]>
Commit | Line | Data |
---|---|---|
05330448 AL |
1 | /* |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright (C) 2006-2008 Qumranet Technologies | |
5 | * Copyright IBM, Corp. 2008 | |
6 | * | |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
9 | * | |
10 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
11 | * See the COPYING file in the top-level directory. | |
12 | * | |
13 | */ | |
14 | ||
b6a0aa05 | 15 | #include "qemu/osdep.h" |
da34e65c | 16 | #include "qapi/error.h" |
05330448 | 17 | #include <sys/ioctl.h> |
25d2e361 | 18 | #include <sys/utsname.h> |
05330448 AL |
19 | |
20 | #include <linux/kvm.h> | |
5802e066 | 21 | #include <linux/kvm_para.h> |
05330448 AL |
22 | |
23 | #include "qemu-common.h" | |
33c11879 | 24 | #include "cpu.h" |
9c17d615 | 25 | #include "sysemu/sysemu.h" |
6410848b | 26 | #include "sysemu/kvm_int.h" |
1d31f66b | 27 | #include "kvm_i386.h" |
50efe82c AS |
28 | #include "hyperv.h" |
29 | ||
022c62cb | 30 | #include "exec/gdbstub.h" |
1de7afc9 PB |
31 | #include "qemu/host-utils.h" |
32 | #include "qemu/config-file.h" | |
1c4a55db | 33 | #include "qemu/error-report.h" |
0d09e41a PB |
34 | #include "hw/i386/pc.h" |
35 | #include "hw/i386/apic.h" | |
e0723c45 PB |
36 | #include "hw/i386/apic_internal.h" |
37 | #include "hw/i386/apic-msidef.h" | |
50efe82c | 38 | |
022c62cb | 39 | #include "exec/ioport.h" |
73aa529a | 40 | #include "standard-headers/asm-x86/hyperv.h" |
a2cb15b0 | 41 | #include "hw/pci/pci.h" |
15eafc2e | 42 | #include "hw/pci/msi.h" |
68bfd0ad | 43 | #include "migration/migration.h" |
4c663752 | 44 | #include "exec/memattrs.h" |
05330448 AL |
45 | |
46 | //#define DEBUG_KVM | |
47 | ||
48 | #ifdef DEBUG_KVM | |
8c0d577e | 49 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
50 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) |
51 | #else | |
8c0d577e | 52 | #define DPRINTF(fmt, ...) \ |
05330448 AL |
53 | do { } while (0) |
54 | #endif | |
55 | ||
1a03675d GC |
56 | #define MSR_KVM_WALL_CLOCK 0x11 |
57 | #define MSR_KVM_SYSTEM_TIME 0x12 | |
58 | ||
d1138251 EH |
59 | /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus |
60 | * 255 kvm_msr_entry structs */ | |
61 | #define MSR_BUF_SIZE 4096 | |
d71b62a1 | 62 | |
c0532a76 MT |
63 | #ifndef BUS_MCEERR_AR |
64 | #define BUS_MCEERR_AR 4 | |
65 | #endif | |
66 | #ifndef BUS_MCEERR_AO | |
67 | #define BUS_MCEERR_AO 5 | |
68 | #endif | |
69 | ||
94a8d39a JK |
70 | const KVMCapabilityInfo kvm_arch_required_capabilities[] = { |
71 | KVM_CAP_INFO(SET_TSS_ADDR), | |
72 | KVM_CAP_INFO(EXT_CPUID), | |
73 | KVM_CAP_INFO(MP_STATE), | |
74 | KVM_CAP_LAST_INFO | |
75 | }; | |
25d2e361 | 76 | |
c3a3a7d3 JK |
77 | static bool has_msr_star; |
78 | static bool has_msr_hsave_pa; | |
c9b8f6b6 | 79 | static bool has_msr_tsc_aux; |
f28558d3 | 80 | static bool has_msr_tsc_adjust; |
aa82ba54 | 81 | static bool has_msr_tsc_deadline; |
df67696e | 82 | static bool has_msr_feature_control; |
c5999bfc | 83 | static bool has_msr_async_pf_en; |
bc9a839d | 84 | static bool has_msr_pv_eoi_en; |
21e87c46 | 85 | static bool has_msr_misc_enable; |
fc12d72e | 86 | static bool has_msr_smbase; |
79e9ebeb | 87 | static bool has_msr_bndcfgs; |
917367aa | 88 | static bool has_msr_kvm_steal_time; |
25d2e361 | 89 | static int lm_capable_kernel; |
7bc3d711 PB |
90 | static bool has_msr_hv_hypercall; |
91 | static bool has_msr_hv_vapic; | |
48a5f3bc | 92 | static bool has_msr_hv_tsc; |
f2a53c9e | 93 | static bool has_msr_hv_crash; |
744b8a94 | 94 | static bool has_msr_hv_reset; |
8c145d7c | 95 | static bool has_msr_hv_vpindex; |
46eb8f98 | 96 | static bool has_msr_hv_runtime; |
866eea9a | 97 | static bool has_msr_hv_synic; |
ff99aa64 | 98 | static bool has_msr_hv_stimer; |
d1ae67f6 | 99 | static bool has_msr_mtrr; |
18cd2c17 | 100 | static bool has_msr_xss; |
b827df58 | 101 | |
0d894367 PB |
102 | static bool has_msr_architectural_pmu; |
103 | static uint32_t num_architectural_pmu_counters; | |
104 | ||
28143b40 TH |
105 | static int has_xsave; |
106 | static int has_xcrs; | |
107 | static int has_pit_state2; | |
108 | ||
87f8b626 AR |
109 | static bool has_msr_mcg_ext_ctl; |
110 | ||
494e95e9 CP |
111 | static struct kvm_cpuid2 *cpuid_cache; |
112 | ||
28143b40 TH |
113 | int kvm_has_pit_state2(void) |
114 | { | |
115 | return has_pit_state2; | |
116 | } | |
117 | ||
355023f2 PB |
118 | bool kvm_has_smm(void) |
119 | { | |
120 | return kvm_check_extension(kvm_state, KVM_CAP_X86_SMM); | |
121 | } | |
122 | ||
1d31f66b PM |
123 | bool kvm_allows_irq0_override(void) |
124 | { | |
125 | return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing(); | |
126 | } | |
127 | ||
0fd7e098 LL |
128 | static int kvm_get_tsc(CPUState *cs) |
129 | { | |
130 | X86CPU *cpu = X86_CPU(cs); | |
131 | CPUX86State *env = &cpu->env; | |
132 | struct { | |
133 | struct kvm_msrs info; | |
134 | struct kvm_msr_entry entries[1]; | |
135 | } msr_data; | |
136 | int ret; | |
137 | ||
138 | if (env->tsc_valid) { | |
139 | return 0; | |
140 | } | |
141 | ||
142 | msr_data.info.nmsrs = 1; | |
143 | msr_data.entries[0].index = MSR_IA32_TSC; | |
144 | env->tsc_valid = !runstate_is_running(); | |
145 | ||
146 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data); | |
147 | if (ret < 0) { | |
148 | return ret; | |
149 | } | |
150 | ||
48e1a45c | 151 | assert(ret == 1); |
0fd7e098 LL |
152 | env->tsc = msr_data.entries[0].data; |
153 | return 0; | |
154 | } | |
155 | ||
156 | static inline void do_kvm_synchronize_tsc(void *arg) | |
157 | { | |
158 | CPUState *cpu = arg; | |
159 | ||
160 | kvm_get_tsc(cpu); | |
161 | } | |
162 | ||
163 | void kvm_synchronize_all_tsc(void) | |
164 | { | |
165 | CPUState *cpu; | |
166 | ||
167 | if (kvm_enabled()) { | |
168 | CPU_FOREACH(cpu) { | |
169 | run_on_cpu(cpu, do_kvm_synchronize_tsc, cpu); | |
170 | } | |
171 | } | |
172 | } | |
173 | ||
b827df58 AK |
174 | static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) |
175 | { | |
176 | struct kvm_cpuid2 *cpuid; | |
177 | int r, size; | |
178 | ||
179 | size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); | |
e42a92ae | 180 | cpuid = g_malloc0(size); |
b827df58 AK |
181 | cpuid->nent = max; |
182 | r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid); | |
76ae317f MM |
183 | if (r == 0 && cpuid->nent >= max) { |
184 | r = -E2BIG; | |
185 | } | |
b827df58 AK |
186 | if (r < 0) { |
187 | if (r == -E2BIG) { | |
7267c094 | 188 | g_free(cpuid); |
b827df58 AK |
189 | return NULL; |
190 | } else { | |
191 | fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n", | |
192 | strerror(-r)); | |
193 | exit(1); | |
194 | } | |
195 | } | |
196 | return cpuid; | |
197 | } | |
198 | ||
dd87f8a6 EH |
199 | /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough |
200 | * for all entries. | |
201 | */ | |
202 | static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s) | |
203 | { | |
204 | struct kvm_cpuid2 *cpuid; | |
205 | int max = 1; | |
494e95e9 CP |
206 | |
207 | if (cpuid_cache != NULL) { | |
208 | return cpuid_cache; | |
209 | } | |
dd87f8a6 EH |
210 | while ((cpuid = try_get_cpuid(s, max)) == NULL) { |
211 | max *= 2; | |
212 | } | |
494e95e9 | 213 | cpuid_cache = cpuid; |
dd87f8a6 EH |
214 | return cpuid; |
215 | } | |
216 | ||
a443bc34 | 217 | static const struct kvm_para_features { |
0c31b744 GC |
218 | int cap; |
219 | int feature; | |
220 | } para_features[] = { | |
221 | { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE }, | |
222 | { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY }, | |
223 | { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP }, | |
0c31b744 | 224 | { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF }, |
0c31b744 GC |
225 | }; |
226 | ||
ba9bc59e | 227 | static int get_para_features(KVMState *s) |
0c31b744 GC |
228 | { |
229 | int i, features = 0; | |
230 | ||
8e03c100 | 231 | for (i = 0; i < ARRAY_SIZE(para_features); i++) { |
ba9bc59e | 232 | if (kvm_check_extension(s, para_features[i].cap)) { |
0c31b744 GC |
233 | features |= (1 << para_features[i].feature); |
234 | } | |
235 | } | |
236 | ||
237 | return features; | |
238 | } | |
0c31b744 GC |
239 | |
240 | ||
829ae2f9 EH |
241 | /* Returns the value for a specific register on the cpuid entry |
242 | */ | |
243 | static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg) | |
244 | { | |
245 | uint32_t ret = 0; | |
246 | switch (reg) { | |
247 | case R_EAX: | |
248 | ret = entry->eax; | |
249 | break; | |
250 | case R_EBX: | |
251 | ret = entry->ebx; | |
252 | break; | |
253 | case R_ECX: | |
254 | ret = entry->ecx; | |
255 | break; | |
256 | case R_EDX: | |
257 | ret = entry->edx; | |
258 | break; | |
259 | } | |
260 | return ret; | |
261 | } | |
262 | ||
4fb73f1d EH |
263 | /* Find matching entry for function/index on kvm_cpuid2 struct |
264 | */ | |
265 | static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid, | |
266 | uint32_t function, | |
267 | uint32_t index) | |
268 | { | |
269 | int i; | |
270 | for (i = 0; i < cpuid->nent; ++i) { | |
271 | if (cpuid->entries[i].function == function && | |
272 | cpuid->entries[i].index == index) { | |
273 | return &cpuid->entries[i]; | |
274 | } | |
275 | } | |
276 | /* not found: */ | |
277 | return NULL; | |
278 | } | |
279 | ||
ba9bc59e | 280 | uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function, |
c958a8bd | 281 | uint32_t index, int reg) |
b827df58 AK |
282 | { |
283 | struct kvm_cpuid2 *cpuid; | |
b827df58 AK |
284 | uint32_t ret = 0; |
285 | uint32_t cpuid_1_edx; | |
8c723b79 | 286 | bool found = false; |
b827df58 | 287 | |
dd87f8a6 | 288 | cpuid = get_supported_cpuid(s); |
b827df58 | 289 | |
4fb73f1d EH |
290 | struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index); |
291 | if (entry) { | |
292 | found = true; | |
293 | ret = cpuid_entry_get_reg(entry, reg); | |
b827df58 AK |
294 | } |
295 | ||
7b46e5ce EH |
296 | /* Fixups for the data returned by KVM, below */ |
297 | ||
c2acb022 EH |
298 | if (function == 1 && reg == R_EDX) { |
299 | /* KVM before 2.6.30 misreports the following features */ | |
300 | ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA; | |
84bd945c EH |
301 | } else if (function == 1 && reg == R_ECX) { |
302 | /* We can set the hypervisor flag, even if KVM does not return it on | |
303 | * GET_SUPPORTED_CPUID | |
304 | */ | |
305 | ret |= CPUID_EXT_HYPERVISOR; | |
ac67ee26 EH |
306 | /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it |
307 | * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER, | |
308 | * and the irqchip is in the kernel. | |
309 | */ | |
310 | if (kvm_irqchip_in_kernel() && | |
311 | kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) { | |
312 | ret |= CPUID_EXT_TSC_DEADLINE_TIMER; | |
313 | } | |
41e5e76d EH |
314 | |
315 | /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled | |
316 | * without the in-kernel irqchip | |
317 | */ | |
318 | if (!kvm_irqchip_in_kernel()) { | |
319 | ret &= ~CPUID_EXT_X2APIC; | |
b827df58 | 320 | } |
28b8e4d0 JK |
321 | } else if (function == 6 && reg == R_EAX) { |
322 | ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */ | |
c2acb022 EH |
323 | } else if (function == 0x80000001 && reg == R_EDX) { |
324 | /* On Intel, kvm returns cpuid according to the Intel spec, | |
325 | * so add missing bits according to the AMD spec: | |
326 | */ | |
327 | cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX); | |
328 | ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES; | |
b827df58 AK |
329 | } |
330 | ||
0c31b744 | 331 | /* fallback for older kernels */ |
8c723b79 | 332 | if ((function == KVM_CPUID_FEATURES) && !found) { |
ba9bc59e | 333 | ret = get_para_features(s); |
b9bec74b | 334 | } |
0c31b744 GC |
335 | |
336 | return ret; | |
bb0300dc | 337 | } |
bb0300dc | 338 | |
3c85e74f HY |
339 | typedef struct HWPoisonPage { |
340 | ram_addr_t ram_addr; | |
341 | QLIST_ENTRY(HWPoisonPage) list; | |
342 | } HWPoisonPage; | |
343 | ||
344 | static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = | |
345 | QLIST_HEAD_INITIALIZER(hwpoison_page_list); | |
346 | ||
347 | static void kvm_unpoison_all(void *param) | |
348 | { | |
349 | HWPoisonPage *page, *next_page; | |
350 | ||
351 | QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { | |
352 | QLIST_REMOVE(page, list); | |
353 | qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); | |
7267c094 | 354 | g_free(page); |
3c85e74f HY |
355 | } |
356 | } | |
357 | ||
3c85e74f HY |
358 | static void kvm_hwpoison_page_add(ram_addr_t ram_addr) |
359 | { | |
360 | HWPoisonPage *page; | |
361 | ||
362 | QLIST_FOREACH(page, &hwpoison_page_list, list) { | |
363 | if (page->ram_addr == ram_addr) { | |
364 | return; | |
365 | } | |
366 | } | |
ab3ad07f | 367 | page = g_new(HWPoisonPage, 1); |
3c85e74f HY |
368 | page->ram_addr = ram_addr; |
369 | QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); | |
370 | } | |
371 | ||
e7701825 MT |
372 | static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap, |
373 | int *max_banks) | |
374 | { | |
375 | int r; | |
376 | ||
14a09518 | 377 | r = kvm_check_extension(s, KVM_CAP_MCE); |
e7701825 MT |
378 | if (r > 0) { |
379 | *max_banks = r; | |
380 | return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap); | |
381 | } | |
382 | return -ENOSYS; | |
383 | } | |
384 | ||
bee615d4 | 385 | static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code) |
e7701825 | 386 | { |
87f8b626 | 387 | CPUState *cs = CPU(cpu); |
bee615d4 | 388 | CPUX86State *env = &cpu->env; |
c34d440a JK |
389 | uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN | |
390 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S; | |
391 | uint64_t mcg_status = MCG_STATUS_MCIP; | |
87f8b626 | 392 | int flags = 0; |
e7701825 | 393 | |
c34d440a JK |
394 | if (code == BUS_MCEERR_AR) { |
395 | status |= MCI_STATUS_AR | 0x134; | |
396 | mcg_status |= MCG_STATUS_EIPV; | |
397 | } else { | |
398 | status |= 0xc0; | |
399 | mcg_status |= MCG_STATUS_RIPV; | |
419fb20a | 400 | } |
87f8b626 AR |
401 | |
402 | flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0; | |
403 | /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the | |
404 | * guest kernel back into env->mcg_ext_ctl. | |
405 | */ | |
406 | cpu_synchronize_state(cs); | |
407 | if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) { | |
408 | mcg_status |= MCG_STATUS_LMCE; | |
409 | flags = 0; | |
410 | } | |
411 | ||
8c5cf3b6 | 412 | cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr, |
87f8b626 | 413 | (MCM_ADDR_PHYS << 6) | 0xc, flags); |
419fb20a | 414 | } |
419fb20a JK |
415 | |
416 | static void hardware_memory_error(void) | |
417 | { | |
418 | fprintf(stderr, "Hardware memory error!\n"); | |
419 | exit(1); | |
420 | } | |
421 | ||
20d695a9 | 422 | int kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr) |
419fb20a | 423 | { |
20d695a9 AF |
424 | X86CPU *cpu = X86_CPU(c); |
425 | CPUX86State *env = &cpu->env; | |
419fb20a | 426 | ram_addr_t ram_addr; |
a8170e5e | 427 | hwaddr paddr; |
419fb20a JK |
428 | |
429 | if ((env->mcg_cap & MCG_SER_P) && addr | |
c34d440a | 430 | && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) { |
07bdaa41 PB |
431 | ram_addr = qemu_ram_addr_from_host(addr); |
432 | if (ram_addr == RAM_ADDR_INVALID || | |
a60f24b5 | 433 | !kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) { |
419fb20a JK |
434 | fprintf(stderr, "Hardware memory error for memory used by " |
435 | "QEMU itself instead of guest system!\n"); | |
436 | /* Hope we are lucky for AO MCE */ | |
437 | if (code == BUS_MCEERR_AO) { | |
438 | return 0; | |
439 | } else { | |
440 | hardware_memory_error(); | |
441 | } | |
442 | } | |
3c85e74f | 443 | kvm_hwpoison_page_add(ram_addr); |
bee615d4 | 444 | kvm_mce_inject(cpu, paddr, code); |
e56ff191 | 445 | } else { |
419fb20a JK |
446 | if (code == BUS_MCEERR_AO) { |
447 | return 0; | |
448 | } else if (code == BUS_MCEERR_AR) { | |
449 | hardware_memory_error(); | |
450 | } else { | |
451 | return 1; | |
452 | } | |
453 | } | |
454 | return 0; | |
455 | } | |
456 | ||
457 | int kvm_arch_on_sigbus(int code, void *addr) | |
458 | { | |
182735ef AF |
459 | X86CPU *cpu = X86_CPU(first_cpu); |
460 | ||
461 | if ((cpu->env.mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) { | |
419fb20a | 462 | ram_addr_t ram_addr; |
a8170e5e | 463 | hwaddr paddr; |
419fb20a JK |
464 | |
465 | /* Hope we are lucky for AO MCE */ | |
07bdaa41 PB |
466 | ram_addr = qemu_ram_addr_from_host(addr); |
467 | if (ram_addr == RAM_ADDR_INVALID || | |
182735ef | 468 | !kvm_physical_memory_addr_from_host(first_cpu->kvm_state, |
a60f24b5 | 469 | addr, &paddr)) { |
419fb20a JK |
470 | fprintf(stderr, "Hardware memory error for memory used by " |
471 | "QEMU itself instead of guest system!: %p\n", addr); | |
472 | return 0; | |
473 | } | |
3c85e74f | 474 | kvm_hwpoison_page_add(ram_addr); |
182735ef | 475 | kvm_mce_inject(X86_CPU(first_cpu), paddr, code); |
e56ff191 | 476 | } else { |
419fb20a JK |
477 | if (code == BUS_MCEERR_AO) { |
478 | return 0; | |
479 | } else if (code == BUS_MCEERR_AR) { | |
480 | hardware_memory_error(); | |
481 | } else { | |
482 | return 1; | |
483 | } | |
484 | } | |
485 | return 0; | |
486 | } | |
e7701825 | 487 | |
1bc22652 | 488 | static int kvm_inject_mce_oldstyle(X86CPU *cpu) |
ab443475 | 489 | { |
1bc22652 AF |
490 | CPUX86State *env = &cpu->env; |
491 | ||
ab443475 JK |
492 | if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) { |
493 | unsigned int bank, bank_num = env->mcg_cap & 0xff; | |
494 | struct kvm_x86_mce mce; | |
495 | ||
496 | env->exception_injected = -1; | |
497 | ||
498 | /* | |
499 | * There must be at least one bank in use if an MCE is pending. | |
500 | * Find it and use its values for the event injection. | |
501 | */ | |
502 | for (bank = 0; bank < bank_num; bank++) { | |
503 | if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) { | |
504 | break; | |
505 | } | |
506 | } | |
507 | assert(bank < bank_num); | |
508 | ||
509 | mce.bank = bank; | |
510 | mce.status = env->mce_banks[bank * 4 + 1]; | |
511 | mce.mcg_status = env->mcg_status; | |
512 | mce.addr = env->mce_banks[bank * 4 + 2]; | |
513 | mce.misc = env->mce_banks[bank * 4 + 3]; | |
514 | ||
1bc22652 | 515 | return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce); |
ab443475 | 516 | } |
ab443475 JK |
517 | return 0; |
518 | } | |
519 | ||
1dfb4dd9 | 520 | static void cpu_update_state(void *opaque, int running, RunState state) |
b8cc45d6 | 521 | { |
317ac620 | 522 | CPUX86State *env = opaque; |
b8cc45d6 GC |
523 | |
524 | if (running) { | |
525 | env->tsc_valid = false; | |
526 | } | |
527 | } | |
528 | ||
83b17af5 | 529 | unsigned long kvm_arch_vcpu_id(CPUState *cs) |
b164e48e | 530 | { |
83b17af5 | 531 | X86CPU *cpu = X86_CPU(cs); |
7e72a45c | 532 | return cpu->apic_id; |
b164e48e EH |
533 | } |
534 | ||
92067bf4 IM |
535 | #ifndef KVM_CPUID_SIGNATURE_NEXT |
536 | #define KVM_CPUID_SIGNATURE_NEXT 0x40000100 | |
537 | #endif | |
538 | ||
539 | static bool hyperv_hypercall_available(X86CPU *cpu) | |
540 | { | |
541 | return cpu->hyperv_vapic || | |
542 | (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY); | |
543 | } | |
544 | ||
545 | static bool hyperv_enabled(X86CPU *cpu) | |
546 | { | |
7bc3d711 PB |
547 | CPUState *cs = CPU(cpu); |
548 | return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 && | |
549 | (hyperv_hypercall_available(cpu) || | |
48a5f3bc | 550 | cpu->hyperv_time || |
f2a53c9e | 551 | cpu->hyperv_relaxed_timing || |
744b8a94 | 552 | cpu->hyperv_crash || |
8c145d7c | 553 | cpu->hyperv_reset || |
46eb8f98 | 554 | cpu->hyperv_vpindex || |
866eea9a | 555 | cpu->hyperv_runtime || |
ff99aa64 AS |
556 | cpu->hyperv_synic || |
557 | cpu->hyperv_stimer); | |
92067bf4 IM |
558 | } |
559 | ||
5031283d HZ |
560 | static int kvm_arch_set_tsc_khz(CPUState *cs) |
561 | { | |
562 | X86CPU *cpu = X86_CPU(cs); | |
563 | CPUX86State *env = &cpu->env; | |
564 | int r; | |
565 | ||
566 | if (!env->tsc_khz) { | |
567 | return 0; | |
568 | } | |
569 | ||
570 | r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL) ? | |
571 | kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) : | |
572 | -ENOTSUP; | |
573 | if (r < 0) { | |
574 | /* When KVM_SET_TSC_KHZ fails, it's an error only if the current | |
575 | * TSC frequency doesn't match the one we want. | |
576 | */ | |
577 | int cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? | |
578 | kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : | |
579 | -ENOTSUP; | |
580 | if (cur_freq <= 0 || cur_freq != env->tsc_khz) { | |
581 | error_report("warning: TSC frequency mismatch between " | |
d6276d26 EH |
582 | "VM (%" PRId64 " kHz) and host (%d kHz), " |
583 | "and TSC scaling unavailable", | |
584 | env->tsc_khz, cur_freq); | |
5031283d HZ |
585 | return r; |
586 | } | |
587 | } | |
588 | ||
589 | return 0; | |
590 | } | |
591 | ||
c35bd19a EY |
592 | static int hyperv_handle_properties(CPUState *cs) |
593 | { | |
594 | X86CPU *cpu = X86_CPU(cs); | |
595 | CPUX86State *env = &cpu->env; | |
596 | ||
597 | if (cpu->hyperv_relaxed_timing) { | |
598 | env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_HYPERCALL_AVAILABLE; | |
599 | } | |
600 | if (cpu->hyperv_vapic) { | |
601 | env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_HYPERCALL_AVAILABLE; | |
602 | env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_APIC_ACCESS_AVAILABLE; | |
603 | has_msr_hv_vapic = true; | |
604 | } | |
605 | if (cpu->hyperv_time && | |
606 | kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) { | |
607 | env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_HYPERCALL_AVAILABLE; | |
608 | env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_TIME_REF_COUNT_AVAILABLE; | |
609 | env->features[FEAT_HYPERV_EAX] |= 0x200; | |
610 | has_msr_hv_tsc = true; | |
611 | } | |
612 | if (cpu->hyperv_crash && has_msr_hv_crash) { | |
613 | env->features[FEAT_HYPERV_EDX] |= HV_X64_GUEST_CRASH_MSR_AVAILABLE; | |
614 | } | |
615 | env->features[FEAT_HYPERV_EDX] |= HV_X64_CPU_DYNAMIC_PARTITIONING_AVAILABLE; | |
616 | if (cpu->hyperv_reset && has_msr_hv_reset) { | |
617 | env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_RESET_AVAILABLE; | |
618 | } | |
619 | if (cpu->hyperv_vpindex && has_msr_hv_vpindex) { | |
620 | env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_VP_INDEX_AVAILABLE; | |
621 | } | |
622 | if (cpu->hyperv_runtime && has_msr_hv_runtime) { | |
623 | env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_VP_RUNTIME_AVAILABLE; | |
624 | } | |
625 | if (cpu->hyperv_synic) { | |
626 | int sint; | |
627 | ||
628 | if (!has_msr_hv_synic || | |
629 | kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_SYNIC, 0)) { | |
630 | fprintf(stderr, "Hyper-V SynIC is not supported by kernel\n"); | |
631 | return -ENOSYS; | |
632 | } | |
633 | ||
634 | env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_SYNIC_AVAILABLE; | |
635 | env->msr_hv_synic_version = HV_SYNIC_VERSION_1; | |
636 | for (sint = 0; sint < ARRAY_SIZE(env->msr_hv_synic_sint); sint++) { | |
637 | env->msr_hv_synic_sint[sint] = HV_SYNIC_SINT_MASKED; | |
638 | } | |
639 | } | |
640 | if (cpu->hyperv_stimer) { | |
641 | if (!has_msr_hv_stimer) { | |
642 | fprintf(stderr, "Hyper-V timers aren't supported by kernel\n"); | |
643 | return -ENOSYS; | |
644 | } | |
645 | env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_SYNTIMER_AVAILABLE; | |
646 | } | |
647 | return 0; | |
648 | } | |
649 | ||
68bfd0ad MT |
650 | static Error *invtsc_mig_blocker; |
651 | ||
f8bb0565 | 652 | #define KVM_MAX_CPUID_ENTRIES 100 |
0893d460 | 653 | |
20d695a9 | 654 | int kvm_arch_init_vcpu(CPUState *cs) |
05330448 AL |
655 | { |
656 | struct { | |
486bd5a2 | 657 | struct kvm_cpuid2 cpuid; |
f8bb0565 | 658 | struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES]; |
541dc0d4 | 659 | } QEMU_PACKED cpuid_data; |
20d695a9 AF |
660 | X86CPU *cpu = X86_CPU(cs); |
661 | CPUX86State *env = &cpu->env; | |
486bd5a2 | 662 | uint32_t limit, i, j, cpuid_i; |
a33609ca | 663 | uint32_t unused; |
bb0300dc | 664 | struct kvm_cpuid_entry2 *c; |
bb0300dc | 665 | uint32_t signature[3]; |
234cc647 | 666 | int kvm_base = KVM_CPUID_SIGNATURE; |
e7429073 | 667 | int r; |
05330448 | 668 | |
ef4cbe14 SW |
669 | memset(&cpuid_data, 0, sizeof(cpuid_data)); |
670 | ||
05330448 AL |
671 | cpuid_i = 0; |
672 | ||
bb0300dc | 673 | /* Paravirtualization CPUIDs */ |
234cc647 PB |
674 | if (hyperv_enabled(cpu)) { |
675 | c = &cpuid_data.entries[cpuid_i++]; | |
676 | c->function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS; | |
1c4a55db AW |
677 | if (!cpu->hyperv_vendor_id) { |
678 | memcpy(signature, "Microsoft Hv", 12); | |
679 | } else { | |
680 | size_t len = strlen(cpu->hyperv_vendor_id); | |
681 | ||
682 | if (len > 12) { | |
683 | error_report("hv-vendor-id truncated to 12 characters"); | |
684 | len = 12; | |
685 | } | |
686 | memset(signature, 0, 12); | |
687 | memcpy(signature, cpu->hyperv_vendor_id, len); | |
688 | } | |
eab70139 | 689 | c->eax = HYPERV_CPUID_MIN; |
234cc647 PB |
690 | c->ebx = signature[0]; |
691 | c->ecx = signature[1]; | |
692 | c->edx = signature[2]; | |
0c31b744 | 693 | |
234cc647 PB |
694 | c = &cpuid_data.entries[cpuid_i++]; |
695 | c->function = HYPERV_CPUID_INTERFACE; | |
eab70139 VR |
696 | memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12); |
697 | c->eax = signature[0]; | |
234cc647 PB |
698 | c->ebx = 0; |
699 | c->ecx = 0; | |
700 | c->edx = 0; | |
eab70139 VR |
701 | |
702 | c = &cpuid_data.entries[cpuid_i++]; | |
eab70139 VR |
703 | c->function = HYPERV_CPUID_VERSION; |
704 | c->eax = 0x00001bbc; | |
705 | c->ebx = 0x00060001; | |
706 | ||
707 | c = &cpuid_data.entries[cpuid_i++]; | |
eab70139 | 708 | c->function = HYPERV_CPUID_FEATURES; |
c35bd19a EY |
709 | r = hyperv_handle_properties(cs); |
710 | if (r) { | |
711 | return r; | |
46eb8f98 | 712 | } |
c35bd19a EY |
713 | c->eax = env->features[FEAT_HYPERV_EAX]; |
714 | c->ebx = env->features[FEAT_HYPERV_EBX]; | |
715 | c->edx = env->features[FEAT_HYPERV_EDX]; | |
866eea9a | 716 | |
eab70139 | 717 | c = &cpuid_data.entries[cpuid_i++]; |
eab70139 | 718 | c->function = HYPERV_CPUID_ENLIGHTMENT_INFO; |
92067bf4 | 719 | if (cpu->hyperv_relaxed_timing) { |
eab70139 VR |
720 | c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED; |
721 | } | |
7bc3d711 | 722 | if (has_msr_hv_vapic) { |
eab70139 VR |
723 | c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED; |
724 | } | |
92067bf4 | 725 | c->ebx = cpu->hyperv_spinlock_attempts; |
eab70139 VR |
726 | |
727 | c = &cpuid_data.entries[cpuid_i++]; | |
eab70139 VR |
728 | c->function = HYPERV_CPUID_IMPLEMENT_LIMITS; |
729 | c->eax = 0x40; | |
730 | c->ebx = 0x40; | |
731 | ||
234cc647 | 732 | kvm_base = KVM_CPUID_SIGNATURE_NEXT; |
7bc3d711 | 733 | has_msr_hv_hypercall = true; |
eab70139 VR |
734 | } |
735 | ||
f522d2ac AW |
736 | if (cpu->expose_kvm) { |
737 | memcpy(signature, "KVMKVMKVM\0\0\0", 12); | |
738 | c = &cpuid_data.entries[cpuid_i++]; | |
739 | c->function = KVM_CPUID_SIGNATURE | kvm_base; | |
79b6f2f6 | 740 | c->eax = KVM_CPUID_FEATURES | kvm_base; |
f522d2ac AW |
741 | c->ebx = signature[0]; |
742 | c->ecx = signature[1]; | |
743 | c->edx = signature[2]; | |
234cc647 | 744 | |
f522d2ac AW |
745 | c = &cpuid_data.entries[cpuid_i++]; |
746 | c->function = KVM_CPUID_FEATURES | kvm_base; | |
747 | c->eax = env->features[FEAT_KVM]; | |
234cc647 | 748 | |
f522d2ac | 749 | has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF); |
bb0300dc | 750 | |
f522d2ac | 751 | has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI); |
bc9a839d | 752 | |
f522d2ac AW |
753 | has_msr_kvm_steal_time = c->eax & (1 << KVM_FEATURE_STEAL_TIME); |
754 | } | |
917367aa | 755 | |
a33609ca | 756 | cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); |
05330448 AL |
757 | |
758 | for (i = 0; i <= limit; i++) { | |
f8bb0565 IM |
759 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
760 | fprintf(stderr, "unsupported level value: 0x%x\n", limit); | |
761 | abort(); | |
762 | } | |
bb0300dc | 763 | c = &cpuid_data.entries[cpuid_i++]; |
486bd5a2 AL |
764 | |
765 | switch (i) { | |
a36b1029 AL |
766 | case 2: { |
767 | /* Keep reading function 2 till all the input is received */ | |
768 | int times; | |
769 | ||
a36b1029 | 770 | c->function = i; |
a33609ca AL |
771 | c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC | |
772 | KVM_CPUID_FLAG_STATE_READ_NEXT; | |
773 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
774 | times = c->eax & 0xff; | |
a36b1029 AL |
775 | |
776 | for (j = 1; j < times; ++j) { | |
f8bb0565 IM |
777 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
778 | fprintf(stderr, "cpuid_data is full, no space for " | |
779 | "cpuid(eax:2):eax & 0xf = 0x%x\n", times); | |
780 | abort(); | |
781 | } | |
a33609ca | 782 | c = &cpuid_data.entries[cpuid_i++]; |
a36b1029 | 783 | c->function = i; |
a33609ca AL |
784 | c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC; |
785 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
a36b1029 AL |
786 | } |
787 | break; | |
788 | } | |
486bd5a2 AL |
789 | case 4: |
790 | case 0xb: | |
791 | case 0xd: | |
792 | for (j = 0; ; j++) { | |
31e8c696 AP |
793 | if (i == 0xd && j == 64) { |
794 | break; | |
795 | } | |
486bd5a2 AL |
796 | c->function = i; |
797 | c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | |
798 | c->index = j; | |
a33609ca | 799 | cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); |
486bd5a2 | 800 | |
b9bec74b | 801 | if (i == 4 && c->eax == 0) { |
486bd5a2 | 802 | break; |
b9bec74b JK |
803 | } |
804 | if (i == 0xb && !(c->ecx & 0xff00)) { | |
486bd5a2 | 805 | break; |
b9bec74b JK |
806 | } |
807 | if (i == 0xd && c->eax == 0) { | |
31e8c696 | 808 | continue; |
b9bec74b | 809 | } |
f8bb0565 IM |
810 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
811 | fprintf(stderr, "cpuid_data is full, no space for " | |
812 | "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); | |
813 | abort(); | |
814 | } | |
a33609ca | 815 | c = &cpuid_data.entries[cpuid_i++]; |
486bd5a2 AL |
816 | } |
817 | break; | |
818 | default: | |
486bd5a2 | 819 | c->function = i; |
a33609ca AL |
820 | c->flags = 0; |
821 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
486bd5a2 AL |
822 | break; |
823 | } | |
05330448 | 824 | } |
0d894367 PB |
825 | |
826 | if (limit >= 0x0a) { | |
827 | uint32_t ver; | |
828 | ||
829 | cpu_x86_cpuid(env, 0x0a, 0, &ver, &unused, &unused, &unused); | |
830 | if ((ver & 0xff) > 0) { | |
831 | has_msr_architectural_pmu = true; | |
832 | num_architectural_pmu_counters = (ver & 0xff00) >> 8; | |
833 | ||
834 | /* Shouldn't be more than 32, since that's the number of bits | |
835 | * available in EBX to tell us _which_ counters are available. | |
836 | * Play it safe. | |
837 | */ | |
838 | if (num_architectural_pmu_counters > MAX_GP_COUNTERS) { | |
839 | num_architectural_pmu_counters = MAX_GP_COUNTERS; | |
840 | } | |
841 | } | |
842 | } | |
843 | ||
a33609ca | 844 | cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); |
05330448 AL |
845 | |
846 | for (i = 0x80000000; i <= limit; i++) { | |
f8bb0565 IM |
847 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
848 | fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit); | |
849 | abort(); | |
850 | } | |
bb0300dc | 851 | c = &cpuid_data.entries[cpuid_i++]; |
05330448 | 852 | |
05330448 | 853 | c->function = i; |
a33609ca AL |
854 | c->flags = 0; |
855 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
05330448 AL |
856 | } |
857 | ||
b3baa152 BW |
858 | /* Call Centaur's CPUID instructions they are supported. */ |
859 | if (env->cpuid_xlevel2 > 0) { | |
b3baa152 BW |
860 | cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused); |
861 | ||
862 | for (i = 0xC0000000; i <= limit; i++) { | |
f8bb0565 IM |
863 | if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
864 | fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit); | |
865 | abort(); | |
866 | } | |
b3baa152 BW |
867 | c = &cpuid_data.entries[cpuid_i++]; |
868 | ||
869 | c->function = i; | |
870 | c->flags = 0; | |
871 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | |
872 | } | |
873 | } | |
874 | ||
05330448 AL |
875 | cpuid_data.cpuid.nent = cpuid_i; |
876 | ||
e7701825 | 877 | if (((env->cpuid_version >> 8)&0xF) >= 6 |
0514ef2f | 878 | && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) == |
fc7a504c | 879 | (CPUID_MCE | CPUID_MCA) |
a60f24b5 | 880 | && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) { |
5120901a | 881 | uint64_t mcg_cap, unsupported_caps; |
e7701825 | 882 | int banks; |
32a42024 | 883 | int ret; |
e7701825 | 884 | |
a60f24b5 | 885 | ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks); |
75d49497 JK |
886 | if (ret < 0) { |
887 | fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret)); | |
888 | return ret; | |
e7701825 | 889 | } |
75d49497 | 890 | |
2590f15b | 891 | if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) { |
49b69cbf | 892 | error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)", |
2590f15b | 893 | (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks); |
49b69cbf | 894 | return -ENOTSUP; |
75d49497 | 895 | } |
49b69cbf | 896 | |
5120901a EH |
897 | unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK); |
898 | if (unsupported_caps) { | |
87f8b626 AR |
899 | if (unsupported_caps & MCG_LMCE_P) { |
900 | error_report("kvm: LMCE not supported"); | |
901 | return -ENOTSUP; | |
902 | } | |
5120901a EH |
903 | error_report("warning: Unsupported MCG_CAP bits: 0x%" PRIx64, |
904 | unsupported_caps); | |
905 | } | |
906 | ||
2590f15b EH |
907 | env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK; |
908 | ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap); | |
75d49497 JK |
909 | if (ret < 0) { |
910 | fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret)); | |
911 | return ret; | |
912 | } | |
e7701825 | 913 | } |
e7701825 | 914 | |
b8cc45d6 GC |
915 | qemu_add_vm_change_state_handler(cpu_update_state, env); |
916 | ||
df67696e LJ |
917 | c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0); |
918 | if (c) { | |
919 | has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) || | |
920 | !!(c->ecx & CPUID_EXT_SMX); | |
921 | } | |
922 | ||
87f8b626 AR |
923 | if (env->mcg_cap & MCG_LMCE_P) { |
924 | has_msr_mcg_ext_ctl = has_msr_feature_control = true; | |
925 | } | |
926 | ||
68bfd0ad MT |
927 | c = cpuid_find_entry(&cpuid_data.cpuid, 0x80000007, 0); |
928 | if (c && (c->edx & 1<<8) && invtsc_mig_blocker == NULL) { | |
929 | /* for migration */ | |
930 | error_setg(&invtsc_mig_blocker, | |
931 | "State blocked by non-migratable CPU device" | |
932 | " (invtsc flag)"); | |
933 | migrate_add_blocker(invtsc_mig_blocker); | |
934 | /* for savevm */ | |
935 | vmstate_x86_cpu.unmigratable = 1; | |
936 | } | |
937 | ||
7e680753 | 938 | cpuid_data.cpuid.padding = 0; |
1bc22652 | 939 | r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data); |
fdc9c41a JK |
940 | if (r) { |
941 | return r; | |
942 | } | |
e7429073 | 943 | |
5031283d HZ |
944 | r = kvm_arch_set_tsc_khz(cs); |
945 | if (r < 0) { | |
946 | return r; | |
e7429073 | 947 | } |
e7429073 | 948 | |
bcffbeeb HZ |
949 | /* vcpu's TSC frequency is either specified by user, or following |
950 | * the value used by KVM if the former is not present. In the | |
951 | * latter case, we query it from KVM and record in env->tsc_khz, | |
952 | * so that vcpu's TSC frequency can be migrated later via this field. | |
953 | */ | |
954 | if (!env->tsc_khz) { | |
955 | r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? | |
956 | kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : | |
957 | -ENOTSUP; | |
958 | if (r > 0) { | |
959 | env->tsc_khz = r; | |
960 | } | |
961 | } | |
962 | ||
28143b40 | 963 | if (has_xsave) { |
fabacc0f JK |
964 | env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave)); |
965 | } | |
d71b62a1 | 966 | cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE); |
fabacc0f | 967 | |
d1ae67f6 AW |
968 | if (env->features[FEAT_1_EDX] & CPUID_MTRR) { |
969 | has_msr_mtrr = true; | |
970 | } | |
273c515c PB |
971 | if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) { |
972 | has_msr_tsc_aux = false; | |
973 | } | |
d1ae67f6 | 974 | |
e7429073 | 975 | return 0; |
05330448 AL |
976 | } |
977 | ||
50a2c6e5 | 978 | void kvm_arch_reset_vcpu(X86CPU *cpu) |
caa5af0f | 979 | { |
20d695a9 | 980 | CPUX86State *env = &cpu->env; |
dd673288 | 981 | |
e73223a5 | 982 | env->exception_injected = -1; |
0e607a80 | 983 | env->interrupt_injected = -1; |
1a5e9d2f | 984 | env->xcr0 = 1; |
ddced198 | 985 | if (kvm_irqchip_in_kernel()) { |
dd673288 | 986 | env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE : |
ddced198 MT |
987 | KVM_MP_STATE_UNINITIALIZED; |
988 | } else { | |
989 | env->mp_state = KVM_MP_STATE_RUNNABLE; | |
990 | } | |
caa5af0f JK |
991 | } |
992 | ||
e0723c45 PB |
993 | void kvm_arch_do_init_vcpu(X86CPU *cpu) |
994 | { | |
995 | CPUX86State *env = &cpu->env; | |
996 | ||
997 | /* APs get directly into wait-for-SIPI state. */ | |
998 | if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) { | |
999 | env->mp_state = KVM_MP_STATE_INIT_RECEIVED; | |
1000 | } | |
1001 | } | |
1002 | ||
c3a3a7d3 | 1003 | static int kvm_get_supported_msrs(KVMState *s) |
05330448 | 1004 | { |
75b10c43 | 1005 | static int kvm_supported_msrs; |
c3a3a7d3 | 1006 | int ret = 0; |
05330448 AL |
1007 | |
1008 | /* first time */ | |
75b10c43 | 1009 | if (kvm_supported_msrs == 0) { |
05330448 AL |
1010 | struct kvm_msr_list msr_list, *kvm_msr_list; |
1011 | ||
75b10c43 | 1012 | kvm_supported_msrs = -1; |
05330448 AL |
1013 | |
1014 | /* Obtain MSR list from KVM. These are the MSRs that we must | |
1015 | * save/restore */ | |
4c9f7372 | 1016 | msr_list.nmsrs = 0; |
c3a3a7d3 | 1017 | ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list); |
6fb6d245 | 1018 | if (ret < 0 && ret != -E2BIG) { |
c3a3a7d3 | 1019 | return ret; |
6fb6d245 | 1020 | } |
d9db889f JK |
1021 | /* Old kernel modules had a bug and could write beyond the provided |
1022 | memory. Allocate at least a safe amount of 1K. */ | |
7267c094 | 1023 | kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) + |
d9db889f JK |
1024 | msr_list.nmsrs * |
1025 | sizeof(msr_list.indices[0]))); | |
05330448 | 1026 | |
55308450 | 1027 | kvm_msr_list->nmsrs = msr_list.nmsrs; |
c3a3a7d3 | 1028 | ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list); |
05330448 AL |
1029 | if (ret >= 0) { |
1030 | int i; | |
1031 | ||
1032 | for (i = 0; i < kvm_msr_list->nmsrs; i++) { | |
1033 | if (kvm_msr_list->indices[i] == MSR_STAR) { | |
c3a3a7d3 | 1034 | has_msr_star = true; |
75b10c43 MT |
1035 | continue; |
1036 | } | |
1037 | if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) { | |
c3a3a7d3 | 1038 | has_msr_hsave_pa = true; |
75b10c43 | 1039 | continue; |
05330448 | 1040 | } |
c9b8f6b6 AS |
1041 | if (kvm_msr_list->indices[i] == MSR_TSC_AUX) { |
1042 | has_msr_tsc_aux = true; | |
1043 | continue; | |
1044 | } | |
f28558d3 WA |
1045 | if (kvm_msr_list->indices[i] == MSR_TSC_ADJUST) { |
1046 | has_msr_tsc_adjust = true; | |
1047 | continue; | |
1048 | } | |
aa82ba54 LJ |
1049 | if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) { |
1050 | has_msr_tsc_deadline = true; | |
1051 | continue; | |
1052 | } | |
fc12d72e PB |
1053 | if (kvm_msr_list->indices[i] == MSR_IA32_SMBASE) { |
1054 | has_msr_smbase = true; | |
1055 | continue; | |
1056 | } | |
21e87c46 AK |
1057 | if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) { |
1058 | has_msr_misc_enable = true; | |
1059 | continue; | |
1060 | } | |
79e9ebeb LJ |
1061 | if (kvm_msr_list->indices[i] == MSR_IA32_BNDCFGS) { |
1062 | has_msr_bndcfgs = true; | |
1063 | continue; | |
1064 | } | |
18cd2c17 WL |
1065 | if (kvm_msr_list->indices[i] == MSR_IA32_XSS) { |
1066 | has_msr_xss = true; | |
1067 | continue; | |
1068 | } | |
f2a53c9e AS |
1069 | if (kvm_msr_list->indices[i] == HV_X64_MSR_CRASH_CTL) { |
1070 | has_msr_hv_crash = true; | |
1071 | continue; | |
1072 | } | |
744b8a94 AS |
1073 | if (kvm_msr_list->indices[i] == HV_X64_MSR_RESET) { |
1074 | has_msr_hv_reset = true; | |
1075 | continue; | |
1076 | } | |
8c145d7c AS |
1077 | if (kvm_msr_list->indices[i] == HV_X64_MSR_VP_INDEX) { |
1078 | has_msr_hv_vpindex = true; | |
1079 | continue; | |
1080 | } | |
46eb8f98 AS |
1081 | if (kvm_msr_list->indices[i] == HV_X64_MSR_VP_RUNTIME) { |
1082 | has_msr_hv_runtime = true; | |
1083 | continue; | |
1084 | } | |
866eea9a AS |
1085 | if (kvm_msr_list->indices[i] == HV_X64_MSR_SCONTROL) { |
1086 | has_msr_hv_synic = true; | |
1087 | continue; | |
1088 | } | |
ff99aa64 AS |
1089 | if (kvm_msr_list->indices[i] == HV_X64_MSR_STIMER0_CONFIG) { |
1090 | has_msr_hv_stimer = true; | |
1091 | continue; | |
1092 | } | |
05330448 AL |
1093 | } |
1094 | } | |
1095 | ||
7267c094 | 1096 | g_free(kvm_msr_list); |
05330448 AL |
1097 | } |
1098 | ||
c3a3a7d3 | 1099 | return ret; |
05330448 AL |
1100 | } |
1101 | ||
6410848b PB |
1102 | static Notifier smram_machine_done; |
1103 | static KVMMemoryListener smram_listener; | |
1104 | static AddressSpace smram_address_space; | |
1105 | static MemoryRegion smram_as_root; | |
1106 | static MemoryRegion smram_as_mem; | |
1107 | ||
1108 | static void register_smram_listener(Notifier *n, void *unused) | |
1109 | { | |
1110 | MemoryRegion *smram = | |
1111 | (MemoryRegion *) object_resolve_path("/machine/smram", NULL); | |
1112 | ||
1113 | /* Outer container... */ | |
1114 | memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull); | |
1115 | memory_region_set_enabled(&smram_as_root, true); | |
1116 | ||
1117 | /* ... with two regions inside: normal system memory with low | |
1118 | * priority, and... | |
1119 | */ | |
1120 | memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram", | |
1121 | get_system_memory(), 0, ~0ull); | |
1122 | memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0); | |
1123 | memory_region_set_enabled(&smram_as_mem, true); | |
1124 | ||
1125 | if (smram) { | |
1126 | /* ... SMRAM with higher priority */ | |
1127 | memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10); | |
1128 | memory_region_set_enabled(smram, true); | |
1129 | } | |
1130 | ||
1131 | address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM"); | |
1132 | kvm_memory_listener_register(kvm_state, &smram_listener, | |
1133 | &smram_address_space, 1); | |
1134 | } | |
1135 | ||
b16565b3 | 1136 | int kvm_arch_init(MachineState *ms, KVMState *s) |
20420430 | 1137 | { |
11076198 | 1138 | uint64_t identity_base = 0xfffbc000; |
39d6960a | 1139 | uint64_t shadow_mem; |
20420430 | 1140 | int ret; |
25d2e361 | 1141 | struct utsname utsname; |
20420430 | 1142 | |
28143b40 TH |
1143 | #ifdef KVM_CAP_XSAVE |
1144 | has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE); | |
1145 | #endif | |
1146 | ||
1147 | #ifdef KVM_CAP_XCRS | |
1148 | has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS); | |
1149 | #endif | |
1150 | ||
1151 | #ifdef KVM_CAP_PIT_STATE2 | |
1152 | has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2); | |
1153 | #endif | |
1154 | ||
c3a3a7d3 | 1155 | ret = kvm_get_supported_msrs(s); |
20420430 | 1156 | if (ret < 0) { |
20420430 SY |
1157 | return ret; |
1158 | } | |
25d2e361 MT |
1159 | |
1160 | uname(&utsname); | |
1161 | lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0; | |
1162 | ||
4c5b10b7 | 1163 | /* |
11076198 JK |
1164 | * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly. |
1165 | * In order to use vm86 mode, an EPT identity map and a TSS are needed. | |
1166 | * Since these must be part of guest physical memory, we need to allocate | |
1167 | * them, both by setting their start addresses in the kernel and by | |
1168 | * creating a corresponding e820 entry. We need 4 pages before the BIOS. | |
1169 | * | |
1170 | * Older KVM versions may not support setting the identity map base. In | |
1171 | * that case we need to stick with the default, i.e. a 256K maximum BIOS | |
1172 | * size. | |
4c5b10b7 | 1173 | */ |
11076198 JK |
1174 | if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) { |
1175 | /* Allows up to 16M BIOSes. */ | |
1176 | identity_base = 0xfeffc000; | |
1177 | ||
1178 | ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base); | |
1179 | if (ret < 0) { | |
1180 | return ret; | |
1181 | } | |
4c5b10b7 | 1182 | } |
e56ff191 | 1183 | |
11076198 JK |
1184 | /* Set TSS base one page after EPT identity map. */ |
1185 | ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000); | |
20420430 SY |
1186 | if (ret < 0) { |
1187 | return ret; | |
1188 | } | |
1189 | ||
11076198 JK |
1190 | /* Tell fw_cfg to notify the BIOS to reserve the range. */ |
1191 | ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED); | |
20420430 | 1192 | if (ret < 0) { |
11076198 | 1193 | fprintf(stderr, "e820_add_entry() table is full\n"); |
20420430 SY |
1194 | return ret; |
1195 | } | |
3c85e74f | 1196 | qemu_register_reset(kvm_unpoison_all, NULL); |
20420430 | 1197 | |
4689b77b | 1198 | shadow_mem = machine_kvm_shadow_mem(ms); |
36ad0e94 MA |
1199 | if (shadow_mem != -1) { |
1200 | shadow_mem /= 4096; | |
1201 | ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem); | |
1202 | if (ret < 0) { | |
1203 | return ret; | |
39d6960a JK |
1204 | } |
1205 | } | |
6410848b PB |
1206 | |
1207 | if (kvm_check_extension(s, KVM_CAP_X86_SMM)) { | |
1208 | smram_machine_done.notify = register_smram_listener; | |
1209 | qemu_add_machine_init_done_notifier(&smram_machine_done); | |
1210 | } | |
11076198 | 1211 | return 0; |
05330448 | 1212 | } |
b9bec74b | 1213 | |
05330448 AL |
1214 | static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) |
1215 | { | |
1216 | lhs->selector = rhs->selector; | |
1217 | lhs->base = rhs->base; | |
1218 | lhs->limit = rhs->limit; | |
1219 | lhs->type = 3; | |
1220 | lhs->present = 1; | |
1221 | lhs->dpl = 3; | |
1222 | lhs->db = 0; | |
1223 | lhs->s = 1; | |
1224 | lhs->l = 0; | |
1225 | lhs->g = 0; | |
1226 | lhs->avl = 0; | |
1227 | lhs->unusable = 0; | |
1228 | } | |
1229 | ||
1230 | static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) | |
1231 | { | |
1232 | unsigned flags = rhs->flags; | |
1233 | lhs->selector = rhs->selector; | |
1234 | lhs->base = rhs->base; | |
1235 | lhs->limit = rhs->limit; | |
1236 | lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; | |
1237 | lhs->present = (flags & DESC_P_MASK) != 0; | |
acaa7550 | 1238 | lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3; |
05330448 AL |
1239 | lhs->db = (flags >> DESC_B_SHIFT) & 1; |
1240 | lhs->s = (flags & DESC_S_MASK) != 0; | |
1241 | lhs->l = (flags >> DESC_L_SHIFT) & 1; | |
1242 | lhs->g = (flags & DESC_G_MASK) != 0; | |
1243 | lhs->avl = (flags & DESC_AVL_MASK) != 0; | |
4cae9c97 | 1244 | lhs->unusable = !lhs->present; |
7e680753 | 1245 | lhs->padding = 0; |
05330448 AL |
1246 | } |
1247 | ||
1248 | static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) | |
1249 | { | |
1250 | lhs->selector = rhs->selector; | |
1251 | lhs->base = rhs->base; | |
1252 | lhs->limit = rhs->limit; | |
4cae9c97 MC |
1253 | if (rhs->unusable) { |
1254 | lhs->flags = 0; | |
1255 | } else { | |
1256 | lhs->flags = (rhs->type << DESC_TYPE_SHIFT) | | |
1257 | (rhs->present * DESC_P_MASK) | | |
1258 | (rhs->dpl << DESC_DPL_SHIFT) | | |
1259 | (rhs->db << DESC_B_SHIFT) | | |
1260 | (rhs->s * DESC_S_MASK) | | |
1261 | (rhs->l << DESC_L_SHIFT) | | |
1262 | (rhs->g * DESC_G_MASK) | | |
1263 | (rhs->avl * DESC_AVL_MASK); | |
1264 | } | |
05330448 AL |
1265 | } |
1266 | ||
1267 | static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) | |
1268 | { | |
b9bec74b | 1269 | if (set) { |
05330448 | 1270 | *kvm_reg = *qemu_reg; |
b9bec74b | 1271 | } else { |
05330448 | 1272 | *qemu_reg = *kvm_reg; |
b9bec74b | 1273 | } |
05330448 AL |
1274 | } |
1275 | ||
1bc22652 | 1276 | static int kvm_getput_regs(X86CPU *cpu, int set) |
05330448 | 1277 | { |
1bc22652 | 1278 | CPUX86State *env = &cpu->env; |
05330448 AL |
1279 | struct kvm_regs regs; |
1280 | int ret = 0; | |
1281 | ||
1282 | if (!set) { | |
1bc22652 | 1283 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, ®s); |
b9bec74b | 1284 | if (ret < 0) { |
05330448 | 1285 | return ret; |
b9bec74b | 1286 | } |
05330448 AL |
1287 | } |
1288 | ||
1289 | kvm_getput_reg(®s.rax, &env->regs[R_EAX], set); | |
1290 | kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set); | |
1291 | kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set); | |
1292 | kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set); | |
1293 | kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set); | |
1294 | kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set); | |
1295 | kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set); | |
1296 | kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set); | |
1297 | #ifdef TARGET_X86_64 | |
1298 | kvm_getput_reg(®s.r8, &env->regs[8], set); | |
1299 | kvm_getput_reg(®s.r9, &env->regs[9], set); | |
1300 | kvm_getput_reg(®s.r10, &env->regs[10], set); | |
1301 | kvm_getput_reg(®s.r11, &env->regs[11], set); | |
1302 | kvm_getput_reg(®s.r12, &env->regs[12], set); | |
1303 | kvm_getput_reg(®s.r13, &env->regs[13], set); | |
1304 | kvm_getput_reg(®s.r14, &env->regs[14], set); | |
1305 | kvm_getput_reg(®s.r15, &env->regs[15], set); | |
1306 | #endif | |
1307 | ||
1308 | kvm_getput_reg(®s.rflags, &env->eflags, set); | |
1309 | kvm_getput_reg(®s.rip, &env->eip, set); | |
1310 | ||
b9bec74b | 1311 | if (set) { |
1bc22652 | 1312 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, ®s); |
b9bec74b | 1313 | } |
05330448 AL |
1314 | |
1315 | return ret; | |
1316 | } | |
1317 | ||
1bc22652 | 1318 | static int kvm_put_fpu(X86CPU *cpu) |
05330448 | 1319 | { |
1bc22652 | 1320 | CPUX86State *env = &cpu->env; |
05330448 AL |
1321 | struct kvm_fpu fpu; |
1322 | int i; | |
1323 | ||
1324 | memset(&fpu, 0, sizeof fpu); | |
1325 | fpu.fsw = env->fpus & ~(7 << 11); | |
1326 | fpu.fsw |= (env->fpstt & 7) << 11; | |
1327 | fpu.fcw = env->fpuc; | |
42cc8fa6 JK |
1328 | fpu.last_opcode = env->fpop; |
1329 | fpu.last_ip = env->fpip; | |
1330 | fpu.last_dp = env->fpdp; | |
b9bec74b JK |
1331 | for (i = 0; i < 8; ++i) { |
1332 | fpu.ftwx |= (!env->fptags[i]) << i; | |
1333 | } | |
05330448 | 1334 | memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs); |
bee81887 | 1335 | for (i = 0; i < CPU_NB_REGS; i++) { |
19cbd87c EH |
1336 | stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0)); |
1337 | stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1)); | |
bee81887 | 1338 | } |
05330448 AL |
1339 | fpu.mxcsr = env->mxcsr; |
1340 | ||
1bc22652 | 1341 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu); |
05330448 AL |
1342 | } |
1343 | ||
6b42494b JK |
1344 | #define XSAVE_FCW_FSW 0 |
1345 | #define XSAVE_FTW_FOP 1 | |
f1665b21 SY |
1346 | #define XSAVE_CWD_RIP 2 |
1347 | #define XSAVE_CWD_RDP 4 | |
1348 | #define XSAVE_MXCSR 6 | |
1349 | #define XSAVE_ST_SPACE 8 | |
1350 | #define XSAVE_XMM_SPACE 40 | |
1351 | #define XSAVE_XSTATE_BV 128 | |
1352 | #define XSAVE_YMMH_SPACE 144 | |
79e9ebeb LJ |
1353 | #define XSAVE_BNDREGS 240 |
1354 | #define XSAVE_BNDCSR 256 | |
9aecd6f8 CP |
1355 | #define XSAVE_OPMASK 272 |
1356 | #define XSAVE_ZMM_Hi256 288 | |
1357 | #define XSAVE_Hi16_ZMM 416 | |
f74eefe0 | 1358 | #define XSAVE_PKRU 672 |
f1665b21 | 1359 | |
b503717d EH |
1360 | #define XSAVE_BYTE_OFFSET(word_offset) \ |
1361 | ((word_offset) * sizeof(((struct kvm_xsave *)0)->region[0])) | |
1362 | ||
1363 | #define ASSERT_OFFSET(word_offset, field) \ | |
1364 | QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \ | |
1365 | offsetof(X86XSaveArea, field)) | |
1366 | ||
1367 | ASSERT_OFFSET(XSAVE_FCW_FSW, legacy.fcw); | |
1368 | ASSERT_OFFSET(XSAVE_FTW_FOP, legacy.ftw); | |
1369 | ASSERT_OFFSET(XSAVE_CWD_RIP, legacy.fpip); | |
1370 | ASSERT_OFFSET(XSAVE_CWD_RDP, legacy.fpdp); | |
1371 | ASSERT_OFFSET(XSAVE_MXCSR, legacy.mxcsr); | |
1372 | ASSERT_OFFSET(XSAVE_ST_SPACE, legacy.fpregs); | |
1373 | ASSERT_OFFSET(XSAVE_XMM_SPACE, legacy.xmm_regs); | |
1374 | ASSERT_OFFSET(XSAVE_XSTATE_BV, header.xstate_bv); | |
1375 | ASSERT_OFFSET(XSAVE_YMMH_SPACE, avx_state); | |
1376 | ASSERT_OFFSET(XSAVE_BNDREGS, bndreg_state); | |
1377 | ASSERT_OFFSET(XSAVE_BNDCSR, bndcsr_state); | |
1378 | ASSERT_OFFSET(XSAVE_OPMASK, opmask_state); | |
1379 | ASSERT_OFFSET(XSAVE_ZMM_Hi256, zmm_hi256_state); | |
1380 | ASSERT_OFFSET(XSAVE_Hi16_ZMM, hi16_zmm_state); | |
1381 | ASSERT_OFFSET(XSAVE_PKRU, pkru_state); | |
1382 | ||
1bc22652 | 1383 | static int kvm_put_xsave(X86CPU *cpu) |
f1665b21 | 1384 | { |
1bc22652 | 1385 | CPUX86State *env = &cpu->env; |
86cd2ea0 | 1386 | X86XSaveArea *xsave = env->kvm_xsave_buf; |
42cc8fa6 | 1387 | uint16_t cwd, swd, twd; |
9be38598 | 1388 | int i; |
f1665b21 | 1389 | |
28143b40 | 1390 | if (!has_xsave) { |
1bc22652 | 1391 | return kvm_put_fpu(cpu); |
b9bec74b | 1392 | } |
f1665b21 | 1393 | |
f1665b21 | 1394 | memset(xsave, 0, sizeof(struct kvm_xsave)); |
6115c0a8 | 1395 | twd = 0; |
f1665b21 SY |
1396 | swd = env->fpus & ~(7 << 11); |
1397 | swd |= (env->fpstt & 7) << 11; | |
1398 | cwd = env->fpuc; | |
b9bec74b | 1399 | for (i = 0; i < 8; ++i) { |
f1665b21 | 1400 | twd |= (!env->fptags[i]) << i; |
b9bec74b | 1401 | } |
86cd2ea0 EH |
1402 | xsave->legacy.fcw = cwd; |
1403 | xsave->legacy.fsw = swd; | |
1404 | xsave->legacy.ftw = twd; | |
1405 | xsave->legacy.fpop = env->fpop; | |
1406 | xsave->legacy.fpip = env->fpip; | |
1407 | xsave->legacy.fpdp = env->fpdp; | |
1408 | memcpy(&xsave->legacy.fpregs, env->fpregs, | |
f1665b21 | 1409 | sizeof env->fpregs); |
86cd2ea0 EH |
1410 | xsave->legacy.mxcsr = env->mxcsr; |
1411 | xsave->header.xstate_bv = env->xstate_bv; | |
1412 | memcpy(&xsave->bndreg_state.bnd_regs, env->bnd_regs, | |
79e9ebeb | 1413 | sizeof env->bnd_regs); |
86cd2ea0 EH |
1414 | xsave->bndcsr_state.bndcsr = env->bndcs_regs; |
1415 | memcpy(&xsave->opmask_state.opmask_regs, env->opmask_regs, | |
9aecd6f8 | 1416 | sizeof env->opmask_regs); |
bee81887 | 1417 | |
86cd2ea0 EH |
1418 | for (i = 0; i < CPU_NB_REGS; i++) { |
1419 | uint8_t *xmm = xsave->legacy.xmm_regs[i]; | |
1420 | uint8_t *ymmh = xsave->avx_state.ymmh[i]; | |
1421 | uint8_t *zmmh = xsave->zmm_hi256_state.zmm_hi256[i]; | |
19cbd87c EH |
1422 | stq_p(xmm, env->xmm_regs[i].ZMM_Q(0)); |
1423 | stq_p(xmm+8, env->xmm_regs[i].ZMM_Q(1)); | |
1424 | stq_p(ymmh, env->xmm_regs[i].ZMM_Q(2)); | |
1425 | stq_p(ymmh+8, env->xmm_regs[i].ZMM_Q(3)); | |
1426 | stq_p(zmmh, env->xmm_regs[i].ZMM_Q(4)); | |
1427 | stq_p(zmmh+8, env->xmm_regs[i].ZMM_Q(5)); | |
1428 | stq_p(zmmh+16, env->xmm_regs[i].ZMM_Q(6)); | |
1429 | stq_p(zmmh+24, env->xmm_regs[i].ZMM_Q(7)); | |
bee81887 PB |
1430 | } |
1431 | ||
9aecd6f8 | 1432 | #ifdef TARGET_X86_64 |
86cd2ea0 | 1433 | memcpy(&xsave->hi16_zmm_state.hi16_zmm, &env->xmm_regs[16], |
b7711471 | 1434 | 16 * sizeof env->xmm_regs[16]); |
86cd2ea0 | 1435 | memcpy(&xsave->pkru_state, &env->pkru, sizeof env->pkru); |
9aecd6f8 | 1436 | #endif |
9be38598 | 1437 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave); |
f1665b21 SY |
1438 | } |
1439 | ||
1bc22652 | 1440 | static int kvm_put_xcrs(X86CPU *cpu) |
f1665b21 | 1441 | { |
1bc22652 | 1442 | CPUX86State *env = &cpu->env; |
bdfc8480 | 1443 | struct kvm_xcrs xcrs = {}; |
f1665b21 | 1444 | |
28143b40 | 1445 | if (!has_xcrs) { |
f1665b21 | 1446 | return 0; |
b9bec74b | 1447 | } |
f1665b21 SY |
1448 | |
1449 | xcrs.nr_xcrs = 1; | |
1450 | xcrs.flags = 0; | |
1451 | xcrs.xcrs[0].xcr = 0; | |
1452 | xcrs.xcrs[0].value = env->xcr0; | |
1bc22652 | 1453 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs); |
f1665b21 SY |
1454 | } |
1455 | ||
1bc22652 | 1456 | static int kvm_put_sregs(X86CPU *cpu) |
05330448 | 1457 | { |
1bc22652 | 1458 | CPUX86State *env = &cpu->env; |
05330448 AL |
1459 | struct kvm_sregs sregs; |
1460 | ||
0e607a80 JK |
1461 | memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); |
1462 | if (env->interrupt_injected >= 0) { | |
1463 | sregs.interrupt_bitmap[env->interrupt_injected / 64] |= | |
1464 | (uint64_t)1 << (env->interrupt_injected % 64); | |
1465 | } | |
05330448 AL |
1466 | |
1467 | if ((env->eflags & VM_MASK)) { | |
b9bec74b JK |
1468 | set_v8086_seg(&sregs.cs, &env->segs[R_CS]); |
1469 | set_v8086_seg(&sregs.ds, &env->segs[R_DS]); | |
1470 | set_v8086_seg(&sregs.es, &env->segs[R_ES]); | |
1471 | set_v8086_seg(&sregs.fs, &env->segs[R_FS]); | |
1472 | set_v8086_seg(&sregs.gs, &env->segs[R_GS]); | |
1473 | set_v8086_seg(&sregs.ss, &env->segs[R_SS]); | |
05330448 | 1474 | } else { |
b9bec74b JK |
1475 | set_seg(&sregs.cs, &env->segs[R_CS]); |
1476 | set_seg(&sregs.ds, &env->segs[R_DS]); | |
1477 | set_seg(&sregs.es, &env->segs[R_ES]); | |
1478 | set_seg(&sregs.fs, &env->segs[R_FS]); | |
1479 | set_seg(&sregs.gs, &env->segs[R_GS]); | |
1480 | set_seg(&sregs.ss, &env->segs[R_SS]); | |
05330448 AL |
1481 | } |
1482 | ||
1483 | set_seg(&sregs.tr, &env->tr); | |
1484 | set_seg(&sregs.ldt, &env->ldt); | |
1485 | ||
1486 | sregs.idt.limit = env->idt.limit; | |
1487 | sregs.idt.base = env->idt.base; | |
7e680753 | 1488 | memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); |
05330448 AL |
1489 | sregs.gdt.limit = env->gdt.limit; |
1490 | sregs.gdt.base = env->gdt.base; | |
7e680753 | 1491 | memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); |
05330448 AL |
1492 | |
1493 | sregs.cr0 = env->cr[0]; | |
1494 | sregs.cr2 = env->cr[2]; | |
1495 | sregs.cr3 = env->cr[3]; | |
1496 | sregs.cr4 = env->cr[4]; | |
1497 | ||
02e51483 CF |
1498 | sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state); |
1499 | sregs.apic_base = cpu_get_apic_base(cpu->apic_state); | |
05330448 AL |
1500 | |
1501 | sregs.efer = env->efer; | |
1502 | ||
1bc22652 | 1503 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs); |
05330448 AL |
1504 | } |
1505 | ||
d71b62a1 EH |
1506 | static void kvm_msr_buf_reset(X86CPU *cpu) |
1507 | { | |
1508 | memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE); | |
1509 | } | |
1510 | ||
9c600a84 EH |
1511 | static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value) |
1512 | { | |
1513 | struct kvm_msrs *msrs = cpu->kvm_msr_buf; | |
1514 | void *limit = ((void *)msrs) + MSR_BUF_SIZE; | |
1515 | struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs]; | |
1516 | ||
1517 | assert((void *)(entry + 1) <= limit); | |
1518 | ||
1abc2cae EH |
1519 | entry->index = index; |
1520 | entry->reserved = 0; | |
1521 | entry->data = value; | |
9c600a84 EH |
1522 | msrs->nmsrs++; |
1523 | } | |
1524 | ||
7477cd38 MT |
1525 | static int kvm_put_tscdeadline_msr(X86CPU *cpu) |
1526 | { | |
1527 | CPUX86State *env = &cpu->env; | |
48e1a45c | 1528 | int ret; |
7477cd38 MT |
1529 | |
1530 | if (!has_msr_tsc_deadline) { | |
1531 | return 0; | |
1532 | } | |
1533 | ||
e25ffda7 EH |
1534 | kvm_msr_buf_reset(cpu); |
1535 | kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline); | |
7477cd38 | 1536 | |
e25ffda7 | 1537 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); |
48e1a45c PB |
1538 | if (ret < 0) { |
1539 | return ret; | |
1540 | } | |
1541 | ||
1542 | assert(ret == 1); | |
1543 | return 0; | |
7477cd38 MT |
1544 | } |
1545 | ||
6bdf863d JK |
1546 | /* |
1547 | * Provide a separate write service for the feature control MSR in order to | |
1548 | * kick the VCPU out of VMXON or even guest mode on reset. This has to be done | |
1549 | * before writing any other state because forcibly leaving nested mode | |
1550 | * invalidates the VCPU state. | |
1551 | */ | |
1552 | static int kvm_put_msr_feature_control(X86CPU *cpu) | |
1553 | { | |
48e1a45c PB |
1554 | int ret; |
1555 | ||
1556 | if (!has_msr_feature_control) { | |
1557 | return 0; | |
1558 | } | |
6bdf863d | 1559 | |
e25ffda7 EH |
1560 | kvm_msr_buf_reset(cpu); |
1561 | kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, | |
6bdf863d | 1562 | cpu->env.msr_ia32_feature_control); |
c7fe4b12 | 1563 | |
e25ffda7 | 1564 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); |
48e1a45c PB |
1565 | if (ret < 0) { |
1566 | return ret; | |
1567 | } | |
1568 | ||
1569 | assert(ret == 1); | |
1570 | return 0; | |
6bdf863d JK |
1571 | } |
1572 | ||
1bc22652 | 1573 | static int kvm_put_msrs(X86CPU *cpu, int level) |
05330448 | 1574 | { |
1bc22652 | 1575 | CPUX86State *env = &cpu->env; |
9c600a84 | 1576 | int i; |
48e1a45c | 1577 | int ret; |
05330448 | 1578 | |
d71b62a1 EH |
1579 | kvm_msr_buf_reset(cpu); |
1580 | ||
9c600a84 EH |
1581 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs); |
1582 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp); | |
1583 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip); | |
1584 | kvm_msr_entry_add(cpu, MSR_PAT, env->pat); | |
c3a3a7d3 | 1585 | if (has_msr_star) { |
9c600a84 | 1586 | kvm_msr_entry_add(cpu, MSR_STAR, env->star); |
b9bec74b | 1587 | } |
c3a3a7d3 | 1588 | if (has_msr_hsave_pa) { |
9c600a84 | 1589 | kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave); |
b9bec74b | 1590 | } |
c9b8f6b6 | 1591 | if (has_msr_tsc_aux) { |
9c600a84 | 1592 | kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux); |
c9b8f6b6 | 1593 | } |
f28558d3 | 1594 | if (has_msr_tsc_adjust) { |
9c600a84 | 1595 | kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust); |
f28558d3 | 1596 | } |
21e87c46 | 1597 | if (has_msr_misc_enable) { |
9c600a84 | 1598 | kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, |
21e87c46 AK |
1599 | env->msr_ia32_misc_enable); |
1600 | } | |
fc12d72e | 1601 | if (has_msr_smbase) { |
9c600a84 | 1602 | kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase); |
fc12d72e | 1603 | } |
439d19f2 | 1604 | if (has_msr_bndcfgs) { |
9c600a84 | 1605 | kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs); |
439d19f2 | 1606 | } |
18cd2c17 | 1607 | if (has_msr_xss) { |
9c600a84 | 1608 | kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss); |
18cd2c17 | 1609 | } |
05330448 | 1610 | #ifdef TARGET_X86_64 |
25d2e361 | 1611 | if (lm_capable_kernel) { |
9c600a84 EH |
1612 | kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar); |
1613 | kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase); | |
1614 | kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask); | |
1615 | kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar); | |
25d2e361 | 1616 | } |
05330448 | 1617 | #endif |
ff5c186b | 1618 | /* |
0d894367 PB |
1619 | * The following MSRs have side effects on the guest or are too heavy |
1620 | * for normal writeback. Limit them to reset or full state updates. | |
ff5c186b JK |
1621 | */ |
1622 | if (level >= KVM_PUT_RESET_STATE) { | |
9c600a84 EH |
1623 | kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc); |
1624 | kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr); | |
1625 | kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr); | |
c5999bfc | 1626 | if (has_msr_async_pf_en) { |
9c600a84 | 1627 | kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr); |
c5999bfc | 1628 | } |
bc9a839d | 1629 | if (has_msr_pv_eoi_en) { |
9c600a84 | 1630 | kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr); |
bc9a839d | 1631 | } |
917367aa | 1632 | if (has_msr_kvm_steal_time) { |
9c600a84 | 1633 | kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr); |
917367aa | 1634 | } |
0d894367 PB |
1635 | if (has_msr_architectural_pmu) { |
1636 | /* Stop the counter. */ | |
9c600a84 EH |
1637 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); |
1638 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); | |
0d894367 PB |
1639 | |
1640 | /* Set the counter values. */ | |
1641 | for (i = 0; i < MAX_FIXED_COUNTERS; i++) { | |
9c600a84 | 1642 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, |
0d894367 PB |
1643 | env->msr_fixed_counters[i]); |
1644 | } | |
1645 | for (i = 0; i < num_architectural_pmu_counters; i++) { | |
9c600a84 | 1646 | kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, |
0d894367 | 1647 | env->msr_gp_counters[i]); |
9c600a84 | 1648 | kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, |
0d894367 PB |
1649 | env->msr_gp_evtsel[i]); |
1650 | } | |
9c600a84 | 1651 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, |
0d894367 | 1652 | env->msr_global_status); |
9c600a84 | 1653 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, |
0d894367 PB |
1654 | env->msr_global_ovf_ctrl); |
1655 | ||
1656 | /* Now start the PMU. */ | |
9c600a84 | 1657 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, |
0d894367 | 1658 | env->msr_fixed_ctr_ctrl); |
9c600a84 | 1659 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, |
0d894367 PB |
1660 | env->msr_global_ctrl); |
1661 | } | |
7bc3d711 | 1662 | if (has_msr_hv_hypercall) { |
9c600a84 | 1663 | kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, |
1c90ef26 | 1664 | env->msr_hv_guest_os_id); |
9c600a84 | 1665 | kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, |
1c90ef26 | 1666 | env->msr_hv_hypercall); |
eab70139 | 1667 | } |
7bc3d711 | 1668 | if (has_msr_hv_vapic) { |
9c600a84 | 1669 | kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, |
5ef68987 | 1670 | env->msr_hv_vapic); |
eab70139 | 1671 | } |
48a5f3bc | 1672 | if (has_msr_hv_tsc) { |
9c600a84 | 1673 | kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, env->msr_hv_tsc); |
48a5f3bc | 1674 | } |
f2a53c9e AS |
1675 | if (has_msr_hv_crash) { |
1676 | int j; | |
1677 | ||
1678 | for (j = 0; j < HV_X64_MSR_CRASH_PARAMS; j++) | |
9c600a84 | 1679 | kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, |
f2a53c9e AS |
1680 | env->msr_hv_crash_params[j]); |
1681 | ||
9c600a84 | 1682 | kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, |
f2a53c9e AS |
1683 | HV_X64_MSR_CRASH_CTL_NOTIFY); |
1684 | } | |
46eb8f98 | 1685 | if (has_msr_hv_runtime) { |
9c600a84 | 1686 | kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime); |
46eb8f98 | 1687 | } |
866eea9a AS |
1688 | if (cpu->hyperv_synic) { |
1689 | int j; | |
1690 | ||
9c600a84 | 1691 | kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, |
866eea9a | 1692 | env->msr_hv_synic_control); |
9c600a84 | 1693 | kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, |
866eea9a | 1694 | env->msr_hv_synic_version); |
9c600a84 | 1695 | kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, |
866eea9a | 1696 | env->msr_hv_synic_evt_page); |
9c600a84 | 1697 | kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, |
866eea9a AS |
1698 | env->msr_hv_synic_msg_page); |
1699 | ||
1700 | for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) { | |
9c600a84 | 1701 | kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j, |
866eea9a AS |
1702 | env->msr_hv_synic_sint[j]); |
1703 | } | |
1704 | } | |
ff99aa64 AS |
1705 | if (has_msr_hv_stimer) { |
1706 | int j; | |
1707 | ||
1708 | for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) { | |
9c600a84 | 1709 | kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2, |
ff99aa64 AS |
1710 | env->msr_hv_stimer_config[j]); |
1711 | } | |
1712 | ||
1713 | for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) { | |
9c600a84 | 1714 | kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2, |
ff99aa64 AS |
1715 | env->msr_hv_stimer_count[j]); |
1716 | } | |
1717 | } | |
d1ae67f6 | 1718 | if (has_msr_mtrr) { |
9c600a84 EH |
1719 | kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype); |
1720 | kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]); | |
1721 | kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]); | |
1722 | kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]); | |
1723 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]); | |
1724 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]); | |
1725 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]); | |
1726 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]); | |
1727 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]); | |
1728 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]); | |
1729 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]); | |
1730 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]); | |
d1ae67f6 | 1731 | for (i = 0; i < MSR_MTRRcap_VCNT; i++) { |
9c600a84 EH |
1732 | kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), |
1733 | env->mtrr_var[i].base); | |
1734 | kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), | |
1735 | env->mtrr_var[i].mask); | |
d1ae67f6 AW |
1736 | } |
1737 | } | |
6bdf863d JK |
1738 | |
1739 | /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see | |
1740 | * kvm_put_msr_feature_control. */ | |
ea643051 | 1741 | } |
57780495 | 1742 | if (env->mcg_cap) { |
d8da8574 | 1743 | int i; |
b9bec74b | 1744 | |
9c600a84 EH |
1745 | kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status); |
1746 | kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl); | |
87f8b626 AR |
1747 | if (has_msr_mcg_ext_ctl) { |
1748 | kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl); | |
1749 | } | |
c34d440a | 1750 | for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { |
9c600a84 | 1751 | kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]); |
57780495 MT |
1752 | } |
1753 | } | |
1a03675d | 1754 | |
d71b62a1 | 1755 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); |
48e1a45c PB |
1756 | if (ret < 0) { |
1757 | return ret; | |
1758 | } | |
05330448 | 1759 | |
9c600a84 | 1760 | assert(ret == cpu->kvm_msr_buf->nmsrs); |
48e1a45c | 1761 | return 0; |
05330448 AL |
1762 | } |
1763 | ||
1764 | ||
1bc22652 | 1765 | static int kvm_get_fpu(X86CPU *cpu) |
05330448 | 1766 | { |
1bc22652 | 1767 | CPUX86State *env = &cpu->env; |
05330448 AL |
1768 | struct kvm_fpu fpu; |
1769 | int i, ret; | |
1770 | ||
1bc22652 | 1771 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu); |
b9bec74b | 1772 | if (ret < 0) { |
05330448 | 1773 | return ret; |
b9bec74b | 1774 | } |
05330448 AL |
1775 | |
1776 | env->fpstt = (fpu.fsw >> 11) & 7; | |
1777 | env->fpus = fpu.fsw; | |
1778 | env->fpuc = fpu.fcw; | |
42cc8fa6 JK |
1779 | env->fpop = fpu.last_opcode; |
1780 | env->fpip = fpu.last_ip; | |
1781 | env->fpdp = fpu.last_dp; | |
b9bec74b JK |
1782 | for (i = 0; i < 8; ++i) { |
1783 | env->fptags[i] = !((fpu.ftwx >> i) & 1); | |
1784 | } | |
05330448 | 1785 | memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs); |
bee81887 | 1786 | for (i = 0; i < CPU_NB_REGS; i++) { |
19cbd87c EH |
1787 | env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]); |
1788 | env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]); | |
bee81887 | 1789 | } |
05330448 AL |
1790 | env->mxcsr = fpu.mxcsr; |
1791 | ||
1792 | return 0; | |
1793 | } | |
1794 | ||
1bc22652 | 1795 | static int kvm_get_xsave(X86CPU *cpu) |
f1665b21 | 1796 | { |
1bc22652 | 1797 | CPUX86State *env = &cpu->env; |
86cd2ea0 | 1798 | X86XSaveArea *xsave = env->kvm_xsave_buf; |
f1665b21 | 1799 | int ret, i; |
42cc8fa6 | 1800 | uint16_t cwd, swd, twd; |
f1665b21 | 1801 | |
28143b40 | 1802 | if (!has_xsave) { |
1bc22652 | 1803 | return kvm_get_fpu(cpu); |
b9bec74b | 1804 | } |
f1665b21 | 1805 | |
1bc22652 | 1806 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave); |
0f53994f | 1807 | if (ret < 0) { |
f1665b21 | 1808 | return ret; |
0f53994f | 1809 | } |
f1665b21 | 1810 | |
86cd2ea0 EH |
1811 | cwd = xsave->legacy.fcw; |
1812 | swd = xsave->legacy.fsw; | |
1813 | twd = xsave->legacy.ftw; | |
1814 | env->fpop = xsave->legacy.fpop; | |
f1665b21 SY |
1815 | env->fpstt = (swd >> 11) & 7; |
1816 | env->fpus = swd; | |
1817 | env->fpuc = cwd; | |
b9bec74b | 1818 | for (i = 0; i < 8; ++i) { |
f1665b21 | 1819 | env->fptags[i] = !((twd >> i) & 1); |
b9bec74b | 1820 | } |
86cd2ea0 EH |
1821 | env->fpip = xsave->legacy.fpip; |
1822 | env->fpdp = xsave->legacy.fpdp; | |
1823 | env->mxcsr = xsave->legacy.mxcsr; | |
1824 | memcpy(env->fpregs, &xsave->legacy.fpregs, | |
f1665b21 | 1825 | sizeof env->fpregs); |
86cd2ea0 EH |
1826 | env->xstate_bv = xsave->header.xstate_bv; |
1827 | memcpy(env->bnd_regs, &xsave->bndreg_state.bnd_regs, | |
79e9ebeb | 1828 | sizeof env->bnd_regs); |
86cd2ea0 EH |
1829 | env->bndcs_regs = xsave->bndcsr_state.bndcsr; |
1830 | memcpy(env->opmask_regs, &xsave->opmask_state.opmask_regs, | |
9aecd6f8 | 1831 | sizeof env->opmask_regs); |
bee81887 | 1832 | |
86cd2ea0 EH |
1833 | for (i = 0; i < CPU_NB_REGS; i++) { |
1834 | uint8_t *xmm = xsave->legacy.xmm_regs[i]; | |
1835 | uint8_t *ymmh = xsave->avx_state.ymmh[i]; | |
1836 | uint8_t *zmmh = xsave->zmm_hi256_state.zmm_hi256[i]; | |
19cbd87c EH |
1837 | env->xmm_regs[i].ZMM_Q(0) = ldq_p(xmm); |
1838 | env->xmm_regs[i].ZMM_Q(1) = ldq_p(xmm+8); | |
1839 | env->xmm_regs[i].ZMM_Q(2) = ldq_p(ymmh); | |
1840 | env->xmm_regs[i].ZMM_Q(3) = ldq_p(ymmh+8); | |
1841 | env->xmm_regs[i].ZMM_Q(4) = ldq_p(zmmh); | |
1842 | env->xmm_regs[i].ZMM_Q(5) = ldq_p(zmmh+8); | |
1843 | env->xmm_regs[i].ZMM_Q(6) = ldq_p(zmmh+16); | |
1844 | env->xmm_regs[i].ZMM_Q(7) = ldq_p(zmmh+24); | |
bee81887 PB |
1845 | } |
1846 | ||
9aecd6f8 | 1847 | #ifdef TARGET_X86_64 |
86cd2ea0 | 1848 | memcpy(&env->xmm_regs[16], &xsave->hi16_zmm_state.hi16_zmm, |
b7711471 | 1849 | 16 * sizeof env->xmm_regs[16]); |
86cd2ea0 | 1850 | memcpy(&env->pkru, &xsave->pkru_state, sizeof env->pkru); |
9aecd6f8 | 1851 | #endif |
f1665b21 | 1852 | return 0; |
f1665b21 SY |
1853 | } |
1854 | ||
1bc22652 | 1855 | static int kvm_get_xcrs(X86CPU *cpu) |
f1665b21 | 1856 | { |
1bc22652 | 1857 | CPUX86State *env = &cpu->env; |
f1665b21 SY |
1858 | int i, ret; |
1859 | struct kvm_xcrs xcrs; | |
1860 | ||
28143b40 | 1861 | if (!has_xcrs) { |
f1665b21 | 1862 | return 0; |
b9bec74b | 1863 | } |
f1665b21 | 1864 | |
1bc22652 | 1865 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs); |
b9bec74b | 1866 | if (ret < 0) { |
f1665b21 | 1867 | return ret; |
b9bec74b | 1868 | } |
f1665b21 | 1869 | |
b9bec74b | 1870 | for (i = 0; i < xcrs.nr_xcrs; i++) { |
f1665b21 | 1871 | /* Only support xcr0 now */ |
0fd53fec PB |
1872 | if (xcrs.xcrs[i].xcr == 0) { |
1873 | env->xcr0 = xcrs.xcrs[i].value; | |
f1665b21 SY |
1874 | break; |
1875 | } | |
b9bec74b | 1876 | } |
f1665b21 | 1877 | return 0; |
f1665b21 SY |
1878 | } |
1879 | ||
1bc22652 | 1880 | static int kvm_get_sregs(X86CPU *cpu) |
05330448 | 1881 | { |
1bc22652 | 1882 | CPUX86State *env = &cpu->env; |
05330448 AL |
1883 | struct kvm_sregs sregs; |
1884 | uint32_t hflags; | |
0e607a80 | 1885 | int bit, i, ret; |
05330448 | 1886 | |
1bc22652 | 1887 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); |
b9bec74b | 1888 | if (ret < 0) { |
05330448 | 1889 | return ret; |
b9bec74b | 1890 | } |
05330448 | 1891 | |
0e607a80 JK |
1892 | /* There can only be one pending IRQ set in the bitmap at a time, so try |
1893 | to find it and save its number instead (-1 for none). */ | |
1894 | env->interrupt_injected = -1; | |
1895 | for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) { | |
1896 | if (sregs.interrupt_bitmap[i]) { | |
1897 | bit = ctz64(sregs.interrupt_bitmap[i]); | |
1898 | env->interrupt_injected = i * 64 + bit; | |
1899 | break; | |
1900 | } | |
1901 | } | |
05330448 AL |
1902 | |
1903 | get_seg(&env->segs[R_CS], &sregs.cs); | |
1904 | get_seg(&env->segs[R_DS], &sregs.ds); | |
1905 | get_seg(&env->segs[R_ES], &sregs.es); | |
1906 | get_seg(&env->segs[R_FS], &sregs.fs); | |
1907 | get_seg(&env->segs[R_GS], &sregs.gs); | |
1908 | get_seg(&env->segs[R_SS], &sregs.ss); | |
1909 | ||
1910 | get_seg(&env->tr, &sregs.tr); | |
1911 | get_seg(&env->ldt, &sregs.ldt); | |
1912 | ||
1913 | env->idt.limit = sregs.idt.limit; | |
1914 | env->idt.base = sregs.idt.base; | |
1915 | env->gdt.limit = sregs.gdt.limit; | |
1916 | env->gdt.base = sregs.gdt.base; | |
1917 | ||
1918 | env->cr[0] = sregs.cr0; | |
1919 | env->cr[2] = sregs.cr2; | |
1920 | env->cr[3] = sregs.cr3; | |
1921 | env->cr[4] = sregs.cr4; | |
1922 | ||
05330448 | 1923 | env->efer = sregs.efer; |
cce47516 JK |
1924 | |
1925 | /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ | |
05330448 | 1926 | |
b9bec74b JK |
1927 | #define HFLAG_COPY_MASK \ |
1928 | ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \ | |
1929 | HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \ | |
1930 | HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \ | |
1931 | HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK) | |
05330448 | 1932 | |
19dc85db RH |
1933 | hflags = env->hflags & HFLAG_COPY_MASK; |
1934 | hflags |= (env->segs[R_SS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK; | |
05330448 AL |
1935 | hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT); |
1936 | hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) & | |
b9bec74b | 1937 | (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK); |
05330448 | 1938 | hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK)); |
19dc85db RH |
1939 | |
1940 | if (env->cr[4] & CR4_OSFXSR_MASK) { | |
1941 | hflags |= HF_OSFXSR_MASK; | |
1942 | } | |
05330448 AL |
1943 | |
1944 | if (env->efer & MSR_EFER_LMA) { | |
1945 | hflags |= HF_LMA_MASK; | |
1946 | } | |
1947 | ||
1948 | if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) { | |
1949 | hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK; | |
1950 | } else { | |
1951 | hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >> | |
b9bec74b | 1952 | (DESC_B_SHIFT - HF_CS32_SHIFT); |
05330448 | 1953 | hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >> |
b9bec74b JK |
1954 | (DESC_B_SHIFT - HF_SS32_SHIFT); |
1955 | if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) || | |
1956 | !(hflags & HF_CS32_MASK)) { | |
1957 | hflags |= HF_ADDSEG_MASK; | |
1958 | } else { | |
1959 | hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base | | |
1960 | env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT; | |
1961 | } | |
05330448 | 1962 | } |
19dc85db | 1963 | env->hflags = hflags; |
05330448 AL |
1964 | |
1965 | return 0; | |
1966 | } | |
1967 | ||
1bc22652 | 1968 | static int kvm_get_msrs(X86CPU *cpu) |
05330448 | 1969 | { |
1bc22652 | 1970 | CPUX86State *env = &cpu->env; |
d71b62a1 | 1971 | struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries; |
9c600a84 | 1972 | int ret, i; |
05330448 | 1973 | |
d71b62a1 EH |
1974 | kvm_msr_buf_reset(cpu); |
1975 | ||
9c600a84 EH |
1976 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0); |
1977 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0); | |
1978 | kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0); | |
1979 | kvm_msr_entry_add(cpu, MSR_PAT, 0); | |
c3a3a7d3 | 1980 | if (has_msr_star) { |
9c600a84 | 1981 | kvm_msr_entry_add(cpu, MSR_STAR, 0); |
b9bec74b | 1982 | } |
c3a3a7d3 | 1983 | if (has_msr_hsave_pa) { |
9c600a84 | 1984 | kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0); |
b9bec74b | 1985 | } |
c9b8f6b6 | 1986 | if (has_msr_tsc_aux) { |
9c600a84 | 1987 | kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0); |
c9b8f6b6 | 1988 | } |
f28558d3 | 1989 | if (has_msr_tsc_adjust) { |
9c600a84 | 1990 | kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0); |
f28558d3 | 1991 | } |
aa82ba54 | 1992 | if (has_msr_tsc_deadline) { |
9c600a84 | 1993 | kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0); |
aa82ba54 | 1994 | } |
21e87c46 | 1995 | if (has_msr_misc_enable) { |
9c600a84 | 1996 | kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0); |
21e87c46 | 1997 | } |
fc12d72e | 1998 | if (has_msr_smbase) { |
9c600a84 | 1999 | kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0); |
fc12d72e | 2000 | } |
df67696e | 2001 | if (has_msr_feature_control) { |
9c600a84 | 2002 | kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0); |
df67696e | 2003 | } |
79e9ebeb | 2004 | if (has_msr_bndcfgs) { |
9c600a84 | 2005 | kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0); |
79e9ebeb | 2006 | } |
18cd2c17 | 2007 | if (has_msr_xss) { |
9c600a84 | 2008 | kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0); |
18cd2c17 WL |
2009 | } |
2010 | ||
b8cc45d6 GC |
2011 | |
2012 | if (!env->tsc_valid) { | |
9c600a84 | 2013 | kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0); |
1354869c | 2014 | env->tsc_valid = !runstate_is_running(); |
b8cc45d6 GC |
2015 | } |
2016 | ||
05330448 | 2017 | #ifdef TARGET_X86_64 |
25d2e361 | 2018 | if (lm_capable_kernel) { |
9c600a84 EH |
2019 | kvm_msr_entry_add(cpu, MSR_CSTAR, 0); |
2020 | kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0); | |
2021 | kvm_msr_entry_add(cpu, MSR_FMASK, 0); | |
2022 | kvm_msr_entry_add(cpu, MSR_LSTAR, 0); | |
25d2e361 | 2023 | } |
05330448 | 2024 | #endif |
9c600a84 EH |
2025 | kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0); |
2026 | kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0); | |
c5999bfc | 2027 | if (has_msr_async_pf_en) { |
9c600a84 | 2028 | kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0); |
c5999bfc | 2029 | } |
bc9a839d | 2030 | if (has_msr_pv_eoi_en) { |
9c600a84 | 2031 | kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0); |
bc9a839d | 2032 | } |
917367aa | 2033 | if (has_msr_kvm_steal_time) { |
9c600a84 | 2034 | kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0); |
917367aa | 2035 | } |
0d894367 | 2036 | if (has_msr_architectural_pmu) { |
9c600a84 EH |
2037 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); |
2038 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); | |
2039 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0); | |
2040 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0); | |
0d894367 | 2041 | for (i = 0; i < MAX_FIXED_COUNTERS; i++) { |
9c600a84 | 2042 | kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0); |
0d894367 PB |
2043 | } |
2044 | for (i = 0; i < num_architectural_pmu_counters; i++) { | |
9c600a84 EH |
2045 | kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0); |
2046 | kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0); | |
0d894367 PB |
2047 | } |
2048 | } | |
1a03675d | 2049 | |
57780495 | 2050 | if (env->mcg_cap) { |
9c600a84 EH |
2051 | kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0); |
2052 | kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0); | |
87f8b626 AR |
2053 | if (has_msr_mcg_ext_ctl) { |
2054 | kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0); | |
2055 | } | |
b9bec74b | 2056 | for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { |
9c600a84 | 2057 | kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0); |
b9bec74b | 2058 | } |
57780495 | 2059 | } |
57780495 | 2060 | |
1c90ef26 | 2061 | if (has_msr_hv_hypercall) { |
9c600a84 EH |
2062 | kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0); |
2063 | kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0); | |
1c90ef26 | 2064 | } |
5ef68987 | 2065 | if (has_msr_hv_vapic) { |
9c600a84 | 2066 | kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0); |
5ef68987 | 2067 | } |
48a5f3bc | 2068 | if (has_msr_hv_tsc) { |
9c600a84 | 2069 | kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0); |
48a5f3bc | 2070 | } |
f2a53c9e AS |
2071 | if (has_msr_hv_crash) { |
2072 | int j; | |
2073 | ||
2074 | for (j = 0; j < HV_X64_MSR_CRASH_PARAMS; j++) { | |
9c600a84 | 2075 | kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0); |
f2a53c9e AS |
2076 | } |
2077 | } | |
46eb8f98 | 2078 | if (has_msr_hv_runtime) { |
9c600a84 | 2079 | kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0); |
46eb8f98 | 2080 | } |
866eea9a AS |
2081 | if (cpu->hyperv_synic) { |
2082 | uint32_t msr; | |
2083 | ||
9c600a84 EH |
2084 | kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0); |
2085 | kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, 0); | |
2086 | kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0); | |
2087 | kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0); | |
866eea9a | 2088 | for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) { |
9c600a84 | 2089 | kvm_msr_entry_add(cpu, msr, 0); |
866eea9a AS |
2090 | } |
2091 | } | |
ff99aa64 AS |
2092 | if (has_msr_hv_stimer) { |
2093 | uint32_t msr; | |
2094 | ||
2095 | for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT; | |
2096 | msr++) { | |
9c600a84 | 2097 | kvm_msr_entry_add(cpu, msr, 0); |
ff99aa64 AS |
2098 | } |
2099 | } | |
d1ae67f6 | 2100 | if (has_msr_mtrr) { |
9c600a84 EH |
2101 | kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0); |
2102 | kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0); | |
2103 | kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0); | |
2104 | kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0); | |
2105 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0); | |
2106 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0); | |
2107 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0); | |
2108 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0); | |
2109 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0); | |
2110 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0); | |
2111 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0); | |
2112 | kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0); | |
d1ae67f6 | 2113 | for (i = 0; i < MSR_MTRRcap_VCNT; i++) { |
9c600a84 EH |
2114 | kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0); |
2115 | kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0); | |
d1ae67f6 AW |
2116 | } |
2117 | } | |
5ef68987 | 2118 | |
d71b62a1 | 2119 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf); |
b9bec74b | 2120 | if (ret < 0) { |
05330448 | 2121 | return ret; |
b9bec74b | 2122 | } |
05330448 | 2123 | |
9c600a84 | 2124 | assert(ret == cpu->kvm_msr_buf->nmsrs); |
05330448 | 2125 | for (i = 0; i < ret; i++) { |
0d894367 PB |
2126 | uint32_t index = msrs[i].index; |
2127 | switch (index) { | |
05330448 AL |
2128 | case MSR_IA32_SYSENTER_CS: |
2129 | env->sysenter_cs = msrs[i].data; | |
2130 | break; | |
2131 | case MSR_IA32_SYSENTER_ESP: | |
2132 | env->sysenter_esp = msrs[i].data; | |
2133 | break; | |
2134 | case MSR_IA32_SYSENTER_EIP: | |
2135 | env->sysenter_eip = msrs[i].data; | |
2136 | break; | |
0c03266a JK |
2137 | case MSR_PAT: |
2138 | env->pat = msrs[i].data; | |
2139 | break; | |
05330448 AL |
2140 | case MSR_STAR: |
2141 | env->star = msrs[i].data; | |
2142 | break; | |
2143 | #ifdef TARGET_X86_64 | |
2144 | case MSR_CSTAR: | |
2145 | env->cstar = msrs[i].data; | |
2146 | break; | |
2147 | case MSR_KERNELGSBASE: | |
2148 | env->kernelgsbase = msrs[i].data; | |
2149 | break; | |
2150 | case MSR_FMASK: | |
2151 | env->fmask = msrs[i].data; | |
2152 | break; | |
2153 | case MSR_LSTAR: | |
2154 | env->lstar = msrs[i].data; | |
2155 | break; | |
2156 | #endif | |
2157 | case MSR_IA32_TSC: | |
2158 | env->tsc = msrs[i].data; | |
2159 | break; | |
c9b8f6b6 AS |
2160 | case MSR_TSC_AUX: |
2161 | env->tsc_aux = msrs[i].data; | |
2162 | break; | |
f28558d3 WA |
2163 | case MSR_TSC_ADJUST: |
2164 | env->tsc_adjust = msrs[i].data; | |
2165 | break; | |
aa82ba54 LJ |
2166 | case MSR_IA32_TSCDEADLINE: |
2167 | env->tsc_deadline = msrs[i].data; | |
2168 | break; | |
aa851e36 MT |
2169 | case MSR_VM_HSAVE_PA: |
2170 | env->vm_hsave = msrs[i].data; | |
2171 | break; | |
1a03675d GC |
2172 | case MSR_KVM_SYSTEM_TIME: |
2173 | env->system_time_msr = msrs[i].data; | |
2174 | break; | |
2175 | case MSR_KVM_WALL_CLOCK: | |
2176 | env->wall_clock_msr = msrs[i].data; | |
2177 | break; | |
57780495 MT |
2178 | case MSR_MCG_STATUS: |
2179 | env->mcg_status = msrs[i].data; | |
2180 | break; | |
2181 | case MSR_MCG_CTL: | |
2182 | env->mcg_ctl = msrs[i].data; | |
2183 | break; | |
87f8b626 AR |
2184 | case MSR_MCG_EXT_CTL: |
2185 | env->mcg_ext_ctl = msrs[i].data; | |
2186 | break; | |
21e87c46 AK |
2187 | case MSR_IA32_MISC_ENABLE: |
2188 | env->msr_ia32_misc_enable = msrs[i].data; | |
2189 | break; | |
fc12d72e PB |
2190 | case MSR_IA32_SMBASE: |
2191 | env->smbase = msrs[i].data; | |
2192 | break; | |
0779caeb ACL |
2193 | case MSR_IA32_FEATURE_CONTROL: |
2194 | env->msr_ia32_feature_control = msrs[i].data; | |
df67696e | 2195 | break; |
79e9ebeb LJ |
2196 | case MSR_IA32_BNDCFGS: |
2197 | env->msr_bndcfgs = msrs[i].data; | |
2198 | break; | |
18cd2c17 WL |
2199 | case MSR_IA32_XSS: |
2200 | env->xss = msrs[i].data; | |
2201 | break; | |
57780495 | 2202 | default: |
57780495 MT |
2203 | if (msrs[i].index >= MSR_MC0_CTL && |
2204 | msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) { | |
2205 | env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data; | |
57780495 | 2206 | } |
d8da8574 | 2207 | break; |
f6584ee2 GN |
2208 | case MSR_KVM_ASYNC_PF_EN: |
2209 | env->async_pf_en_msr = msrs[i].data; | |
2210 | break; | |
bc9a839d MT |
2211 | case MSR_KVM_PV_EOI_EN: |
2212 | env->pv_eoi_en_msr = msrs[i].data; | |
2213 | break; | |
917367aa MT |
2214 | case MSR_KVM_STEAL_TIME: |
2215 | env->steal_time_msr = msrs[i].data; | |
2216 | break; | |
0d894367 PB |
2217 | case MSR_CORE_PERF_FIXED_CTR_CTRL: |
2218 | env->msr_fixed_ctr_ctrl = msrs[i].data; | |
2219 | break; | |
2220 | case MSR_CORE_PERF_GLOBAL_CTRL: | |
2221 | env->msr_global_ctrl = msrs[i].data; | |
2222 | break; | |
2223 | case MSR_CORE_PERF_GLOBAL_STATUS: | |
2224 | env->msr_global_status = msrs[i].data; | |
2225 | break; | |
2226 | case MSR_CORE_PERF_GLOBAL_OVF_CTRL: | |
2227 | env->msr_global_ovf_ctrl = msrs[i].data; | |
2228 | break; | |
2229 | case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1: | |
2230 | env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data; | |
2231 | break; | |
2232 | case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1: | |
2233 | env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data; | |
2234 | break; | |
2235 | case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1: | |
2236 | env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data; | |
2237 | break; | |
1c90ef26 VR |
2238 | case HV_X64_MSR_HYPERCALL: |
2239 | env->msr_hv_hypercall = msrs[i].data; | |
2240 | break; | |
2241 | case HV_X64_MSR_GUEST_OS_ID: | |
2242 | env->msr_hv_guest_os_id = msrs[i].data; | |
2243 | break; | |
5ef68987 VR |
2244 | case HV_X64_MSR_APIC_ASSIST_PAGE: |
2245 | env->msr_hv_vapic = msrs[i].data; | |
2246 | break; | |
48a5f3bc VR |
2247 | case HV_X64_MSR_REFERENCE_TSC: |
2248 | env->msr_hv_tsc = msrs[i].data; | |
2249 | break; | |
f2a53c9e AS |
2250 | case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: |
2251 | env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data; | |
2252 | break; | |
46eb8f98 AS |
2253 | case HV_X64_MSR_VP_RUNTIME: |
2254 | env->msr_hv_runtime = msrs[i].data; | |
2255 | break; | |
866eea9a AS |
2256 | case HV_X64_MSR_SCONTROL: |
2257 | env->msr_hv_synic_control = msrs[i].data; | |
2258 | break; | |
2259 | case HV_X64_MSR_SVERSION: | |
2260 | env->msr_hv_synic_version = msrs[i].data; | |
2261 | break; | |
2262 | case HV_X64_MSR_SIEFP: | |
2263 | env->msr_hv_synic_evt_page = msrs[i].data; | |
2264 | break; | |
2265 | case HV_X64_MSR_SIMP: | |
2266 | env->msr_hv_synic_msg_page = msrs[i].data; | |
2267 | break; | |
2268 | case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: | |
2269 | env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data; | |
ff99aa64 AS |
2270 | break; |
2271 | case HV_X64_MSR_STIMER0_CONFIG: | |
2272 | case HV_X64_MSR_STIMER1_CONFIG: | |
2273 | case HV_X64_MSR_STIMER2_CONFIG: | |
2274 | case HV_X64_MSR_STIMER3_CONFIG: | |
2275 | env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] = | |
2276 | msrs[i].data; | |
2277 | break; | |
2278 | case HV_X64_MSR_STIMER0_COUNT: | |
2279 | case HV_X64_MSR_STIMER1_COUNT: | |
2280 | case HV_X64_MSR_STIMER2_COUNT: | |
2281 | case HV_X64_MSR_STIMER3_COUNT: | |
2282 | env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] = | |
2283 | msrs[i].data; | |
866eea9a | 2284 | break; |
d1ae67f6 AW |
2285 | case MSR_MTRRdefType: |
2286 | env->mtrr_deftype = msrs[i].data; | |
2287 | break; | |
2288 | case MSR_MTRRfix64K_00000: | |
2289 | env->mtrr_fixed[0] = msrs[i].data; | |
2290 | break; | |
2291 | case MSR_MTRRfix16K_80000: | |
2292 | env->mtrr_fixed[1] = msrs[i].data; | |
2293 | break; | |
2294 | case MSR_MTRRfix16K_A0000: | |
2295 | env->mtrr_fixed[2] = msrs[i].data; | |
2296 | break; | |
2297 | case MSR_MTRRfix4K_C0000: | |
2298 | env->mtrr_fixed[3] = msrs[i].data; | |
2299 | break; | |
2300 | case MSR_MTRRfix4K_C8000: | |
2301 | env->mtrr_fixed[4] = msrs[i].data; | |
2302 | break; | |
2303 | case MSR_MTRRfix4K_D0000: | |
2304 | env->mtrr_fixed[5] = msrs[i].data; | |
2305 | break; | |
2306 | case MSR_MTRRfix4K_D8000: | |
2307 | env->mtrr_fixed[6] = msrs[i].data; | |
2308 | break; | |
2309 | case MSR_MTRRfix4K_E0000: | |
2310 | env->mtrr_fixed[7] = msrs[i].data; | |
2311 | break; | |
2312 | case MSR_MTRRfix4K_E8000: | |
2313 | env->mtrr_fixed[8] = msrs[i].data; | |
2314 | break; | |
2315 | case MSR_MTRRfix4K_F0000: | |
2316 | env->mtrr_fixed[9] = msrs[i].data; | |
2317 | break; | |
2318 | case MSR_MTRRfix4K_F8000: | |
2319 | env->mtrr_fixed[10] = msrs[i].data; | |
2320 | break; | |
2321 | case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1): | |
2322 | if (index & 1) { | |
2323 | env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data; | |
2324 | } else { | |
2325 | env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data; | |
2326 | } | |
2327 | break; | |
05330448 AL |
2328 | } |
2329 | } | |
2330 | ||
2331 | return 0; | |
2332 | } | |
2333 | ||
1bc22652 | 2334 | static int kvm_put_mp_state(X86CPU *cpu) |
9bdbe550 | 2335 | { |
1bc22652 | 2336 | struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state }; |
9bdbe550 | 2337 | |
1bc22652 | 2338 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); |
9bdbe550 HB |
2339 | } |
2340 | ||
23d02d9b | 2341 | static int kvm_get_mp_state(X86CPU *cpu) |
9bdbe550 | 2342 | { |
259186a7 | 2343 | CPUState *cs = CPU(cpu); |
23d02d9b | 2344 | CPUX86State *env = &cpu->env; |
9bdbe550 HB |
2345 | struct kvm_mp_state mp_state; |
2346 | int ret; | |
2347 | ||
259186a7 | 2348 | ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state); |
9bdbe550 HB |
2349 | if (ret < 0) { |
2350 | return ret; | |
2351 | } | |
2352 | env->mp_state = mp_state.mp_state; | |
c14750e8 | 2353 | if (kvm_irqchip_in_kernel()) { |
259186a7 | 2354 | cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED); |
c14750e8 | 2355 | } |
9bdbe550 HB |
2356 | return 0; |
2357 | } | |
2358 | ||
1bc22652 | 2359 | static int kvm_get_apic(X86CPU *cpu) |
680c1c6f | 2360 | { |
02e51483 | 2361 | DeviceState *apic = cpu->apic_state; |
680c1c6f JK |
2362 | struct kvm_lapic_state kapic; |
2363 | int ret; | |
2364 | ||
3d4b2649 | 2365 | if (apic && kvm_irqchip_in_kernel()) { |
1bc22652 | 2366 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic); |
680c1c6f JK |
2367 | if (ret < 0) { |
2368 | return ret; | |
2369 | } | |
2370 | ||
2371 | kvm_get_apic_state(apic, &kapic); | |
2372 | } | |
2373 | return 0; | |
2374 | } | |
2375 | ||
1bc22652 | 2376 | static int kvm_put_apic(X86CPU *cpu) |
680c1c6f | 2377 | { |
02e51483 | 2378 | DeviceState *apic = cpu->apic_state; |
680c1c6f JK |
2379 | struct kvm_lapic_state kapic; |
2380 | ||
3d4b2649 | 2381 | if (apic && kvm_irqchip_in_kernel()) { |
680c1c6f JK |
2382 | kvm_put_apic_state(apic, &kapic); |
2383 | ||
1bc22652 | 2384 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_LAPIC, &kapic); |
680c1c6f JK |
2385 | } |
2386 | return 0; | |
2387 | } | |
2388 | ||
1bc22652 | 2389 | static int kvm_put_vcpu_events(X86CPU *cpu, int level) |
a0fb002c | 2390 | { |
fc12d72e | 2391 | CPUState *cs = CPU(cpu); |
1bc22652 | 2392 | CPUX86State *env = &cpu->env; |
076796f8 | 2393 | struct kvm_vcpu_events events = {}; |
a0fb002c JK |
2394 | |
2395 | if (!kvm_has_vcpu_events()) { | |
2396 | return 0; | |
2397 | } | |
2398 | ||
31827373 JK |
2399 | events.exception.injected = (env->exception_injected >= 0); |
2400 | events.exception.nr = env->exception_injected; | |
a0fb002c JK |
2401 | events.exception.has_error_code = env->has_error_code; |
2402 | events.exception.error_code = env->error_code; | |
7e680753 | 2403 | events.exception.pad = 0; |
a0fb002c JK |
2404 | |
2405 | events.interrupt.injected = (env->interrupt_injected >= 0); | |
2406 | events.interrupt.nr = env->interrupt_injected; | |
2407 | events.interrupt.soft = env->soft_interrupt; | |
2408 | ||
2409 | events.nmi.injected = env->nmi_injected; | |
2410 | events.nmi.pending = env->nmi_pending; | |
2411 | events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK); | |
7e680753 | 2412 | events.nmi.pad = 0; |
a0fb002c JK |
2413 | |
2414 | events.sipi_vector = env->sipi_vector; | |
2415 | ||
fc12d72e PB |
2416 | if (has_msr_smbase) { |
2417 | events.smi.smm = !!(env->hflags & HF_SMM_MASK); | |
2418 | events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK); | |
2419 | if (kvm_irqchip_in_kernel()) { | |
2420 | /* As soon as these are moved to the kernel, remove them | |
2421 | * from cs->interrupt_request. | |
2422 | */ | |
2423 | events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI; | |
2424 | events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT; | |
2425 | cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI); | |
2426 | } else { | |
2427 | /* Keep these in cs->interrupt_request. */ | |
2428 | events.smi.pending = 0; | |
2429 | events.smi.latched_init = 0; | |
2430 | } | |
2431 | events.flags |= KVM_VCPUEVENT_VALID_SMM; | |
2432 | } | |
2433 | ||
ea643051 JK |
2434 | events.flags = 0; |
2435 | if (level >= KVM_PUT_RESET_STATE) { | |
2436 | events.flags |= | |
2437 | KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR; | |
2438 | } | |
aee028b9 | 2439 | |
1bc22652 | 2440 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); |
a0fb002c JK |
2441 | } |
2442 | ||
1bc22652 | 2443 | static int kvm_get_vcpu_events(X86CPU *cpu) |
a0fb002c | 2444 | { |
1bc22652 | 2445 | CPUX86State *env = &cpu->env; |
a0fb002c JK |
2446 | struct kvm_vcpu_events events; |
2447 | int ret; | |
2448 | ||
2449 | if (!kvm_has_vcpu_events()) { | |
2450 | return 0; | |
2451 | } | |
2452 | ||
fc12d72e | 2453 | memset(&events, 0, sizeof(events)); |
1bc22652 | 2454 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); |
a0fb002c JK |
2455 | if (ret < 0) { |
2456 | return ret; | |
2457 | } | |
31827373 | 2458 | env->exception_injected = |
a0fb002c JK |
2459 | events.exception.injected ? events.exception.nr : -1; |
2460 | env->has_error_code = events.exception.has_error_code; | |
2461 | env->error_code = events.exception.error_code; | |
2462 | ||
2463 | env->interrupt_injected = | |
2464 | events.interrupt.injected ? events.interrupt.nr : -1; | |
2465 | env->soft_interrupt = events.interrupt.soft; | |
2466 | ||
2467 | env->nmi_injected = events.nmi.injected; | |
2468 | env->nmi_pending = events.nmi.pending; | |
2469 | if (events.nmi.masked) { | |
2470 | env->hflags2 |= HF2_NMI_MASK; | |
2471 | } else { | |
2472 | env->hflags2 &= ~HF2_NMI_MASK; | |
2473 | } | |
2474 | ||
fc12d72e PB |
2475 | if (events.flags & KVM_VCPUEVENT_VALID_SMM) { |
2476 | if (events.smi.smm) { | |
2477 | env->hflags |= HF_SMM_MASK; | |
2478 | } else { | |
2479 | env->hflags &= ~HF_SMM_MASK; | |
2480 | } | |
2481 | if (events.smi.pending) { | |
2482 | cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); | |
2483 | } else { | |
2484 | cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); | |
2485 | } | |
2486 | if (events.smi.smm_inside_nmi) { | |
2487 | env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK; | |
2488 | } else { | |
2489 | env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK; | |
2490 | } | |
2491 | if (events.smi.latched_init) { | |
2492 | cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); | |
2493 | } else { | |
2494 | cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); | |
2495 | } | |
2496 | } | |
2497 | ||
a0fb002c | 2498 | env->sipi_vector = events.sipi_vector; |
a0fb002c JK |
2499 | |
2500 | return 0; | |
2501 | } | |
2502 | ||
1bc22652 | 2503 | static int kvm_guest_debug_workarounds(X86CPU *cpu) |
b0b1d690 | 2504 | { |
ed2803da | 2505 | CPUState *cs = CPU(cpu); |
1bc22652 | 2506 | CPUX86State *env = &cpu->env; |
b0b1d690 | 2507 | int ret = 0; |
b0b1d690 JK |
2508 | unsigned long reinject_trap = 0; |
2509 | ||
2510 | if (!kvm_has_vcpu_events()) { | |
2511 | if (env->exception_injected == 1) { | |
2512 | reinject_trap = KVM_GUESTDBG_INJECT_DB; | |
2513 | } else if (env->exception_injected == 3) { | |
2514 | reinject_trap = KVM_GUESTDBG_INJECT_BP; | |
2515 | } | |
2516 | env->exception_injected = -1; | |
2517 | } | |
2518 | ||
2519 | /* | |
2520 | * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF | |
2521 | * injected via SET_GUEST_DEBUG while updating GP regs. Work around this | |
2522 | * by updating the debug state once again if single-stepping is on. | |
2523 | * Another reason to call kvm_update_guest_debug here is a pending debug | |
2524 | * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to | |
2525 | * reinject them via SET_GUEST_DEBUG. | |
2526 | */ | |
2527 | if (reinject_trap || | |
ed2803da | 2528 | (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) { |
38e478ec | 2529 | ret = kvm_update_guest_debug(cs, reinject_trap); |
b0b1d690 | 2530 | } |
b0b1d690 JK |
2531 | return ret; |
2532 | } | |
2533 | ||
1bc22652 | 2534 | static int kvm_put_debugregs(X86CPU *cpu) |
ff44f1a3 | 2535 | { |
1bc22652 | 2536 | CPUX86State *env = &cpu->env; |
ff44f1a3 JK |
2537 | struct kvm_debugregs dbgregs; |
2538 | int i; | |
2539 | ||
2540 | if (!kvm_has_debugregs()) { | |
2541 | return 0; | |
2542 | } | |
2543 | ||
2544 | for (i = 0; i < 4; i++) { | |
2545 | dbgregs.db[i] = env->dr[i]; | |
2546 | } | |
2547 | dbgregs.dr6 = env->dr[6]; | |
2548 | dbgregs.dr7 = env->dr[7]; | |
2549 | dbgregs.flags = 0; | |
2550 | ||
1bc22652 | 2551 | return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs); |
ff44f1a3 JK |
2552 | } |
2553 | ||
1bc22652 | 2554 | static int kvm_get_debugregs(X86CPU *cpu) |
ff44f1a3 | 2555 | { |
1bc22652 | 2556 | CPUX86State *env = &cpu->env; |
ff44f1a3 JK |
2557 | struct kvm_debugregs dbgregs; |
2558 | int i, ret; | |
2559 | ||
2560 | if (!kvm_has_debugregs()) { | |
2561 | return 0; | |
2562 | } | |
2563 | ||
1bc22652 | 2564 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs); |
ff44f1a3 | 2565 | if (ret < 0) { |
b9bec74b | 2566 | return ret; |
ff44f1a3 JK |
2567 | } |
2568 | for (i = 0; i < 4; i++) { | |
2569 | env->dr[i] = dbgregs.db[i]; | |
2570 | } | |
2571 | env->dr[4] = env->dr[6] = dbgregs.dr6; | |
2572 | env->dr[5] = env->dr[7] = dbgregs.dr7; | |
ff44f1a3 JK |
2573 | |
2574 | return 0; | |
2575 | } | |
2576 | ||
20d695a9 | 2577 | int kvm_arch_put_registers(CPUState *cpu, int level) |
05330448 | 2578 | { |
20d695a9 | 2579 | X86CPU *x86_cpu = X86_CPU(cpu); |
05330448 AL |
2580 | int ret; |
2581 | ||
2fa45344 | 2582 | assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu)); |
dbaa07c4 | 2583 | |
48e1a45c | 2584 | if (level >= KVM_PUT_RESET_STATE) { |
6bdf863d JK |
2585 | ret = kvm_put_msr_feature_control(x86_cpu); |
2586 | if (ret < 0) { | |
2587 | return ret; | |
2588 | } | |
2589 | } | |
2590 | ||
36f96c4b HZ |
2591 | if (level == KVM_PUT_FULL_STATE) { |
2592 | /* We don't check for kvm_arch_set_tsc_khz() errors here, | |
2593 | * because TSC frequency mismatch shouldn't abort migration, | |
2594 | * unless the user explicitly asked for a more strict TSC | |
2595 | * setting (e.g. using an explicit "tsc-freq" option). | |
2596 | */ | |
2597 | kvm_arch_set_tsc_khz(cpu); | |
2598 | } | |
2599 | ||
1bc22652 | 2600 | ret = kvm_getput_regs(x86_cpu, 1); |
b9bec74b | 2601 | if (ret < 0) { |
05330448 | 2602 | return ret; |
b9bec74b | 2603 | } |
1bc22652 | 2604 | ret = kvm_put_xsave(x86_cpu); |
b9bec74b | 2605 | if (ret < 0) { |
f1665b21 | 2606 | return ret; |
b9bec74b | 2607 | } |
1bc22652 | 2608 | ret = kvm_put_xcrs(x86_cpu); |
b9bec74b | 2609 | if (ret < 0) { |
05330448 | 2610 | return ret; |
b9bec74b | 2611 | } |
1bc22652 | 2612 | ret = kvm_put_sregs(x86_cpu); |
b9bec74b | 2613 | if (ret < 0) { |
05330448 | 2614 | return ret; |
b9bec74b | 2615 | } |
ab443475 | 2616 | /* must be before kvm_put_msrs */ |
1bc22652 | 2617 | ret = kvm_inject_mce_oldstyle(x86_cpu); |
ab443475 JK |
2618 | if (ret < 0) { |
2619 | return ret; | |
2620 | } | |
1bc22652 | 2621 | ret = kvm_put_msrs(x86_cpu, level); |
b9bec74b | 2622 | if (ret < 0) { |
05330448 | 2623 | return ret; |
b9bec74b | 2624 | } |
ea643051 | 2625 | if (level >= KVM_PUT_RESET_STATE) { |
1bc22652 | 2626 | ret = kvm_put_mp_state(x86_cpu); |
b9bec74b | 2627 | if (ret < 0) { |
ea643051 | 2628 | return ret; |
b9bec74b | 2629 | } |
1bc22652 | 2630 | ret = kvm_put_apic(x86_cpu); |
680c1c6f JK |
2631 | if (ret < 0) { |
2632 | return ret; | |
2633 | } | |
ea643051 | 2634 | } |
7477cd38 MT |
2635 | |
2636 | ret = kvm_put_tscdeadline_msr(x86_cpu); | |
2637 | if (ret < 0) { | |
2638 | return ret; | |
2639 | } | |
2640 | ||
1bc22652 | 2641 | ret = kvm_put_vcpu_events(x86_cpu, level); |
b9bec74b | 2642 | if (ret < 0) { |
a0fb002c | 2643 | return ret; |
b9bec74b | 2644 | } |
1bc22652 | 2645 | ret = kvm_put_debugregs(x86_cpu); |
b9bec74b | 2646 | if (ret < 0) { |
b0b1d690 | 2647 | return ret; |
b9bec74b | 2648 | } |
b0b1d690 | 2649 | /* must be last */ |
1bc22652 | 2650 | ret = kvm_guest_debug_workarounds(x86_cpu); |
b9bec74b | 2651 | if (ret < 0) { |
ff44f1a3 | 2652 | return ret; |
b9bec74b | 2653 | } |
05330448 AL |
2654 | return 0; |
2655 | } | |
2656 | ||
20d695a9 | 2657 | int kvm_arch_get_registers(CPUState *cs) |
05330448 | 2658 | { |
20d695a9 | 2659 | X86CPU *cpu = X86_CPU(cs); |
05330448 AL |
2660 | int ret; |
2661 | ||
20d695a9 | 2662 | assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs)); |
dbaa07c4 | 2663 | |
1bc22652 | 2664 | ret = kvm_getput_regs(cpu, 0); |
b9bec74b | 2665 | if (ret < 0) { |
f4f1110e | 2666 | goto out; |
b9bec74b | 2667 | } |
1bc22652 | 2668 | ret = kvm_get_xsave(cpu); |
b9bec74b | 2669 | if (ret < 0) { |
f4f1110e | 2670 | goto out; |
b9bec74b | 2671 | } |
1bc22652 | 2672 | ret = kvm_get_xcrs(cpu); |
b9bec74b | 2673 | if (ret < 0) { |
f4f1110e | 2674 | goto out; |
b9bec74b | 2675 | } |
1bc22652 | 2676 | ret = kvm_get_sregs(cpu); |
b9bec74b | 2677 | if (ret < 0) { |
f4f1110e | 2678 | goto out; |
b9bec74b | 2679 | } |
1bc22652 | 2680 | ret = kvm_get_msrs(cpu); |
b9bec74b | 2681 | if (ret < 0) { |
f4f1110e | 2682 | goto out; |
b9bec74b | 2683 | } |
23d02d9b | 2684 | ret = kvm_get_mp_state(cpu); |
b9bec74b | 2685 | if (ret < 0) { |
f4f1110e | 2686 | goto out; |
b9bec74b | 2687 | } |
1bc22652 | 2688 | ret = kvm_get_apic(cpu); |
680c1c6f | 2689 | if (ret < 0) { |
f4f1110e | 2690 | goto out; |
680c1c6f | 2691 | } |
1bc22652 | 2692 | ret = kvm_get_vcpu_events(cpu); |
b9bec74b | 2693 | if (ret < 0) { |
f4f1110e | 2694 | goto out; |
b9bec74b | 2695 | } |
1bc22652 | 2696 | ret = kvm_get_debugregs(cpu); |
b9bec74b | 2697 | if (ret < 0) { |
f4f1110e | 2698 | goto out; |
b9bec74b | 2699 | } |
f4f1110e RH |
2700 | ret = 0; |
2701 | out: | |
2702 | cpu_sync_bndcs_hflags(&cpu->env); | |
2703 | return ret; | |
05330448 AL |
2704 | } |
2705 | ||
20d695a9 | 2706 | void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) |
05330448 | 2707 | { |
20d695a9 AF |
2708 | X86CPU *x86_cpu = X86_CPU(cpu); |
2709 | CPUX86State *env = &x86_cpu->env; | |
ce377af3 JK |
2710 | int ret; |
2711 | ||
276ce815 | 2712 | /* Inject NMI */ |
fc12d72e PB |
2713 | if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) { |
2714 | if (cpu->interrupt_request & CPU_INTERRUPT_NMI) { | |
2715 | qemu_mutex_lock_iothread(); | |
2716 | cpu->interrupt_request &= ~CPU_INTERRUPT_NMI; | |
2717 | qemu_mutex_unlock_iothread(); | |
2718 | DPRINTF("injected NMI\n"); | |
2719 | ret = kvm_vcpu_ioctl(cpu, KVM_NMI); | |
2720 | if (ret < 0) { | |
2721 | fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n", | |
2722 | strerror(-ret)); | |
2723 | } | |
2724 | } | |
2725 | if (cpu->interrupt_request & CPU_INTERRUPT_SMI) { | |
2726 | qemu_mutex_lock_iothread(); | |
2727 | cpu->interrupt_request &= ~CPU_INTERRUPT_SMI; | |
2728 | qemu_mutex_unlock_iothread(); | |
2729 | DPRINTF("injected SMI\n"); | |
2730 | ret = kvm_vcpu_ioctl(cpu, KVM_SMI); | |
2731 | if (ret < 0) { | |
2732 | fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n", | |
2733 | strerror(-ret)); | |
2734 | } | |
ce377af3 | 2735 | } |
276ce815 LJ |
2736 | } |
2737 | ||
15eafc2e | 2738 | if (!kvm_pic_in_kernel()) { |
4b8523ee JK |
2739 | qemu_mutex_lock_iothread(); |
2740 | } | |
2741 | ||
e0723c45 PB |
2742 | /* Force the VCPU out of its inner loop to process any INIT requests |
2743 | * or (for userspace APIC, but it is cheap to combine the checks here) | |
2744 | * pending TPR access reports. | |
2745 | */ | |
2746 | if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) { | |
fc12d72e PB |
2747 | if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) && |
2748 | !(env->hflags & HF_SMM_MASK)) { | |
2749 | cpu->exit_request = 1; | |
2750 | } | |
2751 | if (cpu->interrupt_request & CPU_INTERRUPT_TPR) { | |
2752 | cpu->exit_request = 1; | |
2753 | } | |
e0723c45 | 2754 | } |
05330448 | 2755 | |
15eafc2e | 2756 | if (!kvm_pic_in_kernel()) { |
db1669bc JK |
2757 | /* Try to inject an interrupt if the guest can accept it */ |
2758 | if (run->ready_for_interrupt_injection && | |
259186a7 | 2759 | (cpu->interrupt_request & CPU_INTERRUPT_HARD) && |
db1669bc JK |
2760 | (env->eflags & IF_MASK)) { |
2761 | int irq; | |
2762 | ||
259186a7 | 2763 | cpu->interrupt_request &= ~CPU_INTERRUPT_HARD; |
db1669bc JK |
2764 | irq = cpu_get_pic_interrupt(env); |
2765 | if (irq >= 0) { | |
2766 | struct kvm_interrupt intr; | |
2767 | ||
2768 | intr.irq = irq; | |
db1669bc | 2769 | DPRINTF("injected interrupt %d\n", irq); |
1bc22652 | 2770 | ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr); |
ce377af3 JK |
2771 | if (ret < 0) { |
2772 | fprintf(stderr, | |
2773 | "KVM: injection failed, interrupt lost (%s)\n", | |
2774 | strerror(-ret)); | |
2775 | } | |
db1669bc JK |
2776 | } |
2777 | } | |
05330448 | 2778 | |
db1669bc JK |
2779 | /* If we have an interrupt but the guest is not ready to receive an |
2780 | * interrupt, request an interrupt window exit. This will | |
2781 | * cause a return to userspace as soon as the guest is ready to | |
2782 | * receive interrupts. */ | |
259186a7 | 2783 | if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) { |
db1669bc JK |
2784 | run->request_interrupt_window = 1; |
2785 | } else { | |
2786 | run->request_interrupt_window = 0; | |
2787 | } | |
2788 | ||
2789 | DPRINTF("setting tpr\n"); | |
02e51483 | 2790 | run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state); |
4b8523ee JK |
2791 | |
2792 | qemu_mutex_unlock_iothread(); | |
db1669bc | 2793 | } |
05330448 AL |
2794 | } |
2795 | ||
4c663752 | 2796 | MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run) |
05330448 | 2797 | { |
20d695a9 AF |
2798 | X86CPU *x86_cpu = X86_CPU(cpu); |
2799 | CPUX86State *env = &x86_cpu->env; | |
2800 | ||
fc12d72e PB |
2801 | if (run->flags & KVM_RUN_X86_SMM) { |
2802 | env->hflags |= HF_SMM_MASK; | |
2803 | } else { | |
2804 | env->hflags &= HF_SMM_MASK; | |
2805 | } | |
b9bec74b | 2806 | if (run->if_flag) { |
05330448 | 2807 | env->eflags |= IF_MASK; |
b9bec74b | 2808 | } else { |
05330448 | 2809 | env->eflags &= ~IF_MASK; |
b9bec74b | 2810 | } |
4b8523ee JK |
2811 | |
2812 | /* We need to protect the apic state against concurrent accesses from | |
2813 | * different threads in case the userspace irqchip is used. */ | |
2814 | if (!kvm_irqchip_in_kernel()) { | |
2815 | qemu_mutex_lock_iothread(); | |
2816 | } | |
02e51483 CF |
2817 | cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8); |
2818 | cpu_set_apic_base(x86_cpu->apic_state, run->apic_base); | |
4b8523ee JK |
2819 | if (!kvm_irqchip_in_kernel()) { |
2820 | qemu_mutex_unlock_iothread(); | |
2821 | } | |
f794aa4a | 2822 | return cpu_get_mem_attrs(env); |
05330448 AL |
2823 | } |
2824 | ||
20d695a9 | 2825 | int kvm_arch_process_async_events(CPUState *cs) |
0af691d7 | 2826 | { |
20d695a9 AF |
2827 | X86CPU *cpu = X86_CPU(cs); |
2828 | CPUX86State *env = &cpu->env; | |
232fc23b | 2829 | |
259186a7 | 2830 | if (cs->interrupt_request & CPU_INTERRUPT_MCE) { |
ab443475 JK |
2831 | /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */ |
2832 | assert(env->mcg_cap); | |
2833 | ||
259186a7 | 2834 | cs->interrupt_request &= ~CPU_INTERRUPT_MCE; |
ab443475 | 2835 | |
dd1750d7 | 2836 | kvm_cpu_synchronize_state(cs); |
ab443475 JK |
2837 | |
2838 | if (env->exception_injected == EXCP08_DBLE) { | |
2839 | /* this means triple fault */ | |
2840 | qemu_system_reset_request(); | |
fcd7d003 | 2841 | cs->exit_request = 1; |
ab443475 JK |
2842 | return 0; |
2843 | } | |
2844 | env->exception_injected = EXCP12_MCHK; | |
2845 | env->has_error_code = 0; | |
2846 | ||
259186a7 | 2847 | cs->halted = 0; |
ab443475 JK |
2848 | if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) { |
2849 | env->mp_state = KVM_MP_STATE_RUNNABLE; | |
2850 | } | |
2851 | } | |
2852 | ||
fc12d72e PB |
2853 | if ((cs->interrupt_request & CPU_INTERRUPT_INIT) && |
2854 | !(env->hflags & HF_SMM_MASK)) { | |
e0723c45 PB |
2855 | kvm_cpu_synchronize_state(cs); |
2856 | do_cpu_init(cpu); | |
2857 | } | |
2858 | ||
db1669bc JK |
2859 | if (kvm_irqchip_in_kernel()) { |
2860 | return 0; | |
2861 | } | |
2862 | ||
259186a7 AF |
2863 | if (cs->interrupt_request & CPU_INTERRUPT_POLL) { |
2864 | cs->interrupt_request &= ~CPU_INTERRUPT_POLL; | |
02e51483 | 2865 | apic_poll_irq(cpu->apic_state); |
5d62c43a | 2866 | } |
259186a7 | 2867 | if (((cs->interrupt_request & CPU_INTERRUPT_HARD) && |
4601f7b0 | 2868 | (env->eflags & IF_MASK)) || |
259186a7 AF |
2869 | (cs->interrupt_request & CPU_INTERRUPT_NMI)) { |
2870 | cs->halted = 0; | |
6792a57b | 2871 | } |
259186a7 | 2872 | if (cs->interrupt_request & CPU_INTERRUPT_SIPI) { |
dd1750d7 | 2873 | kvm_cpu_synchronize_state(cs); |
232fc23b | 2874 | do_cpu_sipi(cpu); |
0af691d7 | 2875 | } |
259186a7 AF |
2876 | if (cs->interrupt_request & CPU_INTERRUPT_TPR) { |
2877 | cs->interrupt_request &= ~CPU_INTERRUPT_TPR; | |
dd1750d7 | 2878 | kvm_cpu_synchronize_state(cs); |
02e51483 | 2879 | apic_handle_tpr_access_report(cpu->apic_state, env->eip, |
d362e757 JK |
2880 | env->tpr_access_type); |
2881 | } | |
0af691d7 | 2882 | |
259186a7 | 2883 | return cs->halted; |
0af691d7 MT |
2884 | } |
2885 | ||
839b5630 | 2886 | static int kvm_handle_halt(X86CPU *cpu) |
05330448 | 2887 | { |
259186a7 | 2888 | CPUState *cs = CPU(cpu); |
839b5630 AF |
2889 | CPUX86State *env = &cpu->env; |
2890 | ||
259186a7 | 2891 | if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) && |
05330448 | 2892 | (env->eflags & IF_MASK)) && |
259186a7 AF |
2893 | !(cs->interrupt_request & CPU_INTERRUPT_NMI)) { |
2894 | cs->halted = 1; | |
bb4ea393 | 2895 | return EXCP_HLT; |
05330448 AL |
2896 | } |
2897 | ||
bb4ea393 | 2898 | return 0; |
05330448 AL |
2899 | } |
2900 | ||
f7575c96 | 2901 | static int kvm_handle_tpr_access(X86CPU *cpu) |
d362e757 | 2902 | { |
f7575c96 AF |
2903 | CPUState *cs = CPU(cpu); |
2904 | struct kvm_run *run = cs->kvm_run; | |
d362e757 | 2905 | |
02e51483 | 2906 | apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip, |
d362e757 JK |
2907 | run->tpr_access.is_write ? TPR_ACCESS_WRITE |
2908 | : TPR_ACCESS_READ); | |
2909 | return 1; | |
2910 | } | |
2911 | ||
f17ec444 | 2912 | int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) |
e22a25c9 | 2913 | { |
38972938 | 2914 | static const uint8_t int3 = 0xcc; |
64bf3f4e | 2915 | |
f17ec444 AF |
2916 | if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || |
2917 | cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) { | |
e22a25c9 | 2918 | return -EINVAL; |
b9bec74b | 2919 | } |
e22a25c9 AL |
2920 | return 0; |
2921 | } | |
2922 | ||
f17ec444 | 2923 | int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) |
e22a25c9 AL |
2924 | { |
2925 | uint8_t int3; | |
2926 | ||
f17ec444 AF |
2927 | if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc || |
2928 | cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) { | |
e22a25c9 | 2929 | return -EINVAL; |
b9bec74b | 2930 | } |
e22a25c9 AL |
2931 | return 0; |
2932 | } | |
2933 | ||
2934 | static struct { | |
2935 | target_ulong addr; | |
2936 | int len; | |
2937 | int type; | |
2938 | } hw_breakpoint[4]; | |
2939 | ||
2940 | static int nb_hw_breakpoint; | |
2941 | ||
2942 | static int find_hw_breakpoint(target_ulong addr, int len, int type) | |
2943 | { | |
2944 | int n; | |
2945 | ||
b9bec74b | 2946 | for (n = 0; n < nb_hw_breakpoint; n++) { |
e22a25c9 | 2947 | if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && |
b9bec74b | 2948 | (hw_breakpoint[n].len == len || len == -1)) { |
e22a25c9 | 2949 | return n; |
b9bec74b JK |
2950 | } |
2951 | } | |
e22a25c9 AL |
2952 | return -1; |
2953 | } | |
2954 | ||
2955 | int kvm_arch_insert_hw_breakpoint(target_ulong addr, | |
2956 | target_ulong len, int type) | |
2957 | { | |
2958 | switch (type) { | |
2959 | case GDB_BREAKPOINT_HW: | |
2960 | len = 1; | |
2961 | break; | |
2962 | case GDB_WATCHPOINT_WRITE: | |
2963 | case GDB_WATCHPOINT_ACCESS: | |
2964 | switch (len) { | |
2965 | case 1: | |
2966 | break; | |
2967 | case 2: | |
2968 | case 4: | |
2969 | case 8: | |
b9bec74b | 2970 | if (addr & (len - 1)) { |
e22a25c9 | 2971 | return -EINVAL; |
b9bec74b | 2972 | } |
e22a25c9 AL |
2973 | break; |
2974 | default: | |
2975 | return -EINVAL; | |
2976 | } | |
2977 | break; | |
2978 | default: | |
2979 | return -ENOSYS; | |
2980 | } | |
2981 | ||
b9bec74b | 2982 | if (nb_hw_breakpoint == 4) { |
e22a25c9 | 2983 | return -ENOBUFS; |
b9bec74b JK |
2984 | } |
2985 | if (find_hw_breakpoint(addr, len, type) >= 0) { | |
e22a25c9 | 2986 | return -EEXIST; |
b9bec74b | 2987 | } |
e22a25c9 AL |
2988 | hw_breakpoint[nb_hw_breakpoint].addr = addr; |
2989 | hw_breakpoint[nb_hw_breakpoint].len = len; | |
2990 | hw_breakpoint[nb_hw_breakpoint].type = type; | |
2991 | nb_hw_breakpoint++; | |
2992 | ||
2993 | return 0; | |
2994 | } | |
2995 | ||
2996 | int kvm_arch_remove_hw_breakpoint(target_ulong addr, | |
2997 | target_ulong len, int type) | |
2998 | { | |
2999 | int n; | |
3000 | ||
3001 | n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type); | |
b9bec74b | 3002 | if (n < 0) { |
e22a25c9 | 3003 | return -ENOENT; |
b9bec74b | 3004 | } |
e22a25c9 AL |
3005 | nb_hw_breakpoint--; |
3006 | hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; | |
3007 | ||
3008 | return 0; | |
3009 | } | |
3010 | ||
3011 | void kvm_arch_remove_all_hw_breakpoints(void) | |
3012 | { | |
3013 | nb_hw_breakpoint = 0; | |
3014 | } | |
3015 | ||
3016 | static CPUWatchpoint hw_watchpoint; | |
3017 | ||
a60f24b5 | 3018 | static int kvm_handle_debug(X86CPU *cpu, |
48405526 | 3019 | struct kvm_debug_exit_arch *arch_info) |
e22a25c9 | 3020 | { |
ed2803da | 3021 | CPUState *cs = CPU(cpu); |
a60f24b5 | 3022 | CPUX86State *env = &cpu->env; |
f2574737 | 3023 | int ret = 0; |
e22a25c9 AL |
3024 | int n; |
3025 | ||
3026 | if (arch_info->exception == 1) { | |
3027 | if (arch_info->dr6 & (1 << 14)) { | |
ed2803da | 3028 | if (cs->singlestep_enabled) { |
f2574737 | 3029 | ret = EXCP_DEBUG; |
b9bec74b | 3030 | } |
e22a25c9 | 3031 | } else { |
b9bec74b JK |
3032 | for (n = 0; n < 4; n++) { |
3033 | if (arch_info->dr6 & (1 << n)) { | |
e22a25c9 AL |
3034 | switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { |
3035 | case 0x0: | |
f2574737 | 3036 | ret = EXCP_DEBUG; |
e22a25c9 AL |
3037 | break; |
3038 | case 0x1: | |
f2574737 | 3039 | ret = EXCP_DEBUG; |
ff4700b0 | 3040 | cs->watchpoint_hit = &hw_watchpoint; |
e22a25c9 AL |
3041 | hw_watchpoint.vaddr = hw_breakpoint[n].addr; |
3042 | hw_watchpoint.flags = BP_MEM_WRITE; | |
3043 | break; | |
3044 | case 0x3: | |
f2574737 | 3045 | ret = EXCP_DEBUG; |
ff4700b0 | 3046 | cs->watchpoint_hit = &hw_watchpoint; |
e22a25c9 AL |
3047 | hw_watchpoint.vaddr = hw_breakpoint[n].addr; |
3048 | hw_watchpoint.flags = BP_MEM_ACCESS; | |
3049 | break; | |
3050 | } | |
b9bec74b JK |
3051 | } |
3052 | } | |
e22a25c9 | 3053 | } |
ff4700b0 | 3054 | } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) { |
f2574737 | 3055 | ret = EXCP_DEBUG; |
b9bec74b | 3056 | } |
f2574737 | 3057 | if (ret == 0) { |
ff4700b0 | 3058 | cpu_synchronize_state(cs); |
48405526 | 3059 | assert(env->exception_injected == -1); |
b0b1d690 | 3060 | |
f2574737 | 3061 | /* pass to guest */ |
48405526 BS |
3062 | env->exception_injected = arch_info->exception; |
3063 | env->has_error_code = 0; | |
b0b1d690 | 3064 | } |
e22a25c9 | 3065 | |
f2574737 | 3066 | return ret; |
e22a25c9 AL |
3067 | } |
3068 | ||
20d695a9 | 3069 | void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) |
e22a25c9 AL |
3070 | { |
3071 | const uint8_t type_code[] = { | |
3072 | [GDB_BREAKPOINT_HW] = 0x0, | |
3073 | [GDB_WATCHPOINT_WRITE] = 0x1, | |
3074 | [GDB_WATCHPOINT_ACCESS] = 0x3 | |
3075 | }; | |
3076 | const uint8_t len_code[] = { | |
3077 | [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 | |
3078 | }; | |
3079 | int n; | |
3080 | ||
a60f24b5 | 3081 | if (kvm_sw_breakpoints_active(cpu)) { |
e22a25c9 | 3082 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; |
b9bec74b | 3083 | } |
e22a25c9 AL |
3084 | if (nb_hw_breakpoint > 0) { |
3085 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; | |
3086 | dbg->arch.debugreg[7] = 0x0600; | |
3087 | for (n = 0; n < nb_hw_breakpoint; n++) { | |
3088 | dbg->arch.debugreg[n] = hw_breakpoint[n].addr; | |
3089 | dbg->arch.debugreg[7] |= (2 << (n * 2)) | | |
3090 | (type_code[hw_breakpoint[n].type] << (16 + n*4)) | | |
95c077c9 | 3091 | ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4)); |
e22a25c9 AL |
3092 | } |
3093 | } | |
3094 | } | |
4513d923 | 3095 | |
2a4dac83 JK |
3096 | static bool host_supports_vmx(void) |
3097 | { | |
3098 | uint32_t ecx, unused; | |
3099 | ||
3100 | host_cpuid(1, 0, &unused, &unused, &ecx, &unused); | |
3101 | return ecx & CPUID_EXT_VMX; | |
3102 | } | |
3103 | ||
3104 | #define VMX_INVALID_GUEST_STATE 0x80000021 | |
3105 | ||
20d695a9 | 3106 | int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) |
2a4dac83 | 3107 | { |
20d695a9 | 3108 | X86CPU *cpu = X86_CPU(cs); |
2a4dac83 JK |
3109 | uint64_t code; |
3110 | int ret; | |
3111 | ||
3112 | switch (run->exit_reason) { | |
3113 | case KVM_EXIT_HLT: | |
3114 | DPRINTF("handle_hlt\n"); | |
4b8523ee | 3115 | qemu_mutex_lock_iothread(); |
839b5630 | 3116 | ret = kvm_handle_halt(cpu); |
4b8523ee | 3117 | qemu_mutex_unlock_iothread(); |
2a4dac83 JK |
3118 | break; |
3119 | case KVM_EXIT_SET_TPR: | |
3120 | ret = 0; | |
3121 | break; | |
d362e757 | 3122 | case KVM_EXIT_TPR_ACCESS: |
4b8523ee | 3123 | qemu_mutex_lock_iothread(); |
f7575c96 | 3124 | ret = kvm_handle_tpr_access(cpu); |
4b8523ee | 3125 | qemu_mutex_unlock_iothread(); |
d362e757 | 3126 | break; |
2a4dac83 JK |
3127 | case KVM_EXIT_FAIL_ENTRY: |
3128 | code = run->fail_entry.hardware_entry_failure_reason; | |
3129 | fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n", | |
3130 | code); | |
3131 | if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) { | |
3132 | fprintf(stderr, | |
12619721 | 3133 | "\nIf you're running a guest on an Intel machine without " |
2a4dac83 JK |
3134 | "unrestricted mode\n" |
3135 | "support, the failure can be most likely due to the guest " | |
3136 | "entering an invalid\n" | |
3137 | "state for Intel VT. For example, the guest maybe running " | |
3138 | "in big real mode\n" | |
3139 | "which is not supported on less recent Intel processors." | |
3140 | "\n\n"); | |
3141 | } | |
3142 | ret = -1; | |
3143 | break; | |
3144 | case KVM_EXIT_EXCEPTION: | |
3145 | fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n", | |
3146 | run->ex.exception, run->ex.error_code); | |
3147 | ret = -1; | |
3148 | break; | |
f2574737 JK |
3149 | case KVM_EXIT_DEBUG: |
3150 | DPRINTF("kvm_exit_debug\n"); | |
4b8523ee | 3151 | qemu_mutex_lock_iothread(); |
a60f24b5 | 3152 | ret = kvm_handle_debug(cpu, &run->debug.arch); |
4b8523ee | 3153 | qemu_mutex_unlock_iothread(); |
f2574737 | 3154 | break; |
50efe82c AS |
3155 | case KVM_EXIT_HYPERV: |
3156 | ret = kvm_hv_handle_exit(cpu, &run->hyperv); | |
3157 | break; | |
15eafc2e PB |
3158 | case KVM_EXIT_IOAPIC_EOI: |
3159 | ioapic_eoi_broadcast(run->eoi.vector); | |
3160 | ret = 0; | |
3161 | break; | |
2a4dac83 JK |
3162 | default: |
3163 | fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); | |
3164 | ret = -1; | |
3165 | break; | |
3166 | } | |
3167 | ||
3168 | return ret; | |
3169 | } | |
3170 | ||
20d695a9 | 3171 | bool kvm_arch_stop_on_emulation_error(CPUState *cs) |
4513d923 | 3172 | { |
20d695a9 AF |
3173 | X86CPU *cpu = X86_CPU(cs); |
3174 | CPUX86State *env = &cpu->env; | |
3175 | ||
dd1750d7 | 3176 | kvm_cpu_synchronize_state(cs); |
b9bec74b JK |
3177 | return !(env->cr[0] & CR0_PE_MASK) || |
3178 | ((env->segs[R_CS].selector & 3) != 3); | |
4513d923 | 3179 | } |
84b058d7 JK |
3180 | |
3181 | void kvm_arch_init_irq_routing(KVMState *s) | |
3182 | { | |
3183 | if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) { | |
3184 | /* If kernel can't do irq routing, interrupt source | |
3185 | * override 0->2 cannot be set up as required by HPET. | |
3186 | * So we have to disable it. | |
3187 | */ | |
3188 | no_hpet = 1; | |
3189 | } | |
cc7e0ddf | 3190 | /* We know at this point that we're using the in-kernel |
614e41bc | 3191 | * irqchip, so we can use irqfds, and on x86 we know |
f3e1bed8 | 3192 | * we can use msi via irqfd and GSI routing. |
cc7e0ddf | 3193 | */ |
614e41bc | 3194 | kvm_msi_via_irqfd_allowed = true; |
f3e1bed8 | 3195 | kvm_gsi_routing_allowed = true; |
15eafc2e PB |
3196 | |
3197 | if (kvm_irqchip_is_split()) { | |
3198 | int i; | |
3199 | ||
3200 | /* If the ioapic is in QEMU and the lapics are in KVM, reserve | |
3201 | MSI routes for signaling interrupts to the local apics. */ | |
3202 | for (i = 0; i < IOAPIC_NUM_PINS; i++) { | |
3203 | struct MSIMessage msg = { 0x0, 0x0 }; | |
3204 | if (kvm_irqchip_add_msi_route(s, msg, NULL) < 0) { | |
3205 | error_report("Could not enable split IRQ mode."); | |
3206 | exit(1); | |
3207 | } | |
3208 | } | |
3209 | } | |
3210 | } | |
3211 | ||
3212 | int kvm_arch_irqchip_create(MachineState *ms, KVMState *s) | |
3213 | { | |
3214 | int ret; | |
3215 | if (machine_kernel_irqchip_split(ms)) { | |
3216 | ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24); | |
3217 | if (ret) { | |
3218 | error_report("Could not enable split irqchip mode: %s\n", | |
3219 | strerror(-ret)); | |
3220 | exit(1); | |
3221 | } else { | |
3222 | DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n"); | |
3223 | kvm_split_irqchip = true; | |
3224 | return 1; | |
3225 | } | |
3226 | } else { | |
3227 | return 0; | |
3228 | } | |
84b058d7 | 3229 | } |
b139bd30 JK |
3230 | |
3231 | /* Classic KVM device assignment interface. Will remain x86 only. */ | |
3232 | int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr, | |
3233 | uint32_t flags, uint32_t *dev_id) | |
3234 | { | |
3235 | struct kvm_assigned_pci_dev dev_data = { | |
3236 | .segnr = dev_addr->domain, | |
3237 | .busnr = dev_addr->bus, | |
3238 | .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function), | |
3239 | .flags = flags, | |
3240 | }; | |
3241 | int ret; | |
3242 | ||
3243 | dev_data.assigned_dev_id = | |
3244 | (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn; | |
3245 | ||
3246 | ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data); | |
3247 | if (ret < 0) { | |
3248 | return ret; | |
3249 | } | |
3250 | ||
3251 | *dev_id = dev_data.assigned_dev_id; | |
3252 | ||
3253 | return 0; | |
3254 | } | |
3255 | ||
3256 | int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id) | |
3257 | { | |
3258 | struct kvm_assigned_pci_dev dev_data = { | |
3259 | .assigned_dev_id = dev_id, | |
3260 | }; | |
3261 | ||
3262 | return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data); | |
3263 | } | |
3264 | ||
3265 | static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id, | |
3266 | uint32_t irq_type, uint32_t guest_irq) | |
3267 | { | |
3268 | struct kvm_assigned_irq assigned_irq = { | |
3269 | .assigned_dev_id = dev_id, | |
3270 | .guest_irq = guest_irq, | |
3271 | .flags = irq_type, | |
3272 | }; | |
3273 | ||
3274 | if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) { | |
3275 | return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq); | |
3276 | } else { | |
3277 | return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq); | |
3278 | } | |
3279 | } | |
3280 | ||
3281 | int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi, | |
3282 | uint32_t guest_irq) | |
3283 | { | |
3284 | uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX | | |
3285 | (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX); | |
3286 | ||
3287 | return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq); | |
3288 | } | |
3289 | ||
3290 | int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked) | |
3291 | { | |
3292 | struct kvm_assigned_pci_dev dev_data = { | |
3293 | .assigned_dev_id = dev_id, | |
3294 | .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0, | |
3295 | }; | |
3296 | ||
3297 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data); | |
3298 | } | |
3299 | ||
3300 | static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id, | |
3301 | uint32_t type) | |
3302 | { | |
3303 | struct kvm_assigned_irq assigned_irq = { | |
3304 | .assigned_dev_id = dev_id, | |
3305 | .flags = type, | |
3306 | }; | |
3307 | ||
3308 | return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq); | |
3309 | } | |
3310 | ||
3311 | int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi) | |
3312 | { | |
3313 | return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX | | |
3314 | (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX)); | |
3315 | } | |
3316 | ||
3317 | int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq) | |
3318 | { | |
3319 | return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI | | |
3320 | KVM_DEV_IRQ_GUEST_MSI, virq); | |
3321 | } | |
3322 | ||
3323 | int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id) | |
3324 | { | |
3325 | return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI | | |
3326 | KVM_DEV_IRQ_HOST_MSI); | |
3327 | } | |
3328 | ||
3329 | bool kvm_device_msix_supported(KVMState *s) | |
3330 | { | |
3331 | /* The kernel lacks a corresponding KVM_CAP, so we probe by calling | |
3332 | * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */ | |
3333 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT; | |
3334 | } | |
3335 | ||
3336 | int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id, | |
3337 | uint32_t nr_vectors) | |
3338 | { | |
3339 | struct kvm_assigned_msix_nr msix_nr = { | |
3340 | .assigned_dev_id = dev_id, | |
3341 | .entry_nr = nr_vectors, | |
3342 | }; | |
3343 | ||
3344 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr); | |
3345 | } | |
3346 | ||
3347 | int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector, | |
3348 | int virq) | |
3349 | { | |
3350 | struct kvm_assigned_msix_entry msix_entry = { | |
3351 | .assigned_dev_id = dev_id, | |
3352 | .gsi = virq, | |
3353 | .entry = vector, | |
3354 | }; | |
3355 | ||
3356 | return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry); | |
3357 | } | |
3358 | ||
3359 | int kvm_device_msix_assign(KVMState *s, uint32_t dev_id) | |
3360 | { | |
3361 | return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX | | |
3362 | KVM_DEV_IRQ_GUEST_MSIX, 0); | |
3363 | } | |
3364 | ||
3365 | int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id) | |
3366 | { | |
3367 | return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX | | |
3368 | KVM_DEV_IRQ_HOST_MSIX); | |
3369 | } | |
9e03a040 FB |
3370 | |
3371 | int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, | |
dc9f06ca | 3372 | uint64_t address, uint32_t data, PCIDevice *dev) |
9e03a040 FB |
3373 | { |
3374 | return 0; | |
3375 | } | |
1850b6b7 EA |
3376 | |
3377 | int kvm_arch_msi_data_to_gsi(uint32_t data) | |
3378 | { | |
3379 | abort(); | |
3380 | } |