]>
Commit | Line | Data |
---|---|---|
54936004 | 1 | /* |
5b6dd868 | 2 | * Virtual page mapping |
5fafdf24 | 3 | * |
54936004 FB |
4 | * Copyright (c) 2003 Fabrice Bellard |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
8167ee88 | 17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
54936004 | 18 | */ |
7b31bbc2 | 19 | #include "qemu/osdep.h" |
da34e65c | 20 | #include "qapi/error.h" |
777872e5 | 21 | #ifndef _WIN32 |
d5a8f07c | 22 | #endif |
54936004 | 23 | |
f348b6d1 | 24 | #include "qemu/cutils.h" |
6180a181 | 25 | #include "cpu.h" |
63c91552 | 26 | #include "exec/exec-all.h" |
b67d9a52 | 27 | #include "tcg.h" |
741da0d3 | 28 | #include "hw/qdev-core.h" |
4485bd26 | 29 | #if !defined(CONFIG_USER_ONLY) |
47c8ca53 | 30 | #include "hw/boards.h" |
33c11879 | 31 | #include "hw/xen/xen.h" |
4485bd26 | 32 | #endif |
9c17d615 | 33 | #include "sysemu/kvm.h" |
2ff3de68 | 34 | #include "sysemu/sysemu.h" |
1de7afc9 PB |
35 | #include "qemu/timer.h" |
36 | #include "qemu/config-file.h" | |
75a34036 | 37 | #include "qemu/error-report.h" |
53a5960a | 38 | #if defined(CONFIG_USER_ONLY) |
a9c94277 | 39 | #include "qemu.h" |
432d268c | 40 | #else /* !CONFIG_USER_ONLY */ |
741da0d3 PB |
41 | #include "hw/hw.h" |
42 | #include "exec/memory.h" | |
df43d49c | 43 | #include "exec/ioport.h" |
741da0d3 PB |
44 | #include "sysemu/dma.h" |
45 | #include "exec/address-spaces.h" | |
9c17d615 | 46 | #include "sysemu/xen-mapcache.h" |
6506e4f9 | 47 | #include "trace.h" |
53a5960a | 48 | #endif |
0d6d3c87 | 49 | #include "exec/cpu-all.h" |
0dc3f44a | 50 | #include "qemu/rcu_queue.h" |
4840f10e | 51 | #include "qemu/main-loop.h" |
5b6dd868 | 52 | #include "translate-all.h" |
7615936e | 53 | #include "sysemu/replay.h" |
0cac1b66 | 54 | |
022c62cb | 55 | #include "exec/memory-internal.h" |
220c3ebd | 56 | #include "exec/ram_addr.h" |
508127e2 | 57 | #include "exec/log.h" |
67d95c15 | 58 | |
9dfeca7c BR |
59 | #include "migration/vmstate.h" |
60 | ||
b35ba30f | 61 | #include "qemu/range.h" |
794e8f30 MT |
62 | #ifndef _WIN32 |
63 | #include "qemu/mmap-alloc.h" | |
64 | #endif | |
b35ba30f | 65 | |
db7b5426 | 66 | //#define DEBUG_SUBPAGE |
1196be37 | 67 | |
e2eef170 | 68 | #if !defined(CONFIG_USER_ONLY) |
0dc3f44a MD |
69 | /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes |
70 | * are protected by the ramlist lock. | |
71 | */ | |
0d53d9fe | 72 | RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; |
62152b8a AK |
73 | |
74 | static MemoryRegion *system_memory; | |
309cb471 | 75 | static MemoryRegion *system_io; |
62152b8a | 76 | |
f6790af6 AK |
77 | AddressSpace address_space_io; |
78 | AddressSpace address_space_memory; | |
2673a5da | 79 | |
0844e007 | 80 | MemoryRegion io_mem_rom, io_mem_notdirty; |
acc9d80b | 81 | static MemoryRegion io_mem_unassigned; |
0e0df1e2 | 82 | |
7bd4f430 PB |
83 | /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ |
84 | #define RAM_PREALLOC (1 << 0) | |
85 | ||
dbcb8981 PB |
86 | /* RAM is mmap-ed with MAP_SHARED */ |
87 | #define RAM_SHARED (1 << 1) | |
88 | ||
62be4e3a MT |
89 | /* Only a portion of RAM (used_length) is actually used, and migrated. |
90 | * This used_length size can change across reboots. | |
91 | */ | |
92 | #define RAM_RESIZEABLE (1 << 2) | |
93 | ||
e2eef170 | 94 | #endif |
9fa3e853 | 95 | |
20bccb82 PM |
96 | #ifdef TARGET_PAGE_BITS_VARY |
97 | int target_page_bits; | |
98 | bool target_page_bits_decided; | |
99 | #endif | |
100 | ||
bdc44640 | 101 | struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus); |
6a00d601 FB |
102 | /* current CPU in the current thread. It is only valid inside |
103 | cpu_exec() */ | |
f240eb6f | 104 | __thread CPUState *current_cpu; |
2e70f6ef | 105 | /* 0 = Do not count executed instructions. |
bf20dc07 | 106 | 1 = Precise instruction counting. |
2e70f6ef | 107 | 2 = Adaptive rate instruction counting. */ |
5708fc66 | 108 | int use_icount; |
6a00d601 | 109 | |
20bccb82 PM |
110 | bool set_preferred_target_page_bits(int bits) |
111 | { | |
112 | /* The target page size is the lowest common denominator for all | |
113 | * the CPUs in the system, so we can only make it smaller, never | |
114 | * larger. And we can't make it smaller once we've committed to | |
115 | * a particular size. | |
116 | */ | |
117 | #ifdef TARGET_PAGE_BITS_VARY | |
118 | assert(bits >= TARGET_PAGE_BITS_MIN); | |
119 | if (target_page_bits == 0 || target_page_bits > bits) { | |
120 | if (target_page_bits_decided) { | |
121 | return false; | |
122 | } | |
123 | target_page_bits = bits; | |
124 | } | |
125 | #endif | |
126 | return true; | |
127 | } | |
128 | ||
e2eef170 | 129 | #if !defined(CONFIG_USER_ONLY) |
4346ae3e | 130 | |
20bccb82 PM |
131 | static void finalize_target_page_bits(void) |
132 | { | |
133 | #ifdef TARGET_PAGE_BITS_VARY | |
134 | if (target_page_bits == 0) { | |
135 | target_page_bits = TARGET_PAGE_BITS_MIN; | |
136 | } | |
137 | target_page_bits_decided = true; | |
138 | #endif | |
139 | } | |
140 | ||
1db8abb1 PB |
141 | typedef struct PhysPageEntry PhysPageEntry; |
142 | ||
143 | struct PhysPageEntry { | |
9736e55b | 144 | /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ |
8b795765 | 145 | uint32_t skip : 6; |
9736e55b | 146 | /* index into phys_sections (!skip) or phys_map_nodes (skip) */ |
8b795765 | 147 | uint32_t ptr : 26; |
1db8abb1 PB |
148 | }; |
149 | ||
8b795765 MT |
150 | #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) |
151 | ||
03f49957 | 152 | /* Size of the L2 (and L3, etc) page tables. */ |
57271d63 | 153 | #define ADDR_SPACE_BITS 64 |
03f49957 | 154 | |
026736ce | 155 | #define P_L2_BITS 9 |
03f49957 PB |
156 | #define P_L2_SIZE (1 << P_L2_BITS) |
157 | ||
158 | #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) | |
159 | ||
160 | typedef PhysPageEntry Node[P_L2_SIZE]; | |
0475d94f | 161 | |
53cb28cb | 162 | typedef struct PhysPageMap { |
79e2b9ae PB |
163 | struct rcu_head rcu; |
164 | ||
53cb28cb MA |
165 | unsigned sections_nb; |
166 | unsigned sections_nb_alloc; | |
167 | unsigned nodes_nb; | |
168 | unsigned nodes_nb_alloc; | |
169 | Node *nodes; | |
170 | MemoryRegionSection *sections; | |
171 | } PhysPageMap; | |
172 | ||
1db8abb1 | 173 | struct AddressSpaceDispatch { |
79e2b9ae PB |
174 | struct rcu_head rcu; |
175 | ||
729633c2 | 176 | MemoryRegionSection *mru_section; |
1db8abb1 PB |
177 | /* This is a multi-level map on the physical address space. |
178 | * The bottom level has pointers to MemoryRegionSections. | |
179 | */ | |
180 | PhysPageEntry phys_map; | |
53cb28cb | 181 | PhysPageMap map; |
acc9d80b | 182 | AddressSpace *as; |
1db8abb1 PB |
183 | }; |
184 | ||
90260c6c JK |
185 | #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) |
186 | typedef struct subpage_t { | |
187 | MemoryRegion iomem; | |
acc9d80b | 188 | AddressSpace *as; |
90260c6c | 189 | hwaddr base; |
2615fabd | 190 | uint16_t sub_section[]; |
90260c6c JK |
191 | } subpage_t; |
192 | ||
b41aac4f LPF |
193 | #define PHYS_SECTION_UNASSIGNED 0 |
194 | #define PHYS_SECTION_NOTDIRTY 1 | |
195 | #define PHYS_SECTION_ROM 2 | |
196 | #define PHYS_SECTION_WATCH 3 | |
5312bd8b | 197 | |
e2eef170 | 198 | static void io_mem_init(void); |
62152b8a | 199 | static void memory_map_init(void); |
09daed84 | 200 | static void tcg_commit(MemoryListener *listener); |
e2eef170 | 201 | |
1ec9b909 | 202 | static MemoryRegion io_mem_watch; |
32857f4d PM |
203 | |
204 | /** | |
205 | * CPUAddressSpace: all the information a CPU needs about an AddressSpace | |
206 | * @cpu: the CPU whose AddressSpace this is | |
207 | * @as: the AddressSpace itself | |
208 | * @memory_dispatch: its dispatch pointer (cached, RCU protected) | |
209 | * @tcg_as_listener: listener for tracking changes to the AddressSpace | |
210 | */ | |
211 | struct CPUAddressSpace { | |
212 | CPUState *cpu; | |
213 | AddressSpace *as; | |
214 | struct AddressSpaceDispatch *memory_dispatch; | |
215 | MemoryListener tcg_as_listener; | |
216 | }; | |
217 | ||
6658ffb8 | 218 | #endif |
fd6ce8f6 | 219 | |
6d9a1304 | 220 | #if !defined(CONFIG_USER_ONLY) |
d6f2ea22 | 221 | |
53cb28cb | 222 | static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) |
d6f2ea22 | 223 | { |
101420b8 | 224 | static unsigned alloc_hint = 16; |
53cb28cb | 225 | if (map->nodes_nb + nodes > map->nodes_nb_alloc) { |
101420b8 | 226 | map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint); |
53cb28cb MA |
227 | map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes); |
228 | map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); | |
101420b8 | 229 | alloc_hint = map->nodes_nb_alloc; |
d6f2ea22 | 230 | } |
f7bf5461 AK |
231 | } |
232 | ||
db94604b | 233 | static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf) |
f7bf5461 AK |
234 | { |
235 | unsigned i; | |
8b795765 | 236 | uint32_t ret; |
db94604b PB |
237 | PhysPageEntry e; |
238 | PhysPageEntry *p; | |
f7bf5461 | 239 | |
53cb28cb | 240 | ret = map->nodes_nb++; |
db94604b | 241 | p = map->nodes[ret]; |
f7bf5461 | 242 | assert(ret != PHYS_MAP_NODE_NIL); |
53cb28cb | 243 | assert(ret != map->nodes_nb_alloc); |
db94604b PB |
244 | |
245 | e.skip = leaf ? 0 : 1; | |
246 | e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL; | |
03f49957 | 247 | for (i = 0; i < P_L2_SIZE; ++i) { |
db94604b | 248 | memcpy(&p[i], &e, sizeof(e)); |
d6f2ea22 | 249 | } |
f7bf5461 | 250 | return ret; |
d6f2ea22 AK |
251 | } |
252 | ||
53cb28cb MA |
253 | static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, |
254 | hwaddr *index, hwaddr *nb, uint16_t leaf, | |
2999097b | 255 | int level) |
f7bf5461 AK |
256 | { |
257 | PhysPageEntry *p; | |
03f49957 | 258 | hwaddr step = (hwaddr)1 << (level * P_L2_BITS); |
108c49b8 | 259 | |
9736e55b | 260 | if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { |
db94604b | 261 | lp->ptr = phys_map_node_alloc(map, level == 0); |
92e873b9 | 262 | } |
db94604b | 263 | p = map->nodes[lp->ptr]; |
03f49957 | 264 | lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; |
f7bf5461 | 265 | |
03f49957 | 266 | while (*nb && lp < &p[P_L2_SIZE]) { |
07f07b31 | 267 | if ((*index & (step - 1)) == 0 && *nb >= step) { |
9736e55b | 268 | lp->skip = 0; |
c19e8800 | 269 | lp->ptr = leaf; |
07f07b31 AK |
270 | *index += step; |
271 | *nb -= step; | |
2999097b | 272 | } else { |
53cb28cb | 273 | phys_page_set_level(map, lp, index, nb, leaf, level - 1); |
2999097b AK |
274 | } |
275 | ++lp; | |
f7bf5461 AK |
276 | } |
277 | } | |
278 | ||
ac1970fb | 279 | static void phys_page_set(AddressSpaceDispatch *d, |
a8170e5e | 280 | hwaddr index, hwaddr nb, |
2999097b | 281 | uint16_t leaf) |
f7bf5461 | 282 | { |
2999097b | 283 | /* Wildly overreserve - it doesn't matter much. */ |
53cb28cb | 284 | phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); |
5cd2c5b6 | 285 | |
53cb28cb | 286 | phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); |
92e873b9 FB |
287 | } |
288 | ||
b35ba30f MT |
289 | /* Compact a non leaf page entry. Simply detect that the entry has a single child, |
290 | * and update our entry so we can skip it and go directly to the destination. | |
291 | */ | |
efee678d | 292 | static void phys_page_compact(PhysPageEntry *lp, Node *nodes) |
b35ba30f MT |
293 | { |
294 | unsigned valid_ptr = P_L2_SIZE; | |
295 | int valid = 0; | |
296 | PhysPageEntry *p; | |
297 | int i; | |
298 | ||
299 | if (lp->ptr == PHYS_MAP_NODE_NIL) { | |
300 | return; | |
301 | } | |
302 | ||
303 | p = nodes[lp->ptr]; | |
304 | for (i = 0; i < P_L2_SIZE; i++) { | |
305 | if (p[i].ptr == PHYS_MAP_NODE_NIL) { | |
306 | continue; | |
307 | } | |
308 | ||
309 | valid_ptr = i; | |
310 | valid++; | |
311 | if (p[i].skip) { | |
efee678d | 312 | phys_page_compact(&p[i], nodes); |
b35ba30f MT |
313 | } |
314 | } | |
315 | ||
316 | /* We can only compress if there's only one child. */ | |
317 | if (valid != 1) { | |
318 | return; | |
319 | } | |
320 | ||
321 | assert(valid_ptr < P_L2_SIZE); | |
322 | ||
323 | /* Don't compress if it won't fit in the # of bits we have. */ | |
324 | if (lp->skip + p[valid_ptr].skip >= (1 << 3)) { | |
325 | return; | |
326 | } | |
327 | ||
328 | lp->ptr = p[valid_ptr].ptr; | |
329 | if (!p[valid_ptr].skip) { | |
330 | /* If our only child is a leaf, make this a leaf. */ | |
331 | /* By design, we should have made this node a leaf to begin with so we | |
332 | * should never reach here. | |
333 | * But since it's so simple to handle this, let's do it just in case we | |
334 | * change this rule. | |
335 | */ | |
336 | lp->skip = 0; | |
337 | } else { | |
338 | lp->skip += p[valid_ptr].skip; | |
339 | } | |
340 | } | |
341 | ||
342 | static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb) | |
343 | { | |
b35ba30f | 344 | if (d->phys_map.skip) { |
efee678d | 345 | phys_page_compact(&d->phys_map, d->map.nodes); |
b35ba30f MT |
346 | } |
347 | } | |
348 | ||
29cb533d FZ |
349 | static inline bool section_covers_addr(const MemoryRegionSection *section, |
350 | hwaddr addr) | |
351 | { | |
352 | /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means | |
353 | * the section must cover the entire address space. | |
354 | */ | |
355 | return section->size.hi || | |
356 | range_covers_byte(section->offset_within_address_space, | |
357 | section->size.lo, addr); | |
358 | } | |
359 | ||
97115a8d | 360 | static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr, |
9affd6fc | 361 | Node *nodes, MemoryRegionSection *sections) |
92e873b9 | 362 | { |
31ab2b4a | 363 | PhysPageEntry *p; |
97115a8d | 364 | hwaddr index = addr >> TARGET_PAGE_BITS; |
31ab2b4a | 365 | int i; |
f1f6e3b8 | 366 | |
9736e55b | 367 | for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { |
c19e8800 | 368 | if (lp.ptr == PHYS_MAP_NODE_NIL) { |
9affd6fc | 369 | return §ions[PHYS_SECTION_UNASSIGNED]; |
31ab2b4a | 370 | } |
9affd6fc | 371 | p = nodes[lp.ptr]; |
03f49957 | 372 | lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; |
5312bd8b | 373 | } |
b35ba30f | 374 | |
29cb533d | 375 | if (section_covers_addr(§ions[lp.ptr], addr)) { |
b35ba30f MT |
376 | return §ions[lp.ptr]; |
377 | } else { | |
378 | return §ions[PHYS_SECTION_UNASSIGNED]; | |
379 | } | |
f3705d53 AK |
380 | } |
381 | ||
e5548617 BS |
382 | bool memory_region_is_unassigned(MemoryRegion *mr) |
383 | { | |
2a8e7499 | 384 | return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device |
5b6dd868 | 385 | && mr != &io_mem_watch; |
fd6ce8f6 | 386 | } |
149f54b5 | 387 | |
79e2b9ae | 388 | /* Called from RCU critical section */ |
c7086b4a | 389 | static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, |
90260c6c JK |
390 | hwaddr addr, |
391 | bool resolve_subpage) | |
9f029603 | 392 | { |
729633c2 | 393 | MemoryRegionSection *section = atomic_read(&d->mru_section); |
90260c6c | 394 | subpage_t *subpage; |
729633c2 | 395 | bool update; |
90260c6c | 396 | |
729633c2 FZ |
397 | if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] && |
398 | section_covers_addr(section, addr)) { | |
399 | update = false; | |
400 | } else { | |
401 | section = phys_page_find(d->phys_map, addr, d->map.nodes, | |
402 | d->map.sections); | |
403 | update = true; | |
404 | } | |
90260c6c JK |
405 | if (resolve_subpage && section->mr->subpage) { |
406 | subpage = container_of(section->mr, subpage_t, iomem); | |
53cb28cb | 407 | section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; |
90260c6c | 408 | } |
729633c2 FZ |
409 | if (update) { |
410 | atomic_set(&d->mru_section, section); | |
411 | } | |
90260c6c | 412 | return section; |
9f029603 JK |
413 | } |
414 | ||
79e2b9ae | 415 | /* Called from RCU critical section */ |
90260c6c | 416 | static MemoryRegionSection * |
c7086b4a | 417 | address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, |
90260c6c | 418 | hwaddr *plen, bool resolve_subpage) |
149f54b5 PB |
419 | { |
420 | MemoryRegionSection *section; | |
965eb2fc | 421 | MemoryRegion *mr; |
a87f3954 | 422 | Int128 diff; |
149f54b5 | 423 | |
c7086b4a | 424 | section = address_space_lookup_region(d, addr, resolve_subpage); |
149f54b5 PB |
425 | /* Compute offset within MemoryRegionSection */ |
426 | addr -= section->offset_within_address_space; | |
427 | ||
428 | /* Compute offset within MemoryRegion */ | |
429 | *xlat = addr + section->offset_within_region; | |
430 | ||
965eb2fc | 431 | mr = section->mr; |
b242e0e0 PB |
432 | |
433 | /* MMIO registers can be expected to perform full-width accesses based only | |
434 | * on their address, without considering adjacent registers that could | |
435 | * decode to completely different MemoryRegions. When such registers | |
436 | * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO | |
437 | * regions overlap wildly. For this reason we cannot clamp the accesses | |
438 | * here. | |
439 | * | |
440 | * If the length is small (as is the case for address_space_ldl/stl), | |
441 | * everything works fine. If the incoming length is large, however, | |
442 | * the caller really has to do the clamping through memory_access_size. | |
443 | */ | |
965eb2fc | 444 | if (memory_region_is_ram(mr)) { |
e4a511f8 | 445 | diff = int128_sub(section->size, int128_make64(addr)); |
965eb2fc PB |
446 | *plen = int128_get64(int128_min(diff, int128_make64(*plen))); |
447 | } | |
149f54b5 PB |
448 | return section; |
449 | } | |
90260c6c | 450 | |
41063e1e | 451 | /* Called from RCU critical section */ |
5c8a00ce PB |
452 | MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr, |
453 | hwaddr *xlat, hwaddr *plen, | |
454 | bool is_write) | |
90260c6c | 455 | { |
30951157 AK |
456 | IOMMUTLBEntry iotlb; |
457 | MemoryRegionSection *section; | |
458 | MemoryRegion *mr; | |
30951157 AK |
459 | |
460 | for (;;) { | |
79e2b9ae PB |
461 | AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch); |
462 | section = address_space_translate_internal(d, addr, &addr, plen, true); | |
30951157 AK |
463 | mr = section->mr; |
464 | ||
465 | if (!mr->iommu_ops) { | |
466 | break; | |
467 | } | |
468 | ||
8d7b8cb9 | 469 | iotlb = mr->iommu_ops->translate(mr, addr, is_write); |
30951157 AK |
470 | addr = ((iotlb.translated_addr & ~iotlb.addr_mask) |
471 | | (addr & iotlb.addr_mask)); | |
23820dbf | 472 | *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1); |
30951157 AK |
473 | if (!(iotlb.perm & (1 << is_write))) { |
474 | mr = &io_mem_unassigned; | |
475 | break; | |
476 | } | |
477 | ||
478 | as = iotlb.target_as; | |
479 | } | |
480 | ||
fe680d0d | 481 | if (xen_enabled() && memory_access_is_direct(mr, is_write)) { |
a87f3954 | 482 | hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; |
23820dbf | 483 | *plen = MIN(page, *plen); |
a87f3954 PB |
484 | } |
485 | ||
30951157 AK |
486 | *xlat = addr; |
487 | return mr; | |
90260c6c JK |
488 | } |
489 | ||
79e2b9ae | 490 | /* Called from RCU critical section */ |
90260c6c | 491 | MemoryRegionSection * |
d7898cda | 492 | address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr, |
9d82b5a7 | 493 | hwaddr *xlat, hwaddr *plen) |
90260c6c | 494 | { |
30951157 | 495 | MemoryRegionSection *section; |
d7898cda PM |
496 | AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch; |
497 | ||
498 | section = address_space_translate_internal(d, addr, xlat, plen, false); | |
30951157 AK |
499 | |
500 | assert(!section->mr->iommu_ops); | |
501 | return section; | |
90260c6c | 502 | } |
5b6dd868 | 503 | #endif |
fd6ce8f6 | 504 | |
b170fce3 | 505 | #if !defined(CONFIG_USER_ONLY) |
5b6dd868 BS |
506 | |
507 | static int cpu_common_post_load(void *opaque, int version_id) | |
fd6ce8f6 | 508 | { |
259186a7 | 509 | CPUState *cpu = opaque; |
a513fe19 | 510 | |
5b6dd868 BS |
511 | /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the |
512 | version_id is increased. */ | |
259186a7 | 513 | cpu->interrupt_request &= ~0x01; |
c01a71c1 | 514 | tlb_flush(cpu, 1); |
5b6dd868 BS |
515 | |
516 | return 0; | |
a513fe19 | 517 | } |
7501267e | 518 | |
6c3bff0e PD |
519 | static int cpu_common_pre_load(void *opaque) |
520 | { | |
521 | CPUState *cpu = opaque; | |
522 | ||
adee6424 | 523 | cpu->exception_index = -1; |
6c3bff0e PD |
524 | |
525 | return 0; | |
526 | } | |
527 | ||
528 | static bool cpu_common_exception_index_needed(void *opaque) | |
529 | { | |
530 | CPUState *cpu = opaque; | |
531 | ||
adee6424 | 532 | return tcg_enabled() && cpu->exception_index != -1; |
6c3bff0e PD |
533 | } |
534 | ||
535 | static const VMStateDescription vmstate_cpu_common_exception_index = { | |
536 | .name = "cpu_common/exception_index", | |
537 | .version_id = 1, | |
538 | .minimum_version_id = 1, | |
5cd8cada | 539 | .needed = cpu_common_exception_index_needed, |
6c3bff0e PD |
540 | .fields = (VMStateField[]) { |
541 | VMSTATE_INT32(exception_index, CPUState), | |
542 | VMSTATE_END_OF_LIST() | |
543 | } | |
544 | }; | |
545 | ||
bac05aa9 AS |
546 | static bool cpu_common_crash_occurred_needed(void *opaque) |
547 | { | |
548 | CPUState *cpu = opaque; | |
549 | ||
550 | return cpu->crash_occurred; | |
551 | } | |
552 | ||
553 | static const VMStateDescription vmstate_cpu_common_crash_occurred = { | |
554 | .name = "cpu_common/crash_occurred", | |
555 | .version_id = 1, | |
556 | .minimum_version_id = 1, | |
557 | .needed = cpu_common_crash_occurred_needed, | |
558 | .fields = (VMStateField[]) { | |
559 | VMSTATE_BOOL(crash_occurred, CPUState), | |
560 | VMSTATE_END_OF_LIST() | |
561 | } | |
562 | }; | |
563 | ||
1a1562f5 | 564 | const VMStateDescription vmstate_cpu_common = { |
5b6dd868 BS |
565 | .name = "cpu_common", |
566 | .version_id = 1, | |
567 | .minimum_version_id = 1, | |
6c3bff0e | 568 | .pre_load = cpu_common_pre_load, |
5b6dd868 | 569 | .post_load = cpu_common_post_load, |
35d08458 | 570 | .fields = (VMStateField[]) { |
259186a7 AF |
571 | VMSTATE_UINT32(halted, CPUState), |
572 | VMSTATE_UINT32(interrupt_request, CPUState), | |
5b6dd868 | 573 | VMSTATE_END_OF_LIST() |
6c3bff0e | 574 | }, |
5cd8cada JQ |
575 | .subsections = (const VMStateDescription*[]) { |
576 | &vmstate_cpu_common_exception_index, | |
bac05aa9 | 577 | &vmstate_cpu_common_crash_occurred, |
5cd8cada | 578 | NULL |
5b6dd868 BS |
579 | } |
580 | }; | |
1a1562f5 | 581 | |
5b6dd868 | 582 | #endif |
ea041c0e | 583 | |
38d8f5c8 | 584 | CPUState *qemu_get_cpu(int index) |
ea041c0e | 585 | { |
bdc44640 | 586 | CPUState *cpu; |
ea041c0e | 587 | |
bdc44640 | 588 | CPU_FOREACH(cpu) { |
55e5c285 | 589 | if (cpu->cpu_index == index) { |
bdc44640 | 590 | return cpu; |
55e5c285 | 591 | } |
ea041c0e | 592 | } |
5b6dd868 | 593 | |
bdc44640 | 594 | return NULL; |
ea041c0e FB |
595 | } |
596 | ||
09daed84 | 597 | #if !defined(CONFIG_USER_ONLY) |
56943e8c | 598 | void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx) |
09daed84 | 599 | { |
12ebc9a7 PM |
600 | CPUAddressSpace *newas; |
601 | ||
602 | /* Target code should have set num_ases before calling us */ | |
603 | assert(asidx < cpu->num_ases); | |
604 | ||
56943e8c PM |
605 | if (asidx == 0) { |
606 | /* address space 0 gets the convenience alias */ | |
607 | cpu->as = as; | |
608 | } | |
609 | ||
12ebc9a7 PM |
610 | /* KVM cannot currently support multiple address spaces. */ |
611 | assert(asidx == 0 || !kvm_enabled()); | |
09daed84 | 612 | |
12ebc9a7 PM |
613 | if (!cpu->cpu_ases) { |
614 | cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases); | |
09daed84 | 615 | } |
32857f4d | 616 | |
12ebc9a7 PM |
617 | newas = &cpu->cpu_ases[asidx]; |
618 | newas->cpu = cpu; | |
619 | newas->as = as; | |
56943e8c | 620 | if (tcg_enabled()) { |
12ebc9a7 PM |
621 | newas->tcg_as_listener.commit = tcg_commit; |
622 | memory_listener_register(&newas->tcg_as_listener, as); | |
56943e8c | 623 | } |
09daed84 | 624 | } |
651a5bc0 PM |
625 | |
626 | AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx) | |
627 | { | |
628 | /* Return the AddressSpace corresponding to the specified index */ | |
629 | return cpu->cpu_ases[asidx].as; | |
630 | } | |
09daed84 EI |
631 | #endif |
632 | ||
7bbc124e | 633 | void cpu_exec_unrealizefn(CPUState *cpu) |
1c59eb39 | 634 | { |
9dfeca7c BR |
635 | CPUClass *cc = CPU_GET_CLASS(cpu); |
636 | ||
267f685b | 637 | cpu_list_remove(cpu); |
9dfeca7c BR |
638 | |
639 | if (cc->vmsd != NULL) { | |
640 | vmstate_unregister(NULL, cc->vmsd, cpu); | |
641 | } | |
642 | if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { | |
643 | vmstate_unregister(NULL, &vmstate_cpu_common, cpu); | |
644 | } | |
1c59eb39 BR |
645 | } |
646 | ||
39e329e3 | 647 | void cpu_exec_initfn(CPUState *cpu) |
ea041c0e | 648 | { |
56943e8c | 649 | cpu->as = NULL; |
12ebc9a7 | 650 | cpu->num_ases = 0; |
56943e8c | 651 | |
291135b5 | 652 | #ifndef CONFIG_USER_ONLY |
291135b5 | 653 | cpu->thread_id = qemu_get_thread_id(); |
6731d864 PC |
654 | |
655 | /* This is a softmmu CPU object, so create a property for it | |
656 | * so users can wire up its memory. (This can't go in qom/cpu.c | |
657 | * because that file is compiled only once for both user-mode | |
658 | * and system builds.) The default if no link is set up is to use | |
659 | * the system address space. | |
660 | */ | |
661 | object_property_add_link(OBJECT(cpu), "memory", TYPE_MEMORY_REGION, | |
662 | (Object **)&cpu->memory, | |
663 | qdev_prop_allow_set_link_before_realize, | |
664 | OBJ_PROP_LINK_UNREF_ON_RELEASE, | |
665 | &error_abort); | |
666 | cpu->memory = system_memory; | |
667 | object_ref(OBJECT(cpu->memory)); | |
291135b5 | 668 | #endif |
39e329e3 LV |
669 | } |
670 | ||
ce5b1bbf | 671 | void cpu_exec_realizefn(CPUState *cpu, Error **errp) |
39e329e3 LV |
672 | { |
673 | CPUClass *cc ATTRIBUTE_UNUSED = CPU_GET_CLASS(cpu); | |
291135b5 | 674 | |
267f685b | 675 | cpu_list_add(cpu); |
1bc7e522 IM |
676 | |
677 | #ifndef CONFIG_USER_ONLY | |
e0d47944 | 678 | if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { |
741da0d3 | 679 | vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu); |
e0d47944 | 680 | } |
b170fce3 | 681 | if (cc->vmsd != NULL) { |
741da0d3 | 682 | vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu); |
b170fce3 | 683 | } |
741da0d3 | 684 | #endif |
ea041c0e FB |
685 | } |
686 | ||
94df27fd | 687 | #if defined(CONFIG_USER_ONLY) |
00b941e5 | 688 | static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) |
94df27fd PB |
689 | { |
690 | tb_invalidate_phys_page_range(pc, pc + 1, 0); | |
691 | } | |
692 | #else | |
00b941e5 | 693 | static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) |
1e7855a5 | 694 | { |
5232e4c7 PM |
695 | MemTxAttrs attrs; |
696 | hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs); | |
697 | int asidx = cpu_asidx_from_attrs(cpu, attrs); | |
e8262a1b | 698 | if (phys != -1) { |
5232e4c7 | 699 | tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as, |
29d8ec7b | 700 | phys | (pc & ~TARGET_PAGE_MASK)); |
e8262a1b | 701 | } |
1e7855a5 | 702 | } |
c27004ec | 703 | #endif |
d720b93d | 704 | |
c527ee8f | 705 | #if defined(CONFIG_USER_ONLY) |
75a34036 | 706 | void cpu_watchpoint_remove_all(CPUState *cpu, int mask) |
c527ee8f PB |
707 | |
708 | { | |
709 | } | |
710 | ||
3ee887e8 PM |
711 | int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, |
712 | int flags) | |
713 | { | |
714 | return -ENOSYS; | |
715 | } | |
716 | ||
717 | void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) | |
718 | { | |
719 | } | |
720 | ||
75a34036 | 721 | int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, |
c527ee8f PB |
722 | int flags, CPUWatchpoint **watchpoint) |
723 | { | |
724 | return -ENOSYS; | |
725 | } | |
726 | #else | |
6658ffb8 | 727 | /* Add a watchpoint. */ |
75a34036 | 728 | int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, |
a1d1bb31 | 729 | int flags, CPUWatchpoint **watchpoint) |
6658ffb8 | 730 | { |
c0ce998e | 731 | CPUWatchpoint *wp; |
6658ffb8 | 732 | |
05068c0d | 733 | /* forbid ranges which are empty or run off the end of the address space */ |
07e2863d | 734 | if (len == 0 || (addr + len - 1) < addr) { |
75a34036 AF |
735 | error_report("tried to set invalid watchpoint at %" |
736 | VADDR_PRIx ", len=%" VADDR_PRIu, addr, len); | |
b4051334 AL |
737 | return -EINVAL; |
738 | } | |
7267c094 | 739 | wp = g_malloc(sizeof(*wp)); |
a1d1bb31 AL |
740 | |
741 | wp->vaddr = addr; | |
05068c0d | 742 | wp->len = len; |
a1d1bb31 AL |
743 | wp->flags = flags; |
744 | ||
2dc9f411 | 745 | /* keep all GDB-injected watchpoints in front */ |
ff4700b0 AF |
746 | if (flags & BP_GDB) { |
747 | QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry); | |
748 | } else { | |
749 | QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry); | |
750 | } | |
6658ffb8 | 751 | |
31b030d4 | 752 | tlb_flush_page(cpu, addr); |
a1d1bb31 AL |
753 | |
754 | if (watchpoint) | |
755 | *watchpoint = wp; | |
756 | return 0; | |
6658ffb8 PB |
757 | } |
758 | ||
a1d1bb31 | 759 | /* Remove a specific watchpoint. */ |
75a34036 | 760 | int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, |
a1d1bb31 | 761 | int flags) |
6658ffb8 | 762 | { |
a1d1bb31 | 763 | CPUWatchpoint *wp; |
6658ffb8 | 764 | |
ff4700b0 | 765 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d | 766 | if (addr == wp->vaddr && len == wp->len |
6e140f28 | 767 | && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { |
75a34036 | 768 | cpu_watchpoint_remove_by_ref(cpu, wp); |
6658ffb8 PB |
769 | return 0; |
770 | } | |
771 | } | |
a1d1bb31 | 772 | return -ENOENT; |
6658ffb8 PB |
773 | } |
774 | ||
a1d1bb31 | 775 | /* Remove a specific watchpoint by reference. */ |
75a34036 | 776 | void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) |
a1d1bb31 | 777 | { |
ff4700b0 | 778 | QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry); |
7d03f82f | 779 | |
31b030d4 | 780 | tlb_flush_page(cpu, watchpoint->vaddr); |
a1d1bb31 | 781 | |
7267c094 | 782 | g_free(watchpoint); |
a1d1bb31 AL |
783 | } |
784 | ||
785 | /* Remove all matching watchpoints. */ | |
75a34036 | 786 | void cpu_watchpoint_remove_all(CPUState *cpu, int mask) |
a1d1bb31 | 787 | { |
c0ce998e | 788 | CPUWatchpoint *wp, *next; |
a1d1bb31 | 789 | |
ff4700b0 | 790 | QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) { |
75a34036 AF |
791 | if (wp->flags & mask) { |
792 | cpu_watchpoint_remove_by_ref(cpu, wp); | |
793 | } | |
c0ce998e | 794 | } |
7d03f82f | 795 | } |
05068c0d PM |
796 | |
797 | /* Return true if this watchpoint address matches the specified | |
798 | * access (ie the address range covered by the watchpoint overlaps | |
799 | * partially or completely with the address range covered by the | |
800 | * access). | |
801 | */ | |
802 | static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp, | |
803 | vaddr addr, | |
804 | vaddr len) | |
805 | { | |
806 | /* We know the lengths are non-zero, but a little caution is | |
807 | * required to avoid errors in the case where the range ends | |
808 | * exactly at the top of the address space and so addr + len | |
809 | * wraps round to zero. | |
810 | */ | |
811 | vaddr wpend = wp->vaddr + wp->len - 1; | |
812 | vaddr addrend = addr + len - 1; | |
813 | ||
814 | return !(addr > wpend || wp->vaddr > addrend); | |
815 | } | |
816 | ||
c527ee8f | 817 | #endif |
7d03f82f | 818 | |
a1d1bb31 | 819 | /* Add a breakpoint. */ |
b3310ab3 | 820 | int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, |
a1d1bb31 | 821 | CPUBreakpoint **breakpoint) |
4c3a88a2 | 822 | { |
c0ce998e | 823 | CPUBreakpoint *bp; |
3b46e624 | 824 | |
7267c094 | 825 | bp = g_malloc(sizeof(*bp)); |
4c3a88a2 | 826 | |
a1d1bb31 AL |
827 | bp->pc = pc; |
828 | bp->flags = flags; | |
829 | ||
2dc9f411 | 830 | /* keep all GDB-injected breakpoints in front */ |
00b941e5 | 831 | if (flags & BP_GDB) { |
f0c3c505 | 832 | QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry); |
00b941e5 | 833 | } else { |
f0c3c505 | 834 | QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry); |
00b941e5 | 835 | } |
3b46e624 | 836 | |
f0c3c505 | 837 | breakpoint_invalidate(cpu, pc); |
a1d1bb31 | 838 | |
00b941e5 | 839 | if (breakpoint) { |
a1d1bb31 | 840 | *breakpoint = bp; |
00b941e5 | 841 | } |
4c3a88a2 | 842 | return 0; |
4c3a88a2 FB |
843 | } |
844 | ||
a1d1bb31 | 845 | /* Remove a specific breakpoint. */ |
b3310ab3 | 846 | int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags) |
a1d1bb31 | 847 | { |
a1d1bb31 AL |
848 | CPUBreakpoint *bp; |
849 | ||
f0c3c505 | 850 | QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { |
a1d1bb31 | 851 | if (bp->pc == pc && bp->flags == flags) { |
b3310ab3 | 852 | cpu_breakpoint_remove_by_ref(cpu, bp); |
a1d1bb31 AL |
853 | return 0; |
854 | } | |
7d03f82f | 855 | } |
a1d1bb31 | 856 | return -ENOENT; |
7d03f82f EI |
857 | } |
858 | ||
a1d1bb31 | 859 | /* Remove a specific breakpoint by reference. */ |
b3310ab3 | 860 | void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint) |
4c3a88a2 | 861 | { |
f0c3c505 AF |
862 | QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry); |
863 | ||
864 | breakpoint_invalidate(cpu, breakpoint->pc); | |
a1d1bb31 | 865 | |
7267c094 | 866 | g_free(breakpoint); |
a1d1bb31 AL |
867 | } |
868 | ||
869 | /* Remove all matching breakpoints. */ | |
b3310ab3 | 870 | void cpu_breakpoint_remove_all(CPUState *cpu, int mask) |
a1d1bb31 | 871 | { |
c0ce998e | 872 | CPUBreakpoint *bp, *next; |
a1d1bb31 | 873 | |
f0c3c505 | 874 | QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) { |
b3310ab3 AF |
875 | if (bp->flags & mask) { |
876 | cpu_breakpoint_remove_by_ref(cpu, bp); | |
877 | } | |
c0ce998e | 878 | } |
4c3a88a2 FB |
879 | } |
880 | ||
c33a346e FB |
881 | /* enable or disable single step mode. EXCP_DEBUG is returned by the |
882 | CPU loop after each instruction */ | |
3825b28f | 883 | void cpu_single_step(CPUState *cpu, int enabled) |
c33a346e | 884 | { |
ed2803da AF |
885 | if (cpu->singlestep_enabled != enabled) { |
886 | cpu->singlestep_enabled = enabled; | |
887 | if (kvm_enabled()) { | |
38e478ec | 888 | kvm_update_guest_debug(cpu, 0); |
ed2803da | 889 | } else { |
ccbb4d44 | 890 | /* must flush all the translated code to avoid inconsistencies */ |
e22a25c9 | 891 | /* XXX: only flush what is necessary */ |
bbd77c18 | 892 | tb_flush(cpu); |
e22a25c9 | 893 | } |
c33a346e | 894 | } |
c33a346e FB |
895 | } |
896 | ||
a47dddd7 | 897 | void cpu_abort(CPUState *cpu, const char *fmt, ...) |
7501267e FB |
898 | { |
899 | va_list ap; | |
493ae1f0 | 900 | va_list ap2; |
7501267e FB |
901 | |
902 | va_start(ap, fmt); | |
493ae1f0 | 903 | va_copy(ap2, ap); |
7501267e FB |
904 | fprintf(stderr, "qemu: fatal: "); |
905 | vfprintf(stderr, fmt, ap); | |
906 | fprintf(stderr, "\n"); | |
878096ee | 907 | cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP); |
013a2942 | 908 | if (qemu_log_separate()) { |
93fcfe39 AL |
909 | qemu_log("qemu: fatal: "); |
910 | qemu_log_vprintf(fmt, ap2); | |
911 | qemu_log("\n"); | |
a0762859 | 912 | log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP); |
31b1a7b4 | 913 | qemu_log_flush(); |
93fcfe39 | 914 | qemu_log_close(); |
924edcae | 915 | } |
493ae1f0 | 916 | va_end(ap2); |
f9373291 | 917 | va_end(ap); |
7615936e | 918 | replay_finish(); |
fd052bf6 RV |
919 | #if defined(CONFIG_USER_ONLY) |
920 | { | |
921 | struct sigaction act; | |
922 | sigfillset(&act.sa_mask); | |
923 | act.sa_handler = SIG_DFL; | |
924 | sigaction(SIGABRT, &act, NULL); | |
925 | } | |
926 | #endif | |
7501267e FB |
927 | abort(); |
928 | } | |
929 | ||
0124311e | 930 | #if !defined(CONFIG_USER_ONLY) |
0dc3f44a | 931 | /* Called from RCU critical section */ |
041603fe PB |
932 | static RAMBlock *qemu_get_ram_block(ram_addr_t addr) |
933 | { | |
934 | RAMBlock *block; | |
935 | ||
43771539 | 936 | block = atomic_rcu_read(&ram_list.mru_block); |
9b8424d5 | 937 | if (block && addr - block->offset < block->max_length) { |
68851b98 | 938 | return block; |
041603fe | 939 | } |
0dc3f44a | 940 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
9b8424d5 | 941 | if (addr - block->offset < block->max_length) { |
041603fe PB |
942 | goto found; |
943 | } | |
944 | } | |
945 | ||
946 | fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); | |
947 | abort(); | |
948 | ||
949 | found: | |
43771539 PB |
950 | /* It is safe to write mru_block outside the iothread lock. This |
951 | * is what happens: | |
952 | * | |
953 | * mru_block = xxx | |
954 | * rcu_read_unlock() | |
955 | * xxx removed from list | |
956 | * rcu_read_lock() | |
957 | * read mru_block | |
958 | * mru_block = NULL; | |
959 | * call_rcu(reclaim_ramblock, xxx); | |
960 | * rcu_read_unlock() | |
961 | * | |
962 | * atomic_rcu_set is not needed here. The block was already published | |
963 | * when it was placed into the list. Here we're just making an extra | |
964 | * copy of the pointer. | |
965 | */ | |
041603fe PB |
966 | ram_list.mru_block = block; |
967 | return block; | |
968 | } | |
969 | ||
a2f4d5be | 970 | static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) |
d24981d3 | 971 | { |
9a13565d | 972 | CPUState *cpu; |
041603fe | 973 | ram_addr_t start1; |
a2f4d5be JQ |
974 | RAMBlock *block; |
975 | ram_addr_t end; | |
976 | ||
977 | end = TARGET_PAGE_ALIGN(start + length); | |
978 | start &= TARGET_PAGE_MASK; | |
d24981d3 | 979 | |
0dc3f44a | 980 | rcu_read_lock(); |
041603fe PB |
981 | block = qemu_get_ram_block(start); |
982 | assert(block == qemu_get_ram_block(end - 1)); | |
1240be24 | 983 | start1 = (uintptr_t)ramblock_ptr(block, start - block->offset); |
9a13565d PC |
984 | CPU_FOREACH(cpu) { |
985 | tlb_reset_dirty(cpu, start1, length); | |
986 | } | |
0dc3f44a | 987 | rcu_read_unlock(); |
d24981d3 JQ |
988 | } |
989 | ||
5579c7f3 | 990 | /* Note: start and end must be within the same ram block. */ |
03eebc9e SH |
991 | bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, |
992 | ram_addr_t length, | |
993 | unsigned client) | |
1ccde1cb | 994 | { |
5b82b703 | 995 | DirtyMemoryBlocks *blocks; |
03eebc9e | 996 | unsigned long end, page; |
5b82b703 | 997 | bool dirty = false; |
03eebc9e SH |
998 | |
999 | if (length == 0) { | |
1000 | return false; | |
1001 | } | |
f23db169 | 1002 | |
03eebc9e SH |
1003 | end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; |
1004 | page = start >> TARGET_PAGE_BITS; | |
5b82b703 SH |
1005 | |
1006 | rcu_read_lock(); | |
1007 | ||
1008 | blocks = atomic_rcu_read(&ram_list.dirty_memory[client]); | |
1009 | ||
1010 | while (page < end) { | |
1011 | unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; | |
1012 | unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; | |
1013 | unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset); | |
1014 | ||
1015 | dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx], | |
1016 | offset, num); | |
1017 | page += num; | |
1018 | } | |
1019 | ||
1020 | rcu_read_unlock(); | |
03eebc9e SH |
1021 | |
1022 | if (dirty && tcg_enabled()) { | |
a2f4d5be | 1023 | tlb_reset_dirty_range_all(start, length); |
5579c7f3 | 1024 | } |
03eebc9e SH |
1025 | |
1026 | return dirty; | |
1ccde1cb FB |
1027 | } |
1028 | ||
79e2b9ae | 1029 | /* Called from RCU critical section */ |
bb0e627a | 1030 | hwaddr memory_region_section_get_iotlb(CPUState *cpu, |
149f54b5 PB |
1031 | MemoryRegionSection *section, |
1032 | target_ulong vaddr, | |
1033 | hwaddr paddr, hwaddr xlat, | |
1034 | int prot, | |
1035 | target_ulong *address) | |
e5548617 | 1036 | { |
a8170e5e | 1037 | hwaddr iotlb; |
e5548617 BS |
1038 | CPUWatchpoint *wp; |
1039 | ||
cc5bea60 | 1040 | if (memory_region_is_ram(section->mr)) { |
e5548617 | 1041 | /* Normal RAM. */ |
e4e69794 | 1042 | iotlb = memory_region_get_ram_addr(section->mr) + xlat; |
e5548617 | 1043 | if (!section->readonly) { |
b41aac4f | 1044 | iotlb |= PHYS_SECTION_NOTDIRTY; |
e5548617 | 1045 | } else { |
b41aac4f | 1046 | iotlb |= PHYS_SECTION_ROM; |
e5548617 BS |
1047 | } |
1048 | } else { | |
0b8e2c10 PM |
1049 | AddressSpaceDispatch *d; |
1050 | ||
1051 | d = atomic_rcu_read(§ion->address_space->dispatch); | |
1052 | iotlb = section - d->map.sections; | |
149f54b5 | 1053 | iotlb += xlat; |
e5548617 BS |
1054 | } |
1055 | ||
1056 | /* Make accesses to pages with watchpoints go via the | |
1057 | watchpoint trap routines. */ | |
ff4700b0 | 1058 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d | 1059 | if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) { |
e5548617 BS |
1060 | /* Avoid trapping reads of pages with a write breakpoint. */ |
1061 | if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) { | |
b41aac4f | 1062 | iotlb = PHYS_SECTION_WATCH + paddr; |
e5548617 BS |
1063 | *address |= TLB_MMIO; |
1064 | break; | |
1065 | } | |
1066 | } | |
1067 | } | |
1068 | ||
1069 | return iotlb; | |
1070 | } | |
9fa3e853 FB |
1071 | #endif /* defined(CONFIG_USER_ONLY) */ |
1072 | ||
e2eef170 | 1073 | #if !defined(CONFIG_USER_ONLY) |
8da3ff18 | 1074 | |
c227f099 | 1075 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, |
5312bd8b | 1076 | uint16_t section); |
acc9d80b | 1077 | static subpage_t *subpage_init(AddressSpace *as, hwaddr base); |
54688b1e | 1078 | |
a2b257d6 IM |
1079 | static void *(*phys_mem_alloc)(size_t size, uint64_t *align) = |
1080 | qemu_anon_ram_alloc; | |
91138037 MA |
1081 | |
1082 | /* | |
1083 | * Set a custom physical guest memory alloator. | |
1084 | * Accelerators with unusual needs may need this. Hopefully, we can | |
1085 | * get rid of it eventually. | |
1086 | */ | |
a2b257d6 | 1087 | void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align)) |
91138037 MA |
1088 | { |
1089 | phys_mem_alloc = alloc; | |
1090 | } | |
1091 | ||
53cb28cb MA |
1092 | static uint16_t phys_section_add(PhysPageMap *map, |
1093 | MemoryRegionSection *section) | |
5312bd8b | 1094 | { |
68f3f65b PB |
1095 | /* The physical section number is ORed with a page-aligned |
1096 | * pointer to produce the iotlb entries. Thus it should | |
1097 | * never overflow into the page-aligned value. | |
1098 | */ | |
53cb28cb | 1099 | assert(map->sections_nb < TARGET_PAGE_SIZE); |
68f3f65b | 1100 | |
53cb28cb MA |
1101 | if (map->sections_nb == map->sections_nb_alloc) { |
1102 | map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); | |
1103 | map->sections = g_renew(MemoryRegionSection, map->sections, | |
1104 | map->sections_nb_alloc); | |
5312bd8b | 1105 | } |
53cb28cb | 1106 | map->sections[map->sections_nb] = *section; |
dfde4e6e | 1107 | memory_region_ref(section->mr); |
53cb28cb | 1108 | return map->sections_nb++; |
5312bd8b AK |
1109 | } |
1110 | ||
058bc4b5 PB |
1111 | static void phys_section_destroy(MemoryRegion *mr) |
1112 | { | |
55b4e80b DS |
1113 | bool have_sub_page = mr->subpage; |
1114 | ||
dfde4e6e PB |
1115 | memory_region_unref(mr); |
1116 | ||
55b4e80b | 1117 | if (have_sub_page) { |
058bc4b5 | 1118 | subpage_t *subpage = container_of(mr, subpage_t, iomem); |
b4fefef9 | 1119 | object_unref(OBJECT(&subpage->iomem)); |
058bc4b5 PB |
1120 | g_free(subpage); |
1121 | } | |
1122 | } | |
1123 | ||
6092666e | 1124 | static void phys_sections_free(PhysPageMap *map) |
5312bd8b | 1125 | { |
9affd6fc PB |
1126 | while (map->sections_nb > 0) { |
1127 | MemoryRegionSection *section = &map->sections[--map->sections_nb]; | |
058bc4b5 PB |
1128 | phys_section_destroy(section->mr); |
1129 | } | |
9affd6fc PB |
1130 | g_free(map->sections); |
1131 | g_free(map->nodes); | |
5312bd8b AK |
1132 | } |
1133 | ||
ac1970fb | 1134 | static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section) |
0f0cb164 AK |
1135 | { |
1136 | subpage_t *subpage; | |
a8170e5e | 1137 | hwaddr base = section->offset_within_address_space |
0f0cb164 | 1138 | & TARGET_PAGE_MASK; |
97115a8d | 1139 | MemoryRegionSection *existing = phys_page_find(d->phys_map, base, |
53cb28cb | 1140 | d->map.nodes, d->map.sections); |
0f0cb164 AK |
1141 | MemoryRegionSection subsection = { |
1142 | .offset_within_address_space = base, | |
052e87b0 | 1143 | .size = int128_make64(TARGET_PAGE_SIZE), |
0f0cb164 | 1144 | }; |
a8170e5e | 1145 | hwaddr start, end; |
0f0cb164 | 1146 | |
f3705d53 | 1147 | assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); |
0f0cb164 | 1148 | |
f3705d53 | 1149 | if (!(existing->mr->subpage)) { |
acc9d80b | 1150 | subpage = subpage_init(d->as, base); |
3be91e86 | 1151 | subsection.address_space = d->as; |
0f0cb164 | 1152 | subsection.mr = &subpage->iomem; |
ac1970fb | 1153 | phys_page_set(d, base >> TARGET_PAGE_BITS, 1, |
53cb28cb | 1154 | phys_section_add(&d->map, &subsection)); |
0f0cb164 | 1155 | } else { |
f3705d53 | 1156 | subpage = container_of(existing->mr, subpage_t, iomem); |
0f0cb164 AK |
1157 | } |
1158 | start = section->offset_within_address_space & ~TARGET_PAGE_MASK; | |
052e87b0 | 1159 | end = start + int128_get64(section->size) - 1; |
53cb28cb MA |
1160 | subpage_register(subpage, start, end, |
1161 | phys_section_add(&d->map, section)); | |
0f0cb164 AK |
1162 | } |
1163 | ||
1164 | ||
052e87b0 PB |
1165 | static void register_multipage(AddressSpaceDispatch *d, |
1166 | MemoryRegionSection *section) | |
33417e70 | 1167 | { |
a8170e5e | 1168 | hwaddr start_addr = section->offset_within_address_space; |
53cb28cb | 1169 | uint16_t section_index = phys_section_add(&d->map, section); |
052e87b0 PB |
1170 | uint64_t num_pages = int128_get64(int128_rshift(section->size, |
1171 | TARGET_PAGE_BITS)); | |
dd81124b | 1172 | |
733d5ef5 PB |
1173 | assert(num_pages); |
1174 | phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); | |
33417e70 FB |
1175 | } |
1176 | ||
ac1970fb | 1177 | static void mem_add(MemoryListener *listener, MemoryRegionSection *section) |
0f0cb164 | 1178 | { |
89ae337a | 1179 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); |
00752703 | 1180 | AddressSpaceDispatch *d = as->next_dispatch; |
99b9cc06 | 1181 | MemoryRegionSection now = *section, remain = *section; |
052e87b0 | 1182 | Int128 page_size = int128_make64(TARGET_PAGE_SIZE); |
0f0cb164 | 1183 | |
733d5ef5 PB |
1184 | if (now.offset_within_address_space & ~TARGET_PAGE_MASK) { |
1185 | uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space) | |
1186 | - now.offset_within_address_space; | |
1187 | ||
052e87b0 | 1188 | now.size = int128_min(int128_make64(left), now.size); |
ac1970fb | 1189 | register_subpage(d, &now); |
733d5ef5 | 1190 | } else { |
052e87b0 | 1191 | now.size = int128_zero(); |
733d5ef5 | 1192 | } |
052e87b0 PB |
1193 | while (int128_ne(remain.size, now.size)) { |
1194 | remain.size = int128_sub(remain.size, now.size); | |
1195 | remain.offset_within_address_space += int128_get64(now.size); | |
1196 | remain.offset_within_region += int128_get64(now.size); | |
69b67646 | 1197 | now = remain; |
052e87b0 | 1198 | if (int128_lt(remain.size, page_size)) { |
733d5ef5 | 1199 | register_subpage(d, &now); |
88266249 | 1200 | } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { |
052e87b0 | 1201 | now.size = page_size; |
ac1970fb | 1202 | register_subpage(d, &now); |
69b67646 | 1203 | } else { |
052e87b0 | 1204 | now.size = int128_and(now.size, int128_neg(page_size)); |
ac1970fb | 1205 | register_multipage(d, &now); |
69b67646 | 1206 | } |
0f0cb164 AK |
1207 | } |
1208 | } | |
1209 | ||
62a2744c SY |
1210 | void qemu_flush_coalesced_mmio_buffer(void) |
1211 | { | |
1212 | if (kvm_enabled()) | |
1213 | kvm_flush_coalesced_mmio_buffer(); | |
1214 | } | |
1215 | ||
b2a8658e UD |
1216 | void qemu_mutex_lock_ramlist(void) |
1217 | { | |
1218 | qemu_mutex_lock(&ram_list.mutex); | |
1219 | } | |
1220 | ||
1221 | void qemu_mutex_unlock_ramlist(void) | |
1222 | { | |
1223 | qemu_mutex_unlock(&ram_list.mutex); | |
1224 | } | |
1225 | ||
e1e84ba0 | 1226 | #ifdef __linux__ |
04b16653 AW |
1227 | static void *file_ram_alloc(RAMBlock *block, |
1228 | ram_addr_t memory, | |
7f56e740 PB |
1229 | const char *path, |
1230 | Error **errp) | |
c902760f | 1231 | { |
fd97fd44 | 1232 | bool unlink_on_error = false; |
c902760f | 1233 | char *filename; |
8ca761f6 PF |
1234 | char *sanitized_name; |
1235 | char *c; | |
056b68af | 1236 | void *area = MAP_FAILED; |
5c3ece79 | 1237 | int fd = -1; |
c902760f MT |
1238 | |
1239 | if (kvm_enabled() && !kvm_has_sync_mmu()) { | |
7f56e740 PB |
1240 | error_setg(errp, |
1241 | "host lacks kvm mmu notifiers, -mem-path unsupported"); | |
fd97fd44 | 1242 | return NULL; |
c902760f MT |
1243 | } |
1244 | ||
fd97fd44 MA |
1245 | for (;;) { |
1246 | fd = open(path, O_RDWR); | |
1247 | if (fd >= 0) { | |
1248 | /* @path names an existing file, use it */ | |
1249 | break; | |
8d31d6b6 | 1250 | } |
fd97fd44 MA |
1251 | if (errno == ENOENT) { |
1252 | /* @path names a file that doesn't exist, create it */ | |
1253 | fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644); | |
1254 | if (fd >= 0) { | |
1255 | unlink_on_error = true; | |
1256 | break; | |
1257 | } | |
1258 | } else if (errno == EISDIR) { | |
1259 | /* @path names a directory, create a file there */ | |
1260 | /* Make name safe to use with mkstemp by replacing '/' with '_'. */ | |
1261 | sanitized_name = g_strdup(memory_region_name(block->mr)); | |
1262 | for (c = sanitized_name; *c != '\0'; c++) { | |
1263 | if (*c == '/') { | |
1264 | *c = '_'; | |
1265 | } | |
1266 | } | |
8ca761f6 | 1267 | |
fd97fd44 MA |
1268 | filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, |
1269 | sanitized_name); | |
1270 | g_free(sanitized_name); | |
8d31d6b6 | 1271 | |
fd97fd44 MA |
1272 | fd = mkstemp(filename); |
1273 | if (fd >= 0) { | |
1274 | unlink(filename); | |
1275 | g_free(filename); | |
1276 | break; | |
1277 | } | |
1278 | g_free(filename); | |
8d31d6b6 | 1279 | } |
fd97fd44 MA |
1280 | if (errno != EEXIST && errno != EINTR) { |
1281 | error_setg_errno(errp, errno, | |
1282 | "can't open backing store %s for guest RAM", | |
1283 | path); | |
1284 | goto error; | |
1285 | } | |
1286 | /* | |
1287 | * Try again on EINTR and EEXIST. The latter happens when | |
1288 | * something else creates the file between our two open(). | |
1289 | */ | |
8d31d6b6 | 1290 | } |
c902760f | 1291 | |
863e9621 | 1292 | block->page_size = qemu_fd_getpagesize(fd); |
8360668e HZ |
1293 | block->mr->align = block->page_size; |
1294 | #if defined(__s390x__) | |
1295 | if (kvm_enabled()) { | |
1296 | block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN); | |
1297 | } | |
1298 | #endif | |
fd97fd44 | 1299 | |
863e9621 | 1300 | if (memory < block->page_size) { |
fd97fd44 | 1301 | error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " |
863e9621 DDAG |
1302 | "or larger than page size 0x%zx", |
1303 | memory, block->page_size); | |
f9a49dfa | 1304 | goto error; |
c902760f | 1305 | } |
c902760f | 1306 | |
863e9621 | 1307 | memory = ROUND_UP(memory, block->page_size); |
c902760f MT |
1308 | |
1309 | /* | |
1310 | * ftruncate is not supported by hugetlbfs in older | |
1311 | * hosts, so don't bother bailing out on errors. | |
1312 | * If anything goes wrong with it under other filesystems, | |
1313 | * mmap will fail. | |
1314 | */ | |
7f56e740 | 1315 | if (ftruncate(fd, memory)) { |
9742bf26 | 1316 | perror("ftruncate"); |
7f56e740 | 1317 | } |
c902760f | 1318 | |
d2f39add DD |
1319 | area = qemu_ram_mmap(fd, memory, block->mr->align, |
1320 | block->flags & RAM_SHARED); | |
c902760f | 1321 | if (area == MAP_FAILED) { |
7f56e740 | 1322 | error_setg_errno(errp, errno, |
fd97fd44 | 1323 | "unable to map backing store for guest RAM"); |
f9a49dfa | 1324 | goto error; |
c902760f | 1325 | } |
ef36fa14 MT |
1326 | |
1327 | if (mem_prealloc) { | |
056b68af IM |
1328 | os_mem_prealloc(fd, area, memory, errp); |
1329 | if (errp && *errp) { | |
1330 | goto error; | |
1331 | } | |
ef36fa14 MT |
1332 | } |
1333 | ||
04b16653 | 1334 | block->fd = fd; |
c902760f | 1335 | return area; |
f9a49dfa MT |
1336 | |
1337 | error: | |
056b68af IM |
1338 | if (area != MAP_FAILED) { |
1339 | qemu_ram_munmap(area, memory); | |
1340 | } | |
fd97fd44 MA |
1341 | if (unlink_on_error) { |
1342 | unlink(path); | |
1343 | } | |
5c3ece79 PB |
1344 | if (fd != -1) { |
1345 | close(fd); | |
1346 | } | |
f9a49dfa | 1347 | return NULL; |
c902760f MT |
1348 | } |
1349 | #endif | |
1350 | ||
0dc3f44a | 1351 | /* Called with the ramlist lock held. */ |
d17b5288 | 1352 | static ram_addr_t find_ram_offset(ram_addr_t size) |
04b16653 AW |
1353 | { |
1354 | RAMBlock *block, *next_block; | |
3e837b2c | 1355 | ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; |
04b16653 | 1356 | |
49cd9ac6 SH |
1357 | assert(size != 0); /* it would hand out same offset multiple times */ |
1358 | ||
0dc3f44a | 1359 | if (QLIST_EMPTY_RCU(&ram_list.blocks)) { |
04b16653 | 1360 | return 0; |
0d53d9fe | 1361 | } |
04b16653 | 1362 | |
0dc3f44a | 1363 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
f15fbc4b | 1364 | ram_addr_t end, next = RAM_ADDR_MAX; |
04b16653 | 1365 | |
62be4e3a | 1366 | end = block->offset + block->max_length; |
04b16653 | 1367 | |
0dc3f44a | 1368 | QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) { |
04b16653 AW |
1369 | if (next_block->offset >= end) { |
1370 | next = MIN(next, next_block->offset); | |
1371 | } | |
1372 | } | |
1373 | if (next - end >= size && next - end < mingap) { | |
3e837b2c | 1374 | offset = end; |
04b16653 AW |
1375 | mingap = next - end; |
1376 | } | |
1377 | } | |
3e837b2c AW |
1378 | |
1379 | if (offset == RAM_ADDR_MAX) { | |
1380 | fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", | |
1381 | (uint64_t)size); | |
1382 | abort(); | |
1383 | } | |
1384 | ||
04b16653 AW |
1385 | return offset; |
1386 | } | |
1387 | ||
652d7ec2 | 1388 | ram_addr_t last_ram_offset(void) |
d17b5288 AW |
1389 | { |
1390 | RAMBlock *block; | |
1391 | ram_addr_t last = 0; | |
1392 | ||
0dc3f44a MD |
1393 | rcu_read_lock(); |
1394 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
62be4e3a | 1395 | last = MAX(last, block->offset + block->max_length); |
0d53d9fe | 1396 | } |
0dc3f44a | 1397 | rcu_read_unlock(); |
d17b5288 AW |
1398 | return last; |
1399 | } | |
1400 | ||
ddb97f1d JB |
1401 | static void qemu_ram_setup_dump(void *addr, ram_addr_t size) |
1402 | { | |
1403 | int ret; | |
ddb97f1d JB |
1404 | |
1405 | /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ | |
47c8ca53 | 1406 | if (!machine_dump_guest_core(current_machine)) { |
ddb97f1d JB |
1407 | ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); |
1408 | if (ret) { | |
1409 | perror("qemu_madvise"); | |
1410 | fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " | |
1411 | "but dump_guest_core=off specified\n"); | |
1412 | } | |
1413 | } | |
1414 | } | |
1415 | ||
422148d3 DDAG |
1416 | const char *qemu_ram_get_idstr(RAMBlock *rb) |
1417 | { | |
1418 | return rb->idstr; | |
1419 | } | |
1420 | ||
ae3a7047 | 1421 | /* Called with iothread lock held. */ |
fa53a0e5 | 1422 | void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev) |
20cfe881 | 1423 | { |
fa53a0e5 | 1424 | RAMBlock *block; |
20cfe881 | 1425 | |
c5705a77 AK |
1426 | assert(new_block); |
1427 | assert(!new_block->idstr[0]); | |
84b89d78 | 1428 | |
09e5ab63 AL |
1429 | if (dev) { |
1430 | char *id = qdev_get_dev_path(dev); | |
84b89d78 CM |
1431 | if (id) { |
1432 | snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); | |
7267c094 | 1433 | g_free(id); |
84b89d78 CM |
1434 | } |
1435 | } | |
1436 | pstrcat(new_block->idstr, sizeof(new_block->idstr), name); | |
1437 | ||
ab0a9956 | 1438 | rcu_read_lock(); |
0dc3f44a | 1439 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
fa53a0e5 GA |
1440 | if (block != new_block && |
1441 | !strcmp(block->idstr, new_block->idstr)) { | |
84b89d78 CM |
1442 | fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", |
1443 | new_block->idstr); | |
1444 | abort(); | |
1445 | } | |
1446 | } | |
0dc3f44a | 1447 | rcu_read_unlock(); |
c5705a77 AK |
1448 | } |
1449 | ||
ae3a7047 | 1450 | /* Called with iothread lock held. */ |
fa53a0e5 | 1451 | void qemu_ram_unset_idstr(RAMBlock *block) |
20cfe881 | 1452 | { |
ae3a7047 MD |
1453 | /* FIXME: arch_init.c assumes that this is not called throughout |
1454 | * migration. Ignore the problem since hot-unplug during migration | |
1455 | * does not work anyway. | |
1456 | */ | |
20cfe881 HT |
1457 | if (block) { |
1458 | memset(block->idstr, 0, sizeof(block->idstr)); | |
1459 | } | |
1460 | } | |
1461 | ||
863e9621 DDAG |
1462 | size_t qemu_ram_pagesize(RAMBlock *rb) |
1463 | { | |
1464 | return rb->page_size; | |
1465 | } | |
1466 | ||
8490fc78 LC |
1467 | static int memory_try_enable_merging(void *addr, size_t len) |
1468 | { | |
75cc7f01 | 1469 | if (!machine_mem_merge(current_machine)) { |
8490fc78 LC |
1470 | /* disabled by the user */ |
1471 | return 0; | |
1472 | } | |
1473 | ||
1474 | return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); | |
1475 | } | |
1476 | ||
62be4e3a MT |
1477 | /* Only legal before guest might have detected the memory size: e.g. on |
1478 | * incoming migration, or right after reset. | |
1479 | * | |
1480 | * As memory core doesn't know how is memory accessed, it is up to | |
1481 | * resize callback to update device state and/or add assertions to detect | |
1482 | * misuse, if necessary. | |
1483 | */ | |
fa53a0e5 | 1484 | int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp) |
62be4e3a | 1485 | { |
62be4e3a MT |
1486 | assert(block); |
1487 | ||
4ed023ce | 1488 | newsize = HOST_PAGE_ALIGN(newsize); |
129ddaf3 | 1489 | |
62be4e3a MT |
1490 | if (block->used_length == newsize) { |
1491 | return 0; | |
1492 | } | |
1493 | ||
1494 | if (!(block->flags & RAM_RESIZEABLE)) { | |
1495 | error_setg_errno(errp, EINVAL, | |
1496 | "Length mismatch: %s: 0x" RAM_ADDR_FMT | |
1497 | " in != 0x" RAM_ADDR_FMT, block->idstr, | |
1498 | newsize, block->used_length); | |
1499 | return -EINVAL; | |
1500 | } | |
1501 | ||
1502 | if (block->max_length < newsize) { | |
1503 | error_setg_errno(errp, EINVAL, | |
1504 | "Length too large: %s: 0x" RAM_ADDR_FMT | |
1505 | " > 0x" RAM_ADDR_FMT, block->idstr, | |
1506 | newsize, block->max_length); | |
1507 | return -EINVAL; | |
1508 | } | |
1509 | ||
1510 | cpu_physical_memory_clear_dirty_range(block->offset, block->used_length); | |
1511 | block->used_length = newsize; | |
58d2707e PB |
1512 | cpu_physical_memory_set_dirty_range(block->offset, block->used_length, |
1513 | DIRTY_CLIENTS_ALL); | |
62be4e3a MT |
1514 | memory_region_set_size(block->mr, newsize); |
1515 | if (block->resized) { | |
1516 | block->resized(block->idstr, newsize, block->host); | |
1517 | } | |
1518 | return 0; | |
1519 | } | |
1520 | ||
5b82b703 SH |
1521 | /* Called with ram_list.mutex held */ |
1522 | static void dirty_memory_extend(ram_addr_t old_ram_size, | |
1523 | ram_addr_t new_ram_size) | |
1524 | { | |
1525 | ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size, | |
1526 | DIRTY_MEMORY_BLOCK_SIZE); | |
1527 | ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size, | |
1528 | DIRTY_MEMORY_BLOCK_SIZE); | |
1529 | int i; | |
1530 | ||
1531 | /* Only need to extend if block count increased */ | |
1532 | if (new_num_blocks <= old_num_blocks) { | |
1533 | return; | |
1534 | } | |
1535 | ||
1536 | for (i = 0; i < DIRTY_MEMORY_NUM; i++) { | |
1537 | DirtyMemoryBlocks *old_blocks; | |
1538 | DirtyMemoryBlocks *new_blocks; | |
1539 | int j; | |
1540 | ||
1541 | old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]); | |
1542 | new_blocks = g_malloc(sizeof(*new_blocks) + | |
1543 | sizeof(new_blocks->blocks[0]) * new_num_blocks); | |
1544 | ||
1545 | if (old_num_blocks) { | |
1546 | memcpy(new_blocks->blocks, old_blocks->blocks, | |
1547 | old_num_blocks * sizeof(old_blocks->blocks[0])); | |
1548 | } | |
1549 | ||
1550 | for (j = old_num_blocks; j < new_num_blocks; j++) { | |
1551 | new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE); | |
1552 | } | |
1553 | ||
1554 | atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks); | |
1555 | ||
1556 | if (old_blocks) { | |
1557 | g_free_rcu(old_blocks, rcu); | |
1558 | } | |
1559 | } | |
1560 | } | |
1561 | ||
528f46af | 1562 | static void ram_block_add(RAMBlock *new_block, Error **errp) |
c5705a77 | 1563 | { |
e1c57ab8 | 1564 | RAMBlock *block; |
0d53d9fe | 1565 | RAMBlock *last_block = NULL; |
2152f5ca | 1566 | ram_addr_t old_ram_size, new_ram_size; |
37aa7a0e | 1567 | Error *err = NULL; |
2152f5ca JQ |
1568 | |
1569 | old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS; | |
c5705a77 | 1570 | |
b2a8658e | 1571 | qemu_mutex_lock_ramlist(); |
9b8424d5 | 1572 | new_block->offset = find_ram_offset(new_block->max_length); |
e1c57ab8 PB |
1573 | |
1574 | if (!new_block->host) { | |
1575 | if (xen_enabled()) { | |
9b8424d5 | 1576 | xen_ram_alloc(new_block->offset, new_block->max_length, |
37aa7a0e MA |
1577 | new_block->mr, &err); |
1578 | if (err) { | |
1579 | error_propagate(errp, err); | |
1580 | qemu_mutex_unlock_ramlist(); | |
39c350ee | 1581 | return; |
37aa7a0e | 1582 | } |
e1c57ab8 | 1583 | } else { |
9b8424d5 | 1584 | new_block->host = phys_mem_alloc(new_block->max_length, |
a2b257d6 | 1585 | &new_block->mr->align); |
39228250 | 1586 | if (!new_block->host) { |
ef701d7b HT |
1587 | error_setg_errno(errp, errno, |
1588 | "cannot set up guest memory '%s'", | |
1589 | memory_region_name(new_block->mr)); | |
1590 | qemu_mutex_unlock_ramlist(); | |
39c350ee | 1591 | return; |
39228250 | 1592 | } |
9b8424d5 | 1593 | memory_try_enable_merging(new_block->host, new_block->max_length); |
6977dfe6 | 1594 | } |
c902760f | 1595 | } |
94a6b54f | 1596 | |
dd631697 LZ |
1597 | new_ram_size = MAX(old_ram_size, |
1598 | (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS); | |
1599 | if (new_ram_size > old_ram_size) { | |
1600 | migration_bitmap_extend(old_ram_size, new_ram_size); | |
5b82b703 | 1601 | dirty_memory_extend(old_ram_size, new_ram_size); |
dd631697 | 1602 | } |
0d53d9fe MD |
1603 | /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ, |
1604 | * QLIST (which has an RCU-friendly variant) does not have insertion at | |
1605 | * tail, so save the last element in last_block. | |
1606 | */ | |
0dc3f44a | 1607 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
0d53d9fe | 1608 | last_block = block; |
9b8424d5 | 1609 | if (block->max_length < new_block->max_length) { |
abb26d63 PB |
1610 | break; |
1611 | } | |
1612 | } | |
1613 | if (block) { | |
0dc3f44a | 1614 | QLIST_INSERT_BEFORE_RCU(block, new_block, next); |
0d53d9fe | 1615 | } else if (last_block) { |
0dc3f44a | 1616 | QLIST_INSERT_AFTER_RCU(last_block, new_block, next); |
0d53d9fe | 1617 | } else { /* list is empty */ |
0dc3f44a | 1618 | QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); |
abb26d63 | 1619 | } |
0d6d3c87 | 1620 | ram_list.mru_block = NULL; |
94a6b54f | 1621 | |
0dc3f44a MD |
1622 | /* Write list before version */ |
1623 | smp_wmb(); | |
f798b07f | 1624 | ram_list.version++; |
b2a8658e | 1625 | qemu_mutex_unlock_ramlist(); |
f798b07f | 1626 | |
9b8424d5 | 1627 | cpu_physical_memory_set_dirty_range(new_block->offset, |
58d2707e PB |
1628 | new_block->used_length, |
1629 | DIRTY_CLIENTS_ALL); | |
94a6b54f | 1630 | |
a904c911 PB |
1631 | if (new_block->host) { |
1632 | qemu_ram_setup_dump(new_block->host, new_block->max_length); | |
1633 | qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); | |
c2cd627d | 1634 | /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */ |
a904c911 | 1635 | qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK); |
e1c57ab8 | 1636 | } |
94a6b54f | 1637 | } |
e9a1ab19 | 1638 | |
0b183fc8 | 1639 | #ifdef __linux__ |
528f46af FZ |
1640 | RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, |
1641 | bool share, const char *mem_path, | |
1642 | Error **errp) | |
e1c57ab8 PB |
1643 | { |
1644 | RAMBlock *new_block; | |
ef701d7b | 1645 | Error *local_err = NULL; |
e1c57ab8 PB |
1646 | |
1647 | if (xen_enabled()) { | |
7f56e740 | 1648 | error_setg(errp, "-mem-path not supported with Xen"); |
528f46af | 1649 | return NULL; |
e1c57ab8 PB |
1650 | } |
1651 | ||
1652 | if (phys_mem_alloc != qemu_anon_ram_alloc) { | |
1653 | /* | |
1654 | * file_ram_alloc() needs to allocate just like | |
1655 | * phys_mem_alloc, but we haven't bothered to provide | |
1656 | * a hook there. | |
1657 | */ | |
7f56e740 PB |
1658 | error_setg(errp, |
1659 | "-mem-path not supported with this accelerator"); | |
528f46af | 1660 | return NULL; |
e1c57ab8 PB |
1661 | } |
1662 | ||
4ed023ce | 1663 | size = HOST_PAGE_ALIGN(size); |
e1c57ab8 PB |
1664 | new_block = g_malloc0(sizeof(*new_block)); |
1665 | new_block->mr = mr; | |
9b8424d5 MT |
1666 | new_block->used_length = size; |
1667 | new_block->max_length = size; | |
dbcb8981 | 1668 | new_block->flags = share ? RAM_SHARED : 0; |
7f56e740 PB |
1669 | new_block->host = file_ram_alloc(new_block, size, |
1670 | mem_path, errp); | |
1671 | if (!new_block->host) { | |
1672 | g_free(new_block); | |
528f46af | 1673 | return NULL; |
7f56e740 PB |
1674 | } |
1675 | ||
528f46af | 1676 | ram_block_add(new_block, &local_err); |
ef701d7b HT |
1677 | if (local_err) { |
1678 | g_free(new_block); | |
1679 | error_propagate(errp, local_err); | |
528f46af | 1680 | return NULL; |
ef701d7b | 1681 | } |
528f46af | 1682 | return new_block; |
e1c57ab8 | 1683 | } |
0b183fc8 | 1684 | #endif |
e1c57ab8 | 1685 | |
62be4e3a | 1686 | static |
528f46af FZ |
1687 | RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size, |
1688 | void (*resized)(const char*, | |
1689 | uint64_t length, | |
1690 | void *host), | |
1691 | void *host, bool resizeable, | |
1692 | MemoryRegion *mr, Error **errp) | |
e1c57ab8 PB |
1693 | { |
1694 | RAMBlock *new_block; | |
ef701d7b | 1695 | Error *local_err = NULL; |
e1c57ab8 | 1696 | |
4ed023ce DDAG |
1697 | size = HOST_PAGE_ALIGN(size); |
1698 | max_size = HOST_PAGE_ALIGN(max_size); | |
e1c57ab8 PB |
1699 | new_block = g_malloc0(sizeof(*new_block)); |
1700 | new_block->mr = mr; | |
62be4e3a | 1701 | new_block->resized = resized; |
9b8424d5 MT |
1702 | new_block->used_length = size; |
1703 | new_block->max_length = max_size; | |
62be4e3a | 1704 | assert(max_size >= size); |
e1c57ab8 | 1705 | new_block->fd = -1; |
863e9621 | 1706 | new_block->page_size = getpagesize(); |
e1c57ab8 PB |
1707 | new_block->host = host; |
1708 | if (host) { | |
7bd4f430 | 1709 | new_block->flags |= RAM_PREALLOC; |
e1c57ab8 | 1710 | } |
62be4e3a MT |
1711 | if (resizeable) { |
1712 | new_block->flags |= RAM_RESIZEABLE; | |
1713 | } | |
528f46af | 1714 | ram_block_add(new_block, &local_err); |
ef701d7b HT |
1715 | if (local_err) { |
1716 | g_free(new_block); | |
1717 | error_propagate(errp, local_err); | |
528f46af | 1718 | return NULL; |
ef701d7b | 1719 | } |
528f46af | 1720 | return new_block; |
e1c57ab8 PB |
1721 | } |
1722 | ||
528f46af | 1723 | RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, |
62be4e3a MT |
1724 | MemoryRegion *mr, Error **errp) |
1725 | { | |
1726 | return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp); | |
1727 | } | |
1728 | ||
528f46af | 1729 | RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp) |
6977dfe6 | 1730 | { |
62be4e3a MT |
1731 | return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp); |
1732 | } | |
1733 | ||
528f46af | 1734 | RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz, |
62be4e3a MT |
1735 | void (*resized)(const char*, |
1736 | uint64_t length, | |
1737 | void *host), | |
1738 | MemoryRegion *mr, Error **errp) | |
1739 | { | |
1740 | return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp); | |
6977dfe6 YT |
1741 | } |
1742 | ||
43771539 PB |
1743 | static void reclaim_ramblock(RAMBlock *block) |
1744 | { | |
1745 | if (block->flags & RAM_PREALLOC) { | |
1746 | ; | |
1747 | } else if (xen_enabled()) { | |
1748 | xen_invalidate_map_cache_entry(block->host); | |
1749 | #ifndef _WIN32 | |
1750 | } else if (block->fd >= 0) { | |
2f3a2bb1 | 1751 | qemu_ram_munmap(block->host, block->max_length); |
43771539 PB |
1752 | close(block->fd); |
1753 | #endif | |
1754 | } else { | |
1755 | qemu_anon_ram_free(block->host, block->max_length); | |
1756 | } | |
1757 | g_free(block); | |
1758 | } | |
1759 | ||
f1060c55 | 1760 | void qemu_ram_free(RAMBlock *block) |
e9a1ab19 | 1761 | { |
85bc2a15 MAL |
1762 | if (!block) { |
1763 | return; | |
1764 | } | |
1765 | ||
b2a8658e | 1766 | qemu_mutex_lock_ramlist(); |
f1060c55 FZ |
1767 | QLIST_REMOVE_RCU(block, next); |
1768 | ram_list.mru_block = NULL; | |
1769 | /* Write list before version */ | |
1770 | smp_wmb(); | |
1771 | ram_list.version++; | |
1772 | call_rcu(block, reclaim_ramblock, rcu); | |
b2a8658e | 1773 | qemu_mutex_unlock_ramlist(); |
e9a1ab19 FB |
1774 | } |
1775 | ||
cd19cfa2 HY |
1776 | #ifndef _WIN32 |
1777 | void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) | |
1778 | { | |
1779 | RAMBlock *block; | |
1780 | ram_addr_t offset; | |
1781 | int flags; | |
1782 | void *area, *vaddr; | |
1783 | ||
0dc3f44a | 1784 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
cd19cfa2 | 1785 | offset = addr - block->offset; |
9b8424d5 | 1786 | if (offset < block->max_length) { |
1240be24 | 1787 | vaddr = ramblock_ptr(block, offset); |
7bd4f430 | 1788 | if (block->flags & RAM_PREALLOC) { |
cd19cfa2 | 1789 | ; |
dfeaf2ab MA |
1790 | } else if (xen_enabled()) { |
1791 | abort(); | |
cd19cfa2 HY |
1792 | } else { |
1793 | flags = MAP_FIXED; | |
3435f395 | 1794 | if (block->fd >= 0) { |
dbcb8981 PB |
1795 | flags |= (block->flags & RAM_SHARED ? |
1796 | MAP_SHARED : MAP_PRIVATE); | |
3435f395 MA |
1797 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, |
1798 | flags, block->fd, offset); | |
cd19cfa2 | 1799 | } else { |
2eb9fbaa MA |
1800 | /* |
1801 | * Remap needs to match alloc. Accelerators that | |
1802 | * set phys_mem_alloc never remap. If they did, | |
1803 | * we'd need a remap hook here. | |
1804 | */ | |
1805 | assert(phys_mem_alloc == qemu_anon_ram_alloc); | |
1806 | ||
cd19cfa2 HY |
1807 | flags |= MAP_PRIVATE | MAP_ANONYMOUS; |
1808 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, | |
1809 | flags, -1, 0); | |
cd19cfa2 HY |
1810 | } |
1811 | if (area != vaddr) { | |
f15fbc4b AP |
1812 | fprintf(stderr, "Could not remap addr: " |
1813 | RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n", | |
cd19cfa2 HY |
1814 | length, addr); |
1815 | exit(1); | |
1816 | } | |
8490fc78 | 1817 | memory_try_enable_merging(vaddr, length); |
ddb97f1d | 1818 | qemu_ram_setup_dump(vaddr, length); |
cd19cfa2 | 1819 | } |
cd19cfa2 HY |
1820 | } |
1821 | } | |
1822 | } | |
1823 | #endif /* !_WIN32 */ | |
1824 | ||
1b5ec234 | 1825 | /* Return a host pointer to ram allocated with qemu_ram_alloc. |
ae3a7047 MD |
1826 | * This should not be used for general purpose DMA. Use address_space_map |
1827 | * or address_space_rw instead. For local memory (e.g. video ram) that the | |
1828 | * device owns, use memory_region_get_ram_ptr. | |
0dc3f44a | 1829 | * |
49b24afc | 1830 | * Called within RCU critical section. |
1b5ec234 | 1831 | */ |
0878d0e1 | 1832 | void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr) |
1b5ec234 | 1833 | { |
3655cb9c GA |
1834 | RAMBlock *block = ram_block; |
1835 | ||
1836 | if (block == NULL) { | |
1837 | block = qemu_get_ram_block(addr); | |
0878d0e1 | 1838 | addr -= block->offset; |
3655cb9c | 1839 | } |
ae3a7047 MD |
1840 | |
1841 | if (xen_enabled() && block->host == NULL) { | |
0d6d3c87 PB |
1842 | /* We need to check if the requested address is in the RAM |
1843 | * because we don't want to map the entire memory in QEMU. | |
1844 | * In that case just map until the end of the page. | |
1845 | */ | |
1846 | if (block->offset == 0) { | |
49b24afc | 1847 | return xen_map_cache(addr, 0, 0); |
0d6d3c87 | 1848 | } |
ae3a7047 MD |
1849 | |
1850 | block->host = xen_map_cache(block->offset, block->max_length, 1); | |
0d6d3c87 | 1851 | } |
0878d0e1 | 1852 | return ramblock_ptr(block, addr); |
dc828ca1 PB |
1853 | } |
1854 | ||
0878d0e1 | 1855 | /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr |
ae3a7047 | 1856 | * but takes a size argument. |
0dc3f44a | 1857 | * |
e81bcda5 | 1858 | * Called within RCU critical section. |
ae3a7047 | 1859 | */ |
3655cb9c GA |
1860 | static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr, |
1861 | hwaddr *size) | |
38bee5dc | 1862 | { |
3655cb9c | 1863 | RAMBlock *block = ram_block; |
8ab934f9 SS |
1864 | if (*size == 0) { |
1865 | return NULL; | |
1866 | } | |
e81bcda5 | 1867 | |
3655cb9c GA |
1868 | if (block == NULL) { |
1869 | block = qemu_get_ram_block(addr); | |
0878d0e1 | 1870 | addr -= block->offset; |
3655cb9c | 1871 | } |
0878d0e1 | 1872 | *size = MIN(*size, block->max_length - addr); |
e81bcda5 PB |
1873 | |
1874 | if (xen_enabled() && block->host == NULL) { | |
1875 | /* We need to check if the requested address is in the RAM | |
1876 | * because we don't want to map the entire memory in QEMU. | |
1877 | * In that case just map the requested area. | |
1878 | */ | |
1879 | if (block->offset == 0) { | |
1880 | return xen_map_cache(addr, *size, 1); | |
38bee5dc SS |
1881 | } |
1882 | ||
e81bcda5 | 1883 | block->host = xen_map_cache(block->offset, block->max_length, 1); |
38bee5dc | 1884 | } |
e81bcda5 | 1885 | |
0878d0e1 | 1886 | return ramblock_ptr(block, addr); |
38bee5dc SS |
1887 | } |
1888 | ||
422148d3 DDAG |
1889 | /* |
1890 | * Translates a host ptr back to a RAMBlock, a ram_addr and an offset | |
1891 | * in that RAMBlock. | |
1892 | * | |
1893 | * ptr: Host pointer to look up | |
1894 | * round_offset: If true round the result offset down to a page boundary | |
1895 | * *ram_addr: set to result ram_addr | |
1896 | * *offset: set to result offset within the RAMBlock | |
1897 | * | |
1898 | * Returns: RAMBlock (or NULL if not found) | |
ae3a7047 MD |
1899 | * |
1900 | * By the time this function returns, the returned pointer is not protected | |
1901 | * by RCU anymore. If the caller is not within an RCU critical section and | |
1902 | * does not hold the iothread lock, it must have other means of protecting the | |
1903 | * pointer, such as a reference to the region that includes the incoming | |
1904 | * ram_addr_t. | |
1905 | */ | |
422148d3 | 1906 | RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, |
422148d3 | 1907 | ram_addr_t *offset) |
5579c7f3 | 1908 | { |
94a6b54f PB |
1909 | RAMBlock *block; |
1910 | uint8_t *host = ptr; | |
1911 | ||
868bb33f | 1912 | if (xen_enabled()) { |
f615f396 | 1913 | ram_addr_t ram_addr; |
0dc3f44a | 1914 | rcu_read_lock(); |
f615f396 PB |
1915 | ram_addr = xen_ram_addr_from_mapcache(ptr); |
1916 | block = qemu_get_ram_block(ram_addr); | |
422148d3 | 1917 | if (block) { |
d6b6aec4 | 1918 | *offset = ram_addr - block->offset; |
422148d3 | 1919 | } |
0dc3f44a | 1920 | rcu_read_unlock(); |
422148d3 | 1921 | return block; |
712c2b41 SS |
1922 | } |
1923 | ||
0dc3f44a MD |
1924 | rcu_read_lock(); |
1925 | block = atomic_rcu_read(&ram_list.mru_block); | |
9b8424d5 | 1926 | if (block && block->host && host - block->host < block->max_length) { |
23887b79 PB |
1927 | goto found; |
1928 | } | |
1929 | ||
0dc3f44a | 1930 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
432d268c JN |
1931 | /* This case append when the block is not mapped. */ |
1932 | if (block->host == NULL) { | |
1933 | continue; | |
1934 | } | |
9b8424d5 | 1935 | if (host - block->host < block->max_length) { |
23887b79 | 1936 | goto found; |
f471a17e | 1937 | } |
94a6b54f | 1938 | } |
432d268c | 1939 | |
0dc3f44a | 1940 | rcu_read_unlock(); |
1b5ec234 | 1941 | return NULL; |
23887b79 PB |
1942 | |
1943 | found: | |
422148d3 DDAG |
1944 | *offset = (host - block->host); |
1945 | if (round_offset) { | |
1946 | *offset &= TARGET_PAGE_MASK; | |
1947 | } | |
0dc3f44a | 1948 | rcu_read_unlock(); |
422148d3 DDAG |
1949 | return block; |
1950 | } | |
1951 | ||
e3dd7493 DDAG |
1952 | /* |
1953 | * Finds the named RAMBlock | |
1954 | * | |
1955 | * name: The name of RAMBlock to find | |
1956 | * | |
1957 | * Returns: RAMBlock (or NULL if not found) | |
1958 | */ | |
1959 | RAMBlock *qemu_ram_block_by_name(const char *name) | |
1960 | { | |
1961 | RAMBlock *block; | |
1962 | ||
1963 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
1964 | if (!strcmp(name, block->idstr)) { | |
1965 | return block; | |
1966 | } | |
1967 | } | |
1968 | ||
1969 | return NULL; | |
1970 | } | |
1971 | ||
422148d3 DDAG |
1972 | /* Some of the softmmu routines need to translate from a host pointer |
1973 | (typically a TLB entry) back to a ram offset. */ | |
07bdaa41 | 1974 | ram_addr_t qemu_ram_addr_from_host(void *ptr) |
422148d3 DDAG |
1975 | { |
1976 | RAMBlock *block; | |
f615f396 | 1977 | ram_addr_t offset; |
422148d3 | 1978 | |
f615f396 | 1979 | block = qemu_ram_block_from_host(ptr, false, &offset); |
422148d3 | 1980 | if (!block) { |
07bdaa41 | 1981 | return RAM_ADDR_INVALID; |
422148d3 DDAG |
1982 | } |
1983 | ||
07bdaa41 | 1984 | return block->offset + offset; |
e890261f | 1985 | } |
f471a17e | 1986 | |
49b24afc | 1987 | /* Called within RCU critical section. */ |
a8170e5e | 1988 | static void notdirty_mem_write(void *opaque, hwaddr ram_addr, |
0e0df1e2 | 1989 | uint64_t val, unsigned size) |
9fa3e853 | 1990 | { |
52159192 | 1991 | if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { |
0e0df1e2 | 1992 | tb_invalidate_phys_page_fast(ram_addr, size); |
3a7d929e | 1993 | } |
0e0df1e2 AK |
1994 | switch (size) { |
1995 | case 1: | |
0878d0e1 | 1996 | stb_p(qemu_map_ram_ptr(NULL, ram_addr), val); |
0e0df1e2 AK |
1997 | break; |
1998 | case 2: | |
0878d0e1 | 1999 | stw_p(qemu_map_ram_ptr(NULL, ram_addr), val); |
0e0df1e2 AK |
2000 | break; |
2001 | case 4: | |
0878d0e1 | 2002 | stl_p(qemu_map_ram_ptr(NULL, ram_addr), val); |
0e0df1e2 AK |
2003 | break; |
2004 | default: | |
2005 | abort(); | |
3a7d929e | 2006 | } |
58d2707e PB |
2007 | /* Set both VGA and migration bits for simplicity and to remove |
2008 | * the notdirty callback faster. | |
2009 | */ | |
2010 | cpu_physical_memory_set_dirty_range(ram_addr, size, | |
2011 | DIRTY_CLIENTS_NOCODE); | |
f23db169 FB |
2012 | /* we remove the notdirty callback only if the code has been |
2013 | flushed */ | |
a2cd8c85 | 2014 | if (!cpu_physical_memory_is_clean(ram_addr)) { |
bcae01e4 | 2015 | tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr); |
4917cf44 | 2016 | } |
9fa3e853 FB |
2017 | } |
2018 | ||
b018ddf6 PB |
2019 | static bool notdirty_mem_accepts(void *opaque, hwaddr addr, |
2020 | unsigned size, bool is_write) | |
2021 | { | |
2022 | return is_write; | |
2023 | } | |
2024 | ||
0e0df1e2 | 2025 | static const MemoryRegionOps notdirty_mem_ops = { |
0e0df1e2 | 2026 | .write = notdirty_mem_write, |
b018ddf6 | 2027 | .valid.accepts = notdirty_mem_accepts, |
0e0df1e2 | 2028 | .endianness = DEVICE_NATIVE_ENDIAN, |
1ccde1cb FB |
2029 | }; |
2030 | ||
0f459d16 | 2031 | /* Generate a debug exception if a watchpoint has been hit. */ |
66b9b43c | 2032 | static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags) |
0f459d16 | 2033 | { |
93afeade | 2034 | CPUState *cpu = current_cpu; |
568496c0 | 2035 | CPUClass *cc = CPU_GET_CLASS(cpu); |
93afeade | 2036 | CPUArchState *env = cpu->env_ptr; |
06d55cc1 | 2037 | target_ulong pc, cs_base; |
0f459d16 | 2038 | target_ulong vaddr; |
a1d1bb31 | 2039 | CPUWatchpoint *wp; |
89fee74a | 2040 | uint32_t cpu_flags; |
0f459d16 | 2041 | |
ff4700b0 | 2042 | if (cpu->watchpoint_hit) { |
06d55cc1 AL |
2043 | /* We re-entered the check after replacing the TB. Now raise |
2044 | * the debug interrupt so that is will trigger after the | |
2045 | * current instruction. */ | |
93afeade | 2046 | cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG); |
06d55cc1 AL |
2047 | return; |
2048 | } | |
93afeade | 2049 | vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset; |
ff4700b0 | 2050 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
05068c0d PM |
2051 | if (cpu_watchpoint_address_matches(wp, vaddr, len) |
2052 | && (wp->flags & flags)) { | |
08225676 PM |
2053 | if (flags == BP_MEM_READ) { |
2054 | wp->flags |= BP_WATCHPOINT_HIT_READ; | |
2055 | } else { | |
2056 | wp->flags |= BP_WATCHPOINT_HIT_WRITE; | |
2057 | } | |
2058 | wp->hitaddr = vaddr; | |
66b9b43c | 2059 | wp->hitattrs = attrs; |
ff4700b0 | 2060 | if (!cpu->watchpoint_hit) { |
568496c0 SF |
2061 | if (wp->flags & BP_CPU && |
2062 | !cc->debug_check_watchpoint(cpu, wp)) { | |
2063 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
2064 | continue; | |
2065 | } | |
ff4700b0 | 2066 | cpu->watchpoint_hit = wp; |
239c51a5 | 2067 | tb_check_watchpoint(cpu); |
6e140f28 | 2068 | if (wp->flags & BP_STOP_BEFORE_ACCESS) { |
27103424 | 2069 | cpu->exception_index = EXCP_DEBUG; |
5638d180 | 2070 | cpu_loop_exit(cpu); |
6e140f28 AL |
2071 | } else { |
2072 | cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags); | |
648f034c | 2073 | tb_gen_code(cpu, pc, cs_base, cpu_flags, 1); |
6886b980 | 2074 | cpu_loop_exit_noexc(cpu); |
6e140f28 | 2075 | } |
06d55cc1 | 2076 | } |
6e140f28 AL |
2077 | } else { |
2078 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
0f459d16 PB |
2079 | } |
2080 | } | |
2081 | } | |
2082 | ||
6658ffb8 PB |
2083 | /* Watchpoint access routines. Watchpoints are inserted using TLB tricks, |
2084 | so these check for a hit then pass through to the normal out-of-line | |
2085 | phys routines. */ | |
66b9b43c PM |
2086 | static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata, |
2087 | unsigned size, MemTxAttrs attrs) | |
6658ffb8 | 2088 | { |
66b9b43c PM |
2089 | MemTxResult res; |
2090 | uint64_t data; | |
79ed0416 PM |
2091 | int asidx = cpu_asidx_from_attrs(current_cpu, attrs); |
2092 | AddressSpace *as = current_cpu->cpu_ases[asidx].as; | |
66b9b43c PM |
2093 | |
2094 | check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ); | |
1ec9b909 | 2095 | switch (size) { |
66b9b43c | 2096 | case 1: |
79ed0416 | 2097 | data = address_space_ldub(as, addr, attrs, &res); |
66b9b43c PM |
2098 | break; |
2099 | case 2: | |
79ed0416 | 2100 | data = address_space_lduw(as, addr, attrs, &res); |
66b9b43c PM |
2101 | break; |
2102 | case 4: | |
79ed0416 | 2103 | data = address_space_ldl(as, addr, attrs, &res); |
66b9b43c | 2104 | break; |
1ec9b909 AK |
2105 | default: abort(); |
2106 | } | |
66b9b43c PM |
2107 | *pdata = data; |
2108 | return res; | |
6658ffb8 PB |
2109 | } |
2110 | ||
66b9b43c PM |
2111 | static MemTxResult watch_mem_write(void *opaque, hwaddr addr, |
2112 | uint64_t val, unsigned size, | |
2113 | MemTxAttrs attrs) | |
6658ffb8 | 2114 | { |
66b9b43c | 2115 | MemTxResult res; |
79ed0416 PM |
2116 | int asidx = cpu_asidx_from_attrs(current_cpu, attrs); |
2117 | AddressSpace *as = current_cpu->cpu_ases[asidx].as; | |
66b9b43c PM |
2118 | |
2119 | check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE); | |
1ec9b909 | 2120 | switch (size) { |
67364150 | 2121 | case 1: |
79ed0416 | 2122 | address_space_stb(as, addr, val, attrs, &res); |
67364150 MF |
2123 | break; |
2124 | case 2: | |
79ed0416 | 2125 | address_space_stw(as, addr, val, attrs, &res); |
67364150 MF |
2126 | break; |
2127 | case 4: | |
79ed0416 | 2128 | address_space_stl(as, addr, val, attrs, &res); |
67364150 | 2129 | break; |
1ec9b909 AK |
2130 | default: abort(); |
2131 | } | |
66b9b43c | 2132 | return res; |
6658ffb8 PB |
2133 | } |
2134 | ||
1ec9b909 | 2135 | static const MemoryRegionOps watch_mem_ops = { |
66b9b43c PM |
2136 | .read_with_attrs = watch_mem_read, |
2137 | .write_with_attrs = watch_mem_write, | |
1ec9b909 | 2138 | .endianness = DEVICE_NATIVE_ENDIAN, |
6658ffb8 | 2139 | }; |
6658ffb8 | 2140 | |
f25a49e0 PM |
2141 | static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data, |
2142 | unsigned len, MemTxAttrs attrs) | |
db7b5426 | 2143 | { |
acc9d80b | 2144 | subpage_t *subpage = opaque; |
ff6cff75 | 2145 | uint8_t buf[8]; |
5c9eb028 | 2146 | MemTxResult res; |
791af8c8 | 2147 | |
db7b5426 | 2148 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2149 | printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__, |
acc9d80b | 2150 | subpage, len, addr); |
db7b5426 | 2151 | #endif |
5c9eb028 PM |
2152 | res = address_space_read(subpage->as, addr + subpage->base, |
2153 | attrs, buf, len); | |
2154 | if (res) { | |
2155 | return res; | |
f25a49e0 | 2156 | } |
acc9d80b JK |
2157 | switch (len) { |
2158 | case 1: | |
f25a49e0 PM |
2159 | *data = ldub_p(buf); |
2160 | return MEMTX_OK; | |
acc9d80b | 2161 | case 2: |
f25a49e0 PM |
2162 | *data = lduw_p(buf); |
2163 | return MEMTX_OK; | |
acc9d80b | 2164 | case 4: |
f25a49e0 PM |
2165 | *data = ldl_p(buf); |
2166 | return MEMTX_OK; | |
ff6cff75 | 2167 | case 8: |
f25a49e0 PM |
2168 | *data = ldq_p(buf); |
2169 | return MEMTX_OK; | |
acc9d80b JK |
2170 | default: |
2171 | abort(); | |
2172 | } | |
db7b5426 BS |
2173 | } |
2174 | ||
f25a49e0 PM |
2175 | static MemTxResult subpage_write(void *opaque, hwaddr addr, |
2176 | uint64_t value, unsigned len, MemTxAttrs attrs) | |
db7b5426 | 2177 | { |
acc9d80b | 2178 | subpage_t *subpage = opaque; |
ff6cff75 | 2179 | uint8_t buf[8]; |
acc9d80b | 2180 | |
db7b5426 | 2181 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2182 | printf("%s: subpage %p len %u addr " TARGET_FMT_plx |
acc9d80b JK |
2183 | " value %"PRIx64"\n", |
2184 | __func__, subpage, len, addr, value); | |
db7b5426 | 2185 | #endif |
acc9d80b JK |
2186 | switch (len) { |
2187 | case 1: | |
2188 | stb_p(buf, value); | |
2189 | break; | |
2190 | case 2: | |
2191 | stw_p(buf, value); | |
2192 | break; | |
2193 | case 4: | |
2194 | stl_p(buf, value); | |
2195 | break; | |
ff6cff75 PB |
2196 | case 8: |
2197 | stq_p(buf, value); | |
2198 | break; | |
acc9d80b JK |
2199 | default: |
2200 | abort(); | |
2201 | } | |
5c9eb028 PM |
2202 | return address_space_write(subpage->as, addr + subpage->base, |
2203 | attrs, buf, len); | |
db7b5426 BS |
2204 | } |
2205 | ||
c353e4cc | 2206 | static bool subpage_accepts(void *opaque, hwaddr addr, |
016e9d62 | 2207 | unsigned len, bool is_write) |
c353e4cc | 2208 | { |
acc9d80b | 2209 | subpage_t *subpage = opaque; |
c353e4cc | 2210 | #if defined(DEBUG_SUBPAGE) |
016e9d62 | 2211 | printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n", |
acc9d80b | 2212 | __func__, subpage, is_write ? 'w' : 'r', len, addr); |
c353e4cc PB |
2213 | #endif |
2214 | ||
acc9d80b | 2215 | return address_space_access_valid(subpage->as, addr + subpage->base, |
016e9d62 | 2216 | len, is_write); |
c353e4cc PB |
2217 | } |
2218 | ||
70c68e44 | 2219 | static const MemoryRegionOps subpage_ops = { |
f25a49e0 PM |
2220 | .read_with_attrs = subpage_read, |
2221 | .write_with_attrs = subpage_write, | |
ff6cff75 PB |
2222 | .impl.min_access_size = 1, |
2223 | .impl.max_access_size = 8, | |
2224 | .valid.min_access_size = 1, | |
2225 | .valid.max_access_size = 8, | |
c353e4cc | 2226 | .valid.accepts = subpage_accepts, |
70c68e44 | 2227 | .endianness = DEVICE_NATIVE_ENDIAN, |
db7b5426 BS |
2228 | }; |
2229 | ||
c227f099 | 2230 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, |
5312bd8b | 2231 | uint16_t section) |
db7b5426 BS |
2232 | { |
2233 | int idx, eidx; | |
2234 | ||
2235 | if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) | |
2236 | return -1; | |
2237 | idx = SUBPAGE_IDX(start); | |
2238 | eidx = SUBPAGE_IDX(end); | |
2239 | #if defined(DEBUG_SUBPAGE) | |
016e9d62 AK |
2240 | printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", |
2241 | __func__, mmio, start, end, idx, eidx, section); | |
db7b5426 | 2242 | #endif |
db7b5426 | 2243 | for (; idx <= eidx; idx++) { |
5312bd8b | 2244 | mmio->sub_section[idx] = section; |
db7b5426 BS |
2245 | } |
2246 | ||
2247 | return 0; | |
2248 | } | |
2249 | ||
acc9d80b | 2250 | static subpage_t *subpage_init(AddressSpace *as, hwaddr base) |
db7b5426 | 2251 | { |
c227f099 | 2252 | subpage_t *mmio; |
db7b5426 | 2253 | |
2615fabd | 2254 | mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t)); |
acc9d80b | 2255 | mmio->as = as; |
1eec614b | 2256 | mmio->base = base; |
2c9b15ca | 2257 | memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, |
b4fefef9 | 2258 | NULL, TARGET_PAGE_SIZE); |
b3b00c78 | 2259 | mmio->iomem.subpage = true; |
db7b5426 | 2260 | #if defined(DEBUG_SUBPAGE) |
016e9d62 AK |
2261 | printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__, |
2262 | mmio, base, TARGET_PAGE_SIZE); | |
db7b5426 | 2263 | #endif |
b41aac4f | 2264 | subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED); |
db7b5426 BS |
2265 | |
2266 | return mmio; | |
2267 | } | |
2268 | ||
a656e22f PC |
2269 | static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as, |
2270 | MemoryRegion *mr) | |
5312bd8b | 2271 | { |
a656e22f | 2272 | assert(as); |
5312bd8b | 2273 | MemoryRegionSection section = { |
a656e22f | 2274 | .address_space = as, |
5312bd8b AK |
2275 | .mr = mr, |
2276 | .offset_within_address_space = 0, | |
2277 | .offset_within_region = 0, | |
052e87b0 | 2278 | .size = int128_2_64(), |
5312bd8b AK |
2279 | }; |
2280 | ||
53cb28cb | 2281 | return phys_section_add(map, §ion); |
5312bd8b AK |
2282 | } |
2283 | ||
a54c87b6 | 2284 | MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs) |
aa102231 | 2285 | { |
a54c87b6 PM |
2286 | int asidx = cpu_asidx_from_attrs(cpu, attrs); |
2287 | CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx]; | |
32857f4d | 2288 | AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch); |
79e2b9ae | 2289 | MemoryRegionSection *sections = d->map.sections; |
9d82b5a7 PB |
2290 | |
2291 | return sections[index & ~TARGET_PAGE_MASK].mr; | |
aa102231 AK |
2292 | } |
2293 | ||
e9179ce1 AK |
2294 | static void io_mem_init(void) |
2295 | { | |
1f6245e5 | 2296 | memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX); |
2c9b15ca | 2297 | memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, |
1f6245e5 | 2298 | NULL, UINT64_MAX); |
2c9b15ca | 2299 | memory_region_init_io(&io_mem_notdirty, NULL, ¬dirty_mem_ops, NULL, |
1f6245e5 | 2300 | NULL, UINT64_MAX); |
2c9b15ca | 2301 | memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL, |
1f6245e5 | 2302 | NULL, UINT64_MAX); |
e9179ce1 AK |
2303 | } |
2304 | ||
ac1970fb | 2305 | static void mem_begin(MemoryListener *listener) |
00752703 PB |
2306 | { |
2307 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); | |
53cb28cb MA |
2308 | AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); |
2309 | uint16_t n; | |
2310 | ||
a656e22f | 2311 | n = dummy_section(&d->map, as, &io_mem_unassigned); |
53cb28cb | 2312 | assert(n == PHYS_SECTION_UNASSIGNED); |
a656e22f | 2313 | n = dummy_section(&d->map, as, &io_mem_notdirty); |
53cb28cb | 2314 | assert(n == PHYS_SECTION_NOTDIRTY); |
a656e22f | 2315 | n = dummy_section(&d->map, as, &io_mem_rom); |
53cb28cb | 2316 | assert(n == PHYS_SECTION_ROM); |
a656e22f | 2317 | n = dummy_section(&d->map, as, &io_mem_watch); |
53cb28cb | 2318 | assert(n == PHYS_SECTION_WATCH); |
00752703 | 2319 | |
9736e55b | 2320 | d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; |
00752703 PB |
2321 | d->as = as; |
2322 | as->next_dispatch = d; | |
2323 | } | |
2324 | ||
79e2b9ae PB |
2325 | static void address_space_dispatch_free(AddressSpaceDispatch *d) |
2326 | { | |
2327 | phys_sections_free(&d->map); | |
2328 | g_free(d); | |
2329 | } | |
2330 | ||
00752703 | 2331 | static void mem_commit(MemoryListener *listener) |
ac1970fb | 2332 | { |
89ae337a | 2333 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); |
0475d94f PB |
2334 | AddressSpaceDispatch *cur = as->dispatch; |
2335 | AddressSpaceDispatch *next = as->next_dispatch; | |
2336 | ||
53cb28cb | 2337 | phys_page_compact_all(next, next->map.nodes_nb); |
b35ba30f | 2338 | |
79e2b9ae | 2339 | atomic_rcu_set(&as->dispatch, next); |
53cb28cb | 2340 | if (cur) { |
79e2b9ae | 2341 | call_rcu(cur, address_space_dispatch_free, rcu); |
53cb28cb | 2342 | } |
9affd6fc PB |
2343 | } |
2344 | ||
1d71148e | 2345 | static void tcg_commit(MemoryListener *listener) |
50c1e149 | 2346 | { |
32857f4d PM |
2347 | CPUAddressSpace *cpuas; |
2348 | AddressSpaceDispatch *d; | |
117712c3 AK |
2349 | |
2350 | /* since each CPU stores ram addresses in its TLB cache, we must | |
2351 | reset the modified entries */ | |
32857f4d PM |
2352 | cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); |
2353 | cpu_reloading_memory_map(); | |
2354 | /* The CPU and TLB are protected by the iothread lock. | |
2355 | * We reload the dispatch pointer now because cpu_reloading_memory_map() | |
2356 | * may have split the RCU critical section. | |
2357 | */ | |
2358 | d = atomic_rcu_read(&cpuas->as->dispatch); | |
2359 | cpuas->memory_dispatch = d; | |
2360 | tlb_flush(cpuas->cpu, 1); | |
50c1e149 AK |
2361 | } |
2362 | ||
ac1970fb AK |
2363 | void address_space_init_dispatch(AddressSpace *as) |
2364 | { | |
00752703 | 2365 | as->dispatch = NULL; |
89ae337a | 2366 | as->dispatch_listener = (MemoryListener) { |
ac1970fb | 2367 | .begin = mem_begin, |
00752703 | 2368 | .commit = mem_commit, |
ac1970fb AK |
2369 | .region_add = mem_add, |
2370 | .region_nop = mem_add, | |
2371 | .priority = 0, | |
2372 | }; | |
89ae337a | 2373 | memory_listener_register(&as->dispatch_listener, as); |
ac1970fb AK |
2374 | } |
2375 | ||
6e48e8f9 PB |
2376 | void address_space_unregister(AddressSpace *as) |
2377 | { | |
2378 | memory_listener_unregister(&as->dispatch_listener); | |
2379 | } | |
2380 | ||
83f3c251 AK |
2381 | void address_space_destroy_dispatch(AddressSpace *as) |
2382 | { | |
2383 | AddressSpaceDispatch *d = as->dispatch; | |
2384 | ||
79e2b9ae PB |
2385 | atomic_rcu_set(&as->dispatch, NULL); |
2386 | if (d) { | |
2387 | call_rcu(d, address_space_dispatch_free, rcu); | |
2388 | } | |
83f3c251 AK |
2389 | } |
2390 | ||
62152b8a AK |
2391 | static void memory_map_init(void) |
2392 | { | |
7267c094 | 2393 | system_memory = g_malloc(sizeof(*system_memory)); |
03f49957 | 2394 | |
57271d63 | 2395 | memory_region_init(system_memory, NULL, "system", UINT64_MAX); |
7dca8043 | 2396 | address_space_init(&address_space_memory, system_memory, "memory"); |
309cb471 | 2397 | |
7267c094 | 2398 | system_io = g_malloc(sizeof(*system_io)); |
3bb28b72 JK |
2399 | memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", |
2400 | 65536); | |
7dca8043 | 2401 | address_space_init(&address_space_io, system_io, "I/O"); |
62152b8a AK |
2402 | } |
2403 | ||
2404 | MemoryRegion *get_system_memory(void) | |
2405 | { | |
2406 | return system_memory; | |
2407 | } | |
2408 | ||
309cb471 AK |
2409 | MemoryRegion *get_system_io(void) |
2410 | { | |
2411 | return system_io; | |
2412 | } | |
2413 | ||
e2eef170 PB |
2414 | #endif /* !defined(CONFIG_USER_ONLY) */ |
2415 | ||
13eb76e0 FB |
2416 | /* physical memory access (slow version, mainly for debug) */ |
2417 | #if defined(CONFIG_USER_ONLY) | |
f17ec444 | 2418 | int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, |
a68fe89c | 2419 | uint8_t *buf, int len, int is_write) |
13eb76e0 FB |
2420 | { |
2421 | int l, flags; | |
2422 | target_ulong page; | |
53a5960a | 2423 | void * p; |
13eb76e0 FB |
2424 | |
2425 | while (len > 0) { | |
2426 | page = addr & TARGET_PAGE_MASK; | |
2427 | l = (page + TARGET_PAGE_SIZE) - addr; | |
2428 | if (l > len) | |
2429 | l = len; | |
2430 | flags = page_get_flags(page); | |
2431 | if (!(flags & PAGE_VALID)) | |
a68fe89c | 2432 | return -1; |
13eb76e0 FB |
2433 | if (is_write) { |
2434 | if (!(flags & PAGE_WRITE)) | |
a68fe89c | 2435 | return -1; |
579a97f7 | 2436 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 2437 | if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) |
a68fe89c | 2438 | return -1; |
72fb7daa AJ |
2439 | memcpy(p, buf, l); |
2440 | unlock_user(p, addr, l); | |
13eb76e0 FB |
2441 | } else { |
2442 | if (!(flags & PAGE_READ)) | |
a68fe89c | 2443 | return -1; |
579a97f7 | 2444 | /* XXX: this code should not depend on lock_user */ |
72fb7daa | 2445 | if (!(p = lock_user(VERIFY_READ, addr, l, 1))) |
a68fe89c | 2446 | return -1; |
72fb7daa | 2447 | memcpy(buf, p, l); |
5b257578 | 2448 | unlock_user(p, addr, 0); |
13eb76e0 FB |
2449 | } |
2450 | len -= l; | |
2451 | buf += l; | |
2452 | addr += l; | |
2453 | } | |
a68fe89c | 2454 | return 0; |
13eb76e0 | 2455 | } |
8df1cd07 | 2456 | |
13eb76e0 | 2457 | #else |
51d7a9eb | 2458 | |
845b6214 | 2459 | static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, |
a8170e5e | 2460 | hwaddr length) |
51d7a9eb | 2461 | { |
e87f7778 | 2462 | uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr); |
0878d0e1 PB |
2463 | addr += memory_region_get_ram_addr(mr); |
2464 | ||
e87f7778 PB |
2465 | /* No early return if dirty_log_mask is or becomes 0, because |
2466 | * cpu_physical_memory_set_dirty_range will still call | |
2467 | * xen_modified_memory. | |
2468 | */ | |
2469 | if (dirty_log_mask) { | |
2470 | dirty_log_mask = | |
2471 | cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask); | |
2472 | } | |
2473 | if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) { | |
2474 | tb_invalidate_phys_range(addr, addr + length); | |
2475 | dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); | |
51d7a9eb | 2476 | } |
e87f7778 | 2477 | cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask); |
51d7a9eb AP |
2478 | } |
2479 | ||
23326164 | 2480 | static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) |
82f2563f | 2481 | { |
e1622f4b | 2482 | unsigned access_size_max = mr->ops->valid.max_access_size; |
23326164 RH |
2483 | |
2484 | /* Regions are assumed to support 1-4 byte accesses unless | |
2485 | otherwise specified. */ | |
23326164 RH |
2486 | if (access_size_max == 0) { |
2487 | access_size_max = 4; | |
2488 | } | |
2489 | ||
2490 | /* Bound the maximum access by the alignment of the address. */ | |
2491 | if (!mr->ops->impl.unaligned) { | |
2492 | unsigned align_size_max = addr & -addr; | |
2493 | if (align_size_max != 0 && align_size_max < access_size_max) { | |
2494 | access_size_max = align_size_max; | |
2495 | } | |
82f2563f | 2496 | } |
23326164 RH |
2497 | |
2498 | /* Don't attempt accesses larger than the maximum. */ | |
2499 | if (l > access_size_max) { | |
2500 | l = access_size_max; | |
82f2563f | 2501 | } |
6554f5c0 | 2502 | l = pow2floor(l); |
23326164 RH |
2503 | |
2504 | return l; | |
82f2563f PB |
2505 | } |
2506 | ||
4840f10e | 2507 | static bool prepare_mmio_access(MemoryRegion *mr) |
125b3806 | 2508 | { |
4840f10e JK |
2509 | bool unlocked = !qemu_mutex_iothread_locked(); |
2510 | bool release_lock = false; | |
2511 | ||
2512 | if (unlocked && mr->global_locking) { | |
2513 | qemu_mutex_lock_iothread(); | |
2514 | unlocked = false; | |
2515 | release_lock = true; | |
2516 | } | |
125b3806 | 2517 | if (mr->flush_coalesced_mmio) { |
4840f10e JK |
2518 | if (unlocked) { |
2519 | qemu_mutex_lock_iothread(); | |
2520 | } | |
125b3806 | 2521 | qemu_flush_coalesced_mmio_buffer(); |
4840f10e JK |
2522 | if (unlocked) { |
2523 | qemu_mutex_unlock_iothread(); | |
2524 | } | |
125b3806 | 2525 | } |
4840f10e JK |
2526 | |
2527 | return release_lock; | |
125b3806 PB |
2528 | } |
2529 | ||
a203ac70 PB |
2530 | /* Called within RCU critical section. */ |
2531 | static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr, | |
2532 | MemTxAttrs attrs, | |
2533 | const uint8_t *buf, | |
2534 | int len, hwaddr addr1, | |
2535 | hwaddr l, MemoryRegion *mr) | |
13eb76e0 | 2536 | { |
13eb76e0 | 2537 | uint8_t *ptr; |
791af8c8 | 2538 | uint64_t val; |
3b643495 | 2539 | MemTxResult result = MEMTX_OK; |
4840f10e | 2540 | bool release_lock = false; |
3b46e624 | 2541 | |
a203ac70 | 2542 | for (;;) { |
eb7eeb88 PB |
2543 | if (!memory_access_is_direct(mr, true)) { |
2544 | release_lock |= prepare_mmio_access(mr); | |
2545 | l = memory_access_size(mr, l, addr1); | |
2546 | /* XXX: could force current_cpu to NULL to avoid | |
2547 | potential bugs */ | |
2548 | switch (l) { | |
2549 | case 8: | |
2550 | /* 64 bit write access */ | |
2551 | val = ldq_p(buf); | |
2552 | result |= memory_region_dispatch_write(mr, addr1, val, 8, | |
2553 | attrs); | |
2554 | break; | |
2555 | case 4: | |
2556 | /* 32 bit write access */ | |
2557 | val = ldl_p(buf); | |
2558 | result |= memory_region_dispatch_write(mr, addr1, val, 4, | |
2559 | attrs); | |
2560 | break; | |
2561 | case 2: | |
2562 | /* 16 bit write access */ | |
2563 | val = lduw_p(buf); | |
2564 | result |= memory_region_dispatch_write(mr, addr1, val, 2, | |
2565 | attrs); | |
2566 | break; | |
2567 | case 1: | |
2568 | /* 8 bit write access */ | |
2569 | val = ldub_p(buf); | |
2570 | result |= memory_region_dispatch_write(mr, addr1, val, 1, | |
2571 | attrs); | |
2572 | break; | |
2573 | default: | |
2574 | abort(); | |
13eb76e0 FB |
2575 | } |
2576 | } else { | |
eb7eeb88 | 2577 | /* RAM case */ |
0878d0e1 | 2578 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
eb7eeb88 PB |
2579 | memcpy(ptr, buf, l); |
2580 | invalidate_and_set_dirty(mr, addr1, l); | |
13eb76e0 | 2581 | } |
4840f10e JK |
2582 | |
2583 | if (release_lock) { | |
2584 | qemu_mutex_unlock_iothread(); | |
2585 | release_lock = false; | |
2586 | } | |
2587 | ||
13eb76e0 FB |
2588 | len -= l; |
2589 | buf += l; | |
2590 | addr += l; | |
a203ac70 PB |
2591 | |
2592 | if (!len) { | |
2593 | break; | |
2594 | } | |
2595 | ||
2596 | l = len; | |
2597 | mr = address_space_translate(as, addr, &addr1, &l, true); | |
13eb76e0 | 2598 | } |
fd8aaa76 | 2599 | |
3b643495 | 2600 | return result; |
13eb76e0 | 2601 | } |
8df1cd07 | 2602 | |
a203ac70 PB |
2603 | MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, |
2604 | const uint8_t *buf, int len) | |
ac1970fb | 2605 | { |
eb7eeb88 | 2606 | hwaddr l; |
eb7eeb88 PB |
2607 | hwaddr addr1; |
2608 | MemoryRegion *mr; | |
2609 | MemTxResult result = MEMTX_OK; | |
eb7eeb88 | 2610 | |
a203ac70 PB |
2611 | if (len > 0) { |
2612 | rcu_read_lock(); | |
eb7eeb88 | 2613 | l = len; |
a203ac70 PB |
2614 | mr = address_space_translate(as, addr, &addr1, &l, true); |
2615 | result = address_space_write_continue(as, addr, attrs, buf, len, | |
2616 | addr1, l, mr); | |
2617 | rcu_read_unlock(); | |
2618 | } | |
2619 | ||
2620 | return result; | |
2621 | } | |
2622 | ||
2623 | /* Called within RCU critical section. */ | |
2624 | MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr, | |
2625 | MemTxAttrs attrs, uint8_t *buf, | |
2626 | int len, hwaddr addr1, hwaddr l, | |
2627 | MemoryRegion *mr) | |
2628 | { | |
2629 | uint8_t *ptr; | |
2630 | uint64_t val; | |
2631 | MemTxResult result = MEMTX_OK; | |
2632 | bool release_lock = false; | |
eb7eeb88 | 2633 | |
a203ac70 | 2634 | for (;;) { |
eb7eeb88 PB |
2635 | if (!memory_access_is_direct(mr, false)) { |
2636 | /* I/O case */ | |
2637 | release_lock |= prepare_mmio_access(mr); | |
2638 | l = memory_access_size(mr, l, addr1); | |
2639 | switch (l) { | |
2640 | case 8: | |
2641 | /* 64 bit read access */ | |
2642 | result |= memory_region_dispatch_read(mr, addr1, &val, 8, | |
2643 | attrs); | |
2644 | stq_p(buf, val); | |
2645 | break; | |
2646 | case 4: | |
2647 | /* 32 bit read access */ | |
2648 | result |= memory_region_dispatch_read(mr, addr1, &val, 4, | |
2649 | attrs); | |
2650 | stl_p(buf, val); | |
2651 | break; | |
2652 | case 2: | |
2653 | /* 16 bit read access */ | |
2654 | result |= memory_region_dispatch_read(mr, addr1, &val, 2, | |
2655 | attrs); | |
2656 | stw_p(buf, val); | |
2657 | break; | |
2658 | case 1: | |
2659 | /* 8 bit read access */ | |
2660 | result |= memory_region_dispatch_read(mr, addr1, &val, 1, | |
2661 | attrs); | |
2662 | stb_p(buf, val); | |
2663 | break; | |
2664 | default: | |
2665 | abort(); | |
2666 | } | |
2667 | } else { | |
2668 | /* RAM case */ | |
0878d0e1 | 2669 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
eb7eeb88 PB |
2670 | memcpy(buf, ptr, l); |
2671 | } | |
2672 | ||
2673 | if (release_lock) { | |
2674 | qemu_mutex_unlock_iothread(); | |
2675 | release_lock = false; | |
2676 | } | |
2677 | ||
2678 | len -= l; | |
2679 | buf += l; | |
2680 | addr += l; | |
a203ac70 PB |
2681 | |
2682 | if (!len) { | |
2683 | break; | |
2684 | } | |
2685 | ||
2686 | l = len; | |
2687 | mr = address_space_translate(as, addr, &addr1, &l, false); | |
2688 | } | |
2689 | ||
2690 | return result; | |
2691 | } | |
2692 | ||
3cc8f884 PB |
2693 | MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, |
2694 | MemTxAttrs attrs, uint8_t *buf, int len) | |
a203ac70 PB |
2695 | { |
2696 | hwaddr l; | |
2697 | hwaddr addr1; | |
2698 | MemoryRegion *mr; | |
2699 | MemTxResult result = MEMTX_OK; | |
2700 | ||
2701 | if (len > 0) { | |
2702 | rcu_read_lock(); | |
2703 | l = len; | |
2704 | mr = address_space_translate(as, addr, &addr1, &l, false); | |
2705 | result = address_space_read_continue(as, addr, attrs, buf, len, | |
2706 | addr1, l, mr); | |
2707 | rcu_read_unlock(); | |
eb7eeb88 | 2708 | } |
eb7eeb88 PB |
2709 | |
2710 | return result; | |
ac1970fb AK |
2711 | } |
2712 | ||
eb7eeb88 PB |
2713 | MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, |
2714 | uint8_t *buf, int len, bool is_write) | |
2715 | { | |
2716 | if (is_write) { | |
2717 | return address_space_write(as, addr, attrs, (uint8_t *)buf, len); | |
2718 | } else { | |
2719 | return address_space_read(as, addr, attrs, (uint8_t *)buf, len); | |
2720 | } | |
2721 | } | |
ac1970fb | 2722 | |
a8170e5e | 2723 | void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf, |
ac1970fb AK |
2724 | int len, int is_write) |
2725 | { | |
5c9eb028 PM |
2726 | address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, |
2727 | buf, len, is_write); | |
ac1970fb AK |
2728 | } |
2729 | ||
582b55a9 AG |
2730 | enum write_rom_type { |
2731 | WRITE_DATA, | |
2732 | FLUSH_CACHE, | |
2733 | }; | |
2734 | ||
2a221651 | 2735 | static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as, |
582b55a9 | 2736 | hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type) |
d0ecd2aa | 2737 | { |
149f54b5 | 2738 | hwaddr l; |
d0ecd2aa | 2739 | uint8_t *ptr; |
149f54b5 | 2740 | hwaddr addr1; |
5c8a00ce | 2741 | MemoryRegion *mr; |
3b46e624 | 2742 | |
41063e1e | 2743 | rcu_read_lock(); |
d0ecd2aa | 2744 | while (len > 0) { |
149f54b5 | 2745 | l = len; |
2a221651 | 2746 | mr = address_space_translate(as, addr, &addr1, &l, true); |
3b46e624 | 2747 | |
5c8a00ce PB |
2748 | if (!(memory_region_is_ram(mr) || |
2749 | memory_region_is_romd(mr))) { | |
b242e0e0 | 2750 | l = memory_access_size(mr, l, addr1); |
d0ecd2aa | 2751 | } else { |
d0ecd2aa | 2752 | /* ROM/RAM case */ |
0878d0e1 | 2753 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
582b55a9 AG |
2754 | switch (type) { |
2755 | case WRITE_DATA: | |
2756 | memcpy(ptr, buf, l); | |
845b6214 | 2757 | invalidate_and_set_dirty(mr, addr1, l); |
582b55a9 AG |
2758 | break; |
2759 | case FLUSH_CACHE: | |
2760 | flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l); | |
2761 | break; | |
2762 | } | |
d0ecd2aa FB |
2763 | } |
2764 | len -= l; | |
2765 | buf += l; | |
2766 | addr += l; | |
2767 | } | |
41063e1e | 2768 | rcu_read_unlock(); |
d0ecd2aa FB |
2769 | } |
2770 | ||
582b55a9 | 2771 | /* used for ROM loading : can write in RAM and ROM */ |
2a221651 | 2772 | void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr, |
582b55a9 AG |
2773 | const uint8_t *buf, int len) |
2774 | { | |
2a221651 | 2775 | cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA); |
582b55a9 AG |
2776 | } |
2777 | ||
2778 | void cpu_flush_icache_range(hwaddr start, int len) | |
2779 | { | |
2780 | /* | |
2781 | * This function should do the same thing as an icache flush that was | |
2782 | * triggered from within the guest. For TCG we are always cache coherent, | |
2783 | * so there is no need to flush anything. For KVM / Xen we need to flush | |
2784 | * the host's instruction cache at least. | |
2785 | */ | |
2786 | if (tcg_enabled()) { | |
2787 | return; | |
2788 | } | |
2789 | ||
2a221651 EI |
2790 | cpu_physical_memory_write_rom_internal(&address_space_memory, |
2791 | start, NULL, len, FLUSH_CACHE); | |
582b55a9 AG |
2792 | } |
2793 | ||
6d16c2f8 | 2794 | typedef struct { |
d3e71559 | 2795 | MemoryRegion *mr; |
6d16c2f8 | 2796 | void *buffer; |
a8170e5e AK |
2797 | hwaddr addr; |
2798 | hwaddr len; | |
c2cba0ff | 2799 | bool in_use; |
6d16c2f8 AL |
2800 | } BounceBuffer; |
2801 | ||
2802 | static BounceBuffer bounce; | |
2803 | ||
ba223c29 | 2804 | typedef struct MapClient { |
e95205e1 | 2805 | QEMUBH *bh; |
72cf2d4f | 2806 | QLIST_ENTRY(MapClient) link; |
ba223c29 AL |
2807 | } MapClient; |
2808 | ||
38e047b5 | 2809 | QemuMutex map_client_list_lock; |
72cf2d4f BS |
2810 | static QLIST_HEAD(map_client_list, MapClient) map_client_list |
2811 | = QLIST_HEAD_INITIALIZER(map_client_list); | |
ba223c29 | 2812 | |
e95205e1 FZ |
2813 | static void cpu_unregister_map_client_do(MapClient *client) |
2814 | { | |
2815 | QLIST_REMOVE(client, link); | |
2816 | g_free(client); | |
2817 | } | |
2818 | ||
33b6c2ed FZ |
2819 | static void cpu_notify_map_clients_locked(void) |
2820 | { | |
2821 | MapClient *client; | |
2822 | ||
2823 | while (!QLIST_EMPTY(&map_client_list)) { | |
2824 | client = QLIST_FIRST(&map_client_list); | |
e95205e1 FZ |
2825 | qemu_bh_schedule(client->bh); |
2826 | cpu_unregister_map_client_do(client); | |
33b6c2ed FZ |
2827 | } |
2828 | } | |
2829 | ||
e95205e1 | 2830 | void cpu_register_map_client(QEMUBH *bh) |
ba223c29 | 2831 | { |
7267c094 | 2832 | MapClient *client = g_malloc(sizeof(*client)); |
ba223c29 | 2833 | |
38e047b5 | 2834 | qemu_mutex_lock(&map_client_list_lock); |
e95205e1 | 2835 | client->bh = bh; |
72cf2d4f | 2836 | QLIST_INSERT_HEAD(&map_client_list, client, link); |
33b6c2ed FZ |
2837 | if (!atomic_read(&bounce.in_use)) { |
2838 | cpu_notify_map_clients_locked(); | |
2839 | } | |
38e047b5 | 2840 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
2841 | } |
2842 | ||
38e047b5 | 2843 | void cpu_exec_init_all(void) |
ba223c29 | 2844 | { |
38e047b5 | 2845 | qemu_mutex_init(&ram_list.mutex); |
20bccb82 PM |
2846 | /* The data structures we set up here depend on knowing the page size, |
2847 | * so no more changes can be made after this point. | |
2848 | * In an ideal world, nothing we did before we had finished the | |
2849 | * machine setup would care about the target page size, and we could | |
2850 | * do this much later, rather than requiring board models to state | |
2851 | * up front what their requirements are. | |
2852 | */ | |
2853 | finalize_target_page_bits(); | |
38e047b5 | 2854 | io_mem_init(); |
680a4783 | 2855 | memory_map_init(); |
38e047b5 | 2856 | qemu_mutex_init(&map_client_list_lock); |
ba223c29 AL |
2857 | } |
2858 | ||
e95205e1 | 2859 | void cpu_unregister_map_client(QEMUBH *bh) |
ba223c29 AL |
2860 | { |
2861 | MapClient *client; | |
2862 | ||
e95205e1 FZ |
2863 | qemu_mutex_lock(&map_client_list_lock); |
2864 | QLIST_FOREACH(client, &map_client_list, link) { | |
2865 | if (client->bh == bh) { | |
2866 | cpu_unregister_map_client_do(client); | |
2867 | break; | |
2868 | } | |
ba223c29 | 2869 | } |
e95205e1 | 2870 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
2871 | } |
2872 | ||
2873 | static void cpu_notify_map_clients(void) | |
2874 | { | |
38e047b5 | 2875 | qemu_mutex_lock(&map_client_list_lock); |
33b6c2ed | 2876 | cpu_notify_map_clients_locked(); |
38e047b5 | 2877 | qemu_mutex_unlock(&map_client_list_lock); |
ba223c29 AL |
2878 | } |
2879 | ||
51644ab7 PB |
2880 | bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write) |
2881 | { | |
5c8a00ce | 2882 | MemoryRegion *mr; |
51644ab7 PB |
2883 | hwaddr l, xlat; |
2884 | ||
41063e1e | 2885 | rcu_read_lock(); |
51644ab7 PB |
2886 | while (len > 0) { |
2887 | l = len; | |
5c8a00ce PB |
2888 | mr = address_space_translate(as, addr, &xlat, &l, is_write); |
2889 | if (!memory_access_is_direct(mr, is_write)) { | |
2890 | l = memory_access_size(mr, l, addr); | |
2891 | if (!memory_region_access_valid(mr, xlat, l, is_write)) { | |
51644ab7 PB |
2892 | return false; |
2893 | } | |
2894 | } | |
2895 | ||
2896 | len -= l; | |
2897 | addr += l; | |
2898 | } | |
41063e1e | 2899 | rcu_read_unlock(); |
51644ab7 PB |
2900 | return true; |
2901 | } | |
2902 | ||
6d16c2f8 AL |
2903 | /* Map a physical memory region into a host virtual address. |
2904 | * May map a subset of the requested range, given by and returned in *plen. | |
2905 | * May return NULL if resources needed to perform the mapping are exhausted. | |
2906 | * Use only for reads OR writes - not for read-modify-write operations. | |
ba223c29 AL |
2907 | * Use cpu_register_map_client() to know when retrying the map operation is |
2908 | * likely to succeed. | |
6d16c2f8 | 2909 | */ |
ac1970fb | 2910 | void *address_space_map(AddressSpace *as, |
a8170e5e AK |
2911 | hwaddr addr, |
2912 | hwaddr *plen, | |
ac1970fb | 2913 | bool is_write) |
6d16c2f8 | 2914 | { |
a8170e5e | 2915 | hwaddr len = *plen; |
e3127ae0 PB |
2916 | hwaddr done = 0; |
2917 | hwaddr l, xlat, base; | |
2918 | MemoryRegion *mr, *this_mr; | |
e81bcda5 | 2919 | void *ptr; |
6d16c2f8 | 2920 | |
e3127ae0 PB |
2921 | if (len == 0) { |
2922 | return NULL; | |
2923 | } | |
38bee5dc | 2924 | |
e3127ae0 | 2925 | l = len; |
41063e1e | 2926 | rcu_read_lock(); |
e3127ae0 | 2927 | mr = address_space_translate(as, addr, &xlat, &l, is_write); |
41063e1e | 2928 | |
e3127ae0 | 2929 | if (!memory_access_is_direct(mr, is_write)) { |
c2cba0ff | 2930 | if (atomic_xchg(&bounce.in_use, true)) { |
41063e1e | 2931 | rcu_read_unlock(); |
e3127ae0 | 2932 | return NULL; |
6d16c2f8 | 2933 | } |
e85d9db5 KW |
2934 | /* Avoid unbounded allocations */ |
2935 | l = MIN(l, TARGET_PAGE_SIZE); | |
2936 | bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l); | |
e3127ae0 PB |
2937 | bounce.addr = addr; |
2938 | bounce.len = l; | |
d3e71559 PB |
2939 | |
2940 | memory_region_ref(mr); | |
2941 | bounce.mr = mr; | |
e3127ae0 | 2942 | if (!is_write) { |
5c9eb028 PM |
2943 | address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED, |
2944 | bounce.buffer, l); | |
8ab934f9 | 2945 | } |
6d16c2f8 | 2946 | |
41063e1e | 2947 | rcu_read_unlock(); |
e3127ae0 PB |
2948 | *plen = l; |
2949 | return bounce.buffer; | |
2950 | } | |
2951 | ||
2952 | base = xlat; | |
e3127ae0 PB |
2953 | |
2954 | for (;;) { | |
6d16c2f8 AL |
2955 | len -= l; |
2956 | addr += l; | |
e3127ae0 PB |
2957 | done += l; |
2958 | if (len == 0) { | |
2959 | break; | |
2960 | } | |
2961 | ||
2962 | l = len; | |
2963 | this_mr = address_space_translate(as, addr, &xlat, &l, is_write); | |
2964 | if (this_mr != mr || xlat != base + done) { | |
2965 | break; | |
2966 | } | |
6d16c2f8 | 2967 | } |
e3127ae0 | 2968 | |
d3e71559 | 2969 | memory_region_ref(mr); |
e3127ae0 | 2970 | *plen = done; |
0878d0e1 | 2971 | ptr = qemu_ram_ptr_length(mr->ram_block, base, plen); |
e81bcda5 PB |
2972 | rcu_read_unlock(); |
2973 | ||
2974 | return ptr; | |
6d16c2f8 AL |
2975 | } |
2976 | ||
ac1970fb | 2977 | /* Unmaps a memory region previously mapped by address_space_map(). |
6d16c2f8 AL |
2978 | * Will also mark the memory as dirty if is_write == 1. access_len gives |
2979 | * the amount of memory that was actually read or written by the caller. | |
2980 | */ | |
a8170e5e AK |
2981 | void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, |
2982 | int is_write, hwaddr access_len) | |
6d16c2f8 AL |
2983 | { |
2984 | if (buffer != bounce.buffer) { | |
d3e71559 PB |
2985 | MemoryRegion *mr; |
2986 | ram_addr_t addr1; | |
2987 | ||
07bdaa41 | 2988 | mr = memory_region_from_host(buffer, &addr1); |
d3e71559 | 2989 | assert(mr != NULL); |
6d16c2f8 | 2990 | if (is_write) { |
845b6214 | 2991 | invalidate_and_set_dirty(mr, addr1, access_len); |
6d16c2f8 | 2992 | } |
868bb33f | 2993 | if (xen_enabled()) { |
e41d7c69 | 2994 | xen_invalidate_map_cache_entry(buffer); |
050a0ddf | 2995 | } |
d3e71559 | 2996 | memory_region_unref(mr); |
6d16c2f8 AL |
2997 | return; |
2998 | } | |
2999 | if (is_write) { | |
5c9eb028 PM |
3000 | address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED, |
3001 | bounce.buffer, access_len); | |
6d16c2f8 | 3002 | } |
f8a83245 | 3003 | qemu_vfree(bounce.buffer); |
6d16c2f8 | 3004 | bounce.buffer = NULL; |
d3e71559 | 3005 | memory_region_unref(bounce.mr); |
c2cba0ff | 3006 | atomic_mb_set(&bounce.in_use, false); |
ba223c29 | 3007 | cpu_notify_map_clients(); |
6d16c2f8 | 3008 | } |
d0ecd2aa | 3009 | |
a8170e5e AK |
3010 | void *cpu_physical_memory_map(hwaddr addr, |
3011 | hwaddr *plen, | |
ac1970fb AK |
3012 | int is_write) |
3013 | { | |
3014 | return address_space_map(&address_space_memory, addr, plen, is_write); | |
3015 | } | |
3016 | ||
a8170e5e AK |
3017 | void cpu_physical_memory_unmap(void *buffer, hwaddr len, |
3018 | int is_write, hwaddr access_len) | |
ac1970fb AK |
3019 | { |
3020 | return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); | |
3021 | } | |
3022 | ||
8df1cd07 | 3023 | /* warning: addr must be aligned */ |
50013115 PM |
3024 | static inline uint32_t address_space_ldl_internal(AddressSpace *as, hwaddr addr, |
3025 | MemTxAttrs attrs, | |
3026 | MemTxResult *result, | |
3027 | enum device_endian endian) | |
8df1cd07 | 3028 | { |
8df1cd07 | 3029 | uint8_t *ptr; |
791af8c8 | 3030 | uint64_t val; |
5c8a00ce | 3031 | MemoryRegion *mr; |
149f54b5 PB |
3032 | hwaddr l = 4; |
3033 | hwaddr addr1; | |
50013115 | 3034 | MemTxResult r; |
4840f10e | 3035 | bool release_lock = false; |
8df1cd07 | 3036 | |
41063e1e | 3037 | rcu_read_lock(); |
fdfba1a2 | 3038 | mr = address_space_translate(as, addr, &addr1, &l, false); |
5c8a00ce | 3039 | if (l < 4 || !memory_access_is_direct(mr, false)) { |
4840f10e | 3040 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3041 | |
8df1cd07 | 3042 | /* I/O case */ |
50013115 | 3043 | r = memory_region_dispatch_read(mr, addr1, &val, 4, attrs); |
1e78bcc1 AG |
3044 | #if defined(TARGET_WORDS_BIGENDIAN) |
3045 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3046 | val = bswap32(val); | |
3047 | } | |
3048 | #else | |
3049 | if (endian == DEVICE_BIG_ENDIAN) { | |
3050 | val = bswap32(val); | |
3051 | } | |
3052 | #endif | |
8df1cd07 FB |
3053 | } else { |
3054 | /* RAM case */ | |
0878d0e1 | 3055 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
1e78bcc1 AG |
3056 | switch (endian) { |
3057 | case DEVICE_LITTLE_ENDIAN: | |
3058 | val = ldl_le_p(ptr); | |
3059 | break; | |
3060 | case DEVICE_BIG_ENDIAN: | |
3061 | val = ldl_be_p(ptr); | |
3062 | break; | |
3063 | default: | |
3064 | val = ldl_p(ptr); | |
3065 | break; | |
3066 | } | |
50013115 PM |
3067 | r = MEMTX_OK; |
3068 | } | |
3069 | if (result) { | |
3070 | *result = r; | |
8df1cd07 | 3071 | } |
4840f10e JK |
3072 | if (release_lock) { |
3073 | qemu_mutex_unlock_iothread(); | |
3074 | } | |
41063e1e | 3075 | rcu_read_unlock(); |
8df1cd07 FB |
3076 | return val; |
3077 | } | |
3078 | ||
50013115 PM |
3079 | uint32_t address_space_ldl(AddressSpace *as, hwaddr addr, |
3080 | MemTxAttrs attrs, MemTxResult *result) | |
3081 | { | |
3082 | return address_space_ldl_internal(as, addr, attrs, result, | |
3083 | DEVICE_NATIVE_ENDIAN); | |
3084 | } | |
3085 | ||
3086 | uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr, | |
3087 | MemTxAttrs attrs, MemTxResult *result) | |
3088 | { | |
3089 | return address_space_ldl_internal(as, addr, attrs, result, | |
3090 | DEVICE_LITTLE_ENDIAN); | |
3091 | } | |
3092 | ||
3093 | uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr, | |
3094 | MemTxAttrs attrs, MemTxResult *result) | |
3095 | { | |
3096 | return address_space_ldl_internal(as, addr, attrs, result, | |
3097 | DEVICE_BIG_ENDIAN); | |
3098 | } | |
3099 | ||
fdfba1a2 | 3100 | uint32_t ldl_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3101 | { |
50013115 | 3102 | return address_space_ldl(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3103 | } |
3104 | ||
fdfba1a2 | 3105 | uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3106 | { |
50013115 | 3107 | return address_space_ldl_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3108 | } |
3109 | ||
fdfba1a2 | 3110 | uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3111 | { |
50013115 | 3112 | return address_space_ldl_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3113 | } |
3114 | ||
84b7b8e7 | 3115 | /* warning: addr must be aligned */ |
50013115 PM |
3116 | static inline uint64_t address_space_ldq_internal(AddressSpace *as, hwaddr addr, |
3117 | MemTxAttrs attrs, | |
3118 | MemTxResult *result, | |
3119 | enum device_endian endian) | |
84b7b8e7 | 3120 | { |
84b7b8e7 FB |
3121 | uint8_t *ptr; |
3122 | uint64_t val; | |
5c8a00ce | 3123 | MemoryRegion *mr; |
149f54b5 PB |
3124 | hwaddr l = 8; |
3125 | hwaddr addr1; | |
50013115 | 3126 | MemTxResult r; |
4840f10e | 3127 | bool release_lock = false; |
84b7b8e7 | 3128 | |
41063e1e | 3129 | rcu_read_lock(); |
2c17449b | 3130 | mr = address_space_translate(as, addr, &addr1, &l, |
5c8a00ce PB |
3131 | false); |
3132 | if (l < 8 || !memory_access_is_direct(mr, false)) { | |
4840f10e | 3133 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3134 | |
84b7b8e7 | 3135 | /* I/O case */ |
50013115 | 3136 | r = memory_region_dispatch_read(mr, addr1, &val, 8, attrs); |
968a5627 PB |
3137 | #if defined(TARGET_WORDS_BIGENDIAN) |
3138 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3139 | val = bswap64(val); | |
3140 | } | |
3141 | #else | |
3142 | if (endian == DEVICE_BIG_ENDIAN) { | |
3143 | val = bswap64(val); | |
3144 | } | |
84b7b8e7 FB |
3145 | #endif |
3146 | } else { | |
3147 | /* RAM case */ | |
0878d0e1 | 3148 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
1e78bcc1 AG |
3149 | switch (endian) { |
3150 | case DEVICE_LITTLE_ENDIAN: | |
3151 | val = ldq_le_p(ptr); | |
3152 | break; | |
3153 | case DEVICE_BIG_ENDIAN: | |
3154 | val = ldq_be_p(ptr); | |
3155 | break; | |
3156 | default: | |
3157 | val = ldq_p(ptr); | |
3158 | break; | |
3159 | } | |
50013115 PM |
3160 | r = MEMTX_OK; |
3161 | } | |
3162 | if (result) { | |
3163 | *result = r; | |
84b7b8e7 | 3164 | } |
4840f10e JK |
3165 | if (release_lock) { |
3166 | qemu_mutex_unlock_iothread(); | |
3167 | } | |
41063e1e | 3168 | rcu_read_unlock(); |
84b7b8e7 FB |
3169 | return val; |
3170 | } | |
3171 | ||
50013115 PM |
3172 | uint64_t address_space_ldq(AddressSpace *as, hwaddr addr, |
3173 | MemTxAttrs attrs, MemTxResult *result) | |
3174 | { | |
3175 | return address_space_ldq_internal(as, addr, attrs, result, | |
3176 | DEVICE_NATIVE_ENDIAN); | |
3177 | } | |
3178 | ||
3179 | uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr, | |
3180 | MemTxAttrs attrs, MemTxResult *result) | |
3181 | { | |
3182 | return address_space_ldq_internal(as, addr, attrs, result, | |
3183 | DEVICE_LITTLE_ENDIAN); | |
3184 | } | |
3185 | ||
3186 | uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr, | |
3187 | MemTxAttrs attrs, MemTxResult *result) | |
3188 | { | |
3189 | return address_space_ldq_internal(as, addr, attrs, result, | |
3190 | DEVICE_BIG_ENDIAN); | |
3191 | } | |
3192 | ||
2c17449b | 3193 | uint64_t ldq_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3194 | { |
50013115 | 3195 | return address_space_ldq(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3196 | } |
3197 | ||
2c17449b | 3198 | uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3199 | { |
50013115 | 3200 | return address_space_ldq_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3201 | } |
3202 | ||
2c17449b | 3203 | uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3204 | { |
50013115 | 3205 | return address_space_ldq_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3206 | } |
3207 | ||
aab33094 | 3208 | /* XXX: optimize */ |
50013115 PM |
3209 | uint32_t address_space_ldub(AddressSpace *as, hwaddr addr, |
3210 | MemTxAttrs attrs, MemTxResult *result) | |
aab33094 FB |
3211 | { |
3212 | uint8_t val; | |
50013115 PM |
3213 | MemTxResult r; |
3214 | ||
3215 | r = address_space_rw(as, addr, attrs, &val, 1, 0); | |
3216 | if (result) { | |
3217 | *result = r; | |
3218 | } | |
aab33094 FB |
3219 | return val; |
3220 | } | |
3221 | ||
50013115 PM |
3222 | uint32_t ldub_phys(AddressSpace *as, hwaddr addr) |
3223 | { | |
3224 | return address_space_ldub(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); | |
3225 | } | |
3226 | ||
733f0b02 | 3227 | /* warning: addr must be aligned */ |
50013115 PM |
3228 | static inline uint32_t address_space_lduw_internal(AddressSpace *as, |
3229 | hwaddr addr, | |
3230 | MemTxAttrs attrs, | |
3231 | MemTxResult *result, | |
3232 | enum device_endian endian) | |
aab33094 | 3233 | { |
733f0b02 MT |
3234 | uint8_t *ptr; |
3235 | uint64_t val; | |
5c8a00ce | 3236 | MemoryRegion *mr; |
149f54b5 PB |
3237 | hwaddr l = 2; |
3238 | hwaddr addr1; | |
50013115 | 3239 | MemTxResult r; |
4840f10e | 3240 | bool release_lock = false; |
733f0b02 | 3241 | |
41063e1e | 3242 | rcu_read_lock(); |
41701aa4 | 3243 | mr = address_space_translate(as, addr, &addr1, &l, |
5c8a00ce PB |
3244 | false); |
3245 | if (l < 2 || !memory_access_is_direct(mr, false)) { | |
4840f10e | 3246 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3247 | |
733f0b02 | 3248 | /* I/O case */ |
50013115 | 3249 | r = memory_region_dispatch_read(mr, addr1, &val, 2, attrs); |
1e78bcc1 AG |
3250 | #if defined(TARGET_WORDS_BIGENDIAN) |
3251 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3252 | val = bswap16(val); | |
3253 | } | |
3254 | #else | |
3255 | if (endian == DEVICE_BIG_ENDIAN) { | |
3256 | val = bswap16(val); | |
3257 | } | |
3258 | #endif | |
733f0b02 MT |
3259 | } else { |
3260 | /* RAM case */ | |
0878d0e1 | 3261 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
1e78bcc1 AG |
3262 | switch (endian) { |
3263 | case DEVICE_LITTLE_ENDIAN: | |
3264 | val = lduw_le_p(ptr); | |
3265 | break; | |
3266 | case DEVICE_BIG_ENDIAN: | |
3267 | val = lduw_be_p(ptr); | |
3268 | break; | |
3269 | default: | |
3270 | val = lduw_p(ptr); | |
3271 | break; | |
3272 | } | |
50013115 PM |
3273 | r = MEMTX_OK; |
3274 | } | |
3275 | if (result) { | |
3276 | *result = r; | |
733f0b02 | 3277 | } |
4840f10e JK |
3278 | if (release_lock) { |
3279 | qemu_mutex_unlock_iothread(); | |
3280 | } | |
41063e1e | 3281 | rcu_read_unlock(); |
733f0b02 | 3282 | return val; |
aab33094 FB |
3283 | } |
3284 | ||
50013115 PM |
3285 | uint32_t address_space_lduw(AddressSpace *as, hwaddr addr, |
3286 | MemTxAttrs attrs, MemTxResult *result) | |
3287 | { | |
3288 | return address_space_lduw_internal(as, addr, attrs, result, | |
3289 | DEVICE_NATIVE_ENDIAN); | |
3290 | } | |
3291 | ||
3292 | uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr, | |
3293 | MemTxAttrs attrs, MemTxResult *result) | |
3294 | { | |
3295 | return address_space_lduw_internal(as, addr, attrs, result, | |
3296 | DEVICE_LITTLE_ENDIAN); | |
3297 | } | |
3298 | ||
3299 | uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr, | |
3300 | MemTxAttrs attrs, MemTxResult *result) | |
3301 | { | |
3302 | return address_space_lduw_internal(as, addr, attrs, result, | |
3303 | DEVICE_BIG_ENDIAN); | |
3304 | } | |
3305 | ||
41701aa4 | 3306 | uint32_t lduw_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3307 | { |
50013115 | 3308 | return address_space_lduw(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3309 | } |
3310 | ||
41701aa4 | 3311 | uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3312 | { |
50013115 | 3313 | return address_space_lduw_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3314 | } |
3315 | ||
41701aa4 | 3316 | uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr) |
1e78bcc1 | 3317 | { |
50013115 | 3318 | return address_space_lduw_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3319 | } |
3320 | ||
8df1cd07 FB |
3321 | /* warning: addr must be aligned. The ram page is not masked as dirty |
3322 | and the code inside is not invalidated. It is useful if the dirty | |
3323 | bits are used to track modified PTEs */ | |
50013115 PM |
3324 | void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val, |
3325 | MemTxAttrs attrs, MemTxResult *result) | |
8df1cd07 | 3326 | { |
8df1cd07 | 3327 | uint8_t *ptr; |
5c8a00ce | 3328 | MemoryRegion *mr; |
149f54b5 PB |
3329 | hwaddr l = 4; |
3330 | hwaddr addr1; | |
50013115 | 3331 | MemTxResult r; |
845b6214 | 3332 | uint8_t dirty_log_mask; |
4840f10e | 3333 | bool release_lock = false; |
8df1cd07 | 3334 | |
41063e1e | 3335 | rcu_read_lock(); |
2198a121 | 3336 | mr = address_space_translate(as, addr, &addr1, &l, |
5c8a00ce PB |
3337 | true); |
3338 | if (l < 4 || !memory_access_is_direct(mr, true)) { | |
4840f10e | 3339 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3340 | |
50013115 | 3341 | r = memory_region_dispatch_write(mr, addr1, val, 4, attrs); |
8df1cd07 | 3342 | } else { |
0878d0e1 | 3343 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
8df1cd07 | 3344 | stl_p(ptr, val); |
74576198 | 3345 | |
845b6214 PB |
3346 | dirty_log_mask = memory_region_get_dirty_log_mask(mr); |
3347 | dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); | |
0878d0e1 PB |
3348 | cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr, |
3349 | 4, dirty_log_mask); | |
50013115 PM |
3350 | r = MEMTX_OK; |
3351 | } | |
3352 | if (result) { | |
3353 | *result = r; | |
8df1cd07 | 3354 | } |
4840f10e JK |
3355 | if (release_lock) { |
3356 | qemu_mutex_unlock_iothread(); | |
3357 | } | |
41063e1e | 3358 | rcu_read_unlock(); |
8df1cd07 FB |
3359 | } |
3360 | ||
50013115 PM |
3361 | void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val) |
3362 | { | |
3363 | address_space_stl_notdirty(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
3364 | } | |
3365 | ||
8df1cd07 | 3366 | /* warning: addr must be aligned */ |
50013115 PM |
3367 | static inline void address_space_stl_internal(AddressSpace *as, |
3368 | hwaddr addr, uint32_t val, | |
3369 | MemTxAttrs attrs, | |
3370 | MemTxResult *result, | |
3371 | enum device_endian endian) | |
8df1cd07 | 3372 | { |
8df1cd07 | 3373 | uint8_t *ptr; |
5c8a00ce | 3374 | MemoryRegion *mr; |
149f54b5 PB |
3375 | hwaddr l = 4; |
3376 | hwaddr addr1; | |
50013115 | 3377 | MemTxResult r; |
4840f10e | 3378 | bool release_lock = false; |
8df1cd07 | 3379 | |
41063e1e | 3380 | rcu_read_lock(); |
ab1da857 | 3381 | mr = address_space_translate(as, addr, &addr1, &l, |
5c8a00ce PB |
3382 | true); |
3383 | if (l < 4 || !memory_access_is_direct(mr, true)) { | |
4840f10e | 3384 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3385 | |
1e78bcc1 AG |
3386 | #if defined(TARGET_WORDS_BIGENDIAN) |
3387 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3388 | val = bswap32(val); | |
3389 | } | |
3390 | #else | |
3391 | if (endian == DEVICE_BIG_ENDIAN) { | |
3392 | val = bswap32(val); | |
3393 | } | |
3394 | #endif | |
50013115 | 3395 | r = memory_region_dispatch_write(mr, addr1, val, 4, attrs); |
8df1cd07 | 3396 | } else { |
8df1cd07 | 3397 | /* RAM case */ |
0878d0e1 | 3398 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
1e78bcc1 AG |
3399 | switch (endian) { |
3400 | case DEVICE_LITTLE_ENDIAN: | |
3401 | stl_le_p(ptr, val); | |
3402 | break; | |
3403 | case DEVICE_BIG_ENDIAN: | |
3404 | stl_be_p(ptr, val); | |
3405 | break; | |
3406 | default: | |
3407 | stl_p(ptr, val); | |
3408 | break; | |
3409 | } | |
845b6214 | 3410 | invalidate_and_set_dirty(mr, addr1, 4); |
50013115 PM |
3411 | r = MEMTX_OK; |
3412 | } | |
3413 | if (result) { | |
3414 | *result = r; | |
8df1cd07 | 3415 | } |
4840f10e JK |
3416 | if (release_lock) { |
3417 | qemu_mutex_unlock_iothread(); | |
3418 | } | |
41063e1e | 3419 | rcu_read_unlock(); |
8df1cd07 FB |
3420 | } |
3421 | ||
50013115 PM |
3422 | void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val, |
3423 | MemTxAttrs attrs, MemTxResult *result) | |
3424 | { | |
3425 | address_space_stl_internal(as, addr, val, attrs, result, | |
3426 | DEVICE_NATIVE_ENDIAN); | |
3427 | } | |
3428 | ||
3429 | void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val, | |
3430 | MemTxAttrs attrs, MemTxResult *result) | |
3431 | { | |
3432 | address_space_stl_internal(as, addr, val, attrs, result, | |
3433 | DEVICE_LITTLE_ENDIAN); | |
3434 | } | |
3435 | ||
3436 | void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val, | |
3437 | MemTxAttrs attrs, MemTxResult *result) | |
3438 | { | |
3439 | address_space_stl_internal(as, addr, val, attrs, result, | |
3440 | DEVICE_BIG_ENDIAN); | |
3441 | } | |
3442 | ||
ab1da857 | 3443 | void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3444 | { |
50013115 | 3445 | address_space_stl(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3446 | } |
3447 | ||
ab1da857 | 3448 | void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3449 | { |
50013115 | 3450 | address_space_stl_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3451 | } |
3452 | ||
ab1da857 | 3453 | void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3454 | { |
50013115 | 3455 | address_space_stl_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3456 | } |
3457 | ||
aab33094 | 3458 | /* XXX: optimize */ |
50013115 PM |
3459 | void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val, |
3460 | MemTxAttrs attrs, MemTxResult *result) | |
aab33094 FB |
3461 | { |
3462 | uint8_t v = val; | |
50013115 PM |
3463 | MemTxResult r; |
3464 | ||
3465 | r = address_space_rw(as, addr, attrs, &v, 1, 1); | |
3466 | if (result) { | |
3467 | *result = r; | |
3468 | } | |
3469 | } | |
3470 | ||
3471 | void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val) | |
3472 | { | |
3473 | address_space_stb(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
aab33094 FB |
3474 | } |
3475 | ||
733f0b02 | 3476 | /* warning: addr must be aligned */ |
50013115 PM |
3477 | static inline void address_space_stw_internal(AddressSpace *as, |
3478 | hwaddr addr, uint32_t val, | |
3479 | MemTxAttrs attrs, | |
3480 | MemTxResult *result, | |
3481 | enum device_endian endian) | |
aab33094 | 3482 | { |
733f0b02 | 3483 | uint8_t *ptr; |
5c8a00ce | 3484 | MemoryRegion *mr; |
149f54b5 PB |
3485 | hwaddr l = 2; |
3486 | hwaddr addr1; | |
50013115 | 3487 | MemTxResult r; |
4840f10e | 3488 | bool release_lock = false; |
733f0b02 | 3489 | |
41063e1e | 3490 | rcu_read_lock(); |
5ce5944d | 3491 | mr = address_space_translate(as, addr, &addr1, &l, true); |
5c8a00ce | 3492 | if (l < 2 || !memory_access_is_direct(mr, true)) { |
4840f10e | 3493 | release_lock |= prepare_mmio_access(mr); |
125b3806 | 3494 | |
1e78bcc1 AG |
3495 | #if defined(TARGET_WORDS_BIGENDIAN) |
3496 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3497 | val = bswap16(val); | |
3498 | } | |
3499 | #else | |
3500 | if (endian == DEVICE_BIG_ENDIAN) { | |
3501 | val = bswap16(val); | |
3502 | } | |
3503 | #endif | |
50013115 | 3504 | r = memory_region_dispatch_write(mr, addr1, val, 2, attrs); |
733f0b02 | 3505 | } else { |
733f0b02 | 3506 | /* RAM case */ |
0878d0e1 | 3507 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
1e78bcc1 AG |
3508 | switch (endian) { |
3509 | case DEVICE_LITTLE_ENDIAN: | |
3510 | stw_le_p(ptr, val); | |
3511 | break; | |
3512 | case DEVICE_BIG_ENDIAN: | |
3513 | stw_be_p(ptr, val); | |
3514 | break; | |
3515 | default: | |
3516 | stw_p(ptr, val); | |
3517 | break; | |
3518 | } | |
845b6214 | 3519 | invalidate_and_set_dirty(mr, addr1, 2); |
50013115 PM |
3520 | r = MEMTX_OK; |
3521 | } | |
3522 | if (result) { | |
3523 | *result = r; | |
733f0b02 | 3524 | } |
4840f10e JK |
3525 | if (release_lock) { |
3526 | qemu_mutex_unlock_iothread(); | |
3527 | } | |
41063e1e | 3528 | rcu_read_unlock(); |
aab33094 FB |
3529 | } |
3530 | ||
50013115 PM |
3531 | void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val, |
3532 | MemTxAttrs attrs, MemTxResult *result) | |
3533 | { | |
3534 | address_space_stw_internal(as, addr, val, attrs, result, | |
3535 | DEVICE_NATIVE_ENDIAN); | |
3536 | } | |
3537 | ||
3538 | void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val, | |
3539 | MemTxAttrs attrs, MemTxResult *result) | |
3540 | { | |
3541 | address_space_stw_internal(as, addr, val, attrs, result, | |
3542 | DEVICE_LITTLE_ENDIAN); | |
3543 | } | |
3544 | ||
3545 | void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val, | |
3546 | MemTxAttrs attrs, MemTxResult *result) | |
3547 | { | |
3548 | address_space_stw_internal(as, addr, val, attrs, result, | |
3549 | DEVICE_BIG_ENDIAN); | |
3550 | } | |
3551 | ||
5ce5944d | 3552 | void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3553 | { |
50013115 | 3554 | address_space_stw(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3555 | } |
3556 | ||
5ce5944d | 3557 | void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3558 | { |
50013115 | 3559 | address_space_stw_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3560 | } |
3561 | ||
5ce5944d | 3562 | void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val) |
1e78bcc1 | 3563 | { |
50013115 | 3564 | address_space_stw_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3565 | } |
3566 | ||
aab33094 | 3567 | /* XXX: optimize */ |
50013115 PM |
3568 | void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val, |
3569 | MemTxAttrs attrs, MemTxResult *result) | |
aab33094 | 3570 | { |
50013115 | 3571 | MemTxResult r; |
aab33094 | 3572 | val = tswap64(val); |
50013115 PM |
3573 | r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1); |
3574 | if (result) { | |
3575 | *result = r; | |
3576 | } | |
aab33094 FB |
3577 | } |
3578 | ||
50013115 PM |
3579 | void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val, |
3580 | MemTxAttrs attrs, MemTxResult *result) | |
1e78bcc1 | 3581 | { |
50013115 | 3582 | MemTxResult r; |
1e78bcc1 | 3583 | val = cpu_to_le64(val); |
50013115 PM |
3584 | r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1); |
3585 | if (result) { | |
3586 | *result = r; | |
3587 | } | |
3588 | } | |
3589 | void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val, | |
3590 | MemTxAttrs attrs, MemTxResult *result) | |
3591 | { | |
3592 | MemTxResult r; | |
3593 | val = cpu_to_be64(val); | |
3594 | r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1); | |
3595 | if (result) { | |
3596 | *result = r; | |
3597 | } | |
3598 | } | |
3599 | ||
3600 | void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val) | |
3601 | { | |
3602 | address_space_stq(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
3603 | } | |
3604 | ||
3605 | void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val) | |
3606 | { | |
3607 | address_space_stq_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); | |
1e78bcc1 AG |
3608 | } |
3609 | ||
f606604f | 3610 | void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val) |
1e78bcc1 | 3611 | { |
50013115 | 3612 | address_space_stq_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); |
1e78bcc1 AG |
3613 | } |
3614 | ||
5e2972fd | 3615 | /* virtual memory access for debug (includes writing to ROM) */ |
f17ec444 | 3616 | int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, |
b448f2f3 | 3617 | uint8_t *buf, int len, int is_write) |
13eb76e0 FB |
3618 | { |
3619 | int l; | |
a8170e5e | 3620 | hwaddr phys_addr; |
9b3c35e0 | 3621 | target_ulong page; |
13eb76e0 FB |
3622 | |
3623 | while (len > 0) { | |
5232e4c7 PM |
3624 | int asidx; |
3625 | MemTxAttrs attrs; | |
3626 | ||
13eb76e0 | 3627 | page = addr & TARGET_PAGE_MASK; |
5232e4c7 PM |
3628 | phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs); |
3629 | asidx = cpu_asidx_from_attrs(cpu, attrs); | |
13eb76e0 FB |
3630 | /* if no physical page mapped, return an error */ |
3631 | if (phys_addr == -1) | |
3632 | return -1; | |
3633 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3634 | if (l > len) | |
3635 | l = len; | |
5e2972fd | 3636 | phys_addr += (addr & ~TARGET_PAGE_MASK); |
2e38847b | 3637 | if (is_write) { |
5232e4c7 PM |
3638 | cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as, |
3639 | phys_addr, buf, l); | |
2e38847b | 3640 | } else { |
5232e4c7 PM |
3641 | address_space_rw(cpu->cpu_ases[asidx].as, phys_addr, |
3642 | MEMTXATTRS_UNSPECIFIED, | |
5c9eb028 | 3643 | buf, l, 0); |
2e38847b | 3644 | } |
13eb76e0 FB |
3645 | len -= l; |
3646 | buf += l; | |
3647 | addr += l; | |
3648 | } | |
3649 | return 0; | |
3650 | } | |
038629a6 DDAG |
3651 | |
3652 | /* | |
3653 | * Allows code that needs to deal with migration bitmaps etc to still be built | |
3654 | * target independent. | |
3655 | */ | |
3656 | size_t qemu_target_page_bits(void) | |
3657 | { | |
3658 | return TARGET_PAGE_BITS; | |
3659 | } | |
3660 | ||
a68fe89c | 3661 | #endif |
13eb76e0 | 3662 | |
8e4a424b BS |
3663 | /* |
3664 | * A helper function for the _utterly broken_ virtio device model to find out if | |
3665 | * it's running on a big endian machine. Don't do this at home kids! | |
3666 | */ | |
98ed8ecf GK |
3667 | bool target_words_bigendian(void); |
3668 | bool target_words_bigendian(void) | |
8e4a424b BS |
3669 | { |
3670 | #if defined(TARGET_WORDS_BIGENDIAN) | |
3671 | return true; | |
3672 | #else | |
3673 | return false; | |
3674 | #endif | |
3675 | } | |
3676 | ||
76f35538 | 3677 | #ifndef CONFIG_USER_ONLY |
a8170e5e | 3678 | bool cpu_physical_memory_is_io(hwaddr phys_addr) |
76f35538 | 3679 | { |
5c8a00ce | 3680 | MemoryRegion*mr; |
149f54b5 | 3681 | hwaddr l = 1; |
41063e1e | 3682 | bool res; |
76f35538 | 3683 | |
41063e1e | 3684 | rcu_read_lock(); |
5c8a00ce PB |
3685 | mr = address_space_translate(&address_space_memory, |
3686 | phys_addr, &phys_addr, &l, false); | |
76f35538 | 3687 | |
41063e1e PB |
3688 | res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr)); |
3689 | rcu_read_unlock(); | |
3690 | return res; | |
76f35538 | 3691 | } |
bd2fa51f | 3692 | |
e3807054 | 3693 | int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) |
bd2fa51f MH |
3694 | { |
3695 | RAMBlock *block; | |
e3807054 | 3696 | int ret = 0; |
bd2fa51f | 3697 | |
0dc3f44a MD |
3698 | rcu_read_lock(); |
3699 | QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { | |
e3807054 DDAG |
3700 | ret = func(block->idstr, block->host, block->offset, |
3701 | block->used_length, opaque); | |
3702 | if (ret) { | |
3703 | break; | |
3704 | } | |
bd2fa51f | 3705 | } |
0dc3f44a | 3706 | rcu_read_unlock(); |
e3807054 | 3707 | return ret; |
bd2fa51f | 3708 | } |
ec3f8c99 | 3709 | #endif |