]>
Commit | Line | Data |
---|---|---|
05330448 AL |
1 | /* |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright (C) 2006-2008 Qumranet Technologies | |
5 | * Copyright IBM, Corp. 2008 | |
6 | * | |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
9 | * | |
10 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
11 | * See the COPYING file in the top-level directory. | |
12 | * | |
13 | */ | |
14 | ||
b6a0aa05 | 15 | #include "qemu/osdep.h" |
da34e65c | 16 | #include "qapi/error.h" |
05330448 | 17 | #include <sys/ioctl.h> |
25d2e361 | 18 | #include <sys/utsname.h> |
05330448 AL |
19 | |
20 | #include <linux/kvm.h> | |
5802e066 | 21 | #include <linux/kvm_para.h> |
05330448 AL |
22 | |
23 | #include "qemu-common.h" | |
33c11879 | 24 | #include "cpu.h" |
9c17d615 | 25 | #include "sysemu/sysemu.h" |
b3946626 | 26 | #include "sysemu/hw_accel.h" |
6410848b | 27 | #include "sysemu/kvm_int.h" |
1d31f66b | 28 | #include "kvm_i386.h" |
50efe82c | 29 | #include "hyperv.h" |
5e953812 | 30 | #include "hyperv-proto.h" |
50efe82c | 31 | |
022c62cb | 32 | #include "exec/gdbstub.h" |
1de7afc9 PB |
33 | #include "qemu/host-utils.h" |
34 | #include "qemu/config-file.h" | |
1c4a55db | 35 | #include "qemu/error-report.h" |
0d09e41a PB |
36 | #include "hw/i386/pc.h" |
37 | #include "hw/i386/apic.h" | |
e0723c45 PB |
38 | #include "hw/i386/apic_internal.h" |
39 | #include "hw/i386/apic-msidef.h" | |
8b5ed7df | 40 | #include "hw/i386/intel_iommu.h" |
e1d4fb2d | 41 | #include "hw/i386/x86-iommu.h" |
50efe82c | 42 | |
022c62cb | 43 | #include "exec/ioport.h" |
a2cb15b0 | 44 | #include "hw/pci/pci.h" |
15eafc2e | 45 | #include "hw/pci/msi.h" |
fd563564 | 46 | #include "hw/pci/msix.h" |
795c40b8 | 47 | #include "migration/blocker.h" |
4c663752 | 48 | #include "exec/memattrs.h" |
8b5ed7df | 49 | #include "trace.h" |
05330448 AL |
50 | |
51 | //#define DEBUG_KVM | |
52 | ||
53 | #ifdef DEBUG_KVM | |
8c0d577e | 54 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
55 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) |
56 | #else | |
8c0d577e | 57 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
58 | do { } while (0) |
59 | #endif | |
60 | ||
1a03675d GC |
61 | #define MSR_KVM_WALL_CLOCK 0x11 |
62 | #define MSR_KVM_SYSTEM_TIME 0x12 | |
63 | ||
d1138251 EH |
64 | /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus |
65 | * 255 kvm_msr_entry structs */ | |
66 | #define MSR_BUF_SIZE 4096 | |
d71b62a1 | 67 | |
94a8d39a JK |
68 | const KVMCapabilityInfo kvm_arch_required_capabilities[] = { |
69 | KVM_CAP_INFO(SET_TSS_ADDR), | |
70 | KVM_CAP_INFO(EXT_CPUID), | |
71 | KVM_CAP_INFO(MP_STATE), | |
72 | KVM_CAP_LAST_INFO | |
73 | }; | |
25d2e361 | 74 | |
c3a3a7d3 JK |
75 | static bool has_msr_star; |
76 | static bool has_msr_hsave_pa; | |
c9b8f6b6 | 77 | static bool has_msr_tsc_aux; |
f28558d3 | 78 | static bool has_msr_tsc_adjust; |
aa82ba54 | 79 | static bool has_msr_tsc_deadline; |
df67696e | 80 | static bool has_msr_feature_control; |
21e87c46 | 81 | static bool has_msr_misc_enable; |
fc12d72e | 82 | static bool has_msr_smbase; |
79e9ebeb | 83 | static bool has_msr_bndcfgs; |
25d2e361 | 84 | static int lm_capable_kernel; |
7bc3d711 | 85 | static bool has_msr_hv_hypercall; |
f2a53c9e | 86 | static bool has_msr_hv_crash; |
744b8a94 | 87 | static bool has_msr_hv_reset; |
8c145d7c | 88 | static bool has_msr_hv_vpindex; |
46eb8f98 | 89 | static bool has_msr_hv_runtime; |
866eea9a | 90 | static bool has_msr_hv_synic; |
ff99aa64 | 91 | static bool has_msr_hv_stimer; |
d72bc7f6 | 92 | static bool has_msr_hv_frequencies; |
18cd2c17 | 93 | static bool has_msr_xss; |
b827df58 | 94 | |
0d894367 PB |
95 | static bool has_msr_architectural_pmu; |
96 | static uint32_t num_architectural_pmu_counters; | |
97 | ||
28143b40 TH |
98 | static int has_xsave; |
99 | static int has_xcrs; | |
100 | static int has_pit_state2; | |
101 | ||
87f8b626 AR |
102 | static bool has_msr_mcg_ext_ctl; |
103 | ||
494e95e9 CP |
104 | static struct kvm_cpuid2 *cpuid_cache; |
105 | ||
28143b40 TH |
106 | int kvm_has_pit_state2(void) |
107 | { | |
108 | return has_pit_state2; | |
109 | } | |
110 | ||
355023f2 PB |
111 | bool kvm_has_smm(void) |
112 | { | |
113 | return kvm_check_extension(kvm_state, KVM_CAP_X86_SMM); | |
114 | } | |
115 | ||
6053a86f MT |
116 | bool kvm_has_adjust_clock_stable(void) |
117 | { | |
118 | int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK); | |
119 | ||
120 | return (ret == KVM_CLOCK_TSC_STABLE); | |
121 | } | |
122 | ||
1d31f66b PM |
123 | bool kvm_allows_irq0_override(void) |
124 | { | |
125 | return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing(); | |
126 | } | |
127 | ||
fb506e70 RK |
128 | static bool kvm_x2apic_api_set_flags(uint64_t flags) |
129 | { | |
130 | KVMState *s = KVM_STATE(current_machine->accelerator); | |
131 | ||
132 | return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags); | |
133 | } | |
134 | ||
e391c009 | 135 | #define MEMORIZE(fn, _result) \ |
2a138ec3 | 136 | ({ \ |
2a138ec3 RK |
137 | static bool _memorized; \ |
138 | \ | |
139 | if (_memorized) { \ | |
140 | return _result; \ | |
141 | } \ | |
142 | _memorized = true; \ | |
143 | _result = fn; \ | |
144 | }) | |
145 | ||
e391c009 IM |
146 | static bool has_x2apic_api; |
147 | ||
148 | bool kvm_has_x2apic_api(void) | |
149 | { | |
150 | return has_x2apic_api; | |
151 | } | |
152 | ||
fb506e70 RK |
153 | bool kvm_enable_x2apic(void) |
154 | { | |
2a138ec3 RK |
155 | return MEMORIZE( |
156 | kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS | | |
e391c009 IM |
157 | KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK), |
158 | has_x2apic_api); | |
fb506e70 RK |
159 | } |
160 | ||
0fd7e098 LL |
161 | static int kvm_get_tsc(CPUState *cs) |
162 | { | |
163 | X86CPU *cpu = X86_CPU(cs); | |
164 | CPUX86State *env = &cpu->env; | |
165 | struct { | |
166 | struct kvm_msrs info; | |
167 | struct kvm_msr_entry entries[1]; | |
168 | } msr_data; | |
169 | int ret; | |
170 | ||
171 | if (env->tsc_valid) { | |
172 | return 0; | |
173 | } | |
174 | ||
175 | msr_data.info.nmsrs = 1; | |
176 | msr_data.entries[0].index = MSR_IA32_TSC; | |
177 | env->tsc_valid = !runstate_is_running(); | |
178 | ||
179 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data); | |
180 | if (ret < 0) { | |
181 | return ret; | |
182 | } | |
183 | ||
48e1a45c | 184 | assert(ret == 1); |
0fd7e098 LL |
185 | env->tsc = msr_data.entries[0].data; |
186 | return 0; | |
187 | } | |
188 | ||
14e6fe12 | 189 | static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg) |
0fd7e098 | 190 | { |
0fd7e098 LL |
191 | kvm_get_tsc(cpu); |
192 | } | |
193 | ||
194 | void kvm_synchronize_all_tsc(void) | |
195 | { | |
196 | CPUState *cpu; | |
197 | ||
198 | if (kvm_enabled()) { | |
199 | CPU_FOREACH(cpu) { | |
14e6fe12 | 200 | run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL); |
0fd7e098 LL |
201 | } |
202 | } | |
203 | } | |
204 | ||
b827df58 AK |
205 | static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) |
206 | { | |
207 | struct kvm_cpuid2 *cpuid; | |
208 | int r, size; | |
209 | ||
210 | size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); | |
e42a92ae | 211 | cpuid = g_malloc0(size); |
b827df58 AK |
212 | cpuid->nent = max; |
213 | r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid); | |
76ae317f MM |
214 | if (r == 0 && cpuid->nent >= max) { |
215 | r = -E2BIG; | |
216 | } | |
b827df58 AK |
217 | if (r < 0) { |
218 | if (r == -E2BIG) { | |
7267c094 | 219 | g_free(cpuid); |
b827df58 AK |
220 | return NULL; |
221 | } else { | |
222 | fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n", | |
223 | strerror(-r)); | |
224 | exit(1); | |
225 | } | |
226 | } | |
227 | return cpuid; | |
228 | } | |
229 | ||
dd87f8a6 EH |
230 | /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough |
231 | * for all entries. | |
232 | */ | |
233 | static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s) | |
234 | { | |
235 | struct kvm_cpuid2 *cpuid; | |
236 | int max = 1; | |
494e95e9 CP |
237 | |
238 | if (cpuid_cache != NULL) { | |
239 | return cpuid_cache; | |
240 | } | |
dd87f8a6 EH |
241 | while ((cpuid = try_get_cpuid(s, max)) == NULL) { |
242 | max *= 2; | |
243 | } | |
494e95e9 | 244 | cpuid_cache = cpuid; |
dd87f8a6 EH |
245 | return cpuid; |
246 | } | |
247 | ||
a443bc34 | 248 | static const struct kvm_para_features { |
0c31b744 GC |
249 | int cap; |
250 | int feature; | |
251 | } para_features[] = { | |
252 | { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE }, | |
253 | { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY }, | |
254 | { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP }, | |
0c31b744 | 255 | { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF }, |
0c31b744 GC |
256 | }; |
257 | ||
ba9bc59e | 258 | static int get_para_features(KVMState *s) |
0c31b744 GC |
259 | { |
260 | int i, features = 0; | |
261 | ||
8e03c100 | 262 | for (i = 0; i < ARRAY_SIZE(para_features); i++) { |
ba9bc59e | 263 | if (kvm_check_extension(s, para_features[i].cap)) { |
0c31b744 GC |
264 | features |= (1 << para_features[i].feature); |
265 | } | |
266 | } | |
267 | ||
268 | return features; | |
269 | } | |
0c31b744 | 270 | |
40e80ee4 EH |
271 | static bool host_tsx_blacklisted(void) |
272 | { | |
273 | int family, model, stepping;\ | |
274 | char vendor[CPUID_VENDOR_SZ + 1]; | |
275 | ||
276 | host_vendor_fms(vendor, &family, &model, &stepping); | |
277 | ||
278 | /* Check if we are running on a Haswell host known to have broken TSX */ | |
279 | return !strcmp(vendor, CPUID_VENDOR_INTEL) && | |
280 | (family == 6) && | |
281 | ((model == 63 && stepping < 4) || | |
282 | model == 60 || model == 69 || model == 70); | |
283 | } | |
0c31b744 | 284 | |
829ae2f9 EH |
285 | /* Returns the value for a specific register on the cpuid entry |
286 | */ | |
287 | static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg) | |
288 | { | |
289 | uint32_t ret = 0; | |
290 | switch (reg) { | |
291 | case R_EAX: | |
292 | ret = entry->eax; | |
293 | break; | |
294 | case R_EBX: | |
295 | ret = entry->ebx; | |
296 | break; | |
297 | case R_ECX: | |
298 | ret = entry->ecx; | |
299 | break; | |
300 | case R_EDX: | |
301 | ret = entry->edx; | |
302 | break; | |
303 | } | |
304 | return ret; | |
305 | } | |
306 | ||
4fb73f1d EH |
307 | /* Find matching entry for function/index on kvm_cpuid2 struct |
308 | */ | |
309 | static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid, | |
310 | uint32_t function, | |
311 | uint32_t index) | |
312 | { | |
313 | int i; | |
314 | for (i = 0; i < cpuid->nent; ++i) { | |
315 | if (cpuid->entries[i].function == function && | |
316 | cpuid->entries[i].index == index) { | |
317 | return &cpuid->entries[i]; | |
318 | } | |
319 | } | |
320 | /* not found: */ | |
321 | return NULL; | |
322 | } | |
323 | ||
ba9bc59e | 324 | uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function, |
c958a8bd | 325 | uint32_t index, int reg) |
b827df58 AK |
326 | { |
327 | struct kvm_cpuid2 *cpuid; | |
b827df58 AK |
328 | uint32_t ret = 0; |
329 | uint32_t cpuid_1_edx; | |
8c723b79 | 330 | bool found = false; |
b827df58 | 331 | |
dd87f8a6 | 332 | cpuid = get_supported_cpuid(s); |
b827df58 | 333 | |
4fb73f1d EH |
334 | struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index); |
335 | if (entry) { | |
336 | found = true; | |
337 | ret = cpuid_entry_get_reg(entry, reg); | |
b827df58 AK |
338 | } |
339 | ||
7b46e5ce EH |
340 | /* Fixups for the data returned by KVM, below */ |
341 | ||
c2acb022 EH |
342 | if (function == 1 && reg == R_EDX) { |
343 | /* KVM before 2.6.30 misreports the following features */ | |
344 | ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA; | |
84bd945c EH |
345 | } else if (function == 1 && reg == R_ECX) { |
346 | /* We can set the hypervisor flag, even if KVM does not return it on | |
347 | * GET_SUPPORTED_CPUID | |
348 | */ | |
349 | ret |= CPUID_EXT_HYPERVISOR; | |
ac67ee26 EH |
350 | /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it |
351 | * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER, | |
352 | * and the irqchip is in the kernel. | |
353 | */ | |
354 | if (kvm_irqchip_in_kernel() && | |
355 | kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) { | |
356 | ret |= CPUID_EXT_TSC_DEADLINE_TIMER; | |
357 | } | |
41e5e76d EH |
358 | |
359 | /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled | |
360 | * without the in-kernel irqchip | |
361 | */ | |
362 | if (!kvm_irqchip_in_kernel()) { | |
363 | ret &= ~CPUID_EXT_X2APIC; | |
b827df58 | 364 | } |
28b8e4d0 JK |
365 | } else if (function == 6 && reg == R_EAX) { |
366 | ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */ | |
40e80ee4 EH |
367 | } else if (function == 7 && index == 0 && reg == R_EBX) { |
368 | if (host_tsx_blacklisted()) { | |
369 | ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE); | |
370 | } | |
c2acb022 EH |
371 | } else if (function == 0x80000001 && reg == R_EDX) { |
372 | /* On Intel, kvm returns cpuid according to the Intel spec, | |
373 | * so add missing bits according to the AMD spec: | |
374 | */ | |
375 | cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX); | |
376 | ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES; | |
64877477 EH |
377 | } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) { |
378 | /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't | |
379 | * be enabled without the in-kernel irqchip | |
380 | */ | |
381 | if (!kvm_irqchip_in_kernel()) { | |
382 | ret &= ~(1U << KVM_FEATURE_PV_UNHALT); | |
383 | } | |
b827df58 AK |
384 | } |
385 | ||
0c31b744 | 386 | /* fallback for older kernels */ |
8c723b79 | 387 | if ((function == KVM_CPUID_FEATURES) && !found) { |
ba9bc59e | 388 | ret = get_para_features(s); |
b9bec74b | 389 | } |
0c31b744 GC |
390 | |
391 | return ret; | |
bb0300dc | 392 | } |
bb0300dc | 393 | |
3c85e74f HY |
394 | typedef struct HWPoisonPage { |
395 | ram_addr_t ram_addr; | |
396 | QLIST_ENTRY(HWPoisonPage) list; | |
397 | } HWPoisonPage; | |
398 | ||
399 | static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = | |
400 | QLIST_HEAD_INITIALIZER(hwpoison_page_list); | |
401 | ||
402 | static void kvm_unpoison_all(void *param) | |
403 | { | |
404 | HWPoisonPage *page, *next_page; | |
405 | ||
406 | QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { | |
407 | QLIST_REMOVE(page, list); | |
408 | qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); | |
7267c094 | 409 | g_free(page); |
3c85e74f HY |
410 | } |
411 | } | |
412 | ||
3c85e74f HY |
413 | static void kvm_hwpoison_page_add(ram_addr_t ram_addr) |
414 | { | |
415 | HWPoisonPage *page; | |
416 | ||
417 | QLIST_FOREACH(page, &hwpoison_page_list, list) { | |
418 | if (page->ram_addr == ram_addr) { | |
419 | return; | |
420 | } | |
421 | } | |
ab3ad07f | 422 | page = g_new(HWPoisonPage, 1); |
3c85e74f HY |
423 | page->ram_addr = ram_addr; |
424 | QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); | |
425 | } | |
426 | ||
e7701825 MT |
427 | static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap, |
428 | int *max_banks) | |
429 | { | |
430 | int r; | |
431 | ||
14a09518 | 432 | r = kvm_check_extension(s, KVM_CAP_MCE); |
e7701825 MT |
433 | if (r > 0) { |
434 | *max_banks = r; | |
435 | return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap); | |
436 | } | |
437 | return -ENOSYS; | |
438 | } | |
439 | ||
bee615d4 | 440 | static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code) |
e7701825 | 441 | { |
87f8b626 | 442 | CPUState *cs = CPU(cpu); |
bee615d4 | 443 | CPUX86State *env = &cpu->env; |
c34d440a JK |
444 | uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN | |
445 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S; | |
446 | uint64_t mcg_status = MCG_STATUS_MCIP; | |
87f8b626 | 447 | int flags = 0; |
e7701825 | 448 | |
c34d440a JK |
449 | if (code == BUS_MCEERR_AR) { |
450 | status |= MCI_STATUS_AR | 0x134; | |
451 | mcg_status |= MCG_STATUS_EIPV; | |
452 | } else { | |
453 | status |= 0xc0; | |
454 | mcg_status |= MCG_STATUS_RIPV; | |
419fb20a | 455 | } |
87f8b626 AR |
456 | |
457 | flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0; | |
458 | /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the | |
459 | * guest kernel back into env->mcg_ext_ctl. | |
460 | */ | |
461 | cpu_synchronize_state(cs); | |
462 | if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) { | |
463 | mcg_status |= MCG_STATUS_LMCE; | |
464 | flags = 0; | |
465 | } | |
466 | ||
8c5cf3b6 | 467 | cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr, |
87f8b626 | 468 | (MCM_ADDR_PHYS << 6) | 0xc, flags); |
419fb20a | 469 | } |
419fb20a JK |
470 | |
471 | static void hardware_memory_error(void) | |
472 | { | |
473 | fprintf(stderr, "Hardware memory error!\n"); | |
474 | exit(1); | |
475 | } | |
476 | ||
2ae41db2 | 477 | void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr) |
419fb20a | 478 | { |
20d695a9 AF |
479 | X86CPU *cpu = X86_CPU(c); |
480 | CPUX86State *env = &cpu->env; | |
419fb20a | 481 | ram_addr_t ram_addr; |
a8170e5e | 482 | hwaddr paddr; |
419fb20a | 483 | |
4d39892c PB |
484 | /* If we get an action required MCE, it has been injected by KVM |
485 | * while the VM was running. An action optional MCE instead should | |
486 | * be coming from the main thread, which qemu_init_sigbus identifies | |
487 | * as the "early kill" thread. | |
488 | */ | |
a16fc07e | 489 | assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO); |
20e0ff59 | 490 | |
20e0ff59 | 491 | if ((env->mcg_cap & MCG_SER_P) && addr) { |
07bdaa41 | 492 | ram_addr = qemu_ram_addr_from_host(addr); |
20e0ff59 PB |
493 | if (ram_addr != RAM_ADDR_INVALID && |
494 | kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) { | |
495 | kvm_hwpoison_page_add(ram_addr); | |
496 | kvm_mce_inject(cpu, paddr, code); | |
2ae41db2 | 497 | return; |
419fb20a | 498 | } |
20e0ff59 PB |
499 | |
500 | fprintf(stderr, "Hardware memory error for memory used by " | |
501 | "QEMU itself instead of guest system!\n"); | |
419fb20a | 502 | } |
20e0ff59 PB |
503 | |
504 | if (code == BUS_MCEERR_AR) { | |
505 | hardware_memory_error(); | |
506 | } | |
507 | ||
508 | /* Hope we are lucky for AO MCE */ | |
419fb20a JK |
509 | } |
510 | ||
1bc22652 | 511 | static int kvm_inject_mce_oldstyle(X86CPU *cpu) |
ab443475 | 512 | { |
1bc22652 AF |
513 | CPUX86State *env = &cpu->env; |
514 | ||
ab443475 JK |
515 | if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) { |
516 | unsigned int bank, bank_num = env->mcg_cap & 0xff; | |
517 | struct kvm_x86_mce mce; | |
518 | ||
519 | env->exception_injected = -1; | |
520 | ||
521 | /* | |
522 | * There must be at least one bank in use if an MCE is pending. | |
523 | * Find it and use its values for the event injection. | |
524 | */ | |
525 | for (bank = 0; bank < bank_num; bank++) { | |
526 | if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) { | |
527 | break; | |
528 | } | |
529 | } | |
530 | assert(bank < bank_num); | |
531 | ||
532 | mce.bank = bank; | |
533 | mce.status = env->mce_banks[bank * 4 + 1]; | |
534 | mce.mcg_status = env->mcg_status; | |
535 | mce.addr = env->mce_banks[bank * 4 + 2]; | |
536 | mce.misc = env->mce_banks[bank * 4 + 3]; | |
537 | ||
1bc22652 | 538 | return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce); |
ab443475 | 539 | } |
ab443475 JK |
540 | return 0; |
541 | } | |
542 | ||
1dfb4dd9 | 543 | static void cpu_update_state(void *opaque, int running, RunState state) |
b8cc45d6 | 544 | { |
317ac620 | 545 | CPUX86State *env = opaque; |
b8cc45d6 GC |
546 | |
547 | if (running) { | |
548 | env->tsc_valid = false; | |
549 | } | |
550 | } | |
551 | ||
83b17af5 | 552 | unsigned long kvm_arch_vcpu_id(CPUState *cs) |
b164e48e | 553 | { |
83b17af5 | 554 | X86CPU *cpu = X86_CPU(cs); |
7e72a45c | 555 | return cpu->apic_id; |
b164e48e EH |
556 | } |
557 | ||
92067bf4 IM |
558 | #ifndef KVM_CPUID_SIGNATURE_NEXT |
559 | #define KVM_CPUID_SIGNATURE_NEXT 0x40000100 | |
560 | #endif | |
561 | ||
562 | static bool hyperv_hypercall_available(X86CPU *cpu) | |
563 | { | |
564 | return cpu->hyperv_vapic || | |
565 | (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY); | |
566 | } | |
567 | ||
568 | static bool hyperv_enabled(X86CPU *cpu) | |
569 | { | |
7bc3d711 PB |
570 | CPUState *cs = CPU(cpu); |
571 | return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 && | |
572 | (hyperv_hypercall_available(cpu) || | |
48a5f3bc | 573 | cpu->hyperv_time || |
f2a53c9e | 574 | cpu->hyperv_relaxed_timing || |
744b8a94 | 575 | cpu->hyperv_crash || |
8c145d7c | 576 | cpu->hyperv_reset || |
46eb8f98 | 577 | cpu->hyperv_vpindex || |
866eea9a | 578 | cpu->hyperv_runtime || |
ff99aa64 AS |
579 | cpu->hyperv_synic || |
580 | cpu->hyperv_stimer); | |
92067bf4 IM |
581 | } |
582 | ||
5031283d HZ |
583 | static int kvm_arch_set_tsc_khz(CPUState *cs) |
584 | { | |
585 | X86CPU *cpu = X86_CPU(cs); | |
586 | CPUX86State *env = &cpu->env; | |
587 | int r; | |
588 | ||
589 | if (!env->tsc_khz) { | |
590 | return 0; | |
591 | } | |
592 | ||
593 | r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL) ? | |
594 | kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) : | |
595 | -ENOTSUP; | |
596 | if (r < 0) { | |
597 | /* When KVM_SET_TSC_KHZ fails, it's an error only if the current | |
598 | * TSC frequency doesn't match the one we want. | |
599 | */ | |
600 | int cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? | |
601 | kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : | |
602 | -ENOTSUP; | |
603 | if (cur_freq <= 0 || cur_freq != env->tsc_khz) { | |
3dc6f869 AF |
604 | warn_report("TSC frequency mismatch between " |
605 | "VM (%" PRId64 " kHz) and host (%d kHz), " | |
606 | "and TSC scaling unavailable", | |
607 | env->tsc_khz, cur_freq); | |
5031283d HZ |
608 | return r; |
609 | } | |
610 | } | |
611 | ||
612 | return 0; | |
613 | } | |
614 | ||
4bb95b82 LP |
615 | static bool tsc_is_stable_and_known(CPUX86State *env) |
616 | { | |
617 | if (!env->tsc_khz) { | |
618 | return false; | |
619 | } | |
620 | return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) | |
621 | || env->user_tsc_khz; | |
622 | } | |
623 | ||
c35bd19a EY |
624 | static int hyperv_handle_properties(CPUState *cs) |
625 | { | |
626 | X86CPU *cpu = X86_CPU(cs); | |
627 | CPUX86State *env = &cpu->env; | |
628 | ||
3ddcd2ed EH |
629 | if (cpu->hyperv_time && |
630 | kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) <= 0) { | |
631 | cpu->hyperv_time = false; | |
632 | } | |
633 | ||
c35bd19a | 634 | if (cpu->hyperv_relaxed_timing) { |
5e953812 | 635 | env->features[FEAT_HYPERV_EAX] |= HV_HYPERCALL_AVAILABLE; |
c35bd19a EY |
636 | } |
637 | if (cpu->hyperv_vapic) { | |
5e953812 RK |
638 | env->features[FEAT_HYPERV_EAX] |= HV_HYPERCALL_AVAILABLE; |
639 | env->features[FEAT_HYPERV_EAX] |= HV_APIC_ACCESS_AVAILABLE; | |
c35bd19a | 640 | } |
3ddcd2ed | 641 | if (cpu->hyperv_time) { |
5e953812 RK |
642 | env->features[FEAT_HYPERV_EAX] |= HV_HYPERCALL_AVAILABLE; |
643 | env->features[FEAT_HYPERV_EAX] |= HV_TIME_REF_COUNT_AVAILABLE; | |
644 | env->features[FEAT_HYPERV_EAX] |= HV_REFERENCE_TSC_AVAILABLE; | |
d72bc7f6 LP |
645 | |
646 | if (has_msr_hv_frequencies && tsc_is_stable_and_known(env)) { | |
5e953812 RK |
647 | env->features[FEAT_HYPERV_EAX] |= HV_ACCESS_FREQUENCY_MSRS; |
648 | env->features[FEAT_HYPERV_EDX] |= HV_FREQUENCY_MSRS_AVAILABLE; | |
d72bc7f6 | 649 | } |
c35bd19a EY |
650 | } |
651 | if (cpu->hyperv_crash && has_msr_hv_crash) { | |
5e953812 | 652 | env->features[FEAT_HYPERV_EDX] |= HV_GUEST_CRASH_MSR_AVAILABLE; |
c35bd19a | 653 | } |
5e953812 | 654 | env->features[FEAT_HYPERV_EDX] |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE; |
c35bd19a | 655 | if (cpu->hyperv_reset && has_msr_hv_reset) { |
5e953812 | 656 | env->features[FEAT_HYPERV_EAX] |= HV_RESET_AVAILABLE; |
c35bd19a EY |
657 | } |
658 | if (cpu->hyperv_vpindex && has_msr_hv_vpindex) { | |
5e953812 | 659 | env->features[FEAT_HYPERV_EAX] |= HV_VP_INDEX_AVAILABLE; |
c35bd19a EY |
660 | } |
661 | if (cpu->hyperv_runtime && has_msr_hv_runtime) { | |
5e953812 | 662 | env->features[FEAT_HYPERV_EAX] |= HV_VP_RUNTIME_AVAILABLE; |
c35bd19a EY |
663 | } |
664 | if (cpu->hyperv_synic) { | |
665 | int sint; | |
666 | ||
667 | if (!has_msr_hv_synic || | |
668 | kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_SYNIC, 0)) { | |
669 | fprintf(stderr, "Hyper-V SynIC is not supported by kernel\n"); | |
670 | return -ENOSYS; | |
671 | } | |
672 | ||
5e953812 RK |
673 | env->features[FEAT_HYPERV_EAX] |= HV_SYNIC_AVAILABLE; |
674 | env->msr_hv_synic_version = HV_SYNIC_VERSION; | |
c35bd19a | 675 | for (sint = 0; sint < ARRAY_SIZE(env->msr_hv_synic_sint); sint++) { |
5e953812 | 676 | env->msr_hv_synic_sint[sint] = HV_SINT_MASKED; |
c35bd19a EY |
677 | } |
678 | } | |
679 | if (cpu->hyperv_stimer) { | |
680 | if (!has_msr_hv_stimer) { | |
681 | fprintf(stderr, "Hyper-V timers aren't supported by kernel\n"); | |
682 | return -ENOSYS; | |
683 | } | |
5e953812 | 684 | env->features[FEAT_HYPERV_EAX] |= HV_SYNTIMERS_AVAILABLE; |
c35bd19a EY |
685 | } |
686 | return 0; | |
687 | } | |
688 | ||
68bfd0ad MT |
689 | static Error *invtsc_mig_blocker; |
690 | ||
f8bb0565 | 691 | #define KVM_MAX_CPUID_ENTRIES 100 |
0893d460 | 692 | |
20d695a9 | 693 | int kvm_arch_init_vcpu(CPUState *cs) |
05330448 AL |
694 | { |
695 | struct { | |
486bd5a2 | 696 | struct kvm_cpuid2 cpuid; |
f8bb0565 | 697 | struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES]; |
541dc0d4 | 698 | } QEMU_PACKED cpuid_data; |
20d695a9 AF |
699 | X86CPU *cpu = X86_CPU(cs); |
700 | CPUX86State *env = &cpu->env; | |
486bd5a2 | 701 | uint32_t limit, i, j, cpuid_i; |
a33609ca | 702 | uint32_t unused; |
bb0300dc | 703 | struct kvm_cpuid_entry2 *c; |
bb0300dc | 704 | uint32_t signature[3]; |
234cc647 | 705 | int kvm_base = KVM_CPUID_SIGNATURE; |
e7429073 | 706 | int r; |
fe44dc91 | 707 | Error *local_err = NULL; |
05330448 | 708 | |
ef4cbe14 SW |
709 | memset(&cpuid_data, 0, sizeof(cpuid_data)); |
710 | ||
05330448 AL |
711 | cpuid_i = 0; |
712 | ||
ddb98b5a LP |
713 | r = kvm_arch_set_tsc_khz(cs); |
714 | if (r < 0) { | |
715 | goto fail; | |
716 | } | |
717 | ||
718 | /* vcpu's TSC frequency is either specified by user, or following | |
719 | * the value used by KVM if the former is not present. In the | |
720 | * latter case, we query it from KVM and record in env->tsc_khz, | |
721 | * so that vcpu's TSC frequency can be migrated later via this field. | |
722 | */ | |
723 | if (!env->tsc_khz) { | |
724 | r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? | |
725 | kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : | |
726 | -ENOTSUP; | |
727 | if (r > 0) { | |
728 | env->tsc_khz = r; | |
729 | } | |
730 | } | |
731 | ||
bb0300dc | 732 | /* Paravirtualization CPUIDs */ |
234cc647 PB |
733 | if (hyperv_enabled(cpu)) { |
734 | c = &cpuid_data.entries[cpuid_i++]; | |
5e953812 | 735 | c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS; |
1c4a55db AW |
736 | if (!cpu->hyperv_vendor_id) { |
737 | memcpy(signature, "Microsoft Hv", 12); | |
738 | } else { | |
739 | size_t len = strlen(cpu->hyperv_vendor_id); | |
740 | ||
741 | if (len > 12) { | |
742 | error_report("hv-vendor-id truncated to 12 characters"); | |
743 | len = 12; | |
744 | } | |
745 | memset(signature, 0, 12); | |
746 | memcpy(signature, cpu->hyperv_vendor_id, len); | |
747 | } | |
5e953812 | 748 | c->eax = HV_CPUID_MIN; |
234cc647 PB |
749 | c->ebx = signature[0]; |
750 | c->ecx = signature[1]; | |
751 | c->edx = signature[2]; | |
0c31b744 | 752 | |
234cc647 | 753 | c = &cpuid_data.entries[cpuid_i++]; |
5e953812 | 754 | c->function = HV_CPUID_INTERFACE; |
eab70139 VR |
755 | memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12); |
756 | c->eax = signature[0]; | |
234cc647 PB |
757 | c->ebx = 0; |
758 | c->ecx = 0; | |
759 | c->edx = 0; | |
eab70139 VR |
760 | |
761 | c = &cpuid_data.entries[cpuid_i++]; | |
5e953812 | 762 | c->function = HV_CPUID_VERSION; |
eab70139 VR |
763 | c->eax = 0x00001bbc; |
764 | c->ebx = 0x00060001; | |
765 | ||
766 | c = &cpuid_data.entries[cpuid_i++]; | |
5e953812 | 767 | c->function = HV_CPUID_FEATURES; |
c35bd19a EY |
768 | r = hyperv_handle_properties(cs); |
769 | if (r) { | |
770 | return r; | |
46eb8f98 | 771 | } |
c35bd19a EY |
772 | c->eax = env->features[FEAT_HYPERV_EAX]; |
773 | c->ebx = env->features[FEAT_HYPERV_EBX]; | |
774 | c->edx = env->features[FEAT_HYPERV_EDX]; | |
866eea9a | 775 | |
eab70139 | 776 | c = &cpuid_data.entries[cpuid_i++]; |
5e953812 | 777 | c->function = HV_CPUID_ENLIGHTMENT_INFO; |
92067bf4 | 778 | if (cpu->hyperv_relaxed_timing) { |
5e953812 | 779 | c->eax |= HV_RELAXED_TIMING_RECOMMENDED; |
eab70139 | 780 | } |
2d5aa872 | 781 | if (cpu->hyperv_vapic) { |
5e953812 | 782 | c->eax |= HV_APIC_ACCESS_RECOMMENDED; |
eab70139 | 783 | } |
92067bf4 | 784 | c->ebx = cpu->hyperv_spinlock_attempts; |
eab70139 VR |
785 | |
786 | c = &cpuid_data.entries[cpuid_i++]; | |
5e953812 | 787 | c->function = HV_CPUID_IMPLEMENT_LIMITS; |
6c69dfb6 GA |
788 | |
789 | c->eax = cpu->hv_max_vps; | |
eab70139 VR |
790 | c->ebx = 0x40; |
791 | ||
234cc647 | 792 | kvm_base = KVM_CPUID_SIGNATURE_NEXT; |
7bc3d711 | 793 | has_msr_hv_hypercall = true; |
eab70139 VR |
794 | } |
795 | ||
f522d2ac AW |
796 | if (cpu->expose_kvm) { |
797 | memcpy(signature, "KVMKVMKVM\0\0\0", 12); | |
798 | c = &cpuid_data.entries[cpuid_i++]; | |
799 | c->function = KVM_CPUID_SIGNATURE | kvm_base; | |
79b6f2f6 | 800 | c->eax = KVM_CPUID_FEATURES | kvm_base; |
f522d2ac AW |
801 | c->ebx = signature[0]; |
802 | c->ecx = signature[1]; | |
803 | c->edx = signature[2]; | |
234cc647 | 804 | |
f522d2ac AW |
805 | c = &cpuid_data.entries[cpuid_i++]; |
806 | c->function = KVM_CPUID_FEATURES | kvm_base; | |
807 | c->eax = env->features[FEAT_KVM]; | |
f522d2ac | 808 | } |
917367aa | 809 | |
a33609ca | 810 | cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); |
05330448 AL |
811 | |
812 | for (i = 0; i <= limit; i++) { | |
f8bb0565 IM |
813 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
814 | fprintf(stderr, "unsupported level value: 0x%x\n", limit); | |
815 | abort(); | |
816 | } | |
bb0300dc | 817 | c = &cpuid_data.entries[cpuid_i++]; |
486bd5a2 AL |
818 | |
819 | switch (i) { | |
a36b1029 AL |
820 | case 2: { |
821 | /* Keep reading function 2 till all the input is received */ | |
822 | int times; | |
823 | ||
a36b1029 | 824 | c->function = i; |
a33609ca AL |
825 | c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC | |
826 | KVM_CPUID_FLAG_STATE_READ_NEXT; | |
827 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
828 | times = c->eax & 0xff; | |
a36b1029 AL |
829 | |
830 | for (j = 1; j < times; ++j) { | |
f8bb0565 IM |
831 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
832 | fprintf(stderr, "cpuid_data is full, no space for " | |
833 | "cpuid(eax:2):eax & 0xf = 0x%x\n", times); | |
834 | abort(); | |
835 | } | |
a33609ca | 836 | c = &cpuid_data.entries[cpuid_i++]; |
a36b1029 | 837 | c->function = i; |
a33609ca AL |
838 | c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC; |
839 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
a36b1029 AL |
840 | } |
841 | break; | |
842 | } | |
486bd5a2 AL |
843 | case 4: |
844 | case 0xb: | |
845 | case 0xd: | |
846 | for (j = 0; ; j++) { | |
31e8c696 AP |
847 | if (i == 0xd && j == 64) { |
848 | break; | |
849 | } | |
486bd5a2 AL |
850 | c->function = i; |
851 | c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | |
852 | c->index = j; | |
a33609ca | 853 | cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); |
486bd5a2 | 854 | |
b9bec74b | 855 | if (i == 4 && c->eax == 0) { |
486bd5a2 | 856 | break; |
b9bec74b JK |
857 | } |
858 | if (i == 0xb && !(c->ecx & 0xff00)) { | |
486bd5a2 | 859 | break; |
b9bec74b JK |
860 | } |
861 | if (i == 0xd && c->eax == 0) { | |
31e8c696 | 862 | continue; |
b9bec74b | 863 | } |
f8bb0565 IM |
864 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
865 | fprintf(stderr, "cpuid_data is full, no space for " | |
866 | "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); | |
867 | abort(); | |
868 | } | |
a33609ca | 869 | c = &cpuid_data.entries[cpuid_i++]; |
486bd5a2 AL |
870 | } |
871 | break; | |
872 | default: | |
486bd5a2 | 873 | c->function = i; |
a33609ca AL |
874 | c->flags = 0; |
875 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
486bd5a2 AL |
876 | break; |
877 | } | |
05330448 | 878 | } |
0d894367 PB |
879 | |
880 | if (limit >= 0x0a) { | |
881 | uint32_t ver; | |
882 | ||
883 | cpu_x86_cpuid(env, 0x0a, 0, &ver, &unused, &unused, &unused); | |
884 | if ((ver & 0xff) > 0) { | |
885 | has_msr_architectural_pmu = true; | |
886 | num_architectural_pmu_counters = (ver & 0xff00) >> 8; | |
887 | ||
888 | /* Shouldn't be more than 32, since that's the number of bits | |
889 | * available in EBX to tell us _which_ counters are available. | |
890 | * Play it safe. | |
891 | */ | |
892 | if (num_architectural_pmu_counters > MAX_GP_COUNTERS) { | |
893 | num_architectural_pmu_counters = MAX_GP_COUNTERS; | |
894 | } | |
895 | } | |
896 | } | |
897 | ||
a33609ca | 898 | cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); |
05330448 AL |
899 | |
900 | for (i = 0x80000000; i <= limit; i++) { | |
f8bb0565 IM |
901 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
902 | fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit); | |
903 | abort(); | |
904 | } | |
bb0300dc | 905 | c = &cpuid_data.entries[cpuid_i++]; |
05330448 | 906 | |
05330448 | 907 | c->function = i; |
a33609ca AL |
908 | c->flags = 0; |
909 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
05330448 AL |
910 | } |
911 | ||
b3baa152 BW |
912 | /* Call Centaur's CPUID instructions they are supported. */ |
913 | if (env->cpuid_xlevel2 > 0) { | |
b3baa152 BW |
914 | cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused); |
915 | ||
916 | for (i = 0xC0000000; i <= limit; i++) { | |
f8bb0565 IM |
917 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
918 | fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit); | |
919 | abort(); | |
920 | } | |
b3baa152 BW |
921 | c = &cpuid_data.entries[cpuid_i++]; |
922 | ||
923 | c->function = i; | |
924 | c->flags = 0; | |
925 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
926 | } | |
927 | } | |
928 | ||
05330448 AL |
929 | cpuid_data.cpuid.nent = cpuid_i; |
930 | ||
e7701825 | 931 | if (((env->cpuid_version >> 8)&0xF) >= 6 |
0514ef2f | 932 | && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) == |
fc7a504c | 933 | (CPUID_MCE | CPUID_MCA) |
a60f24b5 | 934 | && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) { |
5120901a | 935 | uint64_t mcg_cap, unsupported_caps; |
e7701825 | 936 | int banks; |
32a42024 | 937 | int ret; |
e7701825 | 938 | |
a60f24b5 | 939 | ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks); |
75d49497 JK |
940 | if (ret < 0) { |
941 | fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret)); | |
942 | return ret; | |
e7701825 | 943 | } |
75d49497 | 944 | |
2590f15b | 945 | if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) { |
49b69cbf | 946 | error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)", |
2590f15b | 947 | (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks); |
49b69cbf | 948 | return -ENOTSUP; |
75d49497 | 949 | } |
49b69cbf | 950 | |
5120901a EH |
951 | unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK); |
952 | if (unsupported_caps) { | |
87f8b626 AR |
953 | if (unsupported_caps & MCG_LMCE_P) { |
954 | error_report("kvm: LMCE not supported"); | |
955 | return -ENOTSUP; | |
956 | } | |
3dc6f869 AF |
957 | warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64, |
958 | unsupported_caps); | |
5120901a EH |
959 | } |
960 | ||
2590f15b EH |
961 | env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK; |
962 | ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap); | |
75d49497 JK |
963 | if (ret < 0) { |
964 | fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret)); | |
965 | return ret; | |
966 | } | |
e7701825 | 967 | } |
e7701825 | 968 | |
b8cc45d6 GC |
969 | qemu_add_vm_change_state_handler(cpu_update_state, env); |
970 | ||
df67696e LJ |
971 | c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0); |
972 | if (c) { | |
973 | has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) || | |
974 | !!(c->ecx & CPUID_EXT_SMX); | |
975 | } | |
976 | ||
87f8b626 AR |
977 | if (env->mcg_cap & MCG_LMCE_P) { |
978 | has_msr_mcg_ext_ctl = has_msr_feature_control = true; | |
979 | } | |
980 | ||
d99569d9 EH |
981 | if (!env->user_tsc_khz) { |
982 | if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) && | |
983 | invtsc_mig_blocker == NULL) { | |
984 | /* for migration */ | |
985 | error_setg(&invtsc_mig_blocker, | |
986 | "State blocked by non-migratable CPU device" | |
987 | " (invtsc flag)"); | |
fe44dc91 AA |
988 | r = migrate_add_blocker(invtsc_mig_blocker, &local_err); |
989 | if (local_err) { | |
990 | error_report_err(local_err); | |
991 | error_free(invtsc_mig_blocker); | |
992 | goto fail; | |
993 | } | |
d99569d9 EH |
994 | /* for savevm */ |
995 | vmstate_x86_cpu.unmigratable = 1; | |
996 | } | |
68bfd0ad MT |
997 | } |
998 | ||
9954a158 PDJ |
999 | if (cpu->vmware_cpuid_freq |
1000 | /* Guests depend on 0x40000000 to detect this feature, so only expose | |
1001 | * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */ | |
1002 | && cpu->expose_kvm | |
1003 | && kvm_base == KVM_CPUID_SIGNATURE | |
1004 | /* TSC clock must be stable and known for this feature. */ | |
4bb95b82 | 1005 | && tsc_is_stable_and_known(env)) { |
9954a158 PDJ |
1006 | |
1007 | c = &cpuid_data.entries[cpuid_i++]; | |
1008 | c->function = KVM_CPUID_SIGNATURE | 0x10; | |
1009 | c->eax = env->tsc_khz; | |
1010 | /* LAPIC resolution of 1ns (freq: 1GHz) is hardcoded in KVM's | |
1011 | * APIC_BUS_CYCLE_NS */ | |
1012 | c->ebx = 1000000; | |
1013 | c->ecx = c->edx = 0; | |
1014 | ||
1015 | c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0); | |
1016 | c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10); | |
1017 | } | |
1018 | ||
1019 | cpuid_data.cpuid.nent = cpuid_i; | |
1020 | ||
1021 | cpuid_data.cpuid.padding = 0; | |
1022 | r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data); | |
1023 | if (r) { | |
1024 | goto fail; | |
1025 | } | |
1026 | ||
28143b40 | 1027 | if (has_xsave) { |
fabacc0f JK |
1028 | env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave)); |
1029 | } | |
d71b62a1 | 1030 | cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE); |
fabacc0f | 1031 | |
273c515c PB |
1032 | if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) { |
1033 | has_msr_tsc_aux = false; | |
1034 | } | |
d1ae67f6 | 1035 | |
e7429073 | 1036 | return 0; |
fe44dc91 AA |
1037 | |
1038 | fail: | |
1039 | migrate_del_blocker(invtsc_mig_blocker); | |
1040 | return r; | |
05330448 AL |
1041 | } |
1042 | ||
50a2c6e5 | 1043 | void kvm_arch_reset_vcpu(X86CPU *cpu) |
caa5af0f | 1044 | { |
20d695a9 | 1045 | CPUX86State *env = &cpu->env; |
dd673288 | 1046 | |
e73223a5 | 1047 | env->exception_injected = -1; |
0e607a80 | 1048 | env->interrupt_injected = -1; |
1a5e9d2f | 1049 | env->xcr0 = 1; |
ddced198 | 1050 | if (kvm_irqchip_in_kernel()) { |
dd673288 | 1051 | env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE : |
ddced198 MT |
1052 | KVM_MP_STATE_UNINITIALIZED; |
1053 | } else { | |
1054 | env->mp_state = KVM_MP_STATE_RUNNABLE; | |
1055 | } | |
caa5af0f JK |
1056 | } |
1057 | ||
e0723c45 PB |
1058 | void kvm_arch_do_init_vcpu(X86CPU *cpu) |
1059 | { | |
1060 | CPUX86State *env = &cpu->env; | |
1061 | ||
1062 | /* APs get directly into wait-for-SIPI state. */ | |
1063 | if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) { | |
1064 | env->mp_state = KVM_MP_STATE_INIT_RECEIVED; | |
1065 | } | |
1066 | } | |
1067 | ||
c3a3a7d3 | 1068 | static int kvm_get_supported_msrs(KVMState *s) |
05330448 | 1069 | { |
75b10c43 | 1070 | static int kvm_supported_msrs; |
c3a3a7d3 | 1071 | int ret = 0; |
05330448 AL |
1072 | |
1073 | /* first time */ | |
75b10c43 | 1074 | if (kvm_supported_msrs == 0) { |
05330448 AL |
1075 | struct kvm_msr_list msr_list, *kvm_msr_list; |
1076 | ||
75b10c43 | 1077 | kvm_supported_msrs = -1; |
05330448 AL |
1078 | |
1079 | /* Obtain MSR list from KVM. These are the MSRs that we must | |
1080 | * save/restore */ | |
4c9f7372 | 1081 | msr_list.nmsrs = 0; |
c3a3a7d3 | 1082 | ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list); |
6fb6d245 | 1083 | if (ret < 0 && ret != -E2BIG) { |
c3a3a7d3 | 1084 | return ret; |
6fb6d245 | 1085 | } |
d9db889f JK |
1086 | /* Old kernel modules had a bug and could write beyond the provided |
1087 | memory. Allocate at least a safe amount of 1K. */ | |
7267c094 | 1088 | kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) + |
d9db889f JK |
1089 | msr_list.nmsrs * |
1090 | sizeof(msr_list.indices[0]))); | |
05330448 | 1091 | |
55308450 | 1092 | kvm_msr_list->nmsrs = msr_list.nmsrs; |
c3a3a7d3 | 1093 | ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list); |
05330448 AL |
1094 | if (ret >= 0) { |
1095 | int i; | |
1096 | ||
1097 | for (i = 0; i < kvm_msr_list->nmsrs; i++) { | |
1d268dec LP |
1098 | switch (kvm_msr_list->indices[i]) { |
1099 | case MSR_STAR: | |
c3a3a7d3 | 1100 | has_msr_star = true; |
1d268dec LP |
1101 | break; |
1102 | case MSR_VM_HSAVE_PA: | |
c3a3a7d3 | 1103 | has_msr_hsave_pa = true; |
1d268dec LP |
1104 | break; |
1105 | case MSR_TSC_AUX: | |
c9b8f6b6 | 1106 | has_msr_tsc_aux = true; |
1d268dec LP |
1107 | break; |
1108 | case MSR_TSC_ADJUST: | |
f28558d3 | 1109 | has_msr_tsc_adjust = true; |
1d268dec LP |
1110 | break; |
1111 | case MSR_IA32_TSCDEADLINE: | |
aa82ba54 | 1112 | has_msr_tsc_deadline = true; |
1d268dec LP |
1113 | break; |
1114 | case MSR_IA32_SMBASE: | |
fc12d72e | 1115 | has_msr_smbase = true; |
1d268dec LP |
1116 | break; |
1117 | case MSR_IA32_MISC_ENABLE: | |
21e87c46 | 1118 | has_msr_misc_enable = true; |
1d268dec LP |
1119 | break; |
1120 | case MSR_IA32_BNDCFGS: | |
79e9ebeb | 1121 | has_msr_bndcfgs = true; |
1d268dec LP |
1122 | break; |
1123 | case MSR_IA32_XSS: | |
18cd2c17 | 1124 | has_msr_xss = true; |
1d268dec LP |
1125 | break;; |
1126 | case HV_X64_MSR_CRASH_CTL: | |
f2a53c9e | 1127 | has_msr_hv_crash = true; |
1d268dec LP |
1128 | break; |
1129 | case HV_X64_MSR_RESET: | |
744b8a94 | 1130 | has_msr_hv_reset = true; |
1d268dec LP |
1131 | break; |
1132 | case HV_X64_MSR_VP_INDEX: | |
8c145d7c | 1133 | has_msr_hv_vpindex = true; |
1d268dec LP |
1134 | break; |
1135 | case HV_X64_MSR_VP_RUNTIME: | |
46eb8f98 | 1136 | has_msr_hv_runtime = true; |
1d268dec LP |
1137 | break; |
1138 | case HV_X64_MSR_SCONTROL: | |
866eea9a | 1139 | has_msr_hv_synic = true; |
1d268dec LP |
1140 | break; |
1141 | case HV_X64_MSR_STIMER0_CONFIG: | |
ff99aa64 | 1142 | has_msr_hv_stimer = true; |
1d268dec | 1143 | break; |
d72bc7f6 LP |
1144 | case HV_X64_MSR_TSC_FREQUENCY: |
1145 | has_msr_hv_frequencies = true; | |
1146 | break; | |
ff99aa64 | 1147 | } |
05330448 AL |
1148 | } |
1149 | } | |
1150 | ||
7267c094 | 1151 | g_free(kvm_msr_list); |
05330448 AL |
1152 | } |
1153 | ||
c3a3a7d3 | 1154 | return ret; |
05330448 AL |
1155 | } |
1156 | ||
6410848b PB |
1157 | static Notifier smram_machine_done; |
1158 | static KVMMemoryListener smram_listener; | |
1159 | static AddressSpace smram_address_space; | |
1160 | static MemoryRegion smram_as_root; | |
1161 | static MemoryRegion smram_as_mem; | |
1162 | ||
1163 | static void register_smram_listener(Notifier *n, void *unused) | |
1164 | { | |
1165 | MemoryRegion *smram = | |
1166 | (MemoryRegion *) object_resolve_path("/machine/smram", NULL); | |
1167 | ||
1168 | /* Outer container... */ | |
1169 | memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull); | |
1170 | memory_region_set_enabled(&smram_as_root, true); | |
1171 | ||
1172 | /* ... with two regions inside: normal system memory with low | |
1173 | * priority, and... | |
1174 | */ | |
1175 | memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram", | |
1176 | get_system_memory(), 0, ~0ull); | |
1177 | memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0); | |
1178 | memory_region_set_enabled(&smram_as_mem, true); | |
1179 | ||
1180 | if (smram) { | |
1181 | /* ... SMRAM with higher priority */ | |
1182 | memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10); | |
1183 | memory_region_set_enabled(smram, true); | |
1184 | } | |
1185 | ||
1186 | address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM"); | |
1187 | kvm_memory_listener_register(kvm_state, &smram_listener, | |
1188 | &smram_address_space, 1); | |
1189 | } | |
1190 | ||
b16565b3 | 1191 | int kvm_arch_init(MachineState *ms, KVMState *s) |
20420430 | 1192 | { |
11076198 | 1193 | uint64_t identity_base = 0xfffbc000; |
39d6960a | 1194 | uint64_t shadow_mem; |
20420430 | 1195 | int ret; |
25d2e361 | 1196 | struct utsname utsname; |
20420430 | 1197 | |
28143b40 TH |
1198 | #ifdef KVM_CAP_XSAVE |
1199 | has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE); | |
1200 | #endif | |
1201 | ||
1202 | #ifdef KVM_CAP_XCRS | |
1203 | has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS); | |
1204 | #endif | |
1205 | ||
1206 | #ifdef KVM_CAP_PIT_STATE2 | |
1207 | has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2); | |
1208 | #endif | |
1209 | ||
c3a3a7d3 | 1210 | ret = kvm_get_supported_msrs(s); |
20420430 | 1211 | if (ret < 0) { |
20420430 SY |
1212 | return ret; |
1213 | } | |
25d2e361 MT |
1214 | |
1215 | uname(&utsname); | |
1216 | lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0; | |
1217 | ||
4c5b10b7 | 1218 | /* |
11076198 JK |
1219 | * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly. |
1220 | * In order to use vm86 mode, an EPT identity map and a TSS are needed. | |
1221 | * Since these must be part of guest physical memory, we need to allocate | |
1222 | * them, both by setting their start addresses in the kernel and by | |
1223 | * creating a corresponding e820 entry. We need 4 pages before the BIOS. | |
1224 | * | |
1225 | * Older KVM versions may not support setting the identity map base. In | |
1226 | * that case we need to stick with the default, i.e. a 256K maximum BIOS | |
1227 | * size. | |
4c5b10b7 | 1228 | */ |
11076198 JK |
1229 | if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) { |
1230 | /* Allows up to 16M BIOSes. */ | |
1231 | identity_base = 0xfeffc000; | |
1232 | ||
1233 | ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base); | |
1234 | if (ret < 0) { | |
1235 | return ret; | |
1236 | } | |
4c5b10b7 | 1237 | } |
e56ff191 | 1238 | |
11076198 JK |
1239 | /* Set TSS base one page after EPT identity map. */ |
1240 | ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000); | |
20420430 SY |
1241 | if (ret < 0) { |
1242 | return ret; | |
1243 | } | |
1244 | ||
11076198 JK |
1245 | /* Tell fw_cfg to notify the BIOS to reserve the range. */ |
1246 | ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED); | |
20420430 | 1247 | if (ret < 0) { |
11076198 | 1248 | fprintf(stderr, "e820_add_entry() table is full\n"); |
20420430 SY |
1249 | return ret; |
1250 | } | |
3c85e74f | 1251 | qemu_register_reset(kvm_unpoison_all, NULL); |
20420430 | 1252 | |
4689b77b | 1253 | shadow_mem = machine_kvm_shadow_mem(ms); |
36ad0e94 MA |
1254 | if (shadow_mem != -1) { |
1255 | shadow_mem /= 4096; | |
1256 | ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem); | |
1257 | if (ret < 0) { | |
1258 | return ret; | |
39d6960a JK |
1259 | } |
1260 | } | |
6410848b | 1261 | |
d870cfde GA |
1262 | if (kvm_check_extension(s, KVM_CAP_X86_SMM) && |
1263 | object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE) && | |
1264 | pc_machine_is_smm_enabled(PC_MACHINE(ms))) { | |
6410848b PB |
1265 | smram_machine_done.notify = register_smram_listener; |
1266 | qemu_add_machine_init_done_notifier(&smram_machine_done); | |
1267 | } | |
11076198 | 1268 | return 0; |
05330448 | 1269 | } |
b9bec74b | 1270 | |
05330448 AL |
1271 | static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) |
1272 | { | |
1273 | lhs->selector = rhs->selector; | |
1274 | lhs->base = rhs->base; | |
1275 | lhs->limit = rhs->limit; | |
1276 | lhs->type = 3; | |
1277 | lhs->present = 1; | |
1278 | lhs->dpl = 3; | |
1279 | lhs->db = 0; | |
1280 | lhs->s = 1; | |
1281 | lhs->l = 0; | |
1282 | lhs->g = 0; | |
1283 | lhs->avl = 0; | |
1284 | lhs->unusable = 0; | |
1285 | } | |
1286 | ||
1287 | static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) | |
1288 | { | |
1289 | unsigned flags = rhs->flags; | |
1290 | lhs->selector = rhs->selector; | |
1291 | lhs->base = rhs->base; | |
1292 | lhs->limit = rhs->limit; | |
1293 | lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; | |
1294 | lhs->present = (flags & DESC_P_MASK) != 0; | |
acaa7550 | 1295 | lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3; |
05330448 AL |
1296 | lhs->db = (flags >> DESC_B_SHIFT) & 1; |
1297 | lhs->s = (flags & DESC_S_MASK) != 0; | |
1298 | lhs->l = (flags >> DESC_L_SHIFT) & 1; | |
1299 | lhs->g = (flags & DESC_G_MASK) != 0; | |
1300 | lhs->avl = (flags & DESC_AVL_MASK) != 0; | |
4cae9c97 | 1301 | lhs->unusable = !lhs->present; |
7e680753 | 1302 | lhs->padding = 0; |
05330448 AL |
1303 | } |
1304 | ||
1305 | static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) | |
1306 | { | |
1307 | lhs->selector = rhs->selector; | |
1308 | lhs->base = rhs->base; | |
1309 | lhs->limit = rhs->limit; | |
d45fc087 RP |
1310 | lhs->flags = (rhs->type << DESC_TYPE_SHIFT) | |
1311 | ((rhs->present && !rhs->unusable) * DESC_P_MASK) | | |
1312 | (rhs->dpl << DESC_DPL_SHIFT) | | |
1313 | (rhs->db << DESC_B_SHIFT) | | |
1314 | (rhs->s * DESC_S_MASK) | | |
1315 | (rhs->l << DESC_L_SHIFT) | | |
1316 | (rhs->g * DESC_G_MASK) | | |
1317 | (rhs->avl * DESC_AVL_MASK); | |
05330448 AL |
1318 | } |
1319 | ||
1320 | static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) | |
1321 | { | |
b9bec74b | 1322 | if (set) { |
05330448 | 1323 | *kvm_reg = *qemu_reg; |
b9bec74b | 1324 | } else { |
05330448 | 1325 | *qemu_reg = *kvm_reg; |
b9bec74b | 1326 | } |
05330448 AL |
1327 | } |
1328 | ||
1bc22652 | 1329 | static int kvm_getput_regs(X86CPU *cpu, int set) |
05330448 | 1330 | { |
1bc22652 | 1331 | CPUX86State *env = &cpu->env; |
05330448 AL |
1332 | struct kvm_regs regs; |
1333 | int ret = 0; | |
1334 | ||
1335 | if (!set) { | |
1bc22652 | 1336 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, ®s); |
b9bec74b | 1337 | if (ret < 0) { |
05330448 | 1338 | return ret; |
b9bec74b | 1339 | } |
05330448 AL |
1340 | } |
1341 | ||
1342 | kvm_getput_reg(®s.rax, &env->regs[R_EAX], set); | |
1343 | kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set); | |
1344 | kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set); | |
1345 | kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set); | |
1346 | kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set); | |
1347 | kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set); | |
1348 | kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set); | |
1349 | kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set); | |
1350 | #ifdef TARGET_X86_64 | |
1351 | kvm_getput_reg(®s.r8, &env->regs[8], set); | |
1352 | kvm_getput_reg(®s.r9, &env->regs[9], set); | |
1353 | kvm_getput_reg(®s.r10, &env->regs[10], set); | |
1354 | kvm_getput_reg(®s.r11, &env->regs[11], set); | |
1355 | kvm_getput_reg(®s.r12, &env->regs[12], set); | |
1356 | kvm_getput_reg(®s.r13, &env->regs[13], set); | |
1357 | kvm_getput_reg(®s.r14, &env->regs[14], set); | |
1358 | kvm_getput_reg(®s.r15, &env->regs[15], set); | |
1359 | #endif | |
1360 | ||
1361 | kvm_getput_reg(®s.rflags, &env->eflags, set); | |
1362 | kvm_getput_reg(®s.rip, &env->eip, set); | |
1363 | ||
b9bec74b | 1364 | if (set) { |
1bc22652 | 1365 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, ®s); |
b9bec74b | 1366 | } |
05330448 AL |
1367 | |
1368 | return ret; | |
1369 | } | |
1370 | ||
1bc22652 | 1371 | static int kvm_put_fpu(X86CPU *cpu) |
05330448 | 1372 | { |
1bc22652 | 1373 | CPUX86State *env = &cpu->env; |
05330448 AL |
1374 | struct kvm_fpu fpu; |
1375 | int i; | |
1376 | ||
1377 | memset(&fpu, 0, sizeof fpu); | |
1378 | fpu.fsw = env->fpus & ~(7 << 11); | |
1379 | fpu.fsw |= (env->fpstt & 7) << 11; | |
1380 | fpu.fcw = env->fpuc; | |
42cc8fa6 JK |
1381 | fpu.last_opcode = env->fpop; |
1382 | fpu.last_ip = env->fpip; | |
1383 | fpu.last_dp = env->fpdp; | |
b9bec74b JK |
1384 | for (i = 0; i < 8; ++i) { |
1385 | fpu.ftwx |= (!env->fptags[i]) << i; | |
1386 | } | |
05330448 | 1387 | memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs); |
bee81887 | 1388 | for (i = 0; i < CPU_NB_REGS; i++) { |
19cbd87c EH |
1389 | stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0)); |
1390 | stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1)); | |
bee81887 | 1391 | } |
05330448 AL |
1392 | fpu.mxcsr = env->mxcsr; |
1393 | ||
1bc22652 | 1394 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu); |
05330448 AL |
1395 | } |
1396 | ||
6b42494b JK |
1397 | #define XSAVE_FCW_FSW 0 |
1398 | #define XSAVE_FTW_FOP 1 | |
f1665b21 SY |
1399 | #define XSAVE_CWD_RIP 2 |
1400 | #define XSAVE_CWD_RDP 4 | |
1401 | #define XSAVE_MXCSR 6 | |
1402 | #define XSAVE_ST_SPACE 8 | |
1403 | #define XSAVE_XMM_SPACE 40 | |
1404 | #define XSAVE_XSTATE_BV 128 | |
1405 | #define XSAVE_YMMH_SPACE 144 | |
79e9ebeb LJ |
1406 | #define XSAVE_BNDREGS 240 |
1407 | #define XSAVE_BNDCSR 256 | |
9aecd6f8 CP |
1408 | #define XSAVE_OPMASK 272 |
1409 | #define XSAVE_ZMM_Hi256 288 | |
1410 | #define XSAVE_Hi16_ZMM 416 | |
f74eefe0 | 1411 | #define XSAVE_PKRU 672 |
f1665b21 | 1412 | |
b503717d EH |
1413 | #define XSAVE_BYTE_OFFSET(word_offset) \ |
1414 | ((word_offset) * sizeof(((struct kvm_xsave *)0)->region[0])) | |
1415 | ||
1416 | #define ASSERT_OFFSET(word_offset, field) \ | |
1417 | QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \ | |
1418 | offsetof(X86XSaveArea, field)) | |
1419 | ||
1420 | ASSERT_OFFSET(XSAVE_FCW_FSW, legacy.fcw); | |
1421 | ASSERT_OFFSET(XSAVE_FTW_FOP, legacy.ftw); | |
1422 | ASSERT_OFFSET(XSAVE_CWD_RIP, legacy.fpip); | |
1423 | ASSERT_OFFSET(XSAVE_CWD_RDP, legacy.fpdp); | |
1424 | ASSERT_OFFSET(XSAVE_MXCSR, legacy.mxcsr); | |
1425 | ASSERT_OFFSET(XSAVE_ST_SPACE, legacy.fpregs); | |
1426 | ASSERT_OFFSET(XSAVE_XMM_SPACE, legacy.xmm_regs); | |
1427 | ASSERT_OFFSET(XSAVE_XSTATE_BV, header.xstate_bv); | |
1428 | ASSERT_OFFSET(XSAVE_YMMH_SPACE, avx_state); | |
1429 | ASSERT_OFFSET(XSAVE_BNDREGS, bndreg_state); | |
1430 | ASSERT_OFFSET(XSAVE_BNDCSR, bndcsr_state); | |
1431 | ASSERT_OFFSET(XSAVE_OPMASK, opmask_state); | |
1432 | ASSERT_OFFSET(XSAVE_ZMM_Hi256, zmm_hi256_state); | |
1433 | ASSERT_OFFSET(XSAVE_Hi16_ZMM, hi16_zmm_state); | |
1434 | ASSERT_OFFSET(XSAVE_PKRU, pkru_state); | |
1435 | ||
1bc22652 | 1436 | static int kvm_put_xsave(X86CPU *cpu) |
f1665b21 | 1437 | { |
1bc22652 | 1438 | CPUX86State *env = &cpu->env; |
86cd2ea0 | 1439 | X86XSaveArea *xsave = env->kvm_xsave_buf; |
f1665b21 | 1440 | |
28143b40 | 1441 | if (!has_xsave) { |
1bc22652 | 1442 | return kvm_put_fpu(cpu); |
b9bec74b | 1443 | } |
86a57621 | 1444 | x86_cpu_xsave_all_areas(cpu, xsave); |
f1665b21 | 1445 | |
9be38598 | 1446 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave); |
f1665b21 SY |
1447 | } |
1448 | ||
1bc22652 | 1449 | static int kvm_put_xcrs(X86CPU *cpu) |
f1665b21 | 1450 | { |
1bc22652 | 1451 | CPUX86State *env = &cpu->env; |
bdfc8480 | 1452 | struct kvm_xcrs xcrs = {}; |
f1665b21 | 1453 | |
28143b40 | 1454 | if (!has_xcrs) { |
f1665b21 | 1455 | return 0; |
b9bec74b | 1456 | } |
f1665b21 SY |
1457 | |
1458 | xcrs.nr_xcrs = 1; | |
1459 | xcrs.flags = 0; | |
1460 | xcrs.xcrs[0].xcr = 0; | |
1461 | xcrs.xcrs[0].value = env->xcr0; | |
1bc22652 | 1462 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs); |
f1665b21 SY |
1463 | } |
1464 | ||
1bc22652 | 1465 | static int kvm_put_sregs(X86CPU *cpu) |
05330448 | 1466 | { |
1bc22652 | 1467 | CPUX86State *env = &cpu->env; |
05330448 AL |
1468 | struct kvm_sregs sregs; |
1469 | ||
0e607a80 JK |
1470 | memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); |
1471 | if (env->interrupt_injected >= 0) { | |
1472 | sregs.interrupt_bitmap[env->interrupt_injected / 64] |= | |
1473 | (uint64_t)1 << (env->interrupt_injected % 64); | |
1474 | } | |
05330448 AL |
1475 | |
1476 | if ((env->eflags & VM_MASK)) { | |
b9bec74b JK |
1477 | set_v8086_seg(&sregs.cs, &env->segs[R_CS]); |
1478 | set_v8086_seg(&sregs.ds, &env->segs[R_DS]); | |
1479 | set_v8086_seg(&sregs.es, &env->segs[R_ES]); | |
1480 | set_v8086_seg(&sregs.fs, &env->segs[R_FS]); | |
1481 | set_v8086_seg(&sregs.gs, &env->segs[R_GS]); | |
1482 | set_v8086_seg(&sregs.ss, &env->segs[R_SS]); | |
05330448 | 1483 | } else { |
b9bec74b JK |
1484 | set_seg(&sregs.cs, &env->segs[R_CS]); |
1485 | set_seg(&sregs.ds, &env->segs[R_DS]); | |
1486 | set_seg(&sregs.es, &env->segs[R_ES]); | |
1487 | set_seg(&sregs.fs, &env->segs[R_FS]); | |
1488 | set_seg(&sregs.gs, &env->segs[R_GS]); | |
1489 | set_seg(&sregs.ss, &env->segs[R_SS]); | |
05330448 AL |
1490 | } |
1491 | ||
1492 | set_seg(&sregs.tr, &env->tr); | |
1493 | set_seg(&sregs.ldt, &env->ldt); | |
1494 | ||
1495 | sregs.idt.limit = env->idt.limit; | |
1496 | sregs.idt.base = env->idt.base; | |
7e680753 | 1497 | memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); |
05330448 AL |
1498 | sregs.gdt.limit = env->gdt.limit; |
1499 | sregs.gdt.base = env->gdt.base; | |
7e680753 | 1500 | memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); |
05330448 AL |
1501 | |
1502 | sregs.cr0 = env->cr[0]; | |
1503 | sregs.cr2 = env->cr[2]; | |
1504 | sregs.cr3 = env->cr[3]; | |
1505 | sregs.cr4 = env->cr[4]; | |
1506 | ||
02e51483 CF |
1507 | sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state); |
1508 | sregs.apic_base = cpu_get_apic_base(cpu->apic_state); | |
05330448 AL |
1509 | |
1510 | sregs.efer = env->efer; | |
1511 | ||
1bc22652 | 1512 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs); |
05330448 AL |
1513 | } |
1514 | ||
d71b62a1 EH |
1515 | static void kvm_msr_buf_reset(X86CPU *cpu) |
1516 | { | |
1517 | memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE); | |
1518 | } | |
1519 | ||
9c600a84 EH |
1520 | static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value) |
1521 | { | |
1522 | struct kvm_msrs *msrs = cpu->kvm_msr_buf; | |
1523 | void *limit = ((void *)msrs) + MSR_BUF_SIZE; | |
1524 | struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs]; | |
1525 | ||
1526 | assert((void *)(entry + 1) <= limit); | |
1527 | ||
1abc2cae EH |
1528 | entry->index = index; |
1529 | entry->reserved = 0; | |
1530 | entry->data = value; | |
9c600a84 EH |
1531 | msrs->nmsrs++; |
1532 | } | |
1533 | ||
73e1b8f2 PB |
1534 | static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value) |
1535 | { | |
1536 | kvm_msr_buf_reset(cpu); | |
1537 | kvm_msr_entry_add(cpu, index, value); | |
1538 | ||
1539 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); | |
1540 | } | |
1541 | ||
f8d9ccf8 DDAG |
1542 | void kvm_put_apicbase(X86CPU *cpu, uint64_t value) |
1543 | { | |
1544 | int ret; | |
1545 | ||
1546 | ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value); | |
1547 | assert(ret == 1); | |
1548 | } | |
1549 | ||
7477cd38 MT |
1550 | static int kvm_put_tscdeadline_msr(X86CPU *cpu) |
1551 | { | |
1552 | CPUX86State *env = &cpu->env; | |
48e1a45c | 1553 | int ret; |
7477cd38 MT |
1554 | |
1555 | if (!has_msr_tsc_deadline) { | |
1556 | return 0; | |
1557 | } | |
1558 | ||
73e1b8f2 | 1559 | ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline); |
48e1a45c PB |
1560 | if (ret < 0) { |
1561 | return ret; | |
1562 | } | |
1563 | ||
1564 | assert(ret == 1); | |
1565 | return 0; | |
7477cd38 MT |
1566 | } |
1567 | ||
6bdf863d JK |
1568 | /* |
1569 | * Provide a separate write service for the feature control MSR in order to | |
1570 | * kick the VCPU out of VMXON or even guest mode on reset. This has to be done | |
1571 | * before writing any other state because forcibly leaving nested mode | |
1572 | * invalidates the VCPU state. | |
1573 | */ | |
1574 | static int kvm_put_msr_feature_control(X86CPU *cpu) | |
1575 | { | |
48e1a45c PB |
1576 | int ret; |
1577 | ||
1578 | if (!has_msr_feature_control) { | |
1579 | return 0; | |
1580 | } | |
6bdf863d | 1581 | |
73e1b8f2 PB |
1582 | ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL, |
1583 | cpu->env.msr_ia32_feature_control); | |
48e1a45c PB |
1584 | if (ret < 0) { |
1585 | return ret; | |
1586 | } | |
1587 | ||
1588 | assert(ret == 1); | |
1589 | return 0; | |
6bdf863d JK |
1590 | } |
1591 | ||
1bc22652 | 1592 | static int kvm_put_msrs(X86CPU *cpu, int level) |
05330448 | 1593 | { |
1bc22652 | 1594 | CPUX86State *env = &cpu->env; |
9c600a84 | 1595 | int i; |
48e1a45c | 1596 | int ret; |
05330448 | 1597 | |
d71b62a1 EH |
1598 | kvm_msr_buf_reset(cpu); |
1599 | ||
9c600a84 EH |
1600 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs); |
1601 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp); | |
1602 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip); | |
1603 | kvm_msr_entry_add(cpu, MSR_PAT, env->pat); | |
c3a3a7d3 | 1604 | if (has_msr_star) { |
9c600a84 | 1605 | kvm_msr_entry_add(cpu, MSR_STAR, env->star); |
b9bec74b | 1606 | } |
c3a3a7d3 | 1607 | if (has_msr_hsave_pa) { |
9c600a84 | 1608 | kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave); |
b9bec74b | 1609 | } |
c9b8f6b6 | 1610 | if (has_msr_tsc_aux) { |
9c600a84 | 1611 | kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux); |
c9b8f6b6 | 1612 | } |
f28558d3 | 1613 | if (has_msr_tsc_adjust) { |
9c600a84 | 1614 | kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust); |
f28558d3 | 1615 | } |
21e87c46 | 1616 | if (has_msr_misc_enable) { |
9c600a84 | 1617 | kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, |
21e87c46 AK |
1618 | env->msr_ia32_misc_enable); |
1619 | } | |
fc12d72e | 1620 | if (has_msr_smbase) { |
9c600a84 | 1621 | kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase); |
fc12d72e | 1622 | } |
439d19f2 | 1623 | if (has_msr_bndcfgs) { |
9c600a84 | 1624 | kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs); |
439d19f2 | 1625 | } |
18cd2c17 | 1626 | if (has_msr_xss) { |
9c600a84 | 1627 | kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss); |
18cd2c17 | 1628 | } |
05330448 | 1629 | #ifdef TARGET_X86_64 |
25d2e361 | 1630 | if (lm_capable_kernel) { |
9c600a84 EH |
1631 | kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar); |
1632 | kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase); | |
1633 | kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask); | |
1634 | kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar); | |
25d2e361 | 1635 | } |
05330448 | 1636 | #endif |
ff5c186b | 1637 | /* |
0d894367 PB |
1638 | * The following MSRs have side effects on the guest or are too heavy |
1639 | * for normal writeback. Limit them to reset or full state updates. | |
ff5c186b JK |
1640 | */ |
1641 | if (level >= KVM_PUT_RESET_STATE) { | |
9c600a84 EH |
1642 | kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc); |
1643 | kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr); | |
1644 | kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr); | |
55c911a5 | 1645 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) { |
9c600a84 | 1646 | kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr); |
c5999bfc | 1647 | } |
55c911a5 | 1648 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) { |
9c600a84 | 1649 | kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr); |
bc9a839d | 1650 | } |
55c911a5 | 1651 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) { |
9c600a84 | 1652 | kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr); |
917367aa | 1653 | } |
0d894367 PB |
1654 | if (has_msr_architectural_pmu) { |
1655 | /* Stop the counter. */ | |
9c600a84 EH |
1656 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); |
1657 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); | |
0d894367 PB |
1658 | |
1659 | /* Set the counter values. */ | |
1660 | for (i = 0; i < MAX_FIXED_COUNTERS; i++) { | |
9c600a84 | 1661 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, |
0d894367 PB |
1662 | env->msr_fixed_counters[i]); |
1663 | } | |
1664 | for (i = 0; i < num_architectural_pmu_counters; i++) { | |
9c600a84 | 1665 | kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, |
0d894367 | 1666 | env->msr_gp_counters[i]); |
9c600a84 | 1667 | kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, |
0d894367 PB |
1668 | env->msr_gp_evtsel[i]); |
1669 | } | |
9c600a84 | 1670 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, |
0d894367 | 1671 | env->msr_global_status); |
9c600a84 | 1672 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, |
0d894367 PB |
1673 | env->msr_global_ovf_ctrl); |
1674 | ||
1675 | /* Now start the PMU. */ | |
9c600a84 | 1676 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, |
0d894367 | 1677 | env->msr_fixed_ctr_ctrl); |
9c600a84 | 1678 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, |
0d894367 PB |
1679 | env->msr_global_ctrl); |
1680 | } | |
7bc3d711 | 1681 | if (has_msr_hv_hypercall) { |
9c600a84 | 1682 | kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, |
1c90ef26 | 1683 | env->msr_hv_guest_os_id); |
9c600a84 | 1684 | kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, |
1c90ef26 | 1685 | env->msr_hv_hypercall); |
eab70139 | 1686 | } |
2d5aa872 | 1687 | if (cpu->hyperv_vapic) { |
9c600a84 | 1688 | kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, |
5ef68987 | 1689 | env->msr_hv_vapic); |
eab70139 | 1690 | } |
3ddcd2ed | 1691 | if (cpu->hyperv_time) { |
9c600a84 | 1692 | kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, env->msr_hv_tsc); |
48a5f3bc | 1693 | } |
f2a53c9e AS |
1694 | if (has_msr_hv_crash) { |
1695 | int j; | |
1696 | ||
5e953812 | 1697 | for (j = 0; j < HV_CRASH_PARAMS; j++) |
9c600a84 | 1698 | kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, |
f2a53c9e AS |
1699 | env->msr_hv_crash_params[j]); |
1700 | ||
5e953812 | 1701 | kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY); |
f2a53c9e | 1702 | } |
46eb8f98 | 1703 | if (has_msr_hv_runtime) { |
9c600a84 | 1704 | kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime); |
46eb8f98 | 1705 | } |
866eea9a AS |
1706 | if (cpu->hyperv_synic) { |
1707 | int j; | |
1708 | ||
9c600a84 | 1709 | kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, |
866eea9a | 1710 | env->msr_hv_synic_control); |
9c600a84 | 1711 | kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, |
866eea9a | 1712 | env->msr_hv_synic_version); |
9c600a84 | 1713 | kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, |
866eea9a | 1714 | env->msr_hv_synic_evt_page); |
9c600a84 | 1715 | kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, |
866eea9a AS |
1716 | env->msr_hv_synic_msg_page); |
1717 | ||
1718 | for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) { | |
9c600a84 | 1719 | kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j, |
866eea9a AS |
1720 | env->msr_hv_synic_sint[j]); |
1721 | } | |
1722 | } | |
ff99aa64 AS |
1723 | if (has_msr_hv_stimer) { |
1724 | int j; | |
1725 | ||
1726 | for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) { | |
9c600a84 | 1727 | kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2, |
ff99aa64 AS |
1728 | env->msr_hv_stimer_config[j]); |
1729 | } | |
1730 | ||
1731 | for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) { | |
9c600a84 | 1732 | kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2, |
ff99aa64 AS |
1733 | env->msr_hv_stimer_count[j]); |
1734 | } | |
1735 | } | |
1eabfce6 | 1736 | if (env->features[FEAT_1_EDX] & CPUID_MTRR) { |
112dad69 DDAG |
1737 | uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits); |
1738 | ||
9c600a84 EH |
1739 | kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype); |
1740 | kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]); | |
1741 | kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]); | |
1742 | kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]); | |
1743 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]); | |
1744 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]); | |
1745 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]); | |
1746 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]); | |
1747 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]); | |
1748 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]); | |
1749 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]); | |
1750 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]); | |
d1ae67f6 | 1751 | for (i = 0; i < MSR_MTRRcap_VCNT; i++) { |
112dad69 DDAG |
1752 | /* The CPU GPs if we write to a bit above the physical limit of |
1753 | * the host CPU (and KVM emulates that) | |
1754 | */ | |
1755 | uint64_t mask = env->mtrr_var[i].mask; | |
1756 | mask &= phys_mask; | |
1757 | ||
9c600a84 EH |
1758 | kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), |
1759 | env->mtrr_var[i].base); | |
112dad69 | 1760 | kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask); |
d1ae67f6 AW |
1761 | } |
1762 | } | |
6bdf863d JK |
1763 | |
1764 | /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see | |
1765 | * kvm_put_msr_feature_control. */ | |
ea643051 | 1766 | } |
57780495 | 1767 | if (env->mcg_cap) { |
d8da8574 | 1768 | int i; |
b9bec74b | 1769 | |
9c600a84 EH |
1770 | kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status); |
1771 | kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl); | |
87f8b626 AR |
1772 | if (has_msr_mcg_ext_ctl) { |
1773 | kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl); | |
1774 | } | |
c34d440a | 1775 | for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { |
9c600a84 | 1776 | kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]); |
57780495 MT |
1777 | } |
1778 | } | |
1a03675d | 1779 | |
d71b62a1 | 1780 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); |
48e1a45c PB |
1781 | if (ret < 0) { |
1782 | return ret; | |
1783 | } | |
05330448 | 1784 | |
c70b11d1 EH |
1785 | if (ret < cpu->kvm_msr_buf->nmsrs) { |
1786 | struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; | |
1787 | error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64, | |
1788 | (uint32_t)e->index, (uint64_t)e->data); | |
1789 | } | |
1790 | ||
9c600a84 | 1791 | assert(ret == cpu->kvm_msr_buf->nmsrs); |
48e1a45c | 1792 | return 0; |
05330448 AL |
1793 | } |
1794 | ||
1795 | ||
1bc22652 | 1796 | static int kvm_get_fpu(X86CPU *cpu) |
05330448 | 1797 | { |
1bc22652 | 1798 | CPUX86State *env = &cpu->env; |
05330448 AL |
1799 | struct kvm_fpu fpu; |
1800 | int i, ret; | |
1801 | ||
1bc22652 | 1802 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu); |
b9bec74b | 1803 | if (ret < 0) { |
05330448 | 1804 | return ret; |
b9bec74b | 1805 | } |
05330448 AL |
1806 | |
1807 | env->fpstt = (fpu.fsw >> 11) & 7; | |
1808 | env->fpus = fpu.fsw; | |
1809 | env->fpuc = fpu.fcw; | |
42cc8fa6 JK |
1810 | env->fpop = fpu.last_opcode; |
1811 | env->fpip = fpu.last_ip; | |
1812 | env->fpdp = fpu.last_dp; | |
b9bec74b JK |
1813 | for (i = 0; i < 8; ++i) { |
1814 | env->fptags[i] = !((fpu.ftwx >> i) & 1); | |
1815 | } | |
05330448 | 1816 | memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs); |
bee81887 | 1817 | for (i = 0; i < CPU_NB_REGS; i++) { |
19cbd87c EH |
1818 | env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]); |
1819 | env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]); | |
bee81887 | 1820 | } |
05330448 AL |
1821 | env->mxcsr = fpu.mxcsr; |
1822 | ||
1823 | return 0; | |
1824 | } | |
1825 | ||
1bc22652 | 1826 | static int kvm_get_xsave(X86CPU *cpu) |
f1665b21 | 1827 | { |
1bc22652 | 1828 | CPUX86State *env = &cpu->env; |
86cd2ea0 | 1829 | X86XSaveArea *xsave = env->kvm_xsave_buf; |
86a57621 | 1830 | int ret; |
f1665b21 | 1831 | |
28143b40 | 1832 | if (!has_xsave) { |
1bc22652 | 1833 | return kvm_get_fpu(cpu); |
b9bec74b | 1834 | } |
f1665b21 | 1835 | |
1bc22652 | 1836 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave); |
0f53994f | 1837 | if (ret < 0) { |
f1665b21 | 1838 | return ret; |
0f53994f | 1839 | } |
86a57621 | 1840 | x86_cpu_xrstor_all_areas(cpu, xsave); |
f1665b21 | 1841 | |
f1665b21 | 1842 | return 0; |
f1665b21 SY |
1843 | } |
1844 | ||
1bc22652 | 1845 | static int kvm_get_xcrs(X86CPU *cpu) |
f1665b21 | 1846 | { |
1bc22652 | 1847 | CPUX86State *env = &cpu->env; |
f1665b21 SY |
1848 | int i, ret; |
1849 | struct kvm_xcrs xcrs; | |
1850 | ||
28143b40 | 1851 | if (!has_xcrs) { |
f1665b21 | 1852 | return 0; |
b9bec74b | 1853 | } |
f1665b21 | 1854 | |
1bc22652 | 1855 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs); |
b9bec74b | 1856 | if (ret < 0) { |
f1665b21 | 1857 | return ret; |
b9bec74b | 1858 | } |
f1665b21 | 1859 | |
b9bec74b | 1860 | for (i = 0; i < xcrs.nr_xcrs; i++) { |
f1665b21 | 1861 | /* Only support xcr0 now */ |
0fd53fec PB |
1862 | if (xcrs.xcrs[i].xcr == 0) { |
1863 | env->xcr0 = xcrs.xcrs[i].value; | |
f1665b21 SY |
1864 | break; |
1865 | } | |
b9bec74b | 1866 | } |
f1665b21 | 1867 | return 0; |
f1665b21 SY |
1868 | } |
1869 | ||
1bc22652 | 1870 | static int kvm_get_sregs(X86CPU *cpu) |
05330448 | 1871 | { |
1bc22652 | 1872 | CPUX86State *env = &cpu->env; |
05330448 AL |
1873 | struct kvm_sregs sregs; |
1874 | uint32_t hflags; | |
0e607a80 | 1875 | int bit, i, ret; |
05330448 | 1876 | |
1bc22652 | 1877 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); |
b9bec74b | 1878 | if (ret < 0) { |
05330448 | 1879 | return ret; |
b9bec74b | 1880 | } |
05330448 | 1881 | |
0e607a80 JK |
1882 | /* There can only be one pending IRQ set in the bitmap at a time, so try |
1883 | to find it and save its number instead (-1 for none). */ | |
1884 | env->interrupt_injected = -1; | |
1885 | for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) { | |
1886 | if (sregs.interrupt_bitmap[i]) { | |
1887 | bit = ctz64(sregs.interrupt_bitmap[i]); | |
1888 | env->interrupt_injected = i * 64 + bit; | |
1889 | break; | |
1890 | } | |
1891 | } | |
05330448 AL |
1892 | |
1893 | get_seg(&env->segs[R_CS], &sregs.cs); | |
1894 | get_seg(&env->segs[R_DS], &sregs.ds); | |
1895 | get_seg(&env->segs[R_ES], &sregs.es); | |
1896 | get_seg(&env->segs[R_FS], &sregs.fs); | |
1897 | get_seg(&env->segs[R_GS], &sregs.gs); | |
1898 | get_seg(&env->segs[R_SS], &sregs.ss); | |
1899 | ||
1900 | get_seg(&env->tr, &sregs.tr); | |
1901 | get_seg(&env->ldt, &sregs.ldt); | |
1902 | ||
1903 | env->idt.limit = sregs.idt.limit; | |
1904 | env->idt.base = sregs.idt.base; | |
1905 | env->gdt.limit = sregs.gdt.limit; | |
1906 | env->gdt.base = sregs.gdt.base; | |
1907 | ||
1908 | env->cr[0] = sregs.cr0; | |
1909 | env->cr[2] = sregs.cr2; | |
1910 | env->cr[3] = sregs.cr3; | |
1911 | env->cr[4] = sregs.cr4; | |
1912 | ||
05330448 | 1913 | env->efer = sregs.efer; |
cce47516 JK |
1914 | |
1915 | /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ | |
05330448 | 1916 | |
b9bec74b JK |
1917 | #define HFLAG_COPY_MASK \ |
1918 | ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \ | |
1919 | HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \ | |
1920 | HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \ | |
1921 | HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK) | |
05330448 | 1922 | |
19dc85db RH |
1923 | hflags = env->hflags & HFLAG_COPY_MASK; |
1924 | hflags |= (env->segs[R_SS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK; | |
05330448 AL |
1925 | hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT); |
1926 | hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) & | |
b9bec74b | 1927 | (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK); |
05330448 | 1928 | hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK)); |
19dc85db RH |
1929 | |
1930 | if (env->cr[4] & CR4_OSFXSR_MASK) { | |
1931 | hflags |= HF_OSFXSR_MASK; | |
1932 | } | |
05330448 AL |
1933 | |
1934 | if (env->efer & MSR_EFER_LMA) { | |
1935 | hflags |= HF_LMA_MASK; | |
1936 | } | |
1937 | ||
1938 | if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) { | |
1939 | hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK; | |
1940 | } else { | |
1941 | hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >> | |
b9bec74b | 1942 | (DESC_B_SHIFT - HF_CS32_SHIFT); |
05330448 | 1943 | hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >> |
b9bec74b JK |
1944 | (DESC_B_SHIFT - HF_SS32_SHIFT); |
1945 | if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) || | |
1946 | !(hflags & HF_CS32_MASK)) { | |
1947 | hflags |= HF_ADDSEG_MASK; | |
1948 | } else { | |
1949 | hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base | | |
1950 | env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT; | |
1951 | } | |
05330448 | 1952 | } |
19dc85db | 1953 | env->hflags = hflags; |
05330448 AL |
1954 | |
1955 | return 0; | |
1956 | } | |
1957 | ||
1bc22652 | 1958 | static int kvm_get_msrs(X86CPU *cpu) |
05330448 | 1959 | { |
1bc22652 | 1960 | CPUX86State *env = &cpu->env; |
d71b62a1 | 1961 | struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries; |
9c600a84 | 1962 | int ret, i; |
fcc35e7c | 1963 | uint64_t mtrr_top_bits; |
05330448 | 1964 | |
d71b62a1 EH |
1965 | kvm_msr_buf_reset(cpu); |
1966 | ||
9c600a84 EH |
1967 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0); |
1968 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0); | |
1969 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0); | |
1970 | kvm_msr_entry_add(cpu, MSR_PAT, 0); | |
c3a3a7d3 | 1971 | if (has_msr_star) { |
9c600a84 | 1972 | kvm_msr_entry_add(cpu, MSR_STAR, 0); |
b9bec74b | 1973 | } |
c3a3a7d3 | 1974 | if (has_msr_hsave_pa) { |
9c600a84 | 1975 | kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0); |
b9bec74b | 1976 | } |
c9b8f6b6 | 1977 | if (has_msr_tsc_aux) { |
9c600a84 | 1978 | kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0); |
c9b8f6b6 | 1979 | } |
f28558d3 | 1980 | if (has_msr_tsc_adjust) { |
9c600a84 | 1981 | kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0); |
f28558d3 | 1982 | } |
aa82ba54 | 1983 | if (has_msr_tsc_deadline) { |
9c600a84 | 1984 | kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0); |
aa82ba54 | 1985 | } |
21e87c46 | 1986 | if (has_msr_misc_enable) { |
9c600a84 | 1987 | kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0); |
21e87c46 | 1988 | } |
fc12d72e | 1989 | if (has_msr_smbase) { |
9c600a84 | 1990 | kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0); |
fc12d72e | 1991 | } |
df67696e | 1992 | if (has_msr_feature_control) { |
9c600a84 | 1993 | kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0); |
df67696e | 1994 | } |
79e9ebeb | 1995 | if (has_msr_bndcfgs) { |
9c600a84 | 1996 | kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0); |
79e9ebeb | 1997 | } |
18cd2c17 | 1998 | if (has_msr_xss) { |
9c600a84 | 1999 | kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0); |
18cd2c17 WL |
2000 | } |
2001 | ||
b8cc45d6 GC |
2002 | |
2003 | if (!env->tsc_valid) { | |
9c600a84 | 2004 | kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0); |
1354869c | 2005 | env->tsc_valid = !runstate_is_running(); |
b8cc45d6 GC |
2006 | } |
2007 | ||
05330448 | 2008 | #ifdef TARGET_X86_64 |
25d2e361 | 2009 | if (lm_capable_kernel) { |
9c600a84 EH |
2010 | kvm_msr_entry_add(cpu, MSR_CSTAR, 0); |
2011 | kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0); | |
2012 | kvm_msr_entry_add(cpu, MSR_FMASK, 0); | |
2013 | kvm_msr_entry_add(cpu, MSR_LSTAR, 0); | |
25d2e361 | 2014 | } |
05330448 | 2015 | #endif |
9c600a84 EH |
2016 | kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0); |
2017 | kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0); | |
55c911a5 | 2018 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) { |
9c600a84 | 2019 | kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0); |
c5999bfc | 2020 | } |
55c911a5 | 2021 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) { |
9c600a84 | 2022 | kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0); |
bc9a839d | 2023 | } |
55c911a5 | 2024 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) { |
9c600a84 | 2025 | kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0); |
917367aa | 2026 | } |
0d894367 | 2027 | if (has_msr_architectural_pmu) { |
9c600a84 EH |
2028 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); |
2029 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); | |
2030 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0); | |
2031 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0); | |
0d894367 | 2032 | for (i = 0; i < MAX_FIXED_COUNTERS; i++) { |
9c600a84 | 2033 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0); |
0d894367 PB |
2034 | } |
2035 | for (i = 0; i < num_architectural_pmu_counters; i++) { | |
9c600a84 EH |
2036 | kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0); |
2037 | kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0); | |
0d894367 PB |
2038 | } |
2039 | } | |
1a03675d | 2040 | |
57780495 | 2041 | if (env->mcg_cap) { |
9c600a84 EH |
2042 | kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0); |
2043 | kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0); | |
87f8b626 AR |
2044 | if (has_msr_mcg_ext_ctl) { |
2045 | kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0); | |
2046 | } | |
b9bec74b | 2047 | for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { |
9c600a84 | 2048 | kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0); |
b9bec74b | 2049 | } |
57780495 | 2050 | } |
57780495 | 2051 | |
1c90ef26 | 2052 | if (has_msr_hv_hypercall) { |
9c600a84 EH |
2053 | kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0); |
2054 | kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0); | |
1c90ef26 | 2055 | } |
2d5aa872 | 2056 | if (cpu->hyperv_vapic) { |
9c600a84 | 2057 | kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0); |
5ef68987 | 2058 | } |
3ddcd2ed | 2059 | if (cpu->hyperv_time) { |
9c600a84 | 2060 | kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0); |
48a5f3bc | 2061 | } |
f2a53c9e AS |
2062 | if (has_msr_hv_crash) { |
2063 | int j; | |
2064 | ||
5e953812 | 2065 | for (j = 0; j < HV_CRASH_PARAMS; j++) { |
9c600a84 | 2066 | kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0); |
f2a53c9e AS |
2067 | } |
2068 | } | |
46eb8f98 | 2069 | if (has_msr_hv_runtime) { |
9c600a84 | 2070 | kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0); |
46eb8f98 | 2071 | } |
866eea9a AS |
2072 | if (cpu->hyperv_synic) { |
2073 | uint32_t msr; | |
2074 | ||
9c600a84 EH |
2075 | kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0); |
2076 | kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, 0); | |
2077 | kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0); | |
2078 | kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0); | |
866eea9a | 2079 | for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) { |
9c600a84 | 2080 | kvm_msr_entry_add(cpu, msr, 0); |
866eea9a AS |
2081 | } |
2082 | } | |
ff99aa64 AS |
2083 | if (has_msr_hv_stimer) { |
2084 | uint32_t msr; | |
2085 | ||
2086 | for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT; | |
2087 | msr++) { | |
9c600a84 | 2088 | kvm_msr_entry_add(cpu, msr, 0); |
ff99aa64 AS |
2089 | } |
2090 | } | |
1eabfce6 | 2091 | if (env->features[FEAT_1_EDX] & CPUID_MTRR) { |
9c600a84 EH |
2092 | kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0); |
2093 | kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0); | |
2094 | kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0); | |
2095 | kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0); | |
2096 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0); | |
2097 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0); | |
2098 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0); | |
2099 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0); | |
2100 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0); | |
2101 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0); | |
2102 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0); | |
2103 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0); | |
d1ae67f6 | 2104 | for (i = 0; i < MSR_MTRRcap_VCNT; i++) { |
9c600a84 EH |
2105 | kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0); |
2106 | kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0); | |
d1ae67f6 AW |
2107 | } |
2108 | } | |
5ef68987 | 2109 | |
d71b62a1 | 2110 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf); |
b9bec74b | 2111 | if (ret < 0) { |
05330448 | 2112 | return ret; |
b9bec74b | 2113 | } |
05330448 | 2114 | |
c70b11d1 EH |
2115 | if (ret < cpu->kvm_msr_buf->nmsrs) { |
2116 | struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; | |
2117 | error_report("error: failed to get MSR 0x%" PRIx32, | |
2118 | (uint32_t)e->index); | |
2119 | } | |
2120 | ||
9c600a84 | 2121 | assert(ret == cpu->kvm_msr_buf->nmsrs); |
fcc35e7c DDAG |
2122 | /* |
2123 | * MTRR masks: Each mask consists of 5 parts | |
2124 | * a 10..0: must be zero | |
2125 | * b 11 : valid bit | |
2126 | * c n-1.12: actual mask bits | |
2127 | * d 51..n: reserved must be zero | |
2128 | * e 63.52: reserved must be zero | |
2129 | * | |
2130 | * 'n' is the number of physical bits supported by the CPU and is | |
2131 | * apparently always <= 52. We know our 'n' but don't know what | |
2132 | * the destinations 'n' is; it might be smaller, in which case | |
2133 | * it masks (c) on loading. It might be larger, in which case | |
2134 | * we fill 'd' so that d..c is consistent irrespetive of the 'n' | |
2135 | * we're migrating to. | |
2136 | */ | |
2137 | ||
2138 | if (cpu->fill_mtrr_mask) { | |
2139 | QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52); | |
2140 | assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS); | |
2141 | mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits); | |
2142 | } else { | |
2143 | mtrr_top_bits = 0; | |
2144 | } | |
2145 | ||
05330448 | 2146 | for (i = 0; i < ret; i++) { |
0d894367 PB |
2147 | uint32_t index = msrs[i].index; |
2148 | switch (index) { | |
05330448 AL |
2149 | case MSR_IA32_SYSENTER_CS: |
2150 | env->sysenter_cs = msrs[i].data; | |
2151 | break; | |
2152 | case MSR_IA32_SYSENTER_ESP: | |
2153 | env->sysenter_esp = msrs[i].data; | |
2154 | break; | |
2155 | case MSR_IA32_SYSENTER_EIP: | |
2156 | env->sysenter_eip = msrs[i].data; | |
2157 | break; | |
0c03266a JK |
2158 | case MSR_PAT: |
2159 | env->pat = msrs[i].data; | |
2160 | break; | |
05330448 AL |
2161 | case MSR_STAR: |
2162 | env->star = msrs[i].data; | |
2163 | break; | |
2164 | #ifdef TARGET_X86_64 | |
2165 | case MSR_CSTAR: | |
2166 | env->cstar = msrs[i].data; | |
2167 | break; | |
2168 | case MSR_KERNELGSBASE: | |
2169 | env->kernelgsbase = msrs[i].data; | |
2170 | break; | |
2171 | case MSR_FMASK: | |
2172 | env->fmask = msrs[i].data; | |
2173 | break; | |
2174 | case MSR_LSTAR: | |
2175 | env->lstar = msrs[i].data; | |
2176 | break; | |
2177 | #endif | |
2178 | case MSR_IA32_TSC: | |
2179 | env->tsc = msrs[i].data; | |
2180 | break; | |
c9b8f6b6 AS |
2181 | case MSR_TSC_AUX: |
2182 | env->tsc_aux = msrs[i].data; | |
2183 | break; | |
f28558d3 WA |
2184 | case MSR_TSC_ADJUST: |
2185 | env->tsc_adjust = msrs[i].data; | |
2186 | break; | |
aa82ba54 LJ |
2187 | case MSR_IA32_TSCDEADLINE: |
2188 | env->tsc_deadline = msrs[i].data; | |
2189 | break; | |
aa851e36 MT |
2190 | case MSR_VM_HSAVE_PA: |
2191 | env->vm_hsave = msrs[i].data; | |
2192 | break; | |
1a03675d GC |
2193 | case MSR_KVM_SYSTEM_TIME: |
2194 | env->system_time_msr = msrs[i].data; | |
2195 | break; | |
2196 | case MSR_KVM_WALL_CLOCK: | |
2197 | env->wall_clock_msr = msrs[i].data; | |
2198 | break; | |
57780495 MT |
2199 | case MSR_MCG_STATUS: |
2200 | env->mcg_status = msrs[i].data; | |
2201 | break; | |
2202 | case MSR_MCG_CTL: | |
2203 | env->mcg_ctl = msrs[i].data; | |
2204 | break; | |
87f8b626 AR |
2205 | case MSR_MCG_EXT_CTL: |
2206 | env->mcg_ext_ctl = msrs[i].data; | |
2207 | break; | |
21e87c46 AK |
2208 | case MSR_IA32_MISC_ENABLE: |
2209 | env->msr_ia32_misc_enable = msrs[i].data; | |
2210 | break; | |
fc12d72e PB |
2211 | case MSR_IA32_SMBASE: |
2212 | env->smbase = msrs[i].data; | |
2213 | break; | |
0779caeb ACL |
2214 | case MSR_IA32_FEATURE_CONTROL: |
2215 | env->msr_ia32_feature_control = msrs[i].data; | |
df67696e | 2216 | break; |
79e9ebeb LJ |
2217 | case MSR_IA32_BNDCFGS: |
2218 | env->msr_bndcfgs = msrs[i].data; | |
2219 | break; | |
18cd2c17 WL |
2220 | case MSR_IA32_XSS: |
2221 | env->xss = msrs[i].data; | |
2222 | break; | |
57780495 | 2223 | default: |
57780495 MT |
2224 | if (msrs[i].index >= MSR_MC0_CTL && |
2225 | msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) { | |
2226 | env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data; | |
57780495 | 2227 | } |
d8da8574 | 2228 | break; |
f6584ee2 GN |
2229 | case MSR_KVM_ASYNC_PF_EN: |
2230 | env->async_pf_en_msr = msrs[i].data; | |
2231 | break; | |
bc9a839d MT |
2232 | case MSR_KVM_PV_EOI_EN: |
2233 | env->pv_eoi_en_msr = msrs[i].data; | |
2234 | break; | |
917367aa MT |
2235 | case MSR_KVM_STEAL_TIME: |
2236 | env->steal_time_msr = msrs[i].data; | |
2237 | break; | |
0d894367 PB |
2238 | case MSR_CORE_PERF_FIXED_CTR_CTRL: |
2239 | env->msr_fixed_ctr_ctrl = msrs[i].data; | |
2240 | break; | |
2241 | case MSR_CORE_PERF_GLOBAL_CTRL: | |
2242 | env->msr_global_ctrl = msrs[i].data; | |
2243 | break; | |
2244 | case MSR_CORE_PERF_GLOBAL_STATUS: | |
2245 | env->msr_global_status = msrs[i].data; | |
2246 | break; | |
2247 | case MSR_CORE_PERF_GLOBAL_OVF_CTRL: | |
2248 | env->msr_global_ovf_ctrl = msrs[i].data; | |
2249 | break; | |
2250 | case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1: | |
2251 | env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data; | |
2252 | break; | |
2253 | case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1: | |
2254 | env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data; | |
2255 | break; | |
2256 | case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1: | |
2257 | env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data; | |
2258 | break; | |
1c90ef26 VR |
2259 | case HV_X64_MSR_HYPERCALL: |
2260 | env->msr_hv_hypercall = msrs[i].data; | |
2261 | break; | |
2262 | case HV_X64_MSR_GUEST_OS_ID: | |
2263 | env->msr_hv_guest_os_id = msrs[i].data; | |
2264 | break; | |
5ef68987 VR |
2265 | case HV_X64_MSR_APIC_ASSIST_PAGE: |
2266 | env->msr_hv_vapic = msrs[i].data; | |
2267 | break; | |
48a5f3bc VR |
2268 | case HV_X64_MSR_REFERENCE_TSC: |
2269 | env->msr_hv_tsc = msrs[i].data; | |
2270 | break; | |
f2a53c9e AS |
2271 | case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: |
2272 | env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data; | |
2273 | break; | |
46eb8f98 AS |
2274 | case HV_X64_MSR_VP_RUNTIME: |
2275 | env->msr_hv_runtime = msrs[i].data; | |
2276 | break; | |
866eea9a AS |
2277 | case HV_X64_MSR_SCONTROL: |
2278 | env->msr_hv_synic_control = msrs[i].data; | |
2279 | break; | |
2280 | case HV_X64_MSR_SVERSION: | |
2281 | env->msr_hv_synic_version = msrs[i].data; | |
2282 | break; | |
2283 | case HV_X64_MSR_SIEFP: | |
2284 | env->msr_hv_synic_evt_page = msrs[i].data; | |
2285 | break; | |
2286 | case HV_X64_MSR_SIMP: | |
2287 | env->msr_hv_synic_msg_page = msrs[i].data; | |
2288 | break; | |
2289 | case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: | |
2290 | env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data; | |
ff99aa64 AS |
2291 | break; |
2292 | case HV_X64_MSR_STIMER0_CONFIG: | |
2293 | case HV_X64_MSR_STIMER1_CONFIG: | |
2294 | case HV_X64_MSR_STIMER2_CONFIG: | |
2295 | case HV_X64_MSR_STIMER3_CONFIG: | |
2296 | env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] = | |
2297 | msrs[i].data; | |
2298 | break; | |
2299 | case HV_X64_MSR_STIMER0_COUNT: | |
2300 | case HV_X64_MSR_STIMER1_COUNT: | |
2301 | case HV_X64_MSR_STIMER2_COUNT: | |
2302 | case HV_X64_MSR_STIMER3_COUNT: | |
2303 | env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] = | |
2304 | msrs[i].data; | |
866eea9a | 2305 | break; |
d1ae67f6 AW |
2306 | case MSR_MTRRdefType: |
2307 | env->mtrr_deftype = msrs[i].data; | |
2308 | break; | |
2309 | case MSR_MTRRfix64K_00000: | |
2310 | env->mtrr_fixed[0] = msrs[i].data; | |
2311 | break; | |
2312 | case MSR_MTRRfix16K_80000: | |
2313 | env->mtrr_fixed[1] = msrs[i].data; | |
2314 | break; | |
2315 | case MSR_MTRRfix16K_A0000: | |
2316 | env->mtrr_fixed[2] = msrs[i].data; | |
2317 | break; | |
2318 | case MSR_MTRRfix4K_C0000: | |
2319 | env->mtrr_fixed[3] = msrs[i].data; | |
2320 | break; | |
2321 | case MSR_MTRRfix4K_C8000: | |
2322 | env->mtrr_fixed[4] = msrs[i].data; | |
2323 | break; | |
2324 | case MSR_MTRRfix4K_D0000: | |
2325 | env->mtrr_fixed[5] = msrs[i].data; | |
2326 | break; | |
2327 | case MSR_MTRRfix4K_D8000: | |
2328 | env->mtrr_fixed[6] = msrs[i].data; | |
2329 | break; | |
2330 | case MSR_MTRRfix4K_E0000: | |
2331 | env->mtrr_fixed[7] = msrs[i].data; | |
2332 | break; | |
2333 | case MSR_MTRRfix4K_E8000: | |
2334 | env->mtrr_fixed[8] = msrs[i].data; | |
2335 | break; | |
2336 | case MSR_MTRRfix4K_F0000: | |
2337 | env->mtrr_fixed[9] = msrs[i].data; | |
2338 | break; | |
2339 | case MSR_MTRRfix4K_F8000: | |
2340 | env->mtrr_fixed[10] = msrs[i].data; | |
2341 | break; | |
2342 | case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1): | |
2343 | if (index & 1) { | |
fcc35e7c DDAG |
2344 | env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data | |
2345 | mtrr_top_bits; | |
d1ae67f6 AW |
2346 | } else { |
2347 | env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data; | |
2348 | } | |
2349 | break; | |
05330448 AL |
2350 | } |
2351 | } | |
2352 | ||
2353 | return 0; | |
2354 | } | |
2355 | ||
1bc22652 | 2356 | static int kvm_put_mp_state(X86CPU *cpu) |
9bdbe550 | 2357 | { |
1bc22652 | 2358 | struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state }; |
9bdbe550 | 2359 | |
1bc22652 | 2360 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); |
9bdbe550 HB |
2361 | } |
2362 | ||
23d02d9b | 2363 | static int kvm_get_mp_state(X86CPU *cpu) |
9bdbe550 | 2364 | { |
259186a7 | 2365 | CPUState *cs = CPU(cpu); |
23d02d9b | 2366 | CPUX86State *env = &cpu->env; |
9bdbe550 HB |
2367 | struct kvm_mp_state mp_state; |
2368 | int ret; | |
2369 | ||
259186a7 | 2370 | ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state); |
9bdbe550 HB |
2371 | if (ret < 0) { |
2372 | return ret; | |
2373 | } | |
2374 | env->mp_state = mp_state.mp_state; | |
c14750e8 | 2375 | if (kvm_irqchip_in_kernel()) { |
259186a7 | 2376 | cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED); |
c14750e8 | 2377 | } |
9bdbe550 HB |
2378 | return 0; |
2379 | } | |
2380 | ||
1bc22652 | 2381 | static int kvm_get_apic(X86CPU *cpu) |
680c1c6f | 2382 | { |
02e51483 | 2383 | DeviceState *apic = cpu->apic_state; |
680c1c6f JK |
2384 | struct kvm_lapic_state kapic; |
2385 | int ret; | |
2386 | ||
3d4b2649 | 2387 | if (apic && kvm_irqchip_in_kernel()) { |
1bc22652 | 2388 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic); |
680c1c6f JK |
2389 | if (ret < 0) { |
2390 | return ret; | |
2391 | } | |
2392 | ||
2393 | kvm_get_apic_state(apic, &kapic); | |
2394 | } | |
2395 | return 0; | |
2396 | } | |
2397 | ||
1bc22652 | 2398 | static int kvm_put_vcpu_events(X86CPU *cpu, int level) |
a0fb002c | 2399 | { |
fc12d72e | 2400 | CPUState *cs = CPU(cpu); |
1bc22652 | 2401 | CPUX86State *env = &cpu->env; |
076796f8 | 2402 | struct kvm_vcpu_events events = {}; |
a0fb002c JK |
2403 | |
2404 | if (!kvm_has_vcpu_events()) { | |
2405 | return 0; | |
2406 | } | |
2407 | ||
31827373 JK |
2408 | events.exception.injected = (env->exception_injected >= 0); |
2409 | events.exception.nr = env->exception_injected; | |
a0fb002c JK |
2410 | events.exception.has_error_code = env->has_error_code; |
2411 | events.exception.error_code = env->error_code; | |
7e680753 | 2412 | events.exception.pad = 0; |
a0fb002c JK |
2413 | |
2414 | events.interrupt.injected = (env->interrupt_injected >= 0); | |
2415 | events.interrupt.nr = env->interrupt_injected; | |
2416 | events.interrupt.soft = env->soft_interrupt; | |
2417 | ||
2418 | events.nmi.injected = env->nmi_injected; | |
2419 | events.nmi.pending = env->nmi_pending; | |
2420 | events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK); | |
7e680753 | 2421 | events.nmi.pad = 0; |
a0fb002c JK |
2422 | |
2423 | events.sipi_vector = env->sipi_vector; | |
68c6efe0 | 2424 | events.flags = 0; |
a0fb002c | 2425 | |
fc12d72e PB |
2426 | if (has_msr_smbase) { |
2427 | events.smi.smm = !!(env->hflags & HF_SMM_MASK); | |
2428 | events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK); | |
2429 | if (kvm_irqchip_in_kernel()) { | |
2430 | /* As soon as these are moved to the kernel, remove them | |
2431 | * from cs->interrupt_request. | |
2432 | */ | |
2433 | events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI; | |
2434 | events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT; | |
2435 | cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI); | |
2436 | } else { | |
2437 | /* Keep these in cs->interrupt_request. */ | |
2438 | events.smi.pending = 0; | |
2439 | events.smi.latched_init = 0; | |
2440 | } | |
fc3a1fd7 DDAG |
2441 | /* Stop SMI delivery on old machine types to avoid a reboot |
2442 | * on an inward migration of an old VM. | |
2443 | */ | |
2444 | if (!cpu->kvm_no_smi_migration) { | |
2445 | events.flags |= KVM_VCPUEVENT_VALID_SMM; | |
2446 | } | |
fc12d72e PB |
2447 | } |
2448 | ||
ea643051 | 2449 | if (level >= KVM_PUT_RESET_STATE) { |
4fadfa00 PH |
2450 | events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING; |
2451 | if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { | |
2452 | events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR; | |
2453 | } | |
ea643051 | 2454 | } |
aee028b9 | 2455 | |
1bc22652 | 2456 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); |
a0fb002c JK |
2457 | } |
2458 | ||
1bc22652 | 2459 | static int kvm_get_vcpu_events(X86CPU *cpu) |
a0fb002c | 2460 | { |
1bc22652 | 2461 | CPUX86State *env = &cpu->env; |
a0fb002c JK |
2462 | struct kvm_vcpu_events events; |
2463 | int ret; | |
2464 | ||
2465 | if (!kvm_has_vcpu_events()) { | |
2466 | return 0; | |
2467 | } | |
2468 | ||
fc12d72e | 2469 | memset(&events, 0, sizeof(events)); |
1bc22652 | 2470 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); |
a0fb002c JK |
2471 | if (ret < 0) { |
2472 | return ret; | |
2473 | } | |
31827373 | 2474 | env->exception_injected = |
a0fb002c JK |
2475 | events.exception.injected ? events.exception.nr : -1; |
2476 | env->has_error_code = events.exception.has_error_code; | |
2477 | env->error_code = events.exception.error_code; | |
2478 | ||
2479 | env->interrupt_injected = | |
2480 | events.interrupt.injected ? events.interrupt.nr : -1; | |
2481 | env->soft_interrupt = events.interrupt.soft; | |
2482 | ||
2483 | env->nmi_injected = events.nmi.injected; | |
2484 | env->nmi_pending = events.nmi.pending; | |
2485 | if (events.nmi.masked) { | |
2486 | env->hflags2 |= HF2_NMI_MASK; | |
2487 | } else { | |
2488 | env->hflags2 &= ~HF2_NMI_MASK; | |
2489 | } | |
2490 | ||
fc12d72e PB |
2491 | if (events.flags & KVM_VCPUEVENT_VALID_SMM) { |
2492 | if (events.smi.smm) { | |
2493 | env->hflags |= HF_SMM_MASK; | |
2494 | } else { | |
2495 | env->hflags &= ~HF_SMM_MASK; | |
2496 | } | |
2497 | if (events.smi.pending) { | |
2498 | cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); | |
2499 | } else { | |
2500 | cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); | |
2501 | } | |
2502 | if (events.smi.smm_inside_nmi) { | |
2503 | env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK; | |
2504 | } else { | |
2505 | env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK; | |
2506 | } | |
2507 | if (events.smi.latched_init) { | |
2508 | cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); | |
2509 | } else { | |
2510 | cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); | |
2511 | } | |
2512 | } | |
2513 | ||
a0fb002c | 2514 | env->sipi_vector = events.sipi_vector; |
a0fb002c JK |
2515 | |
2516 | return 0; | |
2517 | } | |
2518 | ||
1bc22652 | 2519 | static int kvm_guest_debug_workarounds(X86CPU *cpu) |
b0b1d690 | 2520 | { |
ed2803da | 2521 | CPUState *cs = CPU(cpu); |
1bc22652 | 2522 | CPUX86State *env = &cpu->env; |
b0b1d690 | 2523 | int ret = 0; |
b0b1d690 JK |
2524 | unsigned long reinject_trap = 0; |
2525 | ||
2526 | if (!kvm_has_vcpu_events()) { | |
2527 | if (env->exception_injected == 1) { | |
2528 | reinject_trap = KVM_GUESTDBG_INJECT_DB; | |
2529 | } else if (env->exception_injected == 3) { | |
2530 | reinject_trap = KVM_GUESTDBG_INJECT_BP; | |
2531 | } | |
2532 | env->exception_injected = -1; | |
2533 | } | |
2534 | ||
2535 | /* | |
2536 | * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF | |
2537 | * injected via SET_GUEST_DEBUG while updating GP regs. Work around this | |
2538 | * by updating the debug state once again if single-stepping is on. | |
2539 | * Another reason to call kvm_update_guest_debug here is a pending debug | |
2540 | * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to | |
2541 | * reinject them via SET_GUEST_DEBUG. | |
2542 | */ | |
2543 | if (reinject_trap || | |
ed2803da | 2544 | (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) { |
38e478ec | 2545 | ret = kvm_update_guest_debug(cs, reinject_trap); |
b0b1d690 | 2546 | } |
b0b1d690 JK |
2547 | return ret; |
2548 | } | |
2549 | ||
1bc22652 | 2550 | static int kvm_put_debugregs(X86CPU *cpu) |
ff44f1a3 | 2551 | { |
1bc22652 | 2552 | CPUX86State *env = &cpu->env; |
ff44f1a3 JK |
2553 | struct kvm_debugregs dbgregs; |
2554 | int i; | |
2555 | ||
2556 | if (!kvm_has_debugregs()) { | |
2557 | return 0; | |
2558 | } | |
2559 | ||
2560 | for (i = 0; i < 4; i++) { | |
2561 | dbgregs.db[i] = env->dr[i]; | |
2562 | } | |
2563 | dbgregs.dr6 = env->dr[6]; | |
2564 | dbgregs.dr7 = env->dr[7]; | |
2565 | dbgregs.flags = 0; | |
2566 | ||
1bc22652 | 2567 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs); |
ff44f1a3 JK |
2568 | } |
2569 | ||
1bc22652 | 2570 | static int kvm_get_debugregs(X86CPU *cpu) |
ff44f1a3 | 2571 | { |
1bc22652 | 2572 | CPUX86State *env = &cpu->env; |
ff44f1a3 JK |
2573 | struct kvm_debugregs dbgregs; |
2574 | int i, ret; | |
2575 | ||
2576 | if (!kvm_has_debugregs()) { | |
2577 | return 0; | |
2578 | } | |
2579 | ||
1bc22652 | 2580 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs); |
ff44f1a3 | 2581 | if (ret < 0) { |
b9bec74b | 2582 | return ret; |
ff44f1a3 JK |
2583 | } |
2584 | for (i = 0; i < 4; i++) { | |
2585 | env->dr[i] = dbgregs.db[i]; | |
2586 | } | |
2587 | env->dr[4] = env->dr[6] = dbgregs.dr6; | |
2588 | env->dr[5] = env->dr[7] = dbgregs.dr7; | |
ff44f1a3 JK |
2589 | |
2590 | return 0; | |
2591 | } | |
2592 | ||
20d695a9 | 2593 | int kvm_arch_put_registers(CPUState *cpu, int level) |
05330448 | 2594 | { |
20d695a9 | 2595 | X86CPU *x86_cpu = X86_CPU(cpu); |
05330448 AL |
2596 | int ret; |
2597 | ||
2fa45344 | 2598 | assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu)); |
dbaa07c4 | 2599 | |
48e1a45c | 2600 | if (level >= KVM_PUT_RESET_STATE) { |
6bdf863d JK |
2601 | ret = kvm_put_msr_feature_control(x86_cpu); |
2602 | if (ret < 0) { | |
2603 | return ret; | |
2604 | } | |
2605 | } | |
2606 | ||
36f96c4b HZ |
2607 | if (level == KVM_PUT_FULL_STATE) { |
2608 | /* We don't check for kvm_arch_set_tsc_khz() errors here, | |
2609 | * because TSC frequency mismatch shouldn't abort migration, | |
2610 | * unless the user explicitly asked for a more strict TSC | |
2611 | * setting (e.g. using an explicit "tsc-freq" option). | |
2612 | */ | |
2613 | kvm_arch_set_tsc_khz(cpu); | |
2614 | } | |
2615 | ||
1bc22652 | 2616 | ret = kvm_getput_regs(x86_cpu, 1); |
b9bec74b | 2617 | if (ret < 0) { |
05330448 | 2618 | return ret; |
b9bec74b | 2619 | } |
1bc22652 | 2620 | ret = kvm_put_xsave(x86_cpu); |
b9bec74b | 2621 | if (ret < 0) { |
f1665b21 | 2622 | return ret; |
b9bec74b | 2623 | } |
1bc22652 | 2624 | ret = kvm_put_xcrs(x86_cpu); |
b9bec74b | 2625 | if (ret < 0) { |
05330448 | 2626 | return ret; |
b9bec74b | 2627 | } |
1bc22652 | 2628 | ret = kvm_put_sregs(x86_cpu); |
b9bec74b | 2629 | if (ret < 0) { |
05330448 | 2630 | return ret; |
b9bec74b | 2631 | } |
ab443475 | 2632 | /* must be before kvm_put_msrs */ |
1bc22652 | 2633 | ret = kvm_inject_mce_oldstyle(x86_cpu); |
ab443475 JK |
2634 | if (ret < 0) { |
2635 | return ret; | |
2636 | } | |
1bc22652 | 2637 | ret = kvm_put_msrs(x86_cpu, level); |
b9bec74b | 2638 | if (ret < 0) { |
05330448 | 2639 | return ret; |
b9bec74b | 2640 | } |
4fadfa00 PH |
2641 | ret = kvm_put_vcpu_events(x86_cpu, level); |
2642 | if (ret < 0) { | |
2643 | return ret; | |
2644 | } | |
ea643051 | 2645 | if (level >= KVM_PUT_RESET_STATE) { |
1bc22652 | 2646 | ret = kvm_put_mp_state(x86_cpu); |
b9bec74b | 2647 | if (ret < 0) { |
680c1c6f JK |
2648 | return ret; |
2649 | } | |
ea643051 | 2650 | } |
7477cd38 MT |
2651 | |
2652 | ret = kvm_put_tscdeadline_msr(x86_cpu); | |
2653 | if (ret < 0) { | |
2654 | return ret; | |
2655 | } | |
1bc22652 | 2656 | ret = kvm_put_debugregs(x86_cpu); |
b9bec74b | 2657 | if (ret < 0) { |
b0b1d690 | 2658 | return ret; |
b9bec74b | 2659 | } |
b0b1d690 | 2660 | /* must be last */ |
1bc22652 | 2661 | ret = kvm_guest_debug_workarounds(x86_cpu); |
b9bec74b | 2662 | if (ret < 0) { |
ff44f1a3 | 2663 | return ret; |
b9bec74b | 2664 | } |
05330448 AL |
2665 | return 0; |
2666 | } | |
2667 | ||
20d695a9 | 2668 | int kvm_arch_get_registers(CPUState *cs) |
05330448 | 2669 | { |
20d695a9 | 2670 | X86CPU *cpu = X86_CPU(cs); |
05330448 AL |
2671 | int ret; |
2672 | ||
20d695a9 | 2673 | assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs)); |
dbaa07c4 | 2674 | |
4fadfa00 | 2675 | ret = kvm_get_vcpu_events(cpu); |
b9bec74b | 2676 | if (ret < 0) { |
f4f1110e | 2677 | goto out; |
b9bec74b | 2678 | } |
4fadfa00 PH |
2679 | /* |
2680 | * KVM_GET_MPSTATE can modify CS and RIP, call it before | |
2681 | * KVM_GET_REGS and KVM_GET_SREGS. | |
2682 | */ | |
2683 | ret = kvm_get_mp_state(cpu); | |
b9bec74b | 2684 | if (ret < 0) { |
f4f1110e | 2685 | goto out; |
b9bec74b | 2686 | } |
4fadfa00 | 2687 | ret = kvm_getput_regs(cpu, 0); |
b9bec74b | 2688 | if (ret < 0) { |
f4f1110e | 2689 | goto out; |
b9bec74b | 2690 | } |
4fadfa00 | 2691 | ret = kvm_get_xsave(cpu); |
b9bec74b | 2692 | if (ret < 0) { |
f4f1110e | 2693 | goto out; |
b9bec74b | 2694 | } |
4fadfa00 | 2695 | ret = kvm_get_xcrs(cpu); |
b9bec74b | 2696 | if (ret < 0) { |
f4f1110e | 2697 | goto out; |
b9bec74b | 2698 | } |
4fadfa00 | 2699 | ret = kvm_get_sregs(cpu); |
b9bec74b | 2700 | if (ret < 0) { |
f4f1110e | 2701 | goto out; |
b9bec74b | 2702 | } |
4fadfa00 | 2703 | ret = kvm_get_msrs(cpu); |
680c1c6f | 2704 | if (ret < 0) { |
f4f1110e | 2705 | goto out; |
680c1c6f | 2706 | } |
4fadfa00 | 2707 | ret = kvm_get_apic(cpu); |
b9bec74b | 2708 | if (ret < 0) { |
f4f1110e | 2709 | goto out; |
b9bec74b | 2710 | } |
1bc22652 | 2711 | ret = kvm_get_debugregs(cpu); |
b9bec74b | 2712 | if (ret < 0) { |
f4f1110e | 2713 | goto out; |
b9bec74b | 2714 | } |
f4f1110e RH |
2715 | ret = 0; |
2716 | out: | |
2717 | cpu_sync_bndcs_hflags(&cpu->env); | |
2718 | return ret; | |
05330448 AL |
2719 | } |
2720 | ||
20d695a9 | 2721 | void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) |
05330448 | 2722 | { |
20d695a9 AF |
2723 | X86CPU *x86_cpu = X86_CPU(cpu); |
2724 | CPUX86State *env = &x86_cpu->env; | |
ce377af3 JK |
2725 | int ret; |
2726 | ||
276ce815 | 2727 | /* Inject NMI */ |
fc12d72e PB |
2728 | if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) { |
2729 | if (cpu->interrupt_request & CPU_INTERRUPT_NMI) { | |
2730 | qemu_mutex_lock_iothread(); | |
2731 | cpu->interrupt_request &= ~CPU_INTERRUPT_NMI; | |
2732 | qemu_mutex_unlock_iothread(); | |
2733 | DPRINTF("injected NMI\n"); | |
2734 | ret = kvm_vcpu_ioctl(cpu, KVM_NMI); | |
2735 | if (ret < 0) { | |
2736 | fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n", | |
2737 | strerror(-ret)); | |
2738 | } | |
2739 | } | |
2740 | if (cpu->interrupt_request & CPU_INTERRUPT_SMI) { | |
2741 | qemu_mutex_lock_iothread(); | |
2742 | cpu->interrupt_request &= ~CPU_INTERRUPT_SMI; | |
2743 | qemu_mutex_unlock_iothread(); | |
2744 | DPRINTF("injected SMI\n"); | |
2745 | ret = kvm_vcpu_ioctl(cpu, KVM_SMI); | |
2746 | if (ret < 0) { | |
2747 | fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n", | |
2748 | strerror(-ret)); | |
2749 | } | |
ce377af3 | 2750 | } |
276ce815 LJ |
2751 | } |
2752 | ||
15eafc2e | 2753 | if (!kvm_pic_in_kernel()) { |
4b8523ee JK |
2754 | qemu_mutex_lock_iothread(); |
2755 | } | |
2756 | ||
e0723c45 PB |
2757 | /* Force the VCPU out of its inner loop to process any INIT requests |
2758 | * or (for userspace APIC, but it is cheap to combine the checks here) | |
2759 | * pending TPR access reports. | |
2760 | */ | |
2761 | if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) { | |
fc12d72e PB |
2762 | if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) && |
2763 | !(env->hflags & HF_SMM_MASK)) { | |
2764 | cpu->exit_request = 1; | |
2765 | } | |
2766 | if (cpu->interrupt_request & CPU_INTERRUPT_TPR) { | |
2767 | cpu->exit_request = 1; | |
2768 | } | |
e0723c45 | 2769 | } |
05330448 | 2770 | |
15eafc2e | 2771 | if (!kvm_pic_in_kernel()) { |
db1669bc JK |
2772 | /* Try to inject an interrupt if the guest can accept it */ |
2773 | if (run->ready_for_interrupt_injection && | |
259186a7 | 2774 | (cpu->interrupt_request & CPU_INTERRUPT_HARD) && |
db1669bc JK |
2775 | (env->eflags & IF_MASK)) { |
2776 | int irq; | |
2777 | ||
259186a7 | 2778 | cpu->interrupt_request &= ~CPU_INTERRUPT_HARD; |
db1669bc JK |
2779 | irq = cpu_get_pic_interrupt(env); |
2780 | if (irq >= 0) { | |
2781 | struct kvm_interrupt intr; | |
2782 | ||
2783 | intr.irq = irq; | |
db1669bc | 2784 | DPRINTF("injected interrupt %d\n", irq); |
1bc22652 | 2785 | ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr); |
ce377af3 JK |
2786 | if (ret < 0) { |
2787 | fprintf(stderr, | |
2788 | "KVM: injection failed, interrupt lost (%s)\n", | |
2789 | strerror(-ret)); | |
2790 | } | |
db1669bc JK |
2791 | } |
2792 | } | |
05330448 | 2793 | |
db1669bc JK |
2794 | /* If we have an interrupt but the guest is not ready to receive an |
2795 | * interrupt, request an interrupt window exit. This will | |
2796 | * cause a return to userspace as soon as the guest is ready to | |
2797 | * receive interrupts. */ | |
259186a7 | 2798 | if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) { |
db1669bc JK |
2799 | run->request_interrupt_window = 1; |
2800 | } else { | |
2801 | run->request_interrupt_window = 0; | |
2802 | } | |
2803 | ||
2804 | DPRINTF("setting tpr\n"); | |
02e51483 | 2805 | run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state); |
4b8523ee JK |
2806 | |
2807 | qemu_mutex_unlock_iothread(); | |
db1669bc | 2808 | } |
05330448 AL |
2809 | } |
2810 | ||
4c663752 | 2811 | MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run) |
05330448 | 2812 | { |
20d695a9 AF |
2813 | X86CPU *x86_cpu = X86_CPU(cpu); |
2814 | CPUX86State *env = &x86_cpu->env; | |
2815 | ||
fc12d72e PB |
2816 | if (run->flags & KVM_RUN_X86_SMM) { |
2817 | env->hflags |= HF_SMM_MASK; | |
2818 | } else { | |
f5c052b9 | 2819 | env->hflags &= ~HF_SMM_MASK; |
fc12d72e | 2820 | } |
b9bec74b | 2821 | if (run->if_flag) { |
05330448 | 2822 | env->eflags |= IF_MASK; |
b9bec74b | 2823 | } else { |
05330448 | 2824 | env->eflags &= ~IF_MASK; |
b9bec74b | 2825 | } |
4b8523ee JK |
2826 | |
2827 | /* We need to protect the apic state against concurrent accesses from | |
2828 | * different threads in case the userspace irqchip is used. */ | |
2829 | if (!kvm_irqchip_in_kernel()) { | |
2830 | qemu_mutex_lock_iothread(); | |
2831 | } | |
02e51483 CF |
2832 | cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8); |
2833 | cpu_set_apic_base(x86_cpu->apic_state, run->apic_base); | |
4b8523ee JK |
2834 | if (!kvm_irqchip_in_kernel()) { |
2835 | qemu_mutex_unlock_iothread(); | |
2836 | } | |
f794aa4a | 2837 | return cpu_get_mem_attrs(env); |
05330448 AL |
2838 | } |
2839 | ||
20d695a9 | 2840 | int kvm_arch_process_async_events(CPUState *cs) |
0af691d7 | 2841 | { |
20d695a9 AF |
2842 | X86CPU *cpu = X86_CPU(cs); |
2843 | CPUX86State *env = &cpu->env; | |
232fc23b | 2844 | |
259186a7 | 2845 | if (cs->interrupt_request & CPU_INTERRUPT_MCE) { |
ab443475 JK |
2846 | /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */ |
2847 | assert(env->mcg_cap); | |
2848 | ||
259186a7 | 2849 | cs->interrupt_request &= ~CPU_INTERRUPT_MCE; |
ab443475 | 2850 | |
dd1750d7 | 2851 | kvm_cpu_synchronize_state(cs); |
ab443475 JK |
2852 | |
2853 | if (env->exception_injected == EXCP08_DBLE) { | |
2854 | /* this means triple fault */ | |
cf83f140 | 2855 | qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); |
fcd7d003 | 2856 | cs->exit_request = 1; |
ab443475 JK |
2857 | return 0; |
2858 | } | |
2859 | env->exception_injected = EXCP12_MCHK; | |
2860 | env->has_error_code = 0; | |
2861 | ||
259186a7 | 2862 | cs->halted = 0; |
ab443475 JK |
2863 | if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) { |
2864 | env->mp_state = KVM_MP_STATE_RUNNABLE; | |
2865 | } | |
2866 | } | |
2867 | ||
fc12d72e PB |
2868 | if ((cs->interrupt_request & CPU_INTERRUPT_INIT) && |
2869 | !(env->hflags & HF_SMM_MASK)) { | |
e0723c45 PB |
2870 | kvm_cpu_synchronize_state(cs); |
2871 | do_cpu_init(cpu); | |
2872 | } | |
2873 | ||
db1669bc JK |
2874 | if (kvm_irqchip_in_kernel()) { |
2875 | return 0; | |
2876 | } | |
2877 | ||
259186a7 AF |
2878 | if (cs->interrupt_request & CPU_INTERRUPT_POLL) { |
2879 | cs->interrupt_request &= ~CPU_INTERRUPT_POLL; | |
02e51483 | 2880 | apic_poll_irq(cpu->apic_state); |
5d62c43a | 2881 | } |
259186a7 | 2882 | if (((cs->interrupt_request & CPU_INTERRUPT_HARD) && |
4601f7b0 | 2883 | (env->eflags & IF_MASK)) || |
259186a7 AF |
2884 | (cs->interrupt_request & CPU_INTERRUPT_NMI)) { |
2885 | cs->halted = 0; | |
6792a57b | 2886 | } |
259186a7 | 2887 | if (cs->interrupt_request & CPU_INTERRUPT_SIPI) { |
dd1750d7 | 2888 | kvm_cpu_synchronize_state(cs); |
232fc23b | 2889 | do_cpu_sipi(cpu); |
0af691d7 | 2890 | } |
259186a7 AF |
2891 | if (cs->interrupt_request & CPU_INTERRUPT_TPR) { |
2892 | cs->interrupt_request &= ~CPU_INTERRUPT_TPR; | |
dd1750d7 | 2893 | kvm_cpu_synchronize_state(cs); |
02e51483 | 2894 | apic_handle_tpr_access_report(cpu->apic_state, env->eip, |
d362e757 JK |
2895 | env->tpr_access_type); |
2896 | } | |
0af691d7 | 2897 | |
259186a7 | 2898 | return cs->halted; |
0af691d7 MT |
2899 | } |
2900 | ||
839b5630 | 2901 | static int kvm_handle_halt(X86CPU *cpu) |
05330448 | 2902 | { |
259186a7 | 2903 | CPUState *cs = CPU(cpu); |
839b5630 AF |
2904 | CPUX86State *env = &cpu->env; |
2905 | ||
259186a7 | 2906 | if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) && |
05330448 | 2907 | (env->eflags & IF_MASK)) && |
259186a7 AF |
2908 | !(cs->interrupt_request & CPU_INTERRUPT_NMI)) { |
2909 | cs->halted = 1; | |
bb4ea393 | 2910 | return EXCP_HLT; |
05330448 AL |
2911 | } |
2912 | ||
bb4ea393 | 2913 | return 0; |
05330448 AL |
2914 | } |
2915 | ||
f7575c96 | 2916 | static int kvm_handle_tpr_access(X86CPU *cpu) |
d362e757 | 2917 | { |
f7575c96 AF |
2918 | CPUState *cs = CPU(cpu); |
2919 | struct kvm_run *run = cs->kvm_run; | |
d362e757 | 2920 | |
02e51483 | 2921 | apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip, |
d362e757 JK |
2922 | run->tpr_access.is_write ? TPR_ACCESS_WRITE |
2923 | : TPR_ACCESS_READ); | |
2924 | return 1; | |
2925 | } | |
2926 | ||
f17ec444 | 2927 | int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) |
e22a25c9 | 2928 | { |
38972938 | 2929 | static const uint8_t int3 = 0xcc; |
64bf3f4e | 2930 | |
f17ec444 AF |
2931 | if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || |
2932 | cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) { | |
e22a25c9 | 2933 | return -EINVAL; |
b9bec74b | 2934 | } |
e22a25c9 AL |
2935 | return 0; |
2936 | } | |
2937 | ||
f17ec444 | 2938 | int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) |
e22a25c9 AL |
2939 | { |
2940 | uint8_t int3; | |
2941 | ||
f17ec444 AF |
2942 | if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc || |
2943 | cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) { | |
e22a25c9 | 2944 | return -EINVAL; |
b9bec74b | 2945 | } |
e22a25c9 AL |
2946 | return 0; |
2947 | } | |
2948 | ||
2949 | static struct { | |
2950 | target_ulong addr; | |
2951 | int len; | |
2952 | int type; | |
2953 | } hw_breakpoint[4]; | |
2954 | ||
2955 | static int nb_hw_breakpoint; | |
2956 | ||
2957 | static int find_hw_breakpoint(target_ulong addr, int len, int type) | |
2958 | { | |
2959 | int n; | |
2960 | ||
b9bec74b | 2961 | for (n = 0; n < nb_hw_breakpoint; n++) { |
e22a25c9 | 2962 | if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && |
b9bec74b | 2963 | (hw_breakpoint[n].len == len || len == -1)) { |
e22a25c9 | 2964 | return n; |
b9bec74b JK |
2965 | } |
2966 | } | |
e22a25c9 AL |
2967 | return -1; |
2968 | } | |
2969 | ||
2970 | int kvm_arch_insert_hw_breakpoint(target_ulong addr, | |
2971 | target_ulong len, int type) | |
2972 | { | |
2973 | switch (type) { | |
2974 | case GDB_BREAKPOINT_HW: | |
2975 | len = 1; | |
2976 | break; | |
2977 | case GDB_WATCHPOINT_WRITE: | |
2978 | case GDB_WATCHPOINT_ACCESS: | |
2979 | switch (len) { | |
2980 | case 1: | |
2981 | break; | |
2982 | case 2: | |
2983 | case 4: | |
2984 | case 8: | |
b9bec74b | 2985 | if (addr & (len - 1)) { |
e22a25c9 | 2986 | return -EINVAL; |
b9bec74b | 2987 | } |
e22a25c9 AL |
2988 | break; |
2989 | default: | |
2990 | return -EINVAL; | |
2991 | } | |
2992 | break; | |
2993 | default: | |
2994 | return -ENOSYS; | |
2995 | } | |
2996 | ||
b9bec74b | 2997 | if (nb_hw_breakpoint == 4) { |
e22a25c9 | 2998 | return -ENOBUFS; |
b9bec74b JK |
2999 | } |
3000 | if (find_hw_breakpoint(addr, len, type) >= 0) { | |
e22a25c9 | 3001 | return -EEXIST; |
b9bec74b | 3002 | } |
e22a25c9 AL |
3003 | hw_breakpoint[nb_hw_breakpoint].addr = addr; |
3004 | hw_breakpoint[nb_hw_breakpoint].len = len; | |
3005 | hw_breakpoint[nb_hw_breakpoint].type = type; | |
3006 | nb_hw_breakpoint++; | |
3007 | ||
3008 | return 0; | |
3009 | } | |
3010 | ||
3011 | int kvm_arch_remove_hw_breakpoint(target_ulong addr, | |
3012 | target_ulong len, int type) | |
3013 | { | |
3014 | int n; | |
3015 | ||
3016 | n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type); | |
b9bec74b | 3017 | if (n < 0) { |
e22a25c9 | 3018 | return -ENOENT; |
b9bec74b | 3019 | } |
e22a25c9 AL |
3020 | nb_hw_breakpoint--; |
3021 | hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; | |
3022 | ||
3023 | return 0; | |
3024 | } | |
3025 | ||
3026 | void kvm_arch_remove_all_hw_breakpoints(void) | |
3027 | { | |
3028 | nb_hw_breakpoint = 0; | |
3029 | } | |
3030 | ||
3031 | static CPUWatchpoint hw_watchpoint; | |
3032 | ||
a60f24b5 | 3033 | static int kvm_handle_debug(X86CPU *cpu, |
48405526 | 3034 | struct kvm_debug_exit_arch *arch_info) |
e22a25c9 | 3035 | { |
ed2803da | 3036 | CPUState *cs = CPU(cpu); |
a60f24b5 | 3037 | CPUX86State *env = &cpu->env; |
f2574737 | 3038 | int ret = 0; |
e22a25c9 AL |
3039 | int n; |
3040 | ||
3041 | if (arch_info->exception == 1) { | |
3042 | if (arch_info->dr6 & (1 << 14)) { | |
ed2803da | 3043 | if (cs->singlestep_enabled) { |
f2574737 | 3044 | ret = EXCP_DEBUG; |
b9bec74b | 3045 | } |
e22a25c9 | 3046 | } else { |
b9bec74b JK |
3047 | for (n = 0; n < 4; n++) { |
3048 | if (arch_info->dr6 & (1 << n)) { | |
e22a25c9 AL |
3049 | switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { |
3050 | case 0x0: | |
f2574737 | 3051 | ret = EXCP_DEBUG; |
e22a25c9 AL |
3052 | break; |
3053 | case 0x1: | |
f2574737 | 3054 | ret = EXCP_DEBUG; |
ff4700b0 | 3055 | cs->watchpoint_hit = &hw_watchpoint; |
e22a25c9 AL |
3056 | hw_watchpoint.vaddr = hw_breakpoint[n].addr; |
3057 | hw_watchpoint.flags = BP_MEM_WRITE; | |
3058 | break; | |
3059 | case 0x3: | |
f2574737 | 3060 | ret = EXCP_DEBUG; |
ff4700b0 | 3061 | cs->watchpoint_hit = &hw_watchpoint; |
e22a25c9 AL |
3062 | hw_watchpoint.vaddr = hw_breakpoint[n].addr; |
3063 | hw_watchpoint.flags = BP_MEM_ACCESS; | |
3064 | break; | |
3065 | } | |
b9bec74b JK |
3066 | } |
3067 | } | |
e22a25c9 | 3068 | } |
ff4700b0 | 3069 | } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) { |
f2574737 | 3070 | ret = EXCP_DEBUG; |
b9bec74b | 3071 | } |
f2574737 | 3072 | if (ret == 0) { |
ff4700b0 | 3073 | cpu_synchronize_state(cs); |
48405526 | 3074 | assert(env->exception_injected == -1); |
b0b1d690 | 3075 | |
f2574737 | 3076 | /* pass to guest */ |
48405526 BS |
3077 | env->exception_injected = arch_info->exception; |
3078 | env->has_error_code = 0; | |
b0b1d690 | 3079 | } |
e22a25c9 | 3080 | |
f2574737 | 3081 | return ret; |
e22a25c9 AL |
3082 | } |
3083 | ||
20d695a9 | 3084 | void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) |
e22a25c9 AL |
3085 | { |
3086 | const uint8_t type_code[] = { | |
3087 | [GDB_BREAKPOINT_HW] = 0x0, | |
3088 | [GDB_WATCHPOINT_WRITE] = 0x1, | |
3089 | [GDB_WATCHPOINT_ACCESS] = 0x3 | |
3090 | }; | |
3091 | const uint8_t len_code[] = { | |
3092 | [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 | |
3093 | }; | |
3094 | int n; | |
3095 | ||
a60f24b5 | 3096 | if (kvm_sw_breakpoints_active(cpu)) { |
e22a25c9 | 3097 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; |
b9bec74b | 3098 | } |
e22a25c9 AL |
3099 | if (nb_hw_breakpoint > 0) { |
3100 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; | |
3101 | dbg->arch.debugreg[7] = 0x0600; | |
3102 | for (n = 0; n < nb_hw_breakpoint; n++) { | |
3103 | dbg->arch.debugreg[n] = hw_breakpoint[n].addr; | |
3104 | dbg->arch.debugreg[7] |= (2 << (n * 2)) | | |
3105 | (type_code[hw_breakpoint[n].type] << (16 + n*4)) | | |
95c077c9 | 3106 | ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4)); |
e22a25c9 AL |
3107 | } |
3108 | } | |
3109 | } | |
4513d923 | 3110 | |
2a4dac83 JK |
3111 | static bool host_supports_vmx(void) |
3112 | { | |
3113 | uint32_t ecx, unused; | |
3114 | ||
3115 | host_cpuid(1, 0, &unused, &unused, &ecx, &unused); | |
3116 | return ecx & CPUID_EXT_VMX; | |
3117 | } | |
3118 | ||
3119 | #define VMX_INVALID_GUEST_STATE 0x80000021 | |
3120 | ||
20d695a9 | 3121 | int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) |
2a4dac83 | 3122 | { |
20d695a9 | 3123 | X86CPU *cpu = X86_CPU(cs); |
2a4dac83 JK |
3124 | uint64_t code; |
3125 | int ret; | |
3126 | ||
3127 | switch (run->exit_reason) { | |
3128 | case KVM_EXIT_HLT: | |
3129 | DPRINTF("handle_hlt\n"); | |
4b8523ee | 3130 | qemu_mutex_lock_iothread(); |
839b5630 | 3131 | ret = kvm_handle_halt(cpu); |
4b8523ee | 3132 | qemu_mutex_unlock_iothread(); |
2a4dac83 JK |
3133 | break; |
3134 | case KVM_EXIT_SET_TPR: | |
3135 | ret = 0; | |
3136 | break; | |
d362e757 | 3137 | case KVM_EXIT_TPR_ACCESS: |
4b8523ee | 3138 | qemu_mutex_lock_iothread(); |
f7575c96 | 3139 | ret = kvm_handle_tpr_access(cpu); |
4b8523ee | 3140 | qemu_mutex_unlock_iothread(); |
d362e757 | 3141 | break; |
2a4dac83 JK |
3142 | case KVM_EXIT_FAIL_ENTRY: |
3143 | code = run->fail_entry.hardware_entry_failure_reason; | |
3144 | fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n", | |
3145 | code); | |
3146 | if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) { | |
3147 | fprintf(stderr, | |
12619721 | 3148 | "\nIf you're running a guest on an Intel machine without " |
2a4dac83 JK |
3149 | "unrestricted mode\n" |
3150 | "support, the failure can be most likely due to the guest " | |
3151 | "entering an invalid\n" | |
3152 | "state for Intel VT. For example, the guest maybe running " | |
3153 | "in big real mode\n" | |
3154 | "which is not supported on less recent Intel processors." | |
3155 | "\n\n"); | |
3156 | } | |
3157 | ret = -1; | |
3158 | break; | |
3159 | case KVM_EXIT_EXCEPTION: | |
3160 | fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n", | |
3161 | run->ex.exception, run->ex.error_code); | |
3162 | ret = -1; | |
3163 | break; | |
f2574737 JK |
3164 | case KVM_EXIT_DEBUG: |
3165 | DPRINTF("kvm_exit_debug\n"); | |
4b8523ee | 3166 | qemu_mutex_lock_iothread(); |
a60f24b5 | 3167 | ret = kvm_handle_debug(cpu, &run->debug.arch); |
4b8523ee | 3168 | qemu_mutex_unlock_iothread(); |
f2574737 | 3169 | break; |
50efe82c AS |
3170 | case KVM_EXIT_HYPERV: |
3171 | ret = kvm_hv_handle_exit(cpu, &run->hyperv); | |
3172 | break; | |
15eafc2e PB |
3173 | case KVM_EXIT_IOAPIC_EOI: |
3174 | ioapic_eoi_broadcast(run->eoi.vector); | |
3175 | ret = 0; | |
3176 | break; | |
2a4dac83 JK |
3177 | default: |
3178 | fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); | |
3179 | ret = -1; | |
3180 | break; | |
3181 | } | |
3182 | ||
3183 | return ret; | |
3184 | } | |
3185 | ||
20d695a9 | 3186 | bool kvm_arch_stop_on_emulation_error(CPUState *cs) |
4513d923 | 3187 | { |
20d695a9 AF |
3188 | X86CPU *cpu = X86_CPU(cs); |
3189 | CPUX86State *env = &cpu->env; | |
3190 | ||
dd1750d7 | 3191 | kvm_cpu_synchronize_state(cs); |
b9bec74b JK |
3192 | return !(env->cr[0] & CR0_PE_MASK) || |
3193 | ((env->segs[R_CS].selector & 3) != 3); | |
4513d923 | 3194 | } |
84b058d7 JK |
3195 | |
3196 | void kvm_arch_init_irq_routing(KVMState *s) | |
3197 | { | |
3198 | if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) { | |
3199 | /* If kernel can't do irq routing, interrupt source | |
3200 | * override 0->2 cannot be set up as required by HPET. | |
3201 | * So we have to disable it. | |
3202 | */ | |
3203 | no_hpet = 1; | |
3204 | } | |
cc7e0ddf | 3205 | /* We know at this point that we're using the in-kernel |
614e41bc | 3206 | * irqchip, so we can use irqfds, and on x86 we know |
f3e1bed8 | 3207 | * we can use msi via irqfd and GSI routing. |
cc7e0ddf | 3208 | */ |
614e41bc | 3209 | kvm_msi_via_irqfd_allowed = true; |
f3e1bed8 | 3210 | kvm_gsi_routing_allowed = true; |
15eafc2e PB |
3211 | |
3212 | if (kvm_irqchip_is_split()) { | |
3213 | int i; | |
3214 | ||
3215 | /* If the ioapic is in QEMU and the lapics are in KVM, reserve | |
3216 | MSI routes for signaling interrupts to the local apics. */ | |
3217 | for (i = 0; i < IOAPIC_NUM_PINS; i++) { | |
d1f6af6a | 3218 | if (kvm_irqchip_add_msi_route(s, 0, NULL) < 0) { |
15eafc2e PB |
3219 | error_report("Could not enable split IRQ mode."); |
3220 | exit(1); | |
3221 | } | |
3222 | } | |
3223 | } | |
3224 | } | |
3225 | ||
3226 | int kvm_arch_irqchip_create(MachineState *ms, KVMState *s) | |
3227 | { | |
3228 | int ret; | |
3229 | if (machine_kernel_irqchip_split(ms)) { | |
3230 | ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24); | |
3231 | if (ret) { | |
df3c286c | 3232 | error_report("Could not enable split irqchip mode: %s", |
15eafc2e PB |
3233 | strerror(-ret)); |
3234 | exit(1); | |
3235 | } else { | |
3236 | DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n"); | |
3237 | kvm_split_irqchip = true; | |
3238 | return 1; | |
3239 | } | |
3240 | } else { | |
3241 | return 0; | |
3242 | } | |
84b058d7 | 3243 | } |
b139bd30 JK |
3244 | |
3245 | /* Classic KVM device assignment interface. Will remain x86 only. */ | |
3246 | int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr, | |
3247 | uint32_t flags, uint32_t *dev_id) | |
3248 | { | |
3249 | struct kvm_assigned_pci_dev dev_data = { | |
3250 | .segnr = dev_addr->domain, | |
3251 | .busnr = dev_addr->bus, | |
3252 | .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function), | |
3253 | .flags = flags, | |
3254 | }; | |
3255 | int ret; | |
3256 | ||
3257 | dev_data.assigned_dev_id = | |
3258 | (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn; | |
3259 | ||
3260 | ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data); | |
3261 | if (ret < 0) { | |
3262 | return ret; | |
3263 | } | |
3264 | ||
3265 | *dev_id = dev_data.assigned_dev_id; | |
3266 | ||
3267 | return 0; | |
3268 | } | |
3269 | ||
3270 | int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id) | |
3271 | { | |
3272 | struct kvm_assigned_pci_dev dev_data = { | |
3273 | .assigned_dev_id = dev_id, | |
3274 | }; | |
3275 | ||
3276 | return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data); | |
3277 | } | |
3278 | ||
3279 | static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id, | |
3280 | uint32_t irq_type, uint32_t guest_irq) | |
3281 | { | |
3282 | struct kvm_assigned_irq assigned_irq = { | |
3283 | .assigned_dev_id = dev_id, | |
3284 | .guest_irq = guest_irq, | |
3285 | .flags = irq_type, | |
3286 | }; | |
3287 | ||
3288 | if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) { | |
3289 | return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq); | |
3290 | } else { | |
3291 | return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq); | |
3292 | } | |
3293 | } | |
3294 | ||
3295 | int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi, | |
3296 | uint32_t guest_irq) | |
3297 | { | |
3298 | uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX | | |
3299 | (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX); | |
3300 | ||
3301 | return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq); | |
3302 | } | |
3303 | ||
3304 | int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked) | |
3305 | { | |
3306 | struct kvm_assigned_pci_dev dev_data = { | |
3307 | .assigned_dev_id = dev_id, | |
3308 | .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0, | |
3309 | }; | |
3310 | ||
3311 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data); | |
3312 | } | |
3313 | ||
3314 | static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id, | |
3315 | uint32_t type) | |
3316 | { | |
3317 | struct kvm_assigned_irq assigned_irq = { | |
3318 | .assigned_dev_id = dev_id, | |
3319 | .flags = type, | |
3320 | }; | |
3321 | ||
3322 | return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq); | |
3323 | } | |
3324 | ||
3325 | int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi) | |
3326 | { | |
3327 | return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX | | |
3328 | (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX)); | |
3329 | } | |
3330 | ||
3331 | int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq) | |
3332 | { | |
3333 | return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI | | |
3334 | KVM_DEV_IRQ_GUEST_MSI, virq); | |
3335 | } | |
3336 | ||
3337 | int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id) | |
3338 | { | |
3339 | return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI | | |
3340 | KVM_DEV_IRQ_HOST_MSI); | |
3341 | } | |
3342 | ||
3343 | bool kvm_device_msix_supported(KVMState *s) | |
3344 | { | |
3345 | /* The kernel lacks a corresponding KVM_CAP, so we probe by calling | |
3346 | * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */ | |
3347 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT; | |
3348 | } | |
3349 | ||
3350 | int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id, | |
3351 | uint32_t nr_vectors) | |
3352 | { | |
3353 | struct kvm_assigned_msix_nr msix_nr = { | |
3354 | .assigned_dev_id = dev_id, | |
3355 | .entry_nr = nr_vectors, | |
3356 | }; | |
3357 | ||
3358 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr); | |
3359 | } | |
3360 | ||
3361 | int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector, | |
3362 | int virq) | |
3363 | { | |
3364 | struct kvm_assigned_msix_entry msix_entry = { | |
3365 | .assigned_dev_id = dev_id, | |
3366 | .gsi = virq, | |
3367 | .entry = vector, | |
3368 | }; | |
3369 | ||
3370 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry); | |
3371 | } | |
3372 | ||
3373 | int kvm_device_msix_assign(KVMState *s, uint32_t dev_id) | |
3374 | { | |
3375 | return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX | | |
3376 | KVM_DEV_IRQ_GUEST_MSIX, 0); | |
3377 | } | |
3378 | ||
3379 | int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id) | |
3380 | { | |
3381 | return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX | | |
3382 | KVM_DEV_IRQ_HOST_MSIX); | |
3383 | } | |
9e03a040 FB |
3384 | |
3385 | int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, | |
dc9f06ca | 3386 | uint64_t address, uint32_t data, PCIDevice *dev) |
9e03a040 | 3387 | { |
8b5ed7df PX |
3388 | X86IOMMUState *iommu = x86_iommu_get_default(); |
3389 | ||
3390 | if (iommu) { | |
3391 | int ret; | |
3392 | MSIMessage src, dst; | |
3393 | X86IOMMUClass *class = X86_IOMMU_GET_CLASS(iommu); | |
3394 | ||
3395 | src.address = route->u.msi.address_hi; | |
3396 | src.address <<= VTD_MSI_ADDR_HI_SHIFT; | |
3397 | src.address |= route->u.msi.address_lo; | |
3398 | src.data = route->u.msi.data; | |
3399 | ||
3400 | ret = class->int_remap(iommu, &src, &dst, dev ? \ | |
3401 | pci_requester_id(dev) : \ | |
3402 | X86_IOMMU_SID_INVALID); | |
3403 | if (ret) { | |
3404 | trace_kvm_x86_fixup_msi_error(route->gsi); | |
3405 | return 1; | |
3406 | } | |
3407 | ||
3408 | route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT; | |
3409 | route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK; | |
3410 | route->u.msi.data = dst.data; | |
3411 | } | |
3412 | ||
9e03a040 FB |
3413 | return 0; |
3414 | } | |
1850b6b7 | 3415 | |
38d87493 PX |
3416 | typedef struct MSIRouteEntry MSIRouteEntry; |
3417 | ||
3418 | struct MSIRouteEntry { | |
3419 | PCIDevice *dev; /* Device pointer */ | |
3420 | int vector; /* MSI/MSIX vector index */ | |
3421 | int virq; /* Virtual IRQ index */ | |
3422 | QLIST_ENTRY(MSIRouteEntry) list; | |
3423 | }; | |
3424 | ||
3425 | /* List of used GSI routes */ | |
3426 | static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \ | |
3427 | QLIST_HEAD_INITIALIZER(msi_route_list); | |
3428 | ||
e1d4fb2d PX |
3429 | static void kvm_update_msi_routes_all(void *private, bool global, |
3430 | uint32_t index, uint32_t mask) | |
3431 | { | |
3432 | int cnt = 0; | |
3433 | MSIRouteEntry *entry; | |
3434 | MSIMessage msg; | |
fd563564 PX |
3435 | PCIDevice *dev; |
3436 | ||
e1d4fb2d PX |
3437 | /* TODO: explicit route update */ |
3438 | QLIST_FOREACH(entry, &msi_route_list, list) { | |
3439 | cnt++; | |
fd563564 PX |
3440 | dev = entry->dev; |
3441 | if (!msix_enabled(dev) && !msi_enabled(dev)) { | |
3442 | continue; | |
3443 | } | |
3444 | msg = pci_get_msi_message(dev, entry->vector); | |
3445 | kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev); | |
e1d4fb2d | 3446 | } |
3f1fea0f | 3447 | kvm_irqchip_commit_routes(kvm_state); |
e1d4fb2d PX |
3448 | trace_kvm_x86_update_msi_routes(cnt); |
3449 | } | |
3450 | ||
38d87493 PX |
3451 | int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, |
3452 | int vector, PCIDevice *dev) | |
3453 | { | |
e1d4fb2d | 3454 | static bool notify_list_inited = false; |
38d87493 PX |
3455 | MSIRouteEntry *entry; |
3456 | ||
3457 | if (!dev) { | |
3458 | /* These are (possibly) IOAPIC routes only used for split | |
3459 | * kernel irqchip mode, while what we are housekeeping are | |
3460 | * PCI devices only. */ | |
3461 | return 0; | |
3462 | } | |
3463 | ||
3464 | entry = g_new0(MSIRouteEntry, 1); | |
3465 | entry->dev = dev; | |
3466 | entry->vector = vector; | |
3467 | entry->virq = route->gsi; | |
3468 | QLIST_INSERT_HEAD(&msi_route_list, entry, list); | |
3469 | ||
3470 | trace_kvm_x86_add_msi_route(route->gsi); | |
e1d4fb2d PX |
3471 | |
3472 | if (!notify_list_inited) { | |
3473 | /* For the first time we do add route, add ourselves into | |
3474 | * IOMMU's IEC notify list if needed. */ | |
3475 | X86IOMMUState *iommu = x86_iommu_get_default(); | |
3476 | if (iommu) { | |
3477 | x86_iommu_iec_register_notifier(iommu, | |
3478 | kvm_update_msi_routes_all, | |
3479 | NULL); | |
3480 | } | |
3481 | notify_list_inited = true; | |
3482 | } | |
38d87493 PX |
3483 | return 0; |
3484 | } | |
3485 | ||
3486 | int kvm_arch_release_virq_post(int virq) | |
3487 | { | |
3488 | MSIRouteEntry *entry, *next; | |
3489 | QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) { | |
3490 | if (entry->virq == virq) { | |
3491 | trace_kvm_x86_remove_msi_route(virq); | |
3492 | QLIST_REMOVE(entry, list); | |
3493 | break; | |
3494 | } | |
3495 | } | |
9e03a040 FB |
3496 | return 0; |
3497 | } | |
1850b6b7 EA |
3498 | |
3499 | int kvm_arch_msi_data_to_gsi(uint32_t data) | |
3500 | { | |
3501 | abort(); | |
3502 | } |