]>
Commit | Line | Data |
---|---|---|
b5ff1b31 | 1 | #include "cpu.h" |
022c62cb | 2 | #include "exec/gdbstub.h" |
7b59220e | 3 | #include "helper.h" |
1de7afc9 | 4 | #include "qemu/host-utils.h" |
78027bb6 | 5 | #include "sysemu/arch_init.h" |
9c17d615 | 6 | #include "sysemu/sysemu.h" |
1de7afc9 | 7 | #include "qemu/bitops.h" |
0b03bdfc | 8 | |
4a501606 PM |
9 | #ifndef CONFIG_USER_ONLY |
10 | static inline int get_phys_addr(CPUARMState *env, uint32_t address, | |
11 | int access_type, int is_user, | |
a8170e5e | 12 | hwaddr *phys_ptr, int *prot, |
4a501606 PM |
13 | target_ulong *page_size); |
14 | #endif | |
15 | ||
0ecb72a5 | 16 | static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) |
56aebc89 PB |
17 | { |
18 | int nregs; | |
19 | ||
20 | /* VFP data registers are always little-endian. */ | |
21 | nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; | |
22 | if (reg < nregs) { | |
23 | stfq_le_p(buf, env->vfp.regs[reg]); | |
24 | return 8; | |
25 | } | |
26 | if (arm_feature(env, ARM_FEATURE_NEON)) { | |
27 | /* Aliases for Q regs. */ | |
28 | nregs += 16; | |
29 | if (reg < nregs) { | |
30 | stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]); | |
31 | stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]); | |
32 | return 16; | |
33 | } | |
34 | } | |
35 | switch (reg - nregs) { | |
36 | case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; | |
37 | case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4; | |
38 | case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; | |
39 | } | |
40 | return 0; | |
41 | } | |
42 | ||
0ecb72a5 | 43 | static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) |
56aebc89 PB |
44 | { |
45 | int nregs; | |
46 | ||
47 | nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; | |
48 | if (reg < nregs) { | |
49 | env->vfp.regs[reg] = ldfq_le_p(buf); | |
50 | return 8; | |
51 | } | |
52 | if (arm_feature(env, ARM_FEATURE_NEON)) { | |
53 | nregs += 16; | |
54 | if (reg < nregs) { | |
55 | env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf); | |
56 | env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8); | |
57 | return 16; | |
58 | } | |
59 | } | |
60 | switch (reg - nregs) { | |
61 | case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; | |
62 | case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4; | |
71b3c3de | 63 | case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; |
56aebc89 PB |
64 | } |
65 | return 0; | |
66 | } | |
67 | ||
d4e6df63 PM |
68 | static int raw_read(CPUARMState *env, const ARMCPRegInfo *ri, |
69 | uint64_t *value) | |
70 | { | |
22d9e1a9 PM |
71 | if (ri->type & ARM_CP_64BIT) { |
72 | *value = CPREG_FIELD64(env, ri); | |
73 | } else { | |
74 | *value = CPREG_FIELD32(env, ri); | |
75 | } | |
d4e6df63 PM |
76 | return 0; |
77 | } | |
78 | ||
79 | static int raw_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
80 | uint64_t value) | |
81 | { | |
22d9e1a9 PM |
82 | if (ri->type & ARM_CP_64BIT) { |
83 | CPREG_FIELD64(env, ri) = value; | |
84 | } else { | |
85 | CPREG_FIELD32(env, ri) = value; | |
86 | } | |
d4e6df63 PM |
87 | return 0; |
88 | } | |
89 | ||
721fae12 PM |
90 | static bool read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, |
91 | uint64_t *v) | |
92 | { | |
93 | /* Raw read of a coprocessor register (as needed for migration, etc) | |
94 | * return true on success, false if the read is impossible for some reason. | |
95 | */ | |
96 | if (ri->type & ARM_CP_CONST) { | |
97 | *v = ri->resetvalue; | |
98 | } else if (ri->raw_readfn) { | |
99 | return (ri->raw_readfn(env, ri, v) == 0); | |
100 | } else if (ri->readfn) { | |
101 | return (ri->readfn(env, ri, v) == 0); | |
102 | } else { | |
103 | if (ri->type & ARM_CP_64BIT) { | |
104 | *v = CPREG_FIELD64(env, ri); | |
105 | } else { | |
106 | *v = CPREG_FIELD32(env, ri); | |
107 | } | |
108 | } | |
109 | return true; | |
110 | } | |
111 | ||
112 | static bool write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, | |
113 | int64_t v) | |
114 | { | |
115 | /* Raw write of a coprocessor register (as needed for migration, etc). | |
116 | * Return true on success, false if the write is impossible for some reason. | |
117 | * Note that constant registers are treated as write-ignored; the | |
118 | * caller should check for success by whether a readback gives the | |
119 | * value written. | |
120 | */ | |
121 | if (ri->type & ARM_CP_CONST) { | |
122 | return true; | |
123 | } else if (ri->raw_writefn) { | |
124 | return (ri->raw_writefn(env, ri, v) == 0); | |
125 | } else if (ri->writefn) { | |
126 | return (ri->writefn(env, ri, v) == 0); | |
127 | } else { | |
128 | if (ri->type & ARM_CP_64BIT) { | |
129 | CPREG_FIELD64(env, ri) = v; | |
130 | } else { | |
131 | CPREG_FIELD32(env, ri) = v; | |
132 | } | |
133 | } | |
134 | return true; | |
135 | } | |
136 | ||
137 | bool write_cpustate_to_list(ARMCPU *cpu) | |
138 | { | |
139 | /* Write the coprocessor state from cpu->env to the (index,value) list. */ | |
140 | int i; | |
141 | bool ok = true; | |
142 | ||
143 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |
144 | uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); | |
145 | const ARMCPRegInfo *ri; | |
146 | uint64_t v; | |
147 | ri = get_arm_cp_reginfo(cpu, regidx); | |
148 | if (!ri) { | |
149 | ok = false; | |
150 | continue; | |
151 | } | |
152 | if (ri->type & ARM_CP_NO_MIGRATE) { | |
153 | continue; | |
154 | } | |
155 | if (!read_raw_cp_reg(&cpu->env, ri, &v)) { | |
156 | ok = false; | |
157 | continue; | |
158 | } | |
159 | cpu->cpreg_values[i] = v; | |
160 | } | |
161 | return ok; | |
162 | } | |
163 | ||
164 | bool write_list_to_cpustate(ARMCPU *cpu) | |
165 | { | |
166 | int i; | |
167 | bool ok = true; | |
168 | ||
169 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |
170 | uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); | |
171 | uint64_t v = cpu->cpreg_values[i]; | |
172 | uint64_t readback; | |
173 | const ARMCPRegInfo *ri; | |
174 | ||
175 | ri = get_arm_cp_reginfo(cpu, regidx); | |
176 | if (!ri) { | |
177 | ok = false; | |
178 | continue; | |
179 | } | |
180 | if (ri->type & ARM_CP_NO_MIGRATE) { | |
181 | continue; | |
182 | } | |
183 | /* Write value and confirm it reads back as written | |
184 | * (to catch read-only registers and partially read-only | |
185 | * registers where the incoming migration value doesn't match) | |
186 | */ | |
187 | if (!write_raw_cp_reg(&cpu->env, ri, v) || | |
188 | !read_raw_cp_reg(&cpu->env, ri, &readback) || | |
189 | readback != v) { | |
190 | ok = false; | |
191 | } | |
192 | } | |
193 | return ok; | |
194 | } | |
195 | ||
196 | static void add_cpreg_to_list(gpointer key, gpointer opaque) | |
197 | { | |
198 | ARMCPU *cpu = opaque; | |
199 | uint64_t regidx; | |
200 | const ARMCPRegInfo *ri; | |
201 | ||
202 | regidx = *(uint32_t *)key; | |
203 | ri = get_arm_cp_reginfo(cpu, regidx); | |
204 | ||
205 | if (!(ri->type & ARM_CP_NO_MIGRATE)) { | |
206 | cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); | |
207 | /* The value array need not be initialized at this point */ | |
208 | cpu->cpreg_array_len++; | |
209 | } | |
210 | } | |
211 | ||
212 | static void count_cpreg(gpointer key, gpointer opaque) | |
213 | { | |
214 | ARMCPU *cpu = opaque; | |
215 | uint64_t regidx; | |
216 | const ARMCPRegInfo *ri; | |
217 | ||
218 | regidx = *(uint32_t *)key; | |
219 | ri = get_arm_cp_reginfo(cpu, regidx); | |
220 | ||
221 | if (!(ri->type & ARM_CP_NO_MIGRATE)) { | |
222 | cpu->cpreg_array_len++; | |
223 | } | |
224 | } | |
225 | ||
226 | static gint cpreg_key_compare(gconstpointer a, gconstpointer b) | |
227 | { | |
cbf239b7 AR |
228 | uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); |
229 | uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); | |
721fae12 | 230 | |
cbf239b7 AR |
231 | if (aidx > bidx) { |
232 | return 1; | |
233 | } | |
234 | if (aidx < bidx) { | |
235 | return -1; | |
236 | } | |
237 | return 0; | |
721fae12 PM |
238 | } |
239 | ||
82a3a118 PM |
240 | static void cpreg_make_keylist(gpointer key, gpointer value, gpointer udata) |
241 | { | |
242 | GList **plist = udata; | |
243 | ||
244 | *plist = g_list_prepend(*plist, key); | |
245 | } | |
246 | ||
721fae12 PM |
247 | void init_cpreg_list(ARMCPU *cpu) |
248 | { | |
249 | /* Initialise the cpreg_tuples[] array based on the cp_regs hash. | |
250 | * Note that we require cpreg_tuples[] to be sorted by key ID. | |
251 | */ | |
82a3a118 | 252 | GList *keys = NULL; |
721fae12 PM |
253 | int arraylen; |
254 | ||
82a3a118 PM |
255 | g_hash_table_foreach(cpu->cp_regs, cpreg_make_keylist, &keys); |
256 | ||
721fae12 PM |
257 | keys = g_list_sort(keys, cpreg_key_compare); |
258 | ||
259 | cpu->cpreg_array_len = 0; | |
260 | ||
261 | g_list_foreach(keys, count_cpreg, cpu); | |
262 | ||
263 | arraylen = cpu->cpreg_array_len; | |
264 | cpu->cpreg_indexes = g_new(uint64_t, arraylen); | |
265 | cpu->cpreg_values = g_new(uint64_t, arraylen); | |
266 | cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); | |
267 | cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); | |
268 | cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; | |
269 | cpu->cpreg_array_len = 0; | |
270 | ||
271 | g_list_foreach(keys, add_cpreg_to_list, cpu); | |
272 | ||
273 | assert(cpu->cpreg_array_len == arraylen); | |
274 | ||
275 | g_list_free(keys); | |
276 | } | |
277 | ||
c983fe6c PM |
278 | static int dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
279 | { | |
280 | env->cp15.c3 = value; | |
281 | tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */ | |
282 | return 0; | |
283 | } | |
284 | ||
08de207b PM |
285 | static int fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
286 | { | |
287 | if (env->cp15.c13_fcse != value) { | |
288 | /* Unlike real hardware the qemu TLB uses virtual addresses, | |
289 | * not modified virtual addresses, so this causes a TLB flush. | |
290 | */ | |
291 | tlb_flush(env, 1); | |
292 | env->cp15.c13_fcse = value; | |
293 | } | |
294 | return 0; | |
295 | } | |
296 | static int contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
297 | uint64_t value) | |
298 | { | |
299 | if (env->cp15.c13_context != value && !arm_feature(env, ARM_FEATURE_MPU)) { | |
300 | /* For VMSA (when not using the LPAE long descriptor page table | |
301 | * format) this register includes the ASID, so do a TLB flush. | |
302 | * For PMSA it is purely a process ID and no action is needed. | |
303 | */ | |
304 | tlb_flush(env, 1); | |
305 | } | |
306 | env->cp15.c13_context = value; | |
307 | return 0; | |
308 | } | |
309 | ||
d929823f PM |
310 | static int tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, |
311 | uint64_t value) | |
312 | { | |
313 | /* Invalidate all (TLBIALL) */ | |
314 | tlb_flush(env, 1); | |
315 | return 0; | |
316 | } | |
317 | ||
318 | static int tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
319 | uint64_t value) | |
320 | { | |
321 | /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ | |
322 | tlb_flush_page(env, value & TARGET_PAGE_MASK); | |
323 | return 0; | |
324 | } | |
325 | ||
326 | static int tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
327 | uint64_t value) | |
328 | { | |
329 | /* Invalidate by ASID (TLBIASID) */ | |
330 | tlb_flush(env, value == 0); | |
331 | return 0; | |
332 | } | |
333 | ||
334 | static int tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
335 | uint64_t value) | |
336 | { | |
337 | /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ | |
338 | tlb_flush_page(env, value & TARGET_PAGE_MASK); | |
339 | return 0; | |
340 | } | |
341 | ||
e9aa6c21 PM |
342 | static const ARMCPRegInfo cp_reginfo[] = { |
343 | /* DBGDIDR: just RAZ. In particular this means the "debug architecture | |
344 | * version" bits will read as a reserved value, which should cause | |
345 | * Linux to not try to use the debug hardware. | |
346 | */ | |
347 | { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, | |
348 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
c983fe6c PM |
349 | /* MMU Domain access control / MPU write buffer control */ |
350 | { .name = "DACR", .cp = 15, | |
351 | .crn = 3, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | |
352 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3), | |
d4e6df63 | 353 | .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, }, |
08de207b PM |
354 | { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0, |
355 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse), | |
d4e6df63 | 356 | .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, |
08de207b PM |
357 | { .name = "CONTEXTIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 1, |
358 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse), | |
d4e6df63 | 359 | .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, |
4fdd17dd PM |
360 | /* ??? This covers not just the impdef TLB lockdown registers but also |
361 | * some v7VMSA registers relating to TEX remap, so it is overly broad. | |
362 | */ | |
363 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY, | |
364 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, | |
d929823f PM |
365 | /* MMU TLB control. Note that the wildcarding means we cover not just |
366 | * the unified TLB ops but also the dside/iside/inner-shareable variants. | |
367 | */ | |
368 | { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, | |
d4e6df63 PM |
369 | .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, |
370 | .type = ARM_CP_NO_MIGRATE }, | |
d929823f | 371 | { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, |
d4e6df63 PM |
372 | .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, |
373 | .type = ARM_CP_NO_MIGRATE }, | |
d929823f | 374 | { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, |
d4e6df63 PM |
375 | .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, |
376 | .type = ARM_CP_NO_MIGRATE }, | |
d929823f | 377 | { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, |
d4e6df63 PM |
378 | .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, |
379 | .type = ARM_CP_NO_MIGRATE }, | |
c4804214 PM |
380 | /* Cache maintenance ops; some of this space may be overridden later. */ |
381 | { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, | |
382 | .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, | |
383 | .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, | |
e9aa6c21 PM |
384 | REGINFO_SENTINEL |
385 | }; | |
386 | ||
7d57f408 PM |
387 | static const ARMCPRegInfo not_v6_cp_reginfo[] = { |
388 | /* Not all pre-v6 cores implemented this WFI, so this is slightly | |
389 | * over-broad. | |
390 | */ | |
391 | { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, | |
392 | .access = PL1_W, .type = ARM_CP_WFI }, | |
393 | REGINFO_SENTINEL | |
394 | }; | |
395 | ||
396 | static const ARMCPRegInfo not_v7_cp_reginfo[] = { | |
397 | /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which | |
398 | * is UNPREDICTABLE; we choose to NOP as most implementations do). | |
399 | */ | |
400 | { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, | |
401 | .access = PL1_W, .type = ARM_CP_WFI }, | |
34f90529 PM |
402 | /* L1 cache lockdown. Not architectural in v6 and earlier but in practice |
403 | * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and | |
404 | * OMAPCP will override this space. | |
405 | */ | |
406 | { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, | |
407 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), | |
408 | .resetvalue = 0 }, | |
409 | { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, | |
410 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), | |
411 | .resetvalue = 0 }, | |
776d4e5c PM |
412 | /* v6 doesn't have the cache ID registers but Linux reads them anyway */ |
413 | { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, | |
d4e6df63 PM |
414 | .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE, |
415 | .resetvalue = 0 }, | |
7d57f408 PM |
416 | REGINFO_SENTINEL |
417 | }; | |
418 | ||
2771db27 PM |
419 | static int cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
420 | { | |
421 | if (env->cp15.c1_coproc != value) { | |
422 | env->cp15.c1_coproc = value; | |
423 | /* ??? Is this safe when called from within a TB? */ | |
424 | tb_flush(env); | |
425 | } | |
426 | return 0; | |
427 | } | |
428 | ||
7d57f408 PM |
429 | static const ARMCPRegInfo v6_cp_reginfo[] = { |
430 | /* prefetch by MVA in v6, NOP in v7 */ | |
431 | { .name = "MVA_prefetch", | |
432 | .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, | |
433 | .access = PL1_W, .type = ARM_CP_NOP }, | |
434 | { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, | |
435 | .access = PL0_W, .type = ARM_CP_NOP }, | |
091fd17c | 436 | { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, |
7d57f408 | 437 | .access = PL0_W, .type = ARM_CP_NOP }, |
091fd17c | 438 | { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, |
7d57f408 | 439 | .access = PL0_W, .type = ARM_CP_NOP }, |
06d76f31 PM |
440 | { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, |
441 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_insn), | |
442 | .resetvalue = 0, }, | |
443 | /* Watchpoint Fault Address Register : should actually only be present | |
444 | * for 1136, 1176, 11MPCore. | |
445 | */ | |
446 | { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, | |
447 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, | |
2771db27 PM |
448 | { .name = "CPACR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, |
449 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc), | |
450 | .resetvalue = 0, .writefn = cpacr_write }, | |
7d57f408 PM |
451 | REGINFO_SENTINEL |
452 | }; | |
453 | ||
d4e6df63 | 454 | |
200ac0ef PM |
455 | static int pmreg_read(CPUARMState *env, const ARMCPRegInfo *ri, |
456 | uint64_t *value) | |
457 | { | |
458 | /* Generic performance monitor register read function for where | |
459 | * user access may be allowed by PMUSERENR. | |
460 | */ | |
461 | if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) { | |
462 | return EXCP_UDEF; | |
463 | } | |
464 | *value = CPREG_FIELD32(env, ri); | |
465 | return 0; | |
466 | } | |
467 | ||
468 | static int pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
469 | uint64_t value) | |
470 | { | |
471 | if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) { | |
472 | return EXCP_UDEF; | |
473 | } | |
474 | /* only the DP, X, D and E bits are writable */ | |
475 | env->cp15.c9_pmcr &= ~0x39; | |
476 | env->cp15.c9_pmcr |= (value & 0x39); | |
477 | return 0; | |
478 | } | |
479 | ||
480 | static int pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
481 | uint64_t value) | |
482 | { | |
483 | if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) { | |
484 | return EXCP_UDEF; | |
485 | } | |
486 | value &= (1 << 31); | |
487 | env->cp15.c9_pmcnten |= value; | |
488 | return 0; | |
489 | } | |
490 | ||
491 | static int pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
492 | uint64_t value) | |
493 | { | |
494 | if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) { | |
495 | return EXCP_UDEF; | |
496 | } | |
497 | value &= (1 << 31); | |
498 | env->cp15.c9_pmcnten &= ~value; | |
499 | return 0; | |
500 | } | |
501 | ||
502 | static int pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
503 | uint64_t value) | |
504 | { | |
505 | if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) { | |
506 | return EXCP_UDEF; | |
507 | } | |
508 | env->cp15.c9_pmovsr &= ~value; | |
509 | return 0; | |
510 | } | |
511 | ||
512 | static int pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
513 | uint64_t value) | |
514 | { | |
515 | if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) { | |
516 | return EXCP_UDEF; | |
517 | } | |
518 | env->cp15.c9_pmxevtyper = value & 0xff; | |
519 | return 0; | |
520 | } | |
521 | ||
522 | static int pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
523 | uint64_t value) | |
524 | { | |
525 | env->cp15.c9_pmuserenr = value & 1; | |
526 | return 0; | |
527 | } | |
528 | ||
529 | static int pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
530 | uint64_t value) | |
531 | { | |
532 | /* We have no event counters so only the C bit can be changed */ | |
533 | value &= (1 << 31); | |
534 | env->cp15.c9_pminten |= value; | |
535 | return 0; | |
536 | } | |
537 | ||
538 | static int pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
539 | uint64_t value) | |
540 | { | |
541 | value &= (1 << 31); | |
542 | env->cp15.c9_pminten &= ~value; | |
543 | return 0; | |
544 | } | |
545 | ||
8641136c NR |
546 | static int vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
547 | uint64_t value) | |
548 | { | |
549 | env->cp15.c12_vbar = value & ~0x1Ful; | |
550 | return 0; | |
551 | } | |
552 | ||
776d4e5c PM |
553 | static int ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri, |
554 | uint64_t *value) | |
555 | { | |
556 | ARMCPU *cpu = arm_env_get_cpu(env); | |
557 | *value = cpu->ccsidr[env->cp15.c0_cssel]; | |
558 | return 0; | |
559 | } | |
560 | ||
561 | static int csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
562 | uint64_t value) | |
563 | { | |
564 | env->cp15.c0_cssel = value & 0xf; | |
565 | return 0; | |
566 | } | |
567 | ||
e9aa6c21 PM |
568 | static const ARMCPRegInfo v7_cp_reginfo[] = { |
569 | /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped | |
570 | * debug components | |
571 | */ | |
572 | { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, | |
573 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
091fd17c | 574 | { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
e9aa6c21 | 575 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
7d57f408 PM |
576 | /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ |
577 | { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, | |
578 | .access = PL1_W, .type = ARM_CP_NOP }, | |
200ac0ef PM |
579 | /* Performance monitors are implementation defined in v7, |
580 | * but with an ARM recommended set of registers, which we | |
581 | * follow (although we don't actually implement any counters) | |
582 | * | |
583 | * Performance registers fall into three categories: | |
584 | * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) | |
585 | * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) | |
586 | * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) | |
587 | * For the cases controlled by PMUSERENR we must set .access to PL0_RW | |
588 | * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. | |
589 | */ | |
590 | { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, | |
591 | .access = PL0_RW, .resetvalue = 0, | |
592 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), | |
d4e6df63 PM |
593 | .readfn = pmreg_read, .writefn = pmcntenset_write, |
594 | .raw_readfn = raw_read, .raw_writefn = raw_write }, | |
200ac0ef PM |
595 | { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, |
596 | .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), | |
d4e6df63 PM |
597 | .readfn = pmreg_read, .writefn = pmcntenclr_write, |
598 | .type = ARM_CP_NO_MIGRATE }, | |
200ac0ef PM |
599 | { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, |
600 | .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), | |
d4e6df63 PM |
601 | .readfn = pmreg_read, .writefn = pmovsr_write, |
602 | .raw_readfn = raw_read, .raw_writefn = raw_write }, | |
200ac0ef PM |
603 | /* Unimplemented so WI. Strictly speaking write accesses in PL0 should |
604 | * respect PMUSERENR. | |
605 | */ | |
606 | { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, | |
607 | .access = PL0_W, .type = ARM_CP_NOP }, | |
608 | /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE. | |
609 | * We choose to RAZ/WI. XXX should respect PMUSERENR. | |
610 | */ | |
611 | { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, | |
612 | .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
613 | /* Unimplemented, RAZ/WI. XXX PMUSERENR */ | |
614 | { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, | |
615 | .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
616 | { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, | |
617 | .access = PL0_RW, | |
618 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper), | |
d4e6df63 PM |
619 | .readfn = pmreg_read, .writefn = pmxevtyper_write, |
620 | .raw_readfn = raw_read, .raw_writefn = raw_write }, | |
200ac0ef PM |
621 | /* Unimplemented, RAZ/WI. XXX PMUSERENR */ |
622 | { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, | |
623 | .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
624 | { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, | |
625 | .access = PL0_R | PL1_RW, | |
626 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), | |
627 | .resetvalue = 0, | |
d4e6df63 | 628 | .writefn = pmuserenr_write, .raw_writefn = raw_write }, |
200ac0ef PM |
629 | { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, |
630 | .access = PL1_RW, | |
631 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), | |
632 | .resetvalue = 0, | |
d4e6df63 | 633 | .writefn = pmintenset_write, .raw_writefn = raw_write }, |
200ac0ef | 634 | { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, |
d4e6df63 | 635 | .access = PL1_RW, .type = ARM_CP_NO_MIGRATE, |
200ac0ef | 636 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), |
d4e6df63 | 637 | .resetvalue = 0, .writefn = pmintenclr_write, }, |
8641136c NR |
638 | { .name = "VBAR", .cp = 15, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, |
639 | .access = PL1_RW, .writefn = vbar_write, | |
640 | .fieldoffset = offsetof(CPUARMState, cp15.c12_vbar), | |
641 | .resetvalue = 0 }, | |
2771db27 PM |
642 | { .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0, |
643 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_scr), | |
644 | .resetvalue = 0, }, | |
776d4e5c | 645 | { .name = "CCSIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, |
d4e6df63 | 646 | .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_MIGRATE }, |
776d4e5c PM |
647 | { .name = "CSSELR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, |
648 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel), | |
649 | .writefn = csselr_write, .resetvalue = 0 }, | |
650 | /* Auxiliary ID register: this actually has an IMPDEF value but for now | |
651 | * just RAZ for all cores: | |
652 | */ | |
653 | { .name = "AIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 7, | |
654 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
e9aa6c21 PM |
655 | REGINFO_SENTINEL |
656 | }; | |
657 | ||
c326b979 PM |
658 | static int teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
659 | { | |
660 | value &= 1; | |
661 | env->teecr = value; | |
662 | return 0; | |
663 | } | |
664 | ||
665 | static int teehbr_read(CPUARMState *env, const ARMCPRegInfo *ri, | |
666 | uint64_t *value) | |
667 | { | |
668 | /* This is a helper function because the user access rights | |
669 | * depend on the value of the TEECR. | |
670 | */ | |
671 | if (arm_current_pl(env) == 0 && (env->teecr & 1)) { | |
672 | return EXCP_UDEF; | |
673 | } | |
674 | *value = env->teehbr; | |
675 | return 0; | |
676 | } | |
677 | ||
678 | static int teehbr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
679 | uint64_t value) | |
680 | { | |
681 | if (arm_current_pl(env) == 0 && (env->teecr & 1)) { | |
682 | return EXCP_UDEF; | |
683 | } | |
684 | env->teehbr = value; | |
685 | return 0; | |
686 | } | |
687 | ||
688 | static const ARMCPRegInfo t2ee_cp_reginfo[] = { | |
689 | { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, | |
690 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), | |
691 | .resetvalue = 0, | |
692 | .writefn = teecr_write }, | |
693 | { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, | |
694 | .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), | |
d4e6df63 | 695 | .resetvalue = 0, .raw_readfn = raw_read, .raw_writefn = raw_write, |
c326b979 PM |
696 | .readfn = teehbr_read, .writefn = teehbr_write }, |
697 | REGINFO_SENTINEL | |
698 | }; | |
699 | ||
4d31c596 PM |
700 | static const ARMCPRegInfo v6k_cp_reginfo[] = { |
701 | { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, | |
702 | .access = PL0_RW, | |
703 | .fieldoffset = offsetof(CPUARMState, cp15.c13_tls1), | |
704 | .resetvalue = 0 }, | |
705 | { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, | |
706 | .access = PL0_R|PL1_W, | |
707 | .fieldoffset = offsetof(CPUARMState, cp15.c13_tls2), | |
708 | .resetvalue = 0 }, | |
709 | { .name = "TPIDRPRW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 4, | |
710 | .access = PL1_RW, | |
711 | .fieldoffset = offsetof(CPUARMState, cp15.c13_tls3), | |
712 | .resetvalue = 0 }, | |
713 | REGINFO_SENTINEL | |
714 | }; | |
715 | ||
55d284af PM |
716 | #ifndef CONFIG_USER_ONLY |
717 | ||
718 | static uint64_t gt_get_countervalue(CPUARMState *env) | |
719 | { | |
bc72ad67 | 720 | return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE; |
55d284af PM |
721 | } |
722 | ||
723 | static void gt_recalc_timer(ARMCPU *cpu, int timeridx) | |
724 | { | |
725 | ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; | |
726 | ||
727 | if (gt->ctl & 1) { | |
728 | /* Timer enabled: calculate and set current ISTATUS, irq, and | |
729 | * reset timer to when ISTATUS next has to change | |
730 | */ | |
731 | uint64_t count = gt_get_countervalue(&cpu->env); | |
732 | /* Note that this must be unsigned 64 bit arithmetic: */ | |
733 | int istatus = count >= gt->cval; | |
734 | uint64_t nexttick; | |
735 | ||
736 | gt->ctl = deposit32(gt->ctl, 2, 1, istatus); | |
737 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], | |
738 | (istatus && !(gt->ctl & 2))); | |
739 | if (istatus) { | |
740 | /* Next transition is when count rolls back over to zero */ | |
741 | nexttick = UINT64_MAX; | |
742 | } else { | |
743 | /* Next transition is when we hit cval */ | |
744 | nexttick = gt->cval; | |
745 | } | |
746 | /* Note that the desired next expiry time might be beyond the | |
747 | * signed-64-bit range of a QEMUTimer -- in this case we just | |
748 | * set the timer for as far in the future as possible. When the | |
749 | * timer expires we will reset the timer for any remaining period. | |
750 | */ | |
751 | if (nexttick > INT64_MAX / GTIMER_SCALE) { | |
752 | nexttick = INT64_MAX / GTIMER_SCALE; | |
753 | } | |
bc72ad67 | 754 | timer_mod(cpu->gt_timer[timeridx], nexttick); |
55d284af PM |
755 | } else { |
756 | /* Timer disabled: ISTATUS and timer output always clear */ | |
757 | gt->ctl &= ~4; | |
758 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); | |
bc72ad67 | 759 | timer_del(cpu->gt_timer[timeridx]); |
55d284af PM |
760 | } |
761 | } | |
762 | ||
763 | static int gt_cntfrq_read(CPUARMState *env, const ARMCPRegInfo *ri, | |
764 | uint64_t *value) | |
765 | { | |
766 | /* Not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */ | |
767 | if (arm_current_pl(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) { | |
768 | return EXCP_UDEF; | |
769 | } | |
770 | *value = env->cp15.c14_cntfrq; | |
771 | return 0; | |
772 | } | |
773 | ||
774 | static void gt_cnt_reset(CPUARMState *env, const ARMCPRegInfo *ri) | |
775 | { | |
776 | ARMCPU *cpu = arm_env_get_cpu(env); | |
777 | int timeridx = ri->opc1 & 1; | |
778 | ||
bc72ad67 | 779 | timer_del(cpu->gt_timer[timeridx]); |
55d284af PM |
780 | } |
781 | ||
782 | static int gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri, | |
783 | uint64_t *value) | |
784 | { | |
785 | int timeridx = ri->opc1 & 1; | |
786 | ||
787 | if (arm_current_pl(env) == 0 && | |
788 | !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { | |
789 | return EXCP_UDEF; | |
790 | } | |
791 | *value = gt_get_countervalue(env); | |
792 | return 0; | |
793 | } | |
794 | ||
795 | static int gt_cval_read(CPUARMState *env, const ARMCPRegInfo *ri, | |
796 | uint64_t *value) | |
797 | { | |
798 | int timeridx = ri->opc1 & 1; | |
799 | ||
800 | if (arm_current_pl(env) == 0 && | |
801 | !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { | |
802 | return EXCP_UDEF; | |
803 | } | |
804 | *value = env->cp15.c14_timer[timeridx].cval; | |
805 | return 0; | |
806 | } | |
807 | ||
808 | static int gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
809 | uint64_t value) | |
810 | { | |
811 | int timeridx = ri->opc1 & 1; | |
812 | ||
813 | env->cp15.c14_timer[timeridx].cval = value; | |
814 | gt_recalc_timer(arm_env_get_cpu(env), timeridx); | |
815 | return 0; | |
816 | } | |
817 | static int gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, | |
818 | uint64_t *value) | |
819 | { | |
820 | int timeridx = ri->crm & 1; | |
821 | ||
822 | if (arm_current_pl(env) == 0 && | |
823 | !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { | |
824 | return EXCP_UDEF; | |
825 | } | |
826 | *value = (uint32_t)(env->cp15.c14_timer[timeridx].cval - | |
827 | gt_get_countervalue(env)); | |
828 | return 0; | |
829 | } | |
830 | ||
831 | static int gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
832 | uint64_t value) | |
833 | { | |
834 | int timeridx = ri->crm & 1; | |
835 | ||
836 | env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) + | |
837 | + sextract64(value, 0, 32); | |
838 | gt_recalc_timer(arm_env_get_cpu(env), timeridx); | |
839 | return 0; | |
840 | } | |
841 | ||
842 | static int gt_ctl_read(CPUARMState *env, const ARMCPRegInfo *ri, | |
843 | uint64_t *value) | |
844 | { | |
845 | int timeridx = ri->crm & 1; | |
846 | ||
847 | if (arm_current_pl(env) == 0 && | |
848 | !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { | |
849 | return EXCP_UDEF; | |
850 | } | |
851 | *value = env->cp15.c14_timer[timeridx].ctl; | |
852 | return 0; | |
853 | } | |
854 | ||
855 | static int gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
856 | uint64_t value) | |
857 | { | |
858 | ARMCPU *cpu = arm_env_get_cpu(env); | |
859 | int timeridx = ri->crm & 1; | |
860 | uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; | |
861 | ||
862 | env->cp15.c14_timer[timeridx].ctl = value & 3; | |
863 | if ((oldval ^ value) & 1) { | |
864 | /* Enable toggled */ | |
865 | gt_recalc_timer(cpu, timeridx); | |
866 | } else if ((oldval & value) & 2) { | |
867 | /* IMASK toggled: don't need to recalculate, | |
868 | * just set the interrupt line based on ISTATUS | |
869 | */ | |
870 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], | |
871 | (oldval & 4) && (value & 2)); | |
872 | } | |
873 | return 0; | |
874 | } | |
875 | ||
876 | void arm_gt_ptimer_cb(void *opaque) | |
877 | { | |
878 | ARMCPU *cpu = opaque; | |
879 | ||
880 | gt_recalc_timer(cpu, GTIMER_PHYS); | |
881 | } | |
882 | ||
883 | void arm_gt_vtimer_cb(void *opaque) | |
884 | { | |
885 | ARMCPU *cpu = opaque; | |
886 | ||
887 | gt_recalc_timer(cpu, GTIMER_VIRT); | |
888 | } | |
889 | ||
890 | static const ARMCPRegInfo generic_timer_cp_reginfo[] = { | |
891 | /* Note that CNTFRQ is purely reads-as-written for the benefit | |
892 | * of software; writing it doesn't actually change the timer frequency. | |
893 | * Our reset value matches the fixed frequency we implement the timer at. | |
894 | */ | |
895 | { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, | |
896 | .access = PL1_RW | PL0_R, | |
897 | .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), | |
898 | .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE, | |
899 | .readfn = gt_cntfrq_read, .raw_readfn = raw_read, | |
900 | }, | |
901 | /* overall control: mostly access permissions */ | |
902 | { .name = "CNTKCTL", .cp = 15, .crn = 14, .crm = 1, .opc1 = 0, .opc2 = 0, | |
903 | .access = PL1_RW, | |
904 | .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), | |
905 | .resetvalue = 0, | |
906 | }, | |
907 | /* per-timer control */ | |
908 | { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, | |
909 | .type = ARM_CP_IO, .access = PL1_RW | PL0_R, | |
910 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), | |
911 | .resetvalue = 0, | |
912 | .readfn = gt_ctl_read, .writefn = gt_ctl_write, | |
913 | .raw_readfn = raw_read, .raw_writefn = raw_write, | |
914 | }, | |
915 | { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, | |
916 | .type = ARM_CP_IO, .access = PL1_RW | PL0_R, | |
917 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), | |
918 | .resetvalue = 0, | |
919 | .readfn = gt_ctl_read, .writefn = gt_ctl_write, | |
920 | .raw_readfn = raw_read, .raw_writefn = raw_write, | |
921 | }, | |
922 | /* TimerValue views: a 32 bit downcounting view of the underlying state */ | |
923 | { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, | |
924 | .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R, | |
925 | .readfn = gt_tval_read, .writefn = gt_tval_write, | |
926 | }, | |
927 | { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, | |
928 | .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R, | |
929 | .readfn = gt_tval_read, .writefn = gt_tval_write, | |
930 | }, | |
931 | /* The counter itself */ | |
932 | { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, | |
933 | .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO, | |
934 | .readfn = gt_cnt_read, .resetfn = gt_cnt_reset, | |
935 | }, | |
936 | { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, | |
937 | .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO, | |
938 | .readfn = gt_cnt_read, .resetfn = gt_cnt_reset, | |
939 | }, | |
940 | /* Comparison value, indicating when the timer goes off */ | |
941 | { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, | |
942 | .access = PL1_RW | PL0_R, | |
943 | .type = ARM_CP_64BIT | ARM_CP_IO, | |
944 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), | |
945 | .resetvalue = 0, | |
946 | .readfn = gt_cval_read, .writefn = gt_cval_write, | |
947 | .raw_readfn = raw_read, .raw_writefn = raw_write, | |
948 | }, | |
949 | { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, | |
950 | .access = PL1_RW | PL0_R, | |
951 | .type = ARM_CP_64BIT | ARM_CP_IO, | |
952 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), | |
953 | .resetvalue = 0, | |
954 | .readfn = gt_cval_read, .writefn = gt_cval_write, | |
955 | .raw_readfn = raw_read, .raw_writefn = raw_write, | |
956 | }, | |
957 | REGINFO_SENTINEL | |
958 | }; | |
959 | ||
960 | #else | |
961 | /* In user-mode none of the generic timer registers are accessible, | |
bc72ad67 | 962 | * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs, |
55d284af PM |
963 | * so instead just don't register any of them. |
964 | */ | |
6cc7a3ae | 965 | static const ARMCPRegInfo generic_timer_cp_reginfo[] = { |
6cc7a3ae PM |
966 | REGINFO_SENTINEL |
967 | }; | |
968 | ||
55d284af PM |
969 | #endif |
970 | ||
4a501606 PM |
971 | static int par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
972 | { | |
891a2fe7 PM |
973 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
974 | env->cp15.c7_par = value; | |
975 | } else if (arm_feature(env, ARM_FEATURE_V7)) { | |
4a501606 PM |
976 | env->cp15.c7_par = value & 0xfffff6ff; |
977 | } else { | |
978 | env->cp15.c7_par = value & 0xfffff1ff; | |
979 | } | |
980 | return 0; | |
981 | } | |
982 | ||
983 | #ifndef CONFIG_USER_ONLY | |
984 | /* get_phys_addr() isn't present for user-mode-only targets */ | |
702a9357 PM |
985 | |
986 | /* Return true if extended addresses are enabled, ie this is an | |
987 | * LPAE implementation and we are using the long-descriptor translation | |
988 | * table format because the TTBCR EAE bit is set. | |
989 | */ | |
990 | static inline bool extended_addresses_enabled(CPUARMState *env) | |
991 | { | |
992 | return arm_feature(env, ARM_FEATURE_LPAE) | |
78dbbbe4 | 993 | && (env->cp15.c2_control & (1U << 31)); |
702a9357 PM |
994 | } |
995 | ||
4a501606 PM |
996 | static int ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
997 | { | |
a8170e5e | 998 | hwaddr phys_addr; |
4a501606 PM |
999 | target_ulong page_size; |
1000 | int prot; | |
1001 | int ret, is_user = ri->opc2 & 2; | |
1002 | int access_type = ri->opc2 & 1; | |
1003 | ||
1004 | if (ri->opc2 & 4) { | |
1005 | /* Other states are only available with TrustZone */ | |
1006 | return EXCP_UDEF; | |
1007 | } | |
1008 | ret = get_phys_addr(env, value, access_type, is_user, | |
1009 | &phys_addr, &prot, &page_size); | |
702a9357 PM |
1010 | if (extended_addresses_enabled(env)) { |
1011 | /* ret is a DFSR/IFSR value for the long descriptor | |
1012 | * translation table format, but with WnR always clear. | |
1013 | * Convert it to a 64-bit PAR. | |
1014 | */ | |
1015 | uint64_t par64 = (1 << 11); /* LPAE bit always set */ | |
1016 | if (ret == 0) { | |
1017 | par64 |= phys_addr & ~0xfffULL; | |
1018 | /* We don't set the ATTR or SH fields in the PAR. */ | |
4a501606 | 1019 | } else { |
702a9357 PM |
1020 | par64 |= 1; /* F */ |
1021 | par64 |= (ret & 0x3f) << 1; /* FS */ | |
1022 | /* Note that S2WLK and FSTAGE are always zero, because we don't | |
1023 | * implement virtualization and therefore there can't be a stage 2 | |
1024 | * fault. | |
1025 | */ | |
4a501606 | 1026 | } |
702a9357 PM |
1027 | env->cp15.c7_par = par64; |
1028 | env->cp15.c7_par_hi = par64 >> 32; | |
4a501606 | 1029 | } else { |
702a9357 PM |
1030 | /* ret is a DFSR/IFSR value for the short descriptor |
1031 | * translation table format (with WnR always clear). | |
1032 | * Convert it to a 32-bit PAR. | |
1033 | */ | |
1034 | if (ret == 0) { | |
1035 | /* We do not set any attribute bits in the PAR */ | |
1036 | if (page_size == (1 << 24) | |
1037 | && arm_feature(env, ARM_FEATURE_V7)) { | |
1038 | env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1; | |
1039 | } else { | |
1040 | env->cp15.c7_par = phys_addr & 0xfffff000; | |
1041 | } | |
1042 | } else { | |
1043 | env->cp15.c7_par = ((ret & (10 << 1)) >> 5) | | |
1044 | ((ret & (12 << 1)) >> 6) | | |
1045 | ((ret & 0xf) << 1) | 1; | |
1046 | } | |
1047 | env->cp15.c7_par_hi = 0; | |
4a501606 PM |
1048 | } |
1049 | return 0; | |
1050 | } | |
1051 | #endif | |
1052 | ||
1053 | static const ARMCPRegInfo vapa_cp_reginfo[] = { | |
1054 | { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, | |
1055 | .access = PL1_RW, .resetvalue = 0, | |
1056 | .fieldoffset = offsetof(CPUARMState, cp15.c7_par), | |
1057 | .writefn = par_write }, | |
1058 | #ifndef CONFIG_USER_ONLY | |
1059 | { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, | |
d4e6df63 | 1060 | .access = PL1_W, .writefn = ats_write, .type = ARM_CP_NO_MIGRATE }, |
4a501606 PM |
1061 | #endif |
1062 | REGINFO_SENTINEL | |
1063 | }; | |
1064 | ||
18032bec PM |
1065 | /* Return basic MPU access permission bits. */ |
1066 | static uint32_t simple_mpu_ap_bits(uint32_t val) | |
1067 | { | |
1068 | uint32_t ret; | |
1069 | uint32_t mask; | |
1070 | int i; | |
1071 | ret = 0; | |
1072 | mask = 3; | |
1073 | for (i = 0; i < 16; i += 2) { | |
1074 | ret |= (val >> i) & mask; | |
1075 | mask <<= 2; | |
1076 | } | |
1077 | return ret; | |
1078 | } | |
1079 | ||
1080 | /* Pad basic MPU access permission bits to extended format. */ | |
1081 | static uint32_t extended_mpu_ap_bits(uint32_t val) | |
1082 | { | |
1083 | uint32_t ret; | |
1084 | uint32_t mask; | |
1085 | int i; | |
1086 | ret = 0; | |
1087 | mask = 3; | |
1088 | for (i = 0; i < 16; i += 2) { | |
1089 | ret |= (val & mask) << i; | |
1090 | mask <<= 2; | |
1091 | } | |
1092 | return ret; | |
1093 | } | |
1094 | ||
1095 | static int pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1096 | uint64_t value) | |
1097 | { | |
1098 | env->cp15.c5_data = extended_mpu_ap_bits(value); | |
1099 | return 0; | |
1100 | } | |
1101 | ||
1102 | static int pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri, | |
1103 | uint64_t *value) | |
1104 | { | |
1105 | *value = simple_mpu_ap_bits(env->cp15.c5_data); | |
1106 | return 0; | |
1107 | } | |
1108 | ||
1109 | static int pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1110 | uint64_t value) | |
1111 | { | |
1112 | env->cp15.c5_insn = extended_mpu_ap_bits(value); | |
1113 | return 0; | |
1114 | } | |
1115 | ||
1116 | static int pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri, | |
1117 | uint64_t *value) | |
1118 | { | |
1119 | *value = simple_mpu_ap_bits(env->cp15.c5_insn); | |
1120 | return 0; | |
1121 | } | |
1122 | ||
06d76f31 PM |
1123 | static int arm946_prbs_read(CPUARMState *env, const ARMCPRegInfo *ri, |
1124 | uint64_t *value) | |
1125 | { | |
599d64f6 | 1126 | if (ri->crm >= 8) { |
06d76f31 PM |
1127 | return EXCP_UDEF; |
1128 | } | |
1129 | *value = env->cp15.c6_region[ri->crm]; | |
1130 | return 0; | |
1131 | } | |
1132 | ||
1133 | static int arm946_prbs_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1134 | uint64_t value) | |
1135 | { | |
599d64f6 | 1136 | if (ri->crm >= 8) { |
06d76f31 PM |
1137 | return EXCP_UDEF; |
1138 | } | |
1139 | env->cp15.c6_region[ri->crm] = value; | |
1140 | return 0; | |
1141 | } | |
1142 | ||
18032bec PM |
1143 | static const ARMCPRegInfo pmsav5_cp_reginfo[] = { |
1144 | { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, | |
d4e6df63 | 1145 | .access = PL1_RW, .type = ARM_CP_NO_MIGRATE, |
18032bec PM |
1146 | .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, |
1147 | .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, | |
1148 | { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, | |
d4e6df63 | 1149 | .access = PL1_RW, .type = ARM_CP_NO_MIGRATE, |
18032bec PM |
1150 | .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, |
1151 | .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, | |
1152 | { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, | |
1153 | .access = PL1_RW, | |
1154 | .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, }, | |
1155 | { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, | |
1156 | .access = PL1_RW, | |
1157 | .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, }, | |
ecce5c3c PM |
1158 | { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
1159 | .access = PL1_RW, | |
1160 | .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, | |
1161 | { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, | |
1162 | .access = PL1_RW, | |
1163 | .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, | |
06d76f31 PM |
1164 | /* Protection region base and size registers */ |
1165 | { .name = "946_PRBS", .cp = 15, .crn = 6, .crm = CP_ANY, .opc1 = 0, | |
1166 | .opc2 = CP_ANY, .access = PL1_RW, | |
1167 | .readfn = arm946_prbs_read, .writefn = arm946_prbs_write, }, | |
18032bec PM |
1168 | REGINFO_SENTINEL |
1169 | }; | |
1170 | ||
d4e6df63 PM |
1171 | static int vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1172 | uint64_t value) | |
ecce5c3c | 1173 | { |
2ebcebe2 PM |
1174 | int maskshift = extract32(value, 0, 3); |
1175 | ||
e42c4db3 PM |
1176 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
1177 | value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); | |
e42c4db3 PM |
1178 | } else { |
1179 | value &= 7; | |
1180 | } | |
1181 | /* Note that we always calculate c2_mask and c2_base_mask, but | |
1182 | * they are only used for short-descriptor tables (ie if EAE is 0); | |
1183 | * for long-descriptor tables the TTBCR fields are used differently | |
1184 | * and the c2_mask and c2_base_mask values are meaningless. | |
1185 | */ | |
ecce5c3c | 1186 | env->cp15.c2_control = value; |
2ebcebe2 PM |
1187 | env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> maskshift); |
1188 | env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> maskshift); | |
ecce5c3c PM |
1189 | return 0; |
1190 | } | |
1191 | ||
d4e6df63 PM |
1192 | static int vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1193 | uint64_t value) | |
1194 | { | |
1195 | if (arm_feature(env, ARM_FEATURE_LPAE)) { | |
1196 | /* With LPAE the TTBCR could result in a change of ASID | |
1197 | * via the TTBCR.A1 bit, so do a TLB flush. | |
1198 | */ | |
1199 | tlb_flush(env, 1); | |
1200 | } | |
1201 | return vmsa_ttbcr_raw_write(env, ri, value); | |
1202 | } | |
1203 | ||
ecce5c3c PM |
1204 | static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
1205 | { | |
1206 | env->cp15.c2_base_mask = 0xffffc000u; | |
1207 | env->cp15.c2_control = 0; | |
1208 | env->cp15.c2_mask = 0; | |
1209 | } | |
1210 | ||
18032bec PM |
1211 | static const ARMCPRegInfo vmsa_cp_reginfo[] = { |
1212 | { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, | |
1213 | .access = PL1_RW, | |
1214 | .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, }, | |
1215 | { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, | |
1216 | .access = PL1_RW, | |
1217 | .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, }, | |
ecce5c3c PM |
1218 | { .name = "TTBR0", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
1219 | .access = PL1_RW, | |
1220 | .fieldoffset = offsetof(CPUARMState, cp15.c2_base0), .resetvalue = 0, }, | |
1221 | { .name = "TTBR1", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, | |
1222 | .access = PL1_RW, | |
81a60ada | 1223 | .fieldoffset = offsetof(CPUARMState, cp15.c2_base1), .resetvalue = 0, }, |
ecce5c3c PM |
1224 | { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, |
1225 | .access = PL1_RW, .writefn = vmsa_ttbcr_write, | |
d4e6df63 | 1226 | .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, |
ecce5c3c | 1227 | .fieldoffset = offsetof(CPUARMState, cp15.c2_control) }, |
06d76f31 PM |
1228 | { .name = "DFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, |
1229 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_data), | |
1230 | .resetvalue = 0, }, | |
18032bec PM |
1231 | REGINFO_SENTINEL |
1232 | }; | |
1233 | ||
1047b9d7 PM |
1234 | static int omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1235 | uint64_t value) | |
1236 | { | |
1237 | env->cp15.c15_ticonfig = value & 0xe7; | |
1238 | /* The OS_TYPE bit in this register changes the reported CPUID! */ | |
1239 | env->cp15.c0_cpuid = (value & (1 << 5)) ? | |
1240 | ARM_CPUID_TI915T : ARM_CPUID_TI925T; | |
1241 | return 0; | |
1242 | } | |
1243 | ||
1244 | static int omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1245 | uint64_t value) | |
1246 | { | |
1247 | env->cp15.c15_threadid = value & 0xffff; | |
1248 | return 0; | |
1249 | } | |
1250 | ||
1251 | static int omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1252 | uint64_t value) | |
1253 | { | |
1254 | /* Wait-for-interrupt (deprecated) */ | |
c3affe56 | 1255 | cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT); |
1047b9d7 PM |
1256 | return 0; |
1257 | } | |
1258 | ||
c4804214 PM |
1259 | static int omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1260 | uint64_t value) | |
1261 | { | |
1262 | /* On OMAP there are registers indicating the max/min index of dcache lines | |
1263 | * containing a dirty line; cache flush operations have to reset these. | |
1264 | */ | |
1265 | env->cp15.c15_i_max = 0x000; | |
1266 | env->cp15.c15_i_min = 0xff0; | |
1267 | return 0; | |
1268 | } | |
1269 | ||
18032bec PM |
1270 | static const ARMCPRegInfo omap_cp_reginfo[] = { |
1271 | { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, | |
1272 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, | |
1273 | .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, }, | |
1047b9d7 PM |
1274 | { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, |
1275 | .access = PL1_RW, .type = ARM_CP_NOP }, | |
1276 | { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, | |
1277 | .access = PL1_RW, | |
1278 | .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, | |
1279 | .writefn = omap_ticonfig_write }, | |
1280 | { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, | |
1281 | .access = PL1_RW, | |
1282 | .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, | |
1283 | { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, | |
1284 | .access = PL1_RW, .resetvalue = 0xff0, | |
1285 | .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, | |
1286 | { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, | |
1287 | .access = PL1_RW, | |
1288 | .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, | |
1289 | .writefn = omap_threadid_write }, | |
1290 | { .name = "TI925T_STATUS", .cp = 15, .crn = 15, | |
1291 | .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, | |
d4e6df63 | 1292 | .type = ARM_CP_NO_MIGRATE, |
1047b9d7 PM |
1293 | .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, |
1294 | /* TODO: Peripheral port remap register: | |
1295 | * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller | |
1296 | * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), | |
1297 | * when MMU is off. | |
1298 | */ | |
c4804214 | 1299 | { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, |
d4e6df63 PM |
1300 | .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, |
1301 | .type = ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE, | |
c4804214 | 1302 | .writefn = omap_cachemaint_write }, |
34f90529 PM |
1303 | { .name = "C9", .cp = 15, .crn = 9, |
1304 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, | |
1305 | .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, | |
1047b9d7 PM |
1306 | REGINFO_SENTINEL |
1307 | }; | |
1308 | ||
1309 | static int xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1310 | uint64_t value) | |
1311 | { | |
1312 | value &= 0x3fff; | |
1313 | if (env->cp15.c15_cpar != value) { | |
1314 | /* Changes cp0 to cp13 behavior, so needs a TB flush. */ | |
1315 | tb_flush(env); | |
1316 | env->cp15.c15_cpar = value; | |
1317 | } | |
1318 | return 0; | |
1319 | } | |
1320 | ||
1321 | static const ARMCPRegInfo xscale_cp_reginfo[] = { | |
1322 | { .name = "XSCALE_CPAR", | |
1323 | .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, | |
1324 | .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, | |
1325 | .writefn = xscale_cpar_write, }, | |
2771db27 PM |
1326 | { .name = "XSCALE_AUXCR", |
1327 | .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, | |
1328 | .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), | |
1329 | .resetvalue = 0, }, | |
1047b9d7 PM |
1330 | REGINFO_SENTINEL |
1331 | }; | |
1332 | ||
1333 | static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { | |
1334 | /* RAZ/WI the whole crn=15 space, when we don't have a more specific | |
1335 | * implementation of this implementation-defined space. | |
1336 | * Ideally this should eventually disappear in favour of actually | |
1337 | * implementing the correct behaviour for all cores. | |
1338 | */ | |
1339 | { .name = "C15_IMPDEF", .cp = 15, .crn = 15, | |
1340 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | |
d4e6df63 PM |
1341 | .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE, |
1342 | .resetvalue = 0 }, | |
18032bec PM |
1343 | REGINFO_SENTINEL |
1344 | }; | |
1345 | ||
c4804214 PM |
1346 | static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { |
1347 | /* Cache status: RAZ because we have no cache so it's always clean */ | |
1348 | { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, | |
d4e6df63 PM |
1349 | .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE, |
1350 | .resetvalue = 0 }, | |
c4804214 PM |
1351 | REGINFO_SENTINEL |
1352 | }; | |
1353 | ||
1354 | static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { | |
1355 | /* We never have a a block transfer operation in progress */ | |
1356 | { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, | |
d4e6df63 PM |
1357 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE, |
1358 | .resetvalue = 0 }, | |
30b05bba PM |
1359 | /* The cache ops themselves: these all NOP for QEMU */ |
1360 | { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, | |
1361 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
1362 | { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, | |
1363 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
1364 | { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, | |
1365 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
1366 | { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, | |
1367 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
1368 | { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, | |
1369 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
1370 | { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, | |
1371 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
c4804214 PM |
1372 | REGINFO_SENTINEL |
1373 | }; | |
1374 | ||
1375 | static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { | |
1376 | /* The cache test-and-clean instructions always return (1 << 30) | |
1377 | * to indicate that there are no dirty cache lines. | |
1378 | */ | |
1379 | { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, | |
d4e6df63 PM |
1380 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE, |
1381 | .resetvalue = (1 << 30) }, | |
c4804214 | 1382 | { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, |
d4e6df63 PM |
1383 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE, |
1384 | .resetvalue = (1 << 30) }, | |
c4804214 PM |
1385 | REGINFO_SENTINEL |
1386 | }; | |
1387 | ||
34f90529 PM |
1388 | static const ARMCPRegInfo strongarm_cp_reginfo[] = { |
1389 | /* Ignore ReadBuffer accesses */ | |
1390 | { .name = "C9_READBUFFER", .cp = 15, .crn = 9, | |
1391 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | |
d4e6df63 PM |
1392 | .access = PL1_RW, .resetvalue = 0, |
1393 | .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE }, | |
34f90529 PM |
1394 | REGINFO_SENTINEL |
1395 | }; | |
1396 | ||
81bdde9d PM |
1397 | static int mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri, |
1398 | uint64_t *value) | |
1399 | { | |
55e5c285 AF |
1400 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
1401 | uint32_t mpidr = cs->cpu_index; | |
81bdde9d PM |
1402 | /* We don't support setting cluster ID ([8..11]) |
1403 | * so these bits always RAZ. | |
1404 | */ | |
1405 | if (arm_feature(env, ARM_FEATURE_V7MP)) { | |
78dbbbe4 | 1406 | mpidr |= (1U << 31); |
81bdde9d PM |
1407 | /* Cores which are uniprocessor (non-coherent) |
1408 | * but still implement the MP extensions set | |
1409 | * bit 30. (For instance, A9UP.) However we do | |
1410 | * not currently model any of those cores. | |
1411 | */ | |
1412 | } | |
1413 | *value = mpidr; | |
1414 | return 0; | |
1415 | } | |
1416 | ||
1417 | static const ARMCPRegInfo mpidr_cp_reginfo[] = { | |
1418 | { .name = "MPIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, | |
d4e6df63 | 1419 | .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_MIGRATE }, |
81bdde9d PM |
1420 | REGINFO_SENTINEL |
1421 | }; | |
1422 | ||
891a2fe7 PM |
1423 | static int par64_read(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value) |
1424 | { | |
1425 | *value = ((uint64_t)env->cp15.c7_par_hi << 32) | env->cp15.c7_par; | |
1426 | return 0; | |
1427 | } | |
1428 | ||
1429 | static int par64_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) | |
1430 | { | |
1431 | env->cp15.c7_par_hi = value >> 32; | |
1432 | env->cp15.c7_par = value; | |
1433 | return 0; | |
1434 | } | |
1435 | ||
1436 | static void par64_reset(CPUARMState *env, const ARMCPRegInfo *ri) | |
1437 | { | |
1438 | env->cp15.c7_par_hi = 0; | |
1439 | env->cp15.c7_par = 0; | |
1440 | } | |
1441 | ||
1442 | static int ttbr064_read(CPUARMState *env, const ARMCPRegInfo *ri, | |
1443 | uint64_t *value) | |
1444 | { | |
1445 | *value = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0; | |
1446 | return 0; | |
1447 | } | |
1448 | ||
d4e6df63 PM |
1449 | static int ttbr064_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1450 | uint64_t value) | |
891a2fe7 PM |
1451 | { |
1452 | env->cp15.c2_base0_hi = value >> 32; | |
1453 | env->cp15.c2_base0 = value; | |
d4e6df63 PM |
1454 | return 0; |
1455 | } | |
1456 | ||
1457 | static int ttbr064_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1458 | uint64_t value) | |
1459 | { | |
891a2fe7 PM |
1460 | /* Writes to the 64 bit format TTBRs may change the ASID */ |
1461 | tlb_flush(env, 1); | |
d4e6df63 | 1462 | return ttbr064_raw_write(env, ri, value); |
891a2fe7 PM |
1463 | } |
1464 | ||
1465 | static void ttbr064_reset(CPUARMState *env, const ARMCPRegInfo *ri) | |
1466 | { | |
1467 | env->cp15.c2_base0_hi = 0; | |
1468 | env->cp15.c2_base0 = 0; | |
1469 | } | |
1470 | ||
1471 | static int ttbr164_read(CPUARMState *env, const ARMCPRegInfo *ri, | |
1472 | uint64_t *value) | |
1473 | { | |
1474 | *value = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1; | |
1475 | return 0; | |
1476 | } | |
1477 | ||
1478 | static int ttbr164_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1479 | uint64_t value) | |
1480 | { | |
1481 | env->cp15.c2_base1_hi = value >> 32; | |
1482 | env->cp15.c2_base1 = value; | |
1483 | return 0; | |
1484 | } | |
1485 | ||
1486 | static void ttbr164_reset(CPUARMState *env, const ARMCPRegInfo *ri) | |
1487 | { | |
1488 | env->cp15.c2_base1_hi = 0; | |
1489 | env->cp15.c2_base1 = 0; | |
1490 | } | |
1491 | ||
7ac681cf | 1492 | static const ARMCPRegInfo lpae_cp_reginfo[] = { |
b90372ad | 1493 | /* NOP AMAIR0/1: the override is because these clash with the rather |
7ac681cf PM |
1494 | * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo. |
1495 | */ | |
1496 | { .name = "AMAIR0", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, | |
1497 | .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE, | |
1498 | .resetvalue = 0 }, | |
1499 | { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, | |
1500 | .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE, | |
1501 | .resetvalue = 0 }, | |
f9fc619a PM |
1502 | /* 64 bit access versions of the (dummy) debug registers */ |
1503 | { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, | |
1504 | .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, | |
1505 | { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, | |
1506 | .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, | |
891a2fe7 PM |
1507 | { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, |
1508 | .access = PL1_RW, .type = ARM_CP_64BIT, | |
1509 | .readfn = par64_read, .writefn = par64_write, .resetfn = par64_reset }, | |
1510 | { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, | |
1511 | .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr064_read, | |
d4e6df63 PM |
1512 | .writefn = ttbr064_write, .raw_writefn = ttbr064_raw_write, |
1513 | .resetfn = ttbr064_reset }, | |
891a2fe7 PM |
1514 | { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, |
1515 | .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr164_read, | |
1516 | .writefn = ttbr164_write, .resetfn = ttbr164_reset }, | |
7ac681cf PM |
1517 | REGINFO_SENTINEL |
1518 | }; | |
1519 | ||
2771db27 PM |
1520 | static int sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
1521 | { | |
1522 | env->cp15.c1_sys = value; | |
1523 | /* ??? Lots of these bits are not implemented. */ | |
1524 | /* This may enable/disable the MMU, so do a TLB flush. */ | |
1525 | tlb_flush(env, 1); | |
1526 | return 0; | |
1527 | } | |
1528 | ||
2ceb98c0 PM |
1529 | void register_cp_regs_for_features(ARMCPU *cpu) |
1530 | { | |
1531 | /* Register all the coprocessor registers based on feature bits */ | |
1532 | CPUARMState *env = &cpu->env; | |
1533 | if (arm_feature(env, ARM_FEATURE_M)) { | |
1534 | /* M profile has no coprocessor registers */ | |
1535 | return; | |
1536 | } | |
1537 | ||
e9aa6c21 | 1538 | define_arm_cp_regs(cpu, cp_reginfo); |
7d57f408 | 1539 | if (arm_feature(env, ARM_FEATURE_V6)) { |
8515a092 PM |
1540 | /* The ID registers all have impdef reset values */ |
1541 | ARMCPRegInfo v6_idregs[] = { | |
1542 | { .name = "ID_PFR0", .cp = 15, .crn = 0, .crm = 1, | |
1543 | .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST, | |
1544 | .resetvalue = cpu->id_pfr0 }, | |
1545 | { .name = "ID_PFR1", .cp = 15, .crn = 0, .crm = 1, | |
1546 | .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST, | |
1547 | .resetvalue = cpu->id_pfr1 }, | |
1548 | { .name = "ID_DFR0", .cp = 15, .crn = 0, .crm = 1, | |
1549 | .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST, | |
1550 | .resetvalue = cpu->id_dfr0 }, | |
1551 | { .name = "ID_AFR0", .cp = 15, .crn = 0, .crm = 1, | |
1552 | .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST, | |
1553 | .resetvalue = cpu->id_afr0 }, | |
1554 | { .name = "ID_MMFR0", .cp = 15, .crn = 0, .crm = 1, | |
1555 | .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST, | |
1556 | .resetvalue = cpu->id_mmfr0 }, | |
1557 | { .name = "ID_MMFR1", .cp = 15, .crn = 0, .crm = 1, | |
1558 | .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST, | |
1559 | .resetvalue = cpu->id_mmfr1 }, | |
1560 | { .name = "ID_MMFR2", .cp = 15, .crn = 0, .crm = 1, | |
1561 | .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST, | |
1562 | .resetvalue = cpu->id_mmfr2 }, | |
1563 | { .name = "ID_MMFR3", .cp = 15, .crn = 0, .crm = 1, | |
1564 | .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST, | |
1565 | .resetvalue = cpu->id_mmfr3 }, | |
1566 | { .name = "ID_ISAR0", .cp = 15, .crn = 0, .crm = 2, | |
1567 | .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST, | |
1568 | .resetvalue = cpu->id_isar0 }, | |
1569 | { .name = "ID_ISAR1", .cp = 15, .crn = 0, .crm = 2, | |
1570 | .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST, | |
1571 | .resetvalue = cpu->id_isar1 }, | |
1572 | { .name = "ID_ISAR2", .cp = 15, .crn = 0, .crm = 2, | |
1573 | .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST, | |
1574 | .resetvalue = cpu->id_isar2 }, | |
1575 | { .name = "ID_ISAR3", .cp = 15, .crn = 0, .crm = 2, | |
1576 | .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST, | |
1577 | .resetvalue = cpu->id_isar3 }, | |
1578 | { .name = "ID_ISAR4", .cp = 15, .crn = 0, .crm = 2, | |
1579 | .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST, | |
1580 | .resetvalue = cpu->id_isar4 }, | |
1581 | { .name = "ID_ISAR5", .cp = 15, .crn = 0, .crm = 2, | |
1582 | .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST, | |
1583 | .resetvalue = cpu->id_isar5 }, | |
1584 | /* 6..7 are as yet unallocated and must RAZ */ | |
1585 | { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2, | |
1586 | .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST, | |
1587 | .resetvalue = 0 }, | |
1588 | { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2, | |
1589 | .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST, | |
1590 | .resetvalue = 0 }, | |
1591 | REGINFO_SENTINEL | |
1592 | }; | |
1593 | define_arm_cp_regs(cpu, v6_idregs); | |
7d57f408 PM |
1594 | define_arm_cp_regs(cpu, v6_cp_reginfo); |
1595 | } else { | |
1596 | define_arm_cp_regs(cpu, not_v6_cp_reginfo); | |
1597 | } | |
4d31c596 PM |
1598 | if (arm_feature(env, ARM_FEATURE_V6K)) { |
1599 | define_arm_cp_regs(cpu, v6k_cp_reginfo); | |
1600 | } | |
e9aa6c21 | 1601 | if (arm_feature(env, ARM_FEATURE_V7)) { |
200ac0ef PM |
1602 | /* v7 performance monitor control register: same implementor |
1603 | * field as main ID register, and we implement no event counters. | |
1604 | */ | |
1605 | ARMCPRegInfo pmcr = { | |
1606 | .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, | |
1607 | .access = PL0_RW, .resetvalue = cpu->midr & 0xff000000, | |
1608 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), | |
d4e6df63 PM |
1609 | .readfn = pmreg_read, .writefn = pmcr_write, |
1610 | .raw_readfn = raw_read, .raw_writefn = raw_write, | |
200ac0ef | 1611 | }; |
776d4e5c PM |
1612 | ARMCPRegInfo clidr = { |
1613 | .name = "CLIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, | |
1614 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr | |
1615 | }; | |
200ac0ef | 1616 | define_one_arm_cp_reg(cpu, &pmcr); |
776d4e5c | 1617 | define_one_arm_cp_reg(cpu, &clidr); |
e9aa6c21 | 1618 | define_arm_cp_regs(cpu, v7_cp_reginfo); |
7d57f408 PM |
1619 | } else { |
1620 | define_arm_cp_regs(cpu, not_v7_cp_reginfo); | |
e9aa6c21 | 1621 | } |
18032bec PM |
1622 | if (arm_feature(env, ARM_FEATURE_MPU)) { |
1623 | /* These are the MPU registers prior to PMSAv6. Any new | |
1624 | * PMSA core later than the ARM946 will require that we | |
1625 | * implement the PMSAv6 or PMSAv7 registers, which are | |
1626 | * completely different. | |
1627 | */ | |
1628 | assert(!arm_feature(env, ARM_FEATURE_V6)); | |
1629 | define_arm_cp_regs(cpu, pmsav5_cp_reginfo); | |
1630 | } else { | |
1631 | define_arm_cp_regs(cpu, vmsa_cp_reginfo); | |
1632 | } | |
c326b979 PM |
1633 | if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { |
1634 | define_arm_cp_regs(cpu, t2ee_cp_reginfo); | |
1635 | } | |
6cc7a3ae PM |
1636 | if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { |
1637 | define_arm_cp_regs(cpu, generic_timer_cp_reginfo); | |
1638 | } | |
4a501606 PM |
1639 | if (arm_feature(env, ARM_FEATURE_VAPA)) { |
1640 | define_arm_cp_regs(cpu, vapa_cp_reginfo); | |
1641 | } | |
c4804214 PM |
1642 | if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { |
1643 | define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); | |
1644 | } | |
1645 | if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { | |
1646 | define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); | |
1647 | } | |
1648 | if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { | |
1649 | define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); | |
1650 | } | |
18032bec PM |
1651 | if (arm_feature(env, ARM_FEATURE_OMAPCP)) { |
1652 | define_arm_cp_regs(cpu, omap_cp_reginfo); | |
1653 | } | |
34f90529 PM |
1654 | if (arm_feature(env, ARM_FEATURE_STRONGARM)) { |
1655 | define_arm_cp_regs(cpu, strongarm_cp_reginfo); | |
1656 | } | |
1047b9d7 PM |
1657 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { |
1658 | define_arm_cp_regs(cpu, xscale_cp_reginfo); | |
1659 | } | |
1660 | if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { | |
1661 | define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); | |
1662 | } | |
7ac681cf PM |
1663 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
1664 | define_arm_cp_regs(cpu, lpae_cp_reginfo); | |
1665 | } | |
7884849c PM |
1666 | /* Slightly awkwardly, the OMAP and StrongARM cores need all of |
1667 | * cp15 crn=0 to be writes-ignored, whereas for other cores they should | |
1668 | * be read-only (ie write causes UNDEF exception). | |
1669 | */ | |
1670 | { | |
1671 | ARMCPRegInfo id_cp_reginfo[] = { | |
1672 | /* Note that the MIDR isn't a simple constant register because | |
1673 | * of the TI925 behaviour where writes to another register can | |
1674 | * cause the MIDR value to change. | |
97ce8d61 PC |
1675 | * |
1676 | * Unimplemented registers in the c15 0 0 0 space default to | |
1677 | * MIDR. Define MIDR first as this entire space, then CTR, TCMTR | |
1678 | * and friends override accordingly. | |
7884849c PM |
1679 | */ |
1680 | { .name = "MIDR", | |
97ce8d61 | 1681 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, |
7884849c | 1682 | .access = PL1_R, .resetvalue = cpu->midr, |
d4e6df63 | 1683 | .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, |
97ce8d61 PC |
1684 | .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), |
1685 | .type = ARM_CP_OVERRIDE }, | |
7884849c PM |
1686 | { .name = "CTR", |
1687 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, | |
1688 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, | |
1689 | { .name = "TCMTR", | |
1690 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, | |
1691 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
1692 | { .name = "TLBTR", | |
1693 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, | |
1694 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
1695 | /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ | |
1696 | { .name = "DUMMY", | |
1697 | .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, | |
1698 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
1699 | { .name = "DUMMY", | |
1700 | .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, | |
1701 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
1702 | { .name = "DUMMY", | |
1703 | .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, | |
1704 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
1705 | { .name = "DUMMY", | |
1706 | .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, | |
1707 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
1708 | { .name = "DUMMY", | |
1709 | .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, | |
1710 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
1711 | REGINFO_SENTINEL | |
1712 | }; | |
1713 | ARMCPRegInfo crn0_wi_reginfo = { | |
1714 | .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, | |
1715 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, | |
1716 | .type = ARM_CP_NOP | ARM_CP_OVERRIDE | |
1717 | }; | |
1718 | if (arm_feature(env, ARM_FEATURE_OMAPCP) || | |
1719 | arm_feature(env, ARM_FEATURE_STRONGARM)) { | |
1720 | ARMCPRegInfo *r; | |
1721 | /* Register the blanket "writes ignored" value first to cover the | |
a703eda1 PC |
1722 | * whole space. Then update the specific ID registers to allow write |
1723 | * access, so that they ignore writes rather than causing them to | |
1724 | * UNDEF. | |
7884849c PM |
1725 | */ |
1726 | define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); | |
1727 | for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { | |
1728 | r->access = PL1_RW; | |
7884849c | 1729 | } |
7884849c | 1730 | } |
a703eda1 | 1731 | define_arm_cp_regs(cpu, id_cp_reginfo); |
7884849c PM |
1732 | } |
1733 | ||
97ce8d61 PC |
1734 | if (arm_feature(env, ARM_FEATURE_MPIDR)) { |
1735 | define_arm_cp_regs(cpu, mpidr_cp_reginfo); | |
1736 | } | |
1737 | ||
2771db27 PM |
1738 | if (arm_feature(env, ARM_FEATURE_AUXCR)) { |
1739 | ARMCPRegInfo auxcr = { | |
1740 | .name = "AUXCR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, | |
1741 | .access = PL1_RW, .type = ARM_CP_CONST, | |
1742 | .resetvalue = cpu->reset_auxcr | |
1743 | }; | |
1744 | define_one_arm_cp_reg(cpu, &auxcr); | |
1745 | } | |
1746 | ||
1747 | /* Generic registers whose values depend on the implementation */ | |
1748 | { | |
1749 | ARMCPRegInfo sctlr = { | |
1750 | .name = "SCTLR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, | |
1751 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_sys), | |
d4e6df63 PM |
1752 | .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, |
1753 | .raw_writefn = raw_write, | |
2771db27 PM |
1754 | }; |
1755 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { | |
1756 | /* Normally we would always end the TB on an SCTLR write, but Linux | |
1757 | * arch/arm/mach-pxa/sleep.S expects two instructions following | |
1758 | * an MMU enable to execute from cache. Imitate this behaviour. | |
1759 | */ | |
1760 | sctlr.type |= ARM_CP_SUPPRESS_TB_END; | |
1761 | } | |
1762 | define_one_arm_cp_reg(cpu, &sctlr); | |
1763 | } | |
2ceb98c0 PM |
1764 | } |
1765 | ||
778c3a06 | 1766 | ARMCPU *cpu_arm_init(const char *cpu_model) |
40f137e1 | 1767 | { |
dec9c2d4 | 1768 | ARMCPU *cpu; |
5900d6b2 | 1769 | ObjectClass *oc; |
40f137e1 | 1770 | |
5900d6b2 AF |
1771 | oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model); |
1772 | if (!oc) { | |
aaed909a | 1773 | return NULL; |
777dc784 | 1774 | } |
5900d6b2 | 1775 | cpu = ARM_CPU(object_new(object_class_get_name(oc))); |
14969266 AF |
1776 | |
1777 | /* TODO this should be set centrally, once possible */ | |
1778 | object_property_set_bool(OBJECT(cpu), true, "realized", NULL); | |
777dc784 | 1779 | |
14969266 AF |
1780 | return cpu; |
1781 | } | |
1782 | ||
1783 | void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) | |
1784 | { | |
22169d41 | 1785 | CPUState *cs = CPU(cpu); |
14969266 AF |
1786 | CPUARMState *env = &cpu->env; |
1787 | ||
56aebc89 | 1788 | if (arm_feature(env, ARM_FEATURE_NEON)) { |
22169d41 | 1789 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
56aebc89 PB |
1790 | 51, "arm-neon.xml", 0); |
1791 | } else if (arm_feature(env, ARM_FEATURE_VFP3)) { | |
22169d41 | 1792 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
56aebc89 PB |
1793 | 35, "arm-vfp3.xml", 0); |
1794 | } else if (arm_feature(env, ARM_FEATURE_VFP)) { | |
22169d41 | 1795 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
56aebc89 PB |
1796 | 19, "arm-vfp.xml", 0); |
1797 | } | |
40f137e1 PB |
1798 | } |
1799 | ||
777dc784 PM |
1800 | /* Sort alphabetically by type name, except for "any". */ |
1801 | static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) | |
5adb4839 | 1802 | { |
777dc784 PM |
1803 | ObjectClass *class_a = (ObjectClass *)a; |
1804 | ObjectClass *class_b = (ObjectClass *)b; | |
1805 | const char *name_a, *name_b; | |
5adb4839 | 1806 | |
777dc784 PM |
1807 | name_a = object_class_get_name(class_a); |
1808 | name_b = object_class_get_name(class_b); | |
51492fd1 | 1809 | if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { |
777dc784 | 1810 | return 1; |
51492fd1 | 1811 | } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { |
777dc784 PM |
1812 | return -1; |
1813 | } else { | |
1814 | return strcmp(name_a, name_b); | |
5adb4839 PB |
1815 | } |
1816 | } | |
1817 | ||
777dc784 | 1818 | static void arm_cpu_list_entry(gpointer data, gpointer user_data) |
40f137e1 | 1819 | { |
777dc784 | 1820 | ObjectClass *oc = data; |
92a31361 | 1821 | CPUListState *s = user_data; |
51492fd1 AF |
1822 | const char *typename; |
1823 | char *name; | |
3371d272 | 1824 | |
51492fd1 AF |
1825 | typename = object_class_get_name(oc); |
1826 | name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); | |
777dc784 | 1827 | (*s->cpu_fprintf)(s->file, " %s\n", |
51492fd1 AF |
1828 | name); |
1829 | g_free(name); | |
777dc784 PM |
1830 | } |
1831 | ||
1832 | void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf) | |
1833 | { | |
92a31361 | 1834 | CPUListState s = { |
777dc784 PM |
1835 | .file = f, |
1836 | .cpu_fprintf = cpu_fprintf, | |
1837 | }; | |
1838 | GSList *list; | |
1839 | ||
1840 | list = object_class_get_list(TYPE_ARM_CPU, false); | |
1841 | list = g_slist_sort(list, arm_cpu_list_compare); | |
1842 | (*cpu_fprintf)(f, "Available CPUs:\n"); | |
1843 | g_slist_foreach(list, arm_cpu_list_entry, &s); | |
1844 | g_slist_free(list); | |
a96c0514 PM |
1845 | #ifdef CONFIG_KVM |
1846 | /* The 'host' CPU type is dynamically registered only if KVM is | |
1847 | * enabled, so we have to special-case it here: | |
1848 | */ | |
1849 | (*cpu_fprintf)(f, " host (only available in KVM mode)\n"); | |
1850 | #endif | |
40f137e1 PB |
1851 | } |
1852 | ||
78027bb6 CR |
1853 | static void arm_cpu_add_definition(gpointer data, gpointer user_data) |
1854 | { | |
1855 | ObjectClass *oc = data; | |
1856 | CpuDefinitionInfoList **cpu_list = user_data; | |
1857 | CpuDefinitionInfoList *entry; | |
1858 | CpuDefinitionInfo *info; | |
1859 | const char *typename; | |
1860 | ||
1861 | typename = object_class_get_name(oc); | |
1862 | info = g_malloc0(sizeof(*info)); | |
1863 | info->name = g_strndup(typename, | |
1864 | strlen(typename) - strlen("-" TYPE_ARM_CPU)); | |
1865 | ||
1866 | entry = g_malloc0(sizeof(*entry)); | |
1867 | entry->value = info; | |
1868 | entry->next = *cpu_list; | |
1869 | *cpu_list = entry; | |
1870 | } | |
1871 | ||
1872 | CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp) | |
1873 | { | |
1874 | CpuDefinitionInfoList *cpu_list = NULL; | |
1875 | GSList *list; | |
1876 | ||
1877 | list = object_class_get_list(TYPE_ARM_CPU, false); | |
1878 | g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); | |
1879 | g_slist_free(list); | |
1880 | ||
1881 | return cpu_list; | |
1882 | } | |
1883 | ||
4b6a83fb PM |
1884 | void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, |
1885 | const ARMCPRegInfo *r, void *opaque) | |
1886 | { | |
1887 | /* Define implementations of coprocessor registers. | |
1888 | * We store these in a hashtable because typically | |
1889 | * there are less than 150 registers in a space which | |
1890 | * is 16*16*16*8*8 = 262144 in size. | |
1891 | * Wildcarding is supported for the crm, opc1 and opc2 fields. | |
1892 | * If a register is defined twice then the second definition is | |
1893 | * used, so this can be used to define some generic registers and | |
1894 | * then override them with implementation specific variations. | |
1895 | * At least one of the original and the second definition should | |
1896 | * include ARM_CP_OVERRIDE in its type bits -- this is just a guard | |
1897 | * against accidental use. | |
1898 | */ | |
1899 | int crm, opc1, opc2; | |
1900 | int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; | |
1901 | int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; | |
1902 | int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; | |
1903 | int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; | |
1904 | int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; | |
1905 | int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; | |
1906 | /* 64 bit registers have only CRm and Opc1 fields */ | |
1907 | assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); | |
1908 | /* Check that the register definition has enough info to handle | |
1909 | * reads and writes if they are permitted. | |
1910 | */ | |
1911 | if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { | |
1912 | if (r->access & PL3_R) { | |
1913 | assert(r->fieldoffset || r->readfn); | |
1914 | } | |
1915 | if (r->access & PL3_W) { | |
1916 | assert(r->fieldoffset || r->writefn); | |
1917 | } | |
1918 | } | |
1919 | /* Bad type field probably means missing sentinel at end of reg list */ | |
1920 | assert(cptype_valid(r->type)); | |
1921 | for (crm = crmmin; crm <= crmmax; crm++) { | |
1922 | for (opc1 = opc1min; opc1 <= opc1max; opc1++) { | |
1923 | for (opc2 = opc2min; opc2 <= opc2max; opc2++) { | |
1924 | uint32_t *key = g_new(uint32_t, 1); | |
1925 | ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); | |
1926 | int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; | |
1927 | *key = ENCODE_CP_REG(r->cp, is64, r->crn, crm, opc1, opc2); | |
204a9c43 PC |
1928 | if (opaque) { |
1929 | r2->opaque = opaque; | |
1930 | } | |
4b6a83fb PM |
1931 | /* Make sure reginfo passed to helpers for wildcarded regs |
1932 | * has the correct crm/opc1/opc2 for this reg, not CP_ANY: | |
1933 | */ | |
1934 | r2->crm = crm; | |
1935 | r2->opc1 = opc1; | |
1936 | r2->opc2 = opc2; | |
7023ec7e PM |
1937 | /* By convention, for wildcarded registers only the first |
1938 | * entry is used for migration; the others are marked as | |
1939 | * NO_MIGRATE so we don't try to transfer the register | |
1940 | * multiple times. Special registers (ie NOP/WFI) are | |
1941 | * never migratable. | |
1942 | */ | |
1943 | if ((r->type & ARM_CP_SPECIAL) || | |
1944 | ((r->crm == CP_ANY) && crm != 0) || | |
1945 | ((r->opc1 == CP_ANY) && opc1 != 0) || | |
1946 | ((r->opc2 == CP_ANY) && opc2 != 0)) { | |
1947 | r2->type |= ARM_CP_NO_MIGRATE; | |
1948 | } | |
1949 | ||
4b6a83fb PM |
1950 | /* Overriding of an existing definition must be explicitly |
1951 | * requested. | |
1952 | */ | |
1953 | if (!(r->type & ARM_CP_OVERRIDE)) { | |
1954 | ARMCPRegInfo *oldreg; | |
1955 | oldreg = g_hash_table_lookup(cpu->cp_regs, key); | |
1956 | if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { | |
1957 | fprintf(stderr, "Register redefined: cp=%d %d bit " | |
1958 | "crn=%d crm=%d opc1=%d opc2=%d, " | |
1959 | "was %s, now %s\n", r2->cp, 32 + 32 * is64, | |
1960 | r2->crn, r2->crm, r2->opc1, r2->opc2, | |
1961 | oldreg->name, r2->name); | |
dfc6f865 | 1962 | g_assert_not_reached(); |
4b6a83fb PM |
1963 | } |
1964 | } | |
1965 | g_hash_table_insert(cpu->cp_regs, key, r2); | |
1966 | } | |
1967 | } | |
1968 | } | |
1969 | } | |
1970 | ||
1971 | void define_arm_cp_regs_with_opaque(ARMCPU *cpu, | |
1972 | const ARMCPRegInfo *regs, void *opaque) | |
1973 | { | |
1974 | /* Define a whole list of registers */ | |
1975 | const ARMCPRegInfo *r; | |
1976 | for (r = regs; r->type != ARM_CP_SENTINEL; r++) { | |
1977 | define_one_arm_cp_reg_with_opaque(cpu, r, opaque); | |
1978 | } | |
1979 | } | |
1980 | ||
1981 | const ARMCPRegInfo *get_arm_cp_reginfo(ARMCPU *cpu, uint32_t encoded_cp) | |
1982 | { | |
1983 | return g_hash_table_lookup(cpu->cp_regs, &encoded_cp); | |
1984 | } | |
1985 | ||
1986 | int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, | |
1987 | uint64_t value) | |
1988 | { | |
1989 | /* Helper coprocessor write function for write-ignore registers */ | |
1990 | return 0; | |
1991 | } | |
1992 | ||
1993 | int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value) | |
1994 | { | |
1995 | /* Helper coprocessor write function for read-as-zero registers */ | |
1996 | *value = 0; | |
1997 | return 0; | |
1998 | } | |
1999 | ||
0ecb72a5 | 2000 | static int bad_mode_switch(CPUARMState *env, int mode) |
37064a8b PM |
2001 | { |
2002 | /* Return true if it is not valid for us to switch to | |
2003 | * this CPU mode (ie all the UNPREDICTABLE cases in | |
2004 | * the ARM ARM CPSRWriteByInstr pseudocode). | |
2005 | */ | |
2006 | switch (mode) { | |
2007 | case ARM_CPU_MODE_USR: | |
2008 | case ARM_CPU_MODE_SYS: | |
2009 | case ARM_CPU_MODE_SVC: | |
2010 | case ARM_CPU_MODE_ABT: | |
2011 | case ARM_CPU_MODE_UND: | |
2012 | case ARM_CPU_MODE_IRQ: | |
2013 | case ARM_CPU_MODE_FIQ: | |
2014 | return 0; | |
2015 | default: | |
2016 | return 1; | |
2017 | } | |
2018 | } | |
2019 | ||
2f4a40e5 AZ |
2020 | uint32_t cpsr_read(CPUARMState *env) |
2021 | { | |
2022 | int ZF; | |
6fbe23d5 PB |
2023 | ZF = (env->ZF == 0); |
2024 | return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | | |
2f4a40e5 AZ |
2025 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) |
2026 | | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) | |
2027 | | ((env->condexec_bits & 0xfc) << 8) | |
2028 | | (env->GE << 16); | |
2029 | } | |
2030 | ||
2031 | void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) | |
2032 | { | |
2f4a40e5 | 2033 | if (mask & CPSR_NZCV) { |
6fbe23d5 PB |
2034 | env->ZF = (~val) & CPSR_Z; |
2035 | env->NF = val; | |
2f4a40e5 AZ |
2036 | env->CF = (val >> 29) & 1; |
2037 | env->VF = (val << 3) & 0x80000000; | |
2038 | } | |
2039 | if (mask & CPSR_Q) | |
2040 | env->QF = ((val & CPSR_Q) != 0); | |
2041 | if (mask & CPSR_T) | |
2042 | env->thumb = ((val & CPSR_T) != 0); | |
2043 | if (mask & CPSR_IT_0_1) { | |
2044 | env->condexec_bits &= ~3; | |
2045 | env->condexec_bits |= (val >> 25) & 3; | |
2046 | } | |
2047 | if (mask & CPSR_IT_2_7) { | |
2048 | env->condexec_bits &= 3; | |
2049 | env->condexec_bits |= (val >> 8) & 0xfc; | |
2050 | } | |
2051 | if (mask & CPSR_GE) { | |
2052 | env->GE = (val >> 16) & 0xf; | |
2053 | } | |
2054 | ||
2055 | if ((env->uncached_cpsr ^ val) & mask & CPSR_M) { | |
37064a8b PM |
2056 | if (bad_mode_switch(env, val & CPSR_M)) { |
2057 | /* Attempt to switch to an invalid mode: this is UNPREDICTABLE. | |
2058 | * We choose to ignore the attempt and leave the CPSR M field | |
2059 | * untouched. | |
2060 | */ | |
2061 | mask &= ~CPSR_M; | |
2062 | } else { | |
2063 | switch_mode(env, val & CPSR_M); | |
2064 | } | |
2f4a40e5 AZ |
2065 | } |
2066 | mask &= ~CACHED_CPSR_BITS; | |
2067 | env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); | |
2068 | } | |
2069 | ||
b26eefb6 PB |
2070 | /* Sign/zero extend */ |
2071 | uint32_t HELPER(sxtb16)(uint32_t x) | |
2072 | { | |
2073 | uint32_t res; | |
2074 | res = (uint16_t)(int8_t)x; | |
2075 | res |= (uint32_t)(int8_t)(x >> 16) << 16; | |
2076 | return res; | |
2077 | } | |
2078 | ||
2079 | uint32_t HELPER(uxtb16)(uint32_t x) | |
2080 | { | |
2081 | uint32_t res; | |
2082 | res = (uint16_t)(uint8_t)x; | |
2083 | res |= (uint32_t)(uint8_t)(x >> 16) << 16; | |
2084 | return res; | |
2085 | } | |
2086 | ||
f51bbbfe PB |
2087 | uint32_t HELPER(clz)(uint32_t x) |
2088 | { | |
7bbcb0af | 2089 | return clz32(x); |
f51bbbfe PB |
2090 | } |
2091 | ||
3670669c PB |
2092 | int32_t HELPER(sdiv)(int32_t num, int32_t den) |
2093 | { | |
2094 | if (den == 0) | |
2095 | return 0; | |
686eeb93 AJ |
2096 | if (num == INT_MIN && den == -1) |
2097 | return INT_MIN; | |
3670669c PB |
2098 | return num / den; |
2099 | } | |
2100 | ||
2101 | uint32_t HELPER(udiv)(uint32_t num, uint32_t den) | |
2102 | { | |
2103 | if (den == 0) | |
2104 | return 0; | |
2105 | return num / den; | |
2106 | } | |
2107 | ||
2108 | uint32_t HELPER(rbit)(uint32_t x) | |
2109 | { | |
2110 | x = ((x & 0xff000000) >> 24) | |
2111 | | ((x & 0x00ff0000) >> 8) | |
2112 | | ((x & 0x0000ff00) << 8) | |
2113 | | ((x & 0x000000ff) << 24); | |
2114 | x = ((x & 0xf0f0f0f0) >> 4) | |
2115 | | ((x & 0x0f0f0f0f) << 4); | |
2116 | x = ((x & 0x88888888) >> 3) | |
2117 | | ((x & 0x44444444) >> 1) | |
2118 | | ((x & 0x22222222) << 1) | |
2119 | | ((x & 0x11111111) << 3); | |
2120 | return x; | |
2121 | } | |
2122 | ||
5fafdf24 | 2123 | #if defined(CONFIG_USER_ONLY) |
b5ff1b31 | 2124 | |
97a8ea5a | 2125 | void arm_cpu_do_interrupt(CPUState *cs) |
b5ff1b31 | 2126 | { |
97a8ea5a AF |
2127 | ARMCPU *cpu = ARM_CPU(cs); |
2128 | CPUARMState *env = &cpu->env; | |
2129 | ||
b5ff1b31 FB |
2130 | env->exception_index = -1; |
2131 | } | |
2132 | ||
0ecb72a5 | 2133 | int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw, |
97b348e7 | 2134 | int mmu_idx) |
b5ff1b31 FB |
2135 | { |
2136 | if (rw == 2) { | |
2137 | env->exception_index = EXCP_PREFETCH_ABORT; | |
2138 | env->cp15.c6_insn = address; | |
2139 | } else { | |
2140 | env->exception_index = EXCP_DATA_ABORT; | |
2141 | env->cp15.c6_data = address; | |
2142 | } | |
2143 | return 1; | |
2144 | } | |
2145 | ||
9ee6e8bb | 2146 | /* These should probably raise undefined insn exceptions. */ |
0ecb72a5 | 2147 | void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) |
9ee6e8bb PB |
2148 | { |
2149 | cpu_abort(env, "v7m_mrs %d\n", reg); | |
2150 | } | |
2151 | ||
0ecb72a5 | 2152 | uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) |
9ee6e8bb PB |
2153 | { |
2154 | cpu_abort(env, "v7m_mrs %d\n", reg); | |
2155 | return 0; | |
2156 | } | |
2157 | ||
0ecb72a5 | 2158 | void switch_mode(CPUARMState *env, int mode) |
b5ff1b31 FB |
2159 | { |
2160 | if (mode != ARM_CPU_MODE_USR) | |
2161 | cpu_abort(env, "Tried to switch out of user mode\n"); | |
2162 | } | |
2163 | ||
0ecb72a5 | 2164 | void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val) |
9ee6e8bb PB |
2165 | { |
2166 | cpu_abort(env, "banked r13 write\n"); | |
2167 | } | |
2168 | ||
0ecb72a5 | 2169 | uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode) |
9ee6e8bb PB |
2170 | { |
2171 | cpu_abort(env, "banked r13 read\n"); | |
2172 | return 0; | |
2173 | } | |
2174 | ||
b5ff1b31 FB |
2175 | #else |
2176 | ||
2177 | /* Map CPU modes onto saved register banks. */ | |
494b00c7 | 2178 | int bank_number(int mode) |
b5ff1b31 FB |
2179 | { |
2180 | switch (mode) { | |
2181 | case ARM_CPU_MODE_USR: | |
2182 | case ARM_CPU_MODE_SYS: | |
2183 | return 0; | |
2184 | case ARM_CPU_MODE_SVC: | |
2185 | return 1; | |
2186 | case ARM_CPU_MODE_ABT: | |
2187 | return 2; | |
2188 | case ARM_CPU_MODE_UND: | |
2189 | return 3; | |
2190 | case ARM_CPU_MODE_IRQ: | |
2191 | return 4; | |
2192 | case ARM_CPU_MODE_FIQ: | |
2193 | return 5; | |
2194 | } | |
f5206413 | 2195 | hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode); |
b5ff1b31 FB |
2196 | } |
2197 | ||
0ecb72a5 | 2198 | void switch_mode(CPUARMState *env, int mode) |
b5ff1b31 FB |
2199 | { |
2200 | int old_mode; | |
2201 | int i; | |
2202 | ||
2203 | old_mode = env->uncached_cpsr & CPSR_M; | |
2204 | if (mode == old_mode) | |
2205 | return; | |
2206 | ||
2207 | if (old_mode == ARM_CPU_MODE_FIQ) { | |
2208 | memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); | |
8637c67f | 2209 | memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); |
b5ff1b31 FB |
2210 | } else if (mode == ARM_CPU_MODE_FIQ) { |
2211 | memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); | |
8637c67f | 2212 | memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); |
b5ff1b31 FB |
2213 | } |
2214 | ||
f5206413 | 2215 | i = bank_number(old_mode); |
b5ff1b31 FB |
2216 | env->banked_r13[i] = env->regs[13]; |
2217 | env->banked_r14[i] = env->regs[14]; | |
2218 | env->banked_spsr[i] = env->spsr; | |
2219 | ||
f5206413 | 2220 | i = bank_number(mode); |
b5ff1b31 FB |
2221 | env->regs[13] = env->banked_r13[i]; |
2222 | env->regs[14] = env->banked_r14[i]; | |
2223 | env->spsr = env->banked_spsr[i]; | |
2224 | } | |
2225 | ||
9ee6e8bb PB |
2226 | static void v7m_push(CPUARMState *env, uint32_t val) |
2227 | { | |
2228 | env->regs[13] -= 4; | |
2229 | stl_phys(env->regs[13], val); | |
2230 | } | |
2231 | ||
2232 | static uint32_t v7m_pop(CPUARMState *env) | |
2233 | { | |
2234 | uint32_t val; | |
2235 | val = ldl_phys(env->regs[13]); | |
2236 | env->regs[13] += 4; | |
2237 | return val; | |
2238 | } | |
2239 | ||
2240 | /* Switch to V7M main or process stack pointer. */ | |
2241 | static void switch_v7m_sp(CPUARMState *env, int process) | |
2242 | { | |
2243 | uint32_t tmp; | |
2244 | if (env->v7m.current_sp != process) { | |
2245 | tmp = env->v7m.other_sp; | |
2246 | env->v7m.other_sp = env->regs[13]; | |
2247 | env->regs[13] = tmp; | |
2248 | env->v7m.current_sp = process; | |
2249 | } | |
2250 | } | |
2251 | ||
2252 | static void do_v7m_exception_exit(CPUARMState *env) | |
2253 | { | |
2254 | uint32_t type; | |
2255 | uint32_t xpsr; | |
2256 | ||
2257 | type = env->regs[15]; | |
2258 | if (env->v7m.exception != 0) | |
983fe826 | 2259 | armv7m_nvic_complete_irq(env->nvic, env->v7m.exception); |
9ee6e8bb PB |
2260 | |
2261 | /* Switch to the target stack. */ | |
2262 | switch_v7m_sp(env, (type & 4) != 0); | |
2263 | /* Pop registers. */ | |
2264 | env->regs[0] = v7m_pop(env); | |
2265 | env->regs[1] = v7m_pop(env); | |
2266 | env->regs[2] = v7m_pop(env); | |
2267 | env->regs[3] = v7m_pop(env); | |
2268 | env->regs[12] = v7m_pop(env); | |
2269 | env->regs[14] = v7m_pop(env); | |
2270 | env->regs[15] = v7m_pop(env); | |
2271 | xpsr = v7m_pop(env); | |
2272 | xpsr_write(env, xpsr, 0xfffffdff); | |
2273 | /* Undo stack alignment. */ | |
2274 | if (xpsr & 0x200) | |
2275 | env->regs[13] |= 4; | |
2276 | /* ??? The exception return type specifies Thread/Handler mode. However | |
2277 | this is also implied by the xPSR value. Not sure what to do | |
2278 | if there is a mismatch. */ | |
2279 | /* ??? Likewise for mismatches between the CONTROL register and the stack | |
2280 | pointer. */ | |
2281 | } | |
2282 | ||
3f1beaca PM |
2283 | /* Exception names for debug logging; note that not all of these |
2284 | * precisely correspond to architectural exceptions. | |
2285 | */ | |
2286 | static const char * const excnames[] = { | |
2287 | [EXCP_UDEF] = "Undefined Instruction", | |
2288 | [EXCP_SWI] = "SVC", | |
2289 | [EXCP_PREFETCH_ABORT] = "Prefetch Abort", | |
2290 | [EXCP_DATA_ABORT] = "Data Abort", | |
2291 | [EXCP_IRQ] = "IRQ", | |
2292 | [EXCP_FIQ] = "FIQ", | |
2293 | [EXCP_BKPT] = "Breakpoint", | |
2294 | [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", | |
2295 | [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", | |
2296 | [EXCP_STREX] = "QEMU intercept of STREX", | |
2297 | }; | |
2298 | ||
2299 | static inline void arm_log_exception(int idx) | |
2300 | { | |
2301 | if (qemu_loglevel_mask(CPU_LOG_INT)) { | |
2302 | const char *exc = NULL; | |
2303 | ||
2304 | if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { | |
2305 | exc = excnames[idx]; | |
2306 | } | |
2307 | if (!exc) { | |
2308 | exc = "unknown"; | |
2309 | } | |
2310 | qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); | |
2311 | } | |
2312 | } | |
2313 | ||
e6f010cc | 2314 | void arm_v7m_cpu_do_interrupt(CPUState *cs) |
9ee6e8bb | 2315 | { |
e6f010cc AF |
2316 | ARMCPU *cpu = ARM_CPU(cs); |
2317 | CPUARMState *env = &cpu->env; | |
9ee6e8bb PB |
2318 | uint32_t xpsr = xpsr_read(env); |
2319 | uint32_t lr; | |
2320 | uint32_t addr; | |
2321 | ||
3f1beaca PM |
2322 | arm_log_exception(env->exception_index); |
2323 | ||
9ee6e8bb PB |
2324 | lr = 0xfffffff1; |
2325 | if (env->v7m.current_sp) | |
2326 | lr |= 4; | |
2327 | if (env->v7m.exception == 0) | |
2328 | lr |= 8; | |
2329 | ||
2330 | /* For exceptions we just mark as pending on the NVIC, and let that | |
2331 | handle it. */ | |
2332 | /* TODO: Need to escalate if the current priority is higher than the | |
2333 | one we're raising. */ | |
2334 | switch (env->exception_index) { | |
2335 | case EXCP_UDEF: | |
983fe826 | 2336 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE); |
9ee6e8bb PB |
2337 | return; |
2338 | case EXCP_SWI: | |
314e2296 | 2339 | /* The PC already points to the next instruction. */ |
983fe826 | 2340 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC); |
9ee6e8bb PB |
2341 | return; |
2342 | case EXCP_PREFETCH_ABORT: | |
2343 | case EXCP_DATA_ABORT: | |
983fe826 | 2344 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM); |
9ee6e8bb PB |
2345 | return; |
2346 | case EXCP_BKPT: | |
2ad207d4 PB |
2347 | if (semihosting_enabled) { |
2348 | int nr; | |
d31dd73e | 2349 | nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff; |
2ad207d4 PB |
2350 | if (nr == 0xab) { |
2351 | env->regs[15] += 2; | |
2352 | env->regs[0] = do_arm_semihosting(env); | |
3f1beaca | 2353 | qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n"); |
2ad207d4 PB |
2354 | return; |
2355 | } | |
2356 | } | |
983fe826 | 2357 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG); |
9ee6e8bb PB |
2358 | return; |
2359 | case EXCP_IRQ: | |
983fe826 | 2360 | env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic); |
9ee6e8bb PB |
2361 | break; |
2362 | case EXCP_EXCEPTION_EXIT: | |
2363 | do_v7m_exception_exit(env); | |
2364 | return; | |
2365 | default: | |
2366 | cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index); | |
2367 | return; /* Never happens. Keep compiler happy. */ | |
2368 | } | |
2369 | ||
2370 | /* Align stack pointer. */ | |
2371 | /* ??? Should only do this if Configuration Control Register | |
2372 | STACKALIGN bit is set. */ | |
2373 | if (env->regs[13] & 4) { | |
ab19b0ec | 2374 | env->regs[13] -= 4; |
9ee6e8bb PB |
2375 | xpsr |= 0x200; |
2376 | } | |
6c95676b | 2377 | /* Switch to the handler mode. */ |
9ee6e8bb PB |
2378 | v7m_push(env, xpsr); |
2379 | v7m_push(env, env->regs[15]); | |
2380 | v7m_push(env, env->regs[14]); | |
2381 | v7m_push(env, env->regs[12]); | |
2382 | v7m_push(env, env->regs[3]); | |
2383 | v7m_push(env, env->regs[2]); | |
2384 | v7m_push(env, env->regs[1]); | |
2385 | v7m_push(env, env->regs[0]); | |
2386 | switch_v7m_sp(env, 0); | |
c98d174c PM |
2387 | /* Clear IT bits */ |
2388 | env->condexec_bits = 0; | |
9ee6e8bb PB |
2389 | env->regs[14] = lr; |
2390 | addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4); | |
2391 | env->regs[15] = addr & 0xfffffffe; | |
2392 | env->thumb = addr & 1; | |
2393 | } | |
2394 | ||
b5ff1b31 | 2395 | /* Handle a CPU exception. */ |
97a8ea5a | 2396 | void arm_cpu_do_interrupt(CPUState *cs) |
b5ff1b31 | 2397 | { |
97a8ea5a AF |
2398 | ARMCPU *cpu = ARM_CPU(cs); |
2399 | CPUARMState *env = &cpu->env; | |
b5ff1b31 FB |
2400 | uint32_t addr; |
2401 | uint32_t mask; | |
2402 | int new_mode; | |
2403 | uint32_t offset; | |
2404 | ||
e6f010cc AF |
2405 | assert(!IS_M(env)); |
2406 | ||
3f1beaca PM |
2407 | arm_log_exception(env->exception_index); |
2408 | ||
b5ff1b31 FB |
2409 | /* TODO: Vectored interrupt controller. */ |
2410 | switch (env->exception_index) { | |
2411 | case EXCP_UDEF: | |
2412 | new_mode = ARM_CPU_MODE_UND; | |
2413 | addr = 0x04; | |
2414 | mask = CPSR_I; | |
2415 | if (env->thumb) | |
2416 | offset = 2; | |
2417 | else | |
2418 | offset = 4; | |
2419 | break; | |
2420 | case EXCP_SWI: | |
8e71621f PB |
2421 | if (semihosting_enabled) { |
2422 | /* Check for semihosting interrupt. */ | |
2423 | if (env->thumb) { | |
d31dd73e BS |
2424 | mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code) |
2425 | & 0xff; | |
8e71621f | 2426 | } else { |
d31dd73e | 2427 | mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code) |
d8fd2954 | 2428 | & 0xffffff; |
8e71621f PB |
2429 | } |
2430 | /* Only intercept calls from privileged modes, to provide some | |
2431 | semblance of security. */ | |
2432 | if (((mask == 0x123456 && !env->thumb) | |
2433 | || (mask == 0xab && env->thumb)) | |
2434 | && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) { | |
2435 | env->regs[0] = do_arm_semihosting(env); | |
3f1beaca | 2436 | qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n"); |
8e71621f PB |
2437 | return; |
2438 | } | |
2439 | } | |
b5ff1b31 FB |
2440 | new_mode = ARM_CPU_MODE_SVC; |
2441 | addr = 0x08; | |
2442 | mask = CPSR_I; | |
601d70b9 | 2443 | /* The PC already points to the next instruction. */ |
b5ff1b31 FB |
2444 | offset = 0; |
2445 | break; | |
06c949e6 | 2446 | case EXCP_BKPT: |
9ee6e8bb | 2447 | /* See if this is a semihosting syscall. */ |
2ad207d4 | 2448 | if (env->thumb && semihosting_enabled) { |
d31dd73e | 2449 | mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff; |
9ee6e8bb PB |
2450 | if (mask == 0xab |
2451 | && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) { | |
2452 | env->regs[15] += 2; | |
2453 | env->regs[0] = do_arm_semihosting(env); | |
3f1beaca | 2454 | qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n"); |
9ee6e8bb PB |
2455 | return; |
2456 | } | |
2457 | } | |
81c05daf | 2458 | env->cp15.c5_insn = 2; |
9ee6e8bb PB |
2459 | /* Fall through to prefetch abort. */ |
2460 | case EXCP_PREFETCH_ABORT: | |
3f1beaca PM |
2461 | qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", |
2462 | env->cp15.c5_insn, env->cp15.c6_insn); | |
b5ff1b31 FB |
2463 | new_mode = ARM_CPU_MODE_ABT; |
2464 | addr = 0x0c; | |
2465 | mask = CPSR_A | CPSR_I; | |
2466 | offset = 4; | |
2467 | break; | |
2468 | case EXCP_DATA_ABORT: | |
3f1beaca PM |
2469 | qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", |
2470 | env->cp15.c5_data, env->cp15.c6_data); | |
b5ff1b31 FB |
2471 | new_mode = ARM_CPU_MODE_ABT; |
2472 | addr = 0x10; | |
2473 | mask = CPSR_A | CPSR_I; | |
2474 | offset = 8; | |
2475 | break; | |
2476 | case EXCP_IRQ: | |
2477 | new_mode = ARM_CPU_MODE_IRQ; | |
2478 | addr = 0x18; | |
2479 | /* Disable IRQ and imprecise data aborts. */ | |
2480 | mask = CPSR_A | CPSR_I; | |
2481 | offset = 4; | |
2482 | break; | |
2483 | case EXCP_FIQ: | |
2484 | new_mode = ARM_CPU_MODE_FIQ; | |
2485 | addr = 0x1c; | |
2486 | /* Disable FIQ, IRQ and imprecise data aborts. */ | |
2487 | mask = CPSR_A | CPSR_I | CPSR_F; | |
2488 | offset = 4; | |
2489 | break; | |
2490 | default: | |
2491 | cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index); | |
2492 | return; /* Never happens. Keep compiler happy. */ | |
2493 | } | |
2494 | /* High vectors. */ | |
2495 | if (env->cp15.c1_sys & (1 << 13)) { | |
8641136c | 2496 | /* when enabled, base address cannot be remapped. */ |
b5ff1b31 | 2497 | addr += 0xffff0000; |
8641136c NR |
2498 | } else { |
2499 | /* ARM v7 architectures provide a vector base address register to remap | |
2500 | * the interrupt vector table. | |
2501 | * This register is only followed in non-monitor mode, and has a secure | |
2502 | * and un-secure copy. Since the cpu is always in a un-secure operation | |
2503 | * and is never in monitor mode this feature is always active. | |
2504 | * Note: only bits 31:5 are valid. | |
2505 | */ | |
2506 | addr += env->cp15.c12_vbar; | |
b5ff1b31 FB |
2507 | } |
2508 | switch_mode (env, new_mode); | |
2509 | env->spsr = cpsr_read(env); | |
9ee6e8bb PB |
2510 | /* Clear IT bits. */ |
2511 | env->condexec_bits = 0; | |
30a8cac1 | 2512 | /* Switch to the new mode, and to the correct instruction set. */ |
6d7e6326 | 2513 | env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; |
b5ff1b31 | 2514 | env->uncached_cpsr |= mask; |
be5e7a76 DES |
2515 | /* this is a lie, as the was no c1_sys on V4T/V5, but who cares |
2516 | * and we should just guard the thumb mode on V4 */ | |
2517 | if (arm_feature(env, ARM_FEATURE_V4T)) { | |
2518 | env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0; | |
2519 | } | |
b5ff1b31 FB |
2520 | env->regs[14] = env->regs[15] + offset; |
2521 | env->regs[15] = addr; | |
259186a7 | 2522 | cs->interrupt_request |= CPU_INTERRUPT_EXITTB; |
b5ff1b31 FB |
2523 | } |
2524 | ||
2525 | /* Check section/page access permissions. | |
2526 | Returns the page protection flags, or zero if the access is not | |
2527 | permitted. */ | |
0ecb72a5 | 2528 | static inline int check_ap(CPUARMState *env, int ap, int domain_prot, |
dd4ebc2e | 2529 | int access_type, int is_user) |
b5ff1b31 | 2530 | { |
9ee6e8bb PB |
2531 | int prot_ro; |
2532 | ||
dd4ebc2e | 2533 | if (domain_prot == 3) { |
b5ff1b31 | 2534 | return PAGE_READ | PAGE_WRITE; |
dd4ebc2e | 2535 | } |
b5ff1b31 | 2536 | |
9ee6e8bb PB |
2537 | if (access_type == 1) |
2538 | prot_ro = 0; | |
2539 | else | |
2540 | prot_ro = PAGE_READ; | |
2541 | ||
b5ff1b31 FB |
2542 | switch (ap) { |
2543 | case 0: | |
78600320 | 2544 | if (access_type == 1) |
b5ff1b31 FB |
2545 | return 0; |
2546 | switch ((env->cp15.c1_sys >> 8) & 3) { | |
2547 | case 1: | |
2548 | return is_user ? 0 : PAGE_READ; | |
2549 | case 2: | |
2550 | return PAGE_READ; | |
2551 | default: | |
2552 | return 0; | |
2553 | } | |
2554 | case 1: | |
2555 | return is_user ? 0 : PAGE_READ | PAGE_WRITE; | |
2556 | case 2: | |
2557 | if (is_user) | |
9ee6e8bb | 2558 | return prot_ro; |
b5ff1b31 FB |
2559 | else |
2560 | return PAGE_READ | PAGE_WRITE; | |
2561 | case 3: | |
2562 | return PAGE_READ | PAGE_WRITE; | |
d4934d18 | 2563 | case 4: /* Reserved. */ |
9ee6e8bb PB |
2564 | return 0; |
2565 | case 5: | |
2566 | return is_user ? 0 : prot_ro; | |
2567 | case 6: | |
2568 | return prot_ro; | |
d4934d18 | 2569 | case 7: |
0ab06d83 | 2570 | if (!arm_feature (env, ARM_FEATURE_V6K)) |
d4934d18 PB |
2571 | return 0; |
2572 | return prot_ro; | |
b5ff1b31 FB |
2573 | default: |
2574 | abort(); | |
2575 | } | |
2576 | } | |
2577 | ||
0ecb72a5 | 2578 | static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address) |
b2fa1797 PB |
2579 | { |
2580 | uint32_t table; | |
2581 | ||
2582 | if (address & env->cp15.c2_mask) | |
2583 | table = env->cp15.c2_base1 & 0xffffc000; | |
2584 | else | |
2585 | table = env->cp15.c2_base0 & env->cp15.c2_base_mask; | |
2586 | ||
2587 | table |= (address >> 18) & 0x3ffc; | |
2588 | return table; | |
2589 | } | |
2590 | ||
0ecb72a5 | 2591 | static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type, |
a8170e5e | 2592 | int is_user, hwaddr *phys_ptr, |
77a71dd1 | 2593 | int *prot, target_ulong *page_size) |
b5ff1b31 FB |
2594 | { |
2595 | int code; | |
2596 | uint32_t table; | |
2597 | uint32_t desc; | |
2598 | int type; | |
2599 | int ap; | |
2600 | int domain; | |
dd4ebc2e | 2601 | int domain_prot; |
a8170e5e | 2602 | hwaddr phys_addr; |
b5ff1b31 | 2603 | |
9ee6e8bb PB |
2604 | /* Pagetable walk. */ |
2605 | /* Lookup l1 descriptor. */ | |
b2fa1797 | 2606 | table = get_level1_table_address(env, address); |
9ee6e8bb PB |
2607 | desc = ldl_phys(table); |
2608 | type = (desc & 3); | |
dd4ebc2e JCD |
2609 | domain = (desc >> 5) & 0x0f; |
2610 | domain_prot = (env->cp15.c3 >> (domain * 2)) & 3; | |
9ee6e8bb | 2611 | if (type == 0) { |
601d70b9 | 2612 | /* Section translation fault. */ |
9ee6e8bb PB |
2613 | code = 5; |
2614 | goto do_fault; | |
2615 | } | |
dd4ebc2e | 2616 | if (domain_prot == 0 || domain_prot == 2) { |
9ee6e8bb PB |
2617 | if (type == 2) |
2618 | code = 9; /* Section domain fault. */ | |
2619 | else | |
2620 | code = 11; /* Page domain fault. */ | |
2621 | goto do_fault; | |
2622 | } | |
2623 | if (type == 2) { | |
2624 | /* 1Mb section. */ | |
2625 | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); | |
2626 | ap = (desc >> 10) & 3; | |
2627 | code = 13; | |
d4c430a8 | 2628 | *page_size = 1024 * 1024; |
9ee6e8bb PB |
2629 | } else { |
2630 | /* Lookup l2 entry. */ | |
2631 | if (type == 1) { | |
2632 | /* Coarse pagetable. */ | |
2633 | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); | |
2634 | } else { | |
2635 | /* Fine pagetable. */ | |
2636 | table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); | |
2637 | } | |
2638 | desc = ldl_phys(table); | |
2639 | switch (desc & 3) { | |
2640 | case 0: /* Page translation fault. */ | |
2641 | code = 7; | |
2642 | goto do_fault; | |
2643 | case 1: /* 64k page. */ | |
2644 | phys_addr = (desc & 0xffff0000) | (address & 0xffff); | |
2645 | ap = (desc >> (4 + ((address >> 13) & 6))) & 3; | |
d4c430a8 | 2646 | *page_size = 0x10000; |
ce819861 | 2647 | break; |
9ee6e8bb PB |
2648 | case 2: /* 4k page. */ |
2649 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |
2650 | ap = (desc >> (4 + ((address >> 13) & 6))) & 3; | |
d4c430a8 | 2651 | *page_size = 0x1000; |
ce819861 | 2652 | break; |
9ee6e8bb PB |
2653 | case 3: /* 1k page. */ |
2654 | if (type == 1) { | |
2655 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { | |
2656 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |
2657 | } else { | |
2658 | /* Page translation fault. */ | |
2659 | code = 7; | |
2660 | goto do_fault; | |
2661 | } | |
2662 | } else { | |
2663 | phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); | |
2664 | } | |
2665 | ap = (desc >> 4) & 3; | |
d4c430a8 | 2666 | *page_size = 0x400; |
ce819861 PB |
2667 | break; |
2668 | default: | |
9ee6e8bb PB |
2669 | /* Never happens, but compiler isn't smart enough to tell. */ |
2670 | abort(); | |
ce819861 | 2671 | } |
9ee6e8bb PB |
2672 | code = 15; |
2673 | } | |
dd4ebc2e | 2674 | *prot = check_ap(env, ap, domain_prot, access_type, is_user); |
9ee6e8bb PB |
2675 | if (!*prot) { |
2676 | /* Access permission fault. */ | |
2677 | goto do_fault; | |
2678 | } | |
3ad493fc | 2679 | *prot |= PAGE_EXEC; |
9ee6e8bb PB |
2680 | *phys_ptr = phys_addr; |
2681 | return 0; | |
2682 | do_fault: | |
2683 | return code | (domain << 4); | |
2684 | } | |
2685 | ||
0ecb72a5 | 2686 | static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type, |
a8170e5e | 2687 | int is_user, hwaddr *phys_ptr, |
77a71dd1 | 2688 | int *prot, target_ulong *page_size) |
9ee6e8bb PB |
2689 | { |
2690 | int code; | |
2691 | uint32_t table; | |
2692 | uint32_t desc; | |
2693 | uint32_t xn; | |
de9b05b8 | 2694 | uint32_t pxn = 0; |
9ee6e8bb PB |
2695 | int type; |
2696 | int ap; | |
de9b05b8 | 2697 | int domain = 0; |
dd4ebc2e | 2698 | int domain_prot; |
a8170e5e | 2699 | hwaddr phys_addr; |
9ee6e8bb PB |
2700 | |
2701 | /* Pagetable walk. */ | |
2702 | /* Lookup l1 descriptor. */ | |
b2fa1797 | 2703 | table = get_level1_table_address(env, address); |
9ee6e8bb PB |
2704 | desc = ldl_phys(table); |
2705 | type = (desc & 3); | |
de9b05b8 PM |
2706 | if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { |
2707 | /* Section translation fault, or attempt to use the encoding | |
2708 | * which is Reserved on implementations without PXN. | |
2709 | */ | |
9ee6e8bb | 2710 | code = 5; |
9ee6e8bb | 2711 | goto do_fault; |
de9b05b8 PM |
2712 | } |
2713 | if ((type == 1) || !(desc & (1 << 18))) { | |
2714 | /* Page or Section. */ | |
dd4ebc2e | 2715 | domain = (desc >> 5) & 0x0f; |
9ee6e8bb | 2716 | } |
dd4ebc2e JCD |
2717 | domain_prot = (env->cp15.c3 >> (domain * 2)) & 3; |
2718 | if (domain_prot == 0 || domain_prot == 2) { | |
de9b05b8 | 2719 | if (type != 1) { |
9ee6e8bb | 2720 | code = 9; /* Section domain fault. */ |
de9b05b8 | 2721 | } else { |
9ee6e8bb | 2722 | code = 11; /* Page domain fault. */ |
de9b05b8 | 2723 | } |
9ee6e8bb PB |
2724 | goto do_fault; |
2725 | } | |
de9b05b8 | 2726 | if (type != 1) { |
9ee6e8bb PB |
2727 | if (desc & (1 << 18)) { |
2728 | /* Supersection. */ | |
2729 | phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); | |
d4c430a8 | 2730 | *page_size = 0x1000000; |
b5ff1b31 | 2731 | } else { |
9ee6e8bb PB |
2732 | /* Section. */ |
2733 | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); | |
d4c430a8 | 2734 | *page_size = 0x100000; |
b5ff1b31 | 2735 | } |
9ee6e8bb PB |
2736 | ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); |
2737 | xn = desc & (1 << 4); | |
de9b05b8 | 2738 | pxn = desc & 1; |
9ee6e8bb PB |
2739 | code = 13; |
2740 | } else { | |
de9b05b8 PM |
2741 | if (arm_feature(env, ARM_FEATURE_PXN)) { |
2742 | pxn = (desc >> 2) & 1; | |
2743 | } | |
9ee6e8bb PB |
2744 | /* Lookup l2 entry. */ |
2745 | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); | |
2746 | desc = ldl_phys(table); | |
2747 | ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); | |
2748 | switch (desc & 3) { | |
2749 | case 0: /* Page translation fault. */ | |
2750 | code = 7; | |
b5ff1b31 | 2751 | goto do_fault; |
9ee6e8bb PB |
2752 | case 1: /* 64k page. */ |
2753 | phys_addr = (desc & 0xffff0000) | (address & 0xffff); | |
2754 | xn = desc & (1 << 15); | |
d4c430a8 | 2755 | *page_size = 0x10000; |
9ee6e8bb PB |
2756 | break; |
2757 | case 2: case 3: /* 4k page. */ | |
2758 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |
2759 | xn = desc & 1; | |
d4c430a8 | 2760 | *page_size = 0x1000; |
9ee6e8bb PB |
2761 | break; |
2762 | default: | |
2763 | /* Never happens, but compiler isn't smart enough to tell. */ | |
2764 | abort(); | |
b5ff1b31 | 2765 | } |
9ee6e8bb PB |
2766 | code = 15; |
2767 | } | |
dd4ebc2e | 2768 | if (domain_prot == 3) { |
c0034328 JR |
2769 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
2770 | } else { | |
de9b05b8 PM |
2771 | if (pxn && !is_user) { |
2772 | xn = 1; | |
2773 | } | |
c0034328 JR |
2774 | if (xn && access_type == 2) |
2775 | goto do_fault; | |
9ee6e8bb | 2776 | |
c0034328 JR |
2777 | /* The simplified model uses AP[0] as an access control bit. */ |
2778 | if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) { | |
2779 | /* Access flag fault. */ | |
2780 | code = (code == 15) ? 6 : 3; | |
2781 | goto do_fault; | |
2782 | } | |
dd4ebc2e | 2783 | *prot = check_ap(env, ap, domain_prot, access_type, is_user); |
c0034328 JR |
2784 | if (!*prot) { |
2785 | /* Access permission fault. */ | |
2786 | goto do_fault; | |
2787 | } | |
2788 | if (!xn) { | |
2789 | *prot |= PAGE_EXEC; | |
2790 | } | |
3ad493fc | 2791 | } |
9ee6e8bb | 2792 | *phys_ptr = phys_addr; |
b5ff1b31 FB |
2793 | return 0; |
2794 | do_fault: | |
2795 | return code | (domain << 4); | |
2796 | } | |
2797 | ||
3dde962f PM |
2798 | /* Fault type for long-descriptor MMU fault reporting; this corresponds |
2799 | * to bits [5..2] in the STATUS field in long-format DFSR/IFSR. | |
2800 | */ | |
2801 | typedef enum { | |
2802 | translation_fault = 1, | |
2803 | access_fault = 2, | |
2804 | permission_fault = 3, | |
2805 | } MMUFaultType; | |
2806 | ||
2807 | static int get_phys_addr_lpae(CPUARMState *env, uint32_t address, | |
2808 | int access_type, int is_user, | |
a8170e5e | 2809 | hwaddr *phys_ptr, int *prot, |
3dde962f PM |
2810 | target_ulong *page_size_ptr) |
2811 | { | |
2812 | /* Read an LPAE long-descriptor translation table. */ | |
2813 | MMUFaultType fault_type = translation_fault; | |
2814 | uint32_t level = 1; | |
2815 | uint32_t epd; | |
2816 | uint32_t tsz; | |
2817 | uint64_t ttbr; | |
2818 | int ttbr_select; | |
2819 | int n; | |
a8170e5e | 2820 | hwaddr descaddr; |
3dde962f PM |
2821 | uint32_t tableattrs; |
2822 | target_ulong page_size; | |
2823 | uint32_t attrs; | |
2824 | ||
2825 | /* Determine whether this address is in the region controlled by | |
2826 | * TTBR0 or TTBR1 (or if it is in neither region and should fault). | |
2827 | * This is a Non-secure PL0/1 stage 1 translation, so controlled by | |
2828 | * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32: | |
2829 | */ | |
2830 | uint32_t t0sz = extract32(env->cp15.c2_control, 0, 3); | |
2831 | uint32_t t1sz = extract32(env->cp15.c2_control, 16, 3); | |
2832 | if (t0sz && !extract32(address, 32 - t0sz, t0sz)) { | |
2833 | /* there is a ttbr0 region and we are in it (high bits all zero) */ | |
2834 | ttbr_select = 0; | |
2835 | } else if (t1sz && !extract32(~address, 32 - t1sz, t1sz)) { | |
2836 | /* there is a ttbr1 region and we are in it (high bits all one) */ | |
2837 | ttbr_select = 1; | |
2838 | } else if (!t0sz) { | |
2839 | /* ttbr0 region is "everything not in the ttbr1 region" */ | |
2840 | ttbr_select = 0; | |
2841 | } else if (!t1sz) { | |
2842 | /* ttbr1 region is "everything not in the ttbr0 region" */ | |
2843 | ttbr_select = 1; | |
2844 | } else { | |
2845 | /* in the gap between the two regions, this is a Translation fault */ | |
2846 | fault_type = translation_fault; | |
2847 | goto do_fault; | |
2848 | } | |
2849 | ||
2850 | /* Note that QEMU ignores shareability and cacheability attributes, | |
2851 | * so we don't need to do anything with the SH, ORGN, IRGN fields | |
2852 | * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the | |
2853 | * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently | |
2854 | * implement any ASID-like capability so we can ignore it (instead | |
2855 | * we will always flush the TLB any time the ASID is changed). | |
2856 | */ | |
2857 | if (ttbr_select == 0) { | |
2858 | ttbr = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0; | |
2859 | epd = extract32(env->cp15.c2_control, 7, 1); | |
2860 | tsz = t0sz; | |
2861 | } else { | |
2862 | ttbr = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1; | |
2863 | epd = extract32(env->cp15.c2_control, 23, 1); | |
2864 | tsz = t1sz; | |
2865 | } | |
2866 | ||
2867 | if (epd) { | |
2868 | /* Translation table walk disabled => Translation fault on TLB miss */ | |
2869 | goto do_fault; | |
2870 | } | |
2871 | ||
2872 | /* If the region is small enough we will skip straight to a 2nd level | |
2873 | * lookup. This affects the number of bits of the address used in | |
2874 | * combination with the TTBR to find the first descriptor. ('n' here | |
2875 | * matches the usage in the ARM ARM sB3.6.6, where bits [39..n] are | |
2876 | * from the TTBR, [n-1..3] from the vaddr, and [2..0] always zero). | |
2877 | */ | |
2878 | if (tsz > 1) { | |
2879 | level = 2; | |
2880 | n = 14 - tsz; | |
2881 | } else { | |
2882 | n = 5 - tsz; | |
2883 | } | |
2884 | ||
2885 | /* Clear the vaddr bits which aren't part of the within-region address, | |
2886 | * so that we don't have to special case things when calculating the | |
2887 | * first descriptor address. | |
2888 | */ | |
2889 | address &= (0xffffffffU >> tsz); | |
2890 | ||
2891 | /* Now we can extract the actual base address from the TTBR */ | |
2892 | descaddr = extract64(ttbr, 0, 40); | |
2893 | descaddr &= ~((1ULL << n) - 1); | |
2894 | ||
2895 | tableattrs = 0; | |
2896 | for (;;) { | |
2897 | uint64_t descriptor; | |
2898 | ||
2899 | descaddr |= ((address >> (9 * (4 - level))) & 0xff8); | |
2900 | descriptor = ldq_phys(descaddr); | |
2901 | if (!(descriptor & 1) || | |
2902 | (!(descriptor & 2) && (level == 3))) { | |
2903 | /* Invalid, or the Reserved level 3 encoding */ | |
2904 | goto do_fault; | |
2905 | } | |
2906 | descaddr = descriptor & 0xfffffff000ULL; | |
2907 | ||
2908 | if ((descriptor & 2) && (level < 3)) { | |
2909 | /* Table entry. The top five bits are attributes which may | |
2910 | * propagate down through lower levels of the table (and | |
2911 | * which are all arranged so that 0 means "no effect", so | |
2912 | * we can gather them up by ORing in the bits at each level). | |
2913 | */ | |
2914 | tableattrs |= extract64(descriptor, 59, 5); | |
2915 | level++; | |
2916 | continue; | |
2917 | } | |
2918 | /* Block entry at level 1 or 2, or page entry at level 3. | |
2919 | * These are basically the same thing, although the number | |
2920 | * of bits we pull in from the vaddr varies. | |
2921 | */ | |
2922 | page_size = (1 << (39 - (9 * level))); | |
2923 | descaddr |= (address & (page_size - 1)); | |
2924 | /* Extract attributes from the descriptor and merge with table attrs */ | |
2925 | attrs = extract64(descriptor, 2, 10) | |
2926 | | (extract64(descriptor, 52, 12) << 10); | |
2927 | attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ | |
2928 | attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */ | |
2929 | /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 | |
2930 | * means "force PL1 access only", which means forcing AP[1] to 0. | |
2931 | */ | |
2932 | if (extract32(tableattrs, 2, 1)) { | |
2933 | attrs &= ~(1 << 4); | |
2934 | } | |
2935 | /* Since we're always in the Non-secure state, NSTable is ignored. */ | |
2936 | break; | |
2937 | } | |
2938 | /* Here descaddr is the final physical address, and attributes | |
2939 | * are all in attrs. | |
2940 | */ | |
2941 | fault_type = access_fault; | |
2942 | if ((attrs & (1 << 8)) == 0) { | |
2943 | /* Access flag */ | |
2944 | goto do_fault; | |
2945 | } | |
2946 | fault_type = permission_fault; | |
2947 | if (is_user && !(attrs & (1 << 4))) { | |
2948 | /* Unprivileged access not enabled */ | |
2949 | goto do_fault; | |
2950 | } | |
2951 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; | |
2952 | if (attrs & (1 << 12) || (!is_user && (attrs & (1 << 11)))) { | |
2953 | /* XN or PXN */ | |
2954 | if (access_type == 2) { | |
2955 | goto do_fault; | |
2956 | } | |
2957 | *prot &= ~PAGE_EXEC; | |
2958 | } | |
2959 | if (attrs & (1 << 5)) { | |
2960 | /* Write access forbidden */ | |
2961 | if (access_type == 1) { | |
2962 | goto do_fault; | |
2963 | } | |
2964 | *prot &= ~PAGE_WRITE; | |
2965 | } | |
2966 | ||
2967 | *phys_ptr = descaddr; | |
2968 | *page_size_ptr = page_size; | |
2969 | return 0; | |
2970 | ||
2971 | do_fault: | |
2972 | /* Long-descriptor format IFSR/DFSR value */ | |
2973 | return (1 << 9) | (fault_type << 2) | level; | |
2974 | } | |
2975 | ||
77a71dd1 PM |
2976 | static int get_phys_addr_mpu(CPUARMState *env, uint32_t address, |
2977 | int access_type, int is_user, | |
a8170e5e | 2978 | hwaddr *phys_ptr, int *prot) |
9ee6e8bb PB |
2979 | { |
2980 | int n; | |
2981 | uint32_t mask; | |
2982 | uint32_t base; | |
2983 | ||
2984 | *phys_ptr = address; | |
2985 | for (n = 7; n >= 0; n--) { | |
2986 | base = env->cp15.c6_region[n]; | |
2987 | if ((base & 1) == 0) | |
2988 | continue; | |
2989 | mask = 1 << ((base >> 1) & 0x1f); | |
2990 | /* Keep this shift separate from the above to avoid an | |
2991 | (undefined) << 32. */ | |
2992 | mask = (mask << 1) - 1; | |
2993 | if (((base ^ address) & ~mask) == 0) | |
2994 | break; | |
2995 | } | |
2996 | if (n < 0) | |
2997 | return 2; | |
2998 | ||
2999 | if (access_type == 2) { | |
3000 | mask = env->cp15.c5_insn; | |
3001 | } else { | |
3002 | mask = env->cp15.c5_data; | |
3003 | } | |
3004 | mask = (mask >> (n * 4)) & 0xf; | |
3005 | switch (mask) { | |
3006 | case 0: | |
3007 | return 1; | |
3008 | case 1: | |
3009 | if (is_user) | |
3010 | return 1; | |
3011 | *prot = PAGE_READ | PAGE_WRITE; | |
3012 | break; | |
3013 | case 2: | |
3014 | *prot = PAGE_READ; | |
3015 | if (!is_user) | |
3016 | *prot |= PAGE_WRITE; | |
3017 | break; | |
3018 | case 3: | |
3019 | *prot = PAGE_READ | PAGE_WRITE; | |
3020 | break; | |
3021 | case 5: | |
3022 | if (is_user) | |
3023 | return 1; | |
3024 | *prot = PAGE_READ; | |
3025 | break; | |
3026 | case 6: | |
3027 | *prot = PAGE_READ; | |
3028 | break; | |
3029 | default: | |
3030 | /* Bad permission. */ | |
3031 | return 1; | |
3032 | } | |
3ad493fc | 3033 | *prot |= PAGE_EXEC; |
9ee6e8bb PB |
3034 | return 0; |
3035 | } | |
3036 | ||
702a9357 PM |
3037 | /* get_phys_addr - get the physical address for this virtual address |
3038 | * | |
3039 | * Find the physical address corresponding to the given virtual address, | |
3040 | * by doing a translation table walk on MMU based systems or using the | |
3041 | * MPU state on MPU based systems. | |
3042 | * | |
3043 | * Returns 0 if the translation was successful. Otherwise, phys_ptr, | |
3044 | * prot and page_size are not filled in, and the return value provides | |
3045 | * information on why the translation aborted, in the format of a | |
3046 | * DFSR/IFSR fault register, with the following caveats: | |
3047 | * * we honour the short vs long DFSR format differences. | |
3048 | * * the WnR bit is never set (the caller must do this). | |
3049 | * * for MPU based systems we don't bother to return a full FSR format | |
3050 | * value. | |
3051 | * | |
3052 | * @env: CPUARMState | |
3053 | * @address: virtual address to get physical address for | |
3054 | * @access_type: 0 for read, 1 for write, 2 for execute | |
3055 | * @is_user: 0 for privileged access, 1 for user | |
3056 | * @phys_ptr: set to the physical address corresponding to the virtual address | |
3057 | * @prot: set to the permissions for the page containing phys_ptr | |
3058 | * @page_size: set to the size of the page containing phys_ptr | |
3059 | */ | |
0ecb72a5 | 3060 | static inline int get_phys_addr(CPUARMState *env, uint32_t address, |
9ee6e8bb | 3061 | int access_type, int is_user, |
a8170e5e | 3062 | hwaddr *phys_ptr, int *prot, |
d4c430a8 | 3063 | target_ulong *page_size) |
9ee6e8bb PB |
3064 | { |
3065 | /* Fast Context Switch Extension. */ | |
3066 | if (address < 0x02000000) | |
3067 | address += env->cp15.c13_fcse; | |
3068 | ||
3069 | if ((env->cp15.c1_sys & 1) == 0) { | |
3070 | /* MMU/MPU disabled. */ | |
3071 | *phys_ptr = address; | |
3ad493fc | 3072 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
d4c430a8 | 3073 | *page_size = TARGET_PAGE_SIZE; |
9ee6e8bb PB |
3074 | return 0; |
3075 | } else if (arm_feature(env, ARM_FEATURE_MPU)) { | |
d4c430a8 | 3076 | *page_size = TARGET_PAGE_SIZE; |
9ee6e8bb PB |
3077 | return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr, |
3078 | prot); | |
3dde962f PM |
3079 | } else if (extended_addresses_enabled(env)) { |
3080 | return get_phys_addr_lpae(env, address, access_type, is_user, phys_ptr, | |
3081 | prot, page_size); | |
9ee6e8bb PB |
3082 | } else if (env->cp15.c1_sys & (1 << 23)) { |
3083 | return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr, | |
d4c430a8 | 3084 | prot, page_size); |
9ee6e8bb PB |
3085 | } else { |
3086 | return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr, | |
d4c430a8 | 3087 | prot, page_size); |
9ee6e8bb PB |
3088 | } |
3089 | } | |
3090 | ||
0ecb72a5 | 3091 | int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, |
97b348e7 | 3092 | int access_type, int mmu_idx) |
b5ff1b31 | 3093 | { |
a8170e5e | 3094 | hwaddr phys_addr; |
d4c430a8 | 3095 | target_ulong page_size; |
b5ff1b31 | 3096 | int prot; |
6ebbf390 | 3097 | int ret, is_user; |
b5ff1b31 | 3098 | |
6ebbf390 | 3099 | is_user = mmu_idx == MMU_USER_IDX; |
d4c430a8 PB |
3100 | ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot, |
3101 | &page_size); | |
b5ff1b31 FB |
3102 | if (ret == 0) { |
3103 | /* Map a single [sub]page. */ | |
a8170e5e | 3104 | phys_addr &= ~(hwaddr)0x3ff; |
b5ff1b31 | 3105 | address &= ~(uint32_t)0x3ff; |
3ad493fc | 3106 | tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size); |
d4c430a8 | 3107 | return 0; |
b5ff1b31 FB |
3108 | } |
3109 | ||
3110 | if (access_type == 2) { | |
3111 | env->cp15.c5_insn = ret; | |
3112 | env->cp15.c6_insn = address; | |
3113 | env->exception_index = EXCP_PREFETCH_ABORT; | |
3114 | } else { | |
3115 | env->cp15.c5_data = ret; | |
9ee6e8bb PB |
3116 | if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6)) |
3117 | env->cp15.c5_data |= (1 << 11); | |
b5ff1b31 FB |
3118 | env->cp15.c6_data = address; |
3119 | env->exception_index = EXCP_DATA_ABORT; | |
3120 | } | |
3121 | return 1; | |
3122 | } | |
3123 | ||
00b941e5 | 3124 | hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) |
b5ff1b31 | 3125 | { |
00b941e5 | 3126 | ARMCPU *cpu = ARM_CPU(cs); |
a8170e5e | 3127 | hwaddr phys_addr; |
d4c430a8 | 3128 | target_ulong page_size; |
b5ff1b31 FB |
3129 | int prot; |
3130 | int ret; | |
3131 | ||
00b941e5 | 3132 | ret = get_phys_addr(&cpu->env, addr, 0, 0, &phys_addr, &prot, &page_size); |
b5ff1b31 | 3133 | |
00b941e5 | 3134 | if (ret != 0) { |
b5ff1b31 | 3135 | return -1; |
00b941e5 | 3136 | } |
b5ff1b31 FB |
3137 | |
3138 | return phys_addr; | |
3139 | } | |
3140 | ||
0ecb72a5 | 3141 | void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val) |
9ee6e8bb | 3142 | { |
39ea3d4e PM |
3143 | if ((env->uncached_cpsr & CPSR_M) == mode) { |
3144 | env->regs[13] = val; | |
3145 | } else { | |
f5206413 | 3146 | env->banked_r13[bank_number(mode)] = val; |
39ea3d4e | 3147 | } |
9ee6e8bb PB |
3148 | } |
3149 | ||
0ecb72a5 | 3150 | uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode) |
9ee6e8bb | 3151 | { |
39ea3d4e PM |
3152 | if ((env->uncached_cpsr & CPSR_M) == mode) { |
3153 | return env->regs[13]; | |
3154 | } else { | |
f5206413 | 3155 | return env->banked_r13[bank_number(mode)]; |
39ea3d4e | 3156 | } |
9ee6e8bb PB |
3157 | } |
3158 | ||
0ecb72a5 | 3159 | uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) |
9ee6e8bb PB |
3160 | { |
3161 | switch (reg) { | |
3162 | case 0: /* APSR */ | |
3163 | return xpsr_read(env) & 0xf8000000; | |
3164 | case 1: /* IAPSR */ | |
3165 | return xpsr_read(env) & 0xf80001ff; | |
3166 | case 2: /* EAPSR */ | |
3167 | return xpsr_read(env) & 0xff00fc00; | |
3168 | case 3: /* xPSR */ | |
3169 | return xpsr_read(env) & 0xff00fdff; | |
3170 | case 5: /* IPSR */ | |
3171 | return xpsr_read(env) & 0x000001ff; | |
3172 | case 6: /* EPSR */ | |
3173 | return xpsr_read(env) & 0x0700fc00; | |
3174 | case 7: /* IEPSR */ | |
3175 | return xpsr_read(env) & 0x0700edff; | |
3176 | case 8: /* MSP */ | |
3177 | return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13]; | |
3178 | case 9: /* PSP */ | |
3179 | return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp; | |
3180 | case 16: /* PRIMASK */ | |
3181 | return (env->uncached_cpsr & CPSR_I) != 0; | |
82845826 SH |
3182 | case 17: /* BASEPRI */ |
3183 | case 18: /* BASEPRI_MAX */ | |
9ee6e8bb | 3184 | return env->v7m.basepri; |
82845826 SH |
3185 | case 19: /* FAULTMASK */ |
3186 | return (env->uncached_cpsr & CPSR_F) != 0; | |
9ee6e8bb PB |
3187 | case 20: /* CONTROL */ |
3188 | return env->v7m.control; | |
3189 | default: | |
3190 | /* ??? For debugging only. */ | |
3191 | cpu_abort(env, "Unimplemented system register read (%d)\n", reg); | |
3192 | return 0; | |
3193 | } | |
3194 | } | |
3195 | ||
0ecb72a5 | 3196 | void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) |
9ee6e8bb PB |
3197 | { |
3198 | switch (reg) { | |
3199 | case 0: /* APSR */ | |
3200 | xpsr_write(env, val, 0xf8000000); | |
3201 | break; | |
3202 | case 1: /* IAPSR */ | |
3203 | xpsr_write(env, val, 0xf8000000); | |
3204 | break; | |
3205 | case 2: /* EAPSR */ | |
3206 | xpsr_write(env, val, 0xfe00fc00); | |
3207 | break; | |
3208 | case 3: /* xPSR */ | |
3209 | xpsr_write(env, val, 0xfe00fc00); | |
3210 | break; | |
3211 | case 5: /* IPSR */ | |
3212 | /* IPSR bits are readonly. */ | |
3213 | break; | |
3214 | case 6: /* EPSR */ | |
3215 | xpsr_write(env, val, 0x0600fc00); | |
3216 | break; | |
3217 | case 7: /* IEPSR */ | |
3218 | xpsr_write(env, val, 0x0600fc00); | |
3219 | break; | |
3220 | case 8: /* MSP */ | |
3221 | if (env->v7m.current_sp) | |
3222 | env->v7m.other_sp = val; | |
3223 | else | |
3224 | env->regs[13] = val; | |
3225 | break; | |
3226 | case 9: /* PSP */ | |
3227 | if (env->v7m.current_sp) | |
3228 | env->regs[13] = val; | |
3229 | else | |
3230 | env->v7m.other_sp = val; | |
3231 | break; | |
3232 | case 16: /* PRIMASK */ | |
3233 | if (val & 1) | |
3234 | env->uncached_cpsr |= CPSR_I; | |
3235 | else | |
3236 | env->uncached_cpsr &= ~CPSR_I; | |
3237 | break; | |
82845826 | 3238 | case 17: /* BASEPRI */ |
9ee6e8bb PB |
3239 | env->v7m.basepri = val & 0xff; |
3240 | break; | |
82845826 | 3241 | case 18: /* BASEPRI_MAX */ |
9ee6e8bb PB |
3242 | val &= 0xff; |
3243 | if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0)) | |
3244 | env->v7m.basepri = val; | |
3245 | break; | |
82845826 SH |
3246 | case 19: /* FAULTMASK */ |
3247 | if (val & 1) | |
3248 | env->uncached_cpsr |= CPSR_F; | |
3249 | else | |
3250 | env->uncached_cpsr &= ~CPSR_F; | |
3251 | break; | |
9ee6e8bb PB |
3252 | case 20: /* CONTROL */ |
3253 | env->v7m.control = val & 3; | |
3254 | switch_v7m_sp(env, (val & 2) != 0); | |
3255 | break; | |
3256 | default: | |
3257 | /* ??? For debugging only. */ | |
3258 | cpu_abort(env, "Unimplemented system register write (%d)\n", reg); | |
3259 | return; | |
3260 | } | |
3261 | } | |
3262 | ||
b5ff1b31 | 3263 | #endif |
6ddbc6e4 PB |
3264 | |
3265 | /* Note that signed overflow is undefined in C. The following routines are | |
3266 | careful to use unsigned types where modulo arithmetic is required. | |
3267 | Failure to do so _will_ break on newer gcc. */ | |
3268 | ||
3269 | /* Signed saturating arithmetic. */ | |
3270 | ||
1654b2d6 | 3271 | /* Perform 16-bit signed saturating addition. */ |
6ddbc6e4 PB |
3272 | static inline uint16_t add16_sat(uint16_t a, uint16_t b) |
3273 | { | |
3274 | uint16_t res; | |
3275 | ||
3276 | res = a + b; | |
3277 | if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { | |
3278 | if (a & 0x8000) | |
3279 | res = 0x8000; | |
3280 | else | |
3281 | res = 0x7fff; | |
3282 | } | |
3283 | return res; | |
3284 | } | |
3285 | ||
1654b2d6 | 3286 | /* Perform 8-bit signed saturating addition. */ |
6ddbc6e4 PB |
3287 | static inline uint8_t add8_sat(uint8_t a, uint8_t b) |
3288 | { | |
3289 | uint8_t res; | |
3290 | ||
3291 | res = a + b; | |
3292 | if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { | |
3293 | if (a & 0x80) | |
3294 | res = 0x80; | |
3295 | else | |
3296 | res = 0x7f; | |
3297 | } | |
3298 | return res; | |
3299 | } | |
3300 | ||
1654b2d6 | 3301 | /* Perform 16-bit signed saturating subtraction. */ |
6ddbc6e4 PB |
3302 | static inline uint16_t sub16_sat(uint16_t a, uint16_t b) |
3303 | { | |
3304 | uint16_t res; | |
3305 | ||
3306 | res = a - b; | |
3307 | if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { | |
3308 | if (a & 0x8000) | |
3309 | res = 0x8000; | |
3310 | else | |
3311 | res = 0x7fff; | |
3312 | } | |
3313 | return res; | |
3314 | } | |
3315 | ||
1654b2d6 | 3316 | /* Perform 8-bit signed saturating subtraction. */ |
6ddbc6e4 PB |
3317 | static inline uint8_t sub8_sat(uint8_t a, uint8_t b) |
3318 | { | |
3319 | uint8_t res; | |
3320 | ||
3321 | res = a - b; | |
3322 | if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { | |
3323 | if (a & 0x80) | |
3324 | res = 0x80; | |
3325 | else | |
3326 | res = 0x7f; | |
3327 | } | |
3328 | return res; | |
3329 | } | |
3330 | ||
3331 | #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); | |
3332 | #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); | |
3333 | #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); | |
3334 | #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); | |
3335 | #define PFX q | |
3336 | ||
3337 | #include "op_addsub.h" | |
3338 | ||
3339 | /* Unsigned saturating arithmetic. */ | |
460a09c1 | 3340 | static inline uint16_t add16_usat(uint16_t a, uint16_t b) |
6ddbc6e4 PB |
3341 | { |
3342 | uint16_t res; | |
3343 | res = a + b; | |
3344 | if (res < a) | |
3345 | res = 0xffff; | |
3346 | return res; | |
3347 | } | |
3348 | ||
460a09c1 | 3349 | static inline uint16_t sub16_usat(uint16_t a, uint16_t b) |
6ddbc6e4 | 3350 | { |
4c4fd3f8 | 3351 | if (a > b) |
6ddbc6e4 PB |
3352 | return a - b; |
3353 | else | |
3354 | return 0; | |
3355 | } | |
3356 | ||
3357 | static inline uint8_t add8_usat(uint8_t a, uint8_t b) | |
3358 | { | |
3359 | uint8_t res; | |
3360 | res = a + b; | |
3361 | if (res < a) | |
3362 | res = 0xff; | |
3363 | return res; | |
3364 | } | |
3365 | ||
3366 | static inline uint8_t sub8_usat(uint8_t a, uint8_t b) | |
3367 | { | |
4c4fd3f8 | 3368 | if (a > b) |
6ddbc6e4 PB |
3369 | return a - b; |
3370 | else | |
3371 | return 0; | |
3372 | } | |
3373 | ||
3374 | #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); | |
3375 | #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); | |
3376 | #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); | |
3377 | #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); | |
3378 | #define PFX uq | |
3379 | ||
3380 | #include "op_addsub.h" | |
3381 | ||
3382 | /* Signed modulo arithmetic. */ | |
3383 | #define SARITH16(a, b, n, op) do { \ | |
3384 | int32_t sum; \ | |
db6e2e65 | 3385 | sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ |
6ddbc6e4 PB |
3386 | RESULT(sum, n, 16); \ |
3387 | if (sum >= 0) \ | |
3388 | ge |= 3 << (n * 2); \ | |
3389 | } while(0) | |
3390 | ||
3391 | #define SARITH8(a, b, n, op) do { \ | |
3392 | int32_t sum; \ | |
db6e2e65 | 3393 | sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ |
6ddbc6e4 PB |
3394 | RESULT(sum, n, 8); \ |
3395 | if (sum >= 0) \ | |
3396 | ge |= 1 << n; \ | |
3397 | } while(0) | |
3398 | ||
3399 | ||
3400 | #define ADD16(a, b, n) SARITH16(a, b, n, +) | |
3401 | #define SUB16(a, b, n) SARITH16(a, b, n, -) | |
3402 | #define ADD8(a, b, n) SARITH8(a, b, n, +) | |
3403 | #define SUB8(a, b, n) SARITH8(a, b, n, -) | |
3404 | #define PFX s | |
3405 | #define ARITH_GE | |
3406 | ||
3407 | #include "op_addsub.h" | |
3408 | ||
3409 | /* Unsigned modulo arithmetic. */ | |
3410 | #define ADD16(a, b, n) do { \ | |
3411 | uint32_t sum; \ | |
3412 | sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ | |
3413 | RESULT(sum, n, 16); \ | |
a87aa10b | 3414 | if ((sum >> 16) == 1) \ |
6ddbc6e4 PB |
3415 | ge |= 3 << (n * 2); \ |
3416 | } while(0) | |
3417 | ||
3418 | #define ADD8(a, b, n) do { \ | |
3419 | uint32_t sum; \ | |
3420 | sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ | |
3421 | RESULT(sum, n, 8); \ | |
a87aa10b AZ |
3422 | if ((sum >> 8) == 1) \ |
3423 | ge |= 1 << n; \ | |
6ddbc6e4 PB |
3424 | } while(0) |
3425 | ||
3426 | #define SUB16(a, b, n) do { \ | |
3427 | uint32_t sum; \ | |
3428 | sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ | |
3429 | RESULT(sum, n, 16); \ | |
3430 | if ((sum >> 16) == 0) \ | |
3431 | ge |= 3 << (n * 2); \ | |
3432 | } while(0) | |
3433 | ||
3434 | #define SUB8(a, b, n) do { \ | |
3435 | uint32_t sum; \ | |
3436 | sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ | |
3437 | RESULT(sum, n, 8); \ | |
3438 | if ((sum >> 8) == 0) \ | |
a87aa10b | 3439 | ge |= 1 << n; \ |
6ddbc6e4 PB |
3440 | } while(0) |
3441 | ||
3442 | #define PFX u | |
3443 | #define ARITH_GE | |
3444 | ||
3445 | #include "op_addsub.h" | |
3446 | ||
3447 | /* Halved signed arithmetic. */ | |
3448 | #define ADD16(a, b, n) \ | |
3449 | RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) | |
3450 | #define SUB16(a, b, n) \ | |
3451 | RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) | |
3452 | #define ADD8(a, b, n) \ | |
3453 | RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) | |
3454 | #define SUB8(a, b, n) \ | |
3455 | RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) | |
3456 | #define PFX sh | |
3457 | ||
3458 | #include "op_addsub.h" | |
3459 | ||
3460 | /* Halved unsigned arithmetic. */ | |
3461 | #define ADD16(a, b, n) \ | |
3462 | RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) | |
3463 | #define SUB16(a, b, n) \ | |
3464 | RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) | |
3465 | #define ADD8(a, b, n) \ | |
3466 | RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) | |
3467 | #define SUB8(a, b, n) \ | |
3468 | RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) | |
3469 | #define PFX uh | |
3470 | ||
3471 | #include "op_addsub.h" | |
3472 | ||
3473 | static inline uint8_t do_usad(uint8_t a, uint8_t b) | |
3474 | { | |
3475 | if (a > b) | |
3476 | return a - b; | |
3477 | else | |
3478 | return b - a; | |
3479 | } | |
3480 | ||
3481 | /* Unsigned sum of absolute byte differences. */ | |
3482 | uint32_t HELPER(usad8)(uint32_t a, uint32_t b) | |
3483 | { | |
3484 | uint32_t sum; | |
3485 | sum = do_usad(a, b); | |
3486 | sum += do_usad(a >> 8, b >> 8); | |
3487 | sum += do_usad(a >> 16, b >>16); | |
3488 | sum += do_usad(a >> 24, b >> 24); | |
3489 | return sum; | |
3490 | } | |
3491 | ||
3492 | /* For ARMv6 SEL instruction. */ | |
3493 | uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) | |
3494 | { | |
3495 | uint32_t mask; | |
3496 | ||
3497 | mask = 0; | |
3498 | if (flags & 1) | |
3499 | mask |= 0xff; | |
3500 | if (flags & 2) | |
3501 | mask |= 0xff00; | |
3502 | if (flags & 4) | |
3503 | mask |= 0xff0000; | |
3504 | if (flags & 8) | |
3505 | mask |= 0xff000000; | |
3506 | return (a & mask) | (b & ~mask); | |
3507 | } | |
3508 | ||
b90372ad PM |
3509 | /* VFP support. We follow the convention used for VFP instructions: |
3510 | Single precision routines have a "s" suffix, double precision a | |
4373f3ce PB |
3511 | "d" suffix. */ |
3512 | ||
3513 | /* Convert host exception flags to vfp form. */ | |
3514 | static inline int vfp_exceptbits_from_host(int host_bits) | |
3515 | { | |
3516 | int target_bits = 0; | |
3517 | ||
3518 | if (host_bits & float_flag_invalid) | |
3519 | target_bits |= 1; | |
3520 | if (host_bits & float_flag_divbyzero) | |
3521 | target_bits |= 2; | |
3522 | if (host_bits & float_flag_overflow) | |
3523 | target_bits |= 4; | |
36802b6b | 3524 | if (host_bits & (float_flag_underflow | float_flag_output_denormal)) |
4373f3ce PB |
3525 | target_bits |= 8; |
3526 | if (host_bits & float_flag_inexact) | |
3527 | target_bits |= 0x10; | |
cecd8504 PM |
3528 | if (host_bits & float_flag_input_denormal) |
3529 | target_bits |= 0x80; | |
4373f3ce PB |
3530 | return target_bits; |
3531 | } | |
3532 | ||
0ecb72a5 | 3533 | uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env) |
4373f3ce PB |
3534 | { |
3535 | int i; | |
3536 | uint32_t fpscr; | |
3537 | ||
3538 | fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff) | |
3539 | | (env->vfp.vec_len << 16) | |
3540 | | (env->vfp.vec_stride << 20); | |
3541 | i = get_float_exception_flags(&env->vfp.fp_status); | |
3a492f3a | 3542 | i |= get_float_exception_flags(&env->vfp.standard_fp_status); |
4373f3ce PB |
3543 | fpscr |= vfp_exceptbits_from_host(i); |
3544 | return fpscr; | |
3545 | } | |
3546 | ||
0ecb72a5 | 3547 | uint32_t vfp_get_fpscr(CPUARMState *env) |
01653295 PM |
3548 | { |
3549 | return HELPER(vfp_get_fpscr)(env); | |
3550 | } | |
3551 | ||
4373f3ce PB |
3552 | /* Convert vfp exception flags to target form. */ |
3553 | static inline int vfp_exceptbits_to_host(int target_bits) | |
3554 | { | |
3555 | int host_bits = 0; | |
3556 | ||
3557 | if (target_bits & 1) | |
3558 | host_bits |= float_flag_invalid; | |
3559 | if (target_bits & 2) | |
3560 | host_bits |= float_flag_divbyzero; | |
3561 | if (target_bits & 4) | |
3562 | host_bits |= float_flag_overflow; | |
3563 | if (target_bits & 8) | |
3564 | host_bits |= float_flag_underflow; | |
3565 | if (target_bits & 0x10) | |
3566 | host_bits |= float_flag_inexact; | |
cecd8504 PM |
3567 | if (target_bits & 0x80) |
3568 | host_bits |= float_flag_input_denormal; | |
4373f3ce PB |
3569 | return host_bits; |
3570 | } | |
3571 | ||
0ecb72a5 | 3572 | void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) |
4373f3ce PB |
3573 | { |
3574 | int i; | |
3575 | uint32_t changed; | |
3576 | ||
3577 | changed = env->vfp.xregs[ARM_VFP_FPSCR]; | |
3578 | env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff); | |
3579 | env->vfp.vec_len = (val >> 16) & 7; | |
3580 | env->vfp.vec_stride = (val >> 20) & 3; | |
3581 | ||
3582 | changed ^= val; | |
3583 | if (changed & (3 << 22)) { | |
3584 | i = (val >> 22) & 3; | |
3585 | switch (i) { | |
3586 | case 0: | |
3587 | i = float_round_nearest_even; | |
3588 | break; | |
3589 | case 1: | |
3590 | i = float_round_up; | |
3591 | break; | |
3592 | case 2: | |
3593 | i = float_round_down; | |
3594 | break; | |
3595 | case 3: | |
3596 | i = float_round_to_zero; | |
3597 | break; | |
3598 | } | |
3599 | set_float_rounding_mode(i, &env->vfp.fp_status); | |
3600 | } | |
cecd8504 | 3601 | if (changed & (1 << 24)) { |
fe76d976 | 3602 | set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); |
cecd8504 PM |
3603 | set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); |
3604 | } | |
5c7908ed PB |
3605 | if (changed & (1 << 25)) |
3606 | set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status); | |
4373f3ce | 3607 | |
b12c390b | 3608 | i = vfp_exceptbits_to_host(val); |
4373f3ce | 3609 | set_float_exception_flags(i, &env->vfp.fp_status); |
3a492f3a | 3610 | set_float_exception_flags(0, &env->vfp.standard_fp_status); |
4373f3ce PB |
3611 | } |
3612 | ||
0ecb72a5 | 3613 | void vfp_set_fpscr(CPUARMState *env, uint32_t val) |
01653295 PM |
3614 | { |
3615 | HELPER(vfp_set_fpscr)(env, val); | |
3616 | } | |
3617 | ||
4373f3ce PB |
3618 | #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) |
3619 | ||
3620 | #define VFP_BINOP(name) \ | |
ae1857ec | 3621 | float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \ |
4373f3ce | 3622 | { \ |
ae1857ec PM |
3623 | float_status *fpst = fpstp; \ |
3624 | return float32_ ## name(a, b, fpst); \ | |
4373f3ce | 3625 | } \ |
ae1857ec | 3626 | float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \ |
4373f3ce | 3627 | { \ |
ae1857ec PM |
3628 | float_status *fpst = fpstp; \ |
3629 | return float64_ ## name(a, b, fpst); \ | |
4373f3ce PB |
3630 | } |
3631 | VFP_BINOP(add) | |
3632 | VFP_BINOP(sub) | |
3633 | VFP_BINOP(mul) | |
3634 | VFP_BINOP(div) | |
3635 | #undef VFP_BINOP | |
3636 | ||
3637 | float32 VFP_HELPER(neg, s)(float32 a) | |
3638 | { | |
3639 | return float32_chs(a); | |
3640 | } | |
3641 | ||
3642 | float64 VFP_HELPER(neg, d)(float64 a) | |
3643 | { | |
66230e0d | 3644 | return float64_chs(a); |
4373f3ce PB |
3645 | } |
3646 | ||
3647 | float32 VFP_HELPER(abs, s)(float32 a) | |
3648 | { | |
3649 | return float32_abs(a); | |
3650 | } | |
3651 | ||
3652 | float64 VFP_HELPER(abs, d)(float64 a) | |
3653 | { | |
66230e0d | 3654 | return float64_abs(a); |
4373f3ce PB |
3655 | } |
3656 | ||
0ecb72a5 | 3657 | float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env) |
4373f3ce PB |
3658 | { |
3659 | return float32_sqrt(a, &env->vfp.fp_status); | |
3660 | } | |
3661 | ||
0ecb72a5 | 3662 | float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env) |
4373f3ce PB |
3663 | { |
3664 | return float64_sqrt(a, &env->vfp.fp_status); | |
3665 | } | |
3666 | ||
3667 | /* XXX: check quiet/signaling case */ | |
3668 | #define DO_VFP_cmp(p, type) \ | |
0ecb72a5 | 3669 | void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \ |
4373f3ce PB |
3670 | { \ |
3671 | uint32_t flags; \ | |
3672 | switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \ | |
3673 | case 0: flags = 0x6; break; \ | |
3674 | case -1: flags = 0x8; break; \ | |
3675 | case 1: flags = 0x2; break; \ | |
3676 | default: case 2: flags = 0x3; break; \ | |
3677 | } \ | |
3678 | env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ | |
3679 | | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ | |
3680 | } \ | |
0ecb72a5 | 3681 | void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \ |
4373f3ce PB |
3682 | { \ |
3683 | uint32_t flags; \ | |
3684 | switch(type ## _compare(a, b, &env->vfp.fp_status)) { \ | |
3685 | case 0: flags = 0x6; break; \ | |
3686 | case -1: flags = 0x8; break; \ | |
3687 | case 1: flags = 0x2; break; \ | |
3688 | default: case 2: flags = 0x3; break; \ | |
3689 | } \ | |
3690 | env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ | |
3691 | | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ | |
3692 | } | |
3693 | DO_VFP_cmp(s, float32) | |
3694 | DO_VFP_cmp(d, float64) | |
3695 | #undef DO_VFP_cmp | |
3696 | ||
5500b06c | 3697 | /* Integer to float and float to integer conversions */ |
4373f3ce | 3698 | |
5500b06c PM |
3699 | #define CONV_ITOF(name, fsz, sign) \ |
3700 | float##fsz HELPER(name)(uint32_t x, void *fpstp) \ | |
3701 | { \ | |
3702 | float_status *fpst = fpstp; \ | |
85836979 | 3703 | return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ |
4373f3ce PB |
3704 | } |
3705 | ||
5500b06c PM |
3706 | #define CONV_FTOI(name, fsz, sign, round) \ |
3707 | uint32_t HELPER(name)(float##fsz x, void *fpstp) \ | |
3708 | { \ | |
3709 | float_status *fpst = fpstp; \ | |
3710 | if (float##fsz##_is_any_nan(x)) { \ | |
3711 | float_raise(float_flag_invalid, fpst); \ | |
3712 | return 0; \ | |
3713 | } \ | |
3714 | return float##fsz##_to_##sign##int32##round(x, fpst); \ | |
4373f3ce PB |
3715 | } |
3716 | ||
5500b06c PM |
3717 | #define FLOAT_CONVS(name, p, fsz, sign) \ |
3718 | CONV_ITOF(vfp_##name##to##p, fsz, sign) \ | |
3719 | CONV_FTOI(vfp_to##name##p, fsz, sign, ) \ | |
3720 | CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero) | |
4373f3ce | 3721 | |
5500b06c PM |
3722 | FLOAT_CONVS(si, s, 32, ) |
3723 | FLOAT_CONVS(si, d, 64, ) | |
3724 | FLOAT_CONVS(ui, s, 32, u) | |
3725 | FLOAT_CONVS(ui, d, 64, u) | |
4373f3ce | 3726 | |
5500b06c PM |
3727 | #undef CONV_ITOF |
3728 | #undef CONV_FTOI | |
3729 | #undef FLOAT_CONVS | |
4373f3ce PB |
3730 | |
3731 | /* floating point conversion */ | |
0ecb72a5 | 3732 | float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env) |
4373f3ce | 3733 | { |
2d627737 PM |
3734 | float64 r = float32_to_float64(x, &env->vfp.fp_status); |
3735 | /* ARM requires that S<->D conversion of any kind of NaN generates | |
3736 | * a quiet NaN by forcing the most significant frac bit to 1. | |
3737 | */ | |
3738 | return float64_maybe_silence_nan(r); | |
4373f3ce PB |
3739 | } |
3740 | ||
0ecb72a5 | 3741 | float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env) |
4373f3ce | 3742 | { |
2d627737 PM |
3743 | float32 r = float64_to_float32(x, &env->vfp.fp_status); |
3744 | /* ARM requires that S<->D conversion of any kind of NaN generates | |
3745 | * a quiet NaN by forcing the most significant frac bit to 1. | |
3746 | */ | |
3747 | return float32_maybe_silence_nan(r); | |
4373f3ce PB |
3748 | } |
3749 | ||
3750 | /* VFP3 fixed point conversion. */ | |
622465e1 | 3751 | #define VFP_CONV_FIX(name, p, fsz, itype, sign) \ |
5500b06c PM |
3752 | float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t x, uint32_t shift, \ |
3753 | void *fpstp) \ | |
4373f3ce | 3754 | { \ |
5500b06c | 3755 | float_status *fpst = fpstp; \ |
622465e1 | 3756 | float##fsz tmp; \ |
5500b06c PM |
3757 | tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \ |
3758 | return float##fsz##_scalbn(tmp, -(int)shift, fpst); \ | |
4373f3ce | 3759 | } \ |
5500b06c PM |
3760 | uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \ |
3761 | void *fpstp) \ | |
4373f3ce | 3762 | { \ |
5500b06c | 3763 | float_status *fpst = fpstp; \ |
622465e1 PM |
3764 | float##fsz tmp; \ |
3765 | if (float##fsz##_is_any_nan(x)) { \ | |
5500b06c | 3766 | float_raise(float_flag_invalid, fpst); \ |
622465e1 | 3767 | return 0; \ |
09d9487f | 3768 | } \ |
5500b06c PM |
3769 | tmp = float##fsz##_scalbn(x, shift, fpst); \ |
3770 | return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \ | |
622465e1 PM |
3771 | } |
3772 | ||
3773 | VFP_CONV_FIX(sh, d, 64, int16, ) | |
3774 | VFP_CONV_FIX(sl, d, 64, int32, ) | |
3775 | VFP_CONV_FIX(uh, d, 64, uint16, u) | |
3776 | VFP_CONV_FIX(ul, d, 64, uint32, u) | |
3777 | VFP_CONV_FIX(sh, s, 32, int16, ) | |
3778 | VFP_CONV_FIX(sl, s, 32, int32, ) | |
3779 | VFP_CONV_FIX(uh, s, 32, uint16, u) | |
3780 | VFP_CONV_FIX(ul, s, 32, uint32, u) | |
4373f3ce PB |
3781 | #undef VFP_CONV_FIX |
3782 | ||
60011498 | 3783 | /* Half precision conversions. */ |
0ecb72a5 | 3784 | static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s) |
60011498 | 3785 | { |
60011498 | 3786 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; |
fb91678d PM |
3787 | float32 r = float16_to_float32(make_float16(a), ieee, s); |
3788 | if (ieee) { | |
3789 | return float32_maybe_silence_nan(r); | |
3790 | } | |
3791 | return r; | |
60011498 PB |
3792 | } |
3793 | ||
0ecb72a5 | 3794 | static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s) |
60011498 | 3795 | { |
60011498 | 3796 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; |
fb91678d PM |
3797 | float16 r = float32_to_float16(a, ieee, s); |
3798 | if (ieee) { | |
3799 | r = float16_maybe_silence_nan(r); | |
3800 | } | |
3801 | return float16_val(r); | |
60011498 PB |
3802 | } |
3803 | ||
0ecb72a5 | 3804 | float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) |
2d981da7 PM |
3805 | { |
3806 | return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status); | |
3807 | } | |
3808 | ||
0ecb72a5 | 3809 | uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env) |
2d981da7 PM |
3810 | { |
3811 | return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status); | |
3812 | } | |
3813 | ||
0ecb72a5 | 3814 | float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) |
2d981da7 PM |
3815 | { |
3816 | return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status); | |
3817 | } | |
3818 | ||
0ecb72a5 | 3819 | uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env) |
2d981da7 PM |
3820 | { |
3821 | return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status); | |
3822 | } | |
3823 | ||
dda3ec49 | 3824 | #define float32_two make_float32(0x40000000) |
6aae3df1 PM |
3825 | #define float32_three make_float32(0x40400000) |
3826 | #define float32_one_point_five make_float32(0x3fc00000) | |
dda3ec49 | 3827 | |
0ecb72a5 | 3828 | float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env) |
4373f3ce | 3829 | { |
dda3ec49 PM |
3830 | float_status *s = &env->vfp.standard_fp_status; |
3831 | if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || | |
3832 | (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { | |
43fe9bdb PM |
3833 | if (!(float32_is_zero(a) || float32_is_zero(b))) { |
3834 | float_raise(float_flag_input_denormal, s); | |
3835 | } | |
dda3ec49 PM |
3836 | return float32_two; |
3837 | } | |
3838 | return float32_sub(float32_two, float32_mul(a, b, s), s); | |
4373f3ce PB |
3839 | } |
3840 | ||
0ecb72a5 | 3841 | float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env) |
4373f3ce | 3842 | { |
71826966 | 3843 | float_status *s = &env->vfp.standard_fp_status; |
9ea62f57 PM |
3844 | float32 product; |
3845 | if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || | |
3846 | (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { | |
43fe9bdb PM |
3847 | if (!(float32_is_zero(a) || float32_is_zero(b))) { |
3848 | float_raise(float_flag_input_denormal, s); | |
3849 | } | |
6aae3df1 | 3850 | return float32_one_point_five; |
9ea62f57 | 3851 | } |
6aae3df1 PM |
3852 | product = float32_mul(a, b, s); |
3853 | return float32_div(float32_sub(float32_three, product, s), float32_two, s); | |
4373f3ce PB |
3854 | } |
3855 | ||
8f8e3aa4 PB |
3856 | /* NEON helpers. */ |
3857 | ||
56bf4fe2 CL |
3858 | /* Constants 256 and 512 are used in some helpers; we avoid relying on |
3859 | * int->float conversions at run-time. */ | |
3860 | #define float64_256 make_float64(0x4070000000000000LL) | |
3861 | #define float64_512 make_float64(0x4080000000000000LL) | |
3862 | ||
fe0e4872 CL |
3863 | /* The algorithm that must be used to calculate the estimate |
3864 | * is specified by the ARM ARM. | |
3865 | */ | |
0ecb72a5 | 3866 | static float64 recip_estimate(float64 a, CPUARMState *env) |
fe0e4872 | 3867 | { |
1146a817 PM |
3868 | /* These calculations mustn't set any fp exception flags, |
3869 | * so we use a local copy of the fp_status. | |
3870 | */ | |
3871 | float_status dummy_status = env->vfp.standard_fp_status; | |
3872 | float_status *s = &dummy_status; | |
fe0e4872 CL |
3873 | /* q = (int)(a * 512.0) */ |
3874 | float64 q = float64_mul(float64_512, a, s); | |
3875 | int64_t q_int = float64_to_int64_round_to_zero(q, s); | |
3876 | ||
3877 | /* r = 1.0 / (((double)q + 0.5) / 512.0) */ | |
3878 | q = int64_to_float64(q_int, s); | |
3879 | q = float64_add(q, float64_half, s); | |
3880 | q = float64_div(q, float64_512, s); | |
3881 | q = float64_div(float64_one, q, s); | |
3882 | ||
3883 | /* s = (int)(256.0 * r + 0.5) */ | |
3884 | q = float64_mul(q, float64_256, s); | |
3885 | q = float64_add(q, float64_half, s); | |
3886 | q_int = float64_to_int64_round_to_zero(q, s); | |
3887 | ||
3888 | /* return (double)s / 256.0 */ | |
3889 | return float64_div(int64_to_float64(q_int, s), float64_256, s); | |
3890 | } | |
3891 | ||
0ecb72a5 | 3892 | float32 HELPER(recpe_f32)(float32 a, CPUARMState *env) |
4373f3ce | 3893 | { |
fe0e4872 CL |
3894 | float_status *s = &env->vfp.standard_fp_status; |
3895 | float64 f64; | |
3896 | uint32_t val32 = float32_val(a); | |
3897 | ||
3898 | int result_exp; | |
3899 | int a_exp = (val32 & 0x7f800000) >> 23; | |
3900 | int sign = val32 & 0x80000000; | |
3901 | ||
3902 | if (float32_is_any_nan(a)) { | |
3903 | if (float32_is_signaling_nan(a)) { | |
3904 | float_raise(float_flag_invalid, s); | |
3905 | } | |
3906 | return float32_default_nan; | |
3907 | } else if (float32_is_infinity(a)) { | |
3908 | return float32_set_sign(float32_zero, float32_is_neg(a)); | |
3909 | } else if (float32_is_zero_or_denormal(a)) { | |
43fe9bdb PM |
3910 | if (!float32_is_zero(a)) { |
3911 | float_raise(float_flag_input_denormal, s); | |
3912 | } | |
fe0e4872 CL |
3913 | float_raise(float_flag_divbyzero, s); |
3914 | return float32_set_sign(float32_infinity, float32_is_neg(a)); | |
3915 | } else if (a_exp >= 253) { | |
3916 | float_raise(float_flag_underflow, s); | |
3917 | return float32_set_sign(float32_zero, float32_is_neg(a)); | |
3918 | } | |
3919 | ||
3920 | f64 = make_float64((0x3feULL << 52) | |
3921 | | ((int64_t)(val32 & 0x7fffff) << 29)); | |
3922 | ||
3923 | result_exp = 253 - a_exp; | |
3924 | ||
3925 | f64 = recip_estimate(f64, env); | |
3926 | ||
3927 | val32 = sign | |
3928 | | ((result_exp & 0xff) << 23) | |
3929 | | ((float64_val(f64) >> 29) & 0x7fffff); | |
3930 | return make_float32(val32); | |
4373f3ce PB |
3931 | } |
3932 | ||
e07be5d2 CL |
3933 | /* The algorithm that must be used to calculate the estimate |
3934 | * is specified by the ARM ARM. | |
3935 | */ | |
0ecb72a5 | 3936 | static float64 recip_sqrt_estimate(float64 a, CPUARMState *env) |
e07be5d2 | 3937 | { |
1146a817 PM |
3938 | /* These calculations mustn't set any fp exception flags, |
3939 | * so we use a local copy of the fp_status. | |
3940 | */ | |
3941 | float_status dummy_status = env->vfp.standard_fp_status; | |
3942 | float_status *s = &dummy_status; | |
e07be5d2 CL |
3943 | float64 q; |
3944 | int64_t q_int; | |
3945 | ||
3946 | if (float64_lt(a, float64_half, s)) { | |
3947 | /* range 0.25 <= a < 0.5 */ | |
3948 | ||
3949 | /* a in units of 1/512 rounded down */ | |
3950 | /* q0 = (int)(a * 512.0); */ | |
3951 | q = float64_mul(float64_512, a, s); | |
3952 | q_int = float64_to_int64_round_to_zero(q, s); | |
3953 | ||
3954 | /* reciprocal root r */ | |
3955 | /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */ | |
3956 | q = int64_to_float64(q_int, s); | |
3957 | q = float64_add(q, float64_half, s); | |
3958 | q = float64_div(q, float64_512, s); | |
3959 | q = float64_sqrt(q, s); | |
3960 | q = float64_div(float64_one, q, s); | |
3961 | } else { | |
3962 | /* range 0.5 <= a < 1.0 */ | |
3963 | ||
3964 | /* a in units of 1/256 rounded down */ | |
3965 | /* q1 = (int)(a * 256.0); */ | |
3966 | q = float64_mul(float64_256, a, s); | |
3967 | int64_t q_int = float64_to_int64_round_to_zero(q, s); | |
3968 | ||
3969 | /* reciprocal root r */ | |
3970 | /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */ | |
3971 | q = int64_to_float64(q_int, s); | |
3972 | q = float64_add(q, float64_half, s); | |
3973 | q = float64_div(q, float64_256, s); | |
3974 | q = float64_sqrt(q, s); | |
3975 | q = float64_div(float64_one, q, s); | |
3976 | } | |
3977 | /* r in units of 1/256 rounded to nearest */ | |
3978 | /* s = (int)(256.0 * r + 0.5); */ | |
3979 | ||
3980 | q = float64_mul(q, float64_256,s ); | |
3981 | q = float64_add(q, float64_half, s); | |
3982 | q_int = float64_to_int64_round_to_zero(q, s); | |
3983 | ||
3984 | /* return (double)s / 256.0;*/ | |
3985 | return float64_div(int64_to_float64(q_int, s), float64_256, s); | |
3986 | } | |
3987 | ||
0ecb72a5 | 3988 | float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env) |
4373f3ce | 3989 | { |
e07be5d2 CL |
3990 | float_status *s = &env->vfp.standard_fp_status; |
3991 | int result_exp; | |
3992 | float64 f64; | |
3993 | uint32_t val; | |
3994 | uint64_t val64; | |
3995 | ||
3996 | val = float32_val(a); | |
3997 | ||
3998 | if (float32_is_any_nan(a)) { | |
3999 | if (float32_is_signaling_nan(a)) { | |
4000 | float_raise(float_flag_invalid, s); | |
4001 | } | |
4002 | return float32_default_nan; | |
4003 | } else if (float32_is_zero_or_denormal(a)) { | |
43fe9bdb PM |
4004 | if (!float32_is_zero(a)) { |
4005 | float_raise(float_flag_input_denormal, s); | |
4006 | } | |
e07be5d2 CL |
4007 | float_raise(float_flag_divbyzero, s); |
4008 | return float32_set_sign(float32_infinity, float32_is_neg(a)); | |
4009 | } else if (float32_is_neg(a)) { | |
4010 | float_raise(float_flag_invalid, s); | |
4011 | return float32_default_nan; | |
4012 | } else if (float32_is_infinity(a)) { | |
4013 | return float32_zero; | |
4014 | } | |
4015 | ||
4016 | /* Normalize to a double-precision value between 0.25 and 1.0, | |
4017 | * preserving the parity of the exponent. */ | |
4018 | if ((val & 0x800000) == 0) { | |
4019 | f64 = make_float64(((uint64_t)(val & 0x80000000) << 32) | |
4020 | | (0x3feULL << 52) | |
4021 | | ((uint64_t)(val & 0x7fffff) << 29)); | |
4022 | } else { | |
4023 | f64 = make_float64(((uint64_t)(val & 0x80000000) << 32) | |
4024 | | (0x3fdULL << 52) | |
4025 | | ((uint64_t)(val & 0x7fffff) << 29)); | |
4026 | } | |
4027 | ||
4028 | result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2; | |
4029 | ||
4030 | f64 = recip_sqrt_estimate(f64, env); | |
4031 | ||
4032 | val64 = float64_val(f64); | |
4033 | ||
26cc6abf | 4034 | val = ((result_exp & 0xff) << 23) |
e07be5d2 CL |
4035 | | ((val64 >> 29) & 0x7fffff); |
4036 | return make_float32(val); | |
4373f3ce PB |
4037 | } |
4038 | ||
0ecb72a5 | 4039 | uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env) |
4373f3ce | 4040 | { |
fe0e4872 CL |
4041 | float64 f64; |
4042 | ||
4043 | if ((a & 0x80000000) == 0) { | |
4044 | return 0xffffffff; | |
4045 | } | |
4046 | ||
4047 | f64 = make_float64((0x3feULL << 52) | |
4048 | | ((int64_t)(a & 0x7fffffff) << 21)); | |
4049 | ||
4050 | f64 = recip_estimate (f64, env); | |
4051 | ||
4052 | return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); | |
4373f3ce PB |
4053 | } |
4054 | ||
0ecb72a5 | 4055 | uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env) |
4373f3ce | 4056 | { |
e07be5d2 CL |
4057 | float64 f64; |
4058 | ||
4059 | if ((a & 0xc0000000) == 0) { | |
4060 | return 0xffffffff; | |
4061 | } | |
4062 | ||
4063 | if (a & 0x80000000) { | |
4064 | f64 = make_float64((0x3feULL << 52) | |
4065 | | ((uint64_t)(a & 0x7fffffff) << 21)); | |
4066 | } else { /* bits 31-30 == '01' */ | |
4067 | f64 = make_float64((0x3fdULL << 52) | |
4068 | | ((uint64_t)(a & 0x3fffffff) << 22)); | |
4069 | } | |
4070 | ||
4071 | f64 = recip_sqrt_estimate(f64, env); | |
4072 | ||
4073 | return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); | |
4373f3ce | 4074 | } |
fe1479c3 | 4075 | |
da97f52c PM |
4076 | /* VFPv4 fused multiply-accumulate */ |
4077 | float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp) | |
4078 | { | |
4079 | float_status *fpst = fpstp; | |
4080 | return float32_muladd(a, b, c, 0, fpst); | |
4081 | } | |
4082 | ||
4083 | float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp) | |
4084 | { | |
4085 | float_status *fpst = fpstp; | |
4086 | return float64_muladd(a, b, c, 0, fpst); | |
4087 | } | |
40cfacdd WN |
4088 | |
4089 | /* ARMv8 VMAXNM/VMINNM */ | |
4090 | float32 VFP_HELPER(maxnm, s)(float32 a, float32 b, void *fpstp) | |
4091 | { | |
4092 | float_status *fpst = fpstp; | |
4093 | return float32_maxnum(a, b, fpst); | |
4094 | } | |
4095 | ||
4096 | float64 VFP_HELPER(maxnm, d)(float64 a, float64 b, void *fpstp) | |
4097 | { | |
4098 | float_status *fpst = fpstp; | |
4099 | return float64_maxnum(a, b, fpst); | |
4100 | } | |
4101 | ||
4102 | float32 VFP_HELPER(minnm, s)(float32 a, float32 b, void *fpstp) | |
4103 | { | |
4104 | float_status *fpst = fpstp; | |
4105 | return float32_minnum(a, b, fpst); | |
4106 | } | |
4107 | ||
4108 | float64 VFP_HELPER(minnm, d)(float64 a, float64 b, void *fpstp) | |
4109 | { | |
4110 | float_status *fpst = fpstp; | |
4111 | return float64_minnum(a, b, fpst); | |
4112 | } |