]>
Commit | Line | Data |
---|---|---|
b5ff1b31 | 1 | #include "cpu.h" |
022c62cb | 2 | #include "exec/gdbstub.h" |
7b59220e | 3 | #include "helper.h" |
1de7afc9 | 4 | #include "qemu/host-utils.h" |
78027bb6 | 5 | #include "sysemu/arch_init.h" |
9c17d615 | 6 | #include "sysemu/sysemu.h" |
1de7afc9 | 7 | #include "qemu/bitops.h" |
eb0ecd5a WN |
8 | #include "qemu/crc32c.h" |
9 | #include <zlib.h> /* For crc32 */ | |
0b03bdfc | 10 | |
4a501606 PM |
11 | #ifndef CONFIG_USER_ONLY |
12 | static inline int get_phys_addr(CPUARMState *env, uint32_t address, | |
13 | int access_type, int is_user, | |
a8170e5e | 14 | hwaddr *phys_ptr, int *prot, |
4a501606 | 15 | target_ulong *page_size); |
7c2cb42b AF |
16 | |
17 | /* Definitions for the PMCCNTR and PMCR registers */ | |
18 | #define PMCRD 0x8 | |
19 | #define PMCRC 0x4 | |
20 | #define PMCRE 0x1 | |
4a501606 PM |
21 | #endif |
22 | ||
0ecb72a5 | 23 | static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) |
56aebc89 PB |
24 | { |
25 | int nregs; | |
26 | ||
27 | /* VFP data registers are always little-endian. */ | |
28 | nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; | |
29 | if (reg < nregs) { | |
30 | stfq_le_p(buf, env->vfp.regs[reg]); | |
31 | return 8; | |
32 | } | |
33 | if (arm_feature(env, ARM_FEATURE_NEON)) { | |
34 | /* Aliases for Q regs. */ | |
35 | nregs += 16; | |
36 | if (reg < nregs) { | |
37 | stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]); | |
38 | stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]); | |
39 | return 16; | |
40 | } | |
41 | } | |
42 | switch (reg - nregs) { | |
43 | case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; | |
44 | case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4; | |
45 | case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; | |
46 | } | |
47 | return 0; | |
48 | } | |
49 | ||
0ecb72a5 | 50 | static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) |
56aebc89 PB |
51 | { |
52 | int nregs; | |
53 | ||
54 | nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; | |
55 | if (reg < nregs) { | |
56 | env->vfp.regs[reg] = ldfq_le_p(buf); | |
57 | return 8; | |
58 | } | |
59 | if (arm_feature(env, ARM_FEATURE_NEON)) { | |
60 | nregs += 16; | |
61 | if (reg < nregs) { | |
62 | env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf); | |
63 | env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8); | |
64 | return 16; | |
65 | } | |
66 | } | |
67 | switch (reg - nregs) { | |
68 | case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; | |
69 | case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4; | |
71b3c3de | 70 | case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; |
56aebc89 PB |
71 | } |
72 | return 0; | |
73 | } | |
74 | ||
6a669427 PM |
75 | static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) |
76 | { | |
77 | switch (reg) { | |
78 | case 0 ... 31: | |
79 | /* 128 bit FP register */ | |
80 | stfq_le_p(buf, env->vfp.regs[reg * 2]); | |
81 | stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]); | |
82 | return 16; | |
83 | case 32: | |
84 | /* FPSR */ | |
85 | stl_p(buf, vfp_get_fpsr(env)); | |
86 | return 4; | |
87 | case 33: | |
88 | /* FPCR */ | |
89 | stl_p(buf, vfp_get_fpcr(env)); | |
90 | return 4; | |
91 | default: | |
92 | return 0; | |
93 | } | |
94 | } | |
95 | ||
96 | static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) | |
97 | { | |
98 | switch (reg) { | |
99 | case 0 ... 31: | |
100 | /* 128 bit FP register */ | |
101 | env->vfp.regs[reg * 2] = ldfq_le_p(buf); | |
102 | env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8); | |
103 | return 16; | |
104 | case 32: | |
105 | /* FPSR */ | |
106 | vfp_set_fpsr(env, ldl_p(buf)); | |
107 | return 4; | |
108 | case 33: | |
109 | /* FPCR */ | |
110 | vfp_set_fpcr(env, ldl_p(buf)); | |
111 | return 4; | |
112 | default: | |
113 | return 0; | |
114 | } | |
115 | } | |
116 | ||
c4241c7d | 117 | static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) |
d4e6df63 | 118 | { |
67ed771d | 119 | if (cpreg_field_is_64bit(ri)) { |
c4241c7d | 120 | return CPREG_FIELD64(env, ri); |
22d9e1a9 | 121 | } else { |
c4241c7d | 122 | return CPREG_FIELD32(env, ri); |
22d9e1a9 | 123 | } |
d4e6df63 PM |
124 | } |
125 | ||
c4241c7d PM |
126 | static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
127 | uint64_t value) | |
d4e6df63 | 128 | { |
67ed771d | 129 | if (cpreg_field_is_64bit(ri)) { |
22d9e1a9 PM |
130 | CPREG_FIELD64(env, ri) = value; |
131 | } else { | |
132 | CPREG_FIELD32(env, ri) = value; | |
133 | } | |
d4e6df63 PM |
134 | } |
135 | ||
59a1c327 | 136 | static uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) |
721fae12 | 137 | { |
59a1c327 | 138 | /* Raw read of a coprocessor register (as needed for migration, etc). */ |
721fae12 | 139 | if (ri->type & ARM_CP_CONST) { |
59a1c327 | 140 | return ri->resetvalue; |
721fae12 | 141 | } else if (ri->raw_readfn) { |
59a1c327 | 142 | return ri->raw_readfn(env, ri); |
721fae12 | 143 | } else if (ri->readfn) { |
59a1c327 | 144 | return ri->readfn(env, ri); |
721fae12 | 145 | } else { |
59a1c327 | 146 | return raw_read(env, ri); |
721fae12 | 147 | } |
721fae12 PM |
148 | } |
149 | ||
59a1c327 | 150 | static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, |
7900e9f1 | 151 | uint64_t v) |
721fae12 PM |
152 | { |
153 | /* Raw write of a coprocessor register (as needed for migration, etc). | |
721fae12 PM |
154 | * Note that constant registers are treated as write-ignored; the |
155 | * caller should check for success by whether a readback gives the | |
156 | * value written. | |
157 | */ | |
158 | if (ri->type & ARM_CP_CONST) { | |
59a1c327 | 159 | return; |
721fae12 | 160 | } else if (ri->raw_writefn) { |
c4241c7d | 161 | ri->raw_writefn(env, ri, v); |
721fae12 | 162 | } else if (ri->writefn) { |
c4241c7d | 163 | ri->writefn(env, ri, v); |
721fae12 | 164 | } else { |
afb2530f | 165 | raw_write(env, ri, v); |
721fae12 | 166 | } |
721fae12 PM |
167 | } |
168 | ||
169 | bool write_cpustate_to_list(ARMCPU *cpu) | |
170 | { | |
171 | /* Write the coprocessor state from cpu->env to the (index,value) list. */ | |
172 | int i; | |
173 | bool ok = true; | |
174 | ||
175 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |
176 | uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); | |
177 | const ARMCPRegInfo *ri; | |
59a1c327 | 178 | |
60322b39 | 179 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 PM |
180 | if (!ri) { |
181 | ok = false; | |
182 | continue; | |
183 | } | |
184 | if (ri->type & ARM_CP_NO_MIGRATE) { | |
185 | continue; | |
186 | } | |
59a1c327 | 187 | cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri); |
721fae12 PM |
188 | } |
189 | return ok; | |
190 | } | |
191 | ||
192 | bool write_list_to_cpustate(ARMCPU *cpu) | |
193 | { | |
194 | int i; | |
195 | bool ok = true; | |
196 | ||
197 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |
198 | uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); | |
199 | uint64_t v = cpu->cpreg_values[i]; | |
721fae12 PM |
200 | const ARMCPRegInfo *ri; |
201 | ||
60322b39 | 202 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 PM |
203 | if (!ri) { |
204 | ok = false; | |
205 | continue; | |
206 | } | |
207 | if (ri->type & ARM_CP_NO_MIGRATE) { | |
208 | continue; | |
209 | } | |
210 | /* Write value and confirm it reads back as written | |
211 | * (to catch read-only registers and partially read-only | |
212 | * registers where the incoming migration value doesn't match) | |
213 | */ | |
59a1c327 PM |
214 | write_raw_cp_reg(&cpu->env, ri, v); |
215 | if (read_raw_cp_reg(&cpu->env, ri) != v) { | |
721fae12 PM |
216 | ok = false; |
217 | } | |
218 | } | |
219 | return ok; | |
220 | } | |
221 | ||
222 | static void add_cpreg_to_list(gpointer key, gpointer opaque) | |
223 | { | |
224 | ARMCPU *cpu = opaque; | |
225 | uint64_t regidx; | |
226 | const ARMCPRegInfo *ri; | |
227 | ||
228 | regidx = *(uint32_t *)key; | |
60322b39 | 229 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 PM |
230 | |
231 | if (!(ri->type & ARM_CP_NO_MIGRATE)) { | |
232 | cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); | |
233 | /* The value array need not be initialized at this point */ | |
234 | cpu->cpreg_array_len++; | |
235 | } | |
236 | } | |
237 | ||
238 | static void count_cpreg(gpointer key, gpointer opaque) | |
239 | { | |
240 | ARMCPU *cpu = opaque; | |
241 | uint64_t regidx; | |
242 | const ARMCPRegInfo *ri; | |
243 | ||
244 | regidx = *(uint32_t *)key; | |
60322b39 | 245 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 PM |
246 | |
247 | if (!(ri->type & ARM_CP_NO_MIGRATE)) { | |
248 | cpu->cpreg_array_len++; | |
249 | } | |
250 | } | |
251 | ||
252 | static gint cpreg_key_compare(gconstpointer a, gconstpointer b) | |
253 | { | |
cbf239b7 AR |
254 | uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); |
255 | uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); | |
721fae12 | 256 | |
cbf239b7 AR |
257 | if (aidx > bidx) { |
258 | return 1; | |
259 | } | |
260 | if (aidx < bidx) { | |
261 | return -1; | |
262 | } | |
263 | return 0; | |
721fae12 PM |
264 | } |
265 | ||
82a3a118 PM |
266 | static void cpreg_make_keylist(gpointer key, gpointer value, gpointer udata) |
267 | { | |
268 | GList **plist = udata; | |
269 | ||
270 | *plist = g_list_prepend(*plist, key); | |
271 | } | |
272 | ||
721fae12 PM |
273 | void init_cpreg_list(ARMCPU *cpu) |
274 | { | |
275 | /* Initialise the cpreg_tuples[] array based on the cp_regs hash. | |
276 | * Note that we require cpreg_tuples[] to be sorted by key ID. | |
277 | */ | |
82a3a118 | 278 | GList *keys = NULL; |
721fae12 PM |
279 | int arraylen; |
280 | ||
82a3a118 PM |
281 | g_hash_table_foreach(cpu->cp_regs, cpreg_make_keylist, &keys); |
282 | ||
721fae12 PM |
283 | keys = g_list_sort(keys, cpreg_key_compare); |
284 | ||
285 | cpu->cpreg_array_len = 0; | |
286 | ||
287 | g_list_foreach(keys, count_cpreg, cpu); | |
288 | ||
289 | arraylen = cpu->cpreg_array_len; | |
290 | cpu->cpreg_indexes = g_new(uint64_t, arraylen); | |
291 | cpu->cpreg_values = g_new(uint64_t, arraylen); | |
292 | cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); | |
293 | cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); | |
294 | cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; | |
295 | cpu->cpreg_array_len = 0; | |
296 | ||
297 | g_list_foreach(keys, add_cpreg_to_list, cpu); | |
298 | ||
299 | assert(cpu->cpreg_array_len == arraylen); | |
300 | ||
301 | g_list_free(keys); | |
302 | } | |
303 | ||
c4241c7d | 304 | static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
c983fe6c | 305 | { |
00c8cb0a AF |
306 | ARMCPU *cpu = arm_env_get_cpu(env); |
307 | ||
c983fe6c | 308 | env->cp15.c3 = value; |
00c8cb0a | 309 | tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */ |
c983fe6c PM |
310 | } |
311 | ||
c4241c7d | 312 | static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
08de207b | 313 | { |
00c8cb0a AF |
314 | ARMCPU *cpu = arm_env_get_cpu(env); |
315 | ||
08de207b PM |
316 | if (env->cp15.c13_fcse != value) { |
317 | /* Unlike real hardware the qemu TLB uses virtual addresses, | |
318 | * not modified virtual addresses, so this causes a TLB flush. | |
319 | */ | |
00c8cb0a | 320 | tlb_flush(CPU(cpu), 1); |
08de207b PM |
321 | env->cp15.c13_fcse = value; |
322 | } | |
08de207b | 323 | } |
c4241c7d PM |
324 | |
325 | static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
326 | uint64_t value) | |
08de207b | 327 | { |
00c8cb0a AF |
328 | ARMCPU *cpu = arm_env_get_cpu(env); |
329 | ||
08de207b PM |
330 | if (env->cp15.c13_context != value && !arm_feature(env, ARM_FEATURE_MPU)) { |
331 | /* For VMSA (when not using the LPAE long descriptor page table | |
332 | * format) this register includes the ASID, so do a TLB flush. | |
333 | * For PMSA it is purely a process ID and no action is needed. | |
334 | */ | |
00c8cb0a | 335 | tlb_flush(CPU(cpu), 1); |
08de207b PM |
336 | } |
337 | env->cp15.c13_context = value; | |
08de207b PM |
338 | } |
339 | ||
c4241c7d PM |
340 | static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, |
341 | uint64_t value) | |
d929823f PM |
342 | { |
343 | /* Invalidate all (TLBIALL) */ | |
00c8cb0a AF |
344 | ARMCPU *cpu = arm_env_get_cpu(env); |
345 | ||
346 | tlb_flush(CPU(cpu), 1); | |
d929823f PM |
347 | } |
348 | ||
c4241c7d PM |
349 | static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, |
350 | uint64_t value) | |
d929823f PM |
351 | { |
352 | /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ | |
31b030d4 AF |
353 | ARMCPU *cpu = arm_env_get_cpu(env); |
354 | ||
355 | tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); | |
d929823f PM |
356 | } |
357 | ||
c4241c7d PM |
358 | static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, |
359 | uint64_t value) | |
d929823f PM |
360 | { |
361 | /* Invalidate by ASID (TLBIASID) */ | |
00c8cb0a AF |
362 | ARMCPU *cpu = arm_env_get_cpu(env); |
363 | ||
364 | tlb_flush(CPU(cpu), value == 0); | |
d929823f PM |
365 | } |
366 | ||
c4241c7d PM |
367 | static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, |
368 | uint64_t value) | |
d929823f PM |
369 | { |
370 | /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ | |
31b030d4 AF |
371 | ARMCPU *cpu = arm_env_get_cpu(env); |
372 | ||
373 | tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); | |
d929823f PM |
374 | } |
375 | ||
e9aa6c21 PM |
376 | static const ARMCPRegInfo cp_reginfo[] = { |
377 | /* DBGDIDR: just RAZ. In particular this means the "debug architecture | |
378 | * version" bits will read as a reserved value, which should cause | |
379 | * Linux to not try to use the debug hardware. | |
380 | */ | |
381 | { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, | |
382 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
c983fe6c PM |
383 | /* MMU Domain access control / MPU write buffer control */ |
384 | { .name = "DACR", .cp = 15, | |
385 | .crn = 3, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | |
386 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3), | |
d4e6df63 | 387 | .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, }, |
08de207b PM |
388 | { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0, |
389 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse), | |
d4e6df63 | 390 | .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, |
08de207b | 391 | { .name = "CONTEXTIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 1, |
a4f0cec6 | 392 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_context), |
d4e6df63 | 393 | .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, |
4fdd17dd PM |
394 | /* ??? This covers not just the impdef TLB lockdown registers but also |
395 | * some v7VMSA registers relating to TEX remap, so it is overly broad. | |
396 | */ | |
397 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY, | |
398 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, | |
d929823f PM |
399 | /* MMU TLB control. Note that the wildcarding means we cover not just |
400 | * the unified TLB ops but also the dside/iside/inner-shareable variants. | |
401 | */ | |
402 | { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, | |
d4e6df63 PM |
403 | .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, |
404 | .type = ARM_CP_NO_MIGRATE }, | |
d929823f | 405 | { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, |
d4e6df63 PM |
406 | .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, |
407 | .type = ARM_CP_NO_MIGRATE }, | |
d929823f | 408 | { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, |
d4e6df63 PM |
409 | .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, |
410 | .type = ARM_CP_NO_MIGRATE }, | |
d929823f | 411 | { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, |
d4e6df63 PM |
412 | .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, |
413 | .type = ARM_CP_NO_MIGRATE }, | |
c4804214 PM |
414 | /* Cache maintenance ops; some of this space may be overridden later. */ |
415 | { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, | |
416 | .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, | |
417 | .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, | |
e9aa6c21 PM |
418 | REGINFO_SENTINEL |
419 | }; | |
420 | ||
7d57f408 PM |
421 | static const ARMCPRegInfo not_v6_cp_reginfo[] = { |
422 | /* Not all pre-v6 cores implemented this WFI, so this is slightly | |
423 | * over-broad. | |
424 | */ | |
425 | { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, | |
426 | .access = PL1_W, .type = ARM_CP_WFI }, | |
427 | REGINFO_SENTINEL | |
428 | }; | |
429 | ||
430 | static const ARMCPRegInfo not_v7_cp_reginfo[] = { | |
431 | /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which | |
432 | * is UNPREDICTABLE; we choose to NOP as most implementations do). | |
433 | */ | |
434 | { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, | |
435 | .access = PL1_W, .type = ARM_CP_WFI }, | |
34f90529 PM |
436 | /* L1 cache lockdown. Not architectural in v6 and earlier but in practice |
437 | * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and | |
438 | * OMAPCP will override this space. | |
439 | */ | |
440 | { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, | |
441 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), | |
442 | .resetvalue = 0 }, | |
443 | { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, | |
444 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), | |
445 | .resetvalue = 0 }, | |
776d4e5c PM |
446 | /* v6 doesn't have the cache ID registers but Linux reads them anyway */ |
447 | { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, | |
d4e6df63 PM |
448 | .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE, |
449 | .resetvalue = 0 }, | |
7d57f408 PM |
450 | REGINFO_SENTINEL |
451 | }; | |
452 | ||
c4241c7d PM |
453 | static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
454 | uint64_t value) | |
2771db27 PM |
455 | { |
456 | if (env->cp15.c1_coproc != value) { | |
457 | env->cp15.c1_coproc = value; | |
458 | /* ??? Is this safe when called from within a TB? */ | |
459 | tb_flush(env); | |
460 | } | |
2771db27 PM |
461 | } |
462 | ||
7d57f408 PM |
463 | static const ARMCPRegInfo v6_cp_reginfo[] = { |
464 | /* prefetch by MVA in v6, NOP in v7 */ | |
465 | { .name = "MVA_prefetch", | |
466 | .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, | |
467 | .access = PL1_W, .type = ARM_CP_NOP }, | |
468 | { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, | |
469 | .access = PL0_W, .type = ARM_CP_NOP }, | |
091fd17c | 470 | { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, |
7d57f408 | 471 | .access = PL0_W, .type = ARM_CP_NOP }, |
091fd17c | 472 | { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, |
7d57f408 | 473 | .access = PL0_W, .type = ARM_CP_NOP }, |
06d76f31 PM |
474 | { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, |
475 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_insn), | |
476 | .resetvalue = 0, }, | |
477 | /* Watchpoint Fault Address Register : should actually only be present | |
478 | * for 1136, 1176, 11MPCore. | |
479 | */ | |
480 | { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, | |
481 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, | |
34222fb8 PM |
482 | { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, |
483 | .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, | |
2771db27 PM |
484 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc), |
485 | .resetvalue = 0, .writefn = cpacr_write }, | |
7d57f408 PM |
486 | REGINFO_SENTINEL |
487 | }; | |
488 | ||
fcd25206 | 489 | static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri) |
200ac0ef | 490 | { |
3b163b01 | 491 | /* Performance monitor registers user accessibility is controlled |
fcd25206 | 492 | * by PMUSERENR. |
200ac0ef PM |
493 | */ |
494 | if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) { | |
fcd25206 | 495 | return CP_ACCESS_TRAP; |
200ac0ef | 496 | } |
fcd25206 | 497 | return CP_ACCESS_OK; |
200ac0ef PM |
498 | } |
499 | ||
7c2cb42b | 500 | #ifndef CONFIG_USER_ONLY |
c4241c7d PM |
501 | static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
502 | uint64_t value) | |
200ac0ef | 503 | { |
7c2cb42b AF |
504 | /* Don't computer the number of ticks in user mode */ |
505 | uint32_t temp_ticks; | |
506 | ||
507 | temp_ticks = qemu_clock_get_us(QEMU_CLOCK_VIRTUAL) * | |
508 | get_ticks_per_sec() / 1000000; | |
509 | ||
510 | if (env->cp15.c9_pmcr & PMCRE) { | |
511 | /* If the counter is enabled */ | |
512 | if (env->cp15.c9_pmcr & PMCRD) { | |
513 | /* Increment once every 64 processor clock cycles */ | |
514 | env->cp15.c15_ccnt = (temp_ticks/64) - env->cp15.c15_ccnt; | |
515 | } else { | |
516 | env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt; | |
517 | } | |
518 | } | |
519 | ||
520 | if (value & PMCRC) { | |
521 | /* The counter has been reset */ | |
522 | env->cp15.c15_ccnt = 0; | |
523 | } | |
524 | ||
200ac0ef PM |
525 | /* only the DP, X, D and E bits are writable */ |
526 | env->cp15.c9_pmcr &= ~0x39; | |
527 | env->cp15.c9_pmcr |= (value & 0x39); | |
7c2cb42b AF |
528 | |
529 | if (env->cp15.c9_pmcr & PMCRE) { | |
530 | if (env->cp15.c9_pmcr & PMCRD) { | |
531 | /* Increment once every 64 processor clock cycles */ | |
532 | temp_ticks /= 64; | |
533 | } | |
534 | env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt; | |
535 | } | |
536 | } | |
537 | ||
538 | static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
539 | { | |
540 | uint32_t total_ticks; | |
541 | ||
542 | if (!(env->cp15.c9_pmcr & PMCRE)) { | |
543 | /* Counter is disabled, do not change value */ | |
544 | return env->cp15.c15_ccnt; | |
545 | } | |
546 | ||
547 | total_ticks = qemu_clock_get_us(QEMU_CLOCK_VIRTUAL) * | |
548 | get_ticks_per_sec() / 1000000; | |
549 | ||
550 | if (env->cp15.c9_pmcr & PMCRD) { | |
551 | /* Increment once every 64 processor clock cycles */ | |
552 | total_ticks /= 64; | |
553 | } | |
554 | return total_ticks - env->cp15.c15_ccnt; | |
555 | } | |
556 | ||
557 | static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
558 | uint64_t value) | |
559 | { | |
560 | uint32_t total_ticks; | |
561 | ||
562 | if (!(env->cp15.c9_pmcr & PMCRE)) { | |
563 | /* Counter is disabled, set the absolute value */ | |
564 | env->cp15.c15_ccnt = value; | |
565 | return; | |
566 | } | |
567 | ||
568 | total_ticks = qemu_clock_get_us(QEMU_CLOCK_VIRTUAL) * | |
569 | get_ticks_per_sec() / 1000000; | |
570 | ||
571 | if (env->cp15.c9_pmcr & PMCRD) { | |
572 | /* Increment once every 64 processor clock cycles */ | |
573 | total_ticks /= 64; | |
574 | } | |
575 | env->cp15.c15_ccnt = total_ticks - value; | |
200ac0ef | 576 | } |
7c2cb42b | 577 | #endif |
200ac0ef | 578 | |
c4241c7d | 579 | static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
200ac0ef PM |
580 | uint64_t value) |
581 | { | |
200ac0ef PM |
582 | value &= (1 << 31); |
583 | env->cp15.c9_pmcnten |= value; | |
200ac0ef PM |
584 | } |
585 | ||
c4241c7d PM |
586 | static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
587 | uint64_t value) | |
200ac0ef | 588 | { |
200ac0ef PM |
589 | value &= (1 << 31); |
590 | env->cp15.c9_pmcnten &= ~value; | |
200ac0ef PM |
591 | } |
592 | ||
c4241c7d PM |
593 | static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
594 | uint64_t value) | |
200ac0ef | 595 | { |
200ac0ef | 596 | env->cp15.c9_pmovsr &= ~value; |
200ac0ef PM |
597 | } |
598 | ||
c4241c7d PM |
599 | static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, |
600 | uint64_t value) | |
200ac0ef | 601 | { |
200ac0ef | 602 | env->cp15.c9_pmxevtyper = value & 0xff; |
200ac0ef PM |
603 | } |
604 | ||
c4241c7d | 605 | static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
200ac0ef PM |
606 | uint64_t value) |
607 | { | |
608 | env->cp15.c9_pmuserenr = value & 1; | |
200ac0ef PM |
609 | } |
610 | ||
c4241c7d PM |
611 | static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
612 | uint64_t value) | |
200ac0ef PM |
613 | { |
614 | /* We have no event counters so only the C bit can be changed */ | |
615 | value &= (1 << 31); | |
616 | env->cp15.c9_pminten |= value; | |
200ac0ef PM |
617 | } |
618 | ||
c4241c7d PM |
619 | static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
620 | uint64_t value) | |
200ac0ef PM |
621 | { |
622 | value &= (1 << 31); | |
623 | env->cp15.c9_pminten &= ~value; | |
200ac0ef PM |
624 | } |
625 | ||
c4241c7d PM |
626 | static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
627 | uint64_t value) | |
8641136c | 628 | { |
a505d7fe PM |
629 | /* Note that even though the AArch64 view of this register has bits |
630 | * [10:0] all RES0 we can only mask the bottom 5, to comply with the | |
631 | * architectural requirements for bits which are RES0 only in some | |
632 | * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 | |
633 | * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) | |
634 | */ | |
8641136c | 635 | env->cp15.c12_vbar = value & ~0x1Ful; |
8641136c NR |
636 | } |
637 | ||
c4241c7d | 638 | static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
776d4e5c PM |
639 | { |
640 | ARMCPU *cpu = arm_env_get_cpu(env); | |
c4241c7d | 641 | return cpu->ccsidr[env->cp15.c0_cssel]; |
776d4e5c PM |
642 | } |
643 | ||
c4241c7d PM |
644 | static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
645 | uint64_t value) | |
776d4e5c PM |
646 | { |
647 | env->cp15.c0_cssel = value & 0xf; | |
776d4e5c PM |
648 | } |
649 | ||
e9aa6c21 PM |
650 | static const ARMCPRegInfo v7_cp_reginfo[] = { |
651 | /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped | |
652 | * debug components | |
653 | */ | |
654 | { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, | |
655 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
091fd17c | 656 | { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
e9aa6c21 | 657 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
7d57f408 PM |
658 | /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ |
659 | { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, | |
660 | .access = PL1_W, .type = ARM_CP_NOP }, | |
200ac0ef PM |
661 | /* Performance monitors are implementation defined in v7, |
662 | * but with an ARM recommended set of registers, which we | |
663 | * follow (although we don't actually implement any counters) | |
664 | * | |
665 | * Performance registers fall into three categories: | |
666 | * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) | |
667 | * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) | |
668 | * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) | |
669 | * For the cases controlled by PMUSERENR we must set .access to PL0_RW | |
670 | * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. | |
671 | */ | |
672 | { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, | |
673 | .access = PL0_RW, .resetvalue = 0, | |
674 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), | |
fcd25206 PM |
675 | .writefn = pmcntenset_write, |
676 | .accessfn = pmreg_access, | |
677 | .raw_writefn = raw_write }, | |
200ac0ef PM |
678 | { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, |
679 | .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), | |
fcd25206 PM |
680 | .accessfn = pmreg_access, |
681 | .writefn = pmcntenclr_write, | |
d4e6df63 | 682 | .type = ARM_CP_NO_MIGRATE }, |
200ac0ef PM |
683 | { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, |
684 | .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), | |
fcd25206 PM |
685 | .accessfn = pmreg_access, |
686 | .writefn = pmovsr_write, | |
687 | .raw_writefn = raw_write }, | |
688 | /* Unimplemented so WI. */ | |
200ac0ef | 689 | { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, |
fcd25206 | 690 | .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP }, |
200ac0ef | 691 | /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE. |
fcd25206 | 692 | * We choose to RAZ/WI. |
200ac0ef PM |
693 | */ |
694 | { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, | |
fcd25206 PM |
695 | .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, |
696 | .accessfn = pmreg_access }, | |
7c2cb42b | 697 | #ifndef CONFIG_USER_ONLY |
200ac0ef | 698 | { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, |
7c2cb42b AF |
699 | .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO, |
700 | .readfn = pmccntr_read, .writefn = pmccntr_write, | |
fcd25206 | 701 | .accessfn = pmreg_access }, |
7c2cb42b | 702 | #endif |
200ac0ef PM |
703 | { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, |
704 | .access = PL0_RW, | |
705 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper), | |
fcd25206 PM |
706 | .accessfn = pmreg_access, .writefn = pmxevtyper_write, |
707 | .raw_writefn = raw_write }, | |
708 | /* Unimplemented, RAZ/WI. */ | |
200ac0ef | 709 | { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, |
fcd25206 PM |
710 | .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, |
711 | .accessfn = pmreg_access }, | |
200ac0ef PM |
712 | { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, |
713 | .access = PL0_R | PL1_RW, | |
714 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), | |
715 | .resetvalue = 0, | |
d4e6df63 | 716 | .writefn = pmuserenr_write, .raw_writefn = raw_write }, |
200ac0ef PM |
717 | { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, |
718 | .access = PL1_RW, | |
719 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), | |
720 | .resetvalue = 0, | |
d4e6df63 | 721 | .writefn = pmintenset_write, .raw_writefn = raw_write }, |
200ac0ef | 722 | { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, |
d4e6df63 | 723 | .access = PL1_RW, .type = ARM_CP_NO_MIGRATE, |
200ac0ef | 724 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), |
d4e6df63 | 725 | .resetvalue = 0, .writefn = pmintenclr_write, }, |
a505d7fe PM |
726 | { .name = "VBAR", .state = ARM_CP_STATE_BOTH, |
727 | .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, | |
8641136c NR |
728 | .access = PL1_RW, .writefn = vbar_write, |
729 | .fieldoffset = offsetof(CPUARMState, cp15.c12_vbar), | |
730 | .resetvalue = 0 }, | |
2771db27 PM |
731 | { .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0, |
732 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_scr), | |
733 | .resetvalue = 0, }, | |
7da845b0 PM |
734 | { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, |
735 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, | |
d4e6df63 | 736 | .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_MIGRATE }, |
7da845b0 PM |
737 | { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, |
738 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, | |
776d4e5c PM |
739 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel), |
740 | .writefn = csselr_write, .resetvalue = 0 }, | |
741 | /* Auxiliary ID register: this actually has an IMPDEF value but for now | |
742 | * just RAZ for all cores: | |
743 | */ | |
744 | { .name = "AIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 7, | |
745 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
b0fe2427 PM |
746 | /* MAIR can just read-as-written because we don't implement caches |
747 | * and so don't need to care about memory attributes. | |
748 | */ | |
749 | { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, | |
750 | .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, | |
751 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el1), | |
752 | .resetvalue = 0 }, | |
753 | /* For non-long-descriptor page tables these are PRRR and NMRR; | |
754 | * regardless they still act as reads-as-written for QEMU. | |
755 | * The override is necessary because of the overly-broad TLB_LOCKDOWN | |
756 | * definition. | |
757 | */ | |
758 | { .name = "MAIR0", .state = ARM_CP_STATE_AA32, .type = ARM_CP_OVERRIDE, | |
759 | .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, | |
760 | .fieldoffset = offsetoflow32(CPUARMState, cp15.mair_el1), | |
761 | .resetfn = arm_cp_reset_ignore }, | |
762 | { .name = "MAIR1", .state = ARM_CP_STATE_AA32, .type = ARM_CP_OVERRIDE, | |
763 | .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, | |
764 | .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el1), | |
765 | .resetfn = arm_cp_reset_ignore }, | |
e9aa6c21 PM |
766 | REGINFO_SENTINEL |
767 | }; | |
768 | ||
c4241c7d PM |
769 | static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
770 | uint64_t value) | |
c326b979 PM |
771 | { |
772 | value &= 1; | |
773 | env->teecr = value; | |
c326b979 PM |
774 | } |
775 | ||
c4241c7d | 776 | static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri) |
c326b979 | 777 | { |
c326b979 | 778 | if (arm_current_pl(env) == 0 && (env->teecr & 1)) { |
92611c00 | 779 | return CP_ACCESS_TRAP; |
c326b979 | 780 | } |
92611c00 | 781 | return CP_ACCESS_OK; |
c326b979 PM |
782 | } |
783 | ||
784 | static const ARMCPRegInfo t2ee_cp_reginfo[] = { | |
785 | { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, | |
786 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), | |
787 | .resetvalue = 0, | |
788 | .writefn = teecr_write }, | |
789 | { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, | |
790 | .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), | |
92611c00 | 791 | .accessfn = teehbr_access, .resetvalue = 0 }, |
c326b979 PM |
792 | REGINFO_SENTINEL |
793 | }; | |
794 | ||
4d31c596 | 795 | static const ARMCPRegInfo v6k_cp_reginfo[] = { |
e4fe830b PM |
796 | { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, |
797 | .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, | |
798 | .access = PL0_RW, | |
799 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el0), .resetvalue = 0 }, | |
4d31c596 PM |
800 | { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, |
801 | .access = PL0_RW, | |
e4fe830b PM |
802 | .fieldoffset = offsetoflow32(CPUARMState, cp15.tpidr_el0), |
803 | .resetfn = arm_cp_reset_ignore }, | |
804 | { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, | |
805 | .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, | |
806 | .access = PL0_R|PL1_W, | |
807 | .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el0), .resetvalue = 0 }, | |
4d31c596 PM |
808 | { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, |
809 | .access = PL0_R|PL1_W, | |
e4fe830b PM |
810 | .fieldoffset = offsetoflow32(CPUARMState, cp15.tpidrro_el0), |
811 | .resetfn = arm_cp_reset_ignore }, | |
812 | { .name = "TPIDR_EL1", .state = ARM_CP_STATE_BOTH, | |
813 | .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, | |
4d31c596 | 814 | .access = PL1_RW, |
e4fe830b | 815 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el1), .resetvalue = 0 }, |
4d31c596 PM |
816 | REGINFO_SENTINEL |
817 | }; | |
818 | ||
55d284af PM |
819 | #ifndef CONFIG_USER_ONLY |
820 | ||
00108f2d PM |
821 | static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri) |
822 | { | |
823 | /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */ | |
824 | if (arm_current_pl(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) { | |
825 | return CP_ACCESS_TRAP; | |
826 | } | |
827 | return CP_ACCESS_OK; | |
828 | } | |
829 | ||
830 | static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx) | |
831 | { | |
832 | /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */ | |
833 | if (arm_current_pl(env) == 0 && | |
834 | !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { | |
835 | return CP_ACCESS_TRAP; | |
836 | } | |
837 | return CP_ACCESS_OK; | |
838 | } | |
839 | ||
840 | static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx) | |
841 | { | |
842 | /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if | |
843 | * EL0[PV]TEN is zero. | |
844 | */ | |
845 | if (arm_current_pl(env) == 0 && | |
846 | !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { | |
847 | return CP_ACCESS_TRAP; | |
848 | } | |
849 | return CP_ACCESS_OK; | |
850 | } | |
851 | ||
852 | static CPAccessResult gt_pct_access(CPUARMState *env, | |
853 | const ARMCPRegInfo *ri) | |
854 | { | |
855 | return gt_counter_access(env, GTIMER_PHYS); | |
856 | } | |
857 | ||
858 | static CPAccessResult gt_vct_access(CPUARMState *env, | |
859 | const ARMCPRegInfo *ri) | |
860 | { | |
861 | return gt_counter_access(env, GTIMER_VIRT); | |
862 | } | |
863 | ||
864 | static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri) | |
865 | { | |
866 | return gt_timer_access(env, GTIMER_PHYS); | |
867 | } | |
868 | ||
869 | static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri) | |
870 | { | |
871 | return gt_timer_access(env, GTIMER_VIRT); | |
872 | } | |
873 | ||
55d284af PM |
874 | static uint64_t gt_get_countervalue(CPUARMState *env) |
875 | { | |
bc72ad67 | 876 | return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE; |
55d284af PM |
877 | } |
878 | ||
879 | static void gt_recalc_timer(ARMCPU *cpu, int timeridx) | |
880 | { | |
881 | ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; | |
882 | ||
883 | if (gt->ctl & 1) { | |
884 | /* Timer enabled: calculate and set current ISTATUS, irq, and | |
885 | * reset timer to when ISTATUS next has to change | |
886 | */ | |
887 | uint64_t count = gt_get_countervalue(&cpu->env); | |
888 | /* Note that this must be unsigned 64 bit arithmetic: */ | |
889 | int istatus = count >= gt->cval; | |
890 | uint64_t nexttick; | |
891 | ||
892 | gt->ctl = deposit32(gt->ctl, 2, 1, istatus); | |
893 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], | |
894 | (istatus && !(gt->ctl & 2))); | |
895 | if (istatus) { | |
896 | /* Next transition is when count rolls back over to zero */ | |
897 | nexttick = UINT64_MAX; | |
898 | } else { | |
899 | /* Next transition is when we hit cval */ | |
900 | nexttick = gt->cval; | |
901 | } | |
902 | /* Note that the desired next expiry time might be beyond the | |
903 | * signed-64-bit range of a QEMUTimer -- in this case we just | |
904 | * set the timer for as far in the future as possible. When the | |
905 | * timer expires we will reset the timer for any remaining period. | |
906 | */ | |
907 | if (nexttick > INT64_MAX / GTIMER_SCALE) { | |
908 | nexttick = INT64_MAX / GTIMER_SCALE; | |
909 | } | |
bc72ad67 | 910 | timer_mod(cpu->gt_timer[timeridx], nexttick); |
55d284af PM |
911 | } else { |
912 | /* Timer disabled: ISTATUS and timer output always clear */ | |
913 | gt->ctl &= ~4; | |
914 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); | |
bc72ad67 | 915 | timer_del(cpu->gt_timer[timeridx]); |
55d284af PM |
916 | } |
917 | } | |
918 | ||
55d284af PM |
919 | static void gt_cnt_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
920 | { | |
921 | ARMCPU *cpu = arm_env_get_cpu(env); | |
922 | int timeridx = ri->opc1 & 1; | |
923 | ||
bc72ad67 | 924 | timer_del(cpu->gt_timer[timeridx]); |
55d284af PM |
925 | } |
926 | ||
c4241c7d | 927 | static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) |
55d284af | 928 | { |
c4241c7d | 929 | return gt_get_countervalue(env); |
55d284af PM |
930 | } |
931 | ||
c4241c7d PM |
932 | static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
933 | uint64_t value) | |
55d284af PM |
934 | { |
935 | int timeridx = ri->opc1 & 1; | |
936 | ||
937 | env->cp15.c14_timer[timeridx].cval = value; | |
938 | gt_recalc_timer(arm_env_get_cpu(env), timeridx); | |
55d284af | 939 | } |
c4241c7d PM |
940 | |
941 | static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
55d284af PM |
942 | { |
943 | int timeridx = ri->crm & 1; | |
944 | ||
c4241c7d PM |
945 | return (uint32_t)(env->cp15.c14_timer[timeridx].cval - |
946 | gt_get_countervalue(env)); | |
55d284af PM |
947 | } |
948 | ||
c4241c7d PM |
949 | static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
950 | uint64_t value) | |
55d284af PM |
951 | { |
952 | int timeridx = ri->crm & 1; | |
953 | ||
954 | env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) + | |
955 | + sextract64(value, 0, 32); | |
956 | gt_recalc_timer(arm_env_get_cpu(env), timeridx); | |
55d284af PM |
957 | } |
958 | ||
c4241c7d PM |
959 | static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, |
960 | uint64_t value) | |
55d284af PM |
961 | { |
962 | ARMCPU *cpu = arm_env_get_cpu(env); | |
963 | int timeridx = ri->crm & 1; | |
964 | uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; | |
965 | ||
966 | env->cp15.c14_timer[timeridx].ctl = value & 3; | |
967 | if ((oldval ^ value) & 1) { | |
968 | /* Enable toggled */ | |
969 | gt_recalc_timer(cpu, timeridx); | |
970 | } else if ((oldval & value) & 2) { | |
971 | /* IMASK toggled: don't need to recalculate, | |
972 | * just set the interrupt line based on ISTATUS | |
973 | */ | |
974 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], | |
975 | (oldval & 4) && (value & 2)); | |
976 | } | |
55d284af PM |
977 | } |
978 | ||
979 | void arm_gt_ptimer_cb(void *opaque) | |
980 | { | |
981 | ARMCPU *cpu = opaque; | |
982 | ||
983 | gt_recalc_timer(cpu, GTIMER_PHYS); | |
984 | } | |
985 | ||
986 | void arm_gt_vtimer_cb(void *opaque) | |
987 | { | |
988 | ARMCPU *cpu = opaque; | |
989 | ||
990 | gt_recalc_timer(cpu, GTIMER_VIRT); | |
991 | } | |
992 | ||
993 | static const ARMCPRegInfo generic_timer_cp_reginfo[] = { | |
994 | /* Note that CNTFRQ is purely reads-as-written for the benefit | |
995 | * of software; writing it doesn't actually change the timer frequency. | |
996 | * Our reset value matches the fixed frequency we implement the timer at. | |
997 | */ | |
998 | { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, | |
a7adc4b7 PM |
999 | .type = ARM_CP_NO_MIGRATE, |
1000 | .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, | |
1001 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), | |
1002 | .resetfn = arm_cp_reset_ignore, | |
1003 | }, | |
1004 | { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, | |
1005 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, | |
1006 | .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, | |
55d284af PM |
1007 | .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), |
1008 | .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE, | |
55d284af PM |
1009 | }, |
1010 | /* overall control: mostly access permissions */ | |
a7adc4b7 PM |
1011 | { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, |
1012 | .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, | |
55d284af PM |
1013 | .access = PL1_RW, |
1014 | .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), | |
1015 | .resetvalue = 0, | |
1016 | }, | |
1017 | /* per-timer control */ | |
1018 | { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, | |
a7adc4b7 PM |
1019 | .type = ARM_CP_IO | ARM_CP_NO_MIGRATE, .access = PL1_RW | PL0_R, |
1020 | .accessfn = gt_ptimer_access, | |
1021 | .fieldoffset = offsetoflow32(CPUARMState, | |
1022 | cp15.c14_timer[GTIMER_PHYS].ctl), | |
1023 | .resetfn = arm_cp_reset_ignore, | |
1024 | .writefn = gt_ctl_write, .raw_writefn = raw_write, | |
1025 | }, | |
1026 | { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, | |
1027 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, | |
55d284af | 1028 | .type = ARM_CP_IO, .access = PL1_RW | PL0_R, |
a7adc4b7 | 1029 | .accessfn = gt_ptimer_access, |
55d284af PM |
1030 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), |
1031 | .resetvalue = 0, | |
00108f2d | 1032 | .writefn = gt_ctl_write, .raw_writefn = raw_write, |
55d284af PM |
1033 | }, |
1034 | { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, | |
a7adc4b7 PM |
1035 | .type = ARM_CP_IO | ARM_CP_NO_MIGRATE, .access = PL1_RW | PL0_R, |
1036 | .accessfn = gt_vtimer_access, | |
1037 | .fieldoffset = offsetoflow32(CPUARMState, | |
1038 | cp15.c14_timer[GTIMER_VIRT].ctl), | |
1039 | .resetfn = arm_cp_reset_ignore, | |
1040 | .writefn = gt_ctl_write, .raw_writefn = raw_write, | |
1041 | }, | |
1042 | { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, | |
1043 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, | |
55d284af | 1044 | .type = ARM_CP_IO, .access = PL1_RW | PL0_R, |
a7adc4b7 | 1045 | .accessfn = gt_vtimer_access, |
55d284af PM |
1046 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), |
1047 | .resetvalue = 0, | |
00108f2d | 1048 | .writefn = gt_ctl_write, .raw_writefn = raw_write, |
55d284af PM |
1049 | }, |
1050 | /* TimerValue views: a 32 bit downcounting view of the underlying state */ | |
1051 | { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, | |
1052 | .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R, | |
00108f2d | 1053 | .accessfn = gt_ptimer_access, |
55d284af PM |
1054 | .readfn = gt_tval_read, .writefn = gt_tval_write, |
1055 | }, | |
a7adc4b7 PM |
1056 | { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, |
1057 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, | |
1058 | .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R, | |
1059 | .readfn = gt_tval_read, .writefn = gt_tval_write, | |
1060 | }, | |
55d284af PM |
1061 | { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, |
1062 | .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R, | |
00108f2d | 1063 | .accessfn = gt_vtimer_access, |
55d284af PM |
1064 | .readfn = gt_tval_read, .writefn = gt_tval_write, |
1065 | }, | |
a7adc4b7 PM |
1066 | { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, |
1067 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, | |
1068 | .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R, | |
1069 | .readfn = gt_tval_read, .writefn = gt_tval_write, | |
1070 | }, | |
55d284af PM |
1071 | /* The counter itself */ |
1072 | { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, | |
1073 | .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO, | |
00108f2d | 1074 | .accessfn = gt_pct_access, |
a7adc4b7 PM |
1075 | .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, |
1076 | }, | |
1077 | { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, | |
1078 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, | |
1079 | .access = PL0_R, .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, | |
1080 | .accessfn = gt_pct_access, | |
55d284af PM |
1081 | .readfn = gt_cnt_read, .resetfn = gt_cnt_reset, |
1082 | }, | |
1083 | { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, | |
1084 | .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO, | |
00108f2d | 1085 | .accessfn = gt_vct_access, |
a7adc4b7 PM |
1086 | .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, |
1087 | }, | |
1088 | { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, | |
1089 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, | |
1090 | .access = PL0_R, .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, | |
1091 | .accessfn = gt_vct_access, | |
55d284af PM |
1092 | .readfn = gt_cnt_read, .resetfn = gt_cnt_reset, |
1093 | }, | |
1094 | /* Comparison value, indicating when the timer goes off */ | |
1095 | { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, | |
1096 | .access = PL1_RW | PL0_R, | |
a7adc4b7 | 1097 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_MIGRATE, |
55d284af | 1098 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), |
a7adc4b7 PM |
1099 | .accessfn = gt_ptimer_access, .resetfn = arm_cp_reset_ignore, |
1100 | .writefn = gt_cval_write, .raw_writefn = raw_write, | |
1101 | }, | |
1102 | { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, | |
1103 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, | |
1104 | .access = PL1_RW | PL0_R, | |
1105 | .type = ARM_CP_IO, | |
1106 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), | |
1107 | .resetvalue = 0, .accessfn = gt_vtimer_access, | |
00108f2d | 1108 | .writefn = gt_cval_write, .raw_writefn = raw_write, |
55d284af PM |
1109 | }, |
1110 | { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, | |
1111 | .access = PL1_RW | PL0_R, | |
a7adc4b7 | 1112 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_MIGRATE, |
55d284af | 1113 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), |
a7adc4b7 PM |
1114 | .accessfn = gt_vtimer_access, .resetfn = arm_cp_reset_ignore, |
1115 | .writefn = gt_cval_write, .raw_writefn = raw_write, | |
1116 | }, | |
1117 | { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, | |
1118 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, | |
1119 | .access = PL1_RW | PL0_R, | |
1120 | .type = ARM_CP_IO, | |
1121 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), | |
1122 | .resetvalue = 0, .accessfn = gt_vtimer_access, | |
00108f2d | 1123 | .writefn = gt_cval_write, .raw_writefn = raw_write, |
55d284af PM |
1124 | }, |
1125 | REGINFO_SENTINEL | |
1126 | }; | |
1127 | ||
1128 | #else | |
1129 | /* In user-mode none of the generic timer registers are accessible, | |
bc72ad67 | 1130 | * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs, |
55d284af PM |
1131 | * so instead just don't register any of them. |
1132 | */ | |
6cc7a3ae | 1133 | static const ARMCPRegInfo generic_timer_cp_reginfo[] = { |
6cc7a3ae PM |
1134 | REGINFO_SENTINEL |
1135 | }; | |
1136 | ||
55d284af PM |
1137 | #endif |
1138 | ||
c4241c7d | 1139 | static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
4a501606 | 1140 | { |
891a2fe7 PM |
1141 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
1142 | env->cp15.c7_par = value; | |
1143 | } else if (arm_feature(env, ARM_FEATURE_V7)) { | |
4a501606 PM |
1144 | env->cp15.c7_par = value & 0xfffff6ff; |
1145 | } else { | |
1146 | env->cp15.c7_par = value & 0xfffff1ff; | |
1147 | } | |
4a501606 PM |
1148 | } |
1149 | ||
1150 | #ifndef CONFIG_USER_ONLY | |
1151 | /* get_phys_addr() isn't present for user-mode-only targets */ | |
702a9357 PM |
1152 | |
1153 | /* Return true if extended addresses are enabled, ie this is an | |
1154 | * LPAE implementation and we are using the long-descriptor translation | |
1155 | * table format because the TTBCR EAE bit is set. | |
1156 | */ | |
1157 | static inline bool extended_addresses_enabled(CPUARMState *env) | |
1158 | { | |
1159 | return arm_feature(env, ARM_FEATURE_LPAE) | |
78dbbbe4 | 1160 | && (env->cp15.c2_control & (1U << 31)); |
702a9357 PM |
1161 | } |
1162 | ||
92611c00 PM |
1163 | static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri) |
1164 | { | |
1165 | if (ri->opc2 & 4) { | |
1166 | /* Other states are only available with TrustZone; in | |
1167 | * a non-TZ implementation these registers don't exist | |
1168 | * at all, which is an Uncategorized trap. This underdecoding | |
1169 | * is safe because the reginfo is NO_MIGRATE. | |
1170 | */ | |
1171 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
1172 | } | |
1173 | return CP_ACCESS_OK; | |
1174 | } | |
1175 | ||
c4241c7d | 1176 | static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
4a501606 | 1177 | { |
a8170e5e | 1178 | hwaddr phys_addr; |
4a501606 PM |
1179 | target_ulong page_size; |
1180 | int prot; | |
1181 | int ret, is_user = ri->opc2 & 2; | |
1182 | int access_type = ri->opc2 & 1; | |
1183 | ||
4a501606 PM |
1184 | ret = get_phys_addr(env, value, access_type, is_user, |
1185 | &phys_addr, &prot, &page_size); | |
702a9357 PM |
1186 | if (extended_addresses_enabled(env)) { |
1187 | /* ret is a DFSR/IFSR value for the long descriptor | |
1188 | * translation table format, but with WnR always clear. | |
1189 | * Convert it to a 64-bit PAR. | |
1190 | */ | |
1191 | uint64_t par64 = (1 << 11); /* LPAE bit always set */ | |
1192 | if (ret == 0) { | |
1193 | par64 |= phys_addr & ~0xfffULL; | |
1194 | /* We don't set the ATTR or SH fields in the PAR. */ | |
4a501606 | 1195 | } else { |
702a9357 PM |
1196 | par64 |= 1; /* F */ |
1197 | par64 |= (ret & 0x3f) << 1; /* FS */ | |
1198 | /* Note that S2WLK and FSTAGE are always zero, because we don't | |
1199 | * implement virtualization and therefore there can't be a stage 2 | |
1200 | * fault. | |
1201 | */ | |
4a501606 | 1202 | } |
702a9357 PM |
1203 | env->cp15.c7_par = par64; |
1204 | env->cp15.c7_par_hi = par64 >> 32; | |
4a501606 | 1205 | } else { |
702a9357 PM |
1206 | /* ret is a DFSR/IFSR value for the short descriptor |
1207 | * translation table format (with WnR always clear). | |
1208 | * Convert it to a 32-bit PAR. | |
1209 | */ | |
1210 | if (ret == 0) { | |
1211 | /* We do not set any attribute bits in the PAR */ | |
1212 | if (page_size == (1 << 24) | |
1213 | && arm_feature(env, ARM_FEATURE_V7)) { | |
1214 | env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1; | |
1215 | } else { | |
1216 | env->cp15.c7_par = phys_addr & 0xfffff000; | |
1217 | } | |
1218 | } else { | |
775fda92 PM |
1219 | env->cp15.c7_par = ((ret & (1 << 10)) >> 5) | |
1220 | ((ret & (1 << 12)) >> 6) | | |
702a9357 PM |
1221 | ((ret & 0xf) << 1) | 1; |
1222 | } | |
1223 | env->cp15.c7_par_hi = 0; | |
4a501606 | 1224 | } |
4a501606 PM |
1225 | } |
1226 | #endif | |
1227 | ||
1228 | static const ARMCPRegInfo vapa_cp_reginfo[] = { | |
1229 | { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, | |
1230 | .access = PL1_RW, .resetvalue = 0, | |
1231 | .fieldoffset = offsetof(CPUARMState, cp15.c7_par), | |
1232 | .writefn = par_write }, | |
1233 | #ifndef CONFIG_USER_ONLY | |
1234 | { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, | |
92611c00 PM |
1235 | .access = PL1_W, .accessfn = ats_access, |
1236 | .writefn = ats_write, .type = ARM_CP_NO_MIGRATE }, | |
4a501606 PM |
1237 | #endif |
1238 | REGINFO_SENTINEL | |
1239 | }; | |
1240 | ||
18032bec PM |
1241 | /* Return basic MPU access permission bits. */ |
1242 | static uint32_t simple_mpu_ap_bits(uint32_t val) | |
1243 | { | |
1244 | uint32_t ret; | |
1245 | uint32_t mask; | |
1246 | int i; | |
1247 | ret = 0; | |
1248 | mask = 3; | |
1249 | for (i = 0; i < 16; i += 2) { | |
1250 | ret |= (val >> i) & mask; | |
1251 | mask <<= 2; | |
1252 | } | |
1253 | return ret; | |
1254 | } | |
1255 | ||
1256 | /* Pad basic MPU access permission bits to extended format. */ | |
1257 | static uint32_t extended_mpu_ap_bits(uint32_t val) | |
1258 | { | |
1259 | uint32_t ret; | |
1260 | uint32_t mask; | |
1261 | int i; | |
1262 | ret = 0; | |
1263 | mask = 3; | |
1264 | for (i = 0; i < 16; i += 2) { | |
1265 | ret |= (val & mask) << i; | |
1266 | mask <<= 2; | |
1267 | } | |
1268 | return ret; | |
1269 | } | |
1270 | ||
c4241c7d PM |
1271 | static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1272 | uint64_t value) | |
18032bec PM |
1273 | { |
1274 | env->cp15.c5_data = extended_mpu_ap_bits(value); | |
18032bec PM |
1275 | } |
1276 | ||
c4241c7d | 1277 | static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) |
18032bec | 1278 | { |
c4241c7d | 1279 | return simple_mpu_ap_bits(env->cp15.c5_data); |
18032bec PM |
1280 | } |
1281 | ||
c4241c7d PM |
1282 | static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1283 | uint64_t value) | |
18032bec PM |
1284 | { |
1285 | env->cp15.c5_insn = extended_mpu_ap_bits(value); | |
18032bec PM |
1286 | } |
1287 | ||
c4241c7d | 1288 | static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) |
18032bec | 1289 | { |
c4241c7d | 1290 | return simple_mpu_ap_bits(env->cp15.c5_insn); |
18032bec PM |
1291 | } |
1292 | ||
1293 | static const ARMCPRegInfo pmsav5_cp_reginfo[] = { | |
1294 | { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, | |
d4e6df63 | 1295 | .access = PL1_RW, .type = ARM_CP_NO_MIGRATE, |
18032bec PM |
1296 | .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, |
1297 | .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, | |
1298 | { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, | |
d4e6df63 | 1299 | .access = PL1_RW, .type = ARM_CP_NO_MIGRATE, |
18032bec PM |
1300 | .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, |
1301 | .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, | |
1302 | { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, | |
1303 | .access = PL1_RW, | |
1304 | .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, }, | |
1305 | { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, | |
1306 | .access = PL1_RW, | |
1307 | .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, }, | |
ecce5c3c PM |
1308 | { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
1309 | .access = PL1_RW, | |
1310 | .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, | |
1311 | { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, | |
1312 | .access = PL1_RW, | |
1313 | .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, | |
06d76f31 | 1314 | /* Protection region base and size registers */ |
e508a92b PM |
1315 | { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, |
1316 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1317 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, | |
1318 | { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, | |
1319 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1320 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, | |
1321 | { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, | |
1322 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1323 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, | |
1324 | { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, | |
1325 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1326 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, | |
1327 | { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, | |
1328 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1329 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, | |
1330 | { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, | |
1331 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1332 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, | |
1333 | { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, | |
1334 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1335 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, | |
1336 | { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, | |
1337 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1338 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, | |
18032bec PM |
1339 | REGINFO_SENTINEL |
1340 | }; | |
1341 | ||
c4241c7d PM |
1342 | static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1343 | uint64_t value) | |
ecce5c3c | 1344 | { |
2ebcebe2 PM |
1345 | int maskshift = extract32(value, 0, 3); |
1346 | ||
74f1c6dd | 1347 | if (arm_feature(env, ARM_FEATURE_LPAE) && (value & (1 << 31))) { |
e42c4db3 | 1348 | value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); |
e42c4db3 PM |
1349 | } else { |
1350 | value &= 7; | |
1351 | } | |
1352 | /* Note that we always calculate c2_mask and c2_base_mask, but | |
1353 | * they are only used for short-descriptor tables (ie if EAE is 0); | |
1354 | * for long-descriptor tables the TTBCR fields are used differently | |
1355 | * and the c2_mask and c2_base_mask values are meaningless. | |
1356 | */ | |
ecce5c3c | 1357 | env->cp15.c2_control = value; |
2ebcebe2 PM |
1358 | env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> maskshift); |
1359 | env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> maskshift); | |
ecce5c3c PM |
1360 | } |
1361 | ||
c4241c7d PM |
1362 | static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1363 | uint64_t value) | |
d4e6df63 | 1364 | { |
00c8cb0a AF |
1365 | ARMCPU *cpu = arm_env_get_cpu(env); |
1366 | ||
d4e6df63 PM |
1367 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
1368 | /* With LPAE the TTBCR could result in a change of ASID | |
1369 | * via the TTBCR.A1 bit, so do a TLB flush. | |
1370 | */ | |
00c8cb0a | 1371 | tlb_flush(CPU(cpu), 1); |
d4e6df63 | 1372 | } |
c4241c7d | 1373 | vmsa_ttbcr_raw_write(env, ri, value); |
d4e6df63 PM |
1374 | } |
1375 | ||
ecce5c3c PM |
1376 | static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
1377 | { | |
1378 | env->cp15.c2_base_mask = 0xffffc000u; | |
1379 | env->cp15.c2_control = 0; | |
1380 | env->cp15.c2_mask = 0; | |
1381 | } | |
1382 | ||
cb2e37df PM |
1383 | static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1384 | uint64_t value) | |
1385 | { | |
00c8cb0a AF |
1386 | ARMCPU *cpu = arm_env_get_cpu(env); |
1387 | ||
cb2e37df | 1388 | /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ |
00c8cb0a | 1389 | tlb_flush(CPU(cpu), 1); |
cb2e37df PM |
1390 | env->cp15.c2_control = value; |
1391 | } | |
1392 | ||
327ed10f PM |
1393 | static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1394 | uint64_t value) | |
1395 | { | |
1396 | /* 64 bit accesses to the TTBRs can change the ASID and so we | |
1397 | * must flush the TLB. | |
1398 | */ | |
1399 | if (cpreg_field_is_64bit(ri)) { | |
00c8cb0a AF |
1400 | ARMCPU *cpu = arm_env_get_cpu(env); |
1401 | ||
1402 | tlb_flush(CPU(cpu), 1); | |
327ed10f PM |
1403 | } |
1404 | raw_write(env, ri, value); | |
1405 | } | |
1406 | ||
18032bec PM |
1407 | static const ARMCPRegInfo vmsa_cp_reginfo[] = { |
1408 | { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, | |
1409 | .access = PL1_RW, | |
1410 | .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, }, | |
1411 | { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, | |
1412 | .access = PL1_RW, | |
1413 | .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, }, | |
327ed10f PM |
1414 | { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, |
1415 | .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, | |
1416 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el1), | |
1417 | .writefn = vmsa_ttbr_write, .resetvalue = 0 }, | |
1418 | { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, | |
1419 | .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, | |
1420 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el1), | |
1421 | .writefn = vmsa_ttbr_write, .resetvalue = 0 }, | |
cb2e37df PM |
1422 | { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, |
1423 | .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, | |
1424 | .access = PL1_RW, .writefn = vmsa_tcr_el1_write, | |
1425 | .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, | |
ecce5c3c | 1426 | .fieldoffset = offsetof(CPUARMState, cp15.c2_control) }, |
cb2e37df PM |
1427 | { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, |
1428 | .access = PL1_RW, .type = ARM_CP_NO_MIGRATE, .writefn = vmsa_ttbcr_write, | |
1429 | .resetfn = arm_cp_reset_ignore, .raw_writefn = vmsa_ttbcr_raw_write, | |
1430 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c2_control) }, | |
06d76f31 PM |
1431 | { .name = "DFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, |
1432 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_data), | |
1433 | .resetvalue = 0, }, | |
18032bec PM |
1434 | REGINFO_SENTINEL |
1435 | }; | |
1436 | ||
c4241c7d PM |
1437 | static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1438 | uint64_t value) | |
1047b9d7 PM |
1439 | { |
1440 | env->cp15.c15_ticonfig = value & 0xe7; | |
1441 | /* The OS_TYPE bit in this register changes the reported CPUID! */ | |
1442 | env->cp15.c0_cpuid = (value & (1 << 5)) ? | |
1443 | ARM_CPUID_TI915T : ARM_CPUID_TI925T; | |
1047b9d7 PM |
1444 | } |
1445 | ||
c4241c7d PM |
1446 | static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1447 | uint64_t value) | |
1047b9d7 PM |
1448 | { |
1449 | env->cp15.c15_threadid = value & 0xffff; | |
1047b9d7 PM |
1450 | } |
1451 | ||
c4241c7d PM |
1452 | static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1453 | uint64_t value) | |
1047b9d7 PM |
1454 | { |
1455 | /* Wait-for-interrupt (deprecated) */ | |
c3affe56 | 1456 | cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT); |
1047b9d7 PM |
1457 | } |
1458 | ||
c4241c7d PM |
1459 | static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1460 | uint64_t value) | |
c4804214 PM |
1461 | { |
1462 | /* On OMAP there are registers indicating the max/min index of dcache lines | |
1463 | * containing a dirty line; cache flush operations have to reset these. | |
1464 | */ | |
1465 | env->cp15.c15_i_max = 0x000; | |
1466 | env->cp15.c15_i_min = 0xff0; | |
c4804214 PM |
1467 | } |
1468 | ||
18032bec PM |
1469 | static const ARMCPRegInfo omap_cp_reginfo[] = { |
1470 | { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, | |
1471 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, | |
1472 | .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, }, | |
1047b9d7 PM |
1473 | { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, |
1474 | .access = PL1_RW, .type = ARM_CP_NOP }, | |
1475 | { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, | |
1476 | .access = PL1_RW, | |
1477 | .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, | |
1478 | .writefn = omap_ticonfig_write }, | |
1479 | { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, | |
1480 | .access = PL1_RW, | |
1481 | .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, | |
1482 | { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, | |
1483 | .access = PL1_RW, .resetvalue = 0xff0, | |
1484 | .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, | |
1485 | { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, | |
1486 | .access = PL1_RW, | |
1487 | .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, | |
1488 | .writefn = omap_threadid_write }, | |
1489 | { .name = "TI925T_STATUS", .cp = 15, .crn = 15, | |
1490 | .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, | |
d4e6df63 | 1491 | .type = ARM_CP_NO_MIGRATE, |
1047b9d7 PM |
1492 | .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, |
1493 | /* TODO: Peripheral port remap register: | |
1494 | * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller | |
1495 | * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), | |
1496 | * when MMU is off. | |
1497 | */ | |
c4804214 | 1498 | { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, |
d4e6df63 PM |
1499 | .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, |
1500 | .type = ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE, | |
c4804214 | 1501 | .writefn = omap_cachemaint_write }, |
34f90529 PM |
1502 | { .name = "C9", .cp = 15, .crn = 9, |
1503 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, | |
1504 | .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, | |
1047b9d7 PM |
1505 | REGINFO_SENTINEL |
1506 | }; | |
1507 | ||
c4241c7d PM |
1508 | static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1509 | uint64_t value) | |
1047b9d7 PM |
1510 | { |
1511 | value &= 0x3fff; | |
1512 | if (env->cp15.c15_cpar != value) { | |
1513 | /* Changes cp0 to cp13 behavior, so needs a TB flush. */ | |
1514 | tb_flush(env); | |
1515 | env->cp15.c15_cpar = value; | |
1516 | } | |
1047b9d7 PM |
1517 | } |
1518 | ||
1519 | static const ARMCPRegInfo xscale_cp_reginfo[] = { | |
1520 | { .name = "XSCALE_CPAR", | |
1521 | .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, | |
1522 | .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, | |
1523 | .writefn = xscale_cpar_write, }, | |
2771db27 PM |
1524 | { .name = "XSCALE_AUXCR", |
1525 | .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, | |
1526 | .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), | |
1527 | .resetvalue = 0, }, | |
1047b9d7 PM |
1528 | REGINFO_SENTINEL |
1529 | }; | |
1530 | ||
1531 | static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { | |
1532 | /* RAZ/WI the whole crn=15 space, when we don't have a more specific | |
1533 | * implementation of this implementation-defined space. | |
1534 | * Ideally this should eventually disappear in favour of actually | |
1535 | * implementing the correct behaviour for all cores. | |
1536 | */ | |
1537 | { .name = "C15_IMPDEF", .cp = 15, .crn = 15, | |
1538 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | |
3671cd87 PC |
1539 | .access = PL1_RW, |
1540 | .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE | ARM_CP_OVERRIDE, | |
d4e6df63 | 1541 | .resetvalue = 0 }, |
18032bec PM |
1542 | REGINFO_SENTINEL |
1543 | }; | |
1544 | ||
c4804214 PM |
1545 | static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { |
1546 | /* Cache status: RAZ because we have no cache so it's always clean */ | |
1547 | { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, | |
d4e6df63 PM |
1548 | .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE, |
1549 | .resetvalue = 0 }, | |
c4804214 PM |
1550 | REGINFO_SENTINEL |
1551 | }; | |
1552 | ||
1553 | static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { | |
1554 | /* We never have a a block transfer operation in progress */ | |
1555 | { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, | |
d4e6df63 PM |
1556 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE, |
1557 | .resetvalue = 0 }, | |
30b05bba PM |
1558 | /* The cache ops themselves: these all NOP for QEMU */ |
1559 | { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, | |
1560 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
1561 | { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, | |
1562 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
1563 | { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, | |
1564 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
1565 | { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, | |
1566 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
1567 | { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, | |
1568 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
1569 | { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, | |
1570 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
c4804214 PM |
1571 | REGINFO_SENTINEL |
1572 | }; | |
1573 | ||
1574 | static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { | |
1575 | /* The cache test-and-clean instructions always return (1 << 30) | |
1576 | * to indicate that there are no dirty cache lines. | |
1577 | */ | |
1578 | { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, | |
d4e6df63 PM |
1579 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE, |
1580 | .resetvalue = (1 << 30) }, | |
c4804214 | 1581 | { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, |
d4e6df63 PM |
1582 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE, |
1583 | .resetvalue = (1 << 30) }, | |
c4804214 PM |
1584 | REGINFO_SENTINEL |
1585 | }; | |
1586 | ||
34f90529 PM |
1587 | static const ARMCPRegInfo strongarm_cp_reginfo[] = { |
1588 | /* Ignore ReadBuffer accesses */ | |
1589 | { .name = "C9_READBUFFER", .cp = 15, .crn = 9, | |
1590 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | |
d4e6df63 PM |
1591 | .access = PL1_RW, .resetvalue = 0, |
1592 | .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE }, | |
34f90529 PM |
1593 | REGINFO_SENTINEL |
1594 | }; | |
1595 | ||
c4241c7d | 1596 | static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
81bdde9d | 1597 | { |
55e5c285 AF |
1598 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
1599 | uint32_t mpidr = cs->cpu_index; | |
4b7fff2f PM |
1600 | /* We don't support setting cluster ID ([8..11]) (known as Aff1 |
1601 | * in later ARM ARM versions), or any of the higher affinity level fields, | |
81bdde9d PM |
1602 | * so these bits always RAZ. |
1603 | */ | |
1604 | if (arm_feature(env, ARM_FEATURE_V7MP)) { | |
78dbbbe4 | 1605 | mpidr |= (1U << 31); |
81bdde9d PM |
1606 | /* Cores which are uniprocessor (non-coherent) |
1607 | * but still implement the MP extensions set | |
1608 | * bit 30. (For instance, A9UP.) However we do | |
1609 | * not currently model any of those cores. | |
1610 | */ | |
1611 | } | |
c4241c7d | 1612 | return mpidr; |
81bdde9d PM |
1613 | } |
1614 | ||
1615 | static const ARMCPRegInfo mpidr_cp_reginfo[] = { | |
4b7fff2f PM |
1616 | { .name = "MPIDR", .state = ARM_CP_STATE_BOTH, |
1617 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, | |
d4e6df63 | 1618 | .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_MIGRATE }, |
81bdde9d PM |
1619 | REGINFO_SENTINEL |
1620 | }; | |
1621 | ||
c4241c7d | 1622 | static uint64_t par64_read(CPUARMState *env, const ARMCPRegInfo *ri) |
891a2fe7 | 1623 | { |
c4241c7d | 1624 | return ((uint64_t)env->cp15.c7_par_hi << 32) | env->cp15.c7_par; |
891a2fe7 PM |
1625 | } |
1626 | ||
c4241c7d PM |
1627 | static void par64_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1628 | uint64_t value) | |
891a2fe7 PM |
1629 | { |
1630 | env->cp15.c7_par_hi = value >> 32; | |
1631 | env->cp15.c7_par = value; | |
891a2fe7 PM |
1632 | } |
1633 | ||
1634 | static void par64_reset(CPUARMState *env, const ARMCPRegInfo *ri) | |
1635 | { | |
1636 | env->cp15.c7_par_hi = 0; | |
1637 | env->cp15.c7_par = 0; | |
1638 | } | |
1639 | ||
7ac681cf | 1640 | static const ARMCPRegInfo lpae_cp_reginfo[] = { |
b90372ad | 1641 | /* NOP AMAIR0/1: the override is because these clash with the rather |
7ac681cf PM |
1642 | * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo. |
1643 | */ | |
b0fe2427 PM |
1644 | { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, |
1645 | .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, | |
7ac681cf PM |
1646 | .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE, |
1647 | .resetvalue = 0 }, | |
b0fe2427 | 1648 | /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ |
7ac681cf PM |
1649 | { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, |
1650 | .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE, | |
1651 | .resetvalue = 0 }, | |
f9fc619a PM |
1652 | /* 64 bit access versions of the (dummy) debug registers */ |
1653 | { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, | |
1654 | .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, | |
1655 | { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, | |
1656 | .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, | |
891a2fe7 PM |
1657 | { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, |
1658 | .access = PL1_RW, .type = ARM_CP_64BIT, | |
1659 | .readfn = par64_read, .writefn = par64_write, .resetfn = par64_reset }, | |
1660 | { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, | |
327ed10f PM |
1661 | .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE, |
1662 | .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el1), | |
1663 | .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore }, | |
891a2fe7 | 1664 | { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, |
327ed10f PM |
1665 | .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE, |
1666 | .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el1), | |
1667 | .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore }, | |
7ac681cf PM |
1668 | REGINFO_SENTINEL |
1669 | }; | |
1670 | ||
c4241c7d | 1671 | static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
b0d2b7d0 | 1672 | { |
c4241c7d | 1673 | return vfp_get_fpcr(env); |
b0d2b7d0 PM |
1674 | } |
1675 | ||
c4241c7d PM |
1676 | static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1677 | uint64_t value) | |
b0d2b7d0 PM |
1678 | { |
1679 | vfp_set_fpcr(env, value); | |
b0d2b7d0 PM |
1680 | } |
1681 | ||
c4241c7d | 1682 | static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
b0d2b7d0 | 1683 | { |
c4241c7d | 1684 | return vfp_get_fpsr(env); |
b0d2b7d0 PM |
1685 | } |
1686 | ||
c4241c7d PM |
1687 | static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1688 | uint64_t value) | |
b0d2b7d0 PM |
1689 | { |
1690 | vfp_set_fpsr(env, value); | |
b0d2b7d0 PM |
1691 | } |
1692 | ||
8af35c37 PM |
1693 | static CPAccessResult aa64_cacheop_access(CPUARMState *env, |
1694 | const ARMCPRegInfo *ri) | |
1695 | { | |
1696 | /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless | |
1697 | * SCTLR_EL1.UCI is set. | |
1698 | */ | |
1699 | if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_UCI)) { | |
1700 | return CP_ACCESS_TRAP; | |
1701 | } | |
1702 | return CP_ACCESS_OK; | |
1703 | } | |
1704 | ||
168aa23b PM |
1705 | static void tlbi_aa64_va_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1706 | uint64_t value) | |
1707 | { | |
1708 | /* Invalidate by VA (AArch64 version) */ | |
31b030d4 | 1709 | ARMCPU *cpu = arm_env_get_cpu(env); |
168aa23b | 1710 | uint64_t pageaddr = value << 12; |
31b030d4 | 1711 | tlb_flush_page(CPU(cpu), pageaddr); |
168aa23b PM |
1712 | } |
1713 | ||
1714 | static void tlbi_aa64_vaa_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1715 | uint64_t value) | |
1716 | { | |
1717 | /* Invalidate by VA, all ASIDs (AArch64 version) */ | |
31b030d4 | 1718 | ARMCPU *cpu = arm_env_get_cpu(env); |
168aa23b | 1719 | uint64_t pageaddr = value << 12; |
31b030d4 | 1720 | tlb_flush_page(CPU(cpu), pageaddr); |
168aa23b PM |
1721 | } |
1722 | ||
1723 | static void tlbi_aa64_asid_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1724 | uint64_t value) | |
1725 | { | |
1726 | /* Invalidate by ASID (AArch64 version) */ | |
00c8cb0a | 1727 | ARMCPU *cpu = arm_env_get_cpu(env); |
168aa23b | 1728 | int asid = extract64(value, 48, 16); |
00c8cb0a | 1729 | tlb_flush(CPU(cpu), asid == 0); |
168aa23b PM |
1730 | } |
1731 | ||
b0d2b7d0 PM |
1732 | static const ARMCPRegInfo v8_cp_reginfo[] = { |
1733 | /* Minimal set of EL0-visible registers. This will need to be expanded | |
1734 | * significantly for system emulation of AArch64 CPUs. | |
1735 | */ | |
1736 | { .name = "NZCV", .state = ARM_CP_STATE_AA64, | |
1737 | .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, | |
1738 | .access = PL0_RW, .type = ARM_CP_NZCV }, | |
1739 | { .name = "FPCR", .state = ARM_CP_STATE_AA64, | |
1740 | .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, | |
1741 | .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, | |
1742 | { .name = "FPSR", .state = ARM_CP_STATE_AA64, | |
1743 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, | |
1744 | .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, | |
b0d2b7d0 PM |
1745 | /* Prohibit use of DC ZVA. OPTME: implement DC ZVA and allow its use. |
1746 | * For system mode the DZP bit here will need to be computed, not constant. | |
1747 | */ | |
1748 | { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, | |
1749 | .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, | |
1750 | .access = PL0_R, .type = ARM_CP_CONST, | |
1751 | .resetvalue = 0x10 }, | |
0eef9d98 PM |
1752 | { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, |
1753 | .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, | |
1754 | .access = PL1_R, .type = ARM_CP_CURRENTEL }, | |
8af35c37 PM |
1755 | /* Cache ops: all NOPs since we don't emulate caches */ |
1756 | { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, | |
1757 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, | |
1758 | .access = PL1_W, .type = ARM_CP_NOP }, | |
1759 | { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, | |
1760 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, | |
1761 | .access = PL1_W, .type = ARM_CP_NOP }, | |
1762 | { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, | |
1763 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, | |
1764 | .access = PL0_W, .type = ARM_CP_NOP, | |
1765 | .accessfn = aa64_cacheop_access }, | |
1766 | { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, | |
1767 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, | |
1768 | .access = PL1_W, .type = ARM_CP_NOP }, | |
1769 | { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, | |
1770 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, | |
1771 | .access = PL1_W, .type = ARM_CP_NOP }, | |
1772 | { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, | |
1773 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, | |
1774 | .access = PL0_W, .type = ARM_CP_NOP, | |
1775 | .accessfn = aa64_cacheop_access }, | |
1776 | { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, | |
1777 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, | |
1778 | .access = PL1_W, .type = ARM_CP_NOP }, | |
1779 | { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, | |
1780 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, | |
1781 | .access = PL0_W, .type = ARM_CP_NOP, | |
1782 | .accessfn = aa64_cacheop_access }, | |
1783 | { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, | |
1784 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, | |
1785 | .access = PL0_W, .type = ARM_CP_NOP, | |
1786 | .accessfn = aa64_cacheop_access }, | |
1787 | { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, | |
1788 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, | |
1789 | .access = PL1_W, .type = ARM_CP_NOP }, | |
168aa23b PM |
1790 | /* TLBI operations */ |
1791 | { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, | |
1792 | .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 0, | |
1793 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, | |
1794 | .writefn = tlbiall_write }, | |
1795 | { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, | |
1796 | .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 1, | |
1797 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, | |
1798 | .writefn = tlbi_aa64_va_write }, | |
1799 | { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, | |
1800 | .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 2, | |
1801 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, | |
1802 | .writefn = tlbi_aa64_asid_write }, | |
1803 | { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, | |
1804 | .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 3, | |
1805 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, | |
1806 | .writefn = tlbi_aa64_vaa_write }, | |
1807 | { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, | |
1808 | .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 5, | |
1809 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, | |
1810 | .writefn = tlbi_aa64_va_write }, | |
1811 | { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, | |
1812 | .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 7, | |
1813 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, | |
1814 | .writefn = tlbi_aa64_vaa_write }, | |
1815 | { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, | |
1816 | .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 0, | |
1817 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, | |
1818 | .writefn = tlbiall_write }, | |
1819 | { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, | |
1820 | .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 1, | |
1821 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, | |
1822 | .writefn = tlbi_aa64_va_write }, | |
1823 | { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, | |
1824 | .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 2, | |
1825 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, | |
1826 | .writefn = tlbi_aa64_asid_write }, | |
1827 | { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, | |
1828 | .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 3, | |
1829 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, | |
1830 | .writefn = tlbi_aa64_vaa_write }, | |
1831 | { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, | |
1832 | .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 5, | |
1833 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, | |
1834 | .writefn = tlbi_aa64_va_write }, | |
1835 | { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, | |
1836 | .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 7, | |
1837 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, | |
1838 | .writefn = tlbi_aa64_vaa_write }, | |
91e24069 PM |
1839 | /* Dummy implementation of monitor debug system control register: |
1840 | * we don't support debug. | |
1841 | */ | |
1842 | { .name = "MDSCR_EL1", .state = ARM_CP_STATE_AA64, | |
1843 | .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, | |
1844 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
cd5c11b8 PM |
1845 | /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */ |
1846 | { .name = "OSLAR_EL1", .state = ARM_CP_STATE_AA64, | |
1847 | .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, | |
1848 | .access = PL1_W, .type = ARM_CP_NOP }, | |
b0d2b7d0 PM |
1849 | REGINFO_SENTINEL |
1850 | }; | |
1851 | ||
c4241c7d PM |
1852 | static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1853 | uint64_t value) | |
2771db27 | 1854 | { |
00c8cb0a AF |
1855 | ARMCPU *cpu = arm_env_get_cpu(env); |
1856 | ||
2771db27 PM |
1857 | env->cp15.c1_sys = value; |
1858 | /* ??? Lots of these bits are not implemented. */ | |
1859 | /* This may enable/disable the MMU, so do a TLB flush. */ | |
00c8cb0a | 1860 | tlb_flush(CPU(cpu), 1); |
2771db27 PM |
1861 | } |
1862 | ||
7da845b0 PM |
1863 | static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri) |
1864 | { | |
1865 | /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64, | |
1866 | * but the AArch32 CTR has its own reginfo struct) | |
1867 | */ | |
1868 | if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_UCT)) { | |
1869 | return CP_ACCESS_TRAP; | |
1870 | } | |
1871 | return CP_ACCESS_OK; | |
1872 | } | |
1873 | ||
0b45451e PM |
1874 | static void define_aarch64_debug_regs(ARMCPU *cpu) |
1875 | { | |
1876 | /* Define breakpoint and watchpoint registers. These do nothing | |
1877 | * but read as written, for now. | |
1878 | */ | |
1879 | int i; | |
1880 | ||
1881 | for (i = 0; i < 16; i++) { | |
1882 | ARMCPRegInfo dbgregs[] = { | |
1883 | { .name = "DBGBVR", .state = ARM_CP_STATE_AA64, | |
1884 | .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, | |
1885 | .access = PL1_RW, | |
1886 | .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]) }, | |
1887 | { .name = "DBGBCR", .state = ARM_CP_STATE_AA64, | |
1888 | .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, | |
1889 | .access = PL1_RW, | |
1890 | .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]) }, | |
1891 | { .name = "DBGWVR", .state = ARM_CP_STATE_AA64, | |
1892 | .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, | |
1893 | .access = PL1_RW, | |
1894 | .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]) }, | |
1895 | { .name = "DBGWCR", .state = ARM_CP_STATE_AA64, | |
1896 | .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, | |
1897 | .access = PL1_RW, | |
1898 | .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]) }, | |
1899 | REGINFO_SENTINEL | |
1900 | }; | |
1901 | define_arm_cp_regs(cpu, dbgregs); | |
1902 | } | |
1903 | } | |
1904 | ||
2ceb98c0 PM |
1905 | void register_cp_regs_for_features(ARMCPU *cpu) |
1906 | { | |
1907 | /* Register all the coprocessor registers based on feature bits */ | |
1908 | CPUARMState *env = &cpu->env; | |
1909 | if (arm_feature(env, ARM_FEATURE_M)) { | |
1910 | /* M profile has no coprocessor registers */ | |
1911 | return; | |
1912 | } | |
1913 | ||
e9aa6c21 | 1914 | define_arm_cp_regs(cpu, cp_reginfo); |
7d57f408 | 1915 | if (arm_feature(env, ARM_FEATURE_V6)) { |
8515a092 PM |
1916 | /* The ID registers all have impdef reset values */ |
1917 | ARMCPRegInfo v6_idregs[] = { | |
1918 | { .name = "ID_PFR0", .cp = 15, .crn = 0, .crm = 1, | |
1919 | .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST, | |
1920 | .resetvalue = cpu->id_pfr0 }, | |
1921 | { .name = "ID_PFR1", .cp = 15, .crn = 0, .crm = 1, | |
1922 | .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST, | |
1923 | .resetvalue = cpu->id_pfr1 }, | |
1924 | { .name = "ID_DFR0", .cp = 15, .crn = 0, .crm = 1, | |
1925 | .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST, | |
1926 | .resetvalue = cpu->id_dfr0 }, | |
1927 | { .name = "ID_AFR0", .cp = 15, .crn = 0, .crm = 1, | |
1928 | .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST, | |
1929 | .resetvalue = cpu->id_afr0 }, | |
1930 | { .name = "ID_MMFR0", .cp = 15, .crn = 0, .crm = 1, | |
1931 | .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST, | |
1932 | .resetvalue = cpu->id_mmfr0 }, | |
1933 | { .name = "ID_MMFR1", .cp = 15, .crn = 0, .crm = 1, | |
1934 | .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST, | |
1935 | .resetvalue = cpu->id_mmfr1 }, | |
1936 | { .name = "ID_MMFR2", .cp = 15, .crn = 0, .crm = 1, | |
1937 | .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST, | |
1938 | .resetvalue = cpu->id_mmfr2 }, | |
1939 | { .name = "ID_MMFR3", .cp = 15, .crn = 0, .crm = 1, | |
1940 | .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST, | |
1941 | .resetvalue = cpu->id_mmfr3 }, | |
1942 | { .name = "ID_ISAR0", .cp = 15, .crn = 0, .crm = 2, | |
1943 | .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST, | |
1944 | .resetvalue = cpu->id_isar0 }, | |
1945 | { .name = "ID_ISAR1", .cp = 15, .crn = 0, .crm = 2, | |
1946 | .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST, | |
1947 | .resetvalue = cpu->id_isar1 }, | |
1948 | { .name = "ID_ISAR2", .cp = 15, .crn = 0, .crm = 2, | |
1949 | .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST, | |
1950 | .resetvalue = cpu->id_isar2 }, | |
1951 | { .name = "ID_ISAR3", .cp = 15, .crn = 0, .crm = 2, | |
1952 | .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST, | |
1953 | .resetvalue = cpu->id_isar3 }, | |
1954 | { .name = "ID_ISAR4", .cp = 15, .crn = 0, .crm = 2, | |
1955 | .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST, | |
1956 | .resetvalue = cpu->id_isar4 }, | |
1957 | { .name = "ID_ISAR5", .cp = 15, .crn = 0, .crm = 2, | |
1958 | .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST, | |
1959 | .resetvalue = cpu->id_isar5 }, | |
1960 | /* 6..7 are as yet unallocated and must RAZ */ | |
1961 | { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2, | |
1962 | .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST, | |
1963 | .resetvalue = 0 }, | |
1964 | { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2, | |
1965 | .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST, | |
1966 | .resetvalue = 0 }, | |
1967 | REGINFO_SENTINEL | |
1968 | }; | |
1969 | define_arm_cp_regs(cpu, v6_idregs); | |
7d57f408 PM |
1970 | define_arm_cp_regs(cpu, v6_cp_reginfo); |
1971 | } else { | |
1972 | define_arm_cp_regs(cpu, not_v6_cp_reginfo); | |
1973 | } | |
4d31c596 PM |
1974 | if (arm_feature(env, ARM_FEATURE_V6K)) { |
1975 | define_arm_cp_regs(cpu, v6k_cp_reginfo); | |
1976 | } | |
e9aa6c21 | 1977 | if (arm_feature(env, ARM_FEATURE_V7)) { |
200ac0ef | 1978 | /* v7 performance monitor control register: same implementor |
7c2cb42b AF |
1979 | * field as main ID register, and we implement only the cycle |
1980 | * count register. | |
200ac0ef | 1981 | */ |
7c2cb42b | 1982 | #ifndef CONFIG_USER_ONLY |
200ac0ef PM |
1983 | ARMCPRegInfo pmcr = { |
1984 | .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, | |
1985 | .access = PL0_RW, .resetvalue = cpu->midr & 0xff000000, | |
1986 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), | |
fcd25206 PM |
1987 | .accessfn = pmreg_access, .writefn = pmcr_write, |
1988 | .raw_writefn = raw_write, | |
200ac0ef | 1989 | }; |
7c2cb42b AF |
1990 | define_one_arm_cp_reg(cpu, &pmcr); |
1991 | #endif | |
776d4e5c | 1992 | ARMCPRegInfo clidr = { |
7da845b0 PM |
1993 | .name = "CLIDR", .state = ARM_CP_STATE_BOTH, |
1994 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, | |
776d4e5c PM |
1995 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr |
1996 | }; | |
776d4e5c | 1997 | define_one_arm_cp_reg(cpu, &clidr); |
e9aa6c21 | 1998 | define_arm_cp_regs(cpu, v7_cp_reginfo); |
7d57f408 PM |
1999 | } else { |
2000 | define_arm_cp_regs(cpu, not_v7_cp_reginfo); | |
e9aa6c21 | 2001 | } |
b0d2b7d0 | 2002 | if (arm_feature(env, ARM_FEATURE_V8)) { |
e60cef86 PM |
2003 | /* AArch64 ID registers, which all have impdef reset values */ |
2004 | ARMCPRegInfo v8_idregs[] = { | |
2005 | { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, | |
2006 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, | |
2007 | .access = PL1_R, .type = ARM_CP_CONST, | |
2008 | .resetvalue = cpu->id_aa64pfr0 }, | |
2009 | { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, | |
2010 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, | |
2011 | .access = PL1_R, .type = ARM_CP_CONST, | |
2012 | .resetvalue = cpu->id_aa64pfr1}, | |
2013 | { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, | |
2014 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, | |
2015 | .access = PL1_R, .type = ARM_CP_CONST, | |
2016 | .resetvalue = cpu->id_aa64dfr0 }, | |
2017 | { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, | |
2018 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, | |
2019 | .access = PL1_R, .type = ARM_CP_CONST, | |
2020 | .resetvalue = cpu->id_aa64dfr1 }, | |
2021 | { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, | |
2022 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, | |
2023 | .access = PL1_R, .type = ARM_CP_CONST, | |
2024 | .resetvalue = cpu->id_aa64afr0 }, | |
2025 | { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, | |
2026 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, | |
2027 | .access = PL1_R, .type = ARM_CP_CONST, | |
2028 | .resetvalue = cpu->id_aa64afr1 }, | |
2029 | { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, | |
2030 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, | |
2031 | .access = PL1_R, .type = ARM_CP_CONST, | |
2032 | .resetvalue = cpu->id_aa64isar0 }, | |
2033 | { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, | |
2034 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, | |
2035 | .access = PL1_R, .type = ARM_CP_CONST, | |
2036 | .resetvalue = cpu->id_aa64isar1 }, | |
2037 | { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, | |
2038 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, | |
2039 | .access = PL1_R, .type = ARM_CP_CONST, | |
2040 | .resetvalue = cpu->id_aa64mmfr0 }, | |
2041 | { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, | |
2042 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, | |
2043 | .access = PL1_R, .type = ARM_CP_CONST, | |
2044 | .resetvalue = cpu->id_aa64mmfr1 }, | |
2045 | REGINFO_SENTINEL | |
2046 | }; | |
2047 | define_arm_cp_regs(cpu, v8_idregs); | |
b0d2b7d0 | 2048 | define_arm_cp_regs(cpu, v8_cp_reginfo); |
0b45451e | 2049 | define_aarch64_debug_regs(cpu); |
b0d2b7d0 | 2050 | } |
18032bec PM |
2051 | if (arm_feature(env, ARM_FEATURE_MPU)) { |
2052 | /* These are the MPU registers prior to PMSAv6. Any new | |
2053 | * PMSA core later than the ARM946 will require that we | |
2054 | * implement the PMSAv6 or PMSAv7 registers, which are | |
2055 | * completely different. | |
2056 | */ | |
2057 | assert(!arm_feature(env, ARM_FEATURE_V6)); | |
2058 | define_arm_cp_regs(cpu, pmsav5_cp_reginfo); | |
2059 | } else { | |
2060 | define_arm_cp_regs(cpu, vmsa_cp_reginfo); | |
2061 | } | |
c326b979 PM |
2062 | if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { |
2063 | define_arm_cp_regs(cpu, t2ee_cp_reginfo); | |
2064 | } | |
6cc7a3ae PM |
2065 | if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { |
2066 | define_arm_cp_regs(cpu, generic_timer_cp_reginfo); | |
2067 | } | |
4a501606 PM |
2068 | if (arm_feature(env, ARM_FEATURE_VAPA)) { |
2069 | define_arm_cp_regs(cpu, vapa_cp_reginfo); | |
2070 | } | |
c4804214 PM |
2071 | if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { |
2072 | define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); | |
2073 | } | |
2074 | if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { | |
2075 | define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); | |
2076 | } | |
2077 | if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { | |
2078 | define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); | |
2079 | } | |
18032bec PM |
2080 | if (arm_feature(env, ARM_FEATURE_OMAPCP)) { |
2081 | define_arm_cp_regs(cpu, omap_cp_reginfo); | |
2082 | } | |
34f90529 PM |
2083 | if (arm_feature(env, ARM_FEATURE_STRONGARM)) { |
2084 | define_arm_cp_regs(cpu, strongarm_cp_reginfo); | |
2085 | } | |
1047b9d7 PM |
2086 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { |
2087 | define_arm_cp_regs(cpu, xscale_cp_reginfo); | |
2088 | } | |
2089 | if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { | |
2090 | define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); | |
2091 | } | |
7ac681cf PM |
2092 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
2093 | define_arm_cp_regs(cpu, lpae_cp_reginfo); | |
2094 | } | |
7884849c PM |
2095 | /* Slightly awkwardly, the OMAP and StrongARM cores need all of |
2096 | * cp15 crn=0 to be writes-ignored, whereas for other cores they should | |
2097 | * be read-only (ie write causes UNDEF exception). | |
2098 | */ | |
2099 | { | |
2100 | ARMCPRegInfo id_cp_reginfo[] = { | |
2101 | /* Note that the MIDR isn't a simple constant register because | |
2102 | * of the TI925 behaviour where writes to another register can | |
2103 | * cause the MIDR value to change. | |
97ce8d61 PC |
2104 | * |
2105 | * Unimplemented registers in the c15 0 0 0 space default to | |
2106 | * MIDR. Define MIDR first as this entire space, then CTR, TCMTR | |
2107 | * and friends override accordingly. | |
7884849c PM |
2108 | */ |
2109 | { .name = "MIDR", | |
97ce8d61 | 2110 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, |
7884849c | 2111 | .access = PL1_R, .resetvalue = cpu->midr, |
d4e6df63 | 2112 | .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, |
97ce8d61 PC |
2113 | .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), |
2114 | .type = ARM_CP_OVERRIDE }, | |
cd4da631 PM |
2115 | { .name = "MIDR_EL1", .state = ARM_CP_STATE_AA64, |
2116 | .opc0 = 3, .opc1 = 0, .opc2 = 0, .crn = 0, .crm = 0, | |
2117 | .access = PL1_R, .resetvalue = cpu->midr, .type = ARM_CP_CONST }, | |
7884849c PM |
2118 | { .name = "CTR", |
2119 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, | |
2120 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, | |
7da845b0 PM |
2121 | { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, |
2122 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, | |
2123 | .access = PL0_R, .accessfn = ctr_el0_access, | |
2124 | .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, | |
7884849c PM |
2125 | { .name = "TCMTR", |
2126 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, | |
2127 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
2128 | { .name = "TLBTR", | |
2129 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, | |
2130 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
2131 | /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ | |
2132 | { .name = "DUMMY", | |
2133 | .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, | |
2134 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
2135 | { .name = "DUMMY", | |
2136 | .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, | |
2137 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
2138 | { .name = "DUMMY", | |
2139 | .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, | |
2140 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
2141 | { .name = "DUMMY", | |
2142 | .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, | |
2143 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
2144 | { .name = "DUMMY", | |
2145 | .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, | |
2146 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
2147 | REGINFO_SENTINEL | |
2148 | }; | |
2149 | ARMCPRegInfo crn0_wi_reginfo = { | |
2150 | .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, | |
2151 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, | |
2152 | .type = ARM_CP_NOP | ARM_CP_OVERRIDE | |
2153 | }; | |
2154 | if (arm_feature(env, ARM_FEATURE_OMAPCP) || | |
2155 | arm_feature(env, ARM_FEATURE_STRONGARM)) { | |
2156 | ARMCPRegInfo *r; | |
2157 | /* Register the blanket "writes ignored" value first to cover the | |
a703eda1 PC |
2158 | * whole space. Then update the specific ID registers to allow write |
2159 | * access, so that they ignore writes rather than causing them to | |
2160 | * UNDEF. | |
7884849c PM |
2161 | */ |
2162 | define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); | |
2163 | for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { | |
2164 | r->access = PL1_RW; | |
7884849c | 2165 | } |
7884849c | 2166 | } |
a703eda1 | 2167 | define_arm_cp_regs(cpu, id_cp_reginfo); |
7884849c PM |
2168 | } |
2169 | ||
97ce8d61 PC |
2170 | if (arm_feature(env, ARM_FEATURE_MPIDR)) { |
2171 | define_arm_cp_regs(cpu, mpidr_cp_reginfo); | |
2172 | } | |
2173 | ||
2771db27 PM |
2174 | if (arm_feature(env, ARM_FEATURE_AUXCR)) { |
2175 | ARMCPRegInfo auxcr = { | |
2176 | .name = "AUXCR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, | |
2177 | .access = PL1_RW, .type = ARM_CP_CONST, | |
2178 | .resetvalue = cpu->reset_auxcr | |
2179 | }; | |
2180 | define_one_arm_cp_reg(cpu, &auxcr); | |
2181 | } | |
2182 | ||
d8ba780b PC |
2183 | if (arm_feature(env, ARM_FEATURE_CBAR)) { |
2184 | ARMCPRegInfo cbar = { | |
2185 | .name = "CBAR", .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, | |
2186 | .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, | |
2187 | .fieldoffset = offsetof(CPUARMState, cp15.c15_config_base_address) | |
2188 | }; | |
2189 | define_one_arm_cp_reg(cpu, &cbar); | |
2190 | } | |
2191 | ||
2771db27 PM |
2192 | /* Generic registers whose values depend on the implementation */ |
2193 | { | |
2194 | ARMCPRegInfo sctlr = { | |
5ebafdf3 PM |
2195 | .name = "SCTLR", .state = ARM_CP_STATE_BOTH, |
2196 | .opc0 = 3, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, | |
2771db27 | 2197 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_sys), |
d4e6df63 PM |
2198 | .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, |
2199 | .raw_writefn = raw_write, | |
2771db27 PM |
2200 | }; |
2201 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { | |
2202 | /* Normally we would always end the TB on an SCTLR write, but Linux | |
2203 | * arch/arm/mach-pxa/sleep.S expects two instructions following | |
2204 | * an MMU enable to execute from cache. Imitate this behaviour. | |
2205 | */ | |
2206 | sctlr.type |= ARM_CP_SUPPRESS_TB_END; | |
2207 | } | |
2208 | define_one_arm_cp_reg(cpu, &sctlr); | |
2209 | } | |
2ceb98c0 PM |
2210 | } |
2211 | ||
778c3a06 | 2212 | ARMCPU *cpu_arm_init(const char *cpu_model) |
40f137e1 | 2213 | { |
9262685b | 2214 | return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model)); |
14969266 AF |
2215 | } |
2216 | ||
2217 | void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) | |
2218 | { | |
22169d41 | 2219 | CPUState *cs = CPU(cpu); |
14969266 AF |
2220 | CPUARMState *env = &cpu->env; |
2221 | ||
6a669427 PM |
2222 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { |
2223 | gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, | |
2224 | aarch64_fpu_gdb_set_reg, | |
2225 | 34, "aarch64-fpu.xml", 0); | |
2226 | } else if (arm_feature(env, ARM_FEATURE_NEON)) { | |
22169d41 | 2227 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
56aebc89 PB |
2228 | 51, "arm-neon.xml", 0); |
2229 | } else if (arm_feature(env, ARM_FEATURE_VFP3)) { | |
22169d41 | 2230 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
56aebc89 PB |
2231 | 35, "arm-vfp3.xml", 0); |
2232 | } else if (arm_feature(env, ARM_FEATURE_VFP)) { | |
22169d41 | 2233 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
56aebc89 PB |
2234 | 19, "arm-vfp.xml", 0); |
2235 | } | |
40f137e1 PB |
2236 | } |
2237 | ||
777dc784 PM |
2238 | /* Sort alphabetically by type name, except for "any". */ |
2239 | static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) | |
5adb4839 | 2240 | { |
777dc784 PM |
2241 | ObjectClass *class_a = (ObjectClass *)a; |
2242 | ObjectClass *class_b = (ObjectClass *)b; | |
2243 | const char *name_a, *name_b; | |
5adb4839 | 2244 | |
777dc784 PM |
2245 | name_a = object_class_get_name(class_a); |
2246 | name_b = object_class_get_name(class_b); | |
51492fd1 | 2247 | if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { |
777dc784 | 2248 | return 1; |
51492fd1 | 2249 | } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { |
777dc784 PM |
2250 | return -1; |
2251 | } else { | |
2252 | return strcmp(name_a, name_b); | |
5adb4839 PB |
2253 | } |
2254 | } | |
2255 | ||
777dc784 | 2256 | static void arm_cpu_list_entry(gpointer data, gpointer user_data) |
40f137e1 | 2257 | { |
777dc784 | 2258 | ObjectClass *oc = data; |
92a31361 | 2259 | CPUListState *s = user_data; |
51492fd1 AF |
2260 | const char *typename; |
2261 | char *name; | |
3371d272 | 2262 | |
51492fd1 AF |
2263 | typename = object_class_get_name(oc); |
2264 | name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); | |
777dc784 | 2265 | (*s->cpu_fprintf)(s->file, " %s\n", |
51492fd1 AF |
2266 | name); |
2267 | g_free(name); | |
777dc784 PM |
2268 | } |
2269 | ||
2270 | void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf) | |
2271 | { | |
92a31361 | 2272 | CPUListState s = { |
777dc784 PM |
2273 | .file = f, |
2274 | .cpu_fprintf = cpu_fprintf, | |
2275 | }; | |
2276 | GSList *list; | |
2277 | ||
2278 | list = object_class_get_list(TYPE_ARM_CPU, false); | |
2279 | list = g_slist_sort(list, arm_cpu_list_compare); | |
2280 | (*cpu_fprintf)(f, "Available CPUs:\n"); | |
2281 | g_slist_foreach(list, arm_cpu_list_entry, &s); | |
2282 | g_slist_free(list); | |
a96c0514 PM |
2283 | #ifdef CONFIG_KVM |
2284 | /* The 'host' CPU type is dynamically registered only if KVM is | |
2285 | * enabled, so we have to special-case it here: | |
2286 | */ | |
2287 | (*cpu_fprintf)(f, " host (only available in KVM mode)\n"); | |
2288 | #endif | |
40f137e1 PB |
2289 | } |
2290 | ||
78027bb6 CR |
2291 | static void arm_cpu_add_definition(gpointer data, gpointer user_data) |
2292 | { | |
2293 | ObjectClass *oc = data; | |
2294 | CpuDefinitionInfoList **cpu_list = user_data; | |
2295 | CpuDefinitionInfoList *entry; | |
2296 | CpuDefinitionInfo *info; | |
2297 | const char *typename; | |
2298 | ||
2299 | typename = object_class_get_name(oc); | |
2300 | info = g_malloc0(sizeof(*info)); | |
2301 | info->name = g_strndup(typename, | |
2302 | strlen(typename) - strlen("-" TYPE_ARM_CPU)); | |
2303 | ||
2304 | entry = g_malloc0(sizeof(*entry)); | |
2305 | entry->value = info; | |
2306 | entry->next = *cpu_list; | |
2307 | *cpu_list = entry; | |
2308 | } | |
2309 | ||
2310 | CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp) | |
2311 | { | |
2312 | CpuDefinitionInfoList *cpu_list = NULL; | |
2313 | GSList *list; | |
2314 | ||
2315 | list = object_class_get_list(TYPE_ARM_CPU, false); | |
2316 | g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); | |
2317 | g_slist_free(list); | |
2318 | ||
2319 | return cpu_list; | |
2320 | } | |
2321 | ||
6e6efd61 | 2322 | static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, |
f5a0a5a5 PM |
2323 | void *opaque, int state, |
2324 | int crm, int opc1, int opc2) | |
6e6efd61 PM |
2325 | { |
2326 | /* Private utility function for define_one_arm_cp_reg_with_opaque(): | |
2327 | * add a single reginfo struct to the hash table. | |
2328 | */ | |
2329 | uint32_t *key = g_new(uint32_t, 1); | |
2330 | ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); | |
2331 | int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; | |
f5a0a5a5 PM |
2332 | if (r->state == ARM_CP_STATE_BOTH && state == ARM_CP_STATE_AA32) { |
2333 | /* The AArch32 view of a shared register sees the lower 32 bits | |
2334 | * of a 64 bit backing field. It is not migratable as the AArch64 | |
2335 | * view handles that. AArch64 also handles reset. | |
2336 | * We assume it is a cp15 register. | |
2337 | */ | |
2338 | r2->cp = 15; | |
2339 | r2->type |= ARM_CP_NO_MIGRATE; | |
2340 | r2->resetfn = arm_cp_reset_ignore; | |
2341 | #ifdef HOST_WORDS_BIGENDIAN | |
2342 | if (r2->fieldoffset) { | |
2343 | r2->fieldoffset += sizeof(uint32_t); | |
2344 | } | |
2345 | #endif | |
2346 | } | |
2347 | if (state == ARM_CP_STATE_AA64) { | |
2348 | /* To allow abbreviation of ARMCPRegInfo | |
2349 | * definitions, we treat cp == 0 as equivalent to | |
2350 | * the value for "standard guest-visible sysreg". | |
2351 | */ | |
2352 | if (r->cp == 0) { | |
2353 | r2->cp = CP_REG_ARM64_SYSREG_CP; | |
2354 | } | |
2355 | *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, | |
2356 | r2->opc0, opc1, opc2); | |
2357 | } else { | |
2358 | *key = ENCODE_CP_REG(r2->cp, is64, r2->crn, crm, opc1, opc2); | |
2359 | } | |
6e6efd61 PM |
2360 | if (opaque) { |
2361 | r2->opaque = opaque; | |
2362 | } | |
67ed771d PM |
2363 | /* reginfo passed to helpers is correct for the actual access, |
2364 | * and is never ARM_CP_STATE_BOTH: | |
2365 | */ | |
2366 | r2->state = state; | |
6e6efd61 PM |
2367 | /* Make sure reginfo passed to helpers for wildcarded regs |
2368 | * has the correct crm/opc1/opc2 for this reg, not CP_ANY: | |
2369 | */ | |
2370 | r2->crm = crm; | |
2371 | r2->opc1 = opc1; | |
2372 | r2->opc2 = opc2; | |
2373 | /* By convention, for wildcarded registers only the first | |
2374 | * entry is used for migration; the others are marked as | |
2375 | * NO_MIGRATE so we don't try to transfer the register | |
2376 | * multiple times. Special registers (ie NOP/WFI) are | |
2377 | * never migratable. | |
2378 | */ | |
2379 | if ((r->type & ARM_CP_SPECIAL) || | |
2380 | ((r->crm == CP_ANY) && crm != 0) || | |
2381 | ((r->opc1 == CP_ANY) && opc1 != 0) || | |
2382 | ((r->opc2 == CP_ANY) && opc2 != 0)) { | |
2383 | r2->type |= ARM_CP_NO_MIGRATE; | |
2384 | } | |
2385 | ||
2386 | /* Overriding of an existing definition must be explicitly | |
2387 | * requested. | |
2388 | */ | |
2389 | if (!(r->type & ARM_CP_OVERRIDE)) { | |
2390 | ARMCPRegInfo *oldreg; | |
2391 | oldreg = g_hash_table_lookup(cpu->cp_regs, key); | |
2392 | if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { | |
2393 | fprintf(stderr, "Register redefined: cp=%d %d bit " | |
2394 | "crn=%d crm=%d opc1=%d opc2=%d, " | |
2395 | "was %s, now %s\n", r2->cp, 32 + 32 * is64, | |
2396 | r2->crn, r2->crm, r2->opc1, r2->opc2, | |
2397 | oldreg->name, r2->name); | |
2398 | g_assert_not_reached(); | |
2399 | } | |
2400 | } | |
2401 | g_hash_table_insert(cpu->cp_regs, key, r2); | |
2402 | } | |
2403 | ||
2404 | ||
4b6a83fb PM |
2405 | void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, |
2406 | const ARMCPRegInfo *r, void *opaque) | |
2407 | { | |
2408 | /* Define implementations of coprocessor registers. | |
2409 | * We store these in a hashtable because typically | |
2410 | * there are less than 150 registers in a space which | |
2411 | * is 16*16*16*8*8 = 262144 in size. | |
2412 | * Wildcarding is supported for the crm, opc1 and opc2 fields. | |
2413 | * If a register is defined twice then the second definition is | |
2414 | * used, so this can be used to define some generic registers and | |
2415 | * then override them with implementation specific variations. | |
2416 | * At least one of the original and the second definition should | |
2417 | * include ARM_CP_OVERRIDE in its type bits -- this is just a guard | |
2418 | * against accidental use. | |
f5a0a5a5 PM |
2419 | * |
2420 | * The state field defines whether the register is to be | |
2421 | * visible in the AArch32 or AArch64 execution state. If the | |
2422 | * state is set to ARM_CP_STATE_BOTH then we synthesise a | |
2423 | * reginfo structure for the AArch32 view, which sees the lower | |
2424 | * 32 bits of the 64 bit register. | |
2425 | * | |
2426 | * Only registers visible in AArch64 may set r->opc0; opc0 cannot | |
2427 | * be wildcarded. AArch64 registers are always considered to be 64 | |
2428 | * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of | |
2429 | * the register, if any. | |
4b6a83fb | 2430 | */ |
f5a0a5a5 | 2431 | int crm, opc1, opc2, state; |
4b6a83fb PM |
2432 | int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; |
2433 | int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; | |
2434 | int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; | |
2435 | int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; | |
2436 | int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; | |
2437 | int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; | |
2438 | /* 64 bit registers have only CRm and Opc1 fields */ | |
2439 | assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); | |
f5a0a5a5 PM |
2440 | /* op0 only exists in the AArch64 encodings */ |
2441 | assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); | |
2442 | /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ | |
2443 | assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); | |
2444 | /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 | |
2445 | * encodes a minimum access level for the register. We roll this | |
2446 | * runtime check into our general permission check code, so check | |
2447 | * here that the reginfo's specified permissions are strict enough | |
2448 | * to encompass the generic architectural permission check. | |
2449 | */ | |
2450 | if (r->state != ARM_CP_STATE_AA32) { | |
2451 | int mask = 0; | |
2452 | switch (r->opc1) { | |
2453 | case 0: case 1: case 2: | |
2454 | /* min_EL EL1 */ | |
2455 | mask = PL1_RW; | |
2456 | break; | |
2457 | case 3: | |
2458 | /* min_EL EL0 */ | |
2459 | mask = PL0_RW; | |
2460 | break; | |
2461 | case 4: | |
2462 | /* min_EL EL2 */ | |
2463 | mask = PL2_RW; | |
2464 | break; | |
2465 | case 5: | |
2466 | /* unallocated encoding, so not possible */ | |
2467 | assert(false); | |
2468 | break; | |
2469 | case 6: | |
2470 | /* min_EL EL3 */ | |
2471 | mask = PL3_RW; | |
2472 | break; | |
2473 | case 7: | |
2474 | /* min_EL EL1, secure mode only (we don't check the latter) */ | |
2475 | mask = PL1_RW; | |
2476 | break; | |
2477 | default: | |
2478 | /* broken reginfo with out-of-range opc1 */ | |
2479 | assert(false); | |
2480 | break; | |
2481 | } | |
2482 | /* assert our permissions are not too lax (stricter is fine) */ | |
2483 | assert((r->access & ~mask) == 0); | |
2484 | } | |
2485 | ||
4b6a83fb PM |
2486 | /* Check that the register definition has enough info to handle |
2487 | * reads and writes if they are permitted. | |
2488 | */ | |
2489 | if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { | |
2490 | if (r->access & PL3_R) { | |
2491 | assert(r->fieldoffset || r->readfn); | |
2492 | } | |
2493 | if (r->access & PL3_W) { | |
2494 | assert(r->fieldoffset || r->writefn); | |
2495 | } | |
2496 | } | |
2497 | /* Bad type field probably means missing sentinel at end of reg list */ | |
2498 | assert(cptype_valid(r->type)); | |
2499 | for (crm = crmmin; crm <= crmmax; crm++) { | |
2500 | for (opc1 = opc1min; opc1 <= opc1max; opc1++) { | |
2501 | for (opc2 = opc2min; opc2 <= opc2max; opc2++) { | |
f5a0a5a5 PM |
2502 | for (state = ARM_CP_STATE_AA32; |
2503 | state <= ARM_CP_STATE_AA64; state++) { | |
2504 | if (r->state != state && r->state != ARM_CP_STATE_BOTH) { | |
2505 | continue; | |
2506 | } | |
2507 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
2508 | crm, opc1, opc2); | |
2509 | } | |
4b6a83fb PM |
2510 | } |
2511 | } | |
2512 | } | |
2513 | } | |
2514 | ||
2515 | void define_arm_cp_regs_with_opaque(ARMCPU *cpu, | |
2516 | const ARMCPRegInfo *regs, void *opaque) | |
2517 | { | |
2518 | /* Define a whole list of registers */ | |
2519 | const ARMCPRegInfo *r; | |
2520 | for (r = regs; r->type != ARM_CP_SENTINEL; r++) { | |
2521 | define_one_arm_cp_reg_with_opaque(cpu, r, opaque); | |
2522 | } | |
2523 | } | |
2524 | ||
60322b39 | 2525 | const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) |
4b6a83fb | 2526 | { |
60322b39 | 2527 | return g_hash_table_lookup(cpregs, &encoded_cp); |
4b6a83fb PM |
2528 | } |
2529 | ||
c4241c7d PM |
2530 | void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, |
2531 | uint64_t value) | |
4b6a83fb PM |
2532 | { |
2533 | /* Helper coprocessor write function for write-ignore registers */ | |
4b6a83fb PM |
2534 | } |
2535 | ||
c4241c7d | 2536 | uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) |
4b6a83fb PM |
2537 | { |
2538 | /* Helper coprocessor write function for read-as-zero registers */ | |
4b6a83fb PM |
2539 | return 0; |
2540 | } | |
2541 | ||
f5a0a5a5 PM |
2542 | void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) |
2543 | { | |
2544 | /* Helper coprocessor reset function for do-nothing-on-reset registers */ | |
2545 | } | |
2546 | ||
0ecb72a5 | 2547 | static int bad_mode_switch(CPUARMState *env, int mode) |
37064a8b PM |
2548 | { |
2549 | /* Return true if it is not valid for us to switch to | |
2550 | * this CPU mode (ie all the UNPREDICTABLE cases in | |
2551 | * the ARM ARM CPSRWriteByInstr pseudocode). | |
2552 | */ | |
2553 | switch (mode) { | |
2554 | case ARM_CPU_MODE_USR: | |
2555 | case ARM_CPU_MODE_SYS: | |
2556 | case ARM_CPU_MODE_SVC: | |
2557 | case ARM_CPU_MODE_ABT: | |
2558 | case ARM_CPU_MODE_UND: | |
2559 | case ARM_CPU_MODE_IRQ: | |
2560 | case ARM_CPU_MODE_FIQ: | |
2561 | return 0; | |
2562 | default: | |
2563 | return 1; | |
2564 | } | |
2565 | } | |
2566 | ||
2f4a40e5 AZ |
2567 | uint32_t cpsr_read(CPUARMState *env) |
2568 | { | |
2569 | int ZF; | |
6fbe23d5 PB |
2570 | ZF = (env->ZF == 0); |
2571 | return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | | |
2f4a40e5 AZ |
2572 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) |
2573 | | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) | |
2574 | | ((env->condexec_bits & 0xfc) << 8) | |
af519934 | 2575 | | (env->GE << 16) | (env->daif & CPSR_AIF); |
2f4a40e5 AZ |
2576 | } |
2577 | ||
2578 | void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) | |
2579 | { | |
2f4a40e5 | 2580 | if (mask & CPSR_NZCV) { |
6fbe23d5 PB |
2581 | env->ZF = (~val) & CPSR_Z; |
2582 | env->NF = val; | |
2f4a40e5 AZ |
2583 | env->CF = (val >> 29) & 1; |
2584 | env->VF = (val << 3) & 0x80000000; | |
2585 | } | |
2586 | if (mask & CPSR_Q) | |
2587 | env->QF = ((val & CPSR_Q) != 0); | |
2588 | if (mask & CPSR_T) | |
2589 | env->thumb = ((val & CPSR_T) != 0); | |
2590 | if (mask & CPSR_IT_0_1) { | |
2591 | env->condexec_bits &= ~3; | |
2592 | env->condexec_bits |= (val >> 25) & 3; | |
2593 | } | |
2594 | if (mask & CPSR_IT_2_7) { | |
2595 | env->condexec_bits &= 3; | |
2596 | env->condexec_bits |= (val >> 8) & 0xfc; | |
2597 | } | |
2598 | if (mask & CPSR_GE) { | |
2599 | env->GE = (val >> 16) & 0xf; | |
2600 | } | |
2601 | ||
4cc35614 PM |
2602 | env->daif &= ~(CPSR_AIF & mask); |
2603 | env->daif |= val & CPSR_AIF & mask; | |
2604 | ||
2f4a40e5 | 2605 | if ((env->uncached_cpsr ^ val) & mask & CPSR_M) { |
37064a8b PM |
2606 | if (bad_mode_switch(env, val & CPSR_M)) { |
2607 | /* Attempt to switch to an invalid mode: this is UNPREDICTABLE. | |
2608 | * We choose to ignore the attempt and leave the CPSR M field | |
2609 | * untouched. | |
2610 | */ | |
2611 | mask &= ~CPSR_M; | |
2612 | } else { | |
2613 | switch_mode(env, val & CPSR_M); | |
2614 | } | |
2f4a40e5 AZ |
2615 | } |
2616 | mask &= ~CACHED_CPSR_BITS; | |
2617 | env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); | |
2618 | } | |
2619 | ||
b26eefb6 PB |
2620 | /* Sign/zero extend */ |
2621 | uint32_t HELPER(sxtb16)(uint32_t x) | |
2622 | { | |
2623 | uint32_t res; | |
2624 | res = (uint16_t)(int8_t)x; | |
2625 | res |= (uint32_t)(int8_t)(x >> 16) << 16; | |
2626 | return res; | |
2627 | } | |
2628 | ||
2629 | uint32_t HELPER(uxtb16)(uint32_t x) | |
2630 | { | |
2631 | uint32_t res; | |
2632 | res = (uint16_t)(uint8_t)x; | |
2633 | res |= (uint32_t)(uint8_t)(x >> 16) << 16; | |
2634 | return res; | |
2635 | } | |
2636 | ||
f51bbbfe PB |
2637 | uint32_t HELPER(clz)(uint32_t x) |
2638 | { | |
7bbcb0af | 2639 | return clz32(x); |
f51bbbfe PB |
2640 | } |
2641 | ||
3670669c PB |
2642 | int32_t HELPER(sdiv)(int32_t num, int32_t den) |
2643 | { | |
2644 | if (den == 0) | |
2645 | return 0; | |
686eeb93 AJ |
2646 | if (num == INT_MIN && den == -1) |
2647 | return INT_MIN; | |
3670669c PB |
2648 | return num / den; |
2649 | } | |
2650 | ||
2651 | uint32_t HELPER(udiv)(uint32_t num, uint32_t den) | |
2652 | { | |
2653 | if (den == 0) | |
2654 | return 0; | |
2655 | return num / den; | |
2656 | } | |
2657 | ||
2658 | uint32_t HELPER(rbit)(uint32_t x) | |
2659 | { | |
2660 | x = ((x & 0xff000000) >> 24) | |
2661 | | ((x & 0x00ff0000) >> 8) | |
2662 | | ((x & 0x0000ff00) << 8) | |
2663 | | ((x & 0x000000ff) << 24); | |
2664 | x = ((x & 0xf0f0f0f0) >> 4) | |
2665 | | ((x & 0x0f0f0f0f) << 4); | |
2666 | x = ((x & 0x88888888) >> 3) | |
2667 | | ((x & 0x44444444) >> 1) | |
2668 | | ((x & 0x22222222) << 1) | |
2669 | | ((x & 0x11111111) << 3); | |
2670 | return x; | |
2671 | } | |
2672 | ||
5fafdf24 | 2673 | #if defined(CONFIG_USER_ONLY) |
b5ff1b31 | 2674 | |
97a8ea5a | 2675 | void arm_cpu_do_interrupt(CPUState *cs) |
b5ff1b31 | 2676 | { |
27103424 | 2677 | cs->exception_index = -1; |
b5ff1b31 FB |
2678 | } |
2679 | ||
7510454e AF |
2680 | int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw, |
2681 | int mmu_idx) | |
b5ff1b31 | 2682 | { |
7510454e AF |
2683 | ARMCPU *cpu = ARM_CPU(cs); |
2684 | CPUARMState *env = &cpu->env; | |
2685 | ||
b5ff1b31 | 2686 | if (rw == 2) { |
27103424 | 2687 | cs->exception_index = EXCP_PREFETCH_ABORT; |
b5ff1b31 FB |
2688 | env->cp15.c6_insn = address; |
2689 | } else { | |
27103424 | 2690 | cs->exception_index = EXCP_DATA_ABORT; |
b5ff1b31 FB |
2691 | env->cp15.c6_data = address; |
2692 | } | |
2693 | return 1; | |
2694 | } | |
2695 | ||
9ee6e8bb | 2696 | /* These should probably raise undefined insn exceptions. */ |
0ecb72a5 | 2697 | void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) |
9ee6e8bb | 2698 | { |
a47dddd7 AF |
2699 | ARMCPU *cpu = arm_env_get_cpu(env); |
2700 | ||
2701 | cpu_abort(CPU(cpu), "v7m_msr %d\n", reg); | |
9ee6e8bb PB |
2702 | } |
2703 | ||
0ecb72a5 | 2704 | uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) |
9ee6e8bb | 2705 | { |
a47dddd7 AF |
2706 | ARMCPU *cpu = arm_env_get_cpu(env); |
2707 | ||
2708 | cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg); | |
9ee6e8bb PB |
2709 | return 0; |
2710 | } | |
2711 | ||
0ecb72a5 | 2712 | void switch_mode(CPUARMState *env, int mode) |
b5ff1b31 | 2713 | { |
a47dddd7 AF |
2714 | ARMCPU *cpu = arm_env_get_cpu(env); |
2715 | ||
2716 | if (mode != ARM_CPU_MODE_USR) { | |
2717 | cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); | |
2718 | } | |
b5ff1b31 FB |
2719 | } |
2720 | ||
0ecb72a5 | 2721 | void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val) |
9ee6e8bb | 2722 | { |
a47dddd7 AF |
2723 | ARMCPU *cpu = arm_env_get_cpu(env); |
2724 | ||
2725 | cpu_abort(CPU(cpu), "banked r13 write\n"); | |
9ee6e8bb PB |
2726 | } |
2727 | ||
0ecb72a5 | 2728 | uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode) |
9ee6e8bb | 2729 | { |
a47dddd7 AF |
2730 | ARMCPU *cpu = arm_env_get_cpu(env); |
2731 | ||
2732 | cpu_abort(CPU(cpu), "banked r13 read\n"); | |
9ee6e8bb PB |
2733 | return 0; |
2734 | } | |
2735 | ||
b5ff1b31 FB |
2736 | #else |
2737 | ||
2738 | /* Map CPU modes onto saved register banks. */ | |
494b00c7 | 2739 | int bank_number(int mode) |
b5ff1b31 FB |
2740 | { |
2741 | switch (mode) { | |
2742 | case ARM_CPU_MODE_USR: | |
2743 | case ARM_CPU_MODE_SYS: | |
2744 | return 0; | |
2745 | case ARM_CPU_MODE_SVC: | |
2746 | return 1; | |
2747 | case ARM_CPU_MODE_ABT: | |
2748 | return 2; | |
2749 | case ARM_CPU_MODE_UND: | |
2750 | return 3; | |
2751 | case ARM_CPU_MODE_IRQ: | |
2752 | return 4; | |
2753 | case ARM_CPU_MODE_FIQ: | |
2754 | return 5; | |
2755 | } | |
f5206413 | 2756 | hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode); |
b5ff1b31 FB |
2757 | } |
2758 | ||
0ecb72a5 | 2759 | void switch_mode(CPUARMState *env, int mode) |
b5ff1b31 FB |
2760 | { |
2761 | int old_mode; | |
2762 | int i; | |
2763 | ||
2764 | old_mode = env->uncached_cpsr & CPSR_M; | |
2765 | if (mode == old_mode) | |
2766 | return; | |
2767 | ||
2768 | if (old_mode == ARM_CPU_MODE_FIQ) { | |
2769 | memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); | |
8637c67f | 2770 | memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); |
b5ff1b31 FB |
2771 | } else if (mode == ARM_CPU_MODE_FIQ) { |
2772 | memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); | |
8637c67f | 2773 | memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); |
b5ff1b31 FB |
2774 | } |
2775 | ||
f5206413 | 2776 | i = bank_number(old_mode); |
b5ff1b31 FB |
2777 | env->banked_r13[i] = env->regs[13]; |
2778 | env->banked_r14[i] = env->regs[14]; | |
2779 | env->banked_spsr[i] = env->spsr; | |
2780 | ||
f5206413 | 2781 | i = bank_number(mode); |
b5ff1b31 FB |
2782 | env->regs[13] = env->banked_r13[i]; |
2783 | env->regs[14] = env->banked_r14[i]; | |
2784 | env->spsr = env->banked_spsr[i]; | |
2785 | } | |
2786 | ||
9ee6e8bb PB |
2787 | static void v7m_push(CPUARMState *env, uint32_t val) |
2788 | { | |
70d74660 AF |
2789 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
2790 | ||
9ee6e8bb | 2791 | env->regs[13] -= 4; |
ab1da857 | 2792 | stl_phys(cs->as, env->regs[13], val); |
9ee6e8bb PB |
2793 | } |
2794 | ||
2795 | static uint32_t v7m_pop(CPUARMState *env) | |
2796 | { | |
70d74660 | 2797 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
9ee6e8bb | 2798 | uint32_t val; |
70d74660 | 2799 | |
fdfba1a2 | 2800 | val = ldl_phys(cs->as, env->regs[13]); |
9ee6e8bb PB |
2801 | env->regs[13] += 4; |
2802 | return val; | |
2803 | } | |
2804 | ||
2805 | /* Switch to V7M main or process stack pointer. */ | |
2806 | static void switch_v7m_sp(CPUARMState *env, int process) | |
2807 | { | |
2808 | uint32_t tmp; | |
2809 | if (env->v7m.current_sp != process) { | |
2810 | tmp = env->v7m.other_sp; | |
2811 | env->v7m.other_sp = env->regs[13]; | |
2812 | env->regs[13] = tmp; | |
2813 | env->v7m.current_sp = process; | |
2814 | } | |
2815 | } | |
2816 | ||
2817 | static void do_v7m_exception_exit(CPUARMState *env) | |
2818 | { | |
2819 | uint32_t type; | |
2820 | uint32_t xpsr; | |
2821 | ||
2822 | type = env->regs[15]; | |
2823 | if (env->v7m.exception != 0) | |
983fe826 | 2824 | armv7m_nvic_complete_irq(env->nvic, env->v7m.exception); |
9ee6e8bb PB |
2825 | |
2826 | /* Switch to the target stack. */ | |
2827 | switch_v7m_sp(env, (type & 4) != 0); | |
2828 | /* Pop registers. */ | |
2829 | env->regs[0] = v7m_pop(env); | |
2830 | env->regs[1] = v7m_pop(env); | |
2831 | env->regs[2] = v7m_pop(env); | |
2832 | env->regs[3] = v7m_pop(env); | |
2833 | env->regs[12] = v7m_pop(env); | |
2834 | env->regs[14] = v7m_pop(env); | |
2835 | env->regs[15] = v7m_pop(env); | |
2836 | xpsr = v7m_pop(env); | |
2837 | xpsr_write(env, xpsr, 0xfffffdff); | |
2838 | /* Undo stack alignment. */ | |
2839 | if (xpsr & 0x200) | |
2840 | env->regs[13] |= 4; | |
2841 | /* ??? The exception return type specifies Thread/Handler mode. However | |
2842 | this is also implied by the xPSR value. Not sure what to do | |
2843 | if there is a mismatch. */ | |
2844 | /* ??? Likewise for mismatches between the CONTROL register and the stack | |
2845 | pointer. */ | |
2846 | } | |
2847 | ||
3f1beaca PM |
2848 | /* Exception names for debug logging; note that not all of these |
2849 | * precisely correspond to architectural exceptions. | |
2850 | */ | |
2851 | static const char * const excnames[] = { | |
2852 | [EXCP_UDEF] = "Undefined Instruction", | |
2853 | [EXCP_SWI] = "SVC", | |
2854 | [EXCP_PREFETCH_ABORT] = "Prefetch Abort", | |
2855 | [EXCP_DATA_ABORT] = "Data Abort", | |
2856 | [EXCP_IRQ] = "IRQ", | |
2857 | [EXCP_FIQ] = "FIQ", | |
2858 | [EXCP_BKPT] = "Breakpoint", | |
2859 | [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", | |
2860 | [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", | |
2861 | [EXCP_STREX] = "QEMU intercept of STREX", | |
2862 | }; | |
2863 | ||
2864 | static inline void arm_log_exception(int idx) | |
2865 | { | |
2866 | if (qemu_loglevel_mask(CPU_LOG_INT)) { | |
2867 | const char *exc = NULL; | |
2868 | ||
2869 | if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { | |
2870 | exc = excnames[idx]; | |
2871 | } | |
2872 | if (!exc) { | |
2873 | exc = "unknown"; | |
2874 | } | |
2875 | qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); | |
2876 | } | |
2877 | } | |
2878 | ||
e6f010cc | 2879 | void arm_v7m_cpu_do_interrupt(CPUState *cs) |
9ee6e8bb | 2880 | { |
e6f010cc AF |
2881 | ARMCPU *cpu = ARM_CPU(cs); |
2882 | CPUARMState *env = &cpu->env; | |
9ee6e8bb PB |
2883 | uint32_t xpsr = xpsr_read(env); |
2884 | uint32_t lr; | |
2885 | uint32_t addr; | |
2886 | ||
27103424 | 2887 | arm_log_exception(cs->exception_index); |
3f1beaca | 2888 | |
9ee6e8bb PB |
2889 | lr = 0xfffffff1; |
2890 | if (env->v7m.current_sp) | |
2891 | lr |= 4; | |
2892 | if (env->v7m.exception == 0) | |
2893 | lr |= 8; | |
2894 | ||
2895 | /* For exceptions we just mark as pending on the NVIC, and let that | |
2896 | handle it. */ | |
2897 | /* TODO: Need to escalate if the current priority is higher than the | |
2898 | one we're raising. */ | |
27103424 | 2899 | switch (cs->exception_index) { |
9ee6e8bb | 2900 | case EXCP_UDEF: |
983fe826 | 2901 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE); |
9ee6e8bb PB |
2902 | return; |
2903 | case EXCP_SWI: | |
314e2296 | 2904 | /* The PC already points to the next instruction. */ |
983fe826 | 2905 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC); |
9ee6e8bb PB |
2906 | return; |
2907 | case EXCP_PREFETCH_ABORT: | |
2908 | case EXCP_DATA_ABORT: | |
983fe826 | 2909 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM); |
9ee6e8bb PB |
2910 | return; |
2911 | case EXCP_BKPT: | |
2ad207d4 PB |
2912 | if (semihosting_enabled) { |
2913 | int nr; | |
d31dd73e | 2914 | nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff; |
2ad207d4 PB |
2915 | if (nr == 0xab) { |
2916 | env->regs[15] += 2; | |
2917 | env->regs[0] = do_arm_semihosting(env); | |
3f1beaca | 2918 | qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n"); |
2ad207d4 PB |
2919 | return; |
2920 | } | |
2921 | } | |
983fe826 | 2922 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG); |
9ee6e8bb PB |
2923 | return; |
2924 | case EXCP_IRQ: | |
983fe826 | 2925 | env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic); |
9ee6e8bb PB |
2926 | break; |
2927 | case EXCP_EXCEPTION_EXIT: | |
2928 | do_v7m_exception_exit(env); | |
2929 | return; | |
2930 | default: | |
a47dddd7 | 2931 | cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); |
9ee6e8bb PB |
2932 | return; /* Never happens. Keep compiler happy. */ |
2933 | } | |
2934 | ||
2935 | /* Align stack pointer. */ | |
2936 | /* ??? Should only do this if Configuration Control Register | |
2937 | STACKALIGN bit is set. */ | |
2938 | if (env->regs[13] & 4) { | |
ab19b0ec | 2939 | env->regs[13] -= 4; |
9ee6e8bb PB |
2940 | xpsr |= 0x200; |
2941 | } | |
6c95676b | 2942 | /* Switch to the handler mode. */ |
9ee6e8bb PB |
2943 | v7m_push(env, xpsr); |
2944 | v7m_push(env, env->regs[15]); | |
2945 | v7m_push(env, env->regs[14]); | |
2946 | v7m_push(env, env->regs[12]); | |
2947 | v7m_push(env, env->regs[3]); | |
2948 | v7m_push(env, env->regs[2]); | |
2949 | v7m_push(env, env->regs[1]); | |
2950 | v7m_push(env, env->regs[0]); | |
2951 | switch_v7m_sp(env, 0); | |
c98d174c PM |
2952 | /* Clear IT bits */ |
2953 | env->condexec_bits = 0; | |
9ee6e8bb | 2954 | env->regs[14] = lr; |
fdfba1a2 | 2955 | addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4); |
9ee6e8bb PB |
2956 | env->regs[15] = addr & 0xfffffffe; |
2957 | env->thumb = addr & 1; | |
2958 | } | |
2959 | ||
b5ff1b31 | 2960 | /* Handle a CPU exception. */ |
97a8ea5a | 2961 | void arm_cpu_do_interrupt(CPUState *cs) |
b5ff1b31 | 2962 | { |
97a8ea5a AF |
2963 | ARMCPU *cpu = ARM_CPU(cs); |
2964 | CPUARMState *env = &cpu->env; | |
b5ff1b31 FB |
2965 | uint32_t addr; |
2966 | uint32_t mask; | |
2967 | int new_mode; | |
2968 | uint32_t offset; | |
2969 | ||
e6f010cc AF |
2970 | assert(!IS_M(env)); |
2971 | ||
27103424 | 2972 | arm_log_exception(cs->exception_index); |
3f1beaca | 2973 | |
b5ff1b31 | 2974 | /* TODO: Vectored interrupt controller. */ |
27103424 | 2975 | switch (cs->exception_index) { |
b5ff1b31 FB |
2976 | case EXCP_UDEF: |
2977 | new_mode = ARM_CPU_MODE_UND; | |
2978 | addr = 0x04; | |
2979 | mask = CPSR_I; | |
2980 | if (env->thumb) | |
2981 | offset = 2; | |
2982 | else | |
2983 | offset = 4; | |
2984 | break; | |
2985 | case EXCP_SWI: | |
8e71621f PB |
2986 | if (semihosting_enabled) { |
2987 | /* Check for semihosting interrupt. */ | |
2988 | if (env->thumb) { | |
d31dd73e BS |
2989 | mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code) |
2990 | & 0xff; | |
8e71621f | 2991 | } else { |
d31dd73e | 2992 | mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code) |
d8fd2954 | 2993 | & 0xffffff; |
8e71621f PB |
2994 | } |
2995 | /* Only intercept calls from privileged modes, to provide some | |
2996 | semblance of security. */ | |
2997 | if (((mask == 0x123456 && !env->thumb) | |
2998 | || (mask == 0xab && env->thumb)) | |
2999 | && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) { | |
3000 | env->regs[0] = do_arm_semihosting(env); | |
3f1beaca | 3001 | qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n"); |
8e71621f PB |
3002 | return; |
3003 | } | |
3004 | } | |
b5ff1b31 FB |
3005 | new_mode = ARM_CPU_MODE_SVC; |
3006 | addr = 0x08; | |
3007 | mask = CPSR_I; | |
601d70b9 | 3008 | /* The PC already points to the next instruction. */ |
b5ff1b31 FB |
3009 | offset = 0; |
3010 | break; | |
06c949e6 | 3011 | case EXCP_BKPT: |
9ee6e8bb | 3012 | /* See if this is a semihosting syscall. */ |
2ad207d4 | 3013 | if (env->thumb && semihosting_enabled) { |
d31dd73e | 3014 | mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff; |
9ee6e8bb PB |
3015 | if (mask == 0xab |
3016 | && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) { | |
3017 | env->regs[15] += 2; | |
3018 | env->regs[0] = do_arm_semihosting(env); | |
3f1beaca | 3019 | qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n"); |
9ee6e8bb PB |
3020 | return; |
3021 | } | |
3022 | } | |
81c05daf | 3023 | env->cp15.c5_insn = 2; |
9ee6e8bb PB |
3024 | /* Fall through to prefetch abort. */ |
3025 | case EXCP_PREFETCH_ABORT: | |
3f1beaca PM |
3026 | qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", |
3027 | env->cp15.c5_insn, env->cp15.c6_insn); | |
b5ff1b31 FB |
3028 | new_mode = ARM_CPU_MODE_ABT; |
3029 | addr = 0x0c; | |
3030 | mask = CPSR_A | CPSR_I; | |
3031 | offset = 4; | |
3032 | break; | |
3033 | case EXCP_DATA_ABORT: | |
3f1beaca PM |
3034 | qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", |
3035 | env->cp15.c5_data, env->cp15.c6_data); | |
b5ff1b31 FB |
3036 | new_mode = ARM_CPU_MODE_ABT; |
3037 | addr = 0x10; | |
3038 | mask = CPSR_A | CPSR_I; | |
3039 | offset = 8; | |
3040 | break; | |
3041 | case EXCP_IRQ: | |
3042 | new_mode = ARM_CPU_MODE_IRQ; | |
3043 | addr = 0x18; | |
3044 | /* Disable IRQ and imprecise data aborts. */ | |
3045 | mask = CPSR_A | CPSR_I; | |
3046 | offset = 4; | |
3047 | break; | |
3048 | case EXCP_FIQ: | |
3049 | new_mode = ARM_CPU_MODE_FIQ; | |
3050 | addr = 0x1c; | |
3051 | /* Disable FIQ, IRQ and imprecise data aborts. */ | |
3052 | mask = CPSR_A | CPSR_I | CPSR_F; | |
3053 | offset = 4; | |
3054 | break; | |
3055 | default: | |
a47dddd7 | 3056 | cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); |
b5ff1b31 FB |
3057 | return; /* Never happens. Keep compiler happy. */ |
3058 | } | |
3059 | /* High vectors. */ | |
76e3e1bc | 3060 | if (env->cp15.c1_sys & SCTLR_V) { |
8641136c | 3061 | /* when enabled, base address cannot be remapped. */ |
b5ff1b31 | 3062 | addr += 0xffff0000; |
8641136c NR |
3063 | } else { |
3064 | /* ARM v7 architectures provide a vector base address register to remap | |
3065 | * the interrupt vector table. | |
3066 | * This register is only followed in non-monitor mode, and has a secure | |
3067 | * and un-secure copy. Since the cpu is always in a un-secure operation | |
3068 | * and is never in monitor mode this feature is always active. | |
3069 | * Note: only bits 31:5 are valid. | |
3070 | */ | |
3071 | addr += env->cp15.c12_vbar; | |
b5ff1b31 FB |
3072 | } |
3073 | switch_mode (env, new_mode); | |
3074 | env->spsr = cpsr_read(env); | |
9ee6e8bb PB |
3075 | /* Clear IT bits. */ |
3076 | env->condexec_bits = 0; | |
30a8cac1 | 3077 | /* Switch to the new mode, and to the correct instruction set. */ |
6d7e6326 | 3078 | env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; |
4cc35614 | 3079 | env->daif |= mask; |
be5e7a76 DES |
3080 | /* this is a lie, as the was no c1_sys on V4T/V5, but who cares |
3081 | * and we should just guard the thumb mode on V4 */ | |
3082 | if (arm_feature(env, ARM_FEATURE_V4T)) { | |
76e3e1bc | 3083 | env->thumb = (env->cp15.c1_sys & SCTLR_TE) != 0; |
be5e7a76 | 3084 | } |
b5ff1b31 FB |
3085 | env->regs[14] = env->regs[15] + offset; |
3086 | env->regs[15] = addr; | |
259186a7 | 3087 | cs->interrupt_request |= CPU_INTERRUPT_EXITTB; |
b5ff1b31 FB |
3088 | } |
3089 | ||
3090 | /* Check section/page access permissions. | |
3091 | Returns the page protection flags, or zero if the access is not | |
3092 | permitted. */ | |
0ecb72a5 | 3093 | static inline int check_ap(CPUARMState *env, int ap, int domain_prot, |
dd4ebc2e | 3094 | int access_type, int is_user) |
b5ff1b31 | 3095 | { |
9ee6e8bb PB |
3096 | int prot_ro; |
3097 | ||
dd4ebc2e | 3098 | if (domain_prot == 3) { |
b5ff1b31 | 3099 | return PAGE_READ | PAGE_WRITE; |
dd4ebc2e | 3100 | } |
b5ff1b31 | 3101 | |
9ee6e8bb PB |
3102 | if (access_type == 1) |
3103 | prot_ro = 0; | |
3104 | else | |
3105 | prot_ro = PAGE_READ; | |
3106 | ||
b5ff1b31 FB |
3107 | switch (ap) { |
3108 | case 0: | |
99f678a6 PM |
3109 | if (arm_feature(env, ARM_FEATURE_V7)) { |
3110 | return 0; | |
3111 | } | |
78600320 | 3112 | if (access_type == 1) |
b5ff1b31 | 3113 | return 0; |
76e3e1bc PM |
3114 | switch (env->cp15.c1_sys & (SCTLR_S | SCTLR_R)) { |
3115 | case SCTLR_S: | |
b5ff1b31 | 3116 | return is_user ? 0 : PAGE_READ; |
76e3e1bc | 3117 | case SCTLR_R: |
b5ff1b31 FB |
3118 | return PAGE_READ; |
3119 | default: | |
3120 | return 0; | |
3121 | } | |
3122 | case 1: | |
3123 | return is_user ? 0 : PAGE_READ | PAGE_WRITE; | |
3124 | case 2: | |
3125 | if (is_user) | |
9ee6e8bb | 3126 | return prot_ro; |
b5ff1b31 FB |
3127 | else |
3128 | return PAGE_READ | PAGE_WRITE; | |
3129 | case 3: | |
3130 | return PAGE_READ | PAGE_WRITE; | |
d4934d18 | 3131 | case 4: /* Reserved. */ |
9ee6e8bb PB |
3132 | return 0; |
3133 | case 5: | |
3134 | return is_user ? 0 : prot_ro; | |
3135 | case 6: | |
3136 | return prot_ro; | |
d4934d18 | 3137 | case 7: |
0ab06d83 | 3138 | if (!arm_feature (env, ARM_FEATURE_V6K)) |
d4934d18 PB |
3139 | return 0; |
3140 | return prot_ro; | |
b5ff1b31 FB |
3141 | default: |
3142 | abort(); | |
3143 | } | |
3144 | } | |
3145 | ||
0ecb72a5 | 3146 | static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address) |
b2fa1797 PB |
3147 | { |
3148 | uint32_t table; | |
3149 | ||
3150 | if (address & env->cp15.c2_mask) | |
327ed10f | 3151 | table = env->cp15.ttbr1_el1 & 0xffffc000; |
b2fa1797 | 3152 | else |
327ed10f | 3153 | table = env->cp15.ttbr0_el1 & env->cp15.c2_base_mask; |
b2fa1797 PB |
3154 | |
3155 | table |= (address >> 18) & 0x3ffc; | |
3156 | return table; | |
3157 | } | |
3158 | ||
0ecb72a5 | 3159 | static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type, |
a8170e5e | 3160 | int is_user, hwaddr *phys_ptr, |
77a71dd1 | 3161 | int *prot, target_ulong *page_size) |
b5ff1b31 | 3162 | { |
70d74660 | 3163 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
b5ff1b31 FB |
3164 | int code; |
3165 | uint32_t table; | |
3166 | uint32_t desc; | |
3167 | int type; | |
3168 | int ap; | |
3169 | int domain; | |
dd4ebc2e | 3170 | int domain_prot; |
a8170e5e | 3171 | hwaddr phys_addr; |
b5ff1b31 | 3172 | |
9ee6e8bb PB |
3173 | /* Pagetable walk. */ |
3174 | /* Lookup l1 descriptor. */ | |
b2fa1797 | 3175 | table = get_level1_table_address(env, address); |
fdfba1a2 | 3176 | desc = ldl_phys(cs->as, table); |
9ee6e8bb | 3177 | type = (desc & 3); |
dd4ebc2e JCD |
3178 | domain = (desc >> 5) & 0x0f; |
3179 | domain_prot = (env->cp15.c3 >> (domain * 2)) & 3; | |
9ee6e8bb | 3180 | if (type == 0) { |
601d70b9 | 3181 | /* Section translation fault. */ |
9ee6e8bb PB |
3182 | code = 5; |
3183 | goto do_fault; | |
3184 | } | |
dd4ebc2e | 3185 | if (domain_prot == 0 || domain_prot == 2) { |
9ee6e8bb PB |
3186 | if (type == 2) |
3187 | code = 9; /* Section domain fault. */ | |
3188 | else | |
3189 | code = 11; /* Page domain fault. */ | |
3190 | goto do_fault; | |
3191 | } | |
3192 | if (type == 2) { | |
3193 | /* 1Mb section. */ | |
3194 | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); | |
3195 | ap = (desc >> 10) & 3; | |
3196 | code = 13; | |
d4c430a8 | 3197 | *page_size = 1024 * 1024; |
9ee6e8bb PB |
3198 | } else { |
3199 | /* Lookup l2 entry. */ | |
3200 | if (type == 1) { | |
3201 | /* Coarse pagetable. */ | |
3202 | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); | |
3203 | } else { | |
3204 | /* Fine pagetable. */ | |
3205 | table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); | |
3206 | } | |
fdfba1a2 | 3207 | desc = ldl_phys(cs->as, table); |
9ee6e8bb PB |
3208 | switch (desc & 3) { |
3209 | case 0: /* Page translation fault. */ | |
3210 | code = 7; | |
3211 | goto do_fault; | |
3212 | case 1: /* 64k page. */ | |
3213 | phys_addr = (desc & 0xffff0000) | (address & 0xffff); | |
3214 | ap = (desc >> (4 + ((address >> 13) & 6))) & 3; | |
d4c430a8 | 3215 | *page_size = 0x10000; |
ce819861 | 3216 | break; |
9ee6e8bb PB |
3217 | case 2: /* 4k page. */ |
3218 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |
c10f7fc3 | 3219 | ap = (desc >> (4 + ((address >> 9) & 6))) & 3; |
d4c430a8 | 3220 | *page_size = 0x1000; |
ce819861 | 3221 | break; |
9ee6e8bb PB |
3222 | case 3: /* 1k page. */ |
3223 | if (type == 1) { | |
3224 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { | |
3225 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |
3226 | } else { | |
3227 | /* Page translation fault. */ | |
3228 | code = 7; | |
3229 | goto do_fault; | |
3230 | } | |
3231 | } else { | |
3232 | phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); | |
3233 | } | |
3234 | ap = (desc >> 4) & 3; | |
d4c430a8 | 3235 | *page_size = 0x400; |
ce819861 PB |
3236 | break; |
3237 | default: | |
9ee6e8bb PB |
3238 | /* Never happens, but compiler isn't smart enough to tell. */ |
3239 | abort(); | |
ce819861 | 3240 | } |
9ee6e8bb PB |
3241 | code = 15; |
3242 | } | |
dd4ebc2e | 3243 | *prot = check_ap(env, ap, domain_prot, access_type, is_user); |
9ee6e8bb PB |
3244 | if (!*prot) { |
3245 | /* Access permission fault. */ | |
3246 | goto do_fault; | |
3247 | } | |
3ad493fc | 3248 | *prot |= PAGE_EXEC; |
9ee6e8bb PB |
3249 | *phys_ptr = phys_addr; |
3250 | return 0; | |
3251 | do_fault: | |
3252 | return code | (domain << 4); | |
3253 | } | |
3254 | ||
0ecb72a5 | 3255 | static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type, |
a8170e5e | 3256 | int is_user, hwaddr *phys_ptr, |
77a71dd1 | 3257 | int *prot, target_ulong *page_size) |
9ee6e8bb | 3258 | { |
70d74660 | 3259 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
9ee6e8bb PB |
3260 | int code; |
3261 | uint32_t table; | |
3262 | uint32_t desc; | |
3263 | uint32_t xn; | |
de9b05b8 | 3264 | uint32_t pxn = 0; |
9ee6e8bb PB |
3265 | int type; |
3266 | int ap; | |
de9b05b8 | 3267 | int domain = 0; |
dd4ebc2e | 3268 | int domain_prot; |
a8170e5e | 3269 | hwaddr phys_addr; |
9ee6e8bb PB |
3270 | |
3271 | /* Pagetable walk. */ | |
3272 | /* Lookup l1 descriptor. */ | |
b2fa1797 | 3273 | table = get_level1_table_address(env, address); |
fdfba1a2 | 3274 | desc = ldl_phys(cs->as, table); |
9ee6e8bb | 3275 | type = (desc & 3); |
de9b05b8 PM |
3276 | if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { |
3277 | /* Section translation fault, or attempt to use the encoding | |
3278 | * which is Reserved on implementations without PXN. | |
3279 | */ | |
9ee6e8bb | 3280 | code = 5; |
9ee6e8bb | 3281 | goto do_fault; |
de9b05b8 PM |
3282 | } |
3283 | if ((type == 1) || !(desc & (1 << 18))) { | |
3284 | /* Page or Section. */ | |
dd4ebc2e | 3285 | domain = (desc >> 5) & 0x0f; |
9ee6e8bb | 3286 | } |
dd4ebc2e JCD |
3287 | domain_prot = (env->cp15.c3 >> (domain * 2)) & 3; |
3288 | if (domain_prot == 0 || domain_prot == 2) { | |
de9b05b8 | 3289 | if (type != 1) { |
9ee6e8bb | 3290 | code = 9; /* Section domain fault. */ |
de9b05b8 | 3291 | } else { |
9ee6e8bb | 3292 | code = 11; /* Page domain fault. */ |
de9b05b8 | 3293 | } |
9ee6e8bb PB |
3294 | goto do_fault; |
3295 | } | |
de9b05b8 | 3296 | if (type != 1) { |
9ee6e8bb PB |
3297 | if (desc & (1 << 18)) { |
3298 | /* Supersection. */ | |
3299 | phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); | |
d4c430a8 | 3300 | *page_size = 0x1000000; |
b5ff1b31 | 3301 | } else { |
9ee6e8bb PB |
3302 | /* Section. */ |
3303 | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); | |
d4c430a8 | 3304 | *page_size = 0x100000; |
b5ff1b31 | 3305 | } |
9ee6e8bb PB |
3306 | ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); |
3307 | xn = desc & (1 << 4); | |
de9b05b8 | 3308 | pxn = desc & 1; |
9ee6e8bb PB |
3309 | code = 13; |
3310 | } else { | |
de9b05b8 PM |
3311 | if (arm_feature(env, ARM_FEATURE_PXN)) { |
3312 | pxn = (desc >> 2) & 1; | |
3313 | } | |
9ee6e8bb PB |
3314 | /* Lookup l2 entry. */ |
3315 | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); | |
fdfba1a2 | 3316 | desc = ldl_phys(cs->as, table); |
9ee6e8bb PB |
3317 | ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); |
3318 | switch (desc & 3) { | |
3319 | case 0: /* Page translation fault. */ | |
3320 | code = 7; | |
b5ff1b31 | 3321 | goto do_fault; |
9ee6e8bb PB |
3322 | case 1: /* 64k page. */ |
3323 | phys_addr = (desc & 0xffff0000) | (address & 0xffff); | |
3324 | xn = desc & (1 << 15); | |
d4c430a8 | 3325 | *page_size = 0x10000; |
9ee6e8bb PB |
3326 | break; |
3327 | case 2: case 3: /* 4k page. */ | |
3328 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |
3329 | xn = desc & 1; | |
d4c430a8 | 3330 | *page_size = 0x1000; |
9ee6e8bb PB |
3331 | break; |
3332 | default: | |
3333 | /* Never happens, but compiler isn't smart enough to tell. */ | |
3334 | abort(); | |
b5ff1b31 | 3335 | } |
9ee6e8bb PB |
3336 | code = 15; |
3337 | } | |
dd4ebc2e | 3338 | if (domain_prot == 3) { |
c0034328 JR |
3339 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
3340 | } else { | |
de9b05b8 PM |
3341 | if (pxn && !is_user) { |
3342 | xn = 1; | |
3343 | } | |
c0034328 JR |
3344 | if (xn && access_type == 2) |
3345 | goto do_fault; | |
9ee6e8bb | 3346 | |
c0034328 | 3347 | /* The simplified model uses AP[0] as an access control bit. */ |
76e3e1bc | 3348 | if ((env->cp15.c1_sys & SCTLR_AFE) && (ap & 1) == 0) { |
c0034328 JR |
3349 | /* Access flag fault. */ |
3350 | code = (code == 15) ? 6 : 3; | |
3351 | goto do_fault; | |
3352 | } | |
dd4ebc2e | 3353 | *prot = check_ap(env, ap, domain_prot, access_type, is_user); |
c0034328 JR |
3354 | if (!*prot) { |
3355 | /* Access permission fault. */ | |
3356 | goto do_fault; | |
3357 | } | |
3358 | if (!xn) { | |
3359 | *prot |= PAGE_EXEC; | |
3360 | } | |
3ad493fc | 3361 | } |
9ee6e8bb | 3362 | *phys_ptr = phys_addr; |
b5ff1b31 FB |
3363 | return 0; |
3364 | do_fault: | |
3365 | return code | (domain << 4); | |
3366 | } | |
3367 | ||
3dde962f PM |
3368 | /* Fault type for long-descriptor MMU fault reporting; this corresponds |
3369 | * to bits [5..2] in the STATUS field in long-format DFSR/IFSR. | |
3370 | */ | |
3371 | typedef enum { | |
3372 | translation_fault = 1, | |
3373 | access_fault = 2, | |
3374 | permission_fault = 3, | |
3375 | } MMUFaultType; | |
3376 | ||
3377 | static int get_phys_addr_lpae(CPUARMState *env, uint32_t address, | |
3378 | int access_type, int is_user, | |
a8170e5e | 3379 | hwaddr *phys_ptr, int *prot, |
3dde962f PM |
3380 | target_ulong *page_size_ptr) |
3381 | { | |
70d74660 | 3382 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
3dde962f PM |
3383 | /* Read an LPAE long-descriptor translation table. */ |
3384 | MMUFaultType fault_type = translation_fault; | |
3385 | uint32_t level = 1; | |
3386 | uint32_t epd; | |
3387 | uint32_t tsz; | |
3388 | uint64_t ttbr; | |
3389 | int ttbr_select; | |
3390 | int n; | |
a8170e5e | 3391 | hwaddr descaddr; |
3dde962f PM |
3392 | uint32_t tableattrs; |
3393 | target_ulong page_size; | |
3394 | uint32_t attrs; | |
3395 | ||
3396 | /* Determine whether this address is in the region controlled by | |
3397 | * TTBR0 or TTBR1 (or if it is in neither region and should fault). | |
3398 | * This is a Non-secure PL0/1 stage 1 translation, so controlled by | |
3399 | * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32: | |
3400 | */ | |
3401 | uint32_t t0sz = extract32(env->cp15.c2_control, 0, 3); | |
3402 | uint32_t t1sz = extract32(env->cp15.c2_control, 16, 3); | |
3403 | if (t0sz && !extract32(address, 32 - t0sz, t0sz)) { | |
3404 | /* there is a ttbr0 region and we are in it (high bits all zero) */ | |
3405 | ttbr_select = 0; | |
3406 | } else if (t1sz && !extract32(~address, 32 - t1sz, t1sz)) { | |
3407 | /* there is a ttbr1 region and we are in it (high bits all one) */ | |
3408 | ttbr_select = 1; | |
3409 | } else if (!t0sz) { | |
3410 | /* ttbr0 region is "everything not in the ttbr1 region" */ | |
3411 | ttbr_select = 0; | |
3412 | } else if (!t1sz) { | |
3413 | /* ttbr1 region is "everything not in the ttbr0 region" */ | |
3414 | ttbr_select = 1; | |
3415 | } else { | |
3416 | /* in the gap between the two regions, this is a Translation fault */ | |
3417 | fault_type = translation_fault; | |
3418 | goto do_fault; | |
3419 | } | |
3420 | ||
3421 | /* Note that QEMU ignores shareability and cacheability attributes, | |
3422 | * so we don't need to do anything with the SH, ORGN, IRGN fields | |
3423 | * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the | |
3424 | * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently | |
3425 | * implement any ASID-like capability so we can ignore it (instead | |
3426 | * we will always flush the TLB any time the ASID is changed). | |
3427 | */ | |
3428 | if (ttbr_select == 0) { | |
327ed10f | 3429 | ttbr = env->cp15.ttbr0_el1; |
3dde962f PM |
3430 | epd = extract32(env->cp15.c2_control, 7, 1); |
3431 | tsz = t0sz; | |
3432 | } else { | |
327ed10f | 3433 | ttbr = env->cp15.ttbr1_el1; |
3dde962f PM |
3434 | epd = extract32(env->cp15.c2_control, 23, 1); |
3435 | tsz = t1sz; | |
3436 | } | |
3437 | ||
3438 | if (epd) { | |
3439 | /* Translation table walk disabled => Translation fault on TLB miss */ | |
3440 | goto do_fault; | |
3441 | } | |
3442 | ||
3443 | /* If the region is small enough we will skip straight to a 2nd level | |
3444 | * lookup. This affects the number of bits of the address used in | |
3445 | * combination with the TTBR to find the first descriptor. ('n' here | |
3446 | * matches the usage in the ARM ARM sB3.6.6, where bits [39..n] are | |
3447 | * from the TTBR, [n-1..3] from the vaddr, and [2..0] always zero). | |
3448 | */ | |
3449 | if (tsz > 1) { | |
3450 | level = 2; | |
3451 | n = 14 - tsz; | |
3452 | } else { | |
3453 | n = 5 - tsz; | |
3454 | } | |
3455 | ||
3456 | /* Clear the vaddr bits which aren't part of the within-region address, | |
3457 | * so that we don't have to special case things when calculating the | |
3458 | * first descriptor address. | |
3459 | */ | |
3460 | address &= (0xffffffffU >> tsz); | |
3461 | ||
3462 | /* Now we can extract the actual base address from the TTBR */ | |
3463 | descaddr = extract64(ttbr, 0, 40); | |
3464 | descaddr &= ~((1ULL << n) - 1); | |
3465 | ||
3466 | tableattrs = 0; | |
3467 | for (;;) { | |
3468 | uint64_t descriptor; | |
3469 | ||
3470 | descaddr |= ((address >> (9 * (4 - level))) & 0xff8); | |
2c17449b | 3471 | descriptor = ldq_phys(cs->as, descaddr); |
3dde962f PM |
3472 | if (!(descriptor & 1) || |
3473 | (!(descriptor & 2) && (level == 3))) { | |
3474 | /* Invalid, or the Reserved level 3 encoding */ | |
3475 | goto do_fault; | |
3476 | } | |
3477 | descaddr = descriptor & 0xfffffff000ULL; | |
3478 | ||
3479 | if ((descriptor & 2) && (level < 3)) { | |
3480 | /* Table entry. The top five bits are attributes which may | |
3481 | * propagate down through lower levels of the table (and | |
3482 | * which are all arranged so that 0 means "no effect", so | |
3483 | * we can gather them up by ORing in the bits at each level). | |
3484 | */ | |
3485 | tableattrs |= extract64(descriptor, 59, 5); | |
3486 | level++; | |
3487 | continue; | |
3488 | } | |
3489 | /* Block entry at level 1 or 2, or page entry at level 3. | |
3490 | * These are basically the same thing, although the number | |
3491 | * of bits we pull in from the vaddr varies. | |
3492 | */ | |
3493 | page_size = (1 << (39 - (9 * level))); | |
3494 | descaddr |= (address & (page_size - 1)); | |
3495 | /* Extract attributes from the descriptor and merge with table attrs */ | |
3496 | attrs = extract64(descriptor, 2, 10) | |
3497 | | (extract64(descriptor, 52, 12) << 10); | |
3498 | attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ | |
3499 | attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */ | |
3500 | /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 | |
3501 | * means "force PL1 access only", which means forcing AP[1] to 0. | |
3502 | */ | |
3503 | if (extract32(tableattrs, 2, 1)) { | |
3504 | attrs &= ~(1 << 4); | |
3505 | } | |
3506 | /* Since we're always in the Non-secure state, NSTable is ignored. */ | |
3507 | break; | |
3508 | } | |
3509 | /* Here descaddr is the final physical address, and attributes | |
3510 | * are all in attrs. | |
3511 | */ | |
3512 | fault_type = access_fault; | |
3513 | if ((attrs & (1 << 8)) == 0) { | |
3514 | /* Access flag */ | |
3515 | goto do_fault; | |
3516 | } | |
3517 | fault_type = permission_fault; | |
3518 | if (is_user && !(attrs & (1 << 4))) { | |
3519 | /* Unprivileged access not enabled */ | |
3520 | goto do_fault; | |
3521 | } | |
3522 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; | |
3523 | if (attrs & (1 << 12) || (!is_user && (attrs & (1 << 11)))) { | |
3524 | /* XN or PXN */ | |
3525 | if (access_type == 2) { | |
3526 | goto do_fault; | |
3527 | } | |
3528 | *prot &= ~PAGE_EXEC; | |
3529 | } | |
3530 | if (attrs & (1 << 5)) { | |
3531 | /* Write access forbidden */ | |
3532 | if (access_type == 1) { | |
3533 | goto do_fault; | |
3534 | } | |
3535 | *prot &= ~PAGE_WRITE; | |
3536 | } | |
3537 | ||
3538 | *phys_ptr = descaddr; | |
3539 | *page_size_ptr = page_size; | |
3540 | return 0; | |
3541 | ||
3542 | do_fault: | |
3543 | /* Long-descriptor format IFSR/DFSR value */ | |
3544 | return (1 << 9) | (fault_type << 2) | level; | |
3545 | } | |
3546 | ||
77a71dd1 PM |
3547 | static int get_phys_addr_mpu(CPUARMState *env, uint32_t address, |
3548 | int access_type, int is_user, | |
a8170e5e | 3549 | hwaddr *phys_ptr, int *prot) |
9ee6e8bb PB |
3550 | { |
3551 | int n; | |
3552 | uint32_t mask; | |
3553 | uint32_t base; | |
3554 | ||
3555 | *phys_ptr = address; | |
3556 | for (n = 7; n >= 0; n--) { | |
3557 | base = env->cp15.c6_region[n]; | |
3558 | if ((base & 1) == 0) | |
3559 | continue; | |
3560 | mask = 1 << ((base >> 1) & 0x1f); | |
3561 | /* Keep this shift separate from the above to avoid an | |
3562 | (undefined) << 32. */ | |
3563 | mask = (mask << 1) - 1; | |
3564 | if (((base ^ address) & ~mask) == 0) | |
3565 | break; | |
3566 | } | |
3567 | if (n < 0) | |
3568 | return 2; | |
3569 | ||
3570 | if (access_type == 2) { | |
3571 | mask = env->cp15.c5_insn; | |
3572 | } else { | |
3573 | mask = env->cp15.c5_data; | |
3574 | } | |
3575 | mask = (mask >> (n * 4)) & 0xf; | |
3576 | switch (mask) { | |
3577 | case 0: | |
3578 | return 1; | |
3579 | case 1: | |
3580 | if (is_user) | |
3581 | return 1; | |
3582 | *prot = PAGE_READ | PAGE_WRITE; | |
3583 | break; | |
3584 | case 2: | |
3585 | *prot = PAGE_READ; | |
3586 | if (!is_user) | |
3587 | *prot |= PAGE_WRITE; | |
3588 | break; | |
3589 | case 3: | |
3590 | *prot = PAGE_READ | PAGE_WRITE; | |
3591 | break; | |
3592 | case 5: | |
3593 | if (is_user) | |
3594 | return 1; | |
3595 | *prot = PAGE_READ; | |
3596 | break; | |
3597 | case 6: | |
3598 | *prot = PAGE_READ; | |
3599 | break; | |
3600 | default: | |
3601 | /* Bad permission. */ | |
3602 | return 1; | |
3603 | } | |
3ad493fc | 3604 | *prot |= PAGE_EXEC; |
9ee6e8bb PB |
3605 | return 0; |
3606 | } | |
3607 | ||
702a9357 PM |
3608 | /* get_phys_addr - get the physical address for this virtual address |
3609 | * | |
3610 | * Find the physical address corresponding to the given virtual address, | |
3611 | * by doing a translation table walk on MMU based systems or using the | |
3612 | * MPU state on MPU based systems. | |
3613 | * | |
3614 | * Returns 0 if the translation was successful. Otherwise, phys_ptr, | |
3615 | * prot and page_size are not filled in, and the return value provides | |
3616 | * information on why the translation aborted, in the format of a | |
3617 | * DFSR/IFSR fault register, with the following caveats: | |
3618 | * * we honour the short vs long DFSR format differences. | |
3619 | * * the WnR bit is never set (the caller must do this). | |
3620 | * * for MPU based systems we don't bother to return a full FSR format | |
3621 | * value. | |
3622 | * | |
3623 | * @env: CPUARMState | |
3624 | * @address: virtual address to get physical address for | |
3625 | * @access_type: 0 for read, 1 for write, 2 for execute | |
3626 | * @is_user: 0 for privileged access, 1 for user | |
3627 | * @phys_ptr: set to the physical address corresponding to the virtual address | |
3628 | * @prot: set to the permissions for the page containing phys_ptr | |
3629 | * @page_size: set to the size of the page containing phys_ptr | |
3630 | */ | |
0ecb72a5 | 3631 | static inline int get_phys_addr(CPUARMState *env, uint32_t address, |
9ee6e8bb | 3632 | int access_type, int is_user, |
a8170e5e | 3633 | hwaddr *phys_ptr, int *prot, |
d4c430a8 | 3634 | target_ulong *page_size) |
9ee6e8bb PB |
3635 | { |
3636 | /* Fast Context Switch Extension. */ | |
3637 | if (address < 0x02000000) | |
3638 | address += env->cp15.c13_fcse; | |
3639 | ||
76e3e1bc | 3640 | if ((env->cp15.c1_sys & SCTLR_M) == 0) { |
9ee6e8bb PB |
3641 | /* MMU/MPU disabled. */ |
3642 | *phys_ptr = address; | |
3ad493fc | 3643 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
d4c430a8 | 3644 | *page_size = TARGET_PAGE_SIZE; |
9ee6e8bb PB |
3645 | return 0; |
3646 | } else if (arm_feature(env, ARM_FEATURE_MPU)) { | |
d4c430a8 | 3647 | *page_size = TARGET_PAGE_SIZE; |
9ee6e8bb PB |
3648 | return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr, |
3649 | prot); | |
3dde962f PM |
3650 | } else if (extended_addresses_enabled(env)) { |
3651 | return get_phys_addr_lpae(env, address, access_type, is_user, phys_ptr, | |
3652 | prot, page_size); | |
76e3e1bc | 3653 | } else if (env->cp15.c1_sys & SCTLR_XP) { |
9ee6e8bb | 3654 | return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr, |
d4c430a8 | 3655 | prot, page_size); |
9ee6e8bb PB |
3656 | } else { |
3657 | return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr, | |
d4c430a8 | 3658 | prot, page_size); |
9ee6e8bb PB |
3659 | } |
3660 | } | |
3661 | ||
7510454e AF |
3662 | int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, |
3663 | int access_type, int mmu_idx) | |
b5ff1b31 | 3664 | { |
7510454e AF |
3665 | ARMCPU *cpu = ARM_CPU(cs); |
3666 | CPUARMState *env = &cpu->env; | |
a8170e5e | 3667 | hwaddr phys_addr; |
d4c430a8 | 3668 | target_ulong page_size; |
b5ff1b31 | 3669 | int prot; |
6ebbf390 | 3670 | int ret, is_user; |
b5ff1b31 | 3671 | |
6ebbf390 | 3672 | is_user = mmu_idx == MMU_USER_IDX; |
d4c430a8 PB |
3673 | ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot, |
3674 | &page_size); | |
b5ff1b31 FB |
3675 | if (ret == 0) { |
3676 | /* Map a single [sub]page. */ | |
a8170e5e | 3677 | phys_addr &= ~(hwaddr)0x3ff; |
b5ff1b31 | 3678 | address &= ~(uint32_t)0x3ff; |
0c591eb0 | 3679 | tlb_set_page(cs, address, phys_addr, prot, mmu_idx, page_size); |
d4c430a8 | 3680 | return 0; |
b5ff1b31 FB |
3681 | } |
3682 | ||
3683 | if (access_type == 2) { | |
3684 | env->cp15.c5_insn = ret; | |
3685 | env->cp15.c6_insn = address; | |
27103424 | 3686 | cs->exception_index = EXCP_PREFETCH_ABORT; |
b5ff1b31 FB |
3687 | } else { |
3688 | env->cp15.c5_data = ret; | |
9ee6e8bb PB |
3689 | if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6)) |
3690 | env->cp15.c5_data |= (1 << 11); | |
b5ff1b31 | 3691 | env->cp15.c6_data = address; |
27103424 | 3692 | cs->exception_index = EXCP_DATA_ABORT; |
b5ff1b31 FB |
3693 | } |
3694 | return 1; | |
3695 | } | |
3696 | ||
00b941e5 | 3697 | hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) |
b5ff1b31 | 3698 | { |
00b941e5 | 3699 | ARMCPU *cpu = ARM_CPU(cs); |
a8170e5e | 3700 | hwaddr phys_addr; |
d4c430a8 | 3701 | target_ulong page_size; |
b5ff1b31 FB |
3702 | int prot; |
3703 | int ret; | |
3704 | ||
00b941e5 | 3705 | ret = get_phys_addr(&cpu->env, addr, 0, 0, &phys_addr, &prot, &page_size); |
b5ff1b31 | 3706 | |
00b941e5 | 3707 | if (ret != 0) { |
b5ff1b31 | 3708 | return -1; |
00b941e5 | 3709 | } |
b5ff1b31 FB |
3710 | |
3711 | return phys_addr; | |
3712 | } | |
3713 | ||
0ecb72a5 | 3714 | void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val) |
9ee6e8bb | 3715 | { |
39ea3d4e PM |
3716 | if ((env->uncached_cpsr & CPSR_M) == mode) { |
3717 | env->regs[13] = val; | |
3718 | } else { | |
f5206413 | 3719 | env->banked_r13[bank_number(mode)] = val; |
39ea3d4e | 3720 | } |
9ee6e8bb PB |
3721 | } |
3722 | ||
0ecb72a5 | 3723 | uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode) |
9ee6e8bb | 3724 | { |
39ea3d4e PM |
3725 | if ((env->uncached_cpsr & CPSR_M) == mode) { |
3726 | return env->regs[13]; | |
3727 | } else { | |
f5206413 | 3728 | return env->banked_r13[bank_number(mode)]; |
39ea3d4e | 3729 | } |
9ee6e8bb PB |
3730 | } |
3731 | ||
0ecb72a5 | 3732 | uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) |
9ee6e8bb | 3733 | { |
a47dddd7 AF |
3734 | ARMCPU *cpu = arm_env_get_cpu(env); |
3735 | ||
9ee6e8bb PB |
3736 | switch (reg) { |
3737 | case 0: /* APSR */ | |
3738 | return xpsr_read(env) & 0xf8000000; | |
3739 | case 1: /* IAPSR */ | |
3740 | return xpsr_read(env) & 0xf80001ff; | |
3741 | case 2: /* EAPSR */ | |
3742 | return xpsr_read(env) & 0xff00fc00; | |
3743 | case 3: /* xPSR */ | |
3744 | return xpsr_read(env) & 0xff00fdff; | |
3745 | case 5: /* IPSR */ | |
3746 | return xpsr_read(env) & 0x000001ff; | |
3747 | case 6: /* EPSR */ | |
3748 | return xpsr_read(env) & 0x0700fc00; | |
3749 | case 7: /* IEPSR */ | |
3750 | return xpsr_read(env) & 0x0700edff; | |
3751 | case 8: /* MSP */ | |
3752 | return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13]; | |
3753 | case 9: /* PSP */ | |
3754 | return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp; | |
3755 | case 16: /* PRIMASK */ | |
4cc35614 | 3756 | return (env->daif & PSTATE_I) != 0; |
82845826 SH |
3757 | case 17: /* BASEPRI */ |
3758 | case 18: /* BASEPRI_MAX */ | |
9ee6e8bb | 3759 | return env->v7m.basepri; |
82845826 | 3760 | case 19: /* FAULTMASK */ |
4cc35614 | 3761 | return (env->daif & PSTATE_F) != 0; |
9ee6e8bb PB |
3762 | case 20: /* CONTROL */ |
3763 | return env->v7m.control; | |
3764 | default: | |
3765 | /* ??? For debugging only. */ | |
a47dddd7 | 3766 | cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg); |
9ee6e8bb PB |
3767 | return 0; |
3768 | } | |
3769 | } | |
3770 | ||
0ecb72a5 | 3771 | void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) |
9ee6e8bb | 3772 | { |
a47dddd7 AF |
3773 | ARMCPU *cpu = arm_env_get_cpu(env); |
3774 | ||
9ee6e8bb PB |
3775 | switch (reg) { |
3776 | case 0: /* APSR */ | |
3777 | xpsr_write(env, val, 0xf8000000); | |
3778 | break; | |
3779 | case 1: /* IAPSR */ | |
3780 | xpsr_write(env, val, 0xf8000000); | |
3781 | break; | |
3782 | case 2: /* EAPSR */ | |
3783 | xpsr_write(env, val, 0xfe00fc00); | |
3784 | break; | |
3785 | case 3: /* xPSR */ | |
3786 | xpsr_write(env, val, 0xfe00fc00); | |
3787 | break; | |
3788 | case 5: /* IPSR */ | |
3789 | /* IPSR bits are readonly. */ | |
3790 | break; | |
3791 | case 6: /* EPSR */ | |
3792 | xpsr_write(env, val, 0x0600fc00); | |
3793 | break; | |
3794 | case 7: /* IEPSR */ | |
3795 | xpsr_write(env, val, 0x0600fc00); | |
3796 | break; | |
3797 | case 8: /* MSP */ | |
3798 | if (env->v7m.current_sp) | |
3799 | env->v7m.other_sp = val; | |
3800 | else | |
3801 | env->regs[13] = val; | |
3802 | break; | |
3803 | case 9: /* PSP */ | |
3804 | if (env->v7m.current_sp) | |
3805 | env->regs[13] = val; | |
3806 | else | |
3807 | env->v7m.other_sp = val; | |
3808 | break; | |
3809 | case 16: /* PRIMASK */ | |
4cc35614 PM |
3810 | if (val & 1) { |
3811 | env->daif |= PSTATE_I; | |
3812 | } else { | |
3813 | env->daif &= ~PSTATE_I; | |
3814 | } | |
9ee6e8bb | 3815 | break; |
82845826 | 3816 | case 17: /* BASEPRI */ |
9ee6e8bb PB |
3817 | env->v7m.basepri = val & 0xff; |
3818 | break; | |
82845826 | 3819 | case 18: /* BASEPRI_MAX */ |
9ee6e8bb PB |
3820 | val &= 0xff; |
3821 | if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0)) | |
3822 | env->v7m.basepri = val; | |
3823 | break; | |
82845826 | 3824 | case 19: /* FAULTMASK */ |
4cc35614 PM |
3825 | if (val & 1) { |
3826 | env->daif |= PSTATE_F; | |
3827 | } else { | |
3828 | env->daif &= ~PSTATE_F; | |
3829 | } | |
82845826 | 3830 | break; |
9ee6e8bb PB |
3831 | case 20: /* CONTROL */ |
3832 | env->v7m.control = val & 3; | |
3833 | switch_v7m_sp(env, (val & 2) != 0); | |
3834 | break; | |
3835 | default: | |
3836 | /* ??? For debugging only. */ | |
a47dddd7 | 3837 | cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg); |
9ee6e8bb PB |
3838 | return; |
3839 | } | |
3840 | } | |
3841 | ||
b5ff1b31 | 3842 | #endif |
6ddbc6e4 PB |
3843 | |
3844 | /* Note that signed overflow is undefined in C. The following routines are | |
3845 | careful to use unsigned types where modulo arithmetic is required. | |
3846 | Failure to do so _will_ break on newer gcc. */ | |
3847 | ||
3848 | /* Signed saturating arithmetic. */ | |
3849 | ||
1654b2d6 | 3850 | /* Perform 16-bit signed saturating addition. */ |
6ddbc6e4 PB |
3851 | static inline uint16_t add16_sat(uint16_t a, uint16_t b) |
3852 | { | |
3853 | uint16_t res; | |
3854 | ||
3855 | res = a + b; | |
3856 | if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { | |
3857 | if (a & 0x8000) | |
3858 | res = 0x8000; | |
3859 | else | |
3860 | res = 0x7fff; | |
3861 | } | |
3862 | return res; | |
3863 | } | |
3864 | ||
1654b2d6 | 3865 | /* Perform 8-bit signed saturating addition. */ |
6ddbc6e4 PB |
3866 | static inline uint8_t add8_sat(uint8_t a, uint8_t b) |
3867 | { | |
3868 | uint8_t res; | |
3869 | ||
3870 | res = a + b; | |
3871 | if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { | |
3872 | if (a & 0x80) | |
3873 | res = 0x80; | |
3874 | else | |
3875 | res = 0x7f; | |
3876 | } | |
3877 | return res; | |
3878 | } | |
3879 | ||
1654b2d6 | 3880 | /* Perform 16-bit signed saturating subtraction. */ |
6ddbc6e4 PB |
3881 | static inline uint16_t sub16_sat(uint16_t a, uint16_t b) |
3882 | { | |
3883 | uint16_t res; | |
3884 | ||
3885 | res = a - b; | |
3886 | if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { | |
3887 | if (a & 0x8000) | |
3888 | res = 0x8000; | |
3889 | else | |
3890 | res = 0x7fff; | |
3891 | } | |
3892 | return res; | |
3893 | } | |
3894 | ||
1654b2d6 | 3895 | /* Perform 8-bit signed saturating subtraction. */ |
6ddbc6e4 PB |
3896 | static inline uint8_t sub8_sat(uint8_t a, uint8_t b) |
3897 | { | |
3898 | uint8_t res; | |
3899 | ||
3900 | res = a - b; | |
3901 | if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { | |
3902 | if (a & 0x80) | |
3903 | res = 0x80; | |
3904 | else | |
3905 | res = 0x7f; | |
3906 | } | |
3907 | return res; | |
3908 | } | |
3909 | ||
3910 | #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); | |
3911 | #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); | |
3912 | #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); | |
3913 | #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); | |
3914 | #define PFX q | |
3915 | ||
3916 | #include "op_addsub.h" | |
3917 | ||
3918 | /* Unsigned saturating arithmetic. */ | |
460a09c1 | 3919 | static inline uint16_t add16_usat(uint16_t a, uint16_t b) |
6ddbc6e4 PB |
3920 | { |
3921 | uint16_t res; | |
3922 | res = a + b; | |
3923 | if (res < a) | |
3924 | res = 0xffff; | |
3925 | return res; | |
3926 | } | |
3927 | ||
460a09c1 | 3928 | static inline uint16_t sub16_usat(uint16_t a, uint16_t b) |
6ddbc6e4 | 3929 | { |
4c4fd3f8 | 3930 | if (a > b) |
6ddbc6e4 PB |
3931 | return a - b; |
3932 | else | |
3933 | return 0; | |
3934 | } | |
3935 | ||
3936 | static inline uint8_t add8_usat(uint8_t a, uint8_t b) | |
3937 | { | |
3938 | uint8_t res; | |
3939 | res = a + b; | |
3940 | if (res < a) | |
3941 | res = 0xff; | |
3942 | return res; | |
3943 | } | |
3944 | ||
3945 | static inline uint8_t sub8_usat(uint8_t a, uint8_t b) | |
3946 | { | |
4c4fd3f8 | 3947 | if (a > b) |
6ddbc6e4 PB |
3948 | return a - b; |
3949 | else | |
3950 | return 0; | |
3951 | } | |
3952 | ||
3953 | #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); | |
3954 | #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); | |
3955 | #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); | |
3956 | #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); | |
3957 | #define PFX uq | |
3958 | ||
3959 | #include "op_addsub.h" | |
3960 | ||
3961 | /* Signed modulo arithmetic. */ | |
3962 | #define SARITH16(a, b, n, op) do { \ | |
3963 | int32_t sum; \ | |
db6e2e65 | 3964 | sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ |
6ddbc6e4 PB |
3965 | RESULT(sum, n, 16); \ |
3966 | if (sum >= 0) \ | |
3967 | ge |= 3 << (n * 2); \ | |
3968 | } while(0) | |
3969 | ||
3970 | #define SARITH8(a, b, n, op) do { \ | |
3971 | int32_t sum; \ | |
db6e2e65 | 3972 | sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ |
6ddbc6e4 PB |
3973 | RESULT(sum, n, 8); \ |
3974 | if (sum >= 0) \ | |
3975 | ge |= 1 << n; \ | |
3976 | } while(0) | |
3977 | ||
3978 | ||
3979 | #define ADD16(a, b, n) SARITH16(a, b, n, +) | |
3980 | #define SUB16(a, b, n) SARITH16(a, b, n, -) | |
3981 | #define ADD8(a, b, n) SARITH8(a, b, n, +) | |
3982 | #define SUB8(a, b, n) SARITH8(a, b, n, -) | |
3983 | #define PFX s | |
3984 | #define ARITH_GE | |
3985 | ||
3986 | #include "op_addsub.h" | |
3987 | ||
3988 | /* Unsigned modulo arithmetic. */ | |
3989 | #define ADD16(a, b, n) do { \ | |
3990 | uint32_t sum; \ | |
3991 | sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ | |
3992 | RESULT(sum, n, 16); \ | |
a87aa10b | 3993 | if ((sum >> 16) == 1) \ |
6ddbc6e4 PB |
3994 | ge |= 3 << (n * 2); \ |
3995 | } while(0) | |
3996 | ||
3997 | #define ADD8(a, b, n) do { \ | |
3998 | uint32_t sum; \ | |
3999 | sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ | |
4000 | RESULT(sum, n, 8); \ | |
a87aa10b AZ |
4001 | if ((sum >> 8) == 1) \ |
4002 | ge |= 1 << n; \ | |
6ddbc6e4 PB |
4003 | } while(0) |
4004 | ||
4005 | #define SUB16(a, b, n) do { \ | |
4006 | uint32_t sum; \ | |
4007 | sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ | |
4008 | RESULT(sum, n, 16); \ | |
4009 | if ((sum >> 16) == 0) \ | |
4010 | ge |= 3 << (n * 2); \ | |
4011 | } while(0) | |
4012 | ||
4013 | #define SUB8(a, b, n) do { \ | |
4014 | uint32_t sum; \ | |
4015 | sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ | |
4016 | RESULT(sum, n, 8); \ | |
4017 | if ((sum >> 8) == 0) \ | |
a87aa10b | 4018 | ge |= 1 << n; \ |
6ddbc6e4 PB |
4019 | } while(0) |
4020 | ||
4021 | #define PFX u | |
4022 | #define ARITH_GE | |
4023 | ||
4024 | #include "op_addsub.h" | |
4025 | ||
4026 | /* Halved signed arithmetic. */ | |
4027 | #define ADD16(a, b, n) \ | |
4028 | RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) | |
4029 | #define SUB16(a, b, n) \ | |
4030 | RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) | |
4031 | #define ADD8(a, b, n) \ | |
4032 | RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) | |
4033 | #define SUB8(a, b, n) \ | |
4034 | RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) | |
4035 | #define PFX sh | |
4036 | ||
4037 | #include "op_addsub.h" | |
4038 | ||
4039 | /* Halved unsigned arithmetic. */ | |
4040 | #define ADD16(a, b, n) \ | |
4041 | RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) | |
4042 | #define SUB16(a, b, n) \ | |
4043 | RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) | |
4044 | #define ADD8(a, b, n) \ | |
4045 | RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) | |
4046 | #define SUB8(a, b, n) \ | |
4047 | RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) | |
4048 | #define PFX uh | |
4049 | ||
4050 | #include "op_addsub.h" | |
4051 | ||
4052 | static inline uint8_t do_usad(uint8_t a, uint8_t b) | |
4053 | { | |
4054 | if (a > b) | |
4055 | return a - b; | |
4056 | else | |
4057 | return b - a; | |
4058 | } | |
4059 | ||
4060 | /* Unsigned sum of absolute byte differences. */ | |
4061 | uint32_t HELPER(usad8)(uint32_t a, uint32_t b) | |
4062 | { | |
4063 | uint32_t sum; | |
4064 | sum = do_usad(a, b); | |
4065 | sum += do_usad(a >> 8, b >> 8); | |
4066 | sum += do_usad(a >> 16, b >>16); | |
4067 | sum += do_usad(a >> 24, b >> 24); | |
4068 | return sum; | |
4069 | } | |
4070 | ||
4071 | /* For ARMv6 SEL instruction. */ | |
4072 | uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) | |
4073 | { | |
4074 | uint32_t mask; | |
4075 | ||
4076 | mask = 0; | |
4077 | if (flags & 1) | |
4078 | mask |= 0xff; | |
4079 | if (flags & 2) | |
4080 | mask |= 0xff00; | |
4081 | if (flags & 4) | |
4082 | mask |= 0xff0000; | |
4083 | if (flags & 8) | |
4084 | mask |= 0xff000000; | |
4085 | return (a & mask) | (b & ~mask); | |
4086 | } | |
4087 | ||
b90372ad PM |
4088 | /* VFP support. We follow the convention used for VFP instructions: |
4089 | Single precision routines have a "s" suffix, double precision a | |
4373f3ce PB |
4090 | "d" suffix. */ |
4091 | ||
4092 | /* Convert host exception flags to vfp form. */ | |
4093 | static inline int vfp_exceptbits_from_host(int host_bits) | |
4094 | { | |
4095 | int target_bits = 0; | |
4096 | ||
4097 | if (host_bits & float_flag_invalid) | |
4098 | target_bits |= 1; | |
4099 | if (host_bits & float_flag_divbyzero) | |
4100 | target_bits |= 2; | |
4101 | if (host_bits & float_flag_overflow) | |
4102 | target_bits |= 4; | |
36802b6b | 4103 | if (host_bits & (float_flag_underflow | float_flag_output_denormal)) |
4373f3ce PB |
4104 | target_bits |= 8; |
4105 | if (host_bits & float_flag_inexact) | |
4106 | target_bits |= 0x10; | |
cecd8504 PM |
4107 | if (host_bits & float_flag_input_denormal) |
4108 | target_bits |= 0x80; | |
4373f3ce PB |
4109 | return target_bits; |
4110 | } | |
4111 | ||
0ecb72a5 | 4112 | uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env) |
4373f3ce PB |
4113 | { |
4114 | int i; | |
4115 | uint32_t fpscr; | |
4116 | ||
4117 | fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff) | |
4118 | | (env->vfp.vec_len << 16) | |
4119 | | (env->vfp.vec_stride << 20); | |
4120 | i = get_float_exception_flags(&env->vfp.fp_status); | |
3a492f3a | 4121 | i |= get_float_exception_flags(&env->vfp.standard_fp_status); |
4373f3ce PB |
4122 | fpscr |= vfp_exceptbits_from_host(i); |
4123 | return fpscr; | |
4124 | } | |
4125 | ||
0ecb72a5 | 4126 | uint32_t vfp_get_fpscr(CPUARMState *env) |
01653295 PM |
4127 | { |
4128 | return HELPER(vfp_get_fpscr)(env); | |
4129 | } | |
4130 | ||
4373f3ce PB |
4131 | /* Convert vfp exception flags to target form. */ |
4132 | static inline int vfp_exceptbits_to_host(int target_bits) | |
4133 | { | |
4134 | int host_bits = 0; | |
4135 | ||
4136 | if (target_bits & 1) | |
4137 | host_bits |= float_flag_invalid; | |
4138 | if (target_bits & 2) | |
4139 | host_bits |= float_flag_divbyzero; | |
4140 | if (target_bits & 4) | |
4141 | host_bits |= float_flag_overflow; | |
4142 | if (target_bits & 8) | |
4143 | host_bits |= float_flag_underflow; | |
4144 | if (target_bits & 0x10) | |
4145 | host_bits |= float_flag_inexact; | |
cecd8504 PM |
4146 | if (target_bits & 0x80) |
4147 | host_bits |= float_flag_input_denormal; | |
4373f3ce PB |
4148 | return host_bits; |
4149 | } | |
4150 | ||
0ecb72a5 | 4151 | void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) |
4373f3ce PB |
4152 | { |
4153 | int i; | |
4154 | uint32_t changed; | |
4155 | ||
4156 | changed = env->vfp.xregs[ARM_VFP_FPSCR]; | |
4157 | env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff); | |
4158 | env->vfp.vec_len = (val >> 16) & 7; | |
4159 | env->vfp.vec_stride = (val >> 20) & 3; | |
4160 | ||
4161 | changed ^= val; | |
4162 | if (changed & (3 << 22)) { | |
4163 | i = (val >> 22) & 3; | |
4164 | switch (i) { | |
4d3da0f3 | 4165 | case FPROUNDING_TIEEVEN: |
4373f3ce PB |
4166 | i = float_round_nearest_even; |
4167 | break; | |
4d3da0f3 | 4168 | case FPROUNDING_POSINF: |
4373f3ce PB |
4169 | i = float_round_up; |
4170 | break; | |
4d3da0f3 | 4171 | case FPROUNDING_NEGINF: |
4373f3ce PB |
4172 | i = float_round_down; |
4173 | break; | |
4d3da0f3 | 4174 | case FPROUNDING_ZERO: |
4373f3ce PB |
4175 | i = float_round_to_zero; |
4176 | break; | |
4177 | } | |
4178 | set_float_rounding_mode(i, &env->vfp.fp_status); | |
4179 | } | |
cecd8504 | 4180 | if (changed & (1 << 24)) { |
fe76d976 | 4181 | set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); |
cecd8504 PM |
4182 | set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); |
4183 | } | |
5c7908ed PB |
4184 | if (changed & (1 << 25)) |
4185 | set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status); | |
4373f3ce | 4186 | |
b12c390b | 4187 | i = vfp_exceptbits_to_host(val); |
4373f3ce | 4188 | set_float_exception_flags(i, &env->vfp.fp_status); |
3a492f3a | 4189 | set_float_exception_flags(0, &env->vfp.standard_fp_status); |
4373f3ce PB |
4190 | } |
4191 | ||
0ecb72a5 | 4192 | void vfp_set_fpscr(CPUARMState *env, uint32_t val) |
01653295 PM |
4193 | { |
4194 | HELPER(vfp_set_fpscr)(env, val); | |
4195 | } | |
4196 | ||
4373f3ce PB |
4197 | #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) |
4198 | ||
4199 | #define VFP_BINOP(name) \ | |
ae1857ec | 4200 | float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \ |
4373f3ce | 4201 | { \ |
ae1857ec PM |
4202 | float_status *fpst = fpstp; \ |
4203 | return float32_ ## name(a, b, fpst); \ | |
4373f3ce | 4204 | } \ |
ae1857ec | 4205 | float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \ |
4373f3ce | 4206 | { \ |
ae1857ec PM |
4207 | float_status *fpst = fpstp; \ |
4208 | return float64_ ## name(a, b, fpst); \ | |
4373f3ce PB |
4209 | } |
4210 | VFP_BINOP(add) | |
4211 | VFP_BINOP(sub) | |
4212 | VFP_BINOP(mul) | |
4213 | VFP_BINOP(div) | |
f71a2ae5 PM |
4214 | VFP_BINOP(min) |
4215 | VFP_BINOP(max) | |
4216 | VFP_BINOP(minnum) | |
4217 | VFP_BINOP(maxnum) | |
4373f3ce PB |
4218 | #undef VFP_BINOP |
4219 | ||
4220 | float32 VFP_HELPER(neg, s)(float32 a) | |
4221 | { | |
4222 | return float32_chs(a); | |
4223 | } | |
4224 | ||
4225 | float64 VFP_HELPER(neg, d)(float64 a) | |
4226 | { | |
66230e0d | 4227 | return float64_chs(a); |
4373f3ce PB |
4228 | } |
4229 | ||
4230 | float32 VFP_HELPER(abs, s)(float32 a) | |
4231 | { | |
4232 | return float32_abs(a); | |
4233 | } | |
4234 | ||
4235 | float64 VFP_HELPER(abs, d)(float64 a) | |
4236 | { | |
66230e0d | 4237 | return float64_abs(a); |
4373f3ce PB |
4238 | } |
4239 | ||
0ecb72a5 | 4240 | float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env) |
4373f3ce PB |
4241 | { |
4242 | return float32_sqrt(a, &env->vfp.fp_status); | |
4243 | } | |
4244 | ||
0ecb72a5 | 4245 | float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env) |
4373f3ce PB |
4246 | { |
4247 | return float64_sqrt(a, &env->vfp.fp_status); | |
4248 | } | |
4249 | ||
4250 | /* XXX: check quiet/signaling case */ | |
4251 | #define DO_VFP_cmp(p, type) \ | |
0ecb72a5 | 4252 | void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \ |
4373f3ce PB |
4253 | { \ |
4254 | uint32_t flags; \ | |
4255 | switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \ | |
4256 | case 0: flags = 0x6; break; \ | |
4257 | case -1: flags = 0x8; break; \ | |
4258 | case 1: flags = 0x2; break; \ | |
4259 | default: case 2: flags = 0x3; break; \ | |
4260 | } \ | |
4261 | env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ | |
4262 | | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ | |
4263 | } \ | |
0ecb72a5 | 4264 | void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \ |
4373f3ce PB |
4265 | { \ |
4266 | uint32_t flags; \ | |
4267 | switch(type ## _compare(a, b, &env->vfp.fp_status)) { \ | |
4268 | case 0: flags = 0x6; break; \ | |
4269 | case -1: flags = 0x8; break; \ | |
4270 | case 1: flags = 0x2; break; \ | |
4271 | default: case 2: flags = 0x3; break; \ | |
4272 | } \ | |
4273 | env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ | |
4274 | | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ | |
4275 | } | |
4276 | DO_VFP_cmp(s, float32) | |
4277 | DO_VFP_cmp(d, float64) | |
4278 | #undef DO_VFP_cmp | |
4279 | ||
5500b06c | 4280 | /* Integer to float and float to integer conversions */ |
4373f3ce | 4281 | |
5500b06c PM |
4282 | #define CONV_ITOF(name, fsz, sign) \ |
4283 | float##fsz HELPER(name)(uint32_t x, void *fpstp) \ | |
4284 | { \ | |
4285 | float_status *fpst = fpstp; \ | |
85836979 | 4286 | return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ |
4373f3ce PB |
4287 | } |
4288 | ||
5500b06c PM |
4289 | #define CONV_FTOI(name, fsz, sign, round) \ |
4290 | uint32_t HELPER(name)(float##fsz x, void *fpstp) \ | |
4291 | { \ | |
4292 | float_status *fpst = fpstp; \ | |
4293 | if (float##fsz##_is_any_nan(x)) { \ | |
4294 | float_raise(float_flag_invalid, fpst); \ | |
4295 | return 0; \ | |
4296 | } \ | |
4297 | return float##fsz##_to_##sign##int32##round(x, fpst); \ | |
4373f3ce PB |
4298 | } |
4299 | ||
5500b06c PM |
4300 | #define FLOAT_CONVS(name, p, fsz, sign) \ |
4301 | CONV_ITOF(vfp_##name##to##p, fsz, sign) \ | |
4302 | CONV_FTOI(vfp_to##name##p, fsz, sign, ) \ | |
4303 | CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero) | |
4373f3ce | 4304 | |
5500b06c PM |
4305 | FLOAT_CONVS(si, s, 32, ) |
4306 | FLOAT_CONVS(si, d, 64, ) | |
4307 | FLOAT_CONVS(ui, s, 32, u) | |
4308 | FLOAT_CONVS(ui, d, 64, u) | |
4373f3ce | 4309 | |
5500b06c PM |
4310 | #undef CONV_ITOF |
4311 | #undef CONV_FTOI | |
4312 | #undef FLOAT_CONVS | |
4373f3ce PB |
4313 | |
4314 | /* floating point conversion */ | |
0ecb72a5 | 4315 | float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env) |
4373f3ce | 4316 | { |
2d627737 PM |
4317 | float64 r = float32_to_float64(x, &env->vfp.fp_status); |
4318 | /* ARM requires that S<->D conversion of any kind of NaN generates | |
4319 | * a quiet NaN by forcing the most significant frac bit to 1. | |
4320 | */ | |
4321 | return float64_maybe_silence_nan(r); | |
4373f3ce PB |
4322 | } |
4323 | ||
0ecb72a5 | 4324 | float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env) |
4373f3ce | 4325 | { |
2d627737 PM |
4326 | float32 r = float64_to_float32(x, &env->vfp.fp_status); |
4327 | /* ARM requires that S<->D conversion of any kind of NaN generates | |
4328 | * a quiet NaN by forcing the most significant frac bit to 1. | |
4329 | */ | |
4330 | return float32_maybe_silence_nan(r); | |
4373f3ce PB |
4331 | } |
4332 | ||
4333 | /* VFP3 fixed point conversion. */ | |
16d5b3ca | 4334 | #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ |
8ed697e8 WN |
4335 | float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \ |
4336 | void *fpstp) \ | |
4373f3ce | 4337 | { \ |
5500b06c | 4338 | float_status *fpst = fpstp; \ |
622465e1 | 4339 | float##fsz tmp; \ |
8ed697e8 | 4340 | tmp = itype##_to_##float##fsz(x, fpst); \ |
5500b06c | 4341 | return float##fsz##_scalbn(tmp, -(int)shift, fpst); \ |
16d5b3ca WN |
4342 | } |
4343 | ||
abe66f70 PM |
4344 | /* Notice that we want only input-denormal exception flags from the |
4345 | * scalbn operation: the other possible flags (overflow+inexact if | |
4346 | * we overflow to infinity, output-denormal) aren't correct for the | |
4347 | * complete scale-and-convert operation. | |
4348 | */ | |
16d5b3ca WN |
4349 | #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \ |
4350 | uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \ | |
4351 | uint32_t shift, \ | |
4352 | void *fpstp) \ | |
4373f3ce | 4353 | { \ |
5500b06c | 4354 | float_status *fpst = fpstp; \ |
abe66f70 | 4355 | int old_exc_flags = get_float_exception_flags(fpst); \ |
622465e1 PM |
4356 | float##fsz tmp; \ |
4357 | if (float##fsz##_is_any_nan(x)) { \ | |
5500b06c | 4358 | float_raise(float_flag_invalid, fpst); \ |
622465e1 | 4359 | return 0; \ |
09d9487f | 4360 | } \ |
5500b06c | 4361 | tmp = float##fsz##_scalbn(x, shift, fpst); \ |
abe66f70 PM |
4362 | old_exc_flags |= get_float_exception_flags(fpst) \ |
4363 | & float_flag_input_denormal; \ | |
4364 | set_float_exception_flags(old_exc_flags, fpst); \ | |
16d5b3ca | 4365 | return float##fsz##_to_##itype##round(tmp, fpst); \ |
622465e1 PM |
4366 | } |
4367 | ||
16d5b3ca WN |
4368 | #define VFP_CONV_FIX(name, p, fsz, isz, itype) \ |
4369 | VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ | |
3c6a074a WN |
4370 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \ |
4371 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) | |
4372 | ||
4373 | #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \ | |
4374 | VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ | |
4375 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) | |
16d5b3ca | 4376 | |
8ed697e8 WN |
4377 | VFP_CONV_FIX(sh, d, 64, 64, int16) |
4378 | VFP_CONV_FIX(sl, d, 64, 64, int32) | |
3c6a074a | 4379 | VFP_CONV_FIX_A64(sq, d, 64, 64, int64) |
8ed697e8 WN |
4380 | VFP_CONV_FIX(uh, d, 64, 64, uint16) |
4381 | VFP_CONV_FIX(ul, d, 64, 64, uint32) | |
3c6a074a | 4382 | VFP_CONV_FIX_A64(uq, d, 64, 64, uint64) |
8ed697e8 WN |
4383 | VFP_CONV_FIX(sh, s, 32, 32, int16) |
4384 | VFP_CONV_FIX(sl, s, 32, 32, int32) | |
3c6a074a | 4385 | VFP_CONV_FIX_A64(sq, s, 32, 64, int64) |
8ed697e8 WN |
4386 | VFP_CONV_FIX(uh, s, 32, 32, uint16) |
4387 | VFP_CONV_FIX(ul, s, 32, 32, uint32) | |
3c6a074a | 4388 | VFP_CONV_FIX_A64(uq, s, 32, 64, uint64) |
4373f3ce | 4389 | #undef VFP_CONV_FIX |
16d5b3ca WN |
4390 | #undef VFP_CONV_FIX_FLOAT |
4391 | #undef VFP_CONV_FLOAT_FIX_ROUND | |
4373f3ce | 4392 | |
52a1f6a3 AG |
4393 | /* Set the current fp rounding mode and return the old one. |
4394 | * The argument is a softfloat float_round_ value. | |
4395 | */ | |
4396 | uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env) | |
4397 | { | |
4398 | float_status *fp_status = &env->vfp.fp_status; | |
4399 | ||
4400 | uint32_t prev_rmode = get_float_rounding_mode(fp_status); | |
4401 | set_float_rounding_mode(rmode, fp_status); | |
4402 | ||
4403 | return prev_rmode; | |
4404 | } | |
4405 | ||
43630e58 WN |
4406 | /* Set the current fp rounding mode in the standard fp status and return |
4407 | * the old one. This is for NEON instructions that need to change the | |
4408 | * rounding mode but wish to use the standard FPSCR values for everything | |
4409 | * else. Always set the rounding mode back to the correct value after | |
4410 | * modifying it. | |
4411 | * The argument is a softfloat float_round_ value. | |
4412 | */ | |
4413 | uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env) | |
4414 | { | |
4415 | float_status *fp_status = &env->vfp.standard_fp_status; | |
4416 | ||
4417 | uint32_t prev_rmode = get_float_rounding_mode(fp_status); | |
4418 | set_float_rounding_mode(rmode, fp_status); | |
4419 | ||
4420 | return prev_rmode; | |
4421 | } | |
4422 | ||
60011498 | 4423 | /* Half precision conversions. */ |
0ecb72a5 | 4424 | static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s) |
60011498 | 4425 | { |
60011498 | 4426 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; |
fb91678d PM |
4427 | float32 r = float16_to_float32(make_float16(a), ieee, s); |
4428 | if (ieee) { | |
4429 | return float32_maybe_silence_nan(r); | |
4430 | } | |
4431 | return r; | |
60011498 PB |
4432 | } |
4433 | ||
0ecb72a5 | 4434 | static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s) |
60011498 | 4435 | { |
60011498 | 4436 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; |
fb91678d PM |
4437 | float16 r = float32_to_float16(a, ieee, s); |
4438 | if (ieee) { | |
4439 | r = float16_maybe_silence_nan(r); | |
4440 | } | |
4441 | return float16_val(r); | |
60011498 PB |
4442 | } |
4443 | ||
0ecb72a5 | 4444 | float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) |
2d981da7 PM |
4445 | { |
4446 | return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status); | |
4447 | } | |
4448 | ||
0ecb72a5 | 4449 | uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env) |
2d981da7 PM |
4450 | { |
4451 | return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status); | |
4452 | } | |
4453 | ||
0ecb72a5 | 4454 | float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) |
2d981da7 PM |
4455 | { |
4456 | return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status); | |
4457 | } | |
4458 | ||
0ecb72a5 | 4459 | uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env) |
2d981da7 PM |
4460 | { |
4461 | return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status); | |
4462 | } | |
4463 | ||
8900aad2 PM |
4464 | float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env) |
4465 | { | |
4466 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; | |
4467 | float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status); | |
4468 | if (ieee) { | |
4469 | return float64_maybe_silence_nan(r); | |
4470 | } | |
4471 | return r; | |
4472 | } | |
4473 | ||
4474 | uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env) | |
4475 | { | |
4476 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; | |
4477 | float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status); | |
4478 | if (ieee) { | |
4479 | r = float16_maybe_silence_nan(r); | |
4480 | } | |
4481 | return float16_val(r); | |
4482 | } | |
4483 | ||
dda3ec49 | 4484 | #define float32_two make_float32(0x40000000) |
6aae3df1 PM |
4485 | #define float32_three make_float32(0x40400000) |
4486 | #define float32_one_point_five make_float32(0x3fc00000) | |
dda3ec49 | 4487 | |
0ecb72a5 | 4488 | float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env) |
4373f3ce | 4489 | { |
dda3ec49 PM |
4490 | float_status *s = &env->vfp.standard_fp_status; |
4491 | if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || | |
4492 | (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { | |
43fe9bdb PM |
4493 | if (!(float32_is_zero(a) || float32_is_zero(b))) { |
4494 | float_raise(float_flag_input_denormal, s); | |
4495 | } | |
dda3ec49 PM |
4496 | return float32_two; |
4497 | } | |
4498 | return float32_sub(float32_two, float32_mul(a, b, s), s); | |
4373f3ce PB |
4499 | } |
4500 | ||
0ecb72a5 | 4501 | float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env) |
4373f3ce | 4502 | { |
71826966 | 4503 | float_status *s = &env->vfp.standard_fp_status; |
9ea62f57 PM |
4504 | float32 product; |
4505 | if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || | |
4506 | (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { | |
43fe9bdb PM |
4507 | if (!(float32_is_zero(a) || float32_is_zero(b))) { |
4508 | float_raise(float_flag_input_denormal, s); | |
4509 | } | |
6aae3df1 | 4510 | return float32_one_point_five; |
9ea62f57 | 4511 | } |
6aae3df1 PM |
4512 | product = float32_mul(a, b, s); |
4513 | return float32_div(float32_sub(float32_three, product, s), float32_two, s); | |
4373f3ce PB |
4514 | } |
4515 | ||
8f8e3aa4 PB |
4516 | /* NEON helpers. */ |
4517 | ||
56bf4fe2 CL |
4518 | /* Constants 256 and 512 are used in some helpers; we avoid relying on |
4519 | * int->float conversions at run-time. */ | |
4520 | #define float64_256 make_float64(0x4070000000000000LL) | |
4521 | #define float64_512 make_float64(0x4080000000000000LL) | |
4522 | ||
fe0e4872 CL |
4523 | /* The algorithm that must be used to calculate the estimate |
4524 | * is specified by the ARM ARM. | |
4525 | */ | |
0ecb72a5 | 4526 | static float64 recip_estimate(float64 a, CPUARMState *env) |
fe0e4872 | 4527 | { |
1146a817 PM |
4528 | /* These calculations mustn't set any fp exception flags, |
4529 | * so we use a local copy of the fp_status. | |
4530 | */ | |
4531 | float_status dummy_status = env->vfp.standard_fp_status; | |
4532 | float_status *s = &dummy_status; | |
fe0e4872 CL |
4533 | /* q = (int)(a * 512.0) */ |
4534 | float64 q = float64_mul(float64_512, a, s); | |
4535 | int64_t q_int = float64_to_int64_round_to_zero(q, s); | |
4536 | ||
4537 | /* r = 1.0 / (((double)q + 0.5) / 512.0) */ | |
4538 | q = int64_to_float64(q_int, s); | |
4539 | q = float64_add(q, float64_half, s); | |
4540 | q = float64_div(q, float64_512, s); | |
4541 | q = float64_div(float64_one, q, s); | |
4542 | ||
4543 | /* s = (int)(256.0 * r + 0.5) */ | |
4544 | q = float64_mul(q, float64_256, s); | |
4545 | q = float64_add(q, float64_half, s); | |
4546 | q_int = float64_to_int64_round_to_zero(q, s); | |
4547 | ||
4548 | /* return (double)s / 256.0 */ | |
4549 | return float64_div(int64_to_float64(q_int, s), float64_256, s); | |
4550 | } | |
4551 | ||
0ecb72a5 | 4552 | float32 HELPER(recpe_f32)(float32 a, CPUARMState *env) |
4373f3ce | 4553 | { |
fe0e4872 CL |
4554 | float_status *s = &env->vfp.standard_fp_status; |
4555 | float64 f64; | |
4556 | uint32_t val32 = float32_val(a); | |
4557 | ||
4558 | int result_exp; | |
4559 | int a_exp = (val32 & 0x7f800000) >> 23; | |
4560 | int sign = val32 & 0x80000000; | |
4561 | ||
4562 | if (float32_is_any_nan(a)) { | |
4563 | if (float32_is_signaling_nan(a)) { | |
4564 | float_raise(float_flag_invalid, s); | |
4565 | } | |
4566 | return float32_default_nan; | |
4567 | } else if (float32_is_infinity(a)) { | |
4568 | return float32_set_sign(float32_zero, float32_is_neg(a)); | |
4569 | } else if (float32_is_zero_or_denormal(a)) { | |
43fe9bdb PM |
4570 | if (!float32_is_zero(a)) { |
4571 | float_raise(float_flag_input_denormal, s); | |
4572 | } | |
fe0e4872 CL |
4573 | float_raise(float_flag_divbyzero, s); |
4574 | return float32_set_sign(float32_infinity, float32_is_neg(a)); | |
4575 | } else if (a_exp >= 253) { | |
4576 | float_raise(float_flag_underflow, s); | |
4577 | return float32_set_sign(float32_zero, float32_is_neg(a)); | |
4578 | } | |
4579 | ||
4580 | f64 = make_float64((0x3feULL << 52) | |
4581 | | ((int64_t)(val32 & 0x7fffff) << 29)); | |
4582 | ||
4583 | result_exp = 253 - a_exp; | |
4584 | ||
4585 | f64 = recip_estimate(f64, env); | |
4586 | ||
4587 | val32 = sign | |
4588 | | ((result_exp & 0xff) << 23) | |
4589 | | ((float64_val(f64) >> 29) & 0x7fffff); | |
4590 | return make_float32(val32); | |
4373f3ce PB |
4591 | } |
4592 | ||
e07be5d2 CL |
4593 | /* The algorithm that must be used to calculate the estimate |
4594 | * is specified by the ARM ARM. | |
4595 | */ | |
0ecb72a5 | 4596 | static float64 recip_sqrt_estimate(float64 a, CPUARMState *env) |
e07be5d2 | 4597 | { |
1146a817 PM |
4598 | /* These calculations mustn't set any fp exception flags, |
4599 | * so we use a local copy of the fp_status. | |
4600 | */ | |
4601 | float_status dummy_status = env->vfp.standard_fp_status; | |
4602 | float_status *s = &dummy_status; | |
e07be5d2 CL |
4603 | float64 q; |
4604 | int64_t q_int; | |
4605 | ||
4606 | if (float64_lt(a, float64_half, s)) { | |
4607 | /* range 0.25 <= a < 0.5 */ | |
4608 | ||
4609 | /* a in units of 1/512 rounded down */ | |
4610 | /* q0 = (int)(a * 512.0); */ | |
4611 | q = float64_mul(float64_512, a, s); | |
4612 | q_int = float64_to_int64_round_to_zero(q, s); | |
4613 | ||
4614 | /* reciprocal root r */ | |
4615 | /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */ | |
4616 | q = int64_to_float64(q_int, s); | |
4617 | q = float64_add(q, float64_half, s); | |
4618 | q = float64_div(q, float64_512, s); | |
4619 | q = float64_sqrt(q, s); | |
4620 | q = float64_div(float64_one, q, s); | |
4621 | } else { | |
4622 | /* range 0.5 <= a < 1.0 */ | |
4623 | ||
4624 | /* a in units of 1/256 rounded down */ | |
4625 | /* q1 = (int)(a * 256.0); */ | |
4626 | q = float64_mul(float64_256, a, s); | |
4627 | int64_t q_int = float64_to_int64_round_to_zero(q, s); | |
4628 | ||
4629 | /* reciprocal root r */ | |
4630 | /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */ | |
4631 | q = int64_to_float64(q_int, s); | |
4632 | q = float64_add(q, float64_half, s); | |
4633 | q = float64_div(q, float64_256, s); | |
4634 | q = float64_sqrt(q, s); | |
4635 | q = float64_div(float64_one, q, s); | |
4636 | } | |
4637 | /* r in units of 1/256 rounded to nearest */ | |
4638 | /* s = (int)(256.0 * r + 0.5); */ | |
4639 | ||
4640 | q = float64_mul(q, float64_256,s ); | |
4641 | q = float64_add(q, float64_half, s); | |
4642 | q_int = float64_to_int64_round_to_zero(q, s); | |
4643 | ||
4644 | /* return (double)s / 256.0;*/ | |
4645 | return float64_div(int64_to_float64(q_int, s), float64_256, s); | |
4646 | } | |
4647 | ||
0ecb72a5 | 4648 | float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env) |
4373f3ce | 4649 | { |
e07be5d2 CL |
4650 | float_status *s = &env->vfp.standard_fp_status; |
4651 | int result_exp; | |
4652 | float64 f64; | |
4653 | uint32_t val; | |
4654 | uint64_t val64; | |
4655 | ||
4656 | val = float32_val(a); | |
4657 | ||
4658 | if (float32_is_any_nan(a)) { | |
4659 | if (float32_is_signaling_nan(a)) { | |
4660 | float_raise(float_flag_invalid, s); | |
4661 | } | |
4662 | return float32_default_nan; | |
4663 | } else if (float32_is_zero_or_denormal(a)) { | |
43fe9bdb PM |
4664 | if (!float32_is_zero(a)) { |
4665 | float_raise(float_flag_input_denormal, s); | |
4666 | } | |
e07be5d2 CL |
4667 | float_raise(float_flag_divbyzero, s); |
4668 | return float32_set_sign(float32_infinity, float32_is_neg(a)); | |
4669 | } else if (float32_is_neg(a)) { | |
4670 | float_raise(float_flag_invalid, s); | |
4671 | return float32_default_nan; | |
4672 | } else if (float32_is_infinity(a)) { | |
4673 | return float32_zero; | |
4674 | } | |
4675 | ||
4676 | /* Normalize to a double-precision value between 0.25 and 1.0, | |
4677 | * preserving the parity of the exponent. */ | |
4678 | if ((val & 0x800000) == 0) { | |
4679 | f64 = make_float64(((uint64_t)(val & 0x80000000) << 32) | |
4680 | | (0x3feULL << 52) | |
4681 | | ((uint64_t)(val & 0x7fffff) << 29)); | |
4682 | } else { | |
4683 | f64 = make_float64(((uint64_t)(val & 0x80000000) << 32) | |
4684 | | (0x3fdULL << 52) | |
4685 | | ((uint64_t)(val & 0x7fffff) << 29)); | |
4686 | } | |
4687 | ||
4688 | result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2; | |
4689 | ||
4690 | f64 = recip_sqrt_estimate(f64, env); | |
4691 | ||
4692 | val64 = float64_val(f64); | |
4693 | ||
26cc6abf | 4694 | val = ((result_exp & 0xff) << 23) |
e07be5d2 CL |
4695 | | ((val64 >> 29) & 0x7fffff); |
4696 | return make_float32(val); | |
4373f3ce PB |
4697 | } |
4698 | ||
0ecb72a5 | 4699 | uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env) |
4373f3ce | 4700 | { |
fe0e4872 CL |
4701 | float64 f64; |
4702 | ||
4703 | if ((a & 0x80000000) == 0) { | |
4704 | return 0xffffffff; | |
4705 | } | |
4706 | ||
4707 | f64 = make_float64((0x3feULL << 52) | |
4708 | | ((int64_t)(a & 0x7fffffff) << 21)); | |
4709 | ||
4710 | f64 = recip_estimate (f64, env); | |
4711 | ||
4712 | return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); | |
4373f3ce PB |
4713 | } |
4714 | ||
0ecb72a5 | 4715 | uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env) |
4373f3ce | 4716 | { |
e07be5d2 CL |
4717 | float64 f64; |
4718 | ||
4719 | if ((a & 0xc0000000) == 0) { | |
4720 | return 0xffffffff; | |
4721 | } | |
4722 | ||
4723 | if (a & 0x80000000) { | |
4724 | f64 = make_float64((0x3feULL << 52) | |
4725 | | ((uint64_t)(a & 0x7fffffff) << 21)); | |
4726 | } else { /* bits 31-30 == '01' */ | |
4727 | f64 = make_float64((0x3fdULL << 52) | |
4728 | | ((uint64_t)(a & 0x3fffffff) << 22)); | |
4729 | } | |
4730 | ||
4731 | f64 = recip_sqrt_estimate(f64, env); | |
4732 | ||
4733 | return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); | |
4373f3ce | 4734 | } |
fe1479c3 | 4735 | |
da97f52c PM |
4736 | /* VFPv4 fused multiply-accumulate */ |
4737 | float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp) | |
4738 | { | |
4739 | float_status *fpst = fpstp; | |
4740 | return float32_muladd(a, b, c, 0, fpst); | |
4741 | } | |
4742 | ||
4743 | float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp) | |
4744 | { | |
4745 | float_status *fpst = fpstp; | |
4746 | return float64_muladd(a, b, c, 0, fpst); | |
4747 | } | |
d9b0848d PM |
4748 | |
4749 | /* ARMv8 round to integral */ | |
4750 | float32 HELPER(rints_exact)(float32 x, void *fp_status) | |
4751 | { | |
4752 | return float32_round_to_int(x, fp_status); | |
4753 | } | |
4754 | ||
4755 | float64 HELPER(rintd_exact)(float64 x, void *fp_status) | |
4756 | { | |
4757 | return float64_round_to_int(x, fp_status); | |
4758 | } | |
4759 | ||
4760 | float32 HELPER(rints)(float32 x, void *fp_status) | |
4761 | { | |
4762 | int old_flags = get_float_exception_flags(fp_status), new_flags; | |
4763 | float32 ret; | |
4764 | ||
4765 | ret = float32_round_to_int(x, fp_status); | |
4766 | ||
4767 | /* Suppress any inexact exceptions the conversion produced */ | |
4768 | if (!(old_flags & float_flag_inexact)) { | |
4769 | new_flags = get_float_exception_flags(fp_status); | |
4770 | set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); | |
4771 | } | |
4772 | ||
4773 | return ret; | |
4774 | } | |
4775 | ||
4776 | float64 HELPER(rintd)(float64 x, void *fp_status) | |
4777 | { | |
4778 | int old_flags = get_float_exception_flags(fp_status), new_flags; | |
4779 | float64 ret; | |
4780 | ||
4781 | ret = float64_round_to_int(x, fp_status); | |
4782 | ||
4783 | new_flags = get_float_exception_flags(fp_status); | |
4784 | ||
4785 | /* Suppress any inexact exceptions the conversion produced */ | |
4786 | if (!(old_flags & float_flag_inexact)) { | |
4787 | new_flags = get_float_exception_flags(fp_status); | |
4788 | set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); | |
4789 | } | |
4790 | ||
4791 | return ret; | |
4792 | } | |
9972da66 WN |
4793 | |
4794 | /* Convert ARM rounding mode to softfloat */ | |
4795 | int arm_rmode_to_sf(int rmode) | |
4796 | { | |
4797 | switch (rmode) { | |
4798 | case FPROUNDING_TIEAWAY: | |
4799 | rmode = float_round_ties_away; | |
4800 | break; | |
4801 | case FPROUNDING_ODD: | |
4802 | /* FIXME: add support for TIEAWAY and ODD */ | |
4803 | qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n", | |
4804 | rmode); | |
4805 | case FPROUNDING_TIEEVEN: | |
4806 | default: | |
4807 | rmode = float_round_nearest_even; | |
4808 | break; | |
4809 | case FPROUNDING_POSINF: | |
4810 | rmode = float_round_up; | |
4811 | break; | |
4812 | case FPROUNDING_NEGINF: | |
4813 | rmode = float_round_down; | |
4814 | break; | |
4815 | case FPROUNDING_ZERO: | |
4816 | rmode = float_round_to_zero; | |
4817 | break; | |
4818 | } | |
4819 | return rmode; | |
4820 | } | |
eb0ecd5a WN |
4821 | |
4822 | static void crc_init_buffer(uint8_t *buf, uint32_t val, uint32_t bytes) | |
4823 | { | |
4824 | memset(buf, 0, 4); | |
4825 | ||
4826 | if (bytes == 1) { | |
4827 | buf[0] = val & 0xff; | |
4828 | } else if (bytes == 2) { | |
4829 | buf[0] = val & 0xff; | |
4830 | buf[1] = (val >> 8) & 0xff; | |
4831 | } else { | |
4832 | buf[0] = val & 0xff; | |
4833 | buf[1] = (val >> 8) & 0xff; | |
4834 | buf[2] = (val >> 16) & 0xff; | |
4835 | buf[3] = (val >> 24) & 0xff; | |
4836 | } | |
4837 | } | |
4838 | ||
4839 | uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) | |
4840 | { | |
4841 | uint8_t buf[4]; | |
4842 | ||
4843 | crc_init_buffer(buf, val, bytes); | |
4844 | ||
4845 | /* zlib crc32 converts the accumulator and output to one's complement. */ | |
4846 | return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; | |
4847 | } | |
4848 | ||
4849 | uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) | |
4850 | { | |
4851 | uint8_t buf[4]; | |
4852 | ||
4853 | crc_init_buffer(buf, val, bytes); | |
4854 | ||
4855 | /* Linux crc32c converts the output to one's complement. */ | |
4856 | return crc32c(acc, buf, bytes) ^ 0xffffffff; | |
4857 | } |