]>
Commit | Line | Data |
---|---|---|
05330448 AL |
1 | /* |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright (C) 2006-2008 Qumranet Technologies | |
5 | * Copyright IBM, Corp. 2008 | |
6 | * | |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
9 | * | |
10 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
11 | * See the COPYING file in the top-level directory. | |
12 | * | |
13 | */ | |
14 | ||
15 | #include <sys/types.h> | |
16 | #include <sys/ioctl.h> | |
17 | #include <sys/mman.h> | |
25d2e361 | 18 | #include <sys/utsname.h> |
05330448 AL |
19 | |
20 | #include <linux/kvm.h> | |
5802e066 | 21 | #include <linux/kvm_para.h> |
05330448 AL |
22 | |
23 | #include "qemu-common.h" | |
9c17d615 PB |
24 | #include "sysemu/sysemu.h" |
25 | #include "sysemu/kvm.h" | |
1d31f66b | 26 | #include "kvm_i386.h" |
05330448 | 27 | #include "cpu.h" |
022c62cb | 28 | #include "exec/gdbstub.h" |
1de7afc9 PB |
29 | #include "qemu/host-utils.h" |
30 | #include "qemu/config-file.h" | |
0d09e41a PB |
31 | #include "hw/i386/pc.h" |
32 | #include "hw/i386/apic.h" | |
022c62cb | 33 | #include "exec/ioport.h" |
92067bf4 | 34 | #include <asm/hyperv.h> |
a2cb15b0 | 35 | #include "hw/pci/pci.h" |
05330448 AL |
36 | |
37 | //#define DEBUG_KVM | |
38 | ||
39 | #ifdef DEBUG_KVM | |
8c0d577e | 40 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
41 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) |
42 | #else | |
8c0d577e | 43 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
44 | do { } while (0) |
45 | #endif | |
46 | ||
1a03675d GC |
47 | #define MSR_KVM_WALL_CLOCK 0x11 |
48 | #define MSR_KVM_SYSTEM_TIME 0x12 | |
49 | ||
c0532a76 MT |
50 | #ifndef BUS_MCEERR_AR |
51 | #define BUS_MCEERR_AR 4 | |
52 | #endif | |
53 | #ifndef BUS_MCEERR_AO | |
54 | #define BUS_MCEERR_AO 5 | |
55 | #endif | |
56 | ||
94a8d39a JK |
57 | const KVMCapabilityInfo kvm_arch_required_capabilities[] = { |
58 | KVM_CAP_INFO(SET_TSS_ADDR), | |
59 | KVM_CAP_INFO(EXT_CPUID), | |
60 | KVM_CAP_INFO(MP_STATE), | |
61 | KVM_CAP_LAST_INFO | |
62 | }; | |
25d2e361 | 63 | |
c3a3a7d3 JK |
64 | static bool has_msr_star; |
65 | static bool has_msr_hsave_pa; | |
f28558d3 | 66 | static bool has_msr_tsc_adjust; |
aa82ba54 | 67 | static bool has_msr_tsc_deadline; |
df67696e | 68 | static bool has_msr_feature_control; |
c5999bfc | 69 | static bool has_msr_async_pf_en; |
bc9a839d | 70 | static bool has_msr_pv_eoi_en; |
21e87c46 | 71 | static bool has_msr_misc_enable; |
79e9ebeb | 72 | static bool has_msr_bndcfgs; |
917367aa | 73 | static bool has_msr_kvm_steal_time; |
25d2e361 | 74 | static int lm_capable_kernel; |
b827df58 | 75 | |
0d894367 PB |
76 | static bool has_msr_architectural_pmu; |
77 | static uint32_t num_architectural_pmu_counters; | |
78 | ||
1d31f66b PM |
79 | bool kvm_allows_irq0_override(void) |
80 | { | |
81 | return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing(); | |
82 | } | |
83 | ||
b827df58 AK |
84 | static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) |
85 | { | |
86 | struct kvm_cpuid2 *cpuid; | |
87 | int r, size; | |
88 | ||
89 | size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); | |
7267c094 | 90 | cpuid = (struct kvm_cpuid2 *)g_malloc0(size); |
b827df58 AK |
91 | cpuid->nent = max; |
92 | r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid); | |
76ae317f MM |
93 | if (r == 0 && cpuid->nent >= max) { |
94 | r = -E2BIG; | |
95 | } | |
b827df58 AK |
96 | if (r < 0) { |
97 | if (r == -E2BIG) { | |
7267c094 | 98 | g_free(cpuid); |
b827df58 AK |
99 | return NULL; |
100 | } else { | |
101 | fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n", | |
102 | strerror(-r)); | |
103 | exit(1); | |
104 | } | |
105 | } | |
106 | return cpuid; | |
107 | } | |
108 | ||
dd87f8a6 EH |
109 | /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough |
110 | * for all entries. | |
111 | */ | |
112 | static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s) | |
113 | { | |
114 | struct kvm_cpuid2 *cpuid; | |
115 | int max = 1; | |
116 | while ((cpuid = try_get_cpuid(s, max)) == NULL) { | |
117 | max *= 2; | |
118 | } | |
119 | return cpuid; | |
120 | } | |
121 | ||
0c31b744 GC |
122 | struct kvm_para_features { |
123 | int cap; | |
124 | int feature; | |
125 | } para_features[] = { | |
126 | { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE }, | |
127 | { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY }, | |
128 | { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP }, | |
0c31b744 | 129 | { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF }, |
0c31b744 GC |
130 | { -1, -1 } |
131 | }; | |
132 | ||
ba9bc59e | 133 | static int get_para_features(KVMState *s) |
0c31b744 GC |
134 | { |
135 | int i, features = 0; | |
136 | ||
137 | for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) { | |
ba9bc59e | 138 | if (kvm_check_extension(s, para_features[i].cap)) { |
0c31b744 GC |
139 | features |= (1 << para_features[i].feature); |
140 | } | |
141 | } | |
142 | ||
143 | return features; | |
144 | } | |
0c31b744 GC |
145 | |
146 | ||
829ae2f9 EH |
147 | /* Returns the value for a specific register on the cpuid entry |
148 | */ | |
149 | static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg) | |
150 | { | |
151 | uint32_t ret = 0; | |
152 | switch (reg) { | |
153 | case R_EAX: | |
154 | ret = entry->eax; | |
155 | break; | |
156 | case R_EBX: | |
157 | ret = entry->ebx; | |
158 | break; | |
159 | case R_ECX: | |
160 | ret = entry->ecx; | |
161 | break; | |
162 | case R_EDX: | |
163 | ret = entry->edx; | |
164 | break; | |
165 | } | |
166 | return ret; | |
167 | } | |
168 | ||
4fb73f1d EH |
169 | /* Find matching entry for function/index on kvm_cpuid2 struct |
170 | */ | |
171 | static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid, | |
172 | uint32_t function, | |
173 | uint32_t index) | |
174 | { | |
175 | int i; | |
176 | for (i = 0; i < cpuid->nent; ++i) { | |
177 | if (cpuid->entries[i].function == function && | |
178 | cpuid->entries[i].index == index) { | |
179 | return &cpuid->entries[i]; | |
180 | } | |
181 | } | |
182 | /* not found: */ | |
183 | return NULL; | |
184 | } | |
185 | ||
ba9bc59e | 186 | uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function, |
c958a8bd | 187 | uint32_t index, int reg) |
b827df58 AK |
188 | { |
189 | struct kvm_cpuid2 *cpuid; | |
b827df58 AK |
190 | uint32_t ret = 0; |
191 | uint32_t cpuid_1_edx; | |
8c723b79 | 192 | bool found = false; |
b827df58 | 193 | |
dd87f8a6 | 194 | cpuid = get_supported_cpuid(s); |
b827df58 | 195 | |
4fb73f1d EH |
196 | struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index); |
197 | if (entry) { | |
198 | found = true; | |
199 | ret = cpuid_entry_get_reg(entry, reg); | |
b827df58 AK |
200 | } |
201 | ||
7b46e5ce EH |
202 | /* Fixups for the data returned by KVM, below */ |
203 | ||
c2acb022 EH |
204 | if (function == 1 && reg == R_EDX) { |
205 | /* KVM before 2.6.30 misreports the following features */ | |
206 | ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA; | |
84bd945c EH |
207 | } else if (function == 1 && reg == R_ECX) { |
208 | /* We can set the hypervisor flag, even if KVM does not return it on | |
209 | * GET_SUPPORTED_CPUID | |
210 | */ | |
211 | ret |= CPUID_EXT_HYPERVISOR; | |
ac67ee26 EH |
212 | /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it |
213 | * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER, | |
214 | * and the irqchip is in the kernel. | |
215 | */ | |
216 | if (kvm_irqchip_in_kernel() && | |
217 | kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) { | |
218 | ret |= CPUID_EXT_TSC_DEADLINE_TIMER; | |
219 | } | |
41e5e76d EH |
220 | |
221 | /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled | |
222 | * without the in-kernel irqchip | |
223 | */ | |
224 | if (!kvm_irqchip_in_kernel()) { | |
225 | ret &= ~CPUID_EXT_X2APIC; | |
b827df58 | 226 | } |
c2acb022 EH |
227 | } else if (function == 0x80000001 && reg == R_EDX) { |
228 | /* On Intel, kvm returns cpuid according to the Intel spec, | |
229 | * so add missing bits according to the AMD spec: | |
230 | */ | |
231 | cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX); | |
232 | ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES; | |
b827df58 AK |
233 | } |
234 | ||
7267c094 | 235 | g_free(cpuid); |
b827df58 | 236 | |
0c31b744 | 237 | /* fallback for older kernels */ |
8c723b79 | 238 | if ((function == KVM_CPUID_FEATURES) && !found) { |
ba9bc59e | 239 | ret = get_para_features(s); |
b9bec74b | 240 | } |
0c31b744 GC |
241 | |
242 | return ret; | |
bb0300dc | 243 | } |
bb0300dc | 244 | |
3c85e74f HY |
245 | typedef struct HWPoisonPage { |
246 | ram_addr_t ram_addr; | |
247 | QLIST_ENTRY(HWPoisonPage) list; | |
248 | } HWPoisonPage; | |
249 | ||
250 | static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = | |
251 | QLIST_HEAD_INITIALIZER(hwpoison_page_list); | |
252 | ||
253 | static void kvm_unpoison_all(void *param) | |
254 | { | |
255 | HWPoisonPage *page, *next_page; | |
256 | ||
257 | QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { | |
258 | QLIST_REMOVE(page, list); | |
259 | qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); | |
7267c094 | 260 | g_free(page); |
3c85e74f HY |
261 | } |
262 | } | |
263 | ||
3c85e74f HY |
264 | static void kvm_hwpoison_page_add(ram_addr_t ram_addr) |
265 | { | |
266 | HWPoisonPage *page; | |
267 | ||
268 | QLIST_FOREACH(page, &hwpoison_page_list, list) { | |
269 | if (page->ram_addr == ram_addr) { | |
270 | return; | |
271 | } | |
272 | } | |
7267c094 | 273 | page = g_malloc(sizeof(HWPoisonPage)); |
3c85e74f HY |
274 | page->ram_addr = ram_addr; |
275 | QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); | |
276 | } | |
277 | ||
e7701825 MT |
278 | static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap, |
279 | int *max_banks) | |
280 | { | |
281 | int r; | |
282 | ||
14a09518 | 283 | r = kvm_check_extension(s, KVM_CAP_MCE); |
e7701825 MT |
284 | if (r > 0) { |
285 | *max_banks = r; | |
286 | return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap); | |
287 | } | |
288 | return -ENOSYS; | |
289 | } | |
290 | ||
bee615d4 | 291 | static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code) |
e7701825 | 292 | { |
bee615d4 | 293 | CPUX86State *env = &cpu->env; |
c34d440a JK |
294 | uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN | |
295 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S; | |
296 | uint64_t mcg_status = MCG_STATUS_MCIP; | |
e7701825 | 297 | |
c34d440a JK |
298 | if (code == BUS_MCEERR_AR) { |
299 | status |= MCI_STATUS_AR | 0x134; | |
300 | mcg_status |= MCG_STATUS_EIPV; | |
301 | } else { | |
302 | status |= 0xc0; | |
303 | mcg_status |= MCG_STATUS_RIPV; | |
419fb20a | 304 | } |
8c5cf3b6 | 305 | cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr, |
c34d440a JK |
306 | (MCM_ADDR_PHYS << 6) | 0xc, |
307 | cpu_x86_support_mca_broadcast(env) ? | |
308 | MCE_INJECT_BROADCAST : 0); | |
419fb20a | 309 | } |
419fb20a JK |
310 | |
311 | static void hardware_memory_error(void) | |
312 | { | |
313 | fprintf(stderr, "Hardware memory error!\n"); | |
314 | exit(1); | |
315 | } | |
316 | ||
20d695a9 | 317 | int kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr) |
419fb20a | 318 | { |
20d695a9 AF |
319 | X86CPU *cpu = X86_CPU(c); |
320 | CPUX86State *env = &cpu->env; | |
419fb20a | 321 | ram_addr_t ram_addr; |
a8170e5e | 322 | hwaddr paddr; |
419fb20a JK |
323 | |
324 | if ((env->mcg_cap & MCG_SER_P) && addr | |
c34d440a | 325 | && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) { |
1b5ec234 | 326 | if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL || |
a60f24b5 | 327 | !kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) { |
419fb20a JK |
328 | fprintf(stderr, "Hardware memory error for memory used by " |
329 | "QEMU itself instead of guest system!\n"); | |
330 | /* Hope we are lucky for AO MCE */ | |
331 | if (code == BUS_MCEERR_AO) { | |
332 | return 0; | |
333 | } else { | |
334 | hardware_memory_error(); | |
335 | } | |
336 | } | |
3c85e74f | 337 | kvm_hwpoison_page_add(ram_addr); |
bee615d4 | 338 | kvm_mce_inject(cpu, paddr, code); |
e56ff191 | 339 | } else { |
419fb20a JK |
340 | if (code == BUS_MCEERR_AO) { |
341 | return 0; | |
342 | } else if (code == BUS_MCEERR_AR) { | |
343 | hardware_memory_error(); | |
344 | } else { | |
345 | return 1; | |
346 | } | |
347 | } | |
348 | return 0; | |
349 | } | |
350 | ||
351 | int kvm_arch_on_sigbus(int code, void *addr) | |
352 | { | |
182735ef AF |
353 | X86CPU *cpu = X86_CPU(first_cpu); |
354 | ||
355 | if ((cpu->env.mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) { | |
419fb20a | 356 | ram_addr_t ram_addr; |
a8170e5e | 357 | hwaddr paddr; |
419fb20a JK |
358 | |
359 | /* Hope we are lucky for AO MCE */ | |
1b5ec234 | 360 | if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL || |
182735ef | 361 | !kvm_physical_memory_addr_from_host(first_cpu->kvm_state, |
a60f24b5 | 362 | addr, &paddr)) { |
419fb20a JK |
363 | fprintf(stderr, "Hardware memory error for memory used by " |
364 | "QEMU itself instead of guest system!: %p\n", addr); | |
365 | return 0; | |
366 | } | |
3c85e74f | 367 | kvm_hwpoison_page_add(ram_addr); |
182735ef | 368 | kvm_mce_inject(X86_CPU(first_cpu), paddr, code); |
e56ff191 | 369 | } else { |
419fb20a JK |
370 | if (code == BUS_MCEERR_AO) { |
371 | return 0; | |
372 | } else if (code == BUS_MCEERR_AR) { | |
373 | hardware_memory_error(); | |
374 | } else { | |
375 | return 1; | |
376 | } | |
377 | } | |
378 | return 0; | |
379 | } | |
e7701825 | 380 | |
1bc22652 | 381 | static int kvm_inject_mce_oldstyle(X86CPU *cpu) |
ab443475 | 382 | { |
1bc22652 AF |
383 | CPUX86State *env = &cpu->env; |
384 | ||
ab443475 JK |
385 | if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) { |
386 | unsigned int bank, bank_num = env->mcg_cap & 0xff; | |
387 | struct kvm_x86_mce mce; | |
388 | ||
389 | env->exception_injected = -1; | |
390 | ||
391 | /* | |
392 | * There must be at least one bank in use if an MCE is pending. | |
393 | * Find it and use its values for the event injection. | |
394 | */ | |
395 | for (bank = 0; bank < bank_num; bank++) { | |
396 | if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) { | |
397 | break; | |
398 | } | |
399 | } | |
400 | assert(bank < bank_num); | |
401 | ||
402 | mce.bank = bank; | |
403 | mce.status = env->mce_banks[bank * 4 + 1]; | |
404 | mce.mcg_status = env->mcg_status; | |
405 | mce.addr = env->mce_banks[bank * 4 + 2]; | |
406 | mce.misc = env->mce_banks[bank * 4 + 3]; | |
407 | ||
1bc22652 | 408 | return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce); |
ab443475 | 409 | } |
ab443475 JK |
410 | return 0; |
411 | } | |
412 | ||
1dfb4dd9 | 413 | static void cpu_update_state(void *opaque, int running, RunState state) |
b8cc45d6 | 414 | { |
317ac620 | 415 | CPUX86State *env = opaque; |
b8cc45d6 GC |
416 | |
417 | if (running) { | |
418 | env->tsc_valid = false; | |
419 | } | |
420 | } | |
421 | ||
83b17af5 | 422 | unsigned long kvm_arch_vcpu_id(CPUState *cs) |
b164e48e | 423 | { |
83b17af5 EH |
424 | X86CPU *cpu = X86_CPU(cs); |
425 | return cpu->env.cpuid_apic_id; | |
b164e48e EH |
426 | } |
427 | ||
92067bf4 IM |
428 | #ifndef KVM_CPUID_SIGNATURE_NEXT |
429 | #define KVM_CPUID_SIGNATURE_NEXT 0x40000100 | |
430 | #endif | |
431 | ||
432 | static bool hyperv_hypercall_available(X86CPU *cpu) | |
433 | { | |
434 | return cpu->hyperv_vapic || | |
435 | (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY); | |
436 | } | |
437 | ||
438 | static bool hyperv_enabled(X86CPU *cpu) | |
439 | { | |
440 | return hyperv_hypercall_available(cpu) || | |
441 | cpu->hyperv_relaxed_timing; | |
442 | } | |
443 | ||
f8bb0565 | 444 | #define KVM_MAX_CPUID_ENTRIES 100 |
0893d460 | 445 | |
20d695a9 | 446 | int kvm_arch_init_vcpu(CPUState *cs) |
05330448 AL |
447 | { |
448 | struct { | |
486bd5a2 | 449 | struct kvm_cpuid2 cpuid; |
f8bb0565 | 450 | struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES]; |
541dc0d4 | 451 | } QEMU_PACKED cpuid_data; |
20d695a9 AF |
452 | X86CPU *cpu = X86_CPU(cs); |
453 | CPUX86State *env = &cpu->env; | |
486bd5a2 | 454 | uint32_t limit, i, j, cpuid_i; |
a33609ca | 455 | uint32_t unused; |
bb0300dc | 456 | struct kvm_cpuid_entry2 *c; |
bb0300dc | 457 | uint32_t signature[3]; |
e7429073 | 458 | int r; |
05330448 | 459 | |
ef4cbe14 SW |
460 | memset(&cpuid_data, 0, sizeof(cpuid_data)); |
461 | ||
05330448 AL |
462 | cpuid_i = 0; |
463 | ||
bb0300dc | 464 | /* Paravirtualization CPUIDs */ |
bb0300dc | 465 | c = &cpuid_data.entries[cpuid_i++]; |
bb0300dc | 466 | c->function = KVM_CPUID_SIGNATURE; |
92067bf4 | 467 | if (!hyperv_enabled(cpu)) { |
eab70139 VR |
468 | memcpy(signature, "KVMKVMKVM\0\0\0", 12); |
469 | c->eax = 0; | |
470 | } else { | |
471 | memcpy(signature, "Microsoft Hv", 12); | |
472 | c->eax = HYPERV_CPUID_MIN; | |
473 | } | |
bb0300dc GN |
474 | c->ebx = signature[0]; |
475 | c->ecx = signature[1]; | |
476 | c->edx = signature[2]; | |
477 | ||
478 | c = &cpuid_data.entries[cpuid_i++]; | |
bb0300dc | 479 | c->function = KVM_CPUID_FEATURES; |
0514ef2f | 480 | c->eax = env->features[FEAT_KVM]; |
0c31b744 | 481 | |
92067bf4 | 482 | if (hyperv_enabled(cpu)) { |
eab70139 VR |
483 | memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12); |
484 | c->eax = signature[0]; | |
485 | ||
486 | c = &cpuid_data.entries[cpuid_i++]; | |
eab70139 VR |
487 | c->function = HYPERV_CPUID_VERSION; |
488 | c->eax = 0x00001bbc; | |
489 | c->ebx = 0x00060001; | |
490 | ||
491 | c = &cpuid_data.entries[cpuid_i++]; | |
eab70139 | 492 | c->function = HYPERV_CPUID_FEATURES; |
92067bf4 | 493 | if (cpu->hyperv_relaxed_timing) { |
eab70139 VR |
494 | c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE; |
495 | } | |
92067bf4 | 496 | if (cpu->hyperv_vapic) { |
eab70139 VR |
497 | c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE; |
498 | c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE; | |
499 | } | |
500 | ||
501 | c = &cpuid_data.entries[cpuid_i++]; | |
eab70139 | 502 | c->function = HYPERV_CPUID_ENLIGHTMENT_INFO; |
92067bf4 | 503 | if (cpu->hyperv_relaxed_timing) { |
eab70139 VR |
504 | c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED; |
505 | } | |
92067bf4 | 506 | if (cpu->hyperv_vapic) { |
eab70139 VR |
507 | c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED; |
508 | } | |
92067bf4 | 509 | c->ebx = cpu->hyperv_spinlock_attempts; |
eab70139 VR |
510 | |
511 | c = &cpuid_data.entries[cpuid_i++]; | |
eab70139 VR |
512 | c->function = HYPERV_CPUID_IMPLEMENT_LIMITS; |
513 | c->eax = 0x40; | |
514 | c->ebx = 0x40; | |
515 | ||
516 | c = &cpuid_data.entries[cpuid_i++]; | |
eab70139 VR |
517 | c->function = KVM_CPUID_SIGNATURE_NEXT; |
518 | memcpy(signature, "KVMKVMKVM\0\0\0", 12); | |
519 | c->eax = 0; | |
520 | c->ebx = signature[0]; | |
521 | c->ecx = signature[1]; | |
522 | c->edx = signature[2]; | |
523 | } | |
524 | ||
0c31b744 | 525 | has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF); |
bb0300dc | 526 | |
bc9a839d MT |
527 | has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI); |
528 | ||
917367aa MT |
529 | has_msr_kvm_steal_time = c->eax & (1 << KVM_FEATURE_STEAL_TIME); |
530 | ||
a33609ca | 531 | cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); |
05330448 AL |
532 | |
533 | for (i = 0; i <= limit; i++) { | |
f8bb0565 IM |
534 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
535 | fprintf(stderr, "unsupported level value: 0x%x\n", limit); | |
536 | abort(); | |
537 | } | |
bb0300dc | 538 | c = &cpuid_data.entries[cpuid_i++]; |
486bd5a2 AL |
539 | |
540 | switch (i) { | |
a36b1029 AL |
541 | case 2: { |
542 | /* Keep reading function 2 till all the input is received */ | |
543 | int times; | |
544 | ||
a36b1029 | 545 | c->function = i; |
a33609ca AL |
546 | c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC | |
547 | KVM_CPUID_FLAG_STATE_READ_NEXT; | |
548 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
549 | times = c->eax & 0xff; | |
a36b1029 AL |
550 | |
551 | for (j = 1; j < times; ++j) { | |
f8bb0565 IM |
552 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
553 | fprintf(stderr, "cpuid_data is full, no space for " | |
554 | "cpuid(eax:2):eax & 0xf = 0x%x\n", times); | |
555 | abort(); | |
556 | } | |
a33609ca | 557 | c = &cpuid_data.entries[cpuid_i++]; |
a36b1029 | 558 | c->function = i; |
a33609ca AL |
559 | c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC; |
560 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
a36b1029 AL |
561 | } |
562 | break; | |
563 | } | |
486bd5a2 AL |
564 | case 4: |
565 | case 0xb: | |
566 | case 0xd: | |
567 | for (j = 0; ; j++) { | |
31e8c696 AP |
568 | if (i == 0xd && j == 64) { |
569 | break; | |
570 | } | |
486bd5a2 AL |
571 | c->function = i; |
572 | c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | |
573 | c->index = j; | |
a33609ca | 574 | cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); |
486bd5a2 | 575 | |
b9bec74b | 576 | if (i == 4 && c->eax == 0) { |
486bd5a2 | 577 | break; |
b9bec74b JK |
578 | } |
579 | if (i == 0xb && !(c->ecx & 0xff00)) { | |
486bd5a2 | 580 | break; |
b9bec74b JK |
581 | } |
582 | if (i == 0xd && c->eax == 0) { | |
31e8c696 | 583 | continue; |
b9bec74b | 584 | } |
f8bb0565 IM |
585 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
586 | fprintf(stderr, "cpuid_data is full, no space for " | |
587 | "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); | |
588 | abort(); | |
589 | } | |
a33609ca | 590 | c = &cpuid_data.entries[cpuid_i++]; |
486bd5a2 AL |
591 | } |
592 | break; | |
593 | default: | |
486bd5a2 | 594 | c->function = i; |
a33609ca AL |
595 | c->flags = 0; |
596 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
486bd5a2 AL |
597 | break; |
598 | } | |
05330448 | 599 | } |
0d894367 PB |
600 | |
601 | if (limit >= 0x0a) { | |
602 | uint32_t ver; | |
603 | ||
604 | cpu_x86_cpuid(env, 0x0a, 0, &ver, &unused, &unused, &unused); | |
605 | if ((ver & 0xff) > 0) { | |
606 | has_msr_architectural_pmu = true; | |
607 | num_architectural_pmu_counters = (ver & 0xff00) >> 8; | |
608 | ||
609 | /* Shouldn't be more than 32, since that's the number of bits | |
610 | * available in EBX to tell us _which_ counters are available. | |
611 | * Play it safe. | |
612 | */ | |
613 | if (num_architectural_pmu_counters > MAX_GP_COUNTERS) { | |
614 | num_architectural_pmu_counters = MAX_GP_COUNTERS; | |
615 | } | |
616 | } | |
617 | } | |
618 | ||
a33609ca | 619 | cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); |
05330448 AL |
620 | |
621 | for (i = 0x80000000; i <= limit; i++) { | |
f8bb0565 IM |
622 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
623 | fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit); | |
624 | abort(); | |
625 | } | |
bb0300dc | 626 | c = &cpuid_data.entries[cpuid_i++]; |
05330448 | 627 | |
05330448 | 628 | c->function = i; |
a33609ca AL |
629 | c->flags = 0; |
630 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
05330448 AL |
631 | } |
632 | ||
b3baa152 BW |
633 | /* Call Centaur's CPUID instructions they are supported. */ |
634 | if (env->cpuid_xlevel2 > 0) { | |
b3baa152 BW |
635 | cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused); |
636 | ||
637 | for (i = 0xC0000000; i <= limit; i++) { | |
f8bb0565 IM |
638 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
639 | fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit); | |
640 | abort(); | |
641 | } | |
b3baa152 BW |
642 | c = &cpuid_data.entries[cpuid_i++]; |
643 | ||
644 | c->function = i; | |
645 | c->flags = 0; | |
646 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
647 | } | |
648 | } | |
649 | ||
05330448 AL |
650 | cpuid_data.cpuid.nent = cpuid_i; |
651 | ||
e7701825 | 652 | if (((env->cpuid_version >> 8)&0xF) >= 6 |
0514ef2f | 653 | && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) == |
fc7a504c | 654 | (CPUID_MCE | CPUID_MCA) |
a60f24b5 | 655 | && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) { |
e7701825 MT |
656 | uint64_t mcg_cap; |
657 | int banks; | |
32a42024 | 658 | int ret; |
e7701825 | 659 | |
a60f24b5 | 660 | ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks); |
75d49497 JK |
661 | if (ret < 0) { |
662 | fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret)); | |
663 | return ret; | |
e7701825 | 664 | } |
75d49497 JK |
665 | |
666 | if (banks > MCE_BANKS_DEF) { | |
667 | banks = MCE_BANKS_DEF; | |
668 | } | |
669 | mcg_cap &= MCE_CAP_DEF; | |
670 | mcg_cap |= banks; | |
1bc22652 | 671 | ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &mcg_cap); |
75d49497 JK |
672 | if (ret < 0) { |
673 | fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret)); | |
674 | return ret; | |
675 | } | |
676 | ||
677 | env->mcg_cap = mcg_cap; | |
e7701825 | 678 | } |
e7701825 | 679 | |
b8cc45d6 GC |
680 | qemu_add_vm_change_state_handler(cpu_update_state, env); |
681 | ||
df67696e LJ |
682 | c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0); |
683 | if (c) { | |
684 | has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) || | |
685 | !!(c->ecx & CPUID_EXT_SMX); | |
686 | } | |
687 | ||
7e680753 | 688 | cpuid_data.cpuid.padding = 0; |
1bc22652 | 689 | r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data); |
fdc9c41a JK |
690 | if (r) { |
691 | return r; | |
692 | } | |
e7429073 | 693 | |
a60f24b5 | 694 | r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL); |
e7429073 | 695 | if (r && env->tsc_khz) { |
1bc22652 | 696 | r = kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz); |
e7429073 JR |
697 | if (r < 0) { |
698 | fprintf(stderr, "KVM_SET_TSC_KHZ failed\n"); | |
699 | return r; | |
700 | } | |
701 | } | |
e7429073 | 702 | |
fabacc0f JK |
703 | if (kvm_has_xsave()) { |
704 | env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave)); | |
705 | } | |
706 | ||
e7429073 | 707 | return 0; |
05330448 AL |
708 | } |
709 | ||
20d695a9 | 710 | void kvm_arch_reset_vcpu(CPUState *cs) |
caa5af0f | 711 | { |
20d695a9 AF |
712 | X86CPU *cpu = X86_CPU(cs); |
713 | CPUX86State *env = &cpu->env; | |
dd673288 | 714 | |
e73223a5 | 715 | env->exception_injected = -1; |
0e607a80 | 716 | env->interrupt_injected = -1; |
1a5e9d2f | 717 | env->xcr0 = 1; |
ddced198 | 718 | if (kvm_irqchip_in_kernel()) { |
dd673288 | 719 | env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE : |
ddced198 MT |
720 | KVM_MP_STATE_UNINITIALIZED; |
721 | } else { | |
722 | env->mp_state = KVM_MP_STATE_RUNNABLE; | |
723 | } | |
caa5af0f JK |
724 | } |
725 | ||
c3a3a7d3 | 726 | static int kvm_get_supported_msrs(KVMState *s) |
05330448 | 727 | { |
75b10c43 | 728 | static int kvm_supported_msrs; |
c3a3a7d3 | 729 | int ret = 0; |
05330448 AL |
730 | |
731 | /* first time */ | |
75b10c43 | 732 | if (kvm_supported_msrs == 0) { |
05330448 AL |
733 | struct kvm_msr_list msr_list, *kvm_msr_list; |
734 | ||
75b10c43 | 735 | kvm_supported_msrs = -1; |
05330448 AL |
736 | |
737 | /* Obtain MSR list from KVM. These are the MSRs that we must | |
738 | * save/restore */ | |
4c9f7372 | 739 | msr_list.nmsrs = 0; |
c3a3a7d3 | 740 | ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list); |
6fb6d245 | 741 | if (ret < 0 && ret != -E2BIG) { |
c3a3a7d3 | 742 | return ret; |
6fb6d245 | 743 | } |
d9db889f JK |
744 | /* Old kernel modules had a bug and could write beyond the provided |
745 | memory. Allocate at least a safe amount of 1K. */ | |
7267c094 | 746 | kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) + |
d9db889f JK |
747 | msr_list.nmsrs * |
748 | sizeof(msr_list.indices[0]))); | |
05330448 | 749 | |
55308450 | 750 | kvm_msr_list->nmsrs = msr_list.nmsrs; |
c3a3a7d3 | 751 | ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list); |
05330448 AL |
752 | if (ret >= 0) { |
753 | int i; | |
754 | ||
755 | for (i = 0; i < kvm_msr_list->nmsrs; i++) { | |
756 | if (kvm_msr_list->indices[i] == MSR_STAR) { | |
c3a3a7d3 | 757 | has_msr_star = true; |
75b10c43 MT |
758 | continue; |
759 | } | |
760 | if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) { | |
c3a3a7d3 | 761 | has_msr_hsave_pa = true; |
75b10c43 | 762 | continue; |
05330448 | 763 | } |
f28558d3 WA |
764 | if (kvm_msr_list->indices[i] == MSR_TSC_ADJUST) { |
765 | has_msr_tsc_adjust = true; | |
766 | continue; | |
767 | } | |
aa82ba54 LJ |
768 | if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) { |
769 | has_msr_tsc_deadline = true; | |
770 | continue; | |
771 | } | |
21e87c46 AK |
772 | if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) { |
773 | has_msr_misc_enable = true; | |
774 | continue; | |
775 | } | |
79e9ebeb LJ |
776 | if (kvm_msr_list->indices[i] == MSR_IA32_BNDCFGS) { |
777 | has_msr_bndcfgs = true; | |
778 | continue; | |
779 | } | |
05330448 AL |
780 | } |
781 | } | |
782 | ||
7267c094 | 783 | g_free(kvm_msr_list); |
05330448 AL |
784 | } |
785 | ||
c3a3a7d3 | 786 | return ret; |
05330448 AL |
787 | } |
788 | ||
cad1e282 | 789 | int kvm_arch_init(KVMState *s) |
20420430 | 790 | { |
11076198 | 791 | uint64_t identity_base = 0xfffbc000; |
39d6960a | 792 | uint64_t shadow_mem; |
20420430 | 793 | int ret; |
25d2e361 | 794 | struct utsname utsname; |
20420430 | 795 | |
c3a3a7d3 | 796 | ret = kvm_get_supported_msrs(s); |
20420430 | 797 | if (ret < 0) { |
20420430 SY |
798 | return ret; |
799 | } | |
25d2e361 MT |
800 | |
801 | uname(&utsname); | |
802 | lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0; | |
803 | ||
4c5b10b7 | 804 | /* |
11076198 JK |
805 | * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly. |
806 | * In order to use vm86 mode, an EPT identity map and a TSS are needed. | |
807 | * Since these must be part of guest physical memory, we need to allocate | |
808 | * them, both by setting their start addresses in the kernel and by | |
809 | * creating a corresponding e820 entry. We need 4 pages before the BIOS. | |
810 | * | |
811 | * Older KVM versions may not support setting the identity map base. In | |
812 | * that case we need to stick with the default, i.e. a 256K maximum BIOS | |
813 | * size. | |
4c5b10b7 | 814 | */ |
11076198 JK |
815 | if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) { |
816 | /* Allows up to 16M BIOSes. */ | |
817 | identity_base = 0xfeffc000; | |
818 | ||
819 | ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base); | |
820 | if (ret < 0) { | |
821 | return ret; | |
822 | } | |
4c5b10b7 | 823 | } |
e56ff191 | 824 | |
11076198 JK |
825 | /* Set TSS base one page after EPT identity map. */ |
826 | ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000); | |
20420430 SY |
827 | if (ret < 0) { |
828 | return ret; | |
829 | } | |
830 | ||
11076198 JK |
831 | /* Tell fw_cfg to notify the BIOS to reserve the range. */ |
832 | ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED); | |
20420430 | 833 | if (ret < 0) { |
11076198 | 834 | fprintf(stderr, "e820_add_entry() table is full\n"); |
20420430 SY |
835 | return ret; |
836 | } | |
3c85e74f | 837 | qemu_register_reset(kvm_unpoison_all, NULL); |
20420430 | 838 | |
36ad0e94 MA |
839 | shadow_mem = qemu_opt_get_size(qemu_get_machine_opts(), |
840 | "kvm_shadow_mem", -1); | |
841 | if (shadow_mem != -1) { | |
842 | shadow_mem /= 4096; | |
843 | ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem); | |
844 | if (ret < 0) { | |
845 | return ret; | |
39d6960a JK |
846 | } |
847 | } | |
11076198 | 848 | return 0; |
05330448 | 849 | } |
b9bec74b | 850 | |
05330448 AL |
851 | static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) |
852 | { | |
853 | lhs->selector = rhs->selector; | |
854 | lhs->base = rhs->base; | |
855 | lhs->limit = rhs->limit; | |
856 | lhs->type = 3; | |
857 | lhs->present = 1; | |
858 | lhs->dpl = 3; | |
859 | lhs->db = 0; | |
860 | lhs->s = 1; | |
861 | lhs->l = 0; | |
862 | lhs->g = 0; | |
863 | lhs->avl = 0; | |
864 | lhs->unusable = 0; | |
865 | } | |
866 | ||
867 | static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) | |
868 | { | |
869 | unsigned flags = rhs->flags; | |
870 | lhs->selector = rhs->selector; | |
871 | lhs->base = rhs->base; | |
872 | lhs->limit = rhs->limit; | |
873 | lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; | |
874 | lhs->present = (flags & DESC_P_MASK) != 0; | |
acaa7550 | 875 | lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3; |
05330448 AL |
876 | lhs->db = (flags >> DESC_B_SHIFT) & 1; |
877 | lhs->s = (flags & DESC_S_MASK) != 0; | |
878 | lhs->l = (flags >> DESC_L_SHIFT) & 1; | |
879 | lhs->g = (flags & DESC_G_MASK) != 0; | |
880 | lhs->avl = (flags & DESC_AVL_MASK) != 0; | |
881 | lhs->unusable = 0; | |
7e680753 | 882 | lhs->padding = 0; |
05330448 AL |
883 | } |
884 | ||
885 | static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) | |
886 | { | |
887 | lhs->selector = rhs->selector; | |
888 | lhs->base = rhs->base; | |
889 | lhs->limit = rhs->limit; | |
b9bec74b JK |
890 | lhs->flags = (rhs->type << DESC_TYPE_SHIFT) | |
891 | (rhs->present * DESC_P_MASK) | | |
892 | (rhs->dpl << DESC_DPL_SHIFT) | | |
893 | (rhs->db << DESC_B_SHIFT) | | |
894 | (rhs->s * DESC_S_MASK) | | |
895 | (rhs->l << DESC_L_SHIFT) | | |
896 | (rhs->g * DESC_G_MASK) | | |
897 | (rhs->avl * DESC_AVL_MASK); | |
05330448 AL |
898 | } |
899 | ||
900 | static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) | |
901 | { | |
b9bec74b | 902 | if (set) { |
05330448 | 903 | *kvm_reg = *qemu_reg; |
b9bec74b | 904 | } else { |
05330448 | 905 | *qemu_reg = *kvm_reg; |
b9bec74b | 906 | } |
05330448 AL |
907 | } |
908 | ||
1bc22652 | 909 | static int kvm_getput_regs(X86CPU *cpu, int set) |
05330448 | 910 | { |
1bc22652 | 911 | CPUX86State *env = &cpu->env; |
05330448 AL |
912 | struct kvm_regs regs; |
913 | int ret = 0; | |
914 | ||
915 | if (!set) { | |
1bc22652 | 916 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, ®s); |
b9bec74b | 917 | if (ret < 0) { |
05330448 | 918 | return ret; |
b9bec74b | 919 | } |
05330448 AL |
920 | } |
921 | ||
922 | kvm_getput_reg(®s.rax, &env->regs[R_EAX], set); | |
923 | kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set); | |
924 | kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set); | |
925 | kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set); | |
926 | kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set); | |
927 | kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set); | |
928 | kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set); | |
929 | kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set); | |
930 | #ifdef TARGET_X86_64 | |
931 | kvm_getput_reg(®s.r8, &env->regs[8], set); | |
932 | kvm_getput_reg(®s.r9, &env->regs[9], set); | |
933 | kvm_getput_reg(®s.r10, &env->regs[10], set); | |
934 | kvm_getput_reg(®s.r11, &env->regs[11], set); | |
935 | kvm_getput_reg(®s.r12, &env->regs[12], set); | |
936 | kvm_getput_reg(®s.r13, &env->regs[13], set); | |
937 | kvm_getput_reg(®s.r14, &env->regs[14], set); | |
938 | kvm_getput_reg(®s.r15, &env->regs[15], set); | |
939 | #endif | |
940 | ||
941 | kvm_getput_reg(®s.rflags, &env->eflags, set); | |
942 | kvm_getput_reg(®s.rip, &env->eip, set); | |
943 | ||
b9bec74b | 944 | if (set) { |
1bc22652 | 945 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, ®s); |
b9bec74b | 946 | } |
05330448 AL |
947 | |
948 | return ret; | |
949 | } | |
950 | ||
1bc22652 | 951 | static int kvm_put_fpu(X86CPU *cpu) |
05330448 | 952 | { |
1bc22652 | 953 | CPUX86State *env = &cpu->env; |
05330448 AL |
954 | struct kvm_fpu fpu; |
955 | int i; | |
956 | ||
957 | memset(&fpu, 0, sizeof fpu); | |
958 | fpu.fsw = env->fpus & ~(7 << 11); | |
959 | fpu.fsw |= (env->fpstt & 7) << 11; | |
960 | fpu.fcw = env->fpuc; | |
42cc8fa6 JK |
961 | fpu.last_opcode = env->fpop; |
962 | fpu.last_ip = env->fpip; | |
963 | fpu.last_dp = env->fpdp; | |
b9bec74b JK |
964 | for (i = 0; i < 8; ++i) { |
965 | fpu.ftwx |= (!env->fptags[i]) << i; | |
966 | } | |
05330448 AL |
967 | memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs); |
968 | memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs); | |
969 | fpu.mxcsr = env->mxcsr; | |
970 | ||
1bc22652 | 971 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu); |
05330448 AL |
972 | } |
973 | ||
6b42494b JK |
974 | #define XSAVE_FCW_FSW 0 |
975 | #define XSAVE_FTW_FOP 1 | |
f1665b21 SY |
976 | #define XSAVE_CWD_RIP 2 |
977 | #define XSAVE_CWD_RDP 4 | |
978 | #define XSAVE_MXCSR 6 | |
979 | #define XSAVE_ST_SPACE 8 | |
980 | #define XSAVE_XMM_SPACE 40 | |
981 | #define XSAVE_XSTATE_BV 128 | |
982 | #define XSAVE_YMMH_SPACE 144 | |
79e9ebeb LJ |
983 | #define XSAVE_BNDREGS 240 |
984 | #define XSAVE_BNDCSR 256 | |
f1665b21 | 985 | |
1bc22652 | 986 | static int kvm_put_xsave(X86CPU *cpu) |
f1665b21 | 987 | { |
1bc22652 | 988 | CPUX86State *env = &cpu->env; |
fabacc0f | 989 | struct kvm_xsave* xsave = env->kvm_xsave_buf; |
42cc8fa6 | 990 | uint16_t cwd, swd, twd; |
fabacc0f | 991 | int i, r; |
f1665b21 | 992 | |
b9bec74b | 993 | if (!kvm_has_xsave()) { |
1bc22652 | 994 | return kvm_put_fpu(cpu); |
b9bec74b | 995 | } |
f1665b21 | 996 | |
f1665b21 | 997 | memset(xsave, 0, sizeof(struct kvm_xsave)); |
6115c0a8 | 998 | twd = 0; |
f1665b21 SY |
999 | swd = env->fpus & ~(7 << 11); |
1000 | swd |= (env->fpstt & 7) << 11; | |
1001 | cwd = env->fpuc; | |
b9bec74b | 1002 | for (i = 0; i < 8; ++i) { |
f1665b21 | 1003 | twd |= (!env->fptags[i]) << i; |
b9bec74b | 1004 | } |
6b42494b JK |
1005 | xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd; |
1006 | xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd; | |
42cc8fa6 JK |
1007 | memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip)); |
1008 | memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp)); | |
f1665b21 SY |
1009 | memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs, |
1010 | sizeof env->fpregs); | |
1011 | memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs, | |
1012 | sizeof env->xmm_regs); | |
1013 | xsave->region[XSAVE_MXCSR] = env->mxcsr; | |
1014 | *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv; | |
1015 | memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs, | |
1016 | sizeof env->ymmh_regs); | |
79e9ebeb LJ |
1017 | memcpy(&xsave->region[XSAVE_BNDREGS], env->bnd_regs, |
1018 | sizeof env->bnd_regs); | |
1019 | memcpy(&xsave->region[XSAVE_BNDCSR], &env->bndcs_regs, | |
1020 | sizeof(env->bndcs_regs)); | |
1bc22652 | 1021 | r = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave); |
0f53994f | 1022 | return r; |
f1665b21 SY |
1023 | } |
1024 | ||
1bc22652 | 1025 | static int kvm_put_xcrs(X86CPU *cpu) |
f1665b21 | 1026 | { |
1bc22652 | 1027 | CPUX86State *env = &cpu->env; |
f1665b21 SY |
1028 | struct kvm_xcrs xcrs; |
1029 | ||
b9bec74b | 1030 | if (!kvm_has_xcrs()) { |
f1665b21 | 1031 | return 0; |
b9bec74b | 1032 | } |
f1665b21 SY |
1033 | |
1034 | xcrs.nr_xcrs = 1; | |
1035 | xcrs.flags = 0; | |
1036 | xcrs.xcrs[0].xcr = 0; | |
1037 | xcrs.xcrs[0].value = env->xcr0; | |
1bc22652 | 1038 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs); |
f1665b21 SY |
1039 | } |
1040 | ||
1bc22652 | 1041 | static int kvm_put_sregs(X86CPU *cpu) |
05330448 | 1042 | { |
1bc22652 | 1043 | CPUX86State *env = &cpu->env; |
05330448 AL |
1044 | struct kvm_sregs sregs; |
1045 | ||
0e607a80 JK |
1046 | memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); |
1047 | if (env->interrupt_injected >= 0) { | |
1048 | sregs.interrupt_bitmap[env->interrupt_injected / 64] |= | |
1049 | (uint64_t)1 << (env->interrupt_injected % 64); | |
1050 | } | |
05330448 AL |
1051 | |
1052 | if ((env->eflags & VM_MASK)) { | |
b9bec74b JK |
1053 | set_v8086_seg(&sregs.cs, &env->segs[R_CS]); |
1054 | set_v8086_seg(&sregs.ds, &env->segs[R_DS]); | |
1055 | set_v8086_seg(&sregs.es, &env->segs[R_ES]); | |
1056 | set_v8086_seg(&sregs.fs, &env->segs[R_FS]); | |
1057 | set_v8086_seg(&sregs.gs, &env->segs[R_GS]); | |
1058 | set_v8086_seg(&sregs.ss, &env->segs[R_SS]); | |
05330448 | 1059 | } else { |
b9bec74b JK |
1060 | set_seg(&sregs.cs, &env->segs[R_CS]); |
1061 | set_seg(&sregs.ds, &env->segs[R_DS]); | |
1062 | set_seg(&sregs.es, &env->segs[R_ES]); | |
1063 | set_seg(&sregs.fs, &env->segs[R_FS]); | |
1064 | set_seg(&sregs.gs, &env->segs[R_GS]); | |
1065 | set_seg(&sregs.ss, &env->segs[R_SS]); | |
05330448 AL |
1066 | } |
1067 | ||
1068 | set_seg(&sregs.tr, &env->tr); | |
1069 | set_seg(&sregs.ldt, &env->ldt); | |
1070 | ||
1071 | sregs.idt.limit = env->idt.limit; | |
1072 | sregs.idt.base = env->idt.base; | |
7e680753 | 1073 | memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); |
05330448 AL |
1074 | sregs.gdt.limit = env->gdt.limit; |
1075 | sregs.gdt.base = env->gdt.base; | |
7e680753 | 1076 | memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); |
05330448 AL |
1077 | |
1078 | sregs.cr0 = env->cr[0]; | |
1079 | sregs.cr2 = env->cr[2]; | |
1080 | sregs.cr3 = env->cr[3]; | |
1081 | sregs.cr4 = env->cr[4]; | |
1082 | ||
4a942cea BS |
1083 | sregs.cr8 = cpu_get_apic_tpr(env->apic_state); |
1084 | sregs.apic_base = cpu_get_apic_base(env->apic_state); | |
05330448 AL |
1085 | |
1086 | sregs.efer = env->efer; | |
1087 | ||
1bc22652 | 1088 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs); |
05330448 AL |
1089 | } |
1090 | ||
1091 | static void kvm_msr_entry_set(struct kvm_msr_entry *entry, | |
1092 | uint32_t index, uint64_t value) | |
1093 | { | |
1094 | entry->index = index; | |
1095 | entry->data = value; | |
1096 | } | |
1097 | ||
7477cd38 MT |
1098 | static int kvm_put_tscdeadline_msr(X86CPU *cpu) |
1099 | { | |
1100 | CPUX86State *env = &cpu->env; | |
1101 | struct { | |
1102 | struct kvm_msrs info; | |
1103 | struct kvm_msr_entry entries[1]; | |
1104 | } msr_data; | |
1105 | struct kvm_msr_entry *msrs = msr_data.entries; | |
1106 | ||
1107 | if (!has_msr_tsc_deadline) { | |
1108 | return 0; | |
1109 | } | |
1110 | ||
1111 | kvm_msr_entry_set(&msrs[0], MSR_IA32_TSCDEADLINE, env->tsc_deadline); | |
1112 | ||
1113 | msr_data.info.nmsrs = 1; | |
1114 | ||
1115 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data); | |
1116 | } | |
1117 | ||
1bc22652 | 1118 | static int kvm_put_msrs(X86CPU *cpu, int level) |
05330448 | 1119 | { |
1bc22652 | 1120 | CPUX86State *env = &cpu->env; |
05330448 AL |
1121 | struct { |
1122 | struct kvm_msrs info; | |
1123 | struct kvm_msr_entry entries[100]; | |
1124 | } msr_data; | |
1125 | struct kvm_msr_entry *msrs = msr_data.entries; | |
0d894367 | 1126 | int n = 0, i; |
05330448 AL |
1127 | |
1128 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs); | |
1129 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp); | |
1130 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip); | |
0c03266a | 1131 | kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat); |
c3a3a7d3 | 1132 | if (has_msr_star) { |
b9bec74b JK |
1133 | kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star); |
1134 | } | |
c3a3a7d3 | 1135 | if (has_msr_hsave_pa) { |
75b10c43 | 1136 | kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave); |
b9bec74b | 1137 | } |
f28558d3 WA |
1138 | if (has_msr_tsc_adjust) { |
1139 | kvm_msr_entry_set(&msrs[n++], MSR_TSC_ADJUST, env->tsc_adjust); | |
1140 | } | |
21e87c46 AK |
1141 | if (has_msr_misc_enable) { |
1142 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE, | |
1143 | env->msr_ia32_misc_enable); | |
1144 | } | |
05330448 | 1145 | #ifdef TARGET_X86_64 |
25d2e361 MT |
1146 | if (lm_capable_kernel) { |
1147 | kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar); | |
1148 | kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase); | |
1149 | kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask); | |
1150 | kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar); | |
1151 | } | |
05330448 | 1152 | #endif |
ea643051 | 1153 | if (level == KVM_PUT_FULL_STATE) { |
f86746c2 | 1154 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc); |
ff5c186b JK |
1155 | } |
1156 | /* | |
0d894367 PB |
1157 | * The following MSRs have side effects on the guest or are too heavy |
1158 | * for normal writeback. Limit them to reset or full state updates. | |
ff5c186b JK |
1159 | */ |
1160 | if (level >= KVM_PUT_RESET_STATE) { | |
ea643051 JK |
1161 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME, |
1162 | env->system_time_msr); | |
1163 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr); | |
c5999bfc JK |
1164 | if (has_msr_async_pf_en) { |
1165 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN, | |
1166 | env->async_pf_en_msr); | |
1167 | } | |
bc9a839d MT |
1168 | if (has_msr_pv_eoi_en) { |
1169 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN, | |
1170 | env->pv_eoi_en_msr); | |
1171 | } | |
917367aa MT |
1172 | if (has_msr_kvm_steal_time) { |
1173 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_STEAL_TIME, | |
1174 | env->steal_time_msr); | |
1175 | } | |
0d894367 PB |
1176 | if (has_msr_architectural_pmu) { |
1177 | /* Stop the counter. */ | |
1178 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR_CTRL, 0); | |
1179 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_CTRL, 0); | |
1180 | ||
1181 | /* Set the counter values. */ | |
1182 | for (i = 0; i < MAX_FIXED_COUNTERS; i++) { | |
1183 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR0 + i, | |
1184 | env->msr_fixed_counters[i]); | |
1185 | } | |
1186 | for (i = 0; i < num_architectural_pmu_counters; i++) { | |
1187 | kvm_msr_entry_set(&msrs[n++], MSR_P6_PERFCTR0 + i, | |
1188 | env->msr_gp_counters[i]); | |
1189 | kvm_msr_entry_set(&msrs[n++], MSR_P6_EVNTSEL0 + i, | |
1190 | env->msr_gp_evtsel[i]); | |
1191 | } | |
1192 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_STATUS, | |
1193 | env->msr_global_status); | |
1194 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_OVF_CTRL, | |
1195 | env->msr_global_ovf_ctrl); | |
1196 | ||
1197 | /* Now start the PMU. */ | |
1198 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR_CTRL, | |
1199 | env->msr_fixed_ctr_ctrl); | |
1200 | kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_CTRL, | |
1201 | env->msr_global_ctrl); | |
1202 | } | |
92067bf4 | 1203 | if (hyperv_hypercall_available(cpu)) { |
eab70139 VR |
1204 | kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, 0); |
1205 | kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, 0); | |
1206 | } | |
92067bf4 | 1207 | if (cpu->hyperv_vapic) { |
eab70139 VR |
1208 | kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, 0); |
1209 | } | |
df67696e LJ |
1210 | if (has_msr_feature_control) { |
1211 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_FEATURE_CONTROL, | |
1212 | env->msr_ia32_feature_control); | |
1213 | } | |
79e9ebeb LJ |
1214 | if (has_msr_bndcfgs) { |
1215 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_BNDCFGS, env->msr_bndcfgs); | |
1216 | } | |
ea643051 | 1217 | } |
57780495 | 1218 | if (env->mcg_cap) { |
d8da8574 | 1219 | int i; |
b9bec74b | 1220 | |
c34d440a JK |
1221 | kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status); |
1222 | kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl); | |
1223 | for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { | |
1224 | kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]); | |
57780495 MT |
1225 | } |
1226 | } | |
1a03675d | 1227 | |
05330448 AL |
1228 | msr_data.info.nmsrs = n; |
1229 | ||
1bc22652 | 1230 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data); |
05330448 AL |
1231 | |
1232 | } | |
1233 | ||
1234 | ||
1bc22652 | 1235 | static int kvm_get_fpu(X86CPU *cpu) |
05330448 | 1236 | { |
1bc22652 | 1237 | CPUX86State *env = &cpu->env; |
05330448 AL |
1238 | struct kvm_fpu fpu; |
1239 | int i, ret; | |
1240 | ||
1bc22652 | 1241 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu); |
b9bec74b | 1242 | if (ret < 0) { |
05330448 | 1243 | return ret; |
b9bec74b | 1244 | } |
05330448 AL |
1245 | |
1246 | env->fpstt = (fpu.fsw >> 11) & 7; | |
1247 | env->fpus = fpu.fsw; | |
1248 | env->fpuc = fpu.fcw; | |
42cc8fa6 JK |
1249 | env->fpop = fpu.last_opcode; |
1250 | env->fpip = fpu.last_ip; | |
1251 | env->fpdp = fpu.last_dp; | |
b9bec74b JK |
1252 | for (i = 0; i < 8; ++i) { |
1253 | env->fptags[i] = !((fpu.ftwx >> i) & 1); | |
1254 | } | |
05330448 AL |
1255 | memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs); |
1256 | memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs); | |
1257 | env->mxcsr = fpu.mxcsr; | |
1258 | ||
1259 | return 0; | |
1260 | } | |
1261 | ||
1bc22652 | 1262 | static int kvm_get_xsave(X86CPU *cpu) |
f1665b21 | 1263 | { |
1bc22652 | 1264 | CPUX86State *env = &cpu->env; |
fabacc0f | 1265 | struct kvm_xsave* xsave = env->kvm_xsave_buf; |
f1665b21 | 1266 | int ret, i; |
42cc8fa6 | 1267 | uint16_t cwd, swd, twd; |
f1665b21 | 1268 | |
b9bec74b | 1269 | if (!kvm_has_xsave()) { |
1bc22652 | 1270 | return kvm_get_fpu(cpu); |
b9bec74b | 1271 | } |
f1665b21 | 1272 | |
1bc22652 | 1273 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave); |
0f53994f | 1274 | if (ret < 0) { |
f1665b21 | 1275 | return ret; |
0f53994f | 1276 | } |
f1665b21 | 1277 | |
6b42494b JK |
1278 | cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW]; |
1279 | swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16); | |
1280 | twd = (uint16_t)xsave->region[XSAVE_FTW_FOP]; | |
1281 | env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16); | |
f1665b21 SY |
1282 | env->fpstt = (swd >> 11) & 7; |
1283 | env->fpus = swd; | |
1284 | env->fpuc = cwd; | |
b9bec74b | 1285 | for (i = 0; i < 8; ++i) { |
f1665b21 | 1286 | env->fptags[i] = !((twd >> i) & 1); |
b9bec74b | 1287 | } |
42cc8fa6 JK |
1288 | memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip)); |
1289 | memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp)); | |
f1665b21 SY |
1290 | env->mxcsr = xsave->region[XSAVE_MXCSR]; |
1291 | memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE], | |
1292 | sizeof env->fpregs); | |
1293 | memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE], | |
1294 | sizeof env->xmm_regs); | |
1295 | env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV]; | |
1296 | memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE], | |
1297 | sizeof env->ymmh_regs); | |
79e9ebeb LJ |
1298 | memcpy(env->bnd_regs, &xsave->region[XSAVE_BNDREGS], |
1299 | sizeof env->bnd_regs); | |
1300 | memcpy(&env->bndcs_regs, &xsave->region[XSAVE_BNDCSR], | |
1301 | sizeof(env->bndcs_regs)); | |
f1665b21 | 1302 | return 0; |
f1665b21 SY |
1303 | } |
1304 | ||
1bc22652 | 1305 | static int kvm_get_xcrs(X86CPU *cpu) |
f1665b21 | 1306 | { |
1bc22652 | 1307 | CPUX86State *env = &cpu->env; |
f1665b21 SY |
1308 | int i, ret; |
1309 | struct kvm_xcrs xcrs; | |
1310 | ||
b9bec74b | 1311 | if (!kvm_has_xcrs()) { |
f1665b21 | 1312 | return 0; |
b9bec74b | 1313 | } |
f1665b21 | 1314 | |
1bc22652 | 1315 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs); |
b9bec74b | 1316 | if (ret < 0) { |
f1665b21 | 1317 | return ret; |
b9bec74b | 1318 | } |
f1665b21 | 1319 | |
b9bec74b | 1320 | for (i = 0; i < xcrs.nr_xcrs; i++) { |
f1665b21 | 1321 | /* Only support xcr0 now */ |
0fd53fec PB |
1322 | if (xcrs.xcrs[i].xcr == 0) { |
1323 | env->xcr0 = xcrs.xcrs[i].value; | |
f1665b21 SY |
1324 | break; |
1325 | } | |
b9bec74b | 1326 | } |
f1665b21 | 1327 | return 0; |
f1665b21 SY |
1328 | } |
1329 | ||
1bc22652 | 1330 | static int kvm_get_sregs(X86CPU *cpu) |
05330448 | 1331 | { |
1bc22652 | 1332 | CPUX86State *env = &cpu->env; |
05330448 AL |
1333 | struct kvm_sregs sregs; |
1334 | uint32_t hflags; | |
0e607a80 | 1335 | int bit, i, ret; |
05330448 | 1336 | |
1bc22652 | 1337 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); |
b9bec74b | 1338 | if (ret < 0) { |
05330448 | 1339 | return ret; |
b9bec74b | 1340 | } |
05330448 | 1341 | |
0e607a80 JK |
1342 | /* There can only be one pending IRQ set in the bitmap at a time, so try |
1343 | to find it and save its number instead (-1 for none). */ | |
1344 | env->interrupt_injected = -1; | |
1345 | for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) { | |
1346 | if (sregs.interrupt_bitmap[i]) { | |
1347 | bit = ctz64(sregs.interrupt_bitmap[i]); | |
1348 | env->interrupt_injected = i * 64 + bit; | |
1349 | break; | |
1350 | } | |
1351 | } | |
05330448 AL |
1352 | |
1353 | get_seg(&env->segs[R_CS], &sregs.cs); | |
1354 | get_seg(&env->segs[R_DS], &sregs.ds); | |
1355 | get_seg(&env->segs[R_ES], &sregs.es); | |
1356 | get_seg(&env->segs[R_FS], &sregs.fs); | |
1357 | get_seg(&env->segs[R_GS], &sregs.gs); | |
1358 | get_seg(&env->segs[R_SS], &sregs.ss); | |
1359 | ||
1360 | get_seg(&env->tr, &sregs.tr); | |
1361 | get_seg(&env->ldt, &sregs.ldt); | |
1362 | ||
1363 | env->idt.limit = sregs.idt.limit; | |
1364 | env->idt.base = sregs.idt.base; | |
1365 | env->gdt.limit = sregs.gdt.limit; | |
1366 | env->gdt.base = sregs.gdt.base; | |
1367 | ||
1368 | env->cr[0] = sregs.cr0; | |
1369 | env->cr[2] = sregs.cr2; | |
1370 | env->cr[3] = sregs.cr3; | |
1371 | env->cr[4] = sregs.cr4; | |
1372 | ||
05330448 | 1373 | env->efer = sregs.efer; |
cce47516 JK |
1374 | |
1375 | /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ | |
05330448 | 1376 | |
b9bec74b JK |
1377 | #define HFLAG_COPY_MASK \ |
1378 | ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \ | |
1379 | HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \ | |
1380 | HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \ | |
1381 | HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK) | |
05330448 AL |
1382 | |
1383 | hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK; | |
1384 | hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT); | |
1385 | hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) & | |
b9bec74b | 1386 | (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK); |
05330448 AL |
1387 | hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK)); |
1388 | hflags |= (env->cr[4] & CR4_OSFXSR_MASK) << | |
b9bec74b | 1389 | (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT); |
05330448 AL |
1390 | |
1391 | if (env->efer & MSR_EFER_LMA) { | |
1392 | hflags |= HF_LMA_MASK; | |
1393 | } | |
1394 | ||
1395 | if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) { | |
1396 | hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK; | |
1397 | } else { | |
1398 | hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >> | |
b9bec74b | 1399 | (DESC_B_SHIFT - HF_CS32_SHIFT); |
05330448 | 1400 | hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >> |
b9bec74b JK |
1401 | (DESC_B_SHIFT - HF_SS32_SHIFT); |
1402 | if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) || | |
1403 | !(hflags & HF_CS32_MASK)) { | |
1404 | hflags |= HF_ADDSEG_MASK; | |
1405 | } else { | |
1406 | hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base | | |
1407 | env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT; | |
1408 | } | |
05330448 AL |
1409 | } |
1410 | env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags; | |
05330448 AL |
1411 | |
1412 | return 0; | |
1413 | } | |
1414 | ||
1bc22652 | 1415 | static int kvm_get_msrs(X86CPU *cpu) |
05330448 | 1416 | { |
1bc22652 | 1417 | CPUX86State *env = &cpu->env; |
05330448 AL |
1418 | struct { |
1419 | struct kvm_msrs info; | |
1420 | struct kvm_msr_entry entries[100]; | |
1421 | } msr_data; | |
1422 | struct kvm_msr_entry *msrs = msr_data.entries; | |
1423 | int ret, i, n; | |
1424 | ||
1425 | n = 0; | |
1426 | msrs[n++].index = MSR_IA32_SYSENTER_CS; | |
1427 | msrs[n++].index = MSR_IA32_SYSENTER_ESP; | |
1428 | msrs[n++].index = MSR_IA32_SYSENTER_EIP; | |
0c03266a | 1429 | msrs[n++].index = MSR_PAT; |
c3a3a7d3 | 1430 | if (has_msr_star) { |
b9bec74b JK |
1431 | msrs[n++].index = MSR_STAR; |
1432 | } | |
c3a3a7d3 | 1433 | if (has_msr_hsave_pa) { |
75b10c43 | 1434 | msrs[n++].index = MSR_VM_HSAVE_PA; |
b9bec74b | 1435 | } |
f28558d3 WA |
1436 | if (has_msr_tsc_adjust) { |
1437 | msrs[n++].index = MSR_TSC_ADJUST; | |
1438 | } | |
aa82ba54 LJ |
1439 | if (has_msr_tsc_deadline) { |
1440 | msrs[n++].index = MSR_IA32_TSCDEADLINE; | |
1441 | } | |
21e87c46 AK |
1442 | if (has_msr_misc_enable) { |
1443 | msrs[n++].index = MSR_IA32_MISC_ENABLE; | |
1444 | } | |
df67696e LJ |
1445 | if (has_msr_feature_control) { |
1446 | msrs[n++].index = MSR_IA32_FEATURE_CONTROL; | |
1447 | } | |
79e9ebeb LJ |
1448 | if (has_msr_bndcfgs) { |
1449 | msrs[n++].index = MSR_IA32_BNDCFGS; | |
1450 | } | |
b8cc45d6 GC |
1451 | |
1452 | if (!env->tsc_valid) { | |
1453 | msrs[n++].index = MSR_IA32_TSC; | |
1354869c | 1454 | env->tsc_valid = !runstate_is_running(); |
b8cc45d6 GC |
1455 | } |
1456 | ||
05330448 | 1457 | #ifdef TARGET_X86_64 |
25d2e361 MT |
1458 | if (lm_capable_kernel) { |
1459 | msrs[n++].index = MSR_CSTAR; | |
1460 | msrs[n++].index = MSR_KERNELGSBASE; | |
1461 | msrs[n++].index = MSR_FMASK; | |
1462 | msrs[n++].index = MSR_LSTAR; | |
1463 | } | |
05330448 | 1464 | #endif |
1a03675d GC |
1465 | msrs[n++].index = MSR_KVM_SYSTEM_TIME; |
1466 | msrs[n++].index = MSR_KVM_WALL_CLOCK; | |
c5999bfc JK |
1467 | if (has_msr_async_pf_en) { |
1468 | msrs[n++].index = MSR_KVM_ASYNC_PF_EN; | |
1469 | } | |
bc9a839d MT |
1470 | if (has_msr_pv_eoi_en) { |
1471 | msrs[n++].index = MSR_KVM_PV_EOI_EN; | |
1472 | } | |
917367aa MT |
1473 | if (has_msr_kvm_steal_time) { |
1474 | msrs[n++].index = MSR_KVM_STEAL_TIME; | |
1475 | } | |
0d894367 PB |
1476 | if (has_msr_architectural_pmu) { |
1477 | msrs[n++].index = MSR_CORE_PERF_FIXED_CTR_CTRL; | |
1478 | msrs[n++].index = MSR_CORE_PERF_GLOBAL_CTRL; | |
1479 | msrs[n++].index = MSR_CORE_PERF_GLOBAL_STATUS; | |
1480 | msrs[n++].index = MSR_CORE_PERF_GLOBAL_OVF_CTRL; | |
1481 | for (i = 0; i < MAX_FIXED_COUNTERS; i++) { | |
1482 | msrs[n++].index = MSR_CORE_PERF_FIXED_CTR0 + i; | |
1483 | } | |
1484 | for (i = 0; i < num_architectural_pmu_counters; i++) { | |
1485 | msrs[n++].index = MSR_P6_PERFCTR0 + i; | |
1486 | msrs[n++].index = MSR_P6_EVNTSEL0 + i; | |
1487 | } | |
1488 | } | |
1a03675d | 1489 | |
57780495 MT |
1490 | if (env->mcg_cap) { |
1491 | msrs[n++].index = MSR_MCG_STATUS; | |
1492 | msrs[n++].index = MSR_MCG_CTL; | |
b9bec74b | 1493 | for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { |
57780495 | 1494 | msrs[n++].index = MSR_MC0_CTL + i; |
b9bec74b | 1495 | } |
57780495 | 1496 | } |
57780495 | 1497 | |
05330448 | 1498 | msr_data.info.nmsrs = n; |
1bc22652 | 1499 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data); |
b9bec74b | 1500 | if (ret < 0) { |
05330448 | 1501 | return ret; |
b9bec74b | 1502 | } |
05330448 AL |
1503 | |
1504 | for (i = 0; i < ret; i++) { | |
0d894367 PB |
1505 | uint32_t index = msrs[i].index; |
1506 | switch (index) { | |
05330448 AL |
1507 | case MSR_IA32_SYSENTER_CS: |
1508 | env->sysenter_cs = msrs[i].data; | |
1509 | break; | |
1510 | case MSR_IA32_SYSENTER_ESP: | |
1511 | env->sysenter_esp = msrs[i].data; | |
1512 | break; | |
1513 | case MSR_IA32_SYSENTER_EIP: | |
1514 | env->sysenter_eip = msrs[i].data; | |
1515 | break; | |
0c03266a JK |
1516 | case MSR_PAT: |
1517 | env->pat = msrs[i].data; | |
1518 | break; | |
05330448 AL |
1519 | case MSR_STAR: |
1520 | env->star = msrs[i].data; | |
1521 | break; | |
1522 | #ifdef TARGET_X86_64 | |
1523 | case MSR_CSTAR: | |
1524 | env->cstar = msrs[i].data; | |
1525 | break; | |
1526 | case MSR_KERNELGSBASE: | |
1527 | env->kernelgsbase = msrs[i].data; | |
1528 | break; | |
1529 | case MSR_FMASK: | |
1530 | env->fmask = msrs[i].data; | |
1531 | break; | |
1532 | case MSR_LSTAR: | |
1533 | env->lstar = msrs[i].data; | |
1534 | break; | |
1535 | #endif | |
1536 | case MSR_IA32_TSC: | |
1537 | env->tsc = msrs[i].data; | |
1538 | break; | |
f28558d3 WA |
1539 | case MSR_TSC_ADJUST: |
1540 | env->tsc_adjust = msrs[i].data; | |
1541 | break; | |
aa82ba54 LJ |
1542 | case MSR_IA32_TSCDEADLINE: |
1543 | env->tsc_deadline = msrs[i].data; | |
1544 | break; | |
aa851e36 MT |
1545 | case MSR_VM_HSAVE_PA: |
1546 | env->vm_hsave = msrs[i].data; | |
1547 | break; | |
1a03675d GC |
1548 | case MSR_KVM_SYSTEM_TIME: |
1549 | env->system_time_msr = msrs[i].data; | |
1550 | break; | |
1551 | case MSR_KVM_WALL_CLOCK: | |
1552 | env->wall_clock_msr = msrs[i].data; | |
1553 | break; | |
57780495 MT |
1554 | case MSR_MCG_STATUS: |
1555 | env->mcg_status = msrs[i].data; | |
1556 | break; | |
1557 | case MSR_MCG_CTL: | |
1558 | env->mcg_ctl = msrs[i].data; | |
1559 | break; | |
21e87c46 AK |
1560 | case MSR_IA32_MISC_ENABLE: |
1561 | env->msr_ia32_misc_enable = msrs[i].data; | |
1562 | break; | |
0779caeb ACL |
1563 | case MSR_IA32_FEATURE_CONTROL: |
1564 | env->msr_ia32_feature_control = msrs[i].data; | |
df67696e | 1565 | break; |
79e9ebeb LJ |
1566 | case MSR_IA32_BNDCFGS: |
1567 | env->msr_bndcfgs = msrs[i].data; | |
1568 | break; | |
57780495 | 1569 | default: |
57780495 MT |
1570 | if (msrs[i].index >= MSR_MC0_CTL && |
1571 | msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) { | |
1572 | env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data; | |
57780495 | 1573 | } |
d8da8574 | 1574 | break; |
f6584ee2 GN |
1575 | case MSR_KVM_ASYNC_PF_EN: |
1576 | env->async_pf_en_msr = msrs[i].data; | |
1577 | break; | |
bc9a839d MT |
1578 | case MSR_KVM_PV_EOI_EN: |
1579 | env->pv_eoi_en_msr = msrs[i].data; | |
1580 | break; | |
917367aa MT |
1581 | case MSR_KVM_STEAL_TIME: |
1582 | env->steal_time_msr = msrs[i].data; | |
1583 | break; | |
0d894367 PB |
1584 | case MSR_CORE_PERF_FIXED_CTR_CTRL: |
1585 | env->msr_fixed_ctr_ctrl = msrs[i].data; | |
1586 | break; | |
1587 | case MSR_CORE_PERF_GLOBAL_CTRL: | |
1588 | env->msr_global_ctrl = msrs[i].data; | |
1589 | break; | |
1590 | case MSR_CORE_PERF_GLOBAL_STATUS: | |
1591 | env->msr_global_status = msrs[i].data; | |
1592 | break; | |
1593 | case MSR_CORE_PERF_GLOBAL_OVF_CTRL: | |
1594 | env->msr_global_ovf_ctrl = msrs[i].data; | |
1595 | break; | |
1596 | case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1: | |
1597 | env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data; | |
1598 | break; | |
1599 | case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1: | |
1600 | env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data; | |
1601 | break; | |
1602 | case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1: | |
1603 | env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data; | |
1604 | break; | |
05330448 AL |
1605 | } |
1606 | } | |
1607 | ||
1608 | return 0; | |
1609 | } | |
1610 | ||
1bc22652 | 1611 | static int kvm_put_mp_state(X86CPU *cpu) |
9bdbe550 | 1612 | { |
1bc22652 | 1613 | struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state }; |
9bdbe550 | 1614 | |
1bc22652 | 1615 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); |
9bdbe550 HB |
1616 | } |
1617 | ||
23d02d9b | 1618 | static int kvm_get_mp_state(X86CPU *cpu) |
9bdbe550 | 1619 | { |
259186a7 | 1620 | CPUState *cs = CPU(cpu); |
23d02d9b | 1621 | CPUX86State *env = &cpu->env; |
9bdbe550 HB |
1622 | struct kvm_mp_state mp_state; |
1623 | int ret; | |
1624 | ||
259186a7 | 1625 | ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state); |
9bdbe550 HB |
1626 | if (ret < 0) { |
1627 | return ret; | |
1628 | } | |
1629 | env->mp_state = mp_state.mp_state; | |
c14750e8 | 1630 | if (kvm_irqchip_in_kernel()) { |
259186a7 | 1631 | cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED); |
c14750e8 | 1632 | } |
9bdbe550 HB |
1633 | return 0; |
1634 | } | |
1635 | ||
1bc22652 | 1636 | static int kvm_get_apic(X86CPU *cpu) |
680c1c6f | 1637 | { |
1bc22652 | 1638 | CPUX86State *env = &cpu->env; |
680c1c6f JK |
1639 | DeviceState *apic = env->apic_state; |
1640 | struct kvm_lapic_state kapic; | |
1641 | int ret; | |
1642 | ||
3d4b2649 | 1643 | if (apic && kvm_irqchip_in_kernel()) { |
1bc22652 | 1644 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic); |
680c1c6f JK |
1645 | if (ret < 0) { |
1646 | return ret; | |
1647 | } | |
1648 | ||
1649 | kvm_get_apic_state(apic, &kapic); | |
1650 | } | |
1651 | return 0; | |
1652 | } | |
1653 | ||
1bc22652 | 1654 | static int kvm_put_apic(X86CPU *cpu) |
680c1c6f | 1655 | { |
1bc22652 | 1656 | CPUX86State *env = &cpu->env; |
680c1c6f JK |
1657 | DeviceState *apic = env->apic_state; |
1658 | struct kvm_lapic_state kapic; | |
1659 | ||
3d4b2649 | 1660 | if (apic && kvm_irqchip_in_kernel()) { |
680c1c6f JK |
1661 | kvm_put_apic_state(apic, &kapic); |
1662 | ||
1bc22652 | 1663 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_LAPIC, &kapic); |
680c1c6f JK |
1664 | } |
1665 | return 0; | |
1666 | } | |
1667 | ||
1bc22652 | 1668 | static int kvm_put_vcpu_events(X86CPU *cpu, int level) |
a0fb002c | 1669 | { |
1bc22652 | 1670 | CPUX86State *env = &cpu->env; |
a0fb002c JK |
1671 | struct kvm_vcpu_events events; |
1672 | ||
1673 | if (!kvm_has_vcpu_events()) { | |
1674 | return 0; | |
1675 | } | |
1676 | ||
31827373 JK |
1677 | events.exception.injected = (env->exception_injected >= 0); |
1678 | events.exception.nr = env->exception_injected; | |
a0fb002c JK |
1679 | events.exception.has_error_code = env->has_error_code; |
1680 | events.exception.error_code = env->error_code; | |
7e680753 | 1681 | events.exception.pad = 0; |
a0fb002c JK |
1682 | |
1683 | events.interrupt.injected = (env->interrupt_injected >= 0); | |
1684 | events.interrupt.nr = env->interrupt_injected; | |
1685 | events.interrupt.soft = env->soft_interrupt; | |
1686 | ||
1687 | events.nmi.injected = env->nmi_injected; | |
1688 | events.nmi.pending = env->nmi_pending; | |
1689 | events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK); | |
7e680753 | 1690 | events.nmi.pad = 0; |
a0fb002c JK |
1691 | |
1692 | events.sipi_vector = env->sipi_vector; | |
1693 | ||
ea643051 JK |
1694 | events.flags = 0; |
1695 | if (level >= KVM_PUT_RESET_STATE) { | |
1696 | events.flags |= | |
1697 | KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR; | |
1698 | } | |
aee028b9 | 1699 | |
1bc22652 | 1700 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); |
a0fb002c JK |
1701 | } |
1702 | ||
1bc22652 | 1703 | static int kvm_get_vcpu_events(X86CPU *cpu) |
a0fb002c | 1704 | { |
1bc22652 | 1705 | CPUX86State *env = &cpu->env; |
a0fb002c JK |
1706 | struct kvm_vcpu_events events; |
1707 | int ret; | |
1708 | ||
1709 | if (!kvm_has_vcpu_events()) { | |
1710 | return 0; | |
1711 | } | |
1712 | ||
1bc22652 | 1713 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); |
a0fb002c JK |
1714 | if (ret < 0) { |
1715 | return ret; | |
1716 | } | |
31827373 | 1717 | env->exception_injected = |
a0fb002c JK |
1718 | events.exception.injected ? events.exception.nr : -1; |
1719 | env->has_error_code = events.exception.has_error_code; | |
1720 | env->error_code = events.exception.error_code; | |
1721 | ||
1722 | env->interrupt_injected = | |
1723 | events.interrupt.injected ? events.interrupt.nr : -1; | |
1724 | env->soft_interrupt = events.interrupt.soft; | |
1725 | ||
1726 | env->nmi_injected = events.nmi.injected; | |
1727 | env->nmi_pending = events.nmi.pending; | |
1728 | if (events.nmi.masked) { | |
1729 | env->hflags2 |= HF2_NMI_MASK; | |
1730 | } else { | |
1731 | env->hflags2 &= ~HF2_NMI_MASK; | |
1732 | } | |
1733 | ||
1734 | env->sipi_vector = events.sipi_vector; | |
a0fb002c JK |
1735 | |
1736 | return 0; | |
1737 | } | |
1738 | ||
1bc22652 | 1739 | static int kvm_guest_debug_workarounds(X86CPU *cpu) |
b0b1d690 | 1740 | { |
ed2803da | 1741 | CPUState *cs = CPU(cpu); |
1bc22652 | 1742 | CPUX86State *env = &cpu->env; |
b0b1d690 | 1743 | int ret = 0; |
b0b1d690 JK |
1744 | unsigned long reinject_trap = 0; |
1745 | ||
1746 | if (!kvm_has_vcpu_events()) { | |
1747 | if (env->exception_injected == 1) { | |
1748 | reinject_trap = KVM_GUESTDBG_INJECT_DB; | |
1749 | } else if (env->exception_injected == 3) { | |
1750 | reinject_trap = KVM_GUESTDBG_INJECT_BP; | |
1751 | } | |
1752 | env->exception_injected = -1; | |
1753 | } | |
1754 | ||
1755 | /* | |
1756 | * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF | |
1757 | * injected via SET_GUEST_DEBUG while updating GP regs. Work around this | |
1758 | * by updating the debug state once again if single-stepping is on. | |
1759 | * Another reason to call kvm_update_guest_debug here is a pending debug | |
1760 | * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to | |
1761 | * reinject them via SET_GUEST_DEBUG. | |
1762 | */ | |
1763 | if (reinject_trap || | |
ed2803da | 1764 | (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) { |
38e478ec | 1765 | ret = kvm_update_guest_debug(cs, reinject_trap); |
b0b1d690 | 1766 | } |
b0b1d690 JK |
1767 | return ret; |
1768 | } | |
1769 | ||
1bc22652 | 1770 | static int kvm_put_debugregs(X86CPU *cpu) |
ff44f1a3 | 1771 | { |
1bc22652 | 1772 | CPUX86State *env = &cpu->env; |
ff44f1a3 JK |
1773 | struct kvm_debugregs dbgregs; |
1774 | int i; | |
1775 | ||
1776 | if (!kvm_has_debugregs()) { | |
1777 | return 0; | |
1778 | } | |
1779 | ||
1780 | for (i = 0; i < 4; i++) { | |
1781 | dbgregs.db[i] = env->dr[i]; | |
1782 | } | |
1783 | dbgregs.dr6 = env->dr[6]; | |
1784 | dbgregs.dr7 = env->dr[7]; | |
1785 | dbgregs.flags = 0; | |
1786 | ||
1bc22652 | 1787 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs); |
ff44f1a3 JK |
1788 | } |
1789 | ||
1bc22652 | 1790 | static int kvm_get_debugregs(X86CPU *cpu) |
ff44f1a3 | 1791 | { |
1bc22652 | 1792 | CPUX86State *env = &cpu->env; |
ff44f1a3 JK |
1793 | struct kvm_debugregs dbgregs; |
1794 | int i, ret; | |
1795 | ||
1796 | if (!kvm_has_debugregs()) { | |
1797 | return 0; | |
1798 | } | |
1799 | ||
1bc22652 | 1800 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs); |
ff44f1a3 | 1801 | if (ret < 0) { |
b9bec74b | 1802 | return ret; |
ff44f1a3 JK |
1803 | } |
1804 | for (i = 0; i < 4; i++) { | |
1805 | env->dr[i] = dbgregs.db[i]; | |
1806 | } | |
1807 | env->dr[4] = env->dr[6] = dbgregs.dr6; | |
1808 | env->dr[5] = env->dr[7] = dbgregs.dr7; | |
ff44f1a3 JK |
1809 | |
1810 | return 0; | |
1811 | } | |
1812 | ||
20d695a9 | 1813 | int kvm_arch_put_registers(CPUState *cpu, int level) |
05330448 | 1814 | { |
20d695a9 | 1815 | X86CPU *x86_cpu = X86_CPU(cpu); |
05330448 AL |
1816 | int ret; |
1817 | ||
2fa45344 | 1818 | assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu)); |
dbaa07c4 | 1819 | |
1bc22652 | 1820 | ret = kvm_getput_regs(x86_cpu, 1); |
b9bec74b | 1821 | if (ret < 0) { |
05330448 | 1822 | return ret; |
b9bec74b | 1823 | } |
1bc22652 | 1824 | ret = kvm_put_xsave(x86_cpu); |
b9bec74b | 1825 | if (ret < 0) { |
f1665b21 | 1826 | return ret; |
b9bec74b | 1827 | } |
1bc22652 | 1828 | ret = kvm_put_xcrs(x86_cpu); |
b9bec74b | 1829 | if (ret < 0) { |
05330448 | 1830 | return ret; |
b9bec74b | 1831 | } |
1bc22652 | 1832 | ret = kvm_put_sregs(x86_cpu); |
b9bec74b | 1833 | if (ret < 0) { |
05330448 | 1834 | return ret; |
b9bec74b | 1835 | } |
ab443475 | 1836 | /* must be before kvm_put_msrs */ |
1bc22652 | 1837 | ret = kvm_inject_mce_oldstyle(x86_cpu); |
ab443475 JK |
1838 | if (ret < 0) { |
1839 | return ret; | |
1840 | } | |
1bc22652 | 1841 | ret = kvm_put_msrs(x86_cpu, level); |
b9bec74b | 1842 | if (ret < 0) { |
05330448 | 1843 | return ret; |
b9bec74b | 1844 | } |
ea643051 | 1845 | if (level >= KVM_PUT_RESET_STATE) { |
1bc22652 | 1846 | ret = kvm_put_mp_state(x86_cpu); |
b9bec74b | 1847 | if (ret < 0) { |
ea643051 | 1848 | return ret; |
b9bec74b | 1849 | } |
1bc22652 | 1850 | ret = kvm_put_apic(x86_cpu); |
680c1c6f JK |
1851 | if (ret < 0) { |
1852 | return ret; | |
1853 | } | |
ea643051 | 1854 | } |
7477cd38 MT |
1855 | |
1856 | ret = kvm_put_tscdeadline_msr(x86_cpu); | |
1857 | if (ret < 0) { | |
1858 | return ret; | |
1859 | } | |
1860 | ||
1bc22652 | 1861 | ret = kvm_put_vcpu_events(x86_cpu, level); |
b9bec74b | 1862 | if (ret < 0) { |
a0fb002c | 1863 | return ret; |
b9bec74b | 1864 | } |
1bc22652 | 1865 | ret = kvm_put_debugregs(x86_cpu); |
b9bec74b | 1866 | if (ret < 0) { |
b0b1d690 | 1867 | return ret; |
b9bec74b | 1868 | } |
b0b1d690 | 1869 | /* must be last */ |
1bc22652 | 1870 | ret = kvm_guest_debug_workarounds(x86_cpu); |
b9bec74b | 1871 | if (ret < 0) { |
ff44f1a3 | 1872 | return ret; |
b9bec74b | 1873 | } |
05330448 AL |
1874 | return 0; |
1875 | } | |
1876 | ||
20d695a9 | 1877 | int kvm_arch_get_registers(CPUState *cs) |
05330448 | 1878 | { |
20d695a9 | 1879 | X86CPU *cpu = X86_CPU(cs); |
05330448 AL |
1880 | int ret; |
1881 | ||
20d695a9 | 1882 | assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs)); |
dbaa07c4 | 1883 | |
1bc22652 | 1884 | ret = kvm_getput_regs(cpu, 0); |
b9bec74b | 1885 | if (ret < 0) { |
05330448 | 1886 | return ret; |
b9bec74b | 1887 | } |
1bc22652 | 1888 | ret = kvm_get_xsave(cpu); |
b9bec74b | 1889 | if (ret < 0) { |
f1665b21 | 1890 | return ret; |
b9bec74b | 1891 | } |
1bc22652 | 1892 | ret = kvm_get_xcrs(cpu); |
b9bec74b | 1893 | if (ret < 0) { |
05330448 | 1894 | return ret; |
b9bec74b | 1895 | } |
1bc22652 | 1896 | ret = kvm_get_sregs(cpu); |
b9bec74b | 1897 | if (ret < 0) { |
05330448 | 1898 | return ret; |
b9bec74b | 1899 | } |
1bc22652 | 1900 | ret = kvm_get_msrs(cpu); |
b9bec74b | 1901 | if (ret < 0) { |
05330448 | 1902 | return ret; |
b9bec74b | 1903 | } |
23d02d9b | 1904 | ret = kvm_get_mp_state(cpu); |
b9bec74b | 1905 | if (ret < 0) { |
5a2e3c2e | 1906 | return ret; |
b9bec74b | 1907 | } |
1bc22652 | 1908 | ret = kvm_get_apic(cpu); |
680c1c6f JK |
1909 | if (ret < 0) { |
1910 | return ret; | |
1911 | } | |
1bc22652 | 1912 | ret = kvm_get_vcpu_events(cpu); |
b9bec74b | 1913 | if (ret < 0) { |
a0fb002c | 1914 | return ret; |
b9bec74b | 1915 | } |
1bc22652 | 1916 | ret = kvm_get_debugregs(cpu); |
b9bec74b | 1917 | if (ret < 0) { |
ff44f1a3 | 1918 | return ret; |
b9bec74b | 1919 | } |
05330448 AL |
1920 | return 0; |
1921 | } | |
1922 | ||
20d695a9 | 1923 | void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) |
05330448 | 1924 | { |
20d695a9 AF |
1925 | X86CPU *x86_cpu = X86_CPU(cpu); |
1926 | CPUX86State *env = &x86_cpu->env; | |
ce377af3 JK |
1927 | int ret; |
1928 | ||
276ce815 | 1929 | /* Inject NMI */ |
259186a7 AF |
1930 | if (cpu->interrupt_request & CPU_INTERRUPT_NMI) { |
1931 | cpu->interrupt_request &= ~CPU_INTERRUPT_NMI; | |
276ce815 | 1932 | DPRINTF("injected NMI\n"); |
1bc22652 | 1933 | ret = kvm_vcpu_ioctl(cpu, KVM_NMI); |
ce377af3 JK |
1934 | if (ret < 0) { |
1935 | fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n", | |
1936 | strerror(-ret)); | |
1937 | } | |
276ce815 LJ |
1938 | } |
1939 | ||
db1669bc | 1940 | if (!kvm_irqchip_in_kernel()) { |
d362e757 JK |
1941 | /* Force the VCPU out of its inner loop to process any INIT requests |
1942 | * or pending TPR access reports. */ | |
259186a7 | 1943 | if (cpu->interrupt_request & |
d362e757 | 1944 | (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) { |
fcd7d003 | 1945 | cpu->exit_request = 1; |
05330448 | 1946 | } |
05330448 | 1947 | |
db1669bc JK |
1948 | /* Try to inject an interrupt if the guest can accept it */ |
1949 | if (run->ready_for_interrupt_injection && | |
259186a7 | 1950 | (cpu->interrupt_request & CPU_INTERRUPT_HARD) && |
db1669bc JK |
1951 | (env->eflags & IF_MASK)) { |
1952 | int irq; | |
1953 | ||
259186a7 | 1954 | cpu->interrupt_request &= ~CPU_INTERRUPT_HARD; |
db1669bc JK |
1955 | irq = cpu_get_pic_interrupt(env); |
1956 | if (irq >= 0) { | |
1957 | struct kvm_interrupt intr; | |
1958 | ||
1959 | intr.irq = irq; | |
db1669bc | 1960 | DPRINTF("injected interrupt %d\n", irq); |
1bc22652 | 1961 | ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr); |
ce377af3 JK |
1962 | if (ret < 0) { |
1963 | fprintf(stderr, | |
1964 | "KVM: injection failed, interrupt lost (%s)\n", | |
1965 | strerror(-ret)); | |
1966 | } | |
db1669bc JK |
1967 | } |
1968 | } | |
05330448 | 1969 | |
db1669bc JK |
1970 | /* If we have an interrupt but the guest is not ready to receive an |
1971 | * interrupt, request an interrupt window exit. This will | |
1972 | * cause a return to userspace as soon as the guest is ready to | |
1973 | * receive interrupts. */ | |
259186a7 | 1974 | if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) { |
db1669bc JK |
1975 | run->request_interrupt_window = 1; |
1976 | } else { | |
1977 | run->request_interrupt_window = 0; | |
1978 | } | |
1979 | ||
1980 | DPRINTF("setting tpr\n"); | |
1981 | run->cr8 = cpu_get_apic_tpr(env->apic_state); | |
1982 | } | |
05330448 AL |
1983 | } |
1984 | ||
20d695a9 | 1985 | void kvm_arch_post_run(CPUState *cpu, struct kvm_run *run) |
05330448 | 1986 | { |
20d695a9 AF |
1987 | X86CPU *x86_cpu = X86_CPU(cpu); |
1988 | CPUX86State *env = &x86_cpu->env; | |
1989 | ||
b9bec74b | 1990 | if (run->if_flag) { |
05330448 | 1991 | env->eflags |= IF_MASK; |
b9bec74b | 1992 | } else { |
05330448 | 1993 | env->eflags &= ~IF_MASK; |
b9bec74b | 1994 | } |
4a942cea BS |
1995 | cpu_set_apic_tpr(env->apic_state, run->cr8); |
1996 | cpu_set_apic_base(env->apic_state, run->apic_base); | |
05330448 AL |
1997 | } |
1998 | ||
20d695a9 | 1999 | int kvm_arch_process_async_events(CPUState *cs) |
0af691d7 | 2000 | { |
20d695a9 AF |
2001 | X86CPU *cpu = X86_CPU(cs); |
2002 | CPUX86State *env = &cpu->env; | |
232fc23b | 2003 | |
259186a7 | 2004 | if (cs->interrupt_request & CPU_INTERRUPT_MCE) { |
ab443475 JK |
2005 | /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */ |
2006 | assert(env->mcg_cap); | |
2007 | ||
259186a7 | 2008 | cs->interrupt_request &= ~CPU_INTERRUPT_MCE; |
ab443475 | 2009 | |
dd1750d7 | 2010 | kvm_cpu_synchronize_state(cs); |
ab443475 JK |
2011 | |
2012 | if (env->exception_injected == EXCP08_DBLE) { | |
2013 | /* this means triple fault */ | |
2014 | qemu_system_reset_request(); | |
fcd7d003 | 2015 | cs->exit_request = 1; |
ab443475 JK |
2016 | return 0; |
2017 | } | |
2018 | env->exception_injected = EXCP12_MCHK; | |
2019 | env->has_error_code = 0; | |
2020 | ||
259186a7 | 2021 | cs->halted = 0; |
ab443475 JK |
2022 | if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) { |
2023 | env->mp_state = KVM_MP_STATE_RUNNABLE; | |
2024 | } | |
2025 | } | |
2026 | ||
db1669bc JK |
2027 | if (kvm_irqchip_in_kernel()) { |
2028 | return 0; | |
2029 | } | |
2030 | ||
259186a7 AF |
2031 | if (cs->interrupt_request & CPU_INTERRUPT_POLL) { |
2032 | cs->interrupt_request &= ~CPU_INTERRUPT_POLL; | |
5d62c43a JK |
2033 | apic_poll_irq(env->apic_state); |
2034 | } | |
259186a7 | 2035 | if (((cs->interrupt_request & CPU_INTERRUPT_HARD) && |
4601f7b0 | 2036 | (env->eflags & IF_MASK)) || |
259186a7 AF |
2037 | (cs->interrupt_request & CPU_INTERRUPT_NMI)) { |
2038 | cs->halted = 0; | |
6792a57b | 2039 | } |
259186a7 | 2040 | if (cs->interrupt_request & CPU_INTERRUPT_INIT) { |
dd1750d7 | 2041 | kvm_cpu_synchronize_state(cs); |
232fc23b | 2042 | do_cpu_init(cpu); |
0af691d7 | 2043 | } |
259186a7 | 2044 | if (cs->interrupt_request & CPU_INTERRUPT_SIPI) { |
dd1750d7 | 2045 | kvm_cpu_synchronize_state(cs); |
232fc23b | 2046 | do_cpu_sipi(cpu); |
0af691d7 | 2047 | } |
259186a7 AF |
2048 | if (cs->interrupt_request & CPU_INTERRUPT_TPR) { |
2049 | cs->interrupt_request &= ~CPU_INTERRUPT_TPR; | |
dd1750d7 | 2050 | kvm_cpu_synchronize_state(cs); |
d362e757 JK |
2051 | apic_handle_tpr_access_report(env->apic_state, env->eip, |
2052 | env->tpr_access_type); | |
2053 | } | |
0af691d7 | 2054 | |
259186a7 | 2055 | return cs->halted; |
0af691d7 MT |
2056 | } |
2057 | ||
839b5630 | 2058 | static int kvm_handle_halt(X86CPU *cpu) |
05330448 | 2059 | { |
259186a7 | 2060 | CPUState *cs = CPU(cpu); |
839b5630 AF |
2061 | CPUX86State *env = &cpu->env; |
2062 | ||
259186a7 | 2063 | if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) && |
05330448 | 2064 | (env->eflags & IF_MASK)) && |
259186a7 AF |
2065 | !(cs->interrupt_request & CPU_INTERRUPT_NMI)) { |
2066 | cs->halted = 1; | |
bb4ea393 | 2067 | return EXCP_HLT; |
05330448 AL |
2068 | } |
2069 | ||
bb4ea393 | 2070 | return 0; |
05330448 AL |
2071 | } |
2072 | ||
f7575c96 | 2073 | static int kvm_handle_tpr_access(X86CPU *cpu) |
d362e757 | 2074 | { |
f7575c96 AF |
2075 | CPUX86State *env = &cpu->env; |
2076 | CPUState *cs = CPU(cpu); | |
2077 | struct kvm_run *run = cs->kvm_run; | |
d362e757 JK |
2078 | |
2079 | apic_handle_tpr_access_report(env->apic_state, run->tpr_access.rip, | |
2080 | run->tpr_access.is_write ? TPR_ACCESS_WRITE | |
2081 | : TPR_ACCESS_READ); | |
2082 | return 1; | |
2083 | } | |
2084 | ||
f17ec444 | 2085 | int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) |
e22a25c9 | 2086 | { |
38972938 | 2087 | static const uint8_t int3 = 0xcc; |
64bf3f4e | 2088 | |
f17ec444 AF |
2089 | if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || |
2090 | cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) { | |
e22a25c9 | 2091 | return -EINVAL; |
b9bec74b | 2092 | } |
e22a25c9 AL |
2093 | return 0; |
2094 | } | |
2095 | ||
f17ec444 | 2096 | int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) |
e22a25c9 AL |
2097 | { |
2098 | uint8_t int3; | |
2099 | ||
f17ec444 AF |
2100 | if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc || |
2101 | cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) { | |
e22a25c9 | 2102 | return -EINVAL; |
b9bec74b | 2103 | } |
e22a25c9 AL |
2104 | return 0; |
2105 | } | |
2106 | ||
2107 | static struct { | |
2108 | target_ulong addr; | |
2109 | int len; | |
2110 | int type; | |
2111 | } hw_breakpoint[4]; | |
2112 | ||
2113 | static int nb_hw_breakpoint; | |
2114 | ||
2115 | static int find_hw_breakpoint(target_ulong addr, int len, int type) | |
2116 | { | |
2117 | int n; | |
2118 | ||
b9bec74b | 2119 | for (n = 0; n < nb_hw_breakpoint; n++) { |
e22a25c9 | 2120 | if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && |
b9bec74b | 2121 | (hw_breakpoint[n].len == len || len == -1)) { |
e22a25c9 | 2122 | return n; |
b9bec74b JK |
2123 | } |
2124 | } | |
e22a25c9 AL |
2125 | return -1; |
2126 | } | |
2127 | ||
2128 | int kvm_arch_insert_hw_breakpoint(target_ulong addr, | |
2129 | target_ulong len, int type) | |
2130 | { | |
2131 | switch (type) { | |
2132 | case GDB_BREAKPOINT_HW: | |
2133 | len = 1; | |
2134 | break; | |
2135 | case GDB_WATCHPOINT_WRITE: | |
2136 | case GDB_WATCHPOINT_ACCESS: | |
2137 | switch (len) { | |
2138 | case 1: | |
2139 | break; | |
2140 | case 2: | |
2141 | case 4: | |
2142 | case 8: | |
b9bec74b | 2143 | if (addr & (len - 1)) { |
e22a25c9 | 2144 | return -EINVAL; |
b9bec74b | 2145 | } |
e22a25c9 AL |
2146 | break; |
2147 | default: | |
2148 | return -EINVAL; | |
2149 | } | |
2150 | break; | |
2151 | default: | |
2152 | return -ENOSYS; | |
2153 | } | |
2154 | ||
b9bec74b | 2155 | if (nb_hw_breakpoint == 4) { |
e22a25c9 | 2156 | return -ENOBUFS; |
b9bec74b JK |
2157 | } |
2158 | if (find_hw_breakpoint(addr, len, type) >= 0) { | |
e22a25c9 | 2159 | return -EEXIST; |
b9bec74b | 2160 | } |
e22a25c9 AL |
2161 | hw_breakpoint[nb_hw_breakpoint].addr = addr; |
2162 | hw_breakpoint[nb_hw_breakpoint].len = len; | |
2163 | hw_breakpoint[nb_hw_breakpoint].type = type; | |
2164 | nb_hw_breakpoint++; | |
2165 | ||
2166 | return 0; | |
2167 | } | |
2168 | ||
2169 | int kvm_arch_remove_hw_breakpoint(target_ulong addr, | |
2170 | target_ulong len, int type) | |
2171 | { | |
2172 | int n; | |
2173 | ||
2174 | n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type); | |
b9bec74b | 2175 | if (n < 0) { |
e22a25c9 | 2176 | return -ENOENT; |
b9bec74b | 2177 | } |
e22a25c9 AL |
2178 | nb_hw_breakpoint--; |
2179 | hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; | |
2180 | ||
2181 | return 0; | |
2182 | } | |
2183 | ||
2184 | void kvm_arch_remove_all_hw_breakpoints(void) | |
2185 | { | |
2186 | nb_hw_breakpoint = 0; | |
2187 | } | |
2188 | ||
2189 | static CPUWatchpoint hw_watchpoint; | |
2190 | ||
a60f24b5 | 2191 | static int kvm_handle_debug(X86CPU *cpu, |
48405526 | 2192 | struct kvm_debug_exit_arch *arch_info) |
e22a25c9 | 2193 | { |
ed2803da | 2194 | CPUState *cs = CPU(cpu); |
a60f24b5 | 2195 | CPUX86State *env = &cpu->env; |
f2574737 | 2196 | int ret = 0; |
e22a25c9 AL |
2197 | int n; |
2198 | ||
2199 | if (arch_info->exception == 1) { | |
2200 | if (arch_info->dr6 & (1 << 14)) { | |
ed2803da | 2201 | if (cs->singlestep_enabled) { |
f2574737 | 2202 | ret = EXCP_DEBUG; |
b9bec74b | 2203 | } |
e22a25c9 | 2204 | } else { |
b9bec74b JK |
2205 | for (n = 0; n < 4; n++) { |
2206 | if (arch_info->dr6 & (1 << n)) { | |
e22a25c9 AL |
2207 | switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { |
2208 | case 0x0: | |
f2574737 | 2209 | ret = EXCP_DEBUG; |
e22a25c9 AL |
2210 | break; |
2211 | case 0x1: | |
f2574737 | 2212 | ret = EXCP_DEBUG; |
48405526 | 2213 | env->watchpoint_hit = &hw_watchpoint; |
e22a25c9 AL |
2214 | hw_watchpoint.vaddr = hw_breakpoint[n].addr; |
2215 | hw_watchpoint.flags = BP_MEM_WRITE; | |
2216 | break; | |
2217 | case 0x3: | |
f2574737 | 2218 | ret = EXCP_DEBUG; |
48405526 | 2219 | env->watchpoint_hit = &hw_watchpoint; |
e22a25c9 AL |
2220 | hw_watchpoint.vaddr = hw_breakpoint[n].addr; |
2221 | hw_watchpoint.flags = BP_MEM_ACCESS; | |
2222 | break; | |
2223 | } | |
b9bec74b JK |
2224 | } |
2225 | } | |
e22a25c9 | 2226 | } |
a60f24b5 | 2227 | } else if (kvm_find_sw_breakpoint(CPU(cpu), arch_info->pc)) { |
f2574737 | 2228 | ret = EXCP_DEBUG; |
b9bec74b | 2229 | } |
f2574737 | 2230 | if (ret == 0) { |
cb446eca | 2231 | cpu_synchronize_state(CPU(cpu)); |
48405526 | 2232 | assert(env->exception_injected == -1); |
b0b1d690 | 2233 | |
f2574737 | 2234 | /* pass to guest */ |
48405526 BS |
2235 | env->exception_injected = arch_info->exception; |
2236 | env->has_error_code = 0; | |
b0b1d690 | 2237 | } |
e22a25c9 | 2238 | |
f2574737 | 2239 | return ret; |
e22a25c9 AL |
2240 | } |
2241 | ||
20d695a9 | 2242 | void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) |
e22a25c9 AL |
2243 | { |
2244 | const uint8_t type_code[] = { | |
2245 | [GDB_BREAKPOINT_HW] = 0x0, | |
2246 | [GDB_WATCHPOINT_WRITE] = 0x1, | |
2247 | [GDB_WATCHPOINT_ACCESS] = 0x3 | |
2248 | }; | |
2249 | const uint8_t len_code[] = { | |
2250 | [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 | |
2251 | }; | |
2252 | int n; | |
2253 | ||
a60f24b5 | 2254 | if (kvm_sw_breakpoints_active(cpu)) { |
e22a25c9 | 2255 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; |
b9bec74b | 2256 | } |
e22a25c9 AL |
2257 | if (nb_hw_breakpoint > 0) { |
2258 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; | |
2259 | dbg->arch.debugreg[7] = 0x0600; | |
2260 | for (n = 0; n < nb_hw_breakpoint; n++) { | |
2261 | dbg->arch.debugreg[n] = hw_breakpoint[n].addr; | |
2262 | dbg->arch.debugreg[7] |= (2 << (n * 2)) | | |
2263 | (type_code[hw_breakpoint[n].type] << (16 + n*4)) | | |
95c077c9 | 2264 | ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4)); |
e22a25c9 AL |
2265 | } |
2266 | } | |
2267 | } | |
4513d923 | 2268 | |
2a4dac83 JK |
2269 | static bool host_supports_vmx(void) |
2270 | { | |
2271 | uint32_t ecx, unused; | |
2272 | ||
2273 | host_cpuid(1, 0, &unused, &unused, &ecx, &unused); | |
2274 | return ecx & CPUID_EXT_VMX; | |
2275 | } | |
2276 | ||
2277 | #define VMX_INVALID_GUEST_STATE 0x80000021 | |
2278 | ||
20d695a9 | 2279 | int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) |
2a4dac83 | 2280 | { |
20d695a9 | 2281 | X86CPU *cpu = X86_CPU(cs); |
2a4dac83 JK |
2282 | uint64_t code; |
2283 | int ret; | |
2284 | ||
2285 | switch (run->exit_reason) { | |
2286 | case KVM_EXIT_HLT: | |
2287 | DPRINTF("handle_hlt\n"); | |
839b5630 | 2288 | ret = kvm_handle_halt(cpu); |
2a4dac83 JK |
2289 | break; |
2290 | case KVM_EXIT_SET_TPR: | |
2291 | ret = 0; | |
2292 | break; | |
d362e757 | 2293 | case KVM_EXIT_TPR_ACCESS: |
f7575c96 | 2294 | ret = kvm_handle_tpr_access(cpu); |
d362e757 | 2295 | break; |
2a4dac83 JK |
2296 | case KVM_EXIT_FAIL_ENTRY: |
2297 | code = run->fail_entry.hardware_entry_failure_reason; | |
2298 | fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n", | |
2299 | code); | |
2300 | if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) { | |
2301 | fprintf(stderr, | |
12619721 | 2302 | "\nIf you're running a guest on an Intel machine without " |
2a4dac83 JK |
2303 | "unrestricted mode\n" |
2304 | "support, the failure can be most likely due to the guest " | |
2305 | "entering an invalid\n" | |
2306 | "state for Intel VT. For example, the guest maybe running " | |
2307 | "in big real mode\n" | |
2308 | "which is not supported on less recent Intel processors." | |
2309 | "\n\n"); | |
2310 | } | |
2311 | ret = -1; | |
2312 | break; | |
2313 | case KVM_EXIT_EXCEPTION: | |
2314 | fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n", | |
2315 | run->ex.exception, run->ex.error_code); | |
2316 | ret = -1; | |
2317 | break; | |
f2574737 JK |
2318 | case KVM_EXIT_DEBUG: |
2319 | DPRINTF("kvm_exit_debug\n"); | |
a60f24b5 | 2320 | ret = kvm_handle_debug(cpu, &run->debug.arch); |
f2574737 | 2321 | break; |
2a4dac83 JK |
2322 | default: |
2323 | fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); | |
2324 | ret = -1; | |
2325 | break; | |
2326 | } | |
2327 | ||
2328 | return ret; | |
2329 | } | |
2330 | ||
20d695a9 | 2331 | bool kvm_arch_stop_on_emulation_error(CPUState *cs) |
4513d923 | 2332 | { |
20d695a9 AF |
2333 | X86CPU *cpu = X86_CPU(cs); |
2334 | CPUX86State *env = &cpu->env; | |
2335 | ||
dd1750d7 | 2336 | kvm_cpu_synchronize_state(cs); |
b9bec74b JK |
2337 | return !(env->cr[0] & CR0_PE_MASK) || |
2338 | ((env->segs[R_CS].selector & 3) != 3); | |
4513d923 | 2339 | } |
84b058d7 JK |
2340 | |
2341 | void kvm_arch_init_irq_routing(KVMState *s) | |
2342 | { | |
2343 | if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) { | |
2344 | /* If kernel can't do irq routing, interrupt source | |
2345 | * override 0->2 cannot be set up as required by HPET. | |
2346 | * So we have to disable it. | |
2347 | */ | |
2348 | no_hpet = 1; | |
2349 | } | |
cc7e0ddf | 2350 | /* We know at this point that we're using the in-kernel |
614e41bc | 2351 | * irqchip, so we can use irqfds, and on x86 we know |
f3e1bed8 | 2352 | * we can use msi via irqfd and GSI routing. |
cc7e0ddf PM |
2353 | */ |
2354 | kvm_irqfds_allowed = true; | |
614e41bc | 2355 | kvm_msi_via_irqfd_allowed = true; |
f3e1bed8 | 2356 | kvm_gsi_routing_allowed = true; |
84b058d7 | 2357 | } |
b139bd30 JK |
2358 | |
2359 | /* Classic KVM device assignment interface. Will remain x86 only. */ | |
2360 | int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr, | |
2361 | uint32_t flags, uint32_t *dev_id) | |
2362 | { | |
2363 | struct kvm_assigned_pci_dev dev_data = { | |
2364 | .segnr = dev_addr->domain, | |
2365 | .busnr = dev_addr->bus, | |
2366 | .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function), | |
2367 | .flags = flags, | |
2368 | }; | |
2369 | int ret; | |
2370 | ||
2371 | dev_data.assigned_dev_id = | |
2372 | (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn; | |
2373 | ||
2374 | ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data); | |
2375 | if (ret < 0) { | |
2376 | return ret; | |
2377 | } | |
2378 | ||
2379 | *dev_id = dev_data.assigned_dev_id; | |
2380 | ||
2381 | return 0; | |
2382 | } | |
2383 | ||
2384 | int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id) | |
2385 | { | |
2386 | struct kvm_assigned_pci_dev dev_data = { | |
2387 | .assigned_dev_id = dev_id, | |
2388 | }; | |
2389 | ||
2390 | return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data); | |
2391 | } | |
2392 | ||
2393 | static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id, | |
2394 | uint32_t irq_type, uint32_t guest_irq) | |
2395 | { | |
2396 | struct kvm_assigned_irq assigned_irq = { | |
2397 | .assigned_dev_id = dev_id, | |
2398 | .guest_irq = guest_irq, | |
2399 | .flags = irq_type, | |
2400 | }; | |
2401 | ||
2402 | if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) { | |
2403 | return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq); | |
2404 | } else { | |
2405 | return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq); | |
2406 | } | |
2407 | } | |
2408 | ||
2409 | int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi, | |
2410 | uint32_t guest_irq) | |
2411 | { | |
2412 | uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX | | |
2413 | (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX); | |
2414 | ||
2415 | return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq); | |
2416 | } | |
2417 | ||
2418 | int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked) | |
2419 | { | |
2420 | struct kvm_assigned_pci_dev dev_data = { | |
2421 | .assigned_dev_id = dev_id, | |
2422 | .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0, | |
2423 | }; | |
2424 | ||
2425 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data); | |
2426 | } | |
2427 | ||
2428 | static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id, | |
2429 | uint32_t type) | |
2430 | { | |
2431 | struct kvm_assigned_irq assigned_irq = { | |
2432 | .assigned_dev_id = dev_id, | |
2433 | .flags = type, | |
2434 | }; | |
2435 | ||
2436 | return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq); | |
2437 | } | |
2438 | ||
2439 | int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi) | |
2440 | { | |
2441 | return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX | | |
2442 | (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX)); | |
2443 | } | |
2444 | ||
2445 | int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq) | |
2446 | { | |
2447 | return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI | | |
2448 | KVM_DEV_IRQ_GUEST_MSI, virq); | |
2449 | } | |
2450 | ||
2451 | int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id) | |
2452 | { | |
2453 | return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI | | |
2454 | KVM_DEV_IRQ_HOST_MSI); | |
2455 | } | |
2456 | ||
2457 | bool kvm_device_msix_supported(KVMState *s) | |
2458 | { | |
2459 | /* The kernel lacks a corresponding KVM_CAP, so we probe by calling | |
2460 | * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */ | |
2461 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT; | |
2462 | } | |
2463 | ||
2464 | int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id, | |
2465 | uint32_t nr_vectors) | |
2466 | { | |
2467 | struct kvm_assigned_msix_nr msix_nr = { | |
2468 | .assigned_dev_id = dev_id, | |
2469 | .entry_nr = nr_vectors, | |
2470 | }; | |
2471 | ||
2472 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr); | |
2473 | } | |
2474 | ||
2475 | int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector, | |
2476 | int virq) | |
2477 | { | |
2478 | struct kvm_assigned_msix_entry msix_entry = { | |
2479 | .assigned_dev_id = dev_id, | |
2480 | .gsi = virq, | |
2481 | .entry = vector, | |
2482 | }; | |
2483 | ||
2484 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry); | |
2485 | } | |
2486 | ||
2487 | int kvm_device_msix_assign(KVMState *s, uint32_t dev_id) | |
2488 | { | |
2489 | return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX | | |
2490 | KVM_DEV_IRQ_GUEST_MSIX, 0); | |
2491 | } | |
2492 | ||
2493 | int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id) | |
2494 | { | |
2495 | return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX | | |
2496 | KVM_DEV_IRQ_HOST_MSIX); | |
2497 | } |