]>
Commit | Line | Data |
---|---|---|
2c0262af FB |
1 | /* |
2 | * ARM virtual CPU header | |
5fafdf24 | 3 | * |
2c0262af FB |
4 | * Copyright (c) 2003 Fabrice Bellard |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
8167ee88 | 17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
2c0262af | 18 | */ |
2c0262af | 19 | |
07f5a258 MA |
20 | #ifndef ARM_CPU_H |
21 | #define ARM_CPU_H | |
3cf1e035 | 22 | |
72b0cd35 | 23 | #include "kvm-consts.h" |
2c4da50d | 24 | #include "hw/registerfields.h" |
74433bf0 RH |
25 | #include "cpu-qom.h" |
26 | #include "exec/cpu-defs.h" | |
9042c0e2 | 27 | |
ca759f9e AB |
28 | /* ARM processors have a weak memory model */ |
29 | #define TCG_GUEST_DEFAULT_MO (0) | |
30 | ||
b8a9e8f1 FB |
31 | #define EXCP_UDEF 1 /* undefined instruction */ |
32 | #define EXCP_SWI 2 /* software interrupt */ | |
33 | #define EXCP_PREFETCH_ABORT 3 | |
34 | #define EXCP_DATA_ABORT 4 | |
b5ff1b31 FB |
35 | #define EXCP_IRQ 5 |
36 | #define EXCP_FIQ 6 | |
06c949e6 | 37 | #define EXCP_BKPT 7 |
9ee6e8bb | 38 | #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */ |
fbb4a2e3 | 39 | #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */ |
35979d71 | 40 | #define EXCP_HVC 11 /* HyperVisor Call */ |
607d98b8 | 41 | #define EXCP_HYP_TRAP 12 |
e0d6e6a5 | 42 | #define EXCP_SMC 13 /* Secure Monitor Call */ |
136e67e9 EI |
43 | #define EXCP_VIRQ 14 |
44 | #define EXCP_VFIQ 15 | |
19a6e31c | 45 | #define EXCP_SEMIHOST 16 /* semihosting call */ |
7517748e | 46 | #define EXCP_NOCP 17 /* v7M NOCP UsageFault */ |
e13886e3 | 47 | #define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */ |
86f026de | 48 | #define EXCP_STKOF 19 /* v8M STKOF UsageFault */ |
e33cf0f8 | 49 | #define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */ |
019076b0 PM |
50 | #define EXCP_LSERR 21 /* v8M LSERR SecureFault */ |
51 | #define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */ | |
2c4a7cc5 | 52 | /* NB: add new EXCP_ defines to the array in arm_log_exception() too */ |
9ee6e8bb PB |
53 | |
54 | #define ARMV7M_EXCP_RESET 1 | |
55 | #define ARMV7M_EXCP_NMI 2 | |
56 | #define ARMV7M_EXCP_HARD 3 | |
57 | #define ARMV7M_EXCP_MEM 4 | |
58 | #define ARMV7M_EXCP_BUS 5 | |
59 | #define ARMV7M_EXCP_USAGE 6 | |
1e577cc7 | 60 | #define ARMV7M_EXCP_SECURE 7 |
9ee6e8bb PB |
61 | #define ARMV7M_EXCP_SVC 11 |
62 | #define ARMV7M_EXCP_DEBUG 12 | |
63 | #define ARMV7M_EXCP_PENDSV 14 | |
64 | #define ARMV7M_EXCP_SYSTICK 15 | |
2c0262af | 65 | |
acf94941 PM |
66 | /* For M profile, some registers are banked secure vs non-secure; |
67 | * these are represented as a 2-element array where the first element | |
68 | * is the non-secure copy and the second is the secure copy. | |
69 | * When the CPU does not have implement the security extension then | |
70 | * only the first element is used. | |
71 | * This means that the copy for the current security state can be | |
72 | * accessed via env->registerfield[env->v7m.secure] (whether the security | |
73 | * extension is implemented or not). | |
74 | */ | |
4a16724f PM |
75 | enum { |
76 | M_REG_NS = 0, | |
77 | M_REG_S = 1, | |
78 | M_REG_NUM_BANKS = 2, | |
79 | }; | |
acf94941 | 80 | |
403946c0 RH |
81 | /* ARM-specific interrupt pending bits. */ |
82 | #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1 | |
136e67e9 EI |
83 | #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2 |
84 | #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3 | |
403946c0 | 85 | |
e4fe830b PM |
86 | /* The usual mapping for an AArch64 system register to its AArch32 |
87 | * counterpart is for the 32 bit world to have access to the lower | |
88 | * half only (with writes leaving the upper half untouched). It's | |
89 | * therefore useful to be able to pass TCG the offset of the least | |
90 | * significant half of a uint64_t struct member. | |
91 | */ | |
92 | #ifdef HOST_WORDS_BIGENDIAN | |
5cd8a118 | 93 | #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t)) |
b0fe2427 | 94 | #define offsetofhigh32(S, M) offsetof(S, M) |
e4fe830b PM |
95 | #else |
96 | #define offsetoflow32(S, M) offsetof(S, M) | |
b0fe2427 | 97 | #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t)) |
e4fe830b PM |
98 | #endif |
99 | ||
136e67e9 | 100 | /* Meanings of the ARMCPU object's four inbound GPIO lines */ |
7c1840b6 PM |
101 | #define ARM_CPU_IRQ 0 |
102 | #define ARM_CPU_FIQ 1 | |
136e67e9 EI |
103 | #define ARM_CPU_VIRQ 2 |
104 | #define ARM_CPU_VFIQ 3 | |
403946c0 | 105 | |
aaa1f954 EI |
106 | /* ARM-specific extra insn start words: |
107 | * 1: Conditional execution bits | |
108 | * 2: Partial exception syndrome for data aborts | |
109 | */ | |
110 | #define TARGET_INSN_START_EXTRA_WORDS 2 | |
111 | ||
112 | /* The 2nd extra word holding syndrome info for data aborts does not use | |
113 | * the upper 6 bits nor the lower 14 bits. We mask and shift it down to | |
114 | * help the sleb128 encoder do a better job. | |
115 | * When restoring the CPU state, we shift it back up. | |
116 | */ | |
117 | #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1) | |
118 | #define ARM_INSN_START_WORD2_SHIFT 14 | |
6ebbf390 | 119 | |
b7bcbe95 FB |
120 | /* We currently assume float and double are IEEE single and double |
121 | precision respectively. | |
122 | Doing runtime conversions is tricky because VFP registers may contain | |
123 | integer values (eg. as the result of a FTOSI instruction). | |
8e96005d FB |
124 | s<2n> maps to the least significant half of d<n> |
125 | s<2n+1> maps to the most significant half of d<n> | |
126 | */ | |
b7bcbe95 | 127 | |
200bf5b7 AB |
128 | /** |
129 | * DynamicGDBXMLInfo: | |
130 | * @desc: Contains the XML descriptions. | |
131 | * @num_cpregs: Number of the Coprocessor registers seen by GDB. | |
132 | * @cpregs_keys: Array that contains the corresponding Key of | |
133 | * a given cpreg with the same order of the cpreg in the XML description. | |
134 | */ | |
135 | typedef struct DynamicGDBXMLInfo { | |
136 | char *desc; | |
137 | int num_cpregs; | |
138 | uint32_t *cpregs_keys; | |
139 | } DynamicGDBXMLInfo; | |
140 | ||
55d284af PM |
141 | /* CPU state for each instance of a generic timer (in cp15 c14) */ |
142 | typedef struct ARMGenericTimer { | |
143 | uint64_t cval; /* Timer CompareValue register */ | |
a7adc4b7 | 144 | uint64_t ctl; /* Timer Control register */ |
55d284af PM |
145 | } ARMGenericTimer; |
146 | ||
147 | #define GTIMER_PHYS 0 | |
148 | #define GTIMER_VIRT 1 | |
b0e66d95 | 149 | #define GTIMER_HYP 2 |
b4d3978c PM |
150 | #define GTIMER_SEC 3 |
151 | #define NUM_GTIMERS 4 | |
55d284af | 152 | |
11f136ee FA |
153 | typedef struct { |
154 | uint64_t raw_tcr; | |
155 | uint32_t mask; | |
156 | uint32_t base_mask; | |
157 | } TCR; | |
158 | ||
c39c2b90 RH |
159 | /* Define a maximum sized vector register. |
160 | * For 32-bit, this is a 128-bit NEON/AdvSIMD register. | |
161 | * For 64-bit, this is a 2048-bit SVE register. | |
162 | * | |
163 | * Note that the mapping between S, D, and Q views of the register bank | |
164 | * differs between AArch64 and AArch32. | |
165 | * In AArch32: | |
166 | * Qn = regs[n].d[1]:regs[n].d[0] | |
167 | * Dn = regs[n / 2].d[n & 1] | |
168 | * Sn = regs[n / 4].d[n % 4 / 2], | |
169 | * bits 31..0 for even n, and bits 63..32 for odd n | |
170 | * (and regs[16] to regs[31] are inaccessible) | |
171 | * In AArch64: | |
172 | * Zn = regs[n].d[*] | |
173 | * Qn = regs[n].d[1]:regs[n].d[0] | |
174 | * Dn = regs[n].d[0] | |
175 | * Sn = regs[n].d[0] bits 31..0 | |
d0e69ea8 | 176 | * Hn = regs[n].d[0] bits 15..0 |
c39c2b90 RH |
177 | * |
178 | * This corresponds to the architecturally defined mapping between | |
179 | * the two execution states, and means we do not need to explicitly | |
180 | * map these registers when changing states. | |
181 | * | |
182 | * Align the data for use with TCG host vector operations. | |
183 | */ | |
184 | ||
185 | #ifdef TARGET_AARCH64 | |
186 | # define ARM_MAX_VQ 16 | |
187 | #else | |
188 | # define ARM_MAX_VQ 1 | |
189 | #endif | |
190 | ||
191 | typedef struct ARMVectorReg { | |
192 | uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16); | |
193 | } ARMVectorReg; | |
194 | ||
3c7d3086 | 195 | #ifdef TARGET_AARCH64 |
991ad91b | 196 | /* In AArch32 mode, predicate registers do not exist at all. */ |
3c7d3086 RH |
197 | typedef struct ARMPredicateReg { |
198 | uint64_t p[2 * ARM_MAX_VQ / 8] QEMU_ALIGNED(16); | |
199 | } ARMPredicateReg; | |
991ad91b RH |
200 | |
201 | /* In AArch32 mode, PAC keys do not exist at all. */ | |
202 | typedef struct ARMPACKey { | |
203 | uint64_t lo, hi; | |
204 | } ARMPACKey; | |
3c7d3086 RH |
205 | #endif |
206 | ||
c39c2b90 | 207 | |
2c0262af | 208 | typedef struct CPUARMState { |
b5ff1b31 | 209 | /* Regs for current mode. */ |
2c0262af | 210 | uint32_t regs[16]; |
3926cc84 AG |
211 | |
212 | /* 32/64 switch only happens when taking and returning from | |
213 | * exceptions so the overlap semantics are taken care of then | |
214 | * instead of having a complicated union. | |
215 | */ | |
216 | /* Regs for A64 mode. */ | |
217 | uint64_t xregs[32]; | |
218 | uint64_t pc; | |
d356312f PM |
219 | /* PSTATE isn't an architectural register for ARMv8. However, it is |
220 | * convenient for us to assemble the underlying state into a 32 bit format | |
221 | * identical to the architectural format used for the SPSR. (This is also | |
222 | * what the Linux kernel's 'pstate' field in signal handlers and KVM's | |
223 | * 'pstate' register are.) Of the PSTATE bits: | |
224 | * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same | |
225 | * semantics as for AArch32, as described in the comments on each field) | |
226 | * nRW (also known as M[4]) is kept, inverted, in env->aarch64 | |
4cc35614 | 227 | * DAIF (exception masks) are kept in env->daif |
f6e52eaa | 228 | * BTYPE is kept in env->btype |
d356312f | 229 | * all other bits are stored in their correct places in env->pstate |
3926cc84 AG |
230 | */ |
231 | uint32_t pstate; | |
232 | uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */ | |
233 | ||
b90372ad | 234 | /* Frequently accessed CPSR bits are stored separately for efficiency. |
d37aca66 | 235 | This contains all the other bits. Use cpsr_{read,write} to access |
b5ff1b31 FB |
236 | the whole CPSR. */ |
237 | uint32_t uncached_cpsr; | |
238 | uint32_t spsr; | |
239 | ||
240 | /* Banked registers. */ | |
28c9457d | 241 | uint64_t banked_spsr[8]; |
0b7d409d FA |
242 | uint32_t banked_r13[8]; |
243 | uint32_t banked_r14[8]; | |
3b46e624 | 244 | |
b5ff1b31 FB |
245 | /* These hold r8-r12. */ |
246 | uint32_t usr_regs[5]; | |
247 | uint32_t fiq_regs[5]; | |
3b46e624 | 248 | |
2c0262af FB |
249 | /* cpsr flag cache for faster execution */ |
250 | uint32_t CF; /* 0 or 1 */ | |
251 | uint32_t VF; /* V is the bit 31. All other bits are undefined */ | |
6fbe23d5 PB |
252 | uint32_t NF; /* N is bit 31. All other bits are undefined. */ |
253 | uint32_t ZF; /* Z set if zero. */ | |
99c475ab | 254 | uint32_t QF; /* 0 or 1 */ |
9ee6e8bb | 255 | uint32_t GE; /* cpsr[19:16] */ |
b26eefb6 | 256 | uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */ |
9ee6e8bb | 257 | uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */ |
f6e52eaa | 258 | uint32_t btype; /* BTI branch type. spsr[11:10]. */ |
b6af0975 | 259 | uint64_t daif; /* exception masks, in the bits they are in PSTATE */ |
2c0262af | 260 | |
1b174238 | 261 | uint64_t elr_el[4]; /* AArch64 exception link regs */ |
73fb3b76 | 262 | uint64_t sp_el[4]; /* AArch64 banked stack pointers */ |
a0618a19 | 263 | |
b5ff1b31 FB |
264 | /* System control coprocessor (cp15) */ |
265 | struct { | |
40f137e1 | 266 | uint32_t c0_cpuid; |
b85a1fd6 FA |
267 | union { /* Cache size selection */ |
268 | struct { | |
269 | uint64_t _unused_csselr0; | |
270 | uint64_t csselr_ns; | |
271 | uint64_t _unused_csselr1; | |
272 | uint64_t csselr_s; | |
273 | }; | |
274 | uint64_t csselr_el[4]; | |
275 | }; | |
137feaa9 FA |
276 | union { /* System control register. */ |
277 | struct { | |
278 | uint64_t _unused_sctlr; | |
279 | uint64_t sctlr_ns; | |
280 | uint64_t hsctlr; | |
281 | uint64_t sctlr_s; | |
282 | }; | |
283 | uint64_t sctlr_el[4]; | |
284 | }; | |
7ebd5f2e | 285 | uint64_t cpacr_el1; /* Architectural feature access control register */ |
c6f19164 | 286 | uint64_t cptr_el[4]; /* ARMv8 feature trap registers */ |
610c3c8a | 287 | uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */ |
144634ae | 288 | uint64_t sder; /* Secure debug enable register. */ |
77022576 | 289 | uint32_t nsacr; /* Non-secure access control register. */ |
7dd8c9af FA |
290 | union { /* MMU translation table base 0. */ |
291 | struct { | |
292 | uint64_t _unused_ttbr0_0; | |
293 | uint64_t ttbr0_ns; | |
294 | uint64_t _unused_ttbr0_1; | |
295 | uint64_t ttbr0_s; | |
296 | }; | |
297 | uint64_t ttbr0_el[4]; | |
298 | }; | |
299 | union { /* MMU translation table base 1. */ | |
300 | struct { | |
301 | uint64_t _unused_ttbr1_0; | |
302 | uint64_t ttbr1_ns; | |
303 | uint64_t _unused_ttbr1_1; | |
304 | uint64_t ttbr1_s; | |
305 | }; | |
306 | uint64_t ttbr1_el[4]; | |
307 | }; | |
b698e9cf | 308 | uint64_t vttbr_el2; /* Virtualization Translation Table Base. */ |
11f136ee FA |
309 | /* MMU translation table base control. */ |
310 | TCR tcr_el[4]; | |
68e9c2fe | 311 | TCR vtcr_el2; /* Virtualization Translation Control. */ |
67cc32eb VL |
312 | uint32_t c2_data; /* MPU data cacheable bits. */ |
313 | uint32_t c2_insn; /* MPU instruction cacheable bits. */ | |
0c17d68c FA |
314 | union { /* MMU domain access control register |
315 | * MPU write buffer control. | |
316 | */ | |
317 | struct { | |
318 | uint64_t dacr_ns; | |
319 | uint64_t dacr_s; | |
320 | }; | |
321 | struct { | |
322 | uint64_t dacr32_el2; | |
323 | }; | |
324 | }; | |
7e09797c PM |
325 | uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */ |
326 | uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */ | |
f149e3e8 | 327 | uint64_t hcr_el2; /* Hypervisor configuration register */ |
64e0e2de | 328 | uint64_t scr_el3; /* Secure configuration register. */ |
88ca1c2d FA |
329 | union { /* Fault status registers. */ |
330 | struct { | |
331 | uint64_t ifsr_ns; | |
332 | uint64_t ifsr_s; | |
333 | }; | |
334 | struct { | |
335 | uint64_t ifsr32_el2; | |
336 | }; | |
337 | }; | |
4a7e2d73 FA |
338 | union { |
339 | struct { | |
340 | uint64_t _unused_dfsr; | |
341 | uint64_t dfsr_ns; | |
342 | uint64_t hsr; | |
343 | uint64_t dfsr_s; | |
344 | }; | |
345 | uint64_t esr_el[4]; | |
346 | }; | |
ce819861 | 347 | uint32_t c6_region[8]; /* MPU base/size registers. */ |
b848ce2b FA |
348 | union { /* Fault address registers. */ |
349 | struct { | |
350 | uint64_t _unused_far0; | |
351 | #ifdef HOST_WORDS_BIGENDIAN | |
352 | uint32_t ifar_ns; | |
353 | uint32_t dfar_ns; | |
354 | uint32_t ifar_s; | |
355 | uint32_t dfar_s; | |
356 | #else | |
357 | uint32_t dfar_ns; | |
358 | uint32_t ifar_ns; | |
359 | uint32_t dfar_s; | |
360 | uint32_t ifar_s; | |
361 | #endif | |
362 | uint64_t _unused_far3; | |
363 | }; | |
364 | uint64_t far_el[4]; | |
365 | }; | |
59e05530 | 366 | uint64_t hpfar_el2; |
2a5a9abd | 367 | uint64_t hstr_el2; |
01c097f7 FA |
368 | union { /* Translation result. */ |
369 | struct { | |
370 | uint64_t _unused_par_0; | |
371 | uint64_t par_ns; | |
372 | uint64_t _unused_par_1; | |
373 | uint64_t par_s; | |
374 | }; | |
375 | uint64_t par_el[4]; | |
376 | }; | |
6cb0b013 | 377 | |
b5ff1b31 FB |
378 | uint32_t c9_insn; /* Cache lockdown registers. */ |
379 | uint32_t c9_data; | |
8521466b AF |
380 | uint64_t c9_pmcr; /* performance monitor control register */ |
381 | uint64_t c9_pmcnten; /* perf monitor counter enables */ | |
e4e91a21 AL |
382 | uint64_t c9_pmovsr; /* perf monitor overflow status */ |
383 | uint64_t c9_pmuserenr; /* perf monitor user enable */ | |
6b040780 | 384 | uint64_t c9_pmselr; /* perf monitor counter selection register */ |
e6ec5457 | 385 | uint64_t c9_pminten; /* perf monitor interrupt enables */ |
be693c87 GB |
386 | union { /* Memory attribute redirection */ |
387 | struct { | |
388 | #ifdef HOST_WORDS_BIGENDIAN | |
389 | uint64_t _unused_mair_0; | |
390 | uint32_t mair1_ns; | |
391 | uint32_t mair0_ns; | |
392 | uint64_t _unused_mair_1; | |
393 | uint32_t mair1_s; | |
394 | uint32_t mair0_s; | |
395 | #else | |
396 | uint64_t _unused_mair_0; | |
397 | uint32_t mair0_ns; | |
398 | uint32_t mair1_ns; | |
399 | uint64_t _unused_mair_1; | |
400 | uint32_t mair0_s; | |
401 | uint32_t mair1_s; | |
402 | #endif | |
403 | }; | |
404 | uint64_t mair_el[4]; | |
405 | }; | |
fb6c91ba GB |
406 | union { /* vector base address register */ |
407 | struct { | |
408 | uint64_t _unused_vbar; | |
409 | uint64_t vbar_ns; | |
410 | uint64_t hvbar; | |
411 | uint64_t vbar_s; | |
412 | }; | |
413 | uint64_t vbar_el[4]; | |
414 | }; | |
e89e51a1 | 415 | uint32_t mvbar; /* (monitor) vector base address register */ |
54bf36ed FA |
416 | struct { /* FCSE PID. */ |
417 | uint32_t fcseidr_ns; | |
418 | uint32_t fcseidr_s; | |
419 | }; | |
420 | union { /* Context ID. */ | |
421 | struct { | |
422 | uint64_t _unused_contextidr_0; | |
423 | uint64_t contextidr_ns; | |
424 | uint64_t _unused_contextidr_1; | |
425 | uint64_t contextidr_s; | |
426 | }; | |
427 | uint64_t contextidr_el[4]; | |
428 | }; | |
429 | union { /* User RW Thread register. */ | |
430 | struct { | |
431 | uint64_t tpidrurw_ns; | |
432 | uint64_t tpidrprw_ns; | |
433 | uint64_t htpidr; | |
434 | uint64_t _tpidr_el3; | |
435 | }; | |
436 | uint64_t tpidr_el[4]; | |
437 | }; | |
438 | /* The secure banks of these registers don't map anywhere */ | |
439 | uint64_t tpidrurw_s; | |
440 | uint64_t tpidrprw_s; | |
441 | uint64_t tpidruro_s; | |
442 | ||
443 | union { /* User RO Thread register. */ | |
444 | uint64_t tpidruro_ns; | |
445 | uint64_t tpidrro_el[1]; | |
446 | }; | |
a7adc4b7 PM |
447 | uint64_t c14_cntfrq; /* Counter Frequency register */ |
448 | uint64_t c14_cntkctl; /* Timer Control register */ | |
0b6440af | 449 | uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */ |
edac4d8a | 450 | uint64_t cntvoff_el2; /* Counter Virtual Offset register */ |
55d284af | 451 | ARMGenericTimer c14_timer[NUM_GTIMERS]; |
c1713132 | 452 | uint32_t c15_cpar; /* XScale Coprocessor Access Register */ |
c3d2689d AZ |
453 | uint32_t c15_ticonfig; /* TI925T configuration byte. */ |
454 | uint32_t c15_i_max; /* Maximum D-cache dirty line index. */ | |
455 | uint32_t c15_i_min; /* Minimum D-cache dirty line index. */ | |
456 | uint32_t c15_threadid; /* TI debugger thread-ID. */ | |
7da362d0 ML |
457 | uint32_t c15_config_base_address; /* SCU base address. */ |
458 | uint32_t c15_diagnostic; /* diagnostic register */ | |
459 | uint32_t c15_power_diagnostic; | |
460 | uint32_t c15_power_control; /* power control */ | |
0b45451e PM |
461 | uint64_t dbgbvr[16]; /* breakpoint value registers */ |
462 | uint64_t dbgbcr[16]; /* breakpoint control registers */ | |
463 | uint64_t dbgwvr[16]; /* watchpoint value registers */ | |
464 | uint64_t dbgwcr[16]; /* watchpoint control registers */ | |
3a298203 | 465 | uint64_t mdscr_el1; |
1424ca8d | 466 | uint64_t oslsr_el1; /* OS Lock Status */ |
14cc7b54 | 467 | uint64_t mdcr_el2; |
5513c3ab | 468 | uint64_t mdcr_el3; |
5d05b9d4 AL |
469 | /* Stores the architectural value of the counter *the last time it was |
470 | * updated* by pmccntr_op_start. Accesses should always be surrounded | |
471 | * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest | |
472 | * architecturally-correct value is being read/set. | |
7c2cb42b | 473 | */ |
c92c0687 | 474 | uint64_t c15_ccnt; |
5d05b9d4 AL |
475 | /* Stores the delta between the architectural value and the underlying |
476 | * cycle count during normal operation. It is used to update c15_ccnt | |
477 | * to be the correct architectural value before accesses. During | |
478 | * accesses, c15_ccnt_delta contains the underlying count being used | |
479 | * for the access, after which it reverts to the delta value in | |
480 | * pmccntr_op_finish. | |
481 | */ | |
482 | uint64_t c15_ccnt_delta; | |
5ecdd3e4 AL |
483 | uint64_t c14_pmevcntr[31]; |
484 | uint64_t c14_pmevcntr_delta[31]; | |
485 | uint64_t c14_pmevtyper[31]; | |
8521466b | 486 | uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */ |
731de9e6 | 487 | uint64_t vpidr_el2; /* Virtualization Processor ID Register */ |
f0d574d6 | 488 | uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */ |
b5ff1b31 | 489 | } cp15; |
40f137e1 | 490 | |
9ee6e8bb | 491 | struct { |
fb602cb7 PM |
492 | /* M profile has up to 4 stack pointers: |
493 | * a Main Stack Pointer and a Process Stack Pointer for each | |
494 | * of the Secure and Non-Secure states. (If the CPU doesn't support | |
495 | * the security extension then it has only two SPs.) | |
496 | * In QEMU we always store the currently active SP in regs[13], | |
497 | * and the non-active SP for the current security state in | |
498 | * v7m.other_sp. The stack pointers for the inactive security state | |
499 | * are stored in other_ss_msp and other_ss_psp. | |
500 | * switch_v7m_security_state() is responsible for rearranging them | |
501 | * when we change security state. | |
502 | */ | |
9ee6e8bb | 503 | uint32_t other_sp; |
fb602cb7 PM |
504 | uint32_t other_ss_msp; |
505 | uint32_t other_ss_psp; | |
4a16724f PM |
506 | uint32_t vecbase[M_REG_NUM_BANKS]; |
507 | uint32_t basepri[M_REG_NUM_BANKS]; | |
508 | uint32_t control[M_REG_NUM_BANKS]; | |
509 | uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */ | |
510 | uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */ | |
2c4da50d PM |
511 | uint32_t hfsr; /* HardFault Status */ |
512 | uint32_t dfsr; /* Debug Fault Status Register */ | |
bed079da | 513 | uint32_t sfsr; /* Secure Fault Status Register */ |
4a16724f | 514 | uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */ |
2c4da50d | 515 | uint32_t bfar; /* BusFault Address */ |
bed079da | 516 | uint32_t sfar; /* Secure Fault Address Register */ |
4a16724f | 517 | unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */ |
9ee6e8bb | 518 | int exception; |
4a16724f PM |
519 | uint32_t primask[M_REG_NUM_BANKS]; |
520 | uint32_t faultmask[M_REG_NUM_BANKS]; | |
3b2e9344 | 521 | uint32_t aircr; /* only holds r/w state if security extn implemented */ |
1e577cc7 | 522 | uint32_t secure; /* Is CPU in Secure state? (not guest visible) */ |
43bbce7f | 523 | uint32_t csselr[M_REG_NUM_BANKS]; |
24ac0fb1 | 524 | uint32_t scr[M_REG_NUM_BANKS]; |
57bb3156 PM |
525 | uint32_t msplim[M_REG_NUM_BANKS]; |
526 | uint32_t psplim[M_REG_NUM_BANKS]; | |
d33abe82 PM |
527 | uint32_t fpcar[M_REG_NUM_BANKS]; |
528 | uint32_t fpccr[M_REG_NUM_BANKS]; | |
529 | uint32_t fpdscr[M_REG_NUM_BANKS]; | |
530 | uint32_t cpacr[M_REG_NUM_BANKS]; | |
531 | uint32_t nsacr; | |
9ee6e8bb PB |
532 | } v7m; |
533 | ||
abf1172f PM |
534 | /* Information associated with an exception about to be taken: |
535 | * code which raises an exception must set cs->exception_index and | |
536 | * the relevant parts of this structure; the cpu_do_interrupt function | |
537 | * will then set the guest-visible registers as part of the exception | |
538 | * entry process. | |
539 | */ | |
540 | struct { | |
541 | uint32_t syndrome; /* AArch64 format syndrome register */ | |
542 | uint32_t fsr; /* AArch32 format fault status register info */ | |
543 | uint64_t vaddress; /* virtual addr associated with exception, if any */ | |
73710361 | 544 | uint32_t target_el; /* EL the exception should be targeted for */ |
abf1172f PM |
545 | /* If we implement EL2 we will also need to store information |
546 | * about the intermediate physical address for stage 2 faults. | |
547 | */ | |
548 | } exception; | |
549 | ||
202ccb6b DG |
550 | /* Information associated with an SError */ |
551 | struct { | |
552 | uint8_t pending; | |
553 | uint8_t has_esr; | |
554 | uint64_t esr; | |
555 | } serror; | |
556 | ||
ed89f078 PM |
557 | /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */ |
558 | uint32_t irq_line_state; | |
559 | ||
fe1479c3 PB |
560 | /* Thumb-2 EE state. */ |
561 | uint32_t teecr; | |
562 | uint32_t teehbr; | |
563 | ||
b7bcbe95 FB |
564 | /* VFP coprocessor state. */ |
565 | struct { | |
c39c2b90 | 566 | ARMVectorReg zregs[32]; |
b7bcbe95 | 567 | |
3c7d3086 RH |
568 | #ifdef TARGET_AARCH64 |
569 | /* Store FFR as pregs[16] to make it easier to treat as any other. */ | |
028e2a7b | 570 | #define FFR_PRED_NUM 16 |
3c7d3086 | 571 | ARMPredicateReg pregs[17]; |
516e246a RH |
572 | /* Scratch space for aa64 sve predicate temporary. */ |
573 | ARMPredicateReg preg_tmp; | |
3c7d3086 RH |
574 | #endif |
575 | ||
b7bcbe95 | 576 | /* We store these fpcsr fields separately for convenience. */ |
a4d58462 | 577 | uint32_t qc[4] QEMU_ALIGNED(16); |
b7bcbe95 FB |
578 | int vec_len; |
579 | int vec_stride; | |
580 | ||
a4d58462 RH |
581 | uint32_t xregs[16]; |
582 | ||
516e246a | 583 | /* Scratch space for aa32 neon expansion. */ |
9ee6e8bb | 584 | uint32_t scratch[8]; |
3b46e624 | 585 | |
d81ce0ef AB |
586 | /* There are a number of distinct float control structures: |
587 | * | |
588 | * fp_status: is the "normal" fp status. | |
589 | * fp_status_fp16: used for half-precision calculations | |
590 | * standard_fp_status : the ARM "Standard FPSCR Value" | |
591 | * | |
592 | * Half-precision operations are governed by a separate | |
593 | * flush-to-zero control bit in FPSCR:FZ16. We pass a separate | |
594 | * status structure to control this. | |
595 | * | |
596 | * The "Standard FPSCR", ie default-NaN, flush-to-zero, | |
597 | * round-to-nearest and is used by any operations (generally | |
598 | * Neon) which the architecture defines as controlled by the | |
599 | * standard FPSCR value rather than the FPSCR. | |
3a492f3a PM |
600 | * |
601 | * To avoid having to transfer exception bits around, we simply | |
602 | * say that the FPSCR cumulative exception flags are the logical | |
d81ce0ef | 603 | * OR of the flags in the three fp statuses. This relies on the |
3a492f3a PM |
604 | * only thing which needs to read the exception flags being |
605 | * an explicit FPSCR read. | |
606 | */ | |
53cd6637 | 607 | float_status fp_status; |
d81ce0ef | 608 | float_status fp_status_f16; |
3a492f3a | 609 | float_status standard_fp_status; |
5be5e8ed RH |
610 | |
611 | /* ZCR_EL[1-3] */ | |
612 | uint64_t zcr_el[4]; | |
b7bcbe95 | 613 | } vfp; |
03d05e2d PM |
614 | uint64_t exclusive_addr; |
615 | uint64_t exclusive_val; | |
616 | uint64_t exclusive_high; | |
b7bcbe95 | 617 | |
18c9b560 AZ |
618 | /* iwMMXt coprocessor state. */ |
619 | struct { | |
620 | uint64_t regs[16]; | |
621 | uint64_t val; | |
622 | ||
623 | uint32_t cregs[16]; | |
624 | } iwmmxt; | |
625 | ||
991ad91b | 626 | #ifdef TARGET_AARCH64 |
108b3ba8 RH |
627 | struct { |
628 | ARMPACKey apia; | |
629 | ARMPACKey apib; | |
630 | ARMPACKey apda; | |
631 | ARMPACKey apdb; | |
632 | ARMPACKey apga; | |
633 | } keys; | |
991ad91b RH |
634 | #endif |
635 | ||
ce4defa0 PB |
636 | #if defined(CONFIG_USER_ONLY) |
637 | /* For usermode syscall translation. */ | |
638 | int eabi; | |
639 | #endif | |
640 | ||
46747d15 | 641 | struct CPUBreakpoint *cpu_breakpoint[16]; |
9ee98ce8 PM |
642 | struct CPUWatchpoint *cpu_watchpoint[16]; |
643 | ||
1f5c00cf AB |
644 | /* Fields up to this point are cleared by a CPU reset */ |
645 | struct {} end_reset_fields; | |
646 | ||
e8b5fae5 | 647 | /* Fields after this point are preserved across CPU reset. */ |
9ba8c3f4 | 648 | |
581be094 | 649 | /* Internal CPU feature flags. */ |
918f5dca | 650 | uint64_t features; |
581be094 | 651 | |
6cb0b013 PC |
652 | /* PMSAv7 MPU */ |
653 | struct { | |
654 | uint32_t *drbar; | |
655 | uint32_t *drsr; | |
656 | uint32_t *dracr; | |
4a16724f | 657 | uint32_t rnr[M_REG_NUM_BANKS]; |
6cb0b013 PC |
658 | } pmsav7; |
659 | ||
0e1a46bb PM |
660 | /* PMSAv8 MPU */ |
661 | struct { | |
662 | /* The PMSAv8 implementation also shares some PMSAv7 config | |
663 | * and state: | |
664 | * pmsav7.rnr (region number register) | |
665 | * pmsav7_dregion (number of configured regions) | |
666 | */ | |
4a16724f PM |
667 | uint32_t *rbar[M_REG_NUM_BANKS]; |
668 | uint32_t *rlar[M_REG_NUM_BANKS]; | |
669 | uint32_t mair0[M_REG_NUM_BANKS]; | |
670 | uint32_t mair1[M_REG_NUM_BANKS]; | |
0e1a46bb PM |
671 | } pmsav8; |
672 | ||
9901c576 PM |
673 | /* v8M SAU */ |
674 | struct { | |
675 | uint32_t *rbar; | |
676 | uint32_t *rlar; | |
677 | uint32_t rnr; | |
678 | uint32_t ctrl; | |
679 | } sau; | |
680 | ||
983fe826 | 681 | void *nvic; |
462a8bc6 | 682 | const struct arm_boot_info *boot_info; |
d3a3e529 VK |
683 | /* Store GICv3CPUState to access from this struct */ |
684 | void *gicv3state; | |
2c0262af FB |
685 | } CPUARMState; |
686 | ||
bd7d00fc | 687 | /** |
08267487 | 688 | * ARMELChangeHookFn: |
bd7d00fc PM |
689 | * type of a function which can be registered via arm_register_el_change_hook() |
690 | * to get callbacks when the CPU changes its exception level or mode. | |
691 | */ | |
08267487 AL |
692 | typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque); |
693 | typedef struct ARMELChangeHook ARMELChangeHook; | |
694 | struct ARMELChangeHook { | |
695 | ARMELChangeHookFn *hook; | |
696 | void *opaque; | |
697 | QLIST_ENTRY(ARMELChangeHook) node; | |
698 | }; | |
062ba099 AB |
699 | |
700 | /* These values map onto the return values for | |
701 | * QEMU_PSCI_0_2_FN_AFFINITY_INFO */ | |
702 | typedef enum ARMPSCIState { | |
d5affb0d AJ |
703 | PSCI_ON = 0, |
704 | PSCI_OFF = 1, | |
062ba099 AB |
705 | PSCI_ON_PENDING = 2 |
706 | } ARMPSCIState; | |
707 | ||
962fcbf2 RH |
708 | typedef struct ARMISARegisters ARMISARegisters; |
709 | ||
74e75564 PB |
710 | /** |
711 | * ARMCPU: | |
712 | * @env: #CPUARMState | |
713 | * | |
714 | * An ARM CPU core. | |
715 | */ | |
716 | struct ARMCPU { | |
717 | /*< private >*/ | |
718 | CPUState parent_obj; | |
719 | /*< public >*/ | |
720 | ||
5b146dc7 | 721 | CPUNegativeOffsetState neg; |
74e75564 PB |
722 | CPUARMState env; |
723 | ||
724 | /* Coprocessor information */ | |
725 | GHashTable *cp_regs; | |
726 | /* For marshalling (mostly coprocessor) register state between the | |
727 | * kernel and QEMU (for KVM) and between two QEMUs (for migration), | |
728 | * we use these arrays. | |
729 | */ | |
730 | /* List of register indexes managed via these arrays; (full KVM style | |
731 | * 64 bit indexes, not CPRegInfo 32 bit indexes) | |
732 | */ | |
733 | uint64_t *cpreg_indexes; | |
734 | /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */ | |
735 | uint64_t *cpreg_values; | |
736 | /* Length of the indexes, values, reset_values arrays */ | |
737 | int32_t cpreg_array_len; | |
738 | /* These are used only for migration: incoming data arrives in | |
739 | * these fields and is sanity checked in post_load before copying | |
740 | * to the working data structures above. | |
741 | */ | |
742 | uint64_t *cpreg_vmstate_indexes; | |
743 | uint64_t *cpreg_vmstate_values; | |
744 | int32_t cpreg_vmstate_array_len; | |
745 | ||
200bf5b7 AB |
746 | DynamicGDBXMLInfo dyn_xml; |
747 | ||
74e75564 PB |
748 | /* Timers used by the generic (architected) timer */ |
749 | QEMUTimer *gt_timer[NUM_GTIMERS]; | |
4e7beb0c AL |
750 | /* |
751 | * Timer used by the PMU. Its state is restored after migration by | |
752 | * pmu_op_finish() - it does not need other handling during migration | |
753 | */ | |
754 | QEMUTimer *pmu_timer; | |
74e75564 PB |
755 | /* GPIO outputs for generic timer */ |
756 | qemu_irq gt_timer_outputs[NUM_GTIMERS]; | |
aa1b3111 PM |
757 | /* GPIO output for GICv3 maintenance interrupt signal */ |
758 | qemu_irq gicv3_maintenance_interrupt; | |
07f48730 AJ |
759 | /* GPIO output for the PMU interrupt */ |
760 | qemu_irq pmu_interrupt; | |
74e75564 PB |
761 | |
762 | /* MemoryRegion to use for secure physical accesses */ | |
763 | MemoryRegion *secure_memory; | |
764 | ||
181962fd PM |
765 | /* For v8M, pointer to the IDAU interface provided by board/SoC */ |
766 | Object *idau; | |
767 | ||
74e75564 PB |
768 | /* 'compatible' string for this CPU for Linux device trees */ |
769 | const char *dtb_compatible; | |
770 | ||
771 | /* PSCI version for this CPU | |
772 | * Bits[31:16] = Major Version | |
773 | * Bits[15:0] = Minor Version | |
774 | */ | |
775 | uint32_t psci_version; | |
776 | ||
777 | /* Should CPU start in PSCI powered-off state? */ | |
778 | bool start_powered_off; | |
062ba099 AB |
779 | |
780 | /* Current power state, access guarded by BQL */ | |
781 | ARMPSCIState power_state; | |
782 | ||
c25bd18a PM |
783 | /* CPU has virtualization extension */ |
784 | bool has_el2; | |
74e75564 PB |
785 | /* CPU has security extension */ |
786 | bool has_el3; | |
5c0a3819 SZ |
787 | /* CPU has PMU (Performance Monitor Unit) */ |
788 | bool has_pmu; | |
74e75564 PB |
789 | |
790 | /* CPU has memory protection unit */ | |
791 | bool has_mpu; | |
792 | /* PMSAv7 MPU number of supported regions */ | |
793 | uint32_t pmsav7_dregion; | |
9901c576 PM |
794 | /* v8M SAU number of supported regions */ |
795 | uint32_t sau_sregion; | |
74e75564 PB |
796 | |
797 | /* PSCI conduit used to invoke PSCI methods | |
798 | * 0 - disabled, 1 - smc, 2 - hvc | |
799 | */ | |
800 | uint32_t psci_conduit; | |
801 | ||
38e2a77c PM |
802 | /* For v8M, initial value of the Secure VTOR */ |
803 | uint32_t init_svtor; | |
804 | ||
74e75564 PB |
805 | /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or |
806 | * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type. | |
807 | */ | |
808 | uint32_t kvm_target; | |
809 | ||
810 | /* KVM init features for this CPU */ | |
811 | uint32_t kvm_init_features[7]; | |
812 | ||
813 | /* Uniprocessor system with MP extensions */ | |
814 | bool mp_is_up; | |
815 | ||
c4487d76 PM |
816 | /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init |
817 | * and the probe failed (so we need to report the error in realize) | |
818 | */ | |
819 | bool host_cpu_probe_failed; | |
820 | ||
f9a69711 AF |
821 | /* Specify the number of cores in this CPU cluster. Used for the L2CTLR |
822 | * register. | |
823 | */ | |
824 | int32_t core_count; | |
825 | ||
74e75564 PB |
826 | /* The instance init functions for implementation-specific subclasses |
827 | * set these fields to specify the implementation-dependent values of | |
828 | * various constant registers and reset values of non-constant | |
829 | * registers. | |
830 | * Some of these might become QOM properties eventually. | |
831 | * Field names match the official register names as defined in the | |
832 | * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix | |
833 | * is used for reset values of non-constant registers; no reset_ | |
834 | * prefix means a constant register. | |
47576b94 RH |
835 | * Some of these registers are split out into a substructure that |
836 | * is shared with the translators to control the ISA. | |
74e75564 | 837 | */ |
47576b94 RH |
838 | struct ARMISARegisters { |
839 | uint32_t id_isar0; | |
840 | uint32_t id_isar1; | |
841 | uint32_t id_isar2; | |
842 | uint32_t id_isar3; | |
843 | uint32_t id_isar4; | |
844 | uint32_t id_isar5; | |
845 | uint32_t id_isar6; | |
846 | uint32_t mvfr0; | |
847 | uint32_t mvfr1; | |
848 | uint32_t mvfr2; | |
849 | uint64_t id_aa64isar0; | |
850 | uint64_t id_aa64isar1; | |
851 | uint64_t id_aa64pfr0; | |
852 | uint64_t id_aa64pfr1; | |
3dc91ddb PM |
853 | uint64_t id_aa64mmfr0; |
854 | uint64_t id_aa64mmfr1; | |
47576b94 | 855 | } isar; |
74e75564 PB |
856 | uint32_t midr; |
857 | uint32_t revidr; | |
858 | uint32_t reset_fpsid; | |
74e75564 PB |
859 | uint32_t ctr; |
860 | uint32_t reset_sctlr; | |
861 | uint32_t id_pfr0; | |
862 | uint32_t id_pfr1; | |
863 | uint32_t id_dfr0; | |
cad86737 AL |
864 | uint64_t pmceid0; |
865 | uint64_t pmceid1; | |
74e75564 PB |
866 | uint32_t id_afr0; |
867 | uint32_t id_mmfr0; | |
868 | uint32_t id_mmfr1; | |
869 | uint32_t id_mmfr2; | |
870 | uint32_t id_mmfr3; | |
871 | uint32_t id_mmfr4; | |
74e75564 PB |
872 | uint64_t id_aa64dfr0; |
873 | uint64_t id_aa64dfr1; | |
874 | uint64_t id_aa64afr0; | |
875 | uint64_t id_aa64afr1; | |
74e75564 PB |
876 | uint32_t dbgdidr; |
877 | uint32_t clidr; | |
878 | uint64_t mp_affinity; /* MP ID without feature bits */ | |
879 | /* The elements of this array are the CCSIDR values for each cache, | |
880 | * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc. | |
881 | */ | |
882 | uint32_t ccsidr[16]; | |
883 | uint64_t reset_cbar; | |
884 | uint32_t reset_auxcr; | |
885 | bool reset_hivecs; | |
886 | /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */ | |
887 | uint32_t dcz_blocksize; | |
888 | uint64_t rvbar; | |
bd7d00fc | 889 | |
e45868a3 PM |
890 | /* Configurable aspects of GIC cpu interface (which is part of the CPU) */ |
891 | int gic_num_lrs; /* number of list registers */ | |
892 | int gic_vpribits; /* number of virtual priority bits */ | |
893 | int gic_vprebits; /* number of virtual preemption bits */ | |
894 | ||
3a062d57 JB |
895 | /* Whether the cfgend input is high (i.e. this CPU should reset into |
896 | * big-endian mode). This setting isn't used directly: instead it modifies | |
897 | * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the | |
898 | * architecture version. | |
899 | */ | |
900 | bool cfgend; | |
901 | ||
b5c53d1b | 902 | QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks; |
08267487 | 903 | QLIST_HEAD(, ARMELChangeHook) el_change_hooks; |
15f8b142 IM |
904 | |
905 | int32_t node_id; /* NUMA node this CPU belongs to */ | |
5d721b78 AG |
906 | |
907 | /* Used to synchronize KVM and QEMU in-kernel device levels */ | |
908 | uint8_t device_irq_level; | |
adf92eab RH |
909 | |
910 | /* Used to set the maximum vector length the cpu will support. */ | |
911 | uint32_t sve_max_vq; | |
74e75564 PB |
912 | }; |
913 | ||
51e5ef45 MAL |
914 | void arm_cpu_post_init(Object *obj); |
915 | ||
46de5913 IM |
916 | uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz); |
917 | ||
74e75564 PB |
918 | #ifndef CONFIG_USER_ONLY |
919 | extern const struct VMStateDescription vmstate_arm_cpu; | |
920 | #endif | |
921 | ||
922 | void arm_cpu_do_interrupt(CPUState *cpu); | |
923 | void arm_v7m_cpu_do_interrupt(CPUState *cpu); | |
924 | bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req); | |
925 | ||
90c84c56 | 926 | void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags); |
74e75564 PB |
927 | |
928 | hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, | |
929 | MemTxAttrs *attrs); | |
930 | ||
931 | int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg); | |
932 | int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); | |
933 | ||
200bf5b7 AB |
934 | /* Dynamically generates for gdb stub an XML description of the sysregs from |
935 | * the cp_regs hashtable. Returns the registered sysregs number. | |
936 | */ | |
937 | int arm_gen_dynamic_xml(CPUState *cpu); | |
938 | ||
939 | /* Returns the dynamically generated XML for the gdb stub. | |
940 | * Returns a pointer to the XML contents for the specified XML file or NULL | |
941 | * if the XML name doesn't match the predefined one. | |
942 | */ | |
943 | const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname); | |
944 | ||
74e75564 PB |
945 | int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs, |
946 | int cpuid, void *opaque); | |
947 | int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs, | |
948 | int cpuid, void *opaque); | |
949 | ||
950 | #ifdef TARGET_AARCH64 | |
951 | int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg); | |
952 | int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); | |
85fc7167 | 953 | void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq); |
9a05f7b6 RH |
954 | void aarch64_sve_change_el(CPUARMState *env, int old_el, |
955 | int new_el, bool el0_a64); | |
0ab5953b RH |
956 | #else |
957 | static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { } | |
9a05f7b6 RH |
958 | static inline void aarch64_sve_change_el(CPUARMState *env, int o, |
959 | int n, bool a) | |
960 | { } | |
74e75564 | 961 | #endif |
778c3a06 | 962 | |
faacc041 | 963 | target_ulong do_arm_semihosting(CPUARMState *env); |
ce02049d GB |
964 | void aarch64_sync_32_to_64(CPUARMState *env); |
965 | void aarch64_sync_64_to_32(CPUARMState *env); | |
b5ff1b31 | 966 | |
ced31551 RH |
967 | int fp_exception_el(CPUARMState *env, int cur_el); |
968 | int sve_exception_el(CPUARMState *env, int cur_el); | |
969 | uint32_t sve_zcr_len_for_el(CPUARMState *env, int el); | |
970 | ||
3926cc84 AG |
971 | static inline bool is_a64(CPUARMState *env) |
972 | { | |
973 | return env->aarch64; | |
974 | } | |
975 | ||
2c0262af FB |
976 | /* you can call this signal handler from your SIGBUS and SIGSEGV |
977 | signal handlers to inform the virtual CPU of exceptions. non zero | |
978 | is returned if the signal was handled by the virtual CPU. */ | |
5fafdf24 | 979 | int cpu_arm_signal_handler(int host_signum, void *pinfo, |
2c0262af FB |
980 | void *puc); |
981 | ||
5d05b9d4 AL |
982 | /** |
983 | * pmu_op_start/finish | |
ec7b4ce4 AF |
984 | * @env: CPUARMState |
985 | * | |
5d05b9d4 AL |
986 | * Convert all PMU counters between their delta form (the typical mode when |
987 | * they are enabled) and the guest-visible values. These two calls must | |
988 | * surround any action which might affect the counters. | |
ec7b4ce4 | 989 | */ |
5d05b9d4 AL |
990 | void pmu_op_start(CPUARMState *env); |
991 | void pmu_op_finish(CPUARMState *env); | |
ec7b4ce4 | 992 | |
4e7beb0c AL |
993 | /* |
994 | * Called when a PMU counter is due to overflow | |
995 | */ | |
996 | void arm_pmu_timer_cb(void *opaque); | |
997 | ||
033614c4 AL |
998 | /** |
999 | * Functions to register as EL change hooks for PMU mode filtering | |
1000 | */ | |
1001 | void pmu_pre_el_change(ARMCPU *cpu, void *ignored); | |
1002 | void pmu_post_el_change(ARMCPU *cpu, void *ignored); | |
1003 | ||
57a4a11b | 1004 | /* |
bf8d0969 AL |
1005 | * pmu_init |
1006 | * @cpu: ARMCPU | |
57a4a11b | 1007 | * |
bf8d0969 AL |
1008 | * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state |
1009 | * for the current configuration | |
57a4a11b | 1010 | */ |
bf8d0969 | 1011 | void pmu_init(ARMCPU *cpu); |
57a4a11b | 1012 | |
76e3e1bc PM |
1013 | /* SCTLR bit meanings. Several bits have been reused in newer |
1014 | * versions of the architecture; in that case we define constants | |
1015 | * for both old and new bit meanings. Code which tests against those | |
1016 | * bits should probably check or otherwise arrange that the CPU | |
1017 | * is the architectural version it expects. | |
1018 | */ | |
1019 | #define SCTLR_M (1U << 0) | |
1020 | #define SCTLR_A (1U << 1) | |
1021 | #define SCTLR_C (1U << 2) | |
1022 | #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */ | |
b2af69d0 RH |
1023 | #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */ |
1024 | #define SCTLR_SA (1U << 3) /* AArch64 only */ | |
76e3e1bc | 1025 | #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */ |
b2af69d0 | 1026 | #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */ |
76e3e1bc PM |
1027 | #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */ |
1028 | #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */ | |
1029 | #define SCTLR_CP15BEN (1U << 5) /* v7 onward */ | |
1030 | #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */ | |
b2af69d0 | 1031 | #define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */ |
76e3e1bc PM |
1032 | #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */ |
1033 | #define SCTLR_ITD (1U << 7) /* v8 onward */ | |
1034 | #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */ | |
1035 | #define SCTLR_SED (1U << 8) /* v8 onward */ | |
1036 | #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */ | |
1037 | #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */ | |
1038 | #define SCTLR_F (1U << 10) /* up to v6 */ | |
cb570bd3 RH |
1039 | #define SCTLR_SW (1U << 10) /* v7 */ |
1040 | #define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */ | |
b2af69d0 RH |
1041 | #define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */ |
1042 | #define SCTLR_EOS (1U << 11) /* v8.5-ExS */ | |
76e3e1bc | 1043 | #define SCTLR_I (1U << 12) |
b2af69d0 RH |
1044 | #define SCTLR_V (1U << 13) /* AArch32 only */ |
1045 | #define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */ | |
76e3e1bc PM |
1046 | #define SCTLR_RR (1U << 14) /* up to v7 */ |
1047 | #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */ | |
1048 | #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */ | |
1049 | #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */ | |
1050 | #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */ | |
1051 | #define SCTLR_nTWI (1U << 16) /* v8 onward */ | |
b2af69d0 | 1052 | #define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */ |
f6bda88f | 1053 | #define SCTLR_BR (1U << 17) /* PMSA only */ |
76e3e1bc PM |
1054 | #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */ |
1055 | #define SCTLR_nTWE (1U << 18) /* v8 onward */ | |
1056 | #define SCTLR_WXN (1U << 19) | |
1057 | #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */ | |
b2af69d0 RH |
1058 | #define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */ |
1059 | #define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */ | |
1060 | #define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */ | |
1061 | #define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */ | |
1062 | #define SCTLR_EIS (1U << 22) /* v8.5-ExS */ | |
76e3e1bc | 1063 | #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */ |
b2af69d0 | 1064 | #define SCTLR_SPAN (1U << 23) /* v8.1-PAN */ |
76e3e1bc PM |
1065 | #define SCTLR_VE (1U << 24) /* up to v7 */ |
1066 | #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */ | |
1067 | #define SCTLR_EE (1U << 25) | |
1068 | #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */ | |
1069 | #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */ | |
b2af69d0 RH |
1070 | #define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */ |
1071 | #define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */ | |
1072 | #define SCTLR_TRE (1U << 28) /* AArch32 only */ | |
1073 | #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */ | |
1074 | #define SCTLR_AFE (1U << 29) /* AArch32 only */ | |
1075 | #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */ | |
1076 | #define SCTLR_TE (1U << 30) /* AArch32 only */ | |
1077 | #define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */ | |
1078 | #define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */ | |
1079 | #define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */ | |
1080 | #define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */ | |
1081 | #define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */ | |
1082 | #define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */ | |
1083 | #define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */ | |
1084 | #define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */ | |
1085 | #define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */ | |
1086 | #define SCTLR_DSSBS (1ULL << 44) /* v8.5 */ | |
76e3e1bc | 1087 | |
c6f19164 GB |
1088 | #define CPTR_TCPAC (1U << 31) |
1089 | #define CPTR_TTA (1U << 20) | |
1090 | #define CPTR_TFP (1U << 10) | |
5be5e8ed RH |
1091 | #define CPTR_TZ (1U << 8) /* CPTR_EL2 */ |
1092 | #define CPTR_EZ (1U << 8) /* CPTR_EL3 */ | |
c6f19164 | 1093 | |
187f678d PM |
1094 | #define MDCR_EPMAD (1U << 21) |
1095 | #define MDCR_EDAD (1U << 20) | |
033614c4 AL |
1096 | #define MDCR_SPME (1U << 17) /* MDCR_EL3 */ |
1097 | #define MDCR_HPMD (1U << 17) /* MDCR_EL2 */ | |
187f678d | 1098 | #define MDCR_SDD (1U << 16) |
a8d64e73 | 1099 | #define MDCR_SPD (3U << 14) |
187f678d PM |
1100 | #define MDCR_TDRA (1U << 11) |
1101 | #define MDCR_TDOSA (1U << 10) | |
1102 | #define MDCR_TDA (1U << 9) | |
1103 | #define MDCR_TDE (1U << 8) | |
1104 | #define MDCR_HPME (1U << 7) | |
1105 | #define MDCR_TPM (1U << 6) | |
1106 | #define MDCR_TPMCR (1U << 5) | |
033614c4 | 1107 | #define MDCR_HPMN (0x1fU) |
187f678d | 1108 | |
a8d64e73 PM |
1109 | /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */ |
1110 | #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD) | |
1111 | ||
78dbbbe4 PM |
1112 | #define CPSR_M (0x1fU) |
1113 | #define CPSR_T (1U << 5) | |
1114 | #define CPSR_F (1U << 6) | |
1115 | #define CPSR_I (1U << 7) | |
1116 | #define CPSR_A (1U << 8) | |
1117 | #define CPSR_E (1U << 9) | |
1118 | #define CPSR_IT_2_7 (0xfc00U) | |
1119 | #define CPSR_GE (0xfU << 16) | |
4051e12c PM |
1120 | #define CPSR_IL (1U << 20) |
1121 | /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in | |
1122 | * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use | |
1123 | * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32, | |
1124 | * where it is live state but not accessible to the AArch32 code. | |
1125 | */ | |
1126 | #define CPSR_RESERVED (0x7U << 21) | |
78dbbbe4 PM |
1127 | #define CPSR_J (1U << 24) |
1128 | #define CPSR_IT_0_1 (3U << 25) | |
1129 | #define CPSR_Q (1U << 27) | |
1130 | #define CPSR_V (1U << 28) | |
1131 | #define CPSR_C (1U << 29) | |
1132 | #define CPSR_Z (1U << 30) | |
1133 | #define CPSR_N (1U << 31) | |
9ee6e8bb | 1134 | #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V) |
4cc35614 | 1135 | #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F) |
9ee6e8bb PB |
1136 | |
1137 | #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7) | |
4cc35614 PM |
1138 | #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \ |
1139 | | CPSR_NZCV) | |
9ee6e8bb PB |
1140 | /* Bits writable in user mode. */ |
1141 | #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE) | |
1142 | /* Execution state bits. MRS read as zero, MSR writes ignored. */ | |
4051e12c PM |
1143 | #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL) |
1144 | /* Mask of bits which may be set by exception return copying them from SPSR */ | |
1145 | #define CPSR_ERET_MASK (~CPSR_RESERVED) | |
b5ff1b31 | 1146 | |
987ab45e PM |
1147 | /* Bit definitions for M profile XPSR. Most are the same as CPSR. */ |
1148 | #define XPSR_EXCP 0x1ffU | |
1149 | #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */ | |
1150 | #define XPSR_IT_2_7 CPSR_IT_2_7 | |
1151 | #define XPSR_GE CPSR_GE | |
1152 | #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */ | |
1153 | #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */ | |
1154 | #define XPSR_IT_0_1 CPSR_IT_0_1 | |
1155 | #define XPSR_Q CPSR_Q | |
1156 | #define XPSR_V CPSR_V | |
1157 | #define XPSR_C CPSR_C | |
1158 | #define XPSR_Z CPSR_Z | |
1159 | #define XPSR_N CPSR_N | |
1160 | #define XPSR_NZCV CPSR_NZCV | |
1161 | #define XPSR_IT CPSR_IT | |
1162 | ||
e389be16 FA |
1163 | #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */ |
1164 | #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */ | |
1165 | #define TTBCR_PD0 (1U << 4) | |
1166 | #define TTBCR_PD1 (1U << 5) | |
1167 | #define TTBCR_EPD0 (1U << 7) | |
1168 | #define TTBCR_IRGN0 (3U << 8) | |
1169 | #define TTBCR_ORGN0 (3U << 10) | |
1170 | #define TTBCR_SH0 (3U << 12) | |
1171 | #define TTBCR_T1SZ (3U << 16) | |
1172 | #define TTBCR_A1 (1U << 22) | |
1173 | #define TTBCR_EPD1 (1U << 23) | |
1174 | #define TTBCR_IRGN1 (3U << 24) | |
1175 | #define TTBCR_ORGN1 (3U << 26) | |
1176 | #define TTBCR_SH1 (1U << 28) | |
1177 | #define TTBCR_EAE (1U << 31) | |
1178 | ||
d356312f PM |
1179 | /* Bit definitions for ARMv8 SPSR (PSTATE) format. |
1180 | * Only these are valid when in AArch64 mode; in | |
1181 | * AArch32 mode SPSRs are basically CPSR-format. | |
1182 | */ | |
f502cfc2 | 1183 | #define PSTATE_SP (1U) |
d356312f PM |
1184 | #define PSTATE_M (0xFU) |
1185 | #define PSTATE_nRW (1U << 4) | |
1186 | #define PSTATE_F (1U << 6) | |
1187 | #define PSTATE_I (1U << 7) | |
1188 | #define PSTATE_A (1U << 8) | |
1189 | #define PSTATE_D (1U << 9) | |
f6e52eaa | 1190 | #define PSTATE_BTYPE (3U << 10) |
d356312f PM |
1191 | #define PSTATE_IL (1U << 20) |
1192 | #define PSTATE_SS (1U << 21) | |
1193 | #define PSTATE_V (1U << 28) | |
1194 | #define PSTATE_C (1U << 29) | |
1195 | #define PSTATE_Z (1U << 30) | |
1196 | #define PSTATE_N (1U << 31) | |
1197 | #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V) | |
4cc35614 | 1198 | #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F) |
f6e52eaa | 1199 | #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE) |
d356312f PM |
1200 | /* Mode values for AArch64 */ |
1201 | #define PSTATE_MODE_EL3h 13 | |
1202 | #define PSTATE_MODE_EL3t 12 | |
1203 | #define PSTATE_MODE_EL2h 9 | |
1204 | #define PSTATE_MODE_EL2t 8 | |
1205 | #define PSTATE_MODE_EL1h 5 | |
1206 | #define PSTATE_MODE_EL1t 4 | |
1207 | #define PSTATE_MODE_EL0t 0 | |
1208 | ||
de2db7ec PM |
1209 | /* Write a new value to v7m.exception, thus transitioning into or out |
1210 | * of Handler mode; this may result in a change of active stack pointer. | |
1211 | */ | |
1212 | void write_v7m_exception(CPUARMState *env, uint32_t new_exc); | |
1213 | ||
9e729b57 EI |
1214 | /* Map EL and handler into a PSTATE_MODE. */ |
1215 | static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler) | |
1216 | { | |
1217 | return (el << 2) | handler; | |
1218 | } | |
1219 | ||
d356312f PM |
1220 | /* Return the current PSTATE value. For the moment we don't support 32<->64 bit |
1221 | * interprocessing, so we don't attempt to sync with the cpsr state used by | |
1222 | * the 32 bit decoder. | |
1223 | */ | |
1224 | static inline uint32_t pstate_read(CPUARMState *env) | |
1225 | { | |
1226 | int ZF; | |
1227 | ||
1228 | ZF = (env->ZF == 0); | |
1229 | return (env->NF & 0x80000000) | (ZF << 30) | |
1230 | | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | |
f6e52eaa | 1231 | | env->pstate | env->daif | (env->btype << 10); |
d356312f PM |
1232 | } |
1233 | ||
1234 | static inline void pstate_write(CPUARMState *env, uint32_t val) | |
1235 | { | |
1236 | env->ZF = (~val) & PSTATE_Z; | |
1237 | env->NF = val; | |
1238 | env->CF = (val >> 29) & 1; | |
1239 | env->VF = (val << 3) & 0x80000000; | |
4cc35614 | 1240 | env->daif = val & PSTATE_DAIF; |
f6e52eaa | 1241 | env->btype = (val >> 10) & 3; |
d356312f PM |
1242 | env->pstate = val & ~CACHED_PSTATE_BITS; |
1243 | } | |
1244 | ||
b5ff1b31 | 1245 | /* Return the current CPSR value. */ |
2f4a40e5 | 1246 | uint32_t cpsr_read(CPUARMState *env); |
50866ba5 PM |
1247 | |
1248 | typedef enum CPSRWriteType { | |
1249 | CPSRWriteByInstr = 0, /* from guest MSR or CPS */ | |
1250 | CPSRWriteExceptionReturn = 1, /* from guest exception return insn */ | |
1251 | CPSRWriteRaw = 2, /* trust values, do not switch reg banks */ | |
1252 | CPSRWriteByGDBStub = 3, /* from the GDB stub */ | |
1253 | } CPSRWriteType; | |
1254 | ||
1255 | /* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/ | |
1256 | void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, | |
1257 | CPSRWriteType write_type); | |
9ee6e8bb PB |
1258 | |
1259 | /* Return the current xPSR value. */ | |
1260 | static inline uint32_t xpsr_read(CPUARMState *env) | |
1261 | { | |
1262 | int ZF; | |
6fbe23d5 PB |
1263 | ZF = (env->ZF == 0); |
1264 | return (env->NF & 0x80000000) | (ZF << 30) | |
9ee6e8bb PB |
1265 | | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) |
1266 | | (env->thumb << 24) | ((env->condexec_bits & 3) << 25) | |
1267 | | ((env->condexec_bits & 0xfc) << 8) | |
f1e2598c | 1268 | | (env->GE << 16) |
9ee6e8bb | 1269 | | env->v7m.exception; |
b5ff1b31 FB |
1270 | } |
1271 | ||
9ee6e8bb PB |
1272 | /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */ |
1273 | static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) | |
1274 | { | |
987ab45e PM |
1275 | if (mask & XPSR_NZCV) { |
1276 | env->ZF = (~val) & XPSR_Z; | |
6fbe23d5 | 1277 | env->NF = val; |
9ee6e8bb PB |
1278 | env->CF = (val >> 29) & 1; |
1279 | env->VF = (val << 3) & 0x80000000; | |
1280 | } | |
987ab45e PM |
1281 | if (mask & XPSR_Q) { |
1282 | env->QF = ((val & XPSR_Q) != 0); | |
1283 | } | |
f1e2598c PM |
1284 | if (mask & XPSR_GE) { |
1285 | env->GE = (val & XPSR_GE) >> 16; | |
1286 | } | |
987ab45e PM |
1287 | if (mask & XPSR_T) { |
1288 | env->thumb = ((val & XPSR_T) != 0); | |
1289 | } | |
1290 | if (mask & XPSR_IT_0_1) { | |
9ee6e8bb PB |
1291 | env->condexec_bits &= ~3; |
1292 | env->condexec_bits |= (val >> 25) & 3; | |
1293 | } | |
987ab45e | 1294 | if (mask & XPSR_IT_2_7) { |
9ee6e8bb PB |
1295 | env->condexec_bits &= 3; |
1296 | env->condexec_bits |= (val >> 8) & 0xfc; | |
1297 | } | |
987ab45e | 1298 | if (mask & XPSR_EXCP) { |
de2db7ec PM |
1299 | /* Note that this only happens on exception exit */ |
1300 | write_v7m_exception(env, val & XPSR_EXCP); | |
9ee6e8bb PB |
1301 | } |
1302 | } | |
1303 | ||
f149e3e8 EI |
1304 | #define HCR_VM (1ULL << 0) |
1305 | #define HCR_SWIO (1ULL << 1) | |
1306 | #define HCR_PTW (1ULL << 2) | |
1307 | #define HCR_FMO (1ULL << 3) | |
1308 | #define HCR_IMO (1ULL << 4) | |
1309 | #define HCR_AMO (1ULL << 5) | |
1310 | #define HCR_VF (1ULL << 6) | |
1311 | #define HCR_VI (1ULL << 7) | |
1312 | #define HCR_VSE (1ULL << 8) | |
1313 | #define HCR_FB (1ULL << 9) | |
1314 | #define HCR_BSU_MASK (3ULL << 10) | |
1315 | #define HCR_DC (1ULL << 12) | |
1316 | #define HCR_TWI (1ULL << 13) | |
1317 | #define HCR_TWE (1ULL << 14) | |
1318 | #define HCR_TID0 (1ULL << 15) | |
1319 | #define HCR_TID1 (1ULL << 16) | |
1320 | #define HCR_TID2 (1ULL << 17) | |
1321 | #define HCR_TID3 (1ULL << 18) | |
1322 | #define HCR_TSC (1ULL << 19) | |
1323 | #define HCR_TIDCP (1ULL << 20) | |
1324 | #define HCR_TACR (1ULL << 21) | |
1325 | #define HCR_TSW (1ULL << 22) | |
099bf53b | 1326 | #define HCR_TPCP (1ULL << 23) |
f149e3e8 EI |
1327 | #define HCR_TPU (1ULL << 24) |
1328 | #define HCR_TTLB (1ULL << 25) | |
1329 | #define HCR_TVM (1ULL << 26) | |
1330 | #define HCR_TGE (1ULL << 27) | |
1331 | #define HCR_TDZ (1ULL << 28) | |
1332 | #define HCR_HCD (1ULL << 29) | |
1333 | #define HCR_TRVM (1ULL << 30) | |
1334 | #define HCR_RW (1ULL << 31) | |
1335 | #define HCR_CD (1ULL << 32) | |
1336 | #define HCR_ID (1ULL << 33) | |
ac656b16 | 1337 | #define HCR_E2H (1ULL << 34) |
099bf53b RH |
1338 | #define HCR_TLOR (1ULL << 35) |
1339 | #define HCR_TERR (1ULL << 36) | |
1340 | #define HCR_TEA (1ULL << 37) | |
1341 | #define HCR_MIOCNCE (1ULL << 38) | |
1342 | #define HCR_APK (1ULL << 40) | |
1343 | #define HCR_API (1ULL << 41) | |
1344 | #define HCR_NV (1ULL << 42) | |
1345 | #define HCR_NV1 (1ULL << 43) | |
1346 | #define HCR_AT (1ULL << 44) | |
1347 | #define HCR_NV2 (1ULL << 45) | |
1348 | #define HCR_FWB (1ULL << 46) | |
1349 | #define HCR_FIEN (1ULL << 47) | |
1350 | #define HCR_TID4 (1ULL << 49) | |
1351 | #define HCR_TICAB (1ULL << 50) | |
1352 | #define HCR_TOCU (1ULL << 52) | |
1353 | #define HCR_TTLBIS (1ULL << 54) | |
1354 | #define HCR_TTLBOS (1ULL << 55) | |
1355 | #define HCR_ATA (1ULL << 56) | |
1356 | #define HCR_DCT (1ULL << 57) | |
1357 | ||
ac656b16 PM |
1358 | /* |
1359 | * When we actually implement ARMv8.1-VHE we should add HCR_E2H to | |
1360 | * HCR_MASK and then clear it again if the feature bit is not set in | |
1361 | * hcr_write(). | |
1362 | */ | |
f149e3e8 EI |
1363 | #define HCR_MASK ((1ULL << 34) - 1) |
1364 | ||
64e0e2de EI |
1365 | #define SCR_NS (1U << 0) |
1366 | #define SCR_IRQ (1U << 1) | |
1367 | #define SCR_FIQ (1U << 2) | |
1368 | #define SCR_EA (1U << 3) | |
1369 | #define SCR_FW (1U << 4) | |
1370 | #define SCR_AW (1U << 5) | |
1371 | #define SCR_NET (1U << 6) | |
1372 | #define SCR_SMD (1U << 7) | |
1373 | #define SCR_HCE (1U << 8) | |
1374 | #define SCR_SIF (1U << 9) | |
1375 | #define SCR_RW (1U << 10) | |
1376 | #define SCR_ST (1U << 11) | |
1377 | #define SCR_TWI (1U << 12) | |
1378 | #define SCR_TWE (1U << 13) | |
99f8f86d RH |
1379 | #define SCR_TLOR (1U << 14) |
1380 | #define SCR_TERR (1U << 15) | |
1381 | #define SCR_APK (1U << 16) | |
1382 | #define SCR_API (1U << 17) | |
1383 | #define SCR_EEL2 (1U << 18) | |
1384 | #define SCR_EASE (1U << 19) | |
1385 | #define SCR_NMEA (1U << 20) | |
1386 | #define SCR_FIEN (1U << 21) | |
1387 | #define SCR_ENSCXT (1U << 25) | |
1388 | #define SCR_ATA (1U << 26) | |
64e0e2de | 1389 | |
01653295 PM |
1390 | /* Return the current FPSCR value. */ |
1391 | uint32_t vfp_get_fpscr(CPUARMState *env); | |
1392 | void vfp_set_fpscr(CPUARMState *env, uint32_t val); | |
1393 | ||
d81ce0ef AB |
1394 | /* FPCR, Floating Point Control Register |
1395 | * FPSR, Floating Poiht Status Register | |
1396 | * | |
1397 | * For A64 the FPSCR is split into two logically distinct registers, | |
f903fa22 PM |
1398 | * FPCR and FPSR. However since they still use non-overlapping bits |
1399 | * we store the underlying state in fpscr and just mask on read/write. | |
1400 | */ | |
1401 | #define FPSR_MASK 0xf800009f | |
0b62159b | 1402 | #define FPCR_MASK 0x07ff9f00 |
d81ce0ef | 1403 | |
a15945d9 PM |
1404 | #define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */ |
1405 | #define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */ | |
1406 | #define FPCR_OFE (1 << 10) /* Overflow exception trap enable */ | |
1407 | #define FPCR_UFE (1 << 11) /* Underflow exception trap enable */ | |
1408 | #define FPCR_IXE (1 << 12) /* Inexact exception trap enable */ | |
1409 | #define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */ | |
d81ce0ef AB |
1410 | #define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */ |
1411 | #define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */ | |
1412 | #define FPCR_DN (1 << 25) /* Default NaN enable bit */ | |
a4d58462 | 1413 | #define FPCR_QC (1 << 27) /* Cumulative saturation bit */ |
d81ce0ef | 1414 | |
f903fa22 PM |
1415 | static inline uint32_t vfp_get_fpsr(CPUARMState *env) |
1416 | { | |
1417 | return vfp_get_fpscr(env) & FPSR_MASK; | |
1418 | } | |
1419 | ||
1420 | static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val) | |
1421 | { | |
1422 | uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK); | |
1423 | vfp_set_fpscr(env, new_fpscr); | |
1424 | } | |
1425 | ||
1426 | static inline uint32_t vfp_get_fpcr(CPUARMState *env) | |
1427 | { | |
1428 | return vfp_get_fpscr(env) & FPCR_MASK; | |
1429 | } | |
1430 | ||
1431 | static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val) | |
1432 | { | |
1433 | uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK); | |
1434 | vfp_set_fpscr(env, new_fpscr); | |
1435 | } | |
1436 | ||
b5ff1b31 FB |
1437 | enum arm_cpu_mode { |
1438 | ARM_CPU_MODE_USR = 0x10, | |
1439 | ARM_CPU_MODE_FIQ = 0x11, | |
1440 | ARM_CPU_MODE_IRQ = 0x12, | |
1441 | ARM_CPU_MODE_SVC = 0x13, | |
28c9457d | 1442 | ARM_CPU_MODE_MON = 0x16, |
b5ff1b31 | 1443 | ARM_CPU_MODE_ABT = 0x17, |
28c9457d | 1444 | ARM_CPU_MODE_HYP = 0x1a, |
b5ff1b31 FB |
1445 | ARM_CPU_MODE_UND = 0x1b, |
1446 | ARM_CPU_MODE_SYS = 0x1f | |
1447 | }; | |
1448 | ||
40f137e1 PB |
1449 | /* VFP system registers. */ |
1450 | #define ARM_VFP_FPSID 0 | |
1451 | #define ARM_VFP_FPSCR 1 | |
a50c0f51 | 1452 | #define ARM_VFP_MVFR2 5 |
9ee6e8bb PB |
1453 | #define ARM_VFP_MVFR1 6 |
1454 | #define ARM_VFP_MVFR0 7 | |
40f137e1 PB |
1455 | #define ARM_VFP_FPEXC 8 |
1456 | #define ARM_VFP_FPINST 9 | |
1457 | #define ARM_VFP_FPINST2 10 | |
1458 | ||
18c9b560 | 1459 | /* iwMMXt coprocessor control registers. */ |
6e0fafe2 PM |
1460 | #define ARM_IWMMXT_wCID 0 |
1461 | #define ARM_IWMMXT_wCon 1 | |
1462 | #define ARM_IWMMXT_wCSSF 2 | |
1463 | #define ARM_IWMMXT_wCASF 3 | |
1464 | #define ARM_IWMMXT_wCGR0 8 | |
1465 | #define ARM_IWMMXT_wCGR1 9 | |
1466 | #define ARM_IWMMXT_wCGR2 10 | |
1467 | #define ARM_IWMMXT_wCGR3 11 | |
18c9b560 | 1468 | |
2c4da50d PM |
1469 | /* V7M CCR bits */ |
1470 | FIELD(V7M_CCR, NONBASETHRDENA, 0, 1) | |
1471 | FIELD(V7M_CCR, USERSETMPEND, 1, 1) | |
1472 | FIELD(V7M_CCR, UNALIGN_TRP, 3, 1) | |
1473 | FIELD(V7M_CCR, DIV_0_TRP, 4, 1) | |
1474 | FIELD(V7M_CCR, BFHFNMIGN, 8, 1) | |
1475 | FIELD(V7M_CCR, STKALIGN, 9, 1) | |
4730fb85 | 1476 | FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1) |
2c4da50d PM |
1477 | FIELD(V7M_CCR, DC, 16, 1) |
1478 | FIELD(V7M_CCR, IC, 17, 1) | |
4730fb85 | 1479 | FIELD(V7M_CCR, BP, 18, 1) |
2c4da50d | 1480 | |
24ac0fb1 PM |
1481 | /* V7M SCR bits */ |
1482 | FIELD(V7M_SCR, SLEEPONEXIT, 1, 1) | |
1483 | FIELD(V7M_SCR, SLEEPDEEP, 2, 1) | |
1484 | FIELD(V7M_SCR, SLEEPDEEPS, 3, 1) | |
1485 | FIELD(V7M_SCR, SEVONPEND, 4, 1) | |
1486 | ||
3b2e9344 PM |
1487 | /* V7M AIRCR bits */ |
1488 | FIELD(V7M_AIRCR, VECTRESET, 0, 1) | |
1489 | FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1) | |
1490 | FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1) | |
1491 | FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1) | |
1492 | FIELD(V7M_AIRCR, PRIGROUP, 8, 3) | |
1493 | FIELD(V7M_AIRCR, BFHFNMINS, 13, 1) | |
1494 | FIELD(V7M_AIRCR, PRIS, 14, 1) | |
1495 | FIELD(V7M_AIRCR, ENDIANNESS, 15, 1) | |
1496 | FIELD(V7M_AIRCR, VECTKEY, 16, 16) | |
1497 | ||
2c4da50d PM |
1498 | /* V7M CFSR bits for MMFSR */ |
1499 | FIELD(V7M_CFSR, IACCVIOL, 0, 1) | |
1500 | FIELD(V7M_CFSR, DACCVIOL, 1, 1) | |
1501 | FIELD(V7M_CFSR, MUNSTKERR, 3, 1) | |
1502 | FIELD(V7M_CFSR, MSTKERR, 4, 1) | |
1503 | FIELD(V7M_CFSR, MLSPERR, 5, 1) | |
1504 | FIELD(V7M_CFSR, MMARVALID, 7, 1) | |
1505 | ||
1506 | /* V7M CFSR bits for BFSR */ | |
1507 | FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1) | |
1508 | FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1) | |
1509 | FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1) | |
1510 | FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1) | |
1511 | FIELD(V7M_CFSR, STKERR, 8 + 4, 1) | |
1512 | FIELD(V7M_CFSR, LSPERR, 8 + 5, 1) | |
1513 | FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1) | |
1514 | ||
1515 | /* V7M CFSR bits for UFSR */ | |
1516 | FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1) | |
1517 | FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1) | |
1518 | FIELD(V7M_CFSR, INVPC, 16 + 2, 1) | |
1519 | FIELD(V7M_CFSR, NOCP, 16 + 3, 1) | |
86f026de | 1520 | FIELD(V7M_CFSR, STKOF, 16 + 4, 1) |
2c4da50d PM |
1521 | FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1) |
1522 | FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1) | |
1523 | ||
334e8dad PM |
1524 | /* V7M CFSR bit masks covering all of the subregister bits */ |
1525 | FIELD(V7M_CFSR, MMFSR, 0, 8) | |
1526 | FIELD(V7M_CFSR, BFSR, 8, 8) | |
1527 | FIELD(V7M_CFSR, UFSR, 16, 16) | |
1528 | ||
2c4da50d PM |
1529 | /* V7M HFSR bits */ |
1530 | FIELD(V7M_HFSR, VECTTBL, 1, 1) | |
1531 | FIELD(V7M_HFSR, FORCED, 30, 1) | |
1532 | FIELD(V7M_HFSR, DEBUGEVT, 31, 1) | |
1533 | ||
1534 | /* V7M DFSR bits */ | |
1535 | FIELD(V7M_DFSR, HALTED, 0, 1) | |
1536 | FIELD(V7M_DFSR, BKPT, 1, 1) | |
1537 | FIELD(V7M_DFSR, DWTTRAP, 2, 1) | |
1538 | FIELD(V7M_DFSR, VCATCH, 3, 1) | |
1539 | FIELD(V7M_DFSR, EXTERNAL, 4, 1) | |
1540 | ||
bed079da PM |
1541 | /* V7M SFSR bits */ |
1542 | FIELD(V7M_SFSR, INVEP, 0, 1) | |
1543 | FIELD(V7M_SFSR, INVIS, 1, 1) | |
1544 | FIELD(V7M_SFSR, INVER, 2, 1) | |
1545 | FIELD(V7M_SFSR, AUVIOL, 3, 1) | |
1546 | FIELD(V7M_SFSR, INVTRAN, 4, 1) | |
1547 | FIELD(V7M_SFSR, LSPERR, 5, 1) | |
1548 | FIELD(V7M_SFSR, SFARVALID, 6, 1) | |
1549 | FIELD(V7M_SFSR, LSERR, 7, 1) | |
1550 | ||
29c483a5 MD |
1551 | /* v7M MPU_CTRL bits */ |
1552 | FIELD(V7M_MPU_CTRL, ENABLE, 0, 1) | |
1553 | FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1) | |
1554 | FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1) | |
1555 | ||
43bbce7f PM |
1556 | /* v7M CLIDR bits */ |
1557 | FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21) | |
1558 | FIELD(V7M_CLIDR, LOUIS, 21, 3) | |
1559 | FIELD(V7M_CLIDR, LOC, 24, 3) | |
1560 | FIELD(V7M_CLIDR, LOUU, 27, 3) | |
1561 | FIELD(V7M_CLIDR, ICB, 30, 2) | |
1562 | ||
1563 | FIELD(V7M_CSSELR, IND, 0, 1) | |
1564 | FIELD(V7M_CSSELR, LEVEL, 1, 3) | |
1565 | /* We use the combination of InD and Level to index into cpu->ccsidr[]; | |
1566 | * define a mask for this and check that it doesn't permit running off | |
1567 | * the end of the array. | |
1568 | */ | |
1569 | FIELD(V7M_CSSELR, INDEX, 0, 4) | |
d33abe82 PM |
1570 | |
1571 | /* v7M FPCCR bits */ | |
1572 | FIELD(V7M_FPCCR, LSPACT, 0, 1) | |
1573 | FIELD(V7M_FPCCR, USER, 1, 1) | |
1574 | FIELD(V7M_FPCCR, S, 2, 1) | |
1575 | FIELD(V7M_FPCCR, THREAD, 3, 1) | |
1576 | FIELD(V7M_FPCCR, HFRDY, 4, 1) | |
1577 | FIELD(V7M_FPCCR, MMRDY, 5, 1) | |
1578 | FIELD(V7M_FPCCR, BFRDY, 6, 1) | |
1579 | FIELD(V7M_FPCCR, SFRDY, 7, 1) | |
1580 | FIELD(V7M_FPCCR, MONRDY, 8, 1) | |
1581 | FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1) | |
1582 | FIELD(V7M_FPCCR, UFRDY, 10, 1) | |
1583 | FIELD(V7M_FPCCR, RES0, 11, 15) | |
1584 | FIELD(V7M_FPCCR, TS, 26, 1) | |
1585 | FIELD(V7M_FPCCR, CLRONRETS, 27, 1) | |
1586 | FIELD(V7M_FPCCR, CLRONRET, 28, 1) | |
1587 | FIELD(V7M_FPCCR, LSPENS, 29, 1) | |
1588 | FIELD(V7M_FPCCR, LSPEN, 30, 1) | |
1589 | FIELD(V7M_FPCCR, ASPEN, 31, 1) | |
1590 | /* These bits are banked. Others are non-banked and live in the M_REG_S bank */ | |
1591 | #define R_V7M_FPCCR_BANKED_MASK \ | |
1592 | (R_V7M_FPCCR_LSPACT_MASK | \ | |
1593 | R_V7M_FPCCR_USER_MASK | \ | |
1594 | R_V7M_FPCCR_THREAD_MASK | \ | |
1595 | R_V7M_FPCCR_MMRDY_MASK | \ | |
1596 | R_V7M_FPCCR_SPLIMVIOL_MASK | \ | |
1597 | R_V7M_FPCCR_UFRDY_MASK | \ | |
1598 | R_V7M_FPCCR_ASPEN_MASK) | |
43bbce7f | 1599 | |
a62e62af RH |
1600 | /* |
1601 | * System register ID fields. | |
1602 | */ | |
1603 | FIELD(ID_ISAR0, SWAP, 0, 4) | |
1604 | FIELD(ID_ISAR0, BITCOUNT, 4, 4) | |
1605 | FIELD(ID_ISAR0, BITFIELD, 8, 4) | |
1606 | FIELD(ID_ISAR0, CMPBRANCH, 12, 4) | |
1607 | FIELD(ID_ISAR0, COPROC, 16, 4) | |
1608 | FIELD(ID_ISAR0, DEBUG, 20, 4) | |
1609 | FIELD(ID_ISAR0, DIVIDE, 24, 4) | |
1610 | ||
1611 | FIELD(ID_ISAR1, ENDIAN, 0, 4) | |
1612 | FIELD(ID_ISAR1, EXCEPT, 4, 4) | |
1613 | FIELD(ID_ISAR1, EXCEPT_AR, 8, 4) | |
1614 | FIELD(ID_ISAR1, EXTEND, 12, 4) | |
1615 | FIELD(ID_ISAR1, IFTHEN, 16, 4) | |
1616 | FIELD(ID_ISAR1, IMMEDIATE, 20, 4) | |
1617 | FIELD(ID_ISAR1, INTERWORK, 24, 4) | |
1618 | FIELD(ID_ISAR1, JAZELLE, 28, 4) | |
1619 | ||
1620 | FIELD(ID_ISAR2, LOADSTORE, 0, 4) | |
1621 | FIELD(ID_ISAR2, MEMHINT, 4, 4) | |
1622 | FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4) | |
1623 | FIELD(ID_ISAR2, MULT, 12, 4) | |
1624 | FIELD(ID_ISAR2, MULTS, 16, 4) | |
1625 | FIELD(ID_ISAR2, MULTU, 20, 4) | |
1626 | FIELD(ID_ISAR2, PSR_AR, 24, 4) | |
1627 | FIELD(ID_ISAR2, REVERSAL, 28, 4) | |
1628 | ||
1629 | FIELD(ID_ISAR3, SATURATE, 0, 4) | |
1630 | FIELD(ID_ISAR3, SIMD, 4, 4) | |
1631 | FIELD(ID_ISAR3, SVC, 8, 4) | |
1632 | FIELD(ID_ISAR3, SYNCHPRIM, 12, 4) | |
1633 | FIELD(ID_ISAR3, TABBRANCH, 16, 4) | |
1634 | FIELD(ID_ISAR3, T32COPY, 20, 4) | |
1635 | FIELD(ID_ISAR3, TRUENOP, 24, 4) | |
1636 | FIELD(ID_ISAR3, T32EE, 28, 4) | |
1637 | ||
1638 | FIELD(ID_ISAR4, UNPRIV, 0, 4) | |
1639 | FIELD(ID_ISAR4, WITHSHIFTS, 4, 4) | |
1640 | FIELD(ID_ISAR4, WRITEBACK, 8, 4) | |
1641 | FIELD(ID_ISAR4, SMC, 12, 4) | |
1642 | FIELD(ID_ISAR4, BARRIER, 16, 4) | |
1643 | FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4) | |
1644 | FIELD(ID_ISAR4, PSR_M, 24, 4) | |
1645 | FIELD(ID_ISAR4, SWP_FRAC, 28, 4) | |
1646 | ||
1647 | FIELD(ID_ISAR5, SEVL, 0, 4) | |
1648 | FIELD(ID_ISAR5, AES, 4, 4) | |
1649 | FIELD(ID_ISAR5, SHA1, 8, 4) | |
1650 | FIELD(ID_ISAR5, SHA2, 12, 4) | |
1651 | FIELD(ID_ISAR5, CRC32, 16, 4) | |
1652 | FIELD(ID_ISAR5, RDM, 24, 4) | |
1653 | FIELD(ID_ISAR5, VCMA, 28, 4) | |
1654 | ||
1655 | FIELD(ID_ISAR6, JSCVT, 0, 4) | |
1656 | FIELD(ID_ISAR6, DP, 4, 4) | |
1657 | FIELD(ID_ISAR6, FHM, 8, 4) | |
1658 | FIELD(ID_ISAR6, SB, 12, 4) | |
1659 | FIELD(ID_ISAR6, SPECRES, 16, 4) | |
1660 | ||
ab638a32 RH |
1661 | FIELD(ID_MMFR4, SPECSEI, 0, 4) |
1662 | FIELD(ID_MMFR4, AC2, 4, 4) | |
1663 | FIELD(ID_MMFR4, XNX, 8, 4) | |
1664 | FIELD(ID_MMFR4, CNP, 12, 4) | |
1665 | FIELD(ID_MMFR4, HPDS, 16, 4) | |
1666 | FIELD(ID_MMFR4, LSM, 20, 4) | |
1667 | FIELD(ID_MMFR4, CCIDX, 24, 4) | |
1668 | FIELD(ID_MMFR4, EVT, 28, 4) | |
1669 | ||
a62e62af RH |
1670 | FIELD(ID_AA64ISAR0, AES, 4, 4) |
1671 | FIELD(ID_AA64ISAR0, SHA1, 8, 4) | |
1672 | FIELD(ID_AA64ISAR0, SHA2, 12, 4) | |
1673 | FIELD(ID_AA64ISAR0, CRC32, 16, 4) | |
1674 | FIELD(ID_AA64ISAR0, ATOMIC, 20, 4) | |
1675 | FIELD(ID_AA64ISAR0, RDM, 28, 4) | |
1676 | FIELD(ID_AA64ISAR0, SHA3, 32, 4) | |
1677 | FIELD(ID_AA64ISAR0, SM3, 36, 4) | |
1678 | FIELD(ID_AA64ISAR0, SM4, 40, 4) | |
1679 | FIELD(ID_AA64ISAR0, DP, 44, 4) | |
1680 | FIELD(ID_AA64ISAR0, FHM, 48, 4) | |
1681 | FIELD(ID_AA64ISAR0, TS, 52, 4) | |
1682 | FIELD(ID_AA64ISAR0, TLB, 56, 4) | |
1683 | FIELD(ID_AA64ISAR0, RNDR, 60, 4) | |
1684 | ||
1685 | FIELD(ID_AA64ISAR1, DPB, 0, 4) | |
1686 | FIELD(ID_AA64ISAR1, APA, 4, 4) | |
1687 | FIELD(ID_AA64ISAR1, API, 8, 4) | |
1688 | FIELD(ID_AA64ISAR1, JSCVT, 12, 4) | |
1689 | FIELD(ID_AA64ISAR1, FCMA, 16, 4) | |
1690 | FIELD(ID_AA64ISAR1, LRCPC, 20, 4) | |
1691 | FIELD(ID_AA64ISAR1, GPA, 24, 4) | |
1692 | FIELD(ID_AA64ISAR1, GPI, 28, 4) | |
1693 | FIELD(ID_AA64ISAR1, FRINTTS, 32, 4) | |
1694 | FIELD(ID_AA64ISAR1, SB, 36, 4) | |
1695 | FIELD(ID_AA64ISAR1, SPECRES, 40, 4) | |
1696 | ||
cd208a1c RH |
1697 | FIELD(ID_AA64PFR0, EL0, 0, 4) |
1698 | FIELD(ID_AA64PFR0, EL1, 4, 4) | |
1699 | FIELD(ID_AA64PFR0, EL2, 8, 4) | |
1700 | FIELD(ID_AA64PFR0, EL3, 12, 4) | |
1701 | FIELD(ID_AA64PFR0, FP, 16, 4) | |
1702 | FIELD(ID_AA64PFR0, ADVSIMD, 20, 4) | |
1703 | FIELD(ID_AA64PFR0, GIC, 24, 4) | |
1704 | FIELD(ID_AA64PFR0, RAS, 28, 4) | |
1705 | FIELD(ID_AA64PFR0, SVE, 32, 4) | |
1706 | ||
be53b6f4 RH |
1707 | FIELD(ID_AA64PFR1, BT, 0, 4) |
1708 | FIELD(ID_AA64PFR1, SBSS, 4, 4) | |
1709 | FIELD(ID_AA64PFR1, MTE, 8, 4) | |
1710 | FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4) | |
1711 | ||
3dc91ddb PM |
1712 | FIELD(ID_AA64MMFR0, PARANGE, 0, 4) |
1713 | FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4) | |
1714 | FIELD(ID_AA64MMFR0, BIGEND, 8, 4) | |
1715 | FIELD(ID_AA64MMFR0, SNSMEM, 12, 4) | |
1716 | FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4) | |
1717 | FIELD(ID_AA64MMFR0, TGRAN16, 20, 4) | |
1718 | FIELD(ID_AA64MMFR0, TGRAN64, 24, 4) | |
1719 | FIELD(ID_AA64MMFR0, TGRAN4, 28, 4) | |
1720 | FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4) | |
1721 | FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4) | |
1722 | FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4) | |
1723 | FIELD(ID_AA64MMFR0, EXS, 44, 4) | |
1724 | ||
1725 | FIELD(ID_AA64MMFR1, HAFDBS, 0, 4) | |
1726 | FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4) | |
1727 | FIELD(ID_AA64MMFR1, VH, 8, 4) | |
1728 | FIELD(ID_AA64MMFR1, HPDS, 12, 4) | |
1729 | FIELD(ID_AA64MMFR1, LO, 16, 4) | |
1730 | FIELD(ID_AA64MMFR1, PAN, 20, 4) | |
1731 | FIELD(ID_AA64MMFR1, SPECSEI, 24, 4) | |
1732 | FIELD(ID_AA64MMFR1, XNX, 28, 4) | |
1733 | ||
beceb99c AL |
1734 | FIELD(ID_DFR0, COPDBG, 0, 4) |
1735 | FIELD(ID_DFR0, COPSDBG, 4, 4) | |
1736 | FIELD(ID_DFR0, MMAPDBG, 8, 4) | |
1737 | FIELD(ID_DFR0, COPTRC, 12, 4) | |
1738 | FIELD(ID_DFR0, MMAPTRC, 16, 4) | |
1739 | FIELD(ID_DFR0, MPROFDBG, 20, 4) | |
1740 | FIELD(ID_DFR0, PERFMON, 24, 4) | |
1741 | FIELD(ID_DFR0, TRACEFILT, 28, 4) | |
1742 | ||
602f6e42 PM |
1743 | FIELD(MVFR0, SIMDREG, 0, 4) |
1744 | FIELD(MVFR0, FPSP, 4, 4) | |
1745 | FIELD(MVFR0, FPDP, 8, 4) | |
1746 | FIELD(MVFR0, FPTRAP, 12, 4) | |
1747 | FIELD(MVFR0, FPDIVIDE, 16, 4) | |
1748 | FIELD(MVFR0, FPSQRT, 20, 4) | |
1749 | FIELD(MVFR0, FPSHVEC, 24, 4) | |
1750 | FIELD(MVFR0, FPROUND, 28, 4) | |
1751 | ||
1752 | FIELD(MVFR1, FPFTZ, 0, 4) | |
1753 | FIELD(MVFR1, FPDNAN, 4, 4) | |
1754 | FIELD(MVFR1, SIMDLS, 8, 4) | |
1755 | FIELD(MVFR1, SIMDINT, 12, 4) | |
1756 | FIELD(MVFR1, SIMDSP, 16, 4) | |
1757 | FIELD(MVFR1, SIMDHP, 20, 4) | |
1758 | FIELD(MVFR1, FPHP, 24, 4) | |
1759 | FIELD(MVFR1, SIMDFMAC, 28, 4) | |
1760 | ||
1761 | FIELD(MVFR2, SIMDMISC, 0, 4) | |
1762 | FIELD(MVFR2, FPMISC, 4, 4) | |
1763 | ||
43bbce7f PM |
1764 | QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK); |
1765 | ||
ce854d7c BC |
1766 | /* If adding a feature bit which corresponds to a Linux ELF |
1767 | * HWCAP bit, remember to update the feature-bit-to-hwcap | |
1768 | * mapping in linux-user/elfload.c:get_elf_hwcap(). | |
1769 | */ | |
40f137e1 PB |
1770 | enum arm_features { |
1771 | ARM_FEATURE_VFP, | |
c1713132 AZ |
1772 | ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */ |
1773 | ARM_FEATURE_XSCALE, /* Intel XScale extensions. */ | |
ce819861 | 1774 | ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */ |
9ee6e8bb PB |
1775 | ARM_FEATURE_V6, |
1776 | ARM_FEATURE_V6K, | |
1777 | ARM_FEATURE_V7, | |
1778 | ARM_FEATURE_THUMB2, | |
452a0955 | 1779 | ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */ |
9ee6e8bb PB |
1780 | ARM_FEATURE_VFP3, |
1781 | ARM_FEATURE_NEON, | |
9ee6e8bb | 1782 | ARM_FEATURE_M, /* Microcontroller profile. */ |
fe1479c3 | 1783 | ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */ |
e1bbf446 | 1784 | ARM_FEATURE_THUMB2EE, |
be5e7a76 | 1785 | ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */ |
5110e683 | 1786 | ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */ |
be5e7a76 DES |
1787 | ARM_FEATURE_V4T, |
1788 | ARM_FEATURE_V5, | |
5bc95aa2 | 1789 | ARM_FEATURE_STRONGARM, |
906879a9 | 1790 | ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */ |
da97f52c | 1791 | ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */ |
0383ac00 | 1792 | ARM_FEATURE_GENERIC_TIMER, |
06ed5d66 | 1793 | ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */ |
1047b9d7 | 1794 | ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */ |
c4804214 PM |
1795 | ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */ |
1796 | ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */ | |
1797 | ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */ | |
81bdde9d | 1798 | ARM_FEATURE_MPIDR, /* has cp15 MPIDR */ |
de9b05b8 PM |
1799 | ARM_FEATURE_PXN, /* has Privileged Execute Never bit */ |
1800 | ARM_FEATURE_LPAE, /* has Large Physical Address Extension */ | |
81e69fb0 | 1801 | ARM_FEATURE_V8, |
3926cc84 | 1802 | ARM_FEATURE_AARCH64, /* supports 64 bit mode */ |
d8ba780b | 1803 | ARM_FEATURE_CBAR, /* has cp15 CBAR */ |
eb0ecd5a | 1804 | ARM_FEATURE_CRC, /* ARMv8 CRC instructions */ |
f318cec6 | 1805 | ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */ |
cca7c2f5 | 1806 | ARM_FEATURE_EL2, /* has EL2 Virtualization support */ |
1fe8141e | 1807 | ARM_FEATURE_EL3, /* has EL3 Secure monitor support */ |
62b44f05 | 1808 | ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */ |
929e754d | 1809 | ARM_FEATURE_PMU, /* has PMU support */ |
91db4642 | 1810 | ARM_FEATURE_VBAR, /* has cp15 VBAR */ |
1e577cc7 | 1811 | ARM_FEATURE_M_SECURITY, /* M profile Security Extension */ |
cc2ae7c9 | 1812 | ARM_FEATURE_M_MAIN, /* M profile Main Extension */ |
40f137e1 PB |
1813 | }; |
1814 | ||
1815 | static inline int arm_feature(CPUARMState *env, int feature) | |
1816 | { | |
918f5dca | 1817 | return (env->features & (1ULL << feature)) != 0; |
40f137e1 PB |
1818 | } |
1819 | ||
19e0fefa FA |
1820 | #if !defined(CONFIG_USER_ONLY) |
1821 | /* Return true if exception levels below EL3 are in secure state, | |
1822 | * or would be following an exception return to that level. | |
1823 | * Unlike arm_is_secure() (which is always a question about the | |
1824 | * _current_ state of the CPU) this doesn't care about the current | |
1825 | * EL or mode. | |
1826 | */ | |
1827 | static inline bool arm_is_secure_below_el3(CPUARMState *env) | |
1828 | { | |
1829 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
1830 | return !(env->cp15.scr_el3 & SCR_NS); | |
1831 | } else { | |
6b7f0b61 | 1832 | /* If EL3 is not supported then the secure state is implementation |
19e0fefa FA |
1833 | * defined, in which case QEMU defaults to non-secure. |
1834 | */ | |
1835 | return false; | |
1836 | } | |
1837 | } | |
1838 | ||
71205876 PM |
1839 | /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */ |
1840 | static inline bool arm_is_el3_or_mon(CPUARMState *env) | |
19e0fefa FA |
1841 | { |
1842 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
1843 | if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) { | |
1844 | /* CPU currently in AArch64 state and EL3 */ | |
1845 | return true; | |
1846 | } else if (!is_a64(env) && | |
1847 | (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { | |
1848 | /* CPU currently in AArch32 state and monitor mode */ | |
1849 | return true; | |
1850 | } | |
1851 | } | |
71205876 PM |
1852 | return false; |
1853 | } | |
1854 | ||
1855 | /* Return true if the processor is in secure state */ | |
1856 | static inline bool arm_is_secure(CPUARMState *env) | |
1857 | { | |
1858 | if (arm_is_el3_or_mon(env)) { | |
1859 | return true; | |
1860 | } | |
19e0fefa FA |
1861 | return arm_is_secure_below_el3(env); |
1862 | } | |
1863 | ||
1864 | #else | |
1865 | static inline bool arm_is_secure_below_el3(CPUARMState *env) | |
1866 | { | |
1867 | return false; | |
1868 | } | |
1869 | ||
1870 | static inline bool arm_is_secure(CPUARMState *env) | |
1871 | { | |
1872 | return false; | |
1873 | } | |
1874 | #endif | |
1875 | ||
f7778444 RH |
1876 | /** |
1877 | * arm_hcr_el2_eff(): Return the effective value of HCR_EL2. | |
1878 | * E.g. when in secure state, fields in HCR_EL2 are suppressed, | |
1879 | * "for all purposes other than a direct read or write access of HCR_EL2." | |
1880 | * Not included here is HCR_RW. | |
1881 | */ | |
1882 | uint64_t arm_hcr_el2_eff(CPUARMState *env); | |
1883 | ||
1f79ee32 PM |
1884 | /* Return true if the specified exception level is running in AArch64 state. */ |
1885 | static inline bool arm_el_is_aa64(CPUARMState *env, int el) | |
1886 | { | |
446c81ab PM |
1887 | /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want, |
1888 | * and if we're not in EL0 then the state of EL0 isn't well defined.) | |
1f79ee32 | 1889 | */ |
446c81ab PM |
1890 | assert(el >= 1 && el <= 3); |
1891 | bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64); | |
592125f8 | 1892 | |
446c81ab PM |
1893 | /* The highest exception level is always at the maximum supported |
1894 | * register width, and then lower levels have a register width controlled | |
1895 | * by bits in the SCR or HCR registers. | |
1f79ee32 | 1896 | */ |
446c81ab PM |
1897 | if (el == 3) { |
1898 | return aa64; | |
1899 | } | |
1900 | ||
1901 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
1902 | aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW); | |
1903 | } | |
1904 | ||
1905 | if (el == 2) { | |
1906 | return aa64; | |
1907 | } | |
1908 | ||
1909 | if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) { | |
1910 | aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW); | |
1911 | } | |
1912 | ||
1913 | return aa64; | |
1f79ee32 PM |
1914 | } |
1915 | ||
3f342b9e SF |
1916 | /* Function for determing whether guest cp register reads and writes should |
1917 | * access the secure or non-secure bank of a cp register. When EL3 is | |
1918 | * operating in AArch32 state, the NS-bit determines whether the secure | |
1919 | * instance of a cp register should be used. When EL3 is AArch64 (or if | |
1920 | * it doesn't exist at all) then there is no register banking, and all | |
1921 | * accesses are to the non-secure version. | |
1922 | */ | |
1923 | static inline bool access_secure_reg(CPUARMState *env) | |
1924 | { | |
1925 | bool ret = (arm_feature(env, ARM_FEATURE_EL3) && | |
1926 | !arm_el_is_aa64(env, 3) && | |
1927 | !(env->cp15.scr_el3 & SCR_NS)); | |
1928 | ||
1929 | return ret; | |
1930 | } | |
1931 | ||
ea30a4b8 FA |
1932 | /* Macros for accessing a specified CP register bank */ |
1933 | #define A32_BANKED_REG_GET(_env, _regname, _secure) \ | |
1934 | ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns) | |
1935 | ||
1936 | #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \ | |
1937 | do { \ | |
1938 | if (_secure) { \ | |
1939 | (_env)->cp15._regname##_s = (_val); \ | |
1940 | } else { \ | |
1941 | (_env)->cp15._regname##_ns = (_val); \ | |
1942 | } \ | |
1943 | } while (0) | |
1944 | ||
1945 | /* Macros for automatically accessing a specific CP register bank depending on | |
1946 | * the current secure state of the system. These macros are not intended for | |
1947 | * supporting instruction translation reads/writes as these are dependent | |
1948 | * solely on the SCR.NS bit and not the mode. | |
1949 | */ | |
1950 | #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \ | |
1951 | A32_BANKED_REG_GET((_env), _regname, \ | |
2cde031f | 1952 | (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3))) |
ea30a4b8 FA |
1953 | |
1954 | #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \ | |
1955 | A32_BANKED_REG_SET((_env), _regname, \ | |
2cde031f | 1956 | (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \ |
ea30a4b8 FA |
1957 | (_val)) |
1958 | ||
0442428a | 1959 | void arm_cpu_list(void); |
012a906b GB |
1960 | uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, |
1961 | uint32_t cur_el, bool secure); | |
40f137e1 | 1962 | |
9ee6e8bb | 1963 | /* Interface between CPU and Interrupt controller. */ |
7ecdaa4a PM |
1964 | #ifndef CONFIG_USER_ONLY |
1965 | bool armv7m_nvic_can_take_pending_exception(void *opaque); | |
1966 | #else | |
1967 | static inline bool armv7m_nvic_can_take_pending_exception(void *opaque) | |
1968 | { | |
1969 | return true; | |
1970 | } | |
1971 | #endif | |
2fb50a33 PM |
1972 | /** |
1973 | * armv7m_nvic_set_pending: mark the specified exception as pending | |
1974 | * @opaque: the NVIC | |
1975 | * @irq: the exception number to mark pending | |
1976 | * @secure: false for non-banked exceptions or for the nonsecure | |
1977 | * version of a banked exception, true for the secure version of a banked | |
1978 | * exception. | |
1979 | * | |
1980 | * Marks the specified exception as pending. Note that we will assert() | |
1981 | * if @secure is true and @irq does not specify one of the fixed set | |
1982 | * of architecturally banked exceptions. | |
1983 | */ | |
1984 | void armv7m_nvic_set_pending(void *opaque, int irq, bool secure); | |
5ede82b8 PM |
1985 | /** |
1986 | * armv7m_nvic_set_pending_derived: mark this derived exception as pending | |
1987 | * @opaque: the NVIC | |
1988 | * @irq: the exception number to mark pending | |
1989 | * @secure: false for non-banked exceptions or for the nonsecure | |
1990 | * version of a banked exception, true for the secure version of a banked | |
1991 | * exception. | |
1992 | * | |
1993 | * Similar to armv7m_nvic_set_pending(), but specifically for derived | |
1994 | * exceptions (exceptions generated in the course of trying to take | |
1995 | * a different exception). | |
1996 | */ | |
1997 | void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure); | |
a99ba8ab PM |
1998 | /** |
1999 | * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending | |
2000 | * @opaque: the NVIC | |
2001 | * @irq: the exception number to mark pending | |
2002 | * @secure: false for non-banked exceptions or for the nonsecure | |
2003 | * version of a banked exception, true for the secure version of a banked | |
2004 | * exception. | |
2005 | * | |
2006 | * Similar to armv7m_nvic_set_pending(), but specifically for exceptions | |
2007 | * generated in the course of lazy stacking of FP registers. | |
2008 | */ | |
2009 | void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure); | |
6c948518 PM |
2010 | /** |
2011 | * armv7m_nvic_get_pending_irq_info: return highest priority pending | |
2012 | * exception, and whether it targets Secure state | |
2013 | * @opaque: the NVIC | |
2014 | * @pirq: set to pending exception number | |
2015 | * @ptargets_secure: set to whether pending exception targets Secure | |
2016 | * | |
2017 | * This function writes the number of the highest priority pending | |
2018 | * exception (the one which would be made active by | |
2019 | * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure | |
2020 | * to true if the current highest priority pending exception should | |
2021 | * be taken to Secure state, false for NS. | |
2022 | */ | |
2023 | void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq, | |
2024 | bool *ptargets_secure); | |
5cb18069 PM |
2025 | /** |
2026 | * armv7m_nvic_acknowledge_irq: make highest priority pending exception active | |
2027 | * @opaque: the NVIC | |
2028 | * | |
2029 | * Move the current highest priority pending exception from the pending | |
2030 | * state to the active state, and update v7m.exception to indicate that | |
2031 | * it is the exception currently being handled. | |
5cb18069 | 2032 | */ |
6c948518 | 2033 | void armv7m_nvic_acknowledge_irq(void *opaque); |
aa488fe3 PM |
2034 | /** |
2035 | * armv7m_nvic_complete_irq: complete specified interrupt or exception | |
2036 | * @opaque: the NVIC | |
2037 | * @irq: the exception number to complete | |
5cb18069 | 2038 | * @secure: true if this exception was secure |
aa488fe3 PM |
2039 | * |
2040 | * Returns: -1 if the irq was not active | |
2041 | * 1 if completing this irq brought us back to base (no active irqs) | |
2042 | * 0 if there is still an irq active after this one was completed | |
2043 | * (Ignoring -1, this is the same as the RETTOBASE value before completion.) | |
2044 | */ | |
5cb18069 | 2045 | int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure); |
b593c2b8 PM |
2046 | /** |
2047 | * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure) | |
2048 | * @opaque: the NVIC | |
2049 | * @irq: the exception number to mark pending | |
2050 | * @secure: false for non-banked exceptions or for the nonsecure | |
2051 | * version of a banked exception, true for the secure version of a banked | |
2052 | * exception. | |
2053 | * | |
2054 | * Return whether an exception is "ready", i.e. whether the exception is | |
2055 | * enabled and is configured at a priority which would allow it to | |
2056 | * interrupt the current execution priority. This controls whether the | |
2057 | * RDY bit for it in the FPCCR is set. | |
2058 | */ | |
2059 | bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure); | |
42a6686b PM |
2060 | /** |
2061 | * armv7m_nvic_raw_execution_priority: return the raw execution priority | |
2062 | * @opaque: the NVIC | |
2063 | * | |
2064 | * Returns: the raw execution priority as defined by the v8M architecture. | |
2065 | * This is the execution priority minus the effects of AIRCR.PRIS, | |
2066 | * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting. | |
2067 | * (v8M ARM ARM I_PKLD.) | |
2068 | */ | |
2069 | int armv7m_nvic_raw_execution_priority(void *opaque); | |
5d479199 PM |
2070 | /** |
2071 | * armv7m_nvic_neg_prio_requested: return true if the requested execution | |
2072 | * priority is negative for the specified security state. | |
2073 | * @opaque: the NVIC | |
2074 | * @secure: the security state to test | |
2075 | * This corresponds to the pseudocode IsReqExecPriNeg(). | |
2076 | */ | |
2077 | #ifndef CONFIG_USER_ONLY | |
2078 | bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure); | |
2079 | #else | |
2080 | static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure) | |
2081 | { | |
2082 | return false; | |
2083 | } | |
2084 | #endif | |
9ee6e8bb | 2085 | |
4b6a83fb PM |
2086 | /* Interface for defining coprocessor registers. |
2087 | * Registers are defined in tables of arm_cp_reginfo structs | |
2088 | * which are passed to define_arm_cp_regs(). | |
2089 | */ | |
2090 | ||
2091 | /* When looking up a coprocessor register we look for it | |
2092 | * via an integer which encodes all of: | |
2093 | * coprocessor number | |
2094 | * Crn, Crm, opc1, opc2 fields | |
2095 | * 32 or 64 bit register (ie is it accessed via MRC/MCR | |
2096 | * or via MRRC/MCRR?) | |
51a79b03 | 2097 | * non-secure/secure bank (AArch32 only) |
4b6a83fb PM |
2098 | * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field. |
2099 | * (In this case crn and opc2 should be zero.) | |
f5a0a5a5 PM |
2100 | * For AArch64, there is no 32/64 bit size distinction; |
2101 | * instead all registers have a 2 bit op0, 3 bit op1 and op2, | |
2102 | * and 4 bit CRn and CRm. The encoding patterns are chosen | |
2103 | * to be easy to convert to and from the KVM encodings, and also | |
2104 | * so that the hashtable can contain both AArch32 and AArch64 | |
2105 | * registers (to allow for interprocessing where we might run | |
2106 | * 32 bit code on a 64 bit core). | |
4b6a83fb | 2107 | */ |
f5a0a5a5 PM |
2108 | /* This bit is private to our hashtable cpreg; in KVM register |
2109 | * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64 | |
2110 | * in the upper bits of the 64 bit ID. | |
2111 | */ | |
2112 | #define CP_REG_AA64_SHIFT 28 | |
2113 | #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT) | |
2114 | ||
51a79b03 PM |
2115 | /* To enable banking of coprocessor registers depending on ns-bit we |
2116 | * add a bit to distinguish between secure and non-secure cpregs in the | |
2117 | * hashtable. | |
2118 | */ | |
2119 | #define CP_REG_NS_SHIFT 29 | |
2120 | #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT) | |
2121 | ||
2122 | #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \ | |
2123 | ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \ | |
2124 | ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2)) | |
4b6a83fb | 2125 | |
f5a0a5a5 PM |
2126 | #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \ |
2127 | (CP_REG_AA64_MASK | \ | |
2128 | ((cp) << CP_REG_ARM_COPROC_SHIFT) | \ | |
2129 | ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \ | |
2130 | ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \ | |
2131 | ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \ | |
2132 | ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \ | |
2133 | ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT)) | |
2134 | ||
721fae12 PM |
2135 | /* Convert a full 64 bit KVM register ID to the truncated 32 bit |
2136 | * version used as a key for the coprocessor register hashtable | |
2137 | */ | |
2138 | static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid) | |
2139 | { | |
2140 | uint32_t cpregid = kvmid; | |
f5a0a5a5 PM |
2141 | if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) { |
2142 | cpregid |= CP_REG_AA64_MASK; | |
51a79b03 PM |
2143 | } else { |
2144 | if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) { | |
2145 | cpregid |= (1 << 15); | |
2146 | } | |
2147 | ||
2148 | /* KVM is always non-secure so add the NS flag on AArch32 register | |
2149 | * entries. | |
2150 | */ | |
2151 | cpregid |= 1 << CP_REG_NS_SHIFT; | |
721fae12 PM |
2152 | } |
2153 | return cpregid; | |
2154 | } | |
2155 | ||
2156 | /* Convert a truncated 32 bit hashtable key into the full | |
2157 | * 64 bit KVM register ID. | |
2158 | */ | |
2159 | static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid) | |
2160 | { | |
f5a0a5a5 PM |
2161 | uint64_t kvmid; |
2162 | ||
2163 | if (cpregid & CP_REG_AA64_MASK) { | |
2164 | kvmid = cpregid & ~CP_REG_AA64_MASK; | |
2165 | kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64; | |
721fae12 | 2166 | } else { |
f5a0a5a5 PM |
2167 | kvmid = cpregid & ~(1 << 15); |
2168 | if (cpregid & (1 << 15)) { | |
2169 | kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM; | |
2170 | } else { | |
2171 | kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM; | |
2172 | } | |
721fae12 PM |
2173 | } |
2174 | return kvmid; | |
2175 | } | |
2176 | ||
4b6a83fb | 2177 | /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a |
fe03d45f | 2178 | * special-behaviour cp reg and bits [11..8] indicate what behaviour |
4b6a83fb PM |
2179 | * it has. Otherwise it is a simple cp reg, where CONST indicates that |
2180 | * TCG can assume the value to be constant (ie load at translate time) | |
2181 | * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END | |
2182 | * indicates that the TB should not be ended after a write to this register | |
2183 | * (the default is that the TB ends after cp writes). OVERRIDE permits | |
2184 | * a register definition to override a previous definition for the | |
2185 | * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the | |
2186 | * old must have the OVERRIDE bit set. | |
7a0e58fa PM |
2187 | * ALIAS indicates that this register is an alias view of some underlying |
2188 | * state which is also visible via another register, and that the other | |
b061a82b SF |
2189 | * register is handling migration and reset; registers marked ALIAS will not be |
2190 | * migrated but may have their state set by syncing of register state from KVM. | |
7a0e58fa PM |
2191 | * NO_RAW indicates that this register has no underlying state and does not |
2192 | * support raw access for state saving/loading; it will not be used for either | |
2193 | * migration or KVM state synchronization. (Typically this is for "registers" | |
2194 | * which are actually used as instructions for cache maintenance and so on.) | |
2452731c PM |
2195 | * IO indicates that this register does I/O and therefore its accesses |
2196 | * need to be surrounded by gen_io_start()/gen_io_end(). In particular, | |
2197 | * registers which implement clocks or timers require this. | |
4b6a83fb | 2198 | */ |
fe03d45f RH |
2199 | #define ARM_CP_SPECIAL 0x0001 |
2200 | #define ARM_CP_CONST 0x0002 | |
2201 | #define ARM_CP_64BIT 0x0004 | |
2202 | #define ARM_CP_SUPPRESS_TB_END 0x0008 | |
2203 | #define ARM_CP_OVERRIDE 0x0010 | |
2204 | #define ARM_CP_ALIAS 0x0020 | |
2205 | #define ARM_CP_IO 0x0040 | |
2206 | #define ARM_CP_NO_RAW 0x0080 | |
2207 | #define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100) | |
2208 | #define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200) | |
2209 | #define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300) | |
2210 | #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400) | |
2211 | #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500) | |
2212 | #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA | |
2213 | #define ARM_CP_FPU 0x1000 | |
490aa7f1 | 2214 | #define ARM_CP_SVE 0x2000 |
1f163787 | 2215 | #define ARM_CP_NO_GDB 0x4000 |
4b6a83fb | 2216 | /* Used only as a terminator for ARMCPRegInfo lists */ |
fe03d45f | 2217 | #define ARM_CP_SENTINEL 0xffff |
4b6a83fb | 2218 | /* Mask of only the flag bits in a type field */ |
1f163787 | 2219 | #define ARM_CP_FLAG_MASK 0x70ff |
4b6a83fb | 2220 | |
f5a0a5a5 PM |
2221 | /* Valid values for ARMCPRegInfo state field, indicating which of |
2222 | * the AArch32 and AArch64 execution states this register is visible in. | |
2223 | * If the reginfo doesn't explicitly specify then it is AArch32 only. | |
2224 | * If the reginfo is declared to be visible in both states then a second | |
2225 | * reginfo is synthesised for the AArch32 view of the AArch64 register, | |
2226 | * such that the AArch32 view is the lower 32 bits of the AArch64 one. | |
2227 | * Note that we rely on the values of these enums as we iterate through | |
2228 | * the various states in some places. | |
2229 | */ | |
2230 | enum { | |
2231 | ARM_CP_STATE_AA32 = 0, | |
2232 | ARM_CP_STATE_AA64 = 1, | |
2233 | ARM_CP_STATE_BOTH = 2, | |
2234 | }; | |
2235 | ||
c3e30260 FA |
2236 | /* ARM CP register secure state flags. These flags identify security state |
2237 | * attributes for a given CP register entry. | |
2238 | * The existence of both or neither secure and non-secure flags indicates that | |
2239 | * the register has both a secure and non-secure hash entry. A single one of | |
2240 | * these flags causes the register to only be hashed for the specified | |
2241 | * security state. | |
2242 | * Although definitions may have any combination of the S/NS bits, each | |
2243 | * registered entry will only have one to identify whether the entry is secure | |
2244 | * or non-secure. | |
2245 | */ | |
2246 | enum { | |
2247 | ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */ | |
2248 | ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */ | |
2249 | }; | |
2250 | ||
4b6a83fb PM |
2251 | /* Return true if cptype is a valid type field. This is used to try to |
2252 | * catch errors where the sentinel has been accidentally left off the end | |
2253 | * of a list of registers. | |
2254 | */ | |
2255 | static inline bool cptype_valid(int cptype) | |
2256 | { | |
2257 | return ((cptype & ~ARM_CP_FLAG_MASK) == 0) | |
2258 | || ((cptype & ARM_CP_SPECIAL) && | |
34affeef | 2259 | ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL)); |
4b6a83fb PM |
2260 | } |
2261 | ||
2262 | /* Access rights: | |
2263 | * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM | |
2264 | * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and | |
2265 | * PL2 (hyp). The other level which has Read and Write bits is Secure PL1 | |
2266 | * (ie any of the privileged modes in Secure state, or Monitor mode). | |
2267 | * If a register is accessible in one privilege level it's always accessible | |
2268 | * in higher privilege levels too. Since "Secure PL1" also follows this rule | |
2269 | * (ie anything visible in PL2 is visible in S-PL1, some things are only | |
2270 | * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the | |
2271 | * terminology a little and call this PL3. | |
f5a0a5a5 PM |
2272 | * In AArch64 things are somewhat simpler as the PLx bits line up exactly |
2273 | * with the ELx exception levels. | |
4b6a83fb PM |
2274 | * |
2275 | * If access permissions for a register are more complex than can be | |
2276 | * described with these bits, then use a laxer set of restrictions, and | |
2277 | * do the more restrictive/complex check inside a helper function. | |
2278 | */ | |
2279 | #define PL3_R 0x80 | |
2280 | #define PL3_W 0x40 | |
2281 | #define PL2_R (0x20 | PL3_R) | |
2282 | #define PL2_W (0x10 | PL3_W) | |
2283 | #define PL1_R (0x08 | PL2_R) | |
2284 | #define PL1_W (0x04 | PL2_W) | |
2285 | #define PL0_R (0x02 | PL1_R) | |
2286 | #define PL0_W (0x01 | PL1_W) | |
2287 | ||
b5bd7440 AB |
2288 | /* |
2289 | * For user-mode some registers are accessible to EL0 via a kernel | |
2290 | * trap-and-emulate ABI. In this case we define the read permissions | |
2291 | * as actually being PL0_R. However some bits of any given register | |
2292 | * may still be masked. | |
2293 | */ | |
2294 | #ifdef CONFIG_USER_ONLY | |
2295 | #define PL0U_R PL0_R | |
2296 | #else | |
2297 | #define PL0U_R PL1_R | |
2298 | #endif | |
2299 | ||
4b6a83fb PM |
2300 | #define PL3_RW (PL3_R | PL3_W) |
2301 | #define PL2_RW (PL2_R | PL2_W) | |
2302 | #define PL1_RW (PL1_R | PL1_W) | |
2303 | #define PL0_RW (PL0_R | PL0_W) | |
2304 | ||
75502672 PM |
2305 | /* Return the highest implemented Exception Level */ |
2306 | static inline int arm_highest_el(CPUARMState *env) | |
2307 | { | |
2308 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
2309 | return 3; | |
2310 | } | |
2311 | if (arm_feature(env, ARM_FEATURE_EL2)) { | |
2312 | return 2; | |
2313 | } | |
2314 | return 1; | |
2315 | } | |
2316 | ||
15b3f556 PM |
2317 | /* Return true if a v7M CPU is in Handler mode */ |
2318 | static inline bool arm_v7m_is_handler_mode(CPUARMState *env) | |
2319 | { | |
2320 | return env->v7m.exception != 0; | |
2321 | } | |
2322 | ||
dcbff19b GB |
2323 | /* Return the current Exception Level (as per ARMv8; note that this differs |
2324 | * from the ARMv7 Privilege Level). | |
2325 | */ | |
2326 | static inline int arm_current_el(CPUARMState *env) | |
4b6a83fb | 2327 | { |
6d54ed3c | 2328 | if (arm_feature(env, ARM_FEATURE_M)) { |
8bfc26ea PM |
2329 | return arm_v7m_is_handler_mode(env) || |
2330 | !(env->v7m.control[env->v7m.secure] & 1); | |
6d54ed3c PM |
2331 | } |
2332 | ||
592125f8 | 2333 | if (is_a64(env)) { |
f5a0a5a5 PM |
2334 | return extract32(env->pstate, 2, 2); |
2335 | } | |
2336 | ||
592125f8 FA |
2337 | switch (env->uncached_cpsr & 0x1f) { |
2338 | case ARM_CPU_MODE_USR: | |
4b6a83fb | 2339 | return 0; |
592125f8 FA |
2340 | case ARM_CPU_MODE_HYP: |
2341 | return 2; | |
2342 | case ARM_CPU_MODE_MON: | |
2343 | return 3; | |
2344 | default: | |
2345 | if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { | |
2346 | /* If EL3 is 32-bit then all secure privileged modes run in | |
2347 | * EL3 | |
2348 | */ | |
2349 | return 3; | |
2350 | } | |
2351 | ||
2352 | return 1; | |
4b6a83fb | 2353 | } |
4b6a83fb PM |
2354 | } |
2355 | ||
2356 | typedef struct ARMCPRegInfo ARMCPRegInfo; | |
2357 | ||
f59df3f2 PM |
2358 | typedef enum CPAccessResult { |
2359 | /* Access is permitted */ | |
2360 | CP_ACCESS_OK = 0, | |
2361 | /* Access fails due to a configurable trap or enable which would | |
2362 | * result in a categorized exception syndrome giving information about | |
2363 | * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6, | |
38836a2c PM |
2364 | * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or |
2365 | * PL1 if in EL0, otherwise to the current EL). | |
f59df3f2 PM |
2366 | */ |
2367 | CP_ACCESS_TRAP = 1, | |
2368 | /* Access fails and results in an exception syndrome 0x0 ("uncategorized"). | |
2369 | * Note that this is not a catch-all case -- the set of cases which may | |
2370 | * result in this failure is specifically defined by the architecture. | |
2371 | */ | |
2372 | CP_ACCESS_TRAP_UNCATEGORIZED = 2, | |
38836a2c PM |
2373 | /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */ |
2374 | CP_ACCESS_TRAP_EL2 = 3, | |
2375 | CP_ACCESS_TRAP_EL3 = 4, | |
e7615726 PM |
2376 | /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */ |
2377 | CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5, | |
2378 | CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6, | |
f2cae609 PM |
2379 | /* Access fails and results in an exception syndrome for an FP access, |
2380 | * trapped directly to EL2 or EL3 | |
2381 | */ | |
2382 | CP_ACCESS_TRAP_FP_EL2 = 7, | |
2383 | CP_ACCESS_TRAP_FP_EL3 = 8, | |
f59df3f2 PM |
2384 | } CPAccessResult; |
2385 | ||
c4241c7d PM |
2386 | /* Access functions for coprocessor registers. These cannot fail and |
2387 | * may not raise exceptions. | |
2388 | */ | |
2389 | typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque); | |
2390 | typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque, | |
2391 | uint64_t value); | |
f59df3f2 | 2392 | /* Access permission check functions for coprocessor registers. */ |
3f208fd7 PM |
2393 | typedef CPAccessResult CPAccessFn(CPUARMState *env, |
2394 | const ARMCPRegInfo *opaque, | |
2395 | bool isread); | |
4b6a83fb PM |
2396 | /* Hook function for register reset */ |
2397 | typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque); | |
2398 | ||
2399 | #define CP_ANY 0xff | |
2400 | ||
2401 | /* Definition of an ARM coprocessor register */ | |
2402 | struct ARMCPRegInfo { | |
2403 | /* Name of register (useful mainly for debugging, need not be unique) */ | |
2404 | const char *name; | |
2405 | /* Location of register: coprocessor number and (crn,crm,opc1,opc2) | |
2406 | * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a | |
2407 | * 'wildcard' field -- any value of that field in the MRC/MCR insn | |
2408 | * will be decoded to this register. The register read and write | |
2409 | * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2 | |
2410 | * used by the program, so it is possible to register a wildcard and | |
2411 | * then behave differently on read/write if necessary. | |
2412 | * For 64 bit registers, only crm and opc1 are relevant; crn and opc2 | |
2413 | * must both be zero. | |
f5a0a5a5 PM |
2414 | * For AArch64-visible registers, opc0 is also used. |
2415 | * Since there are no "coprocessors" in AArch64, cp is purely used as a | |
2416 | * way to distinguish (for KVM's benefit) guest-visible system registers | |
2417 | * from demuxed ones provided to preserve the "no side effects on | |
2418 | * KVM register read/write from QEMU" semantics. cp==0x13 is guest | |
2419 | * visible (to match KVM's encoding); cp==0 will be converted to | |
2420 | * cp==0x13 when the ARMCPRegInfo is registered, for convenience. | |
4b6a83fb PM |
2421 | */ |
2422 | uint8_t cp; | |
2423 | uint8_t crn; | |
2424 | uint8_t crm; | |
f5a0a5a5 | 2425 | uint8_t opc0; |
4b6a83fb PM |
2426 | uint8_t opc1; |
2427 | uint8_t opc2; | |
f5a0a5a5 PM |
2428 | /* Execution state in which this register is visible: ARM_CP_STATE_* */ |
2429 | int state; | |
4b6a83fb PM |
2430 | /* Register type: ARM_CP_* bits/values */ |
2431 | int type; | |
2432 | /* Access rights: PL*_[RW] */ | |
2433 | int access; | |
c3e30260 FA |
2434 | /* Security state: ARM_CP_SECSTATE_* bits/values */ |
2435 | int secure; | |
4b6a83fb PM |
2436 | /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when |
2437 | * this register was defined: can be used to hand data through to the | |
2438 | * register read/write functions, since they are passed the ARMCPRegInfo*. | |
2439 | */ | |
2440 | void *opaque; | |
2441 | /* Value of this register, if it is ARM_CP_CONST. Otherwise, if | |
2442 | * fieldoffset is non-zero, the reset value of the register. | |
2443 | */ | |
2444 | uint64_t resetvalue; | |
c3e30260 FA |
2445 | /* Offset of the field in CPUARMState for this register. |
2446 | * | |
2447 | * This is not needed if either: | |
4b6a83fb PM |
2448 | * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs |
2449 | * 2. both readfn and writefn are specified | |
2450 | */ | |
2451 | ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */ | |
c3e30260 FA |
2452 | |
2453 | /* Offsets of the secure and non-secure fields in CPUARMState for the | |
2454 | * register if it is banked. These fields are only used during the static | |
2455 | * registration of a register. During hashing the bank associated | |
2456 | * with a given security state is copied to fieldoffset which is used from | |
2457 | * there on out. | |
2458 | * | |
2459 | * It is expected that register definitions use either fieldoffset or | |
2460 | * bank_fieldoffsets in the definition but not both. It is also expected | |
2461 | * that both bank offsets are set when defining a banked register. This | |
2462 | * use indicates that a register is banked. | |
2463 | */ | |
2464 | ptrdiff_t bank_fieldoffsets[2]; | |
2465 | ||
f59df3f2 PM |
2466 | /* Function for making any access checks for this register in addition to |
2467 | * those specified by the 'access' permissions bits. If NULL, no extra | |
2468 | * checks required. The access check is performed at runtime, not at | |
2469 | * translate time. | |
2470 | */ | |
2471 | CPAccessFn *accessfn; | |
4b6a83fb PM |
2472 | /* Function for handling reads of this register. If NULL, then reads |
2473 | * will be done by loading from the offset into CPUARMState specified | |
2474 | * by fieldoffset. | |
2475 | */ | |
2476 | CPReadFn *readfn; | |
2477 | /* Function for handling writes of this register. If NULL, then writes | |
2478 | * will be done by writing to the offset into CPUARMState specified | |
2479 | * by fieldoffset. | |
2480 | */ | |
2481 | CPWriteFn *writefn; | |
7023ec7e PM |
2482 | /* Function for doing a "raw" read; used when we need to copy |
2483 | * coprocessor state to the kernel for KVM or out for | |
2484 | * migration. This only needs to be provided if there is also a | |
c4241c7d | 2485 | * readfn and it has side effects (for instance clear-on-read bits). |
7023ec7e PM |
2486 | */ |
2487 | CPReadFn *raw_readfn; | |
2488 | /* Function for doing a "raw" write; used when we need to copy KVM | |
2489 | * kernel coprocessor state into userspace, or for inbound | |
2490 | * migration. This only needs to be provided if there is also a | |
c4241c7d PM |
2491 | * writefn and it masks out "unwritable" bits or has write-one-to-clear |
2492 | * or similar behaviour. | |
7023ec7e PM |
2493 | */ |
2494 | CPWriteFn *raw_writefn; | |
4b6a83fb PM |
2495 | /* Function for resetting the register. If NULL, then reset will be done |
2496 | * by writing resetvalue to the field specified in fieldoffset. If | |
2497 | * fieldoffset is 0 then no reset will be done. | |
2498 | */ | |
2499 | CPResetFn *resetfn; | |
2500 | }; | |
2501 | ||
2502 | /* Macros which are lvalues for the field in CPUARMState for the | |
2503 | * ARMCPRegInfo *ri. | |
2504 | */ | |
2505 | #define CPREG_FIELD32(env, ri) \ | |
2506 | (*(uint32_t *)((char *)(env) + (ri)->fieldoffset)) | |
2507 | #define CPREG_FIELD64(env, ri) \ | |
2508 | (*(uint64_t *)((char *)(env) + (ri)->fieldoffset)) | |
2509 | ||
2510 | #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL } | |
2511 | ||
2512 | void define_arm_cp_regs_with_opaque(ARMCPU *cpu, | |
2513 | const ARMCPRegInfo *regs, void *opaque); | |
2514 | void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, | |
2515 | const ARMCPRegInfo *regs, void *opaque); | |
2516 | static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs) | |
2517 | { | |
2518 | define_arm_cp_regs_with_opaque(cpu, regs, 0); | |
2519 | } | |
2520 | static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs) | |
2521 | { | |
2522 | define_one_arm_cp_reg_with_opaque(cpu, regs, 0); | |
2523 | } | |
60322b39 | 2524 | const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp); |
4b6a83fb | 2525 | |
6c5c0fec AB |
2526 | /* |
2527 | * Definition of an ARM co-processor register as viewed from | |
2528 | * userspace. This is used for presenting sanitised versions of | |
2529 | * registers to userspace when emulating the Linux AArch64 CPU | |
2530 | * ID/feature ABI (advertised as HWCAP_CPUID). | |
2531 | */ | |
2532 | typedef struct ARMCPRegUserSpaceInfo { | |
2533 | /* Name of register */ | |
2534 | const char *name; | |
2535 | ||
d040242e AB |
2536 | /* Is the name actually a glob pattern */ |
2537 | bool is_glob; | |
2538 | ||
6c5c0fec AB |
2539 | /* Only some bits are exported to user space */ |
2540 | uint64_t exported_bits; | |
2541 | ||
2542 | /* Fixed bits are applied after the mask */ | |
2543 | uint64_t fixed_bits; | |
2544 | } ARMCPRegUserSpaceInfo; | |
2545 | ||
2546 | #define REGUSERINFO_SENTINEL { .name = NULL } | |
2547 | ||
2548 | void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods); | |
2549 | ||
4b6a83fb | 2550 | /* CPWriteFn that can be used to implement writes-ignored behaviour */ |
c4241c7d PM |
2551 | void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, |
2552 | uint64_t value); | |
4b6a83fb | 2553 | /* CPReadFn that can be used for read-as-zero behaviour */ |
c4241c7d | 2554 | uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri); |
4b6a83fb | 2555 | |
f5a0a5a5 PM |
2556 | /* CPResetFn that does nothing, for use if no reset is required even |
2557 | * if fieldoffset is non zero. | |
2558 | */ | |
2559 | void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque); | |
2560 | ||
67ed771d PM |
2561 | /* Return true if this reginfo struct's field in the cpu state struct |
2562 | * is 64 bits wide. | |
2563 | */ | |
2564 | static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri) | |
2565 | { | |
2566 | return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT); | |
2567 | } | |
2568 | ||
dcbff19b | 2569 | static inline bool cp_access_ok(int current_el, |
4b6a83fb PM |
2570 | const ARMCPRegInfo *ri, int isread) |
2571 | { | |
dcbff19b | 2572 | return (ri->access >> ((current_el * 2) + isread)) & 1; |
4b6a83fb PM |
2573 | } |
2574 | ||
49a66191 PM |
2575 | /* Raw read of a coprocessor register (as needed for migration, etc) */ |
2576 | uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri); | |
2577 | ||
721fae12 PM |
2578 | /** |
2579 | * write_list_to_cpustate | |
2580 | * @cpu: ARMCPU | |
2581 | * | |
2582 | * For each register listed in the ARMCPU cpreg_indexes list, write | |
2583 | * its value from the cpreg_values list into the ARMCPUState structure. | |
2584 | * This updates TCG's working data structures from KVM data or | |
2585 | * from incoming migration state. | |
2586 | * | |
2587 | * Returns: true if all register values were updated correctly, | |
2588 | * false if some register was unknown or could not be written. | |
2589 | * Note that we do not stop early on failure -- we will attempt | |
2590 | * writing all registers in the list. | |
2591 | */ | |
2592 | bool write_list_to_cpustate(ARMCPU *cpu); | |
2593 | ||
2594 | /** | |
2595 | * write_cpustate_to_list: | |
2596 | * @cpu: ARMCPU | |
b698e4ee | 2597 | * @kvm_sync: true if this is for syncing back to KVM |
721fae12 PM |
2598 | * |
2599 | * For each register listed in the ARMCPU cpreg_indexes list, write | |
2600 | * its value from the ARMCPUState structure into the cpreg_values list. | |
2601 | * This is used to copy info from TCG's working data structures into | |
2602 | * KVM or for outbound migration. | |
2603 | * | |
b698e4ee PM |
2604 | * @kvm_sync is true if we are doing this in order to sync the |
2605 | * register state back to KVM. In this case we will only update | |
2606 | * values in the list if the previous list->cpustate sync actually | |
2607 | * successfully wrote the CPU state. Otherwise we will keep the value | |
2608 | * that is in the list. | |
2609 | * | |
721fae12 PM |
2610 | * Returns: true if all register values were read correctly, |
2611 | * false if some register was unknown or could not be read. | |
2612 | * Note that we do not stop early on failure -- we will attempt | |
2613 | * reading all registers in the list. | |
2614 | */ | |
b698e4ee | 2615 | bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync); |
721fae12 | 2616 | |
9ee6e8bb PB |
2617 | #define ARM_CPUID_TI915T 0x54029152 |
2618 | #define ARM_CPUID_TI925T 0x54029252 | |
40f137e1 | 2619 | |
012a906b GB |
2620 | static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx, |
2621 | unsigned int target_el) | |
043b7f8d EI |
2622 | { |
2623 | CPUARMState *env = cs->env_ptr; | |
dcbff19b | 2624 | unsigned int cur_el = arm_current_el(env); |
57e3a0c7 | 2625 | bool secure = arm_is_secure(env); |
57e3a0c7 GB |
2626 | bool pstate_unmasked; |
2627 | int8_t unmasked = 0; | |
f7778444 | 2628 | uint64_t hcr_el2; |
57e3a0c7 GB |
2629 | |
2630 | /* Don't take exceptions if they target a lower EL. | |
2631 | * This check should catch any exceptions that would not be taken but left | |
2632 | * pending. | |
2633 | */ | |
dfafd090 EI |
2634 | if (cur_el > target_el) { |
2635 | return false; | |
2636 | } | |
043b7f8d | 2637 | |
f7778444 RH |
2638 | hcr_el2 = arm_hcr_el2_eff(env); |
2639 | ||
043b7f8d EI |
2640 | switch (excp_idx) { |
2641 | case EXCP_FIQ: | |
57e3a0c7 GB |
2642 | pstate_unmasked = !(env->daif & PSTATE_F); |
2643 | break; | |
2644 | ||
043b7f8d | 2645 | case EXCP_IRQ: |
57e3a0c7 GB |
2646 | pstate_unmasked = !(env->daif & PSTATE_I); |
2647 | break; | |
2648 | ||
136e67e9 | 2649 | case EXCP_VFIQ: |
f7778444 | 2650 | if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) { |
136e67e9 EI |
2651 | /* VFIQs are only taken when hypervized and non-secure. */ |
2652 | return false; | |
2653 | } | |
2654 | return !(env->daif & PSTATE_F); | |
2655 | case EXCP_VIRQ: | |
f7778444 | 2656 | if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) { |
136e67e9 EI |
2657 | /* VIRQs are only taken when hypervized and non-secure. */ |
2658 | return false; | |
2659 | } | |
b5c633c5 | 2660 | return !(env->daif & PSTATE_I); |
043b7f8d EI |
2661 | default: |
2662 | g_assert_not_reached(); | |
2663 | } | |
57e3a0c7 GB |
2664 | |
2665 | /* Use the target EL, current execution state and SCR/HCR settings to | |
2666 | * determine whether the corresponding CPSR bit is used to mask the | |
2667 | * interrupt. | |
2668 | */ | |
2669 | if ((target_el > cur_el) && (target_el != 1)) { | |
7cd6de3b PM |
2670 | /* Exceptions targeting a higher EL may not be maskable */ |
2671 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { | |
2672 | /* 64-bit masking rules are simple: exceptions to EL3 | |
2673 | * can't be masked, and exceptions to EL2 can only be | |
2674 | * masked from Secure state. The HCR and SCR settings | |
2675 | * don't affect the masking logic, only the interrupt routing. | |
2676 | */ | |
2677 | if (target_el == 3 || !secure) { | |
2678 | unmasked = 1; | |
2679 | } | |
2680 | } else { | |
2681 | /* The old 32-bit-only environment has a more complicated | |
2682 | * masking setup. HCR and SCR bits not only affect interrupt | |
2683 | * routing but also change the behaviour of masking. | |
2684 | */ | |
2685 | bool hcr, scr; | |
2686 | ||
2687 | switch (excp_idx) { | |
2688 | case EXCP_FIQ: | |
2689 | /* If FIQs are routed to EL3 or EL2 then there are cases where | |
2690 | * we override the CPSR.F in determining if the exception is | |
2691 | * masked or not. If neither of these are set then we fall back | |
2692 | * to the CPSR.F setting otherwise we further assess the state | |
2693 | * below. | |
2694 | */ | |
f7778444 | 2695 | hcr = hcr_el2 & HCR_FMO; |
7cd6de3b PM |
2696 | scr = (env->cp15.scr_el3 & SCR_FIQ); |
2697 | ||
2698 | /* When EL3 is 32-bit, the SCR.FW bit controls whether the | |
2699 | * CPSR.F bit masks FIQ interrupts when taken in non-secure | |
2700 | * state. If SCR.FW is set then FIQs can be masked by CPSR.F | |
2701 | * when non-secure but only when FIQs are only routed to EL3. | |
2702 | */ | |
2703 | scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr); | |
2704 | break; | |
2705 | case EXCP_IRQ: | |
2706 | /* When EL3 execution state is 32-bit, if HCR.IMO is set then | |
2707 | * we may override the CPSR.I masking when in non-secure state. | |
2708 | * The SCR.IRQ setting has already been taken into consideration | |
2709 | * when setting the target EL, so it does not have a further | |
2710 | * affect here. | |
2711 | */ | |
f7778444 | 2712 | hcr = hcr_el2 & HCR_IMO; |
7cd6de3b PM |
2713 | scr = false; |
2714 | break; | |
2715 | default: | |
2716 | g_assert_not_reached(); | |
2717 | } | |
2718 | ||
2719 | if ((scr || hcr) && !secure) { | |
2720 | unmasked = 1; | |
2721 | } | |
57e3a0c7 GB |
2722 | } |
2723 | } | |
2724 | ||
2725 | /* The PSTATE bits only mask the interrupt if we have not overriden the | |
2726 | * ability above. | |
2727 | */ | |
2728 | return unmasked || pstate_unmasked; | |
043b7f8d EI |
2729 | } |
2730 | ||
ba1ba5cc IM |
2731 | #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU |
2732 | #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX) | |
0dacec87 | 2733 | #define CPU_RESOLVING_TYPE TYPE_ARM_CPU |
ba1ba5cc | 2734 | |
9467d44c | 2735 | #define cpu_signal_handler cpu_arm_signal_handler |
c732abe2 | 2736 | #define cpu_list arm_cpu_list |
9467d44c | 2737 | |
c1e37810 PM |
2738 | /* ARM has the following "translation regimes" (as the ARM ARM calls them): |
2739 | * | |
2740 | * If EL3 is 64-bit: | |
2741 | * + NonSecure EL1 & 0 stage 1 | |
2742 | * + NonSecure EL1 & 0 stage 2 | |
2743 | * + NonSecure EL2 | |
2744 | * + Secure EL1 & EL0 | |
2745 | * + Secure EL3 | |
2746 | * If EL3 is 32-bit: | |
2747 | * + NonSecure PL1 & 0 stage 1 | |
2748 | * + NonSecure PL1 & 0 stage 2 | |
2749 | * + NonSecure PL2 | |
2750 | * + Secure PL0 & PL1 | |
2751 | * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.) | |
2752 | * | |
2753 | * For QEMU, an mmu_idx is not quite the same as a translation regime because: | |
2754 | * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they | |
2755 | * may differ in access permissions even if the VA->PA map is the same | |
2756 | * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2 | |
2757 | * translation, which means that we have one mmu_idx that deals with two | |
2758 | * concatenated translation regimes [this sort of combined s1+2 TLB is | |
2759 | * architecturally permitted] | |
2760 | * 3. we don't need to allocate an mmu_idx to translations that we won't be | |
2761 | * handling via the TLB. The only way to do a stage 1 translation without | |
2762 | * the immediate stage 2 translation is via the ATS or AT system insns, | |
2763 | * which can be slow-pathed and always do a page table walk. | |
2764 | * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3" | |
2765 | * translation regimes, because they map reasonably well to each other | |
2766 | * and they can't both be active at the same time. | |
2767 | * This gives us the following list of mmu_idx values: | |
2768 | * | |
2769 | * NS EL0 (aka NS PL0) stage 1+2 | |
2770 | * NS EL1 (aka NS PL1) stage 1+2 | |
2771 | * NS EL2 (aka NS PL2) | |
2772 | * S EL3 (aka S PL1) | |
2773 | * S EL0 (aka S PL0) | |
2774 | * S EL1 (not used if EL3 is 32 bit) | |
2775 | * NS EL0+1 stage 2 | |
2776 | * | |
2777 | * (The last of these is an mmu_idx because we want to be able to use the TLB | |
2778 | * for the accesses done as part of a stage 1 page table walk, rather than | |
2779 | * having to walk the stage 2 page table over and over.) | |
2780 | * | |
3bef7012 PM |
2781 | * R profile CPUs have an MPU, but can use the same set of MMU indexes |
2782 | * as A profile. They only need to distinguish NS EL0 and NS EL1 (and | |
2783 | * NS EL2 if we ever model a Cortex-R52). | |
2784 | * | |
2785 | * M profile CPUs are rather different as they do not have a true MMU. | |
2786 | * They have the following different MMU indexes: | |
2787 | * User | |
2788 | * Privileged | |
62593718 PM |
2789 | * User, execution priority negative (ie the MPU HFNMIENA bit may apply) |
2790 | * Privileged, execution priority negative (ditto) | |
66787c78 PM |
2791 | * If the CPU supports the v8M Security Extension then there are also: |
2792 | * Secure User | |
2793 | * Secure Privileged | |
62593718 PM |
2794 | * Secure User, execution priority negative |
2795 | * Secure Privileged, execution priority negative | |
3bef7012 | 2796 | * |
8bd5c820 PM |
2797 | * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code |
2798 | * are not quite the same -- different CPU types (most notably M profile | |
2799 | * vs A/R profile) would like to use MMU indexes with different semantics, | |
2800 | * but since we don't ever need to use all of those in a single CPU we | |
2801 | * can avoid setting NB_MMU_MODES to more than 8. The lower bits of | |
2802 | * ARMMMUIdx are the core TLB mmu index, and the higher bits are always | |
2803 | * the same for any particular CPU. | |
2804 | * Variables of type ARMMUIdx are always full values, and the core | |
2805 | * index values are in variables of type 'int'. | |
2806 | * | |
c1e37810 PM |
2807 | * Our enumeration includes at the end some entries which are not "true" |
2808 | * mmu_idx values in that they don't have corresponding TLBs and are only | |
2809 | * valid for doing slow path page table walks. | |
2810 | * | |
2811 | * The constant names here are patterned after the general style of the names | |
2812 | * of the AT/ATS operations. | |
2813 | * The values used are carefully arranged to make mmu_idx => EL lookup easy. | |
62593718 PM |
2814 | * For M profile we arrange them to have a bit for priv, a bit for negpri |
2815 | * and a bit for secure. | |
c1e37810 | 2816 | */ |
e7b921c2 | 2817 | #define ARM_MMU_IDX_A 0x10 /* A profile */ |
8bd5c820 | 2818 | #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */ |
e7b921c2 | 2819 | #define ARM_MMU_IDX_M 0x40 /* M profile */ |
8bd5c820 | 2820 | |
62593718 PM |
2821 | /* meanings of the bits for M profile mmu idx values */ |
2822 | #define ARM_MMU_IDX_M_PRIV 0x1 | |
2823 | #define ARM_MMU_IDX_M_NEGPRI 0x2 | |
2824 | #define ARM_MMU_IDX_M_S 0x4 | |
2825 | ||
8bd5c820 PM |
2826 | #define ARM_MMU_IDX_TYPE_MASK (~0x7) |
2827 | #define ARM_MMU_IDX_COREIDX_MASK 0x7 | |
2828 | ||
c1e37810 | 2829 | typedef enum ARMMMUIdx { |
8bd5c820 PM |
2830 | ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A, |
2831 | ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A, | |
2832 | ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A, | |
2833 | ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A, | |
2834 | ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A, | |
2835 | ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A, | |
2836 | ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A, | |
e7b921c2 PM |
2837 | ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M, |
2838 | ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M, | |
62593718 PM |
2839 | ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M, |
2840 | ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M, | |
2841 | ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M, | |
2842 | ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M, | |
2843 | ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M, | |
2844 | ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M, | |
c1e37810 PM |
2845 | /* Indexes below here don't have TLBs and are used only for AT system |
2846 | * instructions or for the first stage of an S12 page table walk. | |
2847 | */ | |
8bd5c820 PM |
2848 | ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB, |
2849 | ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB, | |
c1e37810 PM |
2850 | } ARMMMUIdx; |
2851 | ||
8bd5c820 PM |
2852 | /* Bit macros for the core-mmu-index values for each index, |
2853 | * for use when calling tlb_flush_by_mmuidx() and friends. | |
2854 | */ | |
2855 | typedef enum ARMMMUIdxBit { | |
2856 | ARMMMUIdxBit_S12NSE0 = 1 << 0, | |
2857 | ARMMMUIdxBit_S12NSE1 = 1 << 1, | |
2858 | ARMMMUIdxBit_S1E2 = 1 << 2, | |
2859 | ARMMMUIdxBit_S1E3 = 1 << 3, | |
2860 | ARMMMUIdxBit_S1SE0 = 1 << 4, | |
2861 | ARMMMUIdxBit_S1SE1 = 1 << 5, | |
2862 | ARMMMUIdxBit_S2NS = 1 << 6, | |
e7b921c2 PM |
2863 | ARMMMUIdxBit_MUser = 1 << 0, |
2864 | ARMMMUIdxBit_MPriv = 1 << 1, | |
62593718 PM |
2865 | ARMMMUIdxBit_MUserNegPri = 1 << 2, |
2866 | ARMMMUIdxBit_MPrivNegPri = 1 << 3, | |
2867 | ARMMMUIdxBit_MSUser = 1 << 4, | |
2868 | ARMMMUIdxBit_MSPriv = 1 << 5, | |
2869 | ARMMMUIdxBit_MSUserNegPri = 1 << 6, | |
2870 | ARMMMUIdxBit_MSPrivNegPri = 1 << 7, | |
8bd5c820 PM |
2871 | } ARMMMUIdxBit; |
2872 | ||
f79fbf39 | 2873 | #define MMU_USER_IDX 0 |
c1e37810 | 2874 | |
8bd5c820 PM |
2875 | static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx) |
2876 | { | |
2877 | return mmu_idx & ARM_MMU_IDX_COREIDX_MASK; | |
2878 | } | |
2879 | ||
2880 | static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx) | |
2881 | { | |
e7b921c2 PM |
2882 | if (arm_feature(env, ARM_FEATURE_M)) { |
2883 | return mmu_idx | ARM_MMU_IDX_M; | |
2884 | } else { | |
2885 | return mmu_idx | ARM_MMU_IDX_A; | |
2886 | } | |
8bd5c820 PM |
2887 | } |
2888 | ||
c1e37810 PM |
2889 | /* Return the exception level we're running at if this is our mmu_idx */ |
2890 | static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) | |
6ebbf390 | 2891 | { |
8bd5c820 PM |
2892 | switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) { |
2893 | case ARM_MMU_IDX_A: | |
2894 | return mmu_idx & 3; | |
e7b921c2 | 2895 | case ARM_MMU_IDX_M: |
62593718 | 2896 | return mmu_idx & ARM_MMU_IDX_M_PRIV; |
8bd5c820 PM |
2897 | default: |
2898 | g_assert_not_reached(); | |
2899 | } | |
c1e37810 PM |
2900 | } |
2901 | ||
fa6252a9 PM |
2902 | /* |
2903 | * Return the MMU index for a v7M CPU with all relevant information | |
2904 | * manually specified. | |
2905 | */ | |
2906 | ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env, | |
2907 | bool secstate, bool priv, bool negpri); | |
2908 | ||
ec8e3340 | 2909 | /* Return the MMU index for a v7M CPU in the specified security and |
65e4655c | 2910 | * privilege state. |
ec8e3340 | 2911 | */ |
65e4655c RH |
2912 | ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env, |
2913 | bool secstate, bool priv); | |
b81ac0eb | 2914 | |
ec8e3340 | 2915 | /* Return the MMU index for a v7M CPU in the specified security state */ |
65e4655c | 2916 | ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate); |
ec8e3340 | 2917 | |
50494a27 RH |
2918 | /** |
2919 | * cpu_mmu_index: | |
2920 | * @env: The cpu environment | |
2921 | * @ifetch: True for code access, false for data access. | |
2922 | * | |
2923 | * Return the core mmu index for the current translation regime. | |
2924 | * This function is used by generic TCG code paths. | |
2925 | */ | |
65e4655c | 2926 | int cpu_mmu_index(CPUARMState *env, bool ifetch); |
6ebbf390 | 2927 | |
9e273ef2 PM |
2928 | /* Indexes used when registering address spaces with cpu_address_space_init */ |
2929 | typedef enum ARMASIdx { | |
2930 | ARMASIdx_NS = 0, | |
2931 | ARMASIdx_S = 1, | |
2932 | } ARMASIdx; | |
2933 | ||
533e93f1 | 2934 | /* Return the Exception Level targeted by debug exceptions. */ |
3a298203 PM |
2935 | static inline int arm_debug_target_el(CPUARMState *env) |
2936 | { | |
81669b8b SF |
2937 | bool secure = arm_is_secure(env); |
2938 | bool route_to_el2 = false; | |
2939 | ||
2940 | if (arm_feature(env, ARM_FEATURE_EL2) && !secure) { | |
2941 | route_to_el2 = env->cp15.hcr_el2 & HCR_TGE || | |
b281ba42 | 2942 | env->cp15.mdcr_el2 & MDCR_TDE; |
81669b8b SF |
2943 | } |
2944 | ||
2945 | if (route_to_el2) { | |
2946 | return 2; | |
2947 | } else if (arm_feature(env, ARM_FEATURE_EL3) && | |
2948 | !arm_el_is_aa64(env, 3) && secure) { | |
2949 | return 3; | |
2950 | } else { | |
2951 | return 1; | |
2952 | } | |
3a298203 PM |
2953 | } |
2954 | ||
43bbce7f PM |
2955 | static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu) |
2956 | { | |
2957 | /* If all the CLIDR.Ctypem bits are 0 there are no caches, and | |
2958 | * CSSELR is RAZ/WI. | |
2959 | */ | |
2960 | return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0; | |
2961 | } | |
2962 | ||
22af9025 | 2963 | /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */ |
3a298203 PM |
2964 | static inline bool aa64_generate_debug_exceptions(CPUARMState *env) |
2965 | { | |
22af9025 AB |
2966 | int cur_el = arm_current_el(env); |
2967 | int debug_el; | |
2968 | ||
2969 | if (cur_el == 3) { | |
2970 | return false; | |
533e93f1 PM |
2971 | } |
2972 | ||
22af9025 AB |
2973 | /* MDCR_EL3.SDD disables debug events from Secure state */ |
2974 | if (arm_is_secure_below_el3(env) | |
2975 | && extract32(env->cp15.mdcr_el3, 16, 1)) { | |
2976 | return false; | |
3a298203 | 2977 | } |
22af9025 AB |
2978 | |
2979 | /* | |
2980 | * Same EL to same EL debug exceptions need MDSCR_KDE enabled | |
2981 | * while not masking the (D)ebug bit in DAIF. | |
2982 | */ | |
2983 | debug_el = arm_debug_target_el(env); | |
2984 | ||
2985 | if (cur_el == debug_el) { | |
2986 | return extract32(env->cp15.mdscr_el1, 13, 1) | |
2987 | && !(env->daif & PSTATE_D); | |
2988 | } | |
2989 | ||
2990 | /* Otherwise the debug target needs to be a higher EL */ | |
2991 | return debug_el > cur_el; | |
3a298203 PM |
2992 | } |
2993 | ||
2994 | static inline bool aa32_generate_debug_exceptions(CPUARMState *env) | |
2995 | { | |
533e93f1 PM |
2996 | int el = arm_current_el(env); |
2997 | ||
2998 | if (el == 0 && arm_el_is_aa64(env, 1)) { | |
3a298203 PM |
2999 | return aa64_generate_debug_exceptions(env); |
3000 | } | |
533e93f1 PM |
3001 | |
3002 | if (arm_is_secure(env)) { | |
3003 | int spd; | |
3004 | ||
3005 | if (el == 0 && (env->cp15.sder & 1)) { | |
3006 | /* SDER.SUIDEN means debug exceptions from Secure EL0 | |
3007 | * are always enabled. Otherwise they are controlled by | |
3008 | * SDCR.SPD like those from other Secure ELs. | |
3009 | */ | |
3010 | return true; | |
3011 | } | |
3012 | ||
3013 | spd = extract32(env->cp15.mdcr_el3, 14, 2); | |
3014 | switch (spd) { | |
3015 | case 1: | |
3016 | /* SPD == 0b01 is reserved, but behaves as 0b00. */ | |
3017 | case 0: | |
3018 | /* For 0b00 we return true if external secure invasive debug | |
3019 | * is enabled. On real hardware this is controlled by external | |
3020 | * signals to the core. QEMU always permits debug, and behaves | |
3021 | * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high. | |
3022 | */ | |
3023 | return true; | |
3024 | case 2: | |
3025 | return false; | |
3026 | case 3: | |
3027 | return true; | |
3028 | } | |
3029 | } | |
3030 | ||
3031 | return el != 2; | |
3a298203 PM |
3032 | } |
3033 | ||
3034 | /* Return true if debugging exceptions are currently enabled. | |
3035 | * This corresponds to what in ARM ARM pseudocode would be | |
3036 | * if UsingAArch32() then | |
3037 | * return AArch32.GenerateDebugExceptions() | |
3038 | * else | |
3039 | * return AArch64.GenerateDebugExceptions() | |
3040 | * We choose to push the if() down into this function for clarity, | |
3041 | * since the pseudocode has it at all callsites except for the one in | |
3042 | * CheckSoftwareStep(), where it is elided because both branches would | |
3043 | * always return the same value. | |
3a298203 PM |
3044 | */ |
3045 | static inline bool arm_generate_debug_exceptions(CPUARMState *env) | |
3046 | { | |
3047 | if (env->aarch64) { | |
3048 | return aa64_generate_debug_exceptions(env); | |
3049 | } else { | |
3050 | return aa32_generate_debug_exceptions(env); | |
3051 | } | |
3052 | } | |
3053 | ||
3054 | /* Is single-stepping active? (Note that the "is EL_D AArch64?" check | |
3055 | * implicitly means this always returns false in pre-v8 CPUs.) | |
3056 | */ | |
3057 | static inline bool arm_singlestep_active(CPUARMState *env) | |
3058 | { | |
3059 | return extract32(env->cp15.mdscr_el1, 0, 1) | |
3060 | && arm_el_is_aa64(env, arm_debug_target_el(env)) | |
3061 | && arm_generate_debug_exceptions(env); | |
3062 | } | |
3063 | ||
f9fd40eb PB |
3064 | static inline bool arm_sctlr_b(CPUARMState *env) |
3065 | { | |
3066 | return | |
3067 | /* We need not implement SCTLR.ITD in user-mode emulation, so | |
3068 | * let linux-user ignore the fact that it conflicts with SCTLR_B. | |
3069 | * This lets people run BE32 binaries with "-cpu any". | |
3070 | */ | |
3071 | #ifndef CONFIG_USER_ONLY | |
3072 | !arm_feature(env, ARM_FEATURE_V7) && | |
3073 | #endif | |
3074 | (env->cp15.sctlr_el[1] & SCTLR_B) != 0; | |
3075 | } | |
3076 | ||
64e40755 RH |
3077 | static inline uint64_t arm_sctlr(CPUARMState *env, int el) |
3078 | { | |
3079 | if (el == 0) { | |
3080 | /* FIXME: ARMv8.1-VHE S2 translation regime. */ | |
3081 | return env->cp15.sctlr_el[1]; | |
3082 | } else { | |
3083 | return env->cp15.sctlr_el[el]; | |
3084 | } | |
3085 | } | |
3086 | ||
3087 | ||
ed50ff78 PC |
3088 | /* Return true if the processor is in big-endian mode. */ |
3089 | static inline bool arm_cpu_data_is_big_endian(CPUARMState *env) | |
3090 | { | |
ed50ff78 PC |
3091 | /* In 32bit endianness is determined by looking at CPSR's E bit */ |
3092 | if (!is_a64(env)) { | |
b2e62d9a PC |
3093 | return |
3094 | #ifdef CONFIG_USER_ONLY | |
3095 | /* In system mode, BE32 is modelled in line with the | |
3096 | * architecture (as word-invariant big-endianness), where loads | |
3097 | * and stores are done little endian but from addresses which | |
3098 | * are adjusted by XORing with the appropriate constant. So the | |
3099 | * endianness to use for the raw data access is not affected by | |
3100 | * SCTLR.B. | |
3101 | * In user mode, however, we model BE32 as byte-invariant | |
3102 | * big-endianness (because user-only code cannot tell the | |
3103 | * difference), and so we need to use a data access endianness | |
3104 | * that depends on SCTLR.B. | |
3105 | */ | |
3106 | arm_sctlr_b(env) || | |
3107 | #endif | |
3108 | ((env->uncached_cpsr & CPSR_E) ? 1 : 0); | |
64e40755 RH |
3109 | } else { |
3110 | int cur_el = arm_current_el(env); | |
3111 | uint64_t sctlr = arm_sctlr(env, cur_el); | |
ed50ff78 | 3112 | |
64e40755 | 3113 | return (sctlr & (cur_el ? SCTLR_EE : SCTLR_E0E)) != 0; |
ed50ff78 | 3114 | } |
ed50ff78 PC |
3115 | } |
3116 | ||
4f7c64b3 | 3117 | typedef CPUARMState CPUArchState; |
2161a612 | 3118 | typedef ARMCPU ArchCPU; |
4f7c64b3 | 3119 | |
022c62cb | 3120 | #include "exec/cpu-all.h" |
622ed360 | 3121 | |
3926cc84 AG |
3122 | /* Bit usage in the TB flags field: bit 31 indicates whether we are |
3123 | * in 32 or 64 bit mode. The meaning of the other bits depends on that. | |
c1e37810 PM |
3124 | * We put flags which are shared between 32 and 64 bit mode at the top |
3125 | * of the word, and flags which apply to only one mode at the bottom. | |
3926cc84 | 3126 | */ |
aad821ac RH |
3127 | FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1) |
3128 | FIELD(TBFLAG_ANY, MMUIDX, 28, 3) | |
3129 | FIELD(TBFLAG_ANY, SS_ACTIVE, 27, 1) | |
3130 | FIELD(TBFLAG_ANY, PSTATE_SS, 26, 1) | |
9dbbc748 | 3131 | /* Target EL if we take a floating-point-disabled exception */ |
aad821ac RH |
3132 | FIELD(TBFLAG_ANY, FPEXC_EL, 24, 2) |
3133 | FIELD(TBFLAG_ANY, BE_DATA, 23, 1) | |
3926cc84 AG |
3134 | |
3135 | /* Bit usage when in AArch32 state: */ | |
aad821ac RH |
3136 | FIELD(TBFLAG_A32, THUMB, 0, 1) |
3137 | FIELD(TBFLAG_A32, VECLEN, 1, 3) | |
3138 | FIELD(TBFLAG_A32, VECSTRIDE, 4, 2) | |
ea7ac69d PM |
3139 | /* |
3140 | * We store the bottom two bits of the CPAR as TB flags and handle | |
3141 | * checks on the other bits at runtime. This shares the same bits as | |
3142 | * VECSTRIDE, which is OK as no XScale CPU has VFP. | |
3143 | */ | |
3144 | FIELD(TBFLAG_A32, XSCALE_CPAR, 4, 2) | |
7fbb535f PM |
3145 | /* |
3146 | * Indicates whether cp register reads and writes by guest code should access | |
3147 | * the secure or nonsecure bank of banked registers; note that this is not | |
3148 | * the same thing as the current security state of the processor! | |
3149 | */ | |
3150 | FIELD(TBFLAG_A32, NS, 6, 1) | |
aad821ac RH |
3151 | FIELD(TBFLAG_A32, VFPEN, 7, 1) |
3152 | FIELD(TBFLAG_A32, CONDEXEC, 8, 8) | |
3153 | FIELD(TBFLAG_A32, SCTLR_B, 16, 1) | |
e33cf0f8 PM |
3154 | /* For M profile only, set if FPCCR.LSPACT is set */ |
3155 | FIELD(TBFLAG_A32, LSPACT, 18, 1) | |
6000531e PM |
3156 | /* For M profile only, set if we must create a new FP context */ |
3157 | FIELD(TBFLAG_A32, NEW_FP_CTXT_NEEDED, 19, 1) | |
6d60c67a PM |
3158 | /* For M profile only, set if FPCCR.S does not match current security state */ |
3159 | FIELD(TBFLAG_A32, FPCCR_S_WRONG, 20, 1) | |
064c379c | 3160 | /* For M profile only, Handler (ie not Thread) mode */ |
aad821ac | 3161 | FIELD(TBFLAG_A32, HANDLER, 21, 1) |
4730fb85 | 3162 | /* For M profile only, whether we should generate stack-limit checks */ |
aad821ac | 3163 | FIELD(TBFLAG_A32, STACKCHECK, 22, 1) |
3926cc84 | 3164 | |
86fb3fa4 | 3165 | /* Bit usage when in AArch64 state */ |
476a4692 | 3166 | FIELD(TBFLAG_A64, TBII, 0, 2) |
aad821ac RH |
3167 | FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2) |
3168 | FIELD(TBFLAG_A64, ZCR_LEN, 4, 4) | |
0816ef1b | 3169 | FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1) |
08f1434a RH |
3170 | FIELD(TBFLAG_A64, BT, 9, 1) |
3171 | FIELD(TBFLAG_A64, BTYPE, 10, 2) | |
4a9ee99d | 3172 | FIELD(TBFLAG_A64, TBID, 12, 2) |
a1705768 | 3173 | |
f9fd40eb PB |
3174 | static inline bool bswap_code(bool sctlr_b) |
3175 | { | |
3176 | #ifdef CONFIG_USER_ONLY | |
3177 | /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian. | |
3178 | * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0 | |
3179 | * would also end up as a mixed-endian mode with BE code, LE data. | |
3180 | */ | |
3181 | return | |
3182 | #ifdef TARGET_WORDS_BIGENDIAN | |
3183 | 1 ^ | |
3184 | #endif | |
3185 | sctlr_b; | |
3186 | #else | |
e334bd31 PB |
3187 | /* All code access in ARM is little endian, and there are no loaders |
3188 | * doing swaps that need to be reversed | |
f9fd40eb PB |
3189 | */ |
3190 | return 0; | |
3191 | #endif | |
3192 | } | |
3193 | ||
c3ae85fc PB |
3194 | #ifdef CONFIG_USER_ONLY |
3195 | static inline bool arm_cpu_bswap_data(CPUARMState *env) | |
3196 | { | |
3197 | return | |
3198 | #ifdef TARGET_WORDS_BIGENDIAN | |
3199 | 1 ^ | |
3200 | #endif | |
3201 | arm_cpu_data_is_big_endian(env); | |
3202 | } | |
3203 | #endif | |
3204 | ||
a9e01311 RH |
3205 | void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, |
3206 | target_ulong *cs_base, uint32_t *flags); | |
6b917547 | 3207 | |
98128601 RH |
3208 | enum { |
3209 | QEMU_PSCI_CONDUIT_DISABLED = 0, | |
3210 | QEMU_PSCI_CONDUIT_SMC = 1, | |
3211 | QEMU_PSCI_CONDUIT_HVC = 2, | |
3212 | }; | |
3213 | ||
017518c1 PM |
3214 | #ifndef CONFIG_USER_ONLY |
3215 | /* Return the address space index to use for a memory access */ | |
3216 | static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs) | |
3217 | { | |
3218 | return attrs.secure ? ARMASIdx_S : ARMASIdx_NS; | |
3219 | } | |
5ce4ff65 PM |
3220 | |
3221 | /* Return the AddressSpace to use for a memory access | |
3222 | * (which depends on whether the access is S or NS, and whether | |
3223 | * the board gave us a separate AddressSpace for S accesses). | |
3224 | */ | |
3225 | static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs) | |
3226 | { | |
3227 | return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs)); | |
3228 | } | |
017518c1 PM |
3229 | #endif |
3230 | ||
bd7d00fc | 3231 | /** |
b5c53d1b AL |
3232 | * arm_register_pre_el_change_hook: |
3233 | * Register a hook function which will be called immediately before this | |
bd7d00fc PM |
3234 | * CPU changes exception level or mode. The hook function will be |
3235 | * passed a pointer to the ARMCPU and the opaque data pointer passed | |
3236 | * to this function when the hook was registered. | |
b5c53d1b AL |
3237 | * |
3238 | * Note that if a pre-change hook is called, any registered post-change hooks | |
3239 | * are guaranteed to subsequently be called. | |
bd7d00fc | 3240 | */ |
b5c53d1b | 3241 | void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, |
bd7d00fc | 3242 | void *opaque); |
b5c53d1b AL |
3243 | /** |
3244 | * arm_register_el_change_hook: | |
3245 | * Register a hook function which will be called immediately after this | |
3246 | * CPU changes exception level or mode. The hook function will be | |
3247 | * passed a pointer to the ARMCPU and the opaque data pointer passed | |
3248 | * to this function when the hook was registered. | |
3249 | * | |
3250 | * Note that any registered hooks registered here are guaranteed to be called | |
3251 | * if pre-change hooks have been. | |
3252 | */ | |
3253 | void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void | |
3254 | *opaque); | |
bd7d00fc | 3255 | |
9a2b5256 RH |
3256 | /** |
3257 | * aa32_vfp_dreg: | |
3258 | * Return a pointer to the Dn register within env in 32-bit mode. | |
3259 | */ | |
3260 | static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno) | |
3261 | { | |
c39c2b90 | 3262 | return &env->vfp.zregs[regno >> 1].d[regno & 1]; |
9a2b5256 RH |
3263 | } |
3264 | ||
3265 | /** | |
3266 | * aa32_vfp_qreg: | |
3267 | * Return a pointer to the Qn register within env in 32-bit mode. | |
3268 | */ | |
3269 | static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno) | |
3270 | { | |
c39c2b90 | 3271 | return &env->vfp.zregs[regno].d[0]; |
9a2b5256 RH |
3272 | } |
3273 | ||
3274 | /** | |
3275 | * aa64_vfp_qreg: | |
3276 | * Return a pointer to the Qn register within env in 64-bit mode. | |
3277 | */ | |
3278 | static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno) | |
3279 | { | |
c39c2b90 | 3280 | return &env->vfp.zregs[regno].d[0]; |
9a2b5256 RH |
3281 | } |
3282 | ||
028e2a7b RH |
3283 | /* Shared between translate-sve.c and sve_helper.c. */ |
3284 | extern const uint64_t pred_esz_masks[4]; | |
3285 | ||
962fcbf2 RH |
3286 | /* |
3287 | * 32-bit feature tests via id registers. | |
3288 | */ | |
7e0cf8b4 RH |
3289 | static inline bool isar_feature_thumb_div(const ARMISARegisters *id) |
3290 | { | |
3291 | return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0; | |
3292 | } | |
3293 | ||
3294 | static inline bool isar_feature_arm_div(const ARMISARegisters *id) | |
3295 | { | |
3296 | return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1; | |
3297 | } | |
3298 | ||
09cbd501 RH |
3299 | static inline bool isar_feature_jazelle(const ARMISARegisters *id) |
3300 | { | |
3301 | return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0; | |
3302 | } | |
3303 | ||
962fcbf2 RH |
3304 | static inline bool isar_feature_aa32_aes(const ARMISARegisters *id) |
3305 | { | |
3306 | return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0; | |
3307 | } | |
3308 | ||
3309 | static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id) | |
3310 | { | |
3311 | return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1; | |
3312 | } | |
3313 | ||
3314 | static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id) | |
3315 | { | |
3316 | return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0; | |
3317 | } | |
3318 | ||
3319 | static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id) | |
3320 | { | |
3321 | return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0; | |
3322 | } | |
3323 | ||
3324 | static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id) | |
3325 | { | |
3326 | return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0; | |
3327 | } | |
3328 | ||
3329 | static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id) | |
3330 | { | |
3331 | return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0; | |
3332 | } | |
3333 | ||
3334 | static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id) | |
3335 | { | |
3336 | return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0; | |
3337 | } | |
3338 | ||
6c1f6f27 RH |
3339 | static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id) |
3340 | { | |
3341 | return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0; | |
3342 | } | |
3343 | ||
962fcbf2 RH |
3344 | static inline bool isar_feature_aa32_dp(const ARMISARegisters *id) |
3345 | { | |
3346 | return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0; | |
3347 | } | |
3348 | ||
87732318 RH |
3349 | static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id) |
3350 | { | |
3351 | return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0; | |
3352 | } | |
3353 | ||
9888bd1e RH |
3354 | static inline bool isar_feature_aa32_sb(const ARMISARegisters *id) |
3355 | { | |
3356 | return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0; | |
3357 | } | |
3358 | ||
cb570bd3 RH |
3359 | static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id) |
3360 | { | |
3361 | return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0; | |
3362 | } | |
3363 | ||
5763190f RH |
3364 | static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id) |
3365 | { | |
3366 | /* | |
3367 | * This is a placeholder for use by VCMA until the rest of | |
3368 | * the ARMv8.2-FP16 extension is implemented for aa32 mode. | |
3369 | * At which point we can properly set and check MVFR1.FPHP. | |
3370 | */ | |
3371 | return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1; | |
3372 | } | |
3373 | ||
602f6e42 PM |
3374 | /* |
3375 | * We always set the FP and SIMD FP16 fields to indicate identical | |
3376 | * levels of support (assuming SIMD is implemented at all), so | |
3377 | * we only need one set of accessors. | |
3378 | */ | |
3379 | static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id) | |
3380 | { | |
3381 | return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 0; | |
3382 | } | |
3383 | ||
3384 | static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id) | |
3385 | { | |
3386 | return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 1; | |
3387 | } | |
3388 | ||
c0c760af PM |
3389 | static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id) |
3390 | { | |
3391 | return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 1; | |
3392 | } | |
3393 | ||
3394 | static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id) | |
3395 | { | |
3396 | return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 2; | |
3397 | } | |
3398 | ||
3399 | static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id) | |
3400 | { | |
3401 | return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 3; | |
3402 | } | |
3403 | ||
3404 | static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id) | |
3405 | { | |
3406 | return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 4; | |
3407 | } | |
3408 | ||
962fcbf2 RH |
3409 | /* |
3410 | * 64-bit feature tests via id registers. | |
3411 | */ | |
3412 | static inline bool isar_feature_aa64_aes(const ARMISARegisters *id) | |
3413 | { | |
3414 | return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0; | |
3415 | } | |
3416 | ||
3417 | static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id) | |
3418 | { | |
3419 | return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1; | |
3420 | } | |
3421 | ||
3422 | static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id) | |
3423 | { | |
3424 | return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0; | |
3425 | } | |
3426 | ||
3427 | static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id) | |
3428 | { | |
3429 | return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0; | |
3430 | } | |
3431 | ||
3432 | static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id) | |
3433 | { | |
3434 | return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1; | |
3435 | } | |
3436 | ||
3437 | static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id) | |
3438 | { | |
3439 | return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0; | |
3440 | } | |
3441 | ||
3442 | static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id) | |
3443 | { | |
3444 | return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0; | |
3445 | } | |
3446 | ||
3447 | static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id) | |
3448 | { | |
3449 | return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0; | |
3450 | } | |
3451 | ||
3452 | static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id) | |
3453 | { | |
3454 | return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0; | |
3455 | } | |
3456 | ||
3457 | static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id) | |
3458 | { | |
3459 | return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0; | |
3460 | } | |
3461 | ||
3462 | static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id) | |
3463 | { | |
3464 | return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0; | |
3465 | } | |
3466 | ||
3467 | static inline bool isar_feature_aa64_dp(const ARMISARegisters *id) | |
3468 | { | |
3469 | return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0; | |
3470 | } | |
3471 | ||
0caa5af8 RH |
3472 | static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id) |
3473 | { | |
3474 | return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0; | |
3475 | } | |
3476 | ||
b89d9c98 RH |
3477 | static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id) |
3478 | { | |
3479 | return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0; | |
3480 | } | |
3481 | ||
5ef84f11 RH |
3482 | static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id) |
3483 | { | |
3484 | return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2; | |
3485 | } | |
3486 | ||
de390645 RH |
3487 | static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id) |
3488 | { | |
3489 | return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0; | |
3490 | } | |
3491 | ||
6c1f6f27 RH |
3492 | static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id) |
3493 | { | |
3494 | return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0; | |
3495 | } | |
3496 | ||
962fcbf2 RH |
3497 | static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id) |
3498 | { | |
3499 | return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0; | |
3500 | } | |
3501 | ||
991ad91b RH |
3502 | static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id) |
3503 | { | |
3504 | /* | |
3505 | * Note that while QEMU will only implement the architected algorithm | |
3506 | * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation | |
3507 | * defined algorithms, and thus API+GPI, and this predicate controls | |
3508 | * migration of the 128-bit keys. | |
3509 | */ | |
3510 | return (id->id_aa64isar1 & | |
3511 | (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) | | |
3512 | FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) | | |
3513 | FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) | | |
3514 | FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0; | |
3515 | } | |
3516 | ||
9888bd1e RH |
3517 | static inline bool isar_feature_aa64_sb(const ARMISARegisters *id) |
3518 | { | |
3519 | return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0; | |
3520 | } | |
3521 | ||
cb570bd3 RH |
3522 | static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id) |
3523 | { | |
3524 | return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0; | |
3525 | } | |
3526 | ||
6bea2563 RH |
3527 | static inline bool isar_feature_aa64_frint(const ARMISARegisters *id) |
3528 | { | |
3529 | return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0; | |
3530 | } | |
3531 | ||
5763190f RH |
3532 | static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id) |
3533 | { | |
3534 | /* We always set the AdvSIMD and FP fields identically wrt FP16. */ | |
3535 | return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1; | |
3536 | } | |
3537 | ||
0f8d06f1 RH |
3538 | static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id) |
3539 | { | |
3540 | return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2; | |
3541 | } | |
3542 | ||
cd208a1c RH |
3543 | static inline bool isar_feature_aa64_sve(const ARMISARegisters *id) |
3544 | { | |
3545 | return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0; | |
3546 | } | |
3547 | ||
2d7137c1 RH |
3548 | static inline bool isar_feature_aa64_lor(const ARMISARegisters *id) |
3549 | { | |
3550 | return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0; | |
3551 | } | |
3552 | ||
be53b6f4 RH |
3553 | static inline bool isar_feature_aa64_bti(const ARMISARegisters *id) |
3554 | { | |
3555 | return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0; | |
3556 | } | |
3557 | ||
962fcbf2 RH |
3558 | /* |
3559 | * Forward to the above feature tests given an ARMCPU pointer. | |
3560 | */ | |
3561 | #define cpu_isar_feature(name, cpu) \ | |
3562 | ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); }) | |
3563 | ||
2c0262af | 3564 | #endif |