]> Git Repo - qemu.git/blame - exec.c
Merge remote-tracking branch 'remotes/mcayland/tags/qemu-sparc-signed' into staging
[qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
7b31bbc2 19#include "qemu/osdep.h"
da34e65c 20#include "qapi/error.h"
777872e5 21#ifndef _WIN32
d5a8f07c 22#endif
54936004 23
f348b6d1 24#include "qemu/cutils.h"
6180a181 25#include "cpu.h"
63c91552 26#include "exec/exec-all.h"
b67d9a52 27#include "tcg.h"
741da0d3 28#include "hw/qdev-core.h"
4485bd26 29#if !defined(CONFIG_USER_ONLY)
47c8ca53 30#include "hw/boards.h"
33c11879 31#include "hw/xen/xen.h"
4485bd26 32#endif
9c17d615 33#include "sysemu/kvm.h"
2ff3de68 34#include "sysemu/sysemu.h"
1de7afc9
PB
35#include "qemu/timer.h"
36#include "qemu/config-file.h"
75a34036 37#include "qemu/error-report.h"
53a5960a 38#if defined(CONFIG_USER_ONLY)
a9c94277 39#include "qemu.h"
432d268c 40#else /* !CONFIG_USER_ONLY */
741da0d3
PB
41#include "hw/hw.h"
42#include "exec/memory.h"
df43d49c 43#include "exec/ioport.h"
741da0d3 44#include "sysemu/dma.h"
9c607668 45#include "sysemu/numa.h"
79ca7a1b 46#include "sysemu/hw_accel.h"
741da0d3 47#include "exec/address-spaces.h"
9c17d615 48#include "sysemu/xen-mapcache.h"
0ab8ed18 49#include "trace-root.h"
d3a5038c 50
e2fa71f5
DDAG
51#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
52#include <fcntl.h>
53#include <linux/falloc.h>
54#endif
55
53a5960a 56#endif
0d6d3c87 57#include "exec/cpu-all.h"
0dc3f44a 58#include "qemu/rcu_queue.h"
4840f10e 59#include "qemu/main-loop.h"
5b6dd868 60#include "translate-all.h"
7615936e 61#include "sysemu/replay.h"
0cac1b66 62
022c62cb 63#include "exec/memory-internal.h"
220c3ebd 64#include "exec/ram_addr.h"
508127e2 65#include "exec/log.h"
67d95c15 66
9dfeca7c
BR
67#include "migration/vmstate.h"
68
b35ba30f 69#include "qemu/range.h"
794e8f30
MT
70#ifndef _WIN32
71#include "qemu/mmap-alloc.h"
72#endif
b35ba30f 73
db7b5426 74//#define DEBUG_SUBPAGE
1196be37 75
e2eef170 76#if !defined(CONFIG_USER_ONLY)
0dc3f44a
MD
77/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
78 * are protected by the ramlist lock.
79 */
0d53d9fe 80RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
81
82static MemoryRegion *system_memory;
309cb471 83static MemoryRegion *system_io;
62152b8a 84
f6790af6
AK
85AddressSpace address_space_io;
86AddressSpace address_space_memory;
2673a5da 87
0844e007 88MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 89static MemoryRegion io_mem_unassigned;
0e0df1e2 90
7bd4f430
PB
91/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
92#define RAM_PREALLOC (1 << 0)
93
dbcb8981
PB
94/* RAM is mmap-ed with MAP_SHARED */
95#define RAM_SHARED (1 << 1)
96
62be4e3a
MT
97/* Only a portion of RAM (used_length) is actually used, and migrated.
98 * This used_length size can change across reboots.
99 */
100#define RAM_RESIZEABLE (1 << 2)
101
e2eef170 102#endif
9fa3e853 103
20bccb82
PM
104#ifdef TARGET_PAGE_BITS_VARY
105int target_page_bits;
106bool target_page_bits_decided;
107#endif
108
bdc44640 109struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
6a00d601
FB
110/* current CPU in the current thread. It is only valid inside
111 cpu_exec() */
f240eb6f 112__thread CPUState *current_cpu;
2e70f6ef 113/* 0 = Do not count executed instructions.
bf20dc07 114 1 = Precise instruction counting.
2e70f6ef 115 2 = Adaptive rate instruction counting. */
5708fc66 116int use_icount;
6a00d601 117
20bccb82
PM
118bool set_preferred_target_page_bits(int bits)
119{
120 /* The target page size is the lowest common denominator for all
121 * the CPUs in the system, so we can only make it smaller, never
122 * larger. And we can't make it smaller once we've committed to
123 * a particular size.
124 */
125#ifdef TARGET_PAGE_BITS_VARY
126 assert(bits >= TARGET_PAGE_BITS_MIN);
127 if (target_page_bits == 0 || target_page_bits > bits) {
128 if (target_page_bits_decided) {
129 return false;
130 }
131 target_page_bits = bits;
132 }
133#endif
134 return true;
135}
136
e2eef170 137#if !defined(CONFIG_USER_ONLY)
4346ae3e 138
20bccb82
PM
139static void finalize_target_page_bits(void)
140{
141#ifdef TARGET_PAGE_BITS_VARY
142 if (target_page_bits == 0) {
143 target_page_bits = TARGET_PAGE_BITS_MIN;
144 }
145 target_page_bits_decided = true;
146#endif
147}
148
1db8abb1
PB
149typedef struct PhysPageEntry PhysPageEntry;
150
151struct PhysPageEntry {
9736e55b 152 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 153 uint32_t skip : 6;
9736e55b 154 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 155 uint32_t ptr : 26;
1db8abb1
PB
156};
157
8b795765
MT
158#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
159
03f49957 160/* Size of the L2 (and L3, etc) page tables. */
57271d63 161#define ADDR_SPACE_BITS 64
03f49957 162
026736ce 163#define P_L2_BITS 9
03f49957
PB
164#define P_L2_SIZE (1 << P_L2_BITS)
165
166#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
167
168typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 169
53cb28cb 170typedef struct PhysPageMap {
79e2b9ae
PB
171 struct rcu_head rcu;
172
53cb28cb
MA
173 unsigned sections_nb;
174 unsigned sections_nb_alloc;
175 unsigned nodes_nb;
176 unsigned nodes_nb_alloc;
177 Node *nodes;
178 MemoryRegionSection *sections;
179} PhysPageMap;
180
1db8abb1 181struct AddressSpaceDispatch {
79e2b9ae
PB
182 struct rcu_head rcu;
183
729633c2 184 MemoryRegionSection *mru_section;
1db8abb1
PB
185 /* This is a multi-level map on the physical address space.
186 * The bottom level has pointers to MemoryRegionSections.
187 */
188 PhysPageEntry phys_map;
53cb28cb 189 PhysPageMap map;
acc9d80b 190 AddressSpace *as;
1db8abb1
PB
191};
192
90260c6c
JK
193#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
194typedef struct subpage_t {
195 MemoryRegion iomem;
acc9d80b 196 AddressSpace *as;
90260c6c 197 hwaddr base;
2615fabd 198 uint16_t sub_section[];
90260c6c
JK
199} subpage_t;
200
b41aac4f
LPF
201#define PHYS_SECTION_UNASSIGNED 0
202#define PHYS_SECTION_NOTDIRTY 1
203#define PHYS_SECTION_ROM 2
204#define PHYS_SECTION_WATCH 3
5312bd8b 205
e2eef170 206static void io_mem_init(void);
62152b8a 207static void memory_map_init(void);
09daed84 208static void tcg_commit(MemoryListener *listener);
e2eef170 209
1ec9b909 210static MemoryRegion io_mem_watch;
32857f4d
PM
211
212/**
213 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
214 * @cpu: the CPU whose AddressSpace this is
215 * @as: the AddressSpace itself
216 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
217 * @tcg_as_listener: listener for tracking changes to the AddressSpace
218 */
219struct CPUAddressSpace {
220 CPUState *cpu;
221 AddressSpace *as;
222 struct AddressSpaceDispatch *memory_dispatch;
223 MemoryListener tcg_as_listener;
224};
225
6658ffb8 226#endif
fd6ce8f6 227
6d9a1304 228#if !defined(CONFIG_USER_ONLY)
d6f2ea22 229
53cb28cb 230static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 231{
101420b8 232 static unsigned alloc_hint = 16;
53cb28cb 233 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
101420b8 234 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
53cb28cb
MA
235 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
236 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
101420b8 237 alloc_hint = map->nodes_nb_alloc;
d6f2ea22 238 }
f7bf5461
AK
239}
240
db94604b 241static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
242{
243 unsigned i;
8b795765 244 uint32_t ret;
db94604b
PB
245 PhysPageEntry e;
246 PhysPageEntry *p;
f7bf5461 247
53cb28cb 248 ret = map->nodes_nb++;
db94604b 249 p = map->nodes[ret];
f7bf5461 250 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 251 assert(ret != map->nodes_nb_alloc);
db94604b
PB
252
253 e.skip = leaf ? 0 : 1;
254 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 255 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 256 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 257 }
f7bf5461 258 return ret;
d6f2ea22
AK
259}
260
53cb28cb
MA
261static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
262 hwaddr *index, hwaddr *nb, uint16_t leaf,
2999097b 263 int level)
f7bf5461
AK
264{
265 PhysPageEntry *p;
03f49957 266 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 267
9736e55b 268 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 269 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 270 }
db94604b 271 p = map->nodes[lp->ptr];
03f49957 272 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 273
03f49957 274 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 275 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 276 lp->skip = 0;
c19e8800 277 lp->ptr = leaf;
07f07b31
AK
278 *index += step;
279 *nb -= step;
2999097b 280 } else {
53cb28cb 281 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
282 }
283 ++lp;
f7bf5461
AK
284 }
285}
286
ac1970fb 287static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 288 hwaddr index, hwaddr nb,
2999097b 289 uint16_t leaf)
f7bf5461 290{
2999097b 291 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 292 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 293
53cb28cb 294 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
295}
296
b35ba30f
MT
297/* Compact a non leaf page entry. Simply detect that the entry has a single child,
298 * and update our entry so we can skip it and go directly to the destination.
299 */
efee678d 300static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
b35ba30f
MT
301{
302 unsigned valid_ptr = P_L2_SIZE;
303 int valid = 0;
304 PhysPageEntry *p;
305 int i;
306
307 if (lp->ptr == PHYS_MAP_NODE_NIL) {
308 return;
309 }
310
311 p = nodes[lp->ptr];
312 for (i = 0; i < P_L2_SIZE; i++) {
313 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
314 continue;
315 }
316
317 valid_ptr = i;
318 valid++;
319 if (p[i].skip) {
efee678d 320 phys_page_compact(&p[i], nodes);
b35ba30f
MT
321 }
322 }
323
324 /* We can only compress if there's only one child. */
325 if (valid != 1) {
326 return;
327 }
328
329 assert(valid_ptr < P_L2_SIZE);
330
331 /* Don't compress if it won't fit in the # of bits we have. */
332 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
333 return;
334 }
335
336 lp->ptr = p[valid_ptr].ptr;
337 if (!p[valid_ptr].skip) {
338 /* If our only child is a leaf, make this a leaf. */
339 /* By design, we should have made this node a leaf to begin with so we
340 * should never reach here.
341 * But since it's so simple to handle this, let's do it just in case we
342 * change this rule.
343 */
344 lp->skip = 0;
345 } else {
346 lp->skip += p[valid_ptr].skip;
347 }
348}
349
350static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
351{
b35ba30f 352 if (d->phys_map.skip) {
efee678d 353 phys_page_compact(&d->phys_map, d->map.nodes);
b35ba30f
MT
354 }
355}
356
29cb533d
FZ
357static inline bool section_covers_addr(const MemoryRegionSection *section,
358 hwaddr addr)
359{
360 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
361 * the section must cover the entire address space.
362 */
258dfaaa 363 return int128_gethi(section->size) ||
29cb533d 364 range_covers_byte(section->offset_within_address_space,
258dfaaa 365 int128_getlo(section->size), addr);
29cb533d
FZ
366}
367
97115a8d 368static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr,
9affd6fc 369 Node *nodes, MemoryRegionSection *sections)
92e873b9 370{
31ab2b4a 371 PhysPageEntry *p;
97115a8d 372 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 373 int i;
f1f6e3b8 374
9736e55b 375 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 376 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 377 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 378 }
9affd6fc 379 p = nodes[lp.ptr];
03f49957 380 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 381 }
b35ba30f 382
29cb533d 383 if (section_covers_addr(&sections[lp.ptr], addr)) {
b35ba30f
MT
384 return &sections[lp.ptr];
385 } else {
386 return &sections[PHYS_SECTION_UNASSIGNED];
387 }
f3705d53
AK
388}
389
e5548617
BS
390bool memory_region_is_unassigned(MemoryRegion *mr)
391{
2a8e7499 392 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
5b6dd868 393 && mr != &io_mem_watch;
fd6ce8f6 394}
149f54b5 395
79e2b9ae 396/* Called from RCU critical section */
c7086b4a 397static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
398 hwaddr addr,
399 bool resolve_subpage)
9f029603 400{
729633c2 401 MemoryRegionSection *section = atomic_read(&d->mru_section);
90260c6c 402 subpage_t *subpage;
729633c2 403 bool update;
90260c6c 404
729633c2
FZ
405 if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] &&
406 section_covers_addr(section, addr)) {
407 update = false;
408 } else {
409 section = phys_page_find(d->phys_map, addr, d->map.nodes,
410 d->map.sections);
411 update = true;
412 }
90260c6c
JK
413 if (resolve_subpage && section->mr->subpage) {
414 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 415 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c 416 }
729633c2
FZ
417 if (update) {
418 atomic_set(&d->mru_section, section);
419 }
90260c6c 420 return section;
9f029603
JK
421}
422
79e2b9ae 423/* Called from RCU critical section */
90260c6c 424static MemoryRegionSection *
c7086b4a 425address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 426 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
427{
428 MemoryRegionSection *section;
965eb2fc 429 MemoryRegion *mr;
a87f3954 430 Int128 diff;
149f54b5 431
c7086b4a 432 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
433 /* Compute offset within MemoryRegionSection */
434 addr -= section->offset_within_address_space;
435
436 /* Compute offset within MemoryRegion */
437 *xlat = addr + section->offset_within_region;
438
965eb2fc 439 mr = section->mr;
b242e0e0
PB
440
441 /* MMIO registers can be expected to perform full-width accesses based only
442 * on their address, without considering adjacent registers that could
443 * decode to completely different MemoryRegions. When such registers
444 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
445 * regions overlap wildly. For this reason we cannot clamp the accesses
446 * here.
447 *
448 * If the length is small (as is the case for address_space_ldl/stl),
449 * everything works fine. If the incoming length is large, however,
450 * the caller really has to do the clamping through memory_access_size.
451 */
965eb2fc 452 if (memory_region_is_ram(mr)) {
e4a511f8 453 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
454 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
455 }
149f54b5
PB
456 return section;
457}
90260c6c 458
41063e1e 459/* Called from RCU critical section */
052c8fa9
JW
460IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
461 bool is_write)
462{
463 IOMMUTLBEntry iotlb = {0};
464 MemoryRegionSection *section;
465 MemoryRegion *mr;
466
467 for (;;) {
468 AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
469 section = address_space_lookup_region(d, addr, false);
470 addr = addr - section->offset_within_address_space
471 + section->offset_within_region;
472 mr = section->mr;
473
474 if (!mr->iommu_ops) {
475 break;
476 }
477
478 iotlb = mr->iommu_ops->translate(mr, addr, is_write);
479 if (!(iotlb.perm & (1 << is_write))) {
480 iotlb.target_as = NULL;
481 break;
482 }
483
484 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
485 | (addr & iotlb.addr_mask));
486 as = iotlb.target_as;
487 }
488
489 return iotlb;
490}
491
492/* Called from RCU critical section */
5c8a00ce
PB
493MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
494 hwaddr *xlat, hwaddr *plen,
495 bool is_write)
90260c6c 496{
30951157
AK
497 IOMMUTLBEntry iotlb;
498 MemoryRegionSection *section;
499 MemoryRegion *mr;
30951157
AK
500
501 for (;;) {
79e2b9ae
PB
502 AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
503 section = address_space_translate_internal(d, addr, &addr, plen, true);
30951157
AK
504 mr = section->mr;
505
506 if (!mr->iommu_ops) {
507 break;
508 }
509
8d7b8cb9 510 iotlb = mr->iommu_ops->translate(mr, addr, is_write);
30951157
AK
511 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
512 | (addr & iotlb.addr_mask));
23820dbf 513 *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1);
30951157
AK
514 if (!(iotlb.perm & (1 << is_write))) {
515 mr = &io_mem_unassigned;
516 break;
517 }
518
519 as = iotlb.target_as;
520 }
521
fe680d0d 522 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 523 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 524 *plen = MIN(page, *plen);
a87f3954
PB
525 }
526
30951157
AK
527 *xlat = addr;
528 return mr;
90260c6c
JK
529}
530
79e2b9ae 531/* Called from RCU critical section */
90260c6c 532MemoryRegionSection *
d7898cda 533address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
9d82b5a7 534 hwaddr *xlat, hwaddr *plen)
90260c6c 535{
30951157 536 MemoryRegionSection *section;
f35e44e7 537 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
d7898cda
PM
538
539 section = address_space_translate_internal(d, addr, xlat, plen, false);
30951157
AK
540
541 assert(!section->mr->iommu_ops);
542 return section;
90260c6c 543}
5b6dd868 544#endif
fd6ce8f6 545
b170fce3 546#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
547
548static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 549{
259186a7 550 CPUState *cpu = opaque;
a513fe19 551
5b6dd868
BS
552 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
553 version_id is increased. */
259186a7 554 cpu->interrupt_request &= ~0x01;
d10eb08f 555 tlb_flush(cpu);
5b6dd868
BS
556
557 return 0;
a513fe19 558}
7501267e 559
6c3bff0e
PD
560static int cpu_common_pre_load(void *opaque)
561{
562 CPUState *cpu = opaque;
563
adee6424 564 cpu->exception_index = -1;
6c3bff0e
PD
565
566 return 0;
567}
568
569static bool cpu_common_exception_index_needed(void *opaque)
570{
571 CPUState *cpu = opaque;
572
adee6424 573 return tcg_enabled() && cpu->exception_index != -1;
6c3bff0e
PD
574}
575
576static const VMStateDescription vmstate_cpu_common_exception_index = {
577 .name = "cpu_common/exception_index",
578 .version_id = 1,
579 .minimum_version_id = 1,
5cd8cada 580 .needed = cpu_common_exception_index_needed,
6c3bff0e
PD
581 .fields = (VMStateField[]) {
582 VMSTATE_INT32(exception_index, CPUState),
583 VMSTATE_END_OF_LIST()
584 }
585};
586
bac05aa9
AS
587static bool cpu_common_crash_occurred_needed(void *opaque)
588{
589 CPUState *cpu = opaque;
590
591 return cpu->crash_occurred;
592}
593
594static const VMStateDescription vmstate_cpu_common_crash_occurred = {
595 .name = "cpu_common/crash_occurred",
596 .version_id = 1,
597 .minimum_version_id = 1,
598 .needed = cpu_common_crash_occurred_needed,
599 .fields = (VMStateField[]) {
600 VMSTATE_BOOL(crash_occurred, CPUState),
601 VMSTATE_END_OF_LIST()
602 }
603};
604
1a1562f5 605const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
606 .name = "cpu_common",
607 .version_id = 1,
608 .minimum_version_id = 1,
6c3bff0e 609 .pre_load = cpu_common_pre_load,
5b6dd868 610 .post_load = cpu_common_post_load,
35d08458 611 .fields = (VMStateField[]) {
259186a7
AF
612 VMSTATE_UINT32(halted, CPUState),
613 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868 614 VMSTATE_END_OF_LIST()
6c3bff0e 615 },
5cd8cada
JQ
616 .subsections = (const VMStateDescription*[]) {
617 &vmstate_cpu_common_exception_index,
bac05aa9 618 &vmstate_cpu_common_crash_occurred,
5cd8cada 619 NULL
5b6dd868
BS
620 }
621};
1a1562f5 622
5b6dd868 623#endif
ea041c0e 624
38d8f5c8 625CPUState *qemu_get_cpu(int index)
ea041c0e 626{
bdc44640 627 CPUState *cpu;
ea041c0e 628
bdc44640 629 CPU_FOREACH(cpu) {
55e5c285 630 if (cpu->cpu_index == index) {
bdc44640 631 return cpu;
55e5c285 632 }
ea041c0e 633 }
5b6dd868 634
bdc44640 635 return NULL;
ea041c0e
FB
636}
637
09daed84 638#if !defined(CONFIG_USER_ONLY)
56943e8c 639void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
09daed84 640{
12ebc9a7
PM
641 CPUAddressSpace *newas;
642
643 /* Target code should have set num_ases before calling us */
644 assert(asidx < cpu->num_ases);
645
56943e8c
PM
646 if (asidx == 0) {
647 /* address space 0 gets the convenience alias */
648 cpu->as = as;
649 }
650
12ebc9a7
PM
651 /* KVM cannot currently support multiple address spaces. */
652 assert(asidx == 0 || !kvm_enabled());
09daed84 653
12ebc9a7
PM
654 if (!cpu->cpu_ases) {
655 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
09daed84 656 }
32857f4d 657
12ebc9a7
PM
658 newas = &cpu->cpu_ases[asidx];
659 newas->cpu = cpu;
660 newas->as = as;
56943e8c 661 if (tcg_enabled()) {
12ebc9a7
PM
662 newas->tcg_as_listener.commit = tcg_commit;
663 memory_listener_register(&newas->tcg_as_listener, as);
56943e8c 664 }
09daed84 665}
651a5bc0
PM
666
667AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
668{
669 /* Return the AddressSpace corresponding to the specified index */
670 return cpu->cpu_ases[asidx].as;
671}
09daed84
EI
672#endif
673
7bbc124e 674void cpu_exec_unrealizefn(CPUState *cpu)
1c59eb39 675{
9dfeca7c
BR
676 CPUClass *cc = CPU_GET_CLASS(cpu);
677
267f685b 678 cpu_list_remove(cpu);
9dfeca7c
BR
679
680 if (cc->vmsd != NULL) {
681 vmstate_unregister(NULL, cc->vmsd, cpu);
682 }
683 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
684 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
685 }
1c59eb39
BR
686}
687
39e329e3 688void cpu_exec_initfn(CPUState *cpu)
ea041c0e 689{
56943e8c 690 cpu->as = NULL;
12ebc9a7 691 cpu->num_ases = 0;
56943e8c 692
291135b5 693#ifndef CONFIG_USER_ONLY
291135b5 694 cpu->thread_id = qemu_get_thread_id();
6731d864
PC
695
696 /* This is a softmmu CPU object, so create a property for it
697 * so users can wire up its memory. (This can't go in qom/cpu.c
698 * because that file is compiled only once for both user-mode
699 * and system builds.) The default if no link is set up is to use
700 * the system address space.
701 */
702 object_property_add_link(OBJECT(cpu), "memory", TYPE_MEMORY_REGION,
703 (Object **)&cpu->memory,
704 qdev_prop_allow_set_link_before_realize,
705 OBJ_PROP_LINK_UNREF_ON_RELEASE,
706 &error_abort);
707 cpu->memory = system_memory;
708 object_ref(OBJECT(cpu->memory));
291135b5 709#endif
39e329e3
LV
710}
711
ce5b1bbf 712void cpu_exec_realizefn(CPUState *cpu, Error **errp)
39e329e3
LV
713{
714 CPUClass *cc ATTRIBUTE_UNUSED = CPU_GET_CLASS(cpu);
291135b5 715
267f685b 716 cpu_list_add(cpu);
1bc7e522
IM
717
718#ifndef CONFIG_USER_ONLY
e0d47944 719 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
741da0d3 720 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
e0d47944 721 }
b170fce3 722 if (cc->vmsd != NULL) {
741da0d3 723 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
b170fce3 724 }
741da0d3 725#endif
ea041c0e
FB
726}
727
00b941e5 728static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1e7855a5 729{
a9353fe8
PM
730 /* Flush the whole TB as this will not have race conditions
731 * even if we don't have proper locking yet.
732 * Ideally we would just invalidate the TBs for the
733 * specified PC.
734 */
735 tb_flush(cpu);
1e7855a5 736}
d720b93d 737
c527ee8f 738#if defined(CONFIG_USER_ONLY)
75a34036 739void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
c527ee8f
PB
740
741{
742}
743
3ee887e8
PM
744int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
745 int flags)
746{
747 return -ENOSYS;
748}
749
750void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
751{
752}
753
75a34036 754int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
c527ee8f
PB
755 int flags, CPUWatchpoint **watchpoint)
756{
757 return -ENOSYS;
758}
759#else
6658ffb8 760/* Add a watchpoint. */
75a34036 761int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 762 int flags, CPUWatchpoint **watchpoint)
6658ffb8 763{
c0ce998e 764 CPUWatchpoint *wp;
6658ffb8 765
05068c0d 766 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 767 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
768 error_report("tried to set invalid watchpoint at %"
769 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
770 return -EINVAL;
771 }
7267c094 772 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
773
774 wp->vaddr = addr;
05068c0d 775 wp->len = len;
a1d1bb31
AL
776 wp->flags = flags;
777
2dc9f411 778 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
779 if (flags & BP_GDB) {
780 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
781 } else {
782 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
783 }
6658ffb8 784
31b030d4 785 tlb_flush_page(cpu, addr);
a1d1bb31
AL
786
787 if (watchpoint)
788 *watchpoint = wp;
789 return 0;
6658ffb8
PB
790}
791
a1d1bb31 792/* Remove a specific watchpoint. */
75a34036 793int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 794 int flags)
6658ffb8 795{
a1d1bb31 796 CPUWatchpoint *wp;
6658ffb8 797
ff4700b0 798 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 799 if (addr == wp->vaddr && len == wp->len
6e140f28 800 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 801 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
802 return 0;
803 }
804 }
a1d1bb31 805 return -ENOENT;
6658ffb8
PB
806}
807
a1d1bb31 808/* Remove a specific watchpoint by reference. */
75a34036 809void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 810{
ff4700b0 811 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 812
31b030d4 813 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 814
7267c094 815 g_free(watchpoint);
a1d1bb31
AL
816}
817
818/* Remove all matching watchpoints. */
75a34036 819void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 820{
c0ce998e 821 CPUWatchpoint *wp, *next;
a1d1bb31 822
ff4700b0 823 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
824 if (wp->flags & mask) {
825 cpu_watchpoint_remove_by_ref(cpu, wp);
826 }
c0ce998e 827 }
7d03f82f 828}
05068c0d
PM
829
830/* Return true if this watchpoint address matches the specified
831 * access (ie the address range covered by the watchpoint overlaps
832 * partially or completely with the address range covered by the
833 * access).
834 */
835static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
836 vaddr addr,
837 vaddr len)
838{
839 /* We know the lengths are non-zero, but a little caution is
840 * required to avoid errors in the case where the range ends
841 * exactly at the top of the address space and so addr + len
842 * wraps round to zero.
843 */
844 vaddr wpend = wp->vaddr + wp->len - 1;
845 vaddr addrend = addr + len - 1;
846
847 return !(addr > wpend || wp->vaddr > addrend);
848}
849
c527ee8f 850#endif
7d03f82f 851
a1d1bb31 852/* Add a breakpoint. */
b3310ab3 853int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
a1d1bb31 854 CPUBreakpoint **breakpoint)
4c3a88a2 855{
c0ce998e 856 CPUBreakpoint *bp;
3b46e624 857
7267c094 858 bp = g_malloc(sizeof(*bp));
4c3a88a2 859
a1d1bb31
AL
860 bp->pc = pc;
861 bp->flags = flags;
862
2dc9f411 863 /* keep all GDB-injected breakpoints in front */
00b941e5 864 if (flags & BP_GDB) {
f0c3c505 865 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 866 } else {
f0c3c505 867 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 868 }
3b46e624 869
f0c3c505 870 breakpoint_invalidate(cpu, pc);
a1d1bb31 871
00b941e5 872 if (breakpoint) {
a1d1bb31 873 *breakpoint = bp;
00b941e5 874 }
4c3a88a2 875 return 0;
4c3a88a2
FB
876}
877
a1d1bb31 878/* Remove a specific breakpoint. */
b3310ab3 879int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
a1d1bb31 880{
a1d1bb31
AL
881 CPUBreakpoint *bp;
882
f0c3c505 883 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31 884 if (bp->pc == pc && bp->flags == flags) {
b3310ab3 885 cpu_breakpoint_remove_by_ref(cpu, bp);
a1d1bb31
AL
886 return 0;
887 }
7d03f82f 888 }
a1d1bb31 889 return -ENOENT;
7d03f82f
EI
890}
891
a1d1bb31 892/* Remove a specific breakpoint by reference. */
b3310ab3 893void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
4c3a88a2 894{
f0c3c505
AF
895 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
896
897 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 898
7267c094 899 g_free(breakpoint);
a1d1bb31
AL
900}
901
902/* Remove all matching breakpoints. */
b3310ab3 903void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 904{
c0ce998e 905 CPUBreakpoint *bp, *next;
a1d1bb31 906
f0c3c505 907 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
b3310ab3
AF
908 if (bp->flags & mask) {
909 cpu_breakpoint_remove_by_ref(cpu, bp);
910 }
c0ce998e 911 }
4c3a88a2
FB
912}
913
c33a346e
FB
914/* enable or disable single step mode. EXCP_DEBUG is returned by the
915 CPU loop after each instruction */
3825b28f 916void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 917{
ed2803da
AF
918 if (cpu->singlestep_enabled != enabled) {
919 cpu->singlestep_enabled = enabled;
920 if (kvm_enabled()) {
38e478ec 921 kvm_update_guest_debug(cpu, 0);
ed2803da 922 } else {
ccbb4d44 923 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 924 /* XXX: only flush what is necessary */
bbd77c18 925 tb_flush(cpu);
e22a25c9 926 }
c33a346e 927 }
c33a346e
FB
928}
929
a47dddd7 930void cpu_abort(CPUState *cpu, const char *fmt, ...)
7501267e
FB
931{
932 va_list ap;
493ae1f0 933 va_list ap2;
7501267e
FB
934
935 va_start(ap, fmt);
493ae1f0 936 va_copy(ap2, ap);
7501267e
FB
937 fprintf(stderr, "qemu: fatal: ");
938 vfprintf(stderr, fmt, ap);
939 fprintf(stderr, "\n");
878096ee 940 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
013a2942 941 if (qemu_log_separate()) {
1ee73216 942 qemu_log_lock();
93fcfe39
AL
943 qemu_log("qemu: fatal: ");
944 qemu_log_vprintf(fmt, ap2);
945 qemu_log("\n");
a0762859 946 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 947 qemu_log_flush();
1ee73216 948 qemu_log_unlock();
93fcfe39 949 qemu_log_close();
924edcae 950 }
493ae1f0 951 va_end(ap2);
f9373291 952 va_end(ap);
7615936e 953 replay_finish();
fd052bf6
RV
954#if defined(CONFIG_USER_ONLY)
955 {
956 struct sigaction act;
957 sigfillset(&act.sa_mask);
958 act.sa_handler = SIG_DFL;
959 sigaction(SIGABRT, &act, NULL);
960 }
961#endif
7501267e
FB
962 abort();
963}
964
0124311e 965#if !defined(CONFIG_USER_ONLY)
0dc3f44a 966/* Called from RCU critical section */
041603fe
PB
967static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
968{
969 RAMBlock *block;
970
43771539 971 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 972 if (block && addr - block->offset < block->max_length) {
68851b98 973 return block;
041603fe 974 }
0dc3f44a 975 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
9b8424d5 976 if (addr - block->offset < block->max_length) {
041603fe
PB
977 goto found;
978 }
979 }
980
981 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
982 abort();
983
984found:
43771539
PB
985 /* It is safe to write mru_block outside the iothread lock. This
986 * is what happens:
987 *
988 * mru_block = xxx
989 * rcu_read_unlock()
990 * xxx removed from list
991 * rcu_read_lock()
992 * read mru_block
993 * mru_block = NULL;
994 * call_rcu(reclaim_ramblock, xxx);
995 * rcu_read_unlock()
996 *
997 * atomic_rcu_set is not needed here. The block was already published
998 * when it was placed into the list. Here we're just making an extra
999 * copy of the pointer.
1000 */
041603fe
PB
1001 ram_list.mru_block = block;
1002 return block;
1003}
1004
a2f4d5be 1005static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 1006{
9a13565d 1007 CPUState *cpu;
041603fe 1008 ram_addr_t start1;
a2f4d5be
JQ
1009 RAMBlock *block;
1010 ram_addr_t end;
1011
1012 end = TARGET_PAGE_ALIGN(start + length);
1013 start &= TARGET_PAGE_MASK;
d24981d3 1014
0dc3f44a 1015 rcu_read_lock();
041603fe
PB
1016 block = qemu_get_ram_block(start);
1017 assert(block == qemu_get_ram_block(end - 1));
1240be24 1018 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
9a13565d
PC
1019 CPU_FOREACH(cpu) {
1020 tlb_reset_dirty(cpu, start1, length);
1021 }
0dc3f44a 1022 rcu_read_unlock();
d24981d3
JQ
1023}
1024
5579c7f3 1025/* Note: start and end must be within the same ram block. */
03eebc9e
SH
1026bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1027 ram_addr_t length,
1028 unsigned client)
1ccde1cb 1029{
5b82b703 1030 DirtyMemoryBlocks *blocks;
03eebc9e 1031 unsigned long end, page;
5b82b703 1032 bool dirty = false;
03eebc9e
SH
1033
1034 if (length == 0) {
1035 return false;
1036 }
f23db169 1037
03eebc9e
SH
1038 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1039 page = start >> TARGET_PAGE_BITS;
5b82b703
SH
1040
1041 rcu_read_lock();
1042
1043 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1044
1045 while (page < end) {
1046 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1047 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1048 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1049
1050 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1051 offset, num);
1052 page += num;
1053 }
1054
1055 rcu_read_unlock();
03eebc9e
SH
1056
1057 if (dirty && tcg_enabled()) {
a2f4d5be 1058 tlb_reset_dirty_range_all(start, length);
5579c7f3 1059 }
03eebc9e
SH
1060
1061 return dirty;
1ccde1cb
FB
1062}
1063
79e2b9ae 1064/* Called from RCU critical section */
bb0e627a 1065hwaddr memory_region_section_get_iotlb(CPUState *cpu,
149f54b5
PB
1066 MemoryRegionSection *section,
1067 target_ulong vaddr,
1068 hwaddr paddr, hwaddr xlat,
1069 int prot,
1070 target_ulong *address)
e5548617 1071{
a8170e5e 1072 hwaddr iotlb;
e5548617
BS
1073 CPUWatchpoint *wp;
1074
cc5bea60 1075 if (memory_region_is_ram(section->mr)) {
e5548617 1076 /* Normal RAM. */
e4e69794 1077 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
e5548617 1078 if (!section->readonly) {
b41aac4f 1079 iotlb |= PHYS_SECTION_NOTDIRTY;
e5548617 1080 } else {
b41aac4f 1081 iotlb |= PHYS_SECTION_ROM;
e5548617
BS
1082 }
1083 } else {
0b8e2c10
PM
1084 AddressSpaceDispatch *d;
1085
1086 d = atomic_rcu_read(&section->address_space->dispatch);
1087 iotlb = section - d->map.sections;
149f54b5 1088 iotlb += xlat;
e5548617
BS
1089 }
1090
1091 /* Make accesses to pages with watchpoints go via the
1092 watchpoint trap routines. */
ff4700b0 1093 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1094 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
e5548617
BS
1095 /* Avoid trapping reads of pages with a write breakpoint. */
1096 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
b41aac4f 1097 iotlb = PHYS_SECTION_WATCH + paddr;
e5548617
BS
1098 *address |= TLB_MMIO;
1099 break;
1100 }
1101 }
1102 }
1103
1104 return iotlb;
1105}
9fa3e853
FB
1106#endif /* defined(CONFIG_USER_ONLY) */
1107
e2eef170 1108#if !defined(CONFIG_USER_ONLY)
8da3ff18 1109
c227f099 1110static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 1111 uint16_t section);
acc9d80b 1112static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
54688b1e 1113
a2b257d6
IM
1114static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1115 qemu_anon_ram_alloc;
91138037
MA
1116
1117/*
1118 * Set a custom physical guest memory alloator.
1119 * Accelerators with unusual needs may need this. Hopefully, we can
1120 * get rid of it eventually.
1121 */
a2b257d6 1122void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
91138037
MA
1123{
1124 phys_mem_alloc = alloc;
1125}
1126
53cb28cb
MA
1127static uint16_t phys_section_add(PhysPageMap *map,
1128 MemoryRegionSection *section)
5312bd8b 1129{
68f3f65b
PB
1130 /* The physical section number is ORed with a page-aligned
1131 * pointer to produce the iotlb entries. Thus it should
1132 * never overflow into the page-aligned value.
1133 */
53cb28cb 1134 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1135
53cb28cb
MA
1136 if (map->sections_nb == map->sections_nb_alloc) {
1137 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1138 map->sections = g_renew(MemoryRegionSection, map->sections,
1139 map->sections_nb_alloc);
5312bd8b 1140 }
53cb28cb 1141 map->sections[map->sections_nb] = *section;
dfde4e6e 1142 memory_region_ref(section->mr);
53cb28cb 1143 return map->sections_nb++;
5312bd8b
AK
1144}
1145
058bc4b5
PB
1146static void phys_section_destroy(MemoryRegion *mr)
1147{
55b4e80b
DS
1148 bool have_sub_page = mr->subpage;
1149
dfde4e6e
PB
1150 memory_region_unref(mr);
1151
55b4e80b 1152 if (have_sub_page) {
058bc4b5 1153 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1154 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1155 g_free(subpage);
1156 }
1157}
1158
6092666e 1159static void phys_sections_free(PhysPageMap *map)
5312bd8b 1160{
9affd6fc
PB
1161 while (map->sections_nb > 0) {
1162 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1163 phys_section_destroy(section->mr);
1164 }
9affd6fc
PB
1165 g_free(map->sections);
1166 g_free(map->nodes);
5312bd8b
AK
1167}
1168
ac1970fb 1169static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
0f0cb164
AK
1170{
1171 subpage_t *subpage;
a8170e5e 1172 hwaddr base = section->offset_within_address_space
0f0cb164 1173 & TARGET_PAGE_MASK;
97115a8d 1174 MemoryRegionSection *existing = phys_page_find(d->phys_map, base,
53cb28cb 1175 d->map.nodes, d->map.sections);
0f0cb164
AK
1176 MemoryRegionSection subsection = {
1177 .offset_within_address_space = base,
052e87b0 1178 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1179 };
a8170e5e 1180 hwaddr start, end;
0f0cb164 1181
f3705d53 1182 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1183
f3705d53 1184 if (!(existing->mr->subpage)) {
acc9d80b 1185 subpage = subpage_init(d->as, base);
3be91e86 1186 subsection.address_space = d->as;
0f0cb164 1187 subsection.mr = &subpage->iomem;
ac1970fb 1188 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1189 phys_section_add(&d->map, &subsection));
0f0cb164 1190 } else {
f3705d53 1191 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1192 }
1193 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1194 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1195 subpage_register(subpage, start, end,
1196 phys_section_add(&d->map, section));
0f0cb164
AK
1197}
1198
1199
052e87b0
PB
1200static void register_multipage(AddressSpaceDispatch *d,
1201 MemoryRegionSection *section)
33417e70 1202{
a8170e5e 1203 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1204 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1205 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1206 TARGET_PAGE_BITS));
dd81124b 1207
733d5ef5
PB
1208 assert(num_pages);
1209 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1210}
1211
ac1970fb 1212static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
0f0cb164 1213{
89ae337a 1214 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
00752703 1215 AddressSpaceDispatch *d = as->next_dispatch;
99b9cc06 1216 MemoryRegionSection now = *section, remain = *section;
052e87b0 1217 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1218
733d5ef5
PB
1219 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1220 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1221 - now.offset_within_address_space;
1222
052e87b0 1223 now.size = int128_min(int128_make64(left), now.size);
ac1970fb 1224 register_subpage(d, &now);
733d5ef5 1225 } else {
052e87b0 1226 now.size = int128_zero();
733d5ef5 1227 }
052e87b0
PB
1228 while (int128_ne(remain.size, now.size)) {
1229 remain.size = int128_sub(remain.size, now.size);
1230 remain.offset_within_address_space += int128_get64(now.size);
1231 remain.offset_within_region += int128_get64(now.size);
69b67646 1232 now = remain;
052e87b0 1233 if (int128_lt(remain.size, page_size)) {
733d5ef5 1234 register_subpage(d, &now);
88266249 1235 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
052e87b0 1236 now.size = page_size;
ac1970fb 1237 register_subpage(d, &now);
69b67646 1238 } else {
052e87b0 1239 now.size = int128_and(now.size, int128_neg(page_size));
ac1970fb 1240 register_multipage(d, &now);
69b67646 1241 }
0f0cb164
AK
1242 }
1243}
1244
62a2744c
SY
1245void qemu_flush_coalesced_mmio_buffer(void)
1246{
1247 if (kvm_enabled())
1248 kvm_flush_coalesced_mmio_buffer();
1249}
1250
b2a8658e
UD
1251void qemu_mutex_lock_ramlist(void)
1252{
1253 qemu_mutex_lock(&ram_list.mutex);
1254}
1255
1256void qemu_mutex_unlock_ramlist(void)
1257{
1258 qemu_mutex_unlock(&ram_list.mutex);
1259}
1260
9c607668
AK
1261#ifdef __linux__
1262/*
1263 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1264 * may or may not name the same files / on the same filesystem now as
1265 * when we actually open and map them. Iterate over the file
1266 * descriptors instead, and use qemu_fd_getpagesize().
1267 */
1268static int find_max_supported_pagesize(Object *obj, void *opaque)
1269{
1270 char *mem_path;
1271 long *hpsize_min = opaque;
1272
1273 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1274 mem_path = object_property_get_str(obj, "mem-path", NULL);
1275 if (mem_path) {
1276 long hpsize = qemu_mempath_getpagesize(mem_path);
1277 if (hpsize < *hpsize_min) {
1278 *hpsize_min = hpsize;
1279 }
1280 } else {
1281 *hpsize_min = getpagesize();
1282 }
1283 }
1284
1285 return 0;
1286}
1287
1288long qemu_getrampagesize(void)
1289{
1290 long hpsize = LONG_MAX;
1291 long mainrampagesize;
1292 Object *memdev_root;
1293
1294 if (mem_path) {
1295 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1296 } else {
1297 mainrampagesize = getpagesize();
1298 }
1299
1300 /* it's possible we have memory-backend objects with
1301 * hugepage-backed RAM. these may get mapped into system
1302 * address space via -numa parameters or memory hotplug
1303 * hooks. we want to take these into account, but we
1304 * also want to make sure these supported hugepage
1305 * sizes are applicable across the entire range of memory
1306 * we may boot from, so we take the min across all
1307 * backends, and assume normal pages in cases where a
1308 * backend isn't backed by hugepages.
1309 */
1310 memdev_root = object_resolve_path("/objects", NULL);
1311 if (memdev_root) {
1312 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1313 }
1314 if (hpsize == LONG_MAX) {
1315 /* No additional memory regions found ==> Report main RAM page size */
1316 return mainrampagesize;
1317 }
1318
1319 /* If NUMA is disabled or the NUMA nodes are not backed with a
1320 * memory-backend, then there is at least one node using "normal" RAM,
1321 * so if its page size is smaller we have got to report that size instead.
1322 */
1323 if (hpsize > mainrampagesize &&
1324 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1325 static bool warned;
1326 if (!warned) {
1327 error_report("Huge page support disabled (n/a for main memory).");
1328 warned = true;
1329 }
1330 return mainrampagesize;
1331 }
1332
1333 return hpsize;
1334}
1335#else
1336long qemu_getrampagesize(void)
1337{
1338 return getpagesize();
1339}
1340#endif
1341
e1e84ba0 1342#ifdef __linux__
d6af99c9
HZ
1343static int64_t get_file_size(int fd)
1344{
1345 int64_t size = lseek(fd, 0, SEEK_END);
1346 if (size < 0) {
1347 return -errno;
1348 }
1349 return size;
1350}
1351
04b16653
AW
1352static void *file_ram_alloc(RAMBlock *block,
1353 ram_addr_t memory,
7f56e740
PB
1354 const char *path,
1355 Error **errp)
c902760f 1356{
fd97fd44 1357 bool unlink_on_error = false;
c902760f 1358 char *filename;
8ca761f6
PF
1359 char *sanitized_name;
1360 char *c;
056b68af 1361 void *area = MAP_FAILED;
5c3ece79 1362 int fd = -1;
d6af99c9 1363 int64_t file_size;
c902760f
MT
1364
1365 if (kvm_enabled() && !kvm_has_sync_mmu()) {
7f56e740
PB
1366 error_setg(errp,
1367 "host lacks kvm mmu notifiers, -mem-path unsupported");
fd97fd44 1368 return NULL;
c902760f
MT
1369 }
1370
fd97fd44
MA
1371 for (;;) {
1372 fd = open(path, O_RDWR);
1373 if (fd >= 0) {
1374 /* @path names an existing file, use it */
1375 break;
8d31d6b6 1376 }
fd97fd44
MA
1377 if (errno == ENOENT) {
1378 /* @path names a file that doesn't exist, create it */
1379 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1380 if (fd >= 0) {
1381 unlink_on_error = true;
1382 break;
1383 }
1384 } else if (errno == EISDIR) {
1385 /* @path names a directory, create a file there */
1386 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1387 sanitized_name = g_strdup(memory_region_name(block->mr));
1388 for (c = sanitized_name; *c != '\0'; c++) {
1389 if (*c == '/') {
1390 *c = '_';
1391 }
1392 }
8ca761f6 1393
fd97fd44
MA
1394 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1395 sanitized_name);
1396 g_free(sanitized_name);
8d31d6b6 1397
fd97fd44
MA
1398 fd = mkstemp(filename);
1399 if (fd >= 0) {
1400 unlink(filename);
1401 g_free(filename);
1402 break;
1403 }
1404 g_free(filename);
8d31d6b6 1405 }
fd97fd44
MA
1406 if (errno != EEXIST && errno != EINTR) {
1407 error_setg_errno(errp, errno,
1408 "can't open backing store %s for guest RAM",
1409 path);
1410 goto error;
1411 }
1412 /*
1413 * Try again on EINTR and EEXIST. The latter happens when
1414 * something else creates the file between our two open().
1415 */
8d31d6b6 1416 }
c902760f 1417
863e9621 1418 block->page_size = qemu_fd_getpagesize(fd);
8360668e
HZ
1419 block->mr->align = block->page_size;
1420#if defined(__s390x__)
1421 if (kvm_enabled()) {
1422 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1423 }
1424#endif
fd97fd44 1425
d6af99c9
HZ
1426 file_size = get_file_size(fd);
1427
863e9621 1428 if (memory < block->page_size) {
fd97fd44 1429 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
863e9621
DDAG
1430 "or larger than page size 0x%zx",
1431 memory, block->page_size);
f9a49dfa 1432 goto error;
c902760f 1433 }
c902760f 1434
1775f111
HZ
1435 if (file_size > 0 && file_size < memory) {
1436 error_setg(errp, "backing store %s size 0x%" PRIx64
1437 " does not match 'size' option 0x" RAM_ADDR_FMT,
1438 path, file_size, memory);
1439 goto error;
1440 }
1441
863e9621 1442 memory = ROUND_UP(memory, block->page_size);
c902760f
MT
1443
1444 /*
1445 * ftruncate is not supported by hugetlbfs in older
1446 * hosts, so don't bother bailing out on errors.
1447 * If anything goes wrong with it under other filesystems,
1448 * mmap will fail.
d6af99c9
HZ
1449 *
1450 * Do not truncate the non-empty backend file to avoid corrupting
1451 * the existing data in the file. Disabling shrinking is not
1452 * enough. For example, the current vNVDIMM implementation stores
1453 * the guest NVDIMM labels at the end of the backend file. If the
1454 * backend file is later extended, QEMU will not be able to find
1455 * those labels. Therefore, extending the non-empty backend file
1456 * is disabled as well.
c902760f 1457 */
d6af99c9 1458 if (!file_size && ftruncate(fd, memory)) {
9742bf26 1459 perror("ftruncate");
7f56e740 1460 }
c902760f 1461
d2f39add
DD
1462 area = qemu_ram_mmap(fd, memory, block->mr->align,
1463 block->flags & RAM_SHARED);
c902760f 1464 if (area == MAP_FAILED) {
7f56e740 1465 error_setg_errno(errp, errno,
fd97fd44 1466 "unable to map backing store for guest RAM");
f9a49dfa 1467 goto error;
c902760f 1468 }
ef36fa14
MT
1469
1470 if (mem_prealloc) {
1e356fc1 1471 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
056b68af
IM
1472 if (errp && *errp) {
1473 goto error;
1474 }
ef36fa14
MT
1475 }
1476
04b16653 1477 block->fd = fd;
c902760f 1478 return area;
f9a49dfa
MT
1479
1480error:
056b68af
IM
1481 if (area != MAP_FAILED) {
1482 qemu_ram_munmap(area, memory);
1483 }
fd97fd44
MA
1484 if (unlink_on_error) {
1485 unlink(path);
1486 }
5c3ece79
PB
1487 if (fd != -1) {
1488 close(fd);
1489 }
f9a49dfa 1490 return NULL;
c902760f
MT
1491}
1492#endif
1493
0dc3f44a 1494/* Called with the ramlist lock held. */
d17b5288 1495static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1496{
1497 RAMBlock *block, *next_block;
3e837b2c 1498 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1499
49cd9ac6
SH
1500 assert(size != 0); /* it would hand out same offset multiple times */
1501
0dc3f44a 1502 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1503 return 0;
0d53d9fe 1504 }
04b16653 1505
0dc3f44a 1506 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
f15fbc4b 1507 ram_addr_t end, next = RAM_ADDR_MAX;
04b16653 1508
62be4e3a 1509 end = block->offset + block->max_length;
04b16653 1510
0dc3f44a 1511 QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) {
04b16653
AW
1512 if (next_block->offset >= end) {
1513 next = MIN(next, next_block->offset);
1514 }
1515 }
1516 if (next - end >= size && next - end < mingap) {
3e837b2c 1517 offset = end;
04b16653
AW
1518 mingap = next - end;
1519 }
1520 }
3e837b2c
AW
1521
1522 if (offset == RAM_ADDR_MAX) {
1523 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1524 (uint64_t)size);
1525 abort();
1526 }
1527
04b16653
AW
1528 return offset;
1529}
1530
b8c48993 1531unsigned long last_ram_page(void)
d17b5288
AW
1532{
1533 RAMBlock *block;
1534 ram_addr_t last = 0;
1535
0dc3f44a
MD
1536 rcu_read_lock();
1537 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
62be4e3a 1538 last = MAX(last, block->offset + block->max_length);
0d53d9fe 1539 }
0dc3f44a 1540 rcu_read_unlock();
b8c48993 1541 return last >> TARGET_PAGE_BITS;
d17b5288
AW
1542}
1543
ddb97f1d
JB
1544static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1545{
1546 int ret;
ddb97f1d
JB
1547
1548 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 1549 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
1550 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1551 if (ret) {
1552 perror("qemu_madvise");
1553 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1554 "but dump_guest_core=off specified\n");
1555 }
1556 }
1557}
1558
422148d3
DDAG
1559const char *qemu_ram_get_idstr(RAMBlock *rb)
1560{
1561 return rb->idstr;
1562}
1563
463a4ac2
DDAG
1564bool qemu_ram_is_shared(RAMBlock *rb)
1565{
1566 return rb->flags & RAM_SHARED;
1567}
1568
ae3a7047 1569/* Called with iothread lock held. */
fa53a0e5 1570void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
20cfe881 1571{
fa53a0e5 1572 RAMBlock *block;
20cfe881 1573
c5705a77
AK
1574 assert(new_block);
1575 assert(!new_block->idstr[0]);
84b89d78 1576
09e5ab63
AL
1577 if (dev) {
1578 char *id = qdev_get_dev_path(dev);
84b89d78
CM
1579 if (id) {
1580 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 1581 g_free(id);
84b89d78
CM
1582 }
1583 }
1584 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1585
ab0a9956 1586 rcu_read_lock();
0dc3f44a 1587 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
fa53a0e5
GA
1588 if (block != new_block &&
1589 !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
1590 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1591 new_block->idstr);
1592 abort();
1593 }
1594 }
0dc3f44a 1595 rcu_read_unlock();
c5705a77
AK
1596}
1597
ae3a7047 1598/* Called with iothread lock held. */
fa53a0e5 1599void qemu_ram_unset_idstr(RAMBlock *block)
20cfe881 1600{
ae3a7047
MD
1601 /* FIXME: arch_init.c assumes that this is not called throughout
1602 * migration. Ignore the problem since hot-unplug during migration
1603 * does not work anyway.
1604 */
20cfe881
HT
1605 if (block) {
1606 memset(block->idstr, 0, sizeof(block->idstr));
1607 }
1608}
1609
863e9621
DDAG
1610size_t qemu_ram_pagesize(RAMBlock *rb)
1611{
1612 return rb->page_size;
1613}
1614
67f11b5c
DDAG
1615/* Returns the largest size of page in use */
1616size_t qemu_ram_pagesize_largest(void)
1617{
1618 RAMBlock *block;
1619 size_t largest = 0;
1620
1621 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1622 largest = MAX(largest, qemu_ram_pagesize(block));
1623 }
1624
1625 return largest;
1626}
1627
8490fc78
LC
1628static int memory_try_enable_merging(void *addr, size_t len)
1629{
75cc7f01 1630 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
1631 /* disabled by the user */
1632 return 0;
1633 }
1634
1635 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1636}
1637
62be4e3a
MT
1638/* Only legal before guest might have detected the memory size: e.g. on
1639 * incoming migration, or right after reset.
1640 *
1641 * As memory core doesn't know how is memory accessed, it is up to
1642 * resize callback to update device state and/or add assertions to detect
1643 * misuse, if necessary.
1644 */
fa53a0e5 1645int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
62be4e3a 1646{
62be4e3a
MT
1647 assert(block);
1648
4ed023ce 1649 newsize = HOST_PAGE_ALIGN(newsize);
129ddaf3 1650
62be4e3a
MT
1651 if (block->used_length == newsize) {
1652 return 0;
1653 }
1654
1655 if (!(block->flags & RAM_RESIZEABLE)) {
1656 error_setg_errno(errp, EINVAL,
1657 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1658 " in != 0x" RAM_ADDR_FMT, block->idstr,
1659 newsize, block->used_length);
1660 return -EINVAL;
1661 }
1662
1663 if (block->max_length < newsize) {
1664 error_setg_errno(errp, EINVAL,
1665 "Length too large: %s: 0x" RAM_ADDR_FMT
1666 " > 0x" RAM_ADDR_FMT, block->idstr,
1667 newsize, block->max_length);
1668 return -EINVAL;
1669 }
1670
1671 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1672 block->used_length = newsize;
58d2707e
PB
1673 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1674 DIRTY_CLIENTS_ALL);
62be4e3a
MT
1675 memory_region_set_size(block->mr, newsize);
1676 if (block->resized) {
1677 block->resized(block->idstr, newsize, block->host);
1678 }
1679 return 0;
1680}
1681
5b82b703
SH
1682/* Called with ram_list.mutex held */
1683static void dirty_memory_extend(ram_addr_t old_ram_size,
1684 ram_addr_t new_ram_size)
1685{
1686 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1687 DIRTY_MEMORY_BLOCK_SIZE);
1688 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1689 DIRTY_MEMORY_BLOCK_SIZE);
1690 int i;
1691
1692 /* Only need to extend if block count increased */
1693 if (new_num_blocks <= old_num_blocks) {
1694 return;
1695 }
1696
1697 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1698 DirtyMemoryBlocks *old_blocks;
1699 DirtyMemoryBlocks *new_blocks;
1700 int j;
1701
1702 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1703 new_blocks = g_malloc(sizeof(*new_blocks) +
1704 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1705
1706 if (old_num_blocks) {
1707 memcpy(new_blocks->blocks, old_blocks->blocks,
1708 old_num_blocks * sizeof(old_blocks->blocks[0]));
1709 }
1710
1711 for (j = old_num_blocks; j < new_num_blocks; j++) {
1712 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1713 }
1714
1715 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1716
1717 if (old_blocks) {
1718 g_free_rcu(old_blocks, rcu);
1719 }
1720 }
1721}
1722
528f46af 1723static void ram_block_add(RAMBlock *new_block, Error **errp)
c5705a77 1724{
e1c57ab8 1725 RAMBlock *block;
0d53d9fe 1726 RAMBlock *last_block = NULL;
2152f5ca 1727 ram_addr_t old_ram_size, new_ram_size;
37aa7a0e 1728 Error *err = NULL;
2152f5ca 1729
b8c48993 1730 old_ram_size = last_ram_page();
c5705a77 1731
b2a8658e 1732 qemu_mutex_lock_ramlist();
9b8424d5 1733 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
1734
1735 if (!new_block->host) {
1736 if (xen_enabled()) {
9b8424d5 1737 xen_ram_alloc(new_block->offset, new_block->max_length,
37aa7a0e
MA
1738 new_block->mr, &err);
1739 if (err) {
1740 error_propagate(errp, err);
1741 qemu_mutex_unlock_ramlist();
39c350ee 1742 return;
37aa7a0e 1743 }
e1c57ab8 1744 } else {
9b8424d5 1745 new_block->host = phys_mem_alloc(new_block->max_length,
a2b257d6 1746 &new_block->mr->align);
39228250 1747 if (!new_block->host) {
ef701d7b
HT
1748 error_setg_errno(errp, errno,
1749 "cannot set up guest memory '%s'",
1750 memory_region_name(new_block->mr));
1751 qemu_mutex_unlock_ramlist();
39c350ee 1752 return;
39228250 1753 }
9b8424d5 1754 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 1755 }
c902760f 1756 }
94a6b54f 1757
dd631697
LZ
1758 new_ram_size = MAX(old_ram_size,
1759 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1760 if (new_ram_size > old_ram_size) {
5b82b703 1761 dirty_memory_extend(old_ram_size, new_ram_size);
dd631697 1762 }
0d53d9fe
MD
1763 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1764 * QLIST (which has an RCU-friendly variant) does not have insertion at
1765 * tail, so save the last element in last_block.
1766 */
0dc3f44a 1767 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
0d53d9fe 1768 last_block = block;
9b8424d5 1769 if (block->max_length < new_block->max_length) {
abb26d63
PB
1770 break;
1771 }
1772 }
1773 if (block) {
0dc3f44a 1774 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 1775 } else if (last_block) {
0dc3f44a 1776 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 1777 } else { /* list is empty */
0dc3f44a 1778 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 1779 }
0d6d3c87 1780 ram_list.mru_block = NULL;
94a6b54f 1781
0dc3f44a
MD
1782 /* Write list before version */
1783 smp_wmb();
f798b07f 1784 ram_list.version++;
b2a8658e 1785 qemu_mutex_unlock_ramlist();
f798b07f 1786
9b8424d5 1787 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
1788 new_block->used_length,
1789 DIRTY_CLIENTS_ALL);
94a6b54f 1790
a904c911
PB
1791 if (new_block->host) {
1792 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1793 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
c2cd627d 1794 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
a904c911 1795 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
0987d735 1796 ram_block_notify_add(new_block->host, new_block->max_length);
e1c57ab8 1797 }
94a6b54f 1798}
e9a1ab19 1799
0b183fc8 1800#ifdef __linux__
528f46af
FZ
1801RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
1802 bool share, const char *mem_path,
1803 Error **errp)
e1c57ab8
PB
1804{
1805 RAMBlock *new_block;
ef701d7b 1806 Error *local_err = NULL;
e1c57ab8
PB
1807
1808 if (xen_enabled()) {
7f56e740 1809 error_setg(errp, "-mem-path not supported with Xen");
528f46af 1810 return NULL;
e1c57ab8
PB
1811 }
1812
1813 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1814 /*
1815 * file_ram_alloc() needs to allocate just like
1816 * phys_mem_alloc, but we haven't bothered to provide
1817 * a hook there.
1818 */
7f56e740
PB
1819 error_setg(errp,
1820 "-mem-path not supported with this accelerator");
528f46af 1821 return NULL;
e1c57ab8
PB
1822 }
1823
4ed023ce 1824 size = HOST_PAGE_ALIGN(size);
e1c57ab8
PB
1825 new_block = g_malloc0(sizeof(*new_block));
1826 new_block->mr = mr;
9b8424d5
MT
1827 new_block->used_length = size;
1828 new_block->max_length = size;
dbcb8981 1829 new_block->flags = share ? RAM_SHARED : 0;
7f56e740
PB
1830 new_block->host = file_ram_alloc(new_block, size,
1831 mem_path, errp);
1832 if (!new_block->host) {
1833 g_free(new_block);
528f46af 1834 return NULL;
7f56e740
PB
1835 }
1836
528f46af 1837 ram_block_add(new_block, &local_err);
ef701d7b
HT
1838 if (local_err) {
1839 g_free(new_block);
1840 error_propagate(errp, local_err);
528f46af 1841 return NULL;
ef701d7b 1842 }
528f46af 1843 return new_block;
e1c57ab8 1844}
0b183fc8 1845#endif
e1c57ab8 1846
62be4e3a 1847static
528f46af
FZ
1848RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
1849 void (*resized)(const char*,
1850 uint64_t length,
1851 void *host),
1852 void *host, bool resizeable,
1853 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
1854{
1855 RAMBlock *new_block;
ef701d7b 1856 Error *local_err = NULL;
e1c57ab8 1857
4ed023ce
DDAG
1858 size = HOST_PAGE_ALIGN(size);
1859 max_size = HOST_PAGE_ALIGN(max_size);
e1c57ab8
PB
1860 new_block = g_malloc0(sizeof(*new_block));
1861 new_block->mr = mr;
62be4e3a 1862 new_block->resized = resized;
9b8424d5
MT
1863 new_block->used_length = size;
1864 new_block->max_length = max_size;
62be4e3a 1865 assert(max_size >= size);
e1c57ab8 1866 new_block->fd = -1;
863e9621 1867 new_block->page_size = getpagesize();
e1c57ab8
PB
1868 new_block->host = host;
1869 if (host) {
7bd4f430 1870 new_block->flags |= RAM_PREALLOC;
e1c57ab8 1871 }
62be4e3a
MT
1872 if (resizeable) {
1873 new_block->flags |= RAM_RESIZEABLE;
1874 }
528f46af 1875 ram_block_add(new_block, &local_err);
ef701d7b
HT
1876 if (local_err) {
1877 g_free(new_block);
1878 error_propagate(errp, local_err);
528f46af 1879 return NULL;
ef701d7b 1880 }
528f46af 1881 return new_block;
e1c57ab8
PB
1882}
1883
528f46af 1884RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
62be4e3a
MT
1885 MemoryRegion *mr, Error **errp)
1886{
1887 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
1888}
1889
528f46af 1890RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
6977dfe6 1891{
62be4e3a
MT
1892 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
1893}
1894
528f46af 1895RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
62be4e3a
MT
1896 void (*resized)(const char*,
1897 uint64_t length,
1898 void *host),
1899 MemoryRegion *mr, Error **errp)
1900{
1901 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
6977dfe6
YT
1902}
1903
43771539
PB
1904static void reclaim_ramblock(RAMBlock *block)
1905{
1906 if (block->flags & RAM_PREALLOC) {
1907 ;
1908 } else if (xen_enabled()) {
1909 xen_invalidate_map_cache_entry(block->host);
1910#ifndef _WIN32
1911 } else if (block->fd >= 0) {
2f3a2bb1 1912 qemu_ram_munmap(block->host, block->max_length);
43771539
PB
1913 close(block->fd);
1914#endif
1915 } else {
1916 qemu_anon_ram_free(block->host, block->max_length);
1917 }
1918 g_free(block);
1919}
1920
f1060c55 1921void qemu_ram_free(RAMBlock *block)
e9a1ab19 1922{
85bc2a15
MAL
1923 if (!block) {
1924 return;
1925 }
1926
0987d735
PB
1927 if (block->host) {
1928 ram_block_notify_remove(block->host, block->max_length);
1929 }
1930
b2a8658e 1931 qemu_mutex_lock_ramlist();
f1060c55
FZ
1932 QLIST_REMOVE_RCU(block, next);
1933 ram_list.mru_block = NULL;
1934 /* Write list before version */
1935 smp_wmb();
1936 ram_list.version++;
1937 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 1938 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
1939}
1940
cd19cfa2
HY
1941#ifndef _WIN32
1942void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1943{
1944 RAMBlock *block;
1945 ram_addr_t offset;
1946 int flags;
1947 void *area, *vaddr;
1948
0dc3f44a 1949 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
cd19cfa2 1950 offset = addr - block->offset;
9b8424d5 1951 if (offset < block->max_length) {
1240be24 1952 vaddr = ramblock_ptr(block, offset);
7bd4f430 1953 if (block->flags & RAM_PREALLOC) {
cd19cfa2 1954 ;
dfeaf2ab
MA
1955 } else if (xen_enabled()) {
1956 abort();
cd19cfa2
HY
1957 } else {
1958 flags = MAP_FIXED;
3435f395 1959 if (block->fd >= 0) {
dbcb8981
PB
1960 flags |= (block->flags & RAM_SHARED ?
1961 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
1962 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1963 flags, block->fd, offset);
cd19cfa2 1964 } else {
2eb9fbaa
MA
1965 /*
1966 * Remap needs to match alloc. Accelerators that
1967 * set phys_mem_alloc never remap. If they did,
1968 * we'd need a remap hook here.
1969 */
1970 assert(phys_mem_alloc == qemu_anon_ram_alloc);
1971
cd19cfa2
HY
1972 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1973 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1974 flags, -1, 0);
cd19cfa2
HY
1975 }
1976 if (area != vaddr) {
f15fbc4b
AP
1977 fprintf(stderr, "Could not remap addr: "
1978 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
1979 length, addr);
1980 exit(1);
1981 }
8490fc78 1982 memory_try_enable_merging(vaddr, length);
ddb97f1d 1983 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 1984 }
cd19cfa2
HY
1985 }
1986 }
1987}
1988#endif /* !_WIN32 */
1989
1b5ec234 1990/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
1991 * This should not be used for general purpose DMA. Use address_space_map
1992 * or address_space_rw instead. For local memory (e.g. video ram) that the
1993 * device owns, use memory_region_get_ram_ptr.
0dc3f44a 1994 *
49b24afc 1995 * Called within RCU critical section.
1b5ec234 1996 */
0878d0e1 1997void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1b5ec234 1998{
3655cb9c
GA
1999 RAMBlock *block = ram_block;
2000
2001 if (block == NULL) {
2002 block = qemu_get_ram_block(addr);
0878d0e1 2003 addr -= block->offset;
3655cb9c 2004 }
ae3a7047
MD
2005
2006 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
2007 /* We need to check if the requested address is in the RAM
2008 * because we don't want to map the entire memory in QEMU.
2009 * In that case just map until the end of the page.
2010 */
2011 if (block->offset == 0) {
49b24afc 2012 return xen_map_cache(addr, 0, 0);
0d6d3c87 2013 }
ae3a7047
MD
2014
2015 block->host = xen_map_cache(block->offset, block->max_length, 1);
0d6d3c87 2016 }
0878d0e1 2017 return ramblock_ptr(block, addr);
dc828ca1
PB
2018}
2019
0878d0e1 2020/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
ae3a7047 2021 * but takes a size argument.
0dc3f44a 2022 *
e81bcda5 2023 * Called within RCU critical section.
ae3a7047 2024 */
3655cb9c
GA
2025static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2026 hwaddr *size)
38bee5dc 2027{
3655cb9c 2028 RAMBlock *block = ram_block;
8ab934f9
SS
2029 if (*size == 0) {
2030 return NULL;
2031 }
e81bcda5 2032
3655cb9c
GA
2033 if (block == NULL) {
2034 block = qemu_get_ram_block(addr);
0878d0e1 2035 addr -= block->offset;
3655cb9c 2036 }
0878d0e1 2037 *size = MIN(*size, block->max_length - addr);
e81bcda5
PB
2038
2039 if (xen_enabled() && block->host == NULL) {
2040 /* We need to check if the requested address is in the RAM
2041 * because we don't want to map the entire memory in QEMU.
2042 * In that case just map the requested area.
2043 */
2044 if (block->offset == 0) {
2045 return xen_map_cache(addr, *size, 1);
38bee5dc
SS
2046 }
2047
e81bcda5 2048 block->host = xen_map_cache(block->offset, block->max_length, 1);
38bee5dc 2049 }
e81bcda5 2050
0878d0e1 2051 return ramblock_ptr(block, addr);
38bee5dc
SS
2052}
2053
422148d3
DDAG
2054/*
2055 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2056 * in that RAMBlock.
2057 *
2058 * ptr: Host pointer to look up
2059 * round_offset: If true round the result offset down to a page boundary
2060 * *ram_addr: set to result ram_addr
2061 * *offset: set to result offset within the RAMBlock
2062 *
2063 * Returns: RAMBlock (or NULL if not found)
ae3a7047
MD
2064 *
2065 * By the time this function returns, the returned pointer is not protected
2066 * by RCU anymore. If the caller is not within an RCU critical section and
2067 * does not hold the iothread lock, it must have other means of protecting the
2068 * pointer, such as a reference to the region that includes the incoming
2069 * ram_addr_t.
2070 */
422148d3 2071RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
422148d3 2072 ram_addr_t *offset)
5579c7f3 2073{
94a6b54f
PB
2074 RAMBlock *block;
2075 uint8_t *host = ptr;
2076
868bb33f 2077 if (xen_enabled()) {
f615f396 2078 ram_addr_t ram_addr;
0dc3f44a 2079 rcu_read_lock();
f615f396
PB
2080 ram_addr = xen_ram_addr_from_mapcache(ptr);
2081 block = qemu_get_ram_block(ram_addr);
422148d3 2082 if (block) {
d6b6aec4 2083 *offset = ram_addr - block->offset;
422148d3 2084 }
0dc3f44a 2085 rcu_read_unlock();
422148d3 2086 return block;
712c2b41
SS
2087 }
2088
0dc3f44a
MD
2089 rcu_read_lock();
2090 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 2091 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
2092 goto found;
2093 }
2094
0dc3f44a 2095 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
432d268c
JN
2096 /* This case append when the block is not mapped. */
2097 if (block->host == NULL) {
2098 continue;
2099 }
9b8424d5 2100 if (host - block->host < block->max_length) {
23887b79 2101 goto found;
f471a17e 2102 }
94a6b54f 2103 }
432d268c 2104
0dc3f44a 2105 rcu_read_unlock();
1b5ec234 2106 return NULL;
23887b79
PB
2107
2108found:
422148d3
DDAG
2109 *offset = (host - block->host);
2110 if (round_offset) {
2111 *offset &= TARGET_PAGE_MASK;
2112 }
0dc3f44a 2113 rcu_read_unlock();
422148d3
DDAG
2114 return block;
2115}
2116
e3dd7493
DDAG
2117/*
2118 * Finds the named RAMBlock
2119 *
2120 * name: The name of RAMBlock to find
2121 *
2122 * Returns: RAMBlock (or NULL if not found)
2123 */
2124RAMBlock *qemu_ram_block_by_name(const char *name)
2125{
2126 RAMBlock *block;
2127
2128 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
2129 if (!strcmp(name, block->idstr)) {
2130 return block;
2131 }
2132 }
2133
2134 return NULL;
2135}
2136
422148d3
DDAG
2137/* Some of the softmmu routines need to translate from a host pointer
2138 (typically a TLB entry) back to a ram offset. */
07bdaa41 2139ram_addr_t qemu_ram_addr_from_host(void *ptr)
422148d3
DDAG
2140{
2141 RAMBlock *block;
f615f396 2142 ram_addr_t offset;
422148d3 2143
f615f396 2144 block = qemu_ram_block_from_host(ptr, false, &offset);
422148d3 2145 if (!block) {
07bdaa41 2146 return RAM_ADDR_INVALID;
422148d3
DDAG
2147 }
2148
07bdaa41 2149 return block->offset + offset;
e890261f 2150}
f471a17e 2151
49b24afc 2152/* Called within RCU critical section. */
a8170e5e 2153static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
0e0df1e2 2154 uint64_t val, unsigned size)
9fa3e853 2155{
ba051fb5
AB
2156 bool locked = false;
2157
52159192 2158 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
ba051fb5
AB
2159 locked = true;
2160 tb_lock();
0e0df1e2 2161 tb_invalidate_phys_page_fast(ram_addr, size);
3a7d929e 2162 }
0e0df1e2
AK
2163 switch (size) {
2164 case 1:
0878d0e1 2165 stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2166 break;
2167 case 2:
0878d0e1 2168 stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2169 break;
2170 case 4:
0878d0e1 2171 stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2172 break;
2173 default:
2174 abort();
3a7d929e 2175 }
ba051fb5
AB
2176
2177 if (locked) {
2178 tb_unlock();
2179 }
2180
58d2707e
PB
2181 /* Set both VGA and migration bits for simplicity and to remove
2182 * the notdirty callback faster.
2183 */
2184 cpu_physical_memory_set_dirty_range(ram_addr, size,
2185 DIRTY_CLIENTS_NOCODE);
f23db169
FB
2186 /* we remove the notdirty callback only if the code has been
2187 flushed */
a2cd8c85 2188 if (!cpu_physical_memory_is_clean(ram_addr)) {
bcae01e4 2189 tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr);
4917cf44 2190 }
9fa3e853
FB
2191}
2192
b018ddf6
PB
2193static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2194 unsigned size, bool is_write)
2195{
2196 return is_write;
2197}
2198
0e0df1e2 2199static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 2200 .write = notdirty_mem_write,
b018ddf6 2201 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 2202 .endianness = DEVICE_NATIVE_ENDIAN,
1ccde1cb
FB
2203};
2204
0f459d16 2205/* Generate a debug exception if a watchpoint has been hit. */
66b9b43c 2206static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
0f459d16 2207{
93afeade 2208 CPUState *cpu = current_cpu;
568496c0 2209 CPUClass *cc = CPU_GET_CLASS(cpu);
93afeade 2210 CPUArchState *env = cpu->env_ptr;
06d55cc1 2211 target_ulong pc, cs_base;
0f459d16 2212 target_ulong vaddr;
a1d1bb31 2213 CPUWatchpoint *wp;
89fee74a 2214 uint32_t cpu_flags;
0f459d16 2215
ff4700b0 2216 if (cpu->watchpoint_hit) {
06d55cc1
AL
2217 /* We re-entered the check after replacing the TB. Now raise
2218 * the debug interrupt so that is will trigger after the
2219 * current instruction. */
93afeade 2220 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
06d55cc1
AL
2221 return;
2222 }
93afeade 2223 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
40612000 2224 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
ff4700b0 2225 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d
PM
2226 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2227 && (wp->flags & flags)) {
08225676
PM
2228 if (flags == BP_MEM_READ) {
2229 wp->flags |= BP_WATCHPOINT_HIT_READ;
2230 } else {
2231 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2232 }
2233 wp->hitaddr = vaddr;
66b9b43c 2234 wp->hitattrs = attrs;
ff4700b0 2235 if (!cpu->watchpoint_hit) {
568496c0
SF
2236 if (wp->flags & BP_CPU &&
2237 !cc->debug_check_watchpoint(cpu, wp)) {
2238 wp->flags &= ~BP_WATCHPOINT_HIT;
2239 continue;
2240 }
ff4700b0 2241 cpu->watchpoint_hit = wp;
a5e99826 2242
8d04fb55
JK
2243 /* Both tb_lock and iothread_mutex will be reset when
2244 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2245 * back into the cpu_exec main loop.
a5e99826
FK
2246 */
2247 tb_lock();
239c51a5 2248 tb_check_watchpoint(cpu);
6e140f28 2249 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 2250 cpu->exception_index = EXCP_DEBUG;
5638d180 2251 cpu_loop_exit(cpu);
6e140f28
AL
2252 } else {
2253 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
648f034c 2254 tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
6886b980 2255 cpu_loop_exit_noexc(cpu);
6e140f28 2256 }
06d55cc1 2257 }
6e140f28
AL
2258 } else {
2259 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2260 }
2261 }
2262}
2263
6658ffb8
PB
2264/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2265 so these check for a hit then pass through to the normal out-of-line
2266 phys routines. */
66b9b43c
PM
2267static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2268 unsigned size, MemTxAttrs attrs)
6658ffb8 2269{
66b9b43c
PM
2270 MemTxResult res;
2271 uint64_t data;
79ed0416
PM
2272 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2273 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2274
2275 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
1ec9b909 2276 switch (size) {
66b9b43c 2277 case 1:
79ed0416 2278 data = address_space_ldub(as, addr, attrs, &res);
66b9b43c
PM
2279 break;
2280 case 2:
79ed0416 2281 data = address_space_lduw(as, addr, attrs, &res);
66b9b43c
PM
2282 break;
2283 case 4:
79ed0416 2284 data = address_space_ldl(as, addr, attrs, &res);
66b9b43c 2285 break;
1ec9b909
AK
2286 default: abort();
2287 }
66b9b43c
PM
2288 *pdata = data;
2289 return res;
6658ffb8
PB
2290}
2291
66b9b43c
PM
2292static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2293 uint64_t val, unsigned size,
2294 MemTxAttrs attrs)
6658ffb8 2295{
66b9b43c 2296 MemTxResult res;
79ed0416
PM
2297 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2298 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2299
2300 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
1ec9b909 2301 switch (size) {
67364150 2302 case 1:
79ed0416 2303 address_space_stb(as, addr, val, attrs, &res);
67364150
MF
2304 break;
2305 case 2:
79ed0416 2306 address_space_stw(as, addr, val, attrs, &res);
67364150
MF
2307 break;
2308 case 4:
79ed0416 2309 address_space_stl(as, addr, val, attrs, &res);
67364150 2310 break;
1ec9b909
AK
2311 default: abort();
2312 }
66b9b43c 2313 return res;
6658ffb8
PB
2314}
2315
1ec9b909 2316static const MemoryRegionOps watch_mem_ops = {
66b9b43c
PM
2317 .read_with_attrs = watch_mem_read,
2318 .write_with_attrs = watch_mem_write,
1ec9b909 2319 .endianness = DEVICE_NATIVE_ENDIAN,
6658ffb8 2320};
6658ffb8 2321
f25a49e0
PM
2322static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2323 unsigned len, MemTxAttrs attrs)
db7b5426 2324{
acc9d80b 2325 subpage_t *subpage = opaque;
ff6cff75 2326 uint8_t buf[8];
5c9eb028 2327 MemTxResult res;
791af8c8 2328
db7b5426 2329#if defined(DEBUG_SUBPAGE)
016e9d62 2330 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2331 subpage, len, addr);
db7b5426 2332#endif
5c9eb028
PM
2333 res = address_space_read(subpage->as, addr + subpage->base,
2334 attrs, buf, len);
2335 if (res) {
2336 return res;
f25a49e0 2337 }
acc9d80b
JK
2338 switch (len) {
2339 case 1:
f25a49e0
PM
2340 *data = ldub_p(buf);
2341 return MEMTX_OK;
acc9d80b 2342 case 2:
f25a49e0
PM
2343 *data = lduw_p(buf);
2344 return MEMTX_OK;
acc9d80b 2345 case 4:
f25a49e0
PM
2346 *data = ldl_p(buf);
2347 return MEMTX_OK;
ff6cff75 2348 case 8:
f25a49e0
PM
2349 *data = ldq_p(buf);
2350 return MEMTX_OK;
acc9d80b
JK
2351 default:
2352 abort();
2353 }
db7b5426
BS
2354}
2355
f25a49e0
PM
2356static MemTxResult subpage_write(void *opaque, hwaddr addr,
2357 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2358{
acc9d80b 2359 subpage_t *subpage = opaque;
ff6cff75 2360 uint8_t buf[8];
acc9d80b 2361
db7b5426 2362#if defined(DEBUG_SUBPAGE)
016e9d62 2363 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2364 " value %"PRIx64"\n",
2365 __func__, subpage, len, addr, value);
db7b5426 2366#endif
acc9d80b
JK
2367 switch (len) {
2368 case 1:
2369 stb_p(buf, value);
2370 break;
2371 case 2:
2372 stw_p(buf, value);
2373 break;
2374 case 4:
2375 stl_p(buf, value);
2376 break;
ff6cff75
PB
2377 case 8:
2378 stq_p(buf, value);
2379 break;
acc9d80b
JK
2380 default:
2381 abort();
2382 }
5c9eb028
PM
2383 return address_space_write(subpage->as, addr + subpage->base,
2384 attrs, buf, len);
db7b5426
BS
2385}
2386
c353e4cc 2387static bool subpage_accepts(void *opaque, hwaddr addr,
016e9d62 2388 unsigned len, bool is_write)
c353e4cc 2389{
acc9d80b 2390 subpage_t *subpage = opaque;
c353e4cc 2391#if defined(DEBUG_SUBPAGE)
016e9d62 2392 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2393 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2394#endif
2395
acc9d80b 2396 return address_space_access_valid(subpage->as, addr + subpage->base,
016e9d62 2397 len, is_write);
c353e4cc
PB
2398}
2399
70c68e44 2400static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2401 .read_with_attrs = subpage_read,
2402 .write_with_attrs = subpage_write,
ff6cff75
PB
2403 .impl.min_access_size = 1,
2404 .impl.max_access_size = 8,
2405 .valid.min_access_size = 1,
2406 .valid.max_access_size = 8,
c353e4cc 2407 .valid.accepts = subpage_accepts,
70c68e44 2408 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
2409};
2410
c227f099 2411static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 2412 uint16_t section)
db7b5426
BS
2413{
2414 int idx, eidx;
2415
2416 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2417 return -1;
2418 idx = SUBPAGE_IDX(start);
2419 eidx = SUBPAGE_IDX(end);
2420#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2421 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2422 __func__, mmio, start, end, idx, eidx, section);
db7b5426 2423#endif
db7b5426 2424 for (; idx <= eidx; idx++) {
5312bd8b 2425 mmio->sub_section[idx] = section;
db7b5426
BS
2426 }
2427
2428 return 0;
2429}
2430
acc9d80b 2431static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
db7b5426 2432{
c227f099 2433 subpage_t *mmio;
db7b5426 2434
2615fabd 2435 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
acc9d80b 2436 mmio->as = as;
1eec614b 2437 mmio->base = base;
2c9b15ca 2438 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 2439 NULL, TARGET_PAGE_SIZE);
b3b00c78 2440 mmio->iomem.subpage = true;
db7b5426 2441#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2442 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2443 mmio, base, TARGET_PAGE_SIZE);
db7b5426 2444#endif
b41aac4f 2445 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
db7b5426
BS
2446
2447 return mmio;
2448}
2449
a656e22f
PC
2450static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as,
2451 MemoryRegion *mr)
5312bd8b 2452{
a656e22f 2453 assert(as);
5312bd8b 2454 MemoryRegionSection section = {
a656e22f 2455 .address_space = as,
5312bd8b
AK
2456 .mr = mr,
2457 .offset_within_address_space = 0,
2458 .offset_within_region = 0,
052e87b0 2459 .size = int128_2_64(),
5312bd8b
AK
2460 };
2461
53cb28cb 2462 return phys_section_add(map, &section);
5312bd8b
AK
2463}
2464
a54c87b6 2465MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
aa102231 2466{
a54c87b6
PM
2467 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2468 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
32857f4d 2469 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
79e2b9ae 2470 MemoryRegionSection *sections = d->map.sections;
9d82b5a7
PB
2471
2472 return sections[index & ~TARGET_PAGE_MASK].mr;
aa102231
AK
2473}
2474
e9179ce1
AK
2475static void io_mem_init(void)
2476{
1f6245e5 2477 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2c9b15ca 2478 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 2479 NULL, UINT64_MAX);
8d04fb55
JK
2480
2481 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2482 * which can be called without the iothread mutex.
2483 */
2c9b15ca 2484 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1f6245e5 2485 NULL, UINT64_MAX);
8d04fb55
JK
2486 memory_region_clear_global_locking(&io_mem_notdirty);
2487
2c9b15ca 2488 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1f6245e5 2489 NULL, UINT64_MAX);
e9179ce1
AK
2490}
2491
ac1970fb 2492static void mem_begin(MemoryListener *listener)
00752703
PB
2493{
2494 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
53cb28cb
MA
2495 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2496 uint16_t n;
2497
a656e22f 2498 n = dummy_section(&d->map, as, &io_mem_unassigned);
53cb28cb 2499 assert(n == PHYS_SECTION_UNASSIGNED);
a656e22f 2500 n = dummy_section(&d->map, as, &io_mem_notdirty);
53cb28cb 2501 assert(n == PHYS_SECTION_NOTDIRTY);
a656e22f 2502 n = dummy_section(&d->map, as, &io_mem_rom);
53cb28cb 2503 assert(n == PHYS_SECTION_ROM);
a656e22f 2504 n = dummy_section(&d->map, as, &io_mem_watch);
53cb28cb 2505 assert(n == PHYS_SECTION_WATCH);
00752703 2506
9736e55b 2507 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
00752703
PB
2508 d->as = as;
2509 as->next_dispatch = d;
2510}
2511
79e2b9ae
PB
2512static void address_space_dispatch_free(AddressSpaceDispatch *d)
2513{
2514 phys_sections_free(&d->map);
2515 g_free(d);
2516}
2517
00752703 2518static void mem_commit(MemoryListener *listener)
ac1970fb 2519{
89ae337a 2520 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
0475d94f
PB
2521 AddressSpaceDispatch *cur = as->dispatch;
2522 AddressSpaceDispatch *next = as->next_dispatch;
2523
53cb28cb 2524 phys_page_compact_all(next, next->map.nodes_nb);
b35ba30f 2525
79e2b9ae 2526 atomic_rcu_set(&as->dispatch, next);
53cb28cb 2527 if (cur) {
79e2b9ae 2528 call_rcu(cur, address_space_dispatch_free, rcu);
53cb28cb 2529 }
9affd6fc
PB
2530}
2531
1d71148e 2532static void tcg_commit(MemoryListener *listener)
50c1e149 2533{
32857f4d
PM
2534 CPUAddressSpace *cpuas;
2535 AddressSpaceDispatch *d;
117712c3
AK
2536
2537 /* since each CPU stores ram addresses in its TLB cache, we must
2538 reset the modified entries */
32857f4d
PM
2539 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2540 cpu_reloading_memory_map();
2541 /* The CPU and TLB are protected by the iothread lock.
2542 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2543 * may have split the RCU critical section.
2544 */
2545 d = atomic_rcu_read(&cpuas->as->dispatch);
f35e44e7 2546 atomic_rcu_set(&cpuas->memory_dispatch, d);
d10eb08f 2547 tlb_flush(cpuas->cpu);
50c1e149
AK
2548}
2549
ac1970fb
AK
2550void address_space_init_dispatch(AddressSpace *as)
2551{
00752703 2552 as->dispatch = NULL;
89ae337a 2553 as->dispatch_listener = (MemoryListener) {
ac1970fb 2554 .begin = mem_begin,
00752703 2555 .commit = mem_commit,
ac1970fb
AK
2556 .region_add = mem_add,
2557 .region_nop = mem_add,
2558 .priority = 0,
2559 };
89ae337a 2560 memory_listener_register(&as->dispatch_listener, as);
ac1970fb
AK
2561}
2562
6e48e8f9
PB
2563void address_space_unregister(AddressSpace *as)
2564{
2565 memory_listener_unregister(&as->dispatch_listener);
2566}
2567
83f3c251
AK
2568void address_space_destroy_dispatch(AddressSpace *as)
2569{
2570 AddressSpaceDispatch *d = as->dispatch;
2571
79e2b9ae
PB
2572 atomic_rcu_set(&as->dispatch, NULL);
2573 if (d) {
2574 call_rcu(d, address_space_dispatch_free, rcu);
2575 }
83f3c251
AK
2576}
2577
62152b8a
AK
2578static void memory_map_init(void)
2579{
7267c094 2580 system_memory = g_malloc(sizeof(*system_memory));
03f49957 2581
57271d63 2582 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 2583 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 2584
7267c094 2585 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
2586 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2587 65536);
7dca8043 2588 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
2589}
2590
2591MemoryRegion *get_system_memory(void)
2592{
2593 return system_memory;
2594}
2595
309cb471
AK
2596MemoryRegion *get_system_io(void)
2597{
2598 return system_io;
2599}
2600
e2eef170
PB
2601#endif /* !defined(CONFIG_USER_ONLY) */
2602
13eb76e0
FB
2603/* physical memory access (slow version, mainly for debug) */
2604#if defined(CONFIG_USER_ONLY)
f17ec444 2605int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
a68fe89c 2606 uint8_t *buf, int len, int is_write)
13eb76e0
FB
2607{
2608 int l, flags;
2609 target_ulong page;
53a5960a 2610 void * p;
13eb76e0
FB
2611
2612 while (len > 0) {
2613 page = addr & TARGET_PAGE_MASK;
2614 l = (page + TARGET_PAGE_SIZE) - addr;
2615 if (l > len)
2616 l = len;
2617 flags = page_get_flags(page);
2618 if (!(flags & PAGE_VALID))
a68fe89c 2619 return -1;
13eb76e0
FB
2620 if (is_write) {
2621 if (!(flags & PAGE_WRITE))
a68fe89c 2622 return -1;
579a97f7 2623 /* XXX: this code should not depend on lock_user */
72fb7daa 2624 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 2625 return -1;
72fb7daa
AJ
2626 memcpy(p, buf, l);
2627 unlock_user(p, addr, l);
13eb76e0
FB
2628 } else {
2629 if (!(flags & PAGE_READ))
a68fe89c 2630 return -1;
579a97f7 2631 /* XXX: this code should not depend on lock_user */
72fb7daa 2632 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 2633 return -1;
72fb7daa 2634 memcpy(buf, p, l);
5b257578 2635 unlock_user(p, addr, 0);
13eb76e0
FB
2636 }
2637 len -= l;
2638 buf += l;
2639 addr += l;
2640 }
a68fe89c 2641 return 0;
13eb76e0 2642}
8df1cd07 2643
13eb76e0 2644#else
51d7a9eb 2645
845b6214 2646static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 2647 hwaddr length)
51d7a9eb 2648{
e87f7778 2649 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
0878d0e1
PB
2650 addr += memory_region_get_ram_addr(mr);
2651
e87f7778
PB
2652 /* No early return if dirty_log_mask is or becomes 0, because
2653 * cpu_physical_memory_set_dirty_range will still call
2654 * xen_modified_memory.
2655 */
2656 if (dirty_log_mask) {
2657 dirty_log_mask =
2658 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2659 }
2660 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
ba051fb5 2661 tb_lock();
e87f7778 2662 tb_invalidate_phys_range(addr, addr + length);
ba051fb5 2663 tb_unlock();
e87f7778 2664 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 2665 }
e87f7778 2666 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
2667}
2668
23326164 2669static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 2670{
e1622f4b 2671 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
2672
2673 /* Regions are assumed to support 1-4 byte accesses unless
2674 otherwise specified. */
23326164
RH
2675 if (access_size_max == 0) {
2676 access_size_max = 4;
2677 }
2678
2679 /* Bound the maximum access by the alignment of the address. */
2680 if (!mr->ops->impl.unaligned) {
2681 unsigned align_size_max = addr & -addr;
2682 if (align_size_max != 0 && align_size_max < access_size_max) {
2683 access_size_max = align_size_max;
2684 }
82f2563f 2685 }
23326164
RH
2686
2687 /* Don't attempt accesses larger than the maximum. */
2688 if (l > access_size_max) {
2689 l = access_size_max;
82f2563f 2690 }
6554f5c0 2691 l = pow2floor(l);
23326164
RH
2692
2693 return l;
82f2563f
PB
2694}
2695
4840f10e 2696static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 2697{
4840f10e
JK
2698 bool unlocked = !qemu_mutex_iothread_locked();
2699 bool release_lock = false;
2700
2701 if (unlocked && mr->global_locking) {
2702 qemu_mutex_lock_iothread();
2703 unlocked = false;
2704 release_lock = true;
2705 }
125b3806 2706 if (mr->flush_coalesced_mmio) {
4840f10e
JK
2707 if (unlocked) {
2708 qemu_mutex_lock_iothread();
2709 }
125b3806 2710 qemu_flush_coalesced_mmio_buffer();
4840f10e
JK
2711 if (unlocked) {
2712 qemu_mutex_unlock_iothread();
2713 }
125b3806 2714 }
4840f10e
JK
2715
2716 return release_lock;
125b3806
PB
2717}
2718
a203ac70
PB
2719/* Called within RCU critical section. */
2720static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr,
2721 MemTxAttrs attrs,
2722 const uint8_t *buf,
2723 int len, hwaddr addr1,
2724 hwaddr l, MemoryRegion *mr)
13eb76e0 2725{
13eb76e0 2726 uint8_t *ptr;
791af8c8 2727 uint64_t val;
3b643495 2728 MemTxResult result = MEMTX_OK;
4840f10e 2729 bool release_lock = false;
3b46e624 2730
a203ac70 2731 for (;;) {
eb7eeb88
PB
2732 if (!memory_access_is_direct(mr, true)) {
2733 release_lock |= prepare_mmio_access(mr);
2734 l = memory_access_size(mr, l, addr1);
2735 /* XXX: could force current_cpu to NULL to avoid
2736 potential bugs */
2737 switch (l) {
2738 case 8:
2739 /* 64 bit write access */
2740 val = ldq_p(buf);
2741 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2742 attrs);
2743 break;
2744 case 4:
2745 /* 32 bit write access */
6da67de6 2746 val = (uint32_t)ldl_p(buf);
eb7eeb88
PB
2747 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2748 attrs);
2749 break;
2750 case 2:
2751 /* 16 bit write access */
2752 val = lduw_p(buf);
2753 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2754 attrs);
2755 break;
2756 case 1:
2757 /* 8 bit write access */
2758 val = ldub_p(buf);
2759 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2760 attrs);
2761 break;
2762 default:
2763 abort();
13eb76e0
FB
2764 }
2765 } else {
eb7eeb88 2766 /* RAM case */
0878d0e1 2767 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
eb7eeb88
PB
2768 memcpy(ptr, buf, l);
2769 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0 2770 }
4840f10e
JK
2771
2772 if (release_lock) {
2773 qemu_mutex_unlock_iothread();
2774 release_lock = false;
2775 }
2776
13eb76e0
FB
2777 len -= l;
2778 buf += l;
2779 addr += l;
a203ac70
PB
2780
2781 if (!len) {
2782 break;
2783 }
2784
2785 l = len;
2786 mr = address_space_translate(as, addr, &addr1, &l, true);
13eb76e0 2787 }
fd8aaa76 2788
3b643495 2789 return result;
13eb76e0 2790}
8df1cd07 2791
a203ac70
PB
2792MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2793 const uint8_t *buf, int len)
ac1970fb 2794{
eb7eeb88 2795 hwaddr l;
eb7eeb88
PB
2796 hwaddr addr1;
2797 MemoryRegion *mr;
2798 MemTxResult result = MEMTX_OK;
eb7eeb88 2799
a203ac70
PB
2800 if (len > 0) {
2801 rcu_read_lock();
eb7eeb88 2802 l = len;
a203ac70
PB
2803 mr = address_space_translate(as, addr, &addr1, &l, true);
2804 result = address_space_write_continue(as, addr, attrs, buf, len,
2805 addr1, l, mr);
2806 rcu_read_unlock();
2807 }
2808
2809 return result;
2810}
2811
2812/* Called within RCU critical section. */
2813MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
2814 MemTxAttrs attrs, uint8_t *buf,
2815 int len, hwaddr addr1, hwaddr l,
2816 MemoryRegion *mr)
2817{
2818 uint8_t *ptr;
2819 uint64_t val;
2820 MemTxResult result = MEMTX_OK;
2821 bool release_lock = false;
eb7eeb88 2822
a203ac70 2823 for (;;) {
eb7eeb88
PB
2824 if (!memory_access_is_direct(mr, false)) {
2825 /* I/O case */
2826 release_lock |= prepare_mmio_access(mr);
2827 l = memory_access_size(mr, l, addr1);
2828 switch (l) {
2829 case 8:
2830 /* 64 bit read access */
2831 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
2832 attrs);
2833 stq_p(buf, val);
2834 break;
2835 case 4:
2836 /* 32 bit read access */
2837 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
2838 attrs);
2839 stl_p(buf, val);
2840 break;
2841 case 2:
2842 /* 16 bit read access */
2843 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
2844 attrs);
2845 stw_p(buf, val);
2846 break;
2847 case 1:
2848 /* 8 bit read access */
2849 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
2850 attrs);
2851 stb_p(buf, val);
2852 break;
2853 default:
2854 abort();
2855 }
2856 } else {
2857 /* RAM case */
0878d0e1 2858 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
eb7eeb88
PB
2859 memcpy(buf, ptr, l);
2860 }
2861
2862 if (release_lock) {
2863 qemu_mutex_unlock_iothread();
2864 release_lock = false;
2865 }
2866
2867 len -= l;
2868 buf += l;
2869 addr += l;
a203ac70
PB
2870
2871 if (!len) {
2872 break;
2873 }
2874
2875 l = len;
2876 mr = address_space_translate(as, addr, &addr1, &l, false);
2877 }
2878
2879 return result;
2880}
2881
3cc8f884
PB
2882MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2883 MemTxAttrs attrs, uint8_t *buf, int len)
a203ac70
PB
2884{
2885 hwaddr l;
2886 hwaddr addr1;
2887 MemoryRegion *mr;
2888 MemTxResult result = MEMTX_OK;
2889
2890 if (len > 0) {
2891 rcu_read_lock();
2892 l = len;
2893 mr = address_space_translate(as, addr, &addr1, &l, false);
2894 result = address_space_read_continue(as, addr, attrs, buf, len,
2895 addr1, l, mr);
2896 rcu_read_unlock();
eb7eeb88 2897 }
eb7eeb88
PB
2898
2899 return result;
ac1970fb
AK
2900}
2901
eb7eeb88
PB
2902MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2903 uint8_t *buf, int len, bool is_write)
2904{
2905 if (is_write) {
2906 return address_space_write(as, addr, attrs, (uint8_t *)buf, len);
2907 } else {
2908 return address_space_read(as, addr, attrs, (uint8_t *)buf, len);
2909 }
2910}
ac1970fb 2911
a8170e5e 2912void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
ac1970fb
AK
2913 int len, int is_write)
2914{
5c9eb028
PM
2915 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2916 buf, len, is_write);
ac1970fb
AK
2917}
2918
582b55a9
AG
2919enum write_rom_type {
2920 WRITE_DATA,
2921 FLUSH_CACHE,
2922};
2923
2a221651 2924static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
582b55a9 2925 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
d0ecd2aa 2926{
149f54b5 2927 hwaddr l;
d0ecd2aa 2928 uint8_t *ptr;
149f54b5 2929 hwaddr addr1;
5c8a00ce 2930 MemoryRegion *mr;
3b46e624 2931
41063e1e 2932 rcu_read_lock();
d0ecd2aa 2933 while (len > 0) {
149f54b5 2934 l = len;
2a221651 2935 mr = address_space_translate(as, addr, &addr1, &l, true);
3b46e624 2936
5c8a00ce
PB
2937 if (!(memory_region_is_ram(mr) ||
2938 memory_region_is_romd(mr))) {
b242e0e0 2939 l = memory_access_size(mr, l, addr1);
d0ecd2aa 2940 } else {
d0ecd2aa 2941 /* ROM/RAM case */
0878d0e1 2942 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
582b55a9
AG
2943 switch (type) {
2944 case WRITE_DATA:
2945 memcpy(ptr, buf, l);
845b6214 2946 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
2947 break;
2948 case FLUSH_CACHE:
2949 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
2950 break;
2951 }
d0ecd2aa
FB
2952 }
2953 len -= l;
2954 buf += l;
2955 addr += l;
2956 }
41063e1e 2957 rcu_read_unlock();
d0ecd2aa
FB
2958}
2959
582b55a9 2960/* used for ROM loading : can write in RAM and ROM */
2a221651 2961void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
582b55a9
AG
2962 const uint8_t *buf, int len)
2963{
2a221651 2964 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
582b55a9
AG
2965}
2966
2967void cpu_flush_icache_range(hwaddr start, int len)
2968{
2969 /*
2970 * This function should do the same thing as an icache flush that was
2971 * triggered from within the guest. For TCG we are always cache coherent,
2972 * so there is no need to flush anything. For KVM / Xen we need to flush
2973 * the host's instruction cache at least.
2974 */
2975 if (tcg_enabled()) {
2976 return;
2977 }
2978
2a221651
EI
2979 cpu_physical_memory_write_rom_internal(&address_space_memory,
2980 start, NULL, len, FLUSH_CACHE);
582b55a9
AG
2981}
2982
6d16c2f8 2983typedef struct {
d3e71559 2984 MemoryRegion *mr;
6d16c2f8 2985 void *buffer;
a8170e5e
AK
2986 hwaddr addr;
2987 hwaddr len;
c2cba0ff 2988 bool in_use;
6d16c2f8
AL
2989} BounceBuffer;
2990
2991static BounceBuffer bounce;
2992
ba223c29 2993typedef struct MapClient {
e95205e1 2994 QEMUBH *bh;
72cf2d4f 2995 QLIST_ENTRY(MapClient) link;
ba223c29
AL
2996} MapClient;
2997
38e047b5 2998QemuMutex map_client_list_lock;
72cf2d4f
BS
2999static QLIST_HEAD(map_client_list, MapClient) map_client_list
3000 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 3001
e95205e1
FZ
3002static void cpu_unregister_map_client_do(MapClient *client)
3003{
3004 QLIST_REMOVE(client, link);
3005 g_free(client);
3006}
3007
33b6c2ed
FZ
3008static void cpu_notify_map_clients_locked(void)
3009{
3010 MapClient *client;
3011
3012 while (!QLIST_EMPTY(&map_client_list)) {
3013 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
3014 qemu_bh_schedule(client->bh);
3015 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
3016 }
3017}
3018
e95205e1 3019void cpu_register_map_client(QEMUBH *bh)
ba223c29 3020{
7267c094 3021 MapClient *client = g_malloc(sizeof(*client));
ba223c29 3022
38e047b5 3023 qemu_mutex_lock(&map_client_list_lock);
e95205e1 3024 client->bh = bh;
72cf2d4f 3025 QLIST_INSERT_HEAD(&map_client_list, client, link);
33b6c2ed
FZ
3026 if (!atomic_read(&bounce.in_use)) {
3027 cpu_notify_map_clients_locked();
3028 }
38e047b5 3029 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3030}
3031
38e047b5 3032void cpu_exec_init_all(void)
ba223c29 3033{
38e047b5 3034 qemu_mutex_init(&ram_list.mutex);
20bccb82
PM
3035 /* The data structures we set up here depend on knowing the page size,
3036 * so no more changes can be made after this point.
3037 * In an ideal world, nothing we did before we had finished the
3038 * machine setup would care about the target page size, and we could
3039 * do this much later, rather than requiring board models to state
3040 * up front what their requirements are.
3041 */
3042 finalize_target_page_bits();
38e047b5 3043 io_mem_init();
680a4783 3044 memory_map_init();
38e047b5 3045 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
3046}
3047
e95205e1 3048void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
3049{
3050 MapClient *client;
3051
e95205e1
FZ
3052 qemu_mutex_lock(&map_client_list_lock);
3053 QLIST_FOREACH(client, &map_client_list, link) {
3054 if (client->bh == bh) {
3055 cpu_unregister_map_client_do(client);
3056 break;
3057 }
ba223c29 3058 }
e95205e1 3059 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3060}
3061
3062static void cpu_notify_map_clients(void)
3063{
38e047b5 3064 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 3065 cpu_notify_map_clients_locked();
38e047b5 3066 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3067}
3068
51644ab7
PB
3069bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
3070{
5c8a00ce 3071 MemoryRegion *mr;
51644ab7
PB
3072 hwaddr l, xlat;
3073
41063e1e 3074 rcu_read_lock();
51644ab7
PB
3075 while (len > 0) {
3076 l = len;
5c8a00ce
PB
3077 mr = address_space_translate(as, addr, &xlat, &l, is_write);
3078 if (!memory_access_is_direct(mr, is_write)) {
3079 l = memory_access_size(mr, l, addr);
3080 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
5ad4a2b7 3081 rcu_read_unlock();
51644ab7
PB
3082 return false;
3083 }
3084 }
3085
3086 len -= l;
3087 addr += l;
3088 }
41063e1e 3089 rcu_read_unlock();
51644ab7
PB
3090 return true;
3091}
3092
715c31ec
PB
3093static hwaddr
3094address_space_extend_translation(AddressSpace *as, hwaddr addr, hwaddr target_len,
3095 MemoryRegion *mr, hwaddr base, hwaddr len,
3096 bool is_write)
3097{
3098 hwaddr done = 0;
3099 hwaddr xlat;
3100 MemoryRegion *this_mr;
3101
3102 for (;;) {
3103 target_len -= len;
3104 addr += len;
3105 done += len;
3106 if (target_len == 0) {
3107 return done;
3108 }
3109
3110 len = target_len;
3111 this_mr = address_space_translate(as, addr, &xlat, &len, is_write);
3112 if (this_mr != mr || xlat != base + done) {
3113 return done;
3114 }
3115 }
3116}
3117
6d16c2f8
AL
3118/* Map a physical memory region into a host virtual address.
3119 * May map a subset of the requested range, given by and returned in *plen.
3120 * May return NULL if resources needed to perform the mapping are exhausted.
3121 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3122 * Use cpu_register_map_client() to know when retrying the map operation is
3123 * likely to succeed.
6d16c2f8 3124 */
ac1970fb 3125void *address_space_map(AddressSpace *as,
a8170e5e
AK
3126 hwaddr addr,
3127 hwaddr *plen,
ac1970fb 3128 bool is_write)
6d16c2f8 3129{
a8170e5e 3130 hwaddr len = *plen;
715c31ec
PB
3131 hwaddr l, xlat;
3132 MemoryRegion *mr;
e81bcda5 3133 void *ptr;
6d16c2f8 3134
e3127ae0
PB
3135 if (len == 0) {
3136 return NULL;
3137 }
38bee5dc 3138
e3127ae0 3139 l = len;
41063e1e 3140 rcu_read_lock();
e3127ae0 3141 mr = address_space_translate(as, addr, &xlat, &l, is_write);
41063e1e 3142
e3127ae0 3143 if (!memory_access_is_direct(mr, is_write)) {
c2cba0ff 3144 if (atomic_xchg(&bounce.in_use, true)) {
41063e1e 3145 rcu_read_unlock();
e3127ae0 3146 return NULL;
6d16c2f8 3147 }
e85d9db5
KW
3148 /* Avoid unbounded allocations */
3149 l = MIN(l, TARGET_PAGE_SIZE);
3150 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
3151 bounce.addr = addr;
3152 bounce.len = l;
d3e71559
PB
3153
3154 memory_region_ref(mr);
3155 bounce.mr = mr;
e3127ae0 3156 if (!is_write) {
5c9eb028
PM
3157 address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED,
3158 bounce.buffer, l);
8ab934f9 3159 }
6d16c2f8 3160
41063e1e 3161 rcu_read_unlock();
e3127ae0
PB
3162 *plen = l;
3163 return bounce.buffer;
3164 }
3165
e3127ae0 3166
d3e71559 3167 memory_region_ref(mr);
715c31ec
PB
3168 *plen = address_space_extend_translation(as, addr, len, mr, xlat, l, is_write);
3169 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen);
e81bcda5
PB
3170 rcu_read_unlock();
3171
3172 return ptr;
6d16c2f8
AL
3173}
3174
ac1970fb 3175/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
3176 * Will also mark the memory as dirty if is_write == 1. access_len gives
3177 * the amount of memory that was actually read or written by the caller.
3178 */
a8170e5e
AK
3179void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3180 int is_write, hwaddr access_len)
6d16c2f8
AL
3181{
3182 if (buffer != bounce.buffer) {
d3e71559
PB
3183 MemoryRegion *mr;
3184 ram_addr_t addr1;
3185
07bdaa41 3186 mr = memory_region_from_host(buffer, &addr1);
d3e71559 3187 assert(mr != NULL);
6d16c2f8 3188 if (is_write) {
845b6214 3189 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 3190 }
868bb33f 3191 if (xen_enabled()) {
e41d7c69 3192 xen_invalidate_map_cache_entry(buffer);
050a0ddf 3193 }
d3e71559 3194 memory_region_unref(mr);
6d16c2f8
AL
3195 return;
3196 }
3197 if (is_write) {
5c9eb028
PM
3198 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3199 bounce.buffer, access_len);
6d16c2f8 3200 }
f8a83245 3201 qemu_vfree(bounce.buffer);
6d16c2f8 3202 bounce.buffer = NULL;
d3e71559 3203 memory_region_unref(bounce.mr);
c2cba0ff 3204 atomic_mb_set(&bounce.in_use, false);
ba223c29 3205 cpu_notify_map_clients();
6d16c2f8 3206}
d0ecd2aa 3207
a8170e5e
AK
3208void *cpu_physical_memory_map(hwaddr addr,
3209 hwaddr *plen,
ac1970fb
AK
3210 int is_write)
3211{
3212 return address_space_map(&address_space_memory, addr, plen, is_write);
3213}
3214
a8170e5e
AK
3215void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3216 int is_write, hwaddr access_len)
ac1970fb
AK
3217{
3218 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3219}
3220
0ce265ff
PB
3221#define ARG1_DECL AddressSpace *as
3222#define ARG1 as
3223#define SUFFIX
3224#define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3225#define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3226#define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3227#define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3228#define RCU_READ_LOCK(...) rcu_read_lock()
3229#define RCU_READ_UNLOCK(...) rcu_read_unlock()
3230#include "memory_ldst.inc.c"
1e78bcc1 3231
1f4e496e
PB
3232int64_t address_space_cache_init(MemoryRegionCache *cache,
3233 AddressSpace *as,
3234 hwaddr addr,
3235 hwaddr len,
3236 bool is_write)
3237{
90c4fe5f
PB
3238 cache->len = len;
3239 cache->as = as;
3240 cache->xlat = addr;
3241 return len;
1f4e496e
PB
3242}
3243
3244void address_space_cache_invalidate(MemoryRegionCache *cache,
3245 hwaddr addr,
3246 hwaddr access_len)
3247{
1f4e496e
PB
3248}
3249
3250void address_space_cache_destroy(MemoryRegionCache *cache)
3251{
90c4fe5f 3252 cache->as = NULL;
1f4e496e
PB
3253}
3254
3255#define ARG1_DECL MemoryRegionCache *cache
3256#define ARG1 cache
3257#define SUFFIX _cached
90c4fe5f
PB
3258#define TRANSLATE(addr, ...) \
3259 address_space_translate(cache->as, cache->xlat + (addr), __VA_ARGS__)
1f4e496e 3260#define IS_DIRECT(mr, is_write) true
90c4fe5f
PB
3261#define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3262#define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3263#define RCU_READ_LOCK() rcu_read_lock()
3264#define RCU_READ_UNLOCK() rcu_read_unlock()
1f4e496e
PB
3265#include "memory_ldst.inc.c"
3266
5e2972fd 3267/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3268int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
b448f2f3 3269 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3270{
3271 int l;
a8170e5e 3272 hwaddr phys_addr;
9b3c35e0 3273 target_ulong page;
13eb76e0 3274
79ca7a1b 3275 cpu_synchronize_state(cpu);
13eb76e0 3276 while (len > 0) {
5232e4c7
PM
3277 int asidx;
3278 MemTxAttrs attrs;
3279
13eb76e0 3280 page = addr & TARGET_PAGE_MASK;
5232e4c7
PM
3281 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3282 asidx = cpu_asidx_from_attrs(cpu, attrs);
13eb76e0
FB
3283 /* if no physical page mapped, return an error */
3284 if (phys_addr == -1)
3285 return -1;
3286 l = (page + TARGET_PAGE_SIZE) - addr;
3287 if (l > len)
3288 l = len;
5e2972fd 3289 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b 3290 if (is_write) {
5232e4c7
PM
3291 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3292 phys_addr, buf, l);
2e38847b 3293 } else {
5232e4c7
PM
3294 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3295 MEMTXATTRS_UNSPECIFIED,
5c9eb028 3296 buf, l, 0);
2e38847b 3297 }
13eb76e0
FB
3298 len -= l;
3299 buf += l;
3300 addr += l;
3301 }
3302 return 0;
3303}
038629a6
DDAG
3304
3305/*
3306 * Allows code that needs to deal with migration bitmaps etc to still be built
3307 * target independent.
3308 */
20afaed9 3309size_t qemu_target_page_size(void)
038629a6 3310{
20afaed9 3311 return TARGET_PAGE_SIZE;
038629a6
DDAG
3312}
3313
a68fe89c 3314#endif
13eb76e0 3315
8e4a424b
BS
3316/*
3317 * A helper function for the _utterly broken_ virtio device model to find out if
3318 * it's running on a big endian machine. Don't do this at home kids!
3319 */
98ed8ecf
GK
3320bool target_words_bigendian(void);
3321bool target_words_bigendian(void)
8e4a424b
BS
3322{
3323#if defined(TARGET_WORDS_BIGENDIAN)
3324 return true;
3325#else
3326 return false;
3327#endif
3328}
3329
76f35538 3330#ifndef CONFIG_USER_ONLY
a8170e5e 3331bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 3332{
5c8a00ce 3333 MemoryRegion*mr;
149f54b5 3334 hwaddr l = 1;
41063e1e 3335 bool res;
76f35538 3336
41063e1e 3337 rcu_read_lock();
5c8a00ce
PB
3338 mr = address_space_translate(&address_space_memory,
3339 phys_addr, &phys_addr, &l, false);
76f35538 3340
41063e1e
PB
3341 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3342 rcu_read_unlock();
3343 return res;
76f35538 3344}
bd2fa51f 3345
e3807054 3346int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
3347{
3348 RAMBlock *block;
e3807054 3349 int ret = 0;
bd2fa51f 3350
0dc3f44a
MD
3351 rcu_read_lock();
3352 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
e3807054
DDAG
3353 ret = func(block->idstr, block->host, block->offset,
3354 block->used_length, opaque);
3355 if (ret) {
3356 break;
3357 }
bd2fa51f 3358 }
0dc3f44a 3359 rcu_read_unlock();
e3807054 3360 return ret;
bd2fa51f 3361}
d3a5038c
DDAG
3362
3363/*
3364 * Unmap pages of memory from start to start+length such that
3365 * they a) read as 0, b) Trigger whatever fault mechanism
3366 * the OS provides for postcopy.
3367 * The pages must be unmapped by the end of the function.
3368 * Returns: 0 on success, none-0 on failure
3369 *
3370 */
3371int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3372{
3373 int ret = -1;
3374
3375 uint8_t *host_startaddr = rb->host + start;
3376
3377 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3378 error_report("ram_block_discard_range: Unaligned start address: %p",
3379 host_startaddr);
3380 goto err;
3381 }
3382
3383 if ((start + length) <= rb->used_length) {
3384 uint8_t *host_endaddr = host_startaddr + length;
3385 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
3386 error_report("ram_block_discard_range: Unaligned end address: %p",
3387 host_endaddr);
3388 goto err;
3389 }
3390
3391 errno = ENOTSUP; /* If we are missing MADVISE etc */
3392
e2fa71f5 3393 if (rb->page_size == qemu_host_page_size) {
d3a5038c 3394#if defined(CONFIG_MADVISE)
e2fa71f5
DDAG
3395 /* Note: We need the madvise MADV_DONTNEED behaviour of definitely
3396 * freeing the page.
3397 */
3398 ret = madvise(host_startaddr, length, MADV_DONTNEED);
d3a5038c 3399#endif
e2fa71f5
DDAG
3400 } else {
3401 /* Huge page case - unfortunately it can't do DONTNEED, but
3402 * it can do the equivalent by FALLOC_FL_PUNCH_HOLE in the
3403 * huge page file.
3404 */
3405#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3406 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3407 start, length);
3408#endif
3409 }
d3a5038c
DDAG
3410 if (ret) {
3411 ret = -errno;
3412 error_report("ram_block_discard_range: Failed to discard range "
3413 "%s:%" PRIx64 " +%zx (%d)",
3414 rb->idstr, start, length, ret);
3415 }
3416 } else {
3417 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3418 "/%zx/" RAM_ADDR_FMT")",
3419 rb->idstr, start, length, rb->used_length);
3420 }
3421
3422err:
3423 return ret;
3424}
3425
ec3f8c99 3426#endif
This page took 1.586476 seconds and 4 git commands to generate.