]>
Commit | Line | Data |
---|---|---|
2c0262af FB |
1 | /* |
2 | * ARM virtual CPU header | |
5fafdf24 | 3 | * |
2c0262af FB |
4 | * Copyright (c) 2003 Fabrice Bellard |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
8167ee88 | 17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
2c0262af | 18 | */ |
2c0262af | 19 | |
07f5a258 MA |
20 | #ifndef ARM_CPU_H |
21 | #define ARM_CPU_H | |
3cf1e035 | 22 | |
72b0cd35 | 23 | #include "kvm-consts.h" |
2c4da50d | 24 | #include "hw/registerfields.h" |
72b0cd35 | 25 | |
3926cc84 AG |
26 | #if defined(TARGET_AARCH64) |
27 | /* AArch64 definitions */ | |
28 | # define TARGET_LONG_BITS 64 | |
3926cc84 AG |
29 | #else |
30 | # define TARGET_LONG_BITS 32 | |
3926cc84 | 31 | #endif |
9042c0e2 | 32 | |
ca759f9e AB |
33 | /* ARM processors have a weak memory model */ |
34 | #define TCG_GUEST_DEFAULT_MO (0) | |
35 | ||
9349b4f9 | 36 | #define CPUArchState struct CPUARMState |
c2764719 | 37 | |
9a78eead | 38 | #include "qemu-common.h" |
74e75564 | 39 | #include "cpu-qom.h" |
022c62cb | 40 | #include "exec/cpu-defs.h" |
2c0262af | 41 | |
b8a9e8f1 FB |
42 | #define EXCP_UDEF 1 /* undefined instruction */ |
43 | #define EXCP_SWI 2 /* software interrupt */ | |
44 | #define EXCP_PREFETCH_ABORT 3 | |
45 | #define EXCP_DATA_ABORT 4 | |
b5ff1b31 FB |
46 | #define EXCP_IRQ 5 |
47 | #define EXCP_FIQ 6 | |
06c949e6 | 48 | #define EXCP_BKPT 7 |
9ee6e8bb | 49 | #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */ |
fbb4a2e3 | 50 | #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */ |
35979d71 | 51 | #define EXCP_HVC 11 /* HyperVisor Call */ |
607d98b8 | 52 | #define EXCP_HYP_TRAP 12 |
e0d6e6a5 | 53 | #define EXCP_SMC 13 /* Secure Monitor Call */ |
136e67e9 EI |
54 | #define EXCP_VIRQ 14 |
55 | #define EXCP_VFIQ 15 | |
19a6e31c | 56 | #define EXCP_SEMIHOST 16 /* semihosting call */ |
7517748e | 57 | #define EXCP_NOCP 17 /* v7M NOCP UsageFault */ |
e13886e3 | 58 | #define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */ |
86f026de | 59 | #define EXCP_STKOF 19 /* v8M STKOF UsageFault */ |
2c4a7cc5 | 60 | /* NB: add new EXCP_ defines to the array in arm_log_exception() too */ |
9ee6e8bb PB |
61 | |
62 | #define ARMV7M_EXCP_RESET 1 | |
63 | #define ARMV7M_EXCP_NMI 2 | |
64 | #define ARMV7M_EXCP_HARD 3 | |
65 | #define ARMV7M_EXCP_MEM 4 | |
66 | #define ARMV7M_EXCP_BUS 5 | |
67 | #define ARMV7M_EXCP_USAGE 6 | |
1e577cc7 | 68 | #define ARMV7M_EXCP_SECURE 7 |
9ee6e8bb PB |
69 | #define ARMV7M_EXCP_SVC 11 |
70 | #define ARMV7M_EXCP_DEBUG 12 | |
71 | #define ARMV7M_EXCP_PENDSV 14 | |
72 | #define ARMV7M_EXCP_SYSTICK 15 | |
2c0262af | 73 | |
acf94941 PM |
74 | /* For M profile, some registers are banked secure vs non-secure; |
75 | * these are represented as a 2-element array where the first element | |
76 | * is the non-secure copy and the second is the secure copy. | |
77 | * When the CPU does not have implement the security extension then | |
78 | * only the first element is used. | |
79 | * This means that the copy for the current security state can be | |
80 | * accessed via env->registerfield[env->v7m.secure] (whether the security | |
81 | * extension is implemented or not). | |
82 | */ | |
4a16724f PM |
83 | enum { |
84 | M_REG_NS = 0, | |
85 | M_REG_S = 1, | |
86 | M_REG_NUM_BANKS = 2, | |
87 | }; | |
acf94941 | 88 | |
403946c0 RH |
89 | /* ARM-specific interrupt pending bits. */ |
90 | #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1 | |
136e67e9 EI |
91 | #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2 |
92 | #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3 | |
403946c0 | 93 | |
e4fe830b PM |
94 | /* The usual mapping for an AArch64 system register to its AArch32 |
95 | * counterpart is for the 32 bit world to have access to the lower | |
96 | * half only (with writes leaving the upper half untouched). It's | |
97 | * therefore useful to be able to pass TCG the offset of the least | |
98 | * significant half of a uint64_t struct member. | |
99 | */ | |
100 | #ifdef HOST_WORDS_BIGENDIAN | |
5cd8a118 | 101 | #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t)) |
b0fe2427 | 102 | #define offsetofhigh32(S, M) offsetof(S, M) |
e4fe830b PM |
103 | #else |
104 | #define offsetoflow32(S, M) offsetof(S, M) | |
b0fe2427 | 105 | #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t)) |
e4fe830b PM |
106 | #endif |
107 | ||
136e67e9 | 108 | /* Meanings of the ARMCPU object's four inbound GPIO lines */ |
7c1840b6 PM |
109 | #define ARM_CPU_IRQ 0 |
110 | #define ARM_CPU_FIQ 1 | |
136e67e9 EI |
111 | #define ARM_CPU_VIRQ 2 |
112 | #define ARM_CPU_VFIQ 3 | |
403946c0 | 113 | |
62593718 | 114 | #define NB_MMU_MODES 8 |
aaa1f954 EI |
115 | /* ARM-specific extra insn start words: |
116 | * 1: Conditional execution bits | |
117 | * 2: Partial exception syndrome for data aborts | |
118 | */ | |
119 | #define TARGET_INSN_START_EXTRA_WORDS 2 | |
120 | ||
121 | /* The 2nd extra word holding syndrome info for data aborts does not use | |
122 | * the upper 6 bits nor the lower 14 bits. We mask and shift it down to | |
123 | * help the sleb128 encoder do a better job. | |
124 | * When restoring the CPU state, we shift it back up. | |
125 | */ | |
126 | #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1) | |
127 | #define ARM_INSN_START_WORD2_SHIFT 14 | |
6ebbf390 | 128 | |
b7bcbe95 FB |
129 | /* We currently assume float and double are IEEE single and double |
130 | precision respectively. | |
131 | Doing runtime conversions is tricky because VFP registers may contain | |
132 | integer values (eg. as the result of a FTOSI instruction). | |
8e96005d FB |
133 | s<2n> maps to the least significant half of d<n> |
134 | s<2n+1> maps to the most significant half of d<n> | |
135 | */ | |
b7bcbe95 | 136 | |
200bf5b7 AB |
137 | /** |
138 | * DynamicGDBXMLInfo: | |
139 | * @desc: Contains the XML descriptions. | |
140 | * @num_cpregs: Number of the Coprocessor registers seen by GDB. | |
141 | * @cpregs_keys: Array that contains the corresponding Key of | |
142 | * a given cpreg with the same order of the cpreg in the XML description. | |
143 | */ | |
144 | typedef struct DynamicGDBXMLInfo { | |
145 | char *desc; | |
146 | int num_cpregs; | |
147 | uint32_t *cpregs_keys; | |
148 | } DynamicGDBXMLInfo; | |
149 | ||
55d284af PM |
150 | /* CPU state for each instance of a generic timer (in cp15 c14) */ |
151 | typedef struct ARMGenericTimer { | |
152 | uint64_t cval; /* Timer CompareValue register */ | |
a7adc4b7 | 153 | uint64_t ctl; /* Timer Control register */ |
55d284af PM |
154 | } ARMGenericTimer; |
155 | ||
156 | #define GTIMER_PHYS 0 | |
157 | #define GTIMER_VIRT 1 | |
b0e66d95 | 158 | #define GTIMER_HYP 2 |
b4d3978c PM |
159 | #define GTIMER_SEC 3 |
160 | #define NUM_GTIMERS 4 | |
55d284af | 161 | |
11f136ee FA |
162 | typedef struct { |
163 | uint64_t raw_tcr; | |
164 | uint32_t mask; | |
165 | uint32_t base_mask; | |
166 | } TCR; | |
167 | ||
c39c2b90 RH |
168 | /* Define a maximum sized vector register. |
169 | * For 32-bit, this is a 128-bit NEON/AdvSIMD register. | |
170 | * For 64-bit, this is a 2048-bit SVE register. | |
171 | * | |
172 | * Note that the mapping between S, D, and Q views of the register bank | |
173 | * differs between AArch64 and AArch32. | |
174 | * In AArch32: | |
175 | * Qn = regs[n].d[1]:regs[n].d[0] | |
176 | * Dn = regs[n / 2].d[n & 1] | |
177 | * Sn = regs[n / 4].d[n % 4 / 2], | |
178 | * bits 31..0 for even n, and bits 63..32 for odd n | |
179 | * (and regs[16] to regs[31] are inaccessible) | |
180 | * In AArch64: | |
181 | * Zn = regs[n].d[*] | |
182 | * Qn = regs[n].d[1]:regs[n].d[0] | |
183 | * Dn = regs[n].d[0] | |
184 | * Sn = regs[n].d[0] bits 31..0 | |
d0e69ea8 | 185 | * Hn = regs[n].d[0] bits 15..0 |
c39c2b90 RH |
186 | * |
187 | * This corresponds to the architecturally defined mapping between | |
188 | * the two execution states, and means we do not need to explicitly | |
189 | * map these registers when changing states. | |
190 | * | |
191 | * Align the data for use with TCG host vector operations. | |
192 | */ | |
193 | ||
194 | #ifdef TARGET_AARCH64 | |
195 | # define ARM_MAX_VQ 16 | |
196 | #else | |
197 | # define ARM_MAX_VQ 1 | |
198 | #endif | |
199 | ||
200 | typedef struct ARMVectorReg { | |
201 | uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16); | |
202 | } ARMVectorReg; | |
203 | ||
3c7d3086 | 204 | #ifdef TARGET_AARCH64 |
991ad91b | 205 | /* In AArch32 mode, predicate registers do not exist at all. */ |
3c7d3086 RH |
206 | typedef struct ARMPredicateReg { |
207 | uint64_t p[2 * ARM_MAX_VQ / 8] QEMU_ALIGNED(16); | |
208 | } ARMPredicateReg; | |
991ad91b RH |
209 | |
210 | /* In AArch32 mode, PAC keys do not exist at all. */ | |
211 | typedef struct ARMPACKey { | |
212 | uint64_t lo, hi; | |
213 | } ARMPACKey; | |
3c7d3086 RH |
214 | #endif |
215 | ||
c39c2b90 | 216 | |
2c0262af | 217 | typedef struct CPUARMState { |
b5ff1b31 | 218 | /* Regs for current mode. */ |
2c0262af | 219 | uint32_t regs[16]; |
3926cc84 AG |
220 | |
221 | /* 32/64 switch only happens when taking and returning from | |
222 | * exceptions so the overlap semantics are taken care of then | |
223 | * instead of having a complicated union. | |
224 | */ | |
225 | /* Regs for A64 mode. */ | |
226 | uint64_t xregs[32]; | |
227 | uint64_t pc; | |
d356312f PM |
228 | /* PSTATE isn't an architectural register for ARMv8. However, it is |
229 | * convenient for us to assemble the underlying state into a 32 bit format | |
230 | * identical to the architectural format used for the SPSR. (This is also | |
231 | * what the Linux kernel's 'pstate' field in signal handlers and KVM's | |
232 | * 'pstate' register are.) Of the PSTATE bits: | |
233 | * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same | |
234 | * semantics as for AArch32, as described in the comments on each field) | |
235 | * nRW (also known as M[4]) is kept, inverted, in env->aarch64 | |
4cc35614 | 236 | * DAIF (exception masks) are kept in env->daif |
f6e52eaa | 237 | * BTYPE is kept in env->btype |
d356312f | 238 | * all other bits are stored in their correct places in env->pstate |
3926cc84 AG |
239 | */ |
240 | uint32_t pstate; | |
241 | uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */ | |
242 | ||
b90372ad | 243 | /* Frequently accessed CPSR bits are stored separately for efficiency. |
d37aca66 | 244 | This contains all the other bits. Use cpsr_{read,write} to access |
b5ff1b31 FB |
245 | the whole CPSR. */ |
246 | uint32_t uncached_cpsr; | |
247 | uint32_t spsr; | |
248 | ||
249 | /* Banked registers. */ | |
28c9457d | 250 | uint64_t banked_spsr[8]; |
0b7d409d FA |
251 | uint32_t banked_r13[8]; |
252 | uint32_t banked_r14[8]; | |
3b46e624 | 253 | |
b5ff1b31 FB |
254 | /* These hold r8-r12. */ |
255 | uint32_t usr_regs[5]; | |
256 | uint32_t fiq_regs[5]; | |
3b46e624 | 257 | |
2c0262af FB |
258 | /* cpsr flag cache for faster execution */ |
259 | uint32_t CF; /* 0 or 1 */ | |
260 | uint32_t VF; /* V is the bit 31. All other bits are undefined */ | |
6fbe23d5 PB |
261 | uint32_t NF; /* N is bit 31. All other bits are undefined. */ |
262 | uint32_t ZF; /* Z set if zero. */ | |
99c475ab | 263 | uint32_t QF; /* 0 or 1 */ |
9ee6e8bb | 264 | uint32_t GE; /* cpsr[19:16] */ |
b26eefb6 | 265 | uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */ |
9ee6e8bb | 266 | uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */ |
f6e52eaa | 267 | uint32_t btype; /* BTI branch type. spsr[11:10]. */ |
b6af0975 | 268 | uint64_t daif; /* exception masks, in the bits they are in PSTATE */ |
2c0262af | 269 | |
1b174238 | 270 | uint64_t elr_el[4]; /* AArch64 exception link regs */ |
73fb3b76 | 271 | uint64_t sp_el[4]; /* AArch64 banked stack pointers */ |
a0618a19 | 272 | |
b5ff1b31 FB |
273 | /* System control coprocessor (cp15) */ |
274 | struct { | |
40f137e1 | 275 | uint32_t c0_cpuid; |
b85a1fd6 FA |
276 | union { /* Cache size selection */ |
277 | struct { | |
278 | uint64_t _unused_csselr0; | |
279 | uint64_t csselr_ns; | |
280 | uint64_t _unused_csselr1; | |
281 | uint64_t csselr_s; | |
282 | }; | |
283 | uint64_t csselr_el[4]; | |
284 | }; | |
137feaa9 FA |
285 | union { /* System control register. */ |
286 | struct { | |
287 | uint64_t _unused_sctlr; | |
288 | uint64_t sctlr_ns; | |
289 | uint64_t hsctlr; | |
290 | uint64_t sctlr_s; | |
291 | }; | |
292 | uint64_t sctlr_el[4]; | |
293 | }; | |
7ebd5f2e | 294 | uint64_t cpacr_el1; /* Architectural feature access control register */ |
c6f19164 | 295 | uint64_t cptr_el[4]; /* ARMv8 feature trap registers */ |
610c3c8a | 296 | uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */ |
144634ae | 297 | uint64_t sder; /* Secure debug enable register. */ |
77022576 | 298 | uint32_t nsacr; /* Non-secure access control register. */ |
7dd8c9af FA |
299 | union { /* MMU translation table base 0. */ |
300 | struct { | |
301 | uint64_t _unused_ttbr0_0; | |
302 | uint64_t ttbr0_ns; | |
303 | uint64_t _unused_ttbr0_1; | |
304 | uint64_t ttbr0_s; | |
305 | }; | |
306 | uint64_t ttbr0_el[4]; | |
307 | }; | |
308 | union { /* MMU translation table base 1. */ | |
309 | struct { | |
310 | uint64_t _unused_ttbr1_0; | |
311 | uint64_t ttbr1_ns; | |
312 | uint64_t _unused_ttbr1_1; | |
313 | uint64_t ttbr1_s; | |
314 | }; | |
315 | uint64_t ttbr1_el[4]; | |
316 | }; | |
b698e9cf | 317 | uint64_t vttbr_el2; /* Virtualization Translation Table Base. */ |
11f136ee FA |
318 | /* MMU translation table base control. */ |
319 | TCR tcr_el[4]; | |
68e9c2fe | 320 | TCR vtcr_el2; /* Virtualization Translation Control. */ |
67cc32eb VL |
321 | uint32_t c2_data; /* MPU data cacheable bits. */ |
322 | uint32_t c2_insn; /* MPU instruction cacheable bits. */ | |
0c17d68c FA |
323 | union { /* MMU domain access control register |
324 | * MPU write buffer control. | |
325 | */ | |
326 | struct { | |
327 | uint64_t dacr_ns; | |
328 | uint64_t dacr_s; | |
329 | }; | |
330 | struct { | |
331 | uint64_t dacr32_el2; | |
332 | }; | |
333 | }; | |
7e09797c PM |
334 | uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */ |
335 | uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */ | |
f149e3e8 | 336 | uint64_t hcr_el2; /* Hypervisor configuration register */ |
64e0e2de | 337 | uint64_t scr_el3; /* Secure configuration register. */ |
88ca1c2d FA |
338 | union { /* Fault status registers. */ |
339 | struct { | |
340 | uint64_t ifsr_ns; | |
341 | uint64_t ifsr_s; | |
342 | }; | |
343 | struct { | |
344 | uint64_t ifsr32_el2; | |
345 | }; | |
346 | }; | |
4a7e2d73 FA |
347 | union { |
348 | struct { | |
349 | uint64_t _unused_dfsr; | |
350 | uint64_t dfsr_ns; | |
351 | uint64_t hsr; | |
352 | uint64_t dfsr_s; | |
353 | }; | |
354 | uint64_t esr_el[4]; | |
355 | }; | |
ce819861 | 356 | uint32_t c6_region[8]; /* MPU base/size registers. */ |
b848ce2b FA |
357 | union { /* Fault address registers. */ |
358 | struct { | |
359 | uint64_t _unused_far0; | |
360 | #ifdef HOST_WORDS_BIGENDIAN | |
361 | uint32_t ifar_ns; | |
362 | uint32_t dfar_ns; | |
363 | uint32_t ifar_s; | |
364 | uint32_t dfar_s; | |
365 | #else | |
366 | uint32_t dfar_ns; | |
367 | uint32_t ifar_ns; | |
368 | uint32_t dfar_s; | |
369 | uint32_t ifar_s; | |
370 | #endif | |
371 | uint64_t _unused_far3; | |
372 | }; | |
373 | uint64_t far_el[4]; | |
374 | }; | |
59e05530 | 375 | uint64_t hpfar_el2; |
2a5a9abd | 376 | uint64_t hstr_el2; |
01c097f7 FA |
377 | union { /* Translation result. */ |
378 | struct { | |
379 | uint64_t _unused_par_0; | |
380 | uint64_t par_ns; | |
381 | uint64_t _unused_par_1; | |
382 | uint64_t par_s; | |
383 | }; | |
384 | uint64_t par_el[4]; | |
385 | }; | |
6cb0b013 | 386 | |
b5ff1b31 FB |
387 | uint32_t c9_insn; /* Cache lockdown registers. */ |
388 | uint32_t c9_data; | |
8521466b AF |
389 | uint64_t c9_pmcr; /* performance monitor control register */ |
390 | uint64_t c9_pmcnten; /* perf monitor counter enables */ | |
e4e91a21 AL |
391 | uint64_t c9_pmovsr; /* perf monitor overflow status */ |
392 | uint64_t c9_pmuserenr; /* perf monitor user enable */ | |
6b040780 | 393 | uint64_t c9_pmselr; /* perf monitor counter selection register */ |
e6ec5457 | 394 | uint64_t c9_pminten; /* perf monitor interrupt enables */ |
be693c87 GB |
395 | union { /* Memory attribute redirection */ |
396 | struct { | |
397 | #ifdef HOST_WORDS_BIGENDIAN | |
398 | uint64_t _unused_mair_0; | |
399 | uint32_t mair1_ns; | |
400 | uint32_t mair0_ns; | |
401 | uint64_t _unused_mair_1; | |
402 | uint32_t mair1_s; | |
403 | uint32_t mair0_s; | |
404 | #else | |
405 | uint64_t _unused_mair_0; | |
406 | uint32_t mair0_ns; | |
407 | uint32_t mair1_ns; | |
408 | uint64_t _unused_mair_1; | |
409 | uint32_t mair0_s; | |
410 | uint32_t mair1_s; | |
411 | #endif | |
412 | }; | |
413 | uint64_t mair_el[4]; | |
414 | }; | |
fb6c91ba GB |
415 | union { /* vector base address register */ |
416 | struct { | |
417 | uint64_t _unused_vbar; | |
418 | uint64_t vbar_ns; | |
419 | uint64_t hvbar; | |
420 | uint64_t vbar_s; | |
421 | }; | |
422 | uint64_t vbar_el[4]; | |
423 | }; | |
e89e51a1 | 424 | uint32_t mvbar; /* (monitor) vector base address register */ |
54bf36ed FA |
425 | struct { /* FCSE PID. */ |
426 | uint32_t fcseidr_ns; | |
427 | uint32_t fcseidr_s; | |
428 | }; | |
429 | union { /* Context ID. */ | |
430 | struct { | |
431 | uint64_t _unused_contextidr_0; | |
432 | uint64_t contextidr_ns; | |
433 | uint64_t _unused_contextidr_1; | |
434 | uint64_t contextidr_s; | |
435 | }; | |
436 | uint64_t contextidr_el[4]; | |
437 | }; | |
438 | union { /* User RW Thread register. */ | |
439 | struct { | |
440 | uint64_t tpidrurw_ns; | |
441 | uint64_t tpidrprw_ns; | |
442 | uint64_t htpidr; | |
443 | uint64_t _tpidr_el3; | |
444 | }; | |
445 | uint64_t tpidr_el[4]; | |
446 | }; | |
447 | /* The secure banks of these registers don't map anywhere */ | |
448 | uint64_t tpidrurw_s; | |
449 | uint64_t tpidrprw_s; | |
450 | uint64_t tpidruro_s; | |
451 | ||
452 | union { /* User RO Thread register. */ | |
453 | uint64_t tpidruro_ns; | |
454 | uint64_t tpidrro_el[1]; | |
455 | }; | |
a7adc4b7 PM |
456 | uint64_t c14_cntfrq; /* Counter Frequency register */ |
457 | uint64_t c14_cntkctl; /* Timer Control register */ | |
0b6440af | 458 | uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */ |
edac4d8a | 459 | uint64_t cntvoff_el2; /* Counter Virtual Offset register */ |
55d284af | 460 | ARMGenericTimer c14_timer[NUM_GTIMERS]; |
c1713132 | 461 | uint32_t c15_cpar; /* XScale Coprocessor Access Register */ |
c3d2689d AZ |
462 | uint32_t c15_ticonfig; /* TI925T configuration byte. */ |
463 | uint32_t c15_i_max; /* Maximum D-cache dirty line index. */ | |
464 | uint32_t c15_i_min; /* Minimum D-cache dirty line index. */ | |
465 | uint32_t c15_threadid; /* TI debugger thread-ID. */ | |
7da362d0 ML |
466 | uint32_t c15_config_base_address; /* SCU base address. */ |
467 | uint32_t c15_diagnostic; /* diagnostic register */ | |
468 | uint32_t c15_power_diagnostic; | |
469 | uint32_t c15_power_control; /* power control */ | |
0b45451e PM |
470 | uint64_t dbgbvr[16]; /* breakpoint value registers */ |
471 | uint64_t dbgbcr[16]; /* breakpoint control registers */ | |
472 | uint64_t dbgwvr[16]; /* watchpoint value registers */ | |
473 | uint64_t dbgwcr[16]; /* watchpoint control registers */ | |
3a298203 | 474 | uint64_t mdscr_el1; |
1424ca8d | 475 | uint64_t oslsr_el1; /* OS Lock Status */ |
14cc7b54 | 476 | uint64_t mdcr_el2; |
5513c3ab | 477 | uint64_t mdcr_el3; |
5d05b9d4 AL |
478 | /* Stores the architectural value of the counter *the last time it was |
479 | * updated* by pmccntr_op_start. Accesses should always be surrounded | |
480 | * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest | |
481 | * architecturally-correct value is being read/set. | |
7c2cb42b | 482 | */ |
c92c0687 | 483 | uint64_t c15_ccnt; |
5d05b9d4 AL |
484 | /* Stores the delta between the architectural value and the underlying |
485 | * cycle count during normal operation. It is used to update c15_ccnt | |
486 | * to be the correct architectural value before accesses. During | |
487 | * accesses, c15_ccnt_delta contains the underlying count being used | |
488 | * for the access, after which it reverts to the delta value in | |
489 | * pmccntr_op_finish. | |
490 | */ | |
491 | uint64_t c15_ccnt_delta; | |
5ecdd3e4 AL |
492 | uint64_t c14_pmevcntr[31]; |
493 | uint64_t c14_pmevcntr_delta[31]; | |
494 | uint64_t c14_pmevtyper[31]; | |
8521466b | 495 | uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */ |
731de9e6 | 496 | uint64_t vpidr_el2; /* Virtualization Processor ID Register */ |
f0d574d6 | 497 | uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */ |
b5ff1b31 | 498 | } cp15; |
40f137e1 | 499 | |
9ee6e8bb | 500 | struct { |
fb602cb7 PM |
501 | /* M profile has up to 4 stack pointers: |
502 | * a Main Stack Pointer and a Process Stack Pointer for each | |
503 | * of the Secure and Non-Secure states. (If the CPU doesn't support | |
504 | * the security extension then it has only two SPs.) | |
505 | * In QEMU we always store the currently active SP in regs[13], | |
506 | * and the non-active SP for the current security state in | |
507 | * v7m.other_sp. The stack pointers for the inactive security state | |
508 | * are stored in other_ss_msp and other_ss_psp. | |
509 | * switch_v7m_security_state() is responsible for rearranging them | |
510 | * when we change security state. | |
511 | */ | |
9ee6e8bb | 512 | uint32_t other_sp; |
fb602cb7 PM |
513 | uint32_t other_ss_msp; |
514 | uint32_t other_ss_psp; | |
4a16724f PM |
515 | uint32_t vecbase[M_REG_NUM_BANKS]; |
516 | uint32_t basepri[M_REG_NUM_BANKS]; | |
517 | uint32_t control[M_REG_NUM_BANKS]; | |
518 | uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */ | |
519 | uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */ | |
2c4da50d PM |
520 | uint32_t hfsr; /* HardFault Status */ |
521 | uint32_t dfsr; /* Debug Fault Status Register */ | |
bed079da | 522 | uint32_t sfsr; /* Secure Fault Status Register */ |
4a16724f | 523 | uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */ |
2c4da50d | 524 | uint32_t bfar; /* BusFault Address */ |
bed079da | 525 | uint32_t sfar; /* Secure Fault Address Register */ |
4a16724f | 526 | unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */ |
9ee6e8bb | 527 | int exception; |
4a16724f PM |
528 | uint32_t primask[M_REG_NUM_BANKS]; |
529 | uint32_t faultmask[M_REG_NUM_BANKS]; | |
3b2e9344 | 530 | uint32_t aircr; /* only holds r/w state if security extn implemented */ |
1e577cc7 | 531 | uint32_t secure; /* Is CPU in Secure state? (not guest visible) */ |
43bbce7f | 532 | uint32_t csselr[M_REG_NUM_BANKS]; |
24ac0fb1 | 533 | uint32_t scr[M_REG_NUM_BANKS]; |
57bb3156 PM |
534 | uint32_t msplim[M_REG_NUM_BANKS]; |
535 | uint32_t psplim[M_REG_NUM_BANKS]; | |
9ee6e8bb PB |
536 | } v7m; |
537 | ||
abf1172f PM |
538 | /* Information associated with an exception about to be taken: |
539 | * code which raises an exception must set cs->exception_index and | |
540 | * the relevant parts of this structure; the cpu_do_interrupt function | |
541 | * will then set the guest-visible registers as part of the exception | |
542 | * entry process. | |
543 | */ | |
544 | struct { | |
545 | uint32_t syndrome; /* AArch64 format syndrome register */ | |
546 | uint32_t fsr; /* AArch32 format fault status register info */ | |
547 | uint64_t vaddress; /* virtual addr associated with exception, if any */ | |
73710361 | 548 | uint32_t target_el; /* EL the exception should be targeted for */ |
abf1172f PM |
549 | /* If we implement EL2 we will also need to store information |
550 | * about the intermediate physical address for stage 2 faults. | |
551 | */ | |
552 | } exception; | |
553 | ||
202ccb6b DG |
554 | /* Information associated with an SError */ |
555 | struct { | |
556 | uint8_t pending; | |
557 | uint8_t has_esr; | |
558 | uint64_t esr; | |
559 | } serror; | |
560 | ||
ed89f078 PM |
561 | /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */ |
562 | uint32_t irq_line_state; | |
563 | ||
fe1479c3 PB |
564 | /* Thumb-2 EE state. */ |
565 | uint32_t teecr; | |
566 | uint32_t teehbr; | |
567 | ||
b7bcbe95 FB |
568 | /* VFP coprocessor state. */ |
569 | struct { | |
c39c2b90 | 570 | ARMVectorReg zregs[32]; |
b7bcbe95 | 571 | |
3c7d3086 RH |
572 | #ifdef TARGET_AARCH64 |
573 | /* Store FFR as pregs[16] to make it easier to treat as any other. */ | |
028e2a7b | 574 | #define FFR_PRED_NUM 16 |
3c7d3086 | 575 | ARMPredicateReg pregs[17]; |
516e246a RH |
576 | /* Scratch space for aa64 sve predicate temporary. */ |
577 | ARMPredicateReg preg_tmp; | |
3c7d3086 RH |
578 | #endif |
579 | ||
40f137e1 | 580 | uint32_t xregs[16]; |
b7bcbe95 FB |
581 | /* We store these fpcsr fields separately for convenience. */ |
582 | int vec_len; | |
583 | int vec_stride; | |
584 | ||
516e246a | 585 | /* Scratch space for aa32 neon expansion. */ |
9ee6e8bb | 586 | uint32_t scratch[8]; |
3b46e624 | 587 | |
d81ce0ef AB |
588 | /* There are a number of distinct float control structures: |
589 | * | |
590 | * fp_status: is the "normal" fp status. | |
591 | * fp_status_fp16: used for half-precision calculations | |
592 | * standard_fp_status : the ARM "Standard FPSCR Value" | |
593 | * | |
594 | * Half-precision operations are governed by a separate | |
595 | * flush-to-zero control bit in FPSCR:FZ16. We pass a separate | |
596 | * status structure to control this. | |
597 | * | |
598 | * The "Standard FPSCR", ie default-NaN, flush-to-zero, | |
599 | * round-to-nearest and is used by any operations (generally | |
600 | * Neon) which the architecture defines as controlled by the | |
601 | * standard FPSCR value rather than the FPSCR. | |
3a492f3a PM |
602 | * |
603 | * To avoid having to transfer exception bits around, we simply | |
604 | * say that the FPSCR cumulative exception flags are the logical | |
d81ce0ef | 605 | * OR of the flags in the three fp statuses. This relies on the |
3a492f3a PM |
606 | * only thing which needs to read the exception flags being |
607 | * an explicit FPSCR read. | |
608 | */ | |
53cd6637 | 609 | float_status fp_status; |
d81ce0ef | 610 | float_status fp_status_f16; |
3a492f3a | 611 | float_status standard_fp_status; |
5be5e8ed RH |
612 | |
613 | /* ZCR_EL[1-3] */ | |
614 | uint64_t zcr_el[4]; | |
b7bcbe95 | 615 | } vfp; |
03d05e2d PM |
616 | uint64_t exclusive_addr; |
617 | uint64_t exclusive_val; | |
618 | uint64_t exclusive_high; | |
b7bcbe95 | 619 | |
18c9b560 AZ |
620 | /* iwMMXt coprocessor state. */ |
621 | struct { | |
622 | uint64_t regs[16]; | |
623 | uint64_t val; | |
624 | ||
625 | uint32_t cregs[16]; | |
626 | } iwmmxt; | |
627 | ||
991ad91b RH |
628 | #ifdef TARGET_AARCH64 |
629 | ARMPACKey apia_key; | |
630 | ARMPACKey apib_key; | |
631 | ARMPACKey apda_key; | |
632 | ARMPACKey apdb_key; | |
633 | ARMPACKey apga_key; | |
634 | #endif | |
635 | ||
ce4defa0 PB |
636 | #if defined(CONFIG_USER_ONLY) |
637 | /* For usermode syscall translation. */ | |
638 | int eabi; | |
639 | #endif | |
640 | ||
46747d15 | 641 | struct CPUBreakpoint *cpu_breakpoint[16]; |
9ee98ce8 PM |
642 | struct CPUWatchpoint *cpu_watchpoint[16]; |
643 | ||
1f5c00cf AB |
644 | /* Fields up to this point are cleared by a CPU reset */ |
645 | struct {} end_reset_fields; | |
646 | ||
a316d335 FB |
647 | CPU_COMMON |
648 | ||
1f5c00cf | 649 | /* Fields after CPU_COMMON are preserved across CPU reset. */ |
9ba8c3f4 | 650 | |
581be094 | 651 | /* Internal CPU feature flags. */ |
918f5dca | 652 | uint64_t features; |
581be094 | 653 | |
6cb0b013 PC |
654 | /* PMSAv7 MPU */ |
655 | struct { | |
656 | uint32_t *drbar; | |
657 | uint32_t *drsr; | |
658 | uint32_t *dracr; | |
4a16724f | 659 | uint32_t rnr[M_REG_NUM_BANKS]; |
6cb0b013 PC |
660 | } pmsav7; |
661 | ||
0e1a46bb PM |
662 | /* PMSAv8 MPU */ |
663 | struct { | |
664 | /* The PMSAv8 implementation also shares some PMSAv7 config | |
665 | * and state: | |
666 | * pmsav7.rnr (region number register) | |
667 | * pmsav7_dregion (number of configured regions) | |
668 | */ | |
4a16724f PM |
669 | uint32_t *rbar[M_REG_NUM_BANKS]; |
670 | uint32_t *rlar[M_REG_NUM_BANKS]; | |
671 | uint32_t mair0[M_REG_NUM_BANKS]; | |
672 | uint32_t mair1[M_REG_NUM_BANKS]; | |
0e1a46bb PM |
673 | } pmsav8; |
674 | ||
9901c576 PM |
675 | /* v8M SAU */ |
676 | struct { | |
677 | uint32_t *rbar; | |
678 | uint32_t *rlar; | |
679 | uint32_t rnr; | |
680 | uint32_t ctrl; | |
681 | } sau; | |
682 | ||
983fe826 | 683 | void *nvic; |
462a8bc6 | 684 | const struct arm_boot_info *boot_info; |
d3a3e529 VK |
685 | /* Store GICv3CPUState to access from this struct */ |
686 | void *gicv3state; | |
2c0262af FB |
687 | } CPUARMState; |
688 | ||
bd7d00fc | 689 | /** |
08267487 | 690 | * ARMELChangeHookFn: |
bd7d00fc PM |
691 | * type of a function which can be registered via arm_register_el_change_hook() |
692 | * to get callbacks when the CPU changes its exception level or mode. | |
693 | */ | |
08267487 AL |
694 | typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque); |
695 | typedef struct ARMELChangeHook ARMELChangeHook; | |
696 | struct ARMELChangeHook { | |
697 | ARMELChangeHookFn *hook; | |
698 | void *opaque; | |
699 | QLIST_ENTRY(ARMELChangeHook) node; | |
700 | }; | |
062ba099 AB |
701 | |
702 | /* These values map onto the return values for | |
703 | * QEMU_PSCI_0_2_FN_AFFINITY_INFO */ | |
704 | typedef enum ARMPSCIState { | |
d5affb0d AJ |
705 | PSCI_ON = 0, |
706 | PSCI_OFF = 1, | |
062ba099 AB |
707 | PSCI_ON_PENDING = 2 |
708 | } ARMPSCIState; | |
709 | ||
962fcbf2 RH |
710 | typedef struct ARMISARegisters ARMISARegisters; |
711 | ||
74e75564 PB |
712 | /** |
713 | * ARMCPU: | |
714 | * @env: #CPUARMState | |
715 | * | |
716 | * An ARM CPU core. | |
717 | */ | |
718 | struct ARMCPU { | |
719 | /*< private >*/ | |
720 | CPUState parent_obj; | |
721 | /*< public >*/ | |
722 | ||
723 | CPUARMState env; | |
724 | ||
725 | /* Coprocessor information */ | |
726 | GHashTable *cp_regs; | |
727 | /* For marshalling (mostly coprocessor) register state between the | |
728 | * kernel and QEMU (for KVM) and between two QEMUs (for migration), | |
729 | * we use these arrays. | |
730 | */ | |
731 | /* List of register indexes managed via these arrays; (full KVM style | |
732 | * 64 bit indexes, not CPRegInfo 32 bit indexes) | |
733 | */ | |
734 | uint64_t *cpreg_indexes; | |
735 | /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */ | |
736 | uint64_t *cpreg_values; | |
737 | /* Length of the indexes, values, reset_values arrays */ | |
738 | int32_t cpreg_array_len; | |
739 | /* These are used only for migration: incoming data arrives in | |
740 | * these fields and is sanity checked in post_load before copying | |
741 | * to the working data structures above. | |
742 | */ | |
743 | uint64_t *cpreg_vmstate_indexes; | |
744 | uint64_t *cpreg_vmstate_values; | |
745 | int32_t cpreg_vmstate_array_len; | |
746 | ||
200bf5b7 AB |
747 | DynamicGDBXMLInfo dyn_xml; |
748 | ||
74e75564 PB |
749 | /* Timers used by the generic (architected) timer */ |
750 | QEMUTimer *gt_timer[NUM_GTIMERS]; | |
4e7beb0c AL |
751 | /* |
752 | * Timer used by the PMU. Its state is restored after migration by | |
753 | * pmu_op_finish() - it does not need other handling during migration | |
754 | */ | |
755 | QEMUTimer *pmu_timer; | |
74e75564 PB |
756 | /* GPIO outputs for generic timer */ |
757 | qemu_irq gt_timer_outputs[NUM_GTIMERS]; | |
aa1b3111 PM |
758 | /* GPIO output for GICv3 maintenance interrupt signal */ |
759 | qemu_irq gicv3_maintenance_interrupt; | |
07f48730 AJ |
760 | /* GPIO output for the PMU interrupt */ |
761 | qemu_irq pmu_interrupt; | |
74e75564 PB |
762 | |
763 | /* MemoryRegion to use for secure physical accesses */ | |
764 | MemoryRegion *secure_memory; | |
765 | ||
181962fd PM |
766 | /* For v8M, pointer to the IDAU interface provided by board/SoC */ |
767 | Object *idau; | |
768 | ||
74e75564 PB |
769 | /* 'compatible' string for this CPU for Linux device trees */ |
770 | const char *dtb_compatible; | |
771 | ||
772 | /* PSCI version for this CPU | |
773 | * Bits[31:16] = Major Version | |
774 | * Bits[15:0] = Minor Version | |
775 | */ | |
776 | uint32_t psci_version; | |
777 | ||
778 | /* Should CPU start in PSCI powered-off state? */ | |
779 | bool start_powered_off; | |
062ba099 AB |
780 | |
781 | /* Current power state, access guarded by BQL */ | |
782 | ARMPSCIState power_state; | |
783 | ||
c25bd18a PM |
784 | /* CPU has virtualization extension */ |
785 | bool has_el2; | |
74e75564 PB |
786 | /* CPU has security extension */ |
787 | bool has_el3; | |
5c0a3819 SZ |
788 | /* CPU has PMU (Performance Monitor Unit) */ |
789 | bool has_pmu; | |
74e75564 PB |
790 | |
791 | /* CPU has memory protection unit */ | |
792 | bool has_mpu; | |
793 | /* PMSAv7 MPU number of supported regions */ | |
794 | uint32_t pmsav7_dregion; | |
9901c576 PM |
795 | /* v8M SAU number of supported regions */ |
796 | uint32_t sau_sregion; | |
74e75564 PB |
797 | |
798 | /* PSCI conduit used to invoke PSCI methods | |
799 | * 0 - disabled, 1 - smc, 2 - hvc | |
800 | */ | |
801 | uint32_t psci_conduit; | |
802 | ||
38e2a77c PM |
803 | /* For v8M, initial value of the Secure VTOR */ |
804 | uint32_t init_svtor; | |
805 | ||
74e75564 PB |
806 | /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or |
807 | * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type. | |
808 | */ | |
809 | uint32_t kvm_target; | |
810 | ||
811 | /* KVM init features for this CPU */ | |
812 | uint32_t kvm_init_features[7]; | |
813 | ||
814 | /* Uniprocessor system with MP extensions */ | |
815 | bool mp_is_up; | |
816 | ||
c4487d76 PM |
817 | /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init |
818 | * and the probe failed (so we need to report the error in realize) | |
819 | */ | |
820 | bool host_cpu_probe_failed; | |
821 | ||
f9a69711 AF |
822 | /* Specify the number of cores in this CPU cluster. Used for the L2CTLR |
823 | * register. | |
824 | */ | |
825 | int32_t core_count; | |
826 | ||
74e75564 PB |
827 | /* The instance init functions for implementation-specific subclasses |
828 | * set these fields to specify the implementation-dependent values of | |
829 | * various constant registers and reset values of non-constant | |
830 | * registers. | |
831 | * Some of these might become QOM properties eventually. | |
832 | * Field names match the official register names as defined in the | |
833 | * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix | |
834 | * is used for reset values of non-constant registers; no reset_ | |
835 | * prefix means a constant register. | |
47576b94 RH |
836 | * Some of these registers are split out into a substructure that |
837 | * is shared with the translators to control the ISA. | |
74e75564 | 838 | */ |
47576b94 RH |
839 | struct ARMISARegisters { |
840 | uint32_t id_isar0; | |
841 | uint32_t id_isar1; | |
842 | uint32_t id_isar2; | |
843 | uint32_t id_isar3; | |
844 | uint32_t id_isar4; | |
845 | uint32_t id_isar5; | |
846 | uint32_t id_isar6; | |
847 | uint32_t mvfr0; | |
848 | uint32_t mvfr1; | |
849 | uint32_t mvfr2; | |
850 | uint64_t id_aa64isar0; | |
851 | uint64_t id_aa64isar1; | |
852 | uint64_t id_aa64pfr0; | |
853 | uint64_t id_aa64pfr1; | |
3dc91ddb PM |
854 | uint64_t id_aa64mmfr0; |
855 | uint64_t id_aa64mmfr1; | |
47576b94 | 856 | } isar; |
74e75564 PB |
857 | uint32_t midr; |
858 | uint32_t revidr; | |
859 | uint32_t reset_fpsid; | |
74e75564 PB |
860 | uint32_t ctr; |
861 | uint32_t reset_sctlr; | |
862 | uint32_t id_pfr0; | |
863 | uint32_t id_pfr1; | |
864 | uint32_t id_dfr0; | |
cad86737 AL |
865 | uint64_t pmceid0; |
866 | uint64_t pmceid1; | |
74e75564 PB |
867 | uint32_t id_afr0; |
868 | uint32_t id_mmfr0; | |
869 | uint32_t id_mmfr1; | |
870 | uint32_t id_mmfr2; | |
871 | uint32_t id_mmfr3; | |
872 | uint32_t id_mmfr4; | |
74e75564 PB |
873 | uint64_t id_aa64dfr0; |
874 | uint64_t id_aa64dfr1; | |
875 | uint64_t id_aa64afr0; | |
876 | uint64_t id_aa64afr1; | |
74e75564 PB |
877 | uint32_t dbgdidr; |
878 | uint32_t clidr; | |
879 | uint64_t mp_affinity; /* MP ID without feature bits */ | |
880 | /* The elements of this array are the CCSIDR values for each cache, | |
881 | * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc. | |
882 | */ | |
883 | uint32_t ccsidr[16]; | |
884 | uint64_t reset_cbar; | |
885 | uint32_t reset_auxcr; | |
886 | bool reset_hivecs; | |
887 | /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */ | |
888 | uint32_t dcz_blocksize; | |
889 | uint64_t rvbar; | |
bd7d00fc | 890 | |
e45868a3 PM |
891 | /* Configurable aspects of GIC cpu interface (which is part of the CPU) */ |
892 | int gic_num_lrs; /* number of list registers */ | |
893 | int gic_vpribits; /* number of virtual priority bits */ | |
894 | int gic_vprebits; /* number of virtual preemption bits */ | |
895 | ||
3a062d57 JB |
896 | /* Whether the cfgend input is high (i.e. this CPU should reset into |
897 | * big-endian mode). This setting isn't used directly: instead it modifies | |
898 | * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the | |
899 | * architecture version. | |
900 | */ | |
901 | bool cfgend; | |
902 | ||
b5c53d1b | 903 | QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks; |
08267487 | 904 | QLIST_HEAD(, ARMELChangeHook) el_change_hooks; |
15f8b142 IM |
905 | |
906 | int32_t node_id; /* NUMA node this CPU belongs to */ | |
5d721b78 AG |
907 | |
908 | /* Used to synchronize KVM and QEMU in-kernel device levels */ | |
909 | uint8_t device_irq_level; | |
adf92eab RH |
910 | |
911 | /* Used to set the maximum vector length the cpu will support. */ | |
912 | uint32_t sve_max_vq; | |
74e75564 PB |
913 | }; |
914 | ||
915 | static inline ARMCPU *arm_env_get_cpu(CPUARMState *env) | |
916 | { | |
917 | return container_of(env, ARMCPU, env); | |
918 | } | |
919 | ||
51e5ef45 MAL |
920 | void arm_cpu_post_init(Object *obj); |
921 | ||
46de5913 IM |
922 | uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz); |
923 | ||
74e75564 PB |
924 | #define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e)) |
925 | ||
926 | #define ENV_OFFSET offsetof(ARMCPU, env) | |
927 | ||
928 | #ifndef CONFIG_USER_ONLY | |
929 | extern const struct VMStateDescription vmstate_arm_cpu; | |
930 | #endif | |
931 | ||
932 | void arm_cpu_do_interrupt(CPUState *cpu); | |
933 | void arm_v7m_cpu_do_interrupt(CPUState *cpu); | |
934 | bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req); | |
935 | ||
936 | void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf, | |
937 | int flags); | |
938 | ||
939 | hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, | |
940 | MemTxAttrs *attrs); | |
941 | ||
942 | int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg); | |
943 | int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); | |
944 | ||
200bf5b7 AB |
945 | /* Dynamically generates for gdb stub an XML description of the sysregs from |
946 | * the cp_regs hashtable. Returns the registered sysregs number. | |
947 | */ | |
948 | int arm_gen_dynamic_xml(CPUState *cpu); | |
949 | ||
950 | /* Returns the dynamically generated XML for the gdb stub. | |
951 | * Returns a pointer to the XML contents for the specified XML file or NULL | |
952 | * if the XML name doesn't match the predefined one. | |
953 | */ | |
954 | const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname); | |
955 | ||
74e75564 PB |
956 | int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs, |
957 | int cpuid, void *opaque); | |
958 | int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs, | |
959 | int cpuid, void *opaque); | |
960 | ||
961 | #ifdef TARGET_AARCH64 | |
962 | int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg); | |
963 | int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); | |
85fc7167 | 964 | void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq); |
9a05f7b6 RH |
965 | void aarch64_sve_change_el(CPUARMState *env, int old_el, |
966 | int new_el, bool el0_a64); | |
0ab5953b RH |
967 | #else |
968 | static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { } | |
9a05f7b6 RH |
969 | static inline void aarch64_sve_change_el(CPUARMState *env, int o, |
970 | int n, bool a) | |
971 | { } | |
74e75564 | 972 | #endif |
778c3a06 | 973 | |
faacc041 | 974 | target_ulong do_arm_semihosting(CPUARMState *env); |
ce02049d GB |
975 | void aarch64_sync_32_to_64(CPUARMState *env); |
976 | void aarch64_sync_64_to_32(CPUARMState *env); | |
b5ff1b31 | 977 | |
ced31551 RH |
978 | int fp_exception_el(CPUARMState *env, int cur_el); |
979 | int sve_exception_el(CPUARMState *env, int cur_el); | |
980 | uint32_t sve_zcr_len_for_el(CPUARMState *env, int el); | |
981 | ||
3926cc84 AG |
982 | static inline bool is_a64(CPUARMState *env) |
983 | { | |
984 | return env->aarch64; | |
985 | } | |
986 | ||
2c0262af FB |
987 | /* you can call this signal handler from your SIGBUS and SIGSEGV |
988 | signal handlers to inform the virtual CPU of exceptions. non zero | |
989 | is returned if the signal was handled by the virtual CPU. */ | |
5fafdf24 | 990 | int cpu_arm_signal_handler(int host_signum, void *pinfo, |
2c0262af FB |
991 | void *puc); |
992 | ||
ec7b4ce4 | 993 | /** |
5d05b9d4 AL |
994 | * pmccntr_op_start/finish |
995 | * @env: CPUARMState | |
996 | * | |
997 | * Convert the counter in the PMCCNTR between its delta form (the typical mode | |
998 | * when it's enabled) and the guest-visible value. These two calls must always | |
999 | * surround any action which might affect the counter. | |
1000 | */ | |
1001 | void pmccntr_op_start(CPUARMState *env); | |
1002 | void pmccntr_op_finish(CPUARMState *env); | |
1003 | ||
1004 | /** | |
1005 | * pmu_op_start/finish | |
ec7b4ce4 AF |
1006 | * @env: CPUARMState |
1007 | * | |
5d05b9d4 AL |
1008 | * Convert all PMU counters between their delta form (the typical mode when |
1009 | * they are enabled) and the guest-visible values. These two calls must | |
1010 | * surround any action which might affect the counters. | |
ec7b4ce4 | 1011 | */ |
5d05b9d4 AL |
1012 | void pmu_op_start(CPUARMState *env); |
1013 | void pmu_op_finish(CPUARMState *env); | |
ec7b4ce4 | 1014 | |
4e7beb0c AL |
1015 | /* |
1016 | * Called when a PMU counter is due to overflow | |
1017 | */ | |
1018 | void arm_pmu_timer_cb(void *opaque); | |
1019 | ||
033614c4 AL |
1020 | /** |
1021 | * Functions to register as EL change hooks for PMU mode filtering | |
1022 | */ | |
1023 | void pmu_pre_el_change(ARMCPU *cpu, void *ignored); | |
1024 | void pmu_post_el_change(ARMCPU *cpu, void *ignored); | |
1025 | ||
57a4a11b | 1026 | /* |
bf8d0969 AL |
1027 | * pmu_init |
1028 | * @cpu: ARMCPU | |
57a4a11b | 1029 | * |
bf8d0969 AL |
1030 | * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state |
1031 | * for the current configuration | |
57a4a11b | 1032 | */ |
bf8d0969 | 1033 | void pmu_init(ARMCPU *cpu); |
57a4a11b | 1034 | |
76e3e1bc PM |
1035 | /* SCTLR bit meanings. Several bits have been reused in newer |
1036 | * versions of the architecture; in that case we define constants | |
1037 | * for both old and new bit meanings. Code which tests against those | |
1038 | * bits should probably check or otherwise arrange that the CPU | |
1039 | * is the architectural version it expects. | |
1040 | */ | |
1041 | #define SCTLR_M (1U << 0) | |
1042 | #define SCTLR_A (1U << 1) | |
1043 | #define SCTLR_C (1U << 2) | |
1044 | #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */ | |
b2af69d0 RH |
1045 | #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */ |
1046 | #define SCTLR_SA (1U << 3) /* AArch64 only */ | |
76e3e1bc | 1047 | #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */ |
b2af69d0 | 1048 | #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */ |
76e3e1bc PM |
1049 | #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */ |
1050 | #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */ | |
1051 | #define SCTLR_CP15BEN (1U << 5) /* v7 onward */ | |
1052 | #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */ | |
b2af69d0 | 1053 | #define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */ |
76e3e1bc PM |
1054 | #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */ |
1055 | #define SCTLR_ITD (1U << 7) /* v8 onward */ | |
1056 | #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */ | |
1057 | #define SCTLR_SED (1U << 8) /* v8 onward */ | |
1058 | #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */ | |
1059 | #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */ | |
1060 | #define SCTLR_F (1U << 10) /* up to v6 */ | |
b2af69d0 RH |
1061 | #define SCTLR_SW (1U << 10) /* v7, RES0 in v8 */ |
1062 | #define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */ | |
1063 | #define SCTLR_EOS (1U << 11) /* v8.5-ExS */ | |
76e3e1bc | 1064 | #define SCTLR_I (1U << 12) |
b2af69d0 RH |
1065 | #define SCTLR_V (1U << 13) /* AArch32 only */ |
1066 | #define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */ | |
76e3e1bc PM |
1067 | #define SCTLR_RR (1U << 14) /* up to v7 */ |
1068 | #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */ | |
1069 | #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */ | |
1070 | #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */ | |
1071 | #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */ | |
1072 | #define SCTLR_nTWI (1U << 16) /* v8 onward */ | |
b2af69d0 | 1073 | #define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */ |
f6bda88f | 1074 | #define SCTLR_BR (1U << 17) /* PMSA only */ |
76e3e1bc PM |
1075 | #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */ |
1076 | #define SCTLR_nTWE (1U << 18) /* v8 onward */ | |
1077 | #define SCTLR_WXN (1U << 19) | |
1078 | #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */ | |
b2af69d0 RH |
1079 | #define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */ |
1080 | #define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */ | |
1081 | #define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */ | |
1082 | #define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */ | |
1083 | #define SCTLR_EIS (1U << 22) /* v8.5-ExS */ | |
76e3e1bc | 1084 | #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */ |
b2af69d0 | 1085 | #define SCTLR_SPAN (1U << 23) /* v8.1-PAN */ |
76e3e1bc PM |
1086 | #define SCTLR_VE (1U << 24) /* up to v7 */ |
1087 | #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */ | |
1088 | #define SCTLR_EE (1U << 25) | |
1089 | #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */ | |
1090 | #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */ | |
b2af69d0 RH |
1091 | #define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */ |
1092 | #define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */ | |
1093 | #define SCTLR_TRE (1U << 28) /* AArch32 only */ | |
1094 | #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */ | |
1095 | #define SCTLR_AFE (1U << 29) /* AArch32 only */ | |
1096 | #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */ | |
1097 | #define SCTLR_TE (1U << 30) /* AArch32 only */ | |
1098 | #define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */ | |
1099 | #define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */ | |
1100 | #define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */ | |
1101 | #define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */ | |
1102 | #define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */ | |
1103 | #define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */ | |
1104 | #define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */ | |
1105 | #define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */ | |
1106 | #define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */ | |
1107 | #define SCTLR_DSSBS (1ULL << 44) /* v8.5 */ | |
76e3e1bc | 1108 | |
c6f19164 GB |
1109 | #define CPTR_TCPAC (1U << 31) |
1110 | #define CPTR_TTA (1U << 20) | |
1111 | #define CPTR_TFP (1U << 10) | |
5be5e8ed RH |
1112 | #define CPTR_TZ (1U << 8) /* CPTR_EL2 */ |
1113 | #define CPTR_EZ (1U << 8) /* CPTR_EL3 */ | |
c6f19164 | 1114 | |
187f678d PM |
1115 | #define MDCR_EPMAD (1U << 21) |
1116 | #define MDCR_EDAD (1U << 20) | |
033614c4 AL |
1117 | #define MDCR_SPME (1U << 17) /* MDCR_EL3 */ |
1118 | #define MDCR_HPMD (1U << 17) /* MDCR_EL2 */ | |
187f678d | 1119 | #define MDCR_SDD (1U << 16) |
a8d64e73 | 1120 | #define MDCR_SPD (3U << 14) |
187f678d PM |
1121 | #define MDCR_TDRA (1U << 11) |
1122 | #define MDCR_TDOSA (1U << 10) | |
1123 | #define MDCR_TDA (1U << 9) | |
1124 | #define MDCR_TDE (1U << 8) | |
1125 | #define MDCR_HPME (1U << 7) | |
1126 | #define MDCR_TPM (1U << 6) | |
1127 | #define MDCR_TPMCR (1U << 5) | |
033614c4 | 1128 | #define MDCR_HPMN (0x1fU) |
187f678d | 1129 | |
a8d64e73 PM |
1130 | /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */ |
1131 | #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD) | |
1132 | ||
78dbbbe4 PM |
1133 | #define CPSR_M (0x1fU) |
1134 | #define CPSR_T (1U << 5) | |
1135 | #define CPSR_F (1U << 6) | |
1136 | #define CPSR_I (1U << 7) | |
1137 | #define CPSR_A (1U << 8) | |
1138 | #define CPSR_E (1U << 9) | |
1139 | #define CPSR_IT_2_7 (0xfc00U) | |
1140 | #define CPSR_GE (0xfU << 16) | |
4051e12c PM |
1141 | #define CPSR_IL (1U << 20) |
1142 | /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in | |
1143 | * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use | |
1144 | * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32, | |
1145 | * where it is live state but not accessible to the AArch32 code. | |
1146 | */ | |
1147 | #define CPSR_RESERVED (0x7U << 21) | |
78dbbbe4 PM |
1148 | #define CPSR_J (1U << 24) |
1149 | #define CPSR_IT_0_1 (3U << 25) | |
1150 | #define CPSR_Q (1U << 27) | |
1151 | #define CPSR_V (1U << 28) | |
1152 | #define CPSR_C (1U << 29) | |
1153 | #define CPSR_Z (1U << 30) | |
1154 | #define CPSR_N (1U << 31) | |
9ee6e8bb | 1155 | #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V) |
4cc35614 | 1156 | #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F) |
9ee6e8bb PB |
1157 | |
1158 | #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7) | |
4cc35614 PM |
1159 | #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \ |
1160 | | CPSR_NZCV) | |
9ee6e8bb PB |
1161 | /* Bits writable in user mode. */ |
1162 | #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE) | |
1163 | /* Execution state bits. MRS read as zero, MSR writes ignored. */ | |
4051e12c PM |
1164 | #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL) |
1165 | /* Mask of bits which may be set by exception return copying them from SPSR */ | |
1166 | #define CPSR_ERET_MASK (~CPSR_RESERVED) | |
b5ff1b31 | 1167 | |
987ab45e PM |
1168 | /* Bit definitions for M profile XPSR. Most are the same as CPSR. */ |
1169 | #define XPSR_EXCP 0x1ffU | |
1170 | #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */ | |
1171 | #define XPSR_IT_2_7 CPSR_IT_2_7 | |
1172 | #define XPSR_GE CPSR_GE | |
1173 | #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */ | |
1174 | #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */ | |
1175 | #define XPSR_IT_0_1 CPSR_IT_0_1 | |
1176 | #define XPSR_Q CPSR_Q | |
1177 | #define XPSR_V CPSR_V | |
1178 | #define XPSR_C CPSR_C | |
1179 | #define XPSR_Z CPSR_Z | |
1180 | #define XPSR_N CPSR_N | |
1181 | #define XPSR_NZCV CPSR_NZCV | |
1182 | #define XPSR_IT CPSR_IT | |
1183 | ||
e389be16 FA |
1184 | #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */ |
1185 | #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */ | |
1186 | #define TTBCR_PD0 (1U << 4) | |
1187 | #define TTBCR_PD1 (1U << 5) | |
1188 | #define TTBCR_EPD0 (1U << 7) | |
1189 | #define TTBCR_IRGN0 (3U << 8) | |
1190 | #define TTBCR_ORGN0 (3U << 10) | |
1191 | #define TTBCR_SH0 (3U << 12) | |
1192 | #define TTBCR_T1SZ (3U << 16) | |
1193 | #define TTBCR_A1 (1U << 22) | |
1194 | #define TTBCR_EPD1 (1U << 23) | |
1195 | #define TTBCR_IRGN1 (3U << 24) | |
1196 | #define TTBCR_ORGN1 (3U << 26) | |
1197 | #define TTBCR_SH1 (1U << 28) | |
1198 | #define TTBCR_EAE (1U << 31) | |
1199 | ||
d356312f PM |
1200 | /* Bit definitions for ARMv8 SPSR (PSTATE) format. |
1201 | * Only these are valid when in AArch64 mode; in | |
1202 | * AArch32 mode SPSRs are basically CPSR-format. | |
1203 | */ | |
f502cfc2 | 1204 | #define PSTATE_SP (1U) |
d356312f PM |
1205 | #define PSTATE_M (0xFU) |
1206 | #define PSTATE_nRW (1U << 4) | |
1207 | #define PSTATE_F (1U << 6) | |
1208 | #define PSTATE_I (1U << 7) | |
1209 | #define PSTATE_A (1U << 8) | |
1210 | #define PSTATE_D (1U << 9) | |
f6e52eaa | 1211 | #define PSTATE_BTYPE (3U << 10) |
d356312f PM |
1212 | #define PSTATE_IL (1U << 20) |
1213 | #define PSTATE_SS (1U << 21) | |
1214 | #define PSTATE_V (1U << 28) | |
1215 | #define PSTATE_C (1U << 29) | |
1216 | #define PSTATE_Z (1U << 30) | |
1217 | #define PSTATE_N (1U << 31) | |
1218 | #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V) | |
4cc35614 | 1219 | #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F) |
f6e52eaa | 1220 | #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE) |
d356312f PM |
1221 | /* Mode values for AArch64 */ |
1222 | #define PSTATE_MODE_EL3h 13 | |
1223 | #define PSTATE_MODE_EL3t 12 | |
1224 | #define PSTATE_MODE_EL2h 9 | |
1225 | #define PSTATE_MODE_EL2t 8 | |
1226 | #define PSTATE_MODE_EL1h 5 | |
1227 | #define PSTATE_MODE_EL1t 4 | |
1228 | #define PSTATE_MODE_EL0t 0 | |
1229 | ||
de2db7ec PM |
1230 | /* Write a new value to v7m.exception, thus transitioning into or out |
1231 | * of Handler mode; this may result in a change of active stack pointer. | |
1232 | */ | |
1233 | void write_v7m_exception(CPUARMState *env, uint32_t new_exc); | |
1234 | ||
9e729b57 EI |
1235 | /* Map EL and handler into a PSTATE_MODE. */ |
1236 | static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler) | |
1237 | { | |
1238 | return (el << 2) | handler; | |
1239 | } | |
1240 | ||
d356312f PM |
1241 | /* Return the current PSTATE value. For the moment we don't support 32<->64 bit |
1242 | * interprocessing, so we don't attempt to sync with the cpsr state used by | |
1243 | * the 32 bit decoder. | |
1244 | */ | |
1245 | static inline uint32_t pstate_read(CPUARMState *env) | |
1246 | { | |
1247 | int ZF; | |
1248 | ||
1249 | ZF = (env->ZF == 0); | |
1250 | return (env->NF & 0x80000000) | (ZF << 30) | |
1251 | | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | |
f6e52eaa | 1252 | | env->pstate | env->daif | (env->btype << 10); |
d356312f PM |
1253 | } |
1254 | ||
1255 | static inline void pstate_write(CPUARMState *env, uint32_t val) | |
1256 | { | |
1257 | env->ZF = (~val) & PSTATE_Z; | |
1258 | env->NF = val; | |
1259 | env->CF = (val >> 29) & 1; | |
1260 | env->VF = (val << 3) & 0x80000000; | |
4cc35614 | 1261 | env->daif = val & PSTATE_DAIF; |
f6e52eaa | 1262 | env->btype = (val >> 10) & 3; |
d356312f PM |
1263 | env->pstate = val & ~CACHED_PSTATE_BITS; |
1264 | } | |
1265 | ||
b5ff1b31 | 1266 | /* Return the current CPSR value. */ |
2f4a40e5 | 1267 | uint32_t cpsr_read(CPUARMState *env); |
50866ba5 PM |
1268 | |
1269 | typedef enum CPSRWriteType { | |
1270 | CPSRWriteByInstr = 0, /* from guest MSR or CPS */ | |
1271 | CPSRWriteExceptionReturn = 1, /* from guest exception return insn */ | |
1272 | CPSRWriteRaw = 2, /* trust values, do not switch reg banks */ | |
1273 | CPSRWriteByGDBStub = 3, /* from the GDB stub */ | |
1274 | } CPSRWriteType; | |
1275 | ||
1276 | /* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/ | |
1277 | void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, | |
1278 | CPSRWriteType write_type); | |
9ee6e8bb PB |
1279 | |
1280 | /* Return the current xPSR value. */ | |
1281 | static inline uint32_t xpsr_read(CPUARMState *env) | |
1282 | { | |
1283 | int ZF; | |
6fbe23d5 PB |
1284 | ZF = (env->ZF == 0); |
1285 | return (env->NF & 0x80000000) | (ZF << 30) | |
9ee6e8bb PB |
1286 | | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) |
1287 | | (env->thumb << 24) | ((env->condexec_bits & 3) << 25) | |
1288 | | ((env->condexec_bits & 0xfc) << 8) | |
1289 | | env->v7m.exception; | |
b5ff1b31 FB |
1290 | } |
1291 | ||
9ee6e8bb PB |
1292 | /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */ |
1293 | static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) | |
1294 | { | |
987ab45e PM |
1295 | if (mask & XPSR_NZCV) { |
1296 | env->ZF = (~val) & XPSR_Z; | |
6fbe23d5 | 1297 | env->NF = val; |
9ee6e8bb PB |
1298 | env->CF = (val >> 29) & 1; |
1299 | env->VF = (val << 3) & 0x80000000; | |
1300 | } | |
987ab45e PM |
1301 | if (mask & XPSR_Q) { |
1302 | env->QF = ((val & XPSR_Q) != 0); | |
1303 | } | |
1304 | if (mask & XPSR_T) { | |
1305 | env->thumb = ((val & XPSR_T) != 0); | |
1306 | } | |
1307 | if (mask & XPSR_IT_0_1) { | |
9ee6e8bb PB |
1308 | env->condexec_bits &= ~3; |
1309 | env->condexec_bits |= (val >> 25) & 3; | |
1310 | } | |
987ab45e | 1311 | if (mask & XPSR_IT_2_7) { |
9ee6e8bb PB |
1312 | env->condexec_bits &= 3; |
1313 | env->condexec_bits |= (val >> 8) & 0xfc; | |
1314 | } | |
987ab45e | 1315 | if (mask & XPSR_EXCP) { |
de2db7ec PM |
1316 | /* Note that this only happens on exception exit */ |
1317 | write_v7m_exception(env, val & XPSR_EXCP); | |
9ee6e8bb PB |
1318 | } |
1319 | } | |
1320 | ||
f149e3e8 EI |
1321 | #define HCR_VM (1ULL << 0) |
1322 | #define HCR_SWIO (1ULL << 1) | |
1323 | #define HCR_PTW (1ULL << 2) | |
1324 | #define HCR_FMO (1ULL << 3) | |
1325 | #define HCR_IMO (1ULL << 4) | |
1326 | #define HCR_AMO (1ULL << 5) | |
1327 | #define HCR_VF (1ULL << 6) | |
1328 | #define HCR_VI (1ULL << 7) | |
1329 | #define HCR_VSE (1ULL << 8) | |
1330 | #define HCR_FB (1ULL << 9) | |
1331 | #define HCR_BSU_MASK (3ULL << 10) | |
1332 | #define HCR_DC (1ULL << 12) | |
1333 | #define HCR_TWI (1ULL << 13) | |
1334 | #define HCR_TWE (1ULL << 14) | |
1335 | #define HCR_TID0 (1ULL << 15) | |
1336 | #define HCR_TID1 (1ULL << 16) | |
1337 | #define HCR_TID2 (1ULL << 17) | |
1338 | #define HCR_TID3 (1ULL << 18) | |
1339 | #define HCR_TSC (1ULL << 19) | |
1340 | #define HCR_TIDCP (1ULL << 20) | |
1341 | #define HCR_TACR (1ULL << 21) | |
1342 | #define HCR_TSW (1ULL << 22) | |
099bf53b | 1343 | #define HCR_TPCP (1ULL << 23) |
f149e3e8 EI |
1344 | #define HCR_TPU (1ULL << 24) |
1345 | #define HCR_TTLB (1ULL << 25) | |
1346 | #define HCR_TVM (1ULL << 26) | |
1347 | #define HCR_TGE (1ULL << 27) | |
1348 | #define HCR_TDZ (1ULL << 28) | |
1349 | #define HCR_HCD (1ULL << 29) | |
1350 | #define HCR_TRVM (1ULL << 30) | |
1351 | #define HCR_RW (1ULL << 31) | |
1352 | #define HCR_CD (1ULL << 32) | |
1353 | #define HCR_ID (1ULL << 33) | |
ac656b16 | 1354 | #define HCR_E2H (1ULL << 34) |
099bf53b RH |
1355 | #define HCR_TLOR (1ULL << 35) |
1356 | #define HCR_TERR (1ULL << 36) | |
1357 | #define HCR_TEA (1ULL << 37) | |
1358 | #define HCR_MIOCNCE (1ULL << 38) | |
1359 | #define HCR_APK (1ULL << 40) | |
1360 | #define HCR_API (1ULL << 41) | |
1361 | #define HCR_NV (1ULL << 42) | |
1362 | #define HCR_NV1 (1ULL << 43) | |
1363 | #define HCR_AT (1ULL << 44) | |
1364 | #define HCR_NV2 (1ULL << 45) | |
1365 | #define HCR_FWB (1ULL << 46) | |
1366 | #define HCR_FIEN (1ULL << 47) | |
1367 | #define HCR_TID4 (1ULL << 49) | |
1368 | #define HCR_TICAB (1ULL << 50) | |
1369 | #define HCR_TOCU (1ULL << 52) | |
1370 | #define HCR_TTLBIS (1ULL << 54) | |
1371 | #define HCR_TTLBOS (1ULL << 55) | |
1372 | #define HCR_ATA (1ULL << 56) | |
1373 | #define HCR_DCT (1ULL << 57) | |
1374 | ||
ac656b16 PM |
1375 | /* |
1376 | * When we actually implement ARMv8.1-VHE we should add HCR_E2H to | |
1377 | * HCR_MASK and then clear it again if the feature bit is not set in | |
1378 | * hcr_write(). | |
1379 | */ | |
f149e3e8 EI |
1380 | #define HCR_MASK ((1ULL << 34) - 1) |
1381 | ||
64e0e2de EI |
1382 | #define SCR_NS (1U << 0) |
1383 | #define SCR_IRQ (1U << 1) | |
1384 | #define SCR_FIQ (1U << 2) | |
1385 | #define SCR_EA (1U << 3) | |
1386 | #define SCR_FW (1U << 4) | |
1387 | #define SCR_AW (1U << 5) | |
1388 | #define SCR_NET (1U << 6) | |
1389 | #define SCR_SMD (1U << 7) | |
1390 | #define SCR_HCE (1U << 8) | |
1391 | #define SCR_SIF (1U << 9) | |
1392 | #define SCR_RW (1U << 10) | |
1393 | #define SCR_ST (1U << 11) | |
1394 | #define SCR_TWI (1U << 12) | |
1395 | #define SCR_TWE (1U << 13) | |
99f8f86d RH |
1396 | #define SCR_TLOR (1U << 14) |
1397 | #define SCR_TERR (1U << 15) | |
1398 | #define SCR_APK (1U << 16) | |
1399 | #define SCR_API (1U << 17) | |
1400 | #define SCR_EEL2 (1U << 18) | |
1401 | #define SCR_EASE (1U << 19) | |
1402 | #define SCR_NMEA (1U << 20) | |
1403 | #define SCR_FIEN (1U << 21) | |
1404 | #define SCR_ENSCXT (1U << 25) | |
1405 | #define SCR_ATA (1U << 26) | |
64e0e2de | 1406 | |
01653295 PM |
1407 | /* Return the current FPSCR value. */ |
1408 | uint32_t vfp_get_fpscr(CPUARMState *env); | |
1409 | void vfp_set_fpscr(CPUARMState *env, uint32_t val); | |
1410 | ||
d81ce0ef AB |
1411 | /* FPCR, Floating Point Control Register |
1412 | * FPSR, Floating Poiht Status Register | |
1413 | * | |
1414 | * For A64 the FPSCR is split into two logically distinct registers, | |
f903fa22 PM |
1415 | * FPCR and FPSR. However since they still use non-overlapping bits |
1416 | * we store the underlying state in fpscr and just mask on read/write. | |
1417 | */ | |
1418 | #define FPSR_MASK 0xf800009f | |
0b62159b | 1419 | #define FPCR_MASK 0x07ff9f00 |
d81ce0ef AB |
1420 | |
1421 | #define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */ | |
1422 | #define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */ | |
1423 | #define FPCR_DN (1 << 25) /* Default NaN enable bit */ | |
1424 | ||
f903fa22 PM |
1425 | static inline uint32_t vfp_get_fpsr(CPUARMState *env) |
1426 | { | |
1427 | return vfp_get_fpscr(env) & FPSR_MASK; | |
1428 | } | |
1429 | ||
1430 | static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val) | |
1431 | { | |
1432 | uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK); | |
1433 | vfp_set_fpscr(env, new_fpscr); | |
1434 | } | |
1435 | ||
1436 | static inline uint32_t vfp_get_fpcr(CPUARMState *env) | |
1437 | { | |
1438 | return vfp_get_fpscr(env) & FPCR_MASK; | |
1439 | } | |
1440 | ||
1441 | static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val) | |
1442 | { | |
1443 | uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK); | |
1444 | vfp_set_fpscr(env, new_fpscr); | |
1445 | } | |
1446 | ||
b5ff1b31 FB |
1447 | enum arm_cpu_mode { |
1448 | ARM_CPU_MODE_USR = 0x10, | |
1449 | ARM_CPU_MODE_FIQ = 0x11, | |
1450 | ARM_CPU_MODE_IRQ = 0x12, | |
1451 | ARM_CPU_MODE_SVC = 0x13, | |
28c9457d | 1452 | ARM_CPU_MODE_MON = 0x16, |
b5ff1b31 | 1453 | ARM_CPU_MODE_ABT = 0x17, |
28c9457d | 1454 | ARM_CPU_MODE_HYP = 0x1a, |
b5ff1b31 FB |
1455 | ARM_CPU_MODE_UND = 0x1b, |
1456 | ARM_CPU_MODE_SYS = 0x1f | |
1457 | }; | |
1458 | ||
40f137e1 PB |
1459 | /* VFP system registers. */ |
1460 | #define ARM_VFP_FPSID 0 | |
1461 | #define ARM_VFP_FPSCR 1 | |
a50c0f51 | 1462 | #define ARM_VFP_MVFR2 5 |
9ee6e8bb PB |
1463 | #define ARM_VFP_MVFR1 6 |
1464 | #define ARM_VFP_MVFR0 7 | |
40f137e1 PB |
1465 | #define ARM_VFP_FPEXC 8 |
1466 | #define ARM_VFP_FPINST 9 | |
1467 | #define ARM_VFP_FPINST2 10 | |
1468 | ||
18c9b560 | 1469 | /* iwMMXt coprocessor control registers. */ |
6e0fafe2 PM |
1470 | #define ARM_IWMMXT_wCID 0 |
1471 | #define ARM_IWMMXT_wCon 1 | |
1472 | #define ARM_IWMMXT_wCSSF 2 | |
1473 | #define ARM_IWMMXT_wCASF 3 | |
1474 | #define ARM_IWMMXT_wCGR0 8 | |
1475 | #define ARM_IWMMXT_wCGR1 9 | |
1476 | #define ARM_IWMMXT_wCGR2 10 | |
1477 | #define ARM_IWMMXT_wCGR3 11 | |
18c9b560 | 1478 | |
2c4da50d PM |
1479 | /* V7M CCR bits */ |
1480 | FIELD(V7M_CCR, NONBASETHRDENA, 0, 1) | |
1481 | FIELD(V7M_CCR, USERSETMPEND, 1, 1) | |
1482 | FIELD(V7M_CCR, UNALIGN_TRP, 3, 1) | |
1483 | FIELD(V7M_CCR, DIV_0_TRP, 4, 1) | |
1484 | FIELD(V7M_CCR, BFHFNMIGN, 8, 1) | |
1485 | FIELD(V7M_CCR, STKALIGN, 9, 1) | |
4730fb85 | 1486 | FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1) |
2c4da50d PM |
1487 | FIELD(V7M_CCR, DC, 16, 1) |
1488 | FIELD(V7M_CCR, IC, 17, 1) | |
4730fb85 | 1489 | FIELD(V7M_CCR, BP, 18, 1) |
2c4da50d | 1490 | |
24ac0fb1 PM |
1491 | /* V7M SCR bits */ |
1492 | FIELD(V7M_SCR, SLEEPONEXIT, 1, 1) | |
1493 | FIELD(V7M_SCR, SLEEPDEEP, 2, 1) | |
1494 | FIELD(V7M_SCR, SLEEPDEEPS, 3, 1) | |
1495 | FIELD(V7M_SCR, SEVONPEND, 4, 1) | |
1496 | ||
3b2e9344 PM |
1497 | /* V7M AIRCR bits */ |
1498 | FIELD(V7M_AIRCR, VECTRESET, 0, 1) | |
1499 | FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1) | |
1500 | FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1) | |
1501 | FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1) | |
1502 | FIELD(V7M_AIRCR, PRIGROUP, 8, 3) | |
1503 | FIELD(V7M_AIRCR, BFHFNMINS, 13, 1) | |
1504 | FIELD(V7M_AIRCR, PRIS, 14, 1) | |
1505 | FIELD(V7M_AIRCR, ENDIANNESS, 15, 1) | |
1506 | FIELD(V7M_AIRCR, VECTKEY, 16, 16) | |
1507 | ||
2c4da50d PM |
1508 | /* V7M CFSR bits for MMFSR */ |
1509 | FIELD(V7M_CFSR, IACCVIOL, 0, 1) | |
1510 | FIELD(V7M_CFSR, DACCVIOL, 1, 1) | |
1511 | FIELD(V7M_CFSR, MUNSTKERR, 3, 1) | |
1512 | FIELD(V7M_CFSR, MSTKERR, 4, 1) | |
1513 | FIELD(V7M_CFSR, MLSPERR, 5, 1) | |
1514 | FIELD(V7M_CFSR, MMARVALID, 7, 1) | |
1515 | ||
1516 | /* V7M CFSR bits for BFSR */ | |
1517 | FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1) | |
1518 | FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1) | |
1519 | FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1) | |
1520 | FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1) | |
1521 | FIELD(V7M_CFSR, STKERR, 8 + 4, 1) | |
1522 | FIELD(V7M_CFSR, LSPERR, 8 + 5, 1) | |
1523 | FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1) | |
1524 | ||
1525 | /* V7M CFSR bits for UFSR */ | |
1526 | FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1) | |
1527 | FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1) | |
1528 | FIELD(V7M_CFSR, INVPC, 16 + 2, 1) | |
1529 | FIELD(V7M_CFSR, NOCP, 16 + 3, 1) | |
86f026de | 1530 | FIELD(V7M_CFSR, STKOF, 16 + 4, 1) |
2c4da50d PM |
1531 | FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1) |
1532 | FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1) | |
1533 | ||
334e8dad PM |
1534 | /* V7M CFSR bit masks covering all of the subregister bits */ |
1535 | FIELD(V7M_CFSR, MMFSR, 0, 8) | |
1536 | FIELD(V7M_CFSR, BFSR, 8, 8) | |
1537 | FIELD(V7M_CFSR, UFSR, 16, 16) | |
1538 | ||
2c4da50d PM |
1539 | /* V7M HFSR bits */ |
1540 | FIELD(V7M_HFSR, VECTTBL, 1, 1) | |
1541 | FIELD(V7M_HFSR, FORCED, 30, 1) | |
1542 | FIELD(V7M_HFSR, DEBUGEVT, 31, 1) | |
1543 | ||
1544 | /* V7M DFSR bits */ | |
1545 | FIELD(V7M_DFSR, HALTED, 0, 1) | |
1546 | FIELD(V7M_DFSR, BKPT, 1, 1) | |
1547 | FIELD(V7M_DFSR, DWTTRAP, 2, 1) | |
1548 | FIELD(V7M_DFSR, VCATCH, 3, 1) | |
1549 | FIELD(V7M_DFSR, EXTERNAL, 4, 1) | |
1550 | ||
bed079da PM |
1551 | /* V7M SFSR bits */ |
1552 | FIELD(V7M_SFSR, INVEP, 0, 1) | |
1553 | FIELD(V7M_SFSR, INVIS, 1, 1) | |
1554 | FIELD(V7M_SFSR, INVER, 2, 1) | |
1555 | FIELD(V7M_SFSR, AUVIOL, 3, 1) | |
1556 | FIELD(V7M_SFSR, INVTRAN, 4, 1) | |
1557 | FIELD(V7M_SFSR, LSPERR, 5, 1) | |
1558 | FIELD(V7M_SFSR, SFARVALID, 6, 1) | |
1559 | FIELD(V7M_SFSR, LSERR, 7, 1) | |
1560 | ||
29c483a5 MD |
1561 | /* v7M MPU_CTRL bits */ |
1562 | FIELD(V7M_MPU_CTRL, ENABLE, 0, 1) | |
1563 | FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1) | |
1564 | FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1) | |
1565 | ||
43bbce7f PM |
1566 | /* v7M CLIDR bits */ |
1567 | FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21) | |
1568 | FIELD(V7M_CLIDR, LOUIS, 21, 3) | |
1569 | FIELD(V7M_CLIDR, LOC, 24, 3) | |
1570 | FIELD(V7M_CLIDR, LOUU, 27, 3) | |
1571 | FIELD(V7M_CLIDR, ICB, 30, 2) | |
1572 | ||
1573 | FIELD(V7M_CSSELR, IND, 0, 1) | |
1574 | FIELD(V7M_CSSELR, LEVEL, 1, 3) | |
1575 | /* We use the combination of InD and Level to index into cpu->ccsidr[]; | |
1576 | * define a mask for this and check that it doesn't permit running off | |
1577 | * the end of the array. | |
1578 | */ | |
1579 | FIELD(V7M_CSSELR, INDEX, 0, 4) | |
1580 | ||
a62e62af RH |
1581 | /* |
1582 | * System register ID fields. | |
1583 | */ | |
1584 | FIELD(ID_ISAR0, SWAP, 0, 4) | |
1585 | FIELD(ID_ISAR0, BITCOUNT, 4, 4) | |
1586 | FIELD(ID_ISAR0, BITFIELD, 8, 4) | |
1587 | FIELD(ID_ISAR0, CMPBRANCH, 12, 4) | |
1588 | FIELD(ID_ISAR0, COPROC, 16, 4) | |
1589 | FIELD(ID_ISAR0, DEBUG, 20, 4) | |
1590 | FIELD(ID_ISAR0, DIVIDE, 24, 4) | |
1591 | ||
1592 | FIELD(ID_ISAR1, ENDIAN, 0, 4) | |
1593 | FIELD(ID_ISAR1, EXCEPT, 4, 4) | |
1594 | FIELD(ID_ISAR1, EXCEPT_AR, 8, 4) | |
1595 | FIELD(ID_ISAR1, EXTEND, 12, 4) | |
1596 | FIELD(ID_ISAR1, IFTHEN, 16, 4) | |
1597 | FIELD(ID_ISAR1, IMMEDIATE, 20, 4) | |
1598 | FIELD(ID_ISAR1, INTERWORK, 24, 4) | |
1599 | FIELD(ID_ISAR1, JAZELLE, 28, 4) | |
1600 | ||
1601 | FIELD(ID_ISAR2, LOADSTORE, 0, 4) | |
1602 | FIELD(ID_ISAR2, MEMHINT, 4, 4) | |
1603 | FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4) | |
1604 | FIELD(ID_ISAR2, MULT, 12, 4) | |
1605 | FIELD(ID_ISAR2, MULTS, 16, 4) | |
1606 | FIELD(ID_ISAR2, MULTU, 20, 4) | |
1607 | FIELD(ID_ISAR2, PSR_AR, 24, 4) | |
1608 | FIELD(ID_ISAR2, REVERSAL, 28, 4) | |
1609 | ||
1610 | FIELD(ID_ISAR3, SATURATE, 0, 4) | |
1611 | FIELD(ID_ISAR3, SIMD, 4, 4) | |
1612 | FIELD(ID_ISAR3, SVC, 8, 4) | |
1613 | FIELD(ID_ISAR3, SYNCHPRIM, 12, 4) | |
1614 | FIELD(ID_ISAR3, TABBRANCH, 16, 4) | |
1615 | FIELD(ID_ISAR3, T32COPY, 20, 4) | |
1616 | FIELD(ID_ISAR3, TRUENOP, 24, 4) | |
1617 | FIELD(ID_ISAR3, T32EE, 28, 4) | |
1618 | ||
1619 | FIELD(ID_ISAR4, UNPRIV, 0, 4) | |
1620 | FIELD(ID_ISAR4, WITHSHIFTS, 4, 4) | |
1621 | FIELD(ID_ISAR4, WRITEBACK, 8, 4) | |
1622 | FIELD(ID_ISAR4, SMC, 12, 4) | |
1623 | FIELD(ID_ISAR4, BARRIER, 16, 4) | |
1624 | FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4) | |
1625 | FIELD(ID_ISAR4, PSR_M, 24, 4) | |
1626 | FIELD(ID_ISAR4, SWP_FRAC, 28, 4) | |
1627 | ||
1628 | FIELD(ID_ISAR5, SEVL, 0, 4) | |
1629 | FIELD(ID_ISAR5, AES, 4, 4) | |
1630 | FIELD(ID_ISAR5, SHA1, 8, 4) | |
1631 | FIELD(ID_ISAR5, SHA2, 12, 4) | |
1632 | FIELD(ID_ISAR5, CRC32, 16, 4) | |
1633 | FIELD(ID_ISAR5, RDM, 24, 4) | |
1634 | FIELD(ID_ISAR5, VCMA, 28, 4) | |
1635 | ||
1636 | FIELD(ID_ISAR6, JSCVT, 0, 4) | |
1637 | FIELD(ID_ISAR6, DP, 4, 4) | |
1638 | FIELD(ID_ISAR6, FHM, 8, 4) | |
1639 | FIELD(ID_ISAR6, SB, 12, 4) | |
1640 | FIELD(ID_ISAR6, SPECRES, 16, 4) | |
1641 | ||
ab638a32 RH |
1642 | FIELD(ID_MMFR4, SPECSEI, 0, 4) |
1643 | FIELD(ID_MMFR4, AC2, 4, 4) | |
1644 | FIELD(ID_MMFR4, XNX, 8, 4) | |
1645 | FIELD(ID_MMFR4, CNP, 12, 4) | |
1646 | FIELD(ID_MMFR4, HPDS, 16, 4) | |
1647 | FIELD(ID_MMFR4, LSM, 20, 4) | |
1648 | FIELD(ID_MMFR4, CCIDX, 24, 4) | |
1649 | FIELD(ID_MMFR4, EVT, 28, 4) | |
1650 | ||
a62e62af RH |
1651 | FIELD(ID_AA64ISAR0, AES, 4, 4) |
1652 | FIELD(ID_AA64ISAR0, SHA1, 8, 4) | |
1653 | FIELD(ID_AA64ISAR0, SHA2, 12, 4) | |
1654 | FIELD(ID_AA64ISAR0, CRC32, 16, 4) | |
1655 | FIELD(ID_AA64ISAR0, ATOMIC, 20, 4) | |
1656 | FIELD(ID_AA64ISAR0, RDM, 28, 4) | |
1657 | FIELD(ID_AA64ISAR0, SHA3, 32, 4) | |
1658 | FIELD(ID_AA64ISAR0, SM3, 36, 4) | |
1659 | FIELD(ID_AA64ISAR0, SM4, 40, 4) | |
1660 | FIELD(ID_AA64ISAR0, DP, 44, 4) | |
1661 | FIELD(ID_AA64ISAR0, FHM, 48, 4) | |
1662 | FIELD(ID_AA64ISAR0, TS, 52, 4) | |
1663 | FIELD(ID_AA64ISAR0, TLB, 56, 4) | |
1664 | FIELD(ID_AA64ISAR0, RNDR, 60, 4) | |
1665 | ||
1666 | FIELD(ID_AA64ISAR1, DPB, 0, 4) | |
1667 | FIELD(ID_AA64ISAR1, APA, 4, 4) | |
1668 | FIELD(ID_AA64ISAR1, API, 8, 4) | |
1669 | FIELD(ID_AA64ISAR1, JSCVT, 12, 4) | |
1670 | FIELD(ID_AA64ISAR1, FCMA, 16, 4) | |
1671 | FIELD(ID_AA64ISAR1, LRCPC, 20, 4) | |
1672 | FIELD(ID_AA64ISAR1, GPA, 24, 4) | |
1673 | FIELD(ID_AA64ISAR1, GPI, 28, 4) | |
1674 | FIELD(ID_AA64ISAR1, FRINTTS, 32, 4) | |
1675 | FIELD(ID_AA64ISAR1, SB, 36, 4) | |
1676 | FIELD(ID_AA64ISAR1, SPECRES, 40, 4) | |
1677 | ||
cd208a1c RH |
1678 | FIELD(ID_AA64PFR0, EL0, 0, 4) |
1679 | FIELD(ID_AA64PFR0, EL1, 4, 4) | |
1680 | FIELD(ID_AA64PFR0, EL2, 8, 4) | |
1681 | FIELD(ID_AA64PFR0, EL3, 12, 4) | |
1682 | FIELD(ID_AA64PFR0, FP, 16, 4) | |
1683 | FIELD(ID_AA64PFR0, ADVSIMD, 20, 4) | |
1684 | FIELD(ID_AA64PFR0, GIC, 24, 4) | |
1685 | FIELD(ID_AA64PFR0, RAS, 28, 4) | |
1686 | FIELD(ID_AA64PFR0, SVE, 32, 4) | |
1687 | ||
be53b6f4 RH |
1688 | FIELD(ID_AA64PFR1, BT, 0, 4) |
1689 | FIELD(ID_AA64PFR1, SBSS, 4, 4) | |
1690 | FIELD(ID_AA64PFR1, MTE, 8, 4) | |
1691 | FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4) | |
1692 | ||
3dc91ddb PM |
1693 | FIELD(ID_AA64MMFR0, PARANGE, 0, 4) |
1694 | FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4) | |
1695 | FIELD(ID_AA64MMFR0, BIGEND, 8, 4) | |
1696 | FIELD(ID_AA64MMFR0, SNSMEM, 12, 4) | |
1697 | FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4) | |
1698 | FIELD(ID_AA64MMFR0, TGRAN16, 20, 4) | |
1699 | FIELD(ID_AA64MMFR0, TGRAN64, 24, 4) | |
1700 | FIELD(ID_AA64MMFR0, TGRAN4, 28, 4) | |
1701 | FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4) | |
1702 | FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4) | |
1703 | FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4) | |
1704 | FIELD(ID_AA64MMFR0, EXS, 44, 4) | |
1705 | ||
1706 | FIELD(ID_AA64MMFR1, HAFDBS, 0, 4) | |
1707 | FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4) | |
1708 | FIELD(ID_AA64MMFR1, VH, 8, 4) | |
1709 | FIELD(ID_AA64MMFR1, HPDS, 12, 4) | |
1710 | FIELD(ID_AA64MMFR1, LO, 16, 4) | |
1711 | FIELD(ID_AA64MMFR1, PAN, 20, 4) | |
1712 | FIELD(ID_AA64MMFR1, SPECSEI, 24, 4) | |
1713 | FIELD(ID_AA64MMFR1, XNX, 28, 4) | |
1714 | ||
beceb99c AL |
1715 | FIELD(ID_DFR0, COPDBG, 0, 4) |
1716 | FIELD(ID_DFR0, COPSDBG, 4, 4) | |
1717 | FIELD(ID_DFR0, MMAPDBG, 8, 4) | |
1718 | FIELD(ID_DFR0, COPTRC, 12, 4) | |
1719 | FIELD(ID_DFR0, MMAPTRC, 16, 4) | |
1720 | FIELD(ID_DFR0, MPROFDBG, 20, 4) | |
1721 | FIELD(ID_DFR0, PERFMON, 24, 4) | |
1722 | FIELD(ID_DFR0, TRACEFILT, 28, 4) | |
1723 | ||
43bbce7f PM |
1724 | QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK); |
1725 | ||
ce854d7c BC |
1726 | /* If adding a feature bit which corresponds to a Linux ELF |
1727 | * HWCAP bit, remember to update the feature-bit-to-hwcap | |
1728 | * mapping in linux-user/elfload.c:get_elf_hwcap(). | |
1729 | */ | |
40f137e1 PB |
1730 | enum arm_features { |
1731 | ARM_FEATURE_VFP, | |
c1713132 AZ |
1732 | ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */ |
1733 | ARM_FEATURE_XSCALE, /* Intel XScale extensions. */ | |
ce819861 | 1734 | ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */ |
9ee6e8bb PB |
1735 | ARM_FEATURE_V6, |
1736 | ARM_FEATURE_V6K, | |
1737 | ARM_FEATURE_V7, | |
1738 | ARM_FEATURE_THUMB2, | |
452a0955 | 1739 | ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */ |
9ee6e8bb | 1740 | ARM_FEATURE_VFP3, |
60011498 | 1741 | ARM_FEATURE_VFP_FP16, |
9ee6e8bb | 1742 | ARM_FEATURE_NEON, |
9ee6e8bb | 1743 | ARM_FEATURE_M, /* Microcontroller profile. */ |
fe1479c3 | 1744 | ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */ |
e1bbf446 | 1745 | ARM_FEATURE_THUMB2EE, |
be5e7a76 | 1746 | ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */ |
5110e683 | 1747 | ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */ |
be5e7a76 DES |
1748 | ARM_FEATURE_V4T, |
1749 | ARM_FEATURE_V5, | |
5bc95aa2 | 1750 | ARM_FEATURE_STRONGARM, |
906879a9 | 1751 | ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */ |
da97f52c | 1752 | ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */ |
0383ac00 | 1753 | ARM_FEATURE_GENERIC_TIMER, |
06ed5d66 | 1754 | ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */ |
1047b9d7 | 1755 | ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */ |
c4804214 PM |
1756 | ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */ |
1757 | ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */ | |
1758 | ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */ | |
81bdde9d | 1759 | ARM_FEATURE_MPIDR, /* has cp15 MPIDR */ |
de9b05b8 PM |
1760 | ARM_FEATURE_PXN, /* has Privileged Execute Never bit */ |
1761 | ARM_FEATURE_LPAE, /* has Large Physical Address Extension */ | |
81e69fb0 | 1762 | ARM_FEATURE_V8, |
3926cc84 | 1763 | ARM_FEATURE_AARCH64, /* supports 64 bit mode */ |
d8ba780b | 1764 | ARM_FEATURE_CBAR, /* has cp15 CBAR */ |
eb0ecd5a | 1765 | ARM_FEATURE_CRC, /* ARMv8 CRC instructions */ |
f318cec6 | 1766 | ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */ |
cca7c2f5 | 1767 | ARM_FEATURE_EL2, /* has EL2 Virtualization support */ |
1fe8141e | 1768 | ARM_FEATURE_EL3, /* has EL3 Secure monitor support */ |
62b44f05 | 1769 | ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */ |
929e754d | 1770 | ARM_FEATURE_PMU, /* has PMU support */ |
91db4642 | 1771 | ARM_FEATURE_VBAR, /* has cp15 VBAR */ |
1e577cc7 | 1772 | ARM_FEATURE_M_SECURITY, /* M profile Security Extension */ |
cc2ae7c9 | 1773 | ARM_FEATURE_M_MAIN, /* M profile Main Extension */ |
40f137e1 PB |
1774 | }; |
1775 | ||
1776 | static inline int arm_feature(CPUARMState *env, int feature) | |
1777 | { | |
918f5dca | 1778 | return (env->features & (1ULL << feature)) != 0; |
40f137e1 PB |
1779 | } |
1780 | ||
19e0fefa FA |
1781 | #if !defined(CONFIG_USER_ONLY) |
1782 | /* Return true if exception levels below EL3 are in secure state, | |
1783 | * or would be following an exception return to that level. | |
1784 | * Unlike arm_is_secure() (which is always a question about the | |
1785 | * _current_ state of the CPU) this doesn't care about the current | |
1786 | * EL or mode. | |
1787 | */ | |
1788 | static inline bool arm_is_secure_below_el3(CPUARMState *env) | |
1789 | { | |
1790 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
1791 | return !(env->cp15.scr_el3 & SCR_NS); | |
1792 | } else { | |
6b7f0b61 | 1793 | /* If EL3 is not supported then the secure state is implementation |
19e0fefa FA |
1794 | * defined, in which case QEMU defaults to non-secure. |
1795 | */ | |
1796 | return false; | |
1797 | } | |
1798 | } | |
1799 | ||
71205876 PM |
1800 | /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */ |
1801 | static inline bool arm_is_el3_or_mon(CPUARMState *env) | |
19e0fefa FA |
1802 | { |
1803 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
1804 | if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) { | |
1805 | /* CPU currently in AArch64 state and EL3 */ | |
1806 | return true; | |
1807 | } else if (!is_a64(env) && | |
1808 | (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { | |
1809 | /* CPU currently in AArch32 state and monitor mode */ | |
1810 | return true; | |
1811 | } | |
1812 | } | |
71205876 PM |
1813 | return false; |
1814 | } | |
1815 | ||
1816 | /* Return true if the processor is in secure state */ | |
1817 | static inline bool arm_is_secure(CPUARMState *env) | |
1818 | { | |
1819 | if (arm_is_el3_or_mon(env)) { | |
1820 | return true; | |
1821 | } | |
19e0fefa FA |
1822 | return arm_is_secure_below_el3(env); |
1823 | } | |
1824 | ||
1825 | #else | |
1826 | static inline bool arm_is_secure_below_el3(CPUARMState *env) | |
1827 | { | |
1828 | return false; | |
1829 | } | |
1830 | ||
1831 | static inline bool arm_is_secure(CPUARMState *env) | |
1832 | { | |
1833 | return false; | |
1834 | } | |
1835 | #endif | |
1836 | ||
f7778444 RH |
1837 | /** |
1838 | * arm_hcr_el2_eff(): Return the effective value of HCR_EL2. | |
1839 | * E.g. when in secure state, fields in HCR_EL2 are suppressed, | |
1840 | * "for all purposes other than a direct read or write access of HCR_EL2." | |
1841 | * Not included here is HCR_RW. | |
1842 | */ | |
1843 | uint64_t arm_hcr_el2_eff(CPUARMState *env); | |
1844 | ||
1f79ee32 PM |
1845 | /* Return true if the specified exception level is running in AArch64 state. */ |
1846 | static inline bool arm_el_is_aa64(CPUARMState *env, int el) | |
1847 | { | |
446c81ab PM |
1848 | /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want, |
1849 | * and if we're not in EL0 then the state of EL0 isn't well defined.) | |
1f79ee32 | 1850 | */ |
446c81ab PM |
1851 | assert(el >= 1 && el <= 3); |
1852 | bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64); | |
592125f8 | 1853 | |
446c81ab PM |
1854 | /* The highest exception level is always at the maximum supported |
1855 | * register width, and then lower levels have a register width controlled | |
1856 | * by bits in the SCR or HCR registers. | |
1f79ee32 | 1857 | */ |
446c81ab PM |
1858 | if (el == 3) { |
1859 | return aa64; | |
1860 | } | |
1861 | ||
1862 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
1863 | aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW); | |
1864 | } | |
1865 | ||
1866 | if (el == 2) { | |
1867 | return aa64; | |
1868 | } | |
1869 | ||
1870 | if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) { | |
1871 | aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW); | |
1872 | } | |
1873 | ||
1874 | return aa64; | |
1f79ee32 PM |
1875 | } |
1876 | ||
3f342b9e SF |
1877 | /* Function for determing whether guest cp register reads and writes should |
1878 | * access the secure or non-secure bank of a cp register. When EL3 is | |
1879 | * operating in AArch32 state, the NS-bit determines whether the secure | |
1880 | * instance of a cp register should be used. When EL3 is AArch64 (or if | |
1881 | * it doesn't exist at all) then there is no register banking, and all | |
1882 | * accesses are to the non-secure version. | |
1883 | */ | |
1884 | static inline bool access_secure_reg(CPUARMState *env) | |
1885 | { | |
1886 | bool ret = (arm_feature(env, ARM_FEATURE_EL3) && | |
1887 | !arm_el_is_aa64(env, 3) && | |
1888 | !(env->cp15.scr_el3 & SCR_NS)); | |
1889 | ||
1890 | return ret; | |
1891 | } | |
1892 | ||
ea30a4b8 FA |
1893 | /* Macros for accessing a specified CP register bank */ |
1894 | #define A32_BANKED_REG_GET(_env, _regname, _secure) \ | |
1895 | ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns) | |
1896 | ||
1897 | #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \ | |
1898 | do { \ | |
1899 | if (_secure) { \ | |
1900 | (_env)->cp15._regname##_s = (_val); \ | |
1901 | } else { \ | |
1902 | (_env)->cp15._regname##_ns = (_val); \ | |
1903 | } \ | |
1904 | } while (0) | |
1905 | ||
1906 | /* Macros for automatically accessing a specific CP register bank depending on | |
1907 | * the current secure state of the system. These macros are not intended for | |
1908 | * supporting instruction translation reads/writes as these are dependent | |
1909 | * solely on the SCR.NS bit and not the mode. | |
1910 | */ | |
1911 | #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \ | |
1912 | A32_BANKED_REG_GET((_env), _regname, \ | |
2cde031f | 1913 | (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3))) |
ea30a4b8 FA |
1914 | |
1915 | #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \ | |
1916 | A32_BANKED_REG_SET((_env), _regname, \ | |
2cde031f | 1917 | (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \ |
ea30a4b8 FA |
1918 | (_val)) |
1919 | ||
9a78eead | 1920 | void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf); |
012a906b GB |
1921 | uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, |
1922 | uint32_t cur_el, bool secure); | |
40f137e1 | 1923 | |
9ee6e8bb | 1924 | /* Interface between CPU and Interrupt controller. */ |
7ecdaa4a PM |
1925 | #ifndef CONFIG_USER_ONLY |
1926 | bool armv7m_nvic_can_take_pending_exception(void *opaque); | |
1927 | #else | |
1928 | static inline bool armv7m_nvic_can_take_pending_exception(void *opaque) | |
1929 | { | |
1930 | return true; | |
1931 | } | |
1932 | #endif | |
2fb50a33 PM |
1933 | /** |
1934 | * armv7m_nvic_set_pending: mark the specified exception as pending | |
1935 | * @opaque: the NVIC | |
1936 | * @irq: the exception number to mark pending | |
1937 | * @secure: false for non-banked exceptions or for the nonsecure | |
1938 | * version of a banked exception, true for the secure version of a banked | |
1939 | * exception. | |
1940 | * | |
1941 | * Marks the specified exception as pending. Note that we will assert() | |
1942 | * if @secure is true and @irq does not specify one of the fixed set | |
1943 | * of architecturally banked exceptions. | |
1944 | */ | |
1945 | void armv7m_nvic_set_pending(void *opaque, int irq, bool secure); | |
5ede82b8 PM |
1946 | /** |
1947 | * armv7m_nvic_set_pending_derived: mark this derived exception as pending | |
1948 | * @opaque: the NVIC | |
1949 | * @irq: the exception number to mark pending | |
1950 | * @secure: false for non-banked exceptions or for the nonsecure | |
1951 | * version of a banked exception, true for the secure version of a banked | |
1952 | * exception. | |
1953 | * | |
1954 | * Similar to armv7m_nvic_set_pending(), but specifically for derived | |
1955 | * exceptions (exceptions generated in the course of trying to take | |
1956 | * a different exception). | |
1957 | */ | |
1958 | void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure); | |
6c948518 PM |
1959 | /** |
1960 | * armv7m_nvic_get_pending_irq_info: return highest priority pending | |
1961 | * exception, and whether it targets Secure state | |
1962 | * @opaque: the NVIC | |
1963 | * @pirq: set to pending exception number | |
1964 | * @ptargets_secure: set to whether pending exception targets Secure | |
1965 | * | |
1966 | * This function writes the number of the highest priority pending | |
1967 | * exception (the one which would be made active by | |
1968 | * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure | |
1969 | * to true if the current highest priority pending exception should | |
1970 | * be taken to Secure state, false for NS. | |
1971 | */ | |
1972 | void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq, | |
1973 | bool *ptargets_secure); | |
5cb18069 PM |
1974 | /** |
1975 | * armv7m_nvic_acknowledge_irq: make highest priority pending exception active | |
1976 | * @opaque: the NVIC | |
1977 | * | |
1978 | * Move the current highest priority pending exception from the pending | |
1979 | * state to the active state, and update v7m.exception to indicate that | |
1980 | * it is the exception currently being handled. | |
5cb18069 | 1981 | */ |
6c948518 | 1982 | void armv7m_nvic_acknowledge_irq(void *opaque); |
aa488fe3 PM |
1983 | /** |
1984 | * armv7m_nvic_complete_irq: complete specified interrupt or exception | |
1985 | * @opaque: the NVIC | |
1986 | * @irq: the exception number to complete | |
5cb18069 | 1987 | * @secure: true if this exception was secure |
aa488fe3 PM |
1988 | * |
1989 | * Returns: -1 if the irq was not active | |
1990 | * 1 if completing this irq brought us back to base (no active irqs) | |
1991 | * 0 if there is still an irq active after this one was completed | |
1992 | * (Ignoring -1, this is the same as the RETTOBASE value before completion.) | |
1993 | */ | |
5cb18069 | 1994 | int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure); |
42a6686b PM |
1995 | /** |
1996 | * armv7m_nvic_raw_execution_priority: return the raw execution priority | |
1997 | * @opaque: the NVIC | |
1998 | * | |
1999 | * Returns: the raw execution priority as defined by the v8M architecture. | |
2000 | * This is the execution priority minus the effects of AIRCR.PRIS, | |
2001 | * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting. | |
2002 | * (v8M ARM ARM I_PKLD.) | |
2003 | */ | |
2004 | int armv7m_nvic_raw_execution_priority(void *opaque); | |
5d479199 PM |
2005 | /** |
2006 | * armv7m_nvic_neg_prio_requested: return true if the requested execution | |
2007 | * priority is negative for the specified security state. | |
2008 | * @opaque: the NVIC | |
2009 | * @secure: the security state to test | |
2010 | * This corresponds to the pseudocode IsReqExecPriNeg(). | |
2011 | */ | |
2012 | #ifndef CONFIG_USER_ONLY | |
2013 | bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure); | |
2014 | #else | |
2015 | static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure) | |
2016 | { | |
2017 | return false; | |
2018 | } | |
2019 | #endif | |
9ee6e8bb | 2020 | |
4b6a83fb PM |
2021 | /* Interface for defining coprocessor registers. |
2022 | * Registers are defined in tables of arm_cp_reginfo structs | |
2023 | * which are passed to define_arm_cp_regs(). | |
2024 | */ | |
2025 | ||
2026 | /* When looking up a coprocessor register we look for it | |
2027 | * via an integer which encodes all of: | |
2028 | * coprocessor number | |
2029 | * Crn, Crm, opc1, opc2 fields | |
2030 | * 32 or 64 bit register (ie is it accessed via MRC/MCR | |
2031 | * or via MRRC/MCRR?) | |
51a79b03 | 2032 | * non-secure/secure bank (AArch32 only) |
4b6a83fb PM |
2033 | * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field. |
2034 | * (In this case crn and opc2 should be zero.) | |
f5a0a5a5 PM |
2035 | * For AArch64, there is no 32/64 bit size distinction; |
2036 | * instead all registers have a 2 bit op0, 3 bit op1 and op2, | |
2037 | * and 4 bit CRn and CRm. The encoding patterns are chosen | |
2038 | * to be easy to convert to and from the KVM encodings, and also | |
2039 | * so that the hashtable can contain both AArch32 and AArch64 | |
2040 | * registers (to allow for interprocessing where we might run | |
2041 | * 32 bit code on a 64 bit core). | |
4b6a83fb | 2042 | */ |
f5a0a5a5 PM |
2043 | /* This bit is private to our hashtable cpreg; in KVM register |
2044 | * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64 | |
2045 | * in the upper bits of the 64 bit ID. | |
2046 | */ | |
2047 | #define CP_REG_AA64_SHIFT 28 | |
2048 | #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT) | |
2049 | ||
51a79b03 PM |
2050 | /* To enable banking of coprocessor registers depending on ns-bit we |
2051 | * add a bit to distinguish between secure and non-secure cpregs in the | |
2052 | * hashtable. | |
2053 | */ | |
2054 | #define CP_REG_NS_SHIFT 29 | |
2055 | #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT) | |
2056 | ||
2057 | #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \ | |
2058 | ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \ | |
2059 | ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2)) | |
4b6a83fb | 2060 | |
f5a0a5a5 PM |
2061 | #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \ |
2062 | (CP_REG_AA64_MASK | \ | |
2063 | ((cp) << CP_REG_ARM_COPROC_SHIFT) | \ | |
2064 | ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \ | |
2065 | ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \ | |
2066 | ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \ | |
2067 | ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \ | |
2068 | ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT)) | |
2069 | ||
721fae12 PM |
2070 | /* Convert a full 64 bit KVM register ID to the truncated 32 bit |
2071 | * version used as a key for the coprocessor register hashtable | |
2072 | */ | |
2073 | static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid) | |
2074 | { | |
2075 | uint32_t cpregid = kvmid; | |
f5a0a5a5 PM |
2076 | if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) { |
2077 | cpregid |= CP_REG_AA64_MASK; | |
51a79b03 PM |
2078 | } else { |
2079 | if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) { | |
2080 | cpregid |= (1 << 15); | |
2081 | } | |
2082 | ||
2083 | /* KVM is always non-secure so add the NS flag on AArch32 register | |
2084 | * entries. | |
2085 | */ | |
2086 | cpregid |= 1 << CP_REG_NS_SHIFT; | |
721fae12 PM |
2087 | } |
2088 | return cpregid; | |
2089 | } | |
2090 | ||
2091 | /* Convert a truncated 32 bit hashtable key into the full | |
2092 | * 64 bit KVM register ID. | |
2093 | */ | |
2094 | static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid) | |
2095 | { | |
f5a0a5a5 PM |
2096 | uint64_t kvmid; |
2097 | ||
2098 | if (cpregid & CP_REG_AA64_MASK) { | |
2099 | kvmid = cpregid & ~CP_REG_AA64_MASK; | |
2100 | kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64; | |
721fae12 | 2101 | } else { |
f5a0a5a5 PM |
2102 | kvmid = cpregid & ~(1 << 15); |
2103 | if (cpregid & (1 << 15)) { | |
2104 | kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM; | |
2105 | } else { | |
2106 | kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM; | |
2107 | } | |
721fae12 PM |
2108 | } |
2109 | return kvmid; | |
2110 | } | |
2111 | ||
4b6a83fb | 2112 | /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a |
fe03d45f | 2113 | * special-behaviour cp reg and bits [11..8] indicate what behaviour |
4b6a83fb PM |
2114 | * it has. Otherwise it is a simple cp reg, where CONST indicates that |
2115 | * TCG can assume the value to be constant (ie load at translate time) | |
2116 | * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END | |
2117 | * indicates that the TB should not be ended after a write to this register | |
2118 | * (the default is that the TB ends after cp writes). OVERRIDE permits | |
2119 | * a register definition to override a previous definition for the | |
2120 | * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the | |
2121 | * old must have the OVERRIDE bit set. | |
7a0e58fa PM |
2122 | * ALIAS indicates that this register is an alias view of some underlying |
2123 | * state which is also visible via another register, and that the other | |
b061a82b SF |
2124 | * register is handling migration and reset; registers marked ALIAS will not be |
2125 | * migrated but may have their state set by syncing of register state from KVM. | |
7a0e58fa PM |
2126 | * NO_RAW indicates that this register has no underlying state and does not |
2127 | * support raw access for state saving/loading; it will not be used for either | |
2128 | * migration or KVM state synchronization. (Typically this is for "registers" | |
2129 | * which are actually used as instructions for cache maintenance and so on.) | |
2452731c PM |
2130 | * IO indicates that this register does I/O and therefore its accesses |
2131 | * need to be surrounded by gen_io_start()/gen_io_end(). In particular, | |
2132 | * registers which implement clocks or timers require this. | |
4b6a83fb | 2133 | */ |
fe03d45f RH |
2134 | #define ARM_CP_SPECIAL 0x0001 |
2135 | #define ARM_CP_CONST 0x0002 | |
2136 | #define ARM_CP_64BIT 0x0004 | |
2137 | #define ARM_CP_SUPPRESS_TB_END 0x0008 | |
2138 | #define ARM_CP_OVERRIDE 0x0010 | |
2139 | #define ARM_CP_ALIAS 0x0020 | |
2140 | #define ARM_CP_IO 0x0040 | |
2141 | #define ARM_CP_NO_RAW 0x0080 | |
2142 | #define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100) | |
2143 | #define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200) | |
2144 | #define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300) | |
2145 | #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400) | |
2146 | #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500) | |
2147 | #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA | |
2148 | #define ARM_CP_FPU 0x1000 | |
490aa7f1 | 2149 | #define ARM_CP_SVE 0x2000 |
1f163787 | 2150 | #define ARM_CP_NO_GDB 0x4000 |
4b6a83fb | 2151 | /* Used only as a terminator for ARMCPRegInfo lists */ |
fe03d45f | 2152 | #define ARM_CP_SENTINEL 0xffff |
4b6a83fb | 2153 | /* Mask of only the flag bits in a type field */ |
1f163787 | 2154 | #define ARM_CP_FLAG_MASK 0x70ff |
4b6a83fb | 2155 | |
f5a0a5a5 PM |
2156 | /* Valid values for ARMCPRegInfo state field, indicating which of |
2157 | * the AArch32 and AArch64 execution states this register is visible in. | |
2158 | * If the reginfo doesn't explicitly specify then it is AArch32 only. | |
2159 | * If the reginfo is declared to be visible in both states then a second | |
2160 | * reginfo is synthesised for the AArch32 view of the AArch64 register, | |
2161 | * such that the AArch32 view is the lower 32 bits of the AArch64 one. | |
2162 | * Note that we rely on the values of these enums as we iterate through | |
2163 | * the various states in some places. | |
2164 | */ | |
2165 | enum { | |
2166 | ARM_CP_STATE_AA32 = 0, | |
2167 | ARM_CP_STATE_AA64 = 1, | |
2168 | ARM_CP_STATE_BOTH = 2, | |
2169 | }; | |
2170 | ||
c3e30260 FA |
2171 | /* ARM CP register secure state flags. These flags identify security state |
2172 | * attributes for a given CP register entry. | |
2173 | * The existence of both or neither secure and non-secure flags indicates that | |
2174 | * the register has both a secure and non-secure hash entry. A single one of | |
2175 | * these flags causes the register to only be hashed for the specified | |
2176 | * security state. | |
2177 | * Although definitions may have any combination of the S/NS bits, each | |
2178 | * registered entry will only have one to identify whether the entry is secure | |
2179 | * or non-secure. | |
2180 | */ | |
2181 | enum { | |
2182 | ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */ | |
2183 | ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */ | |
2184 | }; | |
2185 | ||
4b6a83fb PM |
2186 | /* Return true if cptype is a valid type field. This is used to try to |
2187 | * catch errors where the sentinel has been accidentally left off the end | |
2188 | * of a list of registers. | |
2189 | */ | |
2190 | static inline bool cptype_valid(int cptype) | |
2191 | { | |
2192 | return ((cptype & ~ARM_CP_FLAG_MASK) == 0) | |
2193 | || ((cptype & ARM_CP_SPECIAL) && | |
34affeef | 2194 | ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL)); |
4b6a83fb PM |
2195 | } |
2196 | ||
2197 | /* Access rights: | |
2198 | * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM | |
2199 | * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and | |
2200 | * PL2 (hyp). The other level which has Read and Write bits is Secure PL1 | |
2201 | * (ie any of the privileged modes in Secure state, or Monitor mode). | |
2202 | * If a register is accessible in one privilege level it's always accessible | |
2203 | * in higher privilege levels too. Since "Secure PL1" also follows this rule | |
2204 | * (ie anything visible in PL2 is visible in S-PL1, some things are only | |
2205 | * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the | |
2206 | * terminology a little and call this PL3. | |
f5a0a5a5 PM |
2207 | * In AArch64 things are somewhat simpler as the PLx bits line up exactly |
2208 | * with the ELx exception levels. | |
4b6a83fb PM |
2209 | * |
2210 | * If access permissions for a register are more complex than can be | |
2211 | * described with these bits, then use a laxer set of restrictions, and | |
2212 | * do the more restrictive/complex check inside a helper function. | |
2213 | */ | |
2214 | #define PL3_R 0x80 | |
2215 | #define PL3_W 0x40 | |
2216 | #define PL2_R (0x20 | PL3_R) | |
2217 | #define PL2_W (0x10 | PL3_W) | |
2218 | #define PL1_R (0x08 | PL2_R) | |
2219 | #define PL1_W (0x04 | PL2_W) | |
2220 | #define PL0_R (0x02 | PL1_R) | |
2221 | #define PL0_W (0x01 | PL1_W) | |
2222 | ||
2223 | #define PL3_RW (PL3_R | PL3_W) | |
2224 | #define PL2_RW (PL2_R | PL2_W) | |
2225 | #define PL1_RW (PL1_R | PL1_W) | |
2226 | #define PL0_RW (PL0_R | PL0_W) | |
2227 | ||
75502672 PM |
2228 | /* Return the highest implemented Exception Level */ |
2229 | static inline int arm_highest_el(CPUARMState *env) | |
2230 | { | |
2231 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
2232 | return 3; | |
2233 | } | |
2234 | if (arm_feature(env, ARM_FEATURE_EL2)) { | |
2235 | return 2; | |
2236 | } | |
2237 | return 1; | |
2238 | } | |
2239 | ||
15b3f556 PM |
2240 | /* Return true if a v7M CPU is in Handler mode */ |
2241 | static inline bool arm_v7m_is_handler_mode(CPUARMState *env) | |
2242 | { | |
2243 | return env->v7m.exception != 0; | |
2244 | } | |
2245 | ||
dcbff19b GB |
2246 | /* Return the current Exception Level (as per ARMv8; note that this differs |
2247 | * from the ARMv7 Privilege Level). | |
2248 | */ | |
2249 | static inline int arm_current_el(CPUARMState *env) | |
4b6a83fb | 2250 | { |
6d54ed3c | 2251 | if (arm_feature(env, ARM_FEATURE_M)) { |
8bfc26ea PM |
2252 | return arm_v7m_is_handler_mode(env) || |
2253 | !(env->v7m.control[env->v7m.secure] & 1); | |
6d54ed3c PM |
2254 | } |
2255 | ||
592125f8 | 2256 | if (is_a64(env)) { |
f5a0a5a5 PM |
2257 | return extract32(env->pstate, 2, 2); |
2258 | } | |
2259 | ||
592125f8 FA |
2260 | switch (env->uncached_cpsr & 0x1f) { |
2261 | case ARM_CPU_MODE_USR: | |
4b6a83fb | 2262 | return 0; |
592125f8 FA |
2263 | case ARM_CPU_MODE_HYP: |
2264 | return 2; | |
2265 | case ARM_CPU_MODE_MON: | |
2266 | return 3; | |
2267 | default: | |
2268 | if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { | |
2269 | /* If EL3 is 32-bit then all secure privileged modes run in | |
2270 | * EL3 | |
2271 | */ | |
2272 | return 3; | |
2273 | } | |
2274 | ||
2275 | return 1; | |
4b6a83fb | 2276 | } |
4b6a83fb PM |
2277 | } |
2278 | ||
2279 | typedef struct ARMCPRegInfo ARMCPRegInfo; | |
2280 | ||
f59df3f2 PM |
2281 | typedef enum CPAccessResult { |
2282 | /* Access is permitted */ | |
2283 | CP_ACCESS_OK = 0, | |
2284 | /* Access fails due to a configurable trap or enable which would | |
2285 | * result in a categorized exception syndrome giving information about | |
2286 | * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6, | |
38836a2c PM |
2287 | * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or |
2288 | * PL1 if in EL0, otherwise to the current EL). | |
f59df3f2 PM |
2289 | */ |
2290 | CP_ACCESS_TRAP = 1, | |
2291 | /* Access fails and results in an exception syndrome 0x0 ("uncategorized"). | |
2292 | * Note that this is not a catch-all case -- the set of cases which may | |
2293 | * result in this failure is specifically defined by the architecture. | |
2294 | */ | |
2295 | CP_ACCESS_TRAP_UNCATEGORIZED = 2, | |
38836a2c PM |
2296 | /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */ |
2297 | CP_ACCESS_TRAP_EL2 = 3, | |
2298 | CP_ACCESS_TRAP_EL3 = 4, | |
e7615726 PM |
2299 | /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */ |
2300 | CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5, | |
2301 | CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6, | |
f2cae609 PM |
2302 | /* Access fails and results in an exception syndrome for an FP access, |
2303 | * trapped directly to EL2 or EL3 | |
2304 | */ | |
2305 | CP_ACCESS_TRAP_FP_EL2 = 7, | |
2306 | CP_ACCESS_TRAP_FP_EL3 = 8, | |
f59df3f2 PM |
2307 | } CPAccessResult; |
2308 | ||
c4241c7d PM |
2309 | /* Access functions for coprocessor registers. These cannot fail and |
2310 | * may not raise exceptions. | |
2311 | */ | |
2312 | typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque); | |
2313 | typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque, | |
2314 | uint64_t value); | |
f59df3f2 | 2315 | /* Access permission check functions for coprocessor registers. */ |
3f208fd7 PM |
2316 | typedef CPAccessResult CPAccessFn(CPUARMState *env, |
2317 | const ARMCPRegInfo *opaque, | |
2318 | bool isread); | |
4b6a83fb PM |
2319 | /* Hook function for register reset */ |
2320 | typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque); | |
2321 | ||
2322 | #define CP_ANY 0xff | |
2323 | ||
2324 | /* Definition of an ARM coprocessor register */ | |
2325 | struct ARMCPRegInfo { | |
2326 | /* Name of register (useful mainly for debugging, need not be unique) */ | |
2327 | const char *name; | |
2328 | /* Location of register: coprocessor number and (crn,crm,opc1,opc2) | |
2329 | * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a | |
2330 | * 'wildcard' field -- any value of that field in the MRC/MCR insn | |
2331 | * will be decoded to this register. The register read and write | |
2332 | * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2 | |
2333 | * used by the program, so it is possible to register a wildcard and | |
2334 | * then behave differently on read/write if necessary. | |
2335 | * For 64 bit registers, only crm and opc1 are relevant; crn and opc2 | |
2336 | * must both be zero. | |
f5a0a5a5 PM |
2337 | * For AArch64-visible registers, opc0 is also used. |
2338 | * Since there are no "coprocessors" in AArch64, cp is purely used as a | |
2339 | * way to distinguish (for KVM's benefit) guest-visible system registers | |
2340 | * from demuxed ones provided to preserve the "no side effects on | |
2341 | * KVM register read/write from QEMU" semantics. cp==0x13 is guest | |
2342 | * visible (to match KVM's encoding); cp==0 will be converted to | |
2343 | * cp==0x13 when the ARMCPRegInfo is registered, for convenience. | |
4b6a83fb PM |
2344 | */ |
2345 | uint8_t cp; | |
2346 | uint8_t crn; | |
2347 | uint8_t crm; | |
f5a0a5a5 | 2348 | uint8_t opc0; |
4b6a83fb PM |
2349 | uint8_t opc1; |
2350 | uint8_t opc2; | |
f5a0a5a5 PM |
2351 | /* Execution state in which this register is visible: ARM_CP_STATE_* */ |
2352 | int state; | |
4b6a83fb PM |
2353 | /* Register type: ARM_CP_* bits/values */ |
2354 | int type; | |
2355 | /* Access rights: PL*_[RW] */ | |
2356 | int access; | |
c3e30260 FA |
2357 | /* Security state: ARM_CP_SECSTATE_* bits/values */ |
2358 | int secure; | |
4b6a83fb PM |
2359 | /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when |
2360 | * this register was defined: can be used to hand data through to the | |
2361 | * register read/write functions, since they are passed the ARMCPRegInfo*. | |
2362 | */ | |
2363 | void *opaque; | |
2364 | /* Value of this register, if it is ARM_CP_CONST. Otherwise, if | |
2365 | * fieldoffset is non-zero, the reset value of the register. | |
2366 | */ | |
2367 | uint64_t resetvalue; | |
c3e30260 FA |
2368 | /* Offset of the field in CPUARMState for this register. |
2369 | * | |
2370 | * This is not needed if either: | |
4b6a83fb PM |
2371 | * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs |
2372 | * 2. both readfn and writefn are specified | |
2373 | */ | |
2374 | ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */ | |
c3e30260 FA |
2375 | |
2376 | /* Offsets of the secure and non-secure fields in CPUARMState for the | |
2377 | * register if it is banked. These fields are only used during the static | |
2378 | * registration of a register. During hashing the bank associated | |
2379 | * with a given security state is copied to fieldoffset which is used from | |
2380 | * there on out. | |
2381 | * | |
2382 | * It is expected that register definitions use either fieldoffset or | |
2383 | * bank_fieldoffsets in the definition but not both. It is also expected | |
2384 | * that both bank offsets are set when defining a banked register. This | |
2385 | * use indicates that a register is banked. | |
2386 | */ | |
2387 | ptrdiff_t bank_fieldoffsets[2]; | |
2388 | ||
f59df3f2 PM |
2389 | /* Function for making any access checks for this register in addition to |
2390 | * those specified by the 'access' permissions bits. If NULL, no extra | |
2391 | * checks required. The access check is performed at runtime, not at | |
2392 | * translate time. | |
2393 | */ | |
2394 | CPAccessFn *accessfn; | |
4b6a83fb PM |
2395 | /* Function for handling reads of this register. If NULL, then reads |
2396 | * will be done by loading from the offset into CPUARMState specified | |
2397 | * by fieldoffset. | |
2398 | */ | |
2399 | CPReadFn *readfn; | |
2400 | /* Function for handling writes of this register. If NULL, then writes | |
2401 | * will be done by writing to the offset into CPUARMState specified | |
2402 | * by fieldoffset. | |
2403 | */ | |
2404 | CPWriteFn *writefn; | |
7023ec7e PM |
2405 | /* Function for doing a "raw" read; used when we need to copy |
2406 | * coprocessor state to the kernel for KVM or out for | |
2407 | * migration. This only needs to be provided if there is also a | |
c4241c7d | 2408 | * readfn and it has side effects (for instance clear-on-read bits). |
7023ec7e PM |
2409 | */ |
2410 | CPReadFn *raw_readfn; | |
2411 | /* Function for doing a "raw" write; used when we need to copy KVM | |
2412 | * kernel coprocessor state into userspace, or for inbound | |
2413 | * migration. This only needs to be provided if there is also a | |
c4241c7d PM |
2414 | * writefn and it masks out "unwritable" bits or has write-one-to-clear |
2415 | * or similar behaviour. | |
7023ec7e PM |
2416 | */ |
2417 | CPWriteFn *raw_writefn; | |
4b6a83fb PM |
2418 | /* Function for resetting the register. If NULL, then reset will be done |
2419 | * by writing resetvalue to the field specified in fieldoffset. If | |
2420 | * fieldoffset is 0 then no reset will be done. | |
2421 | */ | |
2422 | CPResetFn *resetfn; | |
2423 | }; | |
2424 | ||
2425 | /* Macros which are lvalues for the field in CPUARMState for the | |
2426 | * ARMCPRegInfo *ri. | |
2427 | */ | |
2428 | #define CPREG_FIELD32(env, ri) \ | |
2429 | (*(uint32_t *)((char *)(env) + (ri)->fieldoffset)) | |
2430 | #define CPREG_FIELD64(env, ri) \ | |
2431 | (*(uint64_t *)((char *)(env) + (ri)->fieldoffset)) | |
2432 | ||
2433 | #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL } | |
2434 | ||
2435 | void define_arm_cp_regs_with_opaque(ARMCPU *cpu, | |
2436 | const ARMCPRegInfo *regs, void *opaque); | |
2437 | void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, | |
2438 | const ARMCPRegInfo *regs, void *opaque); | |
2439 | static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs) | |
2440 | { | |
2441 | define_arm_cp_regs_with_opaque(cpu, regs, 0); | |
2442 | } | |
2443 | static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs) | |
2444 | { | |
2445 | define_one_arm_cp_reg_with_opaque(cpu, regs, 0); | |
2446 | } | |
60322b39 | 2447 | const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp); |
4b6a83fb PM |
2448 | |
2449 | /* CPWriteFn that can be used to implement writes-ignored behaviour */ | |
c4241c7d PM |
2450 | void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, |
2451 | uint64_t value); | |
4b6a83fb | 2452 | /* CPReadFn that can be used for read-as-zero behaviour */ |
c4241c7d | 2453 | uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri); |
4b6a83fb | 2454 | |
f5a0a5a5 PM |
2455 | /* CPResetFn that does nothing, for use if no reset is required even |
2456 | * if fieldoffset is non zero. | |
2457 | */ | |
2458 | void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque); | |
2459 | ||
67ed771d PM |
2460 | /* Return true if this reginfo struct's field in the cpu state struct |
2461 | * is 64 bits wide. | |
2462 | */ | |
2463 | static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri) | |
2464 | { | |
2465 | return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT); | |
2466 | } | |
2467 | ||
dcbff19b | 2468 | static inline bool cp_access_ok(int current_el, |
4b6a83fb PM |
2469 | const ARMCPRegInfo *ri, int isread) |
2470 | { | |
dcbff19b | 2471 | return (ri->access >> ((current_el * 2) + isread)) & 1; |
4b6a83fb PM |
2472 | } |
2473 | ||
49a66191 PM |
2474 | /* Raw read of a coprocessor register (as needed for migration, etc) */ |
2475 | uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri); | |
2476 | ||
721fae12 PM |
2477 | /** |
2478 | * write_list_to_cpustate | |
2479 | * @cpu: ARMCPU | |
2480 | * | |
2481 | * For each register listed in the ARMCPU cpreg_indexes list, write | |
2482 | * its value from the cpreg_values list into the ARMCPUState structure. | |
2483 | * This updates TCG's working data structures from KVM data or | |
2484 | * from incoming migration state. | |
2485 | * | |
2486 | * Returns: true if all register values were updated correctly, | |
2487 | * false if some register was unknown or could not be written. | |
2488 | * Note that we do not stop early on failure -- we will attempt | |
2489 | * writing all registers in the list. | |
2490 | */ | |
2491 | bool write_list_to_cpustate(ARMCPU *cpu); | |
2492 | ||
2493 | /** | |
2494 | * write_cpustate_to_list: | |
2495 | * @cpu: ARMCPU | |
2496 | * | |
2497 | * For each register listed in the ARMCPU cpreg_indexes list, write | |
2498 | * its value from the ARMCPUState structure into the cpreg_values list. | |
2499 | * This is used to copy info from TCG's working data structures into | |
2500 | * KVM or for outbound migration. | |
2501 | * | |
2502 | * Returns: true if all register values were read correctly, | |
2503 | * false if some register was unknown or could not be read. | |
2504 | * Note that we do not stop early on failure -- we will attempt | |
2505 | * reading all registers in the list. | |
2506 | */ | |
2507 | bool write_cpustate_to_list(ARMCPU *cpu); | |
2508 | ||
9ee6e8bb PB |
2509 | #define ARM_CPUID_TI915T 0x54029152 |
2510 | #define ARM_CPUID_TI925T 0x54029252 | |
40f137e1 | 2511 | |
b5ff1b31 | 2512 | #if defined(CONFIG_USER_ONLY) |
2c0262af | 2513 | #define TARGET_PAGE_BITS 12 |
b5ff1b31 | 2514 | #else |
e97da98f PM |
2515 | /* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6 |
2516 | * have to support 1K tiny pages. | |
2517 | */ | |
2518 | #define TARGET_PAGE_BITS_VARY | |
2519 | #define TARGET_PAGE_BITS_MIN 10 | |
b5ff1b31 | 2520 | #endif |
9467d44c | 2521 | |
3926cc84 AG |
2522 | #if defined(TARGET_AARCH64) |
2523 | # define TARGET_PHYS_ADDR_SPACE_BITS 48 | |
f6768aa1 | 2524 | # define TARGET_VIRT_ADDR_SPACE_BITS 48 |
3926cc84 AG |
2525 | #else |
2526 | # define TARGET_PHYS_ADDR_SPACE_BITS 40 | |
2527 | # define TARGET_VIRT_ADDR_SPACE_BITS 32 | |
2528 | #endif | |
52705890 | 2529 | |
012a906b GB |
2530 | static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx, |
2531 | unsigned int target_el) | |
043b7f8d EI |
2532 | { |
2533 | CPUARMState *env = cs->env_ptr; | |
dcbff19b | 2534 | unsigned int cur_el = arm_current_el(env); |
57e3a0c7 | 2535 | bool secure = arm_is_secure(env); |
57e3a0c7 GB |
2536 | bool pstate_unmasked; |
2537 | int8_t unmasked = 0; | |
f7778444 | 2538 | uint64_t hcr_el2; |
57e3a0c7 GB |
2539 | |
2540 | /* Don't take exceptions if they target a lower EL. | |
2541 | * This check should catch any exceptions that would not be taken but left | |
2542 | * pending. | |
2543 | */ | |
dfafd090 EI |
2544 | if (cur_el > target_el) { |
2545 | return false; | |
2546 | } | |
043b7f8d | 2547 | |
f7778444 RH |
2548 | hcr_el2 = arm_hcr_el2_eff(env); |
2549 | ||
043b7f8d EI |
2550 | switch (excp_idx) { |
2551 | case EXCP_FIQ: | |
57e3a0c7 GB |
2552 | pstate_unmasked = !(env->daif & PSTATE_F); |
2553 | break; | |
2554 | ||
043b7f8d | 2555 | case EXCP_IRQ: |
57e3a0c7 GB |
2556 | pstate_unmasked = !(env->daif & PSTATE_I); |
2557 | break; | |
2558 | ||
136e67e9 | 2559 | case EXCP_VFIQ: |
f7778444 | 2560 | if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) { |
136e67e9 EI |
2561 | /* VFIQs are only taken when hypervized and non-secure. */ |
2562 | return false; | |
2563 | } | |
2564 | return !(env->daif & PSTATE_F); | |
2565 | case EXCP_VIRQ: | |
f7778444 | 2566 | if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) { |
136e67e9 EI |
2567 | /* VIRQs are only taken when hypervized and non-secure. */ |
2568 | return false; | |
2569 | } | |
b5c633c5 | 2570 | return !(env->daif & PSTATE_I); |
043b7f8d EI |
2571 | default: |
2572 | g_assert_not_reached(); | |
2573 | } | |
57e3a0c7 GB |
2574 | |
2575 | /* Use the target EL, current execution state and SCR/HCR settings to | |
2576 | * determine whether the corresponding CPSR bit is used to mask the | |
2577 | * interrupt. | |
2578 | */ | |
2579 | if ((target_el > cur_el) && (target_el != 1)) { | |
7cd6de3b PM |
2580 | /* Exceptions targeting a higher EL may not be maskable */ |
2581 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { | |
2582 | /* 64-bit masking rules are simple: exceptions to EL3 | |
2583 | * can't be masked, and exceptions to EL2 can only be | |
2584 | * masked from Secure state. The HCR and SCR settings | |
2585 | * don't affect the masking logic, only the interrupt routing. | |
2586 | */ | |
2587 | if (target_el == 3 || !secure) { | |
2588 | unmasked = 1; | |
2589 | } | |
2590 | } else { | |
2591 | /* The old 32-bit-only environment has a more complicated | |
2592 | * masking setup. HCR and SCR bits not only affect interrupt | |
2593 | * routing but also change the behaviour of masking. | |
2594 | */ | |
2595 | bool hcr, scr; | |
2596 | ||
2597 | switch (excp_idx) { | |
2598 | case EXCP_FIQ: | |
2599 | /* If FIQs are routed to EL3 or EL2 then there are cases where | |
2600 | * we override the CPSR.F in determining if the exception is | |
2601 | * masked or not. If neither of these are set then we fall back | |
2602 | * to the CPSR.F setting otherwise we further assess the state | |
2603 | * below. | |
2604 | */ | |
f7778444 | 2605 | hcr = hcr_el2 & HCR_FMO; |
7cd6de3b PM |
2606 | scr = (env->cp15.scr_el3 & SCR_FIQ); |
2607 | ||
2608 | /* When EL3 is 32-bit, the SCR.FW bit controls whether the | |
2609 | * CPSR.F bit masks FIQ interrupts when taken in non-secure | |
2610 | * state. If SCR.FW is set then FIQs can be masked by CPSR.F | |
2611 | * when non-secure but only when FIQs are only routed to EL3. | |
2612 | */ | |
2613 | scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr); | |
2614 | break; | |
2615 | case EXCP_IRQ: | |
2616 | /* When EL3 execution state is 32-bit, if HCR.IMO is set then | |
2617 | * we may override the CPSR.I masking when in non-secure state. | |
2618 | * The SCR.IRQ setting has already been taken into consideration | |
2619 | * when setting the target EL, so it does not have a further | |
2620 | * affect here. | |
2621 | */ | |
f7778444 | 2622 | hcr = hcr_el2 & HCR_IMO; |
7cd6de3b PM |
2623 | scr = false; |
2624 | break; | |
2625 | default: | |
2626 | g_assert_not_reached(); | |
2627 | } | |
2628 | ||
2629 | if ((scr || hcr) && !secure) { | |
2630 | unmasked = 1; | |
2631 | } | |
57e3a0c7 GB |
2632 | } |
2633 | } | |
2634 | ||
2635 | /* The PSTATE bits only mask the interrupt if we have not overriden the | |
2636 | * ability above. | |
2637 | */ | |
2638 | return unmasked || pstate_unmasked; | |
043b7f8d EI |
2639 | } |
2640 | ||
ba1ba5cc IM |
2641 | #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU |
2642 | #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX) | |
0dacec87 | 2643 | #define CPU_RESOLVING_TYPE TYPE_ARM_CPU |
ba1ba5cc | 2644 | |
9467d44c | 2645 | #define cpu_signal_handler cpu_arm_signal_handler |
c732abe2 | 2646 | #define cpu_list arm_cpu_list |
9467d44c | 2647 | |
c1e37810 PM |
2648 | /* ARM has the following "translation regimes" (as the ARM ARM calls them): |
2649 | * | |
2650 | * If EL3 is 64-bit: | |
2651 | * + NonSecure EL1 & 0 stage 1 | |
2652 | * + NonSecure EL1 & 0 stage 2 | |
2653 | * + NonSecure EL2 | |
2654 | * + Secure EL1 & EL0 | |
2655 | * + Secure EL3 | |
2656 | * If EL3 is 32-bit: | |
2657 | * + NonSecure PL1 & 0 stage 1 | |
2658 | * + NonSecure PL1 & 0 stage 2 | |
2659 | * + NonSecure PL2 | |
2660 | * + Secure PL0 & PL1 | |
2661 | * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.) | |
2662 | * | |
2663 | * For QEMU, an mmu_idx is not quite the same as a translation regime because: | |
2664 | * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they | |
2665 | * may differ in access permissions even if the VA->PA map is the same | |
2666 | * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2 | |
2667 | * translation, which means that we have one mmu_idx that deals with two | |
2668 | * concatenated translation regimes [this sort of combined s1+2 TLB is | |
2669 | * architecturally permitted] | |
2670 | * 3. we don't need to allocate an mmu_idx to translations that we won't be | |
2671 | * handling via the TLB. The only way to do a stage 1 translation without | |
2672 | * the immediate stage 2 translation is via the ATS or AT system insns, | |
2673 | * which can be slow-pathed and always do a page table walk. | |
2674 | * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3" | |
2675 | * translation regimes, because they map reasonably well to each other | |
2676 | * and they can't both be active at the same time. | |
2677 | * This gives us the following list of mmu_idx values: | |
2678 | * | |
2679 | * NS EL0 (aka NS PL0) stage 1+2 | |
2680 | * NS EL1 (aka NS PL1) stage 1+2 | |
2681 | * NS EL2 (aka NS PL2) | |
2682 | * S EL3 (aka S PL1) | |
2683 | * S EL0 (aka S PL0) | |
2684 | * S EL1 (not used if EL3 is 32 bit) | |
2685 | * NS EL0+1 stage 2 | |
2686 | * | |
2687 | * (The last of these is an mmu_idx because we want to be able to use the TLB | |
2688 | * for the accesses done as part of a stage 1 page table walk, rather than | |
2689 | * having to walk the stage 2 page table over and over.) | |
2690 | * | |
3bef7012 PM |
2691 | * R profile CPUs have an MPU, but can use the same set of MMU indexes |
2692 | * as A profile. They only need to distinguish NS EL0 and NS EL1 (and | |
2693 | * NS EL2 if we ever model a Cortex-R52). | |
2694 | * | |
2695 | * M profile CPUs are rather different as they do not have a true MMU. | |
2696 | * They have the following different MMU indexes: | |
2697 | * User | |
2698 | * Privileged | |
62593718 PM |
2699 | * User, execution priority negative (ie the MPU HFNMIENA bit may apply) |
2700 | * Privileged, execution priority negative (ditto) | |
66787c78 PM |
2701 | * If the CPU supports the v8M Security Extension then there are also: |
2702 | * Secure User | |
2703 | * Secure Privileged | |
62593718 PM |
2704 | * Secure User, execution priority negative |
2705 | * Secure Privileged, execution priority negative | |
3bef7012 | 2706 | * |
8bd5c820 PM |
2707 | * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code |
2708 | * are not quite the same -- different CPU types (most notably M profile | |
2709 | * vs A/R profile) would like to use MMU indexes with different semantics, | |
2710 | * but since we don't ever need to use all of those in a single CPU we | |
2711 | * can avoid setting NB_MMU_MODES to more than 8. The lower bits of | |
2712 | * ARMMMUIdx are the core TLB mmu index, and the higher bits are always | |
2713 | * the same for any particular CPU. | |
2714 | * Variables of type ARMMUIdx are always full values, and the core | |
2715 | * index values are in variables of type 'int'. | |
2716 | * | |
c1e37810 PM |
2717 | * Our enumeration includes at the end some entries which are not "true" |
2718 | * mmu_idx values in that they don't have corresponding TLBs and are only | |
2719 | * valid for doing slow path page table walks. | |
2720 | * | |
2721 | * The constant names here are patterned after the general style of the names | |
2722 | * of the AT/ATS operations. | |
2723 | * The values used are carefully arranged to make mmu_idx => EL lookup easy. | |
62593718 PM |
2724 | * For M profile we arrange them to have a bit for priv, a bit for negpri |
2725 | * and a bit for secure. | |
c1e37810 | 2726 | */ |
e7b921c2 | 2727 | #define ARM_MMU_IDX_A 0x10 /* A profile */ |
8bd5c820 | 2728 | #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */ |
e7b921c2 | 2729 | #define ARM_MMU_IDX_M 0x40 /* M profile */ |
8bd5c820 | 2730 | |
62593718 PM |
2731 | /* meanings of the bits for M profile mmu idx values */ |
2732 | #define ARM_MMU_IDX_M_PRIV 0x1 | |
2733 | #define ARM_MMU_IDX_M_NEGPRI 0x2 | |
2734 | #define ARM_MMU_IDX_M_S 0x4 | |
2735 | ||
8bd5c820 PM |
2736 | #define ARM_MMU_IDX_TYPE_MASK (~0x7) |
2737 | #define ARM_MMU_IDX_COREIDX_MASK 0x7 | |
2738 | ||
c1e37810 | 2739 | typedef enum ARMMMUIdx { |
8bd5c820 PM |
2740 | ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A, |
2741 | ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A, | |
2742 | ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A, | |
2743 | ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A, | |
2744 | ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A, | |
2745 | ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A, | |
2746 | ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A, | |
e7b921c2 PM |
2747 | ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M, |
2748 | ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M, | |
62593718 PM |
2749 | ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M, |
2750 | ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M, | |
2751 | ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M, | |
2752 | ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M, | |
2753 | ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M, | |
2754 | ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M, | |
c1e37810 PM |
2755 | /* Indexes below here don't have TLBs and are used only for AT system |
2756 | * instructions or for the first stage of an S12 page table walk. | |
2757 | */ | |
8bd5c820 PM |
2758 | ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB, |
2759 | ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB, | |
c1e37810 PM |
2760 | } ARMMMUIdx; |
2761 | ||
8bd5c820 PM |
2762 | /* Bit macros for the core-mmu-index values for each index, |
2763 | * for use when calling tlb_flush_by_mmuidx() and friends. | |
2764 | */ | |
2765 | typedef enum ARMMMUIdxBit { | |
2766 | ARMMMUIdxBit_S12NSE0 = 1 << 0, | |
2767 | ARMMMUIdxBit_S12NSE1 = 1 << 1, | |
2768 | ARMMMUIdxBit_S1E2 = 1 << 2, | |
2769 | ARMMMUIdxBit_S1E3 = 1 << 3, | |
2770 | ARMMMUIdxBit_S1SE0 = 1 << 4, | |
2771 | ARMMMUIdxBit_S1SE1 = 1 << 5, | |
2772 | ARMMMUIdxBit_S2NS = 1 << 6, | |
e7b921c2 PM |
2773 | ARMMMUIdxBit_MUser = 1 << 0, |
2774 | ARMMMUIdxBit_MPriv = 1 << 1, | |
62593718 PM |
2775 | ARMMMUIdxBit_MUserNegPri = 1 << 2, |
2776 | ARMMMUIdxBit_MPrivNegPri = 1 << 3, | |
2777 | ARMMMUIdxBit_MSUser = 1 << 4, | |
2778 | ARMMMUIdxBit_MSPriv = 1 << 5, | |
2779 | ARMMMUIdxBit_MSUserNegPri = 1 << 6, | |
2780 | ARMMMUIdxBit_MSPrivNegPri = 1 << 7, | |
8bd5c820 PM |
2781 | } ARMMMUIdxBit; |
2782 | ||
f79fbf39 | 2783 | #define MMU_USER_IDX 0 |
c1e37810 | 2784 | |
8bd5c820 PM |
2785 | static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx) |
2786 | { | |
2787 | return mmu_idx & ARM_MMU_IDX_COREIDX_MASK; | |
2788 | } | |
2789 | ||
2790 | static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx) | |
2791 | { | |
e7b921c2 PM |
2792 | if (arm_feature(env, ARM_FEATURE_M)) { |
2793 | return mmu_idx | ARM_MMU_IDX_M; | |
2794 | } else { | |
2795 | return mmu_idx | ARM_MMU_IDX_A; | |
2796 | } | |
8bd5c820 PM |
2797 | } |
2798 | ||
c1e37810 PM |
2799 | /* Return the exception level we're running at if this is our mmu_idx */ |
2800 | static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) | |
6ebbf390 | 2801 | { |
8bd5c820 PM |
2802 | switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) { |
2803 | case ARM_MMU_IDX_A: | |
2804 | return mmu_idx & 3; | |
e7b921c2 | 2805 | case ARM_MMU_IDX_M: |
62593718 | 2806 | return mmu_idx & ARM_MMU_IDX_M_PRIV; |
8bd5c820 PM |
2807 | default: |
2808 | g_assert_not_reached(); | |
2809 | } | |
c1e37810 PM |
2810 | } |
2811 | ||
ec8e3340 | 2812 | /* Return the MMU index for a v7M CPU in the specified security and |
65e4655c | 2813 | * privilege state. |
ec8e3340 | 2814 | */ |
65e4655c RH |
2815 | ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env, |
2816 | bool secstate, bool priv); | |
b81ac0eb | 2817 | |
ec8e3340 | 2818 | /* Return the MMU index for a v7M CPU in the specified security state */ |
65e4655c | 2819 | ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate); |
ec8e3340 | 2820 | |
50494a27 RH |
2821 | /** |
2822 | * cpu_mmu_index: | |
2823 | * @env: The cpu environment | |
2824 | * @ifetch: True for code access, false for data access. | |
2825 | * | |
2826 | * Return the core mmu index for the current translation regime. | |
2827 | * This function is used by generic TCG code paths. | |
2828 | */ | |
65e4655c | 2829 | int cpu_mmu_index(CPUARMState *env, bool ifetch); |
6ebbf390 | 2830 | |
9e273ef2 PM |
2831 | /* Indexes used when registering address spaces with cpu_address_space_init */ |
2832 | typedef enum ARMASIdx { | |
2833 | ARMASIdx_NS = 0, | |
2834 | ARMASIdx_S = 1, | |
2835 | } ARMASIdx; | |
2836 | ||
533e93f1 | 2837 | /* Return the Exception Level targeted by debug exceptions. */ |
3a298203 PM |
2838 | static inline int arm_debug_target_el(CPUARMState *env) |
2839 | { | |
81669b8b SF |
2840 | bool secure = arm_is_secure(env); |
2841 | bool route_to_el2 = false; | |
2842 | ||
2843 | if (arm_feature(env, ARM_FEATURE_EL2) && !secure) { | |
2844 | route_to_el2 = env->cp15.hcr_el2 & HCR_TGE || | |
b281ba42 | 2845 | env->cp15.mdcr_el2 & MDCR_TDE; |
81669b8b SF |
2846 | } |
2847 | ||
2848 | if (route_to_el2) { | |
2849 | return 2; | |
2850 | } else if (arm_feature(env, ARM_FEATURE_EL3) && | |
2851 | !arm_el_is_aa64(env, 3) && secure) { | |
2852 | return 3; | |
2853 | } else { | |
2854 | return 1; | |
2855 | } | |
3a298203 PM |
2856 | } |
2857 | ||
43bbce7f PM |
2858 | static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu) |
2859 | { | |
2860 | /* If all the CLIDR.Ctypem bits are 0 there are no caches, and | |
2861 | * CSSELR is RAZ/WI. | |
2862 | */ | |
2863 | return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0; | |
2864 | } | |
2865 | ||
22af9025 | 2866 | /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */ |
3a298203 PM |
2867 | static inline bool aa64_generate_debug_exceptions(CPUARMState *env) |
2868 | { | |
22af9025 AB |
2869 | int cur_el = arm_current_el(env); |
2870 | int debug_el; | |
2871 | ||
2872 | if (cur_el == 3) { | |
2873 | return false; | |
533e93f1 PM |
2874 | } |
2875 | ||
22af9025 AB |
2876 | /* MDCR_EL3.SDD disables debug events from Secure state */ |
2877 | if (arm_is_secure_below_el3(env) | |
2878 | && extract32(env->cp15.mdcr_el3, 16, 1)) { | |
2879 | return false; | |
3a298203 | 2880 | } |
22af9025 AB |
2881 | |
2882 | /* | |
2883 | * Same EL to same EL debug exceptions need MDSCR_KDE enabled | |
2884 | * while not masking the (D)ebug bit in DAIF. | |
2885 | */ | |
2886 | debug_el = arm_debug_target_el(env); | |
2887 | ||
2888 | if (cur_el == debug_el) { | |
2889 | return extract32(env->cp15.mdscr_el1, 13, 1) | |
2890 | && !(env->daif & PSTATE_D); | |
2891 | } | |
2892 | ||
2893 | /* Otherwise the debug target needs to be a higher EL */ | |
2894 | return debug_el > cur_el; | |
3a298203 PM |
2895 | } |
2896 | ||
2897 | static inline bool aa32_generate_debug_exceptions(CPUARMState *env) | |
2898 | { | |
533e93f1 PM |
2899 | int el = arm_current_el(env); |
2900 | ||
2901 | if (el == 0 && arm_el_is_aa64(env, 1)) { | |
3a298203 PM |
2902 | return aa64_generate_debug_exceptions(env); |
2903 | } | |
533e93f1 PM |
2904 | |
2905 | if (arm_is_secure(env)) { | |
2906 | int spd; | |
2907 | ||
2908 | if (el == 0 && (env->cp15.sder & 1)) { | |
2909 | /* SDER.SUIDEN means debug exceptions from Secure EL0 | |
2910 | * are always enabled. Otherwise they are controlled by | |
2911 | * SDCR.SPD like those from other Secure ELs. | |
2912 | */ | |
2913 | return true; | |
2914 | } | |
2915 | ||
2916 | spd = extract32(env->cp15.mdcr_el3, 14, 2); | |
2917 | switch (spd) { | |
2918 | case 1: | |
2919 | /* SPD == 0b01 is reserved, but behaves as 0b00. */ | |
2920 | case 0: | |
2921 | /* For 0b00 we return true if external secure invasive debug | |
2922 | * is enabled. On real hardware this is controlled by external | |
2923 | * signals to the core. QEMU always permits debug, and behaves | |
2924 | * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high. | |
2925 | */ | |
2926 | return true; | |
2927 | case 2: | |
2928 | return false; | |
2929 | case 3: | |
2930 | return true; | |
2931 | } | |
2932 | } | |
2933 | ||
2934 | return el != 2; | |
3a298203 PM |
2935 | } |
2936 | ||
2937 | /* Return true if debugging exceptions are currently enabled. | |
2938 | * This corresponds to what in ARM ARM pseudocode would be | |
2939 | * if UsingAArch32() then | |
2940 | * return AArch32.GenerateDebugExceptions() | |
2941 | * else | |
2942 | * return AArch64.GenerateDebugExceptions() | |
2943 | * We choose to push the if() down into this function for clarity, | |
2944 | * since the pseudocode has it at all callsites except for the one in | |
2945 | * CheckSoftwareStep(), where it is elided because both branches would | |
2946 | * always return the same value. | |
3a298203 PM |
2947 | */ |
2948 | static inline bool arm_generate_debug_exceptions(CPUARMState *env) | |
2949 | { | |
2950 | if (env->aarch64) { | |
2951 | return aa64_generate_debug_exceptions(env); | |
2952 | } else { | |
2953 | return aa32_generate_debug_exceptions(env); | |
2954 | } | |
2955 | } | |
2956 | ||
2957 | /* Is single-stepping active? (Note that the "is EL_D AArch64?" check | |
2958 | * implicitly means this always returns false in pre-v8 CPUs.) | |
2959 | */ | |
2960 | static inline bool arm_singlestep_active(CPUARMState *env) | |
2961 | { | |
2962 | return extract32(env->cp15.mdscr_el1, 0, 1) | |
2963 | && arm_el_is_aa64(env, arm_debug_target_el(env)) | |
2964 | && arm_generate_debug_exceptions(env); | |
2965 | } | |
2966 | ||
f9fd40eb PB |
2967 | static inline bool arm_sctlr_b(CPUARMState *env) |
2968 | { | |
2969 | return | |
2970 | /* We need not implement SCTLR.ITD in user-mode emulation, so | |
2971 | * let linux-user ignore the fact that it conflicts with SCTLR_B. | |
2972 | * This lets people run BE32 binaries with "-cpu any". | |
2973 | */ | |
2974 | #ifndef CONFIG_USER_ONLY | |
2975 | !arm_feature(env, ARM_FEATURE_V7) && | |
2976 | #endif | |
2977 | (env->cp15.sctlr_el[1] & SCTLR_B) != 0; | |
2978 | } | |
2979 | ||
ed50ff78 PC |
2980 | /* Return true if the processor is in big-endian mode. */ |
2981 | static inline bool arm_cpu_data_is_big_endian(CPUARMState *env) | |
2982 | { | |
2983 | int cur_el; | |
2984 | ||
2985 | /* In 32bit endianness is determined by looking at CPSR's E bit */ | |
2986 | if (!is_a64(env)) { | |
b2e62d9a PC |
2987 | return |
2988 | #ifdef CONFIG_USER_ONLY | |
2989 | /* In system mode, BE32 is modelled in line with the | |
2990 | * architecture (as word-invariant big-endianness), where loads | |
2991 | * and stores are done little endian but from addresses which | |
2992 | * are adjusted by XORing with the appropriate constant. So the | |
2993 | * endianness to use for the raw data access is not affected by | |
2994 | * SCTLR.B. | |
2995 | * In user mode, however, we model BE32 as byte-invariant | |
2996 | * big-endianness (because user-only code cannot tell the | |
2997 | * difference), and so we need to use a data access endianness | |
2998 | * that depends on SCTLR.B. | |
2999 | */ | |
3000 | arm_sctlr_b(env) || | |
3001 | #endif | |
3002 | ((env->uncached_cpsr & CPSR_E) ? 1 : 0); | |
ed50ff78 PC |
3003 | } |
3004 | ||
3005 | cur_el = arm_current_el(env); | |
3006 | ||
3007 | if (cur_el == 0) { | |
3008 | return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0; | |
3009 | } | |
3010 | ||
3011 | return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0; | |
3012 | } | |
3013 | ||
022c62cb | 3014 | #include "exec/cpu-all.h" |
622ed360 | 3015 | |
3926cc84 AG |
3016 | /* Bit usage in the TB flags field: bit 31 indicates whether we are |
3017 | * in 32 or 64 bit mode. The meaning of the other bits depends on that. | |
c1e37810 PM |
3018 | * We put flags which are shared between 32 and 64 bit mode at the top |
3019 | * of the word, and flags which apply to only one mode at the bottom. | |
3926cc84 | 3020 | */ |
aad821ac RH |
3021 | FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1) |
3022 | FIELD(TBFLAG_ANY, MMUIDX, 28, 3) | |
3023 | FIELD(TBFLAG_ANY, SS_ACTIVE, 27, 1) | |
3024 | FIELD(TBFLAG_ANY, PSTATE_SS, 26, 1) | |
9dbbc748 | 3025 | /* Target EL if we take a floating-point-disabled exception */ |
aad821ac RH |
3026 | FIELD(TBFLAG_ANY, FPEXC_EL, 24, 2) |
3027 | FIELD(TBFLAG_ANY, BE_DATA, 23, 1) | |
3926cc84 AG |
3028 | |
3029 | /* Bit usage when in AArch32 state: */ | |
aad821ac RH |
3030 | FIELD(TBFLAG_A32, THUMB, 0, 1) |
3031 | FIELD(TBFLAG_A32, VECLEN, 1, 3) | |
3032 | FIELD(TBFLAG_A32, VECSTRIDE, 4, 2) | |
3033 | FIELD(TBFLAG_A32, VFPEN, 7, 1) | |
3034 | FIELD(TBFLAG_A32, CONDEXEC, 8, 8) | |
3035 | FIELD(TBFLAG_A32, SCTLR_B, 16, 1) | |
c0f4af17 PM |
3036 | /* We store the bottom two bits of the CPAR as TB flags and handle |
3037 | * checks on the other bits at runtime | |
3038 | */ | |
aad821ac | 3039 | FIELD(TBFLAG_A32, XSCALE_CPAR, 17, 2) |
3f342b9e SF |
3040 | /* Indicates whether cp register reads and writes by guest code should access |
3041 | * the secure or nonsecure bank of banked registers; note that this is not | |
3042 | * the same thing as the current security state of the processor! | |
3043 | */ | |
aad821ac | 3044 | FIELD(TBFLAG_A32, NS, 19, 1) |
064c379c | 3045 | /* For M profile only, Handler (ie not Thread) mode */ |
aad821ac | 3046 | FIELD(TBFLAG_A32, HANDLER, 21, 1) |
4730fb85 | 3047 | /* For M profile only, whether we should generate stack-limit checks */ |
aad821ac | 3048 | FIELD(TBFLAG_A32, STACKCHECK, 22, 1) |
3926cc84 | 3049 | |
86fb3fa4 | 3050 | /* Bit usage when in AArch64 state */ |
476a4692 | 3051 | FIELD(TBFLAG_A64, TBII, 0, 2) |
aad821ac RH |
3052 | FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2) |
3053 | FIELD(TBFLAG_A64, ZCR_LEN, 4, 4) | |
0816ef1b | 3054 | FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1) |
08f1434a RH |
3055 | FIELD(TBFLAG_A64, BT, 9, 1) |
3056 | FIELD(TBFLAG_A64, BTYPE, 10, 2) | |
4a9ee99d | 3057 | FIELD(TBFLAG_A64, TBID, 12, 2) |
a1705768 | 3058 | |
f9fd40eb PB |
3059 | static inline bool bswap_code(bool sctlr_b) |
3060 | { | |
3061 | #ifdef CONFIG_USER_ONLY | |
3062 | /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian. | |
3063 | * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0 | |
3064 | * would also end up as a mixed-endian mode with BE code, LE data. | |
3065 | */ | |
3066 | return | |
3067 | #ifdef TARGET_WORDS_BIGENDIAN | |
3068 | 1 ^ | |
3069 | #endif | |
3070 | sctlr_b; | |
3071 | #else | |
e334bd31 PB |
3072 | /* All code access in ARM is little endian, and there are no loaders |
3073 | * doing swaps that need to be reversed | |
f9fd40eb PB |
3074 | */ |
3075 | return 0; | |
3076 | #endif | |
3077 | } | |
3078 | ||
c3ae85fc PB |
3079 | #ifdef CONFIG_USER_ONLY |
3080 | static inline bool arm_cpu_bswap_data(CPUARMState *env) | |
3081 | { | |
3082 | return | |
3083 | #ifdef TARGET_WORDS_BIGENDIAN | |
3084 | 1 ^ | |
3085 | #endif | |
3086 | arm_cpu_data_is_big_endian(env); | |
3087 | } | |
3088 | #endif | |
3089 | ||
a9e01311 RH |
3090 | void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, |
3091 | target_ulong *cs_base, uint32_t *flags); | |
6b917547 | 3092 | |
98128601 RH |
3093 | enum { |
3094 | QEMU_PSCI_CONDUIT_DISABLED = 0, | |
3095 | QEMU_PSCI_CONDUIT_SMC = 1, | |
3096 | QEMU_PSCI_CONDUIT_HVC = 2, | |
3097 | }; | |
3098 | ||
017518c1 PM |
3099 | #ifndef CONFIG_USER_ONLY |
3100 | /* Return the address space index to use for a memory access */ | |
3101 | static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs) | |
3102 | { | |
3103 | return attrs.secure ? ARMASIdx_S : ARMASIdx_NS; | |
3104 | } | |
5ce4ff65 PM |
3105 | |
3106 | /* Return the AddressSpace to use for a memory access | |
3107 | * (which depends on whether the access is S or NS, and whether | |
3108 | * the board gave us a separate AddressSpace for S accesses). | |
3109 | */ | |
3110 | static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs) | |
3111 | { | |
3112 | return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs)); | |
3113 | } | |
017518c1 PM |
3114 | #endif |
3115 | ||
bd7d00fc | 3116 | /** |
b5c53d1b AL |
3117 | * arm_register_pre_el_change_hook: |
3118 | * Register a hook function which will be called immediately before this | |
bd7d00fc PM |
3119 | * CPU changes exception level or mode. The hook function will be |
3120 | * passed a pointer to the ARMCPU and the opaque data pointer passed | |
3121 | * to this function when the hook was registered. | |
b5c53d1b AL |
3122 | * |
3123 | * Note that if a pre-change hook is called, any registered post-change hooks | |
3124 | * are guaranteed to subsequently be called. | |
bd7d00fc | 3125 | */ |
b5c53d1b | 3126 | void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, |
bd7d00fc | 3127 | void *opaque); |
b5c53d1b AL |
3128 | /** |
3129 | * arm_register_el_change_hook: | |
3130 | * Register a hook function which will be called immediately after this | |
3131 | * CPU changes exception level or mode. The hook function will be | |
3132 | * passed a pointer to the ARMCPU and the opaque data pointer passed | |
3133 | * to this function when the hook was registered. | |
3134 | * | |
3135 | * Note that any registered hooks registered here are guaranteed to be called | |
3136 | * if pre-change hooks have been. | |
3137 | */ | |
3138 | void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void | |
3139 | *opaque); | |
bd7d00fc | 3140 | |
9a2b5256 RH |
3141 | /** |
3142 | * aa32_vfp_dreg: | |
3143 | * Return a pointer to the Dn register within env in 32-bit mode. | |
3144 | */ | |
3145 | static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno) | |
3146 | { | |
c39c2b90 | 3147 | return &env->vfp.zregs[regno >> 1].d[regno & 1]; |
9a2b5256 RH |
3148 | } |
3149 | ||
3150 | /** | |
3151 | * aa32_vfp_qreg: | |
3152 | * Return a pointer to the Qn register within env in 32-bit mode. | |
3153 | */ | |
3154 | static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno) | |
3155 | { | |
c39c2b90 | 3156 | return &env->vfp.zregs[regno].d[0]; |
9a2b5256 RH |
3157 | } |
3158 | ||
3159 | /** | |
3160 | * aa64_vfp_qreg: | |
3161 | * Return a pointer to the Qn register within env in 64-bit mode. | |
3162 | */ | |
3163 | static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno) | |
3164 | { | |
c39c2b90 | 3165 | return &env->vfp.zregs[regno].d[0]; |
9a2b5256 RH |
3166 | } |
3167 | ||
028e2a7b RH |
3168 | /* Shared between translate-sve.c and sve_helper.c. */ |
3169 | extern const uint64_t pred_esz_masks[4]; | |
3170 | ||
962fcbf2 RH |
3171 | /* |
3172 | * 32-bit feature tests via id registers. | |
3173 | */ | |
7e0cf8b4 RH |
3174 | static inline bool isar_feature_thumb_div(const ARMISARegisters *id) |
3175 | { | |
3176 | return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0; | |
3177 | } | |
3178 | ||
3179 | static inline bool isar_feature_arm_div(const ARMISARegisters *id) | |
3180 | { | |
3181 | return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1; | |
3182 | } | |
3183 | ||
09cbd501 RH |
3184 | static inline bool isar_feature_jazelle(const ARMISARegisters *id) |
3185 | { | |
3186 | return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0; | |
3187 | } | |
3188 | ||
962fcbf2 RH |
3189 | static inline bool isar_feature_aa32_aes(const ARMISARegisters *id) |
3190 | { | |
3191 | return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0; | |
3192 | } | |
3193 | ||
3194 | static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id) | |
3195 | { | |
3196 | return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1; | |
3197 | } | |
3198 | ||
3199 | static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id) | |
3200 | { | |
3201 | return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0; | |
3202 | } | |
3203 | ||
3204 | static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id) | |
3205 | { | |
3206 | return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0; | |
3207 | } | |
3208 | ||
3209 | static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id) | |
3210 | { | |
3211 | return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0; | |
3212 | } | |
3213 | ||
3214 | static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id) | |
3215 | { | |
3216 | return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0; | |
3217 | } | |
3218 | ||
3219 | static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id) | |
3220 | { | |
3221 | return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0; | |
3222 | } | |
3223 | ||
3224 | static inline bool isar_feature_aa32_dp(const ARMISARegisters *id) | |
3225 | { | |
3226 | return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0; | |
3227 | } | |
3228 | ||
5763190f RH |
3229 | static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id) |
3230 | { | |
3231 | /* | |
3232 | * This is a placeholder for use by VCMA until the rest of | |
3233 | * the ARMv8.2-FP16 extension is implemented for aa32 mode. | |
3234 | * At which point we can properly set and check MVFR1.FPHP. | |
3235 | */ | |
3236 | return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1; | |
3237 | } | |
3238 | ||
962fcbf2 RH |
3239 | /* |
3240 | * 64-bit feature tests via id registers. | |
3241 | */ | |
3242 | static inline bool isar_feature_aa64_aes(const ARMISARegisters *id) | |
3243 | { | |
3244 | return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0; | |
3245 | } | |
3246 | ||
3247 | static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id) | |
3248 | { | |
3249 | return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1; | |
3250 | } | |
3251 | ||
3252 | static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id) | |
3253 | { | |
3254 | return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0; | |
3255 | } | |
3256 | ||
3257 | static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id) | |
3258 | { | |
3259 | return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0; | |
3260 | } | |
3261 | ||
3262 | static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id) | |
3263 | { | |
3264 | return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1; | |
3265 | } | |
3266 | ||
3267 | static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id) | |
3268 | { | |
3269 | return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0; | |
3270 | } | |
3271 | ||
3272 | static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id) | |
3273 | { | |
3274 | return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0; | |
3275 | } | |
3276 | ||
3277 | static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id) | |
3278 | { | |
3279 | return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0; | |
3280 | } | |
3281 | ||
3282 | static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id) | |
3283 | { | |
3284 | return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0; | |
3285 | } | |
3286 | ||
3287 | static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id) | |
3288 | { | |
3289 | return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0; | |
3290 | } | |
3291 | ||
3292 | static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id) | |
3293 | { | |
3294 | return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0; | |
3295 | } | |
3296 | ||
3297 | static inline bool isar_feature_aa64_dp(const ARMISARegisters *id) | |
3298 | { | |
3299 | return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0; | |
3300 | } | |
3301 | ||
3302 | static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id) | |
3303 | { | |
3304 | return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0; | |
3305 | } | |
3306 | ||
991ad91b RH |
3307 | static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id) |
3308 | { | |
3309 | /* | |
3310 | * Note that while QEMU will only implement the architected algorithm | |
3311 | * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation | |
3312 | * defined algorithms, and thus API+GPI, and this predicate controls | |
3313 | * migration of the 128-bit keys. | |
3314 | */ | |
3315 | return (id->id_aa64isar1 & | |
3316 | (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) | | |
3317 | FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) | | |
3318 | FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) | | |
3319 | FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0; | |
3320 | } | |
3321 | ||
5763190f RH |
3322 | static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id) |
3323 | { | |
3324 | /* We always set the AdvSIMD and FP fields identically wrt FP16. */ | |
3325 | return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1; | |
3326 | } | |
3327 | ||
0f8d06f1 RH |
3328 | static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id) |
3329 | { | |
3330 | return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2; | |
3331 | } | |
3332 | ||
cd208a1c RH |
3333 | static inline bool isar_feature_aa64_sve(const ARMISARegisters *id) |
3334 | { | |
3335 | return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0; | |
3336 | } | |
3337 | ||
2d7137c1 RH |
3338 | static inline bool isar_feature_aa64_lor(const ARMISARegisters *id) |
3339 | { | |
3340 | return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0; | |
3341 | } | |
3342 | ||
be53b6f4 RH |
3343 | static inline bool isar_feature_aa64_bti(const ARMISARegisters *id) |
3344 | { | |
3345 | return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0; | |
3346 | } | |
3347 | ||
962fcbf2 RH |
3348 | /* |
3349 | * Forward to the above feature tests given an ARMCPU pointer. | |
3350 | */ | |
3351 | #define cpu_isar_feature(name, cpu) \ | |
3352 | ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); }) | |
3353 | ||
2c0262af | 3354 | #endif |