2 * ARM virtual CPU header
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
26 #include "exec/cpu-defs.h"
28 /* ARM processors have a weak memory model */
29 #define TCG_GUEST_DEFAULT_MO (0)
31 #define EXCP_UDEF 1 /* undefined instruction */
32 #define EXCP_SWI 2 /* software interrupt */
33 #define EXCP_PREFETCH_ABORT 3
34 #define EXCP_DATA_ABORT 4
38 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
39 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
40 #define EXCP_HVC 11 /* HyperVisor Call */
41 #define EXCP_HYP_TRAP 12
42 #define EXCP_SMC 13 /* Secure Monitor Call */
45 #define EXCP_SEMIHOST 16 /* semihosting call */
46 #define EXCP_NOCP 17 /* v7M NOCP UsageFault */
47 #define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
48 #define EXCP_STKOF 19 /* v8M STKOF UsageFault */
49 #define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */
50 #define EXCP_LSERR 21 /* v8M LSERR SecureFault */
51 #define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */
52 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
54 #define ARMV7M_EXCP_RESET 1
55 #define ARMV7M_EXCP_NMI 2
56 #define ARMV7M_EXCP_HARD 3
57 #define ARMV7M_EXCP_MEM 4
58 #define ARMV7M_EXCP_BUS 5
59 #define ARMV7M_EXCP_USAGE 6
60 #define ARMV7M_EXCP_SECURE 7
61 #define ARMV7M_EXCP_SVC 11
62 #define ARMV7M_EXCP_DEBUG 12
63 #define ARMV7M_EXCP_PENDSV 14
64 #define ARMV7M_EXCP_SYSTICK 15
66 /* For M profile, some registers are banked secure vs non-secure;
67 * these are represented as a 2-element array where the first element
68 * is the non-secure copy and the second is the secure copy.
69 * When the CPU does not have implement the security extension then
70 * only the first element is used.
71 * This means that the copy for the current security state can be
72 * accessed via env->registerfield[env->v7m.secure] (whether the security
73 * extension is implemented or not).
81 /* ARM-specific interrupt pending bits. */
82 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
83 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
84 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
86 /* The usual mapping for an AArch64 system register to its AArch32
87 * counterpart is for the 32 bit world to have access to the lower
88 * half only (with writes leaving the upper half untouched). It's
89 * therefore useful to be able to pass TCG the offset of the least
90 * significant half of a uint64_t struct member.
92 #ifdef HOST_WORDS_BIGENDIAN
93 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
94 #define offsetofhigh32(S, M) offsetof(S, M)
96 #define offsetoflow32(S, M) offsetof(S, M)
97 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
100 /* Meanings of the ARMCPU object's four inbound GPIO lines */
101 #define ARM_CPU_IRQ 0
102 #define ARM_CPU_FIQ 1
103 #define ARM_CPU_VIRQ 2
104 #define ARM_CPU_VFIQ 3
106 /* ARM-specific extra insn start words:
107 * 1: Conditional execution bits
108 * 2: Partial exception syndrome for data aborts
110 #define TARGET_INSN_START_EXTRA_WORDS 2
112 /* The 2nd extra word holding syndrome info for data aborts does not use
113 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
114 * help the sleb128 encoder do a better job.
115 * When restoring the CPU state, we shift it back up.
117 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
118 #define ARM_INSN_START_WORD2_SHIFT 14
120 /* We currently assume float and double are IEEE single and double
121 precision respectively.
122 Doing runtime conversions is tricky because VFP registers may contain
123 integer values (eg. as the result of a FTOSI instruction).
124 s<2n> maps to the least significant half of d<n>
125 s<2n+1> maps to the most significant half of d<n>
130 * @desc: Contains the XML descriptions.
131 * @num: Number of the registers in this XML seen by GDB.
132 * @data: A union with data specific to the set of registers
133 * @cpregs_keys: Array that contains the corresponding Key of
134 * a given cpreg with the same order of the cpreg
135 * in the XML description.
137 typedef struct DynamicGDBXMLInfo {
147 /* CPU state for each instance of a generic timer (in cp15 c14) */
148 typedef struct ARMGenericTimer {
149 uint64_t cval; /* Timer CompareValue register */
150 uint64_t ctl; /* Timer Control register */
153 #define GTIMER_PHYS 0
154 #define GTIMER_VIRT 1
157 #define GTIMER_HYPVIRT 4
158 #define NUM_GTIMERS 5
166 /* Define a maximum sized vector register.
167 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
168 * For 64-bit, this is a 2048-bit SVE register.
170 * Note that the mapping between S, D, and Q views of the register bank
171 * differs between AArch64 and AArch32.
173 * Qn = regs[n].d[1]:regs[n].d[0]
174 * Dn = regs[n / 2].d[n & 1]
175 * Sn = regs[n / 4].d[n % 4 / 2],
176 * bits 31..0 for even n, and bits 63..32 for odd n
177 * (and regs[16] to regs[31] are inaccessible)
180 * Qn = regs[n].d[1]:regs[n].d[0]
182 * Sn = regs[n].d[0] bits 31..0
183 * Hn = regs[n].d[0] bits 15..0
185 * This corresponds to the architecturally defined mapping between
186 * the two execution states, and means we do not need to explicitly
187 * map these registers when changing states.
189 * Align the data for use with TCG host vector operations.
192 #ifdef TARGET_AARCH64
193 # define ARM_MAX_VQ 16
194 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
196 # define ARM_MAX_VQ 1
197 static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { }
200 typedef struct ARMVectorReg {
201 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
204 #ifdef TARGET_AARCH64
205 /* In AArch32 mode, predicate registers do not exist at all. */
206 typedef struct ARMPredicateReg {
207 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
210 /* In AArch32 mode, PAC keys do not exist at all. */
211 typedef struct ARMPACKey {
217 typedef struct CPUARMState {
218 /* Regs for current mode. */
221 /* 32/64 switch only happens when taking and returning from
222 * exceptions so the overlap semantics are taken care of then
223 * instead of having a complicated union.
225 /* Regs for A64 mode. */
228 /* PSTATE isn't an architectural register for ARMv8. However, it is
229 * convenient for us to assemble the underlying state into a 32 bit format
230 * identical to the architectural format used for the SPSR. (This is also
231 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
232 * 'pstate' register are.) Of the PSTATE bits:
233 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
234 * semantics as for AArch32, as described in the comments on each field)
235 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
236 * DAIF (exception masks) are kept in env->daif
237 * BTYPE is kept in env->btype
238 * all other bits are stored in their correct places in env->pstate
241 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
243 /* Cached TBFLAGS state. See below for which bits are included. */
246 /* Frequently accessed CPSR bits are stored separately for efficiency.
247 This contains all the other bits. Use cpsr_{read,write} to access
249 uint32_t uncached_cpsr;
252 /* Banked registers. */
253 uint64_t banked_spsr[8];
254 uint32_t banked_r13[8];
255 uint32_t banked_r14[8];
257 /* These hold r8-r12. */
258 uint32_t usr_regs[5];
259 uint32_t fiq_regs[5];
261 /* cpsr flag cache for faster execution */
262 uint32_t CF; /* 0 or 1 */
263 uint32_t VF; /* V is the bit 31. All other bits are undefined */
264 uint32_t NF; /* N is bit 31. All other bits are undefined. */
265 uint32_t ZF; /* Z set if zero. */
266 uint32_t QF; /* 0 or 1 */
267 uint32_t GE; /* cpsr[19:16] */
268 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
269 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
270 uint32_t btype; /* BTI branch type. spsr[11:10]. */
271 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
273 uint64_t elr_el[4]; /* AArch64 exception link regs */
274 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
276 /* System control coprocessor (cp15) */
279 union { /* Cache size selection */
281 uint64_t _unused_csselr0;
283 uint64_t _unused_csselr1;
286 uint64_t csselr_el[4];
288 union { /* System control register. */
290 uint64_t _unused_sctlr;
295 uint64_t sctlr_el[4];
297 uint64_t cpacr_el1; /* Architectural feature access control register */
298 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
299 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
300 uint64_t sder; /* Secure debug enable register. */
301 uint32_t nsacr; /* Non-secure access control register. */
302 union { /* MMU translation table base 0. */
304 uint64_t _unused_ttbr0_0;
306 uint64_t _unused_ttbr0_1;
309 uint64_t ttbr0_el[4];
311 union { /* MMU translation table base 1. */
313 uint64_t _unused_ttbr1_0;
315 uint64_t _unused_ttbr1_1;
318 uint64_t ttbr1_el[4];
320 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
321 /* MMU translation table base control. */
323 TCR vtcr_el2; /* Virtualization Translation Control. */
324 uint32_t c2_data; /* MPU data cacheable bits. */
325 uint32_t c2_insn; /* MPU instruction cacheable bits. */
326 union { /* MMU domain access control register
327 * MPU write buffer control.
337 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
338 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
339 uint64_t hcr_el2; /* Hypervisor configuration register */
340 uint64_t scr_el3; /* Secure configuration register. */
341 union { /* Fault status registers. */
352 uint64_t _unused_dfsr;
359 uint32_t c6_region[8]; /* MPU base/size registers. */
360 union { /* Fault address registers. */
362 uint64_t _unused_far0;
363 #ifdef HOST_WORDS_BIGENDIAN
374 uint64_t _unused_far3;
380 union { /* Translation result. */
382 uint64_t _unused_par_0;
384 uint64_t _unused_par_1;
390 uint32_t c9_insn; /* Cache lockdown registers. */
392 uint64_t c9_pmcr; /* performance monitor control register */
393 uint64_t c9_pmcnten; /* perf monitor counter enables */
394 uint64_t c9_pmovsr; /* perf monitor overflow status */
395 uint64_t c9_pmuserenr; /* perf monitor user enable */
396 uint64_t c9_pmselr; /* perf monitor counter selection register */
397 uint64_t c9_pminten; /* perf monitor interrupt enables */
398 union { /* Memory attribute redirection */
400 #ifdef HOST_WORDS_BIGENDIAN
401 uint64_t _unused_mair_0;
404 uint64_t _unused_mair_1;
408 uint64_t _unused_mair_0;
411 uint64_t _unused_mair_1;
418 union { /* vector base address register */
420 uint64_t _unused_vbar;
427 uint32_t mvbar; /* (monitor) vector base address register */
428 struct { /* FCSE PID. */
432 union { /* Context ID. */
434 uint64_t _unused_contextidr_0;
435 uint64_t contextidr_ns;
436 uint64_t _unused_contextidr_1;
437 uint64_t contextidr_s;
439 uint64_t contextidr_el[4];
441 union { /* User RW Thread register. */
443 uint64_t tpidrurw_ns;
444 uint64_t tpidrprw_ns;
448 uint64_t tpidr_el[4];
450 /* The secure banks of these registers don't map anywhere */
455 union { /* User RO Thread register. */
456 uint64_t tpidruro_ns;
457 uint64_t tpidrro_el[1];
459 uint64_t c14_cntfrq; /* Counter Frequency register */
460 uint64_t c14_cntkctl; /* Timer Control register */
461 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
462 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
463 ARMGenericTimer c14_timer[NUM_GTIMERS];
464 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
465 uint32_t c15_ticonfig; /* TI925T configuration byte. */
466 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
467 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
468 uint32_t c15_threadid; /* TI debugger thread-ID. */
469 uint32_t c15_config_base_address; /* SCU base address. */
470 uint32_t c15_diagnostic; /* diagnostic register */
471 uint32_t c15_power_diagnostic;
472 uint32_t c15_power_control; /* power control */
473 uint64_t dbgbvr[16]; /* breakpoint value registers */
474 uint64_t dbgbcr[16]; /* breakpoint control registers */
475 uint64_t dbgwvr[16]; /* watchpoint value registers */
476 uint64_t dbgwcr[16]; /* watchpoint control registers */
478 uint64_t oslsr_el1; /* OS Lock Status */
481 /* Stores the architectural value of the counter *the last time it was
482 * updated* by pmccntr_op_start. Accesses should always be surrounded
483 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
484 * architecturally-correct value is being read/set.
487 /* Stores the delta between the architectural value and the underlying
488 * cycle count during normal operation. It is used to update c15_ccnt
489 * to be the correct architectural value before accesses. During
490 * accesses, c15_ccnt_delta contains the underlying count being used
491 * for the access, after which it reverts to the delta value in
494 uint64_t c15_ccnt_delta;
495 uint64_t c14_pmevcntr[31];
496 uint64_t c14_pmevcntr_delta[31];
497 uint64_t c14_pmevtyper[31];
498 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
499 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
500 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
504 /* M profile has up to 4 stack pointers:
505 * a Main Stack Pointer and a Process Stack Pointer for each
506 * of the Secure and Non-Secure states. (If the CPU doesn't support
507 * the security extension then it has only two SPs.)
508 * In QEMU we always store the currently active SP in regs[13],
509 * and the non-active SP for the current security state in
510 * v7m.other_sp. The stack pointers for the inactive security state
511 * are stored in other_ss_msp and other_ss_psp.
512 * switch_v7m_security_state() is responsible for rearranging them
513 * when we change security state.
516 uint32_t other_ss_msp;
517 uint32_t other_ss_psp;
518 uint32_t vecbase[M_REG_NUM_BANKS];
519 uint32_t basepri[M_REG_NUM_BANKS];
520 uint32_t control[M_REG_NUM_BANKS];
521 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
522 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
523 uint32_t hfsr; /* HardFault Status */
524 uint32_t dfsr; /* Debug Fault Status Register */
525 uint32_t sfsr; /* Secure Fault Status Register */
526 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
527 uint32_t bfar; /* BusFault Address */
528 uint32_t sfar; /* Secure Fault Address Register */
529 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
531 uint32_t primask[M_REG_NUM_BANKS];
532 uint32_t faultmask[M_REG_NUM_BANKS];
533 uint32_t aircr; /* only holds r/w state if security extn implemented */
534 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
535 uint32_t csselr[M_REG_NUM_BANKS];
536 uint32_t scr[M_REG_NUM_BANKS];
537 uint32_t msplim[M_REG_NUM_BANKS];
538 uint32_t psplim[M_REG_NUM_BANKS];
539 uint32_t fpcar[M_REG_NUM_BANKS];
540 uint32_t fpccr[M_REG_NUM_BANKS];
541 uint32_t fpdscr[M_REG_NUM_BANKS];
542 uint32_t cpacr[M_REG_NUM_BANKS];
546 /* Information associated with an exception about to be taken:
547 * code which raises an exception must set cs->exception_index and
548 * the relevant parts of this structure; the cpu_do_interrupt function
549 * will then set the guest-visible registers as part of the exception
553 uint32_t syndrome; /* AArch64 format syndrome register */
554 uint32_t fsr; /* AArch32 format fault status register info */
555 uint64_t vaddress; /* virtual addr associated with exception, if any */
556 uint32_t target_el; /* EL the exception should be targeted for */
557 /* If we implement EL2 we will also need to store information
558 * about the intermediate physical address for stage 2 faults.
562 /* Information associated with an SError */
569 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
570 uint32_t irq_line_state;
572 /* Thumb-2 EE state. */
576 /* VFP coprocessor state. */
578 ARMVectorReg zregs[32];
580 #ifdef TARGET_AARCH64
581 /* Store FFR as pregs[16] to make it easier to treat as any other. */
582 #define FFR_PRED_NUM 16
583 ARMPredicateReg pregs[17];
584 /* Scratch space for aa64 sve predicate temporary. */
585 ARMPredicateReg preg_tmp;
588 /* We store these fpcsr fields separately for convenience. */
589 uint32_t qc[4] QEMU_ALIGNED(16);
595 /* Scratch space for aa32 neon expansion. */
598 /* There are a number of distinct float control structures:
600 * fp_status: is the "normal" fp status.
601 * fp_status_fp16: used for half-precision calculations
602 * standard_fp_status : the ARM "Standard FPSCR Value"
604 * Half-precision operations are governed by a separate
605 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
606 * status structure to control this.
608 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
609 * round-to-nearest and is used by any operations (generally
610 * Neon) which the architecture defines as controlled by the
611 * standard FPSCR value rather than the FPSCR.
613 * To avoid having to transfer exception bits around, we simply
614 * say that the FPSCR cumulative exception flags are the logical
615 * OR of the flags in the three fp statuses. This relies on the
616 * only thing which needs to read the exception flags being
617 * an explicit FPSCR read.
619 float_status fp_status;
620 float_status fp_status_f16;
621 float_status standard_fp_status;
626 uint64_t exclusive_addr;
627 uint64_t exclusive_val;
628 uint64_t exclusive_high;
630 /* iwMMXt coprocessor state. */
638 #ifdef TARGET_AARCH64
648 #if defined(CONFIG_USER_ONLY)
649 /* For usermode syscall translation. */
653 struct CPUBreakpoint *cpu_breakpoint[16];
654 struct CPUWatchpoint *cpu_watchpoint[16];
656 /* Fields up to this point are cleared by a CPU reset */
657 struct {} end_reset_fields;
659 /* Fields after this point are preserved across CPU reset. */
661 /* Internal CPU feature flags. */
669 uint32_t rnr[M_REG_NUM_BANKS];
674 /* The PMSAv8 implementation also shares some PMSAv7 config
676 * pmsav7.rnr (region number register)
677 * pmsav7_dregion (number of configured regions)
679 uint32_t *rbar[M_REG_NUM_BANKS];
680 uint32_t *rlar[M_REG_NUM_BANKS];
681 uint32_t mair0[M_REG_NUM_BANKS];
682 uint32_t mair1[M_REG_NUM_BANKS];
694 const struct arm_boot_info *boot_info;
695 /* Store GICv3CPUState to access from this struct */
701 * type of a function which can be registered via arm_register_el_change_hook()
702 * to get callbacks when the CPU changes its exception level or mode.
704 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
705 typedef struct ARMELChangeHook ARMELChangeHook;
706 struct ARMELChangeHook {
707 ARMELChangeHookFn *hook;
709 QLIST_ENTRY(ARMELChangeHook) node;
712 /* These values map onto the return values for
713 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
714 typedef enum ARMPSCIState {
720 typedef struct ARMISARegisters ARMISARegisters;
733 CPUNegativeOffsetState neg;
736 /* Coprocessor information */
738 /* For marshalling (mostly coprocessor) register state between the
739 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
740 * we use these arrays.
742 /* List of register indexes managed via these arrays; (full KVM style
743 * 64 bit indexes, not CPRegInfo 32 bit indexes)
745 uint64_t *cpreg_indexes;
746 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
747 uint64_t *cpreg_values;
748 /* Length of the indexes, values, reset_values arrays */
749 int32_t cpreg_array_len;
750 /* These are used only for migration: incoming data arrives in
751 * these fields and is sanity checked in post_load before copying
752 * to the working data structures above.
754 uint64_t *cpreg_vmstate_indexes;
755 uint64_t *cpreg_vmstate_values;
756 int32_t cpreg_vmstate_array_len;
758 DynamicGDBXMLInfo dyn_sysreg_xml;
759 DynamicGDBXMLInfo dyn_svereg_xml;
761 /* Timers used by the generic (architected) timer */
762 QEMUTimer *gt_timer[NUM_GTIMERS];
764 * Timer used by the PMU. Its state is restored after migration by
765 * pmu_op_finish() - it does not need other handling during migration
767 QEMUTimer *pmu_timer;
768 /* GPIO outputs for generic timer */
769 qemu_irq gt_timer_outputs[NUM_GTIMERS];
770 /* GPIO output for GICv3 maintenance interrupt signal */
771 qemu_irq gicv3_maintenance_interrupt;
772 /* GPIO output for the PMU interrupt */
773 qemu_irq pmu_interrupt;
775 /* MemoryRegion to use for secure physical accesses */
776 MemoryRegion *secure_memory;
778 /* For v8M, pointer to the IDAU interface provided by board/SoC */
781 /* 'compatible' string for this CPU for Linux device trees */
782 const char *dtb_compatible;
784 /* PSCI version for this CPU
785 * Bits[31:16] = Major Version
786 * Bits[15:0] = Minor Version
788 uint32_t psci_version;
790 /* Should CPU start in PSCI powered-off state? */
791 bool start_powered_off;
793 /* Current power state, access guarded by BQL */
794 ARMPSCIState power_state;
796 /* CPU has virtualization extension */
798 /* CPU has security extension */
800 /* CPU has PMU (Performance Monitor Unit) */
806 /* CPU has M-profile DSP extension */
809 /* CPU has memory protection unit */
811 /* PMSAv7 MPU number of supported regions */
812 uint32_t pmsav7_dregion;
813 /* v8M SAU number of supported regions */
814 uint32_t sau_sregion;
816 /* PSCI conduit used to invoke PSCI methods
817 * 0 - disabled, 1 - smc, 2 - hvc
819 uint32_t psci_conduit;
821 /* For v8M, initial value of the Secure VTOR */
824 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
825 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
829 /* KVM init features for this CPU */
830 uint32_t kvm_init_features[7];
834 /* KVM virtual time adjustment */
836 bool kvm_vtime_dirty;
839 /* Uniprocessor system with MP extensions */
842 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
843 * and the probe failed (so we need to report the error in realize)
845 bool host_cpu_probe_failed;
847 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
852 /* The instance init functions for implementation-specific subclasses
853 * set these fields to specify the implementation-dependent values of
854 * various constant registers and reset values of non-constant
856 * Some of these might become QOM properties eventually.
857 * Field names match the official register names as defined in the
858 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
859 * is used for reset values of non-constant registers; no reset_
860 * prefix means a constant register.
861 * Some of these registers are split out into a substructure that
862 * is shared with the translators to control the ISA.
864 * Note that if you add an ID register to the ARMISARegisters struct
865 * you need to also update the 32-bit and 64-bit versions of the
866 * kvm_arm_get_host_cpu_features() function to correctly populate the
867 * field by reading the value from the KVM vCPU.
869 struct ARMISARegisters {
887 uint64_t id_aa64isar0;
888 uint64_t id_aa64isar1;
889 uint64_t id_aa64pfr0;
890 uint64_t id_aa64pfr1;
891 uint64_t id_aa64mmfr0;
892 uint64_t id_aa64mmfr1;
893 uint64_t id_aa64mmfr2;
894 uint64_t id_aa64dfr0;
895 uint64_t id_aa64dfr1;
899 uint32_t reset_fpsid;
901 uint32_t reset_sctlr;
907 uint64_t id_aa64afr0;
908 uint64_t id_aa64afr1;
910 uint64_t mp_affinity; /* MP ID without feature bits */
911 /* The elements of this array are the CCSIDR values for each cache,
912 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
916 uint32_t reset_auxcr;
918 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
919 uint32_t dcz_blocksize;
922 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
923 int gic_num_lrs; /* number of list registers */
924 int gic_vpribits; /* number of virtual priority bits */
925 int gic_vprebits; /* number of virtual preemption bits */
927 /* Whether the cfgend input is high (i.e. this CPU should reset into
928 * big-endian mode). This setting isn't used directly: instead it modifies
929 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
930 * architecture version.
934 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
935 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
937 int32_t node_id; /* NUMA node this CPU belongs to */
939 /* Used to synchronize KVM and QEMU in-kernel device levels */
940 uint8_t device_irq_level;
942 /* Used to set the maximum vector length the cpu will support. */
946 * In sve_vq_map each set bit is a supported vector length of
947 * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector
948 * length in quadwords.
950 * While processing properties during initialization, corresponding
951 * sve_vq_init bits are set for bits in sve_vq_map that have been
954 DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ);
955 DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ);
957 /* Generic timer counter frequency, in Hz */
958 uint64_t gt_cntfrq_hz;
961 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
963 void arm_cpu_post_init(Object *obj);
965 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
967 #ifndef CONFIG_USER_ONLY
968 extern const VMStateDescription vmstate_arm_cpu;
971 void arm_cpu_do_interrupt(CPUState *cpu);
972 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
973 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
975 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
978 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
979 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
982 * Helpers to dynamically generates XML descriptions of the sysregs
983 * and SVE registers. Returns the number of registers in each set.
985 int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg);
986 int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
988 /* Returns the dynamically generated XML for the gdb stub.
989 * Returns a pointer to the XML contents for the specified XML file or NULL
990 * if the XML name doesn't match the predefined one.
992 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
994 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
995 int cpuid, void *opaque);
996 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
997 int cpuid, void *opaque);
999 #ifdef TARGET_AARCH64
1000 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1001 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1002 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1003 void aarch64_sve_change_el(CPUARMState *env, int old_el,
1004 int new_el, bool el0_a64);
1005 void aarch64_add_sve_properties(Object *obj);
1008 * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1009 * The byte at offset i from the start of the in-memory representation contains
1010 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1011 * lowest offsets are stored in the lowest memory addresses, then that nearly
1012 * matches QEMU's representation, which is to use an array of host-endian
1013 * uint64_t's, where the lower offsets are at the lower indices. To complete
1014 * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1016 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1018 #ifdef HOST_WORDS_BIGENDIAN
1021 for (i = 0; i < nr; ++i) {
1022 dst[i] = bswap64(src[i]);
1032 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1033 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1036 static inline void aarch64_add_sve_properties(Object *obj) { }
1039 #if !defined(CONFIG_TCG)
1040 static inline target_ulong do_arm_semihosting(CPUARMState *env)
1042 g_assert_not_reached();
1045 target_ulong do_arm_semihosting(CPUARMState *env);
1047 void aarch64_sync_32_to_64(CPUARMState *env);
1048 void aarch64_sync_64_to_32(CPUARMState *env);
1050 int fp_exception_el(CPUARMState *env, int cur_el);
1051 int sve_exception_el(CPUARMState *env, int cur_el);
1052 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
1054 static inline bool is_a64(CPUARMState *env)
1056 return env->aarch64;
1059 /* you can call this signal handler from your SIGBUS and SIGSEGV
1060 signal handlers to inform the virtual CPU of exceptions. non zero
1061 is returned if the signal was handled by the virtual CPU. */
1062 int cpu_arm_signal_handler(int host_signum, void *pinfo,
1066 * pmu_op_start/finish
1069 * Convert all PMU counters between their delta form (the typical mode when
1070 * they are enabled) and the guest-visible values. These two calls must
1071 * surround any action which might affect the counters.
1073 void pmu_op_start(CPUARMState *env);
1074 void pmu_op_finish(CPUARMState *env);
1077 * Called when a PMU counter is due to overflow
1079 void arm_pmu_timer_cb(void *opaque);
1082 * Functions to register as EL change hooks for PMU mode filtering
1084 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1085 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1091 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1092 * for the current configuration
1094 void pmu_init(ARMCPU *cpu);
1096 /* SCTLR bit meanings. Several bits have been reused in newer
1097 * versions of the architecture; in that case we define constants
1098 * for both old and new bit meanings. Code which tests against those
1099 * bits should probably check or otherwise arrange that the CPU
1100 * is the architectural version it expects.
1102 #define SCTLR_M (1U << 0)
1103 #define SCTLR_A (1U << 1)
1104 #define SCTLR_C (1U << 2)
1105 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
1106 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1107 #define SCTLR_SA (1U << 3) /* AArch64 only */
1108 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
1109 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1110 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
1111 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
1112 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1113 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1114 #define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */
1115 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
1116 #define SCTLR_ITD (1U << 7) /* v8 onward */
1117 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
1118 #define SCTLR_SED (1U << 8) /* v8 onward */
1119 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
1120 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
1121 #define SCTLR_F (1U << 10) /* up to v6 */
1122 #define SCTLR_SW (1U << 10) /* v7 */
1123 #define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */
1124 #define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
1125 #define SCTLR_EOS (1U << 11) /* v8.5-ExS */
1126 #define SCTLR_I (1U << 12)
1127 #define SCTLR_V (1U << 13) /* AArch32 only */
1128 #define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
1129 #define SCTLR_RR (1U << 14) /* up to v7 */
1130 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
1131 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
1132 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1133 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1134 #define SCTLR_nTWI (1U << 16) /* v8 onward */
1135 #define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
1136 #define SCTLR_BR (1U << 17) /* PMSA only */
1137 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1138 #define SCTLR_nTWE (1U << 18) /* v8 onward */
1139 #define SCTLR_WXN (1U << 19)
1140 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
1141 #define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
1142 #define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
1143 #define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
1144 #define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
1145 #define SCTLR_EIS (1U << 22) /* v8.5-ExS */
1146 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
1147 #define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
1148 #define SCTLR_VE (1U << 24) /* up to v7 */
1149 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1150 #define SCTLR_EE (1U << 25)
1151 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1152 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
1153 #define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1154 #define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
1155 #define SCTLR_TRE (1U << 28) /* AArch32 only */
1156 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1157 #define SCTLR_AFE (1U << 29) /* AArch32 only */
1158 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1159 #define SCTLR_TE (1U << 30) /* AArch32 only */
1160 #define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
1161 #define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
1162 #define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
1163 #define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
1164 #define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
1165 #define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
1166 #define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
1167 #define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
1168 #define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
1169 #define SCTLR_DSSBS (1ULL << 44) /* v8.5 */
1171 #define CPTR_TCPAC (1U << 31)
1172 #define CPTR_TTA (1U << 20)
1173 #define CPTR_TFP (1U << 10)
1174 #define CPTR_TZ (1U << 8) /* CPTR_EL2 */
1175 #define CPTR_EZ (1U << 8) /* CPTR_EL3 */
1177 #define MDCR_EPMAD (1U << 21)
1178 #define MDCR_EDAD (1U << 20)
1179 #define MDCR_SPME (1U << 17) /* MDCR_EL3 */
1180 #define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
1181 #define MDCR_SDD (1U << 16)
1182 #define MDCR_SPD (3U << 14)
1183 #define MDCR_TDRA (1U << 11)
1184 #define MDCR_TDOSA (1U << 10)
1185 #define MDCR_TDA (1U << 9)
1186 #define MDCR_TDE (1U << 8)
1187 #define MDCR_HPME (1U << 7)
1188 #define MDCR_TPM (1U << 6)
1189 #define MDCR_TPMCR (1U << 5)
1190 #define MDCR_HPMN (0x1fU)
1192 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1193 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1195 #define CPSR_M (0x1fU)
1196 #define CPSR_T (1U << 5)
1197 #define CPSR_F (1U << 6)
1198 #define CPSR_I (1U << 7)
1199 #define CPSR_A (1U << 8)
1200 #define CPSR_E (1U << 9)
1201 #define CPSR_IT_2_7 (0xfc00U)
1202 #define CPSR_GE (0xfU << 16)
1203 #define CPSR_IL (1U << 20)
1204 #define CPSR_PAN (1U << 22)
1205 #define CPSR_J (1U << 24)
1206 #define CPSR_IT_0_1 (3U << 25)
1207 #define CPSR_Q (1U << 27)
1208 #define CPSR_V (1U << 28)
1209 #define CPSR_C (1U << 29)
1210 #define CPSR_Z (1U << 30)
1211 #define CPSR_N (1U << 31)
1212 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1213 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1215 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1216 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1218 /* Bits writable in user mode. */
1219 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1220 /* Execution state bits. MRS read as zero, MSR writes ignored. */
1221 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1223 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1224 #define XPSR_EXCP 0x1ffU
1225 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1226 #define XPSR_IT_2_7 CPSR_IT_2_7
1227 #define XPSR_GE CPSR_GE
1228 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1229 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1230 #define XPSR_IT_0_1 CPSR_IT_0_1
1231 #define XPSR_Q CPSR_Q
1232 #define XPSR_V CPSR_V
1233 #define XPSR_C CPSR_C
1234 #define XPSR_Z CPSR_Z
1235 #define XPSR_N CPSR_N
1236 #define XPSR_NZCV CPSR_NZCV
1237 #define XPSR_IT CPSR_IT
1239 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1240 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1241 #define TTBCR_PD0 (1U << 4)
1242 #define TTBCR_PD1 (1U << 5)
1243 #define TTBCR_EPD0 (1U << 7)
1244 #define TTBCR_IRGN0 (3U << 8)
1245 #define TTBCR_ORGN0 (3U << 10)
1246 #define TTBCR_SH0 (3U << 12)
1247 #define TTBCR_T1SZ (3U << 16)
1248 #define TTBCR_A1 (1U << 22)
1249 #define TTBCR_EPD1 (1U << 23)
1250 #define TTBCR_IRGN1 (3U << 24)
1251 #define TTBCR_ORGN1 (3U << 26)
1252 #define TTBCR_SH1 (1U << 28)
1253 #define TTBCR_EAE (1U << 31)
1255 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1256 * Only these are valid when in AArch64 mode; in
1257 * AArch32 mode SPSRs are basically CPSR-format.
1259 #define PSTATE_SP (1U)
1260 #define PSTATE_M (0xFU)
1261 #define PSTATE_nRW (1U << 4)
1262 #define PSTATE_F (1U << 6)
1263 #define PSTATE_I (1U << 7)
1264 #define PSTATE_A (1U << 8)
1265 #define PSTATE_D (1U << 9)
1266 #define PSTATE_BTYPE (3U << 10)
1267 #define PSTATE_IL (1U << 20)
1268 #define PSTATE_SS (1U << 21)
1269 #define PSTATE_PAN (1U << 22)
1270 #define PSTATE_UAO (1U << 23)
1271 #define PSTATE_V (1U << 28)
1272 #define PSTATE_C (1U << 29)
1273 #define PSTATE_Z (1U << 30)
1274 #define PSTATE_N (1U << 31)
1275 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1276 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1277 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1278 /* Mode values for AArch64 */
1279 #define PSTATE_MODE_EL3h 13
1280 #define PSTATE_MODE_EL3t 12
1281 #define PSTATE_MODE_EL2h 9
1282 #define PSTATE_MODE_EL2t 8
1283 #define PSTATE_MODE_EL1h 5
1284 #define PSTATE_MODE_EL1t 4
1285 #define PSTATE_MODE_EL0t 0
1287 /* Write a new value to v7m.exception, thus transitioning into or out
1288 * of Handler mode; this may result in a change of active stack pointer.
1290 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1292 /* Map EL and handler into a PSTATE_MODE. */
1293 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1295 return (el << 2) | handler;
1298 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1299 * interprocessing, so we don't attempt to sync with the cpsr state used by
1300 * the 32 bit decoder.
1302 static inline uint32_t pstate_read(CPUARMState *env)
1306 ZF = (env->ZF == 0);
1307 return (env->NF & 0x80000000) | (ZF << 30)
1308 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1309 | env->pstate | env->daif | (env->btype << 10);
1312 static inline void pstate_write(CPUARMState *env, uint32_t val)
1314 env->ZF = (~val) & PSTATE_Z;
1316 env->CF = (val >> 29) & 1;
1317 env->VF = (val << 3) & 0x80000000;
1318 env->daif = val & PSTATE_DAIF;
1319 env->btype = (val >> 10) & 3;
1320 env->pstate = val & ~CACHED_PSTATE_BITS;
1323 /* Return the current CPSR value. */
1324 uint32_t cpsr_read(CPUARMState *env);
1326 typedef enum CPSRWriteType {
1327 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1328 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1329 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */
1330 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1333 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/
1334 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1335 CPSRWriteType write_type);
1337 /* Return the current xPSR value. */
1338 static inline uint32_t xpsr_read(CPUARMState *env)
1341 ZF = (env->ZF == 0);
1342 return (env->NF & 0x80000000) | (ZF << 30)
1343 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1344 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1345 | ((env->condexec_bits & 0xfc) << 8)
1347 | env->v7m.exception;
1350 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1351 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1353 if (mask & XPSR_NZCV) {
1354 env->ZF = (~val) & XPSR_Z;
1356 env->CF = (val >> 29) & 1;
1357 env->VF = (val << 3) & 0x80000000;
1359 if (mask & XPSR_Q) {
1360 env->QF = ((val & XPSR_Q) != 0);
1362 if (mask & XPSR_GE) {
1363 env->GE = (val & XPSR_GE) >> 16;
1365 #ifndef CONFIG_USER_ONLY
1366 if (mask & XPSR_T) {
1367 env->thumb = ((val & XPSR_T) != 0);
1369 if (mask & XPSR_IT_0_1) {
1370 env->condexec_bits &= ~3;
1371 env->condexec_bits |= (val >> 25) & 3;
1373 if (mask & XPSR_IT_2_7) {
1374 env->condexec_bits &= 3;
1375 env->condexec_bits |= (val >> 8) & 0xfc;
1377 if (mask & XPSR_EXCP) {
1378 /* Note that this only happens on exception exit */
1379 write_v7m_exception(env, val & XPSR_EXCP);
1384 #define HCR_VM (1ULL << 0)
1385 #define HCR_SWIO (1ULL << 1)
1386 #define HCR_PTW (1ULL << 2)
1387 #define HCR_FMO (1ULL << 3)
1388 #define HCR_IMO (1ULL << 4)
1389 #define HCR_AMO (1ULL << 5)
1390 #define HCR_VF (1ULL << 6)
1391 #define HCR_VI (1ULL << 7)
1392 #define HCR_VSE (1ULL << 8)
1393 #define HCR_FB (1ULL << 9)
1394 #define HCR_BSU_MASK (3ULL << 10)
1395 #define HCR_DC (1ULL << 12)
1396 #define HCR_TWI (1ULL << 13)
1397 #define HCR_TWE (1ULL << 14)
1398 #define HCR_TID0 (1ULL << 15)
1399 #define HCR_TID1 (1ULL << 16)
1400 #define HCR_TID2 (1ULL << 17)
1401 #define HCR_TID3 (1ULL << 18)
1402 #define HCR_TSC (1ULL << 19)
1403 #define HCR_TIDCP (1ULL << 20)
1404 #define HCR_TACR (1ULL << 21)
1405 #define HCR_TSW (1ULL << 22)
1406 #define HCR_TPCP (1ULL << 23)
1407 #define HCR_TPU (1ULL << 24)
1408 #define HCR_TTLB (1ULL << 25)
1409 #define HCR_TVM (1ULL << 26)
1410 #define HCR_TGE (1ULL << 27)
1411 #define HCR_TDZ (1ULL << 28)
1412 #define HCR_HCD (1ULL << 29)
1413 #define HCR_TRVM (1ULL << 30)
1414 #define HCR_RW (1ULL << 31)
1415 #define HCR_CD (1ULL << 32)
1416 #define HCR_ID (1ULL << 33)
1417 #define HCR_E2H (1ULL << 34)
1418 #define HCR_TLOR (1ULL << 35)
1419 #define HCR_TERR (1ULL << 36)
1420 #define HCR_TEA (1ULL << 37)
1421 #define HCR_MIOCNCE (1ULL << 38)
1423 #define HCR_APK (1ULL << 40)
1424 #define HCR_API (1ULL << 41)
1425 #define HCR_NV (1ULL << 42)
1426 #define HCR_NV1 (1ULL << 43)
1427 #define HCR_AT (1ULL << 44)
1428 #define HCR_NV2 (1ULL << 45)
1429 #define HCR_FWB (1ULL << 46)
1430 #define HCR_FIEN (1ULL << 47)
1432 #define HCR_TID4 (1ULL << 49)
1433 #define HCR_TICAB (1ULL << 50)
1434 #define HCR_AMVOFFEN (1ULL << 51)
1435 #define HCR_TOCU (1ULL << 52)
1436 #define HCR_ENSCXT (1ULL << 53)
1437 #define HCR_TTLBIS (1ULL << 54)
1438 #define HCR_TTLBOS (1ULL << 55)
1439 #define HCR_ATA (1ULL << 56)
1440 #define HCR_DCT (1ULL << 57)
1441 #define HCR_TID5 (1ULL << 58)
1442 #define HCR_TWEDEN (1ULL << 59)
1443 #define HCR_TWEDEL MAKE_64BIT_MASK(60, 4)
1445 #define SCR_NS (1U << 0)
1446 #define SCR_IRQ (1U << 1)
1447 #define SCR_FIQ (1U << 2)
1448 #define SCR_EA (1U << 3)
1449 #define SCR_FW (1U << 4)
1450 #define SCR_AW (1U << 5)
1451 #define SCR_NET (1U << 6)
1452 #define SCR_SMD (1U << 7)
1453 #define SCR_HCE (1U << 8)
1454 #define SCR_SIF (1U << 9)
1455 #define SCR_RW (1U << 10)
1456 #define SCR_ST (1U << 11)
1457 #define SCR_TWI (1U << 12)
1458 #define SCR_TWE (1U << 13)
1459 #define SCR_TLOR (1U << 14)
1460 #define SCR_TERR (1U << 15)
1461 #define SCR_APK (1U << 16)
1462 #define SCR_API (1U << 17)
1463 #define SCR_EEL2 (1U << 18)
1464 #define SCR_EASE (1U << 19)
1465 #define SCR_NMEA (1U << 20)
1466 #define SCR_FIEN (1U << 21)
1467 #define SCR_ENSCXT (1U << 25)
1468 #define SCR_ATA (1U << 26)
1470 /* Return the current FPSCR value. */
1471 uint32_t vfp_get_fpscr(CPUARMState *env);
1472 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1474 /* FPCR, Floating Point Control Register
1475 * FPSR, Floating Poiht Status Register
1477 * For A64 the FPSCR is split into two logically distinct registers,
1478 * FPCR and FPSR. However since they still use non-overlapping bits
1479 * we store the underlying state in fpscr and just mask on read/write.
1481 #define FPSR_MASK 0xf800009f
1482 #define FPCR_MASK 0x07ff9f00
1484 #define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */
1485 #define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */
1486 #define FPCR_OFE (1 << 10) /* Overflow exception trap enable */
1487 #define FPCR_UFE (1 << 11) /* Underflow exception trap enable */
1488 #define FPCR_IXE (1 << 12) /* Inexact exception trap enable */
1489 #define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */
1490 #define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
1491 #define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1492 #define FPCR_DN (1 << 25) /* Default NaN enable bit */
1493 #define FPCR_QC (1 << 27) /* Cumulative saturation bit */
1495 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1497 return vfp_get_fpscr(env) & FPSR_MASK;
1500 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1502 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1503 vfp_set_fpscr(env, new_fpscr);
1506 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1508 return vfp_get_fpscr(env) & FPCR_MASK;
1511 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1513 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1514 vfp_set_fpscr(env, new_fpscr);
1518 ARM_CPU_MODE_USR = 0x10,
1519 ARM_CPU_MODE_FIQ = 0x11,
1520 ARM_CPU_MODE_IRQ = 0x12,
1521 ARM_CPU_MODE_SVC = 0x13,
1522 ARM_CPU_MODE_MON = 0x16,
1523 ARM_CPU_MODE_ABT = 0x17,
1524 ARM_CPU_MODE_HYP = 0x1a,
1525 ARM_CPU_MODE_UND = 0x1b,
1526 ARM_CPU_MODE_SYS = 0x1f
1529 /* VFP system registers. */
1530 #define ARM_VFP_FPSID 0
1531 #define ARM_VFP_FPSCR 1
1532 #define ARM_VFP_MVFR2 5
1533 #define ARM_VFP_MVFR1 6
1534 #define ARM_VFP_MVFR0 7
1535 #define ARM_VFP_FPEXC 8
1536 #define ARM_VFP_FPINST 9
1537 #define ARM_VFP_FPINST2 10
1539 /* iwMMXt coprocessor control registers. */
1540 #define ARM_IWMMXT_wCID 0
1541 #define ARM_IWMMXT_wCon 1
1542 #define ARM_IWMMXT_wCSSF 2
1543 #define ARM_IWMMXT_wCASF 3
1544 #define ARM_IWMMXT_wCGR0 8
1545 #define ARM_IWMMXT_wCGR1 9
1546 #define ARM_IWMMXT_wCGR2 10
1547 #define ARM_IWMMXT_wCGR3 11
1550 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1551 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1552 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1553 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1554 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1555 FIELD(V7M_CCR, STKALIGN, 9, 1)
1556 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1557 FIELD(V7M_CCR, DC, 16, 1)
1558 FIELD(V7M_CCR, IC, 17, 1)
1559 FIELD(V7M_CCR, BP, 18, 1)
1562 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1563 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1564 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1565 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1567 /* V7M AIRCR bits */
1568 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1569 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1570 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1571 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1572 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1573 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1574 FIELD(V7M_AIRCR, PRIS, 14, 1)
1575 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1576 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1578 /* V7M CFSR bits for MMFSR */
1579 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1580 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1581 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1582 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1583 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1584 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1586 /* V7M CFSR bits for BFSR */
1587 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1588 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1589 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1590 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1591 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1592 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1593 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1595 /* V7M CFSR bits for UFSR */
1596 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1597 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1598 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1599 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1600 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1601 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1602 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1604 /* V7M CFSR bit masks covering all of the subregister bits */
1605 FIELD(V7M_CFSR, MMFSR, 0, 8)
1606 FIELD(V7M_CFSR, BFSR, 8, 8)
1607 FIELD(V7M_CFSR, UFSR, 16, 16)
1610 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1611 FIELD(V7M_HFSR, FORCED, 30, 1)
1612 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1615 FIELD(V7M_DFSR, HALTED, 0, 1)
1616 FIELD(V7M_DFSR, BKPT, 1, 1)
1617 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1618 FIELD(V7M_DFSR, VCATCH, 3, 1)
1619 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1622 FIELD(V7M_SFSR, INVEP, 0, 1)
1623 FIELD(V7M_SFSR, INVIS, 1, 1)
1624 FIELD(V7M_SFSR, INVER, 2, 1)
1625 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1626 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1627 FIELD(V7M_SFSR, LSPERR, 5, 1)
1628 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1629 FIELD(V7M_SFSR, LSERR, 7, 1)
1631 /* v7M MPU_CTRL bits */
1632 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1633 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1634 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1636 /* v7M CLIDR bits */
1637 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1638 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1639 FIELD(V7M_CLIDR, LOC, 24, 3)
1640 FIELD(V7M_CLIDR, LOUU, 27, 3)
1641 FIELD(V7M_CLIDR, ICB, 30, 2)
1643 FIELD(V7M_CSSELR, IND, 0, 1)
1644 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1645 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1646 * define a mask for this and check that it doesn't permit running off
1647 * the end of the array.
1649 FIELD(V7M_CSSELR, INDEX, 0, 4)
1651 /* v7M FPCCR bits */
1652 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1653 FIELD(V7M_FPCCR, USER, 1, 1)
1654 FIELD(V7M_FPCCR, S, 2, 1)
1655 FIELD(V7M_FPCCR, THREAD, 3, 1)
1656 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1657 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1658 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1659 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1660 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1661 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1662 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1663 FIELD(V7M_FPCCR, RES0, 11, 15)
1664 FIELD(V7M_FPCCR, TS, 26, 1)
1665 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1666 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1667 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1668 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1669 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1670 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1671 #define R_V7M_FPCCR_BANKED_MASK \
1672 (R_V7M_FPCCR_LSPACT_MASK | \
1673 R_V7M_FPCCR_USER_MASK | \
1674 R_V7M_FPCCR_THREAD_MASK | \
1675 R_V7M_FPCCR_MMRDY_MASK | \
1676 R_V7M_FPCCR_SPLIMVIOL_MASK | \
1677 R_V7M_FPCCR_UFRDY_MASK | \
1678 R_V7M_FPCCR_ASPEN_MASK)
1681 * System register ID fields.
1683 FIELD(MIDR_EL1, REVISION, 0, 4)
1684 FIELD(MIDR_EL1, PARTNUM, 4, 12)
1685 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1686 FIELD(MIDR_EL1, VARIANT, 20, 4)
1687 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1689 FIELD(ID_ISAR0, SWAP, 0, 4)
1690 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1691 FIELD(ID_ISAR0, BITFIELD, 8, 4)
1692 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1693 FIELD(ID_ISAR0, COPROC, 16, 4)
1694 FIELD(ID_ISAR0, DEBUG, 20, 4)
1695 FIELD(ID_ISAR0, DIVIDE, 24, 4)
1697 FIELD(ID_ISAR1, ENDIAN, 0, 4)
1698 FIELD(ID_ISAR1, EXCEPT, 4, 4)
1699 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1700 FIELD(ID_ISAR1, EXTEND, 12, 4)
1701 FIELD(ID_ISAR1, IFTHEN, 16, 4)
1702 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1703 FIELD(ID_ISAR1, INTERWORK, 24, 4)
1704 FIELD(ID_ISAR1, JAZELLE, 28, 4)
1706 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1707 FIELD(ID_ISAR2, MEMHINT, 4, 4)
1708 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1709 FIELD(ID_ISAR2, MULT, 12, 4)
1710 FIELD(ID_ISAR2, MULTS, 16, 4)
1711 FIELD(ID_ISAR2, MULTU, 20, 4)
1712 FIELD(ID_ISAR2, PSR_AR, 24, 4)
1713 FIELD(ID_ISAR2, REVERSAL, 28, 4)
1715 FIELD(ID_ISAR3, SATURATE, 0, 4)
1716 FIELD(ID_ISAR3, SIMD, 4, 4)
1717 FIELD(ID_ISAR3, SVC, 8, 4)
1718 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1719 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1720 FIELD(ID_ISAR3, T32COPY, 20, 4)
1721 FIELD(ID_ISAR3, TRUENOP, 24, 4)
1722 FIELD(ID_ISAR3, T32EE, 28, 4)
1724 FIELD(ID_ISAR4, UNPRIV, 0, 4)
1725 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1726 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1727 FIELD(ID_ISAR4, SMC, 12, 4)
1728 FIELD(ID_ISAR4, BARRIER, 16, 4)
1729 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1730 FIELD(ID_ISAR4, PSR_M, 24, 4)
1731 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1733 FIELD(ID_ISAR5, SEVL, 0, 4)
1734 FIELD(ID_ISAR5, AES, 4, 4)
1735 FIELD(ID_ISAR5, SHA1, 8, 4)
1736 FIELD(ID_ISAR5, SHA2, 12, 4)
1737 FIELD(ID_ISAR5, CRC32, 16, 4)
1738 FIELD(ID_ISAR5, RDM, 24, 4)
1739 FIELD(ID_ISAR5, VCMA, 28, 4)
1741 FIELD(ID_ISAR6, JSCVT, 0, 4)
1742 FIELD(ID_ISAR6, DP, 4, 4)
1743 FIELD(ID_ISAR6, FHM, 8, 4)
1744 FIELD(ID_ISAR6, SB, 12, 4)
1745 FIELD(ID_ISAR6, SPECRES, 16, 4)
1747 FIELD(ID_MMFR3, CMAINTVA, 0, 4)
1748 FIELD(ID_MMFR3, CMAINTSW, 4, 4)
1749 FIELD(ID_MMFR3, BPMAINT, 8, 4)
1750 FIELD(ID_MMFR3, MAINTBCST, 12, 4)
1751 FIELD(ID_MMFR3, PAN, 16, 4)
1752 FIELD(ID_MMFR3, COHWALK, 20, 4)
1753 FIELD(ID_MMFR3, CMEMSZ, 24, 4)
1754 FIELD(ID_MMFR3, SUPERSEC, 28, 4)
1756 FIELD(ID_MMFR4, SPECSEI, 0, 4)
1757 FIELD(ID_MMFR4, AC2, 4, 4)
1758 FIELD(ID_MMFR4, XNX, 8, 4)
1759 FIELD(ID_MMFR4, CNP, 12, 4)
1760 FIELD(ID_MMFR4, HPDS, 16, 4)
1761 FIELD(ID_MMFR4, LSM, 20, 4)
1762 FIELD(ID_MMFR4, CCIDX, 24, 4)
1763 FIELD(ID_MMFR4, EVT, 28, 4)
1765 FIELD(ID_AA64ISAR0, AES, 4, 4)
1766 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1767 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1768 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1769 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1770 FIELD(ID_AA64ISAR0, RDM, 28, 4)
1771 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1772 FIELD(ID_AA64ISAR0, SM3, 36, 4)
1773 FIELD(ID_AA64ISAR0, SM4, 40, 4)
1774 FIELD(ID_AA64ISAR0, DP, 44, 4)
1775 FIELD(ID_AA64ISAR0, FHM, 48, 4)
1776 FIELD(ID_AA64ISAR0, TS, 52, 4)
1777 FIELD(ID_AA64ISAR0, TLB, 56, 4)
1778 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1780 FIELD(ID_AA64ISAR1, DPB, 0, 4)
1781 FIELD(ID_AA64ISAR1, APA, 4, 4)
1782 FIELD(ID_AA64ISAR1, API, 8, 4)
1783 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1784 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1785 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1786 FIELD(ID_AA64ISAR1, GPA, 24, 4)
1787 FIELD(ID_AA64ISAR1, GPI, 28, 4)
1788 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1789 FIELD(ID_AA64ISAR1, SB, 36, 4)
1790 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1792 FIELD(ID_AA64PFR0, EL0, 0, 4)
1793 FIELD(ID_AA64PFR0, EL1, 4, 4)
1794 FIELD(ID_AA64PFR0, EL2, 8, 4)
1795 FIELD(ID_AA64PFR0, EL3, 12, 4)
1796 FIELD(ID_AA64PFR0, FP, 16, 4)
1797 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1798 FIELD(ID_AA64PFR0, GIC, 24, 4)
1799 FIELD(ID_AA64PFR0, RAS, 28, 4)
1800 FIELD(ID_AA64PFR0, SVE, 32, 4)
1802 FIELD(ID_AA64PFR1, BT, 0, 4)
1803 FIELD(ID_AA64PFR1, SBSS, 4, 4)
1804 FIELD(ID_AA64PFR1, MTE, 8, 4)
1805 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1807 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1808 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1809 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1810 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1811 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1812 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1813 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1814 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1815 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1816 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1817 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1818 FIELD(ID_AA64MMFR0, EXS, 44, 4)
1820 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1821 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1822 FIELD(ID_AA64MMFR1, VH, 8, 4)
1823 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1824 FIELD(ID_AA64MMFR1, LO, 16, 4)
1825 FIELD(ID_AA64MMFR1, PAN, 20, 4)
1826 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1827 FIELD(ID_AA64MMFR1, XNX, 28, 4)
1829 FIELD(ID_AA64MMFR2, CNP, 0, 4)
1830 FIELD(ID_AA64MMFR2, UAO, 4, 4)
1831 FIELD(ID_AA64MMFR2, LSM, 8, 4)
1832 FIELD(ID_AA64MMFR2, IESB, 12, 4)
1833 FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
1834 FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
1835 FIELD(ID_AA64MMFR2, NV, 24, 4)
1836 FIELD(ID_AA64MMFR2, ST, 28, 4)
1837 FIELD(ID_AA64MMFR2, AT, 32, 4)
1838 FIELD(ID_AA64MMFR2, IDS, 36, 4)
1839 FIELD(ID_AA64MMFR2, FWB, 40, 4)
1840 FIELD(ID_AA64MMFR2, TTL, 48, 4)
1841 FIELD(ID_AA64MMFR2, BBM, 52, 4)
1842 FIELD(ID_AA64MMFR2, EVT, 56, 4)
1843 FIELD(ID_AA64MMFR2, E0PD, 60, 4)
1845 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
1846 FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
1847 FIELD(ID_AA64DFR0, PMUVER, 8, 4)
1848 FIELD(ID_AA64DFR0, BRPS, 12, 4)
1849 FIELD(ID_AA64DFR0, WRPS, 20, 4)
1850 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
1851 FIELD(ID_AA64DFR0, PMSVER, 32, 4)
1852 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
1853 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
1855 FIELD(ID_DFR0, COPDBG, 0, 4)
1856 FIELD(ID_DFR0, COPSDBG, 4, 4)
1857 FIELD(ID_DFR0, MMAPDBG, 8, 4)
1858 FIELD(ID_DFR0, COPTRC, 12, 4)
1859 FIELD(ID_DFR0, MMAPTRC, 16, 4)
1860 FIELD(ID_DFR0, MPROFDBG, 20, 4)
1861 FIELD(ID_DFR0, PERFMON, 24, 4)
1862 FIELD(ID_DFR0, TRACEFILT, 28, 4)
1864 FIELD(DBGDIDR, SE_IMP, 12, 1)
1865 FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
1866 FIELD(DBGDIDR, VERSION, 16, 4)
1867 FIELD(DBGDIDR, CTX_CMPS, 20, 4)
1868 FIELD(DBGDIDR, BRPS, 24, 4)
1869 FIELD(DBGDIDR, WRPS, 28, 4)
1871 FIELD(MVFR0, SIMDREG, 0, 4)
1872 FIELD(MVFR0, FPSP, 4, 4)
1873 FIELD(MVFR0, FPDP, 8, 4)
1874 FIELD(MVFR0, FPTRAP, 12, 4)
1875 FIELD(MVFR0, FPDIVIDE, 16, 4)
1876 FIELD(MVFR0, FPSQRT, 20, 4)
1877 FIELD(MVFR0, FPSHVEC, 24, 4)
1878 FIELD(MVFR0, FPROUND, 28, 4)
1880 FIELD(MVFR1, FPFTZ, 0, 4)
1881 FIELD(MVFR1, FPDNAN, 4, 4)
1882 FIELD(MVFR1, SIMDLS, 8, 4)
1883 FIELD(MVFR1, SIMDINT, 12, 4)
1884 FIELD(MVFR1, SIMDSP, 16, 4)
1885 FIELD(MVFR1, SIMDHP, 20, 4)
1886 FIELD(MVFR1, FPHP, 24, 4)
1887 FIELD(MVFR1, SIMDFMAC, 28, 4)
1889 FIELD(MVFR2, SIMDMISC, 0, 4)
1890 FIELD(MVFR2, FPMISC, 4, 4)
1892 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1894 /* If adding a feature bit which corresponds to a Linux ELF
1895 * HWCAP bit, remember to update the feature-bit-to-hwcap
1896 * mapping in linux-user/elfload.c:get_elf_hwcap().
1899 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
1900 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
1901 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
1906 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
1908 ARM_FEATURE_M, /* Microcontroller profile. */
1909 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
1910 ARM_FEATURE_THUMB2EE,
1911 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
1912 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
1915 ARM_FEATURE_STRONGARM,
1916 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1917 ARM_FEATURE_GENERIC_TIMER,
1918 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1919 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1920 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1921 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1922 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1923 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1924 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1925 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1927 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1928 ARM_FEATURE_CBAR, /* has cp15 CBAR */
1929 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1930 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1931 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1932 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1933 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1934 ARM_FEATURE_PMU, /* has PMU support */
1935 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1936 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
1937 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
1940 static inline int arm_feature(CPUARMState *env, int feature)
1942 return (env->features & (1ULL << feature)) != 0;
1945 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
1947 #if !defined(CONFIG_USER_ONLY)
1948 /* Return true if exception levels below EL3 are in secure state,
1949 * or would be following an exception return to that level.
1950 * Unlike arm_is_secure() (which is always a question about the
1951 * _current_ state of the CPU) this doesn't care about the current
1954 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1956 if (arm_feature(env, ARM_FEATURE_EL3)) {
1957 return !(env->cp15.scr_el3 & SCR_NS);
1959 /* If EL3 is not supported then the secure state is implementation
1960 * defined, in which case QEMU defaults to non-secure.
1966 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1967 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1969 if (arm_feature(env, ARM_FEATURE_EL3)) {
1970 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1971 /* CPU currently in AArch64 state and EL3 */
1973 } else if (!is_a64(env) &&
1974 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1975 /* CPU currently in AArch32 state and monitor mode */
1982 /* Return true if the processor is in secure state */
1983 static inline bool arm_is_secure(CPUARMState *env)
1985 if (arm_is_el3_or_mon(env)) {
1988 return arm_is_secure_below_el3(env);
1992 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1997 static inline bool arm_is_secure(CPUARMState *env)
2004 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2005 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2006 * "for all purposes other than a direct read or write access of HCR_EL2."
2007 * Not included here is HCR_RW.
2009 uint64_t arm_hcr_el2_eff(CPUARMState *env);
2011 /* Return true if the specified exception level is running in AArch64 state. */
2012 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2014 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2015 * and if we're not in EL0 then the state of EL0 isn't well defined.)
2017 assert(el >= 1 && el <= 3);
2018 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2020 /* The highest exception level is always at the maximum supported
2021 * register width, and then lower levels have a register width controlled
2022 * by bits in the SCR or HCR registers.
2028 if (arm_feature(env, ARM_FEATURE_EL3)) {
2029 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2036 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
2037 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2043 /* Function for determing whether guest cp register reads and writes should
2044 * access the secure or non-secure bank of a cp register. When EL3 is
2045 * operating in AArch32 state, the NS-bit determines whether the secure
2046 * instance of a cp register should be used. When EL3 is AArch64 (or if
2047 * it doesn't exist at all) then there is no register banking, and all
2048 * accesses are to the non-secure version.
2050 static inline bool access_secure_reg(CPUARMState *env)
2052 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2053 !arm_el_is_aa64(env, 3) &&
2054 !(env->cp15.scr_el3 & SCR_NS));
2059 /* Macros for accessing a specified CP register bank */
2060 #define A32_BANKED_REG_GET(_env, _regname, _secure) \
2061 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2063 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
2066 (_env)->cp15._regname##_s = (_val); \
2068 (_env)->cp15._regname##_ns = (_val); \
2072 /* Macros for automatically accessing a specific CP register bank depending on
2073 * the current secure state of the system. These macros are not intended for
2074 * supporting instruction translation reads/writes as these are dependent
2075 * solely on the SCR.NS bit and not the mode.
2077 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
2078 A32_BANKED_REG_GET((_env), _regname, \
2079 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2081 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
2082 A32_BANKED_REG_SET((_env), _regname, \
2083 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2086 void arm_cpu_list(void);
2087 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2088 uint32_t cur_el, bool secure);
2090 /* Interface between CPU and Interrupt controller. */
2091 #ifndef CONFIG_USER_ONLY
2092 bool armv7m_nvic_can_take_pending_exception(void *opaque);
2094 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2100 * armv7m_nvic_set_pending: mark the specified exception as pending
2102 * @irq: the exception number to mark pending
2103 * @secure: false for non-banked exceptions or for the nonsecure
2104 * version of a banked exception, true for the secure version of a banked
2107 * Marks the specified exception as pending. Note that we will assert()
2108 * if @secure is true and @irq does not specify one of the fixed set
2109 * of architecturally banked exceptions.
2111 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
2113 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2115 * @irq: the exception number to mark pending
2116 * @secure: false for non-banked exceptions or for the nonsecure
2117 * version of a banked exception, true for the secure version of a banked
2120 * Similar to armv7m_nvic_set_pending(), but specifically for derived
2121 * exceptions (exceptions generated in the course of trying to take
2122 * a different exception).
2124 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
2126 * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2128 * @irq: the exception number to mark pending
2129 * @secure: false for non-banked exceptions or for the nonsecure
2130 * version of a banked exception, true for the secure version of a banked
2133 * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2134 * generated in the course of lazy stacking of FP registers.
2136 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
2138 * armv7m_nvic_get_pending_irq_info: return highest priority pending
2139 * exception, and whether it targets Secure state
2141 * @pirq: set to pending exception number
2142 * @ptargets_secure: set to whether pending exception targets Secure
2144 * This function writes the number of the highest priority pending
2145 * exception (the one which would be made active by
2146 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2147 * to true if the current highest priority pending exception should
2148 * be taken to Secure state, false for NS.
2150 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2151 bool *ptargets_secure);
2153 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2156 * Move the current highest priority pending exception from the pending
2157 * state to the active state, and update v7m.exception to indicate that
2158 * it is the exception currently being handled.
2160 void armv7m_nvic_acknowledge_irq(void *opaque);
2162 * armv7m_nvic_complete_irq: complete specified interrupt or exception
2164 * @irq: the exception number to complete
2165 * @secure: true if this exception was secure
2167 * Returns: -1 if the irq was not active
2168 * 1 if completing this irq brought us back to base (no active irqs)
2169 * 0 if there is still an irq active after this one was completed
2170 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2172 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2174 * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2176 * @irq: the exception number to mark pending
2177 * @secure: false for non-banked exceptions or for the nonsecure
2178 * version of a banked exception, true for the secure version of a banked
2181 * Return whether an exception is "ready", i.e. whether the exception is
2182 * enabled and is configured at a priority which would allow it to
2183 * interrupt the current execution priority. This controls whether the
2184 * RDY bit for it in the FPCCR is set.
2186 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
2188 * armv7m_nvic_raw_execution_priority: return the raw execution priority
2191 * Returns: the raw execution priority as defined by the v8M architecture.
2192 * This is the execution priority minus the effects of AIRCR.PRIS,
2193 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2194 * (v8M ARM ARM I_PKLD.)
2196 int armv7m_nvic_raw_execution_priority(void *opaque);
2198 * armv7m_nvic_neg_prio_requested: return true if the requested execution
2199 * priority is negative for the specified security state.
2201 * @secure: the security state to test
2202 * This corresponds to the pseudocode IsReqExecPriNeg().
2204 #ifndef CONFIG_USER_ONLY
2205 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2207 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2213 /* Interface for defining coprocessor registers.
2214 * Registers are defined in tables of arm_cp_reginfo structs
2215 * which are passed to define_arm_cp_regs().
2218 /* When looking up a coprocessor register we look for it
2219 * via an integer which encodes all of:
2220 * coprocessor number
2221 * Crn, Crm, opc1, opc2 fields
2222 * 32 or 64 bit register (ie is it accessed via MRC/MCR
2223 * or via MRRC/MCRR?)
2224 * non-secure/secure bank (AArch32 only)
2225 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2226 * (In this case crn and opc2 should be zero.)
2227 * For AArch64, there is no 32/64 bit size distinction;
2228 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2229 * and 4 bit CRn and CRm. The encoding patterns are chosen
2230 * to be easy to convert to and from the KVM encodings, and also
2231 * so that the hashtable can contain both AArch32 and AArch64
2232 * registers (to allow for interprocessing where we might run
2233 * 32 bit code on a 64 bit core).
2235 /* This bit is private to our hashtable cpreg; in KVM register
2236 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2237 * in the upper bits of the 64 bit ID.
2239 #define CP_REG_AA64_SHIFT 28
2240 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2242 /* To enable banking of coprocessor registers depending on ns-bit we
2243 * add a bit to distinguish between secure and non-secure cpregs in the
2246 #define CP_REG_NS_SHIFT 29
2247 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2249 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
2250 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
2251 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2253 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2254 (CP_REG_AA64_MASK | \
2255 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
2256 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
2257 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
2258 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
2259 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
2260 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2262 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
2263 * version used as a key for the coprocessor register hashtable
2265 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2267 uint32_t cpregid = kvmid;
2268 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2269 cpregid |= CP_REG_AA64_MASK;
2271 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2272 cpregid |= (1 << 15);
2275 /* KVM is always non-secure so add the NS flag on AArch32 register
2278 cpregid |= 1 << CP_REG_NS_SHIFT;
2283 /* Convert a truncated 32 bit hashtable key into the full
2284 * 64 bit KVM register ID.
2286 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2290 if (cpregid & CP_REG_AA64_MASK) {
2291 kvmid = cpregid & ~CP_REG_AA64_MASK;
2292 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2294 kvmid = cpregid & ~(1 << 15);
2295 if (cpregid & (1 << 15)) {
2296 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2298 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2304 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
2305 * special-behaviour cp reg and bits [11..8] indicate what behaviour
2306 * it has. Otherwise it is a simple cp reg, where CONST indicates that
2307 * TCG can assume the value to be constant (ie load at translate time)
2308 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2309 * indicates that the TB should not be ended after a write to this register
2310 * (the default is that the TB ends after cp writes). OVERRIDE permits
2311 * a register definition to override a previous definition for the
2312 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2313 * old must have the OVERRIDE bit set.
2314 * ALIAS indicates that this register is an alias view of some underlying
2315 * state which is also visible via another register, and that the other
2316 * register is handling migration and reset; registers marked ALIAS will not be
2317 * migrated but may have their state set by syncing of register state from KVM.
2318 * NO_RAW indicates that this register has no underlying state and does not
2319 * support raw access for state saving/loading; it will not be used for either
2320 * migration or KVM state synchronization. (Typically this is for "registers"
2321 * which are actually used as instructions for cache maintenance and so on.)
2322 * IO indicates that this register does I/O and therefore its accesses
2323 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
2324 * registers which implement clocks or timers require this.
2325 * RAISES_EXC is for when the read or write hook might raise an exception;
2326 * the generated code will synchronize the CPU state before calling the hook
2327 * so that it is safe for the hook to call raise_exception().
2328 * NEWEL is for writes to registers that might change the exception
2329 * level - typically on older ARM chips. For those cases we need to
2330 * re-read the new el when recomputing the translation flags.
2332 #define ARM_CP_SPECIAL 0x0001
2333 #define ARM_CP_CONST 0x0002
2334 #define ARM_CP_64BIT 0x0004
2335 #define ARM_CP_SUPPRESS_TB_END 0x0008
2336 #define ARM_CP_OVERRIDE 0x0010
2337 #define ARM_CP_ALIAS 0x0020
2338 #define ARM_CP_IO 0x0040
2339 #define ARM_CP_NO_RAW 0x0080
2340 #define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100)
2341 #define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200)
2342 #define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300)
2343 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400)
2344 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500)
2345 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
2346 #define ARM_CP_FPU 0x1000
2347 #define ARM_CP_SVE 0x2000
2348 #define ARM_CP_NO_GDB 0x4000
2349 #define ARM_CP_RAISES_EXC 0x8000
2350 #define ARM_CP_NEWEL 0x10000
2351 /* Used only as a terminator for ARMCPRegInfo lists */
2352 #define ARM_CP_SENTINEL 0xfffff
2353 /* Mask of only the flag bits in a type field */
2354 #define ARM_CP_FLAG_MASK 0x1f0ff
2356 /* Valid values for ARMCPRegInfo state field, indicating which of
2357 * the AArch32 and AArch64 execution states this register is visible in.
2358 * If the reginfo doesn't explicitly specify then it is AArch32 only.
2359 * If the reginfo is declared to be visible in both states then a second
2360 * reginfo is synthesised for the AArch32 view of the AArch64 register,
2361 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2362 * Note that we rely on the values of these enums as we iterate through
2363 * the various states in some places.
2366 ARM_CP_STATE_AA32 = 0,
2367 ARM_CP_STATE_AA64 = 1,
2368 ARM_CP_STATE_BOTH = 2,
2371 /* ARM CP register secure state flags. These flags identify security state
2372 * attributes for a given CP register entry.
2373 * The existence of both or neither secure and non-secure flags indicates that
2374 * the register has both a secure and non-secure hash entry. A single one of
2375 * these flags causes the register to only be hashed for the specified
2377 * Although definitions may have any combination of the S/NS bits, each
2378 * registered entry will only have one to identify whether the entry is secure
2382 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
2383 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
2386 /* Return true if cptype is a valid type field. This is used to try to
2387 * catch errors where the sentinel has been accidentally left off the end
2388 * of a list of registers.
2390 static inline bool cptype_valid(int cptype)
2392 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2393 || ((cptype & ARM_CP_SPECIAL) &&
2394 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
2398 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2399 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2400 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2401 * (ie any of the privileged modes in Secure state, or Monitor mode).
2402 * If a register is accessible in one privilege level it's always accessible
2403 * in higher privilege levels too. Since "Secure PL1" also follows this rule
2404 * (ie anything visible in PL2 is visible in S-PL1, some things are only
2405 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2406 * terminology a little and call this PL3.
2407 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2408 * with the ELx exception levels.
2410 * If access permissions for a register are more complex than can be
2411 * described with these bits, then use a laxer set of restrictions, and
2412 * do the more restrictive/complex check inside a helper function.
2416 #define PL2_R (0x20 | PL3_R)
2417 #define PL2_W (0x10 | PL3_W)
2418 #define PL1_R (0x08 | PL2_R)
2419 #define PL1_W (0x04 | PL2_W)
2420 #define PL0_R (0x02 | PL1_R)
2421 #define PL0_W (0x01 | PL1_W)
2424 * For user-mode some registers are accessible to EL0 via a kernel
2425 * trap-and-emulate ABI. In this case we define the read permissions
2426 * as actually being PL0_R. However some bits of any given register
2427 * may still be masked.
2429 #ifdef CONFIG_USER_ONLY
2430 #define PL0U_R PL0_R
2432 #define PL0U_R PL1_R
2435 #define PL3_RW (PL3_R | PL3_W)
2436 #define PL2_RW (PL2_R | PL2_W)
2437 #define PL1_RW (PL1_R | PL1_W)
2438 #define PL0_RW (PL0_R | PL0_W)
2440 /* Return the highest implemented Exception Level */
2441 static inline int arm_highest_el(CPUARMState *env)
2443 if (arm_feature(env, ARM_FEATURE_EL3)) {
2446 if (arm_feature(env, ARM_FEATURE_EL2)) {
2452 /* Return true if a v7M CPU is in Handler mode */
2453 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2455 return env->v7m.exception != 0;
2458 /* Return the current Exception Level (as per ARMv8; note that this differs
2459 * from the ARMv7 Privilege Level).
2461 static inline int arm_current_el(CPUARMState *env)
2463 if (arm_feature(env, ARM_FEATURE_M)) {
2464 return arm_v7m_is_handler_mode(env) ||
2465 !(env->v7m.control[env->v7m.secure] & 1);
2469 return extract32(env->pstate, 2, 2);
2472 switch (env->uncached_cpsr & 0x1f) {
2473 case ARM_CPU_MODE_USR:
2475 case ARM_CPU_MODE_HYP:
2477 case ARM_CPU_MODE_MON:
2480 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2481 /* If EL3 is 32-bit then all secure privileged modes run in
2491 typedef struct ARMCPRegInfo ARMCPRegInfo;
2493 typedef enum CPAccessResult {
2494 /* Access is permitted */
2496 /* Access fails due to a configurable trap or enable which would
2497 * result in a categorized exception syndrome giving information about
2498 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
2499 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2500 * PL1 if in EL0, otherwise to the current EL).
2503 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2504 * Note that this is not a catch-all case -- the set of cases which may
2505 * result in this failure is specifically defined by the architecture.
2507 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
2508 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2509 CP_ACCESS_TRAP_EL2 = 3,
2510 CP_ACCESS_TRAP_EL3 = 4,
2511 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2512 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2513 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
2514 /* Access fails and results in an exception syndrome for an FP access,
2515 * trapped directly to EL2 or EL3
2517 CP_ACCESS_TRAP_FP_EL2 = 7,
2518 CP_ACCESS_TRAP_FP_EL3 = 8,
2521 /* Access functions for coprocessor registers. These cannot fail and
2522 * may not raise exceptions.
2524 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2525 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2527 /* Access permission check functions for coprocessor registers. */
2528 typedef CPAccessResult CPAccessFn(CPUARMState *env,
2529 const ARMCPRegInfo *opaque,
2531 /* Hook function for register reset */
2532 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2536 /* Definition of an ARM coprocessor register */
2537 struct ARMCPRegInfo {
2538 /* Name of register (useful mainly for debugging, need not be unique) */
2540 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2541 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2542 * 'wildcard' field -- any value of that field in the MRC/MCR insn
2543 * will be decoded to this register. The register read and write
2544 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2545 * used by the program, so it is possible to register a wildcard and
2546 * then behave differently on read/write if necessary.
2547 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2548 * must both be zero.
2549 * For AArch64-visible registers, opc0 is also used.
2550 * Since there are no "coprocessors" in AArch64, cp is purely used as a
2551 * way to distinguish (for KVM's benefit) guest-visible system registers
2552 * from demuxed ones provided to preserve the "no side effects on
2553 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2554 * visible (to match KVM's encoding); cp==0 will be converted to
2555 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2563 /* Execution state in which this register is visible: ARM_CP_STATE_* */
2565 /* Register type: ARM_CP_* bits/values */
2567 /* Access rights: PL*_[RW] */
2569 /* Security state: ARM_CP_SECSTATE_* bits/values */
2571 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2572 * this register was defined: can be used to hand data through to the
2573 * register read/write functions, since they are passed the ARMCPRegInfo*.
2576 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2577 * fieldoffset is non-zero, the reset value of the register.
2579 uint64_t resetvalue;
2580 /* Offset of the field in CPUARMState for this register.
2582 * This is not needed if either:
2583 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2584 * 2. both readfn and writefn are specified
2586 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2588 /* Offsets of the secure and non-secure fields in CPUARMState for the
2589 * register if it is banked. These fields are only used during the static
2590 * registration of a register. During hashing the bank associated
2591 * with a given security state is copied to fieldoffset which is used from
2594 * It is expected that register definitions use either fieldoffset or
2595 * bank_fieldoffsets in the definition but not both. It is also expected
2596 * that both bank offsets are set when defining a banked register. This
2597 * use indicates that a register is banked.
2599 ptrdiff_t bank_fieldoffsets[2];
2601 /* Function for making any access checks for this register in addition to
2602 * those specified by the 'access' permissions bits. If NULL, no extra
2603 * checks required. The access check is performed at runtime, not at
2606 CPAccessFn *accessfn;
2607 /* Function for handling reads of this register. If NULL, then reads
2608 * will be done by loading from the offset into CPUARMState specified
2612 /* Function for handling writes of this register. If NULL, then writes
2613 * will be done by writing to the offset into CPUARMState specified
2617 /* Function for doing a "raw" read; used when we need to copy
2618 * coprocessor state to the kernel for KVM or out for
2619 * migration. This only needs to be provided if there is also a
2620 * readfn and it has side effects (for instance clear-on-read bits).
2622 CPReadFn *raw_readfn;
2623 /* Function for doing a "raw" write; used when we need to copy KVM
2624 * kernel coprocessor state into userspace, or for inbound
2625 * migration. This only needs to be provided if there is also a
2626 * writefn and it masks out "unwritable" bits or has write-one-to-clear
2627 * or similar behaviour.
2629 CPWriteFn *raw_writefn;
2630 /* Function for resetting the register. If NULL, then reset will be done
2631 * by writing resetvalue to the field specified in fieldoffset. If
2632 * fieldoffset is 0 then no reset will be done.
2637 * "Original" writefn and readfn.
2638 * For ARMv8.1-VHE register aliases, we overwrite the read/write
2639 * accessor functions of various EL1/EL0 to perform the runtime
2640 * check for which sysreg should actually be modified, and then
2641 * forwards the operation. Before overwriting the accessors,
2642 * the original function is copied here, so that accesses that
2643 * really do go to the EL1/EL0 version proceed normally.
2644 * (The corresponding EL2 register is linked via opaque.)
2646 CPReadFn *orig_readfn;
2647 CPWriteFn *orig_writefn;
2650 /* Macros which are lvalues for the field in CPUARMState for the
2653 #define CPREG_FIELD32(env, ri) \
2654 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2655 #define CPREG_FIELD64(env, ri) \
2656 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2658 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2660 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2661 const ARMCPRegInfo *regs, void *opaque);
2662 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2663 const ARMCPRegInfo *regs, void *opaque);
2664 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2666 define_arm_cp_regs_with_opaque(cpu, regs, 0);
2668 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2670 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2672 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2675 * Definition of an ARM co-processor register as viewed from
2676 * userspace. This is used for presenting sanitised versions of
2677 * registers to userspace when emulating the Linux AArch64 CPU
2678 * ID/feature ABI (advertised as HWCAP_CPUID).
2680 typedef struct ARMCPRegUserSpaceInfo {
2681 /* Name of register */
2684 /* Is the name actually a glob pattern */
2687 /* Only some bits are exported to user space */
2688 uint64_t exported_bits;
2690 /* Fixed bits are applied after the mask */
2691 uint64_t fixed_bits;
2692 } ARMCPRegUserSpaceInfo;
2694 #define REGUSERINFO_SENTINEL { .name = NULL }
2696 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2698 /* CPWriteFn that can be used to implement writes-ignored behaviour */
2699 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2701 /* CPReadFn that can be used for read-as-zero behaviour */
2702 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2704 /* CPResetFn that does nothing, for use if no reset is required even
2705 * if fieldoffset is non zero.
2707 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2709 /* Return true if this reginfo struct's field in the cpu state struct
2712 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2714 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2717 static inline bool cp_access_ok(int current_el,
2718 const ARMCPRegInfo *ri, int isread)
2720 return (ri->access >> ((current_el * 2) + isread)) & 1;
2723 /* Raw read of a coprocessor register (as needed for migration, etc) */
2724 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2727 * write_list_to_cpustate
2730 * For each register listed in the ARMCPU cpreg_indexes list, write
2731 * its value from the cpreg_values list into the ARMCPUState structure.
2732 * This updates TCG's working data structures from KVM data or
2733 * from incoming migration state.
2735 * Returns: true if all register values were updated correctly,
2736 * false if some register was unknown or could not be written.
2737 * Note that we do not stop early on failure -- we will attempt
2738 * writing all registers in the list.
2740 bool write_list_to_cpustate(ARMCPU *cpu);
2743 * write_cpustate_to_list:
2745 * @kvm_sync: true if this is for syncing back to KVM
2747 * For each register listed in the ARMCPU cpreg_indexes list, write
2748 * its value from the ARMCPUState structure into the cpreg_values list.
2749 * This is used to copy info from TCG's working data structures into
2750 * KVM or for outbound migration.
2752 * @kvm_sync is true if we are doing this in order to sync the
2753 * register state back to KVM. In this case we will only update
2754 * values in the list if the previous list->cpustate sync actually
2755 * successfully wrote the CPU state. Otherwise we will keep the value
2756 * that is in the list.
2758 * Returns: true if all register values were read correctly,
2759 * false if some register was unknown or could not be read.
2760 * Note that we do not stop early on failure -- we will attempt
2761 * reading all registers in the list.
2763 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2765 #define ARM_CPUID_TI915T 0x54029152
2766 #define ARM_CPUID_TI925T 0x54029252
2768 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2769 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2770 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2772 #define cpu_signal_handler cpu_arm_signal_handler
2773 #define cpu_list arm_cpu_list
2775 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2778 * + NonSecure EL1 & 0 stage 1
2779 * + NonSecure EL1 & 0 stage 2
2781 * + NonSecure EL2 & 0 (ARMv8.1-VHE)
2785 * + NonSecure PL1 & 0 stage 1
2786 * + NonSecure PL1 & 0 stage 2
2790 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2792 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2793 * 1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2794 * because they may differ in access permissions even if the VA->PA map is
2796 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2797 * translation, which means that we have one mmu_idx that deals with two
2798 * concatenated translation regimes [this sort of combined s1+2 TLB is
2799 * architecturally permitted]
2800 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2801 * handling via the TLB. The only way to do a stage 1 translation without
2802 * the immediate stage 2 translation is via the ATS or AT system insns,
2803 * which can be slow-pathed and always do a page table walk.
2804 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2805 * translation regimes, because they map reasonably well to each other
2806 * and they can't both be active at the same time.
2807 * 5. we want to be able to use the TLB for accesses done as part of a
2808 * stage1 page table walk, rather than having to walk the stage2 page
2809 * table over and over.
2810 * 6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2811 * Never (PAN) bit within PSTATE.
2813 * This gives us the following list of cases:
2815 * NS EL0 EL1&0 stage 1+2 (aka NS PL0)
2816 * NS EL1 EL1&0 stage 1+2 (aka NS PL1)
2817 * NS EL1 EL1&0 stage 1+2 +PAN
2820 * NS EL2 (aka NS PL2)
2821 * S EL0 EL1&0 (aka S PL0)
2822 * S EL1 EL1&0 (not used if EL3 is 32 bit)
2827 * for a total of 12 different mmu_idx.
2829 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2830 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2831 * NS EL2 if we ever model a Cortex-R52).
2833 * M profile CPUs are rather different as they do not have a true MMU.
2834 * They have the following different MMU indexes:
2837 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2838 * Privileged, execution priority negative (ditto)
2839 * If the CPU supports the v8M Security Extension then there are also:
2842 * Secure User, execution priority negative
2843 * Secure Privileged, execution priority negative
2845 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2846 * are not quite the same -- different CPU types (most notably M profile
2847 * vs A/R profile) would like to use MMU indexes with different semantics,
2848 * but since we don't ever need to use all of those in a single CPU we
2849 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2850 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2851 * the same for any particular CPU.
2852 * Variables of type ARMMUIdx are always full values, and the core
2853 * index values are in variables of type 'int'.
2855 * Our enumeration includes at the end some entries which are not "true"
2856 * mmu_idx values in that they don't have corresponding TLBs and are only
2857 * valid for doing slow path page table walks.
2859 * The constant names here are patterned after the general style of the names
2860 * of the AT/ATS operations.
2861 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2862 * For M profile we arrange them to have a bit for priv, a bit for negpri
2863 * and a bit for secure.
2865 #define ARM_MMU_IDX_A 0x10 /* A profile */
2866 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2867 #define ARM_MMU_IDX_M 0x40 /* M profile */
2869 /* Meanings of the bits for M profile mmu idx values */
2870 #define ARM_MMU_IDX_M_PRIV 0x1
2871 #define ARM_MMU_IDX_M_NEGPRI 0x2
2872 #define ARM_MMU_IDX_M_S 0x4 /* Secure */
2874 #define ARM_MMU_IDX_TYPE_MASK \
2875 (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2876 #define ARM_MMU_IDX_COREIDX_MASK 0xf
2878 typedef enum ARMMMUIdx {
2882 ARMMMUIdx_E10_0 = 0 | ARM_MMU_IDX_A,
2883 ARMMMUIdx_E20_0 = 1 | ARM_MMU_IDX_A,
2885 ARMMMUIdx_E10_1 = 2 | ARM_MMU_IDX_A,
2886 ARMMMUIdx_E10_1_PAN = 3 | ARM_MMU_IDX_A,
2888 ARMMMUIdx_E2 = 4 | ARM_MMU_IDX_A,
2889 ARMMMUIdx_E20_2 = 5 | ARM_MMU_IDX_A,
2890 ARMMMUIdx_E20_2_PAN = 6 | ARM_MMU_IDX_A,
2892 ARMMMUIdx_SE10_0 = 7 | ARM_MMU_IDX_A,
2893 ARMMMUIdx_SE10_1 = 8 | ARM_MMU_IDX_A,
2894 ARMMMUIdx_SE10_1_PAN = 9 | ARM_MMU_IDX_A,
2895 ARMMMUIdx_SE3 = 10 | ARM_MMU_IDX_A,
2897 ARMMMUIdx_Stage2 = 11 | ARM_MMU_IDX_A,
2900 * These are not allocated TLBs and are used only for AT system
2901 * instructions or for the first stage of an S12 page table walk.
2903 ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2904 ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
2905 ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
2910 ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2911 ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2912 ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2913 ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2914 ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2915 ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2916 ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2917 ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
2921 * Bit macros for the core-mmu-index values for each index,
2922 * for use when calling tlb_flush_by_mmuidx() and friends.
2924 #define TO_CORE_BIT(NAME) \
2925 ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2927 typedef enum ARMMMUIdxBit {
2931 TO_CORE_BIT(E10_1_PAN),
2934 TO_CORE_BIT(E20_2_PAN),
2935 TO_CORE_BIT(SE10_0),
2936 TO_CORE_BIT(SE10_1),
2937 TO_CORE_BIT(SE10_1_PAN),
2939 TO_CORE_BIT(Stage2),
2943 TO_CORE_BIT(MUserNegPri),
2944 TO_CORE_BIT(MPrivNegPri),
2945 TO_CORE_BIT(MSUser),
2946 TO_CORE_BIT(MSPriv),
2947 TO_CORE_BIT(MSUserNegPri),
2948 TO_CORE_BIT(MSPrivNegPri),
2953 #define MMU_USER_IDX 0
2955 /* Indexes used when registering address spaces with cpu_address_space_init */
2956 typedef enum ARMASIdx {
2961 /* Return the Exception Level targeted by debug exceptions. */
2962 static inline int arm_debug_target_el(CPUARMState *env)
2964 bool secure = arm_is_secure(env);
2965 bool route_to_el2 = false;
2967 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2968 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2969 env->cp15.mdcr_el2 & MDCR_TDE;
2974 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2975 !arm_el_is_aa64(env, 3) && secure) {
2982 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2984 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2987 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2990 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
2991 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2993 int cur_el = arm_current_el(env);
3000 /* MDCR_EL3.SDD disables debug events from Secure state */
3001 if (arm_is_secure_below_el3(env)
3002 && extract32(env->cp15.mdcr_el3, 16, 1)) {
3007 * Same EL to same EL debug exceptions need MDSCR_KDE enabled
3008 * while not masking the (D)ebug bit in DAIF.
3010 debug_el = arm_debug_target_el(env);
3012 if (cur_el == debug_el) {
3013 return extract32(env->cp15.mdscr_el1, 13, 1)
3014 && !(env->daif & PSTATE_D);
3017 /* Otherwise the debug target needs to be a higher EL */
3018 return debug_el > cur_el;
3021 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
3023 int el = arm_current_el(env);
3025 if (el == 0 && arm_el_is_aa64(env, 1)) {
3026 return aa64_generate_debug_exceptions(env);
3029 if (arm_is_secure(env)) {
3032 if (el == 0 && (env->cp15.sder & 1)) {
3033 /* SDER.SUIDEN means debug exceptions from Secure EL0
3034 * are always enabled. Otherwise they are controlled by
3035 * SDCR.SPD like those from other Secure ELs.
3040 spd = extract32(env->cp15.mdcr_el3, 14, 2);
3043 /* SPD == 0b01 is reserved, but behaves as 0b00. */
3045 /* For 0b00 we return true if external secure invasive debug
3046 * is enabled. On real hardware this is controlled by external
3047 * signals to the core. QEMU always permits debug, and behaves
3048 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3061 /* Return true if debugging exceptions are currently enabled.
3062 * This corresponds to what in ARM ARM pseudocode would be
3063 * if UsingAArch32() then
3064 * return AArch32.GenerateDebugExceptions()
3066 * return AArch64.GenerateDebugExceptions()
3067 * We choose to push the if() down into this function for clarity,
3068 * since the pseudocode has it at all callsites except for the one in
3069 * CheckSoftwareStep(), where it is elided because both branches would
3070 * always return the same value.
3072 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3075 return aa64_generate_debug_exceptions(env);
3077 return aa32_generate_debug_exceptions(env);
3081 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3082 * implicitly means this always returns false in pre-v8 CPUs.)
3084 static inline bool arm_singlestep_active(CPUARMState *env)
3086 return extract32(env->cp15.mdscr_el1, 0, 1)
3087 && arm_el_is_aa64(env, arm_debug_target_el(env))
3088 && arm_generate_debug_exceptions(env);
3091 static inline bool arm_sctlr_b(CPUARMState *env)
3094 /* We need not implement SCTLR.ITD in user-mode emulation, so
3095 * let linux-user ignore the fact that it conflicts with SCTLR_B.
3096 * This lets people run BE32 binaries with "-cpu any".
3098 #ifndef CONFIG_USER_ONLY
3099 !arm_feature(env, ARM_FEATURE_V7) &&
3101 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3104 uint64_t arm_sctlr(CPUARMState *env, int el);
3106 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3109 #ifdef CONFIG_USER_ONLY
3111 * In system mode, BE32 is modelled in line with the
3112 * architecture (as word-invariant big-endianness), where loads
3113 * and stores are done little endian but from addresses which
3114 * are adjusted by XORing with the appropriate constant. So the
3115 * endianness to use for the raw data access is not affected by
3117 * In user mode, however, we model BE32 as byte-invariant
3118 * big-endianness (because user-only code cannot tell the
3119 * difference), and so we need to use a data access endianness
3120 * that depends on SCTLR.B.
3126 /* In 32bit endianness is determined by looking at CPSR's E bit */
3127 return env->uncached_cpsr & CPSR_E;
3130 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3132 return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3135 /* Return true if the processor is in big-endian mode. */
3136 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3139 return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3141 int cur_el = arm_current_el(env);
3142 uint64_t sctlr = arm_sctlr(env, cur_el);
3143 return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3147 typedef CPUARMState CPUArchState;
3148 typedef ARMCPU ArchCPU;
3150 #include "exec/cpu-all.h"
3153 * Bit usage in the TB flags field: bit 31 indicates whether we are
3154 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
3155 * We put flags which are shared between 32 and 64 bit mode at the top
3156 * of the word, and flags which apply to only one mode at the bottom.
3159 * +--------------+-----+-----+----------+--------------+
3160 * | | | TBFLAG_A32 | |
3161 * | | +-----+----------+ TBFLAG_AM32 |
3162 * | TBFLAG_ANY | |TBFLAG_M32| |
3163 * | | +-+----------+--------------|
3164 * | | | TBFLAG_A64 |
3165 * +--------------+---------+---------------------------+
3168 * Unless otherwise noted, these bits are cached in env->hflags.
3170 FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
3171 FIELD(TBFLAG_ANY, SS_ACTIVE, 30, 1)
3172 FIELD(TBFLAG_ANY, PSTATE_SS, 29, 1) /* Not cached. */
3173 FIELD(TBFLAG_ANY, BE_DATA, 28, 1)
3174 FIELD(TBFLAG_ANY, MMUIDX, 24, 4)
3175 /* Target EL if we take a floating-point-disabled exception */
3176 FIELD(TBFLAG_ANY, FPEXC_EL, 22, 2)
3177 /* For A-profile only, target EL for debug exceptions. */
3178 FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 20, 2)
3181 * Bit usage when in AArch32 state, both A- and M-profile.
3183 FIELD(TBFLAG_AM32, CONDEXEC, 0, 8) /* Not cached. */
3184 FIELD(TBFLAG_AM32, THUMB, 8, 1) /* Not cached. */
3187 * Bit usage when in AArch32 state, for A-profile only.
3189 FIELD(TBFLAG_A32, VECLEN, 9, 3) /* Not cached. */
3190 FIELD(TBFLAG_A32, VECSTRIDE, 12, 2) /* Not cached. */
3192 * We store the bottom two bits of the CPAR as TB flags and handle
3193 * checks on the other bits at runtime. This shares the same bits as
3194 * VECSTRIDE, which is OK as no XScale CPU has VFP.
3195 * Not cached, because VECLEN+VECSTRIDE are not cached.
3197 FIELD(TBFLAG_A32, XSCALE_CPAR, 12, 2)
3198 FIELD(TBFLAG_A32, VFPEN, 14, 1) /* Partially cached, minus FPEXC. */
3199 FIELD(TBFLAG_A32, SCTLR_B, 15, 1)
3200 FIELD(TBFLAG_A32, HSTR_ACTIVE, 16, 1)
3202 * Indicates whether cp register reads and writes by guest code should access
3203 * the secure or nonsecure bank of banked registers; note that this is not
3204 * the same thing as the current security state of the processor!
3206 FIELD(TBFLAG_A32, NS, 17, 1)
3209 * Bit usage when in AArch32 state, for M-profile only.
3211 /* Handler (ie not Thread) mode */
3212 FIELD(TBFLAG_M32, HANDLER, 9, 1)
3213 /* Whether we should generate stack-limit checks */
3214 FIELD(TBFLAG_M32, STACKCHECK, 10, 1)
3215 /* Set if FPCCR.LSPACT is set */
3216 FIELD(TBFLAG_M32, LSPACT, 11, 1) /* Not cached. */
3217 /* Set if we must create a new FP context */
3218 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 12, 1) /* Not cached. */
3219 /* Set if FPCCR.S does not match current security state */
3220 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 13, 1) /* Not cached. */
3223 * Bit usage when in AArch64 state
3225 FIELD(TBFLAG_A64, TBII, 0, 2)
3226 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3227 FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
3228 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3229 FIELD(TBFLAG_A64, BT, 9, 1)
3230 FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */
3231 FIELD(TBFLAG_A64, TBID, 12, 2)
3232 FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3236 * @env: The cpu environment
3237 * @ifetch: True for code access, false for data access.
3239 * Return the core mmu index for the current translation regime.
3240 * This function is used by generic TCG code paths.
3242 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3244 return FIELD_EX32(env->hflags, TBFLAG_ANY, MMUIDX);
3247 static inline bool bswap_code(bool sctlr_b)
3249 #ifdef CONFIG_USER_ONLY
3250 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3251 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3252 * would also end up as a mixed-endian mode with BE code, LE data.
3255 #ifdef TARGET_WORDS_BIGENDIAN
3260 /* All code access in ARM is little endian, and there are no loaders
3261 * doing swaps that need to be reversed
3267 #ifdef CONFIG_USER_ONLY
3268 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3271 #ifdef TARGET_WORDS_BIGENDIAN
3274 arm_cpu_data_is_big_endian(env);
3278 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3279 target_ulong *cs_base, uint32_t *flags);
3282 QEMU_PSCI_CONDUIT_DISABLED = 0,
3283 QEMU_PSCI_CONDUIT_SMC = 1,
3284 QEMU_PSCI_CONDUIT_HVC = 2,
3287 #ifndef CONFIG_USER_ONLY
3288 /* Return the address space index to use for a memory access */
3289 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3291 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3294 /* Return the AddressSpace to use for a memory access
3295 * (which depends on whether the access is S or NS, and whether
3296 * the board gave us a separate AddressSpace for S accesses).
3298 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3300 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3305 * arm_register_pre_el_change_hook:
3306 * Register a hook function which will be called immediately before this
3307 * CPU changes exception level or mode. The hook function will be
3308 * passed a pointer to the ARMCPU and the opaque data pointer passed
3309 * to this function when the hook was registered.
3311 * Note that if a pre-change hook is called, any registered post-change hooks
3312 * are guaranteed to subsequently be called.
3314 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3317 * arm_register_el_change_hook:
3318 * Register a hook function which will be called immediately after this
3319 * CPU changes exception level or mode. The hook function will be
3320 * passed a pointer to the ARMCPU and the opaque data pointer passed
3321 * to this function when the hook was registered.
3323 * Note that any registered hooks registered here are guaranteed to be called
3324 * if pre-change hooks have been.
3326 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3330 * arm_rebuild_hflags:
3331 * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3333 void arm_rebuild_hflags(CPUARMState *env);
3337 * Return a pointer to the Dn register within env in 32-bit mode.
3339 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3341 return &env->vfp.zregs[regno >> 1].d[regno & 1];
3346 * Return a pointer to the Qn register within env in 32-bit mode.
3348 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3350 return &env->vfp.zregs[regno].d[0];
3355 * Return a pointer to the Qn register within env in 64-bit mode.
3357 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3359 return &env->vfp.zregs[regno].d[0];
3362 /* Shared between translate-sve.c and sve_helper.c. */
3363 extern const uint64_t pred_esz_masks[4];
3366 * Naming convention for isar_feature functions:
3367 * Functions which test 32-bit ID registers should have _aa32_ in
3368 * their name. Functions which test 64-bit ID registers should have
3369 * _aa64_ in their name. These must only be used in code where we
3370 * know for certain that the CPU has AArch32 or AArch64 respectively
3371 * or where the correct answer for a CPU which doesn't implement that
3372 * CPU state is "false" (eg when generating A32 or A64 code, if adding
3373 * system registers that are specific to that CPU state, for "should
3374 * we let this system register bit be set" tests where the 32-bit
3375 * flavour of the register doesn't have the bit, and so on).
3376 * Functions which simply ask "does this feature exist at all" have
3377 * _any_ in their name, and always return the logical OR of the _aa64_
3378 * and the _aa32_ function.
3382 * 32-bit feature tests via id registers.
3384 static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
3386 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3389 static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
3391 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3394 static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
3396 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3399 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3401 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3404 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3406 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3409 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3411 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3414 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3416 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3419 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3421 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3424 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3426 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3429 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3431 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3434 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3436 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3439 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3441 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3444 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3446 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3449 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3451 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3454 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3456 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3459 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3462 * This is a placeholder for use by VCMA until the rest of
3463 * the ARMv8.2-FP16 extension is implemented for aa32 mode.
3464 * At which point we can properly set and check MVFR1.FPHP.
3466 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3469 static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3472 * Return true if either VFP or SIMD is implemented.
3473 * In this case, a minimum of VFP w/ D0-D15.
3475 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3478 static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
3480 /* Return true if D16-D31 are implemented */
3481 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
3484 static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3486 return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
3489 static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3491 /* Return true if CPU supports single precision floating point, VFPv2 */
3492 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3495 static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3497 /* Return true if CPU supports single precision floating point, VFPv3 */
3498 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3501 static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
3503 /* Return true if CPU supports double precision floating point, VFPv2 */
3504 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
3507 static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3509 /* Return true if CPU supports double precision floating point, VFPv3 */
3510 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3513 static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3515 return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3519 * We always set the FP and SIMD FP16 fields to indicate identical
3520 * levels of support (assuming SIMD is implemented at all), so
3521 * we only need one set of accessors.
3523 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3525 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
3528 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3530 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
3534 * Note that this ID register field covers both VFP and Neon FMAC,
3535 * so should usually be tested in combination with some other
3536 * check that confirms the presence of whichever of VFP or Neon is
3537 * relevant, to avoid accidentally enabling a Neon feature on
3538 * a VFP-no-Neon core or vice-versa.
3540 static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3542 return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3545 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3547 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
3550 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3552 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
3555 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3557 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
3560 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3562 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
3565 static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3567 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3570 static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3572 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3575 static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id)
3577 /* 0xf means "non-standard IMPDEF PMU" */
3578 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3579 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3582 static inline bool isar_feature_aa32_pmu_8_4(const ARMISARegisters *id)
3584 /* 0xf means "non-standard IMPDEF PMU" */
3585 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3586 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3589 static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3591 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3594 static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
3596 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
3599 static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
3601 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
3605 * 64-bit feature tests via id registers.
3607 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3609 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3612 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3614 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3617 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3619 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3622 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3624 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3627 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3629 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3632 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3634 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3637 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3639 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3642 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3644 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3647 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3649 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3652 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3654 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3657 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3659 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3662 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3664 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3667 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3669 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3672 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3674 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3677 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3679 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3682 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3684 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3687 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3689 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3692 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3694 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3697 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3700 * Note that while QEMU will only implement the architected algorithm
3701 * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation
3702 * defined algorithms, and thus API+GPI, and this predicate controls
3703 * migration of the 128-bit keys.
3705 return (id->id_aa64isar1 &
3706 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3707 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3708 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3709 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3712 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3714 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3717 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3719 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3722 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3724 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3727 static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
3729 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
3732 static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
3734 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
3737 static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
3739 /* We always set the AdvSIMD and FP fields identically. */
3740 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
3743 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3745 /* We always set the AdvSIMD and FP fields identically wrt FP16. */
3746 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3749 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3751 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3754 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3756 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3759 static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
3761 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
3764 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3766 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3769 static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
3771 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
3774 static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
3776 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
3779 static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
3781 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
3784 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3786 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3789 static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id)
3791 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
3792 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
3795 static inline bool isar_feature_aa64_pmu_8_4(const ARMISARegisters *id)
3797 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
3798 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
3801 static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
3803 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
3806 static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
3808 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
3811 static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
3813 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
3817 * Feature tests for "does this exist in either 32-bit or 64-bit?"
3819 static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
3821 return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
3824 static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
3826 return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
3829 static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id)
3831 return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id);
3834 static inline bool isar_feature_any_pmu_8_4(const ARMISARegisters *id)
3836 return isar_feature_aa64_pmu_8_4(id) || isar_feature_aa32_pmu_8_4(id);
3839 static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
3841 return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
3845 * Forward to the above feature tests given an ARMCPU pointer.
3847 #define cpu_isar_feature(name, cpu) \
3848 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })