]> Git Repo - qemu.git/blame - target/arm/cpu.h
Merge remote-tracking branch 'remotes/mst/tags/for_upstream' into staging
[qemu.git] / target / arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af 18 */
2c0262af 19
07f5a258
MA
20#ifndef ARM_CPU_H
21#define ARM_CPU_H
3cf1e035 22
72b0cd35 23#include "kvm-consts.h"
2c4da50d 24#include "hw/registerfields.h"
74433bf0
RH
25#include "cpu-qom.h"
26#include "exec/cpu-defs.h"
9042c0e2 27
ca759f9e
AB
28/* ARM processors have a weak memory model */
29#define TCG_GUEST_DEFAULT_MO (0)
30
b8a9e8f1
FB
31#define EXCP_UDEF 1 /* undefined instruction */
32#define EXCP_SWI 2 /* software interrupt */
33#define EXCP_PREFETCH_ABORT 3
34#define EXCP_DATA_ABORT 4
b5ff1b31
FB
35#define EXCP_IRQ 5
36#define EXCP_FIQ 6
06c949e6 37#define EXCP_BKPT 7
9ee6e8bb 38#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 39#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
35979d71 40#define EXCP_HVC 11 /* HyperVisor Call */
607d98b8 41#define EXCP_HYP_TRAP 12
e0d6e6a5 42#define EXCP_SMC 13 /* Secure Monitor Call */
136e67e9
EI
43#define EXCP_VIRQ 14
44#define EXCP_VFIQ 15
19a6e31c 45#define EXCP_SEMIHOST 16 /* semihosting call */
7517748e 46#define EXCP_NOCP 17 /* v7M NOCP UsageFault */
e13886e3 47#define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
86f026de 48#define EXCP_STKOF 19 /* v8M STKOF UsageFault */
e33cf0f8 49#define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */
019076b0
PM
50#define EXCP_LSERR 21 /* v8M LSERR SecureFault */
51#define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */
2c4a7cc5 52/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
9ee6e8bb
PB
53
54#define ARMV7M_EXCP_RESET 1
55#define ARMV7M_EXCP_NMI 2
56#define ARMV7M_EXCP_HARD 3
57#define ARMV7M_EXCP_MEM 4
58#define ARMV7M_EXCP_BUS 5
59#define ARMV7M_EXCP_USAGE 6
1e577cc7 60#define ARMV7M_EXCP_SECURE 7
9ee6e8bb
PB
61#define ARMV7M_EXCP_SVC 11
62#define ARMV7M_EXCP_DEBUG 12
63#define ARMV7M_EXCP_PENDSV 14
64#define ARMV7M_EXCP_SYSTICK 15
2c0262af 65
acf94941
PM
66/* For M profile, some registers are banked secure vs non-secure;
67 * these are represented as a 2-element array where the first element
68 * is the non-secure copy and the second is the secure copy.
69 * When the CPU does not have implement the security extension then
70 * only the first element is used.
71 * This means that the copy for the current security state can be
72 * accessed via env->registerfield[env->v7m.secure] (whether the security
73 * extension is implemented or not).
74 */
4a16724f
PM
75enum {
76 M_REG_NS = 0,
77 M_REG_S = 1,
78 M_REG_NUM_BANKS = 2,
79};
acf94941 80
403946c0
RH
81/* ARM-specific interrupt pending bits. */
82#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
136e67e9
EI
83#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
84#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
403946c0 85
e4fe830b
PM
86/* The usual mapping for an AArch64 system register to its AArch32
87 * counterpart is for the 32 bit world to have access to the lower
88 * half only (with writes leaving the upper half untouched). It's
89 * therefore useful to be able to pass TCG the offset of the least
90 * significant half of a uint64_t struct member.
91 */
92#ifdef HOST_WORDS_BIGENDIAN
5cd8a118 93#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 94#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
95#else
96#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 97#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
98#endif
99
136e67e9 100/* Meanings of the ARMCPU object's four inbound GPIO lines */
7c1840b6
PM
101#define ARM_CPU_IRQ 0
102#define ARM_CPU_FIQ 1
136e67e9
EI
103#define ARM_CPU_VIRQ 2
104#define ARM_CPU_VFIQ 3
403946c0 105
aaa1f954
EI
106/* ARM-specific extra insn start words:
107 * 1: Conditional execution bits
108 * 2: Partial exception syndrome for data aborts
109 */
110#define TARGET_INSN_START_EXTRA_WORDS 2
111
112/* The 2nd extra word holding syndrome info for data aborts does not use
113 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
114 * help the sleb128 encoder do a better job.
115 * When restoring the CPU state, we shift it back up.
116 */
117#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
118#define ARM_INSN_START_WORD2_SHIFT 14
6ebbf390 119
b7bcbe95
FB
120/* We currently assume float and double are IEEE single and double
121 precision respectively.
122 Doing runtime conversions is tricky because VFP registers may contain
123 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
124 s<2n> maps to the least significant half of d<n>
125 s<2n+1> maps to the most significant half of d<n>
126 */
b7bcbe95 127
200bf5b7
AB
128/**
129 * DynamicGDBXMLInfo:
130 * @desc: Contains the XML descriptions.
448d4d14
AB
131 * @num: Number of the registers in this XML seen by GDB.
132 * @data: A union with data specific to the set of registers
133 * @cpregs_keys: Array that contains the corresponding Key of
134 * a given cpreg with the same order of the cpreg
135 * in the XML description.
200bf5b7
AB
136 */
137typedef struct DynamicGDBXMLInfo {
138 char *desc;
448d4d14
AB
139 int num;
140 union {
141 struct {
142 uint32_t *keys;
143 } cpregs;
144 } data;
200bf5b7
AB
145} DynamicGDBXMLInfo;
146
55d284af
PM
147/* CPU state for each instance of a generic timer (in cp15 c14) */
148typedef struct ARMGenericTimer {
149 uint64_t cval; /* Timer CompareValue register */
a7adc4b7 150 uint64_t ctl; /* Timer Control register */
55d284af
PM
151} ARMGenericTimer;
152
8c94b071
RH
153#define GTIMER_PHYS 0
154#define GTIMER_VIRT 1
155#define GTIMER_HYP 2
156#define GTIMER_SEC 3
157#define GTIMER_HYPVIRT 4
158#define NUM_GTIMERS 5
55d284af 159
11f136ee
FA
160typedef struct {
161 uint64_t raw_tcr;
162 uint32_t mask;
163 uint32_t base_mask;
164} TCR;
165
c39c2b90
RH
166/* Define a maximum sized vector register.
167 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
168 * For 64-bit, this is a 2048-bit SVE register.
169 *
170 * Note that the mapping between S, D, and Q views of the register bank
171 * differs between AArch64 and AArch32.
172 * In AArch32:
173 * Qn = regs[n].d[1]:regs[n].d[0]
174 * Dn = regs[n / 2].d[n & 1]
175 * Sn = regs[n / 4].d[n % 4 / 2],
176 * bits 31..0 for even n, and bits 63..32 for odd n
177 * (and regs[16] to regs[31] are inaccessible)
178 * In AArch64:
179 * Zn = regs[n].d[*]
180 * Qn = regs[n].d[1]:regs[n].d[0]
181 * Dn = regs[n].d[0]
182 * Sn = regs[n].d[0] bits 31..0
d0e69ea8 183 * Hn = regs[n].d[0] bits 15..0
c39c2b90
RH
184 *
185 * This corresponds to the architecturally defined mapping between
186 * the two execution states, and means we do not need to explicitly
187 * map these registers when changing states.
188 *
189 * Align the data for use with TCG host vector operations.
190 */
191
192#ifdef TARGET_AARCH64
193# define ARM_MAX_VQ 16
0df9142d 194void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
c39c2b90
RH
195#else
196# define ARM_MAX_VQ 1
0df9142d 197static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { }
c39c2b90
RH
198#endif
199
200typedef struct ARMVectorReg {
201 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
202} ARMVectorReg;
203
3c7d3086 204#ifdef TARGET_AARCH64
991ad91b 205/* In AArch32 mode, predicate registers do not exist at all. */
3c7d3086 206typedef struct ARMPredicateReg {
46417784 207 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
3c7d3086 208} ARMPredicateReg;
991ad91b
RH
209
210/* In AArch32 mode, PAC keys do not exist at all. */
211typedef struct ARMPACKey {
212 uint64_t lo, hi;
213} ARMPACKey;
3c7d3086
RH
214#endif
215
c39c2b90 216
2c0262af 217typedef struct CPUARMState {
b5ff1b31 218 /* Regs for current mode. */
2c0262af 219 uint32_t regs[16];
3926cc84
AG
220
221 /* 32/64 switch only happens when taking and returning from
222 * exceptions so the overlap semantics are taken care of then
223 * instead of having a complicated union.
224 */
225 /* Regs for A64 mode. */
226 uint64_t xregs[32];
227 uint64_t pc;
d356312f
PM
228 /* PSTATE isn't an architectural register for ARMv8. However, it is
229 * convenient for us to assemble the underlying state into a 32 bit format
230 * identical to the architectural format used for the SPSR. (This is also
231 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
232 * 'pstate' register are.) Of the PSTATE bits:
233 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
234 * semantics as for AArch32, as described in the comments on each field)
235 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
4cc35614 236 * DAIF (exception masks) are kept in env->daif
f6e52eaa 237 * BTYPE is kept in env->btype
d356312f 238 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
239 */
240 uint32_t pstate;
241 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
242
fdd1b228
RH
243 /* Cached TBFLAGS state. See below for which bits are included. */
244 uint32_t hflags;
245
b90372ad 246 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 247 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
248 the whole CPSR. */
249 uint32_t uncached_cpsr;
250 uint32_t spsr;
251
252 /* Banked registers. */
28c9457d 253 uint64_t banked_spsr[8];
0b7d409d
FA
254 uint32_t banked_r13[8];
255 uint32_t banked_r14[8];
3b46e624 256
b5ff1b31
FB
257 /* These hold r8-r12. */
258 uint32_t usr_regs[5];
259 uint32_t fiq_regs[5];
3b46e624 260
2c0262af
FB
261 /* cpsr flag cache for faster execution */
262 uint32_t CF; /* 0 or 1 */
263 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
264 uint32_t NF; /* N is bit 31. All other bits are undefined. */
265 uint32_t ZF; /* Z set if zero. */
99c475ab 266 uint32_t QF; /* 0 or 1 */
9ee6e8bb 267 uint32_t GE; /* cpsr[19:16] */
b26eefb6 268 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
9ee6e8bb 269 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
f6e52eaa 270 uint32_t btype; /* BTI branch type. spsr[11:10]. */
b6af0975 271 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
2c0262af 272
1b174238 273 uint64_t elr_el[4]; /* AArch64 exception link regs */
73fb3b76 274 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
a0618a19 275
b5ff1b31
FB
276 /* System control coprocessor (cp15) */
277 struct {
40f137e1 278 uint32_t c0_cpuid;
b85a1fd6
FA
279 union { /* Cache size selection */
280 struct {
281 uint64_t _unused_csselr0;
282 uint64_t csselr_ns;
283 uint64_t _unused_csselr1;
284 uint64_t csselr_s;
285 };
286 uint64_t csselr_el[4];
287 };
137feaa9
FA
288 union { /* System control register. */
289 struct {
290 uint64_t _unused_sctlr;
291 uint64_t sctlr_ns;
292 uint64_t hsctlr;
293 uint64_t sctlr_s;
294 };
295 uint64_t sctlr_el[4];
296 };
7ebd5f2e 297 uint64_t cpacr_el1; /* Architectural feature access control register */
c6f19164 298 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
610c3c8a 299 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
144634ae 300 uint64_t sder; /* Secure debug enable register. */
77022576 301 uint32_t nsacr; /* Non-secure access control register. */
7dd8c9af
FA
302 union { /* MMU translation table base 0. */
303 struct {
304 uint64_t _unused_ttbr0_0;
305 uint64_t ttbr0_ns;
306 uint64_t _unused_ttbr0_1;
307 uint64_t ttbr0_s;
308 };
309 uint64_t ttbr0_el[4];
310 };
311 union { /* MMU translation table base 1. */
312 struct {
313 uint64_t _unused_ttbr1_0;
314 uint64_t ttbr1_ns;
315 uint64_t _unused_ttbr1_1;
316 uint64_t ttbr1_s;
317 };
318 uint64_t ttbr1_el[4];
319 };
b698e9cf 320 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
11f136ee
FA
321 /* MMU translation table base control. */
322 TCR tcr_el[4];
68e9c2fe 323 TCR vtcr_el2; /* Virtualization Translation Control. */
67cc32eb
VL
324 uint32_t c2_data; /* MPU data cacheable bits. */
325 uint32_t c2_insn; /* MPU instruction cacheable bits. */
0c17d68c
FA
326 union { /* MMU domain access control register
327 * MPU write buffer control.
328 */
329 struct {
330 uint64_t dacr_ns;
331 uint64_t dacr_s;
332 };
333 struct {
334 uint64_t dacr32_el2;
335 };
336 };
7e09797c
PM
337 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
338 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
f149e3e8 339 uint64_t hcr_el2; /* Hypervisor configuration register */
64e0e2de 340 uint64_t scr_el3; /* Secure configuration register. */
88ca1c2d
FA
341 union { /* Fault status registers. */
342 struct {
343 uint64_t ifsr_ns;
344 uint64_t ifsr_s;
345 };
346 struct {
347 uint64_t ifsr32_el2;
348 };
349 };
4a7e2d73
FA
350 union {
351 struct {
352 uint64_t _unused_dfsr;
353 uint64_t dfsr_ns;
354 uint64_t hsr;
355 uint64_t dfsr_s;
356 };
357 uint64_t esr_el[4];
358 };
ce819861 359 uint32_t c6_region[8]; /* MPU base/size registers. */
b848ce2b
FA
360 union { /* Fault address registers. */
361 struct {
362 uint64_t _unused_far0;
363#ifdef HOST_WORDS_BIGENDIAN
364 uint32_t ifar_ns;
365 uint32_t dfar_ns;
366 uint32_t ifar_s;
367 uint32_t dfar_s;
368#else
369 uint32_t dfar_ns;
370 uint32_t ifar_ns;
371 uint32_t dfar_s;
372 uint32_t ifar_s;
373#endif
374 uint64_t _unused_far3;
375 };
376 uint64_t far_el[4];
377 };
59e05530 378 uint64_t hpfar_el2;
2a5a9abd 379 uint64_t hstr_el2;
01c097f7
FA
380 union { /* Translation result. */
381 struct {
382 uint64_t _unused_par_0;
383 uint64_t par_ns;
384 uint64_t _unused_par_1;
385 uint64_t par_s;
386 };
387 uint64_t par_el[4];
388 };
6cb0b013 389
b5ff1b31
FB
390 uint32_t c9_insn; /* Cache lockdown registers. */
391 uint32_t c9_data;
8521466b
AF
392 uint64_t c9_pmcr; /* performance monitor control register */
393 uint64_t c9_pmcnten; /* perf monitor counter enables */
e4e91a21
AL
394 uint64_t c9_pmovsr; /* perf monitor overflow status */
395 uint64_t c9_pmuserenr; /* perf monitor user enable */
6b040780 396 uint64_t c9_pmselr; /* perf monitor counter selection register */
e6ec5457 397 uint64_t c9_pminten; /* perf monitor interrupt enables */
be693c87
GB
398 union { /* Memory attribute redirection */
399 struct {
400#ifdef HOST_WORDS_BIGENDIAN
401 uint64_t _unused_mair_0;
402 uint32_t mair1_ns;
403 uint32_t mair0_ns;
404 uint64_t _unused_mair_1;
405 uint32_t mair1_s;
406 uint32_t mair0_s;
407#else
408 uint64_t _unused_mair_0;
409 uint32_t mair0_ns;
410 uint32_t mair1_ns;
411 uint64_t _unused_mair_1;
412 uint32_t mair0_s;
413 uint32_t mair1_s;
414#endif
415 };
416 uint64_t mair_el[4];
417 };
fb6c91ba
GB
418 union { /* vector base address register */
419 struct {
420 uint64_t _unused_vbar;
421 uint64_t vbar_ns;
422 uint64_t hvbar;
423 uint64_t vbar_s;
424 };
425 uint64_t vbar_el[4];
426 };
e89e51a1 427 uint32_t mvbar; /* (monitor) vector base address register */
54bf36ed
FA
428 struct { /* FCSE PID. */
429 uint32_t fcseidr_ns;
430 uint32_t fcseidr_s;
431 };
432 union { /* Context ID. */
433 struct {
434 uint64_t _unused_contextidr_0;
435 uint64_t contextidr_ns;
436 uint64_t _unused_contextidr_1;
437 uint64_t contextidr_s;
438 };
439 uint64_t contextidr_el[4];
440 };
441 union { /* User RW Thread register. */
442 struct {
443 uint64_t tpidrurw_ns;
444 uint64_t tpidrprw_ns;
445 uint64_t htpidr;
446 uint64_t _tpidr_el3;
447 };
448 uint64_t tpidr_el[4];
449 };
450 /* The secure banks of these registers don't map anywhere */
451 uint64_t tpidrurw_s;
452 uint64_t tpidrprw_s;
453 uint64_t tpidruro_s;
454
455 union { /* User RO Thread register. */
456 uint64_t tpidruro_ns;
457 uint64_t tpidrro_el[1];
458 };
a7adc4b7
PM
459 uint64_t c14_cntfrq; /* Counter Frequency register */
460 uint64_t c14_cntkctl; /* Timer Control register */
0b6440af 461 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
edac4d8a 462 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
55d284af 463 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 464 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
465 uint32_t c15_ticonfig; /* TI925T configuration byte. */
466 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
467 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
468 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
469 uint32_t c15_config_base_address; /* SCU base address. */
470 uint32_t c15_diagnostic; /* diagnostic register */
471 uint32_t c15_power_diagnostic;
472 uint32_t c15_power_control; /* power control */
0b45451e
PM
473 uint64_t dbgbvr[16]; /* breakpoint value registers */
474 uint64_t dbgbcr[16]; /* breakpoint control registers */
475 uint64_t dbgwvr[16]; /* watchpoint value registers */
476 uint64_t dbgwcr[16]; /* watchpoint control registers */
3a298203 477 uint64_t mdscr_el1;
1424ca8d 478 uint64_t oslsr_el1; /* OS Lock Status */
14cc7b54 479 uint64_t mdcr_el2;
5513c3ab 480 uint64_t mdcr_el3;
5d05b9d4
AL
481 /* Stores the architectural value of the counter *the last time it was
482 * updated* by pmccntr_op_start. Accesses should always be surrounded
483 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
484 * architecturally-correct value is being read/set.
7c2cb42b 485 */
c92c0687 486 uint64_t c15_ccnt;
5d05b9d4
AL
487 /* Stores the delta between the architectural value and the underlying
488 * cycle count during normal operation. It is used to update c15_ccnt
489 * to be the correct architectural value before accesses. During
490 * accesses, c15_ccnt_delta contains the underlying count being used
491 * for the access, after which it reverts to the delta value in
492 * pmccntr_op_finish.
493 */
494 uint64_t c15_ccnt_delta;
5ecdd3e4
AL
495 uint64_t c14_pmevcntr[31];
496 uint64_t c14_pmevcntr_delta[31];
497 uint64_t c14_pmevtyper[31];
8521466b 498 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
731de9e6 499 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
f0d574d6 500 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
b5ff1b31 501 } cp15;
40f137e1 502
9ee6e8bb 503 struct {
fb602cb7
PM
504 /* M profile has up to 4 stack pointers:
505 * a Main Stack Pointer and a Process Stack Pointer for each
506 * of the Secure and Non-Secure states. (If the CPU doesn't support
507 * the security extension then it has only two SPs.)
508 * In QEMU we always store the currently active SP in regs[13],
509 * and the non-active SP for the current security state in
510 * v7m.other_sp. The stack pointers for the inactive security state
511 * are stored in other_ss_msp and other_ss_psp.
512 * switch_v7m_security_state() is responsible for rearranging them
513 * when we change security state.
514 */
9ee6e8bb 515 uint32_t other_sp;
fb602cb7
PM
516 uint32_t other_ss_msp;
517 uint32_t other_ss_psp;
4a16724f
PM
518 uint32_t vecbase[M_REG_NUM_BANKS];
519 uint32_t basepri[M_REG_NUM_BANKS];
520 uint32_t control[M_REG_NUM_BANKS];
521 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
522 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
2c4da50d
PM
523 uint32_t hfsr; /* HardFault Status */
524 uint32_t dfsr; /* Debug Fault Status Register */
bed079da 525 uint32_t sfsr; /* Secure Fault Status Register */
4a16724f 526 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
2c4da50d 527 uint32_t bfar; /* BusFault Address */
bed079da 528 uint32_t sfar; /* Secure Fault Address Register */
4a16724f 529 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
9ee6e8bb 530 int exception;
4a16724f
PM
531 uint32_t primask[M_REG_NUM_BANKS];
532 uint32_t faultmask[M_REG_NUM_BANKS];
3b2e9344 533 uint32_t aircr; /* only holds r/w state if security extn implemented */
1e577cc7 534 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
43bbce7f 535 uint32_t csselr[M_REG_NUM_BANKS];
24ac0fb1 536 uint32_t scr[M_REG_NUM_BANKS];
57bb3156
PM
537 uint32_t msplim[M_REG_NUM_BANKS];
538 uint32_t psplim[M_REG_NUM_BANKS];
d33abe82
PM
539 uint32_t fpcar[M_REG_NUM_BANKS];
540 uint32_t fpccr[M_REG_NUM_BANKS];
541 uint32_t fpdscr[M_REG_NUM_BANKS];
542 uint32_t cpacr[M_REG_NUM_BANKS];
543 uint32_t nsacr;
9ee6e8bb
PB
544 } v7m;
545
abf1172f
PM
546 /* Information associated with an exception about to be taken:
547 * code which raises an exception must set cs->exception_index and
548 * the relevant parts of this structure; the cpu_do_interrupt function
549 * will then set the guest-visible registers as part of the exception
550 * entry process.
551 */
552 struct {
553 uint32_t syndrome; /* AArch64 format syndrome register */
554 uint32_t fsr; /* AArch32 format fault status register info */
555 uint64_t vaddress; /* virtual addr associated with exception, if any */
73710361 556 uint32_t target_el; /* EL the exception should be targeted for */
abf1172f
PM
557 /* If we implement EL2 we will also need to store information
558 * about the intermediate physical address for stage 2 faults.
559 */
560 } exception;
561
202ccb6b
DG
562 /* Information associated with an SError */
563 struct {
564 uint8_t pending;
565 uint8_t has_esr;
566 uint64_t esr;
567 } serror;
568
ed89f078
PM
569 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
570 uint32_t irq_line_state;
571
fe1479c3
PB
572 /* Thumb-2 EE state. */
573 uint32_t teecr;
574 uint32_t teehbr;
575
b7bcbe95
FB
576 /* VFP coprocessor state. */
577 struct {
c39c2b90 578 ARMVectorReg zregs[32];
b7bcbe95 579
3c7d3086
RH
580#ifdef TARGET_AARCH64
581 /* Store FFR as pregs[16] to make it easier to treat as any other. */
028e2a7b 582#define FFR_PRED_NUM 16
3c7d3086 583 ARMPredicateReg pregs[17];
516e246a
RH
584 /* Scratch space for aa64 sve predicate temporary. */
585 ARMPredicateReg preg_tmp;
3c7d3086
RH
586#endif
587
b7bcbe95 588 /* We store these fpcsr fields separately for convenience. */
a4d58462 589 uint32_t qc[4] QEMU_ALIGNED(16);
b7bcbe95
FB
590 int vec_len;
591 int vec_stride;
592
a4d58462
RH
593 uint32_t xregs[16];
594
516e246a 595 /* Scratch space for aa32 neon expansion. */
9ee6e8bb 596 uint32_t scratch[8];
3b46e624 597
d81ce0ef
AB
598 /* There are a number of distinct float control structures:
599 *
600 * fp_status: is the "normal" fp status.
601 * fp_status_fp16: used for half-precision calculations
602 * standard_fp_status : the ARM "Standard FPSCR Value"
603 *
604 * Half-precision operations are governed by a separate
605 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
606 * status structure to control this.
607 *
608 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
609 * round-to-nearest and is used by any operations (generally
610 * Neon) which the architecture defines as controlled by the
611 * standard FPSCR value rather than the FPSCR.
3a492f3a
PM
612 *
613 * To avoid having to transfer exception bits around, we simply
614 * say that the FPSCR cumulative exception flags are the logical
d81ce0ef 615 * OR of the flags in the three fp statuses. This relies on the
3a492f3a
PM
616 * only thing which needs to read the exception flags being
617 * an explicit FPSCR read.
618 */
53cd6637 619 float_status fp_status;
d81ce0ef 620 float_status fp_status_f16;
3a492f3a 621 float_status standard_fp_status;
5be5e8ed
RH
622
623 /* ZCR_EL[1-3] */
624 uint64_t zcr_el[4];
b7bcbe95 625 } vfp;
03d05e2d
PM
626 uint64_t exclusive_addr;
627 uint64_t exclusive_val;
628 uint64_t exclusive_high;
b7bcbe95 629
18c9b560
AZ
630 /* iwMMXt coprocessor state. */
631 struct {
632 uint64_t regs[16];
633 uint64_t val;
634
635 uint32_t cregs[16];
636 } iwmmxt;
637
991ad91b 638#ifdef TARGET_AARCH64
108b3ba8
RH
639 struct {
640 ARMPACKey apia;
641 ARMPACKey apib;
642 ARMPACKey apda;
643 ARMPACKey apdb;
644 ARMPACKey apga;
645 } keys;
991ad91b
RH
646#endif
647
ce4defa0
PB
648#if defined(CONFIG_USER_ONLY)
649 /* For usermode syscall translation. */
650 int eabi;
651#endif
652
46747d15 653 struct CPUBreakpoint *cpu_breakpoint[16];
9ee98ce8
PM
654 struct CPUWatchpoint *cpu_watchpoint[16];
655
1f5c00cf
AB
656 /* Fields up to this point are cleared by a CPU reset */
657 struct {} end_reset_fields;
658
e8b5fae5 659 /* Fields after this point are preserved across CPU reset. */
9ba8c3f4 660
581be094 661 /* Internal CPU feature flags. */
918f5dca 662 uint64_t features;
581be094 663
6cb0b013
PC
664 /* PMSAv7 MPU */
665 struct {
666 uint32_t *drbar;
667 uint32_t *drsr;
668 uint32_t *dracr;
4a16724f 669 uint32_t rnr[M_REG_NUM_BANKS];
6cb0b013
PC
670 } pmsav7;
671
0e1a46bb
PM
672 /* PMSAv8 MPU */
673 struct {
674 /* The PMSAv8 implementation also shares some PMSAv7 config
675 * and state:
676 * pmsav7.rnr (region number register)
677 * pmsav7_dregion (number of configured regions)
678 */
4a16724f
PM
679 uint32_t *rbar[M_REG_NUM_BANKS];
680 uint32_t *rlar[M_REG_NUM_BANKS];
681 uint32_t mair0[M_REG_NUM_BANKS];
682 uint32_t mair1[M_REG_NUM_BANKS];
0e1a46bb
PM
683 } pmsav8;
684
9901c576
PM
685 /* v8M SAU */
686 struct {
687 uint32_t *rbar;
688 uint32_t *rlar;
689 uint32_t rnr;
690 uint32_t ctrl;
691 } sau;
692
983fe826 693 void *nvic;
462a8bc6 694 const struct arm_boot_info *boot_info;
d3a3e529
VK
695 /* Store GICv3CPUState to access from this struct */
696 void *gicv3state;
2c0262af
FB
697} CPUARMState;
698
bd7d00fc 699/**
08267487 700 * ARMELChangeHookFn:
bd7d00fc
PM
701 * type of a function which can be registered via arm_register_el_change_hook()
702 * to get callbacks when the CPU changes its exception level or mode.
703 */
08267487
AL
704typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
705typedef struct ARMELChangeHook ARMELChangeHook;
706struct ARMELChangeHook {
707 ARMELChangeHookFn *hook;
708 void *opaque;
709 QLIST_ENTRY(ARMELChangeHook) node;
710};
062ba099
AB
711
712/* These values map onto the return values for
713 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
714typedef enum ARMPSCIState {
d5affb0d
AJ
715 PSCI_ON = 0,
716 PSCI_OFF = 1,
062ba099
AB
717 PSCI_ON_PENDING = 2
718} ARMPSCIState;
719
962fcbf2
RH
720typedef struct ARMISARegisters ARMISARegisters;
721
74e75564
PB
722/**
723 * ARMCPU:
724 * @env: #CPUARMState
725 *
726 * An ARM CPU core.
727 */
728struct ARMCPU {
729 /*< private >*/
730 CPUState parent_obj;
731 /*< public >*/
732
5b146dc7 733 CPUNegativeOffsetState neg;
74e75564
PB
734 CPUARMState env;
735
736 /* Coprocessor information */
737 GHashTable *cp_regs;
738 /* For marshalling (mostly coprocessor) register state between the
739 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
740 * we use these arrays.
741 */
742 /* List of register indexes managed via these arrays; (full KVM style
743 * 64 bit indexes, not CPRegInfo 32 bit indexes)
744 */
745 uint64_t *cpreg_indexes;
746 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
747 uint64_t *cpreg_values;
748 /* Length of the indexes, values, reset_values arrays */
749 int32_t cpreg_array_len;
750 /* These are used only for migration: incoming data arrives in
751 * these fields and is sanity checked in post_load before copying
752 * to the working data structures above.
753 */
754 uint64_t *cpreg_vmstate_indexes;
755 uint64_t *cpreg_vmstate_values;
756 int32_t cpreg_vmstate_array_len;
757
448d4d14 758 DynamicGDBXMLInfo dyn_sysreg_xml;
d12379c5 759 DynamicGDBXMLInfo dyn_svereg_xml;
200bf5b7 760
74e75564
PB
761 /* Timers used by the generic (architected) timer */
762 QEMUTimer *gt_timer[NUM_GTIMERS];
4e7beb0c
AL
763 /*
764 * Timer used by the PMU. Its state is restored after migration by
765 * pmu_op_finish() - it does not need other handling during migration
766 */
767 QEMUTimer *pmu_timer;
74e75564
PB
768 /* GPIO outputs for generic timer */
769 qemu_irq gt_timer_outputs[NUM_GTIMERS];
aa1b3111
PM
770 /* GPIO output for GICv3 maintenance interrupt signal */
771 qemu_irq gicv3_maintenance_interrupt;
07f48730
AJ
772 /* GPIO output for the PMU interrupt */
773 qemu_irq pmu_interrupt;
74e75564
PB
774
775 /* MemoryRegion to use for secure physical accesses */
776 MemoryRegion *secure_memory;
777
181962fd
PM
778 /* For v8M, pointer to the IDAU interface provided by board/SoC */
779 Object *idau;
780
74e75564
PB
781 /* 'compatible' string for this CPU for Linux device trees */
782 const char *dtb_compatible;
783
784 /* PSCI version for this CPU
785 * Bits[31:16] = Major Version
786 * Bits[15:0] = Minor Version
787 */
788 uint32_t psci_version;
789
790 /* Should CPU start in PSCI powered-off state? */
791 bool start_powered_off;
062ba099
AB
792
793 /* Current power state, access guarded by BQL */
794 ARMPSCIState power_state;
795
c25bd18a
PM
796 /* CPU has virtualization extension */
797 bool has_el2;
74e75564
PB
798 /* CPU has security extension */
799 bool has_el3;
5c0a3819
SZ
800 /* CPU has PMU (Performance Monitor Unit) */
801 bool has_pmu;
97a28b0e
PM
802 /* CPU has VFP */
803 bool has_vfp;
804 /* CPU has Neon */
805 bool has_neon;
ea90db0a
PM
806 /* CPU has M-profile DSP extension */
807 bool has_dsp;
74e75564
PB
808
809 /* CPU has memory protection unit */
810 bool has_mpu;
811 /* PMSAv7 MPU number of supported regions */
812 uint32_t pmsav7_dregion;
9901c576
PM
813 /* v8M SAU number of supported regions */
814 uint32_t sau_sregion;
74e75564
PB
815
816 /* PSCI conduit used to invoke PSCI methods
817 * 0 - disabled, 1 - smc, 2 - hvc
818 */
819 uint32_t psci_conduit;
820
38e2a77c
PM
821 /* For v8M, initial value of the Secure VTOR */
822 uint32_t init_svtor;
823
74e75564
PB
824 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
825 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
826 */
827 uint32_t kvm_target;
828
829 /* KVM init features for this CPU */
830 uint32_t kvm_init_features[7];
831
e5ac4200
AJ
832 /* KVM CPU state */
833
834 /* KVM virtual time adjustment */
835 bool kvm_adjvtime;
836 bool kvm_vtime_dirty;
837 uint64_t kvm_vtime;
838
74e75564
PB
839 /* Uniprocessor system with MP extensions */
840 bool mp_is_up;
841
c4487d76
PM
842 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
843 * and the probe failed (so we need to report the error in realize)
844 */
845 bool host_cpu_probe_failed;
846
f9a69711
AF
847 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
848 * register.
849 */
850 int32_t core_count;
851
74e75564
PB
852 /* The instance init functions for implementation-specific subclasses
853 * set these fields to specify the implementation-dependent values of
854 * various constant registers and reset values of non-constant
855 * registers.
856 * Some of these might become QOM properties eventually.
857 * Field names match the official register names as defined in the
858 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
859 * is used for reset values of non-constant registers; no reset_
860 * prefix means a constant register.
47576b94
RH
861 * Some of these registers are split out into a substructure that
862 * is shared with the translators to control the ISA.
1548a7b2
PM
863 *
864 * Note that if you add an ID register to the ARMISARegisters struct
865 * you need to also update the 32-bit and 64-bit versions of the
866 * kvm_arm_get_host_cpu_features() function to correctly populate the
867 * field by reading the value from the KVM vCPU.
74e75564 868 */
47576b94
RH
869 struct ARMISARegisters {
870 uint32_t id_isar0;
871 uint32_t id_isar1;
872 uint32_t id_isar2;
873 uint32_t id_isar3;
874 uint32_t id_isar4;
875 uint32_t id_isar5;
876 uint32_t id_isar6;
10054016
PM
877 uint32_t id_mmfr0;
878 uint32_t id_mmfr1;
879 uint32_t id_mmfr2;
880 uint32_t id_mmfr3;
881 uint32_t id_mmfr4;
47576b94
RH
882 uint32_t mvfr0;
883 uint32_t mvfr1;
884 uint32_t mvfr2;
a6179538 885 uint32_t id_dfr0;
4426d361 886 uint32_t dbgdidr;
47576b94
RH
887 uint64_t id_aa64isar0;
888 uint64_t id_aa64isar1;
889 uint64_t id_aa64pfr0;
890 uint64_t id_aa64pfr1;
3dc91ddb
PM
891 uint64_t id_aa64mmfr0;
892 uint64_t id_aa64mmfr1;
64761e10 893 uint64_t id_aa64mmfr2;
2a609df8
PM
894 uint64_t id_aa64dfr0;
895 uint64_t id_aa64dfr1;
47576b94 896 } isar;
74e75564
PB
897 uint32_t midr;
898 uint32_t revidr;
899 uint32_t reset_fpsid;
74e75564
PB
900 uint32_t ctr;
901 uint32_t reset_sctlr;
902 uint32_t id_pfr0;
903 uint32_t id_pfr1;
cad86737
AL
904 uint64_t pmceid0;
905 uint64_t pmceid1;
74e75564 906 uint32_t id_afr0;
74e75564
PB
907 uint64_t id_aa64afr0;
908 uint64_t id_aa64afr1;
74e75564
PB
909 uint32_t clidr;
910 uint64_t mp_affinity; /* MP ID without feature bits */
911 /* The elements of this array are the CCSIDR values for each cache,
912 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
913 */
957e6155 914 uint64_t ccsidr[16];
74e75564
PB
915 uint64_t reset_cbar;
916 uint32_t reset_auxcr;
917 bool reset_hivecs;
918 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
919 uint32_t dcz_blocksize;
920 uint64_t rvbar;
bd7d00fc 921
e45868a3
PM
922 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
923 int gic_num_lrs; /* number of list registers */
924 int gic_vpribits; /* number of virtual priority bits */
925 int gic_vprebits; /* number of virtual preemption bits */
926
3a062d57
JB
927 /* Whether the cfgend input is high (i.e. this CPU should reset into
928 * big-endian mode). This setting isn't used directly: instead it modifies
929 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
930 * architecture version.
931 */
932 bool cfgend;
933
b5c53d1b 934 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
08267487 935 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
15f8b142
IM
936
937 int32_t node_id; /* NUMA node this CPU belongs to */
5d721b78
AG
938
939 /* Used to synchronize KVM and QEMU in-kernel device levels */
940 uint8_t device_irq_level;
adf92eab
RH
941
942 /* Used to set the maximum vector length the cpu will support. */
943 uint32_t sve_max_vq;
0df9142d
AJ
944
945 /*
946 * In sve_vq_map each set bit is a supported vector length of
947 * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector
948 * length in quadwords.
949 *
950 * While processing properties during initialization, corresponding
951 * sve_vq_init bits are set for bits in sve_vq_map that have been
952 * set by properties.
953 */
954 DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ);
955 DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ);
7def8754
AJ
956
957 /* Generic timer counter frequency, in Hz */
958 uint64_t gt_cntfrq_hz;
74e75564
PB
959};
960
7def8754
AJ
961unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
962
51e5ef45
MAL
963void arm_cpu_post_init(Object *obj);
964
46de5913
IM
965uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
966
74e75564 967#ifndef CONFIG_USER_ONLY
8a9358cc 968extern const VMStateDescription vmstate_arm_cpu;
74e75564
PB
969#endif
970
971void arm_cpu_do_interrupt(CPUState *cpu);
972void arm_v7m_cpu_do_interrupt(CPUState *cpu);
973bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
974
74e75564
PB
975hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
976 MemTxAttrs *attrs);
977
a010bdbe 978int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
74e75564
PB
979int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
980
d12379c5
AB
981/*
982 * Helpers to dynamically generates XML descriptions of the sysregs
983 * and SVE registers. Returns the number of registers in each set.
200bf5b7 984 */
32d6e32a 985int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg);
d12379c5 986int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
200bf5b7
AB
987
988/* Returns the dynamically generated XML for the gdb stub.
989 * Returns a pointer to the XML contents for the specified XML file or NULL
990 * if the XML name doesn't match the predefined one.
991 */
992const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
993
74e75564
PB
994int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
995 int cpuid, void *opaque);
996int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
997 int cpuid, void *opaque);
998
999#ifdef TARGET_AARCH64
a010bdbe 1000int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
74e75564 1001int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
85fc7167 1002void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
9a05f7b6
RH
1003void aarch64_sve_change_el(CPUARMState *env, int old_el,
1004 int new_el, bool el0_a64);
87014c6b 1005void aarch64_add_sve_properties(Object *obj);
538baab2
AJ
1006
1007/*
1008 * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1009 * The byte at offset i from the start of the in-memory representation contains
1010 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1011 * lowest offsets are stored in the lowest memory addresses, then that nearly
1012 * matches QEMU's representation, which is to use an array of host-endian
1013 * uint64_t's, where the lower offsets are at the lower indices. To complete
1014 * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1015 */
1016static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1017{
1018#ifdef HOST_WORDS_BIGENDIAN
1019 int i;
1020
1021 for (i = 0; i < nr; ++i) {
1022 dst[i] = bswap64(src[i]);
1023 }
1024
1025 return dst;
1026#else
1027 return src;
1028#endif
1029}
1030
0ab5953b
RH
1031#else
1032static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
9a05f7b6
RH
1033static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1034 int n, bool a)
1035{ }
87014c6b 1036static inline void aarch64_add_sve_properties(Object *obj) { }
74e75564 1037#endif
778c3a06 1038
91f78c58
PMD
1039#if !defined(CONFIG_TCG)
1040static inline target_ulong do_arm_semihosting(CPUARMState *env)
1041{
1042 g_assert_not_reached();
1043}
1044#else
faacc041 1045target_ulong do_arm_semihosting(CPUARMState *env);
91f78c58 1046#endif
ce02049d
GB
1047void aarch64_sync_32_to_64(CPUARMState *env);
1048void aarch64_sync_64_to_32(CPUARMState *env);
b5ff1b31 1049
ced31551
RH
1050int fp_exception_el(CPUARMState *env, int cur_el);
1051int sve_exception_el(CPUARMState *env, int cur_el);
1052uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
1053
3926cc84
AG
1054static inline bool is_a64(CPUARMState *env)
1055{
1056 return env->aarch64;
1057}
1058
2c0262af
FB
1059/* you can call this signal handler from your SIGBUS and SIGSEGV
1060 signal handlers to inform the virtual CPU of exceptions. non zero
1061 is returned if the signal was handled by the virtual CPU. */
5fafdf24 1062int cpu_arm_signal_handler(int host_signum, void *pinfo,
2c0262af
FB
1063 void *puc);
1064
5d05b9d4
AL
1065/**
1066 * pmu_op_start/finish
ec7b4ce4
AF
1067 * @env: CPUARMState
1068 *
5d05b9d4
AL
1069 * Convert all PMU counters between their delta form (the typical mode when
1070 * they are enabled) and the guest-visible values. These two calls must
1071 * surround any action which might affect the counters.
ec7b4ce4 1072 */
5d05b9d4
AL
1073void pmu_op_start(CPUARMState *env);
1074void pmu_op_finish(CPUARMState *env);
ec7b4ce4 1075
4e7beb0c
AL
1076/*
1077 * Called when a PMU counter is due to overflow
1078 */
1079void arm_pmu_timer_cb(void *opaque);
1080
033614c4
AL
1081/**
1082 * Functions to register as EL change hooks for PMU mode filtering
1083 */
1084void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1085void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1086
57a4a11b 1087/*
bf8d0969
AL
1088 * pmu_init
1089 * @cpu: ARMCPU
57a4a11b 1090 *
bf8d0969
AL
1091 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1092 * for the current configuration
57a4a11b 1093 */
bf8d0969 1094void pmu_init(ARMCPU *cpu);
57a4a11b 1095
76e3e1bc
PM
1096/* SCTLR bit meanings. Several bits have been reused in newer
1097 * versions of the architecture; in that case we define constants
1098 * for both old and new bit meanings. Code which tests against those
1099 * bits should probably check or otherwise arrange that the CPU
1100 * is the architectural version it expects.
1101 */
1102#define SCTLR_M (1U << 0)
1103#define SCTLR_A (1U << 1)
1104#define SCTLR_C (1U << 2)
1105#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
b2af69d0
RH
1106#define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1107#define SCTLR_SA (1U << 3) /* AArch64 only */
76e3e1bc 1108#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
b2af69d0 1109#define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
76e3e1bc
PM
1110#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
1111#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
1112#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1113#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
b2af69d0 1114#define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */
76e3e1bc
PM
1115#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
1116#define SCTLR_ITD (1U << 7) /* v8 onward */
1117#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
1118#define SCTLR_SED (1U << 8) /* v8 onward */
1119#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
1120#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
1121#define SCTLR_F (1U << 10) /* up to v6 */
cb570bd3
RH
1122#define SCTLR_SW (1U << 10) /* v7 */
1123#define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */
b2af69d0
RH
1124#define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
1125#define SCTLR_EOS (1U << 11) /* v8.5-ExS */
76e3e1bc 1126#define SCTLR_I (1U << 12)
b2af69d0
RH
1127#define SCTLR_V (1U << 13) /* AArch32 only */
1128#define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
76e3e1bc
PM
1129#define SCTLR_RR (1U << 14) /* up to v7 */
1130#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
1131#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
1132#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1133#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1134#define SCTLR_nTWI (1U << 16) /* v8 onward */
b2af69d0 1135#define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
f6bda88f 1136#define SCTLR_BR (1U << 17) /* PMSA only */
76e3e1bc
PM
1137#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1138#define SCTLR_nTWE (1U << 18) /* v8 onward */
1139#define SCTLR_WXN (1U << 19)
1140#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
b2af69d0
RH
1141#define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
1142#define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
1143#define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
1144#define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
1145#define SCTLR_EIS (1U << 22) /* v8.5-ExS */
76e3e1bc 1146#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
b2af69d0 1147#define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
76e3e1bc
PM
1148#define SCTLR_VE (1U << 24) /* up to v7 */
1149#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1150#define SCTLR_EE (1U << 25)
1151#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1152#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
b2af69d0
RH
1153#define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1154#define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
1155#define SCTLR_TRE (1U << 28) /* AArch32 only */
1156#define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1157#define SCTLR_AFE (1U << 29) /* AArch32 only */
1158#define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1159#define SCTLR_TE (1U << 30) /* AArch32 only */
1160#define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
1161#define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
1162#define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
1163#define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
1164#define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
1165#define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
1166#define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
1167#define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
1168#define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
1169#define SCTLR_DSSBS (1ULL << 44) /* v8.5 */
76e3e1bc 1170
c6f19164
GB
1171#define CPTR_TCPAC (1U << 31)
1172#define CPTR_TTA (1U << 20)
1173#define CPTR_TFP (1U << 10)
5be5e8ed
RH
1174#define CPTR_TZ (1U << 8) /* CPTR_EL2 */
1175#define CPTR_EZ (1U << 8) /* CPTR_EL3 */
c6f19164 1176
187f678d
PM
1177#define MDCR_EPMAD (1U << 21)
1178#define MDCR_EDAD (1U << 20)
033614c4
AL
1179#define MDCR_SPME (1U << 17) /* MDCR_EL3 */
1180#define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
187f678d 1181#define MDCR_SDD (1U << 16)
a8d64e73 1182#define MDCR_SPD (3U << 14)
187f678d
PM
1183#define MDCR_TDRA (1U << 11)
1184#define MDCR_TDOSA (1U << 10)
1185#define MDCR_TDA (1U << 9)
1186#define MDCR_TDE (1U << 8)
1187#define MDCR_HPME (1U << 7)
1188#define MDCR_TPM (1U << 6)
1189#define MDCR_TPMCR (1U << 5)
033614c4 1190#define MDCR_HPMN (0x1fU)
187f678d 1191
a8d64e73
PM
1192/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1193#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1194
78dbbbe4
PM
1195#define CPSR_M (0x1fU)
1196#define CPSR_T (1U << 5)
1197#define CPSR_F (1U << 6)
1198#define CPSR_I (1U << 7)
1199#define CPSR_A (1U << 8)
1200#define CPSR_E (1U << 9)
1201#define CPSR_IT_2_7 (0xfc00U)
1202#define CPSR_GE (0xfU << 16)
4051e12c 1203#define CPSR_IL (1U << 20)
220f508f 1204#define CPSR_PAN (1U << 22)
78dbbbe4
PM
1205#define CPSR_J (1U << 24)
1206#define CPSR_IT_0_1 (3U << 25)
1207#define CPSR_Q (1U << 27)
1208#define CPSR_V (1U << 28)
1209#define CPSR_C (1U << 29)
1210#define CPSR_Z (1U << 30)
1211#define CPSR_N (1U << 31)
9ee6e8bb 1212#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
4cc35614 1213#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
9ee6e8bb
PB
1214
1215#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
4cc35614
PM
1216#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1217 | CPSR_NZCV)
9ee6e8bb
PB
1218/* Bits writable in user mode. */
1219#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1220/* Execution state bits. MRS read as zero, MSR writes ignored. */
4051e12c 1221#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
b5ff1b31 1222
987ab45e
PM
1223/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1224#define XPSR_EXCP 0x1ffU
1225#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1226#define XPSR_IT_2_7 CPSR_IT_2_7
1227#define XPSR_GE CPSR_GE
1228#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1229#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1230#define XPSR_IT_0_1 CPSR_IT_0_1
1231#define XPSR_Q CPSR_Q
1232#define XPSR_V CPSR_V
1233#define XPSR_C CPSR_C
1234#define XPSR_Z CPSR_Z
1235#define XPSR_N CPSR_N
1236#define XPSR_NZCV CPSR_NZCV
1237#define XPSR_IT CPSR_IT
1238
e389be16
FA
1239#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1240#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1241#define TTBCR_PD0 (1U << 4)
1242#define TTBCR_PD1 (1U << 5)
1243#define TTBCR_EPD0 (1U << 7)
1244#define TTBCR_IRGN0 (3U << 8)
1245#define TTBCR_ORGN0 (3U << 10)
1246#define TTBCR_SH0 (3U << 12)
1247#define TTBCR_T1SZ (3U << 16)
1248#define TTBCR_A1 (1U << 22)
1249#define TTBCR_EPD1 (1U << 23)
1250#define TTBCR_IRGN1 (3U << 24)
1251#define TTBCR_ORGN1 (3U << 26)
1252#define TTBCR_SH1 (1U << 28)
1253#define TTBCR_EAE (1U << 31)
1254
d356312f
PM
1255/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1256 * Only these are valid when in AArch64 mode; in
1257 * AArch32 mode SPSRs are basically CPSR-format.
1258 */
f502cfc2 1259#define PSTATE_SP (1U)
d356312f
PM
1260#define PSTATE_M (0xFU)
1261#define PSTATE_nRW (1U << 4)
1262#define PSTATE_F (1U << 6)
1263#define PSTATE_I (1U << 7)
1264#define PSTATE_A (1U << 8)
1265#define PSTATE_D (1U << 9)
f6e52eaa 1266#define PSTATE_BTYPE (3U << 10)
d356312f
PM
1267#define PSTATE_IL (1U << 20)
1268#define PSTATE_SS (1U << 21)
220f508f 1269#define PSTATE_PAN (1U << 22)
9eeb7a1c 1270#define PSTATE_UAO (1U << 23)
d356312f
PM
1271#define PSTATE_V (1U << 28)
1272#define PSTATE_C (1U << 29)
1273#define PSTATE_Z (1U << 30)
1274#define PSTATE_N (1U << 31)
1275#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
4cc35614 1276#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
f6e52eaa 1277#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
d356312f
PM
1278/* Mode values for AArch64 */
1279#define PSTATE_MODE_EL3h 13
1280#define PSTATE_MODE_EL3t 12
1281#define PSTATE_MODE_EL2h 9
1282#define PSTATE_MODE_EL2t 8
1283#define PSTATE_MODE_EL1h 5
1284#define PSTATE_MODE_EL1t 4
1285#define PSTATE_MODE_EL0t 0
1286
de2db7ec
PM
1287/* Write a new value to v7m.exception, thus transitioning into or out
1288 * of Handler mode; this may result in a change of active stack pointer.
1289 */
1290void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1291
9e729b57
EI
1292/* Map EL and handler into a PSTATE_MODE. */
1293static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1294{
1295 return (el << 2) | handler;
1296}
1297
d356312f
PM
1298/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1299 * interprocessing, so we don't attempt to sync with the cpsr state used by
1300 * the 32 bit decoder.
1301 */
1302static inline uint32_t pstate_read(CPUARMState *env)
1303{
1304 int ZF;
1305
1306 ZF = (env->ZF == 0);
1307 return (env->NF & 0x80000000) | (ZF << 30)
1308 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
f6e52eaa 1309 | env->pstate | env->daif | (env->btype << 10);
d356312f
PM
1310}
1311
1312static inline void pstate_write(CPUARMState *env, uint32_t val)
1313{
1314 env->ZF = (~val) & PSTATE_Z;
1315 env->NF = val;
1316 env->CF = (val >> 29) & 1;
1317 env->VF = (val << 3) & 0x80000000;
4cc35614 1318 env->daif = val & PSTATE_DAIF;
f6e52eaa 1319 env->btype = (val >> 10) & 3;
d356312f
PM
1320 env->pstate = val & ~CACHED_PSTATE_BITS;
1321}
1322
b5ff1b31 1323/* Return the current CPSR value. */
2f4a40e5 1324uint32_t cpsr_read(CPUARMState *env);
50866ba5
PM
1325
1326typedef enum CPSRWriteType {
1327 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1328 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1329 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */
1330 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1331} CPSRWriteType;
1332
1333/* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/
1334void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1335 CPSRWriteType write_type);
9ee6e8bb
PB
1336
1337/* Return the current xPSR value. */
1338static inline uint32_t xpsr_read(CPUARMState *env)
1339{
1340 int ZF;
6fbe23d5
PB
1341 ZF = (env->ZF == 0);
1342 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
1343 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1344 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1345 | ((env->condexec_bits & 0xfc) << 8)
f1e2598c 1346 | (env->GE << 16)
9ee6e8bb 1347 | env->v7m.exception;
b5ff1b31
FB
1348}
1349
9ee6e8bb
PB
1350/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1351static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1352{
987ab45e
PM
1353 if (mask & XPSR_NZCV) {
1354 env->ZF = (~val) & XPSR_Z;
6fbe23d5 1355 env->NF = val;
9ee6e8bb
PB
1356 env->CF = (val >> 29) & 1;
1357 env->VF = (val << 3) & 0x80000000;
1358 }
987ab45e
PM
1359 if (mask & XPSR_Q) {
1360 env->QF = ((val & XPSR_Q) != 0);
1361 }
f1e2598c
PM
1362 if (mask & XPSR_GE) {
1363 env->GE = (val & XPSR_GE) >> 16;
1364 }
04c9c81b 1365#ifndef CONFIG_USER_ONLY
987ab45e
PM
1366 if (mask & XPSR_T) {
1367 env->thumb = ((val & XPSR_T) != 0);
1368 }
1369 if (mask & XPSR_IT_0_1) {
9ee6e8bb
PB
1370 env->condexec_bits &= ~3;
1371 env->condexec_bits |= (val >> 25) & 3;
1372 }
987ab45e 1373 if (mask & XPSR_IT_2_7) {
9ee6e8bb
PB
1374 env->condexec_bits &= 3;
1375 env->condexec_bits |= (val >> 8) & 0xfc;
1376 }
987ab45e 1377 if (mask & XPSR_EXCP) {
de2db7ec
PM
1378 /* Note that this only happens on exception exit */
1379 write_v7m_exception(env, val & XPSR_EXCP);
9ee6e8bb 1380 }
04c9c81b 1381#endif
9ee6e8bb
PB
1382}
1383
f149e3e8
EI
1384#define HCR_VM (1ULL << 0)
1385#define HCR_SWIO (1ULL << 1)
1386#define HCR_PTW (1ULL << 2)
1387#define HCR_FMO (1ULL << 3)
1388#define HCR_IMO (1ULL << 4)
1389#define HCR_AMO (1ULL << 5)
1390#define HCR_VF (1ULL << 6)
1391#define HCR_VI (1ULL << 7)
1392#define HCR_VSE (1ULL << 8)
1393#define HCR_FB (1ULL << 9)
1394#define HCR_BSU_MASK (3ULL << 10)
1395#define HCR_DC (1ULL << 12)
1396#define HCR_TWI (1ULL << 13)
1397#define HCR_TWE (1ULL << 14)
1398#define HCR_TID0 (1ULL << 15)
1399#define HCR_TID1 (1ULL << 16)
1400#define HCR_TID2 (1ULL << 17)
1401#define HCR_TID3 (1ULL << 18)
1402#define HCR_TSC (1ULL << 19)
1403#define HCR_TIDCP (1ULL << 20)
1404#define HCR_TACR (1ULL << 21)
1405#define HCR_TSW (1ULL << 22)
099bf53b 1406#define HCR_TPCP (1ULL << 23)
f149e3e8
EI
1407#define HCR_TPU (1ULL << 24)
1408#define HCR_TTLB (1ULL << 25)
1409#define HCR_TVM (1ULL << 26)
1410#define HCR_TGE (1ULL << 27)
1411#define HCR_TDZ (1ULL << 28)
1412#define HCR_HCD (1ULL << 29)
1413#define HCR_TRVM (1ULL << 30)
1414#define HCR_RW (1ULL << 31)
1415#define HCR_CD (1ULL << 32)
1416#define HCR_ID (1ULL << 33)
ac656b16 1417#define HCR_E2H (1ULL << 34)
099bf53b
RH
1418#define HCR_TLOR (1ULL << 35)
1419#define HCR_TERR (1ULL << 36)
1420#define HCR_TEA (1ULL << 37)
1421#define HCR_MIOCNCE (1ULL << 38)
e0a38bb3 1422/* RES0 bit 39 */
099bf53b
RH
1423#define HCR_APK (1ULL << 40)
1424#define HCR_API (1ULL << 41)
1425#define HCR_NV (1ULL << 42)
1426#define HCR_NV1 (1ULL << 43)
1427#define HCR_AT (1ULL << 44)
1428#define HCR_NV2 (1ULL << 45)
1429#define HCR_FWB (1ULL << 46)
1430#define HCR_FIEN (1ULL << 47)
e0a38bb3 1431/* RES0 bit 48 */
099bf53b
RH
1432#define HCR_TID4 (1ULL << 49)
1433#define HCR_TICAB (1ULL << 50)
e0a38bb3 1434#define HCR_AMVOFFEN (1ULL << 51)
099bf53b 1435#define HCR_TOCU (1ULL << 52)
e0a38bb3 1436#define HCR_ENSCXT (1ULL << 53)
099bf53b
RH
1437#define HCR_TTLBIS (1ULL << 54)
1438#define HCR_TTLBOS (1ULL << 55)
1439#define HCR_ATA (1ULL << 56)
1440#define HCR_DCT (1ULL << 57)
e0a38bb3
RH
1441#define HCR_TID5 (1ULL << 58)
1442#define HCR_TWEDEN (1ULL << 59)
1443#define HCR_TWEDEL MAKE_64BIT_MASK(60, 4)
099bf53b 1444
64e0e2de
EI
1445#define SCR_NS (1U << 0)
1446#define SCR_IRQ (1U << 1)
1447#define SCR_FIQ (1U << 2)
1448#define SCR_EA (1U << 3)
1449#define SCR_FW (1U << 4)
1450#define SCR_AW (1U << 5)
1451#define SCR_NET (1U << 6)
1452#define SCR_SMD (1U << 7)
1453#define SCR_HCE (1U << 8)
1454#define SCR_SIF (1U << 9)
1455#define SCR_RW (1U << 10)
1456#define SCR_ST (1U << 11)
1457#define SCR_TWI (1U << 12)
1458#define SCR_TWE (1U << 13)
99f8f86d
RH
1459#define SCR_TLOR (1U << 14)
1460#define SCR_TERR (1U << 15)
1461#define SCR_APK (1U << 16)
1462#define SCR_API (1U << 17)
1463#define SCR_EEL2 (1U << 18)
1464#define SCR_EASE (1U << 19)
1465#define SCR_NMEA (1U << 20)
1466#define SCR_FIEN (1U << 21)
1467#define SCR_ENSCXT (1U << 25)
1468#define SCR_ATA (1U << 26)
64e0e2de 1469
01653295
PM
1470/* Return the current FPSCR value. */
1471uint32_t vfp_get_fpscr(CPUARMState *env);
1472void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1473
d81ce0ef
AB
1474/* FPCR, Floating Point Control Register
1475 * FPSR, Floating Poiht Status Register
1476 *
1477 * For A64 the FPSCR is split into two logically distinct registers,
f903fa22
PM
1478 * FPCR and FPSR. However since they still use non-overlapping bits
1479 * we store the underlying state in fpscr and just mask on read/write.
1480 */
1481#define FPSR_MASK 0xf800009f
0b62159b 1482#define FPCR_MASK 0x07ff9f00
d81ce0ef 1483
a15945d9
PM
1484#define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */
1485#define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */
1486#define FPCR_OFE (1 << 10) /* Overflow exception trap enable */
1487#define FPCR_UFE (1 << 11) /* Underflow exception trap enable */
1488#define FPCR_IXE (1 << 12) /* Inexact exception trap enable */
1489#define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */
d81ce0ef
AB
1490#define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
1491#define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1492#define FPCR_DN (1 << 25) /* Default NaN enable bit */
a4d58462 1493#define FPCR_QC (1 << 27) /* Cumulative saturation bit */
d81ce0ef 1494
f903fa22
PM
1495static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1496{
1497 return vfp_get_fpscr(env) & FPSR_MASK;
1498}
1499
1500static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1501{
1502 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1503 vfp_set_fpscr(env, new_fpscr);
1504}
1505
1506static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1507{
1508 return vfp_get_fpscr(env) & FPCR_MASK;
1509}
1510
1511static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1512{
1513 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1514 vfp_set_fpscr(env, new_fpscr);
1515}
1516
b5ff1b31
FB
1517enum arm_cpu_mode {
1518 ARM_CPU_MODE_USR = 0x10,
1519 ARM_CPU_MODE_FIQ = 0x11,
1520 ARM_CPU_MODE_IRQ = 0x12,
1521 ARM_CPU_MODE_SVC = 0x13,
28c9457d 1522 ARM_CPU_MODE_MON = 0x16,
b5ff1b31 1523 ARM_CPU_MODE_ABT = 0x17,
28c9457d 1524 ARM_CPU_MODE_HYP = 0x1a,
b5ff1b31
FB
1525 ARM_CPU_MODE_UND = 0x1b,
1526 ARM_CPU_MODE_SYS = 0x1f
1527};
1528
40f137e1
PB
1529/* VFP system registers. */
1530#define ARM_VFP_FPSID 0
1531#define ARM_VFP_FPSCR 1
a50c0f51 1532#define ARM_VFP_MVFR2 5
9ee6e8bb
PB
1533#define ARM_VFP_MVFR1 6
1534#define ARM_VFP_MVFR0 7
40f137e1
PB
1535#define ARM_VFP_FPEXC 8
1536#define ARM_VFP_FPINST 9
1537#define ARM_VFP_FPINST2 10
1538
18c9b560 1539/* iwMMXt coprocessor control registers. */
6e0fafe2
PM
1540#define ARM_IWMMXT_wCID 0
1541#define ARM_IWMMXT_wCon 1
1542#define ARM_IWMMXT_wCSSF 2
1543#define ARM_IWMMXT_wCASF 3
1544#define ARM_IWMMXT_wCGR0 8
1545#define ARM_IWMMXT_wCGR1 9
1546#define ARM_IWMMXT_wCGR2 10
1547#define ARM_IWMMXT_wCGR3 11
18c9b560 1548
2c4da50d
PM
1549/* V7M CCR bits */
1550FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1551FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1552FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1553FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1554FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1555FIELD(V7M_CCR, STKALIGN, 9, 1)
4730fb85 1556FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
2c4da50d
PM
1557FIELD(V7M_CCR, DC, 16, 1)
1558FIELD(V7M_CCR, IC, 17, 1)
4730fb85 1559FIELD(V7M_CCR, BP, 18, 1)
2c4da50d 1560
24ac0fb1
PM
1561/* V7M SCR bits */
1562FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1563FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1564FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1565FIELD(V7M_SCR, SEVONPEND, 4, 1)
1566
3b2e9344
PM
1567/* V7M AIRCR bits */
1568FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1569FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1570FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1571FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1572FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1573FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1574FIELD(V7M_AIRCR, PRIS, 14, 1)
1575FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1576FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1577
2c4da50d
PM
1578/* V7M CFSR bits for MMFSR */
1579FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1580FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1581FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1582FIELD(V7M_CFSR, MSTKERR, 4, 1)
1583FIELD(V7M_CFSR, MLSPERR, 5, 1)
1584FIELD(V7M_CFSR, MMARVALID, 7, 1)
1585
1586/* V7M CFSR bits for BFSR */
1587FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1588FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1589FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1590FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1591FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1592FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1593FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1594
1595/* V7M CFSR bits for UFSR */
1596FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1597FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1598FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1599FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
86f026de 1600FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
2c4da50d
PM
1601FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1602FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1603
334e8dad
PM
1604/* V7M CFSR bit masks covering all of the subregister bits */
1605FIELD(V7M_CFSR, MMFSR, 0, 8)
1606FIELD(V7M_CFSR, BFSR, 8, 8)
1607FIELD(V7M_CFSR, UFSR, 16, 16)
1608
2c4da50d
PM
1609/* V7M HFSR bits */
1610FIELD(V7M_HFSR, VECTTBL, 1, 1)
1611FIELD(V7M_HFSR, FORCED, 30, 1)
1612FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1613
1614/* V7M DFSR bits */
1615FIELD(V7M_DFSR, HALTED, 0, 1)
1616FIELD(V7M_DFSR, BKPT, 1, 1)
1617FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1618FIELD(V7M_DFSR, VCATCH, 3, 1)
1619FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1620
bed079da
PM
1621/* V7M SFSR bits */
1622FIELD(V7M_SFSR, INVEP, 0, 1)
1623FIELD(V7M_SFSR, INVIS, 1, 1)
1624FIELD(V7M_SFSR, INVER, 2, 1)
1625FIELD(V7M_SFSR, AUVIOL, 3, 1)
1626FIELD(V7M_SFSR, INVTRAN, 4, 1)
1627FIELD(V7M_SFSR, LSPERR, 5, 1)
1628FIELD(V7M_SFSR, SFARVALID, 6, 1)
1629FIELD(V7M_SFSR, LSERR, 7, 1)
1630
29c483a5
MD
1631/* v7M MPU_CTRL bits */
1632FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1633FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1634FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1635
43bbce7f
PM
1636/* v7M CLIDR bits */
1637FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1638FIELD(V7M_CLIDR, LOUIS, 21, 3)
1639FIELD(V7M_CLIDR, LOC, 24, 3)
1640FIELD(V7M_CLIDR, LOUU, 27, 3)
1641FIELD(V7M_CLIDR, ICB, 30, 2)
1642
1643FIELD(V7M_CSSELR, IND, 0, 1)
1644FIELD(V7M_CSSELR, LEVEL, 1, 3)
1645/* We use the combination of InD and Level to index into cpu->ccsidr[];
1646 * define a mask for this and check that it doesn't permit running off
1647 * the end of the array.
1648 */
1649FIELD(V7M_CSSELR, INDEX, 0, 4)
d33abe82
PM
1650
1651/* v7M FPCCR bits */
1652FIELD(V7M_FPCCR, LSPACT, 0, 1)
1653FIELD(V7M_FPCCR, USER, 1, 1)
1654FIELD(V7M_FPCCR, S, 2, 1)
1655FIELD(V7M_FPCCR, THREAD, 3, 1)
1656FIELD(V7M_FPCCR, HFRDY, 4, 1)
1657FIELD(V7M_FPCCR, MMRDY, 5, 1)
1658FIELD(V7M_FPCCR, BFRDY, 6, 1)
1659FIELD(V7M_FPCCR, SFRDY, 7, 1)
1660FIELD(V7M_FPCCR, MONRDY, 8, 1)
1661FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1662FIELD(V7M_FPCCR, UFRDY, 10, 1)
1663FIELD(V7M_FPCCR, RES0, 11, 15)
1664FIELD(V7M_FPCCR, TS, 26, 1)
1665FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1666FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1667FIELD(V7M_FPCCR, LSPENS, 29, 1)
1668FIELD(V7M_FPCCR, LSPEN, 30, 1)
1669FIELD(V7M_FPCCR, ASPEN, 31, 1)
1670/* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1671#define R_V7M_FPCCR_BANKED_MASK \
1672 (R_V7M_FPCCR_LSPACT_MASK | \
1673 R_V7M_FPCCR_USER_MASK | \
1674 R_V7M_FPCCR_THREAD_MASK | \
1675 R_V7M_FPCCR_MMRDY_MASK | \
1676 R_V7M_FPCCR_SPLIMVIOL_MASK | \
1677 R_V7M_FPCCR_UFRDY_MASK | \
1678 R_V7M_FPCCR_ASPEN_MASK)
43bbce7f 1679
a62e62af
RH
1680/*
1681 * System register ID fields.
1682 */
2bd5f41c
AB
1683FIELD(MIDR_EL1, REVISION, 0, 4)
1684FIELD(MIDR_EL1, PARTNUM, 4, 12)
1685FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1686FIELD(MIDR_EL1, VARIANT, 20, 4)
1687FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1688
a62e62af
RH
1689FIELD(ID_ISAR0, SWAP, 0, 4)
1690FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1691FIELD(ID_ISAR0, BITFIELD, 8, 4)
1692FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1693FIELD(ID_ISAR0, COPROC, 16, 4)
1694FIELD(ID_ISAR0, DEBUG, 20, 4)
1695FIELD(ID_ISAR0, DIVIDE, 24, 4)
1696
1697FIELD(ID_ISAR1, ENDIAN, 0, 4)
1698FIELD(ID_ISAR1, EXCEPT, 4, 4)
1699FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1700FIELD(ID_ISAR1, EXTEND, 12, 4)
1701FIELD(ID_ISAR1, IFTHEN, 16, 4)
1702FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1703FIELD(ID_ISAR1, INTERWORK, 24, 4)
1704FIELD(ID_ISAR1, JAZELLE, 28, 4)
1705
1706FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1707FIELD(ID_ISAR2, MEMHINT, 4, 4)
1708FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1709FIELD(ID_ISAR2, MULT, 12, 4)
1710FIELD(ID_ISAR2, MULTS, 16, 4)
1711FIELD(ID_ISAR2, MULTU, 20, 4)
1712FIELD(ID_ISAR2, PSR_AR, 24, 4)
1713FIELD(ID_ISAR2, REVERSAL, 28, 4)
1714
1715FIELD(ID_ISAR3, SATURATE, 0, 4)
1716FIELD(ID_ISAR3, SIMD, 4, 4)
1717FIELD(ID_ISAR3, SVC, 8, 4)
1718FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1719FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1720FIELD(ID_ISAR3, T32COPY, 20, 4)
1721FIELD(ID_ISAR3, TRUENOP, 24, 4)
1722FIELD(ID_ISAR3, T32EE, 28, 4)
1723
1724FIELD(ID_ISAR4, UNPRIV, 0, 4)
1725FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1726FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1727FIELD(ID_ISAR4, SMC, 12, 4)
1728FIELD(ID_ISAR4, BARRIER, 16, 4)
1729FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1730FIELD(ID_ISAR4, PSR_M, 24, 4)
1731FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1732
1733FIELD(ID_ISAR5, SEVL, 0, 4)
1734FIELD(ID_ISAR5, AES, 4, 4)
1735FIELD(ID_ISAR5, SHA1, 8, 4)
1736FIELD(ID_ISAR5, SHA2, 12, 4)
1737FIELD(ID_ISAR5, CRC32, 16, 4)
1738FIELD(ID_ISAR5, RDM, 24, 4)
1739FIELD(ID_ISAR5, VCMA, 28, 4)
1740
1741FIELD(ID_ISAR6, JSCVT, 0, 4)
1742FIELD(ID_ISAR6, DP, 4, 4)
1743FIELD(ID_ISAR6, FHM, 8, 4)
1744FIELD(ID_ISAR6, SB, 12, 4)
1745FIELD(ID_ISAR6, SPECRES, 16, 4)
1746
3d6ad6bb
RH
1747FIELD(ID_MMFR3, CMAINTVA, 0, 4)
1748FIELD(ID_MMFR3, CMAINTSW, 4, 4)
1749FIELD(ID_MMFR3, BPMAINT, 8, 4)
1750FIELD(ID_MMFR3, MAINTBCST, 12, 4)
1751FIELD(ID_MMFR3, PAN, 16, 4)
1752FIELD(ID_MMFR3, COHWALK, 20, 4)
1753FIELD(ID_MMFR3, CMEMSZ, 24, 4)
1754FIELD(ID_MMFR3, SUPERSEC, 28, 4)
1755
ab638a32
RH
1756FIELD(ID_MMFR4, SPECSEI, 0, 4)
1757FIELD(ID_MMFR4, AC2, 4, 4)
1758FIELD(ID_MMFR4, XNX, 8, 4)
1759FIELD(ID_MMFR4, CNP, 12, 4)
1760FIELD(ID_MMFR4, HPDS, 16, 4)
1761FIELD(ID_MMFR4, LSM, 20, 4)
1762FIELD(ID_MMFR4, CCIDX, 24, 4)
1763FIELD(ID_MMFR4, EVT, 28, 4)
1764
a62e62af
RH
1765FIELD(ID_AA64ISAR0, AES, 4, 4)
1766FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1767FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1768FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1769FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1770FIELD(ID_AA64ISAR0, RDM, 28, 4)
1771FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1772FIELD(ID_AA64ISAR0, SM3, 36, 4)
1773FIELD(ID_AA64ISAR0, SM4, 40, 4)
1774FIELD(ID_AA64ISAR0, DP, 44, 4)
1775FIELD(ID_AA64ISAR0, FHM, 48, 4)
1776FIELD(ID_AA64ISAR0, TS, 52, 4)
1777FIELD(ID_AA64ISAR0, TLB, 56, 4)
1778FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1779
1780FIELD(ID_AA64ISAR1, DPB, 0, 4)
1781FIELD(ID_AA64ISAR1, APA, 4, 4)
1782FIELD(ID_AA64ISAR1, API, 8, 4)
1783FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1784FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1785FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1786FIELD(ID_AA64ISAR1, GPA, 24, 4)
1787FIELD(ID_AA64ISAR1, GPI, 28, 4)
1788FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1789FIELD(ID_AA64ISAR1, SB, 36, 4)
1790FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1791
cd208a1c
RH
1792FIELD(ID_AA64PFR0, EL0, 0, 4)
1793FIELD(ID_AA64PFR0, EL1, 4, 4)
1794FIELD(ID_AA64PFR0, EL2, 8, 4)
1795FIELD(ID_AA64PFR0, EL3, 12, 4)
1796FIELD(ID_AA64PFR0, FP, 16, 4)
1797FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1798FIELD(ID_AA64PFR0, GIC, 24, 4)
1799FIELD(ID_AA64PFR0, RAS, 28, 4)
1800FIELD(ID_AA64PFR0, SVE, 32, 4)
1801
be53b6f4
RH
1802FIELD(ID_AA64PFR1, BT, 0, 4)
1803FIELD(ID_AA64PFR1, SBSS, 4, 4)
1804FIELD(ID_AA64PFR1, MTE, 8, 4)
1805FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1806
3dc91ddb
PM
1807FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1808FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1809FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1810FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1811FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1812FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1813FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1814FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1815FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1816FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1817FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1818FIELD(ID_AA64MMFR0, EXS, 44, 4)
1819
1820FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1821FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1822FIELD(ID_AA64MMFR1, VH, 8, 4)
1823FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1824FIELD(ID_AA64MMFR1, LO, 16, 4)
1825FIELD(ID_AA64MMFR1, PAN, 20, 4)
1826FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1827FIELD(ID_AA64MMFR1, XNX, 28, 4)
1828
64761e10
RH
1829FIELD(ID_AA64MMFR2, CNP, 0, 4)
1830FIELD(ID_AA64MMFR2, UAO, 4, 4)
1831FIELD(ID_AA64MMFR2, LSM, 8, 4)
1832FIELD(ID_AA64MMFR2, IESB, 12, 4)
1833FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
1834FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
1835FIELD(ID_AA64MMFR2, NV, 24, 4)
1836FIELD(ID_AA64MMFR2, ST, 28, 4)
1837FIELD(ID_AA64MMFR2, AT, 32, 4)
1838FIELD(ID_AA64MMFR2, IDS, 36, 4)
1839FIELD(ID_AA64MMFR2, FWB, 40, 4)
1840FIELD(ID_AA64MMFR2, TTL, 48, 4)
1841FIELD(ID_AA64MMFR2, BBM, 52, 4)
1842FIELD(ID_AA64MMFR2, EVT, 56, 4)
1843FIELD(ID_AA64MMFR2, E0PD, 60, 4)
1844
ceb2744b
PM
1845FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
1846FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
1847FIELD(ID_AA64DFR0, PMUVER, 8, 4)
1848FIELD(ID_AA64DFR0, BRPS, 12, 4)
1849FIELD(ID_AA64DFR0, WRPS, 20, 4)
1850FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
1851FIELD(ID_AA64DFR0, PMSVER, 32, 4)
1852FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
1853FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
1854
beceb99c
AL
1855FIELD(ID_DFR0, COPDBG, 0, 4)
1856FIELD(ID_DFR0, COPSDBG, 4, 4)
1857FIELD(ID_DFR0, MMAPDBG, 8, 4)
1858FIELD(ID_DFR0, COPTRC, 12, 4)
1859FIELD(ID_DFR0, MMAPTRC, 16, 4)
1860FIELD(ID_DFR0, MPROFDBG, 20, 4)
1861FIELD(ID_DFR0, PERFMON, 24, 4)
1862FIELD(ID_DFR0, TRACEFILT, 28, 4)
1863
88ce6c6e
PM
1864FIELD(DBGDIDR, SE_IMP, 12, 1)
1865FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
1866FIELD(DBGDIDR, VERSION, 16, 4)
1867FIELD(DBGDIDR, CTX_CMPS, 20, 4)
1868FIELD(DBGDIDR, BRPS, 24, 4)
1869FIELD(DBGDIDR, WRPS, 28, 4)
1870
602f6e42
PM
1871FIELD(MVFR0, SIMDREG, 0, 4)
1872FIELD(MVFR0, FPSP, 4, 4)
1873FIELD(MVFR0, FPDP, 8, 4)
1874FIELD(MVFR0, FPTRAP, 12, 4)
1875FIELD(MVFR0, FPDIVIDE, 16, 4)
1876FIELD(MVFR0, FPSQRT, 20, 4)
1877FIELD(MVFR0, FPSHVEC, 24, 4)
1878FIELD(MVFR0, FPROUND, 28, 4)
1879
1880FIELD(MVFR1, FPFTZ, 0, 4)
1881FIELD(MVFR1, FPDNAN, 4, 4)
1882FIELD(MVFR1, SIMDLS, 8, 4)
1883FIELD(MVFR1, SIMDINT, 12, 4)
1884FIELD(MVFR1, SIMDSP, 16, 4)
1885FIELD(MVFR1, SIMDHP, 20, 4)
1886FIELD(MVFR1, FPHP, 24, 4)
1887FIELD(MVFR1, SIMDFMAC, 28, 4)
1888
1889FIELD(MVFR2, SIMDMISC, 0, 4)
1890FIELD(MVFR2, FPMISC, 4, 4)
1891
43bbce7f
PM
1892QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1893
ce854d7c
BC
1894/* If adding a feature bit which corresponds to a Linux ELF
1895 * HWCAP bit, remember to update the feature-bit-to-hwcap
1896 * mapping in linux-user/elfload.c:get_elf_hwcap().
1897 */
40f137e1 1898enum arm_features {
c1713132
AZ
1899 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
1900 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 1901 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
1902 ARM_FEATURE_V6,
1903 ARM_FEATURE_V6K,
1904 ARM_FEATURE_V7,
1905 ARM_FEATURE_THUMB2,
452a0955 1906 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
9ee6e8bb 1907 ARM_FEATURE_NEON,
9ee6e8bb 1908 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 1909 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 1910 ARM_FEATURE_THUMB2EE,
be5e7a76 1911 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
5110e683 1912 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
be5e7a76
DES
1913 ARM_FEATURE_V4T,
1914 ARM_FEATURE_V5,
5bc95aa2 1915 ARM_FEATURE_STRONGARM,
906879a9 1916 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
0383ac00 1917 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 1918 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 1919 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
1920 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1921 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1922 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 1923 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8
PM
1924 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1925 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 1926 ARM_FEATURE_V8,
3926cc84 1927 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
d8ba780b 1928 ARM_FEATURE_CBAR, /* has cp15 CBAR */
eb0ecd5a 1929 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
f318cec6 1930 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
cca7c2f5 1931 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1fe8141e 1932 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
62b44f05 1933 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
929e754d 1934 ARM_FEATURE_PMU, /* has PMU support */
91db4642 1935 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1e577cc7 1936 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
cc2ae7c9 1937 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
40f137e1
PB
1938};
1939
1940static inline int arm_feature(CPUARMState *env, int feature)
1941{
918f5dca 1942 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
1943}
1944
0df9142d
AJ
1945void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
1946
19e0fefa
FA
1947#if !defined(CONFIG_USER_ONLY)
1948/* Return true if exception levels below EL3 are in secure state,
1949 * or would be following an exception return to that level.
1950 * Unlike arm_is_secure() (which is always a question about the
1951 * _current_ state of the CPU) this doesn't care about the current
1952 * EL or mode.
1953 */
1954static inline bool arm_is_secure_below_el3(CPUARMState *env)
1955{
1956 if (arm_feature(env, ARM_FEATURE_EL3)) {
1957 return !(env->cp15.scr_el3 & SCR_NS);
1958 } else {
6b7f0b61 1959 /* If EL3 is not supported then the secure state is implementation
19e0fefa
FA
1960 * defined, in which case QEMU defaults to non-secure.
1961 */
1962 return false;
1963 }
1964}
1965
71205876
PM
1966/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1967static inline bool arm_is_el3_or_mon(CPUARMState *env)
19e0fefa
FA
1968{
1969 if (arm_feature(env, ARM_FEATURE_EL3)) {
1970 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1971 /* CPU currently in AArch64 state and EL3 */
1972 return true;
1973 } else if (!is_a64(env) &&
1974 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1975 /* CPU currently in AArch32 state and monitor mode */
1976 return true;
1977 }
1978 }
71205876
PM
1979 return false;
1980}
1981
1982/* Return true if the processor is in secure state */
1983static inline bool arm_is_secure(CPUARMState *env)
1984{
1985 if (arm_is_el3_or_mon(env)) {
1986 return true;
1987 }
19e0fefa
FA
1988 return arm_is_secure_below_el3(env);
1989}
1990
1991#else
1992static inline bool arm_is_secure_below_el3(CPUARMState *env)
1993{
1994 return false;
1995}
1996
1997static inline bool arm_is_secure(CPUARMState *env)
1998{
1999 return false;
2000}
2001#endif
2002
f7778444
RH
2003/**
2004 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2005 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2006 * "for all purposes other than a direct read or write access of HCR_EL2."
2007 * Not included here is HCR_RW.
2008 */
2009uint64_t arm_hcr_el2_eff(CPUARMState *env);
2010
1f79ee32
PM
2011/* Return true if the specified exception level is running in AArch64 state. */
2012static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2013{
446c81ab
PM
2014 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2015 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1f79ee32 2016 */
446c81ab
PM
2017 assert(el >= 1 && el <= 3);
2018 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
592125f8 2019
446c81ab
PM
2020 /* The highest exception level is always at the maximum supported
2021 * register width, and then lower levels have a register width controlled
2022 * by bits in the SCR or HCR registers.
1f79ee32 2023 */
446c81ab
PM
2024 if (el == 3) {
2025 return aa64;
2026 }
2027
2028 if (arm_feature(env, ARM_FEATURE_EL3)) {
2029 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2030 }
2031
2032 if (el == 2) {
2033 return aa64;
2034 }
2035
2036 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
2037 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2038 }
2039
2040 return aa64;
1f79ee32
PM
2041}
2042
3f342b9e
SF
2043/* Function for determing whether guest cp register reads and writes should
2044 * access the secure or non-secure bank of a cp register. When EL3 is
2045 * operating in AArch32 state, the NS-bit determines whether the secure
2046 * instance of a cp register should be used. When EL3 is AArch64 (or if
2047 * it doesn't exist at all) then there is no register banking, and all
2048 * accesses are to the non-secure version.
2049 */
2050static inline bool access_secure_reg(CPUARMState *env)
2051{
2052 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2053 !arm_el_is_aa64(env, 3) &&
2054 !(env->cp15.scr_el3 & SCR_NS));
2055
2056 return ret;
2057}
2058
ea30a4b8
FA
2059/* Macros for accessing a specified CP register bank */
2060#define A32_BANKED_REG_GET(_env, _regname, _secure) \
2061 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2062
2063#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
2064 do { \
2065 if (_secure) { \
2066 (_env)->cp15._regname##_s = (_val); \
2067 } else { \
2068 (_env)->cp15._regname##_ns = (_val); \
2069 } \
2070 } while (0)
2071
2072/* Macros for automatically accessing a specific CP register bank depending on
2073 * the current secure state of the system. These macros are not intended for
2074 * supporting instruction translation reads/writes as these are dependent
2075 * solely on the SCR.NS bit and not the mode.
2076 */
2077#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
2078 A32_BANKED_REG_GET((_env), _regname, \
2cde031f 2079 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
ea30a4b8
FA
2080
2081#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
2082 A32_BANKED_REG_SET((_env), _regname, \
2cde031f 2083 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
ea30a4b8
FA
2084 (_val))
2085
0442428a 2086void arm_cpu_list(void);
012a906b
GB
2087uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2088 uint32_t cur_el, bool secure);
40f137e1 2089
9ee6e8bb 2090/* Interface between CPU and Interrupt controller. */
7ecdaa4a
PM
2091#ifndef CONFIG_USER_ONLY
2092bool armv7m_nvic_can_take_pending_exception(void *opaque);
2093#else
2094static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2095{
2096 return true;
2097}
2098#endif
2fb50a33
PM
2099/**
2100 * armv7m_nvic_set_pending: mark the specified exception as pending
2101 * @opaque: the NVIC
2102 * @irq: the exception number to mark pending
2103 * @secure: false for non-banked exceptions or for the nonsecure
2104 * version of a banked exception, true for the secure version of a banked
2105 * exception.
2106 *
2107 * Marks the specified exception as pending. Note that we will assert()
2108 * if @secure is true and @irq does not specify one of the fixed set
2109 * of architecturally banked exceptions.
2110 */
2111void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
5ede82b8
PM
2112/**
2113 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2114 * @opaque: the NVIC
2115 * @irq: the exception number to mark pending
2116 * @secure: false for non-banked exceptions or for the nonsecure
2117 * version of a banked exception, true for the secure version of a banked
2118 * exception.
2119 *
2120 * Similar to armv7m_nvic_set_pending(), but specifically for derived
2121 * exceptions (exceptions generated in the course of trying to take
2122 * a different exception).
2123 */
2124void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
a99ba8ab
PM
2125/**
2126 * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2127 * @opaque: the NVIC
2128 * @irq: the exception number to mark pending
2129 * @secure: false for non-banked exceptions or for the nonsecure
2130 * version of a banked exception, true for the secure version of a banked
2131 * exception.
2132 *
2133 * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2134 * generated in the course of lazy stacking of FP registers.
2135 */
2136void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
6c948518
PM
2137/**
2138 * armv7m_nvic_get_pending_irq_info: return highest priority pending
2139 * exception, and whether it targets Secure state
2140 * @opaque: the NVIC
2141 * @pirq: set to pending exception number
2142 * @ptargets_secure: set to whether pending exception targets Secure
2143 *
2144 * This function writes the number of the highest priority pending
2145 * exception (the one which would be made active by
2146 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2147 * to true if the current highest priority pending exception should
2148 * be taken to Secure state, false for NS.
2149 */
2150void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2151 bool *ptargets_secure);
5cb18069
PM
2152/**
2153 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2154 * @opaque: the NVIC
2155 *
2156 * Move the current highest priority pending exception from the pending
2157 * state to the active state, and update v7m.exception to indicate that
2158 * it is the exception currently being handled.
5cb18069 2159 */
6c948518 2160void armv7m_nvic_acknowledge_irq(void *opaque);
aa488fe3
PM
2161/**
2162 * armv7m_nvic_complete_irq: complete specified interrupt or exception
2163 * @opaque: the NVIC
2164 * @irq: the exception number to complete
5cb18069 2165 * @secure: true if this exception was secure
aa488fe3
PM
2166 *
2167 * Returns: -1 if the irq was not active
2168 * 1 if completing this irq brought us back to base (no active irqs)
2169 * 0 if there is still an irq active after this one was completed
2170 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2171 */
5cb18069 2172int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
b593c2b8
PM
2173/**
2174 * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2175 * @opaque: the NVIC
2176 * @irq: the exception number to mark pending
2177 * @secure: false for non-banked exceptions or for the nonsecure
2178 * version of a banked exception, true for the secure version of a banked
2179 * exception.
2180 *
2181 * Return whether an exception is "ready", i.e. whether the exception is
2182 * enabled and is configured at a priority which would allow it to
2183 * interrupt the current execution priority. This controls whether the
2184 * RDY bit for it in the FPCCR is set.
2185 */
2186bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
42a6686b
PM
2187/**
2188 * armv7m_nvic_raw_execution_priority: return the raw execution priority
2189 * @opaque: the NVIC
2190 *
2191 * Returns: the raw execution priority as defined by the v8M architecture.
2192 * This is the execution priority minus the effects of AIRCR.PRIS,
2193 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2194 * (v8M ARM ARM I_PKLD.)
2195 */
2196int armv7m_nvic_raw_execution_priority(void *opaque);
5d479199
PM
2197/**
2198 * armv7m_nvic_neg_prio_requested: return true if the requested execution
2199 * priority is negative for the specified security state.
2200 * @opaque: the NVIC
2201 * @secure: the security state to test
2202 * This corresponds to the pseudocode IsReqExecPriNeg().
2203 */
2204#ifndef CONFIG_USER_ONLY
2205bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2206#else
2207static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2208{
2209 return false;
2210}
2211#endif
9ee6e8bb 2212
4b6a83fb
PM
2213/* Interface for defining coprocessor registers.
2214 * Registers are defined in tables of arm_cp_reginfo structs
2215 * which are passed to define_arm_cp_regs().
2216 */
2217
2218/* When looking up a coprocessor register we look for it
2219 * via an integer which encodes all of:
2220 * coprocessor number
2221 * Crn, Crm, opc1, opc2 fields
2222 * 32 or 64 bit register (ie is it accessed via MRC/MCR
2223 * or via MRRC/MCRR?)
51a79b03 2224 * non-secure/secure bank (AArch32 only)
4b6a83fb
PM
2225 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2226 * (In this case crn and opc2 should be zero.)
f5a0a5a5
PM
2227 * For AArch64, there is no 32/64 bit size distinction;
2228 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2229 * and 4 bit CRn and CRm. The encoding patterns are chosen
2230 * to be easy to convert to and from the KVM encodings, and also
2231 * so that the hashtable can contain both AArch32 and AArch64
2232 * registers (to allow for interprocessing where we might run
2233 * 32 bit code on a 64 bit core).
4b6a83fb 2234 */
f5a0a5a5
PM
2235/* This bit is private to our hashtable cpreg; in KVM register
2236 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2237 * in the upper bits of the 64 bit ID.
2238 */
2239#define CP_REG_AA64_SHIFT 28
2240#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2241
51a79b03
PM
2242/* To enable banking of coprocessor registers depending on ns-bit we
2243 * add a bit to distinguish between secure and non-secure cpregs in the
2244 * hashtable.
2245 */
2246#define CP_REG_NS_SHIFT 29
2247#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2248
2249#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
2250 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
2251 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
4b6a83fb 2252
f5a0a5a5
PM
2253#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2254 (CP_REG_AA64_MASK | \
2255 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
2256 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
2257 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
2258 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
2259 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
2260 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2261
721fae12
PM
2262/* Convert a full 64 bit KVM register ID to the truncated 32 bit
2263 * version used as a key for the coprocessor register hashtable
2264 */
2265static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2266{
2267 uint32_t cpregid = kvmid;
f5a0a5a5
PM
2268 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2269 cpregid |= CP_REG_AA64_MASK;
51a79b03
PM
2270 } else {
2271 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2272 cpregid |= (1 << 15);
2273 }
2274
2275 /* KVM is always non-secure so add the NS flag on AArch32 register
2276 * entries.
2277 */
2278 cpregid |= 1 << CP_REG_NS_SHIFT;
721fae12
PM
2279 }
2280 return cpregid;
2281}
2282
2283/* Convert a truncated 32 bit hashtable key into the full
2284 * 64 bit KVM register ID.
2285 */
2286static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2287{
f5a0a5a5
PM
2288 uint64_t kvmid;
2289
2290 if (cpregid & CP_REG_AA64_MASK) {
2291 kvmid = cpregid & ~CP_REG_AA64_MASK;
2292 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
721fae12 2293 } else {
f5a0a5a5
PM
2294 kvmid = cpregid & ~(1 << 15);
2295 if (cpregid & (1 << 15)) {
2296 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2297 } else {
2298 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2299 }
721fae12
PM
2300 }
2301 return kvmid;
2302}
2303
4b6a83fb 2304/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
fe03d45f 2305 * special-behaviour cp reg and bits [11..8] indicate what behaviour
4b6a83fb
PM
2306 * it has. Otherwise it is a simple cp reg, where CONST indicates that
2307 * TCG can assume the value to be constant (ie load at translate time)
2308 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2309 * indicates that the TB should not be ended after a write to this register
2310 * (the default is that the TB ends after cp writes). OVERRIDE permits
2311 * a register definition to override a previous definition for the
2312 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2313 * old must have the OVERRIDE bit set.
7a0e58fa
PM
2314 * ALIAS indicates that this register is an alias view of some underlying
2315 * state which is also visible via another register, and that the other
b061a82b
SF
2316 * register is handling migration and reset; registers marked ALIAS will not be
2317 * migrated but may have their state set by syncing of register state from KVM.
7a0e58fa
PM
2318 * NO_RAW indicates that this register has no underlying state and does not
2319 * support raw access for state saving/loading; it will not be used for either
2320 * migration or KVM state synchronization. (Typically this is for "registers"
2321 * which are actually used as instructions for cache maintenance and so on.)
2452731c
PM
2322 * IO indicates that this register does I/O and therefore its accesses
2323 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
2324 * registers which implement clocks or timers require this.
37ff584c
PM
2325 * RAISES_EXC is for when the read or write hook might raise an exception;
2326 * the generated code will synchronize the CPU state before calling the hook
2327 * so that it is safe for the hook to call raise_exception().
f80741d1
AB
2328 * NEWEL is for writes to registers that might change the exception
2329 * level - typically on older ARM chips. For those cases we need to
2330 * re-read the new el when recomputing the translation flags.
4b6a83fb 2331 */
fe03d45f
RH
2332#define ARM_CP_SPECIAL 0x0001
2333#define ARM_CP_CONST 0x0002
2334#define ARM_CP_64BIT 0x0004
2335#define ARM_CP_SUPPRESS_TB_END 0x0008
2336#define ARM_CP_OVERRIDE 0x0010
2337#define ARM_CP_ALIAS 0x0020
2338#define ARM_CP_IO 0x0040
2339#define ARM_CP_NO_RAW 0x0080
2340#define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100)
2341#define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200)
2342#define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300)
2343#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400)
2344#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500)
2345#define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
2346#define ARM_CP_FPU 0x1000
490aa7f1 2347#define ARM_CP_SVE 0x2000
1f163787 2348#define ARM_CP_NO_GDB 0x4000
37ff584c 2349#define ARM_CP_RAISES_EXC 0x8000
f80741d1 2350#define ARM_CP_NEWEL 0x10000
4b6a83fb 2351/* Used only as a terminator for ARMCPRegInfo lists */
f80741d1 2352#define ARM_CP_SENTINEL 0xfffff
4b6a83fb 2353/* Mask of only the flag bits in a type field */
f80741d1 2354#define ARM_CP_FLAG_MASK 0x1f0ff
4b6a83fb 2355
f5a0a5a5
PM
2356/* Valid values for ARMCPRegInfo state field, indicating which of
2357 * the AArch32 and AArch64 execution states this register is visible in.
2358 * If the reginfo doesn't explicitly specify then it is AArch32 only.
2359 * If the reginfo is declared to be visible in both states then a second
2360 * reginfo is synthesised for the AArch32 view of the AArch64 register,
2361 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2362 * Note that we rely on the values of these enums as we iterate through
2363 * the various states in some places.
2364 */
2365enum {
2366 ARM_CP_STATE_AA32 = 0,
2367 ARM_CP_STATE_AA64 = 1,
2368 ARM_CP_STATE_BOTH = 2,
2369};
2370
c3e30260
FA
2371/* ARM CP register secure state flags. These flags identify security state
2372 * attributes for a given CP register entry.
2373 * The existence of both or neither secure and non-secure flags indicates that
2374 * the register has both a secure and non-secure hash entry. A single one of
2375 * these flags causes the register to only be hashed for the specified
2376 * security state.
2377 * Although definitions may have any combination of the S/NS bits, each
2378 * registered entry will only have one to identify whether the entry is secure
2379 * or non-secure.
2380 */
2381enum {
2382 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
2383 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
2384};
2385
4b6a83fb
PM
2386/* Return true if cptype is a valid type field. This is used to try to
2387 * catch errors where the sentinel has been accidentally left off the end
2388 * of a list of registers.
2389 */
2390static inline bool cptype_valid(int cptype)
2391{
2392 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2393 || ((cptype & ARM_CP_SPECIAL) &&
34affeef 2394 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
4b6a83fb
PM
2395}
2396
2397/* Access rights:
2398 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2399 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2400 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2401 * (ie any of the privileged modes in Secure state, or Monitor mode).
2402 * If a register is accessible in one privilege level it's always accessible
2403 * in higher privilege levels too. Since "Secure PL1" also follows this rule
2404 * (ie anything visible in PL2 is visible in S-PL1, some things are only
2405 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2406 * terminology a little and call this PL3.
f5a0a5a5
PM
2407 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2408 * with the ELx exception levels.
4b6a83fb
PM
2409 *
2410 * If access permissions for a register are more complex than can be
2411 * described with these bits, then use a laxer set of restrictions, and
2412 * do the more restrictive/complex check inside a helper function.
2413 */
2414#define PL3_R 0x80
2415#define PL3_W 0x40
2416#define PL2_R (0x20 | PL3_R)
2417#define PL2_W (0x10 | PL3_W)
2418#define PL1_R (0x08 | PL2_R)
2419#define PL1_W (0x04 | PL2_W)
2420#define PL0_R (0x02 | PL1_R)
2421#define PL0_W (0x01 | PL1_W)
2422
b5bd7440
AB
2423/*
2424 * For user-mode some registers are accessible to EL0 via a kernel
2425 * trap-and-emulate ABI. In this case we define the read permissions
2426 * as actually being PL0_R. However some bits of any given register
2427 * may still be masked.
2428 */
2429#ifdef CONFIG_USER_ONLY
2430#define PL0U_R PL0_R
2431#else
2432#define PL0U_R PL1_R
2433#endif
2434
4b6a83fb
PM
2435#define PL3_RW (PL3_R | PL3_W)
2436#define PL2_RW (PL2_R | PL2_W)
2437#define PL1_RW (PL1_R | PL1_W)
2438#define PL0_RW (PL0_R | PL0_W)
2439
75502672
PM
2440/* Return the highest implemented Exception Level */
2441static inline int arm_highest_el(CPUARMState *env)
2442{
2443 if (arm_feature(env, ARM_FEATURE_EL3)) {
2444 return 3;
2445 }
2446 if (arm_feature(env, ARM_FEATURE_EL2)) {
2447 return 2;
2448 }
2449 return 1;
2450}
2451
15b3f556
PM
2452/* Return true if a v7M CPU is in Handler mode */
2453static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2454{
2455 return env->v7m.exception != 0;
2456}
2457
dcbff19b
GB
2458/* Return the current Exception Level (as per ARMv8; note that this differs
2459 * from the ARMv7 Privilege Level).
2460 */
2461static inline int arm_current_el(CPUARMState *env)
4b6a83fb 2462{
6d54ed3c 2463 if (arm_feature(env, ARM_FEATURE_M)) {
8bfc26ea
PM
2464 return arm_v7m_is_handler_mode(env) ||
2465 !(env->v7m.control[env->v7m.secure] & 1);
6d54ed3c
PM
2466 }
2467
592125f8 2468 if (is_a64(env)) {
f5a0a5a5
PM
2469 return extract32(env->pstate, 2, 2);
2470 }
2471
592125f8
FA
2472 switch (env->uncached_cpsr & 0x1f) {
2473 case ARM_CPU_MODE_USR:
4b6a83fb 2474 return 0;
592125f8
FA
2475 case ARM_CPU_MODE_HYP:
2476 return 2;
2477 case ARM_CPU_MODE_MON:
2478 return 3;
2479 default:
2480 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2481 /* If EL3 is 32-bit then all secure privileged modes run in
2482 * EL3
2483 */
2484 return 3;
2485 }
2486
2487 return 1;
4b6a83fb 2488 }
4b6a83fb
PM
2489}
2490
2491typedef struct ARMCPRegInfo ARMCPRegInfo;
2492
f59df3f2
PM
2493typedef enum CPAccessResult {
2494 /* Access is permitted */
2495 CP_ACCESS_OK = 0,
2496 /* Access fails due to a configurable trap or enable which would
2497 * result in a categorized exception syndrome giving information about
2498 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
38836a2c
PM
2499 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2500 * PL1 if in EL0, otherwise to the current EL).
f59df3f2
PM
2501 */
2502 CP_ACCESS_TRAP = 1,
2503 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2504 * Note that this is not a catch-all case -- the set of cases which may
2505 * result in this failure is specifically defined by the architecture.
2506 */
2507 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
38836a2c
PM
2508 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2509 CP_ACCESS_TRAP_EL2 = 3,
2510 CP_ACCESS_TRAP_EL3 = 4,
e7615726
PM
2511 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2512 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2513 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
f2cae609
PM
2514 /* Access fails and results in an exception syndrome for an FP access,
2515 * trapped directly to EL2 or EL3
2516 */
2517 CP_ACCESS_TRAP_FP_EL2 = 7,
2518 CP_ACCESS_TRAP_FP_EL3 = 8,
f59df3f2
PM
2519} CPAccessResult;
2520
c4241c7d
PM
2521/* Access functions for coprocessor registers. These cannot fail and
2522 * may not raise exceptions.
2523 */
2524typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2525typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2526 uint64_t value);
f59df3f2 2527/* Access permission check functions for coprocessor registers. */
3f208fd7
PM
2528typedef CPAccessResult CPAccessFn(CPUARMState *env,
2529 const ARMCPRegInfo *opaque,
2530 bool isread);
4b6a83fb
PM
2531/* Hook function for register reset */
2532typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2533
2534#define CP_ANY 0xff
2535
2536/* Definition of an ARM coprocessor register */
2537struct ARMCPRegInfo {
2538 /* Name of register (useful mainly for debugging, need not be unique) */
2539 const char *name;
2540 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2541 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2542 * 'wildcard' field -- any value of that field in the MRC/MCR insn
2543 * will be decoded to this register. The register read and write
2544 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2545 * used by the program, so it is possible to register a wildcard and
2546 * then behave differently on read/write if necessary.
2547 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2548 * must both be zero.
f5a0a5a5
PM
2549 * For AArch64-visible registers, opc0 is also used.
2550 * Since there are no "coprocessors" in AArch64, cp is purely used as a
2551 * way to distinguish (for KVM's benefit) guest-visible system registers
2552 * from demuxed ones provided to preserve the "no side effects on
2553 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2554 * visible (to match KVM's encoding); cp==0 will be converted to
2555 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
4b6a83fb
PM
2556 */
2557 uint8_t cp;
2558 uint8_t crn;
2559 uint8_t crm;
f5a0a5a5 2560 uint8_t opc0;
4b6a83fb
PM
2561 uint8_t opc1;
2562 uint8_t opc2;
f5a0a5a5
PM
2563 /* Execution state in which this register is visible: ARM_CP_STATE_* */
2564 int state;
4b6a83fb
PM
2565 /* Register type: ARM_CP_* bits/values */
2566 int type;
2567 /* Access rights: PL*_[RW] */
2568 int access;
c3e30260
FA
2569 /* Security state: ARM_CP_SECSTATE_* bits/values */
2570 int secure;
4b6a83fb
PM
2571 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2572 * this register was defined: can be used to hand data through to the
2573 * register read/write functions, since they are passed the ARMCPRegInfo*.
2574 */
2575 void *opaque;
2576 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2577 * fieldoffset is non-zero, the reset value of the register.
2578 */
2579 uint64_t resetvalue;
c3e30260
FA
2580 /* Offset of the field in CPUARMState for this register.
2581 *
2582 * This is not needed if either:
4b6a83fb
PM
2583 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2584 * 2. both readfn and writefn are specified
2585 */
2586 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
c3e30260
FA
2587
2588 /* Offsets of the secure and non-secure fields in CPUARMState for the
2589 * register if it is banked. These fields are only used during the static
2590 * registration of a register. During hashing the bank associated
2591 * with a given security state is copied to fieldoffset which is used from
2592 * there on out.
2593 *
2594 * It is expected that register definitions use either fieldoffset or
2595 * bank_fieldoffsets in the definition but not both. It is also expected
2596 * that both bank offsets are set when defining a banked register. This
2597 * use indicates that a register is banked.
2598 */
2599 ptrdiff_t bank_fieldoffsets[2];
2600
f59df3f2
PM
2601 /* Function for making any access checks for this register in addition to
2602 * those specified by the 'access' permissions bits. If NULL, no extra
2603 * checks required. The access check is performed at runtime, not at
2604 * translate time.
2605 */
2606 CPAccessFn *accessfn;
4b6a83fb
PM
2607 /* Function for handling reads of this register. If NULL, then reads
2608 * will be done by loading from the offset into CPUARMState specified
2609 * by fieldoffset.
2610 */
2611 CPReadFn *readfn;
2612 /* Function for handling writes of this register. If NULL, then writes
2613 * will be done by writing to the offset into CPUARMState specified
2614 * by fieldoffset.
2615 */
2616 CPWriteFn *writefn;
7023ec7e
PM
2617 /* Function for doing a "raw" read; used when we need to copy
2618 * coprocessor state to the kernel for KVM or out for
2619 * migration. This only needs to be provided if there is also a
c4241c7d 2620 * readfn and it has side effects (for instance clear-on-read bits).
7023ec7e
PM
2621 */
2622 CPReadFn *raw_readfn;
2623 /* Function for doing a "raw" write; used when we need to copy KVM
2624 * kernel coprocessor state into userspace, or for inbound
2625 * migration. This only needs to be provided if there is also a
c4241c7d
PM
2626 * writefn and it masks out "unwritable" bits or has write-one-to-clear
2627 * or similar behaviour.
7023ec7e
PM
2628 */
2629 CPWriteFn *raw_writefn;
4b6a83fb
PM
2630 /* Function for resetting the register. If NULL, then reset will be done
2631 * by writing resetvalue to the field specified in fieldoffset. If
2632 * fieldoffset is 0 then no reset will be done.
2633 */
2634 CPResetFn *resetfn;
e2cce18f
RH
2635
2636 /*
2637 * "Original" writefn and readfn.
2638 * For ARMv8.1-VHE register aliases, we overwrite the read/write
2639 * accessor functions of various EL1/EL0 to perform the runtime
2640 * check for which sysreg should actually be modified, and then
2641 * forwards the operation. Before overwriting the accessors,
2642 * the original function is copied here, so that accesses that
2643 * really do go to the EL1/EL0 version proceed normally.
2644 * (The corresponding EL2 register is linked via opaque.)
2645 */
2646 CPReadFn *orig_readfn;
2647 CPWriteFn *orig_writefn;
4b6a83fb
PM
2648};
2649
2650/* Macros which are lvalues for the field in CPUARMState for the
2651 * ARMCPRegInfo *ri.
2652 */
2653#define CPREG_FIELD32(env, ri) \
2654 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2655#define CPREG_FIELD64(env, ri) \
2656 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2657
2658#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2659
2660void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2661 const ARMCPRegInfo *regs, void *opaque);
2662void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2663 const ARMCPRegInfo *regs, void *opaque);
2664static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2665{
2666 define_arm_cp_regs_with_opaque(cpu, regs, 0);
2667}
2668static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2669{
2670 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2671}
60322b39 2672const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
4b6a83fb 2673
6c5c0fec
AB
2674/*
2675 * Definition of an ARM co-processor register as viewed from
2676 * userspace. This is used for presenting sanitised versions of
2677 * registers to userspace when emulating the Linux AArch64 CPU
2678 * ID/feature ABI (advertised as HWCAP_CPUID).
2679 */
2680typedef struct ARMCPRegUserSpaceInfo {
2681 /* Name of register */
2682 const char *name;
2683
d040242e
AB
2684 /* Is the name actually a glob pattern */
2685 bool is_glob;
2686
6c5c0fec
AB
2687 /* Only some bits are exported to user space */
2688 uint64_t exported_bits;
2689
2690 /* Fixed bits are applied after the mask */
2691 uint64_t fixed_bits;
2692} ARMCPRegUserSpaceInfo;
2693
2694#define REGUSERINFO_SENTINEL { .name = NULL }
2695
2696void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2697
4b6a83fb 2698/* CPWriteFn that can be used to implement writes-ignored behaviour */
c4241c7d
PM
2699void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2700 uint64_t value);
4b6a83fb 2701/* CPReadFn that can be used for read-as-zero behaviour */
c4241c7d 2702uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
4b6a83fb 2703
f5a0a5a5
PM
2704/* CPResetFn that does nothing, for use if no reset is required even
2705 * if fieldoffset is non zero.
2706 */
2707void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2708
67ed771d
PM
2709/* Return true if this reginfo struct's field in the cpu state struct
2710 * is 64 bits wide.
2711 */
2712static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2713{
2714 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2715}
2716
dcbff19b 2717static inline bool cp_access_ok(int current_el,
4b6a83fb
PM
2718 const ARMCPRegInfo *ri, int isread)
2719{
dcbff19b 2720 return (ri->access >> ((current_el * 2) + isread)) & 1;
4b6a83fb
PM
2721}
2722
49a66191
PM
2723/* Raw read of a coprocessor register (as needed for migration, etc) */
2724uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2725
721fae12
PM
2726/**
2727 * write_list_to_cpustate
2728 * @cpu: ARMCPU
2729 *
2730 * For each register listed in the ARMCPU cpreg_indexes list, write
2731 * its value from the cpreg_values list into the ARMCPUState structure.
2732 * This updates TCG's working data structures from KVM data or
2733 * from incoming migration state.
2734 *
2735 * Returns: true if all register values were updated correctly,
2736 * false if some register was unknown or could not be written.
2737 * Note that we do not stop early on failure -- we will attempt
2738 * writing all registers in the list.
2739 */
2740bool write_list_to_cpustate(ARMCPU *cpu);
2741
2742/**
2743 * write_cpustate_to_list:
2744 * @cpu: ARMCPU
b698e4ee 2745 * @kvm_sync: true if this is for syncing back to KVM
721fae12
PM
2746 *
2747 * For each register listed in the ARMCPU cpreg_indexes list, write
2748 * its value from the ARMCPUState structure into the cpreg_values list.
2749 * This is used to copy info from TCG's working data structures into
2750 * KVM or for outbound migration.
2751 *
b698e4ee
PM
2752 * @kvm_sync is true if we are doing this in order to sync the
2753 * register state back to KVM. In this case we will only update
2754 * values in the list if the previous list->cpustate sync actually
2755 * successfully wrote the CPU state. Otherwise we will keep the value
2756 * that is in the list.
2757 *
721fae12
PM
2758 * Returns: true if all register values were read correctly,
2759 * false if some register was unknown or could not be read.
2760 * Note that we do not stop early on failure -- we will attempt
2761 * reading all registers in the list.
2762 */
b698e4ee 2763bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
721fae12 2764
9ee6e8bb
PB
2765#define ARM_CPUID_TI915T 0x54029152
2766#define ARM_CPUID_TI925T 0x54029252
40f137e1 2767
ba1ba5cc
IM
2768#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2769#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
0dacec87 2770#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
ba1ba5cc 2771
9467d44c 2772#define cpu_signal_handler cpu_arm_signal_handler
c732abe2 2773#define cpu_list arm_cpu_list
9467d44c 2774
c1e37810
PM
2775/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2776 *
2777 * If EL3 is 64-bit:
2778 * + NonSecure EL1 & 0 stage 1
2779 * + NonSecure EL1 & 0 stage 2
2780 * + NonSecure EL2
b9f6033c
RH
2781 * + NonSecure EL2 & 0 (ARMv8.1-VHE)
2782 * + Secure EL1 & 0
c1e37810
PM
2783 * + Secure EL3
2784 * If EL3 is 32-bit:
2785 * + NonSecure PL1 & 0 stage 1
2786 * + NonSecure PL1 & 0 stage 2
2787 * + NonSecure PL2
b9f6033c
RH
2788 * + Secure PL0
2789 * + Secure PL1
c1e37810
PM
2790 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2791 *
2792 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
b9f6033c
RH
2793 * 1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2794 * because they may differ in access permissions even if the VA->PA map is
2795 * the same
c1e37810
PM
2796 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2797 * translation, which means that we have one mmu_idx that deals with two
2798 * concatenated translation regimes [this sort of combined s1+2 TLB is
2799 * architecturally permitted]
2800 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2801 * handling via the TLB. The only way to do a stage 1 translation without
2802 * the immediate stage 2 translation is via the ATS or AT system insns,
2803 * which can be slow-pathed and always do a page table walk.
2804 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2805 * translation regimes, because they map reasonably well to each other
2806 * and they can't both be active at the same time.
b9f6033c
RH
2807 * 5. we want to be able to use the TLB for accesses done as part of a
2808 * stage1 page table walk, rather than having to walk the stage2 page
2809 * table over and over.
452ef8cb
RH
2810 * 6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2811 * Never (PAN) bit within PSTATE.
c1e37810 2812 *
b9f6033c
RH
2813 * This gives us the following list of cases:
2814 *
2815 * NS EL0 EL1&0 stage 1+2 (aka NS PL0)
2816 * NS EL1 EL1&0 stage 1+2 (aka NS PL1)
452ef8cb 2817 * NS EL1 EL1&0 stage 1+2 +PAN
b9f6033c 2818 * NS EL0 EL2&0
452ef8cb 2819 * NS EL2 EL2&0 +PAN
c1e37810 2820 * NS EL2 (aka NS PL2)
b9f6033c
RH
2821 * S EL0 EL1&0 (aka S PL0)
2822 * S EL1 EL1&0 (not used if EL3 is 32 bit)
452ef8cb 2823 * S EL1 EL1&0 +PAN
c1e37810 2824 * S EL3 (aka S PL1)
b9f6033c 2825 * NS EL1&0 stage 2
c1e37810 2826 *
452ef8cb 2827 * for a total of 12 different mmu_idx.
c1e37810 2828 *
3bef7012
PM
2829 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2830 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2831 * NS EL2 if we ever model a Cortex-R52).
2832 *
2833 * M profile CPUs are rather different as they do not have a true MMU.
2834 * They have the following different MMU indexes:
2835 * User
2836 * Privileged
62593718
PM
2837 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2838 * Privileged, execution priority negative (ditto)
66787c78
PM
2839 * If the CPU supports the v8M Security Extension then there are also:
2840 * Secure User
2841 * Secure Privileged
62593718
PM
2842 * Secure User, execution priority negative
2843 * Secure Privileged, execution priority negative
3bef7012 2844 *
8bd5c820
PM
2845 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2846 * are not quite the same -- different CPU types (most notably M profile
2847 * vs A/R profile) would like to use MMU indexes with different semantics,
2848 * but since we don't ever need to use all of those in a single CPU we
2849 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2850 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2851 * the same for any particular CPU.
2852 * Variables of type ARMMUIdx are always full values, and the core
2853 * index values are in variables of type 'int'.
2854 *
c1e37810
PM
2855 * Our enumeration includes at the end some entries which are not "true"
2856 * mmu_idx values in that they don't have corresponding TLBs and are only
2857 * valid for doing slow path page table walks.
2858 *
2859 * The constant names here are patterned after the general style of the names
2860 * of the AT/ATS operations.
2861 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
62593718
PM
2862 * For M profile we arrange them to have a bit for priv, a bit for negpri
2863 * and a bit for secure.
c1e37810 2864 */
b9f6033c
RH
2865#define ARM_MMU_IDX_A 0x10 /* A profile */
2866#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2867#define ARM_MMU_IDX_M 0x40 /* M profile */
8bd5c820 2868
b9f6033c
RH
2869/* Meanings of the bits for M profile mmu idx values */
2870#define ARM_MMU_IDX_M_PRIV 0x1
62593718 2871#define ARM_MMU_IDX_M_NEGPRI 0x2
b9f6033c 2872#define ARM_MMU_IDX_M_S 0x4 /* Secure */
62593718 2873
b9f6033c
RH
2874#define ARM_MMU_IDX_TYPE_MASK \
2875 (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2876#define ARM_MMU_IDX_COREIDX_MASK 0xf
8bd5c820 2877
c1e37810 2878typedef enum ARMMMUIdx {
b9f6033c
RH
2879 /*
2880 * A-profile.
2881 */
452ef8cb
RH
2882 ARMMMUIdx_E10_0 = 0 | ARM_MMU_IDX_A,
2883 ARMMMUIdx_E20_0 = 1 | ARM_MMU_IDX_A,
b9f6033c 2884
452ef8cb
RH
2885 ARMMMUIdx_E10_1 = 2 | ARM_MMU_IDX_A,
2886 ARMMMUIdx_E10_1_PAN = 3 | ARM_MMU_IDX_A,
b9f6033c 2887
452ef8cb
RH
2888 ARMMMUIdx_E2 = 4 | ARM_MMU_IDX_A,
2889 ARMMMUIdx_E20_2 = 5 | ARM_MMU_IDX_A,
2890 ARMMMUIdx_E20_2_PAN = 6 | ARM_MMU_IDX_A,
b9f6033c 2891
452ef8cb
RH
2892 ARMMMUIdx_SE10_0 = 7 | ARM_MMU_IDX_A,
2893 ARMMMUIdx_SE10_1 = 8 | ARM_MMU_IDX_A,
2894 ARMMMUIdx_SE10_1_PAN = 9 | ARM_MMU_IDX_A,
2895 ARMMMUIdx_SE3 = 10 | ARM_MMU_IDX_A,
b9f6033c 2896
452ef8cb 2897 ARMMMUIdx_Stage2 = 11 | ARM_MMU_IDX_A,
b9f6033c
RH
2898
2899 /*
2900 * These are not allocated TLBs and are used only for AT system
2901 * instructions or for the first stage of an S12 page table walk.
2902 */
2903 ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2904 ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
452ef8cb 2905 ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
b9f6033c
RH
2906
2907 /*
2908 * M-profile.
2909 */
25568316
RH
2910 ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2911 ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2912 ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2913 ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2914 ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2915 ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2916 ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2917 ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
c1e37810
PM
2918} ARMMMUIdx;
2919
5f09a6df
RH
2920/*
2921 * Bit macros for the core-mmu-index values for each index,
8bd5c820
PM
2922 * for use when calling tlb_flush_by_mmuidx() and friends.
2923 */
5f09a6df
RH
2924#define TO_CORE_BIT(NAME) \
2925 ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2926
8bd5c820 2927typedef enum ARMMMUIdxBit {
5f09a6df 2928 TO_CORE_BIT(E10_0),
b9f6033c 2929 TO_CORE_BIT(E20_0),
5f09a6df 2930 TO_CORE_BIT(E10_1),
452ef8cb 2931 TO_CORE_BIT(E10_1_PAN),
5f09a6df 2932 TO_CORE_BIT(E2),
b9f6033c 2933 TO_CORE_BIT(E20_2),
452ef8cb 2934 TO_CORE_BIT(E20_2_PAN),
5f09a6df
RH
2935 TO_CORE_BIT(SE10_0),
2936 TO_CORE_BIT(SE10_1),
452ef8cb 2937 TO_CORE_BIT(SE10_1_PAN),
5f09a6df
RH
2938 TO_CORE_BIT(SE3),
2939 TO_CORE_BIT(Stage2),
2940
2941 TO_CORE_BIT(MUser),
2942 TO_CORE_BIT(MPriv),
2943 TO_CORE_BIT(MUserNegPri),
2944 TO_CORE_BIT(MPrivNegPri),
2945 TO_CORE_BIT(MSUser),
2946 TO_CORE_BIT(MSPriv),
2947 TO_CORE_BIT(MSUserNegPri),
2948 TO_CORE_BIT(MSPrivNegPri),
8bd5c820
PM
2949} ARMMMUIdxBit;
2950
5f09a6df
RH
2951#undef TO_CORE_BIT
2952
f79fbf39 2953#define MMU_USER_IDX 0
c1e37810 2954
9e273ef2
PM
2955/* Indexes used when registering address spaces with cpu_address_space_init */
2956typedef enum ARMASIdx {
2957 ARMASIdx_NS = 0,
2958 ARMASIdx_S = 1,
2959} ARMASIdx;
2960
533e93f1 2961/* Return the Exception Level targeted by debug exceptions. */
3a298203
PM
2962static inline int arm_debug_target_el(CPUARMState *env)
2963{
81669b8b
SF
2964 bool secure = arm_is_secure(env);
2965 bool route_to_el2 = false;
2966
2967 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2968 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
b281ba42 2969 env->cp15.mdcr_el2 & MDCR_TDE;
81669b8b
SF
2970 }
2971
2972 if (route_to_el2) {
2973 return 2;
2974 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2975 !arm_el_is_aa64(env, 3) && secure) {
2976 return 3;
2977 } else {
2978 return 1;
2979 }
3a298203
PM
2980}
2981
43bbce7f
PM
2982static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2983{
2984 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2985 * CSSELR is RAZ/WI.
2986 */
2987 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2988}
2989
22af9025 2990/* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
3a298203
PM
2991static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2992{
22af9025
AB
2993 int cur_el = arm_current_el(env);
2994 int debug_el;
2995
2996 if (cur_el == 3) {
2997 return false;
533e93f1
PM
2998 }
2999
22af9025
AB
3000 /* MDCR_EL3.SDD disables debug events from Secure state */
3001 if (arm_is_secure_below_el3(env)
3002 && extract32(env->cp15.mdcr_el3, 16, 1)) {
3003 return false;
3a298203 3004 }
22af9025
AB
3005
3006 /*
3007 * Same EL to same EL debug exceptions need MDSCR_KDE enabled
3008 * while not masking the (D)ebug bit in DAIF.
3009 */
3010 debug_el = arm_debug_target_el(env);
3011
3012 if (cur_el == debug_el) {
3013 return extract32(env->cp15.mdscr_el1, 13, 1)
3014 && !(env->daif & PSTATE_D);
3015 }
3016
3017 /* Otherwise the debug target needs to be a higher EL */
3018 return debug_el > cur_el;
3a298203
PM
3019}
3020
3021static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
3022{
533e93f1
PM
3023 int el = arm_current_el(env);
3024
3025 if (el == 0 && arm_el_is_aa64(env, 1)) {
3a298203
PM
3026 return aa64_generate_debug_exceptions(env);
3027 }
533e93f1
PM
3028
3029 if (arm_is_secure(env)) {
3030 int spd;
3031
3032 if (el == 0 && (env->cp15.sder & 1)) {
3033 /* SDER.SUIDEN means debug exceptions from Secure EL0
3034 * are always enabled. Otherwise they are controlled by
3035 * SDCR.SPD like those from other Secure ELs.
3036 */
3037 return true;
3038 }
3039
3040 spd = extract32(env->cp15.mdcr_el3, 14, 2);
3041 switch (spd) {
3042 case 1:
3043 /* SPD == 0b01 is reserved, but behaves as 0b00. */
3044 case 0:
3045 /* For 0b00 we return true if external secure invasive debug
3046 * is enabled. On real hardware this is controlled by external
3047 * signals to the core. QEMU always permits debug, and behaves
3048 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3049 */
3050 return true;
3051 case 2:
3052 return false;
3053 case 3:
3054 return true;
3055 }
3056 }
3057
3058 return el != 2;
3a298203
PM
3059}
3060
3061/* Return true if debugging exceptions are currently enabled.
3062 * This corresponds to what in ARM ARM pseudocode would be
3063 * if UsingAArch32() then
3064 * return AArch32.GenerateDebugExceptions()
3065 * else
3066 * return AArch64.GenerateDebugExceptions()
3067 * We choose to push the if() down into this function for clarity,
3068 * since the pseudocode has it at all callsites except for the one in
3069 * CheckSoftwareStep(), where it is elided because both branches would
3070 * always return the same value.
3a298203
PM
3071 */
3072static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3073{
3074 if (env->aarch64) {
3075 return aa64_generate_debug_exceptions(env);
3076 } else {
3077 return aa32_generate_debug_exceptions(env);
3078 }
3079}
3080
3081/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3082 * implicitly means this always returns false in pre-v8 CPUs.)
3083 */
3084static inline bool arm_singlestep_active(CPUARMState *env)
3085{
3086 return extract32(env->cp15.mdscr_el1, 0, 1)
3087 && arm_el_is_aa64(env, arm_debug_target_el(env))
3088 && arm_generate_debug_exceptions(env);
3089}
3090
f9fd40eb
PB
3091static inline bool arm_sctlr_b(CPUARMState *env)
3092{
3093 return
3094 /* We need not implement SCTLR.ITD in user-mode emulation, so
3095 * let linux-user ignore the fact that it conflicts with SCTLR_B.
3096 * This lets people run BE32 binaries with "-cpu any".
3097 */
3098#ifndef CONFIG_USER_ONLY
3099 !arm_feature(env, ARM_FEATURE_V7) &&
3100#endif
3101 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3102}
3103
aaec1432 3104uint64_t arm_sctlr(CPUARMState *env, int el);
64e40755 3105
8061a649
RH
3106static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3107 bool sctlr_b)
3108{
3109#ifdef CONFIG_USER_ONLY
3110 /*
3111 * In system mode, BE32 is modelled in line with the
3112 * architecture (as word-invariant big-endianness), where loads
3113 * and stores are done little endian but from addresses which
3114 * are adjusted by XORing with the appropriate constant. So the
3115 * endianness to use for the raw data access is not affected by
3116 * SCTLR.B.
3117 * In user mode, however, we model BE32 as byte-invariant
3118 * big-endianness (because user-only code cannot tell the
3119 * difference), and so we need to use a data access endianness
3120 * that depends on SCTLR.B.
3121 */
3122 if (sctlr_b) {
3123 return true;
3124 }
3125#endif
3126 /* In 32bit endianness is determined by looking at CPSR's E bit */
3127 return env->uncached_cpsr & CPSR_E;
3128}
3129
3130static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3131{
3132 return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3133}
64e40755 3134
ed50ff78
PC
3135/* Return true if the processor is in big-endian mode. */
3136static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3137{
ed50ff78 3138 if (!is_a64(env)) {
8061a649 3139 return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
64e40755
RH
3140 } else {
3141 int cur_el = arm_current_el(env);
3142 uint64_t sctlr = arm_sctlr(env, cur_el);
8061a649 3143 return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
ed50ff78 3144 }
ed50ff78
PC
3145}
3146
4f7c64b3 3147typedef CPUARMState CPUArchState;
2161a612 3148typedef ARMCPU ArchCPU;
4f7c64b3 3149
022c62cb 3150#include "exec/cpu-all.h"
622ed360 3151
fdd1b228
RH
3152/*
3153 * Bit usage in the TB flags field: bit 31 indicates whether we are
3926cc84 3154 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
c1e37810
PM
3155 * We put flags which are shared between 32 and 64 bit mode at the top
3156 * of the word, and flags which apply to only one mode at the bottom.
fdd1b228 3157 *
506f1498 3158 * 31 20 18 14 9 0
79cabf1f
RH
3159 * +--------------+-----+-----+----------+--------------+
3160 * | | | TBFLAG_A32 | |
3161 * | | +-----+----------+ TBFLAG_AM32 |
3162 * | TBFLAG_ANY | |TBFLAG_M32| |
cc28fc30
RH
3163 * | | +-+----------+--------------|
3164 * | | | TBFLAG_A64 |
3165 * +--------------+---------+---------------------------+
3166 * 31 20 15 0
79cabf1f 3167 *
fdd1b228 3168 * Unless otherwise noted, these bits are cached in env->hflags.
3926cc84 3169 */
aad821ac 3170FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
506f1498
RH
3171FIELD(TBFLAG_ANY, SS_ACTIVE, 30, 1)
3172FIELD(TBFLAG_ANY, PSTATE_SS, 29, 1) /* Not cached. */
3173FIELD(TBFLAG_ANY, BE_DATA, 28, 1)
3174FIELD(TBFLAG_ANY, MMUIDX, 24, 4)
9dbbc748 3175/* Target EL if we take a floating-point-disabled exception */
506f1498 3176FIELD(TBFLAG_ANY, FPEXC_EL, 22, 2)
79cabf1f 3177/* For A-profile only, target EL for debug exceptions. */
506f1498 3178FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 20, 2)
79cabf1f 3179
8bd587c1 3180/*
79cabf1f 3181 * Bit usage when in AArch32 state, both A- and M-profile.
8bd587c1 3182 */
79cabf1f
RH
3183FIELD(TBFLAG_AM32, CONDEXEC, 0, 8) /* Not cached. */
3184FIELD(TBFLAG_AM32, THUMB, 8, 1) /* Not cached. */
3926cc84 3185
79cabf1f
RH
3186/*
3187 * Bit usage when in AArch32 state, for A-profile only.
3188 */
3189FIELD(TBFLAG_A32, VECLEN, 9, 3) /* Not cached. */
3190FIELD(TBFLAG_A32, VECSTRIDE, 12, 2) /* Not cached. */
ea7ac69d
PM
3191/*
3192 * We store the bottom two bits of the CPAR as TB flags and handle
3193 * checks on the other bits at runtime. This shares the same bits as
3194 * VECSTRIDE, which is OK as no XScale CPU has VFP.
fdd1b228 3195 * Not cached, because VECLEN+VECSTRIDE are not cached.
ea7ac69d 3196 */
79cabf1f
RH
3197FIELD(TBFLAG_A32, XSCALE_CPAR, 12, 2)
3198FIELD(TBFLAG_A32, VFPEN, 14, 1) /* Partially cached, minus FPEXC. */
3199FIELD(TBFLAG_A32, SCTLR_B, 15, 1)
3200FIELD(TBFLAG_A32, HSTR_ACTIVE, 16, 1)
7fbb535f
PM
3201/*
3202 * Indicates whether cp register reads and writes by guest code should access
3203 * the secure or nonsecure bank of banked registers; note that this is not
3204 * the same thing as the current security state of the processor!
3205 */
79cabf1f
RH
3206FIELD(TBFLAG_A32, NS, 17, 1)
3207
3208/*
3209 * Bit usage when in AArch32 state, for M-profile only.
3210 */
3211/* Handler (ie not Thread) mode */
3212FIELD(TBFLAG_M32, HANDLER, 9, 1)
3213/* Whether we should generate stack-limit checks */
3214FIELD(TBFLAG_M32, STACKCHECK, 10, 1)
3215/* Set if FPCCR.LSPACT is set */
3216FIELD(TBFLAG_M32, LSPACT, 11, 1) /* Not cached. */
3217/* Set if we must create a new FP context */
3218FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 12, 1) /* Not cached. */
3219/* Set if FPCCR.S does not match current security state */
3220FIELD(TBFLAG_M32, FPCCR_S_WRONG, 13, 1) /* Not cached. */
3221
3222/*
3223 * Bit usage when in AArch64 state
3224 */
476a4692 3225FIELD(TBFLAG_A64, TBII, 0, 2)
aad821ac
RH
3226FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3227FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
0816ef1b 3228FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
08f1434a 3229FIELD(TBFLAG_A64, BT, 9, 1)
fdd1b228 3230FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */
4a9ee99d 3231FIELD(TBFLAG_A64, TBID, 12, 2)
cc28fc30 3232FIELD(TBFLAG_A64, UNPRIV, 14, 1)
a1705768 3233
fb901c90
RH
3234/**
3235 * cpu_mmu_index:
3236 * @env: The cpu environment
3237 * @ifetch: True for code access, false for data access.
3238 *
3239 * Return the core mmu index for the current translation regime.
3240 * This function is used by generic TCG code paths.
3241 */
3242static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3243{
3244 return FIELD_EX32(env->hflags, TBFLAG_ANY, MMUIDX);
3245}
3246
f9fd40eb
PB
3247static inline bool bswap_code(bool sctlr_b)
3248{
3249#ifdef CONFIG_USER_ONLY
3250 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3251 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3252 * would also end up as a mixed-endian mode with BE code, LE data.
3253 */
3254 return
3255#ifdef TARGET_WORDS_BIGENDIAN
3256 1 ^
3257#endif
3258 sctlr_b;
3259#else
e334bd31
PB
3260 /* All code access in ARM is little endian, and there are no loaders
3261 * doing swaps that need to be reversed
f9fd40eb
PB
3262 */
3263 return 0;
3264#endif
3265}
3266
c3ae85fc
PB
3267#ifdef CONFIG_USER_ONLY
3268static inline bool arm_cpu_bswap_data(CPUARMState *env)
3269{
3270 return
3271#ifdef TARGET_WORDS_BIGENDIAN
3272 1 ^
3273#endif
3274 arm_cpu_data_is_big_endian(env);
3275}
3276#endif
3277
a9e01311
RH
3278void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3279 target_ulong *cs_base, uint32_t *flags);
6b917547 3280
98128601
RH
3281enum {
3282 QEMU_PSCI_CONDUIT_DISABLED = 0,
3283 QEMU_PSCI_CONDUIT_SMC = 1,
3284 QEMU_PSCI_CONDUIT_HVC = 2,
3285};
3286
017518c1
PM
3287#ifndef CONFIG_USER_ONLY
3288/* Return the address space index to use for a memory access */
3289static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3290{
3291 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3292}
5ce4ff65
PM
3293
3294/* Return the AddressSpace to use for a memory access
3295 * (which depends on whether the access is S or NS, and whether
3296 * the board gave us a separate AddressSpace for S accesses).
3297 */
3298static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3299{
3300 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3301}
017518c1
PM
3302#endif
3303
bd7d00fc 3304/**
b5c53d1b
AL
3305 * arm_register_pre_el_change_hook:
3306 * Register a hook function which will be called immediately before this
bd7d00fc
PM
3307 * CPU changes exception level or mode. The hook function will be
3308 * passed a pointer to the ARMCPU and the opaque data pointer passed
3309 * to this function when the hook was registered.
b5c53d1b
AL
3310 *
3311 * Note that if a pre-change hook is called, any registered post-change hooks
3312 * are guaranteed to subsequently be called.
bd7d00fc 3313 */
b5c53d1b 3314void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
bd7d00fc 3315 void *opaque);
b5c53d1b
AL
3316/**
3317 * arm_register_el_change_hook:
3318 * Register a hook function which will be called immediately after this
3319 * CPU changes exception level or mode. The hook function will be
3320 * passed a pointer to the ARMCPU and the opaque data pointer passed
3321 * to this function when the hook was registered.
3322 *
3323 * Note that any registered hooks registered here are guaranteed to be called
3324 * if pre-change hooks have been.
3325 */
3326void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3327 *opaque);
bd7d00fc 3328
3d74e2e9
RH
3329/**
3330 * arm_rebuild_hflags:
3331 * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3332 */
3333void arm_rebuild_hflags(CPUARMState *env);
3334
9a2b5256
RH
3335/**
3336 * aa32_vfp_dreg:
3337 * Return a pointer to the Dn register within env in 32-bit mode.
3338 */
3339static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3340{
c39c2b90 3341 return &env->vfp.zregs[regno >> 1].d[regno & 1];
9a2b5256
RH
3342}
3343
3344/**
3345 * aa32_vfp_qreg:
3346 * Return a pointer to the Qn register within env in 32-bit mode.
3347 */
3348static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3349{
c39c2b90 3350 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3351}
3352
3353/**
3354 * aa64_vfp_qreg:
3355 * Return a pointer to the Qn register within env in 64-bit mode.
3356 */
3357static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3358{
c39c2b90 3359 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3360}
3361
028e2a7b
RH
3362/* Shared between translate-sve.c and sve_helper.c. */
3363extern const uint64_t pred_esz_masks[4];
3364
873b73c0
PM
3365/*
3366 * Naming convention for isar_feature functions:
3367 * Functions which test 32-bit ID registers should have _aa32_ in
3368 * their name. Functions which test 64-bit ID registers should have
6e61f839
PM
3369 * _aa64_ in their name. These must only be used in code where we
3370 * know for certain that the CPU has AArch32 or AArch64 respectively
3371 * or where the correct answer for a CPU which doesn't implement that
3372 * CPU state is "false" (eg when generating A32 or A64 code, if adding
3373 * system registers that are specific to that CPU state, for "should
3374 * we let this system register bit be set" tests where the 32-bit
3375 * flavour of the register doesn't have the bit, and so on).
3376 * Functions which simply ask "does this feature exist at all" have
3377 * _any_ in their name, and always return the logical OR of the _aa64_
3378 * and the _aa32_ function.
873b73c0
PM
3379 */
3380
962fcbf2
RH
3381/*
3382 * 32-bit feature tests via id registers.
3383 */
873b73c0 3384static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
7e0cf8b4
RH
3385{
3386 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3387}
3388
873b73c0 3389static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
7e0cf8b4
RH
3390{
3391 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3392}
3393
873b73c0 3394static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
09cbd501
RH
3395{
3396 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3397}
3398
962fcbf2
RH
3399static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3400{
3401 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3402}
3403
3404static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3405{
3406 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3407}
3408
3409static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3410{
3411 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3412}
3413
3414static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3415{
3416 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3417}
3418
3419static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3420{
3421 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3422}
3423
3424static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3425{
3426 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3427}
3428
3429static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3430{
3431 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3432}
3433
6c1f6f27
RH
3434static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3435{
3436 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3437}
3438
962fcbf2
RH
3439static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3440{
3441 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3442}
3443
87732318
RH
3444static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3445{
3446 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3447}
3448
9888bd1e
RH
3449static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3450{
3451 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3452}
3453
cb570bd3
RH
3454static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3455{
3456 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3457}
3458
5763190f
RH
3459static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3460{
3461 /*
3462 * This is a placeholder for use by VCMA until the rest of
3463 * the ARMv8.2-FP16 extension is implemented for aa32 mode.
3464 * At which point we can properly set and check MVFR1.FPHP.
3465 */
3466 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3467}
3468
7fbc6a40
RH
3469static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3470{
3471 /*
3472 * Return true if either VFP or SIMD is implemented.
3473 * In this case, a minimum of VFP w/ D0-D15.
3474 */
3475 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3476}
3477
0e13ba78 3478static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
b3ff4b87
PM
3479{
3480 /* Return true if D16-D31 are implemented */
b3a816f6 3481 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
b3ff4b87
PM
3482}
3483
266bd25c
PM
3484static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3485{
b3a816f6 3486 return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
266bd25c
PM
3487}
3488
f67957e1
RH
3489static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3490{
3491 /* Return true if CPU supports single precision floating point, VFPv2 */
3492 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3493}
3494
3495static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3496{
3497 /* Return true if CPU supports single precision floating point, VFPv3 */
3498 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3499}
3500
c4ff8735 3501static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
1120827f 3502{
c4ff8735 3503 /* Return true if CPU supports double precision floating point, VFPv2 */
b3a816f6 3504 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
1120827f
PM
3505}
3506
f67957e1
RH
3507static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3508{
3509 /* Return true if CPU supports double precision floating point, VFPv3 */
3510 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3511}
3512
7d63183f
RH
3513static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3514{
3515 return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3516}
3517
602f6e42
PM
3518/*
3519 * We always set the FP and SIMD FP16 fields to indicate identical
3520 * levels of support (assuming SIMD is implemented at all), so
3521 * we only need one set of accessors.
3522 */
3523static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3524{
b3a816f6 3525 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
602f6e42
PM
3526}
3527
3528static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3529{
b3a816f6 3530 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
602f6e42
PM
3531}
3532
c52881bb
RH
3533/*
3534 * Note that this ID register field covers both VFP and Neon FMAC,
3535 * so should usually be tested in combination with some other
3536 * check that confirms the presence of whichever of VFP or Neon is
3537 * relevant, to avoid accidentally enabling a Neon feature on
3538 * a VFP-no-Neon core or vice-versa.
3539 */
3540static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3541{
3542 return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3543}
3544
c0c760af
PM
3545static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3546{
b3a816f6 3547 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
c0c760af
PM
3548}
3549
3550static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3551{
b3a816f6 3552 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
c0c760af
PM
3553}
3554
3555static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3556{
b3a816f6 3557 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
c0c760af
PM
3558}
3559
3560static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3561{
b3a816f6 3562 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
c0c760af
PM
3563}
3564
3d6ad6bb
RH
3565static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3566{
10054016 3567 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3d6ad6bb
RH
3568}
3569
3570static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3571{
10054016 3572 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3d6ad6bb
RH
3573}
3574
a6179538
PM
3575static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id)
3576{
3577 /* 0xf means "non-standard IMPDEF PMU" */
3578 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3579 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3580}
3581
15dd1ebd
PM
3582static inline bool isar_feature_aa32_pmu_8_4(const ARMISARegisters *id)
3583{
3584 /* 0xf means "non-standard IMPDEF PMU" */
3585 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3586 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3587}
3588
4036b7d1
PM
3589static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3590{
3591 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3592}
3593
f6287c24
PM
3594static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
3595{
3596 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
3597}
3598
957e6155
PM
3599static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
3600{
3601 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
3602}
3603
962fcbf2
RH
3604/*
3605 * 64-bit feature tests via id registers.
3606 */
3607static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3608{
3609 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3610}
3611
3612static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3613{
3614 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3615}
3616
3617static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3618{
3619 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3620}
3621
3622static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3623{
3624 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3625}
3626
3627static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3628{
3629 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3630}
3631
3632static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3633{
3634 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3635}
3636
3637static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3638{
3639 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3640}
3641
3642static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3643{
3644 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3645}
3646
3647static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3648{
3649 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3650}
3651
3652static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3653{
3654 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3655}
3656
3657static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3658{
3659 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3660}
3661
3662static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3663{
3664 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3665}
3666
0caa5af8
RH
3667static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3668{
3669 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3670}
3671
b89d9c98
RH
3672static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3673{
3674 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3675}
3676
5ef84f11
RH
3677static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3678{
3679 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3680}
3681
de390645
RH
3682static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3683{
3684 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3685}
3686
6c1f6f27
RH
3687static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3688{
3689 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3690}
3691
962fcbf2
RH
3692static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3693{
3694 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3695}
3696
991ad91b
RH
3697static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3698{
3699 /*
3700 * Note that while QEMU will only implement the architected algorithm
3701 * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation
3702 * defined algorithms, and thus API+GPI, and this predicate controls
3703 * migration of the 128-bit keys.
3704 */
3705 return (id->id_aa64isar1 &
3706 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3707 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3708 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3709 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3710}
3711
9888bd1e
RH
3712static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3713{
3714 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3715}
3716
cb570bd3
RH
3717static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3718{
3719 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3720}
3721
6bea2563
RH
3722static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3723{
3724 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3725}
3726
0d57b499
BM
3727static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
3728{
3729 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
3730}
3731
3732static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
3733{
3734 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
3735}
3736
7d63183f
RH
3737static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
3738{
3739 /* We always set the AdvSIMD and FP fields identically. */
3740 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
3741}
3742
5763190f
RH
3743static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3744{
3745 /* We always set the AdvSIMD and FP fields identically wrt FP16. */
3746 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3747}
3748
0f8d06f1
RH
3749static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3750{
3751 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3752}
3753
cd208a1c
RH
3754static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3755{
3756 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3757}
3758
8fc2ea21
RH
3759static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
3760{
3761 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
3762}
3763
2d7137c1
RH
3764static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3765{
3766 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3767}
3768
3d6ad6bb
RH
3769static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
3770{
3771 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
3772}
3773
3774static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
3775{
3776 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
3777}
3778
9eeb7a1c
RH
3779static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
3780{
3781 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
3782}
3783
be53b6f4
RH
3784static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3785{
3786 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3787}
3788
2a609df8
PM
3789static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id)
3790{
3791 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
3792 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
3793}
3794
15dd1ebd
PM
3795static inline bool isar_feature_aa64_pmu_8_4(const ARMISARegisters *id)
3796{
54117b90
PM
3797 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
3798 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
15dd1ebd
PM
3799}
3800
2677cf9f
PM
3801static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
3802{
3803 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
3804}
3805
a1229109
PM
3806static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
3807{
3808 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
3809}
3810
957e6155
PM
3811static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
3812{
3813 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
3814}
3815
6e61f839
PM
3816/*
3817 * Feature tests for "does this exist in either 32-bit or 64-bit?"
3818 */
3819static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
3820{
3821 return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
3822}
3823
22e57073
PM
3824static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
3825{
3826 return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
3827}
3828
2a609df8
PM
3829static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id)
3830{
3831 return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id);
3832}
3833
15dd1ebd
PM
3834static inline bool isar_feature_any_pmu_8_4(const ARMISARegisters *id)
3835{
3836 return isar_feature_aa64_pmu_8_4(id) || isar_feature_aa32_pmu_8_4(id);
3837}
3838
957e6155
PM
3839static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
3840{
3841 return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
3842}
3843
962fcbf2
RH
3844/*
3845 * Forward to the above feature tests given an ARMCPU pointer.
3846 */
3847#define cpu_isar_feature(name, cpu) \
3848 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
3849
2c0262af 3850#endif
This page took 1.740176 seconds and 4 git commands to generate.