]>
Commit | Line | Data |
---|---|---|
05330448 AL |
1 | /* |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright IBM, Corp. 2008 | |
5832d1f2 | 5 | * Red Hat, Inc. 2008 |
05330448 AL |
6 | * |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
5832d1f2 | 9 | * Glauber Costa <[email protected]> |
05330448 AL |
10 | * |
11 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
12 | * See the COPYING file in the top-level directory. | |
13 | * | |
14 | */ | |
15 | ||
16 | #include <sys/types.h> | |
17 | #include <sys/ioctl.h> | |
18 | #include <sys/mman.h> | |
984b5181 | 19 | #include <stdarg.h> |
05330448 AL |
20 | |
21 | #include <linux/kvm.h> | |
22 | ||
23 | #include "qemu-common.h" | |
1de7afc9 PB |
24 | #include "qemu/atomic.h" |
25 | #include "qemu/option.h" | |
26 | #include "qemu/config-file.h" | |
9c17d615 | 27 | #include "sysemu/sysemu.h" |
d33a1810 | 28 | #include "hw/hw.h" |
a2cb15b0 | 29 | #include "hw/pci/msi.h" |
022c62cb | 30 | #include "exec/gdbstub.h" |
9c17d615 | 31 | #include "sysemu/kvm.h" |
1de7afc9 | 32 | #include "qemu/bswap.h" |
022c62cb PB |
33 | #include "exec/memory.h" |
34 | #include "exec/address-spaces.h" | |
1de7afc9 | 35 | #include "qemu/event_notifier.h" |
9c775729 | 36 | #include "trace.h" |
05330448 | 37 | |
d2f2b8a7 SH |
38 | /* This check must be after config-host.h is included */ |
39 | #ifdef CONFIG_EVENTFD | |
40 | #include <sys/eventfd.h> | |
41 | #endif | |
42 | ||
62fe8331 CB |
43 | #ifdef CONFIG_VALGRIND_H |
44 | #include <valgrind/memcheck.h> | |
45 | #endif | |
46 | ||
93148aa5 | 47 | /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */ |
f65ed4c1 AL |
48 | #define PAGE_SIZE TARGET_PAGE_SIZE |
49 | ||
05330448 AL |
50 | //#define DEBUG_KVM |
51 | ||
52 | #ifdef DEBUG_KVM | |
8c0d577e | 53 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
54 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) |
55 | #else | |
8c0d577e | 56 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
57 | do { } while (0) |
58 | #endif | |
59 | ||
04fa27f5 JK |
60 | #define KVM_MSI_HASHTAB_SIZE 256 |
61 | ||
34fc643f AL |
62 | typedef struct KVMSlot |
63 | { | |
a8170e5e | 64 | hwaddr start_addr; |
c227f099 | 65 | ram_addr_t memory_size; |
9f213ed9 | 66 | void *ram; |
34fc643f AL |
67 | int slot; |
68 | int flags; | |
69 | } KVMSlot; | |
05330448 | 70 | |
5832d1f2 AL |
71 | typedef struct kvm_dirty_log KVMDirtyLog; |
72 | ||
05330448 AL |
73 | struct KVMState |
74 | { | |
75 | KVMSlot slots[32]; | |
76 | int fd; | |
77 | int vmfd; | |
f65ed4c1 | 78 | int coalesced_mmio; |
62a2744c | 79 | struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; |
1cae88b9 | 80 | bool coalesced_flush_in_progress; |
e69917e2 | 81 | int broken_set_mem_region; |
4495d6a7 | 82 | int migration_log; |
a0fb002c | 83 | int vcpu_events; |
b0b1d690 | 84 | int robust_singlestep; |
ff44f1a3 | 85 | int debugregs; |
e22a25c9 AL |
86 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
87 | struct kvm_sw_breakpoint_head kvm_sw_breakpoints; | |
88 | #endif | |
8a7c7393 | 89 | int pit_state2; |
f1665b21 | 90 | int xsave, xcrs; |
d2f2b8a7 | 91 | int many_ioeventfds; |
3ab73842 | 92 | int intx_set_mask; |
92e4b519 DG |
93 | /* The man page (and posix) say ioctl numbers are signed int, but |
94 | * they're not. Linux, glibc and *BSD all treat ioctl numbers as | |
95 | * unsigned, and treating them as signed here can break things */ | |
e333cd69 | 96 | unsigned irq_set_ioctl; |
84b058d7 JK |
97 | #ifdef KVM_CAP_IRQ_ROUTING |
98 | struct kvm_irq_routing *irq_routes; | |
99 | int nr_allocated_irq_routes; | |
100 | uint32_t *used_gsi_bitmap; | |
4e2e4e63 | 101 | unsigned int gsi_count; |
04fa27f5 | 102 | QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; |
4a3adebb | 103 | bool direct_msi; |
84b058d7 | 104 | #endif |
05330448 AL |
105 | }; |
106 | ||
6a7af8cb | 107 | KVMState *kvm_state; |
3d4b2649 | 108 | bool kvm_kernel_irqchip; |
7ae26bd4 | 109 | bool kvm_async_interrupts_allowed; |
cc7e0ddf | 110 | bool kvm_irqfds_allowed; |
614e41bc | 111 | bool kvm_msi_via_irqfd_allowed; |
f3e1bed8 | 112 | bool kvm_gsi_routing_allowed; |
13eed94e | 113 | bool kvm_allowed; |
df9c8b75 | 114 | bool kvm_readonly_mem_allowed; |
05330448 | 115 | |
94a8d39a JK |
116 | static const KVMCapabilityInfo kvm_required_capabilites[] = { |
117 | KVM_CAP_INFO(USER_MEMORY), | |
118 | KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), | |
119 | KVM_CAP_LAST_INFO | |
120 | }; | |
121 | ||
05330448 AL |
122 | static KVMSlot *kvm_alloc_slot(KVMState *s) |
123 | { | |
124 | int i; | |
125 | ||
126 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
a426e122 | 127 | if (s->slots[i].memory_size == 0) { |
05330448 | 128 | return &s->slots[i]; |
a426e122 | 129 | } |
05330448 AL |
130 | } |
131 | ||
d3f8d37f AL |
132 | fprintf(stderr, "%s: no free slot available\n", __func__); |
133 | abort(); | |
134 | } | |
135 | ||
136 | static KVMSlot *kvm_lookup_matching_slot(KVMState *s, | |
a8170e5e AK |
137 | hwaddr start_addr, |
138 | hwaddr end_addr) | |
d3f8d37f AL |
139 | { |
140 | int i; | |
141 | ||
142 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
143 | KVMSlot *mem = &s->slots[i]; | |
144 | ||
145 | if (start_addr == mem->start_addr && | |
146 | end_addr == mem->start_addr + mem->memory_size) { | |
147 | return mem; | |
148 | } | |
149 | } | |
150 | ||
05330448 AL |
151 | return NULL; |
152 | } | |
153 | ||
6152e2ae AL |
154 | /* |
155 | * Find overlapping slot with lowest start address | |
156 | */ | |
157 | static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s, | |
a8170e5e AK |
158 | hwaddr start_addr, |
159 | hwaddr end_addr) | |
05330448 | 160 | { |
6152e2ae | 161 | KVMSlot *found = NULL; |
05330448 AL |
162 | int i; |
163 | ||
164 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
165 | KVMSlot *mem = &s->slots[i]; | |
166 | ||
6152e2ae AL |
167 | if (mem->memory_size == 0 || |
168 | (found && found->start_addr < mem->start_addr)) { | |
169 | continue; | |
170 | } | |
171 | ||
172 | if (end_addr > mem->start_addr && | |
173 | start_addr < mem->start_addr + mem->memory_size) { | |
174 | found = mem; | |
175 | } | |
05330448 AL |
176 | } |
177 | ||
6152e2ae | 178 | return found; |
05330448 AL |
179 | } |
180 | ||
9f213ed9 | 181 | int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, |
a8170e5e | 182 | hwaddr *phys_addr) |
983dfc3b HY |
183 | { |
184 | int i; | |
185 | ||
186 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
187 | KVMSlot *mem = &s->slots[i]; | |
188 | ||
9f213ed9 AK |
189 | if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { |
190 | *phys_addr = mem->start_addr + (ram - mem->ram); | |
983dfc3b HY |
191 | return 1; |
192 | } | |
193 | } | |
194 | ||
195 | return 0; | |
196 | } | |
197 | ||
5832d1f2 AL |
198 | static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot) |
199 | { | |
200 | struct kvm_userspace_memory_region mem; | |
201 | ||
202 | mem.slot = slot->slot; | |
203 | mem.guest_phys_addr = slot->start_addr; | |
9f213ed9 | 204 | mem.userspace_addr = (unsigned long)slot->ram; |
5832d1f2 | 205 | mem.flags = slot->flags; |
4495d6a7 JK |
206 | if (s->migration_log) { |
207 | mem.flags |= KVM_MEM_LOG_DIRTY_PAGES; | |
208 | } | |
235e8982 JJ |
209 | if (mem.flags & KVM_MEM_READONLY) { |
210 | /* Set the slot size to 0 before setting the slot to the desired | |
211 | * value. This is needed based on KVM commit 75d61fbc. */ | |
212 | mem.memory_size = 0; | |
213 | kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); | |
214 | } | |
215 | mem.memory_size = slot->memory_size; | |
5832d1f2 AL |
216 | return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); |
217 | } | |
218 | ||
8d2ba1fb JK |
219 | static void kvm_reset_vcpu(void *opaque) |
220 | { | |
20d695a9 | 221 | CPUState *cpu = opaque; |
8d2ba1fb | 222 | |
20d695a9 | 223 | kvm_arch_reset_vcpu(cpu); |
8d2ba1fb | 224 | } |
5832d1f2 | 225 | |
504134d2 | 226 | int kvm_init_vcpu(CPUState *cpu) |
05330448 AL |
227 | { |
228 | KVMState *s = kvm_state; | |
229 | long mmap_size; | |
230 | int ret; | |
231 | ||
8c0d577e | 232 | DPRINTF("kvm_init_vcpu\n"); |
05330448 | 233 | |
b164e48e | 234 | ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu)); |
05330448 | 235 | if (ret < 0) { |
8c0d577e | 236 | DPRINTF("kvm_create_vcpu failed\n"); |
05330448 AL |
237 | goto err; |
238 | } | |
239 | ||
8737c51c | 240 | cpu->kvm_fd = ret; |
a60f24b5 | 241 | cpu->kvm_state = s; |
20d695a9 | 242 | cpu->kvm_vcpu_dirty = true; |
05330448 AL |
243 | |
244 | mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); | |
245 | if (mmap_size < 0) { | |
748a680b | 246 | ret = mmap_size; |
8c0d577e | 247 | DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); |
05330448 AL |
248 | goto err; |
249 | } | |
250 | ||
f7575c96 | 251 | cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, |
8737c51c | 252 | cpu->kvm_fd, 0); |
f7575c96 | 253 | if (cpu->kvm_run == MAP_FAILED) { |
05330448 | 254 | ret = -errno; |
8c0d577e | 255 | DPRINTF("mmap'ing vcpu state failed\n"); |
05330448 AL |
256 | goto err; |
257 | } | |
258 | ||
a426e122 JK |
259 | if (s->coalesced_mmio && !s->coalesced_mmio_ring) { |
260 | s->coalesced_mmio_ring = | |
f7575c96 | 261 | (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; |
a426e122 | 262 | } |
62a2744c | 263 | |
20d695a9 | 264 | ret = kvm_arch_init_vcpu(cpu); |
8d2ba1fb | 265 | if (ret == 0) { |
20d695a9 AF |
266 | qemu_register_reset(kvm_reset_vcpu, cpu); |
267 | kvm_arch_reset_vcpu(cpu); | |
8d2ba1fb | 268 | } |
05330448 AL |
269 | err: |
270 | return ret; | |
271 | } | |
272 | ||
5832d1f2 AL |
273 | /* |
274 | * dirty pages logging control | |
275 | */ | |
25254bbc | 276 | |
235e8982 | 277 | static int kvm_mem_flags(KVMState *s, bool log_dirty, bool readonly) |
25254bbc | 278 | { |
235e8982 JJ |
279 | int flags = 0; |
280 | flags = log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0; | |
281 | if (readonly && kvm_readonly_mem_allowed) { | |
282 | flags |= KVM_MEM_READONLY; | |
283 | } | |
284 | return flags; | |
25254bbc MT |
285 | } |
286 | ||
287 | static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty) | |
5832d1f2 AL |
288 | { |
289 | KVMState *s = kvm_state; | |
25254bbc | 290 | int flags, mask = KVM_MEM_LOG_DIRTY_PAGES; |
4495d6a7 JK |
291 | int old_flags; |
292 | ||
4495d6a7 | 293 | old_flags = mem->flags; |
5832d1f2 | 294 | |
235e8982 | 295 | flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty, false); |
5832d1f2 AL |
296 | mem->flags = flags; |
297 | ||
4495d6a7 JK |
298 | /* If nothing changed effectively, no need to issue ioctl */ |
299 | if (s->migration_log) { | |
300 | flags |= KVM_MEM_LOG_DIRTY_PAGES; | |
301 | } | |
25254bbc | 302 | |
4495d6a7 | 303 | if (flags == old_flags) { |
25254bbc | 304 | return 0; |
4495d6a7 JK |
305 | } |
306 | ||
5832d1f2 AL |
307 | return kvm_set_user_memory_region(s, mem); |
308 | } | |
309 | ||
a8170e5e | 310 | static int kvm_dirty_pages_log_change(hwaddr phys_addr, |
25254bbc MT |
311 | ram_addr_t size, bool log_dirty) |
312 | { | |
313 | KVMState *s = kvm_state; | |
314 | KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size); | |
315 | ||
316 | if (mem == NULL) { | |
317 | fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-" | |
318 | TARGET_FMT_plx "\n", __func__, phys_addr, | |
a8170e5e | 319 | (hwaddr)(phys_addr + size - 1)); |
25254bbc MT |
320 | return -EINVAL; |
321 | } | |
322 | return kvm_slot_dirty_pages_log_change(mem, log_dirty); | |
323 | } | |
324 | ||
a01672d3 AK |
325 | static void kvm_log_start(MemoryListener *listener, |
326 | MemoryRegionSection *section) | |
5832d1f2 | 327 | { |
a01672d3 AK |
328 | int r; |
329 | ||
330 | r = kvm_dirty_pages_log_change(section->offset_within_address_space, | |
331 | section->size, true); | |
332 | if (r < 0) { | |
333 | abort(); | |
334 | } | |
5832d1f2 AL |
335 | } |
336 | ||
a01672d3 AK |
337 | static void kvm_log_stop(MemoryListener *listener, |
338 | MemoryRegionSection *section) | |
5832d1f2 | 339 | { |
a01672d3 AK |
340 | int r; |
341 | ||
342 | r = kvm_dirty_pages_log_change(section->offset_within_address_space, | |
343 | section->size, false); | |
344 | if (r < 0) { | |
345 | abort(); | |
346 | } | |
5832d1f2 AL |
347 | } |
348 | ||
7b8f3b78 | 349 | static int kvm_set_migration_log(int enable) |
4495d6a7 JK |
350 | { |
351 | KVMState *s = kvm_state; | |
352 | KVMSlot *mem; | |
353 | int i, err; | |
354 | ||
355 | s->migration_log = enable; | |
356 | ||
357 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
358 | mem = &s->slots[i]; | |
359 | ||
70fedd76 AW |
360 | if (!mem->memory_size) { |
361 | continue; | |
362 | } | |
4495d6a7 JK |
363 | if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) { |
364 | continue; | |
365 | } | |
366 | err = kvm_set_user_memory_region(s, mem); | |
367 | if (err) { | |
368 | return err; | |
369 | } | |
370 | } | |
371 | return 0; | |
372 | } | |
373 | ||
8369e01c | 374 | /* get kvm's dirty pages bitmap and update qemu's */ |
ffcde12f AK |
375 | static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, |
376 | unsigned long *bitmap) | |
96c1606b | 377 | { |
8369e01c | 378 | unsigned int i, j; |
aa90fec7 | 379 | unsigned long page_number, c; |
a8170e5e | 380 | hwaddr addr, addr1; |
752ced04 | 381 | unsigned int len = ((section->size / getpagesize()) + HOST_LONG_BITS - 1) / HOST_LONG_BITS; |
3145fcb6 | 382 | unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE; |
8369e01c MT |
383 | |
384 | /* | |
385 | * bitmap-traveling is faster than memory-traveling (for addr...) | |
386 | * especially when most of the memory is not dirty. | |
387 | */ | |
388 | for (i = 0; i < len; i++) { | |
389 | if (bitmap[i] != 0) { | |
390 | c = leul_to_cpu(bitmap[i]); | |
391 | do { | |
392 | j = ffsl(c) - 1; | |
393 | c &= ~(1ul << j); | |
3145fcb6 | 394 | page_number = (i * HOST_LONG_BITS + j) * hpratio; |
8369e01c | 395 | addr1 = page_number * TARGET_PAGE_SIZE; |
ffcde12f | 396 | addr = section->offset_within_region + addr1; |
3145fcb6 DG |
397 | memory_region_set_dirty(section->mr, addr, |
398 | TARGET_PAGE_SIZE * hpratio); | |
8369e01c MT |
399 | } while (c != 0); |
400 | } | |
401 | } | |
402 | return 0; | |
96c1606b AG |
403 | } |
404 | ||
8369e01c MT |
405 | #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) |
406 | ||
5832d1f2 AL |
407 | /** |
408 | * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space | |
fd4aa979 BS |
409 | * This function updates qemu's dirty bitmap using |
410 | * memory_region_set_dirty(). This means all bits are set | |
411 | * to dirty. | |
5832d1f2 | 412 | * |
d3f8d37f | 413 | * @start_add: start of logged region. |
5832d1f2 AL |
414 | * @end_addr: end of logged region. |
415 | */ | |
ffcde12f | 416 | static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section) |
5832d1f2 AL |
417 | { |
418 | KVMState *s = kvm_state; | |
151f7749 | 419 | unsigned long size, allocated_size = 0; |
151f7749 JK |
420 | KVMDirtyLog d; |
421 | KVMSlot *mem; | |
422 | int ret = 0; | |
a8170e5e AK |
423 | hwaddr start_addr = section->offset_within_address_space; |
424 | hwaddr end_addr = start_addr + section->size; | |
5832d1f2 | 425 | |
151f7749 JK |
426 | d.dirty_bitmap = NULL; |
427 | while (start_addr < end_addr) { | |
428 | mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr); | |
429 | if (mem == NULL) { | |
430 | break; | |
431 | } | |
5832d1f2 | 432 | |
51b0c606 MT |
433 | /* XXX bad kernel interface alert |
434 | * For dirty bitmap, kernel allocates array of size aligned to | |
435 | * bits-per-long. But for case when the kernel is 64bits and | |
436 | * the userspace is 32bits, userspace can't align to the same | |
437 | * bits-per-long, since sizeof(long) is different between kernel | |
438 | * and user space. This way, userspace will provide buffer which | |
439 | * may be 4 bytes less than the kernel will use, resulting in | |
440 | * userspace memory corruption (which is not detectable by valgrind | |
441 | * too, in most cases). | |
442 | * So for now, let's align to 64 instead of HOST_LONG_BITS here, in | |
443 | * a hope that sizeof(long) wont become >8 any time soon. | |
444 | */ | |
445 | size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), | |
446 | /*HOST_LONG_BITS*/ 64) / 8; | |
151f7749 | 447 | if (!d.dirty_bitmap) { |
7267c094 | 448 | d.dirty_bitmap = g_malloc(size); |
151f7749 | 449 | } else if (size > allocated_size) { |
7267c094 | 450 | d.dirty_bitmap = g_realloc(d.dirty_bitmap, size); |
151f7749 JK |
451 | } |
452 | allocated_size = size; | |
453 | memset(d.dirty_bitmap, 0, allocated_size); | |
5832d1f2 | 454 | |
151f7749 | 455 | d.slot = mem->slot; |
5832d1f2 | 456 | |
6e489f3f | 457 | if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { |
8c0d577e | 458 | DPRINTF("ioctl failed %d\n", errno); |
151f7749 JK |
459 | ret = -1; |
460 | break; | |
461 | } | |
5832d1f2 | 462 | |
ffcde12f | 463 | kvm_get_dirty_pages_log_range(section, d.dirty_bitmap); |
8369e01c | 464 | start_addr = mem->start_addr + mem->memory_size; |
5832d1f2 | 465 | } |
7267c094 | 466 | g_free(d.dirty_bitmap); |
151f7749 JK |
467 | |
468 | return ret; | |
5832d1f2 AL |
469 | } |
470 | ||
95d2994a AK |
471 | static void kvm_coalesce_mmio_region(MemoryListener *listener, |
472 | MemoryRegionSection *secion, | |
a8170e5e | 473 | hwaddr start, hwaddr size) |
f65ed4c1 | 474 | { |
f65ed4c1 AL |
475 | KVMState *s = kvm_state; |
476 | ||
477 | if (s->coalesced_mmio) { | |
478 | struct kvm_coalesced_mmio_zone zone; | |
479 | ||
480 | zone.addr = start; | |
481 | zone.size = size; | |
7e680753 | 482 | zone.pad = 0; |
f65ed4c1 | 483 | |
95d2994a | 484 | (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); |
f65ed4c1 | 485 | } |
f65ed4c1 AL |
486 | } |
487 | ||
95d2994a AK |
488 | static void kvm_uncoalesce_mmio_region(MemoryListener *listener, |
489 | MemoryRegionSection *secion, | |
a8170e5e | 490 | hwaddr start, hwaddr size) |
f65ed4c1 | 491 | { |
f65ed4c1 AL |
492 | KVMState *s = kvm_state; |
493 | ||
494 | if (s->coalesced_mmio) { | |
495 | struct kvm_coalesced_mmio_zone zone; | |
496 | ||
497 | zone.addr = start; | |
498 | zone.size = size; | |
7e680753 | 499 | zone.pad = 0; |
f65ed4c1 | 500 | |
95d2994a | 501 | (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); |
f65ed4c1 | 502 | } |
f65ed4c1 AL |
503 | } |
504 | ||
ad7b8b33 AL |
505 | int kvm_check_extension(KVMState *s, unsigned int extension) |
506 | { | |
507 | int ret; | |
508 | ||
509 | ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); | |
510 | if (ret < 0) { | |
511 | ret = 0; | |
512 | } | |
513 | ||
514 | return ret; | |
515 | } | |
516 | ||
44c3f8f7 | 517 | static int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val, |
41cb62c2 | 518 | bool assign, uint32_t size, bool datamatch) |
500ffd4a MT |
519 | { |
520 | int ret; | |
521 | struct kvm_ioeventfd iofd; | |
522 | ||
41cb62c2 | 523 | iofd.datamatch = datamatch ? val : 0; |
500ffd4a MT |
524 | iofd.addr = addr; |
525 | iofd.len = size; | |
41cb62c2 | 526 | iofd.flags = 0; |
500ffd4a MT |
527 | iofd.fd = fd; |
528 | ||
529 | if (!kvm_enabled()) { | |
530 | return -ENOSYS; | |
531 | } | |
532 | ||
41cb62c2 MT |
533 | if (datamatch) { |
534 | iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; | |
535 | } | |
500ffd4a MT |
536 | if (!assign) { |
537 | iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; | |
538 | } | |
539 | ||
540 | ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); | |
541 | ||
542 | if (ret < 0) { | |
543 | return -errno; | |
544 | } | |
545 | ||
546 | return 0; | |
547 | } | |
548 | ||
44c3f8f7 | 549 | static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, |
41cb62c2 | 550 | bool assign, uint32_t size, bool datamatch) |
500ffd4a MT |
551 | { |
552 | struct kvm_ioeventfd kick = { | |
41cb62c2 | 553 | .datamatch = datamatch ? val : 0, |
500ffd4a | 554 | .addr = addr, |
41cb62c2 | 555 | .flags = KVM_IOEVENTFD_FLAG_PIO, |
44c3f8f7 | 556 | .len = size, |
500ffd4a MT |
557 | .fd = fd, |
558 | }; | |
559 | int r; | |
560 | if (!kvm_enabled()) { | |
561 | return -ENOSYS; | |
562 | } | |
41cb62c2 MT |
563 | if (datamatch) { |
564 | kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; | |
565 | } | |
500ffd4a MT |
566 | if (!assign) { |
567 | kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; | |
568 | } | |
569 | r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); | |
570 | if (r < 0) { | |
571 | return r; | |
572 | } | |
573 | return 0; | |
574 | } | |
575 | ||
576 | ||
d2f2b8a7 SH |
577 | static int kvm_check_many_ioeventfds(void) |
578 | { | |
d0dcac83 SH |
579 | /* Userspace can use ioeventfd for io notification. This requires a host |
580 | * that supports eventfd(2) and an I/O thread; since eventfd does not | |
581 | * support SIGIO it cannot interrupt the vcpu. | |
582 | * | |
583 | * Older kernels have a 6 device limit on the KVM io bus. Find out so we | |
d2f2b8a7 SH |
584 | * can avoid creating too many ioeventfds. |
585 | */ | |
12d4536f | 586 | #if defined(CONFIG_EVENTFD) |
d2f2b8a7 SH |
587 | int ioeventfds[7]; |
588 | int i, ret = 0; | |
589 | for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { | |
590 | ioeventfds[i] = eventfd(0, EFD_CLOEXEC); | |
591 | if (ioeventfds[i] < 0) { | |
592 | break; | |
593 | } | |
41cb62c2 | 594 | ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); |
d2f2b8a7 SH |
595 | if (ret < 0) { |
596 | close(ioeventfds[i]); | |
597 | break; | |
598 | } | |
599 | } | |
600 | ||
601 | /* Decide whether many devices are supported or not */ | |
602 | ret = i == ARRAY_SIZE(ioeventfds); | |
603 | ||
604 | while (i-- > 0) { | |
41cb62c2 | 605 | kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); |
d2f2b8a7 SH |
606 | close(ioeventfds[i]); |
607 | } | |
608 | return ret; | |
609 | #else | |
610 | return 0; | |
611 | #endif | |
612 | } | |
613 | ||
94a8d39a JK |
614 | static const KVMCapabilityInfo * |
615 | kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) | |
616 | { | |
617 | while (list->name) { | |
618 | if (!kvm_check_extension(s, list->value)) { | |
619 | return list; | |
620 | } | |
621 | list++; | |
622 | } | |
623 | return NULL; | |
624 | } | |
625 | ||
a01672d3 | 626 | static void kvm_set_phys_mem(MemoryRegionSection *section, bool add) |
46dbef6a MT |
627 | { |
628 | KVMState *s = kvm_state; | |
46dbef6a MT |
629 | KVMSlot *mem, old; |
630 | int err; | |
a01672d3 AK |
631 | MemoryRegion *mr = section->mr; |
632 | bool log_dirty = memory_region_is_logging(mr); | |
235e8982 JJ |
633 | bool writeable = !mr->readonly && !mr->rom_device; |
634 | bool readonly_flag = mr->readonly || memory_region_is_romd(mr); | |
a8170e5e | 635 | hwaddr start_addr = section->offset_within_address_space; |
a01672d3 | 636 | ram_addr_t size = section->size; |
9f213ed9 | 637 | void *ram = NULL; |
8f6f962b | 638 | unsigned delta; |
46dbef6a | 639 | |
14542fea GN |
640 | /* kvm works in page size chunks, but the function may be called |
641 | with sub-page size and unaligned start address. */ | |
8f6f962b AK |
642 | delta = TARGET_PAGE_ALIGN(size) - size; |
643 | if (delta > size) { | |
644 | return; | |
645 | } | |
646 | start_addr += delta; | |
647 | size -= delta; | |
648 | size &= TARGET_PAGE_MASK; | |
649 | if (!size || (start_addr & ~TARGET_PAGE_MASK)) { | |
650 | return; | |
651 | } | |
46dbef6a | 652 | |
a01672d3 | 653 | if (!memory_region_is_ram(mr)) { |
235e8982 JJ |
654 | if (writeable || !kvm_readonly_mem_allowed) { |
655 | return; | |
656 | } else if (!mr->romd_mode) { | |
657 | /* If the memory device is not in romd_mode, then we actually want | |
658 | * to remove the kvm memory slot so all accesses will trap. */ | |
659 | add = false; | |
660 | } | |
9f213ed9 AK |
661 | } |
662 | ||
8f6f962b | 663 | ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta; |
a01672d3 | 664 | |
46dbef6a MT |
665 | while (1) { |
666 | mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size); | |
667 | if (!mem) { | |
668 | break; | |
669 | } | |
670 | ||
a01672d3 | 671 | if (add && start_addr >= mem->start_addr && |
46dbef6a | 672 | (start_addr + size <= mem->start_addr + mem->memory_size) && |
9f213ed9 | 673 | (ram - start_addr == mem->ram - mem->start_addr)) { |
46dbef6a | 674 | /* The new slot fits into the existing one and comes with |
25254bbc MT |
675 | * identical parameters - update flags and done. */ |
676 | kvm_slot_dirty_pages_log_change(mem, log_dirty); | |
46dbef6a MT |
677 | return; |
678 | } | |
679 | ||
680 | old = *mem; | |
681 | ||
3fbffb62 AK |
682 | if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { |
683 | kvm_physical_sync_dirty_bitmap(section); | |
684 | } | |
685 | ||
46dbef6a MT |
686 | /* unregister the overlapping slot */ |
687 | mem->memory_size = 0; | |
688 | err = kvm_set_user_memory_region(s, mem); | |
689 | if (err) { | |
690 | fprintf(stderr, "%s: error unregistering overlapping slot: %s\n", | |
691 | __func__, strerror(-err)); | |
692 | abort(); | |
693 | } | |
694 | ||
695 | /* Workaround for older KVM versions: we can't join slots, even not by | |
696 | * unregistering the previous ones and then registering the larger | |
697 | * slot. We have to maintain the existing fragmentation. Sigh. | |
698 | * | |
699 | * This workaround assumes that the new slot starts at the same | |
700 | * address as the first existing one. If not or if some overlapping | |
701 | * slot comes around later, we will fail (not seen in practice so far) | |
702 | * - and actually require a recent KVM version. */ | |
703 | if (s->broken_set_mem_region && | |
a01672d3 | 704 | old.start_addr == start_addr && old.memory_size < size && add) { |
46dbef6a MT |
705 | mem = kvm_alloc_slot(s); |
706 | mem->memory_size = old.memory_size; | |
707 | mem->start_addr = old.start_addr; | |
9f213ed9 | 708 | mem->ram = old.ram; |
235e8982 | 709 | mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag); |
46dbef6a MT |
710 | |
711 | err = kvm_set_user_memory_region(s, mem); | |
712 | if (err) { | |
713 | fprintf(stderr, "%s: error updating slot: %s\n", __func__, | |
714 | strerror(-err)); | |
715 | abort(); | |
716 | } | |
717 | ||
718 | start_addr += old.memory_size; | |
9f213ed9 | 719 | ram += old.memory_size; |
46dbef6a MT |
720 | size -= old.memory_size; |
721 | continue; | |
722 | } | |
723 | ||
724 | /* register prefix slot */ | |
725 | if (old.start_addr < start_addr) { | |
726 | mem = kvm_alloc_slot(s); | |
727 | mem->memory_size = start_addr - old.start_addr; | |
728 | mem->start_addr = old.start_addr; | |
9f213ed9 | 729 | mem->ram = old.ram; |
235e8982 | 730 | mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag); |
46dbef6a MT |
731 | |
732 | err = kvm_set_user_memory_region(s, mem); | |
733 | if (err) { | |
734 | fprintf(stderr, "%s: error registering prefix slot: %s\n", | |
735 | __func__, strerror(-err)); | |
d4d6868f AG |
736 | #ifdef TARGET_PPC |
737 | fprintf(stderr, "%s: This is probably because your kernel's " \ | |
738 | "PAGE_SIZE is too big. Please try to use 4k " \ | |
739 | "PAGE_SIZE!\n", __func__); | |
740 | #endif | |
46dbef6a MT |
741 | abort(); |
742 | } | |
743 | } | |
744 | ||
745 | /* register suffix slot */ | |
746 | if (old.start_addr + old.memory_size > start_addr + size) { | |
747 | ram_addr_t size_delta; | |
748 | ||
749 | mem = kvm_alloc_slot(s); | |
750 | mem->start_addr = start_addr + size; | |
751 | size_delta = mem->start_addr - old.start_addr; | |
752 | mem->memory_size = old.memory_size - size_delta; | |
9f213ed9 | 753 | mem->ram = old.ram + size_delta; |
235e8982 | 754 | mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag); |
46dbef6a MT |
755 | |
756 | err = kvm_set_user_memory_region(s, mem); | |
757 | if (err) { | |
758 | fprintf(stderr, "%s: error registering suffix slot: %s\n", | |
759 | __func__, strerror(-err)); | |
760 | abort(); | |
761 | } | |
762 | } | |
763 | } | |
764 | ||
765 | /* in case the KVM bug workaround already "consumed" the new slot */ | |
a426e122 | 766 | if (!size) { |
46dbef6a | 767 | return; |
a426e122 | 768 | } |
a01672d3 | 769 | if (!add) { |
46dbef6a | 770 | return; |
a426e122 | 771 | } |
46dbef6a MT |
772 | mem = kvm_alloc_slot(s); |
773 | mem->memory_size = size; | |
774 | mem->start_addr = start_addr; | |
9f213ed9 | 775 | mem->ram = ram; |
235e8982 | 776 | mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag); |
46dbef6a MT |
777 | |
778 | err = kvm_set_user_memory_region(s, mem); | |
779 | if (err) { | |
780 | fprintf(stderr, "%s: error registering slot: %s\n", __func__, | |
781 | strerror(-err)); | |
782 | abort(); | |
783 | } | |
784 | } | |
785 | ||
a01672d3 AK |
786 | static void kvm_region_add(MemoryListener *listener, |
787 | MemoryRegionSection *section) | |
788 | { | |
789 | kvm_set_phys_mem(section, true); | |
790 | } | |
791 | ||
792 | static void kvm_region_del(MemoryListener *listener, | |
793 | MemoryRegionSection *section) | |
794 | { | |
795 | kvm_set_phys_mem(section, false); | |
796 | } | |
797 | ||
798 | static void kvm_log_sync(MemoryListener *listener, | |
799 | MemoryRegionSection *section) | |
7b8f3b78 | 800 | { |
a01672d3 AK |
801 | int r; |
802 | ||
ffcde12f | 803 | r = kvm_physical_sync_dirty_bitmap(section); |
a01672d3 AK |
804 | if (r < 0) { |
805 | abort(); | |
806 | } | |
7b8f3b78 MT |
807 | } |
808 | ||
a01672d3 | 809 | static void kvm_log_global_start(struct MemoryListener *listener) |
7b8f3b78 | 810 | { |
a01672d3 AK |
811 | int r; |
812 | ||
813 | r = kvm_set_migration_log(1); | |
814 | assert(r >= 0); | |
7b8f3b78 MT |
815 | } |
816 | ||
a01672d3 | 817 | static void kvm_log_global_stop(struct MemoryListener *listener) |
7b8f3b78 | 818 | { |
a01672d3 AK |
819 | int r; |
820 | ||
821 | r = kvm_set_migration_log(0); | |
822 | assert(r >= 0); | |
7b8f3b78 MT |
823 | } |
824 | ||
d22b096e AK |
825 | static void kvm_mem_ioeventfd_add(MemoryListener *listener, |
826 | MemoryRegionSection *section, | |
827 | bool match_data, uint64_t data, | |
828 | EventNotifier *e) | |
829 | { | |
830 | int fd = event_notifier_get_fd(e); | |
80a1ea37 AK |
831 | int r; |
832 | ||
4b8f1c88 | 833 | r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, |
41cb62c2 | 834 | data, true, section->size, match_data); |
80a1ea37 AK |
835 | if (r < 0) { |
836 | abort(); | |
837 | } | |
838 | } | |
839 | ||
d22b096e AK |
840 | static void kvm_mem_ioeventfd_del(MemoryListener *listener, |
841 | MemoryRegionSection *section, | |
842 | bool match_data, uint64_t data, | |
843 | EventNotifier *e) | |
80a1ea37 | 844 | { |
d22b096e | 845 | int fd = event_notifier_get_fd(e); |
80a1ea37 AK |
846 | int r; |
847 | ||
4b8f1c88 | 848 | r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, |
41cb62c2 | 849 | data, false, section->size, match_data); |
80a1ea37 AK |
850 | if (r < 0) { |
851 | abort(); | |
852 | } | |
853 | } | |
854 | ||
d22b096e AK |
855 | static void kvm_io_ioeventfd_add(MemoryListener *listener, |
856 | MemoryRegionSection *section, | |
857 | bool match_data, uint64_t data, | |
858 | EventNotifier *e) | |
80a1ea37 | 859 | { |
d22b096e | 860 | int fd = event_notifier_get_fd(e); |
80a1ea37 AK |
861 | int r; |
862 | ||
44c3f8f7 | 863 | r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, |
41cb62c2 | 864 | data, true, section->size, match_data); |
80a1ea37 AK |
865 | if (r < 0) { |
866 | abort(); | |
867 | } | |
868 | } | |
869 | ||
d22b096e AK |
870 | static void kvm_io_ioeventfd_del(MemoryListener *listener, |
871 | MemoryRegionSection *section, | |
872 | bool match_data, uint64_t data, | |
873 | EventNotifier *e) | |
80a1ea37 AK |
874 | |
875 | { | |
d22b096e | 876 | int fd = event_notifier_get_fd(e); |
80a1ea37 AK |
877 | int r; |
878 | ||
44c3f8f7 | 879 | r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, |
41cb62c2 | 880 | data, false, section->size, match_data); |
80a1ea37 AK |
881 | if (r < 0) { |
882 | abort(); | |
883 | } | |
884 | } | |
885 | ||
a01672d3 AK |
886 | static MemoryListener kvm_memory_listener = { |
887 | .region_add = kvm_region_add, | |
888 | .region_del = kvm_region_del, | |
e5896b12 AP |
889 | .log_start = kvm_log_start, |
890 | .log_stop = kvm_log_stop, | |
a01672d3 AK |
891 | .log_sync = kvm_log_sync, |
892 | .log_global_start = kvm_log_global_start, | |
893 | .log_global_stop = kvm_log_global_stop, | |
d22b096e AK |
894 | .eventfd_add = kvm_mem_ioeventfd_add, |
895 | .eventfd_del = kvm_mem_ioeventfd_del, | |
95d2994a AK |
896 | .coalesced_mmio_add = kvm_coalesce_mmio_region, |
897 | .coalesced_mmio_del = kvm_uncoalesce_mmio_region, | |
d22b096e AK |
898 | .priority = 10, |
899 | }; | |
900 | ||
901 | static MemoryListener kvm_io_listener = { | |
d22b096e AK |
902 | .eventfd_add = kvm_io_ioeventfd_add, |
903 | .eventfd_del = kvm_io_ioeventfd_del, | |
72e22d2f | 904 | .priority = 10, |
7b8f3b78 MT |
905 | }; |
906 | ||
c3affe56 | 907 | static void kvm_handle_interrupt(CPUState *cpu, int mask) |
aa7f74d1 | 908 | { |
259186a7 | 909 | cpu->interrupt_request |= mask; |
aa7f74d1 | 910 | |
60e82579 | 911 | if (!qemu_cpu_is_self(cpu)) { |
c08d7424 | 912 | qemu_cpu_kick(cpu); |
aa7f74d1 JK |
913 | } |
914 | } | |
915 | ||
3889c3fa | 916 | int kvm_set_irq(KVMState *s, int irq, int level) |
84b058d7 JK |
917 | { |
918 | struct kvm_irq_level event; | |
919 | int ret; | |
920 | ||
7ae26bd4 | 921 | assert(kvm_async_interrupts_enabled()); |
84b058d7 JK |
922 | |
923 | event.level = level; | |
924 | event.irq = irq; | |
e333cd69 | 925 | ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); |
84b058d7 | 926 | if (ret < 0) { |
3889c3fa | 927 | perror("kvm_set_irq"); |
84b058d7 JK |
928 | abort(); |
929 | } | |
930 | ||
e333cd69 | 931 | return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; |
84b058d7 JK |
932 | } |
933 | ||
934 | #ifdef KVM_CAP_IRQ_ROUTING | |
d3d3bef0 JK |
935 | typedef struct KVMMSIRoute { |
936 | struct kvm_irq_routing_entry kroute; | |
937 | QTAILQ_ENTRY(KVMMSIRoute) entry; | |
938 | } KVMMSIRoute; | |
939 | ||
84b058d7 JK |
940 | static void set_gsi(KVMState *s, unsigned int gsi) |
941 | { | |
84b058d7 JK |
942 | s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32); |
943 | } | |
944 | ||
04fa27f5 JK |
945 | static void clear_gsi(KVMState *s, unsigned int gsi) |
946 | { | |
947 | s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32)); | |
948 | } | |
949 | ||
84b058d7 JK |
950 | static void kvm_init_irq_routing(KVMState *s) |
951 | { | |
04fa27f5 | 952 | int gsi_count, i; |
84b058d7 JK |
953 | |
954 | gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING); | |
955 | if (gsi_count > 0) { | |
956 | unsigned int gsi_bits, i; | |
957 | ||
958 | /* Round up so we can search ints using ffs */ | |
bc8c6788 | 959 | gsi_bits = ALIGN(gsi_count, 32); |
84b058d7 | 960 | s->used_gsi_bitmap = g_malloc0(gsi_bits / 8); |
4e2e4e63 | 961 | s->gsi_count = gsi_count; |
84b058d7 JK |
962 | |
963 | /* Mark any over-allocated bits as already in use */ | |
964 | for (i = gsi_count; i < gsi_bits; i++) { | |
965 | set_gsi(s, i); | |
966 | } | |
967 | } | |
968 | ||
969 | s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); | |
970 | s->nr_allocated_irq_routes = 0; | |
971 | ||
4a3adebb JK |
972 | if (!s->direct_msi) { |
973 | for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { | |
974 | QTAILQ_INIT(&s->msi_hashtab[i]); | |
975 | } | |
04fa27f5 JK |
976 | } |
977 | ||
84b058d7 JK |
978 | kvm_arch_init_irq_routing(s); |
979 | } | |
980 | ||
e7b20308 JK |
981 | static void kvm_irqchip_commit_routes(KVMState *s) |
982 | { | |
983 | int ret; | |
984 | ||
985 | s->irq_routes->flags = 0; | |
986 | ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); | |
987 | assert(ret == 0); | |
988 | } | |
989 | ||
84b058d7 JK |
990 | static void kvm_add_routing_entry(KVMState *s, |
991 | struct kvm_irq_routing_entry *entry) | |
992 | { | |
993 | struct kvm_irq_routing_entry *new; | |
994 | int n, size; | |
995 | ||
996 | if (s->irq_routes->nr == s->nr_allocated_irq_routes) { | |
997 | n = s->nr_allocated_irq_routes * 2; | |
998 | if (n < 64) { | |
999 | n = 64; | |
1000 | } | |
1001 | size = sizeof(struct kvm_irq_routing); | |
1002 | size += n * sizeof(*new); | |
1003 | s->irq_routes = g_realloc(s->irq_routes, size); | |
1004 | s->nr_allocated_irq_routes = n; | |
1005 | } | |
1006 | n = s->irq_routes->nr++; | |
1007 | new = &s->irq_routes->entries[n]; | |
1008 | memset(new, 0, sizeof(*new)); | |
1009 | new->gsi = entry->gsi; | |
1010 | new->type = entry->type; | |
1011 | new->flags = entry->flags; | |
1012 | new->u = entry->u; | |
1013 | ||
1014 | set_gsi(s, entry->gsi); | |
e7b20308 JK |
1015 | |
1016 | kvm_irqchip_commit_routes(s); | |
84b058d7 JK |
1017 | } |
1018 | ||
cc57407e JK |
1019 | static int kvm_update_routing_entry(KVMState *s, |
1020 | struct kvm_irq_routing_entry *new_entry) | |
1021 | { | |
1022 | struct kvm_irq_routing_entry *entry; | |
1023 | int n; | |
1024 | ||
1025 | for (n = 0; n < s->irq_routes->nr; n++) { | |
1026 | entry = &s->irq_routes->entries[n]; | |
1027 | if (entry->gsi != new_entry->gsi) { | |
1028 | continue; | |
1029 | } | |
1030 | ||
1031 | entry->type = new_entry->type; | |
1032 | entry->flags = new_entry->flags; | |
1033 | entry->u = new_entry->u; | |
1034 | ||
1035 | kvm_irqchip_commit_routes(s); | |
1036 | ||
1037 | return 0; | |
1038 | } | |
1039 | ||
1040 | return -ESRCH; | |
1041 | } | |
1042 | ||
1df186df | 1043 | void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) |
84b058d7 JK |
1044 | { |
1045 | struct kvm_irq_routing_entry e; | |
1046 | ||
4e2e4e63 JK |
1047 | assert(pin < s->gsi_count); |
1048 | ||
84b058d7 JK |
1049 | e.gsi = irq; |
1050 | e.type = KVM_IRQ_ROUTING_IRQCHIP; | |
1051 | e.flags = 0; | |
1052 | e.u.irqchip.irqchip = irqchip; | |
1053 | e.u.irqchip.pin = pin; | |
1054 | kvm_add_routing_entry(s, &e); | |
1055 | } | |
1056 | ||
1e2aa8be | 1057 | void kvm_irqchip_release_virq(KVMState *s, int virq) |
04fa27f5 JK |
1058 | { |
1059 | struct kvm_irq_routing_entry *e; | |
1060 | int i; | |
1061 | ||
1062 | for (i = 0; i < s->irq_routes->nr; i++) { | |
1063 | e = &s->irq_routes->entries[i]; | |
1064 | if (e->gsi == virq) { | |
1065 | s->irq_routes->nr--; | |
1066 | *e = s->irq_routes->entries[s->irq_routes->nr]; | |
1067 | } | |
1068 | } | |
1069 | clear_gsi(s, virq); | |
1070 | } | |
1071 | ||
1072 | static unsigned int kvm_hash_msi(uint32_t data) | |
1073 | { | |
1074 | /* This is optimized for IA32 MSI layout. However, no other arch shall | |
1075 | * repeat the mistake of not providing a direct MSI injection API. */ | |
1076 | return data & 0xff; | |
1077 | } | |
1078 | ||
1079 | static void kvm_flush_dynamic_msi_routes(KVMState *s) | |
1080 | { | |
1081 | KVMMSIRoute *route, *next; | |
1082 | unsigned int hash; | |
1083 | ||
1084 | for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { | |
1085 | QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { | |
1086 | kvm_irqchip_release_virq(s, route->kroute.gsi); | |
1087 | QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); | |
1088 | g_free(route); | |
1089 | } | |
1090 | } | |
1091 | } | |
1092 | ||
1093 | static int kvm_irqchip_get_virq(KVMState *s) | |
1094 | { | |
1095 | uint32_t *word = s->used_gsi_bitmap; | |
1096 | int max_words = ALIGN(s->gsi_count, 32) / 32; | |
1097 | int i, bit; | |
1098 | bool retry = true; | |
1099 | ||
1100 | again: | |
1101 | /* Return the lowest unused GSI in the bitmap */ | |
1102 | for (i = 0; i < max_words; i++) { | |
1103 | bit = ffs(~word[i]); | |
1104 | if (!bit) { | |
1105 | continue; | |
1106 | } | |
1107 | ||
1108 | return bit - 1 + i * 32; | |
1109 | } | |
4a3adebb | 1110 | if (!s->direct_msi && retry) { |
04fa27f5 JK |
1111 | retry = false; |
1112 | kvm_flush_dynamic_msi_routes(s); | |
1113 | goto again; | |
1114 | } | |
1115 | return -ENOSPC; | |
1116 | ||
1117 | } | |
1118 | ||
1119 | static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) | |
1120 | { | |
1121 | unsigned int hash = kvm_hash_msi(msg.data); | |
1122 | KVMMSIRoute *route; | |
1123 | ||
1124 | QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { | |
1125 | if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && | |
1126 | route->kroute.u.msi.address_hi == (msg.address >> 32) && | |
1127 | route->kroute.u.msi.data == msg.data) { | |
1128 | return route; | |
1129 | } | |
1130 | } | |
1131 | return NULL; | |
1132 | } | |
1133 | ||
1134 | int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) | |
1135 | { | |
4a3adebb | 1136 | struct kvm_msi msi; |
04fa27f5 JK |
1137 | KVMMSIRoute *route; |
1138 | ||
4a3adebb JK |
1139 | if (s->direct_msi) { |
1140 | msi.address_lo = (uint32_t)msg.address; | |
1141 | msi.address_hi = msg.address >> 32; | |
1142 | msi.data = msg.data; | |
1143 | msi.flags = 0; | |
1144 | memset(msi.pad, 0, sizeof(msi.pad)); | |
1145 | ||
1146 | return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); | |
1147 | } | |
1148 | ||
04fa27f5 JK |
1149 | route = kvm_lookup_msi_route(s, msg); |
1150 | if (!route) { | |
e7b20308 | 1151 | int virq; |
04fa27f5 JK |
1152 | |
1153 | virq = kvm_irqchip_get_virq(s); | |
1154 | if (virq < 0) { | |
1155 | return virq; | |
1156 | } | |
1157 | ||
1158 | route = g_malloc(sizeof(KVMMSIRoute)); | |
1159 | route->kroute.gsi = virq; | |
1160 | route->kroute.type = KVM_IRQ_ROUTING_MSI; | |
1161 | route->kroute.flags = 0; | |
1162 | route->kroute.u.msi.address_lo = (uint32_t)msg.address; | |
1163 | route->kroute.u.msi.address_hi = msg.address >> 32; | |
1164 | route->kroute.u.msi.data = msg.data; | |
1165 | ||
1166 | kvm_add_routing_entry(s, &route->kroute); | |
1167 | ||
1168 | QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, | |
1169 | entry); | |
04fa27f5 JK |
1170 | } |
1171 | ||
1172 | assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); | |
1173 | ||
3889c3fa | 1174 | return kvm_set_irq(s, route->kroute.gsi, 1); |
04fa27f5 JK |
1175 | } |
1176 | ||
92b4e489 JK |
1177 | int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg) |
1178 | { | |
1179 | struct kvm_irq_routing_entry kroute; | |
1180 | int virq; | |
1181 | ||
f3e1bed8 | 1182 | if (!kvm_gsi_routing_enabled()) { |
92b4e489 JK |
1183 | return -ENOSYS; |
1184 | } | |
1185 | ||
1186 | virq = kvm_irqchip_get_virq(s); | |
1187 | if (virq < 0) { | |
1188 | return virq; | |
1189 | } | |
1190 | ||
1191 | kroute.gsi = virq; | |
1192 | kroute.type = KVM_IRQ_ROUTING_MSI; | |
1193 | kroute.flags = 0; | |
1194 | kroute.u.msi.address_lo = (uint32_t)msg.address; | |
1195 | kroute.u.msi.address_hi = msg.address >> 32; | |
1196 | kroute.u.msi.data = msg.data; | |
1197 | ||
1198 | kvm_add_routing_entry(s, &kroute); | |
1199 | ||
1200 | return virq; | |
1201 | } | |
1202 | ||
cc57407e JK |
1203 | int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) |
1204 | { | |
1205 | struct kvm_irq_routing_entry kroute; | |
1206 | ||
1207 | if (!kvm_irqchip_in_kernel()) { | |
1208 | return -ENOSYS; | |
1209 | } | |
1210 | ||
1211 | kroute.gsi = virq; | |
1212 | kroute.type = KVM_IRQ_ROUTING_MSI; | |
1213 | kroute.flags = 0; | |
1214 | kroute.u.msi.address_lo = (uint32_t)msg.address; | |
1215 | kroute.u.msi.address_hi = msg.address >> 32; | |
1216 | kroute.u.msi.data = msg.data; | |
1217 | ||
1218 | return kvm_update_routing_entry(s, &kroute); | |
1219 | } | |
1220 | ||
39853bbc JK |
1221 | static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign) |
1222 | { | |
1223 | struct kvm_irqfd irqfd = { | |
1224 | .fd = fd, | |
1225 | .gsi = virq, | |
1226 | .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, | |
1227 | }; | |
1228 | ||
cc7e0ddf | 1229 | if (!kvm_irqfds_enabled()) { |
39853bbc JK |
1230 | return -ENOSYS; |
1231 | } | |
1232 | ||
1233 | return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); | |
1234 | } | |
1235 | ||
84b058d7 JK |
1236 | #else /* !KVM_CAP_IRQ_ROUTING */ |
1237 | ||
1238 | static void kvm_init_irq_routing(KVMState *s) | |
1239 | { | |
1240 | } | |
04fa27f5 | 1241 | |
d3d3bef0 JK |
1242 | void kvm_irqchip_release_virq(KVMState *s, int virq) |
1243 | { | |
1244 | } | |
1245 | ||
04fa27f5 JK |
1246 | int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) |
1247 | { | |
1248 | abort(); | |
1249 | } | |
92b4e489 JK |
1250 | |
1251 | int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg) | |
1252 | { | |
df410675 | 1253 | return -ENOSYS; |
92b4e489 | 1254 | } |
39853bbc JK |
1255 | |
1256 | static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign) | |
1257 | { | |
1258 | abort(); | |
1259 | } | |
dabe3143 MT |
1260 | |
1261 | int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) | |
1262 | { | |
1263 | return -ENOSYS; | |
1264 | } | |
84b058d7 JK |
1265 | #endif /* !KVM_CAP_IRQ_ROUTING */ |
1266 | ||
b131c74a | 1267 | int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, int virq) |
39853bbc | 1268 | { |
b131c74a | 1269 | return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, true); |
39853bbc JK |
1270 | } |
1271 | ||
b131c74a | 1272 | int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq) |
15b2bd18 | 1273 | { |
b131c74a | 1274 | return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, false); |
15b2bd18 PB |
1275 | } |
1276 | ||
84b058d7 JK |
1277 | static int kvm_irqchip_create(KVMState *s) |
1278 | { | |
1279 | QemuOptsList *list = qemu_find_opts("machine"); | |
1280 | int ret; | |
1281 | ||
1282 | if (QTAILQ_EMPTY(&list->head) || | |
1283 | !qemu_opt_get_bool(QTAILQ_FIRST(&list->head), | |
a24b9106 | 1284 | "kernel_irqchip", true) || |
84b058d7 JK |
1285 | !kvm_check_extension(s, KVM_CAP_IRQCHIP)) { |
1286 | return 0; | |
1287 | } | |
1288 | ||
1289 | ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); | |
1290 | if (ret < 0) { | |
1291 | fprintf(stderr, "Create kernel irqchip failed\n"); | |
1292 | return ret; | |
1293 | } | |
1294 | ||
3d4b2649 | 1295 | kvm_kernel_irqchip = true; |
7ae26bd4 PM |
1296 | /* If we have an in-kernel IRQ chip then we must have asynchronous |
1297 | * interrupt delivery (though the reverse is not necessarily true) | |
1298 | */ | |
1299 | kvm_async_interrupts_allowed = true; | |
84b058d7 JK |
1300 | |
1301 | kvm_init_irq_routing(s); | |
1302 | ||
1303 | return 0; | |
1304 | } | |
1305 | ||
3ed444e9 DH |
1306 | static int kvm_max_vcpus(KVMState *s) |
1307 | { | |
1308 | int ret; | |
1309 | ||
1310 | /* Find number of supported CPUs using the recommended | |
1311 | * procedure from the kernel API documentation to cope with | |
1312 | * older kernels that may be missing capabilities. | |
1313 | */ | |
1314 | ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); | |
1315 | if (ret) { | |
1316 | return ret; | |
1317 | } | |
1318 | ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS); | |
1319 | if (ret) { | |
1320 | return ret; | |
1321 | } | |
1322 | ||
1323 | return 4; | |
1324 | } | |
1325 | ||
cad1e282 | 1326 | int kvm_init(void) |
05330448 | 1327 | { |
168ccc11 JK |
1328 | static const char upgrade_note[] = |
1329 | "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" | |
1330 | "(see http://sourceforge.net/projects/kvm).\n"; | |
05330448 | 1331 | KVMState *s; |
94a8d39a | 1332 | const KVMCapabilityInfo *missing_cap; |
05330448 AL |
1333 | int ret; |
1334 | int i; | |
3ed444e9 | 1335 | int max_vcpus; |
05330448 | 1336 | |
7267c094 | 1337 | s = g_malloc0(sizeof(KVMState)); |
05330448 | 1338 | |
3145fcb6 DG |
1339 | /* |
1340 | * On systems where the kernel can support different base page | |
1341 | * sizes, host page size may be different from TARGET_PAGE_SIZE, | |
1342 | * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum | |
1343 | * page size for the system though. | |
1344 | */ | |
1345 | assert(TARGET_PAGE_SIZE <= getpagesize()); | |
1346 | ||
e22a25c9 | 1347 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
72cf2d4f | 1348 | QTAILQ_INIT(&s->kvm_sw_breakpoints); |
e22a25c9 | 1349 | #endif |
a426e122 | 1350 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { |
05330448 | 1351 | s->slots[i].slot = i; |
a426e122 | 1352 | } |
05330448 | 1353 | s->vmfd = -1; |
40ff6d7e | 1354 | s->fd = qemu_open("/dev/kvm", O_RDWR); |
05330448 AL |
1355 | if (s->fd == -1) { |
1356 | fprintf(stderr, "Could not access KVM kernel module: %m\n"); | |
1357 | ret = -errno; | |
1358 | goto err; | |
1359 | } | |
1360 | ||
1361 | ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); | |
1362 | if (ret < KVM_API_VERSION) { | |
a426e122 | 1363 | if (ret > 0) { |
05330448 | 1364 | ret = -EINVAL; |
a426e122 | 1365 | } |
05330448 AL |
1366 | fprintf(stderr, "kvm version too old\n"); |
1367 | goto err; | |
1368 | } | |
1369 | ||
1370 | if (ret > KVM_API_VERSION) { | |
1371 | ret = -EINVAL; | |
1372 | fprintf(stderr, "kvm version not supported\n"); | |
1373 | goto err; | |
1374 | } | |
1375 | ||
3ed444e9 DH |
1376 | max_vcpus = kvm_max_vcpus(s); |
1377 | if (smp_cpus > max_vcpus) { | |
1378 | ret = -EINVAL; | |
1379 | fprintf(stderr, "Number of SMP cpus requested (%d) exceeds max cpus " | |
1380 | "supported by KVM (%d)\n", smp_cpus, max_vcpus); | |
1381 | goto err; | |
1382 | } | |
1383 | ||
05330448 | 1384 | s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0); |
0104dcac AG |
1385 | if (s->vmfd < 0) { |
1386 | #ifdef TARGET_S390X | |
1387 | fprintf(stderr, "Please add the 'switch_amode' kernel parameter to " | |
1388 | "your host kernel command line\n"); | |
1389 | #endif | |
db9eae1c | 1390 | ret = s->vmfd; |
05330448 | 1391 | goto err; |
0104dcac | 1392 | } |
05330448 | 1393 | |
94a8d39a JK |
1394 | missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); |
1395 | if (!missing_cap) { | |
1396 | missing_cap = | |
1397 | kvm_check_extension_list(s, kvm_arch_required_capabilities); | |
05330448 | 1398 | } |
94a8d39a | 1399 | if (missing_cap) { |
ad7b8b33 | 1400 | ret = -EINVAL; |
94a8d39a JK |
1401 | fprintf(stderr, "kvm does not support %s\n%s", |
1402 | missing_cap->name, upgrade_note); | |
d85dc283 AL |
1403 | goto err; |
1404 | } | |
1405 | ||
ad7b8b33 | 1406 | s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); |
f65ed4c1 | 1407 | |
e69917e2 | 1408 | s->broken_set_mem_region = 1; |
14a09518 | 1409 | ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS); |
e69917e2 JK |
1410 | if (ret > 0) { |
1411 | s->broken_set_mem_region = 0; | |
1412 | } | |
e69917e2 | 1413 | |
a0fb002c JK |
1414 | #ifdef KVM_CAP_VCPU_EVENTS |
1415 | s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); | |
1416 | #endif | |
1417 | ||
b0b1d690 JK |
1418 | s->robust_singlestep = |
1419 | kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); | |
b0b1d690 | 1420 | |
ff44f1a3 JK |
1421 | #ifdef KVM_CAP_DEBUGREGS |
1422 | s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); | |
1423 | #endif | |
1424 | ||
f1665b21 SY |
1425 | #ifdef KVM_CAP_XSAVE |
1426 | s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE); | |
1427 | #endif | |
1428 | ||
f1665b21 SY |
1429 | #ifdef KVM_CAP_XCRS |
1430 | s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS); | |
1431 | #endif | |
1432 | ||
8a7c7393 JK |
1433 | #ifdef KVM_CAP_PIT_STATE2 |
1434 | s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2); | |
1435 | #endif | |
1436 | ||
d3d3bef0 | 1437 | #ifdef KVM_CAP_IRQ_ROUTING |
4a3adebb | 1438 | s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); |
d3d3bef0 | 1439 | #endif |
4a3adebb | 1440 | |
3ab73842 JK |
1441 | s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); |
1442 | ||
e333cd69 | 1443 | s->irq_set_ioctl = KVM_IRQ_LINE; |
8732fbd2 | 1444 | if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { |
e333cd69 | 1445 | s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; |
8732fbd2 PM |
1446 | } |
1447 | ||
df9c8b75 JJ |
1448 | #ifdef KVM_CAP_READONLY_MEM |
1449 | kvm_readonly_mem_allowed = | |
1450 | (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); | |
1451 | #endif | |
1452 | ||
cad1e282 | 1453 | ret = kvm_arch_init(s); |
a426e122 | 1454 | if (ret < 0) { |
05330448 | 1455 | goto err; |
a426e122 | 1456 | } |
05330448 | 1457 | |
84b058d7 JK |
1458 | ret = kvm_irqchip_create(s); |
1459 | if (ret < 0) { | |
1460 | goto err; | |
1461 | } | |
1462 | ||
05330448 | 1463 | kvm_state = s; |
f6790af6 AK |
1464 | memory_listener_register(&kvm_memory_listener, &address_space_memory); |
1465 | memory_listener_register(&kvm_io_listener, &address_space_io); | |
05330448 | 1466 | |
d2f2b8a7 SH |
1467 | s->many_ioeventfds = kvm_check_many_ioeventfds(); |
1468 | ||
aa7f74d1 JK |
1469 | cpu_interrupt_handler = kvm_handle_interrupt; |
1470 | ||
05330448 AL |
1471 | return 0; |
1472 | ||
1473 | err: | |
6d1cc321 SW |
1474 | if (s->vmfd >= 0) { |
1475 | close(s->vmfd); | |
1476 | } | |
1477 | if (s->fd != -1) { | |
1478 | close(s->fd); | |
05330448 | 1479 | } |
7267c094 | 1480 | g_free(s); |
05330448 AL |
1481 | |
1482 | return ret; | |
1483 | } | |
1484 | ||
b30e93e9 JK |
1485 | static void kvm_handle_io(uint16_t port, void *data, int direction, int size, |
1486 | uint32_t count) | |
05330448 AL |
1487 | { |
1488 | int i; | |
1489 | uint8_t *ptr = data; | |
1490 | ||
1491 | for (i = 0; i < count; i++) { | |
1492 | if (direction == KVM_EXIT_IO_IN) { | |
1493 | switch (size) { | |
1494 | case 1: | |
afcea8cb | 1495 | stb_p(ptr, cpu_inb(port)); |
05330448 AL |
1496 | break; |
1497 | case 2: | |
afcea8cb | 1498 | stw_p(ptr, cpu_inw(port)); |
05330448 AL |
1499 | break; |
1500 | case 4: | |
afcea8cb | 1501 | stl_p(ptr, cpu_inl(port)); |
05330448 AL |
1502 | break; |
1503 | } | |
1504 | } else { | |
1505 | switch (size) { | |
1506 | case 1: | |
afcea8cb | 1507 | cpu_outb(port, ldub_p(ptr)); |
05330448 AL |
1508 | break; |
1509 | case 2: | |
afcea8cb | 1510 | cpu_outw(port, lduw_p(ptr)); |
05330448 AL |
1511 | break; |
1512 | case 4: | |
afcea8cb | 1513 | cpu_outl(port, ldl_p(ptr)); |
05330448 AL |
1514 | break; |
1515 | } | |
1516 | } | |
1517 | ||
1518 | ptr += size; | |
1519 | } | |
05330448 AL |
1520 | } |
1521 | ||
9349b4f9 | 1522 | static int kvm_handle_internal_error(CPUArchState *env, struct kvm_run *run) |
7c80eef8 | 1523 | { |
20d695a9 AF |
1524 | CPUState *cpu = ENV_GET_CPU(env); |
1525 | ||
bb44e0d1 | 1526 | fprintf(stderr, "KVM internal error."); |
7c80eef8 MT |
1527 | if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { |
1528 | int i; | |
1529 | ||
bb44e0d1 | 1530 | fprintf(stderr, " Suberror: %d\n", run->internal.suberror); |
7c80eef8 MT |
1531 | for (i = 0; i < run->internal.ndata; ++i) { |
1532 | fprintf(stderr, "extra data[%d]: %"PRIx64"\n", | |
1533 | i, (uint64_t)run->internal.data[i]); | |
1534 | } | |
bb44e0d1 JK |
1535 | } else { |
1536 | fprintf(stderr, "\n"); | |
7c80eef8 | 1537 | } |
7c80eef8 MT |
1538 | if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { |
1539 | fprintf(stderr, "emulation failure\n"); | |
20d695a9 | 1540 | if (!kvm_arch_stop_on_emulation_error(cpu)) { |
f5c848ee | 1541 | cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE); |
d73cd8f4 | 1542 | return EXCP_INTERRUPT; |
a426e122 | 1543 | } |
7c80eef8 MT |
1544 | } |
1545 | /* FIXME: Should trigger a qmp message to let management know | |
1546 | * something went wrong. | |
1547 | */ | |
73aaec4a | 1548 | return -1; |
7c80eef8 | 1549 | } |
7c80eef8 | 1550 | |
62a2744c | 1551 | void kvm_flush_coalesced_mmio_buffer(void) |
f65ed4c1 | 1552 | { |
f65ed4c1 | 1553 | KVMState *s = kvm_state; |
1cae88b9 AK |
1554 | |
1555 | if (s->coalesced_flush_in_progress) { | |
1556 | return; | |
1557 | } | |
1558 | ||
1559 | s->coalesced_flush_in_progress = true; | |
1560 | ||
62a2744c SY |
1561 | if (s->coalesced_mmio_ring) { |
1562 | struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; | |
f65ed4c1 AL |
1563 | while (ring->first != ring->last) { |
1564 | struct kvm_coalesced_mmio *ent; | |
1565 | ||
1566 | ent = &ring->coalesced_mmio[ring->first]; | |
1567 | ||
1568 | cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); | |
85199474 | 1569 | smp_wmb(); |
f65ed4c1 AL |
1570 | ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; |
1571 | } | |
1572 | } | |
1cae88b9 AK |
1573 | |
1574 | s->coalesced_flush_in_progress = false; | |
f65ed4c1 AL |
1575 | } |
1576 | ||
20d695a9 | 1577 | static void do_kvm_cpu_synchronize_state(void *arg) |
4c0960c0 | 1578 | { |
20d695a9 | 1579 | CPUState *cpu = arg; |
2705d56a | 1580 | |
20d695a9 AF |
1581 | if (!cpu->kvm_vcpu_dirty) { |
1582 | kvm_arch_get_registers(cpu); | |
1583 | cpu->kvm_vcpu_dirty = true; | |
4c0960c0 AK |
1584 | } |
1585 | } | |
1586 | ||
9349b4f9 | 1587 | void kvm_cpu_synchronize_state(CPUArchState *env) |
2705d56a | 1588 | { |
f100f0b3 AF |
1589 | CPUState *cpu = ENV_GET_CPU(env); |
1590 | ||
20d695a9 AF |
1591 | if (!cpu->kvm_vcpu_dirty) { |
1592 | run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu); | |
a426e122 | 1593 | } |
2705d56a JK |
1594 | } |
1595 | ||
3f24a58f | 1596 | void kvm_cpu_synchronize_post_reset(CPUState *cpu) |
ea375f9a | 1597 | { |
20d695a9 AF |
1598 | kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); |
1599 | cpu->kvm_vcpu_dirty = false; | |
ea375f9a JK |
1600 | } |
1601 | ||
3f24a58f | 1602 | void kvm_cpu_synchronize_post_init(CPUState *cpu) |
ea375f9a | 1603 | { |
20d695a9 AF |
1604 | kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); |
1605 | cpu->kvm_vcpu_dirty = false; | |
ea375f9a JK |
1606 | } |
1607 | ||
9349b4f9 | 1608 | int kvm_cpu_exec(CPUArchState *env) |
05330448 | 1609 | { |
20d695a9 | 1610 | CPUState *cpu = ENV_GET_CPU(env); |
f7575c96 | 1611 | struct kvm_run *run = cpu->kvm_run; |
7cbb533f | 1612 | int ret, run_ret; |
05330448 | 1613 | |
8c0d577e | 1614 | DPRINTF("kvm_cpu_exec()\n"); |
05330448 | 1615 | |
20d695a9 | 1616 | if (kvm_arch_process_async_events(cpu)) { |
fcd7d003 | 1617 | cpu->exit_request = 0; |
6792a57b | 1618 | return EXCP_HLT; |
9ccfac9e | 1619 | } |
0af691d7 | 1620 | |
9ccfac9e | 1621 | do { |
20d695a9 AF |
1622 | if (cpu->kvm_vcpu_dirty) { |
1623 | kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); | |
1624 | cpu->kvm_vcpu_dirty = false; | |
4c0960c0 AK |
1625 | } |
1626 | ||
20d695a9 | 1627 | kvm_arch_pre_run(cpu, run); |
fcd7d003 | 1628 | if (cpu->exit_request) { |
9ccfac9e JK |
1629 | DPRINTF("interrupt exit requested\n"); |
1630 | /* | |
1631 | * KVM requires us to reenter the kernel after IO exits to complete | |
1632 | * instruction emulation. This self-signal will ensure that we | |
1633 | * leave ASAP again. | |
1634 | */ | |
1635 | qemu_cpu_kick_self(); | |
1636 | } | |
d549db5a | 1637 | qemu_mutex_unlock_iothread(); |
9ccfac9e | 1638 | |
1bc22652 | 1639 | run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); |
9ccfac9e | 1640 | |
d549db5a | 1641 | qemu_mutex_lock_iothread(); |
20d695a9 | 1642 | kvm_arch_post_run(cpu, run); |
05330448 | 1643 | |
7cbb533f | 1644 | if (run_ret < 0) { |
dc77d341 JK |
1645 | if (run_ret == -EINTR || run_ret == -EAGAIN) { |
1646 | DPRINTF("io window exit\n"); | |
d73cd8f4 | 1647 | ret = EXCP_INTERRUPT; |
dc77d341 JK |
1648 | break; |
1649 | } | |
7b011fbc ME |
1650 | fprintf(stderr, "error: kvm run failed %s\n", |
1651 | strerror(-run_ret)); | |
05330448 AL |
1652 | abort(); |
1653 | } | |
1654 | ||
b76ac80a | 1655 | trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); |
05330448 AL |
1656 | switch (run->exit_reason) { |
1657 | case KVM_EXIT_IO: | |
8c0d577e | 1658 | DPRINTF("handle_io\n"); |
b30e93e9 JK |
1659 | kvm_handle_io(run->io.port, |
1660 | (uint8_t *)run + run->io.data_offset, | |
1661 | run->io.direction, | |
1662 | run->io.size, | |
1663 | run->io.count); | |
d73cd8f4 | 1664 | ret = 0; |
05330448 AL |
1665 | break; |
1666 | case KVM_EXIT_MMIO: | |
8c0d577e | 1667 | DPRINTF("handle_mmio\n"); |
05330448 AL |
1668 | cpu_physical_memory_rw(run->mmio.phys_addr, |
1669 | run->mmio.data, | |
1670 | run->mmio.len, | |
1671 | run->mmio.is_write); | |
d73cd8f4 | 1672 | ret = 0; |
05330448 AL |
1673 | break; |
1674 | case KVM_EXIT_IRQ_WINDOW_OPEN: | |
8c0d577e | 1675 | DPRINTF("irq_window_open\n"); |
d73cd8f4 | 1676 | ret = EXCP_INTERRUPT; |
05330448 AL |
1677 | break; |
1678 | case KVM_EXIT_SHUTDOWN: | |
8c0d577e | 1679 | DPRINTF("shutdown\n"); |
05330448 | 1680 | qemu_system_reset_request(); |
d73cd8f4 | 1681 | ret = EXCP_INTERRUPT; |
05330448 AL |
1682 | break; |
1683 | case KVM_EXIT_UNKNOWN: | |
bb44e0d1 JK |
1684 | fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", |
1685 | (uint64_t)run->hw.hardware_exit_reason); | |
73aaec4a | 1686 | ret = -1; |
05330448 | 1687 | break; |
7c80eef8 | 1688 | case KVM_EXIT_INTERNAL_ERROR: |
73aaec4a | 1689 | ret = kvm_handle_internal_error(env, run); |
7c80eef8 | 1690 | break; |
05330448 | 1691 | default: |
8c0d577e | 1692 | DPRINTF("kvm_arch_handle_exit\n"); |
20d695a9 | 1693 | ret = kvm_arch_handle_exit(cpu, run); |
05330448 AL |
1694 | break; |
1695 | } | |
d73cd8f4 | 1696 | } while (ret == 0); |
05330448 | 1697 | |
73aaec4a | 1698 | if (ret < 0) { |
f5c848ee | 1699 | cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE); |
0461d5a6 | 1700 | vm_stop(RUN_STATE_INTERNAL_ERROR); |
becfc390 AL |
1701 | } |
1702 | ||
fcd7d003 | 1703 | cpu->exit_request = 0; |
05330448 AL |
1704 | return ret; |
1705 | } | |
1706 | ||
984b5181 | 1707 | int kvm_ioctl(KVMState *s, int type, ...) |
05330448 AL |
1708 | { |
1709 | int ret; | |
984b5181 AL |
1710 | void *arg; |
1711 | va_list ap; | |
05330448 | 1712 | |
984b5181 AL |
1713 | va_start(ap, type); |
1714 | arg = va_arg(ap, void *); | |
1715 | va_end(ap); | |
1716 | ||
9c775729 | 1717 | trace_kvm_ioctl(type, arg); |
984b5181 | 1718 | ret = ioctl(s->fd, type, arg); |
a426e122 | 1719 | if (ret == -1) { |
05330448 | 1720 | ret = -errno; |
a426e122 | 1721 | } |
05330448 AL |
1722 | return ret; |
1723 | } | |
1724 | ||
984b5181 | 1725 | int kvm_vm_ioctl(KVMState *s, int type, ...) |
05330448 AL |
1726 | { |
1727 | int ret; | |
984b5181 AL |
1728 | void *arg; |
1729 | va_list ap; | |
1730 | ||
1731 | va_start(ap, type); | |
1732 | arg = va_arg(ap, void *); | |
1733 | va_end(ap); | |
05330448 | 1734 | |
9c775729 | 1735 | trace_kvm_vm_ioctl(type, arg); |
984b5181 | 1736 | ret = ioctl(s->vmfd, type, arg); |
a426e122 | 1737 | if (ret == -1) { |
05330448 | 1738 | ret = -errno; |
a426e122 | 1739 | } |
05330448 AL |
1740 | return ret; |
1741 | } | |
1742 | ||
1bc22652 | 1743 | int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) |
05330448 AL |
1744 | { |
1745 | int ret; | |
984b5181 AL |
1746 | void *arg; |
1747 | va_list ap; | |
1748 | ||
1749 | va_start(ap, type); | |
1750 | arg = va_arg(ap, void *); | |
1751 | va_end(ap); | |
05330448 | 1752 | |
9c775729 | 1753 | trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); |
8737c51c | 1754 | ret = ioctl(cpu->kvm_fd, type, arg); |
a426e122 | 1755 | if (ret == -1) { |
05330448 | 1756 | ret = -errno; |
a426e122 | 1757 | } |
05330448 AL |
1758 | return ret; |
1759 | } | |
bd322087 AL |
1760 | |
1761 | int kvm_has_sync_mmu(void) | |
1762 | { | |
94a8d39a | 1763 | return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); |
bd322087 | 1764 | } |
e22a25c9 | 1765 | |
a0fb002c JK |
1766 | int kvm_has_vcpu_events(void) |
1767 | { | |
1768 | return kvm_state->vcpu_events; | |
1769 | } | |
1770 | ||
b0b1d690 JK |
1771 | int kvm_has_robust_singlestep(void) |
1772 | { | |
1773 | return kvm_state->robust_singlestep; | |
1774 | } | |
1775 | ||
ff44f1a3 JK |
1776 | int kvm_has_debugregs(void) |
1777 | { | |
1778 | return kvm_state->debugregs; | |
1779 | } | |
1780 | ||
f1665b21 SY |
1781 | int kvm_has_xsave(void) |
1782 | { | |
1783 | return kvm_state->xsave; | |
1784 | } | |
1785 | ||
1786 | int kvm_has_xcrs(void) | |
1787 | { | |
1788 | return kvm_state->xcrs; | |
1789 | } | |
1790 | ||
8a7c7393 JK |
1791 | int kvm_has_pit_state2(void) |
1792 | { | |
1793 | return kvm_state->pit_state2; | |
1794 | } | |
1795 | ||
d2f2b8a7 SH |
1796 | int kvm_has_many_ioeventfds(void) |
1797 | { | |
1798 | if (!kvm_enabled()) { | |
1799 | return 0; | |
1800 | } | |
1801 | return kvm_state->many_ioeventfds; | |
1802 | } | |
1803 | ||
84b058d7 JK |
1804 | int kvm_has_gsi_routing(void) |
1805 | { | |
a9c5eb0d | 1806 | #ifdef KVM_CAP_IRQ_ROUTING |
84b058d7 | 1807 | return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); |
a9c5eb0d AG |
1808 | #else |
1809 | return false; | |
1810 | #endif | |
84b058d7 JK |
1811 | } |
1812 | ||
3ab73842 JK |
1813 | int kvm_has_intx_set_mask(void) |
1814 | { | |
1815 | return kvm_state->intx_set_mask; | |
1816 | } | |
1817 | ||
6eebf958 | 1818 | void *kvm_ram_alloc(ram_addr_t size) |
fdec9918 CB |
1819 | { |
1820 | #ifdef TARGET_S390X | |
1821 | void *mem; | |
1822 | ||
6eebf958 | 1823 | mem = kvm_arch_ram_alloc(size); |
fdec9918 CB |
1824 | if (mem) { |
1825 | return mem; | |
1826 | } | |
1827 | #endif | |
6eebf958 | 1828 | return qemu_anon_ram_alloc(size); |
fdec9918 CB |
1829 | } |
1830 | ||
6f0437e8 JK |
1831 | void kvm_setup_guest_memory(void *start, size_t size) |
1832 | { | |
62fe8331 CB |
1833 | #ifdef CONFIG_VALGRIND_H |
1834 | VALGRIND_MAKE_MEM_DEFINED(start, size); | |
1835 | #endif | |
6f0437e8 | 1836 | if (!kvm_has_sync_mmu()) { |
e78815a5 | 1837 | int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK); |
6f0437e8 JK |
1838 | |
1839 | if (ret) { | |
e78815a5 AF |
1840 | perror("qemu_madvise"); |
1841 | fprintf(stderr, | |
1842 | "Need MADV_DONTFORK in absence of synchronous KVM MMU\n"); | |
6f0437e8 JK |
1843 | exit(1); |
1844 | } | |
6f0437e8 JK |
1845 | } |
1846 | } | |
1847 | ||
e22a25c9 | 1848 | #ifdef KVM_CAP_SET_GUEST_DEBUG |
a60f24b5 | 1849 | struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, |
e22a25c9 AL |
1850 | target_ulong pc) |
1851 | { | |
1852 | struct kvm_sw_breakpoint *bp; | |
1853 | ||
a60f24b5 | 1854 | QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { |
a426e122 | 1855 | if (bp->pc == pc) { |
e22a25c9 | 1856 | return bp; |
a426e122 | 1857 | } |
e22a25c9 AL |
1858 | } |
1859 | return NULL; | |
1860 | } | |
1861 | ||
a60f24b5 | 1862 | int kvm_sw_breakpoints_active(CPUState *cpu) |
e22a25c9 | 1863 | { |
a60f24b5 | 1864 | return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); |
e22a25c9 AL |
1865 | } |
1866 | ||
452e4751 GC |
1867 | struct kvm_set_guest_debug_data { |
1868 | struct kvm_guest_debug dbg; | |
a60f24b5 | 1869 | CPUState *cpu; |
452e4751 GC |
1870 | int err; |
1871 | }; | |
1872 | ||
1873 | static void kvm_invoke_set_guest_debug(void *data) | |
1874 | { | |
1875 | struct kvm_set_guest_debug_data *dbg_data = data; | |
b3807725 | 1876 | |
a60f24b5 AF |
1877 | dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG, |
1878 | &dbg_data->dbg); | |
452e4751 GC |
1879 | } |
1880 | ||
9349b4f9 | 1881 | int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap) |
e22a25c9 | 1882 | { |
f100f0b3 | 1883 | CPUState *cpu = ENV_GET_CPU(env); |
452e4751 | 1884 | struct kvm_set_guest_debug_data data; |
e22a25c9 | 1885 | |
b0b1d690 | 1886 | data.dbg.control = reinject_trap; |
e22a25c9 | 1887 | |
b0b1d690 JK |
1888 | if (env->singlestep_enabled) { |
1889 | data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; | |
1890 | } | |
20d695a9 | 1891 | kvm_arch_update_guest_debug(cpu, &data.dbg); |
a60f24b5 | 1892 | data.cpu = cpu; |
e22a25c9 | 1893 | |
f100f0b3 | 1894 | run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data); |
452e4751 | 1895 | return data.err; |
e22a25c9 AL |
1896 | } |
1897 | ||
9349b4f9 | 1898 | int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr, |
e22a25c9 AL |
1899 | target_ulong len, int type) |
1900 | { | |
20d695a9 | 1901 | CPUState *current_cpu = ENV_GET_CPU(current_env); |
e22a25c9 | 1902 | struct kvm_sw_breakpoint *bp; |
9349b4f9 | 1903 | CPUArchState *env; |
e22a25c9 AL |
1904 | int err; |
1905 | ||
1906 | if (type == GDB_BREAKPOINT_SW) { | |
a60f24b5 | 1907 | bp = kvm_find_sw_breakpoint(current_cpu, addr); |
e22a25c9 AL |
1908 | if (bp) { |
1909 | bp->use_count++; | |
1910 | return 0; | |
1911 | } | |
1912 | ||
7267c094 | 1913 | bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); |
a426e122 | 1914 | if (!bp) { |
e22a25c9 | 1915 | return -ENOMEM; |
a426e122 | 1916 | } |
e22a25c9 AL |
1917 | |
1918 | bp->pc = addr; | |
1919 | bp->use_count = 1; | |
20d695a9 | 1920 | err = kvm_arch_insert_sw_breakpoint(current_cpu, bp); |
e22a25c9 | 1921 | if (err) { |
7267c094 | 1922 | g_free(bp); |
e22a25c9 AL |
1923 | return err; |
1924 | } | |
1925 | ||
a60f24b5 | 1926 | QTAILQ_INSERT_HEAD(¤t_cpu->kvm_state->kvm_sw_breakpoints, |
e22a25c9 AL |
1927 | bp, entry); |
1928 | } else { | |
1929 | err = kvm_arch_insert_hw_breakpoint(addr, len, type); | |
a426e122 | 1930 | if (err) { |
e22a25c9 | 1931 | return err; |
a426e122 | 1932 | } |
e22a25c9 AL |
1933 | } |
1934 | ||
1935 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1936 | err = kvm_update_guest_debug(env, 0); | |
a426e122 | 1937 | if (err) { |
e22a25c9 | 1938 | return err; |
a426e122 | 1939 | } |
e22a25c9 AL |
1940 | } |
1941 | return 0; | |
1942 | } | |
1943 | ||
9349b4f9 | 1944 | int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr, |
e22a25c9 AL |
1945 | target_ulong len, int type) |
1946 | { | |
20d695a9 | 1947 | CPUState *current_cpu = ENV_GET_CPU(current_env); |
e22a25c9 | 1948 | struct kvm_sw_breakpoint *bp; |
9349b4f9 | 1949 | CPUArchState *env; |
e22a25c9 AL |
1950 | int err; |
1951 | ||
1952 | if (type == GDB_BREAKPOINT_SW) { | |
a60f24b5 | 1953 | bp = kvm_find_sw_breakpoint(current_cpu, addr); |
a426e122 | 1954 | if (!bp) { |
e22a25c9 | 1955 | return -ENOENT; |
a426e122 | 1956 | } |
e22a25c9 AL |
1957 | |
1958 | if (bp->use_count > 1) { | |
1959 | bp->use_count--; | |
1960 | return 0; | |
1961 | } | |
1962 | ||
20d695a9 | 1963 | err = kvm_arch_remove_sw_breakpoint(current_cpu, bp); |
a426e122 | 1964 | if (err) { |
e22a25c9 | 1965 | return err; |
a426e122 | 1966 | } |
e22a25c9 | 1967 | |
a60f24b5 | 1968 | QTAILQ_REMOVE(¤t_cpu->kvm_state->kvm_sw_breakpoints, bp, entry); |
7267c094 | 1969 | g_free(bp); |
e22a25c9 AL |
1970 | } else { |
1971 | err = kvm_arch_remove_hw_breakpoint(addr, len, type); | |
a426e122 | 1972 | if (err) { |
e22a25c9 | 1973 | return err; |
a426e122 | 1974 | } |
e22a25c9 AL |
1975 | } |
1976 | ||
1977 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1978 | err = kvm_update_guest_debug(env, 0); | |
a426e122 | 1979 | if (err) { |
e22a25c9 | 1980 | return err; |
a426e122 | 1981 | } |
e22a25c9 AL |
1982 | } |
1983 | return 0; | |
1984 | } | |
1985 | ||
9349b4f9 | 1986 | void kvm_remove_all_breakpoints(CPUArchState *current_env) |
e22a25c9 | 1987 | { |
20d695a9 | 1988 | CPUState *current_cpu = ENV_GET_CPU(current_env); |
e22a25c9 | 1989 | struct kvm_sw_breakpoint *bp, *next; |
a60f24b5 | 1990 | KVMState *s = current_cpu->kvm_state; |
9349b4f9 | 1991 | CPUArchState *env; |
20d695a9 | 1992 | CPUState *cpu; |
e22a25c9 | 1993 | |
72cf2d4f | 1994 | QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { |
20d695a9 | 1995 | if (kvm_arch_remove_sw_breakpoint(current_cpu, bp) != 0) { |
e22a25c9 AL |
1996 | /* Try harder to find a CPU that currently sees the breakpoint. */ |
1997 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
20d695a9 AF |
1998 | cpu = ENV_GET_CPU(env); |
1999 | if (kvm_arch_remove_sw_breakpoint(cpu, bp) == 0) { | |
e22a25c9 | 2000 | break; |
a426e122 | 2001 | } |
e22a25c9 AL |
2002 | } |
2003 | } | |
78021d6d JK |
2004 | QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); |
2005 | g_free(bp); | |
e22a25c9 AL |
2006 | } |
2007 | kvm_arch_remove_all_hw_breakpoints(); | |
2008 | ||
a426e122 | 2009 | for (env = first_cpu; env != NULL; env = env->next_cpu) { |
e22a25c9 | 2010 | kvm_update_guest_debug(env, 0); |
a426e122 | 2011 | } |
e22a25c9 AL |
2012 | } |
2013 | ||
2014 | #else /* !KVM_CAP_SET_GUEST_DEBUG */ | |
2015 | ||
9349b4f9 | 2016 | int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap) |
e22a25c9 AL |
2017 | { |
2018 | return -EINVAL; | |
2019 | } | |
2020 | ||
9349b4f9 | 2021 | int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr, |
e22a25c9 AL |
2022 | target_ulong len, int type) |
2023 | { | |
2024 | return -EINVAL; | |
2025 | } | |
2026 | ||
9349b4f9 | 2027 | int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr, |
e22a25c9 AL |
2028 | target_ulong len, int type) |
2029 | { | |
2030 | return -EINVAL; | |
2031 | } | |
2032 | ||
9349b4f9 | 2033 | void kvm_remove_all_breakpoints(CPUArchState *current_env) |
e22a25c9 AL |
2034 | { |
2035 | } | |
2036 | #endif /* !KVM_CAP_SET_GUEST_DEBUG */ | |
cc84de95 | 2037 | |
9349b4f9 | 2038 | int kvm_set_signal_mask(CPUArchState *env, const sigset_t *sigset) |
cc84de95 | 2039 | { |
1bc22652 | 2040 | CPUState *cpu = ENV_GET_CPU(env); |
cc84de95 MT |
2041 | struct kvm_signal_mask *sigmask; |
2042 | int r; | |
2043 | ||
a426e122 | 2044 | if (!sigset) { |
1bc22652 | 2045 | return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL); |
a426e122 | 2046 | } |
cc84de95 | 2047 | |
7267c094 | 2048 | sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); |
cc84de95 MT |
2049 | |
2050 | sigmask->len = 8; | |
2051 | memcpy(sigmask->sigset, sigset, sizeof(*sigset)); | |
1bc22652 | 2052 | r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); |
7267c094 | 2053 | g_free(sigmask); |
cc84de95 MT |
2054 | |
2055 | return r; | |
2056 | } | |
290adf38 | 2057 | int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) |
a1b87fe0 | 2058 | { |
20d695a9 | 2059 | return kvm_arch_on_sigbus_vcpu(cpu, code, addr); |
a1b87fe0 JK |
2060 | } |
2061 | ||
2062 | int kvm_on_sigbus(int code, void *addr) | |
2063 | { | |
2064 | return kvm_arch_on_sigbus(code, addr); | |
2065 | } |