]> Git Repo - qemu.git/blame - target/arm/cpu.h
target/arm: Explicitly enable VFP short-vectors for aarch32 -cpu max
[qemu.git] / target / arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af 18 */
2c0262af 19
07f5a258
MA
20#ifndef ARM_CPU_H
21#define ARM_CPU_H
3cf1e035 22
72b0cd35 23#include "kvm-consts.h"
2c4da50d 24#include "hw/registerfields.h"
74433bf0
RH
25#include "cpu-qom.h"
26#include "exec/cpu-defs.h"
9042c0e2 27
ca759f9e
AB
28/* ARM processors have a weak memory model */
29#define TCG_GUEST_DEFAULT_MO (0)
30
b8a9e8f1
FB
31#define EXCP_UDEF 1 /* undefined instruction */
32#define EXCP_SWI 2 /* software interrupt */
33#define EXCP_PREFETCH_ABORT 3
34#define EXCP_DATA_ABORT 4
b5ff1b31
FB
35#define EXCP_IRQ 5
36#define EXCP_FIQ 6
06c949e6 37#define EXCP_BKPT 7
9ee6e8bb 38#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 39#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
35979d71 40#define EXCP_HVC 11 /* HyperVisor Call */
607d98b8 41#define EXCP_HYP_TRAP 12
e0d6e6a5 42#define EXCP_SMC 13 /* Secure Monitor Call */
136e67e9
EI
43#define EXCP_VIRQ 14
44#define EXCP_VFIQ 15
19a6e31c 45#define EXCP_SEMIHOST 16 /* semihosting call */
7517748e 46#define EXCP_NOCP 17 /* v7M NOCP UsageFault */
e13886e3 47#define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
86f026de 48#define EXCP_STKOF 19 /* v8M STKOF UsageFault */
e33cf0f8 49#define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */
019076b0
PM
50#define EXCP_LSERR 21 /* v8M LSERR SecureFault */
51#define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */
2c4a7cc5 52/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
9ee6e8bb
PB
53
54#define ARMV7M_EXCP_RESET 1
55#define ARMV7M_EXCP_NMI 2
56#define ARMV7M_EXCP_HARD 3
57#define ARMV7M_EXCP_MEM 4
58#define ARMV7M_EXCP_BUS 5
59#define ARMV7M_EXCP_USAGE 6
1e577cc7 60#define ARMV7M_EXCP_SECURE 7
9ee6e8bb
PB
61#define ARMV7M_EXCP_SVC 11
62#define ARMV7M_EXCP_DEBUG 12
63#define ARMV7M_EXCP_PENDSV 14
64#define ARMV7M_EXCP_SYSTICK 15
2c0262af 65
acf94941
PM
66/* For M profile, some registers are banked secure vs non-secure;
67 * these are represented as a 2-element array where the first element
68 * is the non-secure copy and the second is the secure copy.
69 * When the CPU does not have implement the security extension then
70 * only the first element is used.
71 * This means that the copy for the current security state can be
72 * accessed via env->registerfield[env->v7m.secure] (whether the security
73 * extension is implemented or not).
74 */
4a16724f
PM
75enum {
76 M_REG_NS = 0,
77 M_REG_S = 1,
78 M_REG_NUM_BANKS = 2,
79};
acf94941 80
403946c0
RH
81/* ARM-specific interrupt pending bits. */
82#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
136e67e9
EI
83#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
84#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
403946c0 85
e4fe830b
PM
86/* The usual mapping for an AArch64 system register to its AArch32
87 * counterpart is for the 32 bit world to have access to the lower
88 * half only (with writes leaving the upper half untouched). It's
89 * therefore useful to be able to pass TCG the offset of the least
90 * significant half of a uint64_t struct member.
91 */
92#ifdef HOST_WORDS_BIGENDIAN
5cd8a118 93#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 94#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
95#else
96#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 97#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
98#endif
99
136e67e9 100/* Meanings of the ARMCPU object's four inbound GPIO lines */
7c1840b6
PM
101#define ARM_CPU_IRQ 0
102#define ARM_CPU_FIQ 1
136e67e9
EI
103#define ARM_CPU_VIRQ 2
104#define ARM_CPU_VFIQ 3
403946c0 105
aaa1f954
EI
106/* ARM-specific extra insn start words:
107 * 1: Conditional execution bits
108 * 2: Partial exception syndrome for data aborts
109 */
110#define TARGET_INSN_START_EXTRA_WORDS 2
111
112/* The 2nd extra word holding syndrome info for data aborts does not use
113 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
114 * help the sleb128 encoder do a better job.
115 * When restoring the CPU state, we shift it back up.
116 */
117#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
118#define ARM_INSN_START_WORD2_SHIFT 14
6ebbf390 119
b7bcbe95
FB
120/* We currently assume float and double are IEEE single and double
121 precision respectively.
122 Doing runtime conversions is tricky because VFP registers may contain
123 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
124 s<2n> maps to the least significant half of d<n>
125 s<2n+1> maps to the most significant half of d<n>
126 */
b7bcbe95 127
200bf5b7
AB
128/**
129 * DynamicGDBXMLInfo:
130 * @desc: Contains the XML descriptions.
131 * @num_cpregs: Number of the Coprocessor registers seen by GDB.
132 * @cpregs_keys: Array that contains the corresponding Key of
133 * a given cpreg with the same order of the cpreg in the XML description.
134 */
135typedef struct DynamicGDBXMLInfo {
136 char *desc;
137 int num_cpregs;
138 uint32_t *cpregs_keys;
139} DynamicGDBXMLInfo;
140
55d284af
PM
141/* CPU state for each instance of a generic timer (in cp15 c14) */
142typedef struct ARMGenericTimer {
143 uint64_t cval; /* Timer CompareValue register */
a7adc4b7 144 uint64_t ctl; /* Timer Control register */
55d284af
PM
145} ARMGenericTimer;
146
147#define GTIMER_PHYS 0
148#define GTIMER_VIRT 1
b0e66d95 149#define GTIMER_HYP 2
b4d3978c
PM
150#define GTIMER_SEC 3
151#define NUM_GTIMERS 4
55d284af 152
11f136ee
FA
153typedef struct {
154 uint64_t raw_tcr;
155 uint32_t mask;
156 uint32_t base_mask;
157} TCR;
158
c39c2b90
RH
159/* Define a maximum sized vector register.
160 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
161 * For 64-bit, this is a 2048-bit SVE register.
162 *
163 * Note that the mapping between S, D, and Q views of the register bank
164 * differs between AArch64 and AArch32.
165 * In AArch32:
166 * Qn = regs[n].d[1]:regs[n].d[0]
167 * Dn = regs[n / 2].d[n & 1]
168 * Sn = regs[n / 4].d[n % 4 / 2],
169 * bits 31..0 for even n, and bits 63..32 for odd n
170 * (and regs[16] to regs[31] are inaccessible)
171 * In AArch64:
172 * Zn = regs[n].d[*]
173 * Qn = regs[n].d[1]:regs[n].d[0]
174 * Dn = regs[n].d[0]
175 * Sn = regs[n].d[0] bits 31..0
d0e69ea8 176 * Hn = regs[n].d[0] bits 15..0
c39c2b90
RH
177 *
178 * This corresponds to the architecturally defined mapping between
179 * the two execution states, and means we do not need to explicitly
180 * map these registers when changing states.
181 *
182 * Align the data for use with TCG host vector operations.
183 */
184
185#ifdef TARGET_AARCH64
186# define ARM_MAX_VQ 16
187#else
188# define ARM_MAX_VQ 1
189#endif
190
191typedef struct ARMVectorReg {
192 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
193} ARMVectorReg;
194
3c7d3086 195#ifdef TARGET_AARCH64
991ad91b 196/* In AArch32 mode, predicate registers do not exist at all. */
3c7d3086
RH
197typedef struct ARMPredicateReg {
198 uint64_t p[2 * ARM_MAX_VQ / 8] QEMU_ALIGNED(16);
199} ARMPredicateReg;
991ad91b
RH
200
201/* In AArch32 mode, PAC keys do not exist at all. */
202typedef struct ARMPACKey {
203 uint64_t lo, hi;
204} ARMPACKey;
3c7d3086
RH
205#endif
206
c39c2b90 207
2c0262af 208typedef struct CPUARMState {
b5ff1b31 209 /* Regs for current mode. */
2c0262af 210 uint32_t regs[16];
3926cc84
AG
211
212 /* 32/64 switch only happens when taking and returning from
213 * exceptions so the overlap semantics are taken care of then
214 * instead of having a complicated union.
215 */
216 /* Regs for A64 mode. */
217 uint64_t xregs[32];
218 uint64_t pc;
d356312f
PM
219 /* PSTATE isn't an architectural register for ARMv8. However, it is
220 * convenient for us to assemble the underlying state into a 32 bit format
221 * identical to the architectural format used for the SPSR. (This is also
222 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
223 * 'pstate' register are.) Of the PSTATE bits:
224 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
225 * semantics as for AArch32, as described in the comments on each field)
226 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
4cc35614 227 * DAIF (exception masks) are kept in env->daif
f6e52eaa 228 * BTYPE is kept in env->btype
d356312f 229 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
230 */
231 uint32_t pstate;
232 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
233
b90372ad 234 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 235 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
236 the whole CPSR. */
237 uint32_t uncached_cpsr;
238 uint32_t spsr;
239
240 /* Banked registers. */
28c9457d 241 uint64_t banked_spsr[8];
0b7d409d
FA
242 uint32_t banked_r13[8];
243 uint32_t banked_r14[8];
3b46e624 244
b5ff1b31
FB
245 /* These hold r8-r12. */
246 uint32_t usr_regs[5];
247 uint32_t fiq_regs[5];
3b46e624 248
2c0262af
FB
249 /* cpsr flag cache for faster execution */
250 uint32_t CF; /* 0 or 1 */
251 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
252 uint32_t NF; /* N is bit 31. All other bits are undefined. */
253 uint32_t ZF; /* Z set if zero. */
99c475ab 254 uint32_t QF; /* 0 or 1 */
9ee6e8bb 255 uint32_t GE; /* cpsr[19:16] */
b26eefb6 256 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
9ee6e8bb 257 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
f6e52eaa 258 uint32_t btype; /* BTI branch type. spsr[11:10]. */
b6af0975 259 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
2c0262af 260
1b174238 261 uint64_t elr_el[4]; /* AArch64 exception link regs */
73fb3b76 262 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
a0618a19 263
b5ff1b31
FB
264 /* System control coprocessor (cp15) */
265 struct {
40f137e1 266 uint32_t c0_cpuid;
b85a1fd6
FA
267 union { /* Cache size selection */
268 struct {
269 uint64_t _unused_csselr0;
270 uint64_t csselr_ns;
271 uint64_t _unused_csselr1;
272 uint64_t csselr_s;
273 };
274 uint64_t csselr_el[4];
275 };
137feaa9
FA
276 union { /* System control register. */
277 struct {
278 uint64_t _unused_sctlr;
279 uint64_t sctlr_ns;
280 uint64_t hsctlr;
281 uint64_t sctlr_s;
282 };
283 uint64_t sctlr_el[4];
284 };
7ebd5f2e 285 uint64_t cpacr_el1; /* Architectural feature access control register */
c6f19164 286 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
610c3c8a 287 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
144634ae 288 uint64_t sder; /* Secure debug enable register. */
77022576 289 uint32_t nsacr; /* Non-secure access control register. */
7dd8c9af
FA
290 union { /* MMU translation table base 0. */
291 struct {
292 uint64_t _unused_ttbr0_0;
293 uint64_t ttbr0_ns;
294 uint64_t _unused_ttbr0_1;
295 uint64_t ttbr0_s;
296 };
297 uint64_t ttbr0_el[4];
298 };
299 union { /* MMU translation table base 1. */
300 struct {
301 uint64_t _unused_ttbr1_0;
302 uint64_t ttbr1_ns;
303 uint64_t _unused_ttbr1_1;
304 uint64_t ttbr1_s;
305 };
306 uint64_t ttbr1_el[4];
307 };
b698e9cf 308 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
11f136ee
FA
309 /* MMU translation table base control. */
310 TCR tcr_el[4];
68e9c2fe 311 TCR vtcr_el2; /* Virtualization Translation Control. */
67cc32eb
VL
312 uint32_t c2_data; /* MPU data cacheable bits. */
313 uint32_t c2_insn; /* MPU instruction cacheable bits. */
0c17d68c
FA
314 union { /* MMU domain access control register
315 * MPU write buffer control.
316 */
317 struct {
318 uint64_t dacr_ns;
319 uint64_t dacr_s;
320 };
321 struct {
322 uint64_t dacr32_el2;
323 };
324 };
7e09797c
PM
325 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
326 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
f149e3e8 327 uint64_t hcr_el2; /* Hypervisor configuration register */
64e0e2de 328 uint64_t scr_el3; /* Secure configuration register. */
88ca1c2d
FA
329 union { /* Fault status registers. */
330 struct {
331 uint64_t ifsr_ns;
332 uint64_t ifsr_s;
333 };
334 struct {
335 uint64_t ifsr32_el2;
336 };
337 };
4a7e2d73
FA
338 union {
339 struct {
340 uint64_t _unused_dfsr;
341 uint64_t dfsr_ns;
342 uint64_t hsr;
343 uint64_t dfsr_s;
344 };
345 uint64_t esr_el[4];
346 };
ce819861 347 uint32_t c6_region[8]; /* MPU base/size registers. */
b848ce2b
FA
348 union { /* Fault address registers. */
349 struct {
350 uint64_t _unused_far0;
351#ifdef HOST_WORDS_BIGENDIAN
352 uint32_t ifar_ns;
353 uint32_t dfar_ns;
354 uint32_t ifar_s;
355 uint32_t dfar_s;
356#else
357 uint32_t dfar_ns;
358 uint32_t ifar_ns;
359 uint32_t dfar_s;
360 uint32_t ifar_s;
361#endif
362 uint64_t _unused_far3;
363 };
364 uint64_t far_el[4];
365 };
59e05530 366 uint64_t hpfar_el2;
2a5a9abd 367 uint64_t hstr_el2;
01c097f7
FA
368 union { /* Translation result. */
369 struct {
370 uint64_t _unused_par_0;
371 uint64_t par_ns;
372 uint64_t _unused_par_1;
373 uint64_t par_s;
374 };
375 uint64_t par_el[4];
376 };
6cb0b013 377
b5ff1b31
FB
378 uint32_t c9_insn; /* Cache lockdown registers. */
379 uint32_t c9_data;
8521466b
AF
380 uint64_t c9_pmcr; /* performance monitor control register */
381 uint64_t c9_pmcnten; /* perf monitor counter enables */
e4e91a21
AL
382 uint64_t c9_pmovsr; /* perf monitor overflow status */
383 uint64_t c9_pmuserenr; /* perf monitor user enable */
6b040780 384 uint64_t c9_pmselr; /* perf monitor counter selection register */
e6ec5457 385 uint64_t c9_pminten; /* perf monitor interrupt enables */
be693c87
GB
386 union { /* Memory attribute redirection */
387 struct {
388#ifdef HOST_WORDS_BIGENDIAN
389 uint64_t _unused_mair_0;
390 uint32_t mair1_ns;
391 uint32_t mair0_ns;
392 uint64_t _unused_mair_1;
393 uint32_t mair1_s;
394 uint32_t mair0_s;
395#else
396 uint64_t _unused_mair_0;
397 uint32_t mair0_ns;
398 uint32_t mair1_ns;
399 uint64_t _unused_mair_1;
400 uint32_t mair0_s;
401 uint32_t mair1_s;
402#endif
403 };
404 uint64_t mair_el[4];
405 };
fb6c91ba
GB
406 union { /* vector base address register */
407 struct {
408 uint64_t _unused_vbar;
409 uint64_t vbar_ns;
410 uint64_t hvbar;
411 uint64_t vbar_s;
412 };
413 uint64_t vbar_el[4];
414 };
e89e51a1 415 uint32_t mvbar; /* (monitor) vector base address register */
54bf36ed
FA
416 struct { /* FCSE PID. */
417 uint32_t fcseidr_ns;
418 uint32_t fcseidr_s;
419 };
420 union { /* Context ID. */
421 struct {
422 uint64_t _unused_contextidr_0;
423 uint64_t contextidr_ns;
424 uint64_t _unused_contextidr_1;
425 uint64_t contextidr_s;
426 };
427 uint64_t contextidr_el[4];
428 };
429 union { /* User RW Thread register. */
430 struct {
431 uint64_t tpidrurw_ns;
432 uint64_t tpidrprw_ns;
433 uint64_t htpidr;
434 uint64_t _tpidr_el3;
435 };
436 uint64_t tpidr_el[4];
437 };
438 /* The secure banks of these registers don't map anywhere */
439 uint64_t tpidrurw_s;
440 uint64_t tpidrprw_s;
441 uint64_t tpidruro_s;
442
443 union { /* User RO Thread register. */
444 uint64_t tpidruro_ns;
445 uint64_t tpidrro_el[1];
446 };
a7adc4b7
PM
447 uint64_t c14_cntfrq; /* Counter Frequency register */
448 uint64_t c14_cntkctl; /* Timer Control register */
0b6440af 449 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
edac4d8a 450 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
55d284af 451 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 452 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
453 uint32_t c15_ticonfig; /* TI925T configuration byte. */
454 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
455 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
456 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
457 uint32_t c15_config_base_address; /* SCU base address. */
458 uint32_t c15_diagnostic; /* diagnostic register */
459 uint32_t c15_power_diagnostic;
460 uint32_t c15_power_control; /* power control */
0b45451e
PM
461 uint64_t dbgbvr[16]; /* breakpoint value registers */
462 uint64_t dbgbcr[16]; /* breakpoint control registers */
463 uint64_t dbgwvr[16]; /* watchpoint value registers */
464 uint64_t dbgwcr[16]; /* watchpoint control registers */
3a298203 465 uint64_t mdscr_el1;
1424ca8d 466 uint64_t oslsr_el1; /* OS Lock Status */
14cc7b54 467 uint64_t mdcr_el2;
5513c3ab 468 uint64_t mdcr_el3;
5d05b9d4
AL
469 /* Stores the architectural value of the counter *the last time it was
470 * updated* by pmccntr_op_start. Accesses should always be surrounded
471 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
472 * architecturally-correct value is being read/set.
7c2cb42b 473 */
c92c0687 474 uint64_t c15_ccnt;
5d05b9d4
AL
475 /* Stores the delta between the architectural value and the underlying
476 * cycle count during normal operation. It is used to update c15_ccnt
477 * to be the correct architectural value before accesses. During
478 * accesses, c15_ccnt_delta contains the underlying count being used
479 * for the access, after which it reverts to the delta value in
480 * pmccntr_op_finish.
481 */
482 uint64_t c15_ccnt_delta;
5ecdd3e4
AL
483 uint64_t c14_pmevcntr[31];
484 uint64_t c14_pmevcntr_delta[31];
485 uint64_t c14_pmevtyper[31];
8521466b 486 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
731de9e6 487 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
f0d574d6 488 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
b5ff1b31 489 } cp15;
40f137e1 490
9ee6e8bb 491 struct {
fb602cb7
PM
492 /* M profile has up to 4 stack pointers:
493 * a Main Stack Pointer and a Process Stack Pointer for each
494 * of the Secure and Non-Secure states. (If the CPU doesn't support
495 * the security extension then it has only two SPs.)
496 * In QEMU we always store the currently active SP in regs[13],
497 * and the non-active SP for the current security state in
498 * v7m.other_sp. The stack pointers for the inactive security state
499 * are stored in other_ss_msp and other_ss_psp.
500 * switch_v7m_security_state() is responsible for rearranging them
501 * when we change security state.
502 */
9ee6e8bb 503 uint32_t other_sp;
fb602cb7
PM
504 uint32_t other_ss_msp;
505 uint32_t other_ss_psp;
4a16724f
PM
506 uint32_t vecbase[M_REG_NUM_BANKS];
507 uint32_t basepri[M_REG_NUM_BANKS];
508 uint32_t control[M_REG_NUM_BANKS];
509 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
510 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
2c4da50d
PM
511 uint32_t hfsr; /* HardFault Status */
512 uint32_t dfsr; /* Debug Fault Status Register */
bed079da 513 uint32_t sfsr; /* Secure Fault Status Register */
4a16724f 514 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
2c4da50d 515 uint32_t bfar; /* BusFault Address */
bed079da 516 uint32_t sfar; /* Secure Fault Address Register */
4a16724f 517 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
9ee6e8bb 518 int exception;
4a16724f
PM
519 uint32_t primask[M_REG_NUM_BANKS];
520 uint32_t faultmask[M_REG_NUM_BANKS];
3b2e9344 521 uint32_t aircr; /* only holds r/w state if security extn implemented */
1e577cc7 522 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
43bbce7f 523 uint32_t csselr[M_REG_NUM_BANKS];
24ac0fb1 524 uint32_t scr[M_REG_NUM_BANKS];
57bb3156
PM
525 uint32_t msplim[M_REG_NUM_BANKS];
526 uint32_t psplim[M_REG_NUM_BANKS];
d33abe82
PM
527 uint32_t fpcar[M_REG_NUM_BANKS];
528 uint32_t fpccr[M_REG_NUM_BANKS];
529 uint32_t fpdscr[M_REG_NUM_BANKS];
530 uint32_t cpacr[M_REG_NUM_BANKS];
531 uint32_t nsacr;
9ee6e8bb
PB
532 } v7m;
533
abf1172f
PM
534 /* Information associated with an exception about to be taken:
535 * code which raises an exception must set cs->exception_index and
536 * the relevant parts of this structure; the cpu_do_interrupt function
537 * will then set the guest-visible registers as part of the exception
538 * entry process.
539 */
540 struct {
541 uint32_t syndrome; /* AArch64 format syndrome register */
542 uint32_t fsr; /* AArch32 format fault status register info */
543 uint64_t vaddress; /* virtual addr associated with exception, if any */
73710361 544 uint32_t target_el; /* EL the exception should be targeted for */
abf1172f
PM
545 /* If we implement EL2 we will also need to store information
546 * about the intermediate physical address for stage 2 faults.
547 */
548 } exception;
549
202ccb6b
DG
550 /* Information associated with an SError */
551 struct {
552 uint8_t pending;
553 uint8_t has_esr;
554 uint64_t esr;
555 } serror;
556
ed89f078
PM
557 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
558 uint32_t irq_line_state;
559
fe1479c3
PB
560 /* Thumb-2 EE state. */
561 uint32_t teecr;
562 uint32_t teehbr;
563
b7bcbe95
FB
564 /* VFP coprocessor state. */
565 struct {
c39c2b90 566 ARMVectorReg zregs[32];
b7bcbe95 567
3c7d3086
RH
568#ifdef TARGET_AARCH64
569 /* Store FFR as pregs[16] to make it easier to treat as any other. */
028e2a7b 570#define FFR_PRED_NUM 16
3c7d3086 571 ARMPredicateReg pregs[17];
516e246a
RH
572 /* Scratch space for aa64 sve predicate temporary. */
573 ARMPredicateReg preg_tmp;
3c7d3086
RH
574#endif
575
b7bcbe95 576 /* We store these fpcsr fields separately for convenience. */
a4d58462 577 uint32_t qc[4] QEMU_ALIGNED(16);
b7bcbe95
FB
578 int vec_len;
579 int vec_stride;
580
a4d58462
RH
581 uint32_t xregs[16];
582
516e246a 583 /* Scratch space for aa32 neon expansion. */
9ee6e8bb 584 uint32_t scratch[8];
3b46e624 585
d81ce0ef
AB
586 /* There are a number of distinct float control structures:
587 *
588 * fp_status: is the "normal" fp status.
589 * fp_status_fp16: used for half-precision calculations
590 * standard_fp_status : the ARM "Standard FPSCR Value"
591 *
592 * Half-precision operations are governed by a separate
593 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
594 * status structure to control this.
595 *
596 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
597 * round-to-nearest and is used by any operations (generally
598 * Neon) which the architecture defines as controlled by the
599 * standard FPSCR value rather than the FPSCR.
3a492f3a
PM
600 *
601 * To avoid having to transfer exception bits around, we simply
602 * say that the FPSCR cumulative exception flags are the logical
d81ce0ef 603 * OR of the flags in the three fp statuses. This relies on the
3a492f3a
PM
604 * only thing which needs to read the exception flags being
605 * an explicit FPSCR read.
606 */
53cd6637 607 float_status fp_status;
d81ce0ef 608 float_status fp_status_f16;
3a492f3a 609 float_status standard_fp_status;
5be5e8ed
RH
610
611 /* ZCR_EL[1-3] */
612 uint64_t zcr_el[4];
b7bcbe95 613 } vfp;
03d05e2d
PM
614 uint64_t exclusive_addr;
615 uint64_t exclusive_val;
616 uint64_t exclusive_high;
b7bcbe95 617
18c9b560
AZ
618 /* iwMMXt coprocessor state. */
619 struct {
620 uint64_t regs[16];
621 uint64_t val;
622
623 uint32_t cregs[16];
624 } iwmmxt;
625
991ad91b 626#ifdef TARGET_AARCH64
108b3ba8
RH
627 struct {
628 ARMPACKey apia;
629 ARMPACKey apib;
630 ARMPACKey apda;
631 ARMPACKey apdb;
632 ARMPACKey apga;
633 } keys;
991ad91b
RH
634#endif
635
ce4defa0
PB
636#if defined(CONFIG_USER_ONLY)
637 /* For usermode syscall translation. */
638 int eabi;
639#endif
640
46747d15 641 struct CPUBreakpoint *cpu_breakpoint[16];
9ee98ce8
PM
642 struct CPUWatchpoint *cpu_watchpoint[16];
643
1f5c00cf
AB
644 /* Fields up to this point are cleared by a CPU reset */
645 struct {} end_reset_fields;
646
e8b5fae5 647 /* Fields after this point are preserved across CPU reset. */
9ba8c3f4 648
581be094 649 /* Internal CPU feature flags. */
918f5dca 650 uint64_t features;
581be094 651
6cb0b013
PC
652 /* PMSAv7 MPU */
653 struct {
654 uint32_t *drbar;
655 uint32_t *drsr;
656 uint32_t *dracr;
4a16724f 657 uint32_t rnr[M_REG_NUM_BANKS];
6cb0b013
PC
658 } pmsav7;
659
0e1a46bb
PM
660 /* PMSAv8 MPU */
661 struct {
662 /* The PMSAv8 implementation also shares some PMSAv7 config
663 * and state:
664 * pmsav7.rnr (region number register)
665 * pmsav7_dregion (number of configured regions)
666 */
4a16724f
PM
667 uint32_t *rbar[M_REG_NUM_BANKS];
668 uint32_t *rlar[M_REG_NUM_BANKS];
669 uint32_t mair0[M_REG_NUM_BANKS];
670 uint32_t mair1[M_REG_NUM_BANKS];
0e1a46bb
PM
671 } pmsav8;
672
9901c576
PM
673 /* v8M SAU */
674 struct {
675 uint32_t *rbar;
676 uint32_t *rlar;
677 uint32_t rnr;
678 uint32_t ctrl;
679 } sau;
680
983fe826 681 void *nvic;
462a8bc6 682 const struct arm_boot_info *boot_info;
d3a3e529
VK
683 /* Store GICv3CPUState to access from this struct */
684 void *gicv3state;
2c0262af
FB
685} CPUARMState;
686
bd7d00fc 687/**
08267487 688 * ARMELChangeHookFn:
bd7d00fc
PM
689 * type of a function which can be registered via arm_register_el_change_hook()
690 * to get callbacks when the CPU changes its exception level or mode.
691 */
08267487
AL
692typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
693typedef struct ARMELChangeHook ARMELChangeHook;
694struct ARMELChangeHook {
695 ARMELChangeHookFn *hook;
696 void *opaque;
697 QLIST_ENTRY(ARMELChangeHook) node;
698};
062ba099
AB
699
700/* These values map onto the return values for
701 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
702typedef enum ARMPSCIState {
d5affb0d
AJ
703 PSCI_ON = 0,
704 PSCI_OFF = 1,
062ba099
AB
705 PSCI_ON_PENDING = 2
706} ARMPSCIState;
707
962fcbf2
RH
708typedef struct ARMISARegisters ARMISARegisters;
709
74e75564
PB
710/**
711 * ARMCPU:
712 * @env: #CPUARMState
713 *
714 * An ARM CPU core.
715 */
716struct ARMCPU {
717 /*< private >*/
718 CPUState parent_obj;
719 /*< public >*/
720
5b146dc7 721 CPUNegativeOffsetState neg;
74e75564
PB
722 CPUARMState env;
723
724 /* Coprocessor information */
725 GHashTable *cp_regs;
726 /* For marshalling (mostly coprocessor) register state between the
727 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
728 * we use these arrays.
729 */
730 /* List of register indexes managed via these arrays; (full KVM style
731 * 64 bit indexes, not CPRegInfo 32 bit indexes)
732 */
733 uint64_t *cpreg_indexes;
734 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
735 uint64_t *cpreg_values;
736 /* Length of the indexes, values, reset_values arrays */
737 int32_t cpreg_array_len;
738 /* These are used only for migration: incoming data arrives in
739 * these fields and is sanity checked in post_load before copying
740 * to the working data structures above.
741 */
742 uint64_t *cpreg_vmstate_indexes;
743 uint64_t *cpreg_vmstate_values;
744 int32_t cpreg_vmstate_array_len;
745
200bf5b7
AB
746 DynamicGDBXMLInfo dyn_xml;
747
74e75564
PB
748 /* Timers used by the generic (architected) timer */
749 QEMUTimer *gt_timer[NUM_GTIMERS];
4e7beb0c
AL
750 /*
751 * Timer used by the PMU. Its state is restored after migration by
752 * pmu_op_finish() - it does not need other handling during migration
753 */
754 QEMUTimer *pmu_timer;
74e75564
PB
755 /* GPIO outputs for generic timer */
756 qemu_irq gt_timer_outputs[NUM_GTIMERS];
aa1b3111
PM
757 /* GPIO output for GICv3 maintenance interrupt signal */
758 qemu_irq gicv3_maintenance_interrupt;
07f48730
AJ
759 /* GPIO output for the PMU interrupt */
760 qemu_irq pmu_interrupt;
74e75564
PB
761
762 /* MemoryRegion to use for secure physical accesses */
763 MemoryRegion *secure_memory;
764
181962fd
PM
765 /* For v8M, pointer to the IDAU interface provided by board/SoC */
766 Object *idau;
767
74e75564
PB
768 /* 'compatible' string for this CPU for Linux device trees */
769 const char *dtb_compatible;
770
771 /* PSCI version for this CPU
772 * Bits[31:16] = Major Version
773 * Bits[15:0] = Minor Version
774 */
775 uint32_t psci_version;
776
777 /* Should CPU start in PSCI powered-off state? */
778 bool start_powered_off;
062ba099
AB
779
780 /* Current power state, access guarded by BQL */
781 ARMPSCIState power_state;
782
c25bd18a
PM
783 /* CPU has virtualization extension */
784 bool has_el2;
74e75564
PB
785 /* CPU has security extension */
786 bool has_el3;
5c0a3819
SZ
787 /* CPU has PMU (Performance Monitor Unit) */
788 bool has_pmu;
74e75564
PB
789
790 /* CPU has memory protection unit */
791 bool has_mpu;
792 /* PMSAv7 MPU number of supported regions */
793 uint32_t pmsav7_dregion;
9901c576
PM
794 /* v8M SAU number of supported regions */
795 uint32_t sau_sregion;
74e75564
PB
796
797 /* PSCI conduit used to invoke PSCI methods
798 * 0 - disabled, 1 - smc, 2 - hvc
799 */
800 uint32_t psci_conduit;
801
38e2a77c
PM
802 /* For v8M, initial value of the Secure VTOR */
803 uint32_t init_svtor;
804
74e75564
PB
805 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
806 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
807 */
808 uint32_t kvm_target;
809
810 /* KVM init features for this CPU */
811 uint32_t kvm_init_features[7];
812
813 /* Uniprocessor system with MP extensions */
814 bool mp_is_up;
815
c4487d76
PM
816 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
817 * and the probe failed (so we need to report the error in realize)
818 */
819 bool host_cpu_probe_failed;
820
f9a69711
AF
821 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
822 * register.
823 */
824 int32_t core_count;
825
74e75564
PB
826 /* The instance init functions for implementation-specific subclasses
827 * set these fields to specify the implementation-dependent values of
828 * various constant registers and reset values of non-constant
829 * registers.
830 * Some of these might become QOM properties eventually.
831 * Field names match the official register names as defined in the
832 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
833 * is used for reset values of non-constant registers; no reset_
834 * prefix means a constant register.
47576b94
RH
835 * Some of these registers are split out into a substructure that
836 * is shared with the translators to control the ISA.
74e75564 837 */
47576b94
RH
838 struct ARMISARegisters {
839 uint32_t id_isar0;
840 uint32_t id_isar1;
841 uint32_t id_isar2;
842 uint32_t id_isar3;
843 uint32_t id_isar4;
844 uint32_t id_isar5;
845 uint32_t id_isar6;
846 uint32_t mvfr0;
847 uint32_t mvfr1;
848 uint32_t mvfr2;
849 uint64_t id_aa64isar0;
850 uint64_t id_aa64isar1;
851 uint64_t id_aa64pfr0;
852 uint64_t id_aa64pfr1;
3dc91ddb
PM
853 uint64_t id_aa64mmfr0;
854 uint64_t id_aa64mmfr1;
47576b94 855 } isar;
74e75564
PB
856 uint32_t midr;
857 uint32_t revidr;
858 uint32_t reset_fpsid;
74e75564
PB
859 uint32_t ctr;
860 uint32_t reset_sctlr;
861 uint32_t id_pfr0;
862 uint32_t id_pfr1;
863 uint32_t id_dfr0;
cad86737
AL
864 uint64_t pmceid0;
865 uint64_t pmceid1;
74e75564
PB
866 uint32_t id_afr0;
867 uint32_t id_mmfr0;
868 uint32_t id_mmfr1;
869 uint32_t id_mmfr2;
870 uint32_t id_mmfr3;
871 uint32_t id_mmfr4;
74e75564
PB
872 uint64_t id_aa64dfr0;
873 uint64_t id_aa64dfr1;
874 uint64_t id_aa64afr0;
875 uint64_t id_aa64afr1;
74e75564
PB
876 uint32_t dbgdidr;
877 uint32_t clidr;
878 uint64_t mp_affinity; /* MP ID without feature bits */
879 /* The elements of this array are the CCSIDR values for each cache,
880 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
881 */
882 uint32_t ccsidr[16];
883 uint64_t reset_cbar;
884 uint32_t reset_auxcr;
885 bool reset_hivecs;
886 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
887 uint32_t dcz_blocksize;
888 uint64_t rvbar;
bd7d00fc 889
e45868a3
PM
890 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
891 int gic_num_lrs; /* number of list registers */
892 int gic_vpribits; /* number of virtual priority bits */
893 int gic_vprebits; /* number of virtual preemption bits */
894
3a062d57
JB
895 /* Whether the cfgend input is high (i.e. this CPU should reset into
896 * big-endian mode). This setting isn't used directly: instead it modifies
897 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
898 * architecture version.
899 */
900 bool cfgend;
901
b5c53d1b 902 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
08267487 903 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
15f8b142
IM
904
905 int32_t node_id; /* NUMA node this CPU belongs to */
5d721b78
AG
906
907 /* Used to synchronize KVM and QEMU in-kernel device levels */
908 uint8_t device_irq_level;
adf92eab
RH
909
910 /* Used to set the maximum vector length the cpu will support. */
911 uint32_t sve_max_vq;
74e75564
PB
912};
913
51e5ef45
MAL
914void arm_cpu_post_init(Object *obj);
915
46de5913
IM
916uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
917
74e75564
PB
918#ifndef CONFIG_USER_ONLY
919extern const struct VMStateDescription vmstate_arm_cpu;
920#endif
921
922void arm_cpu_do_interrupt(CPUState *cpu);
923void arm_v7m_cpu_do_interrupt(CPUState *cpu);
924bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
925
90c84c56 926void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags);
74e75564
PB
927
928hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
929 MemTxAttrs *attrs);
930
931int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
932int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
933
200bf5b7
AB
934/* Dynamically generates for gdb stub an XML description of the sysregs from
935 * the cp_regs hashtable. Returns the registered sysregs number.
936 */
937int arm_gen_dynamic_xml(CPUState *cpu);
938
939/* Returns the dynamically generated XML for the gdb stub.
940 * Returns a pointer to the XML contents for the specified XML file or NULL
941 * if the XML name doesn't match the predefined one.
942 */
943const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
944
74e75564
PB
945int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
946 int cpuid, void *opaque);
947int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
948 int cpuid, void *opaque);
949
950#ifdef TARGET_AARCH64
951int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
952int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
85fc7167 953void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
9a05f7b6
RH
954void aarch64_sve_change_el(CPUARMState *env, int old_el,
955 int new_el, bool el0_a64);
0ab5953b
RH
956#else
957static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
9a05f7b6
RH
958static inline void aarch64_sve_change_el(CPUARMState *env, int o,
959 int n, bool a)
960{ }
74e75564 961#endif
778c3a06 962
faacc041 963target_ulong do_arm_semihosting(CPUARMState *env);
ce02049d
GB
964void aarch64_sync_32_to_64(CPUARMState *env);
965void aarch64_sync_64_to_32(CPUARMState *env);
b5ff1b31 966
ced31551
RH
967int fp_exception_el(CPUARMState *env, int cur_el);
968int sve_exception_el(CPUARMState *env, int cur_el);
969uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
970
3926cc84
AG
971static inline bool is_a64(CPUARMState *env)
972{
973 return env->aarch64;
974}
975
2c0262af
FB
976/* you can call this signal handler from your SIGBUS and SIGSEGV
977 signal handlers to inform the virtual CPU of exceptions. non zero
978 is returned if the signal was handled by the virtual CPU. */
5fafdf24 979int cpu_arm_signal_handler(int host_signum, void *pinfo,
2c0262af
FB
980 void *puc);
981
5d05b9d4
AL
982/**
983 * pmu_op_start/finish
ec7b4ce4
AF
984 * @env: CPUARMState
985 *
5d05b9d4
AL
986 * Convert all PMU counters between their delta form (the typical mode when
987 * they are enabled) and the guest-visible values. These two calls must
988 * surround any action which might affect the counters.
ec7b4ce4 989 */
5d05b9d4
AL
990void pmu_op_start(CPUARMState *env);
991void pmu_op_finish(CPUARMState *env);
ec7b4ce4 992
4e7beb0c
AL
993/*
994 * Called when a PMU counter is due to overflow
995 */
996void arm_pmu_timer_cb(void *opaque);
997
033614c4
AL
998/**
999 * Functions to register as EL change hooks for PMU mode filtering
1000 */
1001void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1002void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1003
57a4a11b 1004/*
bf8d0969
AL
1005 * pmu_init
1006 * @cpu: ARMCPU
57a4a11b 1007 *
bf8d0969
AL
1008 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1009 * for the current configuration
57a4a11b 1010 */
bf8d0969 1011void pmu_init(ARMCPU *cpu);
57a4a11b 1012
76e3e1bc
PM
1013/* SCTLR bit meanings. Several bits have been reused in newer
1014 * versions of the architecture; in that case we define constants
1015 * for both old and new bit meanings. Code which tests against those
1016 * bits should probably check or otherwise arrange that the CPU
1017 * is the architectural version it expects.
1018 */
1019#define SCTLR_M (1U << 0)
1020#define SCTLR_A (1U << 1)
1021#define SCTLR_C (1U << 2)
1022#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
b2af69d0
RH
1023#define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1024#define SCTLR_SA (1U << 3) /* AArch64 only */
76e3e1bc 1025#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
b2af69d0 1026#define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
76e3e1bc
PM
1027#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
1028#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
1029#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1030#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
b2af69d0 1031#define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */
76e3e1bc
PM
1032#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
1033#define SCTLR_ITD (1U << 7) /* v8 onward */
1034#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
1035#define SCTLR_SED (1U << 8) /* v8 onward */
1036#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
1037#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
1038#define SCTLR_F (1U << 10) /* up to v6 */
cb570bd3
RH
1039#define SCTLR_SW (1U << 10) /* v7 */
1040#define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */
b2af69d0
RH
1041#define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
1042#define SCTLR_EOS (1U << 11) /* v8.5-ExS */
76e3e1bc 1043#define SCTLR_I (1U << 12)
b2af69d0
RH
1044#define SCTLR_V (1U << 13) /* AArch32 only */
1045#define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
76e3e1bc
PM
1046#define SCTLR_RR (1U << 14) /* up to v7 */
1047#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
1048#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
1049#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1050#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1051#define SCTLR_nTWI (1U << 16) /* v8 onward */
b2af69d0 1052#define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
f6bda88f 1053#define SCTLR_BR (1U << 17) /* PMSA only */
76e3e1bc
PM
1054#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1055#define SCTLR_nTWE (1U << 18) /* v8 onward */
1056#define SCTLR_WXN (1U << 19)
1057#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
b2af69d0
RH
1058#define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
1059#define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
1060#define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
1061#define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
1062#define SCTLR_EIS (1U << 22) /* v8.5-ExS */
76e3e1bc 1063#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
b2af69d0 1064#define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
76e3e1bc
PM
1065#define SCTLR_VE (1U << 24) /* up to v7 */
1066#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1067#define SCTLR_EE (1U << 25)
1068#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1069#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
b2af69d0
RH
1070#define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1071#define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
1072#define SCTLR_TRE (1U << 28) /* AArch32 only */
1073#define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1074#define SCTLR_AFE (1U << 29) /* AArch32 only */
1075#define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1076#define SCTLR_TE (1U << 30) /* AArch32 only */
1077#define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
1078#define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
1079#define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
1080#define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
1081#define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
1082#define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
1083#define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
1084#define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
1085#define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
1086#define SCTLR_DSSBS (1ULL << 44) /* v8.5 */
76e3e1bc 1087
c6f19164
GB
1088#define CPTR_TCPAC (1U << 31)
1089#define CPTR_TTA (1U << 20)
1090#define CPTR_TFP (1U << 10)
5be5e8ed
RH
1091#define CPTR_TZ (1U << 8) /* CPTR_EL2 */
1092#define CPTR_EZ (1U << 8) /* CPTR_EL3 */
c6f19164 1093
187f678d
PM
1094#define MDCR_EPMAD (1U << 21)
1095#define MDCR_EDAD (1U << 20)
033614c4
AL
1096#define MDCR_SPME (1U << 17) /* MDCR_EL3 */
1097#define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
187f678d 1098#define MDCR_SDD (1U << 16)
a8d64e73 1099#define MDCR_SPD (3U << 14)
187f678d
PM
1100#define MDCR_TDRA (1U << 11)
1101#define MDCR_TDOSA (1U << 10)
1102#define MDCR_TDA (1U << 9)
1103#define MDCR_TDE (1U << 8)
1104#define MDCR_HPME (1U << 7)
1105#define MDCR_TPM (1U << 6)
1106#define MDCR_TPMCR (1U << 5)
033614c4 1107#define MDCR_HPMN (0x1fU)
187f678d 1108
a8d64e73
PM
1109/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1110#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1111
78dbbbe4
PM
1112#define CPSR_M (0x1fU)
1113#define CPSR_T (1U << 5)
1114#define CPSR_F (1U << 6)
1115#define CPSR_I (1U << 7)
1116#define CPSR_A (1U << 8)
1117#define CPSR_E (1U << 9)
1118#define CPSR_IT_2_7 (0xfc00U)
1119#define CPSR_GE (0xfU << 16)
4051e12c
PM
1120#define CPSR_IL (1U << 20)
1121/* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
1122 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
1123 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
1124 * where it is live state but not accessible to the AArch32 code.
1125 */
1126#define CPSR_RESERVED (0x7U << 21)
78dbbbe4
PM
1127#define CPSR_J (1U << 24)
1128#define CPSR_IT_0_1 (3U << 25)
1129#define CPSR_Q (1U << 27)
1130#define CPSR_V (1U << 28)
1131#define CPSR_C (1U << 29)
1132#define CPSR_Z (1U << 30)
1133#define CPSR_N (1U << 31)
9ee6e8bb 1134#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
4cc35614 1135#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
9ee6e8bb
PB
1136
1137#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
4cc35614
PM
1138#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1139 | CPSR_NZCV)
9ee6e8bb
PB
1140/* Bits writable in user mode. */
1141#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1142/* Execution state bits. MRS read as zero, MSR writes ignored. */
4051e12c
PM
1143#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1144/* Mask of bits which may be set by exception return copying them from SPSR */
1145#define CPSR_ERET_MASK (~CPSR_RESERVED)
b5ff1b31 1146
987ab45e
PM
1147/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1148#define XPSR_EXCP 0x1ffU
1149#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1150#define XPSR_IT_2_7 CPSR_IT_2_7
1151#define XPSR_GE CPSR_GE
1152#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1153#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1154#define XPSR_IT_0_1 CPSR_IT_0_1
1155#define XPSR_Q CPSR_Q
1156#define XPSR_V CPSR_V
1157#define XPSR_C CPSR_C
1158#define XPSR_Z CPSR_Z
1159#define XPSR_N CPSR_N
1160#define XPSR_NZCV CPSR_NZCV
1161#define XPSR_IT CPSR_IT
1162
e389be16
FA
1163#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1164#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1165#define TTBCR_PD0 (1U << 4)
1166#define TTBCR_PD1 (1U << 5)
1167#define TTBCR_EPD0 (1U << 7)
1168#define TTBCR_IRGN0 (3U << 8)
1169#define TTBCR_ORGN0 (3U << 10)
1170#define TTBCR_SH0 (3U << 12)
1171#define TTBCR_T1SZ (3U << 16)
1172#define TTBCR_A1 (1U << 22)
1173#define TTBCR_EPD1 (1U << 23)
1174#define TTBCR_IRGN1 (3U << 24)
1175#define TTBCR_ORGN1 (3U << 26)
1176#define TTBCR_SH1 (1U << 28)
1177#define TTBCR_EAE (1U << 31)
1178
d356312f
PM
1179/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1180 * Only these are valid when in AArch64 mode; in
1181 * AArch32 mode SPSRs are basically CPSR-format.
1182 */
f502cfc2 1183#define PSTATE_SP (1U)
d356312f
PM
1184#define PSTATE_M (0xFU)
1185#define PSTATE_nRW (1U << 4)
1186#define PSTATE_F (1U << 6)
1187#define PSTATE_I (1U << 7)
1188#define PSTATE_A (1U << 8)
1189#define PSTATE_D (1U << 9)
f6e52eaa 1190#define PSTATE_BTYPE (3U << 10)
d356312f
PM
1191#define PSTATE_IL (1U << 20)
1192#define PSTATE_SS (1U << 21)
1193#define PSTATE_V (1U << 28)
1194#define PSTATE_C (1U << 29)
1195#define PSTATE_Z (1U << 30)
1196#define PSTATE_N (1U << 31)
1197#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
4cc35614 1198#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
f6e52eaa 1199#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
d356312f
PM
1200/* Mode values for AArch64 */
1201#define PSTATE_MODE_EL3h 13
1202#define PSTATE_MODE_EL3t 12
1203#define PSTATE_MODE_EL2h 9
1204#define PSTATE_MODE_EL2t 8
1205#define PSTATE_MODE_EL1h 5
1206#define PSTATE_MODE_EL1t 4
1207#define PSTATE_MODE_EL0t 0
1208
de2db7ec
PM
1209/* Write a new value to v7m.exception, thus transitioning into or out
1210 * of Handler mode; this may result in a change of active stack pointer.
1211 */
1212void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1213
9e729b57
EI
1214/* Map EL and handler into a PSTATE_MODE. */
1215static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1216{
1217 return (el << 2) | handler;
1218}
1219
d356312f
PM
1220/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1221 * interprocessing, so we don't attempt to sync with the cpsr state used by
1222 * the 32 bit decoder.
1223 */
1224static inline uint32_t pstate_read(CPUARMState *env)
1225{
1226 int ZF;
1227
1228 ZF = (env->ZF == 0);
1229 return (env->NF & 0x80000000) | (ZF << 30)
1230 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
f6e52eaa 1231 | env->pstate | env->daif | (env->btype << 10);
d356312f
PM
1232}
1233
1234static inline void pstate_write(CPUARMState *env, uint32_t val)
1235{
1236 env->ZF = (~val) & PSTATE_Z;
1237 env->NF = val;
1238 env->CF = (val >> 29) & 1;
1239 env->VF = (val << 3) & 0x80000000;
4cc35614 1240 env->daif = val & PSTATE_DAIF;
f6e52eaa 1241 env->btype = (val >> 10) & 3;
d356312f
PM
1242 env->pstate = val & ~CACHED_PSTATE_BITS;
1243}
1244
b5ff1b31 1245/* Return the current CPSR value. */
2f4a40e5 1246uint32_t cpsr_read(CPUARMState *env);
50866ba5
PM
1247
1248typedef enum CPSRWriteType {
1249 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1250 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1251 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */
1252 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1253} CPSRWriteType;
1254
1255/* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/
1256void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1257 CPSRWriteType write_type);
9ee6e8bb
PB
1258
1259/* Return the current xPSR value. */
1260static inline uint32_t xpsr_read(CPUARMState *env)
1261{
1262 int ZF;
6fbe23d5
PB
1263 ZF = (env->ZF == 0);
1264 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
1265 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1266 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1267 | ((env->condexec_bits & 0xfc) << 8)
f1e2598c 1268 | (env->GE << 16)
9ee6e8bb 1269 | env->v7m.exception;
b5ff1b31
FB
1270}
1271
9ee6e8bb
PB
1272/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1273static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1274{
987ab45e
PM
1275 if (mask & XPSR_NZCV) {
1276 env->ZF = (~val) & XPSR_Z;
6fbe23d5 1277 env->NF = val;
9ee6e8bb
PB
1278 env->CF = (val >> 29) & 1;
1279 env->VF = (val << 3) & 0x80000000;
1280 }
987ab45e
PM
1281 if (mask & XPSR_Q) {
1282 env->QF = ((val & XPSR_Q) != 0);
1283 }
f1e2598c
PM
1284 if (mask & XPSR_GE) {
1285 env->GE = (val & XPSR_GE) >> 16;
1286 }
987ab45e
PM
1287 if (mask & XPSR_T) {
1288 env->thumb = ((val & XPSR_T) != 0);
1289 }
1290 if (mask & XPSR_IT_0_1) {
9ee6e8bb
PB
1291 env->condexec_bits &= ~3;
1292 env->condexec_bits |= (val >> 25) & 3;
1293 }
987ab45e 1294 if (mask & XPSR_IT_2_7) {
9ee6e8bb
PB
1295 env->condexec_bits &= 3;
1296 env->condexec_bits |= (val >> 8) & 0xfc;
1297 }
987ab45e 1298 if (mask & XPSR_EXCP) {
de2db7ec
PM
1299 /* Note that this only happens on exception exit */
1300 write_v7m_exception(env, val & XPSR_EXCP);
9ee6e8bb
PB
1301 }
1302}
1303
f149e3e8
EI
1304#define HCR_VM (1ULL << 0)
1305#define HCR_SWIO (1ULL << 1)
1306#define HCR_PTW (1ULL << 2)
1307#define HCR_FMO (1ULL << 3)
1308#define HCR_IMO (1ULL << 4)
1309#define HCR_AMO (1ULL << 5)
1310#define HCR_VF (1ULL << 6)
1311#define HCR_VI (1ULL << 7)
1312#define HCR_VSE (1ULL << 8)
1313#define HCR_FB (1ULL << 9)
1314#define HCR_BSU_MASK (3ULL << 10)
1315#define HCR_DC (1ULL << 12)
1316#define HCR_TWI (1ULL << 13)
1317#define HCR_TWE (1ULL << 14)
1318#define HCR_TID0 (1ULL << 15)
1319#define HCR_TID1 (1ULL << 16)
1320#define HCR_TID2 (1ULL << 17)
1321#define HCR_TID3 (1ULL << 18)
1322#define HCR_TSC (1ULL << 19)
1323#define HCR_TIDCP (1ULL << 20)
1324#define HCR_TACR (1ULL << 21)
1325#define HCR_TSW (1ULL << 22)
099bf53b 1326#define HCR_TPCP (1ULL << 23)
f149e3e8
EI
1327#define HCR_TPU (1ULL << 24)
1328#define HCR_TTLB (1ULL << 25)
1329#define HCR_TVM (1ULL << 26)
1330#define HCR_TGE (1ULL << 27)
1331#define HCR_TDZ (1ULL << 28)
1332#define HCR_HCD (1ULL << 29)
1333#define HCR_TRVM (1ULL << 30)
1334#define HCR_RW (1ULL << 31)
1335#define HCR_CD (1ULL << 32)
1336#define HCR_ID (1ULL << 33)
ac656b16 1337#define HCR_E2H (1ULL << 34)
099bf53b
RH
1338#define HCR_TLOR (1ULL << 35)
1339#define HCR_TERR (1ULL << 36)
1340#define HCR_TEA (1ULL << 37)
1341#define HCR_MIOCNCE (1ULL << 38)
1342#define HCR_APK (1ULL << 40)
1343#define HCR_API (1ULL << 41)
1344#define HCR_NV (1ULL << 42)
1345#define HCR_NV1 (1ULL << 43)
1346#define HCR_AT (1ULL << 44)
1347#define HCR_NV2 (1ULL << 45)
1348#define HCR_FWB (1ULL << 46)
1349#define HCR_FIEN (1ULL << 47)
1350#define HCR_TID4 (1ULL << 49)
1351#define HCR_TICAB (1ULL << 50)
1352#define HCR_TOCU (1ULL << 52)
1353#define HCR_TTLBIS (1ULL << 54)
1354#define HCR_TTLBOS (1ULL << 55)
1355#define HCR_ATA (1ULL << 56)
1356#define HCR_DCT (1ULL << 57)
1357
ac656b16
PM
1358/*
1359 * When we actually implement ARMv8.1-VHE we should add HCR_E2H to
1360 * HCR_MASK and then clear it again if the feature bit is not set in
1361 * hcr_write().
1362 */
f149e3e8
EI
1363#define HCR_MASK ((1ULL << 34) - 1)
1364
64e0e2de
EI
1365#define SCR_NS (1U << 0)
1366#define SCR_IRQ (1U << 1)
1367#define SCR_FIQ (1U << 2)
1368#define SCR_EA (1U << 3)
1369#define SCR_FW (1U << 4)
1370#define SCR_AW (1U << 5)
1371#define SCR_NET (1U << 6)
1372#define SCR_SMD (1U << 7)
1373#define SCR_HCE (1U << 8)
1374#define SCR_SIF (1U << 9)
1375#define SCR_RW (1U << 10)
1376#define SCR_ST (1U << 11)
1377#define SCR_TWI (1U << 12)
1378#define SCR_TWE (1U << 13)
99f8f86d
RH
1379#define SCR_TLOR (1U << 14)
1380#define SCR_TERR (1U << 15)
1381#define SCR_APK (1U << 16)
1382#define SCR_API (1U << 17)
1383#define SCR_EEL2 (1U << 18)
1384#define SCR_EASE (1U << 19)
1385#define SCR_NMEA (1U << 20)
1386#define SCR_FIEN (1U << 21)
1387#define SCR_ENSCXT (1U << 25)
1388#define SCR_ATA (1U << 26)
64e0e2de 1389
01653295
PM
1390/* Return the current FPSCR value. */
1391uint32_t vfp_get_fpscr(CPUARMState *env);
1392void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1393
d81ce0ef
AB
1394/* FPCR, Floating Point Control Register
1395 * FPSR, Floating Poiht Status Register
1396 *
1397 * For A64 the FPSCR is split into two logically distinct registers,
f903fa22
PM
1398 * FPCR and FPSR. However since they still use non-overlapping bits
1399 * we store the underlying state in fpscr and just mask on read/write.
1400 */
1401#define FPSR_MASK 0xf800009f
0b62159b 1402#define FPCR_MASK 0x07ff9f00
d81ce0ef 1403
a15945d9
PM
1404#define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */
1405#define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */
1406#define FPCR_OFE (1 << 10) /* Overflow exception trap enable */
1407#define FPCR_UFE (1 << 11) /* Underflow exception trap enable */
1408#define FPCR_IXE (1 << 12) /* Inexact exception trap enable */
1409#define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */
d81ce0ef
AB
1410#define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
1411#define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1412#define FPCR_DN (1 << 25) /* Default NaN enable bit */
a4d58462 1413#define FPCR_QC (1 << 27) /* Cumulative saturation bit */
d81ce0ef 1414
f903fa22
PM
1415static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1416{
1417 return vfp_get_fpscr(env) & FPSR_MASK;
1418}
1419
1420static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1421{
1422 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1423 vfp_set_fpscr(env, new_fpscr);
1424}
1425
1426static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1427{
1428 return vfp_get_fpscr(env) & FPCR_MASK;
1429}
1430
1431static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1432{
1433 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1434 vfp_set_fpscr(env, new_fpscr);
1435}
1436
b5ff1b31
FB
1437enum arm_cpu_mode {
1438 ARM_CPU_MODE_USR = 0x10,
1439 ARM_CPU_MODE_FIQ = 0x11,
1440 ARM_CPU_MODE_IRQ = 0x12,
1441 ARM_CPU_MODE_SVC = 0x13,
28c9457d 1442 ARM_CPU_MODE_MON = 0x16,
b5ff1b31 1443 ARM_CPU_MODE_ABT = 0x17,
28c9457d 1444 ARM_CPU_MODE_HYP = 0x1a,
b5ff1b31
FB
1445 ARM_CPU_MODE_UND = 0x1b,
1446 ARM_CPU_MODE_SYS = 0x1f
1447};
1448
40f137e1
PB
1449/* VFP system registers. */
1450#define ARM_VFP_FPSID 0
1451#define ARM_VFP_FPSCR 1
a50c0f51 1452#define ARM_VFP_MVFR2 5
9ee6e8bb
PB
1453#define ARM_VFP_MVFR1 6
1454#define ARM_VFP_MVFR0 7
40f137e1
PB
1455#define ARM_VFP_FPEXC 8
1456#define ARM_VFP_FPINST 9
1457#define ARM_VFP_FPINST2 10
1458
18c9b560 1459/* iwMMXt coprocessor control registers. */
6e0fafe2
PM
1460#define ARM_IWMMXT_wCID 0
1461#define ARM_IWMMXT_wCon 1
1462#define ARM_IWMMXT_wCSSF 2
1463#define ARM_IWMMXT_wCASF 3
1464#define ARM_IWMMXT_wCGR0 8
1465#define ARM_IWMMXT_wCGR1 9
1466#define ARM_IWMMXT_wCGR2 10
1467#define ARM_IWMMXT_wCGR3 11
18c9b560 1468
2c4da50d
PM
1469/* V7M CCR bits */
1470FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1471FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1472FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1473FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1474FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1475FIELD(V7M_CCR, STKALIGN, 9, 1)
4730fb85 1476FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
2c4da50d
PM
1477FIELD(V7M_CCR, DC, 16, 1)
1478FIELD(V7M_CCR, IC, 17, 1)
4730fb85 1479FIELD(V7M_CCR, BP, 18, 1)
2c4da50d 1480
24ac0fb1
PM
1481/* V7M SCR bits */
1482FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1483FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1484FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1485FIELD(V7M_SCR, SEVONPEND, 4, 1)
1486
3b2e9344
PM
1487/* V7M AIRCR bits */
1488FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1489FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1490FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1491FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1492FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1493FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1494FIELD(V7M_AIRCR, PRIS, 14, 1)
1495FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1496FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1497
2c4da50d
PM
1498/* V7M CFSR bits for MMFSR */
1499FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1500FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1501FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1502FIELD(V7M_CFSR, MSTKERR, 4, 1)
1503FIELD(V7M_CFSR, MLSPERR, 5, 1)
1504FIELD(V7M_CFSR, MMARVALID, 7, 1)
1505
1506/* V7M CFSR bits for BFSR */
1507FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1508FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1509FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1510FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1511FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1512FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1513FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1514
1515/* V7M CFSR bits for UFSR */
1516FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1517FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1518FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1519FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
86f026de 1520FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
2c4da50d
PM
1521FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1522FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1523
334e8dad
PM
1524/* V7M CFSR bit masks covering all of the subregister bits */
1525FIELD(V7M_CFSR, MMFSR, 0, 8)
1526FIELD(V7M_CFSR, BFSR, 8, 8)
1527FIELD(V7M_CFSR, UFSR, 16, 16)
1528
2c4da50d
PM
1529/* V7M HFSR bits */
1530FIELD(V7M_HFSR, VECTTBL, 1, 1)
1531FIELD(V7M_HFSR, FORCED, 30, 1)
1532FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1533
1534/* V7M DFSR bits */
1535FIELD(V7M_DFSR, HALTED, 0, 1)
1536FIELD(V7M_DFSR, BKPT, 1, 1)
1537FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1538FIELD(V7M_DFSR, VCATCH, 3, 1)
1539FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1540
bed079da
PM
1541/* V7M SFSR bits */
1542FIELD(V7M_SFSR, INVEP, 0, 1)
1543FIELD(V7M_SFSR, INVIS, 1, 1)
1544FIELD(V7M_SFSR, INVER, 2, 1)
1545FIELD(V7M_SFSR, AUVIOL, 3, 1)
1546FIELD(V7M_SFSR, INVTRAN, 4, 1)
1547FIELD(V7M_SFSR, LSPERR, 5, 1)
1548FIELD(V7M_SFSR, SFARVALID, 6, 1)
1549FIELD(V7M_SFSR, LSERR, 7, 1)
1550
29c483a5
MD
1551/* v7M MPU_CTRL bits */
1552FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1553FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1554FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1555
43bbce7f
PM
1556/* v7M CLIDR bits */
1557FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1558FIELD(V7M_CLIDR, LOUIS, 21, 3)
1559FIELD(V7M_CLIDR, LOC, 24, 3)
1560FIELD(V7M_CLIDR, LOUU, 27, 3)
1561FIELD(V7M_CLIDR, ICB, 30, 2)
1562
1563FIELD(V7M_CSSELR, IND, 0, 1)
1564FIELD(V7M_CSSELR, LEVEL, 1, 3)
1565/* We use the combination of InD and Level to index into cpu->ccsidr[];
1566 * define a mask for this and check that it doesn't permit running off
1567 * the end of the array.
1568 */
1569FIELD(V7M_CSSELR, INDEX, 0, 4)
d33abe82
PM
1570
1571/* v7M FPCCR bits */
1572FIELD(V7M_FPCCR, LSPACT, 0, 1)
1573FIELD(V7M_FPCCR, USER, 1, 1)
1574FIELD(V7M_FPCCR, S, 2, 1)
1575FIELD(V7M_FPCCR, THREAD, 3, 1)
1576FIELD(V7M_FPCCR, HFRDY, 4, 1)
1577FIELD(V7M_FPCCR, MMRDY, 5, 1)
1578FIELD(V7M_FPCCR, BFRDY, 6, 1)
1579FIELD(V7M_FPCCR, SFRDY, 7, 1)
1580FIELD(V7M_FPCCR, MONRDY, 8, 1)
1581FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1582FIELD(V7M_FPCCR, UFRDY, 10, 1)
1583FIELD(V7M_FPCCR, RES0, 11, 15)
1584FIELD(V7M_FPCCR, TS, 26, 1)
1585FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1586FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1587FIELD(V7M_FPCCR, LSPENS, 29, 1)
1588FIELD(V7M_FPCCR, LSPEN, 30, 1)
1589FIELD(V7M_FPCCR, ASPEN, 31, 1)
1590/* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1591#define R_V7M_FPCCR_BANKED_MASK \
1592 (R_V7M_FPCCR_LSPACT_MASK | \
1593 R_V7M_FPCCR_USER_MASK | \
1594 R_V7M_FPCCR_THREAD_MASK | \
1595 R_V7M_FPCCR_MMRDY_MASK | \
1596 R_V7M_FPCCR_SPLIMVIOL_MASK | \
1597 R_V7M_FPCCR_UFRDY_MASK | \
1598 R_V7M_FPCCR_ASPEN_MASK)
43bbce7f 1599
a62e62af
RH
1600/*
1601 * System register ID fields.
1602 */
1603FIELD(ID_ISAR0, SWAP, 0, 4)
1604FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1605FIELD(ID_ISAR0, BITFIELD, 8, 4)
1606FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1607FIELD(ID_ISAR0, COPROC, 16, 4)
1608FIELD(ID_ISAR0, DEBUG, 20, 4)
1609FIELD(ID_ISAR0, DIVIDE, 24, 4)
1610
1611FIELD(ID_ISAR1, ENDIAN, 0, 4)
1612FIELD(ID_ISAR1, EXCEPT, 4, 4)
1613FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1614FIELD(ID_ISAR1, EXTEND, 12, 4)
1615FIELD(ID_ISAR1, IFTHEN, 16, 4)
1616FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1617FIELD(ID_ISAR1, INTERWORK, 24, 4)
1618FIELD(ID_ISAR1, JAZELLE, 28, 4)
1619
1620FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1621FIELD(ID_ISAR2, MEMHINT, 4, 4)
1622FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1623FIELD(ID_ISAR2, MULT, 12, 4)
1624FIELD(ID_ISAR2, MULTS, 16, 4)
1625FIELD(ID_ISAR2, MULTU, 20, 4)
1626FIELD(ID_ISAR2, PSR_AR, 24, 4)
1627FIELD(ID_ISAR2, REVERSAL, 28, 4)
1628
1629FIELD(ID_ISAR3, SATURATE, 0, 4)
1630FIELD(ID_ISAR3, SIMD, 4, 4)
1631FIELD(ID_ISAR3, SVC, 8, 4)
1632FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1633FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1634FIELD(ID_ISAR3, T32COPY, 20, 4)
1635FIELD(ID_ISAR3, TRUENOP, 24, 4)
1636FIELD(ID_ISAR3, T32EE, 28, 4)
1637
1638FIELD(ID_ISAR4, UNPRIV, 0, 4)
1639FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1640FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1641FIELD(ID_ISAR4, SMC, 12, 4)
1642FIELD(ID_ISAR4, BARRIER, 16, 4)
1643FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1644FIELD(ID_ISAR4, PSR_M, 24, 4)
1645FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1646
1647FIELD(ID_ISAR5, SEVL, 0, 4)
1648FIELD(ID_ISAR5, AES, 4, 4)
1649FIELD(ID_ISAR5, SHA1, 8, 4)
1650FIELD(ID_ISAR5, SHA2, 12, 4)
1651FIELD(ID_ISAR5, CRC32, 16, 4)
1652FIELD(ID_ISAR5, RDM, 24, 4)
1653FIELD(ID_ISAR5, VCMA, 28, 4)
1654
1655FIELD(ID_ISAR6, JSCVT, 0, 4)
1656FIELD(ID_ISAR6, DP, 4, 4)
1657FIELD(ID_ISAR6, FHM, 8, 4)
1658FIELD(ID_ISAR6, SB, 12, 4)
1659FIELD(ID_ISAR6, SPECRES, 16, 4)
1660
ab638a32
RH
1661FIELD(ID_MMFR4, SPECSEI, 0, 4)
1662FIELD(ID_MMFR4, AC2, 4, 4)
1663FIELD(ID_MMFR4, XNX, 8, 4)
1664FIELD(ID_MMFR4, CNP, 12, 4)
1665FIELD(ID_MMFR4, HPDS, 16, 4)
1666FIELD(ID_MMFR4, LSM, 20, 4)
1667FIELD(ID_MMFR4, CCIDX, 24, 4)
1668FIELD(ID_MMFR4, EVT, 28, 4)
1669
a62e62af
RH
1670FIELD(ID_AA64ISAR0, AES, 4, 4)
1671FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1672FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1673FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1674FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1675FIELD(ID_AA64ISAR0, RDM, 28, 4)
1676FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1677FIELD(ID_AA64ISAR0, SM3, 36, 4)
1678FIELD(ID_AA64ISAR0, SM4, 40, 4)
1679FIELD(ID_AA64ISAR0, DP, 44, 4)
1680FIELD(ID_AA64ISAR0, FHM, 48, 4)
1681FIELD(ID_AA64ISAR0, TS, 52, 4)
1682FIELD(ID_AA64ISAR0, TLB, 56, 4)
1683FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1684
1685FIELD(ID_AA64ISAR1, DPB, 0, 4)
1686FIELD(ID_AA64ISAR1, APA, 4, 4)
1687FIELD(ID_AA64ISAR1, API, 8, 4)
1688FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1689FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1690FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1691FIELD(ID_AA64ISAR1, GPA, 24, 4)
1692FIELD(ID_AA64ISAR1, GPI, 28, 4)
1693FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1694FIELD(ID_AA64ISAR1, SB, 36, 4)
1695FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1696
cd208a1c
RH
1697FIELD(ID_AA64PFR0, EL0, 0, 4)
1698FIELD(ID_AA64PFR0, EL1, 4, 4)
1699FIELD(ID_AA64PFR0, EL2, 8, 4)
1700FIELD(ID_AA64PFR0, EL3, 12, 4)
1701FIELD(ID_AA64PFR0, FP, 16, 4)
1702FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1703FIELD(ID_AA64PFR0, GIC, 24, 4)
1704FIELD(ID_AA64PFR0, RAS, 28, 4)
1705FIELD(ID_AA64PFR0, SVE, 32, 4)
1706
be53b6f4
RH
1707FIELD(ID_AA64PFR1, BT, 0, 4)
1708FIELD(ID_AA64PFR1, SBSS, 4, 4)
1709FIELD(ID_AA64PFR1, MTE, 8, 4)
1710FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1711
3dc91ddb
PM
1712FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1713FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1714FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1715FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1716FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1717FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1718FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1719FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1720FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1721FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1722FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1723FIELD(ID_AA64MMFR0, EXS, 44, 4)
1724
1725FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1726FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1727FIELD(ID_AA64MMFR1, VH, 8, 4)
1728FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1729FIELD(ID_AA64MMFR1, LO, 16, 4)
1730FIELD(ID_AA64MMFR1, PAN, 20, 4)
1731FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1732FIELD(ID_AA64MMFR1, XNX, 28, 4)
1733
beceb99c
AL
1734FIELD(ID_DFR0, COPDBG, 0, 4)
1735FIELD(ID_DFR0, COPSDBG, 4, 4)
1736FIELD(ID_DFR0, MMAPDBG, 8, 4)
1737FIELD(ID_DFR0, COPTRC, 12, 4)
1738FIELD(ID_DFR0, MMAPTRC, 16, 4)
1739FIELD(ID_DFR0, MPROFDBG, 20, 4)
1740FIELD(ID_DFR0, PERFMON, 24, 4)
1741FIELD(ID_DFR0, TRACEFILT, 28, 4)
1742
602f6e42
PM
1743FIELD(MVFR0, SIMDREG, 0, 4)
1744FIELD(MVFR0, FPSP, 4, 4)
1745FIELD(MVFR0, FPDP, 8, 4)
1746FIELD(MVFR0, FPTRAP, 12, 4)
1747FIELD(MVFR0, FPDIVIDE, 16, 4)
1748FIELD(MVFR0, FPSQRT, 20, 4)
1749FIELD(MVFR0, FPSHVEC, 24, 4)
1750FIELD(MVFR0, FPROUND, 28, 4)
1751
1752FIELD(MVFR1, FPFTZ, 0, 4)
1753FIELD(MVFR1, FPDNAN, 4, 4)
1754FIELD(MVFR1, SIMDLS, 8, 4)
1755FIELD(MVFR1, SIMDINT, 12, 4)
1756FIELD(MVFR1, SIMDSP, 16, 4)
1757FIELD(MVFR1, SIMDHP, 20, 4)
1758FIELD(MVFR1, FPHP, 24, 4)
1759FIELD(MVFR1, SIMDFMAC, 28, 4)
1760
1761FIELD(MVFR2, SIMDMISC, 0, 4)
1762FIELD(MVFR2, FPMISC, 4, 4)
1763
43bbce7f
PM
1764QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1765
ce854d7c
BC
1766/* If adding a feature bit which corresponds to a Linux ELF
1767 * HWCAP bit, remember to update the feature-bit-to-hwcap
1768 * mapping in linux-user/elfload.c:get_elf_hwcap().
1769 */
40f137e1
PB
1770enum arm_features {
1771 ARM_FEATURE_VFP,
c1713132
AZ
1772 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
1773 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 1774 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
1775 ARM_FEATURE_V6,
1776 ARM_FEATURE_V6K,
1777 ARM_FEATURE_V7,
1778 ARM_FEATURE_THUMB2,
452a0955 1779 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
9ee6e8bb
PB
1780 ARM_FEATURE_VFP3,
1781 ARM_FEATURE_NEON,
9ee6e8bb 1782 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 1783 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 1784 ARM_FEATURE_THUMB2EE,
be5e7a76 1785 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
5110e683 1786 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
be5e7a76
DES
1787 ARM_FEATURE_V4T,
1788 ARM_FEATURE_V5,
5bc95aa2 1789 ARM_FEATURE_STRONGARM,
906879a9 1790 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
da97f52c 1791 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
0383ac00 1792 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 1793 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 1794 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
1795 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1796 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1797 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 1798 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8
PM
1799 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1800 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 1801 ARM_FEATURE_V8,
3926cc84 1802 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
d8ba780b 1803 ARM_FEATURE_CBAR, /* has cp15 CBAR */
eb0ecd5a 1804 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
f318cec6 1805 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
cca7c2f5 1806 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1fe8141e 1807 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
62b44f05 1808 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
929e754d 1809 ARM_FEATURE_PMU, /* has PMU support */
91db4642 1810 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1e577cc7 1811 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
cc2ae7c9 1812 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
40f137e1
PB
1813};
1814
1815static inline int arm_feature(CPUARMState *env, int feature)
1816{
918f5dca 1817 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
1818}
1819
19e0fefa
FA
1820#if !defined(CONFIG_USER_ONLY)
1821/* Return true if exception levels below EL3 are in secure state,
1822 * or would be following an exception return to that level.
1823 * Unlike arm_is_secure() (which is always a question about the
1824 * _current_ state of the CPU) this doesn't care about the current
1825 * EL or mode.
1826 */
1827static inline bool arm_is_secure_below_el3(CPUARMState *env)
1828{
1829 if (arm_feature(env, ARM_FEATURE_EL3)) {
1830 return !(env->cp15.scr_el3 & SCR_NS);
1831 } else {
6b7f0b61 1832 /* If EL3 is not supported then the secure state is implementation
19e0fefa
FA
1833 * defined, in which case QEMU defaults to non-secure.
1834 */
1835 return false;
1836 }
1837}
1838
71205876
PM
1839/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1840static inline bool arm_is_el3_or_mon(CPUARMState *env)
19e0fefa
FA
1841{
1842 if (arm_feature(env, ARM_FEATURE_EL3)) {
1843 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1844 /* CPU currently in AArch64 state and EL3 */
1845 return true;
1846 } else if (!is_a64(env) &&
1847 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1848 /* CPU currently in AArch32 state and monitor mode */
1849 return true;
1850 }
1851 }
71205876
PM
1852 return false;
1853}
1854
1855/* Return true if the processor is in secure state */
1856static inline bool arm_is_secure(CPUARMState *env)
1857{
1858 if (arm_is_el3_or_mon(env)) {
1859 return true;
1860 }
19e0fefa
FA
1861 return arm_is_secure_below_el3(env);
1862}
1863
1864#else
1865static inline bool arm_is_secure_below_el3(CPUARMState *env)
1866{
1867 return false;
1868}
1869
1870static inline bool arm_is_secure(CPUARMState *env)
1871{
1872 return false;
1873}
1874#endif
1875
f7778444
RH
1876/**
1877 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
1878 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
1879 * "for all purposes other than a direct read or write access of HCR_EL2."
1880 * Not included here is HCR_RW.
1881 */
1882uint64_t arm_hcr_el2_eff(CPUARMState *env);
1883
1f79ee32
PM
1884/* Return true if the specified exception level is running in AArch64 state. */
1885static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1886{
446c81ab
PM
1887 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1888 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1f79ee32 1889 */
446c81ab
PM
1890 assert(el >= 1 && el <= 3);
1891 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
592125f8 1892
446c81ab
PM
1893 /* The highest exception level is always at the maximum supported
1894 * register width, and then lower levels have a register width controlled
1895 * by bits in the SCR or HCR registers.
1f79ee32 1896 */
446c81ab
PM
1897 if (el == 3) {
1898 return aa64;
1899 }
1900
1901 if (arm_feature(env, ARM_FEATURE_EL3)) {
1902 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1903 }
1904
1905 if (el == 2) {
1906 return aa64;
1907 }
1908
1909 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1910 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1911 }
1912
1913 return aa64;
1f79ee32
PM
1914}
1915
3f342b9e
SF
1916/* Function for determing whether guest cp register reads and writes should
1917 * access the secure or non-secure bank of a cp register. When EL3 is
1918 * operating in AArch32 state, the NS-bit determines whether the secure
1919 * instance of a cp register should be used. When EL3 is AArch64 (or if
1920 * it doesn't exist at all) then there is no register banking, and all
1921 * accesses are to the non-secure version.
1922 */
1923static inline bool access_secure_reg(CPUARMState *env)
1924{
1925 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1926 !arm_el_is_aa64(env, 3) &&
1927 !(env->cp15.scr_el3 & SCR_NS));
1928
1929 return ret;
1930}
1931
ea30a4b8
FA
1932/* Macros for accessing a specified CP register bank */
1933#define A32_BANKED_REG_GET(_env, _regname, _secure) \
1934 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1935
1936#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
1937 do { \
1938 if (_secure) { \
1939 (_env)->cp15._regname##_s = (_val); \
1940 } else { \
1941 (_env)->cp15._regname##_ns = (_val); \
1942 } \
1943 } while (0)
1944
1945/* Macros for automatically accessing a specific CP register bank depending on
1946 * the current secure state of the system. These macros are not intended for
1947 * supporting instruction translation reads/writes as these are dependent
1948 * solely on the SCR.NS bit and not the mode.
1949 */
1950#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
1951 A32_BANKED_REG_GET((_env), _regname, \
2cde031f 1952 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
ea30a4b8
FA
1953
1954#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
1955 A32_BANKED_REG_SET((_env), _regname, \
2cde031f 1956 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
ea30a4b8
FA
1957 (_val))
1958
0442428a 1959void arm_cpu_list(void);
012a906b
GB
1960uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1961 uint32_t cur_el, bool secure);
40f137e1 1962
9ee6e8bb 1963/* Interface between CPU and Interrupt controller. */
7ecdaa4a
PM
1964#ifndef CONFIG_USER_ONLY
1965bool armv7m_nvic_can_take_pending_exception(void *opaque);
1966#else
1967static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1968{
1969 return true;
1970}
1971#endif
2fb50a33
PM
1972/**
1973 * armv7m_nvic_set_pending: mark the specified exception as pending
1974 * @opaque: the NVIC
1975 * @irq: the exception number to mark pending
1976 * @secure: false for non-banked exceptions or for the nonsecure
1977 * version of a banked exception, true for the secure version of a banked
1978 * exception.
1979 *
1980 * Marks the specified exception as pending. Note that we will assert()
1981 * if @secure is true and @irq does not specify one of the fixed set
1982 * of architecturally banked exceptions.
1983 */
1984void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
5ede82b8
PM
1985/**
1986 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
1987 * @opaque: the NVIC
1988 * @irq: the exception number to mark pending
1989 * @secure: false for non-banked exceptions or for the nonsecure
1990 * version of a banked exception, true for the secure version of a banked
1991 * exception.
1992 *
1993 * Similar to armv7m_nvic_set_pending(), but specifically for derived
1994 * exceptions (exceptions generated in the course of trying to take
1995 * a different exception).
1996 */
1997void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
a99ba8ab
PM
1998/**
1999 * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2000 * @opaque: the NVIC
2001 * @irq: the exception number to mark pending
2002 * @secure: false for non-banked exceptions or for the nonsecure
2003 * version of a banked exception, true for the secure version of a banked
2004 * exception.
2005 *
2006 * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2007 * generated in the course of lazy stacking of FP registers.
2008 */
2009void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
6c948518
PM
2010/**
2011 * armv7m_nvic_get_pending_irq_info: return highest priority pending
2012 * exception, and whether it targets Secure state
2013 * @opaque: the NVIC
2014 * @pirq: set to pending exception number
2015 * @ptargets_secure: set to whether pending exception targets Secure
2016 *
2017 * This function writes the number of the highest priority pending
2018 * exception (the one which would be made active by
2019 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2020 * to true if the current highest priority pending exception should
2021 * be taken to Secure state, false for NS.
2022 */
2023void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2024 bool *ptargets_secure);
5cb18069
PM
2025/**
2026 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2027 * @opaque: the NVIC
2028 *
2029 * Move the current highest priority pending exception from the pending
2030 * state to the active state, and update v7m.exception to indicate that
2031 * it is the exception currently being handled.
5cb18069 2032 */
6c948518 2033void armv7m_nvic_acknowledge_irq(void *opaque);
aa488fe3
PM
2034/**
2035 * armv7m_nvic_complete_irq: complete specified interrupt or exception
2036 * @opaque: the NVIC
2037 * @irq: the exception number to complete
5cb18069 2038 * @secure: true if this exception was secure
aa488fe3
PM
2039 *
2040 * Returns: -1 if the irq was not active
2041 * 1 if completing this irq brought us back to base (no active irqs)
2042 * 0 if there is still an irq active after this one was completed
2043 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2044 */
5cb18069 2045int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
b593c2b8
PM
2046/**
2047 * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2048 * @opaque: the NVIC
2049 * @irq: the exception number to mark pending
2050 * @secure: false for non-banked exceptions or for the nonsecure
2051 * version of a banked exception, true for the secure version of a banked
2052 * exception.
2053 *
2054 * Return whether an exception is "ready", i.e. whether the exception is
2055 * enabled and is configured at a priority which would allow it to
2056 * interrupt the current execution priority. This controls whether the
2057 * RDY bit for it in the FPCCR is set.
2058 */
2059bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
42a6686b
PM
2060/**
2061 * armv7m_nvic_raw_execution_priority: return the raw execution priority
2062 * @opaque: the NVIC
2063 *
2064 * Returns: the raw execution priority as defined by the v8M architecture.
2065 * This is the execution priority minus the effects of AIRCR.PRIS,
2066 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2067 * (v8M ARM ARM I_PKLD.)
2068 */
2069int armv7m_nvic_raw_execution_priority(void *opaque);
5d479199
PM
2070/**
2071 * armv7m_nvic_neg_prio_requested: return true if the requested execution
2072 * priority is negative for the specified security state.
2073 * @opaque: the NVIC
2074 * @secure: the security state to test
2075 * This corresponds to the pseudocode IsReqExecPriNeg().
2076 */
2077#ifndef CONFIG_USER_ONLY
2078bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2079#else
2080static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2081{
2082 return false;
2083}
2084#endif
9ee6e8bb 2085
4b6a83fb
PM
2086/* Interface for defining coprocessor registers.
2087 * Registers are defined in tables of arm_cp_reginfo structs
2088 * which are passed to define_arm_cp_regs().
2089 */
2090
2091/* When looking up a coprocessor register we look for it
2092 * via an integer which encodes all of:
2093 * coprocessor number
2094 * Crn, Crm, opc1, opc2 fields
2095 * 32 or 64 bit register (ie is it accessed via MRC/MCR
2096 * or via MRRC/MCRR?)
51a79b03 2097 * non-secure/secure bank (AArch32 only)
4b6a83fb
PM
2098 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2099 * (In this case crn and opc2 should be zero.)
f5a0a5a5
PM
2100 * For AArch64, there is no 32/64 bit size distinction;
2101 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2102 * and 4 bit CRn and CRm. The encoding patterns are chosen
2103 * to be easy to convert to and from the KVM encodings, and also
2104 * so that the hashtable can contain both AArch32 and AArch64
2105 * registers (to allow for interprocessing where we might run
2106 * 32 bit code on a 64 bit core).
4b6a83fb 2107 */
f5a0a5a5
PM
2108/* This bit is private to our hashtable cpreg; in KVM register
2109 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2110 * in the upper bits of the 64 bit ID.
2111 */
2112#define CP_REG_AA64_SHIFT 28
2113#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2114
51a79b03
PM
2115/* To enable banking of coprocessor registers depending on ns-bit we
2116 * add a bit to distinguish between secure and non-secure cpregs in the
2117 * hashtable.
2118 */
2119#define CP_REG_NS_SHIFT 29
2120#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2121
2122#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
2123 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
2124 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
4b6a83fb 2125
f5a0a5a5
PM
2126#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2127 (CP_REG_AA64_MASK | \
2128 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
2129 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
2130 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
2131 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
2132 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
2133 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2134
721fae12
PM
2135/* Convert a full 64 bit KVM register ID to the truncated 32 bit
2136 * version used as a key for the coprocessor register hashtable
2137 */
2138static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2139{
2140 uint32_t cpregid = kvmid;
f5a0a5a5
PM
2141 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2142 cpregid |= CP_REG_AA64_MASK;
51a79b03
PM
2143 } else {
2144 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2145 cpregid |= (1 << 15);
2146 }
2147
2148 /* KVM is always non-secure so add the NS flag on AArch32 register
2149 * entries.
2150 */
2151 cpregid |= 1 << CP_REG_NS_SHIFT;
721fae12
PM
2152 }
2153 return cpregid;
2154}
2155
2156/* Convert a truncated 32 bit hashtable key into the full
2157 * 64 bit KVM register ID.
2158 */
2159static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2160{
f5a0a5a5
PM
2161 uint64_t kvmid;
2162
2163 if (cpregid & CP_REG_AA64_MASK) {
2164 kvmid = cpregid & ~CP_REG_AA64_MASK;
2165 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
721fae12 2166 } else {
f5a0a5a5
PM
2167 kvmid = cpregid & ~(1 << 15);
2168 if (cpregid & (1 << 15)) {
2169 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2170 } else {
2171 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2172 }
721fae12
PM
2173 }
2174 return kvmid;
2175}
2176
4b6a83fb 2177/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
fe03d45f 2178 * special-behaviour cp reg and bits [11..8] indicate what behaviour
4b6a83fb
PM
2179 * it has. Otherwise it is a simple cp reg, where CONST indicates that
2180 * TCG can assume the value to be constant (ie load at translate time)
2181 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2182 * indicates that the TB should not be ended after a write to this register
2183 * (the default is that the TB ends after cp writes). OVERRIDE permits
2184 * a register definition to override a previous definition for the
2185 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2186 * old must have the OVERRIDE bit set.
7a0e58fa
PM
2187 * ALIAS indicates that this register is an alias view of some underlying
2188 * state which is also visible via another register, and that the other
b061a82b
SF
2189 * register is handling migration and reset; registers marked ALIAS will not be
2190 * migrated but may have their state set by syncing of register state from KVM.
7a0e58fa
PM
2191 * NO_RAW indicates that this register has no underlying state and does not
2192 * support raw access for state saving/loading; it will not be used for either
2193 * migration or KVM state synchronization. (Typically this is for "registers"
2194 * which are actually used as instructions for cache maintenance and so on.)
2452731c
PM
2195 * IO indicates that this register does I/O and therefore its accesses
2196 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
2197 * registers which implement clocks or timers require this.
4b6a83fb 2198 */
fe03d45f
RH
2199#define ARM_CP_SPECIAL 0x0001
2200#define ARM_CP_CONST 0x0002
2201#define ARM_CP_64BIT 0x0004
2202#define ARM_CP_SUPPRESS_TB_END 0x0008
2203#define ARM_CP_OVERRIDE 0x0010
2204#define ARM_CP_ALIAS 0x0020
2205#define ARM_CP_IO 0x0040
2206#define ARM_CP_NO_RAW 0x0080
2207#define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100)
2208#define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200)
2209#define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300)
2210#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400)
2211#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500)
2212#define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
2213#define ARM_CP_FPU 0x1000
490aa7f1 2214#define ARM_CP_SVE 0x2000
1f163787 2215#define ARM_CP_NO_GDB 0x4000
4b6a83fb 2216/* Used only as a terminator for ARMCPRegInfo lists */
fe03d45f 2217#define ARM_CP_SENTINEL 0xffff
4b6a83fb 2218/* Mask of only the flag bits in a type field */
1f163787 2219#define ARM_CP_FLAG_MASK 0x70ff
4b6a83fb 2220
f5a0a5a5
PM
2221/* Valid values for ARMCPRegInfo state field, indicating which of
2222 * the AArch32 and AArch64 execution states this register is visible in.
2223 * If the reginfo doesn't explicitly specify then it is AArch32 only.
2224 * If the reginfo is declared to be visible in both states then a second
2225 * reginfo is synthesised for the AArch32 view of the AArch64 register,
2226 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2227 * Note that we rely on the values of these enums as we iterate through
2228 * the various states in some places.
2229 */
2230enum {
2231 ARM_CP_STATE_AA32 = 0,
2232 ARM_CP_STATE_AA64 = 1,
2233 ARM_CP_STATE_BOTH = 2,
2234};
2235
c3e30260
FA
2236/* ARM CP register secure state flags. These flags identify security state
2237 * attributes for a given CP register entry.
2238 * The existence of both or neither secure and non-secure flags indicates that
2239 * the register has both a secure and non-secure hash entry. A single one of
2240 * these flags causes the register to only be hashed for the specified
2241 * security state.
2242 * Although definitions may have any combination of the S/NS bits, each
2243 * registered entry will only have one to identify whether the entry is secure
2244 * or non-secure.
2245 */
2246enum {
2247 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
2248 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
2249};
2250
4b6a83fb
PM
2251/* Return true if cptype is a valid type field. This is used to try to
2252 * catch errors where the sentinel has been accidentally left off the end
2253 * of a list of registers.
2254 */
2255static inline bool cptype_valid(int cptype)
2256{
2257 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2258 || ((cptype & ARM_CP_SPECIAL) &&
34affeef 2259 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
4b6a83fb
PM
2260}
2261
2262/* Access rights:
2263 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2264 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2265 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2266 * (ie any of the privileged modes in Secure state, or Monitor mode).
2267 * If a register is accessible in one privilege level it's always accessible
2268 * in higher privilege levels too. Since "Secure PL1" also follows this rule
2269 * (ie anything visible in PL2 is visible in S-PL1, some things are only
2270 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2271 * terminology a little and call this PL3.
f5a0a5a5
PM
2272 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2273 * with the ELx exception levels.
4b6a83fb
PM
2274 *
2275 * If access permissions for a register are more complex than can be
2276 * described with these bits, then use a laxer set of restrictions, and
2277 * do the more restrictive/complex check inside a helper function.
2278 */
2279#define PL3_R 0x80
2280#define PL3_W 0x40
2281#define PL2_R (0x20 | PL3_R)
2282#define PL2_W (0x10 | PL3_W)
2283#define PL1_R (0x08 | PL2_R)
2284#define PL1_W (0x04 | PL2_W)
2285#define PL0_R (0x02 | PL1_R)
2286#define PL0_W (0x01 | PL1_W)
2287
b5bd7440
AB
2288/*
2289 * For user-mode some registers are accessible to EL0 via a kernel
2290 * trap-and-emulate ABI. In this case we define the read permissions
2291 * as actually being PL0_R. However some bits of any given register
2292 * may still be masked.
2293 */
2294#ifdef CONFIG_USER_ONLY
2295#define PL0U_R PL0_R
2296#else
2297#define PL0U_R PL1_R
2298#endif
2299
4b6a83fb
PM
2300#define PL3_RW (PL3_R | PL3_W)
2301#define PL2_RW (PL2_R | PL2_W)
2302#define PL1_RW (PL1_R | PL1_W)
2303#define PL0_RW (PL0_R | PL0_W)
2304
75502672
PM
2305/* Return the highest implemented Exception Level */
2306static inline int arm_highest_el(CPUARMState *env)
2307{
2308 if (arm_feature(env, ARM_FEATURE_EL3)) {
2309 return 3;
2310 }
2311 if (arm_feature(env, ARM_FEATURE_EL2)) {
2312 return 2;
2313 }
2314 return 1;
2315}
2316
15b3f556
PM
2317/* Return true if a v7M CPU is in Handler mode */
2318static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2319{
2320 return env->v7m.exception != 0;
2321}
2322
dcbff19b
GB
2323/* Return the current Exception Level (as per ARMv8; note that this differs
2324 * from the ARMv7 Privilege Level).
2325 */
2326static inline int arm_current_el(CPUARMState *env)
4b6a83fb 2327{
6d54ed3c 2328 if (arm_feature(env, ARM_FEATURE_M)) {
8bfc26ea
PM
2329 return arm_v7m_is_handler_mode(env) ||
2330 !(env->v7m.control[env->v7m.secure] & 1);
6d54ed3c
PM
2331 }
2332
592125f8 2333 if (is_a64(env)) {
f5a0a5a5
PM
2334 return extract32(env->pstate, 2, 2);
2335 }
2336
592125f8
FA
2337 switch (env->uncached_cpsr & 0x1f) {
2338 case ARM_CPU_MODE_USR:
4b6a83fb 2339 return 0;
592125f8
FA
2340 case ARM_CPU_MODE_HYP:
2341 return 2;
2342 case ARM_CPU_MODE_MON:
2343 return 3;
2344 default:
2345 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2346 /* If EL3 is 32-bit then all secure privileged modes run in
2347 * EL3
2348 */
2349 return 3;
2350 }
2351
2352 return 1;
4b6a83fb 2353 }
4b6a83fb
PM
2354}
2355
2356typedef struct ARMCPRegInfo ARMCPRegInfo;
2357
f59df3f2
PM
2358typedef enum CPAccessResult {
2359 /* Access is permitted */
2360 CP_ACCESS_OK = 0,
2361 /* Access fails due to a configurable trap or enable which would
2362 * result in a categorized exception syndrome giving information about
2363 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
38836a2c
PM
2364 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2365 * PL1 if in EL0, otherwise to the current EL).
f59df3f2
PM
2366 */
2367 CP_ACCESS_TRAP = 1,
2368 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2369 * Note that this is not a catch-all case -- the set of cases which may
2370 * result in this failure is specifically defined by the architecture.
2371 */
2372 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
38836a2c
PM
2373 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2374 CP_ACCESS_TRAP_EL2 = 3,
2375 CP_ACCESS_TRAP_EL3 = 4,
e7615726
PM
2376 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2377 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2378 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
f2cae609
PM
2379 /* Access fails and results in an exception syndrome for an FP access,
2380 * trapped directly to EL2 or EL3
2381 */
2382 CP_ACCESS_TRAP_FP_EL2 = 7,
2383 CP_ACCESS_TRAP_FP_EL3 = 8,
f59df3f2
PM
2384} CPAccessResult;
2385
c4241c7d
PM
2386/* Access functions for coprocessor registers. These cannot fail and
2387 * may not raise exceptions.
2388 */
2389typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2390typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2391 uint64_t value);
f59df3f2 2392/* Access permission check functions for coprocessor registers. */
3f208fd7
PM
2393typedef CPAccessResult CPAccessFn(CPUARMState *env,
2394 const ARMCPRegInfo *opaque,
2395 bool isread);
4b6a83fb
PM
2396/* Hook function for register reset */
2397typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2398
2399#define CP_ANY 0xff
2400
2401/* Definition of an ARM coprocessor register */
2402struct ARMCPRegInfo {
2403 /* Name of register (useful mainly for debugging, need not be unique) */
2404 const char *name;
2405 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2406 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2407 * 'wildcard' field -- any value of that field in the MRC/MCR insn
2408 * will be decoded to this register. The register read and write
2409 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2410 * used by the program, so it is possible to register a wildcard and
2411 * then behave differently on read/write if necessary.
2412 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2413 * must both be zero.
f5a0a5a5
PM
2414 * For AArch64-visible registers, opc0 is also used.
2415 * Since there are no "coprocessors" in AArch64, cp is purely used as a
2416 * way to distinguish (for KVM's benefit) guest-visible system registers
2417 * from demuxed ones provided to preserve the "no side effects on
2418 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2419 * visible (to match KVM's encoding); cp==0 will be converted to
2420 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
4b6a83fb
PM
2421 */
2422 uint8_t cp;
2423 uint8_t crn;
2424 uint8_t crm;
f5a0a5a5 2425 uint8_t opc0;
4b6a83fb
PM
2426 uint8_t opc1;
2427 uint8_t opc2;
f5a0a5a5
PM
2428 /* Execution state in which this register is visible: ARM_CP_STATE_* */
2429 int state;
4b6a83fb
PM
2430 /* Register type: ARM_CP_* bits/values */
2431 int type;
2432 /* Access rights: PL*_[RW] */
2433 int access;
c3e30260
FA
2434 /* Security state: ARM_CP_SECSTATE_* bits/values */
2435 int secure;
4b6a83fb
PM
2436 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2437 * this register was defined: can be used to hand data through to the
2438 * register read/write functions, since they are passed the ARMCPRegInfo*.
2439 */
2440 void *opaque;
2441 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2442 * fieldoffset is non-zero, the reset value of the register.
2443 */
2444 uint64_t resetvalue;
c3e30260
FA
2445 /* Offset of the field in CPUARMState for this register.
2446 *
2447 * This is not needed if either:
4b6a83fb
PM
2448 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2449 * 2. both readfn and writefn are specified
2450 */
2451 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
c3e30260
FA
2452
2453 /* Offsets of the secure and non-secure fields in CPUARMState for the
2454 * register if it is banked. These fields are only used during the static
2455 * registration of a register. During hashing the bank associated
2456 * with a given security state is copied to fieldoffset which is used from
2457 * there on out.
2458 *
2459 * It is expected that register definitions use either fieldoffset or
2460 * bank_fieldoffsets in the definition but not both. It is also expected
2461 * that both bank offsets are set when defining a banked register. This
2462 * use indicates that a register is banked.
2463 */
2464 ptrdiff_t bank_fieldoffsets[2];
2465
f59df3f2
PM
2466 /* Function for making any access checks for this register in addition to
2467 * those specified by the 'access' permissions bits. If NULL, no extra
2468 * checks required. The access check is performed at runtime, not at
2469 * translate time.
2470 */
2471 CPAccessFn *accessfn;
4b6a83fb
PM
2472 /* Function for handling reads of this register. If NULL, then reads
2473 * will be done by loading from the offset into CPUARMState specified
2474 * by fieldoffset.
2475 */
2476 CPReadFn *readfn;
2477 /* Function for handling writes of this register. If NULL, then writes
2478 * will be done by writing to the offset into CPUARMState specified
2479 * by fieldoffset.
2480 */
2481 CPWriteFn *writefn;
7023ec7e
PM
2482 /* Function for doing a "raw" read; used when we need to copy
2483 * coprocessor state to the kernel for KVM or out for
2484 * migration. This only needs to be provided if there is also a
c4241c7d 2485 * readfn and it has side effects (for instance clear-on-read bits).
7023ec7e
PM
2486 */
2487 CPReadFn *raw_readfn;
2488 /* Function for doing a "raw" write; used when we need to copy KVM
2489 * kernel coprocessor state into userspace, or for inbound
2490 * migration. This only needs to be provided if there is also a
c4241c7d
PM
2491 * writefn and it masks out "unwritable" bits or has write-one-to-clear
2492 * or similar behaviour.
7023ec7e
PM
2493 */
2494 CPWriteFn *raw_writefn;
4b6a83fb
PM
2495 /* Function for resetting the register. If NULL, then reset will be done
2496 * by writing resetvalue to the field specified in fieldoffset. If
2497 * fieldoffset is 0 then no reset will be done.
2498 */
2499 CPResetFn *resetfn;
2500};
2501
2502/* Macros which are lvalues for the field in CPUARMState for the
2503 * ARMCPRegInfo *ri.
2504 */
2505#define CPREG_FIELD32(env, ri) \
2506 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2507#define CPREG_FIELD64(env, ri) \
2508 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2509
2510#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2511
2512void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2513 const ARMCPRegInfo *regs, void *opaque);
2514void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2515 const ARMCPRegInfo *regs, void *opaque);
2516static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2517{
2518 define_arm_cp_regs_with_opaque(cpu, regs, 0);
2519}
2520static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2521{
2522 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2523}
60322b39 2524const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
4b6a83fb 2525
6c5c0fec
AB
2526/*
2527 * Definition of an ARM co-processor register as viewed from
2528 * userspace. This is used for presenting sanitised versions of
2529 * registers to userspace when emulating the Linux AArch64 CPU
2530 * ID/feature ABI (advertised as HWCAP_CPUID).
2531 */
2532typedef struct ARMCPRegUserSpaceInfo {
2533 /* Name of register */
2534 const char *name;
2535
d040242e
AB
2536 /* Is the name actually a glob pattern */
2537 bool is_glob;
2538
6c5c0fec
AB
2539 /* Only some bits are exported to user space */
2540 uint64_t exported_bits;
2541
2542 /* Fixed bits are applied after the mask */
2543 uint64_t fixed_bits;
2544} ARMCPRegUserSpaceInfo;
2545
2546#define REGUSERINFO_SENTINEL { .name = NULL }
2547
2548void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2549
4b6a83fb 2550/* CPWriteFn that can be used to implement writes-ignored behaviour */
c4241c7d
PM
2551void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2552 uint64_t value);
4b6a83fb 2553/* CPReadFn that can be used for read-as-zero behaviour */
c4241c7d 2554uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
4b6a83fb 2555
f5a0a5a5
PM
2556/* CPResetFn that does nothing, for use if no reset is required even
2557 * if fieldoffset is non zero.
2558 */
2559void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2560
67ed771d
PM
2561/* Return true if this reginfo struct's field in the cpu state struct
2562 * is 64 bits wide.
2563 */
2564static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2565{
2566 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2567}
2568
dcbff19b 2569static inline bool cp_access_ok(int current_el,
4b6a83fb
PM
2570 const ARMCPRegInfo *ri, int isread)
2571{
dcbff19b 2572 return (ri->access >> ((current_el * 2) + isread)) & 1;
4b6a83fb
PM
2573}
2574
49a66191
PM
2575/* Raw read of a coprocessor register (as needed for migration, etc) */
2576uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2577
721fae12
PM
2578/**
2579 * write_list_to_cpustate
2580 * @cpu: ARMCPU
2581 *
2582 * For each register listed in the ARMCPU cpreg_indexes list, write
2583 * its value from the cpreg_values list into the ARMCPUState structure.
2584 * This updates TCG's working data structures from KVM data or
2585 * from incoming migration state.
2586 *
2587 * Returns: true if all register values were updated correctly,
2588 * false if some register was unknown or could not be written.
2589 * Note that we do not stop early on failure -- we will attempt
2590 * writing all registers in the list.
2591 */
2592bool write_list_to_cpustate(ARMCPU *cpu);
2593
2594/**
2595 * write_cpustate_to_list:
2596 * @cpu: ARMCPU
b698e4ee 2597 * @kvm_sync: true if this is for syncing back to KVM
721fae12
PM
2598 *
2599 * For each register listed in the ARMCPU cpreg_indexes list, write
2600 * its value from the ARMCPUState structure into the cpreg_values list.
2601 * This is used to copy info from TCG's working data structures into
2602 * KVM or for outbound migration.
2603 *
b698e4ee
PM
2604 * @kvm_sync is true if we are doing this in order to sync the
2605 * register state back to KVM. In this case we will only update
2606 * values in the list if the previous list->cpustate sync actually
2607 * successfully wrote the CPU state. Otherwise we will keep the value
2608 * that is in the list.
2609 *
721fae12
PM
2610 * Returns: true if all register values were read correctly,
2611 * false if some register was unknown or could not be read.
2612 * Note that we do not stop early on failure -- we will attempt
2613 * reading all registers in the list.
2614 */
b698e4ee 2615bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
721fae12 2616
9ee6e8bb
PB
2617#define ARM_CPUID_TI915T 0x54029152
2618#define ARM_CPUID_TI925T 0x54029252
40f137e1 2619
012a906b
GB
2620static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2621 unsigned int target_el)
043b7f8d
EI
2622{
2623 CPUARMState *env = cs->env_ptr;
dcbff19b 2624 unsigned int cur_el = arm_current_el(env);
57e3a0c7 2625 bool secure = arm_is_secure(env);
57e3a0c7
GB
2626 bool pstate_unmasked;
2627 int8_t unmasked = 0;
f7778444 2628 uint64_t hcr_el2;
57e3a0c7
GB
2629
2630 /* Don't take exceptions if they target a lower EL.
2631 * This check should catch any exceptions that would not be taken but left
2632 * pending.
2633 */
dfafd090
EI
2634 if (cur_el > target_el) {
2635 return false;
2636 }
043b7f8d 2637
f7778444
RH
2638 hcr_el2 = arm_hcr_el2_eff(env);
2639
043b7f8d
EI
2640 switch (excp_idx) {
2641 case EXCP_FIQ:
57e3a0c7
GB
2642 pstate_unmasked = !(env->daif & PSTATE_F);
2643 break;
2644
043b7f8d 2645 case EXCP_IRQ:
57e3a0c7
GB
2646 pstate_unmasked = !(env->daif & PSTATE_I);
2647 break;
2648
136e67e9 2649 case EXCP_VFIQ:
f7778444 2650 if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
136e67e9
EI
2651 /* VFIQs are only taken when hypervized and non-secure. */
2652 return false;
2653 }
2654 return !(env->daif & PSTATE_F);
2655 case EXCP_VIRQ:
f7778444 2656 if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
136e67e9
EI
2657 /* VIRQs are only taken when hypervized and non-secure. */
2658 return false;
2659 }
b5c633c5 2660 return !(env->daif & PSTATE_I);
043b7f8d
EI
2661 default:
2662 g_assert_not_reached();
2663 }
57e3a0c7
GB
2664
2665 /* Use the target EL, current execution state and SCR/HCR settings to
2666 * determine whether the corresponding CPSR bit is used to mask the
2667 * interrupt.
2668 */
2669 if ((target_el > cur_el) && (target_el != 1)) {
7cd6de3b
PM
2670 /* Exceptions targeting a higher EL may not be maskable */
2671 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2672 /* 64-bit masking rules are simple: exceptions to EL3
2673 * can't be masked, and exceptions to EL2 can only be
2674 * masked from Secure state. The HCR and SCR settings
2675 * don't affect the masking logic, only the interrupt routing.
2676 */
2677 if (target_el == 3 || !secure) {
2678 unmasked = 1;
2679 }
2680 } else {
2681 /* The old 32-bit-only environment has a more complicated
2682 * masking setup. HCR and SCR bits not only affect interrupt
2683 * routing but also change the behaviour of masking.
2684 */
2685 bool hcr, scr;
2686
2687 switch (excp_idx) {
2688 case EXCP_FIQ:
2689 /* If FIQs are routed to EL3 or EL2 then there are cases where
2690 * we override the CPSR.F in determining if the exception is
2691 * masked or not. If neither of these are set then we fall back
2692 * to the CPSR.F setting otherwise we further assess the state
2693 * below.
2694 */
f7778444 2695 hcr = hcr_el2 & HCR_FMO;
7cd6de3b
PM
2696 scr = (env->cp15.scr_el3 & SCR_FIQ);
2697
2698 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2699 * CPSR.F bit masks FIQ interrupts when taken in non-secure
2700 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2701 * when non-secure but only when FIQs are only routed to EL3.
2702 */
2703 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2704 break;
2705 case EXCP_IRQ:
2706 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2707 * we may override the CPSR.I masking when in non-secure state.
2708 * The SCR.IRQ setting has already been taken into consideration
2709 * when setting the target EL, so it does not have a further
2710 * affect here.
2711 */
f7778444 2712 hcr = hcr_el2 & HCR_IMO;
7cd6de3b
PM
2713 scr = false;
2714 break;
2715 default:
2716 g_assert_not_reached();
2717 }
2718
2719 if ((scr || hcr) && !secure) {
2720 unmasked = 1;
2721 }
57e3a0c7
GB
2722 }
2723 }
2724
2725 /* The PSTATE bits only mask the interrupt if we have not overriden the
2726 * ability above.
2727 */
2728 return unmasked || pstate_unmasked;
043b7f8d
EI
2729}
2730
ba1ba5cc
IM
2731#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2732#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
0dacec87 2733#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
ba1ba5cc 2734
9467d44c 2735#define cpu_signal_handler cpu_arm_signal_handler
c732abe2 2736#define cpu_list arm_cpu_list
9467d44c 2737
c1e37810
PM
2738/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2739 *
2740 * If EL3 is 64-bit:
2741 * + NonSecure EL1 & 0 stage 1
2742 * + NonSecure EL1 & 0 stage 2
2743 * + NonSecure EL2
2744 * + Secure EL1 & EL0
2745 * + Secure EL3
2746 * If EL3 is 32-bit:
2747 * + NonSecure PL1 & 0 stage 1
2748 * + NonSecure PL1 & 0 stage 2
2749 * + NonSecure PL2
2750 * + Secure PL0 & PL1
2751 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2752 *
2753 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2754 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2755 * may differ in access permissions even if the VA->PA map is the same
2756 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2757 * translation, which means that we have one mmu_idx that deals with two
2758 * concatenated translation regimes [this sort of combined s1+2 TLB is
2759 * architecturally permitted]
2760 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2761 * handling via the TLB. The only way to do a stage 1 translation without
2762 * the immediate stage 2 translation is via the ATS or AT system insns,
2763 * which can be slow-pathed and always do a page table walk.
2764 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2765 * translation regimes, because they map reasonably well to each other
2766 * and they can't both be active at the same time.
2767 * This gives us the following list of mmu_idx values:
2768 *
2769 * NS EL0 (aka NS PL0) stage 1+2
2770 * NS EL1 (aka NS PL1) stage 1+2
2771 * NS EL2 (aka NS PL2)
2772 * S EL3 (aka S PL1)
2773 * S EL0 (aka S PL0)
2774 * S EL1 (not used if EL3 is 32 bit)
2775 * NS EL0+1 stage 2
2776 *
2777 * (The last of these is an mmu_idx because we want to be able to use the TLB
2778 * for the accesses done as part of a stage 1 page table walk, rather than
2779 * having to walk the stage 2 page table over and over.)
2780 *
3bef7012
PM
2781 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2782 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2783 * NS EL2 if we ever model a Cortex-R52).
2784 *
2785 * M profile CPUs are rather different as they do not have a true MMU.
2786 * They have the following different MMU indexes:
2787 * User
2788 * Privileged
62593718
PM
2789 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2790 * Privileged, execution priority negative (ditto)
66787c78
PM
2791 * If the CPU supports the v8M Security Extension then there are also:
2792 * Secure User
2793 * Secure Privileged
62593718
PM
2794 * Secure User, execution priority negative
2795 * Secure Privileged, execution priority negative
3bef7012 2796 *
8bd5c820
PM
2797 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2798 * are not quite the same -- different CPU types (most notably M profile
2799 * vs A/R profile) would like to use MMU indexes with different semantics,
2800 * but since we don't ever need to use all of those in a single CPU we
2801 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2802 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2803 * the same for any particular CPU.
2804 * Variables of type ARMMUIdx are always full values, and the core
2805 * index values are in variables of type 'int'.
2806 *
c1e37810
PM
2807 * Our enumeration includes at the end some entries which are not "true"
2808 * mmu_idx values in that they don't have corresponding TLBs and are only
2809 * valid for doing slow path page table walks.
2810 *
2811 * The constant names here are patterned after the general style of the names
2812 * of the AT/ATS operations.
2813 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
62593718
PM
2814 * For M profile we arrange them to have a bit for priv, a bit for negpri
2815 * and a bit for secure.
c1e37810 2816 */
e7b921c2 2817#define ARM_MMU_IDX_A 0x10 /* A profile */
8bd5c820 2818#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
e7b921c2 2819#define ARM_MMU_IDX_M 0x40 /* M profile */
8bd5c820 2820
62593718
PM
2821/* meanings of the bits for M profile mmu idx values */
2822#define ARM_MMU_IDX_M_PRIV 0x1
2823#define ARM_MMU_IDX_M_NEGPRI 0x2
2824#define ARM_MMU_IDX_M_S 0x4
2825
8bd5c820
PM
2826#define ARM_MMU_IDX_TYPE_MASK (~0x7)
2827#define ARM_MMU_IDX_COREIDX_MASK 0x7
2828
c1e37810 2829typedef enum ARMMMUIdx {
8bd5c820
PM
2830 ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2831 ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2832 ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2833 ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2834 ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2835 ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2836 ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
e7b921c2
PM
2837 ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2838 ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
62593718
PM
2839 ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
2840 ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
2841 ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
2842 ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
2843 ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
2844 ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
c1e37810
PM
2845 /* Indexes below here don't have TLBs and are used only for AT system
2846 * instructions or for the first stage of an S12 page table walk.
2847 */
8bd5c820
PM
2848 ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2849 ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
c1e37810
PM
2850} ARMMMUIdx;
2851
8bd5c820
PM
2852/* Bit macros for the core-mmu-index values for each index,
2853 * for use when calling tlb_flush_by_mmuidx() and friends.
2854 */
2855typedef enum ARMMMUIdxBit {
2856 ARMMMUIdxBit_S12NSE0 = 1 << 0,
2857 ARMMMUIdxBit_S12NSE1 = 1 << 1,
2858 ARMMMUIdxBit_S1E2 = 1 << 2,
2859 ARMMMUIdxBit_S1E3 = 1 << 3,
2860 ARMMMUIdxBit_S1SE0 = 1 << 4,
2861 ARMMMUIdxBit_S1SE1 = 1 << 5,
2862 ARMMMUIdxBit_S2NS = 1 << 6,
e7b921c2
PM
2863 ARMMMUIdxBit_MUser = 1 << 0,
2864 ARMMMUIdxBit_MPriv = 1 << 1,
62593718
PM
2865 ARMMMUIdxBit_MUserNegPri = 1 << 2,
2866 ARMMMUIdxBit_MPrivNegPri = 1 << 3,
2867 ARMMMUIdxBit_MSUser = 1 << 4,
2868 ARMMMUIdxBit_MSPriv = 1 << 5,
2869 ARMMMUIdxBit_MSUserNegPri = 1 << 6,
2870 ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
8bd5c820
PM
2871} ARMMMUIdxBit;
2872
f79fbf39 2873#define MMU_USER_IDX 0
c1e37810 2874
8bd5c820
PM
2875static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2876{
2877 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2878}
2879
2880static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2881{
e7b921c2
PM
2882 if (arm_feature(env, ARM_FEATURE_M)) {
2883 return mmu_idx | ARM_MMU_IDX_M;
2884 } else {
2885 return mmu_idx | ARM_MMU_IDX_A;
2886 }
8bd5c820
PM
2887}
2888
c1e37810
PM
2889/* Return the exception level we're running at if this is our mmu_idx */
2890static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
6ebbf390 2891{
8bd5c820
PM
2892 switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2893 case ARM_MMU_IDX_A:
2894 return mmu_idx & 3;
e7b921c2 2895 case ARM_MMU_IDX_M:
62593718 2896 return mmu_idx & ARM_MMU_IDX_M_PRIV;
8bd5c820
PM
2897 default:
2898 g_assert_not_reached();
2899 }
c1e37810
PM
2900}
2901
fa6252a9
PM
2902/*
2903 * Return the MMU index for a v7M CPU with all relevant information
2904 * manually specified.
2905 */
2906ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
2907 bool secstate, bool priv, bool negpri);
2908
ec8e3340 2909/* Return the MMU index for a v7M CPU in the specified security and
65e4655c 2910 * privilege state.
ec8e3340 2911 */
65e4655c
RH
2912ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2913 bool secstate, bool priv);
b81ac0eb 2914
ec8e3340 2915/* Return the MMU index for a v7M CPU in the specified security state */
65e4655c 2916ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
ec8e3340 2917
50494a27
RH
2918/**
2919 * cpu_mmu_index:
2920 * @env: The cpu environment
2921 * @ifetch: True for code access, false for data access.
2922 *
2923 * Return the core mmu index for the current translation regime.
2924 * This function is used by generic TCG code paths.
2925 */
65e4655c 2926int cpu_mmu_index(CPUARMState *env, bool ifetch);
6ebbf390 2927
9e273ef2
PM
2928/* Indexes used when registering address spaces with cpu_address_space_init */
2929typedef enum ARMASIdx {
2930 ARMASIdx_NS = 0,
2931 ARMASIdx_S = 1,
2932} ARMASIdx;
2933
533e93f1 2934/* Return the Exception Level targeted by debug exceptions. */
3a298203
PM
2935static inline int arm_debug_target_el(CPUARMState *env)
2936{
81669b8b
SF
2937 bool secure = arm_is_secure(env);
2938 bool route_to_el2 = false;
2939
2940 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2941 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
b281ba42 2942 env->cp15.mdcr_el2 & MDCR_TDE;
81669b8b
SF
2943 }
2944
2945 if (route_to_el2) {
2946 return 2;
2947 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2948 !arm_el_is_aa64(env, 3) && secure) {
2949 return 3;
2950 } else {
2951 return 1;
2952 }
3a298203
PM
2953}
2954
43bbce7f
PM
2955static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2956{
2957 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2958 * CSSELR is RAZ/WI.
2959 */
2960 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2961}
2962
22af9025 2963/* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
3a298203
PM
2964static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2965{
22af9025
AB
2966 int cur_el = arm_current_el(env);
2967 int debug_el;
2968
2969 if (cur_el == 3) {
2970 return false;
533e93f1
PM
2971 }
2972
22af9025
AB
2973 /* MDCR_EL3.SDD disables debug events from Secure state */
2974 if (arm_is_secure_below_el3(env)
2975 && extract32(env->cp15.mdcr_el3, 16, 1)) {
2976 return false;
3a298203 2977 }
22af9025
AB
2978
2979 /*
2980 * Same EL to same EL debug exceptions need MDSCR_KDE enabled
2981 * while not masking the (D)ebug bit in DAIF.
2982 */
2983 debug_el = arm_debug_target_el(env);
2984
2985 if (cur_el == debug_el) {
2986 return extract32(env->cp15.mdscr_el1, 13, 1)
2987 && !(env->daif & PSTATE_D);
2988 }
2989
2990 /* Otherwise the debug target needs to be a higher EL */
2991 return debug_el > cur_el;
3a298203
PM
2992}
2993
2994static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2995{
533e93f1
PM
2996 int el = arm_current_el(env);
2997
2998 if (el == 0 && arm_el_is_aa64(env, 1)) {
3a298203
PM
2999 return aa64_generate_debug_exceptions(env);
3000 }
533e93f1
PM
3001
3002 if (arm_is_secure(env)) {
3003 int spd;
3004
3005 if (el == 0 && (env->cp15.sder & 1)) {
3006 /* SDER.SUIDEN means debug exceptions from Secure EL0
3007 * are always enabled. Otherwise they are controlled by
3008 * SDCR.SPD like those from other Secure ELs.
3009 */
3010 return true;
3011 }
3012
3013 spd = extract32(env->cp15.mdcr_el3, 14, 2);
3014 switch (spd) {
3015 case 1:
3016 /* SPD == 0b01 is reserved, but behaves as 0b00. */
3017 case 0:
3018 /* For 0b00 we return true if external secure invasive debug
3019 * is enabled. On real hardware this is controlled by external
3020 * signals to the core. QEMU always permits debug, and behaves
3021 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3022 */
3023 return true;
3024 case 2:
3025 return false;
3026 case 3:
3027 return true;
3028 }
3029 }
3030
3031 return el != 2;
3a298203
PM
3032}
3033
3034/* Return true if debugging exceptions are currently enabled.
3035 * This corresponds to what in ARM ARM pseudocode would be
3036 * if UsingAArch32() then
3037 * return AArch32.GenerateDebugExceptions()
3038 * else
3039 * return AArch64.GenerateDebugExceptions()
3040 * We choose to push the if() down into this function for clarity,
3041 * since the pseudocode has it at all callsites except for the one in
3042 * CheckSoftwareStep(), where it is elided because both branches would
3043 * always return the same value.
3a298203
PM
3044 */
3045static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3046{
3047 if (env->aarch64) {
3048 return aa64_generate_debug_exceptions(env);
3049 } else {
3050 return aa32_generate_debug_exceptions(env);
3051 }
3052}
3053
3054/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3055 * implicitly means this always returns false in pre-v8 CPUs.)
3056 */
3057static inline bool arm_singlestep_active(CPUARMState *env)
3058{
3059 return extract32(env->cp15.mdscr_el1, 0, 1)
3060 && arm_el_is_aa64(env, arm_debug_target_el(env))
3061 && arm_generate_debug_exceptions(env);
3062}
3063
f9fd40eb
PB
3064static inline bool arm_sctlr_b(CPUARMState *env)
3065{
3066 return
3067 /* We need not implement SCTLR.ITD in user-mode emulation, so
3068 * let linux-user ignore the fact that it conflicts with SCTLR_B.
3069 * This lets people run BE32 binaries with "-cpu any".
3070 */
3071#ifndef CONFIG_USER_ONLY
3072 !arm_feature(env, ARM_FEATURE_V7) &&
3073#endif
3074 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3075}
3076
64e40755
RH
3077static inline uint64_t arm_sctlr(CPUARMState *env, int el)
3078{
3079 if (el == 0) {
3080 /* FIXME: ARMv8.1-VHE S2 translation regime. */
3081 return env->cp15.sctlr_el[1];
3082 } else {
3083 return env->cp15.sctlr_el[el];
3084 }
3085}
3086
3087
ed50ff78
PC
3088/* Return true if the processor is in big-endian mode. */
3089static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3090{
ed50ff78
PC
3091 /* In 32bit endianness is determined by looking at CPSR's E bit */
3092 if (!is_a64(env)) {
b2e62d9a
PC
3093 return
3094#ifdef CONFIG_USER_ONLY
3095 /* In system mode, BE32 is modelled in line with the
3096 * architecture (as word-invariant big-endianness), where loads
3097 * and stores are done little endian but from addresses which
3098 * are adjusted by XORing with the appropriate constant. So the
3099 * endianness to use for the raw data access is not affected by
3100 * SCTLR.B.
3101 * In user mode, however, we model BE32 as byte-invariant
3102 * big-endianness (because user-only code cannot tell the
3103 * difference), and so we need to use a data access endianness
3104 * that depends on SCTLR.B.
3105 */
3106 arm_sctlr_b(env) ||
3107#endif
3108 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
64e40755
RH
3109 } else {
3110 int cur_el = arm_current_el(env);
3111 uint64_t sctlr = arm_sctlr(env, cur_el);
ed50ff78 3112
64e40755 3113 return (sctlr & (cur_el ? SCTLR_EE : SCTLR_E0E)) != 0;
ed50ff78 3114 }
ed50ff78
PC
3115}
3116
4f7c64b3 3117typedef CPUARMState CPUArchState;
2161a612 3118typedef ARMCPU ArchCPU;
4f7c64b3 3119
022c62cb 3120#include "exec/cpu-all.h"
622ed360 3121
3926cc84
AG
3122/* Bit usage in the TB flags field: bit 31 indicates whether we are
3123 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
c1e37810
PM
3124 * We put flags which are shared between 32 and 64 bit mode at the top
3125 * of the word, and flags which apply to only one mode at the bottom.
3926cc84 3126 */
aad821ac
RH
3127FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
3128FIELD(TBFLAG_ANY, MMUIDX, 28, 3)
3129FIELD(TBFLAG_ANY, SS_ACTIVE, 27, 1)
3130FIELD(TBFLAG_ANY, PSTATE_SS, 26, 1)
9dbbc748 3131/* Target EL if we take a floating-point-disabled exception */
aad821ac
RH
3132FIELD(TBFLAG_ANY, FPEXC_EL, 24, 2)
3133FIELD(TBFLAG_ANY, BE_DATA, 23, 1)
3926cc84
AG
3134
3135/* Bit usage when in AArch32 state: */
aad821ac
RH
3136FIELD(TBFLAG_A32, THUMB, 0, 1)
3137FIELD(TBFLAG_A32, VECLEN, 1, 3)
3138FIELD(TBFLAG_A32, VECSTRIDE, 4, 2)
ea7ac69d
PM
3139/*
3140 * We store the bottom two bits of the CPAR as TB flags and handle
3141 * checks on the other bits at runtime. This shares the same bits as
3142 * VECSTRIDE, which is OK as no XScale CPU has VFP.
3143 */
3144FIELD(TBFLAG_A32, XSCALE_CPAR, 4, 2)
7fbb535f
PM
3145/*
3146 * Indicates whether cp register reads and writes by guest code should access
3147 * the secure or nonsecure bank of banked registers; note that this is not
3148 * the same thing as the current security state of the processor!
3149 */
3150FIELD(TBFLAG_A32, NS, 6, 1)
aad821ac
RH
3151FIELD(TBFLAG_A32, VFPEN, 7, 1)
3152FIELD(TBFLAG_A32, CONDEXEC, 8, 8)
3153FIELD(TBFLAG_A32, SCTLR_B, 16, 1)
e33cf0f8
PM
3154/* For M profile only, set if FPCCR.LSPACT is set */
3155FIELD(TBFLAG_A32, LSPACT, 18, 1)
6000531e
PM
3156/* For M profile only, set if we must create a new FP context */
3157FIELD(TBFLAG_A32, NEW_FP_CTXT_NEEDED, 19, 1)
6d60c67a
PM
3158/* For M profile only, set if FPCCR.S does not match current security state */
3159FIELD(TBFLAG_A32, FPCCR_S_WRONG, 20, 1)
064c379c 3160/* For M profile only, Handler (ie not Thread) mode */
aad821ac 3161FIELD(TBFLAG_A32, HANDLER, 21, 1)
4730fb85 3162/* For M profile only, whether we should generate stack-limit checks */
aad821ac 3163FIELD(TBFLAG_A32, STACKCHECK, 22, 1)
3926cc84 3164
86fb3fa4 3165/* Bit usage when in AArch64 state */
476a4692 3166FIELD(TBFLAG_A64, TBII, 0, 2)
aad821ac
RH
3167FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3168FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
0816ef1b 3169FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
08f1434a
RH
3170FIELD(TBFLAG_A64, BT, 9, 1)
3171FIELD(TBFLAG_A64, BTYPE, 10, 2)
4a9ee99d 3172FIELD(TBFLAG_A64, TBID, 12, 2)
a1705768 3173
f9fd40eb
PB
3174static inline bool bswap_code(bool sctlr_b)
3175{
3176#ifdef CONFIG_USER_ONLY
3177 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3178 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3179 * would also end up as a mixed-endian mode with BE code, LE data.
3180 */
3181 return
3182#ifdef TARGET_WORDS_BIGENDIAN
3183 1 ^
3184#endif
3185 sctlr_b;
3186#else
e334bd31
PB
3187 /* All code access in ARM is little endian, and there are no loaders
3188 * doing swaps that need to be reversed
f9fd40eb
PB
3189 */
3190 return 0;
3191#endif
3192}
3193
c3ae85fc
PB
3194#ifdef CONFIG_USER_ONLY
3195static inline bool arm_cpu_bswap_data(CPUARMState *env)
3196{
3197 return
3198#ifdef TARGET_WORDS_BIGENDIAN
3199 1 ^
3200#endif
3201 arm_cpu_data_is_big_endian(env);
3202}
3203#endif
3204
a9e01311
RH
3205void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3206 target_ulong *cs_base, uint32_t *flags);
6b917547 3207
98128601
RH
3208enum {
3209 QEMU_PSCI_CONDUIT_DISABLED = 0,
3210 QEMU_PSCI_CONDUIT_SMC = 1,
3211 QEMU_PSCI_CONDUIT_HVC = 2,
3212};
3213
017518c1
PM
3214#ifndef CONFIG_USER_ONLY
3215/* Return the address space index to use for a memory access */
3216static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3217{
3218 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3219}
5ce4ff65
PM
3220
3221/* Return the AddressSpace to use for a memory access
3222 * (which depends on whether the access is S or NS, and whether
3223 * the board gave us a separate AddressSpace for S accesses).
3224 */
3225static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3226{
3227 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3228}
017518c1
PM
3229#endif
3230
bd7d00fc 3231/**
b5c53d1b
AL
3232 * arm_register_pre_el_change_hook:
3233 * Register a hook function which will be called immediately before this
bd7d00fc
PM
3234 * CPU changes exception level or mode. The hook function will be
3235 * passed a pointer to the ARMCPU and the opaque data pointer passed
3236 * to this function when the hook was registered.
b5c53d1b
AL
3237 *
3238 * Note that if a pre-change hook is called, any registered post-change hooks
3239 * are guaranteed to subsequently be called.
bd7d00fc 3240 */
b5c53d1b 3241void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
bd7d00fc 3242 void *opaque);
b5c53d1b
AL
3243/**
3244 * arm_register_el_change_hook:
3245 * Register a hook function which will be called immediately after this
3246 * CPU changes exception level or mode. The hook function will be
3247 * passed a pointer to the ARMCPU and the opaque data pointer passed
3248 * to this function when the hook was registered.
3249 *
3250 * Note that any registered hooks registered here are guaranteed to be called
3251 * if pre-change hooks have been.
3252 */
3253void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3254 *opaque);
bd7d00fc 3255
9a2b5256
RH
3256/**
3257 * aa32_vfp_dreg:
3258 * Return a pointer to the Dn register within env in 32-bit mode.
3259 */
3260static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3261{
c39c2b90 3262 return &env->vfp.zregs[regno >> 1].d[regno & 1];
9a2b5256
RH
3263}
3264
3265/**
3266 * aa32_vfp_qreg:
3267 * Return a pointer to the Qn register within env in 32-bit mode.
3268 */
3269static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3270{
c39c2b90 3271 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3272}
3273
3274/**
3275 * aa64_vfp_qreg:
3276 * Return a pointer to the Qn register within env in 64-bit mode.
3277 */
3278static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3279{
c39c2b90 3280 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3281}
3282
028e2a7b
RH
3283/* Shared between translate-sve.c and sve_helper.c. */
3284extern const uint64_t pred_esz_masks[4];
3285
962fcbf2
RH
3286/*
3287 * 32-bit feature tests via id registers.
3288 */
7e0cf8b4
RH
3289static inline bool isar_feature_thumb_div(const ARMISARegisters *id)
3290{
3291 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3292}
3293
3294static inline bool isar_feature_arm_div(const ARMISARegisters *id)
3295{
3296 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3297}
3298
09cbd501
RH
3299static inline bool isar_feature_jazelle(const ARMISARegisters *id)
3300{
3301 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3302}
3303
962fcbf2
RH
3304static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3305{
3306 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3307}
3308
3309static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3310{
3311 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3312}
3313
3314static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3315{
3316 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3317}
3318
3319static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3320{
3321 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3322}
3323
3324static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3325{
3326 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3327}
3328
3329static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3330{
3331 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3332}
3333
3334static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3335{
3336 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3337}
3338
6c1f6f27
RH
3339static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3340{
3341 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3342}
3343
962fcbf2
RH
3344static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3345{
3346 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3347}
3348
87732318
RH
3349static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3350{
3351 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3352}
3353
9888bd1e
RH
3354static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3355{
3356 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3357}
3358
cb570bd3
RH
3359static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3360{
3361 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3362}
3363
5763190f
RH
3364static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3365{
3366 /*
3367 * This is a placeholder for use by VCMA until the rest of
3368 * the ARMv8.2-FP16 extension is implemented for aa32 mode.
3369 * At which point we can properly set and check MVFR1.FPHP.
3370 */
3371 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3372}
3373
602f6e42
PM
3374/*
3375 * We always set the FP and SIMD FP16 fields to indicate identical
3376 * levels of support (assuming SIMD is implemented at all), so
3377 * we only need one set of accessors.
3378 */
3379static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3380{
3381 return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 0;
3382}
3383
3384static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3385{
3386 return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 1;
3387}
3388
c0c760af
PM
3389static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3390{
3391 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 1;
3392}
3393
3394static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3395{
3396 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 2;
3397}
3398
3399static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3400{
3401 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 3;
3402}
3403
3404static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3405{
3406 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 4;
3407}
3408
962fcbf2
RH
3409/*
3410 * 64-bit feature tests via id registers.
3411 */
3412static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3413{
3414 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3415}
3416
3417static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3418{
3419 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3420}
3421
3422static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3423{
3424 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3425}
3426
3427static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3428{
3429 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3430}
3431
3432static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3433{
3434 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3435}
3436
3437static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3438{
3439 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3440}
3441
3442static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3443{
3444 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3445}
3446
3447static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3448{
3449 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3450}
3451
3452static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3453{
3454 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3455}
3456
3457static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3458{
3459 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3460}
3461
3462static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3463{
3464 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3465}
3466
3467static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3468{
3469 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3470}
3471
0caa5af8
RH
3472static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3473{
3474 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3475}
3476
b89d9c98
RH
3477static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3478{
3479 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3480}
3481
5ef84f11
RH
3482static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3483{
3484 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3485}
3486
de390645
RH
3487static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3488{
3489 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3490}
3491
6c1f6f27
RH
3492static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3493{
3494 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3495}
3496
962fcbf2
RH
3497static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3498{
3499 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3500}
3501
991ad91b
RH
3502static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3503{
3504 /*
3505 * Note that while QEMU will only implement the architected algorithm
3506 * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation
3507 * defined algorithms, and thus API+GPI, and this predicate controls
3508 * migration of the 128-bit keys.
3509 */
3510 return (id->id_aa64isar1 &
3511 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3512 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3513 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3514 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3515}
3516
9888bd1e
RH
3517static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3518{
3519 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3520}
3521
cb570bd3
RH
3522static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3523{
3524 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3525}
3526
6bea2563
RH
3527static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3528{
3529 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3530}
3531
5763190f
RH
3532static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3533{
3534 /* We always set the AdvSIMD and FP fields identically wrt FP16. */
3535 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3536}
3537
0f8d06f1
RH
3538static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3539{
3540 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3541}
3542
cd208a1c
RH
3543static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3544{
3545 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3546}
3547
2d7137c1
RH
3548static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3549{
3550 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3551}
3552
be53b6f4
RH
3553static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3554{
3555 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3556}
3557
962fcbf2
RH
3558/*
3559 * Forward to the above feature tests given an ARMCPU pointer.
3560 */
3561#define cpu_isar_feature(name, cpu) \
3562 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
3563
2c0262af 3564#endif
This page took 1.714327 seconds and 4 git commands to generate.