]> Git Repo - qemu.git/blame - target-i386/kvm.c
target-i386: do not special case TSC writeback
[qemu.git] / target-i386 / kvm.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <[email protected]>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15#include <sys/types.h>
16#include <sys/ioctl.h>
17#include <sys/mman.h>
25d2e361 18#include <sys/utsname.h>
05330448
AL
19
20#include <linux/kvm.h>
5802e066 21#include <linux/kvm_para.h>
05330448
AL
22
23#include "qemu-common.h"
9c17d615
PB
24#include "sysemu/sysemu.h"
25#include "sysemu/kvm.h"
1d31f66b 26#include "kvm_i386.h"
05330448 27#include "cpu.h"
022c62cb 28#include "exec/gdbstub.h"
1de7afc9
PB
29#include "qemu/host-utils.h"
30#include "qemu/config-file.h"
0d09e41a
PB
31#include "hw/i386/pc.h"
32#include "hw/i386/apic.h"
022c62cb 33#include "exec/ioport.h"
92067bf4 34#include <asm/hyperv.h>
a2cb15b0 35#include "hw/pci/pci.h"
05330448
AL
36
37//#define DEBUG_KVM
38
39#ifdef DEBUG_KVM
8c0d577e 40#define DPRINTF(fmt, ...) \
05330448
AL
41 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
42#else
8c0d577e 43#define DPRINTF(fmt, ...) \
05330448
AL
44 do { } while (0)
45#endif
46
1a03675d
GC
47#define MSR_KVM_WALL_CLOCK 0x11
48#define MSR_KVM_SYSTEM_TIME 0x12
49
c0532a76
MT
50#ifndef BUS_MCEERR_AR
51#define BUS_MCEERR_AR 4
52#endif
53#ifndef BUS_MCEERR_AO
54#define BUS_MCEERR_AO 5
55#endif
56
94a8d39a
JK
57const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
58 KVM_CAP_INFO(SET_TSS_ADDR),
59 KVM_CAP_INFO(EXT_CPUID),
60 KVM_CAP_INFO(MP_STATE),
61 KVM_CAP_LAST_INFO
62};
25d2e361 63
c3a3a7d3
JK
64static bool has_msr_star;
65static bool has_msr_hsave_pa;
f28558d3 66static bool has_msr_tsc_adjust;
aa82ba54 67static bool has_msr_tsc_deadline;
df67696e 68static bool has_msr_feature_control;
c5999bfc 69static bool has_msr_async_pf_en;
bc9a839d 70static bool has_msr_pv_eoi_en;
21e87c46 71static bool has_msr_misc_enable;
79e9ebeb 72static bool has_msr_bndcfgs;
917367aa 73static bool has_msr_kvm_steal_time;
25d2e361 74static int lm_capable_kernel;
b827df58 75
0d894367
PB
76static bool has_msr_architectural_pmu;
77static uint32_t num_architectural_pmu_counters;
78
1d31f66b
PM
79bool kvm_allows_irq0_override(void)
80{
81 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
82}
83
b827df58
AK
84static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
85{
86 struct kvm_cpuid2 *cpuid;
87 int r, size;
88
89 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
7267c094 90 cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
b827df58
AK
91 cpuid->nent = max;
92 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
76ae317f
MM
93 if (r == 0 && cpuid->nent >= max) {
94 r = -E2BIG;
95 }
b827df58
AK
96 if (r < 0) {
97 if (r == -E2BIG) {
7267c094 98 g_free(cpuid);
b827df58
AK
99 return NULL;
100 } else {
101 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
102 strerror(-r));
103 exit(1);
104 }
105 }
106 return cpuid;
107}
108
dd87f8a6
EH
109/* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
110 * for all entries.
111 */
112static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
113{
114 struct kvm_cpuid2 *cpuid;
115 int max = 1;
116 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
117 max *= 2;
118 }
119 return cpuid;
120}
121
0c31b744
GC
122struct kvm_para_features {
123 int cap;
124 int feature;
125} para_features[] = {
126 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
127 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
128 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
0c31b744 129 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
0c31b744
GC
130 { -1, -1 }
131};
132
ba9bc59e 133static int get_para_features(KVMState *s)
0c31b744
GC
134{
135 int i, features = 0;
136
137 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
ba9bc59e 138 if (kvm_check_extension(s, para_features[i].cap)) {
0c31b744
GC
139 features |= (1 << para_features[i].feature);
140 }
141 }
142
143 return features;
144}
0c31b744
GC
145
146
829ae2f9
EH
147/* Returns the value for a specific register on the cpuid entry
148 */
149static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
150{
151 uint32_t ret = 0;
152 switch (reg) {
153 case R_EAX:
154 ret = entry->eax;
155 break;
156 case R_EBX:
157 ret = entry->ebx;
158 break;
159 case R_ECX:
160 ret = entry->ecx;
161 break;
162 case R_EDX:
163 ret = entry->edx;
164 break;
165 }
166 return ret;
167}
168
4fb73f1d
EH
169/* Find matching entry for function/index on kvm_cpuid2 struct
170 */
171static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
172 uint32_t function,
173 uint32_t index)
174{
175 int i;
176 for (i = 0; i < cpuid->nent; ++i) {
177 if (cpuid->entries[i].function == function &&
178 cpuid->entries[i].index == index) {
179 return &cpuid->entries[i];
180 }
181 }
182 /* not found: */
183 return NULL;
184}
185
ba9bc59e 186uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
c958a8bd 187 uint32_t index, int reg)
b827df58
AK
188{
189 struct kvm_cpuid2 *cpuid;
b827df58
AK
190 uint32_t ret = 0;
191 uint32_t cpuid_1_edx;
8c723b79 192 bool found = false;
b827df58 193
dd87f8a6 194 cpuid = get_supported_cpuid(s);
b827df58 195
4fb73f1d
EH
196 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
197 if (entry) {
198 found = true;
199 ret = cpuid_entry_get_reg(entry, reg);
b827df58
AK
200 }
201
7b46e5ce
EH
202 /* Fixups for the data returned by KVM, below */
203
c2acb022
EH
204 if (function == 1 && reg == R_EDX) {
205 /* KVM before 2.6.30 misreports the following features */
206 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
84bd945c
EH
207 } else if (function == 1 && reg == R_ECX) {
208 /* We can set the hypervisor flag, even if KVM does not return it on
209 * GET_SUPPORTED_CPUID
210 */
211 ret |= CPUID_EXT_HYPERVISOR;
ac67ee26
EH
212 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
213 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
214 * and the irqchip is in the kernel.
215 */
216 if (kvm_irqchip_in_kernel() &&
217 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
218 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
219 }
41e5e76d
EH
220
221 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
222 * without the in-kernel irqchip
223 */
224 if (!kvm_irqchip_in_kernel()) {
225 ret &= ~CPUID_EXT_X2APIC;
b827df58 226 }
c2acb022
EH
227 } else if (function == 0x80000001 && reg == R_EDX) {
228 /* On Intel, kvm returns cpuid according to the Intel spec,
229 * so add missing bits according to the AMD spec:
230 */
231 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
232 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
b827df58
AK
233 }
234
7267c094 235 g_free(cpuid);
b827df58 236
0c31b744 237 /* fallback for older kernels */
8c723b79 238 if ((function == KVM_CPUID_FEATURES) && !found) {
ba9bc59e 239 ret = get_para_features(s);
b9bec74b 240 }
0c31b744
GC
241
242 return ret;
bb0300dc 243}
bb0300dc 244
3c85e74f
HY
245typedef struct HWPoisonPage {
246 ram_addr_t ram_addr;
247 QLIST_ENTRY(HWPoisonPage) list;
248} HWPoisonPage;
249
250static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
251 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
252
253static void kvm_unpoison_all(void *param)
254{
255 HWPoisonPage *page, *next_page;
256
257 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
258 QLIST_REMOVE(page, list);
259 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
7267c094 260 g_free(page);
3c85e74f
HY
261 }
262}
263
3c85e74f
HY
264static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
265{
266 HWPoisonPage *page;
267
268 QLIST_FOREACH(page, &hwpoison_page_list, list) {
269 if (page->ram_addr == ram_addr) {
270 return;
271 }
272 }
7267c094 273 page = g_malloc(sizeof(HWPoisonPage));
3c85e74f
HY
274 page->ram_addr = ram_addr;
275 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
276}
277
e7701825
MT
278static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
279 int *max_banks)
280{
281 int r;
282
14a09518 283 r = kvm_check_extension(s, KVM_CAP_MCE);
e7701825
MT
284 if (r > 0) {
285 *max_banks = r;
286 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
287 }
288 return -ENOSYS;
289}
290
bee615d4 291static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
e7701825 292{
bee615d4 293 CPUX86State *env = &cpu->env;
c34d440a
JK
294 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
295 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
296 uint64_t mcg_status = MCG_STATUS_MCIP;
e7701825 297
c34d440a
JK
298 if (code == BUS_MCEERR_AR) {
299 status |= MCI_STATUS_AR | 0x134;
300 mcg_status |= MCG_STATUS_EIPV;
301 } else {
302 status |= 0xc0;
303 mcg_status |= MCG_STATUS_RIPV;
419fb20a 304 }
8c5cf3b6 305 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
c34d440a
JK
306 (MCM_ADDR_PHYS << 6) | 0xc,
307 cpu_x86_support_mca_broadcast(env) ?
308 MCE_INJECT_BROADCAST : 0);
419fb20a 309}
419fb20a
JK
310
311static void hardware_memory_error(void)
312{
313 fprintf(stderr, "Hardware memory error!\n");
314 exit(1);
315}
316
20d695a9 317int kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
419fb20a 318{
20d695a9
AF
319 X86CPU *cpu = X86_CPU(c);
320 CPUX86State *env = &cpu->env;
419fb20a 321 ram_addr_t ram_addr;
a8170e5e 322 hwaddr paddr;
419fb20a
JK
323
324 if ((env->mcg_cap & MCG_SER_P) && addr
c34d440a 325 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
1b5ec234 326 if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL ||
a60f24b5 327 !kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
419fb20a
JK
328 fprintf(stderr, "Hardware memory error for memory used by "
329 "QEMU itself instead of guest system!\n");
330 /* Hope we are lucky for AO MCE */
331 if (code == BUS_MCEERR_AO) {
332 return 0;
333 } else {
334 hardware_memory_error();
335 }
336 }
3c85e74f 337 kvm_hwpoison_page_add(ram_addr);
bee615d4 338 kvm_mce_inject(cpu, paddr, code);
e56ff191 339 } else {
419fb20a
JK
340 if (code == BUS_MCEERR_AO) {
341 return 0;
342 } else if (code == BUS_MCEERR_AR) {
343 hardware_memory_error();
344 } else {
345 return 1;
346 }
347 }
348 return 0;
349}
350
351int kvm_arch_on_sigbus(int code, void *addr)
352{
182735ef
AF
353 X86CPU *cpu = X86_CPU(first_cpu);
354
355 if ((cpu->env.mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
419fb20a 356 ram_addr_t ram_addr;
a8170e5e 357 hwaddr paddr;
419fb20a
JK
358
359 /* Hope we are lucky for AO MCE */
1b5ec234 360 if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL ||
182735ef 361 !kvm_physical_memory_addr_from_host(first_cpu->kvm_state,
a60f24b5 362 addr, &paddr)) {
419fb20a
JK
363 fprintf(stderr, "Hardware memory error for memory used by "
364 "QEMU itself instead of guest system!: %p\n", addr);
365 return 0;
366 }
3c85e74f 367 kvm_hwpoison_page_add(ram_addr);
182735ef 368 kvm_mce_inject(X86_CPU(first_cpu), paddr, code);
e56ff191 369 } else {
419fb20a
JK
370 if (code == BUS_MCEERR_AO) {
371 return 0;
372 } else if (code == BUS_MCEERR_AR) {
373 hardware_memory_error();
374 } else {
375 return 1;
376 }
377 }
378 return 0;
379}
e7701825 380
1bc22652 381static int kvm_inject_mce_oldstyle(X86CPU *cpu)
ab443475 382{
1bc22652
AF
383 CPUX86State *env = &cpu->env;
384
ab443475
JK
385 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
386 unsigned int bank, bank_num = env->mcg_cap & 0xff;
387 struct kvm_x86_mce mce;
388
389 env->exception_injected = -1;
390
391 /*
392 * There must be at least one bank in use if an MCE is pending.
393 * Find it and use its values for the event injection.
394 */
395 for (bank = 0; bank < bank_num; bank++) {
396 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
397 break;
398 }
399 }
400 assert(bank < bank_num);
401
402 mce.bank = bank;
403 mce.status = env->mce_banks[bank * 4 + 1];
404 mce.mcg_status = env->mcg_status;
405 mce.addr = env->mce_banks[bank * 4 + 2];
406 mce.misc = env->mce_banks[bank * 4 + 3];
407
1bc22652 408 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
ab443475 409 }
ab443475
JK
410 return 0;
411}
412
1dfb4dd9 413static void cpu_update_state(void *opaque, int running, RunState state)
b8cc45d6 414{
317ac620 415 CPUX86State *env = opaque;
b8cc45d6
GC
416
417 if (running) {
418 env->tsc_valid = false;
419 }
420}
421
83b17af5 422unsigned long kvm_arch_vcpu_id(CPUState *cs)
b164e48e 423{
83b17af5
EH
424 X86CPU *cpu = X86_CPU(cs);
425 return cpu->env.cpuid_apic_id;
b164e48e
EH
426}
427
92067bf4
IM
428#ifndef KVM_CPUID_SIGNATURE_NEXT
429#define KVM_CPUID_SIGNATURE_NEXT 0x40000100
430#endif
431
432static bool hyperv_hypercall_available(X86CPU *cpu)
433{
434 return cpu->hyperv_vapic ||
435 (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY);
436}
437
438static bool hyperv_enabled(X86CPU *cpu)
439{
440 return hyperv_hypercall_available(cpu) ||
441 cpu->hyperv_relaxed_timing;
442}
443
f8bb0565 444#define KVM_MAX_CPUID_ENTRIES 100
0893d460 445
20d695a9 446int kvm_arch_init_vcpu(CPUState *cs)
05330448
AL
447{
448 struct {
486bd5a2 449 struct kvm_cpuid2 cpuid;
f8bb0565 450 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
541dc0d4 451 } QEMU_PACKED cpuid_data;
20d695a9
AF
452 X86CPU *cpu = X86_CPU(cs);
453 CPUX86State *env = &cpu->env;
486bd5a2 454 uint32_t limit, i, j, cpuid_i;
a33609ca 455 uint32_t unused;
bb0300dc 456 struct kvm_cpuid_entry2 *c;
bb0300dc 457 uint32_t signature[3];
e7429073 458 int r;
05330448 459
ef4cbe14
SW
460 memset(&cpuid_data, 0, sizeof(cpuid_data));
461
05330448
AL
462 cpuid_i = 0;
463
bb0300dc 464 /* Paravirtualization CPUIDs */
bb0300dc 465 c = &cpuid_data.entries[cpuid_i++];
bb0300dc 466 c->function = KVM_CPUID_SIGNATURE;
92067bf4 467 if (!hyperv_enabled(cpu)) {
eab70139
VR
468 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
469 c->eax = 0;
470 } else {
471 memcpy(signature, "Microsoft Hv", 12);
472 c->eax = HYPERV_CPUID_MIN;
473 }
bb0300dc
GN
474 c->ebx = signature[0];
475 c->ecx = signature[1];
476 c->edx = signature[2];
477
478 c = &cpuid_data.entries[cpuid_i++];
bb0300dc 479 c->function = KVM_CPUID_FEATURES;
0514ef2f 480 c->eax = env->features[FEAT_KVM];
0c31b744 481
92067bf4 482 if (hyperv_enabled(cpu)) {
eab70139
VR
483 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
484 c->eax = signature[0];
485
486 c = &cpuid_data.entries[cpuid_i++];
eab70139
VR
487 c->function = HYPERV_CPUID_VERSION;
488 c->eax = 0x00001bbc;
489 c->ebx = 0x00060001;
490
491 c = &cpuid_data.entries[cpuid_i++];
eab70139 492 c->function = HYPERV_CPUID_FEATURES;
92067bf4 493 if (cpu->hyperv_relaxed_timing) {
eab70139
VR
494 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
495 }
92067bf4 496 if (cpu->hyperv_vapic) {
eab70139
VR
497 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
498 c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
499 }
500
501 c = &cpuid_data.entries[cpuid_i++];
eab70139 502 c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
92067bf4 503 if (cpu->hyperv_relaxed_timing) {
eab70139
VR
504 c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
505 }
92067bf4 506 if (cpu->hyperv_vapic) {
eab70139
VR
507 c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
508 }
92067bf4 509 c->ebx = cpu->hyperv_spinlock_attempts;
eab70139
VR
510
511 c = &cpuid_data.entries[cpuid_i++];
eab70139
VR
512 c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
513 c->eax = 0x40;
514 c->ebx = 0x40;
515
516 c = &cpuid_data.entries[cpuid_i++];
eab70139
VR
517 c->function = KVM_CPUID_SIGNATURE_NEXT;
518 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
519 c->eax = 0;
520 c->ebx = signature[0];
521 c->ecx = signature[1];
522 c->edx = signature[2];
523 }
524
0c31b744 525 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
bb0300dc 526
bc9a839d
MT
527 has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI);
528
917367aa
MT
529 has_msr_kvm_steal_time = c->eax & (1 << KVM_FEATURE_STEAL_TIME);
530
a33609ca 531 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
05330448
AL
532
533 for (i = 0; i <= limit; i++) {
f8bb0565
IM
534 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
535 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
536 abort();
537 }
bb0300dc 538 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
539
540 switch (i) {
a36b1029
AL
541 case 2: {
542 /* Keep reading function 2 till all the input is received */
543 int times;
544
a36b1029 545 c->function = i;
a33609ca
AL
546 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
547 KVM_CPUID_FLAG_STATE_READ_NEXT;
548 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
549 times = c->eax & 0xff;
a36b1029
AL
550
551 for (j = 1; j < times; ++j) {
f8bb0565
IM
552 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
553 fprintf(stderr, "cpuid_data is full, no space for "
554 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
555 abort();
556 }
a33609ca 557 c = &cpuid_data.entries[cpuid_i++];
a36b1029 558 c->function = i;
a33609ca
AL
559 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
560 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
a36b1029
AL
561 }
562 break;
563 }
486bd5a2
AL
564 case 4:
565 case 0xb:
566 case 0xd:
567 for (j = 0; ; j++) {
31e8c696
AP
568 if (i == 0xd && j == 64) {
569 break;
570 }
486bd5a2
AL
571 c->function = i;
572 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
573 c->index = j;
a33609ca 574 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2 575
b9bec74b 576 if (i == 4 && c->eax == 0) {
486bd5a2 577 break;
b9bec74b
JK
578 }
579 if (i == 0xb && !(c->ecx & 0xff00)) {
486bd5a2 580 break;
b9bec74b
JK
581 }
582 if (i == 0xd && c->eax == 0) {
31e8c696 583 continue;
b9bec74b 584 }
f8bb0565
IM
585 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
586 fprintf(stderr, "cpuid_data is full, no space for "
587 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
588 abort();
589 }
a33609ca 590 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
591 }
592 break;
593 default:
486bd5a2 594 c->function = i;
a33609ca
AL
595 c->flags = 0;
596 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2
AL
597 break;
598 }
05330448 599 }
0d894367
PB
600
601 if (limit >= 0x0a) {
602 uint32_t ver;
603
604 cpu_x86_cpuid(env, 0x0a, 0, &ver, &unused, &unused, &unused);
605 if ((ver & 0xff) > 0) {
606 has_msr_architectural_pmu = true;
607 num_architectural_pmu_counters = (ver & 0xff00) >> 8;
608
609 /* Shouldn't be more than 32, since that's the number of bits
610 * available in EBX to tell us _which_ counters are available.
611 * Play it safe.
612 */
613 if (num_architectural_pmu_counters > MAX_GP_COUNTERS) {
614 num_architectural_pmu_counters = MAX_GP_COUNTERS;
615 }
616 }
617 }
618
a33609ca 619 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
05330448
AL
620
621 for (i = 0x80000000; i <= limit; i++) {
f8bb0565
IM
622 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
623 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
624 abort();
625 }
bb0300dc 626 c = &cpuid_data.entries[cpuid_i++];
05330448 627
05330448 628 c->function = i;
a33609ca
AL
629 c->flags = 0;
630 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
05330448
AL
631 }
632
b3baa152
BW
633 /* Call Centaur's CPUID instructions they are supported. */
634 if (env->cpuid_xlevel2 > 0) {
b3baa152
BW
635 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
636
637 for (i = 0xC0000000; i <= limit; i++) {
f8bb0565
IM
638 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
639 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
640 abort();
641 }
b3baa152
BW
642 c = &cpuid_data.entries[cpuid_i++];
643
644 c->function = i;
645 c->flags = 0;
646 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
647 }
648 }
649
05330448
AL
650 cpuid_data.cpuid.nent = cpuid_i;
651
e7701825 652 if (((env->cpuid_version >> 8)&0xF) >= 6
0514ef2f 653 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
fc7a504c 654 (CPUID_MCE | CPUID_MCA)
a60f24b5 655 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
e7701825
MT
656 uint64_t mcg_cap;
657 int banks;
32a42024 658 int ret;
e7701825 659
a60f24b5 660 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
75d49497
JK
661 if (ret < 0) {
662 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
663 return ret;
e7701825 664 }
75d49497
JK
665
666 if (banks > MCE_BANKS_DEF) {
667 banks = MCE_BANKS_DEF;
668 }
669 mcg_cap &= MCE_CAP_DEF;
670 mcg_cap |= banks;
1bc22652 671 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &mcg_cap);
75d49497
JK
672 if (ret < 0) {
673 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
674 return ret;
675 }
676
677 env->mcg_cap = mcg_cap;
e7701825 678 }
e7701825 679
b8cc45d6
GC
680 qemu_add_vm_change_state_handler(cpu_update_state, env);
681
df67696e
LJ
682 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
683 if (c) {
684 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
685 !!(c->ecx & CPUID_EXT_SMX);
686 }
687
7e680753 688 cpuid_data.cpuid.padding = 0;
1bc22652 689 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
fdc9c41a
JK
690 if (r) {
691 return r;
692 }
e7429073 693
a60f24b5 694 r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL);
e7429073 695 if (r && env->tsc_khz) {
1bc22652 696 r = kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz);
e7429073
JR
697 if (r < 0) {
698 fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
699 return r;
700 }
701 }
e7429073 702
fabacc0f
JK
703 if (kvm_has_xsave()) {
704 env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
705 }
706
e7429073 707 return 0;
05330448
AL
708}
709
20d695a9 710void kvm_arch_reset_vcpu(CPUState *cs)
caa5af0f 711{
20d695a9
AF
712 X86CPU *cpu = X86_CPU(cs);
713 CPUX86State *env = &cpu->env;
dd673288 714
e73223a5 715 env->exception_injected = -1;
0e607a80 716 env->interrupt_injected = -1;
1a5e9d2f 717 env->xcr0 = 1;
ddced198 718 if (kvm_irqchip_in_kernel()) {
dd673288 719 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
ddced198
MT
720 KVM_MP_STATE_UNINITIALIZED;
721 } else {
722 env->mp_state = KVM_MP_STATE_RUNNABLE;
723 }
caa5af0f
JK
724}
725
c3a3a7d3 726static int kvm_get_supported_msrs(KVMState *s)
05330448 727{
75b10c43 728 static int kvm_supported_msrs;
c3a3a7d3 729 int ret = 0;
05330448
AL
730
731 /* first time */
75b10c43 732 if (kvm_supported_msrs == 0) {
05330448
AL
733 struct kvm_msr_list msr_list, *kvm_msr_list;
734
75b10c43 735 kvm_supported_msrs = -1;
05330448
AL
736
737 /* Obtain MSR list from KVM. These are the MSRs that we must
738 * save/restore */
4c9f7372 739 msr_list.nmsrs = 0;
c3a3a7d3 740 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
6fb6d245 741 if (ret < 0 && ret != -E2BIG) {
c3a3a7d3 742 return ret;
6fb6d245 743 }
d9db889f
JK
744 /* Old kernel modules had a bug and could write beyond the provided
745 memory. Allocate at least a safe amount of 1K. */
7267c094 746 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
d9db889f
JK
747 msr_list.nmsrs *
748 sizeof(msr_list.indices[0])));
05330448 749
55308450 750 kvm_msr_list->nmsrs = msr_list.nmsrs;
c3a3a7d3 751 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
05330448
AL
752 if (ret >= 0) {
753 int i;
754
755 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
756 if (kvm_msr_list->indices[i] == MSR_STAR) {
c3a3a7d3 757 has_msr_star = true;
75b10c43
MT
758 continue;
759 }
760 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
c3a3a7d3 761 has_msr_hsave_pa = true;
75b10c43 762 continue;
05330448 763 }
f28558d3
WA
764 if (kvm_msr_list->indices[i] == MSR_TSC_ADJUST) {
765 has_msr_tsc_adjust = true;
766 continue;
767 }
aa82ba54
LJ
768 if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
769 has_msr_tsc_deadline = true;
770 continue;
771 }
21e87c46
AK
772 if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
773 has_msr_misc_enable = true;
774 continue;
775 }
79e9ebeb
LJ
776 if (kvm_msr_list->indices[i] == MSR_IA32_BNDCFGS) {
777 has_msr_bndcfgs = true;
778 continue;
779 }
05330448
AL
780 }
781 }
782
7267c094 783 g_free(kvm_msr_list);
05330448
AL
784 }
785
c3a3a7d3 786 return ret;
05330448
AL
787}
788
cad1e282 789int kvm_arch_init(KVMState *s)
20420430 790{
11076198 791 uint64_t identity_base = 0xfffbc000;
39d6960a 792 uint64_t shadow_mem;
20420430 793 int ret;
25d2e361 794 struct utsname utsname;
20420430 795
c3a3a7d3 796 ret = kvm_get_supported_msrs(s);
20420430 797 if (ret < 0) {
20420430
SY
798 return ret;
799 }
25d2e361
MT
800
801 uname(&utsname);
802 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
803
4c5b10b7 804 /*
11076198
JK
805 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
806 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
807 * Since these must be part of guest physical memory, we need to allocate
808 * them, both by setting their start addresses in the kernel and by
809 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
810 *
811 * Older KVM versions may not support setting the identity map base. In
812 * that case we need to stick with the default, i.e. a 256K maximum BIOS
813 * size.
4c5b10b7 814 */
11076198
JK
815 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
816 /* Allows up to 16M BIOSes. */
817 identity_base = 0xfeffc000;
818
819 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
820 if (ret < 0) {
821 return ret;
822 }
4c5b10b7 823 }
e56ff191 824
11076198
JK
825 /* Set TSS base one page after EPT identity map. */
826 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
20420430
SY
827 if (ret < 0) {
828 return ret;
829 }
830
11076198
JK
831 /* Tell fw_cfg to notify the BIOS to reserve the range. */
832 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
20420430 833 if (ret < 0) {
11076198 834 fprintf(stderr, "e820_add_entry() table is full\n");
20420430
SY
835 return ret;
836 }
3c85e74f 837 qemu_register_reset(kvm_unpoison_all, NULL);
20420430 838
36ad0e94
MA
839 shadow_mem = qemu_opt_get_size(qemu_get_machine_opts(),
840 "kvm_shadow_mem", -1);
841 if (shadow_mem != -1) {
842 shadow_mem /= 4096;
843 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
844 if (ret < 0) {
845 return ret;
39d6960a
JK
846 }
847 }
11076198 848 return 0;
05330448 849}
b9bec74b 850
05330448
AL
851static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
852{
853 lhs->selector = rhs->selector;
854 lhs->base = rhs->base;
855 lhs->limit = rhs->limit;
856 lhs->type = 3;
857 lhs->present = 1;
858 lhs->dpl = 3;
859 lhs->db = 0;
860 lhs->s = 1;
861 lhs->l = 0;
862 lhs->g = 0;
863 lhs->avl = 0;
864 lhs->unusable = 0;
865}
866
867static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
868{
869 unsigned flags = rhs->flags;
870 lhs->selector = rhs->selector;
871 lhs->base = rhs->base;
872 lhs->limit = rhs->limit;
873 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
874 lhs->present = (flags & DESC_P_MASK) != 0;
acaa7550 875 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
05330448
AL
876 lhs->db = (flags >> DESC_B_SHIFT) & 1;
877 lhs->s = (flags & DESC_S_MASK) != 0;
878 lhs->l = (flags >> DESC_L_SHIFT) & 1;
879 lhs->g = (flags & DESC_G_MASK) != 0;
880 lhs->avl = (flags & DESC_AVL_MASK) != 0;
881 lhs->unusable = 0;
7e680753 882 lhs->padding = 0;
05330448
AL
883}
884
885static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
886{
887 lhs->selector = rhs->selector;
888 lhs->base = rhs->base;
889 lhs->limit = rhs->limit;
b9bec74b
JK
890 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
891 (rhs->present * DESC_P_MASK) |
892 (rhs->dpl << DESC_DPL_SHIFT) |
893 (rhs->db << DESC_B_SHIFT) |
894 (rhs->s * DESC_S_MASK) |
895 (rhs->l << DESC_L_SHIFT) |
896 (rhs->g * DESC_G_MASK) |
897 (rhs->avl * DESC_AVL_MASK);
05330448
AL
898}
899
900static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
901{
b9bec74b 902 if (set) {
05330448 903 *kvm_reg = *qemu_reg;
b9bec74b 904 } else {
05330448 905 *qemu_reg = *kvm_reg;
b9bec74b 906 }
05330448
AL
907}
908
1bc22652 909static int kvm_getput_regs(X86CPU *cpu, int set)
05330448 910{
1bc22652 911 CPUX86State *env = &cpu->env;
05330448
AL
912 struct kvm_regs regs;
913 int ret = 0;
914
915 if (!set) {
1bc22652 916 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
b9bec74b 917 if (ret < 0) {
05330448 918 return ret;
b9bec74b 919 }
05330448
AL
920 }
921
922 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
923 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
924 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
925 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
926 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
927 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
928 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
929 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
930#ifdef TARGET_X86_64
931 kvm_getput_reg(&regs.r8, &env->regs[8], set);
932 kvm_getput_reg(&regs.r9, &env->regs[9], set);
933 kvm_getput_reg(&regs.r10, &env->regs[10], set);
934 kvm_getput_reg(&regs.r11, &env->regs[11], set);
935 kvm_getput_reg(&regs.r12, &env->regs[12], set);
936 kvm_getput_reg(&regs.r13, &env->regs[13], set);
937 kvm_getput_reg(&regs.r14, &env->regs[14], set);
938 kvm_getput_reg(&regs.r15, &env->regs[15], set);
939#endif
940
941 kvm_getput_reg(&regs.rflags, &env->eflags, set);
942 kvm_getput_reg(&regs.rip, &env->eip, set);
943
b9bec74b 944 if (set) {
1bc22652 945 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
b9bec74b 946 }
05330448
AL
947
948 return ret;
949}
950
1bc22652 951static int kvm_put_fpu(X86CPU *cpu)
05330448 952{
1bc22652 953 CPUX86State *env = &cpu->env;
05330448
AL
954 struct kvm_fpu fpu;
955 int i;
956
957 memset(&fpu, 0, sizeof fpu);
958 fpu.fsw = env->fpus & ~(7 << 11);
959 fpu.fsw |= (env->fpstt & 7) << 11;
960 fpu.fcw = env->fpuc;
42cc8fa6
JK
961 fpu.last_opcode = env->fpop;
962 fpu.last_ip = env->fpip;
963 fpu.last_dp = env->fpdp;
b9bec74b
JK
964 for (i = 0; i < 8; ++i) {
965 fpu.ftwx |= (!env->fptags[i]) << i;
966 }
05330448
AL
967 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
968 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
969 fpu.mxcsr = env->mxcsr;
970
1bc22652 971 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
05330448
AL
972}
973
6b42494b
JK
974#define XSAVE_FCW_FSW 0
975#define XSAVE_FTW_FOP 1
f1665b21
SY
976#define XSAVE_CWD_RIP 2
977#define XSAVE_CWD_RDP 4
978#define XSAVE_MXCSR 6
979#define XSAVE_ST_SPACE 8
980#define XSAVE_XMM_SPACE 40
981#define XSAVE_XSTATE_BV 128
982#define XSAVE_YMMH_SPACE 144
79e9ebeb
LJ
983#define XSAVE_BNDREGS 240
984#define XSAVE_BNDCSR 256
f1665b21 985
1bc22652 986static int kvm_put_xsave(X86CPU *cpu)
f1665b21 987{
1bc22652 988 CPUX86State *env = &cpu->env;
fabacc0f 989 struct kvm_xsave* xsave = env->kvm_xsave_buf;
42cc8fa6 990 uint16_t cwd, swd, twd;
fabacc0f 991 int i, r;
f1665b21 992
b9bec74b 993 if (!kvm_has_xsave()) {
1bc22652 994 return kvm_put_fpu(cpu);
b9bec74b 995 }
f1665b21 996
f1665b21 997 memset(xsave, 0, sizeof(struct kvm_xsave));
6115c0a8 998 twd = 0;
f1665b21
SY
999 swd = env->fpus & ~(7 << 11);
1000 swd |= (env->fpstt & 7) << 11;
1001 cwd = env->fpuc;
b9bec74b 1002 for (i = 0; i < 8; ++i) {
f1665b21 1003 twd |= (!env->fptags[i]) << i;
b9bec74b 1004 }
6b42494b
JK
1005 xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
1006 xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
42cc8fa6
JK
1007 memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
1008 memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
f1665b21
SY
1009 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
1010 sizeof env->fpregs);
1011 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
1012 sizeof env->xmm_regs);
1013 xsave->region[XSAVE_MXCSR] = env->mxcsr;
1014 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
1015 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
1016 sizeof env->ymmh_regs);
79e9ebeb
LJ
1017 memcpy(&xsave->region[XSAVE_BNDREGS], env->bnd_regs,
1018 sizeof env->bnd_regs);
1019 memcpy(&xsave->region[XSAVE_BNDCSR], &env->bndcs_regs,
1020 sizeof(env->bndcs_regs));
1bc22652 1021 r = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
0f53994f 1022 return r;
f1665b21
SY
1023}
1024
1bc22652 1025static int kvm_put_xcrs(X86CPU *cpu)
f1665b21 1026{
1bc22652 1027 CPUX86State *env = &cpu->env;
f1665b21
SY
1028 struct kvm_xcrs xcrs;
1029
b9bec74b 1030 if (!kvm_has_xcrs()) {
f1665b21 1031 return 0;
b9bec74b 1032 }
f1665b21
SY
1033
1034 xcrs.nr_xcrs = 1;
1035 xcrs.flags = 0;
1036 xcrs.xcrs[0].xcr = 0;
1037 xcrs.xcrs[0].value = env->xcr0;
1bc22652 1038 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
f1665b21
SY
1039}
1040
1bc22652 1041static int kvm_put_sregs(X86CPU *cpu)
05330448 1042{
1bc22652 1043 CPUX86State *env = &cpu->env;
05330448
AL
1044 struct kvm_sregs sregs;
1045
0e607a80
JK
1046 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
1047 if (env->interrupt_injected >= 0) {
1048 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
1049 (uint64_t)1 << (env->interrupt_injected % 64);
1050 }
05330448
AL
1051
1052 if ((env->eflags & VM_MASK)) {
b9bec74b
JK
1053 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
1054 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
1055 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
1056 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
1057 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
1058 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
05330448 1059 } else {
b9bec74b
JK
1060 set_seg(&sregs.cs, &env->segs[R_CS]);
1061 set_seg(&sregs.ds, &env->segs[R_DS]);
1062 set_seg(&sregs.es, &env->segs[R_ES]);
1063 set_seg(&sregs.fs, &env->segs[R_FS]);
1064 set_seg(&sregs.gs, &env->segs[R_GS]);
1065 set_seg(&sregs.ss, &env->segs[R_SS]);
05330448
AL
1066 }
1067
1068 set_seg(&sregs.tr, &env->tr);
1069 set_seg(&sregs.ldt, &env->ldt);
1070
1071 sregs.idt.limit = env->idt.limit;
1072 sregs.idt.base = env->idt.base;
7e680753 1073 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
05330448
AL
1074 sregs.gdt.limit = env->gdt.limit;
1075 sregs.gdt.base = env->gdt.base;
7e680753 1076 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
05330448
AL
1077
1078 sregs.cr0 = env->cr[0];
1079 sregs.cr2 = env->cr[2];
1080 sregs.cr3 = env->cr[3];
1081 sregs.cr4 = env->cr[4];
1082
4a942cea
BS
1083 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
1084 sregs.apic_base = cpu_get_apic_base(env->apic_state);
05330448
AL
1085
1086 sregs.efer = env->efer;
1087
1bc22652 1088 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
05330448
AL
1089}
1090
1091static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
1092 uint32_t index, uint64_t value)
1093{
1094 entry->index = index;
1095 entry->data = value;
1096}
1097
7477cd38
MT
1098static int kvm_put_tscdeadline_msr(X86CPU *cpu)
1099{
1100 CPUX86State *env = &cpu->env;
1101 struct {
1102 struct kvm_msrs info;
1103 struct kvm_msr_entry entries[1];
1104 } msr_data;
1105 struct kvm_msr_entry *msrs = msr_data.entries;
1106
1107 if (!has_msr_tsc_deadline) {
1108 return 0;
1109 }
1110
1111 kvm_msr_entry_set(&msrs[0], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
1112
1113 msr_data.info.nmsrs = 1;
1114
1115 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
1116}
1117
1bc22652 1118static int kvm_put_msrs(X86CPU *cpu, int level)
05330448 1119{
1bc22652 1120 CPUX86State *env = &cpu->env;
05330448
AL
1121 struct {
1122 struct kvm_msrs info;
1123 struct kvm_msr_entry entries[100];
1124 } msr_data;
1125 struct kvm_msr_entry *msrs = msr_data.entries;
0d894367 1126 int n = 0, i;
05330448
AL
1127
1128 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
1129 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
1130 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
0c03266a 1131 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
c3a3a7d3 1132 if (has_msr_star) {
b9bec74b
JK
1133 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
1134 }
c3a3a7d3 1135 if (has_msr_hsave_pa) {
75b10c43 1136 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
b9bec74b 1137 }
f28558d3
WA
1138 if (has_msr_tsc_adjust) {
1139 kvm_msr_entry_set(&msrs[n++], MSR_TSC_ADJUST, env->tsc_adjust);
1140 }
21e87c46
AK
1141 if (has_msr_misc_enable) {
1142 kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
1143 env->msr_ia32_misc_enable);
1144 }
05330448 1145#ifdef TARGET_X86_64
25d2e361
MT
1146 if (lm_capable_kernel) {
1147 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
1148 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
1149 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
1150 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
1151 }
05330448 1152#endif
ea643051 1153 if (level == KVM_PUT_FULL_STATE) {
f86746c2 1154 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
ff5c186b
JK
1155 }
1156 /*
0d894367
PB
1157 * The following MSRs have side effects on the guest or are too heavy
1158 * for normal writeback. Limit them to reset or full state updates.
ff5c186b
JK
1159 */
1160 if (level >= KVM_PUT_RESET_STATE) {
ea643051
JK
1161 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1162 env->system_time_msr);
1163 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
c5999bfc
JK
1164 if (has_msr_async_pf_en) {
1165 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1166 env->async_pf_en_msr);
1167 }
bc9a839d
MT
1168 if (has_msr_pv_eoi_en) {
1169 kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN,
1170 env->pv_eoi_en_msr);
1171 }
917367aa
MT
1172 if (has_msr_kvm_steal_time) {
1173 kvm_msr_entry_set(&msrs[n++], MSR_KVM_STEAL_TIME,
1174 env->steal_time_msr);
1175 }
0d894367
PB
1176 if (has_msr_architectural_pmu) {
1177 /* Stop the counter. */
1178 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
1179 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_CTRL, 0);
1180
1181 /* Set the counter values. */
1182 for (i = 0; i < MAX_FIXED_COUNTERS; i++) {
1183 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR0 + i,
1184 env->msr_fixed_counters[i]);
1185 }
1186 for (i = 0; i < num_architectural_pmu_counters; i++) {
1187 kvm_msr_entry_set(&msrs[n++], MSR_P6_PERFCTR0 + i,
1188 env->msr_gp_counters[i]);
1189 kvm_msr_entry_set(&msrs[n++], MSR_P6_EVNTSEL0 + i,
1190 env->msr_gp_evtsel[i]);
1191 }
1192 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_STATUS,
1193 env->msr_global_status);
1194 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1195 env->msr_global_ovf_ctrl);
1196
1197 /* Now start the PMU. */
1198 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR_CTRL,
1199 env->msr_fixed_ctr_ctrl);
1200 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_CTRL,
1201 env->msr_global_ctrl);
1202 }
92067bf4 1203 if (hyperv_hypercall_available(cpu)) {
eab70139
VR
1204 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, 0);
1205 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, 0);
1206 }
92067bf4 1207 if (cpu->hyperv_vapic) {
eab70139
VR
1208 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, 0);
1209 }
df67696e
LJ
1210 if (has_msr_feature_control) {
1211 kvm_msr_entry_set(&msrs[n++], MSR_IA32_FEATURE_CONTROL,
1212 env->msr_ia32_feature_control);
1213 }
79e9ebeb
LJ
1214 if (has_msr_bndcfgs) {
1215 kvm_msr_entry_set(&msrs[n++], MSR_IA32_BNDCFGS, env->msr_bndcfgs);
1216 }
ea643051 1217 }
57780495 1218 if (env->mcg_cap) {
d8da8574 1219 int i;
b9bec74b 1220
c34d440a
JK
1221 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1222 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1223 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1224 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
57780495
MT
1225 }
1226 }
1a03675d 1227
05330448
AL
1228 msr_data.info.nmsrs = n;
1229
1bc22652 1230 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
05330448
AL
1231
1232}
1233
1234
1bc22652 1235static int kvm_get_fpu(X86CPU *cpu)
05330448 1236{
1bc22652 1237 CPUX86State *env = &cpu->env;
05330448
AL
1238 struct kvm_fpu fpu;
1239 int i, ret;
1240
1bc22652 1241 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
b9bec74b 1242 if (ret < 0) {
05330448 1243 return ret;
b9bec74b 1244 }
05330448
AL
1245
1246 env->fpstt = (fpu.fsw >> 11) & 7;
1247 env->fpus = fpu.fsw;
1248 env->fpuc = fpu.fcw;
42cc8fa6
JK
1249 env->fpop = fpu.last_opcode;
1250 env->fpip = fpu.last_ip;
1251 env->fpdp = fpu.last_dp;
b9bec74b
JK
1252 for (i = 0; i < 8; ++i) {
1253 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1254 }
05330448
AL
1255 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1256 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1257 env->mxcsr = fpu.mxcsr;
1258
1259 return 0;
1260}
1261
1bc22652 1262static int kvm_get_xsave(X86CPU *cpu)
f1665b21 1263{
1bc22652 1264 CPUX86State *env = &cpu->env;
fabacc0f 1265 struct kvm_xsave* xsave = env->kvm_xsave_buf;
f1665b21 1266 int ret, i;
42cc8fa6 1267 uint16_t cwd, swd, twd;
f1665b21 1268
b9bec74b 1269 if (!kvm_has_xsave()) {
1bc22652 1270 return kvm_get_fpu(cpu);
b9bec74b 1271 }
f1665b21 1272
1bc22652 1273 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
0f53994f 1274 if (ret < 0) {
f1665b21 1275 return ret;
0f53994f 1276 }
f1665b21 1277
6b42494b
JK
1278 cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1279 swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1280 twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1281 env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
f1665b21
SY
1282 env->fpstt = (swd >> 11) & 7;
1283 env->fpus = swd;
1284 env->fpuc = cwd;
b9bec74b 1285 for (i = 0; i < 8; ++i) {
f1665b21 1286 env->fptags[i] = !((twd >> i) & 1);
b9bec74b 1287 }
42cc8fa6
JK
1288 memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1289 memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
f1665b21
SY
1290 env->mxcsr = xsave->region[XSAVE_MXCSR];
1291 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1292 sizeof env->fpregs);
1293 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1294 sizeof env->xmm_regs);
1295 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1296 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1297 sizeof env->ymmh_regs);
79e9ebeb
LJ
1298 memcpy(env->bnd_regs, &xsave->region[XSAVE_BNDREGS],
1299 sizeof env->bnd_regs);
1300 memcpy(&env->bndcs_regs, &xsave->region[XSAVE_BNDCSR],
1301 sizeof(env->bndcs_regs));
f1665b21 1302 return 0;
f1665b21
SY
1303}
1304
1bc22652 1305static int kvm_get_xcrs(X86CPU *cpu)
f1665b21 1306{
1bc22652 1307 CPUX86State *env = &cpu->env;
f1665b21
SY
1308 int i, ret;
1309 struct kvm_xcrs xcrs;
1310
b9bec74b 1311 if (!kvm_has_xcrs()) {
f1665b21 1312 return 0;
b9bec74b 1313 }
f1665b21 1314
1bc22652 1315 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
b9bec74b 1316 if (ret < 0) {
f1665b21 1317 return ret;
b9bec74b 1318 }
f1665b21 1319
b9bec74b 1320 for (i = 0; i < xcrs.nr_xcrs; i++) {
f1665b21 1321 /* Only support xcr0 now */
0fd53fec
PB
1322 if (xcrs.xcrs[i].xcr == 0) {
1323 env->xcr0 = xcrs.xcrs[i].value;
f1665b21
SY
1324 break;
1325 }
b9bec74b 1326 }
f1665b21 1327 return 0;
f1665b21
SY
1328}
1329
1bc22652 1330static int kvm_get_sregs(X86CPU *cpu)
05330448 1331{
1bc22652 1332 CPUX86State *env = &cpu->env;
05330448
AL
1333 struct kvm_sregs sregs;
1334 uint32_t hflags;
0e607a80 1335 int bit, i, ret;
05330448 1336
1bc22652 1337 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
b9bec74b 1338 if (ret < 0) {
05330448 1339 return ret;
b9bec74b 1340 }
05330448 1341
0e607a80
JK
1342 /* There can only be one pending IRQ set in the bitmap at a time, so try
1343 to find it and save its number instead (-1 for none). */
1344 env->interrupt_injected = -1;
1345 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1346 if (sregs.interrupt_bitmap[i]) {
1347 bit = ctz64(sregs.interrupt_bitmap[i]);
1348 env->interrupt_injected = i * 64 + bit;
1349 break;
1350 }
1351 }
05330448
AL
1352
1353 get_seg(&env->segs[R_CS], &sregs.cs);
1354 get_seg(&env->segs[R_DS], &sregs.ds);
1355 get_seg(&env->segs[R_ES], &sregs.es);
1356 get_seg(&env->segs[R_FS], &sregs.fs);
1357 get_seg(&env->segs[R_GS], &sregs.gs);
1358 get_seg(&env->segs[R_SS], &sregs.ss);
1359
1360 get_seg(&env->tr, &sregs.tr);
1361 get_seg(&env->ldt, &sregs.ldt);
1362
1363 env->idt.limit = sregs.idt.limit;
1364 env->idt.base = sregs.idt.base;
1365 env->gdt.limit = sregs.gdt.limit;
1366 env->gdt.base = sregs.gdt.base;
1367
1368 env->cr[0] = sregs.cr0;
1369 env->cr[2] = sregs.cr2;
1370 env->cr[3] = sregs.cr3;
1371 env->cr[4] = sregs.cr4;
1372
05330448 1373 env->efer = sregs.efer;
cce47516
JK
1374
1375 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
05330448 1376
b9bec74b
JK
1377#define HFLAG_COPY_MASK \
1378 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1379 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1380 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1381 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
05330448
AL
1382
1383 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1384 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1385 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
b9bec74b 1386 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
05330448
AL
1387 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1388 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
b9bec74b 1389 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
05330448
AL
1390
1391 if (env->efer & MSR_EFER_LMA) {
1392 hflags |= HF_LMA_MASK;
1393 }
1394
1395 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1396 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1397 } else {
1398 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
b9bec74b 1399 (DESC_B_SHIFT - HF_CS32_SHIFT);
05330448 1400 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
b9bec74b
JK
1401 (DESC_B_SHIFT - HF_SS32_SHIFT);
1402 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1403 !(hflags & HF_CS32_MASK)) {
1404 hflags |= HF_ADDSEG_MASK;
1405 } else {
1406 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1407 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1408 }
05330448
AL
1409 }
1410 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
05330448
AL
1411
1412 return 0;
1413}
1414
1bc22652 1415static int kvm_get_msrs(X86CPU *cpu)
05330448 1416{
1bc22652 1417 CPUX86State *env = &cpu->env;
05330448
AL
1418 struct {
1419 struct kvm_msrs info;
1420 struct kvm_msr_entry entries[100];
1421 } msr_data;
1422 struct kvm_msr_entry *msrs = msr_data.entries;
1423 int ret, i, n;
1424
1425 n = 0;
1426 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1427 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1428 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
0c03266a 1429 msrs[n++].index = MSR_PAT;
c3a3a7d3 1430 if (has_msr_star) {
b9bec74b
JK
1431 msrs[n++].index = MSR_STAR;
1432 }
c3a3a7d3 1433 if (has_msr_hsave_pa) {
75b10c43 1434 msrs[n++].index = MSR_VM_HSAVE_PA;
b9bec74b 1435 }
f28558d3
WA
1436 if (has_msr_tsc_adjust) {
1437 msrs[n++].index = MSR_TSC_ADJUST;
1438 }
aa82ba54
LJ
1439 if (has_msr_tsc_deadline) {
1440 msrs[n++].index = MSR_IA32_TSCDEADLINE;
1441 }
21e87c46
AK
1442 if (has_msr_misc_enable) {
1443 msrs[n++].index = MSR_IA32_MISC_ENABLE;
1444 }
df67696e
LJ
1445 if (has_msr_feature_control) {
1446 msrs[n++].index = MSR_IA32_FEATURE_CONTROL;
1447 }
79e9ebeb
LJ
1448 if (has_msr_bndcfgs) {
1449 msrs[n++].index = MSR_IA32_BNDCFGS;
1450 }
b8cc45d6
GC
1451
1452 if (!env->tsc_valid) {
1453 msrs[n++].index = MSR_IA32_TSC;
1354869c 1454 env->tsc_valid = !runstate_is_running();
b8cc45d6
GC
1455 }
1456
05330448 1457#ifdef TARGET_X86_64
25d2e361
MT
1458 if (lm_capable_kernel) {
1459 msrs[n++].index = MSR_CSTAR;
1460 msrs[n++].index = MSR_KERNELGSBASE;
1461 msrs[n++].index = MSR_FMASK;
1462 msrs[n++].index = MSR_LSTAR;
1463 }
05330448 1464#endif
1a03675d
GC
1465 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1466 msrs[n++].index = MSR_KVM_WALL_CLOCK;
c5999bfc
JK
1467 if (has_msr_async_pf_en) {
1468 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1469 }
bc9a839d
MT
1470 if (has_msr_pv_eoi_en) {
1471 msrs[n++].index = MSR_KVM_PV_EOI_EN;
1472 }
917367aa
MT
1473 if (has_msr_kvm_steal_time) {
1474 msrs[n++].index = MSR_KVM_STEAL_TIME;
1475 }
0d894367
PB
1476 if (has_msr_architectural_pmu) {
1477 msrs[n++].index = MSR_CORE_PERF_FIXED_CTR_CTRL;
1478 msrs[n++].index = MSR_CORE_PERF_GLOBAL_CTRL;
1479 msrs[n++].index = MSR_CORE_PERF_GLOBAL_STATUS;
1480 msrs[n++].index = MSR_CORE_PERF_GLOBAL_OVF_CTRL;
1481 for (i = 0; i < MAX_FIXED_COUNTERS; i++) {
1482 msrs[n++].index = MSR_CORE_PERF_FIXED_CTR0 + i;
1483 }
1484 for (i = 0; i < num_architectural_pmu_counters; i++) {
1485 msrs[n++].index = MSR_P6_PERFCTR0 + i;
1486 msrs[n++].index = MSR_P6_EVNTSEL0 + i;
1487 }
1488 }
1a03675d 1489
57780495
MT
1490 if (env->mcg_cap) {
1491 msrs[n++].index = MSR_MCG_STATUS;
1492 msrs[n++].index = MSR_MCG_CTL;
b9bec74b 1493 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
57780495 1494 msrs[n++].index = MSR_MC0_CTL + i;
b9bec74b 1495 }
57780495 1496 }
57780495 1497
05330448 1498 msr_data.info.nmsrs = n;
1bc22652 1499 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
b9bec74b 1500 if (ret < 0) {
05330448 1501 return ret;
b9bec74b 1502 }
05330448
AL
1503
1504 for (i = 0; i < ret; i++) {
0d894367
PB
1505 uint32_t index = msrs[i].index;
1506 switch (index) {
05330448
AL
1507 case MSR_IA32_SYSENTER_CS:
1508 env->sysenter_cs = msrs[i].data;
1509 break;
1510 case MSR_IA32_SYSENTER_ESP:
1511 env->sysenter_esp = msrs[i].data;
1512 break;
1513 case MSR_IA32_SYSENTER_EIP:
1514 env->sysenter_eip = msrs[i].data;
1515 break;
0c03266a
JK
1516 case MSR_PAT:
1517 env->pat = msrs[i].data;
1518 break;
05330448
AL
1519 case MSR_STAR:
1520 env->star = msrs[i].data;
1521 break;
1522#ifdef TARGET_X86_64
1523 case MSR_CSTAR:
1524 env->cstar = msrs[i].data;
1525 break;
1526 case MSR_KERNELGSBASE:
1527 env->kernelgsbase = msrs[i].data;
1528 break;
1529 case MSR_FMASK:
1530 env->fmask = msrs[i].data;
1531 break;
1532 case MSR_LSTAR:
1533 env->lstar = msrs[i].data;
1534 break;
1535#endif
1536 case MSR_IA32_TSC:
1537 env->tsc = msrs[i].data;
1538 break;
f28558d3
WA
1539 case MSR_TSC_ADJUST:
1540 env->tsc_adjust = msrs[i].data;
1541 break;
aa82ba54
LJ
1542 case MSR_IA32_TSCDEADLINE:
1543 env->tsc_deadline = msrs[i].data;
1544 break;
aa851e36
MT
1545 case MSR_VM_HSAVE_PA:
1546 env->vm_hsave = msrs[i].data;
1547 break;
1a03675d
GC
1548 case MSR_KVM_SYSTEM_TIME:
1549 env->system_time_msr = msrs[i].data;
1550 break;
1551 case MSR_KVM_WALL_CLOCK:
1552 env->wall_clock_msr = msrs[i].data;
1553 break;
57780495
MT
1554 case MSR_MCG_STATUS:
1555 env->mcg_status = msrs[i].data;
1556 break;
1557 case MSR_MCG_CTL:
1558 env->mcg_ctl = msrs[i].data;
1559 break;
21e87c46
AK
1560 case MSR_IA32_MISC_ENABLE:
1561 env->msr_ia32_misc_enable = msrs[i].data;
1562 break;
0779caeb
ACL
1563 case MSR_IA32_FEATURE_CONTROL:
1564 env->msr_ia32_feature_control = msrs[i].data;
df67696e 1565 break;
79e9ebeb
LJ
1566 case MSR_IA32_BNDCFGS:
1567 env->msr_bndcfgs = msrs[i].data;
1568 break;
57780495 1569 default:
57780495
MT
1570 if (msrs[i].index >= MSR_MC0_CTL &&
1571 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1572 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
57780495 1573 }
d8da8574 1574 break;
f6584ee2
GN
1575 case MSR_KVM_ASYNC_PF_EN:
1576 env->async_pf_en_msr = msrs[i].data;
1577 break;
bc9a839d
MT
1578 case MSR_KVM_PV_EOI_EN:
1579 env->pv_eoi_en_msr = msrs[i].data;
1580 break;
917367aa
MT
1581 case MSR_KVM_STEAL_TIME:
1582 env->steal_time_msr = msrs[i].data;
1583 break;
0d894367
PB
1584 case MSR_CORE_PERF_FIXED_CTR_CTRL:
1585 env->msr_fixed_ctr_ctrl = msrs[i].data;
1586 break;
1587 case MSR_CORE_PERF_GLOBAL_CTRL:
1588 env->msr_global_ctrl = msrs[i].data;
1589 break;
1590 case MSR_CORE_PERF_GLOBAL_STATUS:
1591 env->msr_global_status = msrs[i].data;
1592 break;
1593 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
1594 env->msr_global_ovf_ctrl = msrs[i].data;
1595 break;
1596 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
1597 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
1598 break;
1599 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
1600 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
1601 break;
1602 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
1603 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
1604 break;
05330448
AL
1605 }
1606 }
1607
1608 return 0;
1609}
1610
1bc22652 1611static int kvm_put_mp_state(X86CPU *cpu)
9bdbe550 1612{
1bc22652 1613 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
9bdbe550 1614
1bc22652 1615 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
9bdbe550
HB
1616}
1617
23d02d9b 1618static int kvm_get_mp_state(X86CPU *cpu)
9bdbe550 1619{
259186a7 1620 CPUState *cs = CPU(cpu);
23d02d9b 1621 CPUX86State *env = &cpu->env;
9bdbe550
HB
1622 struct kvm_mp_state mp_state;
1623 int ret;
1624
259186a7 1625 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
9bdbe550
HB
1626 if (ret < 0) {
1627 return ret;
1628 }
1629 env->mp_state = mp_state.mp_state;
c14750e8 1630 if (kvm_irqchip_in_kernel()) {
259186a7 1631 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
c14750e8 1632 }
9bdbe550
HB
1633 return 0;
1634}
1635
1bc22652 1636static int kvm_get_apic(X86CPU *cpu)
680c1c6f 1637{
1bc22652 1638 CPUX86State *env = &cpu->env;
680c1c6f
JK
1639 DeviceState *apic = env->apic_state;
1640 struct kvm_lapic_state kapic;
1641 int ret;
1642
3d4b2649 1643 if (apic && kvm_irqchip_in_kernel()) {
1bc22652 1644 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
680c1c6f
JK
1645 if (ret < 0) {
1646 return ret;
1647 }
1648
1649 kvm_get_apic_state(apic, &kapic);
1650 }
1651 return 0;
1652}
1653
1bc22652 1654static int kvm_put_apic(X86CPU *cpu)
680c1c6f 1655{
1bc22652 1656 CPUX86State *env = &cpu->env;
680c1c6f
JK
1657 DeviceState *apic = env->apic_state;
1658 struct kvm_lapic_state kapic;
1659
3d4b2649 1660 if (apic && kvm_irqchip_in_kernel()) {
680c1c6f
JK
1661 kvm_put_apic_state(apic, &kapic);
1662
1bc22652 1663 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_LAPIC, &kapic);
680c1c6f
JK
1664 }
1665 return 0;
1666}
1667
1bc22652 1668static int kvm_put_vcpu_events(X86CPU *cpu, int level)
a0fb002c 1669{
1bc22652 1670 CPUX86State *env = &cpu->env;
a0fb002c
JK
1671 struct kvm_vcpu_events events;
1672
1673 if (!kvm_has_vcpu_events()) {
1674 return 0;
1675 }
1676
31827373
JK
1677 events.exception.injected = (env->exception_injected >= 0);
1678 events.exception.nr = env->exception_injected;
a0fb002c
JK
1679 events.exception.has_error_code = env->has_error_code;
1680 events.exception.error_code = env->error_code;
7e680753 1681 events.exception.pad = 0;
a0fb002c
JK
1682
1683 events.interrupt.injected = (env->interrupt_injected >= 0);
1684 events.interrupt.nr = env->interrupt_injected;
1685 events.interrupt.soft = env->soft_interrupt;
1686
1687 events.nmi.injected = env->nmi_injected;
1688 events.nmi.pending = env->nmi_pending;
1689 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
7e680753 1690 events.nmi.pad = 0;
a0fb002c
JK
1691
1692 events.sipi_vector = env->sipi_vector;
1693
ea643051
JK
1694 events.flags = 0;
1695 if (level >= KVM_PUT_RESET_STATE) {
1696 events.flags |=
1697 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1698 }
aee028b9 1699
1bc22652 1700 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
a0fb002c
JK
1701}
1702
1bc22652 1703static int kvm_get_vcpu_events(X86CPU *cpu)
a0fb002c 1704{
1bc22652 1705 CPUX86State *env = &cpu->env;
a0fb002c
JK
1706 struct kvm_vcpu_events events;
1707 int ret;
1708
1709 if (!kvm_has_vcpu_events()) {
1710 return 0;
1711 }
1712
1bc22652 1713 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
a0fb002c
JK
1714 if (ret < 0) {
1715 return ret;
1716 }
31827373 1717 env->exception_injected =
a0fb002c
JK
1718 events.exception.injected ? events.exception.nr : -1;
1719 env->has_error_code = events.exception.has_error_code;
1720 env->error_code = events.exception.error_code;
1721
1722 env->interrupt_injected =
1723 events.interrupt.injected ? events.interrupt.nr : -1;
1724 env->soft_interrupt = events.interrupt.soft;
1725
1726 env->nmi_injected = events.nmi.injected;
1727 env->nmi_pending = events.nmi.pending;
1728 if (events.nmi.masked) {
1729 env->hflags2 |= HF2_NMI_MASK;
1730 } else {
1731 env->hflags2 &= ~HF2_NMI_MASK;
1732 }
1733
1734 env->sipi_vector = events.sipi_vector;
a0fb002c
JK
1735
1736 return 0;
1737}
1738
1bc22652 1739static int kvm_guest_debug_workarounds(X86CPU *cpu)
b0b1d690 1740{
ed2803da 1741 CPUState *cs = CPU(cpu);
1bc22652 1742 CPUX86State *env = &cpu->env;
b0b1d690 1743 int ret = 0;
b0b1d690
JK
1744 unsigned long reinject_trap = 0;
1745
1746 if (!kvm_has_vcpu_events()) {
1747 if (env->exception_injected == 1) {
1748 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1749 } else if (env->exception_injected == 3) {
1750 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1751 }
1752 env->exception_injected = -1;
1753 }
1754
1755 /*
1756 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1757 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1758 * by updating the debug state once again if single-stepping is on.
1759 * Another reason to call kvm_update_guest_debug here is a pending debug
1760 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1761 * reinject them via SET_GUEST_DEBUG.
1762 */
1763 if (reinject_trap ||
ed2803da 1764 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
38e478ec 1765 ret = kvm_update_guest_debug(cs, reinject_trap);
b0b1d690 1766 }
b0b1d690
JK
1767 return ret;
1768}
1769
1bc22652 1770static int kvm_put_debugregs(X86CPU *cpu)
ff44f1a3 1771{
1bc22652 1772 CPUX86State *env = &cpu->env;
ff44f1a3
JK
1773 struct kvm_debugregs dbgregs;
1774 int i;
1775
1776 if (!kvm_has_debugregs()) {
1777 return 0;
1778 }
1779
1780 for (i = 0; i < 4; i++) {
1781 dbgregs.db[i] = env->dr[i];
1782 }
1783 dbgregs.dr6 = env->dr[6];
1784 dbgregs.dr7 = env->dr[7];
1785 dbgregs.flags = 0;
1786
1bc22652 1787 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
ff44f1a3
JK
1788}
1789
1bc22652 1790static int kvm_get_debugregs(X86CPU *cpu)
ff44f1a3 1791{
1bc22652 1792 CPUX86State *env = &cpu->env;
ff44f1a3
JK
1793 struct kvm_debugregs dbgregs;
1794 int i, ret;
1795
1796 if (!kvm_has_debugregs()) {
1797 return 0;
1798 }
1799
1bc22652 1800 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
ff44f1a3 1801 if (ret < 0) {
b9bec74b 1802 return ret;
ff44f1a3
JK
1803 }
1804 for (i = 0; i < 4; i++) {
1805 env->dr[i] = dbgregs.db[i];
1806 }
1807 env->dr[4] = env->dr[6] = dbgregs.dr6;
1808 env->dr[5] = env->dr[7] = dbgregs.dr7;
ff44f1a3
JK
1809
1810 return 0;
1811}
1812
20d695a9 1813int kvm_arch_put_registers(CPUState *cpu, int level)
05330448 1814{
20d695a9 1815 X86CPU *x86_cpu = X86_CPU(cpu);
05330448
AL
1816 int ret;
1817
2fa45344 1818 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
dbaa07c4 1819
1bc22652 1820 ret = kvm_getput_regs(x86_cpu, 1);
b9bec74b 1821 if (ret < 0) {
05330448 1822 return ret;
b9bec74b 1823 }
1bc22652 1824 ret = kvm_put_xsave(x86_cpu);
b9bec74b 1825 if (ret < 0) {
f1665b21 1826 return ret;
b9bec74b 1827 }
1bc22652 1828 ret = kvm_put_xcrs(x86_cpu);
b9bec74b 1829 if (ret < 0) {
05330448 1830 return ret;
b9bec74b 1831 }
1bc22652 1832 ret = kvm_put_sregs(x86_cpu);
b9bec74b 1833 if (ret < 0) {
05330448 1834 return ret;
b9bec74b 1835 }
ab443475 1836 /* must be before kvm_put_msrs */
1bc22652 1837 ret = kvm_inject_mce_oldstyle(x86_cpu);
ab443475
JK
1838 if (ret < 0) {
1839 return ret;
1840 }
1bc22652 1841 ret = kvm_put_msrs(x86_cpu, level);
b9bec74b 1842 if (ret < 0) {
05330448 1843 return ret;
b9bec74b 1844 }
ea643051 1845 if (level >= KVM_PUT_RESET_STATE) {
1bc22652 1846 ret = kvm_put_mp_state(x86_cpu);
b9bec74b 1847 if (ret < 0) {
ea643051 1848 return ret;
b9bec74b 1849 }
1bc22652 1850 ret = kvm_put_apic(x86_cpu);
680c1c6f
JK
1851 if (ret < 0) {
1852 return ret;
1853 }
ea643051 1854 }
7477cd38
MT
1855
1856 ret = kvm_put_tscdeadline_msr(x86_cpu);
1857 if (ret < 0) {
1858 return ret;
1859 }
1860
1bc22652 1861 ret = kvm_put_vcpu_events(x86_cpu, level);
b9bec74b 1862 if (ret < 0) {
a0fb002c 1863 return ret;
b9bec74b 1864 }
1bc22652 1865 ret = kvm_put_debugregs(x86_cpu);
b9bec74b 1866 if (ret < 0) {
b0b1d690 1867 return ret;
b9bec74b 1868 }
b0b1d690 1869 /* must be last */
1bc22652 1870 ret = kvm_guest_debug_workarounds(x86_cpu);
b9bec74b 1871 if (ret < 0) {
ff44f1a3 1872 return ret;
b9bec74b 1873 }
05330448
AL
1874 return 0;
1875}
1876
20d695a9 1877int kvm_arch_get_registers(CPUState *cs)
05330448 1878{
20d695a9 1879 X86CPU *cpu = X86_CPU(cs);
05330448
AL
1880 int ret;
1881
20d695a9 1882 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
dbaa07c4 1883
1bc22652 1884 ret = kvm_getput_regs(cpu, 0);
b9bec74b 1885 if (ret < 0) {
05330448 1886 return ret;
b9bec74b 1887 }
1bc22652 1888 ret = kvm_get_xsave(cpu);
b9bec74b 1889 if (ret < 0) {
f1665b21 1890 return ret;
b9bec74b 1891 }
1bc22652 1892 ret = kvm_get_xcrs(cpu);
b9bec74b 1893 if (ret < 0) {
05330448 1894 return ret;
b9bec74b 1895 }
1bc22652 1896 ret = kvm_get_sregs(cpu);
b9bec74b 1897 if (ret < 0) {
05330448 1898 return ret;
b9bec74b 1899 }
1bc22652 1900 ret = kvm_get_msrs(cpu);
b9bec74b 1901 if (ret < 0) {
05330448 1902 return ret;
b9bec74b 1903 }
23d02d9b 1904 ret = kvm_get_mp_state(cpu);
b9bec74b 1905 if (ret < 0) {
5a2e3c2e 1906 return ret;
b9bec74b 1907 }
1bc22652 1908 ret = kvm_get_apic(cpu);
680c1c6f
JK
1909 if (ret < 0) {
1910 return ret;
1911 }
1bc22652 1912 ret = kvm_get_vcpu_events(cpu);
b9bec74b 1913 if (ret < 0) {
a0fb002c 1914 return ret;
b9bec74b 1915 }
1bc22652 1916 ret = kvm_get_debugregs(cpu);
b9bec74b 1917 if (ret < 0) {
ff44f1a3 1918 return ret;
b9bec74b 1919 }
05330448
AL
1920 return 0;
1921}
1922
20d695a9 1923void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
05330448 1924{
20d695a9
AF
1925 X86CPU *x86_cpu = X86_CPU(cpu);
1926 CPUX86State *env = &x86_cpu->env;
ce377af3
JK
1927 int ret;
1928
276ce815 1929 /* Inject NMI */
259186a7
AF
1930 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
1931 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
276ce815 1932 DPRINTF("injected NMI\n");
1bc22652 1933 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
ce377af3
JK
1934 if (ret < 0) {
1935 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1936 strerror(-ret));
1937 }
276ce815
LJ
1938 }
1939
db1669bc 1940 if (!kvm_irqchip_in_kernel()) {
d362e757
JK
1941 /* Force the VCPU out of its inner loop to process any INIT requests
1942 * or pending TPR access reports. */
259186a7 1943 if (cpu->interrupt_request &
d362e757 1944 (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
fcd7d003 1945 cpu->exit_request = 1;
05330448 1946 }
05330448 1947
db1669bc
JK
1948 /* Try to inject an interrupt if the guest can accept it */
1949 if (run->ready_for_interrupt_injection &&
259186a7 1950 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
db1669bc
JK
1951 (env->eflags & IF_MASK)) {
1952 int irq;
1953
259186a7 1954 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
db1669bc
JK
1955 irq = cpu_get_pic_interrupt(env);
1956 if (irq >= 0) {
1957 struct kvm_interrupt intr;
1958
1959 intr.irq = irq;
db1669bc 1960 DPRINTF("injected interrupt %d\n", irq);
1bc22652 1961 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
ce377af3
JK
1962 if (ret < 0) {
1963 fprintf(stderr,
1964 "KVM: injection failed, interrupt lost (%s)\n",
1965 strerror(-ret));
1966 }
db1669bc
JK
1967 }
1968 }
05330448 1969
db1669bc
JK
1970 /* If we have an interrupt but the guest is not ready to receive an
1971 * interrupt, request an interrupt window exit. This will
1972 * cause a return to userspace as soon as the guest is ready to
1973 * receive interrupts. */
259186a7 1974 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
db1669bc
JK
1975 run->request_interrupt_window = 1;
1976 } else {
1977 run->request_interrupt_window = 0;
1978 }
1979
1980 DPRINTF("setting tpr\n");
1981 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1982 }
05330448
AL
1983}
1984
20d695a9 1985void kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
05330448 1986{
20d695a9
AF
1987 X86CPU *x86_cpu = X86_CPU(cpu);
1988 CPUX86State *env = &x86_cpu->env;
1989
b9bec74b 1990 if (run->if_flag) {
05330448 1991 env->eflags |= IF_MASK;
b9bec74b 1992 } else {
05330448 1993 env->eflags &= ~IF_MASK;
b9bec74b 1994 }
4a942cea
BS
1995 cpu_set_apic_tpr(env->apic_state, run->cr8);
1996 cpu_set_apic_base(env->apic_state, run->apic_base);
05330448
AL
1997}
1998
20d695a9 1999int kvm_arch_process_async_events(CPUState *cs)
0af691d7 2000{
20d695a9
AF
2001 X86CPU *cpu = X86_CPU(cs);
2002 CPUX86State *env = &cpu->env;
232fc23b 2003
259186a7 2004 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
ab443475
JK
2005 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
2006 assert(env->mcg_cap);
2007
259186a7 2008 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
ab443475 2009
dd1750d7 2010 kvm_cpu_synchronize_state(cs);
ab443475
JK
2011
2012 if (env->exception_injected == EXCP08_DBLE) {
2013 /* this means triple fault */
2014 qemu_system_reset_request();
fcd7d003 2015 cs->exit_request = 1;
ab443475
JK
2016 return 0;
2017 }
2018 env->exception_injected = EXCP12_MCHK;
2019 env->has_error_code = 0;
2020
259186a7 2021 cs->halted = 0;
ab443475
JK
2022 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
2023 env->mp_state = KVM_MP_STATE_RUNNABLE;
2024 }
2025 }
2026
db1669bc
JK
2027 if (kvm_irqchip_in_kernel()) {
2028 return 0;
2029 }
2030
259186a7
AF
2031 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
2032 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
5d62c43a
JK
2033 apic_poll_irq(env->apic_state);
2034 }
259186a7 2035 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4601f7b0 2036 (env->eflags & IF_MASK)) ||
259186a7
AF
2037 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
2038 cs->halted = 0;
6792a57b 2039 }
259186a7 2040 if (cs->interrupt_request & CPU_INTERRUPT_INIT) {
dd1750d7 2041 kvm_cpu_synchronize_state(cs);
232fc23b 2042 do_cpu_init(cpu);
0af691d7 2043 }
259186a7 2044 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
dd1750d7 2045 kvm_cpu_synchronize_state(cs);
232fc23b 2046 do_cpu_sipi(cpu);
0af691d7 2047 }
259186a7
AF
2048 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
2049 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
dd1750d7 2050 kvm_cpu_synchronize_state(cs);
d362e757
JK
2051 apic_handle_tpr_access_report(env->apic_state, env->eip,
2052 env->tpr_access_type);
2053 }
0af691d7 2054
259186a7 2055 return cs->halted;
0af691d7
MT
2056}
2057
839b5630 2058static int kvm_handle_halt(X86CPU *cpu)
05330448 2059{
259186a7 2060 CPUState *cs = CPU(cpu);
839b5630
AF
2061 CPUX86State *env = &cpu->env;
2062
259186a7 2063 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
05330448 2064 (env->eflags & IF_MASK)) &&
259186a7
AF
2065 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
2066 cs->halted = 1;
bb4ea393 2067 return EXCP_HLT;
05330448
AL
2068 }
2069
bb4ea393 2070 return 0;
05330448
AL
2071}
2072
f7575c96 2073static int kvm_handle_tpr_access(X86CPU *cpu)
d362e757 2074{
f7575c96
AF
2075 CPUX86State *env = &cpu->env;
2076 CPUState *cs = CPU(cpu);
2077 struct kvm_run *run = cs->kvm_run;
d362e757
JK
2078
2079 apic_handle_tpr_access_report(env->apic_state, run->tpr_access.rip,
2080 run->tpr_access.is_write ? TPR_ACCESS_WRITE
2081 : TPR_ACCESS_READ);
2082 return 1;
2083}
2084
f17ec444 2085int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
e22a25c9 2086{
38972938 2087 static const uint8_t int3 = 0xcc;
64bf3f4e 2088
f17ec444
AF
2089 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
2090 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
e22a25c9 2091 return -EINVAL;
b9bec74b 2092 }
e22a25c9
AL
2093 return 0;
2094}
2095
f17ec444 2096int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
e22a25c9
AL
2097{
2098 uint8_t int3;
2099
f17ec444
AF
2100 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
2101 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
e22a25c9 2102 return -EINVAL;
b9bec74b 2103 }
e22a25c9
AL
2104 return 0;
2105}
2106
2107static struct {
2108 target_ulong addr;
2109 int len;
2110 int type;
2111} hw_breakpoint[4];
2112
2113static int nb_hw_breakpoint;
2114
2115static int find_hw_breakpoint(target_ulong addr, int len, int type)
2116{
2117 int n;
2118
b9bec74b 2119 for (n = 0; n < nb_hw_breakpoint; n++) {
e22a25c9 2120 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
b9bec74b 2121 (hw_breakpoint[n].len == len || len == -1)) {
e22a25c9 2122 return n;
b9bec74b
JK
2123 }
2124 }
e22a25c9
AL
2125 return -1;
2126}
2127
2128int kvm_arch_insert_hw_breakpoint(target_ulong addr,
2129 target_ulong len, int type)
2130{
2131 switch (type) {
2132 case GDB_BREAKPOINT_HW:
2133 len = 1;
2134 break;
2135 case GDB_WATCHPOINT_WRITE:
2136 case GDB_WATCHPOINT_ACCESS:
2137 switch (len) {
2138 case 1:
2139 break;
2140 case 2:
2141 case 4:
2142 case 8:
b9bec74b 2143 if (addr & (len - 1)) {
e22a25c9 2144 return -EINVAL;
b9bec74b 2145 }
e22a25c9
AL
2146 break;
2147 default:
2148 return -EINVAL;
2149 }
2150 break;
2151 default:
2152 return -ENOSYS;
2153 }
2154
b9bec74b 2155 if (nb_hw_breakpoint == 4) {
e22a25c9 2156 return -ENOBUFS;
b9bec74b
JK
2157 }
2158 if (find_hw_breakpoint(addr, len, type) >= 0) {
e22a25c9 2159 return -EEXIST;
b9bec74b 2160 }
e22a25c9
AL
2161 hw_breakpoint[nb_hw_breakpoint].addr = addr;
2162 hw_breakpoint[nb_hw_breakpoint].len = len;
2163 hw_breakpoint[nb_hw_breakpoint].type = type;
2164 nb_hw_breakpoint++;
2165
2166 return 0;
2167}
2168
2169int kvm_arch_remove_hw_breakpoint(target_ulong addr,
2170 target_ulong len, int type)
2171{
2172 int n;
2173
2174 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
b9bec74b 2175 if (n < 0) {
e22a25c9 2176 return -ENOENT;
b9bec74b 2177 }
e22a25c9
AL
2178 nb_hw_breakpoint--;
2179 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
2180
2181 return 0;
2182}
2183
2184void kvm_arch_remove_all_hw_breakpoints(void)
2185{
2186 nb_hw_breakpoint = 0;
2187}
2188
2189static CPUWatchpoint hw_watchpoint;
2190
a60f24b5 2191static int kvm_handle_debug(X86CPU *cpu,
48405526 2192 struct kvm_debug_exit_arch *arch_info)
e22a25c9 2193{
ed2803da 2194 CPUState *cs = CPU(cpu);
a60f24b5 2195 CPUX86State *env = &cpu->env;
f2574737 2196 int ret = 0;
e22a25c9
AL
2197 int n;
2198
2199 if (arch_info->exception == 1) {
2200 if (arch_info->dr6 & (1 << 14)) {
ed2803da 2201 if (cs->singlestep_enabled) {
f2574737 2202 ret = EXCP_DEBUG;
b9bec74b 2203 }
e22a25c9 2204 } else {
b9bec74b
JK
2205 for (n = 0; n < 4; n++) {
2206 if (arch_info->dr6 & (1 << n)) {
e22a25c9
AL
2207 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
2208 case 0x0:
f2574737 2209 ret = EXCP_DEBUG;
e22a25c9
AL
2210 break;
2211 case 0x1:
f2574737 2212 ret = EXCP_DEBUG;
48405526 2213 env->watchpoint_hit = &hw_watchpoint;
e22a25c9
AL
2214 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2215 hw_watchpoint.flags = BP_MEM_WRITE;
2216 break;
2217 case 0x3:
f2574737 2218 ret = EXCP_DEBUG;
48405526 2219 env->watchpoint_hit = &hw_watchpoint;
e22a25c9
AL
2220 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2221 hw_watchpoint.flags = BP_MEM_ACCESS;
2222 break;
2223 }
b9bec74b
JK
2224 }
2225 }
e22a25c9 2226 }
a60f24b5 2227 } else if (kvm_find_sw_breakpoint(CPU(cpu), arch_info->pc)) {
f2574737 2228 ret = EXCP_DEBUG;
b9bec74b 2229 }
f2574737 2230 if (ret == 0) {
cb446eca 2231 cpu_synchronize_state(CPU(cpu));
48405526 2232 assert(env->exception_injected == -1);
b0b1d690 2233
f2574737 2234 /* pass to guest */
48405526
BS
2235 env->exception_injected = arch_info->exception;
2236 env->has_error_code = 0;
b0b1d690 2237 }
e22a25c9 2238
f2574737 2239 return ret;
e22a25c9
AL
2240}
2241
20d695a9 2242void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
e22a25c9
AL
2243{
2244 const uint8_t type_code[] = {
2245 [GDB_BREAKPOINT_HW] = 0x0,
2246 [GDB_WATCHPOINT_WRITE] = 0x1,
2247 [GDB_WATCHPOINT_ACCESS] = 0x3
2248 };
2249 const uint8_t len_code[] = {
2250 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
2251 };
2252 int n;
2253
a60f24b5 2254 if (kvm_sw_breakpoints_active(cpu)) {
e22a25c9 2255 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
b9bec74b 2256 }
e22a25c9
AL
2257 if (nb_hw_breakpoint > 0) {
2258 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
2259 dbg->arch.debugreg[7] = 0x0600;
2260 for (n = 0; n < nb_hw_breakpoint; n++) {
2261 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
2262 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
2263 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
95c077c9 2264 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
e22a25c9
AL
2265 }
2266 }
2267}
4513d923 2268
2a4dac83
JK
2269static bool host_supports_vmx(void)
2270{
2271 uint32_t ecx, unused;
2272
2273 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
2274 return ecx & CPUID_EXT_VMX;
2275}
2276
2277#define VMX_INVALID_GUEST_STATE 0x80000021
2278
20d695a9 2279int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
2a4dac83 2280{
20d695a9 2281 X86CPU *cpu = X86_CPU(cs);
2a4dac83
JK
2282 uint64_t code;
2283 int ret;
2284
2285 switch (run->exit_reason) {
2286 case KVM_EXIT_HLT:
2287 DPRINTF("handle_hlt\n");
839b5630 2288 ret = kvm_handle_halt(cpu);
2a4dac83
JK
2289 break;
2290 case KVM_EXIT_SET_TPR:
2291 ret = 0;
2292 break;
d362e757 2293 case KVM_EXIT_TPR_ACCESS:
f7575c96 2294 ret = kvm_handle_tpr_access(cpu);
d362e757 2295 break;
2a4dac83
JK
2296 case KVM_EXIT_FAIL_ENTRY:
2297 code = run->fail_entry.hardware_entry_failure_reason;
2298 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
2299 code);
2300 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
2301 fprintf(stderr,
12619721 2302 "\nIf you're running a guest on an Intel machine without "
2a4dac83
JK
2303 "unrestricted mode\n"
2304 "support, the failure can be most likely due to the guest "
2305 "entering an invalid\n"
2306 "state for Intel VT. For example, the guest maybe running "
2307 "in big real mode\n"
2308 "which is not supported on less recent Intel processors."
2309 "\n\n");
2310 }
2311 ret = -1;
2312 break;
2313 case KVM_EXIT_EXCEPTION:
2314 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
2315 run->ex.exception, run->ex.error_code);
2316 ret = -1;
2317 break;
f2574737
JK
2318 case KVM_EXIT_DEBUG:
2319 DPRINTF("kvm_exit_debug\n");
a60f24b5 2320 ret = kvm_handle_debug(cpu, &run->debug.arch);
f2574737 2321 break;
2a4dac83
JK
2322 default:
2323 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
2324 ret = -1;
2325 break;
2326 }
2327
2328 return ret;
2329}
2330
20d695a9 2331bool kvm_arch_stop_on_emulation_error(CPUState *cs)
4513d923 2332{
20d695a9
AF
2333 X86CPU *cpu = X86_CPU(cs);
2334 CPUX86State *env = &cpu->env;
2335
dd1750d7 2336 kvm_cpu_synchronize_state(cs);
b9bec74b
JK
2337 return !(env->cr[0] & CR0_PE_MASK) ||
2338 ((env->segs[R_CS].selector & 3) != 3);
4513d923 2339}
84b058d7
JK
2340
2341void kvm_arch_init_irq_routing(KVMState *s)
2342{
2343 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2344 /* If kernel can't do irq routing, interrupt source
2345 * override 0->2 cannot be set up as required by HPET.
2346 * So we have to disable it.
2347 */
2348 no_hpet = 1;
2349 }
cc7e0ddf 2350 /* We know at this point that we're using the in-kernel
614e41bc 2351 * irqchip, so we can use irqfds, and on x86 we know
f3e1bed8 2352 * we can use msi via irqfd and GSI routing.
cc7e0ddf
PM
2353 */
2354 kvm_irqfds_allowed = true;
614e41bc 2355 kvm_msi_via_irqfd_allowed = true;
f3e1bed8 2356 kvm_gsi_routing_allowed = true;
84b058d7 2357}
b139bd30
JK
2358
2359/* Classic KVM device assignment interface. Will remain x86 only. */
2360int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
2361 uint32_t flags, uint32_t *dev_id)
2362{
2363 struct kvm_assigned_pci_dev dev_data = {
2364 .segnr = dev_addr->domain,
2365 .busnr = dev_addr->bus,
2366 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
2367 .flags = flags,
2368 };
2369 int ret;
2370
2371 dev_data.assigned_dev_id =
2372 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
2373
2374 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
2375 if (ret < 0) {
2376 return ret;
2377 }
2378
2379 *dev_id = dev_data.assigned_dev_id;
2380
2381 return 0;
2382}
2383
2384int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
2385{
2386 struct kvm_assigned_pci_dev dev_data = {
2387 .assigned_dev_id = dev_id,
2388 };
2389
2390 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
2391}
2392
2393static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
2394 uint32_t irq_type, uint32_t guest_irq)
2395{
2396 struct kvm_assigned_irq assigned_irq = {
2397 .assigned_dev_id = dev_id,
2398 .guest_irq = guest_irq,
2399 .flags = irq_type,
2400 };
2401
2402 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
2403 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
2404 } else {
2405 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
2406 }
2407}
2408
2409int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
2410 uint32_t guest_irq)
2411{
2412 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
2413 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
2414
2415 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
2416}
2417
2418int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
2419{
2420 struct kvm_assigned_pci_dev dev_data = {
2421 .assigned_dev_id = dev_id,
2422 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
2423 };
2424
2425 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
2426}
2427
2428static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
2429 uint32_t type)
2430{
2431 struct kvm_assigned_irq assigned_irq = {
2432 .assigned_dev_id = dev_id,
2433 .flags = type,
2434 };
2435
2436 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
2437}
2438
2439int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
2440{
2441 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
2442 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
2443}
2444
2445int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
2446{
2447 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
2448 KVM_DEV_IRQ_GUEST_MSI, virq);
2449}
2450
2451int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
2452{
2453 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
2454 KVM_DEV_IRQ_HOST_MSI);
2455}
2456
2457bool kvm_device_msix_supported(KVMState *s)
2458{
2459 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
2460 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
2461 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
2462}
2463
2464int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
2465 uint32_t nr_vectors)
2466{
2467 struct kvm_assigned_msix_nr msix_nr = {
2468 .assigned_dev_id = dev_id,
2469 .entry_nr = nr_vectors,
2470 };
2471
2472 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
2473}
2474
2475int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
2476 int virq)
2477{
2478 struct kvm_assigned_msix_entry msix_entry = {
2479 .assigned_dev_id = dev_id,
2480 .gsi = virq,
2481 .entry = vector,
2482 };
2483
2484 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
2485}
2486
2487int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
2488{
2489 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
2490 KVM_DEV_IRQ_GUEST_MSIX, 0);
2491}
2492
2493int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
2494{
2495 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
2496 KVM_DEV_IRQ_HOST_MSIX);
2497}
This page took 0.990905 seconds and 4 git commands to generate.