]> Git Repo - qemu.git/blame - target-arm/cpu.h
target-arm/kvm-consts.h: Define QEMU constants for known KVM CPUs
[qemu.git] / target-arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af
FB
18 */
19#ifndef CPU_ARM_H
20#define CPU_ARM_H
21
3926cc84 22#include "config.h"
3cf1e035 23
72b0cd35
PM
24#include "kvm-consts.h"
25
3926cc84
AG
26#if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28# define TARGET_LONG_BITS 64
29# define ELF_MACHINE EM_AARCH64
30#else
31# define TARGET_LONG_BITS 32
32# define ELF_MACHINE EM_ARM
33#endif
9042c0e2 34
9349b4f9 35#define CPUArchState struct CPUARMState
c2764719 36
9a78eead 37#include "qemu-common.h"
022c62cb 38#include "exec/cpu-defs.h"
2c0262af 39
6b4c305c 40#include "fpu/softfloat.h"
53cd6637 41
1fddef4b
FB
42#define TARGET_HAS_ICE 1
43
b8a9e8f1
FB
44#define EXCP_UDEF 1 /* undefined instruction */
45#define EXCP_SWI 2 /* software interrupt */
46#define EXCP_PREFETCH_ABORT 3
47#define EXCP_DATA_ABORT 4
b5ff1b31
FB
48#define EXCP_IRQ 5
49#define EXCP_FIQ 6
06c949e6 50#define EXCP_BKPT 7
9ee6e8bb 51#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 52#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
426f5abc 53#define EXCP_STREX 10
9ee6e8bb
PB
54
55#define ARMV7M_EXCP_RESET 1
56#define ARMV7M_EXCP_NMI 2
57#define ARMV7M_EXCP_HARD 3
58#define ARMV7M_EXCP_MEM 4
59#define ARMV7M_EXCP_BUS 5
60#define ARMV7M_EXCP_USAGE 6
61#define ARMV7M_EXCP_SVC 11
62#define ARMV7M_EXCP_DEBUG 12
63#define ARMV7M_EXCP_PENDSV 14
64#define ARMV7M_EXCP_SYSTICK 15
2c0262af 65
403946c0
RH
66/* ARM-specific interrupt pending bits. */
67#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
68
e4fe830b
PM
69/* The usual mapping for an AArch64 system register to its AArch32
70 * counterpart is for the 32 bit world to have access to the lower
71 * half only (with writes leaving the upper half untouched). It's
72 * therefore useful to be able to pass TCG the offset of the least
73 * significant half of a uint64_t struct member.
74 */
75#ifdef HOST_WORDS_BIGENDIAN
5cd8a118 76#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
77#else
78#define offsetoflow32(S, M) offsetof(S, M)
79#endif
80
7c1840b6
PM
81/* Meanings of the ARMCPU object's two inbound GPIO lines */
82#define ARM_CPU_IRQ 0
83#define ARM_CPU_FIQ 1
403946c0 84
c1713132
AZ
85typedef void ARMWriteCPFunc(void *opaque, int cp_info,
86 int srcreg, int operand, uint32_t value);
87typedef uint32_t ARMReadCPFunc(void *opaque, int cp_info,
88 int dstreg, int operand);
89
f93eb9ff
AZ
90struct arm_boot_info;
91
6ebbf390
JM
92#define NB_MMU_MODES 2
93
b7bcbe95
FB
94/* We currently assume float and double are IEEE single and double
95 precision respectively.
96 Doing runtime conversions is tricky because VFP registers may contain
97 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
98 s<2n> maps to the least significant half of d<n>
99 s<2n+1> maps to the most significant half of d<n>
100 */
b7bcbe95 101
55d284af
PM
102/* CPU state for each instance of a generic timer (in cp15 c14) */
103typedef struct ARMGenericTimer {
104 uint64_t cval; /* Timer CompareValue register */
105 uint32_t ctl; /* Timer Control register */
106} ARMGenericTimer;
107
108#define GTIMER_PHYS 0
109#define GTIMER_VIRT 1
110#define NUM_GTIMERS 2
111
112/* Scale factor for generic timers, ie number of ns per tick.
113 * This gives a 62.5MHz timer.
114 */
115#define GTIMER_SCALE 16
116
2c0262af 117typedef struct CPUARMState {
b5ff1b31 118 /* Regs for current mode. */
2c0262af 119 uint32_t regs[16];
3926cc84
AG
120
121 /* 32/64 switch only happens when taking and returning from
122 * exceptions so the overlap semantics are taken care of then
123 * instead of having a complicated union.
124 */
125 /* Regs for A64 mode. */
126 uint64_t xregs[32];
127 uint64_t pc;
d356312f
PM
128 /* PSTATE isn't an architectural register for ARMv8. However, it is
129 * convenient for us to assemble the underlying state into a 32 bit format
130 * identical to the architectural format used for the SPSR. (This is also
131 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
132 * 'pstate' register are.) Of the PSTATE bits:
133 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
134 * semantics as for AArch32, as described in the comments on each field)
135 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
136 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
137 */
138 uint32_t pstate;
139 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
140
b90372ad 141 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 142 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
143 the whole CPSR. */
144 uint32_t uncached_cpsr;
145 uint32_t spsr;
146
147 /* Banked registers. */
148 uint32_t banked_spsr[6];
149 uint32_t banked_r13[6];
150 uint32_t banked_r14[6];
3b46e624 151
b5ff1b31
FB
152 /* These hold r8-r12. */
153 uint32_t usr_regs[5];
154 uint32_t fiq_regs[5];
3b46e624 155
2c0262af
FB
156 /* cpsr flag cache for faster execution */
157 uint32_t CF; /* 0 or 1 */
158 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
159 uint32_t NF; /* N is bit 31. All other bits are undefined. */
160 uint32_t ZF; /* Z set if zero. */
99c475ab 161 uint32_t QF; /* 0 or 1 */
9ee6e8bb 162 uint32_t GE; /* cpsr[19:16] */
b26eefb6 163 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
9ee6e8bb 164 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
2c0262af 165
b5ff1b31
FB
166 /* System control coprocessor (cp15) */
167 struct {
40f137e1 168 uint32_t c0_cpuid;
a49ea279 169 uint32_t c0_cssel; /* Cache size selection. */
b5ff1b31
FB
170 uint32_t c1_sys; /* System control register. */
171 uint32_t c1_coproc; /* Coprocessor access register. */
610c3c8a 172 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
2be27624 173 uint32_t c1_scr; /* secure config register. */
9ee6e8bb 174 uint32_t c2_base0; /* MMU translation table base 0. */
891a2fe7
PM
175 uint32_t c2_base0_hi; /* MMU translation table base 0, high 32 bits */
176 uint32_t c2_base1; /* MMU translation table base 0. */
177 uint32_t c2_base1_hi; /* MMU translation table base 1, high 32 bits */
b2fa1797
PB
178 uint32_t c2_control; /* MMU translation table base control. */
179 uint32_t c2_mask; /* MMU translation table base selection mask. */
180 uint32_t c2_base_mask; /* MMU translation table base 0 mask. */
ce819861
PB
181 uint32_t c2_data; /* MPU data cachable bits. */
182 uint32_t c2_insn; /* MPU instruction cachable bits. */
183 uint32_t c3; /* MMU domain access control register
184 MPU write buffer control. */
b5ff1b31
FB
185 uint32_t c5_insn; /* Fault status registers. */
186 uint32_t c5_data;
ce819861 187 uint32_t c6_region[8]; /* MPU base/size registers. */
b5ff1b31
FB
188 uint32_t c6_insn; /* Fault address registers. */
189 uint32_t c6_data;
f8bf8606 190 uint32_t c7_par; /* Translation result. */
891a2fe7 191 uint32_t c7_par_hi; /* Translation result, high 32 bits */
b5ff1b31
FB
192 uint32_t c9_insn; /* Cache lockdown registers. */
193 uint32_t c9_data;
74594c9d
PM
194 uint32_t c9_pmcr; /* performance monitor control register */
195 uint32_t c9_pmcnten; /* perf monitor counter enables */
196 uint32_t c9_pmovsr; /* perf monitor overflow status */
197 uint32_t c9_pmxevtyper; /* perf monitor event type */
198 uint32_t c9_pmuserenr; /* perf monitor user enable */
199 uint32_t c9_pminten; /* perf monitor interrupt enables */
8641136c 200 uint32_t c12_vbar; /* vector base address register */
b5ff1b31
FB
201 uint32_t c13_fcse; /* FCSE PID. */
202 uint32_t c13_context; /* Context ID. */
e4fe830b
PM
203 uint64_t tpidr_el0; /* User RW Thread register. */
204 uint64_t tpidrro_el0; /* User RO Thread register. */
205 uint64_t tpidr_el1; /* Privileged Thread register. */
55d284af
PM
206 uint32_t c14_cntfrq; /* Counter Frequency register */
207 uint32_t c14_cntkctl; /* Timer Control register */
208 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 209 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
210 uint32_t c15_ticonfig; /* TI925T configuration byte. */
211 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
212 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
213 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
214 uint32_t c15_config_base_address; /* SCU base address. */
215 uint32_t c15_diagnostic; /* diagnostic register */
216 uint32_t c15_power_diagnostic;
217 uint32_t c15_power_control; /* power control */
b5ff1b31 218 } cp15;
40f137e1 219
3926cc84
AG
220 /* System registers (AArch64) */
221 struct {
222 uint64_t tpidr_el0;
223 } sr;
224
9ee6e8bb
PB
225 struct {
226 uint32_t other_sp;
227 uint32_t vecbase;
228 uint32_t basepri;
229 uint32_t control;
230 int current_sp;
231 int exception;
232 int pending_exception;
9ee6e8bb
PB
233 } v7m;
234
fe1479c3
PB
235 /* Thumb-2 EE state. */
236 uint32_t teecr;
237 uint32_t teehbr;
238
b7bcbe95
FB
239 /* VFP coprocessor state. */
240 struct {
3926cc84
AG
241 /* VFP/Neon register state. Note that the mapping between S, D and Q
242 * views of the register bank differs between AArch64 and AArch32:
243 * In AArch32:
244 * Qn = regs[2n+1]:regs[2n]
245 * Dn = regs[n]
246 * Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
247 * (and regs[32] to regs[63] are inaccessible)
248 * In AArch64:
249 * Qn = regs[2n+1]:regs[2n]
250 * Dn = regs[2n]
251 * Sn = regs[2n] bits 31..0
252 * This corresponds to the architecturally defined mapping between
253 * the two execution states, and means we do not need to explicitly
254 * map these registers when changing states.
255 */
256 float64 regs[64];
b7bcbe95 257
40f137e1 258 uint32_t xregs[16];
b7bcbe95
FB
259 /* We store these fpcsr fields separately for convenience. */
260 int vec_len;
261 int vec_stride;
262
9ee6e8bb
PB
263 /* scratch space when Tn are not sufficient. */
264 uint32_t scratch[8];
3b46e624 265
3a492f3a
PM
266 /* fp_status is the "normal" fp status. standard_fp_status retains
267 * values corresponding to the ARM "Standard FPSCR Value", ie
268 * default-NaN, flush-to-zero, round-to-nearest and is used by
269 * any operations (generally Neon) which the architecture defines
270 * as controlled by the standard FPSCR value rather than the FPSCR.
271 *
272 * To avoid having to transfer exception bits around, we simply
273 * say that the FPSCR cumulative exception flags are the logical
274 * OR of the flags in the two fp statuses. This relies on the
275 * only thing which needs to read the exception flags being
276 * an explicit FPSCR read.
277 */
53cd6637 278 float_status fp_status;
3a492f3a 279 float_status standard_fp_status;
b7bcbe95 280 } vfp;
03d05e2d
PM
281 uint64_t exclusive_addr;
282 uint64_t exclusive_val;
283 uint64_t exclusive_high;
9ee6e8bb 284#if defined(CONFIG_USER_ONLY)
03d05e2d 285 uint64_t exclusive_test;
426f5abc 286 uint32_t exclusive_info;
9ee6e8bb 287#endif
b7bcbe95 288
18c9b560
AZ
289 /* iwMMXt coprocessor state. */
290 struct {
291 uint64_t regs[16];
292 uint64_t val;
293
294 uint32_t cregs[16];
295 } iwmmxt;
296
d8fd2954
PB
297 /* For mixed endian mode. */
298 bool bswap_code;
299
ce4defa0
PB
300#if defined(CONFIG_USER_ONLY)
301 /* For usermode syscall translation. */
302 int eabi;
303#endif
304
a316d335
FB
305 CPU_COMMON
306
9d551997 307 /* These fields after the common ones so they are preserved on reset. */
9ba8c3f4 308
581be094 309 /* Internal CPU feature flags. */
918f5dca 310 uint64_t features;
581be094 311
983fe826 312 void *nvic;
462a8bc6 313 const struct arm_boot_info *boot_info;
2c0262af
FB
314} CPUARMState;
315
778c3a06
AF
316#include "cpu-qom.h"
317
318ARMCPU *cpu_arm_init(const char *cpu_model);
b26eefb6 319void arm_translate_init(void);
14969266 320void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
2c0262af 321int cpu_arm_exec(CPUARMState *s);
494b00c7 322int bank_number(int mode);
b5ff1b31 323void switch_mode(CPUARMState *, int);
9ee6e8bb 324uint32_t do_arm_semihosting(CPUARMState *env);
b5ff1b31 325
3926cc84
AG
326static inline bool is_a64(CPUARMState *env)
327{
328 return env->aarch64;
329}
330
2c0262af
FB
331/* you can call this signal handler from your SIGBUS and SIGSEGV
332 signal handlers to inform the virtual CPU of exceptions. non zero
333 is returned if the signal was handled by the virtual CPU. */
5fafdf24 334int cpu_arm_signal_handler(int host_signum, void *pinfo,
2c0262af 335 void *puc);
84a031c6 336int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
97b348e7 337 int mmu_idx);
0b5c1ce8 338#define cpu_handle_mmu_fault cpu_arm_handle_mmu_fault
2c0262af 339
78dbbbe4
PM
340#define CPSR_M (0x1fU)
341#define CPSR_T (1U << 5)
342#define CPSR_F (1U << 6)
343#define CPSR_I (1U << 7)
344#define CPSR_A (1U << 8)
345#define CPSR_E (1U << 9)
346#define CPSR_IT_2_7 (0xfc00U)
347#define CPSR_GE (0xfU << 16)
348#define CPSR_RESERVED (0xfU << 20)
349#define CPSR_J (1U << 24)
350#define CPSR_IT_0_1 (3U << 25)
351#define CPSR_Q (1U << 27)
352#define CPSR_V (1U << 28)
353#define CPSR_C (1U << 29)
354#define CPSR_Z (1U << 30)
355#define CPSR_N (1U << 31)
9ee6e8bb
PB
356#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
357
358#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
359#define CACHED_CPSR_BITS (CPSR_T | CPSR_GE | CPSR_IT | CPSR_Q | CPSR_NZCV)
360/* Bits writable in user mode. */
361#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
362/* Execution state bits. MRS read as zero, MSR writes ignored. */
363#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J)
b5ff1b31 364
d356312f
PM
365/* Bit definitions for ARMv8 SPSR (PSTATE) format.
366 * Only these are valid when in AArch64 mode; in
367 * AArch32 mode SPSRs are basically CPSR-format.
368 */
369#define PSTATE_M (0xFU)
370#define PSTATE_nRW (1U << 4)
371#define PSTATE_F (1U << 6)
372#define PSTATE_I (1U << 7)
373#define PSTATE_A (1U << 8)
374#define PSTATE_D (1U << 9)
375#define PSTATE_IL (1U << 20)
376#define PSTATE_SS (1U << 21)
377#define PSTATE_V (1U << 28)
378#define PSTATE_C (1U << 29)
379#define PSTATE_Z (1U << 30)
380#define PSTATE_N (1U << 31)
381#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
382#define CACHED_PSTATE_BITS (PSTATE_NZCV)
383/* Mode values for AArch64 */
384#define PSTATE_MODE_EL3h 13
385#define PSTATE_MODE_EL3t 12
386#define PSTATE_MODE_EL2h 9
387#define PSTATE_MODE_EL2t 8
388#define PSTATE_MODE_EL1h 5
389#define PSTATE_MODE_EL1t 4
390#define PSTATE_MODE_EL0t 0
391
392/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
393 * interprocessing, so we don't attempt to sync with the cpsr state used by
394 * the 32 bit decoder.
395 */
396static inline uint32_t pstate_read(CPUARMState *env)
397{
398 int ZF;
399
400 ZF = (env->ZF == 0);
401 return (env->NF & 0x80000000) | (ZF << 30)
402 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
403 | env->pstate;
404}
405
406static inline void pstate_write(CPUARMState *env, uint32_t val)
407{
408 env->ZF = (~val) & PSTATE_Z;
409 env->NF = val;
410 env->CF = (val >> 29) & 1;
411 env->VF = (val << 3) & 0x80000000;
412 env->pstate = val & ~CACHED_PSTATE_BITS;
413}
414
b5ff1b31 415/* Return the current CPSR value. */
2f4a40e5
AZ
416uint32_t cpsr_read(CPUARMState *env);
417/* Set the CPSR. Note that some bits of mask must be all-set or all-clear. */
418void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
9ee6e8bb
PB
419
420/* Return the current xPSR value. */
421static inline uint32_t xpsr_read(CPUARMState *env)
422{
423 int ZF;
6fbe23d5
PB
424 ZF = (env->ZF == 0);
425 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
426 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
427 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
428 | ((env->condexec_bits & 0xfc) << 8)
429 | env->v7m.exception;
b5ff1b31
FB
430}
431
9ee6e8bb
PB
432/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
433static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
434{
9ee6e8bb 435 if (mask & CPSR_NZCV) {
6fbe23d5
PB
436 env->ZF = (~val) & CPSR_Z;
437 env->NF = val;
9ee6e8bb
PB
438 env->CF = (val >> 29) & 1;
439 env->VF = (val << 3) & 0x80000000;
440 }
441 if (mask & CPSR_Q)
442 env->QF = ((val & CPSR_Q) != 0);
443 if (mask & (1 << 24))
444 env->thumb = ((val & (1 << 24)) != 0);
445 if (mask & CPSR_IT_0_1) {
446 env->condexec_bits &= ~3;
447 env->condexec_bits |= (val >> 25) & 3;
448 }
449 if (mask & CPSR_IT_2_7) {
450 env->condexec_bits &= 3;
451 env->condexec_bits |= (val >> 8) & 0xfc;
452 }
453 if (mask & 0x1ff) {
454 env->v7m.exception = val & 0x1ff;
455 }
456}
457
01653295
PM
458/* Return the current FPSCR value. */
459uint32_t vfp_get_fpscr(CPUARMState *env);
460void vfp_set_fpscr(CPUARMState *env, uint32_t val);
461
f903fa22
PM
462/* For A64 the FPSCR is split into two logically distinct registers,
463 * FPCR and FPSR. However since they still use non-overlapping bits
464 * we store the underlying state in fpscr and just mask on read/write.
465 */
466#define FPSR_MASK 0xf800009f
467#define FPCR_MASK 0x07f79f00
468static inline uint32_t vfp_get_fpsr(CPUARMState *env)
469{
470 return vfp_get_fpscr(env) & FPSR_MASK;
471}
472
473static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
474{
475 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
476 vfp_set_fpscr(env, new_fpscr);
477}
478
479static inline uint32_t vfp_get_fpcr(CPUARMState *env)
480{
481 return vfp_get_fpscr(env) & FPCR_MASK;
482}
483
484static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
485{
486 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
487 vfp_set_fpscr(env, new_fpscr);
488}
489
4d3da0f3
AG
490enum arm_fprounding {
491 FPROUNDING_TIEEVEN,
492 FPROUNDING_POSINF,
493 FPROUNDING_NEGINF,
494 FPROUNDING_ZERO,
495 FPROUNDING_TIEAWAY,
496 FPROUNDING_ODD
497};
498
9972da66
WN
499int arm_rmode_to_sf(int rmode);
500
b5ff1b31
FB
501enum arm_cpu_mode {
502 ARM_CPU_MODE_USR = 0x10,
503 ARM_CPU_MODE_FIQ = 0x11,
504 ARM_CPU_MODE_IRQ = 0x12,
505 ARM_CPU_MODE_SVC = 0x13,
506 ARM_CPU_MODE_ABT = 0x17,
507 ARM_CPU_MODE_UND = 0x1b,
508 ARM_CPU_MODE_SYS = 0x1f
509};
510
40f137e1
PB
511/* VFP system registers. */
512#define ARM_VFP_FPSID 0
513#define ARM_VFP_FPSCR 1
9ee6e8bb
PB
514#define ARM_VFP_MVFR1 6
515#define ARM_VFP_MVFR0 7
40f137e1
PB
516#define ARM_VFP_FPEXC 8
517#define ARM_VFP_FPINST 9
518#define ARM_VFP_FPINST2 10
519
18c9b560
AZ
520/* iwMMXt coprocessor control registers. */
521#define ARM_IWMMXT_wCID 0
522#define ARM_IWMMXT_wCon 1
523#define ARM_IWMMXT_wCSSF 2
524#define ARM_IWMMXT_wCASF 3
525#define ARM_IWMMXT_wCGR0 8
526#define ARM_IWMMXT_wCGR1 9
527#define ARM_IWMMXT_wCGR2 10
528#define ARM_IWMMXT_wCGR3 11
529
ce854d7c
BC
530/* If adding a feature bit which corresponds to a Linux ELF
531 * HWCAP bit, remember to update the feature-bit-to-hwcap
532 * mapping in linux-user/elfload.c:get_elf_hwcap().
533 */
40f137e1
PB
534enum arm_features {
535 ARM_FEATURE_VFP,
c1713132
AZ
536 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
537 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 538 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
539 ARM_FEATURE_V6,
540 ARM_FEATURE_V6K,
541 ARM_FEATURE_V7,
542 ARM_FEATURE_THUMB2,
c3d2689d 543 ARM_FEATURE_MPU, /* Only has Memory Protection Unit, not full MMU. */
9ee6e8bb 544 ARM_FEATURE_VFP3,
60011498 545 ARM_FEATURE_VFP_FP16,
9ee6e8bb 546 ARM_FEATURE_NEON,
47789990 547 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
9ee6e8bb 548 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 549 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 550 ARM_FEATURE_THUMB2EE,
be5e7a76
DES
551 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
552 ARM_FEATURE_V4T,
553 ARM_FEATURE_V5,
5bc95aa2 554 ARM_FEATURE_STRONGARM,
906879a9 555 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
b8b8ea05 556 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
da97f52c 557 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
0383ac00 558 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 559 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 560 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
561 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
562 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
563 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 564 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8
PM
565 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
566 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 567 ARM_FEATURE_V8,
3926cc84 568 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
9d935509 569 ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
d8ba780b 570 ARM_FEATURE_CBAR, /* has cp15 CBAR */
40f137e1
PB
571};
572
573static inline int arm_feature(CPUARMState *env, int feature)
574{
918f5dca 575 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
576}
577
9a78eead 578void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
40f137e1 579
9ee6e8bb
PB
580/* Interface between CPU and Interrupt controller. */
581void armv7m_nvic_set_pending(void *opaque, int irq);
582int armv7m_nvic_acknowledge_irq(void *opaque);
583void armv7m_nvic_complete_irq(void *opaque, int irq);
584
4b6a83fb
PM
585/* Interface for defining coprocessor registers.
586 * Registers are defined in tables of arm_cp_reginfo structs
587 * which are passed to define_arm_cp_regs().
588 */
589
590/* When looking up a coprocessor register we look for it
591 * via an integer which encodes all of:
592 * coprocessor number
593 * Crn, Crm, opc1, opc2 fields
594 * 32 or 64 bit register (ie is it accessed via MRC/MCR
595 * or via MRRC/MCRR?)
596 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
597 * (In this case crn and opc2 should be zero.)
f5a0a5a5
PM
598 * For AArch64, there is no 32/64 bit size distinction;
599 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
600 * and 4 bit CRn and CRm. The encoding patterns are chosen
601 * to be easy to convert to and from the KVM encodings, and also
602 * so that the hashtable can contain both AArch32 and AArch64
603 * registers (to allow for interprocessing where we might run
604 * 32 bit code on a 64 bit core).
4b6a83fb 605 */
f5a0a5a5
PM
606/* This bit is private to our hashtable cpreg; in KVM register
607 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
608 * in the upper bits of the 64 bit ID.
609 */
610#define CP_REG_AA64_SHIFT 28
611#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
612
4b6a83fb
PM
613#define ENCODE_CP_REG(cp, is64, crn, crm, opc1, opc2) \
614 (((cp) << 16) | ((is64) << 15) | ((crn) << 11) | \
615 ((crm) << 7) | ((opc1) << 3) | (opc2))
616
f5a0a5a5
PM
617#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
618 (CP_REG_AA64_MASK | \
619 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
620 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
621 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
622 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
623 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
624 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
625
721fae12
PM
626/* Convert a full 64 bit KVM register ID to the truncated 32 bit
627 * version used as a key for the coprocessor register hashtable
628 */
629static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
630{
631 uint32_t cpregid = kvmid;
f5a0a5a5
PM
632 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
633 cpregid |= CP_REG_AA64_MASK;
634 } else if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
721fae12
PM
635 cpregid |= (1 << 15);
636 }
637 return cpregid;
638}
639
640/* Convert a truncated 32 bit hashtable key into the full
641 * 64 bit KVM register ID.
642 */
643static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
644{
f5a0a5a5
PM
645 uint64_t kvmid;
646
647 if (cpregid & CP_REG_AA64_MASK) {
648 kvmid = cpregid & ~CP_REG_AA64_MASK;
649 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
721fae12 650 } else {
f5a0a5a5
PM
651 kvmid = cpregid & ~(1 << 15);
652 if (cpregid & (1 << 15)) {
653 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
654 } else {
655 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
656 }
721fae12
PM
657 }
658 return kvmid;
659}
660
4b6a83fb
PM
661/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
662 * special-behaviour cp reg and bits [15..8] indicate what behaviour
663 * it has. Otherwise it is a simple cp reg, where CONST indicates that
664 * TCG can assume the value to be constant (ie load at translate time)
665 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
666 * indicates that the TB should not be ended after a write to this register
667 * (the default is that the TB ends after cp writes). OVERRIDE permits
668 * a register definition to override a previous definition for the
669 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
670 * old must have the OVERRIDE bit set.
7023ec7e
PM
671 * NO_MIGRATE indicates that this register should be ignored for migration;
672 * (eg because any state is accessed via some other coprocessor register).
2452731c
PM
673 * IO indicates that this register does I/O and therefore its accesses
674 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
675 * registers which implement clocks or timers require this.
4b6a83fb
PM
676 */
677#define ARM_CP_SPECIAL 1
678#define ARM_CP_CONST 2
679#define ARM_CP_64BIT 4
680#define ARM_CP_SUPPRESS_TB_END 8
681#define ARM_CP_OVERRIDE 16
7023ec7e 682#define ARM_CP_NO_MIGRATE 32
2452731c 683#define ARM_CP_IO 64
4b6a83fb
PM
684#define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
685#define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
b0d2b7d0
PM
686#define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
687#define ARM_LAST_SPECIAL ARM_CP_NZCV
4b6a83fb
PM
688/* Used only as a terminator for ARMCPRegInfo lists */
689#define ARM_CP_SENTINEL 0xffff
690/* Mask of only the flag bits in a type field */
2452731c 691#define ARM_CP_FLAG_MASK 0x7f
4b6a83fb 692
f5a0a5a5
PM
693/* Valid values for ARMCPRegInfo state field, indicating which of
694 * the AArch32 and AArch64 execution states this register is visible in.
695 * If the reginfo doesn't explicitly specify then it is AArch32 only.
696 * If the reginfo is declared to be visible in both states then a second
697 * reginfo is synthesised for the AArch32 view of the AArch64 register,
698 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
699 * Note that we rely on the values of these enums as we iterate through
700 * the various states in some places.
701 */
702enum {
703 ARM_CP_STATE_AA32 = 0,
704 ARM_CP_STATE_AA64 = 1,
705 ARM_CP_STATE_BOTH = 2,
706};
707
4b6a83fb
PM
708/* Return true if cptype is a valid type field. This is used to try to
709 * catch errors where the sentinel has been accidentally left off the end
710 * of a list of registers.
711 */
712static inline bool cptype_valid(int cptype)
713{
714 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
715 || ((cptype & ARM_CP_SPECIAL) &&
34affeef 716 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
4b6a83fb
PM
717}
718
719/* Access rights:
720 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
721 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
722 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
723 * (ie any of the privileged modes in Secure state, or Monitor mode).
724 * If a register is accessible in one privilege level it's always accessible
725 * in higher privilege levels too. Since "Secure PL1" also follows this rule
726 * (ie anything visible in PL2 is visible in S-PL1, some things are only
727 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
728 * terminology a little and call this PL3.
f5a0a5a5
PM
729 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
730 * with the ELx exception levels.
4b6a83fb
PM
731 *
732 * If access permissions for a register are more complex than can be
733 * described with these bits, then use a laxer set of restrictions, and
734 * do the more restrictive/complex check inside a helper function.
735 */
736#define PL3_R 0x80
737#define PL3_W 0x40
738#define PL2_R (0x20 | PL3_R)
739#define PL2_W (0x10 | PL3_W)
740#define PL1_R (0x08 | PL2_R)
741#define PL1_W (0x04 | PL2_W)
742#define PL0_R (0x02 | PL1_R)
743#define PL0_W (0x01 | PL1_W)
744
745#define PL3_RW (PL3_R | PL3_W)
746#define PL2_RW (PL2_R | PL2_W)
747#define PL1_RW (PL1_R | PL1_W)
748#define PL0_RW (PL0_R | PL0_W)
749
750static inline int arm_current_pl(CPUARMState *env)
751{
f5a0a5a5
PM
752 if (env->aarch64) {
753 return extract32(env->pstate, 2, 2);
754 }
755
4b6a83fb
PM
756 if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_USR) {
757 return 0;
758 }
759 /* We don't currently implement the Virtualization or TrustZone
760 * extensions, so PL2 and PL3 don't exist for us.
761 */
762 return 1;
763}
764
765typedef struct ARMCPRegInfo ARMCPRegInfo;
766
767/* Access functions for coprocessor registers. These should return
768 * 0 on success, or one of the EXCP_* constants if access should cause
769 * an exception (in which case *value is not written).
770 */
771typedef int CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque,
772 uint64_t *value);
773typedef int CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
774 uint64_t value);
775/* Hook function for register reset */
776typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
777
778#define CP_ANY 0xff
779
780/* Definition of an ARM coprocessor register */
781struct ARMCPRegInfo {
782 /* Name of register (useful mainly for debugging, need not be unique) */
783 const char *name;
784 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
785 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
786 * 'wildcard' field -- any value of that field in the MRC/MCR insn
787 * will be decoded to this register. The register read and write
788 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
789 * used by the program, so it is possible to register a wildcard and
790 * then behave differently on read/write if necessary.
791 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
792 * must both be zero.
f5a0a5a5
PM
793 * For AArch64-visible registers, opc0 is also used.
794 * Since there are no "coprocessors" in AArch64, cp is purely used as a
795 * way to distinguish (for KVM's benefit) guest-visible system registers
796 * from demuxed ones provided to preserve the "no side effects on
797 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
798 * visible (to match KVM's encoding); cp==0 will be converted to
799 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
4b6a83fb
PM
800 */
801 uint8_t cp;
802 uint8_t crn;
803 uint8_t crm;
f5a0a5a5 804 uint8_t opc0;
4b6a83fb
PM
805 uint8_t opc1;
806 uint8_t opc2;
f5a0a5a5
PM
807 /* Execution state in which this register is visible: ARM_CP_STATE_* */
808 int state;
4b6a83fb
PM
809 /* Register type: ARM_CP_* bits/values */
810 int type;
811 /* Access rights: PL*_[RW] */
812 int access;
813 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
814 * this register was defined: can be used to hand data through to the
815 * register read/write functions, since they are passed the ARMCPRegInfo*.
816 */
817 void *opaque;
818 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
819 * fieldoffset is non-zero, the reset value of the register.
820 */
821 uint64_t resetvalue;
822 /* Offset of the field in CPUARMState for this register. This is not
823 * needed if either:
824 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
825 * 2. both readfn and writefn are specified
826 */
827 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
828 /* Function for handling reads of this register. If NULL, then reads
829 * will be done by loading from the offset into CPUARMState specified
830 * by fieldoffset.
831 */
832 CPReadFn *readfn;
833 /* Function for handling writes of this register. If NULL, then writes
834 * will be done by writing to the offset into CPUARMState specified
835 * by fieldoffset.
836 */
837 CPWriteFn *writefn;
7023ec7e
PM
838 /* Function for doing a "raw" read; used when we need to copy
839 * coprocessor state to the kernel for KVM or out for
840 * migration. This only needs to be provided if there is also a
841 * readfn and it makes an access permission check.
842 */
843 CPReadFn *raw_readfn;
844 /* Function for doing a "raw" write; used when we need to copy KVM
845 * kernel coprocessor state into userspace, or for inbound
846 * migration. This only needs to be provided if there is also a
847 * writefn and it makes an access permission check or masks out
848 * "unwritable" bits or has write-one-to-clear or similar behaviour.
849 */
850 CPWriteFn *raw_writefn;
4b6a83fb
PM
851 /* Function for resetting the register. If NULL, then reset will be done
852 * by writing resetvalue to the field specified in fieldoffset. If
853 * fieldoffset is 0 then no reset will be done.
854 */
855 CPResetFn *resetfn;
856};
857
858/* Macros which are lvalues for the field in CPUARMState for the
859 * ARMCPRegInfo *ri.
860 */
861#define CPREG_FIELD32(env, ri) \
862 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
863#define CPREG_FIELD64(env, ri) \
864 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
865
866#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
867
868void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
869 const ARMCPRegInfo *regs, void *opaque);
870void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
871 const ARMCPRegInfo *regs, void *opaque);
872static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
873{
874 define_arm_cp_regs_with_opaque(cpu, regs, 0);
875}
876static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
877{
878 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
879}
60322b39 880const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
4b6a83fb
PM
881
882/* CPWriteFn that can be used to implement writes-ignored behaviour */
883int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
884 uint64_t value);
885/* CPReadFn that can be used for read-as-zero behaviour */
886int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value);
887
f5a0a5a5
PM
888/* CPResetFn that does nothing, for use if no reset is required even
889 * if fieldoffset is non zero.
890 */
891void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
892
60322b39 893static inline bool cp_access_ok(int current_pl,
4b6a83fb
PM
894 const ARMCPRegInfo *ri, int isread)
895{
60322b39 896 return (ri->access >> ((current_pl * 2) + isread)) & 1;
4b6a83fb
PM
897}
898
721fae12
PM
899/**
900 * write_list_to_cpustate
901 * @cpu: ARMCPU
902 *
903 * For each register listed in the ARMCPU cpreg_indexes list, write
904 * its value from the cpreg_values list into the ARMCPUState structure.
905 * This updates TCG's working data structures from KVM data or
906 * from incoming migration state.
907 *
908 * Returns: true if all register values were updated correctly,
909 * false if some register was unknown or could not be written.
910 * Note that we do not stop early on failure -- we will attempt
911 * writing all registers in the list.
912 */
913bool write_list_to_cpustate(ARMCPU *cpu);
914
915/**
916 * write_cpustate_to_list:
917 * @cpu: ARMCPU
918 *
919 * For each register listed in the ARMCPU cpreg_indexes list, write
920 * its value from the ARMCPUState structure into the cpreg_values list.
921 * This is used to copy info from TCG's working data structures into
922 * KVM or for outbound migration.
923 *
924 * Returns: true if all register values were read correctly,
925 * false if some register was unknown or could not be read.
926 * Note that we do not stop early on failure -- we will attempt
927 * reading all registers in the list.
928 */
929bool write_cpustate_to_list(ARMCPU *cpu);
930
9ee6e8bb
PB
931/* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
932 Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
933 conventional cores (ie. Application or Realtime profile). */
934
935#define IS_M(env) arm_feature(env, ARM_FEATURE_M)
9ee6e8bb 936
9ee6e8bb
PB
937#define ARM_CPUID_TI915T 0x54029152
938#define ARM_CPUID_TI925T 0x54029252
40f137e1 939
b5ff1b31 940#if defined(CONFIG_USER_ONLY)
2c0262af 941#define TARGET_PAGE_BITS 12
b5ff1b31
FB
942#else
943/* The ARM MMU allows 1k pages. */
944/* ??? Linux doesn't actually use these, and they're deprecated in recent
82d17978 945 architecture revisions. Maybe a configure option to disable them. */
b5ff1b31
FB
946#define TARGET_PAGE_BITS 10
947#endif
9467d44c 948
3926cc84
AG
949#if defined(TARGET_AARCH64)
950# define TARGET_PHYS_ADDR_SPACE_BITS 48
951# define TARGET_VIRT_ADDR_SPACE_BITS 64
952#else
953# define TARGET_PHYS_ADDR_SPACE_BITS 40
954# define TARGET_VIRT_ADDR_SPACE_BITS 32
955#endif
52705890 956
ad37ad5b
PM
957static inline CPUARMState *cpu_init(const char *cpu_model)
958{
959 ARMCPU *cpu = cpu_arm_init(cpu_model);
960 if (cpu) {
961 return &cpu->env;
962 }
963 return NULL;
964}
965
9467d44c
TS
966#define cpu_exec cpu_arm_exec
967#define cpu_gen_code cpu_arm_gen_code
968#define cpu_signal_handler cpu_arm_signal_handler
c732abe2 969#define cpu_list arm_cpu_list
9467d44c 970
6ebbf390
JM
971/* MMU modes definitions */
972#define MMU_MODE0_SUFFIX _kernel
973#define MMU_MODE1_SUFFIX _user
974#define MMU_USER_IDX 1
0ecb72a5 975static inline int cpu_mmu_index (CPUARMState *env)
6ebbf390
JM
976{
977 return (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR ? 1 : 0;
978}
979
022c62cb 980#include "exec/cpu-all.h"
622ed360 981
3926cc84
AG
982/* Bit usage in the TB flags field: bit 31 indicates whether we are
983 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
984 */
985#define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
986#define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
987
988/* Bit usage when in AArch32 state: */
a1705768
PM
989#define ARM_TBFLAG_THUMB_SHIFT 0
990#define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
991#define ARM_TBFLAG_VECLEN_SHIFT 1
992#define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
993#define ARM_TBFLAG_VECSTRIDE_SHIFT 4
994#define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
995#define ARM_TBFLAG_PRIV_SHIFT 6
996#define ARM_TBFLAG_PRIV_MASK (1 << ARM_TBFLAG_PRIV_SHIFT)
997#define ARM_TBFLAG_VFPEN_SHIFT 7
998#define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
999#define ARM_TBFLAG_CONDEXEC_SHIFT 8
1000#define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
d8fd2954
PB
1001#define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
1002#define ARM_TBFLAG_BSWAP_CODE_MASK (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
3926cc84
AG
1003
1004/* Bit usage when in AArch64 state: currently no bits defined */
a1705768
PM
1005
1006/* some convenience accessor macros */
3926cc84
AG
1007#define ARM_TBFLAG_AARCH64_STATE(F) \
1008 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
a1705768
PM
1009#define ARM_TBFLAG_THUMB(F) \
1010 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
1011#define ARM_TBFLAG_VECLEN(F) \
1012 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
1013#define ARM_TBFLAG_VECSTRIDE(F) \
1014 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
1015#define ARM_TBFLAG_PRIV(F) \
1016 (((F) & ARM_TBFLAG_PRIV_MASK) >> ARM_TBFLAG_PRIV_SHIFT)
1017#define ARM_TBFLAG_VFPEN(F) \
1018 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
1019#define ARM_TBFLAG_CONDEXEC(F) \
1020 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
d8fd2954
PB
1021#define ARM_TBFLAG_BSWAP_CODE(F) \
1022 (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
a1705768 1023
0ecb72a5 1024static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
6b917547
AL
1025 target_ulong *cs_base, int *flags)
1026{
3926cc84
AG
1027 if (is_a64(env)) {
1028 *pc = env->pc;
1029 *flags = ARM_TBFLAG_AARCH64_STATE_MASK;
05ed9a99 1030 } else {
3926cc84
AG
1031 int privmode;
1032 *pc = env->regs[15];
1033 *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
1034 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
1035 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
1036 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
1037 | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
1038 if (arm_feature(env, ARM_FEATURE_M)) {
1039 privmode = !((env->v7m.exception == 0) && (env->v7m.control & 1));
1040 } else {
1041 privmode = (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR;
1042 }
1043 if (privmode) {
1044 *flags |= ARM_TBFLAG_PRIV_MASK;
1045 }
1046 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
1047 *flags |= ARM_TBFLAG_VFPEN_MASK;
1048 }
a1705768 1049 }
3926cc84
AG
1050
1051 *cs_base = 0;
6b917547
AL
1052}
1053
3993c6bd 1054static inline bool cpu_has_work(CPUState *cpu)
f081c76c 1055{
259186a7 1056 return cpu->interrupt_request &
f081c76c
BS
1057 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXITTB);
1058}
1059
022c62cb 1060#include "exec/exec-all.h"
f081c76c 1061
3926cc84
AG
1062static inline void cpu_pc_from_tb(CPUARMState *env, TranslationBlock *tb)
1063{
1064 if (ARM_TBFLAG_AARCH64_STATE(tb->flags)) {
1065 env->pc = tb->pc;
1066 } else {
1067 env->regs[15] = tb->pc;
1068 }
1069}
1070
d8fd2954 1071/* Load an instruction and return it in the standard little-endian order */
0a2461fa 1072static inline uint32_t arm_ldl_code(CPUARMState *env, target_ulong addr,
d31dd73e 1073 bool do_swap)
d8fd2954 1074{
d31dd73e 1075 uint32_t insn = cpu_ldl_code(env, addr);
d8fd2954
PB
1076 if (do_swap) {
1077 return bswap32(insn);
1078 }
1079 return insn;
1080}
1081
1082/* Ditto, for a halfword (Thumb) instruction */
0a2461fa 1083static inline uint16_t arm_lduw_code(CPUARMState *env, target_ulong addr,
d31dd73e 1084 bool do_swap)
d8fd2954 1085{
d31dd73e 1086 uint16_t insn = cpu_lduw_code(env, addr);
d8fd2954
PB
1087 if (do_swap) {
1088 return bswap16(insn);
1089 }
1090 return insn;
1091}
1092
2c0262af 1093#endif
This page took 0.979313 seconds and 4 git commands to generate.