]>
Commit | Line | Data |
---|---|---|
05330448 AL |
1 | /* |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright (C) 2006-2008 Qumranet Technologies | |
5 | * Copyright IBM, Corp. 2008 | |
6 | * | |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
9 | * | |
10 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
11 | * See the COPYING file in the top-level directory. | |
12 | * | |
13 | */ | |
14 | ||
b6a0aa05 | 15 | #include "qemu/osdep.h" |
da34e65c | 16 | #include "qapi/error.h" |
05330448 | 17 | #include <sys/ioctl.h> |
25d2e361 | 18 | #include <sys/utsname.h> |
05330448 AL |
19 | |
20 | #include <linux/kvm.h> | |
1814eab6 | 21 | #include "standard-headers/asm-x86/kvm_para.h" |
05330448 AL |
22 | |
23 | #include "qemu-common.h" | |
33c11879 | 24 | #include "cpu.h" |
9c17d615 | 25 | #include "sysemu/sysemu.h" |
b3946626 | 26 | #include "sysemu/hw_accel.h" |
6410848b | 27 | #include "sysemu/kvm_int.h" |
1d31f66b | 28 | #include "kvm_i386.h" |
50efe82c | 29 | #include "hyperv.h" |
5e953812 | 30 | #include "hyperv-proto.h" |
50efe82c | 31 | |
022c62cb | 32 | #include "exec/gdbstub.h" |
1de7afc9 PB |
33 | #include "qemu/host-utils.h" |
34 | #include "qemu/config-file.h" | |
1c4a55db | 35 | #include "qemu/error-report.h" |
0d09e41a PB |
36 | #include "hw/i386/pc.h" |
37 | #include "hw/i386/apic.h" | |
e0723c45 PB |
38 | #include "hw/i386/apic_internal.h" |
39 | #include "hw/i386/apic-msidef.h" | |
8b5ed7df | 40 | #include "hw/i386/intel_iommu.h" |
e1d4fb2d | 41 | #include "hw/i386/x86-iommu.h" |
50efe82c | 42 | |
a2cb15b0 | 43 | #include "hw/pci/pci.h" |
15eafc2e | 44 | #include "hw/pci/msi.h" |
fd563564 | 45 | #include "hw/pci/msix.h" |
795c40b8 | 46 | #include "migration/blocker.h" |
4c663752 | 47 | #include "exec/memattrs.h" |
8b5ed7df | 48 | #include "trace.h" |
05330448 AL |
49 | |
50 | //#define DEBUG_KVM | |
51 | ||
52 | #ifdef DEBUG_KVM | |
8c0d577e | 53 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
54 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) |
55 | #else | |
8c0d577e | 56 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
57 | do { } while (0) |
58 | #endif | |
59 | ||
1a03675d GC |
60 | #define MSR_KVM_WALL_CLOCK 0x11 |
61 | #define MSR_KVM_SYSTEM_TIME 0x12 | |
62 | ||
d1138251 EH |
63 | /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus |
64 | * 255 kvm_msr_entry structs */ | |
65 | #define MSR_BUF_SIZE 4096 | |
d71b62a1 | 66 | |
94a8d39a JK |
67 | const KVMCapabilityInfo kvm_arch_required_capabilities[] = { |
68 | KVM_CAP_INFO(SET_TSS_ADDR), | |
69 | KVM_CAP_INFO(EXT_CPUID), | |
70 | KVM_CAP_INFO(MP_STATE), | |
71 | KVM_CAP_LAST_INFO | |
72 | }; | |
25d2e361 | 73 | |
c3a3a7d3 JK |
74 | static bool has_msr_star; |
75 | static bool has_msr_hsave_pa; | |
c9b8f6b6 | 76 | static bool has_msr_tsc_aux; |
f28558d3 | 77 | static bool has_msr_tsc_adjust; |
aa82ba54 | 78 | static bool has_msr_tsc_deadline; |
df67696e | 79 | static bool has_msr_feature_control; |
21e87c46 | 80 | static bool has_msr_misc_enable; |
fc12d72e | 81 | static bool has_msr_smbase; |
79e9ebeb | 82 | static bool has_msr_bndcfgs; |
25d2e361 | 83 | static int lm_capable_kernel; |
7bc3d711 | 84 | static bool has_msr_hv_hypercall; |
f2a53c9e | 85 | static bool has_msr_hv_crash; |
744b8a94 | 86 | static bool has_msr_hv_reset; |
8c145d7c | 87 | static bool has_msr_hv_vpindex; |
e9688fab | 88 | static bool hv_vpindex_settable; |
46eb8f98 | 89 | static bool has_msr_hv_runtime; |
866eea9a | 90 | static bool has_msr_hv_synic; |
ff99aa64 | 91 | static bool has_msr_hv_stimer; |
d72bc7f6 | 92 | static bool has_msr_hv_frequencies; |
ba6a4fd9 | 93 | static bool has_msr_hv_reenlightenment; |
18cd2c17 | 94 | static bool has_msr_xss; |
a33a2cfe | 95 | static bool has_msr_spec_ctrl; |
cfeea0c0 | 96 | static bool has_msr_virt_ssbd; |
e13713db | 97 | static bool has_msr_smi_count; |
b827df58 | 98 | |
0b368a10 JD |
99 | static uint32_t has_architectural_pmu_version; |
100 | static uint32_t num_architectural_pmu_gp_counters; | |
101 | static uint32_t num_architectural_pmu_fixed_counters; | |
0d894367 | 102 | |
28143b40 TH |
103 | static int has_xsave; |
104 | static int has_xcrs; | |
105 | static int has_pit_state2; | |
106 | ||
87f8b626 AR |
107 | static bool has_msr_mcg_ext_ctl; |
108 | ||
494e95e9 | 109 | static struct kvm_cpuid2 *cpuid_cache; |
f57bceb6 | 110 | static struct kvm_msr_list *kvm_feature_msrs; |
494e95e9 | 111 | |
28143b40 TH |
112 | int kvm_has_pit_state2(void) |
113 | { | |
114 | return has_pit_state2; | |
115 | } | |
116 | ||
355023f2 PB |
117 | bool kvm_has_smm(void) |
118 | { | |
119 | return kvm_check_extension(kvm_state, KVM_CAP_X86_SMM); | |
120 | } | |
121 | ||
6053a86f MT |
122 | bool kvm_has_adjust_clock_stable(void) |
123 | { | |
124 | int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK); | |
125 | ||
126 | return (ret == KVM_CLOCK_TSC_STABLE); | |
127 | } | |
128 | ||
1d31f66b PM |
129 | bool kvm_allows_irq0_override(void) |
130 | { | |
131 | return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing(); | |
132 | } | |
133 | ||
fb506e70 RK |
134 | static bool kvm_x2apic_api_set_flags(uint64_t flags) |
135 | { | |
136 | KVMState *s = KVM_STATE(current_machine->accelerator); | |
137 | ||
138 | return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags); | |
139 | } | |
140 | ||
e391c009 | 141 | #define MEMORIZE(fn, _result) \ |
2a138ec3 | 142 | ({ \ |
2a138ec3 RK |
143 | static bool _memorized; \ |
144 | \ | |
145 | if (_memorized) { \ | |
146 | return _result; \ | |
147 | } \ | |
148 | _memorized = true; \ | |
149 | _result = fn; \ | |
150 | }) | |
151 | ||
e391c009 IM |
152 | static bool has_x2apic_api; |
153 | ||
154 | bool kvm_has_x2apic_api(void) | |
155 | { | |
156 | return has_x2apic_api; | |
157 | } | |
158 | ||
fb506e70 RK |
159 | bool kvm_enable_x2apic(void) |
160 | { | |
2a138ec3 RK |
161 | return MEMORIZE( |
162 | kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS | | |
e391c009 IM |
163 | KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK), |
164 | has_x2apic_api); | |
fb506e70 RK |
165 | } |
166 | ||
e9688fab RK |
167 | bool kvm_hv_vpindex_settable(void) |
168 | { | |
169 | return hv_vpindex_settable; | |
170 | } | |
171 | ||
0fd7e098 LL |
172 | static int kvm_get_tsc(CPUState *cs) |
173 | { | |
174 | X86CPU *cpu = X86_CPU(cs); | |
175 | CPUX86State *env = &cpu->env; | |
176 | struct { | |
177 | struct kvm_msrs info; | |
178 | struct kvm_msr_entry entries[1]; | |
179 | } msr_data; | |
180 | int ret; | |
181 | ||
182 | if (env->tsc_valid) { | |
183 | return 0; | |
184 | } | |
185 | ||
186 | msr_data.info.nmsrs = 1; | |
187 | msr_data.entries[0].index = MSR_IA32_TSC; | |
188 | env->tsc_valid = !runstate_is_running(); | |
189 | ||
190 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data); | |
191 | if (ret < 0) { | |
192 | return ret; | |
193 | } | |
194 | ||
48e1a45c | 195 | assert(ret == 1); |
0fd7e098 LL |
196 | env->tsc = msr_data.entries[0].data; |
197 | return 0; | |
198 | } | |
199 | ||
14e6fe12 | 200 | static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg) |
0fd7e098 | 201 | { |
0fd7e098 LL |
202 | kvm_get_tsc(cpu); |
203 | } | |
204 | ||
205 | void kvm_synchronize_all_tsc(void) | |
206 | { | |
207 | CPUState *cpu; | |
208 | ||
209 | if (kvm_enabled()) { | |
210 | CPU_FOREACH(cpu) { | |
14e6fe12 | 211 | run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL); |
0fd7e098 LL |
212 | } |
213 | } | |
214 | } | |
215 | ||
b827df58 AK |
216 | static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) |
217 | { | |
218 | struct kvm_cpuid2 *cpuid; | |
219 | int r, size; | |
220 | ||
221 | size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); | |
e42a92ae | 222 | cpuid = g_malloc0(size); |
b827df58 AK |
223 | cpuid->nent = max; |
224 | r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid); | |
76ae317f MM |
225 | if (r == 0 && cpuid->nent >= max) { |
226 | r = -E2BIG; | |
227 | } | |
b827df58 AK |
228 | if (r < 0) { |
229 | if (r == -E2BIG) { | |
7267c094 | 230 | g_free(cpuid); |
b827df58 AK |
231 | return NULL; |
232 | } else { | |
233 | fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n", | |
234 | strerror(-r)); | |
235 | exit(1); | |
236 | } | |
237 | } | |
238 | return cpuid; | |
239 | } | |
240 | ||
dd87f8a6 EH |
241 | /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough |
242 | * for all entries. | |
243 | */ | |
244 | static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s) | |
245 | { | |
246 | struct kvm_cpuid2 *cpuid; | |
247 | int max = 1; | |
494e95e9 CP |
248 | |
249 | if (cpuid_cache != NULL) { | |
250 | return cpuid_cache; | |
251 | } | |
dd87f8a6 EH |
252 | while ((cpuid = try_get_cpuid(s, max)) == NULL) { |
253 | max *= 2; | |
254 | } | |
494e95e9 | 255 | cpuid_cache = cpuid; |
dd87f8a6 EH |
256 | return cpuid; |
257 | } | |
258 | ||
a443bc34 | 259 | static const struct kvm_para_features { |
0c31b744 GC |
260 | int cap; |
261 | int feature; | |
262 | } para_features[] = { | |
263 | { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE }, | |
264 | { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY }, | |
265 | { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP }, | |
0c31b744 | 266 | { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF }, |
0c31b744 GC |
267 | }; |
268 | ||
ba9bc59e | 269 | static int get_para_features(KVMState *s) |
0c31b744 GC |
270 | { |
271 | int i, features = 0; | |
272 | ||
8e03c100 | 273 | for (i = 0; i < ARRAY_SIZE(para_features); i++) { |
ba9bc59e | 274 | if (kvm_check_extension(s, para_features[i].cap)) { |
0c31b744 GC |
275 | features |= (1 << para_features[i].feature); |
276 | } | |
277 | } | |
278 | ||
279 | return features; | |
280 | } | |
0c31b744 | 281 | |
40e80ee4 EH |
282 | static bool host_tsx_blacklisted(void) |
283 | { | |
284 | int family, model, stepping;\ | |
285 | char vendor[CPUID_VENDOR_SZ + 1]; | |
286 | ||
287 | host_vendor_fms(vendor, &family, &model, &stepping); | |
288 | ||
289 | /* Check if we are running on a Haswell host known to have broken TSX */ | |
290 | return !strcmp(vendor, CPUID_VENDOR_INTEL) && | |
291 | (family == 6) && | |
292 | ((model == 63 && stepping < 4) || | |
293 | model == 60 || model == 69 || model == 70); | |
294 | } | |
0c31b744 | 295 | |
829ae2f9 EH |
296 | /* Returns the value for a specific register on the cpuid entry |
297 | */ | |
298 | static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg) | |
299 | { | |
300 | uint32_t ret = 0; | |
301 | switch (reg) { | |
302 | case R_EAX: | |
303 | ret = entry->eax; | |
304 | break; | |
305 | case R_EBX: | |
306 | ret = entry->ebx; | |
307 | break; | |
308 | case R_ECX: | |
309 | ret = entry->ecx; | |
310 | break; | |
311 | case R_EDX: | |
312 | ret = entry->edx; | |
313 | break; | |
314 | } | |
315 | return ret; | |
316 | } | |
317 | ||
4fb73f1d EH |
318 | /* Find matching entry for function/index on kvm_cpuid2 struct |
319 | */ | |
320 | static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid, | |
321 | uint32_t function, | |
322 | uint32_t index) | |
323 | { | |
324 | int i; | |
325 | for (i = 0; i < cpuid->nent; ++i) { | |
326 | if (cpuid->entries[i].function == function && | |
327 | cpuid->entries[i].index == index) { | |
328 | return &cpuid->entries[i]; | |
329 | } | |
330 | } | |
331 | /* not found: */ | |
332 | return NULL; | |
333 | } | |
334 | ||
ba9bc59e | 335 | uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function, |
c958a8bd | 336 | uint32_t index, int reg) |
b827df58 AK |
337 | { |
338 | struct kvm_cpuid2 *cpuid; | |
b827df58 AK |
339 | uint32_t ret = 0; |
340 | uint32_t cpuid_1_edx; | |
8c723b79 | 341 | bool found = false; |
b827df58 | 342 | |
dd87f8a6 | 343 | cpuid = get_supported_cpuid(s); |
b827df58 | 344 | |
4fb73f1d EH |
345 | struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index); |
346 | if (entry) { | |
347 | found = true; | |
348 | ret = cpuid_entry_get_reg(entry, reg); | |
b827df58 AK |
349 | } |
350 | ||
7b46e5ce EH |
351 | /* Fixups for the data returned by KVM, below */ |
352 | ||
c2acb022 EH |
353 | if (function == 1 && reg == R_EDX) { |
354 | /* KVM before 2.6.30 misreports the following features */ | |
355 | ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA; | |
84bd945c EH |
356 | } else if (function == 1 && reg == R_ECX) { |
357 | /* We can set the hypervisor flag, even if KVM does not return it on | |
358 | * GET_SUPPORTED_CPUID | |
359 | */ | |
360 | ret |= CPUID_EXT_HYPERVISOR; | |
ac67ee26 EH |
361 | /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it |
362 | * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER, | |
363 | * and the irqchip is in the kernel. | |
364 | */ | |
365 | if (kvm_irqchip_in_kernel() && | |
366 | kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) { | |
367 | ret |= CPUID_EXT_TSC_DEADLINE_TIMER; | |
368 | } | |
41e5e76d EH |
369 | |
370 | /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled | |
371 | * without the in-kernel irqchip | |
372 | */ | |
373 | if (!kvm_irqchip_in_kernel()) { | |
374 | ret &= ~CPUID_EXT_X2APIC; | |
b827df58 | 375 | } |
2266d443 MT |
376 | |
377 | if (enable_cpu_pm) { | |
378 | int disable_exits = kvm_check_extension(s, | |
379 | KVM_CAP_X86_DISABLE_EXITS); | |
380 | ||
381 | if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) { | |
382 | ret |= CPUID_EXT_MONITOR; | |
383 | } | |
384 | } | |
28b8e4d0 JK |
385 | } else if (function == 6 && reg == R_EAX) { |
386 | ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */ | |
40e80ee4 EH |
387 | } else if (function == 7 && index == 0 && reg == R_EBX) { |
388 | if (host_tsx_blacklisted()) { | |
389 | ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE); | |
390 | } | |
f98bbd83 BM |
391 | } else if (function == 0x80000001 && reg == R_ECX) { |
392 | /* | |
393 | * It's safe to enable TOPOEXT even if it's not returned by | |
394 | * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows | |
395 | * us to keep CPU models including TOPOEXT runnable on older kernels. | |
396 | */ | |
397 | ret |= CPUID_EXT3_TOPOEXT; | |
c2acb022 EH |
398 | } else if (function == 0x80000001 && reg == R_EDX) { |
399 | /* On Intel, kvm returns cpuid according to the Intel spec, | |
400 | * so add missing bits according to the AMD spec: | |
401 | */ | |
402 | cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX); | |
403 | ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES; | |
64877477 EH |
404 | } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) { |
405 | /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't | |
406 | * be enabled without the in-kernel irqchip | |
407 | */ | |
408 | if (!kvm_irqchip_in_kernel()) { | |
409 | ret &= ~(1U << KVM_FEATURE_PV_UNHALT); | |
410 | } | |
be777326 | 411 | } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) { |
2af1acad | 412 | ret |= 1U << KVM_HINTS_REALTIME; |
be777326 | 413 | found = 1; |
b827df58 AK |
414 | } |
415 | ||
0c31b744 | 416 | /* fallback for older kernels */ |
8c723b79 | 417 | if ((function == KVM_CPUID_FEATURES) && !found) { |
ba9bc59e | 418 | ret = get_para_features(s); |
b9bec74b | 419 | } |
0c31b744 GC |
420 | |
421 | return ret; | |
bb0300dc | 422 | } |
bb0300dc | 423 | |
f57bceb6 RH |
424 | uint32_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index) |
425 | { | |
426 | struct { | |
427 | struct kvm_msrs info; | |
428 | struct kvm_msr_entry entries[1]; | |
429 | } msr_data; | |
430 | uint32_t ret; | |
431 | ||
432 | if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */ | |
433 | return 0; | |
434 | } | |
435 | ||
436 | /* Check if requested MSR is supported feature MSR */ | |
437 | int i; | |
438 | for (i = 0; i < kvm_feature_msrs->nmsrs; i++) | |
439 | if (kvm_feature_msrs->indices[i] == index) { | |
440 | break; | |
441 | } | |
442 | if (i == kvm_feature_msrs->nmsrs) { | |
443 | return 0; /* if the feature MSR is not supported, simply return 0 */ | |
444 | } | |
445 | ||
446 | msr_data.info.nmsrs = 1; | |
447 | msr_data.entries[0].index = index; | |
448 | ||
449 | ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data); | |
450 | if (ret != 1) { | |
451 | error_report("KVM get MSR (index=0x%x) feature failed, %s", | |
452 | index, strerror(-ret)); | |
453 | exit(1); | |
454 | } | |
455 | ||
456 | return msr_data.entries[0].data; | |
457 | } | |
458 | ||
459 | ||
3c85e74f HY |
460 | typedef struct HWPoisonPage { |
461 | ram_addr_t ram_addr; | |
462 | QLIST_ENTRY(HWPoisonPage) list; | |
463 | } HWPoisonPage; | |
464 | ||
465 | static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = | |
466 | QLIST_HEAD_INITIALIZER(hwpoison_page_list); | |
467 | ||
468 | static void kvm_unpoison_all(void *param) | |
469 | { | |
470 | HWPoisonPage *page, *next_page; | |
471 | ||
472 | QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { | |
473 | QLIST_REMOVE(page, list); | |
474 | qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); | |
7267c094 | 475 | g_free(page); |
3c85e74f HY |
476 | } |
477 | } | |
478 | ||
3c85e74f HY |
479 | static void kvm_hwpoison_page_add(ram_addr_t ram_addr) |
480 | { | |
481 | HWPoisonPage *page; | |
482 | ||
483 | QLIST_FOREACH(page, &hwpoison_page_list, list) { | |
484 | if (page->ram_addr == ram_addr) { | |
485 | return; | |
486 | } | |
487 | } | |
ab3ad07f | 488 | page = g_new(HWPoisonPage, 1); |
3c85e74f HY |
489 | page->ram_addr = ram_addr; |
490 | QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); | |
491 | } | |
492 | ||
e7701825 MT |
493 | static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap, |
494 | int *max_banks) | |
495 | { | |
496 | int r; | |
497 | ||
14a09518 | 498 | r = kvm_check_extension(s, KVM_CAP_MCE); |
e7701825 MT |
499 | if (r > 0) { |
500 | *max_banks = r; | |
501 | return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap); | |
502 | } | |
503 | return -ENOSYS; | |
504 | } | |
505 | ||
bee615d4 | 506 | static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code) |
e7701825 | 507 | { |
87f8b626 | 508 | CPUState *cs = CPU(cpu); |
bee615d4 | 509 | CPUX86State *env = &cpu->env; |
c34d440a JK |
510 | uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN | |
511 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S; | |
512 | uint64_t mcg_status = MCG_STATUS_MCIP; | |
87f8b626 | 513 | int flags = 0; |
e7701825 | 514 | |
c34d440a JK |
515 | if (code == BUS_MCEERR_AR) { |
516 | status |= MCI_STATUS_AR | 0x134; | |
517 | mcg_status |= MCG_STATUS_EIPV; | |
518 | } else { | |
519 | status |= 0xc0; | |
520 | mcg_status |= MCG_STATUS_RIPV; | |
419fb20a | 521 | } |
87f8b626 AR |
522 | |
523 | flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0; | |
524 | /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the | |
525 | * guest kernel back into env->mcg_ext_ctl. | |
526 | */ | |
527 | cpu_synchronize_state(cs); | |
528 | if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) { | |
529 | mcg_status |= MCG_STATUS_LMCE; | |
530 | flags = 0; | |
531 | } | |
532 | ||
8c5cf3b6 | 533 | cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr, |
87f8b626 | 534 | (MCM_ADDR_PHYS << 6) | 0xc, flags); |
419fb20a | 535 | } |
419fb20a JK |
536 | |
537 | static void hardware_memory_error(void) | |
538 | { | |
539 | fprintf(stderr, "Hardware memory error!\n"); | |
540 | exit(1); | |
541 | } | |
542 | ||
2ae41db2 | 543 | void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr) |
419fb20a | 544 | { |
20d695a9 AF |
545 | X86CPU *cpu = X86_CPU(c); |
546 | CPUX86State *env = &cpu->env; | |
419fb20a | 547 | ram_addr_t ram_addr; |
a8170e5e | 548 | hwaddr paddr; |
419fb20a | 549 | |
4d39892c PB |
550 | /* If we get an action required MCE, it has been injected by KVM |
551 | * while the VM was running. An action optional MCE instead should | |
552 | * be coming from the main thread, which qemu_init_sigbus identifies | |
553 | * as the "early kill" thread. | |
554 | */ | |
a16fc07e | 555 | assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO); |
20e0ff59 | 556 | |
20e0ff59 | 557 | if ((env->mcg_cap & MCG_SER_P) && addr) { |
07bdaa41 | 558 | ram_addr = qemu_ram_addr_from_host(addr); |
20e0ff59 PB |
559 | if (ram_addr != RAM_ADDR_INVALID && |
560 | kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) { | |
561 | kvm_hwpoison_page_add(ram_addr); | |
562 | kvm_mce_inject(cpu, paddr, code); | |
2ae41db2 | 563 | return; |
419fb20a | 564 | } |
20e0ff59 PB |
565 | |
566 | fprintf(stderr, "Hardware memory error for memory used by " | |
567 | "QEMU itself instead of guest system!\n"); | |
419fb20a | 568 | } |
20e0ff59 PB |
569 | |
570 | if (code == BUS_MCEERR_AR) { | |
571 | hardware_memory_error(); | |
572 | } | |
573 | ||
574 | /* Hope we are lucky for AO MCE */ | |
419fb20a JK |
575 | } |
576 | ||
1bc22652 | 577 | static int kvm_inject_mce_oldstyle(X86CPU *cpu) |
ab443475 | 578 | { |
1bc22652 AF |
579 | CPUX86State *env = &cpu->env; |
580 | ||
ab443475 JK |
581 | if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) { |
582 | unsigned int bank, bank_num = env->mcg_cap & 0xff; | |
583 | struct kvm_x86_mce mce; | |
584 | ||
585 | env->exception_injected = -1; | |
586 | ||
587 | /* | |
588 | * There must be at least one bank in use if an MCE is pending. | |
589 | * Find it and use its values for the event injection. | |
590 | */ | |
591 | for (bank = 0; bank < bank_num; bank++) { | |
592 | if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) { | |
593 | break; | |
594 | } | |
595 | } | |
596 | assert(bank < bank_num); | |
597 | ||
598 | mce.bank = bank; | |
599 | mce.status = env->mce_banks[bank * 4 + 1]; | |
600 | mce.mcg_status = env->mcg_status; | |
601 | mce.addr = env->mce_banks[bank * 4 + 2]; | |
602 | mce.misc = env->mce_banks[bank * 4 + 3]; | |
603 | ||
1bc22652 | 604 | return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce); |
ab443475 | 605 | } |
ab443475 JK |
606 | return 0; |
607 | } | |
608 | ||
1dfb4dd9 | 609 | static void cpu_update_state(void *opaque, int running, RunState state) |
b8cc45d6 | 610 | { |
317ac620 | 611 | CPUX86State *env = opaque; |
b8cc45d6 GC |
612 | |
613 | if (running) { | |
614 | env->tsc_valid = false; | |
615 | } | |
616 | } | |
617 | ||
83b17af5 | 618 | unsigned long kvm_arch_vcpu_id(CPUState *cs) |
b164e48e | 619 | { |
83b17af5 | 620 | X86CPU *cpu = X86_CPU(cs); |
7e72a45c | 621 | return cpu->apic_id; |
b164e48e EH |
622 | } |
623 | ||
92067bf4 IM |
624 | #ifndef KVM_CPUID_SIGNATURE_NEXT |
625 | #define KVM_CPUID_SIGNATURE_NEXT 0x40000100 | |
626 | #endif | |
627 | ||
628 | static bool hyperv_hypercall_available(X86CPU *cpu) | |
629 | { | |
630 | return cpu->hyperv_vapic || | |
631 | (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY); | |
632 | } | |
633 | ||
634 | static bool hyperv_enabled(X86CPU *cpu) | |
635 | { | |
7bc3d711 PB |
636 | CPUState *cs = CPU(cpu); |
637 | return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 && | |
638 | (hyperv_hypercall_available(cpu) || | |
48a5f3bc | 639 | cpu->hyperv_time || |
f2a53c9e | 640 | cpu->hyperv_relaxed_timing || |
744b8a94 | 641 | cpu->hyperv_crash || |
8c145d7c | 642 | cpu->hyperv_reset || |
46eb8f98 | 643 | cpu->hyperv_vpindex || |
866eea9a | 644 | cpu->hyperv_runtime || |
ff99aa64 | 645 | cpu->hyperv_synic || |
ba6a4fd9 | 646 | cpu->hyperv_stimer || |
47512009 | 647 | cpu->hyperv_reenlightenment || |
6b7a9830 VK |
648 | cpu->hyperv_tlbflush || |
649 | cpu->hyperv_ipi); | |
92067bf4 IM |
650 | } |
651 | ||
5031283d HZ |
652 | static int kvm_arch_set_tsc_khz(CPUState *cs) |
653 | { | |
654 | X86CPU *cpu = X86_CPU(cs); | |
655 | CPUX86State *env = &cpu->env; | |
656 | int r; | |
657 | ||
658 | if (!env->tsc_khz) { | |
659 | return 0; | |
660 | } | |
661 | ||
662 | r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL) ? | |
663 | kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) : | |
664 | -ENOTSUP; | |
665 | if (r < 0) { | |
666 | /* When KVM_SET_TSC_KHZ fails, it's an error only if the current | |
667 | * TSC frequency doesn't match the one we want. | |
668 | */ | |
669 | int cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? | |
670 | kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : | |
671 | -ENOTSUP; | |
672 | if (cur_freq <= 0 || cur_freq != env->tsc_khz) { | |
3dc6f869 AF |
673 | warn_report("TSC frequency mismatch between " |
674 | "VM (%" PRId64 " kHz) and host (%d kHz), " | |
675 | "and TSC scaling unavailable", | |
676 | env->tsc_khz, cur_freq); | |
5031283d HZ |
677 | return r; |
678 | } | |
679 | } | |
680 | ||
681 | return 0; | |
682 | } | |
683 | ||
4bb95b82 LP |
684 | static bool tsc_is_stable_and_known(CPUX86State *env) |
685 | { | |
686 | if (!env->tsc_khz) { | |
687 | return false; | |
688 | } | |
689 | return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) | |
690 | || env->user_tsc_khz; | |
691 | } | |
692 | ||
c35bd19a EY |
693 | static int hyperv_handle_properties(CPUState *cs) |
694 | { | |
695 | X86CPU *cpu = X86_CPU(cs); | |
696 | CPUX86State *env = &cpu->env; | |
697 | ||
698 | if (cpu->hyperv_relaxed_timing) { | |
5e953812 | 699 | env->features[FEAT_HYPERV_EAX] |= HV_HYPERCALL_AVAILABLE; |
c35bd19a EY |
700 | } |
701 | if (cpu->hyperv_vapic) { | |
5e953812 RK |
702 | env->features[FEAT_HYPERV_EAX] |= HV_HYPERCALL_AVAILABLE; |
703 | env->features[FEAT_HYPERV_EAX] |= HV_APIC_ACCESS_AVAILABLE; | |
c35bd19a | 704 | } |
3ddcd2ed | 705 | if (cpu->hyperv_time) { |
1221f150 RK |
706 | if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) <= 0) { |
707 | fprintf(stderr, "Hyper-V clocksources " | |
708 | "(requested by 'hv-time' cpu flag) " | |
709 | "are not supported by kernel\n"); | |
710 | return -ENOSYS; | |
711 | } | |
5e953812 RK |
712 | env->features[FEAT_HYPERV_EAX] |= HV_HYPERCALL_AVAILABLE; |
713 | env->features[FEAT_HYPERV_EAX] |= HV_TIME_REF_COUNT_AVAILABLE; | |
714 | env->features[FEAT_HYPERV_EAX] |= HV_REFERENCE_TSC_AVAILABLE; | |
9445597b RK |
715 | } |
716 | if (cpu->hyperv_frequencies) { | |
717 | if (!has_msr_hv_frequencies) { | |
718 | fprintf(stderr, "Hyper-V frequency MSRs " | |
719 | "(requested by 'hv-frequencies' cpu flag) " | |
720 | "are not supported by kernel\n"); | |
721 | return -ENOSYS; | |
d72bc7f6 | 722 | } |
9445597b RK |
723 | env->features[FEAT_HYPERV_EAX] |= HV_ACCESS_FREQUENCY_MSRS; |
724 | env->features[FEAT_HYPERV_EDX] |= HV_FREQUENCY_MSRS_AVAILABLE; | |
c35bd19a | 725 | } |
1221f150 RK |
726 | if (cpu->hyperv_crash) { |
727 | if (!has_msr_hv_crash) { | |
728 | fprintf(stderr, "Hyper-V crash MSRs " | |
729 | "(requested by 'hv-crash' cpu flag) " | |
730 | "are not supported by kernel\n"); | |
731 | return -ENOSYS; | |
732 | } | |
5e953812 | 733 | env->features[FEAT_HYPERV_EDX] |= HV_GUEST_CRASH_MSR_AVAILABLE; |
c35bd19a | 734 | } |
ba6a4fd9 VK |
735 | if (cpu->hyperv_reenlightenment) { |
736 | if (!has_msr_hv_reenlightenment) { | |
737 | fprintf(stderr, | |
738 | "Hyper-V Reenlightenment MSRs " | |
739 | "(requested by 'hv-reenlightenment' cpu flag) " | |
740 | "are not supported by kernel\n"); | |
741 | return -ENOSYS; | |
742 | } | |
743 | env->features[FEAT_HYPERV_EAX] |= HV_ACCESS_REENLIGHTENMENTS_CONTROL; | |
744 | } | |
5e953812 | 745 | env->features[FEAT_HYPERV_EDX] |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE; |
1221f150 RK |
746 | if (cpu->hyperv_reset) { |
747 | if (!has_msr_hv_reset) { | |
748 | fprintf(stderr, "Hyper-V reset MSR " | |
749 | "(requested by 'hv-reset' cpu flag) " | |
750 | "is not supported by kernel\n"); | |
751 | return -ENOSYS; | |
752 | } | |
5e953812 | 753 | env->features[FEAT_HYPERV_EAX] |= HV_RESET_AVAILABLE; |
c35bd19a | 754 | } |
1221f150 RK |
755 | if (cpu->hyperv_vpindex) { |
756 | if (!has_msr_hv_vpindex) { | |
757 | fprintf(stderr, "Hyper-V VP_INDEX MSR " | |
758 | "(requested by 'hv-vpindex' cpu flag) " | |
759 | "is not supported by kernel\n"); | |
760 | return -ENOSYS; | |
761 | } | |
5e953812 | 762 | env->features[FEAT_HYPERV_EAX] |= HV_VP_INDEX_AVAILABLE; |
c35bd19a | 763 | } |
1221f150 RK |
764 | if (cpu->hyperv_runtime) { |
765 | if (!has_msr_hv_runtime) { | |
766 | fprintf(stderr, "Hyper-V VP_RUNTIME MSR " | |
767 | "(requested by 'hv-runtime' cpu flag) " | |
768 | "is not supported by kernel\n"); | |
769 | return -ENOSYS; | |
770 | } | |
5e953812 | 771 | env->features[FEAT_HYPERV_EAX] |= HV_VP_RUNTIME_AVAILABLE; |
c35bd19a EY |
772 | } |
773 | if (cpu->hyperv_synic) { | |
9b4cf107 RK |
774 | unsigned int cap = KVM_CAP_HYPERV_SYNIC; |
775 | if (!cpu->hyperv_synic_kvm_only) { | |
776 | if (!cpu->hyperv_vpindex) { | |
777 | fprintf(stderr, "Hyper-V SynIC " | |
778 | "(requested by 'hv-synic' cpu flag) " | |
779 | "requires Hyper-V VP_INDEX ('hv-vpindex')\n"); | |
780 | return -ENOSYS; | |
781 | } | |
782 | cap = KVM_CAP_HYPERV_SYNIC2; | |
783 | } | |
784 | ||
785 | if (!has_msr_hv_synic || !kvm_check_extension(cs->kvm_state, cap)) { | |
729ce7e1 RK |
786 | fprintf(stderr, "Hyper-V SynIC (requested by 'hv-synic' cpu flag) " |
787 | "is not supported by kernel\n"); | |
c35bd19a EY |
788 | return -ENOSYS; |
789 | } | |
790 | ||
5e953812 | 791 | env->features[FEAT_HYPERV_EAX] |= HV_SYNIC_AVAILABLE; |
c35bd19a EY |
792 | } |
793 | if (cpu->hyperv_stimer) { | |
794 | if (!has_msr_hv_stimer) { | |
795 | fprintf(stderr, "Hyper-V timers aren't supported by kernel\n"); | |
796 | return -ENOSYS; | |
797 | } | |
5e953812 | 798 | env->features[FEAT_HYPERV_EAX] |= HV_SYNTIMERS_AVAILABLE; |
c35bd19a EY |
799 | } |
800 | return 0; | |
801 | } | |
802 | ||
e9688fab RK |
803 | static int hyperv_init_vcpu(X86CPU *cpu) |
804 | { | |
729ce7e1 RK |
805 | CPUState *cs = CPU(cpu); |
806 | int ret; | |
807 | ||
e9688fab RK |
808 | if (cpu->hyperv_vpindex && !hv_vpindex_settable) { |
809 | /* | |
810 | * the kernel doesn't support setting vp_index; assert that its value | |
811 | * is in sync | |
812 | */ | |
e9688fab RK |
813 | struct { |
814 | struct kvm_msrs info; | |
815 | struct kvm_msr_entry entries[1]; | |
816 | } msr_data = { | |
817 | .info.nmsrs = 1, | |
818 | .entries[0].index = HV_X64_MSR_VP_INDEX, | |
819 | }; | |
820 | ||
729ce7e1 | 821 | ret = kvm_vcpu_ioctl(cs, KVM_GET_MSRS, &msr_data); |
e9688fab RK |
822 | if (ret < 0) { |
823 | return ret; | |
824 | } | |
825 | assert(ret == 1); | |
826 | ||
701189e3 | 827 | if (msr_data.entries[0].data != hyperv_vp_index(CPU(cpu))) { |
e9688fab RK |
828 | error_report("kernel's vp_index != QEMU's vp_index"); |
829 | return -ENXIO; | |
830 | } | |
831 | } | |
832 | ||
729ce7e1 | 833 | if (cpu->hyperv_synic) { |
9b4cf107 RK |
834 | uint32_t synic_cap = cpu->hyperv_synic_kvm_only ? |
835 | KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2; | |
836 | ret = kvm_vcpu_enable_cap(cs, synic_cap, 0); | |
729ce7e1 RK |
837 | if (ret < 0) { |
838 | error_report("failed to turn on HyperV SynIC in KVM: %s", | |
839 | strerror(-ret)); | |
840 | return ret; | |
841 | } | |
606c34bf | 842 | |
9b4cf107 RK |
843 | if (!cpu->hyperv_synic_kvm_only) { |
844 | ret = hyperv_x86_synic_add(cpu); | |
845 | if (ret < 0) { | |
846 | error_report("failed to create HyperV SynIC: %s", | |
847 | strerror(-ret)); | |
848 | return ret; | |
849 | } | |
606c34bf | 850 | } |
729ce7e1 RK |
851 | } |
852 | ||
e9688fab RK |
853 | return 0; |
854 | } | |
855 | ||
68bfd0ad MT |
856 | static Error *invtsc_mig_blocker; |
857 | ||
f8bb0565 | 858 | #define KVM_MAX_CPUID_ENTRIES 100 |
0893d460 | 859 | |
20d695a9 | 860 | int kvm_arch_init_vcpu(CPUState *cs) |
05330448 AL |
861 | { |
862 | struct { | |
486bd5a2 | 863 | struct kvm_cpuid2 cpuid; |
f8bb0565 | 864 | struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES]; |
541dc0d4 | 865 | } QEMU_PACKED cpuid_data; |
20d695a9 AF |
866 | X86CPU *cpu = X86_CPU(cs); |
867 | CPUX86State *env = &cpu->env; | |
486bd5a2 | 868 | uint32_t limit, i, j, cpuid_i; |
a33609ca | 869 | uint32_t unused; |
bb0300dc | 870 | struct kvm_cpuid_entry2 *c; |
bb0300dc | 871 | uint32_t signature[3]; |
234cc647 | 872 | int kvm_base = KVM_CPUID_SIGNATURE; |
e7429073 | 873 | int r; |
fe44dc91 | 874 | Error *local_err = NULL; |
05330448 | 875 | |
ef4cbe14 SW |
876 | memset(&cpuid_data, 0, sizeof(cpuid_data)); |
877 | ||
05330448 AL |
878 | cpuid_i = 0; |
879 | ||
ddb98b5a LP |
880 | r = kvm_arch_set_tsc_khz(cs); |
881 | if (r < 0) { | |
882 | goto fail; | |
883 | } | |
884 | ||
885 | /* vcpu's TSC frequency is either specified by user, or following | |
886 | * the value used by KVM if the former is not present. In the | |
887 | * latter case, we query it from KVM and record in env->tsc_khz, | |
888 | * so that vcpu's TSC frequency can be migrated later via this field. | |
889 | */ | |
890 | if (!env->tsc_khz) { | |
891 | r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? | |
892 | kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : | |
893 | -ENOTSUP; | |
894 | if (r > 0) { | |
895 | env->tsc_khz = r; | |
896 | } | |
897 | } | |
898 | ||
bb0300dc | 899 | /* Paravirtualization CPUIDs */ |
234cc647 PB |
900 | if (hyperv_enabled(cpu)) { |
901 | c = &cpuid_data.entries[cpuid_i++]; | |
5e953812 | 902 | c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS; |
1c4a55db AW |
903 | if (!cpu->hyperv_vendor_id) { |
904 | memcpy(signature, "Microsoft Hv", 12); | |
905 | } else { | |
906 | size_t len = strlen(cpu->hyperv_vendor_id); | |
907 | ||
908 | if (len > 12) { | |
909 | error_report("hv-vendor-id truncated to 12 characters"); | |
910 | len = 12; | |
911 | } | |
912 | memset(signature, 0, 12); | |
913 | memcpy(signature, cpu->hyperv_vendor_id, len); | |
914 | } | |
5e953812 | 915 | c->eax = HV_CPUID_MIN; |
234cc647 PB |
916 | c->ebx = signature[0]; |
917 | c->ecx = signature[1]; | |
918 | c->edx = signature[2]; | |
0c31b744 | 919 | |
234cc647 | 920 | c = &cpuid_data.entries[cpuid_i++]; |
5e953812 | 921 | c->function = HV_CPUID_INTERFACE; |
eab70139 VR |
922 | memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12); |
923 | c->eax = signature[0]; | |
234cc647 PB |
924 | c->ebx = 0; |
925 | c->ecx = 0; | |
926 | c->edx = 0; | |
eab70139 VR |
927 | |
928 | c = &cpuid_data.entries[cpuid_i++]; | |
5e953812 | 929 | c->function = HV_CPUID_VERSION; |
eab70139 VR |
930 | c->eax = 0x00001bbc; |
931 | c->ebx = 0x00060001; | |
932 | ||
933 | c = &cpuid_data.entries[cpuid_i++]; | |
5e953812 | 934 | c->function = HV_CPUID_FEATURES; |
c35bd19a EY |
935 | r = hyperv_handle_properties(cs); |
936 | if (r) { | |
937 | return r; | |
46eb8f98 | 938 | } |
c35bd19a EY |
939 | c->eax = env->features[FEAT_HYPERV_EAX]; |
940 | c->ebx = env->features[FEAT_HYPERV_EBX]; | |
941 | c->edx = env->features[FEAT_HYPERV_EDX]; | |
866eea9a | 942 | |
eab70139 | 943 | c = &cpuid_data.entries[cpuid_i++]; |
5e953812 | 944 | c->function = HV_CPUID_ENLIGHTMENT_INFO; |
92067bf4 | 945 | if (cpu->hyperv_relaxed_timing) { |
5e953812 | 946 | c->eax |= HV_RELAXED_TIMING_RECOMMENDED; |
eab70139 | 947 | } |
2d5aa872 | 948 | if (cpu->hyperv_vapic) { |
5e953812 | 949 | c->eax |= HV_APIC_ACCESS_RECOMMENDED; |
eab70139 | 950 | } |
47512009 VK |
951 | if (cpu->hyperv_tlbflush) { |
952 | if (kvm_check_extension(cs->kvm_state, | |
953 | KVM_CAP_HYPERV_TLBFLUSH) <= 0) { | |
954 | fprintf(stderr, "Hyper-V TLB flush support " | |
955 | "(requested by 'hv-tlbflush' cpu flag) " | |
956 | " is not supported by kernel\n"); | |
957 | return -ENOSYS; | |
958 | } | |
959 | c->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED; | |
960 | c->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED; | |
961 | } | |
6b7a9830 VK |
962 | if (cpu->hyperv_ipi) { |
963 | if (kvm_check_extension(cs->kvm_state, | |
964 | KVM_CAP_HYPERV_SEND_IPI) <= 0) { | |
965 | fprintf(stderr, "Hyper-V IPI send support " | |
966 | "(requested by 'hv-ipi' cpu flag) " | |
967 | " is not supported by kernel\n"); | |
968 | return -ENOSYS; | |
969 | } | |
970 | c->eax |= HV_CLUSTER_IPI_RECOMMENDED; | |
971 | c->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED; | |
972 | } | |
47512009 | 973 | |
92067bf4 | 974 | c->ebx = cpu->hyperv_spinlock_attempts; |
eab70139 VR |
975 | |
976 | c = &cpuid_data.entries[cpuid_i++]; | |
5e953812 | 977 | c->function = HV_CPUID_IMPLEMENT_LIMITS; |
6c69dfb6 GA |
978 | |
979 | c->eax = cpu->hv_max_vps; | |
eab70139 VR |
980 | c->ebx = 0x40; |
981 | ||
234cc647 | 982 | kvm_base = KVM_CPUID_SIGNATURE_NEXT; |
7bc3d711 | 983 | has_msr_hv_hypercall = true; |
eab70139 VR |
984 | } |
985 | ||
f522d2ac AW |
986 | if (cpu->expose_kvm) { |
987 | memcpy(signature, "KVMKVMKVM\0\0\0", 12); | |
988 | c = &cpuid_data.entries[cpuid_i++]; | |
989 | c->function = KVM_CPUID_SIGNATURE | kvm_base; | |
79b6f2f6 | 990 | c->eax = KVM_CPUID_FEATURES | kvm_base; |
f522d2ac AW |
991 | c->ebx = signature[0]; |
992 | c->ecx = signature[1]; | |
993 | c->edx = signature[2]; | |
234cc647 | 994 | |
f522d2ac AW |
995 | c = &cpuid_data.entries[cpuid_i++]; |
996 | c->function = KVM_CPUID_FEATURES | kvm_base; | |
997 | c->eax = env->features[FEAT_KVM]; | |
be777326 | 998 | c->edx = env->features[FEAT_KVM_HINTS]; |
f522d2ac | 999 | } |
917367aa | 1000 | |
a33609ca | 1001 | cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); |
05330448 AL |
1002 | |
1003 | for (i = 0; i <= limit; i++) { | |
f8bb0565 IM |
1004 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
1005 | fprintf(stderr, "unsupported level value: 0x%x\n", limit); | |
1006 | abort(); | |
1007 | } | |
bb0300dc | 1008 | c = &cpuid_data.entries[cpuid_i++]; |
486bd5a2 AL |
1009 | |
1010 | switch (i) { | |
a36b1029 AL |
1011 | case 2: { |
1012 | /* Keep reading function 2 till all the input is received */ | |
1013 | int times; | |
1014 | ||
a36b1029 | 1015 | c->function = i; |
a33609ca AL |
1016 | c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC | |
1017 | KVM_CPUID_FLAG_STATE_READ_NEXT; | |
1018 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
1019 | times = c->eax & 0xff; | |
a36b1029 AL |
1020 | |
1021 | for (j = 1; j < times; ++j) { | |
f8bb0565 IM |
1022 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
1023 | fprintf(stderr, "cpuid_data is full, no space for " | |
1024 | "cpuid(eax:2):eax & 0xf = 0x%x\n", times); | |
1025 | abort(); | |
1026 | } | |
a33609ca | 1027 | c = &cpuid_data.entries[cpuid_i++]; |
a36b1029 | 1028 | c->function = i; |
a33609ca AL |
1029 | c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC; |
1030 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
a36b1029 AL |
1031 | } |
1032 | break; | |
1033 | } | |
486bd5a2 AL |
1034 | case 4: |
1035 | case 0xb: | |
1036 | case 0xd: | |
1037 | for (j = 0; ; j++) { | |
31e8c696 AP |
1038 | if (i == 0xd && j == 64) { |
1039 | break; | |
1040 | } | |
486bd5a2 AL |
1041 | c->function = i; |
1042 | c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | |
1043 | c->index = j; | |
a33609ca | 1044 | cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); |
486bd5a2 | 1045 | |
b9bec74b | 1046 | if (i == 4 && c->eax == 0) { |
486bd5a2 | 1047 | break; |
b9bec74b JK |
1048 | } |
1049 | if (i == 0xb && !(c->ecx & 0xff00)) { | |
486bd5a2 | 1050 | break; |
b9bec74b JK |
1051 | } |
1052 | if (i == 0xd && c->eax == 0) { | |
31e8c696 | 1053 | continue; |
b9bec74b | 1054 | } |
f8bb0565 IM |
1055 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
1056 | fprintf(stderr, "cpuid_data is full, no space for " | |
1057 | "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); | |
1058 | abort(); | |
1059 | } | |
a33609ca | 1060 | c = &cpuid_data.entries[cpuid_i++]; |
486bd5a2 AL |
1061 | } |
1062 | break; | |
e37a5c7f CP |
1063 | case 0x14: { |
1064 | uint32_t times; | |
1065 | ||
1066 | c->function = i; | |
1067 | c->index = 0; | |
1068 | c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | |
1069 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
1070 | times = c->eax; | |
1071 | ||
1072 | for (j = 1; j <= times; ++j) { | |
1073 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { | |
1074 | fprintf(stderr, "cpuid_data is full, no space for " | |
1075 | "cpuid(eax:0x14,ecx:0x%x)\n", j); | |
1076 | abort(); | |
1077 | } | |
1078 | c = &cpuid_data.entries[cpuid_i++]; | |
1079 | c->function = i; | |
1080 | c->index = j; | |
1081 | c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | |
1082 | cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
1083 | } | |
1084 | break; | |
1085 | } | |
486bd5a2 | 1086 | default: |
486bd5a2 | 1087 | c->function = i; |
a33609ca AL |
1088 | c->flags = 0; |
1089 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
486bd5a2 AL |
1090 | break; |
1091 | } | |
05330448 | 1092 | } |
0d894367 PB |
1093 | |
1094 | if (limit >= 0x0a) { | |
0b368a10 | 1095 | uint32_t eax, edx; |
0d894367 | 1096 | |
0b368a10 JD |
1097 | cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx); |
1098 | ||
1099 | has_architectural_pmu_version = eax & 0xff; | |
1100 | if (has_architectural_pmu_version > 0) { | |
1101 | num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8; | |
0d894367 PB |
1102 | |
1103 | /* Shouldn't be more than 32, since that's the number of bits | |
1104 | * available in EBX to tell us _which_ counters are available. | |
1105 | * Play it safe. | |
1106 | */ | |
0b368a10 JD |
1107 | if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) { |
1108 | num_architectural_pmu_gp_counters = MAX_GP_COUNTERS; | |
1109 | } | |
1110 | ||
1111 | if (has_architectural_pmu_version > 1) { | |
1112 | num_architectural_pmu_fixed_counters = edx & 0x1f; | |
1113 | ||
1114 | if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) { | |
1115 | num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS; | |
1116 | } | |
0d894367 PB |
1117 | } |
1118 | } | |
1119 | } | |
1120 | ||
a33609ca | 1121 | cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); |
05330448 AL |
1122 | |
1123 | for (i = 0x80000000; i <= limit; i++) { | |
f8bb0565 IM |
1124 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
1125 | fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit); | |
1126 | abort(); | |
1127 | } | |
bb0300dc | 1128 | c = &cpuid_data.entries[cpuid_i++]; |
05330448 | 1129 | |
8f4202fb BM |
1130 | switch (i) { |
1131 | case 0x8000001d: | |
1132 | /* Query for all AMD cache information leaves */ | |
1133 | for (j = 0; ; j++) { | |
1134 | c->function = i; | |
1135 | c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | |
1136 | c->index = j; | |
1137 | cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
1138 | ||
1139 | if (c->eax == 0) { | |
1140 | break; | |
1141 | } | |
1142 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { | |
1143 | fprintf(stderr, "cpuid_data is full, no space for " | |
1144 | "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); | |
1145 | abort(); | |
1146 | } | |
1147 | c = &cpuid_data.entries[cpuid_i++]; | |
1148 | } | |
1149 | break; | |
1150 | default: | |
1151 | c->function = i; | |
1152 | c->flags = 0; | |
1153 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
1154 | break; | |
1155 | } | |
05330448 AL |
1156 | } |
1157 | ||
b3baa152 BW |
1158 | /* Call Centaur's CPUID instructions they are supported. */ |
1159 | if (env->cpuid_xlevel2 > 0) { | |
b3baa152 BW |
1160 | cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused); |
1161 | ||
1162 | for (i = 0xC0000000; i <= limit; i++) { | |
f8bb0565 IM |
1163 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
1164 | fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit); | |
1165 | abort(); | |
1166 | } | |
b3baa152 BW |
1167 | c = &cpuid_data.entries[cpuid_i++]; |
1168 | ||
1169 | c->function = i; | |
1170 | c->flags = 0; | |
1171 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
1172 | } | |
1173 | } | |
1174 | ||
05330448 AL |
1175 | cpuid_data.cpuid.nent = cpuid_i; |
1176 | ||
e7701825 | 1177 | if (((env->cpuid_version >> 8)&0xF) >= 6 |
0514ef2f | 1178 | && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) == |
fc7a504c | 1179 | (CPUID_MCE | CPUID_MCA) |
a60f24b5 | 1180 | && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) { |
5120901a | 1181 | uint64_t mcg_cap, unsupported_caps; |
e7701825 | 1182 | int banks; |
32a42024 | 1183 | int ret; |
e7701825 | 1184 | |
a60f24b5 | 1185 | ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks); |
75d49497 JK |
1186 | if (ret < 0) { |
1187 | fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret)); | |
1188 | return ret; | |
e7701825 | 1189 | } |
75d49497 | 1190 | |
2590f15b | 1191 | if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) { |
49b69cbf | 1192 | error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)", |
2590f15b | 1193 | (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks); |
49b69cbf | 1194 | return -ENOTSUP; |
75d49497 | 1195 | } |
49b69cbf | 1196 | |
5120901a EH |
1197 | unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK); |
1198 | if (unsupported_caps) { | |
87f8b626 AR |
1199 | if (unsupported_caps & MCG_LMCE_P) { |
1200 | error_report("kvm: LMCE not supported"); | |
1201 | return -ENOTSUP; | |
1202 | } | |
3dc6f869 AF |
1203 | warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64, |
1204 | unsupported_caps); | |
5120901a EH |
1205 | } |
1206 | ||
2590f15b EH |
1207 | env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK; |
1208 | ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap); | |
75d49497 JK |
1209 | if (ret < 0) { |
1210 | fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret)); | |
1211 | return ret; | |
1212 | } | |
e7701825 | 1213 | } |
e7701825 | 1214 | |
b8cc45d6 GC |
1215 | qemu_add_vm_change_state_handler(cpu_update_state, env); |
1216 | ||
df67696e LJ |
1217 | c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0); |
1218 | if (c) { | |
1219 | has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) || | |
1220 | !!(c->ecx & CPUID_EXT_SMX); | |
1221 | } | |
1222 | ||
87f8b626 AR |
1223 | if (env->mcg_cap & MCG_LMCE_P) { |
1224 | has_msr_mcg_ext_ctl = has_msr_feature_control = true; | |
1225 | } | |
1226 | ||
d99569d9 EH |
1227 | if (!env->user_tsc_khz) { |
1228 | if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) && | |
1229 | invtsc_mig_blocker == NULL) { | |
1230 | /* for migration */ | |
1231 | error_setg(&invtsc_mig_blocker, | |
1232 | "State blocked by non-migratable CPU device" | |
1233 | " (invtsc flag)"); | |
fe44dc91 AA |
1234 | r = migrate_add_blocker(invtsc_mig_blocker, &local_err); |
1235 | if (local_err) { | |
1236 | error_report_err(local_err); | |
1237 | error_free(invtsc_mig_blocker); | |
0c2ed83f | 1238 | return r; |
fe44dc91 | 1239 | } |
d99569d9 EH |
1240 | /* for savevm */ |
1241 | vmstate_x86_cpu.unmigratable = 1; | |
1242 | } | |
68bfd0ad MT |
1243 | } |
1244 | ||
9954a158 PDJ |
1245 | if (cpu->vmware_cpuid_freq |
1246 | /* Guests depend on 0x40000000 to detect this feature, so only expose | |
1247 | * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */ | |
1248 | && cpu->expose_kvm | |
1249 | && kvm_base == KVM_CPUID_SIGNATURE | |
1250 | /* TSC clock must be stable and known for this feature. */ | |
4bb95b82 | 1251 | && tsc_is_stable_and_known(env)) { |
9954a158 PDJ |
1252 | |
1253 | c = &cpuid_data.entries[cpuid_i++]; | |
1254 | c->function = KVM_CPUID_SIGNATURE | 0x10; | |
1255 | c->eax = env->tsc_khz; | |
1256 | /* LAPIC resolution of 1ns (freq: 1GHz) is hardcoded in KVM's | |
1257 | * APIC_BUS_CYCLE_NS */ | |
1258 | c->ebx = 1000000; | |
1259 | c->ecx = c->edx = 0; | |
1260 | ||
1261 | c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0); | |
1262 | c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10); | |
1263 | } | |
1264 | ||
1265 | cpuid_data.cpuid.nent = cpuid_i; | |
1266 | ||
1267 | cpuid_data.cpuid.padding = 0; | |
1268 | r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data); | |
1269 | if (r) { | |
1270 | goto fail; | |
1271 | } | |
1272 | ||
28143b40 | 1273 | if (has_xsave) { |
5b8063c4 | 1274 | env->xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave)); |
fabacc0f | 1275 | } |
d71b62a1 | 1276 | cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE); |
fabacc0f | 1277 | |
273c515c PB |
1278 | if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) { |
1279 | has_msr_tsc_aux = false; | |
1280 | } | |
d1ae67f6 | 1281 | |
e9688fab RK |
1282 | r = hyperv_init_vcpu(cpu); |
1283 | if (r) { | |
1284 | goto fail; | |
1285 | } | |
1286 | ||
e7429073 | 1287 | return 0; |
fe44dc91 AA |
1288 | |
1289 | fail: | |
1290 | migrate_del_blocker(invtsc_mig_blocker); | |
1291 | return r; | |
05330448 AL |
1292 | } |
1293 | ||
50a2c6e5 | 1294 | void kvm_arch_reset_vcpu(X86CPU *cpu) |
caa5af0f | 1295 | { |
20d695a9 | 1296 | CPUX86State *env = &cpu->env; |
dd673288 | 1297 | |
1a5e9d2f | 1298 | env->xcr0 = 1; |
ddced198 | 1299 | if (kvm_irqchip_in_kernel()) { |
dd673288 | 1300 | env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE : |
ddced198 MT |
1301 | KVM_MP_STATE_UNINITIALIZED; |
1302 | } else { | |
1303 | env->mp_state = KVM_MP_STATE_RUNNABLE; | |
1304 | } | |
689141dd RK |
1305 | |
1306 | if (cpu->hyperv_synic) { | |
1307 | int i; | |
1308 | for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) { | |
1309 | env->msr_hv_synic_sint[i] = HV_SINT_MASKED; | |
1310 | } | |
606c34bf RK |
1311 | |
1312 | hyperv_x86_synic_reset(cpu); | |
689141dd | 1313 | } |
caa5af0f JK |
1314 | } |
1315 | ||
e0723c45 PB |
1316 | void kvm_arch_do_init_vcpu(X86CPU *cpu) |
1317 | { | |
1318 | CPUX86State *env = &cpu->env; | |
1319 | ||
1320 | /* APs get directly into wait-for-SIPI state. */ | |
1321 | if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) { | |
1322 | env->mp_state = KVM_MP_STATE_INIT_RECEIVED; | |
1323 | } | |
1324 | } | |
1325 | ||
f57bceb6 RH |
1326 | static int kvm_get_supported_feature_msrs(KVMState *s) |
1327 | { | |
1328 | int ret = 0; | |
1329 | ||
1330 | if (kvm_feature_msrs != NULL) { | |
1331 | return 0; | |
1332 | } | |
1333 | ||
1334 | if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) { | |
1335 | return 0; | |
1336 | } | |
1337 | ||
1338 | struct kvm_msr_list msr_list; | |
1339 | ||
1340 | msr_list.nmsrs = 0; | |
1341 | ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list); | |
1342 | if (ret < 0 && ret != -E2BIG) { | |
1343 | error_report("Fetch KVM feature MSR list failed: %s", | |
1344 | strerror(-ret)); | |
1345 | return ret; | |
1346 | } | |
1347 | ||
1348 | assert(msr_list.nmsrs > 0); | |
1349 | kvm_feature_msrs = (struct kvm_msr_list *) \ | |
1350 | g_malloc0(sizeof(msr_list) + | |
1351 | msr_list.nmsrs * sizeof(msr_list.indices[0])); | |
1352 | ||
1353 | kvm_feature_msrs->nmsrs = msr_list.nmsrs; | |
1354 | ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs); | |
1355 | ||
1356 | if (ret < 0) { | |
1357 | error_report("Fetch KVM feature MSR list failed: %s", | |
1358 | strerror(-ret)); | |
1359 | g_free(kvm_feature_msrs); | |
1360 | kvm_feature_msrs = NULL; | |
1361 | return ret; | |
1362 | } | |
1363 | ||
1364 | return 0; | |
1365 | } | |
1366 | ||
c3a3a7d3 | 1367 | static int kvm_get_supported_msrs(KVMState *s) |
05330448 | 1368 | { |
75b10c43 | 1369 | static int kvm_supported_msrs; |
c3a3a7d3 | 1370 | int ret = 0; |
05330448 AL |
1371 | |
1372 | /* first time */ | |
75b10c43 | 1373 | if (kvm_supported_msrs == 0) { |
05330448 AL |
1374 | struct kvm_msr_list msr_list, *kvm_msr_list; |
1375 | ||
75b10c43 | 1376 | kvm_supported_msrs = -1; |
05330448 AL |
1377 | |
1378 | /* Obtain MSR list from KVM. These are the MSRs that we must | |
1379 | * save/restore */ | |
4c9f7372 | 1380 | msr_list.nmsrs = 0; |
c3a3a7d3 | 1381 | ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list); |
6fb6d245 | 1382 | if (ret < 0 && ret != -E2BIG) { |
c3a3a7d3 | 1383 | return ret; |
6fb6d245 | 1384 | } |
d9db889f JK |
1385 | /* Old kernel modules had a bug and could write beyond the provided |
1386 | memory. Allocate at least a safe amount of 1K. */ | |
7267c094 | 1387 | kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) + |
d9db889f JK |
1388 | msr_list.nmsrs * |
1389 | sizeof(msr_list.indices[0]))); | |
05330448 | 1390 | |
55308450 | 1391 | kvm_msr_list->nmsrs = msr_list.nmsrs; |
c3a3a7d3 | 1392 | ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list); |
05330448 AL |
1393 | if (ret >= 0) { |
1394 | int i; | |
1395 | ||
1396 | for (i = 0; i < kvm_msr_list->nmsrs; i++) { | |
1d268dec LP |
1397 | switch (kvm_msr_list->indices[i]) { |
1398 | case MSR_STAR: | |
c3a3a7d3 | 1399 | has_msr_star = true; |
1d268dec LP |
1400 | break; |
1401 | case MSR_VM_HSAVE_PA: | |
c3a3a7d3 | 1402 | has_msr_hsave_pa = true; |
1d268dec LP |
1403 | break; |
1404 | case MSR_TSC_AUX: | |
c9b8f6b6 | 1405 | has_msr_tsc_aux = true; |
1d268dec LP |
1406 | break; |
1407 | case MSR_TSC_ADJUST: | |
f28558d3 | 1408 | has_msr_tsc_adjust = true; |
1d268dec LP |
1409 | break; |
1410 | case MSR_IA32_TSCDEADLINE: | |
aa82ba54 | 1411 | has_msr_tsc_deadline = true; |
1d268dec LP |
1412 | break; |
1413 | case MSR_IA32_SMBASE: | |
fc12d72e | 1414 | has_msr_smbase = true; |
1d268dec | 1415 | break; |
e13713db LA |
1416 | case MSR_SMI_COUNT: |
1417 | has_msr_smi_count = true; | |
1418 | break; | |
1d268dec | 1419 | case MSR_IA32_MISC_ENABLE: |
21e87c46 | 1420 | has_msr_misc_enable = true; |
1d268dec LP |
1421 | break; |
1422 | case MSR_IA32_BNDCFGS: | |
79e9ebeb | 1423 | has_msr_bndcfgs = true; |
1d268dec LP |
1424 | break; |
1425 | case MSR_IA32_XSS: | |
18cd2c17 | 1426 | has_msr_xss = true; |
3c254ab8 | 1427 | break; |
1d268dec | 1428 | case HV_X64_MSR_CRASH_CTL: |
f2a53c9e | 1429 | has_msr_hv_crash = true; |
1d268dec LP |
1430 | break; |
1431 | case HV_X64_MSR_RESET: | |
744b8a94 | 1432 | has_msr_hv_reset = true; |
1d268dec LP |
1433 | break; |
1434 | case HV_X64_MSR_VP_INDEX: | |
8c145d7c | 1435 | has_msr_hv_vpindex = true; |
1d268dec LP |
1436 | break; |
1437 | case HV_X64_MSR_VP_RUNTIME: | |
46eb8f98 | 1438 | has_msr_hv_runtime = true; |
1d268dec LP |
1439 | break; |
1440 | case HV_X64_MSR_SCONTROL: | |
866eea9a | 1441 | has_msr_hv_synic = true; |
1d268dec LP |
1442 | break; |
1443 | case HV_X64_MSR_STIMER0_CONFIG: | |
ff99aa64 | 1444 | has_msr_hv_stimer = true; |
1d268dec | 1445 | break; |
d72bc7f6 LP |
1446 | case HV_X64_MSR_TSC_FREQUENCY: |
1447 | has_msr_hv_frequencies = true; | |
1448 | break; | |
ba6a4fd9 VK |
1449 | case HV_X64_MSR_REENLIGHTENMENT_CONTROL: |
1450 | has_msr_hv_reenlightenment = true; | |
1451 | break; | |
a33a2cfe PB |
1452 | case MSR_IA32_SPEC_CTRL: |
1453 | has_msr_spec_ctrl = true; | |
1454 | break; | |
cfeea0c0 KRW |
1455 | case MSR_VIRT_SSBD: |
1456 | has_msr_virt_ssbd = true; | |
1457 | break; | |
ff99aa64 | 1458 | } |
05330448 AL |
1459 | } |
1460 | } | |
1461 | ||
7267c094 | 1462 | g_free(kvm_msr_list); |
05330448 AL |
1463 | } |
1464 | ||
c3a3a7d3 | 1465 | return ret; |
05330448 AL |
1466 | } |
1467 | ||
6410848b PB |
1468 | static Notifier smram_machine_done; |
1469 | static KVMMemoryListener smram_listener; | |
1470 | static AddressSpace smram_address_space; | |
1471 | static MemoryRegion smram_as_root; | |
1472 | static MemoryRegion smram_as_mem; | |
1473 | ||
1474 | static void register_smram_listener(Notifier *n, void *unused) | |
1475 | { | |
1476 | MemoryRegion *smram = | |
1477 | (MemoryRegion *) object_resolve_path("/machine/smram", NULL); | |
1478 | ||
1479 | /* Outer container... */ | |
1480 | memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull); | |
1481 | memory_region_set_enabled(&smram_as_root, true); | |
1482 | ||
1483 | /* ... with two regions inside: normal system memory with low | |
1484 | * priority, and... | |
1485 | */ | |
1486 | memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram", | |
1487 | get_system_memory(), 0, ~0ull); | |
1488 | memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0); | |
1489 | memory_region_set_enabled(&smram_as_mem, true); | |
1490 | ||
1491 | if (smram) { | |
1492 | /* ... SMRAM with higher priority */ | |
1493 | memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10); | |
1494 | memory_region_set_enabled(smram, true); | |
1495 | } | |
1496 | ||
1497 | address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM"); | |
1498 | kvm_memory_listener_register(kvm_state, &smram_listener, | |
1499 | &smram_address_space, 1); | |
1500 | } | |
1501 | ||
b16565b3 | 1502 | int kvm_arch_init(MachineState *ms, KVMState *s) |
20420430 | 1503 | { |
11076198 | 1504 | uint64_t identity_base = 0xfffbc000; |
39d6960a | 1505 | uint64_t shadow_mem; |
20420430 | 1506 | int ret; |
25d2e361 | 1507 | struct utsname utsname; |
20420430 | 1508 | |
28143b40 | 1509 | has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE); |
28143b40 | 1510 | has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS); |
28143b40 | 1511 | has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2); |
28143b40 | 1512 | |
e9688fab RK |
1513 | hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX); |
1514 | ||
c3a3a7d3 | 1515 | ret = kvm_get_supported_msrs(s); |
20420430 | 1516 | if (ret < 0) { |
20420430 SY |
1517 | return ret; |
1518 | } | |
25d2e361 | 1519 | |
f57bceb6 RH |
1520 | kvm_get_supported_feature_msrs(s); |
1521 | ||
25d2e361 MT |
1522 | uname(&utsname); |
1523 | lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0; | |
1524 | ||
4c5b10b7 | 1525 | /* |
11076198 JK |
1526 | * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly. |
1527 | * In order to use vm86 mode, an EPT identity map and a TSS are needed. | |
1528 | * Since these must be part of guest physical memory, we need to allocate | |
1529 | * them, both by setting their start addresses in the kernel and by | |
1530 | * creating a corresponding e820 entry. We need 4 pages before the BIOS. | |
1531 | * | |
1532 | * Older KVM versions may not support setting the identity map base. In | |
1533 | * that case we need to stick with the default, i.e. a 256K maximum BIOS | |
1534 | * size. | |
4c5b10b7 | 1535 | */ |
11076198 JK |
1536 | if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) { |
1537 | /* Allows up to 16M BIOSes. */ | |
1538 | identity_base = 0xfeffc000; | |
1539 | ||
1540 | ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base); | |
1541 | if (ret < 0) { | |
1542 | return ret; | |
1543 | } | |
4c5b10b7 | 1544 | } |
e56ff191 | 1545 | |
11076198 JK |
1546 | /* Set TSS base one page after EPT identity map. */ |
1547 | ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000); | |
20420430 SY |
1548 | if (ret < 0) { |
1549 | return ret; | |
1550 | } | |
1551 | ||
11076198 JK |
1552 | /* Tell fw_cfg to notify the BIOS to reserve the range. */ |
1553 | ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED); | |
20420430 | 1554 | if (ret < 0) { |
11076198 | 1555 | fprintf(stderr, "e820_add_entry() table is full\n"); |
20420430 SY |
1556 | return ret; |
1557 | } | |
3c85e74f | 1558 | qemu_register_reset(kvm_unpoison_all, NULL); |
20420430 | 1559 | |
4689b77b | 1560 | shadow_mem = machine_kvm_shadow_mem(ms); |
36ad0e94 MA |
1561 | if (shadow_mem != -1) { |
1562 | shadow_mem /= 4096; | |
1563 | ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem); | |
1564 | if (ret < 0) { | |
1565 | return ret; | |
39d6960a JK |
1566 | } |
1567 | } | |
6410848b | 1568 | |
d870cfde GA |
1569 | if (kvm_check_extension(s, KVM_CAP_X86_SMM) && |
1570 | object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE) && | |
1571 | pc_machine_is_smm_enabled(PC_MACHINE(ms))) { | |
6410848b PB |
1572 | smram_machine_done.notify = register_smram_listener; |
1573 | qemu_add_machine_init_done_notifier(&smram_machine_done); | |
1574 | } | |
6f131f13 MT |
1575 | |
1576 | if (enable_cpu_pm) { | |
1577 | int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS); | |
1578 | int ret; | |
1579 | ||
1580 | /* Work around for kernel header with a typo. TODO: fix header and drop. */ | |
1581 | #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT) | |
1582 | #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL | |
1583 | #endif | |
1584 | if (disable_exits) { | |
1585 | disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT | | |
1586 | KVM_X86_DISABLE_EXITS_HLT | | |
1587 | KVM_X86_DISABLE_EXITS_PAUSE); | |
1588 | } | |
1589 | ||
1590 | ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0, | |
1591 | disable_exits); | |
1592 | if (ret < 0) { | |
1593 | error_report("kvm: guest stopping CPU not supported: %s", | |
1594 | strerror(-ret)); | |
1595 | } | |
1596 | } | |
1597 | ||
11076198 | 1598 | return 0; |
05330448 | 1599 | } |
b9bec74b | 1600 | |
05330448 AL |
1601 | static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) |
1602 | { | |
1603 | lhs->selector = rhs->selector; | |
1604 | lhs->base = rhs->base; | |
1605 | lhs->limit = rhs->limit; | |
1606 | lhs->type = 3; | |
1607 | lhs->present = 1; | |
1608 | lhs->dpl = 3; | |
1609 | lhs->db = 0; | |
1610 | lhs->s = 1; | |
1611 | lhs->l = 0; | |
1612 | lhs->g = 0; | |
1613 | lhs->avl = 0; | |
1614 | lhs->unusable = 0; | |
1615 | } | |
1616 | ||
1617 | static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) | |
1618 | { | |
1619 | unsigned flags = rhs->flags; | |
1620 | lhs->selector = rhs->selector; | |
1621 | lhs->base = rhs->base; | |
1622 | lhs->limit = rhs->limit; | |
1623 | lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; | |
1624 | lhs->present = (flags & DESC_P_MASK) != 0; | |
acaa7550 | 1625 | lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3; |
05330448 AL |
1626 | lhs->db = (flags >> DESC_B_SHIFT) & 1; |
1627 | lhs->s = (flags & DESC_S_MASK) != 0; | |
1628 | lhs->l = (flags >> DESC_L_SHIFT) & 1; | |
1629 | lhs->g = (flags & DESC_G_MASK) != 0; | |
1630 | lhs->avl = (flags & DESC_AVL_MASK) != 0; | |
4cae9c97 | 1631 | lhs->unusable = !lhs->present; |
7e680753 | 1632 | lhs->padding = 0; |
05330448 AL |
1633 | } |
1634 | ||
1635 | static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) | |
1636 | { | |
1637 | lhs->selector = rhs->selector; | |
1638 | lhs->base = rhs->base; | |
1639 | lhs->limit = rhs->limit; | |
d45fc087 RP |
1640 | lhs->flags = (rhs->type << DESC_TYPE_SHIFT) | |
1641 | ((rhs->present && !rhs->unusable) * DESC_P_MASK) | | |
1642 | (rhs->dpl << DESC_DPL_SHIFT) | | |
1643 | (rhs->db << DESC_B_SHIFT) | | |
1644 | (rhs->s * DESC_S_MASK) | | |
1645 | (rhs->l << DESC_L_SHIFT) | | |
1646 | (rhs->g * DESC_G_MASK) | | |
1647 | (rhs->avl * DESC_AVL_MASK); | |
05330448 AL |
1648 | } |
1649 | ||
1650 | static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) | |
1651 | { | |
b9bec74b | 1652 | if (set) { |
05330448 | 1653 | *kvm_reg = *qemu_reg; |
b9bec74b | 1654 | } else { |
05330448 | 1655 | *qemu_reg = *kvm_reg; |
b9bec74b | 1656 | } |
05330448 AL |
1657 | } |
1658 | ||
1bc22652 | 1659 | static int kvm_getput_regs(X86CPU *cpu, int set) |
05330448 | 1660 | { |
1bc22652 | 1661 | CPUX86State *env = &cpu->env; |
05330448 AL |
1662 | struct kvm_regs regs; |
1663 | int ret = 0; | |
1664 | ||
1665 | if (!set) { | |
1bc22652 | 1666 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, ®s); |
b9bec74b | 1667 | if (ret < 0) { |
05330448 | 1668 | return ret; |
b9bec74b | 1669 | } |
05330448 AL |
1670 | } |
1671 | ||
1672 | kvm_getput_reg(®s.rax, &env->regs[R_EAX], set); | |
1673 | kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set); | |
1674 | kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set); | |
1675 | kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set); | |
1676 | kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set); | |
1677 | kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set); | |
1678 | kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set); | |
1679 | kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set); | |
1680 | #ifdef TARGET_X86_64 | |
1681 | kvm_getput_reg(®s.r8, &env->regs[8], set); | |
1682 | kvm_getput_reg(®s.r9, &env->regs[9], set); | |
1683 | kvm_getput_reg(®s.r10, &env->regs[10], set); | |
1684 | kvm_getput_reg(®s.r11, &env->regs[11], set); | |
1685 | kvm_getput_reg(®s.r12, &env->regs[12], set); | |
1686 | kvm_getput_reg(®s.r13, &env->regs[13], set); | |
1687 | kvm_getput_reg(®s.r14, &env->regs[14], set); | |
1688 | kvm_getput_reg(®s.r15, &env->regs[15], set); | |
1689 | #endif | |
1690 | ||
1691 | kvm_getput_reg(®s.rflags, &env->eflags, set); | |
1692 | kvm_getput_reg(®s.rip, &env->eip, set); | |
1693 | ||
b9bec74b | 1694 | if (set) { |
1bc22652 | 1695 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, ®s); |
b9bec74b | 1696 | } |
05330448 AL |
1697 | |
1698 | return ret; | |
1699 | } | |
1700 | ||
1bc22652 | 1701 | static int kvm_put_fpu(X86CPU *cpu) |
05330448 | 1702 | { |
1bc22652 | 1703 | CPUX86State *env = &cpu->env; |
05330448 AL |
1704 | struct kvm_fpu fpu; |
1705 | int i; | |
1706 | ||
1707 | memset(&fpu, 0, sizeof fpu); | |
1708 | fpu.fsw = env->fpus & ~(7 << 11); | |
1709 | fpu.fsw |= (env->fpstt & 7) << 11; | |
1710 | fpu.fcw = env->fpuc; | |
42cc8fa6 JK |
1711 | fpu.last_opcode = env->fpop; |
1712 | fpu.last_ip = env->fpip; | |
1713 | fpu.last_dp = env->fpdp; | |
b9bec74b JK |
1714 | for (i = 0; i < 8; ++i) { |
1715 | fpu.ftwx |= (!env->fptags[i]) << i; | |
1716 | } | |
05330448 | 1717 | memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs); |
bee81887 | 1718 | for (i = 0; i < CPU_NB_REGS; i++) { |
19cbd87c EH |
1719 | stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0)); |
1720 | stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1)); | |
bee81887 | 1721 | } |
05330448 AL |
1722 | fpu.mxcsr = env->mxcsr; |
1723 | ||
1bc22652 | 1724 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu); |
05330448 AL |
1725 | } |
1726 | ||
6b42494b JK |
1727 | #define XSAVE_FCW_FSW 0 |
1728 | #define XSAVE_FTW_FOP 1 | |
f1665b21 SY |
1729 | #define XSAVE_CWD_RIP 2 |
1730 | #define XSAVE_CWD_RDP 4 | |
1731 | #define XSAVE_MXCSR 6 | |
1732 | #define XSAVE_ST_SPACE 8 | |
1733 | #define XSAVE_XMM_SPACE 40 | |
1734 | #define XSAVE_XSTATE_BV 128 | |
1735 | #define XSAVE_YMMH_SPACE 144 | |
79e9ebeb LJ |
1736 | #define XSAVE_BNDREGS 240 |
1737 | #define XSAVE_BNDCSR 256 | |
9aecd6f8 CP |
1738 | #define XSAVE_OPMASK 272 |
1739 | #define XSAVE_ZMM_Hi256 288 | |
1740 | #define XSAVE_Hi16_ZMM 416 | |
f74eefe0 | 1741 | #define XSAVE_PKRU 672 |
f1665b21 | 1742 | |
b503717d | 1743 | #define XSAVE_BYTE_OFFSET(word_offset) \ |
f18793b0 | 1744 | ((word_offset) * sizeof_field(struct kvm_xsave, region[0])) |
b503717d EH |
1745 | |
1746 | #define ASSERT_OFFSET(word_offset, field) \ | |
1747 | QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \ | |
1748 | offsetof(X86XSaveArea, field)) | |
1749 | ||
1750 | ASSERT_OFFSET(XSAVE_FCW_FSW, legacy.fcw); | |
1751 | ASSERT_OFFSET(XSAVE_FTW_FOP, legacy.ftw); | |
1752 | ASSERT_OFFSET(XSAVE_CWD_RIP, legacy.fpip); | |
1753 | ASSERT_OFFSET(XSAVE_CWD_RDP, legacy.fpdp); | |
1754 | ASSERT_OFFSET(XSAVE_MXCSR, legacy.mxcsr); | |
1755 | ASSERT_OFFSET(XSAVE_ST_SPACE, legacy.fpregs); | |
1756 | ASSERT_OFFSET(XSAVE_XMM_SPACE, legacy.xmm_regs); | |
1757 | ASSERT_OFFSET(XSAVE_XSTATE_BV, header.xstate_bv); | |
1758 | ASSERT_OFFSET(XSAVE_YMMH_SPACE, avx_state); | |
1759 | ASSERT_OFFSET(XSAVE_BNDREGS, bndreg_state); | |
1760 | ASSERT_OFFSET(XSAVE_BNDCSR, bndcsr_state); | |
1761 | ASSERT_OFFSET(XSAVE_OPMASK, opmask_state); | |
1762 | ASSERT_OFFSET(XSAVE_ZMM_Hi256, zmm_hi256_state); | |
1763 | ASSERT_OFFSET(XSAVE_Hi16_ZMM, hi16_zmm_state); | |
1764 | ASSERT_OFFSET(XSAVE_PKRU, pkru_state); | |
1765 | ||
1bc22652 | 1766 | static int kvm_put_xsave(X86CPU *cpu) |
f1665b21 | 1767 | { |
1bc22652 | 1768 | CPUX86State *env = &cpu->env; |
5b8063c4 | 1769 | X86XSaveArea *xsave = env->xsave_buf; |
f1665b21 | 1770 | |
28143b40 | 1771 | if (!has_xsave) { |
1bc22652 | 1772 | return kvm_put_fpu(cpu); |
b9bec74b | 1773 | } |
86a57621 | 1774 | x86_cpu_xsave_all_areas(cpu, xsave); |
f1665b21 | 1775 | |
9be38598 | 1776 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave); |
f1665b21 SY |
1777 | } |
1778 | ||
1bc22652 | 1779 | static int kvm_put_xcrs(X86CPU *cpu) |
f1665b21 | 1780 | { |
1bc22652 | 1781 | CPUX86State *env = &cpu->env; |
bdfc8480 | 1782 | struct kvm_xcrs xcrs = {}; |
f1665b21 | 1783 | |
28143b40 | 1784 | if (!has_xcrs) { |
f1665b21 | 1785 | return 0; |
b9bec74b | 1786 | } |
f1665b21 SY |
1787 | |
1788 | xcrs.nr_xcrs = 1; | |
1789 | xcrs.flags = 0; | |
1790 | xcrs.xcrs[0].xcr = 0; | |
1791 | xcrs.xcrs[0].value = env->xcr0; | |
1bc22652 | 1792 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs); |
f1665b21 SY |
1793 | } |
1794 | ||
1bc22652 | 1795 | static int kvm_put_sregs(X86CPU *cpu) |
05330448 | 1796 | { |
1bc22652 | 1797 | CPUX86State *env = &cpu->env; |
05330448 AL |
1798 | struct kvm_sregs sregs; |
1799 | ||
0e607a80 JK |
1800 | memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); |
1801 | if (env->interrupt_injected >= 0) { | |
1802 | sregs.interrupt_bitmap[env->interrupt_injected / 64] |= | |
1803 | (uint64_t)1 << (env->interrupt_injected % 64); | |
1804 | } | |
05330448 AL |
1805 | |
1806 | if ((env->eflags & VM_MASK)) { | |
b9bec74b JK |
1807 | set_v8086_seg(&sregs.cs, &env->segs[R_CS]); |
1808 | set_v8086_seg(&sregs.ds, &env->segs[R_DS]); | |
1809 | set_v8086_seg(&sregs.es, &env->segs[R_ES]); | |
1810 | set_v8086_seg(&sregs.fs, &env->segs[R_FS]); | |
1811 | set_v8086_seg(&sregs.gs, &env->segs[R_GS]); | |
1812 | set_v8086_seg(&sregs.ss, &env->segs[R_SS]); | |
05330448 | 1813 | } else { |
b9bec74b JK |
1814 | set_seg(&sregs.cs, &env->segs[R_CS]); |
1815 | set_seg(&sregs.ds, &env->segs[R_DS]); | |
1816 | set_seg(&sregs.es, &env->segs[R_ES]); | |
1817 | set_seg(&sregs.fs, &env->segs[R_FS]); | |
1818 | set_seg(&sregs.gs, &env->segs[R_GS]); | |
1819 | set_seg(&sregs.ss, &env->segs[R_SS]); | |
05330448 AL |
1820 | } |
1821 | ||
1822 | set_seg(&sregs.tr, &env->tr); | |
1823 | set_seg(&sregs.ldt, &env->ldt); | |
1824 | ||
1825 | sregs.idt.limit = env->idt.limit; | |
1826 | sregs.idt.base = env->idt.base; | |
7e680753 | 1827 | memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); |
05330448 AL |
1828 | sregs.gdt.limit = env->gdt.limit; |
1829 | sregs.gdt.base = env->gdt.base; | |
7e680753 | 1830 | memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); |
05330448 AL |
1831 | |
1832 | sregs.cr0 = env->cr[0]; | |
1833 | sregs.cr2 = env->cr[2]; | |
1834 | sregs.cr3 = env->cr[3]; | |
1835 | sregs.cr4 = env->cr[4]; | |
1836 | ||
02e51483 CF |
1837 | sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state); |
1838 | sregs.apic_base = cpu_get_apic_base(cpu->apic_state); | |
05330448 AL |
1839 | |
1840 | sregs.efer = env->efer; | |
1841 | ||
1bc22652 | 1842 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs); |
05330448 AL |
1843 | } |
1844 | ||
d71b62a1 EH |
1845 | static void kvm_msr_buf_reset(X86CPU *cpu) |
1846 | { | |
1847 | memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE); | |
1848 | } | |
1849 | ||
9c600a84 EH |
1850 | static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value) |
1851 | { | |
1852 | struct kvm_msrs *msrs = cpu->kvm_msr_buf; | |
1853 | void *limit = ((void *)msrs) + MSR_BUF_SIZE; | |
1854 | struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs]; | |
1855 | ||
1856 | assert((void *)(entry + 1) <= limit); | |
1857 | ||
1abc2cae EH |
1858 | entry->index = index; |
1859 | entry->reserved = 0; | |
1860 | entry->data = value; | |
9c600a84 EH |
1861 | msrs->nmsrs++; |
1862 | } | |
1863 | ||
73e1b8f2 PB |
1864 | static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value) |
1865 | { | |
1866 | kvm_msr_buf_reset(cpu); | |
1867 | kvm_msr_entry_add(cpu, index, value); | |
1868 | ||
1869 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); | |
1870 | } | |
1871 | ||
f8d9ccf8 DDAG |
1872 | void kvm_put_apicbase(X86CPU *cpu, uint64_t value) |
1873 | { | |
1874 | int ret; | |
1875 | ||
1876 | ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value); | |
1877 | assert(ret == 1); | |
1878 | } | |
1879 | ||
7477cd38 MT |
1880 | static int kvm_put_tscdeadline_msr(X86CPU *cpu) |
1881 | { | |
1882 | CPUX86State *env = &cpu->env; | |
48e1a45c | 1883 | int ret; |
7477cd38 MT |
1884 | |
1885 | if (!has_msr_tsc_deadline) { | |
1886 | return 0; | |
1887 | } | |
1888 | ||
73e1b8f2 | 1889 | ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline); |
48e1a45c PB |
1890 | if (ret < 0) { |
1891 | return ret; | |
1892 | } | |
1893 | ||
1894 | assert(ret == 1); | |
1895 | return 0; | |
7477cd38 MT |
1896 | } |
1897 | ||
6bdf863d JK |
1898 | /* |
1899 | * Provide a separate write service for the feature control MSR in order to | |
1900 | * kick the VCPU out of VMXON or even guest mode on reset. This has to be done | |
1901 | * before writing any other state because forcibly leaving nested mode | |
1902 | * invalidates the VCPU state. | |
1903 | */ | |
1904 | static int kvm_put_msr_feature_control(X86CPU *cpu) | |
1905 | { | |
48e1a45c PB |
1906 | int ret; |
1907 | ||
1908 | if (!has_msr_feature_control) { | |
1909 | return 0; | |
1910 | } | |
6bdf863d | 1911 | |
73e1b8f2 PB |
1912 | ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL, |
1913 | cpu->env.msr_ia32_feature_control); | |
48e1a45c PB |
1914 | if (ret < 0) { |
1915 | return ret; | |
1916 | } | |
1917 | ||
1918 | assert(ret == 1); | |
1919 | return 0; | |
6bdf863d JK |
1920 | } |
1921 | ||
1bc22652 | 1922 | static int kvm_put_msrs(X86CPU *cpu, int level) |
05330448 | 1923 | { |
1bc22652 | 1924 | CPUX86State *env = &cpu->env; |
9c600a84 | 1925 | int i; |
48e1a45c | 1926 | int ret; |
05330448 | 1927 | |
d71b62a1 EH |
1928 | kvm_msr_buf_reset(cpu); |
1929 | ||
9c600a84 EH |
1930 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs); |
1931 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp); | |
1932 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip); | |
1933 | kvm_msr_entry_add(cpu, MSR_PAT, env->pat); | |
c3a3a7d3 | 1934 | if (has_msr_star) { |
9c600a84 | 1935 | kvm_msr_entry_add(cpu, MSR_STAR, env->star); |
b9bec74b | 1936 | } |
c3a3a7d3 | 1937 | if (has_msr_hsave_pa) { |
9c600a84 | 1938 | kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave); |
b9bec74b | 1939 | } |
c9b8f6b6 | 1940 | if (has_msr_tsc_aux) { |
9c600a84 | 1941 | kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux); |
c9b8f6b6 | 1942 | } |
f28558d3 | 1943 | if (has_msr_tsc_adjust) { |
9c600a84 | 1944 | kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust); |
f28558d3 | 1945 | } |
21e87c46 | 1946 | if (has_msr_misc_enable) { |
9c600a84 | 1947 | kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, |
21e87c46 AK |
1948 | env->msr_ia32_misc_enable); |
1949 | } | |
fc12d72e | 1950 | if (has_msr_smbase) { |
9c600a84 | 1951 | kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase); |
fc12d72e | 1952 | } |
e13713db LA |
1953 | if (has_msr_smi_count) { |
1954 | kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count); | |
1955 | } | |
439d19f2 | 1956 | if (has_msr_bndcfgs) { |
9c600a84 | 1957 | kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs); |
439d19f2 | 1958 | } |
18cd2c17 | 1959 | if (has_msr_xss) { |
9c600a84 | 1960 | kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss); |
18cd2c17 | 1961 | } |
a33a2cfe PB |
1962 | if (has_msr_spec_ctrl) { |
1963 | kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl); | |
1964 | } | |
cfeea0c0 KRW |
1965 | if (has_msr_virt_ssbd) { |
1966 | kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd); | |
1967 | } | |
1968 | ||
05330448 | 1969 | #ifdef TARGET_X86_64 |
25d2e361 | 1970 | if (lm_capable_kernel) { |
9c600a84 EH |
1971 | kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar); |
1972 | kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase); | |
1973 | kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask); | |
1974 | kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar); | |
25d2e361 | 1975 | } |
05330448 | 1976 | #endif |
a33a2cfe | 1977 | |
d86f9636 RH |
1978 | /* If host supports feature MSR, write down. */ |
1979 | if (kvm_feature_msrs) { | |
1980 | int i; | |
1981 | for (i = 0; i < kvm_feature_msrs->nmsrs; i++) | |
1982 | if (kvm_feature_msrs->indices[i] == MSR_IA32_ARCH_CAPABILITIES) { | |
1983 | kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES, | |
1984 | env->features[FEAT_ARCH_CAPABILITIES]); | |
1985 | break; | |
1986 | } | |
1987 | } | |
1988 | ||
ff5c186b | 1989 | /* |
0d894367 PB |
1990 | * The following MSRs have side effects on the guest or are too heavy |
1991 | * for normal writeback. Limit them to reset or full state updates. | |
ff5c186b JK |
1992 | */ |
1993 | if (level >= KVM_PUT_RESET_STATE) { | |
9c600a84 EH |
1994 | kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc); |
1995 | kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr); | |
1996 | kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr); | |
55c911a5 | 1997 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) { |
9c600a84 | 1998 | kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr); |
c5999bfc | 1999 | } |
55c911a5 | 2000 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) { |
9c600a84 | 2001 | kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr); |
bc9a839d | 2002 | } |
55c911a5 | 2003 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) { |
9c600a84 | 2004 | kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr); |
917367aa | 2005 | } |
0b368a10 JD |
2006 | if (has_architectural_pmu_version > 0) { |
2007 | if (has_architectural_pmu_version > 1) { | |
2008 | /* Stop the counter. */ | |
2009 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); | |
2010 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); | |
2011 | } | |
0d894367 PB |
2012 | |
2013 | /* Set the counter values. */ | |
0b368a10 | 2014 | for (i = 0; i < num_architectural_pmu_fixed_counters; i++) { |
9c600a84 | 2015 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, |
0d894367 PB |
2016 | env->msr_fixed_counters[i]); |
2017 | } | |
0b368a10 | 2018 | for (i = 0; i < num_architectural_pmu_gp_counters; i++) { |
9c600a84 | 2019 | kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, |
0d894367 | 2020 | env->msr_gp_counters[i]); |
9c600a84 | 2021 | kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, |
0d894367 PB |
2022 | env->msr_gp_evtsel[i]); |
2023 | } | |
0b368a10 JD |
2024 | if (has_architectural_pmu_version > 1) { |
2025 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, | |
2026 | env->msr_global_status); | |
2027 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, | |
2028 | env->msr_global_ovf_ctrl); | |
2029 | ||
2030 | /* Now start the PMU. */ | |
2031 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, | |
2032 | env->msr_fixed_ctr_ctrl); | |
2033 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, | |
2034 | env->msr_global_ctrl); | |
2035 | } | |
0d894367 | 2036 | } |
da1cc323 EY |
2037 | /* |
2038 | * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add, | |
2039 | * only sync them to KVM on the first cpu | |
2040 | */ | |
2041 | if (current_cpu == first_cpu) { | |
2042 | if (has_msr_hv_hypercall) { | |
2043 | kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, | |
2044 | env->msr_hv_guest_os_id); | |
2045 | kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, | |
2046 | env->msr_hv_hypercall); | |
2047 | } | |
2048 | if (cpu->hyperv_time) { | |
2049 | kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, | |
2050 | env->msr_hv_tsc); | |
2051 | } | |
ba6a4fd9 VK |
2052 | if (cpu->hyperv_reenlightenment) { |
2053 | kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, | |
2054 | env->msr_hv_reenlightenment_control); | |
2055 | kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, | |
2056 | env->msr_hv_tsc_emulation_control); | |
2057 | kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, | |
2058 | env->msr_hv_tsc_emulation_status); | |
2059 | } | |
eab70139 | 2060 | } |
2d5aa872 | 2061 | if (cpu->hyperv_vapic) { |
9c600a84 | 2062 | kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, |
5ef68987 | 2063 | env->msr_hv_vapic); |
eab70139 | 2064 | } |
f2a53c9e AS |
2065 | if (has_msr_hv_crash) { |
2066 | int j; | |
2067 | ||
5e953812 | 2068 | for (j = 0; j < HV_CRASH_PARAMS; j++) |
9c600a84 | 2069 | kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, |
f2a53c9e AS |
2070 | env->msr_hv_crash_params[j]); |
2071 | ||
5e953812 | 2072 | kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY); |
f2a53c9e | 2073 | } |
46eb8f98 | 2074 | if (has_msr_hv_runtime) { |
9c600a84 | 2075 | kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime); |
46eb8f98 | 2076 | } |
e9688fab | 2077 | if (cpu->hyperv_vpindex && hv_vpindex_settable) { |
701189e3 RK |
2078 | kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX, |
2079 | hyperv_vp_index(CPU(cpu))); | |
e9688fab | 2080 | } |
866eea9a AS |
2081 | if (cpu->hyperv_synic) { |
2082 | int j; | |
2083 | ||
09df29b6 RK |
2084 | kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION); |
2085 | ||
9c600a84 | 2086 | kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, |
866eea9a | 2087 | env->msr_hv_synic_control); |
9c600a84 | 2088 | kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, |
866eea9a | 2089 | env->msr_hv_synic_evt_page); |
9c600a84 | 2090 | kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, |
866eea9a AS |
2091 | env->msr_hv_synic_msg_page); |
2092 | ||
2093 | for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) { | |
9c600a84 | 2094 | kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j, |
866eea9a AS |
2095 | env->msr_hv_synic_sint[j]); |
2096 | } | |
2097 | } | |
ff99aa64 AS |
2098 | if (has_msr_hv_stimer) { |
2099 | int j; | |
2100 | ||
2101 | for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) { | |
9c600a84 | 2102 | kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2, |
ff99aa64 AS |
2103 | env->msr_hv_stimer_config[j]); |
2104 | } | |
2105 | ||
2106 | for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) { | |
9c600a84 | 2107 | kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2, |
ff99aa64 AS |
2108 | env->msr_hv_stimer_count[j]); |
2109 | } | |
2110 | } | |
1eabfce6 | 2111 | if (env->features[FEAT_1_EDX] & CPUID_MTRR) { |
112dad69 DDAG |
2112 | uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits); |
2113 | ||
9c600a84 EH |
2114 | kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype); |
2115 | kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]); | |
2116 | kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]); | |
2117 | kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]); | |
2118 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]); | |
2119 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]); | |
2120 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]); | |
2121 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]); | |
2122 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]); | |
2123 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]); | |
2124 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]); | |
2125 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]); | |
d1ae67f6 | 2126 | for (i = 0; i < MSR_MTRRcap_VCNT; i++) { |
112dad69 DDAG |
2127 | /* The CPU GPs if we write to a bit above the physical limit of |
2128 | * the host CPU (and KVM emulates that) | |
2129 | */ | |
2130 | uint64_t mask = env->mtrr_var[i].mask; | |
2131 | mask &= phys_mask; | |
2132 | ||
9c600a84 EH |
2133 | kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), |
2134 | env->mtrr_var[i].base); | |
112dad69 | 2135 | kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask); |
d1ae67f6 AW |
2136 | } |
2137 | } | |
b77146e9 CP |
2138 | if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) { |
2139 | int addr_num = kvm_arch_get_supported_cpuid(kvm_state, | |
2140 | 0x14, 1, R_EAX) & 0x7; | |
2141 | ||
2142 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, | |
2143 | env->msr_rtit_ctrl); | |
2144 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, | |
2145 | env->msr_rtit_status); | |
2146 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, | |
2147 | env->msr_rtit_output_base); | |
2148 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, | |
2149 | env->msr_rtit_output_mask); | |
2150 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, | |
2151 | env->msr_rtit_cr3_match); | |
2152 | for (i = 0; i < addr_num; i++) { | |
2153 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, | |
2154 | env->msr_rtit_addrs[i]); | |
2155 | } | |
2156 | } | |
6bdf863d JK |
2157 | |
2158 | /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see | |
2159 | * kvm_put_msr_feature_control. */ | |
ea643051 | 2160 | } |
57780495 | 2161 | if (env->mcg_cap) { |
d8da8574 | 2162 | int i; |
b9bec74b | 2163 | |
9c600a84 EH |
2164 | kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status); |
2165 | kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl); | |
87f8b626 AR |
2166 | if (has_msr_mcg_ext_ctl) { |
2167 | kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl); | |
2168 | } | |
c34d440a | 2169 | for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { |
9c600a84 | 2170 | kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]); |
57780495 MT |
2171 | } |
2172 | } | |
1a03675d | 2173 | |
d71b62a1 | 2174 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); |
48e1a45c PB |
2175 | if (ret < 0) { |
2176 | return ret; | |
2177 | } | |
05330448 | 2178 | |
c70b11d1 EH |
2179 | if (ret < cpu->kvm_msr_buf->nmsrs) { |
2180 | struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; | |
2181 | error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64, | |
2182 | (uint32_t)e->index, (uint64_t)e->data); | |
2183 | } | |
2184 | ||
9c600a84 | 2185 | assert(ret == cpu->kvm_msr_buf->nmsrs); |
48e1a45c | 2186 | return 0; |
05330448 AL |
2187 | } |
2188 | ||
2189 | ||
1bc22652 | 2190 | static int kvm_get_fpu(X86CPU *cpu) |
05330448 | 2191 | { |
1bc22652 | 2192 | CPUX86State *env = &cpu->env; |
05330448 AL |
2193 | struct kvm_fpu fpu; |
2194 | int i, ret; | |
2195 | ||
1bc22652 | 2196 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu); |
b9bec74b | 2197 | if (ret < 0) { |
05330448 | 2198 | return ret; |
b9bec74b | 2199 | } |
05330448 AL |
2200 | |
2201 | env->fpstt = (fpu.fsw >> 11) & 7; | |
2202 | env->fpus = fpu.fsw; | |
2203 | env->fpuc = fpu.fcw; | |
42cc8fa6 JK |
2204 | env->fpop = fpu.last_opcode; |
2205 | env->fpip = fpu.last_ip; | |
2206 | env->fpdp = fpu.last_dp; | |
b9bec74b JK |
2207 | for (i = 0; i < 8; ++i) { |
2208 | env->fptags[i] = !((fpu.ftwx >> i) & 1); | |
2209 | } | |
05330448 | 2210 | memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs); |
bee81887 | 2211 | for (i = 0; i < CPU_NB_REGS; i++) { |
19cbd87c EH |
2212 | env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]); |
2213 | env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]); | |
bee81887 | 2214 | } |
05330448 AL |
2215 | env->mxcsr = fpu.mxcsr; |
2216 | ||
2217 | return 0; | |
2218 | } | |
2219 | ||
1bc22652 | 2220 | static int kvm_get_xsave(X86CPU *cpu) |
f1665b21 | 2221 | { |
1bc22652 | 2222 | CPUX86State *env = &cpu->env; |
5b8063c4 | 2223 | X86XSaveArea *xsave = env->xsave_buf; |
86a57621 | 2224 | int ret; |
f1665b21 | 2225 | |
28143b40 | 2226 | if (!has_xsave) { |
1bc22652 | 2227 | return kvm_get_fpu(cpu); |
b9bec74b | 2228 | } |
f1665b21 | 2229 | |
1bc22652 | 2230 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave); |
0f53994f | 2231 | if (ret < 0) { |
f1665b21 | 2232 | return ret; |
0f53994f | 2233 | } |
86a57621 | 2234 | x86_cpu_xrstor_all_areas(cpu, xsave); |
f1665b21 | 2235 | |
f1665b21 | 2236 | return 0; |
f1665b21 SY |
2237 | } |
2238 | ||
1bc22652 | 2239 | static int kvm_get_xcrs(X86CPU *cpu) |
f1665b21 | 2240 | { |
1bc22652 | 2241 | CPUX86State *env = &cpu->env; |
f1665b21 SY |
2242 | int i, ret; |
2243 | struct kvm_xcrs xcrs; | |
2244 | ||
28143b40 | 2245 | if (!has_xcrs) { |
f1665b21 | 2246 | return 0; |
b9bec74b | 2247 | } |
f1665b21 | 2248 | |
1bc22652 | 2249 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs); |
b9bec74b | 2250 | if (ret < 0) { |
f1665b21 | 2251 | return ret; |
b9bec74b | 2252 | } |
f1665b21 | 2253 | |
b9bec74b | 2254 | for (i = 0; i < xcrs.nr_xcrs; i++) { |
f1665b21 | 2255 | /* Only support xcr0 now */ |
0fd53fec PB |
2256 | if (xcrs.xcrs[i].xcr == 0) { |
2257 | env->xcr0 = xcrs.xcrs[i].value; | |
f1665b21 SY |
2258 | break; |
2259 | } | |
b9bec74b | 2260 | } |
f1665b21 | 2261 | return 0; |
f1665b21 SY |
2262 | } |
2263 | ||
1bc22652 | 2264 | static int kvm_get_sregs(X86CPU *cpu) |
05330448 | 2265 | { |
1bc22652 | 2266 | CPUX86State *env = &cpu->env; |
05330448 | 2267 | struct kvm_sregs sregs; |
0e607a80 | 2268 | int bit, i, ret; |
05330448 | 2269 | |
1bc22652 | 2270 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); |
b9bec74b | 2271 | if (ret < 0) { |
05330448 | 2272 | return ret; |
b9bec74b | 2273 | } |
05330448 | 2274 | |
0e607a80 JK |
2275 | /* There can only be one pending IRQ set in the bitmap at a time, so try |
2276 | to find it and save its number instead (-1 for none). */ | |
2277 | env->interrupt_injected = -1; | |
2278 | for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) { | |
2279 | if (sregs.interrupt_bitmap[i]) { | |
2280 | bit = ctz64(sregs.interrupt_bitmap[i]); | |
2281 | env->interrupt_injected = i * 64 + bit; | |
2282 | break; | |
2283 | } | |
2284 | } | |
05330448 AL |
2285 | |
2286 | get_seg(&env->segs[R_CS], &sregs.cs); | |
2287 | get_seg(&env->segs[R_DS], &sregs.ds); | |
2288 | get_seg(&env->segs[R_ES], &sregs.es); | |
2289 | get_seg(&env->segs[R_FS], &sregs.fs); | |
2290 | get_seg(&env->segs[R_GS], &sregs.gs); | |
2291 | get_seg(&env->segs[R_SS], &sregs.ss); | |
2292 | ||
2293 | get_seg(&env->tr, &sregs.tr); | |
2294 | get_seg(&env->ldt, &sregs.ldt); | |
2295 | ||
2296 | env->idt.limit = sregs.idt.limit; | |
2297 | env->idt.base = sregs.idt.base; | |
2298 | env->gdt.limit = sregs.gdt.limit; | |
2299 | env->gdt.base = sregs.gdt.base; | |
2300 | ||
2301 | env->cr[0] = sregs.cr0; | |
2302 | env->cr[2] = sregs.cr2; | |
2303 | env->cr[3] = sregs.cr3; | |
2304 | env->cr[4] = sregs.cr4; | |
2305 | ||
05330448 | 2306 | env->efer = sregs.efer; |
cce47516 JK |
2307 | |
2308 | /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ | |
35b1b927 | 2309 | x86_update_hflags(env); |
05330448 AL |
2310 | |
2311 | return 0; | |
2312 | } | |
2313 | ||
1bc22652 | 2314 | static int kvm_get_msrs(X86CPU *cpu) |
05330448 | 2315 | { |
1bc22652 | 2316 | CPUX86State *env = &cpu->env; |
d71b62a1 | 2317 | struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries; |
9c600a84 | 2318 | int ret, i; |
fcc35e7c | 2319 | uint64_t mtrr_top_bits; |
05330448 | 2320 | |
d71b62a1 EH |
2321 | kvm_msr_buf_reset(cpu); |
2322 | ||
9c600a84 EH |
2323 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0); |
2324 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0); | |
2325 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0); | |
2326 | kvm_msr_entry_add(cpu, MSR_PAT, 0); | |
c3a3a7d3 | 2327 | if (has_msr_star) { |
9c600a84 | 2328 | kvm_msr_entry_add(cpu, MSR_STAR, 0); |
b9bec74b | 2329 | } |
c3a3a7d3 | 2330 | if (has_msr_hsave_pa) { |
9c600a84 | 2331 | kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0); |
b9bec74b | 2332 | } |
c9b8f6b6 | 2333 | if (has_msr_tsc_aux) { |
9c600a84 | 2334 | kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0); |
c9b8f6b6 | 2335 | } |
f28558d3 | 2336 | if (has_msr_tsc_adjust) { |
9c600a84 | 2337 | kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0); |
f28558d3 | 2338 | } |
aa82ba54 | 2339 | if (has_msr_tsc_deadline) { |
9c600a84 | 2340 | kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0); |
aa82ba54 | 2341 | } |
21e87c46 | 2342 | if (has_msr_misc_enable) { |
9c600a84 | 2343 | kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0); |
21e87c46 | 2344 | } |
fc12d72e | 2345 | if (has_msr_smbase) { |
9c600a84 | 2346 | kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0); |
fc12d72e | 2347 | } |
e13713db LA |
2348 | if (has_msr_smi_count) { |
2349 | kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0); | |
2350 | } | |
df67696e | 2351 | if (has_msr_feature_control) { |
9c600a84 | 2352 | kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0); |
df67696e | 2353 | } |
79e9ebeb | 2354 | if (has_msr_bndcfgs) { |
9c600a84 | 2355 | kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0); |
79e9ebeb | 2356 | } |
18cd2c17 | 2357 | if (has_msr_xss) { |
9c600a84 | 2358 | kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0); |
18cd2c17 | 2359 | } |
a33a2cfe PB |
2360 | if (has_msr_spec_ctrl) { |
2361 | kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0); | |
2362 | } | |
cfeea0c0 KRW |
2363 | if (has_msr_virt_ssbd) { |
2364 | kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0); | |
2365 | } | |
b8cc45d6 | 2366 | if (!env->tsc_valid) { |
9c600a84 | 2367 | kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0); |
1354869c | 2368 | env->tsc_valid = !runstate_is_running(); |
b8cc45d6 GC |
2369 | } |
2370 | ||
05330448 | 2371 | #ifdef TARGET_X86_64 |
25d2e361 | 2372 | if (lm_capable_kernel) { |
9c600a84 EH |
2373 | kvm_msr_entry_add(cpu, MSR_CSTAR, 0); |
2374 | kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0); | |
2375 | kvm_msr_entry_add(cpu, MSR_FMASK, 0); | |
2376 | kvm_msr_entry_add(cpu, MSR_LSTAR, 0); | |
25d2e361 | 2377 | } |
05330448 | 2378 | #endif |
9c600a84 EH |
2379 | kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0); |
2380 | kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0); | |
55c911a5 | 2381 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) { |
9c600a84 | 2382 | kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0); |
c5999bfc | 2383 | } |
55c911a5 | 2384 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) { |
9c600a84 | 2385 | kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0); |
bc9a839d | 2386 | } |
55c911a5 | 2387 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) { |
9c600a84 | 2388 | kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0); |
917367aa | 2389 | } |
0b368a10 JD |
2390 | if (has_architectural_pmu_version > 0) { |
2391 | if (has_architectural_pmu_version > 1) { | |
2392 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); | |
2393 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); | |
2394 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0); | |
2395 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0); | |
2396 | } | |
2397 | for (i = 0; i < num_architectural_pmu_fixed_counters; i++) { | |
9c600a84 | 2398 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0); |
0d894367 | 2399 | } |
0b368a10 | 2400 | for (i = 0; i < num_architectural_pmu_gp_counters; i++) { |
9c600a84 EH |
2401 | kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0); |
2402 | kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0); | |
0d894367 PB |
2403 | } |
2404 | } | |
1a03675d | 2405 | |
57780495 | 2406 | if (env->mcg_cap) { |
9c600a84 EH |
2407 | kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0); |
2408 | kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0); | |
87f8b626 AR |
2409 | if (has_msr_mcg_ext_ctl) { |
2410 | kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0); | |
2411 | } | |
b9bec74b | 2412 | for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { |
9c600a84 | 2413 | kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0); |
b9bec74b | 2414 | } |
57780495 | 2415 | } |
57780495 | 2416 | |
1c90ef26 | 2417 | if (has_msr_hv_hypercall) { |
9c600a84 EH |
2418 | kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0); |
2419 | kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0); | |
1c90ef26 | 2420 | } |
2d5aa872 | 2421 | if (cpu->hyperv_vapic) { |
9c600a84 | 2422 | kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0); |
5ef68987 | 2423 | } |
3ddcd2ed | 2424 | if (cpu->hyperv_time) { |
9c600a84 | 2425 | kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0); |
48a5f3bc | 2426 | } |
ba6a4fd9 VK |
2427 | if (cpu->hyperv_reenlightenment) { |
2428 | kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0); | |
2429 | kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0); | |
2430 | kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0); | |
2431 | } | |
f2a53c9e AS |
2432 | if (has_msr_hv_crash) { |
2433 | int j; | |
2434 | ||
5e953812 | 2435 | for (j = 0; j < HV_CRASH_PARAMS; j++) { |
9c600a84 | 2436 | kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0); |
f2a53c9e AS |
2437 | } |
2438 | } | |
46eb8f98 | 2439 | if (has_msr_hv_runtime) { |
9c600a84 | 2440 | kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0); |
46eb8f98 | 2441 | } |
866eea9a AS |
2442 | if (cpu->hyperv_synic) { |
2443 | uint32_t msr; | |
2444 | ||
9c600a84 | 2445 | kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0); |
9c600a84 EH |
2446 | kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0); |
2447 | kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0); | |
866eea9a | 2448 | for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) { |
9c600a84 | 2449 | kvm_msr_entry_add(cpu, msr, 0); |
866eea9a AS |
2450 | } |
2451 | } | |
ff99aa64 AS |
2452 | if (has_msr_hv_stimer) { |
2453 | uint32_t msr; | |
2454 | ||
2455 | for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT; | |
2456 | msr++) { | |
9c600a84 | 2457 | kvm_msr_entry_add(cpu, msr, 0); |
ff99aa64 AS |
2458 | } |
2459 | } | |
1eabfce6 | 2460 | if (env->features[FEAT_1_EDX] & CPUID_MTRR) { |
9c600a84 EH |
2461 | kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0); |
2462 | kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0); | |
2463 | kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0); | |
2464 | kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0); | |
2465 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0); | |
2466 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0); | |
2467 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0); | |
2468 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0); | |
2469 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0); | |
2470 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0); | |
2471 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0); | |
2472 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0); | |
d1ae67f6 | 2473 | for (i = 0; i < MSR_MTRRcap_VCNT; i++) { |
9c600a84 EH |
2474 | kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0); |
2475 | kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0); | |
d1ae67f6 AW |
2476 | } |
2477 | } | |
5ef68987 | 2478 | |
b77146e9 CP |
2479 | if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) { |
2480 | int addr_num = | |
2481 | kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7; | |
2482 | ||
2483 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0); | |
2484 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0); | |
2485 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0); | |
2486 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0); | |
2487 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0); | |
2488 | for (i = 0; i < addr_num; i++) { | |
2489 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0); | |
2490 | } | |
2491 | } | |
2492 | ||
d71b62a1 | 2493 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf); |
b9bec74b | 2494 | if (ret < 0) { |
05330448 | 2495 | return ret; |
b9bec74b | 2496 | } |
05330448 | 2497 | |
c70b11d1 EH |
2498 | if (ret < cpu->kvm_msr_buf->nmsrs) { |
2499 | struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; | |
2500 | error_report("error: failed to get MSR 0x%" PRIx32, | |
2501 | (uint32_t)e->index); | |
2502 | } | |
2503 | ||
9c600a84 | 2504 | assert(ret == cpu->kvm_msr_buf->nmsrs); |
fcc35e7c DDAG |
2505 | /* |
2506 | * MTRR masks: Each mask consists of 5 parts | |
2507 | * a 10..0: must be zero | |
2508 | * b 11 : valid bit | |
2509 | * c n-1.12: actual mask bits | |
2510 | * d 51..n: reserved must be zero | |
2511 | * e 63.52: reserved must be zero | |
2512 | * | |
2513 | * 'n' is the number of physical bits supported by the CPU and is | |
2514 | * apparently always <= 52. We know our 'n' but don't know what | |
2515 | * the destinations 'n' is; it might be smaller, in which case | |
2516 | * it masks (c) on loading. It might be larger, in which case | |
2517 | * we fill 'd' so that d..c is consistent irrespetive of the 'n' | |
2518 | * we're migrating to. | |
2519 | */ | |
2520 | ||
2521 | if (cpu->fill_mtrr_mask) { | |
2522 | QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52); | |
2523 | assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS); | |
2524 | mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits); | |
2525 | } else { | |
2526 | mtrr_top_bits = 0; | |
2527 | } | |
2528 | ||
05330448 | 2529 | for (i = 0; i < ret; i++) { |
0d894367 PB |
2530 | uint32_t index = msrs[i].index; |
2531 | switch (index) { | |
05330448 AL |
2532 | case MSR_IA32_SYSENTER_CS: |
2533 | env->sysenter_cs = msrs[i].data; | |
2534 | break; | |
2535 | case MSR_IA32_SYSENTER_ESP: | |
2536 | env->sysenter_esp = msrs[i].data; | |
2537 | break; | |
2538 | case MSR_IA32_SYSENTER_EIP: | |
2539 | env->sysenter_eip = msrs[i].data; | |
2540 | break; | |
0c03266a JK |
2541 | case MSR_PAT: |
2542 | env->pat = msrs[i].data; | |
2543 | break; | |
05330448 AL |
2544 | case MSR_STAR: |
2545 | env->star = msrs[i].data; | |
2546 | break; | |
2547 | #ifdef TARGET_X86_64 | |
2548 | case MSR_CSTAR: | |
2549 | env->cstar = msrs[i].data; | |
2550 | break; | |
2551 | case MSR_KERNELGSBASE: | |
2552 | env->kernelgsbase = msrs[i].data; | |
2553 | break; | |
2554 | case MSR_FMASK: | |
2555 | env->fmask = msrs[i].data; | |
2556 | break; | |
2557 | case MSR_LSTAR: | |
2558 | env->lstar = msrs[i].data; | |
2559 | break; | |
2560 | #endif | |
2561 | case MSR_IA32_TSC: | |
2562 | env->tsc = msrs[i].data; | |
2563 | break; | |
c9b8f6b6 AS |
2564 | case MSR_TSC_AUX: |
2565 | env->tsc_aux = msrs[i].data; | |
2566 | break; | |
f28558d3 WA |
2567 | case MSR_TSC_ADJUST: |
2568 | env->tsc_adjust = msrs[i].data; | |
2569 | break; | |
aa82ba54 LJ |
2570 | case MSR_IA32_TSCDEADLINE: |
2571 | env->tsc_deadline = msrs[i].data; | |
2572 | break; | |
aa851e36 MT |
2573 | case MSR_VM_HSAVE_PA: |
2574 | env->vm_hsave = msrs[i].data; | |
2575 | break; | |
1a03675d GC |
2576 | case MSR_KVM_SYSTEM_TIME: |
2577 | env->system_time_msr = msrs[i].data; | |
2578 | break; | |
2579 | case MSR_KVM_WALL_CLOCK: | |
2580 | env->wall_clock_msr = msrs[i].data; | |
2581 | break; | |
57780495 MT |
2582 | case MSR_MCG_STATUS: |
2583 | env->mcg_status = msrs[i].data; | |
2584 | break; | |
2585 | case MSR_MCG_CTL: | |
2586 | env->mcg_ctl = msrs[i].data; | |
2587 | break; | |
87f8b626 AR |
2588 | case MSR_MCG_EXT_CTL: |
2589 | env->mcg_ext_ctl = msrs[i].data; | |
2590 | break; | |
21e87c46 AK |
2591 | case MSR_IA32_MISC_ENABLE: |
2592 | env->msr_ia32_misc_enable = msrs[i].data; | |
2593 | break; | |
fc12d72e PB |
2594 | case MSR_IA32_SMBASE: |
2595 | env->smbase = msrs[i].data; | |
2596 | break; | |
e13713db LA |
2597 | case MSR_SMI_COUNT: |
2598 | env->msr_smi_count = msrs[i].data; | |
2599 | break; | |
0779caeb ACL |
2600 | case MSR_IA32_FEATURE_CONTROL: |
2601 | env->msr_ia32_feature_control = msrs[i].data; | |
df67696e | 2602 | break; |
79e9ebeb LJ |
2603 | case MSR_IA32_BNDCFGS: |
2604 | env->msr_bndcfgs = msrs[i].data; | |
2605 | break; | |
18cd2c17 WL |
2606 | case MSR_IA32_XSS: |
2607 | env->xss = msrs[i].data; | |
2608 | break; | |
57780495 | 2609 | default: |
57780495 MT |
2610 | if (msrs[i].index >= MSR_MC0_CTL && |
2611 | msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) { | |
2612 | env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data; | |
57780495 | 2613 | } |
d8da8574 | 2614 | break; |
f6584ee2 GN |
2615 | case MSR_KVM_ASYNC_PF_EN: |
2616 | env->async_pf_en_msr = msrs[i].data; | |
2617 | break; | |
bc9a839d MT |
2618 | case MSR_KVM_PV_EOI_EN: |
2619 | env->pv_eoi_en_msr = msrs[i].data; | |
2620 | break; | |
917367aa MT |
2621 | case MSR_KVM_STEAL_TIME: |
2622 | env->steal_time_msr = msrs[i].data; | |
2623 | break; | |
0d894367 PB |
2624 | case MSR_CORE_PERF_FIXED_CTR_CTRL: |
2625 | env->msr_fixed_ctr_ctrl = msrs[i].data; | |
2626 | break; | |
2627 | case MSR_CORE_PERF_GLOBAL_CTRL: | |
2628 | env->msr_global_ctrl = msrs[i].data; | |
2629 | break; | |
2630 | case MSR_CORE_PERF_GLOBAL_STATUS: | |
2631 | env->msr_global_status = msrs[i].data; | |
2632 | break; | |
2633 | case MSR_CORE_PERF_GLOBAL_OVF_CTRL: | |
2634 | env->msr_global_ovf_ctrl = msrs[i].data; | |
2635 | break; | |
2636 | case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1: | |
2637 | env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data; | |
2638 | break; | |
2639 | case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1: | |
2640 | env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data; | |
2641 | break; | |
2642 | case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1: | |
2643 | env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data; | |
2644 | break; | |
1c90ef26 VR |
2645 | case HV_X64_MSR_HYPERCALL: |
2646 | env->msr_hv_hypercall = msrs[i].data; | |
2647 | break; | |
2648 | case HV_X64_MSR_GUEST_OS_ID: | |
2649 | env->msr_hv_guest_os_id = msrs[i].data; | |
2650 | break; | |
5ef68987 VR |
2651 | case HV_X64_MSR_APIC_ASSIST_PAGE: |
2652 | env->msr_hv_vapic = msrs[i].data; | |
2653 | break; | |
48a5f3bc VR |
2654 | case HV_X64_MSR_REFERENCE_TSC: |
2655 | env->msr_hv_tsc = msrs[i].data; | |
2656 | break; | |
f2a53c9e AS |
2657 | case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: |
2658 | env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data; | |
2659 | break; | |
46eb8f98 AS |
2660 | case HV_X64_MSR_VP_RUNTIME: |
2661 | env->msr_hv_runtime = msrs[i].data; | |
2662 | break; | |
866eea9a AS |
2663 | case HV_X64_MSR_SCONTROL: |
2664 | env->msr_hv_synic_control = msrs[i].data; | |
2665 | break; | |
866eea9a AS |
2666 | case HV_X64_MSR_SIEFP: |
2667 | env->msr_hv_synic_evt_page = msrs[i].data; | |
2668 | break; | |
2669 | case HV_X64_MSR_SIMP: | |
2670 | env->msr_hv_synic_msg_page = msrs[i].data; | |
2671 | break; | |
2672 | case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: | |
2673 | env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data; | |
ff99aa64 AS |
2674 | break; |
2675 | case HV_X64_MSR_STIMER0_CONFIG: | |
2676 | case HV_X64_MSR_STIMER1_CONFIG: | |
2677 | case HV_X64_MSR_STIMER2_CONFIG: | |
2678 | case HV_X64_MSR_STIMER3_CONFIG: | |
2679 | env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] = | |
2680 | msrs[i].data; | |
2681 | break; | |
2682 | case HV_X64_MSR_STIMER0_COUNT: | |
2683 | case HV_X64_MSR_STIMER1_COUNT: | |
2684 | case HV_X64_MSR_STIMER2_COUNT: | |
2685 | case HV_X64_MSR_STIMER3_COUNT: | |
2686 | env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] = | |
2687 | msrs[i].data; | |
866eea9a | 2688 | break; |
ba6a4fd9 VK |
2689 | case HV_X64_MSR_REENLIGHTENMENT_CONTROL: |
2690 | env->msr_hv_reenlightenment_control = msrs[i].data; | |
2691 | break; | |
2692 | case HV_X64_MSR_TSC_EMULATION_CONTROL: | |
2693 | env->msr_hv_tsc_emulation_control = msrs[i].data; | |
2694 | break; | |
2695 | case HV_X64_MSR_TSC_EMULATION_STATUS: | |
2696 | env->msr_hv_tsc_emulation_status = msrs[i].data; | |
2697 | break; | |
d1ae67f6 AW |
2698 | case MSR_MTRRdefType: |
2699 | env->mtrr_deftype = msrs[i].data; | |
2700 | break; | |
2701 | case MSR_MTRRfix64K_00000: | |
2702 | env->mtrr_fixed[0] = msrs[i].data; | |
2703 | break; | |
2704 | case MSR_MTRRfix16K_80000: | |
2705 | env->mtrr_fixed[1] = msrs[i].data; | |
2706 | break; | |
2707 | case MSR_MTRRfix16K_A0000: | |
2708 | env->mtrr_fixed[2] = msrs[i].data; | |
2709 | break; | |
2710 | case MSR_MTRRfix4K_C0000: | |
2711 | env->mtrr_fixed[3] = msrs[i].data; | |
2712 | break; | |
2713 | case MSR_MTRRfix4K_C8000: | |
2714 | env->mtrr_fixed[4] = msrs[i].data; | |
2715 | break; | |
2716 | case MSR_MTRRfix4K_D0000: | |
2717 | env->mtrr_fixed[5] = msrs[i].data; | |
2718 | break; | |
2719 | case MSR_MTRRfix4K_D8000: | |
2720 | env->mtrr_fixed[6] = msrs[i].data; | |
2721 | break; | |
2722 | case MSR_MTRRfix4K_E0000: | |
2723 | env->mtrr_fixed[7] = msrs[i].data; | |
2724 | break; | |
2725 | case MSR_MTRRfix4K_E8000: | |
2726 | env->mtrr_fixed[8] = msrs[i].data; | |
2727 | break; | |
2728 | case MSR_MTRRfix4K_F0000: | |
2729 | env->mtrr_fixed[9] = msrs[i].data; | |
2730 | break; | |
2731 | case MSR_MTRRfix4K_F8000: | |
2732 | env->mtrr_fixed[10] = msrs[i].data; | |
2733 | break; | |
2734 | case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1): | |
2735 | if (index & 1) { | |
fcc35e7c DDAG |
2736 | env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data | |
2737 | mtrr_top_bits; | |
d1ae67f6 AW |
2738 | } else { |
2739 | env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data; | |
2740 | } | |
2741 | break; | |
a33a2cfe PB |
2742 | case MSR_IA32_SPEC_CTRL: |
2743 | env->spec_ctrl = msrs[i].data; | |
2744 | break; | |
cfeea0c0 KRW |
2745 | case MSR_VIRT_SSBD: |
2746 | env->virt_ssbd = msrs[i].data; | |
2747 | break; | |
b77146e9 CP |
2748 | case MSR_IA32_RTIT_CTL: |
2749 | env->msr_rtit_ctrl = msrs[i].data; | |
2750 | break; | |
2751 | case MSR_IA32_RTIT_STATUS: | |
2752 | env->msr_rtit_status = msrs[i].data; | |
2753 | break; | |
2754 | case MSR_IA32_RTIT_OUTPUT_BASE: | |
2755 | env->msr_rtit_output_base = msrs[i].data; | |
2756 | break; | |
2757 | case MSR_IA32_RTIT_OUTPUT_MASK: | |
2758 | env->msr_rtit_output_mask = msrs[i].data; | |
2759 | break; | |
2760 | case MSR_IA32_RTIT_CR3_MATCH: | |
2761 | env->msr_rtit_cr3_match = msrs[i].data; | |
2762 | break; | |
2763 | case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: | |
2764 | env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data; | |
2765 | break; | |
05330448 AL |
2766 | } |
2767 | } | |
2768 | ||
2769 | return 0; | |
2770 | } | |
2771 | ||
1bc22652 | 2772 | static int kvm_put_mp_state(X86CPU *cpu) |
9bdbe550 | 2773 | { |
1bc22652 | 2774 | struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state }; |
9bdbe550 | 2775 | |
1bc22652 | 2776 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); |
9bdbe550 HB |
2777 | } |
2778 | ||
23d02d9b | 2779 | static int kvm_get_mp_state(X86CPU *cpu) |
9bdbe550 | 2780 | { |
259186a7 | 2781 | CPUState *cs = CPU(cpu); |
23d02d9b | 2782 | CPUX86State *env = &cpu->env; |
9bdbe550 HB |
2783 | struct kvm_mp_state mp_state; |
2784 | int ret; | |
2785 | ||
259186a7 | 2786 | ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state); |
9bdbe550 HB |
2787 | if (ret < 0) { |
2788 | return ret; | |
2789 | } | |
2790 | env->mp_state = mp_state.mp_state; | |
c14750e8 | 2791 | if (kvm_irqchip_in_kernel()) { |
259186a7 | 2792 | cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED); |
c14750e8 | 2793 | } |
9bdbe550 HB |
2794 | return 0; |
2795 | } | |
2796 | ||
1bc22652 | 2797 | static int kvm_get_apic(X86CPU *cpu) |
680c1c6f | 2798 | { |
02e51483 | 2799 | DeviceState *apic = cpu->apic_state; |
680c1c6f JK |
2800 | struct kvm_lapic_state kapic; |
2801 | int ret; | |
2802 | ||
3d4b2649 | 2803 | if (apic && kvm_irqchip_in_kernel()) { |
1bc22652 | 2804 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic); |
680c1c6f JK |
2805 | if (ret < 0) { |
2806 | return ret; | |
2807 | } | |
2808 | ||
2809 | kvm_get_apic_state(apic, &kapic); | |
2810 | } | |
2811 | return 0; | |
2812 | } | |
2813 | ||
1bc22652 | 2814 | static int kvm_put_vcpu_events(X86CPU *cpu, int level) |
a0fb002c | 2815 | { |
fc12d72e | 2816 | CPUState *cs = CPU(cpu); |
1bc22652 | 2817 | CPUX86State *env = &cpu->env; |
076796f8 | 2818 | struct kvm_vcpu_events events = {}; |
a0fb002c JK |
2819 | |
2820 | if (!kvm_has_vcpu_events()) { | |
2821 | return 0; | |
2822 | } | |
2823 | ||
31827373 JK |
2824 | events.exception.injected = (env->exception_injected >= 0); |
2825 | events.exception.nr = env->exception_injected; | |
a0fb002c JK |
2826 | events.exception.has_error_code = env->has_error_code; |
2827 | events.exception.error_code = env->error_code; | |
2828 | ||
2829 | events.interrupt.injected = (env->interrupt_injected >= 0); | |
2830 | events.interrupt.nr = env->interrupt_injected; | |
2831 | events.interrupt.soft = env->soft_interrupt; | |
2832 | ||
2833 | events.nmi.injected = env->nmi_injected; | |
2834 | events.nmi.pending = env->nmi_pending; | |
2835 | events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK); | |
2836 | ||
2837 | events.sipi_vector = env->sipi_vector; | |
68c6efe0 | 2838 | events.flags = 0; |
a0fb002c | 2839 | |
fc12d72e PB |
2840 | if (has_msr_smbase) { |
2841 | events.smi.smm = !!(env->hflags & HF_SMM_MASK); | |
2842 | events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK); | |
2843 | if (kvm_irqchip_in_kernel()) { | |
2844 | /* As soon as these are moved to the kernel, remove them | |
2845 | * from cs->interrupt_request. | |
2846 | */ | |
2847 | events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI; | |
2848 | events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT; | |
2849 | cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI); | |
2850 | } else { | |
2851 | /* Keep these in cs->interrupt_request. */ | |
2852 | events.smi.pending = 0; | |
2853 | events.smi.latched_init = 0; | |
2854 | } | |
fc3a1fd7 DDAG |
2855 | /* Stop SMI delivery on old machine types to avoid a reboot |
2856 | * on an inward migration of an old VM. | |
2857 | */ | |
2858 | if (!cpu->kvm_no_smi_migration) { | |
2859 | events.flags |= KVM_VCPUEVENT_VALID_SMM; | |
2860 | } | |
fc12d72e PB |
2861 | } |
2862 | ||
ea643051 | 2863 | if (level >= KVM_PUT_RESET_STATE) { |
4fadfa00 PH |
2864 | events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING; |
2865 | if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { | |
2866 | events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR; | |
2867 | } | |
ea643051 | 2868 | } |
aee028b9 | 2869 | |
1bc22652 | 2870 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); |
a0fb002c JK |
2871 | } |
2872 | ||
1bc22652 | 2873 | static int kvm_get_vcpu_events(X86CPU *cpu) |
a0fb002c | 2874 | { |
1bc22652 | 2875 | CPUX86State *env = &cpu->env; |
a0fb002c JK |
2876 | struct kvm_vcpu_events events; |
2877 | int ret; | |
2878 | ||
2879 | if (!kvm_has_vcpu_events()) { | |
2880 | return 0; | |
2881 | } | |
2882 | ||
fc12d72e | 2883 | memset(&events, 0, sizeof(events)); |
1bc22652 | 2884 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); |
a0fb002c JK |
2885 | if (ret < 0) { |
2886 | return ret; | |
2887 | } | |
31827373 | 2888 | env->exception_injected = |
a0fb002c JK |
2889 | events.exception.injected ? events.exception.nr : -1; |
2890 | env->has_error_code = events.exception.has_error_code; | |
2891 | env->error_code = events.exception.error_code; | |
2892 | ||
2893 | env->interrupt_injected = | |
2894 | events.interrupt.injected ? events.interrupt.nr : -1; | |
2895 | env->soft_interrupt = events.interrupt.soft; | |
2896 | ||
2897 | env->nmi_injected = events.nmi.injected; | |
2898 | env->nmi_pending = events.nmi.pending; | |
2899 | if (events.nmi.masked) { | |
2900 | env->hflags2 |= HF2_NMI_MASK; | |
2901 | } else { | |
2902 | env->hflags2 &= ~HF2_NMI_MASK; | |
2903 | } | |
2904 | ||
fc12d72e PB |
2905 | if (events.flags & KVM_VCPUEVENT_VALID_SMM) { |
2906 | if (events.smi.smm) { | |
2907 | env->hflags |= HF_SMM_MASK; | |
2908 | } else { | |
2909 | env->hflags &= ~HF_SMM_MASK; | |
2910 | } | |
2911 | if (events.smi.pending) { | |
2912 | cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); | |
2913 | } else { | |
2914 | cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); | |
2915 | } | |
2916 | if (events.smi.smm_inside_nmi) { | |
2917 | env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK; | |
2918 | } else { | |
2919 | env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK; | |
2920 | } | |
2921 | if (events.smi.latched_init) { | |
2922 | cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); | |
2923 | } else { | |
2924 | cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); | |
2925 | } | |
2926 | } | |
2927 | ||
a0fb002c | 2928 | env->sipi_vector = events.sipi_vector; |
a0fb002c JK |
2929 | |
2930 | return 0; | |
2931 | } | |
2932 | ||
1bc22652 | 2933 | static int kvm_guest_debug_workarounds(X86CPU *cpu) |
b0b1d690 | 2934 | { |
ed2803da | 2935 | CPUState *cs = CPU(cpu); |
1bc22652 | 2936 | CPUX86State *env = &cpu->env; |
b0b1d690 | 2937 | int ret = 0; |
b0b1d690 JK |
2938 | unsigned long reinject_trap = 0; |
2939 | ||
2940 | if (!kvm_has_vcpu_events()) { | |
2941 | if (env->exception_injected == 1) { | |
2942 | reinject_trap = KVM_GUESTDBG_INJECT_DB; | |
2943 | } else if (env->exception_injected == 3) { | |
2944 | reinject_trap = KVM_GUESTDBG_INJECT_BP; | |
2945 | } | |
2946 | env->exception_injected = -1; | |
2947 | } | |
2948 | ||
2949 | /* | |
2950 | * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF | |
2951 | * injected via SET_GUEST_DEBUG while updating GP regs. Work around this | |
2952 | * by updating the debug state once again if single-stepping is on. | |
2953 | * Another reason to call kvm_update_guest_debug here is a pending debug | |
2954 | * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to | |
2955 | * reinject them via SET_GUEST_DEBUG. | |
2956 | */ | |
2957 | if (reinject_trap || | |
ed2803da | 2958 | (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) { |
38e478ec | 2959 | ret = kvm_update_guest_debug(cs, reinject_trap); |
b0b1d690 | 2960 | } |
b0b1d690 JK |
2961 | return ret; |
2962 | } | |
2963 | ||
1bc22652 | 2964 | static int kvm_put_debugregs(X86CPU *cpu) |
ff44f1a3 | 2965 | { |
1bc22652 | 2966 | CPUX86State *env = &cpu->env; |
ff44f1a3 JK |
2967 | struct kvm_debugregs dbgregs; |
2968 | int i; | |
2969 | ||
2970 | if (!kvm_has_debugregs()) { | |
2971 | return 0; | |
2972 | } | |
2973 | ||
2974 | for (i = 0; i < 4; i++) { | |
2975 | dbgregs.db[i] = env->dr[i]; | |
2976 | } | |
2977 | dbgregs.dr6 = env->dr[6]; | |
2978 | dbgregs.dr7 = env->dr[7]; | |
2979 | dbgregs.flags = 0; | |
2980 | ||
1bc22652 | 2981 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs); |
ff44f1a3 JK |
2982 | } |
2983 | ||
1bc22652 | 2984 | static int kvm_get_debugregs(X86CPU *cpu) |
ff44f1a3 | 2985 | { |
1bc22652 | 2986 | CPUX86State *env = &cpu->env; |
ff44f1a3 JK |
2987 | struct kvm_debugregs dbgregs; |
2988 | int i, ret; | |
2989 | ||
2990 | if (!kvm_has_debugregs()) { | |
2991 | return 0; | |
2992 | } | |
2993 | ||
1bc22652 | 2994 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs); |
ff44f1a3 | 2995 | if (ret < 0) { |
b9bec74b | 2996 | return ret; |
ff44f1a3 JK |
2997 | } |
2998 | for (i = 0; i < 4; i++) { | |
2999 | env->dr[i] = dbgregs.db[i]; | |
3000 | } | |
3001 | env->dr[4] = env->dr[6] = dbgregs.dr6; | |
3002 | env->dr[5] = env->dr[7] = dbgregs.dr7; | |
ff44f1a3 JK |
3003 | |
3004 | return 0; | |
3005 | } | |
3006 | ||
20d695a9 | 3007 | int kvm_arch_put_registers(CPUState *cpu, int level) |
05330448 | 3008 | { |
20d695a9 | 3009 | X86CPU *x86_cpu = X86_CPU(cpu); |
05330448 AL |
3010 | int ret; |
3011 | ||
2fa45344 | 3012 | assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu)); |
dbaa07c4 | 3013 | |
48e1a45c | 3014 | if (level >= KVM_PUT_RESET_STATE) { |
6bdf863d JK |
3015 | ret = kvm_put_msr_feature_control(x86_cpu); |
3016 | if (ret < 0) { | |
3017 | return ret; | |
3018 | } | |
3019 | } | |
3020 | ||
36f96c4b HZ |
3021 | if (level == KVM_PUT_FULL_STATE) { |
3022 | /* We don't check for kvm_arch_set_tsc_khz() errors here, | |
3023 | * because TSC frequency mismatch shouldn't abort migration, | |
3024 | * unless the user explicitly asked for a more strict TSC | |
3025 | * setting (e.g. using an explicit "tsc-freq" option). | |
3026 | */ | |
3027 | kvm_arch_set_tsc_khz(cpu); | |
3028 | } | |
3029 | ||
1bc22652 | 3030 | ret = kvm_getput_regs(x86_cpu, 1); |
b9bec74b | 3031 | if (ret < 0) { |
05330448 | 3032 | return ret; |
b9bec74b | 3033 | } |
1bc22652 | 3034 | ret = kvm_put_xsave(x86_cpu); |
b9bec74b | 3035 | if (ret < 0) { |
f1665b21 | 3036 | return ret; |
b9bec74b | 3037 | } |
1bc22652 | 3038 | ret = kvm_put_xcrs(x86_cpu); |
b9bec74b | 3039 | if (ret < 0) { |
05330448 | 3040 | return ret; |
b9bec74b | 3041 | } |
1bc22652 | 3042 | ret = kvm_put_sregs(x86_cpu); |
b9bec74b | 3043 | if (ret < 0) { |
05330448 | 3044 | return ret; |
b9bec74b | 3045 | } |
ab443475 | 3046 | /* must be before kvm_put_msrs */ |
1bc22652 | 3047 | ret = kvm_inject_mce_oldstyle(x86_cpu); |
ab443475 JK |
3048 | if (ret < 0) { |
3049 | return ret; | |
3050 | } | |
1bc22652 | 3051 | ret = kvm_put_msrs(x86_cpu, level); |
b9bec74b | 3052 | if (ret < 0) { |
05330448 | 3053 | return ret; |
b9bec74b | 3054 | } |
4fadfa00 PH |
3055 | ret = kvm_put_vcpu_events(x86_cpu, level); |
3056 | if (ret < 0) { | |
3057 | return ret; | |
3058 | } | |
ea643051 | 3059 | if (level >= KVM_PUT_RESET_STATE) { |
1bc22652 | 3060 | ret = kvm_put_mp_state(x86_cpu); |
b9bec74b | 3061 | if (ret < 0) { |
680c1c6f JK |
3062 | return ret; |
3063 | } | |
ea643051 | 3064 | } |
7477cd38 MT |
3065 | |
3066 | ret = kvm_put_tscdeadline_msr(x86_cpu); | |
3067 | if (ret < 0) { | |
3068 | return ret; | |
3069 | } | |
1bc22652 | 3070 | ret = kvm_put_debugregs(x86_cpu); |
b9bec74b | 3071 | if (ret < 0) { |
b0b1d690 | 3072 | return ret; |
b9bec74b | 3073 | } |
b0b1d690 | 3074 | /* must be last */ |
1bc22652 | 3075 | ret = kvm_guest_debug_workarounds(x86_cpu); |
b9bec74b | 3076 | if (ret < 0) { |
ff44f1a3 | 3077 | return ret; |
b9bec74b | 3078 | } |
05330448 AL |
3079 | return 0; |
3080 | } | |
3081 | ||
20d695a9 | 3082 | int kvm_arch_get_registers(CPUState *cs) |
05330448 | 3083 | { |
20d695a9 | 3084 | X86CPU *cpu = X86_CPU(cs); |
05330448 AL |
3085 | int ret; |
3086 | ||
20d695a9 | 3087 | assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs)); |
dbaa07c4 | 3088 | |
4fadfa00 | 3089 | ret = kvm_get_vcpu_events(cpu); |
b9bec74b | 3090 | if (ret < 0) { |
f4f1110e | 3091 | goto out; |
b9bec74b | 3092 | } |
4fadfa00 PH |
3093 | /* |
3094 | * KVM_GET_MPSTATE can modify CS and RIP, call it before | |
3095 | * KVM_GET_REGS and KVM_GET_SREGS. | |
3096 | */ | |
3097 | ret = kvm_get_mp_state(cpu); | |
b9bec74b | 3098 | if (ret < 0) { |
f4f1110e | 3099 | goto out; |
b9bec74b | 3100 | } |
4fadfa00 | 3101 | ret = kvm_getput_regs(cpu, 0); |
b9bec74b | 3102 | if (ret < 0) { |
f4f1110e | 3103 | goto out; |
b9bec74b | 3104 | } |
4fadfa00 | 3105 | ret = kvm_get_xsave(cpu); |
b9bec74b | 3106 | if (ret < 0) { |
f4f1110e | 3107 | goto out; |
b9bec74b | 3108 | } |
4fadfa00 | 3109 | ret = kvm_get_xcrs(cpu); |
b9bec74b | 3110 | if (ret < 0) { |
f4f1110e | 3111 | goto out; |
b9bec74b | 3112 | } |
4fadfa00 | 3113 | ret = kvm_get_sregs(cpu); |
b9bec74b | 3114 | if (ret < 0) { |
f4f1110e | 3115 | goto out; |
b9bec74b | 3116 | } |
4fadfa00 | 3117 | ret = kvm_get_msrs(cpu); |
680c1c6f | 3118 | if (ret < 0) { |
f4f1110e | 3119 | goto out; |
680c1c6f | 3120 | } |
4fadfa00 | 3121 | ret = kvm_get_apic(cpu); |
b9bec74b | 3122 | if (ret < 0) { |
f4f1110e | 3123 | goto out; |
b9bec74b | 3124 | } |
1bc22652 | 3125 | ret = kvm_get_debugregs(cpu); |
b9bec74b | 3126 | if (ret < 0) { |
f4f1110e | 3127 | goto out; |
b9bec74b | 3128 | } |
f4f1110e RH |
3129 | ret = 0; |
3130 | out: | |
3131 | cpu_sync_bndcs_hflags(&cpu->env); | |
3132 | return ret; | |
05330448 AL |
3133 | } |
3134 | ||
20d695a9 | 3135 | void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) |
05330448 | 3136 | { |
20d695a9 AF |
3137 | X86CPU *x86_cpu = X86_CPU(cpu); |
3138 | CPUX86State *env = &x86_cpu->env; | |
ce377af3 JK |
3139 | int ret; |
3140 | ||
276ce815 | 3141 | /* Inject NMI */ |
fc12d72e PB |
3142 | if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) { |
3143 | if (cpu->interrupt_request & CPU_INTERRUPT_NMI) { | |
3144 | qemu_mutex_lock_iothread(); | |
3145 | cpu->interrupt_request &= ~CPU_INTERRUPT_NMI; | |
3146 | qemu_mutex_unlock_iothread(); | |
3147 | DPRINTF("injected NMI\n"); | |
3148 | ret = kvm_vcpu_ioctl(cpu, KVM_NMI); | |
3149 | if (ret < 0) { | |
3150 | fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n", | |
3151 | strerror(-ret)); | |
3152 | } | |
3153 | } | |
3154 | if (cpu->interrupt_request & CPU_INTERRUPT_SMI) { | |
3155 | qemu_mutex_lock_iothread(); | |
3156 | cpu->interrupt_request &= ~CPU_INTERRUPT_SMI; | |
3157 | qemu_mutex_unlock_iothread(); | |
3158 | DPRINTF("injected SMI\n"); | |
3159 | ret = kvm_vcpu_ioctl(cpu, KVM_SMI); | |
3160 | if (ret < 0) { | |
3161 | fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n", | |
3162 | strerror(-ret)); | |
3163 | } | |
ce377af3 | 3164 | } |
276ce815 LJ |
3165 | } |
3166 | ||
15eafc2e | 3167 | if (!kvm_pic_in_kernel()) { |
4b8523ee JK |
3168 | qemu_mutex_lock_iothread(); |
3169 | } | |
3170 | ||
e0723c45 PB |
3171 | /* Force the VCPU out of its inner loop to process any INIT requests |
3172 | * or (for userspace APIC, but it is cheap to combine the checks here) | |
3173 | * pending TPR access reports. | |
3174 | */ | |
3175 | if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) { | |
fc12d72e PB |
3176 | if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) && |
3177 | !(env->hflags & HF_SMM_MASK)) { | |
3178 | cpu->exit_request = 1; | |
3179 | } | |
3180 | if (cpu->interrupt_request & CPU_INTERRUPT_TPR) { | |
3181 | cpu->exit_request = 1; | |
3182 | } | |
e0723c45 | 3183 | } |
05330448 | 3184 | |
15eafc2e | 3185 | if (!kvm_pic_in_kernel()) { |
db1669bc JK |
3186 | /* Try to inject an interrupt if the guest can accept it */ |
3187 | if (run->ready_for_interrupt_injection && | |
259186a7 | 3188 | (cpu->interrupt_request & CPU_INTERRUPT_HARD) && |
db1669bc JK |
3189 | (env->eflags & IF_MASK)) { |
3190 | int irq; | |
3191 | ||
259186a7 | 3192 | cpu->interrupt_request &= ~CPU_INTERRUPT_HARD; |
db1669bc JK |
3193 | irq = cpu_get_pic_interrupt(env); |
3194 | if (irq >= 0) { | |
3195 | struct kvm_interrupt intr; | |
3196 | ||
3197 | intr.irq = irq; | |
db1669bc | 3198 | DPRINTF("injected interrupt %d\n", irq); |
1bc22652 | 3199 | ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr); |
ce377af3 JK |
3200 | if (ret < 0) { |
3201 | fprintf(stderr, | |
3202 | "KVM: injection failed, interrupt lost (%s)\n", | |
3203 | strerror(-ret)); | |
3204 | } | |
db1669bc JK |
3205 | } |
3206 | } | |
05330448 | 3207 | |
db1669bc JK |
3208 | /* If we have an interrupt but the guest is not ready to receive an |
3209 | * interrupt, request an interrupt window exit. This will | |
3210 | * cause a return to userspace as soon as the guest is ready to | |
3211 | * receive interrupts. */ | |
259186a7 | 3212 | if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) { |
db1669bc JK |
3213 | run->request_interrupt_window = 1; |
3214 | } else { | |
3215 | run->request_interrupt_window = 0; | |
3216 | } | |
3217 | ||
3218 | DPRINTF("setting tpr\n"); | |
02e51483 | 3219 | run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state); |
4b8523ee JK |
3220 | |
3221 | qemu_mutex_unlock_iothread(); | |
db1669bc | 3222 | } |
05330448 AL |
3223 | } |
3224 | ||
4c663752 | 3225 | MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run) |
05330448 | 3226 | { |
20d695a9 AF |
3227 | X86CPU *x86_cpu = X86_CPU(cpu); |
3228 | CPUX86State *env = &x86_cpu->env; | |
3229 | ||
fc12d72e PB |
3230 | if (run->flags & KVM_RUN_X86_SMM) { |
3231 | env->hflags |= HF_SMM_MASK; | |
3232 | } else { | |
f5c052b9 | 3233 | env->hflags &= ~HF_SMM_MASK; |
fc12d72e | 3234 | } |
b9bec74b | 3235 | if (run->if_flag) { |
05330448 | 3236 | env->eflags |= IF_MASK; |
b9bec74b | 3237 | } else { |
05330448 | 3238 | env->eflags &= ~IF_MASK; |
b9bec74b | 3239 | } |
4b8523ee JK |
3240 | |
3241 | /* We need to protect the apic state against concurrent accesses from | |
3242 | * different threads in case the userspace irqchip is used. */ | |
3243 | if (!kvm_irqchip_in_kernel()) { | |
3244 | qemu_mutex_lock_iothread(); | |
3245 | } | |
02e51483 CF |
3246 | cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8); |
3247 | cpu_set_apic_base(x86_cpu->apic_state, run->apic_base); | |
4b8523ee JK |
3248 | if (!kvm_irqchip_in_kernel()) { |
3249 | qemu_mutex_unlock_iothread(); | |
3250 | } | |
f794aa4a | 3251 | return cpu_get_mem_attrs(env); |
05330448 AL |
3252 | } |
3253 | ||
20d695a9 | 3254 | int kvm_arch_process_async_events(CPUState *cs) |
0af691d7 | 3255 | { |
20d695a9 AF |
3256 | X86CPU *cpu = X86_CPU(cs); |
3257 | CPUX86State *env = &cpu->env; | |
232fc23b | 3258 | |
259186a7 | 3259 | if (cs->interrupt_request & CPU_INTERRUPT_MCE) { |
ab443475 JK |
3260 | /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */ |
3261 | assert(env->mcg_cap); | |
3262 | ||
259186a7 | 3263 | cs->interrupt_request &= ~CPU_INTERRUPT_MCE; |
ab443475 | 3264 | |
dd1750d7 | 3265 | kvm_cpu_synchronize_state(cs); |
ab443475 JK |
3266 | |
3267 | if (env->exception_injected == EXCP08_DBLE) { | |
3268 | /* this means triple fault */ | |
cf83f140 | 3269 | qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); |
fcd7d003 | 3270 | cs->exit_request = 1; |
ab443475 JK |
3271 | return 0; |
3272 | } | |
3273 | env->exception_injected = EXCP12_MCHK; | |
3274 | env->has_error_code = 0; | |
3275 | ||
259186a7 | 3276 | cs->halted = 0; |
ab443475 JK |
3277 | if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) { |
3278 | env->mp_state = KVM_MP_STATE_RUNNABLE; | |
3279 | } | |
3280 | } | |
3281 | ||
fc12d72e PB |
3282 | if ((cs->interrupt_request & CPU_INTERRUPT_INIT) && |
3283 | !(env->hflags & HF_SMM_MASK)) { | |
e0723c45 PB |
3284 | kvm_cpu_synchronize_state(cs); |
3285 | do_cpu_init(cpu); | |
3286 | } | |
3287 | ||
db1669bc JK |
3288 | if (kvm_irqchip_in_kernel()) { |
3289 | return 0; | |
3290 | } | |
3291 | ||
259186a7 AF |
3292 | if (cs->interrupt_request & CPU_INTERRUPT_POLL) { |
3293 | cs->interrupt_request &= ~CPU_INTERRUPT_POLL; | |
02e51483 | 3294 | apic_poll_irq(cpu->apic_state); |
5d62c43a | 3295 | } |
259186a7 | 3296 | if (((cs->interrupt_request & CPU_INTERRUPT_HARD) && |
4601f7b0 | 3297 | (env->eflags & IF_MASK)) || |
259186a7 AF |
3298 | (cs->interrupt_request & CPU_INTERRUPT_NMI)) { |
3299 | cs->halted = 0; | |
6792a57b | 3300 | } |
259186a7 | 3301 | if (cs->interrupt_request & CPU_INTERRUPT_SIPI) { |
dd1750d7 | 3302 | kvm_cpu_synchronize_state(cs); |
232fc23b | 3303 | do_cpu_sipi(cpu); |
0af691d7 | 3304 | } |
259186a7 AF |
3305 | if (cs->interrupt_request & CPU_INTERRUPT_TPR) { |
3306 | cs->interrupt_request &= ~CPU_INTERRUPT_TPR; | |
dd1750d7 | 3307 | kvm_cpu_synchronize_state(cs); |
02e51483 | 3308 | apic_handle_tpr_access_report(cpu->apic_state, env->eip, |
d362e757 JK |
3309 | env->tpr_access_type); |
3310 | } | |
0af691d7 | 3311 | |
259186a7 | 3312 | return cs->halted; |
0af691d7 MT |
3313 | } |
3314 | ||
839b5630 | 3315 | static int kvm_handle_halt(X86CPU *cpu) |
05330448 | 3316 | { |
259186a7 | 3317 | CPUState *cs = CPU(cpu); |
839b5630 AF |
3318 | CPUX86State *env = &cpu->env; |
3319 | ||
259186a7 | 3320 | if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) && |
05330448 | 3321 | (env->eflags & IF_MASK)) && |
259186a7 AF |
3322 | !(cs->interrupt_request & CPU_INTERRUPT_NMI)) { |
3323 | cs->halted = 1; | |
bb4ea393 | 3324 | return EXCP_HLT; |
05330448 AL |
3325 | } |
3326 | ||
bb4ea393 | 3327 | return 0; |
05330448 AL |
3328 | } |
3329 | ||
f7575c96 | 3330 | static int kvm_handle_tpr_access(X86CPU *cpu) |
d362e757 | 3331 | { |
f7575c96 AF |
3332 | CPUState *cs = CPU(cpu); |
3333 | struct kvm_run *run = cs->kvm_run; | |
d362e757 | 3334 | |
02e51483 | 3335 | apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip, |
d362e757 JK |
3336 | run->tpr_access.is_write ? TPR_ACCESS_WRITE |
3337 | : TPR_ACCESS_READ); | |
3338 | return 1; | |
3339 | } | |
3340 | ||
f17ec444 | 3341 | int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) |
e22a25c9 | 3342 | { |
38972938 | 3343 | static const uint8_t int3 = 0xcc; |
64bf3f4e | 3344 | |
f17ec444 AF |
3345 | if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || |
3346 | cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) { | |
e22a25c9 | 3347 | return -EINVAL; |
b9bec74b | 3348 | } |
e22a25c9 AL |
3349 | return 0; |
3350 | } | |
3351 | ||
f17ec444 | 3352 | int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) |
e22a25c9 AL |
3353 | { |
3354 | uint8_t int3; | |
3355 | ||
f17ec444 AF |
3356 | if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc || |
3357 | cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) { | |
e22a25c9 | 3358 | return -EINVAL; |
b9bec74b | 3359 | } |
e22a25c9 AL |
3360 | return 0; |
3361 | } | |
3362 | ||
3363 | static struct { | |
3364 | target_ulong addr; | |
3365 | int len; | |
3366 | int type; | |
3367 | } hw_breakpoint[4]; | |
3368 | ||
3369 | static int nb_hw_breakpoint; | |
3370 | ||
3371 | static int find_hw_breakpoint(target_ulong addr, int len, int type) | |
3372 | { | |
3373 | int n; | |
3374 | ||
b9bec74b | 3375 | for (n = 0; n < nb_hw_breakpoint; n++) { |
e22a25c9 | 3376 | if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && |
b9bec74b | 3377 | (hw_breakpoint[n].len == len || len == -1)) { |
e22a25c9 | 3378 | return n; |
b9bec74b JK |
3379 | } |
3380 | } | |
e22a25c9 AL |
3381 | return -1; |
3382 | } | |
3383 | ||
3384 | int kvm_arch_insert_hw_breakpoint(target_ulong addr, | |
3385 | target_ulong len, int type) | |
3386 | { | |
3387 | switch (type) { | |
3388 | case GDB_BREAKPOINT_HW: | |
3389 | len = 1; | |
3390 | break; | |
3391 | case GDB_WATCHPOINT_WRITE: | |
3392 | case GDB_WATCHPOINT_ACCESS: | |
3393 | switch (len) { | |
3394 | case 1: | |
3395 | break; | |
3396 | case 2: | |
3397 | case 4: | |
3398 | case 8: | |
b9bec74b | 3399 | if (addr & (len - 1)) { |
e22a25c9 | 3400 | return -EINVAL; |
b9bec74b | 3401 | } |
e22a25c9 AL |
3402 | break; |
3403 | default: | |
3404 | return -EINVAL; | |
3405 | } | |
3406 | break; | |
3407 | default: | |
3408 | return -ENOSYS; | |
3409 | } | |
3410 | ||
b9bec74b | 3411 | if (nb_hw_breakpoint == 4) { |
e22a25c9 | 3412 | return -ENOBUFS; |
b9bec74b JK |
3413 | } |
3414 | if (find_hw_breakpoint(addr, len, type) >= 0) { | |
e22a25c9 | 3415 | return -EEXIST; |
b9bec74b | 3416 | } |
e22a25c9 AL |
3417 | hw_breakpoint[nb_hw_breakpoint].addr = addr; |
3418 | hw_breakpoint[nb_hw_breakpoint].len = len; | |
3419 | hw_breakpoint[nb_hw_breakpoint].type = type; | |
3420 | nb_hw_breakpoint++; | |
3421 | ||
3422 | return 0; | |
3423 | } | |
3424 | ||
3425 | int kvm_arch_remove_hw_breakpoint(target_ulong addr, | |
3426 | target_ulong len, int type) | |
3427 | { | |
3428 | int n; | |
3429 | ||
3430 | n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type); | |
b9bec74b | 3431 | if (n < 0) { |
e22a25c9 | 3432 | return -ENOENT; |
b9bec74b | 3433 | } |
e22a25c9 AL |
3434 | nb_hw_breakpoint--; |
3435 | hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; | |
3436 | ||
3437 | return 0; | |
3438 | } | |
3439 | ||
3440 | void kvm_arch_remove_all_hw_breakpoints(void) | |
3441 | { | |
3442 | nb_hw_breakpoint = 0; | |
3443 | } | |
3444 | ||
3445 | static CPUWatchpoint hw_watchpoint; | |
3446 | ||
a60f24b5 | 3447 | static int kvm_handle_debug(X86CPU *cpu, |
48405526 | 3448 | struct kvm_debug_exit_arch *arch_info) |
e22a25c9 | 3449 | { |
ed2803da | 3450 | CPUState *cs = CPU(cpu); |
a60f24b5 | 3451 | CPUX86State *env = &cpu->env; |
f2574737 | 3452 | int ret = 0; |
e22a25c9 AL |
3453 | int n; |
3454 | ||
3455 | if (arch_info->exception == 1) { | |
3456 | if (arch_info->dr6 & (1 << 14)) { | |
ed2803da | 3457 | if (cs->singlestep_enabled) { |
f2574737 | 3458 | ret = EXCP_DEBUG; |
b9bec74b | 3459 | } |
e22a25c9 | 3460 | } else { |
b9bec74b JK |
3461 | for (n = 0; n < 4; n++) { |
3462 | if (arch_info->dr6 & (1 << n)) { | |
e22a25c9 AL |
3463 | switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { |
3464 | case 0x0: | |
f2574737 | 3465 | ret = EXCP_DEBUG; |
e22a25c9 AL |
3466 | break; |
3467 | case 0x1: | |
f2574737 | 3468 | ret = EXCP_DEBUG; |
ff4700b0 | 3469 | cs->watchpoint_hit = &hw_watchpoint; |
e22a25c9 AL |
3470 | hw_watchpoint.vaddr = hw_breakpoint[n].addr; |
3471 | hw_watchpoint.flags = BP_MEM_WRITE; | |
3472 | break; | |
3473 | case 0x3: | |
f2574737 | 3474 | ret = EXCP_DEBUG; |
ff4700b0 | 3475 | cs->watchpoint_hit = &hw_watchpoint; |
e22a25c9 AL |
3476 | hw_watchpoint.vaddr = hw_breakpoint[n].addr; |
3477 | hw_watchpoint.flags = BP_MEM_ACCESS; | |
3478 | break; | |
3479 | } | |
b9bec74b JK |
3480 | } |
3481 | } | |
e22a25c9 | 3482 | } |
ff4700b0 | 3483 | } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) { |
f2574737 | 3484 | ret = EXCP_DEBUG; |
b9bec74b | 3485 | } |
f2574737 | 3486 | if (ret == 0) { |
ff4700b0 | 3487 | cpu_synchronize_state(cs); |
48405526 | 3488 | assert(env->exception_injected == -1); |
b0b1d690 | 3489 | |
f2574737 | 3490 | /* pass to guest */ |
48405526 BS |
3491 | env->exception_injected = arch_info->exception; |
3492 | env->has_error_code = 0; | |
b0b1d690 | 3493 | } |
e22a25c9 | 3494 | |
f2574737 | 3495 | return ret; |
e22a25c9 AL |
3496 | } |
3497 | ||
20d695a9 | 3498 | void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) |
e22a25c9 AL |
3499 | { |
3500 | const uint8_t type_code[] = { | |
3501 | [GDB_BREAKPOINT_HW] = 0x0, | |
3502 | [GDB_WATCHPOINT_WRITE] = 0x1, | |
3503 | [GDB_WATCHPOINT_ACCESS] = 0x3 | |
3504 | }; | |
3505 | const uint8_t len_code[] = { | |
3506 | [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 | |
3507 | }; | |
3508 | int n; | |
3509 | ||
a60f24b5 | 3510 | if (kvm_sw_breakpoints_active(cpu)) { |
e22a25c9 | 3511 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; |
b9bec74b | 3512 | } |
e22a25c9 AL |
3513 | if (nb_hw_breakpoint > 0) { |
3514 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; | |
3515 | dbg->arch.debugreg[7] = 0x0600; | |
3516 | for (n = 0; n < nb_hw_breakpoint; n++) { | |
3517 | dbg->arch.debugreg[n] = hw_breakpoint[n].addr; | |
3518 | dbg->arch.debugreg[7] |= (2 << (n * 2)) | | |
3519 | (type_code[hw_breakpoint[n].type] << (16 + n*4)) | | |
95c077c9 | 3520 | ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4)); |
e22a25c9 AL |
3521 | } |
3522 | } | |
3523 | } | |
4513d923 | 3524 | |
2a4dac83 JK |
3525 | static bool host_supports_vmx(void) |
3526 | { | |
3527 | uint32_t ecx, unused; | |
3528 | ||
3529 | host_cpuid(1, 0, &unused, &unused, &ecx, &unused); | |
3530 | return ecx & CPUID_EXT_VMX; | |
3531 | } | |
3532 | ||
3533 | #define VMX_INVALID_GUEST_STATE 0x80000021 | |
3534 | ||
20d695a9 | 3535 | int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) |
2a4dac83 | 3536 | { |
20d695a9 | 3537 | X86CPU *cpu = X86_CPU(cs); |
2a4dac83 JK |
3538 | uint64_t code; |
3539 | int ret; | |
3540 | ||
3541 | switch (run->exit_reason) { | |
3542 | case KVM_EXIT_HLT: | |
3543 | DPRINTF("handle_hlt\n"); | |
4b8523ee | 3544 | qemu_mutex_lock_iothread(); |
839b5630 | 3545 | ret = kvm_handle_halt(cpu); |
4b8523ee | 3546 | qemu_mutex_unlock_iothread(); |
2a4dac83 JK |
3547 | break; |
3548 | case KVM_EXIT_SET_TPR: | |
3549 | ret = 0; | |
3550 | break; | |
d362e757 | 3551 | case KVM_EXIT_TPR_ACCESS: |
4b8523ee | 3552 | qemu_mutex_lock_iothread(); |
f7575c96 | 3553 | ret = kvm_handle_tpr_access(cpu); |
4b8523ee | 3554 | qemu_mutex_unlock_iothread(); |
d362e757 | 3555 | break; |
2a4dac83 JK |
3556 | case KVM_EXIT_FAIL_ENTRY: |
3557 | code = run->fail_entry.hardware_entry_failure_reason; | |
3558 | fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n", | |
3559 | code); | |
3560 | if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) { | |
3561 | fprintf(stderr, | |
12619721 | 3562 | "\nIf you're running a guest on an Intel machine without " |
2a4dac83 JK |
3563 | "unrestricted mode\n" |
3564 | "support, the failure can be most likely due to the guest " | |
3565 | "entering an invalid\n" | |
3566 | "state for Intel VT. For example, the guest maybe running " | |
3567 | "in big real mode\n" | |
3568 | "which is not supported on less recent Intel processors." | |
3569 | "\n\n"); | |
3570 | } | |
3571 | ret = -1; | |
3572 | break; | |
3573 | case KVM_EXIT_EXCEPTION: | |
3574 | fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n", | |
3575 | run->ex.exception, run->ex.error_code); | |
3576 | ret = -1; | |
3577 | break; | |
f2574737 JK |
3578 | case KVM_EXIT_DEBUG: |
3579 | DPRINTF("kvm_exit_debug\n"); | |
4b8523ee | 3580 | qemu_mutex_lock_iothread(); |
a60f24b5 | 3581 | ret = kvm_handle_debug(cpu, &run->debug.arch); |
4b8523ee | 3582 | qemu_mutex_unlock_iothread(); |
f2574737 | 3583 | break; |
50efe82c AS |
3584 | case KVM_EXIT_HYPERV: |
3585 | ret = kvm_hv_handle_exit(cpu, &run->hyperv); | |
3586 | break; | |
15eafc2e PB |
3587 | case KVM_EXIT_IOAPIC_EOI: |
3588 | ioapic_eoi_broadcast(run->eoi.vector); | |
3589 | ret = 0; | |
3590 | break; | |
2a4dac83 JK |
3591 | default: |
3592 | fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); | |
3593 | ret = -1; | |
3594 | break; | |
3595 | } | |
3596 | ||
3597 | return ret; | |
3598 | } | |
3599 | ||
20d695a9 | 3600 | bool kvm_arch_stop_on_emulation_error(CPUState *cs) |
4513d923 | 3601 | { |
20d695a9 AF |
3602 | X86CPU *cpu = X86_CPU(cs); |
3603 | CPUX86State *env = &cpu->env; | |
3604 | ||
dd1750d7 | 3605 | kvm_cpu_synchronize_state(cs); |
b9bec74b JK |
3606 | return !(env->cr[0] & CR0_PE_MASK) || |
3607 | ((env->segs[R_CS].selector & 3) != 3); | |
4513d923 | 3608 | } |
84b058d7 JK |
3609 | |
3610 | void kvm_arch_init_irq_routing(KVMState *s) | |
3611 | { | |
3612 | if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) { | |
3613 | /* If kernel can't do irq routing, interrupt source | |
3614 | * override 0->2 cannot be set up as required by HPET. | |
3615 | * So we have to disable it. | |
3616 | */ | |
3617 | no_hpet = 1; | |
3618 | } | |
cc7e0ddf | 3619 | /* We know at this point that we're using the in-kernel |
614e41bc | 3620 | * irqchip, so we can use irqfds, and on x86 we know |
f3e1bed8 | 3621 | * we can use msi via irqfd and GSI routing. |
cc7e0ddf | 3622 | */ |
614e41bc | 3623 | kvm_msi_via_irqfd_allowed = true; |
f3e1bed8 | 3624 | kvm_gsi_routing_allowed = true; |
15eafc2e PB |
3625 | |
3626 | if (kvm_irqchip_is_split()) { | |
3627 | int i; | |
3628 | ||
3629 | /* If the ioapic is in QEMU and the lapics are in KVM, reserve | |
3630 | MSI routes for signaling interrupts to the local apics. */ | |
3631 | for (i = 0; i < IOAPIC_NUM_PINS; i++) { | |
d1f6af6a | 3632 | if (kvm_irqchip_add_msi_route(s, 0, NULL) < 0) { |
15eafc2e PB |
3633 | error_report("Could not enable split IRQ mode."); |
3634 | exit(1); | |
3635 | } | |
3636 | } | |
3637 | } | |
3638 | } | |
3639 | ||
3640 | int kvm_arch_irqchip_create(MachineState *ms, KVMState *s) | |
3641 | { | |
3642 | int ret; | |
3643 | if (machine_kernel_irqchip_split(ms)) { | |
3644 | ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24); | |
3645 | if (ret) { | |
df3c286c | 3646 | error_report("Could not enable split irqchip mode: %s", |
15eafc2e PB |
3647 | strerror(-ret)); |
3648 | exit(1); | |
3649 | } else { | |
3650 | DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n"); | |
3651 | kvm_split_irqchip = true; | |
3652 | return 1; | |
3653 | } | |
3654 | } else { | |
3655 | return 0; | |
3656 | } | |
84b058d7 | 3657 | } |
b139bd30 JK |
3658 | |
3659 | /* Classic KVM device assignment interface. Will remain x86 only. */ | |
3660 | int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr, | |
3661 | uint32_t flags, uint32_t *dev_id) | |
3662 | { | |
3663 | struct kvm_assigned_pci_dev dev_data = { | |
3664 | .segnr = dev_addr->domain, | |
3665 | .busnr = dev_addr->bus, | |
3666 | .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function), | |
3667 | .flags = flags, | |
3668 | }; | |
3669 | int ret; | |
3670 | ||
3671 | dev_data.assigned_dev_id = | |
3672 | (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn; | |
3673 | ||
3674 | ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data); | |
3675 | if (ret < 0) { | |
3676 | return ret; | |
3677 | } | |
3678 | ||
3679 | *dev_id = dev_data.assigned_dev_id; | |
3680 | ||
3681 | return 0; | |
3682 | } | |
3683 | ||
3684 | int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id) | |
3685 | { | |
3686 | struct kvm_assigned_pci_dev dev_data = { | |
3687 | .assigned_dev_id = dev_id, | |
3688 | }; | |
3689 | ||
3690 | return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data); | |
3691 | } | |
3692 | ||
3693 | static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id, | |
3694 | uint32_t irq_type, uint32_t guest_irq) | |
3695 | { | |
3696 | struct kvm_assigned_irq assigned_irq = { | |
3697 | .assigned_dev_id = dev_id, | |
3698 | .guest_irq = guest_irq, | |
3699 | .flags = irq_type, | |
3700 | }; | |
3701 | ||
3702 | if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) { | |
3703 | return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq); | |
3704 | } else { | |
3705 | return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq); | |
3706 | } | |
3707 | } | |
3708 | ||
3709 | int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi, | |
3710 | uint32_t guest_irq) | |
3711 | { | |
3712 | uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX | | |
3713 | (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX); | |
3714 | ||
3715 | return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq); | |
3716 | } | |
3717 | ||
3718 | int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked) | |
3719 | { | |
3720 | struct kvm_assigned_pci_dev dev_data = { | |
3721 | .assigned_dev_id = dev_id, | |
3722 | .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0, | |
3723 | }; | |
3724 | ||
3725 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data); | |
3726 | } | |
3727 | ||
3728 | static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id, | |
3729 | uint32_t type) | |
3730 | { | |
3731 | struct kvm_assigned_irq assigned_irq = { | |
3732 | .assigned_dev_id = dev_id, | |
3733 | .flags = type, | |
3734 | }; | |
3735 | ||
3736 | return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq); | |
3737 | } | |
3738 | ||
3739 | int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi) | |
3740 | { | |
3741 | return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX | | |
3742 | (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX)); | |
3743 | } | |
3744 | ||
3745 | int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq) | |
3746 | { | |
3747 | return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI | | |
3748 | KVM_DEV_IRQ_GUEST_MSI, virq); | |
3749 | } | |
3750 | ||
3751 | int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id) | |
3752 | { | |
3753 | return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI | | |
3754 | KVM_DEV_IRQ_HOST_MSI); | |
3755 | } | |
3756 | ||
3757 | bool kvm_device_msix_supported(KVMState *s) | |
3758 | { | |
3759 | /* The kernel lacks a corresponding KVM_CAP, so we probe by calling | |
3760 | * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */ | |
3761 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT; | |
3762 | } | |
3763 | ||
3764 | int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id, | |
3765 | uint32_t nr_vectors) | |
3766 | { | |
3767 | struct kvm_assigned_msix_nr msix_nr = { | |
3768 | .assigned_dev_id = dev_id, | |
3769 | .entry_nr = nr_vectors, | |
3770 | }; | |
3771 | ||
3772 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr); | |
3773 | } | |
3774 | ||
3775 | int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector, | |
3776 | int virq) | |
3777 | { | |
3778 | struct kvm_assigned_msix_entry msix_entry = { | |
3779 | .assigned_dev_id = dev_id, | |
3780 | .gsi = virq, | |
3781 | .entry = vector, | |
3782 | }; | |
3783 | ||
3784 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry); | |
3785 | } | |
3786 | ||
3787 | int kvm_device_msix_assign(KVMState *s, uint32_t dev_id) | |
3788 | { | |
3789 | return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX | | |
3790 | KVM_DEV_IRQ_GUEST_MSIX, 0); | |
3791 | } | |
3792 | ||
3793 | int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id) | |
3794 | { | |
3795 | return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX | | |
3796 | KVM_DEV_IRQ_HOST_MSIX); | |
3797 | } | |
9e03a040 FB |
3798 | |
3799 | int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, | |
dc9f06ca | 3800 | uint64_t address, uint32_t data, PCIDevice *dev) |
9e03a040 | 3801 | { |
8b5ed7df PX |
3802 | X86IOMMUState *iommu = x86_iommu_get_default(); |
3803 | ||
3804 | if (iommu) { | |
3805 | int ret; | |
3806 | MSIMessage src, dst; | |
3807 | X86IOMMUClass *class = X86_IOMMU_GET_CLASS(iommu); | |
3808 | ||
0ea1472d JK |
3809 | if (!class->int_remap) { |
3810 | return 0; | |
3811 | } | |
3812 | ||
8b5ed7df PX |
3813 | src.address = route->u.msi.address_hi; |
3814 | src.address <<= VTD_MSI_ADDR_HI_SHIFT; | |
3815 | src.address |= route->u.msi.address_lo; | |
3816 | src.data = route->u.msi.data; | |
3817 | ||
3818 | ret = class->int_remap(iommu, &src, &dst, dev ? \ | |
3819 | pci_requester_id(dev) : \ | |
3820 | X86_IOMMU_SID_INVALID); | |
3821 | if (ret) { | |
3822 | trace_kvm_x86_fixup_msi_error(route->gsi); | |
3823 | return 1; | |
3824 | } | |
3825 | ||
3826 | route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT; | |
3827 | route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK; | |
3828 | route->u.msi.data = dst.data; | |
3829 | } | |
3830 | ||
9e03a040 FB |
3831 | return 0; |
3832 | } | |
1850b6b7 | 3833 | |
38d87493 PX |
3834 | typedef struct MSIRouteEntry MSIRouteEntry; |
3835 | ||
3836 | struct MSIRouteEntry { | |
3837 | PCIDevice *dev; /* Device pointer */ | |
3838 | int vector; /* MSI/MSIX vector index */ | |
3839 | int virq; /* Virtual IRQ index */ | |
3840 | QLIST_ENTRY(MSIRouteEntry) list; | |
3841 | }; | |
3842 | ||
3843 | /* List of used GSI routes */ | |
3844 | static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \ | |
3845 | QLIST_HEAD_INITIALIZER(msi_route_list); | |
3846 | ||
e1d4fb2d PX |
3847 | static void kvm_update_msi_routes_all(void *private, bool global, |
3848 | uint32_t index, uint32_t mask) | |
3849 | { | |
3850 | int cnt = 0; | |
3851 | MSIRouteEntry *entry; | |
3852 | MSIMessage msg; | |
fd563564 PX |
3853 | PCIDevice *dev; |
3854 | ||
e1d4fb2d PX |
3855 | /* TODO: explicit route update */ |
3856 | QLIST_FOREACH(entry, &msi_route_list, list) { | |
3857 | cnt++; | |
fd563564 PX |
3858 | dev = entry->dev; |
3859 | if (!msix_enabled(dev) && !msi_enabled(dev)) { | |
3860 | continue; | |
3861 | } | |
3862 | msg = pci_get_msi_message(dev, entry->vector); | |
3863 | kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev); | |
e1d4fb2d | 3864 | } |
3f1fea0f | 3865 | kvm_irqchip_commit_routes(kvm_state); |
e1d4fb2d PX |
3866 | trace_kvm_x86_update_msi_routes(cnt); |
3867 | } | |
3868 | ||
38d87493 PX |
3869 | int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, |
3870 | int vector, PCIDevice *dev) | |
3871 | { | |
e1d4fb2d | 3872 | static bool notify_list_inited = false; |
38d87493 PX |
3873 | MSIRouteEntry *entry; |
3874 | ||
3875 | if (!dev) { | |
3876 | /* These are (possibly) IOAPIC routes only used for split | |
3877 | * kernel irqchip mode, while what we are housekeeping are | |
3878 | * PCI devices only. */ | |
3879 | return 0; | |
3880 | } | |
3881 | ||
3882 | entry = g_new0(MSIRouteEntry, 1); | |
3883 | entry->dev = dev; | |
3884 | entry->vector = vector; | |
3885 | entry->virq = route->gsi; | |
3886 | QLIST_INSERT_HEAD(&msi_route_list, entry, list); | |
3887 | ||
3888 | trace_kvm_x86_add_msi_route(route->gsi); | |
e1d4fb2d PX |
3889 | |
3890 | if (!notify_list_inited) { | |
3891 | /* For the first time we do add route, add ourselves into | |
3892 | * IOMMU's IEC notify list if needed. */ | |
3893 | X86IOMMUState *iommu = x86_iommu_get_default(); | |
3894 | if (iommu) { | |
3895 | x86_iommu_iec_register_notifier(iommu, | |
3896 | kvm_update_msi_routes_all, | |
3897 | NULL); | |
3898 | } | |
3899 | notify_list_inited = true; | |
3900 | } | |
38d87493 PX |
3901 | return 0; |
3902 | } | |
3903 | ||
3904 | int kvm_arch_release_virq_post(int virq) | |
3905 | { | |
3906 | MSIRouteEntry *entry, *next; | |
3907 | QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) { | |
3908 | if (entry->virq == virq) { | |
3909 | trace_kvm_x86_remove_msi_route(virq); | |
3910 | QLIST_REMOVE(entry, list); | |
01960e6d | 3911 | g_free(entry); |
38d87493 PX |
3912 | break; |
3913 | } | |
3914 | } | |
9e03a040 FB |
3915 | return 0; |
3916 | } | |
1850b6b7 EA |
3917 | |
3918 | int kvm_arch_msi_data_to_gsi(uint32_t data) | |
3919 | { | |
3920 | abort(); | |
3921 | } |