]>
Commit | Line | Data |
---|---|---|
05330448 AL |
1 | /* |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright (C) 2006-2008 Qumranet Technologies | |
5 | * Copyright IBM, Corp. 2008 | |
6 | * | |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
9 | * | |
10 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
11 | * See the COPYING file in the top-level directory. | |
12 | * | |
13 | */ | |
14 | ||
b6a0aa05 | 15 | #include "qemu/osdep.h" |
da34e65c | 16 | #include "qapi/error.h" |
05330448 | 17 | #include <sys/ioctl.h> |
25d2e361 | 18 | #include <sys/utsname.h> |
05330448 AL |
19 | |
20 | #include <linux/kvm.h> | |
5802e066 | 21 | #include <linux/kvm_para.h> |
05330448 AL |
22 | |
23 | #include "qemu-common.h" | |
33c11879 | 24 | #include "cpu.h" |
9c17d615 | 25 | #include "sysemu/sysemu.h" |
6410848b | 26 | #include "sysemu/kvm_int.h" |
1d31f66b | 27 | #include "kvm_i386.h" |
50efe82c AS |
28 | #include "hyperv.h" |
29 | ||
022c62cb | 30 | #include "exec/gdbstub.h" |
1de7afc9 PB |
31 | #include "qemu/host-utils.h" |
32 | #include "qemu/config-file.h" | |
1c4a55db | 33 | #include "qemu/error-report.h" |
0d09e41a PB |
34 | #include "hw/i386/pc.h" |
35 | #include "hw/i386/apic.h" | |
e0723c45 PB |
36 | #include "hw/i386/apic_internal.h" |
37 | #include "hw/i386/apic-msidef.h" | |
8b5ed7df | 38 | #include "hw/i386/intel_iommu.h" |
e1d4fb2d | 39 | #include "hw/i386/x86-iommu.h" |
50efe82c | 40 | |
022c62cb | 41 | #include "exec/ioport.h" |
73aa529a | 42 | #include "standard-headers/asm-x86/hyperv.h" |
a2cb15b0 | 43 | #include "hw/pci/pci.h" |
15eafc2e | 44 | #include "hw/pci/msi.h" |
68bfd0ad | 45 | #include "migration/migration.h" |
4c663752 | 46 | #include "exec/memattrs.h" |
8b5ed7df | 47 | #include "trace.h" |
05330448 AL |
48 | |
49 | //#define DEBUG_KVM | |
50 | ||
51 | #ifdef DEBUG_KVM | |
8c0d577e | 52 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
53 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) |
54 | #else | |
8c0d577e | 55 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
56 | do { } while (0) |
57 | #endif | |
58 | ||
1a03675d GC |
59 | #define MSR_KVM_WALL_CLOCK 0x11 |
60 | #define MSR_KVM_SYSTEM_TIME 0x12 | |
61 | ||
d1138251 EH |
62 | /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus |
63 | * 255 kvm_msr_entry structs */ | |
64 | #define MSR_BUF_SIZE 4096 | |
d71b62a1 | 65 | |
c0532a76 MT |
66 | #ifndef BUS_MCEERR_AR |
67 | #define BUS_MCEERR_AR 4 | |
68 | #endif | |
69 | #ifndef BUS_MCEERR_AO | |
70 | #define BUS_MCEERR_AO 5 | |
71 | #endif | |
72 | ||
94a8d39a JK |
73 | const KVMCapabilityInfo kvm_arch_required_capabilities[] = { |
74 | KVM_CAP_INFO(SET_TSS_ADDR), | |
75 | KVM_CAP_INFO(EXT_CPUID), | |
76 | KVM_CAP_INFO(MP_STATE), | |
77 | KVM_CAP_LAST_INFO | |
78 | }; | |
25d2e361 | 79 | |
c3a3a7d3 JK |
80 | static bool has_msr_star; |
81 | static bool has_msr_hsave_pa; | |
c9b8f6b6 | 82 | static bool has_msr_tsc_aux; |
f28558d3 | 83 | static bool has_msr_tsc_adjust; |
aa82ba54 | 84 | static bool has_msr_tsc_deadline; |
df67696e | 85 | static bool has_msr_feature_control; |
21e87c46 | 86 | static bool has_msr_misc_enable; |
fc12d72e | 87 | static bool has_msr_smbase; |
79e9ebeb | 88 | static bool has_msr_bndcfgs; |
25d2e361 | 89 | static int lm_capable_kernel; |
7bc3d711 | 90 | static bool has_msr_hv_hypercall; |
f2a53c9e | 91 | static bool has_msr_hv_crash; |
744b8a94 | 92 | static bool has_msr_hv_reset; |
8c145d7c | 93 | static bool has_msr_hv_vpindex; |
46eb8f98 | 94 | static bool has_msr_hv_runtime; |
866eea9a | 95 | static bool has_msr_hv_synic; |
ff99aa64 | 96 | static bool has_msr_hv_stimer; |
18cd2c17 | 97 | static bool has_msr_xss; |
b827df58 | 98 | |
0d894367 PB |
99 | static bool has_msr_architectural_pmu; |
100 | static uint32_t num_architectural_pmu_counters; | |
101 | ||
28143b40 TH |
102 | static int has_xsave; |
103 | static int has_xcrs; | |
104 | static int has_pit_state2; | |
105 | ||
87f8b626 AR |
106 | static bool has_msr_mcg_ext_ctl; |
107 | ||
494e95e9 CP |
108 | static struct kvm_cpuid2 *cpuid_cache; |
109 | ||
28143b40 TH |
110 | int kvm_has_pit_state2(void) |
111 | { | |
112 | return has_pit_state2; | |
113 | } | |
114 | ||
355023f2 PB |
115 | bool kvm_has_smm(void) |
116 | { | |
117 | return kvm_check_extension(kvm_state, KVM_CAP_X86_SMM); | |
118 | } | |
119 | ||
1d31f66b PM |
120 | bool kvm_allows_irq0_override(void) |
121 | { | |
122 | return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing(); | |
123 | } | |
124 | ||
fb506e70 RK |
125 | static bool kvm_x2apic_api_set_flags(uint64_t flags) |
126 | { | |
127 | KVMState *s = KVM_STATE(current_machine->accelerator); | |
128 | ||
129 | return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags); | |
130 | } | |
131 | ||
e391c009 | 132 | #define MEMORIZE(fn, _result) \ |
2a138ec3 | 133 | ({ \ |
2a138ec3 RK |
134 | static bool _memorized; \ |
135 | \ | |
136 | if (_memorized) { \ | |
137 | return _result; \ | |
138 | } \ | |
139 | _memorized = true; \ | |
140 | _result = fn; \ | |
141 | }) | |
142 | ||
e391c009 IM |
143 | static bool has_x2apic_api; |
144 | ||
145 | bool kvm_has_x2apic_api(void) | |
146 | { | |
147 | return has_x2apic_api; | |
148 | } | |
149 | ||
fb506e70 RK |
150 | bool kvm_enable_x2apic(void) |
151 | { | |
2a138ec3 RK |
152 | return MEMORIZE( |
153 | kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS | | |
e391c009 IM |
154 | KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK), |
155 | has_x2apic_api); | |
fb506e70 RK |
156 | } |
157 | ||
0fd7e098 LL |
158 | static int kvm_get_tsc(CPUState *cs) |
159 | { | |
160 | X86CPU *cpu = X86_CPU(cs); | |
161 | CPUX86State *env = &cpu->env; | |
162 | struct { | |
163 | struct kvm_msrs info; | |
164 | struct kvm_msr_entry entries[1]; | |
165 | } msr_data; | |
166 | int ret; | |
167 | ||
168 | if (env->tsc_valid) { | |
169 | return 0; | |
170 | } | |
171 | ||
172 | msr_data.info.nmsrs = 1; | |
173 | msr_data.entries[0].index = MSR_IA32_TSC; | |
174 | env->tsc_valid = !runstate_is_running(); | |
175 | ||
176 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data); | |
177 | if (ret < 0) { | |
178 | return ret; | |
179 | } | |
180 | ||
48e1a45c | 181 | assert(ret == 1); |
0fd7e098 LL |
182 | env->tsc = msr_data.entries[0].data; |
183 | return 0; | |
184 | } | |
185 | ||
14e6fe12 | 186 | static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg) |
0fd7e098 | 187 | { |
0fd7e098 LL |
188 | kvm_get_tsc(cpu); |
189 | } | |
190 | ||
191 | void kvm_synchronize_all_tsc(void) | |
192 | { | |
193 | CPUState *cpu; | |
194 | ||
195 | if (kvm_enabled()) { | |
196 | CPU_FOREACH(cpu) { | |
14e6fe12 | 197 | run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL); |
0fd7e098 LL |
198 | } |
199 | } | |
200 | } | |
201 | ||
b827df58 AK |
202 | static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) |
203 | { | |
204 | struct kvm_cpuid2 *cpuid; | |
205 | int r, size; | |
206 | ||
207 | size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); | |
e42a92ae | 208 | cpuid = g_malloc0(size); |
b827df58 AK |
209 | cpuid->nent = max; |
210 | r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid); | |
76ae317f MM |
211 | if (r == 0 && cpuid->nent >= max) { |
212 | r = -E2BIG; | |
213 | } | |
b827df58 AK |
214 | if (r < 0) { |
215 | if (r == -E2BIG) { | |
7267c094 | 216 | g_free(cpuid); |
b827df58 AK |
217 | return NULL; |
218 | } else { | |
219 | fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n", | |
220 | strerror(-r)); | |
221 | exit(1); | |
222 | } | |
223 | } | |
224 | return cpuid; | |
225 | } | |
226 | ||
dd87f8a6 EH |
227 | /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough |
228 | * for all entries. | |
229 | */ | |
230 | static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s) | |
231 | { | |
232 | struct kvm_cpuid2 *cpuid; | |
233 | int max = 1; | |
494e95e9 CP |
234 | |
235 | if (cpuid_cache != NULL) { | |
236 | return cpuid_cache; | |
237 | } | |
dd87f8a6 EH |
238 | while ((cpuid = try_get_cpuid(s, max)) == NULL) { |
239 | max *= 2; | |
240 | } | |
494e95e9 | 241 | cpuid_cache = cpuid; |
dd87f8a6 EH |
242 | return cpuid; |
243 | } | |
244 | ||
a443bc34 | 245 | static const struct kvm_para_features { |
0c31b744 GC |
246 | int cap; |
247 | int feature; | |
248 | } para_features[] = { | |
249 | { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE }, | |
250 | { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY }, | |
251 | { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP }, | |
0c31b744 | 252 | { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF }, |
0c31b744 GC |
253 | }; |
254 | ||
ba9bc59e | 255 | static int get_para_features(KVMState *s) |
0c31b744 GC |
256 | { |
257 | int i, features = 0; | |
258 | ||
8e03c100 | 259 | for (i = 0; i < ARRAY_SIZE(para_features); i++) { |
ba9bc59e | 260 | if (kvm_check_extension(s, para_features[i].cap)) { |
0c31b744 GC |
261 | features |= (1 << para_features[i].feature); |
262 | } | |
263 | } | |
264 | ||
265 | return features; | |
266 | } | |
0c31b744 GC |
267 | |
268 | ||
829ae2f9 EH |
269 | /* Returns the value for a specific register on the cpuid entry |
270 | */ | |
271 | static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg) | |
272 | { | |
273 | uint32_t ret = 0; | |
274 | switch (reg) { | |
275 | case R_EAX: | |
276 | ret = entry->eax; | |
277 | break; | |
278 | case R_EBX: | |
279 | ret = entry->ebx; | |
280 | break; | |
281 | case R_ECX: | |
282 | ret = entry->ecx; | |
283 | break; | |
284 | case R_EDX: | |
285 | ret = entry->edx; | |
286 | break; | |
287 | } | |
288 | return ret; | |
289 | } | |
290 | ||
4fb73f1d EH |
291 | /* Find matching entry for function/index on kvm_cpuid2 struct |
292 | */ | |
293 | static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid, | |
294 | uint32_t function, | |
295 | uint32_t index) | |
296 | { | |
297 | int i; | |
298 | for (i = 0; i < cpuid->nent; ++i) { | |
299 | if (cpuid->entries[i].function == function && | |
300 | cpuid->entries[i].index == index) { | |
301 | return &cpuid->entries[i]; | |
302 | } | |
303 | } | |
304 | /* not found: */ | |
305 | return NULL; | |
306 | } | |
307 | ||
ba9bc59e | 308 | uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function, |
c958a8bd | 309 | uint32_t index, int reg) |
b827df58 AK |
310 | { |
311 | struct kvm_cpuid2 *cpuid; | |
b827df58 AK |
312 | uint32_t ret = 0; |
313 | uint32_t cpuid_1_edx; | |
8c723b79 | 314 | bool found = false; |
b827df58 | 315 | |
dd87f8a6 | 316 | cpuid = get_supported_cpuid(s); |
b827df58 | 317 | |
4fb73f1d EH |
318 | struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index); |
319 | if (entry) { | |
320 | found = true; | |
321 | ret = cpuid_entry_get_reg(entry, reg); | |
b827df58 AK |
322 | } |
323 | ||
7b46e5ce EH |
324 | /* Fixups for the data returned by KVM, below */ |
325 | ||
c2acb022 EH |
326 | if (function == 1 && reg == R_EDX) { |
327 | /* KVM before 2.6.30 misreports the following features */ | |
328 | ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA; | |
84bd945c EH |
329 | } else if (function == 1 && reg == R_ECX) { |
330 | /* We can set the hypervisor flag, even if KVM does not return it on | |
331 | * GET_SUPPORTED_CPUID | |
332 | */ | |
333 | ret |= CPUID_EXT_HYPERVISOR; | |
ac67ee26 EH |
334 | /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it |
335 | * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER, | |
336 | * and the irqchip is in the kernel. | |
337 | */ | |
338 | if (kvm_irqchip_in_kernel() && | |
339 | kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) { | |
340 | ret |= CPUID_EXT_TSC_DEADLINE_TIMER; | |
341 | } | |
41e5e76d EH |
342 | |
343 | /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled | |
344 | * without the in-kernel irqchip | |
345 | */ | |
346 | if (!kvm_irqchip_in_kernel()) { | |
347 | ret &= ~CPUID_EXT_X2APIC; | |
b827df58 | 348 | } |
28b8e4d0 JK |
349 | } else if (function == 6 && reg == R_EAX) { |
350 | ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */ | |
c2acb022 EH |
351 | } else if (function == 0x80000001 && reg == R_EDX) { |
352 | /* On Intel, kvm returns cpuid according to the Intel spec, | |
353 | * so add missing bits according to the AMD spec: | |
354 | */ | |
355 | cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX); | |
356 | ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES; | |
64877477 EH |
357 | } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) { |
358 | /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't | |
359 | * be enabled without the in-kernel irqchip | |
360 | */ | |
361 | if (!kvm_irqchip_in_kernel()) { | |
362 | ret &= ~(1U << KVM_FEATURE_PV_UNHALT); | |
363 | } | |
b827df58 AK |
364 | } |
365 | ||
0c31b744 | 366 | /* fallback for older kernels */ |
8c723b79 | 367 | if ((function == KVM_CPUID_FEATURES) && !found) { |
ba9bc59e | 368 | ret = get_para_features(s); |
b9bec74b | 369 | } |
0c31b744 GC |
370 | |
371 | return ret; | |
bb0300dc | 372 | } |
bb0300dc | 373 | |
3c85e74f HY |
374 | typedef struct HWPoisonPage { |
375 | ram_addr_t ram_addr; | |
376 | QLIST_ENTRY(HWPoisonPage) list; | |
377 | } HWPoisonPage; | |
378 | ||
379 | static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = | |
380 | QLIST_HEAD_INITIALIZER(hwpoison_page_list); | |
381 | ||
382 | static void kvm_unpoison_all(void *param) | |
383 | { | |
384 | HWPoisonPage *page, *next_page; | |
385 | ||
386 | QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { | |
387 | QLIST_REMOVE(page, list); | |
388 | qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); | |
7267c094 | 389 | g_free(page); |
3c85e74f HY |
390 | } |
391 | } | |
392 | ||
3c85e74f HY |
393 | static void kvm_hwpoison_page_add(ram_addr_t ram_addr) |
394 | { | |
395 | HWPoisonPage *page; | |
396 | ||
397 | QLIST_FOREACH(page, &hwpoison_page_list, list) { | |
398 | if (page->ram_addr == ram_addr) { | |
399 | return; | |
400 | } | |
401 | } | |
ab3ad07f | 402 | page = g_new(HWPoisonPage, 1); |
3c85e74f HY |
403 | page->ram_addr = ram_addr; |
404 | QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); | |
405 | } | |
406 | ||
e7701825 MT |
407 | static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap, |
408 | int *max_banks) | |
409 | { | |
410 | int r; | |
411 | ||
14a09518 | 412 | r = kvm_check_extension(s, KVM_CAP_MCE); |
e7701825 MT |
413 | if (r > 0) { |
414 | *max_banks = r; | |
415 | return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap); | |
416 | } | |
417 | return -ENOSYS; | |
418 | } | |
419 | ||
bee615d4 | 420 | static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code) |
e7701825 | 421 | { |
87f8b626 | 422 | CPUState *cs = CPU(cpu); |
bee615d4 | 423 | CPUX86State *env = &cpu->env; |
c34d440a JK |
424 | uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN | |
425 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S; | |
426 | uint64_t mcg_status = MCG_STATUS_MCIP; | |
87f8b626 | 427 | int flags = 0; |
e7701825 | 428 | |
c34d440a JK |
429 | if (code == BUS_MCEERR_AR) { |
430 | status |= MCI_STATUS_AR | 0x134; | |
431 | mcg_status |= MCG_STATUS_EIPV; | |
432 | } else { | |
433 | status |= 0xc0; | |
434 | mcg_status |= MCG_STATUS_RIPV; | |
419fb20a | 435 | } |
87f8b626 AR |
436 | |
437 | flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0; | |
438 | /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the | |
439 | * guest kernel back into env->mcg_ext_ctl. | |
440 | */ | |
441 | cpu_synchronize_state(cs); | |
442 | if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) { | |
443 | mcg_status |= MCG_STATUS_LMCE; | |
444 | flags = 0; | |
445 | } | |
446 | ||
8c5cf3b6 | 447 | cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr, |
87f8b626 | 448 | (MCM_ADDR_PHYS << 6) | 0xc, flags); |
419fb20a | 449 | } |
419fb20a JK |
450 | |
451 | static void hardware_memory_error(void) | |
452 | { | |
453 | fprintf(stderr, "Hardware memory error!\n"); | |
454 | exit(1); | |
455 | } | |
456 | ||
20d695a9 | 457 | int kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr) |
419fb20a | 458 | { |
20d695a9 AF |
459 | X86CPU *cpu = X86_CPU(c); |
460 | CPUX86State *env = &cpu->env; | |
419fb20a | 461 | ram_addr_t ram_addr; |
a8170e5e | 462 | hwaddr paddr; |
419fb20a JK |
463 | |
464 | if ((env->mcg_cap & MCG_SER_P) && addr | |
c34d440a | 465 | && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) { |
07bdaa41 PB |
466 | ram_addr = qemu_ram_addr_from_host(addr); |
467 | if (ram_addr == RAM_ADDR_INVALID || | |
a60f24b5 | 468 | !kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) { |
419fb20a JK |
469 | fprintf(stderr, "Hardware memory error for memory used by " |
470 | "QEMU itself instead of guest system!\n"); | |
471 | /* Hope we are lucky for AO MCE */ | |
472 | if (code == BUS_MCEERR_AO) { | |
473 | return 0; | |
474 | } else { | |
475 | hardware_memory_error(); | |
476 | } | |
477 | } | |
3c85e74f | 478 | kvm_hwpoison_page_add(ram_addr); |
bee615d4 | 479 | kvm_mce_inject(cpu, paddr, code); |
e56ff191 | 480 | } else { |
419fb20a JK |
481 | if (code == BUS_MCEERR_AO) { |
482 | return 0; | |
483 | } else if (code == BUS_MCEERR_AR) { | |
484 | hardware_memory_error(); | |
485 | } else { | |
486 | return 1; | |
487 | } | |
488 | } | |
489 | return 0; | |
490 | } | |
491 | ||
492 | int kvm_arch_on_sigbus(int code, void *addr) | |
493 | { | |
182735ef AF |
494 | X86CPU *cpu = X86_CPU(first_cpu); |
495 | ||
496 | if ((cpu->env.mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) { | |
419fb20a | 497 | ram_addr_t ram_addr; |
a8170e5e | 498 | hwaddr paddr; |
419fb20a JK |
499 | |
500 | /* Hope we are lucky for AO MCE */ | |
07bdaa41 PB |
501 | ram_addr = qemu_ram_addr_from_host(addr); |
502 | if (ram_addr == RAM_ADDR_INVALID || | |
182735ef | 503 | !kvm_physical_memory_addr_from_host(first_cpu->kvm_state, |
a60f24b5 | 504 | addr, &paddr)) { |
419fb20a JK |
505 | fprintf(stderr, "Hardware memory error for memory used by " |
506 | "QEMU itself instead of guest system!: %p\n", addr); | |
507 | return 0; | |
508 | } | |
3c85e74f | 509 | kvm_hwpoison_page_add(ram_addr); |
182735ef | 510 | kvm_mce_inject(X86_CPU(first_cpu), paddr, code); |
e56ff191 | 511 | } else { |
419fb20a JK |
512 | if (code == BUS_MCEERR_AO) { |
513 | return 0; | |
514 | } else if (code == BUS_MCEERR_AR) { | |
515 | hardware_memory_error(); | |
516 | } else { | |
517 | return 1; | |
518 | } | |
519 | } | |
520 | return 0; | |
521 | } | |
e7701825 | 522 | |
1bc22652 | 523 | static int kvm_inject_mce_oldstyle(X86CPU *cpu) |
ab443475 | 524 | { |
1bc22652 AF |
525 | CPUX86State *env = &cpu->env; |
526 | ||
ab443475 JK |
527 | if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) { |
528 | unsigned int bank, bank_num = env->mcg_cap & 0xff; | |
529 | struct kvm_x86_mce mce; | |
530 | ||
531 | env->exception_injected = -1; | |
532 | ||
533 | /* | |
534 | * There must be at least one bank in use if an MCE is pending. | |
535 | * Find it and use its values for the event injection. | |
536 | */ | |
537 | for (bank = 0; bank < bank_num; bank++) { | |
538 | if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) { | |
539 | break; | |
540 | } | |
541 | } | |
542 | assert(bank < bank_num); | |
543 | ||
544 | mce.bank = bank; | |
545 | mce.status = env->mce_banks[bank * 4 + 1]; | |
546 | mce.mcg_status = env->mcg_status; | |
547 | mce.addr = env->mce_banks[bank * 4 + 2]; | |
548 | mce.misc = env->mce_banks[bank * 4 + 3]; | |
549 | ||
1bc22652 | 550 | return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce); |
ab443475 | 551 | } |
ab443475 JK |
552 | return 0; |
553 | } | |
554 | ||
1dfb4dd9 | 555 | static void cpu_update_state(void *opaque, int running, RunState state) |
b8cc45d6 | 556 | { |
317ac620 | 557 | CPUX86State *env = opaque; |
b8cc45d6 GC |
558 | |
559 | if (running) { | |
560 | env->tsc_valid = false; | |
561 | } | |
562 | } | |
563 | ||
83b17af5 | 564 | unsigned long kvm_arch_vcpu_id(CPUState *cs) |
b164e48e | 565 | { |
83b17af5 | 566 | X86CPU *cpu = X86_CPU(cs); |
7e72a45c | 567 | return cpu->apic_id; |
b164e48e EH |
568 | } |
569 | ||
92067bf4 IM |
570 | #ifndef KVM_CPUID_SIGNATURE_NEXT |
571 | #define KVM_CPUID_SIGNATURE_NEXT 0x40000100 | |
572 | #endif | |
573 | ||
574 | static bool hyperv_hypercall_available(X86CPU *cpu) | |
575 | { | |
576 | return cpu->hyperv_vapic || | |
577 | (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY); | |
578 | } | |
579 | ||
580 | static bool hyperv_enabled(X86CPU *cpu) | |
581 | { | |
7bc3d711 PB |
582 | CPUState *cs = CPU(cpu); |
583 | return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 && | |
584 | (hyperv_hypercall_available(cpu) || | |
48a5f3bc | 585 | cpu->hyperv_time || |
f2a53c9e | 586 | cpu->hyperv_relaxed_timing || |
744b8a94 | 587 | cpu->hyperv_crash || |
8c145d7c | 588 | cpu->hyperv_reset || |
46eb8f98 | 589 | cpu->hyperv_vpindex || |
866eea9a | 590 | cpu->hyperv_runtime || |
ff99aa64 AS |
591 | cpu->hyperv_synic || |
592 | cpu->hyperv_stimer); | |
92067bf4 IM |
593 | } |
594 | ||
5031283d HZ |
595 | static int kvm_arch_set_tsc_khz(CPUState *cs) |
596 | { | |
597 | X86CPU *cpu = X86_CPU(cs); | |
598 | CPUX86State *env = &cpu->env; | |
599 | int r; | |
600 | ||
601 | if (!env->tsc_khz) { | |
602 | return 0; | |
603 | } | |
604 | ||
605 | r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL) ? | |
606 | kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) : | |
607 | -ENOTSUP; | |
608 | if (r < 0) { | |
609 | /* When KVM_SET_TSC_KHZ fails, it's an error only if the current | |
610 | * TSC frequency doesn't match the one we want. | |
611 | */ | |
612 | int cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? | |
613 | kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : | |
614 | -ENOTSUP; | |
615 | if (cur_freq <= 0 || cur_freq != env->tsc_khz) { | |
616 | error_report("warning: TSC frequency mismatch between " | |
d6276d26 EH |
617 | "VM (%" PRId64 " kHz) and host (%d kHz), " |
618 | "and TSC scaling unavailable", | |
619 | env->tsc_khz, cur_freq); | |
5031283d HZ |
620 | return r; |
621 | } | |
622 | } | |
623 | ||
624 | return 0; | |
625 | } | |
626 | ||
c35bd19a EY |
627 | static int hyperv_handle_properties(CPUState *cs) |
628 | { | |
629 | X86CPU *cpu = X86_CPU(cs); | |
630 | CPUX86State *env = &cpu->env; | |
631 | ||
3ddcd2ed EH |
632 | if (cpu->hyperv_time && |
633 | kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) <= 0) { | |
634 | cpu->hyperv_time = false; | |
635 | } | |
636 | ||
c35bd19a EY |
637 | if (cpu->hyperv_relaxed_timing) { |
638 | env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_HYPERCALL_AVAILABLE; | |
639 | } | |
640 | if (cpu->hyperv_vapic) { | |
641 | env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_HYPERCALL_AVAILABLE; | |
642 | env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_APIC_ACCESS_AVAILABLE; | |
c35bd19a | 643 | } |
3ddcd2ed | 644 | if (cpu->hyperv_time) { |
c35bd19a EY |
645 | env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_HYPERCALL_AVAILABLE; |
646 | env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_TIME_REF_COUNT_AVAILABLE; | |
647 | env->features[FEAT_HYPERV_EAX] |= 0x200; | |
c35bd19a EY |
648 | } |
649 | if (cpu->hyperv_crash && has_msr_hv_crash) { | |
650 | env->features[FEAT_HYPERV_EDX] |= HV_X64_GUEST_CRASH_MSR_AVAILABLE; | |
651 | } | |
652 | env->features[FEAT_HYPERV_EDX] |= HV_X64_CPU_DYNAMIC_PARTITIONING_AVAILABLE; | |
653 | if (cpu->hyperv_reset && has_msr_hv_reset) { | |
654 | env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_RESET_AVAILABLE; | |
655 | } | |
656 | if (cpu->hyperv_vpindex && has_msr_hv_vpindex) { | |
657 | env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_VP_INDEX_AVAILABLE; | |
658 | } | |
659 | if (cpu->hyperv_runtime && has_msr_hv_runtime) { | |
660 | env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_VP_RUNTIME_AVAILABLE; | |
661 | } | |
662 | if (cpu->hyperv_synic) { | |
663 | int sint; | |
664 | ||
665 | if (!has_msr_hv_synic || | |
666 | kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_SYNIC, 0)) { | |
667 | fprintf(stderr, "Hyper-V SynIC is not supported by kernel\n"); | |
668 | return -ENOSYS; | |
669 | } | |
670 | ||
671 | env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_SYNIC_AVAILABLE; | |
672 | env->msr_hv_synic_version = HV_SYNIC_VERSION_1; | |
673 | for (sint = 0; sint < ARRAY_SIZE(env->msr_hv_synic_sint); sint++) { | |
674 | env->msr_hv_synic_sint[sint] = HV_SYNIC_SINT_MASKED; | |
675 | } | |
676 | } | |
677 | if (cpu->hyperv_stimer) { | |
678 | if (!has_msr_hv_stimer) { | |
679 | fprintf(stderr, "Hyper-V timers aren't supported by kernel\n"); | |
680 | return -ENOSYS; | |
681 | } | |
682 | env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_SYNTIMER_AVAILABLE; | |
683 | } | |
684 | return 0; | |
685 | } | |
686 | ||
68bfd0ad MT |
687 | static Error *invtsc_mig_blocker; |
688 | ||
f8bb0565 | 689 | #define KVM_MAX_CPUID_ENTRIES 100 |
0893d460 | 690 | |
20d695a9 | 691 | int kvm_arch_init_vcpu(CPUState *cs) |
05330448 AL |
692 | { |
693 | struct { | |
486bd5a2 | 694 | struct kvm_cpuid2 cpuid; |
f8bb0565 | 695 | struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES]; |
541dc0d4 | 696 | } QEMU_PACKED cpuid_data; |
20d695a9 AF |
697 | X86CPU *cpu = X86_CPU(cs); |
698 | CPUX86State *env = &cpu->env; | |
486bd5a2 | 699 | uint32_t limit, i, j, cpuid_i; |
a33609ca | 700 | uint32_t unused; |
bb0300dc | 701 | struct kvm_cpuid_entry2 *c; |
bb0300dc | 702 | uint32_t signature[3]; |
234cc647 | 703 | int kvm_base = KVM_CPUID_SIGNATURE; |
e7429073 | 704 | int r; |
05330448 | 705 | |
ef4cbe14 SW |
706 | memset(&cpuid_data, 0, sizeof(cpuid_data)); |
707 | ||
05330448 AL |
708 | cpuid_i = 0; |
709 | ||
bb0300dc | 710 | /* Paravirtualization CPUIDs */ |
234cc647 PB |
711 | if (hyperv_enabled(cpu)) { |
712 | c = &cpuid_data.entries[cpuid_i++]; | |
713 | c->function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS; | |
1c4a55db AW |
714 | if (!cpu->hyperv_vendor_id) { |
715 | memcpy(signature, "Microsoft Hv", 12); | |
716 | } else { | |
717 | size_t len = strlen(cpu->hyperv_vendor_id); | |
718 | ||
719 | if (len > 12) { | |
720 | error_report("hv-vendor-id truncated to 12 characters"); | |
721 | len = 12; | |
722 | } | |
723 | memset(signature, 0, 12); | |
724 | memcpy(signature, cpu->hyperv_vendor_id, len); | |
725 | } | |
eab70139 | 726 | c->eax = HYPERV_CPUID_MIN; |
234cc647 PB |
727 | c->ebx = signature[0]; |
728 | c->ecx = signature[1]; | |
729 | c->edx = signature[2]; | |
0c31b744 | 730 | |
234cc647 PB |
731 | c = &cpuid_data.entries[cpuid_i++]; |
732 | c->function = HYPERV_CPUID_INTERFACE; | |
eab70139 VR |
733 | memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12); |
734 | c->eax = signature[0]; | |
234cc647 PB |
735 | c->ebx = 0; |
736 | c->ecx = 0; | |
737 | c->edx = 0; | |
eab70139 VR |
738 | |
739 | c = &cpuid_data.entries[cpuid_i++]; | |
eab70139 VR |
740 | c->function = HYPERV_CPUID_VERSION; |
741 | c->eax = 0x00001bbc; | |
742 | c->ebx = 0x00060001; | |
743 | ||
744 | c = &cpuid_data.entries[cpuid_i++]; | |
eab70139 | 745 | c->function = HYPERV_CPUID_FEATURES; |
c35bd19a EY |
746 | r = hyperv_handle_properties(cs); |
747 | if (r) { | |
748 | return r; | |
46eb8f98 | 749 | } |
c35bd19a EY |
750 | c->eax = env->features[FEAT_HYPERV_EAX]; |
751 | c->ebx = env->features[FEAT_HYPERV_EBX]; | |
752 | c->edx = env->features[FEAT_HYPERV_EDX]; | |
866eea9a | 753 | |
eab70139 | 754 | c = &cpuid_data.entries[cpuid_i++]; |
eab70139 | 755 | c->function = HYPERV_CPUID_ENLIGHTMENT_INFO; |
92067bf4 | 756 | if (cpu->hyperv_relaxed_timing) { |
eab70139 VR |
757 | c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED; |
758 | } | |
2d5aa872 | 759 | if (cpu->hyperv_vapic) { |
eab70139 VR |
760 | c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED; |
761 | } | |
92067bf4 | 762 | c->ebx = cpu->hyperv_spinlock_attempts; |
eab70139 VR |
763 | |
764 | c = &cpuid_data.entries[cpuid_i++]; | |
eab70139 VR |
765 | c->function = HYPERV_CPUID_IMPLEMENT_LIMITS; |
766 | c->eax = 0x40; | |
767 | c->ebx = 0x40; | |
768 | ||
234cc647 | 769 | kvm_base = KVM_CPUID_SIGNATURE_NEXT; |
7bc3d711 | 770 | has_msr_hv_hypercall = true; |
eab70139 VR |
771 | } |
772 | ||
f522d2ac AW |
773 | if (cpu->expose_kvm) { |
774 | memcpy(signature, "KVMKVMKVM\0\0\0", 12); | |
775 | c = &cpuid_data.entries[cpuid_i++]; | |
776 | c->function = KVM_CPUID_SIGNATURE | kvm_base; | |
79b6f2f6 | 777 | c->eax = KVM_CPUID_FEATURES | kvm_base; |
f522d2ac AW |
778 | c->ebx = signature[0]; |
779 | c->ecx = signature[1]; | |
780 | c->edx = signature[2]; | |
234cc647 | 781 | |
f522d2ac AW |
782 | c = &cpuid_data.entries[cpuid_i++]; |
783 | c->function = KVM_CPUID_FEATURES | kvm_base; | |
784 | c->eax = env->features[FEAT_KVM]; | |
f522d2ac | 785 | } |
917367aa | 786 | |
a33609ca | 787 | cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); |
05330448 AL |
788 | |
789 | for (i = 0; i <= limit; i++) { | |
f8bb0565 IM |
790 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
791 | fprintf(stderr, "unsupported level value: 0x%x\n", limit); | |
792 | abort(); | |
793 | } | |
bb0300dc | 794 | c = &cpuid_data.entries[cpuid_i++]; |
486bd5a2 AL |
795 | |
796 | switch (i) { | |
a36b1029 AL |
797 | case 2: { |
798 | /* Keep reading function 2 till all the input is received */ | |
799 | int times; | |
800 | ||
a36b1029 | 801 | c->function = i; |
a33609ca AL |
802 | c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC | |
803 | KVM_CPUID_FLAG_STATE_READ_NEXT; | |
804 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
805 | times = c->eax & 0xff; | |
a36b1029 AL |
806 | |
807 | for (j = 1; j < times; ++j) { | |
f8bb0565 IM |
808 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
809 | fprintf(stderr, "cpuid_data is full, no space for " | |
810 | "cpuid(eax:2):eax & 0xf = 0x%x\n", times); | |
811 | abort(); | |
812 | } | |
a33609ca | 813 | c = &cpuid_data.entries[cpuid_i++]; |
a36b1029 | 814 | c->function = i; |
a33609ca AL |
815 | c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC; |
816 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
a36b1029 AL |
817 | } |
818 | break; | |
819 | } | |
486bd5a2 AL |
820 | case 4: |
821 | case 0xb: | |
822 | case 0xd: | |
823 | for (j = 0; ; j++) { | |
31e8c696 AP |
824 | if (i == 0xd && j == 64) { |
825 | break; | |
826 | } | |
486bd5a2 AL |
827 | c->function = i; |
828 | c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | |
829 | c->index = j; | |
a33609ca | 830 | cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); |
486bd5a2 | 831 | |
b9bec74b | 832 | if (i == 4 && c->eax == 0) { |
486bd5a2 | 833 | break; |
b9bec74b JK |
834 | } |
835 | if (i == 0xb && !(c->ecx & 0xff00)) { | |
486bd5a2 | 836 | break; |
b9bec74b JK |
837 | } |
838 | if (i == 0xd && c->eax == 0) { | |
31e8c696 | 839 | continue; |
b9bec74b | 840 | } |
f8bb0565 IM |
841 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
842 | fprintf(stderr, "cpuid_data is full, no space for " | |
843 | "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); | |
844 | abort(); | |
845 | } | |
a33609ca | 846 | c = &cpuid_data.entries[cpuid_i++]; |
486bd5a2 AL |
847 | } |
848 | break; | |
849 | default: | |
486bd5a2 | 850 | c->function = i; |
a33609ca AL |
851 | c->flags = 0; |
852 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
486bd5a2 AL |
853 | break; |
854 | } | |
05330448 | 855 | } |
0d894367 PB |
856 | |
857 | if (limit >= 0x0a) { | |
858 | uint32_t ver; | |
859 | ||
860 | cpu_x86_cpuid(env, 0x0a, 0, &ver, &unused, &unused, &unused); | |
861 | if ((ver & 0xff) > 0) { | |
862 | has_msr_architectural_pmu = true; | |
863 | num_architectural_pmu_counters = (ver & 0xff00) >> 8; | |
864 | ||
865 | /* Shouldn't be more than 32, since that's the number of bits | |
866 | * available in EBX to tell us _which_ counters are available. | |
867 | * Play it safe. | |
868 | */ | |
869 | if (num_architectural_pmu_counters > MAX_GP_COUNTERS) { | |
870 | num_architectural_pmu_counters = MAX_GP_COUNTERS; | |
871 | } | |
872 | } | |
873 | } | |
874 | ||
a33609ca | 875 | cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); |
05330448 AL |
876 | |
877 | for (i = 0x80000000; i <= limit; i++) { | |
f8bb0565 IM |
878 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
879 | fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit); | |
880 | abort(); | |
881 | } | |
bb0300dc | 882 | c = &cpuid_data.entries[cpuid_i++]; |
05330448 | 883 | |
05330448 | 884 | c->function = i; |
a33609ca AL |
885 | c->flags = 0; |
886 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
05330448 AL |
887 | } |
888 | ||
b3baa152 BW |
889 | /* Call Centaur's CPUID instructions they are supported. */ |
890 | if (env->cpuid_xlevel2 > 0) { | |
b3baa152 BW |
891 | cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused); |
892 | ||
893 | for (i = 0xC0000000; i <= limit; i++) { | |
f8bb0565 IM |
894 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
895 | fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit); | |
896 | abort(); | |
897 | } | |
b3baa152 BW |
898 | c = &cpuid_data.entries[cpuid_i++]; |
899 | ||
900 | c->function = i; | |
901 | c->flags = 0; | |
902 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
903 | } | |
904 | } | |
905 | ||
05330448 AL |
906 | cpuid_data.cpuid.nent = cpuid_i; |
907 | ||
e7701825 | 908 | if (((env->cpuid_version >> 8)&0xF) >= 6 |
0514ef2f | 909 | && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) == |
fc7a504c | 910 | (CPUID_MCE | CPUID_MCA) |
a60f24b5 | 911 | && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) { |
5120901a | 912 | uint64_t mcg_cap, unsupported_caps; |
e7701825 | 913 | int banks; |
32a42024 | 914 | int ret; |
e7701825 | 915 | |
a60f24b5 | 916 | ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks); |
75d49497 JK |
917 | if (ret < 0) { |
918 | fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret)); | |
919 | return ret; | |
e7701825 | 920 | } |
75d49497 | 921 | |
2590f15b | 922 | if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) { |
49b69cbf | 923 | error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)", |
2590f15b | 924 | (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks); |
49b69cbf | 925 | return -ENOTSUP; |
75d49497 | 926 | } |
49b69cbf | 927 | |
5120901a EH |
928 | unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK); |
929 | if (unsupported_caps) { | |
87f8b626 AR |
930 | if (unsupported_caps & MCG_LMCE_P) { |
931 | error_report("kvm: LMCE not supported"); | |
932 | return -ENOTSUP; | |
933 | } | |
5120901a EH |
934 | error_report("warning: Unsupported MCG_CAP bits: 0x%" PRIx64, |
935 | unsupported_caps); | |
936 | } | |
937 | ||
2590f15b EH |
938 | env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK; |
939 | ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap); | |
75d49497 JK |
940 | if (ret < 0) { |
941 | fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret)); | |
942 | return ret; | |
943 | } | |
e7701825 | 944 | } |
e7701825 | 945 | |
b8cc45d6 GC |
946 | qemu_add_vm_change_state_handler(cpu_update_state, env); |
947 | ||
df67696e LJ |
948 | c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0); |
949 | if (c) { | |
950 | has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) || | |
951 | !!(c->ecx & CPUID_EXT_SMX); | |
952 | } | |
953 | ||
87f8b626 AR |
954 | if (env->mcg_cap & MCG_LMCE_P) { |
955 | has_msr_mcg_ext_ctl = has_msr_feature_control = true; | |
956 | } | |
957 | ||
68bfd0ad MT |
958 | c = cpuid_find_entry(&cpuid_data.cpuid, 0x80000007, 0); |
959 | if (c && (c->edx & 1<<8) && invtsc_mig_blocker == NULL) { | |
960 | /* for migration */ | |
961 | error_setg(&invtsc_mig_blocker, | |
962 | "State blocked by non-migratable CPU device" | |
963 | " (invtsc flag)"); | |
964 | migrate_add_blocker(invtsc_mig_blocker); | |
965 | /* for savevm */ | |
966 | vmstate_x86_cpu.unmigratable = 1; | |
967 | } | |
968 | ||
7e680753 | 969 | cpuid_data.cpuid.padding = 0; |
1bc22652 | 970 | r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data); |
fdc9c41a JK |
971 | if (r) { |
972 | return r; | |
973 | } | |
e7429073 | 974 | |
5031283d HZ |
975 | r = kvm_arch_set_tsc_khz(cs); |
976 | if (r < 0) { | |
977 | return r; | |
e7429073 | 978 | } |
e7429073 | 979 | |
bcffbeeb HZ |
980 | /* vcpu's TSC frequency is either specified by user, or following |
981 | * the value used by KVM if the former is not present. In the | |
982 | * latter case, we query it from KVM and record in env->tsc_khz, | |
983 | * so that vcpu's TSC frequency can be migrated later via this field. | |
984 | */ | |
985 | if (!env->tsc_khz) { | |
986 | r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? | |
987 | kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : | |
988 | -ENOTSUP; | |
989 | if (r > 0) { | |
990 | env->tsc_khz = r; | |
991 | } | |
992 | } | |
993 | ||
28143b40 | 994 | if (has_xsave) { |
fabacc0f JK |
995 | env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave)); |
996 | } | |
d71b62a1 | 997 | cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE); |
fabacc0f | 998 | |
273c515c PB |
999 | if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) { |
1000 | has_msr_tsc_aux = false; | |
1001 | } | |
d1ae67f6 | 1002 | |
e7429073 | 1003 | return 0; |
05330448 AL |
1004 | } |
1005 | ||
50a2c6e5 | 1006 | void kvm_arch_reset_vcpu(X86CPU *cpu) |
caa5af0f | 1007 | { |
20d695a9 | 1008 | CPUX86State *env = &cpu->env; |
dd673288 | 1009 | |
e73223a5 | 1010 | env->exception_injected = -1; |
0e607a80 | 1011 | env->interrupt_injected = -1; |
1a5e9d2f | 1012 | env->xcr0 = 1; |
ddced198 | 1013 | if (kvm_irqchip_in_kernel()) { |
dd673288 | 1014 | env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE : |
ddced198 MT |
1015 | KVM_MP_STATE_UNINITIALIZED; |
1016 | } else { | |
1017 | env->mp_state = KVM_MP_STATE_RUNNABLE; | |
1018 | } | |
caa5af0f JK |
1019 | } |
1020 | ||
e0723c45 PB |
1021 | void kvm_arch_do_init_vcpu(X86CPU *cpu) |
1022 | { | |
1023 | CPUX86State *env = &cpu->env; | |
1024 | ||
1025 | /* APs get directly into wait-for-SIPI state. */ | |
1026 | if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) { | |
1027 | env->mp_state = KVM_MP_STATE_INIT_RECEIVED; | |
1028 | } | |
1029 | } | |
1030 | ||
c3a3a7d3 | 1031 | static int kvm_get_supported_msrs(KVMState *s) |
05330448 | 1032 | { |
75b10c43 | 1033 | static int kvm_supported_msrs; |
c3a3a7d3 | 1034 | int ret = 0; |
05330448 AL |
1035 | |
1036 | /* first time */ | |
75b10c43 | 1037 | if (kvm_supported_msrs == 0) { |
05330448 AL |
1038 | struct kvm_msr_list msr_list, *kvm_msr_list; |
1039 | ||
75b10c43 | 1040 | kvm_supported_msrs = -1; |
05330448 AL |
1041 | |
1042 | /* Obtain MSR list from KVM. These are the MSRs that we must | |
1043 | * save/restore */ | |
4c9f7372 | 1044 | msr_list.nmsrs = 0; |
c3a3a7d3 | 1045 | ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list); |
6fb6d245 | 1046 | if (ret < 0 && ret != -E2BIG) { |
c3a3a7d3 | 1047 | return ret; |
6fb6d245 | 1048 | } |
d9db889f JK |
1049 | /* Old kernel modules had a bug and could write beyond the provided |
1050 | memory. Allocate at least a safe amount of 1K. */ | |
7267c094 | 1051 | kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) + |
d9db889f JK |
1052 | msr_list.nmsrs * |
1053 | sizeof(msr_list.indices[0]))); | |
05330448 | 1054 | |
55308450 | 1055 | kvm_msr_list->nmsrs = msr_list.nmsrs; |
c3a3a7d3 | 1056 | ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list); |
05330448 AL |
1057 | if (ret >= 0) { |
1058 | int i; | |
1059 | ||
1060 | for (i = 0; i < kvm_msr_list->nmsrs; i++) { | |
1061 | if (kvm_msr_list->indices[i] == MSR_STAR) { | |
c3a3a7d3 | 1062 | has_msr_star = true; |
75b10c43 MT |
1063 | continue; |
1064 | } | |
1065 | if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) { | |
c3a3a7d3 | 1066 | has_msr_hsave_pa = true; |
75b10c43 | 1067 | continue; |
05330448 | 1068 | } |
c9b8f6b6 AS |
1069 | if (kvm_msr_list->indices[i] == MSR_TSC_AUX) { |
1070 | has_msr_tsc_aux = true; | |
1071 | continue; | |
1072 | } | |
f28558d3 WA |
1073 | if (kvm_msr_list->indices[i] == MSR_TSC_ADJUST) { |
1074 | has_msr_tsc_adjust = true; | |
1075 | continue; | |
1076 | } | |
aa82ba54 LJ |
1077 | if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) { |
1078 | has_msr_tsc_deadline = true; | |
1079 | continue; | |
1080 | } | |
fc12d72e PB |
1081 | if (kvm_msr_list->indices[i] == MSR_IA32_SMBASE) { |
1082 | has_msr_smbase = true; | |
1083 | continue; | |
1084 | } | |
21e87c46 AK |
1085 | if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) { |
1086 | has_msr_misc_enable = true; | |
1087 | continue; | |
1088 | } | |
79e9ebeb LJ |
1089 | if (kvm_msr_list->indices[i] == MSR_IA32_BNDCFGS) { |
1090 | has_msr_bndcfgs = true; | |
1091 | continue; | |
1092 | } | |
18cd2c17 WL |
1093 | if (kvm_msr_list->indices[i] == MSR_IA32_XSS) { |
1094 | has_msr_xss = true; | |
1095 | continue; | |
1096 | } | |
f2a53c9e AS |
1097 | if (kvm_msr_list->indices[i] == HV_X64_MSR_CRASH_CTL) { |
1098 | has_msr_hv_crash = true; | |
1099 | continue; | |
1100 | } | |
744b8a94 AS |
1101 | if (kvm_msr_list->indices[i] == HV_X64_MSR_RESET) { |
1102 | has_msr_hv_reset = true; | |
1103 | continue; | |
1104 | } | |
8c145d7c AS |
1105 | if (kvm_msr_list->indices[i] == HV_X64_MSR_VP_INDEX) { |
1106 | has_msr_hv_vpindex = true; | |
1107 | continue; | |
1108 | } | |
46eb8f98 AS |
1109 | if (kvm_msr_list->indices[i] == HV_X64_MSR_VP_RUNTIME) { |
1110 | has_msr_hv_runtime = true; | |
1111 | continue; | |
1112 | } | |
866eea9a AS |
1113 | if (kvm_msr_list->indices[i] == HV_X64_MSR_SCONTROL) { |
1114 | has_msr_hv_synic = true; | |
1115 | continue; | |
1116 | } | |
ff99aa64 AS |
1117 | if (kvm_msr_list->indices[i] == HV_X64_MSR_STIMER0_CONFIG) { |
1118 | has_msr_hv_stimer = true; | |
1119 | continue; | |
1120 | } | |
05330448 AL |
1121 | } |
1122 | } | |
1123 | ||
7267c094 | 1124 | g_free(kvm_msr_list); |
05330448 AL |
1125 | } |
1126 | ||
c3a3a7d3 | 1127 | return ret; |
05330448 AL |
1128 | } |
1129 | ||
6410848b PB |
1130 | static Notifier smram_machine_done; |
1131 | static KVMMemoryListener smram_listener; | |
1132 | static AddressSpace smram_address_space; | |
1133 | static MemoryRegion smram_as_root; | |
1134 | static MemoryRegion smram_as_mem; | |
1135 | ||
1136 | static void register_smram_listener(Notifier *n, void *unused) | |
1137 | { | |
1138 | MemoryRegion *smram = | |
1139 | (MemoryRegion *) object_resolve_path("/machine/smram", NULL); | |
1140 | ||
1141 | /* Outer container... */ | |
1142 | memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull); | |
1143 | memory_region_set_enabled(&smram_as_root, true); | |
1144 | ||
1145 | /* ... with two regions inside: normal system memory with low | |
1146 | * priority, and... | |
1147 | */ | |
1148 | memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram", | |
1149 | get_system_memory(), 0, ~0ull); | |
1150 | memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0); | |
1151 | memory_region_set_enabled(&smram_as_mem, true); | |
1152 | ||
1153 | if (smram) { | |
1154 | /* ... SMRAM with higher priority */ | |
1155 | memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10); | |
1156 | memory_region_set_enabled(smram, true); | |
1157 | } | |
1158 | ||
1159 | address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM"); | |
1160 | kvm_memory_listener_register(kvm_state, &smram_listener, | |
1161 | &smram_address_space, 1); | |
1162 | } | |
1163 | ||
b16565b3 | 1164 | int kvm_arch_init(MachineState *ms, KVMState *s) |
20420430 | 1165 | { |
11076198 | 1166 | uint64_t identity_base = 0xfffbc000; |
39d6960a | 1167 | uint64_t shadow_mem; |
20420430 | 1168 | int ret; |
25d2e361 | 1169 | struct utsname utsname; |
20420430 | 1170 | |
28143b40 TH |
1171 | #ifdef KVM_CAP_XSAVE |
1172 | has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE); | |
1173 | #endif | |
1174 | ||
1175 | #ifdef KVM_CAP_XCRS | |
1176 | has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS); | |
1177 | #endif | |
1178 | ||
1179 | #ifdef KVM_CAP_PIT_STATE2 | |
1180 | has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2); | |
1181 | #endif | |
1182 | ||
c3a3a7d3 | 1183 | ret = kvm_get_supported_msrs(s); |
20420430 | 1184 | if (ret < 0) { |
20420430 SY |
1185 | return ret; |
1186 | } | |
25d2e361 MT |
1187 | |
1188 | uname(&utsname); | |
1189 | lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0; | |
1190 | ||
4c5b10b7 | 1191 | /* |
11076198 JK |
1192 | * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly. |
1193 | * In order to use vm86 mode, an EPT identity map and a TSS are needed. | |
1194 | * Since these must be part of guest physical memory, we need to allocate | |
1195 | * them, both by setting their start addresses in the kernel and by | |
1196 | * creating a corresponding e820 entry. We need 4 pages before the BIOS. | |
1197 | * | |
1198 | * Older KVM versions may not support setting the identity map base. In | |
1199 | * that case we need to stick with the default, i.e. a 256K maximum BIOS | |
1200 | * size. | |
4c5b10b7 | 1201 | */ |
11076198 JK |
1202 | if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) { |
1203 | /* Allows up to 16M BIOSes. */ | |
1204 | identity_base = 0xfeffc000; | |
1205 | ||
1206 | ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base); | |
1207 | if (ret < 0) { | |
1208 | return ret; | |
1209 | } | |
4c5b10b7 | 1210 | } |
e56ff191 | 1211 | |
11076198 JK |
1212 | /* Set TSS base one page after EPT identity map. */ |
1213 | ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000); | |
20420430 SY |
1214 | if (ret < 0) { |
1215 | return ret; | |
1216 | } | |
1217 | ||
11076198 JK |
1218 | /* Tell fw_cfg to notify the BIOS to reserve the range. */ |
1219 | ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED); | |
20420430 | 1220 | if (ret < 0) { |
11076198 | 1221 | fprintf(stderr, "e820_add_entry() table is full\n"); |
20420430 SY |
1222 | return ret; |
1223 | } | |
3c85e74f | 1224 | qemu_register_reset(kvm_unpoison_all, NULL); |
20420430 | 1225 | |
4689b77b | 1226 | shadow_mem = machine_kvm_shadow_mem(ms); |
36ad0e94 MA |
1227 | if (shadow_mem != -1) { |
1228 | shadow_mem /= 4096; | |
1229 | ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem); | |
1230 | if (ret < 0) { | |
1231 | return ret; | |
39d6960a JK |
1232 | } |
1233 | } | |
6410848b PB |
1234 | |
1235 | if (kvm_check_extension(s, KVM_CAP_X86_SMM)) { | |
1236 | smram_machine_done.notify = register_smram_listener; | |
1237 | qemu_add_machine_init_done_notifier(&smram_machine_done); | |
1238 | } | |
11076198 | 1239 | return 0; |
05330448 | 1240 | } |
b9bec74b | 1241 | |
05330448 AL |
1242 | static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) |
1243 | { | |
1244 | lhs->selector = rhs->selector; | |
1245 | lhs->base = rhs->base; | |
1246 | lhs->limit = rhs->limit; | |
1247 | lhs->type = 3; | |
1248 | lhs->present = 1; | |
1249 | lhs->dpl = 3; | |
1250 | lhs->db = 0; | |
1251 | lhs->s = 1; | |
1252 | lhs->l = 0; | |
1253 | lhs->g = 0; | |
1254 | lhs->avl = 0; | |
1255 | lhs->unusable = 0; | |
1256 | } | |
1257 | ||
1258 | static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) | |
1259 | { | |
1260 | unsigned flags = rhs->flags; | |
1261 | lhs->selector = rhs->selector; | |
1262 | lhs->base = rhs->base; | |
1263 | lhs->limit = rhs->limit; | |
1264 | lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; | |
1265 | lhs->present = (flags & DESC_P_MASK) != 0; | |
acaa7550 | 1266 | lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3; |
05330448 AL |
1267 | lhs->db = (flags >> DESC_B_SHIFT) & 1; |
1268 | lhs->s = (flags & DESC_S_MASK) != 0; | |
1269 | lhs->l = (flags >> DESC_L_SHIFT) & 1; | |
1270 | lhs->g = (flags & DESC_G_MASK) != 0; | |
1271 | lhs->avl = (flags & DESC_AVL_MASK) != 0; | |
4cae9c97 | 1272 | lhs->unusable = !lhs->present; |
7e680753 | 1273 | lhs->padding = 0; |
05330448 AL |
1274 | } |
1275 | ||
1276 | static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) | |
1277 | { | |
1278 | lhs->selector = rhs->selector; | |
1279 | lhs->base = rhs->base; | |
1280 | lhs->limit = rhs->limit; | |
4cae9c97 MC |
1281 | if (rhs->unusable) { |
1282 | lhs->flags = 0; | |
1283 | } else { | |
1284 | lhs->flags = (rhs->type << DESC_TYPE_SHIFT) | | |
1285 | (rhs->present * DESC_P_MASK) | | |
1286 | (rhs->dpl << DESC_DPL_SHIFT) | | |
1287 | (rhs->db << DESC_B_SHIFT) | | |
1288 | (rhs->s * DESC_S_MASK) | | |
1289 | (rhs->l << DESC_L_SHIFT) | | |
1290 | (rhs->g * DESC_G_MASK) | | |
1291 | (rhs->avl * DESC_AVL_MASK); | |
1292 | } | |
05330448 AL |
1293 | } |
1294 | ||
1295 | static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) | |
1296 | { | |
b9bec74b | 1297 | if (set) { |
05330448 | 1298 | *kvm_reg = *qemu_reg; |
b9bec74b | 1299 | } else { |
05330448 | 1300 | *qemu_reg = *kvm_reg; |
b9bec74b | 1301 | } |
05330448 AL |
1302 | } |
1303 | ||
1bc22652 | 1304 | static int kvm_getput_regs(X86CPU *cpu, int set) |
05330448 | 1305 | { |
1bc22652 | 1306 | CPUX86State *env = &cpu->env; |
05330448 AL |
1307 | struct kvm_regs regs; |
1308 | int ret = 0; | |
1309 | ||
1310 | if (!set) { | |
1bc22652 | 1311 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, ®s); |
b9bec74b | 1312 | if (ret < 0) { |
05330448 | 1313 | return ret; |
b9bec74b | 1314 | } |
05330448 AL |
1315 | } |
1316 | ||
1317 | kvm_getput_reg(®s.rax, &env->regs[R_EAX], set); | |
1318 | kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set); | |
1319 | kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set); | |
1320 | kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set); | |
1321 | kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set); | |
1322 | kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set); | |
1323 | kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set); | |
1324 | kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set); | |
1325 | #ifdef TARGET_X86_64 | |
1326 | kvm_getput_reg(®s.r8, &env->regs[8], set); | |
1327 | kvm_getput_reg(®s.r9, &env->regs[9], set); | |
1328 | kvm_getput_reg(®s.r10, &env->regs[10], set); | |
1329 | kvm_getput_reg(®s.r11, &env->regs[11], set); | |
1330 | kvm_getput_reg(®s.r12, &env->regs[12], set); | |
1331 | kvm_getput_reg(®s.r13, &env->regs[13], set); | |
1332 | kvm_getput_reg(®s.r14, &env->regs[14], set); | |
1333 | kvm_getput_reg(®s.r15, &env->regs[15], set); | |
1334 | #endif | |
1335 | ||
1336 | kvm_getput_reg(®s.rflags, &env->eflags, set); | |
1337 | kvm_getput_reg(®s.rip, &env->eip, set); | |
1338 | ||
b9bec74b | 1339 | if (set) { |
1bc22652 | 1340 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, ®s); |
b9bec74b | 1341 | } |
05330448 AL |
1342 | |
1343 | return ret; | |
1344 | } | |
1345 | ||
1bc22652 | 1346 | static int kvm_put_fpu(X86CPU *cpu) |
05330448 | 1347 | { |
1bc22652 | 1348 | CPUX86State *env = &cpu->env; |
05330448 AL |
1349 | struct kvm_fpu fpu; |
1350 | int i; | |
1351 | ||
1352 | memset(&fpu, 0, sizeof fpu); | |
1353 | fpu.fsw = env->fpus & ~(7 << 11); | |
1354 | fpu.fsw |= (env->fpstt & 7) << 11; | |
1355 | fpu.fcw = env->fpuc; | |
42cc8fa6 JK |
1356 | fpu.last_opcode = env->fpop; |
1357 | fpu.last_ip = env->fpip; | |
1358 | fpu.last_dp = env->fpdp; | |
b9bec74b JK |
1359 | for (i = 0; i < 8; ++i) { |
1360 | fpu.ftwx |= (!env->fptags[i]) << i; | |
1361 | } | |
05330448 | 1362 | memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs); |
bee81887 | 1363 | for (i = 0; i < CPU_NB_REGS; i++) { |
19cbd87c EH |
1364 | stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0)); |
1365 | stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1)); | |
bee81887 | 1366 | } |
05330448 AL |
1367 | fpu.mxcsr = env->mxcsr; |
1368 | ||
1bc22652 | 1369 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu); |
05330448 AL |
1370 | } |
1371 | ||
6b42494b JK |
1372 | #define XSAVE_FCW_FSW 0 |
1373 | #define XSAVE_FTW_FOP 1 | |
f1665b21 SY |
1374 | #define XSAVE_CWD_RIP 2 |
1375 | #define XSAVE_CWD_RDP 4 | |
1376 | #define XSAVE_MXCSR 6 | |
1377 | #define XSAVE_ST_SPACE 8 | |
1378 | #define XSAVE_XMM_SPACE 40 | |
1379 | #define XSAVE_XSTATE_BV 128 | |
1380 | #define XSAVE_YMMH_SPACE 144 | |
79e9ebeb LJ |
1381 | #define XSAVE_BNDREGS 240 |
1382 | #define XSAVE_BNDCSR 256 | |
9aecd6f8 CP |
1383 | #define XSAVE_OPMASK 272 |
1384 | #define XSAVE_ZMM_Hi256 288 | |
1385 | #define XSAVE_Hi16_ZMM 416 | |
f74eefe0 | 1386 | #define XSAVE_PKRU 672 |
f1665b21 | 1387 | |
b503717d EH |
1388 | #define XSAVE_BYTE_OFFSET(word_offset) \ |
1389 | ((word_offset) * sizeof(((struct kvm_xsave *)0)->region[0])) | |
1390 | ||
1391 | #define ASSERT_OFFSET(word_offset, field) \ | |
1392 | QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \ | |
1393 | offsetof(X86XSaveArea, field)) | |
1394 | ||
1395 | ASSERT_OFFSET(XSAVE_FCW_FSW, legacy.fcw); | |
1396 | ASSERT_OFFSET(XSAVE_FTW_FOP, legacy.ftw); | |
1397 | ASSERT_OFFSET(XSAVE_CWD_RIP, legacy.fpip); | |
1398 | ASSERT_OFFSET(XSAVE_CWD_RDP, legacy.fpdp); | |
1399 | ASSERT_OFFSET(XSAVE_MXCSR, legacy.mxcsr); | |
1400 | ASSERT_OFFSET(XSAVE_ST_SPACE, legacy.fpregs); | |
1401 | ASSERT_OFFSET(XSAVE_XMM_SPACE, legacy.xmm_regs); | |
1402 | ASSERT_OFFSET(XSAVE_XSTATE_BV, header.xstate_bv); | |
1403 | ASSERT_OFFSET(XSAVE_YMMH_SPACE, avx_state); | |
1404 | ASSERT_OFFSET(XSAVE_BNDREGS, bndreg_state); | |
1405 | ASSERT_OFFSET(XSAVE_BNDCSR, bndcsr_state); | |
1406 | ASSERT_OFFSET(XSAVE_OPMASK, opmask_state); | |
1407 | ASSERT_OFFSET(XSAVE_ZMM_Hi256, zmm_hi256_state); | |
1408 | ASSERT_OFFSET(XSAVE_Hi16_ZMM, hi16_zmm_state); | |
1409 | ASSERT_OFFSET(XSAVE_PKRU, pkru_state); | |
1410 | ||
1bc22652 | 1411 | static int kvm_put_xsave(X86CPU *cpu) |
f1665b21 | 1412 | { |
1bc22652 | 1413 | CPUX86State *env = &cpu->env; |
86cd2ea0 | 1414 | X86XSaveArea *xsave = env->kvm_xsave_buf; |
42cc8fa6 | 1415 | uint16_t cwd, swd, twd; |
9be38598 | 1416 | int i; |
f1665b21 | 1417 | |
28143b40 | 1418 | if (!has_xsave) { |
1bc22652 | 1419 | return kvm_put_fpu(cpu); |
b9bec74b | 1420 | } |
f1665b21 | 1421 | |
f1665b21 | 1422 | memset(xsave, 0, sizeof(struct kvm_xsave)); |
6115c0a8 | 1423 | twd = 0; |
f1665b21 SY |
1424 | swd = env->fpus & ~(7 << 11); |
1425 | swd |= (env->fpstt & 7) << 11; | |
1426 | cwd = env->fpuc; | |
b9bec74b | 1427 | for (i = 0; i < 8; ++i) { |
f1665b21 | 1428 | twd |= (!env->fptags[i]) << i; |
b9bec74b | 1429 | } |
86cd2ea0 EH |
1430 | xsave->legacy.fcw = cwd; |
1431 | xsave->legacy.fsw = swd; | |
1432 | xsave->legacy.ftw = twd; | |
1433 | xsave->legacy.fpop = env->fpop; | |
1434 | xsave->legacy.fpip = env->fpip; | |
1435 | xsave->legacy.fpdp = env->fpdp; | |
1436 | memcpy(&xsave->legacy.fpregs, env->fpregs, | |
f1665b21 | 1437 | sizeof env->fpregs); |
86cd2ea0 EH |
1438 | xsave->legacy.mxcsr = env->mxcsr; |
1439 | xsave->header.xstate_bv = env->xstate_bv; | |
1440 | memcpy(&xsave->bndreg_state.bnd_regs, env->bnd_regs, | |
79e9ebeb | 1441 | sizeof env->bnd_regs); |
86cd2ea0 EH |
1442 | xsave->bndcsr_state.bndcsr = env->bndcs_regs; |
1443 | memcpy(&xsave->opmask_state.opmask_regs, env->opmask_regs, | |
9aecd6f8 | 1444 | sizeof env->opmask_regs); |
bee81887 | 1445 | |
86cd2ea0 EH |
1446 | for (i = 0; i < CPU_NB_REGS; i++) { |
1447 | uint8_t *xmm = xsave->legacy.xmm_regs[i]; | |
1448 | uint8_t *ymmh = xsave->avx_state.ymmh[i]; | |
1449 | uint8_t *zmmh = xsave->zmm_hi256_state.zmm_hi256[i]; | |
19cbd87c EH |
1450 | stq_p(xmm, env->xmm_regs[i].ZMM_Q(0)); |
1451 | stq_p(xmm+8, env->xmm_regs[i].ZMM_Q(1)); | |
1452 | stq_p(ymmh, env->xmm_regs[i].ZMM_Q(2)); | |
1453 | stq_p(ymmh+8, env->xmm_regs[i].ZMM_Q(3)); | |
1454 | stq_p(zmmh, env->xmm_regs[i].ZMM_Q(4)); | |
1455 | stq_p(zmmh+8, env->xmm_regs[i].ZMM_Q(5)); | |
1456 | stq_p(zmmh+16, env->xmm_regs[i].ZMM_Q(6)); | |
1457 | stq_p(zmmh+24, env->xmm_regs[i].ZMM_Q(7)); | |
bee81887 PB |
1458 | } |
1459 | ||
9aecd6f8 | 1460 | #ifdef TARGET_X86_64 |
86cd2ea0 | 1461 | memcpy(&xsave->hi16_zmm_state.hi16_zmm, &env->xmm_regs[16], |
b7711471 | 1462 | 16 * sizeof env->xmm_regs[16]); |
86cd2ea0 | 1463 | memcpy(&xsave->pkru_state, &env->pkru, sizeof env->pkru); |
9aecd6f8 | 1464 | #endif |
9be38598 | 1465 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave); |
f1665b21 SY |
1466 | } |
1467 | ||
1bc22652 | 1468 | static int kvm_put_xcrs(X86CPU *cpu) |
f1665b21 | 1469 | { |
1bc22652 | 1470 | CPUX86State *env = &cpu->env; |
bdfc8480 | 1471 | struct kvm_xcrs xcrs = {}; |
f1665b21 | 1472 | |
28143b40 | 1473 | if (!has_xcrs) { |
f1665b21 | 1474 | return 0; |
b9bec74b | 1475 | } |
f1665b21 SY |
1476 | |
1477 | xcrs.nr_xcrs = 1; | |
1478 | xcrs.flags = 0; | |
1479 | xcrs.xcrs[0].xcr = 0; | |
1480 | xcrs.xcrs[0].value = env->xcr0; | |
1bc22652 | 1481 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs); |
f1665b21 SY |
1482 | } |
1483 | ||
1bc22652 | 1484 | static int kvm_put_sregs(X86CPU *cpu) |
05330448 | 1485 | { |
1bc22652 | 1486 | CPUX86State *env = &cpu->env; |
05330448 AL |
1487 | struct kvm_sregs sregs; |
1488 | ||
0e607a80 JK |
1489 | memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); |
1490 | if (env->interrupt_injected >= 0) { | |
1491 | sregs.interrupt_bitmap[env->interrupt_injected / 64] |= | |
1492 | (uint64_t)1 << (env->interrupt_injected % 64); | |
1493 | } | |
05330448 AL |
1494 | |
1495 | if ((env->eflags & VM_MASK)) { | |
b9bec74b JK |
1496 | set_v8086_seg(&sregs.cs, &env->segs[R_CS]); |
1497 | set_v8086_seg(&sregs.ds, &env->segs[R_DS]); | |
1498 | set_v8086_seg(&sregs.es, &env->segs[R_ES]); | |
1499 | set_v8086_seg(&sregs.fs, &env->segs[R_FS]); | |
1500 | set_v8086_seg(&sregs.gs, &env->segs[R_GS]); | |
1501 | set_v8086_seg(&sregs.ss, &env->segs[R_SS]); | |
05330448 | 1502 | } else { |
b9bec74b JK |
1503 | set_seg(&sregs.cs, &env->segs[R_CS]); |
1504 | set_seg(&sregs.ds, &env->segs[R_DS]); | |
1505 | set_seg(&sregs.es, &env->segs[R_ES]); | |
1506 | set_seg(&sregs.fs, &env->segs[R_FS]); | |
1507 | set_seg(&sregs.gs, &env->segs[R_GS]); | |
1508 | set_seg(&sregs.ss, &env->segs[R_SS]); | |
05330448 AL |
1509 | } |
1510 | ||
1511 | set_seg(&sregs.tr, &env->tr); | |
1512 | set_seg(&sregs.ldt, &env->ldt); | |
1513 | ||
1514 | sregs.idt.limit = env->idt.limit; | |
1515 | sregs.idt.base = env->idt.base; | |
7e680753 | 1516 | memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); |
05330448 AL |
1517 | sregs.gdt.limit = env->gdt.limit; |
1518 | sregs.gdt.base = env->gdt.base; | |
7e680753 | 1519 | memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); |
05330448 AL |
1520 | |
1521 | sregs.cr0 = env->cr[0]; | |
1522 | sregs.cr2 = env->cr[2]; | |
1523 | sregs.cr3 = env->cr[3]; | |
1524 | sregs.cr4 = env->cr[4]; | |
1525 | ||
02e51483 CF |
1526 | sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state); |
1527 | sregs.apic_base = cpu_get_apic_base(cpu->apic_state); | |
05330448 AL |
1528 | |
1529 | sregs.efer = env->efer; | |
1530 | ||
1bc22652 | 1531 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs); |
05330448 AL |
1532 | } |
1533 | ||
d71b62a1 EH |
1534 | static void kvm_msr_buf_reset(X86CPU *cpu) |
1535 | { | |
1536 | memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE); | |
1537 | } | |
1538 | ||
9c600a84 EH |
1539 | static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value) |
1540 | { | |
1541 | struct kvm_msrs *msrs = cpu->kvm_msr_buf; | |
1542 | void *limit = ((void *)msrs) + MSR_BUF_SIZE; | |
1543 | struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs]; | |
1544 | ||
1545 | assert((void *)(entry + 1) <= limit); | |
1546 | ||
1abc2cae EH |
1547 | entry->index = index; |
1548 | entry->reserved = 0; | |
1549 | entry->data = value; | |
9c600a84 EH |
1550 | msrs->nmsrs++; |
1551 | } | |
1552 | ||
73e1b8f2 PB |
1553 | static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value) |
1554 | { | |
1555 | kvm_msr_buf_reset(cpu); | |
1556 | kvm_msr_entry_add(cpu, index, value); | |
1557 | ||
1558 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); | |
1559 | } | |
1560 | ||
f8d9ccf8 DDAG |
1561 | void kvm_put_apicbase(X86CPU *cpu, uint64_t value) |
1562 | { | |
1563 | int ret; | |
1564 | ||
1565 | ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value); | |
1566 | assert(ret == 1); | |
1567 | } | |
1568 | ||
7477cd38 MT |
1569 | static int kvm_put_tscdeadline_msr(X86CPU *cpu) |
1570 | { | |
1571 | CPUX86State *env = &cpu->env; | |
48e1a45c | 1572 | int ret; |
7477cd38 MT |
1573 | |
1574 | if (!has_msr_tsc_deadline) { | |
1575 | return 0; | |
1576 | } | |
1577 | ||
73e1b8f2 | 1578 | ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline); |
48e1a45c PB |
1579 | if (ret < 0) { |
1580 | return ret; | |
1581 | } | |
1582 | ||
1583 | assert(ret == 1); | |
1584 | return 0; | |
7477cd38 MT |
1585 | } |
1586 | ||
6bdf863d JK |
1587 | /* |
1588 | * Provide a separate write service for the feature control MSR in order to | |
1589 | * kick the VCPU out of VMXON or even guest mode on reset. This has to be done | |
1590 | * before writing any other state because forcibly leaving nested mode | |
1591 | * invalidates the VCPU state. | |
1592 | */ | |
1593 | static int kvm_put_msr_feature_control(X86CPU *cpu) | |
1594 | { | |
48e1a45c PB |
1595 | int ret; |
1596 | ||
1597 | if (!has_msr_feature_control) { | |
1598 | return 0; | |
1599 | } | |
6bdf863d | 1600 | |
73e1b8f2 PB |
1601 | ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL, |
1602 | cpu->env.msr_ia32_feature_control); | |
48e1a45c PB |
1603 | if (ret < 0) { |
1604 | return ret; | |
1605 | } | |
1606 | ||
1607 | assert(ret == 1); | |
1608 | return 0; | |
6bdf863d JK |
1609 | } |
1610 | ||
1bc22652 | 1611 | static int kvm_put_msrs(X86CPU *cpu, int level) |
05330448 | 1612 | { |
1bc22652 | 1613 | CPUX86State *env = &cpu->env; |
9c600a84 | 1614 | int i; |
48e1a45c | 1615 | int ret; |
05330448 | 1616 | |
d71b62a1 EH |
1617 | kvm_msr_buf_reset(cpu); |
1618 | ||
9c600a84 EH |
1619 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs); |
1620 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp); | |
1621 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip); | |
1622 | kvm_msr_entry_add(cpu, MSR_PAT, env->pat); | |
c3a3a7d3 | 1623 | if (has_msr_star) { |
9c600a84 | 1624 | kvm_msr_entry_add(cpu, MSR_STAR, env->star); |
b9bec74b | 1625 | } |
c3a3a7d3 | 1626 | if (has_msr_hsave_pa) { |
9c600a84 | 1627 | kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave); |
b9bec74b | 1628 | } |
c9b8f6b6 | 1629 | if (has_msr_tsc_aux) { |
9c600a84 | 1630 | kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux); |
c9b8f6b6 | 1631 | } |
f28558d3 | 1632 | if (has_msr_tsc_adjust) { |
9c600a84 | 1633 | kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust); |
f28558d3 | 1634 | } |
21e87c46 | 1635 | if (has_msr_misc_enable) { |
9c600a84 | 1636 | kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, |
21e87c46 AK |
1637 | env->msr_ia32_misc_enable); |
1638 | } | |
fc12d72e | 1639 | if (has_msr_smbase) { |
9c600a84 | 1640 | kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase); |
fc12d72e | 1641 | } |
439d19f2 | 1642 | if (has_msr_bndcfgs) { |
9c600a84 | 1643 | kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs); |
439d19f2 | 1644 | } |
18cd2c17 | 1645 | if (has_msr_xss) { |
9c600a84 | 1646 | kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss); |
18cd2c17 | 1647 | } |
05330448 | 1648 | #ifdef TARGET_X86_64 |
25d2e361 | 1649 | if (lm_capable_kernel) { |
9c600a84 EH |
1650 | kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar); |
1651 | kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase); | |
1652 | kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask); | |
1653 | kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar); | |
25d2e361 | 1654 | } |
05330448 | 1655 | #endif |
ff5c186b | 1656 | /* |
0d894367 PB |
1657 | * The following MSRs have side effects on the guest or are too heavy |
1658 | * for normal writeback. Limit them to reset or full state updates. | |
ff5c186b JK |
1659 | */ |
1660 | if (level >= KVM_PUT_RESET_STATE) { | |
9c600a84 EH |
1661 | kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc); |
1662 | kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr); | |
1663 | kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr); | |
55c911a5 | 1664 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) { |
9c600a84 | 1665 | kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr); |
c5999bfc | 1666 | } |
55c911a5 | 1667 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) { |
9c600a84 | 1668 | kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr); |
bc9a839d | 1669 | } |
55c911a5 | 1670 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) { |
9c600a84 | 1671 | kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr); |
917367aa | 1672 | } |
0d894367 PB |
1673 | if (has_msr_architectural_pmu) { |
1674 | /* Stop the counter. */ | |
9c600a84 EH |
1675 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); |
1676 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); | |
0d894367 PB |
1677 | |
1678 | /* Set the counter values. */ | |
1679 | for (i = 0; i < MAX_FIXED_COUNTERS; i++) { | |
9c600a84 | 1680 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, |
0d894367 PB |
1681 | env->msr_fixed_counters[i]); |
1682 | } | |
1683 | for (i = 0; i < num_architectural_pmu_counters; i++) { | |
9c600a84 | 1684 | kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, |
0d894367 | 1685 | env->msr_gp_counters[i]); |
9c600a84 | 1686 | kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, |
0d894367 PB |
1687 | env->msr_gp_evtsel[i]); |
1688 | } | |
9c600a84 | 1689 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, |
0d894367 | 1690 | env->msr_global_status); |
9c600a84 | 1691 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, |
0d894367 PB |
1692 | env->msr_global_ovf_ctrl); |
1693 | ||
1694 | /* Now start the PMU. */ | |
9c600a84 | 1695 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, |
0d894367 | 1696 | env->msr_fixed_ctr_ctrl); |
9c600a84 | 1697 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, |
0d894367 PB |
1698 | env->msr_global_ctrl); |
1699 | } | |
7bc3d711 | 1700 | if (has_msr_hv_hypercall) { |
9c600a84 | 1701 | kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, |
1c90ef26 | 1702 | env->msr_hv_guest_os_id); |
9c600a84 | 1703 | kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, |
1c90ef26 | 1704 | env->msr_hv_hypercall); |
eab70139 | 1705 | } |
2d5aa872 | 1706 | if (cpu->hyperv_vapic) { |
9c600a84 | 1707 | kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, |
5ef68987 | 1708 | env->msr_hv_vapic); |
eab70139 | 1709 | } |
3ddcd2ed | 1710 | if (cpu->hyperv_time) { |
9c600a84 | 1711 | kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, env->msr_hv_tsc); |
48a5f3bc | 1712 | } |
f2a53c9e AS |
1713 | if (has_msr_hv_crash) { |
1714 | int j; | |
1715 | ||
1716 | for (j = 0; j < HV_X64_MSR_CRASH_PARAMS; j++) | |
9c600a84 | 1717 | kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, |
f2a53c9e AS |
1718 | env->msr_hv_crash_params[j]); |
1719 | ||
9c600a84 | 1720 | kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, |
f2a53c9e AS |
1721 | HV_X64_MSR_CRASH_CTL_NOTIFY); |
1722 | } | |
46eb8f98 | 1723 | if (has_msr_hv_runtime) { |
9c600a84 | 1724 | kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime); |
46eb8f98 | 1725 | } |
866eea9a AS |
1726 | if (cpu->hyperv_synic) { |
1727 | int j; | |
1728 | ||
9c600a84 | 1729 | kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, |
866eea9a | 1730 | env->msr_hv_synic_control); |
9c600a84 | 1731 | kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, |
866eea9a | 1732 | env->msr_hv_synic_version); |
9c600a84 | 1733 | kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, |
866eea9a | 1734 | env->msr_hv_synic_evt_page); |
9c600a84 | 1735 | kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, |
866eea9a AS |
1736 | env->msr_hv_synic_msg_page); |
1737 | ||
1738 | for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) { | |
9c600a84 | 1739 | kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j, |
866eea9a AS |
1740 | env->msr_hv_synic_sint[j]); |
1741 | } | |
1742 | } | |
ff99aa64 AS |
1743 | if (has_msr_hv_stimer) { |
1744 | int j; | |
1745 | ||
1746 | for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) { | |
9c600a84 | 1747 | kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2, |
ff99aa64 AS |
1748 | env->msr_hv_stimer_config[j]); |
1749 | } | |
1750 | ||
1751 | for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) { | |
9c600a84 | 1752 | kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2, |
ff99aa64 AS |
1753 | env->msr_hv_stimer_count[j]); |
1754 | } | |
1755 | } | |
1eabfce6 | 1756 | if (env->features[FEAT_1_EDX] & CPUID_MTRR) { |
112dad69 DDAG |
1757 | uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits); |
1758 | ||
9c600a84 EH |
1759 | kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype); |
1760 | kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]); | |
1761 | kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]); | |
1762 | kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]); | |
1763 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]); | |
1764 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]); | |
1765 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]); | |
1766 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]); | |
1767 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]); | |
1768 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]); | |
1769 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]); | |
1770 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]); | |
d1ae67f6 | 1771 | for (i = 0; i < MSR_MTRRcap_VCNT; i++) { |
112dad69 DDAG |
1772 | /* The CPU GPs if we write to a bit above the physical limit of |
1773 | * the host CPU (and KVM emulates that) | |
1774 | */ | |
1775 | uint64_t mask = env->mtrr_var[i].mask; | |
1776 | mask &= phys_mask; | |
1777 | ||
9c600a84 EH |
1778 | kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), |
1779 | env->mtrr_var[i].base); | |
112dad69 | 1780 | kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask); |
d1ae67f6 AW |
1781 | } |
1782 | } | |
6bdf863d JK |
1783 | |
1784 | /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see | |
1785 | * kvm_put_msr_feature_control. */ | |
ea643051 | 1786 | } |
57780495 | 1787 | if (env->mcg_cap) { |
d8da8574 | 1788 | int i; |
b9bec74b | 1789 | |
9c600a84 EH |
1790 | kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status); |
1791 | kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl); | |
87f8b626 AR |
1792 | if (has_msr_mcg_ext_ctl) { |
1793 | kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl); | |
1794 | } | |
c34d440a | 1795 | for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { |
9c600a84 | 1796 | kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]); |
57780495 MT |
1797 | } |
1798 | } | |
1a03675d | 1799 | |
d71b62a1 | 1800 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); |
48e1a45c PB |
1801 | if (ret < 0) { |
1802 | return ret; | |
1803 | } | |
05330448 | 1804 | |
9c600a84 | 1805 | assert(ret == cpu->kvm_msr_buf->nmsrs); |
48e1a45c | 1806 | return 0; |
05330448 AL |
1807 | } |
1808 | ||
1809 | ||
1bc22652 | 1810 | static int kvm_get_fpu(X86CPU *cpu) |
05330448 | 1811 | { |
1bc22652 | 1812 | CPUX86State *env = &cpu->env; |
05330448 AL |
1813 | struct kvm_fpu fpu; |
1814 | int i, ret; | |
1815 | ||
1bc22652 | 1816 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu); |
b9bec74b | 1817 | if (ret < 0) { |
05330448 | 1818 | return ret; |
b9bec74b | 1819 | } |
05330448 AL |
1820 | |
1821 | env->fpstt = (fpu.fsw >> 11) & 7; | |
1822 | env->fpus = fpu.fsw; | |
1823 | env->fpuc = fpu.fcw; | |
42cc8fa6 JK |
1824 | env->fpop = fpu.last_opcode; |
1825 | env->fpip = fpu.last_ip; | |
1826 | env->fpdp = fpu.last_dp; | |
b9bec74b JK |
1827 | for (i = 0; i < 8; ++i) { |
1828 | env->fptags[i] = !((fpu.ftwx >> i) & 1); | |
1829 | } | |
05330448 | 1830 | memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs); |
bee81887 | 1831 | for (i = 0; i < CPU_NB_REGS; i++) { |
19cbd87c EH |
1832 | env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]); |
1833 | env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]); | |
bee81887 | 1834 | } |
05330448 AL |
1835 | env->mxcsr = fpu.mxcsr; |
1836 | ||
1837 | return 0; | |
1838 | } | |
1839 | ||
1bc22652 | 1840 | static int kvm_get_xsave(X86CPU *cpu) |
f1665b21 | 1841 | { |
1bc22652 | 1842 | CPUX86State *env = &cpu->env; |
86cd2ea0 | 1843 | X86XSaveArea *xsave = env->kvm_xsave_buf; |
f1665b21 | 1844 | int ret, i; |
42cc8fa6 | 1845 | uint16_t cwd, swd, twd; |
f1665b21 | 1846 | |
28143b40 | 1847 | if (!has_xsave) { |
1bc22652 | 1848 | return kvm_get_fpu(cpu); |
b9bec74b | 1849 | } |
f1665b21 | 1850 | |
1bc22652 | 1851 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave); |
0f53994f | 1852 | if (ret < 0) { |
f1665b21 | 1853 | return ret; |
0f53994f | 1854 | } |
f1665b21 | 1855 | |
86cd2ea0 EH |
1856 | cwd = xsave->legacy.fcw; |
1857 | swd = xsave->legacy.fsw; | |
1858 | twd = xsave->legacy.ftw; | |
1859 | env->fpop = xsave->legacy.fpop; | |
f1665b21 SY |
1860 | env->fpstt = (swd >> 11) & 7; |
1861 | env->fpus = swd; | |
1862 | env->fpuc = cwd; | |
b9bec74b | 1863 | for (i = 0; i < 8; ++i) { |
f1665b21 | 1864 | env->fptags[i] = !((twd >> i) & 1); |
b9bec74b | 1865 | } |
86cd2ea0 EH |
1866 | env->fpip = xsave->legacy.fpip; |
1867 | env->fpdp = xsave->legacy.fpdp; | |
1868 | env->mxcsr = xsave->legacy.mxcsr; | |
1869 | memcpy(env->fpregs, &xsave->legacy.fpregs, | |
f1665b21 | 1870 | sizeof env->fpregs); |
86cd2ea0 EH |
1871 | env->xstate_bv = xsave->header.xstate_bv; |
1872 | memcpy(env->bnd_regs, &xsave->bndreg_state.bnd_regs, | |
79e9ebeb | 1873 | sizeof env->bnd_regs); |
86cd2ea0 EH |
1874 | env->bndcs_regs = xsave->bndcsr_state.bndcsr; |
1875 | memcpy(env->opmask_regs, &xsave->opmask_state.opmask_regs, | |
9aecd6f8 | 1876 | sizeof env->opmask_regs); |
bee81887 | 1877 | |
86cd2ea0 EH |
1878 | for (i = 0; i < CPU_NB_REGS; i++) { |
1879 | uint8_t *xmm = xsave->legacy.xmm_regs[i]; | |
1880 | uint8_t *ymmh = xsave->avx_state.ymmh[i]; | |
1881 | uint8_t *zmmh = xsave->zmm_hi256_state.zmm_hi256[i]; | |
19cbd87c EH |
1882 | env->xmm_regs[i].ZMM_Q(0) = ldq_p(xmm); |
1883 | env->xmm_regs[i].ZMM_Q(1) = ldq_p(xmm+8); | |
1884 | env->xmm_regs[i].ZMM_Q(2) = ldq_p(ymmh); | |
1885 | env->xmm_regs[i].ZMM_Q(3) = ldq_p(ymmh+8); | |
1886 | env->xmm_regs[i].ZMM_Q(4) = ldq_p(zmmh); | |
1887 | env->xmm_regs[i].ZMM_Q(5) = ldq_p(zmmh+8); | |
1888 | env->xmm_regs[i].ZMM_Q(6) = ldq_p(zmmh+16); | |
1889 | env->xmm_regs[i].ZMM_Q(7) = ldq_p(zmmh+24); | |
bee81887 PB |
1890 | } |
1891 | ||
9aecd6f8 | 1892 | #ifdef TARGET_X86_64 |
86cd2ea0 | 1893 | memcpy(&env->xmm_regs[16], &xsave->hi16_zmm_state.hi16_zmm, |
b7711471 | 1894 | 16 * sizeof env->xmm_regs[16]); |
86cd2ea0 | 1895 | memcpy(&env->pkru, &xsave->pkru_state, sizeof env->pkru); |
9aecd6f8 | 1896 | #endif |
f1665b21 | 1897 | return 0; |
f1665b21 SY |
1898 | } |
1899 | ||
1bc22652 | 1900 | static int kvm_get_xcrs(X86CPU *cpu) |
f1665b21 | 1901 | { |
1bc22652 | 1902 | CPUX86State *env = &cpu->env; |
f1665b21 SY |
1903 | int i, ret; |
1904 | struct kvm_xcrs xcrs; | |
1905 | ||
28143b40 | 1906 | if (!has_xcrs) { |
f1665b21 | 1907 | return 0; |
b9bec74b | 1908 | } |
f1665b21 | 1909 | |
1bc22652 | 1910 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs); |
b9bec74b | 1911 | if (ret < 0) { |
f1665b21 | 1912 | return ret; |
b9bec74b | 1913 | } |
f1665b21 | 1914 | |
b9bec74b | 1915 | for (i = 0; i < xcrs.nr_xcrs; i++) { |
f1665b21 | 1916 | /* Only support xcr0 now */ |
0fd53fec PB |
1917 | if (xcrs.xcrs[i].xcr == 0) { |
1918 | env->xcr0 = xcrs.xcrs[i].value; | |
f1665b21 SY |
1919 | break; |
1920 | } | |
b9bec74b | 1921 | } |
f1665b21 | 1922 | return 0; |
f1665b21 SY |
1923 | } |
1924 | ||
1bc22652 | 1925 | static int kvm_get_sregs(X86CPU *cpu) |
05330448 | 1926 | { |
1bc22652 | 1927 | CPUX86State *env = &cpu->env; |
05330448 AL |
1928 | struct kvm_sregs sregs; |
1929 | uint32_t hflags; | |
0e607a80 | 1930 | int bit, i, ret; |
05330448 | 1931 | |
1bc22652 | 1932 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); |
b9bec74b | 1933 | if (ret < 0) { |
05330448 | 1934 | return ret; |
b9bec74b | 1935 | } |
05330448 | 1936 | |
0e607a80 JK |
1937 | /* There can only be one pending IRQ set in the bitmap at a time, so try |
1938 | to find it and save its number instead (-1 for none). */ | |
1939 | env->interrupt_injected = -1; | |
1940 | for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) { | |
1941 | if (sregs.interrupt_bitmap[i]) { | |
1942 | bit = ctz64(sregs.interrupt_bitmap[i]); | |
1943 | env->interrupt_injected = i * 64 + bit; | |
1944 | break; | |
1945 | } | |
1946 | } | |
05330448 AL |
1947 | |
1948 | get_seg(&env->segs[R_CS], &sregs.cs); | |
1949 | get_seg(&env->segs[R_DS], &sregs.ds); | |
1950 | get_seg(&env->segs[R_ES], &sregs.es); | |
1951 | get_seg(&env->segs[R_FS], &sregs.fs); | |
1952 | get_seg(&env->segs[R_GS], &sregs.gs); | |
1953 | get_seg(&env->segs[R_SS], &sregs.ss); | |
1954 | ||
1955 | get_seg(&env->tr, &sregs.tr); | |
1956 | get_seg(&env->ldt, &sregs.ldt); | |
1957 | ||
1958 | env->idt.limit = sregs.idt.limit; | |
1959 | env->idt.base = sregs.idt.base; | |
1960 | env->gdt.limit = sregs.gdt.limit; | |
1961 | env->gdt.base = sregs.gdt.base; | |
1962 | ||
1963 | env->cr[0] = sregs.cr0; | |
1964 | env->cr[2] = sregs.cr2; | |
1965 | env->cr[3] = sregs.cr3; | |
1966 | env->cr[4] = sregs.cr4; | |
1967 | ||
05330448 | 1968 | env->efer = sregs.efer; |
cce47516 JK |
1969 | |
1970 | /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ | |
05330448 | 1971 | |
b9bec74b JK |
1972 | #define HFLAG_COPY_MASK \ |
1973 | ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \ | |
1974 | HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \ | |
1975 | HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \ | |
1976 | HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK) | |
05330448 | 1977 | |
19dc85db RH |
1978 | hflags = env->hflags & HFLAG_COPY_MASK; |
1979 | hflags |= (env->segs[R_SS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK; | |
05330448 AL |
1980 | hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT); |
1981 | hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) & | |
b9bec74b | 1982 | (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK); |
05330448 | 1983 | hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK)); |
19dc85db RH |
1984 | |
1985 | if (env->cr[4] & CR4_OSFXSR_MASK) { | |
1986 | hflags |= HF_OSFXSR_MASK; | |
1987 | } | |
05330448 AL |
1988 | |
1989 | if (env->efer & MSR_EFER_LMA) { | |
1990 | hflags |= HF_LMA_MASK; | |
1991 | } | |
1992 | ||
1993 | if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) { | |
1994 | hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK; | |
1995 | } else { | |
1996 | hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >> | |
b9bec74b | 1997 | (DESC_B_SHIFT - HF_CS32_SHIFT); |
05330448 | 1998 | hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >> |
b9bec74b JK |
1999 | (DESC_B_SHIFT - HF_SS32_SHIFT); |
2000 | if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) || | |
2001 | !(hflags & HF_CS32_MASK)) { | |
2002 | hflags |= HF_ADDSEG_MASK; | |
2003 | } else { | |
2004 | hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base | | |
2005 | env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT; | |
2006 | } | |
05330448 | 2007 | } |
19dc85db | 2008 | env->hflags = hflags; |
05330448 AL |
2009 | |
2010 | return 0; | |
2011 | } | |
2012 | ||
1bc22652 | 2013 | static int kvm_get_msrs(X86CPU *cpu) |
05330448 | 2014 | { |
1bc22652 | 2015 | CPUX86State *env = &cpu->env; |
d71b62a1 | 2016 | struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries; |
9c600a84 | 2017 | int ret, i; |
fcc35e7c | 2018 | uint64_t mtrr_top_bits; |
05330448 | 2019 | |
d71b62a1 EH |
2020 | kvm_msr_buf_reset(cpu); |
2021 | ||
9c600a84 EH |
2022 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0); |
2023 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0); | |
2024 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0); | |
2025 | kvm_msr_entry_add(cpu, MSR_PAT, 0); | |
c3a3a7d3 | 2026 | if (has_msr_star) { |
9c600a84 | 2027 | kvm_msr_entry_add(cpu, MSR_STAR, 0); |
b9bec74b | 2028 | } |
c3a3a7d3 | 2029 | if (has_msr_hsave_pa) { |
9c600a84 | 2030 | kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0); |
b9bec74b | 2031 | } |
c9b8f6b6 | 2032 | if (has_msr_tsc_aux) { |
9c600a84 | 2033 | kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0); |
c9b8f6b6 | 2034 | } |
f28558d3 | 2035 | if (has_msr_tsc_adjust) { |
9c600a84 | 2036 | kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0); |
f28558d3 | 2037 | } |
aa82ba54 | 2038 | if (has_msr_tsc_deadline) { |
9c600a84 | 2039 | kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0); |
aa82ba54 | 2040 | } |
21e87c46 | 2041 | if (has_msr_misc_enable) { |
9c600a84 | 2042 | kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0); |
21e87c46 | 2043 | } |
fc12d72e | 2044 | if (has_msr_smbase) { |
9c600a84 | 2045 | kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0); |
fc12d72e | 2046 | } |
df67696e | 2047 | if (has_msr_feature_control) { |
9c600a84 | 2048 | kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0); |
df67696e | 2049 | } |
79e9ebeb | 2050 | if (has_msr_bndcfgs) { |
9c600a84 | 2051 | kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0); |
79e9ebeb | 2052 | } |
18cd2c17 | 2053 | if (has_msr_xss) { |
9c600a84 | 2054 | kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0); |
18cd2c17 WL |
2055 | } |
2056 | ||
b8cc45d6 GC |
2057 | |
2058 | if (!env->tsc_valid) { | |
9c600a84 | 2059 | kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0); |
1354869c | 2060 | env->tsc_valid = !runstate_is_running(); |
b8cc45d6 GC |
2061 | } |
2062 | ||
05330448 | 2063 | #ifdef TARGET_X86_64 |
25d2e361 | 2064 | if (lm_capable_kernel) { |
9c600a84 EH |
2065 | kvm_msr_entry_add(cpu, MSR_CSTAR, 0); |
2066 | kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0); | |
2067 | kvm_msr_entry_add(cpu, MSR_FMASK, 0); | |
2068 | kvm_msr_entry_add(cpu, MSR_LSTAR, 0); | |
25d2e361 | 2069 | } |
05330448 | 2070 | #endif |
9c600a84 EH |
2071 | kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0); |
2072 | kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0); | |
55c911a5 | 2073 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) { |
9c600a84 | 2074 | kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0); |
c5999bfc | 2075 | } |
55c911a5 | 2076 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) { |
9c600a84 | 2077 | kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0); |
bc9a839d | 2078 | } |
55c911a5 | 2079 | if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) { |
9c600a84 | 2080 | kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0); |
917367aa | 2081 | } |
0d894367 | 2082 | if (has_msr_architectural_pmu) { |
9c600a84 EH |
2083 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); |
2084 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); | |
2085 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0); | |
2086 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0); | |
0d894367 | 2087 | for (i = 0; i < MAX_FIXED_COUNTERS; i++) { |
9c600a84 | 2088 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0); |
0d894367 PB |
2089 | } |
2090 | for (i = 0; i < num_architectural_pmu_counters; i++) { | |
9c600a84 EH |
2091 | kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0); |
2092 | kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0); | |
0d894367 PB |
2093 | } |
2094 | } | |
1a03675d | 2095 | |
57780495 | 2096 | if (env->mcg_cap) { |
9c600a84 EH |
2097 | kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0); |
2098 | kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0); | |
87f8b626 AR |
2099 | if (has_msr_mcg_ext_ctl) { |
2100 | kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0); | |
2101 | } | |
b9bec74b | 2102 | for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { |
9c600a84 | 2103 | kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0); |
b9bec74b | 2104 | } |
57780495 | 2105 | } |
57780495 | 2106 | |
1c90ef26 | 2107 | if (has_msr_hv_hypercall) { |
9c600a84 EH |
2108 | kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0); |
2109 | kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0); | |
1c90ef26 | 2110 | } |
2d5aa872 | 2111 | if (cpu->hyperv_vapic) { |
9c600a84 | 2112 | kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0); |
5ef68987 | 2113 | } |
3ddcd2ed | 2114 | if (cpu->hyperv_time) { |
9c600a84 | 2115 | kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0); |
48a5f3bc | 2116 | } |
f2a53c9e AS |
2117 | if (has_msr_hv_crash) { |
2118 | int j; | |
2119 | ||
2120 | for (j = 0; j < HV_X64_MSR_CRASH_PARAMS; j++) { | |
9c600a84 | 2121 | kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0); |
f2a53c9e AS |
2122 | } |
2123 | } | |
46eb8f98 | 2124 | if (has_msr_hv_runtime) { |
9c600a84 | 2125 | kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0); |
46eb8f98 | 2126 | } |
866eea9a AS |
2127 | if (cpu->hyperv_synic) { |
2128 | uint32_t msr; | |
2129 | ||
9c600a84 EH |
2130 | kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0); |
2131 | kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, 0); | |
2132 | kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0); | |
2133 | kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0); | |
866eea9a | 2134 | for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) { |
9c600a84 | 2135 | kvm_msr_entry_add(cpu, msr, 0); |
866eea9a AS |
2136 | } |
2137 | } | |
ff99aa64 AS |
2138 | if (has_msr_hv_stimer) { |
2139 | uint32_t msr; | |
2140 | ||
2141 | for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT; | |
2142 | msr++) { | |
9c600a84 | 2143 | kvm_msr_entry_add(cpu, msr, 0); |
ff99aa64 AS |
2144 | } |
2145 | } | |
1eabfce6 | 2146 | if (env->features[FEAT_1_EDX] & CPUID_MTRR) { |
9c600a84 EH |
2147 | kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0); |
2148 | kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0); | |
2149 | kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0); | |
2150 | kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0); | |
2151 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0); | |
2152 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0); | |
2153 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0); | |
2154 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0); | |
2155 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0); | |
2156 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0); | |
2157 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0); | |
2158 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0); | |
d1ae67f6 | 2159 | for (i = 0; i < MSR_MTRRcap_VCNT; i++) { |
9c600a84 EH |
2160 | kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0); |
2161 | kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0); | |
d1ae67f6 AW |
2162 | } |
2163 | } | |
5ef68987 | 2164 | |
d71b62a1 | 2165 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf); |
b9bec74b | 2166 | if (ret < 0) { |
05330448 | 2167 | return ret; |
b9bec74b | 2168 | } |
05330448 | 2169 | |
9c600a84 | 2170 | assert(ret == cpu->kvm_msr_buf->nmsrs); |
fcc35e7c DDAG |
2171 | /* |
2172 | * MTRR masks: Each mask consists of 5 parts | |
2173 | * a 10..0: must be zero | |
2174 | * b 11 : valid bit | |
2175 | * c n-1.12: actual mask bits | |
2176 | * d 51..n: reserved must be zero | |
2177 | * e 63.52: reserved must be zero | |
2178 | * | |
2179 | * 'n' is the number of physical bits supported by the CPU and is | |
2180 | * apparently always <= 52. We know our 'n' but don't know what | |
2181 | * the destinations 'n' is; it might be smaller, in which case | |
2182 | * it masks (c) on loading. It might be larger, in which case | |
2183 | * we fill 'd' so that d..c is consistent irrespetive of the 'n' | |
2184 | * we're migrating to. | |
2185 | */ | |
2186 | ||
2187 | if (cpu->fill_mtrr_mask) { | |
2188 | QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52); | |
2189 | assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS); | |
2190 | mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits); | |
2191 | } else { | |
2192 | mtrr_top_bits = 0; | |
2193 | } | |
2194 | ||
05330448 | 2195 | for (i = 0; i < ret; i++) { |
0d894367 PB |
2196 | uint32_t index = msrs[i].index; |
2197 | switch (index) { | |
05330448 AL |
2198 | case MSR_IA32_SYSENTER_CS: |
2199 | env->sysenter_cs = msrs[i].data; | |
2200 | break; | |
2201 | case MSR_IA32_SYSENTER_ESP: | |
2202 | env->sysenter_esp = msrs[i].data; | |
2203 | break; | |
2204 | case MSR_IA32_SYSENTER_EIP: | |
2205 | env->sysenter_eip = msrs[i].data; | |
2206 | break; | |
0c03266a JK |
2207 | case MSR_PAT: |
2208 | env->pat = msrs[i].data; | |
2209 | break; | |
05330448 AL |
2210 | case MSR_STAR: |
2211 | env->star = msrs[i].data; | |
2212 | break; | |
2213 | #ifdef TARGET_X86_64 | |
2214 | case MSR_CSTAR: | |
2215 | env->cstar = msrs[i].data; | |
2216 | break; | |
2217 | case MSR_KERNELGSBASE: | |
2218 | env->kernelgsbase = msrs[i].data; | |
2219 | break; | |
2220 | case MSR_FMASK: | |
2221 | env->fmask = msrs[i].data; | |
2222 | break; | |
2223 | case MSR_LSTAR: | |
2224 | env->lstar = msrs[i].data; | |
2225 | break; | |
2226 | #endif | |
2227 | case MSR_IA32_TSC: | |
2228 | env->tsc = msrs[i].data; | |
2229 | break; | |
c9b8f6b6 AS |
2230 | case MSR_TSC_AUX: |
2231 | env->tsc_aux = msrs[i].data; | |
2232 | break; | |
f28558d3 WA |
2233 | case MSR_TSC_ADJUST: |
2234 | env->tsc_adjust = msrs[i].data; | |
2235 | break; | |
aa82ba54 LJ |
2236 | case MSR_IA32_TSCDEADLINE: |
2237 | env->tsc_deadline = msrs[i].data; | |
2238 | break; | |
aa851e36 MT |
2239 | case MSR_VM_HSAVE_PA: |
2240 | env->vm_hsave = msrs[i].data; | |
2241 | break; | |
1a03675d GC |
2242 | case MSR_KVM_SYSTEM_TIME: |
2243 | env->system_time_msr = msrs[i].data; | |
2244 | break; | |
2245 | case MSR_KVM_WALL_CLOCK: | |
2246 | env->wall_clock_msr = msrs[i].data; | |
2247 | break; | |
57780495 MT |
2248 | case MSR_MCG_STATUS: |
2249 | env->mcg_status = msrs[i].data; | |
2250 | break; | |
2251 | case MSR_MCG_CTL: | |
2252 | env->mcg_ctl = msrs[i].data; | |
2253 | break; | |
87f8b626 AR |
2254 | case MSR_MCG_EXT_CTL: |
2255 | env->mcg_ext_ctl = msrs[i].data; | |
2256 | break; | |
21e87c46 AK |
2257 | case MSR_IA32_MISC_ENABLE: |
2258 | env->msr_ia32_misc_enable = msrs[i].data; | |
2259 | break; | |
fc12d72e PB |
2260 | case MSR_IA32_SMBASE: |
2261 | env->smbase = msrs[i].data; | |
2262 | break; | |
0779caeb ACL |
2263 | case MSR_IA32_FEATURE_CONTROL: |
2264 | env->msr_ia32_feature_control = msrs[i].data; | |
df67696e | 2265 | break; |
79e9ebeb LJ |
2266 | case MSR_IA32_BNDCFGS: |
2267 | env->msr_bndcfgs = msrs[i].data; | |
2268 | break; | |
18cd2c17 WL |
2269 | case MSR_IA32_XSS: |
2270 | env->xss = msrs[i].data; | |
2271 | break; | |
57780495 | 2272 | default: |
57780495 MT |
2273 | if (msrs[i].index >= MSR_MC0_CTL && |
2274 | msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) { | |
2275 | env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data; | |
57780495 | 2276 | } |
d8da8574 | 2277 | break; |
f6584ee2 GN |
2278 | case MSR_KVM_ASYNC_PF_EN: |
2279 | env->async_pf_en_msr = msrs[i].data; | |
2280 | break; | |
bc9a839d MT |
2281 | case MSR_KVM_PV_EOI_EN: |
2282 | env->pv_eoi_en_msr = msrs[i].data; | |
2283 | break; | |
917367aa MT |
2284 | case MSR_KVM_STEAL_TIME: |
2285 | env->steal_time_msr = msrs[i].data; | |
2286 | break; | |
0d894367 PB |
2287 | case MSR_CORE_PERF_FIXED_CTR_CTRL: |
2288 | env->msr_fixed_ctr_ctrl = msrs[i].data; | |
2289 | break; | |
2290 | case MSR_CORE_PERF_GLOBAL_CTRL: | |
2291 | env->msr_global_ctrl = msrs[i].data; | |
2292 | break; | |
2293 | case MSR_CORE_PERF_GLOBAL_STATUS: | |
2294 | env->msr_global_status = msrs[i].data; | |
2295 | break; | |
2296 | case MSR_CORE_PERF_GLOBAL_OVF_CTRL: | |
2297 | env->msr_global_ovf_ctrl = msrs[i].data; | |
2298 | break; | |
2299 | case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1: | |
2300 | env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data; | |
2301 | break; | |
2302 | case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1: | |
2303 | env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data; | |
2304 | break; | |
2305 | case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1: | |
2306 | env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data; | |
2307 | break; | |
1c90ef26 VR |
2308 | case HV_X64_MSR_HYPERCALL: |
2309 | env->msr_hv_hypercall = msrs[i].data; | |
2310 | break; | |
2311 | case HV_X64_MSR_GUEST_OS_ID: | |
2312 | env->msr_hv_guest_os_id = msrs[i].data; | |
2313 | break; | |
5ef68987 VR |
2314 | case HV_X64_MSR_APIC_ASSIST_PAGE: |
2315 | env->msr_hv_vapic = msrs[i].data; | |
2316 | break; | |
48a5f3bc VR |
2317 | case HV_X64_MSR_REFERENCE_TSC: |
2318 | env->msr_hv_tsc = msrs[i].data; | |
2319 | break; | |
f2a53c9e AS |
2320 | case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: |
2321 | env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data; | |
2322 | break; | |
46eb8f98 AS |
2323 | case HV_X64_MSR_VP_RUNTIME: |
2324 | env->msr_hv_runtime = msrs[i].data; | |
2325 | break; | |
866eea9a AS |
2326 | case HV_X64_MSR_SCONTROL: |
2327 | env->msr_hv_synic_control = msrs[i].data; | |
2328 | break; | |
2329 | case HV_X64_MSR_SVERSION: | |
2330 | env->msr_hv_synic_version = msrs[i].data; | |
2331 | break; | |
2332 | case HV_X64_MSR_SIEFP: | |
2333 | env->msr_hv_synic_evt_page = msrs[i].data; | |
2334 | break; | |
2335 | case HV_X64_MSR_SIMP: | |
2336 | env->msr_hv_synic_msg_page = msrs[i].data; | |
2337 | break; | |
2338 | case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: | |
2339 | env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data; | |
ff99aa64 AS |
2340 | break; |
2341 | case HV_X64_MSR_STIMER0_CONFIG: | |
2342 | case HV_X64_MSR_STIMER1_CONFIG: | |
2343 | case HV_X64_MSR_STIMER2_CONFIG: | |
2344 | case HV_X64_MSR_STIMER3_CONFIG: | |
2345 | env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] = | |
2346 | msrs[i].data; | |
2347 | break; | |
2348 | case HV_X64_MSR_STIMER0_COUNT: | |
2349 | case HV_X64_MSR_STIMER1_COUNT: | |
2350 | case HV_X64_MSR_STIMER2_COUNT: | |
2351 | case HV_X64_MSR_STIMER3_COUNT: | |
2352 | env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] = | |
2353 | msrs[i].data; | |
866eea9a | 2354 | break; |
d1ae67f6 AW |
2355 | case MSR_MTRRdefType: |
2356 | env->mtrr_deftype = msrs[i].data; | |
2357 | break; | |
2358 | case MSR_MTRRfix64K_00000: | |
2359 | env->mtrr_fixed[0] = msrs[i].data; | |
2360 | break; | |
2361 | case MSR_MTRRfix16K_80000: | |
2362 | env->mtrr_fixed[1] = msrs[i].data; | |
2363 | break; | |
2364 | case MSR_MTRRfix16K_A0000: | |
2365 | env->mtrr_fixed[2] = msrs[i].data; | |
2366 | break; | |
2367 | case MSR_MTRRfix4K_C0000: | |
2368 | env->mtrr_fixed[3] = msrs[i].data; | |
2369 | break; | |
2370 | case MSR_MTRRfix4K_C8000: | |
2371 | env->mtrr_fixed[4] = msrs[i].data; | |
2372 | break; | |
2373 | case MSR_MTRRfix4K_D0000: | |
2374 | env->mtrr_fixed[5] = msrs[i].data; | |
2375 | break; | |
2376 | case MSR_MTRRfix4K_D8000: | |
2377 | env->mtrr_fixed[6] = msrs[i].data; | |
2378 | break; | |
2379 | case MSR_MTRRfix4K_E0000: | |
2380 | env->mtrr_fixed[7] = msrs[i].data; | |
2381 | break; | |
2382 | case MSR_MTRRfix4K_E8000: | |
2383 | env->mtrr_fixed[8] = msrs[i].data; | |
2384 | break; | |
2385 | case MSR_MTRRfix4K_F0000: | |
2386 | env->mtrr_fixed[9] = msrs[i].data; | |
2387 | break; | |
2388 | case MSR_MTRRfix4K_F8000: | |
2389 | env->mtrr_fixed[10] = msrs[i].data; | |
2390 | break; | |
2391 | case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1): | |
2392 | if (index & 1) { | |
fcc35e7c DDAG |
2393 | env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data | |
2394 | mtrr_top_bits; | |
d1ae67f6 AW |
2395 | } else { |
2396 | env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data; | |
2397 | } | |
2398 | break; | |
05330448 AL |
2399 | } |
2400 | } | |
2401 | ||
2402 | return 0; | |
2403 | } | |
2404 | ||
1bc22652 | 2405 | static int kvm_put_mp_state(X86CPU *cpu) |
9bdbe550 | 2406 | { |
1bc22652 | 2407 | struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state }; |
9bdbe550 | 2408 | |
1bc22652 | 2409 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); |
9bdbe550 HB |
2410 | } |
2411 | ||
23d02d9b | 2412 | static int kvm_get_mp_state(X86CPU *cpu) |
9bdbe550 | 2413 | { |
259186a7 | 2414 | CPUState *cs = CPU(cpu); |
23d02d9b | 2415 | CPUX86State *env = &cpu->env; |
9bdbe550 HB |
2416 | struct kvm_mp_state mp_state; |
2417 | int ret; | |
2418 | ||
259186a7 | 2419 | ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state); |
9bdbe550 HB |
2420 | if (ret < 0) { |
2421 | return ret; | |
2422 | } | |
2423 | env->mp_state = mp_state.mp_state; | |
c14750e8 | 2424 | if (kvm_irqchip_in_kernel()) { |
259186a7 | 2425 | cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED); |
c14750e8 | 2426 | } |
9bdbe550 HB |
2427 | return 0; |
2428 | } | |
2429 | ||
1bc22652 | 2430 | static int kvm_get_apic(X86CPU *cpu) |
680c1c6f | 2431 | { |
02e51483 | 2432 | DeviceState *apic = cpu->apic_state; |
680c1c6f JK |
2433 | struct kvm_lapic_state kapic; |
2434 | int ret; | |
2435 | ||
3d4b2649 | 2436 | if (apic && kvm_irqchip_in_kernel()) { |
1bc22652 | 2437 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic); |
680c1c6f JK |
2438 | if (ret < 0) { |
2439 | return ret; | |
2440 | } | |
2441 | ||
2442 | kvm_get_apic_state(apic, &kapic); | |
2443 | } | |
2444 | return 0; | |
2445 | } | |
2446 | ||
1bc22652 | 2447 | static int kvm_put_vcpu_events(X86CPU *cpu, int level) |
a0fb002c | 2448 | { |
fc12d72e | 2449 | CPUState *cs = CPU(cpu); |
1bc22652 | 2450 | CPUX86State *env = &cpu->env; |
076796f8 | 2451 | struct kvm_vcpu_events events = {}; |
a0fb002c JK |
2452 | |
2453 | if (!kvm_has_vcpu_events()) { | |
2454 | return 0; | |
2455 | } | |
2456 | ||
31827373 JK |
2457 | events.exception.injected = (env->exception_injected >= 0); |
2458 | events.exception.nr = env->exception_injected; | |
a0fb002c JK |
2459 | events.exception.has_error_code = env->has_error_code; |
2460 | events.exception.error_code = env->error_code; | |
7e680753 | 2461 | events.exception.pad = 0; |
a0fb002c JK |
2462 | |
2463 | events.interrupt.injected = (env->interrupt_injected >= 0); | |
2464 | events.interrupt.nr = env->interrupt_injected; | |
2465 | events.interrupt.soft = env->soft_interrupt; | |
2466 | ||
2467 | events.nmi.injected = env->nmi_injected; | |
2468 | events.nmi.pending = env->nmi_pending; | |
2469 | events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK); | |
7e680753 | 2470 | events.nmi.pad = 0; |
a0fb002c JK |
2471 | |
2472 | events.sipi_vector = env->sipi_vector; | |
68c6efe0 | 2473 | events.flags = 0; |
a0fb002c | 2474 | |
fc12d72e PB |
2475 | if (has_msr_smbase) { |
2476 | events.smi.smm = !!(env->hflags & HF_SMM_MASK); | |
2477 | events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK); | |
2478 | if (kvm_irqchip_in_kernel()) { | |
2479 | /* As soon as these are moved to the kernel, remove them | |
2480 | * from cs->interrupt_request. | |
2481 | */ | |
2482 | events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI; | |
2483 | events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT; | |
2484 | cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI); | |
2485 | } else { | |
2486 | /* Keep these in cs->interrupt_request. */ | |
2487 | events.smi.pending = 0; | |
2488 | events.smi.latched_init = 0; | |
2489 | } | |
2490 | events.flags |= KVM_VCPUEVENT_VALID_SMM; | |
2491 | } | |
2492 | ||
ea643051 JK |
2493 | if (level >= KVM_PUT_RESET_STATE) { |
2494 | events.flags |= | |
2495 | KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR; | |
2496 | } | |
aee028b9 | 2497 | |
1bc22652 | 2498 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); |
a0fb002c JK |
2499 | } |
2500 | ||
1bc22652 | 2501 | static int kvm_get_vcpu_events(X86CPU *cpu) |
a0fb002c | 2502 | { |
1bc22652 | 2503 | CPUX86State *env = &cpu->env; |
a0fb002c JK |
2504 | struct kvm_vcpu_events events; |
2505 | int ret; | |
2506 | ||
2507 | if (!kvm_has_vcpu_events()) { | |
2508 | return 0; | |
2509 | } | |
2510 | ||
fc12d72e | 2511 | memset(&events, 0, sizeof(events)); |
1bc22652 | 2512 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); |
a0fb002c JK |
2513 | if (ret < 0) { |
2514 | return ret; | |
2515 | } | |
31827373 | 2516 | env->exception_injected = |
a0fb002c JK |
2517 | events.exception.injected ? events.exception.nr : -1; |
2518 | env->has_error_code = events.exception.has_error_code; | |
2519 | env->error_code = events.exception.error_code; | |
2520 | ||
2521 | env->interrupt_injected = | |
2522 | events.interrupt.injected ? events.interrupt.nr : -1; | |
2523 | env->soft_interrupt = events.interrupt.soft; | |
2524 | ||
2525 | env->nmi_injected = events.nmi.injected; | |
2526 | env->nmi_pending = events.nmi.pending; | |
2527 | if (events.nmi.masked) { | |
2528 | env->hflags2 |= HF2_NMI_MASK; | |
2529 | } else { | |
2530 | env->hflags2 &= ~HF2_NMI_MASK; | |
2531 | } | |
2532 | ||
fc12d72e PB |
2533 | if (events.flags & KVM_VCPUEVENT_VALID_SMM) { |
2534 | if (events.smi.smm) { | |
2535 | env->hflags |= HF_SMM_MASK; | |
2536 | } else { | |
2537 | env->hflags &= ~HF_SMM_MASK; | |
2538 | } | |
2539 | if (events.smi.pending) { | |
2540 | cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); | |
2541 | } else { | |
2542 | cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); | |
2543 | } | |
2544 | if (events.smi.smm_inside_nmi) { | |
2545 | env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK; | |
2546 | } else { | |
2547 | env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK; | |
2548 | } | |
2549 | if (events.smi.latched_init) { | |
2550 | cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); | |
2551 | } else { | |
2552 | cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); | |
2553 | } | |
2554 | } | |
2555 | ||
a0fb002c | 2556 | env->sipi_vector = events.sipi_vector; |
a0fb002c JK |
2557 | |
2558 | return 0; | |
2559 | } | |
2560 | ||
1bc22652 | 2561 | static int kvm_guest_debug_workarounds(X86CPU *cpu) |
b0b1d690 | 2562 | { |
ed2803da | 2563 | CPUState *cs = CPU(cpu); |
1bc22652 | 2564 | CPUX86State *env = &cpu->env; |
b0b1d690 | 2565 | int ret = 0; |
b0b1d690 JK |
2566 | unsigned long reinject_trap = 0; |
2567 | ||
2568 | if (!kvm_has_vcpu_events()) { | |
2569 | if (env->exception_injected == 1) { | |
2570 | reinject_trap = KVM_GUESTDBG_INJECT_DB; | |
2571 | } else if (env->exception_injected == 3) { | |
2572 | reinject_trap = KVM_GUESTDBG_INJECT_BP; | |
2573 | } | |
2574 | env->exception_injected = -1; | |
2575 | } | |
2576 | ||
2577 | /* | |
2578 | * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF | |
2579 | * injected via SET_GUEST_DEBUG while updating GP regs. Work around this | |
2580 | * by updating the debug state once again if single-stepping is on. | |
2581 | * Another reason to call kvm_update_guest_debug here is a pending debug | |
2582 | * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to | |
2583 | * reinject them via SET_GUEST_DEBUG. | |
2584 | */ | |
2585 | if (reinject_trap || | |
ed2803da | 2586 | (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) { |
38e478ec | 2587 | ret = kvm_update_guest_debug(cs, reinject_trap); |
b0b1d690 | 2588 | } |
b0b1d690 JK |
2589 | return ret; |
2590 | } | |
2591 | ||
1bc22652 | 2592 | static int kvm_put_debugregs(X86CPU *cpu) |
ff44f1a3 | 2593 | { |
1bc22652 | 2594 | CPUX86State *env = &cpu->env; |
ff44f1a3 JK |
2595 | struct kvm_debugregs dbgregs; |
2596 | int i; | |
2597 | ||
2598 | if (!kvm_has_debugregs()) { | |
2599 | return 0; | |
2600 | } | |
2601 | ||
2602 | for (i = 0; i < 4; i++) { | |
2603 | dbgregs.db[i] = env->dr[i]; | |
2604 | } | |
2605 | dbgregs.dr6 = env->dr[6]; | |
2606 | dbgregs.dr7 = env->dr[7]; | |
2607 | dbgregs.flags = 0; | |
2608 | ||
1bc22652 | 2609 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs); |
ff44f1a3 JK |
2610 | } |
2611 | ||
1bc22652 | 2612 | static int kvm_get_debugregs(X86CPU *cpu) |
ff44f1a3 | 2613 | { |
1bc22652 | 2614 | CPUX86State *env = &cpu->env; |
ff44f1a3 JK |
2615 | struct kvm_debugregs dbgregs; |
2616 | int i, ret; | |
2617 | ||
2618 | if (!kvm_has_debugregs()) { | |
2619 | return 0; | |
2620 | } | |
2621 | ||
1bc22652 | 2622 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs); |
ff44f1a3 | 2623 | if (ret < 0) { |
b9bec74b | 2624 | return ret; |
ff44f1a3 JK |
2625 | } |
2626 | for (i = 0; i < 4; i++) { | |
2627 | env->dr[i] = dbgregs.db[i]; | |
2628 | } | |
2629 | env->dr[4] = env->dr[6] = dbgregs.dr6; | |
2630 | env->dr[5] = env->dr[7] = dbgregs.dr7; | |
ff44f1a3 JK |
2631 | |
2632 | return 0; | |
2633 | } | |
2634 | ||
20d695a9 | 2635 | int kvm_arch_put_registers(CPUState *cpu, int level) |
05330448 | 2636 | { |
20d695a9 | 2637 | X86CPU *x86_cpu = X86_CPU(cpu); |
05330448 AL |
2638 | int ret; |
2639 | ||
2fa45344 | 2640 | assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu)); |
dbaa07c4 | 2641 | |
48e1a45c | 2642 | if (level >= KVM_PUT_RESET_STATE) { |
6bdf863d JK |
2643 | ret = kvm_put_msr_feature_control(x86_cpu); |
2644 | if (ret < 0) { | |
2645 | return ret; | |
2646 | } | |
2647 | } | |
2648 | ||
36f96c4b HZ |
2649 | if (level == KVM_PUT_FULL_STATE) { |
2650 | /* We don't check for kvm_arch_set_tsc_khz() errors here, | |
2651 | * because TSC frequency mismatch shouldn't abort migration, | |
2652 | * unless the user explicitly asked for a more strict TSC | |
2653 | * setting (e.g. using an explicit "tsc-freq" option). | |
2654 | */ | |
2655 | kvm_arch_set_tsc_khz(cpu); | |
2656 | } | |
2657 | ||
1bc22652 | 2658 | ret = kvm_getput_regs(x86_cpu, 1); |
b9bec74b | 2659 | if (ret < 0) { |
05330448 | 2660 | return ret; |
b9bec74b | 2661 | } |
1bc22652 | 2662 | ret = kvm_put_xsave(x86_cpu); |
b9bec74b | 2663 | if (ret < 0) { |
f1665b21 | 2664 | return ret; |
b9bec74b | 2665 | } |
1bc22652 | 2666 | ret = kvm_put_xcrs(x86_cpu); |
b9bec74b | 2667 | if (ret < 0) { |
05330448 | 2668 | return ret; |
b9bec74b | 2669 | } |
1bc22652 | 2670 | ret = kvm_put_sregs(x86_cpu); |
b9bec74b | 2671 | if (ret < 0) { |
05330448 | 2672 | return ret; |
b9bec74b | 2673 | } |
ab443475 | 2674 | /* must be before kvm_put_msrs */ |
1bc22652 | 2675 | ret = kvm_inject_mce_oldstyle(x86_cpu); |
ab443475 JK |
2676 | if (ret < 0) { |
2677 | return ret; | |
2678 | } | |
1bc22652 | 2679 | ret = kvm_put_msrs(x86_cpu, level); |
b9bec74b | 2680 | if (ret < 0) { |
05330448 | 2681 | return ret; |
b9bec74b | 2682 | } |
ea643051 | 2683 | if (level >= KVM_PUT_RESET_STATE) { |
1bc22652 | 2684 | ret = kvm_put_mp_state(x86_cpu); |
b9bec74b | 2685 | if (ret < 0) { |
680c1c6f JK |
2686 | return ret; |
2687 | } | |
ea643051 | 2688 | } |
7477cd38 MT |
2689 | |
2690 | ret = kvm_put_tscdeadline_msr(x86_cpu); | |
2691 | if (ret < 0) { | |
2692 | return ret; | |
2693 | } | |
2694 | ||
1bc22652 | 2695 | ret = kvm_put_vcpu_events(x86_cpu, level); |
b9bec74b | 2696 | if (ret < 0) { |
a0fb002c | 2697 | return ret; |
b9bec74b | 2698 | } |
1bc22652 | 2699 | ret = kvm_put_debugregs(x86_cpu); |
b9bec74b | 2700 | if (ret < 0) { |
b0b1d690 | 2701 | return ret; |
b9bec74b | 2702 | } |
b0b1d690 | 2703 | /* must be last */ |
1bc22652 | 2704 | ret = kvm_guest_debug_workarounds(x86_cpu); |
b9bec74b | 2705 | if (ret < 0) { |
ff44f1a3 | 2706 | return ret; |
b9bec74b | 2707 | } |
05330448 AL |
2708 | return 0; |
2709 | } | |
2710 | ||
20d695a9 | 2711 | int kvm_arch_get_registers(CPUState *cs) |
05330448 | 2712 | { |
20d695a9 | 2713 | X86CPU *cpu = X86_CPU(cs); |
05330448 AL |
2714 | int ret; |
2715 | ||
20d695a9 | 2716 | assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs)); |
dbaa07c4 | 2717 | |
1bc22652 | 2718 | ret = kvm_getput_regs(cpu, 0); |
b9bec74b | 2719 | if (ret < 0) { |
f4f1110e | 2720 | goto out; |
b9bec74b | 2721 | } |
1bc22652 | 2722 | ret = kvm_get_xsave(cpu); |
b9bec74b | 2723 | if (ret < 0) { |
f4f1110e | 2724 | goto out; |
b9bec74b | 2725 | } |
1bc22652 | 2726 | ret = kvm_get_xcrs(cpu); |
b9bec74b | 2727 | if (ret < 0) { |
f4f1110e | 2728 | goto out; |
b9bec74b | 2729 | } |
1bc22652 | 2730 | ret = kvm_get_sregs(cpu); |
b9bec74b | 2731 | if (ret < 0) { |
f4f1110e | 2732 | goto out; |
b9bec74b | 2733 | } |
1bc22652 | 2734 | ret = kvm_get_msrs(cpu); |
b9bec74b | 2735 | if (ret < 0) { |
f4f1110e | 2736 | goto out; |
b9bec74b | 2737 | } |
23d02d9b | 2738 | ret = kvm_get_mp_state(cpu); |
b9bec74b | 2739 | if (ret < 0) { |
f4f1110e | 2740 | goto out; |
b9bec74b | 2741 | } |
1bc22652 | 2742 | ret = kvm_get_apic(cpu); |
680c1c6f | 2743 | if (ret < 0) { |
f4f1110e | 2744 | goto out; |
680c1c6f | 2745 | } |
1bc22652 | 2746 | ret = kvm_get_vcpu_events(cpu); |
b9bec74b | 2747 | if (ret < 0) { |
f4f1110e | 2748 | goto out; |
b9bec74b | 2749 | } |
1bc22652 | 2750 | ret = kvm_get_debugregs(cpu); |
b9bec74b | 2751 | if (ret < 0) { |
f4f1110e | 2752 | goto out; |
b9bec74b | 2753 | } |
f4f1110e RH |
2754 | ret = 0; |
2755 | out: | |
2756 | cpu_sync_bndcs_hflags(&cpu->env); | |
2757 | return ret; | |
05330448 AL |
2758 | } |
2759 | ||
20d695a9 | 2760 | void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) |
05330448 | 2761 | { |
20d695a9 AF |
2762 | X86CPU *x86_cpu = X86_CPU(cpu); |
2763 | CPUX86State *env = &x86_cpu->env; | |
ce377af3 JK |
2764 | int ret; |
2765 | ||
276ce815 | 2766 | /* Inject NMI */ |
fc12d72e PB |
2767 | if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) { |
2768 | if (cpu->interrupt_request & CPU_INTERRUPT_NMI) { | |
2769 | qemu_mutex_lock_iothread(); | |
2770 | cpu->interrupt_request &= ~CPU_INTERRUPT_NMI; | |
2771 | qemu_mutex_unlock_iothread(); | |
2772 | DPRINTF("injected NMI\n"); | |
2773 | ret = kvm_vcpu_ioctl(cpu, KVM_NMI); | |
2774 | if (ret < 0) { | |
2775 | fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n", | |
2776 | strerror(-ret)); | |
2777 | } | |
2778 | } | |
2779 | if (cpu->interrupt_request & CPU_INTERRUPT_SMI) { | |
2780 | qemu_mutex_lock_iothread(); | |
2781 | cpu->interrupt_request &= ~CPU_INTERRUPT_SMI; | |
2782 | qemu_mutex_unlock_iothread(); | |
2783 | DPRINTF("injected SMI\n"); | |
2784 | ret = kvm_vcpu_ioctl(cpu, KVM_SMI); | |
2785 | if (ret < 0) { | |
2786 | fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n", | |
2787 | strerror(-ret)); | |
2788 | } | |
ce377af3 | 2789 | } |
276ce815 LJ |
2790 | } |
2791 | ||
15eafc2e | 2792 | if (!kvm_pic_in_kernel()) { |
4b8523ee JK |
2793 | qemu_mutex_lock_iothread(); |
2794 | } | |
2795 | ||
e0723c45 PB |
2796 | /* Force the VCPU out of its inner loop to process any INIT requests |
2797 | * or (for userspace APIC, but it is cheap to combine the checks here) | |
2798 | * pending TPR access reports. | |
2799 | */ | |
2800 | if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) { | |
fc12d72e PB |
2801 | if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) && |
2802 | !(env->hflags & HF_SMM_MASK)) { | |
2803 | cpu->exit_request = 1; | |
2804 | } | |
2805 | if (cpu->interrupt_request & CPU_INTERRUPT_TPR) { | |
2806 | cpu->exit_request = 1; | |
2807 | } | |
e0723c45 | 2808 | } |
05330448 | 2809 | |
15eafc2e | 2810 | if (!kvm_pic_in_kernel()) { |
db1669bc JK |
2811 | /* Try to inject an interrupt if the guest can accept it */ |
2812 | if (run->ready_for_interrupt_injection && | |
259186a7 | 2813 | (cpu->interrupt_request & CPU_INTERRUPT_HARD) && |
db1669bc JK |
2814 | (env->eflags & IF_MASK)) { |
2815 | int irq; | |
2816 | ||
259186a7 | 2817 | cpu->interrupt_request &= ~CPU_INTERRUPT_HARD; |
db1669bc JK |
2818 | irq = cpu_get_pic_interrupt(env); |
2819 | if (irq >= 0) { | |
2820 | struct kvm_interrupt intr; | |
2821 | ||
2822 | intr.irq = irq; | |
db1669bc | 2823 | DPRINTF("injected interrupt %d\n", irq); |
1bc22652 | 2824 | ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr); |
ce377af3 JK |
2825 | if (ret < 0) { |
2826 | fprintf(stderr, | |
2827 | "KVM: injection failed, interrupt lost (%s)\n", | |
2828 | strerror(-ret)); | |
2829 | } | |
db1669bc JK |
2830 | } |
2831 | } | |
05330448 | 2832 | |
db1669bc JK |
2833 | /* If we have an interrupt but the guest is not ready to receive an |
2834 | * interrupt, request an interrupt window exit. This will | |
2835 | * cause a return to userspace as soon as the guest is ready to | |
2836 | * receive interrupts. */ | |
259186a7 | 2837 | if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) { |
db1669bc JK |
2838 | run->request_interrupt_window = 1; |
2839 | } else { | |
2840 | run->request_interrupt_window = 0; | |
2841 | } | |
2842 | ||
2843 | DPRINTF("setting tpr\n"); | |
02e51483 | 2844 | run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state); |
4b8523ee JK |
2845 | |
2846 | qemu_mutex_unlock_iothread(); | |
db1669bc | 2847 | } |
05330448 AL |
2848 | } |
2849 | ||
4c663752 | 2850 | MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run) |
05330448 | 2851 | { |
20d695a9 AF |
2852 | X86CPU *x86_cpu = X86_CPU(cpu); |
2853 | CPUX86State *env = &x86_cpu->env; | |
2854 | ||
fc12d72e PB |
2855 | if (run->flags & KVM_RUN_X86_SMM) { |
2856 | env->hflags |= HF_SMM_MASK; | |
2857 | } else { | |
2858 | env->hflags &= HF_SMM_MASK; | |
2859 | } | |
b9bec74b | 2860 | if (run->if_flag) { |
05330448 | 2861 | env->eflags |= IF_MASK; |
b9bec74b | 2862 | } else { |
05330448 | 2863 | env->eflags &= ~IF_MASK; |
b9bec74b | 2864 | } |
4b8523ee JK |
2865 | |
2866 | /* We need to protect the apic state against concurrent accesses from | |
2867 | * different threads in case the userspace irqchip is used. */ | |
2868 | if (!kvm_irqchip_in_kernel()) { | |
2869 | qemu_mutex_lock_iothread(); | |
2870 | } | |
02e51483 CF |
2871 | cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8); |
2872 | cpu_set_apic_base(x86_cpu->apic_state, run->apic_base); | |
4b8523ee JK |
2873 | if (!kvm_irqchip_in_kernel()) { |
2874 | qemu_mutex_unlock_iothread(); | |
2875 | } | |
f794aa4a | 2876 | return cpu_get_mem_attrs(env); |
05330448 AL |
2877 | } |
2878 | ||
20d695a9 | 2879 | int kvm_arch_process_async_events(CPUState *cs) |
0af691d7 | 2880 | { |
20d695a9 AF |
2881 | X86CPU *cpu = X86_CPU(cs); |
2882 | CPUX86State *env = &cpu->env; | |
232fc23b | 2883 | |
259186a7 | 2884 | if (cs->interrupt_request & CPU_INTERRUPT_MCE) { |
ab443475 JK |
2885 | /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */ |
2886 | assert(env->mcg_cap); | |
2887 | ||
259186a7 | 2888 | cs->interrupt_request &= ~CPU_INTERRUPT_MCE; |
ab443475 | 2889 | |
dd1750d7 | 2890 | kvm_cpu_synchronize_state(cs); |
ab443475 JK |
2891 | |
2892 | if (env->exception_injected == EXCP08_DBLE) { | |
2893 | /* this means triple fault */ | |
2894 | qemu_system_reset_request(); | |
fcd7d003 | 2895 | cs->exit_request = 1; |
ab443475 JK |
2896 | return 0; |
2897 | } | |
2898 | env->exception_injected = EXCP12_MCHK; | |
2899 | env->has_error_code = 0; | |
2900 | ||
259186a7 | 2901 | cs->halted = 0; |
ab443475 JK |
2902 | if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) { |
2903 | env->mp_state = KVM_MP_STATE_RUNNABLE; | |
2904 | } | |
2905 | } | |
2906 | ||
fc12d72e PB |
2907 | if ((cs->interrupt_request & CPU_INTERRUPT_INIT) && |
2908 | !(env->hflags & HF_SMM_MASK)) { | |
e0723c45 PB |
2909 | kvm_cpu_synchronize_state(cs); |
2910 | do_cpu_init(cpu); | |
2911 | } | |
2912 | ||
db1669bc JK |
2913 | if (kvm_irqchip_in_kernel()) { |
2914 | return 0; | |
2915 | } | |
2916 | ||
259186a7 AF |
2917 | if (cs->interrupt_request & CPU_INTERRUPT_POLL) { |
2918 | cs->interrupt_request &= ~CPU_INTERRUPT_POLL; | |
02e51483 | 2919 | apic_poll_irq(cpu->apic_state); |
5d62c43a | 2920 | } |
259186a7 | 2921 | if (((cs->interrupt_request & CPU_INTERRUPT_HARD) && |
4601f7b0 | 2922 | (env->eflags & IF_MASK)) || |
259186a7 AF |
2923 | (cs->interrupt_request & CPU_INTERRUPT_NMI)) { |
2924 | cs->halted = 0; | |
6792a57b | 2925 | } |
259186a7 | 2926 | if (cs->interrupt_request & CPU_INTERRUPT_SIPI) { |
dd1750d7 | 2927 | kvm_cpu_synchronize_state(cs); |
232fc23b | 2928 | do_cpu_sipi(cpu); |
0af691d7 | 2929 | } |
259186a7 AF |
2930 | if (cs->interrupt_request & CPU_INTERRUPT_TPR) { |
2931 | cs->interrupt_request &= ~CPU_INTERRUPT_TPR; | |
dd1750d7 | 2932 | kvm_cpu_synchronize_state(cs); |
02e51483 | 2933 | apic_handle_tpr_access_report(cpu->apic_state, env->eip, |
d362e757 JK |
2934 | env->tpr_access_type); |
2935 | } | |
0af691d7 | 2936 | |
259186a7 | 2937 | return cs->halted; |
0af691d7 MT |
2938 | } |
2939 | ||
839b5630 | 2940 | static int kvm_handle_halt(X86CPU *cpu) |
05330448 | 2941 | { |
259186a7 | 2942 | CPUState *cs = CPU(cpu); |
839b5630 AF |
2943 | CPUX86State *env = &cpu->env; |
2944 | ||
259186a7 | 2945 | if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) && |
05330448 | 2946 | (env->eflags & IF_MASK)) && |
259186a7 AF |
2947 | !(cs->interrupt_request & CPU_INTERRUPT_NMI)) { |
2948 | cs->halted = 1; | |
bb4ea393 | 2949 | return EXCP_HLT; |
05330448 AL |
2950 | } |
2951 | ||
bb4ea393 | 2952 | return 0; |
05330448 AL |
2953 | } |
2954 | ||
f7575c96 | 2955 | static int kvm_handle_tpr_access(X86CPU *cpu) |
d362e757 | 2956 | { |
f7575c96 AF |
2957 | CPUState *cs = CPU(cpu); |
2958 | struct kvm_run *run = cs->kvm_run; | |
d362e757 | 2959 | |
02e51483 | 2960 | apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip, |
d362e757 JK |
2961 | run->tpr_access.is_write ? TPR_ACCESS_WRITE |
2962 | : TPR_ACCESS_READ); | |
2963 | return 1; | |
2964 | } | |
2965 | ||
f17ec444 | 2966 | int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) |
e22a25c9 | 2967 | { |
38972938 | 2968 | static const uint8_t int3 = 0xcc; |
64bf3f4e | 2969 | |
f17ec444 AF |
2970 | if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || |
2971 | cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) { | |
e22a25c9 | 2972 | return -EINVAL; |
b9bec74b | 2973 | } |
e22a25c9 AL |
2974 | return 0; |
2975 | } | |
2976 | ||
f17ec444 | 2977 | int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) |
e22a25c9 AL |
2978 | { |
2979 | uint8_t int3; | |
2980 | ||
f17ec444 AF |
2981 | if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc || |
2982 | cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) { | |
e22a25c9 | 2983 | return -EINVAL; |
b9bec74b | 2984 | } |
e22a25c9 AL |
2985 | return 0; |
2986 | } | |
2987 | ||
2988 | static struct { | |
2989 | target_ulong addr; | |
2990 | int len; | |
2991 | int type; | |
2992 | } hw_breakpoint[4]; | |
2993 | ||
2994 | static int nb_hw_breakpoint; | |
2995 | ||
2996 | static int find_hw_breakpoint(target_ulong addr, int len, int type) | |
2997 | { | |
2998 | int n; | |
2999 | ||
b9bec74b | 3000 | for (n = 0; n < nb_hw_breakpoint; n++) { |
e22a25c9 | 3001 | if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && |
b9bec74b | 3002 | (hw_breakpoint[n].len == len || len == -1)) { |
e22a25c9 | 3003 | return n; |
b9bec74b JK |
3004 | } |
3005 | } | |
e22a25c9 AL |
3006 | return -1; |
3007 | } | |
3008 | ||
3009 | int kvm_arch_insert_hw_breakpoint(target_ulong addr, | |
3010 | target_ulong len, int type) | |
3011 | { | |
3012 | switch (type) { | |
3013 | case GDB_BREAKPOINT_HW: | |
3014 | len = 1; | |
3015 | break; | |
3016 | case GDB_WATCHPOINT_WRITE: | |
3017 | case GDB_WATCHPOINT_ACCESS: | |
3018 | switch (len) { | |
3019 | case 1: | |
3020 | break; | |
3021 | case 2: | |
3022 | case 4: | |
3023 | case 8: | |
b9bec74b | 3024 | if (addr & (len - 1)) { |
e22a25c9 | 3025 | return -EINVAL; |
b9bec74b | 3026 | } |
e22a25c9 AL |
3027 | break; |
3028 | default: | |
3029 | return -EINVAL; | |
3030 | } | |
3031 | break; | |
3032 | default: | |
3033 | return -ENOSYS; | |
3034 | } | |
3035 | ||
b9bec74b | 3036 | if (nb_hw_breakpoint == 4) { |
e22a25c9 | 3037 | return -ENOBUFS; |
b9bec74b JK |
3038 | } |
3039 | if (find_hw_breakpoint(addr, len, type) >= 0) { | |
e22a25c9 | 3040 | return -EEXIST; |
b9bec74b | 3041 | } |
e22a25c9 AL |
3042 | hw_breakpoint[nb_hw_breakpoint].addr = addr; |
3043 | hw_breakpoint[nb_hw_breakpoint].len = len; | |
3044 | hw_breakpoint[nb_hw_breakpoint].type = type; | |
3045 | nb_hw_breakpoint++; | |
3046 | ||
3047 | return 0; | |
3048 | } | |
3049 | ||
3050 | int kvm_arch_remove_hw_breakpoint(target_ulong addr, | |
3051 | target_ulong len, int type) | |
3052 | { | |
3053 | int n; | |
3054 | ||
3055 | n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type); | |
b9bec74b | 3056 | if (n < 0) { |
e22a25c9 | 3057 | return -ENOENT; |
b9bec74b | 3058 | } |
e22a25c9 AL |
3059 | nb_hw_breakpoint--; |
3060 | hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; | |
3061 | ||
3062 | return 0; | |
3063 | } | |
3064 | ||
3065 | void kvm_arch_remove_all_hw_breakpoints(void) | |
3066 | { | |
3067 | nb_hw_breakpoint = 0; | |
3068 | } | |
3069 | ||
3070 | static CPUWatchpoint hw_watchpoint; | |
3071 | ||
a60f24b5 | 3072 | static int kvm_handle_debug(X86CPU *cpu, |
48405526 | 3073 | struct kvm_debug_exit_arch *arch_info) |
e22a25c9 | 3074 | { |
ed2803da | 3075 | CPUState *cs = CPU(cpu); |
a60f24b5 | 3076 | CPUX86State *env = &cpu->env; |
f2574737 | 3077 | int ret = 0; |
e22a25c9 AL |
3078 | int n; |
3079 | ||
3080 | if (arch_info->exception == 1) { | |
3081 | if (arch_info->dr6 & (1 << 14)) { | |
ed2803da | 3082 | if (cs->singlestep_enabled) { |
f2574737 | 3083 | ret = EXCP_DEBUG; |
b9bec74b | 3084 | } |
e22a25c9 | 3085 | } else { |
b9bec74b JK |
3086 | for (n = 0; n < 4; n++) { |
3087 | if (arch_info->dr6 & (1 << n)) { | |
e22a25c9 AL |
3088 | switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { |
3089 | case 0x0: | |
f2574737 | 3090 | ret = EXCP_DEBUG; |
e22a25c9 AL |
3091 | break; |
3092 | case 0x1: | |
f2574737 | 3093 | ret = EXCP_DEBUG; |
ff4700b0 | 3094 | cs->watchpoint_hit = &hw_watchpoint; |
e22a25c9 AL |
3095 | hw_watchpoint.vaddr = hw_breakpoint[n].addr; |
3096 | hw_watchpoint.flags = BP_MEM_WRITE; | |
3097 | break; | |
3098 | case 0x3: | |
f2574737 | 3099 | ret = EXCP_DEBUG; |
ff4700b0 | 3100 | cs->watchpoint_hit = &hw_watchpoint; |
e22a25c9 AL |
3101 | hw_watchpoint.vaddr = hw_breakpoint[n].addr; |
3102 | hw_watchpoint.flags = BP_MEM_ACCESS; | |
3103 | break; | |
3104 | } | |
b9bec74b JK |
3105 | } |
3106 | } | |
e22a25c9 | 3107 | } |
ff4700b0 | 3108 | } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) { |
f2574737 | 3109 | ret = EXCP_DEBUG; |
b9bec74b | 3110 | } |
f2574737 | 3111 | if (ret == 0) { |
ff4700b0 | 3112 | cpu_synchronize_state(cs); |
48405526 | 3113 | assert(env->exception_injected == -1); |
b0b1d690 | 3114 | |
f2574737 | 3115 | /* pass to guest */ |
48405526 BS |
3116 | env->exception_injected = arch_info->exception; |
3117 | env->has_error_code = 0; | |
b0b1d690 | 3118 | } |
e22a25c9 | 3119 | |
f2574737 | 3120 | return ret; |
e22a25c9 AL |
3121 | } |
3122 | ||
20d695a9 | 3123 | void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) |
e22a25c9 AL |
3124 | { |
3125 | const uint8_t type_code[] = { | |
3126 | [GDB_BREAKPOINT_HW] = 0x0, | |
3127 | [GDB_WATCHPOINT_WRITE] = 0x1, | |
3128 | [GDB_WATCHPOINT_ACCESS] = 0x3 | |
3129 | }; | |
3130 | const uint8_t len_code[] = { | |
3131 | [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 | |
3132 | }; | |
3133 | int n; | |
3134 | ||
a60f24b5 | 3135 | if (kvm_sw_breakpoints_active(cpu)) { |
e22a25c9 | 3136 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; |
b9bec74b | 3137 | } |
e22a25c9 AL |
3138 | if (nb_hw_breakpoint > 0) { |
3139 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; | |
3140 | dbg->arch.debugreg[7] = 0x0600; | |
3141 | for (n = 0; n < nb_hw_breakpoint; n++) { | |
3142 | dbg->arch.debugreg[n] = hw_breakpoint[n].addr; | |
3143 | dbg->arch.debugreg[7] |= (2 << (n * 2)) | | |
3144 | (type_code[hw_breakpoint[n].type] << (16 + n*4)) | | |
95c077c9 | 3145 | ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4)); |
e22a25c9 AL |
3146 | } |
3147 | } | |
3148 | } | |
4513d923 | 3149 | |
2a4dac83 JK |
3150 | static bool host_supports_vmx(void) |
3151 | { | |
3152 | uint32_t ecx, unused; | |
3153 | ||
3154 | host_cpuid(1, 0, &unused, &unused, &ecx, &unused); | |
3155 | return ecx & CPUID_EXT_VMX; | |
3156 | } | |
3157 | ||
3158 | #define VMX_INVALID_GUEST_STATE 0x80000021 | |
3159 | ||
20d695a9 | 3160 | int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) |
2a4dac83 | 3161 | { |
20d695a9 | 3162 | X86CPU *cpu = X86_CPU(cs); |
2a4dac83 JK |
3163 | uint64_t code; |
3164 | int ret; | |
3165 | ||
3166 | switch (run->exit_reason) { | |
3167 | case KVM_EXIT_HLT: | |
3168 | DPRINTF("handle_hlt\n"); | |
4b8523ee | 3169 | qemu_mutex_lock_iothread(); |
839b5630 | 3170 | ret = kvm_handle_halt(cpu); |
4b8523ee | 3171 | qemu_mutex_unlock_iothread(); |
2a4dac83 JK |
3172 | break; |
3173 | case KVM_EXIT_SET_TPR: | |
3174 | ret = 0; | |
3175 | break; | |
d362e757 | 3176 | case KVM_EXIT_TPR_ACCESS: |
4b8523ee | 3177 | qemu_mutex_lock_iothread(); |
f7575c96 | 3178 | ret = kvm_handle_tpr_access(cpu); |
4b8523ee | 3179 | qemu_mutex_unlock_iothread(); |
d362e757 | 3180 | break; |
2a4dac83 JK |
3181 | case KVM_EXIT_FAIL_ENTRY: |
3182 | code = run->fail_entry.hardware_entry_failure_reason; | |
3183 | fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n", | |
3184 | code); | |
3185 | if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) { | |
3186 | fprintf(stderr, | |
12619721 | 3187 | "\nIf you're running a guest on an Intel machine without " |
2a4dac83 JK |
3188 | "unrestricted mode\n" |
3189 | "support, the failure can be most likely due to the guest " | |
3190 | "entering an invalid\n" | |
3191 | "state for Intel VT. For example, the guest maybe running " | |
3192 | "in big real mode\n" | |
3193 | "which is not supported on less recent Intel processors." | |
3194 | "\n\n"); | |
3195 | } | |
3196 | ret = -1; | |
3197 | break; | |
3198 | case KVM_EXIT_EXCEPTION: | |
3199 | fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n", | |
3200 | run->ex.exception, run->ex.error_code); | |
3201 | ret = -1; | |
3202 | break; | |
f2574737 JK |
3203 | case KVM_EXIT_DEBUG: |
3204 | DPRINTF("kvm_exit_debug\n"); | |
4b8523ee | 3205 | qemu_mutex_lock_iothread(); |
a60f24b5 | 3206 | ret = kvm_handle_debug(cpu, &run->debug.arch); |
4b8523ee | 3207 | qemu_mutex_unlock_iothread(); |
f2574737 | 3208 | break; |
50efe82c AS |
3209 | case KVM_EXIT_HYPERV: |
3210 | ret = kvm_hv_handle_exit(cpu, &run->hyperv); | |
3211 | break; | |
15eafc2e PB |
3212 | case KVM_EXIT_IOAPIC_EOI: |
3213 | ioapic_eoi_broadcast(run->eoi.vector); | |
3214 | ret = 0; | |
3215 | break; | |
2a4dac83 JK |
3216 | default: |
3217 | fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); | |
3218 | ret = -1; | |
3219 | break; | |
3220 | } | |
3221 | ||
3222 | return ret; | |
3223 | } | |
3224 | ||
20d695a9 | 3225 | bool kvm_arch_stop_on_emulation_error(CPUState *cs) |
4513d923 | 3226 | { |
20d695a9 AF |
3227 | X86CPU *cpu = X86_CPU(cs); |
3228 | CPUX86State *env = &cpu->env; | |
3229 | ||
dd1750d7 | 3230 | kvm_cpu_synchronize_state(cs); |
b9bec74b JK |
3231 | return !(env->cr[0] & CR0_PE_MASK) || |
3232 | ((env->segs[R_CS].selector & 3) != 3); | |
4513d923 | 3233 | } |
84b058d7 JK |
3234 | |
3235 | void kvm_arch_init_irq_routing(KVMState *s) | |
3236 | { | |
3237 | if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) { | |
3238 | /* If kernel can't do irq routing, interrupt source | |
3239 | * override 0->2 cannot be set up as required by HPET. | |
3240 | * So we have to disable it. | |
3241 | */ | |
3242 | no_hpet = 1; | |
3243 | } | |
cc7e0ddf | 3244 | /* We know at this point that we're using the in-kernel |
614e41bc | 3245 | * irqchip, so we can use irqfds, and on x86 we know |
f3e1bed8 | 3246 | * we can use msi via irqfd and GSI routing. |
cc7e0ddf | 3247 | */ |
614e41bc | 3248 | kvm_msi_via_irqfd_allowed = true; |
f3e1bed8 | 3249 | kvm_gsi_routing_allowed = true; |
15eafc2e PB |
3250 | |
3251 | if (kvm_irqchip_is_split()) { | |
3252 | int i; | |
3253 | ||
3254 | /* If the ioapic is in QEMU and the lapics are in KVM, reserve | |
3255 | MSI routes for signaling interrupts to the local apics. */ | |
3256 | for (i = 0; i < IOAPIC_NUM_PINS; i++) { | |
d1f6af6a | 3257 | if (kvm_irqchip_add_msi_route(s, 0, NULL) < 0) { |
15eafc2e PB |
3258 | error_report("Could not enable split IRQ mode."); |
3259 | exit(1); | |
3260 | } | |
3261 | } | |
3262 | } | |
3263 | } | |
3264 | ||
3265 | int kvm_arch_irqchip_create(MachineState *ms, KVMState *s) | |
3266 | { | |
3267 | int ret; | |
3268 | if (machine_kernel_irqchip_split(ms)) { | |
3269 | ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24); | |
3270 | if (ret) { | |
df3c286c | 3271 | error_report("Could not enable split irqchip mode: %s", |
15eafc2e PB |
3272 | strerror(-ret)); |
3273 | exit(1); | |
3274 | } else { | |
3275 | DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n"); | |
3276 | kvm_split_irqchip = true; | |
3277 | return 1; | |
3278 | } | |
3279 | } else { | |
3280 | return 0; | |
3281 | } | |
84b058d7 | 3282 | } |
b139bd30 JK |
3283 | |
3284 | /* Classic KVM device assignment interface. Will remain x86 only. */ | |
3285 | int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr, | |
3286 | uint32_t flags, uint32_t *dev_id) | |
3287 | { | |
3288 | struct kvm_assigned_pci_dev dev_data = { | |
3289 | .segnr = dev_addr->domain, | |
3290 | .busnr = dev_addr->bus, | |
3291 | .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function), | |
3292 | .flags = flags, | |
3293 | }; | |
3294 | int ret; | |
3295 | ||
3296 | dev_data.assigned_dev_id = | |
3297 | (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn; | |
3298 | ||
3299 | ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data); | |
3300 | if (ret < 0) { | |
3301 | return ret; | |
3302 | } | |
3303 | ||
3304 | *dev_id = dev_data.assigned_dev_id; | |
3305 | ||
3306 | return 0; | |
3307 | } | |
3308 | ||
3309 | int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id) | |
3310 | { | |
3311 | struct kvm_assigned_pci_dev dev_data = { | |
3312 | .assigned_dev_id = dev_id, | |
3313 | }; | |
3314 | ||
3315 | return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data); | |
3316 | } | |
3317 | ||
3318 | static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id, | |
3319 | uint32_t irq_type, uint32_t guest_irq) | |
3320 | { | |
3321 | struct kvm_assigned_irq assigned_irq = { | |
3322 | .assigned_dev_id = dev_id, | |
3323 | .guest_irq = guest_irq, | |
3324 | .flags = irq_type, | |
3325 | }; | |
3326 | ||
3327 | if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) { | |
3328 | return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq); | |
3329 | } else { | |
3330 | return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq); | |
3331 | } | |
3332 | } | |
3333 | ||
3334 | int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi, | |
3335 | uint32_t guest_irq) | |
3336 | { | |
3337 | uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX | | |
3338 | (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX); | |
3339 | ||
3340 | return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq); | |
3341 | } | |
3342 | ||
3343 | int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked) | |
3344 | { | |
3345 | struct kvm_assigned_pci_dev dev_data = { | |
3346 | .assigned_dev_id = dev_id, | |
3347 | .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0, | |
3348 | }; | |
3349 | ||
3350 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data); | |
3351 | } | |
3352 | ||
3353 | static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id, | |
3354 | uint32_t type) | |
3355 | { | |
3356 | struct kvm_assigned_irq assigned_irq = { | |
3357 | .assigned_dev_id = dev_id, | |
3358 | .flags = type, | |
3359 | }; | |
3360 | ||
3361 | return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq); | |
3362 | } | |
3363 | ||
3364 | int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi) | |
3365 | { | |
3366 | return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX | | |
3367 | (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX)); | |
3368 | } | |
3369 | ||
3370 | int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq) | |
3371 | { | |
3372 | return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI | | |
3373 | KVM_DEV_IRQ_GUEST_MSI, virq); | |
3374 | } | |
3375 | ||
3376 | int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id) | |
3377 | { | |
3378 | return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI | | |
3379 | KVM_DEV_IRQ_HOST_MSI); | |
3380 | } | |
3381 | ||
3382 | bool kvm_device_msix_supported(KVMState *s) | |
3383 | { | |
3384 | /* The kernel lacks a corresponding KVM_CAP, so we probe by calling | |
3385 | * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */ | |
3386 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT; | |
3387 | } | |
3388 | ||
3389 | int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id, | |
3390 | uint32_t nr_vectors) | |
3391 | { | |
3392 | struct kvm_assigned_msix_nr msix_nr = { | |
3393 | .assigned_dev_id = dev_id, | |
3394 | .entry_nr = nr_vectors, | |
3395 | }; | |
3396 | ||
3397 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr); | |
3398 | } | |
3399 | ||
3400 | int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector, | |
3401 | int virq) | |
3402 | { | |
3403 | struct kvm_assigned_msix_entry msix_entry = { | |
3404 | .assigned_dev_id = dev_id, | |
3405 | .gsi = virq, | |
3406 | .entry = vector, | |
3407 | }; | |
3408 | ||
3409 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry); | |
3410 | } | |
3411 | ||
3412 | int kvm_device_msix_assign(KVMState *s, uint32_t dev_id) | |
3413 | { | |
3414 | return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX | | |
3415 | KVM_DEV_IRQ_GUEST_MSIX, 0); | |
3416 | } | |
3417 | ||
3418 | int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id) | |
3419 | { | |
3420 | return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX | | |
3421 | KVM_DEV_IRQ_HOST_MSIX); | |
3422 | } | |
9e03a040 FB |
3423 | |
3424 | int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, | |
dc9f06ca | 3425 | uint64_t address, uint32_t data, PCIDevice *dev) |
9e03a040 | 3426 | { |
8b5ed7df PX |
3427 | X86IOMMUState *iommu = x86_iommu_get_default(); |
3428 | ||
3429 | if (iommu) { | |
3430 | int ret; | |
3431 | MSIMessage src, dst; | |
3432 | X86IOMMUClass *class = X86_IOMMU_GET_CLASS(iommu); | |
3433 | ||
3434 | src.address = route->u.msi.address_hi; | |
3435 | src.address <<= VTD_MSI_ADDR_HI_SHIFT; | |
3436 | src.address |= route->u.msi.address_lo; | |
3437 | src.data = route->u.msi.data; | |
3438 | ||
3439 | ret = class->int_remap(iommu, &src, &dst, dev ? \ | |
3440 | pci_requester_id(dev) : \ | |
3441 | X86_IOMMU_SID_INVALID); | |
3442 | if (ret) { | |
3443 | trace_kvm_x86_fixup_msi_error(route->gsi); | |
3444 | return 1; | |
3445 | } | |
3446 | ||
3447 | route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT; | |
3448 | route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK; | |
3449 | route->u.msi.data = dst.data; | |
3450 | } | |
3451 | ||
9e03a040 FB |
3452 | return 0; |
3453 | } | |
1850b6b7 | 3454 | |
38d87493 PX |
3455 | typedef struct MSIRouteEntry MSIRouteEntry; |
3456 | ||
3457 | struct MSIRouteEntry { | |
3458 | PCIDevice *dev; /* Device pointer */ | |
3459 | int vector; /* MSI/MSIX vector index */ | |
3460 | int virq; /* Virtual IRQ index */ | |
3461 | QLIST_ENTRY(MSIRouteEntry) list; | |
3462 | }; | |
3463 | ||
3464 | /* List of used GSI routes */ | |
3465 | static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \ | |
3466 | QLIST_HEAD_INITIALIZER(msi_route_list); | |
3467 | ||
e1d4fb2d PX |
3468 | static void kvm_update_msi_routes_all(void *private, bool global, |
3469 | uint32_t index, uint32_t mask) | |
3470 | { | |
3471 | int cnt = 0; | |
3472 | MSIRouteEntry *entry; | |
3473 | MSIMessage msg; | |
3474 | /* TODO: explicit route update */ | |
3475 | QLIST_FOREACH(entry, &msi_route_list, list) { | |
3476 | cnt++; | |
3477 | msg = pci_get_msi_message(entry->dev, entry->vector); | |
3478 | kvm_irqchip_update_msi_route(kvm_state, entry->virq, | |
3479 | msg, entry->dev); | |
3480 | } | |
3f1fea0f | 3481 | kvm_irqchip_commit_routes(kvm_state); |
e1d4fb2d PX |
3482 | trace_kvm_x86_update_msi_routes(cnt); |
3483 | } | |
3484 | ||
38d87493 PX |
3485 | int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, |
3486 | int vector, PCIDevice *dev) | |
3487 | { | |
e1d4fb2d | 3488 | static bool notify_list_inited = false; |
38d87493 PX |
3489 | MSIRouteEntry *entry; |
3490 | ||
3491 | if (!dev) { | |
3492 | /* These are (possibly) IOAPIC routes only used for split | |
3493 | * kernel irqchip mode, while what we are housekeeping are | |
3494 | * PCI devices only. */ | |
3495 | return 0; | |
3496 | } | |
3497 | ||
3498 | entry = g_new0(MSIRouteEntry, 1); | |
3499 | entry->dev = dev; | |
3500 | entry->vector = vector; | |
3501 | entry->virq = route->gsi; | |
3502 | QLIST_INSERT_HEAD(&msi_route_list, entry, list); | |
3503 | ||
3504 | trace_kvm_x86_add_msi_route(route->gsi); | |
e1d4fb2d PX |
3505 | |
3506 | if (!notify_list_inited) { | |
3507 | /* For the first time we do add route, add ourselves into | |
3508 | * IOMMU's IEC notify list if needed. */ | |
3509 | X86IOMMUState *iommu = x86_iommu_get_default(); | |
3510 | if (iommu) { | |
3511 | x86_iommu_iec_register_notifier(iommu, | |
3512 | kvm_update_msi_routes_all, | |
3513 | NULL); | |
3514 | } | |
3515 | notify_list_inited = true; | |
3516 | } | |
38d87493 PX |
3517 | return 0; |
3518 | } | |
3519 | ||
3520 | int kvm_arch_release_virq_post(int virq) | |
3521 | { | |
3522 | MSIRouteEntry *entry, *next; | |
3523 | QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) { | |
3524 | if (entry->virq == virq) { | |
3525 | trace_kvm_x86_remove_msi_route(virq); | |
3526 | QLIST_REMOVE(entry, list); | |
3527 | break; | |
3528 | } | |
3529 | } | |
9e03a040 FB |
3530 | return 0; |
3531 | } | |
1850b6b7 EA |
3532 | |
3533 | int kvm_arch_msi_data_to_gsi(uint32_t data) | |
3534 | { | |
3535 | abort(); | |
3536 | } |