]>
Commit | Line | Data |
---|---|---|
2c0262af FB |
1 | /* |
2 | * ARM virtual CPU header | |
5fafdf24 | 3 | * |
2c0262af FB |
4 | * Copyright (c) 2003 Fabrice Bellard |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
8167ee88 | 17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
2c0262af | 18 | */ |
2c0262af | 19 | |
07f5a258 MA |
20 | #ifndef ARM_CPU_H |
21 | #define ARM_CPU_H | |
3cf1e035 | 22 | |
72b0cd35 | 23 | #include "kvm-consts.h" |
2c4da50d | 24 | #include "hw/registerfields.h" |
72b0cd35 | 25 | |
3926cc84 AG |
26 | #if defined(TARGET_AARCH64) |
27 | /* AArch64 definitions */ | |
28 | # define TARGET_LONG_BITS 64 | |
3926cc84 AG |
29 | #else |
30 | # define TARGET_LONG_BITS 32 | |
3926cc84 | 31 | #endif |
9042c0e2 | 32 | |
ca759f9e AB |
33 | /* ARM processors have a weak memory model */ |
34 | #define TCG_GUEST_DEFAULT_MO (0) | |
35 | ||
9349b4f9 | 36 | #define CPUArchState struct CPUARMState |
c2764719 | 37 | |
9a78eead | 38 | #include "qemu-common.h" |
74e75564 | 39 | #include "cpu-qom.h" |
022c62cb | 40 | #include "exec/cpu-defs.h" |
2c0262af | 41 | |
6b4c305c | 42 | #include "fpu/softfloat.h" |
53cd6637 | 43 | |
b8a9e8f1 FB |
44 | #define EXCP_UDEF 1 /* undefined instruction */ |
45 | #define EXCP_SWI 2 /* software interrupt */ | |
46 | #define EXCP_PREFETCH_ABORT 3 | |
47 | #define EXCP_DATA_ABORT 4 | |
b5ff1b31 FB |
48 | #define EXCP_IRQ 5 |
49 | #define EXCP_FIQ 6 | |
06c949e6 | 50 | #define EXCP_BKPT 7 |
9ee6e8bb | 51 | #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */ |
fbb4a2e3 | 52 | #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */ |
35979d71 | 53 | #define EXCP_HVC 11 /* HyperVisor Call */ |
607d98b8 | 54 | #define EXCP_HYP_TRAP 12 |
e0d6e6a5 | 55 | #define EXCP_SMC 13 /* Secure Monitor Call */ |
136e67e9 EI |
56 | #define EXCP_VIRQ 14 |
57 | #define EXCP_VFIQ 15 | |
19a6e31c | 58 | #define EXCP_SEMIHOST 16 /* semihosting call */ |
7517748e | 59 | #define EXCP_NOCP 17 /* v7M NOCP UsageFault */ |
e13886e3 | 60 | #define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */ |
2c4a7cc5 | 61 | /* NB: add new EXCP_ defines to the array in arm_log_exception() too */ |
9ee6e8bb PB |
62 | |
63 | #define ARMV7M_EXCP_RESET 1 | |
64 | #define ARMV7M_EXCP_NMI 2 | |
65 | #define ARMV7M_EXCP_HARD 3 | |
66 | #define ARMV7M_EXCP_MEM 4 | |
67 | #define ARMV7M_EXCP_BUS 5 | |
68 | #define ARMV7M_EXCP_USAGE 6 | |
1e577cc7 | 69 | #define ARMV7M_EXCP_SECURE 7 |
9ee6e8bb PB |
70 | #define ARMV7M_EXCP_SVC 11 |
71 | #define ARMV7M_EXCP_DEBUG 12 | |
72 | #define ARMV7M_EXCP_PENDSV 14 | |
73 | #define ARMV7M_EXCP_SYSTICK 15 | |
2c0262af | 74 | |
acf94941 PM |
75 | /* For M profile, some registers are banked secure vs non-secure; |
76 | * these are represented as a 2-element array where the first element | |
77 | * is the non-secure copy and the second is the secure copy. | |
78 | * When the CPU does not have implement the security extension then | |
79 | * only the first element is used. | |
80 | * This means that the copy for the current security state can be | |
81 | * accessed via env->registerfield[env->v7m.secure] (whether the security | |
82 | * extension is implemented or not). | |
83 | */ | |
4a16724f PM |
84 | enum { |
85 | M_REG_NS = 0, | |
86 | M_REG_S = 1, | |
87 | M_REG_NUM_BANKS = 2, | |
88 | }; | |
acf94941 | 89 | |
403946c0 RH |
90 | /* ARM-specific interrupt pending bits. */ |
91 | #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1 | |
136e67e9 EI |
92 | #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2 |
93 | #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3 | |
403946c0 | 94 | |
e4fe830b PM |
95 | /* The usual mapping for an AArch64 system register to its AArch32 |
96 | * counterpart is for the 32 bit world to have access to the lower | |
97 | * half only (with writes leaving the upper half untouched). It's | |
98 | * therefore useful to be able to pass TCG the offset of the least | |
99 | * significant half of a uint64_t struct member. | |
100 | */ | |
101 | #ifdef HOST_WORDS_BIGENDIAN | |
5cd8a118 | 102 | #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t)) |
b0fe2427 | 103 | #define offsetofhigh32(S, M) offsetof(S, M) |
e4fe830b PM |
104 | #else |
105 | #define offsetoflow32(S, M) offsetof(S, M) | |
b0fe2427 | 106 | #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t)) |
e4fe830b PM |
107 | #endif |
108 | ||
136e67e9 | 109 | /* Meanings of the ARMCPU object's four inbound GPIO lines */ |
7c1840b6 PM |
110 | #define ARM_CPU_IRQ 0 |
111 | #define ARM_CPU_FIQ 1 | |
136e67e9 EI |
112 | #define ARM_CPU_VIRQ 2 |
113 | #define ARM_CPU_VFIQ 3 | |
403946c0 | 114 | |
c1e37810 | 115 | #define NB_MMU_MODES 7 |
aaa1f954 EI |
116 | /* ARM-specific extra insn start words: |
117 | * 1: Conditional execution bits | |
118 | * 2: Partial exception syndrome for data aborts | |
119 | */ | |
120 | #define TARGET_INSN_START_EXTRA_WORDS 2 | |
121 | ||
122 | /* The 2nd extra word holding syndrome info for data aborts does not use | |
123 | * the upper 6 bits nor the lower 14 bits. We mask and shift it down to | |
124 | * help the sleb128 encoder do a better job. | |
125 | * When restoring the CPU state, we shift it back up. | |
126 | */ | |
127 | #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1) | |
128 | #define ARM_INSN_START_WORD2_SHIFT 14 | |
6ebbf390 | 129 | |
b7bcbe95 FB |
130 | /* We currently assume float and double are IEEE single and double |
131 | precision respectively. | |
132 | Doing runtime conversions is tricky because VFP registers may contain | |
133 | integer values (eg. as the result of a FTOSI instruction). | |
8e96005d FB |
134 | s<2n> maps to the least significant half of d<n> |
135 | s<2n+1> maps to the most significant half of d<n> | |
136 | */ | |
b7bcbe95 | 137 | |
55d284af PM |
138 | /* CPU state for each instance of a generic timer (in cp15 c14) */ |
139 | typedef struct ARMGenericTimer { | |
140 | uint64_t cval; /* Timer CompareValue register */ | |
a7adc4b7 | 141 | uint64_t ctl; /* Timer Control register */ |
55d284af PM |
142 | } ARMGenericTimer; |
143 | ||
144 | #define GTIMER_PHYS 0 | |
145 | #define GTIMER_VIRT 1 | |
b0e66d95 | 146 | #define GTIMER_HYP 2 |
b4d3978c PM |
147 | #define GTIMER_SEC 3 |
148 | #define NUM_GTIMERS 4 | |
55d284af | 149 | |
11f136ee FA |
150 | typedef struct { |
151 | uint64_t raw_tcr; | |
152 | uint32_t mask; | |
153 | uint32_t base_mask; | |
154 | } TCR; | |
155 | ||
2c0262af | 156 | typedef struct CPUARMState { |
b5ff1b31 | 157 | /* Regs for current mode. */ |
2c0262af | 158 | uint32_t regs[16]; |
3926cc84 AG |
159 | |
160 | /* 32/64 switch only happens when taking and returning from | |
161 | * exceptions so the overlap semantics are taken care of then | |
162 | * instead of having a complicated union. | |
163 | */ | |
164 | /* Regs for A64 mode. */ | |
165 | uint64_t xregs[32]; | |
166 | uint64_t pc; | |
d356312f PM |
167 | /* PSTATE isn't an architectural register for ARMv8. However, it is |
168 | * convenient for us to assemble the underlying state into a 32 bit format | |
169 | * identical to the architectural format used for the SPSR. (This is also | |
170 | * what the Linux kernel's 'pstate' field in signal handlers and KVM's | |
171 | * 'pstate' register are.) Of the PSTATE bits: | |
172 | * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same | |
173 | * semantics as for AArch32, as described in the comments on each field) | |
174 | * nRW (also known as M[4]) is kept, inverted, in env->aarch64 | |
4cc35614 | 175 | * DAIF (exception masks) are kept in env->daif |
d356312f | 176 | * all other bits are stored in their correct places in env->pstate |
3926cc84 AG |
177 | */ |
178 | uint32_t pstate; | |
179 | uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */ | |
180 | ||
b90372ad | 181 | /* Frequently accessed CPSR bits are stored separately for efficiency. |
d37aca66 | 182 | This contains all the other bits. Use cpsr_{read,write} to access |
b5ff1b31 FB |
183 | the whole CPSR. */ |
184 | uint32_t uncached_cpsr; | |
185 | uint32_t spsr; | |
186 | ||
187 | /* Banked registers. */ | |
28c9457d | 188 | uint64_t banked_spsr[8]; |
0b7d409d FA |
189 | uint32_t banked_r13[8]; |
190 | uint32_t banked_r14[8]; | |
3b46e624 | 191 | |
b5ff1b31 FB |
192 | /* These hold r8-r12. */ |
193 | uint32_t usr_regs[5]; | |
194 | uint32_t fiq_regs[5]; | |
3b46e624 | 195 | |
2c0262af FB |
196 | /* cpsr flag cache for faster execution */ |
197 | uint32_t CF; /* 0 or 1 */ | |
198 | uint32_t VF; /* V is the bit 31. All other bits are undefined */ | |
6fbe23d5 PB |
199 | uint32_t NF; /* N is bit 31. All other bits are undefined. */ |
200 | uint32_t ZF; /* Z set if zero. */ | |
99c475ab | 201 | uint32_t QF; /* 0 or 1 */ |
9ee6e8bb | 202 | uint32_t GE; /* cpsr[19:16] */ |
b26eefb6 | 203 | uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */ |
9ee6e8bb | 204 | uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */ |
b6af0975 | 205 | uint64_t daif; /* exception masks, in the bits they are in PSTATE */ |
2c0262af | 206 | |
1b174238 | 207 | uint64_t elr_el[4]; /* AArch64 exception link regs */ |
73fb3b76 | 208 | uint64_t sp_el[4]; /* AArch64 banked stack pointers */ |
a0618a19 | 209 | |
b5ff1b31 FB |
210 | /* System control coprocessor (cp15) */ |
211 | struct { | |
40f137e1 | 212 | uint32_t c0_cpuid; |
b85a1fd6 FA |
213 | union { /* Cache size selection */ |
214 | struct { | |
215 | uint64_t _unused_csselr0; | |
216 | uint64_t csselr_ns; | |
217 | uint64_t _unused_csselr1; | |
218 | uint64_t csselr_s; | |
219 | }; | |
220 | uint64_t csselr_el[4]; | |
221 | }; | |
137feaa9 FA |
222 | union { /* System control register. */ |
223 | struct { | |
224 | uint64_t _unused_sctlr; | |
225 | uint64_t sctlr_ns; | |
226 | uint64_t hsctlr; | |
227 | uint64_t sctlr_s; | |
228 | }; | |
229 | uint64_t sctlr_el[4]; | |
230 | }; | |
7ebd5f2e | 231 | uint64_t cpacr_el1; /* Architectural feature access control register */ |
c6f19164 | 232 | uint64_t cptr_el[4]; /* ARMv8 feature trap registers */ |
610c3c8a | 233 | uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */ |
144634ae | 234 | uint64_t sder; /* Secure debug enable register. */ |
77022576 | 235 | uint32_t nsacr; /* Non-secure access control register. */ |
7dd8c9af FA |
236 | union { /* MMU translation table base 0. */ |
237 | struct { | |
238 | uint64_t _unused_ttbr0_0; | |
239 | uint64_t ttbr0_ns; | |
240 | uint64_t _unused_ttbr0_1; | |
241 | uint64_t ttbr0_s; | |
242 | }; | |
243 | uint64_t ttbr0_el[4]; | |
244 | }; | |
245 | union { /* MMU translation table base 1. */ | |
246 | struct { | |
247 | uint64_t _unused_ttbr1_0; | |
248 | uint64_t ttbr1_ns; | |
249 | uint64_t _unused_ttbr1_1; | |
250 | uint64_t ttbr1_s; | |
251 | }; | |
252 | uint64_t ttbr1_el[4]; | |
253 | }; | |
b698e9cf | 254 | uint64_t vttbr_el2; /* Virtualization Translation Table Base. */ |
11f136ee FA |
255 | /* MMU translation table base control. */ |
256 | TCR tcr_el[4]; | |
68e9c2fe | 257 | TCR vtcr_el2; /* Virtualization Translation Control. */ |
67cc32eb VL |
258 | uint32_t c2_data; /* MPU data cacheable bits. */ |
259 | uint32_t c2_insn; /* MPU instruction cacheable bits. */ | |
0c17d68c FA |
260 | union { /* MMU domain access control register |
261 | * MPU write buffer control. | |
262 | */ | |
263 | struct { | |
264 | uint64_t dacr_ns; | |
265 | uint64_t dacr_s; | |
266 | }; | |
267 | struct { | |
268 | uint64_t dacr32_el2; | |
269 | }; | |
270 | }; | |
7e09797c PM |
271 | uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */ |
272 | uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */ | |
f149e3e8 | 273 | uint64_t hcr_el2; /* Hypervisor configuration register */ |
64e0e2de | 274 | uint64_t scr_el3; /* Secure configuration register. */ |
88ca1c2d FA |
275 | union { /* Fault status registers. */ |
276 | struct { | |
277 | uint64_t ifsr_ns; | |
278 | uint64_t ifsr_s; | |
279 | }; | |
280 | struct { | |
281 | uint64_t ifsr32_el2; | |
282 | }; | |
283 | }; | |
4a7e2d73 FA |
284 | union { |
285 | struct { | |
286 | uint64_t _unused_dfsr; | |
287 | uint64_t dfsr_ns; | |
288 | uint64_t hsr; | |
289 | uint64_t dfsr_s; | |
290 | }; | |
291 | uint64_t esr_el[4]; | |
292 | }; | |
ce819861 | 293 | uint32_t c6_region[8]; /* MPU base/size registers. */ |
b848ce2b FA |
294 | union { /* Fault address registers. */ |
295 | struct { | |
296 | uint64_t _unused_far0; | |
297 | #ifdef HOST_WORDS_BIGENDIAN | |
298 | uint32_t ifar_ns; | |
299 | uint32_t dfar_ns; | |
300 | uint32_t ifar_s; | |
301 | uint32_t dfar_s; | |
302 | #else | |
303 | uint32_t dfar_ns; | |
304 | uint32_t ifar_ns; | |
305 | uint32_t dfar_s; | |
306 | uint32_t ifar_s; | |
307 | #endif | |
308 | uint64_t _unused_far3; | |
309 | }; | |
310 | uint64_t far_el[4]; | |
311 | }; | |
59e05530 | 312 | uint64_t hpfar_el2; |
2a5a9abd | 313 | uint64_t hstr_el2; |
01c097f7 FA |
314 | union { /* Translation result. */ |
315 | struct { | |
316 | uint64_t _unused_par_0; | |
317 | uint64_t par_ns; | |
318 | uint64_t _unused_par_1; | |
319 | uint64_t par_s; | |
320 | }; | |
321 | uint64_t par_el[4]; | |
322 | }; | |
6cb0b013 | 323 | |
b5ff1b31 FB |
324 | uint32_t c9_insn; /* Cache lockdown registers. */ |
325 | uint32_t c9_data; | |
8521466b AF |
326 | uint64_t c9_pmcr; /* performance monitor control register */ |
327 | uint64_t c9_pmcnten; /* perf monitor counter enables */ | |
74594c9d | 328 | uint32_t c9_pmovsr; /* perf monitor overflow status */ |
74594c9d | 329 | uint32_t c9_pmuserenr; /* perf monitor user enable */ |
6b040780 | 330 | uint64_t c9_pmselr; /* perf monitor counter selection register */ |
e6ec5457 | 331 | uint64_t c9_pminten; /* perf monitor interrupt enables */ |
be693c87 GB |
332 | union { /* Memory attribute redirection */ |
333 | struct { | |
334 | #ifdef HOST_WORDS_BIGENDIAN | |
335 | uint64_t _unused_mair_0; | |
336 | uint32_t mair1_ns; | |
337 | uint32_t mair0_ns; | |
338 | uint64_t _unused_mair_1; | |
339 | uint32_t mair1_s; | |
340 | uint32_t mair0_s; | |
341 | #else | |
342 | uint64_t _unused_mair_0; | |
343 | uint32_t mair0_ns; | |
344 | uint32_t mair1_ns; | |
345 | uint64_t _unused_mair_1; | |
346 | uint32_t mair0_s; | |
347 | uint32_t mair1_s; | |
348 | #endif | |
349 | }; | |
350 | uint64_t mair_el[4]; | |
351 | }; | |
fb6c91ba GB |
352 | union { /* vector base address register */ |
353 | struct { | |
354 | uint64_t _unused_vbar; | |
355 | uint64_t vbar_ns; | |
356 | uint64_t hvbar; | |
357 | uint64_t vbar_s; | |
358 | }; | |
359 | uint64_t vbar_el[4]; | |
360 | }; | |
e89e51a1 | 361 | uint32_t mvbar; /* (monitor) vector base address register */ |
54bf36ed FA |
362 | struct { /* FCSE PID. */ |
363 | uint32_t fcseidr_ns; | |
364 | uint32_t fcseidr_s; | |
365 | }; | |
366 | union { /* Context ID. */ | |
367 | struct { | |
368 | uint64_t _unused_contextidr_0; | |
369 | uint64_t contextidr_ns; | |
370 | uint64_t _unused_contextidr_1; | |
371 | uint64_t contextidr_s; | |
372 | }; | |
373 | uint64_t contextidr_el[4]; | |
374 | }; | |
375 | union { /* User RW Thread register. */ | |
376 | struct { | |
377 | uint64_t tpidrurw_ns; | |
378 | uint64_t tpidrprw_ns; | |
379 | uint64_t htpidr; | |
380 | uint64_t _tpidr_el3; | |
381 | }; | |
382 | uint64_t tpidr_el[4]; | |
383 | }; | |
384 | /* The secure banks of these registers don't map anywhere */ | |
385 | uint64_t tpidrurw_s; | |
386 | uint64_t tpidrprw_s; | |
387 | uint64_t tpidruro_s; | |
388 | ||
389 | union { /* User RO Thread register. */ | |
390 | uint64_t tpidruro_ns; | |
391 | uint64_t tpidrro_el[1]; | |
392 | }; | |
a7adc4b7 PM |
393 | uint64_t c14_cntfrq; /* Counter Frequency register */ |
394 | uint64_t c14_cntkctl; /* Timer Control register */ | |
0b6440af | 395 | uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */ |
edac4d8a | 396 | uint64_t cntvoff_el2; /* Counter Virtual Offset register */ |
55d284af | 397 | ARMGenericTimer c14_timer[NUM_GTIMERS]; |
c1713132 | 398 | uint32_t c15_cpar; /* XScale Coprocessor Access Register */ |
c3d2689d AZ |
399 | uint32_t c15_ticonfig; /* TI925T configuration byte. */ |
400 | uint32_t c15_i_max; /* Maximum D-cache dirty line index. */ | |
401 | uint32_t c15_i_min; /* Minimum D-cache dirty line index. */ | |
402 | uint32_t c15_threadid; /* TI debugger thread-ID. */ | |
7da362d0 ML |
403 | uint32_t c15_config_base_address; /* SCU base address. */ |
404 | uint32_t c15_diagnostic; /* diagnostic register */ | |
405 | uint32_t c15_power_diagnostic; | |
406 | uint32_t c15_power_control; /* power control */ | |
0b45451e PM |
407 | uint64_t dbgbvr[16]; /* breakpoint value registers */ |
408 | uint64_t dbgbcr[16]; /* breakpoint control registers */ | |
409 | uint64_t dbgwvr[16]; /* watchpoint value registers */ | |
410 | uint64_t dbgwcr[16]; /* watchpoint control registers */ | |
3a298203 | 411 | uint64_t mdscr_el1; |
1424ca8d | 412 | uint64_t oslsr_el1; /* OS Lock Status */ |
14cc7b54 | 413 | uint64_t mdcr_el2; |
5513c3ab | 414 | uint64_t mdcr_el3; |
7c2cb42b AF |
415 | /* If the counter is enabled, this stores the last time the counter |
416 | * was reset. Otherwise it stores the counter value | |
417 | */ | |
c92c0687 | 418 | uint64_t c15_ccnt; |
8521466b | 419 | uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */ |
731de9e6 | 420 | uint64_t vpidr_el2; /* Virtualization Processor ID Register */ |
f0d574d6 | 421 | uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */ |
b5ff1b31 | 422 | } cp15; |
40f137e1 | 423 | |
9ee6e8bb | 424 | struct { |
fb602cb7 PM |
425 | /* M profile has up to 4 stack pointers: |
426 | * a Main Stack Pointer and a Process Stack Pointer for each | |
427 | * of the Secure and Non-Secure states. (If the CPU doesn't support | |
428 | * the security extension then it has only two SPs.) | |
429 | * In QEMU we always store the currently active SP in regs[13], | |
430 | * and the non-active SP for the current security state in | |
431 | * v7m.other_sp. The stack pointers for the inactive security state | |
432 | * are stored in other_ss_msp and other_ss_psp. | |
433 | * switch_v7m_security_state() is responsible for rearranging them | |
434 | * when we change security state. | |
435 | */ | |
9ee6e8bb | 436 | uint32_t other_sp; |
fb602cb7 PM |
437 | uint32_t other_ss_msp; |
438 | uint32_t other_ss_psp; | |
4a16724f PM |
439 | uint32_t vecbase[M_REG_NUM_BANKS]; |
440 | uint32_t basepri[M_REG_NUM_BANKS]; | |
441 | uint32_t control[M_REG_NUM_BANKS]; | |
442 | uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */ | |
443 | uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */ | |
2c4da50d PM |
444 | uint32_t hfsr; /* HardFault Status */ |
445 | uint32_t dfsr; /* Debug Fault Status Register */ | |
4a16724f | 446 | uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */ |
2c4da50d | 447 | uint32_t bfar; /* BusFault Address */ |
4a16724f | 448 | unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */ |
9ee6e8bb | 449 | int exception; |
4a16724f PM |
450 | uint32_t primask[M_REG_NUM_BANKS]; |
451 | uint32_t faultmask[M_REG_NUM_BANKS]; | |
3b2e9344 | 452 | uint32_t aircr; /* only holds r/w state if security extn implemented */ |
1e577cc7 | 453 | uint32_t secure; /* Is CPU in Secure state? (not guest visible) */ |
9ee6e8bb PB |
454 | } v7m; |
455 | ||
abf1172f PM |
456 | /* Information associated with an exception about to be taken: |
457 | * code which raises an exception must set cs->exception_index and | |
458 | * the relevant parts of this structure; the cpu_do_interrupt function | |
459 | * will then set the guest-visible registers as part of the exception | |
460 | * entry process. | |
461 | */ | |
462 | struct { | |
463 | uint32_t syndrome; /* AArch64 format syndrome register */ | |
464 | uint32_t fsr; /* AArch32 format fault status register info */ | |
465 | uint64_t vaddress; /* virtual addr associated with exception, if any */ | |
73710361 | 466 | uint32_t target_el; /* EL the exception should be targeted for */ |
abf1172f PM |
467 | /* If we implement EL2 we will also need to store information |
468 | * about the intermediate physical address for stage 2 faults. | |
469 | */ | |
470 | } exception; | |
471 | ||
fe1479c3 PB |
472 | /* Thumb-2 EE state. */ |
473 | uint32_t teecr; | |
474 | uint32_t teehbr; | |
475 | ||
b7bcbe95 FB |
476 | /* VFP coprocessor state. */ |
477 | struct { | |
3926cc84 AG |
478 | /* VFP/Neon register state. Note that the mapping between S, D and Q |
479 | * views of the register bank differs between AArch64 and AArch32: | |
480 | * In AArch32: | |
481 | * Qn = regs[2n+1]:regs[2n] | |
482 | * Dn = regs[n] | |
483 | * Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n | |
484 | * (and regs[32] to regs[63] are inaccessible) | |
485 | * In AArch64: | |
486 | * Qn = regs[2n+1]:regs[2n] | |
487 | * Dn = regs[2n] | |
488 | * Sn = regs[2n] bits 31..0 | |
489 | * This corresponds to the architecturally defined mapping between | |
490 | * the two execution states, and means we do not need to explicitly | |
491 | * map these registers when changing states. | |
492 | */ | |
493 | float64 regs[64]; | |
b7bcbe95 | 494 | |
40f137e1 | 495 | uint32_t xregs[16]; |
b7bcbe95 FB |
496 | /* We store these fpcsr fields separately for convenience. */ |
497 | int vec_len; | |
498 | int vec_stride; | |
499 | ||
9ee6e8bb PB |
500 | /* scratch space when Tn are not sufficient. */ |
501 | uint32_t scratch[8]; | |
3b46e624 | 502 | |
3a492f3a PM |
503 | /* fp_status is the "normal" fp status. standard_fp_status retains |
504 | * values corresponding to the ARM "Standard FPSCR Value", ie | |
505 | * default-NaN, flush-to-zero, round-to-nearest and is used by | |
506 | * any operations (generally Neon) which the architecture defines | |
507 | * as controlled by the standard FPSCR value rather than the FPSCR. | |
508 | * | |
509 | * To avoid having to transfer exception bits around, we simply | |
510 | * say that the FPSCR cumulative exception flags are the logical | |
511 | * OR of the flags in the two fp statuses. This relies on the | |
512 | * only thing which needs to read the exception flags being | |
513 | * an explicit FPSCR read. | |
514 | */ | |
53cd6637 | 515 | float_status fp_status; |
3a492f3a | 516 | float_status standard_fp_status; |
b7bcbe95 | 517 | } vfp; |
03d05e2d PM |
518 | uint64_t exclusive_addr; |
519 | uint64_t exclusive_val; | |
520 | uint64_t exclusive_high; | |
b7bcbe95 | 521 | |
18c9b560 AZ |
522 | /* iwMMXt coprocessor state. */ |
523 | struct { | |
524 | uint64_t regs[16]; | |
525 | uint64_t val; | |
526 | ||
527 | uint32_t cregs[16]; | |
528 | } iwmmxt; | |
529 | ||
ce4defa0 PB |
530 | #if defined(CONFIG_USER_ONLY) |
531 | /* For usermode syscall translation. */ | |
532 | int eabi; | |
533 | #endif | |
534 | ||
46747d15 | 535 | struct CPUBreakpoint *cpu_breakpoint[16]; |
9ee98ce8 PM |
536 | struct CPUWatchpoint *cpu_watchpoint[16]; |
537 | ||
1f5c00cf AB |
538 | /* Fields up to this point are cleared by a CPU reset */ |
539 | struct {} end_reset_fields; | |
540 | ||
a316d335 FB |
541 | CPU_COMMON |
542 | ||
1f5c00cf | 543 | /* Fields after CPU_COMMON are preserved across CPU reset. */ |
9ba8c3f4 | 544 | |
581be094 | 545 | /* Internal CPU feature flags. */ |
918f5dca | 546 | uint64_t features; |
581be094 | 547 | |
6cb0b013 PC |
548 | /* PMSAv7 MPU */ |
549 | struct { | |
550 | uint32_t *drbar; | |
551 | uint32_t *drsr; | |
552 | uint32_t *dracr; | |
4a16724f | 553 | uint32_t rnr[M_REG_NUM_BANKS]; |
6cb0b013 PC |
554 | } pmsav7; |
555 | ||
0e1a46bb PM |
556 | /* PMSAv8 MPU */ |
557 | struct { | |
558 | /* The PMSAv8 implementation also shares some PMSAv7 config | |
559 | * and state: | |
560 | * pmsav7.rnr (region number register) | |
561 | * pmsav7_dregion (number of configured regions) | |
562 | */ | |
4a16724f PM |
563 | uint32_t *rbar[M_REG_NUM_BANKS]; |
564 | uint32_t *rlar[M_REG_NUM_BANKS]; | |
565 | uint32_t mair0[M_REG_NUM_BANKS]; | |
566 | uint32_t mair1[M_REG_NUM_BANKS]; | |
0e1a46bb PM |
567 | } pmsav8; |
568 | ||
983fe826 | 569 | void *nvic; |
462a8bc6 | 570 | const struct arm_boot_info *boot_info; |
d3a3e529 VK |
571 | /* Store GICv3CPUState to access from this struct */ |
572 | void *gicv3state; | |
2c0262af FB |
573 | } CPUARMState; |
574 | ||
bd7d00fc PM |
575 | /** |
576 | * ARMELChangeHook: | |
577 | * type of a function which can be registered via arm_register_el_change_hook() | |
578 | * to get callbacks when the CPU changes its exception level or mode. | |
579 | */ | |
580 | typedef void ARMELChangeHook(ARMCPU *cpu, void *opaque); | |
581 | ||
062ba099 AB |
582 | |
583 | /* These values map onto the return values for | |
584 | * QEMU_PSCI_0_2_FN_AFFINITY_INFO */ | |
585 | typedef enum ARMPSCIState { | |
d5affb0d AJ |
586 | PSCI_ON = 0, |
587 | PSCI_OFF = 1, | |
062ba099 AB |
588 | PSCI_ON_PENDING = 2 |
589 | } ARMPSCIState; | |
590 | ||
74e75564 PB |
591 | /** |
592 | * ARMCPU: | |
593 | * @env: #CPUARMState | |
594 | * | |
595 | * An ARM CPU core. | |
596 | */ | |
597 | struct ARMCPU { | |
598 | /*< private >*/ | |
599 | CPUState parent_obj; | |
600 | /*< public >*/ | |
601 | ||
602 | CPUARMState env; | |
603 | ||
604 | /* Coprocessor information */ | |
605 | GHashTable *cp_regs; | |
606 | /* For marshalling (mostly coprocessor) register state between the | |
607 | * kernel and QEMU (for KVM) and between two QEMUs (for migration), | |
608 | * we use these arrays. | |
609 | */ | |
610 | /* List of register indexes managed via these arrays; (full KVM style | |
611 | * 64 bit indexes, not CPRegInfo 32 bit indexes) | |
612 | */ | |
613 | uint64_t *cpreg_indexes; | |
614 | /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */ | |
615 | uint64_t *cpreg_values; | |
616 | /* Length of the indexes, values, reset_values arrays */ | |
617 | int32_t cpreg_array_len; | |
618 | /* These are used only for migration: incoming data arrives in | |
619 | * these fields and is sanity checked in post_load before copying | |
620 | * to the working data structures above. | |
621 | */ | |
622 | uint64_t *cpreg_vmstate_indexes; | |
623 | uint64_t *cpreg_vmstate_values; | |
624 | int32_t cpreg_vmstate_array_len; | |
625 | ||
626 | /* Timers used by the generic (architected) timer */ | |
627 | QEMUTimer *gt_timer[NUM_GTIMERS]; | |
628 | /* GPIO outputs for generic timer */ | |
629 | qemu_irq gt_timer_outputs[NUM_GTIMERS]; | |
aa1b3111 PM |
630 | /* GPIO output for GICv3 maintenance interrupt signal */ |
631 | qemu_irq gicv3_maintenance_interrupt; | |
07f48730 AJ |
632 | /* GPIO output for the PMU interrupt */ |
633 | qemu_irq pmu_interrupt; | |
74e75564 PB |
634 | |
635 | /* MemoryRegion to use for secure physical accesses */ | |
636 | MemoryRegion *secure_memory; | |
637 | ||
638 | /* 'compatible' string for this CPU for Linux device trees */ | |
639 | const char *dtb_compatible; | |
640 | ||
641 | /* PSCI version for this CPU | |
642 | * Bits[31:16] = Major Version | |
643 | * Bits[15:0] = Minor Version | |
644 | */ | |
645 | uint32_t psci_version; | |
646 | ||
647 | /* Should CPU start in PSCI powered-off state? */ | |
648 | bool start_powered_off; | |
062ba099 AB |
649 | |
650 | /* Current power state, access guarded by BQL */ | |
651 | ARMPSCIState power_state; | |
652 | ||
c25bd18a PM |
653 | /* CPU has virtualization extension */ |
654 | bool has_el2; | |
74e75564 PB |
655 | /* CPU has security extension */ |
656 | bool has_el3; | |
5c0a3819 SZ |
657 | /* CPU has PMU (Performance Monitor Unit) */ |
658 | bool has_pmu; | |
74e75564 PB |
659 | |
660 | /* CPU has memory protection unit */ | |
661 | bool has_mpu; | |
662 | /* PMSAv7 MPU number of supported regions */ | |
663 | uint32_t pmsav7_dregion; | |
664 | ||
665 | /* PSCI conduit used to invoke PSCI methods | |
666 | * 0 - disabled, 1 - smc, 2 - hvc | |
667 | */ | |
668 | uint32_t psci_conduit; | |
669 | ||
670 | /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or | |
671 | * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type. | |
672 | */ | |
673 | uint32_t kvm_target; | |
674 | ||
675 | /* KVM init features for this CPU */ | |
676 | uint32_t kvm_init_features[7]; | |
677 | ||
678 | /* Uniprocessor system with MP extensions */ | |
679 | bool mp_is_up; | |
680 | ||
681 | /* The instance init functions for implementation-specific subclasses | |
682 | * set these fields to specify the implementation-dependent values of | |
683 | * various constant registers and reset values of non-constant | |
684 | * registers. | |
685 | * Some of these might become QOM properties eventually. | |
686 | * Field names match the official register names as defined in the | |
687 | * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix | |
688 | * is used for reset values of non-constant registers; no reset_ | |
689 | * prefix means a constant register. | |
690 | */ | |
691 | uint32_t midr; | |
692 | uint32_t revidr; | |
693 | uint32_t reset_fpsid; | |
694 | uint32_t mvfr0; | |
695 | uint32_t mvfr1; | |
696 | uint32_t mvfr2; | |
697 | uint32_t ctr; | |
698 | uint32_t reset_sctlr; | |
699 | uint32_t id_pfr0; | |
700 | uint32_t id_pfr1; | |
701 | uint32_t id_dfr0; | |
702 | uint32_t pmceid0; | |
703 | uint32_t pmceid1; | |
704 | uint32_t id_afr0; | |
705 | uint32_t id_mmfr0; | |
706 | uint32_t id_mmfr1; | |
707 | uint32_t id_mmfr2; | |
708 | uint32_t id_mmfr3; | |
709 | uint32_t id_mmfr4; | |
710 | uint32_t id_isar0; | |
711 | uint32_t id_isar1; | |
712 | uint32_t id_isar2; | |
713 | uint32_t id_isar3; | |
714 | uint32_t id_isar4; | |
715 | uint32_t id_isar5; | |
716 | uint64_t id_aa64pfr0; | |
717 | uint64_t id_aa64pfr1; | |
718 | uint64_t id_aa64dfr0; | |
719 | uint64_t id_aa64dfr1; | |
720 | uint64_t id_aa64afr0; | |
721 | uint64_t id_aa64afr1; | |
722 | uint64_t id_aa64isar0; | |
723 | uint64_t id_aa64isar1; | |
724 | uint64_t id_aa64mmfr0; | |
725 | uint64_t id_aa64mmfr1; | |
726 | uint32_t dbgdidr; | |
727 | uint32_t clidr; | |
728 | uint64_t mp_affinity; /* MP ID without feature bits */ | |
729 | /* The elements of this array are the CCSIDR values for each cache, | |
730 | * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc. | |
731 | */ | |
732 | uint32_t ccsidr[16]; | |
733 | uint64_t reset_cbar; | |
734 | uint32_t reset_auxcr; | |
735 | bool reset_hivecs; | |
736 | /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */ | |
737 | uint32_t dcz_blocksize; | |
738 | uint64_t rvbar; | |
bd7d00fc | 739 | |
e45868a3 PM |
740 | /* Configurable aspects of GIC cpu interface (which is part of the CPU) */ |
741 | int gic_num_lrs; /* number of list registers */ | |
742 | int gic_vpribits; /* number of virtual priority bits */ | |
743 | int gic_vprebits; /* number of virtual preemption bits */ | |
744 | ||
3a062d57 JB |
745 | /* Whether the cfgend input is high (i.e. this CPU should reset into |
746 | * big-endian mode). This setting isn't used directly: instead it modifies | |
747 | * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the | |
748 | * architecture version. | |
749 | */ | |
750 | bool cfgend; | |
751 | ||
bd7d00fc PM |
752 | ARMELChangeHook *el_change_hook; |
753 | void *el_change_hook_opaque; | |
15f8b142 IM |
754 | |
755 | int32_t node_id; /* NUMA node this CPU belongs to */ | |
5d721b78 AG |
756 | |
757 | /* Used to synchronize KVM and QEMU in-kernel device levels */ | |
758 | uint8_t device_irq_level; | |
74e75564 PB |
759 | }; |
760 | ||
761 | static inline ARMCPU *arm_env_get_cpu(CPUARMState *env) | |
762 | { | |
763 | return container_of(env, ARMCPU, env); | |
764 | } | |
765 | ||
46de5913 IM |
766 | uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz); |
767 | ||
74e75564 PB |
768 | #define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e)) |
769 | ||
770 | #define ENV_OFFSET offsetof(ARMCPU, env) | |
771 | ||
772 | #ifndef CONFIG_USER_ONLY | |
773 | extern const struct VMStateDescription vmstate_arm_cpu; | |
774 | #endif | |
775 | ||
776 | void arm_cpu_do_interrupt(CPUState *cpu); | |
777 | void arm_v7m_cpu_do_interrupt(CPUState *cpu); | |
778 | bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req); | |
779 | ||
780 | void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf, | |
781 | int flags); | |
782 | ||
783 | hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, | |
784 | MemTxAttrs *attrs); | |
785 | ||
786 | int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg); | |
787 | int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); | |
788 | ||
789 | int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs, | |
790 | int cpuid, void *opaque); | |
791 | int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs, | |
792 | int cpuid, void *opaque); | |
793 | ||
794 | #ifdef TARGET_AARCH64 | |
795 | int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg); | |
796 | int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); | |
797 | #endif | |
778c3a06 | 798 | |
faacc041 | 799 | target_ulong do_arm_semihosting(CPUARMState *env); |
ce02049d GB |
800 | void aarch64_sync_32_to_64(CPUARMState *env); |
801 | void aarch64_sync_64_to_32(CPUARMState *env); | |
b5ff1b31 | 802 | |
3926cc84 AG |
803 | static inline bool is_a64(CPUARMState *env) |
804 | { | |
805 | return env->aarch64; | |
806 | } | |
807 | ||
2c0262af FB |
808 | /* you can call this signal handler from your SIGBUS and SIGSEGV |
809 | signal handlers to inform the virtual CPU of exceptions. non zero | |
810 | is returned if the signal was handled by the virtual CPU. */ | |
5fafdf24 | 811 | int cpu_arm_signal_handler(int host_signum, void *pinfo, |
2c0262af FB |
812 | void *puc); |
813 | ||
ec7b4ce4 AF |
814 | /** |
815 | * pmccntr_sync | |
816 | * @env: CPUARMState | |
817 | * | |
818 | * Synchronises the counter in the PMCCNTR. This must always be called twice, | |
819 | * once before any action that might affect the timer and again afterwards. | |
820 | * The function is used to swap the state of the register if required. | |
821 | * This only happens when not in user mode (!CONFIG_USER_ONLY) | |
822 | */ | |
823 | void pmccntr_sync(CPUARMState *env); | |
824 | ||
76e3e1bc PM |
825 | /* SCTLR bit meanings. Several bits have been reused in newer |
826 | * versions of the architecture; in that case we define constants | |
827 | * for both old and new bit meanings. Code which tests against those | |
828 | * bits should probably check or otherwise arrange that the CPU | |
829 | * is the architectural version it expects. | |
830 | */ | |
831 | #define SCTLR_M (1U << 0) | |
832 | #define SCTLR_A (1U << 1) | |
833 | #define SCTLR_C (1U << 2) | |
834 | #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */ | |
835 | #define SCTLR_SA (1U << 3) | |
836 | #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */ | |
837 | #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */ | |
838 | #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */ | |
839 | #define SCTLR_CP15BEN (1U << 5) /* v7 onward */ | |
840 | #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */ | |
841 | #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */ | |
842 | #define SCTLR_ITD (1U << 7) /* v8 onward */ | |
843 | #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */ | |
844 | #define SCTLR_SED (1U << 8) /* v8 onward */ | |
845 | #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */ | |
846 | #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */ | |
847 | #define SCTLR_F (1U << 10) /* up to v6 */ | |
848 | #define SCTLR_SW (1U << 10) /* v7 onward */ | |
849 | #define SCTLR_Z (1U << 11) | |
850 | #define SCTLR_I (1U << 12) | |
851 | #define SCTLR_V (1U << 13) | |
852 | #define SCTLR_RR (1U << 14) /* up to v7 */ | |
853 | #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */ | |
854 | #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */ | |
855 | #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */ | |
856 | #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */ | |
857 | #define SCTLR_nTWI (1U << 16) /* v8 onward */ | |
858 | #define SCTLR_HA (1U << 17) | |
f6bda88f | 859 | #define SCTLR_BR (1U << 17) /* PMSA only */ |
76e3e1bc PM |
860 | #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */ |
861 | #define SCTLR_nTWE (1U << 18) /* v8 onward */ | |
862 | #define SCTLR_WXN (1U << 19) | |
863 | #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */ | |
864 | #define SCTLR_UWXN (1U << 20) /* v7 onward */ | |
865 | #define SCTLR_FI (1U << 21) | |
866 | #define SCTLR_U (1U << 22) | |
867 | #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */ | |
868 | #define SCTLR_VE (1U << 24) /* up to v7 */ | |
869 | #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */ | |
870 | #define SCTLR_EE (1U << 25) | |
871 | #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */ | |
872 | #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */ | |
873 | #define SCTLR_NMFI (1U << 27) | |
874 | #define SCTLR_TRE (1U << 28) | |
875 | #define SCTLR_AFE (1U << 29) | |
876 | #define SCTLR_TE (1U << 30) | |
877 | ||
c6f19164 GB |
878 | #define CPTR_TCPAC (1U << 31) |
879 | #define CPTR_TTA (1U << 20) | |
880 | #define CPTR_TFP (1U << 10) | |
881 | ||
187f678d PM |
882 | #define MDCR_EPMAD (1U << 21) |
883 | #define MDCR_EDAD (1U << 20) | |
884 | #define MDCR_SPME (1U << 17) | |
885 | #define MDCR_SDD (1U << 16) | |
a8d64e73 | 886 | #define MDCR_SPD (3U << 14) |
187f678d PM |
887 | #define MDCR_TDRA (1U << 11) |
888 | #define MDCR_TDOSA (1U << 10) | |
889 | #define MDCR_TDA (1U << 9) | |
890 | #define MDCR_TDE (1U << 8) | |
891 | #define MDCR_HPME (1U << 7) | |
892 | #define MDCR_TPM (1U << 6) | |
893 | #define MDCR_TPMCR (1U << 5) | |
894 | ||
a8d64e73 PM |
895 | /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */ |
896 | #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD) | |
897 | ||
78dbbbe4 PM |
898 | #define CPSR_M (0x1fU) |
899 | #define CPSR_T (1U << 5) | |
900 | #define CPSR_F (1U << 6) | |
901 | #define CPSR_I (1U << 7) | |
902 | #define CPSR_A (1U << 8) | |
903 | #define CPSR_E (1U << 9) | |
904 | #define CPSR_IT_2_7 (0xfc00U) | |
905 | #define CPSR_GE (0xfU << 16) | |
4051e12c PM |
906 | #define CPSR_IL (1U << 20) |
907 | /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in | |
908 | * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use | |
909 | * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32, | |
910 | * where it is live state but not accessible to the AArch32 code. | |
911 | */ | |
912 | #define CPSR_RESERVED (0x7U << 21) | |
78dbbbe4 PM |
913 | #define CPSR_J (1U << 24) |
914 | #define CPSR_IT_0_1 (3U << 25) | |
915 | #define CPSR_Q (1U << 27) | |
916 | #define CPSR_V (1U << 28) | |
917 | #define CPSR_C (1U << 29) | |
918 | #define CPSR_Z (1U << 30) | |
919 | #define CPSR_N (1U << 31) | |
9ee6e8bb | 920 | #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V) |
4cc35614 | 921 | #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F) |
9ee6e8bb PB |
922 | |
923 | #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7) | |
4cc35614 PM |
924 | #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \ |
925 | | CPSR_NZCV) | |
9ee6e8bb PB |
926 | /* Bits writable in user mode. */ |
927 | #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE) | |
928 | /* Execution state bits. MRS read as zero, MSR writes ignored. */ | |
4051e12c PM |
929 | #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL) |
930 | /* Mask of bits which may be set by exception return copying them from SPSR */ | |
931 | #define CPSR_ERET_MASK (~CPSR_RESERVED) | |
b5ff1b31 | 932 | |
987ab45e PM |
933 | /* Bit definitions for M profile XPSR. Most are the same as CPSR. */ |
934 | #define XPSR_EXCP 0x1ffU | |
935 | #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */ | |
936 | #define XPSR_IT_2_7 CPSR_IT_2_7 | |
937 | #define XPSR_GE CPSR_GE | |
938 | #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */ | |
939 | #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */ | |
940 | #define XPSR_IT_0_1 CPSR_IT_0_1 | |
941 | #define XPSR_Q CPSR_Q | |
942 | #define XPSR_V CPSR_V | |
943 | #define XPSR_C CPSR_C | |
944 | #define XPSR_Z CPSR_Z | |
945 | #define XPSR_N CPSR_N | |
946 | #define XPSR_NZCV CPSR_NZCV | |
947 | #define XPSR_IT CPSR_IT | |
948 | ||
e389be16 FA |
949 | #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */ |
950 | #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */ | |
951 | #define TTBCR_PD0 (1U << 4) | |
952 | #define TTBCR_PD1 (1U << 5) | |
953 | #define TTBCR_EPD0 (1U << 7) | |
954 | #define TTBCR_IRGN0 (3U << 8) | |
955 | #define TTBCR_ORGN0 (3U << 10) | |
956 | #define TTBCR_SH0 (3U << 12) | |
957 | #define TTBCR_T1SZ (3U << 16) | |
958 | #define TTBCR_A1 (1U << 22) | |
959 | #define TTBCR_EPD1 (1U << 23) | |
960 | #define TTBCR_IRGN1 (3U << 24) | |
961 | #define TTBCR_ORGN1 (3U << 26) | |
962 | #define TTBCR_SH1 (1U << 28) | |
963 | #define TTBCR_EAE (1U << 31) | |
964 | ||
d356312f PM |
965 | /* Bit definitions for ARMv8 SPSR (PSTATE) format. |
966 | * Only these are valid when in AArch64 mode; in | |
967 | * AArch32 mode SPSRs are basically CPSR-format. | |
968 | */ | |
f502cfc2 | 969 | #define PSTATE_SP (1U) |
d356312f PM |
970 | #define PSTATE_M (0xFU) |
971 | #define PSTATE_nRW (1U << 4) | |
972 | #define PSTATE_F (1U << 6) | |
973 | #define PSTATE_I (1U << 7) | |
974 | #define PSTATE_A (1U << 8) | |
975 | #define PSTATE_D (1U << 9) | |
976 | #define PSTATE_IL (1U << 20) | |
977 | #define PSTATE_SS (1U << 21) | |
978 | #define PSTATE_V (1U << 28) | |
979 | #define PSTATE_C (1U << 29) | |
980 | #define PSTATE_Z (1U << 30) | |
981 | #define PSTATE_N (1U << 31) | |
982 | #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V) | |
4cc35614 PM |
983 | #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F) |
984 | #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF) | |
d356312f PM |
985 | /* Mode values for AArch64 */ |
986 | #define PSTATE_MODE_EL3h 13 | |
987 | #define PSTATE_MODE_EL3t 12 | |
988 | #define PSTATE_MODE_EL2h 9 | |
989 | #define PSTATE_MODE_EL2t 8 | |
990 | #define PSTATE_MODE_EL1h 5 | |
991 | #define PSTATE_MODE_EL1t 4 | |
992 | #define PSTATE_MODE_EL0t 0 | |
993 | ||
de2db7ec PM |
994 | /* Write a new value to v7m.exception, thus transitioning into or out |
995 | * of Handler mode; this may result in a change of active stack pointer. | |
996 | */ | |
997 | void write_v7m_exception(CPUARMState *env, uint32_t new_exc); | |
998 | ||
9e729b57 EI |
999 | /* Map EL and handler into a PSTATE_MODE. */ |
1000 | static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler) | |
1001 | { | |
1002 | return (el << 2) | handler; | |
1003 | } | |
1004 | ||
d356312f PM |
1005 | /* Return the current PSTATE value. For the moment we don't support 32<->64 bit |
1006 | * interprocessing, so we don't attempt to sync with the cpsr state used by | |
1007 | * the 32 bit decoder. | |
1008 | */ | |
1009 | static inline uint32_t pstate_read(CPUARMState *env) | |
1010 | { | |
1011 | int ZF; | |
1012 | ||
1013 | ZF = (env->ZF == 0); | |
1014 | return (env->NF & 0x80000000) | (ZF << 30) | |
1015 | | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | |
4cc35614 | 1016 | | env->pstate | env->daif; |
d356312f PM |
1017 | } |
1018 | ||
1019 | static inline void pstate_write(CPUARMState *env, uint32_t val) | |
1020 | { | |
1021 | env->ZF = (~val) & PSTATE_Z; | |
1022 | env->NF = val; | |
1023 | env->CF = (val >> 29) & 1; | |
1024 | env->VF = (val << 3) & 0x80000000; | |
4cc35614 | 1025 | env->daif = val & PSTATE_DAIF; |
d356312f PM |
1026 | env->pstate = val & ~CACHED_PSTATE_BITS; |
1027 | } | |
1028 | ||
b5ff1b31 | 1029 | /* Return the current CPSR value. */ |
2f4a40e5 | 1030 | uint32_t cpsr_read(CPUARMState *env); |
50866ba5 PM |
1031 | |
1032 | typedef enum CPSRWriteType { | |
1033 | CPSRWriteByInstr = 0, /* from guest MSR or CPS */ | |
1034 | CPSRWriteExceptionReturn = 1, /* from guest exception return insn */ | |
1035 | CPSRWriteRaw = 2, /* trust values, do not switch reg banks */ | |
1036 | CPSRWriteByGDBStub = 3, /* from the GDB stub */ | |
1037 | } CPSRWriteType; | |
1038 | ||
1039 | /* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/ | |
1040 | void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, | |
1041 | CPSRWriteType write_type); | |
9ee6e8bb PB |
1042 | |
1043 | /* Return the current xPSR value. */ | |
1044 | static inline uint32_t xpsr_read(CPUARMState *env) | |
1045 | { | |
1046 | int ZF; | |
6fbe23d5 PB |
1047 | ZF = (env->ZF == 0); |
1048 | return (env->NF & 0x80000000) | (ZF << 30) | |
9ee6e8bb PB |
1049 | | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) |
1050 | | (env->thumb << 24) | ((env->condexec_bits & 3) << 25) | |
1051 | | ((env->condexec_bits & 0xfc) << 8) | |
1052 | | env->v7m.exception; | |
b5ff1b31 FB |
1053 | } |
1054 | ||
9ee6e8bb PB |
1055 | /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */ |
1056 | static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) | |
1057 | { | |
987ab45e PM |
1058 | if (mask & XPSR_NZCV) { |
1059 | env->ZF = (~val) & XPSR_Z; | |
6fbe23d5 | 1060 | env->NF = val; |
9ee6e8bb PB |
1061 | env->CF = (val >> 29) & 1; |
1062 | env->VF = (val << 3) & 0x80000000; | |
1063 | } | |
987ab45e PM |
1064 | if (mask & XPSR_Q) { |
1065 | env->QF = ((val & XPSR_Q) != 0); | |
1066 | } | |
1067 | if (mask & XPSR_T) { | |
1068 | env->thumb = ((val & XPSR_T) != 0); | |
1069 | } | |
1070 | if (mask & XPSR_IT_0_1) { | |
9ee6e8bb PB |
1071 | env->condexec_bits &= ~3; |
1072 | env->condexec_bits |= (val >> 25) & 3; | |
1073 | } | |
987ab45e | 1074 | if (mask & XPSR_IT_2_7) { |
9ee6e8bb PB |
1075 | env->condexec_bits &= 3; |
1076 | env->condexec_bits |= (val >> 8) & 0xfc; | |
1077 | } | |
987ab45e | 1078 | if (mask & XPSR_EXCP) { |
de2db7ec PM |
1079 | /* Note that this only happens on exception exit */ |
1080 | write_v7m_exception(env, val & XPSR_EXCP); | |
9ee6e8bb PB |
1081 | } |
1082 | } | |
1083 | ||
f149e3e8 EI |
1084 | #define HCR_VM (1ULL << 0) |
1085 | #define HCR_SWIO (1ULL << 1) | |
1086 | #define HCR_PTW (1ULL << 2) | |
1087 | #define HCR_FMO (1ULL << 3) | |
1088 | #define HCR_IMO (1ULL << 4) | |
1089 | #define HCR_AMO (1ULL << 5) | |
1090 | #define HCR_VF (1ULL << 6) | |
1091 | #define HCR_VI (1ULL << 7) | |
1092 | #define HCR_VSE (1ULL << 8) | |
1093 | #define HCR_FB (1ULL << 9) | |
1094 | #define HCR_BSU_MASK (3ULL << 10) | |
1095 | #define HCR_DC (1ULL << 12) | |
1096 | #define HCR_TWI (1ULL << 13) | |
1097 | #define HCR_TWE (1ULL << 14) | |
1098 | #define HCR_TID0 (1ULL << 15) | |
1099 | #define HCR_TID1 (1ULL << 16) | |
1100 | #define HCR_TID2 (1ULL << 17) | |
1101 | #define HCR_TID3 (1ULL << 18) | |
1102 | #define HCR_TSC (1ULL << 19) | |
1103 | #define HCR_TIDCP (1ULL << 20) | |
1104 | #define HCR_TACR (1ULL << 21) | |
1105 | #define HCR_TSW (1ULL << 22) | |
1106 | #define HCR_TPC (1ULL << 23) | |
1107 | #define HCR_TPU (1ULL << 24) | |
1108 | #define HCR_TTLB (1ULL << 25) | |
1109 | #define HCR_TVM (1ULL << 26) | |
1110 | #define HCR_TGE (1ULL << 27) | |
1111 | #define HCR_TDZ (1ULL << 28) | |
1112 | #define HCR_HCD (1ULL << 29) | |
1113 | #define HCR_TRVM (1ULL << 30) | |
1114 | #define HCR_RW (1ULL << 31) | |
1115 | #define HCR_CD (1ULL << 32) | |
1116 | #define HCR_ID (1ULL << 33) | |
1117 | #define HCR_MASK ((1ULL << 34) - 1) | |
1118 | ||
64e0e2de EI |
1119 | #define SCR_NS (1U << 0) |
1120 | #define SCR_IRQ (1U << 1) | |
1121 | #define SCR_FIQ (1U << 2) | |
1122 | #define SCR_EA (1U << 3) | |
1123 | #define SCR_FW (1U << 4) | |
1124 | #define SCR_AW (1U << 5) | |
1125 | #define SCR_NET (1U << 6) | |
1126 | #define SCR_SMD (1U << 7) | |
1127 | #define SCR_HCE (1U << 8) | |
1128 | #define SCR_SIF (1U << 9) | |
1129 | #define SCR_RW (1U << 10) | |
1130 | #define SCR_ST (1U << 11) | |
1131 | #define SCR_TWI (1U << 12) | |
1132 | #define SCR_TWE (1U << 13) | |
1133 | #define SCR_AARCH32_MASK (0x3fff & ~(SCR_RW | SCR_ST)) | |
1134 | #define SCR_AARCH64_MASK (0x3fff & ~SCR_NET) | |
1135 | ||
01653295 PM |
1136 | /* Return the current FPSCR value. */ |
1137 | uint32_t vfp_get_fpscr(CPUARMState *env); | |
1138 | void vfp_set_fpscr(CPUARMState *env, uint32_t val); | |
1139 | ||
f903fa22 PM |
1140 | /* For A64 the FPSCR is split into two logically distinct registers, |
1141 | * FPCR and FPSR. However since they still use non-overlapping bits | |
1142 | * we store the underlying state in fpscr and just mask on read/write. | |
1143 | */ | |
1144 | #define FPSR_MASK 0xf800009f | |
1145 | #define FPCR_MASK 0x07f79f00 | |
1146 | static inline uint32_t vfp_get_fpsr(CPUARMState *env) | |
1147 | { | |
1148 | return vfp_get_fpscr(env) & FPSR_MASK; | |
1149 | } | |
1150 | ||
1151 | static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val) | |
1152 | { | |
1153 | uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK); | |
1154 | vfp_set_fpscr(env, new_fpscr); | |
1155 | } | |
1156 | ||
1157 | static inline uint32_t vfp_get_fpcr(CPUARMState *env) | |
1158 | { | |
1159 | return vfp_get_fpscr(env) & FPCR_MASK; | |
1160 | } | |
1161 | ||
1162 | static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val) | |
1163 | { | |
1164 | uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK); | |
1165 | vfp_set_fpscr(env, new_fpscr); | |
1166 | } | |
1167 | ||
b5ff1b31 FB |
1168 | enum arm_cpu_mode { |
1169 | ARM_CPU_MODE_USR = 0x10, | |
1170 | ARM_CPU_MODE_FIQ = 0x11, | |
1171 | ARM_CPU_MODE_IRQ = 0x12, | |
1172 | ARM_CPU_MODE_SVC = 0x13, | |
28c9457d | 1173 | ARM_CPU_MODE_MON = 0x16, |
b5ff1b31 | 1174 | ARM_CPU_MODE_ABT = 0x17, |
28c9457d | 1175 | ARM_CPU_MODE_HYP = 0x1a, |
b5ff1b31 FB |
1176 | ARM_CPU_MODE_UND = 0x1b, |
1177 | ARM_CPU_MODE_SYS = 0x1f | |
1178 | }; | |
1179 | ||
40f137e1 PB |
1180 | /* VFP system registers. */ |
1181 | #define ARM_VFP_FPSID 0 | |
1182 | #define ARM_VFP_FPSCR 1 | |
a50c0f51 | 1183 | #define ARM_VFP_MVFR2 5 |
9ee6e8bb PB |
1184 | #define ARM_VFP_MVFR1 6 |
1185 | #define ARM_VFP_MVFR0 7 | |
40f137e1 PB |
1186 | #define ARM_VFP_FPEXC 8 |
1187 | #define ARM_VFP_FPINST 9 | |
1188 | #define ARM_VFP_FPINST2 10 | |
1189 | ||
18c9b560 AZ |
1190 | /* iwMMXt coprocessor control registers. */ |
1191 | #define ARM_IWMMXT_wCID 0 | |
1192 | #define ARM_IWMMXT_wCon 1 | |
1193 | #define ARM_IWMMXT_wCSSF 2 | |
1194 | #define ARM_IWMMXT_wCASF 3 | |
1195 | #define ARM_IWMMXT_wCGR0 8 | |
1196 | #define ARM_IWMMXT_wCGR1 9 | |
1197 | #define ARM_IWMMXT_wCGR2 10 | |
1198 | #define ARM_IWMMXT_wCGR3 11 | |
1199 | ||
2c4da50d PM |
1200 | /* V7M CCR bits */ |
1201 | FIELD(V7M_CCR, NONBASETHRDENA, 0, 1) | |
1202 | FIELD(V7M_CCR, USERSETMPEND, 1, 1) | |
1203 | FIELD(V7M_CCR, UNALIGN_TRP, 3, 1) | |
1204 | FIELD(V7M_CCR, DIV_0_TRP, 4, 1) | |
1205 | FIELD(V7M_CCR, BFHFNMIGN, 8, 1) | |
1206 | FIELD(V7M_CCR, STKALIGN, 9, 1) | |
1207 | FIELD(V7M_CCR, DC, 16, 1) | |
1208 | FIELD(V7M_CCR, IC, 17, 1) | |
1209 | ||
3b2e9344 PM |
1210 | /* V7M AIRCR bits */ |
1211 | FIELD(V7M_AIRCR, VECTRESET, 0, 1) | |
1212 | FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1) | |
1213 | FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1) | |
1214 | FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1) | |
1215 | FIELD(V7M_AIRCR, PRIGROUP, 8, 3) | |
1216 | FIELD(V7M_AIRCR, BFHFNMINS, 13, 1) | |
1217 | FIELD(V7M_AIRCR, PRIS, 14, 1) | |
1218 | FIELD(V7M_AIRCR, ENDIANNESS, 15, 1) | |
1219 | FIELD(V7M_AIRCR, VECTKEY, 16, 16) | |
1220 | ||
2c4da50d PM |
1221 | /* V7M CFSR bits for MMFSR */ |
1222 | FIELD(V7M_CFSR, IACCVIOL, 0, 1) | |
1223 | FIELD(V7M_CFSR, DACCVIOL, 1, 1) | |
1224 | FIELD(V7M_CFSR, MUNSTKERR, 3, 1) | |
1225 | FIELD(V7M_CFSR, MSTKERR, 4, 1) | |
1226 | FIELD(V7M_CFSR, MLSPERR, 5, 1) | |
1227 | FIELD(V7M_CFSR, MMARVALID, 7, 1) | |
1228 | ||
1229 | /* V7M CFSR bits for BFSR */ | |
1230 | FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1) | |
1231 | FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1) | |
1232 | FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1) | |
1233 | FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1) | |
1234 | FIELD(V7M_CFSR, STKERR, 8 + 4, 1) | |
1235 | FIELD(V7M_CFSR, LSPERR, 8 + 5, 1) | |
1236 | FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1) | |
1237 | ||
1238 | /* V7M CFSR bits for UFSR */ | |
1239 | FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1) | |
1240 | FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1) | |
1241 | FIELD(V7M_CFSR, INVPC, 16 + 2, 1) | |
1242 | FIELD(V7M_CFSR, NOCP, 16 + 3, 1) | |
1243 | FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1) | |
1244 | FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1) | |
1245 | ||
334e8dad PM |
1246 | /* V7M CFSR bit masks covering all of the subregister bits */ |
1247 | FIELD(V7M_CFSR, MMFSR, 0, 8) | |
1248 | FIELD(V7M_CFSR, BFSR, 8, 8) | |
1249 | FIELD(V7M_CFSR, UFSR, 16, 16) | |
1250 | ||
2c4da50d PM |
1251 | /* V7M HFSR bits */ |
1252 | FIELD(V7M_HFSR, VECTTBL, 1, 1) | |
1253 | FIELD(V7M_HFSR, FORCED, 30, 1) | |
1254 | FIELD(V7M_HFSR, DEBUGEVT, 31, 1) | |
1255 | ||
1256 | /* V7M DFSR bits */ | |
1257 | FIELD(V7M_DFSR, HALTED, 0, 1) | |
1258 | FIELD(V7M_DFSR, BKPT, 1, 1) | |
1259 | FIELD(V7M_DFSR, DWTTRAP, 2, 1) | |
1260 | FIELD(V7M_DFSR, VCATCH, 3, 1) | |
1261 | FIELD(V7M_DFSR, EXTERNAL, 4, 1) | |
1262 | ||
29c483a5 MD |
1263 | /* v7M MPU_CTRL bits */ |
1264 | FIELD(V7M_MPU_CTRL, ENABLE, 0, 1) | |
1265 | FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1) | |
1266 | FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1) | |
1267 | ||
ce854d7c BC |
1268 | /* If adding a feature bit which corresponds to a Linux ELF |
1269 | * HWCAP bit, remember to update the feature-bit-to-hwcap | |
1270 | * mapping in linux-user/elfload.c:get_elf_hwcap(). | |
1271 | */ | |
40f137e1 PB |
1272 | enum arm_features { |
1273 | ARM_FEATURE_VFP, | |
c1713132 AZ |
1274 | ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */ |
1275 | ARM_FEATURE_XSCALE, /* Intel XScale extensions. */ | |
ce819861 | 1276 | ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */ |
9ee6e8bb PB |
1277 | ARM_FEATURE_V6, |
1278 | ARM_FEATURE_V6K, | |
1279 | ARM_FEATURE_V7, | |
1280 | ARM_FEATURE_THUMB2, | |
452a0955 | 1281 | ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */ |
9ee6e8bb | 1282 | ARM_FEATURE_VFP3, |
60011498 | 1283 | ARM_FEATURE_VFP_FP16, |
9ee6e8bb | 1284 | ARM_FEATURE_NEON, |
47789990 | 1285 | ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */ |
9ee6e8bb | 1286 | ARM_FEATURE_M, /* Microcontroller profile. */ |
fe1479c3 | 1287 | ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */ |
e1bbf446 | 1288 | ARM_FEATURE_THUMB2EE, |
be5e7a76 DES |
1289 | ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */ |
1290 | ARM_FEATURE_V4T, | |
1291 | ARM_FEATURE_V5, | |
5bc95aa2 | 1292 | ARM_FEATURE_STRONGARM, |
906879a9 | 1293 | ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */ |
b8b8ea05 | 1294 | ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */ |
da97f52c | 1295 | ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */ |
0383ac00 | 1296 | ARM_FEATURE_GENERIC_TIMER, |
06ed5d66 | 1297 | ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */ |
1047b9d7 | 1298 | ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */ |
c4804214 PM |
1299 | ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */ |
1300 | ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */ | |
1301 | ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */ | |
81bdde9d | 1302 | ARM_FEATURE_MPIDR, /* has cp15 MPIDR */ |
de9b05b8 PM |
1303 | ARM_FEATURE_PXN, /* has Privileged Execute Never bit */ |
1304 | ARM_FEATURE_LPAE, /* has Large Physical Address Extension */ | |
81e69fb0 | 1305 | ARM_FEATURE_V8, |
3926cc84 | 1306 | ARM_FEATURE_AARCH64, /* supports 64 bit mode */ |
9d935509 | 1307 | ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */ |
d8ba780b | 1308 | ARM_FEATURE_CBAR, /* has cp15 CBAR */ |
eb0ecd5a | 1309 | ARM_FEATURE_CRC, /* ARMv8 CRC instructions */ |
f318cec6 | 1310 | ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */ |
cca7c2f5 | 1311 | ARM_FEATURE_EL2, /* has EL2 Virtualization support */ |
1fe8141e | 1312 | ARM_FEATURE_EL3, /* has EL3 Secure monitor support */ |
f1ecb913 AB |
1313 | ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */ |
1314 | ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */ | |
4e624eda | 1315 | ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */ |
62b44f05 | 1316 | ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */ |
929e754d | 1317 | ARM_FEATURE_PMU, /* has PMU support */ |
91db4642 | 1318 | ARM_FEATURE_VBAR, /* has cp15 VBAR */ |
1e577cc7 | 1319 | ARM_FEATURE_M_SECURITY, /* M profile Security Extension */ |
c99a55d3 | 1320 | ARM_FEATURE_JAZELLE, /* has (trivial) Jazelle implementation */ |
40f137e1 PB |
1321 | }; |
1322 | ||
1323 | static inline int arm_feature(CPUARMState *env, int feature) | |
1324 | { | |
918f5dca | 1325 | return (env->features & (1ULL << feature)) != 0; |
40f137e1 PB |
1326 | } |
1327 | ||
19e0fefa FA |
1328 | #if !defined(CONFIG_USER_ONLY) |
1329 | /* Return true if exception levels below EL3 are in secure state, | |
1330 | * or would be following an exception return to that level. | |
1331 | * Unlike arm_is_secure() (which is always a question about the | |
1332 | * _current_ state of the CPU) this doesn't care about the current | |
1333 | * EL or mode. | |
1334 | */ | |
1335 | static inline bool arm_is_secure_below_el3(CPUARMState *env) | |
1336 | { | |
1337 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
1338 | return !(env->cp15.scr_el3 & SCR_NS); | |
1339 | } else { | |
6b7f0b61 | 1340 | /* If EL3 is not supported then the secure state is implementation |
19e0fefa FA |
1341 | * defined, in which case QEMU defaults to non-secure. |
1342 | */ | |
1343 | return false; | |
1344 | } | |
1345 | } | |
1346 | ||
71205876 PM |
1347 | /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */ |
1348 | static inline bool arm_is_el3_or_mon(CPUARMState *env) | |
19e0fefa FA |
1349 | { |
1350 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
1351 | if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) { | |
1352 | /* CPU currently in AArch64 state and EL3 */ | |
1353 | return true; | |
1354 | } else if (!is_a64(env) && | |
1355 | (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { | |
1356 | /* CPU currently in AArch32 state and monitor mode */ | |
1357 | return true; | |
1358 | } | |
1359 | } | |
71205876 PM |
1360 | return false; |
1361 | } | |
1362 | ||
1363 | /* Return true if the processor is in secure state */ | |
1364 | static inline bool arm_is_secure(CPUARMState *env) | |
1365 | { | |
1366 | if (arm_is_el3_or_mon(env)) { | |
1367 | return true; | |
1368 | } | |
19e0fefa FA |
1369 | return arm_is_secure_below_el3(env); |
1370 | } | |
1371 | ||
1372 | #else | |
1373 | static inline bool arm_is_secure_below_el3(CPUARMState *env) | |
1374 | { | |
1375 | return false; | |
1376 | } | |
1377 | ||
1378 | static inline bool arm_is_secure(CPUARMState *env) | |
1379 | { | |
1380 | return false; | |
1381 | } | |
1382 | #endif | |
1383 | ||
1f79ee32 PM |
1384 | /* Return true if the specified exception level is running in AArch64 state. */ |
1385 | static inline bool arm_el_is_aa64(CPUARMState *env, int el) | |
1386 | { | |
446c81ab PM |
1387 | /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want, |
1388 | * and if we're not in EL0 then the state of EL0 isn't well defined.) | |
1f79ee32 | 1389 | */ |
446c81ab PM |
1390 | assert(el >= 1 && el <= 3); |
1391 | bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64); | |
592125f8 | 1392 | |
446c81ab PM |
1393 | /* The highest exception level is always at the maximum supported |
1394 | * register width, and then lower levels have a register width controlled | |
1395 | * by bits in the SCR or HCR registers. | |
1f79ee32 | 1396 | */ |
446c81ab PM |
1397 | if (el == 3) { |
1398 | return aa64; | |
1399 | } | |
1400 | ||
1401 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
1402 | aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW); | |
1403 | } | |
1404 | ||
1405 | if (el == 2) { | |
1406 | return aa64; | |
1407 | } | |
1408 | ||
1409 | if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) { | |
1410 | aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW); | |
1411 | } | |
1412 | ||
1413 | return aa64; | |
1f79ee32 PM |
1414 | } |
1415 | ||
3f342b9e SF |
1416 | /* Function for determing whether guest cp register reads and writes should |
1417 | * access the secure or non-secure bank of a cp register. When EL3 is | |
1418 | * operating in AArch32 state, the NS-bit determines whether the secure | |
1419 | * instance of a cp register should be used. When EL3 is AArch64 (or if | |
1420 | * it doesn't exist at all) then there is no register banking, and all | |
1421 | * accesses are to the non-secure version. | |
1422 | */ | |
1423 | static inline bool access_secure_reg(CPUARMState *env) | |
1424 | { | |
1425 | bool ret = (arm_feature(env, ARM_FEATURE_EL3) && | |
1426 | !arm_el_is_aa64(env, 3) && | |
1427 | !(env->cp15.scr_el3 & SCR_NS)); | |
1428 | ||
1429 | return ret; | |
1430 | } | |
1431 | ||
ea30a4b8 FA |
1432 | /* Macros for accessing a specified CP register bank */ |
1433 | #define A32_BANKED_REG_GET(_env, _regname, _secure) \ | |
1434 | ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns) | |
1435 | ||
1436 | #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \ | |
1437 | do { \ | |
1438 | if (_secure) { \ | |
1439 | (_env)->cp15._regname##_s = (_val); \ | |
1440 | } else { \ | |
1441 | (_env)->cp15._regname##_ns = (_val); \ | |
1442 | } \ | |
1443 | } while (0) | |
1444 | ||
1445 | /* Macros for automatically accessing a specific CP register bank depending on | |
1446 | * the current secure state of the system. These macros are not intended for | |
1447 | * supporting instruction translation reads/writes as these are dependent | |
1448 | * solely on the SCR.NS bit and not the mode. | |
1449 | */ | |
1450 | #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \ | |
1451 | A32_BANKED_REG_GET((_env), _regname, \ | |
2cde031f | 1452 | (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3))) |
ea30a4b8 FA |
1453 | |
1454 | #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \ | |
1455 | A32_BANKED_REG_SET((_env), _regname, \ | |
2cde031f | 1456 | (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \ |
ea30a4b8 FA |
1457 | (_val)) |
1458 | ||
9a78eead | 1459 | void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf); |
012a906b GB |
1460 | uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, |
1461 | uint32_t cur_el, bool secure); | |
40f137e1 | 1462 | |
9ee6e8bb | 1463 | /* Interface between CPU and Interrupt controller. */ |
7ecdaa4a PM |
1464 | #ifndef CONFIG_USER_ONLY |
1465 | bool armv7m_nvic_can_take_pending_exception(void *opaque); | |
1466 | #else | |
1467 | static inline bool armv7m_nvic_can_take_pending_exception(void *opaque) | |
1468 | { | |
1469 | return true; | |
1470 | } | |
1471 | #endif | |
2fb50a33 PM |
1472 | /** |
1473 | * armv7m_nvic_set_pending: mark the specified exception as pending | |
1474 | * @opaque: the NVIC | |
1475 | * @irq: the exception number to mark pending | |
1476 | * @secure: false for non-banked exceptions or for the nonsecure | |
1477 | * version of a banked exception, true for the secure version of a banked | |
1478 | * exception. | |
1479 | * | |
1480 | * Marks the specified exception as pending. Note that we will assert() | |
1481 | * if @secure is true and @irq does not specify one of the fixed set | |
1482 | * of architecturally banked exceptions. | |
1483 | */ | |
1484 | void armv7m_nvic_set_pending(void *opaque, int irq, bool secure); | |
5cb18069 PM |
1485 | /** |
1486 | * armv7m_nvic_acknowledge_irq: make highest priority pending exception active | |
1487 | * @opaque: the NVIC | |
1488 | * | |
1489 | * Move the current highest priority pending exception from the pending | |
1490 | * state to the active state, and update v7m.exception to indicate that | |
1491 | * it is the exception currently being handled. | |
1492 | * | |
1493 | * Returns: true if exception should be taken to Secure state, false for NS | |
1494 | */ | |
1495 | bool armv7m_nvic_acknowledge_irq(void *opaque); | |
aa488fe3 PM |
1496 | /** |
1497 | * armv7m_nvic_complete_irq: complete specified interrupt or exception | |
1498 | * @opaque: the NVIC | |
1499 | * @irq: the exception number to complete | |
5cb18069 | 1500 | * @secure: true if this exception was secure |
aa488fe3 PM |
1501 | * |
1502 | * Returns: -1 if the irq was not active | |
1503 | * 1 if completing this irq brought us back to base (no active irqs) | |
1504 | * 0 if there is still an irq active after this one was completed | |
1505 | * (Ignoring -1, this is the same as the RETTOBASE value before completion.) | |
1506 | */ | |
5cb18069 | 1507 | int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure); |
42a6686b PM |
1508 | /** |
1509 | * armv7m_nvic_raw_execution_priority: return the raw execution priority | |
1510 | * @opaque: the NVIC | |
1511 | * | |
1512 | * Returns: the raw execution priority as defined by the v8M architecture. | |
1513 | * This is the execution priority minus the effects of AIRCR.PRIS, | |
1514 | * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting. | |
1515 | * (v8M ARM ARM I_PKLD.) | |
1516 | */ | |
1517 | int armv7m_nvic_raw_execution_priority(void *opaque); | |
5d479199 PM |
1518 | /** |
1519 | * armv7m_nvic_neg_prio_requested: return true if the requested execution | |
1520 | * priority is negative for the specified security state. | |
1521 | * @opaque: the NVIC | |
1522 | * @secure: the security state to test | |
1523 | * This corresponds to the pseudocode IsReqExecPriNeg(). | |
1524 | */ | |
1525 | #ifndef CONFIG_USER_ONLY | |
1526 | bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure); | |
1527 | #else | |
1528 | static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure) | |
1529 | { | |
1530 | return false; | |
1531 | } | |
1532 | #endif | |
9ee6e8bb | 1533 | |
4b6a83fb PM |
1534 | /* Interface for defining coprocessor registers. |
1535 | * Registers are defined in tables of arm_cp_reginfo structs | |
1536 | * which are passed to define_arm_cp_regs(). | |
1537 | */ | |
1538 | ||
1539 | /* When looking up a coprocessor register we look for it | |
1540 | * via an integer which encodes all of: | |
1541 | * coprocessor number | |
1542 | * Crn, Crm, opc1, opc2 fields | |
1543 | * 32 or 64 bit register (ie is it accessed via MRC/MCR | |
1544 | * or via MRRC/MCRR?) | |
51a79b03 | 1545 | * non-secure/secure bank (AArch32 only) |
4b6a83fb PM |
1546 | * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field. |
1547 | * (In this case crn and opc2 should be zero.) | |
f5a0a5a5 PM |
1548 | * For AArch64, there is no 32/64 bit size distinction; |
1549 | * instead all registers have a 2 bit op0, 3 bit op1 and op2, | |
1550 | * and 4 bit CRn and CRm. The encoding patterns are chosen | |
1551 | * to be easy to convert to and from the KVM encodings, and also | |
1552 | * so that the hashtable can contain both AArch32 and AArch64 | |
1553 | * registers (to allow for interprocessing where we might run | |
1554 | * 32 bit code on a 64 bit core). | |
4b6a83fb | 1555 | */ |
f5a0a5a5 PM |
1556 | /* This bit is private to our hashtable cpreg; in KVM register |
1557 | * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64 | |
1558 | * in the upper bits of the 64 bit ID. | |
1559 | */ | |
1560 | #define CP_REG_AA64_SHIFT 28 | |
1561 | #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT) | |
1562 | ||
51a79b03 PM |
1563 | /* To enable banking of coprocessor registers depending on ns-bit we |
1564 | * add a bit to distinguish between secure and non-secure cpregs in the | |
1565 | * hashtable. | |
1566 | */ | |
1567 | #define CP_REG_NS_SHIFT 29 | |
1568 | #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT) | |
1569 | ||
1570 | #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \ | |
1571 | ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \ | |
1572 | ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2)) | |
4b6a83fb | 1573 | |
f5a0a5a5 PM |
1574 | #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \ |
1575 | (CP_REG_AA64_MASK | \ | |
1576 | ((cp) << CP_REG_ARM_COPROC_SHIFT) | \ | |
1577 | ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \ | |
1578 | ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \ | |
1579 | ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \ | |
1580 | ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \ | |
1581 | ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT)) | |
1582 | ||
721fae12 PM |
1583 | /* Convert a full 64 bit KVM register ID to the truncated 32 bit |
1584 | * version used as a key for the coprocessor register hashtable | |
1585 | */ | |
1586 | static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid) | |
1587 | { | |
1588 | uint32_t cpregid = kvmid; | |
f5a0a5a5 PM |
1589 | if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) { |
1590 | cpregid |= CP_REG_AA64_MASK; | |
51a79b03 PM |
1591 | } else { |
1592 | if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) { | |
1593 | cpregid |= (1 << 15); | |
1594 | } | |
1595 | ||
1596 | /* KVM is always non-secure so add the NS flag on AArch32 register | |
1597 | * entries. | |
1598 | */ | |
1599 | cpregid |= 1 << CP_REG_NS_SHIFT; | |
721fae12 PM |
1600 | } |
1601 | return cpregid; | |
1602 | } | |
1603 | ||
1604 | /* Convert a truncated 32 bit hashtable key into the full | |
1605 | * 64 bit KVM register ID. | |
1606 | */ | |
1607 | static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid) | |
1608 | { | |
f5a0a5a5 PM |
1609 | uint64_t kvmid; |
1610 | ||
1611 | if (cpregid & CP_REG_AA64_MASK) { | |
1612 | kvmid = cpregid & ~CP_REG_AA64_MASK; | |
1613 | kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64; | |
721fae12 | 1614 | } else { |
f5a0a5a5 PM |
1615 | kvmid = cpregid & ~(1 << 15); |
1616 | if (cpregid & (1 << 15)) { | |
1617 | kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM; | |
1618 | } else { | |
1619 | kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM; | |
1620 | } | |
721fae12 PM |
1621 | } |
1622 | return kvmid; | |
1623 | } | |
1624 | ||
4b6a83fb PM |
1625 | /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a |
1626 | * special-behaviour cp reg and bits [15..8] indicate what behaviour | |
1627 | * it has. Otherwise it is a simple cp reg, where CONST indicates that | |
1628 | * TCG can assume the value to be constant (ie load at translate time) | |
1629 | * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END | |
1630 | * indicates that the TB should not be ended after a write to this register | |
1631 | * (the default is that the TB ends after cp writes). OVERRIDE permits | |
1632 | * a register definition to override a previous definition for the | |
1633 | * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the | |
1634 | * old must have the OVERRIDE bit set. | |
7a0e58fa PM |
1635 | * ALIAS indicates that this register is an alias view of some underlying |
1636 | * state which is also visible via another register, and that the other | |
b061a82b SF |
1637 | * register is handling migration and reset; registers marked ALIAS will not be |
1638 | * migrated but may have their state set by syncing of register state from KVM. | |
7a0e58fa PM |
1639 | * NO_RAW indicates that this register has no underlying state and does not |
1640 | * support raw access for state saving/loading; it will not be used for either | |
1641 | * migration or KVM state synchronization. (Typically this is for "registers" | |
1642 | * which are actually used as instructions for cache maintenance and so on.) | |
2452731c PM |
1643 | * IO indicates that this register does I/O and therefore its accesses |
1644 | * need to be surrounded by gen_io_start()/gen_io_end(). In particular, | |
1645 | * registers which implement clocks or timers require this. | |
4b6a83fb PM |
1646 | */ |
1647 | #define ARM_CP_SPECIAL 1 | |
1648 | #define ARM_CP_CONST 2 | |
1649 | #define ARM_CP_64BIT 4 | |
1650 | #define ARM_CP_SUPPRESS_TB_END 8 | |
1651 | #define ARM_CP_OVERRIDE 16 | |
7a0e58fa | 1652 | #define ARM_CP_ALIAS 32 |
2452731c | 1653 | #define ARM_CP_IO 64 |
7a0e58fa | 1654 | #define ARM_CP_NO_RAW 128 |
4b6a83fb PM |
1655 | #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8)) |
1656 | #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8)) | |
b0d2b7d0 | 1657 | #define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8)) |
0eef9d98 | 1658 | #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8)) |
aca3f40b PM |
1659 | #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8)) |
1660 | #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA | |
4b6a83fb PM |
1661 | /* Used only as a terminator for ARMCPRegInfo lists */ |
1662 | #define ARM_CP_SENTINEL 0xffff | |
1663 | /* Mask of only the flag bits in a type field */ | |
7a0e58fa | 1664 | #define ARM_CP_FLAG_MASK 0xff |
4b6a83fb | 1665 | |
f5a0a5a5 PM |
1666 | /* Valid values for ARMCPRegInfo state field, indicating which of |
1667 | * the AArch32 and AArch64 execution states this register is visible in. | |
1668 | * If the reginfo doesn't explicitly specify then it is AArch32 only. | |
1669 | * If the reginfo is declared to be visible in both states then a second | |
1670 | * reginfo is synthesised for the AArch32 view of the AArch64 register, | |
1671 | * such that the AArch32 view is the lower 32 bits of the AArch64 one. | |
1672 | * Note that we rely on the values of these enums as we iterate through | |
1673 | * the various states in some places. | |
1674 | */ | |
1675 | enum { | |
1676 | ARM_CP_STATE_AA32 = 0, | |
1677 | ARM_CP_STATE_AA64 = 1, | |
1678 | ARM_CP_STATE_BOTH = 2, | |
1679 | }; | |
1680 | ||
c3e30260 FA |
1681 | /* ARM CP register secure state flags. These flags identify security state |
1682 | * attributes for a given CP register entry. | |
1683 | * The existence of both or neither secure and non-secure flags indicates that | |
1684 | * the register has both a secure and non-secure hash entry. A single one of | |
1685 | * these flags causes the register to only be hashed for the specified | |
1686 | * security state. | |
1687 | * Although definitions may have any combination of the S/NS bits, each | |
1688 | * registered entry will only have one to identify whether the entry is secure | |
1689 | * or non-secure. | |
1690 | */ | |
1691 | enum { | |
1692 | ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */ | |
1693 | ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */ | |
1694 | }; | |
1695 | ||
4b6a83fb PM |
1696 | /* Return true if cptype is a valid type field. This is used to try to |
1697 | * catch errors where the sentinel has been accidentally left off the end | |
1698 | * of a list of registers. | |
1699 | */ | |
1700 | static inline bool cptype_valid(int cptype) | |
1701 | { | |
1702 | return ((cptype & ~ARM_CP_FLAG_MASK) == 0) | |
1703 | || ((cptype & ARM_CP_SPECIAL) && | |
34affeef | 1704 | ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL)); |
4b6a83fb PM |
1705 | } |
1706 | ||
1707 | /* Access rights: | |
1708 | * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM | |
1709 | * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and | |
1710 | * PL2 (hyp). The other level which has Read and Write bits is Secure PL1 | |
1711 | * (ie any of the privileged modes in Secure state, or Monitor mode). | |
1712 | * If a register is accessible in one privilege level it's always accessible | |
1713 | * in higher privilege levels too. Since "Secure PL1" also follows this rule | |
1714 | * (ie anything visible in PL2 is visible in S-PL1, some things are only | |
1715 | * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the | |
1716 | * terminology a little and call this PL3. | |
f5a0a5a5 PM |
1717 | * In AArch64 things are somewhat simpler as the PLx bits line up exactly |
1718 | * with the ELx exception levels. | |
4b6a83fb PM |
1719 | * |
1720 | * If access permissions for a register are more complex than can be | |
1721 | * described with these bits, then use a laxer set of restrictions, and | |
1722 | * do the more restrictive/complex check inside a helper function. | |
1723 | */ | |
1724 | #define PL3_R 0x80 | |
1725 | #define PL3_W 0x40 | |
1726 | #define PL2_R (0x20 | PL3_R) | |
1727 | #define PL2_W (0x10 | PL3_W) | |
1728 | #define PL1_R (0x08 | PL2_R) | |
1729 | #define PL1_W (0x04 | PL2_W) | |
1730 | #define PL0_R (0x02 | PL1_R) | |
1731 | #define PL0_W (0x01 | PL1_W) | |
1732 | ||
1733 | #define PL3_RW (PL3_R | PL3_W) | |
1734 | #define PL2_RW (PL2_R | PL2_W) | |
1735 | #define PL1_RW (PL1_R | PL1_W) | |
1736 | #define PL0_RW (PL0_R | PL0_W) | |
1737 | ||
75502672 PM |
1738 | /* Return the highest implemented Exception Level */ |
1739 | static inline int arm_highest_el(CPUARMState *env) | |
1740 | { | |
1741 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
1742 | return 3; | |
1743 | } | |
1744 | if (arm_feature(env, ARM_FEATURE_EL2)) { | |
1745 | return 2; | |
1746 | } | |
1747 | return 1; | |
1748 | } | |
1749 | ||
15b3f556 PM |
1750 | /* Return true if a v7M CPU is in Handler mode */ |
1751 | static inline bool arm_v7m_is_handler_mode(CPUARMState *env) | |
1752 | { | |
1753 | return env->v7m.exception != 0; | |
1754 | } | |
1755 | ||
dcbff19b GB |
1756 | /* Return the current Exception Level (as per ARMv8; note that this differs |
1757 | * from the ARMv7 Privilege Level). | |
1758 | */ | |
1759 | static inline int arm_current_el(CPUARMState *env) | |
4b6a83fb | 1760 | { |
6d54ed3c | 1761 | if (arm_feature(env, ARM_FEATURE_M)) { |
8bfc26ea PM |
1762 | return arm_v7m_is_handler_mode(env) || |
1763 | !(env->v7m.control[env->v7m.secure] & 1); | |
6d54ed3c PM |
1764 | } |
1765 | ||
592125f8 | 1766 | if (is_a64(env)) { |
f5a0a5a5 PM |
1767 | return extract32(env->pstate, 2, 2); |
1768 | } | |
1769 | ||
592125f8 FA |
1770 | switch (env->uncached_cpsr & 0x1f) { |
1771 | case ARM_CPU_MODE_USR: | |
4b6a83fb | 1772 | return 0; |
592125f8 FA |
1773 | case ARM_CPU_MODE_HYP: |
1774 | return 2; | |
1775 | case ARM_CPU_MODE_MON: | |
1776 | return 3; | |
1777 | default: | |
1778 | if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { | |
1779 | /* If EL3 is 32-bit then all secure privileged modes run in | |
1780 | * EL3 | |
1781 | */ | |
1782 | return 3; | |
1783 | } | |
1784 | ||
1785 | return 1; | |
4b6a83fb | 1786 | } |
4b6a83fb PM |
1787 | } |
1788 | ||
1789 | typedef struct ARMCPRegInfo ARMCPRegInfo; | |
1790 | ||
f59df3f2 PM |
1791 | typedef enum CPAccessResult { |
1792 | /* Access is permitted */ | |
1793 | CP_ACCESS_OK = 0, | |
1794 | /* Access fails due to a configurable trap or enable which would | |
1795 | * result in a categorized exception syndrome giving information about | |
1796 | * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6, | |
38836a2c PM |
1797 | * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or |
1798 | * PL1 if in EL0, otherwise to the current EL). | |
f59df3f2 PM |
1799 | */ |
1800 | CP_ACCESS_TRAP = 1, | |
1801 | /* Access fails and results in an exception syndrome 0x0 ("uncategorized"). | |
1802 | * Note that this is not a catch-all case -- the set of cases which may | |
1803 | * result in this failure is specifically defined by the architecture. | |
1804 | */ | |
1805 | CP_ACCESS_TRAP_UNCATEGORIZED = 2, | |
38836a2c PM |
1806 | /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */ |
1807 | CP_ACCESS_TRAP_EL2 = 3, | |
1808 | CP_ACCESS_TRAP_EL3 = 4, | |
e7615726 PM |
1809 | /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */ |
1810 | CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5, | |
1811 | CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6, | |
f2cae609 PM |
1812 | /* Access fails and results in an exception syndrome for an FP access, |
1813 | * trapped directly to EL2 or EL3 | |
1814 | */ | |
1815 | CP_ACCESS_TRAP_FP_EL2 = 7, | |
1816 | CP_ACCESS_TRAP_FP_EL3 = 8, | |
f59df3f2 PM |
1817 | } CPAccessResult; |
1818 | ||
c4241c7d PM |
1819 | /* Access functions for coprocessor registers. These cannot fail and |
1820 | * may not raise exceptions. | |
1821 | */ | |
1822 | typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque); | |
1823 | typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque, | |
1824 | uint64_t value); | |
f59df3f2 | 1825 | /* Access permission check functions for coprocessor registers. */ |
3f208fd7 PM |
1826 | typedef CPAccessResult CPAccessFn(CPUARMState *env, |
1827 | const ARMCPRegInfo *opaque, | |
1828 | bool isread); | |
4b6a83fb PM |
1829 | /* Hook function for register reset */ |
1830 | typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque); | |
1831 | ||
1832 | #define CP_ANY 0xff | |
1833 | ||
1834 | /* Definition of an ARM coprocessor register */ | |
1835 | struct ARMCPRegInfo { | |
1836 | /* Name of register (useful mainly for debugging, need not be unique) */ | |
1837 | const char *name; | |
1838 | /* Location of register: coprocessor number and (crn,crm,opc1,opc2) | |
1839 | * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a | |
1840 | * 'wildcard' field -- any value of that field in the MRC/MCR insn | |
1841 | * will be decoded to this register. The register read and write | |
1842 | * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2 | |
1843 | * used by the program, so it is possible to register a wildcard and | |
1844 | * then behave differently on read/write if necessary. | |
1845 | * For 64 bit registers, only crm and opc1 are relevant; crn and opc2 | |
1846 | * must both be zero. | |
f5a0a5a5 PM |
1847 | * For AArch64-visible registers, opc0 is also used. |
1848 | * Since there are no "coprocessors" in AArch64, cp is purely used as a | |
1849 | * way to distinguish (for KVM's benefit) guest-visible system registers | |
1850 | * from demuxed ones provided to preserve the "no side effects on | |
1851 | * KVM register read/write from QEMU" semantics. cp==0x13 is guest | |
1852 | * visible (to match KVM's encoding); cp==0 will be converted to | |
1853 | * cp==0x13 when the ARMCPRegInfo is registered, for convenience. | |
4b6a83fb PM |
1854 | */ |
1855 | uint8_t cp; | |
1856 | uint8_t crn; | |
1857 | uint8_t crm; | |
f5a0a5a5 | 1858 | uint8_t opc0; |
4b6a83fb PM |
1859 | uint8_t opc1; |
1860 | uint8_t opc2; | |
f5a0a5a5 PM |
1861 | /* Execution state in which this register is visible: ARM_CP_STATE_* */ |
1862 | int state; | |
4b6a83fb PM |
1863 | /* Register type: ARM_CP_* bits/values */ |
1864 | int type; | |
1865 | /* Access rights: PL*_[RW] */ | |
1866 | int access; | |
c3e30260 FA |
1867 | /* Security state: ARM_CP_SECSTATE_* bits/values */ |
1868 | int secure; | |
4b6a83fb PM |
1869 | /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when |
1870 | * this register was defined: can be used to hand data through to the | |
1871 | * register read/write functions, since they are passed the ARMCPRegInfo*. | |
1872 | */ | |
1873 | void *opaque; | |
1874 | /* Value of this register, if it is ARM_CP_CONST. Otherwise, if | |
1875 | * fieldoffset is non-zero, the reset value of the register. | |
1876 | */ | |
1877 | uint64_t resetvalue; | |
c3e30260 FA |
1878 | /* Offset of the field in CPUARMState for this register. |
1879 | * | |
1880 | * This is not needed if either: | |
4b6a83fb PM |
1881 | * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs |
1882 | * 2. both readfn and writefn are specified | |
1883 | */ | |
1884 | ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */ | |
c3e30260 FA |
1885 | |
1886 | /* Offsets of the secure and non-secure fields in CPUARMState for the | |
1887 | * register if it is banked. These fields are only used during the static | |
1888 | * registration of a register. During hashing the bank associated | |
1889 | * with a given security state is copied to fieldoffset which is used from | |
1890 | * there on out. | |
1891 | * | |
1892 | * It is expected that register definitions use either fieldoffset or | |
1893 | * bank_fieldoffsets in the definition but not both. It is also expected | |
1894 | * that both bank offsets are set when defining a banked register. This | |
1895 | * use indicates that a register is banked. | |
1896 | */ | |
1897 | ptrdiff_t bank_fieldoffsets[2]; | |
1898 | ||
f59df3f2 PM |
1899 | /* Function for making any access checks for this register in addition to |
1900 | * those specified by the 'access' permissions bits. If NULL, no extra | |
1901 | * checks required. The access check is performed at runtime, not at | |
1902 | * translate time. | |
1903 | */ | |
1904 | CPAccessFn *accessfn; | |
4b6a83fb PM |
1905 | /* Function for handling reads of this register. If NULL, then reads |
1906 | * will be done by loading from the offset into CPUARMState specified | |
1907 | * by fieldoffset. | |
1908 | */ | |
1909 | CPReadFn *readfn; | |
1910 | /* Function for handling writes of this register. If NULL, then writes | |
1911 | * will be done by writing to the offset into CPUARMState specified | |
1912 | * by fieldoffset. | |
1913 | */ | |
1914 | CPWriteFn *writefn; | |
7023ec7e PM |
1915 | /* Function for doing a "raw" read; used when we need to copy |
1916 | * coprocessor state to the kernel for KVM or out for | |
1917 | * migration. This only needs to be provided if there is also a | |
c4241c7d | 1918 | * readfn and it has side effects (for instance clear-on-read bits). |
7023ec7e PM |
1919 | */ |
1920 | CPReadFn *raw_readfn; | |
1921 | /* Function for doing a "raw" write; used when we need to copy KVM | |
1922 | * kernel coprocessor state into userspace, or for inbound | |
1923 | * migration. This only needs to be provided if there is also a | |
c4241c7d PM |
1924 | * writefn and it masks out "unwritable" bits or has write-one-to-clear |
1925 | * or similar behaviour. | |
7023ec7e PM |
1926 | */ |
1927 | CPWriteFn *raw_writefn; | |
4b6a83fb PM |
1928 | /* Function for resetting the register. If NULL, then reset will be done |
1929 | * by writing resetvalue to the field specified in fieldoffset. If | |
1930 | * fieldoffset is 0 then no reset will be done. | |
1931 | */ | |
1932 | CPResetFn *resetfn; | |
1933 | }; | |
1934 | ||
1935 | /* Macros which are lvalues for the field in CPUARMState for the | |
1936 | * ARMCPRegInfo *ri. | |
1937 | */ | |
1938 | #define CPREG_FIELD32(env, ri) \ | |
1939 | (*(uint32_t *)((char *)(env) + (ri)->fieldoffset)) | |
1940 | #define CPREG_FIELD64(env, ri) \ | |
1941 | (*(uint64_t *)((char *)(env) + (ri)->fieldoffset)) | |
1942 | ||
1943 | #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL } | |
1944 | ||
1945 | void define_arm_cp_regs_with_opaque(ARMCPU *cpu, | |
1946 | const ARMCPRegInfo *regs, void *opaque); | |
1947 | void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, | |
1948 | const ARMCPRegInfo *regs, void *opaque); | |
1949 | static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs) | |
1950 | { | |
1951 | define_arm_cp_regs_with_opaque(cpu, regs, 0); | |
1952 | } | |
1953 | static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs) | |
1954 | { | |
1955 | define_one_arm_cp_reg_with_opaque(cpu, regs, 0); | |
1956 | } | |
60322b39 | 1957 | const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp); |
4b6a83fb PM |
1958 | |
1959 | /* CPWriteFn that can be used to implement writes-ignored behaviour */ | |
c4241c7d PM |
1960 | void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, |
1961 | uint64_t value); | |
4b6a83fb | 1962 | /* CPReadFn that can be used for read-as-zero behaviour */ |
c4241c7d | 1963 | uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri); |
4b6a83fb | 1964 | |
f5a0a5a5 PM |
1965 | /* CPResetFn that does nothing, for use if no reset is required even |
1966 | * if fieldoffset is non zero. | |
1967 | */ | |
1968 | void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque); | |
1969 | ||
67ed771d PM |
1970 | /* Return true if this reginfo struct's field in the cpu state struct |
1971 | * is 64 bits wide. | |
1972 | */ | |
1973 | static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri) | |
1974 | { | |
1975 | return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT); | |
1976 | } | |
1977 | ||
dcbff19b | 1978 | static inline bool cp_access_ok(int current_el, |
4b6a83fb PM |
1979 | const ARMCPRegInfo *ri, int isread) |
1980 | { | |
dcbff19b | 1981 | return (ri->access >> ((current_el * 2) + isread)) & 1; |
4b6a83fb PM |
1982 | } |
1983 | ||
49a66191 PM |
1984 | /* Raw read of a coprocessor register (as needed for migration, etc) */ |
1985 | uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri); | |
1986 | ||
721fae12 PM |
1987 | /** |
1988 | * write_list_to_cpustate | |
1989 | * @cpu: ARMCPU | |
1990 | * | |
1991 | * For each register listed in the ARMCPU cpreg_indexes list, write | |
1992 | * its value from the cpreg_values list into the ARMCPUState structure. | |
1993 | * This updates TCG's working data structures from KVM data or | |
1994 | * from incoming migration state. | |
1995 | * | |
1996 | * Returns: true if all register values were updated correctly, | |
1997 | * false if some register was unknown or could not be written. | |
1998 | * Note that we do not stop early on failure -- we will attempt | |
1999 | * writing all registers in the list. | |
2000 | */ | |
2001 | bool write_list_to_cpustate(ARMCPU *cpu); | |
2002 | ||
2003 | /** | |
2004 | * write_cpustate_to_list: | |
2005 | * @cpu: ARMCPU | |
2006 | * | |
2007 | * For each register listed in the ARMCPU cpreg_indexes list, write | |
2008 | * its value from the ARMCPUState structure into the cpreg_values list. | |
2009 | * This is used to copy info from TCG's working data structures into | |
2010 | * KVM or for outbound migration. | |
2011 | * | |
2012 | * Returns: true if all register values were read correctly, | |
2013 | * false if some register was unknown or could not be read. | |
2014 | * Note that we do not stop early on failure -- we will attempt | |
2015 | * reading all registers in the list. | |
2016 | */ | |
2017 | bool write_cpustate_to_list(ARMCPU *cpu); | |
2018 | ||
9ee6e8bb PB |
2019 | #define ARM_CPUID_TI915T 0x54029152 |
2020 | #define ARM_CPUID_TI925T 0x54029252 | |
40f137e1 | 2021 | |
b5ff1b31 | 2022 | #if defined(CONFIG_USER_ONLY) |
2c0262af | 2023 | #define TARGET_PAGE_BITS 12 |
b5ff1b31 | 2024 | #else |
e97da98f PM |
2025 | /* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6 |
2026 | * have to support 1K tiny pages. | |
2027 | */ | |
2028 | #define TARGET_PAGE_BITS_VARY | |
2029 | #define TARGET_PAGE_BITS_MIN 10 | |
b5ff1b31 | 2030 | #endif |
9467d44c | 2031 | |
3926cc84 AG |
2032 | #if defined(TARGET_AARCH64) |
2033 | # define TARGET_PHYS_ADDR_SPACE_BITS 48 | |
2034 | # define TARGET_VIRT_ADDR_SPACE_BITS 64 | |
2035 | #else | |
2036 | # define TARGET_PHYS_ADDR_SPACE_BITS 40 | |
2037 | # define TARGET_VIRT_ADDR_SPACE_BITS 32 | |
2038 | #endif | |
52705890 | 2039 | |
012a906b GB |
2040 | static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx, |
2041 | unsigned int target_el) | |
043b7f8d EI |
2042 | { |
2043 | CPUARMState *env = cs->env_ptr; | |
dcbff19b | 2044 | unsigned int cur_el = arm_current_el(env); |
57e3a0c7 | 2045 | bool secure = arm_is_secure(env); |
57e3a0c7 GB |
2046 | bool pstate_unmasked; |
2047 | int8_t unmasked = 0; | |
2048 | ||
2049 | /* Don't take exceptions if they target a lower EL. | |
2050 | * This check should catch any exceptions that would not be taken but left | |
2051 | * pending. | |
2052 | */ | |
dfafd090 EI |
2053 | if (cur_el > target_el) { |
2054 | return false; | |
2055 | } | |
043b7f8d EI |
2056 | |
2057 | switch (excp_idx) { | |
2058 | case EXCP_FIQ: | |
57e3a0c7 GB |
2059 | pstate_unmasked = !(env->daif & PSTATE_F); |
2060 | break; | |
2061 | ||
043b7f8d | 2062 | case EXCP_IRQ: |
57e3a0c7 GB |
2063 | pstate_unmasked = !(env->daif & PSTATE_I); |
2064 | break; | |
2065 | ||
136e67e9 | 2066 | case EXCP_VFIQ: |
9fae24f5 | 2067 | if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) { |
136e67e9 EI |
2068 | /* VFIQs are only taken when hypervized and non-secure. */ |
2069 | return false; | |
2070 | } | |
2071 | return !(env->daif & PSTATE_F); | |
2072 | case EXCP_VIRQ: | |
9fae24f5 | 2073 | if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) { |
136e67e9 EI |
2074 | /* VIRQs are only taken when hypervized and non-secure. */ |
2075 | return false; | |
2076 | } | |
b5c633c5 | 2077 | return !(env->daif & PSTATE_I); |
043b7f8d EI |
2078 | default: |
2079 | g_assert_not_reached(); | |
2080 | } | |
57e3a0c7 GB |
2081 | |
2082 | /* Use the target EL, current execution state and SCR/HCR settings to | |
2083 | * determine whether the corresponding CPSR bit is used to mask the | |
2084 | * interrupt. | |
2085 | */ | |
2086 | if ((target_el > cur_el) && (target_el != 1)) { | |
7cd6de3b PM |
2087 | /* Exceptions targeting a higher EL may not be maskable */ |
2088 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { | |
2089 | /* 64-bit masking rules are simple: exceptions to EL3 | |
2090 | * can't be masked, and exceptions to EL2 can only be | |
2091 | * masked from Secure state. The HCR and SCR settings | |
2092 | * don't affect the masking logic, only the interrupt routing. | |
2093 | */ | |
2094 | if (target_el == 3 || !secure) { | |
2095 | unmasked = 1; | |
2096 | } | |
2097 | } else { | |
2098 | /* The old 32-bit-only environment has a more complicated | |
2099 | * masking setup. HCR and SCR bits not only affect interrupt | |
2100 | * routing but also change the behaviour of masking. | |
2101 | */ | |
2102 | bool hcr, scr; | |
2103 | ||
2104 | switch (excp_idx) { | |
2105 | case EXCP_FIQ: | |
2106 | /* If FIQs are routed to EL3 or EL2 then there are cases where | |
2107 | * we override the CPSR.F in determining if the exception is | |
2108 | * masked or not. If neither of these are set then we fall back | |
2109 | * to the CPSR.F setting otherwise we further assess the state | |
2110 | * below. | |
2111 | */ | |
2112 | hcr = (env->cp15.hcr_el2 & HCR_FMO); | |
2113 | scr = (env->cp15.scr_el3 & SCR_FIQ); | |
2114 | ||
2115 | /* When EL3 is 32-bit, the SCR.FW bit controls whether the | |
2116 | * CPSR.F bit masks FIQ interrupts when taken in non-secure | |
2117 | * state. If SCR.FW is set then FIQs can be masked by CPSR.F | |
2118 | * when non-secure but only when FIQs are only routed to EL3. | |
2119 | */ | |
2120 | scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr); | |
2121 | break; | |
2122 | case EXCP_IRQ: | |
2123 | /* When EL3 execution state is 32-bit, if HCR.IMO is set then | |
2124 | * we may override the CPSR.I masking when in non-secure state. | |
2125 | * The SCR.IRQ setting has already been taken into consideration | |
2126 | * when setting the target EL, so it does not have a further | |
2127 | * affect here. | |
2128 | */ | |
2129 | hcr = (env->cp15.hcr_el2 & HCR_IMO); | |
2130 | scr = false; | |
2131 | break; | |
2132 | default: | |
2133 | g_assert_not_reached(); | |
2134 | } | |
2135 | ||
2136 | if ((scr || hcr) && !secure) { | |
2137 | unmasked = 1; | |
2138 | } | |
57e3a0c7 GB |
2139 | } |
2140 | } | |
2141 | ||
2142 | /* The PSTATE bits only mask the interrupt if we have not overriden the | |
2143 | * ability above. | |
2144 | */ | |
2145 | return unmasked || pstate_unmasked; | |
043b7f8d EI |
2146 | } |
2147 | ||
701e3c78 | 2148 | #define cpu_init(cpu_model) cpu_generic_init(TYPE_ARM_CPU, cpu_model) |
ad37ad5b | 2149 | |
ba1ba5cc IM |
2150 | #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU |
2151 | #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX) | |
2152 | ||
9467d44c | 2153 | #define cpu_signal_handler cpu_arm_signal_handler |
c732abe2 | 2154 | #define cpu_list arm_cpu_list |
9467d44c | 2155 | |
c1e37810 PM |
2156 | /* ARM has the following "translation regimes" (as the ARM ARM calls them): |
2157 | * | |
2158 | * If EL3 is 64-bit: | |
2159 | * + NonSecure EL1 & 0 stage 1 | |
2160 | * + NonSecure EL1 & 0 stage 2 | |
2161 | * + NonSecure EL2 | |
2162 | * + Secure EL1 & EL0 | |
2163 | * + Secure EL3 | |
2164 | * If EL3 is 32-bit: | |
2165 | * + NonSecure PL1 & 0 stage 1 | |
2166 | * + NonSecure PL1 & 0 stage 2 | |
2167 | * + NonSecure PL2 | |
2168 | * + Secure PL0 & PL1 | |
2169 | * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.) | |
2170 | * | |
2171 | * For QEMU, an mmu_idx is not quite the same as a translation regime because: | |
2172 | * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they | |
2173 | * may differ in access permissions even if the VA->PA map is the same | |
2174 | * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2 | |
2175 | * translation, which means that we have one mmu_idx that deals with two | |
2176 | * concatenated translation regimes [this sort of combined s1+2 TLB is | |
2177 | * architecturally permitted] | |
2178 | * 3. we don't need to allocate an mmu_idx to translations that we won't be | |
2179 | * handling via the TLB. The only way to do a stage 1 translation without | |
2180 | * the immediate stage 2 translation is via the ATS or AT system insns, | |
2181 | * which can be slow-pathed and always do a page table walk. | |
2182 | * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3" | |
2183 | * translation regimes, because they map reasonably well to each other | |
2184 | * and they can't both be active at the same time. | |
2185 | * This gives us the following list of mmu_idx values: | |
2186 | * | |
2187 | * NS EL0 (aka NS PL0) stage 1+2 | |
2188 | * NS EL1 (aka NS PL1) stage 1+2 | |
2189 | * NS EL2 (aka NS PL2) | |
2190 | * S EL3 (aka S PL1) | |
2191 | * S EL0 (aka S PL0) | |
2192 | * S EL1 (not used if EL3 is 32 bit) | |
2193 | * NS EL0+1 stage 2 | |
2194 | * | |
2195 | * (The last of these is an mmu_idx because we want to be able to use the TLB | |
2196 | * for the accesses done as part of a stage 1 page table walk, rather than | |
2197 | * having to walk the stage 2 page table over and over.) | |
2198 | * | |
3bef7012 PM |
2199 | * R profile CPUs have an MPU, but can use the same set of MMU indexes |
2200 | * as A profile. They only need to distinguish NS EL0 and NS EL1 (and | |
2201 | * NS EL2 if we ever model a Cortex-R52). | |
2202 | * | |
2203 | * M profile CPUs are rather different as they do not have a true MMU. | |
2204 | * They have the following different MMU indexes: | |
2205 | * User | |
2206 | * Privileged | |
2207 | * Execution priority negative (this is like privileged, but the | |
2208 | * MPU HFNMIENA bit means that it may have different access permission | |
2209 | * check results to normal privileged code, so can't share a TLB). | |
66787c78 PM |
2210 | * If the CPU supports the v8M Security Extension then there are also: |
2211 | * Secure User | |
2212 | * Secure Privileged | |
2213 | * Secure, execution priority negative | |
3bef7012 | 2214 | * |
8bd5c820 PM |
2215 | * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code |
2216 | * are not quite the same -- different CPU types (most notably M profile | |
2217 | * vs A/R profile) would like to use MMU indexes with different semantics, | |
2218 | * but since we don't ever need to use all of those in a single CPU we | |
2219 | * can avoid setting NB_MMU_MODES to more than 8. The lower bits of | |
2220 | * ARMMMUIdx are the core TLB mmu index, and the higher bits are always | |
2221 | * the same for any particular CPU. | |
2222 | * Variables of type ARMMUIdx are always full values, and the core | |
2223 | * index values are in variables of type 'int'. | |
2224 | * | |
c1e37810 PM |
2225 | * Our enumeration includes at the end some entries which are not "true" |
2226 | * mmu_idx values in that they don't have corresponding TLBs and are only | |
2227 | * valid for doing slow path page table walks. | |
2228 | * | |
2229 | * The constant names here are patterned after the general style of the names | |
2230 | * of the AT/ATS operations. | |
2231 | * The values used are carefully arranged to make mmu_idx => EL lookup easy. | |
2232 | */ | |
e7b921c2 | 2233 | #define ARM_MMU_IDX_A 0x10 /* A profile */ |
8bd5c820 | 2234 | #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */ |
e7b921c2 | 2235 | #define ARM_MMU_IDX_M 0x40 /* M profile */ |
8bd5c820 PM |
2236 | |
2237 | #define ARM_MMU_IDX_TYPE_MASK (~0x7) | |
2238 | #define ARM_MMU_IDX_COREIDX_MASK 0x7 | |
2239 | ||
c1e37810 | 2240 | typedef enum ARMMMUIdx { |
8bd5c820 PM |
2241 | ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A, |
2242 | ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A, | |
2243 | ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A, | |
2244 | ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A, | |
2245 | ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A, | |
2246 | ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A, | |
2247 | ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A, | |
e7b921c2 PM |
2248 | ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M, |
2249 | ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M, | |
3bef7012 | 2250 | ARMMMUIdx_MNegPri = 2 | ARM_MMU_IDX_M, |
66787c78 PM |
2251 | ARMMMUIdx_MSUser = 3 | ARM_MMU_IDX_M, |
2252 | ARMMMUIdx_MSPriv = 4 | ARM_MMU_IDX_M, | |
2253 | ARMMMUIdx_MSNegPri = 5 | ARM_MMU_IDX_M, | |
c1e37810 PM |
2254 | /* Indexes below here don't have TLBs and are used only for AT system |
2255 | * instructions or for the first stage of an S12 page table walk. | |
2256 | */ | |
8bd5c820 PM |
2257 | ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB, |
2258 | ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB, | |
c1e37810 PM |
2259 | } ARMMMUIdx; |
2260 | ||
8bd5c820 PM |
2261 | /* Bit macros for the core-mmu-index values for each index, |
2262 | * for use when calling tlb_flush_by_mmuidx() and friends. | |
2263 | */ | |
2264 | typedef enum ARMMMUIdxBit { | |
2265 | ARMMMUIdxBit_S12NSE0 = 1 << 0, | |
2266 | ARMMMUIdxBit_S12NSE1 = 1 << 1, | |
2267 | ARMMMUIdxBit_S1E2 = 1 << 2, | |
2268 | ARMMMUIdxBit_S1E3 = 1 << 3, | |
2269 | ARMMMUIdxBit_S1SE0 = 1 << 4, | |
2270 | ARMMMUIdxBit_S1SE1 = 1 << 5, | |
2271 | ARMMMUIdxBit_S2NS = 1 << 6, | |
e7b921c2 PM |
2272 | ARMMMUIdxBit_MUser = 1 << 0, |
2273 | ARMMMUIdxBit_MPriv = 1 << 1, | |
3bef7012 | 2274 | ARMMMUIdxBit_MNegPri = 1 << 2, |
66787c78 PM |
2275 | ARMMMUIdxBit_MSUser = 1 << 3, |
2276 | ARMMMUIdxBit_MSPriv = 1 << 4, | |
2277 | ARMMMUIdxBit_MSNegPri = 1 << 5, | |
8bd5c820 PM |
2278 | } ARMMMUIdxBit; |
2279 | ||
f79fbf39 | 2280 | #define MMU_USER_IDX 0 |
c1e37810 | 2281 | |
8bd5c820 PM |
2282 | static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx) |
2283 | { | |
2284 | return mmu_idx & ARM_MMU_IDX_COREIDX_MASK; | |
2285 | } | |
2286 | ||
2287 | static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx) | |
2288 | { | |
e7b921c2 PM |
2289 | if (arm_feature(env, ARM_FEATURE_M)) { |
2290 | return mmu_idx | ARM_MMU_IDX_M; | |
2291 | } else { | |
2292 | return mmu_idx | ARM_MMU_IDX_A; | |
2293 | } | |
8bd5c820 PM |
2294 | } |
2295 | ||
c1e37810 PM |
2296 | /* Return the exception level we're running at if this is our mmu_idx */ |
2297 | static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) | |
6ebbf390 | 2298 | { |
8bd5c820 PM |
2299 | switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) { |
2300 | case ARM_MMU_IDX_A: | |
2301 | return mmu_idx & 3; | |
e7b921c2 | 2302 | case ARM_MMU_IDX_M: |
66787c78 PM |
2303 | return (mmu_idx == ARMMMUIdx_MUser || mmu_idx == ARMMMUIdx_MSUser) |
2304 | ? 0 : 1; | |
8bd5c820 PM |
2305 | default: |
2306 | g_assert_not_reached(); | |
2307 | } | |
c1e37810 PM |
2308 | } |
2309 | ||
2310 | /* Determine the current mmu_idx to use for normal loads/stores */ | |
97ed5ccd | 2311 | static inline int cpu_mmu_index(CPUARMState *env, bool ifetch) |
c1e37810 PM |
2312 | { |
2313 | int el = arm_current_el(env); | |
2314 | ||
e7b921c2 PM |
2315 | if (arm_feature(env, ARM_FEATURE_M)) { |
2316 | ARMMMUIdx mmu_idx = el == 0 ? ARMMMUIdx_MUser : ARMMMUIdx_MPriv; | |
2317 | ||
5d479199 | 2318 | if (armv7m_nvic_neg_prio_requested(env->nvic, env->v7m.secure)) { |
66787c78 PM |
2319 | mmu_idx = ARMMMUIdx_MNegPri; |
2320 | } | |
2321 | ||
2322 | if (env->v7m.secure) { | |
2323 | mmu_idx += ARMMMUIdx_MSUser; | |
3bef7012 PM |
2324 | } |
2325 | ||
e7b921c2 PM |
2326 | return arm_to_core_mmu_idx(mmu_idx); |
2327 | } | |
2328 | ||
c1e37810 | 2329 | if (el < 2 && arm_is_secure_below_el3(env)) { |
8bd5c820 | 2330 | return arm_to_core_mmu_idx(ARMMMUIdx_S1SE0 + el); |
c1e37810 PM |
2331 | } |
2332 | return el; | |
6ebbf390 JM |
2333 | } |
2334 | ||
9e273ef2 PM |
2335 | /* Indexes used when registering address spaces with cpu_address_space_init */ |
2336 | typedef enum ARMASIdx { | |
2337 | ARMASIdx_NS = 0, | |
2338 | ARMASIdx_S = 1, | |
2339 | } ARMASIdx; | |
2340 | ||
533e93f1 | 2341 | /* Return the Exception Level targeted by debug exceptions. */ |
3a298203 PM |
2342 | static inline int arm_debug_target_el(CPUARMState *env) |
2343 | { | |
81669b8b SF |
2344 | bool secure = arm_is_secure(env); |
2345 | bool route_to_el2 = false; | |
2346 | ||
2347 | if (arm_feature(env, ARM_FEATURE_EL2) && !secure) { | |
2348 | route_to_el2 = env->cp15.hcr_el2 & HCR_TGE || | |
2349 | env->cp15.mdcr_el2 & (1 << 8); | |
2350 | } | |
2351 | ||
2352 | if (route_to_el2) { | |
2353 | return 2; | |
2354 | } else if (arm_feature(env, ARM_FEATURE_EL3) && | |
2355 | !arm_el_is_aa64(env, 3) && secure) { | |
2356 | return 3; | |
2357 | } else { | |
2358 | return 1; | |
2359 | } | |
3a298203 PM |
2360 | } |
2361 | ||
2362 | static inline bool aa64_generate_debug_exceptions(CPUARMState *env) | |
2363 | { | |
533e93f1 PM |
2364 | if (arm_is_secure(env)) { |
2365 | /* MDCR_EL3.SDD disables debug events from Secure state */ | |
2366 | if (extract32(env->cp15.mdcr_el3, 16, 1) != 0 | |
2367 | || arm_current_el(env) == 3) { | |
2368 | return false; | |
2369 | } | |
2370 | } | |
2371 | ||
dcbff19b | 2372 | if (arm_current_el(env) == arm_debug_target_el(env)) { |
3a298203 PM |
2373 | if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0) |
2374 | || (env->daif & PSTATE_D)) { | |
2375 | return false; | |
2376 | } | |
2377 | } | |
2378 | return true; | |
2379 | } | |
2380 | ||
2381 | static inline bool aa32_generate_debug_exceptions(CPUARMState *env) | |
2382 | { | |
533e93f1 PM |
2383 | int el = arm_current_el(env); |
2384 | ||
2385 | if (el == 0 && arm_el_is_aa64(env, 1)) { | |
3a298203 PM |
2386 | return aa64_generate_debug_exceptions(env); |
2387 | } | |
533e93f1 PM |
2388 | |
2389 | if (arm_is_secure(env)) { | |
2390 | int spd; | |
2391 | ||
2392 | if (el == 0 && (env->cp15.sder & 1)) { | |
2393 | /* SDER.SUIDEN means debug exceptions from Secure EL0 | |
2394 | * are always enabled. Otherwise they are controlled by | |
2395 | * SDCR.SPD like those from other Secure ELs. | |
2396 | */ | |
2397 | return true; | |
2398 | } | |
2399 | ||
2400 | spd = extract32(env->cp15.mdcr_el3, 14, 2); | |
2401 | switch (spd) { | |
2402 | case 1: | |
2403 | /* SPD == 0b01 is reserved, but behaves as 0b00. */ | |
2404 | case 0: | |
2405 | /* For 0b00 we return true if external secure invasive debug | |
2406 | * is enabled. On real hardware this is controlled by external | |
2407 | * signals to the core. QEMU always permits debug, and behaves | |
2408 | * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high. | |
2409 | */ | |
2410 | return true; | |
2411 | case 2: | |
2412 | return false; | |
2413 | case 3: | |
2414 | return true; | |
2415 | } | |
2416 | } | |
2417 | ||
2418 | return el != 2; | |
3a298203 PM |
2419 | } |
2420 | ||
2421 | /* Return true if debugging exceptions are currently enabled. | |
2422 | * This corresponds to what in ARM ARM pseudocode would be | |
2423 | * if UsingAArch32() then | |
2424 | * return AArch32.GenerateDebugExceptions() | |
2425 | * else | |
2426 | * return AArch64.GenerateDebugExceptions() | |
2427 | * We choose to push the if() down into this function for clarity, | |
2428 | * since the pseudocode has it at all callsites except for the one in | |
2429 | * CheckSoftwareStep(), where it is elided because both branches would | |
2430 | * always return the same value. | |
2431 | * | |
2432 | * Parts of the pseudocode relating to EL2 and EL3 are omitted because we | |
2433 | * don't yet implement those exception levels or their associated trap bits. | |
2434 | */ | |
2435 | static inline bool arm_generate_debug_exceptions(CPUARMState *env) | |
2436 | { | |
2437 | if (env->aarch64) { | |
2438 | return aa64_generate_debug_exceptions(env); | |
2439 | } else { | |
2440 | return aa32_generate_debug_exceptions(env); | |
2441 | } | |
2442 | } | |
2443 | ||
2444 | /* Is single-stepping active? (Note that the "is EL_D AArch64?" check | |
2445 | * implicitly means this always returns false in pre-v8 CPUs.) | |
2446 | */ | |
2447 | static inline bool arm_singlestep_active(CPUARMState *env) | |
2448 | { | |
2449 | return extract32(env->cp15.mdscr_el1, 0, 1) | |
2450 | && arm_el_is_aa64(env, arm_debug_target_el(env)) | |
2451 | && arm_generate_debug_exceptions(env); | |
2452 | } | |
2453 | ||
f9fd40eb PB |
2454 | static inline bool arm_sctlr_b(CPUARMState *env) |
2455 | { | |
2456 | return | |
2457 | /* We need not implement SCTLR.ITD in user-mode emulation, so | |
2458 | * let linux-user ignore the fact that it conflicts with SCTLR_B. | |
2459 | * This lets people run BE32 binaries with "-cpu any". | |
2460 | */ | |
2461 | #ifndef CONFIG_USER_ONLY | |
2462 | !arm_feature(env, ARM_FEATURE_V7) && | |
2463 | #endif | |
2464 | (env->cp15.sctlr_el[1] & SCTLR_B) != 0; | |
2465 | } | |
2466 | ||
ed50ff78 PC |
2467 | /* Return true if the processor is in big-endian mode. */ |
2468 | static inline bool arm_cpu_data_is_big_endian(CPUARMState *env) | |
2469 | { | |
2470 | int cur_el; | |
2471 | ||
2472 | /* In 32bit endianness is determined by looking at CPSR's E bit */ | |
2473 | if (!is_a64(env)) { | |
b2e62d9a PC |
2474 | return |
2475 | #ifdef CONFIG_USER_ONLY | |
2476 | /* In system mode, BE32 is modelled in line with the | |
2477 | * architecture (as word-invariant big-endianness), where loads | |
2478 | * and stores are done little endian but from addresses which | |
2479 | * are adjusted by XORing with the appropriate constant. So the | |
2480 | * endianness to use for the raw data access is not affected by | |
2481 | * SCTLR.B. | |
2482 | * In user mode, however, we model BE32 as byte-invariant | |
2483 | * big-endianness (because user-only code cannot tell the | |
2484 | * difference), and so we need to use a data access endianness | |
2485 | * that depends on SCTLR.B. | |
2486 | */ | |
2487 | arm_sctlr_b(env) || | |
2488 | #endif | |
2489 | ((env->uncached_cpsr & CPSR_E) ? 1 : 0); | |
ed50ff78 PC |
2490 | } |
2491 | ||
2492 | cur_el = arm_current_el(env); | |
2493 | ||
2494 | if (cur_el == 0) { | |
2495 | return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0; | |
2496 | } | |
2497 | ||
2498 | return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0; | |
2499 | } | |
2500 | ||
022c62cb | 2501 | #include "exec/cpu-all.h" |
622ed360 | 2502 | |
3926cc84 AG |
2503 | /* Bit usage in the TB flags field: bit 31 indicates whether we are |
2504 | * in 32 or 64 bit mode. The meaning of the other bits depends on that. | |
c1e37810 PM |
2505 | * We put flags which are shared between 32 and 64 bit mode at the top |
2506 | * of the word, and flags which apply to only one mode at the bottom. | |
3926cc84 AG |
2507 | */ |
2508 | #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31 | |
2509 | #define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT) | |
c1e37810 PM |
2510 | #define ARM_TBFLAG_MMUIDX_SHIFT 28 |
2511 | #define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT) | |
3cf6a0fc PM |
2512 | #define ARM_TBFLAG_SS_ACTIVE_SHIFT 27 |
2513 | #define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT) | |
2514 | #define ARM_TBFLAG_PSTATE_SS_SHIFT 26 | |
2515 | #define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT) | |
9dbbc748 GB |
2516 | /* Target EL if we take a floating-point-disabled exception */ |
2517 | #define ARM_TBFLAG_FPEXC_EL_SHIFT 24 | |
2518 | #define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT) | |
3926cc84 AG |
2519 | |
2520 | /* Bit usage when in AArch32 state: */ | |
a1705768 PM |
2521 | #define ARM_TBFLAG_THUMB_SHIFT 0 |
2522 | #define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT) | |
2523 | #define ARM_TBFLAG_VECLEN_SHIFT 1 | |
2524 | #define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT) | |
2525 | #define ARM_TBFLAG_VECSTRIDE_SHIFT 4 | |
2526 | #define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT) | |
a1705768 PM |
2527 | #define ARM_TBFLAG_VFPEN_SHIFT 7 |
2528 | #define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT) | |
2529 | #define ARM_TBFLAG_CONDEXEC_SHIFT 8 | |
2530 | #define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT) | |
f9fd40eb PB |
2531 | #define ARM_TBFLAG_SCTLR_B_SHIFT 16 |
2532 | #define ARM_TBFLAG_SCTLR_B_MASK (1 << ARM_TBFLAG_SCTLR_B_SHIFT) | |
c0f4af17 PM |
2533 | /* We store the bottom two bits of the CPAR as TB flags and handle |
2534 | * checks on the other bits at runtime | |
2535 | */ | |
647f767b | 2536 | #define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17 |
c0f4af17 | 2537 | #define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT) |
3f342b9e SF |
2538 | /* Indicates whether cp register reads and writes by guest code should access |
2539 | * the secure or nonsecure bank of banked registers; note that this is not | |
2540 | * the same thing as the current security state of the processor! | |
2541 | */ | |
647f767b | 2542 | #define ARM_TBFLAG_NS_SHIFT 19 |
3f342b9e | 2543 | #define ARM_TBFLAG_NS_MASK (1 << ARM_TBFLAG_NS_SHIFT) |
91cca2cd PC |
2544 | #define ARM_TBFLAG_BE_DATA_SHIFT 20 |
2545 | #define ARM_TBFLAG_BE_DATA_MASK (1 << ARM_TBFLAG_BE_DATA_SHIFT) | |
064c379c PM |
2546 | /* For M profile only, Handler (ie not Thread) mode */ |
2547 | #define ARM_TBFLAG_HANDLER_SHIFT 21 | |
2548 | #define ARM_TBFLAG_HANDLER_MASK (1 << ARM_TBFLAG_HANDLER_SHIFT) | |
3926cc84 | 2549 | |
86fb3fa4 TH |
2550 | /* Bit usage when in AArch64 state */ |
2551 | #define ARM_TBFLAG_TBI0_SHIFT 0 /* TBI0 for EL0/1 or TBI for EL2/3 */ | |
2552 | #define ARM_TBFLAG_TBI0_MASK (0x1ull << ARM_TBFLAG_TBI0_SHIFT) | |
2553 | #define ARM_TBFLAG_TBI1_SHIFT 1 /* TBI1 for EL0/1 */ | |
2554 | #define ARM_TBFLAG_TBI1_MASK (0x1ull << ARM_TBFLAG_TBI1_SHIFT) | |
a1705768 PM |
2555 | |
2556 | /* some convenience accessor macros */ | |
3926cc84 AG |
2557 | #define ARM_TBFLAG_AARCH64_STATE(F) \ |
2558 | (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT) | |
c1e37810 PM |
2559 | #define ARM_TBFLAG_MMUIDX(F) \ |
2560 | (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT) | |
3cf6a0fc PM |
2561 | #define ARM_TBFLAG_SS_ACTIVE(F) \ |
2562 | (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT) | |
2563 | #define ARM_TBFLAG_PSTATE_SS(F) \ | |
2564 | (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT) | |
9dbbc748 GB |
2565 | #define ARM_TBFLAG_FPEXC_EL(F) \ |
2566 | (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT) | |
a1705768 PM |
2567 | #define ARM_TBFLAG_THUMB(F) \ |
2568 | (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT) | |
2569 | #define ARM_TBFLAG_VECLEN(F) \ | |
2570 | (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT) | |
2571 | #define ARM_TBFLAG_VECSTRIDE(F) \ | |
2572 | (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT) | |
a1705768 PM |
2573 | #define ARM_TBFLAG_VFPEN(F) \ |
2574 | (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT) | |
2575 | #define ARM_TBFLAG_CONDEXEC(F) \ | |
2576 | (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT) | |
f9fd40eb PB |
2577 | #define ARM_TBFLAG_SCTLR_B(F) \ |
2578 | (((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT) | |
c0f4af17 PM |
2579 | #define ARM_TBFLAG_XSCALE_CPAR(F) \ |
2580 | (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT) | |
3f342b9e SF |
2581 | #define ARM_TBFLAG_NS(F) \ |
2582 | (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT) | |
91cca2cd PC |
2583 | #define ARM_TBFLAG_BE_DATA(F) \ |
2584 | (((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT) | |
064c379c PM |
2585 | #define ARM_TBFLAG_HANDLER(F) \ |
2586 | (((F) & ARM_TBFLAG_HANDLER_MASK) >> ARM_TBFLAG_HANDLER_SHIFT) | |
86fb3fa4 TH |
2587 | #define ARM_TBFLAG_TBI0(F) \ |
2588 | (((F) & ARM_TBFLAG_TBI0_MASK) >> ARM_TBFLAG_TBI0_SHIFT) | |
2589 | #define ARM_TBFLAG_TBI1(F) \ | |
2590 | (((F) & ARM_TBFLAG_TBI1_MASK) >> ARM_TBFLAG_TBI1_SHIFT) | |
a1705768 | 2591 | |
f9fd40eb PB |
2592 | static inline bool bswap_code(bool sctlr_b) |
2593 | { | |
2594 | #ifdef CONFIG_USER_ONLY | |
2595 | /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian. | |
2596 | * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0 | |
2597 | * would also end up as a mixed-endian mode with BE code, LE data. | |
2598 | */ | |
2599 | return | |
2600 | #ifdef TARGET_WORDS_BIGENDIAN | |
2601 | 1 ^ | |
2602 | #endif | |
2603 | sctlr_b; | |
2604 | #else | |
e334bd31 PB |
2605 | /* All code access in ARM is little endian, and there are no loaders |
2606 | * doing swaps that need to be reversed | |
f9fd40eb PB |
2607 | */ |
2608 | return 0; | |
2609 | #endif | |
2610 | } | |
2611 | ||
9dbbc748 GB |
2612 | /* Return the exception level to which FP-disabled exceptions should |
2613 | * be taken, or 0 if FP is enabled. | |
2614 | */ | |
2615 | static inline int fp_exception_el(CPUARMState *env) | |
6b917547 | 2616 | { |
ed1f13d6 | 2617 | int fpen; |
9dbbc748 | 2618 | int cur_el = arm_current_el(env); |
ed1f13d6 | 2619 | |
9dbbc748 GB |
2620 | /* CPACR and the CPTR registers don't exist before v6, so FP is |
2621 | * always accessible | |
2622 | */ | |
2623 | if (!arm_feature(env, ARM_FEATURE_V6)) { | |
2624 | return 0; | |
2625 | } | |
2626 | ||
2627 | /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: | |
2628 | * 0, 2 : trap EL0 and EL1/PL1 accesses | |
2629 | * 1 : trap only EL0 accesses | |
2630 | * 3 : trap no accesses | |
2631 | */ | |
2632 | fpen = extract32(env->cp15.cpacr_el1, 20, 2); | |
2633 | switch (fpen) { | |
2634 | case 0: | |
2635 | case 2: | |
2636 | if (cur_el == 0 || cur_el == 1) { | |
2637 | /* Trap to PL1, which might be EL1 or EL3 */ | |
2638 | if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { | |
2639 | return 3; | |
2640 | } | |
2641 | return 1; | |
2642 | } | |
2643 | if (cur_el == 3 && !is_a64(env)) { | |
2644 | /* Secure PL1 running at EL3 */ | |
2645 | return 3; | |
2646 | } | |
2647 | break; | |
2648 | case 1: | |
2649 | if (cur_el == 0) { | |
2650 | return 1; | |
2651 | } | |
2652 | break; | |
2653 | case 3: | |
2654 | break; | |
2655 | } | |
2656 | ||
2657 | /* For the CPTR registers we don't need to guard with an ARM_FEATURE | |
2658 | * check because zero bits in the registers mean "don't trap". | |
2659 | */ | |
2660 | ||
2661 | /* CPTR_EL2 : present in v7VE or v8 */ | |
2662 | if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) | |
2663 | && !arm_is_secure_below_el3(env)) { | |
2664 | /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ | |
2665 | return 2; | |
2666 | } | |
2667 | ||
2668 | /* CPTR_EL3 : present in v8 */ | |
2669 | if (extract32(env->cp15.cptr_el[3], 10, 1)) { | |
2670 | /* Trap all FP ops to EL3 */ | |
2671 | return 3; | |
ed1f13d6 | 2672 | } |
8c6afa6a | 2673 | |
9dbbc748 GB |
2674 | return 0; |
2675 | } | |
2676 | ||
c3ae85fc PB |
2677 | #ifdef CONFIG_USER_ONLY |
2678 | static inline bool arm_cpu_bswap_data(CPUARMState *env) | |
2679 | { | |
2680 | return | |
2681 | #ifdef TARGET_WORDS_BIGENDIAN | |
2682 | 1 ^ | |
2683 | #endif | |
2684 | arm_cpu_data_is_big_endian(env); | |
2685 | } | |
2686 | #endif | |
2687 | ||
86fb3fa4 TH |
2688 | #ifndef CONFIG_USER_ONLY |
2689 | /** | |
2690 | * arm_regime_tbi0: | |
2691 | * @env: CPUARMState | |
2692 | * @mmu_idx: MMU index indicating required translation regime | |
2693 | * | |
2694 | * Extracts the TBI0 value from the appropriate TCR for the current EL | |
2695 | * | |
2696 | * Returns: the TBI0 value. | |
2697 | */ | |
2698 | uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx); | |
2699 | ||
2700 | /** | |
2701 | * arm_regime_tbi1: | |
2702 | * @env: CPUARMState | |
2703 | * @mmu_idx: MMU index indicating required translation regime | |
2704 | * | |
2705 | * Extracts the TBI1 value from the appropriate TCR for the current EL | |
2706 | * | |
2707 | * Returns: the TBI1 value. | |
2708 | */ | |
2709 | uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx); | |
2710 | #else | |
2711 | /* We can't handle tagged addresses properly in user-only mode */ | |
2712 | static inline uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx) | |
2713 | { | |
2714 | return 0; | |
2715 | } | |
2716 | ||
2717 | static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx) | |
2718 | { | |
2719 | return 0; | |
2720 | } | |
2721 | #endif | |
2722 | ||
9dbbc748 | 2723 | static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, |
89fee74a | 2724 | target_ulong *cs_base, uint32_t *flags) |
9dbbc748 | 2725 | { |
8bd5c820 | 2726 | ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); |
3926cc84 AG |
2727 | if (is_a64(env)) { |
2728 | *pc = env->pc; | |
c1e37810 | 2729 | *flags = ARM_TBFLAG_AARCH64_STATE_MASK; |
86fb3fa4 TH |
2730 | /* Get control bits for tagged addresses */ |
2731 | *flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT); | |
2732 | *flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT); | |
05ed9a99 | 2733 | } else { |
3926cc84 AG |
2734 | *pc = env->regs[15]; |
2735 | *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT) | |
2736 | | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT) | |
2737 | | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT) | |
2738 | | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT) | |
f9fd40eb | 2739 | | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT); |
3f342b9e SF |
2740 | if (!(access_secure_reg(env))) { |
2741 | *flags |= ARM_TBFLAG_NS_MASK; | |
2742 | } | |
2c7ffc41 PM |
2743 | if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30) |
2744 | || arm_el_is_aa64(env, 1)) { | |
3926cc84 AG |
2745 | *flags |= ARM_TBFLAG_VFPEN_MASK; |
2746 | } | |
c0f4af17 PM |
2747 | *flags |= (extract32(env->cp15.c15_cpar, 0, 2) |
2748 | << ARM_TBFLAG_XSCALE_CPAR_SHIFT); | |
a1705768 | 2749 | } |
3926cc84 | 2750 | |
8bd5c820 | 2751 | *flags |= (arm_to_core_mmu_idx(mmu_idx) << ARM_TBFLAG_MMUIDX_SHIFT); |
86fb3fa4 | 2752 | |
3cf6a0fc PM |
2753 | /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine |
2754 | * states defined in the ARM ARM for software singlestep: | |
2755 | * SS_ACTIVE PSTATE.SS State | |
2756 | * 0 x Inactive (the TB flag for SS is always 0) | |
2757 | * 1 0 Active-pending | |
2758 | * 1 1 Active-not-pending | |
2759 | */ | |
2760 | if (arm_singlestep_active(env)) { | |
2761 | *flags |= ARM_TBFLAG_SS_ACTIVE_MASK; | |
2762 | if (is_a64(env)) { | |
2763 | if (env->pstate & PSTATE_SS) { | |
2764 | *flags |= ARM_TBFLAG_PSTATE_SS_MASK; | |
2765 | } | |
2766 | } else { | |
2767 | if (env->uncached_cpsr & PSTATE_SS) { | |
2768 | *flags |= ARM_TBFLAG_PSTATE_SS_MASK; | |
2769 | } | |
2770 | } | |
2771 | } | |
91cca2cd PC |
2772 | if (arm_cpu_data_is_big_endian(env)) { |
2773 | *flags |= ARM_TBFLAG_BE_DATA_MASK; | |
2774 | } | |
9dbbc748 | 2775 | *flags |= fp_exception_el(env) << ARM_TBFLAG_FPEXC_EL_SHIFT; |
c1e37810 | 2776 | |
15b3f556 | 2777 | if (arm_v7m_is_handler_mode(env)) { |
064c379c PM |
2778 | *flags |= ARM_TBFLAG_HANDLER_MASK; |
2779 | } | |
2780 | ||
3926cc84 | 2781 | *cs_base = 0; |
6b917547 AL |
2782 | } |
2783 | ||
98128601 RH |
2784 | enum { |
2785 | QEMU_PSCI_CONDUIT_DISABLED = 0, | |
2786 | QEMU_PSCI_CONDUIT_SMC = 1, | |
2787 | QEMU_PSCI_CONDUIT_HVC = 2, | |
2788 | }; | |
2789 | ||
017518c1 PM |
2790 | #ifndef CONFIG_USER_ONLY |
2791 | /* Return the address space index to use for a memory access */ | |
2792 | static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs) | |
2793 | { | |
2794 | return attrs.secure ? ARMASIdx_S : ARMASIdx_NS; | |
2795 | } | |
5ce4ff65 PM |
2796 | |
2797 | /* Return the AddressSpace to use for a memory access | |
2798 | * (which depends on whether the access is S or NS, and whether | |
2799 | * the board gave us a separate AddressSpace for S accesses). | |
2800 | */ | |
2801 | static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs) | |
2802 | { | |
2803 | return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs)); | |
2804 | } | |
017518c1 PM |
2805 | #endif |
2806 | ||
bd7d00fc PM |
2807 | /** |
2808 | * arm_register_el_change_hook: | |
2809 | * Register a hook function which will be called back whenever this | |
2810 | * CPU changes exception level or mode. The hook function will be | |
2811 | * passed a pointer to the ARMCPU and the opaque data pointer passed | |
2812 | * to this function when the hook was registered. | |
2813 | * | |
2814 | * Note that we currently only support registering a single hook function, | |
2815 | * and will assert if this function is called twice. | |
2816 | * This facility is intended for the use of the GICv3 emulation. | |
2817 | */ | |
2818 | void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook, | |
2819 | void *opaque); | |
2820 | ||
2821 | /** | |
2822 | * arm_get_el_change_hook_opaque: | |
2823 | * Return the opaque data that will be used by the el_change_hook | |
2824 | * for this CPU. | |
2825 | */ | |
2826 | static inline void *arm_get_el_change_hook_opaque(ARMCPU *cpu) | |
2827 | { | |
2828 | return cpu->el_change_hook_opaque; | |
2829 | } | |
2830 | ||
2c0262af | 2831 | #endif |