]>
Commit | Line | Data |
---|---|---|
54936004 | 1 | /* |
5b6dd868 | 2 | * Virtual page mapping |
5fafdf24 | 3 | * |
54936004 FB |
4 | * Copyright (c) 2003 Fabrice Bellard |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
8167ee88 | 17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
54936004 | 18 | */ |
7b31bbc2 | 19 | #include "qemu/osdep.h" |
da34e65c | 20 | #include "qapi/error.h" |
777872e5 | 21 | #ifndef _WIN32 |
d5a8f07c | 22 | #endif |
54936004 | 23 | |
f348b6d1 | 24 | #include "qemu/cutils.h" |
6180a181 | 25 | #include "cpu.h" |
63c91552 | 26 | #include "exec/exec-all.h" |
b67d9a52 | 27 | #include "tcg.h" |
741da0d3 | 28 | #include "hw/qdev-core.h" |
4485bd26 | 29 | #if !defined(CONFIG_USER_ONLY) |
47c8ca53 | 30 | #include "hw/boards.h" |
33c11879 | 31 | #include "hw/xen/xen.h" |
4485bd26 | 32 | #endif |
9c17d615 | 33 | #include "sysemu/kvm.h" |
2ff3de68 | 34 | #include "sysemu/sysemu.h" |
1de7afc9 PB |
35 | #include "qemu/timer.h" |
36 | #include "qemu/config-file.h" | |
75a34036 | 37 | #include "qemu/error-report.h" |
53a5960a | 38 | #if defined(CONFIG_USER_ONLY) |
a9c94277 | 39 | #include "qemu.h" |
432d268c | 40 | #else /* !CONFIG_USER_ONLY */ |
741da0d3 PB |
41 | #include "hw/hw.h" |
42 | #include "exec/memory.h" | |
df43d49c | 43 | #include "exec/ioport.h" |
741da0d3 | 44 | #include "sysemu/dma.h" |
9c607668 | 45 | #include "sysemu/numa.h" |
79ca7a1b | 46 | #include "sysemu/hw_accel.h" |
741da0d3 | 47 | #include "exec/address-spaces.h" |
9c17d615 | 48 | #include "sysemu/xen-mapcache.h" |
0ab8ed18 | 49 | #include "trace-root.h" |
d3a5038c | 50 | |
e2fa71f5 DDAG |
51 | #ifdef CONFIG_FALLOCATE_PUNCH_HOLE |
52 | #include <fcntl.h> | |
53 | #include <linux/falloc.h> | |
54 | #endif | |
55 | ||
53a5960a | 56 | #endif |
0d6d3c87 | 57 | #include "exec/cpu-all.h" |
0dc3f44a | 58 | #include "qemu/rcu_queue.h" |
4840f10e | 59 | #include "qemu/main-loop.h" |
5b6dd868 | 60 | #include "translate-all.h" |
7615936e | 61 | #include "sysemu/replay.h" |
0cac1b66 | 62 | |
022c62cb | 63 | #include "exec/memory-internal.h" |
220c3ebd | 64 | #include "exec/ram_addr.h" |
508127e2 | 65 | #include "exec/log.h" |
67d95c15 | 66 | |
9dfeca7c BR |
67 | #include "migration/vmstate.h" |
68 | ||
b35ba30f | 69 | #include "qemu/range.h" |
794e8f30 MT |
70 | #ifndef _WIN32 |
71 | #include "qemu/mmap-alloc.h" | |
72 | #endif | |
b35ba30f | 73 | |
db7b5426 | 74 | //#define DEBUG_SUBPAGE |
1196be37 | 75 | |
e2eef170 | 76 | #if !defined(CONFIG_USER_ONLY) |
0dc3f44a MD |
77 | /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes |
78 | * are protected by the ramlist lock. | |
79 | */ | |
0d53d9fe | 80 | RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; |
62152b8a AK |
81 | |
82 | static MemoryRegion *system_memory; | |
309cb471 | 83 | static MemoryRegion *system_io; |
62152b8a | 84 | |
f6790af6 AK |
85 | AddressSpace address_space_io; |
86 | AddressSpace address_space_memory; | |
2673a5da | 87 | |
0844e007 | 88 | MemoryRegion io_mem_rom, io_mem_notdirty; |
acc9d80b | 89 | static MemoryRegion io_mem_unassigned; |
0e0df1e2 | 90 | |
7bd4f430 PB |
91 | /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ |
92 | #define RAM_PREALLOC (1 << 0) | |
93 | ||
dbcb8981 PB |
94 | /* RAM is mmap-ed with MAP_SHARED */ |
95 | #define RAM_SHARED (1 << 1) | |
96 | ||
62be4e3a MT |
97 | /* Only a portion of RAM (used_length) is actually used, and migrated. |
98 | * This used_length size can change across reboots. | |
99 | */ | |
100 | #define RAM_RESIZEABLE (1 << 2) | |
101 | ||
e2eef170 | 102 | #endif |
9fa3e853 | 103 | |
20bccb82 PM |
104 | #ifdef TARGET_PAGE_BITS_VARY |
105 | int target_page_bits; | |
106 | bool target_page_bits_decided; | |
107 | #endif | |
108 | ||
bdc44640 | 109 | struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus); |
6a00d601 FB |
110 | /* current CPU in the current thread. It is only valid inside |
111 | cpu_exec() */ | |
f240eb6f | 112 | __thread CPUState *current_cpu; |
2e70f6ef | 113 | /* 0 = Do not count executed instructions. |
bf20dc07 | 114 | 1 = Precise instruction counting. |
2e70f6ef | 115 | 2 = Adaptive rate instruction counting. */ |
5708fc66 | 116 | int use_icount; |
6a00d601 | 117 | |
20bccb82 PM |
118 | bool set_preferred_target_page_bits(int bits) |
119 | { | |
120 | /* The target page size is the lowest common denominator for all | |
121 | * the CPUs in the system, so we can only make it smaller, never | |
122 | * larger. And we can't make it smaller once we've committed to | |
123 | * a particular size. | |
124 | */ | |
125 | #ifdef TARGET_PAGE_BITS_VARY | |
126 | assert(bits >= TARGET_PAGE_BITS_MIN); | |
127 | if (target_page_bits == 0 || target_page_bits > bits) { | |
128 | if (target_page_bits_decided) { | |
129 | return false; | |
130 | } | |
131 | target_page_bits = bits; | |
132 | } | |
133 | #endif | |
134 | return true; | |
135 | } | |
136 | ||
e2eef170 | 137 | #if !defined(CONFIG_USER_ONLY) |
4346ae3e | 138 | |
20bccb82 PM |
139 | static void finalize_target_page_bits(void) |
140 | { | |
141 | #ifdef TARGET_PAGE_BITS_VARY | |
142 | if (target_page_bits == 0) { | |
143 | target_page_bits = TARGET_PAGE_BITS_MIN; | |
144 | } | |
145 | target_page_bits_decided = true; | |
146 | #endif | |
147 | } | |
148 | ||
1db8abb1 PB |
149 | typedef struct PhysPageEntry PhysPageEntry; |
150 | ||
151 | struct PhysPageEntry { | |
9736e55b | 152 | /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ |
8b795765 | 153 | uint32_t skip : 6; |
9736e55b | 154 | /* index into phys_sections (!skip) or phys_map_nodes (skip) */ |
8b795765 | 155 | uint32_t ptr : 26; |
1db8abb1 PB |
156 | }; |
157 | ||
8b795765 MT |
158 | #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) |
159 | ||
03f49957 | 160 | /* Size of the L2 (and L3, etc) page tables. */ |
57271d63 | 161 | #define ADDR_SPACE_BITS 64 |
03f49957 | 162 | |
026736ce | 163 | #define P_L2_BITS 9 |
03f49957 PB |
164 | #define P_L2_SIZE (1 << P_L2_BITS) |
165 | ||
166 | #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) | |
167 | ||
168 | typedef PhysPageEntry Node[P_L2_SIZE]; | |
0475d94f | 169 | |
53cb28cb | 170 | typedef struct PhysPageMap { |
79e2b9ae PB |
171 | struct rcu_head rcu; |
172 | ||
53cb28cb MA |
173 | unsigned sections_nb; |
174 | unsigned sections_nb_alloc; | |
175 | unsigned nodes_nb; | |
176 | unsigned nodes_nb_alloc; | |
177 | Node *nodes; | |
178 | MemoryRegionSection *sections; | |
179 | } PhysPageMap; | |
180 | ||
1db8abb1 | 181 | struct AddressSpaceDispatch { |
79e2b9ae PB |
182 | struct rcu_head rcu; |
183 | ||
729633c2 | 184 | MemoryRegionSection *mru_section; |
1db8abb1 PB |
185 | /* This is a multi-level map on the physical address space. |
186 | * The bottom level has pointers to MemoryRegionSections. | |
187 | */ | |
188 | PhysPageEntry phys_map; | |
53cb28cb | 189 | PhysPageMap map; |
acc9d80b | 190 | AddressSpace *as; |
1db8abb1 PB |
191 | }; |
192 | ||
90260c6c JK |
193 | #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) |
194 | typedef struct subpage_t { | |
195 | MemoryRegion iomem; | |
acc9d80b | 196 | AddressSpace *as; |
90260c6c | 197 | hwaddr base; |
2615fabd | 198 | uint16_t sub_section[]; |
90260c6c JK |
199 | } subpage_t; |
200 | ||
b41aac4f LPF |
201 | #define PHYS_SECTION_UNASSIGNED 0 |
202 | #define PHYS_SECTION_NOTDIRTY 1 | |
203 | #define PHYS_SECTION_ROM 2 | |
204 | #define PHYS_SECTION_WATCH 3 | |
5312bd8b | 205 | |
e2eef170 | 206 | static void io_mem_init(void); |
62152b8a | 207 | static void memory_map_init(void); |
09daed84 | 208 | static void tcg_commit(MemoryListener *listener); |
e2eef170 | 209 | |
1ec9b909 | 210 | static MemoryRegion io_mem_watch; |
32857f4d PM |
211 | |
212 | /** | |
213 | * CPUAddressSpace: all the information a CPU needs about an AddressSpace | |
214 | * @cpu: the CPU whose AddressSpace this is | |
215 | * @as: the AddressSpace itself | |
216 | * @memory_dispatch: its dispatch pointer (cached, RCU protected) | |
217 | * @tcg_as_listener: listener for tracking changes to the AddressSpace | |
218 | */ | |
219 | struct CPUAddressSpace { | |
220 | CPUState *cpu; | |
221 | AddressSpace *as; | |
222 | struct AddressSpaceDispatch *memory_dispatch; | |
223 | MemoryListener tcg_as_listener; | |
224 | }; | |
225 | ||
6658ffb8 | 226 | #endif |
fd6ce8f6 | 227 | |
6d9a1304 | 228 | #if !defined(CONFIG_USER_ONLY) |
d6f2ea22 | 229 | |
53cb28cb | 230 | static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) |
d6f2ea22 | 231 | { |
101420b8 | 232 | static unsigned alloc_hint = 16; |
53cb28cb | 233 | if (map->nodes_nb + nodes > map->nodes_nb_alloc) { |
101420b8 | 234 | map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint); |
53cb28cb MA |
235 | map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes); |
236 | map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); | |
101420b8 | 237 | alloc_hint = map->nodes_nb_alloc; |
d6f2ea22 | 238 | } |
f7bf5461 AK |
239 | } |
240 | ||
db94604b | 241 | static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf) |
f7bf5461 AK |
242 | { |
243 | unsigned i; | |
8b795765 | 244 | uint32_t ret; |
db94604b PB |
245 | PhysPageEntry e; |
246 | PhysPageEntry *p; | |
f7bf5461 | 247 | |
53cb28cb | 248 | ret = map->nodes_nb++; |
db94604b | 249 | p = map->nodes[ret]; |
f7bf5461 | 250 | assert(ret != PHYS_MAP_NODE_NIL); |
53cb28cb | 251 | assert(ret != map->nodes_nb_alloc); |
db94604b PB |
252 | |
253 | e.skip = leaf ? 0 : 1; | |
254 | e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL; | |
03f49957 | 255 | for (i = 0; i < P_L2_SIZE; ++i) { |
db94604b | 256 | memcpy(&p[i], &e, sizeof(e)); |
d6f2ea22 | 257 | } |
f7bf5461 | 258 | return ret; |
d6f2ea22 AK |
259 | } |
260 | ||
53cb28cb MA |
261 | static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, |
262 | hwaddr *index, hwaddr *nb, uint16_t leaf, | |
2999097b | 263 | int level) |
f7bf5461 AK |
264 | { |
265 | PhysPageEntry *p; | |
03f49957 | 266 | hwaddr step = (hwaddr)1 << (level * P_L2_BITS); |
108c49b8 | 267 | |
9736e55b | 268 | if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { |
db94604b | 269 | lp->ptr = phys_map_node_alloc(map, level == 0); |
92e873b9 | 270 | } |
db94604b | 271 | p = map->nodes[lp->ptr]; |
03f49957 | 272 | lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; |
f7bf5461 | 273 | |
03f49957 | 274 | while (*nb && lp < &p[P_L2_SIZE]) { |
07f07b31 | 275 | if ((*index & (step - 1)) == 0 && *nb >= step) { |
9736e55b | 276 | lp->skip = 0; |
c19e8800 | 277 | lp->ptr = leaf; |
07f07b31 AK |
278 | *index += step; |
279 | *nb -= step; | |
2999097b | 280 | } else { |
53cb28cb | 281 | phys_page_set_level(map, lp, index, nb, leaf, level - 1); |
2999097b AK |
282 | } |
283 | ++lp; | |
f7bf5461 AK |
284 | } |
285 | } | |
286 | ||
ac1970fb | 287 | static void phys_page_set(AddressSpaceDispatch *d, |
a8170e5e | 288 | hwaddr index, hwaddr nb, |
2999097b | 289 | uint16_t leaf) |
f7bf5461 | 290 | { |
2999097b | 291 | /* Wildly overreserve - it doesn't matter much. */ |
53cb28cb | 292 | phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); |
5cd2c5b6 | 293 | |
53cb28cb | 294 | phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); |
92e873b9 FB |
295 | } |
296 | ||
b35ba30f MT |
297 | /* Compact a non leaf page entry. Simply detect that the entry has a single child, |
298 | * and update our entry so we can skip it and go directly to the destination. | |
299 | */ | |
efee678d | 300 | static void phys_page_compact(PhysPageEntry *lp, Node *nodes) |
b35ba30f MT |
301 | { |
302 | unsigned valid_ptr = P_L2_SIZE; | |
303 | int valid = 0; | |
304 | PhysPageEntry *p; | |
305 | int i; | |
306 | ||
307 | if (lp->ptr == PHYS_MAP_NODE_NIL) { | |
308 | return; | |
309 | } | |
310 | ||
311 | p = nodes[lp->ptr]; | |
312 | for (i = 0; i < P_L2_SIZE; i++) { | |
313 | if (p[i].ptr == PHYS_MAP_NODE_NIL) { | |
314 | continue; | |
315 | } | |
316 | ||
317 | valid_ptr = i; | |
318 | valid++; | |
319 | if (p[i].skip) { | |
efee678d | 320 | phys_page_compact(&p[i], nodes); |
b35ba30f MT |
321 | } |
322 | } | |
323 | ||
324 | /* We can only compress if there's only one child. */ | |
325 | if (valid != 1) { | |
326 | return; | |
327 | } | |
328 | ||
329 | assert(valid_ptr < P_L2_SIZE); | |
330 | ||
331 | /* Don't compress if it won't fit in the # of bits we have. */ | |
332 | if (lp->skip + p[valid_ptr].skip >= (1 << 3)) { | |
333 | return; | |
334 | } | |
335 | ||
336 | lp->ptr = p[valid_ptr].ptr; | |
337 | if (!p[valid_ptr].skip) { | |
338 | /* If our only child is a leaf, make this a leaf. */ | |
339 | /* By design, we should have made this node a leaf to begin with so we | |
340 | * should never reach here. | |
341 | * But since it's so simple to handle this, let's do it just in case we | |
342 | * change this rule. | |
343 | */ | |
344 | lp->skip = 0; | |
345 | } else { | |
346 | lp->skip += p[valid_ptr].skip; | |
347 | } | |
348 | } | |
349 | ||
350 | static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb) | |
351 | { | |
b35ba30f | 352 | if (d->phys_map.skip) { |
efee678d | 353 | phys_page_compact(&d->phys_map, d->map.nodes); |
b35ba30f MT |
354 | } |
355 | } | |
356 | ||
29cb533d FZ |
357 | static inline bool section_covers_addr(const MemoryRegionSection *section, |
358 | hwaddr addr) | |
359 | { | |
360 | /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means | |
361 | * the section must cover the entire address space. | |
362 | */ | |
258dfaaa | 363 | return int128_gethi(section->size) || |
29cb533d | 364 | range_covers_byte(section->offset_within_address_space, |
258dfaaa | 365 | int128_getlo(section->size), addr); |
29cb533d FZ |
366 | } |
367 | ||
97115a8d | 368 | static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr, |
9affd6fc | 369 | Node *nodes, MemoryRegionSection *sections) |
92e873b9 | 370 | { |
31ab2b4a | 371 | PhysPageEntry *p; |
97115a8d | 372 | hwaddr index = addr >> TARGET_PAGE_BITS; |
31ab2b4a | 373 | int i; |
f1f6e3b8 | 374 | |
9736e55b | 375 | for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { |
c19e8800 | 376 | if (lp.ptr == PHYS_MAP_NODE_NIL) { |
9affd6fc | 377 | return §ions[PHYS_SECTION_UNASSIGNED]; |
31ab2b4a | 378 | } |
9affd6fc | 379 | p = nodes[lp.ptr]; |
03f49957 | 380 | lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; |
5312bd8b | 381 | } |
b35ba30f | 382 | |
29cb533d | 383 | if (section_covers_addr(§ions[lp.ptr], addr)) { |
b35ba30f MT |
384 | return §ions[lp.ptr]; |
385 | } else { | |
386 | return §ions[PHYS_SECTION_UNASSIGNED]; | |
387 | } | |
f3705d53 AK |
388 | } |
389 | ||
e5548617 BS |
390 | bool memory_region_is_unassigned(MemoryRegion *mr) |
391 | { | |
2a8e7499 | 392 | return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device |
5b6dd868 | 393 | && mr != &io_mem_watch; |
fd6ce8f6 | 394 | } |
149f54b5 | 395 | |
79e2b9ae | 396 | /* Called from RCU critical section */ |
c7086b4a | 397 | static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, |
90260c6c JK |
398 | hwaddr addr, |
399 | bool resolve_subpage) | |
9f029603 | 400 | { |
729633c2 | 401 | MemoryRegionSection *section = atomic_read(&d->mru_section); |
90260c6c | 402 | subpage_t *subpage; |
729633c2 | 403 | bool update; |
90260c6c | 404 | |
729633c2 FZ |
405 | if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] && |
406 | section_covers_addr(section, addr)) { | |
407 | update = false; | |
408 | } else { | |
409 | section = phys_page_find(d->phys_map, addr, d->map.nodes, | |
410 | d->map.sections); | |
411 | update = true; | |
412 | } | |
90260c6c JK |
413 | if (resolve_subpage && section->mr->subpage) { |
414 | subpage = container_of(section->mr, subpage_t, iomem); | |
53cb28cb | 415 | section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; |
90260c6c | 416 | } |
729633c2 FZ |
417 | if (update) { |
418 | atomic_set(&d->mru_section, section); | |
419 | } | |
90260c6c | 420 | return section; |
9f029603 JK |
421 | } |
422 | ||
79e2b9ae | 423 | /* Called from RCU critical section */ |
90260c6c | 424 | static MemoryRegionSection * |
c7086b4a | 425 | address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, |
90260c6c | 426 | hwaddr *plen, bool resolve_subpage) |
149f54b5 PB |
427 | { |
428 | MemoryRegionSection *section; | |
965eb2fc | 429 | MemoryRegion *mr; |
a87f3954 | 430 | Int128 diff; |
149f54b5 | 431 | |
c7086b4a | 432 | section = address_space_lookup_region(d, addr, resolve_subpage); |
149f54b5 PB |
433 | /* Compute offset within MemoryRegionSection */ |
434 | addr -= section->offset_within_address_space; | |
435 | ||
436 | /* Compute offset within MemoryRegion */ | |
437 | *xlat = addr + section->offset_within_region; | |
438 | ||
965eb2fc | 439 | mr = section->mr; |
b242e0e0 PB |
440 | |
441 | /* MMIO registers can be expected to perform full-width accesses based only | |
442 | * on their address, without considering adjacent registers that could | |
443 | * decode to completely different MemoryRegions. When such registers | |
444 | * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO | |
445 | * regions overlap wildly. For this reason we cannot clamp the accesses | |
446 | * here. | |
447 | * | |
448 | * If the length is small (as is the case for address_space_ldl/stl), | |
449 | * everything works fine. If the incoming length is large, however, | |
450 | * the caller really has to do the clamping through memory_access_size. | |
451 | */ | |
965eb2fc | 452 | if (memory_region_is_ram(mr)) { |
e4a511f8 | 453 | diff = int128_sub(section->size, int128_make64(addr)); |
965eb2fc PB |
454 | *plen = int128_get64(int128_min(diff, int128_make64(*plen))); |
455 | } | |
149f54b5 PB |
456 | return section; |
457 | } | |
90260c6c | 458 | |
41063e1e | 459 | /* Called from RCU critical section */ |
052c8fa9 JW |
460 | IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, |
461 | bool is_write) | |
462 | { | |
463 | IOMMUTLBEntry iotlb = {0}; | |
464 | MemoryRegionSection *section; | |
465 | MemoryRegion *mr; | |
466 | ||
467 | for (;;) { | |
468 | AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch); | |
469 | section = address_space_lookup_region(d, addr, false); | |
470 | addr = addr - section->offset_within_address_space | |
471 | + section->offset_within_region; | |
472 | mr = section->mr; | |
473 | ||
474 | if (!mr->iommu_ops) { | |
475 | break; | |
476 | } | |
477 | ||
478 | iotlb = mr->iommu_ops->translate(mr, addr, is_write); | |
479 | if (!(iotlb.perm & (1 << is_write))) { | |
480 | iotlb.target_as = NULL; | |
481 | break; | |
482 | } | |
483 | ||
484 | addr = ((iotlb.translated_addr & ~iotlb.addr_mask) | |
485 | | (addr & iotlb.addr_mask)); | |
486 | as = iotlb.target_as; | |
487 | } | |
488 | ||
489 | return iotlb; | |
490 | } | |
491 | ||
492 | /* Called from RCU critical section */ | |
5c8a00ce PB |
493 | MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr, |
494 | hwaddr *xlat, hwaddr *plen, | |
495 | bool is_write) | |
90260c6c | 496 | { |
30951157 AK |
497 | IOMMUTLBEntry iotlb; |
498 | MemoryRegionSection *section; | |
499 | MemoryRegion *mr; | |
30951157 AK |
500 | |
501 | for (;;) { | |
79e2b9ae PB |
502 | AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch); |
503 | section = address_space_translate_internal(d, addr, &addr, plen, true); | |
30951157 AK |
504 | mr = section->mr; |
505 | ||
506 | if (!mr->iommu_ops) { | |
507 | break; | |
508 | } | |
509 | ||
8d7b8cb9 | 510 | iotlb = mr->iommu_ops->translate(mr, addr, is_write); |
30951157 AK |
511 | addr = ((iotlb.translated_addr & ~iotlb.addr_mask) |
512 | | (addr & iotlb.addr_mask)); | |
23820dbf | 513 | *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1); |
30951157 AK |
514 | if (!(iotlb.perm & (1 << is_write))) { |
515 | mr = &io_mem_unassigned; | |
516 | break; | |
517 | } | |
518 | ||
519 | as = iotlb.target_as; | |
520 | } | |
521 | ||
fe680d0d | 522 | if (xen_enabled() && memory_access_is_direct(mr, is_write)) { |
a87f3954 | 523 | hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; |
23820dbf | 524 | *plen = MIN(page, *plen); |
a87f3954 PB |
525 | } |
526 | ||
30951157 AK |
527 | *xlat = addr; |
528 | return mr; | |
90260c6c JK |
529 | } |
530 | ||
79e2b9ae | 531 | /* Called from RCU critical section */ |
90260c6c | 532 | MemoryRegionSection * |
d7898cda | 533 | address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr, |
9d82b5a7 | 534 | hwaddr *xlat, hwaddr *plen) |
90260c6c | 535 | { |
30951157 | 536 | MemoryRegionSection *section; |
f35e44e7 | 537 | AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch); |
d7898cda PM |
538 | |
539 | section = address_space_translate_internal(d, addr, xlat, plen, false); | |
30951157 AK |
540 | |
541 | assert(!section->mr->iommu_ops); | |
542 | return section; | |
90260c6c | 543 | } |
5b6dd868 | 544 | #endif |
fd6ce8f6 | 545 | |
b170fce3 | 546 | #if !defined(CONFIG_USER_ONLY) |
5b6dd868 BS |
547 | |
548 | static int cpu_common_post_load(void *opaque, int version_id) | |
fd6ce8f6 | 549 | { |
259186a7 | 550 | CPUState *cpu = opaque; |
a513fe19 | 551 | |
5b6dd868 BS |
552 | /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the |
553 | version_id is increased. */ | |
259186a7 | 554 | cpu->interrupt_request &= ~0x01; |
d10eb08f | 555 | tlb_flush(cpu); |
5b6dd868 BS |
556 | |
557 | return 0; | |
a513fe19 | 558 | } |
7501267e | 559 | |
6c3bff0e PD |
560 | static int cpu_common_pre_load(void *opaque) |
561 | { | |
562 | CPUState *cpu = opaque; | |
563 | ||
adee6424 | 564 | cpu->exception_index = -1; |
6c3bff0e PD |
565 | |
566 | return 0; | |
567 | } | |
568 | ||
569 | static bool cpu_common_exception_index_needed(void *opaque) | |
570 | { | |
571 | CPUState *cpu = opaque; | |
572 | ||
adee6424 | 573 | return tcg_enabled() && cpu->exception_index != -1; |
6c3bff0e PD |
574 | } |
575 | ||
576 | static const VMStateDescription vmstate_cpu_common_exception_index = { | |
577 | .name = "cpu_common/exception_index", | |
578 | .version_id = 1, | |
579 | .minimum_version_id = 1, | |
5cd8cada | 580 | .needed = cpu_common_exception_index_needed, |
6c3bff0e PD |
581 | .fields = (VMStateField[]) { |
582 | VMSTATE_INT32(exception_index, CPUState), | |
583 | VMSTATE_END_OF_LIST() | |
584 | } | |
585 | }; | |
586 | ||
bac05aa9 AS |
587 | static bool cpu_common_crash_occurred_needed(void *opaque) |
588 | { | |
589 | CPUState *cpu = opaque; | |
590 | ||
591 | return cpu->crash_occurred; | |
592 | } | |
593 | ||
594 | static const VMStateDescription vmstate_cpu_common_crash_occurred = { | |
595 | .name = "cpu_common/crash_occurred", | |
596 | .version_id = 1, | |
597 | .minimum_version_id = 1, | |
598 | .needed = cpu_common_crash_occurred_needed, | |
599 | .fields = (VMStateField[]) { | |
600 | VMSTATE_BOOL(crash_occurred, CPUState), | |
601 | VMSTATE_END_OF_LIST() | |
602 | } | |
603 | }; | |
604 | ||
1a1562f5 | 605 | const VMStateDescription vmstate_cpu_common = { |
5b6dd868 BS |
606 | .name = "cpu_common", |
607 | .version_id = 1, | |
608 | .minimum_version_id = 1, | |
6c3bff0e | 609 | .pre_load = cpu_common_pre_load, |
5b6dd868 | 610 | .post_load = cpu_common_post_load, |
35d08458 | 611 | .fields = (VMStateField[]) { |
259186a7 AF |
612 | VMSTATE_UINT32(halted, CPUState), |
613 | VMSTATE_UINT32(interrupt_request, CPUState), | |
5b6dd868 | 614 | VMSTATE_END_OF_LIST() |
6c3bff0e | 615 | }, |
5cd8cada JQ |
616 | .subsections = (const VMStateDescription*[]) { |
617 | &vmstate_cpu_common_exception_index, | |
bac05aa9 | 618 | &vmstate_cpu_common_crash_occurred, |
5cd8cada | 619 | NULL |
5b6dd868 BS |
620 | } |
621 | }; | |
1a1562f5 | 622 | |
5b6dd868 | 623 | #endif |
ea041c0e | 624 | |
38d8f5c8 | 625 | CPUState *qemu_get_cpu(int index) |
ea041c0e | 626 | { |
bdc44640 | 627 | CPUState *cpu; |
ea041c0e | 628 | |
bdc44640 | 629 | CPU_FOREACH(cpu) { |
55e5c285 | 630 | if (cpu->cpu_index == index) { |
bdc44640 | 631 | return cpu; |
55e5c285 | 632 | } |
ea041c0e | 633 | } |
5b6dd868 | 634 | |
bdc44640 | 635 | return NULL; |
ea041c0e FB |
636 | } |
637 | ||
09daed84 | 638 | #if !defined(CONFIG_USER_ONLY) |
56943e8c | 639 | void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx) |
09daed84 | 640 | { |
12ebc9a7 PM |
641 | CPUAddressSpace *newas; |
642 | ||
643 | /* Target code should have set num_ases before calling us */ | |
644 | assert(asidx < cpu->num_ases); | |
645 | ||
56943e8c PM |
646 | if (asidx == 0) { |
647 | /* address space 0 gets the convenience alias */ | |
648 | cpu->as = as; | |
649 | } | |
650 | ||
12ebc9a7 PM |
651 | /* KVM cannot currently support multiple address spaces. */ |
652 | assert(asidx == 0 || !kvm_enabled()); | |
09daed84 | 653 | |
12ebc9a7 PM |
654 | if (!cpu->cpu_ases) { |
655 | cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases); | |
09daed84 | 656 | } |
32857f4d | 657 | |
12ebc9a7 PM |
658 | newas = &cpu->cpu_ases[asidx]; |
659 | newas->cpu = cpu; | |
660 | newas->as = as; | |
56943e8c | 661 | if (tcg_enabled()) { |
12ebc9a7 PM |
662 | newas->tcg_as_listener.commit = tcg_commit; |
663 | memory_listener_register(&newas->tcg_as_listener, as); | |
56943e8c | 664 | } |
09daed84 | 665 | } |
651a5bc0 PM |
666 | |
667 | AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx) | |
668 | { | |
669 | /* Return the AddressSpace corresponding to the specified index */ | |
670 | return cpu->cpu_ases[asidx].as; | |
671 | } | |
09daed84 EI |
672 | #endif |
673 | ||
7bbc124e | 674 | void cpu_exec_unrealizefn(CPUState *cpu) |
1c59eb39 | 675 | { |
9dfeca7c BR |
676 | CPUClass *cc = CPU_GET_CLASS(cpu); |
677 | ||
267f685b | 678 | cpu_list_remove(cpu); |
9dfeca7c BR |
679 | |
680 | if (cc->vmsd != NULL) { | |
681 | vmstate_unregister(NULL, cc->vmsd, cpu); | |
682 | } | |
683 | if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { | |
684 | vmstate_unregister(NULL, &vmstate_cpu_common, cpu); | |
685 | } | |
1c59eb39 BR |
686 | } |
687 | ||
39e329e3 | 688 | void cpu_exec_initfn(CPUState *cpu) |
ea041c0e | 689 | { |
56943e8c | 690 | cpu->as = NULL; |
12ebc9a7 | 691 | cpu->num_ases = 0; |
56943e8c | 692 | |
291135b5 | 693 | #ifndef CONFIG_USER_ONLY |
291135b5 | 694 | cpu->thread_id = qemu_get_thread_id(); |
6731d864 PC |
695 | |
696 | /* This is a softmmu CPU object, so create a property for it | |
697 | * so users can wire up its memory. (This can't go in qom/cpu.c | |
698 | * because that file is compiled only once for both user-mode | |
699 | * and system builds.) The default if no link is set up is to use | |
700 | * the system address space. | |
701 | */ | |
702 | object_property_add_link(OBJECT(cpu), "memory", TYPE_MEMORY_REGION, | |
703 | (Object **)&cpu->memory, | |
704 | qdev_prop_allow_set_link_before_realize, | |
705 | OBJ_PROP_LINK_UNREF_ON_RELEASE, | |
706 | &error_abort); | |
707 | cpu->memory = system_memory; | |
708 | object_ref(OBJECT(cpu->memory)); | |
291135b5 | 709 | #endif |
39e329e3 LV |
710 | } |
711 | ||
ce5b1bbf | 712 | void cpu_exec_realizefn(CPUState *cpu, Error **errp) |
39e329e3 LV |
713 | { |
714 | CPUClass *cc ATTRIBUTE_UNUSED = CPU_GET_CLASS(cpu); | |
291135b5 | 715 | |
267f685b | 716 | cpu_list_add(cpu); |
1bc7e522 IM |
717 | |
718 | #ifndef CONFIG_USER_ONLY | |
e0d47944 | 719 | if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { |
741da0d3 | 720 | vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu); |
e0d47944 | 721 | } |
b170fce3 | 722 | if (cc->vmsd != NULL) { |
741da0d3 | 723 | vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu); |
b170fce3 | 724 | } |
741da0d3 | 725 | #endif |
ea041c0e FB |
726 | } |
727 | ||
00b941e5 | 728 | static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) |
1e7855a5 | 729 | { |
a9353fe8 PM |
730 | /* Flush the whole TB as this will not have race conditions |
731 | * even if we don't have proper locking yet. | |
732 | * Ideally we would just invalidate the TBs for the | |
733 | * specified PC. | |
734 | */ | |
735 | tb_flush(cpu); | |
1e7855a5 | 736 | } |
d720b93d | 737 | |
c527ee8f | 738 | #if defined(CONFIG_USER_ONLY) |
75a34036 | 739 | void cpu_watchpoint_remove_all(CPUState *cpu, int mask) |
c527ee8f PB |
740 | |
741 | { | |
742 | } | |
743 | ||
3ee887e8 PM |
744 | int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, |
745 | int flags) | |
746 | { | |
747 | return -ENOSYS; | |
748 | } | |
749 | ||
750 | void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) | |
751 | { | |
752 | } | |
753 | ||
75a34036 | 754 | int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, |
c527ee8f PB |
755 | int flags, CPUWatchpoint **watchpoint) |
756 | { | |
757 | return -ENOSYS; | |
758 | } | |
759 | #else | |
6658ffb8 | 760 | /* Add a watchpoint. */ |
75a34036 | 761 | int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, |
a1d1bb31 | 762 | int flags, CPUWatchpoint **watchpoint) |
6658ffb8 | 763 | { |
c0ce998e | 764 | CPUWatchpoint *wp; |
6658ffb8 | 765 | |
05068c0d | 766 | /* forbid ranges which are empty or run off the end of the address space */ |
07e2863d | 767 | if (len == 0 || (addr + len - 1) < addr) { |
75a34036 AF |
768 | error_report("tried to set invalid watchpoint at %" |
769 | VADDR_PRIx ", len=%" VADDR_PRIu, addr, len); | |
b4051334 AL |
770 | return -EINVAL; |
771 | } | |
7267c094 | 772 | wp = g_malloc(sizeof(*wp)); |
a1d1bb31 AL |
773 | |
774 | wp->vaddr = addr; | |
05068c0d | 775 | wp->len = len; |
a1d1bb31 AL |
776 | wp->flags = flags; |
777 | ||
2dc9f411 | 778 | /* keep all GDB-injected watchpoints in front */ |
ff4700b0 AF |
779 | if (flags & BP_GDB) { |
780 | QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry); | |
781 | } else { | |
782 | QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry); | |
783 | } | |
6658ffb8 | 784 | |
31b030d4 | 785 | tlb_flush_page(cpu, addr); |
a1d1bb31 AL |
786 | |
787 | if (watchpoint) | |
788 | *watchpoint = wp; | |
789 | return 0; | |
6658ffb8 PB |
790 | } |
791 | ||
a1d1bb31 | 792 | /* Remove a specific watchpoint. */ |
75a34036 | 793 | int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, |
a1d1bb31 | 794 | int flags) |
6658ffb8 | 795 | { |
a1d1bb31 | 796 | CPUWatchpoint *wp; |
6658ffb8 | 797 | |
ff4700b0 | 798 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d | 799 | if (addr == wp->vaddr && len == wp->len |
6e140f28 | 800 | && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { |
75a34036 | 801 | cpu_watchpoint_remove_by_ref(cpu, wp); |
6658ffb8 PB |
802 | return 0; |
803 | } | |
804 | } | |
a1d1bb31 | 805 | return -ENOENT; |
6658ffb8 PB |
806 | } |
807 | ||
a1d1bb31 | 808 | /* Remove a specific watchpoint by reference. */ |
75a34036 | 809 | void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) |
a1d1bb31 | 810 | { |
ff4700b0 | 811 | QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry); |
7d03f82f | 812 | |
31b030d4 | 813 | tlb_flush_page(cpu, watchpoint->vaddr); |
a1d1bb31 | 814 | |
7267c094 | 815 | g_free(watchpoint); |
a1d1bb31 AL |
816 | } |
817 | ||
818 | /* Remove all matching watchpoints. */ | |
75a34036 | 819 | void cpu_watchpoint_remove_all(CPUState *cpu, int mask) |
a1d1bb31 | 820 | { |
c0ce998e | 821 | CPUWatchpoint *wp, *next; |
a1d1bb31 | 822 | |
ff4700b0 | 823 | QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) { |
75a34036 AF |
824 | if (wp->flags & mask) { |
825 | cpu_watchpoint_remove_by_ref(cpu, wp); | |
826 | } | |
c0ce998e | 827 | } |
7d03f82f | 828 | } |
05068c0d PM |
829 | |
830 | /* Return true if this watchpoint address matches the specified | |
831 | * access (ie the address range covered by the watchpoint overlaps | |
832 | * partially or completely with the address range covered by the | |
833 | * access). | |
834 | */ | |
835 | static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp, | |
836 | vaddr addr, | |
837 | vaddr len) | |
838 | { | |
839 | /* We know the lengths are non-zero, but a little caution is | |
840 | * required to avoid errors in the case where the range ends | |
841 | * exactly at the top of the address space and so addr + len | |
842 | * wraps round to zero. | |
843 | */ | |
844 | vaddr wpend = wp->vaddr + wp->len - 1; | |
845 | vaddr addrend = addr + len - 1; | |
846 | ||
847 | return !(addr > wpend || wp->vaddr > addrend); | |
848 | } | |
849 | ||
c527ee8f | 850 | #endif |
7d03f82f | 851 | |
a1d1bb31 | 852 | /* Add a breakpoint. */ |
b3310ab3 | 853 | int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, |
a1d1bb31 | 854 | CPUBreakpoint **breakpoint) |
4c3a88a2 | 855 | { |
c0ce998e | 856 | CPUBreakpoint *bp; |
3b46e624 | 857 | |
7267c094 | 858 | bp = g_malloc(sizeof(*bp)); |
4c3a88a2 | 859 | |
a1d1bb31 AL |
860 | bp->pc = pc; |
861 | bp->flags = flags; | |
862 | ||
2dc9f411 | 863 | /* keep all GDB-injected breakpoints in front */ |
00b941e5 | 864 | if (flags & BP_GDB) { |
f0c3c505 | 865 | QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry); |
00b941e5 | 866 | } else { |
f0c3c505 | 867 | QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry); |
00b941e5 | 868 | } |
3b46e624 | 869 | |
f0c3c505 | 870 | breakpoint_invalidate(cpu, pc); |
a1d1bb31 | 871 | |
00b941e5 | 872 | if (breakpoint) { |
a1d1bb31 | 873 | *breakpoint = bp; |
00b941e5 | 874 | } |
4c3a88a2 | 875 | return 0; |
4c3a88a2 FB |
876 | } |
877 | ||
a1d1bb31 | 878 | /* Remove a specific breakpoint. */ |
b3310ab3 | 879 | int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags) |
a1d1bb31 | 880 | { |
a1d1bb31 AL |
881 | CPUBreakpoint *bp; |
882 | ||
f0c3c505 | 883 | QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { |
a1d1bb31 | 884 | if (bp->pc == pc && bp->flags == flags) { |
b3310ab3 | 885 | cpu_breakpoint_remove_by_ref(cpu, bp); |
a1d1bb31 AL |
886 | return 0; |
887 | } | |
7d03f82f | 888 | } |
a1d1bb31 | 889 | return -ENOENT; |
7d03f82f EI |
890 | } |
891 | ||
a1d1bb31 | 892 | /* Remove a specific breakpoint by reference. */ |
b3310ab3 | 893 | void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint) |
4c3a88a2 | 894 | { |
f0c3c505 AF |
895 | QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry); |
896 | ||
897 | breakpoint_invalidate(cpu, breakpoint->pc); | |
a1d1bb31 | 898 | |
7267c094 | 899 | g_free(breakpoint); |
a1d1bb31 AL |
900 | } |
901 | ||
902 | /* Remove all matching breakpoints. */ | |
b3310ab3 | 903 | void cpu_breakpoint_remove_all(CPUState *cpu, int mask) |
a1d1bb31 | 904 | { |
c0ce998e | 905 | CPUBreakpoint *bp, *next; |
a1d1bb31 | 906 | |
f0c3c505 | 907 | QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) { |
b3310ab3 AF |
908 | if (bp->flags & mask) { |
909 | cpu_breakpoint_remove_by_ref(cpu, bp); | |
910 | } | |
c0ce998e | 911 | } |
4c3a88a2 FB |
912 | } |
913 | ||
c33a346e FB |
914 | /* enable or disable single step mode. EXCP_DEBUG is returned by the |
915 | CPU loop after each instruction */ | |
3825b28f | 916 | void cpu_single_step(CPUState *cpu, int enabled) |
c33a346e | 917 | { |
ed2803da AF |
918 | if (cpu->singlestep_enabled != enabled) { |
919 | cpu->singlestep_enabled = enabled; | |
920 | if (kvm_enabled()) { | |
38e478ec | 921 | kvm_update_guest_debug(cpu, 0); |
ed2803da | 922 | } else { |
ccbb4d44 | 923 | /* must flush all the translated code to avoid inconsistencies */ |
e22a25c9 | 924 | /* XXX: only flush what is necessary */ |
bbd77c18 | 925 | tb_flush(cpu); |
e22a25c9 | 926 | } |
c33a346e | 927 | } |
c33a346e FB |
928 | } |
929 | ||
a47dddd7 | 930 | void cpu_abort(CPUState *cpu, const char *fmt, ...) |
7501267e FB |
931 | { |
932 | va_list ap; | |
493ae1f0 | 933 | va_list ap2; |
7501267e FB |
934 | |
935 | va_start(ap, fmt); | |
493ae1f0 | 936 | va_copy(ap2, ap); |
7501267e FB |
937 | fprintf(stderr, "qemu: fatal: "); |
938 | vfprintf(stderr, fmt, ap); | |
939 | fprintf(stderr, "\n"); | |
878096ee | 940 | cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP); |
013a2942 | 941 | if (qemu_log_separate()) { |
1ee73216 | 942 | qemu_log_lock(); |
93fcfe39 AL |
943 | qemu_log("qemu: fatal: "); |
944 | qemu_log_vprintf(fmt, ap2); | |
945 | qemu_log("\n"); | |
a0762859 | 946 | log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP); |
31b1a7b4 | 947 | qemu_log_flush(); |
1ee73216 | 948 | qemu_log_unlock(); |
93fcfe39 | 949 | qemu_log_close(); |
924edcae | 950 | } |
493ae1f0 | 951 | va_end(ap2); |
f9373291 | 952 | va_end(ap); |
7615936e | 953 | replay_finish(); |
fd052bf6 RV |
954 | #if defined(CONFIG_USER_ONLY) |
955 | { | |
956 | struct sigaction act; | |
957 | sigfillset(&act.sa_mask); | |
958 | act.sa_handler = SIG_DFL; | |
959 | sigaction(SIGABRT, &act, NULL); | |
960 | } | |
961 | #endif | |
7501267e FB |
962 | abort(); |
963 | } | |
964 | ||
0124311e | 965 | #if !defined(CONFIG_USER_ONLY) |
0dc3f44a | 966 | /* Called from RCU critical section */ |
041603fe PB |
967 | static RAMBlock *qemu_get_ram_block(ram_addr_t addr) |
968 | { | |
969 | RAMBlock *block; | |
970 | ||
43771539 | 971 | block = atomic_rcu_read(&ram_list.mru_block); |
9b8424d5 | 972 | if (block && addr - block->offset < block->max_length) { |
68851b98 | 973 | return block; |
041603fe | 974 | } |
0dc3f44a | 975 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
9b8424d5 | 976 | if (addr - block->offset < block->max_length) { |
041603fe PB |
977 | goto found; |
978 | } | |
979 | } | |
980 | ||
981 | fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); | |
982 | abort(); | |
983 | ||
984 | found: | |
43771539 PB |
985 | /* It is safe to write mru_block outside the iothread lock. This |
986 | * is what happens: | |
987 | * | |
988 | * mru_block = xxx | |
989 | * rcu_read_unlock() | |
990 | * xxx removed from list | |
991 | * rcu_read_lock() | |
992 | * read mru_block | |
993 | * mru_block = NULL; | |
994 | * call_rcu(reclaim_ramblock, xxx); | |
995 | * rcu_read_unlock() | |
996 | * | |
997 | * atomic_rcu_set is not needed here. The block was already published | |
998 | * when it was placed into the list. Here we're just making an extra | |
999 | * copy of the pointer. | |
1000 | */ | |
041603fe PB |
1001 | ram_list.mru_block = block; |
1002 | return block; | |
1003 | } | |
1004 | ||
a2f4d5be | 1005 | static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) |
d24981d3 | 1006 | { |
9a13565d | 1007 | CPUState *cpu; |
041603fe | 1008 | ram_addr_t start1; |
a2f4d5be JQ |
1009 | RAMBlock *block; |
1010 | ram_addr_t end; | |
1011 | ||
1012 | end = TARGET_PAGE_ALIGN(start + length); | |
1013 | start &= TARGET_PAGE_MASK; | |
d24981d3 | 1014 | |
0dc3f44a | 1015 | rcu_read_lock(); |
041603fe PB |
1016 | block = qemu_get_ram_block(start); |
1017 | assert(block == qemu_get_ram_block(end - 1)); | |
1240be24 | 1018 | start1 = (uintptr_t)ramblock_ptr(block, start - block->offset); |
9a13565d PC |
1019 | CPU_FOREACH(cpu) { |
1020 | tlb_reset_dirty(cpu, start1, length); | |
1021 | } | |
0dc3f44a | 1022 | rcu_read_unlock(); |
d24981d3 JQ |
1023 | } |
1024 | ||
5579c7f3 | 1025 | /* Note: start and end must be within the same ram block. */ |
03eebc9e SH |
1026 | bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, |
1027 | ram_addr_t length, | |
1028 | unsigned client) | |
1ccde1cb | 1029 | { |
5b82b703 | 1030 | DirtyMemoryBlocks *blocks; |
03eebc9e | 1031 | unsigned long end, page; |
5b82b703 | 1032 | bool dirty = false; |
03eebc9e SH |
1033 | |
1034 | if (length == 0) { | |
1035 | return false; | |
1036 | } | |
f23db169 | 1037 | |
03eebc9e SH |
1038 | end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; |
1039 | page = start >> TARGET_PAGE_BITS; | |
5b82b703 SH |
1040 | |
1041 | rcu_read_lock(); | |
1042 | ||
1043 | blocks = atomic_rcu_read(&ram_list.dirty_memory[client]); | |
1044 | ||
1045 | while (page < end) { | |
1046 | unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; | |
1047 | unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; | |
1048 | unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset); | |
1049 | ||
1050 | dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx], | |
1051 | offset, num); | |
1052 | page += num; | |
1053 | } | |
1054 | ||
1055 | rcu_read_unlock(); | |
03eebc9e SH |
1056 | |
1057 | if (dirty && tcg_enabled()) { | |
a2f4d5be | 1058 | tlb_reset_dirty_range_all(start, length); |
5579c7f3 | 1059 | } |
03eebc9e SH |
1060 | |
1061 | return dirty; | |
1ccde1cb FB |
1062 | } |
1063 | ||
79e2b9ae | 1064 | /* Called from RCU critical section */ |
bb0e627a | 1065 | hwaddr memory_region_section_get_iotlb(CPUState *cpu, |
149f54b5 PB |
1066 | MemoryRegionSection *section, |
1067 | target_ulong vaddr, | |
1068 | hwaddr paddr, hwaddr xlat, | |
1069 | int prot, | |
1070 | target_ulong *address) | |
e5548617 | 1071 | { |
a8170e5e | 1072 | hwaddr iotlb; |
e5548617 BS |
1073 | CPUWatchpoint *wp; |
1074 | ||
cc5bea60 | 1075 | if (memory_region_is_ram(section->mr)) { |
e5548617 | 1076 | /* Normal RAM. */ |
e4e69794 | 1077 | iotlb = memory_region_get_ram_addr(section->mr) + xlat; |
e5548617 | 1078 | if (!section->readonly) { |
b41aac4f | 1079 | iotlb |= PHYS_SECTION_NOTDIRTY; |
e5548617 | 1080 | } else { |
b41aac4f | 1081 | iotlb |= PHYS_SECTION_ROM; |
e5548617 BS |
1082 | } |
1083 | } else { | |
0b8e2c10 PM |
1084 | AddressSpaceDispatch *d; |
1085 | ||
1086 | d = atomic_rcu_read(§ion->address_space->dispatch); | |
1087 | iotlb = section - d->map.sections; | |
149f54b5 | 1088 | iotlb += xlat; |
e5548617 BS |
1089 | } |
1090 | ||
1091 | /* Make accesses to pages with watchpoints go via the | |
1092 | watchpoint trap routines. */ | |
ff4700b0 | 1093 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d | 1094 | if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) { |
e5548617 BS |
1095 | /* Avoid trapping reads of pages with a write breakpoint. */ |
1096 | if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) { | |
b41aac4f | 1097 | iotlb = PHYS_SECTION_WATCH + paddr; |
e5548617 BS |
1098 | *address |= TLB_MMIO; |
1099 | break; | |
1100 | } | |
1101 | } | |
1102 | } | |
1103 | ||
1104 | return iotlb; | |
1105 | } | |
9fa3e853 FB |
1106 | #endif /* defined(CONFIG_USER_ONLY) */ |
1107 | ||
e2eef170 | 1108 | #if !defined(CONFIG_USER_ONLY) |
8da3ff18 | 1109 | |
c227f099 | 1110 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, |
5312bd8b | 1111 | uint16_t section); |
acc9d80b | 1112 | static subpage_t *subpage_init(AddressSpace *as, hwaddr base); |
54688b1e | 1113 | |
a2b257d6 IM |
1114 | static void *(*phys_mem_alloc)(size_t size, uint64_t *align) = |
1115 | qemu_anon_ram_alloc; | |
91138037 MA |
1116 | |
1117 | /* | |
1118 | * Set a custom physical guest memory alloator. | |
1119 | * Accelerators with unusual needs may need this. Hopefully, we can | |
1120 | * get rid of it eventually. | |
1121 | */ | |
a2b257d6 | 1122 | void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align)) |
91138037 MA |
1123 | { |
1124 | phys_mem_alloc = alloc; | |
1125 | } | |
1126 | ||
53cb28cb MA |
1127 | static uint16_t phys_section_add(PhysPageMap *map, |
1128 | MemoryRegionSection *section) | |
5312bd8b | 1129 | { |
68f3f65b PB |
1130 | /* The physical section number is ORed with a page-aligned |
1131 | * pointer to produce the iotlb entries. Thus it should | |
1132 | * never overflow into the page-aligned value. | |
1133 | */ | |
53cb28cb | 1134 | assert(map->sections_nb < TARGET_PAGE_SIZE); |
68f3f65b | 1135 | |
53cb28cb MA |
1136 | if (map->sections_nb == map->sections_nb_alloc) { |
1137 | map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); | |
1138 | map->sections = g_renew(MemoryRegionSection, map->sections, | |
1139 | map->sections_nb_alloc); | |
5312bd8b | 1140 | } |
53cb28cb | 1141 | map->sections[map->sections_nb] = *section; |
dfde4e6e | 1142 | memory_region_ref(section->mr); |
53cb28cb | 1143 | return map->sections_nb++; |
5312bd8b AK |
1144 | } |
1145 | ||
058bc4b5 PB |
1146 | static void phys_section_destroy(MemoryRegion *mr) |
1147 | { | |
55b4e80b DS |
1148 | bool have_sub_page = mr->subpage; |
1149 | ||
dfde4e6e PB |
1150 | memory_region_unref(mr); |
1151 | ||
55b4e80b | 1152 | if (have_sub_page) { |
058bc4b5 | 1153 | subpage_t *subpage = container_of(mr, subpage_t, iomem); |
b4fefef9 | 1154 | object_unref(OBJECT(&subpage->iomem)); |
058bc4b5 PB |
1155 | g_free(subpage); |
1156 | } | |
1157 | } | |
1158 | ||
6092666e | 1159 | static void phys_sections_free(PhysPageMap *map) |
5312bd8b | 1160 | { |
9affd6fc PB |
1161 | while (map->sections_nb > 0) { |
1162 | MemoryRegionSection *section = &map->sections[--map->sections_nb]; | |
058bc4b5 PB |
1163 | phys_section_destroy(section->mr); |
1164 | } | |
9affd6fc PB |
1165 | g_free(map->sections); |
1166 | g_free(map->nodes); | |
5312bd8b AK |
1167 | } |
1168 | ||
ac1970fb | 1169 | static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section) |
0f0cb164 AK |
1170 | { |
1171 | subpage_t *subpage; | |
a8170e5e | 1172 | hwaddr base = section->offset_within_address_space |
0f0cb164 | 1173 | & TARGET_PAGE_MASK; |
97115a8d | 1174 | MemoryRegionSection *existing = phys_page_find(d->phys_map, base, |
53cb28cb | 1175 | d->map.nodes, d->map.sections); |
0f0cb164 AK |
1176 | MemoryRegionSection subsection = { |
1177 | .offset_within_address_space = base, | |
052e87b0 | 1178 | .size = int128_make64(TARGET_PAGE_SIZE), |
0f0cb164 | 1179 | }; |
a8170e5e | 1180 | hwaddr start, end; |
0f0cb164 | 1181 | |
f3705d53 | 1182 | assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); |
0f0cb164 | 1183 | |
f3705d53 | 1184 | if (!(existing->mr->subpage)) { |
acc9d80b | 1185 | subpage = subpage_init(d->as, base); |
3be91e86 | 1186 | subsection.address_space = d->as; |
0f0cb164 | 1187 | subsection.mr = &subpage->iomem; |
ac1970fb | 1188 | phys_page_set(d, base >> TARGET_PAGE_BITS, 1, |
53cb28cb | 1189 | phys_section_add(&d->map, &subsection)); |
0f0cb164 | 1190 | } else { |
f3705d53 | 1191 | subpage = container_of(existing->mr, subpage_t, iomem); |
0f0cb164 AK |
1192 | } |
1193 | start = section->offset_within_address_space & ~TARGET_PAGE_MASK; | |
052e87b0 | 1194 | end = start + int128_get64(section->size) - 1; |
53cb28cb MA |
1195 | subpage_register(subpage, start, end, |
1196 | phys_section_add(&d->map, section)); | |
0f0cb164 AK |
1197 | } |
1198 | ||
1199 | ||
052e87b0 PB |
1200 | static void register_multipage(AddressSpaceDispatch *d, |
1201 | MemoryRegionSection *section) | |
33417e70 | 1202 | { |
a8170e5e | 1203 | hwaddr start_addr = section->offset_within_address_space; |
53cb28cb | 1204 | uint16_t section_index = phys_section_add(&d->map, section); |
052e87b0 PB |
1205 | uint64_t num_pages = int128_get64(int128_rshift(section->size, |
1206 | TARGET_PAGE_BITS)); | |
dd81124b | 1207 | |
733d5ef5 PB |
1208 | assert(num_pages); |
1209 | phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); | |
33417e70 FB |
1210 | } |
1211 | ||
ac1970fb | 1212 | static void mem_add(MemoryListener *listener, MemoryRegionSection *section) |
0f0cb164 | 1213 | { |
89ae337a | 1214 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); |
00752703 | 1215 | AddressSpaceDispatch *d = as->next_dispatch; |
99b9cc06 | 1216 | MemoryRegionSection now = *section, remain = *section; |
052e87b0 | 1217 | Int128 page_size = int128_make64(TARGET_PAGE_SIZE); |
0f0cb164 | 1218 | |
733d5ef5 PB |
1219 | if (now.offset_within_address_space & ~TARGET_PAGE_MASK) { |
1220 | uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space) | |
1221 | - now.offset_within_address_space; | |
1222 | ||
052e87b0 | 1223 | now.size = int128_min(int128_make64(left), now.size); |
ac1970fb | 1224 | register_subpage(d, &now); |
733d5ef5 | 1225 | } else { |
052e87b0 | 1226 | now.size = int128_zero(); |
733d5ef5 | 1227 | } |
052e87b0 PB |
1228 | while (int128_ne(remain.size, now.size)) { |
1229 | remain.size = int128_sub(remain.size, now.size); | |
1230 | remain.offset_within_address_space += int128_get64(now.size); | |
1231 | remain.offset_within_region += int128_get64(now.size); | |
69b67646 | 1232 | now = remain; |
052e87b0 | 1233 | if (int128_lt(remain.size, page_size)) { |
733d5ef5 | 1234 | register_subpage(d, &now); |
88266249 | 1235 | } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { |
052e87b0 | 1236 | now.size = page_size; |
ac1970fb | 1237 | register_subpage(d, &now); |
69b67646 | 1238 | } else { |
052e87b0 | 1239 | now.size = int128_and(now.size, int128_neg(page_size)); |
ac1970fb | 1240 | register_multipage(d, &now); |
69b67646 | 1241 | } |
0f0cb164 AK |
1242 | } |
1243 | } | |
1244 | ||
62a2744c SY |
1245 | void qemu_flush_coalesced_mmio_buffer(void) |
1246 | { | |
1247 | if (kvm_enabled()) | |
1248 | kvm_flush_coalesced_mmio_buffer(); | |
1249 | } | |
1250 | ||
b2a8658e UD |
1251 | void qemu_mutex_lock_ramlist(void) |
1252 | { | |
1253 | qemu_mutex_lock(&ram_list.mutex); | |
1254 | } | |
1255 | ||
1256 | void qemu_mutex_unlock_ramlist(void) | |
1257 | { | |
1258 | qemu_mutex_unlock(&ram_list.mutex); | |
1259 | } | |
1260 | ||
9c607668 AK |
1261 | #ifdef __linux__ |
1262 | /* | |
1263 | * FIXME TOCTTOU: this iterates over memory backends' mem-path, which | |
1264 | * may or may not name the same files / on the same filesystem now as | |
1265 | * when we actually open and map them. Iterate over the file | |
1266 | * descriptors instead, and use qemu_fd_getpagesize(). | |
1267 | */ | |
1268 | static int find_max_supported_pagesize(Object *obj, void *opaque) | |
1269 | { | |
1270 | char *mem_path; | |
1271 | long *hpsize_min = opaque; | |
1272 | ||
1273 | if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { | |
1274 | mem_path = object_property_get_str(obj, "mem-path", NULL); | |
1275 | if (mem_path) { | |
1276 | long hpsize = qemu_mempath_getpagesize(mem_path); | |
1277 | if (hpsize < *hpsize_min) { | |
1278 | *hpsize_min = hpsize; | |
1279 | } | |
1280 | } else { | |
1281 | *hpsize_min = getpagesize(); | |
1282 | } | |
1283 | } | |
1284 | ||
1285 | return 0; | |
1286 | } | |
1287 | ||
1288 | long qemu_getrampagesize(void) | |
1289 | { | |
1290 | long hpsize = LONG_MAX; | |
1291 | long mainrampagesize; | |
1292 | Object *memdev_root; | |
1293 | ||
1294 | if (mem_path) { | |
1295 | mainrampagesize = qemu_mempath_getpagesize(mem_path); | |
1296 | } else { | |
1297 | mainrampagesize = getpagesize(); | |
1298 | } | |
1299 | ||
1300 | /* it's possible we have memory-backend objects with | |
1301 | * hugepage-backed RAM. these may get mapped into system | |
1302 | * address space via -numa parameters or memory hotplug | |
1303 | * hooks. we want to take these into account, but we | |
1304 | * also want to make sure these supported hugepage | |
1305 | * sizes are applicable across the entire range of memory | |
1306 | * we may boot from, so we take the min across all | |
1307 | * backends, and assume normal pages in cases where a | |
1308 | * backend isn't backed by hugepages. | |
1309 | */ | |
1310 | memdev_root = object_resolve_path("/objects", NULL); | |
1311 | if (memdev_root) { | |
1312 | object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize); | |
1313 | } | |
1314 | if (hpsize == LONG_MAX) { | |
1315 | /* No additional memory regions found ==> Report main RAM page size */ | |
1316 | return mainrampagesize; | |
1317 | } | |
1318 | ||
1319 | /* If NUMA is disabled or the NUMA nodes are not backed with a | |
1320 | * memory-backend, then there is at least one node using "normal" RAM, | |
1321 | * so if its page size is smaller we have got to report that size instead. | |
1322 | */ | |
1323 | if (hpsize > mainrampagesize && | |
1324 | (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) { | |
1325 | static bool warned; | |
1326 | if (!warned) { | |
1327 | error_report("Huge page support disabled (n/a for main memory)."); | |
1328 | warned = true; | |
1329 | } | |
1330 | return mainrampagesize; | |
1331 | } | |
1332 | ||
1333 | return hpsize; | |
1334 | } | |
1335 | #else | |
1336 | long qemu_getrampagesize(void) | |
1337 | { | |
1338 | return getpagesize(); | |
1339 | } | |
1340 | #endif | |
1341 | ||
e1e84ba0 | 1342 | #ifdef __linux__ |
d6af99c9 HZ |
1343 | static int64_t get_file_size(int fd) |
1344 | { | |
1345 | int64_t size = lseek(fd, 0, SEEK_END); | |
1346 | if (size < 0) { | |
1347 | return -errno; | |
1348 | } | |
1349 | return size; | |
1350 | } | |
1351 | ||
04b16653 AW |
1352 | static void *file_ram_alloc(RAMBlock *block, |
1353 | ram_addr_t memory, | |
7f56e740 PB |
1354 | const char *path, |
1355 | Error **errp) | |
c902760f | 1356 | { |
fd97fd44 | 1357 | bool unlink_on_error = false; |
c902760f | 1358 | char *filename; |
8ca761f6 PF |
1359 | char *sanitized_name; |
1360 | char *c; | |
056b68af | 1361 | void *area = MAP_FAILED; |
5c3ece79 | 1362 | int fd = -1; |
d6af99c9 | 1363 | int64_t file_size; |
c902760f MT |
1364 | |
1365 | if (kvm_enabled() && !kvm_has_sync_mmu()) { | |
7f56e740 PB |
1366 | error_setg(errp, |
1367 | "host lacks kvm mmu notifiers, -mem-path unsupported"); | |
fd97fd44 | 1368 | return NULL; |
c902760f MT |
1369 | } |
1370 | ||
fd97fd44 MA |
1371 | for (;;) { |
1372 | fd = open(path, O_RDWR); | |
1373 | if (fd >= 0) { | |
1374 | /* @path names an existing file, use it */ | |
1375 | break; | |
8d31d6b6 | 1376 | } |
fd97fd44 MA |
1377 | if (errno == ENOENT) { |
1378 | /* @path names a file that doesn't exist, create it */ | |
1379 | fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644); | |
1380 | if (fd >= 0) { | |
1381 | unlink_on_error = true; | |
1382 | break; | |
1383 | } | |
1384 | } else if (errno == EISDIR) { | |
1385 | /* @path names a directory, create a file there */ | |
1386 | /* Make name safe to use with mkstemp by replacing '/' with '_'. */ | |
1387 | sanitized_name = g_strdup(memory_region_name(block->mr)); | |
1388 | for (c = sanitized_name; *c != '\0'; c++) { | |
1389 | if (*c == '/') { | |
1390 | *c = '_'; | |
1391 | } | |
1392 | } | |
8ca761f6 | 1393 | |
fd97fd44 MA |
1394 | filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, |
1395 | sanitized_name); | |
1396 | g_free(sanitized_name); | |
8d31d6b6 | 1397 | |
fd97fd44 MA |
1398 | fd = mkstemp(filename); |
1399 | if (fd >= 0) { | |
1400 | unlink(filename); | |
1401 | g_free(filename); | |
1402 | break; | |
1403 | } | |
1404 | g_free(filename); | |
8d31d6b6 | 1405 | } |
fd97fd44 MA |
1406 | if (errno != EEXIST && errno != EINTR) { |
1407 | error_setg_errno(errp, errno, | |
1408 | "can't open backing store %s for guest RAM", | |
1409 | path); | |
1410 | goto error; | |
1411 | } | |
1412 | /* | |
1413 | * Try again on EINTR and EEXIST. The latter happens when | |
1414 | * something else creates the file between our two open(). | |
1415 | */ | |
8d31d6b6 | 1416 | } |
c902760f | 1417 | |
863e9621 | 1418 | block->page_size = qemu_fd_getpagesize(fd); |
8360668e HZ |
1419 | block->mr->align = block->page_size; |
1420 | #if defined(__s390x__) | |
1421 | if (kvm_enabled()) { | |
1422 | block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN); | |
1423 | } | |
1424 | #endif | |
fd97fd44 | 1425 | |
d6af99c9 HZ |
1426 | file_size = get_file_size(fd); |
1427 | ||
863e9621 | 1428 | if (memory < block->page_size) { |
fd97fd44 | 1429 | error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " |
863e9621 DDAG |
1430 | "or larger than page size 0x%zx", |
1431 | memory, block->page_size); | |
f9a49dfa | 1432 | goto error; |
c902760f | 1433 | } |
c902760f | 1434 | |
1775f111 HZ |
1435 | if (file_size > 0 && file_size < memory) { |
1436 | error_setg(errp, "backing store %s size 0x%" PRIx64 | |
1437 | " does not match 'size' option 0x" RAM_ADDR_FMT, | |
1438 | path, file_size, memory); | |
1439 | goto error; | |
1440 | } | |
1441 | ||
863e9621 | 1442 | memory = ROUND_UP(memory, block->page_size); |
c902760f MT |
1443 | |
1444 | /* | |
1445 | * ftruncate is not supported by hugetlbfs in older | |
1446 | * hosts, so don't bother bailing out on errors. | |
1447 | * If anything goes wrong with it under other filesystems, | |
1448 | * mmap will fail. | |
d6af99c9 HZ |
1449 | * |
1450 | * Do not truncate the non-empty backend file to avoid corrupting | |
1451 | * the existing data in the file. Disabling shrinking is not | |
1452 | * enough. For example, the current vNVDIMM implementation stores | |
1453 | * the guest NVDIMM labels at the end of the backend file. If the | |
1454 | * backend file is later extended, QEMU will not be able to find | |
1455 | * those labels. Therefore, extending the non-empty backend file | |
1456 | * is disabled as well. | |
c902760f | 1457 | */ |
d6af99c9 | 1458 | if (!file_size && ftruncate(fd, memory)) { |
9742bf26 | 1459 | perror("ftruncate"); |
7f56e740 | 1460 | } |
c902760f | 1461 | |
d2f39add DD |
1462 | area = qemu_ram_mmap(fd, memory, block->mr->align, |
1463 | block->flags & RAM_SHARED); | |
c902760f | 1464 | if (area == MAP_FAILED) { |
7f56e740 | 1465 | error_setg_errno(errp, errno, |
fd97fd44 | 1466 | "unable to map backing store for guest RAM"); |
f9a49dfa | 1467 | goto error; |
c902760f | 1468 | } |
ef36fa14 MT |
1469 | |
1470 | if (mem_prealloc) { | |
1e356fc1 | 1471 | os_mem_prealloc(fd, area, memory, smp_cpus, errp); |
056b68af IM |
1472 | if (errp && *errp) { |
1473 | goto error; | |
1474 | } | |
ef36fa14 MT |
1475 | } |
1476 | ||
04b16653 | 1477 | block->fd = fd; |
c902760f | 1478 | return area; |
f9a49dfa MT |
1479 | |
1480 | error: | |
056b68af IM |
1481 | if (area != MAP_FAILED) { |
1482 | qemu_ram_munmap(area, memory); | |
1483 | } | |
fd97fd44 MA |
1484 | if (unlink_on_error) { |
1485 | unlink(path); | |
1486 | } | |
5c3ece79 PB |
1487 | if (fd != -1) { |
1488 | close(fd); | |
1489 | } | |
f9a49dfa | 1490 | return NULL; |
c902760f MT |
1491 | } |
1492 | #endif | |
1493 | ||
0dc3f44a | 1494 | /* Called with the ramlist lock held. */ |
d17b5288 | 1495 | static ram_addr_t find_ram_offset(ram_addr_t size) |
04b16653 AW |
1496 | { |
1497 | RAMBlock *block, *next_block; | |
3e837b2c | 1498 | ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; |
04b16653 | 1499 | |
49cd9ac6 SH |
1500 | assert(size != 0); /* it would hand out same offset multiple times */ |
1501 | ||
0dc3f44a | 1502 | if (QLIST_EMPTY_RCU(&ram_list.blocks)) { |
04b16653 | 1503 | return 0; |
0d53d9fe | 1504 | } |
04b16653 | 1505 | |
0dc3f44a | 1506 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
f15fbc4b | 1507 | ram_addr_t end, next = RAM_ADDR_MAX; |
04b16653 | 1508 | |
62be4e3a | 1509 | end = block->offset + block->max_length; |
04b16653 | 1510 | |
0dc3f44a | 1511 | QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) { |
04b16653 AW |
1512 | if (next_block->offset >= end) { |
1513 | next = MIN(next, next_block->offset); | |
1514 | } | |
1515 | } | |
1516 | if (next - end >= size && next - end < mingap) { | |
3e837b2c | 1517 | offset = end; |
04b16653 AW |
1518 | mingap = next - end; |
1519 | } | |
1520 | } | |
3e837b2c AW |
1521 | |
1522 | if (offset == RAM_ADDR_MAX) { | |
1523 | fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", | |
1524 | (uint64_t)size); | |
1525 | abort(); | |
1526 | } | |
1527 | ||
04b16653 AW |
1528 | return offset; |
1529 | } | |
1530 | ||
b8c48993 | 1531 | unsigned long last_ram_page(void) |
d17b5288 AW |
1532 | { |
1533 | RAMBlock *block; | |
1534 | ram_addr_t last = 0; | |
1535 | ||
0dc3f44a MD |
1536 | rcu_read_lock(); |
1537 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
62be4e3a | 1538 | last = MAX(last, block->offset + block->max_length); |
0d53d9fe | 1539 | } |
0dc3f44a | 1540 | rcu_read_unlock(); |
b8c48993 | 1541 | return last >> TARGET_PAGE_BITS; |
d17b5288 AW |
1542 | } |
1543 | ||
ddb97f1d JB |
1544 | static void qemu_ram_setup_dump(void *addr, ram_addr_t size) |
1545 | { | |
1546 | int ret; | |
ddb97f1d JB |
1547 | |
1548 | /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ | |
47c8ca53 | 1549 | if (!machine_dump_guest_core(current_machine)) { |
ddb97f1d JB |
1550 | ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); |
1551 | if (ret) { | |
1552 | perror("qemu_madvise"); | |
1553 | fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " | |
1554 | "but dump_guest_core=off specified\n"); | |
1555 | } | |
1556 | } | |
1557 | } | |
1558 | ||
422148d3 DDAG |
1559 | const char *qemu_ram_get_idstr(RAMBlock *rb) |
1560 | { | |
1561 | return rb->idstr; | |
1562 | } | |
1563 | ||
463a4ac2 DDAG |
1564 | bool qemu_ram_is_shared(RAMBlock *rb) |
1565 | { | |
1566 | return rb->flags & RAM_SHARED; | |
1567 | } | |
1568 | ||
ae3a7047 | 1569 | /* Called with iothread lock held. */ |
fa53a0e5 | 1570 | void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev) |
20cfe881 | 1571 | { |
fa53a0e5 | 1572 | RAMBlock *block; |
20cfe881 | 1573 | |
c5705a77 AK |
1574 | assert(new_block); |
1575 | assert(!new_block->idstr[0]); | |
84b89d78 | 1576 | |
09e5ab63 AL |
1577 | if (dev) { |
1578 | char *id = qdev_get_dev_path(dev); | |
84b89d78 CM |
1579 | if (id) { |
1580 | snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); | |
7267c094 | 1581 | g_free(id); |
84b89d78 CM |
1582 | } |
1583 | } | |
1584 | pstrcat(new_block->idstr, sizeof(new_block->idstr), name); | |
1585 | ||
ab0a9956 | 1586 | rcu_read_lock(); |
0dc3f44a | 1587 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
fa53a0e5 GA |
1588 | if (block != new_block && |
1589 | !strcmp(block->idstr, new_block->idstr)) { | |
84b89d78 CM |
1590 | fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", |
1591 | new_block->idstr); | |
1592 | abort(); | |
1593 | } | |
1594 | } | |
0dc3f44a | 1595 | rcu_read_unlock(); |
c5705a77 AK |
1596 | } |
1597 | ||
ae3a7047 | 1598 | /* Called with iothread lock held. */ |
fa53a0e5 | 1599 | void qemu_ram_unset_idstr(RAMBlock *block) |
20cfe881 | 1600 | { |
ae3a7047 MD |
1601 | /* FIXME: arch_init.c assumes that this is not called throughout |
1602 | * migration. Ignore the problem since hot-unplug during migration | |
1603 | * does not work anyway. | |
1604 | */ | |
20cfe881 HT |
1605 | if (block) { |
1606 | memset(block->idstr, 0, sizeof(block->idstr)); | |
1607 | } | |
1608 | } | |
1609 | ||
863e9621 DDAG |
1610 | size_t qemu_ram_pagesize(RAMBlock *rb) |
1611 | { | |
1612 | return rb->page_size; | |
1613 | } | |
1614 | ||
67f11b5c DDAG |
1615 | /* Returns the largest size of page in use */ |
1616 | size_t qemu_ram_pagesize_largest(void) | |
1617 | { | |
1618 | RAMBlock *block; | |
1619 | size_t largest = 0; | |
1620 | ||
1621 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
1622 | largest = MAX(largest, qemu_ram_pagesize(block)); | |
1623 | } | |
1624 | ||
1625 | return largest; | |
1626 | } | |
1627 | ||
8490fc78 LC |
1628 | static int memory_try_enable_merging(void *addr, size_t len) |
1629 | { | |
75cc7f01 | 1630 | if (!machine_mem_merge(current_machine)) { |
8490fc78 LC |
1631 | /* disabled by the user */ |
1632 | return 0; | |
1633 | } | |
1634 | ||
1635 | return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); | |
1636 | } | |
1637 | ||
62be4e3a MT |
1638 | /* Only legal before guest might have detected the memory size: e.g. on |
1639 | * incoming migration, or right after reset. | |
1640 | * | |
1641 | * As memory core doesn't know how is memory accessed, it is up to | |
1642 | * resize callback to update device state and/or add assertions to detect | |
1643 | * misuse, if necessary. | |
1644 | */ | |
fa53a0e5 | 1645 | int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp) |
62be4e3a | 1646 | { |
62be4e3a MT |
1647 | assert(block); |
1648 | ||
4ed023ce | 1649 | newsize = HOST_PAGE_ALIGN(newsize); |
129ddaf3 | 1650 | |
62be4e3a MT |
1651 | if (block->used_length == newsize) { |
1652 | return 0; | |
1653 | } | |
1654 | ||
1655 | if (!(block->flags & RAM_RESIZEABLE)) { | |
1656 | error_setg_errno(errp, EINVAL, | |
1657 | "Length mismatch: %s: 0x" RAM_ADDR_FMT | |
1658 | " in != 0x" RAM_ADDR_FMT, block->idstr, | |
1659 | newsize, block->used_length); | |
1660 | return -EINVAL; | |
1661 | } | |
1662 | ||
1663 | if (block->max_length < newsize) { | |
1664 | error_setg_errno(errp, EINVAL, | |
1665 | "Length too large: %s: 0x" RAM_ADDR_FMT | |
1666 | " > 0x" RAM_ADDR_FMT, block->idstr, | |
1667 | newsize, block->max_length); | |
1668 | return -EINVAL; | |
1669 | } | |
1670 | ||
1671 | cpu_physical_memory_clear_dirty_range(block->offset, block->used_length); | |
1672 | block->used_length = newsize; | |
58d2707e PB |
1673 | cpu_physical_memory_set_dirty_range(block->offset, block->used_length, |
1674 | DIRTY_CLIENTS_ALL); | |
62be4e3a MT |
1675 | memory_region_set_size(block->mr, newsize); |
1676 | if (block->resized) { | |
1677 | block->resized(block->idstr, newsize, block->host); | |
1678 | } | |
1679 | return 0; | |
1680 | } | |
1681 | ||
5b82b703 SH |
1682 | /* Called with ram_list.mutex held */ |
1683 | static void dirty_memory_extend(ram_addr_t old_ram_size, | |
1684 | ram_addr_t new_ram_size) | |
1685 | { | |
1686 | ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size, | |
1687 | DIRTY_MEMORY_BLOCK_SIZE); | |
1688 | ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size, | |
1689 | DIRTY_MEMORY_BLOCK_SIZE); | |
1690 | int i; | |
1691 | ||
1692 | /* Only need to extend if block count increased */ | |
1693 | if (new_num_blocks <= old_num_blocks) { | |
1694 | return; | |
1695 | } | |
1696 | ||
1697 | for (i = 0; i < DIRTY_MEMORY_NUM; i++) { | |
1698 | DirtyMemoryBlocks *old_blocks; | |
1699 | DirtyMemoryBlocks *new_blocks; | |
1700 | int j; | |
1701 | ||
1702 | old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]); | |
1703 | new_blocks = g_malloc(sizeof(*new_blocks) + | |
1704 | sizeof(new_blocks->blocks[0]) * new_num_blocks); | |
1705 | ||
1706 | if (old_num_blocks) { | |
1707 | memcpy(new_blocks->blocks, old_blocks->blocks, | |
1708 | old_num_blocks * sizeof(old_blocks->blocks[0])); | |
1709 | } | |
1710 | ||
1711 | for (j = old_num_blocks; j < new_num_blocks; j++) { | |
1712 | new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE); | |
1713 | } | |
1714 | ||
1715 | atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks); | |
1716 | ||
1717 | if (old_blocks) { | |
1718 | g_free_rcu(old_blocks, rcu); | |
1719 | } | |
1720 | } | |
1721 | } | |
1722 | ||
528f46af | 1723 | static void ram_block_add(RAMBlock *new_block, Error **errp) |
c5705a77 | 1724 | { |
e1c57ab8 | 1725 | RAMBlock *block; |
0d53d9fe | 1726 | RAMBlock *last_block = NULL; |
2152f5ca | 1727 | ram_addr_t old_ram_size, new_ram_size; |
37aa7a0e | 1728 | Error *err = NULL; |
2152f5ca | 1729 | |
b8c48993 | 1730 | old_ram_size = last_ram_page(); |
c5705a77 | 1731 | |
b2a8658e | 1732 | qemu_mutex_lock_ramlist(); |
9b8424d5 | 1733 | new_block->offset = find_ram_offset(new_block->max_length); |
e1c57ab8 PB |
1734 | |
1735 | if (!new_block->host) { | |
1736 | if (xen_enabled()) { | |
9b8424d5 | 1737 | xen_ram_alloc(new_block->offset, new_block->max_length, |
37aa7a0e MA |
1738 | new_block->mr, &err); |
1739 | if (err) { | |
1740 | error_propagate(errp, err); | |
1741 | qemu_mutex_unlock_ramlist(); | |
39c350ee | 1742 | return; |
37aa7a0e | 1743 | } |
e1c57ab8 | 1744 | } else { |
9b8424d5 | 1745 | new_block->host = phys_mem_alloc(new_block->max_length, |
a2b257d6 | 1746 | &new_block->mr->align); |
39228250 | 1747 | if (!new_block->host) { |
ef701d7b HT |
1748 | error_setg_errno(errp, errno, |
1749 | "cannot set up guest memory '%s'", | |
1750 | memory_region_name(new_block->mr)); | |
1751 | qemu_mutex_unlock_ramlist(); | |
39c350ee | 1752 | return; |
39228250 | 1753 | } |
9b8424d5 | 1754 | memory_try_enable_merging(new_block->host, new_block->max_length); |
6977dfe6 | 1755 | } |
c902760f | 1756 | } |
94a6b54f | 1757 | |
dd631697 LZ |
1758 | new_ram_size = MAX(old_ram_size, |
1759 | (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS); | |
1760 | if (new_ram_size > old_ram_size) { | |
5b82b703 | 1761 | dirty_memory_extend(old_ram_size, new_ram_size); |
dd631697 | 1762 | } |
0d53d9fe MD |
1763 | /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ, |
1764 | * QLIST (which has an RCU-friendly variant) does not have insertion at | |
1765 | * tail, so save the last element in last_block. | |
1766 | */ | |
0dc3f44a | 1767 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
0d53d9fe | 1768 | last_block = block; |
9b8424d5 | 1769 | if (block->max_length < new_block->max_length) { |
abb26d63 PB |
1770 | break; |
1771 | } | |
1772 | } | |
1773 | if (block) { | |
0dc3f44a | 1774 | QLIST_INSERT_BEFORE_RCU(block, new_block, next); |
0d53d9fe | 1775 | } else if (last_block) { |
0dc3f44a | 1776 | QLIST_INSERT_AFTER_RCU(last_block, new_block, next); |
0d53d9fe | 1777 | } else { /* list is empty */ |
0dc3f44a | 1778 | QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); |
abb26d63 | 1779 | } |
0d6d3c87 | 1780 | ram_list.mru_block = NULL; |
94a6b54f | 1781 | |
0dc3f44a MD |
1782 | /* Write list before version */ |
1783 | smp_wmb(); | |
f798b07f | 1784 | ram_list.version++; |
b2a8658e | 1785 | qemu_mutex_unlock_ramlist(); |
f798b07f | 1786 | |
9b8424d5 | 1787 | cpu_physical_memory_set_dirty_range(new_block->offset, |
58d2707e PB |
1788 | new_block->used_length, |
1789 | DIRTY_CLIENTS_ALL); | |
94a6b54f | 1790 | |
a904c911 PB |
1791 | if (new_block->host) { |
1792 | qemu_ram_setup_dump(new_block->host, new_block->max_length); | |
1793 | qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); | |
c2cd627d | 1794 | /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */ |
a904c911 | 1795 | qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK); |
0987d735 | 1796 | ram_block_notify_add(new_block->host, new_block->max_length); |
e1c57ab8 | 1797 | } |
94a6b54f | 1798 | } |
e9a1ab19 | 1799 | |
0b183fc8 | 1800 | #ifdef __linux__ |
528f46af FZ |
1801 | RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, |
1802 | bool share, const char *mem_path, | |
1803 | Error **errp) | |
e1c57ab8 PB |
1804 | { |
1805 | RAMBlock *new_block; | |
ef701d7b | 1806 | Error *local_err = NULL; |
e1c57ab8 PB |
1807 | |
1808 | if (xen_enabled()) { | |
7f56e740 | 1809 | error_setg(errp, "-mem-path not supported with Xen"); |
528f46af | 1810 | return NULL; |
e1c57ab8 PB |
1811 | } |
1812 | ||
1813 | if (phys_mem_alloc != qemu_anon_ram_alloc) { | |
1814 | /* | |
1815 | * file_ram_alloc() needs to allocate just like | |
1816 | * phys_mem_alloc, but we haven't bothered to provide | |
1817 | * a hook there. | |
1818 | */ | |
7f56e740 PB |
1819 | error_setg(errp, |
1820 | "-mem-path not supported with this accelerator"); | |
528f46af | 1821 | return NULL; |
e1c57ab8 PB |
1822 | } |
1823 | ||
4ed023ce | 1824 | size = HOST_PAGE_ALIGN(size); |
e1c57ab8 PB |
1825 | new_block = g_malloc0(sizeof(*new_block)); |
1826 | new_block->mr = mr; | |
9b8424d5 MT |
1827 | new_block->used_length = size; |
1828 | new_block->max_length = size; | |
dbcb8981 | 1829 | new_block->flags = share ? RAM_SHARED : 0; |
7f56e740 PB |
1830 | new_block->host = file_ram_alloc(new_block, size, |
1831 | mem_path, errp); | |
1832 | if (!new_block->host) { | |
1833 | g_free(new_block); | |
528f46af | 1834 | return NULL; |
7f56e740 PB |
1835 | } |
1836 | ||
528f46af | 1837 | ram_block_add(new_block, &local_err); |
ef701d7b HT |
1838 | if (local_err) { |
1839 | g_free(new_block); | |
1840 | error_propagate(errp, local_err); | |
528f46af | 1841 | return NULL; |
ef701d7b | 1842 | } |
528f46af | 1843 | return new_block; |
e1c57ab8 | 1844 | } |
0b183fc8 | 1845 | #endif |
e1c57ab8 | 1846 | |
62be4e3a | 1847 | static |
528f46af FZ |
1848 | RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size, |
1849 | void (*resized)(const char*, | |
1850 | uint64_t length, | |
1851 | void *host), | |
1852 | void *host, bool resizeable, | |
1853 | MemoryRegion *mr, Error **errp) | |
e1c57ab8 PB |
1854 | { |
1855 | RAMBlock *new_block; | |
ef701d7b | 1856 | Error *local_err = NULL; |
e1c57ab8 | 1857 | |
4ed023ce DDAG |
1858 | size = HOST_PAGE_ALIGN(size); |
1859 | max_size = HOST_PAGE_ALIGN(max_size); | |
e1c57ab8 PB |
1860 | new_block = g_malloc0(sizeof(*new_block)); |
1861 | new_block->mr = mr; | |
62be4e3a | 1862 | new_block->resized = resized; |
9b8424d5 MT |
1863 | new_block->used_length = size; |
1864 | new_block->max_length = max_size; | |
62be4e3a | 1865 | assert(max_size >= size); |
e1c57ab8 | 1866 | new_block->fd = -1; |
863e9621 | 1867 | new_block->page_size = getpagesize(); |
e1c57ab8 PB |
1868 | new_block->host = host; |
1869 | if (host) { | |
7bd4f430 | 1870 | new_block->flags |= RAM_PREALLOC; |
e1c57ab8 | 1871 | } |
62be4e3a MT |
1872 | if (resizeable) { |
1873 | new_block->flags |= RAM_RESIZEABLE; | |
1874 | } | |
528f46af | 1875 | ram_block_add(new_block, &local_err); |
ef701d7b HT |
1876 | if (local_err) { |
1877 | g_free(new_block); | |
1878 | error_propagate(errp, local_err); | |
528f46af | 1879 | return NULL; |
ef701d7b | 1880 | } |
528f46af | 1881 | return new_block; |
e1c57ab8 PB |
1882 | } |
1883 | ||
528f46af | 1884 | RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, |
62be4e3a MT |
1885 | MemoryRegion *mr, Error **errp) |
1886 | { | |
1887 | return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp); | |
1888 | } | |
1889 | ||
528f46af | 1890 | RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp) |
6977dfe6 | 1891 | { |
62be4e3a MT |
1892 | return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp); |
1893 | } | |
1894 | ||
528f46af | 1895 | RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz, |
62be4e3a MT |
1896 | void (*resized)(const char*, |
1897 | uint64_t length, | |
1898 | void *host), | |
1899 | MemoryRegion *mr, Error **errp) | |
1900 | { | |
1901 | return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp); | |
6977dfe6 YT |
1902 | } |
1903 | ||
43771539 PB |
1904 | static void reclaim_ramblock(RAMBlock *block) |
1905 | { | |
1906 | if (block->flags & RAM_PREALLOC) { | |
1907 | ; | |
1908 | } else if (xen_enabled()) { | |
1909 | xen_invalidate_map_cache_entry(block->host); | |
1910 | #ifndef _WIN32 | |
1911 | } else if (block->fd >= 0) { | |
2f3a2bb1 | 1912 | qemu_ram_munmap(block->host, block->max_length); |
43771539 PB |
1913 | close(block->fd); |
1914 | #endif | |
1915 | } else { | |
1916 | qemu_anon_ram_free(block->host, block->max_length); | |
1917 | } | |
1918 | g_free(block); | |
1919 | } | |
1920 | ||
f1060c55 | 1921 | void qemu_ram_free(RAMBlock *block) |
e9a1ab19 | 1922 | { |
85bc2a15 MAL |
1923 | if (!block) { |
1924 | return; | |
1925 | } | |
1926 | ||
0987d735 PB |
1927 | if (block->host) { |
1928 | ram_block_notify_remove(block->host, block->max_length); | |
1929 | } | |
1930 | ||
b2a8658e | 1931 | qemu_mutex_lock_ramlist(); |
f1060c55 FZ |
1932 | QLIST_REMOVE_RCU(block, next); |
1933 | ram_list.mru_block = NULL; | |
1934 | /* Write list before version */ | |
1935 | smp_wmb(); | |
1936 | ram_list.version++; | |
1937 | call_rcu(block, reclaim_ramblock, rcu); | |
b2a8658e | 1938 | qemu_mutex_unlock_ramlist(); |
e9a1ab19 FB |
1939 | } |
1940 | ||
cd19cfa2 HY |
1941 | #ifndef _WIN32 |
1942 | void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) | |
1943 | { | |
1944 | RAMBlock *block; | |
1945 | ram_addr_t offset; | |
1946 | int flags; | |
1947 | void *area, *vaddr; | |
1948 | ||
0dc3f44a | 1949 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
cd19cfa2 | 1950 | offset = addr - block->offset; |
9b8424d5 | 1951 | if (offset < block->max_length) { |
1240be24 | 1952 | vaddr = ramblock_ptr(block, offset); |
7bd4f430 | 1953 | if (block->flags & RAM_PREALLOC) { |
cd19cfa2 | 1954 | ; |
dfeaf2ab MA |
1955 | } else if (xen_enabled()) { |
1956 | abort(); | |
cd19cfa2 HY |
1957 | } else { |
1958 | flags = MAP_FIXED; | |
3435f395 | 1959 | if (block->fd >= 0) { |
dbcb8981 PB |
1960 | flags |= (block->flags & RAM_SHARED ? |
1961 | MAP_SHARED : MAP_PRIVATE); | |
3435f395 MA |
1962 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, |
1963 | flags, block->fd, offset); | |
cd19cfa2 | 1964 | } else { |
2eb9fbaa MA |
1965 | /* |
1966 | * Remap needs to match alloc. Accelerators that | |
1967 | * set phys_mem_alloc never remap. If they did, | |
1968 | * we'd need a remap hook here. | |
1969 | */ | |
1970 | assert(phys_mem_alloc == qemu_anon_ram_alloc); | |
1971 | ||
cd19cfa2 HY |
1972 | flags |= MAP_PRIVATE | MAP_ANONYMOUS; |
1973 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, | |
1974 | flags, -1, 0); | |
cd19cfa2 HY |
1975 | } |
1976 | if (area != vaddr) { | |
f15fbc4b AP |
1977 | fprintf(stderr, "Could not remap addr: " |
1978 | RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n", | |
cd19cfa2 HY |
1979 | length, addr); |
1980 | exit(1); | |
1981 | } | |
8490fc78 | 1982 | memory_try_enable_merging(vaddr, length); |
ddb97f1d | 1983 | qemu_ram_setup_dump(vaddr, length); |
cd19cfa2 | 1984 | } |
cd19cfa2 HY |
1985 | } |
1986 | } | |
1987 | } | |
1988 | #endif /* !_WIN32 */ | |
1989 | ||
1b5ec234 | 1990 | /* Return a host pointer to ram allocated with qemu_ram_alloc. |
ae3a7047 MD |
1991 | * This should not be used for general purpose DMA. Use address_space_map |
1992 | * or address_space_rw instead. For local memory (e.g. video ram) that the | |
1993 | * device owns, use memory_region_get_ram_ptr. | |
0dc3f44a | 1994 | * |
49b24afc | 1995 | * Called within RCU critical section. |
1b5ec234 | 1996 | */ |
0878d0e1 | 1997 | void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr) |
1b5ec234 | 1998 | { |
3655cb9c GA |
1999 | RAMBlock *block = ram_block; |
2000 | ||
2001 | if (block == NULL) { | |
2002 | block = qemu_get_ram_block(addr); | |
0878d0e1 | 2003 | addr -= block->offset; |
3655cb9c | 2004 | } |
ae3a7047 MD |
2005 | |
2006 | if (xen_enabled() && block->host == NULL) { | |
0d6d3c87 PB |
2007 | /* We need to check if the requested address is in the RAM |
2008 | * because we don't want to map the entire memory in QEMU. | |
2009 | * In that case just map until the end of the page. | |
2010 | */ | |
2011 | if (block->offset == 0) { | |
49b24afc | 2012 | return xen_map_cache(addr, 0, 0); |
0d6d3c87 | 2013 | } |
ae3a7047 MD |
2014 | |
2015 | block->host = xen_map_cache(block->offset, block->max_length, 1); | |
0d6d3c87 | 2016 | } |
0878d0e1 | 2017 | return ramblock_ptr(block, addr); |
dc828ca1 PB |
2018 | } |
2019 | ||
0878d0e1 | 2020 | /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr |
ae3a7047 | 2021 | * but takes a size argument. |
0dc3f44a | 2022 | * |
e81bcda5 | 2023 | * Called within RCU critical section. |
ae3a7047 | 2024 | */ |
3655cb9c GA |
2025 | static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr, |
2026 | hwaddr *size) | |
38bee5dc | 2027 | { |
3655cb9c | 2028 | RAMBlock *block = ram_block; |
8ab934f9 SS |
2029 | if (*size == 0) { |
2030 | return NULL; | |
2031 | } | |
e81bcda5 | 2032 | |
3655cb9c GA |
2033 | if (block == NULL) { |
2034 | block = qemu_get_ram_block(addr); | |
0878d0e1 | 2035 | addr -= block->offset; |
3655cb9c | 2036 | } |
0878d0e1 | 2037 | *size = MIN(*size, block->max_length - addr); |
e81bcda5 PB |
2038 | |
2039 | if (xen_enabled() && block->host == NULL) { | |
2040 | /* We need to check if the requested address is in the RAM | |
2041 | * because we don't want to map the entire memory in QEMU. | |
2042 | * In that case just map the requested area. | |
2043 | */ | |
2044 | if (block->offset == 0) { | |
2045 | return xen_map_cache(addr, *size, 1); | |
38bee5dc SS |
2046 | } |
2047 | ||
e81bcda5 | 2048 | block->host = xen_map_cache(block->offset, block->max_length, 1); |
38bee5dc | 2049 | } |
e81bcda5 | 2050 | |
0878d0e1 | 2051 | return ramblock_ptr(block, addr); |
38bee5dc SS |
2052 | } |
2053 | ||
422148d3 DDAG |
2054 | /* |
2055 | * Translates a host ptr back to a RAMBlock, a ram_addr and an offset | |
2056 | * in that RAMBlock. | |
2057 | * | |
2058 | * ptr: Host pointer to look up | |
2059 | * round_offset: If true round the result offset down to a page boundary | |
2060 | * *ram_addr: set to result ram_addr | |
2061 | * *offset: set to result offset within the RAMBlock | |
2062 | * | |
2063 | * Returns: RAMBlock (or NULL if not found) | |
ae3a7047 MD |
2064 | * |
2065 | * By the time this function returns, the returned pointer is not protected | |
2066 | * by RCU anymore. If the caller is not within an RCU critical section and | |
2067 | * does not hold the iothread lock, it must have other means of protecting the | |
2068 | * pointer, such as a reference to the region that includes the incoming | |
2069 | * ram_addr_t. | |
2070 | */ | |
422148d3 | 2071 | RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, |
422148d3 | 2072 | ram_addr_t *offset) |
5579c7f3 | 2073 | { |
94a6b54f PB |
2074 | RAMBlock *block; |
2075 | uint8_t *host = ptr; | |
2076 | ||
868bb33f | 2077 | if (xen_enabled()) { |
f615f396 | 2078 | ram_addr_t ram_addr; |
0dc3f44a | 2079 | rcu_read_lock(); |
f615f396 PB |
2080 | ram_addr = xen_ram_addr_from_mapcache(ptr); |
2081 | block = qemu_get_ram_block(ram_addr); | |
422148d3 | 2082 | if (block) { |
d6b6aec4 | 2083 | *offset = ram_addr - block->offset; |
422148d3 | 2084 | } |
0dc3f44a | 2085 | rcu_read_unlock(); |
422148d3 | 2086 | return block; |
712c2b41 SS |
2087 | } |
2088 | ||
0dc3f44a MD |
2089 | rcu_read_lock(); |
2090 | block = atomic_rcu_read(&ram_list.mru_block); | |
9b8424d5 | 2091 | if (block && block->host && host - block->host < block->max_length) { |
23887b79 PB |
2092 | goto found; |
2093 | } | |
2094 | ||
0dc3f44a | 2095 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
432d268c JN |
2096 | /* This case append when the block is not mapped. */ |
2097 | if (block->host == NULL) { | |
2098 | continue; | |
2099 | } | |
9b8424d5 | 2100 | if (host - block->host < block->max_length) { |
23887b79 | 2101 | goto found; |
f471a17e | 2102 | } |
94a6b54f | 2103 | } |
432d268c | 2104 | |
0dc3f44a | 2105 | rcu_read_unlock(); |
1b5ec234 | 2106 | return NULL; |
23887b79 PB |
2107 | |
2108 | found: | |
422148d3 DDAG |
2109 | *offset = (host - block->host); |
2110 | if (round_offset) { | |
2111 | *offset &= TARGET_PAGE_MASK; | |
2112 | } | |
0dc3f44a | 2113 | rcu_read_unlock(); |
422148d3 DDAG |
2114 | return block; |
2115 | } | |
2116 | ||
e3dd7493 DDAG |
2117 | /* |
2118 | * Finds the named RAMBlock | |
2119 | * | |
2120 | * name: The name of RAMBlock to find | |
2121 | * | |
2122 | * Returns: RAMBlock (or NULL if not found) | |
2123 | */ | |
2124 | RAMBlock *qemu_ram_block_by_name(const char *name) | |
2125 | { | |
2126 | RAMBlock *block; | |
2127 | ||
2128 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
2129 | if (!strcmp(name, block->idstr)) { | |
2130 | return block; | |
2131 | } | |
2132 | } | |
2133 | ||
2134 | return NULL; | |
2135 | } | |
2136 | ||
422148d3 DDAG |
2137 | /* Some of the softmmu routines need to translate from a host pointer |
2138 | (typically a TLB entry) back to a ram offset. */ | |
07bdaa41 | 2139 | ram_addr_t qemu_ram_addr_from_host(void *ptr) |
422148d3 DDAG |
2140 | { |
2141 | RAMBlock *block; | |
f615f396 | 2142 | ram_addr_t offset; |
422148d3 | 2143 | |
f615f396 | 2144 | block = qemu_ram_block_from_host(ptr, false, &offset); |
422148d3 | 2145 | if (!block) { |
07bdaa41 | 2146 | return RAM_ADDR_INVALID; |
422148d3 DDAG |
2147 | } |
2148 | ||
07bdaa41 | 2149 | return block->offset + offset; |
e890261f | 2150 | } |
f471a17e | 2151 | |
49b24afc | 2152 | /* Called within RCU critical section. */ |
a8170e5e | 2153 | static void notdirty_mem_write(void *opaque, hwaddr ram_addr, |
0e0df1e2 | 2154 | uint64_t val, unsigned size) |
9fa3e853 | 2155 | { |
ba051fb5 AB |
2156 | bool locked = false; |
2157 | ||
52159192 | 2158 | if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { |
ba051fb5 AB |
2159 | locked = true; |
2160 | tb_lock(); | |
0e0df1e2 | 2161 | tb_invalidate_phys_page_fast(ram_addr, size); |
3a7d929e | 2162 | } |
0e0df1e2 AK |
2163 | switch (size) { |
2164 | case 1: | |
0878d0e1 | 2165 | stb_p(qemu_map_ram_ptr(NULL, ram_addr), val); |
0e0df1e2 AK |
2166 | break; |
2167 | case 2: | |
0878d0e1 | 2168 | stw_p(qemu_map_ram_ptr(NULL, ram_addr), val); |
0e0df1e2 AK |
2169 | break; |
2170 | case 4: | |
0878d0e1 | 2171 | stl_p(qemu_map_ram_ptr(NULL, ram_addr), val); |
0e0df1e2 AK |
2172 | break; |
2173 | default: | |
2174 | abort(); | |
3a7d929e | 2175 | } |
ba051fb5 AB |
2176 | |
2177 | if (locked) { | |
2178 | tb_unlock(); | |
2179 | } | |
2180 | ||
58d2707e PB |
2181 | /* Set both VGA and migration bits for simplicity and to remove |
2182 | * the notdirty callback faster. | |
2183 | */ | |
2184 | cpu_physical_memory_set_dirty_range(ram_addr, size, | |
2185 | DIRTY_CLIENTS_NOCODE); | |
f23db169 FB |
2186 | /* we remove the notdirty callback only if the code has been |
2187 | flushed */ | |
a2cd8c85 | 2188 | if (!cpu_physical_memory_is_clean(ram_addr)) { |
bcae01e4 | 2189 | tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr); |
4917cf44 | 2190 | } |
9fa3e853 FB |
2191 | } |
2192 | ||
b018ddf6 PB |
2193 | static bool notdirty_mem_accepts(void *opaque, hwaddr addr, |
2194 | unsigned size, bool is_write) | |
2195 | { | |
2196 | return is_write; | |
2197 | } | |
2198 | ||
0e0df1e2 | 2199 | static const MemoryRegionOps notdirty_mem_ops = { |
0e0df1e2 | 2200 | .write = notdirty_mem_write, |
b018ddf6 | 2201 | .valid.accepts = notdirty_mem_accepts, |
0e0df1e2 | 2202 | .endianness = DEVICE_NATIVE_ENDIAN, |
1ccde1cb FB |
2203 | }; |
2204 | ||
0f459d16 | 2205 | /* Generate a debug exception if a watchpoint has been hit. */ |
66b9b43c | 2206 | static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags) |
0f459d16 | 2207 | { |
93afeade | 2208 | CPUState *cpu = current_cpu; |
568496c0 | 2209 | CPUClass *cc = CPU_GET_CLASS(cpu); |
93afeade | 2210 | CPUArchState *env = cpu->env_ptr; |
06d55cc1 | 2211 | target_ulong pc, cs_base; |
0f459d16 | 2212 | target_ulong vaddr; |
a1d1bb31 | 2213 | CPUWatchpoint *wp; |
89fee74a | 2214 | uint32_t cpu_flags; |
0f459d16 | 2215 | |
ff4700b0 | 2216 | if (cpu->watchpoint_hit) { |
06d55cc1 AL |
2217 | /* We re-entered the check after replacing the TB. Now raise |
2218 | * the debug interrupt so that is will trigger after the | |
2219 | * current instruction. */ | |
93afeade | 2220 | cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG); |
06d55cc1 AL |
2221 | return; |
2222 | } | |
93afeade | 2223 | vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset; |
40612000 | 2224 | vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len); |
ff4700b0 | 2225 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d PM |
2226 | if (cpu_watchpoint_address_matches(wp, vaddr, len) |
2227 | && (wp->flags & flags)) { | |
08225676 PM |
2228 | if (flags == BP_MEM_READ) { |
2229 | wp->flags |= BP_WATCHPOINT_HIT_READ; | |
2230 | } else { | |
2231 | wp->flags |= BP_WATCHPOINT_HIT_WRITE; | |
2232 | } | |
2233 | wp->hitaddr = vaddr; | |
66b9b43c | 2234 | wp->hitattrs = attrs; |
ff4700b0 | 2235 | if (!cpu->watchpoint_hit) { |
568496c0 SF |
2236 | if (wp->flags & BP_CPU && |
2237 | !cc->debug_check_watchpoint(cpu, wp)) { | |
2238 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
2239 | continue; | |
2240 | } | |
ff4700b0 | 2241 | cpu->watchpoint_hit = wp; |
a5e99826 | 2242 | |
8d04fb55 JK |
2243 | /* Both tb_lock and iothread_mutex will be reset when |
2244 | * cpu_loop_exit or cpu_loop_exit_noexc longjmp | |
2245 | * back into the cpu_exec main loop. | |
a5e99826 FK |
2246 | */ |
2247 | tb_lock(); | |
239c51a5 | 2248 | tb_check_watchpoint(cpu); |
6e140f28 | 2249 | if (wp->flags & BP_STOP_BEFORE_ACCESS) { |
27103424 | 2250 | cpu->exception_index = EXCP_DEBUG; |
5638d180 | 2251 | cpu_loop_exit(cpu); |
6e140f28 AL |
2252 | } else { |
2253 | cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags); | |
648f034c | 2254 | tb_gen_code(cpu, pc, cs_base, cpu_flags, 1); |
6886b980 | 2255 | cpu_loop_exit_noexc(cpu); |
6e140f28 | 2256 | } |
06d55cc1 | 2257 | } |
6e140f28 AL |
2258 | } else { |
2259 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
0f459d16 PB |
2260 | } |
2261 | } | |
2262 | } | |
2263 | ||
6658ffb8 PB |
2264 | /* Watchpoint access routines. Watchpoints are inserted using TLB tricks, |
2265 | so these check for a hit then pass through to the normal out-of-line | |
2266 | phys routines. */ | |
66b9b43c PM |
2267 | static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata, |
2268 | unsigned size, MemTxAttrs attrs) | |
6658ffb8 | 2269 | { |
66b9b43c PM |
2270 | MemTxResult res; |
2271 | uint64_t data; | |
79ed0416 PM |
2272 | int asidx = cpu_asidx_from_attrs(current_cpu, attrs); |
2273 | AddressSpace *as = current_cpu->cpu_ases[asidx].as; | |
66b9b43c PM |
2274 | |
2275 | check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ); | |
1ec9b909 | 2276 | switch (size) { |
66b9b43c | 2277 | case 1: |
79ed0416 | 2278 | data = address_space_ldub(as, addr, attrs, &res); |
66b9b43c PM |
2279 | break; |
2280 | case 2: | |
79ed0416 | 2281 | data = address_space_lduw(as, addr, attrs, &res); |
66b9b43c PM |
2282 | break; |
2283 | case 4: | |
79ed0416 | 2284 | data = address_space_ldl(as, addr, attrs, &res); |
66b9b43c | 2285 | break; |
1ec9b909 AK |
2286 | default: abort(); |
2287 | } | |
66b9b43c PM |
2288 | *pdata = data; |
2289 | return res; | |
6658ffb8 PB |
2290 | } |
2291 | ||
66b9b43c PM |
2292 | static MemTxResult watch_mem_write(void *opaque, hwaddr addr, |
2293 | uint64_t val, unsigned size, | |
2294 | MemTxAttrs attrs) | |
6658ffb8 | 2295 | { |
66b9b43c | 2296 | MemTxResult res; |
79ed0416 PM |
2297 | int asidx = cpu_asidx_from_attrs(current_cpu, attrs); |
2298 | AddressSpace *as = current_cpu->cpu_ases[asidx].as; | |
66b9b43c PM |
2299 | |
2300 | check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE); | |
1ec9b909 | 2301 | switch (size) { |
67364150 | 2302 | case 1: |
79ed0416 | 2303 | address_space_stb(as, addr, val, attrs, &res); |
67364150 MF |
2304 | break; |
2305 | case 2: | |
79ed0416 | 2306 | address_space_stw(as, addr, val, attrs, &res); |
67364150 MF |
2307 | break; |
2308 | case 4: | |
79ed0416 | 2309 | address_space_stl(as, addr, val, attrs, &res); |
67364150 | 2310 | break; |
1ec9b909 AK |
2311 | default: abort(); |
2312 | } | |
66b9b43c | 2313 | return res; |
6658ffb8 PB |
2314 | } |
2315 | ||
1ec9b909 | 2316 | static const MemoryRegionOps watch_mem_ops = { |
66b9b43c PM |
2317 | .read_with_attrs = watch_mem_read, |
2318 | .write_with_attrs = watch_mem_write, | |
1ec9b909 | 2319 | .endianness = DEVICE_NATIVE_ENDIAN, |
6658ffb8 | 2320 | }; |
6658ffb8 | 2321 | |
f25a49e0 PM |
2322 | static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data, |
2323 | unsigned len, MemTxAttrs attrs) | |
db7b5426 | 2324 | { |
acc9d80b | 2325 | subpage_t *subpage = opaque; |
ff6cff75 | 2326 | uint8_t buf[8]; |
5c9eb028 | 2327 | MemTxResult res; |
791af8c8 | 2328 | |
db7b5426 | 2329 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2330 | printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__, |
acc9d80b | 2331 | subpage, len, addr); |
db7b5426 | 2332 | #endif |
5c9eb028 PM |
2333 | res = address_space_read(subpage->as, addr + subpage->base, |
2334 | attrs, buf, len); | |
2335 | if (res) { | |
2336 | return res; | |
f25a49e0 | 2337 | } |
acc9d80b JK |
2338 | switch (len) { |
2339 | case 1: | |
f25a49e0 PM |
2340 | *data = ldub_p(buf); |
2341 | return MEMTX_OK; | |
acc9d80b | 2342 | case 2: |
f25a49e0 PM |
2343 | *data = lduw_p(buf); |
2344 | return MEMTX_OK; | |
acc9d80b | 2345 | case 4: |
f25a49e0 PM |
2346 | *data = ldl_p(buf); |
2347 | return MEMTX_OK; | |
ff6cff75 | 2348 | case 8: |
f25a49e0 PM |
2349 | *data = ldq_p(buf); |
2350 | return MEMTX_OK; | |
acc9d80b JK |
2351 | default: |
2352 | abort(); | |
2353 | } | |
db7b5426 BS |
2354 | } |
2355 | ||
f25a49e0 PM |
2356 | static MemTxResult subpage_write(void *opaque, hwaddr addr, |
2357 | uint64_t value, unsigned len, MemTxAttrs attrs) | |
db7b5426 | 2358 | { |
acc9d80b | 2359 | subpage_t *subpage = opaque; |
ff6cff75 | 2360 | uint8_t buf[8]; |
acc9d80b | 2361 | |
db7b5426 | 2362 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2363 | printf("%s: subpage %p len %u addr " TARGET_FMT_plx |
acc9d80b JK |
2364 | " value %"PRIx64"\n", |
2365 | __func__, subpage, len, addr, value); | |
db7b5426 | 2366 | #endif |
acc9d80b JK |
2367 | switch (len) { |
2368 | case 1: | |
2369 | stb_p(buf, value); | |
2370 | break; | |
2371 | case 2: | |
2372 | stw_p(buf, value); | |
2373 | break; | |
2374 | case 4: | |
2375 | stl_p(buf, value); | |
2376 | break; | |
ff6cff75 PB |
2377 | case 8: |
2378 | stq_p(buf, value); | |
2379 | break; | |
acc9d80b JK |
2380 | default: |
2381 | abort(); | |
2382 | } | |
5c9eb028 PM |
2383 | return address_space_write(subpage->as, addr + subpage->base, |
2384 | attrs, buf, len); | |
db7b5426 BS |
2385 | } |
2386 | ||
c353e4cc | 2387 | static bool subpage_accepts(void *opaque, hwaddr addr, |
016e9d62 | 2388 | unsigned len, bool is_write) |
c353e4cc | 2389 | { |
acc9d80b | 2390 | subpage_t *subpage = opaque; |
c353e4cc | 2391 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2392 | printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n", |
acc9d80b | 2393 | __func__, subpage, is_write ? 'w' : 'r', len, addr); |
c353e4cc PB |
2394 | #endif |
2395 | ||
acc9d80b | 2396 | return address_space_access_valid(subpage->as, addr + subpage->base, |
016e9d62 | 2397 | len, is_write); |
c353e4cc PB |
2398 | } |
2399 | ||
70c68e44 | 2400 | static const MemoryRegionOps subpage_ops = { |
f25a49e0 PM |
2401 | .read_with_attrs = subpage_read, |
2402 | .write_with_attrs = subpage_write, | |
ff6cff75 PB |
2403 | .impl.min_access_size = 1, |
2404 | .impl.max_access_size = 8, | |
2405 | .valid.min_access_size = 1, | |
2406 | .valid.max_access_size = 8, | |
c353e4cc | 2407 | .valid.accepts = subpage_accepts, |
70c68e44 | 2408 | .endianness = DEVICE_NATIVE_ENDIAN, |
db7b5426 BS |
2409 | }; |
2410 | ||
c227f099 | 2411 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, |
5312bd8b | 2412 | uint16_t section) |
db7b5426 BS |
2413 | { |
2414 | int idx, eidx; | |
2415 | ||
2416 | if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) | |
2417 | return -1; | |
2418 | idx = SUBPAGE_IDX(start); | |
2419 | eidx = SUBPAGE_IDX(end); | |
2420 | #if defined(DEBUG_SUBPAGE) | |
016e9d62 AK |
2421 | printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", |
2422 | __func__, mmio, start, end, idx, eidx, section); | |
db7b5426 | 2423 | #endif |
db7b5426 | 2424 | for (; idx <= eidx; idx++) { |
5312bd8b | 2425 | mmio->sub_section[idx] = section; |
db7b5426 BS |
2426 | } |
2427 | ||
2428 | return 0; | |
2429 | } | |
2430 | ||
acc9d80b | 2431 | static subpage_t *subpage_init(AddressSpace *as, hwaddr base) |
db7b5426 | 2432 | { |
c227f099 | 2433 | subpage_t *mmio; |
db7b5426 | 2434 | |
2615fabd | 2435 | mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t)); |
acc9d80b | 2436 | mmio->as = as; |
1eec614b | 2437 | mmio->base = base; |
2c9b15ca | 2438 | memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, |
b4fefef9 | 2439 | NULL, TARGET_PAGE_SIZE); |
b3b00c78 | 2440 | mmio->iomem.subpage = true; |
db7b5426 | 2441 | #if defined(DEBUG_SUBPAGE) |
016e9d62 AK |
2442 | printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__, |
2443 | mmio, base, TARGET_PAGE_SIZE); | |
db7b5426 | 2444 | #endif |
b41aac4f | 2445 | subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED); |
db7b5426 BS |
2446 | |
2447 | return mmio; | |
2448 | } | |
2449 | ||
a656e22f PC |
2450 | static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as, |
2451 | MemoryRegion *mr) | |
5312bd8b | 2452 | { |
a656e22f | 2453 | assert(as); |
5312bd8b | 2454 | MemoryRegionSection section = { |
a656e22f | 2455 | .address_space = as, |
5312bd8b AK |
2456 | .mr = mr, |
2457 | .offset_within_address_space = 0, | |
2458 | .offset_within_region = 0, | |
052e87b0 | 2459 | .size = int128_2_64(), |
5312bd8b AK |
2460 | }; |
2461 | ||
53cb28cb | 2462 | return phys_section_add(map, §ion); |
5312bd8b AK |
2463 | } |
2464 | ||
a54c87b6 | 2465 | MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs) |
aa102231 | 2466 | { |
a54c87b6 PM |
2467 | int asidx = cpu_asidx_from_attrs(cpu, attrs); |
2468 | CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx]; | |
32857f4d | 2469 | AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch); |
79e2b9ae | 2470 | MemoryRegionSection *sections = d->map.sections; |
9d82b5a7 PB |
2471 | |
2472 | return sections[index & ~TARGET_PAGE_MASK].mr; | |
aa102231 AK |
2473 | } |
2474 | ||
e9179ce1 AK |
2475 | static void io_mem_init(void) |
2476 | { | |
1f6245e5 | 2477 | memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX); |
2c9b15ca | 2478 | memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, |
1f6245e5 | 2479 | NULL, UINT64_MAX); |
8d04fb55 JK |
2480 | |
2481 | /* io_mem_notdirty calls tb_invalidate_phys_page_fast, | |
2482 | * which can be called without the iothread mutex. | |
2483 | */ | |
2c9b15ca | 2484 | memory_region_init_io(&io_mem_notdirty, NULL, ¬dirty_mem_ops, NULL, |
1f6245e5 | 2485 | NULL, UINT64_MAX); |
8d04fb55 JK |
2486 | memory_region_clear_global_locking(&io_mem_notdirty); |
2487 | ||
2c9b15ca | 2488 | memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL, |
1f6245e5 | 2489 | NULL, UINT64_MAX); |
e9179ce1 AK |
2490 | } |
2491 | ||
ac1970fb | 2492 | static void mem_begin(MemoryListener *listener) |
00752703 PB |
2493 | { |
2494 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); | |
53cb28cb MA |
2495 | AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); |
2496 | uint16_t n; | |
2497 | ||
a656e22f | 2498 | n = dummy_section(&d->map, as, &io_mem_unassigned); |
53cb28cb | 2499 | assert(n == PHYS_SECTION_UNASSIGNED); |
a656e22f | 2500 | n = dummy_section(&d->map, as, &io_mem_notdirty); |
53cb28cb | 2501 | assert(n == PHYS_SECTION_NOTDIRTY); |
a656e22f | 2502 | n = dummy_section(&d->map, as, &io_mem_rom); |
53cb28cb | 2503 | assert(n == PHYS_SECTION_ROM); |
a656e22f | 2504 | n = dummy_section(&d->map, as, &io_mem_watch); |
53cb28cb | 2505 | assert(n == PHYS_SECTION_WATCH); |
00752703 | 2506 | |
9736e55b | 2507 | d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; |
00752703 PB |
2508 | d->as = as; |
2509 | as->next_dispatch = d; | |
2510 | } | |
2511 | ||
79e2b9ae PB |
2512 | static void address_space_dispatch_free(AddressSpaceDispatch *d) |
2513 | { | |
2514 | phys_sections_free(&d->map); | |
2515 | g_free(d); | |
2516 | } | |
2517 | ||
00752703 | 2518 | static void mem_commit(MemoryListener *listener) |
ac1970fb | 2519 | { |
89ae337a | 2520 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); |
0475d94f PB |
2521 | AddressSpaceDispatch *cur = as->dispatch; |
2522 | AddressSpaceDispatch *next = as->next_dispatch; | |
2523 | ||
53cb28cb | 2524 | phys_page_compact_all(next, next->map.nodes_nb); |
b35ba30f | 2525 | |
79e2b9ae | 2526 | atomic_rcu_set(&as->dispatch, next); |
53cb28cb | 2527 | if (cur) { |
79e2b9ae | 2528 | call_rcu(cur, address_space_dispatch_free, rcu); |
53cb28cb | 2529 | } |
9affd6fc PB |
2530 | } |
2531 | ||
1d71148e | 2532 | static void tcg_commit(MemoryListener *listener) |
50c1e149 | 2533 | { |
32857f4d PM |
2534 | CPUAddressSpace *cpuas; |
2535 | AddressSpaceDispatch *d; | |
117712c3 AK |
2536 | |
2537 | /* since each CPU stores ram addresses in its TLB cache, we must | |
2538 | reset the modified entries */ | |
32857f4d PM |
2539 | cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); |
2540 | cpu_reloading_memory_map(); | |
2541 | /* The CPU and TLB are protected by the iothread lock. | |
2542 | * We reload the dispatch pointer now because cpu_reloading_memory_map() | |
2543 | * may have split the RCU critical section. | |
2544 | */ | |
2545 | d = atomic_rcu_read(&cpuas->as->dispatch); | |
f35e44e7 | 2546 | atomic_rcu_set(&cpuas->memory_dispatch, d); |
d10eb08f | 2547 | tlb_flush(cpuas->cpu); |
50c1e149 AK |
2548 | } |
2549 | ||
ac1970fb AK |
2550 | void address_space_init_dispatch(AddressSpace *as) |
2551 | { | |
00752703 | 2552 | as->dispatch = NULL; |
89ae337a | 2553 | as->dispatch_listener = (MemoryListener) { |
ac1970fb | 2554 | .begin = mem_begin, |
00752703 | 2555 | .commit = mem_commit, |
ac1970fb AK |
2556 | .region_add = mem_add, |
2557 | .region_nop = mem_add, | |
2558 | .priority = 0, | |
2559 | }; | |
89ae337a | 2560 | memory_listener_register(&as->dispatch_listener, as); |
ac1970fb AK |
2561 | } |
2562 | ||
6e48e8f9 PB |
2563 | void address_space_unregister(AddressSpace *as) |
2564 | { | |
2565 | memory_listener_unregister(&as->dispatch_listener); | |
2566 | } | |
2567 | ||
83f3c251 AK |
2568 | void address_space_destroy_dispatch(AddressSpace *as) |
2569 | { | |
2570 | AddressSpaceDispatch *d = as->dispatch; | |
2571 | ||
79e2b9ae PB |
2572 | atomic_rcu_set(&as->dispatch, NULL); |
2573 | if (d) { | |
2574 | call_rcu(d, address_space_dispatch_free, rcu); | |
2575 | } | |
83f3c251 AK |
2576 | } |
2577 | ||
62152b8a AK |
2578 | static void memory_map_init(void) |
2579 | { | |
7267c094 | 2580 | system_memory = g_malloc(sizeof(*system_memory)); |
03f49957 | 2581 | |
57271d63 | 2582 | memory_region_init(system_memory, NULL, "system", UINT64_MAX); |
7dca8043 | 2583 | address_space_init(&address_space_memory, system_memory, "memory"); |
309cb471 | 2584 | |
7267c094 | 2585 | system_io = g_malloc(sizeof(*system_io)); |
3bb28b72 JK |
2586 | memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", |
2587 | 65536); | |
7dca8043 | 2588 | address_space_init(&address_space_io, system_io, "I/O"); |
62152b8a AK |
2589 | } |
2590 | ||
2591 | MemoryRegion *get_system_memory(void) | |
2592 | { | |
2593 | return system_memory; | |
2594 | } | |
2595 | ||
309cb471 AK |
2596 | MemoryRegion *get_system_io(void) |
2597 | { | |
2598 | return system_io; | |
2599 | } | |
2600 | ||
e2eef170 PB |
2601 | #endif /* !defined(CONFIG_USER_ONLY) */ |
2602 | ||
13eb76e0 FB |
2603 | /* physical memory access (slow version, mainly for debug) */ |
2604 | #if defined(CONFIG_USER_ONLY) | |
f17ec444 | 2605 | int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, |
a68fe89c | 2606 | uint8_t *buf, int len, int is_write) |
13eb76e0 FB |
2607 | { |
2608 | int l, flags; | |
2609 | target_ulong page; | |
53a5960a | 2610 | void * p; |
13eb76e0 FB |
2611 | |
2612 | while (len > 0) { | |
2613 | page = addr & TARGET_PAGE_MASK; | |
2614 | l = (page + TARGET_PAGE_SIZE) - addr; | |
2615 | if (l > len) | |
2616 | l = len; | |
2617 | flags = page_get_flags(page); | |
2618 | if (!(flags & PAGE_VALID)) | |
a68fe89c | 2619 | return -1; |
13eb76e0 FB |
2620 | if (is_write) { |
2621 | if (!(flags & PAGE_WRITE)) | |
a68fe89c | 2622 | return -1; |
579a97f7 | 2623 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 2624 | if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) |
a68fe89c | 2625 | return -1; |
72fb7daa AJ |
2626 | memcpy(p, buf, l); |
2627 | unlock_user(p, addr, l); | |
13eb76e0 FB |
2628 | } else { |
2629 | if (!(flags & PAGE_READ)) | |
a68fe89c | 2630 | return -1; |
579a97f7 | 2631 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 2632 | if (!(p = lock_user(VERIFY_READ, addr, l, 1))) |
a68fe89c | 2633 | return -1; |
72fb7daa | 2634 | memcpy(buf, p, l); |
5b257578 | 2635 | unlock_user(p, addr, 0); |
13eb76e0 FB |
2636 | } |
2637 | len -= l; | |
2638 | buf += l; | |
2639 | addr += l; | |
2640 | } | |
a68fe89c | 2641 | return 0; |
13eb76e0 | 2642 | } |
8df1cd07 | 2643 | |
13eb76e0 | 2644 | #else |
51d7a9eb | 2645 | |
845b6214 | 2646 | static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, |
a8170e5e | 2647 | hwaddr length) |
51d7a9eb | 2648 | { |
e87f7778 | 2649 | uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr); |
0878d0e1 PB |
2650 | addr += memory_region_get_ram_addr(mr); |
2651 | ||
e87f7778 PB |
2652 | /* No early return if dirty_log_mask is or becomes 0, because |
2653 | * cpu_physical_memory_set_dirty_range will still call | |
2654 | * xen_modified_memory. | |
2655 | */ | |
2656 | if (dirty_log_mask) { | |
2657 | dirty_log_mask = | |
2658 | cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask); | |
2659 | } | |
2660 | if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) { | |
ba051fb5 | 2661 | tb_lock(); |
e87f7778 | 2662 | tb_invalidate_phys_range(addr, addr + length); |
ba051fb5 | 2663 | tb_unlock(); |
e87f7778 | 2664 | dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); |
51d7a9eb | 2665 | } |
e87f7778 | 2666 | cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask); |
51d7a9eb AP |
2667 | } |
2668 | ||
23326164 | 2669 | static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) |
82f2563f | 2670 | { |
e1622f4b | 2671 | unsigned access_size_max = mr->ops->valid.max_access_size; |
23326164 RH |
2672 | |
2673 | /* Regions are assumed to support 1-4 byte accesses unless | |
2674 | otherwise specified. */ | |
23326164 RH |
2675 | if (access_size_max == 0) { |
2676 | access_size_max = 4; | |
2677 | } | |
2678 | ||
2679 | /* Bound the maximum access by the alignment of the address. */ | |
2680 | if (!mr->ops->impl.unaligned) { | |
2681 | unsigned align_size_max = addr & -addr; | |
2682 | if (align_size_max != 0 && align_size_max < access_size_max) { | |
2683 | access_size_max = align_size_max; | |
2684 | } | |
82f2563f | 2685 | } |
23326164 RH |
2686 | |
2687 | /* Don't attempt accesses larger than the maximum. */ | |
2688 | if (l > access_size_max) { | |
2689 | l = access_size_max; | |
82f2563f | 2690 | } |
6554f5c0 | 2691 | l = pow2floor(l); |
23326164 RH |
2692 | |
2693 | return l; | |
82f2563f PB |
2694 | } |
2695 | ||
4840f10e | 2696 | static bool prepare_mmio_access(MemoryRegion *mr) |
125b3806 | 2697 | { |
4840f10e JK |
2698 | bool unlocked = !qemu_mutex_iothread_locked(); |
2699 | bool release_lock = false; | |
2700 | ||
2701 | if (unlocked && mr->global_locking) { | |
2702 | qemu_mutex_lock_iothread(); | |
2703 | unlocked = false; | |
2704 | release_lock = true; | |
2705 | } | |
125b3806 | 2706 | if (mr->flush_coalesced_mmio) { |
4840f10e JK |
2707 | if (unlocked) { |
2708 | qemu_mutex_lock_iothread(); | |
2709 | } | |
125b3806 | 2710 | qemu_flush_coalesced_mmio_buffer(); |
4840f10e JK |
2711 | if (unlocked) { |
2712 | qemu_mutex_unlock_iothread(); | |
2713 | } | |
125b3806 | 2714 | } |
4840f10e JK |
2715 | |
2716 | return release_lock; | |
125b3806 PB |
2717 | } |
2718 | ||
a203ac70 PB |
2719 | /* Called within RCU critical section. */ |
2720 | static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr, | |
2721 | MemTxAttrs attrs, | |
2722 | const uint8_t *buf, | |
2723 | int len, hwaddr addr1, | |
2724 | hwaddr l, MemoryRegion *mr) | |
13eb76e0 | 2725 | { |
13eb76e0 | 2726 | uint8_t *ptr; |
791af8c8 | 2727 | uint64_t val; |
3b643495 | 2728 | MemTxResult result = MEMTX_OK; |
4840f10e | 2729 | bool release_lock = false; |
3b46e624 | 2730 | |
a203ac70 | 2731 | for (;;) { |
eb7eeb88 PB |
2732 | if (!memory_access_is_direct(mr, true)) { |
2733 | release_lock |= prepare_mmio_access(mr); | |
2734 | l = memory_access_size(mr, l, addr1); | |
2735 | /* XXX: could force current_cpu to NULL to avoid | |
2736 | potential bugs */ | |
2737 | switch (l) { | |
2738 | case 8: | |
2739 | /* 64 bit write access */ | |
2740 | val = ldq_p(buf); | |
2741 | result |= memory_region_dispatch_write(mr, addr1, val, 8, | |
2742 | attrs); | |
2743 | break; | |
2744 | case 4: | |
2745 | /* 32 bit write access */ | |
6da67de6 | 2746 | val = (uint32_t)ldl_p(buf); |
eb7eeb88 PB |
2747 | result |= memory_region_dispatch_write(mr, addr1, val, 4, |
2748 | attrs); | |
2749 | break; | |
2750 | case 2: | |
2751 | /* 16 bit write access */ | |
2752 | val = lduw_p(buf); | |
2753 | result |= memory_region_dispatch_write(mr, addr1, val, 2, | |
2754 | attrs); | |
2755 | break; | |
2756 | case 1: | |
2757 | /* 8 bit write access */ | |
2758 | val = ldub_p(buf); | |
2759 | result |= memory_region_dispatch_write(mr, addr1, val, 1, | |
2760 | attrs); | |
2761 | break; | |
2762 | default: | |
2763 | abort(); | |
13eb76e0 FB |
2764 | } |
2765 | } else { | |
eb7eeb88 | 2766 | /* RAM case */ |
0878d0e1 | 2767 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
eb7eeb88 PB |
2768 | memcpy(ptr, buf, l); |
2769 | invalidate_and_set_dirty(mr, addr1, l); | |
13eb76e0 | 2770 | } |
4840f10e JK |
2771 | |
2772 | if (release_lock) { | |
2773 | qemu_mutex_unlock_iothread(); | |
2774 | release_lock = false; | |
2775 | } | |
2776 | ||
13eb76e0 FB |
2777 | len -= l; |
2778 | buf += l; | |
2779 | addr += l; | |
a203ac70 PB |
2780 | |
2781 | if (!len) { | |
2782 | break; | |
2783 | } | |
2784 | ||
2785 | l = len; | |
2786 | mr = address_space_translate(as, addr, &addr1, &l, true); | |
13eb76e0 | 2787 | } |
fd8aaa76 | 2788 | |
3b643495 | 2789 | return result; |
13eb76e0 | 2790 | } |
8df1cd07 | 2791 | |
a203ac70 PB |
2792 | MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, |
2793 | const uint8_t *buf, int len) | |
ac1970fb | 2794 | { |
eb7eeb88 | 2795 | hwaddr l; |
eb7eeb88 PB |
2796 | hwaddr addr1; |
2797 | MemoryRegion *mr; | |
2798 | MemTxResult result = MEMTX_OK; | |
eb7eeb88 | 2799 | |
a203ac70 PB |
2800 | if (len > 0) { |
2801 | rcu_read_lock(); | |
eb7eeb88 | 2802 | l = len; |
a203ac70 PB |
2803 | mr = address_space_translate(as, addr, &addr1, &l, true); |
2804 | result = address_space_write_continue(as, addr, attrs, buf, len, | |
2805 | addr1, l, mr); | |
2806 | rcu_read_unlock(); | |
2807 | } | |
2808 | ||
2809 | return result; | |
2810 | } | |
2811 | ||
2812 | /* Called within RCU critical section. */ | |
2813 | MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr, | |
2814 | MemTxAttrs attrs, uint8_t *buf, | |
2815 | int len, hwaddr addr1, hwaddr l, | |
2816 | MemoryRegion *mr) | |
2817 | { | |
2818 | uint8_t *ptr; | |
2819 | uint64_t val; | |
2820 | MemTxResult result = MEMTX_OK; | |
2821 | bool release_lock = false; | |
eb7eeb88 | 2822 | |
a203ac70 | 2823 | for (;;) { |
eb7eeb88 PB |
2824 | if (!memory_access_is_direct(mr, false)) { |
2825 | /* I/O case */ | |
2826 | release_lock |= prepare_mmio_access(mr); | |
2827 | l = memory_access_size(mr, l, addr1); | |
2828 | switch (l) { | |
2829 | case 8: | |
2830 | /* 64 bit read access */ | |
2831 | result |= memory_region_dispatch_read(mr, addr1, &val, 8, | |
2832 | attrs); | |
2833 | stq_p(buf, val); | |
2834 | break; | |
2835 | case 4: | |
2836 | /* 32 bit read access */ | |
2837 | result |= memory_region_dispatch_read(mr, addr1, &val, 4, | |
2838 | attrs); | |
2839 | stl_p(buf, val); | |
2840 | break; | |
2841 | case 2: | |
2842 | /* 16 bit read access */ | |
2843 | result |= memory_region_dispatch_read(mr, addr1, &val, 2, | |
2844 | attrs); | |
2845 | stw_p(buf, val); | |
2846 | break; | |
2847 | case 1: | |
2848 | /* 8 bit read access */ | |
2849 | result |= memory_region_dispatch_read(mr, addr1, &val, 1, | |
2850 | attrs); | |
2851 | stb_p(buf, val); | |
2852 | break; | |
2853 | default: | |
2854 | abort(); | |
2855 | } | |
2856 | } else { | |
2857 | /* RAM case */ | |
0878d0e1 | 2858 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
eb7eeb88 PB |
2859 | memcpy(buf, ptr, l); |
2860 | } | |
2861 | ||
2862 | if (release_lock) { | |
2863 | qemu_mutex_unlock_iothread(); | |
2864 | release_lock = false; | |
2865 | } | |
2866 | ||
2867 | len -= l; | |
2868 | buf += l; | |
2869 | addr += l; | |
a203ac70 PB |
2870 | |
2871 | if (!len) { | |
2872 | break; | |
2873 | } | |
2874 | ||
2875 | l = len; | |
2876 | mr = address_space_translate(as, addr, &addr1, &l, false); | |
2877 | } | |
2878 | ||
2879 | return result; | |
2880 | } | |
2881 | ||
3cc8f884 PB |
2882 | MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, |
2883 | MemTxAttrs attrs, uint8_t *buf, int len) | |
a203ac70 PB |
2884 | { |
2885 | hwaddr l; | |
2886 | hwaddr addr1; | |
2887 | MemoryRegion *mr; | |
2888 | MemTxResult result = MEMTX_OK; | |
2889 | ||
2890 | if (len > 0) { | |
2891 | rcu_read_lock(); | |
2892 | l = len; | |
2893 | mr = address_space_translate(as, addr, &addr1, &l, false); | |
2894 | result = address_space_read_continue(as, addr, attrs, buf, len, | |
2895 | addr1, l, mr); | |
2896 | rcu_read_unlock(); | |
eb7eeb88 | 2897 | } |
eb7eeb88 PB |
2898 | |
2899 | return result; | |
ac1970fb AK |
2900 | } |
2901 | ||
eb7eeb88 PB |
2902 | MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, |
2903 | uint8_t *buf, int len, bool is_write) | |
2904 | { | |
2905 | if (is_write) { | |
2906 | return address_space_write(as, addr, attrs, (uint8_t *)buf, len); | |
2907 | } else { | |
2908 | return address_space_read(as, addr, attrs, (uint8_t *)buf, len); | |
2909 | } | |
2910 | } | |
ac1970fb | 2911 | |
a8170e5e | 2912 | void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf, |
ac1970fb AK |
2913 | int len, int is_write) |
2914 | { | |
5c9eb028 PM |
2915 | address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, |
2916 | buf, len, is_write); | |
ac1970fb AK |
2917 | } |
2918 | ||
582b55a9 AG |
2919 | enum write_rom_type { |
2920 | WRITE_DATA, | |
2921 | FLUSH_CACHE, | |
2922 | }; | |
2923 | ||
2a221651 | 2924 | static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as, |
582b55a9 | 2925 | hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type) |
d0ecd2aa | 2926 | { |
149f54b5 | 2927 | hwaddr l; |
d0ecd2aa | 2928 | uint8_t *ptr; |
149f54b5 | 2929 | hwaddr addr1; |
5c8a00ce | 2930 | MemoryRegion *mr; |
3b46e624 | 2931 | |
41063e1e | 2932 | rcu_read_lock(); |
d0ecd2aa | 2933 | while (len > 0) { |
149f54b5 | 2934 | l = len; |
2a221651 | 2935 | mr = address_space_translate(as, addr, &addr1, &l, true); |
3b46e624 | 2936 | |
5c8a00ce PB |
2937 | if (!(memory_region_is_ram(mr) || |
2938 | memory_region_is_romd(mr))) { | |
b242e0e0 | 2939 | l = memory_access_size(mr, l, addr1); |
d0ecd2aa | 2940 | } else { |
d0ecd2aa | 2941 | /* ROM/RAM case */ |
0878d0e1 | 2942 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
582b55a9 AG |
2943 | switch (type) { |
2944 | case WRITE_DATA: | |
2945 | memcpy(ptr, buf, l); | |
845b6214 | 2946 | invalidate_and_set_dirty(mr, addr1, l); |
582b55a9 AG |
2947 | break; |
2948 | case FLUSH_CACHE: | |
2949 | flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l); | |
2950 | break; | |
2951 | } | |
d0ecd2aa FB |
2952 | } |
2953 | len -= l; | |
2954 | buf += l; | |
2955 | addr += l; | |
2956 | } | |
41063e1e | 2957 | rcu_read_unlock(); |
d0ecd2aa FB |
2958 | } |
2959 | ||
582b55a9 | 2960 | /* used for ROM loading : can write in RAM and ROM */ |
2a221651 | 2961 | void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr, |
582b55a9 AG |
2962 | const uint8_t *buf, int len) |
2963 | { | |
2a221651 | 2964 | cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA); |
582b55a9 AG |
2965 | } |
2966 | ||
2967 | void cpu_flush_icache_range(hwaddr start, int len) | |
2968 | { | |
2969 | /* | |
2970 | * This function should do the same thing as an icache flush that was | |
2971 | * triggered from within the guest. For TCG we are always cache coherent, | |
2972 | * so there is no need to flush anything. For KVM / Xen we need to flush | |
2973 | * the host's instruction cache at least. | |
2974 | */ | |
2975 | if (tcg_enabled()) { | |
2976 | return; | |
2977 | } | |
2978 | ||
2a221651 EI |
2979 | cpu_physical_memory_write_rom_internal(&address_space_memory, |
2980 | start, NULL, len, FLUSH_CACHE); | |
582b55a9 AG |
2981 | } |
2982 | ||
6d16c2f8 | 2983 | typedef struct { |
d3e71559 | 2984 | MemoryRegion *mr; |
6d16c2f8 | 2985 | void *buffer; |
a8170e5e AK |
2986 | hwaddr addr; |
2987 | hwaddr len; | |
c2cba0ff | 2988 | bool in_use; |
6d16c2f8 AL |
2989 | } BounceBuffer; |
2990 | ||
2991 | static BounceBuffer bounce; | |
2992 | ||
ba223c29 | 2993 | typedef struct MapClient { |
e95205e1 | 2994 | QEMUBH *bh; |
72cf2d4f | 2995 | QLIST_ENTRY(MapClient) link; |
ba223c29 AL |
2996 | } MapClient; |
2997 | ||
38e047b5 | 2998 | QemuMutex map_client_list_lock; |
72cf2d4f BS |
2999 | static QLIST_HEAD(map_client_list, MapClient) map_client_list |
3000 | = QLIST_HEAD_INITIALIZER(map_client_list); | |
ba223c29 | 3001 | |
e95205e1 FZ |
3002 | static void cpu_unregister_map_client_do(MapClient *client) |
3003 | { | |
3004 | QLIST_REMOVE(client, link); | |
3005 | g_free(client); | |
3006 | } | |
3007 | ||
33b6c2ed FZ |
3008 | static void cpu_notify_map_clients_locked(void) |
3009 | { | |
3010 | MapClient *client; | |
3011 | ||
3012 | while (!QLIST_EMPTY(&map_client_list)) { | |
3013 | client = QLIST_FIRST(&map_client_list); | |
e95205e1 FZ |
3014 | qemu_bh_schedule(client->bh); |
3015 | cpu_unregister_map_client_do(client); | |
33b6c2ed FZ |
3016 | } |
3017 | } | |
3018 | ||
e95205e1 | 3019 | void cpu_register_map_client(QEMUBH *bh) |
ba223c29 | 3020 | { |
7267c094 | 3021 | MapClient *client = g_malloc(sizeof(*client)); |
ba223c29 | 3022 | |
38e047b5 | 3023 | qemu_mutex_lock(&map_client_list_lock); |
e95205e1 | 3024 | client->bh = bh; |
72cf2d4f | 3025 | QLIST_INSERT_HEAD(&map_client_list, client, link); |
33b6c2ed FZ |
3026 | if (!atomic_read(&bounce.in_use)) { |
3027 | cpu_notify_map_clients_locked(); | |
3028 | } | |
38e047b5 | 3029 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
3030 | } |
3031 | ||
38e047b5 | 3032 | void cpu_exec_init_all(void) |
ba223c29 | 3033 | { |
38e047b5 | 3034 | qemu_mutex_init(&ram_list.mutex); |
20bccb82 PM |
3035 | /* The data structures we set up here depend on knowing the page size, |
3036 | * so no more changes can be made after this point. | |
3037 | * In an ideal world, nothing we did before we had finished the | |
3038 | * machine setup would care about the target page size, and we could | |
3039 | * do this much later, rather than requiring board models to state | |
3040 | * up front what their requirements are. | |
3041 | */ | |
3042 | finalize_target_page_bits(); | |
38e047b5 | 3043 | io_mem_init(); |
680a4783 | 3044 | memory_map_init(); |
38e047b5 | 3045 | qemu_mutex_init(&map_client_list_lock); |
ba223c29 AL |
3046 | } |
3047 | ||
e95205e1 | 3048 | void cpu_unregister_map_client(QEMUBH *bh) |
ba223c29 AL |
3049 | { |
3050 | MapClient *client; | |
3051 | ||
e95205e1 FZ |
3052 | qemu_mutex_lock(&map_client_list_lock); |
3053 | QLIST_FOREACH(client, &map_client_list, link) { | |
3054 | if (client->bh == bh) { | |
3055 | cpu_unregister_map_client_do(client); | |
3056 | break; | |
3057 | } | |
ba223c29 | 3058 | } |
e95205e1 | 3059 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
3060 | } |
3061 | ||
3062 | static void cpu_notify_map_clients(void) | |
3063 | { | |
38e047b5 | 3064 | qemu_mutex_lock(&map_client_list_lock); |
33b6c2ed | 3065 | cpu_notify_map_clients_locked(); |
38e047b5 | 3066 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
3067 | } |
3068 | ||
51644ab7 PB |
3069 | bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write) |
3070 | { | |
5c8a00ce | 3071 | MemoryRegion *mr; |
51644ab7 PB |
3072 | hwaddr l, xlat; |
3073 | ||
41063e1e | 3074 | rcu_read_lock(); |
51644ab7 PB |
3075 | while (len > 0) { |
3076 | l = len; | |
5c8a00ce PB |
3077 | mr = address_space_translate(as, addr, &xlat, &l, is_write); |
3078 | if (!memory_access_is_direct(mr, is_write)) { | |
3079 | l = memory_access_size(mr, l, addr); | |
3080 | if (!memory_region_access_valid(mr, xlat, l, is_write)) { | |
5ad4a2b7 | 3081 | rcu_read_unlock(); |
51644ab7 PB |
3082 | return false; |
3083 | } | |
3084 | } | |
3085 | ||
3086 | len -= l; | |
3087 | addr += l; | |
3088 | } | |
41063e1e | 3089 | rcu_read_unlock(); |
51644ab7 PB |
3090 | return true; |
3091 | } | |
3092 | ||
715c31ec PB |
3093 | static hwaddr |
3094 | address_space_extend_translation(AddressSpace *as, hwaddr addr, hwaddr target_len, | |
3095 | MemoryRegion *mr, hwaddr base, hwaddr len, | |
3096 | bool is_write) | |
3097 | { | |
3098 | hwaddr done = 0; | |
3099 | hwaddr xlat; | |
3100 | MemoryRegion *this_mr; | |
3101 | ||
3102 | for (;;) { | |
3103 | target_len -= len; | |
3104 | addr += len; | |
3105 | done += len; | |
3106 | if (target_len == 0) { | |
3107 | return done; | |
3108 | } | |
3109 | ||
3110 | len = target_len; | |
3111 | this_mr = address_space_translate(as, addr, &xlat, &len, is_write); | |
3112 | if (this_mr != mr || xlat != base + done) { | |
3113 | return done; | |
3114 | } | |
3115 | } | |
3116 | } | |
3117 | ||
6d16c2f8 AL |
3118 | /* Map a physical memory region into a host virtual address. |
3119 | * May map a subset of the requested range, given by and returned in *plen. | |
3120 | * May return NULL if resources needed to perform the mapping are exhausted. | |
3121 | * Use only for reads OR writes - not for read-modify-write operations. | |
ba223c29 AL |
3122 | * Use cpu_register_map_client() to know when retrying the map operation is |
3123 | * likely to succeed. | |
6d16c2f8 | 3124 | */ |
ac1970fb | 3125 | void *address_space_map(AddressSpace *as, |
a8170e5e AK |
3126 | hwaddr addr, |
3127 | hwaddr *plen, | |
ac1970fb | 3128 | bool is_write) |
6d16c2f8 | 3129 | { |
a8170e5e | 3130 | hwaddr len = *plen; |
715c31ec PB |
3131 | hwaddr l, xlat; |
3132 | MemoryRegion *mr; | |
e81bcda5 | 3133 | void *ptr; |
6d16c2f8 | 3134 | |
e3127ae0 PB |
3135 | if (len == 0) { |
3136 | return NULL; | |
3137 | } | |
38bee5dc | 3138 | |
e3127ae0 | 3139 | l = len; |
41063e1e | 3140 | rcu_read_lock(); |
e3127ae0 | 3141 | mr = address_space_translate(as, addr, &xlat, &l, is_write); |
41063e1e | 3142 | |
e3127ae0 | 3143 | if (!memory_access_is_direct(mr, is_write)) { |
c2cba0ff | 3144 | if (atomic_xchg(&bounce.in_use, true)) { |
41063e1e | 3145 | rcu_read_unlock(); |
e3127ae0 | 3146 | return NULL; |
6d16c2f8 | 3147 | } |
e85d9db5 KW |
3148 | /* Avoid unbounded allocations */ |
3149 | l = MIN(l, TARGET_PAGE_SIZE); | |
3150 | bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l); | |
e3127ae0 PB |
3151 | bounce.addr = addr; |
3152 | bounce.len = l; | |
d3e71559 PB |
3153 | |
3154 | memory_region_ref(mr); | |
3155 | bounce.mr = mr; | |
e3127ae0 | 3156 | if (!is_write) { |
5c9eb028 PM |
3157 | address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED, |
3158 | bounce.buffer, l); | |
8ab934f9 | 3159 | } |
6d16c2f8 | 3160 | |
41063e1e | 3161 | rcu_read_unlock(); |
e3127ae0 PB |
3162 | *plen = l; |
3163 | return bounce.buffer; | |
3164 | } | |
3165 | ||
e3127ae0 | 3166 | |
d3e71559 | 3167 | memory_region_ref(mr); |
715c31ec PB |
3168 | *plen = address_space_extend_translation(as, addr, len, mr, xlat, l, is_write); |
3169 | ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen); | |
e81bcda5 PB |
3170 | rcu_read_unlock(); |
3171 | ||
3172 | return ptr; | |
6d16c2f8 AL |
3173 | } |
3174 | ||
ac1970fb | 3175 | /* Unmaps a memory region previously mapped by address_space_map(). |
6d16c2f8 AL |
3176 | * Will also mark the memory as dirty if is_write == 1. access_len gives |
3177 | * the amount of memory that was actually read or written by the caller. | |
3178 | */ | |
a8170e5e AK |
3179 | void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, |
3180 | int is_write, hwaddr access_len) | |
6d16c2f8 AL |
3181 | { |
3182 | if (buffer != bounce.buffer) { | |
d3e71559 PB |
3183 | MemoryRegion *mr; |
3184 | ram_addr_t addr1; | |
3185 | ||
07bdaa41 | 3186 | mr = memory_region_from_host(buffer, &addr1); |
d3e71559 | 3187 | assert(mr != NULL); |
6d16c2f8 | 3188 | if (is_write) { |
845b6214 | 3189 | invalidate_and_set_dirty(mr, addr1, access_len); |
6d16c2f8 | 3190 | } |
868bb33f | 3191 | if (xen_enabled()) { |
e41d7c69 | 3192 | xen_invalidate_map_cache_entry(buffer); |
050a0ddf | 3193 | } |
d3e71559 | 3194 | memory_region_unref(mr); |
6d16c2f8 AL |
3195 | return; |
3196 | } | |
3197 | if (is_write) { | |
5c9eb028 PM |
3198 | address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED, |
3199 | bounce.buffer, access_len); | |
6d16c2f8 | 3200 | } |
f8a83245 | 3201 | qemu_vfree(bounce.buffer); |
6d16c2f8 | 3202 | bounce.buffer = NULL; |
d3e71559 | 3203 | memory_region_unref(bounce.mr); |
c2cba0ff | 3204 | atomic_mb_set(&bounce.in_use, false); |
ba223c29 | 3205 | cpu_notify_map_clients(); |
6d16c2f8 | 3206 | } |
d0ecd2aa | 3207 | |
a8170e5e AK |
3208 | void *cpu_physical_memory_map(hwaddr addr, |
3209 | hwaddr *plen, | |
ac1970fb AK |
3210 | int is_write) |
3211 | { | |
3212 | return address_space_map(&address_space_memory, addr, plen, is_write); | |
3213 | } | |
3214 | ||
a8170e5e AK |
3215 | void cpu_physical_memory_unmap(void *buffer, hwaddr len, |
3216 | int is_write, hwaddr access_len) | |
ac1970fb AK |
3217 | { |
3218 | return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); | |
3219 | } | |
3220 | ||
0ce265ff PB |
3221 | #define ARG1_DECL AddressSpace *as |
3222 | #define ARG1 as | |
3223 | #define SUFFIX | |
3224 | #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__) | |
3225 | #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write) | |
3226 | #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs) | |
3227 | #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len) | |
3228 | #define RCU_READ_LOCK(...) rcu_read_lock() | |
3229 | #define RCU_READ_UNLOCK(...) rcu_read_unlock() | |
3230 | #include "memory_ldst.inc.c" | |
1e78bcc1 | 3231 | |
1f4e496e PB |
3232 | int64_t address_space_cache_init(MemoryRegionCache *cache, |
3233 | AddressSpace *as, | |
3234 | hwaddr addr, | |
3235 | hwaddr len, | |
3236 | bool is_write) | |
3237 | { | |
90c4fe5f PB |
3238 | cache->len = len; |
3239 | cache->as = as; | |
3240 | cache->xlat = addr; | |
3241 | return len; | |
1f4e496e PB |
3242 | } |
3243 | ||
3244 | void address_space_cache_invalidate(MemoryRegionCache *cache, | |
3245 | hwaddr addr, | |
3246 | hwaddr access_len) | |
3247 | { | |
1f4e496e PB |
3248 | } |
3249 | ||
3250 | void address_space_cache_destroy(MemoryRegionCache *cache) | |
3251 | { | |
90c4fe5f | 3252 | cache->as = NULL; |
1f4e496e PB |
3253 | } |
3254 | ||
3255 | #define ARG1_DECL MemoryRegionCache *cache | |
3256 | #define ARG1 cache | |
3257 | #define SUFFIX _cached | |
90c4fe5f PB |
3258 | #define TRANSLATE(addr, ...) \ |
3259 | address_space_translate(cache->as, cache->xlat + (addr), __VA_ARGS__) | |
1f4e496e | 3260 | #define IS_DIRECT(mr, is_write) true |
90c4fe5f PB |
3261 | #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs) |
3262 | #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len) | |
3263 | #define RCU_READ_LOCK() rcu_read_lock() | |
3264 | #define RCU_READ_UNLOCK() rcu_read_unlock() | |
1f4e496e PB |
3265 | #include "memory_ldst.inc.c" |
3266 | ||
5e2972fd | 3267 | /* virtual memory access for debug (includes writing to ROM) */ |
f17ec444 | 3268 | int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, |
b448f2f3 | 3269 | uint8_t *buf, int len, int is_write) |
13eb76e0 FB |
3270 | { |
3271 | int l; | |
a8170e5e | 3272 | hwaddr phys_addr; |
9b3c35e0 | 3273 | target_ulong page; |
13eb76e0 | 3274 | |
79ca7a1b | 3275 | cpu_synchronize_state(cpu); |
13eb76e0 | 3276 | while (len > 0) { |
5232e4c7 PM |
3277 | int asidx; |
3278 | MemTxAttrs attrs; | |
3279 | ||
13eb76e0 | 3280 | page = addr & TARGET_PAGE_MASK; |
5232e4c7 PM |
3281 | phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs); |
3282 | asidx = cpu_asidx_from_attrs(cpu, attrs); | |
13eb76e0 FB |
3283 | /* if no physical page mapped, return an error */ |
3284 | if (phys_addr == -1) | |
3285 | return -1; | |
3286 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3287 | if (l > len) | |
3288 | l = len; | |
5e2972fd | 3289 | phys_addr += (addr & ~TARGET_PAGE_MASK); |
2e38847b | 3290 | if (is_write) { |
5232e4c7 PM |
3291 | cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as, |
3292 | phys_addr, buf, l); | |
2e38847b | 3293 | } else { |
5232e4c7 PM |
3294 | address_space_rw(cpu->cpu_ases[asidx].as, phys_addr, |
3295 | MEMTXATTRS_UNSPECIFIED, | |
5c9eb028 | 3296 | buf, l, 0); |
2e38847b | 3297 | } |
13eb76e0 FB |
3298 | len -= l; |
3299 | buf += l; | |
3300 | addr += l; | |
3301 | } | |
3302 | return 0; | |
3303 | } | |
038629a6 DDAG |
3304 | |
3305 | /* | |
3306 | * Allows code that needs to deal with migration bitmaps etc to still be built | |
3307 | * target independent. | |
3308 | */ | |
20afaed9 | 3309 | size_t qemu_target_page_size(void) |
038629a6 | 3310 | { |
20afaed9 | 3311 | return TARGET_PAGE_SIZE; |
038629a6 DDAG |
3312 | } |
3313 | ||
a68fe89c | 3314 | #endif |
13eb76e0 | 3315 | |
8e4a424b BS |
3316 | /* |
3317 | * A helper function for the _utterly broken_ virtio device model to find out if | |
3318 | * it's running on a big endian machine. Don't do this at home kids! | |
3319 | */ | |
98ed8ecf GK |
3320 | bool target_words_bigendian(void); |
3321 | bool target_words_bigendian(void) | |
8e4a424b BS |
3322 | { |
3323 | #if defined(TARGET_WORDS_BIGENDIAN) | |
3324 | return true; | |
3325 | #else | |
3326 | return false; | |
3327 | #endif | |
3328 | } | |
3329 | ||
76f35538 | 3330 | #ifndef CONFIG_USER_ONLY |
a8170e5e | 3331 | bool cpu_physical_memory_is_io(hwaddr phys_addr) |
76f35538 | 3332 | { |
5c8a00ce | 3333 | MemoryRegion*mr; |
149f54b5 | 3334 | hwaddr l = 1; |
41063e1e | 3335 | bool res; |
76f35538 | 3336 | |
41063e1e | 3337 | rcu_read_lock(); |
5c8a00ce PB |
3338 | mr = address_space_translate(&address_space_memory, |
3339 | phys_addr, &phys_addr, &l, false); | |
76f35538 | 3340 | |
41063e1e PB |
3341 | res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr)); |
3342 | rcu_read_unlock(); | |
3343 | return res; | |
76f35538 | 3344 | } |
bd2fa51f | 3345 | |
e3807054 | 3346 | int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) |
bd2fa51f MH |
3347 | { |
3348 | RAMBlock *block; | |
e3807054 | 3349 | int ret = 0; |
bd2fa51f | 3350 | |
0dc3f44a MD |
3351 | rcu_read_lock(); |
3352 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
e3807054 DDAG |
3353 | ret = func(block->idstr, block->host, block->offset, |
3354 | block->used_length, opaque); | |
3355 | if (ret) { | |
3356 | break; | |
3357 | } | |
bd2fa51f | 3358 | } |
0dc3f44a | 3359 | rcu_read_unlock(); |
e3807054 | 3360 | return ret; |
bd2fa51f | 3361 | } |
d3a5038c DDAG |
3362 | |
3363 | /* | |
3364 | * Unmap pages of memory from start to start+length such that | |
3365 | * they a) read as 0, b) Trigger whatever fault mechanism | |
3366 | * the OS provides for postcopy. | |
3367 | * The pages must be unmapped by the end of the function. | |
3368 | * Returns: 0 on success, none-0 on failure | |
3369 | * | |
3370 | */ | |
3371 | int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length) | |
3372 | { | |
3373 | int ret = -1; | |
3374 | ||
3375 | uint8_t *host_startaddr = rb->host + start; | |
3376 | ||
3377 | if ((uintptr_t)host_startaddr & (rb->page_size - 1)) { | |
3378 | error_report("ram_block_discard_range: Unaligned start address: %p", | |
3379 | host_startaddr); | |
3380 | goto err; | |
3381 | } | |
3382 | ||
3383 | if ((start + length) <= rb->used_length) { | |
3384 | uint8_t *host_endaddr = host_startaddr + length; | |
3385 | if ((uintptr_t)host_endaddr & (rb->page_size - 1)) { | |
3386 | error_report("ram_block_discard_range: Unaligned end address: %p", | |
3387 | host_endaddr); | |
3388 | goto err; | |
3389 | } | |
3390 | ||
3391 | errno = ENOTSUP; /* If we are missing MADVISE etc */ | |
3392 | ||
e2fa71f5 | 3393 | if (rb->page_size == qemu_host_page_size) { |
d3a5038c | 3394 | #if defined(CONFIG_MADVISE) |
e2fa71f5 DDAG |
3395 | /* Note: We need the madvise MADV_DONTNEED behaviour of definitely |
3396 | * freeing the page. | |
3397 | */ | |
3398 | ret = madvise(host_startaddr, length, MADV_DONTNEED); | |
d3a5038c | 3399 | #endif |
e2fa71f5 DDAG |
3400 | } else { |
3401 | /* Huge page case - unfortunately it can't do DONTNEED, but | |
3402 | * it can do the equivalent by FALLOC_FL_PUNCH_HOLE in the | |
3403 | * huge page file. | |
3404 | */ | |
3405 | #ifdef CONFIG_FALLOCATE_PUNCH_HOLE | |
3406 | ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, | |
3407 | start, length); | |
3408 | #endif | |
3409 | } | |
d3a5038c DDAG |
3410 | if (ret) { |
3411 | ret = -errno; | |
3412 | error_report("ram_block_discard_range: Failed to discard range " | |
3413 | "%s:%" PRIx64 " +%zx (%d)", | |
3414 | rb->idstr, start, length, ret); | |
3415 | } | |
3416 | } else { | |
3417 | error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64 | |
3418 | "/%zx/" RAM_ADDR_FMT")", | |
3419 | rb->idstr, start, length, rb->used_length); | |
3420 | } | |
3421 | ||
3422 | err: | |
3423 | return ret; | |
3424 | } | |
3425 | ||
ec3f8c99 | 3426 | #endif |