358 | } | |
7359 | ||
d3169d93 | 7360 | /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID. |
44cbf7b5 AC |
7361 | This is used to both functions and to skip over code. */ |
7362 | ||
7363 | static void | |
2c03e5be PA |
7364 | insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch, |
7365 | struct symtab_and_line sr_sal, | |
7366 | struct frame_id sr_id, | |
7367 | enum bptype sr_type) | |
44cbf7b5 | 7368 | { |
611c83ae PA |
7369 | /* There should never be more than one step-resume or longjmp-resume |
7370 | breakpoint per thread, so we should never be setting a new | |
44cbf7b5 | 7371 | step_resume_breakpoint when one is already active. */ |
8358c15c | 7372 | gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL); |
2c03e5be | 7373 | gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume); |
d3169d93 DJ |
7374 | |
7375 | if (debug_infrun) | |
7376 | fprintf_unfiltered (gdb_stdlog, | |
5af949e3 UW |
7377 | "infrun: inserting step-resume breakpoint at %s\n", |
7378 | paddress (gdbarch, sr_sal.pc)); | |
d3169d93 | 7379 | |
8358c15c | 7380 | inferior_thread ()->control.step_resume_breakpoint |
454dafbd | 7381 | = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release (); |
2c03e5be PA |
7382 | } |
7383 | ||
9da8c2a0 | 7384 | void |
2c03e5be PA |
7385 | insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch, |
7386 | struct symtab_and_line sr_sal, | |
7387 | struct frame_id sr_id) | |
7388 | { | |
7389 | insert_step_resume_breakpoint_at_sal_1 (gdbarch, | |
7390 | sr_sal, sr_id, | |
7391 | bp_step_resume); | |
44cbf7b5 | 7392 | } |
7ce450bd | 7393 | |
2c03e5be PA |
7394 | /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc. |
7395 | This is used to skip a potential signal handler. | |
7ce450bd | 7396 | |
14e60db5 DJ |
7397 | This is called with the interrupted function's frame. The signal |
7398 | handler, when it returns, will resume the interrupted function at | |
7399 | RETURN_FRAME.pc. */ | |
d303a6c7 AC |
7400 | |
7401 | static void | |
2c03e5be | 7402 | insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame) |
d303a6c7 | 7403 | { |
f4c1edd8 | 7404 | gdb_assert (return_frame != NULL); |
d303a6c7 | 7405 | |
51abb421 PA |
7406 | struct gdbarch *gdbarch = get_frame_arch (return_frame); |
7407 | ||
7408 | symtab_and_line sr_sal; | |
568d6575 | 7409 | sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame)); |
d303a6c7 | 7410 | sr_sal.section = find_pc_overlay (sr_sal.pc); |
6c95b8df | 7411 | sr_sal.pspace = get_frame_program_space (return_frame); |
d303a6c7 | 7412 | |
2c03e5be PA |
7413 | insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal, |
7414 | get_stack_frame_id (return_frame), | |
7415 | bp_hp_step_resume); | |
d303a6c7 AC |
7416 | } |
7417 | ||
2c03e5be PA |
7418 | /* Insert a "step-resume breakpoint" at the previous frame's PC. This |
7419 | is used to skip a function after stepping into it (for "next" or if | |
7420 | the called function has no debugging information). | |
14e60db5 DJ |
7421 | |
7422 | The current function has almost always been reached by single | |
7423 | stepping a call or return instruction. NEXT_FRAME belongs to the | |
7424 | current function, and the breakpoint will be set at the caller's | |
7425 | resume address. | |
7426 | ||
7427 | This is a separate function rather than reusing | |
2c03e5be | 7428 | insert_hp_step_resume_breakpoint_at_frame in order to avoid |
14e60db5 | 7429 | get_prev_frame, which may stop prematurely (see the implementation |
c7ce8faa | 7430 | of frame_unwind_caller_id for an example). */ |
14e60db5 DJ |
7431 | |
7432 | static void | |
7433 | insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame) | |
7434 | { | |
14e60db5 DJ |
7435 | /* We shouldn't have gotten here if we don't know where the call site |
7436 | is. */ | |
c7ce8faa | 7437 | gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame))); |
14e60db5 | 7438 | |
51abb421 | 7439 | struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame); |
14e60db5 | 7440 | |
51abb421 | 7441 | symtab_and_line sr_sal; |
c7ce8faa DJ |
7442 | sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, |
7443 | frame_unwind_caller_pc (next_frame)); | |
14e60db5 | 7444 | sr_sal.section = find_pc_overlay (sr_sal.pc); |
6c95b8df | 7445 | sr_sal.pspace = frame_unwind_program_space (next_frame); |
14e60db5 | 7446 | |
a6d9a66e | 7447 | insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, |
c7ce8faa | 7448 | frame_unwind_caller_id (next_frame)); |
14e60db5 DJ |
7449 | } |
7450 | ||
611c83ae PA |
7451 | /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a |
7452 | new breakpoint at the target of a jmp_buf. The handling of | |
7453 | longjmp-resume uses the same mechanisms used for handling | |
7454 | "step-resume" breakpoints. */ | |
7455 | ||
7456 | static void | |
a6d9a66e | 7457 | insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc) |
611c83ae | 7458 | { |
e81a37f7 TT |
7459 | /* There should never be more than one longjmp-resume breakpoint per |
7460 | thread, so we should never be setting a new | |
611c83ae | 7461 | longjmp_resume_breakpoint when one is already active. */ |
e81a37f7 | 7462 | gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL); |
611c83ae PA |
7463 | |
7464 | if (debug_infrun) | |
7465 | fprintf_unfiltered (gdb_stdlog, | |
5af949e3 UW |
7466 | "infrun: inserting longjmp-resume breakpoint at %s\n", |
7467 | paddress (gdbarch, pc)); | |
611c83ae | 7468 | |
e81a37f7 | 7469 | inferior_thread ()->control.exception_resume_breakpoint = |
454dafbd | 7470 | set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release (); |
611c83ae PA |
7471 | } |
7472 | ||
186c406b TT |
7473 | /* Insert an exception resume breakpoint. TP is the thread throwing |
7474 | the exception. The block B is the block of the unwinder debug hook | |
7475 | function. FRAME is the frame corresponding to the call to this | |
7476 | function. SYM is the symbol of the function argument holding the | |
7477 | target PC of the exception. */ | |
7478 | ||
7479 | static void | |
7480 | insert_exception_resume_breakpoint (struct thread_info *tp, | |
3977b71f | 7481 | const struct block *b, |
186c406b TT |
7482 | struct frame_info *frame, |
7483 | struct symbol *sym) | |
7484 | { | |
492d29ea | 7485 | TRY |
186c406b | 7486 | { |
63e43d3a | 7487 | struct block_symbol vsym; |
186c406b TT |
7488 | struct value *value; |
7489 | CORE_ADDR handler; | |
7490 | struct breakpoint *bp; | |
7491 | ||
63e43d3a PMR |
7492 | vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL); |
7493 | value = read_var_value (vsym.symbol, vsym.block, frame); | |
186c406b TT |
7494 | /* If the value was optimized out, revert to the old behavior. */ |
7495 | if (! value_optimized_out (value)) | |
7496 | { | |
7497 | handler = value_as_address (value); | |
7498 | ||
7499 | if (debug_infrun) | |
7500 | fprintf_unfiltered (gdb_stdlog, | |
7501 | "infrun: exception resume at %lx\n", | |
7502 | (unsigned long) handler); | |
7503 | ||
7504 | bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame), | |
454dafbd TT |
7505 | handler, |
7506 | bp_exception_resume).release (); | |
c70a6932 JK |
7507 | |
7508 | /* set_momentary_breakpoint_at_pc invalidates FRAME. */ | |
7509 | frame = NULL; | |
7510 | ||
5d5658a1 | 7511 | bp->thread = tp->global_num; |
186c406b TT |
7512 | inferior_thread ()->control.exception_resume_breakpoint = bp; |
7513 | } | |
7514 | } | |
492d29ea PA |
7515 | CATCH (e, RETURN_MASK_ERROR) |
7516 | { | |
7517 | /* We want to ignore errors here. */ | |
7518 | } | |
7519 | END_CATCH | |
186c406b TT |
7520 | } |
7521 | ||
28106bc2 SDJ |
7522 | /* A helper for check_exception_resume that sets an |
7523 | exception-breakpoint based on a SystemTap probe. */ | |
7524 | ||
7525 | static void | |
7526 | insert_exception_resume_from_probe (struct thread_info *tp, | |
729662a5 | 7527 | const struct bound_probe *probe, |
28106bc2 SDJ |
7528 | struct frame_info *frame) |
7529 | { | |
7530 | struct value *arg_value; | |
7531 | CORE_ADDR handler; | |
7532 | struct breakpoint *bp; | |
7533 | ||
7534 | arg_value = probe_safe_evaluate_at_pc (frame, 1); | |
7535 | if (!arg_value) | |
7536 | return; | |
7537 | ||
7538 | handler = value_as_address (arg_value); | |
7539 | ||
7540 | if (debug_infrun) | |
7541 | fprintf_unfiltered (gdb_stdlog, | |
7542 | "infrun: exception resume at %s\n", | |
6bac7473 | 7543 | paddress (get_objfile_arch (probe->objfile), |
28106bc2 SDJ |
7544 | handler)); |
7545 | ||
7546 | bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame), | |
454dafbd | 7547 | handler, bp_exception_resume).release (); |
5d5658a1 | 7548 | bp->thread = tp->global_num; |
28106bc2 SDJ |
7549 | inferior_thread ()->control.exception_resume_breakpoint = bp; |
7550 | } | |
7551 | ||
186c406b TT |
7552 | /* This is called when an exception has been intercepted. Check to |
7553 | see whether the exception's destination is of interest, and if so, | |
7554 | set an exception resume breakpoint there. */ | |
7555 | ||
7556 | static void | |
7557 | check_exception_resume (struct execution_control_state *ecs, | |
28106bc2 | 7558 | struct frame_info *frame) |
186c406b | 7559 | { |
729662a5 | 7560 | struct bound_probe probe; |
28106bc2 SDJ |
7561 | struct symbol *func; |
7562 | ||
7563 | /* First see if this exception unwinding breakpoint was set via a | |
7564 | SystemTap probe point. If so, the probe has two arguments: the | |
7565 | CFA and the HANDLER. We ignore the CFA, extract the handler, and | |
7566 | set a breakpoint there. */ | |
6bac7473 | 7567 | probe = find_probe_by_pc (get_frame_pc (frame)); |
729662a5 | 7568 | if (probe.probe) |
28106bc2 | 7569 | { |
729662a5 | 7570 | insert_exception_resume_from_probe (ecs->event_thread, &probe, frame); |
28106bc2 SDJ |
7571 | return; |
7572 | } | |
7573 | ||
7574 | func = get_frame_function (frame); | |
7575 | if (!func) | |
7576 | return; | |
186c406b | 7577 | |
492d29ea | 7578 | TRY |
186c406b | 7579 | { |
3977b71f | 7580 | const struct block *b; |
8157b174 | 7581 | struct block_iterator iter; |
186c406b TT |
7582 | struct symbol *sym; |
7583 | int argno = 0; | |
7584 | ||
7585 | /* The exception breakpoint is a thread-specific breakpoint on | |
7586 | the unwinder's debug hook, declared as: | |
7587 | ||
7588 | void _Unwind_DebugHook (void *cfa, void *handler); | |
7589 | ||
7590 | The CFA argument indicates the frame to which control is | |
7591 | about to be transferred. HANDLER is the destination PC. | |
7592 | ||
7593 | We ignore the CFA and set a temporary breakpoint at HANDLER. | |
7594 | This is not extremely efficient but it avoids issues in gdb | |
7595 | with computing the DWARF CFA, and it also works even in weird | |
7596 | cases such as throwing an exception from inside a signal | |
7597 | handler. */ | |
7598 | ||
7599 | b = SYMBOL_BLOCK_VALUE (func); | |
7600 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
7601 | { | |
7602 | if (!SYMBOL_IS_ARGUMENT (sym)) | |
7603 | continue; | |
7604 | ||
7605 | if (argno == 0) | |
7606 | ++argno; | |
7607 | else | |
7608 | { | |
7609 | insert_exception_resume_breakpoint (ecs->event_thread, | |
7610 | b, frame, sym); | |
7611 | break; | |
7612 | } | |
7613 | } | |
7614 | } | |
492d29ea PA |
7615 | CATCH (e, RETURN_MASK_ERROR) |
7616 | { | |
7617 | } | |
7618 | END_CATCH | |
186c406b TT |
7619 | } |
7620 | ||
104c1213 | 7621 | static void |
22bcd14b | 7622 | stop_waiting (struct execution_control_state *ecs) |
104c1213 | 7623 | { |
527159b7 | 7624 | if (debug_infrun) |
22bcd14b | 7625 | fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n"); |
527159b7 | 7626 | |
cd0fc7c3 SS |
7627 | /* Let callers know we don't want to wait for the inferior anymore. */ |
7628 | ecs->wait_some_more = 0; | |
fbea99ea PA |
7629 | |
7630 | /* If all-stop, but the target is always in non-stop mode, stop all | |
7631 | threads now that we're presenting the stop to the user. */ | |
7632 | if (!non_stop && target_is_non_stop_p ()) | |
7633 | stop_all_threads (); | |
cd0fc7c3 SS |
7634 | } |
7635 | ||
4d9d9d04 PA |
7636 | /* Like keep_going, but passes the signal to the inferior, even if the |
7637 | signal is set to nopass. */ | |
d4f3574e SS |
7638 | |
7639 | static void | |
4d9d9d04 | 7640 | keep_going_pass_signal (struct execution_control_state *ecs) |
d4f3574e | 7641 | { |
4d9d9d04 | 7642 | gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid)); |
372316f1 | 7643 | gdb_assert (!ecs->event_thread->resumed); |
4d9d9d04 | 7644 | |
d4f3574e | 7645 | /* Save the pc before execution, to compare with pc after stop. */ |
fb14de7b UW |
7646 | ecs->event_thread->prev_pc |
7647 | = regcache_read_pc (get_thread_regcache (ecs->ptid)); | |
d4f3574e | 7648 | |
4d9d9d04 | 7649 | if (ecs->event_thread->control.trap_expected) |
d4f3574e | 7650 | { |
4d9d9d04 PA |
7651 | struct thread_info *tp = ecs->event_thread; |
7652 | ||
7653 | if (debug_infrun) | |
7654 | fprintf_unfiltered (gdb_stdlog, | |
7655 | "infrun: %s has trap_expected set, " | |
7656 | "resuming to collect trap\n", | |
7657 | target_pid_to_str (tp->ptid)); | |
7658 | ||
a9ba6bae PA |
7659 | /* We haven't yet gotten our trap, and either: intercepted a |
7660 | non-signal event (e.g., a fork); or took a signal which we | |
7661 | are supposed to pass through to the inferior. Simply | |
7662 | continue. */ | |
64ce06e4 | 7663 | resume (ecs->event_thread->suspend.stop_signal); |
d4f3574e | 7664 | } |
372316f1 PA |
7665 | else if (step_over_info_valid_p ()) |
7666 | { | |
7667 | /* Another thread is stepping over a breakpoint in-line. If | |
7668 | this thread needs a step-over too, queue the request. In | |
7669 | either case, this resume must be deferred for later. */ | |
7670 | struct thread_info *tp = ecs->event_thread; | |
7671 | ||
7672 | if (ecs->hit_singlestep_breakpoint | |
7673 | || thread_still_needs_step_over (tp)) | |
7674 | { | |
7675 | if (debug_infrun) | |
7676 | fprintf_unfiltered (gdb_stdlog, | |
7677 | "infrun: step-over already in progress: " | |
7678 | "step-over for %s deferred\n", | |
7679 | target_pid_to_str (tp->ptid)); | |
7680 | thread_step_over_chain_enqueue (tp); | |
7681 | } | |
7682 | else | |
7683 | { | |
7684 | if (debug_infrun) | |
7685 | fprintf_unfiltered (gdb_stdlog, | |
7686 | "infrun: step-over in progress: " | |
7687 | "resume of %s deferred\n", | |
7688 | target_pid_to_str (tp->ptid)); | |
7689 | } | |
372316f1 | 7690 | } |
d4f3574e SS |
7691 | else |
7692 | { | |
31e77af2 | 7693 | struct regcache *regcache = get_current_regcache (); |
963f9c80 PA |
7694 | int remove_bp; |
7695 | int remove_wps; | |
8d297bbf | 7696 | step_over_what step_what; |
31e77af2 | 7697 | |
d4f3574e | 7698 | /* Either the trap was not expected, but we are continuing |
a9ba6bae PA |
7699 | anyway (if we got a signal, the user asked it be passed to |
7700 | the child) | |
7701 | -- or -- | |
7702 | We got our expected trap, but decided we should resume from | |
7703 | it. | |
d4f3574e | 7704 | |
a9ba6bae | 7705 | We're going to run this baby now! |
d4f3574e | 7706 | |
c36b740a VP |
7707 | Note that insert_breakpoints won't try to re-insert |
7708 | already inserted breakpoints. Therefore, we don't | |
7709 | care if breakpoints were already inserted, or not. */ | |
a9ba6bae | 7710 | |
31e77af2 PA |
7711 | /* If we need to step over a breakpoint, and we're not using |
7712 | displaced stepping to do so, insert all breakpoints | |
7713 | (watchpoints, etc.) but the one we're stepping over, step one | |
7714 | instruction, and then re-insert the breakpoint when that step | |
7715 | is finished. */ | |
963f9c80 | 7716 | |
6c4cfb24 PA |
7717 | step_what = thread_still_needs_step_over (ecs->event_thread); |
7718 | ||
963f9c80 | 7719 | remove_bp = (ecs->hit_singlestep_breakpoint |
6c4cfb24 PA |
7720 | || (step_what & STEP_OVER_BREAKPOINT)); |
7721 | remove_wps = (step_what & STEP_OVER_WATCHPOINT); | |
963f9c80 | 7722 | |
cb71640d PA |
7723 | /* We can't use displaced stepping if we need to step past a |
7724 | watchpoint. The instruction copied to the scratch pad would | |
7725 | still trigger the watchpoint. */ | |
7726 | if (remove_bp | |
3fc8eb30 | 7727 | && (remove_wps || !use_displaced_stepping (ecs->event_thread))) |
45e8c884 | 7728 | { |
a01bda52 | 7729 | set_step_over_info (regcache->aspace (), |
21edc42f YQ |
7730 | regcache_read_pc (regcache), remove_wps, |
7731 | ecs->event_thread->global_num); | |
45e8c884 | 7732 | } |
963f9c80 | 7733 | else if (remove_wps) |
21edc42f | 7734 | set_step_over_info (NULL, 0, remove_wps, -1); |
372316f1 PA |
7735 | |
7736 | /* If we now need to do an in-line step-over, we need to stop | |
7737 | all other threads. Note this must be done before | |
7738 | insert_breakpoints below, because that removes the breakpoint | |
7739 | we're about to step over, otherwise other threads could miss | |
7740 | it. */ | |
fbea99ea | 7741 | if (step_over_info_valid_p () && target_is_non_stop_p ()) |
372316f1 | 7742 | stop_all_threads (); |
abbb1732 | 7743 | |
31e77af2 | 7744 | /* Stop stepping if inserting breakpoints fails. */ |
492d29ea | 7745 | TRY |
31e77af2 PA |
7746 | { |
7747 | insert_breakpoints (); | |
7748 | } | |
492d29ea | 7749 | CATCH (e, RETURN_MASK_ERROR) |
31e77af2 PA |
7750 | { |
7751 | exception_print (gdb_stderr, e); | |
22bcd14b | 7752 | stop_waiting (ecs); |
31e77af2 | 7753 | return; |
d4f3574e | 7754 | } |
492d29ea | 7755 | END_CATCH |
d4f3574e | 7756 | |
963f9c80 | 7757 | ecs->event_thread->control.trap_expected = (remove_bp || remove_wps); |
d4f3574e | 7758 | |
64ce06e4 | 7759 | resume (ecs->event_thread->suspend.stop_signal); |
d4f3574e SS |
7760 | } |
7761 | ||
488f131b | 7762 | prepare_to_wait (ecs); |
d4f3574e SS |
7763 | } |
7764 | ||
4d9d9d04 PA |
7765 | /* Called when we should continue running the inferior, because the |
7766 | current event doesn't cause a user visible stop. This does the | |
7767 | resuming part; waiting for the next event is done elsewhere. */ | |
7768 | ||
7769 | static void | |
7770 | keep_going (struct execution_control_state *ecs) | |
7771 | { | |
7772 | if (ecs->event_thread->control.trap_expected | |
7773 | && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP) | |
7774 | ecs->event_thread->control.trap_expected = 0; | |
7775 | ||
7776 | if (!signal_program[ecs->event_thread->suspend.stop_signal]) | |
7777 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; | |
7778 | keep_going_pass_signal (ecs); | |
7779 | } | |
7780 | ||
104c1213 JM |
7781 | /* This function normally comes after a resume, before |
7782 | handle_inferior_event exits. It takes care of any last bits of | |
7783 | housekeeping, and sets the all-important wait_some_more flag. */ | |
cd0fc7c3 | 7784 | |
104c1213 JM |
7785 | static void |
7786 | prepare_to_wait (struct execution_control_state *ecs) | |
cd0fc7c3 | 7787 | { |
527159b7 | 7788 | if (debug_infrun) |
8a9de0e4 | 7789 | fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n"); |
104c1213 | 7790 | |
104c1213 | 7791 | ecs->wait_some_more = 1; |
0b333c5e PA |
7792 | |
7793 | if (!target_is_async_p ()) | |
7794 | mark_infrun_async_event_handler (); | |
c906108c | 7795 | } |
11cf8741 | 7796 | |
fd664c91 | 7797 | /* We are done with the step range of a step/next/si/ni command. |
b57bacec | 7798 | Called once for each n of a "step n" operation. */ |
fd664c91 PA |
7799 | |
7800 | static void | |
bdc36728 | 7801 | end_stepping_range (struct execution_control_state *ecs) |
fd664c91 | 7802 | { |
bdc36728 | 7803 | ecs->event_thread->control.stop_step = 1; |
bdc36728 | 7804 | stop_waiting (ecs); |
fd664c91 PA |
7805 | } |
7806 | ||
33d62d64 JK |
7807 | /* Several print_*_reason functions to print why the inferior has stopped. |
7808 | We always print something when the inferior exits, or receives a signal. | |
7809 | The rest of the cases are dealt with later on in normal_stop and | |
7810 | print_it_typical. Ideally there should be a call to one of these | |
7811 | print_*_reason functions functions from handle_inferior_event each time | |
22bcd14b | 7812 | stop_waiting is called. |
33d62d64 | 7813 | |
fd664c91 PA |
7814 | Note that we don't call these directly, instead we delegate that to |
7815 | the interpreters, through observers. Interpreters then call these | |
7816 | with whatever uiout is right. */ | |
33d62d64 | 7817 | |
fd664c91 PA |
7818 | void |
7819 | print_end_stepping_range_reason (struct ui_out *uiout) | |
33d62d64 | 7820 | { |
fd664c91 | 7821 | /* For CLI-like interpreters, print nothing. */ |
33d62d64 | 7822 | |
112e8700 | 7823 | if (uiout->is_mi_like_p ()) |
fd664c91 | 7824 | { |
112e8700 | 7825 | uiout->field_string ("reason", |
fd664c91 PA |
7826 | async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE)); |
7827 | } | |
7828 | } | |
33d62d64 | 7829 | |
fd664c91 PA |
7830 | void |
7831 | print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal) | |
11cf8741 | 7832 | { |
33d62d64 | 7833 | annotate_signalled (); |
112e8700 SM |
7834 | if (uiout->is_mi_like_p ()) |
7835 | uiout->field_string | |
7836 | ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED)); | |
7837 | uiout->text ("\nProgram terminated with signal "); | |
33d62d64 | 7838 | annotate_signal_name (); |
112e8700 | 7839 | uiout->field_string ("signal-name", |
2ea28649 | 7840 | gdb_signal_to_name (siggnal)); |
33d62d64 | 7841 | annotate_signal_name_end (); |
112e8700 | 7842 | uiout->text (", "); |
33d62d64 | 7843 | annotate_signal_string (); |
112e8700 | 7844 | uiout->field_string ("signal-meaning", |
2ea28649 | 7845 | gdb_signal_to_string (siggnal)); |
33d62d64 | 7846 | annotate_signal_string_end (); |
112e8700 SM |
7847 | uiout->text (".\n"); |
7848 | uiout->text ("The program no longer exists.\n"); | |
33d62d64 JK |
7849 | } |
7850 | ||
fd664c91 PA |
7851 | void |
7852 | print_exited_reason (struct ui_out *uiout, int exitstatus) | |
33d62d64 | 7853 | { |
fda326dd TT |
7854 | struct inferior *inf = current_inferior (); |
7855 | const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid)); | |
7856 | ||
33d62d64 JK |
7857 | annotate_exited (exitstatus); |
7858 | if (exitstatus) | |
7859 | { | |
112e8700 SM |
7860 | if (uiout->is_mi_like_p ()) |
7861 | uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED)); | |
7862 | uiout->text ("[Inferior "); | |
7863 | uiout->text (plongest (inf->num)); | |
7864 | uiout->text (" ("); | |
7865 | uiout->text (pidstr); | |
7866 | uiout->text (") exited with code "); | |
7867 | uiout->field_fmt ("exit-code", "0%o", (unsigned int) exitstatus); | |
7868 | uiout->text ("]\n"); | |
33d62d64 JK |
7869 | } |
7870 | else | |
11cf8741 | 7871 | { |
112e8700 SM |
7872 | if (uiout->is_mi_like_p ()) |
7873 | uiout->field_string | |
7874 | ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY)); | |
7875 | uiout->text ("[Inferior "); | |
7876 | uiout->text (plongest (inf->num)); | |
7877 | uiout->text (" ("); | |
7878 | uiout->text (pidstr); | |
7879 | uiout->text (") exited normally]\n"); | |
33d62d64 | 7880 | } |
33d62d64 JK |
7881 | } |
7882 | ||
012b3a21 WT |
7883 | /* Some targets/architectures can do extra processing/display of |
7884 | segmentation faults. E.g., Intel MPX boundary faults. | |
7885 | Call the architecture dependent function to handle the fault. */ | |
7886 | ||
7887 | static void | |
7888 | handle_segmentation_fault (struct ui_out *uiout) | |
7889 | { | |
7890 | struct regcache *regcache = get_current_regcache (); | |
ac7936df | 7891 | struct gdbarch *gdbarch = regcache->arch (); |
012b3a21 WT |
7892 | |
7893 | if (gdbarch_handle_segmentation_fault_p (gdbarch)) | |
7894 | gdbarch_handle_segmentation_fault (gdbarch, uiout); | |
7895 | } | |
7896 | ||
fd664c91 PA |
7897 | void |
7898 | print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal) | |
33d62d64 | 7899 | { |
f303dbd6 PA |
7900 | struct thread_info *thr = inferior_thread (); |
7901 | ||
33d62d64 JK |
7902 | annotate_signal (); |
7903 | ||
112e8700 | 7904 | if (uiout->is_mi_like_p ()) |
f303dbd6 PA |
7905 | ; |
7906 | else if (show_thread_that_caused_stop ()) | |
33d62d64 | 7907 | { |
f303dbd6 | 7908 | const char *name; |
33d62d64 | 7909 | |
112e8700 SM |
7910 | uiout->text ("\nThread "); |
7911 | uiout->field_fmt ("thread-id", "%s", print_thread_id (thr)); | |
f303dbd6 PA |
7912 | |
7913 | name = thr->name != NULL ? thr->name : target_thread_name (thr); | |
7914 | if (name != NULL) | |
7915 | { | |
112e8700 SM |
7916 | uiout->text (" \""); |
7917 | uiout->field_fmt ("name", "%s", name); | |
7918 | uiout->text ("\""); | |
f303dbd6 | 7919 | } |
33d62d64 | 7920 | } |
f303dbd6 | 7921 | else |
112e8700 | 7922 | uiout->text ("\nProgram"); |
f303dbd6 | 7923 | |
112e8700 SM |
7924 | if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ()) |
7925 | uiout->text (" stopped"); | |
33d62d64 JK |
7926 | else |
7927 | { | |
112e8700 | 7928 | uiout->text (" received signal "); |
8b93c638 | 7929 | annotate_signal_name (); |
112e8700 SM |
7930 | if (uiout->is_mi_like_p ()) |
7931 | uiout->field_string | |
7932 | ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED)); | |
7933 | uiout->field_string ("signal-name", gdb_signal_to_name (siggnal)); | |
8b93c638 | 7934 | annotate_signal_name_end (); |
112e8700 | 7935 | uiout->text (", "); |
8b93c638 | 7936 | annotate_signal_string (); |
112e8700 | 7937 | uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal)); |
012b3a21 WT |
7938 | |
7939 | if (siggnal == GDB_SIGNAL_SEGV) | |
7940 | handle_segmentation_fault (uiout); | |
7941 | ||
8b93c638 | 7942 | annotate_signal_string_end (); |
33d62d64 | 7943 | } |
112e8700 | 7944 | uiout->text (".\n"); |
33d62d64 | 7945 | } |
252fbfc8 | 7946 | |
fd664c91 PA |
7947 | void |
7948 | print_no_history_reason (struct ui_out *uiout) | |
33d62d64 | 7949 | { |
112e8700 | 7950 | uiout->text ("\nNo more reverse-execution history.\n"); |
11cf8741 | 7951 | } |
43ff13b4 | 7952 | |
0c7e1a46 PA |
7953 | /* Print current location without a level number, if we have changed |
7954 | functions or hit a breakpoint. Print source line if we have one. | |
7955 | bpstat_print contains the logic deciding in detail what to print, | |
7956 | based on the event(s) that just occurred. */ | |
7957 | ||
243a9253 PA |
7958 | static void |
7959 | print_stop_location (struct target_waitstatus *ws) | |
0c7e1a46 PA |
7960 | { |
7961 | int bpstat_ret; | |
f486487f | 7962 | enum print_what source_flag; |
0c7e1a46 PA |
7963 | int do_frame_printing = 1; |
7964 | struct thread_info *tp = inferior_thread (); | |
7965 | ||
7966 | bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind); | |
7967 | switch (bpstat_ret) | |
7968 | { | |
7969 | case PRINT_UNKNOWN: | |
7970 | /* FIXME: cagney/2002-12-01: Given that a frame ID does (or | |
7971 | should) carry around the function and does (or should) use | |
7972 | that when doing a frame comparison. */ | |
7973 | if (tp->control.stop_step | |
7974 | && frame_id_eq (tp->control.step_frame_id, | |
7975 | get_frame_id (get_current_frame ())) | |
885eeb5b | 7976 | && tp->control.step_start_function == find_pc_function (stop_pc)) |
0c7e1a46 PA |
7977 | { |
7978 | /* Finished step, just print source line. */ | |
7979 | source_flag = SRC_LINE; | |
7980 | } | |
7981 | else | |
7982 | { | |
7983 | /* Print location and source line. */ | |
7984 | source_flag = SRC_AND_LOC; | |
7985 | } | |
7986 | break; | |
7987 | case PRINT_SRC_AND_LOC: | |
7988 | /* Print location and source line. */ | |
7989 | source_flag = SRC_AND_LOC; | |
7990 | break; | |
7991 | case PRINT_SRC_ONLY: | |
7992 | source_flag = SRC_LINE; | |
7993 | break; | |
7994 | case PRINT_NOTHING: | |
7995 | /* Something bogus. */ | |
7996 | source_flag = SRC_LINE; | |
7997 | do_frame_printing = 0; | |
7998 | break; | |
7999 | default: | |
8000 | internal_error (__FILE__, __LINE__, _("Unknown value.")); | |
8001 | } | |
8002 | ||
8003 | /* The behavior of this routine with respect to the source | |
8004 | flag is: | |
8005 | SRC_LINE: Print only source line | |
8006 | LOCATION: Print only location | |
8007 | SRC_AND_LOC: Print location and source line. */ | |
8008 | if (do_frame_printing) | |
8009 | print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1); | |
243a9253 PA |
8010 | } |
8011 | ||
243a9253 PA |
8012 | /* See infrun.h. */ |
8013 | ||
8014 | void | |
8015 | print_stop_event (struct ui_out *uiout) | |
8016 | { | |
243a9253 PA |
8017 | struct target_waitstatus last; |
8018 | ptid_t last_ptid; | |
8019 | struct thread_info *tp; | |
8020 | ||
8021 | get_last_target_status (&last_ptid, &last); | |
8022 | ||
67ad9399 TT |
8023 | { |
8024 | scoped_restore save_uiout = make_scoped_restore (¤t_uiout, uiout); | |
0c7e1a46 | 8025 | |
67ad9399 | 8026 | print_stop_location (&last); |
243a9253 | 8027 | |
67ad9399 TT |
8028 | /* Display the auto-display expressions. */ |
8029 | do_displays (); | |
8030 | } | |
243a9253 PA |
8031 | |
8032 | tp = inferior_thread (); | |
8033 | if (tp->thread_fsm != NULL | |
8034 | && thread_fsm_finished_p (tp->thread_fsm)) | |
8035 | { | |
8036 | struct return_value_info *rv; | |
8037 | ||
8038 | rv = thread_fsm_return_value (tp->thread_fsm); | |
8039 | if (rv != NULL) | |
8040 | print_return_value (uiout, rv); | |
8041 | } | |
0c7e1a46 PA |
8042 | } |
8043 | ||
388a7084 PA |
8044 | /* See infrun.h. */ |
8045 | ||
8046 | void | |
8047 | maybe_remove_breakpoints (void) | |
8048 | { | |
8049 | if (!breakpoints_should_be_inserted_now () && target_has_execution) | |
8050 | { | |
8051 | if (remove_breakpoints ()) | |
8052 | { | |
223ffa71 | 8053 | target_terminal::ours_for_output (); |
388a7084 PA |
8054 | printf_filtered (_("Cannot remove breakpoints because " |
8055 | "program is no longer writable.\nFurther " | |
8056 | "execution is probably impossible.\n")); | |
8057 | } | |
8058 | } | |
8059 | } | |
8060 | ||
4c2f2a79 PA |
8061 | /* The execution context that just caused a normal stop. */ |
8062 | ||
8063 | struct stop_context | |
8064 | { | |
8065 | /* The stop ID. */ | |
8066 | ULONGEST stop_id; | |
c906108c | 8067 | |
4c2f2a79 | 8068 | /* The event PTID. */ |
c906108c | 8069 | |
4c2f2a79 PA |
8070 | ptid_t ptid; |
8071 | ||
8072 | /* If stopp for a thread event, this is the thread that caused the | |
8073 | stop. */ | |
8074 | struct thread_info *thread; | |
8075 | ||
8076 | /* The inferior that caused the stop. */ | |
8077 | int inf_num; | |
8078 | }; | |
8079 | ||
8080 | /* Returns a new stop context. If stopped for a thread event, this | |
8081 | takes a strong reference to the thread. */ | |
8082 | ||
8083 | static struct stop_context * | |
8084 | save_stop_context (void) | |
8085 | { | |
224c3ddb | 8086 | struct stop_context *sc = XNEW (struct stop_context); |
4c2f2a79 PA |
8087 | |
8088 | sc->stop_id = get_stop_id (); | |
8089 | sc->ptid = inferior_ptid; | |
8090 | sc->inf_num = current_inferior ()->num; | |
8091 | ||
8092 | if (!ptid_equal (inferior_ptid, null_ptid)) | |
8093 | { | |
8094 | /* Take a strong reference so that the thread can't be deleted | |
8095 | yet. */ | |
8096 | sc->thread = inferior_thread (); | |
803bdfe4 | 8097 | sc->thread->incref (); |
4c2f2a79 PA |
8098 | } |
8099 | else | |
8100 | sc->thread = NULL; | |
8101 | ||
8102 | return sc; | |
8103 | } | |
8104 | ||
8105 | /* Release a stop context previously created with save_stop_context. | |
8106 | Releases the strong reference to the thread as well. */ | |
8107 | ||
8108 | static void | |
8109 | release_stop_context_cleanup (void *arg) | |
8110 | { | |
9a3c8263 | 8111 | struct stop_context *sc = (struct stop_context *) arg; |
4c2f2a79 PA |
8112 | |
8113 | if (sc->thread != NULL) | |
803bdfe4 | 8114 | sc->thread->decref (); |
4c2f2a79 PA |
8115 | xfree (sc); |
8116 | } | |
8117 | ||
8118 | /* Return true if the current context no longer matches the saved stop | |
8119 | context. */ | |
8120 | ||
8121 | static int | |
8122 | stop_context_changed (struct stop_context *prev) | |
8123 | { | |
8124 | if (!ptid_equal (prev->ptid, inferior_ptid)) | |
8125 | return 1; | |
8126 | if (prev->inf_num != current_inferior ()->num) | |
8127 | return 1; | |
8128 | if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED) | |
8129 | return 1; | |
8130 | if (get_stop_id () != prev->stop_id) | |
8131 | return 1; | |
8132 | return 0; | |
8133 | } | |
8134 | ||
8135 | /* See infrun.h. */ | |
8136 | ||
8137 | int | |
96baa820 | 8138 | normal_stop (void) |
c906108c | 8139 | { |
73b65bb0 DJ |
8140 | struct target_waitstatus last; |
8141 | ptid_t last_ptid; | |
29f49a6a | 8142 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); |
e1316e60 | 8143 | ptid_t pid_ptid; |
73b65bb0 DJ |
8144 | |
8145 | get_last_target_status (&last_ptid, &last); | |
8146 | ||
4c2f2a79 PA |
8147 | new_stop_id (); |
8148 | ||
29f49a6a PA |
8149 | /* If an exception is thrown from this point on, make sure to |
8150 | propagate GDB's knowledge of the executing state to the | |
8151 | frontend/user running state. A QUIT is an easy exception to see | |
8152 | here, so do this before any filtered output. */ | |
c35b1492 PA |
8153 | if (!non_stop) |
8154 | make_cleanup (finish_thread_state_cleanup, &minus_one_ptid); | |
e1316e60 PA |
8155 | else if (last.kind == TARGET_WAITKIND_SIGNALLED |
8156 | || last.kind == TARGET_WAITKIND_EXITED) | |
8157 | { | |
8158 | /* On some targets, we may still have live threads in the | |
8159 | inferior when we get a process exit event. E.g., for | |
8160 | "checkpoint", when the current checkpoint/fork exits, | |
8161 | linux-fork.c automatically switches to another fork from | |
8162 | within target_mourn_inferior. */ | |
8163 | if (!ptid_equal (inferior_ptid, null_ptid)) | |
8164 | { | |
8165 | pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid)); | |
8166 | make_cleanup (finish_thread_state_cleanup, &pid_ptid); | |
8167 | } | |
8168 | } | |
8169 | else if (last.kind != TARGET_WAITKIND_NO_RESUMED) | |
c35b1492 | 8170 | make_cleanup (finish_thread_state_cleanup, &inferior_ptid); |
29f49a6a | 8171 | |
b57bacec PA |
8172 | /* As we're presenting a stop, and potentially removing breakpoints, |
8173 | update the thread list so we can tell whether there are threads | |
8174 | running on the target. With target remote, for example, we can | |
8175 | only learn about new threads when we explicitly update the thread | |
8176 | list. Do this before notifying the interpreters about signal | |
8177 | stops, end of stepping ranges, etc., so that the "new thread" | |
8178 | output is emitted before e.g., "Program received signal FOO", | |
8179 | instead of after. */ | |
8180 | update_thread_list (); | |
8181 | ||
8182 | if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal) | |
8183 | observer_notify_signal_received (inferior_thread ()->suspend.stop_signal); | |
8184 | ||
c906108c SS |
8185 | /* As with the notification of thread events, we want to delay |
8186 | notifying the user that we've switched thread context until | |
8187 | the inferior actually stops. | |
8188 | ||
73b65bb0 DJ |
8189 | There's no point in saying anything if the inferior has exited. |
8190 | Note that SIGNALLED here means "exited with a signal", not | |
b65dc60b PA |
8191 | "received a signal". |
8192 | ||
8193 | Also skip saying anything in non-stop mode. In that mode, as we | |
8194 | don't want GDB to switch threads behind the user's back, to avoid | |
8195 | races where the user is typing a command to apply to thread x, | |
8196 | but GDB switches to thread y before the user finishes entering | |
8197 | the command, fetch_inferior_event installs a cleanup to restore | |
8198 | the current thread back to the thread the user had selected right | |
8199 | after this event is handled, so we're not really switching, only | |
8200 | informing of a stop. */ | |
4f8d22e3 PA |
8201 | if (!non_stop |
8202 | && !ptid_equal (previous_inferior_ptid, inferior_ptid) | |
73b65bb0 DJ |
8203 | && target_has_execution |
8204 | && last.kind != TARGET_WAITKIND_SIGNALLED | |
0e5bf2a8 PA |
8205 | && last.kind != TARGET_WAITKIND_EXITED |
8206 | && last.kind != TARGET_WAITKIND_NO_RESUMED) | |
c906108c | 8207 | { |
0e454242 | 8208 | SWITCH_THRU_ALL_UIS () |
3b12939d | 8209 | { |
223ffa71 | 8210 | target_terminal::ours_for_output (); |
3b12939d PA |
8211 | printf_filtered (_("[Switching to %s]\n"), |
8212 | target_pid_to_str (inferior_ptid)); | |
8213 | annotate_thread_changed (); | |
8214 | } | |
39f77062 | 8215 | previous_inferior_ptid = inferior_ptid; |
c906108c | 8216 | } |
c906108c | 8217 | |
0e5bf2a8 PA |
8218 | if (last.kind == TARGET_WAITKIND_NO_RESUMED) |
8219 | { | |
0e454242 | 8220 | SWITCH_THRU_ALL_UIS () |
3b12939d PA |
8221 | if (current_ui->prompt_state == PROMPT_BLOCKED) |
8222 | { | |
223ffa71 | 8223 | target_terminal::ours_for_output (); |
3b12939d PA |
8224 | printf_filtered (_("No unwaited-for children left.\n")); |
8225 | } | |
0e5bf2a8 PA |
8226 | } |
8227 | ||
b57bacec | 8228 | /* Note: this depends on the update_thread_list call above. */ |
388a7084 | 8229 | maybe_remove_breakpoints (); |
c906108c | 8230 | |
c906108c SS |
8231 | /* If an auto-display called a function and that got a signal, |
8232 | delete that auto-display to avoid an infinite recursion. */ | |
8233 | ||
8234 | if (stopped_by_random_signal) | |
8235 | disable_current_display (); | |
8236 | ||
0e454242 | 8237 | SWITCH_THRU_ALL_UIS () |
3b12939d PA |
8238 | { |
8239 | async_enable_stdin (); | |
8240 | } | |
c906108c | 8241 | |
388a7084 PA |
8242 | /* Let the user/frontend see the threads as stopped. */ |
8243 | do_cleanups (old_chain); | |
8244 | ||
8245 | /* Select innermost stack frame - i.e., current frame is frame 0, | |
8246 | and current location is based on that. Handle the case where the | |
8247 | dummy call is returning after being stopped. E.g. the dummy call | |
8248 | previously hit a breakpoint. (If the dummy call returns | |
8249 | normally, we won't reach here.) Do this before the stop hook is | |
8250 | run, so that it doesn't get to see the temporary dummy frame, | |
8251 | which is not where we'll present the stop. */ | |
8252 | if (has_stack_frames ()) | |
8253 | { | |
8254 | if (stop_stack_dummy == STOP_STACK_DUMMY) | |
8255 | { | |
8256 | /* Pop the empty frame that contains the stack dummy. This | |
8257 | also restores inferior state prior to the call (struct | |
8258 | infcall_suspend_state). */ | |
8259 | struct frame_info *frame = get_current_frame (); | |
8260 | ||
8261 | gdb_assert (get_frame_type (frame) == DUMMY_FRAME); | |
8262 | frame_pop (frame); | |
8263 | /* frame_pop calls reinit_frame_cache as the last thing it | |
8264 | does which means there's now no selected frame. */ | |
8265 | } | |
8266 | ||
8267 | select_frame (get_current_frame ()); | |
8268 | ||
8269 | /* Set the current source location. */ | |
8270 | set_current_sal_from_frame (get_current_frame ()); | |
8271 | } | |
dd7e2d2b PA |
8272 | |
8273 | /* Look up the hook_stop and run it (CLI internally handles problem | |
8274 | of stop_command's pre-hook not existing). */ | |
4c2f2a79 PA |
8275 | if (stop_command != NULL) |
8276 | { | |
8277 | struct stop_context *saved_context = save_stop_context (); | |
8278 | struct cleanup *old_chain | |
8279 | = make_cleanup (release_stop_context_cleanup, saved_context); | |
8280 | ||
bf469271 PA |
8281 | TRY |
8282 | { | |
8283 | execute_cmd_pre_hook (stop_command); | |
8284 | } | |
8285 | CATCH (ex, RETURN_MASK_ALL) | |
8286 | { | |
8287 | exception_fprintf (gdb_stderr, ex, | |
8288 | "Error while running hook_stop:\n"); | |
8289 | } | |
8290 | END_CATCH | |
4c2f2a79 PA |
8291 | |
8292 | /* If the stop hook resumes the target, then there's no point in | |
8293 | trying to notify about the previous stop; its context is | |
8294 | gone. Likewise if the command switches thread or inferior -- | |
8295 | the observers would print a stop for the wrong | |
8296 | thread/inferior. */ | |
8297 | if (stop_context_changed (saved_context)) | |
8298 | { | |
8299 | do_cleanups (old_chain); | |
8300 | return 1; | |
8301 | } | |
8302 | do_cleanups (old_chain); | |
8303 | } | |
dd7e2d2b | 8304 | |
388a7084 PA |
8305 | /* Notify observers about the stop. This is where the interpreters |
8306 | print the stop event. */ | |
8307 | if (!ptid_equal (inferior_ptid, null_ptid)) | |
8308 | observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat, | |
8309 | stop_print_frame); | |
8310 | else | |
8311 | observer_notify_normal_stop (NULL, stop_print_frame); | |
347bddb7 | 8312 | |
243a9253 PA |
8313 | annotate_stopped (); |
8314 | ||
48844aa6 PA |
8315 | if (target_has_execution) |
8316 | { | |
8317 | if (last.kind != TARGET_WAITKIND_SIGNALLED | |
8318 | && last.kind != TARGET_WAITKIND_EXITED) | |
8319 | /* Delete the breakpoint we stopped at, if it wants to be deleted. | |
8320 | Delete any breakpoint that is to be deleted at the next stop. */ | |
16c381f0 | 8321 | breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat); |
94cc34af | 8322 | } |
6c95b8df PA |
8323 | |
8324 | /* Try to get rid of automatically added inferiors that are no | |
8325 | longer needed. Keeping those around slows down things linearly. | |
8326 | Note that this never removes the current inferior. */ | |
8327 | prune_inferiors (); | |
4c2f2a79 PA |
8328 | |
8329 | return 0; | |
c906108c | 8330 | } |
c906108c | 8331 | \f |
c5aa993b | 8332 | int |
96baa820 | 8333 | signal_stop_state (int signo) |
c906108c | 8334 | { |
d6b48e9c | 8335 | return signal_stop[signo]; |
c906108c SS |
8336 | } |
8337 | ||
c5aa993b | 8338 | int |
96baa820 | 8339 | signal_print_state (int signo) |
c906108c SS |
8340 | { |
8341 | return signal_print[signo]; | |
8342 | } | |
8343 | ||
c5aa993b | 8344 | int |
96baa820 | 8345 | signal_pass_state (int signo) |
c906108c SS |
8346 | { |
8347 | return signal_program[signo]; | |
8348 | } | |
8349 | ||
2455069d UW |
8350 | static void |
8351 | signal_cache_update (int signo) | |
8352 | { | |
8353 | if (signo == -1) | |
8354 | { | |
a493e3e2 | 8355 | for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++) |
2455069d UW |
8356 | signal_cache_update (signo); |
8357 | ||
8358 | return; | |
8359 | } | |
8360 | ||
8361 | signal_pass[signo] = (signal_stop[signo] == 0 | |
8362 | && signal_print[signo] == 0 | |
ab04a2af TT |
8363 | && signal_program[signo] == 1 |
8364 | && signal_catch[signo] == 0); | |
2455069d UW |
8365 | } |
8366 | ||
488f131b | 8367 | int |
7bda5e4a | 8368 | signal_stop_update (int signo, int state) |
d4f3574e SS |
8369 | { |
8370 | int ret = signal_stop[signo]; | |
abbb1732 | 8371 | |
d4f3574e | 8372 | signal_stop[signo] = state; |
2455069d | 8373 | signal_cache_update (signo); |
d4f3574e SS |
8374 | return ret; |
8375 | } | |
8376 | ||
488f131b | 8377 | int |
7bda5e4a | 8378 | signal_print_update (int signo, int state) |
d4f3574e SS |
8379 | { |
8380 | int ret = signal_print[signo]; | |
abbb1732 | 8381 | |
d4f3574e | 8382 | signal_print[signo] = state; |
2455069d | 8383 | signal_cache_update (signo); |
d4f3574e SS |
8384 | return ret; |
8385 | } | |
8386 | ||
488f131b | 8387 | int |
7bda5e4a | 8388 | signal_pass_update (int signo, int state) |
d4f3574e SS |
8389 | { |
8390 | int ret = signal_program[signo]; | |
abbb1732 | 8391 | |
d4f3574e | 8392 | signal_program[signo] = state; |
2455069d | 8393 | signal_cache_update (signo); |
d4f3574e SS |
8394 | return ret; |
8395 | } | |
8396 | ||
ab04a2af TT |
8397 | /* Update the global 'signal_catch' from INFO and notify the |
8398 | target. */ | |
8399 | ||
8400 | void | |
8401 | signal_catch_update (const unsigned int *info) | |
8402 | { | |
8403 | int i; | |
8404 | ||
8405 | for (i = 0; i < GDB_SIGNAL_LAST; ++i) | |
8406 | signal_catch[i] = info[i] > 0; | |
8407 | signal_cache_update (-1); | |
8408 | target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass); | |
8409 | } | |
8410 | ||
c906108c | 8411 | static void |
96baa820 | 8412 | sig_print_header (void) |
c906108c | 8413 | { |
3e43a32a MS |
8414 | printf_filtered (_("Signal Stop\tPrint\tPass " |
8415 | "to program\tDescription\n")); | |
c906108c SS |
8416 | } |
8417 | ||
8418 | static void | |
2ea28649 | 8419 | sig_print_info (enum gdb_signal oursig) |
c906108c | 8420 | { |
2ea28649 | 8421 | const char *name = gdb_signal_to_name (oursig); |
c906108c | 8422 | int name_padding = 13 - strlen (name); |
96baa820 | 8423 | |
c906108c SS |
8424 | if (name_padding <= 0) |
8425 | name_padding = 0; | |
8426 | ||
8427 | printf_filtered ("%s", name); | |
488f131b | 8428 | printf_filtered ("%*.*s ", name_padding, name_padding, " "); |
c906108c SS |
8429 | printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No"); |
8430 | printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No"); | |
8431 | printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No"); | |
2ea28649 | 8432 | printf_filtered ("%s\n", gdb_signal_to_string (oursig)); |
c906108c SS |
8433 | } |
8434 | ||
8435 | /* Specify how various signals in the inferior should be handled. */ | |
8436 | ||
8437 | static void | |
0b39b52e | 8438 | handle_command (const char *args, int from_tty) |
c906108c | 8439 | { |
c906108c SS |
8440 | int digits, wordlen; |
8441 | int sigfirst, signum, siglast; | |
2ea28649 | 8442 | enum gdb_signal oursig; |
c906108c SS |
8443 | int allsigs; |
8444 | int nsigs; | |
8445 | unsigned char *sigs; | |
c906108c SS |
8446 | |
8447 | if (args == NULL) | |
8448 | { | |
e2e0b3e5 | 8449 | error_no_arg (_("signal to handle")); |
c906108c SS |
8450 | } |
8451 | ||
1777feb0 | 8452 | /* Allocate and zero an array of flags for which signals to handle. */ |
c906108c | 8453 | |
a493e3e2 | 8454 | nsigs = (int) GDB_SIGNAL_LAST; |
c906108c SS |
8455 | sigs = (unsigned char *) alloca (nsigs); |
8456 | memset (sigs, 0, nsigs); | |
8457 | ||
1777feb0 | 8458 | /* Break the command line up into args. */ |
c906108c | 8459 | |
773a1edc | 8460 | gdb_argv built_argv (args); |
c906108c SS |
8461 | |
8462 | /* Walk through the args, looking for signal oursigs, signal names, and | |
8463 | actions. Signal numbers and signal names may be interspersed with | |
8464 | actions, with the actions being performed for all signals cumulatively | |
1777feb0 | 8465 | specified. Signal ranges can be specified as <LOW>-<HIGH>. */ |
c906108c | 8466 | |
773a1edc | 8467 | for (char *arg : built_argv) |
c906108c | 8468 | { |
773a1edc TT |
8469 | wordlen = strlen (arg); |
8470 | for (digits = 0; isdigit (arg[digits]); digits++) | |
c906108c SS |
8471 | {; |
8472 | } | |
8473 | allsigs = 0; | |
8474 | sigfirst = siglast = -1; | |
8475 | ||
773a1edc | 8476 | if (wordlen >= 1 && !strncmp (arg, "all", wordlen)) |
c906108c SS |
8477 | { |
8478 | /* Apply action to all signals except those used by the | |
1777feb0 | 8479 | debugger. Silently skip those. */ |
c906108c SS |
8480 | allsigs = 1; |
8481 | sigfirst = 0; | |
8482 | siglast = nsigs - 1; | |
8483 | } | |
773a1edc | 8484 | else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen)) |
c906108c SS |
8485 | { |
8486 | SET_SIGS (nsigs, sigs, signal_stop); | |
8487 | SET_SIGS (nsigs, sigs, signal_print); | |
8488 | } | |
773a1edc | 8489 | else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen)) |
c906108c SS |
8490 | { |
8491 | UNSET_SIGS (nsigs, sigs, signal_program); | |
8492 | } | |
773a1edc | 8493 | else if (wordlen >= 2 && !strncmp (arg, "print", wordlen)) |
c906108c SS |
8494 | { |
8495 | SET_SIGS (nsigs, sigs, signal_print); | |
8496 | } | |
773a1edc | 8497 | else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen)) |
c906108c SS |
8498 | { |
8499 | SET_SIGS (nsigs, sigs, signal_program); | |
8500 | } | |
773a1edc | 8501 | else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen)) |
c906108c SS |
8502 | { |
8503 | UNSET_SIGS (nsigs, sigs, signal_stop); | |
8504 | } | |
773a1edc | 8505 | else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen)) |
c906108c SS |
8506 | { |
8507 | SET_SIGS (nsigs, sigs, signal_program); | |
8508 | } | |
773a1edc | 8509 | else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen)) |
c906108c SS |
8510 | { |
8511 | UNSET_SIGS (nsigs, sigs, signal_print); | |
8512 | UNSET_SIGS (nsigs, sigs, signal_stop); | |
8513 | } | |
773a1edc | 8514 | else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen)) |
c906108c SS |
8515 | { |
8516 | UNSET_SIGS (nsigs, sigs, signal_program); | |
8517 | } | |
8518 | else if (digits > 0) | |
8519 | { | |
8520 | /* It is numeric. The numeric signal refers to our own | |
8521 | internal signal numbering from target.h, not to host/target | |
8522 | signal number. This is a feature; users really should be | |
8523 | using symbolic names anyway, and the common ones like | |
8524 | SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */ | |
8525 | ||
8526 | sigfirst = siglast = (int) | |
773a1edc TT |
8527 | gdb_signal_from_command (atoi (arg)); |
8528 | if (arg[digits] == '-') | |
c906108c SS |
8529 | { |
8530 | siglast = (int) | |
773a1edc | 8531 | gdb_signal_from_command (atoi (arg + digits + 1)); |
c906108c SS |
8532 | } |
8533 | if (sigfirst > siglast) | |
8534 | { | |
1777feb0 | 8535 | /* Bet he didn't figure we'd think of this case... */ |
c906108c SS |
8536 | signum = sigfirst; |
8537 | sigfirst = siglast; | |
8538 | siglast = signum; | |
8539 | } | |
8540 | } | |
8541 | else | |
8542 | { | |
773a1edc | 8543 | oursig = gdb_signal_from_name (arg); |
a493e3e2 | 8544 | if (oursig != GDB_SIGNAL_UNKNOWN) |
c906108c SS |
8545 | { |
8546 | sigfirst = siglast = (int) oursig; | |
8547 | } | |
8548 | else | |
8549 | { | |
8550 | /* Not a number and not a recognized flag word => complain. */ | |
773a1edc | 8551 | error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg); |
c906108c SS |
8552 | } |
8553 | } | |
8554 | ||
8555 | /* If any signal numbers or symbol names were found, set flags for | |
1777feb0 | 8556 | which signals to apply actions to. */ |
c906108c SS |
8557 | |
8558 | for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++) | |
8559 | { | |
2ea28649 | 8560 | switch ((enum gdb_signal) signum) |
c906108c | 8561 | { |
a493e3e2 PA |
8562 | case GDB_SIGNAL_TRAP: |
8563 | case GDB_SIGNAL_INT: | |
c906108c SS |
8564 | if (!allsigs && !sigs[signum]) |
8565 | { | |
9e2f0ad4 | 8566 | if (query (_("%s is used by the debugger.\n\ |
3e43a32a | 8567 | Are you sure you want to change it? "), |
2ea28649 | 8568 | gdb_signal_to_name ((enum gdb_signal) signum))) |
c906108c SS |
8569 | { |
8570 | sigs[signum] = 1; | |
8571 | } | |
8572 | else | |
8573 | { | |
a3f17187 | 8574 | printf_unfiltered (_("Not confirmed, unchanged.\n")); |
c906108c SS |
8575 | gdb_flush (gdb_stdout); |
8576 | } | |
8577 | } | |
8578 | break; | |
a493e3e2 PA |
8579 | case GDB_SIGNAL_0: |
8580 | case GDB_SIGNAL_DEFAULT: | |
8581 | case GDB_SIGNAL_UNKNOWN: | |
c906108c SS |
8582 | /* Make sure that "all" doesn't print these. */ |
8583 | break; | |
8584 | default: | |
8585 | sigs[signum] = 1; | |
8586 | break; | |
8587 | } | |
8588 | } | |
c906108c SS |
8589 | } |
8590 | ||
3a031f65 PA |
8591 | for (signum = 0; signum < nsigs; signum++) |
8592 | if (sigs[signum]) | |
8593 | { | |
2455069d | 8594 | signal_cache_update (-1); |
a493e3e2 PA |
8595 | target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass); |
8596 | target_program_signals ((int) GDB_SIGNAL_LAST, signal_program); | |
c906108c | 8597 | |
3a031f65 PA |
8598 | if (from_tty) |
8599 | { | |
8600 | /* Show the results. */ | |
8601 | sig_print_header (); | |
8602 | for (; signum < nsigs; signum++) | |
8603 | if (sigs[signum]) | |
aead7601 | 8604 | sig_print_info ((enum gdb_signal) signum); |
3a031f65 PA |
8605 | } |
8606 | ||
8607 | break; | |
8608 | } | |
c906108c SS |
8609 | } |
8610 | ||
de0bea00 MF |
8611 | /* Complete the "handle" command. */ |
8612 | ||
eb3ff9a5 | 8613 | static void |
de0bea00 | 8614 | handle_completer (struct cmd_list_element *ignore, |
eb3ff9a5 | 8615 | completion_tracker &tracker, |
6f937416 | 8616 | const char *text, const char *word) |
de0bea00 | 8617 | { |
de0bea00 MF |
8618 | static const char * const keywords[] = |
8619 | { | |
8620 | "all", | |
8621 | "stop", | |
8622 | "ignore", | |
8623 | "print", | |
8624 | "pass", | |
8625 | "nostop", | |
8626 | "noignore", | |
8627 | "noprint", | |
8628 | "nopass", | |
8629 | NULL, | |
8630 | }; | |
8631 | ||
eb3ff9a5 PA |
8632 | signal_completer (ignore, tracker, text, word); |
8633 | complete_on_enum (tracker, keywords, word, word); | |
de0bea00 MF |
8634 | } |
8635 | ||
2ea28649 PA |
8636 | enum gdb_signal |
8637 | gdb_signal_from_command (int num) | |
ed01b82c PA |
8638 | { |
8639 | if (num >= 1 && num <= 15) | |
2ea28649 | 8640 | return (enum gdb_signal) num; |
ed01b82c PA |
8641 | error (_("Only signals 1-15 are valid as numeric signals.\n\ |
8642 | Use \"info signals\" for a list of symbolic signals.")); | |
8643 | } | |
8644 | ||
c906108c SS |
8645 | /* Print current contents of the tables set by the handle command. |
8646 | It is possible we should just be printing signals actually used | |
8647 | by the current target (but for things to work right when switching | |
8648 | targets, all signals should be in the signal tables). */ | |
8649 | ||
8650 | static void | |
1d12d88f | 8651 | info_signals_command (const char *signum_exp, int from_tty) |
c906108c | 8652 | { |
2ea28649 | 8653 | enum gdb_signal oursig; |
abbb1732 | 8654 | |
c906108c SS |
8655 | sig_print_header (); |
8656 | ||
8657 | if (signum_exp) | |
8658 | { | |
8659 | /* First see if this is a symbol name. */ | |
2ea28649 | 8660 | oursig = gdb_signal_from_name (signum_exp); |
a493e3e2 | 8661 | if (oursig == GDB_SIGNAL_UNKNOWN) |
c906108c SS |
8662 | { |
8663 | /* No, try numeric. */ | |
8664 | oursig = | |
2ea28649 | 8665 | gdb_signal_from_command (parse_and_eval_long (signum_exp)); |
c906108c SS |
8666 | } |
8667 | sig_print_info (oursig); | |
8668 | return; | |
8669 | } | |
8670 | ||
8671 | printf_filtered ("\n"); | |
8672 | /* These ugly casts brought to you by the native VAX compiler. */ | |
a493e3e2 PA |
8673 | for (oursig = GDB_SIGNAL_FIRST; |
8674 | (int) oursig < (int) GDB_SIGNAL_LAST; | |
2ea28649 | 8675 | oursig = (enum gdb_signal) ((int) oursig + 1)) |
c906108c SS |
8676 | { |
8677 | QUIT; | |
8678 | ||
a493e3e2 PA |
8679 | if (oursig != GDB_SIGNAL_UNKNOWN |
8680 | && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0) | |
c906108c SS |
8681 | sig_print_info (oursig); |
8682 | } | |
8683 | ||
3e43a32a MS |
8684 | printf_filtered (_("\nUse the \"handle\" command " |
8685 | "to change these tables.\n")); | |
c906108c | 8686 | } |
4aa995e1 PA |
8687 | |
8688 | /* The $_siginfo convenience variable is a bit special. We don't know | |
8689 | for sure the type of the value until we actually have a chance to | |
7a9dd1b2 | 8690 | fetch the data. The type can change depending on gdbarch, so it is |
4aa995e1 PA |
8691 | also dependent on which thread you have selected. |
8692 | ||
8693 | 1. making $_siginfo be an internalvar that creates a new value on | |
8694 | access. | |
8695 | ||
8696 | 2. making the value of $_siginfo be an lval_computed value. */ | |
8697 | ||
8698 | /* This function implements the lval_computed support for reading a | |
8699 | $_siginfo value. */ | |
8700 | ||
8701 | static void | |
8702 | siginfo_value_read (struct value *v) | |
8703 | { | |
8704 | LONGEST transferred; | |
8705 | ||
a911d87a PA |
8706 | /* If we can access registers, so can we access $_siginfo. Likewise |
8707 | vice versa. */ | |
8708 | validate_registers_access (); | |
c709acd1 | 8709 | |
4aa995e1 PA |
8710 | transferred = |
8711 | target_read (¤t_target, TARGET_OBJECT_SIGNAL_INFO, | |
8712 | NULL, | |
8713 | value_contents_all_raw (v), | |
8714 | value_offset (v), | |
8715 | TYPE_LENGTH (value_type (v))); | |
8716 | ||
8717 | if (transferred != TYPE_LENGTH (value_type (v))) | |
8718 | error (_("Unable to read siginfo")); | |
8719 | } | |
8720 | ||
8721 | /* This function implements the lval_computed support for writing a | |
8722 | $_siginfo value. */ | |
8723 | ||
8724 | static void | |
8725 | siginfo_value_write (struct value *v, struct value *fromval) | |
8726 | { | |
8727 | LONGEST transferred; | |
8728 | ||
a911d87a PA |
8729 | /* If we can access registers, so can we access $_siginfo. Likewise |
8730 | vice versa. */ | |
8731 | validate_registers_access (); | |
c709acd1 | 8732 | |
4aa995e1 PA |
8733 | transferred = target_write (¤t_target, |
8734 | TARGET_OBJECT_SIGNAL_INFO, | |
8735 | NULL, | |
8736 | value_contents_all_raw (fromval), | |
8737 | value_offset (v), | |
8738 | TYPE_LENGTH (value_type (fromval))); | |
8739 | ||
8740 | if (transferred != TYPE_LENGTH (value_type (fromval))) | |
8741 | error (_("Unable to write siginfo")); | |
8742 | } | |
8743 | ||
c8f2448a | 8744 | static const struct lval_funcs siginfo_value_funcs = |
4aa995e1 PA |
8745 | { |
8746 | siginfo_value_read, | |
8747 | siginfo_value_write | |
8748 | }; | |
8749 | ||
8750 | /* Return a new value with the correct type for the siginfo object of | |
78267919 UW |
8751 | the current thread using architecture GDBARCH. Return a void value |
8752 | if there's no object available. */ | |
4aa995e1 | 8753 | |
2c0b251b | 8754 | static struct value * |
22d2b532 SDJ |
8755 | siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var, |
8756 | void *ignore) | |
4aa995e1 | 8757 | { |
4aa995e1 | 8758 | if (target_has_stack |
78267919 UW |
8759 | && !ptid_equal (inferior_ptid, null_ptid) |
8760 | && gdbarch_get_siginfo_type_p (gdbarch)) | |
4aa995e1 | 8761 | { |
78267919 | 8762 | struct type *type = gdbarch_get_siginfo_type (gdbarch); |
abbb1732 | 8763 | |
78267919 | 8764 | return allocate_computed_value (type, &siginfo_value_funcs, NULL); |
4aa995e1 PA |
8765 | } |
8766 | ||
78267919 | 8767 | return allocate_value (builtin_type (gdbarch)->builtin_void); |
4aa995e1 PA |
8768 | } |
8769 | ||
c906108c | 8770 | \f |
16c381f0 JK |
8771 | /* infcall_suspend_state contains state about the program itself like its |
8772 | registers and any signal it received when it last stopped. | |
8773 | This state must be restored regardless of how the inferior function call | |
8774 | ends (either successfully, or after it hits a breakpoint or signal) | |
8775 | if the program is to properly continue where it left off. */ | |
8776 | ||
8777 | struct infcall_suspend_state | |
7a292a7a | 8778 | { |
16c381f0 | 8779 | struct thread_suspend_state thread_suspend; |
16c381f0 JK |
8780 | |
8781 | /* Other fields: */ | |
7a292a7a | 8782 | CORE_ADDR stop_pc; |
b89667eb | 8783 | struct regcache *registers; |
1736ad11 | 8784 | |
35515841 | 8785 | /* Format of SIGINFO_DATA or NULL if it is not present. */ |
1736ad11 JK |
8786 | struct gdbarch *siginfo_gdbarch; |
8787 | ||
8788 | /* The inferior format depends on SIGINFO_GDBARCH and it has a length of | |
8789 | TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the | |
8790 | content would be invalid. */ | |
8791 | gdb_byte *siginfo_data; | |
b89667eb DE |
8792 | }; |
8793 | ||
16c381f0 JK |
8794 | struct infcall_suspend_state * |
8795 | save_infcall_suspend_state (void) | |
b89667eb | 8796 | { |
16c381f0 | 8797 | struct infcall_suspend_state *inf_state; |
b89667eb | 8798 | struct thread_info *tp = inferior_thread (); |
1736ad11 | 8799 | struct regcache *regcache = get_current_regcache (); |
ac7936df | 8800 | struct gdbarch *gdbarch = regcache->arch (); |
1736ad11 JK |
8801 | gdb_byte *siginfo_data = NULL; |
8802 | ||
8803 | if (gdbarch_get_siginfo_type_p (gdbarch)) | |
8804 | { | |
8805 | struct type *type = gdbarch_get_siginfo_type (gdbarch); | |
8806 | size_t len = TYPE_LENGTH (type); | |
8807 | struct cleanup *back_to; | |
8808 | ||
224c3ddb | 8809 | siginfo_data = (gdb_byte *) xmalloc (len); |
1736ad11 JK |
8810 | back_to = make_cleanup (xfree, siginfo_data); |
8811 | ||
8812 | if (target_read (¤t_target, TARGET_OBJECT_SIGNAL_INFO, NULL, | |
8813 | siginfo_data, 0, len) == len) | |
8814 | discard_cleanups (back_to); | |
8815 | else | |
8816 | { | |
8817 | /* Errors ignored. */ | |
8818 | do_cleanups (back_to); | |
8819 | siginfo_data = NULL; | |
8820 | } | |
8821 | } | |
8822 | ||
41bf6aca | 8823 | inf_state = XCNEW (struct infcall_suspend_state); |
1736ad11 JK |
8824 | |
8825 | if (siginfo_data) | |
8826 | { | |
8827 | inf_state->siginfo_gdbarch = gdbarch; | |
8828 | inf_state->siginfo_data = siginfo_data; | |
8829 | } | |
b89667eb | 8830 | |
16c381f0 | 8831 | inf_state->thread_suspend = tp->suspend; |
16c381f0 | 8832 | |
35515841 | 8833 | /* run_inferior_call will not use the signal due to its `proceed' call with |
a493e3e2 PA |
8834 | GDB_SIGNAL_0 anyway. */ |
8835 | tp->suspend.stop_signal = GDB_SIGNAL_0; | |
35515841 | 8836 | |
b89667eb DE |
8837 | inf_state->stop_pc = stop_pc; |
8838 | ||
1736ad11 | 8839 | inf_state->registers = regcache_dup (regcache); |
b89667eb DE |
8840 | |
8841 | return inf_state; | |
8842 | } | |
8843 | ||
8844 | /* Restore inferior session state to INF_STATE. */ | |
8845 | ||
8846 | void | |
16c381f0 | 8847 | restore_infcall_suspend_state (struct infcall_suspend_state *inf_state) |
b89667eb DE |
8848 | { |
8849 | struct thread_info *tp = inferior_thread (); | |
1736ad11 | 8850 | struct regcache *regcache = get_current_regcache (); |
ac7936df | 8851 | struct gdbarch *gdbarch = regcache->arch (); |
b89667eb | 8852 | |
16c381f0 | 8853 | tp->suspend = inf_state->thread_suspend; |
16c381f0 | 8854 | |
b89667eb DE |
8855 | stop_pc = inf_state->stop_pc; |
8856 | ||
1736ad11 JK |
8857 | if (inf_state->siginfo_gdbarch == gdbarch) |
8858 | { | |
8859 | struct type *type = gdbarch_get_siginfo_type (gdbarch); | |
1736ad11 JK |
8860 | |
8861 | /* Errors ignored. */ | |
8862 | target_write (¤t_target, TARGET_OBJECT_SIGNAL_INFO, NULL, | |
6acef6cd | 8863 | inf_state->siginfo_data, 0, TYPE_LENGTH (type)); |
1736ad11 JK |
8864 | } |
8865 | ||
b89667eb DE |
8866 | /* The inferior can be gone if the user types "print exit(0)" |
8867 | (and perhaps other times). */ | |
8868 | if (target_has_execution) | |
8869 | /* NB: The register write goes through to the target. */ | |
1736ad11 | 8870 | regcache_cpy (regcache, inf_state->registers); |
803b5f95 | 8871 | |
16c381f0 | 8872 | discard_infcall_suspend_state (inf_state); |
b89667eb DE |
8873 | } |
8874 | ||
8875 | static void | |
16c381f0 | 8876 | do_restore_infcall_suspend_state_cleanup (void *state) |
b89667eb | 8877 | { |
9a3c8263 | 8878 | restore_infcall_suspend_state ((struct infcall_suspend_state *) state); |
b89667eb DE |
8879 | } |
8880 | ||
8881 | struct cleanup * | |
16c381f0 JK |
8882 | make_cleanup_restore_infcall_suspend_state |
8883 | (struct infcall_suspend_state *inf_state) | |
b89667eb | 8884 | { |
16c381f0 | 8885 | return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state); |
b89667eb DE |
8886 | } |
8887 | ||
8888 | void | |
16c381f0 | 8889 | discard_infcall_suspend_state (struct infcall_suspend_state *inf_state) |
b89667eb | 8890 | { |
c0e383c6 | 8891 | delete inf_state->registers; |
803b5f95 | 8892 | xfree (inf_state->siginfo_data); |
b89667eb DE |
8893 | xfree (inf_state); |
8894 | } | |
8895 | ||
8896 | struct regcache * | |
16c381f0 | 8897 | get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state) |
b89667eb DE |
8898 | { |
8899 | return inf_state->registers; | |
8900 | } | |
8901 | ||
16c381f0 JK |
8902 | /* infcall_control_state contains state regarding gdb's control of the |
8903 | inferior itself like stepping control. It also contains session state like | |
8904 | the user's currently selected frame. */ | |
b89667eb | 8905 | |
16c381f0 | 8906 | struct infcall_control_state |
b89667eb | 8907 | { |
16c381f0 JK |
8908 | struct thread_control_state thread_control; |
8909 | struct inferior_control_state inferior_control; | |
d82142e2 JK |
8910 | |
8911 | /* Other fields: */ | |
8912 | enum stop_stack_kind stop_stack_dummy; | |
8913 | int stopped_by_random_signal; | |
7a292a7a | 8914 | |
b89667eb | 8915 | /* ID if the selected frame when the inferior function call was made. */ |
101dcfbe | 8916 | struct frame_id selected_frame_id; |
7a292a7a SS |
8917 | }; |
8918 | ||
c906108c | 8919 | /* Save all of the information associated with the inferior<==>gdb |
b89667eb | 8920 | connection. */ |
c906108c | 8921 | |
16c381f0 JK |
8922 | struct infcall_control_state * |
8923 | save_infcall_control_state (void) | |
c906108c | 8924 | { |
8d749320 SM |
8925 | struct infcall_control_state *inf_status = |
8926 | XNEW (struct infcall_control_state); | |
4e1c45ea | 8927 | struct thread_info *tp = inferior_thread (); |
d6b48e9c | 8928 | struct inferior *inf = current_inferior (); |
7a292a7a | 8929 | |
16c381f0 JK |
8930 | inf_status->thread_control = tp->control; |
8931 | inf_status->inferior_control = inf->control; | |
d82142e2 | 8932 | |
8358c15c | 8933 | tp->control.step_resume_breakpoint = NULL; |
5b79abe7 | 8934 | tp->control.exception_resume_breakpoint = NULL; |
8358c15c | 8935 | |
16c381f0 JK |
8936 | /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of |
8937 | chain. If caller's caller is walking the chain, they'll be happier if we | |
8938 | hand them back the original chain when restore_infcall_control_state is | |
8939 | called. */ | |
8940 | tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat); | |
d82142e2 JK |
8941 | |
8942 | /* Other fields: */ | |
8943 | inf_status->stop_stack_dummy = stop_stack_dummy; | |
8944 | inf_status->stopped_by_random_signal = stopped_by_random_signal; | |
c5aa993b | 8945 | |
206415a3 | 8946 | inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL)); |
b89667eb | 8947 | |
7a292a7a | 8948 | return inf_status; |
c906108c SS |
8949 | } |
8950 | ||
bf469271 PA |
8951 | static void |
8952 | restore_selected_frame (const frame_id &fid) | |
c906108c | 8953 | { |
bf469271 | 8954 | frame_info *frame = frame_find_by_id (fid); |
c906108c | 8955 | |
aa0cd9c1 AC |
8956 | /* If inf_status->selected_frame_id is NULL, there was no previously |
8957 | selected frame. */ | |
101dcfbe | 8958 | if (frame == NULL) |
c906108c | 8959 | { |
8a3fe4f8 | 8960 | warning (_("Unable to restore previously selected frame.")); |
bf469271 | 8961 | return; |
c906108c SS |
8962 | } |
8963 | ||
0f7d239c | 8964 | select_frame (frame); |
c906108c SS |
8965 | } |
8966 | ||
b89667eb DE |
8967 | /* Restore inferior session state to INF_STATUS. */ |
8968 | ||
c906108c | 8969 | void |
16c381f0 | 8970 | restore_infcall_control_state (struct infcall_control_state *inf_status) |
c906108c | 8971 | { |
4e1c45ea | 8972 | struct thread_info *tp = inferior_thread (); |
d6b48e9c | 8973 | struct inferior *inf = current_inferior (); |
4e1c45ea | 8974 | |
8358c15c JK |
8975 | if (tp->control.step_resume_breakpoint) |
8976 | tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop; | |
8977 | ||
5b79abe7 TT |
8978 | if (tp->control.exception_resume_breakpoint) |
8979 | tp->control.exception_resume_breakpoint->disposition | |
8980 | = disp_del_at_next_stop; | |
8981 | ||
d82142e2 | 8982 | /* Handle the bpstat_copy of the chain. */ |
16c381f0 | 8983 | bpstat_clear (&tp->control.stop_bpstat); |
d82142e2 | 8984 | |
16c381f0 JK |
8985 | tp->control = inf_status->thread_control; |
8986 | inf->control = inf_status->inferior_control; | |
d82142e2 JK |
8987 | |
8988 | /* Other fields: */ | |
8989 | stop_stack_dummy = inf_status->stop_stack_dummy; | |
8990 | stopped_by_random_signal = inf_status->stopped_by_random_signal; | |
c906108c | 8991 | |
b89667eb | 8992 | if (target_has_stack) |
c906108c | 8993 | { |
bf469271 | 8994 | /* The point of the try/catch is that if the stack is clobbered, |
101dcfbe AC |
8995 | walking the stack might encounter a garbage pointer and |
8996 | error() trying to dereference it. */ | |
bf469271 PA |
8997 | TRY |
8998 | { | |
8999 | restore_selected_frame (inf_status->selected_frame_id); | |
9000 | } | |
9001 | CATCH (ex, RETURN_MASK_ERROR) | |
9002 | { | |
9003 | exception_fprintf (gdb_stderr, ex, | |
9004 | "Unable to restore previously selected frame:\n"); | |
9005 | /* Error in restoring the selected frame. Select the | |
9006 | innermost frame. */ | |
9007 | select_frame (get_current_frame ()); | |
9008 | } | |
9009 | END_CATCH | |
c906108c | 9010 | } |
c906108c | 9011 | |
72cec141 | 9012 | xfree (inf_status); |
7a292a7a | 9013 | } |
c906108c | 9014 | |
74b7792f | 9015 | static void |
16c381f0 | 9016 | do_restore_infcall_control_state_cleanup (void *sts) |
74b7792f | 9017 | { |
9a3c8263 | 9018 | restore_infcall_control_state ((struct infcall_control_state *) sts); |
74b7792f AC |
9019 | } |
9020 | ||
9021 | struct cleanup * | |
16c381f0 JK |
9022 | make_cleanup_restore_infcall_control_state |
9023 | (struct infcall_control_state *inf_status) | |
74b7792f | 9024 | { |
16c381f0 | 9025 | return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status); |
74b7792f AC |
9026 | } |
9027 | ||
c906108c | 9028 | void |
16c381f0 | 9029 | discard_infcall_control_state (struct infcall_control_state *inf_status) |
7a292a7a | 9030 | { |
8358c15c JK |
9031 | if (inf_status->thread_control.step_resume_breakpoint) |
9032 | inf_status->thread_control.step_resume_breakpoint->disposition | |
9033 | = disp_del_at_next_stop; | |
9034 | ||
5b79abe7 TT |
9035 | if (inf_status->thread_control.exception_resume_breakpoint) |
9036 | inf_status->thread_control.exception_resume_breakpoint->disposition | |
9037 | = disp_del_at_next_stop; | |
9038 | ||
1777feb0 | 9039 | /* See save_infcall_control_state for info on stop_bpstat. */ |
16c381f0 | 9040 | bpstat_clear (&inf_status->thread_control.stop_bpstat); |
8358c15c | 9041 | |
72cec141 | 9042 | xfree (inf_status); |
7a292a7a | 9043 | } |
b89667eb | 9044 | \f |
7f89fd65 | 9045 | /* See infrun.h. */ |
0c557179 SDJ |
9046 | |
9047 | void | |
9048 | clear_exit_convenience_vars (void) | |
9049 | { | |
9050 | clear_internalvar (lookup_internalvar ("_exitsignal")); | |
9051 | clear_internalvar (lookup_internalvar ("_exitcode")); | |
9052 | } | |
c5aa993b | 9053 | \f |
488f131b | 9054 | |
b2175913 MS |
9055 | /* User interface for reverse debugging: |
9056 | Set exec-direction / show exec-direction commands | |
9057 | (returns error unless target implements to_set_exec_direction method). */ | |
9058 | ||
170742de | 9059 | enum exec_direction_kind execution_direction = EXEC_FORWARD; |
b2175913 MS |
9060 | static const char exec_forward[] = "forward"; |
9061 | static const char exec_reverse[] = "reverse"; | |
9062 | static const char *exec_direction = exec_forward; | |
40478521 | 9063 | static const char *const exec_direction_names[] = { |
b2175913 MS |
9064 | exec_forward, |
9065 | exec_reverse, | |
9066 | NULL | |
9067 | }; | |
9068 | ||
9069 | static void | |
eb4c3f4a | 9070 | set_exec_direction_func (const char *args, int from_tty, |
b2175913 MS |
9071 | struct cmd_list_element *cmd) |
9072 | { | |
9073 | if (target_can_execute_reverse) | |
9074 | { | |
9075 | if (!strcmp (exec_direction, exec_forward)) | |
9076 | execution_direction = EXEC_FORWARD; | |
9077 | else if (!strcmp (exec_direction, exec_reverse)) | |
9078 | execution_direction = EXEC_REVERSE; | |
9079 | } | |
8bbed405 MS |
9080 | else |
9081 | { | |
9082 | exec_direction = exec_forward; | |
9083 | error (_("Target does not support this operation.")); | |
9084 | } | |
b2175913 MS |
9085 | } |
9086 | ||
9087 | static void | |
9088 | show_exec_direction_func (struct ui_file *out, int from_tty, | |
9089 | struct cmd_list_element *cmd, const char *value) | |
9090 | { | |
9091 | switch (execution_direction) { | |
9092 | case EXEC_FORWARD: | |
9093 | fprintf_filtered (out, _("Forward.\n")); | |
9094 | break; | |
9095 | case EXEC_REVERSE: | |
9096 | fprintf_filtered (out, _("Reverse.\n")); | |
9097 | break; | |
b2175913 | 9098 | default: |
d8b34453 PA |
9099 | internal_error (__FILE__, __LINE__, |
9100 | _("bogus execution_direction value: %d"), | |
9101 | (int) execution_direction); | |
b2175913 MS |
9102 | } |
9103 | } | |
9104 | ||
d4db2f36 PA |
9105 | static void |
9106 | show_schedule_multiple (struct ui_file *file, int from_tty, | |
9107 | struct cmd_list_element *c, const char *value) | |
9108 | { | |
3e43a32a MS |
9109 | fprintf_filtered (file, _("Resuming the execution of threads " |
9110 | "of all processes is %s.\n"), value); | |
d4db2f36 | 9111 | } |
ad52ddc6 | 9112 | |
22d2b532 SDJ |
9113 | /* Implementation of `siginfo' variable. */ |
9114 | ||
9115 | static const struct internalvar_funcs siginfo_funcs = | |
9116 | { | |
9117 | siginfo_make_value, | |
9118 | NULL, | |
9119 | NULL | |
9120 | }; | |
9121 | ||
372316f1 PA |
9122 | /* Callback for infrun's target events source. This is marked when a |
9123 | thread has a pending status to process. */ | |
9124 | ||
9125 | static void | |
9126 | infrun_async_inferior_event_handler (gdb_client_data data) | |
9127 | { | |
372316f1 PA |
9128 | inferior_event_handler (INF_REG_EVENT, NULL); |
9129 | } | |
9130 | ||
c906108c | 9131 | void |
96baa820 | 9132 | _initialize_infrun (void) |
c906108c | 9133 | { |
52f0bd74 AC |
9134 | int i; |
9135 | int numsigs; | |
de0bea00 | 9136 | struct cmd_list_element *c; |
c906108c | 9137 | |
372316f1 PA |
9138 | /* Register extra event sources in the event loop. */ |
9139 | infrun_async_inferior_event_token | |
9140 | = create_async_event_handler (infrun_async_inferior_event_handler, NULL); | |
9141 | ||
11db9430 | 9142 | add_info ("signals", info_signals_command, _("\ |
1bedd215 AC |
9143 | What debugger does when program gets various signals.\n\ |
9144 | Specify a signal as argument to print info on that signal only.")); | |
c906108c SS |
9145 | add_info_alias ("handle", "signals", 0); |
9146 | ||
de0bea00 | 9147 | c = add_com ("handle", class_run, handle_command, _("\ |
dfbd5e7b | 9148 | Specify how to handle signals.\n\ |
486c7739 | 9149 | Usage: handle SIGNAL [ACTIONS]\n\ |
c906108c | 9150 | Args are signals and actions to apply to those signals.\n\ |
dfbd5e7b | 9151 | If no actions are specified, the current settings for the specified signals\n\ |
486c7739 MF |
9152 | will be displayed instead.\n\ |
9153 | \n\ | |
c906108c SS |
9154 | Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\ |
9155 | from 1-15 are allowed for compatibility with old versions of GDB.\n\ | |
9156 | Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\ | |
9157 | The special arg \"all\" is recognized to mean all signals except those\n\ | |
1bedd215 | 9158 | used by the debugger, typically SIGTRAP and SIGINT.\n\ |
486c7739 | 9159 | \n\ |
1bedd215 | 9160 | Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\ |
c906108c SS |
9161 | \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\ |
9162 | Stop means reenter debugger if this signal happens (implies print).\n\ | |
9163 | Print means print a message if this signal happens.\n\ | |
9164 | Pass means let program see this signal; otherwise program doesn't know.\n\ | |
9165 | Ignore is a synonym for nopass and noignore is a synonym for pass.\n\ | |
dfbd5e7b PA |
9166 | Pass and Stop may be combined.\n\ |
9167 | \n\ | |
9168 | Multiple signals may be specified. Signal numbers and signal names\n\ | |
9169 | may be interspersed with actions, with the actions being performed for\n\ | |
9170 | all signals cumulatively specified.")); | |
de0bea00 | 9171 | set_cmd_completer (c, handle_completer); |
486c7739 | 9172 | |
c906108c | 9173 | if (!dbx_commands) |
1a966eab AC |
9174 | stop_command = add_cmd ("stop", class_obscure, |
9175 | not_just_help_class_command, _("\ | |
9176 | There is no `stop' command, but you can set a hook on `stop'.\n\ | |
c906108c | 9177 | This allows you to set a list of commands to be run each time execution\n\ |
1a966eab | 9178 | of the program stops."), &cmdlist); |
c906108c | 9179 | |
ccce17b0 | 9180 | add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\ |
85c07804 AC |
9181 | Set inferior debugging."), _("\ |
9182 | Show inferior debugging."), _("\ | |
9183 | When non-zero, inferior specific debugging is enabled."), | |
ccce17b0 YQ |
9184 | NULL, |
9185 | show_debug_infrun, | |
9186 | &setdebuglist, &showdebuglist); | |
527159b7 | 9187 | |
3e43a32a MS |
9188 | add_setshow_boolean_cmd ("displaced", class_maintenance, |
9189 | &debug_displaced, _("\ | |
237fc4c9 PA |
9190 | Set displaced stepping debugging."), _("\ |
9191 | Show displaced stepping debugging."), _("\ | |
9192 | When non-zero, displaced stepping specific debugging is enabled."), | |
9193 | NULL, | |
9194 | show_debug_displaced, | |
9195 | &setdebuglist, &showdebuglist); | |
9196 | ||
ad52ddc6 PA |
9197 | add_setshow_boolean_cmd ("non-stop", no_class, |
9198 | &non_stop_1, _("\ | |
9199 | Set whether gdb controls the inferior in non-stop mode."), _("\ | |
9200 | Show whether gdb controls the inferior in non-stop mode."), _("\ | |
9201 | When debugging a multi-threaded program and this setting is\n\ | |
9202 | off (the default, also called all-stop mode), when one thread stops\n\ | |
9203 | (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\ | |
9204 | all other threads in the program while you interact with the thread of\n\ | |
9205 | interest. When you continue or step a thread, you can allow the other\n\ | |
9206 | threads to run, or have them remain stopped, but while you inspect any\n\ | |
9207 | thread's state, all threads stop.\n\ | |
9208 | \n\ | |
9209 | In non-stop mode, when one thread stops, other threads can continue\n\ | |
9210 | to run freely. You'll be able to step each thread independently,\n\ | |
9211 | leave it stopped or free to run as needed."), | |
9212 | set_non_stop, | |
9213 | show_non_stop, | |
9214 | &setlist, | |
9215 | &showlist); | |
9216 | ||
a493e3e2 | 9217 | numsigs = (int) GDB_SIGNAL_LAST; |
8d749320 SM |
9218 | signal_stop = XNEWVEC (unsigned char, numsigs); |
9219 | signal_print = XNEWVEC (unsigned char, numsigs); | |
9220 | signal_program = XNEWVEC (unsigned char, numsigs); | |
9221 | signal_catch = XNEWVEC (unsigned char, numsigs); | |
9222 | signal_pass = XNEWVEC (unsigned char, numsigs); | |
c906108c SS |
9223 | for (i = 0; i < numsigs; i++) |
9224 | { | |
9225 | signal_stop[i] = 1; | |
9226 | signal_print[i] = 1; | |
9227 | signal_program[i] = 1; | |
ab04a2af | 9228 | signal_catch[i] = 0; |
c906108c SS |
9229 | } |
9230 | ||
4d9d9d04 PA |
9231 | /* Signals caused by debugger's own actions should not be given to |
9232 | the program afterwards. | |
9233 | ||
9234 | Do not deliver GDB_SIGNAL_TRAP by default, except when the user | |
9235 | explicitly specifies that it should be delivered to the target | |
9236 | program. Typically, that would occur when a user is debugging a | |
9237 | target monitor on a simulator: the target monitor sets a | |
9238 | breakpoint; the simulator encounters this breakpoint and halts | |
9239 | the simulation handing control to GDB; GDB, noting that the stop | |
9240 | address doesn't map to any known breakpoint, returns control back | |
9241 | to the simulator; the simulator then delivers the hardware | |
9242 | equivalent of a GDB_SIGNAL_TRAP to the program being | |
9243 | debugged. */ | |
a493e3e2 PA |
9244 | signal_program[GDB_SIGNAL_TRAP] = 0; |
9245 | signal_program[GDB_SIGNAL_INT] = 0; | |
c906108c SS |
9246 | |
9247 | /* Signals that are not errors should not normally enter the debugger. */ | |
a493e3e2 PA |
9248 | signal_stop[GDB_SIGNAL_ALRM] = 0; |
9249 | signal_print[GDB_SIGNAL_ALRM] = 0; | |
9250 | signal_stop[GDB_SIGNAL_VTALRM] = 0; | |
9251 | signal_print[GDB_SIGNAL_VTALRM] = 0; | |
9252 | signal_stop[GDB_SIGNAL_PROF] = 0; | |
9253 | signal_print[GDB_SIGNAL_PROF] = 0; | |
9254 | signal_stop[GDB_SIGNAL_CHLD] = 0; | |
9255 | signal_print[GDB_SIGNAL_CHLD] = 0; | |
9256 | signal_stop[GDB_SIGNAL_IO] = 0; | |
9257 | signal_print[GDB_SIGNAL_IO] = 0; | |
9258 | signal_stop[GDB_SIGNAL_POLL] = 0; | |
9259 | signal_print[GDB_SIGNAL_POLL] = 0; | |
9260 | signal_stop[GDB_SIGNAL_URG] = 0; | |
9261 | signal_print[GDB_SIGNAL_URG] = 0; | |
9262 | signal_stop[GDB_SIGNAL_WINCH] = 0; | |
9263 | signal_print[GDB_SIGNAL_WINCH] = 0; | |
9264 | signal_stop[GDB_SIGNAL_PRIO] = 0; | |
9265 | signal_print[GDB_SIGNAL_PRIO] = 0; | |
c906108c | 9266 | |
cd0fc7c3 SS |
9267 | /* These signals are used internally by user-level thread |
9268 | implementations. (See signal(5) on Solaris.) Like the above | |
9269 | signals, a healthy program receives and handles them as part of | |
9270 | its normal operation. */ | |
a493e3e2 PA |
9271 | signal_stop[GDB_SIGNAL_LWP] = 0; |
9272 | signal_print[GDB_SIGNAL_LWP] = 0; | |
9273 | signal_stop[GDB_SIGNAL_WAITING] = 0; | |
9274 | signal_print[GDB_SIGNAL_WAITING] = 0; | |
9275 | signal_stop[GDB_SIGNAL_CANCEL] = 0; | |
9276 | signal_print[GDB_SIGNAL_CANCEL] = 0; | |
bc7b765a JB |
9277 | signal_stop[GDB_SIGNAL_LIBRT] = 0; |
9278 | signal_print[GDB_SIGNAL_LIBRT] = 0; | |
cd0fc7c3 | 9279 | |
2455069d UW |
9280 | /* Update cached state. */ |
9281 | signal_cache_update (-1); | |
9282 | ||
85c07804 AC |
9283 | add_setshow_zinteger_cmd ("stop-on-solib-events", class_support, |
9284 | &stop_on_solib_events, _("\ | |
9285 | Set stopping for shared library events."), _("\ | |
9286 | Show stopping for shared library events."), _("\ | |
c906108c SS |
9287 | If nonzero, gdb will give control to the user when the dynamic linker\n\ |
9288 | notifies gdb of shared library events. The most common event of interest\n\ | |
85c07804 | 9289 | to the user would be loading/unloading of a new library."), |
f9e14852 | 9290 | set_stop_on_solib_events, |
920d2a44 | 9291 | show_stop_on_solib_events, |
85c07804 | 9292 | &setlist, &showlist); |
c906108c | 9293 | |
7ab04401 AC |
9294 | add_setshow_enum_cmd ("follow-fork-mode", class_run, |
9295 | follow_fork_mode_kind_names, | |
9296 | &follow_fork_mode_string, _("\ | |
9297 | Set debugger response to a program call of fork or vfork."), _("\ | |
9298 | Show debugger response to a program call of fork or vfork."), _("\ | |
c906108c SS |
9299 | A fork or vfork creates a new process. follow-fork-mode can be:\n\ |
9300 | parent - the original process is debugged after a fork\n\ | |
9301 | child - the new process is debugged after a fork\n\ | |
ea1dd7bc | 9302 | The unfollowed process will continue to run.\n\ |
7ab04401 AC |
9303 | By default, the debugger will follow the parent process."), |
9304 | NULL, | |
920d2a44 | 9305 | show_follow_fork_mode_string, |
7ab04401 AC |
9306 | &setlist, &showlist); |
9307 | ||
6c95b8df PA |
9308 | add_setshow_enum_cmd ("follow-exec-mode", class_run, |
9309 | follow_exec_mode_names, | |
9310 | &follow_exec_mode_string, _("\ | |
9311 | Set debugger response to a program call of exec."), _("\ | |
9312 | Show debugger response to a program call of exec."), _("\ | |
9313 | An exec call replaces the program image of a process.\n\ | |
9314 | \n\ | |
9315 | follow-exec-mode can be:\n\ | |
9316 | \n\ | |
cce7e648 | 9317 | new - the debugger creates a new inferior and rebinds the process\n\ |
6c95b8df PA |
9318 | to this new inferior. The program the process was running before\n\ |
9319 | the exec call can be restarted afterwards by restarting the original\n\ | |
9320 | inferior.\n\ | |
9321 | \n\ | |
9322 | same - the debugger keeps the process bound to the same inferior.\n\ | |
9323 | The new executable image replaces the previous executable loaded in\n\ | |
9324 | the inferior. Restarting the inferior after the exec call restarts\n\ | |
9325 | the executable the process was running after the exec call.\n\ | |
9326 | \n\ | |
9327 | By default, the debugger will use the same inferior."), | |
9328 | NULL, | |
9329 | show_follow_exec_mode_string, | |
9330 | &setlist, &showlist); | |
9331 | ||
7ab04401 AC |
9332 | add_setshow_enum_cmd ("scheduler-locking", class_run, |
9333 | scheduler_enums, &scheduler_mode, _("\ | |
9334 | Set mode for locking scheduler during execution."), _("\ | |
9335 | Show mode for locking scheduler during execution."), _("\ | |
f2665db5 MM |
9336 | off == no locking (threads may preempt at any time)\n\ |
9337 | on == full locking (no thread except the current thread may run)\n\ | |
9338 | This applies to both normal execution and replay mode.\n\ | |
9339 | step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\ | |
9340 | In this mode, other threads may run during other commands.\n\ | |
9341 | This applies to both normal execution and replay mode.\n\ | |
9342 | replay == scheduler locked in replay mode and unlocked during normal execution."), | |
7ab04401 | 9343 | set_schedlock_func, /* traps on target vector */ |
920d2a44 | 9344 | show_scheduler_mode, |
7ab04401 | 9345 | &setlist, &showlist); |
5fbbeb29 | 9346 | |
d4db2f36 PA |
9347 | add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\ |
9348 | Set mode for resuming threads of all processes."), _("\ | |
9349 | Show mode for resuming threads of all processes."), _("\ | |
9350 | When on, execution commands (such as 'continue' or 'next') resume all\n\ | |
9351 | threads of all processes. When off (which is the default), execution\n\ | |
9352 | commands only resume the threads of the current process. The set of\n\ | |
9353 | threads that are resumed is further refined by the scheduler-locking\n\ | |
9354 | mode (see help set scheduler-locking)."), | |
9355 | NULL, | |
9356 | show_schedule_multiple, | |
9357 | &setlist, &showlist); | |
9358 | ||
5bf193a2 AC |
9359 | add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\ |
9360 | Set mode of the step operation."), _("\ | |
9361 | Show mode of the step operation."), _("\ | |
9362 | When set, doing a step over a function without debug line information\n\ | |
9363 | will stop at the first instruction of that function. Otherwise, the\n\ | |
9364 | function is skipped and the step command stops at a different source line."), | |
9365 | NULL, | |
920d2a44 | 9366 | show_step_stop_if_no_debug, |
5bf193a2 | 9367 | &setlist, &showlist); |
ca6724c1 | 9368 | |
72d0e2c5 YQ |
9369 | add_setshow_auto_boolean_cmd ("displaced-stepping", class_run, |
9370 | &can_use_displaced_stepping, _("\ | |
237fc4c9 PA |
9371 | Set debugger's willingness to use displaced stepping."), _("\ |
9372 | Show debugger's willingness to use displaced stepping."), _("\ | |
fff08868 HZ |
9373 | If on, gdb will use displaced stepping to step over breakpoints if it is\n\ |
9374 | supported by the target architecture. If off, gdb will not use displaced\n\ | |
9375 | stepping to step over breakpoints, even if such is supported by the target\n\ | |
9376 | architecture. If auto (which is the default), gdb will use displaced stepping\n\ | |
9377 | if the target architecture supports it and non-stop mode is active, but will not\n\ | |
9378 | use it in all-stop mode (see help set non-stop)."), | |
72d0e2c5 YQ |
9379 | NULL, |
9380 | show_can_use_displaced_stepping, | |
9381 | &setlist, &showlist); | |
237fc4c9 | 9382 | |
b2175913 MS |
9383 | add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names, |
9384 | &exec_direction, _("Set direction of execution.\n\ | |
9385 | Options are 'forward' or 'reverse'."), | |
9386 | _("Show direction of execution (forward/reverse)."), | |
9387 | _("Tells gdb whether to execute forward or backward."), | |
9388 | set_exec_direction_func, show_exec_direction_func, | |
9389 | &setlist, &showlist); | |
9390 | ||
6c95b8df PA |
9391 | /* Set/show detach-on-fork: user-settable mode. */ |
9392 | ||
9393 | add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\ | |
9394 | Set whether gdb will detach the child of a fork."), _("\ | |
9395 | Show whether gdb will detach the child of a fork."), _("\ | |
9396 | Tells gdb whether to detach the child of a fork."), | |
9397 | NULL, NULL, &setlist, &showlist); | |
9398 | ||
03583c20 UW |
9399 | /* Set/show disable address space randomization mode. */ |
9400 | ||
9401 | add_setshow_boolean_cmd ("disable-randomization", class_support, | |
9402 | &disable_randomization, _("\ | |
9403 | Set disabling of debuggee's virtual address space randomization."), _("\ | |
9404 | Show disabling of debuggee's virtual address space randomization."), _("\ | |
9405 | When this mode is on (which is the default), randomization of the virtual\n\ | |
9406 | address space is disabled. Standalone programs run with the randomization\n\ | |
9407 | enabled by default on some platforms."), | |
9408 | &set_disable_randomization, | |
9409 | &show_disable_randomization, | |
9410 | &setlist, &showlist); | |
9411 | ||
ca6724c1 | 9412 | /* ptid initializations */ |
ca6724c1 KB |
9413 | inferior_ptid = null_ptid; |
9414 | target_last_wait_ptid = minus_one_ptid; | |
5231c1fd PA |
9415 | |
9416 | observer_attach_thread_ptid_changed (infrun_thread_ptid_changed); | |
252fbfc8 | 9417 | observer_attach_thread_stop_requested (infrun_thread_stop_requested); |
a07daef3 | 9418 | observer_attach_thread_exit (infrun_thread_thread_exit); |
fc1cf338 | 9419 | observer_attach_inferior_exit (infrun_inferior_exit); |
4aa995e1 PA |
9420 | |
9421 | /* Explicitly create without lookup, since that tries to create a | |
9422 | value with a void typed value, and when we get here, gdbarch | |
9423 | isn't initialized yet. At this point, we're quite sure there | |
9424 | isn't another convenience variable of the same name. */ | |
22d2b532 | 9425 | create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL); |
d914c394 SS |
9426 | |
9427 | add_setshow_boolean_cmd ("observer", no_class, | |
9428 | &observer_mode_1, _("\ | |
9429 | Set whether gdb controls the inferior in observer mode."), _("\ | |
9430 | Show whether gdb controls the inferior in observer mode."), _("\ | |
9431 | In observer mode, GDB can get data from the inferior, but not\n\ | |
9432 | affect its execution. Registers and memory may not be changed,\n\ | |
9433 | breakpoints may not be set, and the program cannot be interrupted\n\ | |
9434 | or signalled."), | |
9435 | set_observer_mode, | |
9436 | show_observer_mode, | |
9437 | &setlist, | |
9438 | &showlist); | |
c906108c | 9439 | } |