]>
Commit | Line | Data |
---|---|---|
05330448 AL |
1 | /* |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright (C) 2006-2008 Qumranet Technologies | |
5 | * Copyright IBM, Corp. 2008 | |
6 | * | |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
9 | * | |
10 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
11 | * See the COPYING file in the top-level directory. | |
12 | * | |
13 | */ | |
14 | ||
b6a0aa05 | 15 | #include "qemu/osdep.h" |
da34e65c | 16 | #include "qapi/error.h" |
05330448 | 17 | #include <sys/ioctl.h> |
25d2e361 | 18 | #include <sys/utsname.h> |
05330448 AL |
19 | |
20 | #include <linux/kvm.h> | |
5802e066 | 21 | #include <linux/kvm_para.h> |
05330448 AL |
22 | |
23 | #include "qemu-common.h" | |
33c11879 | 24 | #include "cpu.h" |
9c17d615 | 25 | #include "sysemu/sysemu.h" |
b3946626 | 26 | #include "sysemu/hw_accel.h" |
6410848b | 27 | #include "sysemu/kvm_int.h" |
1d31f66b | 28 | #include "kvm_i386.h" |
50efe82c | 29 | #include "hyperv.h" |
5e953812 | 30 | #include "hyperv-proto.h" |
50efe82c | 31 | |
022c62cb | 32 | #include "exec/gdbstub.h" |
1de7afc9 PB |
33 | #include "qemu/host-utils.h" |
34 | #include "qemu/config-file.h" | |
1c4a55db | 35 | #include "qemu/error-report.h" |
0d09e41a PB |
36 | #include "hw/i386/pc.h" |
37 | #include "hw/i386/apic.h" | |
e0723c45 PB |
38 | #include "hw/i386/apic_internal.h" |
39 | #include "hw/i386/apic-msidef.h" | |
8b5ed7df | 40 | #include "hw/i386/intel_iommu.h" |
e1d4fb2d | 41 | #include "hw/i386/x86-iommu.h" |
50efe82c | 42 | |
022c62cb | 43 | #include "exec/ioport.h" |
a2cb15b0 | 44 | #include "hw/pci/pci.h" |
15eafc2e | 45 | #include "hw/pci/msi.h" |
fd563564 | 46 | #include "hw/pci/msix.h" |
795c40b8 | 47 | #include "migration/blocker.h" |
4c663752 | 48 | #include "exec/memattrs.h" |
8b5ed7df | 49 | #include "trace.h" |
05330448 AL |
50 | |
51 | //#define DEBUG_KVM | |
52 | ||
53 | #ifdef DEBUG_KVM | |
8c0d577e | 54 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
55 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) |
56 | #else | |
8c0d577e | 57 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
58 | do { } while (0) |
59 | #endif | |
60 | ||
1a03675d GC |
61 | #define MSR_KVM_WALL_CLOCK 0x11 |
62 | #define MSR_KVM_SYSTEM_TIME 0x12 | |
63 | ||
d1138251 EH |
64 | /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus |
65 | * 255 kvm_msr_entry structs */ | |
66 | #define MSR_BUF_SIZE 4096 | |
d71b62a1 | 67 | |
94a8d39a JK |
68 | const KVMCapabilityInfo kvm_arch_required_capabilities[] = { |
69 | KVM_CAP_INFO(SET_TSS_ADDR), | |
70 | KVM_CAP_INFO(EXT_CPUID), | |
71 | KVM_CAP_INFO(MP_STATE), | |
72 | KVM_CAP_LAST_INFO | |
73 | }; | |
25d2e361 | 74 | |
c3a3a7d3 JK |
75 | static bool has_msr_star; |
76 | static bool has_msr_hsave_pa; | |
c9b8f6b6 | 77 | static bool has_msr_tsc_aux; |
f28558d3 | 78 | static bool has_msr_tsc_adjust; |
aa82ba54 | 79 | static bool has_msr_tsc_deadline; |
df67696e | 80 | static bool has_msr_feature_control; |
21e87c46 | 81 | static bool has_msr_misc_enable; |
fc12d72e | 82 | static bool has_msr_smbase; |
79e9ebeb | 83 | static bool has_msr_bndcfgs; |
25d2e361 | 84 | static int lm_capable_kernel; |
7bc3d711 | 85 | static bool has_msr_hv_hypercall; |
f2a53c9e | 86 | static bool has_msr_hv_crash; |
744b8a94 | 87 | static bool has_msr_hv_reset; |
8c145d7c | 88 | static bool has_msr_hv_vpindex; |
46eb8f98 | 89 | static bool has_msr_hv_runtime; |
866eea9a | 90 | static bool has_msr_hv_synic; |
ff99aa64 | 91 | static bool has_msr_hv_stimer; |
d72bc7f6 | 92 | static bool has_msr_hv_frequencies; |
18cd2c17 | 93 | static bool has_msr_xss; |
a33a2cfe | 94 | static bool has_msr_spec_ctrl; |
b827df58 | 95 | |
0b368a10 JD |
96 | static uint32_t has_architectural_pmu_version; |
97 | static uint32_t num_architectural_pmu_gp_counters; | |
98 | static uint32_t num_architectural_pmu_fixed_counters; | |
0d894367 | 99 | |
28143b40 TH |
100 | static int has_xsave; |
101 | static int has_xcrs; | |
102 | static int has_pit_state2; | |
103 | ||
87f8b626 AR |
104 | static bool has_msr_mcg_ext_ctl; |
105 | ||
494e95e9 CP |
106 | static struct kvm_cpuid2 *cpuid_cache; |
107 | ||
28143b40 TH |
108 | int kvm_has_pit_state2(void) |
109 | { | |
110 | return has_pit_state2; | |
111 | } | |
112 | ||
355023f2 PB |
113 | bool kvm_has_smm(void) |
114 | { | |
115 | return kvm_check_extension(kvm_state, KVM_CAP_X86_SMM); | |
116 | } | |
117 | ||
6053a86f MT |
118 | bool kvm_has_adjust_clock_stable(void) |
119 | { | |
120 | int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK); | |
121 | ||
122 | return (ret == KVM_CLOCK_TSC_STABLE); | |
123 | } | |
124 | ||
1d31f66b PM |
125 | bool kvm_allows_irq0_override(void) |
126 | { | |
127 | return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing(); | |
128 | } | |
129 | ||
fb506e70 RK |
130 | static bool kvm_x2apic_api_set_flags(uint64_t flags) |
131 | { | |
132 | KVMState *s = KVM_STATE(current_machine->accelerator); | |
133 | ||
134 | return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags); | |
135 | } | |
136 | ||
e391c009 | 137 | #define MEMORIZE(fn, _result) \ |
2a138ec3 | 138 | ({ \ |
2a138ec3 RK |
139 | static bool _memorized; \ |
140 | \ | |
141 | if (_memorized) { \ | |
142 | return _result; \ | |
143 | } \ | |
144 | _memorized = true; \ | |
145 | _result = fn; \ | |
146 | }) | |
147 | ||
e391c009 IM |
148 | static bool has_x2apic_api; |
149 | ||
150 | bool kvm_has_x2apic_api(void) | |
151 | { | |
152 | return has_x2apic_api; | |
153 | } | |
154 | ||
fb506e70 RK |
155 | bool kvm_enable_x2apic(void) |
156 | { | |
2a138ec3 RK |
157 | return MEMORIZE( |
158 | kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS | | |
e391c009 IM |
159 | KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK), |
160 | has_x2apic_api); | |
fb506e70 RK |
161 | } |
162 | ||
0fd7e098 LL |
163 | static int kvm_get_tsc(CPUState *cs) |
164 | { | |
165 | X86CPU *cpu = X86_CPU(cs); | |
166 | CPUX86State *env = &cpu->env; | |
167 | struct { | |
168 | struct kvm_msrs info; | |
169 | struct kvm_msr_entry entries[1]; | |
170 | } msr_data; | |
171 | int ret; | |
172 | ||
173 | if (env->tsc_valid) { | |
174 | return 0; | |
175 | } | |
176 | ||
177 | msr_data.info.nmsrs = 1; | |
178 | msr_data.entries[0].index = MSR_IA32_TSC; | |
179 | env->tsc_valid = !runstate_is_running(); | |
180 | ||
181 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data); | |
182 | if (ret < 0) { | |
183 | return ret; | |
184 | } | |
185 | ||
48e1a45c | 186 | assert(ret == 1); |
0fd7e098 LL |
187 | env->tsc = msr_data.entries[0].data; |
188 | return 0; | |
189 | } | |
190 | ||
14e6fe12 | 191 | static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg) |
0fd7e098 | 192 | { |
0fd7e098 LL |
193 | kvm_get_tsc(cpu); |
194 | } | |
195 | ||
196 | void kvm_synchronize_all_tsc(void) | |
197 | { | |
198 | CPUState *cpu; | |
199 | ||
200 | if (kvm_enabled()) { | |
201 | CPU_FOREACH(cpu) { | |
14e6fe12 | 202 | run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL); |
0fd7e098 LL |
203 | } |
204 | } | |
205 | } | |
206 | ||
b827df58 AK |
207 | static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) |
208 | { | |
209 | struct kvm_cpuid2 *cpuid; | |
210 | int r, size; | |
211 | ||
212 | size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); | |
e42a92ae | 213 | cpuid = g_malloc0(size); |
b827df58 AK |
214 | cpuid->nent = max; |
215 | r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid); | |
76ae317f MM |
216 | if (r == 0 && cpuid->nent >= max) { |
217 | r = -E2BIG; | |
218 | } | |
b827df58 AK |
219 | if (r < 0) { |
220 | if (r == -E2BIG) { | |
7267c094 | 221 | g_free(cpuid); |
b827df58 AK |
222 | return NULL; |
223 | } else { | |
224 | fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n", | |
225 | strerror(-r)); | |
226 | exit(1); | |
227 | } | |
228 | } | |
229 | return cpuid; | |
230 | } | |
231 | ||
dd87f8a6 EH |
232 | /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough |
233 | * for all entries. | |
234 | */ | |
235 | static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s) | |
236 | { | |
237 | struct kvm_cpuid2 *cpuid; | |
238 | int max = 1; | |
494e95e9 CP |
239 | |
240 | if (cpuid_cache != NULL) { | |
241 | return cpuid_cache; | |
242 | } | |
dd87f8a6 EH |
243 | while ((cpuid = try_get_cpuid(s, max)) == NULL) { |
244 | max *= 2; | |
245 | } | |
494e95e9 | 246 | cpuid_cache = cpuid; |
dd87f8a6 EH |
247 | return cpuid; |
248 | } | |
249 | ||
a443bc34 | 250 | static const struct kvm_para_features { |
0c31b744 GC |
251 | int cap; |
252 | int feature; | |
253 | } para_features[] = { | |
254 | { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE }, | |
255 | { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY }, | |
256 | { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP }, | |
0c31b744 | 257 | { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF }, |
0c31b744 GC |
258 | }; |
259 | ||
ba9bc59e | 260 | static int get_para_features(KVMState *s) |
0c31b744 GC |
261 | { |
262 | int i, features = 0; | |
263 | ||
8e03c100 | 264 | for (i = 0; i < ARRAY_SIZE(para_features); i++) { |
ba9bc59e | 265 | if (kvm_check_extension(s, para_features[i].cap)) { |
0c31b744 GC |
266 | features |= (1 << para_features[i].feature); |
267 | } | |
268 | } | |
269 | ||
270 | return features; | |
271 | } | |
0c31b744 | 272 | |
40e80ee4 EH |
273 | static bool host_tsx_blacklisted(void) |
274 | { | |
275 | int family, model, stepping;\ | |
276 | char vendor[CPUID_VENDOR_SZ + 1]; | |
277 | ||
278 | host_vendor_fms(vendor, &family, &model, &stepping); | |
279 | ||
280 | /* Check if we are running on a Haswell host known to have broken TSX */ | |
281 | return !strcmp(vendor, CPUID_VENDOR_INTEL) && | |
282 | (family == 6) && | |
283 | ((model == 63 && stepping < 4) || | |
284 | model == 60 || model == 69 || model == 70); | |
285 | } | |
0c31b744 | 286 | |
829ae2f9 EH |
287 | /* Returns the value for a specific register on the cpuid entry |
288 | */ | |
289 | static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg) | |
290 | { | |
291 | uint32_t ret = 0; | |
292 | switch (reg) { | |
293 | case R_EAX: | |
294 | ret = entry->eax; | |
295 | break; | |
296 | case R_EBX: | |
297 | ret = entry->ebx; | |
298 | break; | |
299 | case R_ECX: | |
300 | ret = entry->ecx; | |
301 | break; | |
302 | case R_EDX: | |
303 | ret = entry->edx; | |
304 | break; | |
305 | } | |
306 | return ret; | |
307 | } | |
308 | ||
4fb73f1d EH |
309 | /* Find matching entry for function/index on kvm_cpuid2 struct |
310 | */ | |
311 | static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid, | |
312 | uint32_t function, | |
313 | uint32_t index) | |
314 | { | |
315 | int i; | |
316 | for (i = 0; i < cpuid->nent; ++i) { | |
317 | if (cpuid->entries[i].function == function && | |
318 | cpuid->entries[i].index == index) { | |
319 | return &cpuid->entries[i]; | |
320 | } | |
321 | } | |
322 | /* not found: */ | |
323 | return NULL; | |
324 | } | |
325 | ||
ba9bc59e | 326 | uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function, |
c958a8bd | 327 | uint32_t index, int reg) |
b827df58 AK |
328 | { |
329 | struct kvm_cpuid2 *cpuid; | |
b827df58 AK |
330 | uint32_t ret = 0; |
331 | uint32_t cpuid_1_edx; | |
8c723b79 | 332 | bool found = false; |
b827df58 | 333 | |
dd87f8a6 | 334 | cpuid = get_supported_cpuid(s); |
b827df58 | 335 | |
4fb73f1d EH |
336 | struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index); |
337 | if (entry) { | |
338 | found = true; | |
339 | ret = cpuid_entry_get_reg(entry, reg); | |
b827df58 AK |
340 | } |
341 | ||
7b46e5ce EH |
342 | /* Fixups for the data returned by KVM, below */ |
343 | ||
c2acb022 EH |
344 | if (function == 1 && reg == R_EDX) { |
345 | /* KVM before 2.6.30 misreports the following features */ | |
346 | ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA; | |
84bd945c EH |
347 | } else if (function == 1 && reg == R_ECX) { |
348 | /* We can set the hypervisor flag, even if KVM does not return it on | |
349 | * GET_SUPPORTED_CPUID | |
350 | */ | |
351 | ret |= CPUID_EXT_HYPERVISOR; | |
ac67ee26 EH |
352 | /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it |
353 | * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER, | |
354 | * and the irqchip is in the kernel. | |
355 | */ | |
356 | if (kvm_irqchip_in_kernel() && | |
357 | kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) { | |
358 | ret |= CPUID_EXT_TSC_DEADLINE_TIMER; | |
359 | } | |
41e5e76d EH |
360 | |
361 | /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled | |
362 | * without the in-kernel irqchip | |
363 | */ | |
364 | if (!kvm_irqchip_in_kernel()) { | |
365 | ret &= ~CPUID_EXT_X2APIC; | |
b827df58 | 366 | } |
28b8e4d0 JK |
367 | } else if (function == 6 && reg == R_EAX) { |
368 | ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */ | |
40e80ee4 EH |
369 | } else if (function == 7 && index == 0 && reg == R_EBX) { |
370 | if (host_tsx_blacklisted()) { | |
371 | ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE); | |
372 | } | |
c2acb022 EH |
373 | } else if (function == 0x80000001 && reg == R_EDX) { |
374 | /* On Intel, kvm returns cpuid according to the Intel spec, | |
375 | * so add missing bits according to the AMD spec: | |
376 | */ | |
377 | cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX); | |
378 | ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES; | |
64877477 EH |
379 | } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) { |
380 | /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't | |
381 | * be enabled without the in-kernel irqchip | |
382 | */ | |
383 | if (!kvm_irqchip_in_kernel()) { | |
384 | ret &= ~(1U << KVM_FEATURE_PV_UNHALT); | |
385 | } | |
be777326 WL |
386 | } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) { |
387 | ret |= KVM_HINTS_DEDICATED; | |
388 | found = 1; | |
b827df58 AK |
389 | } |
390 | ||
0c31b744 | 391 | /* fallback for older kernels */ |
8c723b79 | 392 | if ((function == KVM_CPUID_FEATURES) && !found) { |
ba9bc59e | 393 | ret = get_para_features(s); |
b9bec74b | 394 | } |
0c31b744 GC |
395 | |
396 | return ret; | |
bb0300dc | 397 | } |
bb0300dc | 398 | |
3c85e74f HY |
399 | typedef struct HWPoisonPage { |
400 | ram_addr_t ram_addr; | |
401 | QLIST_ENTRY(HWPoisonPage) list; | |
402 | } HWPoisonPage; | |
403 | ||
404 | static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = | |
405 | QLIST_HEAD_INITIALIZER(hwpoison_page_list); | |
406 | ||
407 | static void kvm_unpoison_all(void *param) | |
408 | { | |
409 | HWPoisonPage *page, *next_page; | |
410 | ||
411 | QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { | |
412 | QLIST_REMOVE(page, list); | |
413 | qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); | |
7267c094 | 414 | g_free(page); |
3c85e74f HY |
415 | } |
416 | } | |
417 | ||
3c85e74f HY |
418 | static void kvm_hwpoison_page_add(ram_addr_t ram_addr) |
419 | { | |
420 | HWPoisonPage *page; | |
421 | ||
422 | QLIST_FOREACH(page, &hwpoison_page_list, list) { | |
423 | if (page->ram_addr == ram_addr) { | |
424 | return; | |
425 | } | |
426 | } | |
ab3ad07f | 427 | page = g_new(HWPoisonPage, 1); |
3c85e74f HY |
428 | page->ram_addr = ram_addr; |
429 | QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); | |
430 | } | |
431 | ||
e7701825 MT |
432 | static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap, |
433 | int *max_banks) | |
434 | { | |
435 | int r; | |
436 | ||
14a09518 | 437 | r = kvm_check_extension(s, KVM_CAP_MCE); |
e7701825 MT |
438 | if (r > 0) { |
439 | *max_banks = r; | |
440 | return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap); | |
441 | } | |
442 | return -ENOSYS; | |
443 | } | |
444 | ||
bee615d4 | 445 | static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code) |
e7701825 | 446 | { |
87f8b626 | 447 | CPUState *cs = CPU(cpu); |
bee615d4 | 448 | CPUX86State *env = &cpu->env; |
c34d440a JK |
449 | uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN | |
450 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S; | |
451 | uint64_t mcg_status = MCG_STATUS_MCIP; | |
87f8b626 | 452 | int flags = 0; |
e7701825 | 453 | |
c34d440a JK |
454 | if (code == BUS_MCEERR_AR) { |
455 | status |= MCI_STATUS_AR | 0x134; | |
456 | mcg_status |= MCG_STATUS_EIPV; | |
457 | } else { | |
458 | status |= 0xc0; | |
459 | mcg_status |= MCG_STATUS_RIPV; | |
419fb20a | 460 | } |
87f8b626 AR |
461 | |
462 | flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0; | |
463 | /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the | |
464 | * guest kernel back into env->mcg_ext_ctl. | |
465 | */ | |
466 | cpu_synchronize_state(cs); | |
467 | if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) { | |
468 | mcg_status |= MCG_STATUS_LMCE; | |
469 | flags = 0; | |
470 | } | |
471 | ||
8c5cf3b6 | 472 | cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr, |
87f8b626 | 473 | (MCM_ADDR_PHYS << 6) | 0xc, flags); |
419fb20a | 474 | } |
419fb20a JK |
475 | |
476 | static void hardware_memory_error(void) | |
477 | { | |
478 | fprintf(stderr, "Hardware memory error!\n"); | |
479 | exit(1); | |
480 | } | |
481 | ||
2ae41db2 | 482 | void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr) |
419fb20a | 483 | { |
20d695a9 AF |
484 | X86CPU *cpu = X86_CPU(c); |
485 | CPUX86State *env = &cpu->env; | |
419fb20a | 486 | ram_addr_t ram_addr; |
a8170e5e | 487 | hwaddr paddr; |
419fb20a | 488 | |
4d39892c PB |
489 | /* If we get an action required MCE, it has been injected by KVM |
490 | * while the VM was running. An action optional MCE instead should | |
491 | * be coming from the main thread, which qemu_init_sigbus identifies | |
492 | * as the "early kill" thread. | |
493 | */ | |
a16fc07e | 494 | assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO); |
20e0ff59 | 495 | |
20e0ff59 | 496 | if ((env->mcg_cap & MCG_SER_P) && addr) { |
07bdaa41 | 497 | ram_addr = qemu_ram_addr_from_host(addr); |
20e0ff59 PB |
498 | if (ram_addr != RAM_ADDR_INVALID && |
499 | kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) { | |
500 | kvm_hwpoison_page_add(ram_addr); | |
501 | kvm_mce_inject(cpu, paddr, code); | |
2ae41db2 | 502 | return; |
419fb20a | 503 | } |
20e0ff59 PB |
504 | |
505 | fprintf(stderr, "Hardware memory error for memory used by " | |
506 | "QEMU itself instead of guest system!\n"); | |
419fb20a | 507 | } |
20e0ff59 PB |
508 | |
509 | if (code == BUS_MCEERR_AR) { | |
510 | hardware_memory_error(); | |
511 | } | |
512 | ||
513 | /* Hope we are lucky for AO MCE */ | |
419fb20a JK |
514 | } |
515 | ||
1bc22652 | 516 | static int kvm_inject_mce_oldstyle(X86CPU *cpu) |
ab443475 | 517 | { |
1bc22652 AF |
518 | CPUX86State *env = &cpu->env; |
519 | ||
ab443475 JK |
520 | if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) { |
521 | unsigned int bank, bank_num = env->mcg_cap & 0xff; | |
522 | struct kvm_x86_mce mce; | |
523 | ||
524 | env->exception_injected = -1; | |
525 | ||
526 | /* | |
527 | * There must be at least one bank in use if an MCE is pending. | |
528 | * Find it and use its values for the event injection. | |
529 | */ | |
530 | for (bank = 0; bank < bank_num; bank++) { | |
531 | if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) { | |
532 | break; | |
533 | } | |
534 | } | |
535 | assert(bank < bank_num); | |
536 | ||
537 | mce.bank = bank; | |
538 | mce.status = env->mce_banks[bank * 4 + 1]; | |
539 | mce.mcg_status = env->mcg_status; | |
540 | mce.addr = env->mce_banks[bank * 4 + 2]; | |
541 | mce.misc = env->mce_banks[bank * 4 + 3]; | |
542 | ||
1bc22652 | 543 | return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce); |
ab443475 | 544 | } |
ab443475 JK |
545 | return 0; |
546 | } | |
547 | ||
1dfb4dd9 | 548 | static void cpu_update_state(void *opaque, int running, RunState state) |
b8cc45d6 | 549 | { |
317ac620 | 550 | CPUX86State *env = opaque; |
b8cc45d6 GC |
551 | |
552 | if (running) { | |
553 | env->tsc_valid = false; | |
554 | } | |
555 | } | |
556 | ||
83b17af5 | 557 | unsigned long kvm_arch_vcpu_id(CPUState *cs) |
b164e48e | 558 | { |
83b17af5 | 559 | X86CPU *cpu = X86_CPU(cs); |
7e72a45c | 560 | return cpu->apic_id; |
b164e48e EH |
561 | } |
562 | ||
92067bf4 IM |
563 | #ifndef KVM_CPUID_SIGNATURE_NEXT |
564 | #define KVM_CPUID_SIGNATURE_NEXT 0x40000100 | |
565 | #endif | |
566 | ||
567 | static bool hyperv_hypercall_available(X86CPU *cpu) | |
568 | { | |
569 | return cpu->hyperv_vapic || | |
570 | (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY); | |
571 | } | |
572 | ||
573 | static bool hyperv_enabled(X86CPU *cpu) | |
574 | { | |
7bc3d711 PB |
575 | CPUState *cs = CPU(cpu); |
576 | return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 && | |
577 | (hyperv_hypercall_available(cpu) || | |
48a5f3bc | 578 | cpu->hyperv_time || |
f2a53c9e | 579 | cpu->hyperv_relaxed_timing || |
744b8a94 | 580 | cpu->hyperv_crash || |
8c145d7c | 581 | cpu->hyperv_reset || |
46eb8f98 | 582 | cpu->hyperv_vpindex || |
866eea9a | 583 | cpu->hyperv_runtime || |
ff99aa64 AS |
584 | cpu->hyperv_synic || |
585 | cpu->hyperv_stimer); | |
92067bf4 IM |
586 | } |
587 | ||
5031283d HZ |
588 | static int kvm_arch_set_tsc_khz(CPUState *cs) |
589 | { | |
590 | X86CPU *cpu = X86_CPU(cs); | |
591 | CPUX86State *env = &cpu->env; | |
592 | int r; | |
593 | ||
594 | if (!env->tsc_khz) { | |
595 | return 0; | |
596 | } | |
597 | ||
598 | r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL) ? | |
599 | kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) : | |
600 | -ENOTSUP; | |
601 | if (r < 0) { | |
602 | /* When KVM_SET_TSC_KHZ fails, it's an error only if the current | |
603 | * TSC frequency doesn't match the one we want. | |
604 | */ | |
605 | int cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? | |
606 | kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : | |
607 | -ENOTSUP; | |
608 | if (cur_freq <= 0 || cur_freq != env->tsc_khz) { | |
3dc6f869 AF |
609 | warn_report("TSC frequency mismatch between " |
610 | "VM (%" PRId64 " kHz) and host (%d kHz), " | |
611 | "and TSC scaling unavailable", | |
612 | env->tsc_khz, cur_freq); | |
5031283d HZ |
613 | return r; |
614 | } | |
615 | } | |
616 | ||
617 | return 0; | |
618 | } | |
619 | ||
4bb95b82 LP |
620 | static bool tsc_is_stable_and_known(CPUX86State *env) |
621 | { | |
622 | if (!env->tsc_khz) { | |
623 | return false; | |
624 | } | |
625 | return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) | |
626 | || env->user_tsc_khz; | |
627 | } | |
628 | ||
c35bd19a EY |
629 | static int hyperv_handle_properties(CPUState *cs) |
630 | { | |
631 | X86CPU *cpu = X86_CPU(cs); | |
632 | CPUX86State *env = &cpu->env; | |
633 | ||
3ddcd2ed EH |
634 | if (cpu->hyperv_time && |
635 | kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) <= 0) { | |
636 | cpu->hyperv_time = false; | |
637 | } | |
638 | ||
c35bd19a | 639 | if (cpu->hyperv_relaxed_timing) { |
5e953812 | 640 | env->features[FEAT_HYPERV_EAX] |= HV_HYPERCALL_AVAILABLE; |
c35bd19a EY |
641 | } |
642 | if (cpu->hyperv_vapic) { | |
5e953812 RK |
643 | env->features[FEAT_HYPERV_EAX] |= HV_HYPERCALL_AVAILABLE; |
644 | env->features[FEAT_HYPERV_EAX] |= HV_APIC_ACCESS_AVAILABLE; | |
c35bd19a | 645 | } |
3ddcd2ed | 646 | if (cpu->hyperv_time) { |
5e953812 RK |
647 | env->features[FEAT_HYPERV_EAX] |= HV_HYPERCALL_AVAILABLE; |
648 | env->features[FEAT_HYPERV_EAX] |= HV_TIME_REF_COUNT_AVAILABLE; | |
649 | env->features[FEAT_HYPERV_EAX] |= HV_REFERENCE_TSC_AVAILABLE; | |
d72bc7f6 LP |
650 | |
651 | if (has_msr_hv_frequencies && tsc_is_stable_and_known(env)) { | |
5e953812 RK |
652 | env->features[FEAT_HYPERV_EAX] |= HV_ACCESS_FREQUENCY_MSRS; |
653 | env->features[FEAT_HYPERV_EDX] |= HV_FREQUENCY_MSRS_AVAILABLE; | |
d72bc7f6 | 654 | } |
c35bd19a EY |
655 | } |
656 | if (cpu->hyperv_crash && has_msr_hv_crash) { | |
5e953812 | 657 | env->features[FEAT_HYPERV_EDX] |= HV_GUEST_CRASH_MSR_AVAILABLE; |
c35bd19a | 658 | } |
5e953812 | 659 | env->features[FEAT_HYPERV_EDX] |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE; |
c35bd19a | 660 | if (cpu->hyperv_reset && has_msr_hv_reset) { |
5e953812 | 661 | env->features[FEAT_HYPERV_EAX] |= HV_RESET_AVAILABLE; |
c35bd19a EY |
662 | } |
663 | if (cpu->hyperv_vpindex && has_msr_hv_vpindex) { | |
5e953812 | 664 | env->features[FEAT_HYPERV_EAX] |= HV_VP_INDEX_AVAILABLE; |
c35bd19a EY |
665 | } |
666 | if (cpu->hyperv_runtime && has_msr_hv_runtime) { | |
5e953812 | 667 | env->features[FEAT_HYPERV_EAX] |= HV_VP_RUNTIME_AVAILABLE; |
c35bd19a EY |
668 | } |
669 | if (cpu->hyperv_synic) { | |
c35bd19a EY |
670 | if (!has_msr_hv_synic || |
671 | kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_SYNIC, 0)) { | |
672 | fprintf(stderr, "Hyper-V SynIC is not supported by kernel\n"); | |
673 | return -ENOSYS; | |
674 | } | |
675 | ||
5e953812 | 676 | env->features[FEAT_HYPERV_EAX] |= HV_SYNIC_AVAILABLE; |
c35bd19a EY |
677 | } |
678 | if (cpu->hyperv_stimer) { | |
679 | if (!has_msr_hv_stimer) { | |
680 | fprintf(stderr, "Hyper-V timers aren't supported by kernel\n"); | |
681 | return -ENOSYS; | |
682 | } | |
5e953812 | 683 | env->features[FEAT_HYPERV_EAX] |= HV_SYNTIMERS_AVAILABLE; |
c35bd19a EY |
684 | } |
685 | return 0; | |
686 | } | |
687 | ||
68bfd0ad MT |
688 | static Error *invtsc_mig_blocker; |
689 | ||
f8bb0565 | 690 | #define KVM_MAX_CPUID_ENTRIES 100 |
0893d460 | 691 | |
20d695a9 | 692 | int kvm_arch_init_vcpu(CPUState *cs) |
05330448 AL |
693 | { |
694 | struct { | |
486bd5a2 | 695 | struct kvm_cpuid2 cpuid; |
f8bb0565 | 696 | struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES]; |
541dc0d4 | 697 | } QEMU_PACKED cpuid_data; |
20d695a9 AF |
698 | X86CPU *cpu = X86_CPU(cs); |
699 | CPUX86State *env = &cpu->env; | |
486bd5a2 | 700 | uint32_t limit, i, j, cpuid_i; |
a33609ca | 701 | uint32_t unused; |
bb0300dc | 702 | struct kvm_cpuid_entry2 *c; |
bb0300dc | 703 | uint32_t signature[3]; |
234cc647 | 704 | int kvm_base = KVM_CPUID_SIGNATURE; |
e7429073 | 705 | int r; |
fe44dc91 | 706 | Error *local_err = NULL; |
05330448 | 707 | |
ef4cbe14 SW |
708 | memset(&cpuid_data, 0, sizeof(cpuid_data)); |
709 | ||
05330448 AL |
710 | cpuid_i = 0; |
711 | ||
ddb98b5a LP |
712 | r = kvm_arch_set_tsc_khz(cs); |
713 | if (r < 0) { | |
714 | goto fail; | |
715 | } | |
716 | ||
717 | /* vcpu's TSC frequency is either specified by user, or following | |
718 | * the value used by KVM if the former is not present. In the | |
719 | * latter case, we query it from KVM and record in env->tsc_khz, | |
720 | * so that vcpu's TSC frequency can be migrated later via this field. | |
721 | */ | |
722 | if (!env->tsc_khz) { | |
723 | r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? | |
724 | kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : | |
725 | -ENOTSUP; | |
726 | if (r > 0) { | |
727 | env->tsc_khz = r; | |
728 | } | |
729 | } | |
730 | ||
bb0300dc | 731 | /* Paravirtualization CPUIDs */ |
234cc647 PB |
732 | if (hyperv_enabled(cpu)) { |
733 | c = &cpuid_data.entries[cpuid_i++]; | |
5e953812 | 734 | c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS; |
1c4a55db AW |
735 | if (!cpu->hyperv_vendor_id) { |
736 | memcpy(signature, "Microsoft Hv", 12); | |
737 | } else { | |
738 | size_t len = strlen(cpu->hyperv_vendor_id); | |
739 | ||
740 | if (len > 12) { | |
741 | error_report("hv-vendor-id truncated to 12 characters"); | |
742 | len = 12; | |
743 | } | |
744 | memset(signature, 0, 12); | |
745 | memcpy(signature, cpu->hyperv_vendor_id, len); | |
746 | } | |
5e953812 | 747 | c->eax = HV_CPUID_MIN; |
234cc647 PB |
748 | c->ebx = signature[0]; |
749 | c->ecx = signature[1]; | |
750 | c->edx = signature[2]; | |
0c31b744 | 751 | |
234cc647 | 752 | c = &cpuid_data.entries[cpuid_i++]; |
5e953812 | 753 | c->function = HV_CPUID_INTERFACE; |
eab70139 VR |
754 | memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12); |
755 | c->eax = signature[0]; | |
234cc647 PB |
756 | c->ebx = 0; |
757 | c->ecx = 0; | |
758 | c->edx = 0; | |
eab70139 VR |
759 | |
760 | c = &cpuid_data.entries[cpuid_i++]; | |
5e953812 | 761 | c->function = HV_CPUID_VERSION; |
eab70139 VR |
762 | c->eax = 0x00001bbc; |
763 | c->ebx = 0x00060001; | |
764 | ||
765 | c = &cpuid_data.entries[cpuid_i++]; | |
5e953812 | 766 | c->function = HV_CPUID_FEATURES; |
c35bd19a EY |
767 | r = hyperv_handle_properties(cs); |
768 | if (r) { | |
769 | return r; | |
46eb8f98 | 770 | } |
c35bd19a EY |
771 | c->eax = env->features[FEAT_HYPERV_EAX]; |
772 | c->ebx = env->features[FEAT_HYPERV_EBX]; | |
773 | c->edx = env->features[FEAT_HYPERV_EDX]; | |
866eea9a | 774 | |
eab70139 | 775 | c = &cpuid_data.entries[cpuid_i++]; |
5e953812 | 776 | c->function = HV_CPUID_ENLIGHTMENT_INFO; |
92067bf4 | 777 | if (cpu->hyperv_relaxed_timing) { |
5e953812 | 778 | c->eax |= HV_RELAXED_TIMING_RECOMMENDED; |
eab70139 | 779 | } |
2d5aa872 | 780 | if (cpu->hyperv_vapic) { |
5e953812 | 781 | c->eax |= HV_APIC_ACCESS_RECOMMENDED; |
eab70139 | 782 | } |
92067bf4 | 783 | c->ebx = cpu->hyperv_spinlock_attempts; |
eab70139 VR |
784 | |
785 | c = &cpuid_data.entries[cpuid_i++]; | |
5e953812 | 786 | c->function = HV_CPUID_IMPLEMENT_LIMITS; |
6c69dfb6 GA |
787 | |
788 | c->eax = cpu->hv_max_vps; | |
eab70139 VR |
789 | c->ebx = 0x40; |
790 | ||
234cc647 | 791 | kvm_base = KVM_CPUID_SIGNATURE_NEXT; |
7bc3d711 | 792 | has_msr_hv_hypercall = true; |
eab70139 VR |
793 | } |
794 | ||
f522d2ac AW |
795 | if (cpu->expose_kvm) { |
796 | memcpy(signature, "KVMKVMKVM\0\0\0", 12); | |
797 | c = &cpuid_data.entries[cpuid_i++]; | |
798 | c->function = KVM_CPUID_SIGNATURE | kvm_base; | |
79b6f2f6 | 799 | c->eax = KVM_CPUID_FEATURES | kvm_base; |
f522d2ac AW |
800 | c->ebx = signature[0]; |
801 | c->ecx = signature[1]; | |
802 | c->edx = signature[2]; | |
234cc647 | 803 | |
f522d2ac AW |
804 | c = &cpuid_data.entries[cpuid_i++]; |
805 | c->function = KVM_CPUID_FEATURES | kvm_base; | |
806 | c->eax = env->features[FEAT_KVM]; | |
be777326 | 807 | c->edx = env->features[FEAT_KVM_HINTS]; |
f522d2ac | 808 | } |
917367aa | 809 | |
a33609ca | 810 | cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); |
05330448 AL |
811 | |
812 | for (i = 0; i <= limit; i++) { | |
f8bb0565 IM |
813 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
814 | fprintf(stderr, "unsupported level value: 0x%x\n", limit); | |
815 | abort(); | |
816 | } | |
bb0300dc | 817 | c = &cpuid_data.entries[cpuid_i++]; |
486bd5a2 AL |
818 | |
819 | switch (i) { | |
a36b1029 AL |
820 | case 2: { |
821 | /* Keep reading function 2 till all the input is received */ | |
822 | int times; | |
823 | ||
a36b1029 | 824 | c->function = i; |
a33609ca AL |
825 | c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC | |
826 | KVM_CPUID_FLAG_STATE_READ_NEXT; | |
827 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
828 | times = c->eax & 0xff; | |
a36b1029 AL |
829 | |
830 | for (j = 1; j < times; ++j) { | |
f8bb0565 IM |
831 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
832 | fprintf(stderr, "cpuid_data is full, no space for " | |
833 | "cpuid(eax:2):eax & 0xf = 0x%x\n", times); | |
834 | abort(); | |
835 | } | |
a33609ca | 836 | c = &cpuid_data.entries[cpuid_i++]; |
a36b1029 | 837 | c->function = i; |
a33609ca AL |
838 | c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC; |
839 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
a36b1029 AL |
840 | } |
841 | break; | |
842 | } | |
486bd5a2 AL |
843 | case 4: |
844 | case 0xb: | |
845 | case 0xd: | |
846 | for (j = 0; ; j++) { | |
31e8c696 AP |
847 | if (i == 0xd && j == 64) { |
848 | break; | |
849 | } | |
486bd5a2 AL |
850 | c->function = i; |
851 | c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | |
852 | c->index = j; | |
a33609ca | 853 | cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); |
486bd5a2 | 854 | |
b9bec74b | 855 | if (i == 4 && c->eax == 0) { |
486bd5a2 | 856 | break; |
b9bec74b JK |
857 | } |
858 | if (i == 0xb && !(c->ecx & 0xff00)) { | |
486bd5a2 | 859 | break; |
b9bec74b JK |
860 | } |
861 | if (i == 0xd && c->eax == 0) { | |
31e8c696 | 862 | continue; |
b9bec74b | 863 | } |
f8bb0565 IM |
864 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
865 | fprintf(stderr, "cpuid_data is full, no space for " | |
866 | "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); | |
867 | abort(); | |
868 | } | |
a33609ca | 869 | c = &cpuid_data.entries[cpuid_i++]; |
486bd5a2 AL |
870 | } |
871 | break; | |
e37a5c7f CP |
872 | case 0x14: { |
873 | uint32_t times; | |
874 | ||
875 | c->function = i; | |
876 | c->index = 0; | |
877 | c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | |
878 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
879 | times = c->eax; | |
880 | ||
881 | for (j = 1; j <= times; ++j) { | |
882 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { | |
883 | fprintf(stderr, "cpuid_data is full, no space for " | |
884 | "cpuid(eax:0x14,ecx:0x%x)\n", j); | |
885 | abort(); | |
886 | } | |
887 | c = &cpuid_data.entries[cpuid_i++]; | |
888 | c->function = i; | |
889 | c->index = j; | |
890 | c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | |
891 | cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
892 | } | |
893 | break; | |
894 | } | |
486bd5a2 | 895 | default: |
486bd5a2 | 896 | c->function = i; |
a33609ca AL |
897 | c->flags = 0; |
898 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
486bd5a2 AL |
899 | break; |
900 | } | |
05330448 | 901 | } |
0d894367 PB |
902 | |
903 | if (limit >= 0x0a) { | |
0b368a10 | 904 | uint32_t eax, edx; |
0d894367 | 905 | |
0b368a10 JD |
906 | cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx); |
907 | ||
908 | has_architectural_pmu_version = eax & 0xff; | |
909 | if (has_architectural_pmu_version > 0) { | |
910 | num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8; | |
0d894367 PB |
911 | |
912 | /* Shouldn't be more than 32, since that's the number of bits | |
913 | * available in EBX to tell us _which_ counters are available. | |
914 | * Play it safe. | |
915 | */ | |
0b368a10 JD |
916 | if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) { |
917 | num_architectural_pmu_gp_counters = MAX_GP_COUNTERS; | |
918 | } | |
919 | ||
920 | if (has_architectural_pmu_version > 1) { | |
921 | num_architectural_pmu_fixed_counters = edx & 0x1f; | |
922 | ||
923 | if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) { | |
924 | num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS; | |
925 | } | |
0d894367 PB |
926 | } |
927 | } | |
928 | } | |
929 | ||
a33609ca | 930 | cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); |
05330448 AL |
931 | |
932 | for (i = 0x80000000; i <= limit; i++) { | |
f8bb0565 IM |
933 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
934 | fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit); | |
935 | abort(); | |
936 | } | |
bb0300dc | 937 | c = &cpuid_data.entries[cpuid_i++]; |
05330448 | 938 | |
05330448 | 939 | c->function = i; |
a33609ca AL |
940 | c->flags = 0; |
941 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
05330448 AL |
942 | } |
943 | ||
b3baa152 BW |
944 | /* Call Centaur's CPUID instructions they are supported. */ |
945 | if (env->cpuid_xlevel2 > 0) { | |
b3baa152 BW |
946 | cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused); |
947 | ||
948 | for (i = 0xC0000000; i <= limit; i++) { | |
f8bb0565 IM |
949 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
950 | fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit); | |
951 | abort(); | |
952 | } | |
b3baa152 BW |
953 | c = &cpuid_data.entries[cpuid_i++]; |
954 | ||
955 | c->function = i; | |
956 | c->flags = 0; | |
957 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
958 | } | |
959 | } | |
960 | ||
05330448 AL |
961 | cpuid_data.cpuid.nent = cpuid_i; |
962 | ||
e7701825 | 963 | if (((env->cpuid_version >> 8)&0xF) >= 6 |
0514ef2f | 964 | && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) == |
fc7a504c | 965 | (CPUID_MCE | CPUID_MCA) |
a60f24b5 | 966 | && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) { |
5120901a | 967 | uint64_t mcg_cap, unsupported_caps; |
e7701825 | 968 | int banks; |
32a42024 | 969 | int ret; |
e7701825 | 970 | |
a60f24b5 | 971 | ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks); |
75d49497 JK |
972 | if (ret < 0) { |
973 | fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret)); | |
974 | return ret; | |
e7701825 | 975 | } |
75d49497 | 976 | |
2590f15b | 977 | if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) { |
49b69cbf | 978 | error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)", |
2590f15b | 979 | (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks); |
49b69cbf | 980 | return -ENOTSUP; |
75d49497 | 981 | } |
49b69cbf | 982 | |
5120901a EH |
983 | unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK); |
984 | if (unsupported_caps) { | |
87f8b626 AR |
985 | if (unsupported_caps & MCG_LMCE_P) { |
986 | error_report("kvm: LMCE not supported"); | |
987 | return -ENOTSUP; | |
988 | } | |
3dc6f869 AF |
989 | warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64, |
990 | unsupported_caps); | |
5120901a EH |
991 | } |
992 | ||
2590f15b EH |
993 | env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK; |
994 | ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap); | |
75d49497 JK |
995 | if (ret < 0) { |
996 | fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret)); | |
997 | return ret; | |
998 | } | |
e7701825 | 999 | } |
e7701825 | 1000 | |
b8cc45d6 GC |
1001 | qemu_add_vm_change_state_handler(cpu_update_state, env); |
1002 | ||
df67696e LJ |
1003 | c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0); |
1004 | if (c) { | |
1005 | has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) || | |
1006 | !!(c->ecx & CPUID_EXT_SMX); | |
1007 | } | |
1008 | ||
87f8b626 AR |
1009 | if (env->mcg_cap & MCG_LMCE_P) { |
1010 | has_msr_mcg_ext_ctl = has_msr_feature_control = true; | |
1011 | } | |
1012 | ||
d99569d9 EH |
1013 | if (!env->user_tsc_khz) { |
1014 | if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) && | |
1015 | invtsc_mig_blocker == NULL) { | |
1016 | /* for migration */ | |
1017 | error_setg(&invtsc_mig_blocker, | |
1018 | "State blocked by non-migratable CPU device" | |
1019 | " (invtsc flag)"); | |
fe44dc91 AA |
1020 | r = migrate_add_blocker(invtsc_mig_blocker, &local_err); |
1021 | if (local_err) { | |
1022 | error_report_err(local_err); | |
1023 | error_free(invtsc_mig_blocker); | |
1024 | goto fail; | |
1025 | } | |
d99569d9 EH |
1026 | /* for savevm */ |
1027 | vmstate_x86_cpu.unmigratable = 1; | |
1028 | } | |
68bfd0ad MT |
1029 | } |
1030 | ||
9954a158 PDJ |
1031 | if (cpu->vmware_cpuid_freq |
1032 | /* Guests depend on 0x40000000 to detect this feature, so only expose | |
1033 | * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */ | |
1034 | && cpu->expose_kvm | |
1035 | && kvm_base == KVM_CPUID_SIGNATURE | |
1036 | /* TSC clock must be stable and known for this feature. */ | |
4bb95b82 | 1037 | && tsc_is_stable_and_known(env)) { |
9954a158 PDJ |
1038 | |
1039 | c = &cpuid_data.entries[cpuid_i++]; | |
1040 | c->function = KVM_CPUID_SIGNATURE | 0x10; | |
1041 | c->eax = env->tsc_khz; | |
1042 | /* LAPIC resolution of 1ns (freq: 1GHz) is hardcoded in KVM's | |
1043 | * APIC_BUS_CYCLE_NS */ | |
1044 | c->ebx = 1000000; | |
1045 | c->ecx = c->edx = 0; | |
1046 | ||
1047 | c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0); | |
1048 | c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10); | |
1049 | } | |
1050 | ||
1051 | cpuid_data.cpuid.nent = cpuid_i; | |
1052 | ||
1053 | cpuid_data.cpuid.padding = 0; | |
1054 | r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data); | |
1055 | if (r) { | |
1056 | goto fail; | |
1057 | } | |
1058 | ||
28143b40 | 1059 | if (has_xsave) { |
fabacc0f JK |
1060 | env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave)); |
1061 | } | |
d71b62a1 | 1062 | cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE); |
fabacc0f | 1063 | |
273c515c PB |
1064 | if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) { |
1065 | has_msr_tsc_aux = false; | |
1066 | } | |
d1ae67f6 | 1067 | |
e7429073 | 1068 | return 0; |
fe44dc91 AA |
1069 | |
1070 | fail: | |
1071 | migrate_del_blocker(invtsc_mig_blocker); | |
1072 | return r; | |
05330448 AL |
1073 | } |
1074 | ||
50a2c6e5 | 1075 | void kvm_arch_reset_vcpu(X86CPU *cpu) |
caa5af0f | 1076 | { |
20d695a9 | 1077 | CPUX86State *env = &cpu->env; |
dd673288 | 1078 | |
1a5e9d2f | 1079 | env->xcr0 = 1; |
ddced198 | 1080 | if (kvm_irqchip_in_kernel()) { |
dd673288 | 1081 | env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE : |
ddced198 MT |
1082 | KVM_MP_STATE_UNINITIALIZED; |
1083 | } else { | |
1084 | env->mp_state = KVM_MP_STATE_RUNNABLE; | |
1085 | } | |
689141dd RK |
1086 | |
1087 | if (cpu->hyperv_synic) { | |
1088 | int i; | |
1089 | for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) { | |
1090 | env->msr_hv_synic_sint[i] = HV_SINT_MASKED; | |
1091 | } | |
1092 | } | |
caa5af0f JK |
1093 | } |
1094 | ||
e0723c45 PB |
1095 | void kvm_arch_do_init_vcpu(X86CPU *cpu) |
1096 | { | |
1097 | CPUX86State *env = &cpu->env; | |
1098 | ||
1099 | /* APs get directly into wait-for-SIPI state. */ | |
1100 | if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) { | |
1101 | env->mp_state = KVM_MP_STATE_INIT_RECEIVED; | |
1102 | } | |
1103 | } | |
1104 | ||
c3a3a7d3 | 1105 | static int kvm_get_supported_msrs(KVMState *s) |
05330448 | 1106 | { |
75b10c43 | 1107 | static int kvm_supported_msrs; |
c3a3a7d3 | 1108 | int ret = 0; |
05330448 AL |
1109 | |
1110 | /* first time */ | |
75b10c43 | 1111 | if (kvm_supported_msrs == 0) { |
05330448 AL |
1112 | struct kvm_msr_list msr_list, *kvm_msr_list; |
1113 | ||
75b10c43 | 1114 | kvm_supported_msrs = -1; |
05330448 AL |
1115 | |
1116 | /* Obtain MSR list from KVM. These are the MSRs that we must | |
1117 | * save/restore */ | |
4c9f7372 | 1118 | msr_list.nmsrs = 0; |
c3a3a7d3 | 1119 | ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list); |
6fb6d245 | 1120 | if (ret < 0 && ret != -E2BIG) { |
c3a3a7d3 | 1121 | return ret; |
6fb6d245 | 1122 | } |
d9db889f JK |
1123 | /* Old kernel modules had a bug and could write beyond the provided |
1124 | memory. Allocate at least a safe amount of 1K. */ | |
7267c094 | 1125 | kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) + |
d9db889f JK |
1126 | msr_list.nmsrs * |
1127 | sizeof(msr_list.indices[0]))); | |
05330448 | 1128 | |
55308450 | 1129 | kvm_msr_list->nmsrs = msr_list.nmsrs; |
c3a3a7d3 | 1130 | ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list); |
05330448 AL |
1131 | if (ret >= 0) { |
1132 | int i; | |
1133 | ||
1134 | for (i = 0; i < kvm_msr_list->nmsrs; i++) { | |
1d268dec LP |
1135 | switch (kvm_msr_list->indices[i]) { |
1136 | case MSR_STAR: | |
c3a3a7d3 | 1137 | has_msr_star = true; |
1d268dec LP |
1138 | break; |
1139 | case MSR_VM_HSAVE_PA: | |
c3a3a7d3 | 1140 | has_msr_hsave_pa = true; |
1d268dec LP |
1141 | break; |
1142 | case MSR_TSC_AUX: | |
c9b8f6b6 | 1143 | has_msr_tsc_aux = true; |
1d268dec LP |
1144 | break; |
1145 | case MSR_TSC_ADJUST: | |
f28558d3 | 1146 | has_msr_tsc_adjust = true; |
1d268dec LP |
1147 | break; |
1148 | case MSR_IA32_TSCDEADLINE: | |
aa82ba54 | 1149 | has_msr_tsc_deadline = true; |
1d268dec LP |
1150 | break; |
1151 | case MSR_IA32_SMBASE: | |
fc12d72e | 1152 | has_msr_smbase = true; |
1d268dec LP |
1153 | break; |
1154 | case MSR_IA32_MISC_ENABLE: | |
21e87c46 | 1155 | has_msr_misc_enable = true; |
1d268dec LP |
1156 | break; |
1157 | case MSR_IA32_BNDCFGS: | |
79e9ebeb | 1158 | has_msr_bndcfgs = true; |
1d268dec LP |
1159 | break; |
1160 | case MSR_IA32_XSS: | |
18cd2c17 | 1161 | has_msr_xss = true; |
3c254ab8 | 1162 | break; |
1d268dec | 1163 | case HV_X64_MSR_CRASH_CTL: |
f2a53c9e | 1164 | has_msr_hv_crash = true; |
1d268dec LP |
1165 | break; |
1166 | case HV_X64_MSR_RESET: | |
744b8a94 | 1167 | has_msr_hv_reset = true; |
1d268dec LP |
1168 | break; |
1169 | case HV_X64_MSR_VP_INDEX: | |
8c145d7c | 1170 | has_msr_hv_vpindex = true; |
1d268dec LP |
1171 | break; |
1172 | case HV_X64_MSR_VP_RUNTIME: | |
46eb8f98 | 1173 | has_msr_hv_runtime = true; |
1d268dec LP |
1174 | break; |
1175 | case HV_X64_MSR_SCONTROL: | |
866eea9a | 1176 | has_msr_hv_synic = true; |
1d268dec LP |
1177 | break; |
1178 | case HV_X64_MSR_STIMER0_CONFIG: | |
ff99aa64 | 1179 | has_msr_hv_stimer = true; |
1d268dec | 1180 | break; |
d72bc7f6 LP |
1181 | case HV_X64_MSR_TSC_FREQUENCY: |
1182 | has_msr_hv_frequencies = true; | |
1183 | break; | |
a33a2cfe PB |
1184 | case MSR_IA32_SPEC_CTRL: |
1185 | has_msr_spec_ctrl = true; | |
1186 | break; | |
ff99aa64 | 1187 | } |
05330448 AL |
1188 | } |
1189 | } | |
1190 | ||
7267c094 | 1191 | g_free(kvm_msr_list); |
05330448 AL |
1192 | } |
1193 | ||
c3a3a7d3 | 1194 | return ret; |
05330448 AL |
1195 | } |
1196 | ||
6410848b PB |
1197 | static Notifier smram_machine_done; |
1198 | static KVMMemoryListener smram_listener; | |
1199 | static AddressSpace smram_address_space; | |
1200 | static MemoryRegion smram_as_root; | |
1201 | static MemoryRegion smram_as_mem; | |
1202 | ||
1203 | static void register_smram_listener(Notifier *n, void *unused) | |
1204 | { | |
1205 | MemoryRegion *smram = | |
1206 | (MemoryRegion *) object_resolve_path("/machine/smram", NULL); | |
1207 | ||
1208 | /* Outer container... */ | |
1209 | memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull); | |
1210 | memory_region_set_enabled(&smram_as_root, true); | |
1211 | ||
1212 | /* ... with two regions inside: normal system memory with low | |
1213 | * priority, and... | |
1214 | */ | |
1215 | memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram", | |
1216 | get_system_memory(), 0, ~0ull); | |
1217 | memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0); | |
1218 | memory_region_set_enabled(&smram_as_mem, true); | |
1219 | ||
1220 | if (smram) { | |
1221 | /* ... SMRAM with higher priority */ | |
1222 | memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10); | |
1223 | memory_region_set_enabled(smram, true); | |
1224 | } | |
1225 | ||
1226 | address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM"); | |
1227 | kvm_memory_listener_register(kvm_state, &smram_listener, | |
1228 | &smram_address_space, 1); | |
1229 | } | |
1230 | ||
b16565b3 | 1231 | int kvm_arch_init(MachineState *ms, KVMState *s) |
20420430 | 1232 | { |
11076198 | 1233 | uint64_t identity_base = 0xfffbc000; |
39d6960a | 1234 | uint64_t shadow_mem; |
20420430 | 1235 | int ret; |
25d2e361 | 1236 | struct utsname utsname; |
20420430 | 1237 | |
28143b40 TH |
1238 | #ifdef KVM_CAP_XSAVE |
1239 | has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE); | |
1240 | #endif | |
1241 | ||
1242 | #ifdef KVM_CAP_XCRS | |
1243 | has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS); | |
1244 | #endif | |
1245 | ||
1246 | #ifdef KVM_CAP_PIT_STATE2 | |
1247 | has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2); | |
1248 | #endif | |
1249 | ||
c3a3a7d3 | 1250 | ret = kvm_get_supported_msrs(s); |
20420430 | 1251 | if (ret < 0) { |
20420430 SY |
1252 | return ret; |
1253 | } | |
25d2e361 MT |
1254 | |
1255 | uname(&utsname); | |
1256 | lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0; | |
1257 | ||
4c5b10b7 | 1258 | /* |
11076198 JK |
1259 | * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly. |
1260 | * In order to use vm86 mode, an EPT identity map and a TSS are needed. | |
1261 | * Since these must be part of guest physical memory, we need to allocate | |
1262 | * them, both by setting their start addresses in the kernel and by | |
1263 | * creating a corresponding e820 entry. We need 4 pages before the BIOS. | |
1264 | * | |
1265 | * Older KVM versions may not support setting the identity map base. In | |
1266 | * that case we need to stick with the default, i.e. a 256K maximum BIOS | |
1267 | * size. | |
4c5b10b7 | 1268 | */ |
11076198 JK |
1269 | if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) { |
1270 | /* Allows up to 16M BIOSes. */ | |
1271 | identity_base = 0xfeffc000; | |
1272 | ||
1273 | ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base); | |
1274 | if (ret < 0) { | |
1275 | return ret; | |
1276 | } | |
4c5b10b7 | 1277 | } |
e56ff191 | 1278 | |
11076198 JK |
1279 | /* Set TSS base one page after EPT identity map. */ |
1280 | ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000); | |
20420430 SY |
1281 | if (ret < 0) { |
1282 | return ret; | |
1283 | } | |
1284 | ||
11076198 JK |
1285 | /* Tell fw_cfg to notify the BIOS to reserve the range. */ |
1286 | ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED); | |
20420430 | 1287 | if (ret < 0) { |
11076198 | 1288 | fprintf(stderr, "e820_add_entry() table is full\n"); |
20420430 SY |
1289 | return ret; |
1290 | } | |
3c85e74f | 1291 | qemu_register_reset(kvm_unpoison_all, NULL); |
20420430 | 1292 | |
4689b77b | 1293 | shadow_mem = machine_kvm_shadow_mem(ms); |
36ad0e94 MA |
1294 | if (shadow_mem != -1) { |
1295 | shadow_mem /= 4096; | |
1296 | ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem); | |
1297 | if (ret < 0) { | |
1298 | return ret; | |
39d6960a JK |
1299 | } |
1300 | } | |
6410848b | 1301 | |
d870cfde GA |
1302 | if (kvm_check_extension(s, KVM_CAP_X86_SMM) && |
1303 | object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE) && | |
1304 | pc_machine_is_smm_enabled(PC_MACHINE(ms))) { | |
6410848b PB |
1305 | smram_machine_done.notify = register_smram_listener; |
1306 | qemu_add_machine_init_done_notifier(&smram_machine_done); | |
1307 | } | |
11076198 | 1308 | return 0; |
05330448 | 1309 | } |
b9bec74b | 1310 | |
05330448 AL |
1311 | static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) |
1312 | { | |
1313 | lhs->selector = rhs->selector; | |
1314 | lhs->base = rhs->base; | |
1315 | lhs->limit = rhs->limit; | |
1316 | lhs->type = 3; | |
1317 | lhs->present = 1; | |
1318 | lhs->dpl = 3; | |
1319 | lhs->db = 0; | |
1320 | lhs->s = 1; | |
1321 | lhs->l = 0; | |
1322 | lhs->g = 0; | |
1323 | lhs->avl = 0; | |
1324 | lhs->unusable = 0; | |
1325 | } | |
1326 | ||
1327 | static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) | |
1328 | { | |
1329 | unsigned flags = rhs->flags; | |
1330 | lhs->selector = rhs->selector; | |
1331 | lhs->base = rhs->base; | |
1332 | lhs->limit = rhs->limit; | |
1333 | lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; | |
1334 | lhs->present = (flags & DESC_P_MASK) != 0; | |
acaa7550 | 1335 | lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3; |
05330448 AL |
1336 | lhs->db = (flags >> DESC_B_SHIFT) & 1; |
1337 | lhs->s = (flags & DESC_S_MASK) != 0; | |
1338 | lhs->l = (flags >> DESC_L_SHIFT) & 1; | |
1339 | lhs->g = (flags & DESC_G_MASK) != 0; | |
1340 | lhs->avl = (flags & DESC_AVL_MASK) != 0; | |
4cae9c97 | 1341 | lhs->unusable = !lhs->present; |
7e680753 | 1342 | lhs->padding = 0; |
05330448 AL |
1343 | } |
1344 | ||
1345 | static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) | |
1346 | { | |
1347 | lhs->selector = rhs->selector; | |
1348 | lhs->base = rhs->base; | |
1349 | lhs->limit = rhs->limit; | |
d45fc087 RP |
1350 | lhs->flags = (rhs->type << DESC_TYPE_SHIFT) | |
1351 | ((rhs->present && !rhs->unusable) * DESC_P_MASK) | | |
1352 | (rhs->dpl << DESC_DPL_SHIFT) | | |
1353 | (rhs->db << DESC_B_SHIFT) | | |
1354 | (rhs->s * DESC_S_MASK) | | |
1355 | (rhs->l << DESC_L_SHIFT) | | |
1356 | (rhs->g * DESC_G_MASK) | | |
1357 | (rhs->avl * DESC_AVL_MASK); | |
05330448 AL |
1358 | } |
1359 | ||
1360 | static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) | |
1361 | { | |
b9bec74b | 1362 | if (set) { |
05330448 | 1363 | *kvm_reg = *qemu_reg; |
b9bec74b | 1364 | } else { |
05330448 | 1365 | *qemu_reg = *kvm_reg; |
b9bec74b | 1366 | } |
05330448 AL |
1367 | } |
1368 | ||
1bc22652 | 1369 | static int kvm_getput_regs(X86CPU *cpu, int set) |
05330448 | 1370 | { |
1bc22652 | 1371 | CPUX86State *env = &cpu->env; |
05330448 AL |
1372 | struct kvm_regs regs; |
1373 | int ret = 0; | |
1374 | ||
1375 | if (!set) { | |
1bc22652 | 1376 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, ®s); |
b9bec74b | 1377 | if (ret < 0) { |
05330448 | 1378 | return ret; |
b9bec74b | 1379 | } |
05330448 AL |
1380 | } |
1381 | ||
1382 | kvm_getput_reg(®s.rax, &env->regs[R_EAX], set); | |
1383 | kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set); | |
1384 | kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set); | |
1385 | kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set); | |
1386 | kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set); | |
1387 | kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set); | |
1388 | kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set); | |
1389 | kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set); | |
1390 | #ifdef TARGET_X86_64 | |
1391 | kvm_getput_reg(®s.r8, &env->regs[8], set); | |
1392 | kvm_getput_reg(®s.r9, &env->regs[9], set); | |
1393 | kvm_getput_reg(®s.r10, &env->regs[10], set); | |
1394 | kvm_getput_reg(®s.r11, &env->regs[11], set); | |
1395 | kvm_getput_reg(®s.r12, &env->regs[12], set); | |
1396 | kvm_getput_reg(®s.r13, &env->regs[13], set); | |
1397 | kvm_getput_reg(®s.r14, &env->regs[14], set); | |
1398 | kvm_getput_reg(®s.r15, &env->regs[15], set); | |
1399 | #endif | |
1400 | ||
1401 | kvm_getput_reg(®s.rflags, &env->eflags, set); | |
1402 | kvm_getput_reg(®s.rip, &env->eip, set); | |
1403 | ||
b9bec74b | 1404 | if (set) { |
1bc22652 | 1405 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, ®s); |
b9bec74b | 1406 | } |
05330448 AL |
1407 | |
1408 | return ret; | |
1409 | } | |
1410 | ||
1bc22652 | 1411 | static int kvm_put_fpu(X86CPU *cpu) |
05330448 | 1412 | { |
1bc22652 | 1413 | CPUX86State *env = &cpu->env; |
05330448 AL |
1414 | struct kvm_fpu fpu; |
1415 | int i; | |
1416 | ||
1417 | memset(&fpu, 0, sizeof fpu); | |
1418 | fpu.fsw = env->fpus & ~(7 << 11); | |
1419 | fpu.fsw |= (env->fpstt & 7) << 11; | |
1420 | fpu.fcw = env->fpuc; | |
42cc8fa6 JK |
1421 | fpu.last_opcode = env->fpop; |
1422 | fpu.last_ip = env->fpip; | |
1423 | fpu.last_dp = env->fpdp; | |
b9bec74b JK |
1424 | for (i = 0; i < 8; ++i) { |
1425 | fpu.ftwx |= (!env->fptags[i]) << i; | |
1426 | } | |
05330448 | 1427 | memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs); |
bee81887 | 1428 | for (i = 0; i < CPU_NB_REGS; i++) { |
19cbd87c EH |
1429 | stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0)); |
1430 | stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1)); | |
bee81887 | 1431 | } |
05330448 AL |
1432 | fpu.mxcsr = env->mxcsr; |
1433 | ||
1bc22652 | 1434 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu); |
05330448 AL |
1435 | } |
1436 | ||
6b42494b JK |
1437 | #define XSAVE_FCW_FSW 0 |
1438 | #define XSAVE_FTW_FOP 1 | |
f1665b21 SY |
1439 | #define XSAVE_CWD_RIP 2 |
1440 | #define XSAVE_CWD_RDP 4 | |
1441 | #define XSAVE_MXCSR 6 | |
1442 | #define XSAVE_ST_SPACE 8 | |
1443 | #define XSAVE_XMM_SPACE 40 | |
1444 | #define XSAVE_XSTATE_BV 128 | |
1445 | #define XSAVE_YMMH_SPACE 144 | |
79e9ebeb LJ |
1446 | #define XSAVE_BNDREGS 240 |
1447 | #define XSAVE_BNDCSR 256 | |
9aecd6f8 CP |
1448 | #define XSAVE_OPMASK 272 |
1449 | #define XSAVE_ZMM_Hi256 288 | |
1450 | #define XSAVE_Hi16_ZMM 416 | |
f74eefe0 | 1451 | #define XSAVE_PKRU 672 |
f1665b21 | 1452 | |
b503717d EH |
1453 | #define XSAVE_BYTE_OFFSET(word_offset) \ |
1454 | ((word_offset) * sizeof(((struct kvm_xsave *)0)->region[0])) | |
1455 | ||
1456 | #define ASSERT_OFFSET(word_offset, field) \ | |
1457 | QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \ | |
1458 | offsetof(X86XSaveArea, field)) | |
1459 | ||
1460 | ASSERT_OFFSET(XSAVE_FCW_FSW, legacy.fcw); | |
1461 | ASSERT_OFFSET(XSAVE_FTW_FOP, legacy.ftw); | |
1462 | ASSERT_OFFSET(XSAVE_CWD_RIP, legacy.fpip); | |
1463 | ASSERT_OFFSET(XSAVE_CWD_RDP, legacy.fpdp); | |
1464 | ASSERT_OFFSET(XSAVE_MXCSR, legacy.mxcsr); | |
1465 | ASSERT_OFFSET(XSAVE_ST_SPACE, legacy.fpregs); | |
1466 | ASSERT_OFFSET(XSAVE_XMM_SPACE, legacy.xmm_regs); | |
1467 | ASSERT_OFFSET(XSAVE_XSTATE_BV, header.xstate_bv); | |
1468 | ASSERT_OFFSET(XSAVE_YMMH_SPACE, avx_state); | |
1469 | ASSERT_OFFSET(XSAVE_BNDREGS, bndreg_state); | |
1470 | ASSERT_OFFSET(XSAVE_BNDCSR, bndcsr_state); | |
1471 | ASSERT_OFFSET(XSAVE_OPMASK, opmask_state); | |
1472 | ASSERT_OFFSET(XSAVE_ZMM_Hi256, zmm_hi256_state); | |
1473 | ASSERT_OFFSET(XSAVE_Hi16_ZMM, hi16_zmm_state); | |
1474 | ASSERT_OFFSET(XSAVE_PKRU, pkru_state); | |
1475 | ||
1bc22652 | 1476 | static int kvm_put_xsave(X86CPU *cpu) |
f1665b21 | 1477 | { |
1bc22652 | 1478 | CPUX86State *env = &cpu->env; |
86cd2ea0 | 1479 | X86XSaveArea *xsave = env->kvm_xsave_buf; |
f1665b21 | 1480 | |
28143b40 | 1481 | if (!has_xsave) { |
1bc22652 | 1482 | return kvm_put_fpu(cpu); |
b9bec74b | 1483 | } |
86a57621 | 1484 | x86_cpu_xsave_all_areas(cpu, xsave); |
f1665b21 | 1485 | |
9be38598 | 1486 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave); |
f1665b21 SY |
1487 | } |
1488 | ||
1bc22652 | 1489 | static int kvm_put_xcrs(X86CPU *cpu) |
f1665b21 | 1490 | { |
1bc22652 | 1491 | CPUX86State *env = &cpu->env; |
bdfc8480 | 1492 | struct kvm_xcrs xcrs = {}; |
f1665b21 | 1493 | |
28143b40 | 1494 | if (!has_xcrs) { |
f1665b21 | 1495 | return 0; |
b9bec74b | 1496 | } |
f1665b21 SY |
1497 | |
1498 | xcrs.nr_xcrs = 1; | |
1499 | xcrs.flags = 0; | |
1500 | xcrs.xcrs[0].xcr = 0; | |
1501 | xcrs.xcrs[0].value = env->xcr0; | |
1bc22652 | 1502 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs); |
f1665b21 SY |
1503 | } |
1504 | ||
1bc22652 | 1505 | static int kvm_put_sregs(X86CPU *cpu) |
05330448 | 1506 | { |
1bc22652 | 1507 | CPUX86State *env = &cpu->env; |
05330448 AL |
1508 | struct kvm_sregs sregs; |
1509 | ||
0e607a80 JK |
1510 | memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); |
1511 | if (env->interrupt_injected >= 0) { | |
1512 | sregs.interrupt_bitmap[env->interrupt_injected / 64] |= | |
1513 | (uint64_t)1 << (env->interrupt_injected % 64); | |
1514 | } | |
05330448 AL |
1515 | |
1516 | if ((env->eflags & VM_MASK)) { | |
b9bec74b JK |
1517 | set_v8086_seg(&sregs.cs, &env->segs[R_CS]); |
1518 | set_v8086_seg(&sregs.ds, &env->segs[R_DS]); | |
1519 | set_v8086_seg(&sregs.es, &env->segs[R_ES]); | |
1520 | set_v8086_seg(&sregs.fs, &env->segs[R_FS]); | |
1521 | set_v8086_seg(&sregs.gs, &env->segs[R_GS]); | |
1522 | set_v8086_seg(&sregs.ss, &env->segs[R_SS]); | |
05330448 | 1523 | } else { |
b9bec74b JK |
1524 | set_seg(&sregs.cs, &env->segs[R_CS]); |
1525 | set_seg(&sregs.ds, &env->segs[R_DS]); | |
1526 | set_seg(&sregs.es, &env->segs[R_ES]); | |
1527 | set_seg(&sregs.fs, &env->segs[R_FS]); | |
1528 | set_seg(&sregs.gs, &env->segs[R_GS]); | |
1529 | set_seg(&sregs.ss, &env->segs[R_SS]); | |
05330448 AL |
1530 | } |
1531 | ||
1532 | set_seg(&sregs.tr, &env->tr); | |
1533 | set_seg(&sregs.ldt, &env->ldt); | |
1534 | ||
1535 | sregs.idt.limit = env->idt.limit; | |
1536 | sregs.idt.base = env->idt.base; | |
7e680753 | 1537 | memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); |
05330448 AL |
1538 | sregs.gdt.limit = env->gdt.limit; |
1539 | sregs.gdt.base = env->gdt.base; | |
7e680753 | 1540 | memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); |
05330448 AL |
1541 | |
1542 | sregs.cr0 = env->cr[0]; | |
1543 | sregs.cr2 = env->cr[2]; | |
1544 | sregs.cr3 = env->cr[3]; | |
1545 | sregs.cr4 = env->cr[4]; | |
1546 | ||
02e51483 CF |
1547 | sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state); |
1548 | sregs.apic_base = cpu_get_apic_base(cpu->apic_state); | |
05330448 AL |
1549 | |
1550 | sregs.efer = env->efer; | |
1551 | ||
1bc22652 | 1552 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs); |
05330448 AL |
1553 | } |
1554 | ||
d71b62a1 EH |
1555 | static void kvm_msr_buf_reset(X86CPU *cpu) |
1556 | { | |
1557 | memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE); | |
1558 | } | |
1559 | ||
9c600a84 EH |
1560 | static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value) |
1561 | { | |
1562 | struct kvm_msrs *msrs = cpu->kvm_msr_buf; | |
1563 | void *limit = ((void *)msrs) + MSR_BUF_SIZE; | |
1564 | struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs]; | |
1565 | ||
1566 | assert((void *)(entry + 1) <= limit); | |
1567 | ||
1abc2cae EH |
1568 | entry->index = index; |
1569 | entry->reserved = 0; | |
1570 | entry->data = value; | |
9c600a84 EH |
1571 | msrs->nmsrs++; |
1572 | } | |
1573 | ||
73e1b8f2 PB |
1574 | static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value) |
1575 | { | |
1576 | kvm_msr_buf_reset(cpu); | |
1577 | kvm_msr_entry_add(cpu, index, value); | |
1578 | ||
1579 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); | |
1580 | } | |
1581 | ||
f8d9ccf8 DDAG |
1582 | void kvm_put_apicbase(X86CPU *cpu, uint64_t value) |
1583 | { | |
1584 | int ret; | |
1585 | ||
1586 | ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value); | |
1587 | assert(ret == 1); | |
1588 | } | |
1589 | ||
7477cd38 MT |
1590 | static int kvm_put_tscdeadline_msr(X86CPU *cpu) |
1591 | { | |
1592 | CPUX86State *env = &cpu->env; | |
48e1a45c | 1593 | int ret; |
7477cd38 MT |
1594 | |
1595 | if (!has_msr_tsc_deadline) { | |
1596 | return 0; | |
1597 | } | |
1598 | ||
73e1b8f2 | 1599 | ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline); |
48e1a45c PB |
1600 | if (ret < 0) { |
1601 | return ret; | |
1602 | } | |
1603 | ||
1604 | assert(ret == 1); | |
1605 | return 0; | |
7477cd38 MT |
1606 | } |
1607 | ||
6bdf863d JK |
1608 | /* |
1609 | * Provide a separate write service for the feature control MSR in order to | |
1610 | * kick the VCPU out of VMXON or even guest mode on reset. This has to be done | |
1611 | * before writing any other state because forcibly leaving nested mode | |
1612 | * invalidates the VCPU state. | |
1613 | */ | |
1614 | static int kvm_put_msr_feature_control(X86CPU *cpu) | |
1615 | { | |
48e1a45c PB |
1616 | int ret; |
1617 | ||
1618 | if (!has_msr_feature_control) { | |
1619 | return 0; | |
1620 | } | |
6bdf863d | 1621 | |
73e1b8f2 PB |
1622 | ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL, |
1623 | cpu->env.msr_ia32_feature_control); | |
48e1a45c PB |
1624 | if (ret < 0) { |
1625 | return ret; | |
1626 | } | |
1627 | ||
1628 | assert(ret == 1); | |
1629 | return 0; | |
6bdf863d JK |
1630 | } |
1631 | ||
1bc22652 | 1632 | static int kvm_put_msrs(X86CPU *cpu, int level) |
05330448 | 1633 | { |
1bc22652 | 1634 | CPUX86State *env = &cpu->env; |
9c600a84 | 1635 | int i; |
48e1a45c | 1636 | int ret; |
05330448 | 1637 | |
d71b62a1 EH |
1638 | kvm_msr_buf_reset(cpu); |
1639 | ||
9c600a84 EH |
1640 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs); |
1641 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp); | |
1642 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip); | |
1643 | kvm_msr_entry_add(cpu, MSR_PAT, env->pat); | |
c3a3a7d3 | 1644 | if (has_msr_star) { |
9c600a84 | 1645 | kvm_msr_entry_add(cpu, MSR_STAR, env->star); |
b9bec74b | 1646 | } |
c3a3a7d3 | 1647 | if (has_msr_hsave_pa) { |
9c600a84 | 1648 | kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave); |
b9bec74b | 1649 | } |
c9b8f6b6 | 1650 | if (has_msr_tsc_aux) { |
9c600a84 | 1651 | kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux); |
c9b8f6b6 | 1652 | } |
f28558d3 | 1653 | if (has_msr_tsc_adjust) { |
9c600a84 | 1654 | kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust); |
f28558d3 | 1655 | } |
21e87c46 | 1656 | if (has_msr_misc_enable) { |
9c600a84 | 1657 | kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, |
21e87c46 AK |
1658 | env->msr_ia32_misc_enable); |
1659 | } | |
fc12d72e | 1660 | if (has_msr_smbase) { |
9c600a84 | 1661 | kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase); |
fc12d72e | 1662 | } |
439d19f2 | 1663 | if (has_msr_bndcfgs) { |
9c600a84 | 1664 | kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs); |
439d19f2 | 1665 | } |
18cd2c17 | 1666 | if (has_msr_xss) { |
9c600a84 | 1667 | kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss); |
18cd2c17 | 1668 | } |
a33a2cfe PB |
1669 | if (has_msr_spec_ctrl) { |
1670 | kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl); | |
1671 | } | |
05330448 | 1672 | #ifdef TARGET_X86_64 |
25d2e361 | 1673 | if (lm_capable_kernel) { |
9c600a84 EH |
1674 | kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar); |
1675 | kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase); | |
1676 | kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask); | |
1677 | kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar); | |
25d2e361 | 1678 | } |
05330448 | 1679 | #endif |
a33a2cfe | 1680 | |
ff5c186b | 1681 | /* |
0d894367 PB |
1682 | * The following MSRs have side effects on the guest or are too heavy |
1683 | * for normal writeback. Limit them to reset or full state updates. | |
ff5c186b JK |
1684 | */ |
1685 | if (level >= KVM_PUT_RESET_STATE) { | |
9c600a84 EH |
1686 | kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc); |
1687 | kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr); | |
1688 | kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr); | |
55c911a5 | 1689 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) { |
9c600a84 | 1690 | kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr); |
c5999bfc | 1691 | } |
55c911a5 | 1692 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) { |
9c600a84 | 1693 | kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr); |
bc9a839d | 1694 | } |
55c911a5 | 1695 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) { |
9c600a84 | 1696 | kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr); |
917367aa | 1697 | } |
0b368a10 JD |
1698 | if (has_architectural_pmu_version > 0) { |
1699 | if (has_architectural_pmu_version > 1) { | |
1700 | /* Stop the counter. */ | |
1701 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); | |
1702 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); | |
1703 | } | |
0d894367 PB |
1704 | |
1705 | /* Set the counter values. */ | |
0b368a10 | 1706 | for (i = 0; i < num_architectural_pmu_fixed_counters; i++) { |
9c600a84 | 1707 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, |
0d894367 PB |
1708 | env->msr_fixed_counters[i]); |
1709 | } | |
0b368a10 | 1710 | for (i = 0; i < num_architectural_pmu_gp_counters; i++) { |
9c600a84 | 1711 | kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, |
0d894367 | 1712 | env->msr_gp_counters[i]); |
9c600a84 | 1713 | kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, |
0d894367 PB |
1714 | env->msr_gp_evtsel[i]); |
1715 | } | |
0b368a10 JD |
1716 | if (has_architectural_pmu_version > 1) { |
1717 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, | |
1718 | env->msr_global_status); | |
1719 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, | |
1720 | env->msr_global_ovf_ctrl); | |
1721 | ||
1722 | /* Now start the PMU. */ | |
1723 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, | |
1724 | env->msr_fixed_ctr_ctrl); | |
1725 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, | |
1726 | env->msr_global_ctrl); | |
1727 | } | |
0d894367 | 1728 | } |
da1cc323 EY |
1729 | /* |
1730 | * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add, | |
1731 | * only sync them to KVM on the first cpu | |
1732 | */ | |
1733 | if (current_cpu == first_cpu) { | |
1734 | if (has_msr_hv_hypercall) { | |
1735 | kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, | |
1736 | env->msr_hv_guest_os_id); | |
1737 | kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, | |
1738 | env->msr_hv_hypercall); | |
1739 | } | |
1740 | if (cpu->hyperv_time) { | |
1741 | kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, | |
1742 | env->msr_hv_tsc); | |
1743 | } | |
eab70139 | 1744 | } |
2d5aa872 | 1745 | if (cpu->hyperv_vapic) { |
9c600a84 | 1746 | kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, |
5ef68987 | 1747 | env->msr_hv_vapic); |
eab70139 | 1748 | } |
f2a53c9e AS |
1749 | if (has_msr_hv_crash) { |
1750 | int j; | |
1751 | ||
5e953812 | 1752 | for (j = 0; j < HV_CRASH_PARAMS; j++) |
9c600a84 | 1753 | kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, |
f2a53c9e AS |
1754 | env->msr_hv_crash_params[j]); |
1755 | ||
5e953812 | 1756 | kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY); |
f2a53c9e | 1757 | } |
46eb8f98 | 1758 | if (has_msr_hv_runtime) { |
9c600a84 | 1759 | kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime); |
46eb8f98 | 1760 | } |
866eea9a AS |
1761 | if (cpu->hyperv_synic) { |
1762 | int j; | |
1763 | ||
09df29b6 RK |
1764 | kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION); |
1765 | ||
9c600a84 | 1766 | kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, |
866eea9a | 1767 | env->msr_hv_synic_control); |
9c600a84 | 1768 | kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, |
866eea9a | 1769 | env->msr_hv_synic_evt_page); |
9c600a84 | 1770 | kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, |
866eea9a AS |
1771 | env->msr_hv_synic_msg_page); |
1772 | ||
1773 | for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) { | |
9c600a84 | 1774 | kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j, |
866eea9a AS |
1775 | env->msr_hv_synic_sint[j]); |
1776 | } | |
1777 | } | |
ff99aa64 AS |
1778 | if (has_msr_hv_stimer) { |
1779 | int j; | |
1780 | ||
1781 | for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) { | |
9c600a84 | 1782 | kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2, |
ff99aa64 AS |
1783 | env->msr_hv_stimer_config[j]); |
1784 | } | |
1785 | ||
1786 | for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) { | |
9c600a84 | 1787 | kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2, |
ff99aa64 AS |
1788 | env->msr_hv_stimer_count[j]); |
1789 | } | |
1790 | } | |
1eabfce6 | 1791 | if (env->features[FEAT_1_EDX] & CPUID_MTRR) { |
112dad69 DDAG |
1792 | uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits); |
1793 | ||
9c600a84 EH |
1794 | kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype); |
1795 | kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]); | |
1796 | kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]); | |
1797 | kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]); | |
1798 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]); | |
1799 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]); | |
1800 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]); | |
1801 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]); | |
1802 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]); | |
1803 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]); | |
1804 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]); | |
1805 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]); | |
d1ae67f6 | 1806 | for (i = 0; i < MSR_MTRRcap_VCNT; i++) { |
112dad69 DDAG |
1807 | /* The CPU GPs if we write to a bit above the physical limit of |
1808 | * the host CPU (and KVM emulates that) | |
1809 | */ | |
1810 | uint64_t mask = env->mtrr_var[i].mask; | |
1811 | mask &= phys_mask; | |
1812 | ||
9c600a84 EH |
1813 | kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), |
1814 | env->mtrr_var[i].base); | |
112dad69 | 1815 | kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask); |
d1ae67f6 AW |
1816 | } |
1817 | } | |
b77146e9 CP |
1818 | if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) { |
1819 | int addr_num = kvm_arch_get_supported_cpuid(kvm_state, | |
1820 | 0x14, 1, R_EAX) & 0x7; | |
1821 | ||
1822 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, | |
1823 | env->msr_rtit_ctrl); | |
1824 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, | |
1825 | env->msr_rtit_status); | |
1826 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, | |
1827 | env->msr_rtit_output_base); | |
1828 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, | |
1829 | env->msr_rtit_output_mask); | |
1830 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, | |
1831 | env->msr_rtit_cr3_match); | |
1832 | for (i = 0; i < addr_num; i++) { | |
1833 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, | |
1834 | env->msr_rtit_addrs[i]); | |
1835 | } | |
1836 | } | |
6bdf863d JK |
1837 | |
1838 | /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see | |
1839 | * kvm_put_msr_feature_control. */ | |
ea643051 | 1840 | } |
57780495 | 1841 | if (env->mcg_cap) { |
d8da8574 | 1842 | int i; |
b9bec74b | 1843 | |
9c600a84 EH |
1844 | kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status); |
1845 | kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl); | |
87f8b626 AR |
1846 | if (has_msr_mcg_ext_ctl) { |
1847 | kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl); | |
1848 | } | |
c34d440a | 1849 | for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { |
9c600a84 | 1850 | kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]); |
57780495 MT |
1851 | } |
1852 | } | |
1a03675d | 1853 | |
d71b62a1 | 1854 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); |
48e1a45c PB |
1855 | if (ret < 0) { |
1856 | return ret; | |
1857 | } | |
05330448 | 1858 | |
c70b11d1 EH |
1859 | if (ret < cpu->kvm_msr_buf->nmsrs) { |
1860 | struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; | |
1861 | error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64, | |
1862 | (uint32_t)e->index, (uint64_t)e->data); | |
1863 | } | |
1864 | ||
9c600a84 | 1865 | assert(ret == cpu->kvm_msr_buf->nmsrs); |
48e1a45c | 1866 | return 0; |
05330448 AL |
1867 | } |
1868 | ||
1869 | ||
1bc22652 | 1870 | static int kvm_get_fpu(X86CPU *cpu) |
05330448 | 1871 | { |
1bc22652 | 1872 | CPUX86State *env = &cpu->env; |
05330448 AL |
1873 | struct kvm_fpu fpu; |
1874 | int i, ret; | |
1875 | ||
1bc22652 | 1876 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu); |
b9bec74b | 1877 | if (ret < 0) { |
05330448 | 1878 | return ret; |
b9bec74b | 1879 | } |
05330448 AL |
1880 | |
1881 | env->fpstt = (fpu.fsw >> 11) & 7; | |
1882 | env->fpus = fpu.fsw; | |
1883 | env->fpuc = fpu.fcw; | |
42cc8fa6 JK |
1884 | env->fpop = fpu.last_opcode; |
1885 | env->fpip = fpu.last_ip; | |
1886 | env->fpdp = fpu.last_dp; | |
b9bec74b JK |
1887 | for (i = 0; i < 8; ++i) { |
1888 | env->fptags[i] = !((fpu.ftwx >> i) & 1); | |
1889 | } | |
05330448 | 1890 | memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs); |
bee81887 | 1891 | for (i = 0; i < CPU_NB_REGS; i++) { |
19cbd87c EH |
1892 | env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]); |
1893 | env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]); | |
bee81887 | 1894 | } |
05330448 AL |
1895 | env->mxcsr = fpu.mxcsr; |
1896 | ||
1897 | return 0; | |
1898 | } | |
1899 | ||
1bc22652 | 1900 | static int kvm_get_xsave(X86CPU *cpu) |
f1665b21 | 1901 | { |
1bc22652 | 1902 | CPUX86State *env = &cpu->env; |
86cd2ea0 | 1903 | X86XSaveArea *xsave = env->kvm_xsave_buf; |
86a57621 | 1904 | int ret; |
f1665b21 | 1905 | |
28143b40 | 1906 | if (!has_xsave) { |
1bc22652 | 1907 | return kvm_get_fpu(cpu); |
b9bec74b | 1908 | } |
f1665b21 | 1909 | |
1bc22652 | 1910 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave); |
0f53994f | 1911 | if (ret < 0) { |
f1665b21 | 1912 | return ret; |
0f53994f | 1913 | } |
86a57621 | 1914 | x86_cpu_xrstor_all_areas(cpu, xsave); |
f1665b21 | 1915 | |
f1665b21 | 1916 | return 0; |
f1665b21 SY |
1917 | } |
1918 | ||
1bc22652 | 1919 | static int kvm_get_xcrs(X86CPU *cpu) |
f1665b21 | 1920 | { |
1bc22652 | 1921 | CPUX86State *env = &cpu->env; |
f1665b21 SY |
1922 | int i, ret; |
1923 | struct kvm_xcrs xcrs; | |
1924 | ||
28143b40 | 1925 | if (!has_xcrs) { |
f1665b21 | 1926 | return 0; |
b9bec74b | 1927 | } |
f1665b21 | 1928 | |
1bc22652 | 1929 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs); |
b9bec74b | 1930 | if (ret < 0) { |
f1665b21 | 1931 | return ret; |
b9bec74b | 1932 | } |
f1665b21 | 1933 | |
b9bec74b | 1934 | for (i = 0; i < xcrs.nr_xcrs; i++) { |
f1665b21 | 1935 | /* Only support xcr0 now */ |
0fd53fec PB |
1936 | if (xcrs.xcrs[i].xcr == 0) { |
1937 | env->xcr0 = xcrs.xcrs[i].value; | |
f1665b21 SY |
1938 | break; |
1939 | } | |
b9bec74b | 1940 | } |
f1665b21 | 1941 | return 0; |
f1665b21 SY |
1942 | } |
1943 | ||
1bc22652 | 1944 | static int kvm_get_sregs(X86CPU *cpu) |
05330448 | 1945 | { |
1bc22652 | 1946 | CPUX86State *env = &cpu->env; |
05330448 | 1947 | struct kvm_sregs sregs; |
0e607a80 | 1948 | int bit, i, ret; |
05330448 | 1949 | |
1bc22652 | 1950 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); |
b9bec74b | 1951 | if (ret < 0) { |
05330448 | 1952 | return ret; |
b9bec74b | 1953 | } |
05330448 | 1954 | |
0e607a80 JK |
1955 | /* There can only be one pending IRQ set in the bitmap at a time, so try |
1956 | to find it and save its number instead (-1 for none). */ | |
1957 | env->interrupt_injected = -1; | |
1958 | for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) { | |
1959 | if (sregs.interrupt_bitmap[i]) { | |
1960 | bit = ctz64(sregs.interrupt_bitmap[i]); | |
1961 | env->interrupt_injected = i * 64 + bit; | |
1962 | break; | |
1963 | } | |
1964 | } | |
05330448 AL |
1965 | |
1966 | get_seg(&env->segs[R_CS], &sregs.cs); | |
1967 | get_seg(&env->segs[R_DS], &sregs.ds); | |
1968 | get_seg(&env->segs[R_ES], &sregs.es); | |
1969 | get_seg(&env->segs[R_FS], &sregs.fs); | |
1970 | get_seg(&env->segs[R_GS], &sregs.gs); | |
1971 | get_seg(&env->segs[R_SS], &sregs.ss); | |
1972 | ||
1973 | get_seg(&env->tr, &sregs.tr); | |
1974 | get_seg(&env->ldt, &sregs.ldt); | |
1975 | ||
1976 | env->idt.limit = sregs.idt.limit; | |
1977 | env->idt.base = sregs.idt.base; | |
1978 | env->gdt.limit = sregs.gdt.limit; | |
1979 | env->gdt.base = sregs.gdt.base; | |
1980 | ||
1981 | env->cr[0] = sregs.cr0; | |
1982 | env->cr[2] = sregs.cr2; | |
1983 | env->cr[3] = sregs.cr3; | |
1984 | env->cr[4] = sregs.cr4; | |
1985 | ||
05330448 | 1986 | env->efer = sregs.efer; |
cce47516 JK |
1987 | |
1988 | /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ | |
35b1b927 | 1989 | x86_update_hflags(env); |
05330448 AL |
1990 | |
1991 | return 0; | |
1992 | } | |
1993 | ||
1bc22652 | 1994 | static int kvm_get_msrs(X86CPU *cpu) |
05330448 | 1995 | { |
1bc22652 | 1996 | CPUX86State *env = &cpu->env; |
d71b62a1 | 1997 | struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries; |
9c600a84 | 1998 | int ret, i; |
fcc35e7c | 1999 | uint64_t mtrr_top_bits; |
05330448 | 2000 | |
d71b62a1 EH |
2001 | kvm_msr_buf_reset(cpu); |
2002 | ||
9c600a84 EH |
2003 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0); |
2004 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0); | |
2005 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0); | |
2006 | kvm_msr_entry_add(cpu, MSR_PAT, 0); | |
c3a3a7d3 | 2007 | if (has_msr_star) { |
9c600a84 | 2008 | kvm_msr_entry_add(cpu, MSR_STAR, 0); |
b9bec74b | 2009 | } |
c3a3a7d3 | 2010 | if (has_msr_hsave_pa) { |
9c600a84 | 2011 | kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0); |
b9bec74b | 2012 | } |
c9b8f6b6 | 2013 | if (has_msr_tsc_aux) { |
9c600a84 | 2014 | kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0); |
c9b8f6b6 | 2015 | } |
f28558d3 | 2016 | if (has_msr_tsc_adjust) { |
9c600a84 | 2017 | kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0); |
f28558d3 | 2018 | } |
aa82ba54 | 2019 | if (has_msr_tsc_deadline) { |
9c600a84 | 2020 | kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0); |
aa82ba54 | 2021 | } |
21e87c46 | 2022 | if (has_msr_misc_enable) { |
9c600a84 | 2023 | kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0); |
21e87c46 | 2024 | } |
fc12d72e | 2025 | if (has_msr_smbase) { |
9c600a84 | 2026 | kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0); |
fc12d72e | 2027 | } |
df67696e | 2028 | if (has_msr_feature_control) { |
9c600a84 | 2029 | kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0); |
df67696e | 2030 | } |
79e9ebeb | 2031 | if (has_msr_bndcfgs) { |
9c600a84 | 2032 | kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0); |
79e9ebeb | 2033 | } |
18cd2c17 | 2034 | if (has_msr_xss) { |
9c600a84 | 2035 | kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0); |
18cd2c17 | 2036 | } |
a33a2cfe PB |
2037 | if (has_msr_spec_ctrl) { |
2038 | kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0); | |
2039 | } | |
18cd2c17 | 2040 | |
b8cc45d6 GC |
2041 | |
2042 | if (!env->tsc_valid) { | |
9c600a84 | 2043 | kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0); |
1354869c | 2044 | env->tsc_valid = !runstate_is_running(); |
b8cc45d6 GC |
2045 | } |
2046 | ||
05330448 | 2047 | #ifdef TARGET_X86_64 |
25d2e361 | 2048 | if (lm_capable_kernel) { |
9c600a84 EH |
2049 | kvm_msr_entry_add(cpu, MSR_CSTAR, 0); |
2050 | kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0); | |
2051 | kvm_msr_entry_add(cpu, MSR_FMASK, 0); | |
2052 | kvm_msr_entry_add(cpu, MSR_LSTAR, 0); | |
25d2e361 | 2053 | } |
05330448 | 2054 | #endif |
9c600a84 EH |
2055 | kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0); |
2056 | kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0); | |
55c911a5 | 2057 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) { |
9c600a84 | 2058 | kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0); |
c5999bfc | 2059 | } |
55c911a5 | 2060 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) { |
9c600a84 | 2061 | kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0); |
bc9a839d | 2062 | } |
55c911a5 | 2063 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) { |
9c600a84 | 2064 | kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0); |
917367aa | 2065 | } |
0b368a10 JD |
2066 | if (has_architectural_pmu_version > 0) { |
2067 | if (has_architectural_pmu_version > 1) { | |
2068 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); | |
2069 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); | |
2070 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0); | |
2071 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0); | |
2072 | } | |
2073 | for (i = 0; i < num_architectural_pmu_fixed_counters; i++) { | |
9c600a84 | 2074 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0); |
0d894367 | 2075 | } |
0b368a10 | 2076 | for (i = 0; i < num_architectural_pmu_gp_counters; i++) { |
9c600a84 EH |
2077 | kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0); |
2078 | kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0); | |
0d894367 PB |
2079 | } |
2080 | } | |
1a03675d | 2081 | |
57780495 | 2082 | if (env->mcg_cap) { |
9c600a84 EH |
2083 | kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0); |
2084 | kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0); | |
87f8b626 AR |
2085 | if (has_msr_mcg_ext_ctl) { |
2086 | kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0); | |
2087 | } | |
b9bec74b | 2088 | for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { |
9c600a84 | 2089 | kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0); |
b9bec74b | 2090 | } |
57780495 | 2091 | } |
57780495 | 2092 | |
1c90ef26 | 2093 | if (has_msr_hv_hypercall) { |
9c600a84 EH |
2094 | kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0); |
2095 | kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0); | |
1c90ef26 | 2096 | } |
2d5aa872 | 2097 | if (cpu->hyperv_vapic) { |
9c600a84 | 2098 | kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0); |
5ef68987 | 2099 | } |
3ddcd2ed | 2100 | if (cpu->hyperv_time) { |
9c600a84 | 2101 | kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0); |
48a5f3bc | 2102 | } |
f2a53c9e AS |
2103 | if (has_msr_hv_crash) { |
2104 | int j; | |
2105 | ||
5e953812 | 2106 | for (j = 0; j < HV_CRASH_PARAMS; j++) { |
9c600a84 | 2107 | kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0); |
f2a53c9e AS |
2108 | } |
2109 | } | |
46eb8f98 | 2110 | if (has_msr_hv_runtime) { |
9c600a84 | 2111 | kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0); |
46eb8f98 | 2112 | } |
866eea9a AS |
2113 | if (cpu->hyperv_synic) { |
2114 | uint32_t msr; | |
2115 | ||
9c600a84 | 2116 | kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0); |
9c600a84 EH |
2117 | kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0); |
2118 | kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0); | |
866eea9a | 2119 | for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) { |
9c600a84 | 2120 | kvm_msr_entry_add(cpu, msr, 0); |
866eea9a AS |
2121 | } |
2122 | } | |
ff99aa64 AS |
2123 | if (has_msr_hv_stimer) { |
2124 | uint32_t msr; | |
2125 | ||
2126 | for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT; | |
2127 | msr++) { | |
9c600a84 | 2128 | kvm_msr_entry_add(cpu, msr, 0); |
ff99aa64 AS |
2129 | } |
2130 | } | |
1eabfce6 | 2131 | if (env->features[FEAT_1_EDX] & CPUID_MTRR) { |
9c600a84 EH |
2132 | kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0); |
2133 | kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0); | |
2134 | kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0); | |
2135 | kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0); | |
2136 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0); | |
2137 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0); | |
2138 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0); | |
2139 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0); | |
2140 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0); | |
2141 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0); | |
2142 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0); | |
2143 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0); | |
d1ae67f6 | 2144 | for (i = 0; i < MSR_MTRRcap_VCNT; i++) { |
9c600a84 EH |
2145 | kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0); |
2146 | kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0); | |
d1ae67f6 AW |
2147 | } |
2148 | } | |
5ef68987 | 2149 | |
b77146e9 CP |
2150 | if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) { |
2151 | int addr_num = | |
2152 | kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7; | |
2153 | ||
2154 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0); | |
2155 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0); | |
2156 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0); | |
2157 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0); | |
2158 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0); | |
2159 | for (i = 0; i < addr_num; i++) { | |
2160 | kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0); | |
2161 | } | |
2162 | } | |
2163 | ||
d71b62a1 | 2164 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf); |
b9bec74b | 2165 | if (ret < 0) { |
05330448 | 2166 | return ret; |
b9bec74b | 2167 | } |
05330448 | 2168 | |
c70b11d1 EH |
2169 | if (ret < cpu->kvm_msr_buf->nmsrs) { |
2170 | struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; | |
2171 | error_report("error: failed to get MSR 0x%" PRIx32, | |
2172 | (uint32_t)e->index); | |
2173 | } | |
2174 | ||
9c600a84 | 2175 | assert(ret == cpu->kvm_msr_buf->nmsrs); |
fcc35e7c DDAG |
2176 | /* |
2177 | * MTRR masks: Each mask consists of 5 parts | |
2178 | * a 10..0: must be zero | |
2179 | * b 11 : valid bit | |
2180 | * c n-1.12: actual mask bits | |
2181 | * d 51..n: reserved must be zero | |
2182 | * e 63.52: reserved must be zero | |
2183 | * | |
2184 | * 'n' is the number of physical bits supported by the CPU and is | |
2185 | * apparently always <= 52. We know our 'n' but don't know what | |
2186 | * the destinations 'n' is; it might be smaller, in which case | |
2187 | * it masks (c) on loading. It might be larger, in which case | |
2188 | * we fill 'd' so that d..c is consistent irrespetive of the 'n' | |
2189 | * we're migrating to. | |
2190 | */ | |
2191 | ||
2192 | if (cpu->fill_mtrr_mask) { | |
2193 | QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52); | |
2194 | assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS); | |
2195 | mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits); | |
2196 | } else { | |
2197 | mtrr_top_bits = 0; | |
2198 | } | |
2199 | ||
05330448 | 2200 | for (i = 0; i < ret; i++) { |
0d894367 PB |
2201 | uint32_t index = msrs[i].index; |
2202 | switch (index) { | |
05330448 AL |
2203 | case MSR_IA32_SYSENTER_CS: |
2204 | env->sysenter_cs = msrs[i].data; | |
2205 | break; | |
2206 | case MSR_IA32_SYSENTER_ESP: | |
2207 | env->sysenter_esp = msrs[i].data; | |
2208 | break; | |
2209 | case MSR_IA32_SYSENTER_EIP: | |
2210 | env->sysenter_eip = msrs[i].data; | |
2211 | break; | |
0c03266a JK |
2212 | case MSR_PAT: |
2213 | env->pat = msrs[i].data; | |
2214 | break; | |
05330448 AL |
2215 | case MSR_STAR: |
2216 | env->star = msrs[i].data; | |
2217 | break; | |
2218 | #ifdef TARGET_X86_64 | |
2219 | case MSR_CSTAR: | |
2220 | env->cstar = msrs[i].data; | |
2221 | break; | |
2222 | case MSR_KERNELGSBASE: | |
2223 | env->kernelgsbase = msrs[i].data; | |
2224 | break; | |
2225 | case MSR_FMASK: | |
2226 | env->fmask = msrs[i].data; | |
2227 | break; | |
2228 | case MSR_LSTAR: | |
2229 | env->lstar = msrs[i].data; | |
2230 | break; | |
2231 | #endif | |
2232 | case MSR_IA32_TSC: | |
2233 | env->tsc = msrs[i].data; | |
2234 | break; | |
c9b8f6b6 AS |
2235 | case MSR_TSC_AUX: |
2236 | env->tsc_aux = msrs[i].data; | |
2237 | break; | |
f28558d3 WA |
2238 | case MSR_TSC_ADJUST: |
2239 | env->tsc_adjust = msrs[i].data; | |
2240 | break; | |
aa82ba54 LJ |
2241 | case MSR_IA32_TSCDEADLINE: |
2242 | env->tsc_deadline = msrs[i].data; | |
2243 | break; | |
aa851e36 MT |
2244 | case MSR_VM_HSAVE_PA: |
2245 | env->vm_hsave = msrs[i].data; | |
2246 | break; | |
1a03675d GC |
2247 | case MSR_KVM_SYSTEM_TIME: |
2248 | env->system_time_msr = msrs[i].data; | |
2249 | break; | |
2250 | case MSR_KVM_WALL_CLOCK: | |
2251 | env->wall_clock_msr = msrs[i].data; | |
2252 | break; | |
57780495 MT |
2253 | case MSR_MCG_STATUS: |
2254 | env->mcg_status = msrs[i].data; | |
2255 | break; | |
2256 | case MSR_MCG_CTL: | |
2257 | env->mcg_ctl = msrs[i].data; | |
2258 | break; | |
87f8b626 AR |
2259 | case MSR_MCG_EXT_CTL: |
2260 | env->mcg_ext_ctl = msrs[i].data; | |
2261 | break; | |
21e87c46 AK |
2262 | case MSR_IA32_MISC_ENABLE: |
2263 | env->msr_ia32_misc_enable = msrs[i].data; | |
2264 | break; | |
fc12d72e PB |
2265 | case MSR_IA32_SMBASE: |
2266 | env->smbase = msrs[i].data; | |
2267 | break; | |
0779caeb ACL |
2268 | case MSR_IA32_FEATURE_CONTROL: |
2269 | env->msr_ia32_feature_control = msrs[i].data; | |
df67696e | 2270 | break; |
79e9ebeb LJ |
2271 | case MSR_IA32_BNDCFGS: |
2272 | env->msr_bndcfgs = msrs[i].data; | |
2273 | break; | |
18cd2c17 WL |
2274 | case MSR_IA32_XSS: |
2275 | env->xss = msrs[i].data; | |
2276 | break; | |
57780495 | 2277 | default: |
57780495 MT |
2278 | if (msrs[i].index >= MSR_MC0_CTL && |
2279 | msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) { | |
2280 | env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data; | |
57780495 | 2281 | } |
d8da8574 | 2282 | break; |
f6584ee2 GN |
2283 | case MSR_KVM_ASYNC_PF_EN: |
2284 | env->async_pf_en_msr = msrs[i].data; | |
2285 | break; | |
bc9a839d MT |
2286 | case MSR_KVM_PV_EOI_EN: |
2287 | env->pv_eoi_en_msr = msrs[i].data; | |
2288 | break; | |
917367aa MT |
2289 | case MSR_KVM_STEAL_TIME: |
2290 | env->steal_time_msr = msrs[i].data; | |
2291 | break; | |
0d894367 PB |
2292 | case MSR_CORE_PERF_FIXED_CTR_CTRL: |
2293 | env->msr_fixed_ctr_ctrl = msrs[i].data; | |
2294 | break; | |
2295 | case MSR_CORE_PERF_GLOBAL_CTRL: | |
2296 | env->msr_global_ctrl = msrs[i].data; | |
2297 | break; | |
2298 | case MSR_CORE_PERF_GLOBAL_STATUS: | |
2299 | env->msr_global_status = msrs[i].data; | |
2300 | break; | |
2301 | case MSR_CORE_PERF_GLOBAL_OVF_CTRL: | |
2302 | env->msr_global_ovf_ctrl = msrs[i].data; | |
2303 | break; | |
2304 | case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1: | |
2305 | env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data; | |
2306 | break; | |
2307 | case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1: | |
2308 | env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data; | |
2309 | break; | |
2310 | case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1: | |
2311 | env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data; | |
2312 | break; | |
1c90ef26 VR |
2313 | case HV_X64_MSR_HYPERCALL: |
2314 | env->msr_hv_hypercall = msrs[i].data; | |
2315 | break; | |
2316 | case HV_X64_MSR_GUEST_OS_ID: | |
2317 | env->msr_hv_guest_os_id = msrs[i].data; | |
2318 | break; | |
5ef68987 VR |
2319 | case HV_X64_MSR_APIC_ASSIST_PAGE: |
2320 | env->msr_hv_vapic = msrs[i].data; | |
2321 | break; | |
48a5f3bc VR |
2322 | case HV_X64_MSR_REFERENCE_TSC: |
2323 | env->msr_hv_tsc = msrs[i].data; | |
2324 | break; | |
f2a53c9e AS |
2325 | case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: |
2326 | env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data; | |
2327 | break; | |
46eb8f98 AS |
2328 | case HV_X64_MSR_VP_RUNTIME: |
2329 | env->msr_hv_runtime = msrs[i].data; | |
2330 | break; | |
866eea9a AS |
2331 | case HV_X64_MSR_SCONTROL: |
2332 | env->msr_hv_synic_control = msrs[i].data; | |
2333 | break; | |
866eea9a AS |
2334 | case HV_X64_MSR_SIEFP: |
2335 | env->msr_hv_synic_evt_page = msrs[i].data; | |
2336 | break; | |
2337 | case HV_X64_MSR_SIMP: | |
2338 | env->msr_hv_synic_msg_page = msrs[i].data; | |
2339 | break; | |
2340 | case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: | |
2341 | env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data; | |
ff99aa64 AS |
2342 | break; |
2343 | case HV_X64_MSR_STIMER0_CONFIG: | |
2344 | case HV_X64_MSR_STIMER1_CONFIG: | |
2345 | case HV_X64_MSR_STIMER2_CONFIG: | |
2346 | case HV_X64_MSR_STIMER3_CONFIG: | |
2347 | env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] = | |
2348 | msrs[i].data; | |
2349 | break; | |
2350 | case HV_X64_MSR_STIMER0_COUNT: | |
2351 | case HV_X64_MSR_STIMER1_COUNT: | |
2352 | case HV_X64_MSR_STIMER2_COUNT: | |
2353 | case HV_X64_MSR_STIMER3_COUNT: | |
2354 | env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] = | |
2355 | msrs[i].data; | |
866eea9a | 2356 | break; |
d1ae67f6 AW |
2357 | case MSR_MTRRdefType: |
2358 | env->mtrr_deftype = msrs[i].data; | |
2359 | break; | |
2360 | case MSR_MTRRfix64K_00000: | |
2361 | env->mtrr_fixed[0] = msrs[i].data; | |
2362 | break; | |
2363 | case MSR_MTRRfix16K_80000: | |
2364 | env->mtrr_fixed[1] = msrs[i].data; | |
2365 | break; | |
2366 | case MSR_MTRRfix16K_A0000: | |
2367 | env->mtrr_fixed[2] = msrs[i].data; | |
2368 | break; | |
2369 | case MSR_MTRRfix4K_C0000: | |
2370 | env->mtrr_fixed[3] = msrs[i].data; | |
2371 | break; | |
2372 | case MSR_MTRRfix4K_C8000: | |
2373 | env->mtrr_fixed[4] = msrs[i].data; | |
2374 | break; | |
2375 | case MSR_MTRRfix4K_D0000: | |
2376 | env->mtrr_fixed[5] = msrs[i].data; | |
2377 | break; | |
2378 | case MSR_MTRRfix4K_D8000: | |
2379 | env->mtrr_fixed[6] = msrs[i].data; | |
2380 | break; | |
2381 | case MSR_MTRRfix4K_E0000: | |
2382 | env->mtrr_fixed[7] = msrs[i].data; | |
2383 | break; | |
2384 | case MSR_MTRRfix4K_E8000: | |
2385 | env->mtrr_fixed[8] = msrs[i].data; | |
2386 | break; | |
2387 | case MSR_MTRRfix4K_F0000: | |
2388 | env->mtrr_fixed[9] = msrs[i].data; | |
2389 | break; | |
2390 | case MSR_MTRRfix4K_F8000: | |
2391 | env->mtrr_fixed[10] = msrs[i].data; | |
2392 | break; | |
2393 | case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1): | |
2394 | if (index & 1) { | |
fcc35e7c DDAG |
2395 | env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data | |
2396 | mtrr_top_bits; | |
d1ae67f6 AW |
2397 | } else { |
2398 | env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data; | |
2399 | } | |
2400 | break; | |
a33a2cfe PB |
2401 | case MSR_IA32_SPEC_CTRL: |
2402 | env->spec_ctrl = msrs[i].data; | |
2403 | break; | |
b77146e9 CP |
2404 | case MSR_IA32_RTIT_CTL: |
2405 | env->msr_rtit_ctrl = msrs[i].data; | |
2406 | break; | |
2407 | case MSR_IA32_RTIT_STATUS: | |
2408 | env->msr_rtit_status = msrs[i].data; | |
2409 | break; | |
2410 | case MSR_IA32_RTIT_OUTPUT_BASE: | |
2411 | env->msr_rtit_output_base = msrs[i].data; | |
2412 | break; | |
2413 | case MSR_IA32_RTIT_OUTPUT_MASK: | |
2414 | env->msr_rtit_output_mask = msrs[i].data; | |
2415 | break; | |
2416 | case MSR_IA32_RTIT_CR3_MATCH: | |
2417 | env->msr_rtit_cr3_match = msrs[i].data; | |
2418 | break; | |
2419 | case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: | |
2420 | env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data; | |
2421 | break; | |
05330448 AL |
2422 | } |
2423 | } | |
2424 | ||
2425 | return 0; | |
2426 | } | |
2427 | ||
1bc22652 | 2428 | static int kvm_put_mp_state(X86CPU *cpu) |
9bdbe550 | 2429 | { |
1bc22652 | 2430 | struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state }; |
9bdbe550 | 2431 | |
1bc22652 | 2432 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); |
9bdbe550 HB |
2433 | } |
2434 | ||
23d02d9b | 2435 | static int kvm_get_mp_state(X86CPU *cpu) |
9bdbe550 | 2436 | { |
259186a7 | 2437 | CPUState *cs = CPU(cpu); |
23d02d9b | 2438 | CPUX86State *env = &cpu->env; |
9bdbe550 HB |
2439 | struct kvm_mp_state mp_state; |
2440 | int ret; | |
2441 | ||
259186a7 | 2442 | ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state); |
9bdbe550 HB |
2443 | if (ret < 0) { |
2444 | return ret; | |
2445 | } | |
2446 | env->mp_state = mp_state.mp_state; | |
c14750e8 | 2447 | if (kvm_irqchip_in_kernel()) { |
259186a7 | 2448 | cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED); |
c14750e8 | 2449 | } |
9bdbe550 HB |
2450 | return 0; |
2451 | } | |
2452 | ||
1bc22652 | 2453 | static int kvm_get_apic(X86CPU *cpu) |
680c1c6f | 2454 | { |
02e51483 | 2455 | DeviceState *apic = cpu->apic_state; |
680c1c6f JK |
2456 | struct kvm_lapic_state kapic; |
2457 | int ret; | |
2458 | ||
3d4b2649 | 2459 | if (apic && kvm_irqchip_in_kernel()) { |
1bc22652 | 2460 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic); |
680c1c6f JK |
2461 | if (ret < 0) { |
2462 | return ret; | |
2463 | } | |
2464 | ||
2465 | kvm_get_apic_state(apic, &kapic); | |
2466 | } | |
2467 | return 0; | |
2468 | } | |
2469 | ||
1bc22652 | 2470 | static int kvm_put_vcpu_events(X86CPU *cpu, int level) |
a0fb002c | 2471 | { |
fc12d72e | 2472 | CPUState *cs = CPU(cpu); |
1bc22652 | 2473 | CPUX86State *env = &cpu->env; |
076796f8 | 2474 | struct kvm_vcpu_events events = {}; |
a0fb002c JK |
2475 | |
2476 | if (!kvm_has_vcpu_events()) { | |
2477 | return 0; | |
2478 | } | |
2479 | ||
31827373 JK |
2480 | events.exception.injected = (env->exception_injected >= 0); |
2481 | events.exception.nr = env->exception_injected; | |
a0fb002c JK |
2482 | events.exception.has_error_code = env->has_error_code; |
2483 | events.exception.error_code = env->error_code; | |
7e680753 | 2484 | events.exception.pad = 0; |
a0fb002c JK |
2485 | |
2486 | events.interrupt.injected = (env->interrupt_injected >= 0); | |
2487 | events.interrupt.nr = env->interrupt_injected; | |
2488 | events.interrupt.soft = env->soft_interrupt; | |
2489 | ||
2490 | events.nmi.injected = env->nmi_injected; | |
2491 | events.nmi.pending = env->nmi_pending; | |
2492 | events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK); | |
7e680753 | 2493 | events.nmi.pad = 0; |
a0fb002c JK |
2494 | |
2495 | events.sipi_vector = env->sipi_vector; | |
68c6efe0 | 2496 | events.flags = 0; |
a0fb002c | 2497 | |
fc12d72e PB |
2498 | if (has_msr_smbase) { |
2499 | events.smi.smm = !!(env->hflags & HF_SMM_MASK); | |
2500 | events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK); | |
2501 | if (kvm_irqchip_in_kernel()) { | |
2502 | /* As soon as these are moved to the kernel, remove them | |
2503 | * from cs->interrupt_request. | |
2504 | */ | |
2505 | events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI; | |
2506 | events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT; | |
2507 | cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI); | |
2508 | } else { | |
2509 | /* Keep these in cs->interrupt_request. */ | |
2510 | events.smi.pending = 0; | |
2511 | events.smi.latched_init = 0; | |
2512 | } | |
fc3a1fd7 DDAG |
2513 | /* Stop SMI delivery on old machine types to avoid a reboot |
2514 | * on an inward migration of an old VM. | |
2515 | */ | |
2516 | if (!cpu->kvm_no_smi_migration) { | |
2517 | events.flags |= KVM_VCPUEVENT_VALID_SMM; | |
2518 | } | |
fc12d72e PB |
2519 | } |
2520 | ||
ea643051 | 2521 | if (level >= KVM_PUT_RESET_STATE) { |
4fadfa00 PH |
2522 | events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING; |
2523 | if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { | |
2524 | events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR; | |
2525 | } | |
ea643051 | 2526 | } |
aee028b9 | 2527 | |
1bc22652 | 2528 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); |
a0fb002c JK |
2529 | } |
2530 | ||
1bc22652 | 2531 | static int kvm_get_vcpu_events(X86CPU *cpu) |
a0fb002c | 2532 | { |
1bc22652 | 2533 | CPUX86State *env = &cpu->env; |
a0fb002c JK |
2534 | struct kvm_vcpu_events events; |
2535 | int ret; | |
2536 | ||
2537 | if (!kvm_has_vcpu_events()) { | |
2538 | return 0; | |
2539 | } | |
2540 | ||
fc12d72e | 2541 | memset(&events, 0, sizeof(events)); |
1bc22652 | 2542 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); |
a0fb002c JK |
2543 | if (ret < 0) { |
2544 | return ret; | |
2545 | } | |
31827373 | 2546 | env->exception_injected = |
a0fb002c JK |
2547 | events.exception.injected ? events.exception.nr : -1; |
2548 | env->has_error_code = events.exception.has_error_code; | |
2549 | env->error_code = events.exception.error_code; | |
2550 | ||
2551 | env->interrupt_injected = | |
2552 | events.interrupt.injected ? events.interrupt.nr : -1; | |
2553 | env->soft_interrupt = events.interrupt.soft; | |
2554 | ||
2555 | env->nmi_injected = events.nmi.injected; | |
2556 | env->nmi_pending = events.nmi.pending; | |
2557 | if (events.nmi.masked) { | |
2558 | env->hflags2 |= HF2_NMI_MASK; | |
2559 | } else { | |
2560 | env->hflags2 &= ~HF2_NMI_MASK; | |
2561 | } | |
2562 | ||
fc12d72e PB |
2563 | if (events.flags & KVM_VCPUEVENT_VALID_SMM) { |
2564 | if (events.smi.smm) { | |
2565 | env->hflags |= HF_SMM_MASK; | |
2566 | } else { | |
2567 | env->hflags &= ~HF_SMM_MASK; | |
2568 | } | |
2569 | if (events.smi.pending) { | |
2570 | cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); | |
2571 | } else { | |
2572 | cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); | |
2573 | } | |
2574 | if (events.smi.smm_inside_nmi) { | |
2575 | env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK; | |
2576 | } else { | |
2577 | env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK; | |
2578 | } | |
2579 | if (events.smi.latched_init) { | |
2580 | cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); | |
2581 | } else { | |
2582 | cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); | |
2583 | } | |
2584 | } | |
2585 | ||
a0fb002c | 2586 | env->sipi_vector = events.sipi_vector; |
a0fb002c JK |
2587 | |
2588 | return 0; | |
2589 | } | |
2590 | ||
1bc22652 | 2591 | static int kvm_guest_debug_workarounds(X86CPU *cpu) |
b0b1d690 | 2592 | { |
ed2803da | 2593 | CPUState *cs = CPU(cpu); |
1bc22652 | 2594 | CPUX86State *env = &cpu->env; |
b0b1d690 | 2595 | int ret = 0; |
b0b1d690 JK |
2596 | unsigned long reinject_trap = 0; |
2597 | ||
2598 | if (!kvm_has_vcpu_events()) { | |
2599 | if (env->exception_injected == 1) { | |
2600 | reinject_trap = KVM_GUESTDBG_INJECT_DB; | |
2601 | } else if (env->exception_injected == 3) { | |
2602 | reinject_trap = KVM_GUESTDBG_INJECT_BP; | |
2603 | } | |
2604 | env->exception_injected = -1; | |
2605 | } | |
2606 | ||
2607 | /* | |
2608 | * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF | |
2609 | * injected via SET_GUEST_DEBUG while updating GP regs. Work around this | |
2610 | * by updating the debug state once again if single-stepping is on. | |
2611 | * Another reason to call kvm_update_guest_debug here is a pending debug | |
2612 | * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to | |
2613 | * reinject them via SET_GUEST_DEBUG. | |
2614 | */ | |
2615 | if (reinject_trap || | |
ed2803da | 2616 | (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) { |
38e478ec | 2617 | ret = kvm_update_guest_debug(cs, reinject_trap); |
b0b1d690 | 2618 | } |
b0b1d690 JK |
2619 | return ret; |
2620 | } | |
2621 | ||
1bc22652 | 2622 | static int kvm_put_debugregs(X86CPU *cpu) |
ff44f1a3 | 2623 | { |
1bc22652 | 2624 | CPUX86State *env = &cpu->env; |
ff44f1a3 JK |
2625 | struct kvm_debugregs dbgregs; |
2626 | int i; | |
2627 | ||
2628 | if (!kvm_has_debugregs()) { | |
2629 | return 0; | |
2630 | } | |
2631 | ||
2632 | for (i = 0; i < 4; i++) { | |
2633 | dbgregs.db[i] = env->dr[i]; | |
2634 | } | |
2635 | dbgregs.dr6 = env->dr[6]; | |
2636 | dbgregs.dr7 = env->dr[7]; | |
2637 | dbgregs.flags = 0; | |
2638 | ||
1bc22652 | 2639 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs); |
ff44f1a3 JK |
2640 | } |
2641 | ||
1bc22652 | 2642 | static int kvm_get_debugregs(X86CPU *cpu) |
ff44f1a3 | 2643 | { |
1bc22652 | 2644 | CPUX86State *env = &cpu->env; |
ff44f1a3 JK |
2645 | struct kvm_debugregs dbgregs; |
2646 | int i, ret; | |
2647 | ||
2648 | if (!kvm_has_debugregs()) { | |
2649 | return 0; | |
2650 | } | |
2651 | ||
1bc22652 | 2652 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs); |
ff44f1a3 | 2653 | if (ret < 0) { |
b9bec74b | 2654 | return ret; |
ff44f1a3 JK |
2655 | } |
2656 | for (i = 0; i < 4; i++) { | |
2657 | env->dr[i] = dbgregs.db[i]; | |
2658 | } | |
2659 | env->dr[4] = env->dr[6] = dbgregs.dr6; | |
2660 | env->dr[5] = env->dr[7] = dbgregs.dr7; | |
ff44f1a3 JK |
2661 | |
2662 | return 0; | |
2663 | } | |
2664 | ||
20d695a9 | 2665 | int kvm_arch_put_registers(CPUState *cpu, int level) |
05330448 | 2666 | { |
20d695a9 | 2667 | X86CPU *x86_cpu = X86_CPU(cpu); |
05330448 AL |
2668 | int ret; |
2669 | ||
2fa45344 | 2670 | assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu)); |
dbaa07c4 | 2671 | |
48e1a45c | 2672 | if (level >= KVM_PUT_RESET_STATE) { |
6bdf863d JK |
2673 | ret = kvm_put_msr_feature_control(x86_cpu); |
2674 | if (ret < 0) { | |
2675 | return ret; | |
2676 | } | |
2677 | } | |
2678 | ||
36f96c4b HZ |
2679 | if (level == KVM_PUT_FULL_STATE) { |
2680 | /* We don't check for kvm_arch_set_tsc_khz() errors here, | |
2681 | * because TSC frequency mismatch shouldn't abort migration, | |
2682 | * unless the user explicitly asked for a more strict TSC | |
2683 | * setting (e.g. using an explicit "tsc-freq" option). | |
2684 | */ | |
2685 | kvm_arch_set_tsc_khz(cpu); | |
2686 | } | |
2687 | ||
1bc22652 | 2688 | ret = kvm_getput_regs(x86_cpu, 1); |
b9bec74b | 2689 | if (ret < 0) { |
05330448 | 2690 | return ret; |
b9bec74b | 2691 | } |
1bc22652 | 2692 | ret = kvm_put_xsave(x86_cpu); |
b9bec74b | 2693 | if (ret < 0) { |
f1665b21 | 2694 | return ret; |
b9bec74b | 2695 | } |
1bc22652 | 2696 | ret = kvm_put_xcrs(x86_cpu); |
b9bec74b | 2697 | if (ret < 0) { |
05330448 | 2698 | return ret; |
b9bec74b | 2699 | } |
1bc22652 | 2700 | ret = kvm_put_sregs(x86_cpu); |
b9bec74b | 2701 | if (ret < 0) { |
05330448 | 2702 | return ret; |
b9bec74b | 2703 | } |
ab443475 | 2704 | /* must be before kvm_put_msrs */ |
1bc22652 | 2705 | ret = kvm_inject_mce_oldstyle(x86_cpu); |
ab443475 JK |
2706 | if (ret < 0) { |
2707 | return ret; | |
2708 | } | |
1bc22652 | 2709 | ret = kvm_put_msrs(x86_cpu, level); |
b9bec74b | 2710 | if (ret < 0) { |
05330448 | 2711 | return ret; |
b9bec74b | 2712 | } |
4fadfa00 PH |
2713 | ret = kvm_put_vcpu_events(x86_cpu, level); |
2714 | if (ret < 0) { | |
2715 | return ret; | |
2716 | } | |
ea643051 | 2717 | if (level >= KVM_PUT_RESET_STATE) { |
1bc22652 | 2718 | ret = kvm_put_mp_state(x86_cpu); |
b9bec74b | 2719 | if (ret < 0) { |
680c1c6f JK |
2720 | return ret; |
2721 | } | |
ea643051 | 2722 | } |
7477cd38 MT |
2723 | |
2724 | ret = kvm_put_tscdeadline_msr(x86_cpu); | |
2725 | if (ret < 0) { | |
2726 | return ret; | |
2727 | } | |
1bc22652 | 2728 | ret = kvm_put_debugregs(x86_cpu); |
b9bec74b | 2729 | if (ret < 0) { |
b0b1d690 | 2730 | return ret; |
b9bec74b | 2731 | } |
b0b1d690 | 2732 | /* must be last */ |
1bc22652 | 2733 | ret = kvm_guest_debug_workarounds(x86_cpu); |
b9bec74b | 2734 | if (ret < 0) { |
ff44f1a3 | 2735 | return ret; |
b9bec74b | 2736 | } |
05330448 AL |
2737 | return 0; |
2738 | } | |
2739 | ||
20d695a9 | 2740 | int kvm_arch_get_registers(CPUState *cs) |
05330448 | 2741 | { |
20d695a9 | 2742 | X86CPU *cpu = X86_CPU(cs); |
05330448 AL |
2743 | int ret; |
2744 | ||
20d695a9 | 2745 | assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs)); |
dbaa07c4 | 2746 | |
4fadfa00 | 2747 | ret = kvm_get_vcpu_events(cpu); |
b9bec74b | 2748 | if (ret < 0) { |
f4f1110e | 2749 | goto out; |
b9bec74b | 2750 | } |
4fadfa00 PH |
2751 | /* |
2752 | * KVM_GET_MPSTATE can modify CS and RIP, call it before | |
2753 | * KVM_GET_REGS and KVM_GET_SREGS. | |
2754 | */ | |
2755 | ret = kvm_get_mp_state(cpu); | |
b9bec74b | 2756 | if (ret < 0) { |
f4f1110e | 2757 | goto out; |
b9bec74b | 2758 | } |
4fadfa00 | 2759 | ret = kvm_getput_regs(cpu, 0); |
b9bec74b | 2760 | if (ret < 0) { |
f4f1110e | 2761 | goto out; |
b9bec74b | 2762 | } |
4fadfa00 | 2763 | ret = kvm_get_xsave(cpu); |
b9bec74b | 2764 | if (ret < 0) { |
f4f1110e | 2765 | goto out; |
b9bec74b | 2766 | } |
4fadfa00 | 2767 | ret = kvm_get_xcrs(cpu); |
b9bec74b | 2768 | if (ret < 0) { |
f4f1110e | 2769 | goto out; |
b9bec74b | 2770 | } |
4fadfa00 | 2771 | ret = kvm_get_sregs(cpu); |
b9bec74b | 2772 | if (ret < 0) { |
f4f1110e | 2773 | goto out; |
b9bec74b | 2774 | } |
4fadfa00 | 2775 | ret = kvm_get_msrs(cpu); |
680c1c6f | 2776 | if (ret < 0) { |
f4f1110e | 2777 | goto out; |
680c1c6f | 2778 | } |
4fadfa00 | 2779 | ret = kvm_get_apic(cpu); |
b9bec74b | 2780 | if (ret < 0) { |
f4f1110e | 2781 | goto out; |
b9bec74b | 2782 | } |
1bc22652 | 2783 | ret = kvm_get_debugregs(cpu); |
b9bec74b | 2784 | if (ret < 0) { |
f4f1110e | 2785 | goto out; |
b9bec74b | 2786 | } |
f4f1110e RH |
2787 | ret = 0; |
2788 | out: | |
2789 | cpu_sync_bndcs_hflags(&cpu->env); | |
2790 | return ret; | |
05330448 AL |
2791 | } |
2792 | ||
20d695a9 | 2793 | void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) |
05330448 | 2794 | { |
20d695a9 AF |
2795 | X86CPU *x86_cpu = X86_CPU(cpu); |
2796 | CPUX86State *env = &x86_cpu->env; | |
ce377af3 JK |
2797 | int ret; |
2798 | ||
276ce815 | 2799 | /* Inject NMI */ |
fc12d72e PB |
2800 | if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) { |
2801 | if (cpu->interrupt_request & CPU_INTERRUPT_NMI) { | |
2802 | qemu_mutex_lock_iothread(); | |
2803 | cpu->interrupt_request &= ~CPU_INTERRUPT_NMI; | |
2804 | qemu_mutex_unlock_iothread(); | |
2805 | DPRINTF("injected NMI\n"); | |
2806 | ret = kvm_vcpu_ioctl(cpu, KVM_NMI); | |
2807 | if (ret < 0) { | |
2808 | fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n", | |
2809 | strerror(-ret)); | |
2810 | } | |
2811 | } | |
2812 | if (cpu->interrupt_request & CPU_INTERRUPT_SMI) { | |
2813 | qemu_mutex_lock_iothread(); | |
2814 | cpu->interrupt_request &= ~CPU_INTERRUPT_SMI; | |
2815 | qemu_mutex_unlock_iothread(); | |
2816 | DPRINTF("injected SMI\n"); | |
2817 | ret = kvm_vcpu_ioctl(cpu, KVM_SMI); | |
2818 | if (ret < 0) { | |
2819 | fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n", | |
2820 | strerror(-ret)); | |
2821 | } | |
ce377af3 | 2822 | } |
276ce815 LJ |
2823 | } |
2824 | ||
15eafc2e | 2825 | if (!kvm_pic_in_kernel()) { |
4b8523ee JK |
2826 | qemu_mutex_lock_iothread(); |
2827 | } | |
2828 | ||
e0723c45 PB |
2829 | /* Force the VCPU out of its inner loop to process any INIT requests |
2830 | * or (for userspace APIC, but it is cheap to combine the checks here) | |
2831 | * pending TPR access reports. | |
2832 | */ | |
2833 | if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) { | |
fc12d72e PB |
2834 | if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) && |
2835 | !(env->hflags & HF_SMM_MASK)) { | |
2836 | cpu->exit_request = 1; | |
2837 | } | |
2838 | if (cpu->interrupt_request & CPU_INTERRUPT_TPR) { | |
2839 | cpu->exit_request = 1; | |
2840 | } | |
e0723c45 | 2841 | } |
05330448 | 2842 | |
15eafc2e | 2843 | if (!kvm_pic_in_kernel()) { |
db1669bc JK |
2844 | /* Try to inject an interrupt if the guest can accept it */ |
2845 | if (run->ready_for_interrupt_injection && | |
259186a7 | 2846 | (cpu->interrupt_request & CPU_INTERRUPT_HARD) && |
db1669bc JK |
2847 | (env->eflags & IF_MASK)) { |
2848 | int irq; | |
2849 | ||
259186a7 | 2850 | cpu->interrupt_request &= ~CPU_INTERRUPT_HARD; |
db1669bc JK |
2851 | irq = cpu_get_pic_interrupt(env); |
2852 | if (irq >= 0) { | |
2853 | struct kvm_interrupt intr; | |
2854 | ||
2855 | intr.irq = irq; | |
db1669bc | 2856 | DPRINTF("injected interrupt %d\n", irq); |
1bc22652 | 2857 | ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr); |
ce377af3 JK |
2858 | if (ret < 0) { |
2859 | fprintf(stderr, | |
2860 | "KVM: injection failed, interrupt lost (%s)\n", | |
2861 | strerror(-ret)); | |
2862 | } | |
db1669bc JK |
2863 | } |
2864 | } | |
05330448 | 2865 | |
db1669bc JK |
2866 | /* If we have an interrupt but the guest is not ready to receive an |
2867 | * interrupt, request an interrupt window exit. This will | |
2868 | * cause a return to userspace as soon as the guest is ready to | |
2869 | * receive interrupts. */ | |
259186a7 | 2870 | if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) { |
db1669bc JK |
2871 | run->request_interrupt_window = 1; |
2872 | } else { | |
2873 | run->request_interrupt_window = 0; | |
2874 | } | |
2875 | ||
2876 | DPRINTF("setting tpr\n"); | |
02e51483 | 2877 | run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state); |
4b8523ee JK |
2878 | |
2879 | qemu_mutex_unlock_iothread(); | |
db1669bc | 2880 | } |
05330448 AL |
2881 | } |
2882 | ||
4c663752 | 2883 | MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run) |
05330448 | 2884 | { |
20d695a9 AF |
2885 | X86CPU *x86_cpu = X86_CPU(cpu); |
2886 | CPUX86State *env = &x86_cpu->env; | |
2887 | ||
fc12d72e PB |
2888 | if (run->flags & KVM_RUN_X86_SMM) { |
2889 | env->hflags |= HF_SMM_MASK; | |
2890 | } else { | |
f5c052b9 | 2891 | env->hflags &= ~HF_SMM_MASK; |
fc12d72e | 2892 | } |
b9bec74b | 2893 | if (run->if_flag) { |
05330448 | 2894 | env->eflags |= IF_MASK; |
b9bec74b | 2895 | } else { |
05330448 | 2896 | env->eflags &= ~IF_MASK; |
b9bec74b | 2897 | } |
4b8523ee JK |
2898 | |
2899 | /* We need to protect the apic state against concurrent accesses from | |
2900 | * different threads in case the userspace irqchip is used. */ | |
2901 | if (!kvm_irqchip_in_kernel()) { | |
2902 | qemu_mutex_lock_iothread(); | |
2903 | } | |
02e51483 CF |
2904 | cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8); |
2905 | cpu_set_apic_base(x86_cpu->apic_state, run->apic_base); | |
4b8523ee JK |
2906 | if (!kvm_irqchip_in_kernel()) { |
2907 | qemu_mutex_unlock_iothread(); | |
2908 | } | |
f794aa4a | 2909 | return cpu_get_mem_attrs(env); |
05330448 AL |
2910 | } |
2911 | ||
20d695a9 | 2912 | int kvm_arch_process_async_events(CPUState *cs) |
0af691d7 | 2913 | { |
20d695a9 AF |
2914 | X86CPU *cpu = X86_CPU(cs); |
2915 | CPUX86State *env = &cpu->env; | |
232fc23b | 2916 | |
259186a7 | 2917 | if (cs->interrupt_request & CPU_INTERRUPT_MCE) { |
ab443475 JK |
2918 | /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */ |
2919 | assert(env->mcg_cap); | |
2920 | ||
259186a7 | 2921 | cs->interrupt_request &= ~CPU_INTERRUPT_MCE; |
ab443475 | 2922 | |
dd1750d7 | 2923 | kvm_cpu_synchronize_state(cs); |
ab443475 JK |
2924 | |
2925 | if (env->exception_injected == EXCP08_DBLE) { | |
2926 | /* this means triple fault */ | |
cf83f140 | 2927 | qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); |
fcd7d003 | 2928 | cs->exit_request = 1; |
ab443475 JK |
2929 | return 0; |
2930 | } | |
2931 | env->exception_injected = EXCP12_MCHK; | |
2932 | env->has_error_code = 0; | |
2933 | ||
259186a7 | 2934 | cs->halted = 0; |
ab443475 JK |
2935 | if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) { |
2936 | env->mp_state = KVM_MP_STATE_RUNNABLE; | |
2937 | } | |
2938 | } | |
2939 | ||
fc12d72e PB |
2940 | if ((cs->interrupt_request & CPU_INTERRUPT_INIT) && |
2941 | !(env->hflags & HF_SMM_MASK)) { | |
e0723c45 PB |
2942 | kvm_cpu_synchronize_state(cs); |
2943 | do_cpu_init(cpu); | |
2944 | } | |
2945 | ||
db1669bc JK |
2946 | if (kvm_irqchip_in_kernel()) { |
2947 | return 0; | |
2948 | } | |
2949 | ||
259186a7 AF |
2950 | if (cs->interrupt_request & CPU_INTERRUPT_POLL) { |
2951 | cs->interrupt_request &= ~CPU_INTERRUPT_POLL; | |
02e51483 | 2952 | apic_poll_irq(cpu->apic_state); |
5d62c43a | 2953 | } |
259186a7 | 2954 | if (((cs->interrupt_request & CPU_INTERRUPT_HARD) && |
4601f7b0 | 2955 | (env->eflags & IF_MASK)) || |
259186a7 AF |
2956 | (cs->interrupt_request & CPU_INTERRUPT_NMI)) { |
2957 | cs->halted = 0; | |
6792a57b | 2958 | } |
259186a7 | 2959 | if (cs->interrupt_request & CPU_INTERRUPT_SIPI) { |
dd1750d7 | 2960 | kvm_cpu_synchronize_state(cs); |
232fc23b | 2961 | do_cpu_sipi(cpu); |
0af691d7 | 2962 | } |
259186a7 AF |
2963 | if (cs->interrupt_request & CPU_INTERRUPT_TPR) { |
2964 | cs->interrupt_request &= ~CPU_INTERRUPT_TPR; | |
dd1750d7 | 2965 | kvm_cpu_synchronize_state(cs); |
02e51483 | 2966 | apic_handle_tpr_access_report(cpu->apic_state, env->eip, |
d362e757 JK |
2967 | env->tpr_access_type); |
2968 | } | |
0af691d7 | 2969 | |
259186a7 | 2970 | return cs->halted; |
0af691d7 MT |
2971 | } |
2972 | ||
839b5630 | 2973 | static int kvm_handle_halt(X86CPU *cpu) |
05330448 | 2974 | { |
259186a7 | 2975 | CPUState *cs = CPU(cpu); |
839b5630 AF |
2976 | CPUX86State *env = &cpu->env; |
2977 | ||
259186a7 | 2978 | if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) && |
05330448 | 2979 | (env->eflags & IF_MASK)) && |
259186a7 AF |
2980 | !(cs->interrupt_request & CPU_INTERRUPT_NMI)) { |
2981 | cs->halted = 1; | |
bb4ea393 | 2982 | return EXCP_HLT; |
05330448 AL |
2983 | } |
2984 | ||
bb4ea393 | 2985 | return 0; |
05330448 AL |
2986 | } |
2987 | ||
f7575c96 | 2988 | static int kvm_handle_tpr_access(X86CPU *cpu) |
d362e757 | 2989 | { |
f7575c96 AF |
2990 | CPUState *cs = CPU(cpu); |
2991 | struct kvm_run *run = cs->kvm_run; | |
d362e757 | 2992 | |
02e51483 | 2993 | apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip, |
d362e757 JK |
2994 | run->tpr_access.is_write ? TPR_ACCESS_WRITE |
2995 | : TPR_ACCESS_READ); | |
2996 | return 1; | |
2997 | } | |
2998 | ||
f17ec444 | 2999 | int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) |
e22a25c9 | 3000 | { |
38972938 | 3001 | static const uint8_t int3 = 0xcc; |
64bf3f4e | 3002 | |
f17ec444 AF |
3003 | if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || |
3004 | cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) { | |
e22a25c9 | 3005 | return -EINVAL; |
b9bec74b | 3006 | } |
e22a25c9 AL |
3007 | return 0; |
3008 | } | |
3009 | ||
f17ec444 | 3010 | int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) |
e22a25c9 AL |
3011 | { |
3012 | uint8_t int3; | |
3013 | ||
f17ec444 AF |
3014 | if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc || |
3015 | cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) { | |
e22a25c9 | 3016 | return -EINVAL; |
b9bec74b | 3017 | } |
e22a25c9 AL |
3018 | return 0; |
3019 | } | |
3020 | ||
3021 | static struct { | |
3022 | target_ulong addr; | |
3023 | int len; | |
3024 | int type; | |
3025 | } hw_breakpoint[4]; | |
3026 | ||
3027 | static int nb_hw_breakpoint; | |
3028 | ||
3029 | static int find_hw_breakpoint(target_ulong addr, int len, int type) | |
3030 | { | |
3031 | int n; | |
3032 | ||
b9bec74b | 3033 | for (n = 0; n < nb_hw_breakpoint; n++) { |
e22a25c9 | 3034 | if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && |
b9bec74b | 3035 | (hw_breakpoint[n].len == len || len == -1)) { |
e22a25c9 | 3036 | return n; |
b9bec74b JK |
3037 | } |
3038 | } | |
e22a25c9 AL |
3039 | return -1; |
3040 | } | |
3041 | ||
3042 | int kvm_arch_insert_hw_breakpoint(target_ulong addr, | |
3043 | target_ulong len, int type) | |
3044 | { | |
3045 | switch (type) { | |
3046 | case GDB_BREAKPOINT_HW: | |
3047 | len = 1; | |
3048 | break; | |
3049 | case GDB_WATCHPOINT_WRITE: | |
3050 | case GDB_WATCHPOINT_ACCESS: | |
3051 | switch (len) { | |
3052 | case 1: | |
3053 | break; | |
3054 | case 2: | |
3055 | case 4: | |
3056 | case 8: | |
b9bec74b | 3057 | if (addr & (len - 1)) { |
e22a25c9 | 3058 | return -EINVAL; |
b9bec74b | 3059 | } |
e22a25c9 AL |
3060 | break; |
3061 | default: | |
3062 | return -EINVAL; | |
3063 | } | |
3064 | break; | |
3065 | default: | |
3066 | return -ENOSYS; | |
3067 | } | |
3068 | ||
b9bec74b | 3069 | if (nb_hw_breakpoint == 4) { |
e22a25c9 | 3070 | return -ENOBUFS; |
b9bec74b JK |
3071 | } |
3072 | if (find_hw_breakpoint(addr, len, type) >= 0) { | |
e22a25c9 | 3073 | return -EEXIST; |
b9bec74b | 3074 | } |
e22a25c9 AL |
3075 | hw_breakpoint[nb_hw_breakpoint].addr = addr; |
3076 | hw_breakpoint[nb_hw_breakpoint].len = len; | |
3077 | hw_breakpoint[nb_hw_breakpoint].type = type; | |
3078 | nb_hw_breakpoint++; | |
3079 | ||
3080 | return 0; | |
3081 | } | |
3082 | ||
3083 | int kvm_arch_remove_hw_breakpoint(target_ulong addr, | |
3084 | target_ulong len, int type) | |
3085 | { | |
3086 | int n; | |
3087 | ||
3088 | n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type); | |
b9bec74b | 3089 | if (n < 0) { |
e22a25c9 | 3090 | return -ENOENT; |
b9bec74b | 3091 | } |
e22a25c9 AL |
3092 | nb_hw_breakpoint--; |
3093 | hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; | |
3094 | ||
3095 | return 0; | |
3096 | } | |
3097 | ||
3098 | void kvm_arch_remove_all_hw_breakpoints(void) | |
3099 | { | |
3100 | nb_hw_breakpoint = 0; | |
3101 | } | |
3102 | ||
3103 | static CPUWatchpoint hw_watchpoint; | |
3104 | ||
a60f24b5 | 3105 | static int kvm_handle_debug(X86CPU *cpu, |
48405526 | 3106 | struct kvm_debug_exit_arch *arch_info) |
e22a25c9 | 3107 | { |
ed2803da | 3108 | CPUState *cs = CPU(cpu); |
a60f24b5 | 3109 | CPUX86State *env = &cpu->env; |
f2574737 | 3110 | int ret = 0; |
e22a25c9 AL |
3111 | int n; |
3112 | ||
3113 | if (arch_info->exception == 1) { | |
3114 | if (arch_info->dr6 & (1 << 14)) { | |
ed2803da | 3115 | if (cs->singlestep_enabled) { |
f2574737 | 3116 | ret = EXCP_DEBUG; |
b9bec74b | 3117 | } |
e22a25c9 | 3118 | } else { |
b9bec74b JK |
3119 | for (n = 0; n < 4; n++) { |
3120 | if (arch_info->dr6 & (1 << n)) { | |
e22a25c9 AL |
3121 | switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { |
3122 | case 0x0: | |
f2574737 | 3123 | ret = EXCP_DEBUG; |
e22a25c9 AL |
3124 | break; |
3125 | case 0x1: | |
f2574737 | 3126 | ret = EXCP_DEBUG; |
ff4700b0 | 3127 | cs->watchpoint_hit = &hw_watchpoint; |
e22a25c9 AL |
3128 | hw_watchpoint.vaddr = hw_breakpoint[n].addr; |
3129 | hw_watchpoint.flags = BP_MEM_WRITE; | |
3130 | break; | |
3131 | case 0x3: | |
f2574737 | 3132 | ret = EXCP_DEBUG; |
ff4700b0 | 3133 | cs->watchpoint_hit = &hw_watchpoint; |
e22a25c9 AL |
3134 | hw_watchpoint.vaddr = hw_breakpoint[n].addr; |
3135 | hw_watchpoint.flags = BP_MEM_ACCESS; | |
3136 | break; | |
3137 | } | |
b9bec74b JK |
3138 | } |
3139 | } | |
e22a25c9 | 3140 | } |
ff4700b0 | 3141 | } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) { |
f2574737 | 3142 | ret = EXCP_DEBUG; |
b9bec74b | 3143 | } |
f2574737 | 3144 | if (ret == 0) { |
ff4700b0 | 3145 | cpu_synchronize_state(cs); |
48405526 | 3146 | assert(env->exception_injected == -1); |
b0b1d690 | 3147 | |
f2574737 | 3148 | /* pass to guest */ |
48405526 BS |
3149 | env->exception_injected = arch_info->exception; |
3150 | env->has_error_code = 0; | |
b0b1d690 | 3151 | } |
e22a25c9 | 3152 | |
f2574737 | 3153 | return ret; |
e22a25c9 AL |
3154 | } |
3155 | ||
20d695a9 | 3156 | void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) |
e22a25c9 AL |
3157 | { |
3158 | const uint8_t type_code[] = { | |
3159 | [GDB_BREAKPOINT_HW] = 0x0, | |
3160 | [GDB_WATCHPOINT_WRITE] = 0x1, | |
3161 | [GDB_WATCHPOINT_ACCESS] = 0x3 | |
3162 | }; | |
3163 | const uint8_t len_code[] = { | |
3164 | [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 | |
3165 | }; | |
3166 | int n; | |
3167 | ||
a60f24b5 | 3168 | if (kvm_sw_breakpoints_active(cpu)) { |
e22a25c9 | 3169 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; |
b9bec74b | 3170 | } |
e22a25c9 AL |
3171 | if (nb_hw_breakpoint > 0) { |
3172 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; | |
3173 | dbg->arch.debugreg[7] = 0x0600; | |
3174 | for (n = 0; n < nb_hw_breakpoint; n++) { | |
3175 | dbg->arch.debugreg[n] = hw_breakpoint[n].addr; | |
3176 | dbg->arch.debugreg[7] |= (2 << (n * 2)) | | |
3177 | (type_code[hw_breakpoint[n].type] << (16 + n*4)) | | |
95c077c9 | 3178 | ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4)); |
e22a25c9 AL |
3179 | } |
3180 | } | |
3181 | } | |
4513d923 | 3182 | |
2a4dac83 JK |
3183 | static bool host_supports_vmx(void) |
3184 | { | |
3185 | uint32_t ecx, unused; | |
3186 | ||
3187 | host_cpuid(1, 0, &unused, &unused, &ecx, &unused); | |
3188 | return ecx & CPUID_EXT_VMX; | |
3189 | } | |
3190 | ||
3191 | #define VMX_INVALID_GUEST_STATE 0x80000021 | |
3192 | ||
20d695a9 | 3193 | int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) |
2a4dac83 | 3194 | { |
20d695a9 | 3195 | X86CPU *cpu = X86_CPU(cs); |
2a4dac83 JK |
3196 | uint64_t code; |
3197 | int ret; | |
3198 | ||
3199 | switch (run->exit_reason) { | |
3200 | case KVM_EXIT_HLT: | |
3201 | DPRINTF("handle_hlt\n"); | |
4b8523ee | 3202 | qemu_mutex_lock_iothread(); |
839b5630 | 3203 | ret = kvm_handle_halt(cpu); |
4b8523ee | 3204 | qemu_mutex_unlock_iothread(); |
2a4dac83 JK |
3205 | break; |
3206 | case KVM_EXIT_SET_TPR: | |
3207 | ret = 0; | |
3208 | break; | |
d362e757 | 3209 | case KVM_EXIT_TPR_ACCESS: |
4b8523ee | 3210 | qemu_mutex_lock_iothread(); |
f7575c96 | 3211 | ret = kvm_handle_tpr_access(cpu); |
4b8523ee | 3212 | qemu_mutex_unlock_iothread(); |
d362e757 | 3213 | break; |
2a4dac83 JK |
3214 | case KVM_EXIT_FAIL_ENTRY: |
3215 | code = run->fail_entry.hardware_entry_failure_reason; | |
3216 | fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n", | |
3217 | code); | |
3218 | if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) { | |
3219 | fprintf(stderr, | |
12619721 | 3220 | "\nIf you're running a guest on an Intel machine without " |
2a4dac83 JK |
3221 | "unrestricted mode\n" |
3222 | "support, the failure can be most likely due to the guest " | |
3223 | "entering an invalid\n" | |
3224 | "state for Intel VT. For example, the guest maybe running " | |
3225 | "in big real mode\n" | |
3226 | "which is not supported on less recent Intel processors." | |
3227 | "\n\n"); | |
3228 | } | |
3229 | ret = -1; | |
3230 | break; | |
3231 | case KVM_EXIT_EXCEPTION: | |
3232 | fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n", | |
3233 | run->ex.exception, run->ex.error_code); | |
3234 | ret = -1; | |
3235 | break; | |
f2574737 JK |
3236 | case KVM_EXIT_DEBUG: |
3237 | DPRINTF("kvm_exit_debug\n"); | |
4b8523ee | 3238 | qemu_mutex_lock_iothread(); |
a60f24b5 | 3239 | ret = kvm_handle_debug(cpu, &run->debug.arch); |
4b8523ee | 3240 | qemu_mutex_unlock_iothread(); |
f2574737 | 3241 | break; |
50efe82c AS |
3242 | case KVM_EXIT_HYPERV: |
3243 | ret = kvm_hv_handle_exit(cpu, &run->hyperv); | |
3244 | break; | |
15eafc2e PB |
3245 | case KVM_EXIT_IOAPIC_EOI: |
3246 | ioapic_eoi_broadcast(run->eoi.vector); | |
3247 | ret = 0; | |
3248 | break; | |
2a4dac83 JK |
3249 | default: |
3250 | fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); | |
3251 | ret = -1; | |
3252 | break; | |
3253 | } | |
3254 | ||
3255 | return ret; | |
3256 | } | |
3257 | ||
20d695a9 | 3258 | bool kvm_arch_stop_on_emulation_error(CPUState *cs) |
4513d923 | 3259 | { |
20d695a9 AF |
3260 | X86CPU *cpu = X86_CPU(cs); |
3261 | CPUX86State *env = &cpu->env; | |
3262 | ||
dd1750d7 | 3263 | kvm_cpu_synchronize_state(cs); |
b9bec74b JK |
3264 | return !(env->cr[0] & CR0_PE_MASK) || |
3265 | ((env->segs[R_CS].selector & 3) != 3); | |
4513d923 | 3266 | } |
84b058d7 JK |
3267 | |
3268 | void kvm_arch_init_irq_routing(KVMState *s) | |
3269 | { | |
3270 | if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) { | |
3271 | /* If kernel can't do irq routing, interrupt source | |
3272 | * override 0->2 cannot be set up as required by HPET. | |
3273 | * So we have to disable it. | |
3274 | */ | |
3275 | no_hpet = 1; | |
3276 | } | |
cc7e0ddf | 3277 | /* We know at this point that we're using the in-kernel |
614e41bc | 3278 | * irqchip, so we can use irqfds, and on x86 we know |
f3e1bed8 | 3279 | * we can use msi via irqfd and GSI routing. |
cc7e0ddf | 3280 | */ |
614e41bc | 3281 | kvm_msi_via_irqfd_allowed = true; |
f3e1bed8 | 3282 | kvm_gsi_routing_allowed = true; |
15eafc2e PB |
3283 | |
3284 | if (kvm_irqchip_is_split()) { | |
3285 | int i; | |
3286 | ||
3287 | /* If the ioapic is in QEMU and the lapics are in KVM, reserve | |
3288 | MSI routes for signaling interrupts to the local apics. */ | |
3289 | for (i = 0; i < IOAPIC_NUM_PINS; i++) { | |
d1f6af6a | 3290 | if (kvm_irqchip_add_msi_route(s, 0, NULL) < 0) { |
15eafc2e PB |
3291 | error_report("Could not enable split IRQ mode."); |
3292 | exit(1); | |
3293 | } | |
3294 | } | |
3295 | } | |
3296 | } | |
3297 | ||
3298 | int kvm_arch_irqchip_create(MachineState *ms, KVMState *s) | |
3299 | { | |
3300 | int ret; | |
3301 | if (machine_kernel_irqchip_split(ms)) { | |
3302 | ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24); | |
3303 | if (ret) { | |
df3c286c | 3304 | error_report("Could not enable split irqchip mode: %s", |
15eafc2e PB |
3305 | strerror(-ret)); |
3306 | exit(1); | |
3307 | } else { | |
3308 | DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n"); | |
3309 | kvm_split_irqchip = true; | |
3310 | return 1; | |
3311 | } | |
3312 | } else { | |
3313 | return 0; | |
3314 | } | |
84b058d7 | 3315 | } |
b139bd30 JK |
3316 | |
3317 | /* Classic KVM device assignment interface. Will remain x86 only. */ | |
3318 | int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr, | |
3319 | uint32_t flags, uint32_t *dev_id) | |
3320 | { | |
3321 | struct kvm_assigned_pci_dev dev_data = { | |
3322 | .segnr = dev_addr->domain, | |
3323 | .busnr = dev_addr->bus, | |
3324 | .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function), | |
3325 | .flags = flags, | |
3326 | }; | |
3327 | int ret; | |
3328 | ||
3329 | dev_data.assigned_dev_id = | |
3330 | (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn; | |
3331 | ||
3332 | ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data); | |
3333 | if (ret < 0) { | |
3334 | return ret; | |
3335 | } | |
3336 | ||
3337 | *dev_id = dev_data.assigned_dev_id; | |
3338 | ||
3339 | return 0; | |
3340 | } | |
3341 | ||
3342 | int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id) | |
3343 | { | |
3344 | struct kvm_assigned_pci_dev dev_data = { | |
3345 | .assigned_dev_id = dev_id, | |
3346 | }; | |
3347 | ||
3348 | return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data); | |
3349 | } | |
3350 | ||
3351 | static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id, | |
3352 | uint32_t irq_type, uint32_t guest_irq) | |
3353 | { | |
3354 | struct kvm_assigned_irq assigned_irq = { | |
3355 | .assigned_dev_id = dev_id, | |
3356 | .guest_irq = guest_irq, | |
3357 | .flags = irq_type, | |
3358 | }; | |
3359 | ||
3360 | if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) { | |
3361 | return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq); | |
3362 | } else { | |
3363 | return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq); | |
3364 | } | |
3365 | } | |
3366 | ||
3367 | int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi, | |
3368 | uint32_t guest_irq) | |
3369 | { | |
3370 | uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX | | |
3371 | (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX); | |
3372 | ||
3373 | return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq); | |
3374 | } | |
3375 | ||
3376 | int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked) | |
3377 | { | |
3378 | struct kvm_assigned_pci_dev dev_data = { | |
3379 | .assigned_dev_id = dev_id, | |
3380 | .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0, | |
3381 | }; | |
3382 | ||
3383 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data); | |
3384 | } | |
3385 | ||
3386 | static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id, | |
3387 | uint32_t type) | |
3388 | { | |
3389 | struct kvm_assigned_irq assigned_irq = { | |
3390 | .assigned_dev_id = dev_id, | |
3391 | .flags = type, | |
3392 | }; | |
3393 | ||
3394 | return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq); | |
3395 | } | |
3396 | ||
3397 | int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi) | |
3398 | { | |
3399 | return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX | | |
3400 | (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX)); | |
3401 | } | |
3402 | ||
3403 | int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq) | |
3404 | { | |
3405 | return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI | | |
3406 | KVM_DEV_IRQ_GUEST_MSI, virq); | |
3407 | } | |
3408 | ||
3409 | int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id) | |
3410 | { | |
3411 | return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI | | |
3412 | KVM_DEV_IRQ_HOST_MSI); | |
3413 | } | |
3414 | ||
3415 | bool kvm_device_msix_supported(KVMState *s) | |
3416 | { | |
3417 | /* The kernel lacks a corresponding KVM_CAP, so we probe by calling | |
3418 | * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */ | |
3419 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT; | |
3420 | } | |
3421 | ||
3422 | int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id, | |
3423 | uint32_t nr_vectors) | |
3424 | { | |
3425 | struct kvm_assigned_msix_nr msix_nr = { | |
3426 | .assigned_dev_id = dev_id, | |
3427 | .entry_nr = nr_vectors, | |
3428 | }; | |
3429 | ||
3430 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr); | |
3431 | } | |
3432 | ||
3433 | int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector, | |
3434 | int virq) | |
3435 | { | |
3436 | struct kvm_assigned_msix_entry msix_entry = { | |
3437 | .assigned_dev_id = dev_id, | |
3438 | .gsi = virq, | |
3439 | .entry = vector, | |
3440 | }; | |
3441 | ||
3442 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry); | |
3443 | } | |
3444 | ||
3445 | int kvm_device_msix_assign(KVMState *s, uint32_t dev_id) | |
3446 | { | |
3447 | return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX | | |
3448 | KVM_DEV_IRQ_GUEST_MSIX, 0); | |
3449 | } | |
3450 | ||
3451 | int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id) | |
3452 | { | |
3453 | return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX | | |
3454 | KVM_DEV_IRQ_HOST_MSIX); | |
3455 | } | |
9e03a040 FB |
3456 | |
3457 | int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, | |
dc9f06ca | 3458 | uint64_t address, uint32_t data, PCIDevice *dev) |
9e03a040 | 3459 | { |
8b5ed7df PX |
3460 | X86IOMMUState *iommu = x86_iommu_get_default(); |
3461 | ||
3462 | if (iommu) { | |
3463 | int ret; | |
3464 | MSIMessage src, dst; | |
3465 | X86IOMMUClass *class = X86_IOMMU_GET_CLASS(iommu); | |
3466 | ||
3467 | src.address = route->u.msi.address_hi; | |
3468 | src.address <<= VTD_MSI_ADDR_HI_SHIFT; | |
3469 | src.address |= route->u.msi.address_lo; | |
3470 | src.data = route->u.msi.data; | |
3471 | ||
3472 | ret = class->int_remap(iommu, &src, &dst, dev ? \ | |
3473 | pci_requester_id(dev) : \ | |
3474 | X86_IOMMU_SID_INVALID); | |
3475 | if (ret) { | |
3476 | trace_kvm_x86_fixup_msi_error(route->gsi); | |
3477 | return 1; | |
3478 | } | |
3479 | ||
3480 | route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT; | |
3481 | route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK; | |
3482 | route->u.msi.data = dst.data; | |
3483 | } | |
3484 | ||
9e03a040 FB |
3485 | return 0; |
3486 | } | |
1850b6b7 | 3487 | |
38d87493 PX |
3488 | typedef struct MSIRouteEntry MSIRouteEntry; |
3489 | ||
3490 | struct MSIRouteEntry { | |
3491 | PCIDevice *dev; /* Device pointer */ | |
3492 | int vector; /* MSI/MSIX vector index */ | |
3493 | int virq; /* Virtual IRQ index */ | |
3494 | QLIST_ENTRY(MSIRouteEntry) list; | |
3495 | }; | |
3496 | ||
3497 | /* List of used GSI routes */ | |
3498 | static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \ | |
3499 | QLIST_HEAD_INITIALIZER(msi_route_list); | |
3500 | ||
e1d4fb2d PX |
3501 | static void kvm_update_msi_routes_all(void *private, bool global, |
3502 | uint32_t index, uint32_t mask) | |
3503 | { | |
3504 | int cnt = 0; | |
3505 | MSIRouteEntry *entry; | |
3506 | MSIMessage msg; | |
fd563564 PX |
3507 | PCIDevice *dev; |
3508 | ||
e1d4fb2d PX |
3509 | /* TODO: explicit route update */ |
3510 | QLIST_FOREACH(entry, &msi_route_list, list) { | |
3511 | cnt++; | |
fd563564 PX |
3512 | dev = entry->dev; |
3513 | if (!msix_enabled(dev) && !msi_enabled(dev)) { | |
3514 | continue; | |
3515 | } | |
3516 | msg = pci_get_msi_message(dev, entry->vector); | |
3517 | kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev); | |
e1d4fb2d | 3518 | } |
3f1fea0f | 3519 | kvm_irqchip_commit_routes(kvm_state); |
e1d4fb2d PX |
3520 | trace_kvm_x86_update_msi_routes(cnt); |
3521 | } | |
3522 | ||
38d87493 PX |
3523 | int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, |
3524 | int vector, PCIDevice *dev) | |
3525 | { | |
e1d4fb2d | 3526 | static bool notify_list_inited = false; |
38d87493 PX |
3527 | MSIRouteEntry *entry; |
3528 | ||
3529 | if (!dev) { | |
3530 | /* These are (possibly) IOAPIC routes only used for split | |
3531 | * kernel irqchip mode, while what we are housekeeping are | |
3532 | * PCI devices only. */ | |
3533 | return 0; | |
3534 | } | |
3535 | ||
3536 | entry = g_new0(MSIRouteEntry, 1); | |
3537 | entry->dev = dev; | |
3538 | entry->vector = vector; | |
3539 | entry->virq = route->gsi; | |
3540 | QLIST_INSERT_HEAD(&msi_route_list, entry, list); | |
3541 | ||
3542 | trace_kvm_x86_add_msi_route(route->gsi); | |
e1d4fb2d PX |
3543 | |
3544 | if (!notify_list_inited) { | |
3545 | /* For the first time we do add route, add ourselves into | |
3546 | * IOMMU's IEC notify list if needed. */ | |
3547 | X86IOMMUState *iommu = x86_iommu_get_default(); | |
3548 | if (iommu) { | |
3549 | x86_iommu_iec_register_notifier(iommu, | |
3550 | kvm_update_msi_routes_all, | |
3551 | NULL); | |
3552 | } | |
3553 | notify_list_inited = true; | |
3554 | } | |
38d87493 PX |
3555 | return 0; |
3556 | } | |
3557 | ||
3558 | int kvm_arch_release_virq_post(int virq) | |
3559 | { | |
3560 | MSIRouteEntry *entry, *next; | |
3561 | QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) { | |
3562 | if (entry->virq == virq) { | |
3563 | trace_kvm_x86_remove_msi_route(virq); | |
3564 | QLIST_REMOVE(entry, list); | |
01960e6d | 3565 | g_free(entry); |
38d87493 PX |
3566 | break; |
3567 | } | |
3568 | } | |
9e03a040 FB |
3569 | return 0; |
3570 | } | |
1850b6b7 EA |
3571 | |
3572 | int kvm_arch_msi_data_to_gsi(uint32_t data) | |
3573 | { | |
3574 | abort(); | |
3575 | } |