]>
Commit | Line | Data |
---|---|---|
b5ff1b31 | 1 | #include "cpu.h" |
ccd38087 | 2 | #include "internals.h" |
022c62cb | 3 | #include "exec/gdbstub.h" |
2ef6175a | 4 | #include "exec/helper-proto.h" |
1de7afc9 | 5 | #include "qemu/host-utils.h" |
78027bb6 | 6 | #include "sysemu/arch_init.h" |
9c17d615 | 7 | #include "sysemu/sysemu.h" |
1de7afc9 | 8 | #include "qemu/bitops.h" |
eb0ecd5a | 9 | #include "qemu/crc32c.h" |
f08b6170 | 10 | #include "exec/cpu_ldst.h" |
1d854765 | 11 | #include "arm_ldst.h" |
eb0ecd5a | 12 | #include <zlib.h> /* For crc32 */ |
0b03bdfc | 13 | |
4a501606 | 14 | #ifndef CONFIG_USER_ONLY |
2c8dd318 | 15 | static inline int get_phys_addr(CPUARMState *env, target_ulong address, |
d3649702 | 16 | int access_type, ARMMMUIdx mmu_idx, |
8bf5b6a9 | 17 | hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, |
4a501606 | 18 | target_ulong *page_size); |
7c2cb42b AF |
19 | |
20 | /* Definitions for the PMCCNTR and PMCR registers */ | |
21 | #define PMCRD 0x8 | |
22 | #define PMCRC 0x4 | |
23 | #define PMCRE 0x1 | |
4a501606 PM |
24 | #endif |
25 | ||
0ecb72a5 | 26 | static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) |
56aebc89 PB |
27 | { |
28 | int nregs; | |
29 | ||
30 | /* VFP data registers are always little-endian. */ | |
31 | nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; | |
32 | if (reg < nregs) { | |
33 | stfq_le_p(buf, env->vfp.regs[reg]); | |
34 | return 8; | |
35 | } | |
36 | if (arm_feature(env, ARM_FEATURE_NEON)) { | |
37 | /* Aliases for Q regs. */ | |
38 | nregs += 16; | |
39 | if (reg < nregs) { | |
40 | stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]); | |
41 | stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]); | |
42 | return 16; | |
43 | } | |
44 | } | |
45 | switch (reg - nregs) { | |
46 | case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; | |
47 | case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4; | |
48 | case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; | |
49 | } | |
50 | return 0; | |
51 | } | |
52 | ||
0ecb72a5 | 53 | static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) |
56aebc89 PB |
54 | { |
55 | int nregs; | |
56 | ||
57 | nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; | |
58 | if (reg < nregs) { | |
59 | env->vfp.regs[reg] = ldfq_le_p(buf); | |
60 | return 8; | |
61 | } | |
62 | if (arm_feature(env, ARM_FEATURE_NEON)) { | |
63 | nregs += 16; | |
64 | if (reg < nregs) { | |
65 | env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf); | |
66 | env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8); | |
67 | return 16; | |
68 | } | |
69 | } | |
70 | switch (reg - nregs) { | |
71 | case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; | |
72 | case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4; | |
71b3c3de | 73 | case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; |
56aebc89 PB |
74 | } |
75 | return 0; | |
76 | } | |
77 | ||
6a669427 PM |
78 | static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) |
79 | { | |
80 | switch (reg) { | |
81 | case 0 ... 31: | |
82 | /* 128 bit FP register */ | |
83 | stfq_le_p(buf, env->vfp.regs[reg * 2]); | |
84 | stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]); | |
85 | return 16; | |
86 | case 32: | |
87 | /* FPSR */ | |
88 | stl_p(buf, vfp_get_fpsr(env)); | |
89 | return 4; | |
90 | case 33: | |
91 | /* FPCR */ | |
92 | stl_p(buf, vfp_get_fpcr(env)); | |
93 | return 4; | |
94 | default: | |
95 | return 0; | |
96 | } | |
97 | } | |
98 | ||
99 | static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) | |
100 | { | |
101 | switch (reg) { | |
102 | case 0 ... 31: | |
103 | /* 128 bit FP register */ | |
104 | env->vfp.regs[reg * 2] = ldfq_le_p(buf); | |
105 | env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8); | |
106 | return 16; | |
107 | case 32: | |
108 | /* FPSR */ | |
109 | vfp_set_fpsr(env, ldl_p(buf)); | |
110 | return 4; | |
111 | case 33: | |
112 | /* FPCR */ | |
113 | vfp_set_fpcr(env, ldl_p(buf)); | |
114 | return 4; | |
115 | default: | |
116 | return 0; | |
117 | } | |
118 | } | |
119 | ||
c4241c7d | 120 | static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) |
d4e6df63 | 121 | { |
375421cc | 122 | assert(ri->fieldoffset); |
67ed771d | 123 | if (cpreg_field_is_64bit(ri)) { |
c4241c7d | 124 | return CPREG_FIELD64(env, ri); |
22d9e1a9 | 125 | } else { |
c4241c7d | 126 | return CPREG_FIELD32(env, ri); |
22d9e1a9 | 127 | } |
d4e6df63 PM |
128 | } |
129 | ||
c4241c7d PM |
130 | static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
131 | uint64_t value) | |
d4e6df63 | 132 | { |
375421cc | 133 | assert(ri->fieldoffset); |
67ed771d | 134 | if (cpreg_field_is_64bit(ri)) { |
22d9e1a9 PM |
135 | CPREG_FIELD64(env, ri) = value; |
136 | } else { | |
137 | CPREG_FIELD32(env, ri) = value; | |
138 | } | |
d4e6df63 PM |
139 | } |
140 | ||
11f136ee FA |
141 | static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) |
142 | { | |
143 | return (char *)env + ri->fieldoffset; | |
144 | } | |
145 | ||
59a1c327 | 146 | static uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) |
721fae12 | 147 | { |
59a1c327 | 148 | /* Raw read of a coprocessor register (as needed for migration, etc). */ |
721fae12 | 149 | if (ri->type & ARM_CP_CONST) { |
59a1c327 | 150 | return ri->resetvalue; |
721fae12 | 151 | } else if (ri->raw_readfn) { |
59a1c327 | 152 | return ri->raw_readfn(env, ri); |
721fae12 | 153 | } else if (ri->readfn) { |
59a1c327 | 154 | return ri->readfn(env, ri); |
721fae12 | 155 | } else { |
59a1c327 | 156 | return raw_read(env, ri); |
721fae12 | 157 | } |
721fae12 PM |
158 | } |
159 | ||
59a1c327 | 160 | static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, |
7900e9f1 | 161 | uint64_t v) |
721fae12 PM |
162 | { |
163 | /* Raw write of a coprocessor register (as needed for migration, etc). | |
721fae12 PM |
164 | * Note that constant registers are treated as write-ignored; the |
165 | * caller should check for success by whether a readback gives the | |
166 | * value written. | |
167 | */ | |
168 | if (ri->type & ARM_CP_CONST) { | |
59a1c327 | 169 | return; |
721fae12 | 170 | } else if (ri->raw_writefn) { |
c4241c7d | 171 | ri->raw_writefn(env, ri, v); |
721fae12 | 172 | } else if (ri->writefn) { |
c4241c7d | 173 | ri->writefn(env, ri, v); |
721fae12 | 174 | } else { |
afb2530f | 175 | raw_write(env, ri, v); |
721fae12 | 176 | } |
721fae12 PM |
177 | } |
178 | ||
375421cc PM |
179 | static bool raw_accessors_invalid(const ARMCPRegInfo *ri) |
180 | { | |
181 | /* Return true if the regdef would cause an assertion if you called | |
182 | * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a | |
183 | * program bug for it not to have the NO_RAW flag). | |
184 | * NB that returning false here doesn't necessarily mean that calling | |
185 | * read/write_raw_cp_reg() is safe, because we can't distinguish "has | |
186 | * read/write access functions which are safe for raw use" from "has | |
187 | * read/write access functions which have side effects but has forgotten | |
188 | * to provide raw access functions". | |
189 | * The tests here line up with the conditions in read/write_raw_cp_reg() | |
190 | * and assertions in raw_read()/raw_write(). | |
191 | */ | |
192 | if ((ri->type & ARM_CP_CONST) || | |
193 | ri->fieldoffset || | |
194 | ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { | |
195 | return false; | |
196 | } | |
197 | return true; | |
198 | } | |
199 | ||
721fae12 PM |
200 | bool write_cpustate_to_list(ARMCPU *cpu) |
201 | { | |
202 | /* Write the coprocessor state from cpu->env to the (index,value) list. */ | |
203 | int i; | |
204 | bool ok = true; | |
205 | ||
206 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |
207 | uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); | |
208 | const ARMCPRegInfo *ri; | |
59a1c327 | 209 | |
60322b39 | 210 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 PM |
211 | if (!ri) { |
212 | ok = false; | |
213 | continue; | |
214 | } | |
7a0e58fa | 215 | if (ri->type & ARM_CP_NO_RAW) { |
721fae12 PM |
216 | continue; |
217 | } | |
59a1c327 | 218 | cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri); |
721fae12 PM |
219 | } |
220 | return ok; | |
221 | } | |
222 | ||
223 | bool write_list_to_cpustate(ARMCPU *cpu) | |
224 | { | |
225 | int i; | |
226 | bool ok = true; | |
227 | ||
228 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |
229 | uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); | |
230 | uint64_t v = cpu->cpreg_values[i]; | |
721fae12 PM |
231 | const ARMCPRegInfo *ri; |
232 | ||
60322b39 | 233 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 PM |
234 | if (!ri) { |
235 | ok = false; | |
236 | continue; | |
237 | } | |
7a0e58fa | 238 | if (ri->type & ARM_CP_NO_RAW) { |
721fae12 PM |
239 | continue; |
240 | } | |
241 | /* Write value and confirm it reads back as written | |
242 | * (to catch read-only registers and partially read-only | |
243 | * registers where the incoming migration value doesn't match) | |
244 | */ | |
59a1c327 PM |
245 | write_raw_cp_reg(&cpu->env, ri, v); |
246 | if (read_raw_cp_reg(&cpu->env, ri) != v) { | |
721fae12 PM |
247 | ok = false; |
248 | } | |
249 | } | |
250 | return ok; | |
251 | } | |
252 | ||
253 | static void add_cpreg_to_list(gpointer key, gpointer opaque) | |
254 | { | |
255 | ARMCPU *cpu = opaque; | |
256 | uint64_t regidx; | |
257 | const ARMCPRegInfo *ri; | |
258 | ||
259 | regidx = *(uint32_t *)key; | |
60322b39 | 260 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 | 261 | |
7a0e58fa | 262 | if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { |
721fae12 PM |
263 | cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); |
264 | /* The value array need not be initialized at this point */ | |
265 | cpu->cpreg_array_len++; | |
266 | } | |
267 | } | |
268 | ||
269 | static void count_cpreg(gpointer key, gpointer opaque) | |
270 | { | |
271 | ARMCPU *cpu = opaque; | |
272 | uint64_t regidx; | |
273 | const ARMCPRegInfo *ri; | |
274 | ||
275 | regidx = *(uint32_t *)key; | |
60322b39 | 276 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
721fae12 | 277 | |
7a0e58fa | 278 | if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { |
721fae12 PM |
279 | cpu->cpreg_array_len++; |
280 | } | |
281 | } | |
282 | ||
283 | static gint cpreg_key_compare(gconstpointer a, gconstpointer b) | |
284 | { | |
cbf239b7 AR |
285 | uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); |
286 | uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); | |
721fae12 | 287 | |
cbf239b7 AR |
288 | if (aidx > bidx) { |
289 | return 1; | |
290 | } | |
291 | if (aidx < bidx) { | |
292 | return -1; | |
293 | } | |
294 | return 0; | |
721fae12 PM |
295 | } |
296 | ||
82a3a118 PM |
297 | static void cpreg_make_keylist(gpointer key, gpointer value, gpointer udata) |
298 | { | |
299 | GList **plist = udata; | |
300 | ||
301 | *plist = g_list_prepend(*plist, key); | |
302 | } | |
303 | ||
721fae12 PM |
304 | void init_cpreg_list(ARMCPU *cpu) |
305 | { | |
306 | /* Initialise the cpreg_tuples[] array based on the cp_regs hash. | |
307 | * Note that we require cpreg_tuples[] to be sorted by key ID. | |
308 | */ | |
82a3a118 | 309 | GList *keys = NULL; |
721fae12 PM |
310 | int arraylen; |
311 | ||
82a3a118 PM |
312 | g_hash_table_foreach(cpu->cp_regs, cpreg_make_keylist, &keys); |
313 | ||
721fae12 PM |
314 | keys = g_list_sort(keys, cpreg_key_compare); |
315 | ||
316 | cpu->cpreg_array_len = 0; | |
317 | ||
318 | g_list_foreach(keys, count_cpreg, cpu); | |
319 | ||
320 | arraylen = cpu->cpreg_array_len; | |
321 | cpu->cpreg_indexes = g_new(uint64_t, arraylen); | |
322 | cpu->cpreg_values = g_new(uint64_t, arraylen); | |
323 | cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); | |
324 | cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); | |
325 | cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; | |
326 | cpu->cpreg_array_len = 0; | |
327 | ||
328 | g_list_foreach(keys, add_cpreg_to_list, cpu); | |
329 | ||
330 | assert(cpu->cpreg_array_len == arraylen); | |
331 | ||
332 | g_list_free(keys); | |
333 | } | |
334 | ||
c4241c7d | 335 | static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
c983fe6c | 336 | { |
00c8cb0a AF |
337 | ARMCPU *cpu = arm_env_get_cpu(env); |
338 | ||
8d5c773e | 339 | raw_write(env, ri, value); |
00c8cb0a | 340 | tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */ |
c983fe6c PM |
341 | } |
342 | ||
c4241c7d | 343 | static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
08de207b | 344 | { |
00c8cb0a AF |
345 | ARMCPU *cpu = arm_env_get_cpu(env); |
346 | ||
8d5c773e | 347 | if (raw_read(env, ri) != value) { |
08de207b PM |
348 | /* Unlike real hardware the qemu TLB uses virtual addresses, |
349 | * not modified virtual addresses, so this causes a TLB flush. | |
350 | */ | |
00c8cb0a | 351 | tlb_flush(CPU(cpu), 1); |
8d5c773e | 352 | raw_write(env, ri, value); |
08de207b | 353 | } |
08de207b | 354 | } |
c4241c7d PM |
355 | |
356 | static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
357 | uint64_t value) | |
08de207b | 358 | { |
00c8cb0a AF |
359 | ARMCPU *cpu = arm_env_get_cpu(env); |
360 | ||
8d5c773e | 361 | if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU) |
014406b5 | 362 | && !extended_addresses_enabled(env)) { |
08de207b PM |
363 | /* For VMSA (when not using the LPAE long descriptor page table |
364 | * format) this register includes the ASID, so do a TLB flush. | |
365 | * For PMSA it is purely a process ID and no action is needed. | |
366 | */ | |
00c8cb0a | 367 | tlb_flush(CPU(cpu), 1); |
08de207b | 368 | } |
8d5c773e | 369 | raw_write(env, ri, value); |
08de207b PM |
370 | } |
371 | ||
c4241c7d PM |
372 | static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, |
373 | uint64_t value) | |
d929823f PM |
374 | { |
375 | /* Invalidate all (TLBIALL) */ | |
00c8cb0a AF |
376 | ARMCPU *cpu = arm_env_get_cpu(env); |
377 | ||
378 | tlb_flush(CPU(cpu), 1); | |
d929823f PM |
379 | } |
380 | ||
c4241c7d PM |
381 | static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, |
382 | uint64_t value) | |
d929823f PM |
383 | { |
384 | /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ | |
31b030d4 AF |
385 | ARMCPU *cpu = arm_env_get_cpu(env); |
386 | ||
387 | tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); | |
d929823f PM |
388 | } |
389 | ||
c4241c7d PM |
390 | static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, |
391 | uint64_t value) | |
d929823f PM |
392 | { |
393 | /* Invalidate by ASID (TLBIASID) */ | |
00c8cb0a AF |
394 | ARMCPU *cpu = arm_env_get_cpu(env); |
395 | ||
396 | tlb_flush(CPU(cpu), value == 0); | |
d929823f PM |
397 | } |
398 | ||
c4241c7d PM |
399 | static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, |
400 | uint64_t value) | |
d929823f PM |
401 | { |
402 | /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ | |
31b030d4 AF |
403 | ARMCPU *cpu = arm_env_get_cpu(env); |
404 | ||
405 | tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); | |
d929823f PM |
406 | } |
407 | ||
fa439fc5 PM |
408 | /* IS variants of TLB operations must affect all cores */ |
409 | static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
410 | uint64_t value) | |
411 | { | |
412 | CPUState *other_cs; | |
413 | ||
414 | CPU_FOREACH(other_cs) { | |
415 | tlb_flush(other_cs, 1); | |
416 | } | |
417 | } | |
418 | ||
419 | static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
420 | uint64_t value) | |
421 | { | |
422 | CPUState *other_cs; | |
423 | ||
424 | CPU_FOREACH(other_cs) { | |
425 | tlb_flush(other_cs, value == 0); | |
426 | } | |
427 | } | |
428 | ||
429 | static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
430 | uint64_t value) | |
431 | { | |
432 | CPUState *other_cs; | |
433 | ||
434 | CPU_FOREACH(other_cs) { | |
435 | tlb_flush_page(other_cs, value & TARGET_PAGE_MASK); | |
436 | } | |
437 | } | |
438 | ||
439 | static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
440 | uint64_t value) | |
441 | { | |
442 | CPUState *other_cs; | |
443 | ||
444 | CPU_FOREACH(other_cs) { | |
445 | tlb_flush_page(other_cs, value & TARGET_PAGE_MASK); | |
446 | } | |
447 | } | |
448 | ||
e9aa6c21 | 449 | static const ARMCPRegInfo cp_reginfo[] = { |
54bf36ed FA |
450 | /* Define the secure and non-secure FCSE identifier CP registers |
451 | * separately because there is no secure bank in V8 (no _EL3). This allows | |
452 | * the secure register to be properly reset and migrated. There is also no | |
453 | * v8 EL1 version of the register so the non-secure instance stands alone. | |
454 | */ | |
455 | { .name = "FCSEIDR(NS)", | |
456 | .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, | |
457 | .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, | |
458 | .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), | |
459 | .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, | |
460 | { .name = "FCSEIDR(S)", | |
461 | .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, | |
462 | .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, | |
463 | .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), | |
d4e6df63 | 464 | .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, |
54bf36ed FA |
465 | /* Define the secure and non-secure context identifier CP registers |
466 | * separately because there is no secure bank in V8 (no _EL3). This allows | |
467 | * the secure register to be properly reset and migrated. In the | |
468 | * non-secure case, the 32-bit register will have reset and migration | |
469 | * disabled during registration as it is handled by the 64-bit instance. | |
470 | */ | |
471 | { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, | |
014406b5 | 472 | .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, |
54bf36ed FA |
473 | .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, |
474 | .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), | |
475 | .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, | |
476 | { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32, | |
477 | .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, | |
478 | .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, | |
479 | .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), | |
d4e6df63 | 480 | .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, |
9449fdf6 PM |
481 | REGINFO_SENTINEL |
482 | }; | |
483 | ||
484 | static const ARMCPRegInfo not_v8_cp_reginfo[] = { | |
485 | /* NB: Some of these registers exist in v8 but with more precise | |
486 | * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). | |
487 | */ | |
488 | /* MMU Domain access control / MPU write buffer control */ | |
0c17d68c FA |
489 | { .name = "DACR", |
490 | .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, | |
491 | .access = PL1_RW, .resetvalue = 0, | |
492 | .writefn = dacr_write, .raw_writefn = raw_write, | |
493 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), | |
494 | offsetoflow32(CPUARMState, cp15.dacr_ns) } }, | |
4fdd17dd PM |
495 | /* ??? This covers not just the impdef TLB lockdown registers but also |
496 | * some v7VMSA registers relating to TEX remap, so it is overly broad. | |
497 | */ | |
498 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY, | |
499 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, | |
c4804214 PM |
500 | /* Cache maintenance ops; some of this space may be overridden later. */ |
501 | { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, | |
502 | .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, | |
503 | .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, | |
e9aa6c21 PM |
504 | REGINFO_SENTINEL |
505 | }; | |
506 | ||
7d57f408 PM |
507 | static const ARMCPRegInfo not_v6_cp_reginfo[] = { |
508 | /* Not all pre-v6 cores implemented this WFI, so this is slightly | |
509 | * over-broad. | |
510 | */ | |
511 | { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, | |
512 | .access = PL1_W, .type = ARM_CP_WFI }, | |
513 | REGINFO_SENTINEL | |
514 | }; | |
515 | ||
516 | static const ARMCPRegInfo not_v7_cp_reginfo[] = { | |
517 | /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which | |
518 | * is UNPREDICTABLE; we choose to NOP as most implementations do). | |
519 | */ | |
520 | { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, | |
521 | .access = PL1_W, .type = ARM_CP_WFI }, | |
34f90529 PM |
522 | /* L1 cache lockdown. Not architectural in v6 and earlier but in practice |
523 | * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and | |
524 | * OMAPCP will override this space. | |
525 | */ | |
526 | { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, | |
527 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), | |
528 | .resetvalue = 0 }, | |
529 | { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, | |
530 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), | |
531 | .resetvalue = 0 }, | |
776d4e5c PM |
532 | /* v6 doesn't have the cache ID registers but Linux reads them anyway */ |
533 | { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, | |
7a0e58fa | 534 | .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 535 | .resetvalue = 0 }, |
50300698 PM |
536 | /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; |
537 | * implementing it as RAZ means the "debug architecture version" bits | |
538 | * will read as a reserved value, which should cause Linux to not try | |
539 | * to use the debug hardware. | |
540 | */ | |
541 | { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, | |
542 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
995939a6 PM |
543 | /* MMU TLB control. Note that the wildcarding means we cover not just |
544 | * the unified TLB ops but also the dside/iside/inner-shareable variants. | |
545 | */ | |
546 | { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, | |
547 | .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, | |
7a0e58fa | 548 | .type = ARM_CP_NO_RAW }, |
995939a6 PM |
549 | { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, |
550 | .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, | |
7a0e58fa | 551 | .type = ARM_CP_NO_RAW }, |
995939a6 PM |
552 | { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, |
553 | .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, | |
7a0e58fa | 554 | .type = ARM_CP_NO_RAW }, |
995939a6 PM |
555 | { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, |
556 | .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, | |
7a0e58fa | 557 | .type = ARM_CP_NO_RAW }, |
7d57f408 PM |
558 | REGINFO_SENTINEL |
559 | }; | |
560 | ||
c4241c7d PM |
561 | static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
562 | uint64_t value) | |
2771db27 | 563 | { |
f0aff255 FA |
564 | uint32_t mask = 0; |
565 | ||
566 | /* In ARMv8 most bits of CPACR_EL1 are RES0. */ | |
567 | if (!arm_feature(env, ARM_FEATURE_V8)) { | |
568 | /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. | |
569 | * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. | |
570 | * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. | |
571 | */ | |
572 | if (arm_feature(env, ARM_FEATURE_VFP)) { | |
573 | /* VFP coprocessor: cp10 & cp11 [23:20] */ | |
574 | mask |= (1 << 31) | (1 << 30) | (0xf << 20); | |
575 | ||
576 | if (!arm_feature(env, ARM_FEATURE_NEON)) { | |
577 | /* ASEDIS [31] bit is RAO/WI */ | |
578 | value |= (1 << 31); | |
579 | } | |
580 | ||
581 | /* VFPv3 and upwards with NEON implement 32 double precision | |
582 | * registers (D0-D31). | |
583 | */ | |
584 | if (!arm_feature(env, ARM_FEATURE_NEON) || | |
585 | !arm_feature(env, ARM_FEATURE_VFP3)) { | |
586 | /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ | |
587 | value |= (1 << 30); | |
588 | } | |
589 | } | |
590 | value &= mask; | |
2771db27 | 591 | } |
7ebd5f2e | 592 | env->cp15.cpacr_el1 = value; |
2771db27 PM |
593 | } |
594 | ||
7d57f408 PM |
595 | static const ARMCPRegInfo v6_cp_reginfo[] = { |
596 | /* prefetch by MVA in v6, NOP in v7 */ | |
597 | { .name = "MVA_prefetch", | |
598 | .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, | |
599 | .access = PL1_W, .type = ARM_CP_NOP }, | |
600 | { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, | |
601 | .access = PL0_W, .type = ARM_CP_NOP }, | |
091fd17c | 602 | { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, |
7d57f408 | 603 | .access = PL0_W, .type = ARM_CP_NOP }, |
091fd17c | 604 | { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, |
7d57f408 | 605 | .access = PL0_W, .type = ARM_CP_NOP }, |
06d76f31 | 606 | { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, |
6cd8a264 | 607 | .access = PL1_RW, |
b848ce2b FA |
608 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), |
609 | offsetof(CPUARMState, cp15.ifar_ns) }, | |
06d76f31 PM |
610 | .resetvalue = 0, }, |
611 | /* Watchpoint Fault Address Register : should actually only be present | |
612 | * for 1136, 1176, 11MPCore. | |
613 | */ | |
614 | { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, | |
615 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, | |
34222fb8 PM |
616 | { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, |
617 | .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, | |
7ebd5f2e | 618 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), |
2771db27 | 619 | .resetvalue = 0, .writefn = cpacr_write }, |
7d57f408 PM |
620 | REGINFO_SENTINEL |
621 | }; | |
622 | ||
fcd25206 | 623 | static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri) |
200ac0ef | 624 | { |
3b163b01 | 625 | /* Performance monitor registers user accessibility is controlled |
fcd25206 | 626 | * by PMUSERENR. |
200ac0ef | 627 | */ |
dcbff19b | 628 | if (arm_current_el(env) == 0 && !env->cp15.c9_pmuserenr) { |
fcd25206 | 629 | return CP_ACCESS_TRAP; |
200ac0ef | 630 | } |
fcd25206 | 631 | return CP_ACCESS_OK; |
200ac0ef PM |
632 | } |
633 | ||
7c2cb42b | 634 | #ifndef CONFIG_USER_ONLY |
87124fde AF |
635 | |
636 | static inline bool arm_ccnt_enabled(CPUARMState *env) | |
637 | { | |
638 | /* This does not support checking PMCCFILTR_EL0 register */ | |
639 | ||
640 | if (!(env->cp15.c9_pmcr & PMCRE)) { | |
641 | return false; | |
642 | } | |
643 | ||
644 | return true; | |
645 | } | |
646 | ||
ec7b4ce4 AF |
647 | void pmccntr_sync(CPUARMState *env) |
648 | { | |
649 | uint64_t temp_ticks; | |
650 | ||
651 | temp_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL), | |
652 | get_ticks_per_sec(), 1000000); | |
653 | ||
654 | if (env->cp15.c9_pmcr & PMCRD) { | |
655 | /* Increment once every 64 processor clock cycles */ | |
656 | temp_ticks /= 64; | |
657 | } | |
658 | ||
659 | if (arm_ccnt_enabled(env)) { | |
660 | env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt; | |
661 | } | |
662 | } | |
663 | ||
c4241c7d PM |
664 | static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
665 | uint64_t value) | |
200ac0ef | 666 | { |
942a155b | 667 | pmccntr_sync(env); |
7c2cb42b AF |
668 | |
669 | if (value & PMCRC) { | |
670 | /* The counter has been reset */ | |
671 | env->cp15.c15_ccnt = 0; | |
672 | } | |
673 | ||
200ac0ef PM |
674 | /* only the DP, X, D and E bits are writable */ |
675 | env->cp15.c9_pmcr &= ~0x39; | |
676 | env->cp15.c9_pmcr |= (value & 0x39); | |
7c2cb42b | 677 | |
942a155b | 678 | pmccntr_sync(env); |
7c2cb42b AF |
679 | } |
680 | ||
681 | static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
682 | { | |
c92c0687 | 683 | uint64_t total_ticks; |
7c2cb42b | 684 | |
942a155b | 685 | if (!arm_ccnt_enabled(env)) { |
7c2cb42b AF |
686 | /* Counter is disabled, do not change value */ |
687 | return env->cp15.c15_ccnt; | |
688 | } | |
689 | ||
c92c0687 AF |
690 | total_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL), |
691 | get_ticks_per_sec(), 1000000); | |
7c2cb42b AF |
692 | |
693 | if (env->cp15.c9_pmcr & PMCRD) { | |
694 | /* Increment once every 64 processor clock cycles */ | |
695 | total_ticks /= 64; | |
696 | } | |
697 | return total_ticks - env->cp15.c15_ccnt; | |
698 | } | |
699 | ||
700 | static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
701 | uint64_t value) | |
702 | { | |
c92c0687 | 703 | uint64_t total_ticks; |
7c2cb42b | 704 | |
942a155b | 705 | if (!arm_ccnt_enabled(env)) { |
7c2cb42b AF |
706 | /* Counter is disabled, set the absolute value */ |
707 | env->cp15.c15_ccnt = value; | |
708 | return; | |
709 | } | |
710 | ||
c92c0687 AF |
711 | total_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL), |
712 | get_ticks_per_sec(), 1000000); | |
7c2cb42b AF |
713 | |
714 | if (env->cp15.c9_pmcr & PMCRD) { | |
715 | /* Increment once every 64 processor clock cycles */ | |
716 | total_ticks /= 64; | |
717 | } | |
718 | env->cp15.c15_ccnt = total_ticks - value; | |
200ac0ef | 719 | } |
421c7ebd PC |
720 | |
721 | static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, | |
722 | uint64_t value) | |
723 | { | |
724 | uint64_t cur_val = pmccntr_read(env, NULL); | |
725 | ||
726 | pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); | |
727 | } | |
728 | ||
ec7b4ce4 AF |
729 | #else /* CONFIG_USER_ONLY */ |
730 | ||
731 | void pmccntr_sync(CPUARMState *env) | |
732 | { | |
733 | } | |
734 | ||
7c2cb42b | 735 | #endif |
200ac0ef | 736 | |
0614601c AF |
737 | static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
738 | uint64_t value) | |
739 | { | |
740 | pmccntr_sync(env); | |
741 | env->cp15.pmccfiltr_el0 = value & 0x7E000000; | |
742 | pmccntr_sync(env); | |
743 | } | |
744 | ||
c4241c7d | 745 | static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
200ac0ef PM |
746 | uint64_t value) |
747 | { | |
200ac0ef PM |
748 | value &= (1 << 31); |
749 | env->cp15.c9_pmcnten |= value; | |
200ac0ef PM |
750 | } |
751 | ||
c4241c7d PM |
752 | static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
753 | uint64_t value) | |
200ac0ef | 754 | { |
200ac0ef PM |
755 | value &= (1 << 31); |
756 | env->cp15.c9_pmcnten &= ~value; | |
200ac0ef PM |
757 | } |
758 | ||
c4241c7d PM |
759 | static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
760 | uint64_t value) | |
200ac0ef | 761 | { |
200ac0ef | 762 | env->cp15.c9_pmovsr &= ~value; |
200ac0ef PM |
763 | } |
764 | ||
c4241c7d PM |
765 | static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, |
766 | uint64_t value) | |
200ac0ef | 767 | { |
200ac0ef | 768 | env->cp15.c9_pmxevtyper = value & 0xff; |
200ac0ef PM |
769 | } |
770 | ||
c4241c7d | 771 | static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
200ac0ef PM |
772 | uint64_t value) |
773 | { | |
774 | env->cp15.c9_pmuserenr = value & 1; | |
200ac0ef PM |
775 | } |
776 | ||
c4241c7d PM |
777 | static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
778 | uint64_t value) | |
200ac0ef PM |
779 | { |
780 | /* We have no event counters so only the C bit can be changed */ | |
781 | value &= (1 << 31); | |
782 | env->cp15.c9_pminten |= value; | |
200ac0ef PM |
783 | } |
784 | ||
c4241c7d PM |
785 | static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
786 | uint64_t value) | |
200ac0ef PM |
787 | { |
788 | value &= (1 << 31); | |
789 | env->cp15.c9_pminten &= ~value; | |
200ac0ef PM |
790 | } |
791 | ||
c4241c7d PM |
792 | static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
793 | uint64_t value) | |
8641136c | 794 | { |
a505d7fe PM |
795 | /* Note that even though the AArch64 view of this register has bits |
796 | * [10:0] all RES0 we can only mask the bottom 5, to comply with the | |
797 | * architectural requirements for bits which are RES0 only in some | |
798 | * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 | |
799 | * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) | |
800 | */ | |
855ea66d | 801 | raw_write(env, ri, value & ~0x1FULL); |
8641136c NR |
802 | } |
803 | ||
64e0e2de EI |
804 | static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
805 | { | |
806 | /* We only mask off bits that are RES0 both for AArch64 and AArch32. | |
807 | * For bits that vary between AArch32/64, code needs to check the | |
808 | * current execution mode before directly using the feature bit. | |
809 | */ | |
810 | uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK; | |
811 | ||
812 | if (!arm_feature(env, ARM_FEATURE_EL2)) { | |
813 | valid_mask &= ~SCR_HCE; | |
814 | ||
815 | /* On ARMv7, SMD (or SCD as it is called in v7) is only | |
816 | * supported if EL2 exists. The bit is UNK/SBZP when | |
817 | * EL2 is unavailable. In QEMU ARMv7, we force it to always zero | |
818 | * when EL2 is unavailable. | |
4eb27640 | 819 | * On ARMv8, this bit is always available. |
64e0e2de | 820 | */ |
4eb27640 GB |
821 | if (arm_feature(env, ARM_FEATURE_V7) && |
822 | !arm_feature(env, ARM_FEATURE_V8)) { | |
64e0e2de EI |
823 | valid_mask &= ~SCR_SMD; |
824 | } | |
825 | } | |
826 | ||
827 | /* Clear all-context RES0 bits. */ | |
828 | value &= valid_mask; | |
829 | raw_write(env, ri, value); | |
830 | } | |
831 | ||
c4241c7d | 832 | static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
776d4e5c PM |
833 | { |
834 | ARMCPU *cpu = arm_env_get_cpu(env); | |
b85a1fd6 FA |
835 | |
836 | /* Acquire the CSSELR index from the bank corresponding to the CCSIDR | |
837 | * bank | |
838 | */ | |
839 | uint32_t index = A32_BANKED_REG_GET(env, csselr, | |
840 | ri->secure & ARM_CP_SECSTATE_S); | |
841 | ||
842 | return cpu->ccsidr[index]; | |
776d4e5c PM |
843 | } |
844 | ||
c4241c7d PM |
845 | static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
846 | uint64_t value) | |
776d4e5c | 847 | { |
8d5c773e | 848 | raw_write(env, ri, value & 0xf); |
776d4e5c PM |
849 | } |
850 | ||
1090b9c6 PM |
851 | static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
852 | { | |
853 | CPUState *cs = ENV_GET_CPU(env); | |
854 | uint64_t ret = 0; | |
855 | ||
856 | if (cs->interrupt_request & CPU_INTERRUPT_HARD) { | |
857 | ret |= CPSR_I; | |
858 | } | |
859 | if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { | |
860 | ret |= CPSR_F; | |
861 | } | |
862 | /* External aborts are not possible in QEMU so A bit is always clear */ | |
863 | return ret; | |
864 | } | |
865 | ||
e9aa6c21 | 866 | static const ARMCPRegInfo v7_cp_reginfo[] = { |
7d57f408 PM |
867 | /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ |
868 | { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, | |
869 | .access = PL1_W, .type = ARM_CP_NOP }, | |
200ac0ef PM |
870 | /* Performance monitors are implementation defined in v7, |
871 | * but with an ARM recommended set of registers, which we | |
872 | * follow (although we don't actually implement any counters) | |
873 | * | |
874 | * Performance registers fall into three categories: | |
875 | * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) | |
876 | * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) | |
877 | * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) | |
878 | * For the cases controlled by PMUSERENR we must set .access to PL0_RW | |
879 | * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. | |
880 | */ | |
881 | { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, | |
7a0e58fa | 882 | .access = PL0_RW, .type = ARM_CP_ALIAS, |
8521466b | 883 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), |
fcd25206 PM |
884 | .writefn = pmcntenset_write, |
885 | .accessfn = pmreg_access, | |
886 | .raw_writefn = raw_write }, | |
8521466b AF |
887 | { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, |
888 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, | |
889 | .access = PL0_RW, .accessfn = pmreg_access, | |
890 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, | |
891 | .writefn = pmcntenset_write, .raw_writefn = raw_write }, | |
200ac0ef | 892 | { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, |
8521466b AF |
893 | .access = PL0_RW, |
894 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), | |
fcd25206 PM |
895 | .accessfn = pmreg_access, |
896 | .writefn = pmcntenclr_write, | |
7a0e58fa | 897 | .type = ARM_CP_ALIAS }, |
8521466b AF |
898 | { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, |
899 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, | |
900 | .access = PL0_RW, .accessfn = pmreg_access, | |
7a0e58fa | 901 | .type = ARM_CP_ALIAS, |
8521466b AF |
902 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), |
903 | .writefn = pmcntenclr_write }, | |
200ac0ef PM |
904 | { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, |
905 | .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), | |
fcd25206 PM |
906 | .accessfn = pmreg_access, |
907 | .writefn = pmovsr_write, | |
908 | .raw_writefn = raw_write }, | |
909 | /* Unimplemented so WI. */ | |
200ac0ef | 910 | { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, |
fcd25206 | 911 | .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP }, |
200ac0ef | 912 | /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE. |
fcd25206 | 913 | * We choose to RAZ/WI. |
200ac0ef PM |
914 | */ |
915 | { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, | |
fcd25206 PM |
916 | .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, |
917 | .accessfn = pmreg_access }, | |
7c2cb42b | 918 | #ifndef CONFIG_USER_ONLY |
200ac0ef | 919 | { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, |
7c2cb42b | 920 | .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO, |
421c7ebd | 921 | .readfn = pmccntr_read, .writefn = pmccntr_write32, |
fcd25206 | 922 | .accessfn = pmreg_access }, |
8521466b AF |
923 | { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, |
924 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, | |
925 | .access = PL0_RW, .accessfn = pmreg_access, | |
926 | .type = ARM_CP_IO, | |
927 | .readfn = pmccntr_read, .writefn = pmccntr_write, }, | |
7c2cb42b | 928 | #endif |
8521466b AF |
929 | { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, |
930 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, | |
0614601c | 931 | .writefn = pmccfiltr_write, |
8521466b AF |
932 | .access = PL0_RW, .accessfn = pmreg_access, |
933 | .type = ARM_CP_IO, | |
934 | .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), | |
935 | .resetvalue = 0, }, | |
200ac0ef PM |
936 | { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, |
937 | .access = PL0_RW, | |
938 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper), | |
fcd25206 PM |
939 | .accessfn = pmreg_access, .writefn = pmxevtyper_write, |
940 | .raw_writefn = raw_write }, | |
941 | /* Unimplemented, RAZ/WI. */ | |
200ac0ef | 942 | { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, |
fcd25206 PM |
943 | .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, |
944 | .accessfn = pmreg_access }, | |
200ac0ef PM |
945 | { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, |
946 | .access = PL0_R | PL1_RW, | |
947 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), | |
948 | .resetvalue = 0, | |
d4e6df63 | 949 | .writefn = pmuserenr_write, .raw_writefn = raw_write }, |
200ac0ef PM |
950 | { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, |
951 | .access = PL1_RW, | |
952 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), | |
953 | .resetvalue = 0, | |
d4e6df63 | 954 | .writefn = pmintenset_write, .raw_writefn = raw_write }, |
200ac0ef | 955 | { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, |
7a0e58fa | 956 | .access = PL1_RW, .type = ARM_CP_ALIAS, |
200ac0ef | 957 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), |
d4e6df63 | 958 | .resetvalue = 0, .writefn = pmintenclr_write, }, |
a505d7fe PM |
959 | { .name = "VBAR", .state = ARM_CP_STATE_BOTH, |
960 | .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, | |
8641136c | 961 | .access = PL1_RW, .writefn = vbar_write, |
fb6c91ba GB |
962 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), |
963 | offsetof(CPUARMState, cp15.vbar_ns) }, | |
8641136c | 964 | .resetvalue = 0 }, |
7da845b0 PM |
965 | { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, |
966 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, | |
7a0e58fa | 967 | .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, |
7da845b0 PM |
968 | { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, |
969 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, | |
b85a1fd6 FA |
970 | .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0, |
971 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), | |
972 | offsetof(CPUARMState, cp15.csselr_ns) } }, | |
776d4e5c PM |
973 | /* Auxiliary ID register: this actually has an IMPDEF value but for now |
974 | * just RAZ for all cores: | |
975 | */ | |
0ff644a7 PM |
976 | { .name = "AIDR", .state = ARM_CP_STATE_BOTH, |
977 | .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, | |
776d4e5c | 978 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
f32cdad5 PM |
979 | /* Auxiliary fault status registers: these also are IMPDEF, and we |
980 | * choose to RAZ/WI for all cores. | |
981 | */ | |
982 | { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, | |
983 | .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, | |
984 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
985 | { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, | |
986 | .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, | |
987 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
b0fe2427 PM |
988 | /* MAIR can just read-as-written because we don't implement caches |
989 | * and so don't need to care about memory attributes. | |
990 | */ | |
991 | { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, | |
992 | .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, | |
be693c87 | 993 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), |
b0fe2427 PM |
994 | .resetvalue = 0 }, |
995 | /* For non-long-descriptor page tables these are PRRR and NMRR; | |
996 | * regardless they still act as reads-as-written for QEMU. | |
997 | * The override is necessary because of the overly-broad TLB_LOCKDOWN | |
998 | * definition. | |
999 | */ | |
1281f8e3 | 1000 | /* MAIR0/1 are defined separately from their 64-bit counterpart which |
be693c87 GB |
1001 | * allows them to assign the correct fieldoffset based on the endianness |
1002 | * handled in the field definitions. | |
1003 | */ | |
b0fe2427 PM |
1004 | { .name = "MAIR0", .state = ARM_CP_STATE_AA32, .type = ARM_CP_OVERRIDE, |
1005 | .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, | |
be693c87 GB |
1006 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), |
1007 | offsetof(CPUARMState, cp15.mair0_ns) }, | |
b0fe2427 PM |
1008 | .resetfn = arm_cp_reset_ignore }, |
1009 | { .name = "MAIR1", .state = ARM_CP_STATE_AA32, .type = ARM_CP_OVERRIDE, | |
1010 | .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, | |
be693c87 GB |
1011 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), |
1012 | offsetof(CPUARMState, cp15.mair1_ns) }, | |
b0fe2427 | 1013 | .resetfn = arm_cp_reset_ignore }, |
1090b9c6 PM |
1014 | { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, |
1015 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, | |
7a0e58fa | 1016 | .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, |
995939a6 PM |
1017 | /* 32 bit ITLB invalidates */ |
1018 | { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, | |
7a0e58fa | 1019 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, |
995939a6 | 1020 | { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, |
7a0e58fa | 1021 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, |
995939a6 | 1022 | { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, |
7a0e58fa | 1023 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, |
995939a6 PM |
1024 | /* 32 bit DTLB invalidates */ |
1025 | { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, | |
7a0e58fa | 1026 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, |
995939a6 | 1027 | { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, |
7a0e58fa | 1028 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, |
995939a6 | 1029 | { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, |
7a0e58fa | 1030 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, |
995939a6 PM |
1031 | /* 32 bit TLB invalidates */ |
1032 | { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, | |
7a0e58fa | 1033 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, |
995939a6 | 1034 | { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, |
7a0e58fa | 1035 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, |
995939a6 | 1036 | { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, |
7a0e58fa | 1037 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, |
995939a6 | 1038 | { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, |
7a0e58fa | 1039 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, |
995939a6 PM |
1040 | REGINFO_SENTINEL |
1041 | }; | |
1042 | ||
1043 | static const ARMCPRegInfo v7mp_cp_reginfo[] = { | |
1044 | /* 32 bit TLB invalidates, Inner Shareable */ | |
1045 | { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, | |
7a0e58fa | 1046 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write }, |
995939a6 | 1047 | { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, |
7a0e58fa | 1048 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, |
995939a6 | 1049 | { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, |
7a0e58fa | 1050 | .type = ARM_CP_NO_RAW, .access = PL1_W, |
fa439fc5 | 1051 | .writefn = tlbiasid_is_write }, |
995939a6 | 1052 | { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, |
7a0e58fa | 1053 | .type = ARM_CP_NO_RAW, .access = PL1_W, |
fa439fc5 | 1054 | .writefn = tlbimvaa_is_write }, |
e9aa6c21 PM |
1055 | REGINFO_SENTINEL |
1056 | }; | |
1057 | ||
c4241c7d PM |
1058 | static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1059 | uint64_t value) | |
c326b979 PM |
1060 | { |
1061 | value &= 1; | |
1062 | env->teecr = value; | |
c326b979 PM |
1063 | } |
1064 | ||
c4241c7d | 1065 | static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri) |
c326b979 | 1066 | { |
dcbff19b | 1067 | if (arm_current_el(env) == 0 && (env->teecr & 1)) { |
92611c00 | 1068 | return CP_ACCESS_TRAP; |
c326b979 | 1069 | } |
92611c00 | 1070 | return CP_ACCESS_OK; |
c326b979 PM |
1071 | } |
1072 | ||
1073 | static const ARMCPRegInfo t2ee_cp_reginfo[] = { | |
1074 | { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, | |
1075 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), | |
1076 | .resetvalue = 0, | |
1077 | .writefn = teecr_write }, | |
1078 | { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, | |
1079 | .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), | |
92611c00 | 1080 | .accessfn = teehbr_access, .resetvalue = 0 }, |
c326b979 PM |
1081 | REGINFO_SENTINEL |
1082 | }; | |
1083 | ||
4d31c596 | 1084 | static const ARMCPRegInfo v6k_cp_reginfo[] = { |
e4fe830b PM |
1085 | { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, |
1086 | .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, | |
1087 | .access = PL0_RW, | |
54bf36ed | 1088 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, |
4d31c596 PM |
1089 | { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, |
1090 | .access = PL0_RW, | |
54bf36ed FA |
1091 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), |
1092 | offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, | |
e4fe830b PM |
1093 | .resetfn = arm_cp_reset_ignore }, |
1094 | { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, | |
1095 | .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, | |
1096 | .access = PL0_R|PL1_W, | |
54bf36ed FA |
1097 | .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), |
1098 | .resetvalue = 0}, | |
4d31c596 PM |
1099 | { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, |
1100 | .access = PL0_R|PL1_W, | |
54bf36ed FA |
1101 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), |
1102 | offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, | |
e4fe830b | 1103 | .resetfn = arm_cp_reset_ignore }, |
54bf36ed | 1104 | { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, |
e4fe830b | 1105 | .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, |
4d31c596 | 1106 | .access = PL1_RW, |
54bf36ed FA |
1107 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, |
1108 | { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, | |
1109 | .access = PL1_RW, | |
1110 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), | |
1111 | offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, | |
1112 | .resetvalue = 0 }, | |
4d31c596 PM |
1113 | REGINFO_SENTINEL |
1114 | }; | |
1115 | ||
55d284af PM |
1116 | #ifndef CONFIG_USER_ONLY |
1117 | ||
00108f2d PM |
1118 | static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri) |
1119 | { | |
1120 | /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */ | |
dcbff19b | 1121 | if (arm_current_el(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) { |
00108f2d PM |
1122 | return CP_ACCESS_TRAP; |
1123 | } | |
1124 | return CP_ACCESS_OK; | |
1125 | } | |
1126 | ||
1127 | static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx) | |
1128 | { | |
1129 | /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */ | |
dcbff19b | 1130 | if (arm_current_el(env) == 0 && |
00108f2d PM |
1131 | !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { |
1132 | return CP_ACCESS_TRAP; | |
1133 | } | |
1134 | return CP_ACCESS_OK; | |
1135 | } | |
1136 | ||
1137 | static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx) | |
1138 | { | |
1139 | /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if | |
1140 | * EL0[PV]TEN is zero. | |
1141 | */ | |
dcbff19b | 1142 | if (arm_current_el(env) == 0 && |
00108f2d PM |
1143 | !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { |
1144 | return CP_ACCESS_TRAP; | |
1145 | } | |
1146 | return CP_ACCESS_OK; | |
1147 | } | |
1148 | ||
1149 | static CPAccessResult gt_pct_access(CPUARMState *env, | |
1150 | const ARMCPRegInfo *ri) | |
1151 | { | |
1152 | return gt_counter_access(env, GTIMER_PHYS); | |
1153 | } | |
1154 | ||
1155 | static CPAccessResult gt_vct_access(CPUARMState *env, | |
1156 | const ARMCPRegInfo *ri) | |
1157 | { | |
1158 | return gt_counter_access(env, GTIMER_VIRT); | |
1159 | } | |
1160 | ||
1161 | static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri) | |
1162 | { | |
1163 | return gt_timer_access(env, GTIMER_PHYS); | |
1164 | } | |
1165 | ||
1166 | static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri) | |
1167 | { | |
1168 | return gt_timer_access(env, GTIMER_VIRT); | |
1169 | } | |
1170 | ||
55d284af PM |
1171 | static uint64_t gt_get_countervalue(CPUARMState *env) |
1172 | { | |
bc72ad67 | 1173 | return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE; |
55d284af PM |
1174 | } |
1175 | ||
1176 | static void gt_recalc_timer(ARMCPU *cpu, int timeridx) | |
1177 | { | |
1178 | ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; | |
1179 | ||
1180 | if (gt->ctl & 1) { | |
1181 | /* Timer enabled: calculate and set current ISTATUS, irq, and | |
1182 | * reset timer to when ISTATUS next has to change | |
1183 | */ | |
1184 | uint64_t count = gt_get_countervalue(&cpu->env); | |
1185 | /* Note that this must be unsigned 64 bit arithmetic: */ | |
1186 | int istatus = count >= gt->cval; | |
1187 | uint64_t nexttick; | |
1188 | ||
1189 | gt->ctl = deposit32(gt->ctl, 2, 1, istatus); | |
1190 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], | |
1191 | (istatus && !(gt->ctl & 2))); | |
1192 | if (istatus) { | |
1193 | /* Next transition is when count rolls back over to zero */ | |
1194 | nexttick = UINT64_MAX; | |
1195 | } else { | |
1196 | /* Next transition is when we hit cval */ | |
1197 | nexttick = gt->cval; | |
1198 | } | |
1199 | /* Note that the desired next expiry time might be beyond the | |
1200 | * signed-64-bit range of a QEMUTimer -- in this case we just | |
1201 | * set the timer for as far in the future as possible. When the | |
1202 | * timer expires we will reset the timer for any remaining period. | |
1203 | */ | |
1204 | if (nexttick > INT64_MAX / GTIMER_SCALE) { | |
1205 | nexttick = INT64_MAX / GTIMER_SCALE; | |
1206 | } | |
bc72ad67 | 1207 | timer_mod(cpu->gt_timer[timeridx], nexttick); |
55d284af PM |
1208 | } else { |
1209 | /* Timer disabled: ISTATUS and timer output always clear */ | |
1210 | gt->ctl &= ~4; | |
1211 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); | |
bc72ad67 | 1212 | timer_del(cpu->gt_timer[timeridx]); |
55d284af PM |
1213 | } |
1214 | } | |
1215 | ||
55d284af PM |
1216 | static void gt_cnt_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
1217 | { | |
1218 | ARMCPU *cpu = arm_env_get_cpu(env); | |
1219 | int timeridx = ri->opc1 & 1; | |
1220 | ||
bc72ad67 | 1221 | timer_del(cpu->gt_timer[timeridx]); |
55d284af PM |
1222 | } |
1223 | ||
c4241c7d | 1224 | static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) |
55d284af | 1225 | { |
c4241c7d | 1226 | return gt_get_countervalue(env); |
55d284af PM |
1227 | } |
1228 | ||
c4241c7d PM |
1229 | static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1230 | uint64_t value) | |
55d284af PM |
1231 | { |
1232 | int timeridx = ri->opc1 & 1; | |
1233 | ||
1234 | env->cp15.c14_timer[timeridx].cval = value; | |
1235 | gt_recalc_timer(arm_env_get_cpu(env), timeridx); | |
55d284af | 1236 | } |
c4241c7d PM |
1237 | |
1238 | static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
55d284af PM |
1239 | { |
1240 | int timeridx = ri->crm & 1; | |
1241 | ||
c4241c7d PM |
1242 | return (uint32_t)(env->cp15.c14_timer[timeridx].cval - |
1243 | gt_get_countervalue(env)); | |
55d284af PM |
1244 | } |
1245 | ||
c4241c7d PM |
1246 | static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1247 | uint64_t value) | |
55d284af PM |
1248 | { |
1249 | int timeridx = ri->crm & 1; | |
1250 | ||
1251 | env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) + | |
1252 | + sextract64(value, 0, 32); | |
1253 | gt_recalc_timer(arm_env_get_cpu(env), timeridx); | |
55d284af PM |
1254 | } |
1255 | ||
c4241c7d PM |
1256 | static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1257 | uint64_t value) | |
55d284af PM |
1258 | { |
1259 | ARMCPU *cpu = arm_env_get_cpu(env); | |
1260 | int timeridx = ri->crm & 1; | |
1261 | uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; | |
1262 | ||
d3afacc7 | 1263 | env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); |
55d284af PM |
1264 | if ((oldval ^ value) & 1) { |
1265 | /* Enable toggled */ | |
1266 | gt_recalc_timer(cpu, timeridx); | |
d3afacc7 | 1267 | } else if ((oldval ^ value) & 2) { |
55d284af PM |
1268 | /* IMASK toggled: don't need to recalculate, |
1269 | * just set the interrupt line based on ISTATUS | |
1270 | */ | |
1271 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], | |
d3afacc7 | 1272 | (oldval & 4) && !(value & 2)); |
55d284af | 1273 | } |
55d284af PM |
1274 | } |
1275 | ||
1276 | void arm_gt_ptimer_cb(void *opaque) | |
1277 | { | |
1278 | ARMCPU *cpu = opaque; | |
1279 | ||
1280 | gt_recalc_timer(cpu, GTIMER_PHYS); | |
1281 | } | |
1282 | ||
1283 | void arm_gt_vtimer_cb(void *opaque) | |
1284 | { | |
1285 | ARMCPU *cpu = opaque; | |
1286 | ||
1287 | gt_recalc_timer(cpu, GTIMER_VIRT); | |
1288 | } | |
1289 | ||
1290 | static const ARMCPRegInfo generic_timer_cp_reginfo[] = { | |
1291 | /* Note that CNTFRQ is purely reads-as-written for the benefit | |
1292 | * of software; writing it doesn't actually change the timer frequency. | |
1293 | * Our reset value matches the fixed frequency we implement the timer at. | |
1294 | */ | |
1295 | { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, | |
7a0e58fa | 1296 | .type = ARM_CP_ALIAS, |
a7adc4b7 PM |
1297 | .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, |
1298 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), | |
1299 | .resetfn = arm_cp_reset_ignore, | |
1300 | }, | |
1301 | { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, | |
1302 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, | |
1303 | .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, | |
55d284af PM |
1304 | .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), |
1305 | .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE, | |
55d284af PM |
1306 | }, |
1307 | /* overall control: mostly access permissions */ | |
a7adc4b7 PM |
1308 | { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, |
1309 | .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, | |
55d284af PM |
1310 | .access = PL1_RW, |
1311 | .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), | |
1312 | .resetvalue = 0, | |
1313 | }, | |
1314 | /* per-timer control */ | |
1315 | { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, | |
7a0e58fa | 1316 | .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, |
a7adc4b7 PM |
1317 | .accessfn = gt_ptimer_access, |
1318 | .fieldoffset = offsetoflow32(CPUARMState, | |
1319 | cp15.c14_timer[GTIMER_PHYS].ctl), | |
1320 | .resetfn = arm_cp_reset_ignore, | |
1321 | .writefn = gt_ctl_write, .raw_writefn = raw_write, | |
1322 | }, | |
1323 | { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, | |
1324 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, | |
55d284af | 1325 | .type = ARM_CP_IO, .access = PL1_RW | PL0_R, |
a7adc4b7 | 1326 | .accessfn = gt_ptimer_access, |
55d284af PM |
1327 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), |
1328 | .resetvalue = 0, | |
00108f2d | 1329 | .writefn = gt_ctl_write, .raw_writefn = raw_write, |
55d284af PM |
1330 | }, |
1331 | { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, | |
7a0e58fa | 1332 | .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, |
a7adc4b7 PM |
1333 | .accessfn = gt_vtimer_access, |
1334 | .fieldoffset = offsetoflow32(CPUARMState, | |
1335 | cp15.c14_timer[GTIMER_VIRT].ctl), | |
1336 | .resetfn = arm_cp_reset_ignore, | |
1337 | .writefn = gt_ctl_write, .raw_writefn = raw_write, | |
1338 | }, | |
1339 | { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, | |
1340 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, | |
55d284af | 1341 | .type = ARM_CP_IO, .access = PL1_RW | PL0_R, |
a7adc4b7 | 1342 | .accessfn = gt_vtimer_access, |
55d284af PM |
1343 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), |
1344 | .resetvalue = 0, | |
00108f2d | 1345 | .writefn = gt_ctl_write, .raw_writefn = raw_write, |
55d284af PM |
1346 | }, |
1347 | /* TimerValue views: a 32 bit downcounting view of the underlying state */ | |
1348 | { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, | |
7a0e58fa | 1349 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, |
00108f2d | 1350 | .accessfn = gt_ptimer_access, |
55d284af PM |
1351 | .readfn = gt_tval_read, .writefn = gt_tval_write, |
1352 | }, | |
a7adc4b7 PM |
1353 | { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, |
1354 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, | |
7a0e58fa | 1355 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, |
a7adc4b7 PM |
1356 | .readfn = gt_tval_read, .writefn = gt_tval_write, |
1357 | }, | |
55d284af | 1358 | { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, |
7a0e58fa | 1359 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, |
00108f2d | 1360 | .accessfn = gt_vtimer_access, |
55d284af PM |
1361 | .readfn = gt_tval_read, .writefn = gt_tval_write, |
1362 | }, | |
a7adc4b7 PM |
1363 | { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, |
1364 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, | |
7a0e58fa | 1365 | .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, |
a7adc4b7 PM |
1366 | .readfn = gt_tval_read, .writefn = gt_tval_write, |
1367 | }, | |
55d284af PM |
1368 | /* The counter itself */ |
1369 | { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, | |
7a0e58fa | 1370 | .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, |
00108f2d | 1371 | .accessfn = gt_pct_access, |
a7adc4b7 PM |
1372 | .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, |
1373 | }, | |
1374 | { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, | |
1375 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, | |
7a0e58fa | 1376 | .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, |
a7adc4b7 | 1377 | .accessfn = gt_pct_access, |
55d284af PM |
1378 | .readfn = gt_cnt_read, .resetfn = gt_cnt_reset, |
1379 | }, | |
1380 | { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, | |
7a0e58fa | 1381 | .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, |
00108f2d | 1382 | .accessfn = gt_vct_access, |
a7adc4b7 PM |
1383 | .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, |
1384 | }, | |
1385 | { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, | |
1386 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, | |
7a0e58fa | 1387 | .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, |
a7adc4b7 | 1388 | .accessfn = gt_vct_access, |
55d284af PM |
1389 | .readfn = gt_cnt_read, .resetfn = gt_cnt_reset, |
1390 | }, | |
1391 | /* Comparison value, indicating when the timer goes off */ | |
1392 | { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, | |
1393 | .access = PL1_RW | PL0_R, | |
7a0e58fa | 1394 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, |
55d284af | 1395 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), |
a7adc4b7 PM |
1396 | .accessfn = gt_ptimer_access, .resetfn = arm_cp_reset_ignore, |
1397 | .writefn = gt_cval_write, .raw_writefn = raw_write, | |
1398 | }, | |
1399 | { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, | |
1400 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, | |
1401 | .access = PL1_RW | PL0_R, | |
1402 | .type = ARM_CP_IO, | |
1403 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), | |
1404 | .resetvalue = 0, .accessfn = gt_vtimer_access, | |
00108f2d | 1405 | .writefn = gt_cval_write, .raw_writefn = raw_write, |
55d284af PM |
1406 | }, |
1407 | { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, | |
1408 | .access = PL1_RW | PL0_R, | |
7a0e58fa | 1409 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, |
55d284af | 1410 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), |
a7adc4b7 PM |
1411 | .accessfn = gt_vtimer_access, .resetfn = arm_cp_reset_ignore, |
1412 | .writefn = gt_cval_write, .raw_writefn = raw_write, | |
1413 | }, | |
1414 | { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, | |
1415 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, | |
1416 | .access = PL1_RW | PL0_R, | |
1417 | .type = ARM_CP_IO, | |
1418 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), | |
1419 | .resetvalue = 0, .accessfn = gt_vtimer_access, | |
00108f2d | 1420 | .writefn = gt_cval_write, .raw_writefn = raw_write, |
55d284af PM |
1421 | }, |
1422 | REGINFO_SENTINEL | |
1423 | }; | |
1424 | ||
1425 | #else | |
1426 | /* In user-mode none of the generic timer registers are accessible, | |
bc72ad67 | 1427 | * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs, |
55d284af PM |
1428 | * so instead just don't register any of them. |
1429 | */ | |
6cc7a3ae | 1430 | static const ARMCPRegInfo generic_timer_cp_reginfo[] = { |
6cc7a3ae PM |
1431 | REGINFO_SENTINEL |
1432 | }; | |
1433 | ||
55d284af PM |
1434 | #endif |
1435 | ||
c4241c7d | 1436 | static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
4a501606 | 1437 | { |
891a2fe7 | 1438 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
8d5c773e | 1439 | raw_write(env, ri, value); |
891a2fe7 | 1440 | } else if (arm_feature(env, ARM_FEATURE_V7)) { |
8d5c773e | 1441 | raw_write(env, ri, value & 0xfffff6ff); |
4a501606 | 1442 | } else { |
8d5c773e | 1443 | raw_write(env, ri, value & 0xfffff1ff); |
4a501606 | 1444 | } |
4a501606 PM |
1445 | } |
1446 | ||
1447 | #ifndef CONFIG_USER_ONLY | |
1448 | /* get_phys_addr() isn't present for user-mode-only targets */ | |
702a9357 | 1449 | |
92611c00 PM |
1450 | static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri) |
1451 | { | |
1452 | if (ri->opc2 & 4) { | |
1453 | /* Other states are only available with TrustZone; in | |
1454 | * a non-TZ implementation these registers don't exist | |
1455 | * at all, which is an Uncategorized trap. This underdecoding | |
7a0e58fa | 1456 | * is safe because the reginfo is NO_RAW. |
92611c00 PM |
1457 | */ |
1458 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
1459 | } | |
1460 | return CP_ACCESS_OK; | |
1461 | } | |
1462 | ||
060e8a48 | 1463 | static uint64_t do_ats_write(CPUARMState *env, uint64_t value, |
d3649702 | 1464 | int access_type, ARMMMUIdx mmu_idx) |
4a501606 | 1465 | { |
a8170e5e | 1466 | hwaddr phys_addr; |
4a501606 PM |
1467 | target_ulong page_size; |
1468 | int prot; | |
060e8a48 | 1469 | int ret; |
01c097f7 | 1470 | uint64_t par64; |
8bf5b6a9 | 1471 | MemTxAttrs attrs = {}; |
4a501606 | 1472 | |
d3649702 | 1473 | ret = get_phys_addr(env, value, access_type, mmu_idx, |
8bf5b6a9 | 1474 | &phys_addr, &attrs, &prot, &page_size); |
702a9357 PM |
1475 | if (extended_addresses_enabled(env)) { |
1476 | /* ret is a DFSR/IFSR value for the long descriptor | |
1477 | * translation table format, but with WnR always clear. | |
1478 | * Convert it to a 64-bit PAR. | |
1479 | */ | |
01c097f7 | 1480 | par64 = (1 << 11); /* LPAE bit always set */ |
702a9357 PM |
1481 | if (ret == 0) { |
1482 | par64 |= phys_addr & ~0xfffULL; | |
8bf5b6a9 PM |
1483 | if (!attrs.secure) { |
1484 | par64 |= (1 << 9); /* NS */ | |
1485 | } | |
702a9357 | 1486 | /* We don't set the ATTR or SH fields in the PAR. */ |
4a501606 | 1487 | } else { |
702a9357 PM |
1488 | par64 |= 1; /* F */ |
1489 | par64 |= (ret & 0x3f) << 1; /* FS */ | |
1490 | /* Note that S2WLK and FSTAGE are always zero, because we don't | |
1491 | * implement virtualization and therefore there can't be a stage 2 | |
1492 | * fault. | |
1493 | */ | |
4a501606 PM |
1494 | } |
1495 | } else { | |
702a9357 PM |
1496 | /* ret is a DFSR/IFSR value for the short descriptor |
1497 | * translation table format (with WnR always clear). | |
1498 | * Convert it to a 32-bit PAR. | |
1499 | */ | |
1500 | if (ret == 0) { | |
1501 | /* We do not set any attribute bits in the PAR */ | |
1502 | if (page_size == (1 << 24) | |
1503 | && arm_feature(env, ARM_FEATURE_V7)) { | |
01c097f7 | 1504 | par64 = (phys_addr & 0xff000000) | (1 << 1); |
702a9357 | 1505 | } else { |
01c097f7 | 1506 | par64 = phys_addr & 0xfffff000; |
702a9357 | 1507 | } |
8bf5b6a9 PM |
1508 | if (!attrs.secure) { |
1509 | par64 |= (1 << 9); /* NS */ | |
1510 | } | |
702a9357 | 1511 | } else { |
01c097f7 FA |
1512 | par64 = ((ret & (1 << 10)) >> 5) | ((ret & (1 << 12)) >> 6) | |
1513 | ((ret & 0xf) << 1) | 1; | |
702a9357 | 1514 | } |
4a501606 | 1515 | } |
060e8a48 PM |
1516 | return par64; |
1517 | } | |
1518 | ||
1519 | static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) | |
1520 | { | |
060e8a48 PM |
1521 | int access_type = ri->opc2 & 1; |
1522 | uint64_t par64; | |
d3649702 PM |
1523 | ARMMMUIdx mmu_idx; |
1524 | int el = arm_current_el(env); | |
1525 | bool secure = arm_is_secure_below_el3(env); | |
060e8a48 | 1526 | |
d3649702 PM |
1527 | switch (ri->opc2 & 6) { |
1528 | case 0: | |
1529 | /* stage 1 current state PL1: ATS1CPR, ATS1CPW */ | |
1530 | switch (el) { | |
1531 | case 3: | |
1532 | mmu_idx = ARMMMUIdx_S1E3; | |
1533 | break; | |
1534 | case 2: | |
1535 | mmu_idx = ARMMMUIdx_S1NSE1; | |
1536 | break; | |
1537 | case 1: | |
1538 | mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; | |
1539 | break; | |
1540 | default: | |
1541 | g_assert_not_reached(); | |
1542 | } | |
1543 | break; | |
1544 | case 2: | |
1545 | /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ | |
1546 | switch (el) { | |
1547 | case 3: | |
1548 | mmu_idx = ARMMMUIdx_S1SE0; | |
1549 | break; | |
1550 | case 2: | |
1551 | mmu_idx = ARMMMUIdx_S1NSE0; | |
1552 | break; | |
1553 | case 1: | |
1554 | mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; | |
1555 | break; | |
1556 | default: | |
1557 | g_assert_not_reached(); | |
1558 | } | |
1559 | break; | |
1560 | case 4: | |
1561 | /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ | |
1562 | mmu_idx = ARMMMUIdx_S12NSE1; | |
1563 | break; | |
1564 | case 6: | |
1565 | /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ | |
1566 | mmu_idx = ARMMMUIdx_S12NSE0; | |
1567 | break; | |
1568 | default: | |
1569 | g_assert_not_reached(); | |
1570 | } | |
1571 | ||
1572 | par64 = do_ats_write(env, value, access_type, mmu_idx); | |
01c097f7 FA |
1573 | |
1574 | A32_BANKED_CURRENT_REG_SET(env, par, par64); | |
4a501606 | 1575 | } |
060e8a48 PM |
1576 | |
1577 | static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, | |
1578 | uint64_t value) | |
1579 | { | |
060e8a48 | 1580 | int access_type = ri->opc2 & 1; |
d3649702 PM |
1581 | ARMMMUIdx mmu_idx; |
1582 | int secure = arm_is_secure_below_el3(env); | |
1583 | ||
1584 | switch (ri->opc2 & 6) { | |
1585 | case 0: | |
1586 | switch (ri->opc1) { | |
1587 | case 0: /* AT S1E1R, AT S1E1W */ | |
1588 | mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; | |
1589 | break; | |
1590 | case 4: /* AT S1E2R, AT S1E2W */ | |
1591 | mmu_idx = ARMMMUIdx_S1E2; | |
1592 | break; | |
1593 | case 6: /* AT S1E3R, AT S1E3W */ | |
1594 | mmu_idx = ARMMMUIdx_S1E3; | |
1595 | break; | |
1596 | default: | |
1597 | g_assert_not_reached(); | |
1598 | } | |
1599 | break; | |
1600 | case 2: /* AT S1E0R, AT S1E0W */ | |
1601 | mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; | |
1602 | break; | |
1603 | case 4: /* AT S12E1R, AT S12E1W */ | |
1604 | mmu_idx = ARMMMUIdx_S12NSE1; | |
1605 | break; | |
1606 | case 6: /* AT S12E0R, AT S12E0W */ | |
1607 | mmu_idx = ARMMMUIdx_S12NSE0; | |
1608 | break; | |
1609 | default: | |
1610 | g_assert_not_reached(); | |
1611 | } | |
060e8a48 | 1612 | |
d3649702 | 1613 | env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); |
060e8a48 | 1614 | } |
4a501606 PM |
1615 | #endif |
1616 | ||
1617 | static const ARMCPRegInfo vapa_cp_reginfo[] = { | |
1618 | { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, | |
1619 | .access = PL1_RW, .resetvalue = 0, | |
01c097f7 FA |
1620 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), |
1621 | offsetoflow32(CPUARMState, cp15.par_ns) }, | |
4a501606 PM |
1622 | .writefn = par_write }, |
1623 | #ifndef CONFIG_USER_ONLY | |
1624 | { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, | |
92611c00 | 1625 | .access = PL1_W, .accessfn = ats_access, |
7a0e58fa | 1626 | .writefn = ats_write, .type = ARM_CP_NO_RAW }, |
4a501606 PM |
1627 | #endif |
1628 | REGINFO_SENTINEL | |
1629 | }; | |
1630 | ||
18032bec PM |
1631 | /* Return basic MPU access permission bits. */ |
1632 | static uint32_t simple_mpu_ap_bits(uint32_t val) | |
1633 | { | |
1634 | uint32_t ret; | |
1635 | uint32_t mask; | |
1636 | int i; | |
1637 | ret = 0; | |
1638 | mask = 3; | |
1639 | for (i = 0; i < 16; i += 2) { | |
1640 | ret |= (val >> i) & mask; | |
1641 | mask <<= 2; | |
1642 | } | |
1643 | return ret; | |
1644 | } | |
1645 | ||
1646 | /* Pad basic MPU access permission bits to extended format. */ | |
1647 | static uint32_t extended_mpu_ap_bits(uint32_t val) | |
1648 | { | |
1649 | uint32_t ret; | |
1650 | uint32_t mask; | |
1651 | int i; | |
1652 | ret = 0; | |
1653 | mask = 3; | |
1654 | for (i = 0; i < 16; i += 2) { | |
1655 | ret |= (val & mask) << i; | |
1656 | mask <<= 2; | |
1657 | } | |
1658 | return ret; | |
1659 | } | |
1660 | ||
c4241c7d PM |
1661 | static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1662 | uint64_t value) | |
18032bec | 1663 | { |
7e09797c | 1664 | env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); |
18032bec PM |
1665 | } |
1666 | ||
c4241c7d | 1667 | static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) |
18032bec | 1668 | { |
7e09797c | 1669 | return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); |
18032bec PM |
1670 | } |
1671 | ||
c4241c7d PM |
1672 | static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1673 | uint64_t value) | |
18032bec | 1674 | { |
7e09797c | 1675 | env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); |
18032bec PM |
1676 | } |
1677 | ||
c4241c7d | 1678 | static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) |
18032bec | 1679 | { |
7e09797c | 1680 | return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); |
18032bec PM |
1681 | } |
1682 | ||
1683 | static const ARMCPRegInfo pmsav5_cp_reginfo[] = { | |
1684 | { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, | |
7a0e58fa | 1685 | .access = PL1_RW, .type = ARM_CP_ALIAS, |
7e09797c PM |
1686 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), |
1687 | .resetvalue = 0, | |
18032bec PM |
1688 | .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, |
1689 | { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, | |
7a0e58fa | 1690 | .access = PL1_RW, .type = ARM_CP_ALIAS, |
7e09797c PM |
1691 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), |
1692 | .resetvalue = 0, | |
18032bec PM |
1693 | .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, |
1694 | { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, | |
1695 | .access = PL1_RW, | |
7e09797c PM |
1696 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), |
1697 | .resetvalue = 0, }, | |
18032bec PM |
1698 | { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, |
1699 | .access = PL1_RW, | |
7e09797c PM |
1700 | .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), |
1701 | .resetvalue = 0, }, | |
ecce5c3c PM |
1702 | { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
1703 | .access = PL1_RW, | |
1704 | .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, | |
1705 | { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, | |
1706 | .access = PL1_RW, | |
1707 | .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, | |
06d76f31 | 1708 | /* Protection region base and size registers */ |
e508a92b PM |
1709 | { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, |
1710 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1711 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, | |
1712 | { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, | |
1713 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1714 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, | |
1715 | { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, | |
1716 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1717 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, | |
1718 | { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, | |
1719 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1720 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, | |
1721 | { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, | |
1722 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1723 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, | |
1724 | { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, | |
1725 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1726 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, | |
1727 | { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, | |
1728 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1729 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, | |
1730 | { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, | |
1731 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1732 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, | |
18032bec PM |
1733 | REGINFO_SENTINEL |
1734 | }; | |
1735 | ||
c4241c7d PM |
1736 | static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1737 | uint64_t value) | |
ecce5c3c | 1738 | { |
11f136ee | 1739 | TCR *tcr = raw_ptr(env, ri); |
2ebcebe2 PM |
1740 | int maskshift = extract32(value, 0, 3); |
1741 | ||
e389be16 FA |
1742 | if (!arm_feature(env, ARM_FEATURE_V8)) { |
1743 | if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { | |
1744 | /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when | |
1745 | * using Long-desciptor translation table format */ | |
1746 | value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); | |
1747 | } else if (arm_feature(env, ARM_FEATURE_EL3)) { | |
1748 | /* In an implementation that includes the Security Extensions | |
1749 | * TTBCR has additional fields PD0 [4] and PD1 [5] for | |
1750 | * Short-descriptor translation table format. | |
1751 | */ | |
1752 | value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; | |
1753 | } else { | |
1754 | value &= TTBCR_N; | |
1755 | } | |
e42c4db3 | 1756 | } |
e389be16 | 1757 | |
11f136ee FA |
1758 | /* Update the masks corresponding to the the TCR bank being written |
1759 | * Note that we always calculate mask and base_mask, but | |
e42c4db3 | 1760 | * they are only used for short-descriptor tables (ie if EAE is 0); |
11f136ee FA |
1761 | * for long-descriptor tables the TCR fields are used differently |
1762 | * and the mask and base_mask values are meaningless. | |
e42c4db3 | 1763 | */ |
11f136ee FA |
1764 | tcr->raw_tcr = value; |
1765 | tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); | |
1766 | tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); | |
ecce5c3c PM |
1767 | } |
1768 | ||
c4241c7d PM |
1769 | static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1770 | uint64_t value) | |
d4e6df63 | 1771 | { |
00c8cb0a AF |
1772 | ARMCPU *cpu = arm_env_get_cpu(env); |
1773 | ||
d4e6df63 PM |
1774 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
1775 | /* With LPAE the TTBCR could result in a change of ASID | |
1776 | * via the TTBCR.A1 bit, so do a TLB flush. | |
1777 | */ | |
00c8cb0a | 1778 | tlb_flush(CPU(cpu), 1); |
d4e6df63 | 1779 | } |
c4241c7d | 1780 | vmsa_ttbcr_raw_write(env, ri, value); |
d4e6df63 PM |
1781 | } |
1782 | ||
ecce5c3c PM |
1783 | static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
1784 | { | |
11f136ee FA |
1785 | TCR *tcr = raw_ptr(env, ri); |
1786 | ||
1787 | /* Reset both the TCR as well as the masks corresponding to the bank of | |
1788 | * the TCR being reset. | |
1789 | */ | |
1790 | tcr->raw_tcr = 0; | |
1791 | tcr->mask = 0; | |
1792 | tcr->base_mask = 0xffffc000u; | |
ecce5c3c PM |
1793 | } |
1794 | ||
cb2e37df PM |
1795 | static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1796 | uint64_t value) | |
1797 | { | |
00c8cb0a | 1798 | ARMCPU *cpu = arm_env_get_cpu(env); |
11f136ee | 1799 | TCR *tcr = raw_ptr(env, ri); |
00c8cb0a | 1800 | |
cb2e37df | 1801 | /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ |
00c8cb0a | 1802 | tlb_flush(CPU(cpu), 1); |
11f136ee | 1803 | tcr->raw_tcr = value; |
cb2e37df PM |
1804 | } |
1805 | ||
327ed10f PM |
1806 | static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1807 | uint64_t value) | |
1808 | { | |
1809 | /* 64 bit accesses to the TTBRs can change the ASID and so we | |
1810 | * must flush the TLB. | |
1811 | */ | |
1812 | if (cpreg_field_is_64bit(ri)) { | |
00c8cb0a AF |
1813 | ARMCPU *cpu = arm_env_get_cpu(env); |
1814 | ||
1815 | tlb_flush(CPU(cpu), 1); | |
327ed10f PM |
1816 | } |
1817 | raw_write(env, ri, value); | |
1818 | } | |
1819 | ||
18032bec PM |
1820 | static const ARMCPRegInfo vmsa_cp_reginfo[] = { |
1821 | { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, | |
7a0e58fa | 1822 | .access = PL1_RW, .type = ARM_CP_ALIAS, |
4a7e2d73 FA |
1823 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), |
1824 | offsetoflow32(CPUARMState, cp15.dfsr_ns) }, | |
6cd8a264 | 1825 | .resetfn = arm_cp_reset_ignore, }, |
18032bec | 1826 | { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, |
88ca1c2d FA |
1827 | .access = PL1_RW, .resetvalue = 0, |
1828 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), | |
1829 | offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, | |
6cd8a264 RH |
1830 | { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, |
1831 | .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, | |
1832 | .access = PL1_RW, | |
d81c519c | 1833 | .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, |
327ed10f | 1834 | { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, |
7dd8c9af FA |
1835 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, |
1836 | .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, | |
1837 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), | |
1838 | offsetof(CPUARMState, cp15.ttbr0_ns) } }, | |
327ed10f | 1839 | { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, |
7dd8c9af FA |
1840 | .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, |
1841 | .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, | |
1842 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), | |
1843 | offsetof(CPUARMState, cp15.ttbr1_ns) } }, | |
cb2e37df PM |
1844 | { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, |
1845 | .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, | |
1846 | .access = PL1_RW, .writefn = vmsa_tcr_el1_write, | |
1847 | .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, | |
11f136ee | 1848 | .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, |
cb2e37df | 1849 | { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, |
7a0e58fa | 1850 | .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, |
cb2e37df | 1851 | .resetfn = arm_cp_reset_ignore, .raw_writefn = vmsa_ttbcr_raw_write, |
11f136ee FA |
1852 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), |
1853 | offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, | |
b848ce2b | 1854 | { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, |
6cd8a264 | 1855 | .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, |
2f0180c5 | 1856 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), |
06d76f31 | 1857 | .resetvalue = 0, }, |
b848ce2b FA |
1858 | { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, |
1859 | .access = PL1_RW, .resetvalue = 0, | |
1860 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), | |
1861 | offsetof(CPUARMState, cp15.dfar_ns) } }, | |
18032bec PM |
1862 | REGINFO_SENTINEL |
1863 | }; | |
1864 | ||
c4241c7d PM |
1865 | static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1866 | uint64_t value) | |
1047b9d7 PM |
1867 | { |
1868 | env->cp15.c15_ticonfig = value & 0xe7; | |
1869 | /* The OS_TYPE bit in this register changes the reported CPUID! */ | |
1870 | env->cp15.c0_cpuid = (value & (1 << 5)) ? | |
1871 | ARM_CPUID_TI915T : ARM_CPUID_TI925T; | |
1047b9d7 PM |
1872 | } |
1873 | ||
c4241c7d PM |
1874 | static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1875 | uint64_t value) | |
1047b9d7 PM |
1876 | { |
1877 | env->cp15.c15_threadid = value & 0xffff; | |
1047b9d7 PM |
1878 | } |
1879 | ||
c4241c7d PM |
1880 | static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1881 | uint64_t value) | |
1047b9d7 PM |
1882 | { |
1883 | /* Wait-for-interrupt (deprecated) */ | |
c3affe56 | 1884 | cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT); |
1047b9d7 PM |
1885 | } |
1886 | ||
c4241c7d PM |
1887 | static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1888 | uint64_t value) | |
c4804214 PM |
1889 | { |
1890 | /* On OMAP there are registers indicating the max/min index of dcache lines | |
1891 | * containing a dirty line; cache flush operations have to reset these. | |
1892 | */ | |
1893 | env->cp15.c15_i_max = 0x000; | |
1894 | env->cp15.c15_i_min = 0xff0; | |
c4804214 PM |
1895 | } |
1896 | ||
18032bec PM |
1897 | static const ARMCPRegInfo omap_cp_reginfo[] = { |
1898 | { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, | |
1899 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, | |
d81c519c | 1900 | .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), |
6cd8a264 | 1901 | .resetvalue = 0, }, |
1047b9d7 PM |
1902 | { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, |
1903 | .access = PL1_RW, .type = ARM_CP_NOP }, | |
1904 | { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, | |
1905 | .access = PL1_RW, | |
1906 | .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, | |
1907 | .writefn = omap_ticonfig_write }, | |
1908 | { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, | |
1909 | .access = PL1_RW, | |
1910 | .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, | |
1911 | { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, | |
1912 | .access = PL1_RW, .resetvalue = 0xff0, | |
1913 | .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, | |
1914 | { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, | |
1915 | .access = PL1_RW, | |
1916 | .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, | |
1917 | .writefn = omap_threadid_write }, | |
1918 | { .name = "TI925T_STATUS", .cp = 15, .crn = 15, | |
1919 | .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, | |
7a0e58fa | 1920 | .type = ARM_CP_NO_RAW, |
1047b9d7 PM |
1921 | .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, |
1922 | /* TODO: Peripheral port remap register: | |
1923 | * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller | |
1924 | * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), | |
1925 | * when MMU is off. | |
1926 | */ | |
c4804214 | 1927 | { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, |
d4e6df63 | 1928 | .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, |
7a0e58fa | 1929 | .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, |
c4804214 | 1930 | .writefn = omap_cachemaint_write }, |
34f90529 PM |
1931 | { .name = "C9", .cp = 15, .crn = 9, |
1932 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, | |
1933 | .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, | |
1047b9d7 PM |
1934 | REGINFO_SENTINEL |
1935 | }; | |
1936 | ||
c4241c7d PM |
1937 | static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
1938 | uint64_t value) | |
1047b9d7 | 1939 | { |
c0f4af17 | 1940 | env->cp15.c15_cpar = value & 0x3fff; |
1047b9d7 PM |
1941 | } |
1942 | ||
1943 | static const ARMCPRegInfo xscale_cp_reginfo[] = { | |
1944 | { .name = "XSCALE_CPAR", | |
1945 | .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, | |
1946 | .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, | |
1947 | .writefn = xscale_cpar_write, }, | |
2771db27 PM |
1948 | { .name = "XSCALE_AUXCR", |
1949 | .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, | |
1950 | .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), | |
1951 | .resetvalue = 0, }, | |
3b771579 PM |
1952 | /* XScale specific cache-lockdown: since we have no cache we NOP these |
1953 | * and hope the guest does not really rely on cache behaviour. | |
1954 | */ | |
1955 | { .name = "XSCALE_LOCK_ICACHE_LINE", | |
1956 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, | |
1957 | .access = PL1_W, .type = ARM_CP_NOP }, | |
1958 | { .name = "XSCALE_UNLOCK_ICACHE", | |
1959 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, | |
1960 | .access = PL1_W, .type = ARM_CP_NOP }, | |
1961 | { .name = "XSCALE_DCACHE_LOCK", | |
1962 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, | |
1963 | .access = PL1_RW, .type = ARM_CP_NOP }, | |
1964 | { .name = "XSCALE_UNLOCK_DCACHE", | |
1965 | .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, | |
1966 | .access = PL1_W, .type = ARM_CP_NOP }, | |
1047b9d7 PM |
1967 | REGINFO_SENTINEL |
1968 | }; | |
1969 | ||
1970 | static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { | |
1971 | /* RAZ/WI the whole crn=15 space, when we don't have a more specific | |
1972 | * implementation of this implementation-defined space. | |
1973 | * Ideally this should eventually disappear in favour of actually | |
1974 | * implementing the correct behaviour for all cores. | |
1975 | */ | |
1976 | { .name = "C15_IMPDEF", .cp = 15, .crn = 15, | |
1977 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | |
3671cd87 | 1978 | .access = PL1_RW, |
7a0e58fa | 1979 | .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, |
d4e6df63 | 1980 | .resetvalue = 0 }, |
18032bec PM |
1981 | REGINFO_SENTINEL |
1982 | }; | |
1983 | ||
c4804214 PM |
1984 | static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { |
1985 | /* Cache status: RAZ because we have no cache so it's always clean */ | |
1986 | { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, | |
7a0e58fa | 1987 | .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 1988 | .resetvalue = 0 }, |
c4804214 PM |
1989 | REGINFO_SENTINEL |
1990 | }; | |
1991 | ||
1992 | static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { | |
1993 | /* We never have a a block transfer operation in progress */ | |
1994 | { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, | |
7a0e58fa | 1995 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 1996 | .resetvalue = 0 }, |
30b05bba PM |
1997 | /* The cache ops themselves: these all NOP for QEMU */ |
1998 | { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, | |
1999 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
2000 | { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, | |
2001 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
2002 | { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, | |
2003 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
2004 | { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, | |
2005 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
2006 | { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, | |
2007 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
2008 | { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, | |
2009 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
c4804214 PM |
2010 | REGINFO_SENTINEL |
2011 | }; | |
2012 | ||
2013 | static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { | |
2014 | /* The cache test-and-clean instructions always return (1 << 30) | |
2015 | * to indicate that there are no dirty cache lines. | |
2016 | */ | |
2017 | { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, | |
7a0e58fa | 2018 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 2019 | .resetvalue = (1 << 30) }, |
c4804214 | 2020 | { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, |
7a0e58fa | 2021 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
d4e6df63 | 2022 | .resetvalue = (1 << 30) }, |
c4804214 PM |
2023 | REGINFO_SENTINEL |
2024 | }; | |
2025 | ||
34f90529 PM |
2026 | static const ARMCPRegInfo strongarm_cp_reginfo[] = { |
2027 | /* Ignore ReadBuffer accesses */ | |
2028 | { .name = "C9_READBUFFER", .cp = 15, .crn = 9, | |
2029 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | |
d4e6df63 | 2030 | .access = PL1_RW, .resetvalue = 0, |
7a0e58fa | 2031 | .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, |
34f90529 PM |
2032 | REGINFO_SENTINEL |
2033 | }; | |
2034 | ||
c4241c7d | 2035 | static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
81bdde9d | 2036 | { |
55e5c285 AF |
2037 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
2038 | uint32_t mpidr = cs->cpu_index; | |
4b7fff2f PM |
2039 | /* We don't support setting cluster ID ([8..11]) (known as Aff1 |
2040 | * in later ARM ARM versions), or any of the higher affinity level fields, | |
81bdde9d PM |
2041 | * so these bits always RAZ. |
2042 | */ | |
2043 | if (arm_feature(env, ARM_FEATURE_V7MP)) { | |
78dbbbe4 | 2044 | mpidr |= (1U << 31); |
81bdde9d PM |
2045 | /* Cores which are uniprocessor (non-coherent) |
2046 | * but still implement the MP extensions set | |
2047 | * bit 30. (For instance, A9UP.) However we do | |
2048 | * not currently model any of those cores. | |
2049 | */ | |
2050 | } | |
c4241c7d | 2051 | return mpidr; |
81bdde9d PM |
2052 | } |
2053 | ||
2054 | static const ARMCPRegInfo mpidr_cp_reginfo[] = { | |
4b7fff2f PM |
2055 | { .name = "MPIDR", .state = ARM_CP_STATE_BOTH, |
2056 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, | |
7a0e58fa | 2057 | .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, |
81bdde9d PM |
2058 | REGINFO_SENTINEL |
2059 | }; | |
2060 | ||
7ac681cf | 2061 | static const ARMCPRegInfo lpae_cp_reginfo[] = { |
b90372ad | 2062 | /* NOP AMAIR0/1: the override is because these clash with the rather |
7ac681cf PM |
2063 | * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo. |
2064 | */ | |
b0fe2427 PM |
2065 | { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, |
2066 | .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, | |
7ac681cf PM |
2067 | .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE, |
2068 | .resetvalue = 0 }, | |
b0fe2427 | 2069 | /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ |
7ac681cf PM |
2070 | { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, |
2071 | .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE, | |
2072 | .resetvalue = 0 }, | |
891a2fe7 | 2073 | { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, |
01c097f7 FA |
2074 | .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, |
2075 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), | |
2076 | offsetof(CPUARMState, cp15.par_ns)} }, | |
891a2fe7 | 2077 | { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, |
7a0e58fa | 2078 | .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, |
7dd8c9af FA |
2079 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), |
2080 | offsetof(CPUARMState, cp15.ttbr0_ns) }, | |
327ed10f | 2081 | .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore }, |
891a2fe7 | 2082 | { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, |
7a0e58fa | 2083 | .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, |
7dd8c9af FA |
2084 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), |
2085 | offsetof(CPUARMState, cp15.ttbr1_ns) }, | |
327ed10f | 2086 | .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore }, |
7ac681cf PM |
2087 | REGINFO_SENTINEL |
2088 | }; | |
2089 | ||
c4241c7d | 2090 | static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
b0d2b7d0 | 2091 | { |
c4241c7d | 2092 | return vfp_get_fpcr(env); |
b0d2b7d0 PM |
2093 | } |
2094 | ||
c4241c7d PM |
2095 | static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2096 | uint64_t value) | |
b0d2b7d0 PM |
2097 | { |
2098 | vfp_set_fpcr(env, value); | |
b0d2b7d0 PM |
2099 | } |
2100 | ||
c4241c7d | 2101 | static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
b0d2b7d0 | 2102 | { |
c4241c7d | 2103 | return vfp_get_fpsr(env); |
b0d2b7d0 PM |
2104 | } |
2105 | ||
c4241c7d PM |
2106 | static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2107 | uint64_t value) | |
b0d2b7d0 PM |
2108 | { |
2109 | vfp_set_fpsr(env, value); | |
b0d2b7d0 PM |
2110 | } |
2111 | ||
c2b820fe PM |
2112 | static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri) |
2113 | { | |
137feaa9 | 2114 | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { |
c2b820fe PM |
2115 | return CP_ACCESS_TRAP; |
2116 | } | |
2117 | return CP_ACCESS_OK; | |
2118 | } | |
2119 | ||
2120 | static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2121 | uint64_t value) | |
2122 | { | |
2123 | env->daif = value & PSTATE_DAIF; | |
2124 | } | |
2125 | ||
8af35c37 PM |
2126 | static CPAccessResult aa64_cacheop_access(CPUARMState *env, |
2127 | const ARMCPRegInfo *ri) | |
2128 | { | |
2129 | /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless | |
2130 | * SCTLR_EL1.UCI is set. | |
2131 | */ | |
137feaa9 | 2132 | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) { |
8af35c37 PM |
2133 | return CP_ACCESS_TRAP; |
2134 | } | |
2135 | return CP_ACCESS_OK; | |
2136 | } | |
2137 | ||
dbb1fb27 AB |
2138 | /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions |
2139 | * Page D4-1736 (DDI0487A.b) | |
2140 | */ | |
2141 | ||
168aa23b PM |
2142 | static void tlbi_aa64_va_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2143 | uint64_t value) | |
2144 | { | |
2145 | /* Invalidate by VA (AArch64 version) */ | |
31b030d4 | 2146 | ARMCPU *cpu = arm_env_get_cpu(env); |
dbb1fb27 AB |
2147 | uint64_t pageaddr = sextract64(value << 12, 0, 56); |
2148 | ||
31b030d4 | 2149 | tlb_flush_page(CPU(cpu), pageaddr); |
168aa23b PM |
2150 | } |
2151 | ||
2152 | static void tlbi_aa64_vaa_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2153 | uint64_t value) | |
2154 | { | |
2155 | /* Invalidate by VA, all ASIDs (AArch64 version) */ | |
31b030d4 | 2156 | ARMCPU *cpu = arm_env_get_cpu(env); |
dbb1fb27 AB |
2157 | uint64_t pageaddr = sextract64(value << 12, 0, 56); |
2158 | ||
31b030d4 | 2159 | tlb_flush_page(CPU(cpu), pageaddr); |
168aa23b PM |
2160 | } |
2161 | ||
2162 | static void tlbi_aa64_asid_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2163 | uint64_t value) | |
2164 | { | |
2165 | /* Invalidate by ASID (AArch64 version) */ | |
00c8cb0a | 2166 | ARMCPU *cpu = arm_env_get_cpu(env); |
168aa23b | 2167 | int asid = extract64(value, 48, 16); |
00c8cb0a | 2168 | tlb_flush(CPU(cpu), asid == 0); |
168aa23b PM |
2169 | } |
2170 | ||
fa439fc5 PM |
2171 | static void tlbi_aa64_va_is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2172 | uint64_t value) | |
2173 | { | |
2174 | CPUState *other_cs; | |
2175 | uint64_t pageaddr = sextract64(value << 12, 0, 56); | |
2176 | ||
2177 | CPU_FOREACH(other_cs) { | |
2178 | tlb_flush_page(other_cs, pageaddr); | |
2179 | } | |
2180 | } | |
2181 | ||
2182 | static void tlbi_aa64_vaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2183 | uint64_t value) | |
2184 | { | |
2185 | CPUState *other_cs; | |
2186 | uint64_t pageaddr = sextract64(value << 12, 0, 56); | |
2187 | ||
2188 | CPU_FOREACH(other_cs) { | |
2189 | tlb_flush_page(other_cs, pageaddr); | |
2190 | } | |
2191 | } | |
2192 | ||
2193 | static void tlbi_aa64_asid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2194 | uint64_t value) | |
2195 | { | |
2196 | CPUState *other_cs; | |
2197 | int asid = extract64(value, 48, 16); | |
2198 | ||
2199 | CPU_FOREACH(other_cs) { | |
2200 | tlb_flush(other_cs, asid == 0); | |
2201 | } | |
2202 | } | |
2203 | ||
aca3f40b PM |
2204 | static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri) |
2205 | { | |
2206 | /* We don't implement EL2, so the only control on DC ZVA is the | |
2207 | * bit in the SCTLR which can prohibit access for EL0. | |
2208 | */ | |
137feaa9 | 2209 | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) { |
aca3f40b PM |
2210 | return CP_ACCESS_TRAP; |
2211 | } | |
2212 | return CP_ACCESS_OK; | |
2213 | } | |
2214 | ||
2215 | static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
2216 | { | |
2217 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2218 | int dzp_bit = 1 << 4; | |
2219 | ||
2220 | /* DZP indicates whether DC ZVA access is allowed */ | |
14e5f106 | 2221 | if (aa64_zva_access(env, NULL) == CP_ACCESS_OK) { |
aca3f40b PM |
2222 | dzp_bit = 0; |
2223 | } | |
2224 | return cpu->dcz_blocksize | dzp_bit; | |
2225 | } | |
2226 | ||
f502cfc2 PM |
2227 | static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri) |
2228 | { | |
cdcf1405 | 2229 | if (!(env->pstate & PSTATE_SP)) { |
f502cfc2 PM |
2230 | /* Access to SP_EL0 is undefined if it's being used as |
2231 | * the stack pointer. | |
2232 | */ | |
2233 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
2234 | } | |
2235 | return CP_ACCESS_OK; | |
2236 | } | |
2237 | ||
2238 | static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
2239 | { | |
2240 | return env->pstate & PSTATE_SP; | |
2241 | } | |
2242 | ||
2243 | static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) | |
2244 | { | |
2245 | update_spsel(env, val); | |
2246 | } | |
2247 | ||
137feaa9 FA |
2248 | static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
2249 | uint64_t value) | |
2250 | { | |
2251 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2252 | ||
2253 | if (raw_read(env, ri) == value) { | |
2254 | /* Skip the TLB flush if nothing actually changed; Linux likes | |
2255 | * to do a lot of pointless SCTLR writes. | |
2256 | */ | |
2257 | return; | |
2258 | } | |
2259 | ||
2260 | raw_write(env, ri, value); | |
2261 | /* ??? Lots of these bits are not implemented. */ | |
2262 | /* This may enable/disable the MMU, so do a TLB flush. */ | |
2263 | tlb_flush(CPU(cpu), 1); | |
2264 | } | |
2265 | ||
b0d2b7d0 PM |
2266 | static const ARMCPRegInfo v8_cp_reginfo[] = { |
2267 | /* Minimal set of EL0-visible registers. This will need to be expanded | |
2268 | * significantly for system emulation of AArch64 CPUs. | |
2269 | */ | |
2270 | { .name = "NZCV", .state = ARM_CP_STATE_AA64, | |
2271 | .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, | |
2272 | .access = PL0_RW, .type = ARM_CP_NZCV }, | |
c2b820fe PM |
2273 | { .name = "DAIF", .state = ARM_CP_STATE_AA64, |
2274 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, | |
7a0e58fa | 2275 | .type = ARM_CP_NO_RAW, |
c2b820fe PM |
2276 | .access = PL0_RW, .accessfn = aa64_daif_access, |
2277 | .fieldoffset = offsetof(CPUARMState, daif), | |
2278 | .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, | |
b0d2b7d0 PM |
2279 | { .name = "FPCR", .state = ARM_CP_STATE_AA64, |
2280 | .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, | |
2281 | .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, | |
2282 | { .name = "FPSR", .state = ARM_CP_STATE_AA64, | |
2283 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, | |
2284 | .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, | |
b0d2b7d0 PM |
2285 | { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, |
2286 | .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, | |
7a0e58fa | 2287 | .access = PL0_R, .type = ARM_CP_NO_RAW, |
aca3f40b PM |
2288 | .readfn = aa64_dczid_read }, |
2289 | { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, | |
2290 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, | |
2291 | .access = PL0_W, .type = ARM_CP_DC_ZVA, | |
2292 | #ifndef CONFIG_USER_ONLY | |
2293 | /* Avoid overhead of an access check that always passes in user-mode */ | |
2294 | .accessfn = aa64_zva_access, | |
2295 | #endif | |
2296 | }, | |
0eef9d98 PM |
2297 | { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, |
2298 | .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, | |
2299 | .access = PL1_R, .type = ARM_CP_CURRENTEL }, | |
8af35c37 PM |
2300 | /* Cache ops: all NOPs since we don't emulate caches */ |
2301 | { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, | |
2302 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, | |
2303 | .access = PL1_W, .type = ARM_CP_NOP }, | |
2304 | { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, | |
2305 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, | |
2306 | .access = PL1_W, .type = ARM_CP_NOP }, | |
2307 | { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, | |
2308 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, | |
2309 | .access = PL0_W, .type = ARM_CP_NOP, | |
2310 | .accessfn = aa64_cacheop_access }, | |
2311 | { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, | |
2312 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, | |
2313 | .access = PL1_W, .type = ARM_CP_NOP }, | |
2314 | { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, | |
2315 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, | |
2316 | .access = PL1_W, .type = ARM_CP_NOP }, | |
2317 | { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, | |
2318 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, | |
2319 | .access = PL0_W, .type = ARM_CP_NOP, | |
2320 | .accessfn = aa64_cacheop_access }, | |
2321 | { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, | |
2322 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, | |
2323 | .access = PL1_W, .type = ARM_CP_NOP }, | |
2324 | { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, | |
2325 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, | |
2326 | .access = PL0_W, .type = ARM_CP_NOP, | |
2327 | .accessfn = aa64_cacheop_access }, | |
2328 | { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, | |
2329 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, | |
2330 | .access = PL0_W, .type = ARM_CP_NOP, | |
2331 | .accessfn = aa64_cacheop_access }, | |
2332 | { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, | |
2333 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, | |
2334 | .access = PL1_W, .type = ARM_CP_NOP }, | |
168aa23b PM |
2335 | /* TLBI operations */ |
2336 | { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, | |
6ab9f499 | 2337 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, |
7a0e58fa | 2338 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fa439fc5 | 2339 | .writefn = tlbiall_is_write }, |
168aa23b | 2340 | { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 2341 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, |
7a0e58fa | 2342 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fa439fc5 | 2343 | .writefn = tlbi_aa64_va_is_write }, |
168aa23b | 2344 | { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 2345 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, |
7a0e58fa | 2346 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fa439fc5 | 2347 | .writefn = tlbi_aa64_asid_is_write }, |
168aa23b | 2348 | { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 2349 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, |
7a0e58fa | 2350 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fa439fc5 | 2351 | .writefn = tlbi_aa64_vaa_is_write }, |
168aa23b | 2352 | { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 2353 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, |
7a0e58fa | 2354 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fa439fc5 | 2355 | .writefn = tlbi_aa64_va_is_write }, |
168aa23b | 2356 | { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 2357 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, |
7a0e58fa | 2358 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
fa439fc5 | 2359 | .writefn = tlbi_aa64_vaa_is_write }, |
168aa23b | 2360 | { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, |
6ab9f499 | 2361 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, |
7a0e58fa | 2362 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
168aa23b PM |
2363 | .writefn = tlbiall_write }, |
2364 | { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, | |
6ab9f499 | 2365 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, |
7a0e58fa | 2366 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
168aa23b PM |
2367 | .writefn = tlbi_aa64_va_write }, |
2368 | { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, | |
6ab9f499 | 2369 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, |
7a0e58fa | 2370 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
168aa23b PM |
2371 | .writefn = tlbi_aa64_asid_write }, |
2372 | { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, | |
6ab9f499 | 2373 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, |
7a0e58fa | 2374 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
168aa23b PM |
2375 | .writefn = tlbi_aa64_vaa_write }, |
2376 | { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, | |
6ab9f499 | 2377 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, |
7a0e58fa | 2378 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
168aa23b PM |
2379 | .writefn = tlbi_aa64_va_write }, |
2380 | { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, | |
6ab9f499 | 2381 | .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, |
7a0e58fa | 2382 | .access = PL1_W, .type = ARM_CP_NO_RAW, |
168aa23b | 2383 | .writefn = tlbi_aa64_vaa_write }, |
19525524 PM |
2384 | #ifndef CONFIG_USER_ONLY |
2385 | /* 64 bit address translation operations */ | |
2386 | { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, | |
2387 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, | |
060e8a48 | 2388 | .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
19525524 PM |
2389 | { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, |
2390 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, | |
060e8a48 | 2391 | .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
19525524 PM |
2392 | { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, |
2393 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, | |
060e8a48 | 2394 | .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
19525524 PM |
2395 | { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, |
2396 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, | |
060e8a48 | 2397 | .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
19525524 | 2398 | #endif |
995939a6 | 2399 | /* TLB invalidate last level of translation table walk */ |
9449fdf6 | 2400 | { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, |
7a0e58fa | 2401 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, |
9449fdf6 | 2402 | { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, |
7a0e58fa | 2403 | .type = ARM_CP_NO_RAW, .access = PL1_W, |
fa439fc5 | 2404 | .writefn = tlbimvaa_is_write }, |
9449fdf6 | 2405 | { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, |
7a0e58fa | 2406 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, |
9449fdf6 | 2407 | { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, |
7a0e58fa | 2408 | .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, |
9449fdf6 PM |
2409 | /* 32 bit cache operations */ |
2410 | { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, | |
2411 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2412 | { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, | |
2413 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2414 | { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, | |
2415 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2416 | { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, | |
2417 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2418 | { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, | |
2419 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2420 | { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, | |
2421 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2422 | { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, | |
2423 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2424 | { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, | |
2425 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2426 | { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, | |
2427 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2428 | { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, | |
2429 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2430 | { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, | |
2431 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2432 | { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, | |
2433 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2434 | { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, | |
2435 | .type = ARM_CP_NOP, .access = PL1_W }, | |
2436 | /* MMU Domain access control / MPU write buffer control */ | |
0c17d68c FA |
2437 | { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, |
2438 | .access = PL1_RW, .resetvalue = 0, | |
2439 | .writefn = dacr_write, .raw_writefn = raw_write, | |
2440 | .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), | |
2441 | offsetoflow32(CPUARMState, cp15.dacr_ns) } }, | |
a0618a19 | 2442 | { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 2443 | .type = ARM_CP_ALIAS, |
a0618a19 | 2444 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, |
6947f059 EI |
2445 | .access = PL1_RW, |
2446 | .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, | |
a65f1de9 | 2447 | { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 2448 | .type = ARM_CP_ALIAS, |
a65f1de9 | 2449 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, |
7847f9ea | 2450 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[1]) }, |
f502cfc2 PM |
2451 | /* We rely on the access checks not allowing the guest to write to the |
2452 | * state field when SPSel indicates that it's being used as the stack | |
2453 | * pointer. | |
2454 | */ | |
2455 | { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, | |
2456 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, | |
2457 | .access = PL1_RW, .accessfn = sp_el0_access, | |
7a0e58fa | 2458 | .type = ARM_CP_ALIAS, |
f502cfc2 | 2459 | .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, |
884b4dee GB |
2460 | { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, |
2461 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, | |
7a0e58fa | 2462 | .access = PL2_RW, .type = ARM_CP_ALIAS, |
884b4dee | 2463 | .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, |
f502cfc2 PM |
2464 | { .name = "SPSel", .state = ARM_CP_STATE_AA64, |
2465 | .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, | |
7a0e58fa | 2466 | .type = ARM_CP_NO_RAW, |
f502cfc2 | 2467 | .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, |
b0d2b7d0 PM |
2468 | REGINFO_SENTINEL |
2469 | }; | |
2470 | ||
d42e3c26 EI |
2471 | /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ |
2472 | static const ARMCPRegInfo v8_el3_no_el2_cp_reginfo[] = { | |
2473 | { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, | |
2474 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, | |
2475 | .access = PL2_RW, | |
2476 | .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, | |
f149e3e8 | 2477 | { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 2478 | .type = ARM_CP_NO_RAW, |
f149e3e8 EI |
2479 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, |
2480 | .access = PL2_RW, | |
2481 | .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, | |
d42e3c26 EI |
2482 | REGINFO_SENTINEL |
2483 | }; | |
2484 | ||
f149e3e8 EI |
2485 | static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
2486 | { | |
2487 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2488 | uint64_t valid_mask = HCR_MASK; | |
2489 | ||
2490 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
2491 | valid_mask &= ~HCR_HCD; | |
2492 | } else { | |
2493 | valid_mask &= ~HCR_TSC; | |
2494 | } | |
2495 | ||
2496 | /* Clear RES0 bits. */ | |
2497 | value &= valid_mask; | |
2498 | ||
2499 | /* These bits change the MMU setup: | |
2500 | * HCR_VM enables stage 2 translation | |
2501 | * HCR_PTW forbids certain page-table setups | |
2502 | * HCR_DC Disables stage1 and enables stage2 translation | |
2503 | */ | |
2504 | if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { | |
2505 | tlb_flush(CPU(cpu), 1); | |
2506 | } | |
2507 | raw_write(env, ri, value); | |
2508 | } | |
2509 | ||
3b685ba7 | 2510 | static const ARMCPRegInfo v8_el2_cp_reginfo[] = { |
f149e3e8 EI |
2511 | { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, |
2512 | .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, | |
2513 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), | |
2514 | .writefn = hcr_write }, | |
0c17d68c FA |
2515 | { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, |
2516 | .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, | |
2517 | .access = PL2_RW, .resetvalue = 0, | |
2518 | .writefn = dacr_write, .raw_writefn = raw_write, | |
2519 | .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, | |
3b685ba7 | 2520 | { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 2521 | .type = ARM_CP_ALIAS, |
3b685ba7 EI |
2522 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, |
2523 | .access = PL2_RW, | |
2524 | .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, | |
f2c30f42 | 2525 | { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 2526 | .type = ARM_CP_ALIAS, |
f2c30f42 EI |
2527 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, |
2528 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, | |
88ca1c2d FA |
2529 | { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, |
2530 | .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, | |
2531 | .access = PL2_RW, .resetvalue = 0, | |
2532 | .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, | |
63b60551 EI |
2533 | { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64, |
2534 | .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, | |
2535 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, | |
3b685ba7 | 2536 | { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 2537 | .type = ARM_CP_ALIAS, |
3b685ba7 EI |
2538 | .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, |
2539 | .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[6]) }, | |
d42e3c26 EI |
2540 | { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, |
2541 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, | |
2542 | .access = PL2_RW, .writefn = vbar_write, | |
2543 | .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), | |
2544 | .resetvalue = 0 }, | |
884b4dee GB |
2545 | { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, |
2546 | .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, | |
7a0e58fa | 2547 | .access = PL3_RW, .type = ARM_CP_ALIAS, |
884b4dee | 2548 | .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, |
3b685ba7 EI |
2549 | REGINFO_SENTINEL |
2550 | }; | |
2551 | ||
60fb1a87 GB |
2552 | static const ARMCPRegInfo el3_cp_reginfo[] = { |
2553 | { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, | |
2554 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, | |
2555 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), | |
2556 | .resetvalue = 0, .writefn = scr_write }, | |
7a0e58fa | 2557 | { .name = "SCR", .type = ARM_CP_ALIAS, |
60fb1a87 GB |
2558 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, |
2559 | .access = PL3_RW, .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), | |
2560 | .resetfn = arm_cp_reset_ignore, .writefn = scr_write }, | |
2561 | { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, | |
2562 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, | |
2563 | .access = PL3_RW, .resetvalue = 0, | |
2564 | .fieldoffset = offsetof(CPUARMState, cp15.sder) }, | |
2565 | { .name = "SDER", | |
2566 | .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, | |
2567 | .access = PL3_RW, .resetvalue = 0, | |
2568 | .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, | |
2569 | /* TODO: Implement NSACR trapping of secure EL1 accesses to EL3 */ | |
2570 | { .name = "NSACR", .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, | |
2571 | .access = PL3_W | PL1_R, .resetvalue = 0, | |
2572 | .fieldoffset = offsetof(CPUARMState, cp15.nsacr) }, | |
2573 | { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, | |
2574 | .access = PL3_RW, .writefn = vbar_write, .resetvalue = 0, | |
2575 | .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, | |
137feaa9 FA |
2576 | { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, |
2577 | .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, | |
2578 | .access = PL3_RW, .raw_writefn = raw_write, .writefn = sctlr_write, | |
2579 | .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]) }, | |
7dd8c9af FA |
2580 | { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, |
2581 | .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, | |
2582 | .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, | |
2583 | .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, | |
11f136ee FA |
2584 | { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, |
2585 | .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, | |
2586 | .access = PL3_RW, .writefn = vmsa_tcr_el1_write, | |
2587 | .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, | |
2588 | .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, | |
81547d66 | 2589 | { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 2590 | .type = ARM_CP_ALIAS, |
81547d66 EI |
2591 | .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, |
2592 | .access = PL3_RW, | |
2593 | .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, | |
f2c30f42 | 2594 | { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 2595 | .type = ARM_CP_ALIAS, |
f2c30f42 EI |
2596 | .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, |
2597 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, | |
63b60551 EI |
2598 | { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, |
2599 | .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, | |
2600 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, | |
81547d66 | 2601 | { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, |
7a0e58fa | 2602 | .type = ARM_CP_ALIAS, |
81547d66 EI |
2603 | .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, |
2604 | .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[7]) }, | |
a1ba125c EI |
2605 | { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, |
2606 | .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, | |
2607 | .access = PL3_RW, .writefn = vbar_write, | |
2608 | .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), | |
2609 | .resetvalue = 0 }, | |
0f1a3b24 FA |
2610 | REGINFO_SENTINEL |
2611 | }; | |
2612 | ||
7da845b0 PM |
2613 | static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri) |
2614 | { | |
2615 | /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64, | |
2616 | * but the AArch32 CTR has its own reginfo struct) | |
2617 | */ | |
137feaa9 | 2618 | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) { |
7da845b0 PM |
2619 | return CP_ACCESS_TRAP; |
2620 | } | |
2621 | return CP_ACCESS_OK; | |
2622 | } | |
2623 | ||
50300698 | 2624 | static const ARMCPRegInfo debug_cp_reginfo[] = { |
50300698 | 2625 | /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped |
10aae104 PM |
2626 | * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; |
2627 | * unlike DBGDRAR it is never accessible from EL0. | |
2628 | * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 | |
2629 | * accessor. | |
50300698 PM |
2630 | */ |
2631 | { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, | |
2632 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
10aae104 PM |
2633 | { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, |
2634 | .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, | |
2635 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
50300698 PM |
2636 | { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
2637 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
17a9eb53 | 2638 | /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ |
10aae104 PM |
2639 | { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, |
2640 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, | |
0e5e8935 PM |
2641 | .access = PL1_RW, |
2642 | .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), | |
2643 | .resetvalue = 0 }, | |
5e8b12ff PM |
2644 | /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. |
2645 | * We don't implement the configurable EL0 access. | |
2646 | */ | |
2647 | { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, | |
2648 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, | |
7a0e58fa | 2649 | .type = ARM_CP_ALIAS, |
5e8b12ff PM |
2650 | .access = PL1_R, |
2651 | .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), | |
2652 | .resetfn = arm_cp_reset_ignore }, | |
50300698 | 2653 | /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */ |
10aae104 PM |
2654 | { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, |
2655 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, | |
50300698 | 2656 | .access = PL1_W, .type = ARM_CP_NOP }, |
5e8b12ff PM |
2657 | /* Dummy OSDLR_EL1: 32-bit Linux will read this */ |
2658 | { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, | |
2659 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, | |
2660 | .access = PL1_RW, .type = ARM_CP_NOP }, | |
2661 | /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't | |
2662 | * implement vector catch debug events yet. | |
2663 | */ | |
2664 | { .name = "DBGVCR", | |
2665 | .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, | |
2666 | .access = PL1_RW, .type = ARM_CP_NOP }, | |
50300698 PM |
2667 | REGINFO_SENTINEL |
2668 | }; | |
2669 | ||
2670 | static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { | |
2671 | /* 64 bit access versions of the (dummy) debug registers */ | |
2672 | { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, | |
2673 | .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, | |
2674 | { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, | |
2675 | .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, | |
2676 | REGINFO_SENTINEL | |
2677 | }; | |
2678 | ||
9ee98ce8 PM |
2679 | void hw_watchpoint_update(ARMCPU *cpu, int n) |
2680 | { | |
2681 | CPUARMState *env = &cpu->env; | |
2682 | vaddr len = 0; | |
2683 | vaddr wvr = env->cp15.dbgwvr[n]; | |
2684 | uint64_t wcr = env->cp15.dbgwcr[n]; | |
2685 | int mask; | |
2686 | int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; | |
2687 | ||
2688 | if (env->cpu_watchpoint[n]) { | |
2689 | cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); | |
2690 | env->cpu_watchpoint[n] = NULL; | |
2691 | } | |
2692 | ||
2693 | if (!extract64(wcr, 0, 1)) { | |
2694 | /* E bit clear : watchpoint disabled */ | |
2695 | return; | |
2696 | } | |
2697 | ||
2698 | switch (extract64(wcr, 3, 2)) { | |
2699 | case 0: | |
2700 | /* LSC 00 is reserved and must behave as if the wp is disabled */ | |
2701 | return; | |
2702 | case 1: | |
2703 | flags |= BP_MEM_READ; | |
2704 | break; | |
2705 | case 2: | |
2706 | flags |= BP_MEM_WRITE; | |
2707 | break; | |
2708 | case 3: | |
2709 | flags |= BP_MEM_ACCESS; | |
2710 | break; | |
2711 | } | |
2712 | ||
2713 | /* Attempts to use both MASK and BAS fields simultaneously are | |
2714 | * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, | |
2715 | * thus generating a watchpoint for every byte in the masked region. | |
2716 | */ | |
2717 | mask = extract64(wcr, 24, 4); | |
2718 | if (mask == 1 || mask == 2) { | |
2719 | /* Reserved values of MASK; we must act as if the mask value was | |
2720 | * some non-reserved value, or as if the watchpoint were disabled. | |
2721 | * We choose the latter. | |
2722 | */ | |
2723 | return; | |
2724 | } else if (mask) { | |
2725 | /* Watchpoint covers an aligned area up to 2GB in size */ | |
2726 | len = 1ULL << mask; | |
2727 | /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE | |
2728 | * whether the watchpoint fires when the unmasked bits match; we opt | |
2729 | * to generate the exceptions. | |
2730 | */ | |
2731 | wvr &= ~(len - 1); | |
2732 | } else { | |
2733 | /* Watchpoint covers bytes defined by the byte address select bits */ | |
2734 | int bas = extract64(wcr, 5, 8); | |
2735 | int basstart; | |
2736 | ||
2737 | if (bas == 0) { | |
2738 | /* This must act as if the watchpoint is disabled */ | |
2739 | return; | |
2740 | } | |
2741 | ||
2742 | if (extract64(wvr, 2, 1)) { | |
2743 | /* Deprecated case of an only 4-aligned address. BAS[7:4] are | |
2744 | * ignored, and BAS[3:0] define which bytes to watch. | |
2745 | */ | |
2746 | bas &= 0xf; | |
2747 | } | |
2748 | /* The BAS bits are supposed to be programmed to indicate a contiguous | |
2749 | * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether | |
2750 | * we fire for each byte in the word/doubleword addressed by the WVR. | |
2751 | * We choose to ignore any non-zero bits after the first range of 1s. | |
2752 | */ | |
2753 | basstart = ctz32(bas); | |
2754 | len = cto32(bas >> basstart); | |
2755 | wvr += basstart; | |
2756 | } | |
2757 | ||
2758 | cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, | |
2759 | &env->cpu_watchpoint[n]); | |
2760 | } | |
2761 | ||
2762 | void hw_watchpoint_update_all(ARMCPU *cpu) | |
2763 | { | |
2764 | int i; | |
2765 | CPUARMState *env = &cpu->env; | |
2766 | ||
2767 | /* Completely clear out existing QEMU watchpoints and our array, to | |
2768 | * avoid possible stale entries following migration load. | |
2769 | */ | |
2770 | cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); | |
2771 | memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); | |
2772 | ||
2773 | for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { | |
2774 | hw_watchpoint_update(cpu, i); | |
2775 | } | |
2776 | } | |
2777 | ||
2778 | static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2779 | uint64_t value) | |
2780 | { | |
2781 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2782 | int i = ri->crm; | |
2783 | ||
2784 | /* Bits [63:49] are hardwired to the value of bit [48]; that is, the | |
2785 | * register reads and behaves as if values written are sign extended. | |
2786 | * Bits [1:0] are RES0. | |
2787 | */ | |
2788 | value = sextract64(value, 0, 49) & ~3ULL; | |
2789 | ||
2790 | raw_write(env, ri, value); | |
2791 | hw_watchpoint_update(cpu, i); | |
2792 | } | |
2793 | ||
2794 | static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2795 | uint64_t value) | |
2796 | { | |
2797 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2798 | int i = ri->crm; | |
2799 | ||
2800 | raw_write(env, ri, value); | |
2801 | hw_watchpoint_update(cpu, i); | |
2802 | } | |
2803 | ||
46747d15 PM |
2804 | void hw_breakpoint_update(ARMCPU *cpu, int n) |
2805 | { | |
2806 | CPUARMState *env = &cpu->env; | |
2807 | uint64_t bvr = env->cp15.dbgbvr[n]; | |
2808 | uint64_t bcr = env->cp15.dbgbcr[n]; | |
2809 | vaddr addr; | |
2810 | int bt; | |
2811 | int flags = BP_CPU; | |
2812 | ||
2813 | if (env->cpu_breakpoint[n]) { | |
2814 | cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); | |
2815 | env->cpu_breakpoint[n] = NULL; | |
2816 | } | |
2817 | ||
2818 | if (!extract64(bcr, 0, 1)) { | |
2819 | /* E bit clear : watchpoint disabled */ | |
2820 | return; | |
2821 | } | |
2822 | ||
2823 | bt = extract64(bcr, 20, 4); | |
2824 | ||
2825 | switch (bt) { | |
2826 | case 4: /* unlinked address mismatch (reserved if AArch64) */ | |
2827 | case 5: /* linked address mismatch (reserved if AArch64) */ | |
2828 | qemu_log_mask(LOG_UNIMP, | |
2829 | "arm: address mismatch breakpoint types not implemented"); | |
2830 | return; | |
2831 | case 0: /* unlinked address match */ | |
2832 | case 1: /* linked address match */ | |
2833 | { | |
2834 | /* Bits [63:49] are hardwired to the value of bit [48]; that is, | |
2835 | * we behave as if the register was sign extended. Bits [1:0] are | |
2836 | * RES0. The BAS field is used to allow setting breakpoints on 16 | |
2837 | * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether | |
2838 | * a bp will fire if the addresses covered by the bp and the addresses | |
2839 | * covered by the insn overlap but the insn doesn't start at the | |
2840 | * start of the bp address range. We choose to require the insn and | |
2841 | * the bp to have the same address. The constraints on writing to | |
2842 | * BAS enforced in dbgbcr_write mean we have only four cases: | |
2843 | * 0b0000 => no breakpoint | |
2844 | * 0b0011 => breakpoint on addr | |
2845 | * 0b1100 => breakpoint on addr + 2 | |
2846 | * 0b1111 => breakpoint on addr | |
2847 | * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). | |
2848 | */ | |
2849 | int bas = extract64(bcr, 5, 4); | |
2850 | addr = sextract64(bvr, 0, 49) & ~3ULL; | |
2851 | if (bas == 0) { | |
2852 | return; | |
2853 | } | |
2854 | if (bas == 0xc) { | |
2855 | addr += 2; | |
2856 | } | |
2857 | break; | |
2858 | } | |
2859 | case 2: /* unlinked context ID match */ | |
2860 | case 8: /* unlinked VMID match (reserved if no EL2) */ | |
2861 | case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ | |
2862 | qemu_log_mask(LOG_UNIMP, | |
2863 | "arm: unlinked context breakpoint types not implemented"); | |
2864 | return; | |
2865 | case 9: /* linked VMID match (reserved if no EL2) */ | |
2866 | case 11: /* linked context ID and VMID match (reserved if no EL2) */ | |
2867 | case 3: /* linked context ID match */ | |
2868 | default: | |
2869 | /* We must generate no events for Linked context matches (unless | |
2870 | * they are linked to by some other bp/wp, which is handled in | |
2871 | * updates for the linking bp/wp). We choose to also generate no events | |
2872 | * for reserved values. | |
2873 | */ | |
2874 | return; | |
2875 | } | |
2876 | ||
2877 | cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); | |
2878 | } | |
2879 | ||
2880 | void hw_breakpoint_update_all(ARMCPU *cpu) | |
2881 | { | |
2882 | int i; | |
2883 | CPUARMState *env = &cpu->env; | |
2884 | ||
2885 | /* Completely clear out existing QEMU breakpoints and our array, to | |
2886 | * avoid possible stale entries following migration load. | |
2887 | */ | |
2888 | cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); | |
2889 | memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); | |
2890 | ||
2891 | for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { | |
2892 | hw_breakpoint_update(cpu, i); | |
2893 | } | |
2894 | } | |
2895 | ||
2896 | static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2897 | uint64_t value) | |
2898 | { | |
2899 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2900 | int i = ri->crm; | |
2901 | ||
2902 | raw_write(env, ri, value); | |
2903 | hw_breakpoint_update(cpu, i); | |
2904 | } | |
2905 | ||
2906 | static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
2907 | uint64_t value) | |
2908 | { | |
2909 | ARMCPU *cpu = arm_env_get_cpu(env); | |
2910 | int i = ri->crm; | |
2911 | ||
2912 | /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only | |
2913 | * copy of BAS[0]. | |
2914 | */ | |
2915 | value = deposit64(value, 6, 1, extract64(value, 5, 1)); | |
2916 | value = deposit64(value, 8, 1, extract64(value, 7, 1)); | |
2917 | ||
2918 | raw_write(env, ri, value); | |
2919 | hw_breakpoint_update(cpu, i); | |
2920 | } | |
2921 | ||
50300698 | 2922 | static void define_debug_regs(ARMCPU *cpu) |
0b45451e | 2923 | { |
50300698 PM |
2924 | /* Define v7 and v8 architectural debug registers. |
2925 | * These are just dummy implementations for now. | |
0b45451e PM |
2926 | */ |
2927 | int i; | |
3ff6fc91 | 2928 | int wrps, brps, ctx_cmps; |
48eb3ae6 PM |
2929 | ARMCPRegInfo dbgdidr = { |
2930 | .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, | |
2931 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr, | |
2932 | }; | |
2933 | ||
3ff6fc91 | 2934 | /* Note that all these register fields hold "number of Xs minus 1". */ |
48eb3ae6 PM |
2935 | brps = extract32(cpu->dbgdidr, 24, 4); |
2936 | wrps = extract32(cpu->dbgdidr, 28, 4); | |
3ff6fc91 PM |
2937 | ctx_cmps = extract32(cpu->dbgdidr, 20, 4); |
2938 | ||
2939 | assert(ctx_cmps <= brps); | |
48eb3ae6 PM |
2940 | |
2941 | /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties | |
2942 | * of the debug registers such as number of breakpoints; | |
2943 | * check that if they both exist then they agree. | |
2944 | */ | |
2945 | if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { | |
2946 | assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps); | |
2947 | assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps); | |
3ff6fc91 | 2948 | assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps); |
48eb3ae6 | 2949 | } |
0b45451e | 2950 | |
48eb3ae6 | 2951 | define_one_arm_cp_reg(cpu, &dbgdidr); |
50300698 PM |
2952 | define_arm_cp_regs(cpu, debug_cp_reginfo); |
2953 | ||
2954 | if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { | |
2955 | define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); | |
2956 | } | |
2957 | ||
48eb3ae6 | 2958 | for (i = 0; i < brps + 1; i++) { |
0b45451e | 2959 | ARMCPRegInfo dbgregs[] = { |
10aae104 PM |
2960 | { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, |
2961 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, | |
0b45451e | 2962 | .access = PL1_RW, |
46747d15 PM |
2963 | .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), |
2964 | .writefn = dbgbvr_write, .raw_writefn = raw_write | |
2965 | }, | |
10aae104 PM |
2966 | { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, |
2967 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, | |
0b45451e | 2968 | .access = PL1_RW, |
46747d15 PM |
2969 | .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), |
2970 | .writefn = dbgbcr_write, .raw_writefn = raw_write | |
2971 | }, | |
48eb3ae6 PM |
2972 | REGINFO_SENTINEL |
2973 | }; | |
2974 | define_arm_cp_regs(cpu, dbgregs); | |
2975 | } | |
2976 | ||
2977 | for (i = 0; i < wrps + 1; i++) { | |
2978 | ARMCPRegInfo dbgregs[] = { | |
10aae104 PM |
2979 | { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, |
2980 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, | |
0b45451e | 2981 | .access = PL1_RW, |
9ee98ce8 PM |
2982 | .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), |
2983 | .writefn = dbgwvr_write, .raw_writefn = raw_write | |
2984 | }, | |
10aae104 PM |
2985 | { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, |
2986 | .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, | |
0b45451e | 2987 | .access = PL1_RW, |
9ee98ce8 PM |
2988 | .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), |
2989 | .writefn = dbgwcr_write, .raw_writefn = raw_write | |
2990 | }, | |
2991 | REGINFO_SENTINEL | |
0b45451e PM |
2992 | }; |
2993 | define_arm_cp_regs(cpu, dbgregs); | |
2994 | } | |
2995 | } | |
2996 | ||
2ceb98c0 PM |
2997 | void register_cp_regs_for_features(ARMCPU *cpu) |
2998 | { | |
2999 | /* Register all the coprocessor registers based on feature bits */ | |
3000 | CPUARMState *env = &cpu->env; | |
3001 | if (arm_feature(env, ARM_FEATURE_M)) { | |
3002 | /* M profile has no coprocessor registers */ | |
3003 | return; | |
3004 | } | |
3005 | ||
e9aa6c21 | 3006 | define_arm_cp_regs(cpu, cp_reginfo); |
9449fdf6 PM |
3007 | if (!arm_feature(env, ARM_FEATURE_V8)) { |
3008 | /* Must go early as it is full of wildcards that may be | |
3009 | * overridden by later definitions. | |
3010 | */ | |
3011 | define_arm_cp_regs(cpu, not_v8_cp_reginfo); | |
3012 | } | |
3013 | ||
7d57f408 | 3014 | if (arm_feature(env, ARM_FEATURE_V6)) { |
8515a092 PM |
3015 | /* The ID registers all have impdef reset values */ |
3016 | ARMCPRegInfo v6_idregs[] = { | |
0ff644a7 PM |
3017 | { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, |
3018 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, | |
3019 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3020 | .resetvalue = cpu->id_pfr0 }, |
0ff644a7 PM |
3021 | { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, |
3022 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, | |
3023 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3024 | .resetvalue = cpu->id_pfr1 }, |
0ff644a7 PM |
3025 | { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, |
3026 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, | |
3027 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3028 | .resetvalue = cpu->id_dfr0 }, |
0ff644a7 PM |
3029 | { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, |
3030 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, | |
3031 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3032 | .resetvalue = cpu->id_afr0 }, |
0ff644a7 PM |
3033 | { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, |
3034 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, | |
3035 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3036 | .resetvalue = cpu->id_mmfr0 }, |
0ff644a7 PM |
3037 | { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, |
3038 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, | |
3039 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3040 | .resetvalue = cpu->id_mmfr1 }, |
0ff644a7 PM |
3041 | { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, |
3042 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, | |
3043 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3044 | .resetvalue = cpu->id_mmfr2 }, |
0ff644a7 PM |
3045 | { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, |
3046 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, | |
3047 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3048 | .resetvalue = cpu->id_mmfr3 }, |
0ff644a7 PM |
3049 | { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, |
3050 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, | |
3051 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3052 | .resetvalue = cpu->id_isar0 }, |
0ff644a7 PM |
3053 | { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, |
3054 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, | |
3055 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3056 | .resetvalue = cpu->id_isar1 }, |
0ff644a7 PM |
3057 | { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, |
3058 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, | |
3059 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3060 | .resetvalue = cpu->id_isar2 }, |
0ff644a7 PM |
3061 | { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, |
3062 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, | |
3063 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3064 | .resetvalue = cpu->id_isar3 }, |
0ff644a7 PM |
3065 | { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, |
3066 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, | |
3067 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 | 3068 | .resetvalue = cpu->id_isar4 }, |
0ff644a7 PM |
3069 | { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, |
3070 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, | |
3071 | .access = PL1_R, .type = ARM_CP_CONST, | |
8515a092 PM |
3072 | .resetvalue = cpu->id_isar5 }, |
3073 | /* 6..7 are as yet unallocated and must RAZ */ | |
3074 | { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2, | |
3075 | .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST, | |
3076 | .resetvalue = 0 }, | |
3077 | { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2, | |
3078 | .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST, | |
3079 | .resetvalue = 0 }, | |
3080 | REGINFO_SENTINEL | |
3081 | }; | |
3082 | define_arm_cp_regs(cpu, v6_idregs); | |
7d57f408 PM |
3083 | define_arm_cp_regs(cpu, v6_cp_reginfo); |
3084 | } else { | |
3085 | define_arm_cp_regs(cpu, not_v6_cp_reginfo); | |
3086 | } | |
4d31c596 PM |
3087 | if (arm_feature(env, ARM_FEATURE_V6K)) { |
3088 | define_arm_cp_regs(cpu, v6k_cp_reginfo); | |
3089 | } | |
995939a6 PM |
3090 | if (arm_feature(env, ARM_FEATURE_V7MP)) { |
3091 | define_arm_cp_regs(cpu, v7mp_cp_reginfo); | |
3092 | } | |
e9aa6c21 | 3093 | if (arm_feature(env, ARM_FEATURE_V7)) { |
200ac0ef | 3094 | /* v7 performance monitor control register: same implementor |
7c2cb42b AF |
3095 | * field as main ID register, and we implement only the cycle |
3096 | * count register. | |
200ac0ef | 3097 | */ |
7c2cb42b | 3098 | #ifndef CONFIG_USER_ONLY |
200ac0ef PM |
3099 | ARMCPRegInfo pmcr = { |
3100 | .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, | |
8521466b | 3101 | .access = PL0_RW, |
7a0e58fa | 3102 | .type = ARM_CP_IO | ARM_CP_ALIAS, |
8521466b | 3103 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), |
fcd25206 PM |
3104 | .accessfn = pmreg_access, .writefn = pmcr_write, |
3105 | .raw_writefn = raw_write, | |
200ac0ef | 3106 | }; |
8521466b AF |
3107 | ARMCPRegInfo pmcr64 = { |
3108 | .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, | |
3109 | .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, | |
3110 | .access = PL0_RW, .accessfn = pmreg_access, | |
3111 | .type = ARM_CP_IO, | |
3112 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), | |
3113 | .resetvalue = cpu->midr & 0xff000000, | |
3114 | .writefn = pmcr_write, .raw_writefn = raw_write, | |
3115 | }; | |
7c2cb42b | 3116 | define_one_arm_cp_reg(cpu, &pmcr); |
8521466b | 3117 | define_one_arm_cp_reg(cpu, &pmcr64); |
7c2cb42b | 3118 | #endif |
776d4e5c | 3119 | ARMCPRegInfo clidr = { |
7da845b0 PM |
3120 | .name = "CLIDR", .state = ARM_CP_STATE_BOTH, |
3121 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, | |
776d4e5c PM |
3122 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr |
3123 | }; | |
776d4e5c | 3124 | define_one_arm_cp_reg(cpu, &clidr); |
e9aa6c21 | 3125 | define_arm_cp_regs(cpu, v7_cp_reginfo); |
50300698 | 3126 | define_debug_regs(cpu); |
7d57f408 PM |
3127 | } else { |
3128 | define_arm_cp_regs(cpu, not_v7_cp_reginfo); | |
e9aa6c21 | 3129 | } |
b0d2b7d0 | 3130 | if (arm_feature(env, ARM_FEATURE_V8)) { |
e60cef86 PM |
3131 | /* AArch64 ID registers, which all have impdef reset values */ |
3132 | ARMCPRegInfo v8_idregs[] = { | |
3133 | { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, | |
3134 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, | |
3135 | .access = PL1_R, .type = ARM_CP_CONST, | |
3136 | .resetvalue = cpu->id_aa64pfr0 }, | |
3137 | { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, | |
3138 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, | |
3139 | .access = PL1_R, .type = ARM_CP_CONST, | |
3140 | .resetvalue = cpu->id_aa64pfr1}, | |
3141 | { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, | |
3142 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, | |
3143 | .access = PL1_R, .type = ARM_CP_CONST, | |
5d831be2 | 3144 | /* We mask out the PMUVer field, because we don't currently |
9225d739 PM |
3145 | * implement the PMU. Not advertising it prevents the guest |
3146 | * from trying to use it and getting UNDEFs on registers we | |
3147 | * don't implement. | |
3148 | */ | |
3149 | .resetvalue = cpu->id_aa64dfr0 & ~0xf00 }, | |
e60cef86 PM |
3150 | { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, |
3151 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, | |
3152 | .access = PL1_R, .type = ARM_CP_CONST, | |
3153 | .resetvalue = cpu->id_aa64dfr1 }, | |
3154 | { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, | |
3155 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, | |
3156 | .access = PL1_R, .type = ARM_CP_CONST, | |
3157 | .resetvalue = cpu->id_aa64afr0 }, | |
3158 | { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, | |
3159 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, | |
3160 | .access = PL1_R, .type = ARM_CP_CONST, | |
3161 | .resetvalue = cpu->id_aa64afr1 }, | |
3162 | { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, | |
3163 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, | |
3164 | .access = PL1_R, .type = ARM_CP_CONST, | |
3165 | .resetvalue = cpu->id_aa64isar0 }, | |
3166 | { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, | |
3167 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, | |
3168 | .access = PL1_R, .type = ARM_CP_CONST, | |
3169 | .resetvalue = cpu->id_aa64isar1 }, | |
3170 | { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, | |
3171 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, | |
3172 | .access = PL1_R, .type = ARM_CP_CONST, | |
3173 | .resetvalue = cpu->id_aa64mmfr0 }, | |
3174 | { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, | |
3175 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, | |
3176 | .access = PL1_R, .type = ARM_CP_CONST, | |
3177 | .resetvalue = cpu->id_aa64mmfr1 }, | |
a50c0f51 PM |
3178 | { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, |
3179 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, | |
3180 | .access = PL1_R, .type = ARM_CP_CONST, | |
3181 | .resetvalue = cpu->mvfr0 }, | |
3182 | { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, | |
3183 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, | |
3184 | .access = PL1_R, .type = ARM_CP_CONST, | |
3185 | .resetvalue = cpu->mvfr1 }, | |
3186 | { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, | |
3187 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, | |
3188 | .access = PL1_R, .type = ARM_CP_CONST, | |
3189 | .resetvalue = cpu->mvfr2 }, | |
e60cef86 PM |
3190 | REGINFO_SENTINEL |
3191 | }; | |
be8e8128 GB |
3192 | /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ |
3193 | if (!arm_feature(env, ARM_FEATURE_EL3) && | |
3194 | !arm_feature(env, ARM_FEATURE_EL2)) { | |
3195 | ARMCPRegInfo rvbar = { | |
3196 | .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, | |
3197 | .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, | |
3198 | .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar | |
3199 | }; | |
3200 | define_one_arm_cp_reg(cpu, &rvbar); | |
3201 | } | |
e60cef86 | 3202 | define_arm_cp_regs(cpu, v8_idregs); |
b0d2b7d0 PM |
3203 | define_arm_cp_regs(cpu, v8_cp_reginfo); |
3204 | } | |
3b685ba7 EI |
3205 | if (arm_feature(env, ARM_FEATURE_EL2)) { |
3206 | define_arm_cp_regs(cpu, v8_el2_cp_reginfo); | |
be8e8128 GB |
3207 | /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ |
3208 | if (!arm_feature(env, ARM_FEATURE_EL3)) { | |
3209 | ARMCPRegInfo rvbar = { | |
3210 | .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, | |
3211 | .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, | |
3212 | .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar | |
3213 | }; | |
3214 | define_one_arm_cp_reg(cpu, &rvbar); | |
3215 | } | |
d42e3c26 EI |
3216 | } else { |
3217 | /* If EL2 is missing but higher ELs are enabled, we need to | |
3218 | * register the no_el2 reginfos. | |
3219 | */ | |
3220 | if (arm_feature(env, ARM_FEATURE_EL3)) { | |
3221 | define_arm_cp_regs(cpu, v8_el3_no_el2_cp_reginfo); | |
3222 | } | |
3b685ba7 | 3223 | } |
81547d66 | 3224 | if (arm_feature(env, ARM_FEATURE_EL3)) { |
0f1a3b24 | 3225 | define_arm_cp_regs(cpu, el3_cp_reginfo); |
be8e8128 GB |
3226 | ARMCPRegInfo rvbar = { |
3227 | .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, | |
3228 | .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, | |
3229 | .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar | |
3230 | }; | |
3231 | define_one_arm_cp_reg(cpu, &rvbar); | |
81547d66 | 3232 | } |
18032bec PM |
3233 | if (arm_feature(env, ARM_FEATURE_MPU)) { |
3234 | /* These are the MPU registers prior to PMSAv6. Any new | |
3235 | * PMSA core later than the ARM946 will require that we | |
3236 | * implement the PMSAv6 or PMSAv7 registers, which are | |
3237 | * completely different. | |
3238 | */ | |
3239 | assert(!arm_feature(env, ARM_FEATURE_V6)); | |
3240 | define_arm_cp_regs(cpu, pmsav5_cp_reginfo); | |
3241 | } else { | |
3242 | define_arm_cp_regs(cpu, vmsa_cp_reginfo); | |
3243 | } | |
c326b979 PM |
3244 | if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { |
3245 | define_arm_cp_regs(cpu, t2ee_cp_reginfo); | |
3246 | } | |
6cc7a3ae PM |
3247 | if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { |
3248 | define_arm_cp_regs(cpu, generic_timer_cp_reginfo); | |
3249 | } | |
4a501606 PM |
3250 | if (arm_feature(env, ARM_FEATURE_VAPA)) { |
3251 | define_arm_cp_regs(cpu, vapa_cp_reginfo); | |
3252 | } | |
c4804214 PM |
3253 | if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { |
3254 | define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); | |
3255 | } | |
3256 | if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { | |
3257 | define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); | |
3258 | } | |
3259 | if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { | |
3260 | define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); | |
3261 | } | |
18032bec PM |
3262 | if (arm_feature(env, ARM_FEATURE_OMAPCP)) { |
3263 | define_arm_cp_regs(cpu, omap_cp_reginfo); | |
3264 | } | |
34f90529 PM |
3265 | if (arm_feature(env, ARM_FEATURE_STRONGARM)) { |
3266 | define_arm_cp_regs(cpu, strongarm_cp_reginfo); | |
3267 | } | |
1047b9d7 PM |
3268 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { |
3269 | define_arm_cp_regs(cpu, xscale_cp_reginfo); | |
3270 | } | |
3271 | if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { | |
3272 | define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); | |
3273 | } | |
7ac681cf PM |
3274 | if (arm_feature(env, ARM_FEATURE_LPAE)) { |
3275 | define_arm_cp_regs(cpu, lpae_cp_reginfo); | |
3276 | } | |
7884849c PM |
3277 | /* Slightly awkwardly, the OMAP and StrongARM cores need all of |
3278 | * cp15 crn=0 to be writes-ignored, whereas for other cores they should | |
3279 | * be read-only (ie write causes UNDEF exception). | |
3280 | */ | |
3281 | { | |
00a29f3d PM |
3282 | ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { |
3283 | /* Pre-v8 MIDR space. | |
3284 | * Note that the MIDR isn't a simple constant register because | |
7884849c PM |
3285 | * of the TI925 behaviour where writes to another register can |
3286 | * cause the MIDR value to change. | |
97ce8d61 PC |
3287 | * |
3288 | * Unimplemented registers in the c15 0 0 0 space default to | |
3289 | * MIDR. Define MIDR first as this entire space, then CTR, TCMTR | |
3290 | * and friends override accordingly. | |
7884849c PM |
3291 | */ |
3292 | { .name = "MIDR", | |
97ce8d61 | 3293 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, |
7884849c | 3294 | .access = PL1_R, .resetvalue = cpu->midr, |
d4e6df63 | 3295 | .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, |
97ce8d61 PC |
3296 | .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), |
3297 | .type = ARM_CP_OVERRIDE }, | |
7884849c PM |
3298 | /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ |
3299 | { .name = "DUMMY", | |
3300 | .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, | |
3301 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3302 | { .name = "DUMMY", | |
3303 | .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, | |
3304 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3305 | { .name = "DUMMY", | |
3306 | .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, | |
3307 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3308 | { .name = "DUMMY", | |
3309 | .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, | |
3310 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3311 | { .name = "DUMMY", | |
3312 | .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, | |
3313 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3314 | REGINFO_SENTINEL | |
3315 | }; | |
00a29f3d PM |
3316 | ARMCPRegInfo id_v8_midr_cp_reginfo[] = { |
3317 | /* v8 MIDR -- the wildcard isn't necessary, and nor is the | |
3318 | * variable-MIDR TI925 behaviour. Instead we have a single | |
3319 | * (strictly speaking IMPDEF) alias of the MIDR, REVIDR. | |
3320 | */ | |
3321 | { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, | |
3322 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, | |
3323 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->midr }, | |
3324 | { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, | |
3325 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, | |
3326 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->midr }, | |
3327 | REGINFO_SENTINEL | |
3328 | }; | |
3329 | ARMCPRegInfo id_cp_reginfo[] = { | |
3330 | /* These are common to v8 and pre-v8 */ | |
3331 | { .name = "CTR", | |
3332 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, | |
3333 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, | |
3334 | { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, | |
3335 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, | |
3336 | .access = PL0_R, .accessfn = ctr_el0_access, | |
3337 | .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, | |
3338 | /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ | |
3339 | { .name = "TCMTR", | |
3340 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, | |
3341 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3342 | { .name = "TLBTR", | |
3343 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, | |
3344 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
3345 | REGINFO_SENTINEL | |
3346 | }; | |
7884849c PM |
3347 | ARMCPRegInfo crn0_wi_reginfo = { |
3348 | .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, | |
3349 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, | |
3350 | .type = ARM_CP_NOP | ARM_CP_OVERRIDE | |
3351 | }; | |
3352 | if (arm_feature(env, ARM_FEATURE_OMAPCP) || | |
3353 | arm_feature(env, ARM_FEATURE_STRONGARM)) { | |
3354 | ARMCPRegInfo *r; | |
3355 | /* Register the blanket "writes ignored" value first to cover the | |
a703eda1 PC |
3356 | * whole space. Then update the specific ID registers to allow write |
3357 | * access, so that they ignore writes rather than causing them to | |
3358 | * UNDEF. | |
7884849c PM |
3359 | */ |
3360 | define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); | |
00a29f3d PM |
3361 | for (r = id_pre_v8_midr_cp_reginfo; |
3362 | r->type != ARM_CP_SENTINEL; r++) { | |
3363 | r->access = PL1_RW; | |
3364 | } | |
7884849c PM |
3365 | for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { |
3366 | r->access = PL1_RW; | |
7884849c | 3367 | } |
7884849c | 3368 | } |
00a29f3d PM |
3369 | if (arm_feature(env, ARM_FEATURE_V8)) { |
3370 | define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); | |
3371 | } else { | |
3372 | define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); | |
3373 | } | |
a703eda1 | 3374 | define_arm_cp_regs(cpu, id_cp_reginfo); |
7884849c PM |
3375 | } |
3376 | ||
97ce8d61 PC |
3377 | if (arm_feature(env, ARM_FEATURE_MPIDR)) { |
3378 | define_arm_cp_regs(cpu, mpidr_cp_reginfo); | |
3379 | } | |
3380 | ||
2771db27 PM |
3381 | if (arm_feature(env, ARM_FEATURE_AUXCR)) { |
3382 | ARMCPRegInfo auxcr = { | |
2eef0bf8 PM |
3383 | .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, |
3384 | .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, | |
2771db27 PM |
3385 | .access = PL1_RW, .type = ARM_CP_CONST, |
3386 | .resetvalue = cpu->reset_auxcr | |
3387 | }; | |
3388 | define_one_arm_cp_reg(cpu, &auxcr); | |
3389 | } | |
3390 | ||
d8ba780b | 3391 | if (arm_feature(env, ARM_FEATURE_CBAR)) { |
f318cec6 PM |
3392 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { |
3393 | /* 32 bit view is [31:18] 0...0 [43:32]. */ | |
3394 | uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) | |
3395 | | extract64(cpu->reset_cbar, 32, 12); | |
3396 | ARMCPRegInfo cbar_reginfo[] = { | |
3397 | { .name = "CBAR", | |
3398 | .type = ARM_CP_CONST, | |
3399 | .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, | |
3400 | .access = PL1_R, .resetvalue = cpu->reset_cbar }, | |
3401 | { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, | |
3402 | .type = ARM_CP_CONST, | |
3403 | .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, | |
3404 | .access = PL1_R, .resetvalue = cbar32 }, | |
3405 | REGINFO_SENTINEL | |
3406 | }; | |
3407 | /* We don't implement a r/w 64 bit CBAR currently */ | |
3408 | assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); | |
3409 | define_arm_cp_regs(cpu, cbar_reginfo); | |
3410 | } else { | |
3411 | ARMCPRegInfo cbar = { | |
3412 | .name = "CBAR", | |
3413 | .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, | |
3414 | .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, | |
3415 | .fieldoffset = offsetof(CPUARMState, | |
3416 | cp15.c15_config_base_address) | |
3417 | }; | |
3418 | if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { | |
3419 | cbar.access = PL1_R; | |
3420 | cbar.fieldoffset = 0; | |
3421 | cbar.type = ARM_CP_CONST; | |
3422 | } | |
3423 | define_one_arm_cp_reg(cpu, &cbar); | |
3424 | } | |
d8ba780b PC |
3425 | } |
3426 | ||
2771db27 PM |
3427 | /* Generic registers whose values depend on the implementation */ |
3428 | { | |
3429 | ARMCPRegInfo sctlr = { | |
5ebafdf3 | 3430 | .name = "SCTLR", .state = ARM_CP_STATE_BOTH, |
137feaa9 FA |
3431 | .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, |
3432 | .access = PL1_RW, | |
3433 | .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), | |
3434 | offsetof(CPUARMState, cp15.sctlr_ns) }, | |
d4e6df63 PM |
3435 | .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, |
3436 | .raw_writefn = raw_write, | |
2771db27 PM |
3437 | }; |
3438 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { | |
3439 | /* Normally we would always end the TB on an SCTLR write, but Linux | |
3440 | * arch/arm/mach-pxa/sleep.S expects two instructions following | |
3441 | * an MMU enable to execute from cache. Imitate this behaviour. | |
3442 | */ | |
3443 | sctlr.type |= ARM_CP_SUPPRESS_TB_END; | |
3444 | } | |
3445 | define_one_arm_cp_reg(cpu, &sctlr); | |
3446 | } | |
2ceb98c0 PM |
3447 | } |
3448 | ||
778c3a06 | 3449 | ARMCPU *cpu_arm_init(const char *cpu_model) |
40f137e1 | 3450 | { |
9262685b | 3451 | return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model)); |
14969266 AF |
3452 | } |
3453 | ||
3454 | void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) | |
3455 | { | |
22169d41 | 3456 | CPUState *cs = CPU(cpu); |
14969266 AF |
3457 | CPUARMState *env = &cpu->env; |
3458 | ||
6a669427 PM |
3459 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { |
3460 | gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, | |
3461 | aarch64_fpu_gdb_set_reg, | |
3462 | 34, "aarch64-fpu.xml", 0); | |
3463 | } else if (arm_feature(env, ARM_FEATURE_NEON)) { | |
22169d41 | 3464 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
56aebc89 PB |
3465 | 51, "arm-neon.xml", 0); |
3466 | } else if (arm_feature(env, ARM_FEATURE_VFP3)) { | |
22169d41 | 3467 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
56aebc89 PB |
3468 | 35, "arm-vfp3.xml", 0); |
3469 | } else if (arm_feature(env, ARM_FEATURE_VFP)) { | |
22169d41 | 3470 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
56aebc89 PB |
3471 | 19, "arm-vfp.xml", 0); |
3472 | } | |
40f137e1 PB |
3473 | } |
3474 | ||
777dc784 PM |
3475 | /* Sort alphabetically by type name, except for "any". */ |
3476 | static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) | |
5adb4839 | 3477 | { |
777dc784 PM |
3478 | ObjectClass *class_a = (ObjectClass *)a; |
3479 | ObjectClass *class_b = (ObjectClass *)b; | |
3480 | const char *name_a, *name_b; | |
5adb4839 | 3481 | |
777dc784 PM |
3482 | name_a = object_class_get_name(class_a); |
3483 | name_b = object_class_get_name(class_b); | |
51492fd1 | 3484 | if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { |
777dc784 | 3485 | return 1; |
51492fd1 | 3486 | } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { |
777dc784 PM |
3487 | return -1; |
3488 | } else { | |
3489 | return strcmp(name_a, name_b); | |
5adb4839 PB |
3490 | } |
3491 | } | |
3492 | ||
777dc784 | 3493 | static void arm_cpu_list_entry(gpointer data, gpointer user_data) |
40f137e1 | 3494 | { |
777dc784 | 3495 | ObjectClass *oc = data; |
92a31361 | 3496 | CPUListState *s = user_data; |
51492fd1 AF |
3497 | const char *typename; |
3498 | char *name; | |
3371d272 | 3499 | |
51492fd1 AF |
3500 | typename = object_class_get_name(oc); |
3501 | name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); | |
777dc784 | 3502 | (*s->cpu_fprintf)(s->file, " %s\n", |
51492fd1 AF |
3503 | name); |
3504 | g_free(name); | |
777dc784 PM |
3505 | } |
3506 | ||
3507 | void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf) | |
3508 | { | |
92a31361 | 3509 | CPUListState s = { |
777dc784 PM |
3510 | .file = f, |
3511 | .cpu_fprintf = cpu_fprintf, | |
3512 | }; | |
3513 | GSList *list; | |
3514 | ||
3515 | list = object_class_get_list(TYPE_ARM_CPU, false); | |
3516 | list = g_slist_sort(list, arm_cpu_list_compare); | |
3517 | (*cpu_fprintf)(f, "Available CPUs:\n"); | |
3518 | g_slist_foreach(list, arm_cpu_list_entry, &s); | |
3519 | g_slist_free(list); | |
a96c0514 PM |
3520 | #ifdef CONFIG_KVM |
3521 | /* The 'host' CPU type is dynamically registered only if KVM is | |
3522 | * enabled, so we have to special-case it here: | |
3523 | */ | |
3524 | (*cpu_fprintf)(f, " host (only available in KVM mode)\n"); | |
3525 | #endif | |
40f137e1 PB |
3526 | } |
3527 | ||
78027bb6 CR |
3528 | static void arm_cpu_add_definition(gpointer data, gpointer user_data) |
3529 | { | |
3530 | ObjectClass *oc = data; | |
3531 | CpuDefinitionInfoList **cpu_list = user_data; | |
3532 | CpuDefinitionInfoList *entry; | |
3533 | CpuDefinitionInfo *info; | |
3534 | const char *typename; | |
3535 | ||
3536 | typename = object_class_get_name(oc); | |
3537 | info = g_malloc0(sizeof(*info)); | |
3538 | info->name = g_strndup(typename, | |
3539 | strlen(typename) - strlen("-" TYPE_ARM_CPU)); | |
3540 | ||
3541 | entry = g_malloc0(sizeof(*entry)); | |
3542 | entry->value = info; | |
3543 | entry->next = *cpu_list; | |
3544 | *cpu_list = entry; | |
3545 | } | |
3546 | ||
3547 | CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp) | |
3548 | { | |
3549 | CpuDefinitionInfoList *cpu_list = NULL; | |
3550 | GSList *list; | |
3551 | ||
3552 | list = object_class_get_list(TYPE_ARM_CPU, false); | |
3553 | g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); | |
3554 | g_slist_free(list); | |
3555 | ||
3556 | return cpu_list; | |
3557 | } | |
3558 | ||
6e6efd61 | 3559 | static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, |
51a79b03 | 3560 | void *opaque, int state, int secstate, |
f5a0a5a5 | 3561 | int crm, int opc1, int opc2) |
6e6efd61 PM |
3562 | { |
3563 | /* Private utility function for define_one_arm_cp_reg_with_opaque(): | |
3564 | * add a single reginfo struct to the hash table. | |
3565 | */ | |
3566 | uint32_t *key = g_new(uint32_t, 1); | |
3567 | ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); | |
3568 | int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; | |
3f3c82a5 FA |
3569 | int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; |
3570 | ||
3571 | /* Reset the secure state to the specific incoming state. This is | |
3572 | * necessary as the register may have been defined with both states. | |
3573 | */ | |
3574 | r2->secure = secstate; | |
3575 | ||
3576 | if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { | |
3577 | /* Register is banked (using both entries in array). | |
3578 | * Overwriting fieldoffset as the array is only used to define | |
3579 | * banked registers but later only fieldoffset is used. | |
f5a0a5a5 | 3580 | */ |
3f3c82a5 FA |
3581 | r2->fieldoffset = r->bank_fieldoffsets[ns]; |
3582 | } | |
3583 | ||
3584 | if (state == ARM_CP_STATE_AA32) { | |
3585 | if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { | |
3586 | /* If the register is banked then we don't need to migrate or | |
3587 | * reset the 32-bit instance in certain cases: | |
3588 | * | |
3589 | * 1) If the register has both 32-bit and 64-bit instances then we | |
3590 | * can count on the 64-bit instance taking care of the | |
3591 | * non-secure bank. | |
3592 | * 2) If ARMv8 is enabled then we can count on a 64-bit version | |
3593 | * taking care of the secure bank. This requires that separate | |
3594 | * 32 and 64-bit definitions are provided. | |
3595 | */ | |
3596 | if ((r->state == ARM_CP_STATE_BOTH && ns) || | |
3597 | (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { | |
7a0e58fa | 3598 | r2->type |= ARM_CP_ALIAS; |
3f3c82a5 FA |
3599 | r2->resetfn = arm_cp_reset_ignore; |
3600 | } | |
3601 | } else if ((secstate != r->secure) && !ns) { | |
3602 | /* The register is not banked so we only want to allow migration of | |
3603 | * the non-secure instance. | |
3604 | */ | |
7a0e58fa | 3605 | r2->type |= ARM_CP_ALIAS; |
3f3c82a5 | 3606 | r2->resetfn = arm_cp_reset_ignore; |
58a1d8ce | 3607 | } |
3f3c82a5 FA |
3608 | |
3609 | if (r->state == ARM_CP_STATE_BOTH) { | |
3610 | /* We assume it is a cp15 register if the .cp field is left unset. | |
3611 | */ | |
3612 | if (r2->cp == 0) { | |
3613 | r2->cp = 15; | |
3614 | } | |
3615 | ||
f5a0a5a5 | 3616 | #ifdef HOST_WORDS_BIGENDIAN |
3f3c82a5 FA |
3617 | if (r2->fieldoffset) { |
3618 | r2->fieldoffset += sizeof(uint32_t); | |
3619 | } | |
f5a0a5a5 | 3620 | #endif |
3f3c82a5 | 3621 | } |
f5a0a5a5 PM |
3622 | } |
3623 | if (state == ARM_CP_STATE_AA64) { | |
3624 | /* To allow abbreviation of ARMCPRegInfo | |
3625 | * definitions, we treat cp == 0 as equivalent to | |
3626 | * the value for "standard guest-visible sysreg". | |
58a1d8ce PM |
3627 | * STATE_BOTH definitions are also always "standard |
3628 | * sysreg" in their AArch64 view (the .cp value may | |
3629 | * be non-zero for the benefit of the AArch32 view). | |
f5a0a5a5 | 3630 | */ |
58a1d8ce | 3631 | if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { |
f5a0a5a5 PM |
3632 | r2->cp = CP_REG_ARM64_SYSREG_CP; |
3633 | } | |
3634 | *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, | |
3635 | r2->opc0, opc1, opc2); | |
3636 | } else { | |
51a79b03 | 3637 | *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); |
f5a0a5a5 | 3638 | } |
6e6efd61 PM |
3639 | if (opaque) { |
3640 | r2->opaque = opaque; | |
3641 | } | |
67ed771d PM |
3642 | /* reginfo passed to helpers is correct for the actual access, |
3643 | * and is never ARM_CP_STATE_BOTH: | |
3644 | */ | |
3645 | r2->state = state; | |
6e6efd61 PM |
3646 | /* Make sure reginfo passed to helpers for wildcarded regs |
3647 | * has the correct crm/opc1/opc2 for this reg, not CP_ANY: | |
3648 | */ | |
3649 | r2->crm = crm; | |
3650 | r2->opc1 = opc1; | |
3651 | r2->opc2 = opc2; | |
3652 | /* By convention, for wildcarded registers only the first | |
3653 | * entry is used for migration; the others are marked as | |
7a0e58fa | 3654 | * ALIAS so we don't try to transfer the register |
6e6efd61 | 3655 | * multiple times. Special registers (ie NOP/WFI) are |
7a0e58fa | 3656 | * never migratable and not even raw-accessible. |
6e6efd61 | 3657 | */ |
7a0e58fa PM |
3658 | if ((r->type & ARM_CP_SPECIAL)) { |
3659 | r2->type |= ARM_CP_NO_RAW; | |
3660 | } | |
3661 | if (((r->crm == CP_ANY) && crm != 0) || | |
6e6efd61 PM |
3662 | ((r->opc1 == CP_ANY) && opc1 != 0) || |
3663 | ((r->opc2 == CP_ANY) && opc2 != 0)) { | |
7a0e58fa | 3664 | r2->type |= ARM_CP_ALIAS; |
6e6efd61 PM |
3665 | } |
3666 | ||
375421cc PM |
3667 | /* Check that raw accesses are either forbidden or handled. Note that |
3668 | * we can't assert this earlier because the setup of fieldoffset for | |
3669 | * banked registers has to be done first. | |
3670 | */ | |
3671 | if (!(r2->type & ARM_CP_NO_RAW)) { | |
3672 | assert(!raw_accessors_invalid(r2)); | |
3673 | } | |
3674 | ||
6e6efd61 PM |
3675 | /* Overriding of an existing definition must be explicitly |
3676 | * requested. | |
3677 | */ | |
3678 | if (!(r->type & ARM_CP_OVERRIDE)) { | |
3679 | ARMCPRegInfo *oldreg; | |
3680 | oldreg = g_hash_table_lookup(cpu->cp_regs, key); | |
3681 | if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { | |
3682 | fprintf(stderr, "Register redefined: cp=%d %d bit " | |
3683 | "crn=%d crm=%d opc1=%d opc2=%d, " | |
3684 | "was %s, now %s\n", r2->cp, 32 + 32 * is64, | |
3685 | r2->crn, r2->crm, r2->opc1, r2->opc2, | |
3686 | oldreg->name, r2->name); | |
3687 | g_assert_not_reached(); | |
3688 | } | |
3689 | } | |
3690 | g_hash_table_insert(cpu->cp_regs, key, r2); | |
3691 | } | |
3692 | ||
3693 | ||
4b6a83fb PM |
3694 | void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, |
3695 | const ARMCPRegInfo *r, void *opaque) | |
3696 | { | |
3697 | /* Define implementations of coprocessor registers. | |
3698 | * We store these in a hashtable because typically | |
3699 | * there are less than 150 registers in a space which | |
3700 | * is 16*16*16*8*8 = 262144 in size. | |
3701 | * Wildcarding is supported for the crm, opc1 and opc2 fields. | |
3702 | * If a register is defined twice then the second definition is | |
3703 | * used, so this can be used to define some generic registers and | |
3704 | * then override them with implementation specific variations. | |
3705 | * At least one of the original and the second definition should | |
3706 | * include ARM_CP_OVERRIDE in its type bits -- this is just a guard | |
3707 | * against accidental use. | |
f5a0a5a5 PM |
3708 | * |
3709 | * The state field defines whether the register is to be | |
3710 | * visible in the AArch32 or AArch64 execution state. If the | |
3711 | * state is set to ARM_CP_STATE_BOTH then we synthesise a | |
3712 | * reginfo structure for the AArch32 view, which sees the lower | |
3713 | * 32 bits of the 64 bit register. | |
3714 | * | |
3715 | * Only registers visible in AArch64 may set r->opc0; opc0 cannot | |
3716 | * be wildcarded. AArch64 registers are always considered to be 64 | |
3717 | * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of | |
3718 | * the register, if any. | |
4b6a83fb | 3719 | */ |
f5a0a5a5 | 3720 | int crm, opc1, opc2, state; |
4b6a83fb PM |
3721 | int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; |
3722 | int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; | |
3723 | int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; | |
3724 | int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; | |
3725 | int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; | |
3726 | int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; | |
3727 | /* 64 bit registers have only CRm and Opc1 fields */ | |
3728 | assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); | |
f5a0a5a5 PM |
3729 | /* op0 only exists in the AArch64 encodings */ |
3730 | assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); | |
3731 | /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ | |
3732 | assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); | |
3733 | /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 | |
3734 | * encodes a minimum access level for the register. We roll this | |
3735 | * runtime check into our general permission check code, so check | |
3736 | * here that the reginfo's specified permissions are strict enough | |
3737 | * to encompass the generic architectural permission check. | |
3738 | */ | |
3739 | if (r->state != ARM_CP_STATE_AA32) { | |
3740 | int mask = 0; | |
3741 | switch (r->opc1) { | |
3742 | case 0: case 1: case 2: | |
3743 | /* min_EL EL1 */ | |
3744 | mask = PL1_RW; | |
3745 | break; | |
3746 | case 3: | |
3747 | /* min_EL EL0 */ | |
3748 | mask = PL0_RW; | |
3749 | break; | |
3750 | case 4: | |
3751 | /* min_EL EL2 */ | |
3752 | mask = PL2_RW; | |
3753 | break; | |
3754 | case 5: | |
3755 | /* unallocated encoding, so not possible */ | |
3756 | assert(false); | |
3757 | break; | |
3758 | case 6: | |
3759 | /* min_EL EL3 */ | |
3760 | mask = PL3_RW; | |
3761 | break; | |
3762 | case 7: | |
3763 | /* min_EL EL1, secure mode only (we don't check the latter) */ | |
3764 | mask = PL1_RW; | |
3765 | break; | |
3766 | default: | |
3767 | /* broken reginfo with out-of-range opc1 */ | |
3768 | assert(false); | |
3769 | break; | |
3770 | } | |
3771 | /* assert our permissions are not too lax (stricter is fine) */ | |
3772 | assert((r->access & ~mask) == 0); | |
3773 | } | |
3774 | ||
4b6a83fb PM |
3775 | /* Check that the register definition has enough info to handle |
3776 | * reads and writes if they are permitted. | |
3777 | */ | |
3778 | if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { | |
3779 | if (r->access & PL3_R) { | |
3f3c82a5 FA |
3780 | assert((r->fieldoffset || |
3781 | (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || | |
3782 | r->readfn); | |
4b6a83fb PM |
3783 | } |
3784 | if (r->access & PL3_W) { | |
3f3c82a5 FA |
3785 | assert((r->fieldoffset || |
3786 | (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || | |
3787 | r->writefn); | |
4b6a83fb PM |
3788 | } |
3789 | } | |
3790 | /* Bad type field probably means missing sentinel at end of reg list */ | |
3791 | assert(cptype_valid(r->type)); | |
3792 | for (crm = crmmin; crm <= crmmax; crm++) { | |
3793 | for (opc1 = opc1min; opc1 <= opc1max; opc1++) { | |
3794 | for (opc2 = opc2min; opc2 <= opc2max; opc2++) { | |
f5a0a5a5 PM |
3795 | for (state = ARM_CP_STATE_AA32; |
3796 | state <= ARM_CP_STATE_AA64; state++) { | |
3797 | if (r->state != state && r->state != ARM_CP_STATE_BOTH) { | |
3798 | continue; | |
3799 | } | |
3f3c82a5 FA |
3800 | if (state == ARM_CP_STATE_AA32) { |
3801 | /* Under AArch32 CP registers can be common | |
3802 | * (same for secure and non-secure world) or banked. | |
3803 | */ | |
3804 | switch (r->secure) { | |
3805 | case ARM_CP_SECSTATE_S: | |
3806 | case ARM_CP_SECSTATE_NS: | |
3807 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
3808 | r->secure, crm, opc1, opc2); | |
3809 | break; | |
3810 | default: | |
3811 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
3812 | ARM_CP_SECSTATE_S, | |
3813 | crm, opc1, opc2); | |
3814 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
3815 | ARM_CP_SECSTATE_NS, | |
3816 | crm, opc1, opc2); | |
3817 | break; | |
3818 | } | |
3819 | } else { | |
3820 | /* AArch64 registers get mapped to non-secure instance | |
3821 | * of AArch32 */ | |
3822 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
3823 | ARM_CP_SECSTATE_NS, | |
3824 | crm, opc1, opc2); | |
3825 | } | |
f5a0a5a5 | 3826 | } |
4b6a83fb PM |
3827 | } |
3828 | } | |
3829 | } | |
3830 | } | |
3831 | ||
3832 | void define_arm_cp_regs_with_opaque(ARMCPU *cpu, | |
3833 | const ARMCPRegInfo *regs, void *opaque) | |
3834 | { | |
3835 | /* Define a whole list of registers */ | |
3836 | const ARMCPRegInfo *r; | |
3837 | for (r = regs; r->type != ARM_CP_SENTINEL; r++) { | |
3838 | define_one_arm_cp_reg_with_opaque(cpu, r, opaque); | |
3839 | } | |
3840 | } | |
3841 | ||
60322b39 | 3842 | const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) |
4b6a83fb | 3843 | { |
60322b39 | 3844 | return g_hash_table_lookup(cpregs, &encoded_cp); |
4b6a83fb PM |
3845 | } |
3846 | ||
c4241c7d PM |
3847 | void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, |
3848 | uint64_t value) | |
4b6a83fb PM |
3849 | { |
3850 | /* Helper coprocessor write function for write-ignore registers */ | |
4b6a83fb PM |
3851 | } |
3852 | ||
c4241c7d | 3853 | uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) |
4b6a83fb PM |
3854 | { |
3855 | /* Helper coprocessor write function for read-as-zero registers */ | |
4b6a83fb PM |
3856 | return 0; |
3857 | } | |
3858 | ||
f5a0a5a5 PM |
3859 | void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) |
3860 | { | |
3861 | /* Helper coprocessor reset function for do-nothing-on-reset registers */ | |
3862 | } | |
3863 | ||
0ecb72a5 | 3864 | static int bad_mode_switch(CPUARMState *env, int mode) |
37064a8b PM |
3865 | { |
3866 | /* Return true if it is not valid for us to switch to | |
3867 | * this CPU mode (ie all the UNPREDICTABLE cases in | |
3868 | * the ARM ARM CPSRWriteByInstr pseudocode). | |
3869 | */ | |
3870 | switch (mode) { | |
3871 | case ARM_CPU_MODE_USR: | |
3872 | case ARM_CPU_MODE_SYS: | |
3873 | case ARM_CPU_MODE_SVC: | |
3874 | case ARM_CPU_MODE_ABT: | |
3875 | case ARM_CPU_MODE_UND: | |
3876 | case ARM_CPU_MODE_IRQ: | |
3877 | case ARM_CPU_MODE_FIQ: | |
3878 | return 0; | |
027fc527 SF |
3879 | case ARM_CPU_MODE_MON: |
3880 | return !arm_is_secure(env); | |
37064a8b PM |
3881 | default: |
3882 | return 1; | |
3883 | } | |
3884 | } | |
3885 | ||
2f4a40e5 AZ |
3886 | uint32_t cpsr_read(CPUARMState *env) |
3887 | { | |
3888 | int ZF; | |
6fbe23d5 PB |
3889 | ZF = (env->ZF == 0); |
3890 | return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | | |
2f4a40e5 AZ |
3891 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) |
3892 | | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) | |
3893 | | ((env->condexec_bits & 0xfc) << 8) | |
af519934 | 3894 | | (env->GE << 16) | (env->daif & CPSR_AIF); |
2f4a40e5 AZ |
3895 | } |
3896 | ||
3897 | void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) | |
3898 | { | |
6e8801f9 FA |
3899 | uint32_t changed_daif; |
3900 | ||
2f4a40e5 | 3901 | if (mask & CPSR_NZCV) { |
6fbe23d5 PB |
3902 | env->ZF = (~val) & CPSR_Z; |
3903 | env->NF = val; | |
2f4a40e5 AZ |
3904 | env->CF = (val >> 29) & 1; |
3905 | env->VF = (val << 3) & 0x80000000; | |
3906 | } | |
3907 | if (mask & CPSR_Q) | |
3908 | env->QF = ((val & CPSR_Q) != 0); | |
3909 | if (mask & CPSR_T) | |
3910 | env->thumb = ((val & CPSR_T) != 0); | |
3911 | if (mask & CPSR_IT_0_1) { | |
3912 | env->condexec_bits &= ~3; | |
3913 | env->condexec_bits |= (val >> 25) & 3; | |
3914 | } | |
3915 | if (mask & CPSR_IT_2_7) { | |
3916 | env->condexec_bits &= 3; | |
3917 | env->condexec_bits |= (val >> 8) & 0xfc; | |
3918 | } | |
3919 | if (mask & CPSR_GE) { | |
3920 | env->GE = (val >> 16) & 0xf; | |
3921 | } | |
3922 | ||
6e8801f9 FA |
3923 | /* In a V7 implementation that includes the security extensions but does |
3924 | * not include Virtualization Extensions the SCR.FW and SCR.AW bits control | |
3925 | * whether non-secure software is allowed to change the CPSR_F and CPSR_A | |
3926 | * bits respectively. | |
3927 | * | |
3928 | * In a V8 implementation, it is permitted for privileged software to | |
3929 | * change the CPSR A/F bits regardless of the SCR.AW/FW bits. | |
3930 | */ | |
3931 | if (!arm_feature(env, ARM_FEATURE_V8) && | |
3932 | arm_feature(env, ARM_FEATURE_EL3) && | |
3933 | !arm_feature(env, ARM_FEATURE_EL2) && | |
3934 | !arm_is_secure(env)) { | |
3935 | ||
3936 | changed_daif = (env->daif ^ val) & mask; | |
3937 | ||
3938 | if (changed_daif & CPSR_A) { | |
3939 | /* Check to see if we are allowed to change the masking of async | |
3940 | * abort exceptions from a non-secure state. | |
3941 | */ | |
3942 | if (!(env->cp15.scr_el3 & SCR_AW)) { | |
3943 | qemu_log_mask(LOG_GUEST_ERROR, | |
3944 | "Ignoring attempt to switch CPSR_A flag from " | |
3945 | "non-secure world with SCR.AW bit clear\n"); | |
3946 | mask &= ~CPSR_A; | |
3947 | } | |
3948 | } | |
3949 | ||
3950 | if (changed_daif & CPSR_F) { | |
3951 | /* Check to see if we are allowed to change the masking of FIQ | |
3952 | * exceptions from a non-secure state. | |
3953 | */ | |
3954 | if (!(env->cp15.scr_el3 & SCR_FW)) { | |
3955 | qemu_log_mask(LOG_GUEST_ERROR, | |
3956 | "Ignoring attempt to switch CPSR_F flag from " | |
3957 | "non-secure world with SCR.FW bit clear\n"); | |
3958 | mask &= ~CPSR_F; | |
3959 | } | |
3960 | ||
3961 | /* Check whether non-maskable FIQ (NMFI) support is enabled. | |
3962 | * If this bit is set software is not allowed to mask | |
3963 | * FIQs, but is allowed to set CPSR_F to 0. | |
3964 | */ | |
3965 | if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && | |
3966 | (val & CPSR_F)) { | |
3967 | qemu_log_mask(LOG_GUEST_ERROR, | |
3968 | "Ignoring attempt to enable CPSR_F flag " | |
3969 | "(non-maskable FIQ [NMFI] support enabled)\n"); | |
3970 | mask &= ~CPSR_F; | |
3971 | } | |
3972 | } | |
3973 | } | |
3974 | ||
4cc35614 PM |
3975 | env->daif &= ~(CPSR_AIF & mask); |
3976 | env->daif |= val & CPSR_AIF & mask; | |
3977 | ||
2f4a40e5 | 3978 | if ((env->uncached_cpsr ^ val) & mask & CPSR_M) { |
37064a8b PM |
3979 | if (bad_mode_switch(env, val & CPSR_M)) { |
3980 | /* Attempt to switch to an invalid mode: this is UNPREDICTABLE. | |
3981 | * We choose to ignore the attempt and leave the CPSR M field | |
3982 | * untouched. | |
3983 | */ | |
3984 | mask &= ~CPSR_M; | |
3985 | } else { | |
3986 | switch_mode(env, val & CPSR_M); | |
3987 | } | |
2f4a40e5 AZ |
3988 | } |
3989 | mask &= ~CACHED_CPSR_BITS; | |
3990 | env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); | |
3991 | } | |
3992 | ||
b26eefb6 PB |
3993 | /* Sign/zero extend */ |
3994 | uint32_t HELPER(sxtb16)(uint32_t x) | |
3995 | { | |
3996 | uint32_t res; | |
3997 | res = (uint16_t)(int8_t)x; | |
3998 | res |= (uint32_t)(int8_t)(x >> 16) << 16; | |
3999 | return res; | |
4000 | } | |
4001 | ||
4002 | uint32_t HELPER(uxtb16)(uint32_t x) | |
4003 | { | |
4004 | uint32_t res; | |
4005 | res = (uint16_t)(uint8_t)x; | |
4006 | res |= (uint32_t)(uint8_t)(x >> 16) << 16; | |
4007 | return res; | |
4008 | } | |
4009 | ||
f51bbbfe PB |
4010 | uint32_t HELPER(clz)(uint32_t x) |
4011 | { | |
7bbcb0af | 4012 | return clz32(x); |
f51bbbfe PB |
4013 | } |
4014 | ||
3670669c PB |
4015 | int32_t HELPER(sdiv)(int32_t num, int32_t den) |
4016 | { | |
4017 | if (den == 0) | |
4018 | return 0; | |
686eeb93 AJ |
4019 | if (num == INT_MIN && den == -1) |
4020 | return INT_MIN; | |
3670669c PB |
4021 | return num / den; |
4022 | } | |
4023 | ||
4024 | uint32_t HELPER(udiv)(uint32_t num, uint32_t den) | |
4025 | { | |
4026 | if (den == 0) | |
4027 | return 0; | |
4028 | return num / den; | |
4029 | } | |
4030 | ||
4031 | uint32_t HELPER(rbit)(uint32_t x) | |
4032 | { | |
4033 | x = ((x & 0xff000000) >> 24) | |
4034 | | ((x & 0x00ff0000) >> 8) | |
4035 | | ((x & 0x0000ff00) << 8) | |
4036 | | ((x & 0x000000ff) << 24); | |
4037 | x = ((x & 0xf0f0f0f0) >> 4) | |
4038 | | ((x & 0x0f0f0f0f) << 4); | |
4039 | x = ((x & 0x88888888) >> 3) | |
4040 | | ((x & 0x44444444) >> 1) | |
4041 | | ((x & 0x22222222) << 1) | |
4042 | | ((x & 0x11111111) << 3); | |
4043 | return x; | |
4044 | } | |
4045 | ||
5fafdf24 | 4046 | #if defined(CONFIG_USER_ONLY) |
b5ff1b31 | 4047 | |
7510454e AF |
4048 | int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw, |
4049 | int mmu_idx) | |
b5ff1b31 | 4050 | { |
7510454e AF |
4051 | ARMCPU *cpu = ARM_CPU(cs); |
4052 | CPUARMState *env = &cpu->env; | |
4053 | ||
abf1172f | 4054 | env->exception.vaddress = address; |
b5ff1b31 | 4055 | if (rw == 2) { |
27103424 | 4056 | cs->exception_index = EXCP_PREFETCH_ABORT; |
b5ff1b31 | 4057 | } else { |
27103424 | 4058 | cs->exception_index = EXCP_DATA_ABORT; |
b5ff1b31 FB |
4059 | } |
4060 | return 1; | |
4061 | } | |
4062 | ||
9ee6e8bb | 4063 | /* These should probably raise undefined insn exceptions. */ |
0ecb72a5 | 4064 | void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) |
9ee6e8bb | 4065 | { |
a47dddd7 AF |
4066 | ARMCPU *cpu = arm_env_get_cpu(env); |
4067 | ||
4068 | cpu_abort(CPU(cpu), "v7m_msr %d\n", reg); | |
9ee6e8bb PB |
4069 | } |
4070 | ||
0ecb72a5 | 4071 | uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) |
9ee6e8bb | 4072 | { |
a47dddd7 AF |
4073 | ARMCPU *cpu = arm_env_get_cpu(env); |
4074 | ||
4075 | cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg); | |
9ee6e8bb PB |
4076 | return 0; |
4077 | } | |
4078 | ||
0ecb72a5 | 4079 | void switch_mode(CPUARMState *env, int mode) |
b5ff1b31 | 4080 | { |
a47dddd7 AF |
4081 | ARMCPU *cpu = arm_env_get_cpu(env); |
4082 | ||
4083 | if (mode != ARM_CPU_MODE_USR) { | |
4084 | cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); | |
4085 | } | |
b5ff1b31 FB |
4086 | } |
4087 | ||
0ecb72a5 | 4088 | void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val) |
9ee6e8bb | 4089 | { |
a47dddd7 AF |
4090 | ARMCPU *cpu = arm_env_get_cpu(env); |
4091 | ||
4092 | cpu_abort(CPU(cpu), "banked r13 write\n"); | |
9ee6e8bb PB |
4093 | } |
4094 | ||
0ecb72a5 | 4095 | uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode) |
9ee6e8bb | 4096 | { |
a47dddd7 AF |
4097 | ARMCPU *cpu = arm_env_get_cpu(env); |
4098 | ||
4099 | cpu_abort(CPU(cpu), "banked r13 read\n"); | |
9ee6e8bb PB |
4100 | return 0; |
4101 | } | |
4102 | ||
9e729b57 EI |
4103 | unsigned int arm_excp_target_el(CPUState *cs, unsigned int excp_idx) |
4104 | { | |
4105 | return 1; | |
4106 | } | |
4107 | ||
ce02049d GB |
4108 | void aarch64_sync_64_to_32(CPUARMState *env) |
4109 | { | |
4110 | g_assert_not_reached(); | |
4111 | } | |
4112 | ||
b5ff1b31 FB |
4113 | #else |
4114 | ||
4115 | /* Map CPU modes onto saved register banks. */ | |
494b00c7 | 4116 | int bank_number(int mode) |
b5ff1b31 FB |
4117 | { |
4118 | switch (mode) { | |
4119 | case ARM_CPU_MODE_USR: | |
4120 | case ARM_CPU_MODE_SYS: | |
4121 | return 0; | |
4122 | case ARM_CPU_MODE_SVC: | |
4123 | return 1; | |
4124 | case ARM_CPU_MODE_ABT: | |
4125 | return 2; | |
4126 | case ARM_CPU_MODE_UND: | |
4127 | return 3; | |
4128 | case ARM_CPU_MODE_IRQ: | |
4129 | return 4; | |
4130 | case ARM_CPU_MODE_FIQ: | |
4131 | return 5; | |
28c9457d EI |
4132 | case ARM_CPU_MODE_HYP: |
4133 | return 6; | |
4134 | case ARM_CPU_MODE_MON: | |
4135 | return 7; | |
b5ff1b31 | 4136 | } |
f5206413 | 4137 | hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode); |
b5ff1b31 FB |
4138 | } |
4139 | ||
0ecb72a5 | 4140 | void switch_mode(CPUARMState *env, int mode) |
b5ff1b31 FB |
4141 | { |
4142 | int old_mode; | |
4143 | int i; | |
4144 | ||
4145 | old_mode = env->uncached_cpsr & CPSR_M; | |
4146 | if (mode == old_mode) | |
4147 | return; | |
4148 | ||
4149 | if (old_mode == ARM_CPU_MODE_FIQ) { | |
4150 | memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); | |
8637c67f | 4151 | memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); |
b5ff1b31 FB |
4152 | } else if (mode == ARM_CPU_MODE_FIQ) { |
4153 | memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); | |
8637c67f | 4154 | memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); |
b5ff1b31 FB |
4155 | } |
4156 | ||
f5206413 | 4157 | i = bank_number(old_mode); |
b5ff1b31 FB |
4158 | env->banked_r13[i] = env->regs[13]; |
4159 | env->banked_r14[i] = env->regs[14]; | |
4160 | env->banked_spsr[i] = env->spsr; | |
4161 | ||
f5206413 | 4162 | i = bank_number(mode); |
b5ff1b31 FB |
4163 | env->regs[13] = env->banked_r13[i]; |
4164 | env->regs[14] = env->banked_r14[i]; | |
4165 | env->spsr = env->banked_spsr[i]; | |
4166 | } | |
4167 | ||
0eeb17d6 GB |
4168 | /* Physical Interrupt Target EL Lookup Table |
4169 | * | |
4170 | * [ From ARM ARM section G1.13.4 (Table G1-15) ] | |
4171 | * | |
4172 | * The below multi-dimensional table is used for looking up the target | |
4173 | * exception level given numerous condition criteria. Specifically, the | |
4174 | * target EL is based on SCR and HCR routing controls as well as the | |
4175 | * currently executing EL and secure state. | |
4176 | * | |
4177 | * Dimensions: | |
4178 | * target_el_table[2][2][2][2][2][4] | |
4179 | * | | | | | +--- Current EL | |
4180 | * | | | | +------ Non-secure(0)/Secure(1) | |
4181 | * | | | +--------- HCR mask override | |
4182 | * | | +------------ SCR exec state control | |
4183 | * | +--------------- SCR mask override | |
4184 | * +------------------ 32-bit(0)/64-bit(1) EL3 | |
4185 | * | |
4186 | * The table values are as such: | |
4187 | * 0-3 = EL0-EL3 | |
4188 | * -1 = Cannot occur | |
4189 | * | |
4190 | * The ARM ARM target EL table includes entries indicating that an "exception | |
4191 | * is not taken". The two cases where this is applicable are: | |
4192 | * 1) An exception is taken from EL3 but the SCR does not have the exception | |
4193 | * routed to EL3. | |
4194 | * 2) An exception is taken from EL2 but the HCR does not have the exception | |
4195 | * routed to EL2. | |
4196 | * In these two cases, the below table contain a target of EL1. This value is | |
4197 | * returned as it is expected that the consumer of the table data will check | |
4198 | * for "target EL >= current EL" to ensure the exception is not taken. | |
4199 | * | |
4200 | * SCR HCR | |
4201 | * 64 EA AMO From | |
4202 | * BIT IRQ IMO Non-secure Secure | |
4203 | * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 | |
4204 | */ | |
4205 | const int8_t target_el_table[2][2][2][2][2][4] = { | |
4206 | {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, | |
4207 | {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, | |
4208 | {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, | |
4209 | {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, | |
4210 | {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, | |
4211 | {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, | |
4212 | {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, | |
4213 | {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, | |
4214 | {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, | |
4215 | {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, | |
4216 | {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, | |
4217 | {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, | |
4218 | {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, | |
4219 | {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, | |
4220 | {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, | |
4221 | {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, | |
4222 | }; | |
4223 | ||
4224 | /* | |
4225 | * Determine the target EL for physical exceptions | |
4226 | */ | |
4227 | static inline uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, | |
4228 | uint32_t cur_el, bool secure) | |
4229 | { | |
4230 | CPUARMState *env = cs->env_ptr; | |
4231 | int rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); | |
4232 | int scr; | |
4233 | int hcr; | |
4234 | int target_el; | |
4235 | int is64 = arm_el_is_aa64(env, 3); | |
4236 | ||
4237 | switch (excp_idx) { | |
4238 | case EXCP_IRQ: | |
4239 | scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); | |
4240 | hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO); | |
4241 | break; | |
4242 | case EXCP_FIQ: | |
4243 | scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); | |
4244 | hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO); | |
4245 | break; | |
4246 | default: | |
4247 | scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); | |
4248 | hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO); | |
4249 | break; | |
4250 | }; | |
4251 | ||
4252 | /* If HCR.TGE is set then HCR is treated as being 1 */ | |
4253 | hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE); | |
4254 | ||
4255 | /* Perform a table-lookup for the target EL given the current state */ | |
4256 | target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; | |
4257 | ||
4258 | assert(target_el > 0); | |
4259 | ||
4260 | return target_el; | |
4261 | } | |
4262 | ||
9e729b57 EI |
4263 | /* |
4264 | * Determine the target EL for a given exception type. | |
4265 | */ | |
4266 | unsigned int arm_excp_target_el(CPUState *cs, unsigned int excp_idx) | |
4267 | { | |
35979d71 EI |
4268 | ARMCPU *cpu = ARM_CPU(cs); |
4269 | CPUARMState *env = &cpu->env; | |
dcbff19b | 4270 | unsigned int cur_el = arm_current_el(env); |
35979d71 | 4271 | unsigned int target_el; |
0eeb17d6 | 4272 | bool secure = arm_is_secure(env); |
35979d71 EI |
4273 | |
4274 | switch (excp_idx) { | |
4275 | case EXCP_HVC: | |
607d98b8 | 4276 | case EXCP_HYP_TRAP: |
35979d71 EI |
4277 | target_el = 2; |
4278 | break; | |
e0d6e6a5 EI |
4279 | case EXCP_SMC: |
4280 | target_el = 3; | |
4281 | break; | |
041c9666 EI |
4282 | case EXCP_FIQ: |
4283 | case EXCP_IRQ: | |
0eeb17d6 | 4284 | target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure); |
041c9666 | 4285 | break; |
136e67e9 EI |
4286 | case EXCP_VIRQ: |
4287 | case EXCP_VFIQ: | |
4288 | target_el = 1; | |
4289 | break; | |
35979d71 EI |
4290 | default: |
4291 | target_el = MAX(cur_el, 1); | |
4292 | break; | |
4293 | } | |
4294 | return target_el; | |
9e729b57 EI |
4295 | } |
4296 | ||
9ee6e8bb PB |
4297 | static void v7m_push(CPUARMState *env, uint32_t val) |
4298 | { | |
70d74660 AF |
4299 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
4300 | ||
9ee6e8bb | 4301 | env->regs[13] -= 4; |
ab1da857 | 4302 | stl_phys(cs->as, env->regs[13], val); |
9ee6e8bb PB |
4303 | } |
4304 | ||
4305 | static uint32_t v7m_pop(CPUARMState *env) | |
4306 | { | |
70d74660 | 4307 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
9ee6e8bb | 4308 | uint32_t val; |
70d74660 | 4309 | |
fdfba1a2 | 4310 | val = ldl_phys(cs->as, env->regs[13]); |
9ee6e8bb PB |
4311 | env->regs[13] += 4; |
4312 | return val; | |
4313 | } | |
4314 | ||
4315 | /* Switch to V7M main or process stack pointer. */ | |
4316 | static void switch_v7m_sp(CPUARMState *env, int process) | |
4317 | { | |
4318 | uint32_t tmp; | |
4319 | if (env->v7m.current_sp != process) { | |
4320 | tmp = env->v7m.other_sp; | |
4321 | env->v7m.other_sp = env->regs[13]; | |
4322 | env->regs[13] = tmp; | |
4323 | env->v7m.current_sp = process; | |
4324 | } | |
4325 | } | |
4326 | ||
4327 | static void do_v7m_exception_exit(CPUARMState *env) | |
4328 | { | |
4329 | uint32_t type; | |
4330 | uint32_t xpsr; | |
4331 | ||
4332 | type = env->regs[15]; | |
4333 | if (env->v7m.exception != 0) | |
983fe826 | 4334 | armv7m_nvic_complete_irq(env->nvic, env->v7m.exception); |
9ee6e8bb PB |
4335 | |
4336 | /* Switch to the target stack. */ | |
4337 | switch_v7m_sp(env, (type & 4) != 0); | |
4338 | /* Pop registers. */ | |
4339 | env->regs[0] = v7m_pop(env); | |
4340 | env->regs[1] = v7m_pop(env); | |
4341 | env->regs[2] = v7m_pop(env); | |
4342 | env->regs[3] = v7m_pop(env); | |
4343 | env->regs[12] = v7m_pop(env); | |
4344 | env->regs[14] = v7m_pop(env); | |
4345 | env->regs[15] = v7m_pop(env); | |
fcf83ab1 PM |
4346 | if (env->regs[15] & 1) { |
4347 | qemu_log_mask(LOG_GUEST_ERROR, | |
4348 | "M profile return from interrupt with misaligned " | |
4349 | "PC is UNPREDICTABLE\n"); | |
4350 | /* Actual hardware seems to ignore the lsbit, and there are several | |
4351 | * RTOSes out there which incorrectly assume the r15 in the stack | |
4352 | * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value. | |
4353 | */ | |
4354 | env->regs[15] &= ~1U; | |
4355 | } | |
9ee6e8bb PB |
4356 | xpsr = v7m_pop(env); |
4357 | xpsr_write(env, xpsr, 0xfffffdff); | |
4358 | /* Undo stack alignment. */ | |
4359 | if (xpsr & 0x200) | |
4360 | env->regs[13] |= 4; | |
4361 | /* ??? The exception return type specifies Thread/Handler mode. However | |
4362 | this is also implied by the xPSR value. Not sure what to do | |
4363 | if there is a mismatch. */ | |
4364 | /* ??? Likewise for mismatches between the CONTROL register and the stack | |
4365 | pointer. */ | |
4366 | } | |
4367 | ||
e6f010cc | 4368 | void arm_v7m_cpu_do_interrupt(CPUState *cs) |
9ee6e8bb | 4369 | { |
e6f010cc AF |
4370 | ARMCPU *cpu = ARM_CPU(cs); |
4371 | CPUARMState *env = &cpu->env; | |
9ee6e8bb PB |
4372 | uint32_t xpsr = xpsr_read(env); |
4373 | uint32_t lr; | |
4374 | uint32_t addr; | |
4375 | ||
27103424 | 4376 | arm_log_exception(cs->exception_index); |
3f1beaca | 4377 | |
9ee6e8bb PB |
4378 | lr = 0xfffffff1; |
4379 | if (env->v7m.current_sp) | |
4380 | lr |= 4; | |
4381 | if (env->v7m.exception == 0) | |
4382 | lr |= 8; | |
4383 | ||
4384 | /* For exceptions we just mark as pending on the NVIC, and let that | |
4385 | handle it. */ | |
4386 | /* TODO: Need to escalate if the current priority is higher than the | |
4387 | one we're raising. */ | |
27103424 | 4388 | switch (cs->exception_index) { |
9ee6e8bb | 4389 | case EXCP_UDEF: |
983fe826 | 4390 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE); |
9ee6e8bb PB |
4391 | return; |
4392 | case EXCP_SWI: | |
314e2296 | 4393 | /* The PC already points to the next instruction. */ |
983fe826 | 4394 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC); |
9ee6e8bb PB |
4395 | return; |
4396 | case EXCP_PREFETCH_ABORT: | |
4397 | case EXCP_DATA_ABORT: | |
abf1172f PM |
4398 | /* TODO: if we implemented the MPU registers, this is where we |
4399 | * should set the MMFAR, etc from exception.fsr and exception.vaddress. | |
4400 | */ | |
983fe826 | 4401 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM); |
9ee6e8bb PB |
4402 | return; |
4403 | case EXCP_BKPT: | |
2ad207d4 PB |
4404 | if (semihosting_enabled) { |
4405 | int nr; | |
d31dd73e | 4406 | nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff; |
2ad207d4 PB |
4407 | if (nr == 0xab) { |
4408 | env->regs[15] += 2; | |
4409 | env->regs[0] = do_arm_semihosting(env); | |
3f1beaca | 4410 | qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n"); |
2ad207d4 PB |
4411 | return; |
4412 | } | |
4413 | } | |
983fe826 | 4414 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG); |
9ee6e8bb PB |
4415 | return; |
4416 | case EXCP_IRQ: | |
983fe826 | 4417 | env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic); |
9ee6e8bb PB |
4418 | break; |
4419 | case EXCP_EXCEPTION_EXIT: | |
4420 | do_v7m_exception_exit(env); | |
4421 | return; | |
4422 | default: | |
a47dddd7 | 4423 | cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); |
9ee6e8bb PB |
4424 | return; /* Never happens. Keep compiler happy. */ |
4425 | } | |
4426 | ||
4427 | /* Align stack pointer. */ | |
4428 | /* ??? Should only do this if Configuration Control Register | |
4429 | STACKALIGN bit is set. */ | |
4430 | if (env->regs[13] & 4) { | |
ab19b0ec | 4431 | env->regs[13] -= 4; |
9ee6e8bb PB |
4432 | xpsr |= 0x200; |
4433 | } | |
6c95676b | 4434 | /* Switch to the handler mode. */ |
9ee6e8bb PB |
4435 | v7m_push(env, xpsr); |
4436 | v7m_push(env, env->regs[15]); | |
4437 | v7m_push(env, env->regs[14]); | |
4438 | v7m_push(env, env->regs[12]); | |
4439 | v7m_push(env, env->regs[3]); | |
4440 | v7m_push(env, env->regs[2]); | |
4441 | v7m_push(env, env->regs[1]); | |
4442 | v7m_push(env, env->regs[0]); | |
4443 | switch_v7m_sp(env, 0); | |
c98d174c PM |
4444 | /* Clear IT bits */ |
4445 | env->condexec_bits = 0; | |
9ee6e8bb | 4446 | env->regs[14] = lr; |
fdfba1a2 | 4447 | addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4); |
9ee6e8bb PB |
4448 | env->regs[15] = addr & 0xfffffffe; |
4449 | env->thumb = addr & 1; | |
4450 | } | |
4451 | ||
ce02049d GB |
4452 | /* Function used to synchronize QEMU's AArch64 register set with AArch32 |
4453 | * register set. This is necessary when switching between AArch32 and AArch64 | |
4454 | * execution state. | |
4455 | */ | |
4456 | void aarch64_sync_32_to_64(CPUARMState *env) | |
4457 | { | |
4458 | int i; | |
4459 | uint32_t mode = env->uncached_cpsr & CPSR_M; | |
4460 | ||
4461 | /* We can blanket copy R[0:7] to X[0:7] */ | |
4462 | for (i = 0; i < 8; i++) { | |
4463 | env->xregs[i] = env->regs[i]; | |
4464 | } | |
4465 | ||
4466 | /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. | |
4467 | * Otherwise, they come from the banked user regs. | |
4468 | */ | |
4469 | if (mode == ARM_CPU_MODE_FIQ) { | |
4470 | for (i = 8; i < 13; i++) { | |
4471 | env->xregs[i] = env->usr_regs[i - 8]; | |
4472 | } | |
4473 | } else { | |
4474 | for (i = 8; i < 13; i++) { | |
4475 | env->xregs[i] = env->regs[i]; | |
4476 | } | |
4477 | } | |
4478 | ||
4479 | /* Registers x13-x23 are the various mode SP and FP registers. Registers | |
4480 | * r13 and r14 are only copied if we are in that mode, otherwise we copy | |
4481 | * from the mode banked register. | |
4482 | */ | |
4483 | if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { | |
4484 | env->xregs[13] = env->regs[13]; | |
4485 | env->xregs[14] = env->regs[14]; | |
4486 | } else { | |
4487 | env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; | |
4488 | /* HYP is an exception in that it is copied from r14 */ | |
4489 | if (mode == ARM_CPU_MODE_HYP) { | |
4490 | env->xregs[14] = env->regs[14]; | |
4491 | } else { | |
4492 | env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)]; | |
4493 | } | |
4494 | } | |
4495 | ||
4496 | if (mode == ARM_CPU_MODE_HYP) { | |
4497 | env->xregs[15] = env->regs[13]; | |
4498 | } else { | |
4499 | env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; | |
4500 | } | |
4501 | ||
4502 | if (mode == ARM_CPU_MODE_IRQ) { | |
4503 | env->xregs[16] = env->regs[13]; | |
4504 | env->xregs[17] = env->regs[14]; | |
4505 | } else { | |
4506 | env->xregs[16] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; | |
4507 | env->xregs[17] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)]; | |
4508 | } | |
4509 | ||
4510 | if (mode == ARM_CPU_MODE_SVC) { | |
4511 | env->xregs[18] = env->regs[13]; | |
4512 | env->xregs[19] = env->regs[14]; | |
4513 | } else { | |
4514 | env->xregs[18] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; | |
4515 | env->xregs[19] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)]; | |
4516 | } | |
4517 | ||
4518 | if (mode == ARM_CPU_MODE_ABT) { | |
4519 | env->xregs[20] = env->regs[13]; | |
4520 | env->xregs[21] = env->regs[14]; | |
4521 | } else { | |
4522 | env->xregs[20] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; | |
4523 | env->xregs[21] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)]; | |
4524 | } | |
4525 | ||
4526 | if (mode == ARM_CPU_MODE_UND) { | |
4527 | env->xregs[22] = env->regs[13]; | |
4528 | env->xregs[23] = env->regs[14]; | |
4529 | } else { | |
4530 | env->xregs[22] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; | |
4531 | env->xregs[23] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)]; | |
4532 | } | |
4533 | ||
4534 | /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ | |
4535 | * mode, then we can copy from r8-r14. Otherwise, we copy from the | |
4536 | * FIQ bank for r8-r14. | |
4537 | */ | |
4538 | if (mode == ARM_CPU_MODE_FIQ) { | |
4539 | for (i = 24; i < 31; i++) { | |
4540 | env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ | |
4541 | } | |
4542 | } else { | |
4543 | for (i = 24; i < 29; i++) { | |
4544 | env->xregs[i] = env->fiq_regs[i - 24]; | |
4545 | } | |
4546 | env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; | |
4547 | env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)]; | |
4548 | } | |
4549 | ||
4550 | env->pc = env->regs[15]; | |
4551 | } | |
4552 | ||
4553 | /* Function used to synchronize QEMU's AArch32 register set with AArch64 | |
4554 | * register set. This is necessary when switching between AArch32 and AArch64 | |
4555 | * execution state. | |
4556 | */ | |
4557 | void aarch64_sync_64_to_32(CPUARMState *env) | |
4558 | { | |
4559 | int i; | |
4560 | uint32_t mode = env->uncached_cpsr & CPSR_M; | |
4561 | ||
4562 | /* We can blanket copy X[0:7] to R[0:7] */ | |
4563 | for (i = 0; i < 8; i++) { | |
4564 | env->regs[i] = env->xregs[i]; | |
4565 | } | |
4566 | ||
4567 | /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. | |
4568 | * Otherwise, we copy x8-x12 into the banked user regs. | |
4569 | */ | |
4570 | if (mode == ARM_CPU_MODE_FIQ) { | |
4571 | for (i = 8; i < 13; i++) { | |
4572 | env->usr_regs[i - 8] = env->xregs[i]; | |
4573 | } | |
4574 | } else { | |
4575 | for (i = 8; i < 13; i++) { | |
4576 | env->regs[i] = env->xregs[i]; | |
4577 | } | |
4578 | } | |
4579 | ||
4580 | /* Registers r13 & r14 depend on the current mode. | |
4581 | * If we are in a given mode, we copy the corresponding x registers to r13 | |
4582 | * and r14. Otherwise, we copy the x register to the banked r13 and r14 | |
4583 | * for the mode. | |
4584 | */ | |
4585 | if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { | |
4586 | env->regs[13] = env->xregs[13]; | |
4587 | env->regs[14] = env->xregs[14]; | |
4588 | } else { | |
4589 | env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; | |
4590 | ||
4591 | /* HYP is an exception in that it does not have its own banked r14 but | |
4592 | * shares the USR r14 | |
4593 | */ | |
4594 | if (mode == ARM_CPU_MODE_HYP) { | |
4595 | env->regs[14] = env->xregs[14]; | |
4596 | } else { | |
4597 | env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; | |
4598 | } | |
4599 | } | |
4600 | ||
4601 | if (mode == ARM_CPU_MODE_HYP) { | |
4602 | env->regs[13] = env->xregs[15]; | |
4603 | } else { | |
4604 | env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; | |
4605 | } | |
4606 | ||
4607 | if (mode == ARM_CPU_MODE_IRQ) { | |
4608 | env->regs[13] = env->xregs[16]; | |
4609 | env->regs[14] = env->xregs[17]; | |
4610 | } else { | |
4611 | env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; | |
4612 | env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; | |
4613 | } | |
4614 | ||
4615 | if (mode == ARM_CPU_MODE_SVC) { | |
4616 | env->regs[13] = env->xregs[18]; | |
4617 | env->regs[14] = env->xregs[19]; | |
4618 | } else { | |
4619 | env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; | |
4620 | env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; | |
4621 | } | |
4622 | ||
4623 | if (mode == ARM_CPU_MODE_ABT) { | |
4624 | env->regs[13] = env->xregs[20]; | |
4625 | env->regs[14] = env->xregs[21]; | |
4626 | } else { | |
4627 | env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; | |
4628 | env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; | |
4629 | } | |
4630 | ||
4631 | if (mode == ARM_CPU_MODE_UND) { | |
4632 | env->regs[13] = env->xregs[22]; | |
4633 | env->regs[14] = env->xregs[23]; | |
4634 | } else { | |
4635 | env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; | |
4636 | env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; | |
4637 | } | |
4638 | ||
4639 | /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ | |
4640 | * mode, then we can copy to r8-r14. Otherwise, we copy to the | |
4641 | * FIQ bank for r8-r14. | |
4642 | */ | |
4643 | if (mode == ARM_CPU_MODE_FIQ) { | |
4644 | for (i = 24; i < 31; i++) { | |
4645 | env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ | |
4646 | } | |
4647 | } else { | |
4648 | for (i = 24; i < 29; i++) { | |
4649 | env->fiq_regs[i - 24] = env->xregs[i]; | |
4650 | } | |
4651 | env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; | |
4652 | env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; | |
4653 | } | |
4654 | ||
4655 | env->regs[15] = env->pc; | |
4656 | } | |
4657 | ||
b5ff1b31 | 4658 | /* Handle a CPU exception. */ |
97a8ea5a | 4659 | void arm_cpu_do_interrupt(CPUState *cs) |
b5ff1b31 | 4660 | { |
97a8ea5a AF |
4661 | ARMCPU *cpu = ARM_CPU(cs); |
4662 | CPUARMState *env = &cpu->env; | |
b5ff1b31 FB |
4663 | uint32_t addr; |
4664 | uint32_t mask; | |
4665 | int new_mode; | |
4666 | uint32_t offset; | |
16a906fd | 4667 | uint32_t moe; |
b5ff1b31 | 4668 | |
e6f010cc AF |
4669 | assert(!IS_M(env)); |
4670 | ||
27103424 | 4671 | arm_log_exception(cs->exception_index); |
3f1beaca | 4672 | |
98128601 RH |
4673 | if (arm_is_psci_call(cpu, cs->exception_index)) { |
4674 | arm_handle_psci_call(cpu); | |
4675 | qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); | |
4676 | return; | |
4677 | } | |
4678 | ||
16a906fd PM |
4679 | /* If this is a debug exception we must update the DBGDSCR.MOE bits */ |
4680 | switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) { | |
4681 | case EC_BREAKPOINT: | |
4682 | case EC_BREAKPOINT_SAME_EL: | |
4683 | moe = 1; | |
4684 | break; | |
4685 | case EC_WATCHPOINT: | |
4686 | case EC_WATCHPOINT_SAME_EL: | |
4687 | moe = 10; | |
4688 | break; | |
4689 | case EC_AA32_BKPT: | |
4690 | moe = 3; | |
4691 | break; | |
4692 | case EC_VECTORCATCH: | |
4693 | moe = 5; | |
4694 | break; | |
4695 | default: | |
4696 | moe = 0; | |
4697 | break; | |
4698 | } | |
4699 | ||
4700 | if (moe) { | |
4701 | env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); | |
4702 | } | |
4703 | ||
b5ff1b31 | 4704 | /* TODO: Vectored interrupt controller. */ |
27103424 | 4705 | switch (cs->exception_index) { |
b5ff1b31 FB |
4706 | case EXCP_UDEF: |
4707 | new_mode = ARM_CPU_MODE_UND; | |
4708 | addr = 0x04; | |
4709 | mask = CPSR_I; | |
4710 | if (env->thumb) | |
4711 | offset = 2; | |
4712 | else | |
4713 | offset = 4; | |
4714 | break; | |
4715 | case EXCP_SWI: | |
8e71621f PB |
4716 | if (semihosting_enabled) { |
4717 | /* Check for semihosting interrupt. */ | |
4718 | if (env->thumb) { | |
d31dd73e BS |
4719 | mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code) |
4720 | & 0xff; | |
8e71621f | 4721 | } else { |
d31dd73e | 4722 | mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code) |
d8fd2954 | 4723 | & 0xffffff; |
8e71621f PB |
4724 | } |
4725 | /* Only intercept calls from privileged modes, to provide some | |
4726 | semblance of security. */ | |
4727 | if (((mask == 0x123456 && !env->thumb) | |
4728 | || (mask == 0xab && env->thumb)) | |
4729 | && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) { | |
4730 | env->regs[0] = do_arm_semihosting(env); | |
3f1beaca | 4731 | qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n"); |
8e71621f PB |
4732 | return; |
4733 | } | |
4734 | } | |
b5ff1b31 FB |
4735 | new_mode = ARM_CPU_MODE_SVC; |
4736 | addr = 0x08; | |
4737 | mask = CPSR_I; | |
601d70b9 | 4738 | /* The PC already points to the next instruction. */ |
b5ff1b31 FB |
4739 | offset = 0; |
4740 | break; | |
06c949e6 | 4741 | case EXCP_BKPT: |
9ee6e8bb | 4742 | /* See if this is a semihosting syscall. */ |
2ad207d4 | 4743 | if (env->thumb && semihosting_enabled) { |
d31dd73e | 4744 | mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff; |
9ee6e8bb PB |
4745 | if (mask == 0xab |
4746 | && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) { | |
4747 | env->regs[15] += 2; | |
4748 | env->regs[0] = do_arm_semihosting(env); | |
3f1beaca | 4749 | qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n"); |
9ee6e8bb PB |
4750 | return; |
4751 | } | |
4752 | } | |
abf1172f | 4753 | env->exception.fsr = 2; |
9ee6e8bb PB |
4754 | /* Fall through to prefetch abort. */ |
4755 | case EXCP_PREFETCH_ABORT: | |
88ca1c2d | 4756 | A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); |
b848ce2b | 4757 | A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); |
3f1beaca | 4758 | qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", |
88ca1c2d | 4759 | env->exception.fsr, (uint32_t)env->exception.vaddress); |
b5ff1b31 FB |
4760 | new_mode = ARM_CPU_MODE_ABT; |
4761 | addr = 0x0c; | |
4762 | mask = CPSR_A | CPSR_I; | |
4763 | offset = 4; | |
4764 | break; | |
4765 | case EXCP_DATA_ABORT: | |
4a7e2d73 | 4766 | A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); |
b848ce2b | 4767 | A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); |
3f1beaca | 4768 | qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", |
4a7e2d73 | 4769 | env->exception.fsr, |
6cd8a264 | 4770 | (uint32_t)env->exception.vaddress); |
b5ff1b31 FB |
4771 | new_mode = ARM_CPU_MODE_ABT; |
4772 | addr = 0x10; | |
4773 | mask = CPSR_A | CPSR_I; | |
4774 | offset = 8; | |
4775 | break; | |
4776 | case EXCP_IRQ: | |
4777 | new_mode = ARM_CPU_MODE_IRQ; | |
4778 | addr = 0x18; | |
4779 | /* Disable IRQ and imprecise data aborts. */ | |
4780 | mask = CPSR_A | CPSR_I; | |
4781 | offset = 4; | |
de38d23b FA |
4782 | if (env->cp15.scr_el3 & SCR_IRQ) { |
4783 | /* IRQ routed to monitor mode */ | |
4784 | new_mode = ARM_CPU_MODE_MON; | |
4785 | mask |= CPSR_F; | |
4786 | } | |
b5ff1b31 FB |
4787 | break; |
4788 | case EXCP_FIQ: | |
4789 | new_mode = ARM_CPU_MODE_FIQ; | |
4790 | addr = 0x1c; | |
4791 | /* Disable FIQ, IRQ and imprecise data aborts. */ | |
4792 | mask = CPSR_A | CPSR_I | CPSR_F; | |
de38d23b FA |
4793 | if (env->cp15.scr_el3 & SCR_FIQ) { |
4794 | /* FIQ routed to monitor mode */ | |
4795 | new_mode = ARM_CPU_MODE_MON; | |
4796 | } | |
b5ff1b31 FB |
4797 | offset = 4; |
4798 | break; | |
dbe9d163 FA |
4799 | case EXCP_SMC: |
4800 | new_mode = ARM_CPU_MODE_MON; | |
4801 | addr = 0x08; | |
4802 | mask = CPSR_A | CPSR_I | CPSR_F; | |
4803 | offset = 0; | |
4804 | break; | |
b5ff1b31 | 4805 | default: |
a47dddd7 | 4806 | cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); |
b5ff1b31 FB |
4807 | return; /* Never happens. Keep compiler happy. */ |
4808 | } | |
e89e51a1 FA |
4809 | |
4810 | if (new_mode == ARM_CPU_MODE_MON) { | |
4811 | addr += env->cp15.mvbar; | |
137feaa9 | 4812 | } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { |
e89e51a1 | 4813 | /* High vectors. When enabled, base address cannot be remapped. */ |
b5ff1b31 | 4814 | addr += 0xffff0000; |
8641136c NR |
4815 | } else { |
4816 | /* ARM v7 architectures provide a vector base address register to remap | |
4817 | * the interrupt vector table. | |
e89e51a1 | 4818 | * This register is only followed in non-monitor mode, and is banked. |
8641136c NR |
4819 | * Note: only bits 31:5 are valid. |
4820 | */ | |
fb6c91ba | 4821 | addr += A32_BANKED_CURRENT_REG_GET(env, vbar); |
b5ff1b31 | 4822 | } |
dbe9d163 FA |
4823 | |
4824 | if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { | |
4825 | env->cp15.scr_el3 &= ~SCR_NS; | |
4826 | } | |
4827 | ||
b5ff1b31 | 4828 | switch_mode (env, new_mode); |
662cefb7 PM |
4829 | /* For exceptions taken to AArch32 we must clear the SS bit in both |
4830 | * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. | |
4831 | */ | |
4832 | env->uncached_cpsr &= ~PSTATE_SS; | |
b5ff1b31 | 4833 | env->spsr = cpsr_read(env); |
9ee6e8bb PB |
4834 | /* Clear IT bits. */ |
4835 | env->condexec_bits = 0; | |
30a8cac1 | 4836 | /* Switch to the new mode, and to the correct instruction set. */ |
6d7e6326 | 4837 | env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; |
4cc35614 | 4838 | env->daif |= mask; |
be5e7a76 DES |
4839 | /* this is a lie, as the was no c1_sys on V4T/V5, but who cares |
4840 | * and we should just guard the thumb mode on V4 */ | |
4841 | if (arm_feature(env, ARM_FEATURE_V4T)) { | |
137feaa9 | 4842 | env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; |
be5e7a76 | 4843 | } |
b5ff1b31 FB |
4844 | env->regs[14] = env->regs[15] + offset; |
4845 | env->regs[15] = addr; | |
259186a7 | 4846 | cs->interrupt_request |= CPU_INTERRUPT_EXITTB; |
b5ff1b31 FB |
4847 | } |
4848 | ||
0480f69a PM |
4849 | |
4850 | /* Return the exception level which controls this address translation regime */ | |
4851 | static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) | |
4852 | { | |
4853 | switch (mmu_idx) { | |
4854 | case ARMMMUIdx_S2NS: | |
4855 | case ARMMMUIdx_S1E2: | |
4856 | return 2; | |
4857 | case ARMMMUIdx_S1E3: | |
4858 | return 3; | |
4859 | case ARMMMUIdx_S1SE0: | |
4860 | return arm_el_is_aa64(env, 3) ? 1 : 3; | |
4861 | case ARMMMUIdx_S1SE1: | |
4862 | case ARMMMUIdx_S1NSE0: | |
4863 | case ARMMMUIdx_S1NSE1: | |
4864 | return 1; | |
4865 | default: | |
4866 | g_assert_not_reached(); | |
4867 | } | |
4868 | } | |
4869 | ||
8bf5b6a9 PM |
4870 | /* Return true if this address translation regime is secure */ |
4871 | static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx) | |
4872 | { | |
4873 | switch (mmu_idx) { | |
4874 | case ARMMMUIdx_S12NSE0: | |
4875 | case ARMMMUIdx_S12NSE1: | |
4876 | case ARMMMUIdx_S1NSE0: | |
4877 | case ARMMMUIdx_S1NSE1: | |
4878 | case ARMMMUIdx_S1E2: | |
4879 | case ARMMMUIdx_S2NS: | |
4880 | return false; | |
4881 | case ARMMMUIdx_S1E3: | |
4882 | case ARMMMUIdx_S1SE0: | |
4883 | case ARMMMUIdx_S1SE1: | |
4884 | return true; | |
4885 | default: | |
4886 | g_assert_not_reached(); | |
4887 | } | |
4888 | } | |
4889 | ||
0480f69a PM |
4890 | /* Return the SCTLR value which controls this address translation regime */ |
4891 | static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) | |
4892 | { | |
4893 | return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; | |
4894 | } | |
4895 | ||
4896 | /* Return true if the specified stage of address translation is disabled */ | |
4897 | static inline bool regime_translation_disabled(CPUARMState *env, | |
4898 | ARMMMUIdx mmu_idx) | |
4899 | { | |
4900 | if (mmu_idx == ARMMMUIdx_S2NS) { | |
4901 | return (env->cp15.hcr_el2 & HCR_VM) == 0; | |
4902 | } | |
4903 | return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; | |
4904 | } | |
4905 | ||
4906 | /* Return the TCR controlling this translation regime */ | |
4907 | static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) | |
4908 | { | |
4909 | if (mmu_idx == ARMMMUIdx_S2NS) { | |
4910 | /* TODO: return VTCR_EL2 */ | |
4911 | g_assert_not_reached(); | |
4912 | } | |
4913 | return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; | |
4914 | } | |
4915 | ||
4916 | /* Return true if the translation regime is using LPAE format page tables */ | |
4917 | static inline bool regime_using_lpae_format(CPUARMState *env, | |
4918 | ARMMMUIdx mmu_idx) | |
4919 | { | |
4920 | int el = regime_el(env, mmu_idx); | |
4921 | if (el == 2 || arm_el_is_aa64(env, el)) { | |
4922 | return true; | |
4923 | } | |
4924 | if (arm_feature(env, ARM_FEATURE_LPAE) | |
4925 | && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { | |
4926 | return true; | |
4927 | } | |
4928 | return false; | |
4929 | } | |
4930 | ||
4931 | static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) | |
4932 | { | |
4933 | switch (mmu_idx) { | |
4934 | case ARMMMUIdx_S1SE0: | |
4935 | case ARMMMUIdx_S1NSE0: | |
4936 | return true; | |
4937 | default: | |
4938 | return false; | |
4939 | case ARMMMUIdx_S12NSE0: | |
4940 | case ARMMMUIdx_S12NSE1: | |
4941 | g_assert_not_reached(); | |
4942 | } | |
4943 | } | |
4944 | ||
0fbf5238 AJ |
4945 | /* Translate section/page access permissions to page |
4946 | * R/W protection flags | |
d76951b6 AJ |
4947 | * |
4948 | * @env: CPUARMState | |
4949 | * @mmu_idx: MMU index indicating required translation regime | |
4950 | * @ap: The 3-bit access permissions (AP[2:0]) | |
4951 | * @domain_prot: The 2-bit domain access permissions | |
0fbf5238 AJ |
4952 | */ |
4953 | static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, | |
4954 | int ap, int domain_prot) | |
4955 | { | |
554b0b09 PM |
4956 | bool is_user = regime_is_user(env, mmu_idx); |
4957 | ||
4958 | if (domain_prot == 3) { | |
4959 | return PAGE_READ | PAGE_WRITE; | |
4960 | } | |
4961 | ||
554b0b09 PM |
4962 | switch (ap) { |
4963 | case 0: | |
4964 | if (arm_feature(env, ARM_FEATURE_V7)) { | |
4965 | return 0; | |
4966 | } | |
554b0b09 PM |
4967 | switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { |
4968 | case SCTLR_S: | |
4969 | return is_user ? 0 : PAGE_READ; | |
4970 | case SCTLR_R: | |
4971 | return PAGE_READ; | |
4972 | default: | |
4973 | return 0; | |
4974 | } | |
4975 | case 1: | |
4976 | return is_user ? 0 : PAGE_READ | PAGE_WRITE; | |
4977 | case 2: | |
87c3d486 | 4978 | if (is_user) { |
0fbf5238 | 4979 | return PAGE_READ; |
87c3d486 | 4980 | } else { |
554b0b09 | 4981 | return PAGE_READ | PAGE_WRITE; |
87c3d486 | 4982 | } |
554b0b09 PM |
4983 | case 3: |
4984 | return PAGE_READ | PAGE_WRITE; | |
4985 | case 4: /* Reserved. */ | |
4986 | return 0; | |
4987 | case 5: | |
0fbf5238 | 4988 | return is_user ? 0 : PAGE_READ; |
554b0b09 | 4989 | case 6: |
0fbf5238 | 4990 | return PAGE_READ; |
554b0b09 | 4991 | case 7: |
87c3d486 | 4992 | if (!arm_feature(env, ARM_FEATURE_V6K)) { |
554b0b09 | 4993 | return 0; |
87c3d486 | 4994 | } |
0fbf5238 | 4995 | return PAGE_READ; |
554b0b09 | 4996 | default: |
0fbf5238 | 4997 | g_assert_not_reached(); |
554b0b09 | 4998 | } |
b5ff1b31 FB |
4999 | } |
5000 | ||
d76951b6 AJ |
5001 | /* Translate section/page access permissions to page |
5002 | * R/W protection flags. | |
5003 | * | |
d76951b6 | 5004 | * @ap: The 2-bit simple AP (AP[2:1]) |
d8e052b3 | 5005 | * @is_user: TRUE if accessing from PL0 |
d76951b6 | 5006 | */ |
d8e052b3 | 5007 | static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) |
d76951b6 | 5008 | { |
d76951b6 AJ |
5009 | switch (ap) { |
5010 | case 0: | |
5011 | return is_user ? 0 : PAGE_READ | PAGE_WRITE; | |
5012 | case 1: | |
5013 | return PAGE_READ | PAGE_WRITE; | |
5014 | case 2: | |
5015 | return is_user ? 0 : PAGE_READ; | |
5016 | case 3: | |
5017 | return PAGE_READ; | |
5018 | default: | |
5019 | g_assert_not_reached(); | |
5020 | } | |
5021 | } | |
5022 | ||
d8e052b3 AJ |
5023 | static inline int |
5024 | simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) | |
5025 | { | |
5026 | return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); | |
5027 | } | |
5028 | ||
5029 | /* Translate section/page access permissions to protection flags | |
5030 | * | |
5031 | * @env: CPUARMState | |
5032 | * @mmu_idx: MMU index indicating required translation regime | |
5033 | * @is_aa64: TRUE if AArch64 | |
5034 | * @ap: The 2-bit simple AP (AP[2:1]) | |
5035 | * @ns: NS (non-secure) bit | |
5036 | * @xn: XN (execute-never) bit | |
5037 | * @pxn: PXN (privileged execute-never) bit | |
5038 | */ | |
5039 | static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, | |
5040 | int ap, int ns, int xn, int pxn) | |
5041 | { | |
5042 | bool is_user = regime_is_user(env, mmu_idx); | |
5043 | int prot_rw, user_rw; | |
5044 | bool have_wxn; | |
5045 | int wxn = 0; | |
5046 | ||
5047 | assert(mmu_idx != ARMMMUIdx_S2NS); | |
5048 | ||
5049 | user_rw = simple_ap_to_rw_prot_is_user(ap, true); | |
5050 | if (is_user) { | |
5051 | prot_rw = user_rw; | |
5052 | } else { | |
5053 | prot_rw = simple_ap_to_rw_prot_is_user(ap, false); | |
5054 | } | |
5055 | ||
5056 | if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { | |
5057 | return prot_rw; | |
5058 | } | |
5059 | ||
5060 | /* TODO have_wxn should be replaced with | |
5061 | * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) | |
5062 | * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE | |
5063 | * compatible processors have EL2, which is required for [U]WXN. | |
5064 | */ | |
5065 | have_wxn = arm_feature(env, ARM_FEATURE_LPAE); | |
5066 | ||
5067 | if (have_wxn) { | |
5068 | wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; | |
5069 | } | |
5070 | ||
5071 | if (is_aa64) { | |
5072 | switch (regime_el(env, mmu_idx)) { | |
5073 | case 1: | |
5074 | if (!is_user) { | |
5075 | xn = pxn || (user_rw & PAGE_WRITE); | |
5076 | } | |
5077 | break; | |
5078 | case 2: | |
5079 | case 3: | |
5080 | break; | |
5081 | } | |
5082 | } else if (arm_feature(env, ARM_FEATURE_V7)) { | |
5083 | switch (regime_el(env, mmu_idx)) { | |
5084 | case 1: | |
5085 | case 3: | |
5086 | if (is_user) { | |
5087 | xn = xn || !(user_rw & PAGE_READ); | |
5088 | } else { | |
5089 | int uwxn = 0; | |
5090 | if (have_wxn) { | |
5091 | uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; | |
5092 | } | |
5093 | xn = xn || !(prot_rw & PAGE_READ) || pxn || | |
5094 | (uwxn && (user_rw & PAGE_WRITE)); | |
5095 | } | |
5096 | break; | |
5097 | case 2: | |
5098 | break; | |
5099 | } | |
5100 | } else { | |
5101 | xn = wxn = 0; | |
5102 | } | |
5103 | ||
5104 | if (xn || (wxn && (prot_rw & PAGE_WRITE))) { | |
5105 | return prot_rw; | |
5106 | } | |
5107 | return prot_rw | PAGE_EXEC; | |
5108 | } | |
5109 | ||
0480f69a PM |
5110 | static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, |
5111 | uint32_t *table, uint32_t address) | |
b2fa1797 | 5112 | { |
0480f69a PM |
5113 | /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ |
5114 | int el = regime_el(env, mmu_idx); | |
5115 | TCR *tcr = regime_tcr(env, mmu_idx); | |
11f136ee | 5116 | |
11f136ee FA |
5117 | if (address & tcr->mask) { |
5118 | if (tcr->raw_tcr & TTBCR_PD1) { | |
e389be16 FA |
5119 | /* Translation table walk disabled for TTBR1 */ |
5120 | return false; | |
5121 | } | |
0480f69a | 5122 | *table = env->cp15.ttbr1_el[el] & 0xffffc000; |
e389be16 | 5123 | } else { |
11f136ee | 5124 | if (tcr->raw_tcr & TTBCR_PD0) { |
e389be16 FA |
5125 | /* Translation table walk disabled for TTBR0 */ |
5126 | return false; | |
5127 | } | |
0480f69a | 5128 | *table = env->cp15.ttbr0_el[el] & tcr->base_mask; |
e389be16 FA |
5129 | } |
5130 | *table |= (address >> 18) & 0x3ffc; | |
5131 | return true; | |
b2fa1797 PB |
5132 | } |
5133 | ||
ebca90e4 PM |
5134 | /* All loads done in the course of a page table walk go through here. |
5135 | * TODO: rather than ignoring errors from physical memory reads (which | |
5136 | * are external aborts in ARM terminology) we should propagate this | |
5137 | * error out so that we can turn it into a Data Abort if this walk | |
5138 | * was being done for a CPU load/store or an address translation instruction | |
5139 | * (but not if it was for a debug access). | |
5140 | */ | |
5141 | static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure) | |
5142 | { | |
5143 | MemTxAttrs attrs = {}; | |
5144 | ||
5145 | attrs.secure = is_secure; | |
5146 | return address_space_ldl(cs->as, addr, attrs, NULL); | |
5147 | } | |
5148 | ||
5149 | static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure) | |
5150 | { | |
5151 | MemTxAttrs attrs = {}; | |
5152 | ||
5153 | attrs.secure = is_secure; | |
5154 | return address_space_ldq(cs->as, addr, attrs, NULL); | |
5155 | } | |
5156 | ||
0ecb72a5 | 5157 | static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type, |
0480f69a | 5158 | ARMMMUIdx mmu_idx, hwaddr *phys_ptr, |
77a71dd1 | 5159 | int *prot, target_ulong *page_size) |
b5ff1b31 | 5160 | { |
70d74660 | 5161 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
b5ff1b31 FB |
5162 | int code; |
5163 | uint32_t table; | |
5164 | uint32_t desc; | |
5165 | int type; | |
5166 | int ap; | |
e389be16 | 5167 | int domain = 0; |
dd4ebc2e | 5168 | int domain_prot; |
a8170e5e | 5169 | hwaddr phys_addr; |
0480f69a | 5170 | uint32_t dacr; |
b5ff1b31 | 5171 | |
9ee6e8bb PB |
5172 | /* Pagetable walk. */ |
5173 | /* Lookup l1 descriptor. */ | |
0480f69a | 5174 | if (!get_level1_table_address(env, mmu_idx, &table, address)) { |
e389be16 FA |
5175 | /* Section translation fault if page walk is disabled by PD0 or PD1 */ |
5176 | code = 5; | |
5177 | goto do_fault; | |
5178 | } | |
ebca90e4 | 5179 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx)); |
9ee6e8bb | 5180 | type = (desc & 3); |
dd4ebc2e | 5181 | domain = (desc >> 5) & 0x0f; |
0480f69a PM |
5182 | if (regime_el(env, mmu_idx) == 1) { |
5183 | dacr = env->cp15.dacr_ns; | |
5184 | } else { | |
5185 | dacr = env->cp15.dacr_s; | |
5186 | } | |
5187 | domain_prot = (dacr >> (domain * 2)) & 3; | |
9ee6e8bb | 5188 | if (type == 0) { |
601d70b9 | 5189 | /* Section translation fault. */ |
9ee6e8bb PB |
5190 | code = 5; |
5191 | goto do_fault; | |
5192 | } | |
dd4ebc2e | 5193 | if (domain_prot == 0 || domain_prot == 2) { |
9ee6e8bb PB |
5194 | if (type == 2) |
5195 | code = 9; /* Section domain fault. */ | |
5196 | else | |
5197 | code = 11; /* Page domain fault. */ | |
5198 | goto do_fault; | |
5199 | } | |
5200 | if (type == 2) { | |
5201 | /* 1Mb section. */ | |
5202 | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); | |
5203 | ap = (desc >> 10) & 3; | |
5204 | code = 13; | |
d4c430a8 | 5205 | *page_size = 1024 * 1024; |
9ee6e8bb PB |
5206 | } else { |
5207 | /* Lookup l2 entry. */ | |
554b0b09 PM |
5208 | if (type == 1) { |
5209 | /* Coarse pagetable. */ | |
5210 | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); | |
5211 | } else { | |
5212 | /* Fine pagetable. */ | |
5213 | table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); | |
5214 | } | |
ebca90e4 | 5215 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx)); |
9ee6e8bb PB |
5216 | switch (desc & 3) { |
5217 | case 0: /* Page translation fault. */ | |
5218 | code = 7; | |
5219 | goto do_fault; | |
5220 | case 1: /* 64k page. */ | |
5221 | phys_addr = (desc & 0xffff0000) | (address & 0xffff); | |
5222 | ap = (desc >> (4 + ((address >> 13) & 6))) & 3; | |
d4c430a8 | 5223 | *page_size = 0x10000; |
ce819861 | 5224 | break; |
9ee6e8bb PB |
5225 | case 2: /* 4k page. */ |
5226 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |
c10f7fc3 | 5227 | ap = (desc >> (4 + ((address >> 9) & 6))) & 3; |
d4c430a8 | 5228 | *page_size = 0x1000; |
ce819861 | 5229 | break; |
9ee6e8bb | 5230 | case 3: /* 1k page. */ |
554b0b09 PM |
5231 | if (type == 1) { |
5232 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { | |
5233 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |
5234 | } else { | |
5235 | /* Page translation fault. */ | |
5236 | code = 7; | |
5237 | goto do_fault; | |
5238 | } | |
5239 | } else { | |
5240 | phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); | |
5241 | } | |
9ee6e8bb | 5242 | ap = (desc >> 4) & 3; |
d4c430a8 | 5243 | *page_size = 0x400; |
ce819861 PB |
5244 | break; |
5245 | default: | |
9ee6e8bb PB |
5246 | /* Never happens, but compiler isn't smart enough to tell. */ |
5247 | abort(); | |
ce819861 | 5248 | } |
9ee6e8bb PB |
5249 | code = 15; |
5250 | } | |
0fbf5238 AJ |
5251 | *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); |
5252 | *prot |= *prot ? PAGE_EXEC : 0; | |
5253 | if (!(*prot & (1 << access_type))) { | |
9ee6e8bb PB |
5254 | /* Access permission fault. */ |
5255 | goto do_fault; | |
5256 | } | |
5257 | *phys_ptr = phys_addr; | |
5258 | return 0; | |
5259 | do_fault: | |
5260 | return code | (domain << 4); | |
5261 | } | |
5262 | ||
0ecb72a5 | 5263 | static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type, |
0480f69a | 5264 | ARMMMUIdx mmu_idx, hwaddr *phys_ptr, |
8bf5b6a9 | 5265 | MemTxAttrs *attrs, |
77a71dd1 | 5266 | int *prot, target_ulong *page_size) |
9ee6e8bb | 5267 | { |
70d74660 | 5268 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
9ee6e8bb PB |
5269 | int code; |
5270 | uint32_t table; | |
5271 | uint32_t desc; | |
5272 | uint32_t xn; | |
de9b05b8 | 5273 | uint32_t pxn = 0; |
9ee6e8bb PB |
5274 | int type; |
5275 | int ap; | |
de9b05b8 | 5276 | int domain = 0; |
dd4ebc2e | 5277 | int domain_prot; |
a8170e5e | 5278 | hwaddr phys_addr; |
0480f69a | 5279 | uint32_t dacr; |
8bf5b6a9 | 5280 | bool ns; |
9ee6e8bb PB |
5281 | |
5282 | /* Pagetable walk. */ | |
5283 | /* Lookup l1 descriptor. */ | |
0480f69a | 5284 | if (!get_level1_table_address(env, mmu_idx, &table, address)) { |
e389be16 FA |
5285 | /* Section translation fault if page walk is disabled by PD0 or PD1 */ |
5286 | code = 5; | |
5287 | goto do_fault; | |
5288 | } | |
ebca90e4 | 5289 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx)); |
9ee6e8bb | 5290 | type = (desc & 3); |
de9b05b8 PM |
5291 | if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { |
5292 | /* Section translation fault, or attempt to use the encoding | |
5293 | * which is Reserved on implementations without PXN. | |
5294 | */ | |
9ee6e8bb | 5295 | code = 5; |
9ee6e8bb | 5296 | goto do_fault; |
de9b05b8 PM |
5297 | } |
5298 | if ((type == 1) || !(desc & (1 << 18))) { | |
5299 | /* Page or Section. */ | |
dd4ebc2e | 5300 | domain = (desc >> 5) & 0x0f; |
9ee6e8bb | 5301 | } |
0480f69a PM |
5302 | if (regime_el(env, mmu_idx) == 1) { |
5303 | dacr = env->cp15.dacr_ns; | |
5304 | } else { | |
5305 | dacr = env->cp15.dacr_s; | |
5306 | } | |
5307 | domain_prot = (dacr >> (domain * 2)) & 3; | |
dd4ebc2e | 5308 | if (domain_prot == 0 || domain_prot == 2) { |
de9b05b8 | 5309 | if (type != 1) { |
9ee6e8bb | 5310 | code = 9; /* Section domain fault. */ |
de9b05b8 | 5311 | } else { |
9ee6e8bb | 5312 | code = 11; /* Page domain fault. */ |
de9b05b8 | 5313 | } |
9ee6e8bb PB |
5314 | goto do_fault; |
5315 | } | |
de9b05b8 | 5316 | if (type != 1) { |
9ee6e8bb PB |
5317 | if (desc & (1 << 18)) { |
5318 | /* Supersection. */ | |
5319 | phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); | |
d4c430a8 | 5320 | *page_size = 0x1000000; |
b5ff1b31 | 5321 | } else { |
9ee6e8bb PB |
5322 | /* Section. */ |
5323 | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); | |
d4c430a8 | 5324 | *page_size = 0x100000; |
b5ff1b31 | 5325 | } |
9ee6e8bb PB |
5326 | ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); |
5327 | xn = desc & (1 << 4); | |
de9b05b8 | 5328 | pxn = desc & 1; |
9ee6e8bb | 5329 | code = 13; |
8bf5b6a9 | 5330 | ns = extract32(desc, 19, 1); |
9ee6e8bb | 5331 | } else { |
de9b05b8 PM |
5332 | if (arm_feature(env, ARM_FEATURE_PXN)) { |
5333 | pxn = (desc >> 2) & 1; | |
5334 | } | |
8bf5b6a9 | 5335 | ns = extract32(desc, 3, 1); |
9ee6e8bb PB |
5336 | /* Lookup l2 entry. */ |
5337 | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); | |
ebca90e4 | 5338 | desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx)); |
9ee6e8bb PB |
5339 | ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); |
5340 | switch (desc & 3) { | |
5341 | case 0: /* Page translation fault. */ | |
5342 | code = 7; | |
b5ff1b31 | 5343 | goto do_fault; |
9ee6e8bb PB |
5344 | case 1: /* 64k page. */ |
5345 | phys_addr = (desc & 0xffff0000) | (address & 0xffff); | |
5346 | xn = desc & (1 << 15); | |
d4c430a8 | 5347 | *page_size = 0x10000; |
9ee6e8bb PB |
5348 | break; |
5349 | case 2: case 3: /* 4k page. */ | |
5350 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |
5351 | xn = desc & 1; | |
d4c430a8 | 5352 | *page_size = 0x1000; |
9ee6e8bb PB |
5353 | break; |
5354 | default: | |
5355 | /* Never happens, but compiler isn't smart enough to tell. */ | |
5356 | abort(); | |
b5ff1b31 | 5357 | } |
9ee6e8bb PB |
5358 | code = 15; |
5359 | } | |
dd4ebc2e | 5360 | if (domain_prot == 3) { |
c0034328 JR |
5361 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
5362 | } else { | |
0480f69a | 5363 | if (pxn && !regime_is_user(env, mmu_idx)) { |
de9b05b8 PM |
5364 | xn = 1; |
5365 | } | |
c0034328 JR |
5366 | if (xn && access_type == 2) |
5367 | goto do_fault; | |
9ee6e8bb | 5368 | |
d76951b6 AJ |
5369 | if (arm_feature(env, ARM_FEATURE_V6K) && |
5370 | (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { | |
5371 | /* The simplified model uses AP[0] as an access control bit. */ | |
5372 | if ((ap & 1) == 0) { | |
5373 | /* Access flag fault. */ | |
5374 | code = (code == 15) ? 6 : 3; | |
5375 | goto do_fault; | |
5376 | } | |
5377 | *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); | |
5378 | } else { | |
5379 | *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); | |
c0034328 | 5380 | } |
0fbf5238 AJ |
5381 | if (*prot && !xn) { |
5382 | *prot |= PAGE_EXEC; | |
5383 | } | |
5384 | if (!(*prot & (1 << access_type))) { | |
c0034328 JR |
5385 | /* Access permission fault. */ |
5386 | goto do_fault; | |
5387 | } | |
3ad493fc | 5388 | } |
8bf5b6a9 PM |
5389 | if (ns) { |
5390 | /* The NS bit will (as required by the architecture) have no effect if | |
5391 | * the CPU doesn't support TZ or this is a non-secure translation | |
5392 | * regime, because the attribute will already be non-secure. | |
5393 | */ | |
5394 | attrs->secure = false; | |
5395 | } | |
9ee6e8bb | 5396 | *phys_ptr = phys_addr; |
b5ff1b31 FB |
5397 | return 0; |
5398 | do_fault: | |
5399 | return code | (domain << 4); | |
5400 | } | |
5401 | ||
3dde962f PM |
5402 | /* Fault type for long-descriptor MMU fault reporting; this corresponds |
5403 | * to bits [5..2] in the STATUS field in long-format DFSR/IFSR. | |
5404 | */ | |
5405 | typedef enum { | |
5406 | translation_fault = 1, | |
5407 | access_fault = 2, | |
5408 | permission_fault = 3, | |
5409 | } MMUFaultType; | |
5410 | ||
2c8dd318 | 5411 | static int get_phys_addr_lpae(CPUARMState *env, target_ulong address, |
0480f69a | 5412 | int access_type, ARMMMUIdx mmu_idx, |
8bf5b6a9 | 5413 | hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, |
3dde962f PM |
5414 | target_ulong *page_size_ptr) |
5415 | { | |
70d74660 | 5416 | CPUState *cs = CPU(arm_env_get_cpu(env)); |
3dde962f PM |
5417 | /* Read an LPAE long-descriptor translation table. */ |
5418 | MMUFaultType fault_type = translation_fault; | |
5419 | uint32_t level = 1; | |
5420 | uint32_t epd; | |
2c8dd318 RH |
5421 | int32_t tsz; |
5422 | uint32_t tg; | |
3dde962f PM |
5423 | uint64_t ttbr; |
5424 | int ttbr_select; | |
2c8dd318 | 5425 | hwaddr descaddr, descmask; |
3dde962f PM |
5426 | uint32_t tableattrs; |
5427 | target_ulong page_size; | |
5428 | uint32_t attrs; | |
2c8dd318 RH |
5429 | int32_t granule_sz = 9; |
5430 | int32_t va_size = 32; | |
5431 | int32_t tbi = 0; | |
0480f69a | 5432 | TCR *tcr = regime_tcr(env, mmu_idx); |
d8e052b3 | 5433 | int ap, ns, xn, pxn; |
0480f69a PM |
5434 | |
5435 | /* TODO: | |
5436 | * This code assumes we're either a 64-bit EL1 or a 32-bit PL1; | |
5437 | * it doesn't handle the different format TCR for TCR_EL2, TCR_EL3, | |
5438 | * and VTCR_EL2, or the fact that those regimes don't have a split | |
5439 | * TTBR0/TTBR1. Attribute and permission bit handling should also | |
5440 | * be checked when adding support for those page table walks. | |
5441 | */ | |
5442 | if (arm_el_is_aa64(env, regime_el(env, mmu_idx))) { | |
2c8dd318 RH |
5443 | va_size = 64; |
5444 | if (extract64(address, 55, 1)) | |
11f136ee | 5445 | tbi = extract64(tcr->raw_tcr, 38, 1); |
2c8dd318 | 5446 | else |
11f136ee | 5447 | tbi = extract64(tcr->raw_tcr, 37, 1); |
2c8dd318 RH |
5448 | tbi *= 8; |
5449 | } | |
3dde962f PM |
5450 | |
5451 | /* Determine whether this address is in the region controlled by | |
5452 | * TTBR0 or TTBR1 (or if it is in neither region and should fault). | |
5453 | * This is a Non-secure PL0/1 stage 1 translation, so controlled by | |
5454 | * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32: | |
5455 | */ | |
11f136ee | 5456 | uint32_t t0sz = extract32(tcr->raw_tcr, 0, 6); |
0480f69a | 5457 | if (va_size == 64) { |
2c8dd318 RH |
5458 | t0sz = MIN(t0sz, 39); |
5459 | t0sz = MAX(t0sz, 16); | |
5460 | } | |
11f136ee | 5461 | uint32_t t1sz = extract32(tcr->raw_tcr, 16, 6); |
0480f69a | 5462 | if (va_size == 64) { |
2c8dd318 RH |
5463 | t1sz = MIN(t1sz, 39); |
5464 | t1sz = MAX(t1sz, 16); | |
5465 | } | |
5466 | if (t0sz && !extract64(address, va_size - t0sz, t0sz - tbi)) { | |
3dde962f PM |
5467 | /* there is a ttbr0 region and we are in it (high bits all zero) */ |
5468 | ttbr_select = 0; | |
2c8dd318 | 5469 | } else if (t1sz && !extract64(~address, va_size - t1sz, t1sz - tbi)) { |
3dde962f PM |
5470 | /* there is a ttbr1 region and we are in it (high bits all one) */ |
5471 | ttbr_select = 1; | |
5472 | } else if (!t0sz) { | |
5473 | /* ttbr0 region is "everything not in the ttbr1 region" */ | |
5474 | ttbr_select = 0; | |
5475 | } else if (!t1sz) { | |
5476 | /* ttbr1 region is "everything not in the ttbr0 region" */ | |
5477 | ttbr_select = 1; | |
5478 | } else { | |
5479 | /* in the gap between the two regions, this is a Translation fault */ | |
5480 | fault_type = translation_fault; | |
5481 | goto do_fault; | |
5482 | } | |
5483 | ||
5484 | /* Note that QEMU ignores shareability and cacheability attributes, | |
5485 | * so we don't need to do anything with the SH, ORGN, IRGN fields | |
5486 | * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the | |
5487 | * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently | |
5488 | * implement any ASID-like capability so we can ignore it (instead | |
5489 | * we will always flush the TLB any time the ASID is changed). | |
5490 | */ | |
5491 | if (ttbr_select == 0) { | |
7dd8c9af | 5492 | ttbr = A32_BANKED_CURRENT_REG_GET(env, ttbr0); |
11f136ee | 5493 | epd = extract32(tcr->raw_tcr, 7, 1); |
3dde962f | 5494 | tsz = t0sz; |
2c8dd318 | 5495 | |
11f136ee | 5496 | tg = extract32(tcr->raw_tcr, 14, 2); |
2c8dd318 RH |
5497 | if (tg == 1) { /* 64KB pages */ |
5498 | granule_sz = 13; | |
5499 | } | |
5500 | if (tg == 2) { /* 16KB pages */ | |
5501 | granule_sz = 11; | |
5502 | } | |
3dde962f | 5503 | } else { |
7dd8c9af | 5504 | ttbr = A32_BANKED_CURRENT_REG_GET(env, ttbr1); |
11f136ee | 5505 | epd = extract32(tcr->raw_tcr, 23, 1); |
3dde962f | 5506 | tsz = t1sz; |
2c8dd318 | 5507 | |
11f136ee | 5508 | tg = extract32(tcr->raw_tcr, 30, 2); |
2c8dd318 RH |
5509 | if (tg == 3) { /* 64KB pages */ |
5510 | granule_sz = 13; | |
5511 | } | |
5512 | if (tg == 1) { /* 16KB pages */ | |
5513 | granule_sz = 11; | |
5514 | } | |
3dde962f PM |
5515 | } |
5516 | ||
0480f69a PM |
5517 | /* Here we should have set up all the parameters for the translation: |
5518 | * va_size, ttbr, epd, tsz, granule_sz, tbi | |
5519 | */ | |
5520 | ||
3dde962f PM |
5521 | if (epd) { |
5522 | /* Translation table walk disabled => Translation fault on TLB miss */ | |
5523 | goto do_fault; | |
5524 | } | |
5525 | ||
d6be29e3 PM |
5526 | /* The starting level depends on the virtual address size (which can be |
5527 | * up to 48 bits) and the translation granule size. It indicates the number | |
5528 | * of strides (granule_sz bits at a time) needed to consume the bits | |
5529 | * of the input address. In the pseudocode this is: | |
5530 | * level = 4 - RoundUp((inputsize - grainsize) / stride) | |
5531 | * where their 'inputsize' is our 'va_size - tsz', 'grainsize' is | |
5532 | * our 'granule_sz + 3' and 'stride' is our 'granule_sz'. | |
5533 | * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: | |
5534 | * = 4 - (va_size - tsz - granule_sz - 3 + granule_sz - 1) / granule_sz | |
5535 | * = 4 - (va_size - tsz - 4) / granule_sz; | |
3dde962f | 5536 | */ |
d6be29e3 | 5537 | level = 4 - (va_size - tsz - 4) / granule_sz; |
3dde962f PM |
5538 | |
5539 | /* Clear the vaddr bits which aren't part of the within-region address, | |
5540 | * so that we don't have to special case things when calculating the | |
5541 | * first descriptor address. | |
5542 | */ | |
2c8dd318 RH |
5543 | if (tsz) { |
5544 | address &= (1ULL << (va_size - tsz)) - 1; | |
5545 | } | |
5546 | ||
5547 | descmask = (1ULL << (granule_sz + 3)) - 1; | |
3dde962f PM |
5548 | |
5549 | /* Now we can extract the actual base address from the TTBR */ | |
2c8dd318 RH |
5550 | descaddr = extract64(ttbr, 0, 48); |
5551 | descaddr &= ~((1ULL << (va_size - tsz - (granule_sz * (4 - level)))) - 1); | |
3dde962f | 5552 | |
ebca90e4 PM |
5553 | /* Secure accesses start with the page table in secure memory and |
5554 | * can be downgraded to non-secure at any step. Non-secure accesses | |
5555 | * remain non-secure. We implement this by just ORing in the NSTable/NS | |
5556 | * bits at each step. | |
5557 | */ | |
5558 | tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); | |
3dde962f PM |
5559 | for (;;) { |
5560 | uint64_t descriptor; | |
ebca90e4 | 5561 | bool nstable; |
3dde962f | 5562 | |
2c8dd318 RH |
5563 | descaddr |= (address >> (granule_sz * (4 - level))) & descmask; |
5564 | descaddr &= ~7ULL; | |
ebca90e4 PM |
5565 | nstable = extract32(tableattrs, 4, 1); |
5566 | descriptor = arm_ldq_ptw(cs, descaddr, !nstable); | |
3dde962f PM |
5567 | if (!(descriptor & 1) || |
5568 | (!(descriptor & 2) && (level == 3))) { | |
5569 | /* Invalid, or the Reserved level 3 encoding */ | |
5570 | goto do_fault; | |
5571 | } | |
5572 | descaddr = descriptor & 0xfffffff000ULL; | |
5573 | ||
5574 | if ((descriptor & 2) && (level < 3)) { | |
5575 | /* Table entry. The top five bits are attributes which may | |
5576 | * propagate down through lower levels of the table (and | |
5577 | * which are all arranged so that 0 means "no effect", so | |
5578 | * we can gather them up by ORing in the bits at each level). | |
5579 | */ | |
5580 | tableattrs |= extract64(descriptor, 59, 5); | |
5581 | level++; | |
5582 | continue; | |
5583 | } | |
5584 | /* Block entry at level 1 or 2, or page entry at level 3. | |
5585 | * These are basically the same thing, although the number | |
5586 | * of bits we pull in from the vaddr varies. | |
5587 | */ | |
5661ae6b | 5588 | page_size = (1ULL << ((granule_sz * (4 - level)) + 3)); |
3dde962f PM |
5589 | descaddr |= (address & (page_size - 1)); |
5590 | /* Extract attributes from the descriptor and merge with table attrs */ | |
d615efac IC |
5591 | attrs = extract64(descriptor, 2, 10) |
5592 | | (extract64(descriptor, 52, 12) << 10); | |
3dde962f PM |
5593 | attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ |
5594 | attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */ | |
5595 | /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 | |
5596 | * means "force PL1 access only", which means forcing AP[1] to 0. | |
5597 | */ | |
5598 | if (extract32(tableattrs, 2, 1)) { | |
5599 | attrs &= ~(1 << 4); | |
5600 | } | |
ebca90e4 | 5601 | attrs |= nstable << 3; /* NS */ |
3dde962f PM |
5602 | break; |
5603 | } | |
5604 | /* Here descaddr is the final physical address, and attributes | |
5605 | * are all in attrs. | |
5606 | */ | |
5607 | fault_type = access_fault; | |
5608 | if ((attrs & (1 << 8)) == 0) { | |
5609 | /* Access flag */ | |
5610 | goto do_fault; | |
5611 | } | |
d8e052b3 AJ |
5612 | |
5613 | ap = extract32(attrs, 4, 2); | |
5614 | ns = extract32(attrs, 3, 1); | |
5615 | xn = extract32(attrs, 12, 1); | |
5616 | pxn = extract32(attrs, 11, 1); | |
5617 | ||
5618 | *prot = get_S1prot(env, mmu_idx, va_size == 64, ap, ns, xn, pxn); | |
5619 | ||
3dde962f | 5620 | fault_type = permission_fault; |
d8e052b3 | 5621 | if (!(*prot & (1 << access_type))) { |
3dde962f PM |
5622 | goto do_fault; |
5623 | } | |
3dde962f | 5624 | |
8bf5b6a9 PM |
5625 | if (ns) { |
5626 | /* The NS bit will (as required by the architecture) have no effect if | |
5627 | * the CPU doesn't support TZ or this is a non-secure translation | |
5628 | * regime, because the attribute will already be non-secure. | |
5629 | */ | |
5630 | txattrs->secure = false; | |
5631 | } | |
3dde962f PM |
5632 | *phys_ptr = descaddr; |
5633 | *page_size_ptr = page_size; | |
5634 | return 0; | |
5635 | ||
5636 | do_fault: | |
5637 | /* Long-descriptor format IFSR/DFSR value */ | |
5638 | return (1 << 9) | (fault_type << 2) | level; | |
5639 | } | |
5640 | ||
77a71dd1 | 5641 | static int get_phys_addr_mpu(CPUARMState *env, uint32_t address, |
0480f69a | 5642 | int access_type, ARMMMUIdx mmu_idx, |
a8170e5e | 5643 | hwaddr *phys_ptr, int *prot) |
9ee6e8bb PB |
5644 | { |
5645 | int n; | |
5646 | uint32_t mask; | |
5647 | uint32_t base; | |
0480f69a | 5648 | bool is_user = regime_is_user(env, mmu_idx); |
9ee6e8bb PB |
5649 | |
5650 | *phys_ptr = address; | |
5651 | for (n = 7; n >= 0; n--) { | |
554b0b09 | 5652 | base = env->cp15.c6_region[n]; |
87c3d486 | 5653 | if ((base & 1) == 0) { |
554b0b09 | 5654 | continue; |
87c3d486 | 5655 | } |
554b0b09 PM |
5656 | mask = 1 << ((base >> 1) & 0x1f); |
5657 | /* Keep this shift separate from the above to avoid an | |
5658 | (undefined) << 32. */ | |
5659 | mask = (mask << 1) - 1; | |
87c3d486 | 5660 | if (((base ^ address) & ~mask) == 0) { |
554b0b09 | 5661 | break; |
87c3d486 | 5662 | } |
9ee6e8bb | 5663 | } |
87c3d486 | 5664 | if (n < 0) { |
554b0b09 | 5665 | return 2; |
87c3d486 | 5666 | } |
9ee6e8bb PB |
5667 | |
5668 | if (access_type == 2) { | |
7e09797c | 5669 | mask = env->cp15.pmsav5_insn_ap; |
9ee6e8bb | 5670 | } else { |
7e09797c | 5671 | mask = env->cp15.pmsav5_data_ap; |
9ee6e8bb PB |
5672 | } |
5673 | mask = (mask >> (n * 4)) & 0xf; | |
5674 | switch (mask) { | |
5675 | case 0: | |
554b0b09 | 5676 | return 1; |
9ee6e8bb | 5677 | case 1: |
87c3d486 PM |
5678 | if (is_user) { |
5679 | return 1; | |
5680 | } | |
554b0b09 PM |
5681 | *prot = PAGE_READ | PAGE_WRITE; |
5682 | break; | |
9ee6e8bb | 5683 | case 2: |
554b0b09 | 5684 | *prot = PAGE_READ; |
87c3d486 | 5685 | if (!is_user) { |
554b0b09 | 5686 | *prot |= PAGE_WRITE; |
87c3d486 | 5687 | } |
554b0b09 | 5688 | break; |
9ee6e8bb | 5689 | case 3: |
554b0b09 PM |
5690 | *prot = PAGE_READ | PAGE_WRITE; |
5691 | break; | |
9ee6e8bb | 5692 | case 5: |
87c3d486 | 5693 | if (is_user) { |
554b0b09 | 5694 | return 1; |
87c3d486 | 5695 | } |
554b0b09 PM |
5696 | *prot = PAGE_READ; |
5697 | break; | |
9ee6e8bb | 5698 | case 6: |
554b0b09 PM |
5699 | *prot = PAGE_READ; |
5700 | break; | |
9ee6e8bb | 5701 | default: |
554b0b09 PM |
5702 | /* Bad permission. */ |
5703 | return 1; | |
9ee6e8bb | 5704 | } |
3ad493fc | 5705 | *prot |= PAGE_EXEC; |
9ee6e8bb PB |
5706 | return 0; |
5707 | } | |
5708 | ||
702a9357 PM |
5709 | /* get_phys_addr - get the physical address for this virtual address |
5710 | * | |
5711 | * Find the physical address corresponding to the given virtual address, | |
5712 | * by doing a translation table walk on MMU based systems or using the | |
5713 | * MPU state on MPU based systems. | |
5714 | * | |
8bf5b6a9 PM |
5715 | * Returns 0 if the translation was successful. Otherwise, phys_ptr, attrs, |
5716 | * prot and page_size may not be filled in, and the return value provides | |
702a9357 PM |
5717 | * information on why the translation aborted, in the format of a |
5718 | * DFSR/IFSR fault register, with the following caveats: | |
5719 | * * we honour the short vs long DFSR format differences. | |
5720 | * * the WnR bit is never set (the caller must do this). | |
5721 | * * for MPU based systems we don't bother to return a full FSR format | |
5722 | * value. | |
5723 | * | |
5724 | * @env: CPUARMState | |
5725 | * @address: virtual address to get physical address for | |
5726 | * @access_type: 0 for read, 1 for write, 2 for execute | |
d3649702 | 5727 | * @mmu_idx: MMU index indicating required translation regime |
702a9357 | 5728 | * @phys_ptr: set to the physical address corresponding to the virtual address |
8bf5b6a9 | 5729 | * @attrs: set to the memory transaction attributes to use |
702a9357 PM |
5730 | * @prot: set to the permissions for the page containing phys_ptr |
5731 | * @page_size: set to the size of the page containing phys_ptr | |
5732 | */ | |
2c8dd318 | 5733 | static inline int get_phys_addr(CPUARMState *env, target_ulong address, |
d3649702 | 5734 | int access_type, ARMMMUIdx mmu_idx, |
8bf5b6a9 | 5735 | hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, |
d4c430a8 | 5736 | target_ulong *page_size) |
9ee6e8bb | 5737 | { |
0480f69a PM |
5738 | if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { |
5739 | /* TODO: when we support EL2 we should here call ourselves recursively | |
ebca90e4 PM |
5740 | * to do the stage 1 and then stage 2 translations. The arm_ld*_ptw |
5741 | * functions will also need changing to perform ARMMMUIdx_S2NS loads | |
5742 | * rather than direct physical memory loads when appropriate. | |
0480f69a PM |
5743 | * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. |
5744 | */ | |
5745 | assert(!arm_feature(env, ARM_FEATURE_EL2)); | |
5746 | mmu_idx += ARMMMUIdx_S1NSE0; | |
5747 | } | |
d3649702 | 5748 | |
8bf5b6a9 PM |
5749 | /* The page table entries may downgrade secure to non-secure, but |
5750 | * cannot upgrade an non-secure translation regime's attributes | |
5751 | * to secure. | |
5752 | */ | |
5753 | attrs->secure = regime_is_secure(env, mmu_idx); | |
0995bf8c | 5754 | attrs->user = regime_is_user(env, mmu_idx); |
8bf5b6a9 | 5755 | |
0480f69a PM |
5756 | /* Fast Context Switch Extension. This doesn't exist at all in v8. |
5757 | * In v7 and earlier it affects all stage 1 translations. | |
5758 | */ | |
5759 | if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS | |
5760 | && !arm_feature(env, ARM_FEATURE_V8)) { | |
5761 | if (regime_el(env, mmu_idx) == 3) { | |
5762 | address += env->cp15.fcseidr_s; | |
5763 | } else { | |
5764 | address += env->cp15.fcseidr_ns; | |
5765 | } | |
54bf36ed | 5766 | } |
9ee6e8bb | 5767 | |
0480f69a | 5768 | if (regime_translation_disabled(env, mmu_idx)) { |
9ee6e8bb PB |
5769 | /* MMU/MPU disabled. */ |
5770 | *phys_ptr = address; | |
3ad493fc | 5771 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
d4c430a8 | 5772 | *page_size = TARGET_PAGE_SIZE; |
9ee6e8bb | 5773 | return 0; |
0480f69a PM |
5774 | } |
5775 | ||
5776 | if (arm_feature(env, ARM_FEATURE_MPU)) { | |
d4c430a8 | 5777 | *page_size = TARGET_PAGE_SIZE; |
0480f69a PM |
5778 | return get_phys_addr_mpu(env, address, access_type, mmu_idx, phys_ptr, |
5779 | prot); | |
5780 | } | |
5781 | ||
5782 | if (regime_using_lpae_format(env, mmu_idx)) { | |
5783 | return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr, | |
8bf5b6a9 | 5784 | attrs, prot, page_size); |
0480f69a PM |
5785 | } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { |
5786 | return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr, | |
8bf5b6a9 | 5787 | attrs, prot, page_size); |
9ee6e8bb | 5788 | } else { |
0480f69a | 5789 | return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr, |
d4c430a8 | 5790 | prot, page_size); |
9ee6e8bb PB |
5791 | } |
5792 | } | |
5793 | ||
7510454e AF |
5794 | int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, |
5795 | int access_type, int mmu_idx) | |
b5ff1b31 | 5796 | { |
7510454e AF |
5797 | ARMCPU *cpu = ARM_CPU(cs); |
5798 | CPUARMState *env = &cpu->env; | |
a8170e5e | 5799 | hwaddr phys_addr; |
d4c430a8 | 5800 | target_ulong page_size; |
b5ff1b31 | 5801 | int prot; |
d3649702 | 5802 | int ret; |
00892383 | 5803 | uint32_t syn; |
dcbff19b | 5804 | bool same_el = (arm_current_el(env) != 0); |
8bf5b6a9 | 5805 | MemTxAttrs attrs = {}; |
b5ff1b31 | 5806 | |
8bf5b6a9 PM |
5807 | ret = get_phys_addr(env, address, access_type, mmu_idx, &phys_addr, |
5808 | &attrs, &prot, &page_size); | |
b5ff1b31 FB |
5809 | if (ret == 0) { |
5810 | /* Map a single [sub]page. */ | |
dcd82c11 AB |
5811 | phys_addr &= TARGET_PAGE_MASK; |
5812 | address &= TARGET_PAGE_MASK; | |
8bf5b6a9 PM |
5813 | tlb_set_page_with_attrs(cs, address, phys_addr, attrs, |
5814 | prot, mmu_idx, page_size); | |
d4c430a8 | 5815 | return 0; |
b5ff1b31 FB |
5816 | } |
5817 | ||
00892383 RH |
5818 | /* AArch64 syndrome does not have an LPAE bit */ |
5819 | syn = ret & ~(1 << 9); | |
5820 | ||
5821 | /* For insn and data aborts we assume there is no instruction syndrome | |
5822 | * information; this is always true for exceptions reported to EL1. | |
5823 | */ | |
b5ff1b31 | 5824 | if (access_type == 2) { |
00892383 | 5825 | syn = syn_insn_abort(same_el, 0, 0, syn); |
27103424 | 5826 | cs->exception_index = EXCP_PREFETCH_ABORT; |
b5ff1b31 | 5827 | } else { |
00892383 | 5828 | syn = syn_data_abort(same_el, 0, 0, 0, access_type == 1, syn); |
abf1172f PM |
5829 | if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6)) { |
5830 | ret |= (1 << 11); | |
5831 | } | |
27103424 | 5832 | cs->exception_index = EXCP_DATA_ABORT; |
b5ff1b31 | 5833 | } |
00892383 RH |
5834 | |
5835 | env->exception.syndrome = syn; | |
abf1172f PM |
5836 | env->exception.vaddress = address; |
5837 | env->exception.fsr = ret; | |
b5ff1b31 FB |
5838 | return 1; |
5839 | } | |
5840 | ||
00b941e5 | 5841 | hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) |
b5ff1b31 | 5842 | { |
00b941e5 | 5843 | ARMCPU *cpu = ARM_CPU(cs); |
d3649702 | 5844 | CPUARMState *env = &cpu->env; |
a8170e5e | 5845 | hwaddr phys_addr; |
d4c430a8 | 5846 | target_ulong page_size; |
b5ff1b31 FB |
5847 | int prot; |
5848 | int ret; | |
8bf5b6a9 | 5849 | MemTxAttrs attrs = {}; |
b5ff1b31 | 5850 | |
d3649702 | 5851 | ret = get_phys_addr(env, addr, 0, cpu_mmu_index(env), &phys_addr, |
8bf5b6a9 | 5852 | &attrs, &prot, &page_size); |
b5ff1b31 | 5853 | |
00b941e5 | 5854 | if (ret != 0) { |
b5ff1b31 | 5855 | return -1; |
00b941e5 | 5856 | } |
b5ff1b31 FB |
5857 | |
5858 | return phys_addr; | |
5859 | } | |
5860 | ||
0ecb72a5 | 5861 | void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val) |
9ee6e8bb | 5862 | { |
39ea3d4e PM |
5863 | if ((env->uncached_cpsr & CPSR_M) == mode) { |
5864 | env->regs[13] = val; | |
5865 | } else { | |
f5206413 | 5866 | env->banked_r13[bank_number(mode)] = val; |
39ea3d4e | 5867 | } |
9ee6e8bb PB |
5868 | } |
5869 | ||
0ecb72a5 | 5870 | uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode) |
9ee6e8bb | 5871 | { |
39ea3d4e PM |
5872 | if ((env->uncached_cpsr & CPSR_M) == mode) { |
5873 | return env->regs[13]; | |
5874 | } else { | |
f5206413 | 5875 | return env->banked_r13[bank_number(mode)]; |
39ea3d4e | 5876 | } |
9ee6e8bb PB |
5877 | } |
5878 | ||
0ecb72a5 | 5879 | uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) |
9ee6e8bb | 5880 | { |
a47dddd7 AF |
5881 | ARMCPU *cpu = arm_env_get_cpu(env); |
5882 | ||
9ee6e8bb PB |
5883 | switch (reg) { |
5884 | case 0: /* APSR */ | |
5885 | return xpsr_read(env) & 0xf8000000; | |
5886 | case 1: /* IAPSR */ | |
5887 | return xpsr_read(env) & 0xf80001ff; | |
5888 | case 2: /* EAPSR */ | |
5889 | return xpsr_read(env) & 0xff00fc00; | |
5890 | case 3: /* xPSR */ | |
5891 | return xpsr_read(env) & 0xff00fdff; | |
5892 | case 5: /* IPSR */ | |
5893 | return xpsr_read(env) & 0x000001ff; | |
5894 | case 6: /* EPSR */ | |
5895 | return xpsr_read(env) & 0x0700fc00; | |
5896 | case 7: /* IEPSR */ | |
5897 | return xpsr_read(env) & 0x0700edff; | |
5898 | case 8: /* MSP */ | |
5899 | return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13]; | |
5900 | case 9: /* PSP */ | |
5901 | return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp; | |
5902 | case 16: /* PRIMASK */ | |
4cc35614 | 5903 | return (env->daif & PSTATE_I) != 0; |
82845826 SH |
5904 | case 17: /* BASEPRI */ |
5905 | case 18: /* BASEPRI_MAX */ | |
9ee6e8bb | 5906 | return env->v7m.basepri; |
82845826 | 5907 | case 19: /* FAULTMASK */ |
4cc35614 | 5908 | return (env->daif & PSTATE_F) != 0; |
9ee6e8bb PB |
5909 | case 20: /* CONTROL */ |
5910 | return env->v7m.control; | |
5911 | default: | |
5912 | /* ??? For debugging only. */ | |
a47dddd7 | 5913 | cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg); |
9ee6e8bb PB |
5914 | return 0; |
5915 | } | |
5916 | } | |
5917 | ||
0ecb72a5 | 5918 | void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) |
9ee6e8bb | 5919 | { |
a47dddd7 AF |
5920 | ARMCPU *cpu = arm_env_get_cpu(env); |
5921 | ||
9ee6e8bb PB |
5922 | switch (reg) { |
5923 | case 0: /* APSR */ | |
5924 | xpsr_write(env, val, 0xf8000000); | |
5925 | break; | |
5926 | case 1: /* IAPSR */ | |
5927 | xpsr_write(env, val, 0xf8000000); | |
5928 | break; | |
5929 | case 2: /* EAPSR */ | |
5930 | xpsr_write(env, val, 0xfe00fc00); | |
5931 | break; | |
5932 | case 3: /* xPSR */ | |
5933 | xpsr_write(env, val, 0xfe00fc00); | |
5934 | break; | |
5935 | case 5: /* IPSR */ | |
5936 | /* IPSR bits are readonly. */ | |
5937 | break; | |
5938 | case 6: /* EPSR */ | |
5939 | xpsr_write(env, val, 0x0600fc00); | |
5940 | break; | |
5941 | case 7: /* IEPSR */ | |
5942 | xpsr_write(env, val, 0x0600fc00); | |
5943 | break; | |
5944 | case 8: /* MSP */ | |
5945 | if (env->v7m.current_sp) | |
5946 | env->v7m.other_sp = val; | |
5947 | else | |
5948 | env->regs[13] = val; | |
5949 | break; | |
5950 | case 9: /* PSP */ | |
5951 | if (env->v7m.current_sp) | |
5952 | env->regs[13] = val; | |
5953 | else | |
5954 | env->v7m.other_sp = val; | |
5955 | break; | |
5956 | case 16: /* PRIMASK */ | |
4cc35614 PM |
5957 | if (val & 1) { |
5958 | env->daif |= PSTATE_I; | |
5959 | } else { | |
5960 | env->daif &= ~PSTATE_I; | |
5961 | } | |
9ee6e8bb | 5962 | break; |
82845826 | 5963 | case 17: /* BASEPRI */ |
9ee6e8bb PB |
5964 | env->v7m.basepri = val & 0xff; |
5965 | break; | |
82845826 | 5966 | case 18: /* BASEPRI_MAX */ |
9ee6e8bb PB |
5967 | val &= 0xff; |
5968 | if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0)) | |
5969 | env->v7m.basepri = val; | |
5970 | break; | |
82845826 | 5971 | case 19: /* FAULTMASK */ |
4cc35614 PM |
5972 | if (val & 1) { |
5973 | env->daif |= PSTATE_F; | |
5974 | } else { | |
5975 | env->daif &= ~PSTATE_F; | |
5976 | } | |
82845826 | 5977 | break; |
9ee6e8bb PB |
5978 | case 20: /* CONTROL */ |
5979 | env->v7m.control = val & 3; | |
5980 | switch_v7m_sp(env, (val & 2) != 0); | |
5981 | break; | |
5982 | default: | |
5983 | /* ??? For debugging only. */ | |
a47dddd7 | 5984 | cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg); |
9ee6e8bb PB |
5985 | return; |
5986 | } | |
5987 | } | |
5988 | ||
b5ff1b31 | 5989 | #endif |
6ddbc6e4 | 5990 | |
aca3f40b PM |
5991 | void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in) |
5992 | { | |
5993 | /* Implement DC ZVA, which zeroes a fixed-length block of memory. | |
5994 | * Note that we do not implement the (architecturally mandated) | |
5995 | * alignment fault for attempts to use this on Device memory | |
5996 | * (which matches the usual QEMU behaviour of not implementing either | |
5997 | * alignment faults or any memory attribute handling). | |
5998 | */ | |
5999 | ||
6000 | ARMCPU *cpu = arm_env_get_cpu(env); | |
6001 | uint64_t blocklen = 4 << cpu->dcz_blocksize; | |
6002 | uint64_t vaddr = vaddr_in & ~(blocklen - 1); | |
6003 | ||
6004 | #ifndef CONFIG_USER_ONLY | |
6005 | { | |
6006 | /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than | |
6007 | * the block size so we might have to do more than one TLB lookup. | |
6008 | * We know that in fact for any v8 CPU the page size is at least 4K | |
6009 | * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only | |
6010 | * 1K as an artefact of legacy v5 subpage support being present in the | |
6011 | * same QEMU executable. | |
6012 | */ | |
6013 | int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE); | |
6014 | void *hostaddr[maxidx]; | |
6015 | int try, i; | |
6016 | ||
6017 | for (try = 0; try < 2; try++) { | |
6018 | ||
6019 | for (i = 0; i < maxidx; i++) { | |
6020 | hostaddr[i] = tlb_vaddr_to_host(env, | |
6021 | vaddr + TARGET_PAGE_SIZE * i, | |
6022 | 1, cpu_mmu_index(env)); | |
6023 | if (!hostaddr[i]) { | |
6024 | break; | |
6025 | } | |
6026 | } | |
6027 | if (i == maxidx) { | |
6028 | /* If it's all in the TLB it's fair game for just writing to; | |
6029 | * we know we don't need to update dirty status, etc. | |
6030 | */ | |
6031 | for (i = 0; i < maxidx - 1; i++) { | |
6032 | memset(hostaddr[i], 0, TARGET_PAGE_SIZE); | |
6033 | } | |
6034 | memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE)); | |
6035 | return; | |
6036 | } | |
6037 | /* OK, try a store and see if we can populate the tlb. This | |
6038 | * might cause an exception if the memory isn't writable, | |
6039 | * in which case we will longjmp out of here. We must for | |
6040 | * this purpose use the actual register value passed to us | |
6041 | * so that we get the fault address right. | |
6042 | */ | |
6043 | helper_ret_stb_mmu(env, vaddr_in, 0, cpu_mmu_index(env), GETRA()); | |
6044 | /* Now we can populate the other TLB entries, if any */ | |
6045 | for (i = 0; i < maxidx; i++) { | |
6046 | uint64_t va = vaddr + TARGET_PAGE_SIZE * i; | |
6047 | if (va != (vaddr_in & TARGET_PAGE_MASK)) { | |
6048 | helper_ret_stb_mmu(env, va, 0, cpu_mmu_index(env), GETRA()); | |
6049 | } | |
6050 | } | |
6051 | } | |
6052 | ||
6053 | /* Slow path (probably attempt to do this to an I/O device or | |
6054 | * similar, or clearing of a block of code we have translations | |
6055 | * cached for). Just do a series of byte writes as the architecture | |
6056 | * demands. It's not worth trying to use a cpu_physical_memory_map(), | |
6057 | * memset(), unmap() sequence here because: | |
6058 | * + we'd need to account for the blocksize being larger than a page | |
6059 | * + the direct-RAM access case is almost always going to be dealt | |
6060 | * with in the fastpath code above, so there's no speed benefit | |
6061 | * + we would have to deal with the map returning NULL because the | |
6062 | * bounce buffer was in use | |
6063 | */ | |
6064 | for (i = 0; i < blocklen; i++) { | |
6065 | helper_ret_stb_mmu(env, vaddr + i, 0, cpu_mmu_index(env), GETRA()); | |
6066 | } | |
6067 | } | |
6068 | #else | |
6069 | memset(g2h(vaddr), 0, blocklen); | |
6070 | #endif | |
6071 | } | |
6072 | ||
6ddbc6e4 PB |
6073 | /* Note that signed overflow is undefined in C. The following routines are |
6074 | careful to use unsigned types where modulo arithmetic is required. | |
6075 | Failure to do so _will_ break on newer gcc. */ | |
6076 | ||
6077 | /* Signed saturating arithmetic. */ | |
6078 | ||
1654b2d6 | 6079 | /* Perform 16-bit signed saturating addition. */ |
6ddbc6e4 PB |
6080 | static inline uint16_t add16_sat(uint16_t a, uint16_t b) |
6081 | { | |
6082 | uint16_t res; | |
6083 | ||
6084 | res = a + b; | |
6085 | if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { | |
6086 | if (a & 0x8000) | |
6087 | res = 0x8000; | |
6088 | else | |
6089 | res = 0x7fff; | |
6090 | } | |
6091 | return res; | |
6092 | } | |
6093 | ||
1654b2d6 | 6094 | /* Perform 8-bit signed saturating addition. */ |
6ddbc6e4 PB |
6095 | static inline uint8_t add8_sat(uint8_t a, uint8_t b) |
6096 | { | |
6097 | uint8_t res; | |
6098 | ||
6099 | res = a + b; | |
6100 | if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { | |
6101 | if (a & 0x80) | |
6102 | res = 0x80; | |
6103 | else | |
6104 | res = 0x7f; | |
6105 | } | |
6106 | return res; | |
6107 | } | |
6108 | ||
1654b2d6 | 6109 | /* Perform 16-bit signed saturating subtraction. */ |
6ddbc6e4 PB |
6110 | static inline uint16_t sub16_sat(uint16_t a, uint16_t b) |
6111 | { | |
6112 | uint16_t res; | |
6113 | ||
6114 | res = a - b; | |
6115 | if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { | |
6116 | if (a & 0x8000) | |
6117 | res = 0x8000; | |
6118 | else | |
6119 | res = 0x7fff; | |
6120 | } | |
6121 | return res; | |
6122 | } | |
6123 | ||
1654b2d6 | 6124 | /* Perform 8-bit signed saturating subtraction. */ |
6ddbc6e4 PB |
6125 | static inline uint8_t sub8_sat(uint8_t a, uint8_t b) |
6126 | { | |
6127 | uint8_t res; | |
6128 | ||
6129 | res = a - b; | |
6130 | if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { | |
6131 | if (a & 0x80) | |
6132 | res = 0x80; | |
6133 | else | |
6134 | res = 0x7f; | |
6135 | } | |
6136 | return res; | |
6137 | } | |
6138 | ||
6139 | #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); | |
6140 | #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); | |
6141 | #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); | |
6142 | #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); | |
6143 | #define PFX q | |
6144 | ||
6145 | #include "op_addsub.h" | |
6146 | ||
6147 | /* Unsigned saturating arithmetic. */ | |
460a09c1 | 6148 | static inline uint16_t add16_usat(uint16_t a, uint16_t b) |
6ddbc6e4 PB |
6149 | { |
6150 | uint16_t res; | |
6151 | res = a + b; | |
6152 | if (res < a) | |
6153 | res = 0xffff; | |
6154 | return res; | |
6155 | } | |
6156 | ||
460a09c1 | 6157 | static inline uint16_t sub16_usat(uint16_t a, uint16_t b) |
6ddbc6e4 | 6158 | { |
4c4fd3f8 | 6159 | if (a > b) |
6ddbc6e4 PB |
6160 | return a - b; |
6161 | else | |
6162 | return 0; | |
6163 | } | |
6164 | ||
6165 | static inline uint8_t add8_usat(uint8_t a, uint8_t b) | |
6166 | { | |
6167 | uint8_t res; | |
6168 | res = a + b; | |
6169 | if (res < a) | |
6170 | res = 0xff; | |
6171 | return res; | |
6172 | } | |
6173 | ||
6174 | static inline uint8_t sub8_usat(uint8_t a, uint8_t b) | |
6175 | { | |
4c4fd3f8 | 6176 | if (a > b) |
6ddbc6e4 PB |
6177 | return a - b; |
6178 | else | |
6179 | return 0; | |
6180 | } | |
6181 | ||
6182 | #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); | |
6183 | #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); | |
6184 | #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); | |
6185 | #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); | |
6186 | #define PFX uq | |
6187 | ||
6188 | #include "op_addsub.h" | |
6189 | ||
6190 | /* Signed modulo arithmetic. */ | |
6191 | #define SARITH16(a, b, n, op) do { \ | |
6192 | int32_t sum; \ | |
db6e2e65 | 6193 | sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ |
6ddbc6e4 PB |
6194 | RESULT(sum, n, 16); \ |
6195 | if (sum >= 0) \ | |
6196 | ge |= 3 << (n * 2); \ | |
6197 | } while(0) | |
6198 | ||
6199 | #define SARITH8(a, b, n, op) do { \ | |
6200 | int32_t sum; \ | |
db6e2e65 | 6201 | sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ |
6ddbc6e4 PB |
6202 | RESULT(sum, n, 8); \ |
6203 | if (sum >= 0) \ | |
6204 | ge |= 1 << n; \ | |
6205 | } while(0) | |
6206 | ||
6207 | ||
6208 | #define ADD16(a, b, n) SARITH16(a, b, n, +) | |
6209 | #define SUB16(a, b, n) SARITH16(a, b, n, -) | |
6210 | #define ADD8(a, b, n) SARITH8(a, b, n, +) | |
6211 | #define SUB8(a, b, n) SARITH8(a, b, n, -) | |
6212 | #define PFX s | |
6213 | #define ARITH_GE | |
6214 | ||
6215 | #include "op_addsub.h" | |
6216 | ||
6217 | /* Unsigned modulo arithmetic. */ | |
6218 | #define ADD16(a, b, n) do { \ | |
6219 | uint32_t sum; \ | |
6220 | sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ | |
6221 | RESULT(sum, n, 16); \ | |
a87aa10b | 6222 | if ((sum >> 16) == 1) \ |
6ddbc6e4 PB |
6223 | ge |= 3 << (n * 2); \ |
6224 | } while(0) | |
6225 | ||
6226 | #define ADD8(a, b, n) do { \ | |
6227 | uint32_t sum; \ | |
6228 | sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ | |
6229 | RESULT(sum, n, 8); \ | |
a87aa10b AZ |
6230 | if ((sum >> 8) == 1) \ |
6231 | ge |= 1 << n; \ | |
6ddbc6e4 PB |
6232 | } while(0) |
6233 | ||
6234 | #define SUB16(a, b, n) do { \ | |
6235 | uint32_t sum; \ | |
6236 | sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ | |
6237 | RESULT(sum, n, 16); \ | |
6238 | if ((sum >> 16) == 0) \ | |
6239 | ge |= 3 << (n * 2); \ | |
6240 | } while(0) | |
6241 | ||
6242 | #define SUB8(a, b, n) do { \ | |
6243 | uint32_t sum; \ | |
6244 | sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ | |
6245 | RESULT(sum, n, 8); \ | |
6246 | if ((sum >> 8) == 0) \ | |
a87aa10b | 6247 | ge |= 1 << n; \ |
6ddbc6e4 PB |
6248 | } while(0) |
6249 | ||
6250 | #define PFX u | |
6251 | #define ARITH_GE | |
6252 | ||
6253 | #include "op_addsub.h" | |
6254 | ||
6255 | /* Halved signed arithmetic. */ | |
6256 | #define ADD16(a, b, n) \ | |
6257 | RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) | |
6258 | #define SUB16(a, b, n) \ | |
6259 | RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) | |
6260 | #define ADD8(a, b, n) \ | |
6261 | RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) | |
6262 | #define SUB8(a, b, n) \ | |
6263 | RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) | |
6264 | #define PFX sh | |
6265 | ||
6266 | #include "op_addsub.h" | |
6267 | ||
6268 | /* Halved unsigned arithmetic. */ | |
6269 | #define ADD16(a, b, n) \ | |
6270 | RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) | |
6271 | #define SUB16(a, b, n) \ | |
6272 | RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) | |
6273 | #define ADD8(a, b, n) \ | |
6274 | RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) | |
6275 | #define SUB8(a, b, n) \ | |
6276 | RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) | |
6277 | #define PFX uh | |
6278 | ||
6279 | #include "op_addsub.h" | |
6280 | ||
6281 | static inline uint8_t do_usad(uint8_t a, uint8_t b) | |
6282 | { | |
6283 | if (a > b) | |
6284 | return a - b; | |
6285 | else | |
6286 | return b - a; | |
6287 | } | |
6288 | ||
6289 | /* Unsigned sum of absolute byte differences. */ | |
6290 | uint32_t HELPER(usad8)(uint32_t a, uint32_t b) | |
6291 | { | |
6292 | uint32_t sum; | |
6293 | sum = do_usad(a, b); | |
6294 | sum += do_usad(a >> 8, b >> 8); | |
6295 | sum += do_usad(a >> 16, b >>16); | |
6296 | sum += do_usad(a >> 24, b >> 24); | |
6297 | return sum; | |
6298 | } | |
6299 | ||
6300 | /* For ARMv6 SEL instruction. */ | |
6301 | uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) | |
6302 | { | |
6303 | uint32_t mask; | |
6304 | ||
6305 | mask = 0; | |
6306 | if (flags & 1) | |
6307 | mask |= 0xff; | |
6308 | if (flags & 2) | |
6309 | mask |= 0xff00; | |
6310 | if (flags & 4) | |
6311 | mask |= 0xff0000; | |
6312 | if (flags & 8) | |
6313 | mask |= 0xff000000; | |
6314 | return (a & mask) | (b & ~mask); | |
6315 | } | |
6316 | ||
b90372ad PM |
6317 | /* VFP support. We follow the convention used for VFP instructions: |
6318 | Single precision routines have a "s" suffix, double precision a | |
4373f3ce PB |
6319 | "d" suffix. */ |
6320 | ||
6321 | /* Convert host exception flags to vfp form. */ | |
6322 | static inline int vfp_exceptbits_from_host(int host_bits) | |
6323 | { | |
6324 | int target_bits = 0; | |
6325 | ||
6326 | if (host_bits & float_flag_invalid) | |
6327 | target_bits |= 1; | |
6328 | if (host_bits & float_flag_divbyzero) | |
6329 | target_bits |= 2; | |
6330 | if (host_bits & float_flag_overflow) | |
6331 | target_bits |= 4; | |
36802b6b | 6332 | if (host_bits & (float_flag_underflow | float_flag_output_denormal)) |
4373f3ce PB |
6333 | target_bits |= 8; |
6334 | if (host_bits & float_flag_inexact) | |
6335 | target_bits |= 0x10; | |
cecd8504 PM |
6336 | if (host_bits & float_flag_input_denormal) |
6337 | target_bits |= 0x80; | |
4373f3ce PB |
6338 | return target_bits; |
6339 | } | |
6340 | ||
0ecb72a5 | 6341 | uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env) |
4373f3ce PB |
6342 | { |
6343 | int i; | |
6344 | uint32_t fpscr; | |
6345 | ||
6346 | fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff) | |
6347 | | (env->vfp.vec_len << 16) | |
6348 | | (env->vfp.vec_stride << 20); | |
6349 | i = get_float_exception_flags(&env->vfp.fp_status); | |
3a492f3a | 6350 | i |= get_float_exception_flags(&env->vfp.standard_fp_status); |
4373f3ce PB |
6351 | fpscr |= vfp_exceptbits_from_host(i); |
6352 | return fpscr; | |
6353 | } | |
6354 | ||
0ecb72a5 | 6355 | uint32_t vfp_get_fpscr(CPUARMState *env) |
01653295 PM |
6356 | { |
6357 | return HELPER(vfp_get_fpscr)(env); | |
6358 | } | |
6359 | ||
4373f3ce PB |
6360 | /* Convert vfp exception flags to target form. */ |
6361 | static inline int vfp_exceptbits_to_host(int target_bits) | |
6362 | { | |
6363 | int host_bits = 0; | |
6364 | ||
6365 | if (target_bits & 1) | |
6366 | host_bits |= float_flag_invalid; | |
6367 | if (target_bits & 2) | |
6368 | host_bits |= float_flag_divbyzero; | |
6369 | if (target_bits & 4) | |
6370 | host_bits |= float_flag_overflow; | |
6371 | if (target_bits & 8) | |
6372 | host_bits |= float_flag_underflow; | |
6373 | if (target_bits & 0x10) | |
6374 | host_bits |= float_flag_inexact; | |
cecd8504 PM |
6375 | if (target_bits & 0x80) |
6376 | host_bits |= float_flag_input_denormal; | |
4373f3ce PB |
6377 | return host_bits; |
6378 | } | |
6379 | ||
0ecb72a5 | 6380 | void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) |
4373f3ce PB |
6381 | { |
6382 | int i; | |
6383 | uint32_t changed; | |
6384 | ||
6385 | changed = env->vfp.xregs[ARM_VFP_FPSCR]; | |
6386 | env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff); | |
6387 | env->vfp.vec_len = (val >> 16) & 7; | |
6388 | env->vfp.vec_stride = (val >> 20) & 3; | |
6389 | ||
6390 | changed ^= val; | |
6391 | if (changed & (3 << 22)) { | |
6392 | i = (val >> 22) & 3; | |
6393 | switch (i) { | |
4d3da0f3 | 6394 | case FPROUNDING_TIEEVEN: |
4373f3ce PB |
6395 | i = float_round_nearest_even; |
6396 | break; | |
4d3da0f3 | 6397 | case FPROUNDING_POSINF: |
4373f3ce PB |
6398 | i = float_round_up; |
6399 | break; | |
4d3da0f3 | 6400 | case FPROUNDING_NEGINF: |
4373f3ce PB |
6401 | i = float_round_down; |
6402 | break; | |
4d3da0f3 | 6403 | case FPROUNDING_ZERO: |
4373f3ce PB |
6404 | i = float_round_to_zero; |
6405 | break; | |
6406 | } | |
6407 | set_float_rounding_mode(i, &env->vfp.fp_status); | |
6408 | } | |
cecd8504 | 6409 | if (changed & (1 << 24)) { |
fe76d976 | 6410 | set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); |
cecd8504 PM |
6411 | set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); |
6412 | } | |
5c7908ed PB |
6413 | if (changed & (1 << 25)) |
6414 | set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status); | |
4373f3ce | 6415 | |
b12c390b | 6416 | i = vfp_exceptbits_to_host(val); |
4373f3ce | 6417 | set_float_exception_flags(i, &env->vfp.fp_status); |
3a492f3a | 6418 | set_float_exception_flags(0, &env->vfp.standard_fp_status); |
4373f3ce PB |
6419 | } |
6420 | ||
0ecb72a5 | 6421 | void vfp_set_fpscr(CPUARMState *env, uint32_t val) |
01653295 PM |
6422 | { |
6423 | HELPER(vfp_set_fpscr)(env, val); | |
6424 | } | |
6425 | ||
4373f3ce PB |
6426 | #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) |
6427 | ||
6428 | #define VFP_BINOP(name) \ | |
ae1857ec | 6429 | float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \ |
4373f3ce | 6430 | { \ |
ae1857ec PM |
6431 | float_status *fpst = fpstp; \ |
6432 | return float32_ ## name(a, b, fpst); \ | |
4373f3ce | 6433 | } \ |
ae1857ec | 6434 | float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \ |
4373f3ce | 6435 | { \ |
ae1857ec PM |
6436 | float_status *fpst = fpstp; \ |
6437 | return float64_ ## name(a, b, fpst); \ | |
4373f3ce PB |
6438 | } |
6439 | VFP_BINOP(add) | |
6440 | VFP_BINOP(sub) | |
6441 | VFP_BINOP(mul) | |
6442 | VFP_BINOP(div) | |
f71a2ae5 PM |
6443 | VFP_BINOP(min) |
6444 | VFP_BINOP(max) | |
6445 | VFP_BINOP(minnum) | |
6446 | VFP_BINOP(maxnum) | |
4373f3ce PB |
6447 | #undef VFP_BINOP |
6448 | ||
6449 | float32 VFP_HELPER(neg, s)(float32 a) | |
6450 | { | |
6451 | return float32_chs(a); | |
6452 | } | |
6453 | ||
6454 | float64 VFP_HELPER(neg, d)(float64 a) | |
6455 | { | |
66230e0d | 6456 | return float64_chs(a); |
4373f3ce PB |
6457 | } |
6458 | ||
6459 | float32 VFP_HELPER(abs, s)(float32 a) | |
6460 | { | |
6461 | return float32_abs(a); | |
6462 | } | |
6463 | ||
6464 | float64 VFP_HELPER(abs, d)(float64 a) | |
6465 | { | |
66230e0d | 6466 | return float64_abs(a); |
4373f3ce PB |
6467 | } |
6468 | ||
0ecb72a5 | 6469 | float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env) |
4373f3ce PB |
6470 | { |
6471 | return float32_sqrt(a, &env->vfp.fp_status); | |
6472 | } | |
6473 | ||
0ecb72a5 | 6474 | float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env) |
4373f3ce PB |
6475 | { |
6476 | return float64_sqrt(a, &env->vfp.fp_status); | |
6477 | } | |
6478 | ||
6479 | /* XXX: check quiet/signaling case */ | |
6480 | #define DO_VFP_cmp(p, type) \ | |
0ecb72a5 | 6481 | void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \ |
4373f3ce PB |
6482 | { \ |
6483 | uint32_t flags; \ | |
6484 | switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \ | |
6485 | case 0: flags = 0x6; break; \ | |
6486 | case -1: flags = 0x8; break; \ | |
6487 | case 1: flags = 0x2; break; \ | |
6488 | default: case 2: flags = 0x3; break; \ | |
6489 | } \ | |
6490 | env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ | |
6491 | | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ | |
6492 | } \ | |
0ecb72a5 | 6493 | void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \ |
4373f3ce PB |
6494 | { \ |
6495 | uint32_t flags; \ | |
6496 | switch(type ## _compare(a, b, &env->vfp.fp_status)) { \ | |
6497 | case 0: flags = 0x6; break; \ | |
6498 | case -1: flags = 0x8; break; \ | |
6499 | case 1: flags = 0x2; break; \ | |
6500 | default: case 2: flags = 0x3; break; \ | |
6501 | } \ | |
6502 | env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ | |
6503 | | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ | |
6504 | } | |
6505 | DO_VFP_cmp(s, float32) | |
6506 | DO_VFP_cmp(d, float64) | |
6507 | #undef DO_VFP_cmp | |
6508 | ||
5500b06c | 6509 | /* Integer to float and float to integer conversions */ |
4373f3ce | 6510 | |
5500b06c PM |
6511 | #define CONV_ITOF(name, fsz, sign) \ |
6512 | float##fsz HELPER(name)(uint32_t x, void *fpstp) \ | |
6513 | { \ | |
6514 | float_status *fpst = fpstp; \ | |
85836979 | 6515 | return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ |
4373f3ce PB |
6516 | } |
6517 | ||
5500b06c PM |
6518 | #define CONV_FTOI(name, fsz, sign, round) \ |
6519 | uint32_t HELPER(name)(float##fsz x, void *fpstp) \ | |
6520 | { \ | |
6521 | float_status *fpst = fpstp; \ | |
6522 | if (float##fsz##_is_any_nan(x)) { \ | |
6523 | float_raise(float_flag_invalid, fpst); \ | |
6524 | return 0; \ | |
6525 | } \ | |
6526 | return float##fsz##_to_##sign##int32##round(x, fpst); \ | |
4373f3ce PB |
6527 | } |
6528 | ||
5500b06c PM |
6529 | #define FLOAT_CONVS(name, p, fsz, sign) \ |
6530 | CONV_ITOF(vfp_##name##to##p, fsz, sign) \ | |
6531 | CONV_FTOI(vfp_to##name##p, fsz, sign, ) \ | |
6532 | CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero) | |
4373f3ce | 6533 | |
5500b06c PM |
6534 | FLOAT_CONVS(si, s, 32, ) |
6535 | FLOAT_CONVS(si, d, 64, ) | |
6536 | FLOAT_CONVS(ui, s, 32, u) | |
6537 | FLOAT_CONVS(ui, d, 64, u) | |
4373f3ce | 6538 | |
5500b06c PM |
6539 | #undef CONV_ITOF |
6540 | #undef CONV_FTOI | |
6541 | #undef FLOAT_CONVS | |
4373f3ce PB |
6542 | |
6543 | /* floating point conversion */ | |
0ecb72a5 | 6544 | float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env) |
4373f3ce | 6545 | { |
2d627737 PM |
6546 | float64 r = float32_to_float64(x, &env->vfp.fp_status); |
6547 | /* ARM requires that S<->D conversion of any kind of NaN generates | |
6548 | * a quiet NaN by forcing the most significant frac bit to 1. | |
6549 | */ | |
6550 | return float64_maybe_silence_nan(r); | |
4373f3ce PB |
6551 | } |
6552 | ||
0ecb72a5 | 6553 | float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env) |
4373f3ce | 6554 | { |
2d627737 PM |
6555 | float32 r = float64_to_float32(x, &env->vfp.fp_status); |
6556 | /* ARM requires that S<->D conversion of any kind of NaN generates | |
6557 | * a quiet NaN by forcing the most significant frac bit to 1. | |
6558 | */ | |
6559 | return float32_maybe_silence_nan(r); | |
4373f3ce PB |
6560 | } |
6561 | ||
6562 | /* VFP3 fixed point conversion. */ | |
16d5b3ca | 6563 | #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ |
8ed697e8 WN |
6564 | float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \ |
6565 | void *fpstp) \ | |
4373f3ce | 6566 | { \ |
5500b06c | 6567 | float_status *fpst = fpstp; \ |
622465e1 | 6568 | float##fsz tmp; \ |
8ed697e8 | 6569 | tmp = itype##_to_##float##fsz(x, fpst); \ |
5500b06c | 6570 | return float##fsz##_scalbn(tmp, -(int)shift, fpst); \ |
16d5b3ca WN |
6571 | } |
6572 | ||
abe66f70 PM |
6573 | /* Notice that we want only input-denormal exception flags from the |
6574 | * scalbn operation: the other possible flags (overflow+inexact if | |
6575 | * we overflow to infinity, output-denormal) aren't correct for the | |
6576 | * complete scale-and-convert operation. | |
6577 | */ | |
16d5b3ca WN |
6578 | #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \ |
6579 | uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \ | |
6580 | uint32_t shift, \ | |
6581 | void *fpstp) \ | |
4373f3ce | 6582 | { \ |
5500b06c | 6583 | float_status *fpst = fpstp; \ |
abe66f70 | 6584 | int old_exc_flags = get_float_exception_flags(fpst); \ |
622465e1 PM |
6585 | float##fsz tmp; \ |
6586 | if (float##fsz##_is_any_nan(x)) { \ | |
5500b06c | 6587 | float_raise(float_flag_invalid, fpst); \ |
622465e1 | 6588 | return 0; \ |
09d9487f | 6589 | } \ |
5500b06c | 6590 | tmp = float##fsz##_scalbn(x, shift, fpst); \ |
abe66f70 PM |
6591 | old_exc_flags |= get_float_exception_flags(fpst) \ |
6592 | & float_flag_input_denormal; \ | |
6593 | set_float_exception_flags(old_exc_flags, fpst); \ | |
16d5b3ca | 6594 | return float##fsz##_to_##itype##round(tmp, fpst); \ |
622465e1 PM |
6595 | } |
6596 | ||
16d5b3ca WN |
6597 | #define VFP_CONV_FIX(name, p, fsz, isz, itype) \ |
6598 | VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ | |
3c6a074a WN |
6599 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \ |
6600 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) | |
6601 | ||
6602 | #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \ | |
6603 | VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ | |
6604 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) | |
16d5b3ca | 6605 | |
8ed697e8 WN |
6606 | VFP_CONV_FIX(sh, d, 64, 64, int16) |
6607 | VFP_CONV_FIX(sl, d, 64, 64, int32) | |
3c6a074a | 6608 | VFP_CONV_FIX_A64(sq, d, 64, 64, int64) |
8ed697e8 WN |
6609 | VFP_CONV_FIX(uh, d, 64, 64, uint16) |
6610 | VFP_CONV_FIX(ul, d, 64, 64, uint32) | |
3c6a074a | 6611 | VFP_CONV_FIX_A64(uq, d, 64, 64, uint64) |
8ed697e8 WN |
6612 | VFP_CONV_FIX(sh, s, 32, 32, int16) |
6613 | VFP_CONV_FIX(sl, s, 32, 32, int32) | |
3c6a074a | 6614 | VFP_CONV_FIX_A64(sq, s, 32, 64, int64) |
8ed697e8 WN |
6615 | VFP_CONV_FIX(uh, s, 32, 32, uint16) |
6616 | VFP_CONV_FIX(ul, s, 32, 32, uint32) | |
3c6a074a | 6617 | VFP_CONV_FIX_A64(uq, s, 32, 64, uint64) |
4373f3ce | 6618 | #undef VFP_CONV_FIX |
16d5b3ca WN |
6619 | #undef VFP_CONV_FIX_FLOAT |
6620 | #undef VFP_CONV_FLOAT_FIX_ROUND | |
4373f3ce | 6621 | |
52a1f6a3 AG |
6622 | /* Set the current fp rounding mode and return the old one. |
6623 | * The argument is a softfloat float_round_ value. | |
6624 | */ | |
6625 | uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env) | |
6626 | { | |
6627 | float_status *fp_status = &env->vfp.fp_status; | |
6628 | ||
6629 | uint32_t prev_rmode = get_float_rounding_mode(fp_status); | |
6630 | set_float_rounding_mode(rmode, fp_status); | |
6631 | ||
6632 | return prev_rmode; | |
6633 | } | |
6634 | ||
43630e58 WN |
6635 | /* Set the current fp rounding mode in the standard fp status and return |
6636 | * the old one. This is for NEON instructions that need to change the | |
6637 | * rounding mode but wish to use the standard FPSCR values for everything | |
6638 | * else. Always set the rounding mode back to the correct value after | |
6639 | * modifying it. | |
6640 | * The argument is a softfloat float_round_ value. | |
6641 | */ | |
6642 | uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env) | |
6643 | { | |
6644 | float_status *fp_status = &env->vfp.standard_fp_status; | |
6645 | ||
6646 | uint32_t prev_rmode = get_float_rounding_mode(fp_status); | |
6647 | set_float_rounding_mode(rmode, fp_status); | |
6648 | ||
6649 | return prev_rmode; | |
6650 | } | |
6651 | ||
60011498 | 6652 | /* Half precision conversions. */ |
0ecb72a5 | 6653 | static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s) |
60011498 | 6654 | { |
60011498 | 6655 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; |
fb91678d PM |
6656 | float32 r = float16_to_float32(make_float16(a), ieee, s); |
6657 | if (ieee) { | |
6658 | return float32_maybe_silence_nan(r); | |
6659 | } | |
6660 | return r; | |
60011498 PB |
6661 | } |
6662 | ||
0ecb72a5 | 6663 | static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s) |
60011498 | 6664 | { |
60011498 | 6665 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; |
fb91678d PM |
6666 | float16 r = float32_to_float16(a, ieee, s); |
6667 | if (ieee) { | |
6668 | r = float16_maybe_silence_nan(r); | |
6669 | } | |
6670 | return float16_val(r); | |
60011498 PB |
6671 | } |
6672 | ||
0ecb72a5 | 6673 | float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) |
2d981da7 PM |
6674 | { |
6675 | return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status); | |
6676 | } | |
6677 | ||
0ecb72a5 | 6678 | uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env) |
2d981da7 PM |
6679 | { |
6680 | return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status); | |
6681 | } | |
6682 | ||
0ecb72a5 | 6683 | float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) |
2d981da7 PM |
6684 | { |
6685 | return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status); | |
6686 | } | |
6687 | ||
0ecb72a5 | 6688 | uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env) |
2d981da7 PM |
6689 | { |
6690 | return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status); | |
6691 | } | |
6692 | ||
8900aad2 PM |
6693 | float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env) |
6694 | { | |
6695 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; | |
6696 | float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status); | |
6697 | if (ieee) { | |
6698 | return float64_maybe_silence_nan(r); | |
6699 | } | |
6700 | return r; | |
6701 | } | |
6702 | ||
6703 | uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env) | |
6704 | { | |
6705 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; | |
6706 | float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status); | |
6707 | if (ieee) { | |
6708 | r = float16_maybe_silence_nan(r); | |
6709 | } | |
6710 | return float16_val(r); | |
6711 | } | |
6712 | ||
dda3ec49 | 6713 | #define float32_two make_float32(0x40000000) |
6aae3df1 PM |
6714 | #define float32_three make_float32(0x40400000) |
6715 | #define float32_one_point_five make_float32(0x3fc00000) | |
dda3ec49 | 6716 | |
0ecb72a5 | 6717 | float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env) |
4373f3ce | 6718 | { |
dda3ec49 PM |
6719 | float_status *s = &env->vfp.standard_fp_status; |
6720 | if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || | |
6721 | (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { | |
43fe9bdb PM |
6722 | if (!(float32_is_zero(a) || float32_is_zero(b))) { |
6723 | float_raise(float_flag_input_denormal, s); | |
6724 | } | |
dda3ec49 PM |
6725 | return float32_two; |
6726 | } | |
6727 | return float32_sub(float32_two, float32_mul(a, b, s), s); | |
4373f3ce PB |
6728 | } |
6729 | ||
0ecb72a5 | 6730 | float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env) |
4373f3ce | 6731 | { |
71826966 | 6732 | float_status *s = &env->vfp.standard_fp_status; |
9ea62f57 PM |
6733 | float32 product; |
6734 | if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || | |
6735 | (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { | |
43fe9bdb PM |
6736 | if (!(float32_is_zero(a) || float32_is_zero(b))) { |
6737 | float_raise(float_flag_input_denormal, s); | |
6738 | } | |
6aae3df1 | 6739 | return float32_one_point_five; |
9ea62f57 | 6740 | } |
6aae3df1 PM |
6741 | product = float32_mul(a, b, s); |
6742 | return float32_div(float32_sub(float32_three, product, s), float32_two, s); | |
4373f3ce PB |
6743 | } |
6744 | ||
8f8e3aa4 PB |
6745 | /* NEON helpers. */ |
6746 | ||
56bf4fe2 CL |
6747 | /* Constants 256 and 512 are used in some helpers; we avoid relying on |
6748 | * int->float conversions at run-time. */ | |
6749 | #define float64_256 make_float64(0x4070000000000000LL) | |
6750 | #define float64_512 make_float64(0x4080000000000000LL) | |
b6d4443a AB |
6751 | #define float32_maxnorm make_float32(0x7f7fffff) |
6752 | #define float64_maxnorm make_float64(0x7fefffffffffffffLL) | |
56bf4fe2 | 6753 | |
b6d4443a AB |
6754 | /* Reciprocal functions |
6755 | * | |
6756 | * The algorithm that must be used to calculate the estimate | |
6757 | * is specified by the ARM ARM, see FPRecipEstimate() | |
fe0e4872 | 6758 | */ |
b6d4443a AB |
6759 | |
6760 | static float64 recip_estimate(float64 a, float_status *real_fp_status) | |
fe0e4872 | 6761 | { |
1146a817 PM |
6762 | /* These calculations mustn't set any fp exception flags, |
6763 | * so we use a local copy of the fp_status. | |
6764 | */ | |
b6d4443a | 6765 | float_status dummy_status = *real_fp_status; |
1146a817 | 6766 | float_status *s = &dummy_status; |
fe0e4872 CL |
6767 | /* q = (int)(a * 512.0) */ |
6768 | float64 q = float64_mul(float64_512, a, s); | |
6769 | int64_t q_int = float64_to_int64_round_to_zero(q, s); | |
6770 | ||
6771 | /* r = 1.0 / (((double)q + 0.5) / 512.0) */ | |
6772 | q = int64_to_float64(q_int, s); | |
6773 | q = float64_add(q, float64_half, s); | |
6774 | q = float64_div(q, float64_512, s); | |
6775 | q = float64_div(float64_one, q, s); | |
6776 | ||
6777 | /* s = (int)(256.0 * r + 0.5) */ | |
6778 | q = float64_mul(q, float64_256, s); | |
6779 | q = float64_add(q, float64_half, s); | |
6780 | q_int = float64_to_int64_round_to_zero(q, s); | |
6781 | ||
6782 | /* return (double)s / 256.0 */ | |
6783 | return float64_div(int64_to_float64(q_int, s), float64_256, s); | |
6784 | } | |
6785 | ||
b6d4443a AB |
6786 | /* Common wrapper to call recip_estimate */ |
6787 | static float64 call_recip_estimate(float64 num, int off, float_status *fpst) | |
4373f3ce | 6788 | { |
b6d4443a AB |
6789 | uint64_t val64 = float64_val(num); |
6790 | uint64_t frac = extract64(val64, 0, 52); | |
6791 | int64_t exp = extract64(val64, 52, 11); | |
6792 | uint64_t sbit; | |
6793 | float64 scaled, estimate; | |
fe0e4872 | 6794 | |
b6d4443a AB |
6795 | /* Generate the scaled number for the estimate function */ |
6796 | if (exp == 0) { | |
6797 | if (extract64(frac, 51, 1) == 0) { | |
6798 | exp = -1; | |
6799 | frac = extract64(frac, 0, 50) << 2; | |
6800 | } else { | |
6801 | frac = extract64(frac, 0, 51) << 1; | |
6802 | } | |
6803 | } | |
fe0e4872 | 6804 | |
b6d4443a AB |
6805 | /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */ |
6806 | scaled = make_float64((0x3feULL << 52) | |
6807 | | extract64(frac, 44, 8) << 44); | |
6808 | ||
6809 | estimate = recip_estimate(scaled, fpst); | |
6810 | ||
6811 | /* Build new result */ | |
6812 | val64 = float64_val(estimate); | |
6813 | sbit = 0x8000000000000000ULL & val64; | |
6814 | exp = off - exp; | |
6815 | frac = extract64(val64, 0, 52); | |
6816 | ||
6817 | if (exp == 0) { | |
6818 | frac = 1ULL << 51 | extract64(frac, 1, 51); | |
6819 | } else if (exp == -1) { | |
6820 | frac = 1ULL << 50 | extract64(frac, 2, 50); | |
6821 | exp = 0; | |
6822 | } | |
6823 | ||
6824 | return make_float64(sbit | (exp << 52) | frac); | |
6825 | } | |
6826 | ||
6827 | static bool round_to_inf(float_status *fpst, bool sign_bit) | |
6828 | { | |
6829 | switch (fpst->float_rounding_mode) { | |
6830 | case float_round_nearest_even: /* Round to Nearest */ | |
6831 | return true; | |
6832 | case float_round_up: /* Round to +Inf */ | |
6833 | return !sign_bit; | |
6834 | case float_round_down: /* Round to -Inf */ | |
6835 | return sign_bit; | |
6836 | case float_round_to_zero: /* Round to Zero */ | |
6837 | return false; | |
6838 | } | |
6839 | ||
6840 | g_assert_not_reached(); | |
6841 | } | |
6842 | ||
6843 | float32 HELPER(recpe_f32)(float32 input, void *fpstp) | |
6844 | { | |
6845 | float_status *fpst = fpstp; | |
6846 | float32 f32 = float32_squash_input_denormal(input, fpst); | |
6847 | uint32_t f32_val = float32_val(f32); | |
6848 | uint32_t f32_sbit = 0x80000000ULL & f32_val; | |
6849 | int32_t f32_exp = extract32(f32_val, 23, 8); | |
6850 | uint32_t f32_frac = extract32(f32_val, 0, 23); | |
6851 | float64 f64, r64; | |
6852 | uint64_t r64_val; | |
6853 | int64_t r64_exp; | |
6854 | uint64_t r64_frac; | |
6855 | ||
6856 | if (float32_is_any_nan(f32)) { | |
6857 | float32 nan = f32; | |
6858 | if (float32_is_signaling_nan(f32)) { | |
6859 | float_raise(float_flag_invalid, fpst); | |
6860 | nan = float32_maybe_silence_nan(f32); | |
fe0e4872 | 6861 | } |
b6d4443a AB |
6862 | if (fpst->default_nan_mode) { |
6863 | nan = float32_default_nan; | |
43fe9bdb | 6864 | } |
b6d4443a AB |
6865 | return nan; |
6866 | } else if (float32_is_infinity(f32)) { | |
6867 | return float32_set_sign(float32_zero, float32_is_neg(f32)); | |
6868 | } else if (float32_is_zero(f32)) { | |
6869 | float_raise(float_flag_divbyzero, fpst); | |
6870 | return float32_set_sign(float32_infinity, float32_is_neg(f32)); | |
6871 | } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) { | |
6872 | /* Abs(value) < 2.0^-128 */ | |
6873 | float_raise(float_flag_overflow | float_flag_inexact, fpst); | |
6874 | if (round_to_inf(fpst, f32_sbit)) { | |
6875 | return float32_set_sign(float32_infinity, float32_is_neg(f32)); | |
6876 | } else { | |
6877 | return float32_set_sign(float32_maxnorm, float32_is_neg(f32)); | |
6878 | } | |
6879 | } else if (f32_exp >= 253 && fpst->flush_to_zero) { | |
6880 | float_raise(float_flag_underflow, fpst); | |
6881 | return float32_set_sign(float32_zero, float32_is_neg(f32)); | |
fe0e4872 CL |
6882 | } |
6883 | ||
fe0e4872 | 6884 | |
b6d4443a AB |
6885 | f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29); |
6886 | r64 = call_recip_estimate(f64, 253, fpst); | |
6887 | r64_val = float64_val(r64); | |
6888 | r64_exp = extract64(r64_val, 52, 11); | |
6889 | r64_frac = extract64(r64_val, 0, 52); | |
6890 | ||
6891 | /* result = sign : result_exp<7:0> : fraction<51:29>; */ | |
6892 | return make_float32(f32_sbit | | |
6893 | (r64_exp & 0xff) << 23 | | |
6894 | extract64(r64_frac, 29, 24)); | |
6895 | } | |
6896 | ||
6897 | float64 HELPER(recpe_f64)(float64 input, void *fpstp) | |
6898 | { | |
6899 | float_status *fpst = fpstp; | |
6900 | float64 f64 = float64_squash_input_denormal(input, fpst); | |
6901 | uint64_t f64_val = float64_val(f64); | |
6902 | uint64_t f64_sbit = 0x8000000000000000ULL & f64_val; | |
6903 | int64_t f64_exp = extract64(f64_val, 52, 11); | |
6904 | float64 r64; | |
6905 | uint64_t r64_val; | |
6906 | int64_t r64_exp; | |
6907 | uint64_t r64_frac; | |
6908 | ||
6909 | /* Deal with any special cases */ | |
6910 | if (float64_is_any_nan(f64)) { | |
6911 | float64 nan = f64; | |
6912 | if (float64_is_signaling_nan(f64)) { | |
6913 | float_raise(float_flag_invalid, fpst); | |
6914 | nan = float64_maybe_silence_nan(f64); | |
6915 | } | |
6916 | if (fpst->default_nan_mode) { | |
6917 | nan = float64_default_nan; | |
6918 | } | |
6919 | return nan; | |
6920 | } else if (float64_is_infinity(f64)) { | |
6921 | return float64_set_sign(float64_zero, float64_is_neg(f64)); | |
6922 | } else if (float64_is_zero(f64)) { | |
6923 | float_raise(float_flag_divbyzero, fpst); | |
6924 | return float64_set_sign(float64_infinity, float64_is_neg(f64)); | |
6925 | } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) { | |
6926 | /* Abs(value) < 2.0^-1024 */ | |
6927 | float_raise(float_flag_overflow | float_flag_inexact, fpst); | |
6928 | if (round_to_inf(fpst, f64_sbit)) { | |
6929 | return float64_set_sign(float64_infinity, float64_is_neg(f64)); | |
6930 | } else { | |
6931 | return float64_set_sign(float64_maxnorm, float64_is_neg(f64)); | |
6932 | } | |
fc1792e9 | 6933 | } else if (f64_exp >= 2045 && fpst->flush_to_zero) { |
b6d4443a AB |
6934 | float_raise(float_flag_underflow, fpst); |
6935 | return float64_set_sign(float64_zero, float64_is_neg(f64)); | |
6936 | } | |
fe0e4872 | 6937 | |
b6d4443a AB |
6938 | r64 = call_recip_estimate(f64, 2045, fpst); |
6939 | r64_val = float64_val(r64); | |
6940 | r64_exp = extract64(r64_val, 52, 11); | |
6941 | r64_frac = extract64(r64_val, 0, 52); | |
fe0e4872 | 6942 | |
b6d4443a AB |
6943 | /* result = sign : result_exp<10:0> : fraction<51:0> */ |
6944 | return make_float64(f64_sbit | | |
6945 | ((r64_exp & 0x7ff) << 52) | | |
6946 | r64_frac); | |
4373f3ce PB |
6947 | } |
6948 | ||
e07be5d2 CL |
6949 | /* The algorithm that must be used to calculate the estimate |
6950 | * is specified by the ARM ARM. | |
6951 | */ | |
c2fb418e | 6952 | static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status) |
e07be5d2 | 6953 | { |
1146a817 PM |
6954 | /* These calculations mustn't set any fp exception flags, |
6955 | * so we use a local copy of the fp_status. | |
6956 | */ | |
c2fb418e | 6957 | float_status dummy_status = *real_fp_status; |
1146a817 | 6958 | float_status *s = &dummy_status; |
e07be5d2 CL |
6959 | float64 q; |
6960 | int64_t q_int; | |
6961 | ||
6962 | if (float64_lt(a, float64_half, s)) { | |
6963 | /* range 0.25 <= a < 0.5 */ | |
6964 | ||
6965 | /* a in units of 1/512 rounded down */ | |
6966 | /* q0 = (int)(a * 512.0); */ | |
6967 | q = float64_mul(float64_512, a, s); | |
6968 | q_int = float64_to_int64_round_to_zero(q, s); | |
6969 | ||
6970 | /* reciprocal root r */ | |
6971 | /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */ | |
6972 | q = int64_to_float64(q_int, s); | |
6973 | q = float64_add(q, float64_half, s); | |
6974 | q = float64_div(q, float64_512, s); | |
6975 | q = float64_sqrt(q, s); | |
6976 | q = float64_div(float64_one, q, s); | |
6977 | } else { | |
6978 | /* range 0.5 <= a < 1.0 */ | |
6979 | ||
6980 | /* a in units of 1/256 rounded down */ | |
6981 | /* q1 = (int)(a * 256.0); */ | |
6982 | q = float64_mul(float64_256, a, s); | |
6983 | int64_t q_int = float64_to_int64_round_to_zero(q, s); | |
6984 | ||
6985 | /* reciprocal root r */ | |
6986 | /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */ | |
6987 | q = int64_to_float64(q_int, s); | |
6988 | q = float64_add(q, float64_half, s); | |
6989 | q = float64_div(q, float64_256, s); | |
6990 | q = float64_sqrt(q, s); | |
6991 | q = float64_div(float64_one, q, s); | |
6992 | } | |
6993 | /* r in units of 1/256 rounded to nearest */ | |
6994 | /* s = (int)(256.0 * r + 0.5); */ | |
6995 | ||
6996 | q = float64_mul(q, float64_256,s ); | |
6997 | q = float64_add(q, float64_half, s); | |
6998 | q_int = float64_to_int64_round_to_zero(q, s); | |
6999 | ||
7000 | /* return (double)s / 256.0;*/ | |
7001 | return float64_div(int64_to_float64(q_int, s), float64_256, s); | |
7002 | } | |
7003 | ||
c2fb418e | 7004 | float32 HELPER(rsqrte_f32)(float32 input, void *fpstp) |
4373f3ce | 7005 | { |
c2fb418e AB |
7006 | float_status *s = fpstp; |
7007 | float32 f32 = float32_squash_input_denormal(input, s); | |
7008 | uint32_t val = float32_val(f32); | |
7009 | uint32_t f32_sbit = 0x80000000 & val; | |
7010 | int32_t f32_exp = extract32(val, 23, 8); | |
7011 | uint32_t f32_frac = extract32(val, 0, 23); | |
7012 | uint64_t f64_frac; | |
7013 | uint64_t val64; | |
e07be5d2 CL |
7014 | int result_exp; |
7015 | float64 f64; | |
e07be5d2 | 7016 | |
c2fb418e AB |
7017 | if (float32_is_any_nan(f32)) { |
7018 | float32 nan = f32; | |
7019 | if (float32_is_signaling_nan(f32)) { | |
e07be5d2 | 7020 | float_raise(float_flag_invalid, s); |
c2fb418e | 7021 | nan = float32_maybe_silence_nan(f32); |
e07be5d2 | 7022 | } |
c2fb418e AB |
7023 | if (s->default_nan_mode) { |
7024 | nan = float32_default_nan; | |
43fe9bdb | 7025 | } |
c2fb418e AB |
7026 | return nan; |
7027 | } else if (float32_is_zero(f32)) { | |
e07be5d2 | 7028 | float_raise(float_flag_divbyzero, s); |
c2fb418e AB |
7029 | return float32_set_sign(float32_infinity, float32_is_neg(f32)); |
7030 | } else if (float32_is_neg(f32)) { | |
e07be5d2 CL |
7031 | float_raise(float_flag_invalid, s); |
7032 | return float32_default_nan; | |
c2fb418e | 7033 | } else if (float32_is_infinity(f32)) { |
e07be5d2 CL |
7034 | return float32_zero; |
7035 | } | |
7036 | ||
c2fb418e | 7037 | /* Scale and normalize to a double-precision value between 0.25 and 1.0, |
e07be5d2 | 7038 | * preserving the parity of the exponent. */ |
c2fb418e AB |
7039 | |
7040 | f64_frac = ((uint64_t) f32_frac) << 29; | |
7041 | if (f32_exp == 0) { | |
7042 | while (extract64(f64_frac, 51, 1) == 0) { | |
7043 | f64_frac = f64_frac << 1; | |
7044 | f32_exp = f32_exp-1; | |
7045 | } | |
7046 | f64_frac = extract64(f64_frac, 0, 51) << 1; | |
7047 | } | |
7048 | ||
7049 | if (extract64(f32_exp, 0, 1) == 0) { | |
7050 | f64 = make_float64(((uint64_t) f32_sbit) << 32 | |
e07be5d2 | 7051 | | (0x3feULL << 52) |
c2fb418e | 7052 | | f64_frac); |
e07be5d2 | 7053 | } else { |
c2fb418e | 7054 | f64 = make_float64(((uint64_t) f32_sbit) << 32 |
e07be5d2 | 7055 | | (0x3fdULL << 52) |
c2fb418e | 7056 | | f64_frac); |
e07be5d2 CL |
7057 | } |
7058 | ||
c2fb418e | 7059 | result_exp = (380 - f32_exp) / 2; |
e07be5d2 | 7060 | |
c2fb418e | 7061 | f64 = recip_sqrt_estimate(f64, s); |
e07be5d2 CL |
7062 | |
7063 | val64 = float64_val(f64); | |
7064 | ||
26cc6abf | 7065 | val = ((result_exp & 0xff) << 23) |
e07be5d2 CL |
7066 | | ((val64 >> 29) & 0x7fffff); |
7067 | return make_float32(val); | |
4373f3ce PB |
7068 | } |
7069 | ||
c2fb418e AB |
7070 | float64 HELPER(rsqrte_f64)(float64 input, void *fpstp) |
7071 | { | |
7072 | float_status *s = fpstp; | |
7073 | float64 f64 = float64_squash_input_denormal(input, s); | |
7074 | uint64_t val = float64_val(f64); | |
7075 | uint64_t f64_sbit = 0x8000000000000000ULL & val; | |
7076 | int64_t f64_exp = extract64(val, 52, 11); | |
7077 | uint64_t f64_frac = extract64(val, 0, 52); | |
7078 | int64_t result_exp; | |
7079 | uint64_t result_frac; | |
7080 | ||
7081 | if (float64_is_any_nan(f64)) { | |
7082 | float64 nan = f64; | |
7083 | if (float64_is_signaling_nan(f64)) { | |
7084 | float_raise(float_flag_invalid, s); | |
7085 | nan = float64_maybe_silence_nan(f64); | |
7086 | } | |
7087 | if (s->default_nan_mode) { | |
7088 | nan = float64_default_nan; | |
7089 | } | |
7090 | return nan; | |
7091 | } else if (float64_is_zero(f64)) { | |
7092 | float_raise(float_flag_divbyzero, s); | |
7093 | return float64_set_sign(float64_infinity, float64_is_neg(f64)); | |
7094 | } else if (float64_is_neg(f64)) { | |
7095 | float_raise(float_flag_invalid, s); | |
7096 | return float64_default_nan; | |
7097 | } else if (float64_is_infinity(f64)) { | |
7098 | return float64_zero; | |
7099 | } | |
7100 | ||
7101 | /* Scale and normalize to a double-precision value between 0.25 and 1.0, | |
7102 | * preserving the parity of the exponent. */ | |
7103 | ||
7104 | if (f64_exp == 0) { | |
7105 | while (extract64(f64_frac, 51, 1) == 0) { | |
7106 | f64_frac = f64_frac << 1; | |
7107 | f64_exp = f64_exp - 1; | |
7108 | } | |
7109 | f64_frac = extract64(f64_frac, 0, 51) << 1; | |
7110 | } | |
7111 | ||
7112 | if (extract64(f64_exp, 0, 1) == 0) { | |
7113 | f64 = make_float64(f64_sbit | |
7114 | | (0x3feULL << 52) | |
7115 | | f64_frac); | |
7116 | } else { | |
7117 | f64 = make_float64(f64_sbit | |
7118 | | (0x3fdULL << 52) | |
7119 | | f64_frac); | |
7120 | } | |
7121 | ||
7122 | result_exp = (3068 - f64_exp) / 2; | |
7123 | ||
7124 | f64 = recip_sqrt_estimate(f64, s); | |
7125 | ||
7126 | result_frac = extract64(float64_val(f64), 0, 52); | |
7127 | ||
7128 | return make_float64(f64_sbit | | |
7129 | ((result_exp & 0x7ff) << 52) | | |
7130 | result_frac); | |
7131 | } | |
7132 | ||
b6d4443a | 7133 | uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp) |
4373f3ce | 7134 | { |
b6d4443a | 7135 | float_status *s = fpstp; |
fe0e4872 CL |
7136 | float64 f64; |
7137 | ||
7138 | if ((a & 0x80000000) == 0) { | |
7139 | return 0xffffffff; | |
7140 | } | |
7141 | ||
7142 | f64 = make_float64((0x3feULL << 52) | |
7143 | | ((int64_t)(a & 0x7fffffff) << 21)); | |
7144 | ||
b6d4443a | 7145 | f64 = recip_estimate(f64, s); |
fe0e4872 CL |
7146 | |
7147 | return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); | |
4373f3ce PB |
7148 | } |
7149 | ||
c2fb418e | 7150 | uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp) |
4373f3ce | 7151 | { |
c2fb418e | 7152 | float_status *fpst = fpstp; |
e07be5d2 CL |
7153 | float64 f64; |
7154 | ||
7155 | if ((a & 0xc0000000) == 0) { | |
7156 | return 0xffffffff; | |
7157 | } | |
7158 | ||
7159 | if (a & 0x80000000) { | |
7160 | f64 = make_float64((0x3feULL << 52) | |
7161 | | ((uint64_t)(a & 0x7fffffff) << 21)); | |
7162 | } else { /* bits 31-30 == '01' */ | |
7163 | f64 = make_float64((0x3fdULL << 52) | |
7164 | | ((uint64_t)(a & 0x3fffffff) << 22)); | |
7165 | } | |
7166 | ||
c2fb418e | 7167 | f64 = recip_sqrt_estimate(f64, fpst); |
e07be5d2 CL |
7168 | |
7169 | return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); | |
4373f3ce | 7170 | } |
fe1479c3 | 7171 | |
da97f52c PM |
7172 | /* VFPv4 fused multiply-accumulate */ |
7173 | float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp) | |
7174 | { | |
7175 | float_status *fpst = fpstp; | |
7176 | return float32_muladd(a, b, c, 0, fpst); | |
7177 | } | |
7178 | ||
7179 | float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp) | |
7180 | { | |
7181 | float_status *fpst = fpstp; | |
7182 | return float64_muladd(a, b, c, 0, fpst); | |
7183 | } | |
d9b0848d PM |
7184 | |
7185 | /* ARMv8 round to integral */ | |
7186 | float32 HELPER(rints_exact)(float32 x, void *fp_status) | |
7187 | { | |
7188 | return float32_round_to_int(x, fp_status); | |
7189 | } | |
7190 | ||
7191 | float64 HELPER(rintd_exact)(float64 x, void *fp_status) | |
7192 | { | |
7193 | return float64_round_to_int(x, fp_status); | |
7194 | } | |
7195 | ||
7196 | float32 HELPER(rints)(float32 x, void *fp_status) | |
7197 | { | |
7198 | int old_flags = get_float_exception_flags(fp_status), new_flags; | |
7199 | float32 ret; | |
7200 | ||
7201 | ret = float32_round_to_int(x, fp_status); | |
7202 | ||
7203 | /* Suppress any inexact exceptions the conversion produced */ | |
7204 | if (!(old_flags & float_flag_inexact)) { | |
7205 | new_flags = get_float_exception_flags(fp_status); | |
7206 | set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); | |
7207 | } | |
7208 | ||
7209 | return ret; | |
7210 | } | |
7211 | ||
7212 | float64 HELPER(rintd)(float64 x, void *fp_status) | |
7213 | { | |
7214 | int old_flags = get_float_exception_flags(fp_status), new_flags; | |
7215 | float64 ret; | |
7216 | ||
7217 | ret = float64_round_to_int(x, fp_status); | |
7218 | ||
7219 | new_flags = get_float_exception_flags(fp_status); | |
7220 | ||
7221 | /* Suppress any inexact exceptions the conversion produced */ | |
7222 | if (!(old_flags & float_flag_inexact)) { | |
7223 | new_flags = get_float_exception_flags(fp_status); | |
7224 | set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); | |
7225 | } | |
7226 | ||
7227 | return ret; | |
7228 | } | |
9972da66 WN |
7229 | |
7230 | /* Convert ARM rounding mode to softfloat */ | |
7231 | int arm_rmode_to_sf(int rmode) | |
7232 | { | |
7233 | switch (rmode) { | |
7234 | case FPROUNDING_TIEAWAY: | |
7235 | rmode = float_round_ties_away; | |
7236 | break; | |
7237 | case FPROUNDING_ODD: | |
7238 | /* FIXME: add support for TIEAWAY and ODD */ | |
7239 | qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n", | |
7240 | rmode); | |
7241 | case FPROUNDING_TIEEVEN: | |
7242 | default: | |
7243 | rmode = float_round_nearest_even; | |
7244 | break; | |
7245 | case FPROUNDING_POSINF: | |
7246 | rmode = float_round_up; | |
7247 | break; | |
7248 | case FPROUNDING_NEGINF: | |
7249 | rmode = float_round_down; | |
7250 | break; | |
7251 | case FPROUNDING_ZERO: | |
7252 | rmode = float_round_to_zero; | |
7253 | break; | |
7254 | } | |
7255 | return rmode; | |
7256 | } | |
eb0ecd5a | 7257 | |
aa633469 PM |
7258 | /* CRC helpers. |
7259 | * The upper bytes of val (above the number specified by 'bytes') must have | |
7260 | * been zeroed out by the caller. | |
7261 | */ | |
eb0ecd5a WN |
7262 | uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) |
7263 | { | |
7264 | uint8_t buf[4]; | |
7265 | ||
aa633469 | 7266 | stl_le_p(buf, val); |
eb0ecd5a WN |
7267 | |
7268 | /* zlib crc32 converts the accumulator and output to one's complement. */ | |
7269 | return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; | |
7270 | } | |
7271 | ||
7272 | uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) | |
7273 | { | |
7274 | uint8_t buf[4]; | |
7275 | ||
aa633469 | 7276 | stl_le_p(buf, val); |
eb0ecd5a WN |
7277 | |
7278 | /* Linux crc32c converts the output to one's complement. */ | |
7279 | return crc32c(acc, buf, bytes) ^ 0xffffffff; | |
7280 | } |