]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Target-dependent code for GDB, the GNU debugger. |
7aea86e6 | 2 | |
6aba47ca | 3 | Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, |
9b254dd1 | 4 | 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 |
721d14ba | 5 | Free Software Foundation, Inc. |
c906108c | 6 | |
c5aa993b | 7 | This file is part of GDB. |
c906108c | 8 | |
c5aa993b JM |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 11 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 12 | (at your option) any later version. |
c906108c | 13 | |
c5aa993b JM |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
c906108c | 18 | |
c5aa993b | 19 | You should have received a copy of the GNU General Public License |
a9762ec7 | 20 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
21 | |
22 | #include "defs.h" | |
23 | #include "frame.h" | |
24 | #include "inferior.h" | |
25 | #include "symtab.h" | |
26 | #include "target.h" | |
27 | #include "gdbcore.h" | |
28 | #include "gdbcmd.h" | |
c906108c | 29 | #include "objfiles.h" |
7a78ae4e | 30 | #include "arch-utils.h" |
4e052eda | 31 | #include "regcache.h" |
d195bc9f | 32 | #include "regset.h" |
d16aafd8 | 33 | #include "doublest.h" |
fd0407d6 | 34 | #include "value.h" |
1fcc0bb8 | 35 | #include "parser-defs.h" |
4be87837 | 36 | #include "osabi.h" |
7d9b040b | 37 | #include "infcall.h" |
9f643768 JB |
38 | #include "sim-regno.h" |
39 | #include "gdb/sim-ppc.h" | |
6ced10dd | 40 | #include "reggroups.h" |
4fc771b8 | 41 | #include "dwarf2-frame.h" |
7cc46491 DJ |
42 | #include "target-descriptions.h" |
43 | #include "user-regs.h" | |
7a78ae4e | 44 | |
2fccf04a | 45 | #include "libbfd.h" /* for bfd_default_set_arch_mach */ |
7a78ae4e | 46 | #include "coff/internal.h" /* for libcoff.h */ |
2fccf04a | 47 | #include "libcoff.h" /* for xcoff_data */ |
11ed25ac KB |
48 | #include "coff/xcoff.h" |
49 | #include "libxcoff.h" | |
7a78ae4e | 50 | |
9aa1e687 | 51 | #include "elf-bfd.h" |
55eddb0f | 52 | #include "elf/ppc.h" |
7a78ae4e | 53 | |
6ded7999 | 54 | #include "solib-svr4.h" |
9aa1e687 | 55 | #include "ppc-tdep.h" |
7a78ae4e | 56 | |
338ef23d | 57 | #include "gdb_assert.h" |
a89aa300 | 58 | #include "dis-asm.h" |
338ef23d | 59 | |
61a65099 KB |
60 | #include "trad-frame.h" |
61 | #include "frame-unwind.h" | |
62 | #include "frame-base.h" | |
63 | ||
1f82754b | 64 | #include "rs6000-tdep.h" |
c44ca51c | 65 | |
7cc46491 DJ |
66 | #include "features/rs6000/powerpc-32.c" |
67 | #include "features/rs6000/powerpc-403.c" | |
68 | #include "features/rs6000/powerpc-403gc.c" | |
69 | #include "features/rs6000/powerpc-505.c" | |
70 | #include "features/rs6000/powerpc-601.c" | |
71 | #include "features/rs6000/powerpc-602.c" | |
72 | #include "features/rs6000/powerpc-603.c" | |
73 | #include "features/rs6000/powerpc-604.c" | |
74 | #include "features/rs6000/powerpc-64.c" | |
75 | #include "features/rs6000/powerpc-7400.c" | |
76 | #include "features/rs6000/powerpc-750.c" | |
77 | #include "features/rs6000/powerpc-860.c" | |
78 | #include "features/rs6000/powerpc-e500.c" | |
79 | #include "features/rs6000/rs6000.c" | |
80 | ||
5a9e69ba TJB |
81 | /* Determine if regnum is an SPE pseudo-register. */ |
82 | #define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \ | |
83 | && (regnum) >= (tdep)->ppc_ev0_regnum \ | |
84 | && (regnum) < (tdep)->ppc_ev0_regnum + 32) | |
85 | ||
f949c649 TJB |
86 | /* Determine if regnum is a decimal float pseudo-register. */ |
87 | #define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \ | |
88 | && (regnum) >= (tdep)->ppc_dl0_regnum \ | |
89 | && (regnum) < (tdep)->ppc_dl0_regnum + 16) | |
90 | ||
55eddb0f DJ |
91 | /* The list of available "set powerpc ..." and "show powerpc ..." |
92 | commands. */ | |
93 | static struct cmd_list_element *setpowerpccmdlist = NULL; | |
94 | static struct cmd_list_element *showpowerpccmdlist = NULL; | |
95 | ||
96 | static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO; | |
97 | ||
98 | /* The vector ABI to use. Keep this in sync with powerpc_vector_abi. */ | |
99 | static const char *powerpc_vector_strings[] = | |
100 | { | |
101 | "auto", | |
102 | "generic", | |
103 | "altivec", | |
104 | "spe", | |
105 | NULL | |
106 | }; | |
107 | ||
108 | /* A variable that can be configured by the user. */ | |
109 | static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO; | |
110 | static const char *powerpc_vector_abi_string = "auto"; | |
111 | ||
7a78ae4e ND |
112 | /* If the kernel has to deliver a signal, it pushes a sigcontext |
113 | structure on the stack and then calls the signal handler, passing | |
114 | the address of the sigcontext in an argument register. Usually | |
115 | the signal handler doesn't save this register, so we have to | |
116 | access the sigcontext structure via an offset from the signal handler | |
117 | frame. | |
118 | The following constants were determined by experimentation on AIX 3.2. */ | |
119 | #define SIG_FRAME_PC_OFFSET 96 | |
120 | #define SIG_FRAME_LR_OFFSET 108 | |
121 | #define SIG_FRAME_FP_OFFSET 284 | |
122 | ||
7a78ae4e ND |
123 | /* To be used by skip_prologue. */ |
124 | ||
125 | struct rs6000_framedata | |
126 | { | |
127 | int offset; /* total size of frame --- the distance | |
128 | by which we decrement sp to allocate | |
129 | the frame */ | |
130 | int saved_gpr; /* smallest # of saved gpr */ | |
131 | int saved_fpr; /* smallest # of saved fpr */ | |
6be8bc0c | 132 | int saved_vr; /* smallest # of saved vr */ |
96ff0de4 | 133 | int saved_ev; /* smallest # of saved ev */ |
7a78ae4e ND |
134 | int alloca_reg; /* alloca register number (frame ptr) */ |
135 | char frameless; /* true if frameless functions. */ | |
136 | char nosavedpc; /* true if pc not saved. */ | |
137 | int gpr_offset; /* offset of saved gprs from prev sp */ | |
138 | int fpr_offset; /* offset of saved fprs from prev sp */ | |
6be8bc0c | 139 | int vr_offset; /* offset of saved vrs from prev sp */ |
96ff0de4 | 140 | int ev_offset; /* offset of saved evs from prev sp */ |
7a78ae4e ND |
141 | int lr_offset; /* offset of saved lr */ |
142 | int cr_offset; /* offset of saved cr */ | |
6be8bc0c | 143 | int vrsave_offset; /* offset of saved vrsave register */ |
7a78ae4e ND |
144 | }; |
145 | ||
146 | /* Description of a single register. */ | |
147 | ||
148 | struct reg | |
149 | { | |
150 | char *name; /* name of register */ | |
0bcc32ae JB |
151 | unsigned char sz32; /* size on 32-bit arch, 0 if nonexistent */ |
152 | unsigned char sz64; /* size on 64-bit arch, 0 if nonexistent */ | |
7a78ae4e | 153 | unsigned char fpr; /* whether register is floating-point */ |
489461e2 | 154 | unsigned char pseudo; /* whether register is pseudo */ |
13ac140c JB |
155 | int spr_num; /* PowerPC SPR number, or -1 if not an SPR. |
156 | This is an ISA SPR number, not a GDB | |
157 | register number. */ | |
7a78ae4e ND |
158 | }; |
159 | ||
c906108c SS |
160 | /* Hook for determining the TOC address when calling functions in the |
161 | inferior under AIX. The initialization code in rs6000-nat.c sets | |
162 | this hook to point to find_toc_address. */ | |
163 | ||
7a78ae4e ND |
164 | CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL; |
165 | ||
c906108c SS |
166 | /* Static function prototypes */ |
167 | ||
0b1b3e42 UW |
168 | static CORE_ADDR branch_dest (struct frame_info *frame, int opcode, |
169 | int instr, CORE_ADDR pc, CORE_ADDR safety); | |
be8626e0 | 170 | static CORE_ADDR skip_prologue (struct gdbarch *, CORE_ADDR, CORE_ADDR, |
077276e8 | 171 | struct rs6000_framedata *); |
c906108c | 172 | |
64b84175 KB |
173 | /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */ |
174 | int | |
be8626e0 | 175 | altivec_register_p (struct gdbarch *gdbarch, int regno) |
64b84175 | 176 | { |
be8626e0 | 177 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
64b84175 KB |
178 | if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0) |
179 | return 0; | |
180 | else | |
181 | return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum); | |
182 | } | |
183 | ||
383f0f5b | 184 | |
867e2dc5 JB |
185 | /* Return true if REGNO is an SPE register, false otherwise. */ |
186 | int | |
be8626e0 | 187 | spe_register_p (struct gdbarch *gdbarch, int regno) |
867e2dc5 | 188 | { |
be8626e0 | 189 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
867e2dc5 JB |
190 | |
191 | /* Is it a reference to EV0 -- EV31, and do we have those? */ | |
5a9e69ba | 192 | if (IS_SPE_PSEUDOREG (tdep, regno)) |
867e2dc5 JB |
193 | return 1; |
194 | ||
6ced10dd JB |
195 | /* Is it a reference to one of the raw upper GPR halves? */ |
196 | if (tdep->ppc_ev0_upper_regnum >= 0 | |
197 | && tdep->ppc_ev0_upper_regnum <= regno | |
198 | && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs) | |
199 | return 1; | |
200 | ||
867e2dc5 JB |
201 | /* Is it a reference to the 64-bit accumulator, and do we have that? */ |
202 | if (tdep->ppc_acc_regnum >= 0 | |
203 | && tdep->ppc_acc_regnum == regno) | |
204 | return 1; | |
205 | ||
206 | /* Is it a reference to the SPE floating-point status and control register, | |
207 | and do we have that? */ | |
208 | if (tdep->ppc_spefscr_regnum >= 0 | |
209 | && tdep->ppc_spefscr_regnum == regno) | |
210 | return 1; | |
211 | ||
212 | return 0; | |
213 | } | |
214 | ||
215 | ||
383f0f5b JB |
216 | /* Return non-zero if the architecture described by GDBARCH has |
217 | floating-point registers (f0 --- f31 and fpscr). */ | |
0a613259 AC |
218 | int |
219 | ppc_floating_point_unit_p (struct gdbarch *gdbarch) | |
220 | { | |
383f0f5b JB |
221 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
222 | ||
223 | return (tdep->ppc_fp0_regnum >= 0 | |
224 | && tdep->ppc_fpscr_regnum >= 0); | |
0a613259 | 225 | } |
9f643768 | 226 | |
06caf7d2 CES |
227 | /* Return non-zero if the architecture described by GDBARCH has |
228 | Altivec registers (vr0 --- vr31, vrsave and vscr). */ | |
229 | int | |
230 | ppc_altivec_support_p (struct gdbarch *gdbarch) | |
231 | { | |
232 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
233 | ||
234 | return (tdep->ppc_vr0_regnum >= 0 | |
235 | && tdep->ppc_vrsave_regnum >= 0); | |
236 | } | |
09991fa0 JB |
237 | |
238 | /* Check that TABLE[GDB_REGNO] is not already initialized, and then | |
239 | set it to SIM_REGNO. | |
240 | ||
241 | This is a helper function for init_sim_regno_table, constructing | |
242 | the table mapping GDB register numbers to sim register numbers; we | |
243 | initialize every element in that table to -1 before we start | |
244 | filling it in. */ | |
9f643768 JB |
245 | static void |
246 | set_sim_regno (int *table, int gdb_regno, int sim_regno) | |
247 | { | |
248 | /* Make sure we don't try to assign any given GDB register a sim | |
249 | register number more than once. */ | |
250 | gdb_assert (table[gdb_regno] == -1); | |
251 | table[gdb_regno] = sim_regno; | |
252 | } | |
253 | ||
09991fa0 JB |
254 | |
255 | /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register | |
256 | numbers to simulator register numbers, based on the values placed | |
257 | in the ARCH->tdep->ppc_foo_regnum members. */ | |
9f643768 JB |
258 | static void |
259 | init_sim_regno_table (struct gdbarch *arch) | |
260 | { | |
261 | struct gdbarch_tdep *tdep = gdbarch_tdep (arch); | |
7cc46491 | 262 | int total_regs = gdbarch_num_regs (arch); |
9f643768 JB |
263 | int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int); |
264 | int i; | |
7cc46491 DJ |
265 | static const char *const segment_regs[] = { |
266 | "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7", | |
267 | "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15" | |
268 | }; | |
9f643768 JB |
269 | |
270 | /* Presume that all registers not explicitly mentioned below are | |
271 | unavailable from the sim. */ | |
272 | for (i = 0; i < total_regs; i++) | |
273 | sim_regno[i] = -1; | |
274 | ||
275 | /* General-purpose registers. */ | |
276 | for (i = 0; i < ppc_num_gprs; i++) | |
277 | set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i); | |
278 | ||
279 | /* Floating-point registers. */ | |
280 | if (tdep->ppc_fp0_regnum >= 0) | |
281 | for (i = 0; i < ppc_num_fprs; i++) | |
282 | set_sim_regno (sim_regno, | |
283 | tdep->ppc_fp0_regnum + i, | |
284 | sim_ppc_f0_regnum + i); | |
285 | if (tdep->ppc_fpscr_regnum >= 0) | |
286 | set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum); | |
287 | ||
288 | set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum); | |
289 | set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum); | |
290 | set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum); | |
291 | ||
292 | /* Segment registers. */ | |
7cc46491 DJ |
293 | for (i = 0; i < ppc_num_srs; i++) |
294 | { | |
295 | int gdb_regno; | |
296 | ||
297 | gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1); | |
298 | if (gdb_regno >= 0) | |
299 | set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i); | |
300 | } | |
9f643768 JB |
301 | |
302 | /* Altivec registers. */ | |
303 | if (tdep->ppc_vr0_regnum >= 0) | |
304 | { | |
305 | for (i = 0; i < ppc_num_vrs; i++) | |
306 | set_sim_regno (sim_regno, | |
307 | tdep->ppc_vr0_regnum + i, | |
308 | sim_ppc_vr0_regnum + i); | |
309 | ||
310 | /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum, | |
311 | we can treat this more like the other cases. */ | |
312 | set_sim_regno (sim_regno, | |
313 | tdep->ppc_vr0_regnum + ppc_num_vrs, | |
314 | sim_ppc_vscr_regnum); | |
315 | } | |
316 | /* vsave is a special-purpose register, so the code below handles it. */ | |
317 | ||
318 | /* SPE APU (E500) registers. */ | |
6ced10dd JB |
319 | if (tdep->ppc_ev0_upper_regnum >= 0) |
320 | for (i = 0; i < ppc_num_gprs; i++) | |
321 | set_sim_regno (sim_regno, | |
322 | tdep->ppc_ev0_upper_regnum + i, | |
323 | sim_ppc_rh0_regnum + i); | |
9f643768 JB |
324 | if (tdep->ppc_acc_regnum >= 0) |
325 | set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum); | |
326 | /* spefscr is a special-purpose register, so the code below handles it. */ | |
327 | ||
7cc46491 | 328 | #ifdef WITH_SIM |
9f643768 JB |
329 | /* Now handle all special-purpose registers. Verify that they |
330 | haven't mistakenly been assigned numbers by any of the above | |
7cc46491 DJ |
331 | code. */ |
332 | for (i = 0; i < sim_ppc_num_sprs; i++) | |
333 | { | |
334 | const char *spr_name = sim_spr_register_name (i); | |
335 | int gdb_regno = -1; | |
336 | ||
337 | if (spr_name != NULL) | |
338 | gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1); | |
339 | ||
340 | if (gdb_regno != -1) | |
341 | set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i); | |
342 | } | |
343 | #endif | |
9f643768 JB |
344 | |
345 | /* Drop the initialized array into place. */ | |
346 | tdep->sim_regno = sim_regno; | |
347 | } | |
348 | ||
09991fa0 JB |
349 | |
350 | /* Given a GDB register number REG, return the corresponding SIM | |
351 | register number. */ | |
9f643768 | 352 | static int |
e7faf938 | 353 | rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg) |
9f643768 | 354 | { |
e7faf938 | 355 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
9f643768 JB |
356 | int sim_regno; |
357 | ||
7cc46491 | 358 | if (tdep->sim_regno == NULL) |
e7faf938 | 359 | init_sim_regno_table (gdbarch); |
7cc46491 | 360 | |
f57d151a | 361 | gdb_assert (0 <= reg |
e7faf938 MD |
362 | && reg <= gdbarch_num_regs (gdbarch) |
363 | + gdbarch_num_pseudo_regs (gdbarch)); | |
9f643768 JB |
364 | sim_regno = tdep->sim_regno[reg]; |
365 | ||
366 | if (sim_regno >= 0) | |
367 | return sim_regno; | |
368 | else | |
369 | return LEGACY_SIM_REGNO_IGNORE; | |
370 | } | |
371 | ||
d195bc9f MK |
372 | \f |
373 | ||
374 | /* Register set support functions. */ | |
375 | ||
f2db237a AM |
376 | /* REGS + OFFSET contains register REGNUM in a field REGSIZE wide. |
377 | Write the register to REGCACHE. */ | |
378 | ||
d195bc9f MK |
379 | static void |
380 | ppc_supply_reg (struct regcache *regcache, int regnum, | |
f2db237a | 381 | const gdb_byte *regs, size_t offset, int regsize) |
d195bc9f MK |
382 | { |
383 | if (regnum != -1 && offset != -1) | |
f2db237a AM |
384 | { |
385 | if (regsize > 4) | |
386 | { | |
387 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
388 | int gdb_regsize = register_size (gdbarch, regnum); | |
389 | if (gdb_regsize < regsize | |
390 | && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | |
391 | offset += regsize - gdb_regsize; | |
392 | } | |
393 | regcache_raw_supply (regcache, regnum, regs + offset); | |
394 | } | |
d195bc9f MK |
395 | } |
396 | ||
f2db237a AM |
397 | /* Read register REGNUM from REGCACHE and store to REGS + OFFSET |
398 | in a field REGSIZE wide. Zero pad as necessary. */ | |
399 | ||
d195bc9f MK |
400 | static void |
401 | ppc_collect_reg (const struct regcache *regcache, int regnum, | |
f2db237a | 402 | gdb_byte *regs, size_t offset, int regsize) |
d195bc9f MK |
403 | { |
404 | if (regnum != -1 && offset != -1) | |
f2db237a AM |
405 | { |
406 | if (regsize > 4) | |
407 | { | |
408 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
409 | int gdb_regsize = register_size (gdbarch, regnum); | |
410 | if (gdb_regsize < regsize) | |
411 | { | |
412 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | |
413 | { | |
414 | memset (regs + offset, 0, regsize - gdb_regsize); | |
415 | offset += regsize - gdb_regsize; | |
416 | } | |
417 | else | |
418 | memset (regs + offset + regsize - gdb_regsize, 0, | |
419 | regsize - gdb_regsize); | |
420 | } | |
421 | } | |
422 | regcache_raw_collect (regcache, regnum, regs + offset); | |
423 | } | |
d195bc9f MK |
424 | } |
425 | ||
f2db237a AM |
426 | static int |
427 | ppc_greg_offset (struct gdbarch *gdbarch, | |
428 | struct gdbarch_tdep *tdep, | |
429 | const struct ppc_reg_offsets *offsets, | |
430 | int regnum, | |
431 | int *regsize) | |
432 | { | |
433 | *regsize = offsets->gpr_size; | |
434 | if (regnum >= tdep->ppc_gp0_regnum | |
435 | && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs) | |
436 | return (offsets->r0_offset | |
437 | + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size); | |
438 | ||
439 | if (regnum == gdbarch_pc_regnum (gdbarch)) | |
440 | return offsets->pc_offset; | |
441 | ||
442 | if (regnum == tdep->ppc_ps_regnum) | |
443 | return offsets->ps_offset; | |
444 | ||
445 | if (regnum == tdep->ppc_lr_regnum) | |
446 | return offsets->lr_offset; | |
447 | ||
448 | if (regnum == tdep->ppc_ctr_regnum) | |
449 | return offsets->ctr_offset; | |
450 | ||
451 | *regsize = offsets->xr_size; | |
452 | if (regnum == tdep->ppc_cr_regnum) | |
453 | return offsets->cr_offset; | |
454 | ||
455 | if (regnum == tdep->ppc_xer_regnum) | |
456 | return offsets->xer_offset; | |
457 | ||
458 | if (regnum == tdep->ppc_mq_regnum) | |
459 | return offsets->mq_offset; | |
460 | ||
461 | return -1; | |
462 | } | |
463 | ||
464 | static int | |
465 | ppc_fpreg_offset (struct gdbarch_tdep *tdep, | |
466 | const struct ppc_reg_offsets *offsets, | |
467 | int regnum) | |
468 | { | |
469 | if (regnum >= tdep->ppc_fp0_regnum | |
470 | && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs) | |
471 | return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8; | |
472 | ||
473 | if (regnum == tdep->ppc_fpscr_regnum) | |
474 | return offsets->fpscr_offset; | |
475 | ||
476 | return -1; | |
477 | } | |
478 | ||
06caf7d2 CES |
479 | static int |
480 | ppc_vrreg_offset (struct gdbarch_tdep *tdep, | |
481 | const struct ppc_reg_offsets *offsets, | |
482 | int regnum) | |
483 | { | |
484 | if (regnum >= tdep->ppc_vr0_regnum | |
485 | && regnum < tdep->ppc_vr0_regnum + ppc_num_vrs) | |
486 | return offsets->vr0_offset + (regnum - tdep->ppc_vr0_regnum) * 16; | |
487 | ||
488 | if (regnum == tdep->ppc_vrsave_regnum - 1) | |
489 | return offsets->vscr_offset; | |
490 | ||
491 | if (regnum == tdep->ppc_vrsave_regnum) | |
492 | return offsets->vrsave_offset; | |
493 | ||
494 | return -1; | |
495 | } | |
496 | ||
d195bc9f MK |
497 | /* Supply register REGNUM in the general-purpose register set REGSET |
498 | from the buffer specified by GREGS and LEN to register cache | |
499 | REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */ | |
500 | ||
501 | void | |
502 | ppc_supply_gregset (const struct regset *regset, struct regcache *regcache, | |
503 | int regnum, const void *gregs, size_t len) | |
504 | { | |
505 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
506 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
507 | const struct ppc_reg_offsets *offsets = regset->descr; | |
508 | size_t offset; | |
f2db237a | 509 | int regsize; |
d195bc9f | 510 | |
f2db237a | 511 | if (regnum == -1) |
d195bc9f | 512 | { |
f2db237a AM |
513 | int i; |
514 | int gpr_size = offsets->gpr_size; | |
515 | ||
516 | for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset; | |
517 | i < tdep->ppc_gp0_regnum + ppc_num_gprs; | |
518 | i++, offset += gpr_size) | |
519 | ppc_supply_reg (regcache, i, gregs, offset, gpr_size); | |
520 | ||
521 | ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch), | |
522 | gregs, offsets->pc_offset, gpr_size); | |
523 | ppc_supply_reg (regcache, tdep->ppc_ps_regnum, | |
524 | gregs, offsets->ps_offset, gpr_size); | |
525 | ppc_supply_reg (regcache, tdep->ppc_lr_regnum, | |
526 | gregs, offsets->lr_offset, gpr_size); | |
527 | ppc_supply_reg (regcache, tdep->ppc_ctr_regnum, | |
528 | gregs, offsets->ctr_offset, gpr_size); | |
529 | ppc_supply_reg (regcache, tdep->ppc_cr_regnum, | |
530 | gregs, offsets->cr_offset, offsets->xr_size); | |
531 | ppc_supply_reg (regcache, tdep->ppc_xer_regnum, | |
532 | gregs, offsets->xer_offset, offsets->xr_size); | |
533 | ppc_supply_reg (regcache, tdep->ppc_mq_regnum, | |
534 | gregs, offsets->mq_offset, offsets->xr_size); | |
535 | return; | |
d195bc9f MK |
536 | } |
537 | ||
f2db237a AM |
538 | offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, ®size); |
539 | ppc_supply_reg (regcache, regnum, gregs, offset, regsize); | |
d195bc9f MK |
540 | } |
541 | ||
542 | /* Supply register REGNUM in the floating-point register set REGSET | |
543 | from the buffer specified by FPREGS and LEN to register cache | |
544 | REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */ | |
545 | ||
546 | void | |
547 | ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache, | |
548 | int regnum, const void *fpregs, size_t len) | |
549 | { | |
550 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
f2db237a AM |
551 | struct gdbarch_tdep *tdep; |
552 | const struct ppc_reg_offsets *offsets; | |
d195bc9f | 553 | size_t offset; |
d195bc9f | 554 | |
f2db237a AM |
555 | if (!ppc_floating_point_unit_p (gdbarch)) |
556 | return; | |
383f0f5b | 557 | |
f2db237a AM |
558 | tdep = gdbarch_tdep (gdbarch); |
559 | offsets = regset->descr; | |
560 | if (regnum == -1) | |
d195bc9f | 561 | { |
f2db237a AM |
562 | int i; |
563 | ||
564 | for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset; | |
565 | i < tdep->ppc_fp0_regnum + ppc_num_fprs; | |
566 | i++, offset += 8) | |
567 | ppc_supply_reg (regcache, i, fpregs, offset, 8); | |
568 | ||
569 | ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum, | |
570 | fpregs, offsets->fpscr_offset, offsets->fpscr_size); | |
571 | return; | |
d195bc9f MK |
572 | } |
573 | ||
f2db237a AM |
574 | offset = ppc_fpreg_offset (tdep, offsets, regnum); |
575 | ppc_supply_reg (regcache, regnum, fpregs, offset, | |
576 | regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8); | |
d195bc9f MK |
577 | } |
578 | ||
06caf7d2 CES |
579 | /* Supply register REGNUM in the Altivec register set REGSET |
580 | from the buffer specified by VRREGS and LEN to register cache | |
581 | REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */ | |
582 | ||
583 | void | |
584 | ppc_supply_vrregset (const struct regset *regset, struct regcache *regcache, | |
585 | int regnum, const void *vrregs, size_t len) | |
586 | { | |
587 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
588 | struct gdbarch_tdep *tdep; | |
589 | const struct ppc_reg_offsets *offsets; | |
590 | size_t offset; | |
591 | ||
592 | if (!ppc_altivec_support_p (gdbarch)) | |
593 | return; | |
594 | ||
595 | tdep = gdbarch_tdep (gdbarch); | |
596 | offsets = regset->descr; | |
597 | if (regnum == -1) | |
598 | { | |
599 | int i; | |
600 | ||
601 | for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset; | |
602 | i < tdep->ppc_vr0_regnum + ppc_num_vrs; | |
603 | i++, offset += 16) | |
604 | ppc_supply_reg (regcache, i, vrregs, offset, 16); | |
605 | ||
606 | ppc_supply_reg (regcache, (tdep->ppc_vrsave_regnum - 1), | |
607 | vrregs, offsets->vscr_offset, 4); | |
608 | ||
609 | ppc_supply_reg (regcache, tdep->ppc_vrsave_regnum, | |
610 | vrregs, offsets->vrsave_offset, 4); | |
611 | return; | |
612 | } | |
613 | ||
614 | offset = ppc_vrreg_offset (tdep, offsets, regnum); | |
615 | if (regnum != tdep->ppc_vrsave_regnum | |
616 | && regnum != tdep->ppc_vrsave_regnum - 1) | |
617 | ppc_supply_reg (regcache, regnum, vrregs, offset, 16); | |
618 | else | |
619 | ppc_supply_reg (regcache, regnum, | |
620 | vrregs, offset, 4); | |
621 | } | |
622 | ||
d195bc9f | 623 | /* Collect register REGNUM in the general-purpose register set |
f2db237a | 624 | REGSET from register cache REGCACHE into the buffer specified by |
d195bc9f MK |
625 | GREGS and LEN. If REGNUM is -1, do this for all registers in |
626 | REGSET. */ | |
627 | ||
628 | void | |
629 | ppc_collect_gregset (const struct regset *regset, | |
630 | const struct regcache *regcache, | |
631 | int regnum, void *gregs, size_t len) | |
632 | { | |
633 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
634 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
635 | const struct ppc_reg_offsets *offsets = regset->descr; | |
636 | size_t offset; | |
f2db237a | 637 | int regsize; |
d195bc9f | 638 | |
f2db237a | 639 | if (regnum == -1) |
d195bc9f | 640 | { |
f2db237a AM |
641 | int i; |
642 | int gpr_size = offsets->gpr_size; | |
643 | ||
644 | for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset; | |
645 | i < tdep->ppc_gp0_regnum + ppc_num_gprs; | |
646 | i++, offset += gpr_size) | |
647 | ppc_collect_reg (regcache, i, gregs, offset, gpr_size); | |
648 | ||
649 | ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch), | |
650 | gregs, offsets->pc_offset, gpr_size); | |
651 | ppc_collect_reg (regcache, tdep->ppc_ps_regnum, | |
652 | gregs, offsets->ps_offset, gpr_size); | |
653 | ppc_collect_reg (regcache, tdep->ppc_lr_regnum, | |
654 | gregs, offsets->lr_offset, gpr_size); | |
655 | ppc_collect_reg (regcache, tdep->ppc_ctr_regnum, | |
656 | gregs, offsets->ctr_offset, gpr_size); | |
657 | ppc_collect_reg (regcache, tdep->ppc_cr_regnum, | |
658 | gregs, offsets->cr_offset, offsets->xr_size); | |
659 | ppc_collect_reg (regcache, tdep->ppc_xer_regnum, | |
660 | gregs, offsets->xer_offset, offsets->xr_size); | |
661 | ppc_collect_reg (regcache, tdep->ppc_mq_regnum, | |
662 | gregs, offsets->mq_offset, offsets->xr_size); | |
663 | return; | |
d195bc9f MK |
664 | } |
665 | ||
f2db237a AM |
666 | offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, ®size); |
667 | ppc_collect_reg (regcache, regnum, gregs, offset, regsize); | |
d195bc9f MK |
668 | } |
669 | ||
670 | /* Collect register REGNUM in the floating-point register set | |
f2db237a | 671 | REGSET from register cache REGCACHE into the buffer specified by |
d195bc9f MK |
672 | FPREGS and LEN. If REGNUM is -1, do this for all registers in |
673 | REGSET. */ | |
674 | ||
675 | void | |
676 | ppc_collect_fpregset (const struct regset *regset, | |
677 | const struct regcache *regcache, | |
678 | int regnum, void *fpregs, size_t len) | |
679 | { | |
680 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
f2db237a AM |
681 | struct gdbarch_tdep *tdep; |
682 | const struct ppc_reg_offsets *offsets; | |
d195bc9f | 683 | size_t offset; |
d195bc9f | 684 | |
f2db237a AM |
685 | if (!ppc_floating_point_unit_p (gdbarch)) |
686 | return; | |
383f0f5b | 687 | |
f2db237a AM |
688 | tdep = gdbarch_tdep (gdbarch); |
689 | offsets = regset->descr; | |
690 | if (regnum == -1) | |
d195bc9f | 691 | { |
f2db237a AM |
692 | int i; |
693 | ||
694 | for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset; | |
695 | i < tdep->ppc_fp0_regnum + ppc_num_fprs; | |
696 | i++, offset += 8) | |
697 | ppc_collect_reg (regcache, i, fpregs, offset, 8); | |
698 | ||
699 | ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum, | |
700 | fpregs, offsets->fpscr_offset, offsets->fpscr_size); | |
701 | return; | |
d195bc9f MK |
702 | } |
703 | ||
f2db237a AM |
704 | offset = ppc_fpreg_offset (tdep, offsets, regnum); |
705 | ppc_collect_reg (regcache, regnum, fpregs, offset, | |
706 | regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8); | |
d195bc9f | 707 | } |
06caf7d2 CES |
708 | |
709 | /* Collect register REGNUM in the Altivec register set | |
710 | REGSET from register cache REGCACHE into the buffer specified by | |
711 | VRREGS and LEN. If REGNUM is -1, do this for all registers in | |
712 | REGSET. */ | |
713 | ||
714 | void | |
715 | ppc_collect_vrregset (const struct regset *regset, | |
716 | const struct regcache *regcache, | |
717 | int regnum, void *vrregs, size_t len) | |
718 | { | |
719 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
720 | struct gdbarch_tdep *tdep; | |
721 | const struct ppc_reg_offsets *offsets; | |
722 | size_t offset; | |
723 | ||
724 | if (!ppc_altivec_support_p (gdbarch)) | |
725 | return; | |
726 | ||
727 | tdep = gdbarch_tdep (gdbarch); | |
728 | offsets = regset->descr; | |
729 | if (regnum == -1) | |
730 | { | |
731 | int i; | |
732 | ||
733 | for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset; | |
734 | i < tdep->ppc_vr0_regnum + ppc_num_vrs; | |
735 | i++, offset += 16) | |
736 | ppc_collect_reg (regcache, i, vrregs, offset, 16); | |
737 | ||
738 | ppc_collect_reg (regcache, (tdep->ppc_vrsave_regnum - 1), | |
739 | vrregs, offsets->vscr_offset, 4); | |
740 | ||
741 | ppc_collect_reg (regcache, tdep->ppc_vrsave_regnum, | |
742 | vrregs, offsets->vrsave_offset, 4); | |
743 | return; | |
744 | } | |
745 | ||
746 | offset = ppc_vrreg_offset (tdep, offsets, regnum); | |
747 | if (regnum != tdep->ppc_vrsave_regnum | |
748 | && regnum != tdep->ppc_vrsave_regnum - 1) | |
749 | ppc_collect_reg (regcache, regnum, vrregs, offset, 16); | |
750 | else | |
751 | ppc_collect_reg (regcache, regnum, | |
752 | vrregs, offset, 4); | |
753 | } | |
d195bc9f | 754 | \f |
0a613259 | 755 | |
7a78ae4e | 756 | /* Read a LEN-byte address from debugged memory address MEMADDR. */ |
c906108c | 757 | |
7a78ae4e ND |
758 | static CORE_ADDR |
759 | read_memory_addr (CORE_ADDR memaddr, int len) | |
760 | { | |
761 | return read_memory_unsigned_integer (memaddr, len); | |
762 | } | |
c906108c | 763 | |
7a78ae4e | 764 | static CORE_ADDR |
6093d2eb | 765 | rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) |
b83266a0 SS |
766 | { |
767 | struct rs6000_framedata frame; | |
4e463ff5 DJ |
768 | CORE_ADDR limit_pc, func_addr; |
769 | ||
770 | /* See if we can determine the end of the prologue via the symbol table. | |
771 | If so, then return either PC, or the PC after the prologue, whichever | |
772 | is greater. */ | |
773 | if (find_pc_partial_function (pc, NULL, &func_addr, NULL)) | |
774 | { | |
775 | CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr); | |
776 | if (post_prologue_pc != 0) | |
777 | return max (pc, post_prologue_pc); | |
778 | } | |
779 | ||
780 | /* Can't determine prologue from the symbol table, need to examine | |
781 | instructions. */ | |
782 | ||
783 | /* Find an upper limit on the function prologue using the debug | |
784 | information. If the debug information could not be used to provide | |
785 | that bound, then use an arbitrary large number as the upper bound. */ | |
786 | limit_pc = skip_prologue_using_sal (pc); | |
787 | if (limit_pc == 0) | |
788 | limit_pc = pc + 100; /* Magic. */ | |
789 | ||
be8626e0 | 790 | pc = skip_prologue (gdbarch, pc, limit_pc, &frame); |
b83266a0 SS |
791 | return pc; |
792 | } | |
793 | ||
0d1243d9 PG |
794 | static int |
795 | insn_changes_sp_or_jumps (unsigned long insn) | |
796 | { | |
797 | int opcode = (insn >> 26) & 0x03f; | |
798 | int sd = (insn >> 21) & 0x01f; | |
799 | int a = (insn >> 16) & 0x01f; | |
800 | int subcode = (insn >> 1) & 0x3ff; | |
801 | ||
802 | /* Changes the stack pointer. */ | |
803 | ||
804 | /* NOTE: There are many ways to change the value of a given register. | |
805 | The ways below are those used when the register is R1, the SP, | |
806 | in a funtion's epilogue. */ | |
807 | ||
808 | if (opcode == 31 && subcode == 444 && a == 1) | |
809 | return 1; /* mr R1,Rn */ | |
810 | if (opcode == 14 && sd == 1) | |
811 | return 1; /* addi R1,Rn,simm */ | |
812 | if (opcode == 58 && sd == 1) | |
813 | return 1; /* ld R1,ds(Rn) */ | |
814 | ||
815 | /* Transfers control. */ | |
816 | ||
817 | if (opcode == 18) | |
818 | return 1; /* b */ | |
819 | if (opcode == 16) | |
820 | return 1; /* bc */ | |
821 | if (opcode == 19 && subcode == 16) | |
822 | return 1; /* bclr */ | |
823 | if (opcode == 19 && subcode == 528) | |
824 | return 1; /* bcctr */ | |
825 | ||
826 | return 0; | |
827 | } | |
828 | ||
829 | /* Return true if we are in the function's epilogue, i.e. after the | |
830 | instruction that destroyed the function's stack frame. | |
831 | ||
832 | 1) scan forward from the point of execution: | |
833 | a) If you find an instruction that modifies the stack pointer | |
834 | or transfers control (except a return), execution is not in | |
835 | an epilogue, return. | |
836 | b) Stop scanning if you find a return instruction or reach the | |
837 | end of the function or reach the hard limit for the size of | |
838 | an epilogue. | |
839 | 2) scan backward from the point of execution: | |
840 | a) If you find an instruction that modifies the stack pointer, | |
841 | execution *is* in an epilogue, return. | |
842 | b) Stop scanning if you reach an instruction that transfers | |
843 | control or the beginning of the function or reach the hard | |
844 | limit for the size of an epilogue. */ | |
845 | ||
846 | static int | |
847 | rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc) | |
848 | { | |
849 | bfd_byte insn_buf[PPC_INSN_SIZE]; | |
850 | CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end; | |
851 | unsigned long insn; | |
852 | struct frame_info *curfrm; | |
853 | ||
854 | /* Find the search limits based on function boundaries and hard limit. */ | |
855 | ||
856 | if (!find_pc_partial_function (pc, NULL, &func_start, &func_end)) | |
857 | return 0; | |
858 | ||
859 | epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE; | |
860 | if (epilogue_start < func_start) epilogue_start = func_start; | |
861 | ||
862 | epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE; | |
863 | if (epilogue_end > func_end) epilogue_end = func_end; | |
864 | ||
865 | curfrm = get_current_frame (); | |
866 | ||
867 | /* Scan forward until next 'blr'. */ | |
868 | ||
869 | for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE) | |
870 | { | |
871 | if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE)) | |
872 | return 0; | |
4e463ff5 | 873 | insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE); |
0d1243d9 PG |
874 | if (insn == 0x4e800020) |
875 | break; | |
876 | if (insn_changes_sp_or_jumps (insn)) | |
877 | return 0; | |
878 | } | |
879 | ||
880 | /* Scan backward until adjustment to stack pointer (R1). */ | |
881 | ||
882 | for (scan_pc = pc - PPC_INSN_SIZE; | |
883 | scan_pc >= epilogue_start; | |
884 | scan_pc -= PPC_INSN_SIZE) | |
885 | { | |
886 | if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE)) | |
887 | return 0; | |
4e463ff5 | 888 | insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE); |
0d1243d9 PG |
889 | if (insn_changes_sp_or_jumps (insn)) |
890 | return 1; | |
891 | } | |
892 | ||
893 | return 0; | |
894 | } | |
895 | ||
143985b7 | 896 | /* Get the ith function argument for the current function. */ |
b9362cc7 | 897 | static CORE_ADDR |
143985b7 AF |
898 | rs6000_fetch_pointer_argument (struct frame_info *frame, int argi, |
899 | struct type *type) | |
900 | { | |
50fd1280 | 901 | return get_frame_register_unsigned (frame, 3 + argi); |
143985b7 AF |
902 | } |
903 | ||
c906108c SS |
904 | /* Calculate the destination of a branch/jump. Return -1 if not a branch. */ |
905 | ||
906 | static CORE_ADDR | |
0b1b3e42 UW |
907 | branch_dest (struct frame_info *frame, int opcode, int instr, |
908 | CORE_ADDR pc, CORE_ADDR safety) | |
c906108c | 909 | { |
0b1b3e42 | 910 | struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame)); |
c906108c SS |
911 | CORE_ADDR dest; |
912 | int immediate; | |
913 | int absolute; | |
914 | int ext_op; | |
915 | ||
916 | absolute = (int) ((instr >> 1) & 1); | |
917 | ||
c5aa993b JM |
918 | switch (opcode) |
919 | { | |
920 | case 18: | |
921 | immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */ | |
922 | if (absolute) | |
923 | dest = immediate; | |
924 | else | |
925 | dest = pc + immediate; | |
926 | break; | |
927 | ||
928 | case 16: | |
929 | immediate = ((instr & ~3) << 16) >> 16; /* br conditional */ | |
930 | if (absolute) | |
931 | dest = immediate; | |
932 | else | |
933 | dest = pc + immediate; | |
934 | break; | |
935 | ||
936 | case 19: | |
937 | ext_op = (instr >> 1) & 0x3ff; | |
938 | ||
939 | if (ext_op == 16) /* br conditional register */ | |
940 | { | |
0b1b3e42 | 941 | dest = get_frame_register_unsigned (frame, tdep->ppc_lr_regnum) & ~3; |
c5aa993b JM |
942 | |
943 | /* If we are about to return from a signal handler, dest is | |
944 | something like 0x3c90. The current frame is a signal handler | |
945 | caller frame, upon completion of the sigreturn system call | |
946 | execution will return to the saved PC in the frame. */ | |
0b1b3e42 UW |
947 | if (dest < tdep->text_segment_base) |
948 | dest = read_memory_addr (get_frame_base (frame) + SIG_FRAME_PC_OFFSET, | |
949 | tdep->wordsize); | |
c5aa993b JM |
950 | } |
951 | ||
952 | else if (ext_op == 528) /* br cond to count reg */ | |
953 | { | |
0b1b3e42 | 954 | dest = get_frame_register_unsigned (frame, tdep->ppc_ctr_regnum) & ~3; |
c5aa993b JM |
955 | |
956 | /* If we are about to execute a system call, dest is something | |
957 | like 0x22fc or 0x3b00. Upon completion the system call | |
958 | will return to the address in the link register. */ | |
0b1b3e42 UW |
959 | if (dest < tdep->text_segment_base) |
960 | dest = get_frame_register_unsigned (frame, tdep->ppc_lr_regnum) & ~3; | |
c5aa993b JM |
961 | } |
962 | else | |
963 | return -1; | |
964 | break; | |
c906108c | 965 | |
c5aa993b JM |
966 | default: |
967 | return -1; | |
968 | } | |
0b1b3e42 | 969 | return (dest < tdep->text_segment_base) ? safety : dest; |
c906108c SS |
970 | } |
971 | ||
972 | ||
973 | /* Sequence of bytes for breakpoint instruction. */ | |
974 | ||
f4f9705a | 975 | const static unsigned char * |
67d57894 MD |
976 | rs6000_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr, |
977 | int *bp_size) | |
c906108c | 978 | { |
aaab4dba AC |
979 | static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 }; |
980 | static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d }; | |
c906108c | 981 | *bp_size = 4; |
67d57894 | 982 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) |
c906108c SS |
983 | return big_breakpoint; |
984 | else | |
985 | return little_breakpoint; | |
986 | } | |
987 | ||
988 | ||
ce5eab59 UW |
989 | /* Instruction masks used during single-stepping of atomic sequences. */ |
990 | #define LWARX_MASK 0xfc0007fe | |
991 | #define LWARX_INSTRUCTION 0x7c000028 | |
992 | #define LDARX_INSTRUCTION 0x7c0000A8 | |
993 | #define STWCX_MASK 0xfc0007ff | |
994 | #define STWCX_INSTRUCTION 0x7c00012d | |
995 | #define STDCX_INSTRUCTION 0x7c0001ad | |
996 | #define BC_MASK 0xfc000000 | |
997 | #define BC_INSTRUCTION 0x40000000 | |
998 | ||
999 | /* Checks for an atomic sequence of instructions beginning with a LWARX/LDARX | |
1000 | instruction and ending with a STWCX/STDCX instruction. If such a sequence | |
1001 | is found, attempt to step through it. A breakpoint is placed at the end of | |
1002 | the sequence. */ | |
1003 | ||
1004 | static int | |
0b1b3e42 | 1005 | deal_with_atomic_sequence (struct frame_info *frame) |
ce5eab59 | 1006 | { |
0b1b3e42 | 1007 | CORE_ADDR pc = get_frame_pc (frame); |
ce5eab59 UW |
1008 | CORE_ADDR breaks[2] = {-1, -1}; |
1009 | CORE_ADDR loc = pc; | |
1010 | CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */ | |
24d45690 | 1011 | CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */ |
ce5eab59 UW |
1012 | int insn = read_memory_integer (loc, PPC_INSN_SIZE); |
1013 | int insn_count; | |
1014 | int index; | |
1015 | int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */ | |
1016 | const int atomic_sequence_length = 16; /* Instruction sequence length. */ | |
24d45690 | 1017 | int opcode; /* Branch instruction's OPcode. */ |
ce5eab59 UW |
1018 | int bc_insn_count = 0; /* Conditional branch instruction count. */ |
1019 | ||
1020 | /* Assume all atomic sequences start with a lwarx/ldarx instruction. */ | |
1021 | if ((insn & LWARX_MASK) != LWARX_INSTRUCTION | |
1022 | && (insn & LWARX_MASK) != LDARX_INSTRUCTION) | |
1023 | return 0; | |
1024 | ||
1025 | /* Assume that no atomic sequence is longer than "atomic_sequence_length" | |
1026 | instructions. */ | |
1027 | for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count) | |
1028 | { | |
1029 | loc += PPC_INSN_SIZE; | |
1030 | insn = read_memory_integer (loc, PPC_INSN_SIZE); | |
1031 | ||
1032 | /* Assume that there is at most one conditional branch in the atomic | |
1033 | sequence. If a conditional branch is found, put a breakpoint in | |
1034 | its destination address. */ | |
1035 | if ((insn & BC_MASK) == BC_INSTRUCTION) | |
1036 | { | |
1037 | if (bc_insn_count >= 1) | |
1038 | return 0; /* More than one conditional branch found, fallback | |
1039 | to the standard single-step code. */ | |
1040 | ||
24d45690 | 1041 | opcode = insn >> 26; |
0b1b3e42 | 1042 | branch_bp = branch_dest (frame, opcode, insn, pc, breaks[0]); |
ce5eab59 UW |
1043 | |
1044 | if (branch_bp != -1) | |
1045 | { | |
1046 | breaks[1] = branch_bp; | |
1047 | bc_insn_count++; | |
1048 | last_breakpoint++; | |
1049 | } | |
1050 | } | |
1051 | ||
1052 | if ((insn & STWCX_MASK) == STWCX_INSTRUCTION | |
1053 | || (insn & STWCX_MASK) == STDCX_INSTRUCTION) | |
1054 | break; | |
1055 | } | |
1056 | ||
1057 | /* Assume that the atomic sequence ends with a stwcx/stdcx instruction. */ | |
1058 | if ((insn & STWCX_MASK) != STWCX_INSTRUCTION | |
1059 | && (insn & STWCX_MASK) != STDCX_INSTRUCTION) | |
1060 | return 0; | |
1061 | ||
24d45690 | 1062 | closing_insn = loc; |
ce5eab59 UW |
1063 | loc += PPC_INSN_SIZE; |
1064 | insn = read_memory_integer (loc, PPC_INSN_SIZE); | |
1065 | ||
1066 | /* Insert a breakpoint right after the end of the atomic sequence. */ | |
1067 | breaks[0] = loc; | |
1068 | ||
24d45690 UW |
1069 | /* Check for duplicated breakpoints. Check also for a breakpoint |
1070 | placed (branch instruction's destination) at the stwcx/stdcx | |
1071 | instruction, this resets the reservation and take us back to the | |
1072 | lwarx/ldarx instruction at the beginning of the atomic sequence. */ | |
1073 | if (last_breakpoint && ((breaks[1] == breaks[0]) | |
1074 | || (breaks[1] == closing_insn))) | |
ce5eab59 UW |
1075 | last_breakpoint = 0; |
1076 | ||
1077 | /* Effectively inserts the breakpoints. */ | |
1078 | for (index = 0; index <= last_breakpoint; index++) | |
1079 | insert_single_step_breakpoint (breaks[index]); | |
1080 | ||
1081 | return 1; | |
1082 | } | |
1083 | ||
1084 | /* AIX does not support PT_STEP. Simulate it. */ | |
c906108c | 1085 | |
e6590a1b | 1086 | int |
0b1b3e42 | 1087 | rs6000_software_single_step (struct frame_info *frame) |
c906108c | 1088 | { |
7c40d541 KB |
1089 | CORE_ADDR dummy; |
1090 | int breakp_sz; | |
67d57894 MD |
1091 | const gdb_byte *breakp |
1092 | = rs6000_breakpoint_from_pc (get_frame_arch (frame), &dummy, &breakp_sz); | |
c906108c SS |
1093 | int ii, insn; |
1094 | CORE_ADDR loc; | |
1095 | CORE_ADDR breaks[2]; | |
1096 | int opcode; | |
1097 | ||
0b1b3e42 | 1098 | loc = get_frame_pc (frame); |
c906108c | 1099 | |
e0cd558a | 1100 | insn = read_memory_integer (loc, 4); |
c906108c | 1101 | |
0b1b3e42 | 1102 | if (deal_with_atomic_sequence (frame)) |
ce5eab59 UW |
1103 | return 1; |
1104 | ||
e0cd558a UW |
1105 | breaks[0] = loc + breakp_sz; |
1106 | opcode = insn >> 26; | |
0b1b3e42 | 1107 | breaks[1] = branch_dest (frame, opcode, insn, loc, breaks[0]); |
c906108c | 1108 | |
e0cd558a UW |
1109 | /* Don't put two breakpoints on the same address. */ |
1110 | if (breaks[1] == breaks[0]) | |
1111 | breaks[1] = -1; | |
c906108c | 1112 | |
e0cd558a UW |
1113 | for (ii = 0; ii < 2; ++ii) |
1114 | { | |
1115 | /* ignore invalid breakpoint. */ | |
1116 | if (breaks[ii] == -1) | |
1117 | continue; | |
1118 | insert_single_step_breakpoint (breaks[ii]); | |
c5aa993b | 1119 | } |
c906108c | 1120 | |
c906108c | 1121 | errno = 0; /* FIXME, don't ignore errors! */ |
c5aa993b | 1122 | /* What errors? {read,write}_memory call error(). */ |
e6590a1b | 1123 | return 1; |
c906108c SS |
1124 | } |
1125 | ||
1126 | ||
c906108c SS |
1127 | #define SIGNED_SHORT(x) \ |
1128 | ((sizeof (short) == 2) \ | |
1129 | ? ((int)(short)(x)) \ | |
1130 | : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000))) | |
1131 | ||
1132 | #define GET_SRC_REG(x) (((x) >> 21) & 0x1f) | |
1133 | ||
55d05f3b KB |
1134 | /* Limit the number of skipped non-prologue instructions, as the examining |
1135 | of the prologue is expensive. */ | |
1136 | static int max_skip_non_prologue_insns = 10; | |
1137 | ||
773df3e5 JB |
1138 | /* Return nonzero if the given instruction OP can be part of the prologue |
1139 | of a function and saves a parameter on the stack. FRAMEP should be | |
1140 | set if one of the previous instructions in the function has set the | |
1141 | Frame Pointer. */ | |
1142 | ||
1143 | static int | |
1144 | store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg) | |
1145 | { | |
1146 | /* Move parameters from argument registers to temporary register. */ | |
1147 | if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */ | |
1148 | { | |
1149 | /* Rx must be scratch register r0. */ | |
1150 | const int rx_regno = (op >> 16) & 31; | |
1151 | /* Ry: Only r3 - r10 are used for parameter passing. */ | |
1152 | const int ry_regno = GET_SRC_REG (op); | |
1153 | ||
1154 | if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10) | |
1155 | { | |
1156 | *r0_contains_arg = 1; | |
1157 | return 1; | |
1158 | } | |
1159 | else | |
1160 | return 0; | |
1161 | } | |
1162 | ||
1163 | /* Save a General Purpose Register on stack. */ | |
1164 | ||
1165 | if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */ | |
1166 | (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */ | |
1167 | { | |
1168 | /* Rx: Only r3 - r10 are used for parameter passing. */ | |
1169 | const int rx_regno = GET_SRC_REG (op); | |
1170 | ||
1171 | return (rx_regno >= 3 && rx_regno <= 10); | |
1172 | } | |
1173 | ||
1174 | /* Save a General Purpose Register on stack via the Frame Pointer. */ | |
1175 | ||
1176 | if (framep && | |
1177 | ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */ | |
1178 | (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */ | |
1179 | (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */ | |
1180 | { | |
1181 | /* Rx: Usually, only r3 - r10 are used for parameter passing. | |
1182 | However, the compiler sometimes uses r0 to hold an argument. */ | |
1183 | const int rx_regno = GET_SRC_REG (op); | |
1184 | ||
1185 | return ((rx_regno >= 3 && rx_regno <= 10) | |
1186 | || (rx_regno == 0 && *r0_contains_arg)); | |
1187 | } | |
1188 | ||
1189 | if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */ | |
1190 | { | |
1191 | /* Only f2 - f8 are used for parameter passing. */ | |
1192 | const int src_regno = GET_SRC_REG (op); | |
1193 | ||
1194 | return (src_regno >= 2 && src_regno <= 8); | |
1195 | } | |
1196 | ||
1197 | if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */ | |
1198 | { | |
1199 | /* Only f2 - f8 are used for parameter passing. */ | |
1200 | const int src_regno = GET_SRC_REG (op); | |
1201 | ||
1202 | return (src_regno >= 2 && src_regno <= 8); | |
1203 | } | |
1204 | ||
1205 | /* Not an insn that saves a parameter on stack. */ | |
1206 | return 0; | |
1207 | } | |
55d05f3b | 1208 | |
3c77c82a DJ |
1209 | /* Assuming that INSN is a "bl" instruction located at PC, return |
1210 | nonzero if the destination of the branch is a "blrl" instruction. | |
1211 | ||
1212 | This sequence is sometimes found in certain function prologues. | |
1213 | It allows the function to load the LR register with a value that | |
1214 | they can use to access PIC data using PC-relative offsets. */ | |
1215 | ||
1216 | static int | |
1217 | bl_to_blrl_insn_p (CORE_ADDR pc, int insn) | |
1218 | { | |
0b1b3e42 UW |
1219 | CORE_ADDR dest; |
1220 | int immediate; | |
1221 | int absolute; | |
3c77c82a DJ |
1222 | int dest_insn; |
1223 | ||
0b1b3e42 UW |
1224 | absolute = (int) ((insn >> 1) & 1); |
1225 | immediate = ((insn & ~3) << 6) >> 6; | |
1226 | if (absolute) | |
1227 | dest = immediate; | |
1228 | else | |
1229 | dest = pc + immediate; | |
1230 | ||
3c77c82a DJ |
1231 | dest_insn = read_memory_integer (dest, 4); |
1232 | if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */ | |
1233 | return 1; | |
1234 | ||
1235 | return 0; | |
1236 | } | |
1237 | ||
6a16c029 TJB |
1238 | /* return pc value after skipping a function prologue and also return |
1239 | information about a function frame. | |
1240 | ||
1241 | in struct rs6000_framedata fdata: | |
1242 | - frameless is TRUE, if function does not have a frame. | |
1243 | - nosavedpc is TRUE, if function does not save %pc value in its frame. | |
1244 | - offset is the initial size of this stack frame --- the amount by | |
1245 | which we decrement the sp to allocate the frame. | |
1246 | - saved_gpr is the number of the first saved gpr. | |
1247 | - saved_fpr is the number of the first saved fpr. | |
1248 | - saved_vr is the number of the first saved vr. | |
1249 | - saved_ev is the number of the first saved ev. | |
1250 | - alloca_reg is the number of the register used for alloca() handling. | |
1251 | Otherwise -1. | |
1252 | - gpr_offset is the offset of the first saved gpr from the previous frame. | |
1253 | - fpr_offset is the offset of the first saved fpr from the previous frame. | |
1254 | - vr_offset is the offset of the first saved vr from the previous frame. | |
1255 | - ev_offset is the offset of the first saved ev from the previous frame. | |
1256 | - lr_offset is the offset of the saved lr | |
1257 | - cr_offset is the offset of the saved cr | |
1258 | - vrsave_offset is the offset of the saved vrsave register | |
1259 | */ | |
1260 | ||
7a78ae4e | 1261 | static CORE_ADDR |
be8626e0 MD |
1262 | skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc, |
1263 | struct rs6000_framedata *fdata) | |
c906108c SS |
1264 | { |
1265 | CORE_ADDR orig_pc = pc; | |
55d05f3b | 1266 | CORE_ADDR last_prologue_pc = pc; |
6be8bc0c | 1267 | CORE_ADDR li_found_pc = 0; |
50fd1280 | 1268 | gdb_byte buf[4]; |
c906108c SS |
1269 | unsigned long op; |
1270 | long offset = 0; | |
6be8bc0c | 1271 | long vr_saved_offset = 0; |
482ca3f5 KB |
1272 | int lr_reg = -1; |
1273 | int cr_reg = -1; | |
6be8bc0c | 1274 | int vr_reg = -1; |
96ff0de4 EZ |
1275 | int ev_reg = -1; |
1276 | long ev_offset = 0; | |
6be8bc0c | 1277 | int vrsave_reg = -1; |
c906108c SS |
1278 | int reg; |
1279 | int framep = 0; | |
1280 | int minimal_toc_loaded = 0; | |
ddb20c56 | 1281 | int prev_insn_was_prologue_insn = 1; |
55d05f3b | 1282 | int num_skip_non_prologue_insns = 0; |
773df3e5 | 1283 | int r0_contains_arg = 0; |
be8626e0 MD |
1284 | const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch); |
1285 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
c906108c | 1286 | |
ddb20c56 | 1287 | memset (fdata, 0, sizeof (struct rs6000_framedata)); |
c906108c SS |
1288 | fdata->saved_gpr = -1; |
1289 | fdata->saved_fpr = -1; | |
6be8bc0c | 1290 | fdata->saved_vr = -1; |
96ff0de4 | 1291 | fdata->saved_ev = -1; |
c906108c SS |
1292 | fdata->alloca_reg = -1; |
1293 | fdata->frameless = 1; | |
1294 | fdata->nosavedpc = 1; | |
1295 | ||
55d05f3b | 1296 | for (;; pc += 4) |
c906108c | 1297 | { |
ddb20c56 KB |
1298 | /* Sometimes it isn't clear if an instruction is a prologue |
1299 | instruction or not. When we encounter one of these ambiguous | |
1300 | cases, we'll set prev_insn_was_prologue_insn to 0 (false). | |
1301 | Otherwise, we'll assume that it really is a prologue instruction. */ | |
1302 | if (prev_insn_was_prologue_insn) | |
1303 | last_prologue_pc = pc; | |
55d05f3b KB |
1304 | |
1305 | /* Stop scanning if we've hit the limit. */ | |
4e463ff5 | 1306 | if (pc >= lim_pc) |
55d05f3b KB |
1307 | break; |
1308 | ||
ddb20c56 KB |
1309 | prev_insn_was_prologue_insn = 1; |
1310 | ||
55d05f3b | 1311 | /* Fetch the instruction and convert it to an integer. */ |
ddb20c56 KB |
1312 | if (target_read_memory (pc, buf, 4)) |
1313 | break; | |
4e463ff5 | 1314 | op = extract_unsigned_integer (buf, 4); |
c906108c | 1315 | |
c5aa993b JM |
1316 | if ((op & 0xfc1fffff) == 0x7c0802a6) |
1317 | { /* mflr Rx */ | |
43b1ab88 AC |
1318 | /* Since shared library / PIC code, which needs to get its |
1319 | address at runtime, can appear to save more than one link | |
1320 | register vis: | |
1321 | ||
1322 | *INDENT-OFF* | |
1323 | stwu r1,-304(r1) | |
1324 | mflr r3 | |
1325 | bl 0xff570d0 (blrl) | |
1326 | stw r30,296(r1) | |
1327 | mflr r30 | |
1328 | stw r31,300(r1) | |
1329 | stw r3,308(r1); | |
1330 | ... | |
1331 | *INDENT-ON* | |
1332 | ||
1333 | remember just the first one, but skip over additional | |
1334 | ones. */ | |
721d14ba | 1335 | if (lr_reg == -1) |
43b1ab88 | 1336 | lr_reg = (op & 0x03e00000); |
773df3e5 JB |
1337 | if (lr_reg == 0) |
1338 | r0_contains_arg = 0; | |
c5aa993b | 1339 | continue; |
c5aa993b JM |
1340 | } |
1341 | else if ((op & 0xfc1fffff) == 0x7c000026) | |
1342 | { /* mfcr Rx */ | |
98f08d3d | 1343 | cr_reg = (op & 0x03e00000); |
773df3e5 JB |
1344 | if (cr_reg == 0) |
1345 | r0_contains_arg = 0; | |
c5aa993b | 1346 | continue; |
c906108c | 1347 | |
c906108c | 1348 | } |
c5aa993b JM |
1349 | else if ((op & 0xfc1f0000) == 0xd8010000) |
1350 | { /* stfd Rx,NUM(r1) */ | |
1351 | reg = GET_SRC_REG (op); | |
1352 | if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg) | |
1353 | { | |
1354 | fdata->saved_fpr = reg; | |
1355 | fdata->fpr_offset = SIGNED_SHORT (op) + offset; | |
1356 | } | |
1357 | continue; | |
c906108c | 1358 | |
c5aa993b JM |
1359 | } |
1360 | else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */ | |
7a78ae4e ND |
1361 | (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */ |
1362 | (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */ | |
1363 | (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */ | |
c5aa993b JM |
1364 | { |
1365 | ||
1366 | reg = GET_SRC_REG (op); | |
1367 | if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg) | |
1368 | { | |
1369 | fdata->saved_gpr = reg; | |
7a78ae4e | 1370 | if ((op & 0xfc1f0003) == 0xf8010000) |
98f08d3d | 1371 | op &= ~3UL; |
c5aa993b JM |
1372 | fdata->gpr_offset = SIGNED_SHORT (op) + offset; |
1373 | } | |
1374 | continue; | |
c906108c | 1375 | |
ddb20c56 KB |
1376 | } |
1377 | else if ((op & 0xffff0000) == 0x60000000) | |
1378 | { | |
96ff0de4 | 1379 | /* nop */ |
ddb20c56 KB |
1380 | /* Allow nops in the prologue, but do not consider them to |
1381 | be part of the prologue unless followed by other prologue | |
1382 | instructions. */ | |
1383 | prev_insn_was_prologue_insn = 0; | |
1384 | continue; | |
1385 | ||
c906108c | 1386 | } |
c5aa993b JM |
1387 | else if ((op & 0xffff0000) == 0x3c000000) |
1388 | { /* addis 0,0,NUM, used | |
1389 | for >= 32k frames */ | |
1390 | fdata->offset = (op & 0x0000ffff) << 16; | |
1391 | fdata->frameless = 0; | |
773df3e5 | 1392 | r0_contains_arg = 0; |
c5aa993b JM |
1393 | continue; |
1394 | ||
1395 | } | |
1396 | else if ((op & 0xffff0000) == 0x60000000) | |
1397 | { /* ori 0,0,NUM, 2nd ha | |
1398 | lf of >= 32k frames */ | |
1399 | fdata->offset |= (op & 0x0000ffff); | |
1400 | fdata->frameless = 0; | |
773df3e5 | 1401 | r0_contains_arg = 0; |
c5aa993b JM |
1402 | continue; |
1403 | ||
1404 | } | |
be723e22 | 1405 | else if (lr_reg >= 0 && |
98f08d3d KB |
1406 | /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */ |
1407 | (((op & 0xffff0000) == (lr_reg | 0xf8010000)) || | |
1408 | /* stw Rx, NUM(r1) */ | |
1409 | ((op & 0xffff0000) == (lr_reg | 0x90010000)) || | |
1410 | /* stwu Rx, NUM(r1) */ | |
1411 | ((op & 0xffff0000) == (lr_reg | 0x94010000)))) | |
1412 | { /* where Rx == lr */ | |
1413 | fdata->lr_offset = offset; | |
c5aa993b | 1414 | fdata->nosavedpc = 0; |
be723e22 MS |
1415 | /* Invalidate lr_reg, but don't set it to -1. |
1416 | That would mean that it had never been set. */ | |
1417 | lr_reg = -2; | |
98f08d3d KB |
1418 | if ((op & 0xfc000003) == 0xf8000000 || /* std */ |
1419 | (op & 0xfc000000) == 0x90000000) /* stw */ | |
1420 | { | |
1421 | /* Does not update r1, so add displacement to lr_offset. */ | |
1422 | fdata->lr_offset += SIGNED_SHORT (op); | |
1423 | } | |
c5aa993b JM |
1424 | continue; |
1425 | ||
1426 | } | |
be723e22 | 1427 | else if (cr_reg >= 0 && |
98f08d3d KB |
1428 | /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */ |
1429 | (((op & 0xffff0000) == (cr_reg | 0xf8010000)) || | |
1430 | /* stw Rx, NUM(r1) */ | |
1431 | ((op & 0xffff0000) == (cr_reg | 0x90010000)) || | |
1432 | /* stwu Rx, NUM(r1) */ | |
1433 | ((op & 0xffff0000) == (cr_reg | 0x94010000)))) | |
1434 | { /* where Rx == cr */ | |
1435 | fdata->cr_offset = offset; | |
be723e22 MS |
1436 | /* Invalidate cr_reg, but don't set it to -1. |
1437 | That would mean that it had never been set. */ | |
1438 | cr_reg = -2; | |
98f08d3d KB |
1439 | if ((op & 0xfc000003) == 0xf8000000 || |
1440 | (op & 0xfc000000) == 0x90000000) | |
1441 | { | |
1442 | /* Does not update r1, so add displacement to cr_offset. */ | |
1443 | fdata->cr_offset += SIGNED_SHORT (op); | |
1444 | } | |
c5aa993b JM |
1445 | continue; |
1446 | ||
1447 | } | |
721d14ba DJ |
1448 | else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1) |
1449 | { | |
1450 | /* bcl 20,xx,.+4 is used to get the current PC, with or without | |
1451 | prediction bits. If the LR has already been saved, we can | |
1452 | skip it. */ | |
1453 | continue; | |
1454 | } | |
c5aa993b JM |
1455 | else if (op == 0x48000005) |
1456 | { /* bl .+4 used in | |
1457 | -mrelocatable */ | |
1458 | continue; | |
1459 | ||
1460 | } | |
1461 | else if (op == 0x48000004) | |
1462 | { /* b .+4 (xlc) */ | |
1463 | break; | |
1464 | ||
c5aa993b | 1465 | } |
6be8bc0c EZ |
1466 | else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used |
1467 | in V.4 -mminimal-toc */ | |
c5aa993b JM |
1468 | (op & 0xffff0000) == 0x3bde0000) |
1469 | { /* addi 30,30,foo@l */ | |
1470 | continue; | |
c906108c | 1471 | |
c5aa993b JM |
1472 | } |
1473 | else if ((op & 0xfc000001) == 0x48000001) | |
1474 | { /* bl foo, | |
1475 | to save fprs??? */ | |
c906108c | 1476 | |
c5aa993b | 1477 | fdata->frameless = 0; |
3c77c82a DJ |
1478 | |
1479 | /* If the return address has already been saved, we can skip | |
1480 | calls to blrl (for PIC). */ | |
1481 | if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op)) | |
1482 | continue; | |
1483 | ||
6be8bc0c | 1484 | /* Don't skip over the subroutine call if it is not within |
ebd98106 FF |
1485 | the first three instructions of the prologue and either |
1486 | we have no line table information or the line info tells | |
1487 | us that the subroutine call is not part of the line | |
1488 | associated with the prologue. */ | |
c5aa993b | 1489 | if ((pc - orig_pc) > 8) |
ebd98106 FF |
1490 | { |
1491 | struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0); | |
1492 | struct symtab_and_line this_sal = find_pc_line (pc, 0); | |
1493 | ||
1494 | if ((prologue_sal.line == 0) || (prologue_sal.line != this_sal.line)) | |
1495 | break; | |
1496 | } | |
c5aa993b JM |
1497 | |
1498 | op = read_memory_integer (pc + 4, 4); | |
1499 | ||
6be8bc0c EZ |
1500 | /* At this point, make sure this is not a trampoline |
1501 | function (a function that simply calls another functions, | |
1502 | and nothing else). If the next is not a nop, this branch | |
1503 | was part of the function prologue. */ | |
c5aa993b JM |
1504 | |
1505 | if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */ | |
1506 | break; /* don't skip over | |
1507 | this branch */ | |
1508 | continue; | |
1509 | ||
c5aa993b | 1510 | } |
98f08d3d KB |
1511 | /* update stack pointer */ |
1512 | else if ((op & 0xfc1f0000) == 0x94010000) | |
1513 | { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */ | |
c5aa993b JM |
1514 | fdata->frameless = 0; |
1515 | fdata->offset = SIGNED_SHORT (op); | |
1516 | offset = fdata->offset; | |
1517 | continue; | |
c5aa993b | 1518 | } |
98f08d3d KB |
1519 | else if ((op & 0xfc1f016a) == 0x7c01016e) |
1520 | { /* stwux rX,r1,rY */ | |
1521 | /* no way to figure out what r1 is going to be */ | |
1522 | fdata->frameless = 0; | |
1523 | offset = fdata->offset; | |
1524 | continue; | |
1525 | } | |
1526 | else if ((op & 0xfc1f0003) == 0xf8010001) | |
1527 | { /* stdu rX,NUM(r1) */ | |
1528 | fdata->frameless = 0; | |
1529 | fdata->offset = SIGNED_SHORT (op & ~3UL); | |
1530 | offset = fdata->offset; | |
1531 | continue; | |
1532 | } | |
1533 | else if ((op & 0xfc1f016a) == 0x7c01016a) | |
1534 | { /* stdux rX,r1,rY */ | |
1535 | /* no way to figure out what r1 is going to be */ | |
c5aa993b JM |
1536 | fdata->frameless = 0; |
1537 | offset = fdata->offset; | |
1538 | continue; | |
c5aa993b | 1539 | } |
7313566f FF |
1540 | else if ((op & 0xffff0000) == 0x38210000) |
1541 | { /* addi r1,r1,SIMM */ | |
1542 | fdata->frameless = 0; | |
1543 | fdata->offset += SIGNED_SHORT (op); | |
1544 | offset = fdata->offset; | |
1545 | continue; | |
1546 | } | |
4e463ff5 DJ |
1547 | /* Load up minimal toc pointer. Do not treat an epilogue restore |
1548 | of r31 as a minimal TOC load. */ | |
98f08d3d KB |
1549 | else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */ |
1550 | (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */ | |
4e463ff5 | 1551 | && !framep |
c5aa993b | 1552 | && !minimal_toc_loaded) |
98f08d3d | 1553 | { |
c5aa993b JM |
1554 | minimal_toc_loaded = 1; |
1555 | continue; | |
1556 | ||
f6077098 KB |
1557 | /* move parameters from argument registers to local variable |
1558 | registers */ | |
1559 | } | |
1560 | else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */ | |
1561 | (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */ | |
1562 | (((op >> 21) & 31) <= 10) && | |
96ff0de4 | 1563 | ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */ |
f6077098 KB |
1564 | { |
1565 | continue; | |
1566 | ||
c5aa993b JM |
1567 | /* store parameters in stack */ |
1568 | } | |
e802b915 | 1569 | /* Move parameters from argument registers to temporary register. */ |
773df3e5 | 1570 | else if (store_param_on_stack_p (op, framep, &r0_contains_arg)) |
e802b915 | 1571 | { |
c5aa993b JM |
1572 | continue; |
1573 | ||
1574 | /* Set up frame pointer */ | |
1575 | } | |
1576 | else if (op == 0x603f0000 /* oril r31, r1, 0x0 */ | |
1577 | || op == 0x7c3f0b78) | |
1578 | { /* mr r31, r1 */ | |
1579 | fdata->frameless = 0; | |
1580 | framep = 1; | |
6f99cb26 | 1581 | fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31); |
c5aa993b JM |
1582 | continue; |
1583 | ||
1584 | /* Another way to set up the frame pointer. */ | |
1585 | } | |
1586 | else if ((op & 0xfc1fffff) == 0x38010000) | |
1587 | { /* addi rX, r1, 0x0 */ | |
1588 | fdata->frameless = 0; | |
1589 | framep = 1; | |
6f99cb26 AC |
1590 | fdata->alloca_reg = (tdep->ppc_gp0_regnum |
1591 | + ((op & ~0x38010000) >> 21)); | |
c5aa993b | 1592 | continue; |
c5aa993b | 1593 | } |
6be8bc0c EZ |
1594 | /* AltiVec related instructions. */ |
1595 | /* Store the vrsave register (spr 256) in another register for | |
1596 | later manipulation, or load a register into the vrsave | |
1597 | register. 2 instructions are used: mfvrsave and | |
1598 | mtvrsave. They are shorthand notation for mfspr Rn, SPR256 | |
1599 | and mtspr SPR256, Rn. */ | |
1600 | /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110 | |
1601 | mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */ | |
1602 | else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */ | |
1603 | { | |
1604 | vrsave_reg = GET_SRC_REG (op); | |
1605 | continue; | |
1606 | } | |
1607 | else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */ | |
1608 | { | |
1609 | continue; | |
1610 | } | |
1611 | /* Store the register where vrsave was saved to onto the stack: | |
1612 | rS is the register where vrsave was stored in a previous | |
1613 | instruction. */ | |
1614 | /* 100100 sssss 00001 dddddddd dddddddd */ | |
1615 | else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */ | |
1616 | { | |
1617 | if (vrsave_reg == GET_SRC_REG (op)) | |
1618 | { | |
1619 | fdata->vrsave_offset = SIGNED_SHORT (op) + offset; | |
1620 | vrsave_reg = -1; | |
1621 | } | |
1622 | continue; | |
1623 | } | |
1624 | /* Compute the new value of vrsave, by modifying the register | |
1625 | where vrsave was saved to. */ | |
1626 | else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */ | |
1627 | || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */ | |
1628 | { | |
1629 | continue; | |
1630 | } | |
1631 | /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first | |
1632 | in a pair of insns to save the vector registers on the | |
1633 | stack. */ | |
1634 | /* 001110 00000 00000 iiii iiii iiii iiii */ | |
96ff0de4 EZ |
1635 | /* 001110 01110 00000 iiii iiii iiii iiii */ |
1636 | else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */ | |
1637 | || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */ | |
6be8bc0c | 1638 | { |
773df3e5 JB |
1639 | if ((op & 0xffff0000) == 0x38000000) |
1640 | r0_contains_arg = 0; | |
6be8bc0c EZ |
1641 | li_found_pc = pc; |
1642 | vr_saved_offset = SIGNED_SHORT (op); | |
773df3e5 JB |
1643 | |
1644 | /* This insn by itself is not part of the prologue, unless | |
1645 | if part of the pair of insns mentioned above. So do not | |
1646 | record this insn as part of the prologue yet. */ | |
1647 | prev_insn_was_prologue_insn = 0; | |
6be8bc0c EZ |
1648 | } |
1649 | /* Store vector register S at (r31+r0) aligned to 16 bytes. */ | |
1650 | /* 011111 sssss 11111 00000 00111001110 */ | |
1651 | else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */ | |
1652 | { | |
1653 | if (pc == (li_found_pc + 4)) | |
1654 | { | |
1655 | vr_reg = GET_SRC_REG (op); | |
1656 | /* If this is the first vector reg to be saved, or if | |
1657 | it has a lower number than others previously seen, | |
1658 | reupdate the frame info. */ | |
1659 | if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg) | |
1660 | { | |
1661 | fdata->saved_vr = vr_reg; | |
1662 | fdata->vr_offset = vr_saved_offset + offset; | |
1663 | } | |
1664 | vr_saved_offset = -1; | |
1665 | vr_reg = -1; | |
1666 | li_found_pc = 0; | |
1667 | } | |
1668 | } | |
1669 | /* End AltiVec related instructions. */ | |
96ff0de4 EZ |
1670 | |
1671 | /* Start BookE related instructions. */ | |
1672 | /* Store gen register S at (r31+uimm). | |
1673 | Any register less than r13 is volatile, so we don't care. */ | |
1674 | /* 000100 sssss 11111 iiiii 01100100001 */ | |
1675 | else if (arch_info->mach == bfd_mach_ppc_e500 | |
1676 | && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */ | |
1677 | { | |
1678 | if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */ | |
1679 | { | |
1680 | unsigned int imm; | |
1681 | ev_reg = GET_SRC_REG (op); | |
1682 | imm = (op >> 11) & 0x1f; | |
1683 | ev_offset = imm * 8; | |
1684 | /* If this is the first vector reg to be saved, or if | |
1685 | it has a lower number than others previously seen, | |
1686 | reupdate the frame info. */ | |
1687 | if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg) | |
1688 | { | |
1689 | fdata->saved_ev = ev_reg; | |
1690 | fdata->ev_offset = ev_offset + offset; | |
1691 | } | |
1692 | } | |
1693 | continue; | |
1694 | } | |
1695 | /* Store gen register rS at (r1+rB). */ | |
1696 | /* 000100 sssss 00001 bbbbb 01100100000 */ | |
1697 | else if (arch_info->mach == bfd_mach_ppc_e500 | |
1698 | && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */ | |
1699 | { | |
1700 | if (pc == (li_found_pc + 4)) | |
1701 | { | |
1702 | ev_reg = GET_SRC_REG (op); | |
1703 | /* If this is the first vector reg to be saved, or if | |
1704 | it has a lower number than others previously seen, | |
1705 | reupdate the frame info. */ | |
1706 | /* We know the contents of rB from the previous instruction. */ | |
1707 | if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg) | |
1708 | { | |
1709 | fdata->saved_ev = ev_reg; | |
1710 | fdata->ev_offset = vr_saved_offset + offset; | |
1711 | } | |
1712 | vr_saved_offset = -1; | |
1713 | ev_reg = -1; | |
1714 | li_found_pc = 0; | |
1715 | } | |
1716 | continue; | |
1717 | } | |
1718 | /* Store gen register r31 at (rA+uimm). */ | |
1719 | /* 000100 11111 aaaaa iiiii 01100100001 */ | |
1720 | else if (arch_info->mach == bfd_mach_ppc_e500 | |
1721 | && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */ | |
1722 | { | |
1723 | /* Wwe know that the source register is 31 already, but | |
1724 | it can't hurt to compute it. */ | |
1725 | ev_reg = GET_SRC_REG (op); | |
1726 | ev_offset = ((op >> 11) & 0x1f) * 8; | |
1727 | /* If this is the first vector reg to be saved, or if | |
1728 | it has a lower number than others previously seen, | |
1729 | reupdate the frame info. */ | |
1730 | if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg) | |
1731 | { | |
1732 | fdata->saved_ev = ev_reg; | |
1733 | fdata->ev_offset = ev_offset + offset; | |
1734 | } | |
1735 | ||
1736 | continue; | |
1737 | } | |
1738 | /* Store gen register S at (r31+r0). | |
1739 | Store param on stack when offset from SP bigger than 4 bytes. */ | |
1740 | /* 000100 sssss 11111 00000 01100100000 */ | |
1741 | else if (arch_info->mach == bfd_mach_ppc_e500 | |
1742 | && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */ | |
1743 | { | |
1744 | if (pc == (li_found_pc + 4)) | |
1745 | { | |
1746 | if ((op & 0x03e00000) >= 0x01a00000) | |
1747 | { | |
1748 | ev_reg = GET_SRC_REG (op); | |
1749 | /* If this is the first vector reg to be saved, or if | |
1750 | it has a lower number than others previously seen, | |
1751 | reupdate the frame info. */ | |
1752 | /* We know the contents of r0 from the previous | |
1753 | instruction. */ | |
1754 | if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg) | |
1755 | { | |
1756 | fdata->saved_ev = ev_reg; | |
1757 | fdata->ev_offset = vr_saved_offset + offset; | |
1758 | } | |
1759 | ev_reg = -1; | |
1760 | } | |
1761 | vr_saved_offset = -1; | |
1762 | li_found_pc = 0; | |
1763 | continue; | |
1764 | } | |
1765 | } | |
1766 | /* End BookE related instructions. */ | |
1767 | ||
c5aa993b JM |
1768 | else |
1769 | { | |
55d05f3b KB |
1770 | /* Not a recognized prologue instruction. |
1771 | Handle optimizer code motions into the prologue by continuing | |
1772 | the search if we have no valid frame yet or if the return | |
1773 | address is not yet saved in the frame. */ | |
4e463ff5 | 1774 | if (fdata->frameless == 0 && fdata->nosavedpc == 0) |
55d05f3b KB |
1775 | break; |
1776 | ||
1777 | if (op == 0x4e800020 /* blr */ | |
1778 | || op == 0x4e800420) /* bctr */ | |
1779 | /* Do not scan past epilogue in frameless functions or | |
1780 | trampolines. */ | |
1781 | break; | |
1782 | if ((op & 0xf4000000) == 0x40000000) /* bxx */ | |
64366f1c | 1783 | /* Never skip branches. */ |
55d05f3b KB |
1784 | break; |
1785 | ||
1786 | if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns) | |
1787 | /* Do not scan too many insns, scanning insns is expensive with | |
1788 | remote targets. */ | |
1789 | break; | |
1790 | ||
1791 | /* Continue scanning. */ | |
1792 | prev_insn_was_prologue_insn = 0; | |
1793 | continue; | |
c5aa993b | 1794 | } |
c906108c SS |
1795 | } |
1796 | ||
1797 | #if 0 | |
1798 | /* I have problems with skipping over __main() that I need to address | |
1799 | * sometime. Previously, I used to use misc_function_vector which | |
1800 | * didn't work as well as I wanted to be. -MGO */ | |
1801 | ||
1802 | /* If the first thing after skipping a prolog is a branch to a function, | |
1803 | this might be a call to an initializer in main(), introduced by gcc2. | |
64366f1c | 1804 | We'd like to skip over it as well. Fortunately, xlc does some extra |
c906108c | 1805 | work before calling a function right after a prologue, thus we can |
64366f1c | 1806 | single out such gcc2 behaviour. */ |
c906108c | 1807 | |
c906108c | 1808 | |
c5aa993b JM |
1809 | if ((op & 0xfc000001) == 0x48000001) |
1810 | { /* bl foo, an initializer function? */ | |
1811 | op = read_memory_integer (pc + 4, 4); | |
1812 | ||
1813 | if (op == 0x4def7b82) | |
1814 | { /* cror 0xf, 0xf, 0xf (nop) */ | |
c906108c | 1815 | |
64366f1c EZ |
1816 | /* Check and see if we are in main. If so, skip over this |
1817 | initializer function as well. */ | |
c906108c | 1818 | |
c5aa993b | 1819 | tmp = find_pc_misc_function (pc); |
6314a349 AC |
1820 | if (tmp >= 0 |
1821 | && strcmp (misc_function_vector[tmp].name, main_name ()) == 0) | |
c5aa993b JM |
1822 | return pc + 8; |
1823 | } | |
c906108c | 1824 | } |
c906108c | 1825 | #endif /* 0 */ |
c5aa993b JM |
1826 | |
1827 | fdata->offset = -fdata->offset; | |
ddb20c56 | 1828 | return last_prologue_pc; |
c906108c SS |
1829 | } |
1830 | ||
1831 | ||
1832 | /************************************************************************* | |
f6077098 | 1833 | Support for creating pushing a dummy frame into the stack, and popping |
c906108c SS |
1834 | frames, etc. |
1835 | *************************************************************************/ | |
1836 | ||
c906108c | 1837 | |
11269d7e AC |
1838 | /* All the ABI's require 16 byte alignment. */ |
1839 | static CORE_ADDR | |
1840 | rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) | |
1841 | { | |
1842 | return (addr & -16); | |
1843 | } | |
1844 | ||
7a78ae4e | 1845 | /* Pass the arguments in either registers, or in the stack. In RS/6000, |
c906108c SS |
1846 | the first eight words of the argument list (that might be less than |
1847 | eight parameters if some parameters occupy more than one word) are | |
7a78ae4e | 1848 | passed in r3..r10 registers. float and double parameters are |
64366f1c EZ |
1849 | passed in fpr's, in addition to that. Rest of the parameters if any |
1850 | are passed in user stack. There might be cases in which half of the | |
c906108c SS |
1851 | parameter is copied into registers, the other half is pushed into |
1852 | stack. | |
1853 | ||
7a78ae4e ND |
1854 | Stack must be aligned on 64-bit boundaries when synthesizing |
1855 | function calls. | |
1856 | ||
c906108c SS |
1857 | If the function is returning a structure, then the return address is passed |
1858 | in r3, then the first 7 words of the parameters can be passed in registers, | |
64366f1c | 1859 | starting from r4. */ |
c906108c | 1860 | |
7a78ae4e | 1861 | static CORE_ADDR |
7d9b040b | 1862 | rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
77b2b6d4 AC |
1863 | struct regcache *regcache, CORE_ADDR bp_addr, |
1864 | int nargs, struct value **args, CORE_ADDR sp, | |
1865 | int struct_return, CORE_ADDR struct_addr) | |
c906108c | 1866 | { |
8b164abb | 1867 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
c906108c SS |
1868 | int ii; |
1869 | int len = 0; | |
c5aa993b JM |
1870 | int argno; /* current argument number */ |
1871 | int argbytes; /* current argument byte */ | |
50fd1280 | 1872 | gdb_byte tmp_buffer[50]; |
c5aa993b | 1873 | int f_argno = 0; /* current floating point argno */ |
8b164abb | 1874 | int wordsize = gdbarch_tdep (gdbarch)->wordsize; |
7d9b040b | 1875 | CORE_ADDR func_addr = find_function_addr (function, NULL); |
c906108c | 1876 | |
ea7c478f | 1877 | struct value *arg = 0; |
c906108c SS |
1878 | struct type *type; |
1879 | ||
fb4443d8 | 1880 | ULONGEST saved_sp; |
c906108c | 1881 | |
383f0f5b JB |
1882 | /* The calling convention this function implements assumes the |
1883 | processor has floating-point registers. We shouldn't be using it | |
1884 | on PPC variants that lack them. */ | |
8b164abb | 1885 | gdb_assert (ppc_floating_point_unit_p (gdbarch)); |
383f0f5b | 1886 | |
64366f1c | 1887 | /* The first eight words of ther arguments are passed in registers. |
7a41266b AC |
1888 | Copy them appropriately. */ |
1889 | ii = 0; | |
1890 | ||
1891 | /* If the function is returning a `struct', then the first word | |
1892 | (which will be passed in r3) is used for struct return address. | |
1893 | In that case we should advance one word and start from r4 | |
1894 | register to copy parameters. */ | |
1895 | if (struct_return) | |
1896 | { | |
1897 | regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3, | |
1898 | struct_addr); | |
1899 | ii++; | |
1900 | } | |
c906108c SS |
1901 | |
1902 | /* | |
c5aa993b JM |
1903 | effectively indirect call... gcc does... |
1904 | ||
1905 | return_val example( float, int); | |
1906 | ||
1907 | eabi: | |
1908 | float in fp0, int in r3 | |
1909 | offset of stack on overflow 8/16 | |
1910 | for varargs, must go by type. | |
1911 | power open: | |
1912 | float in r3&r4, int in r5 | |
1913 | offset of stack on overflow different | |
1914 | both: | |
1915 | return in r3 or f0. If no float, must study how gcc emulates floats; | |
1916 | pay attention to arg promotion. | |
1917 | User may have to cast\args to handle promotion correctly | |
1918 | since gdb won't know if prototype supplied or not. | |
1919 | */ | |
c906108c | 1920 | |
c5aa993b JM |
1921 | for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii) |
1922 | { | |
8b164abb | 1923 | int reg_size = register_size (gdbarch, ii + 3); |
c5aa993b JM |
1924 | |
1925 | arg = args[argno]; | |
df407dfe | 1926 | type = check_typedef (value_type (arg)); |
c5aa993b JM |
1927 | len = TYPE_LENGTH (type); |
1928 | ||
1929 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
1930 | { | |
1931 | ||
64366f1c | 1932 | /* Floating point arguments are passed in fpr's, as well as gpr's. |
c5aa993b | 1933 | There are 13 fpr's reserved for passing parameters. At this point |
64366f1c | 1934 | there is no way we would run out of them. */ |
c5aa993b | 1935 | |
9f335945 KB |
1936 | gdb_assert (len <= 8); |
1937 | ||
1938 | regcache_cooked_write (regcache, | |
1939 | tdep->ppc_fp0_regnum + 1 + f_argno, | |
0fd88904 | 1940 | value_contents (arg)); |
c5aa993b JM |
1941 | ++f_argno; |
1942 | } | |
1943 | ||
f6077098 | 1944 | if (len > reg_size) |
c5aa993b JM |
1945 | { |
1946 | ||
64366f1c | 1947 | /* Argument takes more than one register. */ |
c5aa993b JM |
1948 | while (argbytes < len) |
1949 | { | |
50fd1280 | 1950 | gdb_byte word[MAX_REGISTER_SIZE]; |
9f335945 KB |
1951 | memset (word, 0, reg_size); |
1952 | memcpy (word, | |
0fd88904 | 1953 | ((char *) value_contents (arg)) + argbytes, |
f6077098 KB |
1954 | (len - argbytes) > reg_size |
1955 | ? reg_size : len - argbytes); | |
9f335945 KB |
1956 | regcache_cooked_write (regcache, |
1957 | tdep->ppc_gp0_regnum + 3 + ii, | |
1958 | word); | |
f6077098 | 1959 | ++ii, argbytes += reg_size; |
c5aa993b JM |
1960 | |
1961 | if (ii >= 8) | |
1962 | goto ran_out_of_registers_for_arguments; | |
1963 | } | |
1964 | argbytes = 0; | |
1965 | --ii; | |
1966 | } | |
1967 | else | |
64366f1c EZ |
1968 | { |
1969 | /* Argument can fit in one register. No problem. */ | |
8b164abb | 1970 | int adj = gdbarch_byte_order (gdbarch) |
4c6b5505 | 1971 | == BFD_ENDIAN_BIG ? reg_size - len : 0; |
50fd1280 | 1972 | gdb_byte word[MAX_REGISTER_SIZE]; |
9f335945 KB |
1973 | |
1974 | memset (word, 0, reg_size); | |
0fd88904 | 1975 | memcpy (word, value_contents (arg), len); |
9f335945 | 1976 | regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word); |
c5aa993b JM |
1977 | } |
1978 | ++argno; | |
c906108c | 1979 | } |
c906108c SS |
1980 | |
1981 | ran_out_of_registers_for_arguments: | |
1982 | ||
3e8c568d | 1983 | regcache_cooked_read_unsigned (regcache, |
8b164abb | 1984 | gdbarch_sp_regnum (gdbarch), |
3e8c568d | 1985 | &saved_sp); |
cc9836a8 | 1986 | |
64366f1c | 1987 | /* Location for 8 parameters are always reserved. */ |
7a78ae4e | 1988 | sp -= wordsize * 8; |
f6077098 | 1989 | |
64366f1c | 1990 | /* Another six words for back chain, TOC register, link register, etc. */ |
7a78ae4e | 1991 | sp -= wordsize * 6; |
f6077098 | 1992 | |
64366f1c | 1993 | /* Stack pointer must be quadword aligned. */ |
7a78ae4e | 1994 | sp &= -16; |
c906108c | 1995 | |
64366f1c EZ |
1996 | /* If there are more arguments, allocate space for them in |
1997 | the stack, then push them starting from the ninth one. */ | |
c906108c | 1998 | |
c5aa993b JM |
1999 | if ((argno < nargs) || argbytes) |
2000 | { | |
2001 | int space = 0, jj; | |
c906108c | 2002 | |
c5aa993b JM |
2003 | if (argbytes) |
2004 | { | |
2005 | space += ((len - argbytes + 3) & -4); | |
2006 | jj = argno + 1; | |
2007 | } | |
2008 | else | |
2009 | jj = argno; | |
c906108c | 2010 | |
c5aa993b JM |
2011 | for (; jj < nargs; ++jj) |
2012 | { | |
ea7c478f | 2013 | struct value *val = args[jj]; |
df407dfe | 2014 | space += ((TYPE_LENGTH (value_type (val))) + 3) & -4; |
c5aa993b | 2015 | } |
c906108c | 2016 | |
64366f1c | 2017 | /* Add location required for the rest of the parameters. */ |
f6077098 | 2018 | space = (space + 15) & -16; |
c5aa993b | 2019 | sp -= space; |
c906108c | 2020 | |
7aea86e6 AC |
2021 | /* This is another instance we need to be concerned about |
2022 | securing our stack space. If we write anything underneath %sp | |
2023 | (r1), we might conflict with the kernel who thinks he is free | |
2024 | to use this area. So, update %sp first before doing anything | |
2025 | else. */ | |
2026 | ||
3e8c568d | 2027 | regcache_raw_write_signed (regcache, |
8b164abb | 2028 | gdbarch_sp_regnum (gdbarch), sp); |
7aea86e6 | 2029 | |
64366f1c EZ |
2030 | /* If the last argument copied into the registers didn't fit there |
2031 | completely, push the rest of it into stack. */ | |
c906108c | 2032 | |
c5aa993b JM |
2033 | if (argbytes) |
2034 | { | |
2035 | write_memory (sp + 24 + (ii * 4), | |
50fd1280 | 2036 | value_contents (arg) + argbytes, |
c5aa993b JM |
2037 | len - argbytes); |
2038 | ++argno; | |
2039 | ii += ((len - argbytes + 3) & -4) / 4; | |
2040 | } | |
c906108c | 2041 | |
64366f1c | 2042 | /* Push the rest of the arguments into stack. */ |
c5aa993b JM |
2043 | for (; argno < nargs; ++argno) |
2044 | { | |
c906108c | 2045 | |
c5aa993b | 2046 | arg = args[argno]; |
df407dfe | 2047 | type = check_typedef (value_type (arg)); |
c5aa993b | 2048 | len = TYPE_LENGTH (type); |
c906108c SS |
2049 | |
2050 | ||
64366f1c EZ |
2051 | /* Float types should be passed in fpr's, as well as in the |
2052 | stack. */ | |
c5aa993b JM |
2053 | if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13) |
2054 | { | |
c906108c | 2055 | |
9f335945 | 2056 | gdb_assert (len <= 8); |
c906108c | 2057 | |
9f335945 KB |
2058 | regcache_cooked_write (regcache, |
2059 | tdep->ppc_fp0_regnum + 1 + f_argno, | |
0fd88904 | 2060 | value_contents (arg)); |
c5aa993b JM |
2061 | ++f_argno; |
2062 | } | |
c906108c | 2063 | |
50fd1280 | 2064 | write_memory (sp + 24 + (ii * 4), value_contents (arg), len); |
c5aa993b JM |
2065 | ii += ((len + 3) & -4) / 4; |
2066 | } | |
c906108c | 2067 | } |
c906108c | 2068 | |
69517000 | 2069 | /* Set the stack pointer. According to the ABI, the SP is meant to |
7aea86e6 AC |
2070 | be set _before_ the corresponding stack space is used. On AIX, |
2071 | this even applies when the target has been completely stopped! | |
2072 | Not doing this can lead to conflicts with the kernel which thinks | |
2073 | that it still has control over this not-yet-allocated stack | |
2074 | region. */ | |
8b164abb | 2075 | regcache_raw_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp); |
33a7c2fc | 2076 | |
7aea86e6 | 2077 | /* Set back chain properly. */ |
8ba0209f AM |
2078 | store_unsigned_integer (tmp_buffer, wordsize, saved_sp); |
2079 | write_memory (sp, tmp_buffer, wordsize); | |
7aea86e6 | 2080 | |
e56a0ecc AC |
2081 | /* Point the inferior function call's return address at the dummy's |
2082 | breakpoint. */ | |
2083 | regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr); | |
2084 | ||
794a477a AC |
2085 | /* Set the TOC register, get the value from the objfile reader |
2086 | which, in turn, gets it from the VMAP table. */ | |
2087 | if (rs6000_find_toc_address_hook != NULL) | |
2088 | { | |
2089 | CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr); | |
2090 | regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue); | |
2091 | } | |
2092 | ||
56be3814 | 2093 | target_store_registers (regcache, -1); |
c906108c SS |
2094 | return sp; |
2095 | } | |
c906108c | 2096 | |
d217aaed | 2097 | static enum return_value_convention |
c055b101 CV |
2098 | rs6000_return_value (struct gdbarch *gdbarch, struct type *func_type, |
2099 | struct type *valtype, struct regcache *regcache, | |
2100 | gdb_byte *readbuf, const gdb_byte *writebuf) | |
c906108c | 2101 | { |
8b164abb | 2102 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
d217aaed | 2103 | gdb_byte buf[8]; |
c906108c | 2104 | |
383f0f5b JB |
2105 | /* The calling convention this function implements assumes the |
2106 | processor has floating-point registers. We shouldn't be using it | |
d217aaed | 2107 | on PowerPC variants that lack them. */ |
8b164abb | 2108 | gdb_assert (ppc_floating_point_unit_p (gdbarch)); |
383f0f5b | 2109 | |
d217aaed MK |
2110 | /* AltiVec extension: Functions that declare a vector data type as a |
2111 | return value place that return value in VR2. */ | |
2112 | if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype) | |
2113 | && TYPE_LENGTH (valtype) == 16) | |
c5aa993b | 2114 | { |
d217aaed MK |
2115 | if (readbuf) |
2116 | regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf); | |
2117 | if (writebuf) | |
2118 | regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf); | |
c906108c | 2119 | |
d217aaed | 2120 | return RETURN_VALUE_REGISTER_CONVENTION; |
c5aa993b | 2121 | } |
d217aaed MK |
2122 | |
2123 | /* If the called subprogram returns an aggregate, there exists an | |
2124 | implicit first argument, whose value is the address of a caller- | |
2125 | allocated buffer into which the callee is assumed to store its | |
2126 | return value. All explicit parameters are appropriately | |
2127 | relabeled. */ | |
2128 | if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT | |
2129 | || TYPE_CODE (valtype) == TYPE_CODE_UNION | |
2130 | || TYPE_CODE (valtype) == TYPE_CODE_ARRAY) | |
2131 | return RETURN_VALUE_STRUCT_CONVENTION; | |
2132 | ||
2133 | /* Scalar floating-point values are returned in FPR1 for float or | |
2134 | double, and in FPR1:FPR2 for quadword precision. Fortran | |
2135 | complex*8 and complex*16 are returned in FPR1:FPR2, and | |
2136 | complex*32 is returned in FPR1:FPR4. */ | |
2137 | if (TYPE_CODE (valtype) == TYPE_CODE_FLT | |
2138 | && (TYPE_LENGTH (valtype) == 4 || TYPE_LENGTH (valtype) == 8)) | |
2139 | { | |
2140 | struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum); | |
2141 | gdb_byte regval[8]; | |
2142 | ||
2143 | /* FIXME: kettenis/2007-01-01: Add support for quadword | |
2144 | precision and complex. */ | |
2145 | ||
2146 | if (readbuf) | |
2147 | { | |
2148 | regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval); | |
2149 | convert_typed_floating (regval, regtype, readbuf, valtype); | |
2150 | } | |
2151 | if (writebuf) | |
2152 | { | |
2153 | convert_typed_floating (writebuf, valtype, regval, regtype); | |
2154 | regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval); | |
2155 | } | |
2156 | ||
2157 | return RETURN_VALUE_REGISTER_CONVENTION; | |
2158 | } | |
2159 | ||
2160 | /* Values of the types int, long, short, pointer, and char (length | |
2161 | is less than or equal to four bytes), as well as bit values of | |
2162 | lengths less than or equal to 32 bits, must be returned right | |
2163 | justified in GPR3 with signed values sign extended and unsigned | |
2164 | values zero extended, as necessary. */ | |
2165 | if (TYPE_LENGTH (valtype) <= tdep->wordsize) | |
ace1378a | 2166 | { |
d217aaed MK |
2167 | if (readbuf) |
2168 | { | |
2169 | ULONGEST regval; | |
2170 | ||
2171 | /* For reading we don't have to worry about sign extension. */ | |
2172 | regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3, | |
2173 | ®val); | |
2174 | store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), regval); | |
2175 | } | |
2176 | if (writebuf) | |
2177 | { | |
2178 | /* For writing, use unpack_long since that should handle any | |
2179 | required sign extension. */ | |
2180 | regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3, | |
2181 | unpack_long (valtype, writebuf)); | |
2182 | } | |
2183 | ||
2184 | return RETURN_VALUE_REGISTER_CONVENTION; | |
ace1378a | 2185 | } |
d217aaed MK |
2186 | |
2187 | /* Eight-byte non-floating-point scalar values must be returned in | |
2188 | GPR3:GPR4. */ | |
2189 | ||
2190 | if (TYPE_LENGTH (valtype) == 8) | |
c5aa993b | 2191 | { |
d217aaed MK |
2192 | gdb_assert (TYPE_CODE (valtype) != TYPE_CODE_FLT); |
2193 | gdb_assert (tdep->wordsize == 4); | |
2194 | ||
2195 | if (readbuf) | |
2196 | { | |
2197 | gdb_byte regval[8]; | |
2198 | ||
2199 | regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, regval); | |
2200 | regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4, | |
2201 | regval + 4); | |
2202 | memcpy (readbuf, regval, 8); | |
2203 | } | |
2204 | if (writebuf) | |
2205 | { | |
2206 | regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf); | |
2207 | regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4, | |
2208 | writebuf + 4); | |
2209 | } | |
2210 | ||
2211 | return RETURN_VALUE_REGISTER_CONVENTION; | |
c906108c | 2212 | } |
d217aaed MK |
2213 | |
2214 | return RETURN_VALUE_STRUCT_CONVENTION; | |
c906108c SS |
2215 | } |
2216 | ||
977adac5 ND |
2217 | /* Return whether handle_inferior_event() should proceed through code |
2218 | starting at PC in function NAME when stepping. | |
2219 | ||
2220 | The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to | |
2221 | handle memory references that are too distant to fit in instructions | |
2222 | generated by the compiler. For example, if 'foo' in the following | |
2223 | instruction: | |
2224 | ||
2225 | lwz r9,foo(r2) | |
2226 | ||
2227 | is greater than 32767, the linker might replace the lwz with a branch to | |
2228 | somewhere in @FIX1 that does the load in 2 instructions and then branches | |
2229 | back to where execution should continue. | |
2230 | ||
2231 | GDB should silently step over @FIX code, just like AIX dbx does. | |
2ec664f5 MS |
2232 | Unfortunately, the linker uses the "b" instruction for the |
2233 | branches, meaning that the link register doesn't get set. | |
2234 | Therefore, GDB's usual step_over_function () mechanism won't work. | |
977adac5 | 2235 | |
e76f05fa UW |
2236 | Instead, use the gdbarch_skip_trampoline_code and |
2237 | gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past | |
2ec664f5 | 2238 | @FIX code. */ |
977adac5 ND |
2239 | |
2240 | int | |
2241 | rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name) | |
2242 | { | |
2243 | return name && !strncmp (name, "@FIX", 4); | |
2244 | } | |
2245 | ||
2246 | /* Skip code that the user doesn't want to see when stepping: | |
2247 | ||
2248 | 1. Indirect function calls use a piece of trampoline code to do context | |
2249 | switching, i.e. to set the new TOC table. Skip such code if we are on | |
2250 | its first instruction (as when we have single-stepped to here). | |
2251 | ||
2252 | 2. Skip shared library trampoline code (which is different from | |
c906108c | 2253 | indirect function call trampolines). |
977adac5 ND |
2254 | |
2255 | 3. Skip bigtoc fixup code. | |
2256 | ||
c906108c | 2257 | Result is desired PC to step until, or NULL if we are not in |
977adac5 | 2258 | code that should be skipped. */ |
c906108c SS |
2259 | |
2260 | CORE_ADDR | |
52f729a7 | 2261 | rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc) |
c906108c | 2262 | { |
52f0bd74 | 2263 | unsigned int ii, op; |
977adac5 | 2264 | int rel; |
c906108c | 2265 | CORE_ADDR solib_target_pc; |
977adac5 | 2266 | struct minimal_symbol *msymbol; |
c906108c | 2267 | |
c5aa993b JM |
2268 | static unsigned trampoline_code[] = |
2269 | { | |
2270 | 0x800b0000, /* l r0,0x0(r11) */ | |
2271 | 0x90410014, /* st r2,0x14(r1) */ | |
2272 | 0x7c0903a6, /* mtctr r0 */ | |
2273 | 0x804b0004, /* l r2,0x4(r11) */ | |
2274 | 0x816b0008, /* l r11,0x8(r11) */ | |
2275 | 0x4e800420, /* bctr */ | |
2276 | 0x4e800020, /* br */ | |
2277 | 0 | |
c906108c SS |
2278 | }; |
2279 | ||
977adac5 ND |
2280 | /* Check for bigtoc fixup code. */ |
2281 | msymbol = lookup_minimal_symbol_by_pc (pc); | |
2ec664f5 MS |
2282 | if (msymbol |
2283 | && rs6000_in_solib_return_trampoline (pc, | |
2284 | DEPRECATED_SYMBOL_NAME (msymbol))) | |
977adac5 ND |
2285 | { |
2286 | /* Double-check that the third instruction from PC is relative "b". */ | |
2287 | op = read_memory_integer (pc + 8, 4); | |
2288 | if ((op & 0xfc000003) == 0x48000000) | |
2289 | { | |
2290 | /* Extract bits 6-29 as a signed 24-bit relative word address and | |
2291 | add it to the containing PC. */ | |
2292 | rel = ((int)(op << 6) >> 6); | |
2293 | return pc + 8 + rel; | |
2294 | } | |
2295 | } | |
2296 | ||
c906108c | 2297 | /* If pc is in a shared library trampoline, return its target. */ |
52f729a7 | 2298 | solib_target_pc = find_solib_trampoline_target (frame, pc); |
c906108c SS |
2299 | if (solib_target_pc) |
2300 | return solib_target_pc; | |
2301 | ||
c5aa993b JM |
2302 | for (ii = 0; trampoline_code[ii]; ++ii) |
2303 | { | |
2304 | op = read_memory_integer (pc + (ii * 4), 4); | |
2305 | if (op != trampoline_code[ii]) | |
2306 | return 0; | |
2307 | } | |
52f729a7 | 2308 | ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination addr */ |
8b164abb UW |
2309 | pc = read_memory_addr (ii, |
2310 | gdbarch_tdep (get_frame_arch (frame))->wordsize); /* (r11) value */ | |
c906108c SS |
2311 | return pc; |
2312 | } | |
2313 | ||
794ac428 UW |
2314 | /* ISA-specific vector types. */ |
2315 | ||
2316 | static struct type * | |
2317 | rs6000_builtin_type_vec64 (struct gdbarch *gdbarch) | |
2318 | { | |
2319 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
2320 | ||
2321 | if (!tdep->ppc_builtin_type_vec64) | |
2322 | { | |
2323 | /* The type we're building is this: */ | |
2324 | #if 0 | |
2325 | union __gdb_builtin_type_vec64 | |
2326 | { | |
2327 | int64_t uint64; | |
2328 | float v2_float[2]; | |
2329 | int32_t v2_int32[2]; | |
2330 | int16_t v4_int16[4]; | |
2331 | int8_t v8_int8[8]; | |
2332 | }; | |
2333 | #endif | |
2334 | ||
2335 | struct type *t; | |
2336 | ||
2337 | t = init_composite_type ("__ppc_builtin_type_vec64", TYPE_CODE_UNION); | |
2338 | append_composite_type_field (t, "uint64", builtin_type_int64); | |
2339 | append_composite_type_field (t, "v2_float", | |
2340 | init_vector_type (builtin_type_float, 2)); | |
2341 | append_composite_type_field (t, "v2_int32", | |
2342 | init_vector_type (builtin_type_int32, 2)); | |
2343 | append_composite_type_field (t, "v4_int16", | |
2344 | init_vector_type (builtin_type_int16, 4)); | |
2345 | append_composite_type_field (t, "v8_int8", | |
2346 | init_vector_type (builtin_type_int8, 8)); | |
2347 | ||
2348 | TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR; | |
2349 | TYPE_NAME (t) = "ppc_builtin_type_vec64"; | |
2350 | tdep->ppc_builtin_type_vec64 = t; | |
2351 | } | |
2352 | ||
2353 | return tdep->ppc_builtin_type_vec64; | |
2354 | } | |
2355 | ||
7a78ae4e | 2356 | /* Return the size of register REG when words are WORDSIZE bytes long. If REG |
64366f1c | 2357 | isn't available with that word size, return 0. */ |
7a78ae4e ND |
2358 | |
2359 | static int | |
2360 | regsize (const struct reg *reg, int wordsize) | |
2361 | { | |
2362 | return wordsize == 8 ? reg->sz64 : reg->sz32; | |
2363 | } | |
2364 | ||
7cc46491 DJ |
2365 | /* Return the name of register number REGNO, or the empty string if it |
2366 | is an anonymous register. */ | |
7a78ae4e | 2367 | |
fa88f677 | 2368 | static const char * |
d93859e2 | 2369 | rs6000_register_name (struct gdbarch *gdbarch, int regno) |
7a78ae4e | 2370 | { |
d93859e2 | 2371 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
7a78ae4e | 2372 | |
7cc46491 DJ |
2373 | /* The upper half "registers" have names in the XML description, |
2374 | but we present only the low GPRs and the full 64-bit registers | |
2375 | to the user. */ | |
2376 | if (tdep->ppc_ev0_upper_regnum >= 0 | |
2377 | && tdep->ppc_ev0_upper_regnum <= regno | |
2378 | && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs) | |
2379 | return ""; | |
2380 | ||
2381 | /* Check if the SPE pseudo registers are available. */ | |
5a9e69ba | 2382 | if (IS_SPE_PSEUDOREG (tdep, regno)) |
7cc46491 DJ |
2383 | { |
2384 | static const char *const spe_regnames[] = { | |
2385 | "ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7", | |
2386 | "ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15", | |
2387 | "ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23", | |
2388 | "ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31", | |
2389 | }; | |
2390 | return spe_regnames[regno - tdep->ppc_ev0_regnum]; | |
2391 | } | |
2392 | ||
f949c649 TJB |
2393 | /* Check if the decimal128 pseudo-registers are available. */ |
2394 | if (IS_DFP_PSEUDOREG (tdep, regno)) | |
2395 | { | |
2396 | static const char *const dfp128_regnames[] = { | |
2397 | "dl0", "dl1", "dl2", "dl3", | |
2398 | "dl4", "dl5", "dl6", "dl7", | |
2399 | "dl8", "dl9", "dl10", "dl11", | |
2400 | "dl12", "dl13", "dl14", "dl15" | |
2401 | }; | |
2402 | return dfp128_regnames[regno - tdep->ppc_dl0_regnum]; | |
2403 | } | |
2404 | ||
d93859e2 | 2405 | return tdesc_register_name (gdbarch, regno); |
7a78ae4e ND |
2406 | } |
2407 | ||
7cc46491 DJ |
2408 | /* Return the GDB type object for the "standard" data type of data in |
2409 | register N. */ | |
7a78ae4e ND |
2410 | |
2411 | static struct type * | |
7cc46491 | 2412 | rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum) |
7a78ae4e | 2413 | { |
691d145a | 2414 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
7a78ae4e | 2415 | |
7cc46491 | 2416 | /* These are the only pseudo-registers we support. */ |
f949c649 TJB |
2417 | gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum) |
2418 | || IS_DFP_PSEUDOREG (tdep, regnum)); | |
7cc46491 | 2419 | |
f949c649 TJB |
2420 | /* These are the e500 pseudo-registers. */ |
2421 | if (IS_SPE_PSEUDOREG (tdep, regnum)) | |
2422 | return rs6000_builtin_type_vec64 (gdbarch); | |
2423 | else | |
2424 | /* Could only be the ppc decimal128 pseudo-registers. */ | |
2425 | return builtin_type (gdbarch)->builtin_declong; | |
7a78ae4e ND |
2426 | } |
2427 | ||
c44ca51c AC |
2428 | /* Is REGNUM a member of REGGROUP? */ |
2429 | static int | |
7cc46491 DJ |
2430 | rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum, |
2431 | struct reggroup *group) | |
c44ca51c AC |
2432 | { |
2433 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
c44ca51c | 2434 | |
7cc46491 | 2435 | /* These are the only pseudo-registers we support. */ |
f949c649 TJB |
2436 | gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum) |
2437 | || IS_DFP_PSEUDOREG (tdep, regnum)); | |
c44ca51c | 2438 | |
f949c649 TJB |
2439 | /* These are the e500 pseudo-registers. */ |
2440 | if (IS_SPE_PSEUDOREG (tdep, regnum)) | |
2441 | return group == all_reggroup || group == vector_reggroup; | |
7cc46491 | 2442 | else |
f949c649 TJB |
2443 | /* Could only be the ppc decimal128 pseudo-registers. */ |
2444 | return group == all_reggroup || group == float_reggroup; | |
c44ca51c AC |
2445 | } |
2446 | ||
691d145a | 2447 | /* The register format for RS/6000 floating point registers is always |
64366f1c | 2448 | double, we need a conversion if the memory format is float. */ |
7a78ae4e ND |
2449 | |
2450 | static int | |
0abe36f5 MD |
2451 | rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum, |
2452 | struct type *type) | |
7a78ae4e | 2453 | { |
0abe36f5 | 2454 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
7cc46491 DJ |
2455 | |
2456 | return (tdep->ppc_fp0_regnum >= 0 | |
2457 | && regnum >= tdep->ppc_fp0_regnum | |
2458 | && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs | |
2459 | && TYPE_CODE (type) == TYPE_CODE_FLT | |
2460 | && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double)); | |
7a78ae4e ND |
2461 | } |
2462 | ||
7a78ae4e | 2463 | static void |
691d145a JB |
2464 | rs6000_register_to_value (struct frame_info *frame, |
2465 | int regnum, | |
2466 | struct type *type, | |
50fd1280 | 2467 | gdb_byte *to) |
7a78ae4e | 2468 | { |
50fd1280 | 2469 | gdb_byte from[MAX_REGISTER_SIZE]; |
691d145a | 2470 | |
691d145a | 2471 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT); |
7a78ae4e | 2472 | |
691d145a JB |
2473 | get_frame_register (frame, regnum, from); |
2474 | convert_typed_floating (from, builtin_type_double, to, type); | |
2475 | } | |
7a292a7a | 2476 | |
7a78ae4e | 2477 | static void |
691d145a JB |
2478 | rs6000_value_to_register (struct frame_info *frame, |
2479 | int regnum, | |
2480 | struct type *type, | |
50fd1280 | 2481 | const gdb_byte *from) |
7a78ae4e | 2482 | { |
50fd1280 | 2483 | gdb_byte to[MAX_REGISTER_SIZE]; |
691d145a | 2484 | |
691d145a JB |
2485 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT); |
2486 | ||
2487 | convert_typed_floating (from, type, to, builtin_type_double); | |
2488 | put_frame_register (frame, regnum, to); | |
7a78ae4e | 2489 | } |
c906108c | 2490 | |
6ced10dd JB |
2491 | /* Move SPE vector register values between a 64-bit buffer and the two |
2492 | 32-bit raw register halves in a regcache. This function handles | |
2493 | both splitting a 64-bit value into two 32-bit halves, and joining | |
2494 | two halves into a whole 64-bit value, depending on the function | |
2495 | passed as the MOVE argument. | |
2496 | ||
2497 | EV_REG must be the number of an SPE evN vector register --- a | |
2498 | pseudoregister. REGCACHE must be a regcache, and BUFFER must be a | |
2499 | 64-bit buffer. | |
2500 | ||
2501 | Call MOVE once for each 32-bit half of that register, passing | |
2502 | REGCACHE, the number of the raw register corresponding to that | |
2503 | half, and the address of the appropriate half of BUFFER. | |
2504 | ||
2505 | For example, passing 'regcache_raw_read' as the MOVE function will | |
2506 | fill BUFFER with the full 64-bit contents of EV_REG. Or, passing | |
2507 | 'regcache_raw_supply' will supply the contents of BUFFER to the | |
2508 | appropriate pair of raw registers in REGCACHE. | |
2509 | ||
2510 | You may need to cast away some 'const' qualifiers when passing | |
2511 | MOVE, since this function can't tell at compile-time which of | |
2512 | REGCACHE or BUFFER is acting as the source of the data. If C had | |
2513 | co-variant type qualifiers, ... */ | |
2514 | static void | |
2515 | e500_move_ev_register (void (*move) (struct regcache *regcache, | |
50fd1280 | 2516 | int regnum, gdb_byte *buf), |
6ced10dd | 2517 | struct regcache *regcache, int ev_reg, |
50fd1280 | 2518 | gdb_byte *buffer) |
6ced10dd JB |
2519 | { |
2520 | struct gdbarch *arch = get_regcache_arch (regcache); | |
2521 | struct gdbarch_tdep *tdep = gdbarch_tdep (arch); | |
2522 | int reg_index; | |
50fd1280 | 2523 | gdb_byte *byte_buffer = buffer; |
6ced10dd | 2524 | |
5a9e69ba | 2525 | gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg)); |
6ced10dd JB |
2526 | |
2527 | reg_index = ev_reg - tdep->ppc_ev0_regnum; | |
2528 | ||
8b164abb | 2529 | if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG) |
6ced10dd JB |
2530 | { |
2531 | move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer); | |
2532 | move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4); | |
2533 | } | |
2534 | else | |
2535 | { | |
2536 | move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer); | |
2537 | move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4); | |
2538 | } | |
2539 | } | |
2540 | ||
c8001721 EZ |
2541 | static void |
2542 | e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, | |
50fd1280 | 2543 | int reg_nr, gdb_byte *buffer) |
f949c649 TJB |
2544 | { |
2545 | e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer); | |
2546 | } | |
2547 | ||
2548 | static void | |
2549 | e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, | |
2550 | int reg_nr, const gdb_byte *buffer) | |
2551 | { | |
2552 | e500_move_ev_register ((void (*) (struct regcache *, int, gdb_byte *)) | |
2553 | regcache_raw_write, | |
2554 | regcache, reg_nr, (gdb_byte *) buffer); | |
2555 | } | |
2556 | ||
2557 | /* Read method for PPC pseudo-registers. Currently this is handling the | |
2558 | 16 decimal128 registers that map into 16 pairs of FP registers. */ | |
2559 | static void | |
2560 | ppc_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, | |
2561 | int reg_nr, gdb_byte *buffer) | |
2562 | { | |
2563 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
2564 | int reg_index = reg_nr - tdep->ppc_dl0_regnum; | |
2565 | ||
2566 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | |
2567 | { | |
2568 | /* Read two FP registers to form a whole dl register. */ | |
2569 | regcache_raw_read (regcache, tdep->ppc_fp0_regnum + | |
2570 | 2 * reg_index, buffer); | |
2571 | regcache_raw_read (regcache, tdep->ppc_fp0_regnum + | |
2572 | 2 * reg_index + 1, buffer + 8); | |
2573 | } | |
2574 | else | |
2575 | { | |
2576 | regcache_raw_read (regcache, tdep->ppc_fp0_regnum + | |
2577 | 2 * reg_index + 1, buffer + 8); | |
2578 | regcache_raw_read (regcache, tdep->ppc_fp0_regnum + | |
2579 | 2 * reg_index, buffer); | |
2580 | } | |
2581 | } | |
2582 | ||
2583 | /* Write method for PPC pseudo-registers. Currently this is handling the | |
2584 | 16 decimal128 registers that map into 16 pairs of FP registers. */ | |
2585 | static void | |
2586 | ppc_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, | |
2587 | int reg_nr, const gdb_byte *buffer) | |
2588 | { | |
2589 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
2590 | int reg_index = reg_nr - tdep->ppc_dl0_regnum; | |
2591 | ||
2592 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | |
2593 | { | |
2594 | /* Write each half of the dl register into a separate | |
2595 | FP register. */ | |
2596 | regcache_raw_write (regcache, tdep->ppc_fp0_regnum + | |
2597 | 2 * reg_index, buffer); | |
2598 | regcache_raw_write (regcache, tdep->ppc_fp0_regnum + | |
2599 | 2 * reg_index + 1, buffer + 8); | |
2600 | } | |
2601 | else | |
2602 | { | |
2603 | regcache_raw_write (regcache, tdep->ppc_fp0_regnum + | |
2604 | 2 * reg_index + 1, buffer + 8); | |
2605 | regcache_raw_write (regcache, tdep->ppc_fp0_regnum + | |
2606 | 2 * reg_index, buffer); | |
2607 | } | |
2608 | } | |
2609 | ||
2610 | static void | |
2611 | rs6000_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, | |
2612 | int reg_nr, gdb_byte *buffer) | |
c8001721 | 2613 | { |
6ced10dd | 2614 | struct gdbarch *regcache_arch = get_regcache_arch (regcache); |
c8001721 EZ |
2615 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
2616 | ||
6ced10dd | 2617 | gdb_assert (regcache_arch == gdbarch); |
f949c649 | 2618 | |
5a9e69ba | 2619 | if (IS_SPE_PSEUDOREG (tdep, reg_nr)) |
f949c649 TJB |
2620 | e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer); |
2621 | else if (IS_DFP_PSEUDOREG (tdep, reg_nr)) | |
2622 | ppc_pseudo_register_read (gdbarch, regcache, reg_nr, buffer); | |
6ced10dd | 2623 | else |
a44bddec | 2624 | internal_error (__FILE__, __LINE__, |
f949c649 TJB |
2625 | _("rs6000_pseudo_register_read: " |
2626 | "called on unexpected register '%s' (%d)"), | |
2627 | gdbarch_register_name (gdbarch, reg_nr), reg_nr); | |
c8001721 EZ |
2628 | } |
2629 | ||
2630 | static void | |
f949c649 TJB |
2631 | rs6000_pseudo_register_write (struct gdbarch *gdbarch, |
2632 | struct regcache *regcache, | |
2633 | int reg_nr, const gdb_byte *buffer) | |
c8001721 | 2634 | { |
6ced10dd | 2635 | struct gdbarch *regcache_arch = get_regcache_arch (regcache); |
c8001721 EZ |
2636 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
2637 | ||
6ced10dd | 2638 | gdb_assert (regcache_arch == gdbarch); |
f949c649 | 2639 | |
5a9e69ba | 2640 | if (IS_SPE_PSEUDOREG (tdep, reg_nr)) |
f949c649 TJB |
2641 | e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer); |
2642 | else if (IS_DFP_PSEUDOREG (tdep, reg_nr)) | |
2643 | ppc_pseudo_register_write (gdbarch, regcache, reg_nr, buffer); | |
6ced10dd | 2644 | else |
a44bddec | 2645 | internal_error (__FILE__, __LINE__, |
f949c649 TJB |
2646 | _("rs6000_pseudo_register_write: " |
2647 | "called on unexpected register '%s' (%d)"), | |
2648 | gdbarch_register_name (gdbarch, reg_nr), reg_nr); | |
6ced10dd JB |
2649 | } |
2650 | ||
18ed0c4e | 2651 | /* Convert a DBX STABS register number to a GDB register number. */ |
c8001721 | 2652 | static int |
d3f73121 | 2653 | rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num) |
c8001721 | 2654 | { |
d3f73121 | 2655 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
c8001721 | 2656 | |
9f744501 JB |
2657 | if (0 <= num && num <= 31) |
2658 | return tdep->ppc_gp0_regnum + num; | |
2659 | else if (32 <= num && num <= 63) | |
383f0f5b JB |
2660 | /* FIXME: jimb/2004-05-05: What should we do when the debug info |
2661 | specifies registers the architecture doesn't have? Our | |
2662 | callers don't check the value we return. */ | |
366f009f | 2663 | return tdep->ppc_fp0_regnum + (num - 32); |
18ed0c4e JB |
2664 | else if (77 <= num && num <= 108) |
2665 | return tdep->ppc_vr0_regnum + (num - 77); | |
9f744501 JB |
2666 | else if (1200 <= num && num < 1200 + 32) |
2667 | return tdep->ppc_ev0_regnum + (num - 1200); | |
2668 | else | |
2669 | switch (num) | |
2670 | { | |
2671 | case 64: | |
2672 | return tdep->ppc_mq_regnum; | |
2673 | case 65: | |
2674 | return tdep->ppc_lr_regnum; | |
2675 | case 66: | |
2676 | return tdep->ppc_ctr_regnum; | |
2677 | case 76: | |
2678 | return tdep->ppc_xer_regnum; | |
2679 | case 109: | |
2680 | return tdep->ppc_vrsave_regnum; | |
18ed0c4e JB |
2681 | case 110: |
2682 | return tdep->ppc_vrsave_regnum - 1; /* vscr */ | |
867e2dc5 | 2683 | case 111: |
18ed0c4e | 2684 | return tdep->ppc_acc_regnum; |
867e2dc5 | 2685 | case 112: |
18ed0c4e | 2686 | return tdep->ppc_spefscr_regnum; |
9f744501 JB |
2687 | default: |
2688 | return num; | |
2689 | } | |
18ed0c4e | 2690 | } |
9f744501 | 2691 | |
9f744501 | 2692 | |
18ed0c4e JB |
2693 | /* Convert a Dwarf 2 register number to a GDB register number. */ |
2694 | static int | |
d3f73121 | 2695 | rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num) |
18ed0c4e | 2696 | { |
d3f73121 | 2697 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
9f744501 | 2698 | |
18ed0c4e JB |
2699 | if (0 <= num && num <= 31) |
2700 | return tdep->ppc_gp0_regnum + num; | |
2701 | else if (32 <= num && num <= 63) | |
2702 | /* FIXME: jimb/2004-05-05: What should we do when the debug info | |
2703 | specifies registers the architecture doesn't have? Our | |
2704 | callers don't check the value we return. */ | |
2705 | return tdep->ppc_fp0_regnum + (num - 32); | |
2706 | else if (1124 <= num && num < 1124 + 32) | |
2707 | return tdep->ppc_vr0_regnum + (num - 1124); | |
2708 | else if (1200 <= num && num < 1200 + 32) | |
2709 | return tdep->ppc_ev0_regnum + (num - 1200); | |
2710 | else | |
2711 | switch (num) | |
2712 | { | |
a489f789 AS |
2713 | case 64: |
2714 | return tdep->ppc_cr_regnum; | |
18ed0c4e JB |
2715 | case 67: |
2716 | return tdep->ppc_vrsave_regnum - 1; /* vscr */ | |
2717 | case 99: | |
2718 | return tdep->ppc_acc_regnum; | |
2719 | case 100: | |
2720 | return tdep->ppc_mq_regnum; | |
2721 | case 101: | |
2722 | return tdep->ppc_xer_regnum; | |
2723 | case 108: | |
2724 | return tdep->ppc_lr_regnum; | |
2725 | case 109: | |
2726 | return tdep->ppc_ctr_regnum; | |
2727 | case 356: | |
2728 | return tdep->ppc_vrsave_regnum; | |
2729 | case 612: | |
2730 | return tdep->ppc_spefscr_regnum; | |
2731 | default: | |
2732 | return num; | |
2733 | } | |
2188cbdd EZ |
2734 | } |
2735 | ||
4fc771b8 DJ |
2736 | /* Translate a .eh_frame register to DWARF register, or adjust a |
2737 | .debug_frame register. */ | |
2738 | ||
2739 | static int | |
2740 | rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p) | |
2741 | { | |
2742 | /* GCC releases before 3.4 use GCC internal register numbering in | |
2743 | .debug_frame (and .debug_info, et cetera). The numbering is | |
2744 | different from the standard SysV numbering for everything except | |
2745 | for GPRs and FPRs. We can not detect this problem in most cases | |
2746 | - to get accurate debug info for variables living in lr, ctr, v0, | |
2747 | et cetera, use a newer version of GCC. But we must detect | |
2748 | one important case - lr is in column 65 in .debug_frame output, | |
2749 | instead of 108. | |
2750 | ||
2751 | GCC 3.4, and the "hammer" branch, have a related problem. They | |
2752 | record lr register saves in .debug_frame as 108, but still record | |
2753 | the return column as 65. We fix that up too. | |
2754 | ||
2755 | We can do this because 65 is assigned to fpsr, and GCC never | |
2756 | generates debug info referring to it. To add support for | |
2757 | handwritten debug info that restores fpsr, we would need to add a | |
2758 | producer version check to this. */ | |
2759 | if (!eh_frame_p) | |
2760 | { | |
2761 | if (num == 65) | |
2762 | return 108; | |
2763 | else | |
2764 | return num; | |
2765 | } | |
2766 | ||
2767 | /* .eh_frame is GCC specific. For binary compatibility, it uses GCC | |
2768 | internal register numbering; translate that to the standard DWARF2 | |
2769 | register numbering. */ | |
2770 | if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */ | |
2771 | return num; | |
2772 | else if (68 <= num && num <= 75) /* cr0-cr8 */ | |
2773 | return num - 68 + 86; | |
2774 | else if (77 <= num && num <= 108) /* vr0-vr31 */ | |
2775 | return num - 77 + 1124; | |
2776 | else | |
2777 | switch (num) | |
2778 | { | |
2779 | case 64: /* mq */ | |
2780 | return 100; | |
2781 | case 65: /* lr */ | |
2782 | return 108; | |
2783 | case 66: /* ctr */ | |
2784 | return 109; | |
2785 | case 76: /* xer */ | |
2786 | return 101; | |
2787 | case 109: /* vrsave */ | |
2788 | return 356; | |
2789 | case 110: /* vscr */ | |
2790 | return 67; | |
2791 | case 111: /* spe_acc */ | |
2792 | return 99; | |
2793 | case 112: /* spefscr */ | |
2794 | return 612; | |
2795 | default: | |
2796 | return num; | |
2797 | } | |
2798 | } | |
c906108c | 2799 | \f |
e2d0e7eb | 2800 | /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG). |
7a78ae4e ND |
2801 | |
2802 | Usually a function pointer's representation is simply the address | |
2803 | of the function. On the RS/6000 however, a function pointer is | |
8ba0209f | 2804 | represented by a pointer to an OPD entry. This OPD entry contains |
7a78ae4e ND |
2805 | three words, the first word is the address of the function, the |
2806 | second word is the TOC pointer (r2), and the third word is the | |
2807 | static chain value. Throughout GDB it is currently assumed that a | |
2808 | function pointer contains the address of the function, which is not | |
2809 | easy to fix. In addition, the conversion of a function address to | |
8ba0209f | 2810 | a function pointer would require allocation of an OPD entry in the |
7a78ae4e ND |
2811 | inferior's memory space, with all its drawbacks. To be able to |
2812 | call C++ virtual methods in the inferior (which are called via | |
f517ea4e | 2813 | function pointers), find_function_addr uses this function to get the |
7a78ae4e ND |
2814 | function address from a function pointer. */ |
2815 | ||
f517ea4e PS |
2816 | /* Return real function address if ADDR (a function pointer) is in the data |
2817 | space and is therefore a special function pointer. */ | |
c906108c | 2818 | |
b9362cc7 | 2819 | static CORE_ADDR |
e2d0e7eb AC |
2820 | rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch, |
2821 | CORE_ADDR addr, | |
2822 | struct target_ops *targ) | |
c906108c SS |
2823 | { |
2824 | struct obj_section *s; | |
2825 | ||
2826 | s = find_pc_section (addr); | |
2827 | if (s && s->the_bfd_section->flags & SEC_CODE) | |
7a78ae4e | 2828 | return addr; |
c906108c | 2829 | |
7a78ae4e | 2830 | /* ADDR is in the data space, so it's a special function pointer. */ |
7f68ac27 | 2831 | return read_memory_addr (addr, gdbarch_tdep (gdbarch)->wordsize); |
c906108c | 2832 | } |
c906108c | 2833 | \f |
c5aa993b | 2834 | |
7a78ae4e | 2835 | /* Handling the various POWER/PowerPC variants. */ |
c906108c | 2836 | |
c906108c | 2837 | /* Information about a particular processor variant. */ |
7a78ae4e | 2838 | |
c906108c | 2839 | struct variant |
c5aa993b JM |
2840 | { |
2841 | /* Name of this variant. */ | |
2842 | char *name; | |
c906108c | 2843 | |
c5aa993b JM |
2844 | /* English description of the variant. */ |
2845 | char *description; | |
c906108c | 2846 | |
64366f1c | 2847 | /* bfd_arch_info.arch corresponding to variant. */ |
7a78ae4e ND |
2848 | enum bfd_architecture arch; |
2849 | ||
64366f1c | 2850 | /* bfd_arch_info.mach corresponding to variant. */ |
7a78ae4e ND |
2851 | unsigned long mach; |
2852 | ||
7cc46491 DJ |
2853 | /* Target description for this variant. */ |
2854 | struct target_desc **tdesc; | |
c5aa993b | 2855 | }; |
c906108c | 2856 | |
489461e2 | 2857 | static struct variant variants[] = |
c906108c | 2858 | { |
7a78ae4e | 2859 | {"powerpc", "PowerPC user-level", bfd_arch_powerpc, |
7cc46491 | 2860 | bfd_mach_ppc, &tdesc_powerpc_32}, |
7a78ae4e | 2861 | {"power", "POWER user-level", bfd_arch_rs6000, |
7cc46491 | 2862 | bfd_mach_rs6k, &tdesc_rs6000}, |
7a78ae4e | 2863 | {"403", "IBM PowerPC 403", bfd_arch_powerpc, |
7cc46491 | 2864 | bfd_mach_ppc_403, &tdesc_powerpc_403}, |
7a78ae4e | 2865 | {"601", "Motorola PowerPC 601", bfd_arch_powerpc, |
7cc46491 | 2866 | bfd_mach_ppc_601, &tdesc_powerpc_601}, |
7a78ae4e | 2867 | {"602", "Motorola PowerPC 602", bfd_arch_powerpc, |
7cc46491 | 2868 | bfd_mach_ppc_602, &tdesc_powerpc_602}, |
7a78ae4e | 2869 | {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc, |
7cc46491 | 2870 | bfd_mach_ppc_603, &tdesc_powerpc_603}, |
7a78ae4e | 2871 | {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc, |
7cc46491 | 2872 | 604, &tdesc_powerpc_604}, |
7a78ae4e | 2873 | {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc, |
7cc46491 | 2874 | bfd_mach_ppc_403gc, &tdesc_powerpc_403gc}, |
7a78ae4e | 2875 | {"505", "Motorola PowerPC 505", bfd_arch_powerpc, |
7cc46491 | 2876 | bfd_mach_ppc_505, &tdesc_powerpc_505}, |
7a78ae4e | 2877 | {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc, |
7cc46491 | 2878 | bfd_mach_ppc_860, &tdesc_powerpc_860}, |
7a78ae4e | 2879 | {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc, |
7cc46491 | 2880 | bfd_mach_ppc_750, &tdesc_powerpc_750}, |
1fcc0bb8 | 2881 | {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc, |
7cc46491 | 2882 | bfd_mach_ppc_7400, &tdesc_powerpc_7400}, |
c8001721 | 2883 | {"e500", "Motorola PowerPC e500", bfd_arch_powerpc, |
7cc46491 | 2884 | bfd_mach_ppc_e500, &tdesc_powerpc_e500}, |
7a78ae4e | 2885 | |
5d57ee30 KB |
2886 | /* 64-bit */ |
2887 | {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc, | |
7cc46491 | 2888 | bfd_mach_ppc64, &tdesc_powerpc_64}, |
7a78ae4e | 2889 | {"620", "Motorola PowerPC 620", bfd_arch_powerpc, |
7cc46491 | 2890 | bfd_mach_ppc_620, &tdesc_powerpc_64}, |
5d57ee30 | 2891 | {"630", "Motorola PowerPC 630", bfd_arch_powerpc, |
7cc46491 | 2892 | bfd_mach_ppc_630, &tdesc_powerpc_64}, |
7a78ae4e | 2893 | {"a35", "PowerPC A35", bfd_arch_powerpc, |
7cc46491 | 2894 | bfd_mach_ppc_a35, &tdesc_powerpc_64}, |
5d57ee30 | 2895 | {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc, |
7cc46491 | 2896 | bfd_mach_ppc_rs64ii, &tdesc_powerpc_64}, |
5d57ee30 | 2897 | {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc, |
7cc46491 | 2898 | bfd_mach_ppc_rs64iii, &tdesc_powerpc_64}, |
5d57ee30 | 2899 | |
64366f1c | 2900 | /* FIXME: I haven't checked the register sets of the following. */ |
7a78ae4e | 2901 | {"rs1", "IBM POWER RS1", bfd_arch_rs6000, |
7cc46491 | 2902 | bfd_mach_rs6k_rs1, &tdesc_rs6000}, |
7a78ae4e | 2903 | {"rsc", "IBM POWER RSC", bfd_arch_rs6000, |
7cc46491 | 2904 | bfd_mach_rs6k_rsc, &tdesc_rs6000}, |
7a78ae4e | 2905 | {"rs2", "IBM POWER RS2", bfd_arch_rs6000, |
7cc46491 | 2906 | bfd_mach_rs6k_rs2, &tdesc_rs6000}, |
7a78ae4e | 2907 | |
7cc46491 | 2908 | {0, 0, 0, 0, 0} |
c906108c SS |
2909 | }; |
2910 | ||
7a78ae4e | 2911 | /* Return the variant corresponding to architecture ARCH and machine number |
64366f1c | 2912 | MACH. If no such variant exists, return null. */ |
c906108c | 2913 | |
7a78ae4e ND |
2914 | static const struct variant * |
2915 | find_variant_by_arch (enum bfd_architecture arch, unsigned long mach) | |
c906108c | 2916 | { |
7a78ae4e | 2917 | const struct variant *v; |
c5aa993b | 2918 | |
7a78ae4e ND |
2919 | for (v = variants; v->name; v++) |
2920 | if (arch == v->arch && mach == v->mach) | |
2921 | return v; | |
c906108c | 2922 | |
7a78ae4e | 2923 | return NULL; |
c906108c | 2924 | } |
9364a0ef EZ |
2925 | |
2926 | static int | |
2927 | gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info) | |
2928 | { | |
ee4f0f76 DJ |
2929 | if (!info->disassembler_options) |
2930 | info->disassembler_options = "any"; | |
2931 | ||
40887e1a | 2932 | if (info->endian == BFD_ENDIAN_BIG) |
9364a0ef EZ |
2933 | return print_insn_big_powerpc (memaddr, info); |
2934 | else | |
2935 | return print_insn_little_powerpc (memaddr, info); | |
2936 | } | |
7a78ae4e | 2937 | \f |
61a65099 KB |
2938 | static CORE_ADDR |
2939 | rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
2940 | { | |
3e8c568d | 2941 | return frame_unwind_register_unsigned (next_frame, |
8b164abb | 2942 | gdbarch_pc_regnum (gdbarch)); |
61a65099 KB |
2943 | } |
2944 | ||
2945 | static struct frame_id | |
2946 | rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
2947 | { | |
3e8c568d | 2948 | return frame_id_build (frame_unwind_register_unsigned |
8b164abb | 2949 | (next_frame, gdbarch_sp_regnum (gdbarch)), |
3e8c568d | 2950 | frame_pc_unwind (next_frame)); |
61a65099 KB |
2951 | } |
2952 | ||
2953 | struct rs6000_frame_cache | |
2954 | { | |
2955 | CORE_ADDR base; | |
2956 | CORE_ADDR initial_sp; | |
2957 | struct trad_frame_saved_reg *saved_regs; | |
2958 | }; | |
2959 | ||
2960 | static struct rs6000_frame_cache * | |
2961 | rs6000_frame_cache (struct frame_info *next_frame, void **this_cache) | |
2962 | { | |
2963 | struct rs6000_frame_cache *cache; | |
2964 | struct gdbarch *gdbarch = get_frame_arch (next_frame); | |
2965 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
2966 | struct rs6000_framedata fdata; | |
2967 | int wordsize = tdep->wordsize; | |
e10b1c4c | 2968 | CORE_ADDR func, pc; |
61a65099 KB |
2969 | |
2970 | if ((*this_cache) != NULL) | |
2971 | return (*this_cache); | |
2972 | cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache); | |
2973 | (*this_cache) = cache; | |
2974 | cache->saved_regs = trad_frame_alloc_saved_regs (next_frame); | |
2975 | ||
93d42b30 | 2976 | func = frame_func_unwind (next_frame, NORMAL_FRAME); |
e10b1c4c | 2977 | pc = frame_pc_unwind (next_frame); |
be8626e0 | 2978 | skip_prologue (gdbarch, func, pc, &fdata); |
e10b1c4c DJ |
2979 | |
2980 | /* Figure out the parent's stack pointer. */ | |
2981 | ||
2982 | /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most | |
2983 | address of the current frame. Things might be easier if the | |
2984 | ->frame pointed to the outer-most address of the frame. In | |
2985 | the mean time, the address of the prev frame is used as the | |
2986 | base address of this frame. */ | |
3e8c568d | 2987 | cache->base = frame_unwind_register_unsigned |
8b164abb | 2988 | (next_frame, gdbarch_sp_regnum (gdbarch)); |
e10b1c4c DJ |
2989 | |
2990 | /* If the function appears to be frameless, check a couple of likely | |
2991 | indicators that we have simply failed to find the frame setup. | |
2992 | Two common cases of this are missing symbols (i.e. | |
2993 | frame_func_unwind returns the wrong address or 0), and assembly | |
2994 | stubs which have a fast exit path but set up a frame on the slow | |
2995 | path. | |
2996 | ||
2997 | If the LR appears to return to this function, then presume that | |
2998 | we have an ABI compliant frame that we failed to find. */ | |
2999 | if (fdata.frameless && fdata.lr_offset == 0) | |
61a65099 | 3000 | { |
e10b1c4c DJ |
3001 | CORE_ADDR saved_lr; |
3002 | int make_frame = 0; | |
3003 | ||
3004 | saved_lr = frame_unwind_register_unsigned (next_frame, | |
3005 | tdep->ppc_lr_regnum); | |
3006 | if (func == 0 && saved_lr == pc) | |
3007 | make_frame = 1; | |
3008 | else if (func != 0) | |
3009 | { | |
3010 | CORE_ADDR saved_func = get_pc_function_start (saved_lr); | |
3011 | if (func == saved_func) | |
3012 | make_frame = 1; | |
3013 | } | |
3014 | ||
3015 | if (make_frame) | |
3016 | { | |
3017 | fdata.frameless = 0; | |
de6a76fd | 3018 | fdata.lr_offset = tdep->lr_frame_offset; |
e10b1c4c | 3019 | } |
61a65099 | 3020 | } |
e10b1c4c DJ |
3021 | |
3022 | if (!fdata.frameless) | |
3023 | /* Frameless really means stackless. */ | |
3024 | cache->base = read_memory_addr (cache->base, wordsize); | |
3025 | ||
3e8c568d | 3026 | trad_frame_set_value (cache->saved_regs, |
8b164abb | 3027 | gdbarch_sp_regnum (gdbarch), cache->base); |
61a65099 KB |
3028 | |
3029 | /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr. | |
3030 | All fpr's from saved_fpr to fp31 are saved. */ | |
3031 | ||
3032 | if (fdata.saved_fpr >= 0) | |
3033 | { | |
3034 | int i; | |
3035 | CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset; | |
383f0f5b JB |
3036 | |
3037 | /* If skip_prologue says floating-point registers were saved, | |
3038 | but the current architecture has no floating-point registers, | |
3039 | then that's strange. But we have no indices to even record | |
3040 | the addresses under, so we just ignore it. */ | |
3041 | if (ppc_floating_point_unit_p (gdbarch)) | |
063715bf | 3042 | for (i = fdata.saved_fpr; i < ppc_num_fprs; i++) |
383f0f5b JB |
3043 | { |
3044 | cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr; | |
3045 | fpr_addr += 8; | |
3046 | } | |
61a65099 KB |
3047 | } |
3048 | ||
3049 | /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr. | |
3050 | All gpr's from saved_gpr to gpr31 are saved. */ | |
3051 | ||
3052 | if (fdata.saved_gpr >= 0) | |
3053 | { | |
3054 | int i; | |
3055 | CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset; | |
063715bf | 3056 | for (i = fdata.saved_gpr; i < ppc_num_gprs; i++) |
61a65099 KB |
3057 | { |
3058 | cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr; | |
3059 | gpr_addr += wordsize; | |
3060 | } | |
3061 | } | |
3062 | ||
3063 | /* if != -1, fdata.saved_vr is the smallest number of saved_vr. | |
3064 | All vr's from saved_vr to vr31 are saved. */ | |
3065 | if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1) | |
3066 | { | |
3067 | if (fdata.saved_vr >= 0) | |
3068 | { | |
3069 | int i; | |
3070 | CORE_ADDR vr_addr = cache->base + fdata.vr_offset; | |
3071 | for (i = fdata.saved_vr; i < 32; i++) | |
3072 | { | |
3073 | cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr; | |
3074 | vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum); | |
3075 | } | |
3076 | } | |
3077 | } | |
3078 | ||
3079 | /* if != -1, fdata.saved_ev is the smallest number of saved_ev. | |
3080 | All vr's from saved_ev to ev31 are saved. ????? */ | |
5a9e69ba | 3081 | if (tdep->ppc_ev0_regnum != -1) |
61a65099 KB |
3082 | { |
3083 | if (fdata.saved_ev >= 0) | |
3084 | { | |
3085 | int i; | |
3086 | CORE_ADDR ev_addr = cache->base + fdata.ev_offset; | |
063715bf | 3087 | for (i = fdata.saved_ev; i < ppc_num_gprs; i++) |
61a65099 KB |
3088 | { |
3089 | cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr; | |
3090 | cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4; | |
3091 | ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum); | |
3092 | } | |
3093 | } | |
3094 | } | |
3095 | ||
3096 | /* If != 0, fdata.cr_offset is the offset from the frame that | |
3097 | holds the CR. */ | |
3098 | if (fdata.cr_offset != 0) | |
3099 | cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset; | |
3100 | ||
3101 | /* If != 0, fdata.lr_offset is the offset from the frame that | |
3102 | holds the LR. */ | |
3103 | if (fdata.lr_offset != 0) | |
3104 | cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset; | |
3105 | /* The PC is found in the link register. */ | |
8b164abb | 3106 | cache->saved_regs[gdbarch_pc_regnum (gdbarch)] = |
3e8c568d | 3107 | cache->saved_regs[tdep->ppc_lr_regnum]; |
61a65099 KB |
3108 | |
3109 | /* If != 0, fdata.vrsave_offset is the offset from the frame that | |
3110 | holds the VRSAVE. */ | |
3111 | if (fdata.vrsave_offset != 0) | |
3112 | cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset; | |
3113 | ||
3114 | if (fdata.alloca_reg < 0) | |
3115 | /* If no alloca register used, then fi->frame is the value of the | |
3116 | %sp for this frame, and it is good enough. */ | |
3e8c568d | 3117 | cache->initial_sp = frame_unwind_register_unsigned |
8b164abb | 3118 | (next_frame, gdbarch_sp_regnum (gdbarch)); |
61a65099 KB |
3119 | else |
3120 | cache->initial_sp = frame_unwind_register_unsigned (next_frame, | |
3121 | fdata.alloca_reg); | |
3122 | ||
3123 | return cache; | |
3124 | } | |
3125 | ||
3126 | static void | |
3127 | rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache, | |
3128 | struct frame_id *this_id) | |
3129 | { | |
3130 | struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame, | |
3131 | this_cache); | |
93d42b30 DJ |
3132 | (*this_id) = frame_id_build (info->base, |
3133 | frame_func_unwind (next_frame, NORMAL_FRAME)); | |
61a65099 KB |
3134 | } |
3135 | ||
3136 | static void | |
3137 | rs6000_frame_prev_register (struct frame_info *next_frame, | |
3138 | void **this_cache, | |
3139 | int regnum, int *optimizedp, | |
3140 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
50fd1280 | 3141 | int *realnump, gdb_byte *valuep) |
61a65099 KB |
3142 | { |
3143 | struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame, | |
3144 | this_cache); | |
1f67027d AC |
3145 | trad_frame_get_prev_register (next_frame, info->saved_regs, regnum, |
3146 | optimizedp, lvalp, addrp, realnump, valuep); | |
61a65099 KB |
3147 | } |
3148 | ||
3149 | static const struct frame_unwind rs6000_frame_unwind = | |
3150 | { | |
3151 | NORMAL_FRAME, | |
3152 | rs6000_frame_this_id, | |
3153 | rs6000_frame_prev_register | |
3154 | }; | |
3155 | ||
3156 | static const struct frame_unwind * | |
3157 | rs6000_frame_sniffer (struct frame_info *next_frame) | |
3158 | { | |
3159 | return &rs6000_frame_unwind; | |
3160 | } | |
3161 | ||
3162 | \f | |
3163 | ||
3164 | static CORE_ADDR | |
3165 | rs6000_frame_base_address (struct frame_info *next_frame, | |
3166 | void **this_cache) | |
3167 | { | |
3168 | struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame, | |
3169 | this_cache); | |
3170 | return info->initial_sp; | |
3171 | } | |
3172 | ||
3173 | static const struct frame_base rs6000_frame_base = { | |
3174 | &rs6000_frame_unwind, | |
3175 | rs6000_frame_base_address, | |
3176 | rs6000_frame_base_address, | |
3177 | rs6000_frame_base_address | |
3178 | }; | |
3179 | ||
3180 | static const struct frame_base * | |
3181 | rs6000_frame_base_sniffer (struct frame_info *next_frame) | |
3182 | { | |
3183 | return &rs6000_frame_base; | |
3184 | } | |
3185 | ||
9274a07c LM |
3186 | /* DWARF-2 frame support. Used to handle the detection of |
3187 | clobbered registers during function calls. */ | |
3188 | ||
3189 | static void | |
3190 | ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum, | |
3191 | struct dwarf2_frame_state_reg *reg, | |
4a4e5149 | 3192 | struct frame_info *this_frame) |
9274a07c LM |
3193 | { |
3194 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
3195 | ||
3196 | /* PPC32 and PPC64 ABI's are the same regarding volatile and | |
3197 | non-volatile registers. We will use the same code for both. */ | |
3198 | ||
3199 | /* Call-saved GP registers. */ | |
3200 | if ((regnum >= tdep->ppc_gp0_regnum + 14 | |
3201 | && regnum <= tdep->ppc_gp0_regnum + 31) | |
3202 | || (regnum == tdep->ppc_gp0_regnum + 1)) | |
3203 | reg->how = DWARF2_FRAME_REG_SAME_VALUE; | |
3204 | ||
3205 | /* Call-clobbered GP registers. */ | |
3206 | if ((regnum >= tdep->ppc_gp0_regnum + 3 | |
3207 | && regnum <= tdep->ppc_gp0_regnum + 12) | |
3208 | || (regnum == tdep->ppc_gp0_regnum)) | |
3209 | reg->how = DWARF2_FRAME_REG_UNDEFINED; | |
3210 | ||
3211 | /* Deal with FP registers, if supported. */ | |
3212 | if (tdep->ppc_fp0_regnum >= 0) | |
3213 | { | |
3214 | /* Call-saved FP registers. */ | |
3215 | if ((regnum >= tdep->ppc_fp0_regnum + 14 | |
3216 | && regnum <= tdep->ppc_fp0_regnum + 31)) | |
3217 | reg->how = DWARF2_FRAME_REG_SAME_VALUE; | |
3218 | ||
3219 | /* Call-clobbered FP registers. */ | |
3220 | if ((regnum >= tdep->ppc_fp0_regnum | |
3221 | && regnum <= tdep->ppc_fp0_regnum + 13)) | |
3222 | reg->how = DWARF2_FRAME_REG_UNDEFINED; | |
3223 | } | |
3224 | ||
3225 | /* Deal with ALTIVEC registers, if supported. */ | |
3226 | if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0) | |
3227 | { | |
3228 | /* Call-saved Altivec registers. */ | |
3229 | if ((regnum >= tdep->ppc_vr0_regnum + 20 | |
3230 | && regnum <= tdep->ppc_vr0_regnum + 31) | |
3231 | || regnum == tdep->ppc_vrsave_regnum) | |
3232 | reg->how = DWARF2_FRAME_REG_SAME_VALUE; | |
3233 | ||
3234 | /* Call-clobbered Altivec registers. */ | |
3235 | if ((regnum >= tdep->ppc_vr0_regnum | |
3236 | && regnum <= tdep->ppc_vr0_regnum + 19)) | |
3237 | reg->how = DWARF2_FRAME_REG_UNDEFINED; | |
3238 | } | |
3239 | ||
3240 | /* Handle PC register and Stack Pointer correctly. */ | |
40a6adc1 | 3241 | if (regnum == gdbarch_pc_regnum (gdbarch)) |
9274a07c | 3242 | reg->how = DWARF2_FRAME_REG_RA; |
40a6adc1 | 3243 | else if (regnum == gdbarch_sp_regnum (gdbarch)) |
9274a07c LM |
3244 | reg->how = DWARF2_FRAME_REG_CFA; |
3245 | } | |
3246 | ||
3247 | ||
7a78ae4e ND |
3248 | /* Initialize the current architecture based on INFO. If possible, re-use an |
3249 | architecture from ARCHES, which is a list of architectures already created | |
3250 | during this debugging session. | |
c906108c | 3251 | |
7a78ae4e | 3252 | Called e.g. at program startup, when reading a core file, and when reading |
64366f1c | 3253 | a binary file. */ |
c906108c | 3254 | |
7a78ae4e ND |
3255 | static struct gdbarch * |
3256 | rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
3257 | { | |
3258 | struct gdbarch *gdbarch; | |
3259 | struct gdbarch_tdep *tdep; | |
7cc46491 | 3260 | int wordsize, from_xcoff_exec, from_elf_exec; |
7a78ae4e ND |
3261 | enum bfd_architecture arch; |
3262 | unsigned long mach; | |
3263 | bfd abfd; | |
7b112f9c | 3264 | int sysv_abi; |
5bf1c677 | 3265 | asection *sect; |
55eddb0f DJ |
3266 | enum auto_boolean soft_float_flag = powerpc_soft_float_global; |
3267 | int soft_float; | |
3268 | enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global; | |
f949c649 | 3269 | int have_fpu = 1, have_spe = 0, have_mq = 0, have_altivec = 0, have_dfp = 0; |
7cc46491 DJ |
3270 | int tdesc_wordsize = -1; |
3271 | const struct target_desc *tdesc = info.target_desc; | |
3272 | struct tdesc_arch_data *tdesc_data = NULL; | |
f949c649 | 3273 | int num_pseudoregs = 0; |
7a78ae4e | 3274 | |
9aa1e687 | 3275 | from_xcoff_exec = info.abfd && info.abfd->format == bfd_object && |
7a78ae4e ND |
3276 | bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour; |
3277 | ||
9aa1e687 KB |
3278 | from_elf_exec = info.abfd && info.abfd->format == bfd_object && |
3279 | bfd_get_flavour (info.abfd) == bfd_target_elf_flavour; | |
3280 | ||
3281 | sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour; | |
3282 | ||
e712c1cf | 3283 | /* Check word size. If INFO is from a binary file, infer it from |
64366f1c | 3284 | that, else choose a likely default. */ |
9aa1e687 | 3285 | if (from_xcoff_exec) |
c906108c | 3286 | { |
11ed25ac | 3287 | if (bfd_xcoff_is_xcoff64 (info.abfd)) |
7a78ae4e ND |
3288 | wordsize = 8; |
3289 | else | |
3290 | wordsize = 4; | |
c906108c | 3291 | } |
9aa1e687 KB |
3292 | else if (from_elf_exec) |
3293 | { | |
3294 | if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64) | |
3295 | wordsize = 8; | |
3296 | else | |
3297 | wordsize = 4; | |
3298 | } | |
7cc46491 DJ |
3299 | else if (tdesc_has_registers (tdesc)) |
3300 | wordsize = -1; | |
c906108c | 3301 | else |
7a78ae4e | 3302 | { |
27b15785 KB |
3303 | if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0) |
3304 | wordsize = info.bfd_arch_info->bits_per_word / | |
3305 | info.bfd_arch_info->bits_per_byte; | |
3306 | else | |
3307 | wordsize = 4; | |
7a78ae4e | 3308 | } |
c906108c | 3309 | |
475bbd17 JB |
3310 | /* Get the architecture and machine from the BFD. */ |
3311 | arch = info.bfd_arch_info->arch; | |
3312 | mach = info.bfd_arch_info->mach; | |
5bf1c677 EZ |
3313 | |
3314 | /* For e500 executables, the apuinfo section is of help here. Such | |
3315 | section contains the identifier and revision number of each | |
3316 | Application-specific Processing Unit that is present on the | |
3317 | chip. The content of the section is determined by the assembler | |
3318 | which looks at each instruction and determines which unit (and | |
3319 | which version of it) can execute it. In our case we just look for | |
3320 | the existance of the section. */ | |
3321 | ||
3322 | if (info.abfd) | |
3323 | { | |
3324 | sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo"); | |
3325 | if (sect) | |
3326 | { | |
3327 | arch = info.bfd_arch_info->arch; | |
3328 | mach = bfd_mach_ppc_e500; | |
3329 | bfd_default_set_arch_mach (&abfd, arch, mach); | |
3330 | info.bfd_arch_info = bfd_get_arch_info (&abfd); | |
3331 | } | |
3332 | } | |
3333 | ||
7cc46491 DJ |
3334 | /* Find a default target description which describes our register |
3335 | layout, if we do not already have one. */ | |
3336 | if (! tdesc_has_registers (tdesc)) | |
3337 | { | |
3338 | const struct variant *v; | |
3339 | ||
3340 | /* Choose variant. */ | |
3341 | v = find_variant_by_arch (arch, mach); | |
3342 | if (!v) | |
3343 | return NULL; | |
3344 | ||
3345 | tdesc = *v->tdesc; | |
3346 | } | |
3347 | ||
3348 | gdb_assert (tdesc_has_registers (tdesc)); | |
3349 | ||
3350 | /* Check any target description for validity. */ | |
3351 | if (tdesc_has_registers (tdesc)) | |
3352 | { | |
3353 | static const char *const gprs[] = { | |
3354 | "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | |
3355 | "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", | |
3356 | "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", | |
3357 | "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31" | |
3358 | }; | |
3359 | static const char *const segment_regs[] = { | |
3360 | "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7", | |
3361 | "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15" | |
3362 | }; | |
3363 | const struct tdesc_feature *feature; | |
3364 | int i, valid_p; | |
3365 | static const char *const msr_names[] = { "msr", "ps" }; | |
3366 | static const char *const cr_names[] = { "cr", "cnd" }; | |
3367 | static const char *const ctr_names[] = { "ctr", "cnt" }; | |
3368 | ||
3369 | feature = tdesc_find_feature (tdesc, | |
3370 | "org.gnu.gdb.power.core"); | |
3371 | if (feature == NULL) | |
3372 | return NULL; | |
3373 | ||
3374 | tdesc_data = tdesc_data_alloc (); | |
3375 | ||
3376 | valid_p = 1; | |
3377 | for (i = 0; i < ppc_num_gprs; i++) | |
3378 | valid_p &= tdesc_numbered_register (feature, tdesc_data, i, gprs[i]); | |
3379 | valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_PC_REGNUM, | |
3380 | "pc"); | |
3381 | valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_LR_REGNUM, | |
3382 | "lr"); | |
3383 | valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_XER_REGNUM, | |
3384 | "xer"); | |
3385 | ||
3386 | /* Allow alternate names for these registers, to accomodate GDB's | |
3387 | historic naming. */ | |
3388 | valid_p &= tdesc_numbered_register_choices (feature, tdesc_data, | |
3389 | PPC_MSR_REGNUM, msr_names); | |
3390 | valid_p &= tdesc_numbered_register_choices (feature, tdesc_data, | |
3391 | PPC_CR_REGNUM, cr_names); | |
3392 | valid_p &= tdesc_numbered_register_choices (feature, tdesc_data, | |
3393 | PPC_CTR_REGNUM, ctr_names); | |
3394 | ||
3395 | if (!valid_p) | |
3396 | { | |
3397 | tdesc_data_cleanup (tdesc_data); | |
3398 | return NULL; | |
3399 | } | |
3400 | ||
3401 | have_mq = tdesc_numbered_register (feature, tdesc_data, PPC_MQ_REGNUM, | |
3402 | "mq"); | |
3403 | ||
3404 | tdesc_wordsize = tdesc_register_size (feature, "pc") / 8; | |
3405 | if (wordsize == -1) | |
3406 | wordsize = tdesc_wordsize; | |
3407 | ||
3408 | feature = tdesc_find_feature (tdesc, | |
3409 | "org.gnu.gdb.power.fpu"); | |
3410 | if (feature != NULL) | |
3411 | { | |
3412 | static const char *const fprs[] = { | |
3413 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", | |
3414 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
3415 | "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
3416 | "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31" | |
3417 | }; | |
3418 | valid_p = 1; | |
3419 | for (i = 0; i < ppc_num_fprs; i++) | |
3420 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
3421 | PPC_F0_REGNUM + i, fprs[i]); | |
3422 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
3423 | PPC_FPSCR_REGNUM, "fpscr"); | |
3424 | ||
3425 | if (!valid_p) | |
3426 | { | |
3427 | tdesc_data_cleanup (tdesc_data); | |
3428 | return NULL; | |
3429 | } | |
3430 | have_fpu = 1; | |
3431 | } | |
3432 | else | |
3433 | have_fpu = 0; | |
3434 | ||
f949c649 TJB |
3435 | /* The DFP pseudo-registers will be available when there are floating |
3436 | point registers. */ | |
3437 | have_dfp = have_fpu; | |
3438 | ||
7cc46491 DJ |
3439 | feature = tdesc_find_feature (tdesc, |
3440 | "org.gnu.gdb.power.altivec"); | |
3441 | if (feature != NULL) | |
3442 | { | |
3443 | static const char *const vector_regs[] = { | |
3444 | "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7", | |
3445 | "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15", | |
3446 | "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23", | |
3447 | "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31" | |
3448 | }; | |
3449 | ||
3450 | valid_p = 1; | |
3451 | for (i = 0; i < ppc_num_gprs; i++) | |
3452 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
3453 | PPC_VR0_REGNUM + i, | |
3454 | vector_regs[i]); | |
3455 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
3456 | PPC_VSCR_REGNUM, "vscr"); | |
3457 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
3458 | PPC_VRSAVE_REGNUM, "vrsave"); | |
3459 | ||
3460 | if (have_spe || !valid_p) | |
3461 | { | |
3462 | tdesc_data_cleanup (tdesc_data); | |
3463 | return NULL; | |
3464 | } | |
3465 | have_altivec = 1; | |
3466 | } | |
3467 | else | |
3468 | have_altivec = 0; | |
3469 | ||
3470 | /* On machines supporting the SPE APU, the general-purpose registers | |
3471 | are 64 bits long. There are SIMD vector instructions to treat them | |
3472 | as pairs of floats, but the rest of the instruction set treats them | |
3473 | as 32-bit registers, and only operates on their lower halves. | |
3474 | ||
3475 | In the GDB regcache, we treat their high and low halves as separate | |
3476 | registers. The low halves we present as the general-purpose | |
3477 | registers, and then we have pseudo-registers that stitch together | |
3478 | the upper and lower halves and present them as pseudo-registers. | |
3479 | ||
3480 | Thus, the target description is expected to supply the upper | |
3481 | halves separately. */ | |
3482 | ||
3483 | feature = tdesc_find_feature (tdesc, | |
3484 | "org.gnu.gdb.power.spe"); | |
3485 | if (feature != NULL) | |
3486 | { | |
3487 | static const char *const upper_spe[] = { | |
3488 | "ev0h", "ev1h", "ev2h", "ev3h", | |
3489 | "ev4h", "ev5h", "ev6h", "ev7h", | |
3490 | "ev8h", "ev9h", "ev10h", "ev11h", | |
3491 | "ev12h", "ev13h", "ev14h", "ev15h", | |
3492 | "ev16h", "ev17h", "ev18h", "ev19h", | |
3493 | "ev20h", "ev21h", "ev22h", "ev23h", | |
3494 | "ev24h", "ev25h", "ev26h", "ev27h", | |
3495 | "ev28h", "ev29h", "ev30h", "ev31h" | |
3496 | }; | |
3497 | ||
3498 | valid_p = 1; | |
3499 | for (i = 0; i < ppc_num_gprs; i++) | |
3500 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
3501 | PPC_SPE_UPPER_GP0_REGNUM + i, | |
3502 | upper_spe[i]); | |
3503 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
3504 | PPC_SPE_ACC_REGNUM, "acc"); | |
3505 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
3506 | PPC_SPE_FSCR_REGNUM, "spefscr"); | |
3507 | ||
3508 | if (have_mq || have_fpu || !valid_p) | |
3509 | { | |
3510 | tdesc_data_cleanup (tdesc_data); | |
3511 | return NULL; | |
3512 | } | |
3513 | have_spe = 1; | |
3514 | } | |
3515 | else | |
3516 | have_spe = 0; | |
3517 | } | |
3518 | ||
3519 | /* If we have a 64-bit binary on a 32-bit target, complain. Also | |
3520 | complain for a 32-bit binary on a 64-bit target; we do not yet | |
3521 | support that. For instance, the 32-bit ABI routines expect | |
3522 | 32-bit GPRs. | |
3523 | ||
3524 | As long as there isn't an explicit target description, we'll | |
3525 | choose one based on the BFD architecture and get a word size | |
3526 | matching the binary (probably powerpc:common or | |
3527 | powerpc:common64). So there is only trouble if a 64-bit target | |
3528 | supplies a 64-bit description while debugging a 32-bit | |
3529 | binary. */ | |
3530 | if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize) | |
3531 | { | |
3532 | tdesc_data_cleanup (tdesc_data); | |
3533 | return NULL; | |
3534 | } | |
3535 | ||
55eddb0f DJ |
3536 | #ifdef HAVE_ELF |
3537 | if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec) | |
3538 | { | |
3539 | switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU, | |
3540 | Tag_GNU_Power_ABI_FP)) | |
3541 | { | |
3542 | case 1: | |
3543 | soft_float_flag = AUTO_BOOLEAN_FALSE; | |
3544 | break; | |
3545 | case 2: | |
3546 | soft_float_flag = AUTO_BOOLEAN_TRUE; | |
3547 | break; | |
3548 | default: | |
3549 | break; | |
3550 | } | |
3551 | } | |
3552 | ||
3553 | if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec) | |
3554 | { | |
3555 | switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU, | |
3556 | Tag_GNU_Power_ABI_Vector)) | |
3557 | { | |
3558 | case 1: | |
3559 | vector_abi = POWERPC_VEC_GENERIC; | |
3560 | break; | |
3561 | case 2: | |
3562 | vector_abi = POWERPC_VEC_ALTIVEC; | |
3563 | break; | |
3564 | case 3: | |
3565 | vector_abi = POWERPC_VEC_SPE; | |
3566 | break; | |
3567 | default: | |
3568 | break; | |
3569 | } | |
3570 | } | |
3571 | #endif | |
3572 | ||
3573 | if (soft_float_flag == AUTO_BOOLEAN_TRUE) | |
3574 | soft_float = 1; | |
3575 | else if (soft_float_flag == AUTO_BOOLEAN_FALSE) | |
3576 | soft_float = 0; | |
3577 | else | |
3578 | soft_float = !have_fpu; | |
3579 | ||
3580 | /* If we have a hard float binary or setting but no floating point | |
3581 | registers, downgrade to soft float anyway. We're still somewhat | |
3582 | useful in this scenario. */ | |
3583 | if (!soft_float && !have_fpu) | |
3584 | soft_float = 1; | |
3585 | ||
3586 | /* Similarly for vector registers. */ | |
3587 | if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec) | |
3588 | vector_abi = POWERPC_VEC_GENERIC; | |
3589 | ||
3590 | if (vector_abi == POWERPC_VEC_SPE && !have_spe) | |
3591 | vector_abi = POWERPC_VEC_GENERIC; | |
3592 | ||
3593 | if (vector_abi == POWERPC_VEC_AUTO) | |
3594 | { | |
3595 | if (have_altivec) | |
3596 | vector_abi = POWERPC_VEC_ALTIVEC; | |
3597 | else if (have_spe) | |
3598 | vector_abi = POWERPC_VEC_SPE; | |
3599 | else | |
3600 | vector_abi = POWERPC_VEC_GENERIC; | |
3601 | } | |
3602 | ||
3603 | /* Do not limit the vector ABI based on available hardware, since we | |
3604 | do not yet know what hardware we'll decide we have. Yuck! FIXME! */ | |
3605 | ||
7cc46491 DJ |
3606 | /* Find a candidate among extant architectures. */ |
3607 | for (arches = gdbarch_list_lookup_by_info (arches, &info); | |
3608 | arches != NULL; | |
3609 | arches = gdbarch_list_lookup_by_info (arches->next, &info)) | |
3610 | { | |
3611 | /* Word size in the various PowerPC bfd_arch_info structs isn't | |
3612 | meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform | |
3613 | separate word size check. */ | |
3614 | tdep = gdbarch_tdep (arches->gdbarch); | |
55eddb0f DJ |
3615 | if (tdep && tdep->soft_float != soft_float) |
3616 | continue; | |
3617 | if (tdep && tdep->vector_abi != vector_abi) | |
3618 | continue; | |
7cc46491 DJ |
3619 | if (tdep && tdep->wordsize == wordsize) |
3620 | { | |
3621 | if (tdesc_data != NULL) | |
3622 | tdesc_data_cleanup (tdesc_data); | |
3623 | return arches->gdbarch; | |
3624 | } | |
3625 | } | |
3626 | ||
3627 | /* None found, create a new architecture from INFO, whose bfd_arch_info | |
3628 | validity depends on the source: | |
3629 | - executable useless | |
3630 | - rs6000_host_arch() good | |
3631 | - core file good | |
3632 | - "set arch" trust blindly | |
3633 | - GDB startup useless but harmless */ | |
3634 | ||
3635 | tdep = XCALLOC (1, struct gdbarch_tdep); | |
3636 | tdep->wordsize = wordsize; | |
55eddb0f DJ |
3637 | tdep->soft_float = soft_float; |
3638 | tdep->vector_abi = vector_abi; | |
7cc46491 | 3639 | |
7a78ae4e | 3640 | gdbarch = gdbarch_alloc (&info, tdep); |
7a78ae4e | 3641 | |
7cc46491 DJ |
3642 | tdep->ppc_gp0_regnum = PPC_R0_REGNUM; |
3643 | tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2; | |
3644 | tdep->ppc_ps_regnum = PPC_MSR_REGNUM; | |
3645 | tdep->ppc_cr_regnum = PPC_CR_REGNUM; | |
3646 | tdep->ppc_lr_regnum = PPC_LR_REGNUM; | |
3647 | tdep->ppc_ctr_regnum = PPC_CTR_REGNUM; | |
3648 | tdep->ppc_xer_regnum = PPC_XER_REGNUM; | |
3649 | tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1; | |
3650 | ||
3651 | tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1; | |
3652 | tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1; | |
3653 | tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1; | |
3654 | tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1; | |
3655 | tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1; | |
3656 | tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1; | |
3657 | tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1; | |
3658 | ||
3659 | set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM); | |
3660 | set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1); | |
3661 | set_gdbarch_deprecated_fp_regnum (gdbarch, PPC_R0_REGNUM + 1); | |
3662 | set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum); | |
9f643768 | 3663 | set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno); |
7cc46491 DJ |
3664 | |
3665 | /* The XML specification for PowerPC sensibly calls the MSR "msr". | |
3666 | GDB traditionally called it "ps", though, so let GDB add an | |
3667 | alias. */ | |
3668 | set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum); | |
3669 | ||
afd48b75 | 3670 | if (sysv_abi && wordsize == 8) |
05580c65 | 3671 | set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value); |
e754ae69 | 3672 | else if (sysv_abi && wordsize == 4) |
05580c65 | 3673 | set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value); |
afd48b75 | 3674 | else |
d217aaed | 3675 | set_gdbarch_return_value (gdbarch, rs6000_return_value); |
c8001721 | 3676 | |
baffbae0 JB |
3677 | /* Set lr_frame_offset. */ |
3678 | if (wordsize == 8) | |
3679 | tdep->lr_frame_offset = 16; | |
3680 | else if (sysv_abi) | |
3681 | tdep->lr_frame_offset = 4; | |
3682 | else | |
3683 | tdep->lr_frame_offset = 8; | |
3684 | ||
f949c649 | 3685 | if (have_spe || have_dfp) |
7cc46491 | 3686 | { |
f949c649 TJB |
3687 | set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read); |
3688 | set_gdbarch_pseudo_register_write (gdbarch, rs6000_pseudo_register_write); | |
7cc46491 | 3689 | } |
1fcc0bb8 | 3690 | |
e0d24f8d WZ |
3691 | set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1); |
3692 | ||
56a6dfb9 | 3693 | /* Select instruction printer. */ |
708ff411 | 3694 | if (arch == bfd_arch_rs6000) |
9364a0ef | 3695 | set_gdbarch_print_insn (gdbarch, print_insn_rs6000); |
56a6dfb9 | 3696 | else |
9364a0ef | 3697 | set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc); |
7495d1dc | 3698 | |
5a9e69ba | 3699 | set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS); |
f949c649 TJB |
3700 | |
3701 | if (have_spe) | |
3702 | num_pseudoregs += 32; | |
3703 | if (have_dfp) | |
3704 | num_pseudoregs += 16; | |
3705 | ||
3706 | set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs); | |
7a78ae4e ND |
3707 | |
3708 | set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT); | |
3709 | set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT); | |
3710 | set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
3711 | set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT); | |
3712 | set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
3713 | set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
3714 | set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
ab9fe00e KB |
3715 | if (sysv_abi) |
3716 | set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT); | |
3717 | else | |
3718 | set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
4e409299 | 3719 | set_gdbarch_char_signed (gdbarch, 0); |
7a78ae4e | 3720 | |
11269d7e | 3721 | set_gdbarch_frame_align (gdbarch, rs6000_frame_align); |
8b148df9 AC |
3722 | if (sysv_abi && wordsize == 8) |
3723 | /* PPC64 SYSV. */ | |
3724 | set_gdbarch_frame_red_zone_size (gdbarch, 288); | |
3725 | else if (!sysv_abi && wordsize == 4) | |
5bffac25 AC |
3726 | /* PowerOpen / AIX 32 bit. The saved area or red zone consists of |
3727 | 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes. | |
3728 | Problem is, 220 isn't frame (16 byte) aligned. Round it up to | |
3729 | 224. */ | |
3730 | set_gdbarch_frame_red_zone_size (gdbarch, 224); | |
7a78ae4e | 3731 | |
691d145a JB |
3732 | set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p); |
3733 | set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value); | |
3734 | set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register); | |
3735 | ||
18ed0c4e JB |
3736 | set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum); |
3737 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum); | |
d217aaed | 3738 | |
2ea5f656 | 3739 | if (sysv_abi && wordsize == 4) |
77b2b6d4 | 3740 | set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call); |
8be9034a AC |
3741 | else if (sysv_abi && wordsize == 8) |
3742 | set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call); | |
9aa1e687 | 3743 | else |
77b2b6d4 | 3744 | set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call); |
7a78ae4e | 3745 | |
7a78ae4e | 3746 | set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue); |
0d1243d9 PG |
3747 | set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p); |
3748 | ||
7a78ae4e | 3749 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); |
7a78ae4e ND |
3750 | set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc); |
3751 | ||
203c3895 UW |
3752 | /* The value of symbols of type N_SO and N_FUN maybe null when |
3753 | it shouldn't be. */ | |
3754 | set_gdbarch_sofun_address_maybe_missing (gdbarch, 1); | |
3755 | ||
ce5eab59 UW |
3756 | /* Handles single stepping of atomic sequences. */ |
3757 | set_gdbarch_software_single_step (gdbarch, deal_with_atomic_sequence); | |
3758 | ||
6066c3de AC |
3759 | /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN" |
3760 | for the descriptor and ".FN" for the entry-point -- a user | |
3761 | specifying "break FN" will unexpectedly end up with a breakpoint | |
3762 | on the descriptor and not the function. This architecture method | |
3763 | transforms any breakpoints on descriptors into breakpoints on the | |
3764 | corresponding entry point. */ | |
3765 | if (sysv_abi && wordsize == 8) | |
3766 | set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address); | |
3767 | ||
7a78ae4e ND |
3768 | /* Not sure on this. FIXMEmgo */ |
3769 | set_gdbarch_frame_args_skip (gdbarch, 8); | |
3770 | ||
15813d3f AC |
3771 | if (!sysv_abi) |
3772 | { | |
3773 | /* Handle RS/6000 function pointers (which are really function | |
3774 | descriptors). */ | |
f517ea4e PS |
3775 | set_gdbarch_convert_from_func_ptr_addr (gdbarch, |
3776 | rs6000_convert_from_func_ptr_addr); | |
9aa1e687 | 3777 | } |
7a78ae4e | 3778 | |
143985b7 AF |
3779 | /* Helpers for function argument information. */ |
3780 | set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument); | |
3781 | ||
6f7f3f0d UW |
3782 | /* Trampoline. */ |
3783 | set_gdbarch_in_solib_return_trampoline | |
3784 | (gdbarch, rs6000_in_solib_return_trampoline); | |
3785 | set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code); | |
3786 | ||
4fc771b8 DJ |
3787 | /* Hook in the DWARF CFI frame unwinder. */ |
3788 | frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer); | |
3789 | dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum); | |
3790 | ||
9274a07c LM |
3791 | /* Frame handling. */ |
3792 | dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg); | |
3793 | ||
7b112f9c | 3794 | /* Hook in ABI-specific overrides, if they have been registered. */ |
4be87837 | 3795 | gdbarch_init_osabi (info, gdbarch); |
7b112f9c | 3796 | |
61a65099 KB |
3797 | switch (info.osabi) |
3798 | { | |
f5aecab8 | 3799 | case GDB_OSABI_LINUX: |
61a65099 KB |
3800 | case GDB_OSABI_NETBSD_AOUT: |
3801 | case GDB_OSABI_NETBSD_ELF: | |
3802 | case GDB_OSABI_UNKNOWN: | |
61a65099 KB |
3803 | set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc); |
3804 | frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer); | |
3805 | set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id); | |
3806 | frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer); | |
3807 | break; | |
3808 | default: | |
61a65099 | 3809 | set_gdbarch_believe_pcc_promotion (gdbarch, 1); |
81332287 KB |
3810 | |
3811 | set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc); | |
3812 | frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer); | |
3813 | set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id); | |
3814 | frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer); | |
61a65099 KB |
3815 | } |
3816 | ||
7cc46491 DJ |
3817 | set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type); |
3818 | set_tdesc_pseudo_register_reggroup_p (gdbarch, | |
3819 | rs6000_pseudo_register_reggroup_p); | |
3820 | tdesc_use_registers (gdbarch, tdesc, tdesc_data); | |
3821 | ||
3822 | /* Override the normal target description method to make the SPE upper | |
3823 | halves anonymous. */ | |
3824 | set_gdbarch_register_name (gdbarch, rs6000_register_name); | |
3825 | ||
3826 | /* Recording the numbering of pseudo registers. */ | |
3827 | tdep->ppc_ev0_regnum = have_spe ? gdbarch_num_regs (gdbarch) : -1; | |
9f643768 | 3828 | |
f949c649 TJB |
3829 | /* Set the register number for _Decimal128 pseudo-registers. */ |
3830 | tdep->ppc_dl0_regnum = have_dfp? gdbarch_num_regs (gdbarch) : -1; | |
3831 | ||
3832 | if (have_dfp && have_spe) | |
3833 | /* Put the _Decimal128 pseudo-registers after the SPE registers. */ | |
3834 | tdep->ppc_dl0_regnum += 32; | |
3835 | ||
7a78ae4e | 3836 | return gdbarch; |
c906108c SS |
3837 | } |
3838 | ||
7b112f9c | 3839 | static void |
8b164abb | 3840 | rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file) |
7b112f9c | 3841 | { |
8b164abb | 3842 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
7b112f9c JT |
3843 | |
3844 | if (tdep == NULL) | |
3845 | return; | |
3846 | ||
4be87837 | 3847 | /* FIXME: Dump gdbarch_tdep. */ |
7b112f9c JT |
3848 | } |
3849 | ||
55eddb0f DJ |
3850 | /* PowerPC-specific commands. */ |
3851 | ||
3852 | static void | |
3853 | set_powerpc_command (char *args, int from_tty) | |
3854 | { | |
3855 | printf_unfiltered (_("\ | |
3856 | \"set powerpc\" must be followed by an appropriate subcommand.\n")); | |
3857 | help_list (setpowerpccmdlist, "set powerpc ", all_commands, gdb_stdout); | |
3858 | } | |
3859 | ||
3860 | static void | |
3861 | show_powerpc_command (char *args, int from_tty) | |
3862 | { | |
3863 | cmd_show_list (showpowerpccmdlist, from_tty, ""); | |
3864 | } | |
3865 | ||
3866 | static void | |
3867 | powerpc_set_soft_float (char *args, int from_tty, | |
3868 | struct cmd_list_element *c) | |
3869 | { | |
3870 | struct gdbarch_info info; | |
3871 | ||
3872 | /* Update the architecture. */ | |
3873 | gdbarch_info_init (&info); | |
3874 | if (!gdbarch_update_p (info)) | |
3875 | internal_error (__FILE__, __LINE__, "could not update architecture"); | |
3876 | } | |
3877 | ||
3878 | static void | |
3879 | powerpc_set_vector_abi (char *args, int from_tty, | |
3880 | struct cmd_list_element *c) | |
3881 | { | |
3882 | struct gdbarch_info info; | |
3883 | enum powerpc_vector_abi vector_abi; | |
3884 | ||
3885 | for (vector_abi = POWERPC_VEC_AUTO; | |
3886 | vector_abi != POWERPC_VEC_LAST; | |
3887 | vector_abi++) | |
3888 | if (strcmp (powerpc_vector_abi_string, | |
3889 | powerpc_vector_strings[vector_abi]) == 0) | |
3890 | { | |
3891 | powerpc_vector_abi_global = vector_abi; | |
3892 | break; | |
3893 | } | |
3894 | ||
3895 | if (vector_abi == POWERPC_VEC_LAST) | |
3896 | internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."), | |
3897 | powerpc_vector_abi_string); | |
3898 | ||
3899 | /* Update the architecture. */ | |
3900 | gdbarch_info_init (&info); | |
3901 | if (!gdbarch_update_p (info)) | |
3902 | internal_error (__FILE__, __LINE__, "could not update architecture"); | |
3903 | } | |
3904 | ||
c906108c SS |
3905 | /* Initialization code. */ |
3906 | ||
a78f21af | 3907 | extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */ |
b9362cc7 | 3908 | |
c906108c | 3909 | void |
fba45db2 | 3910 | _initialize_rs6000_tdep (void) |
c906108c | 3911 | { |
7b112f9c JT |
3912 | gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep); |
3913 | gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep); | |
7cc46491 DJ |
3914 | |
3915 | /* Initialize the standard target descriptions. */ | |
3916 | initialize_tdesc_powerpc_32 (); | |
3917 | initialize_tdesc_powerpc_403 (); | |
3918 | initialize_tdesc_powerpc_403gc (); | |
3919 | initialize_tdesc_powerpc_505 (); | |
3920 | initialize_tdesc_powerpc_601 (); | |
3921 | initialize_tdesc_powerpc_602 (); | |
3922 | initialize_tdesc_powerpc_603 (); | |
3923 | initialize_tdesc_powerpc_604 (); | |
3924 | initialize_tdesc_powerpc_64 (); | |
3925 | initialize_tdesc_powerpc_7400 (); | |
3926 | initialize_tdesc_powerpc_750 (); | |
3927 | initialize_tdesc_powerpc_860 (); | |
3928 | initialize_tdesc_powerpc_e500 (); | |
3929 | initialize_tdesc_rs6000 (); | |
55eddb0f DJ |
3930 | |
3931 | /* Add root prefix command for all "set powerpc"/"show powerpc" | |
3932 | commands. */ | |
3933 | add_prefix_cmd ("powerpc", no_class, set_powerpc_command, | |
3934 | _("Various PowerPC-specific commands."), | |
3935 | &setpowerpccmdlist, "set powerpc ", 0, &setlist); | |
3936 | ||
3937 | add_prefix_cmd ("powerpc", no_class, show_powerpc_command, | |
3938 | _("Various PowerPC-specific commands."), | |
3939 | &showpowerpccmdlist, "show powerpc ", 0, &showlist); | |
3940 | ||
3941 | /* Add a command to allow the user to force the ABI. */ | |
3942 | add_setshow_auto_boolean_cmd ("soft-float", class_support, | |
3943 | &powerpc_soft_float_global, | |
3944 | _("Set whether to use a soft-float ABI."), | |
3945 | _("Show whether to use a soft-float ABI."), | |
3946 | NULL, | |
3947 | powerpc_set_soft_float, NULL, | |
3948 | &setpowerpccmdlist, &showpowerpccmdlist); | |
3949 | ||
3950 | add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings, | |
3951 | &powerpc_vector_abi_string, | |
3952 | _("Set the vector ABI."), | |
3953 | _("Show the vector ABI."), | |
3954 | NULL, powerpc_set_vector_abi, NULL, | |
3955 | &setpowerpccmdlist, &showpowerpccmdlist); | |
c906108c | 3956 | } |