]>
Commit | Line | Data |
---|---|---|
54936004 | 1 | /* |
5b6dd868 | 2 | * Virtual page mapping |
5fafdf24 | 3 | * |
54936004 FB |
4 | * Copyright (c) 2003 Fabrice Bellard |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
8167ee88 | 17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
54936004 | 18 | */ |
7b31bbc2 | 19 | #include "qemu/osdep.h" |
da34e65c | 20 | #include "qapi/error.h" |
777872e5 | 21 | #ifndef _WIN32 |
d5a8f07c | 22 | #endif |
54936004 | 23 | |
f348b6d1 | 24 | #include "qemu/cutils.h" |
6180a181 | 25 | #include "cpu.h" |
63c91552 | 26 | #include "exec/exec-all.h" |
51180423 | 27 | #include "exec/target_page.h" |
b67d9a52 | 28 | #include "tcg.h" |
741da0d3 | 29 | #include "hw/qdev-core.h" |
4485bd26 | 30 | #if !defined(CONFIG_USER_ONLY) |
47c8ca53 | 31 | #include "hw/boards.h" |
33c11879 | 32 | #include "hw/xen/xen.h" |
4485bd26 | 33 | #endif |
9c17d615 | 34 | #include "sysemu/kvm.h" |
2ff3de68 | 35 | #include "sysemu/sysemu.h" |
1de7afc9 PB |
36 | #include "qemu/timer.h" |
37 | #include "qemu/config-file.h" | |
75a34036 | 38 | #include "qemu/error-report.h" |
53a5960a | 39 | #if defined(CONFIG_USER_ONLY) |
a9c94277 | 40 | #include "qemu.h" |
432d268c | 41 | #else /* !CONFIG_USER_ONLY */ |
741da0d3 PB |
42 | #include "hw/hw.h" |
43 | #include "exec/memory.h" | |
df43d49c | 44 | #include "exec/ioport.h" |
741da0d3 | 45 | #include "sysemu/dma.h" |
9c607668 | 46 | #include "sysemu/numa.h" |
79ca7a1b | 47 | #include "sysemu/hw_accel.h" |
741da0d3 | 48 | #include "exec/address-spaces.h" |
9c17d615 | 49 | #include "sysemu/xen-mapcache.h" |
0ab8ed18 | 50 | #include "trace-root.h" |
d3a5038c | 51 | |
e2fa71f5 DDAG |
52 | #ifdef CONFIG_FALLOCATE_PUNCH_HOLE |
53 | #include <fcntl.h> | |
54 | #include <linux/falloc.h> | |
55 | #endif | |
56 | ||
53a5960a | 57 | #endif |
0d6d3c87 | 58 | #include "exec/cpu-all.h" |
0dc3f44a | 59 | #include "qemu/rcu_queue.h" |
4840f10e | 60 | #include "qemu/main-loop.h" |
5b6dd868 | 61 | #include "translate-all.h" |
7615936e | 62 | #include "sysemu/replay.h" |
0cac1b66 | 63 | |
022c62cb | 64 | #include "exec/memory-internal.h" |
220c3ebd | 65 | #include "exec/ram_addr.h" |
508127e2 | 66 | #include "exec/log.h" |
67d95c15 | 67 | |
9dfeca7c BR |
68 | #include "migration/vmstate.h" |
69 | ||
b35ba30f | 70 | #include "qemu/range.h" |
794e8f30 MT |
71 | #ifndef _WIN32 |
72 | #include "qemu/mmap-alloc.h" | |
73 | #endif | |
b35ba30f | 74 | |
be9b23c4 PX |
75 | #include "monitor/monitor.h" |
76 | ||
db7b5426 | 77 | //#define DEBUG_SUBPAGE |
1196be37 | 78 | |
e2eef170 | 79 | #if !defined(CONFIG_USER_ONLY) |
0dc3f44a MD |
80 | /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes |
81 | * are protected by the ramlist lock. | |
82 | */ | |
0d53d9fe | 83 | RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; |
62152b8a AK |
84 | |
85 | static MemoryRegion *system_memory; | |
309cb471 | 86 | static MemoryRegion *system_io; |
62152b8a | 87 | |
f6790af6 AK |
88 | AddressSpace address_space_io; |
89 | AddressSpace address_space_memory; | |
2673a5da | 90 | |
0844e007 | 91 | MemoryRegion io_mem_rom, io_mem_notdirty; |
acc9d80b | 92 | static MemoryRegion io_mem_unassigned; |
0e0df1e2 | 93 | |
7bd4f430 PB |
94 | /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ |
95 | #define RAM_PREALLOC (1 << 0) | |
96 | ||
dbcb8981 PB |
97 | /* RAM is mmap-ed with MAP_SHARED */ |
98 | #define RAM_SHARED (1 << 1) | |
99 | ||
62be4e3a MT |
100 | /* Only a portion of RAM (used_length) is actually used, and migrated. |
101 | * This used_length size can change across reboots. | |
102 | */ | |
103 | #define RAM_RESIZEABLE (1 << 2) | |
104 | ||
e2eef170 | 105 | #endif |
9fa3e853 | 106 | |
20bccb82 PM |
107 | #ifdef TARGET_PAGE_BITS_VARY |
108 | int target_page_bits; | |
109 | bool target_page_bits_decided; | |
110 | #endif | |
111 | ||
bdc44640 | 112 | struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus); |
6a00d601 FB |
113 | /* current CPU in the current thread. It is only valid inside |
114 | cpu_exec() */ | |
f240eb6f | 115 | __thread CPUState *current_cpu; |
2e70f6ef | 116 | /* 0 = Do not count executed instructions. |
bf20dc07 | 117 | 1 = Precise instruction counting. |
2e70f6ef | 118 | 2 = Adaptive rate instruction counting. */ |
5708fc66 | 119 | int use_icount; |
6a00d601 | 120 | |
a0be0c58 YZ |
121 | uintptr_t qemu_host_page_size; |
122 | intptr_t qemu_host_page_mask; | |
123 | uintptr_t qemu_real_host_page_size; | |
124 | intptr_t qemu_real_host_page_mask; | |
125 | ||
20bccb82 PM |
126 | bool set_preferred_target_page_bits(int bits) |
127 | { | |
128 | /* The target page size is the lowest common denominator for all | |
129 | * the CPUs in the system, so we can only make it smaller, never | |
130 | * larger. And we can't make it smaller once we've committed to | |
131 | * a particular size. | |
132 | */ | |
133 | #ifdef TARGET_PAGE_BITS_VARY | |
134 | assert(bits >= TARGET_PAGE_BITS_MIN); | |
135 | if (target_page_bits == 0 || target_page_bits > bits) { | |
136 | if (target_page_bits_decided) { | |
137 | return false; | |
138 | } | |
139 | target_page_bits = bits; | |
140 | } | |
141 | #endif | |
142 | return true; | |
143 | } | |
144 | ||
e2eef170 | 145 | #if !defined(CONFIG_USER_ONLY) |
4346ae3e | 146 | |
20bccb82 PM |
147 | static void finalize_target_page_bits(void) |
148 | { | |
149 | #ifdef TARGET_PAGE_BITS_VARY | |
150 | if (target_page_bits == 0) { | |
151 | target_page_bits = TARGET_PAGE_BITS_MIN; | |
152 | } | |
153 | target_page_bits_decided = true; | |
154 | #endif | |
155 | } | |
156 | ||
1db8abb1 PB |
157 | typedef struct PhysPageEntry PhysPageEntry; |
158 | ||
159 | struct PhysPageEntry { | |
9736e55b | 160 | /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ |
8b795765 | 161 | uint32_t skip : 6; |
9736e55b | 162 | /* index into phys_sections (!skip) or phys_map_nodes (skip) */ |
8b795765 | 163 | uint32_t ptr : 26; |
1db8abb1 PB |
164 | }; |
165 | ||
8b795765 MT |
166 | #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) |
167 | ||
03f49957 | 168 | /* Size of the L2 (and L3, etc) page tables. */ |
57271d63 | 169 | #define ADDR_SPACE_BITS 64 |
03f49957 | 170 | |
026736ce | 171 | #define P_L2_BITS 9 |
03f49957 PB |
172 | #define P_L2_SIZE (1 << P_L2_BITS) |
173 | ||
174 | #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) | |
175 | ||
176 | typedef PhysPageEntry Node[P_L2_SIZE]; | |
0475d94f | 177 | |
53cb28cb | 178 | typedef struct PhysPageMap { |
79e2b9ae PB |
179 | struct rcu_head rcu; |
180 | ||
53cb28cb MA |
181 | unsigned sections_nb; |
182 | unsigned sections_nb_alloc; | |
183 | unsigned nodes_nb; | |
184 | unsigned nodes_nb_alloc; | |
185 | Node *nodes; | |
186 | MemoryRegionSection *sections; | |
187 | } PhysPageMap; | |
188 | ||
1db8abb1 | 189 | struct AddressSpaceDispatch { |
79e2b9ae PB |
190 | struct rcu_head rcu; |
191 | ||
729633c2 | 192 | MemoryRegionSection *mru_section; |
1db8abb1 PB |
193 | /* This is a multi-level map on the physical address space. |
194 | * The bottom level has pointers to MemoryRegionSections. | |
195 | */ | |
196 | PhysPageEntry phys_map; | |
53cb28cb | 197 | PhysPageMap map; |
acc9d80b | 198 | AddressSpace *as; |
1db8abb1 PB |
199 | }; |
200 | ||
90260c6c JK |
201 | #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) |
202 | typedef struct subpage_t { | |
203 | MemoryRegion iomem; | |
acc9d80b | 204 | AddressSpace *as; |
90260c6c | 205 | hwaddr base; |
2615fabd | 206 | uint16_t sub_section[]; |
90260c6c JK |
207 | } subpage_t; |
208 | ||
b41aac4f LPF |
209 | #define PHYS_SECTION_UNASSIGNED 0 |
210 | #define PHYS_SECTION_NOTDIRTY 1 | |
211 | #define PHYS_SECTION_ROM 2 | |
212 | #define PHYS_SECTION_WATCH 3 | |
5312bd8b | 213 | |
e2eef170 | 214 | static void io_mem_init(void); |
62152b8a | 215 | static void memory_map_init(void); |
09daed84 | 216 | static void tcg_commit(MemoryListener *listener); |
e2eef170 | 217 | |
1ec9b909 | 218 | static MemoryRegion io_mem_watch; |
32857f4d PM |
219 | |
220 | /** | |
221 | * CPUAddressSpace: all the information a CPU needs about an AddressSpace | |
222 | * @cpu: the CPU whose AddressSpace this is | |
223 | * @as: the AddressSpace itself | |
224 | * @memory_dispatch: its dispatch pointer (cached, RCU protected) | |
225 | * @tcg_as_listener: listener for tracking changes to the AddressSpace | |
226 | */ | |
227 | struct CPUAddressSpace { | |
228 | CPUState *cpu; | |
229 | AddressSpace *as; | |
230 | struct AddressSpaceDispatch *memory_dispatch; | |
231 | MemoryListener tcg_as_listener; | |
232 | }; | |
233 | ||
8deaf12c GH |
234 | struct DirtyBitmapSnapshot { |
235 | ram_addr_t start; | |
236 | ram_addr_t end; | |
237 | unsigned long dirty[]; | |
238 | }; | |
239 | ||
6658ffb8 | 240 | #endif |
fd6ce8f6 | 241 | |
6d9a1304 | 242 | #if !defined(CONFIG_USER_ONLY) |
d6f2ea22 | 243 | |
53cb28cb | 244 | static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) |
d6f2ea22 | 245 | { |
101420b8 | 246 | static unsigned alloc_hint = 16; |
53cb28cb | 247 | if (map->nodes_nb + nodes > map->nodes_nb_alloc) { |
101420b8 | 248 | map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint); |
53cb28cb MA |
249 | map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes); |
250 | map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); | |
101420b8 | 251 | alloc_hint = map->nodes_nb_alloc; |
d6f2ea22 | 252 | } |
f7bf5461 AK |
253 | } |
254 | ||
db94604b | 255 | static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf) |
f7bf5461 AK |
256 | { |
257 | unsigned i; | |
8b795765 | 258 | uint32_t ret; |
db94604b PB |
259 | PhysPageEntry e; |
260 | PhysPageEntry *p; | |
f7bf5461 | 261 | |
53cb28cb | 262 | ret = map->nodes_nb++; |
db94604b | 263 | p = map->nodes[ret]; |
f7bf5461 | 264 | assert(ret != PHYS_MAP_NODE_NIL); |
53cb28cb | 265 | assert(ret != map->nodes_nb_alloc); |
db94604b PB |
266 | |
267 | e.skip = leaf ? 0 : 1; | |
268 | e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL; | |
03f49957 | 269 | for (i = 0; i < P_L2_SIZE; ++i) { |
db94604b | 270 | memcpy(&p[i], &e, sizeof(e)); |
d6f2ea22 | 271 | } |
f7bf5461 | 272 | return ret; |
d6f2ea22 AK |
273 | } |
274 | ||
53cb28cb MA |
275 | static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, |
276 | hwaddr *index, hwaddr *nb, uint16_t leaf, | |
2999097b | 277 | int level) |
f7bf5461 AK |
278 | { |
279 | PhysPageEntry *p; | |
03f49957 | 280 | hwaddr step = (hwaddr)1 << (level * P_L2_BITS); |
108c49b8 | 281 | |
9736e55b | 282 | if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { |
db94604b | 283 | lp->ptr = phys_map_node_alloc(map, level == 0); |
92e873b9 | 284 | } |
db94604b | 285 | p = map->nodes[lp->ptr]; |
03f49957 | 286 | lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; |
f7bf5461 | 287 | |
03f49957 | 288 | while (*nb && lp < &p[P_L2_SIZE]) { |
07f07b31 | 289 | if ((*index & (step - 1)) == 0 && *nb >= step) { |
9736e55b | 290 | lp->skip = 0; |
c19e8800 | 291 | lp->ptr = leaf; |
07f07b31 AK |
292 | *index += step; |
293 | *nb -= step; | |
2999097b | 294 | } else { |
53cb28cb | 295 | phys_page_set_level(map, lp, index, nb, leaf, level - 1); |
2999097b AK |
296 | } |
297 | ++lp; | |
f7bf5461 AK |
298 | } |
299 | } | |
300 | ||
ac1970fb | 301 | static void phys_page_set(AddressSpaceDispatch *d, |
a8170e5e | 302 | hwaddr index, hwaddr nb, |
2999097b | 303 | uint16_t leaf) |
f7bf5461 | 304 | { |
2999097b | 305 | /* Wildly overreserve - it doesn't matter much. */ |
53cb28cb | 306 | phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); |
5cd2c5b6 | 307 | |
53cb28cb | 308 | phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); |
92e873b9 FB |
309 | } |
310 | ||
b35ba30f MT |
311 | /* Compact a non leaf page entry. Simply detect that the entry has a single child, |
312 | * and update our entry so we can skip it and go directly to the destination. | |
313 | */ | |
efee678d | 314 | static void phys_page_compact(PhysPageEntry *lp, Node *nodes) |
b35ba30f MT |
315 | { |
316 | unsigned valid_ptr = P_L2_SIZE; | |
317 | int valid = 0; | |
318 | PhysPageEntry *p; | |
319 | int i; | |
320 | ||
321 | if (lp->ptr == PHYS_MAP_NODE_NIL) { | |
322 | return; | |
323 | } | |
324 | ||
325 | p = nodes[lp->ptr]; | |
326 | for (i = 0; i < P_L2_SIZE; i++) { | |
327 | if (p[i].ptr == PHYS_MAP_NODE_NIL) { | |
328 | continue; | |
329 | } | |
330 | ||
331 | valid_ptr = i; | |
332 | valid++; | |
333 | if (p[i].skip) { | |
efee678d | 334 | phys_page_compact(&p[i], nodes); |
b35ba30f MT |
335 | } |
336 | } | |
337 | ||
338 | /* We can only compress if there's only one child. */ | |
339 | if (valid != 1) { | |
340 | return; | |
341 | } | |
342 | ||
343 | assert(valid_ptr < P_L2_SIZE); | |
344 | ||
345 | /* Don't compress if it won't fit in the # of bits we have. */ | |
346 | if (lp->skip + p[valid_ptr].skip >= (1 << 3)) { | |
347 | return; | |
348 | } | |
349 | ||
350 | lp->ptr = p[valid_ptr].ptr; | |
351 | if (!p[valid_ptr].skip) { | |
352 | /* If our only child is a leaf, make this a leaf. */ | |
353 | /* By design, we should have made this node a leaf to begin with so we | |
354 | * should never reach here. | |
355 | * But since it's so simple to handle this, let's do it just in case we | |
356 | * change this rule. | |
357 | */ | |
358 | lp->skip = 0; | |
359 | } else { | |
360 | lp->skip += p[valid_ptr].skip; | |
361 | } | |
362 | } | |
363 | ||
364 | static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb) | |
365 | { | |
b35ba30f | 366 | if (d->phys_map.skip) { |
efee678d | 367 | phys_page_compact(&d->phys_map, d->map.nodes); |
b35ba30f MT |
368 | } |
369 | } | |
370 | ||
29cb533d FZ |
371 | static inline bool section_covers_addr(const MemoryRegionSection *section, |
372 | hwaddr addr) | |
373 | { | |
374 | /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means | |
375 | * the section must cover the entire address space. | |
376 | */ | |
258dfaaa | 377 | return int128_gethi(section->size) || |
29cb533d | 378 | range_covers_byte(section->offset_within_address_space, |
258dfaaa | 379 | int128_getlo(section->size), addr); |
29cb533d FZ |
380 | } |
381 | ||
003a0cf2 | 382 | static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr) |
92e873b9 | 383 | { |
003a0cf2 PX |
384 | PhysPageEntry lp = d->phys_map, *p; |
385 | Node *nodes = d->map.nodes; | |
386 | MemoryRegionSection *sections = d->map.sections; | |
97115a8d | 387 | hwaddr index = addr >> TARGET_PAGE_BITS; |
31ab2b4a | 388 | int i; |
f1f6e3b8 | 389 | |
9736e55b | 390 | for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { |
c19e8800 | 391 | if (lp.ptr == PHYS_MAP_NODE_NIL) { |
9affd6fc | 392 | return §ions[PHYS_SECTION_UNASSIGNED]; |
31ab2b4a | 393 | } |
9affd6fc | 394 | p = nodes[lp.ptr]; |
03f49957 | 395 | lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; |
5312bd8b | 396 | } |
b35ba30f | 397 | |
29cb533d | 398 | if (section_covers_addr(§ions[lp.ptr], addr)) { |
b35ba30f MT |
399 | return §ions[lp.ptr]; |
400 | } else { | |
401 | return §ions[PHYS_SECTION_UNASSIGNED]; | |
402 | } | |
f3705d53 AK |
403 | } |
404 | ||
e5548617 BS |
405 | bool memory_region_is_unassigned(MemoryRegion *mr) |
406 | { | |
2a8e7499 | 407 | return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device |
5b6dd868 | 408 | && mr != &io_mem_watch; |
fd6ce8f6 | 409 | } |
149f54b5 | 410 | |
79e2b9ae | 411 | /* Called from RCU critical section */ |
c7086b4a | 412 | static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, |
90260c6c JK |
413 | hwaddr addr, |
414 | bool resolve_subpage) | |
9f029603 | 415 | { |
729633c2 | 416 | MemoryRegionSection *section = atomic_read(&d->mru_section); |
90260c6c | 417 | subpage_t *subpage; |
729633c2 | 418 | bool update; |
90260c6c | 419 | |
729633c2 FZ |
420 | if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] && |
421 | section_covers_addr(section, addr)) { | |
422 | update = false; | |
423 | } else { | |
003a0cf2 | 424 | section = phys_page_find(d, addr); |
729633c2 FZ |
425 | update = true; |
426 | } | |
90260c6c JK |
427 | if (resolve_subpage && section->mr->subpage) { |
428 | subpage = container_of(section->mr, subpage_t, iomem); | |
53cb28cb | 429 | section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; |
90260c6c | 430 | } |
729633c2 FZ |
431 | if (update) { |
432 | atomic_set(&d->mru_section, section); | |
433 | } | |
90260c6c | 434 | return section; |
9f029603 JK |
435 | } |
436 | ||
79e2b9ae | 437 | /* Called from RCU critical section */ |
90260c6c | 438 | static MemoryRegionSection * |
c7086b4a | 439 | address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, |
90260c6c | 440 | hwaddr *plen, bool resolve_subpage) |
149f54b5 PB |
441 | { |
442 | MemoryRegionSection *section; | |
965eb2fc | 443 | MemoryRegion *mr; |
a87f3954 | 444 | Int128 diff; |
149f54b5 | 445 | |
c7086b4a | 446 | section = address_space_lookup_region(d, addr, resolve_subpage); |
149f54b5 PB |
447 | /* Compute offset within MemoryRegionSection */ |
448 | addr -= section->offset_within_address_space; | |
449 | ||
450 | /* Compute offset within MemoryRegion */ | |
451 | *xlat = addr + section->offset_within_region; | |
452 | ||
965eb2fc | 453 | mr = section->mr; |
b242e0e0 PB |
454 | |
455 | /* MMIO registers can be expected to perform full-width accesses based only | |
456 | * on their address, without considering adjacent registers that could | |
457 | * decode to completely different MemoryRegions. When such registers | |
458 | * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO | |
459 | * regions overlap wildly. For this reason we cannot clamp the accesses | |
460 | * here. | |
461 | * | |
462 | * If the length is small (as is the case for address_space_ldl/stl), | |
463 | * everything works fine. If the incoming length is large, however, | |
464 | * the caller really has to do the clamping through memory_access_size. | |
465 | */ | |
965eb2fc | 466 | if (memory_region_is_ram(mr)) { |
e4a511f8 | 467 | diff = int128_sub(section->size, int128_make64(addr)); |
965eb2fc PB |
468 | *plen = int128_get64(int128_min(diff, int128_make64(*plen))); |
469 | } | |
149f54b5 PB |
470 | return section; |
471 | } | |
90260c6c | 472 | |
41063e1e | 473 | /* Called from RCU critical section */ |
a764040c PX |
474 | static MemoryRegionSection address_space_do_translate(AddressSpace *as, |
475 | hwaddr addr, | |
476 | hwaddr *xlat, | |
477 | hwaddr *plen, | |
478 | bool is_write, | |
479 | bool is_mmio) | |
052c8fa9 | 480 | { |
a764040c | 481 | IOMMUTLBEntry iotlb; |
052c8fa9 JW |
482 | MemoryRegionSection *section; |
483 | MemoryRegion *mr; | |
484 | ||
485 | for (;;) { | |
486 | AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch); | |
a764040c | 487 | section = address_space_translate_internal(d, addr, &addr, plen, is_mmio); |
052c8fa9 JW |
488 | mr = section->mr; |
489 | ||
490 | if (!mr->iommu_ops) { | |
491 | break; | |
492 | } | |
493 | ||
bf55b7af PX |
494 | iotlb = mr->iommu_ops->translate(mr, addr, is_write ? |
495 | IOMMU_WO : IOMMU_RO); | |
a764040c PX |
496 | addr = ((iotlb.translated_addr & ~iotlb.addr_mask) |
497 | | (addr & iotlb.addr_mask)); | |
498 | *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1); | |
052c8fa9 | 499 | if (!(iotlb.perm & (1 << is_write))) { |
a764040c | 500 | goto translate_fail; |
052c8fa9 JW |
501 | } |
502 | ||
052c8fa9 JW |
503 | as = iotlb.target_as; |
504 | } | |
505 | ||
a764040c PX |
506 | *xlat = addr; |
507 | ||
508 | return *section; | |
509 | ||
510 | translate_fail: | |
511 | return (MemoryRegionSection) { .mr = &io_mem_unassigned }; | |
052c8fa9 JW |
512 | } |
513 | ||
514 | /* Called from RCU critical section */ | |
a764040c PX |
515 | IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, |
516 | bool is_write) | |
90260c6c | 517 | { |
a764040c PX |
518 | MemoryRegionSection section; |
519 | hwaddr xlat, plen; | |
30951157 | 520 | |
a764040c PX |
521 | /* Try to get maximum page mask during translation. */ |
522 | plen = (hwaddr)-1; | |
30951157 | 523 | |
a764040c PX |
524 | /* This can never be MMIO. */ |
525 | section = address_space_do_translate(as, addr, &xlat, &plen, | |
526 | is_write, false); | |
30951157 | 527 | |
a764040c PX |
528 | /* Illegal translation */ |
529 | if (section.mr == &io_mem_unassigned) { | |
530 | goto iotlb_fail; | |
531 | } | |
30951157 | 532 | |
a764040c PX |
533 | /* Convert memory region offset into address space offset */ |
534 | xlat += section.offset_within_address_space - | |
535 | section.offset_within_region; | |
536 | ||
537 | if (plen == (hwaddr)-1) { | |
538 | /* | |
539 | * We use default page size here. Logically it only happens | |
540 | * for identity mappings. | |
541 | */ | |
542 | plen = TARGET_PAGE_SIZE; | |
30951157 AK |
543 | } |
544 | ||
a764040c PX |
545 | /* Convert to address mask */ |
546 | plen -= 1; | |
547 | ||
548 | return (IOMMUTLBEntry) { | |
549 | .target_as = section.address_space, | |
550 | .iova = addr & ~plen, | |
551 | .translated_addr = xlat & ~plen, | |
552 | .addr_mask = plen, | |
553 | /* IOTLBs are for DMAs, and DMA only allows on RAMs. */ | |
554 | .perm = IOMMU_RW, | |
555 | }; | |
556 | ||
557 | iotlb_fail: | |
558 | return (IOMMUTLBEntry) {0}; | |
559 | } | |
560 | ||
561 | /* Called from RCU critical section */ | |
562 | MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr, | |
563 | hwaddr *xlat, hwaddr *plen, | |
564 | bool is_write) | |
565 | { | |
566 | MemoryRegion *mr; | |
567 | MemoryRegionSection section; | |
568 | ||
569 | /* This can be MMIO, so setup MMIO bit. */ | |
570 | section = address_space_do_translate(as, addr, xlat, plen, is_write, true); | |
571 | mr = section.mr; | |
572 | ||
fe680d0d | 573 | if (xen_enabled() && memory_access_is_direct(mr, is_write)) { |
a87f3954 | 574 | hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; |
23820dbf | 575 | *plen = MIN(page, *plen); |
a87f3954 PB |
576 | } |
577 | ||
30951157 | 578 | return mr; |
90260c6c JK |
579 | } |
580 | ||
79e2b9ae | 581 | /* Called from RCU critical section */ |
90260c6c | 582 | MemoryRegionSection * |
d7898cda | 583 | address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr, |
9d82b5a7 | 584 | hwaddr *xlat, hwaddr *plen) |
90260c6c | 585 | { |
30951157 | 586 | MemoryRegionSection *section; |
f35e44e7 | 587 | AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch); |
d7898cda PM |
588 | |
589 | section = address_space_translate_internal(d, addr, xlat, plen, false); | |
30951157 AK |
590 | |
591 | assert(!section->mr->iommu_ops); | |
592 | return section; | |
90260c6c | 593 | } |
5b6dd868 | 594 | #endif |
fd6ce8f6 | 595 | |
b170fce3 | 596 | #if !defined(CONFIG_USER_ONLY) |
5b6dd868 BS |
597 | |
598 | static int cpu_common_post_load(void *opaque, int version_id) | |
fd6ce8f6 | 599 | { |
259186a7 | 600 | CPUState *cpu = opaque; |
a513fe19 | 601 | |
5b6dd868 BS |
602 | /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the |
603 | version_id is increased. */ | |
259186a7 | 604 | cpu->interrupt_request &= ~0x01; |
d10eb08f | 605 | tlb_flush(cpu); |
5b6dd868 BS |
606 | |
607 | return 0; | |
a513fe19 | 608 | } |
7501267e | 609 | |
6c3bff0e PD |
610 | static int cpu_common_pre_load(void *opaque) |
611 | { | |
612 | CPUState *cpu = opaque; | |
613 | ||
adee6424 | 614 | cpu->exception_index = -1; |
6c3bff0e PD |
615 | |
616 | return 0; | |
617 | } | |
618 | ||
619 | static bool cpu_common_exception_index_needed(void *opaque) | |
620 | { | |
621 | CPUState *cpu = opaque; | |
622 | ||
adee6424 | 623 | return tcg_enabled() && cpu->exception_index != -1; |
6c3bff0e PD |
624 | } |
625 | ||
626 | static const VMStateDescription vmstate_cpu_common_exception_index = { | |
627 | .name = "cpu_common/exception_index", | |
628 | .version_id = 1, | |
629 | .minimum_version_id = 1, | |
5cd8cada | 630 | .needed = cpu_common_exception_index_needed, |
6c3bff0e PD |
631 | .fields = (VMStateField[]) { |
632 | VMSTATE_INT32(exception_index, CPUState), | |
633 | VMSTATE_END_OF_LIST() | |
634 | } | |
635 | }; | |
636 | ||
bac05aa9 AS |
637 | static bool cpu_common_crash_occurred_needed(void *opaque) |
638 | { | |
639 | CPUState *cpu = opaque; | |
640 | ||
641 | return cpu->crash_occurred; | |
642 | } | |
643 | ||
644 | static const VMStateDescription vmstate_cpu_common_crash_occurred = { | |
645 | .name = "cpu_common/crash_occurred", | |
646 | .version_id = 1, | |
647 | .minimum_version_id = 1, | |
648 | .needed = cpu_common_crash_occurred_needed, | |
649 | .fields = (VMStateField[]) { | |
650 | VMSTATE_BOOL(crash_occurred, CPUState), | |
651 | VMSTATE_END_OF_LIST() | |
652 | } | |
653 | }; | |
654 | ||
1a1562f5 | 655 | const VMStateDescription vmstate_cpu_common = { |
5b6dd868 BS |
656 | .name = "cpu_common", |
657 | .version_id = 1, | |
658 | .minimum_version_id = 1, | |
6c3bff0e | 659 | .pre_load = cpu_common_pre_load, |
5b6dd868 | 660 | .post_load = cpu_common_post_load, |
35d08458 | 661 | .fields = (VMStateField[]) { |
259186a7 AF |
662 | VMSTATE_UINT32(halted, CPUState), |
663 | VMSTATE_UINT32(interrupt_request, CPUState), | |
5b6dd868 | 664 | VMSTATE_END_OF_LIST() |
6c3bff0e | 665 | }, |
5cd8cada JQ |
666 | .subsections = (const VMStateDescription*[]) { |
667 | &vmstate_cpu_common_exception_index, | |
bac05aa9 | 668 | &vmstate_cpu_common_crash_occurred, |
5cd8cada | 669 | NULL |
5b6dd868 BS |
670 | } |
671 | }; | |
1a1562f5 | 672 | |
5b6dd868 | 673 | #endif |
ea041c0e | 674 | |
38d8f5c8 | 675 | CPUState *qemu_get_cpu(int index) |
ea041c0e | 676 | { |
bdc44640 | 677 | CPUState *cpu; |
ea041c0e | 678 | |
bdc44640 | 679 | CPU_FOREACH(cpu) { |
55e5c285 | 680 | if (cpu->cpu_index == index) { |
bdc44640 | 681 | return cpu; |
55e5c285 | 682 | } |
ea041c0e | 683 | } |
5b6dd868 | 684 | |
bdc44640 | 685 | return NULL; |
ea041c0e FB |
686 | } |
687 | ||
09daed84 | 688 | #if !defined(CONFIG_USER_ONLY) |
56943e8c | 689 | void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx) |
09daed84 | 690 | { |
12ebc9a7 PM |
691 | CPUAddressSpace *newas; |
692 | ||
693 | /* Target code should have set num_ases before calling us */ | |
694 | assert(asidx < cpu->num_ases); | |
695 | ||
56943e8c PM |
696 | if (asidx == 0) { |
697 | /* address space 0 gets the convenience alias */ | |
698 | cpu->as = as; | |
699 | } | |
700 | ||
12ebc9a7 PM |
701 | /* KVM cannot currently support multiple address spaces. */ |
702 | assert(asidx == 0 || !kvm_enabled()); | |
09daed84 | 703 | |
12ebc9a7 PM |
704 | if (!cpu->cpu_ases) { |
705 | cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases); | |
09daed84 | 706 | } |
32857f4d | 707 | |
12ebc9a7 PM |
708 | newas = &cpu->cpu_ases[asidx]; |
709 | newas->cpu = cpu; | |
710 | newas->as = as; | |
56943e8c | 711 | if (tcg_enabled()) { |
12ebc9a7 PM |
712 | newas->tcg_as_listener.commit = tcg_commit; |
713 | memory_listener_register(&newas->tcg_as_listener, as); | |
56943e8c | 714 | } |
09daed84 | 715 | } |
651a5bc0 PM |
716 | |
717 | AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx) | |
718 | { | |
719 | /* Return the AddressSpace corresponding to the specified index */ | |
720 | return cpu->cpu_ases[asidx].as; | |
721 | } | |
09daed84 EI |
722 | #endif |
723 | ||
7bbc124e | 724 | void cpu_exec_unrealizefn(CPUState *cpu) |
1c59eb39 | 725 | { |
9dfeca7c BR |
726 | CPUClass *cc = CPU_GET_CLASS(cpu); |
727 | ||
267f685b | 728 | cpu_list_remove(cpu); |
9dfeca7c BR |
729 | |
730 | if (cc->vmsd != NULL) { | |
731 | vmstate_unregister(NULL, cc->vmsd, cpu); | |
732 | } | |
733 | if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { | |
734 | vmstate_unregister(NULL, &vmstate_cpu_common, cpu); | |
735 | } | |
1c59eb39 BR |
736 | } |
737 | ||
39e329e3 | 738 | void cpu_exec_initfn(CPUState *cpu) |
ea041c0e | 739 | { |
56943e8c | 740 | cpu->as = NULL; |
12ebc9a7 | 741 | cpu->num_ases = 0; |
56943e8c | 742 | |
291135b5 | 743 | #ifndef CONFIG_USER_ONLY |
291135b5 | 744 | cpu->thread_id = qemu_get_thread_id(); |
6731d864 PC |
745 | |
746 | /* This is a softmmu CPU object, so create a property for it | |
747 | * so users can wire up its memory. (This can't go in qom/cpu.c | |
748 | * because that file is compiled only once for both user-mode | |
749 | * and system builds.) The default if no link is set up is to use | |
750 | * the system address space. | |
751 | */ | |
752 | object_property_add_link(OBJECT(cpu), "memory", TYPE_MEMORY_REGION, | |
753 | (Object **)&cpu->memory, | |
754 | qdev_prop_allow_set_link_before_realize, | |
755 | OBJ_PROP_LINK_UNREF_ON_RELEASE, | |
756 | &error_abort); | |
757 | cpu->memory = system_memory; | |
758 | object_ref(OBJECT(cpu->memory)); | |
291135b5 | 759 | #endif |
39e329e3 LV |
760 | } |
761 | ||
ce5b1bbf | 762 | void cpu_exec_realizefn(CPUState *cpu, Error **errp) |
39e329e3 LV |
763 | { |
764 | CPUClass *cc ATTRIBUTE_UNUSED = CPU_GET_CLASS(cpu); | |
291135b5 | 765 | |
267f685b | 766 | cpu_list_add(cpu); |
1bc7e522 IM |
767 | |
768 | #ifndef CONFIG_USER_ONLY | |
e0d47944 | 769 | if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { |
741da0d3 | 770 | vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu); |
e0d47944 | 771 | } |
b170fce3 | 772 | if (cc->vmsd != NULL) { |
741da0d3 | 773 | vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu); |
b170fce3 | 774 | } |
741da0d3 | 775 | #endif |
ea041c0e FB |
776 | } |
777 | ||
00b941e5 | 778 | static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) |
1e7855a5 | 779 | { |
a9353fe8 PM |
780 | /* Flush the whole TB as this will not have race conditions |
781 | * even if we don't have proper locking yet. | |
782 | * Ideally we would just invalidate the TBs for the | |
783 | * specified PC. | |
784 | */ | |
785 | tb_flush(cpu); | |
1e7855a5 | 786 | } |
d720b93d | 787 | |
c527ee8f | 788 | #if defined(CONFIG_USER_ONLY) |
75a34036 | 789 | void cpu_watchpoint_remove_all(CPUState *cpu, int mask) |
c527ee8f PB |
790 | |
791 | { | |
792 | } | |
793 | ||
3ee887e8 PM |
794 | int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, |
795 | int flags) | |
796 | { | |
797 | return -ENOSYS; | |
798 | } | |
799 | ||
800 | void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) | |
801 | { | |
802 | } | |
803 | ||
75a34036 | 804 | int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, |
c527ee8f PB |
805 | int flags, CPUWatchpoint **watchpoint) |
806 | { | |
807 | return -ENOSYS; | |
808 | } | |
809 | #else | |
6658ffb8 | 810 | /* Add a watchpoint. */ |
75a34036 | 811 | int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, |
a1d1bb31 | 812 | int flags, CPUWatchpoint **watchpoint) |
6658ffb8 | 813 | { |
c0ce998e | 814 | CPUWatchpoint *wp; |
6658ffb8 | 815 | |
05068c0d | 816 | /* forbid ranges which are empty or run off the end of the address space */ |
07e2863d | 817 | if (len == 0 || (addr + len - 1) < addr) { |
75a34036 AF |
818 | error_report("tried to set invalid watchpoint at %" |
819 | VADDR_PRIx ", len=%" VADDR_PRIu, addr, len); | |
b4051334 AL |
820 | return -EINVAL; |
821 | } | |
7267c094 | 822 | wp = g_malloc(sizeof(*wp)); |
a1d1bb31 AL |
823 | |
824 | wp->vaddr = addr; | |
05068c0d | 825 | wp->len = len; |
a1d1bb31 AL |
826 | wp->flags = flags; |
827 | ||
2dc9f411 | 828 | /* keep all GDB-injected watchpoints in front */ |
ff4700b0 AF |
829 | if (flags & BP_GDB) { |
830 | QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry); | |
831 | } else { | |
832 | QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry); | |
833 | } | |
6658ffb8 | 834 | |
31b030d4 | 835 | tlb_flush_page(cpu, addr); |
a1d1bb31 AL |
836 | |
837 | if (watchpoint) | |
838 | *watchpoint = wp; | |
839 | return 0; | |
6658ffb8 PB |
840 | } |
841 | ||
a1d1bb31 | 842 | /* Remove a specific watchpoint. */ |
75a34036 | 843 | int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, |
a1d1bb31 | 844 | int flags) |
6658ffb8 | 845 | { |
a1d1bb31 | 846 | CPUWatchpoint *wp; |
6658ffb8 | 847 | |
ff4700b0 | 848 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d | 849 | if (addr == wp->vaddr && len == wp->len |
6e140f28 | 850 | && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { |
75a34036 | 851 | cpu_watchpoint_remove_by_ref(cpu, wp); |
6658ffb8 PB |
852 | return 0; |
853 | } | |
854 | } | |
a1d1bb31 | 855 | return -ENOENT; |
6658ffb8 PB |
856 | } |
857 | ||
a1d1bb31 | 858 | /* Remove a specific watchpoint by reference. */ |
75a34036 | 859 | void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) |
a1d1bb31 | 860 | { |
ff4700b0 | 861 | QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry); |
7d03f82f | 862 | |
31b030d4 | 863 | tlb_flush_page(cpu, watchpoint->vaddr); |
a1d1bb31 | 864 | |
7267c094 | 865 | g_free(watchpoint); |
a1d1bb31 AL |
866 | } |
867 | ||
868 | /* Remove all matching watchpoints. */ | |
75a34036 | 869 | void cpu_watchpoint_remove_all(CPUState *cpu, int mask) |
a1d1bb31 | 870 | { |
c0ce998e | 871 | CPUWatchpoint *wp, *next; |
a1d1bb31 | 872 | |
ff4700b0 | 873 | QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) { |
75a34036 AF |
874 | if (wp->flags & mask) { |
875 | cpu_watchpoint_remove_by_ref(cpu, wp); | |
876 | } | |
c0ce998e | 877 | } |
7d03f82f | 878 | } |
05068c0d PM |
879 | |
880 | /* Return true if this watchpoint address matches the specified | |
881 | * access (ie the address range covered by the watchpoint overlaps | |
882 | * partially or completely with the address range covered by the | |
883 | * access). | |
884 | */ | |
885 | static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp, | |
886 | vaddr addr, | |
887 | vaddr len) | |
888 | { | |
889 | /* We know the lengths are non-zero, but a little caution is | |
890 | * required to avoid errors in the case where the range ends | |
891 | * exactly at the top of the address space and so addr + len | |
892 | * wraps round to zero. | |
893 | */ | |
894 | vaddr wpend = wp->vaddr + wp->len - 1; | |
895 | vaddr addrend = addr + len - 1; | |
896 | ||
897 | return !(addr > wpend || wp->vaddr > addrend); | |
898 | } | |
899 | ||
c527ee8f | 900 | #endif |
7d03f82f | 901 | |
a1d1bb31 | 902 | /* Add a breakpoint. */ |
b3310ab3 | 903 | int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, |
a1d1bb31 | 904 | CPUBreakpoint **breakpoint) |
4c3a88a2 | 905 | { |
c0ce998e | 906 | CPUBreakpoint *bp; |
3b46e624 | 907 | |
7267c094 | 908 | bp = g_malloc(sizeof(*bp)); |
4c3a88a2 | 909 | |
a1d1bb31 AL |
910 | bp->pc = pc; |
911 | bp->flags = flags; | |
912 | ||
2dc9f411 | 913 | /* keep all GDB-injected breakpoints in front */ |
00b941e5 | 914 | if (flags & BP_GDB) { |
f0c3c505 | 915 | QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry); |
00b941e5 | 916 | } else { |
f0c3c505 | 917 | QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry); |
00b941e5 | 918 | } |
3b46e624 | 919 | |
f0c3c505 | 920 | breakpoint_invalidate(cpu, pc); |
a1d1bb31 | 921 | |
00b941e5 | 922 | if (breakpoint) { |
a1d1bb31 | 923 | *breakpoint = bp; |
00b941e5 | 924 | } |
4c3a88a2 | 925 | return 0; |
4c3a88a2 FB |
926 | } |
927 | ||
a1d1bb31 | 928 | /* Remove a specific breakpoint. */ |
b3310ab3 | 929 | int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags) |
a1d1bb31 | 930 | { |
a1d1bb31 AL |
931 | CPUBreakpoint *bp; |
932 | ||
f0c3c505 | 933 | QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { |
a1d1bb31 | 934 | if (bp->pc == pc && bp->flags == flags) { |
b3310ab3 | 935 | cpu_breakpoint_remove_by_ref(cpu, bp); |
a1d1bb31 AL |
936 | return 0; |
937 | } | |
7d03f82f | 938 | } |
a1d1bb31 | 939 | return -ENOENT; |
7d03f82f EI |
940 | } |
941 | ||
a1d1bb31 | 942 | /* Remove a specific breakpoint by reference. */ |
b3310ab3 | 943 | void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint) |
4c3a88a2 | 944 | { |
f0c3c505 AF |
945 | QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry); |
946 | ||
947 | breakpoint_invalidate(cpu, breakpoint->pc); | |
a1d1bb31 | 948 | |
7267c094 | 949 | g_free(breakpoint); |
a1d1bb31 AL |
950 | } |
951 | ||
952 | /* Remove all matching breakpoints. */ | |
b3310ab3 | 953 | void cpu_breakpoint_remove_all(CPUState *cpu, int mask) |
a1d1bb31 | 954 | { |
c0ce998e | 955 | CPUBreakpoint *bp, *next; |
a1d1bb31 | 956 | |
f0c3c505 | 957 | QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) { |
b3310ab3 AF |
958 | if (bp->flags & mask) { |
959 | cpu_breakpoint_remove_by_ref(cpu, bp); | |
960 | } | |
c0ce998e | 961 | } |
4c3a88a2 FB |
962 | } |
963 | ||
c33a346e FB |
964 | /* enable or disable single step mode. EXCP_DEBUG is returned by the |
965 | CPU loop after each instruction */ | |
3825b28f | 966 | void cpu_single_step(CPUState *cpu, int enabled) |
c33a346e | 967 | { |
ed2803da AF |
968 | if (cpu->singlestep_enabled != enabled) { |
969 | cpu->singlestep_enabled = enabled; | |
970 | if (kvm_enabled()) { | |
38e478ec | 971 | kvm_update_guest_debug(cpu, 0); |
ed2803da | 972 | } else { |
ccbb4d44 | 973 | /* must flush all the translated code to avoid inconsistencies */ |
e22a25c9 | 974 | /* XXX: only flush what is necessary */ |
bbd77c18 | 975 | tb_flush(cpu); |
e22a25c9 | 976 | } |
c33a346e | 977 | } |
c33a346e FB |
978 | } |
979 | ||
a47dddd7 | 980 | void cpu_abort(CPUState *cpu, const char *fmt, ...) |
7501267e FB |
981 | { |
982 | va_list ap; | |
493ae1f0 | 983 | va_list ap2; |
7501267e FB |
984 | |
985 | va_start(ap, fmt); | |
493ae1f0 | 986 | va_copy(ap2, ap); |
7501267e FB |
987 | fprintf(stderr, "qemu: fatal: "); |
988 | vfprintf(stderr, fmt, ap); | |
989 | fprintf(stderr, "\n"); | |
878096ee | 990 | cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP); |
013a2942 | 991 | if (qemu_log_separate()) { |
1ee73216 | 992 | qemu_log_lock(); |
93fcfe39 AL |
993 | qemu_log("qemu: fatal: "); |
994 | qemu_log_vprintf(fmt, ap2); | |
995 | qemu_log("\n"); | |
a0762859 | 996 | log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP); |
31b1a7b4 | 997 | qemu_log_flush(); |
1ee73216 | 998 | qemu_log_unlock(); |
93fcfe39 | 999 | qemu_log_close(); |
924edcae | 1000 | } |
493ae1f0 | 1001 | va_end(ap2); |
f9373291 | 1002 | va_end(ap); |
7615936e | 1003 | replay_finish(); |
fd052bf6 RV |
1004 | #if defined(CONFIG_USER_ONLY) |
1005 | { | |
1006 | struct sigaction act; | |
1007 | sigfillset(&act.sa_mask); | |
1008 | act.sa_handler = SIG_DFL; | |
1009 | sigaction(SIGABRT, &act, NULL); | |
1010 | } | |
1011 | #endif | |
7501267e FB |
1012 | abort(); |
1013 | } | |
1014 | ||
0124311e | 1015 | #if !defined(CONFIG_USER_ONLY) |
0dc3f44a | 1016 | /* Called from RCU critical section */ |
041603fe PB |
1017 | static RAMBlock *qemu_get_ram_block(ram_addr_t addr) |
1018 | { | |
1019 | RAMBlock *block; | |
1020 | ||
43771539 | 1021 | block = atomic_rcu_read(&ram_list.mru_block); |
9b8424d5 | 1022 | if (block && addr - block->offset < block->max_length) { |
68851b98 | 1023 | return block; |
041603fe | 1024 | } |
99e15582 | 1025 | RAMBLOCK_FOREACH(block) { |
9b8424d5 | 1026 | if (addr - block->offset < block->max_length) { |
041603fe PB |
1027 | goto found; |
1028 | } | |
1029 | } | |
1030 | ||
1031 | fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); | |
1032 | abort(); | |
1033 | ||
1034 | found: | |
43771539 PB |
1035 | /* It is safe to write mru_block outside the iothread lock. This |
1036 | * is what happens: | |
1037 | * | |
1038 | * mru_block = xxx | |
1039 | * rcu_read_unlock() | |
1040 | * xxx removed from list | |
1041 | * rcu_read_lock() | |
1042 | * read mru_block | |
1043 | * mru_block = NULL; | |
1044 | * call_rcu(reclaim_ramblock, xxx); | |
1045 | * rcu_read_unlock() | |
1046 | * | |
1047 | * atomic_rcu_set is not needed here. The block was already published | |
1048 | * when it was placed into the list. Here we're just making an extra | |
1049 | * copy of the pointer. | |
1050 | */ | |
041603fe PB |
1051 | ram_list.mru_block = block; |
1052 | return block; | |
1053 | } | |
1054 | ||
a2f4d5be | 1055 | static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) |
d24981d3 | 1056 | { |
9a13565d | 1057 | CPUState *cpu; |
041603fe | 1058 | ram_addr_t start1; |
a2f4d5be JQ |
1059 | RAMBlock *block; |
1060 | ram_addr_t end; | |
1061 | ||
1062 | end = TARGET_PAGE_ALIGN(start + length); | |
1063 | start &= TARGET_PAGE_MASK; | |
d24981d3 | 1064 | |
0dc3f44a | 1065 | rcu_read_lock(); |
041603fe PB |
1066 | block = qemu_get_ram_block(start); |
1067 | assert(block == qemu_get_ram_block(end - 1)); | |
1240be24 | 1068 | start1 = (uintptr_t)ramblock_ptr(block, start - block->offset); |
9a13565d PC |
1069 | CPU_FOREACH(cpu) { |
1070 | tlb_reset_dirty(cpu, start1, length); | |
1071 | } | |
0dc3f44a | 1072 | rcu_read_unlock(); |
d24981d3 JQ |
1073 | } |
1074 | ||
5579c7f3 | 1075 | /* Note: start and end must be within the same ram block. */ |
03eebc9e SH |
1076 | bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, |
1077 | ram_addr_t length, | |
1078 | unsigned client) | |
1ccde1cb | 1079 | { |
5b82b703 | 1080 | DirtyMemoryBlocks *blocks; |
03eebc9e | 1081 | unsigned long end, page; |
5b82b703 | 1082 | bool dirty = false; |
03eebc9e SH |
1083 | |
1084 | if (length == 0) { | |
1085 | return false; | |
1086 | } | |
f23db169 | 1087 | |
03eebc9e SH |
1088 | end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; |
1089 | page = start >> TARGET_PAGE_BITS; | |
5b82b703 SH |
1090 | |
1091 | rcu_read_lock(); | |
1092 | ||
1093 | blocks = atomic_rcu_read(&ram_list.dirty_memory[client]); | |
1094 | ||
1095 | while (page < end) { | |
1096 | unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; | |
1097 | unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; | |
1098 | unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset); | |
1099 | ||
1100 | dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx], | |
1101 | offset, num); | |
1102 | page += num; | |
1103 | } | |
1104 | ||
1105 | rcu_read_unlock(); | |
03eebc9e SH |
1106 | |
1107 | if (dirty && tcg_enabled()) { | |
a2f4d5be | 1108 | tlb_reset_dirty_range_all(start, length); |
5579c7f3 | 1109 | } |
03eebc9e SH |
1110 | |
1111 | return dirty; | |
1ccde1cb FB |
1112 | } |
1113 | ||
8deaf12c GH |
1114 | DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty |
1115 | (ram_addr_t start, ram_addr_t length, unsigned client) | |
1116 | { | |
1117 | DirtyMemoryBlocks *blocks; | |
1118 | unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL); | |
1119 | ram_addr_t first = QEMU_ALIGN_DOWN(start, align); | |
1120 | ram_addr_t last = QEMU_ALIGN_UP(start + length, align); | |
1121 | DirtyBitmapSnapshot *snap; | |
1122 | unsigned long page, end, dest; | |
1123 | ||
1124 | snap = g_malloc0(sizeof(*snap) + | |
1125 | ((last - first) >> (TARGET_PAGE_BITS + 3))); | |
1126 | snap->start = first; | |
1127 | snap->end = last; | |
1128 | ||
1129 | page = first >> TARGET_PAGE_BITS; | |
1130 | end = last >> TARGET_PAGE_BITS; | |
1131 | dest = 0; | |
1132 | ||
1133 | rcu_read_lock(); | |
1134 | ||
1135 | blocks = atomic_rcu_read(&ram_list.dirty_memory[client]); | |
1136 | ||
1137 | while (page < end) { | |
1138 | unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; | |
1139 | unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; | |
1140 | unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset); | |
1141 | ||
1142 | assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL))); | |
1143 | assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL))); | |
1144 | offset >>= BITS_PER_LEVEL; | |
1145 | ||
1146 | bitmap_copy_and_clear_atomic(snap->dirty + dest, | |
1147 | blocks->blocks[idx] + offset, | |
1148 | num); | |
1149 | page += num; | |
1150 | dest += num >> BITS_PER_LEVEL; | |
1151 | } | |
1152 | ||
1153 | rcu_read_unlock(); | |
1154 | ||
1155 | if (tcg_enabled()) { | |
1156 | tlb_reset_dirty_range_all(start, length); | |
1157 | } | |
1158 | ||
1159 | return snap; | |
1160 | } | |
1161 | ||
1162 | bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap, | |
1163 | ram_addr_t start, | |
1164 | ram_addr_t length) | |
1165 | { | |
1166 | unsigned long page, end; | |
1167 | ||
1168 | assert(start >= snap->start); | |
1169 | assert(start + length <= snap->end); | |
1170 | ||
1171 | end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS; | |
1172 | page = (start - snap->start) >> TARGET_PAGE_BITS; | |
1173 | ||
1174 | while (page < end) { | |
1175 | if (test_bit(page, snap->dirty)) { | |
1176 | return true; | |
1177 | } | |
1178 | page++; | |
1179 | } | |
1180 | return false; | |
1181 | } | |
1182 | ||
79e2b9ae | 1183 | /* Called from RCU critical section */ |
bb0e627a | 1184 | hwaddr memory_region_section_get_iotlb(CPUState *cpu, |
149f54b5 PB |
1185 | MemoryRegionSection *section, |
1186 | target_ulong vaddr, | |
1187 | hwaddr paddr, hwaddr xlat, | |
1188 | int prot, | |
1189 | target_ulong *address) | |
e5548617 | 1190 | { |
a8170e5e | 1191 | hwaddr iotlb; |
e5548617 BS |
1192 | CPUWatchpoint *wp; |
1193 | ||
cc5bea60 | 1194 | if (memory_region_is_ram(section->mr)) { |
e5548617 | 1195 | /* Normal RAM. */ |
e4e69794 | 1196 | iotlb = memory_region_get_ram_addr(section->mr) + xlat; |
e5548617 | 1197 | if (!section->readonly) { |
b41aac4f | 1198 | iotlb |= PHYS_SECTION_NOTDIRTY; |
e5548617 | 1199 | } else { |
b41aac4f | 1200 | iotlb |= PHYS_SECTION_ROM; |
e5548617 BS |
1201 | } |
1202 | } else { | |
0b8e2c10 PM |
1203 | AddressSpaceDispatch *d; |
1204 | ||
1205 | d = atomic_rcu_read(§ion->address_space->dispatch); | |
1206 | iotlb = section - d->map.sections; | |
149f54b5 | 1207 | iotlb += xlat; |
e5548617 BS |
1208 | } |
1209 | ||
1210 | /* Make accesses to pages with watchpoints go via the | |
1211 | watchpoint trap routines. */ | |
ff4700b0 | 1212 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d | 1213 | if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) { |
e5548617 BS |
1214 | /* Avoid trapping reads of pages with a write breakpoint. */ |
1215 | if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) { | |
b41aac4f | 1216 | iotlb = PHYS_SECTION_WATCH + paddr; |
e5548617 BS |
1217 | *address |= TLB_MMIO; |
1218 | break; | |
1219 | } | |
1220 | } | |
1221 | } | |
1222 | ||
1223 | return iotlb; | |
1224 | } | |
9fa3e853 FB |
1225 | #endif /* defined(CONFIG_USER_ONLY) */ |
1226 | ||
e2eef170 | 1227 | #if !defined(CONFIG_USER_ONLY) |
8da3ff18 | 1228 | |
c227f099 | 1229 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, |
5312bd8b | 1230 | uint16_t section); |
acc9d80b | 1231 | static subpage_t *subpage_init(AddressSpace *as, hwaddr base); |
54688b1e | 1232 | |
a2b257d6 IM |
1233 | static void *(*phys_mem_alloc)(size_t size, uint64_t *align) = |
1234 | qemu_anon_ram_alloc; | |
91138037 MA |
1235 | |
1236 | /* | |
1237 | * Set a custom physical guest memory alloator. | |
1238 | * Accelerators with unusual needs may need this. Hopefully, we can | |
1239 | * get rid of it eventually. | |
1240 | */ | |
a2b257d6 | 1241 | void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align)) |
91138037 MA |
1242 | { |
1243 | phys_mem_alloc = alloc; | |
1244 | } | |
1245 | ||
53cb28cb MA |
1246 | static uint16_t phys_section_add(PhysPageMap *map, |
1247 | MemoryRegionSection *section) | |
5312bd8b | 1248 | { |
68f3f65b PB |
1249 | /* The physical section number is ORed with a page-aligned |
1250 | * pointer to produce the iotlb entries. Thus it should | |
1251 | * never overflow into the page-aligned value. | |
1252 | */ | |
53cb28cb | 1253 | assert(map->sections_nb < TARGET_PAGE_SIZE); |
68f3f65b | 1254 | |
53cb28cb MA |
1255 | if (map->sections_nb == map->sections_nb_alloc) { |
1256 | map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); | |
1257 | map->sections = g_renew(MemoryRegionSection, map->sections, | |
1258 | map->sections_nb_alloc); | |
5312bd8b | 1259 | } |
53cb28cb | 1260 | map->sections[map->sections_nb] = *section; |
dfde4e6e | 1261 | memory_region_ref(section->mr); |
53cb28cb | 1262 | return map->sections_nb++; |
5312bd8b AK |
1263 | } |
1264 | ||
058bc4b5 PB |
1265 | static void phys_section_destroy(MemoryRegion *mr) |
1266 | { | |
55b4e80b DS |
1267 | bool have_sub_page = mr->subpage; |
1268 | ||
dfde4e6e PB |
1269 | memory_region_unref(mr); |
1270 | ||
55b4e80b | 1271 | if (have_sub_page) { |
058bc4b5 | 1272 | subpage_t *subpage = container_of(mr, subpage_t, iomem); |
b4fefef9 | 1273 | object_unref(OBJECT(&subpage->iomem)); |
058bc4b5 PB |
1274 | g_free(subpage); |
1275 | } | |
1276 | } | |
1277 | ||
6092666e | 1278 | static void phys_sections_free(PhysPageMap *map) |
5312bd8b | 1279 | { |
9affd6fc PB |
1280 | while (map->sections_nb > 0) { |
1281 | MemoryRegionSection *section = &map->sections[--map->sections_nb]; | |
058bc4b5 PB |
1282 | phys_section_destroy(section->mr); |
1283 | } | |
9affd6fc PB |
1284 | g_free(map->sections); |
1285 | g_free(map->nodes); | |
5312bd8b AK |
1286 | } |
1287 | ||
ac1970fb | 1288 | static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section) |
0f0cb164 AK |
1289 | { |
1290 | subpage_t *subpage; | |
a8170e5e | 1291 | hwaddr base = section->offset_within_address_space |
0f0cb164 | 1292 | & TARGET_PAGE_MASK; |
003a0cf2 | 1293 | MemoryRegionSection *existing = phys_page_find(d, base); |
0f0cb164 AK |
1294 | MemoryRegionSection subsection = { |
1295 | .offset_within_address_space = base, | |
052e87b0 | 1296 | .size = int128_make64(TARGET_PAGE_SIZE), |
0f0cb164 | 1297 | }; |
a8170e5e | 1298 | hwaddr start, end; |
0f0cb164 | 1299 | |
f3705d53 | 1300 | assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); |
0f0cb164 | 1301 | |
f3705d53 | 1302 | if (!(existing->mr->subpage)) { |
acc9d80b | 1303 | subpage = subpage_init(d->as, base); |
3be91e86 | 1304 | subsection.address_space = d->as; |
0f0cb164 | 1305 | subsection.mr = &subpage->iomem; |
ac1970fb | 1306 | phys_page_set(d, base >> TARGET_PAGE_BITS, 1, |
53cb28cb | 1307 | phys_section_add(&d->map, &subsection)); |
0f0cb164 | 1308 | } else { |
f3705d53 | 1309 | subpage = container_of(existing->mr, subpage_t, iomem); |
0f0cb164 AK |
1310 | } |
1311 | start = section->offset_within_address_space & ~TARGET_PAGE_MASK; | |
052e87b0 | 1312 | end = start + int128_get64(section->size) - 1; |
53cb28cb MA |
1313 | subpage_register(subpage, start, end, |
1314 | phys_section_add(&d->map, section)); | |
0f0cb164 AK |
1315 | } |
1316 | ||
1317 | ||
052e87b0 PB |
1318 | static void register_multipage(AddressSpaceDispatch *d, |
1319 | MemoryRegionSection *section) | |
33417e70 | 1320 | { |
a8170e5e | 1321 | hwaddr start_addr = section->offset_within_address_space; |
53cb28cb | 1322 | uint16_t section_index = phys_section_add(&d->map, section); |
052e87b0 PB |
1323 | uint64_t num_pages = int128_get64(int128_rshift(section->size, |
1324 | TARGET_PAGE_BITS)); | |
dd81124b | 1325 | |
733d5ef5 PB |
1326 | assert(num_pages); |
1327 | phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); | |
33417e70 FB |
1328 | } |
1329 | ||
ac1970fb | 1330 | static void mem_add(MemoryListener *listener, MemoryRegionSection *section) |
0f0cb164 | 1331 | { |
89ae337a | 1332 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); |
00752703 | 1333 | AddressSpaceDispatch *d = as->next_dispatch; |
99b9cc06 | 1334 | MemoryRegionSection now = *section, remain = *section; |
052e87b0 | 1335 | Int128 page_size = int128_make64(TARGET_PAGE_SIZE); |
0f0cb164 | 1336 | |
733d5ef5 PB |
1337 | if (now.offset_within_address_space & ~TARGET_PAGE_MASK) { |
1338 | uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space) | |
1339 | - now.offset_within_address_space; | |
1340 | ||
052e87b0 | 1341 | now.size = int128_min(int128_make64(left), now.size); |
ac1970fb | 1342 | register_subpage(d, &now); |
733d5ef5 | 1343 | } else { |
052e87b0 | 1344 | now.size = int128_zero(); |
733d5ef5 | 1345 | } |
052e87b0 PB |
1346 | while (int128_ne(remain.size, now.size)) { |
1347 | remain.size = int128_sub(remain.size, now.size); | |
1348 | remain.offset_within_address_space += int128_get64(now.size); | |
1349 | remain.offset_within_region += int128_get64(now.size); | |
69b67646 | 1350 | now = remain; |
052e87b0 | 1351 | if (int128_lt(remain.size, page_size)) { |
733d5ef5 | 1352 | register_subpage(d, &now); |
88266249 | 1353 | } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { |
052e87b0 | 1354 | now.size = page_size; |
ac1970fb | 1355 | register_subpage(d, &now); |
69b67646 | 1356 | } else { |
052e87b0 | 1357 | now.size = int128_and(now.size, int128_neg(page_size)); |
ac1970fb | 1358 | register_multipage(d, &now); |
69b67646 | 1359 | } |
0f0cb164 AK |
1360 | } |
1361 | } | |
1362 | ||
62a2744c SY |
1363 | void qemu_flush_coalesced_mmio_buffer(void) |
1364 | { | |
1365 | if (kvm_enabled()) | |
1366 | kvm_flush_coalesced_mmio_buffer(); | |
1367 | } | |
1368 | ||
b2a8658e UD |
1369 | void qemu_mutex_lock_ramlist(void) |
1370 | { | |
1371 | qemu_mutex_lock(&ram_list.mutex); | |
1372 | } | |
1373 | ||
1374 | void qemu_mutex_unlock_ramlist(void) | |
1375 | { | |
1376 | qemu_mutex_unlock(&ram_list.mutex); | |
1377 | } | |
1378 | ||
be9b23c4 PX |
1379 | void ram_block_dump(Monitor *mon) |
1380 | { | |
1381 | RAMBlock *block; | |
1382 | char *psize; | |
1383 | ||
1384 | rcu_read_lock(); | |
1385 | monitor_printf(mon, "%24s %8s %18s %18s %18s\n", | |
1386 | "Block Name", "PSize", "Offset", "Used", "Total"); | |
1387 | RAMBLOCK_FOREACH(block) { | |
1388 | psize = size_to_str(block->page_size); | |
1389 | monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64 | |
1390 | " 0x%016" PRIx64 "\n", block->idstr, psize, | |
1391 | (uint64_t)block->offset, | |
1392 | (uint64_t)block->used_length, | |
1393 | (uint64_t)block->max_length); | |
1394 | g_free(psize); | |
1395 | } | |
1396 | rcu_read_unlock(); | |
1397 | } | |
1398 | ||
9c607668 AK |
1399 | #ifdef __linux__ |
1400 | /* | |
1401 | * FIXME TOCTTOU: this iterates over memory backends' mem-path, which | |
1402 | * may or may not name the same files / on the same filesystem now as | |
1403 | * when we actually open and map them. Iterate over the file | |
1404 | * descriptors instead, and use qemu_fd_getpagesize(). | |
1405 | */ | |
1406 | static int find_max_supported_pagesize(Object *obj, void *opaque) | |
1407 | { | |
1408 | char *mem_path; | |
1409 | long *hpsize_min = opaque; | |
1410 | ||
1411 | if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { | |
1412 | mem_path = object_property_get_str(obj, "mem-path", NULL); | |
1413 | if (mem_path) { | |
1414 | long hpsize = qemu_mempath_getpagesize(mem_path); | |
1415 | if (hpsize < *hpsize_min) { | |
1416 | *hpsize_min = hpsize; | |
1417 | } | |
1418 | } else { | |
1419 | *hpsize_min = getpagesize(); | |
1420 | } | |
1421 | } | |
1422 | ||
1423 | return 0; | |
1424 | } | |
1425 | ||
1426 | long qemu_getrampagesize(void) | |
1427 | { | |
1428 | long hpsize = LONG_MAX; | |
1429 | long mainrampagesize; | |
1430 | Object *memdev_root; | |
1431 | ||
1432 | if (mem_path) { | |
1433 | mainrampagesize = qemu_mempath_getpagesize(mem_path); | |
1434 | } else { | |
1435 | mainrampagesize = getpagesize(); | |
1436 | } | |
1437 | ||
1438 | /* it's possible we have memory-backend objects with | |
1439 | * hugepage-backed RAM. these may get mapped into system | |
1440 | * address space via -numa parameters or memory hotplug | |
1441 | * hooks. we want to take these into account, but we | |
1442 | * also want to make sure these supported hugepage | |
1443 | * sizes are applicable across the entire range of memory | |
1444 | * we may boot from, so we take the min across all | |
1445 | * backends, and assume normal pages in cases where a | |
1446 | * backend isn't backed by hugepages. | |
1447 | */ | |
1448 | memdev_root = object_resolve_path("/objects", NULL); | |
1449 | if (memdev_root) { | |
1450 | object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize); | |
1451 | } | |
1452 | if (hpsize == LONG_MAX) { | |
1453 | /* No additional memory regions found ==> Report main RAM page size */ | |
1454 | return mainrampagesize; | |
1455 | } | |
1456 | ||
1457 | /* If NUMA is disabled or the NUMA nodes are not backed with a | |
1458 | * memory-backend, then there is at least one node using "normal" RAM, | |
1459 | * so if its page size is smaller we have got to report that size instead. | |
1460 | */ | |
1461 | if (hpsize > mainrampagesize && | |
1462 | (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) { | |
1463 | static bool warned; | |
1464 | if (!warned) { | |
1465 | error_report("Huge page support disabled (n/a for main memory)."); | |
1466 | warned = true; | |
1467 | } | |
1468 | return mainrampagesize; | |
1469 | } | |
1470 | ||
1471 | return hpsize; | |
1472 | } | |
1473 | #else | |
1474 | long qemu_getrampagesize(void) | |
1475 | { | |
1476 | return getpagesize(); | |
1477 | } | |
1478 | #endif | |
1479 | ||
e1e84ba0 | 1480 | #ifdef __linux__ |
d6af99c9 HZ |
1481 | static int64_t get_file_size(int fd) |
1482 | { | |
1483 | int64_t size = lseek(fd, 0, SEEK_END); | |
1484 | if (size < 0) { | |
1485 | return -errno; | |
1486 | } | |
1487 | return size; | |
1488 | } | |
1489 | ||
8d37b030 MAL |
1490 | static int file_ram_open(const char *path, |
1491 | const char *region_name, | |
1492 | bool *created, | |
1493 | Error **errp) | |
c902760f MT |
1494 | { |
1495 | char *filename; | |
8ca761f6 PF |
1496 | char *sanitized_name; |
1497 | char *c; | |
5c3ece79 | 1498 | int fd = -1; |
c902760f | 1499 | |
8d37b030 | 1500 | *created = false; |
fd97fd44 MA |
1501 | for (;;) { |
1502 | fd = open(path, O_RDWR); | |
1503 | if (fd >= 0) { | |
1504 | /* @path names an existing file, use it */ | |
1505 | break; | |
8d31d6b6 | 1506 | } |
fd97fd44 MA |
1507 | if (errno == ENOENT) { |
1508 | /* @path names a file that doesn't exist, create it */ | |
1509 | fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644); | |
1510 | if (fd >= 0) { | |
8d37b030 | 1511 | *created = true; |
fd97fd44 MA |
1512 | break; |
1513 | } | |
1514 | } else if (errno == EISDIR) { | |
1515 | /* @path names a directory, create a file there */ | |
1516 | /* Make name safe to use with mkstemp by replacing '/' with '_'. */ | |
8d37b030 | 1517 | sanitized_name = g_strdup(region_name); |
fd97fd44 MA |
1518 | for (c = sanitized_name; *c != '\0'; c++) { |
1519 | if (*c == '/') { | |
1520 | *c = '_'; | |
1521 | } | |
1522 | } | |
8ca761f6 | 1523 | |
fd97fd44 MA |
1524 | filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, |
1525 | sanitized_name); | |
1526 | g_free(sanitized_name); | |
8d31d6b6 | 1527 | |
fd97fd44 MA |
1528 | fd = mkstemp(filename); |
1529 | if (fd >= 0) { | |
1530 | unlink(filename); | |
1531 | g_free(filename); | |
1532 | break; | |
1533 | } | |
1534 | g_free(filename); | |
8d31d6b6 | 1535 | } |
fd97fd44 MA |
1536 | if (errno != EEXIST && errno != EINTR) { |
1537 | error_setg_errno(errp, errno, | |
1538 | "can't open backing store %s for guest RAM", | |
1539 | path); | |
8d37b030 | 1540 | return -1; |
fd97fd44 MA |
1541 | } |
1542 | /* | |
1543 | * Try again on EINTR and EEXIST. The latter happens when | |
1544 | * something else creates the file between our two open(). | |
1545 | */ | |
8d31d6b6 | 1546 | } |
c902760f | 1547 | |
8d37b030 MAL |
1548 | return fd; |
1549 | } | |
1550 | ||
1551 | static void *file_ram_alloc(RAMBlock *block, | |
1552 | ram_addr_t memory, | |
1553 | int fd, | |
1554 | bool truncate, | |
1555 | Error **errp) | |
1556 | { | |
1557 | void *area; | |
1558 | ||
863e9621 | 1559 | block->page_size = qemu_fd_getpagesize(fd); |
8360668e HZ |
1560 | block->mr->align = block->page_size; |
1561 | #if defined(__s390x__) | |
1562 | if (kvm_enabled()) { | |
1563 | block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN); | |
1564 | } | |
1565 | #endif | |
fd97fd44 | 1566 | |
863e9621 | 1567 | if (memory < block->page_size) { |
fd97fd44 | 1568 | error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " |
863e9621 DDAG |
1569 | "or larger than page size 0x%zx", |
1570 | memory, block->page_size); | |
8d37b030 | 1571 | return NULL; |
1775f111 HZ |
1572 | } |
1573 | ||
863e9621 | 1574 | memory = ROUND_UP(memory, block->page_size); |
c902760f MT |
1575 | |
1576 | /* | |
1577 | * ftruncate is not supported by hugetlbfs in older | |
1578 | * hosts, so don't bother bailing out on errors. | |
1579 | * If anything goes wrong with it under other filesystems, | |
1580 | * mmap will fail. | |
d6af99c9 HZ |
1581 | * |
1582 | * Do not truncate the non-empty backend file to avoid corrupting | |
1583 | * the existing data in the file. Disabling shrinking is not | |
1584 | * enough. For example, the current vNVDIMM implementation stores | |
1585 | * the guest NVDIMM labels at the end of the backend file. If the | |
1586 | * backend file is later extended, QEMU will not be able to find | |
1587 | * those labels. Therefore, extending the non-empty backend file | |
1588 | * is disabled as well. | |
c902760f | 1589 | */ |
8d37b030 | 1590 | if (truncate && ftruncate(fd, memory)) { |
9742bf26 | 1591 | perror("ftruncate"); |
7f56e740 | 1592 | } |
c902760f | 1593 | |
d2f39add DD |
1594 | area = qemu_ram_mmap(fd, memory, block->mr->align, |
1595 | block->flags & RAM_SHARED); | |
c902760f | 1596 | if (area == MAP_FAILED) { |
7f56e740 | 1597 | error_setg_errno(errp, errno, |
fd97fd44 | 1598 | "unable to map backing store for guest RAM"); |
8d37b030 | 1599 | return NULL; |
c902760f | 1600 | } |
ef36fa14 MT |
1601 | |
1602 | if (mem_prealloc) { | |
1e356fc1 | 1603 | os_mem_prealloc(fd, area, memory, smp_cpus, errp); |
056b68af | 1604 | if (errp && *errp) { |
8d37b030 MAL |
1605 | qemu_ram_munmap(area, memory); |
1606 | return NULL; | |
056b68af | 1607 | } |
ef36fa14 MT |
1608 | } |
1609 | ||
04b16653 | 1610 | block->fd = fd; |
c902760f MT |
1611 | return area; |
1612 | } | |
1613 | #endif | |
1614 | ||
0dc3f44a | 1615 | /* Called with the ramlist lock held. */ |
d17b5288 | 1616 | static ram_addr_t find_ram_offset(ram_addr_t size) |
04b16653 AW |
1617 | { |
1618 | RAMBlock *block, *next_block; | |
3e837b2c | 1619 | ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; |
04b16653 | 1620 | |
49cd9ac6 SH |
1621 | assert(size != 0); /* it would hand out same offset multiple times */ |
1622 | ||
0dc3f44a | 1623 | if (QLIST_EMPTY_RCU(&ram_list.blocks)) { |
04b16653 | 1624 | return 0; |
0d53d9fe | 1625 | } |
04b16653 | 1626 | |
99e15582 | 1627 | RAMBLOCK_FOREACH(block) { |
f15fbc4b | 1628 | ram_addr_t end, next = RAM_ADDR_MAX; |
04b16653 | 1629 | |
62be4e3a | 1630 | end = block->offset + block->max_length; |
04b16653 | 1631 | |
99e15582 | 1632 | RAMBLOCK_FOREACH(next_block) { |
04b16653 AW |
1633 | if (next_block->offset >= end) { |
1634 | next = MIN(next, next_block->offset); | |
1635 | } | |
1636 | } | |
1637 | if (next - end >= size && next - end < mingap) { | |
3e837b2c | 1638 | offset = end; |
04b16653 AW |
1639 | mingap = next - end; |
1640 | } | |
1641 | } | |
3e837b2c AW |
1642 | |
1643 | if (offset == RAM_ADDR_MAX) { | |
1644 | fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", | |
1645 | (uint64_t)size); | |
1646 | abort(); | |
1647 | } | |
1648 | ||
04b16653 AW |
1649 | return offset; |
1650 | } | |
1651 | ||
b8c48993 | 1652 | unsigned long last_ram_page(void) |
d17b5288 AW |
1653 | { |
1654 | RAMBlock *block; | |
1655 | ram_addr_t last = 0; | |
1656 | ||
0dc3f44a | 1657 | rcu_read_lock(); |
99e15582 | 1658 | RAMBLOCK_FOREACH(block) { |
62be4e3a | 1659 | last = MAX(last, block->offset + block->max_length); |
0d53d9fe | 1660 | } |
0dc3f44a | 1661 | rcu_read_unlock(); |
b8c48993 | 1662 | return last >> TARGET_PAGE_BITS; |
d17b5288 AW |
1663 | } |
1664 | ||
ddb97f1d JB |
1665 | static void qemu_ram_setup_dump(void *addr, ram_addr_t size) |
1666 | { | |
1667 | int ret; | |
ddb97f1d JB |
1668 | |
1669 | /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ | |
47c8ca53 | 1670 | if (!machine_dump_guest_core(current_machine)) { |
ddb97f1d JB |
1671 | ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); |
1672 | if (ret) { | |
1673 | perror("qemu_madvise"); | |
1674 | fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " | |
1675 | "but dump_guest_core=off specified\n"); | |
1676 | } | |
1677 | } | |
1678 | } | |
1679 | ||
422148d3 DDAG |
1680 | const char *qemu_ram_get_idstr(RAMBlock *rb) |
1681 | { | |
1682 | return rb->idstr; | |
1683 | } | |
1684 | ||
463a4ac2 DDAG |
1685 | bool qemu_ram_is_shared(RAMBlock *rb) |
1686 | { | |
1687 | return rb->flags & RAM_SHARED; | |
1688 | } | |
1689 | ||
ae3a7047 | 1690 | /* Called with iothread lock held. */ |
fa53a0e5 | 1691 | void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev) |
20cfe881 | 1692 | { |
fa53a0e5 | 1693 | RAMBlock *block; |
20cfe881 | 1694 | |
c5705a77 AK |
1695 | assert(new_block); |
1696 | assert(!new_block->idstr[0]); | |
84b89d78 | 1697 | |
09e5ab63 AL |
1698 | if (dev) { |
1699 | char *id = qdev_get_dev_path(dev); | |
84b89d78 CM |
1700 | if (id) { |
1701 | snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); | |
7267c094 | 1702 | g_free(id); |
84b89d78 CM |
1703 | } |
1704 | } | |
1705 | pstrcat(new_block->idstr, sizeof(new_block->idstr), name); | |
1706 | ||
ab0a9956 | 1707 | rcu_read_lock(); |
99e15582 | 1708 | RAMBLOCK_FOREACH(block) { |
fa53a0e5 GA |
1709 | if (block != new_block && |
1710 | !strcmp(block->idstr, new_block->idstr)) { | |
84b89d78 CM |
1711 | fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", |
1712 | new_block->idstr); | |
1713 | abort(); | |
1714 | } | |
1715 | } | |
0dc3f44a | 1716 | rcu_read_unlock(); |
c5705a77 AK |
1717 | } |
1718 | ||
ae3a7047 | 1719 | /* Called with iothread lock held. */ |
fa53a0e5 | 1720 | void qemu_ram_unset_idstr(RAMBlock *block) |
20cfe881 | 1721 | { |
ae3a7047 MD |
1722 | /* FIXME: arch_init.c assumes that this is not called throughout |
1723 | * migration. Ignore the problem since hot-unplug during migration | |
1724 | * does not work anyway. | |
1725 | */ | |
20cfe881 HT |
1726 | if (block) { |
1727 | memset(block->idstr, 0, sizeof(block->idstr)); | |
1728 | } | |
1729 | } | |
1730 | ||
863e9621 DDAG |
1731 | size_t qemu_ram_pagesize(RAMBlock *rb) |
1732 | { | |
1733 | return rb->page_size; | |
1734 | } | |
1735 | ||
67f11b5c DDAG |
1736 | /* Returns the largest size of page in use */ |
1737 | size_t qemu_ram_pagesize_largest(void) | |
1738 | { | |
1739 | RAMBlock *block; | |
1740 | size_t largest = 0; | |
1741 | ||
99e15582 | 1742 | RAMBLOCK_FOREACH(block) { |
67f11b5c DDAG |
1743 | largest = MAX(largest, qemu_ram_pagesize(block)); |
1744 | } | |
1745 | ||
1746 | return largest; | |
1747 | } | |
1748 | ||
8490fc78 LC |
1749 | static int memory_try_enable_merging(void *addr, size_t len) |
1750 | { | |
75cc7f01 | 1751 | if (!machine_mem_merge(current_machine)) { |
8490fc78 LC |
1752 | /* disabled by the user */ |
1753 | return 0; | |
1754 | } | |
1755 | ||
1756 | return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); | |
1757 | } | |
1758 | ||
62be4e3a MT |
1759 | /* Only legal before guest might have detected the memory size: e.g. on |
1760 | * incoming migration, or right after reset. | |
1761 | * | |
1762 | * As memory core doesn't know how is memory accessed, it is up to | |
1763 | * resize callback to update device state and/or add assertions to detect | |
1764 | * misuse, if necessary. | |
1765 | */ | |
fa53a0e5 | 1766 | int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp) |
62be4e3a | 1767 | { |
62be4e3a MT |
1768 | assert(block); |
1769 | ||
4ed023ce | 1770 | newsize = HOST_PAGE_ALIGN(newsize); |
129ddaf3 | 1771 | |
62be4e3a MT |
1772 | if (block->used_length == newsize) { |
1773 | return 0; | |
1774 | } | |
1775 | ||
1776 | if (!(block->flags & RAM_RESIZEABLE)) { | |
1777 | error_setg_errno(errp, EINVAL, | |
1778 | "Length mismatch: %s: 0x" RAM_ADDR_FMT | |
1779 | " in != 0x" RAM_ADDR_FMT, block->idstr, | |
1780 | newsize, block->used_length); | |
1781 | return -EINVAL; | |
1782 | } | |
1783 | ||
1784 | if (block->max_length < newsize) { | |
1785 | error_setg_errno(errp, EINVAL, | |
1786 | "Length too large: %s: 0x" RAM_ADDR_FMT | |
1787 | " > 0x" RAM_ADDR_FMT, block->idstr, | |
1788 | newsize, block->max_length); | |
1789 | return -EINVAL; | |
1790 | } | |
1791 | ||
1792 | cpu_physical_memory_clear_dirty_range(block->offset, block->used_length); | |
1793 | block->used_length = newsize; | |
58d2707e PB |
1794 | cpu_physical_memory_set_dirty_range(block->offset, block->used_length, |
1795 | DIRTY_CLIENTS_ALL); | |
62be4e3a MT |
1796 | memory_region_set_size(block->mr, newsize); |
1797 | if (block->resized) { | |
1798 | block->resized(block->idstr, newsize, block->host); | |
1799 | } | |
1800 | return 0; | |
1801 | } | |
1802 | ||
5b82b703 SH |
1803 | /* Called with ram_list.mutex held */ |
1804 | static void dirty_memory_extend(ram_addr_t old_ram_size, | |
1805 | ram_addr_t new_ram_size) | |
1806 | { | |
1807 | ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size, | |
1808 | DIRTY_MEMORY_BLOCK_SIZE); | |
1809 | ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size, | |
1810 | DIRTY_MEMORY_BLOCK_SIZE); | |
1811 | int i; | |
1812 | ||
1813 | /* Only need to extend if block count increased */ | |
1814 | if (new_num_blocks <= old_num_blocks) { | |
1815 | return; | |
1816 | } | |
1817 | ||
1818 | for (i = 0; i < DIRTY_MEMORY_NUM; i++) { | |
1819 | DirtyMemoryBlocks *old_blocks; | |
1820 | DirtyMemoryBlocks *new_blocks; | |
1821 | int j; | |
1822 | ||
1823 | old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]); | |
1824 | new_blocks = g_malloc(sizeof(*new_blocks) + | |
1825 | sizeof(new_blocks->blocks[0]) * new_num_blocks); | |
1826 | ||
1827 | if (old_num_blocks) { | |
1828 | memcpy(new_blocks->blocks, old_blocks->blocks, | |
1829 | old_num_blocks * sizeof(old_blocks->blocks[0])); | |
1830 | } | |
1831 | ||
1832 | for (j = old_num_blocks; j < new_num_blocks; j++) { | |
1833 | new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE); | |
1834 | } | |
1835 | ||
1836 | atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks); | |
1837 | ||
1838 | if (old_blocks) { | |
1839 | g_free_rcu(old_blocks, rcu); | |
1840 | } | |
1841 | } | |
1842 | } | |
1843 | ||
528f46af | 1844 | static void ram_block_add(RAMBlock *new_block, Error **errp) |
c5705a77 | 1845 | { |
e1c57ab8 | 1846 | RAMBlock *block; |
0d53d9fe | 1847 | RAMBlock *last_block = NULL; |
2152f5ca | 1848 | ram_addr_t old_ram_size, new_ram_size; |
37aa7a0e | 1849 | Error *err = NULL; |
2152f5ca | 1850 | |
b8c48993 | 1851 | old_ram_size = last_ram_page(); |
c5705a77 | 1852 | |
b2a8658e | 1853 | qemu_mutex_lock_ramlist(); |
9b8424d5 | 1854 | new_block->offset = find_ram_offset(new_block->max_length); |
e1c57ab8 PB |
1855 | |
1856 | if (!new_block->host) { | |
1857 | if (xen_enabled()) { | |
9b8424d5 | 1858 | xen_ram_alloc(new_block->offset, new_block->max_length, |
37aa7a0e MA |
1859 | new_block->mr, &err); |
1860 | if (err) { | |
1861 | error_propagate(errp, err); | |
1862 | qemu_mutex_unlock_ramlist(); | |
39c350ee | 1863 | return; |
37aa7a0e | 1864 | } |
e1c57ab8 | 1865 | } else { |
9b8424d5 | 1866 | new_block->host = phys_mem_alloc(new_block->max_length, |
a2b257d6 | 1867 | &new_block->mr->align); |
39228250 | 1868 | if (!new_block->host) { |
ef701d7b HT |
1869 | error_setg_errno(errp, errno, |
1870 | "cannot set up guest memory '%s'", | |
1871 | memory_region_name(new_block->mr)); | |
1872 | qemu_mutex_unlock_ramlist(); | |
39c350ee | 1873 | return; |
39228250 | 1874 | } |
9b8424d5 | 1875 | memory_try_enable_merging(new_block->host, new_block->max_length); |
6977dfe6 | 1876 | } |
c902760f | 1877 | } |
94a6b54f | 1878 | |
dd631697 LZ |
1879 | new_ram_size = MAX(old_ram_size, |
1880 | (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS); | |
1881 | if (new_ram_size > old_ram_size) { | |
5b82b703 | 1882 | dirty_memory_extend(old_ram_size, new_ram_size); |
dd631697 | 1883 | } |
0d53d9fe MD |
1884 | /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ, |
1885 | * QLIST (which has an RCU-friendly variant) does not have insertion at | |
1886 | * tail, so save the last element in last_block. | |
1887 | */ | |
99e15582 | 1888 | RAMBLOCK_FOREACH(block) { |
0d53d9fe | 1889 | last_block = block; |
9b8424d5 | 1890 | if (block->max_length < new_block->max_length) { |
abb26d63 PB |
1891 | break; |
1892 | } | |
1893 | } | |
1894 | if (block) { | |
0dc3f44a | 1895 | QLIST_INSERT_BEFORE_RCU(block, new_block, next); |
0d53d9fe | 1896 | } else if (last_block) { |
0dc3f44a | 1897 | QLIST_INSERT_AFTER_RCU(last_block, new_block, next); |
0d53d9fe | 1898 | } else { /* list is empty */ |
0dc3f44a | 1899 | QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); |
abb26d63 | 1900 | } |
0d6d3c87 | 1901 | ram_list.mru_block = NULL; |
94a6b54f | 1902 | |
0dc3f44a MD |
1903 | /* Write list before version */ |
1904 | smp_wmb(); | |
f798b07f | 1905 | ram_list.version++; |
b2a8658e | 1906 | qemu_mutex_unlock_ramlist(); |
f798b07f | 1907 | |
9b8424d5 | 1908 | cpu_physical_memory_set_dirty_range(new_block->offset, |
58d2707e PB |
1909 | new_block->used_length, |
1910 | DIRTY_CLIENTS_ALL); | |
94a6b54f | 1911 | |
a904c911 PB |
1912 | if (new_block->host) { |
1913 | qemu_ram_setup_dump(new_block->host, new_block->max_length); | |
1914 | qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); | |
c2cd627d | 1915 | /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */ |
a904c911 | 1916 | qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK); |
0987d735 | 1917 | ram_block_notify_add(new_block->host, new_block->max_length); |
e1c57ab8 | 1918 | } |
94a6b54f | 1919 | } |
e9a1ab19 | 1920 | |
0b183fc8 | 1921 | #ifdef __linux__ |
38b3362d MAL |
1922 | RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr, |
1923 | bool share, int fd, | |
1924 | Error **errp) | |
e1c57ab8 PB |
1925 | { |
1926 | RAMBlock *new_block; | |
ef701d7b | 1927 | Error *local_err = NULL; |
8d37b030 | 1928 | int64_t file_size; |
e1c57ab8 PB |
1929 | |
1930 | if (xen_enabled()) { | |
7f56e740 | 1931 | error_setg(errp, "-mem-path not supported with Xen"); |
528f46af | 1932 | return NULL; |
e1c57ab8 PB |
1933 | } |
1934 | ||
e45e7ae2 MAL |
1935 | if (kvm_enabled() && !kvm_has_sync_mmu()) { |
1936 | error_setg(errp, | |
1937 | "host lacks kvm mmu notifiers, -mem-path unsupported"); | |
1938 | return NULL; | |
1939 | } | |
1940 | ||
e1c57ab8 PB |
1941 | if (phys_mem_alloc != qemu_anon_ram_alloc) { |
1942 | /* | |
1943 | * file_ram_alloc() needs to allocate just like | |
1944 | * phys_mem_alloc, but we haven't bothered to provide | |
1945 | * a hook there. | |
1946 | */ | |
7f56e740 PB |
1947 | error_setg(errp, |
1948 | "-mem-path not supported with this accelerator"); | |
528f46af | 1949 | return NULL; |
e1c57ab8 PB |
1950 | } |
1951 | ||
4ed023ce | 1952 | size = HOST_PAGE_ALIGN(size); |
8d37b030 MAL |
1953 | file_size = get_file_size(fd); |
1954 | if (file_size > 0 && file_size < size) { | |
1955 | error_setg(errp, "backing store %s size 0x%" PRIx64 | |
1956 | " does not match 'size' option 0x" RAM_ADDR_FMT, | |
1957 | mem_path, file_size, size); | |
8d37b030 MAL |
1958 | return NULL; |
1959 | } | |
1960 | ||
e1c57ab8 PB |
1961 | new_block = g_malloc0(sizeof(*new_block)); |
1962 | new_block->mr = mr; | |
9b8424d5 MT |
1963 | new_block->used_length = size; |
1964 | new_block->max_length = size; | |
dbcb8981 | 1965 | new_block->flags = share ? RAM_SHARED : 0; |
8d37b030 | 1966 | new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp); |
7f56e740 PB |
1967 | if (!new_block->host) { |
1968 | g_free(new_block); | |
528f46af | 1969 | return NULL; |
7f56e740 PB |
1970 | } |
1971 | ||
528f46af | 1972 | ram_block_add(new_block, &local_err); |
ef701d7b HT |
1973 | if (local_err) { |
1974 | g_free(new_block); | |
1975 | error_propagate(errp, local_err); | |
528f46af | 1976 | return NULL; |
ef701d7b | 1977 | } |
528f46af | 1978 | return new_block; |
38b3362d MAL |
1979 | |
1980 | } | |
1981 | ||
1982 | ||
1983 | RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, | |
1984 | bool share, const char *mem_path, | |
1985 | Error **errp) | |
1986 | { | |
1987 | int fd; | |
1988 | bool created; | |
1989 | RAMBlock *block; | |
1990 | ||
1991 | fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp); | |
1992 | if (fd < 0) { | |
1993 | return NULL; | |
1994 | } | |
1995 | ||
1996 | block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp); | |
1997 | if (!block) { | |
1998 | if (created) { | |
1999 | unlink(mem_path); | |
2000 | } | |
2001 | close(fd); | |
2002 | return NULL; | |
2003 | } | |
2004 | ||
2005 | return block; | |
e1c57ab8 | 2006 | } |
0b183fc8 | 2007 | #endif |
e1c57ab8 | 2008 | |
62be4e3a | 2009 | static |
528f46af FZ |
2010 | RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size, |
2011 | void (*resized)(const char*, | |
2012 | uint64_t length, | |
2013 | void *host), | |
2014 | void *host, bool resizeable, | |
2015 | MemoryRegion *mr, Error **errp) | |
e1c57ab8 PB |
2016 | { |
2017 | RAMBlock *new_block; | |
ef701d7b | 2018 | Error *local_err = NULL; |
e1c57ab8 | 2019 | |
4ed023ce DDAG |
2020 | size = HOST_PAGE_ALIGN(size); |
2021 | max_size = HOST_PAGE_ALIGN(max_size); | |
e1c57ab8 PB |
2022 | new_block = g_malloc0(sizeof(*new_block)); |
2023 | new_block->mr = mr; | |
62be4e3a | 2024 | new_block->resized = resized; |
9b8424d5 MT |
2025 | new_block->used_length = size; |
2026 | new_block->max_length = max_size; | |
62be4e3a | 2027 | assert(max_size >= size); |
e1c57ab8 | 2028 | new_block->fd = -1; |
863e9621 | 2029 | new_block->page_size = getpagesize(); |
e1c57ab8 PB |
2030 | new_block->host = host; |
2031 | if (host) { | |
7bd4f430 | 2032 | new_block->flags |= RAM_PREALLOC; |
e1c57ab8 | 2033 | } |
62be4e3a MT |
2034 | if (resizeable) { |
2035 | new_block->flags |= RAM_RESIZEABLE; | |
2036 | } | |
528f46af | 2037 | ram_block_add(new_block, &local_err); |
ef701d7b HT |
2038 | if (local_err) { |
2039 | g_free(new_block); | |
2040 | error_propagate(errp, local_err); | |
528f46af | 2041 | return NULL; |
ef701d7b | 2042 | } |
528f46af | 2043 | return new_block; |
e1c57ab8 PB |
2044 | } |
2045 | ||
528f46af | 2046 | RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, |
62be4e3a MT |
2047 | MemoryRegion *mr, Error **errp) |
2048 | { | |
2049 | return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp); | |
2050 | } | |
2051 | ||
528f46af | 2052 | RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp) |
6977dfe6 | 2053 | { |
62be4e3a MT |
2054 | return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp); |
2055 | } | |
2056 | ||
528f46af | 2057 | RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz, |
62be4e3a MT |
2058 | void (*resized)(const char*, |
2059 | uint64_t length, | |
2060 | void *host), | |
2061 | MemoryRegion *mr, Error **errp) | |
2062 | { | |
2063 | return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp); | |
6977dfe6 YT |
2064 | } |
2065 | ||
43771539 PB |
2066 | static void reclaim_ramblock(RAMBlock *block) |
2067 | { | |
2068 | if (block->flags & RAM_PREALLOC) { | |
2069 | ; | |
2070 | } else if (xen_enabled()) { | |
2071 | xen_invalidate_map_cache_entry(block->host); | |
2072 | #ifndef _WIN32 | |
2073 | } else if (block->fd >= 0) { | |
2f3a2bb1 | 2074 | qemu_ram_munmap(block->host, block->max_length); |
43771539 PB |
2075 | close(block->fd); |
2076 | #endif | |
2077 | } else { | |
2078 | qemu_anon_ram_free(block->host, block->max_length); | |
2079 | } | |
2080 | g_free(block); | |
2081 | } | |
2082 | ||
f1060c55 | 2083 | void qemu_ram_free(RAMBlock *block) |
e9a1ab19 | 2084 | { |
85bc2a15 MAL |
2085 | if (!block) { |
2086 | return; | |
2087 | } | |
2088 | ||
0987d735 PB |
2089 | if (block->host) { |
2090 | ram_block_notify_remove(block->host, block->max_length); | |
2091 | } | |
2092 | ||
b2a8658e | 2093 | qemu_mutex_lock_ramlist(); |
f1060c55 FZ |
2094 | QLIST_REMOVE_RCU(block, next); |
2095 | ram_list.mru_block = NULL; | |
2096 | /* Write list before version */ | |
2097 | smp_wmb(); | |
2098 | ram_list.version++; | |
2099 | call_rcu(block, reclaim_ramblock, rcu); | |
b2a8658e | 2100 | qemu_mutex_unlock_ramlist(); |
e9a1ab19 FB |
2101 | } |
2102 | ||
cd19cfa2 HY |
2103 | #ifndef _WIN32 |
2104 | void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) | |
2105 | { | |
2106 | RAMBlock *block; | |
2107 | ram_addr_t offset; | |
2108 | int flags; | |
2109 | void *area, *vaddr; | |
2110 | ||
99e15582 | 2111 | RAMBLOCK_FOREACH(block) { |
cd19cfa2 | 2112 | offset = addr - block->offset; |
9b8424d5 | 2113 | if (offset < block->max_length) { |
1240be24 | 2114 | vaddr = ramblock_ptr(block, offset); |
7bd4f430 | 2115 | if (block->flags & RAM_PREALLOC) { |
cd19cfa2 | 2116 | ; |
dfeaf2ab MA |
2117 | } else if (xen_enabled()) { |
2118 | abort(); | |
cd19cfa2 HY |
2119 | } else { |
2120 | flags = MAP_FIXED; | |
3435f395 | 2121 | if (block->fd >= 0) { |
dbcb8981 PB |
2122 | flags |= (block->flags & RAM_SHARED ? |
2123 | MAP_SHARED : MAP_PRIVATE); | |
3435f395 MA |
2124 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, |
2125 | flags, block->fd, offset); | |
cd19cfa2 | 2126 | } else { |
2eb9fbaa MA |
2127 | /* |
2128 | * Remap needs to match alloc. Accelerators that | |
2129 | * set phys_mem_alloc never remap. If they did, | |
2130 | * we'd need a remap hook here. | |
2131 | */ | |
2132 | assert(phys_mem_alloc == qemu_anon_ram_alloc); | |
2133 | ||
cd19cfa2 HY |
2134 | flags |= MAP_PRIVATE | MAP_ANONYMOUS; |
2135 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, | |
2136 | flags, -1, 0); | |
cd19cfa2 HY |
2137 | } |
2138 | if (area != vaddr) { | |
f15fbc4b AP |
2139 | fprintf(stderr, "Could not remap addr: " |
2140 | RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n", | |
cd19cfa2 HY |
2141 | length, addr); |
2142 | exit(1); | |
2143 | } | |
8490fc78 | 2144 | memory_try_enable_merging(vaddr, length); |
ddb97f1d | 2145 | qemu_ram_setup_dump(vaddr, length); |
cd19cfa2 | 2146 | } |
cd19cfa2 HY |
2147 | } |
2148 | } | |
2149 | } | |
2150 | #endif /* !_WIN32 */ | |
2151 | ||
1b5ec234 | 2152 | /* Return a host pointer to ram allocated with qemu_ram_alloc. |
ae3a7047 MD |
2153 | * This should not be used for general purpose DMA. Use address_space_map |
2154 | * or address_space_rw instead. For local memory (e.g. video ram) that the | |
2155 | * device owns, use memory_region_get_ram_ptr. | |
0dc3f44a | 2156 | * |
49b24afc | 2157 | * Called within RCU critical section. |
1b5ec234 | 2158 | */ |
0878d0e1 | 2159 | void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr) |
1b5ec234 | 2160 | { |
3655cb9c GA |
2161 | RAMBlock *block = ram_block; |
2162 | ||
2163 | if (block == NULL) { | |
2164 | block = qemu_get_ram_block(addr); | |
0878d0e1 | 2165 | addr -= block->offset; |
3655cb9c | 2166 | } |
ae3a7047 MD |
2167 | |
2168 | if (xen_enabled() && block->host == NULL) { | |
0d6d3c87 PB |
2169 | /* We need to check if the requested address is in the RAM |
2170 | * because we don't want to map the entire memory in QEMU. | |
2171 | * In that case just map until the end of the page. | |
2172 | */ | |
2173 | if (block->offset == 0) { | |
1ff7c598 | 2174 | return xen_map_cache(addr, 0, 0, false); |
0d6d3c87 | 2175 | } |
ae3a7047 | 2176 | |
1ff7c598 | 2177 | block->host = xen_map_cache(block->offset, block->max_length, 1, false); |
0d6d3c87 | 2178 | } |
0878d0e1 | 2179 | return ramblock_ptr(block, addr); |
dc828ca1 PB |
2180 | } |
2181 | ||
0878d0e1 | 2182 | /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr |
ae3a7047 | 2183 | * but takes a size argument. |
0dc3f44a | 2184 | * |
e81bcda5 | 2185 | * Called within RCU critical section. |
ae3a7047 | 2186 | */ |
3655cb9c GA |
2187 | static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr, |
2188 | hwaddr *size) | |
38bee5dc | 2189 | { |
3655cb9c | 2190 | RAMBlock *block = ram_block; |
8ab934f9 SS |
2191 | if (*size == 0) { |
2192 | return NULL; | |
2193 | } | |
e81bcda5 | 2194 | |
3655cb9c GA |
2195 | if (block == NULL) { |
2196 | block = qemu_get_ram_block(addr); | |
0878d0e1 | 2197 | addr -= block->offset; |
3655cb9c | 2198 | } |
0878d0e1 | 2199 | *size = MIN(*size, block->max_length - addr); |
e81bcda5 PB |
2200 | |
2201 | if (xen_enabled() && block->host == NULL) { | |
2202 | /* We need to check if the requested address is in the RAM | |
2203 | * because we don't want to map the entire memory in QEMU. | |
2204 | * In that case just map the requested area. | |
2205 | */ | |
2206 | if (block->offset == 0) { | |
1ff7c598 | 2207 | return xen_map_cache(addr, *size, 1, true); |
38bee5dc SS |
2208 | } |
2209 | ||
1ff7c598 | 2210 | block->host = xen_map_cache(block->offset, block->max_length, 1, true); |
38bee5dc | 2211 | } |
e81bcda5 | 2212 | |
0878d0e1 | 2213 | return ramblock_ptr(block, addr); |
38bee5dc SS |
2214 | } |
2215 | ||
422148d3 DDAG |
2216 | /* |
2217 | * Translates a host ptr back to a RAMBlock, a ram_addr and an offset | |
2218 | * in that RAMBlock. | |
2219 | * | |
2220 | * ptr: Host pointer to look up | |
2221 | * round_offset: If true round the result offset down to a page boundary | |
2222 | * *ram_addr: set to result ram_addr | |
2223 | * *offset: set to result offset within the RAMBlock | |
2224 | * | |
2225 | * Returns: RAMBlock (or NULL if not found) | |
ae3a7047 MD |
2226 | * |
2227 | * By the time this function returns, the returned pointer is not protected | |
2228 | * by RCU anymore. If the caller is not within an RCU critical section and | |
2229 | * does not hold the iothread lock, it must have other means of protecting the | |
2230 | * pointer, such as a reference to the region that includes the incoming | |
2231 | * ram_addr_t. | |
2232 | */ | |
422148d3 | 2233 | RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, |
422148d3 | 2234 | ram_addr_t *offset) |
5579c7f3 | 2235 | { |
94a6b54f PB |
2236 | RAMBlock *block; |
2237 | uint8_t *host = ptr; | |
2238 | ||
868bb33f | 2239 | if (xen_enabled()) { |
f615f396 | 2240 | ram_addr_t ram_addr; |
0dc3f44a | 2241 | rcu_read_lock(); |
f615f396 PB |
2242 | ram_addr = xen_ram_addr_from_mapcache(ptr); |
2243 | block = qemu_get_ram_block(ram_addr); | |
422148d3 | 2244 | if (block) { |
d6b6aec4 | 2245 | *offset = ram_addr - block->offset; |
422148d3 | 2246 | } |
0dc3f44a | 2247 | rcu_read_unlock(); |
422148d3 | 2248 | return block; |
712c2b41 SS |
2249 | } |
2250 | ||
0dc3f44a MD |
2251 | rcu_read_lock(); |
2252 | block = atomic_rcu_read(&ram_list.mru_block); | |
9b8424d5 | 2253 | if (block && block->host && host - block->host < block->max_length) { |
23887b79 PB |
2254 | goto found; |
2255 | } | |
2256 | ||
99e15582 | 2257 | RAMBLOCK_FOREACH(block) { |
432d268c JN |
2258 | /* This case append when the block is not mapped. */ |
2259 | if (block->host == NULL) { | |
2260 | continue; | |
2261 | } | |
9b8424d5 | 2262 | if (host - block->host < block->max_length) { |
23887b79 | 2263 | goto found; |
f471a17e | 2264 | } |
94a6b54f | 2265 | } |
432d268c | 2266 | |
0dc3f44a | 2267 | rcu_read_unlock(); |
1b5ec234 | 2268 | return NULL; |
23887b79 PB |
2269 | |
2270 | found: | |
422148d3 DDAG |
2271 | *offset = (host - block->host); |
2272 | if (round_offset) { | |
2273 | *offset &= TARGET_PAGE_MASK; | |
2274 | } | |
0dc3f44a | 2275 | rcu_read_unlock(); |
422148d3 DDAG |
2276 | return block; |
2277 | } | |
2278 | ||
e3dd7493 DDAG |
2279 | /* |
2280 | * Finds the named RAMBlock | |
2281 | * | |
2282 | * name: The name of RAMBlock to find | |
2283 | * | |
2284 | * Returns: RAMBlock (or NULL if not found) | |
2285 | */ | |
2286 | RAMBlock *qemu_ram_block_by_name(const char *name) | |
2287 | { | |
2288 | RAMBlock *block; | |
2289 | ||
99e15582 | 2290 | RAMBLOCK_FOREACH(block) { |
e3dd7493 DDAG |
2291 | if (!strcmp(name, block->idstr)) { |
2292 | return block; | |
2293 | } | |
2294 | } | |
2295 | ||
2296 | return NULL; | |
2297 | } | |
2298 | ||
422148d3 DDAG |
2299 | /* Some of the softmmu routines need to translate from a host pointer |
2300 | (typically a TLB entry) back to a ram offset. */ | |
07bdaa41 | 2301 | ram_addr_t qemu_ram_addr_from_host(void *ptr) |
422148d3 DDAG |
2302 | { |
2303 | RAMBlock *block; | |
f615f396 | 2304 | ram_addr_t offset; |
422148d3 | 2305 | |
f615f396 | 2306 | block = qemu_ram_block_from_host(ptr, false, &offset); |
422148d3 | 2307 | if (!block) { |
07bdaa41 | 2308 | return RAM_ADDR_INVALID; |
422148d3 DDAG |
2309 | } |
2310 | ||
07bdaa41 | 2311 | return block->offset + offset; |
e890261f | 2312 | } |
f471a17e | 2313 | |
49b24afc | 2314 | /* Called within RCU critical section. */ |
a8170e5e | 2315 | static void notdirty_mem_write(void *opaque, hwaddr ram_addr, |
0e0df1e2 | 2316 | uint64_t val, unsigned size) |
9fa3e853 | 2317 | { |
ba051fb5 AB |
2318 | bool locked = false; |
2319 | ||
5aa1ef71 | 2320 | assert(tcg_enabled()); |
52159192 | 2321 | if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { |
ba051fb5 AB |
2322 | locked = true; |
2323 | tb_lock(); | |
0e0df1e2 | 2324 | tb_invalidate_phys_page_fast(ram_addr, size); |
3a7d929e | 2325 | } |
0e0df1e2 AK |
2326 | switch (size) { |
2327 | case 1: | |
0878d0e1 | 2328 | stb_p(qemu_map_ram_ptr(NULL, ram_addr), val); |
0e0df1e2 AK |
2329 | break; |
2330 | case 2: | |
0878d0e1 | 2331 | stw_p(qemu_map_ram_ptr(NULL, ram_addr), val); |
0e0df1e2 AK |
2332 | break; |
2333 | case 4: | |
0878d0e1 | 2334 | stl_p(qemu_map_ram_ptr(NULL, ram_addr), val); |
0e0df1e2 AK |
2335 | break; |
2336 | default: | |
2337 | abort(); | |
3a7d929e | 2338 | } |
ba051fb5 AB |
2339 | |
2340 | if (locked) { | |
2341 | tb_unlock(); | |
2342 | } | |
2343 | ||
58d2707e PB |
2344 | /* Set both VGA and migration bits for simplicity and to remove |
2345 | * the notdirty callback faster. | |
2346 | */ | |
2347 | cpu_physical_memory_set_dirty_range(ram_addr, size, | |
2348 | DIRTY_CLIENTS_NOCODE); | |
f23db169 FB |
2349 | /* we remove the notdirty callback only if the code has been |
2350 | flushed */ | |
a2cd8c85 | 2351 | if (!cpu_physical_memory_is_clean(ram_addr)) { |
bcae01e4 | 2352 | tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr); |
4917cf44 | 2353 | } |
9fa3e853 FB |
2354 | } |
2355 | ||
b018ddf6 PB |
2356 | static bool notdirty_mem_accepts(void *opaque, hwaddr addr, |
2357 | unsigned size, bool is_write) | |
2358 | { | |
2359 | return is_write; | |
2360 | } | |
2361 | ||
0e0df1e2 | 2362 | static const MemoryRegionOps notdirty_mem_ops = { |
0e0df1e2 | 2363 | .write = notdirty_mem_write, |
b018ddf6 | 2364 | .valid.accepts = notdirty_mem_accepts, |
0e0df1e2 | 2365 | .endianness = DEVICE_NATIVE_ENDIAN, |
1ccde1cb FB |
2366 | }; |
2367 | ||
0f459d16 | 2368 | /* Generate a debug exception if a watchpoint has been hit. */ |
66b9b43c | 2369 | static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags) |
0f459d16 | 2370 | { |
93afeade | 2371 | CPUState *cpu = current_cpu; |
568496c0 | 2372 | CPUClass *cc = CPU_GET_CLASS(cpu); |
93afeade | 2373 | CPUArchState *env = cpu->env_ptr; |
06d55cc1 | 2374 | target_ulong pc, cs_base; |
0f459d16 | 2375 | target_ulong vaddr; |
a1d1bb31 | 2376 | CPUWatchpoint *wp; |
89fee74a | 2377 | uint32_t cpu_flags; |
0f459d16 | 2378 | |
5aa1ef71 | 2379 | assert(tcg_enabled()); |
ff4700b0 | 2380 | if (cpu->watchpoint_hit) { |
06d55cc1 AL |
2381 | /* We re-entered the check after replacing the TB. Now raise |
2382 | * the debug interrupt so that is will trigger after the | |
2383 | * current instruction. */ | |
93afeade | 2384 | cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG); |
06d55cc1 AL |
2385 | return; |
2386 | } | |
93afeade | 2387 | vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset; |
40612000 | 2388 | vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len); |
ff4700b0 | 2389 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d PM |
2390 | if (cpu_watchpoint_address_matches(wp, vaddr, len) |
2391 | && (wp->flags & flags)) { | |
08225676 PM |
2392 | if (flags == BP_MEM_READ) { |
2393 | wp->flags |= BP_WATCHPOINT_HIT_READ; | |
2394 | } else { | |
2395 | wp->flags |= BP_WATCHPOINT_HIT_WRITE; | |
2396 | } | |
2397 | wp->hitaddr = vaddr; | |
66b9b43c | 2398 | wp->hitattrs = attrs; |
ff4700b0 | 2399 | if (!cpu->watchpoint_hit) { |
568496c0 SF |
2400 | if (wp->flags & BP_CPU && |
2401 | !cc->debug_check_watchpoint(cpu, wp)) { | |
2402 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
2403 | continue; | |
2404 | } | |
ff4700b0 | 2405 | cpu->watchpoint_hit = wp; |
a5e99826 | 2406 | |
8d04fb55 JK |
2407 | /* Both tb_lock and iothread_mutex will be reset when |
2408 | * cpu_loop_exit or cpu_loop_exit_noexc longjmp | |
2409 | * back into the cpu_exec main loop. | |
a5e99826 FK |
2410 | */ |
2411 | tb_lock(); | |
239c51a5 | 2412 | tb_check_watchpoint(cpu); |
6e140f28 | 2413 | if (wp->flags & BP_STOP_BEFORE_ACCESS) { |
27103424 | 2414 | cpu->exception_index = EXCP_DEBUG; |
5638d180 | 2415 | cpu_loop_exit(cpu); |
6e140f28 AL |
2416 | } else { |
2417 | cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags); | |
648f034c | 2418 | tb_gen_code(cpu, pc, cs_base, cpu_flags, 1); |
6886b980 | 2419 | cpu_loop_exit_noexc(cpu); |
6e140f28 | 2420 | } |
06d55cc1 | 2421 | } |
6e140f28 AL |
2422 | } else { |
2423 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
0f459d16 PB |
2424 | } |
2425 | } | |
2426 | } | |
2427 | ||
6658ffb8 PB |
2428 | /* Watchpoint access routines. Watchpoints are inserted using TLB tricks, |
2429 | so these check for a hit then pass through to the normal out-of-line | |
2430 | phys routines. */ | |
66b9b43c PM |
2431 | static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata, |
2432 | unsigned size, MemTxAttrs attrs) | |
6658ffb8 | 2433 | { |
66b9b43c PM |
2434 | MemTxResult res; |
2435 | uint64_t data; | |
79ed0416 PM |
2436 | int asidx = cpu_asidx_from_attrs(current_cpu, attrs); |
2437 | AddressSpace *as = current_cpu->cpu_ases[asidx].as; | |
66b9b43c PM |
2438 | |
2439 | check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ); | |
1ec9b909 | 2440 | switch (size) { |
66b9b43c | 2441 | case 1: |
79ed0416 | 2442 | data = address_space_ldub(as, addr, attrs, &res); |
66b9b43c PM |
2443 | break; |
2444 | case 2: | |
79ed0416 | 2445 | data = address_space_lduw(as, addr, attrs, &res); |
66b9b43c PM |
2446 | break; |
2447 | case 4: | |
79ed0416 | 2448 | data = address_space_ldl(as, addr, attrs, &res); |
66b9b43c | 2449 | break; |
1ec9b909 AK |
2450 | default: abort(); |
2451 | } | |
66b9b43c PM |
2452 | *pdata = data; |
2453 | return res; | |
6658ffb8 PB |
2454 | } |
2455 | ||
66b9b43c PM |
2456 | static MemTxResult watch_mem_write(void *opaque, hwaddr addr, |
2457 | uint64_t val, unsigned size, | |
2458 | MemTxAttrs attrs) | |
6658ffb8 | 2459 | { |
66b9b43c | 2460 | MemTxResult res; |
79ed0416 PM |
2461 | int asidx = cpu_asidx_from_attrs(current_cpu, attrs); |
2462 | AddressSpace *as = current_cpu->cpu_ases[asidx].as; | |
66b9b43c PM |
2463 | |
2464 | check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE); | |
1ec9b909 | 2465 | switch (size) { |
67364150 | 2466 | case 1: |
79ed0416 | 2467 | address_space_stb(as, addr, val, attrs, &res); |
67364150 MF |
2468 | break; |
2469 | case 2: | |
79ed0416 | 2470 | address_space_stw(as, addr, val, attrs, &res); |
67364150 MF |
2471 | break; |
2472 | case 4: | |
79ed0416 | 2473 | address_space_stl(as, addr, val, attrs, &res); |
67364150 | 2474 | break; |
1ec9b909 AK |
2475 | default: abort(); |
2476 | } | |
66b9b43c | 2477 | return res; |
6658ffb8 PB |
2478 | } |
2479 | ||
1ec9b909 | 2480 | static const MemoryRegionOps watch_mem_ops = { |
66b9b43c PM |
2481 | .read_with_attrs = watch_mem_read, |
2482 | .write_with_attrs = watch_mem_write, | |
1ec9b909 | 2483 | .endianness = DEVICE_NATIVE_ENDIAN, |
6658ffb8 | 2484 | }; |
6658ffb8 | 2485 | |
f25a49e0 PM |
2486 | static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data, |
2487 | unsigned len, MemTxAttrs attrs) | |
db7b5426 | 2488 | { |
acc9d80b | 2489 | subpage_t *subpage = opaque; |
ff6cff75 | 2490 | uint8_t buf[8]; |
5c9eb028 | 2491 | MemTxResult res; |
791af8c8 | 2492 | |
db7b5426 | 2493 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2494 | printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__, |
acc9d80b | 2495 | subpage, len, addr); |
db7b5426 | 2496 | #endif |
5c9eb028 PM |
2497 | res = address_space_read(subpage->as, addr + subpage->base, |
2498 | attrs, buf, len); | |
2499 | if (res) { | |
2500 | return res; | |
f25a49e0 | 2501 | } |
acc9d80b JK |
2502 | switch (len) { |
2503 | case 1: | |
f25a49e0 PM |
2504 | *data = ldub_p(buf); |
2505 | return MEMTX_OK; | |
acc9d80b | 2506 | case 2: |
f25a49e0 PM |
2507 | *data = lduw_p(buf); |
2508 | return MEMTX_OK; | |
acc9d80b | 2509 | case 4: |
f25a49e0 PM |
2510 | *data = ldl_p(buf); |
2511 | return MEMTX_OK; | |
ff6cff75 | 2512 | case 8: |
f25a49e0 PM |
2513 | *data = ldq_p(buf); |
2514 | return MEMTX_OK; | |
acc9d80b JK |
2515 | default: |
2516 | abort(); | |
2517 | } | |
db7b5426 BS |
2518 | } |
2519 | ||
f25a49e0 PM |
2520 | static MemTxResult subpage_write(void *opaque, hwaddr addr, |
2521 | uint64_t value, unsigned len, MemTxAttrs attrs) | |
db7b5426 | 2522 | { |
acc9d80b | 2523 | subpage_t *subpage = opaque; |
ff6cff75 | 2524 | uint8_t buf[8]; |
acc9d80b | 2525 | |
db7b5426 | 2526 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2527 | printf("%s: subpage %p len %u addr " TARGET_FMT_plx |
acc9d80b JK |
2528 | " value %"PRIx64"\n", |
2529 | __func__, subpage, len, addr, value); | |
db7b5426 | 2530 | #endif |
acc9d80b JK |
2531 | switch (len) { |
2532 | case 1: | |
2533 | stb_p(buf, value); | |
2534 | break; | |
2535 | case 2: | |
2536 | stw_p(buf, value); | |
2537 | break; | |
2538 | case 4: | |
2539 | stl_p(buf, value); | |
2540 | break; | |
ff6cff75 PB |
2541 | case 8: |
2542 | stq_p(buf, value); | |
2543 | break; | |
acc9d80b JK |
2544 | default: |
2545 | abort(); | |
2546 | } | |
5c9eb028 PM |
2547 | return address_space_write(subpage->as, addr + subpage->base, |
2548 | attrs, buf, len); | |
db7b5426 BS |
2549 | } |
2550 | ||
c353e4cc | 2551 | static bool subpage_accepts(void *opaque, hwaddr addr, |
016e9d62 | 2552 | unsigned len, bool is_write) |
c353e4cc | 2553 | { |
acc9d80b | 2554 | subpage_t *subpage = opaque; |
c353e4cc | 2555 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2556 | printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n", |
acc9d80b | 2557 | __func__, subpage, is_write ? 'w' : 'r', len, addr); |
c353e4cc PB |
2558 | #endif |
2559 | ||
acc9d80b | 2560 | return address_space_access_valid(subpage->as, addr + subpage->base, |
016e9d62 | 2561 | len, is_write); |
c353e4cc PB |
2562 | } |
2563 | ||
70c68e44 | 2564 | static const MemoryRegionOps subpage_ops = { |
f25a49e0 PM |
2565 | .read_with_attrs = subpage_read, |
2566 | .write_with_attrs = subpage_write, | |
ff6cff75 PB |
2567 | .impl.min_access_size = 1, |
2568 | .impl.max_access_size = 8, | |
2569 | .valid.min_access_size = 1, | |
2570 | .valid.max_access_size = 8, | |
c353e4cc | 2571 | .valid.accepts = subpage_accepts, |
70c68e44 | 2572 | .endianness = DEVICE_NATIVE_ENDIAN, |
db7b5426 BS |
2573 | }; |
2574 | ||
c227f099 | 2575 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, |
5312bd8b | 2576 | uint16_t section) |
db7b5426 BS |
2577 | { |
2578 | int idx, eidx; | |
2579 | ||
2580 | if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) | |
2581 | return -1; | |
2582 | idx = SUBPAGE_IDX(start); | |
2583 | eidx = SUBPAGE_IDX(end); | |
2584 | #if defined(DEBUG_SUBPAGE) | |
016e9d62 AK |
2585 | printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", |
2586 | __func__, mmio, start, end, idx, eidx, section); | |
db7b5426 | 2587 | #endif |
db7b5426 | 2588 | for (; idx <= eidx; idx++) { |
5312bd8b | 2589 | mmio->sub_section[idx] = section; |
db7b5426 BS |
2590 | } |
2591 | ||
2592 | return 0; | |
2593 | } | |
2594 | ||
acc9d80b | 2595 | static subpage_t *subpage_init(AddressSpace *as, hwaddr base) |
db7b5426 | 2596 | { |
c227f099 | 2597 | subpage_t *mmio; |
db7b5426 | 2598 | |
2615fabd | 2599 | mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t)); |
acc9d80b | 2600 | mmio->as = as; |
1eec614b | 2601 | mmio->base = base; |
2c9b15ca | 2602 | memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, |
b4fefef9 | 2603 | NULL, TARGET_PAGE_SIZE); |
b3b00c78 | 2604 | mmio->iomem.subpage = true; |
db7b5426 | 2605 | #if defined(DEBUG_SUBPAGE) |
016e9d62 AK |
2606 | printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__, |
2607 | mmio, base, TARGET_PAGE_SIZE); | |
db7b5426 | 2608 | #endif |
b41aac4f | 2609 | subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED); |
db7b5426 BS |
2610 | |
2611 | return mmio; | |
2612 | } | |
2613 | ||
a656e22f PC |
2614 | static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as, |
2615 | MemoryRegion *mr) | |
5312bd8b | 2616 | { |
a656e22f | 2617 | assert(as); |
5312bd8b | 2618 | MemoryRegionSection section = { |
a656e22f | 2619 | .address_space = as, |
5312bd8b AK |
2620 | .mr = mr, |
2621 | .offset_within_address_space = 0, | |
2622 | .offset_within_region = 0, | |
052e87b0 | 2623 | .size = int128_2_64(), |
5312bd8b AK |
2624 | }; |
2625 | ||
53cb28cb | 2626 | return phys_section_add(map, §ion); |
5312bd8b AK |
2627 | } |
2628 | ||
a54c87b6 | 2629 | MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs) |
aa102231 | 2630 | { |
a54c87b6 PM |
2631 | int asidx = cpu_asidx_from_attrs(cpu, attrs); |
2632 | CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx]; | |
32857f4d | 2633 | AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch); |
79e2b9ae | 2634 | MemoryRegionSection *sections = d->map.sections; |
9d82b5a7 PB |
2635 | |
2636 | return sections[index & ~TARGET_PAGE_MASK].mr; | |
aa102231 AK |
2637 | } |
2638 | ||
e9179ce1 AK |
2639 | static void io_mem_init(void) |
2640 | { | |
1f6245e5 | 2641 | memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX); |
2c9b15ca | 2642 | memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, |
1f6245e5 | 2643 | NULL, UINT64_MAX); |
8d04fb55 JK |
2644 | |
2645 | /* io_mem_notdirty calls tb_invalidate_phys_page_fast, | |
2646 | * which can be called without the iothread mutex. | |
2647 | */ | |
2c9b15ca | 2648 | memory_region_init_io(&io_mem_notdirty, NULL, ¬dirty_mem_ops, NULL, |
1f6245e5 | 2649 | NULL, UINT64_MAX); |
8d04fb55 JK |
2650 | memory_region_clear_global_locking(&io_mem_notdirty); |
2651 | ||
2c9b15ca | 2652 | memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL, |
1f6245e5 | 2653 | NULL, UINT64_MAX); |
e9179ce1 AK |
2654 | } |
2655 | ||
ac1970fb | 2656 | static void mem_begin(MemoryListener *listener) |
00752703 PB |
2657 | { |
2658 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); | |
53cb28cb MA |
2659 | AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); |
2660 | uint16_t n; | |
2661 | ||
a656e22f | 2662 | n = dummy_section(&d->map, as, &io_mem_unassigned); |
53cb28cb | 2663 | assert(n == PHYS_SECTION_UNASSIGNED); |
a656e22f | 2664 | n = dummy_section(&d->map, as, &io_mem_notdirty); |
53cb28cb | 2665 | assert(n == PHYS_SECTION_NOTDIRTY); |
a656e22f | 2666 | n = dummy_section(&d->map, as, &io_mem_rom); |
53cb28cb | 2667 | assert(n == PHYS_SECTION_ROM); |
a656e22f | 2668 | n = dummy_section(&d->map, as, &io_mem_watch); |
53cb28cb | 2669 | assert(n == PHYS_SECTION_WATCH); |
00752703 | 2670 | |
9736e55b | 2671 | d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; |
00752703 PB |
2672 | d->as = as; |
2673 | as->next_dispatch = d; | |
2674 | } | |
2675 | ||
79e2b9ae PB |
2676 | static void address_space_dispatch_free(AddressSpaceDispatch *d) |
2677 | { | |
2678 | phys_sections_free(&d->map); | |
2679 | g_free(d); | |
2680 | } | |
2681 | ||
00752703 | 2682 | static void mem_commit(MemoryListener *listener) |
ac1970fb | 2683 | { |
89ae337a | 2684 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); |
0475d94f PB |
2685 | AddressSpaceDispatch *cur = as->dispatch; |
2686 | AddressSpaceDispatch *next = as->next_dispatch; | |
2687 | ||
53cb28cb | 2688 | phys_page_compact_all(next, next->map.nodes_nb); |
b35ba30f | 2689 | |
79e2b9ae | 2690 | atomic_rcu_set(&as->dispatch, next); |
53cb28cb | 2691 | if (cur) { |
79e2b9ae | 2692 | call_rcu(cur, address_space_dispatch_free, rcu); |
53cb28cb | 2693 | } |
9affd6fc PB |
2694 | } |
2695 | ||
1d71148e | 2696 | static void tcg_commit(MemoryListener *listener) |
50c1e149 | 2697 | { |
32857f4d PM |
2698 | CPUAddressSpace *cpuas; |
2699 | AddressSpaceDispatch *d; | |
117712c3 AK |
2700 | |
2701 | /* since each CPU stores ram addresses in its TLB cache, we must | |
2702 | reset the modified entries */ | |
32857f4d PM |
2703 | cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); |
2704 | cpu_reloading_memory_map(); | |
2705 | /* The CPU and TLB are protected by the iothread lock. | |
2706 | * We reload the dispatch pointer now because cpu_reloading_memory_map() | |
2707 | * may have split the RCU critical section. | |
2708 | */ | |
2709 | d = atomic_rcu_read(&cpuas->as->dispatch); | |
f35e44e7 | 2710 | atomic_rcu_set(&cpuas->memory_dispatch, d); |
d10eb08f | 2711 | tlb_flush(cpuas->cpu); |
50c1e149 AK |
2712 | } |
2713 | ||
ac1970fb AK |
2714 | void address_space_init_dispatch(AddressSpace *as) |
2715 | { | |
00752703 | 2716 | as->dispatch = NULL; |
89ae337a | 2717 | as->dispatch_listener = (MemoryListener) { |
ac1970fb | 2718 | .begin = mem_begin, |
00752703 | 2719 | .commit = mem_commit, |
ac1970fb AK |
2720 | .region_add = mem_add, |
2721 | .region_nop = mem_add, | |
2722 | .priority = 0, | |
2723 | }; | |
89ae337a | 2724 | memory_listener_register(&as->dispatch_listener, as); |
ac1970fb AK |
2725 | } |
2726 | ||
6e48e8f9 PB |
2727 | void address_space_unregister(AddressSpace *as) |
2728 | { | |
2729 | memory_listener_unregister(&as->dispatch_listener); | |
2730 | } | |
2731 | ||
83f3c251 AK |
2732 | void address_space_destroy_dispatch(AddressSpace *as) |
2733 | { | |
2734 | AddressSpaceDispatch *d = as->dispatch; | |
2735 | ||
79e2b9ae PB |
2736 | atomic_rcu_set(&as->dispatch, NULL); |
2737 | if (d) { | |
2738 | call_rcu(d, address_space_dispatch_free, rcu); | |
2739 | } | |
83f3c251 AK |
2740 | } |
2741 | ||
62152b8a AK |
2742 | static void memory_map_init(void) |
2743 | { | |
7267c094 | 2744 | system_memory = g_malloc(sizeof(*system_memory)); |
03f49957 | 2745 | |
57271d63 | 2746 | memory_region_init(system_memory, NULL, "system", UINT64_MAX); |
7dca8043 | 2747 | address_space_init(&address_space_memory, system_memory, "memory"); |
309cb471 | 2748 | |
7267c094 | 2749 | system_io = g_malloc(sizeof(*system_io)); |
3bb28b72 JK |
2750 | memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", |
2751 | 65536); | |
7dca8043 | 2752 | address_space_init(&address_space_io, system_io, "I/O"); |
62152b8a AK |
2753 | } |
2754 | ||
2755 | MemoryRegion *get_system_memory(void) | |
2756 | { | |
2757 | return system_memory; | |
2758 | } | |
2759 | ||
309cb471 AK |
2760 | MemoryRegion *get_system_io(void) |
2761 | { | |
2762 | return system_io; | |
2763 | } | |
2764 | ||
e2eef170 PB |
2765 | #endif /* !defined(CONFIG_USER_ONLY) */ |
2766 | ||
13eb76e0 FB |
2767 | /* physical memory access (slow version, mainly for debug) */ |
2768 | #if defined(CONFIG_USER_ONLY) | |
f17ec444 | 2769 | int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, |
a68fe89c | 2770 | uint8_t *buf, int len, int is_write) |
13eb76e0 FB |
2771 | { |
2772 | int l, flags; | |
2773 | target_ulong page; | |
53a5960a | 2774 | void * p; |
13eb76e0 FB |
2775 | |
2776 | while (len > 0) { | |
2777 | page = addr & TARGET_PAGE_MASK; | |
2778 | l = (page + TARGET_PAGE_SIZE) - addr; | |
2779 | if (l > len) | |
2780 | l = len; | |
2781 | flags = page_get_flags(page); | |
2782 | if (!(flags & PAGE_VALID)) | |
a68fe89c | 2783 | return -1; |
13eb76e0 FB |
2784 | if (is_write) { |
2785 | if (!(flags & PAGE_WRITE)) | |
a68fe89c | 2786 | return -1; |
579a97f7 | 2787 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 2788 | if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) |
a68fe89c | 2789 | return -1; |
72fb7daa AJ |
2790 | memcpy(p, buf, l); |
2791 | unlock_user(p, addr, l); | |
13eb76e0 FB |
2792 | } else { |
2793 | if (!(flags & PAGE_READ)) | |
a68fe89c | 2794 | return -1; |
579a97f7 | 2795 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 2796 | if (!(p = lock_user(VERIFY_READ, addr, l, 1))) |
a68fe89c | 2797 | return -1; |
72fb7daa | 2798 | memcpy(buf, p, l); |
5b257578 | 2799 | unlock_user(p, addr, 0); |
13eb76e0 FB |
2800 | } |
2801 | len -= l; | |
2802 | buf += l; | |
2803 | addr += l; | |
2804 | } | |
a68fe89c | 2805 | return 0; |
13eb76e0 | 2806 | } |
8df1cd07 | 2807 | |
13eb76e0 | 2808 | #else |
51d7a9eb | 2809 | |
845b6214 | 2810 | static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, |
a8170e5e | 2811 | hwaddr length) |
51d7a9eb | 2812 | { |
e87f7778 | 2813 | uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr); |
0878d0e1 PB |
2814 | addr += memory_region_get_ram_addr(mr); |
2815 | ||
e87f7778 PB |
2816 | /* No early return if dirty_log_mask is or becomes 0, because |
2817 | * cpu_physical_memory_set_dirty_range will still call | |
2818 | * xen_modified_memory. | |
2819 | */ | |
2820 | if (dirty_log_mask) { | |
2821 | dirty_log_mask = | |
2822 | cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask); | |
2823 | } | |
2824 | if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) { | |
5aa1ef71 | 2825 | assert(tcg_enabled()); |
ba051fb5 | 2826 | tb_lock(); |
e87f7778 | 2827 | tb_invalidate_phys_range(addr, addr + length); |
ba051fb5 | 2828 | tb_unlock(); |
e87f7778 | 2829 | dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); |
51d7a9eb | 2830 | } |
e87f7778 | 2831 | cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask); |
51d7a9eb AP |
2832 | } |
2833 | ||
23326164 | 2834 | static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) |
82f2563f | 2835 | { |
e1622f4b | 2836 | unsigned access_size_max = mr->ops->valid.max_access_size; |
23326164 RH |
2837 | |
2838 | /* Regions are assumed to support 1-4 byte accesses unless | |
2839 | otherwise specified. */ | |
23326164 RH |
2840 | if (access_size_max == 0) { |
2841 | access_size_max = 4; | |
2842 | } | |
2843 | ||
2844 | /* Bound the maximum access by the alignment of the address. */ | |
2845 | if (!mr->ops->impl.unaligned) { | |
2846 | unsigned align_size_max = addr & -addr; | |
2847 | if (align_size_max != 0 && align_size_max < access_size_max) { | |
2848 | access_size_max = align_size_max; | |
2849 | } | |
82f2563f | 2850 | } |
23326164 RH |
2851 | |
2852 | /* Don't attempt accesses larger than the maximum. */ | |
2853 | if (l > access_size_max) { | |
2854 | l = access_size_max; | |
82f2563f | 2855 | } |
6554f5c0 | 2856 | l = pow2floor(l); |
23326164 RH |
2857 | |
2858 | return l; | |
82f2563f PB |
2859 | } |
2860 | ||
4840f10e | 2861 | static bool prepare_mmio_access(MemoryRegion *mr) |
125b3806 | 2862 | { |
4840f10e JK |
2863 | bool unlocked = !qemu_mutex_iothread_locked(); |
2864 | bool release_lock = false; | |
2865 | ||
2866 | if (unlocked && mr->global_locking) { | |
2867 | qemu_mutex_lock_iothread(); | |
2868 | unlocked = false; | |
2869 | release_lock = true; | |
2870 | } | |
125b3806 | 2871 | if (mr->flush_coalesced_mmio) { |
4840f10e JK |
2872 | if (unlocked) { |
2873 | qemu_mutex_lock_iothread(); | |
2874 | } | |
125b3806 | 2875 | qemu_flush_coalesced_mmio_buffer(); |
4840f10e JK |
2876 | if (unlocked) { |
2877 | qemu_mutex_unlock_iothread(); | |
2878 | } | |
125b3806 | 2879 | } |
4840f10e JK |
2880 | |
2881 | return release_lock; | |
125b3806 PB |
2882 | } |
2883 | ||
a203ac70 PB |
2884 | /* Called within RCU critical section. */ |
2885 | static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr, | |
2886 | MemTxAttrs attrs, | |
2887 | const uint8_t *buf, | |
2888 | int len, hwaddr addr1, | |
2889 | hwaddr l, MemoryRegion *mr) | |
13eb76e0 | 2890 | { |
13eb76e0 | 2891 | uint8_t *ptr; |
791af8c8 | 2892 | uint64_t val; |
3b643495 | 2893 | MemTxResult result = MEMTX_OK; |
4840f10e | 2894 | bool release_lock = false; |
3b46e624 | 2895 | |
a203ac70 | 2896 | for (;;) { |
eb7eeb88 PB |
2897 | if (!memory_access_is_direct(mr, true)) { |
2898 | release_lock |= prepare_mmio_access(mr); | |
2899 | l = memory_access_size(mr, l, addr1); | |
2900 | /* XXX: could force current_cpu to NULL to avoid | |
2901 | potential bugs */ | |
2902 | switch (l) { | |
2903 | case 8: | |
2904 | /* 64 bit write access */ | |
2905 | val = ldq_p(buf); | |
2906 | result |= memory_region_dispatch_write(mr, addr1, val, 8, | |
2907 | attrs); | |
2908 | break; | |
2909 | case 4: | |
2910 | /* 32 bit write access */ | |
6da67de6 | 2911 | val = (uint32_t)ldl_p(buf); |
eb7eeb88 PB |
2912 | result |= memory_region_dispatch_write(mr, addr1, val, 4, |
2913 | attrs); | |
2914 | break; | |
2915 | case 2: | |
2916 | /* 16 bit write access */ | |
2917 | val = lduw_p(buf); | |
2918 | result |= memory_region_dispatch_write(mr, addr1, val, 2, | |
2919 | attrs); | |
2920 | break; | |
2921 | case 1: | |
2922 | /* 8 bit write access */ | |
2923 | val = ldub_p(buf); | |
2924 | result |= memory_region_dispatch_write(mr, addr1, val, 1, | |
2925 | attrs); | |
2926 | break; | |
2927 | default: | |
2928 | abort(); | |
13eb76e0 FB |
2929 | } |
2930 | } else { | |
eb7eeb88 | 2931 | /* RAM case */ |
0878d0e1 | 2932 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
eb7eeb88 PB |
2933 | memcpy(ptr, buf, l); |
2934 | invalidate_and_set_dirty(mr, addr1, l); | |
13eb76e0 | 2935 | } |
4840f10e JK |
2936 | |
2937 | if (release_lock) { | |
2938 | qemu_mutex_unlock_iothread(); | |
2939 | release_lock = false; | |
2940 | } | |
2941 | ||
13eb76e0 FB |
2942 | len -= l; |
2943 | buf += l; | |
2944 | addr += l; | |
a203ac70 PB |
2945 | |
2946 | if (!len) { | |
2947 | break; | |
2948 | } | |
2949 | ||
2950 | l = len; | |
2951 | mr = address_space_translate(as, addr, &addr1, &l, true); | |
13eb76e0 | 2952 | } |
fd8aaa76 | 2953 | |
3b643495 | 2954 | return result; |
13eb76e0 | 2955 | } |
8df1cd07 | 2956 | |
a203ac70 PB |
2957 | MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, |
2958 | const uint8_t *buf, int len) | |
ac1970fb | 2959 | { |
eb7eeb88 | 2960 | hwaddr l; |
eb7eeb88 PB |
2961 | hwaddr addr1; |
2962 | MemoryRegion *mr; | |
2963 | MemTxResult result = MEMTX_OK; | |
eb7eeb88 | 2964 | |
a203ac70 PB |
2965 | if (len > 0) { |
2966 | rcu_read_lock(); | |
eb7eeb88 | 2967 | l = len; |
a203ac70 PB |
2968 | mr = address_space_translate(as, addr, &addr1, &l, true); |
2969 | result = address_space_write_continue(as, addr, attrs, buf, len, | |
2970 | addr1, l, mr); | |
2971 | rcu_read_unlock(); | |
2972 | } | |
2973 | ||
2974 | return result; | |
2975 | } | |
2976 | ||
2977 | /* Called within RCU critical section. */ | |
2978 | MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr, | |
2979 | MemTxAttrs attrs, uint8_t *buf, | |
2980 | int len, hwaddr addr1, hwaddr l, | |
2981 | MemoryRegion *mr) | |
2982 | { | |
2983 | uint8_t *ptr; | |
2984 | uint64_t val; | |
2985 | MemTxResult result = MEMTX_OK; | |
2986 | bool release_lock = false; | |
eb7eeb88 | 2987 | |
a203ac70 | 2988 | for (;;) { |
eb7eeb88 PB |
2989 | if (!memory_access_is_direct(mr, false)) { |
2990 | /* I/O case */ | |
2991 | release_lock |= prepare_mmio_access(mr); | |
2992 | l = memory_access_size(mr, l, addr1); | |
2993 | switch (l) { | |
2994 | case 8: | |
2995 | /* 64 bit read access */ | |
2996 | result |= memory_region_dispatch_read(mr, addr1, &val, 8, | |
2997 | attrs); | |
2998 | stq_p(buf, val); | |
2999 | break; | |
3000 | case 4: | |
3001 | /* 32 bit read access */ | |
3002 | result |= memory_region_dispatch_read(mr, addr1, &val, 4, | |
3003 | attrs); | |
3004 | stl_p(buf, val); | |
3005 | break; | |
3006 | case 2: | |
3007 | /* 16 bit read access */ | |
3008 | result |= memory_region_dispatch_read(mr, addr1, &val, 2, | |
3009 | attrs); | |
3010 | stw_p(buf, val); | |
3011 | break; | |
3012 | case 1: | |
3013 | /* 8 bit read access */ | |
3014 | result |= memory_region_dispatch_read(mr, addr1, &val, 1, | |
3015 | attrs); | |
3016 | stb_p(buf, val); | |
3017 | break; | |
3018 | default: | |
3019 | abort(); | |
3020 | } | |
3021 | } else { | |
3022 | /* RAM case */ | |
0878d0e1 | 3023 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
eb7eeb88 PB |
3024 | memcpy(buf, ptr, l); |
3025 | } | |
3026 | ||
3027 | if (release_lock) { | |
3028 | qemu_mutex_unlock_iothread(); | |
3029 | release_lock = false; | |
3030 | } | |
3031 | ||
3032 | len -= l; | |
3033 | buf += l; | |
3034 | addr += l; | |
a203ac70 PB |
3035 | |
3036 | if (!len) { | |
3037 | break; | |
3038 | } | |
3039 | ||
3040 | l = len; | |
3041 | mr = address_space_translate(as, addr, &addr1, &l, false); | |
3042 | } | |
3043 | ||
3044 | return result; | |
3045 | } | |
3046 | ||
3cc8f884 PB |
3047 | MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, |
3048 | MemTxAttrs attrs, uint8_t *buf, int len) | |
a203ac70 PB |
3049 | { |
3050 | hwaddr l; | |
3051 | hwaddr addr1; | |
3052 | MemoryRegion *mr; | |
3053 | MemTxResult result = MEMTX_OK; | |
3054 | ||
3055 | if (len > 0) { | |
3056 | rcu_read_lock(); | |
3057 | l = len; | |
3058 | mr = address_space_translate(as, addr, &addr1, &l, false); | |
3059 | result = address_space_read_continue(as, addr, attrs, buf, len, | |
3060 | addr1, l, mr); | |
3061 | rcu_read_unlock(); | |
eb7eeb88 | 3062 | } |
eb7eeb88 PB |
3063 | |
3064 | return result; | |
ac1970fb AK |
3065 | } |
3066 | ||
eb7eeb88 PB |
3067 | MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, |
3068 | uint8_t *buf, int len, bool is_write) | |
3069 | { | |
3070 | if (is_write) { | |
3071 | return address_space_write(as, addr, attrs, (uint8_t *)buf, len); | |
3072 | } else { | |
3073 | return address_space_read(as, addr, attrs, (uint8_t *)buf, len); | |
3074 | } | |
3075 | } | |
ac1970fb | 3076 | |
a8170e5e | 3077 | void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf, |
ac1970fb AK |
3078 | int len, int is_write) |
3079 | { | |
5c9eb028 PM |
3080 | address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, |
3081 | buf, len, is_write); | |
ac1970fb AK |
3082 | } |
3083 | ||
582b55a9 AG |
3084 | enum write_rom_type { |
3085 | WRITE_DATA, | |
3086 | FLUSH_CACHE, | |
3087 | }; | |
3088 | ||
2a221651 | 3089 | static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as, |
582b55a9 | 3090 | hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type) |
d0ecd2aa | 3091 | { |
149f54b5 | 3092 | hwaddr l; |
d0ecd2aa | 3093 | uint8_t *ptr; |
149f54b5 | 3094 | hwaddr addr1; |
5c8a00ce | 3095 | MemoryRegion *mr; |
3b46e624 | 3096 | |
41063e1e | 3097 | rcu_read_lock(); |
d0ecd2aa | 3098 | while (len > 0) { |
149f54b5 | 3099 | l = len; |
2a221651 | 3100 | mr = address_space_translate(as, addr, &addr1, &l, true); |
3b46e624 | 3101 | |
5c8a00ce PB |
3102 | if (!(memory_region_is_ram(mr) || |
3103 | memory_region_is_romd(mr))) { | |
b242e0e0 | 3104 | l = memory_access_size(mr, l, addr1); |
d0ecd2aa | 3105 | } else { |
d0ecd2aa | 3106 | /* ROM/RAM case */ |
0878d0e1 | 3107 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
582b55a9 AG |
3108 | switch (type) { |
3109 | case WRITE_DATA: | |
3110 | memcpy(ptr, buf, l); | |
845b6214 | 3111 | invalidate_and_set_dirty(mr, addr1, l); |
582b55a9 AG |
3112 | break; |
3113 | case FLUSH_CACHE: | |
3114 | flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l); | |
3115 | break; | |
3116 | } | |
d0ecd2aa FB |
3117 | } |
3118 | len -= l; | |
3119 | buf += l; | |
3120 | addr += l; | |
3121 | } | |
41063e1e | 3122 | rcu_read_unlock(); |
d0ecd2aa FB |
3123 | } |
3124 | ||
582b55a9 | 3125 | /* used for ROM loading : can write in RAM and ROM */ |
2a221651 | 3126 | void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr, |
582b55a9 AG |
3127 | const uint8_t *buf, int len) |
3128 | { | |
2a221651 | 3129 | cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA); |
582b55a9 AG |
3130 | } |
3131 | ||
3132 | void cpu_flush_icache_range(hwaddr start, int len) | |
3133 | { | |
3134 | /* | |
3135 | * This function should do the same thing as an icache flush that was | |
3136 | * triggered from within the guest. For TCG we are always cache coherent, | |
3137 | * so there is no need to flush anything. For KVM / Xen we need to flush | |
3138 | * the host's instruction cache at least. | |
3139 | */ | |
3140 | if (tcg_enabled()) { | |
3141 | return; | |
3142 | } | |
3143 | ||
2a221651 EI |
3144 | cpu_physical_memory_write_rom_internal(&address_space_memory, |
3145 | start, NULL, len, FLUSH_CACHE); | |
582b55a9 AG |
3146 | } |
3147 | ||
6d16c2f8 | 3148 | typedef struct { |
d3e71559 | 3149 | MemoryRegion *mr; |
6d16c2f8 | 3150 | void *buffer; |
a8170e5e AK |
3151 | hwaddr addr; |
3152 | hwaddr len; | |
c2cba0ff | 3153 | bool in_use; |
6d16c2f8 AL |
3154 | } BounceBuffer; |
3155 | ||
3156 | static BounceBuffer bounce; | |
3157 | ||
ba223c29 | 3158 | typedef struct MapClient { |
e95205e1 | 3159 | QEMUBH *bh; |
72cf2d4f | 3160 | QLIST_ENTRY(MapClient) link; |
ba223c29 AL |
3161 | } MapClient; |
3162 | ||
38e047b5 | 3163 | QemuMutex map_client_list_lock; |
72cf2d4f BS |
3164 | static QLIST_HEAD(map_client_list, MapClient) map_client_list |
3165 | = QLIST_HEAD_INITIALIZER(map_client_list); | |
ba223c29 | 3166 | |
e95205e1 FZ |
3167 | static void cpu_unregister_map_client_do(MapClient *client) |
3168 | { | |
3169 | QLIST_REMOVE(client, link); | |
3170 | g_free(client); | |
3171 | } | |
3172 | ||
33b6c2ed FZ |
3173 | static void cpu_notify_map_clients_locked(void) |
3174 | { | |
3175 | MapClient *client; | |
3176 | ||
3177 | while (!QLIST_EMPTY(&map_client_list)) { | |
3178 | client = QLIST_FIRST(&map_client_list); | |
e95205e1 FZ |
3179 | qemu_bh_schedule(client->bh); |
3180 | cpu_unregister_map_client_do(client); | |
33b6c2ed FZ |
3181 | } |
3182 | } | |
3183 | ||
e95205e1 | 3184 | void cpu_register_map_client(QEMUBH *bh) |
ba223c29 | 3185 | { |
7267c094 | 3186 | MapClient *client = g_malloc(sizeof(*client)); |
ba223c29 | 3187 | |
38e047b5 | 3188 | qemu_mutex_lock(&map_client_list_lock); |
e95205e1 | 3189 | client->bh = bh; |
72cf2d4f | 3190 | QLIST_INSERT_HEAD(&map_client_list, client, link); |
33b6c2ed FZ |
3191 | if (!atomic_read(&bounce.in_use)) { |
3192 | cpu_notify_map_clients_locked(); | |
3193 | } | |
38e047b5 | 3194 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
3195 | } |
3196 | ||
38e047b5 | 3197 | void cpu_exec_init_all(void) |
ba223c29 | 3198 | { |
38e047b5 | 3199 | qemu_mutex_init(&ram_list.mutex); |
20bccb82 PM |
3200 | /* The data structures we set up here depend on knowing the page size, |
3201 | * so no more changes can be made after this point. | |
3202 | * In an ideal world, nothing we did before we had finished the | |
3203 | * machine setup would care about the target page size, and we could | |
3204 | * do this much later, rather than requiring board models to state | |
3205 | * up front what their requirements are. | |
3206 | */ | |
3207 | finalize_target_page_bits(); | |
38e047b5 | 3208 | io_mem_init(); |
680a4783 | 3209 | memory_map_init(); |
38e047b5 | 3210 | qemu_mutex_init(&map_client_list_lock); |
ba223c29 AL |
3211 | } |
3212 | ||
e95205e1 | 3213 | void cpu_unregister_map_client(QEMUBH *bh) |
ba223c29 AL |
3214 | { |
3215 | MapClient *client; | |
3216 | ||
e95205e1 FZ |
3217 | qemu_mutex_lock(&map_client_list_lock); |
3218 | QLIST_FOREACH(client, &map_client_list, link) { | |
3219 | if (client->bh == bh) { | |
3220 | cpu_unregister_map_client_do(client); | |
3221 | break; | |
3222 | } | |
ba223c29 | 3223 | } |
e95205e1 | 3224 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
3225 | } |
3226 | ||
3227 | static void cpu_notify_map_clients(void) | |
3228 | { | |
38e047b5 | 3229 | qemu_mutex_lock(&map_client_list_lock); |
33b6c2ed | 3230 | cpu_notify_map_clients_locked(); |
38e047b5 | 3231 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
3232 | } |
3233 | ||
51644ab7 PB |
3234 | bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write) |
3235 | { | |
5c8a00ce | 3236 | MemoryRegion *mr; |
51644ab7 PB |
3237 | hwaddr l, xlat; |
3238 | ||
41063e1e | 3239 | rcu_read_lock(); |
51644ab7 PB |
3240 | while (len > 0) { |
3241 | l = len; | |
5c8a00ce PB |
3242 | mr = address_space_translate(as, addr, &xlat, &l, is_write); |
3243 | if (!memory_access_is_direct(mr, is_write)) { | |
3244 | l = memory_access_size(mr, l, addr); | |
3245 | if (!memory_region_access_valid(mr, xlat, l, is_write)) { | |
5ad4a2b7 | 3246 | rcu_read_unlock(); |
51644ab7 PB |
3247 | return false; |
3248 | } | |
3249 | } | |
3250 | ||
3251 | len -= l; | |
3252 | addr += l; | |
3253 | } | |
41063e1e | 3254 | rcu_read_unlock(); |
51644ab7 PB |
3255 | return true; |
3256 | } | |
3257 | ||
715c31ec PB |
3258 | static hwaddr |
3259 | address_space_extend_translation(AddressSpace *as, hwaddr addr, hwaddr target_len, | |
3260 | MemoryRegion *mr, hwaddr base, hwaddr len, | |
3261 | bool is_write) | |
3262 | { | |
3263 | hwaddr done = 0; | |
3264 | hwaddr xlat; | |
3265 | MemoryRegion *this_mr; | |
3266 | ||
3267 | for (;;) { | |
3268 | target_len -= len; | |
3269 | addr += len; | |
3270 | done += len; | |
3271 | if (target_len == 0) { | |
3272 | return done; | |
3273 | } | |
3274 | ||
3275 | len = target_len; | |
3276 | this_mr = address_space_translate(as, addr, &xlat, &len, is_write); | |
3277 | if (this_mr != mr || xlat != base + done) { | |
3278 | return done; | |
3279 | } | |
3280 | } | |
3281 | } | |
3282 | ||
6d16c2f8 AL |
3283 | /* Map a physical memory region into a host virtual address. |
3284 | * May map a subset of the requested range, given by and returned in *plen. | |
3285 | * May return NULL if resources needed to perform the mapping are exhausted. | |
3286 | * Use only for reads OR writes - not for read-modify-write operations. | |
ba223c29 AL |
3287 | * Use cpu_register_map_client() to know when retrying the map operation is |
3288 | * likely to succeed. | |
6d16c2f8 | 3289 | */ |
ac1970fb | 3290 | void *address_space_map(AddressSpace *as, |
a8170e5e AK |
3291 | hwaddr addr, |
3292 | hwaddr *plen, | |
ac1970fb | 3293 | bool is_write) |
6d16c2f8 | 3294 | { |
a8170e5e | 3295 | hwaddr len = *plen; |
715c31ec PB |
3296 | hwaddr l, xlat; |
3297 | MemoryRegion *mr; | |
e81bcda5 | 3298 | void *ptr; |
6d16c2f8 | 3299 | |
e3127ae0 PB |
3300 | if (len == 0) { |
3301 | return NULL; | |
3302 | } | |
38bee5dc | 3303 | |
e3127ae0 | 3304 | l = len; |
41063e1e | 3305 | rcu_read_lock(); |
e3127ae0 | 3306 | mr = address_space_translate(as, addr, &xlat, &l, is_write); |
41063e1e | 3307 | |
e3127ae0 | 3308 | if (!memory_access_is_direct(mr, is_write)) { |
c2cba0ff | 3309 | if (atomic_xchg(&bounce.in_use, true)) { |
41063e1e | 3310 | rcu_read_unlock(); |
e3127ae0 | 3311 | return NULL; |
6d16c2f8 | 3312 | } |
e85d9db5 KW |
3313 | /* Avoid unbounded allocations */ |
3314 | l = MIN(l, TARGET_PAGE_SIZE); | |
3315 | bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l); | |
e3127ae0 PB |
3316 | bounce.addr = addr; |
3317 | bounce.len = l; | |
d3e71559 PB |
3318 | |
3319 | memory_region_ref(mr); | |
3320 | bounce.mr = mr; | |
e3127ae0 | 3321 | if (!is_write) { |
5c9eb028 PM |
3322 | address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED, |
3323 | bounce.buffer, l); | |
8ab934f9 | 3324 | } |
6d16c2f8 | 3325 | |
41063e1e | 3326 | rcu_read_unlock(); |
e3127ae0 PB |
3327 | *plen = l; |
3328 | return bounce.buffer; | |
3329 | } | |
3330 | ||
e3127ae0 | 3331 | |
d3e71559 | 3332 | memory_region_ref(mr); |
715c31ec PB |
3333 | *plen = address_space_extend_translation(as, addr, len, mr, xlat, l, is_write); |
3334 | ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen); | |
e81bcda5 PB |
3335 | rcu_read_unlock(); |
3336 | ||
3337 | return ptr; | |
6d16c2f8 AL |
3338 | } |
3339 | ||
ac1970fb | 3340 | /* Unmaps a memory region previously mapped by address_space_map(). |
6d16c2f8 AL |
3341 | * Will also mark the memory as dirty if is_write == 1. access_len gives |
3342 | * the amount of memory that was actually read or written by the caller. | |
3343 | */ | |
a8170e5e AK |
3344 | void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, |
3345 | int is_write, hwaddr access_len) | |
6d16c2f8 AL |
3346 | { |
3347 | if (buffer != bounce.buffer) { | |
d3e71559 PB |
3348 | MemoryRegion *mr; |
3349 | ram_addr_t addr1; | |
3350 | ||
07bdaa41 | 3351 | mr = memory_region_from_host(buffer, &addr1); |
d3e71559 | 3352 | assert(mr != NULL); |
6d16c2f8 | 3353 | if (is_write) { |
845b6214 | 3354 | invalidate_and_set_dirty(mr, addr1, access_len); |
6d16c2f8 | 3355 | } |
868bb33f | 3356 | if (xen_enabled()) { |
e41d7c69 | 3357 | xen_invalidate_map_cache_entry(buffer); |
050a0ddf | 3358 | } |
d3e71559 | 3359 | memory_region_unref(mr); |
6d16c2f8 AL |
3360 | return; |
3361 | } | |
3362 | if (is_write) { | |
5c9eb028 PM |
3363 | address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED, |
3364 | bounce.buffer, access_len); | |
6d16c2f8 | 3365 | } |
f8a83245 | 3366 | qemu_vfree(bounce.buffer); |
6d16c2f8 | 3367 | bounce.buffer = NULL; |
d3e71559 | 3368 | memory_region_unref(bounce.mr); |
c2cba0ff | 3369 | atomic_mb_set(&bounce.in_use, false); |
ba223c29 | 3370 | cpu_notify_map_clients(); |
6d16c2f8 | 3371 | } |
d0ecd2aa | 3372 | |
a8170e5e AK |
3373 | void *cpu_physical_memory_map(hwaddr addr, |
3374 | hwaddr *plen, | |
ac1970fb AK |
3375 | int is_write) |
3376 | { | |
3377 | return address_space_map(&address_space_memory, addr, plen, is_write); | |
3378 | } | |
3379 | ||
a8170e5e AK |
3380 | void cpu_physical_memory_unmap(void *buffer, hwaddr len, |
3381 | int is_write, hwaddr access_len) | |
ac1970fb AK |
3382 | { |
3383 | return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); | |
3384 | } | |
3385 | ||
0ce265ff PB |
3386 | #define ARG1_DECL AddressSpace *as |
3387 | #define ARG1 as | |
3388 | #define SUFFIX | |
3389 | #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__) | |
3390 | #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write) | |
3391 | #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs) | |
3392 | #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len) | |
3393 | #define RCU_READ_LOCK(...) rcu_read_lock() | |
3394 | #define RCU_READ_UNLOCK(...) rcu_read_unlock() | |
3395 | #include "memory_ldst.inc.c" | |
1e78bcc1 | 3396 | |
1f4e496e PB |
3397 | int64_t address_space_cache_init(MemoryRegionCache *cache, |
3398 | AddressSpace *as, | |
3399 | hwaddr addr, | |
3400 | hwaddr len, | |
3401 | bool is_write) | |
3402 | { | |
90c4fe5f PB |
3403 | cache->len = len; |
3404 | cache->as = as; | |
3405 | cache->xlat = addr; | |
3406 | return len; | |
1f4e496e PB |
3407 | } |
3408 | ||
3409 | void address_space_cache_invalidate(MemoryRegionCache *cache, | |
3410 | hwaddr addr, | |
3411 | hwaddr access_len) | |
3412 | { | |
1f4e496e PB |
3413 | } |
3414 | ||
3415 | void address_space_cache_destroy(MemoryRegionCache *cache) | |
3416 | { | |
90c4fe5f | 3417 | cache->as = NULL; |
1f4e496e PB |
3418 | } |
3419 | ||
3420 | #define ARG1_DECL MemoryRegionCache *cache | |
3421 | #define ARG1 cache | |
3422 | #define SUFFIX _cached | |
90c4fe5f PB |
3423 | #define TRANSLATE(addr, ...) \ |
3424 | address_space_translate(cache->as, cache->xlat + (addr), __VA_ARGS__) | |
1f4e496e | 3425 | #define IS_DIRECT(mr, is_write) true |
90c4fe5f PB |
3426 | #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs) |
3427 | #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len) | |
3428 | #define RCU_READ_LOCK() rcu_read_lock() | |
3429 | #define RCU_READ_UNLOCK() rcu_read_unlock() | |
1f4e496e PB |
3430 | #include "memory_ldst.inc.c" |
3431 | ||
5e2972fd | 3432 | /* virtual memory access for debug (includes writing to ROM) */ |
f17ec444 | 3433 | int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, |
b448f2f3 | 3434 | uint8_t *buf, int len, int is_write) |
13eb76e0 FB |
3435 | { |
3436 | int l; | |
a8170e5e | 3437 | hwaddr phys_addr; |
9b3c35e0 | 3438 | target_ulong page; |
13eb76e0 | 3439 | |
79ca7a1b | 3440 | cpu_synchronize_state(cpu); |
13eb76e0 | 3441 | while (len > 0) { |
5232e4c7 PM |
3442 | int asidx; |
3443 | MemTxAttrs attrs; | |
3444 | ||
13eb76e0 | 3445 | page = addr & TARGET_PAGE_MASK; |
5232e4c7 PM |
3446 | phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs); |
3447 | asidx = cpu_asidx_from_attrs(cpu, attrs); | |
13eb76e0 FB |
3448 | /* if no physical page mapped, return an error */ |
3449 | if (phys_addr == -1) | |
3450 | return -1; | |
3451 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3452 | if (l > len) | |
3453 | l = len; | |
5e2972fd | 3454 | phys_addr += (addr & ~TARGET_PAGE_MASK); |
2e38847b | 3455 | if (is_write) { |
5232e4c7 PM |
3456 | cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as, |
3457 | phys_addr, buf, l); | |
2e38847b | 3458 | } else { |
5232e4c7 PM |
3459 | address_space_rw(cpu->cpu_ases[asidx].as, phys_addr, |
3460 | MEMTXATTRS_UNSPECIFIED, | |
5c9eb028 | 3461 | buf, l, 0); |
2e38847b | 3462 | } |
13eb76e0 FB |
3463 | len -= l; |
3464 | buf += l; | |
3465 | addr += l; | |
3466 | } | |
3467 | return 0; | |
3468 | } | |
038629a6 DDAG |
3469 | |
3470 | /* | |
3471 | * Allows code that needs to deal with migration bitmaps etc to still be built | |
3472 | * target independent. | |
3473 | */ | |
20afaed9 | 3474 | size_t qemu_target_page_size(void) |
038629a6 | 3475 | { |
20afaed9 | 3476 | return TARGET_PAGE_SIZE; |
038629a6 DDAG |
3477 | } |
3478 | ||
46d702b1 JQ |
3479 | int qemu_target_page_bits(void) |
3480 | { | |
3481 | return TARGET_PAGE_BITS; | |
3482 | } | |
3483 | ||
3484 | int qemu_target_page_bits_min(void) | |
3485 | { | |
3486 | return TARGET_PAGE_BITS_MIN; | |
3487 | } | |
a68fe89c | 3488 | #endif |
13eb76e0 | 3489 | |
8e4a424b BS |
3490 | /* |
3491 | * A helper function for the _utterly broken_ virtio device model to find out if | |
3492 | * it's running on a big endian machine. Don't do this at home kids! | |
3493 | */ | |
98ed8ecf GK |
3494 | bool target_words_bigendian(void); |
3495 | bool target_words_bigendian(void) | |
8e4a424b BS |
3496 | { |
3497 | #if defined(TARGET_WORDS_BIGENDIAN) | |
3498 | return true; | |
3499 | #else | |
3500 | return false; | |
3501 | #endif | |
3502 | } | |
3503 | ||
76f35538 | 3504 | #ifndef CONFIG_USER_ONLY |
a8170e5e | 3505 | bool cpu_physical_memory_is_io(hwaddr phys_addr) |
76f35538 | 3506 | { |
5c8a00ce | 3507 | MemoryRegion*mr; |
149f54b5 | 3508 | hwaddr l = 1; |
41063e1e | 3509 | bool res; |
76f35538 | 3510 | |
41063e1e | 3511 | rcu_read_lock(); |
5c8a00ce PB |
3512 | mr = address_space_translate(&address_space_memory, |
3513 | phys_addr, &phys_addr, &l, false); | |
76f35538 | 3514 | |
41063e1e PB |
3515 | res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr)); |
3516 | rcu_read_unlock(); | |
3517 | return res; | |
76f35538 | 3518 | } |
bd2fa51f | 3519 | |
e3807054 | 3520 | int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) |
bd2fa51f MH |
3521 | { |
3522 | RAMBlock *block; | |
e3807054 | 3523 | int ret = 0; |
bd2fa51f | 3524 | |
0dc3f44a | 3525 | rcu_read_lock(); |
99e15582 | 3526 | RAMBLOCK_FOREACH(block) { |
e3807054 DDAG |
3527 | ret = func(block->idstr, block->host, block->offset, |
3528 | block->used_length, opaque); | |
3529 | if (ret) { | |
3530 | break; | |
3531 | } | |
bd2fa51f | 3532 | } |
0dc3f44a | 3533 | rcu_read_unlock(); |
e3807054 | 3534 | return ret; |
bd2fa51f | 3535 | } |
d3a5038c DDAG |
3536 | |
3537 | /* | |
3538 | * Unmap pages of memory from start to start+length such that | |
3539 | * they a) read as 0, b) Trigger whatever fault mechanism | |
3540 | * the OS provides for postcopy. | |
3541 | * The pages must be unmapped by the end of the function. | |
3542 | * Returns: 0 on success, none-0 on failure | |
3543 | * | |
3544 | */ | |
3545 | int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length) | |
3546 | { | |
3547 | int ret = -1; | |
3548 | ||
3549 | uint8_t *host_startaddr = rb->host + start; | |
3550 | ||
3551 | if ((uintptr_t)host_startaddr & (rb->page_size - 1)) { | |
3552 | error_report("ram_block_discard_range: Unaligned start address: %p", | |
3553 | host_startaddr); | |
3554 | goto err; | |
3555 | } | |
3556 | ||
3557 | if ((start + length) <= rb->used_length) { | |
3558 | uint8_t *host_endaddr = host_startaddr + length; | |
3559 | if ((uintptr_t)host_endaddr & (rb->page_size - 1)) { | |
3560 | error_report("ram_block_discard_range: Unaligned end address: %p", | |
3561 | host_endaddr); | |
3562 | goto err; | |
3563 | } | |
3564 | ||
3565 | errno = ENOTSUP; /* If we are missing MADVISE etc */ | |
3566 | ||
e2fa71f5 | 3567 | if (rb->page_size == qemu_host_page_size) { |
d3a5038c | 3568 | #if defined(CONFIG_MADVISE) |
e2fa71f5 DDAG |
3569 | /* Note: We need the madvise MADV_DONTNEED behaviour of definitely |
3570 | * freeing the page. | |
3571 | */ | |
3572 | ret = madvise(host_startaddr, length, MADV_DONTNEED); | |
d3a5038c | 3573 | #endif |
e2fa71f5 DDAG |
3574 | } else { |
3575 | /* Huge page case - unfortunately it can't do DONTNEED, but | |
3576 | * it can do the equivalent by FALLOC_FL_PUNCH_HOLE in the | |
3577 | * huge page file. | |
3578 | */ | |
3579 | #ifdef CONFIG_FALLOCATE_PUNCH_HOLE | |
3580 | ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, | |
3581 | start, length); | |
3582 | #endif | |
3583 | } | |
d3a5038c DDAG |
3584 | if (ret) { |
3585 | ret = -errno; | |
3586 | error_report("ram_block_discard_range: Failed to discard range " | |
3587 | "%s:%" PRIx64 " +%zx (%d)", | |
3588 | rb->idstr, start, length, ret); | |
3589 | } | |
3590 | } else { | |
3591 | error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64 | |
3592 | "/%zx/" RAM_ADDR_FMT")", | |
3593 | rb->idstr, start, length, rb->used_length); | |
3594 | } | |
3595 | ||
3596 | err: | |
3597 | return ret; | |
3598 | } | |
3599 | ||
ec3f8c99 | 3600 | #endif |
a0be0c58 YZ |
3601 | |
3602 | void page_size_init(void) | |
3603 | { | |
3604 | /* NOTE: we can always suppose that qemu_host_page_size >= | |
3605 | TARGET_PAGE_SIZE */ | |
3606 | qemu_real_host_page_size = getpagesize(); | |
3607 | qemu_real_host_page_mask = -(intptr_t)qemu_real_host_page_size; | |
3608 | if (qemu_host_page_size == 0) { | |
3609 | qemu_host_page_size = qemu_real_host_page_size; | |
3610 | } | |
3611 | if (qemu_host_page_size < TARGET_PAGE_SIZE) { | |
3612 | qemu_host_page_size = TARGET_PAGE_SIZE; | |
3613 | } | |
3614 | qemu_host_page_mask = -(intptr_t)qemu_host_page_size; | |
3615 | } |