]>
Commit | Line | Data |
---|---|---|
54936004 | 1 | /* |
5b6dd868 | 2 | * Virtual page mapping |
5fafdf24 | 3 | * |
54936004 FB |
4 | * Copyright (c) 2003 Fabrice Bellard |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
8167ee88 | 17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
54936004 | 18 | */ |
7b31bbc2 | 19 | #include "qemu/osdep.h" |
da34e65c | 20 | #include "qapi/error.h" |
777872e5 | 21 | #ifndef _WIN32 |
d5a8f07c | 22 | #endif |
54936004 | 23 | |
f348b6d1 | 24 | #include "qemu/cutils.h" |
6180a181 | 25 | #include "cpu.h" |
63c91552 | 26 | #include "exec/exec-all.h" |
51180423 | 27 | #include "exec/target_page.h" |
b67d9a52 | 28 | #include "tcg.h" |
741da0d3 | 29 | #include "hw/qdev-core.h" |
4485bd26 | 30 | #if !defined(CONFIG_USER_ONLY) |
47c8ca53 | 31 | #include "hw/boards.h" |
33c11879 | 32 | #include "hw/xen/xen.h" |
4485bd26 | 33 | #endif |
9c17d615 | 34 | #include "sysemu/kvm.h" |
2ff3de68 | 35 | #include "sysemu/sysemu.h" |
1de7afc9 PB |
36 | #include "qemu/timer.h" |
37 | #include "qemu/config-file.h" | |
75a34036 | 38 | #include "qemu/error-report.h" |
53a5960a | 39 | #if defined(CONFIG_USER_ONLY) |
a9c94277 | 40 | #include "qemu.h" |
432d268c | 41 | #else /* !CONFIG_USER_ONLY */ |
741da0d3 PB |
42 | #include "hw/hw.h" |
43 | #include "exec/memory.h" | |
df43d49c | 44 | #include "exec/ioport.h" |
741da0d3 | 45 | #include "sysemu/dma.h" |
9c607668 | 46 | #include "sysemu/numa.h" |
79ca7a1b | 47 | #include "sysemu/hw_accel.h" |
741da0d3 | 48 | #include "exec/address-spaces.h" |
9c17d615 | 49 | #include "sysemu/xen-mapcache.h" |
0ab8ed18 | 50 | #include "trace-root.h" |
d3a5038c | 51 | |
e2fa71f5 DDAG |
52 | #ifdef CONFIG_FALLOCATE_PUNCH_HOLE |
53 | #include <fcntl.h> | |
54 | #include <linux/falloc.h> | |
55 | #endif | |
56 | ||
53a5960a | 57 | #endif |
0d6d3c87 | 58 | #include "exec/cpu-all.h" |
0dc3f44a | 59 | #include "qemu/rcu_queue.h" |
4840f10e | 60 | #include "qemu/main-loop.h" |
5b6dd868 | 61 | #include "translate-all.h" |
7615936e | 62 | #include "sysemu/replay.h" |
0cac1b66 | 63 | |
022c62cb | 64 | #include "exec/memory-internal.h" |
220c3ebd | 65 | #include "exec/ram_addr.h" |
508127e2 | 66 | #include "exec/log.h" |
67d95c15 | 67 | |
9dfeca7c BR |
68 | #include "migration/vmstate.h" |
69 | ||
b35ba30f | 70 | #include "qemu/range.h" |
794e8f30 MT |
71 | #ifndef _WIN32 |
72 | #include "qemu/mmap-alloc.h" | |
73 | #endif | |
b35ba30f | 74 | |
be9b23c4 PX |
75 | #include "monitor/monitor.h" |
76 | ||
db7b5426 | 77 | //#define DEBUG_SUBPAGE |
1196be37 | 78 | |
e2eef170 | 79 | #if !defined(CONFIG_USER_ONLY) |
0dc3f44a MD |
80 | /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes |
81 | * are protected by the ramlist lock. | |
82 | */ | |
0d53d9fe | 83 | RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; |
62152b8a AK |
84 | |
85 | static MemoryRegion *system_memory; | |
309cb471 | 86 | static MemoryRegion *system_io; |
62152b8a | 87 | |
f6790af6 AK |
88 | AddressSpace address_space_io; |
89 | AddressSpace address_space_memory; | |
2673a5da | 90 | |
0844e007 | 91 | MemoryRegion io_mem_rom, io_mem_notdirty; |
acc9d80b | 92 | static MemoryRegion io_mem_unassigned; |
0e0df1e2 | 93 | |
7bd4f430 PB |
94 | /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ |
95 | #define RAM_PREALLOC (1 << 0) | |
96 | ||
dbcb8981 PB |
97 | /* RAM is mmap-ed with MAP_SHARED */ |
98 | #define RAM_SHARED (1 << 1) | |
99 | ||
62be4e3a MT |
100 | /* Only a portion of RAM (used_length) is actually used, and migrated. |
101 | * This used_length size can change across reboots. | |
102 | */ | |
103 | #define RAM_RESIZEABLE (1 << 2) | |
104 | ||
e2eef170 | 105 | #endif |
9fa3e853 | 106 | |
20bccb82 PM |
107 | #ifdef TARGET_PAGE_BITS_VARY |
108 | int target_page_bits; | |
109 | bool target_page_bits_decided; | |
110 | #endif | |
111 | ||
bdc44640 | 112 | struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus); |
6a00d601 FB |
113 | /* current CPU in the current thread. It is only valid inside |
114 | cpu_exec() */ | |
f240eb6f | 115 | __thread CPUState *current_cpu; |
2e70f6ef | 116 | /* 0 = Do not count executed instructions. |
bf20dc07 | 117 | 1 = Precise instruction counting. |
2e70f6ef | 118 | 2 = Adaptive rate instruction counting. */ |
5708fc66 | 119 | int use_icount; |
6a00d601 | 120 | |
20bccb82 PM |
121 | bool set_preferred_target_page_bits(int bits) |
122 | { | |
123 | /* The target page size is the lowest common denominator for all | |
124 | * the CPUs in the system, so we can only make it smaller, never | |
125 | * larger. And we can't make it smaller once we've committed to | |
126 | * a particular size. | |
127 | */ | |
128 | #ifdef TARGET_PAGE_BITS_VARY | |
129 | assert(bits >= TARGET_PAGE_BITS_MIN); | |
130 | if (target_page_bits == 0 || target_page_bits > bits) { | |
131 | if (target_page_bits_decided) { | |
132 | return false; | |
133 | } | |
134 | target_page_bits = bits; | |
135 | } | |
136 | #endif | |
137 | return true; | |
138 | } | |
139 | ||
e2eef170 | 140 | #if !defined(CONFIG_USER_ONLY) |
4346ae3e | 141 | |
20bccb82 PM |
142 | static void finalize_target_page_bits(void) |
143 | { | |
144 | #ifdef TARGET_PAGE_BITS_VARY | |
145 | if (target_page_bits == 0) { | |
146 | target_page_bits = TARGET_PAGE_BITS_MIN; | |
147 | } | |
148 | target_page_bits_decided = true; | |
149 | #endif | |
150 | } | |
151 | ||
1db8abb1 PB |
152 | typedef struct PhysPageEntry PhysPageEntry; |
153 | ||
154 | struct PhysPageEntry { | |
9736e55b | 155 | /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ |
8b795765 | 156 | uint32_t skip : 6; |
9736e55b | 157 | /* index into phys_sections (!skip) or phys_map_nodes (skip) */ |
8b795765 | 158 | uint32_t ptr : 26; |
1db8abb1 PB |
159 | }; |
160 | ||
8b795765 MT |
161 | #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) |
162 | ||
03f49957 | 163 | /* Size of the L2 (and L3, etc) page tables. */ |
57271d63 | 164 | #define ADDR_SPACE_BITS 64 |
03f49957 | 165 | |
026736ce | 166 | #define P_L2_BITS 9 |
03f49957 PB |
167 | #define P_L2_SIZE (1 << P_L2_BITS) |
168 | ||
169 | #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) | |
170 | ||
171 | typedef PhysPageEntry Node[P_L2_SIZE]; | |
0475d94f | 172 | |
53cb28cb | 173 | typedef struct PhysPageMap { |
79e2b9ae PB |
174 | struct rcu_head rcu; |
175 | ||
53cb28cb MA |
176 | unsigned sections_nb; |
177 | unsigned sections_nb_alloc; | |
178 | unsigned nodes_nb; | |
179 | unsigned nodes_nb_alloc; | |
180 | Node *nodes; | |
181 | MemoryRegionSection *sections; | |
182 | } PhysPageMap; | |
183 | ||
1db8abb1 | 184 | struct AddressSpaceDispatch { |
79e2b9ae PB |
185 | struct rcu_head rcu; |
186 | ||
729633c2 | 187 | MemoryRegionSection *mru_section; |
1db8abb1 PB |
188 | /* This is a multi-level map on the physical address space. |
189 | * The bottom level has pointers to MemoryRegionSections. | |
190 | */ | |
191 | PhysPageEntry phys_map; | |
53cb28cb | 192 | PhysPageMap map; |
acc9d80b | 193 | AddressSpace *as; |
1db8abb1 PB |
194 | }; |
195 | ||
90260c6c JK |
196 | #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) |
197 | typedef struct subpage_t { | |
198 | MemoryRegion iomem; | |
acc9d80b | 199 | AddressSpace *as; |
90260c6c | 200 | hwaddr base; |
2615fabd | 201 | uint16_t sub_section[]; |
90260c6c JK |
202 | } subpage_t; |
203 | ||
b41aac4f LPF |
204 | #define PHYS_SECTION_UNASSIGNED 0 |
205 | #define PHYS_SECTION_NOTDIRTY 1 | |
206 | #define PHYS_SECTION_ROM 2 | |
207 | #define PHYS_SECTION_WATCH 3 | |
5312bd8b | 208 | |
e2eef170 | 209 | static void io_mem_init(void); |
62152b8a | 210 | static void memory_map_init(void); |
09daed84 | 211 | static void tcg_commit(MemoryListener *listener); |
e2eef170 | 212 | |
1ec9b909 | 213 | static MemoryRegion io_mem_watch; |
32857f4d PM |
214 | |
215 | /** | |
216 | * CPUAddressSpace: all the information a CPU needs about an AddressSpace | |
217 | * @cpu: the CPU whose AddressSpace this is | |
218 | * @as: the AddressSpace itself | |
219 | * @memory_dispatch: its dispatch pointer (cached, RCU protected) | |
220 | * @tcg_as_listener: listener for tracking changes to the AddressSpace | |
221 | */ | |
222 | struct CPUAddressSpace { | |
223 | CPUState *cpu; | |
224 | AddressSpace *as; | |
225 | struct AddressSpaceDispatch *memory_dispatch; | |
226 | MemoryListener tcg_as_listener; | |
227 | }; | |
228 | ||
8deaf12c GH |
229 | struct DirtyBitmapSnapshot { |
230 | ram_addr_t start; | |
231 | ram_addr_t end; | |
232 | unsigned long dirty[]; | |
233 | }; | |
234 | ||
6658ffb8 | 235 | #endif |
fd6ce8f6 | 236 | |
6d9a1304 | 237 | #if !defined(CONFIG_USER_ONLY) |
d6f2ea22 | 238 | |
53cb28cb | 239 | static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) |
d6f2ea22 | 240 | { |
101420b8 | 241 | static unsigned alloc_hint = 16; |
53cb28cb | 242 | if (map->nodes_nb + nodes > map->nodes_nb_alloc) { |
101420b8 | 243 | map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint); |
53cb28cb MA |
244 | map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes); |
245 | map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); | |
101420b8 | 246 | alloc_hint = map->nodes_nb_alloc; |
d6f2ea22 | 247 | } |
f7bf5461 AK |
248 | } |
249 | ||
db94604b | 250 | static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf) |
f7bf5461 AK |
251 | { |
252 | unsigned i; | |
8b795765 | 253 | uint32_t ret; |
db94604b PB |
254 | PhysPageEntry e; |
255 | PhysPageEntry *p; | |
f7bf5461 | 256 | |
53cb28cb | 257 | ret = map->nodes_nb++; |
db94604b | 258 | p = map->nodes[ret]; |
f7bf5461 | 259 | assert(ret != PHYS_MAP_NODE_NIL); |
53cb28cb | 260 | assert(ret != map->nodes_nb_alloc); |
db94604b PB |
261 | |
262 | e.skip = leaf ? 0 : 1; | |
263 | e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL; | |
03f49957 | 264 | for (i = 0; i < P_L2_SIZE; ++i) { |
db94604b | 265 | memcpy(&p[i], &e, sizeof(e)); |
d6f2ea22 | 266 | } |
f7bf5461 | 267 | return ret; |
d6f2ea22 AK |
268 | } |
269 | ||
53cb28cb MA |
270 | static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, |
271 | hwaddr *index, hwaddr *nb, uint16_t leaf, | |
2999097b | 272 | int level) |
f7bf5461 AK |
273 | { |
274 | PhysPageEntry *p; | |
03f49957 | 275 | hwaddr step = (hwaddr)1 << (level * P_L2_BITS); |
108c49b8 | 276 | |
9736e55b | 277 | if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { |
db94604b | 278 | lp->ptr = phys_map_node_alloc(map, level == 0); |
92e873b9 | 279 | } |
db94604b | 280 | p = map->nodes[lp->ptr]; |
03f49957 | 281 | lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; |
f7bf5461 | 282 | |
03f49957 | 283 | while (*nb && lp < &p[P_L2_SIZE]) { |
07f07b31 | 284 | if ((*index & (step - 1)) == 0 && *nb >= step) { |
9736e55b | 285 | lp->skip = 0; |
c19e8800 | 286 | lp->ptr = leaf; |
07f07b31 AK |
287 | *index += step; |
288 | *nb -= step; | |
2999097b | 289 | } else { |
53cb28cb | 290 | phys_page_set_level(map, lp, index, nb, leaf, level - 1); |
2999097b AK |
291 | } |
292 | ++lp; | |
f7bf5461 AK |
293 | } |
294 | } | |
295 | ||
ac1970fb | 296 | static void phys_page_set(AddressSpaceDispatch *d, |
a8170e5e | 297 | hwaddr index, hwaddr nb, |
2999097b | 298 | uint16_t leaf) |
f7bf5461 | 299 | { |
2999097b | 300 | /* Wildly overreserve - it doesn't matter much. */ |
53cb28cb | 301 | phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); |
5cd2c5b6 | 302 | |
53cb28cb | 303 | phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); |
92e873b9 FB |
304 | } |
305 | ||
b35ba30f MT |
306 | /* Compact a non leaf page entry. Simply detect that the entry has a single child, |
307 | * and update our entry so we can skip it and go directly to the destination. | |
308 | */ | |
efee678d | 309 | static void phys_page_compact(PhysPageEntry *lp, Node *nodes) |
b35ba30f MT |
310 | { |
311 | unsigned valid_ptr = P_L2_SIZE; | |
312 | int valid = 0; | |
313 | PhysPageEntry *p; | |
314 | int i; | |
315 | ||
316 | if (lp->ptr == PHYS_MAP_NODE_NIL) { | |
317 | return; | |
318 | } | |
319 | ||
320 | p = nodes[lp->ptr]; | |
321 | for (i = 0; i < P_L2_SIZE; i++) { | |
322 | if (p[i].ptr == PHYS_MAP_NODE_NIL) { | |
323 | continue; | |
324 | } | |
325 | ||
326 | valid_ptr = i; | |
327 | valid++; | |
328 | if (p[i].skip) { | |
efee678d | 329 | phys_page_compact(&p[i], nodes); |
b35ba30f MT |
330 | } |
331 | } | |
332 | ||
333 | /* We can only compress if there's only one child. */ | |
334 | if (valid != 1) { | |
335 | return; | |
336 | } | |
337 | ||
338 | assert(valid_ptr < P_L2_SIZE); | |
339 | ||
340 | /* Don't compress if it won't fit in the # of bits we have. */ | |
341 | if (lp->skip + p[valid_ptr].skip >= (1 << 3)) { | |
342 | return; | |
343 | } | |
344 | ||
345 | lp->ptr = p[valid_ptr].ptr; | |
346 | if (!p[valid_ptr].skip) { | |
347 | /* If our only child is a leaf, make this a leaf. */ | |
348 | /* By design, we should have made this node a leaf to begin with so we | |
349 | * should never reach here. | |
350 | * But since it's so simple to handle this, let's do it just in case we | |
351 | * change this rule. | |
352 | */ | |
353 | lp->skip = 0; | |
354 | } else { | |
355 | lp->skip += p[valid_ptr].skip; | |
356 | } | |
357 | } | |
358 | ||
359 | static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb) | |
360 | { | |
b35ba30f | 361 | if (d->phys_map.skip) { |
efee678d | 362 | phys_page_compact(&d->phys_map, d->map.nodes); |
b35ba30f MT |
363 | } |
364 | } | |
365 | ||
29cb533d FZ |
366 | static inline bool section_covers_addr(const MemoryRegionSection *section, |
367 | hwaddr addr) | |
368 | { | |
369 | /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means | |
370 | * the section must cover the entire address space. | |
371 | */ | |
258dfaaa | 372 | return int128_gethi(section->size) || |
29cb533d | 373 | range_covers_byte(section->offset_within_address_space, |
258dfaaa | 374 | int128_getlo(section->size), addr); |
29cb533d FZ |
375 | } |
376 | ||
97115a8d | 377 | static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr, |
9affd6fc | 378 | Node *nodes, MemoryRegionSection *sections) |
92e873b9 | 379 | { |
31ab2b4a | 380 | PhysPageEntry *p; |
97115a8d | 381 | hwaddr index = addr >> TARGET_PAGE_BITS; |
31ab2b4a | 382 | int i; |
f1f6e3b8 | 383 | |
9736e55b | 384 | for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { |
c19e8800 | 385 | if (lp.ptr == PHYS_MAP_NODE_NIL) { |
9affd6fc | 386 | return §ions[PHYS_SECTION_UNASSIGNED]; |
31ab2b4a | 387 | } |
9affd6fc | 388 | p = nodes[lp.ptr]; |
03f49957 | 389 | lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; |
5312bd8b | 390 | } |
b35ba30f | 391 | |
29cb533d | 392 | if (section_covers_addr(§ions[lp.ptr], addr)) { |
b35ba30f MT |
393 | return §ions[lp.ptr]; |
394 | } else { | |
395 | return §ions[PHYS_SECTION_UNASSIGNED]; | |
396 | } | |
f3705d53 AK |
397 | } |
398 | ||
e5548617 BS |
399 | bool memory_region_is_unassigned(MemoryRegion *mr) |
400 | { | |
2a8e7499 | 401 | return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device |
5b6dd868 | 402 | && mr != &io_mem_watch; |
fd6ce8f6 | 403 | } |
149f54b5 | 404 | |
79e2b9ae | 405 | /* Called from RCU critical section */ |
c7086b4a | 406 | static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, |
90260c6c JK |
407 | hwaddr addr, |
408 | bool resolve_subpage) | |
9f029603 | 409 | { |
729633c2 | 410 | MemoryRegionSection *section = atomic_read(&d->mru_section); |
90260c6c | 411 | subpage_t *subpage; |
729633c2 | 412 | bool update; |
90260c6c | 413 | |
729633c2 FZ |
414 | if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] && |
415 | section_covers_addr(section, addr)) { | |
416 | update = false; | |
417 | } else { | |
418 | section = phys_page_find(d->phys_map, addr, d->map.nodes, | |
419 | d->map.sections); | |
420 | update = true; | |
421 | } | |
90260c6c JK |
422 | if (resolve_subpage && section->mr->subpage) { |
423 | subpage = container_of(section->mr, subpage_t, iomem); | |
53cb28cb | 424 | section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; |
90260c6c | 425 | } |
729633c2 FZ |
426 | if (update) { |
427 | atomic_set(&d->mru_section, section); | |
428 | } | |
90260c6c | 429 | return section; |
9f029603 JK |
430 | } |
431 | ||
79e2b9ae | 432 | /* Called from RCU critical section */ |
90260c6c | 433 | static MemoryRegionSection * |
c7086b4a | 434 | address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, |
90260c6c | 435 | hwaddr *plen, bool resolve_subpage) |
149f54b5 PB |
436 | { |
437 | MemoryRegionSection *section; | |
965eb2fc | 438 | MemoryRegion *mr; |
a87f3954 | 439 | Int128 diff; |
149f54b5 | 440 | |
c7086b4a | 441 | section = address_space_lookup_region(d, addr, resolve_subpage); |
149f54b5 PB |
442 | /* Compute offset within MemoryRegionSection */ |
443 | addr -= section->offset_within_address_space; | |
444 | ||
445 | /* Compute offset within MemoryRegion */ | |
446 | *xlat = addr + section->offset_within_region; | |
447 | ||
965eb2fc | 448 | mr = section->mr; |
b242e0e0 PB |
449 | |
450 | /* MMIO registers can be expected to perform full-width accesses based only | |
451 | * on their address, without considering adjacent registers that could | |
452 | * decode to completely different MemoryRegions. When such registers | |
453 | * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO | |
454 | * regions overlap wildly. For this reason we cannot clamp the accesses | |
455 | * here. | |
456 | * | |
457 | * If the length is small (as is the case for address_space_ldl/stl), | |
458 | * everything works fine. If the incoming length is large, however, | |
459 | * the caller really has to do the clamping through memory_access_size. | |
460 | */ | |
965eb2fc | 461 | if (memory_region_is_ram(mr)) { |
e4a511f8 | 462 | diff = int128_sub(section->size, int128_make64(addr)); |
965eb2fc PB |
463 | *plen = int128_get64(int128_min(diff, int128_make64(*plen))); |
464 | } | |
149f54b5 PB |
465 | return section; |
466 | } | |
90260c6c | 467 | |
41063e1e | 468 | /* Called from RCU critical section */ |
a764040c PX |
469 | static MemoryRegionSection address_space_do_translate(AddressSpace *as, |
470 | hwaddr addr, | |
471 | hwaddr *xlat, | |
472 | hwaddr *plen, | |
473 | bool is_write, | |
474 | bool is_mmio) | |
052c8fa9 | 475 | { |
a764040c | 476 | IOMMUTLBEntry iotlb; |
052c8fa9 JW |
477 | MemoryRegionSection *section; |
478 | MemoryRegion *mr; | |
479 | ||
480 | for (;;) { | |
481 | AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch); | |
a764040c | 482 | section = address_space_translate_internal(d, addr, &addr, plen, is_mmio); |
052c8fa9 JW |
483 | mr = section->mr; |
484 | ||
485 | if (!mr->iommu_ops) { | |
486 | break; | |
487 | } | |
488 | ||
bf55b7af PX |
489 | iotlb = mr->iommu_ops->translate(mr, addr, is_write ? |
490 | IOMMU_WO : IOMMU_RO); | |
a764040c PX |
491 | addr = ((iotlb.translated_addr & ~iotlb.addr_mask) |
492 | | (addr & iotlb.addr_mask)); | |
493 | *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1); | |
052c8fa9 | 494 | if (!(iotlb.perm & (1 << is_write))) { |
a764040c | 495 | goto translate_fail; |
052c8fa9 JW |
496 | } |
497 | ||
052c8fa9 JW |
498 | as = iotlb.target_as; |
499 | } | |
500 | ||
a764040c PX |
501 | *xlat = addr; |
502 | ||
503 | return *section; | |
504 | ||
505 | translate_fail: | |
506 | return (MemoryRegionSection) { .mr = &io_mem_unassigned }; | |
052c8fa9 JW |
507 | } |
508 | ||
509 | /* Called from RCU critical section */ | |
a764040c PX |
510 | IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, |
511 | bool is_write) | |
90260c6c | 512 | { |
a764040c PX |
513 | MemoryRegionSection section; |
514 | hwaddr xlat, plen; | |
30951157 | 515 | |
a764040c PX |
516 | /* Try to get maximum page mask during translation. */ |
517 | plen = (hwaddr)-1; | |
30951157 | 518 | |
a764040c PX |
519 | /* This can never be MMIO. */ |
520 | section = address_space_do_translate(as, addr, &xlat, &plen, | |
521 | is_write, false); | |
30951157 | 522 | |
a764040c PX |
523 | /* Illegal translation */ |
524 | if (section.mr == &io_mem_unassigned) { | |
525 | goto iotlb_fail; | |
526 | } | |
30951157 | 527 | |
a764040c PX |
528 | /* Convert memory region offset into address space offset */ |
529 | xlat += section.offset_within_address_space - | |
530 | section.offset_within_region; | |
531 | ||
532 | if (plen == (hwaddr)-1) { | |
533 | /* | |
534 | * We use default page size here. Logically it only happens | |
535 | * for identity mappings. | |
536 | */ | |
537 | plen = TARGET_PAGE_SIZE; | |
30951157 AK |
538 | } |
539 | ||
a764040c PX |
540 | /* Convert to address mask */ |
541 | plen -= 1; | |
542 | ||
543 | return (IOMMUTLBEntry) { | |
544 | .target_as = section.address_space, | |
545 | .iova = addr & ~plen, | |
546 | .translated_addr = xlat & ~plen, | |
547 | .addr_mask = plen, | |
548 | /* IOTLBs are for DMAs, and DMA only allows on RAMs. */ | |
549 | .perm = IOMMU_RW, | |
550 | }; | |
551 | ||
552 | iotlb_fail: | |
553 | return (IOMMUTLBEntry) {0}; | |
554 | } | |
555 | ||
556 | /* Called from RCU critical section */ | |
557 | MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr, | |
558 | hwaddr *xlat, hwaddr *plen, | |
559 | bool is_write) | |
560 | { | |
561 | MemoryRegion *mr; | |
562 | MemoryRegionSection section; | |
563 | ||
564 | /* This can be MMIO, so setup MMIO bit. */ | |
565 | section = address_space_do_translate(as, addr, xlat, plen, is_write, true); | |
566 | mr = section.mr; | |
567 | ||
fe680d0d | 568 | if (xen_enabled() && memory_access_is_direct(mr, is_write)) { |
a87f3954 | 569 | hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; |
23820dbf | 570 | *plen = MIN(page, *plen); |
a87f3954 PB |
571 | } |
572 | ||
30951157 | 573 | return mr; |
90260c6c JK |
574 | } |
575 | ||
79e2b9ae | 576 | /* Called from RCU critical section */ |
90260c6c | 577 | MemoryRegionSection * |
d7898cda | 578 | address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr, |
9d82b5a7 | 579 | hwaddr *xlat, hwaddr *plen) |
90260c6c | 580 | { |
30951157 | 581 | MemoryRegionSection *section; |
f35e44e7 | 582 | AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch); |
d7898cda PM |
583 | |
584 | section = address_space_translate_internal(d, addr, xlat, plen, false); | |
30951157 AK |
585 | |
586 | assert(!section->mr->iommu_ops); | |
587 | return section; | |
90260c6c | 588 | } |
5b6dd868 | 589 | #endif |
fd6ce8f6 | 590 | |
b170fce3 | 591 | #if !defined(CONFIG_USER_ONLY) |
5b6dd868 BS |
592 | |
593 | static int cpu_common_post_load(void *opaque, int version_id) | |
fd6ce8f6 | 594 | { |
259186a7 | 595 | CPUState *cpu = opaque; |
a513fe19 | 596 | |
5b6dd868 BS |
597 | /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the |
598 | version_id is increased. */ | |
259186a7 | 599 | cpu->interrupt_request &= ~0x01; |
d10eb08f | 600 | tlb_flush(cpu); |
5b6dd868 BS |
601 | |
602 | return 0; | |
a513fe19 | 603 | } |
7501267e | 604 | |
6c3bff0e PD |
605 | static int cpu_common_pre_load(void *opaque) |
606 | { | |
607 | CPUState *cpu = opaque; | |
608 | ||
adee6424 | 609 | cpu->exception_index = -1; |
6c3bff0e PD |
610 | |
611 | return 0; | |
612 | } | |
613 | ||
614 | static bool cpu_common_exception_index_needed(void *opaque) | |
615 | { | |
616 | CPUState *cpu = opaque; | |
617 | ||
adee6424 | 618 | return tcg_enabled() && cpu->exception_index != -1; |
6c3bff0e PD |
619 | } |
620 | ||
621 | static const VMStateDescription vmstate_cpu_common_exception_index = { | |
622 | .name = "cpu_common/exception_index", | |
623 | .version_id = 1, | |
624 | .minimum_version_id = 1, | |
5cd8cada | 625 | .needed = cpu_common_exception_index_needed, |
6c3bff0e PD |
626 | .fields = (VMStateField[]) { |
627 | VMSTATE_INT32(exception_index, CPUState), | |
628 | VMSTATE_END_OF_LIST() | |
629 | } | |
630 | }; | |
631 | ||
bac05aa9 AS |
632 | static bool cpu_common_crash_occurred_needed(void *opaque) |
633 | { | |
634 | CPUState *cpu = opaque; | |
635 | ||
636 | return cpu->crash_occurred; | |
637 | } | |
638 | ||
639 | static const VMStateDescription vmstate_cpu_common_crash_occurred = { | |
640 | .name = "cpu_common/crash_occurred", | |
641 | .version_id = 1, | |
642 | .minimum_version_id = 1, | |
643 | .needed = cpu_common_crash_occurred_needed, | |
644 | .fields = (VMStateField[]) { | |
645 | VMSTATE_BOOL(crash_occurred, CPUState), | |
646 | VMSTATE_END_OF_LIST() | |
647 | } | |
648 | }; | |
649 | ||
1a1562f5 | 650 | const VMStateDescription vmstate_cpu_common = { |
5b6dd868 BS |
651 | .name = "cpu_common", |
652 | .version_id = 1, | |
653 | .minimum_version_id = 1, | |
6c3bff0e | 654 | .pre_load = cpu_common_pre_load, |
5b6dd868 | 655 | .post_load = cpu_common_post_load, |
35d08458 | 656 | .fields = (VMStateField[]) { |
259186a7 AF |
657 | VMSTATE_UINT32(halted, CPUState), |
658 | VMSTATE_UINT32(interrupt_request, CPUState), | |
5b6dd868 | 659 | VMSTATE_END_OF_LIST() |
6c3bff0e | 660 | }, |
5cd8cada JQ |
661 | .subsections = (const VMStateDescription*[]) { |
662 | &vmstate_cpu_common_exception_index, | |
bac05aa9 | 663 | &vmstate_cpu_common_crash_occurred, |
5cd8cada | 664 | NULL |
5b6dd868 BS |
665 | } |
666 | }; | |
1a1562f5 | 667 | |
5b6dd868 | 668 | #endif |
ea041c0e | 669 | |
38d8f5c8 | 670 | CPUState *qemu_get_cpu(int index) |
ea041c0e | 671 | { |
bdc44640 | 672 | CPUState *cpu; |
ea041c0e | 673 | |
bdc44640 | 674 | CPU_FOREACH(cpu) { |
55e5c285 | 675 | if (cpu->cpu_index == index) { |
bdc44640 | 676 | return cpu; |
55e5c285 | 677 | } |
ea041c0e | 678 | } |
5b6dd868 | 679 | |
bdc44640 | 680 | return NULL; |
ea041c0e FB |
681 | } |
682 | ||
09daed84 | 683 | #if !defined(CONFIG_USER_ONLY) |
56943e8c | 684 | void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx) |
09daed84 | 685 | { |
12ebc9a7 PM |
686 | CPUAddressSpace *newas; |
687 | ||
688 | /* Target code should have set num_ases before calling us */ | |
689 | assert(asidx < cpu->num_ases); | |
690 | ||
56943e8c PM |
691 | if (asidx == 0) { |
692 | /* address space 0 gets the convenience alias */ | |
693 | cpu->as = as; | |
694 | } | |
695 | ||
12ebc9a7 PM |
696 | /* KVM cannot currently support multiple address spaces. */ |
697 | assert(asidx == 0 || !kvm_enabled()); | |
09daed84 | 698 | |
12ebc9a7 PM |
699 | if (!cpu->cpu_ases) { |
700 | cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases); | |
09daed84 | 701 | } |
32857f4d | 702 | |
12ebc9a7 PM |
703 | newas = &cpu->cpu_ases[asidx]; |
704 | newas->cpu = cpu; | |
705 | newas->as = as; | |
56943e8c | 706 | if (tcg_enabled()) { |
12ebc9a7 PM |
707 | newas->tcg_as_listener.commit = tcg_commit; |
708 | memory_listener_register(&newas->tcg_as_listener, as); | |
56943e8c | 709 | } |
09daed84 | 710 | } |
651a5bc0 PM |
711 | |
712 | AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx) | |
713 | { | |
714 | /* Return the AddressSpace corresponding to the specified index */ | |
715 | return cpu->cpu_ases[asidx].as; | |
716 | } | |
09daed84 EI |
717 | #endif |
718 | ||
7bbc124e | 719 | void cpu_exec_unrealizefn(CPUState *cpu) |
1c59eb39 | 720 | { |
9dfeca7c BR |
721 | CPUClass *cc = CPU_GET_CLASS(cpu); |
722 | ||
267f685b | 723 | cpu_list_remove(cpu); |
9dfeca7c BR |
724 | |
725 | if (cc->vmsd != NULL) { | |
726 | vmstate_unregister(NULL, cc->vmsd, cpu); | |
727 | } | |
728 | if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { | |
729 | vmstate_unregister(NULL, &vmstate_cpu_common, cpu); | |
730 | } | |
1c59eb39 BR |
731 | } |
732 | ||
39e329e3 | 733 | void cpu_exec_initfn(CPUState *cpu) |
ea041c0e | 734 | { |
56943e8c | 735 | cpu->as = NULL; |
12ebc9a7 | 736 | cpu->num_ases = 0; |
56943e8c | 737 | |
291135b5 | 738 | #ifndef CONFIG_USER_ONLY |
291135b5 | 739 | cpu->thread_id = qemu_get_thread_id(); |
6731d864 PC |
740 | |
741 | /* This is a softmmu CPU object, so create a property for it | |
742 | * so users can wire up its memory. (This can't go in qom/cpu.c | |
743 | * because that file is compiled only once for both user-mode | |
744 | * and system builds.) The default if no link is set up is to use | |
745 | * the system address space. | |
746 | */ | |
747 | object_property_add_link(OBJECT(cpu), "memory", TYPE_MEMORY_REGION, | |
748 | (Object **)&cpu->memory, | |
749 | qdev_prop_allow_set_link_before_realize, | |
750 | OBJ_PROP_LINK_UNREF_ON_RELEASE, | |
751 | &error_abort); | |
752 | cpu->memory = system_memory; | |
753 | object_ref(OBJECT(cpu->memory)); | |
291135b5 | 754 | #endif |
39e329e3 LV |
755 | } |
756 | ||
ce5b1bbf | 757 | void cpu_exec_realizefn(CPUState *cpu, Error **errp) |
39e329e3 LV |
758 | { |
759 | CPUClass *cc ATTRIBUTE_UNUSED = CPU_GET_CLASS(cpu); | |
291135b5 | 760 | |
267f685b | 761 | cpu_list_add(cpu); |
1bc7e522 IM |
762 | |
763 | #ifndef CONFIG_USER_ONLY | |
e0d47944 | 764 | if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { |
741da0d3 | 765 | vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu); |
e0d47944 | 766 | } |
b170fce3 | 767 | if (cc->vmsd != NULL) { |
741da0d3 | 768 | vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu); |
b170fce3 | 769 | } |
741da0d3 | 770 | #endif |
ea041c0e FB |
771 | } |
772 | ||
00b941e5 | 773 | static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) |
1e7855a5 | 774 | { |
a9353fe8 PM |
775 | /* Flush the whole TB as this will not have race conditions |
776 | * even if we don't have proper locking yet. | |
777 | * Ideally we would just invalidate the TBs for the | |
778 | * specified PC. | |
779 | */ | |
780 | tb_flush(cpu); | |
1e7855a5 | 781 | } |
d720b93d | 782 | |
c527ee8f | 783 | #if defined(CONFIG_USER_ONLY) |
75a34036 | 784 | void cpu_watchpoint_remove_all(CPUState *cpu, int mask) |
c527ee8f PB |
785 | |
786 | { | |
787 | } | |
788 | ||
3ee887e8 PM |
789 | int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, |
790 | int flags) | |
791 | { | |
792 | return -ENOSYS; | |
793 | } | |
794 | ||
795 | void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) | |
796 | { | |
797 | } | |
798 | ||
75a34036 | 799 | int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, |
c527ee8f PB |
800 | int flags, CPUWatchpoint **watchpoint) |
801 | { | |
802 | return -ENOSYS; | |
803 | } | |
804 | #else | |
6658ffb8 | 805 | /* Add a watchpoint. */ |
75a34036 | 806 | int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, |
a1d1bb31 | 807 | int flags, CPUWatchpoint **watchpoint) |
6658ffb8 | 808 | { |
c0ce998e | 809 | CPUWatchpoint *wp; |
6658ffb8 | 810 | |
05068c0d | 811 | /* forbid ranges which are empty or run off the end of the address space */ |
07e2863d | 812 | if (len == 0 || (addr + len - 1) < addr) { |
75a34036 AF |
813 | error_report("tried to set invalid watchpoint at %" |
814 | VADDR_PRIx ", len=%" VADDR_PRIu, addr, len); | |
b4051334 AL |
815 | return -EINVAL; |
816 | } | |
7267c094 | 817 | wp = g_malloc(sizeof(*wp)); |
a1d1bb31 AL |
818 | |
819 | wp->vaddr = addr; | |
05068c0d | 820 | wp->len = len; |
a1d1bb31 AL |
821 | wp->flags = flags; |
822 | ||
2dc9f411 | 823 | /* keep all GDB-injected watchpoints in front */ |
ff4700b0 AF |
824 | if (flags & BP_GDB) { |
825 | QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry); | |
826 | } else { | |
827 | QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry); | |
828 | } | |
6658ffb8 | 829 | |
31b030d4 | 830 | tlb_flush_page(cpu, addr); |
a1d1bb31 AL |
831 | |
832 | if (watchpoint) | |
833 | *watchpoint = wp; | |
834 | return 0; | |
6658ffb8 PB |
835 | } |
836 | ||
a1d1bb31 | 837 | /* Remove a specific watchpoint. */ |
75a34036 | 838 | int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, |
a1d1bb31 | 839 | int flags) |
6658ffb8 | 840 | { |
a1d1bb31 | 841 | CPUWatchpoint *wp; |
6658ffb8 | 842 | |
ff4700b0 | 843 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d | 844 | if (addr == wp->vaddr && len == wp->len |
6e140f28 | 845 | && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { |
75a34036 | 846 | cpu_watchpoint_remove_by_ref(cpu, wp); |
6658ffb8 PB |
847 | return 0; |
848 | } | |
849 | } | |
a1d1bb31 | 850 | return -ENOENT; |
6658ffb8 PB |
851 | } |
852 | ||
a1d1bb31 | 853 | /* Remove a specific watchpoint by reference. */ |
75a34036 | 854 | void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) |
a1d1bb31 | 855 | { |
ff4700b0 | 856 | QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry); |
7d03f82f | 857 | |
31b030d4 | 858 | tlb_flush_page(cpu, watchpoint->vaddr); |
a1d1bb31 | 859 | |
7267c094 | 860 | g_free(watchpoint); |
a1d1bb31 AL |
861 | } |
862 | ||
863 | /* Remove all matching watchpoints. */ | |
75a34036 | 864 | void cpu_watchpoint_remove_all(CPUState *cpu, int mask) |
a1d1bb31 | 865 | { |
c0ce998e | 866 | CPUWatchpoint *wp, *next; |
a1d1bb31 | 867 | |
ff4700b0 | 868 | QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) { |
75a34036 AF |
869 | if (wp->flags & mask) { |
870 | cpu_watchpoint_remove_by_ref(cpu, wp); | |
871 | } | |
c0ce998e | 872 | } |
7d03f82f | 873 | } |
05068c0d PM |
874 | |
875 | /* Return true if this watchpoint address matches the specified | |
876 | * access (ie the address range covered by the watchpoint overlaps | |
877 | * partially or completely with the address range covered by the | |
878 | * access). | |
879 | */ | |
880 | static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp, | |
881 | vaddr addr, | |
882 | vaddr len) | |
883 | { | |
884 | /* We know the lengths are non-zero, but a little caution is | |
885 | * required to avoid errors in the case where the range ends | |
886 | * exactly at the top of the address space and so addr + len | |
887 | * wraps round to zero. | |
888 | */ | |
889 | vaddr wpend = wp->vaddr + wp->len - 1; | |
890 | vaddr addrend = addr + len - 1; | |
891 | ||
892 | return !(addr > wpend || wp->vaddr > addrend); | |
893 | } | |
894 | ||
c527ee8f | 895 | #endif |
7d03f82f | 896 | |
a1d1bb31 | 897 | /* Add a breakpoint. */ |
b3310ab3 | 898 | int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, |
a1d1bb31 | 899 | CPUBreakpoint **breakpoint) |
4c3a88a2 | 900 | { |
c0ce998e | 901 | CPUBreakpoint *bp; |
3b46e624 | 902 | |
7267c094 | 903 | bp = g_malloc(sizeof(*bp)); |
4c3a88a2 | 904 | |
a1d1bb31 AL |
905 | bp->pc = pc; |
906 | bp->flags = flags; | |
907 | ||
2dc9f411 | 908 | /* keep all GDB-injected breakpoints in front */ |
00b941e5 | 909 | if (flags & BP_GDB) { |
f0c3c505 | 910 | QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry); |
00b941e5 | 911 | } else { |
f0c3c505 | 912 | QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry); |
00b941e5 | 913 | } |
3b46e624 | 914 | |
f0c3c505 | 915 | breakpoint_invalidate(cpu, pc); |
a1d1bb31 | 916 | |
00b941e5 | 917 | if (breakpoint) { |
a1d1bb31 | 918 | *breakpoint = bp; |
00b941e5 | 919 | } |
4c3a88a2 | 920 | return 0; |
4c3a88a2 FB |
921 | } |
922 | ||
a1d1bb31 | 923 | /* Remove a specific breakpoint. */ |
b3310ab3 | 924 | int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags) |
a1d1bb31 | 925 | { |
a1d1bb31 AL |
926 | CPUBreakpoint *bp; |
927 | ||
f0c3c505 | 928 | QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { |
a1d1bb31 | 929 | if (bp->pc == pc && bp->flags == flags) { |
b3310ab3 | 930 | cpu_breakpoint_remove_by_ref(cpu, bp); |
a1d1bb31 AL |
931 | return 0; |
932 | } | |
7d03f82f | 933 | } |
a1d1bb31 | 934 | return -ENOENT; |
7d03f82f EI |
935 | } |
936 | ||
a1d1bb31 | 937 | /* Remove a specific breakpoint by reference. */ |
b3310ab3 | 938 | void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint) |
4c3a88a2 | 939 | { |
f0c3c505 AF |
940 | QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry); |
941 | ||
942 | breakpoint_invalidate(cpu, breakpoint->pc); | |
a1d1bb31 | 943 | |
7267c094 | 944 | g_free(breakpoint); |
a1d1bb31 AL |
945 | } |
946 | ||
947 | /* Remove all matching breakpoints. */ | |
b3310ab3 | 948 | void cpu_breakpoint_remove_all(CPUState *cpu, int mask) |
a1d1bb31 | 949 | { |
c0ce998e | 950 | CPUBreakpoint *bp, *next; |
a1d1bb31 | 951 | |
f0c3c505 | 952 | QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) { |
b3310ab3 AF |
953 | if (bp->flags & mask) { |
954 | cpu_breakpoint_remove_by_ref(cpu, bp); | |
955 | } | |
c0ce998e | 956 | } |
4c3a88a2 FB |
957 | } |
958 | ||
c33a346e FB |
959 | /* enable or disable single step mode. EXCP_DEBUG is returned by the |
960 | CPU loop after each instruction */ | |
3825b28f | 961 | void cpu_single_step(CPUState *cpu, int enabled) |
c33a346e | 962 | { |
ed2803da AF |
963 | if (cpu->singlestep_enabled != enabled) { |
964 | cpu->singlestep_enabled = enabled; | |
965 | if (kvm_enabled()) { | |
38e478ec | 966 | kvm_update_guest_debug(cpu, 0); |
ed2803da | 967 | } else { |
ccbb4d44 | 968 | /* must flush all the translated code to avoid inconsistencies */ |
e22a25c9 | 969 | /* XXX: only flush what is necessary */ |
bbd77c18 | 970 | tb_flush(cpu); |
e22a25c9 | 971 | } |
c33a346e | 972 | } |
c33a346e FB |
973 | } |
974 | ||
a47dddd7 | 975 | void cpu_abort(CPUState *cpu, const char *fmt, ...) |
7501267e FB |
976 | { |
977 | va_list ap; | |
493ae1f0 | 978 | va_list ap2; |
7501267e FB |
979 | |
980 | va_start(ap, fmt); | |
493ae1f0 | 981 | va_copy(ap2, ap); |
7501267e FB |
982 | fprintf(stderr, "qemu: fatal: "); |
983 | vfprintf(stderr, fmt, ap); | |
984 | fprintf(stderr, "\n"); | |
878096ee | 985 | cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP); |
013a2942 | 986 | if (qemu_log_separate()) { |
1ee73216 | 987 | qemu_log_lock(); |
93fcfe39 AL |
988 | qemu_log("qemu: fatal: "); |
989 | qemu_log_vprintf(fmt, ap2); | |
990 | qemu_log("\n"); | |
a0762859 | 991 | log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP); |
31b1a7b4 | 992 | qemu_log_flush(); |
1ee73216 | 993 | qemu_log_unlock(); |
93fcfe39 | 994 | qemu_log_close(); |
924edcae | 995 | } |
493ae1f0 | 996 | va_end(ap2); |
f9373291 | 997 | va_end(ap); |
7615936e | 998 | replay_finish(); |
fd052bf6 RV |
999 | #if defined(CONFIG_USER_ONLY) |
1000 | { | |
1001 | struct sigaction act; | |
1002 | sigfillset(&act.sa_mask); | |
1003 | act.sa_handler = SIG_DFL; | |
1004 | sigaction(SIGABRT, &act, NULL); | |
1005 | } | |
1006 | #endif | |
7501267e FB |
1007 | abort(); |
1008 | } | |
1009 | ||
0124311e | 1010 | #if !defined(CONFIG_USER_ONLY) |
0dc3f44a | 1011 | /* Called from RCU critical section */ |
041603fe PB |
1012 | static RAMBlock *qemu_get_ram_block(ram_addr_t addr) |
1013 | { | |
1014 | RAMBlock *block; | |
1015 | ||
43771539 | 1016 | block = atomic_rcu_read(&ram_list.mru_block); |
9b8424d5 | 1017 | if (block && addr - block->offset < block->max_length) { |
68851b98 | 1018 | return block; |
041603fe | 1019 | } |
99e15582 | 1020 | RAMBLOCK_FOREACH(block) { |
9b8424d5 | 1021 | if (addr - block->offset < block->max_length) { |
041603fe PB |
1022 | goto found; |
1023 | } | |
1024 | } | |
1025 | ||
1026 | fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); | |
1027 | abort(); | |
1028 | ||
1029 | found: | |
43771539 PB |
1030 | /* It is safe to write mru_block outside the iothread lock. This |
1031 | * is what happens: | |
1032 | * | |
1033 | * mru_block = xxx | |
1034 | * rcu_read_unlock() | |
1035 | * xxx removed from list | |
1036 | * rcu_read_lock() | |
1037 | * read mru_block | |
1038 | * mru_block = NULL; | |
1039 | * call_rcu(reclaim_ramblock, xxx); | |
1040 | * rcu_read_unlock() | |
1041 | * | |
1042 | * atomic_rcu_set is not needed here. The block was already published | |
1043 | * when it was placed into the list. Here we're just making an extra | |
1044 | * copy of the pointer. | |
1045 | */ | |
041603fe PB |
1046 | ram_list.mru_block = block; |
1047 | return block; | |
1048 | } | |
1049 | ||
a2f4d5be | 1050 | static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) |
d24981d3 | 1051 | { |
9a13565d | 1052 | CPUState *cpu; |
041603fe | 1053 | ram_addr_t start1; |
a2f4d5be JQ |
1054 | RAMBlock *block; |
1055 | ram_addr_t end; | |
1056 | ||
1057 | end = TARGET_PAGE_ALIGN(start + length); | |
1058 | start &= TARGET_PAGE_MASK; | |
d24981d3 | 1059 | |
0dc3f44a | 1060 | rcu_read_lock(); |
041603fe PB |
1061 | block = qemu_get_ram_block(start); |
1062 | assert(block == qemu_get_ram_block(end - 1)); | |
1240be24 | 1063 | start1 = (uintptr_t)ramblock_ptr(block, start - block->offset); |
9a13565d PC |
1064 | CPU_FOREACH(cpu) { |
1065 | tlb_reset_dirty(cpu, start1, length); | |
1066 | } | |
0dc3f44a | 1067 | rcu_read_unlock(); |
d24981d3 JQ |
1068 | } |
1069 | ||
5579c7f3 | 1070 | /* Note: start and end must be within the same ram block. */ |
03eebc9e SH |
1071 | bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, |
1072 | ram_addr_t length, | |
1073 | unsigned client) | |
1ccde1cb | 1074 | { |
5b82b703 | 1075 | DirtyMemoryBlocks *blocks; |
03eebc9e | 1076 | unsigned long end, page; |
5b82b703 | 1077 | bool dirty = false; |
03eebc9e SH |
1078 | |
1079 | if (length == 0) { | |
1080 | return false; | |
1081 | } | |
f23db169 | 1082 | |
03eebc9e SH |
1083 | end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; |
1084 | page = start >> TARGET_PAGE_BITS; | |
5b82b703 SH |
1085 | |
1086 | rcu_read_lock(); | |
1087 | ||
1088 | blocks = atomic_rcu_read(&ram_list.dirty_memory[client]); | |
1089 | ||
1090 | while (page < end) { | |
1091 | unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; | |
1092 | unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; | |
1093 | unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset); | |
1094 | ||
1095 | dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx], | |
1096 | offset, num); | |
1097 | page += num; | |
1098 | } | |
1099 | ||
1100 | rcu_read_unlock(); | |
03eebc9e SH |
1101 | |
1102 | if (dirty && tcg_enabled()) { | |
a2f4d5be | 1103 | tlb_reset_dirty_range_all(start, length); |
5579c7f3 | 1104 | } |
03eebc9e SH |
1105 | |
1106 | return dirty; | |
1ccde1cb FB |
1107 | } |
1108 | ||
8deaf12c GH |
1109 | DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty |
1110 | (ram_addr_t start, ram_addr_t length, unsigned client) | |
1111 | { | |
1112 | DirtyMemoryBlocks *blocks; | |
1113 | unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL); | |
1114 | ram_addr_t first = QEMU_ALIGN_DOWN(start, align); | |
1115 | ram_addr_t last = QEMU_ALIGN_UP(start + length, align); | |
1116 | DirtyBitmapSnapshot *snap; | |
1117 | unsigned long page, end, dest; | |
1118 | ||
1119 | snap = g_malloc0(sizeof(*snap) + | |
1120 | ((last - first) >> (TARGET_PAGE_BITS + 3))); | |
1121 | snap->start = first; | |
1122 | snap->end = last; | |
1123 | ||
1124 | page = first >> TARGET_PAGE_BITS; | |
1125 | end = last >> TARGET_PAGE_BITS; | |
1126 | dest = 0; | |
1127 | ||
1128 | rcu_read_lock(); | |
1129 | ||
1130 | blocks = atomic_rcu_read(&ram_list.dirty_memory[client]); | |
1131 | ||
1132 | while (page < end) { | |
1133 | unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; | |
1134 | unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; | |
1135 | unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset); | |
1136 | ||
1137 | assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL))); | |
1138 | assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL))); | |
1139 | offset >>= BITS_PER_LEVEL; | |
1140 | ||
1141 | bitmap_copy_and_clear_atomic(snap->dirty + dest, | |
1142 | blocks->blocks[idx] + offset, | |
1143 | num); | |
1144 | page += num; | |
1145 | dest += num >> BITS_PER_LEVEL; | |
1146 | } | |
1147 | ||
1148 | rcu_read_unlock(); | |
1149 | ||
1150 | if (tcg_enabled()) { | |
1151 | tlb_reset_dirty_range_all(start, length); | |
1152 | } | |
1153 | ||
1154 | return snap; | |
1155 | } | |
1156 | ||
1157 | bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap, | |
1158 | ram_addr_t start, | |
1159 | ram_addr_t length) | |
1160 | { | |
1161 | unsigned long page, end; | |
1162 | ||
1163 | assert(start >= snap->start); | |
1164 | assert(start + length <= snap->end); | |
1165 | ||
1166 | end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS; | |
1167 | page = (start - snap->start) >> TARGET_PAGE_BITS; | |
1168 | ||
1169 | while (page < end) { | |
1170 | if (test_bit(page, snap->dirty)) { | |
1171 | return true; | |
1172 | } | |
1173 | page++; | |
1174 | } | |
1175 | return false; | |
1176 | } | |
1177 | ||
79e2b9ae | 1178 | /* Called from RCU critical section */ |
bb0e627a | 1179 | hwaddr memory_region_section_get_iotlb(CPUState *cpu, |
149f54b5 PB |
1180 | MemoryRegionSection *section, |
1181 | target_ulong vaddr, | |
1182 | hwaddr paddr, hwaddr xlat, | |
1183 | int prot, | |
1184 | target_ulong *address) | |
e5548617 | 1185 | { |
a8170e5e | 1186 | hwaddr iotlb; |
e5548617 BS |
1187 | CPUWatchpoint *wp; |
1188 | ||
cc5bea60 | 1189 | if (memory_region_is_ram(section->mr)) { |
e5548617 | 1190 | /* Normal RAM. */ |
e4e69794 | 1191 | iotlb = memory_region_get_ram_addr(section->mr) + xlat; |
e5548617 | 1192 | if (!section->readonly) { |
b41aac4f | 1193 | iotlb |= PHYS_SECTION_NOTDIRTY; |
e5548617 | 1194 | } else { |
b41aac4f | 1195 | iotlb |= PHYS_SECTION_ROM; |
e5548617 BS |
1196 | } |
1197 | } else { | |
0b8e2c10 PM |
1198 | AddressSpaceDispatch *d; |
1199 | ||
1200 | d = atomic_rcu_read(§ion->address_space->dispatch); | |
1201 | iotlb = section - d->map.sections; | |
149f54b5 | 1202 | iotlb += xlat; |
e5548617 BS |
1203 | } |
1204 | ||
1205 | /* Make accesses to pages with watchpoints go via the | |
1206 | watchpoint trap routines. */ | |
ff4700b0 | 1207 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d | 1208 | if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) { |
e5548617 BS |
1209 | /* Avoid trapping reads of pages with a write breakpoint. */ |
1210 | if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) { | |
b41aac4f | 1211 | iotlb = PHYS_SECTION_WATCH + paddr; |
e5548617 BS |
1212 | *address |= TLB_MMIO; |
1213 | break; | |
1214 | } | |
1215 | } | |
1216 | } | |
1217 | ||
1218 | return iotlb; | |
1219 | } | |
9fa3e853 FB |
1220 | #endif /* defined(CONFIG_USER_ONLY) */ |
1221 | ||
e2eef170 | 1222 | #if !defined(CONFIG_USER_ONLY) |
8da3ff18 | 1223 | |
c227f099 | 1224 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, |
5312bd8b | 1225 | uint16_t section); |
acc9d80b | 1226 | static subpage_t *subpage_init(AddressSpace *as, hwaddr base); |
54688b1e | 1227 | |
a2b257d6 IM |
1228 | static void *(*phys_mem_alloc)(size_t size, uint64_t *align) = |
1229 | qemu_anon_ram_alloc; | |
91138037 MA |
1230 | |
1231 | /* | |
1232 | * Set a custom physical guest memory alloator. | |
1233 | * Accelerators with unusual needs may need this. Hopefully, we can | |
1234 | * get rid of it eventually. | |
1235 | */ | |
a2b257d6 | 1236 | void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align)) |
91138037 MA |
1237 | { |
1238 | phys_mem_alloc = alloc; | |
1239 | } | |
1240 | ||
53cb28cb MA |
1241 | static uint16_t phys_section_add(PhysPageMap *map, |
1242 | MemoryRegionSection *section) | |
5312bd8b | 1243 | { |
68f3f65b PB |
1244 | /* The physical section number is ORed with a page-aligned |
1245 | * pointer to produce the iotlb entries. Thus it should | |
1246 | * never overflow into the page-aligned value. | |
1247 | */ | |
53cb28cb | 1248 | assert(map->sections_nb < TARGET_PAGE_SIZE); |
68f3f65b | 1249 | |
53cb28cb MA |
1250 | if (map->sections_nb == map->sections_nb_alloc) { |
1251 | map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); | |
1252 | map->sections = g_renew(MemoryRegionSection, map->sections, | |
1253 | map->sections_nb_alloc); | |
5312bd8b | 1254 | } |
53cb28cb | 1255 | map->sections[map->sections_nb] = *section; |
dfde4e6e | 1256 | memory_region_ref(section->mr); |
53cb28cb | 1257 | return map->sections_nb++; |
5312bd8b AK |
1258 | } |
1259 | ||
058bc4b5 PB |
1260 | static void phys_section_destroy(MemoryRegion *mr) |
1261 | { | |
55b4e80b DS |
1262 | bool have_sub_page = mr->subpage; |
1263 | ||
dfde4e6e PB |
1264 | memory_region_unref(mr); |
1265 | ||
55b4e80b | 1266 | if (have_sub_page) { |
058bc4b5 | 1267 | subpage_t *subpage = container_of(mr, subpage_t, iomem); |
b4fefef9 | 1268 | object_unref(OBJECT(&subpage->iomem)); |
058bc4b5 PB |
1269 | g_free(subpage); |
1270 | } | |
1271 | } | |
1272 | ||
6092666e | 1273 | static void phys_sections_free(PhysPageMap *map) |
5312bd8b | 1274 | { |
9affd6fc PB |
1275 | while (map->sections_nb > 0) { |
1276 | MemoryRegionSection *section = &map->sections[--map->sections_nb]; | |
058bc4b5 PB |
1277 | phys_section_destroy(section->mr); |
1278 | } | |
9affd6fc PB |
1279 | g_free(map->sections); |
1280 | g_free(map->nodes); | |
5312bd8b AK |
1281 | } |
1282 | ||
ac1970fb | 1283 | static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section) |
0f0cb164 AK |
1284 | { |
1285 | subpage_t *subpage; | |
a8170e5e | 1286 | hwaddr base = section->offset_within_address_space |
0f0cb164 | 1287 | & TARGET_PAGE_MASK; |
97115a8d | 1288 | MemoryRegionSection *existing = phys_page_find(d->phys_map, base, |
53cb28cb | 1289 | d->map.nodes, d->map.sections); |
0f0cb164 AK |
1290 | MemoryRegionSection subsection = { |
1291 | .offset_within_address_space = base, | |
052e87b0 | 1292 | .size = int128_make64(TARGET_PAGE_SIZE), |
0f0cb164 | 1293 | }; |
a8170e5e | 1294 | hwaddr start, end; |
0f0cb164 | 1295 | |
f3705d53 | 1296 | assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); |
0f0cb164 | 1297 | |
f3705d53 | 1298 | if (!(existing->mr->subpage)) { |
acc9d80b | 1299 | subpage = subpage_init(d->as, base); |
3be91e86 | 1300 | subsection.address_space = d->as; |
0f0cb164 | 1301 | subsection.mr = &subpage->iomem; |
ac1970fb | 1302 | phys_page_set(d, base >> TARGET_PAGE_BITS, 1, |
53cb28cb | 1303 | phys_section_add(&d->map, &subsection)); |
0f0cb164 | 1304 | } else { |
f3705d53 | 1305 | subpage = container_of(existing->mr, subpage_t, iomem); |
0f0cb164 AK |
1306 | } |
1307 | start = section->offset_within_address_space & ~TARGET_PAGE_MASK; | |
052e87b0 | 1308 | end = start + int128_get64(section->size) - 1; |
53cb28cb MA |
1309 | subpage_register(subpage, start, end, |
1310 | phys_section_add(&d->map, section)); | |
0f0cb164 AK |
1311 | } |
1312 | ||
1313 | ||
052e87b0 PB |
1314 | static void register_multipage(AddressSpaceDispatch *d, |
1315 | MemoryRegionSection *section) | |
33417e70 | 1316 | { |
a8170e5e | 1317 | hwaddr start_addr = section->offset_within_address_space; |
53cb28cb | 1318 | uint16_t section_index = phys_section_add(&d->map, section); |
052e87b0 PB |
1319 | uint64_t num_pages = int128_get64(int128_rshift(section->size, |
1320 | TARGET_PAGE_BITS)); | |
dd81124b | 1321 | |
733d5ef5 PB |
1322 | assert(num_pages); |
1323 | phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); | |
33417e70 FB |
1324 | } |
1325 | ||
ac1970fb | 1326 | static void mem_add(MemoryListener *listener, MemoryRegionSection *section) |
0f0cb164 | 1327 | { |
89ae337a | 1328 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); |
00752703 | 1329 | AddressSpaceDispatch *d = as->next_dispatch; |
99b9cc06 | 1330 | MemoryRegionSection now = *section, remain = *section; |
052e87b0 | 1331 | Int128 page_size = int128_make64(TARGET_PAGE_SIZE); |
0f0cb164 | 1332 | |
733d5ef5 PB |
1333 | if (now.offset_within_address_space & ~TARGET_PAGE_MASK) { |
1334 | uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space) | |
1335 | - now.offset_within_address_space; | |
1336 | ||
052e87b0 | 1337 | now.size = int128_min(int128_make64(left), now.size); |
ac1970fb | 1338 | register_subpage(d, &now); |
733d5ef5 | 1339 | } else { |
052e87b0 | 1340 | now.size = int128_zero(); |
733d5ef5 | 1341 | } |
052e87b0 PB |
1342 | while (int128_ne(remain.size, now.size)) { |
1343 | remain.size = int128_sub(remain.size, now.size); | |
1344 | remain.offset_within_address_space += int128_get64(now.size); | |
1345 | remain.offset_within_region += int128_get64(now.size); | |
69b67646 | 1346 | now = remain; |
052e87b0 | 1347 | if (int128_lt(remain.size, page_size)) { |
733d5ef5 | 1348 | register_subpage(d, &now); |
88266249 | 1349 | } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { |
052e87b0 | 1350 | now.size = page_size; |
ac1970fb | 1351 | register_subpage(d, &now); |
69b67646 | 1352 | } else { |
052e87b0 | 1353 | now.size = int128_and(now.size, int128_neg(page_size)); |
ac1970fb | 1354 | register_multipage(d, &now); |
69b67646 | 1355 | } |
0f0cb164 AK |
1356 | } |
1357 | } | |
1358 | ||
62a2744c SY |
1359 | void qemu_flush_coalesced_mmio_buffer(void) |
1360 | { | |
1361 | if (kvm_enabled()) | |
1362 | kvm_flush_coalesced_mmio_buffer(); | |
1363 | } | |
1364 | ||
b2a8658e UD |
1365 | void qemu_mutex_lock_ramlist(void) |
1366 | { | |
1367 | qemu_mutex_lock(&ram_list.mutex); | |
1368 | } | |
1369 | ||
1370 | void qemu_mutex_unlock_ramlist(void) | |
1371 | { | |
1372 | qemu_mutex_unlock(&ram_list.mutex); | |
1373 | } | |
1374 | ||
be9b23c4 PX |
1375 | void ram_block_dump(Monitor *mon) |
1376 | { | |
1377 | RAMBlock *block; | |
1378 | char *psize; | |
1379 | ||
1380 | rcu_read_lock(); | |
1381 | monitor_printf(mon, "%24s %8s %18s %18s %18s\n", | |
1382 | "Block Name", "PSize", "Offset", "Used", "Total"); | |
1383 | RAMBLOCK_FOREACH(block) { | |
1384 | psize = size_to_str(block->page_size); | |
1385 | monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64 | |
1386 | " 0x%016" PRIx64 "\n", block->idstr, psize, | |
1387 | (uint64_t)block->offset, | |
1388 | (uint64_t)block->used_length, | |
1389 | (uint64_t)block->max_length); | |
1390 | g_free(psize); | |
1391 | } | |
1392 | rcu_read_unlock(); | |
1393 | } | |
1394 | ||
9c607668 AK |
1395 | #ifdef __linux__ |
1396 | /* | |
1397 | * FIXME TOCTTOU: this iterates over memory backends' mem-path, which | |
1398 | * may or may not name the same files / on the same filesystem now as | |
1399 | * when we actually open and map them. Iterate over the file | |
1400 | * descriptors instead, and use qemu_fd_getpagesize(). | |
1401 | */ | |
1402 | static int find_max_supported_pagesize(Object *obj, void *opaque) | |
1403 | { | |
1404 | char *mem_path; | |
1405 | long *hpsize_min = opaque; | |
1406 | ||
1407 | if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { | |
1408 | mem_path = object_property_get_str(obj, "mem-path", NULL); | |
1409 | if (mem_path) { | |
1410 | long hpsize = qemu_mempath_getpagesize(mem_path); | |
1411 | if (hpsize < *hpsize_min) { | |
1412 | *hpsize_min = hpsize; | |
1413 | } | |
1414 | } else { | |
1415 | *hpsize_min = getpagesize(); | |
1416 | } | |
1417 | } | |
1418 | ||
1419 | return 0; | |
1420 | } | |
1421 | ||
1422 | long qemu_getrampagesize(void) | |
1423 | { | |
1424 | long hpsize = LONG_MAX; | |
1425 | long mainrampagesize; | |
1426 | Object *memdev_root; | |
1427 | ||
1428 | if (mem_path) { | |
1429 | mainrampagesize = qemu_mempath_getpagesize(mem_path); | |
1430 | } else { | |
1431 | mainrampagesize = getpagesize(); | |
1432 | } | |
1433 | ||
1434 | /* it's possible we have memory-backend objects with | |
1435 | * hugepage-backed RAM. these may get mapped into system | |
1436 | * address space via -numa parameters or memory hotplug | |
1437 | * hooks. we want to take these into account, but we | |
1438 | * also want to make sure these supported hugepage | |
1439 | * sizes are applicable across the entire range of memory | |
1440 | * we may boot from, so we take the min across all | |
1441 | * backends, and assume normal pages in cases where a | |
1442 | * backend isn't backed by hugepages. | |
1443 | */ | |
1444 | memdev_root = object_resolve_path("/objects", NULL); | |
1445 | if (memdev_root) { | |
1446 | object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize); | |
1447 | } | |
1448 | if (hpsize == LONG_MAX) { | |
1449 | /* No additional memory regions found ==> Report main RAM page size */ | |
1450 | return mainrampagesize; | |
1451 | } | |
1452 | ||
1453 | /* If NUMA is disabled or the NUMA nodes are not backed with a | |
1454 | * memory-backend, then there is at least one node using "normal" RAM, | |
1455 | * so if its page size is smaller we have got to report that size instead. | |
1456 | */ | |
1457 | if (hpsize > mainrampagesize && | |
1458 | (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) { | |
1459 | static bool warned; | |
1460 | if (!warned) { | |
1461 | error_report("Huge page support disabled (n/a for main memory)."); | |
1462 | warned = true; | |
1463 | } | |
1464 | return mainrampagesize; | |
1465 | } | |
1466 | ||
1467 | return hpsize; | |
1468 | } | |
1469 | #else | |
1470 | long qemu_getrampagesize(void) | |
1471 | { | |
1472 | return getpagesize(); | |
1473 | } | |
1474 | #endif | |
1475 | ||
e1e84ba0 | 1476 | #ifdef __linux__ |
d6af99c9 HZ |
1477 | static int64_t get_file_size(int fd) |
1478 | { | |
1479 | int64_t size = lseek(fd, 0, SEEK_END); | |
1480 | if (size < 0) { | |
1481 | return -errno; | |
1482 | } | |
1483 | return size; | |
1484 | } | |
1485 | ||
04b16653 AW |
1486 | static void *file_ram_alloc(RAMBlock *block, |
1487 | ram_addr_t memory, | |
7f56e740 PB |
1488 | const char *path, |
1489 | Error **errp) | |
c902760f | 1490 | { |
fd97fd44 | 1491 | bool unlink_on_error = false; |
c902760f | 1492 | char *filename; |
8ca761f6 PF |
1493 | char *sanitized_name; |
1494 | char *c; | |
056b68af | 1495 | void *area = MAP_FAILED; |
5c3ece79 | 1496 | int fd = -1; |
d6af99c9 | 1497 | int64_t file_size; |
c902760f MT |
1498 | |
1499 | if (kvm_enabled() && !kvm_has_sync_mmu()) { | |
7f56e740 PB |
1500 | error_setg(errp, |
1501 | "host lacks kvm mmu notifiers, -mem-path unsupported"); | |
fd97fd44 | 1502 | return NULL; |
c902760f MT |
1503 | } |
1504 | ||
fd97fd44 MA |
1505 | for (;;) { |
1506 | fd = open(path, O_RDWR); | |
1507 | if (fd >= 0) { | |
1508 | /* @path names an existing file, use it */ | |
1509 | break; | |
8d31d6b6 | 1510 | } |
fd97fd44 MA |
1511 | if (errno == ENOENT) { |
1512 | /* @path names a file that doesn't exist, create it */ | |
1513 | fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644); | |
1514 | if (fd >= 0) { | |
1515 | unlink_on_error = true; | |
1516 | break; | |
1517 | } | |
1518 | } else if (errno == EISDIR) { | |
1519 | /* @path names a directory, create a file there */ | |
1520 | /* Make name safe to use with mkstemp by replacing '/' with '_'. */ | |
1521 | sanitized_name = g_strdup(memory_region_name(block->mr)); | |
1522 | for (c = sanitized_name; *c != '\0'; c++) { | |
1523 | if (*c == '/') { | |
1524 | *c = '_'; | |
1525 | } | |
1526 | } | |
8ca761f6 | 1527 | |
fd97fd44 MA |
1528 | filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, |
1529 | sanitized_name); | |
1530 | g_free(sanitized_name); | |
8d31d6b6 | 1531 | |
fd97fd44 MA |
1532 | fd = mkstemp(filename); |
1533 | if (fd >= 0) { | |
1534 | unlink(filename); | |
1535 | g_free(filename); | |
1536 | break; | |
1537 | } | |
1538 | g_free(filename); | |
8d31d6b6 | 1539 | } |
fd97fd44 MA |
1540 | if (errno != EEXIST && errno != EINTR) { |
1541 | error_setg_errno(errp, errno, | |
1542 | "can't open backing store %s for guest RAM", | |
1543 | path); | |
1544 | goto error; | |
1545 | } | |
1546 | /* | |
1547 | * Try again on EINTR and EEXIST. The latter happens when | |
1548 | * something else creates the file between our two open(). | |
1549 | */ | |
8d31d6b6 | 1550 | } |
c902760f | 1551 | |
863e9621 | 1552 | block->page_size = qemu_fd_getpagesize(fd); |
8360668e HZ |
1553 | block->mr->align = block->page_size; |
1554 | #if defined(__s390x__) | |
1555 | if (kvm_enabled()) { | |
1556 | block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN); | |
1557 | } | |
1558 | #endif | |
fd97fd44 | 1559 | |
d6af99c9 HZ |
1560 | file_size = get_file_size(fd); |
1561 | ||
863e9621 | 1562 | if (memory < block->page_size) { |
fd97fd44 | 1563 | error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " |
863e9621 DDAG |
1564 | "or larger than page size 0x%zx", |
1565 | memory, block->page_size); | |
f9a49dfa | 1566 | goto error; |
c902760f | 1567 | } |
c902760f | 1568 | |
1775f111 HZ |
1569 | if (file_size > 0 && file_size < memory) { |
1570 | error_setg(errp, "backing store %s size 0x%" PRIx64 | |
1571 | " does not match 'size' option 0x" RAM_ADDR_FMT, | |
1572 | path, file_size, memory); | |
1573 | goto error; | |
1574 | } | |
1575 | ||
863e9621 | 1576 | memory = ROUND_UP(memory, block->page_size); |
c902760f MT |
1577 | |
1578 | /* | |
1579 | * ftruncate is not supported by hugetlbfs in older | |
1580 | * hosts, so don't bother bailing out on errors. | |
1581 | * If anything goes wrong with it under other filesystems, | |
1582 | * mmap will fail. | |
d6af99c9 HZ |
1583 | * |
1584 | * Do not truncate the non-empty backend file to avoid corrupting | |
1585 | * the existing data in the file. Disabling shrinking is not | |
1586 | * enough. For example, the current vNVDIMM implementation stores | |
1587 | * the guest NVDIMM labels at the end of the backend file. If the | |
1588 | * backend file is later extended, QEMU will not be able to find | |
1589 | * those labels. Therefore, extending the non-empty backend file | |
1590 | * is disabled as well. | |
c902760f | 1591 | */ |
d6af99c9 | 1592 | if (!file_size && ftruncate(fd, memory)) { |
9742bf26 | 1593 | perror("ftruncate"); |
7f56e740 | 1594 | } |
c902760f | 1595 | |
d2f39add DD |
1596 | area = qemu_ram_mmap(fd, memory, block->mr->align, |
1597 | block->flags & RAM_SHARED); | |
c902760f | 1598 | if (area == MAP_FAILED) { |
7f56e740 | 1599 | error_setg_errno(errp, errno, |
fd97fd44 | 1600 | "unable to map backing store for guest RAM"); |
f9a49dfa | 1601 | goto error; |
c902760f | 1602 | } |
ef36fa14 MT |
1603 | |
1604 | if (mem_prealloc) { | |
1e356fc1 | 1605 | os_mem_prealloc(fd, area, memory, smp_cpus, errp); |
056b68af IM |
1606 | if (errp && *errp) { |
1607 | goto error; | |
1608 | } | |
ef36fa14 MT |
1609 | } |
1610 | ||
04b16653 | 1611 | block->fd = fd; |
c902760f | 1612 | return area; |
f9a49dfa MT |
1613 | |
1614 | error: | |
056b68af IM |
1615 | if (area != MAP_FAILED) { |
1616 | qemu_ram_munmap(area, memory); | |
1617 | } | |
fd97fd44 MA |
1618 | if (unlink_on_error) { |
1619 | unlink(path); | |
1620 | } | |
5c3ece79 PB |
1621 | if (fd != -1) { |
1622 | close(fd); | |
1623 | } | |
f9a49dfa | 1624 | return NULL; |
c902760f MT |
1625 | } |
1626 | #endif | |
1627 | ||
0dc3f44a | 1628 | /* Called with the ramlist lock held. */ |
d17b5288 | 1629 | static ram_addr_t find_ram_offset(ram_addr_t size) |
04b16653 AW |
1630 | { |
1631 | RAMBlock *block, *next_block; | |
3e837b2c | 1632 | ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; |
04b16653 | 1633 | |
49cd9ac6 SH |
1634 | assert(size != 0); /* it would hand out same offset multiple times */ |
1635 | ||
0dc3f44a | 1636 | if (QLIST_EMPTY_RCU(&ram_list.blocks)) { |
04b16653 | 1637 | return 0; |
0d53d9fe | 1638 | } |
04b16653 | 1639 | |
99e15582 | 1640 | RAMBLOCK_FOREACH(block) { |
f15fbc4b | 1641 | ram_addr_t end, next = RAM_ADDR_MAX; |
04b16653 | 1642 | |
62be4e3a | 1643 | end = block->offset + block->max_length; |
04b16653 | 1644 | |
99e15582 | 1645 | RAMBLOCK_FOREACH(next_block) { |
04b16653 AW |
1646 | if (next_block->offset >= end) { |
1647 | next = MIN(next, next_block->offset); | |
1648 | } | |
1649 | } | |
1650 | if (next - end >= size && next - end < mingap) { | |
3e837b2c | 1651 | offset = end; |
04b16653 AW |
1652 | mingap = next - end; |
1653 | } | |
1654 | } | |
3e837b2c AW |
1655 | |
1656 | if (offset == RAM_ADDR_MAX) { | |
1657 | fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", | |
1658 | (uint64_t)size); | |
1659 | abort(); | |
1660 | } | |
1661 | ||
04b16653 AW |
1662 | return offset; |
1663 | } | |
1664 | ||
b8c48993 | 1665 | unsigned long last_ram_page(void) |
d17b5288 AW |
1666 | { |
1667 | RAMBlock *block; | |
1668 | ram_addr_t last = 0; | |
1669 | ||
0dc3f44a | 1670 | rcu_read_lock(); |
99e15582 | 1671 | RAMBLOCK_FOREACH(block) { |
62be4e3a | 1672 | last = MAX(last, block->offset + block->max_length); |
0d53d9fe | 1673 | } |
0dc3f44a | 1674 | rcu_read_unlock(); |
b8c48993 | 1675 | return last >> TARGET_PAGE_BITS; |
d17b5288 AW |
1676 | } |
1677 | ||
ddb97f1d JB |
1678 | static void qemu_ram_setup_dump(void *addr, ram_addr_t size) |
1679 | { | |
1680 | int ret; | |
ddb97f1d JB |
1681 | |
1682 | /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ | |
47c8ca53 | 1683 | if (!machine_dump_guest_core(current_machine)) { |
ddb97f1d JB |
1684 | ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); |
1685 | if (ret) { | |
1686 | perror("qemu_madvise"); | |
1687 | fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " | |
1688 | "but dump_guest_core=off specified\n"); | |
1689 | } | |
1690 | } | |
1691 | } | |
1692 | ||
422148d3 DDAG |
1693 | const char *qemu_ram_get_idstr(RAMBlock *rb) |
1694 | { | |
1695 | return rb->idstr; | |
1696 | } | |
1697 | ||
463a4ac2 DDAG |
1698 | bool qemu_ram_is_shared(RAMBlock *rb) |
1699 | { | |
1700 | return rb->flags & RAM_SHARED; | |
1701 | } | |
1702 | ||
ae3a7047 | 1703 | /* Called with iothread lock held. */ |
fa53a0e5 | 1704 | void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev) |
20cfe881 | 1705 | { |
fa53a0e5 | 1706 | RAMBlock *block; |
20cfe881 | 1707 | |
c5705a77 AK |
1708 | assert(new_block); |
1709 | assert(!new_block->idstr[0]); | |
84b89d78 | 1710 | |
09e5ab63 AL |
1711 | if (dev) { |
1712 | char *id = qdev_get_dev_path(dev); | |
84b89d78 CM |
1713 | if (id) { |
1714 | snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); | |
7267c094 | 1715 | g_free(id); |
84b89d78 CM |
1716 | } |
1717 | } | |
1718 | pstrcat(new_block->idstr, sizeof(new_block->idstr), name); | |
1719 | ||
ab0a9956 | 1720 | rcu_read_lock(); |
99e15582 | 1721 | RAMBLOCK_FOREACH(block) { |
fa53a0e5 GA |
1722 | if (block != new_block && |
1723 | !strcmp(block->idstr, new_block->idstr)) { | |
84b89d78 CM |
1724 | fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", |
1725 | new_block->idstr); | |
1726 | abort(); | |
1727 | } | |
1728 | } | |
0dc3f44a | 1729 | rcu_read_unlock(); |
c5705a77 AK |
1730 | } |
1731 | ||
ae3a7047 | 1732 | /* Called with iothread lock held. */ |
fa53a0e5 | 1733 | void qemu_ram_unset_idstr(RAMBlock *block) |
20cfe881 | 1734 | { |
ae3a7047 MD |
1735 | /* FIXME: arch_init.c assumes that this is not called throughout |
1736 | * migration. Ignore the problem since hot-unplug during migration | |
1737 | * does not work anyway. | |
1738 | */ | |
20cfe881 HT |
1739 | if (block) { |
1740 | memset(block->idstr, 0, sizeof(block->idstr)); | |
1741 | } | |
1742 | } | |
1743 | ||
863e9621 DDAG |
1744 | size_t qemu_ram_pagesize(RAMBlock *rb) |
1745 | { | |
1746 | return rb->page_size; | |
1747 | } | |
1748 | ||
67f11b5c DDAG |
1749 | /* Returns the largest size of page in use */ |
1750 | size_t qemu_ram_pagesize_largest(void) | |
1751 | { | |
1752 | RAMBlock *block; | |
1753 | size_t largest = 0; | |
1754 | ||
99e15582 | 1755 | RAMBLOCK_FOREACH(block) { |
67f11b5c DDAG |
1756 | largest = MAX(largest, qemu_ram_pagesize(block)); |
1757 | } | |
1758 | ||
1759 | return largest; | |
1760 | } | |
1761 | ||
8490fc78 LC |
1762 | static int memory_try_enable_merging(void *addr, size_t len) |
1763 | { | |
75cc7f01 | 1764 | if (!machine_mem_merge(current_machine)) { |
8490fc78 LC |
1765 | /* disabled by the user */ |
1766 | return 0; | |
1767 | } | |
1768 | ||
1769 | return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); | |
1770 | } | |
1771 | ||
62be4e3a MT |
1772 | /* Only legal before guest might have detected the memory size: e.g. on |
1773 | * incoming migration, or right after reset. | |
1774 | * | |
1775 | * As memory core doesn't know how is memory accessed, it is up to | |
1776 | * resize callback to update device state and/or add assertions to detect | |
1777 | * misuse, if necessary. | |
1778 | */ | |
fa53a0e5 | 1779 | int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp) |
62be4e3a | 1780 | { |
62be4e3a MT |
1781 | assert(block); |
1782 | ||
4ed023ce | 1783 | newsize = HOST_PAGE_ALIGN(newsize); |
129ddaf3 | 1784 | |
62be4e3a MT |
1785 | if (block->used_length == newsize) { |
1786 | return 0; | |
1787 | } | |
1788 | ||
1789 | if (!(block->flags & RAM_RESIZEABLE)) { | |
1790 | error_setg_errno(errp, EINVAL, | |
1791 | "Length mismatch: %s: 0x" RAM_ADDR_FMT | |
1792 | " in != 0x" RAM_ADDR_FMT, block->idstr, | |
1793 | newsize, block->used_length); | |
1794 | return -EINVAL; | |
1795 | } | |
1796 | ||
1797 | if (block->max_length < newsize) { | |
1798 | error_setg_errno(errp, EINVAL, | |
1799 | "Length too large: %s: 0x" RAM_ADDR_FMT | |
1800 | " > 0x" RAM_ADDR_FMT, block->idstr, | |
1801 | newsize, block->max_length); | |
1802 | return -EINVAL; | |
1803 | } | |
1804 | ||
1805 | cpu_physical_memory_clear_dirty_range(block->offset, block->used_length); | |
1806 | block->used_length = newsize; | |
58d2707e PB |
1807 | cpu_physical_memory_set_dirty_range(block->offset, block->used_length, |
1808 | DIRTY_CLIENTS_ALL); | |
62be4e3a MT |
1809 | memory_region_set_size(block->mr, newsize); |
1810 | if (block->resized) { | |
1811 | block->resized(block->idstr, newsize, block->host); | |
1812 | } | |
1813 | return 0; | |
1814 | } | |
1815 | ||
5b82b703 SH |
1816 | /* Called with ram_list.mutex held */ |
1817 | static void dirty_memory_extend(ram_addr_t old_ram_size, | |
1818 | ram_addr_t new_ram_size) | |
1819 | { | |
1820 | ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size, | |
1821 | DIRTY_MEMORY_BLOCK_SIZE); | |
1822 | ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size, | |
1823 | DIRTY_MEMORY_BLOCK_SIZE); | |
1824 | int i; | |
1825 | ||
1826 | /* Only need to extend if block count increased */ | |
1827 | if (new_num_blocks <= old_num_blocks) { | |
1828 | return; | |
1829 | } | |
1830 | ||
1831 | for (i = 0; i < DIRTY_MEMORY_NUM; i++) { | |
1832 | DirtyMemoryBlocks *old_blocks; | |
1833 | DirtyMemoryBlocks *new_blocks; | |
1834 | int j; | |
1835 | ||
1836 | old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]); | |
1837 | new_blocks = g_malloc(sizeof(*new_blocks) + | |
1838 | sizeof(new_blocks->blocks[0]) * new_num_blocks); | |
1839 | ||
1840 | if (old_num_blocks) { | |
1841 | memcpy(new_blocks->blocks, old_blocks->blocks, | |
1842 | old_num_blocks * sizeof(old_blocks->blocks[0])); | |
1843 | } | |
1844 | ||
1845 | for (j = old_num_blocks; j < new_num_blocks; j++) { | |
1846 | new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE); | |
1847 | } | |
1848 | ||
1849 | atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks); | |
1850 | ||
1851 | if (old_blocks) { | |
1852 | g_free_rcu(old_blocks, rcu); | |
1853 | } | |
1854 | } | |
1855 | } | |
1856 | ||
528f46af | 1857 | static void ram_block_add(RAMBlock *new_block, Error **errp) |
c5705a77 | 1858 | { |
e1c57ab8 | 1859 | RAMBlock *block; |
0d53d9fe | 1860 | RAMBlock *last_block = NULL; |
2152f5ca | 1861 | ram_addr_t old_ram_size, new_ram_size; |
37aa7a0e | 1862 | Error *err = NULL; |
2152f5ca | 1863 | |
b8c48993 | 1864 | old_ram_size = last_ram_page(); |
c5705a77 | 1865 | |
b2a8658e | 1866 | qemu_mutex_lock_ramlist(); |
9b8424d5 | 1867 | new_block->offset = find_ram_offset(new_block->max_length); |
e1c57ab8 PB |
1868 | |
1869 | if (!new_block->host) { | |
1870 | if (xen_enabled()) { | |
9b8424d5 | 1871 | xen_ram_alloc(new_block->offset, new_block->max_length, |
37aa7a0e MA |
1872 | new_block->mr, &err); |
1873 | if (err) { | |
1874 | error_propagate(errp, err); | |
1875 | qemu_mutex_unlock_ramlist(); | |
39c350ee | 1876 | return; |
37aa7a0e | 1877 | } |
e1c57ab8 | 1878 | } else { |
9b8424d5 | 1879 | new_block->host = phys_mem_alloc(new_block->max_length, |
a2b257d6 | 1880 | &new_block->mr->align); |
39228250 | 1881 | if (!new_block->host) { |
ef701d7b HT |
1882 | error_setg_errno(errp, errno, |
1883 | "cannot set up guest memory '%s'", | |
1884 | memory_region_name(new_block->mr)); | |
1885 | qemu_mutex_unlock_ramlist(); | |
39c350ee | 1886 | return; |
39228250 | 1887 | } |
9b8424d5 | 1888 | memory_try_enable_merging(new_block->host, new_block->max_length); |
6977dfe6 | 1889 | } |
c902760f | 1890 | } |
94a6b54f | 1891 | |
dd631697 LZ |
1892 | new_ram_size = MAX(old_ram_size, |
1893 | (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS); | |
1894 | if (new_ram_size > old_ram_size) { | |
5b82b703 | 1895 | dirty_memory_extend(old_ram_size, new_ram_size); |
dd631697 | 1896 | } |
0d53d9fe MD |
1897 | /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ, |
1898 | * QLIST (which has an RCU-friendly variant) does not have insertion at | |
1899 | * tail, so save the last element in last_block. | |
1900 | */ | |
99e15582 | 1901 | RAMBLOCK_FOREACH(block) { |
0d53d9fe | 1902 | last_block = block; |
9b8424d5 | 1903 | if (block->max_length < new_block->max_length) { |
abb26d63 PB |
1904 | break; |
1905 | } | |
1906 | } | |
1907 | if (block) { | |
0dc3f44a | 1908 | QLIST_INSERT_BEFORE_RCU(block, new_block, next); |
0d53d9fe | 1909 | } else if (last_block) { |
0dc3f44a | 1910 | QLIST_INSERT_AFTER_RCU(last_block, new_block, next); |
0d53d9fe | 1911 | } else { /* list is empty */ |
0dc3f44a | 1912 | QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); |
abb26d63 | 1913 | } |
0d6d3c87 | 1914 | ram_list.mru_block = NULL; |
94a6b54f | 1915 | |
0dc3f44a MD |
1916 | /* Write list before version */ |
1917 | smp_wmb(); | |
f798b07f | 1918 | ram_list.version++; |
b2a8658e | 1919 | qemu_mutex_unlock_ramlist(); |
f798b07f | 1920 | |
9b8424d5 | 1921 | cpu_physical_memory_set_dirty_range(new_block->offset, |
58d2707e PB |
1922 | new_block->used_length, |
1923 | DIRTY_CLIENTS_ALL); | |
94a6b54f | 1924 | |
a904c911 PB |
1925 | if (new_block->host) { |
1926 | qemu_ram_setup_dump(new_block->host, new_block->max_length); | |
1927 | qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); | |
c2cd627d | 1928 | /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */ |
a904c911 | 1929 | qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK); |
0987d735 | 1930 | ram_block_notify_add(new_block->host, new_block->max_length); |
e1c57ab8 | 1931 | } |
94a6b54f | 1932 | } |
e9a1ab19 | 1933 | |
0b183fc8 | 1934 | #ifdef __linux__ |
528f46af FZ |
1935 | RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, |
1936 | bool share, const char *mem_path, | |
1937 | Error **errp) | |
e1c57ab8 PB |
1938 | { |
1939 | RAMBlock *new_block; | |
ef701d7b | 1940 | Error *local_err = NULL; |
e1c57ab8 PB |
1941 | |
1942 | if (xen_enabled()) { | |
7f56e740 | 1943 | error_setg(errp, "-mem-path not supported with Xen"); |
528f46af | 1944 | return NULL; |
e1c57ab8 PB |
1945 | } |
1946 | ||
1947 | if (phys_mem_alloc != qemu_anon_ram_alloc) { | |
1948 | /* | |
1949 | * file_ram_alloc() needs to allocate just like | |
1950 | * phys_mem_alloc, but we haven't bothered to provide | |
1951 | * a hook there. | |
1952 | */ | |
7f56e740 PB |
1953 | error_setg(errp, |
1954 | "-mem-path not supported with this accelerator"); | |
528f46af | 1955 | return NULL; |
e1c57ab8 PB |
1956 | } |
1957 | ||
4ed023ce | 1958 | size = HOST_PAGE_ALIGN(size); |
e1c57ab8 PB |
1959 | new_block = g_malloc0(sizeof(*new_block)); |
1960 | new_block->mr = mr; | |
9b8424d5 MT |
1961 | new_block->used_length = size; |
1962 | new_block->max_length = size; | |
dbcb8981 | 1963 | new_block->flags = share ? RAM_SHARED : 0; |
7f56e740 PB |
1964 | new_block->host = file_ram_alloc(new_block, size, |
1965 | mem_path, errp); | |
1966 | if (!new_block->host) { | |
1967 | g_free(new_block); | |
528f46af | 1968 | return NULL; |
7f56e740 PB |
1969 | } |
1970 | ||
528f46af | 1971 | ram_block_add(new_block, &local_err); |
ef701d7b HT |
1972 | if (local_err) { |
1973 | g_free(new_block); | |
1974 | error_propagate(errp, local_err); | |
528f46af | 1975 | return NULL; |
ef701d7b | 1976 | } |
528f46af | 1977 | return new_block; |
e1c57ab8 | 1978 | } |
0b183fc8 | 1979 | #endif |
e1c57ab8 | 1980 | |
62be4e3a | 1981 | static |
528f46af FZ |
1982 | RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size, |
1983 | void (*resized)(const char*, | |
1984 | uint64_t length, | |
1985 | void *host), | |
1986 | void *host, bool resizeable, | |
1987 | MemoryRegion *mr, Error **errp) | |
e1c57ab8 PB |
1988 | { |
1989 | RAMBlock *new_block; | |
ef701d7b | 1990 | Error *local_err = NULL; |
e1c57ab8 | 1991 | |
4ed023ce DDAG |
1992 | size = HOST_PAGE_ALIGN(size); |
1993 | max_size = HOST_PAGE_ALIGN(max_size); | |
e1c57ab8 PB |
1994 | new_block = g_malloc0(sizeof(*new_block)); |
1995 | new_block->mr = mr; | |
62be4e3a | 1996 | new_block->resized = resized; |
9b8424d5 MT |
1997 | new_block->used_length = size; |
1998 | new_block->max_length = max_size; | |
62be4e3a | 1999 | assert(max_size >= size); |
e1c57ab8 | 2000 | new_block->fd = -1; |
863e9621 | 2001 | new_block->page_size = getpagesize(); |
e1c57ab8 PB |
2002 | new_block->host = host; |
2003 | if (host) { | |
7bd4f430 | 2004 | new_block->flags |= RAM_PREALLOC; |
e1c57ab8 | 2005 | } |
62be4e3a MT |
2006 | if (resizeable) { |
2007 | new_block->flags |= RAM_RESIZEABLE; | |
2008 | } | |
528f46af | 2009 | ram_block_add(new_block, &local_err); |
ef701d7b HT |
2010 | if (local_err) { |
2011 | g_free(new_block); | |
2012 | error_propagate(errp, local_err); | |
528f46af | 2013 | return NULL; |
ef701d7b | 2014 | } |
528f46af | 2015 | return new_block; |
e1c57ab8 PB |
2016 | } |
2017 | ||
528f46af | 2018 | RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, |
62be4e3a MT |
2019 | MemoryRegion *mr, Error **errp) |
2020 | { | |
2021 | return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp); | |
2022 | } | |
2023 | ||
528f46af | 2024 | RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp) |
6977dfe6 | 2025 | { |
62be4e3a MT |
2026 | return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp); |
2027 | } | |
2028 | ||
528f46af | 2029 | RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz, |
62be4e3a MT |
2030 | void (*resized)(const char*, |
2031 | uint64_t length, | |
2032 | void *host), | |
2033 | MemoryRegion *mr, Error **errp) | |
2034 | { | |
2035 | return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp); | |
6977dfe6 YT |
2036 | } |
2037 | ||
43771539 PB |
2038 | static void reclaim_ramblock(RAMBlock *block) |
2039 | { | |
2040 | if (block->flags & RAM_PREALLOC) { | |
2041 | ; | |
2042 | } else if (xen_enabled()) { | |
2043 | xen_invalidate_map_cache_entry(block->host); | |
2044 | #ifndef _WIN32 | |
2045 | } else if (block->fd >= 0) { | |
2f3a2bb1 | 2046 | qemu_ram_munmap(block->host, block->max_length); |
43771539 PB |
2047 | close(block->fd); |
2048 | #endif | |
2049 | } else { | |
2050 | qemu_anon_ram_free(block->host, block->max_length); | |
2051 | } | |
2052 | g_free(block); | |
2053 | } | |
2054 | ||
f1060c55 | 2055 | void qemu_ram_free(RAMBlock *block) |
e9a1ab19 | 2056 | { |
85bc2a15 MAL |
2057 | if (!block) { |
2058 | return; | |
2059 | } | |
2060 | ||
0987d735 PB |
2061 | if (block->host) { |
2062 | ram_block_notify_remove(block->host, block->max_length); | |
2063 | } | |
2064 | ||
b2a8658e | 2065 | qemu_mutex_lock_ramlist(); |
f1060c55 FZ |
2066 | QLIST_REMOVE_RCU(block, next); |
2067 | ram_list.mru_block = NULL; | |
2068 | /* Write list before version */ | |
2069 | smp_wmb(); | |
2070 | ram_list.version++; | |
2071 | call_rcu(block, reclaim_ramblock, rcu); | |
b2a8658e | 2072 | qemu_mutex_unlock_ramlist(); |
e9a1ab19 FB |
2073 | } |
2074 | ||
cd19cfa2 HY |
2075 | #ifndef _WIN32 |
2076 | void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) | |
2077 | { | |
2078 | RAMBlock *block; | |
2079 | ram_addr_t offset; | |
2080 | int flags; | |
2081 | void *area, *vaddr; | |
2082 | ||
99e15582 | 2083 | RAMBLOCK_FOREACH(block) { |
cd19cfa2 | 2084 | offset = addr - block->offset; |
9b8424d5 | 2085 | if (offset < block->max_length) { |
1240be24 | 2086 | vaddr = ramblock_ptr(block, offset); |
7bd4f430 | 2087 | if (block->flags & RAM_PREALLOC) { |
cd19cfa2 | 2088 | ; |
dfeaf2ab MA |
2089 | } else if (xen_enabled()) { |
2090 | abort(); | |
cd19cfa2 HY |
2091 | } else { |
2092 | flags = MAP_FIXED; | |
3435f395 | 2093 | if (block->fd >= 0) { |
dbcb8981 PB |
2094 | flags |= (block->flags & RAM_SHARED ? |
2095 | MAP_SHARED : MAP_PRIVATE); | |
3435f395 MA |
2096 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, |
2097 | flags, block->fd, offset); | |
cd19cfa2 | 2098 | } else { |
2eb9fbaa MA |
2099 | /* |
2100 | * Remap needs to match alloc. Accelerators that | |
2101 | * set phys_mem_alloc never remap. If they did, | |
2102 | * we'd need a remap hook here. | |
2103 | */ | |
2104 | assert(phys_mem_alloc == qemu_anon_ram_alloc); | |
2105 | ||
cd19cfa2 HY |
2106 | flags |= MAP_PRIVATE | MAP_ANONYMOUS; |
2107 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, | |
2108 | flags, -1, 0); | |
cd19cfa2 HY |
2109 | } |
2110 | if (area != vaddr) { | |
f15fbc4b AP |
2111 | fprintf(stderr, "Could not remap addr: " |
2112 | RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n", | |
cd19cfa2 HY |
2113 | length, addr); |
2114 | exit(1); | |
2115 | } | |
8490fc78 | 2116 | memory_try_enable_merging(vaddr, length); |
ddb97f1d | 2117 | qemu_ram_setup_dump(vaddr, length); |
cd19cfa2 | 2118 | } |
cd19cfa2 HY |
2119 | } |
2120 | } | |
2121 | } | |
2122 | #endif /* !_WIN32 */ | |
2123 | ||
1b5ec234 | 2124 | /* Return a host pointer to ram allocated with qemu_ram_alloc. |
ae3a7047 MD |
2125 | * This should not be used for general purpose DMA. Use address_space_map |
2126 | * or address_space_rw instead. For local memory (e.g. video ram) that the | |
2127 | * device owns, use memory_region_get_ram_ptr. | |
0dc3f44a | 2128 | * |
49b24afc | 2129 | * Called within RCU critical section. |
1b5ec234 | 2130 | */ |
0878d0e1 | 2131 | void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr) |
1b5ec234 | 2132 | { |
3655cb9c GA |
2133 | RAMBlock *block = ram_block; |
2134 | ||
2135 | if (block == NULL) { | |
2136 | block = qemu_get_ram_block(addr); | |
0878d0e1 | 2137 | addr -= block->offset; |
3655cb9c | 2138 | } |
ae3a7047 MD |
2139 | |
2140 | if (xen_enabled() && block->host == NULL) { | |
0d6d3c87 PB |
2141 | /* We need to check if the requested address is in the RAM |
2142 | * because we don't want to map the entire memory in QEMU. | |
2143 | * In that case just map until the end of the page. | |
2144 | */ | |
2145 | if (block->offset == 0) { | |
1ff7c598 | 2146 | return xen_map_cache(addr, 0, 0, false); |
0d6d3c87 | 2147 | } |
ae3a7047 | 2148 | |
1ff7c598 | 2149 | block->host = xen_map_cache(block->offset, block->max_length, 1, false); |
0d6d3c87 | 2150 | } |
0878d0e1 | 2151 | return ramblock_ptr(block, addr); |
dc828ca1 PB |
2152 | } |
2153 | ||
0878d0e1 | 2154 | /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr |
ae3a7047 | 2155 | * but takes a size argument. |
0dc3f44a | 2156 | * |
e81bcda5 | 2157 | * Called within RCU critical section. |
ae3a7047 | 2158 | */ |
3655cb9c GA |
2159 | static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr, |
2160 | hwaddr *size) | |
38bee5dc | 2161 | { |
3655cb9c | 2162 | RAMBlock *block = ram_block; |
8ab934f9 SS |
2163 | if (*size == 0) { |
2164 | return NULL; | |
2165 | } | |
e81bcda5 | 2166 | |
3655cb9c GA |
2167 | if (block == NULL) { |
2168 | block = qemu_get_ram_block(addr); | |
0878d0e1 | 2169 | addr -= block->offset; |
3655cb9c | 2170 | } |
0878d0e1 | 2171 | *size = MIN(*size, block->max_length - addr); |
e81bcda5 PB |
2172 | |
2173 | if (xen_enabled() && block->host == NULL) { | |
2174 | /* We need to check if the requested address is in the RAM | |
2175 | * because we don't want to map the entire memory in QEMU. | |
2176 | * In that case just map the requested area. | |
2177 | */ | |
2178 | if (block->offset == 0) { | |
1ff7c598 | 2179 | return xen_map_cache(addr, *size, 1, true); |
38bee5dc SS |
2180 | } |
2181 | ||
1ff7c598 | 2182 | block->host = xen_map_cache(block->offset, block->max_length, 1, true); |
38bee5dc | 2183 | } |
e81bcda5 | 2184 | |
0878d0e1 | 2185 | return ramblock_ptr(block, addr); |
38bee5dc SS |
2186 | } |
2187 | ||
422148d3 DDAG |
2188 | /* |
2189 | * Translates a host ptr back to a RAMBlock, a ram_addr and an offset | |
2190 | * in that RAMBlock. | |
2191 | * | |
2192 | * ptr: Host pointer to look up | |
2193 | * round_offset: If true round the result offset down to a page boundary | |
2194 | * *ram_addr: set to result ram_addr | |
2195 | * *offset: set to result offset within the RAMBlock | |
2196 | * | |
2197 | * Returns: RAMBlock (or NULL if not found) | |
ae3a7047 MD |
2198 | * |
2199 | * By the time this function returns, the returned pointer is not protected | |
2200 | * by RCU anymore. If the caller is not within an RCU critical section and | |
2201 | * does not hold the iothread lock, it must have other means of protecting the | |
2202 | * pointer, such as a reference to the region that includes the incoming | |
2203 | * ram_addr_t. | |
2204 | */ | |
422148d3 | 2205 | RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, |
422148d3 | 2206 | ram_addr_t *offset) |
5579c7f3 | 2207 | { |
94a6b54f PB |
2208 | RAMBlock *block; |
2209 | uint8_t *host = ptr; | |
2210 | ||
868bb33f | 2211 | if (xen_enabled()) { |
f615f396 | 2212 | ram_addr_t ram_addr; |
0dc3f44a | 2213 | rcu_read_lock(); |
f615f396 PB |
2214 | ram_addr = xen_ram_addr_from_mapcache(ptr); |
2215 | block = qemu_get_ram_block(ram_addr); | |
422148d3 | 2216 | if (block) { |
d6b6aec4 | 2217 | *offset = ram_addr - block->offset; |
422148d3 | 2218 | } |
0dc3f44a | 2219 | rcu_read_unlock(); |
422148d3 | 2220 | return block; |
712c2b41 SS |
2221 | } |
2222 | ||
0dc3f44a MD |
2223 | rcu_read_lock(); |
2224 | block = atomic_rcu_read(&ram_list.mru_block); | |
9b8424d5 | 2225 | if (block && block->host && host - block->host < block->max_length) { |
23887b79 PB |
2226 | goto found; |
2227 | } | |
2228 | ||
99e15582 | 2229 | RAMBLOCK_FOREACH(block) { |
432d268c JN |
2230 | /* This case append when the block is not mapped. */ |
2231 | if (block->host == NULL) { | |
2232 | continue; | |
2233 | } | |
9b8424d5 | 2234 | if (host - block->host < block->max_length) { |
23887b79 | 2235 | goto found; |
f471a17e | 2236 | } |
94a6b54f | 2237 | } |
432d268c | 2238 | |
0dc3f44a | 2239 | rcu_read_unlock(); |
1b5ec234 | 2240 | return NULL; |
23887b79 PB |
2241 | |
2242 | found: | |
422148d3 DDAG |
2243 | *offset = (host - block->host); |
2244 | if (round_offset) { | |
2245 | *offset &= TARGET_PAGE_MASK; | |
2246 | } | |
0dc3f44a | 2247 | rcu_read_unlock(); |
422148d3 DDAG |
2248 | return block; |
2249 | } | |
2250 | ||
e3dd7493 DDAG |
2251 | /* |
2252 | * Finds the named RAMBlock | |
2253 | * | |
2254 | * name: The name of RAMBlock to find | |
2255 | * | |
2256 | * Returns: RAMBlock (or NULL if not found) | |
2257 | */ | |
2258 | RAMBlock *qemu_ram_block_by_name(const char *name) | |
2259 | { | |
2260 | RAMBlock *block; | |
2261 | ||
99e15582 | 2262 | RAMBLOCK_FOREACH(block) { |
e3dd7493 DDAG |
2263 | if (!strcmp(name, block->idstr)) { |
2264 | return block; | |
2265 | } | |
2266 | } | |
2267 | ||
2268 | return NULL; | |
2269 | } | |
2270 | ||
422148d3 DDAG |
2271 | /* Some of the softmmu routines need to translate from a host pointer |
2272 | (typically a TLB entry) back to a ram offset. */ | |
07bdaa41 | 2273 | ram_addr_t qemu_ram_addr_from_host(void *ptr) |
422148d3 DDAG |
2274 | { |
2275 | RAMBlock *block; | |
f615f396 | 2276 | ram_addr_t offset; |
422148d3 | 2277 | |
f615f396 | 2278 | block = qemu_ram_block_from_host(ptr, false, &offset); |
422148d3 | 2279 | if (!block) { |
07bdaa41 | 2280 | return RAM_ADDR_INVALID; |
422148d3 DDAG |
2281 | } |
2282 | ||
07bdaa41 | 2283 | return block->offset + offset; |
e890261f | 2284 | } |
f471a17e | 2285 | |
49b24afc | 2286 | /* Called within RCU critical section. */ |
a8170e5e | 2287 | static void notdirty_mem_write(void *opaque, hwaddr ram_addr, |
0e0df1e2 | 2288 | uint64_t val, unsigned size) |
9fa3e853 | 2289 | { |
ba051fb5 AB |
2290 | bool locked = false; |
2291 | ||
52159192 | 2292 | if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { |
ba051fb5 AB |
2293 | locked = true; |
2294 | tb_lock(); | |
0e0df1e2 | 2295 | tb_invalidate_phys_page_fast(ram_addr, size); |
3a7d929e | 2296 | } |
0e0df1e2 AK |
2297 | switch (size) { |
2298 | case 1: | |
0878d0e1 | 2299 | stb_p(qemu_map_ram_ptr(NULL, ram_addr), val); |
0e0df1e2 AK |
2300 | break; |
2301 | case 2: | |
0878d0e1 | 2302 | stw_p(qemu_map_ram_ptr(NULL, ram_addr), val); |
0e0df1e2 AK |
2303 | break; |
2304 | case 4: | |
0878d0e1 | 2305 | stl_p(qemu_map_ram_ptr(NULL, ram_addr), val); |
0e0df1e2 AK |
2306 | break; |
2307 | default: | |
2308 | abort(); | |
3a7d929e | 2309 | } |
ba051fb5 AB |
2310 | |
2311 | if (locked) { | |
2312 | tb_unlock(); | |
2313 | } | |
2314 | ||
58d2707e PB |
2315 | /* Set both VGA and migration bits for simplicity and to remove |
2316 | * the notdirty callback faster. | |
2317 | */ | |
2318 | cpu_physical_memory_set_dirty_range(ram_addr, size, | |
2319 | DIRTY_CLIENTS_NOCODE); | |
f23db169 FB |
2320 | /* we remove the notdirty callback only if the code has been |
2321 | flushed */ | |
a2cd8c85 | 2322 | if (!cpu_physical_memory_is_clean(ram_addr)) { |
bcae01e4 | 2323 | tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr); |
4917cf44 | 2324 | } |
9fa3e853 FB |
2325 | } |
2326 | ||
b018ddf6 PB |
2327 | static bool notdirty_mem_accepts(void *opaque, hwaddr addr, |
2328 | unsigned size, bool is_write) | |
2329 | { | |
2330 | return is_write; | |
2331 | } | |
2332 | ||
0e0df1e2 | 2333 | static const MemoryRegionOps notdirty_mem_ops = { |
0e0df1e2 | 2334 | .write = notdirty_mem_write, |
b018ddf6 | 2335 | .valid.accepts = notdirty_mem_accepts, |
0e0df1e2 | 2336 | .endianness = DEVICE_NATIVE_ENDIAN, |
1ccde1cb FB |
2337 | }; |
2338 | ||
0f459d16 | 2339 | /* Generate a debug exception if a watchpoint has been hit. */ |
66b9b43c | 2340 | static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags) |
0f459d16 | 2341 | { |
93afeade | 2342 | CPUState *cpu = current_cpu; |
568496c0 | 2343 | CPUClass *cc = CPU_GET_CLASS(cpu); |
93afeade | 2344 | CPUArchState *env = cpu->env_ptr; |
06d55cc1 | 2345 | target_ulong pc, cs_base; |
0f459d16 | 2346 | target_ulong vaddr; |
a1d1bb31 | 2347 | CPUWatchpoint *wp; |
89fee74a | 2348 | uint32_t cpu_flags; |
0f459d16 | 2349 | |
ff4700b0 | 2350 | if (cpu->watchpoint_hit) { |
06d55cc1 AL |
2351 | /* We re-entered the check after replacing the TB. Now raise |
2352 | * the debug interrupt so that is will trigger after the | |
2353 | * current instruction. */ | |
93afeade | 2354 | cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG); |
06d55cc1 AL |
2355 | return; |
2356 | } | |
93afeade | 2357 | vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset; |
40612000 | 2358 | vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len); |
ff4700b0 | 2359 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d PM |
2360 | if (cpu_watchpoint_address_matches(wp, vaddr, len) |
2361 | && (wp->flags & flags)) { | |
08225676 PM |
2362 | if (flags == BP_MEM_READ) { |
2363 | wp->flags |= BP_WATCHPOINT_HIT_READ; | |
2364 | } else { | |
2365 | wp->flags |= BP_WATCHPOINT_HIT_WRITE; | |
2366 | } | |
2367 | wp->hitaddr = vaddr; | |
66b9b43c | 2368 | wp->hitattrs = attrs; |
ff4700b0 | 2369 | if (!cpu->watchpoint_hit) { |
568496c0 SF |
2370 | if (wp->flags & BP_CPU && |
2371 | !cc->debug_check_watchpoint(cpu, wp)) { | |
2372 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
2373 | continue; | |
2374 | } | |
ff4700b0 | 2375 | cpu->watchpoint_hit = wp; |
a5e99826 | 2376 | |
8d04fb55 JK |
2377 | /* Both tb_lock and iothread_mutex will be reset when |
2378 | * cpu_loop_exit or cpu_loop_exit_noexc longjmp | |
2379 | * back into the cpu_exec main loop. | |
a5e99826 FK |
2380 | */ |
2381 | tb_lock(); | |
239c51a5 | 2382 | tb_check_watchpoint(cpu); |
6e140f28 | 2383 | if (wp->flags & BP_STOP_BEFORE_ACCESS) { |
27103424 | 2384 | cpu->exception_index = EXCP_DEBUG; |
5638d180 | 2385 | cpu_loop_exit(cpu); |
6e140f28 AL |
2386 | } else { |
2387 | cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags); | |
648f034c | 2388 | tb_gen_code(cpu, pc, cs_base, cpu_flags, 1); |
6886b980 | 2389 | cpu_loop_exit_noexc(cpu); |
6e140f28 | 2390 | } |
06d55cc1 | 2391 | } |
6e140f28 AL |
2392 | } else { |
2393 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
0f459d16 PB |
2394 | } |
2395 | } | |
2396 | } | |
2397 | ||
6658ffb8 PB |
2398 | /* Watchpoint access routines. Watchpoints are inserted using TLB tricks, |
2399 | so these check for a hit then pass through to the normal out-of-line | |
2400 | phys routines. */ | |
66b9b43c PM |
2401 | static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata, |
2402 | unsigned size, MemTxAttrs attrs) | |
6658ffb8 | 2403 | { |
66b9b43c PM |
2404 | MemTxResult res; |
2405 | uint64_t data; | |
79ed0416 PM |
2406 | int asidx = cpu_asidx_from_attrs(current_cpu, attrs); |
2407 | AddressSpace *as = current_cpu->cpu_ases[asidx].as; | |
66b9b43c PM |
2408 | |
2409 | check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ); | |
1ec9b909 | 2410 | switch (size) { |
66b9b43c | 2411 | case 1: |
79ed0416 | 2412 | data = address_space_ldub(as, addr, attrs, &res); |
66b9b43c PM |
2413 | break; |
2414 | case 2: | |
79ed0416 | 2415 | data = address_space_lduw(as, addr, attrs, &res); |
66b9b43c PM |
2416 | break; |
2417 | case 4: | |
79ed0416 | 2418 | data = address_space_ldl(as, addr, attrs, &res); |
66b9b43c | 2419 | break; |
1ec9b909 AK |
2420 | default: abort(); |
2421 | } | |
66b9b43c PM |
2422 | *pdata = data; |
2423 | return res; | |
6658ffb8 PB |
2424 | } |
2425 | ||
66b9b43c PM |
2426 | static MemTxResult watch_mem_write(void *opaque, hwaddr addr, |
2427 | uint64_t val, unsigned size, | |
2428 | MemTxAttrs attrs) | |
6658ffb8 | 2429 | { |
66b9b43c | 2430 | MemTxResult res; |
79ed0416 PM |
2431 | int asidx = cpu_asidx_from_attrs(current_cpu, attrs); |
2432 | AddressSpace *as = current_cpu->cpu_ases[asidx].as; | |
66b9b43c PM |
2433 | |
2434 | check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE); | |
1ec9b909 | 2435 | switch (size) { |
67364150 | 2436 | case 1: |
79ed0416 | 2437 | address_space_stb(as, addr, val, attrs, &res); |
67364150 MF |
2438 | break; |
2439 | case 2: | |
79ed0416 | 2440 | address_space_stw(as, addr, val, attrs, &res); |
67364150 MF |
2441 | break; |
2442 | case 4: | |
79ed0416 | 2443 | address_space_stl(as, addr, val, attrs, &res); |
67364150 | 2444 | break; |
1ec9b909 AK |
2445 | default: abort(); |
2446 | } | |
66b9b43c | 2447 | return res; |
6658ffb8 PB |
2448 | } |
2449 | ||
1ec9b909 | 2450 | static const MemoryRegionOps watch_mem_ops = { |
66b9b43c PM |
2451 | .read_with_attrs = watch_mem_read, |
2452 | .write_with_attrs = watch_mem_write, | |
1ec9b909 | 2453 | .endianness = DEVICE_NATIVE_ENDIAN, |
6658ffb8 | 2454 | }; |
6658ffb8 | 2455 | |
f25a49e0 PM |
2456 | static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data, |
2457 | unsigned len, MemTxAttrs attrs) | |
db7b5426 | 2458 | { |
acc9d80b | 2459 | subpage_t *subpage = opaque; |
ff6cff75 | 2460 | uint8_t buf[8]; |
5c9eb028 | 2461 | MemTxResult res; |
791af8c8 | 2462 | |
db7b5426 | 2463 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2464 | printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__, |
acc9d80b | 2465 | subpage, len, addr); |
db7b5426 | 2466 | #endif |
5c9eb028 PM |
2467 | res = address_space_read(subpage->as, addr + subpage->base, |
2468 | attrs, buf, len); | |
2469 | if (res) { | |
2470 | return res; | |
f25a49e0 | 2471 | } |
acc9d80b JK |
2472 | switch (len) { |
2473 | case 1: | |
f25a49e0 PM |
2474 | *data = ldub_p(buf); |
2475 | return MEMTX_OK; | |
acc9d80b | 2476 | case 2: |
f25a49e0 PM |
2477 | *data = lduw_p(buf); |
2478 | return MEMTX_OK; | |
acc9d80b | 2479 | case 4: |
f25a49e0 PM |
2480 | *data = ldl_p(buf); |
2481 | return MEMTX_OK; | |
ff6cff75 | 2482 | case 8: |
f25a49e0 PM |
2483 | *data = ldq_p(buf); |
2484 | return MEMTX_OK; | |
acc9d80b JK |
2485 | default: |
2486 | abort(); | |
2487 | } | |
db7b5426 BS |
2488 | } |
2489 | ||
f25a49e0 PM |
2490 | static MemTxResult subpage_write(void *opaque, hwaddr addr, |
2491 | uint64_t value, unsigned len, MemTxAttrs attrs) | |
db7b5426 | 2492 | { |
acc9d80b | 2493 | subpage_t *subpage = opaque; |
ff6cff75 | 2494 | uint8_t buf[8]; |
acc9d80b | 2495 | |
db7b5426 | 2496 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2497 | printf("%s: subpage %p len %u addr " TARGET_FMT_plx |
acc9d80b JK |
2498 | " value %"PRIx64"\n", |
2499 | __func__, subpage, len, addr, value); | |
db7b5426 | 2500 | #endif |
acc9d80b JK |
2501 | switch (len) { |
2502 | case 1: | |
2503 | stb_p(buf, value); | |
2504 | break; | |
2505 | case 2: | |
2506 | stw_p(buf, value); | |
2507 | break; | |
2508 | case 4: | |
2509 | stl_p(buf, value); | |
2510 | break; | |
ff6cff75 PB |
2511 | case 8: |
2512 | stq_p(buf, value); | |
2513 | break; | |
acc9d80b JK |
2514 | default: |
2515 | abort(); | |
2516 | } | |
5c9eb028 PM |
2517 | return address_space_write(subpage->as, addr + subpage->base, |
2518 | attrs, buf, len); | |
db7b5426 BS |
2519 | } |
2520 | ||
c353e4cc | 2521 | static bool subpage_accepts(void *opaque, hwaddr addr, |
016e9d62 | 2522 | unsigned len, bool is_write) |
c353e4cc | 2523 | { |
acc9d80b | 2524 | subpage_t *subpage = opaque; |
c353e4cc | 2525 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2526 | printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n", |
acc9d80b | 2527 | __func__, subpage, is_write ? 'w' : 'r', len, addr); |
c353e4cc PB |
2528 | #endif |
2529 | ||
acc9d80b | 2530 | return address_space_access_valid(subpage->as, addr + subpage->base, |
016e9d62 | 2531 | len, is_write); |
c353e4cc PB |
2532 | } |
2533 | ||
70c68e44 | 2534 | static const MemoryRegionOps subpage_ops = { |
f25a49e0 PM |
2535 | .read_with_attrs = subpage_read, |
2536 | .write_with_attrs = subpage_write, | |
ff6cff75 PB |
2537 | .impl.min_access_size = 1, |
2538 | .impl.max_access_size = 8, | |
2539 | .valid.min_access_size = 1, | |
2540 | .valid.max_access_size = 8, | |
c353e4cc | 2541 | .valid.accepts = subpage_accepts, |
70c68e44 | 2542 | .endianness = DEVICE_NATIVE_ENDIAN, |
db7b5426 BS |
2543 | }; |
2544 | ||
c227f099 | 2545 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, |
5312bd8b | 2546 | uint16_t section) |
db7b5426 BS |
2547 | { |
2548 | int idx, eidx; | |
2549 | ||
2550 | if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) | |
2551 | return -1; | |
2552 | idx = SUBPAGE_IDX(start); | |
2553 | eidx = SUBPAGE_IDX(end); | |
2554 | #if defined(DEBUG_SUBPAGE) | |
016e9d62 AK |
2555 | printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", |
2556 | __func__, mmio, start, end, idx, eidx, section); | |
db7b5426 | 2557 | #endif |
db7b5426 | 2558 | for (; idx <= eidx; idx++) { |
5312bd8b | 2559 | mmio->sub_section[idx] = section; |
db7b5426 BS |
2560 | } |
2561 | ||
2562 | return 0; | |
2563 | } | |
2564 | ||
acc9d80b | 2565 | static subpage_t *subpage_init(AddressSpace *as, hwaddr base) |
db7b5426 | 2566 | { |
c227f099 | 2567 | subpage_t *mmio; |
db7b5426 | 2568 | |
2615fabd | 2569 | mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t)); |
acc9d80b | 2570 | mmio->as = as; |
1eec614b | 2571 | mmio->base = base; |
2c9b15ca | 2572 | memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, |
b4fefef9 | 2573 | NULL, TARGET_PAGE_SIZE); |
b3b00c78 | 2574 | mmio->iomem.subpage = true; |
db7b5426 | 2575 | #if defined(DEBUG_SUBPAGE) |
016e9d62 AK |
2576 | printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__, |
2577 | mmio, base, TARGET_PAGE_SIZE); | |
db7b5426 | 2578 | #endif |
b41aac4f | 2579 | subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED); |
db7b5426 BS |
2580 | |
2581 | return mmio; | |
2582 | } | |
2583 | ||
a656e22f PC |
2584 | static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as, |
2585 | MemoryRegion *mr) | |
5312bd8b | 2586 | { |
a656e22f | 2587 | assert(as); |
5312bd8b | 2588 | MemoryRegionSection section = { |
a656e22f | 2589 | .address_space = as, |
5312bd8b AK |
2590 | .mr = mr, |
2591 | .offset_within_address_space = 0, | |
2592 | .offset_within_region = 0, | |
052e87b0 | 2593 | .size = int128_2_64(), |
5312bd8b AK |
2594 | }; |
2595 | ||
53cb28cb | 2596 | return phys_section_add(map, §ion); |
5312bd8b AK |
2597 | } |
2598 | ||
a54c87b6 | 2599 | MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs) |
aa102231 | 2600 | { |
a54c87b6 PM |
2601 | int asidx = cpu_asidx_from_attrs(cpu, attrs); |
2602 | CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx]; | |
32857f4d | 2603 | AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch); |
79e2b9ae | 2604 | MemoryRegionSection *sections = d->map.sections; |
9d82b5a7 PB |
2605 | |
2606 | return sections[index & ~TARGET_PAGE_MASK].mr; | |
aa102231 AK |
2607 | } |
2608 | ||
e9179ce1 AK |
2609 | static void io_mem_init(void) |
2610 | { | |
1f6245e5 | 2611 | memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX); |
2c9b15ca | 2612 | memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, |
1f6245e5 | 2613 | NULL, UINT64_MAX); |
8d04fb55 JK |
2614 | |
2615 | /* io_mem_notdirty calls tb_invalidate_phys_page_fast, | |
2616 | * which can be called without the iothread mutex. | |
2617 | */ | |
2c9b15ca | 2618 | memory_region_init_io(&io_mem_notdirty, NULL, ¬dirty_mem_ops, NULL, |
1f6245e5 | 2619 | NULL, UINT64_MAX); |
8d04fb55 JK |
2620 | memory_region_clear_global_locking(&io_mem_notdirty); |
2621 | ||
2c9b15ca | 2622 | memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL, |
1f6245e5 | 2623 | NULL, UINT64_MAX); |
e9179ce1 AK |
2624 | } |
2625 | ||
ac1970fb | 2626 | static void mem_begin(MemoryListener *listener) |
00752703 PB |
2627 | { |
2628 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); | |
53cb28cb MA |
2629 | AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); |
2630 | uint16_t n; | |
2631 | ||
a656e22f | 2632 | n = dummy_section(&d->map, as, &io_mem_unassigned); |
53cb28cb | 2633 | assert(n == PHYS_SECTION_UNASSIGNED); |
a656e22f | 2634 | n = dummy_section(&d->map, as, &io_mem_notdirty); |
53cb28cb | 2635 | assert(n == PHYS_SECTION_NOTDIRTY); |
a656e22f | 2636 | n = dummy_section(&d->map, as, &io_mem_rom); |
53cb28cb | 2637 | assert(n == PHYS_SECTION_ROM); |
a656e22f | 2638 | n = dummy_section(&d->map, as, &io_mem_watch); |
53cb28cb | 2639 | assert(n == PHYS_SECTION_WATCH); |
00752703 | 2640 | |
9736e55b | 2641 | d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; |
00752703 PB |
2642 | d->as = as; |
2643 | as->next_dispatch = d; | |
2644 | } | |
2645 | ||
79e2b9ae PB |
2646 | static void address_space_dispatch_free(AddressSpaceDispatch *d) |
2647 | { | |
2648 | phys_sections_free(&d->map); | |
2649 | g_free(d); | |
2650 | } | |
2651 | ||
00752703 | 2652 | static void mem_commit(MemoryListener *listener) |
ac1970fb | 2653 | { |
89ae337a | 2654 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); |
0475d94f PB |
2655 | AddressSpaceDispatch *cur = as->dispatch; |
2656 | AddressSpaceDispatch *next = as->next_dispatch; | |
2657 | ||
53cb28cb | 2658 | phys_page_compact_all(next, next->map.nodes_nb); |
b35ba30f | 2659 | |
79e2b9ae | 2660 | atomic_rcu_set(&as->dispatch, next); |
53cb28cb | 2661 | if (cur) { |
79e2b9ae | 2662 | call_rcu(cur, address_space_dispatch_free, rcu); |
53cb28cb | 2663 | } |
9affd6fc PB |
2664 | } |
2665 | ||
1d71148e | 2666 | static void tcg_commit(MemoryListener *listener) |
50c1e149 | 2667 | { |
32857f4d PM |
2668 | CPUAddressSpace *cpuas; |
2669 | AddressSpaceDispatch *d; | |
117712c3 AK |
2670 | |
2671 | /* since each CPU stores ram addresses in its TLB cache, we must | |
2672 | reset the modified entries */ | |
32857f4d PM |
2673 | cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); |
2674 | cpu_reloading_memory_map(); | |
2675 | /* The CPU and TLB are protected by the iothread lock. | |
2676 | * We reload the dispatch pointer now because cpu_reloading_memory_map() | |
2677 | * may have split the RCU critical section. | |
2678 | */ | |
2679 | d = atomic_rcu_read(&cpuas->as->dispatch); | |
f35e44e7 | 2680 | atomic_rcu_set(&cpuas->memory_dispatch, d); |
d10eb08f | 2681 | tlb_flush(cpuas->cpu); |
50c1e149 AK |
2682 | } |
2683 | ||
ac1970fb AK |
2684 | void address_space_init_dispatch(AddressSpace *as) |
2685 | { | |
00752703 | 2686 | as->dispatch = NULL; |
89ae337a | 2687 | as->dispatch_listener = (MemoryListener) { |
ac1970fb | 2688 | .begin = mem_begin, |
00752703 | 2689 | .commit = mem_commit, |
ac1970fb AK |
2690 | .region_add = mem_add, |
2691 | .region_nop = mem_add, | |
2692 | .priority = 0, | |
2693 | }; | |
89ae337a | 2694 | memory_listener_register(&as->dispatch_listener, as); |
ac1970fb AK |
2695 | } |
2696 | ||
6e48e8f9 PB |
2697 | void address_space_unregister(AddressSpace *as) |
2698 | { | |
2699 | memory_listener_unregister(&as->dispatch_listener); | |
2700 | } | |
2701 | ||
83f3c251 AK |
2702 | void address_space_destroy_dispatch(AddressSpace *as) |
2703 | { | |
2704 | AddressSpaceDispatch *d = as->dispatch; | |
2705 | ||
79e2b9ae PB |
2706 | atomic_rcu_set(&as->dispatch, NULL); |
2707 | if (d) { | |
2708 | call_rcu(d, address_space_dispatch_free, rcu); | |
2709 | } | |
83f3c251 AK |
2710 | } |
2711 | ||
62152b8a AK |
2712 | static void memory_map_init(void) |
2713 | { | |
7267c094 | 2714 | system_memory = g_malloc(sizeof(*system_memory)); |
03f49957 | 2715 | |
57271d63 | 2716 | memory_region_init(system_memory, NULL, "system", UINT64_MAX); |
7dca8043 | 2717 | address_space_init(&address_space_memory, system_memory, "memory"); |
309cb471 | 2718 | |
7267c094 | 2719 | system_io = g_malloc(sizeof(*system_io)); |
3bb28b72 JK |
2720 | memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", |
2721 | 65536); | |
7dca8043 | 2722 | address_space_init(&address_space_io, system_io, "I/O"); |
62152b8a AK |
2723 | } |
2724 | ||
2725 | MemoryRegion *get_system_memory(void) | |
2726 | { | |
2727 | return system_memory; | |
2728 | } | |
2729 | ||
309cb471 AK |
2730 | MemoryRegion *get_system_io(void) |
2731 | { | |
2732 | return system_io; | |
2733 | } | |
2734 | ||
e2eef170 PB |
2735 | #endif /* !defined(CONFIG_USER_ONLY) */ |
2736 | ||
13eb76e0 FB |
2737 | /* physical memory access (slow version, mainly for debug) */ |
2738 | #if defined(CONFIG_USER_ONLY) | |
f17ec444 | 2739 | int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, |
a68fe89c | 2740 | uint8_t *buf, int len, int is_write) |
13eb76e0 FB |
2741 | { |
2742 | int l, flags; | |
2743 | target_ulong page; | |
53a5960a | 2744 | void * p; |
13eb76e0 FB |
2745 | |
2746 | while (len > 0) { | |
2747 | page = addr & TARGET_PAGE_MASK; | |
2748 | l = (page + TARGET_PAGE_SIZE) - addr; | |
2749 | if (l > len) | |
2750 | l = len; | |
2751 | flags = page_get_flags(page); | |
2752 | if (!(flags & PAGE_VALID)) | |
a68fe89c | 2753 | return -1; |
13eb76e0 FB |
2754 | if (is_write) { |
2755 | if (!(flags & PAGE_WRITE)) | |
a68fe89c | 2756 | return -1; |
579a97f7 | 2757 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 2758 | if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) |
a68fe89c | 2759 | return -1; |
72fb7daa AJ |
2760 | memcpy(p, buf, l); |
2761 | unlock_user(p, addr, l); | |
13eb76e0 FB |
2762 | } else { |
2763 | if (!(flags & PAGE_READ)) | |
a68fe89c | 2764 | return -1; |
579a97f7 | 2765 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 2766 | if (!(p = lock_user(VERIFY_READ, addr, l, 1))) |
a68fe89c | 2767 | return -1; |
72fb7daa | 2768 | memcpy(buf, p, l); |
5b257578 | 2769 | unlock_user(p, addr, 0); |
13eb76e0 FB |
2770 | } |
2771 | len -= l; | |
2772 | buf += l; | |
2773 | addr += l; | |
2774 | } | |
a68fe89c | 2775 | return 0; |
13eb76e0 | 2776 | } |
8df1cd07 | 2777 | |
13eb76e0 | 2778 | #else |
51d7a9eb | 2779 | |
845b6214 | 2780 | static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, |
a8170e5e | 2781 | hwaddr length) |
51d7a9eb | 2782 | { |
e87f7778 | 2783 | uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr); |
0878d0e1 PB |
2784 | addr += memory_region_get_ram_addr(mr); |
2785 | ||
e87f7778 PB |
2786 | /* No early return if dirty_log_mask is or becomes 0, because |
2787 | * cpu_physical_memory_set_dirty_range will still call | |
2788 | * xen_modified_memory. | |
2789 | */ | |
2790 | if (dirty_log_mask) { | |
2791 | dirty_log_mask = | |
2792 | cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask); | |
2793 | } | |
2794 | if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) { | |
ba051fb5 | 2795 | tb_lock(); |
e87f7778 | 2796 | tb_invalidate_phys_range(addr, addr + length); |
ba051fb5 | 2797 | tb_unlock(); |
e87f7778 | 2798 | dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); |
51d7a9eb | 2799 | } |
e87f7778 | 2800 | cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask); |
51d7a9eb AP |
2801 | } |
2802 | ||
23326164 | 2803 | static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) |
82f2563f | 2804 | { |
e1622f4b | 2805 | unsigned access_size_max = mr->ops->valid.max_access_size; |
23326164 RH |
2806 | |
2807 | /* Regions are assumed to support 1-4 byte accesses unless | |
2808 | otherwise specified. */ | |
23326164 RH |
2809 | if (access_size_max == 0) { |
2810 | access_size_max = 4; | |
2811 | } | |
2812 | ||
2813 | /* Bound the maximum access by the alignment of the address. */ | |
2814 | if (!mr->ops->impl.unaligned) { | |
2815 | unsigned align_size_max = addr & -addr; | |
2816 | if (align_size_max != 0 && align_size_max < access_size_max) { | |
2817 | access_size_max = align_size_max; | |
2818 | } | |
82f2563f | 2819 | } |
23326164 RH |
2820 | |
2821 | /* Don't attempt accesses larger than the maximum. */ | |
2822 | if (l > access_size_max) { | |
2823 | l = access_size_max; | |
82f2563f | 2824 | } |
6554f5c0 | 2825 | l = pow2floor(l); |
23326164 RH |
2826 | |
2827 | return l; | |
82f2563f PB |
2828 | } |
2829 | ||
4840f10e | 2830 | static bool prepare_mmio_access(MemoryRegion *mr) |
125b3806 | 2831 | { |
4840f10e JK |
2832 | bool unlocked = !qemu_mutex_iothread_locked(); |
2833 | bool release_lock = false; | |
2834 | ||
2835 | if (unlocked && mr->global_locking) { | |
2836 | qemu_mutex_lock_iothread(); | |
2837 | unlocked = false; | |
2838 | release_lock = true; | |
2839 | } | |
125b3806 | 2840 | if (mr->flush_coalesced_mmio) { |
4840f10e JK |
2841 | if (unlocked) { |
2842 | qemu_mutex_lock_iothread(); | |
2843 | } | |
125b3806 | 2844 | qemu_flush_coalesced_mmio_buffer(); |
4840f10e JK |
2845 | if (unlocked) { |
2846 | qemu_mutex_unlock_iothread(); | |
2847 | } | |
125b3806 | 2848 | } |
4840f10e JK |
2849 | |
2850 | return release_lock; | |
125b3806 PB |
2851 | } |
2852 | ||
a203ac70 PB |
2853 | /* Called within RCU critical section. */ |
2854 | static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr, | |
2855 | MemTxAttrs attrs, | |
2856 | const uint8_t *buf, | |
2857 | int len, hwaddr addr1, | |
2858 | hwaddr l, MemoryRegion *mr) | |
13eb76e0 | 2859 | { |
13eb76e0 | 2860 | uint8_t *ptr; |
791af8c8 | 2861 | uint64_t val; |
3b643495 | 2862 | MemTxResult result = MEMTX_OK; |
4840f10e | 2863 | bool release_lock = false; |
3b46e624 | 2864 | |
a203ac70 | 2865 | for (;;) { |
eb7eeb88 PB |
2866 | if (!memory_access_is_direct(mr, true)) { |
2867 | release_lock |= prepare_mmio_access(mr); | |
2868 | l = memory_access_size(mr, l, addr1); | |
2869 | /* XXX: could force current_cpu to NULL to avoid | |
2870 | potential bugs */ | |
2871 | switch (l) { | |
2872 | case 8: | |
2873 | /* 64 bit write access */ | |
2874 | val = ldq_p(buf); | |
2875 | result |= memory_region_dispatch_write(mr, addr1, val, 8, | |
2876 | attrs); | |
2877 | break; | |
2878 | case 4: | |
2879 | /* 32 bit write access */ | |
6da67de6 | 2880 | val = (uint32_t)ldl_p(buf); |
eb7eeb88 PB |
2881 | result |= memory_region_dispatch_write(mr, addr1, val, 4, |
2882 | attrs); | |
2883 | break; | |
2884 | case 2: | |
2885 | /* 16 bit write access */ | |
2886 | val = lduw_p(buf); | |
2887 | result |= memory_region_dispatch_write(mr, addr1, val, 2, | |
2888 | attrs); | |
2889 | break; | |
2890 | case 1: | |
2891 | /* 8 bit write access */ | |
2892 | val = ldub_p(buf); | |
2893 | result |= memory_region_dispatch_write(mr, addr1, val, 1, | |
2894 | attrs); | |
2895 | break; | |
2896 | default: | |
2897 | abort(); | |
13eb76e0 FB |
2898 | } |
2899 | } else { | |
eb7eeb88 | 2900 | /* RAM case */ |
0878d0e1 | 2901 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
eb7eeb88 PB |
2902 | memcpy(ptr, buf, l); |
2903 | invalidate_and_set_dirty(mr, addr1, l); | |
13eb76e0 | 2904 | } |
4840f10e JK |
2905 | |
2906 | if (release_lock) { | |
2907 | qemu_mutex_unlock_iothread(); | |
2908 | release_lock = false; | |
2909 | } | |
2910 | ||
13eb76e0 FB |
2911 | len -= l; |
2912 | buf += l; | |
2913 | addr += l; | |
a203ac70 PB |
2914 | |
2915 | if (!len) { | |
2916 | break; | |
2917 | } | |
2918 | ||
2919 | l = len; | |
2920 | mr = address_space_translate(as, addr, &addr1, &l, true); | |
13eb76e0 | 2921 | } |
fd8aaa76 | 2922 | |
3b643495 | 2923 | return result; |
13eb76e0 | 2924 | } |
8df1cd07 | 2925 | |
a203ac70 PB |
2926 | MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, |
2927 | const uint8_t *buf, int len) | |
ac1970fb | 2928 | { |
eb7eeb88 | 2929 | hwaddr l; |
eb7eeb88 PB |
2930 | hwaddr addr1; |
2931 | MemoryRegion *mr; | |
2932 | MemTxResult result = MEMTX_OK; | |
eb7eeb88 | 2933 | |
a203ac70 PB |
2934 | if (len > 0) { |
2935 | rcu_read_lock(); | |
eb7eeb88 | 2936 | l = len; |
a203ac70 PB |
2937 | mr = address_space_translate(as, addr, &addr1, &l, true); |
2938 | result = address_space_write_continue(as, addr, attrs, buf, len, | |
2939 | addr1, l, mr); | |
2940 | rcu_read_unlock(); | |
2941 | } | |
2942 | ||
2943 | return result; | |
2944 | } | |
2945 | ||
2946 | /* Called within RCU critical section. */ | |
2947 | MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr, | |
2948 | MemTxAttrs attrs, uint8_t *buf, | |
2949 | int len, hwaddr addr1, hwaddr l, | |
2950 | MemoryRegion *mr) | |
2951 | { | |
2952 | uint8_t *ptr; | |
2953 | uint64_t val; | |
2954 | MemTxResult result = MEMTX_OK; | |
2955 | bool release_lock = false; | |
eb7eeb88 | 2956 | |
a203ac70 | 2957 | for (;;) { |
eb7eeb88 PB |
2958 | if (!memory_access_is_direct(mr, false)) { |
2959 | /* I/O case */ | |
2960 | release_lock |= prepare_mmio_access(mr); | |
2961 | l = memory_access_size(mr, l, addr1); | |
2962 | switch (l) { | |
2963 | case 8: | |
2964 | /* 64 bit read access */ | |
2965 | result |= memory_region_dispatch_read(mr, addr1, &val, 8, | |
2966 | attrs); | |
2967 | stq_p(buf, val); | |
2968 | break; | |
2969 | case 4: | |
2970 | /* 32 bit read access */ | |
2971 | result |= memory_region_dispatch_read(mr, addr1, &val, 4, | |
2972 | attrs); | |
2973 | stl_p(buf, val); | |
2974 | break; | |
2975 | case 2: | |
2976 | /* 16 bit read access */ | |
2977 | result |= memory_region_dispatch_read(mr, addr1, &val, 2, | |
2978 | attrs); | |
2979 | stw_p(buf, val); | |
2980 | break; | |
2981 | case 1: | |
2982 | /* 8 bit read access */ | |
2983 | result |= memory_region_dispatch_read(mr, addr1, &val, 1, | |
2984 | attrs); | |
2985 | stb_p(buf, val); | |
2986 | break; | |
2987 | default: | |
2988 | abort(); | |
2989 | } | |
2990 | } else { | |
2991 | /* RAM case */ | |
0878d0e1 | 2992 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
eb7eeb88 PB |
2993 | memcpy(buf, ptr, l); |
2994 | } | |
2995 | ||
2996 | if (release_lock) { | |
2997 | qemu_mutex_unlock_iothread(); | |
2998 | release_lock = false; | |
2999 | } | |
3000 | ||
3001 | len -= l; | |
3002 | buf += l; | |
3003 | addr += l; | |
a203ac70 PB |
3004 | |
3005 | if (!len) { | |
3006 | break; | |
3007 | } | |
3008 | ||
3009 | l = len; | |
3010 | mr = address_space_translate(as, addr, &addr1, &l, false); | |
3011 | } | |
3012 | ||
3013 | return result; | |
3014 | } | |
3015 | ||
3cc8f884 PB |
3016 | MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, |
3017 | MemTxAttrs attrs, uint8_t *buf, int len) | |
a203ac70 PB |
3018 | { |
3019 | hwaddr l; | |
3020 | hwaddr addr1; | |
3021 | MemoryRegion *mr; | |
3022 | MemTxResult result = MEMTX_OK; | |
3023 | ||
3024 | if (len > 0) { | |
3025 | rcu_read_lock(); | |
3026 | l = len; | |
3027 | mr = address_space_translate(as, addr, &addr1, &l, false); | |
3028 | result = address_space_read_continue(as, addr, attrs, buf, len, | |
3029 | addr1, l, mr); | |
3030 | rcu_read_unlock(); | |
eb7eeb88 | 3031 | } |
eb7eeb88 PB |
3032 | |
3033 | return result; | |
ac1970fb AK |
3034 | } |
3035 | ||
eb7eeb88 PB |
3036 | MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, |
3037 | uint8_t *buf, int len, bool is_write) | |
3038 | { | |
3039 | if (is_write) { | |
3040 | return address_space_write(as, addr, attrs, (uint8_t *)buf, len); | |
3041 | } else { | |
3042 | return address_space_read(as, addr, attrs, (uint8_t *)buf, len); | |
3043 | } | |
3044 | } | |
ac1970fb | 3045 | |
a8170e5e | 3046 | void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf, |
ac1970fb AK |
3047 | int len, int is_write) |
3048 | { | |
5c9eb028 PM |
3049 | address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, |
3050 | buf, len, is_write); | |
ac1970fb AK |
3051 | } |
3052 | ||
582b55a9 AG |
3053 | enum write_rom_type { |
3054 | WRITE_DATA, | |
3055 | FLUSH_CACHE, | |
3056 | }; | |
3057 | ||
2a221651 | 3058 | static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as, |
582b55a9 | 3059 | hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type) |
d0ecd2aa | 3060 | { |
149f54b5 | 3061 | hwaddr l; |
d0ecd2aa | 3062 | uint8_t *ptr; |
149f54b5 | 3063 | hwaddr addr1; |
5c8a00ce | 3064 | MemoryRegion *mr; |
3b46e624 | 3065 | |
41063e1e | 3066 | rcu_read_lock(); |
d0ecd2aa | 3067 | while (len > 0) { |
149f54b5 | 3068 | l = len; |
2a221651 | 3069 | mr = address_space_translate(as, addr, &addr1, &l, true); |
3b46e624 | 3070 | |
5c8a00ce PB |
3071 | if (!(memory_region_is_ram(mr) || |
3072 | memory_region_is_romd(mr))) { | |
b242e0e0 | 3073 | l = memory_access_size(mr, l, addr1); |
d0ecd2aa | 3074 | } else { |
d0ecd2aa | 3075 | /* ROM/RAM case */ |
0878d0e1 | 3076 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
582b55a9 AG |
3077 | switch (type) { |
3078 | case WRITE_DATA: | |
3079 | memcpy(ptr, buf, l); | |
845b6214 | 3080 | invalidate_and_set_dirty(mr, addr1, l); |
582b55a9 AG |
3081 | break; |
3082 | case FLUSH_CACHE: | |
3083 | flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l); | |
3084 | break; | |
3085 | } | |
d0ecd2aa FB |
3086 | } |
3087 | len -= l; | |
3088 | buf += l; | |
3089 | addr += l; | |
3090 | } | |
41063e1e | 3091 | rcu_read_unlock(); |
d0ecd2aa FB |
3092 | } |
3093 | ||
582b55a9 | 3094 | /* used for ROM loading : can write in RAM and ROM */ |
2a221651 | 3095 | void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr, |
582b55a9 AG |
3096 | const uint8_t *buf, int len) |
3097 | { | |
2a221651 | 3098 | cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA); |
582b55a9 AG |
3099 | } |
3100 | ||
3101 | void cpu_flush_icache_range(hwaddr start, int len) | |
3102 | { | |
3103 | /* | |
3104 | * This function should do the same thing as an icache flush that was | |
3105 | * triggered from within the guest. For TCG we are always cache coherent, | |
3106 | * so there is no need to flush anything. For KVM / Xen we need to flush | |
3107 | * the host's instruction cache at least. | |
3108 | */ | |
3109 | if (tcg_enabled()) { | |
3110 | return; | |
3111 | } | |
3112 | ||
2a221651 EI |
3113 | cpu_physical_memory_write_rom_internal(&address_space_memory, |
3114 | start, NULL, len, FLUSH_CACHE); | |
582b55a9 AG |
3115 | } |
3116 | ||
6d16c2f8 | 3117 | typedef struct { |
d3e71559 | 3118 | MemoryRegion *mr; |
6d16c2f8 | 3119 | void *buffer; |
a8170e5e AK |
3120 | hwaddr addr; |
3121 | hwaddr len; | |
c2cba0ff | 3122 | bool in_use; |
6d16c2f8 AL |
3123 | } BounceBuffer; |
3124 | ||
3125 | static BounceBuffer bounce; | |
3126 | ||
ba223c29 | 3127 | typedef struct MapClient { |
e95205e1 | 3128 | QEMUBH *bh; |
72cf2d4f | 3129 | QLIST_ENTRY(MapClient) link; |
ba223c29 AL |
3130 | } MapClient; |
3131 | ||
38e047b5 | 3132 | QemuMutex map_client_list_lock; |
72cf2d4f BS |
3133 | static QLIST_HEAD(map_client_list, MapClient) map_client_list |
3134 | = QLIST_HEAD_INITIALIZER(map_client_list); | |
ba223c29 | 3135 | |
e95205e1 FZ |
3136 | static void cpu_unregister_map_client_do(MapClient *client) |
3137 | { | |
3138 | QLIST_REMOVE(client, link); | |
3139 | g_free(client); | |
3140 | } | |
3141 | ||
33b6c2ed FZ |
3142 | static void cpu_notify_map_clients_locked(void) |
3143 | { | |
3144 | MapClient *client; | |
3145 | ||
3146 | while (!QLIST_EMPTY(&map_client_list)) { | |
3147 | client = QLIST_FIRST(&map_client_list); | |
e95205e1 FZ |
3148 | qemu_bh_schedule(client->bh); |
3149 | cpu_unregister_map_client_do(client); | |
33b6c2ed FZ |
3150 | } |
3151 | } | |
3152 | ||
e95205e1 | 3153 | void cpu_register_map_client(QEMUBH *bh) |
ba223c29 | 3154 | { |
7267c094 | 3155 | MapClient *client = g_malloc(sizeof(*client)); |
ba223c29 | 3156 | |
38e047b5 | 3157 | qemu_mutex_lock(&map_client_list_lock); |
e95205e1 | 3158 | client->bh = bh; |
72cf2d4f | 3159 | QLIST_INSERT_HEAD(&map_client_list, client, link); |
33b6c2ed FZ |
3160 | if (!atomic_read(&bounce.in_use)) { |
3161 | cpu_notify_map_clients_locked(); | |
3162 | } | |
38e047b5 | 3163 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
3164 | } |
3165 | ||
38e047b5 | 3166 | void cpu_exec_init_all(void) |
ba223c29 | 3167 | { |
38e047b5 | 3168 | qemu_mutex_init(&ram_list.mutex); |
20bccb82 PM |
3169 | /* The data structures we set up here depend on knowing the page size, |
3170 | * so no more changes can be made after this point. | |
3171 | * In an ideal world, nothing we did before we had finished the | |
3172 | * machine setup would care about the target page size, and we could | |
3173 | * do this much later, rather than requiring board models to state | |
3174 | * up front what their requirements are. | |
3175 | */ | |
3176 | finalize_target_page_bits(); | |
38e047b5 | 3177 | io_mem_init(); |
680a4783 | 3178 | memory_map_init(); |
38e047b5 | 3179 | qemu_mutex_init(&map_client_list_lock); |
ba223c29 AL |
3180 | } |
3181 | ||
e95205e1 | 3182 | void cpu_unregister_map_client(QEMUBH *bh) |
ba223c29 AL |
3183 | { |
3184 | MapClient *client; | |
3185 | ||
e95205e1 FZ |
3186 | qemu_mutex_lock(&map_client_list_lock); |
3187 | QLIST_FOREACH(client, &map_client_list, link) { | |
3188 | if (client->bh == bh) { | |
3189 | cpu_unregister_map_client_do(client); | |
3190 | break; | |
3191 | } | |
ba223c29 | 3192 | } |
e95205e1 | 3193 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
3194 | } |
3195 | ||
3196 | static void cpu_notify_map_clients(void) | |
3197 | { | |
38e047b5 | 3198 | qemu_mutex_lock(&map_client_list_lock); |
33b6c2ed | 3199 | cpu_notify_map_clients_locked(); |
38e047b5 | 3200 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
3201 | } |
3202 | ||
51644ab7 PB |
3203 | bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write) |
3204 | { | |
5c8a00ce | 3205 | MemoryRegion *mr; |
51644ab7 PB |
3206 | hwaddr l, xlat; |
3207 | ||
41063e1e | 3208 | rcu_read_lock(); |
51644ab7 PB |
3209 | while (len > 0) { |
3210 | l = len; | |
5c8a00ce PB |
3211 | mr = address_space_translate(as, addr, &xlat, &l, is_write); |
3212 | if (!memory_access_is_direct(mr, is_write)) { | |
3213 | l = memory_access_size(mr, l, addr); | |
3214 | if (!memory_region_access_valid(mr, xlat, l, is_write)) { | |
5ad4a2b7 | 3215 | rcu_read_unlock(); |
51644ab7 PB |
3216 | return false; |
3217 | } | |
3218 | } | |
3219 | ||
3220 | len -= l; | |
3221 | addr += l; | |
3222 | } | |
41063e1e | 3223 | rcu_read_unlock(); |
51644ab7 PB |
3224 | return true; |
3225 | } | |
3226 | ||
715c31ec PB |
3227 | static hwaddr |
3228 | address_space_extend_translation(AddressSpace *as, hwaddr addr, hwaddr target_len, | |
3229 | MemoryRegion *mr, hwaddr base, hwaddr len, | |
3230 | bool is_write) | |
3231 | { | |
3232 | hwaddr done = 0; | |
3233 | hwaddr xlat; | |
3234 | MemoryRegion *this_mr; | |
3235 | ||
3236 | for (;;) { | |
3237 | target_len -= len; | |
3238 | addr += len; | |
3239 | done += len; | |
3240 | if (target_len == 0) { | |
3241 | return done; | |
3242 | } | |
3243 | ||
3244 | len = target_len; | |
3245 | this_mr = address_space_translate(as, addr, &xlat, &len, is_write); | |
3246 | if (this_mr != mr || xlat != base + done) { | |
3247 | return done; | |
3248 | } | |
3249 | } | |
3250 | } | |
3251 | ||
6d16c2f8 AL |
3252 | /* Map a physical memory region into a host virtual address. |
3253 | * May map a subset of the requested range, given by and returned in *plen. | |
3254 | * May return NULL if resources needed to perform the mapping are exhausted. | |
3255 | * Use only for reads OR writes - not for read-modify-write operations. | |
ba223c29 AL |
3256 | * Use cpu_register_map_client() to know when retrying the map operation is |
3257 | * likely to succeed. | |
6d16c2f8 | 3258 | */ |
ac1970fb | 3259 | void *address_space_map(AddressSpace *as, |
a8170e5e AK |
3260 | hwaddr addr, |
3261 | hwaddr *plen, | |
ac1970fb | 3262 | bool is_write) |
6d16c2f8 | 3263 | { |
a8170e5e | 3264 | hwaddr len = *plen; |
715c31ec PB |
3265 | hwaddr l, xlat; |
3266 | MemoryRegion *mr; | |
e81bcda5 | 3267 | void *ptr; |
6d16c2f8 | 3268 | |
e3127ae0 PB |
3269 | if (len == 0) { |
3270 | return NULL; | |
3271 | } | |
38bee5dc | 3272 | |
e3127ae0 | 3273 | l = len; |
41063e1e | 3274 | rcu_read_lock(); |
e3127ae0 | 3275 | mr = address_space_translate(as, addr, &xlat, &l, is_write); |
41063e1e | 3276 | |
e3127ae0 | 3277 | if (!memory_access_is_direct(mr, is_write)) { |
c2cba0ff | 3278 | if (atomic_xchg(&bounce.in_use, true)) { |
41063e1e | 3279 | rcu_read_unlock(); |
e3127ae0 | 3280 | return NULL; |
6d16c2f8 | 3281 | } |
e85d9db5 KW |
3282 | /* Avoid unbounded allocations */ |
3283 | l = MIN(l, TARGET_PAGE_SIZE); | |
3284 | bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l); | |
e3127ae0 PB |
3285 | bounce.addr = addr; |
3286 | bounce.len = l; | |
d3e71559 PB |
3287 | |
3288 | memory_region_ref(mr); | |
3289 | bounce.mr = mr; | |
e3127ae0 | 3290 | if (!is_write) { |
5c9eb028 PM |
3291 | address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED, |
3292 | bounce.buffer, l); | |
8ab934f9 | 3293 | } |
6d16c2f8 | 3294 | |
41063e1e | 3295 | rcu_read_unlock(); |
e3127ae0 PB |
3296 | *plen = l; |
3297 | return bounce.buffer; | |
3298 | } | |
3299 | ||
e3127ae0 | 3300 | |
d3e71559 | 3301 | memory_region_ref(mr); |
715c31ec PB |
3302 | *plen = address_space_extend_translation(as, addr, len, mr, xlat, l, is_write); |
3303 | ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen); | |
e81bcda5 PB |
3304 | rcu_read_unlock(); |
3305 | ||
3306 | return ptr; | |
6d16c2f8 AL |
3307 | } |
3308 | ||
ac1970fb | 3309 | /* Unmaps a memory region previously mapped by address_space_map(). |
6d16c2f8 AL |
3310 | * Will also mark the memory as dirty if is_write == 1. access_len gives |
3311 | * the amount of memory that was actually read or written by the caller. | |
3312 | */ | |
a8170e5e AK |
3313 | void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, |
3314 | int is_write, hwaddr access_len) | |
6d16c2f8 AL |
3315 | { |
3316 | if (buffer != bounce.buffer) { | |
d3e71559 PB |
3317 | MemoryRegion *mr; |
3318 | ram_addr_t addr1; | |
3319 | ||
07bdaa41 | 3320 | mr = memory_region_from_host(buffer, &addr1); |
d3e71559 | 3321 | assert(mr != NULL); |
6d16c2f8 | 3322 | if (is_write) { |
845b6214 | 3323 | invalidate_and_set_dirty(mr, addr1, access_len); |
6d16c2f8 | 3324 | } |
868bb33f | 3325 | if (xen_enabled()) { |
e41d7c69 | 3326 | xen_invalidate_map_cache_entry(buffer); |
050a0ddf | 3327 | } |
d3e71559 | 3328 | memory_region_unref(mr); |
6d16c2f8 AL |
3329 | return; |
3330 | } | |
3331 | if (is_write) { | |
5c9eb028 PM |
3332 | address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED, |
3333 | bounce.buffer, access_len); | |
6d16c2f8 | 3334 | } |
f8a83245 | 3335 | qemu_vfree(bounce.buffer); |
6d16c2f8 | 3336 | bounce.buffer = NULL; |
d3e71559 | 3337 | memory_region_unref(bounce.mr); |
c2cba0ff | 3338 | atomic_mb_set(&bounce.in_use, false); |
ba223c29 | 3339 | cpu_notify_map_clients(); |
6d16c2f8 | 3340 | } |
d0ecd2aa | 3341 | |
a8170e5e AK |
3342 | void *cpu_physical_memory_map(hwaddr addr, |
3343 | hwaddr *plen, | |
ac1970fb AK |
3344 | int is_write) |
3345 | { | |
3346 | return address_space_map(&address_space_memory, addr, plen, is_write); | |
3347 | } | |
3348 | ||
a8170e5e AK |
3349 | void cpu_physical_memory_unmap(void *buffer, hwaddr len, |
3350 | int is_write, hwaddr access_len) | |
ac1970fb AK |
3351 | { |
3352 | return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); | |
3353 | } | |
3354 | ||
0ce265ff PB |
3355 | #define ARG1_DECL AddressSpace *as |
3356 | #define ARG1 as | |
3357 | #define SUFFIX | |
3358 | #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__) | |
3359 | #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write) | |
3360 | #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs) | |
3361 | #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len) | |
3362 | #define RCU_READ_LOCK(...) rcu_read_lock() | |
3363 | #define RCU_READ_UNLOCK(...) rcu_read_unlock() | |
3364 | #include "memory_ldst.inc.c" | |
1e78bcc1 | 3365 | |
1f4e496e PB |
3366 | int64_t address_space_cache_init(MemoryRegionCache *cache, |
3367 | AddressSpace *as, | |
3368 | hwaddr addr, | |
3369 | hwaddr len, | |
3370 | bool is_write) | |
3371 | { | |
90c4fe5f PB |
3372 | cache->len = len; |
3373 | cache->as = as; | |
3374 | cache->xlat = addr; | |
3375 | return len; | |
1f4e496e PB |
3376 | } |
3377 | ||
3378 | void address_space_cache_invalidate(MemoryRegionCache *cache, | |
3379 | hwaddr addr, | |
3380 | hwaddr access_len) | |
3381 | { | |
1f4e496e PB |
3382 | } |
3383 | ||
3384 | void address_space_cache_destroy(MemoryRegionCache *cache) | |
3385 | { | |
90c4fe5f | 3386 | cache->as = NULL; |
1f4e496e PB |
3387 | } |
3388 | ||
3389 | #define ARG1_DECL MemoryRegionCache *cache | |
3390 | #define ARG1 cache | |
3391 | #define SUFFIX _cached | |
90c4fe5f PB |
3392 | #define TRANSLATE(addr, ...) \ |
3393 | address_space_translate(cache->as, cache->xlat + (addr), __VA_ARGS__) | |
1f4e496e | 3394 | #define IS_DIRECT(mr, is_write) true |
90c4fe5f PB |
3395 | #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs) |
3396 | #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len) | |
3397 | #define RCU_READ_LOCK() rcu_read_lock() | |
3398 | #define RCU_READ_UNLOCK() rcu_read_unlock() | |
1f4e496e PB |
3399 | #include "memory_ldst.inc.c" |
3400 | ||
5e2972fd | 3401 | /* virtual memory access for debug (includes writing to ROM) */ |
f17ec444 | 3402 | int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, |
b448f2f3 | 3403 | uint8_t *buf, int len, int is_write) |
13eb76e0 FB |
3404 | { |
3405 | int l; | |
a8170e5e | 3406 | hwaddr phys_addr; |
9b3c35e0 | 3407 | target_ulong page; |
13eb76e0 | 3408 | |
79ca7a1b | 3409 | cpu_synchronize_state(cpu); |
13eb76e0 | 3410 | while (len > 0) { |
5232e4c7 PM |
3411 | int asidx; |
3412 | MemTxAttrs attrs; | |
3413 | ||
13eb76e0 | 3414 | page = addr & TARGET_PAGE_MASK; |
5232e4c7 PM |
3415 | phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs); |
3416 | asidx = cpu_asidx_from_attrs(cpu, attrs); | |
13eb76e0 FB |
3417 | /* if no physical page mapped, return an error */ |
3418 | if (phys_addr == -1) | |
3419 | return -1; | |
3420 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3421 | if (l > len) | |
3422 | l = len; | |
5e2972fd | 3423 | phys_addr += (addr & ~TARGET_PAGE_MASK); |
2e38847b | 3424 | if (is_write) { |
5232e4c7 PM |
3425 | cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as, |
3426 | phys_addr, buf, l); | |
2e38847b | 3427 | } else { |
5232e4c7 PM |
3428 | address_space_rw(cpu->cpu_ases[asidx].as, phys_addr, |
3429 | MEMTXATTRS_UNSPECIFIED, | |
5c9eb028 | 3430 | buf, l, 0); |
2e38847b | 3431 | } |
13eb76e0 FB |
3432 | len -= l; |
3433 | buf += l; | |
3434 | addr += l; | |
3435 | } | |
3436 | return 0; | |
3437 | } | |
038629a6 DDAG |
3438 | |
3439 | /* | |
3440 | * Allows code that needs to deal with migration bitmaps etc to still be built | |
3441 | * target independent. | |
3442 | */ | |
20afaed9 | 3443 | size_t qemu_target_page_size(void) |
038629a6 | 3444 | { |
20afaed9 | 3445 | return TARGET_PAGE_SIZE; |
038629a6 DDAG |
3446 | } |
3447 | ||
46d702b1 JQ |
3448 | int qemu_target_page_bits(void) |
3449 | { | |
3450 | return TARGET_PAGE_BITS; | |
3451 | } | |
3452 | ||
3453 | int qemu_target_page_bits_min(void) | |
3454 | { | |
3455 | return TARGET_PAGE_BITS_MIN; | |
3456 | } | |
a68fe89c | 3457 | #endif |
13eb76e0 | 3458 | |
8e4a424b BS |
3459 | /* |
3460 | * A helper function for the _utterly broken_ virtio device model to find out if | |
3461 | * it's running on a big endian machine. Don't do this at home kids! | |
3462 | */ | |
98ed8ecf GK |
3463 | bool target_words_bigendian(void); |
3464 | bool target_words_bigendian(void) | |
8e4a424b BS |
3465 | { |
3466 | #if defined(TARGET_WORDS_BIGENDIAN) | |
3467 | return true; | |
3468 | #else | |
3469 | return false; | |
3470 | #endif | |
3471 | } | |
3472 | ||
76f35538 | 3473 | #ifndef CONFIG_USER_ONLY |
a8170e5e | 3474 | bool cpu_physical_memory_is_io(hwaddr phys_addr) |
76f35538 | 3475 | { |
5c8a00ce | 3476 | MemoryRegion*mr; |
149f54b5 | 3477 | hwaddr l = 1; |
41063e1e | 3478 | bool res; |
76f35538 | 3479 | |
41063e1e | 3480 | rcu_read_lock(); |
5c8a00ce PB |
3481 | mr = address_space_translate(&address_space_memory, |
3482 | phys_addr, &phys_addr, &l, false); | |
76f35538 | 3483 | |
41063e1e PB |
3484 | res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr)); |
3485 | rcu_read_unlock(); | |
3486 | return res; | |
76f35538 | 3487 | } |
bd2fa51f | 3488 | |
e3807054 | 3489 | int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) |
bd2fa51f MH |
3490 | { |
3491 | RAMBlock *block; | |
e3807054 | 3492 | int ret = 0; |
bd2fa51f | 3493 | |
0dc3f44a | 3494 | rcu_read_lock(); |
99e15582 | 3495 | RAMBLOCK_FOREACH(block) { |
e3807054 DDAG |
3496 | ret = func(block->idstr, block->host, block->offset, |
3497 | block->used_length, opaque); | |
3498 | if (ret) { | |
3499 | break; | |
3500 | } | |
bd2fa51f | 3501 | } |
0dc3f44a | 3502 | rcu_read_unlock(); |
e3807054 | 3503 | return ret; |
bd2fa51f | 3504 | } |
d3a5038c DDAG |
3505 | |
3506 | /* | |
3507 | * Unmap pages of memory from start to start+length such that | |
3508 | * they a) read as 0, b) Trigger whatever fault mechanism | |
3509 | * the OS provides for postcopy. | |
3510 | * The pages must be unmapped by the end of the function. | |
3511 | * Returns: 0 on success, none-0 on failure | |
3512 | * | |
3513 | */ | |
3514 | int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length) | |
3515 | { | |
3516 | int ret = -1; | |
3517 | ||
3518 | uint8_t *host_startaddr = rb->host + start; | |
3519 | ||
3520 | if ((uintptr_t)host_startaddr & (rb->page_size - 1)) { | |
3521 | error_report("ram_block_discard_range: Unaligned start address: %p", | |
3522 | host_startaddr); | |
3523 | goto err; | |
3524 | } | |
3525 | ||
3526 | if ((start + length) <= rb->used_length) { | |
3527 | uint8_t *host_endaddr = host_startaddr + length; | |
3528 | if ((uintptr_t)host_endaddr & (rb->page_size - 1)) { | |
3529 | error_report("ram_block_discard_range: Unaligned end address: %p", | |
3530 | host_endaddr); | |
3531 | goto err; | |
3532 | } | |
3533 | ||
3534 | errno = ENOTSUP; /* If we are missing MADVISE etc */ | |
3535 | ||
e2fa71f5 | 3536 | if (rb->page_size == qemu_host_page_size) { |
d3a5038c | 3537 | #if defined(CONFIG_MADVISE) |
e2fa71f5 DDAG |
3538 | /* Note: We need the madvise MADV_DONTNEED behaviour of definitely |
3539 | * freeing the page. | |
3540 | */ | |
3541 | ret = madvise(host_startaddr, length, MADV_DONTNEED); | |
d3a5038c | 3542 | #endif |
e2fa71f5 DDAG |
3543 | } else { |
3544 | /* Huge page case - unfortunately it can't do DONTNEED, but | |
3545 | * it can do the equivalent by FALLOC_FL_PUNCH_HOLE in the | |
3546 | * huge page file. | |
3547 | */ | |
3548 | #ifdef CONFIG_FALLOCATE_PUNCH_HOLE | |
3549 | ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, | |
3550 | start, length); | |
3551 | #endif | |
3552 | } | |
d3a5038c DDAG |
3553 | if (ret) { |
3554 | ret = -errno; | |
3555 | error_report("ram_block_discard_range: Failed to discard range " | |
3556 | "%s:%" PRIx64 " +%zx (%d)", | |
3557 | rb->idstr, start, length, ret); | |
3558 | } | |
3559 | } else { | |
3560 | error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64 | |
3561 | "/%zx/" RAM_ADDR_FMT")", | |
3562 | rb->idstr, start, length, rb->used_length); | |
3563 | } | |
3564 | ||
3565 | err: | |
3566 | return ret; | |
3567 | } | |
3568 | ||
ec3f8c99 | 3569 | #endif |