]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Target-dependent code for GDB, the GNU debugger. |
b6ba6518 | 2 | Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, |
2a873819 | 3 | 1998, 1999, 2000, 2001, 2002 |
c906108c SS |
4 | Free Software Foundation, Inc. |
5 | ||
c5aa993b | 6 | This file is part of GDB. |
c906108c | 7 | |
c5aa993b JM |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
c906108c | 12 | |
c5aa993b JM |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
c906108c | 17 | |
c5aa993b JM |
18 | You should have received a copy of the GNU General Public License |
19 | along with this program; if not, write to the Free Software | |
20 | Foundation, Inc., 59 Temple Place - Suite 330, | |
21 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
22 | |
23 | #include "defs.h" | |
24 | #include "frame.h" | |
25 | #include "inferior.h" | |
26 | #include "symtab.h" | |
27 | #include "target.h" | |
28 | #include "gdbcore.h" | |
29 | #include "gdbcmd.h" | |
30 | #include "symfile.h" | |
31 | #include "objfiles.h" | |
7a78ae4e | 32 | #include "arch-utils.h" |
4e052eda | 33 | #include "regcache.h" |
d16aafd8 | 34 | #include "doublest.h" |
fd0407d6 | 35 | #include "value.h" |
1fcc0bb8 | 36 | #include "parser-defs.h" |
7a78ae4e | 37 | |
2fccf04a | 38 | #include "libbfd.h" /* for bfd_default_set_arch_mach */ |
7a78ae4e | 39 | #include "coff/internal.h" /* for libcoff.h */ |
2fccf04a | 40 | #include "libcoff.h" /* for xcoff_data */ |
11ed25ac KB |
41 | #include "coff/xcoff.h" |
42 | #include "libxcoff.h" | |
7a78ae4e | 43 | |
9aa1e687 | 44 | #include "elf-bfd.h" |
7a78ae4e | 45 | |
6ded7999 | 46 | #include "solib-svr4.h" |
9aa1e687 | 47 | #include "ppc-tdep.h" |
7a78ae4e ND |
48 | |
49 | /* If the kernel has to deliver a signal, it pushes a sigcontext | |
50 | structure on the stack and then calls the signal handler, passing | |
51 | the address of the sigcontext in an argument register. Usually | |
52 | the signal handler doesn't save this register, so we have to | |
53 | access the sigcontext structure via an offset from the signal handler | |
54 | frame. | |
55 | The following constants were determined by experimentation on AIX 3.2. */ | |
56 | #define SIG_FRAME_PC_OFFSET 96 | |
57 | #define SIG_FRAME_LR_OFFSET 108 | |
58 | #define SIG_FRAME_FP_OFFSET 284 | |
59 | ||
7a78ae4e ND |
60 | /* To be used by skip_prologue. */ |
61 | ||
62 | struct rs6000_framedata | |
63 | { | |
64 | int offset; /* total size of frame --- the distance | |
65 | by which we decrement sp to allocate | |
66 | the frame */ | |
67 | int saved_gpr; /* smallest # of saved gpr */ | |
68 | int saved_fpr; /* smallest # of saved fpr */ | |
6be8bc0c | 69 | int saved_vr; /* smallest # of saved vr */ |
7a78ae4e ND |
70 | int alloca_reg; /* alloca register number (frame ptr) */ |
71 | char frameless; /* true if frameless functions. */ | |
72 | char nosavedpc; /* true if pc not saved. */ | |
73 | int gpr_offset; /* offset of saved gprs from prev sp */ | |
74 | int fpr_offset; /* offset of saved fprs from prev sp */ | |
6be8bc0c | 75 | int vr_offset; /* offset of saved vrs from prev sp */ |
7a78ae4e ND |
76 | int lr_offset; /* offset of saved lr */ |
77 | int cr_offset; /* offset of saved cr */ | |
6be8bc0c | 78 | int vrsave_offset; /* offset of saved vrsave register */ |
7a78ae4e ND |
79 | }; |
80 | ||
81 | /* Description of a single register. */ | |
82 | ||
83 | struct reg | |
84 | { | |
85 | char *name; /* name of register */ | |
86 | unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */ | |
87 | unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */ | |
88 | unsigned char fpr; /* whether register is floating-point */ | |
489461e2 | 89 | unsigned char pseudo; /* whether register is pseudo */ |
7a78ae4e ND |
90 | }; |
91 | ||
c906108c SS |
92 | /* Breakpoint shadows for the single step instructions will be kept here. */ |
93 | ||
c5aa993b JM |
94 | static struct sstep_breaks |
95 | { | |
96 | /* Address, or 0 if this is not in use. */ | |
97 | CORE_ADDR address; | |
98 | /* Shadow contents. */ | |
99 | char data[4]; | |
100 | } | |
101 | stepBreaks[2]; | |
c906108c SS |
102 | |
103 | /* Hook for determining the TOC address when calling functions in the | |
104 | inferior under AIX. The initialization code in rs6000-nat.c sets | |
105 | this hook to point to find_toc_address. */ | |
106 | ||
7a78ae4e ND |
107 | CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL; |
108 | ||
109 | /* Hook to set the current architecture when starting a child process. | |
110 | rs6000-nat.c sets this. */ | |
111 | ||
112 | void (*rs6000_set_host_arch_hook) (int) = NULL; | |
c906108c SS |
113 | |
114 | /* Static function prototypes */ | |
115 | ||
a14ed312 KB |
116 | static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc, |
117 | CORE_ADDR safety); | |
077276e8 KB |
118 | static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR, |
119 | struct rs6000_framedata *); | |
7a78ae4e ND |
120 | static void frame_get_saved_regs (struct frame_info * fi, |
121 | struct rs6000_framedata * fdatap); | |
122 | static CORE_ADDR frame_initial_stack_address (struct frame_info *); | |
c906108c | 123 | |
7a78ae4e | 124 | /* Read a LEN-byte address from debugged memory address MEMADDR. */ |
c906108c | 125 | |
7a78ae4e ND |
126 | static CORE_ADDR |
127 | read_memory_addr (CORE_ADDR memaddr, int len) | |
128 | { | |
129 | return read_memory_unsigned_integer (memaddr, len); | |
130 | } | |
c906108c | 131 | |
7a78ae4e ND |
132 | static CORE_ADDR |
133 | rs6000_skip_prologue (CORE_ADDR pc) | |
b83266a0 SS |
134 | { |
135 | struct rs6000_framedata frame; | |
077276e8 | 136 | pc = skip_prologue (pc, 0, &frame); |
b83266a0 SS |
137 | return pc; |
138 | } | |
139 | ||
140 | ||
c906108c SS |
141 | /* Fill in fi->saved_regs */ |
142 | ||
143 | struct frame_extra_info | |
144 | { | |
145 | /* Functions calling alloca() change the value of the stack | |
146 | pointer. We need to use initial stack pointer (which is saved in | |
147 | r31 by gcc) in such cases. If a compiler emits traceback table, | |
148 | then we should use the alloca register specified in traceback | |
149 | table. FIXME. */ | |
c5aa993b | 150 | CORE_ADDR initial_sp; /* initial stack pointer. */ |
c906108c SS |
151 | }; |
152 | ||
9aa1e687 | 153 | void |
7a78ae4e | 154 | rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi) |
c906108c | 155 | { |
c5aa993b | 156 | fi->extra_info = (struct frame_extra_info *) |
c906108c SS |
157 | frame_obstack_alloc (sizeof (struct frame_extra_info)); |
158 | fi->extra_info->initial_sp = 0; | |
159 | if (fi->next != (CORE_ADDR) 0 | |
160 | && fi->pc < TEXT_SEGMENT_BASE) | |
7a292a7a | 161 | /* We're in get_prev_frame */ |
c906108c SS |
162 | /* and this is a special signal frame. */ |
163 | /* (fi->pc will be some low address in the kernel, */ | |
164 | /* to which the signal handler returns). */ | |
165 | fi->signal_handler_caller = 1; | |
166 | } | |
167 | ||
7a78ae4e ND |
168 | /* Put here the code to store, into a struct frame_saved_regs, |
169 | the addresses of the saved registers of frame described by FRAME_INFO. | |
170 | This includes special registers such as pc and fp saved in special | |
171 | ways in the stack frame. sp is even more special: | |
172 | the address we return for it IS the sp for the next frame. */ | |
c906108c | 173 | |
7a78ae4e ND |
174 | /* In this implementation for RS/6000, we do *not* save sp. I am |
175 | not sure if it will be needed. The following function takes care of gpr's | |
176 | and fpr's only. */ | |
177 | ||
9aa1e687 | 178 | void |
7a78ae4e | 179 | rs6000_frame_init_saved_regs (struct frame_info *fi) |
c906108c SS |
180 | { |
181 | frame_get_saved_regs (fi, NULL); | |
182 | } | |
183 | ||
7a78ae4e ND |
184 | static CORE_ADDR |
185 | rs6000_frame_args_address (struct frame_info *fi) | |
c906108c SS |
186 | { |
187 | if (fi->extra_info->initial_sp != 0) | |
188 | return fi->extra_info->initial_sp; | |
189 | else | |
190 | return frame_initial_stack_address (fi); | |
191 | } | |
192 | ||
7a78ae4e ND |
193 | /* Immediately after a function call, return the saved pc. |
194 | Can't go through the frames for this because on some machines | |
195 | the new frame is not set up until the new function executes | |
196 | some instructions. */ | |
197 | ||
198 | static CORE_ADDR | |
199 | rs6000_saved_pc_after_call (struct frame_info *fi) | |
200 | { | |
2188cbdd | 201 | return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum); |
7a78ae4e | 202 | } |
c906108c SS |
203 | |
204 | /* Calculate the destination of a branch/jump. Return -1 if not a branch. */ | |
205 | ||
206 | static CORE_ADDR | |
7a78ae4e | 207 | branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety) |
c906108c SS |
208 | { |
209 | CORE_ADDR dest; | |
210 | int immediate; | |
211 | int absolute; | |
212 | int ext_op; | |
213 | ||
214 | absolute = (int) ((instr >> 1) & 1); | |
215 | ||
c5aa993b JM |
216 | switch (opcode) |
217 | { | |
218 | case 18: | |
219 | immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */ | |
220 | if (absolute) | |
221 | dest = immediate; | |
222 | else | |
223 | dest = pc + immediate; | |
224 | break; | |
225 | ||
226 | case 16: | |
227 | immediate = ((instr & ~3) << 16) >> 16; /* br conditional */ | |
228 | if (absolute) | |
229 | dest = immediate; | |
230 | else | |
231 | dest = pc + immediate; | |
232 | break; | |
233 | ||
234 | case 19: | |
235 | ext_op = (instr >> 1) & 0x3ff; | |
236 | ||
237 | if (ext_op == 16) /* br conditional register */ | |
238 | { | |
2188cbdd | 239 | dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3; |
c5aa993b JM |
240 | |
241 | /* If we are about to return from a signal handler, dest is | |
242 | something like 0x3c90. The current frame is a signal handler | |
243 | caller frame, upon completion of the sigreturn system call | |
244 | execution will return to the saved PC in the frame. */ | |
245 | if (dest < TEXT_SEGMENT_BASE) | |
246 | { | |
247 | struct frame_info *fi; | |
248 | ||
249 | fi = get_current_frame (); | |
250 | if (fi != NULL) | |
7a78ae4e | 251 | dest = read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET, |
21283beb | 252 | gdbarch_tdep (current_gdbarch)->wordsize); |
c5aa993b JM |
253 | } |
254 | } | |
255 | ||
256 | else if (ext_op == 528) /* br cond to count reg */ | |
257 | { | |
2188cbdd | 258 | dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3; |
c5aa993b JM |
259 | |
260 | /* If we are about to execute a system call, dest is something | |
261 | like 0x22fc or 0x3b00. Upon completion the system call | |
262 | will return to the address in the link register. */ | |
263 | if (dest < TEXT_SEGMENT_BASE) | |
2188cbdd | 264 | dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3; |
c5aa993b JM |
265 | } |
266 | else | |
267 | return -1; | |
268 | break; | |
c906108c | 269 | |
c5aa993b JM |
270 | default: |
271 | return -1; | |
272 | } | |
c906108c SS |
273 | return (dest < TEXT_SEGMENT_BASE) ? safety : dest; |
274 | } | |
275 | ||
276 | ||
277 | /* Sequence of bytes for breakpoint instruction. */ | |
278 | ||
279 | #define BIG_BREAKPOINT { 0x7d, 0x82, 0x10, 0x08 } | |
280 | #define LITTLE_BREAKPOINT { 0x08, 0x10, 0x82, 0x7d } | |
281 | ||
f4f9705a | 282 | const static unsigned char * |
7a78ae4e | 283 | rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size) |
c906108c SS |
284 | { |
285 | static unsigned char big_breakpoint[] = BIG_BREAKPOINT; | |
286 | static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT; | |
287 | *bp_size = 4; | |
d7449b42 | 288 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
c906108c SS |
289 | return big_breakpoint; |
290 | else | |
291 | return little_breakpoint; | |
292 | } | |
293 | ||
294 | ||
295 | /* AIX does not support PT_STEP. Simulate it. */ | |
296 | ||
297 | void | |
379d08a1 AC |
298 | rs6000_software_single_step (enum target_signal signal, |
299 | int insert_breakpoints_p) | |
c906108c | 300 | { |
7c40d541 KB |
301 | CORE_ADDR dummy; |
302 | int breakp_sz; | |
f4f9705a | 303 | const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz); |
c906108c SS |
304 | int ii, insn; |
305 | CORE_ADDR loc; | |
306 | CORE_ADDR breaks[2]; | |
307 | int opcode; | |
308 | ||
c5aa993b JM |
309 | if (insert_breakpoints_p) |
310 | { | |
c906108c | 311 | |
c5aa993b | 312 | loc = read_pc (); |
c906108c | 313 | |
c5aa993b | 314 | insn = read_memory_integer (loc, 4); |
c906108c | 315 | |
7c40d541 | 316 | breaks[0] = loc + breakp_sz; |
c5aa993b JM |
317 | opcode = insn >> 26; |
318 | breaks[1] = branch_dest (opcode, insn, loc, breaks[0]); | |
c906108c | 319 | |
c5aa993b JM |
320 | /* Don't put two breakpoints on the same address. */ |
321 | if (breaks[1] == breaks[0]) | |
322 | breaks[1] = -1; | |
c906108c | 323 | |
c5aa993b | 324 | stepBreaks[1].address = 0; |
c906108c | 325 | |
c5aa993b JM |
326 | for (ii = 0; ii < 2; ++ii) |
327 | { | |
c906108c | 328 | |
c5aa993b JM |
329 | /* ignore invalid breakpoint. */ |
330 | if (breaks[ii] == -1) | |
331 | continue; | |
7c40d541 | 332 | target_insert_breakpoint (breaks[ii], stepBreaks[ii].data); |
c5aa993b JM |
333 | stepBreaks[ii].address = breaks[ii]; |
334 | } | |
c906108c | 335 | |
c5aa993b JM |
336 | } |
337 | else | |
338 | { | |
c906108c | 339 | |
c5aa993b JM |
340 | /* remove step breakpoints. */ |
341 | for (ii = 0; ii < 2; ++ii) | |
342 | if (stepBreaks[ii].address != 0) | |
7c40d541 KB |
343 | target_remove_breakpoint (stepBreaks[ii].address, |
344 | stepBreaks[ii].data); | |
c5aa993b | 345 | } |
c906108c | 346 | errno = 0; /* FIXME, don't ignore errors! */ |
c5aa993b | 347 | /* What errors? {read,write}_memory call error(). */ |
c906108c SS |
348 | } |
349 | ||
350 | ||
351 | /* return pc value after skipping a function prologue and also return | |
352 | information about a function frame. | |
353 | ||
354 | in struct rs6000_framedata fdata: | |
c5aa993b JM |
355 | - frameless is TRUE, if function does not have a frame. |
356 | - nosavedpc is TRUE, if function does not save %pc value in its frame. | |
357 | - offset is the initial size of this stack frame --- the amount by | |
358 | which we decrement the sp to allocate the frame. | |
359 | - saved_gpr is the number of the first saved gpr. | |
360 | - saved_fpr is the number of the first saved fpr. | |
6be8bc0c | 361 | - saved_vr is the number of the first saved vr. |
c5aa993b JM |
362 | - alloca_reg is the number of the register used for alloca() handling. |
363 | Otherwise -1. | |
364 | - gpr_offset is the offset of the first saved gpr from the previous frame. | |
365 | - fpr_offset is the offset of the first saved fpr from the previous frame. | |
6be8bc0c | 366 | - vr_offset is the offset of the first saved vr from the previous frame. |
c5aa993b JM |
367 | - lr_offset is the offset of the saved lr |
368 | - cr_offset is the offset of the saved cr | |
6be8bc0c | 369 | - vrsave_offset is the offset of the saved vrsave register |
c5aa993b | 370 | */ |
c906108c SS |
371 | |
372 | #define SIGNED_SHORT(x) \ | |
373 | ((sizeof (short) == 2) \ | |
374 | ? ((int)(short)(x)) \ | |
375 | : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000))) | |
376 | ||
377 | #define GET_SRC_REG(x) (((x) >> 21) & 0x1f) | |
378 | ||
55d05f3b KB |
379 | /* Limit the number of skipped non-prologue instructions, as the examining |
380 | of the prologue is expensive. */ | |
381 | static int max_skip_non_prologue_insns = 10; | |
382 | ||
383 | /* Given PC representing the starting address of a function, and | |
384 | LIM_PC which is the (sloppy) limit to which to scan when looking | |
385 | for a prologue, attempt to further refine this limit by using | |
386 | the line data in the symbol table. If successful, a better guess | |
387 | on where the prologue ends is returned, otherwise the previous | |
388 | value of lim_pc is returned. */ | |
389 | static CORE_ADDR | |
390 | refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc) | |
391 | { | |
392 | struct symtab_and_line prologue_sal; | |
393 | ||
394 | prologue_sal = find_pc_line (pc, 0); | |
395 | if (prologue_sal.line != 0) | |
396 | { | |
397 | int i; | |
398 | CORE_ADDR addr = prologue_sal.end; | |
399 | ||
400 | /* Handle the case in which compiler's optimizer/scheduler | |
401 | has moved instructions into the prologue. We scan ahead | |
402 | in the function looking for address ranges whose corresponding | |
403 | line number is less than or equal to the first one that we | |
404 | found for the function. (It can be less than when the | |
405 | scheduler puts a body instruction before the first prologue | |
406 | instruction.) */ | |
407 | for (i = 2 * max_skip_non_prologue_insns; | |
408 | i > 0 && (lim_pc == 0 || addr < lim_pc); | |
409 | i--) | |
410 | { | |
411 | struct symtab_and_line sal; | |
412 | ||
413 | sal = find_pc_line (addr, 0); | |
414 | if (sal.line == 0) | |
415 | break; | |
416 | if (sal.line <= prologue_sal.line | |
417 | && sal.symtab == prologue_sal.symtab) | |
418 | { | |
419 | prologue_sal = sal; | |
420 | } | |
421 | addr = sal.end; | |
422 | } | |
423 | ||
424 | if (lim_pc == 0 || prologue_sal.end < lim_pc) | |
425 | lim_pc = prologue_sal.end; | |
426 | } | |
427 | return lim_pc; | |
428 | } | |
429 | ||
430 | ||
7a78ae4e | 431 | static CORE_ADDR |
077276e8 | 432 | skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata) |
c906108c SS |
433 | { |
434 | CORE_ADDR orig_pc = pc; | |
55d05f3b | 435 | CORE_ADDR last_prologue_pc = pc; |
6be8bc0c | 436 | CORE_ADDR li_found_pc = 0; |
c906108c SS |
437 | char buf[4]; |
438 | unsigned long op; | |
439 | long offset = 0; | |
6be8bc0c | 440 | long vr_saved_offset = 0; |
482ca3f5 KB |
441 | int lr_reg = -1; |
442 | int cr_reg = -1; | |
6be8bc0c EZ |
443 | int vr_reg = -1; |
444 | int vrsave_reg = -1; | |
c906108c SS |
445 | int reg; |
446 | int framep = 0; | |
447 | int minimal_toc_loaded = 0; | |
ddb20c56 | 448 | int prev_insn_was_prologue_insn = 1; |
55d05f3b KB |
449 | int num_skip_non_prologue_insns = 0; |
450 | ||
451 | /* Attempt to find the end of the prologue when no limit is specified. | |
452 | Note that refine_prologue_limit() has been written so that it may | |
453 | be used to "refine" the limits of non-zero PC values too, but this | |
454 | is only safe if we 1) trust the line information provided by the | |
455 | compiler and 2) iterate enough to actually find the end of the | |
456 | prologue. | |
457 | ||
458 | It may become a good idea at some point (for both performance and | |
459 | accuracy) to unconditionally call refine_prologue_limit(). But, | |
460 | until we can make a clear determination that this is beneficial, | |
461 | we'll play it safe and only use it to obtain a limit when none | |
462 | has been specified. */ | |
463 | if (lim_pc == 0) | |
464 | lim_pc = refine_prologue_limit (pc, lim_pc); | |
c906108c | 465 | |
ddb20c56 | 466 | memset (fdata, 0, sizeof (struct rs6000_framedata)); |
c906108c SS |
467 | fdata->saved_gpr = -1; |
468 | fdata->saved_fpr = -1; | |
6be8bc0c | 469 | fdata->saved_vr = -1; |
c906108c SS |
470 | fdata->alloca_reg = -1; |
471 | fdata->frameless = 1; | |
472 | fdata->nosavedpc = 1; | |
473 | ||
55d05f3b | 474 | for (;; pc += 4) |
c906108c | 475 | { |
ddb20c56 KB |
476 | /* Sometimes it isn't clear if an instruction is a prologue |
477 | instruction or not. When we encounter one of these ambiguous | |
478 | cases, we'll set prev_insn_was_prologue_insn to 0 (false). | |
479 | Otherwise, we'll assume that it really is a prologue instruction. */ | |
480 | if (prev_insn_was_prologue_insn) | |
481 | last_prologue_pc = pc; | |
55d05f3b KB |
482 | |
483 | /* Stop scanning if we've hit the limit. */ | |
484 | if (lim_pc != 0 && pc >= lim_pc) | |
485 | break; | |
486 | ||
ddb20c56 KB |
487 | prev_insn_was_prologue_insn = 1; |
488 | ||
55d05f3b | 489 | /* Fetch the instruction and convert it to an integer. */ |
ddb20c56 KB |
490 | if (target_read_memory (pc, buf, 4)) |
491 | break; | |
492 | op = extract_signed_integer (buf, 4); | |
c906108c | 493 | |
c5aa993b JM |
494 | if ((op & 0xfc1fffff) == 0x7c0802a6) |
495 | { /* mflr Rx */ | |
496 | lr_reg = (op & 0x03e00000) | 0x90010000; | |
497 | continue; | |
c906108c | 498 | |
c5aa993b JM |
499 | } |
500 | else if ((op & 0xfc1fffff) == 0x7c000026) | |
501 | { /* mfcr Rx */ | |
502 | cr_reg = (op & 0x03e00000) | 0x90010000; | |
503 | continue; | |
c906108c | 504 | |
c906108c | 505 | } |
c5aa993b JM |
506 | else if ((op & 0xfc1f0000) == 0xd8010000) |
507 | { /* stfd Rx,NUM(r1) */ | |
508 | reg = GET_SRC_REG (op); | |
509 | if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg) | |
510 | { | |
511 | fdata->saved_fpr = reg; | |
512 | fdata->fpr_offset = SIGNED_SHORT (op) + offset; | |
513 | } | |
514 | continue; | |
c906108c | 515 | |
c5aa993b JM |
516 | } |
517 | else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */ | |
7a78ae4e ND |
518 | (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */ |
519 | (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */ | |
520 | (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */ | |
c5aa993b JM |
521 | { |
522 | ||
523 | reg = GET_SRC_REG (op); | |
524 | if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg) | |
525 | { | |
526 | fdata->saved_gpr = reg; | |
7a78ae4e ND |
527 | if ((op & 0xfc1f0003) == 0xf8010000) |
528 | op = (op >> 1) << 1; | |
c5aa993b JM |
529 | fdata->gpr_offset = SIGNED_SHORT (op) + offset; |
530 | } | |
531 | continue; | |
c906108c | 532 | |
ddb20c56 KB |
533 | } |
534 | else if ((op & 0xffff0000) == 0x60000000) | |
535 | { | |
536 | /* nop */ | |
537 | /* Allow nops in the prologue, but do not consider them to | |
538 | be part of the prologue unless followed by other prologue | |
539 | instructions. */ | |
540 | prev_insn_was_prologue_insn = 0; | |
541 | continue; | |
542 | ||
c906108c | 543 | } |
c5aa993b JM |
544 | else if ((op & 0xffff0000) == 0x3c000000) |
545 | { /* addis 0,0,NUM, used | |
546 | for >= 32k frames */ | |
547 | fdata->offset = (op & 0x0000ffff) << 16; | |
548 | fdata->frameless = 0; | |
549 | continue; | |
550 | ||
551 | } | |
552 | else if ((op & 0xffff0000) == 0x60000000) | |
553 | { /* ori 0,0,NUM, 2nd ha | |
554 | lf of >= 32k frames */ | |
555 | fdata->offset |= (op & 0x0000ffff); | |
556 | fdata->frameless = 0; | |
557 | continue; | |
558 | ||
559 | } | |
482ca3f5 | 560 | else if (lr_reg != -1 && (op & 0xffff0000) == lr_reg) |
c5aa993b JM |
561 | { /* st Rx,NUM(r1) |
562 | where Rx == lr */ | |
563 | fdata->lr_offset = SIGNED_SHORT (op) + offset; | |
564 | fdata->nosavedpc = 0; | |
565 | lr_reg = 0; | |
566 | continue; | |
567 | ||
568 | } | |
482ca3f5 | 569 | else if (cr_reg != -1 && (op & 0xffff0000) == cr_reg) |
c5aa993b JM |
570 | { /* st Rx,NUM(r1) |
571 | where Rx == cr */ | |
572 | fdata->cr_offset = SIGNED_SHORT (op) + offset; | |
573 | cr_reg = 0; | |
574 | continue; | |
575 | ||
576 | } | |
577 | else if (op == 0x48000005) | |
578 | { /* bl .+4 used in | |
579 | -mrelocatable */ | |
580 | continue; | |
581 | ||
582 | } | |
583 | else if (op == 0x48000004) | |
584 | { /* b .+4 (xlc) */ | |
585 | break; | |
586 | ||
c5aa993b | 587 | } |
6be8bc0c EZ |
588 | else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used |
589 | in V.4 -mminimal-toc */ | |
c5aa993b JM |
590 | (op & 0xffff0000) == 0x3bde0000) |
591 | { /* addi 30,30,foo@l */ | |
592 | continue; | |
c906108c | 593 | |
c5aa993b JM |
594 | } |
595 | else if ((op & 0xfc000001) == 0x48000001) | |
596 | { /* bl foo, | |
597 | to save fprs??? */ | |
c906108c | 598 | |
c5aa993b | 599 | fdata->frameless = 0; |
6be8bc0c EZ |
600 | /* Don't skip over the subroutine call if it is not within |
601 | the first three instructions of the prologue. */ | |
c5aa993b JM |
602 | if ((pc - orig_pc) > 8) |
603 | break; | |
604 | ||
605 | op = read_memory_integer (pc + 4, 4); | |
606 | ||
6be8bc0c EZ |
607 | /* At this point, make sure this is not a trampoline |
608 | function (a function that simply calls another functions, | |
609 | and nothing else). If the next is not a nop, this branch | |
610 | was part of the function prologue. */ | |
c5aa993b JM |
611 | |
612 | if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */ | |
613 | break; /* don't skip over | |
614 | this branch */ | |
615 | continue; | |
616 | ||
617 | /* update stack pointer */ | |
618 | } | |
7a78ae4e ND |
619 | else if ((op & 0xffff0000) == 0x94210000 || /* stu r1,NUM(r1) */ |
620 | (op & 0xffff0003) == 0xf8210001) /* stdu r1,NUM(r1) */ | |
621 | { | |
c5aa993b | 622 | fdata->frameless = 0; |
7a78ae4e ND |
623 | if ((op & 0xffff0003) == 0xf8210001) |
624 | op = (op >> 1) << 1; | |
c5aa993b JM |
625 | fdata->offset = SIGNED_SHORT (op); |
626 | offset = fdata->offset; | |
627 | continue; | |
628 | ||
629 | } | |
630 | else if (op == 0x7c21016e) | |
631 | { /* stwux 1,1,0 */ | |
632 | fdata->frameless = 0; | |
633 | offset = fdata->offset; | |
634 | continue; | |
635 | ||
636 | /* Load up minimal toc pointer */ | |
637 | } | |
638 | else if ((op >> 22) == 0x20f | |
639 | && !minimal_toc_loaded) | |
640 | { /* l r31,... or l r30,... */ | |
641 | minimal_toc_loaded = 1; | |
642 | continue; | |
643 | ||
f6077098 KB |
644 | /* move parameters from argument registers to local variable |
645 | registers */ | |
646 | } | |
647 | else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */ | |
648 | (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */ | |
649 | (((op >> 21) & 31) <= 10) && | |
650 | (((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */ | |
651 | { | |
652 | continue; | |
653 | ||
c5aa993b JM |
654 | /* store parameters in stack */ |
655 | } | |
6be8bc0c | 656 | else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */ |
c5aa993b | 657 | (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */ |
7a78ae4e ND |
658 | (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */ |
659 | { | |
c5aa993b | 660 | continue; |
c906108c | 661 | |
c5aa993b JM |
662 | /* store parameters in stack via frame pointer */ |
663 | } | |
664 | else if (framep && | |
665 | ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */ | |
666 | (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */ | |
667 | (op & 0xfc1f0000) == 0xfc1f0000)) | |
668 | { /* frsp, fp?,NUM(r1) */ | |
669 | continue; | |
670 | ||
671 | /* Set up frame pointer */ | |
672 | } | |
673 | else if (op == 0x603f0000 /* oril r31, r1, 0x0 */ | |
674 | || op == 0x7c3f0b78) | |
675 | { /* mr r31, r1 */ | |
676 | fdata->frameless = 0; | |
677 | framep = 1; | |
678 | fdata->alloca_reg = 31; | |
679 | continue; | |
680 | ||
681 | /* Another way to set up the frame pointer. */ | |
682 | } | |
683 | else if ((op & 0xfc1fffff) == 0x38010000) | |
684 | { /* addi rX, r1, 0x0 */ | |
685 | fdata->frameless = 0; | |
686 | framep = 1; | |
687 | fdata->alloca_reg = (op & ~0x38010000) >> 21; | |
688 | continue; | |
c5aa993b | 689 | } |
6be8bc0c EZ |
690 | /* AltiVec related instructions. */ |
691 | /* Store the vrsave register (spr 256) in another register for | |
692 | later manipulation, or load a register into the vrsave | |
693 | register. 2 instructions are used: mfvrsave and | |
694 | mtvrsave. They are shorthand notation for mfspr Rn, SPR256 | |
695 | and mtspr SPR256, Rn. */ | |
696 | /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110 | |
697 | mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */ | |
698 | else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */ | |
699 | { | |
700 | vrsave_reg = GET_SRC_REG (op); | |
701 | continue; | |
702 | } | |
703 | else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */ | |
704 | { | |
705 | continue; | |
706 | } | |
707 | /* Store the register where vrsave was saved to onto the stack: | |
708 | rS is the register where vrsave was stored in a previous | |
709 | instruction. */ | |
710 | /* 100100 sssss 00001 dddddddd dddddddd */ | |
711 | else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */ | |
712 | { | |
713 | if (vrsave_reg == GET_SRC_REG (op)) | |
714 | { | |
715 | fdata->vrsave_offset = SIGNED_SHORT (op) + offset; | |
716 | vrsave_reg = -1; | |
717 | } | |
718 | continue; | |
719 | } | |
720 | /* Compute the new value of vrsave, by modifying the register | |
721 | where vrsave was saved to. */ | |
722 | else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */ | |
723 | || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */ | |
724 | { | |
725 | continue; | |
726 | } | |
727 | /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first | |
728 | in a pair of insns to save the vector registers on the | |
729 | stack. */ | |
730 | /* 001110 00000 00000 iiii iiii iiii iiii */ | |
731 | else if ((op & 0xffff0000) == 0x38000000) /* li r0, SIMM */ | |
732 | { | |
733 | li_found_pc = pc; | |
734 | vr_saved_offset = SIGNED_SHORT (op); | |
735 | } | |
736 | /* Store vector register S at (r31+r0) aligned to 16 bytes. */ | |
737 | /* 011111 sssss 11111 00000 00111001110 */ | |
738 | else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */ | |
739 | { | |
740 | if (pc == (li_found_pc + 4)) | |
741 | { | |
742 | vr_reg = GET_SRC_REG (op); | |
743 | /* If this is the first vector reg to be saved, or if | |
744 | it has a lower number than others previously seen, | |
745 | reupdate the frame info. */ | |
746 | if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg) | |
747 | { | |
748 | fdata->saved_vr = vr_reg; | |
749 | fdata->vr_offset = vr_saved_offset + offset; | |
750 | } | |
751 | vr_saved_offset = -1; | |
752 | vr_reg = -1; | |
753 | li_found_pc = 0; | |
754 | } | |
755 | } | |
756 | /* End AltiVec related instructions. */ | |
c5aa993b JM |
757 | else |
758 | { | |
55d05f3b KB |
759 | /* Not a recognized prologue instruction. |
760 | Handle optimizer code motions into the prologue by continuing | |
761 | the search if we have no valid frame yet or if the return | |
762 | address is not yet saved in the frame. */ | |
763 | if (fdata->frameless == 0 | |
764 | && (lr_reg == -1 || fdata->nosavedpc == 0)) | |
765 | break; | |
766 | ||
767 | if (op == 0x4e800020 /* blr */ | |
768 | || op == 0x4e800420) /* bctr */ | |
769 | /* Do not scan past epilogue in frameless functions or | |
770 | trampolines. */ | |
771 | break; | |
772 | if ((op & 0xf4000000) == 0x40000000) /* bxx */ | |
64366f1c | 773 | /* Never skip branches. */ |
55d05f3b KB |
774 | break; |
775 | ||
776 | if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns) | |
777 | /* Do not scan too many insns, scanning insns is expensive with | |
778 | remote targets. */ | |
779 | break; | |
780 | ||
781 | /* Continue scanning. */ | |
782 | prev_insn_was_prologue_insn = 0; | |
783 | continue; | |
c5aa993b | 784 | } |
c906108c SS |
785 | } |
786 | ||
787 | #if 0 | |
788 | /* I have problems with skipping over __main() that I need to address | |
789 | * sometime. Previously, I used to use misc_function_vector which | |
790 | * didn't work as well as I wanted to be. -MGO */ | |
791 | ||
792 | /* If the first thing after skipping a prolog is a branch to a function, | |
793 | this might be a call to an initializer in main(), introduced by gcc2. | |
64366f1c | 794 | We'd like to skip over it as well. Fortunately, xlc does some extra |
c906108c | 795 | work before calling a function right after a prologue, thus we can |
64366f1c | 796 | single out such gcc2 behaviour. */ |
c906108c | 797 | |
c906108c | 798 | |
c5aa993b JM |
799 | if ((op & 0xfc000001) == 0x48000001) |
800 | { /* bl foo, an initializer function? */ | |
801 | op = read_memory_integer (pc + 4, 4); | |
802 | ||
803 | if (op == 0x4def7b82) | |
804 | { /* cror 0xf, 0xf, 0xf (nop) */ | |
c906108c | 805 | |
64366f1c EZ |
806 | /* Check and see if we are in main. If so, skip over this |
807 | initializer function as well. */ | |
c906108c | 808 | |
c5aa993b | 809 | tmp = find_pc_misc_function (pc); |
51cc5b07 | 810 | if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, main_name ())) |
c5aa993b JM |
811 | return pc + 8; |
812 | } | |
c906108c | 813 | } |
c906108c | 814 | #endif /* 0 */ |
c5aa993b JM |
815 | |
816 | fdata->offset = -fdata->offset; | |
ddb20c56 | 817 | return last_prologue_pc; |
c906108c SS |
818 | } |
819 | ||
820 | ||
821 | /************************************************************************* | |
f6077098 | 822 | Support for creating pushing a dummy frame into the stack, and popping |
c906108c SS |
823 | frames, etc. |
824 | *************************************************************************/ | |
825 | ||
c906108c | 826 | |
64366f1c | 827 | /* Pop the innermost frame, go back to the caller. */ |
c5aa993b | 828 | |
c906108c | 829 | static void |
7a78ae4e | 830 | rs6000_pop_frame (void) |
c906108c | 831 | { |
470d5666 | 832 | CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */ |
c906108c SS |
833 | struct rs6000_framedata fdata; |
834 | struct frame_info *frame = get_current_frame (); | |
470d5666 | 835 | int ii, wordsize; |
c906108c SS |
836 | |
837 | pc = read_pc (); | |
838 | sp = FRAME_FP (frame); | |
839 | ||
58223630 | 840 | if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame)) |
c906108c | 841 | { |
7a78ae4e ND |
842 | generic_pop_dummy_frame (); |
843 | flush_cached_frames (); | |
844 | return; | |
c906108c SS |
845 | } |
846 | ||
847 | /* Make sure that all registers are valid. */ | |
848 | read_register_bytes (0, NULL, REGISTER_BYTES); | |
849 | ||
64366f1c | 850 | /* Figure out previous %pc value. If the function is frameless, it is |
c906108c | 851 | still in the link register, otherwise walk the frames and retrieve the |
64366f1c | 852 | saved %pc value in the previous frame. */ |
c906108c SS |
853 | |
854 | addr = get_pc_function_start (frame->pc); | |
077276e8 | 855 | (void) skip_prologue (addr, frame->pc, &fdata); |
c906108c | 856 | |
21283beb | 857 | wordsize = gdbarch_tdep (current_gdbarch)->wordsize; |
c906108c SS |
858 | if (fdata.frameless) |
859 | prev_sp = sp; | |
860 | else | |
7a78ae4e | 861 | prev_sp = read_memory_addr (sp, wordsize); |
c906108c | 862 | if (fdata.lr_offset == 0) |
2188cbdd | 863 | lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum); |
c906108c | 864 | else |
7a78ae4e | 865 | lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize); |
c906108c SS |
866 | |
867 | /* reset %pc value. */ | |
868 | write_register (PC_REGNUM, lr); | |
869 | ||
64366f1c | 870 | /* reset register values if any was saved earlier. */ |
c906108c SS |
871 | |
872 | if (fdata.saved_gpr != -1) | |
873 | { | |
874 | addr = prev_sp + fdata.gpr_offset; | |
c5aa993b JM |
875 | for (ii = fdata.saved_gpr; ii <= 31; ++ii) |
876 | { | |
7a78ae4e ND |
877 | read_memory (addr, ®isters[REGISTER_BYTE (ii)], wordsize); |
878 | addr += wordsize; | |
c5aa993b | 879 | } |
c906108c SS |
880 | } |
881 | ||
882 | if (fdata.saved_fpr != -1) | |
883 | { | |
884 | addr = prev_sp + fdata.fpr_offset; | |
c5aa993b JM |
885 | for (ii = fdata.saved_fpr; ii <= 31; ++ii) |
886 | { | |
887 | read_memory (addr, ®isters[REGISTER_BYTE (ii + FP0_REGNUM)], 8); | |
888 | addr += 8; | |
889 | } | |
c906108c SS |
890 | } |
891 | ||
892 | write_register (SP_REGNUM, prev_sp); | |
893 | target_store_registers (-1); | |
894 | flush_cached_frames (); | |
895 | } | |
896 | ||
7a78ae4e | 897 | /* Fixup the call sequence of a dummy function, with the real function |
64366f1c | 898 | address. Its arguments will be passed by gdb. */ |
c906108c | 899 | |
7a78ae4e ND |
900 | static void |
901 | rs6000_fix_call_dummy (char *dummyname, CORE_ADDR pc, CORE_ADDR fun, | |
ea7c478f | 902 | int nargs, struct value **args, struct type *type, |
7a78ae4e | 903 | int gcc_p) |
c906108c | 904 | { |
c906108c SS |
905 | int ii; |
906 | CORE_ADDR target_addr; | |
907 | ||
7a78ae4e | 908 | if (rs6000_find_toc_address_hook != NULL) |
f6077098 | 909 | { |
7a78ae4e | 910 | CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (fun); |
2188cbdd EZ |
911 | write_register (gdbarch_tdep (current_gdbarch)->ppc_toc_regnum, |
912 | tocvalue); | |
f6077098 | 913 | } |
c906108c SS |
914 | } |
915 | ||
7a78ae4e | 916 | /* Pass the arguments in either registers, or in the stack. In RS/6000, |
c906108c SS |
917 | the first eight words of the argument list (that might be less than |
918 | eight parameters if some parameters occupy more than one word) are | |
7a78ae4e | 919 | passed in r3..r10 registers. float and double parameters are |
64366f1c EZ |
920 | passed in fpr's, in addition to that. Rest of the parameters if any |
921 | are passed in user stack. There might be cases in which half of the | |
c906108c SS |
922 | parameter is copied into registers, the other half is pushed into |
923 | stack. | |
924 | ||
7a78ae4e ND |
925 | Stack must be aligned on 64-bit boundaries when synthesizing |
926 | function calls. | |
927 | ||
c906108c SS |
928 | If the function is returning a structure, then the return address is passed |
929 | in r3, then the first 7 words of the parameters can be passed in registers, | |
64366f1c | 930 | starting from r4. */ |
c906108c | 931 | |
7a78ae4e | 932 | static CORE_ADDR |
ea7c478f | 933 | rs6000_push_arguments (int nargs, struct value **args, CORE_ADDR sp, |
7a78ae4e | 934 | int struct_return, CORE_ADDR struct_addr) |
c906108c SS |
935 | { |
936 | int ii; | |
937 | int len = 0; | |
c5aa993b JM |
938 | int argno; /* current argument number */ |
939 | int argbytes; /* current argument byte */ | |
940 | char tmp_buffer[50]; | |
941 | int f_argno = 0; /* current floating point argno */ | |
21283beb | 942 | int wordsize = gdbarch_tdep (current_gdbarch)->wordsize; |
c906108c | 943 | |
ea7c478f | 944 | struct value *arg = 0; |
c906108c SS |
945 | struct type *type; |
946 | ||
947 | CORE_ADDR saved_sp; | |
948 | ||
64366f1c EZ |
949 | /* The first eight words of ther arguments are passed in registers. |
950 | Copy them appropriately. | |
c906108c SS |
951 | |
952 | If the function is returning a `struct', then the first word (which | |
64366f1c | 953 | will be passed in r3) is used for struct return address. In that |
c906108c | 954 | case we should advance one word and start from r4 register to copy |
64366f1c | 955 | parameters. */ |
c906108c | 956 | |
c5aa993b | 957 | ii = struct_return ? 1 : 0; |
c906108c SS |
958 | |
959 | /* | |
c5aa993b JM |
960 | effectively indirect call... gcc does... |
961 | ||
962 | return_val example( float, int); | |
963 | ||
964 | eabi: | |
965 | float in fp0, int in r3 | |
966 | offset of stack on overflow 8/16 | |
967 | for varargs, must go by type. | |
968 | power open: | |
969 | float in r3&r4, int in r5 | |
970 | offset of stack on overflow different | |
971 | both: | |
972 | return in r3 or f0. If no float, must study how gcc emulates floats; | |
973 | pay attention to arg promotion. | |
974 | User may have to cast\args to handle promotion correctly | |
975 | since gdb won't know if prototype supplied or not. | |
976 | */ | |
c906108c | 977 | |
c5aa993b JM |
978 | for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii) |
979 | { | |
f6077098 | 980 | int reg_size = REGISTER_RAW_SIZE (ii + 3); |
c5aa993b JM |
981 | |
982 | arg = args[argno]; | |
983 | type = check_typedef (VALUE_TYPE (arg)); | |
984 | len = TYPE_LENGTH (type); | |
985 | ||
986 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
987 | { | |
988 | ||
64366f1c | 989 | /* Floating point arguments are passed in fpr's, as well as gpr's. |
c5aa993b | 990 | There are 13 fpr's reserved for passing parameters. At this point |
64366f1c | 991 | there is no way we would run out of them. */ |
c5aa993b JM |
992 | |
993 | if (len > 8) | |
994 | printf_unfiltered ( | |
995 | "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno); | |
996 | ||
997 | memcpy (®isters[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)], | |
998 | VALUE_CONTENTS (arg), | |
999 | len); | |
1000 | ++f_argno; | |
1001 | } | |
1002 | ||
f6077098 | 1003 | if (len > reg_size) |
c5aa993b JM |
1004 | { |
1005 | ||
64366f1c | 1006 | /* Argument takes more than one register. */ |
c5aa993b JM |
1007 | while (argbytes < len) |
1008 | { | |
f6077098 | 1009 | memset (®isters[REGISTER_BYTE (ii + 3)], 0, reg_size); |
c5aa993b JM |
1010 | memcpy (®isters[REGISTER_BYTE (ii + 3)], |
1011 | ((char *) VALUE_CONTENTS (arg)) + argbytes, | |
f6077098 KB |
1012 | (len - argbytes) > reg_size |
1013 | ? reg_size : len - argbytes); | |
1014 | ++ii, argbytes += reg_size; | |
c5aa993b JM |
1015 | |
1016 | if (ii >= 8) | |
1017 | goto ran_out_of_registers_for_arguments; | |
1018 | } | |
1019 | argbytes = 0; | |
1020 | --ii; | |
1021 | } | |
1022 | else | |
64366f1c EZ |
1023 | { |
1024 | /* Argument can fit in one register. No problem. */ | |
d7449b42 | 1025 | int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0; |
f6077098 KB |
1026 | memset (®isters[REGISTER_BYTE (ii + 3)], 0, reg_size); |
1027 | memcpy ((char *)®isters[REGISTER_BYTE (ii + 3)] + adj, | |
1028 | VALUE_CONTENTS (arg), len); | |
c5aa993b JM |
1029 | } |
1030 | ++argno; | |
c906108c | 1031 | } |
c906108c SS |
1032 | |
1033 | ran_out_of_registers_for_arguments: | |
1034 | ||
7a78ae4e | 1035 | saved_sp = read_sp (); |
cc9836a8 | 1036 | |
64366f1c | 1037 | /* Location for 8 parameters are always reserved. */ |
7a78ae4e | 1038 | sp -= wordsize * 8; |
f6077098 | 1039 | |
64366f1c | 1040 | /* Another six words for back chain, TOC register, link register, etc. */ |
7a78ae4e | 1041 | sp -= wordsize * 6; |
f6077098 | 1042 | |
64366f1c | 1043 | /* Stack pointer must be quadword aligned. */ |
7a78ae4e | 1044 | sp &= -16; |
c906108c | 1045 | |
64366f1c EZ |
1046 | /* If there are more arguments, allocate space for them in |
1047 | the stack, then push them starting from the ninth one. */ | |
c906108c | 1048 | |
c5aa993b JM |
1049 | if ((argno < nargs) || argbytes) |
1050 | { | |
1051 | int space = 0, jj; | |
c906108c | 1052 | |
c5aa993b JM |
1053 | if (argbytes) |
1054 | { | |
1055 | space += ((len - argbytes + 3) & -4); | |
1056 | jj = argno + 1; | |
1057 | } | |
1058 | else | |
1059 | jj = argno; | |
c906108c | 1060 | |
c5aa993b JM |
1061 | for (; jj < nargs; ++jj) |
1062 | { | |
ea7c478f | 1063 | struct value *val = args[jj]; |
c5aa993b JM |
1064 | space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4; |
1065 | } | |
c906108c | 1066 | |
64366f1c | 1067 | /* Add location required for the rest of the parameters. */ |
f6077098 | 1068 | space = (space + 15) & -16; |
c5aa993b | 1069 | sp -= space; |
c906108c | 1070 | |
64366f1c EZ |
1071 | /* This is another instance we need to be concerned about |
1072 | securing our stack space. If we write anything underneath %sp | |
1073 | (r1), we might conflict with the kernel who thinks he is free | |
1074 | to use this area. So, update %sp first before doing anything | |
1075 | else. */ | |
c906108c | 1076 | |
c5aa993b | 1077 | write_register (SP_REGNUM, sp); |
c906108c | 1078 | |
64366f1c EZ |
1079 | /* If the last argument copied into the registers didn't fit there |
1080 | completely, push the rest of it into stack. */ | |
c906108c | 1081 | |
c5aa993b JM |
1082 | if (argbytes) |
1083 | { | |
1084 | write_memory (sp + 24 + (ii * 4), | |
1085 | ((char *) VALUE_CONTENTS (arg)) + argbytes, | |
1086 | len - argbytes); | |
1087 | ++argno; | |
1088 | ii += ((len - argbytes + 3) & -4) / 4; | |
1089 | } | |
c906108c | 1090 | |
64366f1c | 1091 | /* Push the rest of the arguments into stack. */ |
c5aa993b JM |
1092 | for (; argno < nargs; ++argno) |
1093 | { | |
c906108c | 1094 | |
c5aa993b JM |
1095 | arg = args[argno]; |
1096 | type = check_typedef (VALUE_TYPE (arg)); | |
1097 | len = TYPE_LENGTH (type); | |
c906108c SS |
1098 | |
1099 | ||
64366f1c EZ |
1100 | /* Float types should be passed in fpr's, as well as in the |
1101 | stack. */ | |
c5aa993b JM |
1102 | if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13) |
1103 | { | |
c906108c | 1104 | |
c5aa993b JM |
1105 | if (len > 8) |
1106 | printf_unfiltered ( | |
1107 | "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno); | |
c906108c | 1108 | |
c5aa993b JM |
1109 | memcpy (®isters[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)], |
1110 | VALUE_CONTENTS (arg), | |
1111 | len); | |
1112 | ++f_argno; | |
1113 | } | |
c906108c | 1114 | |
c5aa993b JM |
1115 | write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len); |
1116 | ii += ((len + 3) & -4) / 4; | |
1117 | } | |
c906108c | 1118 | } |
c906108c | 1119 | else |
64366f1c | 1120 | /* Secure stack areas first, before doing anything else. */ |
c906108c SS |
1121 | write_register (SP_REGNUM, sp); |
1122 | ||
c906108c SS |
1123 | /* set back chain properly */ |
1124 | store_address (tmp_buffer, 4, saved_sp); | |
1125 | write_memory (sp, tmp_buffer, 4); | |
1126 | ||
1127 | target_store_registers (-1); | |
1128 | return sp; | |
1129 | } | |
c906108c SS |
1130 | |
1131 | /* Function: ppc_push_return_address (pc, sp) | |
64366f1c | 1132 | Set up the return address for the inferior function call. */ |
c906108c | 1133 | |
7a78ae4e ND |
1134 | static CORE_ADDR |
1135 | ppc_push_return_address (CORE_ADDR pc, CORE_ADDR sp) | |
c906108c | 1136 | { |
2188cbdd EZ |
1137 | write_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum, |
1138 | CALL_DUMMY_ADDRESS ()); | |
c906108c SS |
1139 | return sp; |
1140 | } | |
1141 | ||
7a78ae4e | 1142 | /* Extract a function return value of type TYPE from raw register array |
64366f1c | 1143 | REGBUF, and copy that return value into VALBUF in virtual format. */ |
c906108c | 1144 | |
7a78ae4e ND |
1145 | static void |
1146 | rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf) | |
c906108c SS |
1147 | { |
1148 | int offset = 0; | |
ace1378a | 1149 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
c906108c | 1150 | |
c5aa993b JM |
1151 | if (TYPE_CODE (valtype) == TYPE_CODE_FLT) |
1152 | { | |
c906108c | 1153 | |
c5aa993b JM |
1154 | double dd; |
1155 | float ff; | |
1156 | /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes. | |
1157 | We need to truncate the return value into float size (4 byte) if | |
64366f1c | 1158 | necessary. */ |
c906108c | 1159 | |
c5aa993b JM |
1160 | if (TYPE_LENGTH (valtype) > 4) /* this is a double */ |
1161 | memcpy (valbuf, | |
1162 | ®buf[REGISTER_BYTE (FP0_REGNUM + 1)], | |
1163 | TYPE_LENGTH (valtype)); | |
1164 | else | |
1165 | { /* float */ | |
1166 | memcpy (&dd, ®buf[REGISTER_BYTE (FP0_REGNUM + 1)], 8); | |
1167 | ff = (float) dd; | |
1168 | memcpy (valbuf, &ff, sizeof (float)); | |
1169 | } | |
1170 | } | |
ace1378a EZ |
1171 | else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY |
1172 | && TYPE_LENGTH (valtype) == 16 | |
1173 | && TYPE_VECTOR (valtype)) | |
1174 | { | |
1175 | memcpy (valbuf, regbuf + REGISTER_BYTE (tdep->ppc_vr0_regnum + 2), | |
1176 | TYPE_LENGTH (valtype)); | |
1177 | } | |
c5aa993b JM |
1178 | else |
1179 | { | |
1180 | /* return value is copied starting from r3. */ | |
d7449b42 | 1181 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG |
c5aa993b JM |
1182 | && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3)) |
1183 | offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype); | |
1184 | ||
1185 | memcpy (valbuf, | |
1186 | regbuf + REGISTER_BYTE (3) + offset, | |
c906108c | 1187 | TYPE_LENGTH (valtype)); |
c906108c | 1188 | } |
c906108c SS |
1189 | } |
1190 | ||
7a78ae4e | 1191 | /* Keep structure return address in this variable. |
c906108c SS |
1192 | FIXME: This is a horrid kludge which should not be allowed to continue |
1193 | living. This only allows a single nested call to a structure-returning | |
1194 | function. Come on, guys! -- [email protected], Aug 92 */ | |
1195 | ||
7a78ae4e | 1196 | static CORE_ADDR rs6000_struct_return_address; |
c906108c | 1197 | |
977adac5 ND |
1198 | /* Return whether handle_inferior_event() should proceed through code |
1199 | starting at PC in function NAME when stepping. | |
1200 | ||
1201 | The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to | |
1202 | handle memory references that are too distant to fit in instructions | |
1203 | generated by the compiler. For example, if 'foo' in the following | |
1204 | instruction: | |
1205 | ||
1206 | lwz r9,foo(r2) | |
1207 | ||
1208 | is greater than 32767, the linker might replace the lwz with a branch to | |
1209 | somewhere in @FIX1 that does the load in 2 instructions and then branches | |
1210 | back to where execution should continue. | |
1211 | ||
1212 | GDB should silently step over @FIX code, just like AIX dbx does. | |
1213 | Unfortunately, the linker uses the "b" instruction for the branches, | |
1214 | meaning that the link register doesn't get set. Therefore, GDB's usual | |
1215 | step_over_function() mechanism won't work. | |
1216 | ||
1217 | Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks | |
1218 | in handle_inferior_event() to skip past @FIX code. */ | |
1219 | ||
1220 | int | |
1221 | rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name) | |
1222 | { | |
1223 | return name && !strncmp (name, "@FIX", 4); | |
1224 | } | |
1225 | ||
1226 | /* Skip code that the user doesn't want to see when stepping: | |
1227 | ||
1228 | 1. Indirect function calls use a piece of trampoline code to do context | |
1229 | switching, i.e. to set the new TOC table. Skip such code if we are on | |
1230 | its first instruction (as when we have single-stepped to here). | |
1231 | ||
1232 | 2. Skip shared library trampoline code (which is different from | |
c906108c | 1233 | indirect function call trampolines). |
977adac5 ND |
1234 | |
1235 | 3. Skip bigtoc fixup code. | |
1236 | ||
c906108c | 1237 | Result is desired PC to step until, or NULL if we are not in |
977adac5 | 1238 | code that should be skipped. */ |
c906108c SS |
1239 | |
1240 | CORE_ADDR | |
7a78ae4e | 1241 | rs6000_skip_trampoline_code (CORE_ADDR pc) |
c906108c SS |
1242 | { |
1243 | register unsigned int ii, op; | |
977adac5 | 1244 | int rel; |
c906108c | 1245 | CORE_ADDR solib_target_pc; |
977adac5 | 1246 | struct minimal_symbol *msymbol; |
c906108c | 1247 | |
c5aa993b JM |
1248 | static unsigned trampoline_code[] = |
1249 | { | |
1250 | 0x800b0000, /* l r0,0x0(r11) */ | |
1251 | 0x90410014, /* st r2,0x14(r1) */ | |
1252 | 0x7c0903a6, /* mtctr r0 */ | |
1253 | 0x804b0004, /* l r2,0x4(r11) */ | |
1254 | 0x816b0008, /* l r11,0x8(r11) */ | |
1255 | 0x4e800420, /* bctr */ | |
1256 | 0x4e800020, /* br */ | |
1257 | 0 | |
c906108c SS |
1258 | }; |
1259 | ||
977adac5 ND |
1260 | /* Check for bigtoc fixup code. */ |
1261 | msymbol = lookup_minimal_symbol_by_pc (pc); | |
1262 | if (msymbol && rs6000_in_solib_return_trampoline (pc, SYMBOL_NAME (msymbol))) | |
1263 | { | |
1264 | /* Double-check that the third instruction from PC is relative "b". */ | |
1265 | op = read_memory_integer (pc + 8, 4); | |
1266 | if ((op & 0xfc000003) == 0x48000000) | |
1267 | { | |
1268 | /* Extract bits 6-29 as a signed 24-bit relative word address and | |
1269 | add it to the containing PC. */ | |
1270 | rel = ((int)(op << 6) >> 6); | |
1271 | return pc + 8 + rel; | |
1272 | } | |
1273 | } | |
1274 | ||
c906108c SS |
1275 | /* If pc is in a shared library trampoline, return its target. */ |
1276 | solib_target_pc = find_solib_trampoline_target (pc); | |
1277 | if (solib_target_pc) | |
1278 | return solib_target_pc; | |
1279 | ||
c5aa993b JM |
1280 | for (ii = 0; trampoline_code[ii]; ++ii) |
1281 | { | |
1282 | op = read_memory_integer (pc + (ii * 4), 4); | |
1283 | if (op != trampoline_code[ii]) | |
1284 | return 0; | |
1285 | } | |
1286 | ii = read_register (11); /* r11 holds destination addr */ | |
21283beb | 1287 | pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */ |
c906108c SS |
1288 | return pc; |
1289 | } | |
1290 | ||
1291 | /* Determines whether the function FI has a frame on the stack or not. */ | |
1292 | ||
9aa1e687 | 1293 | int |
c877c8e6 | 1294 | rs6000_frameless_function_invocation (struct frame_info *fi) |
c906108c SS |
1295 | { |
1296 | CORE_ADDR func_start; | |
1297 | struct rs6000_framedata fdata; | |
1298 | ||
1299 | /* Don't even think about framelessness except on the innermost frame | |
1300 | or if the function was interrupted by a signal. */ | |
1301 | if (fi->next != NULL && !fi->next->signal_handler_caller) | |
1302 | return 0; | |
c5aa993b | 1303 | |
c906108c SS |
1304 | func_start = get_pc_function_start (fi->pc); |
1305 | ||
1306 | /* If we failed to find the start of the function, it is a mistake | |
64366f1c | 1307 | to inspect the instructions. */ |
c906108c SS |
1308 | |
1309 | if (!func_start) | |
1310 | { | |
1311 | /* A frame with a zero PC is usually created by dereferencing a NULL | |
c5aa993b | 1312 | function pointer, normally causing an immediate core dump of the |
64366f1c | 1313 | inferior. Mark function as frameless, as the inferior has no chance |
c5aa993b | 1314 | of setting up a stack frame. */ |
c906108c SS |
1315 | if (fi->pc == 0) |
1316 | return 1; | |
1317 | else | |
1318 | return 0; | |
1319 | } | |
1320 | ||
077276e8 | 1321 | (void) skip_prologue (func_start, fi->pc, &fdata); |
c906108c SS |
1322 | return fdata.frameless; |
1323 | } | |
1324 | ||
64366f1c | 1325 | /* Return the PC saved in a frame. */ |
c906108c | 1326 | |
9aa1e687 | 1327 | CORE_ADDR |
c877c8e6 | 1328 | rs6000_frame_saved_pc (struct frame_info *fi) |
c906108c SS |
1329 | { |
1330 | CORE_ADDR func_start; | |
1331 | struct rs6000_framedata fdata; | |
21283beb | 1332 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
a88376a3 | 1333 | int wordsize = tdep->wordsize; |
c906108c SS |
1334 | |
1335 | if (fi->signal_handler_caller) | |
7a78ae4e | 1336 | return read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET, wordsize); |
c906108c | 1337 | |
7a78ae4e ND |
1338 | if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) |
1339 | return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM); | |
c906108c SS |
1340 | |
1341 | func_start = get_pc_function_start (fi->pc); | |
1342 | ||
1343 | /* If we failed to find the start of the function, it is a mistake | |
64366f1c | 1344 | to inspect the instructions. */ |
c906108c SS |
1345 | if (!func_start) |
1346 | return 0; | |
1347 | ||
077276e8 | 1348 | (void) skip_prologue (func_start, fi->pc, &fdata); |
c906108c SS |
1349 | |
1350 | if (fdata.lr_offset == 0 && fi->next != NULL) | |
1351 | { | |
1352 | if (fi->next->signal_handler_caller) | |
7a78ae4e ND |
1353 | return read_memory_addr (fi->next->frame + SIG_FRAME_LR_OFFSET, |
1354 | wordsize); | |
c906108c | 1355 | else |
a88376a3 | 1356 | return read_memory_addr (FRAME_CHAIN (fi) + tdep->lr_frame_offset, |
7a78ae4e | 1357 | wordsize); |
c906108c SS |
1358 | } |
1359 | ||
1360 | if (fdata.lr_offset == 0) | |
2188cbdd | 1361 | return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum); |
c906108c | 1362 | |
7a78ae4e | 1363 | return read_memory_addr (FRAME_CHAIN (fi) + fdata.lr_offset, wordsize); |
c906108c SS |
1364 | } |
1365 | ||
1366 | /* If saved registers of frame FI are not known yet, read and cache them. | |
1367 | &FDATAP contains rs6000_framedata; TDATAP can be NULL, | |
1368 | in which case the framedata are read. */ | |
1369 | ||
1370 | static void | |
7a78ae4e | 1371 | frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap) |
c906108c | 1372 | { |
c5aa993b | 1373 | CORE_ADDR frame_addr; |
c906108c | 1374 | struct rs6000_framedata work_fdata; |
6be8bc0c EZ |
1375 | struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch); |
1376 | int wordsize = tdep->wordsize; | |
c906108c SS |
1377 | |
1378 | if (fi->saved_regs) | |
1379 | return; | |
c5aa993b | 1380 | |
c906108c SS |
1381 | if (fdatap == NULL) |
1382 | { | |
1383 | fdatap = &work_fdata; | |
077276e8 | 1384 | (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, fdatap); |
c906108c SS |
1385 | } |
1386 | ||
1387 | frame_saved_regs_zalloc (fi); | |
1388 | ||
1389 | /* If there were any saved registers, figure out parent's stack | |
64366f1c | 1390 | pointer. */ |
c906108c | 1391 | /* The following is true only if the frame doesn't have a call to |
64366f1c | 1392 | alloca(), FIXME. */ |
c906108c | 1393 | |
6be8bc0c EZ |
1394 | if (fdatap->saved_fpr == 0 |
1395 | && fdatap->saved_gpr == 0 | |
1396 | && fdatap->saved_vr == 0 | |
1397 | && fdatap->lr_offset == 0 | |
1398 | && fdatap->cr_offset == 0 | |
1399 | && fdatap->vr_offset == 0) | |
c906108c | 1400 | frame_addr = 0; |
c906108c | 1401 | else |
bf75c8c1 AC |
1402 | /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most |
1403 | address of the current frame. Things might be easier if the | |
1404 | ->frame pointed to the outer-most address of the frame. In the | |
1405 | mean time, the address of the prev frame is used as the base | |
1406 | address of this frame. */ | |
1407 | frame_addr = FRAME_CHAIN (fi); | |
c5aa993b | 1408 | |
c906108c SS |
1409 | /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr. |
1410 | All fpr's from saved_fpr to fp31 are saved. */ | |
1411 | ||
1412 | if (fdatap->saved_fpr >= 0) | |
1413 | { | |
1414 | int i; | |
7a78ae4e | 1415 | CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset; |
c906108c SS |
1416 | for (i = fdatap->saved_fpr; i < 32; i++) |
1417 | { | |
7a78ae4e ND |
1418 | fi->saved_regs[FP0_REGNUM + i] = fpr_addr; |
1419 | fpr_addr += 8; | |
c906108c SS |
1420 | } |
1421 | } | |
1422 | ||
1423 | /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr. | |
1424 | All gpr's from saved_gpr to gpr31 are saved. */ | |
1425 | ||
1426 | if (fdatap->saved_gpr >= 0) | |
1427 | { | |
1428 | int i; | |
7a78ae4e | 1429 | CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset; |
c906108c SS |
1430 | for (i = fdatap->saved_gpr; i < 32; i++) |
1431 | { | |
7a78ae4e ND |
1432 | fi->saved_regs[i] = gpr_addr; |
1433 | gpr_addr += wordsize; | |
c906108c SS |
1434 | } |
1435 | } | |
1436 | ||
6be8bc0c EZ |
1437 | /* if != -1, fdatap->saved_vr is the smallest number of saved_vr. |
1438 | All vr's from saved_vr to vr31 are saved. */ | |
1439 | if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1) | |
1440 | { | |
1441 | if (fdatap->saved_vr >= 0) | |
1442 | { | |
1443 | int i; | |
1444 | CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset; | |
1445 | for (i = fdatap->saved_vr; i < 32; i++) | |
1446 | { | |
1447 | fi->saved_regs[tdep->ppc_vr0_regnum + i] = vr_addr; | |
1448 | vr_addr += REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum); | |
1449 | } | |
1450 | } | |
1451 | } | |
1452 | ||
c906108c SS |
1453 | /* If != 0, fdatap->cr_offset is the offset from the frame that holds |
1454 | the CR. */ | |
1455 | if (fdatap->cr_offset != 0) | |
6be8bc0c | 1456 | fi->saved_regs[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset; |
c906108c SS |
1457 | |
1458 | /* If != 0, fdatap->lr_offset is the offset from the frame that holds | |
1459 | the LR. */ | |
1460 | if (fdatap->lr_offset != 0) | |
6be8bc0c EZ |
1461 | fi->saved_regs[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset; |
1462 | ||
1463 | /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds | |
1464 | the VRSAVE. */ | |
1465 | if (fdatap->vrsave_offset != 0) | |
1466 | fi->saved_regs[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset; | |
c906108c SS |
1467 | } |
1468 | ||
1469 | /* Return the address of a frame. This is the inital %sp value when the frame | |
64366f1c EZ |
1470 | was first allocated. For functions calling alloca(), it might be saved in |
1471 | an alloca register. */ | |
c906108c SS |
1472 | |
1473 | static CORE_ADDR | |
7a78ae4e | 1474 | frame_initial_stack_address (struct frame_info *fi) |
c906108c SS |
1475 | { |
1476 | CORE_ADDR tmpaddr; | |
1477 | struct rs6000_framedata fdata; | |
1478 | struct frame_info *callee_fi; | |
1479 | ||
64366f1c EZ |
1480 | /* If the initial stack pointer (frame address) of this frame is known, |
1481 | just return it. */ | |
c906108c SS |
1482 | |
1483 | if (fi->extra_info->initial_sp) | |
1484 | return fi->extra_info->initial_sp; | |
1485 | ||
64366f1c | 1486 | /* Find out if this function is using an alloca register. */ |
c906108c | 1487 | |
077276e8 | 1488 | (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, &fdata); |
c906108c | 1489 | |
64366f1c EZ |
1490 | /* If saved registers of this frame are not known yet, read and |
1491 | cache them. */ | |
c906108c SS |
1492 | |
1493 | if (!fi->saved_regs) | |
1494 | frame_get_saved_regs (fi, &fdata); | |
1495 | ||
1496 | /* If no alloca register used, then fi->frame is the value of the %sp for | |
64366f1c | 1497 | this frame, and it is good enough. */ |
c906108c SS |
1498 | |
1499 | if (fdata.alloca_reg < 0) | |
1500 | { | |
1501 | fi->extra_info->initial_sp = fi->frame; | |
1502 | return fi->extra_info->initial_sp; | |
1503 | } | |
1504 | ||
953836b2 AC |
1505 | /* There is an alloca register, use its value, in the current frame, |
1506 | as the initial stack pointer. */ | |
1507 | { | |
1508 | char *tmpbuf = alloca (MAX_REGISTER_RAW_SIZE); | |
1509 | if (frame_register_read (fi, fdata.alloca_reg, tmpbuf)) | |
1510 | { | |
1511 | fi->extra_info->initial_sp | |
1512 | = extract_unsigned_integer (tmpbuf, | |
1513 | REGISTER_RAW_SIZE (fdata.alloca_reg)); | |
1514 | } | |
1515 | else | |
1516 | /* NOTE: cagney/2002-04-17: At present the only time | |
1517 | frame_register_read will fail is when the register isn't | |
1518 | available. If that does happen, use the frame. */ | |
1519 | fi->extra_info->initial_sp = fi->frame; | |
1520 | } | |
c906108c SS |
1521 | return fi->extra_info->initial_sp; |
1522 | } | |
1523 | ||
7a78ae4e ND |
1524 | /* Describe the pointer in each stack frame to the previous stack frame |
1525 | (its caller). */ | |
1526 | ||
1527 | /* FRAME_CHAIN takes a frame's nominal address | |
64366f1c | 1528 | and produces the frame's chain-pointer. */ |
7a78ae4e ND |
1529 | |
1530 | /* In the case of the RS/6000, the frame's nominal address | |
1531 | is the address of a 4-byte word containing the calling frame's address. */ | |
1532 | ||
9aa1e687 | 1533 | CORE_ADDR |
7a78ae4e | 1534 | rs6000_frame_chain (struct frame_info *thisframe) |
c906108c | 1535 | { |
7a78ae4e | 1536 | CORE_ADDR fp, fpp, lr; |
21283beb | 1537 | int wordsize = gdbarch_tdep (current_gdbarch)->wordsize; |
c906108c | 1538 | |
7a78ae4e ND |
1539 | if (PC_IN_CALL_DUMMY (thisframe->pc, thisframe->frame, thisframe->frame)) |
1540 | return thisframe->frame; /* dummy frame same as caller's frame */ | |
c906108c | 1541 | |
c5aa993b | 1542 | if (inside_entry_file (thisframe->pc) || |
c906108c SS |
1543 | thisframe->pc == entry_point_address ()) |
1544 | return 0; | |
1545 | ||
1546 | if (thisframe->signal_handler_caller) | |
7a78ae4e ND |
1547 | fp = read_memory_addr (thisframe->frame + SIG_FRAME_FP_OFFSET, |
1548 | wordsize); | |
c906108c SS |
1549 | else if (thisframe->next != NULL |
1550 | && thisframe->next->signal_handler_caller | |
c877c8e6 | 1551 | && FRAMELESS_FUNCTION_INVOCATION (thisframe)) |
c906108c SS |
1552 | /* A frameless function interrupted by a signal did not change the |
1553 | frame pointer. */ | |
1554 | fp = FRAME_FP (thisframe); | |
1555 | else | |
7a78ae4e | 1556 | fp = read_memory_addr ((thisframe)->frame, wordsize); |
c906108c | 1557 | |
2188cbdd | 1558 | lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum); |
7a78ae4e ND |
1559 | if (lr == entry_point_address ()) |
1560 | if (fp != 0 && (fpp = read_memory_addr (fp, wordsize)) != 0) | |
1561 | if (PC_IN_CALL_DUMMY (lr, fpp, fpp)) | |
1562 | return fpp; | |
1563 | ||
1564 | return fp; | |
1565 | } | |
1566 | ||
1567 | /* Return the size of register REG when words are WORDSIZE bytes long. If REG | |
64366f1c | 1568 | isn't available with that word size, return 0. */ |
7a78ae4e ND |
1569 | |
1570 | static int | |
1571 | regsize (const struct reg *reg, int wordsize) | |
1572 | { | |
1573 | return wordsize == 8 ? reg->sz64 : reg->sz32; | |
1574 | } | |
1575 | ||
1576 | /* Return the name of register number N, or null if no such register exists | |
64366f1c | 1577 | in the current architecture. */ |
7a78ae4e | 1578 | |
fa88f677 | 1579 | static const char * |
7a78ae4e ND |
1580 | rs6000_register_name (int n) |
1581 | { | |
21283beb | 1582 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
7a78ae4e ND |
1583 | const struct reg *reg = tdep->regs + n; |
1584 | ||
1585 | if (!regsize (reg, tdep->wordsize)) | |
1586 | return NULL; | |
1587 | return reg->name; | |
1588 | } | |
1589 | ||
1590 | /* Index within `registers' of the first byte of the space for | |
1591 | register N. */ | |
1592 | ||
1593 | static int | |
1594 | rs6000_register_byte (int n) | |
1595 | { | |
21283beb | 1596 | return gdbarch_tdep (current_gdbarch)->regoff[n]; |
7a78ae4e ND |
1597 | } |
1598 | ||
1599 | /* Return the number of bytes of storage in the actual machine representation | |
64366f1c | 1600 | for register N if that register is available, else return 0. */ |
7a78ae4e ND |
1601 | |
1602 | static int | |
1603 | rs6000_register_raw_size (int n) | |
1604 | { | |
21283beb | 1605 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
7a78ae4e ND |
1606 | const struct reg *reg = tdep->regs + n; |
1607 | return regsize (reg, tdep->wordsize); | |
1608 | } | |
1609 | ||
7a78ae4e ND |
1610 | /* Return the GDB type object for the "standard" data type |
1611 | of data in register N. */ | |
1612 | ||
1613 | static struct type * | |
fba45db2 | 1614 | rs6000_register_virtual_type (int n) |
7a78ae4e | 1615 | { |
21283beb | 1616 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
7a78ae4e ND |
1617 | const struct reg *reg = tdep->regs + n; |
1618 | ||
1fcc0bb8 EZ |
1619 | if (reg->fpr) |
1620 | return builtin_type_double; | |
1621 | else | |
1622 | { | |
1623 | int size = regsize (reg, tdep->wordsize); | |
1624 | switch (size) | |
1625 | { | |
1626 | case 8: | |
1627 | return builtin_type_int64; | |
1628 | break; | |
1629 | case 16: | |
08cf96df | 1630 | return builtin_type_vec128; |
1fcc0bb8 EZ |
1631 | break; |
1632 | default: | |
1633 | return builtin_type_int32; | |
1634 | break; | |
1635 | } | |
1636 | } | |
7a78ae4e ND |
1637 | } |
1638 | ||
1639 | /* For the PowerPC, it appears that the debug info marks float parameters as | |
1640 | floats regardless of whether the function is prototyped, but the actual | |
1641 | values are always passed in as doubles. Tell gdb to always assume that | |
64366f1c | 1642 | floats are passed as doubles and then converted in the callee. */ |
7a78ae4e ND |
1643 | |
1644 | static int | |
1645 | rs6000_coerce_float_to_double (struct type *formal, struct type *actual) | |
1646 | { | |
1647 | return 1; | |
1648 | } | |
1649 | ||
1650 | /* Return whether register N requires conversion when moving from raw format | |
1651 | to virtual format. | |
1652 | ||
1653 | The register format for RS/6000 floating point registers is always | |
64366f1c | 1654 | double, we need a conversion if the memory format is float. */ |
7a78ae4e ND |
1655 | |
1656 | static int | |
1657 | rs6000_register_convertible (int n) | |
1658 | { | |
21283beb | 1659 | const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n; |
7a78ae4e ND |
1660 | return reg->fpr; |
1661 | } | |
1662 | ||
1663 | /* Convert data from raw format for register N in buffer FROM | |
64366f1c | 1664 | to virtual format with type TYPE in buffer TO. */ |
7a78ae4e ND |
1665 | |
1666 | static void | |
1667 | rs6000_register_convert_to_virtual (int n, struct type *type, | |
1668 | char *from, char *to) | |
1669 | { | |
1670 | if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n)) | |
7a292a7a | 1671 | { |
7a78ae4e ND |
1672 | double val = extract_floating (from, REGISTER_RAW_SIZE (n)); |
1673 | store_floating (to, TYPE_LENGTH (type), val); | |
1674 | } | |
1675 | else | |
1676 | memcpy (to, from, REGISTER_RAW_SIZE (n)); | |
1677 | } | |
1678 | ||
1679 | /* Convert data from virtual format with type TYPE in buffer FROM | |
64366f1c | 1680 | to raw format for register N in buffer TO. */ |
7a292a7a | 1681 | |
7a78ae4e ND |
1682 | static void |
1683 | rs6000_register_convert_to_raw (struct type *type, int n, | |
1684 | char *from, char *to) | |
1685 | { | |
1686 | if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n)) | |
1687 | { | |
1688 | double val = extract_floating (from, TYPE_LENGTH (type)); | |
1689 | store_floating (to, REGISTER_RAW_SIZE (n), val); | |
7a292a7a | 1690 | } |
7a78ae4e ND |
1691 | else |
1692 | memcpy (to, from, REGISTER_RAW_SIZE (n)); | |
1693 | } | |
c906108c | 1694 | |
2188cbdd | 1695 | /* Convert a dbx stab register number (from `r' declaration) to a gdb |
64366f1c | 1696 | REGNUM. */ |
2188cbdd EZ |
1697 | static int |
1698 | rs6000_stab_reg_to_regnum (int num) | |
1699 | { | |
1700 | int regnum; | |
1701 | switch (num) | |
1702 | { | |
1703 | case 64: | |
1704 | regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum; | |
1705 | break; | |
1706 | case 65: | |
1707 | regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum; | |
1708 | break; | |
1709 | case 66: | |
1710 | regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum; | |
1711 | break; | |
1712 | case 76: | |
1713 | regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum; | |
1714 | break; | |
1715 | default: | |
1716 | regnum = num; | |
1717 | break; | |
1718 | } | |
1719 | return regnum; | |
1720 | } | |
1721 | ||
7a78ae4e ND |
1722 | /* Store the address of the place in which to copy the structure the |
1723 | subroutine will return. This is called from call_function. | |
1724 | ||
1725 | In RS/6000, struct return addresses are passed as an extra parameter in r3. | |
1726 | In function return, callee is not responsible of returning this address | |
1727 | back. Since gdb needs to find it, we will store in a designated variable | |
64366f1c | 1728 | `rs6000_struct_return_address'. */ |
7a78ae4e ND |
1729 | |
1730 | static void | |
1731 | rs6000_store_struct_return (CORE_ADDR addr, CORE_ADDR sp) | |
1732 | { | |
1733 | write_register (3, addr); | |
1734 | rs6000_struct_return_address = addr; | |
1735 | } | |
1736 | ||
1737 | /* Write into appropriate registers a function return value | |
1738 | of type TYPE, given in virtual format. */ | |
1739 | ||
1740 | static void | |
1741 | rs6000_store_return_value (struct type *type, char *valbuf) | |
1742 | { | |
ace1378a EZ |
1743 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
1744 | ||
7a78ae4e ND |
1745 | if (TYPE_CODE (type) == TYPE_CODE_FLT) |
1746 | ||
1747 | /* Floating point values are returned starting from FPR1 and up. | |
1748 | Say a double_double_double type could be returned in | |
64366f1c | 1749 | FPR1/FPR2/FPR3 triple. */ |
7a78ae4e ND |
1750 | |
1751 | write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf, | |
1752 | TYPE_LENGTH (type)); | |
ace1378a EZ |
1753 | else if (TYPE_CODE (type) == TYPE_CODE_ARRAY) |
1754 | { | |
1755 | if (TYPE_LENGTH (type) == 16 | |
1756 | && TYPE_VECTOR (type)) | |
1757 | write_register_bytes (REGISTER_BYTE (tdep->ppc_vr0_regnum + 2), | |
1758 | valbuf, TYPE_LENGTH (type)); | |
1759 | } | |
7a78ae4e | 1760 | else |
64366f1c | 1761 | /* Everything else is returned in GPR3 and up. */ |
2188cbdd EZ |
1762 | write_register_bytes (REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3), |
1763 | valbuf, TYPE_LENGTH (type)); | |
7a78ae4e ND |
1764 | } |
1765 | ||
1766 | /* Extract from an array REGBUF containing the (raw) register state | |
1767 | the address in which a function should return its structure value, | |
1768 | as a CORE_ADDR (or an expression that can be used as one). */ | |
1769 | ||
1770 | static CORE_ADDR | |
1771 | rs6000_extract_struct_value_address (char *regbuf) | |
1772 | { | |
1773 | return rs6000_struct_return_address; | |
1774 | } | |
1775 | ||
1776 | /* Return whether PC is in a dummy function call. | |
1777 | ||
1778 | FIXME: This just checks for the end of the stack, which is broken | |
64366f1c | 1779 | for things like stepping through gcc nested function stubs. */ |
7a78ae4e ND |
1780 | |
1781 | static int | |
1782 | rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp) | |
1783 | { | |
1784 | return sp < pc && pc < fp; | |
1785 | } | |
1786 | ||
64366f1c | 1787 | /* Hook called when a new child process is started. */ |
7a78ae4e ND |
1788 | |
1789 | void | |
1790 | rs6000_create_inferior (int pid) | |
1791 | { | |
1792 | if (rs6000_set_host_arch_hook) | |
1793 | rs6000_set_host_arch_hook (pid); | |
c906108c SS |
1794 | } |
1795 | \f | |
7a78ae4e ND |
1796 | /* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR). |
1797 | ||
1798 | Usually a function pointer's representation is simply the address | |
1799 | of the function. On the RS/6000 however, a function pointer is | |
1800 | represented by a pointer to a TOC entry. This TOC entry contains | |
1801 | three words, the first word is the address of the function, the | |
1802 | second word is the TOC pointer (r2), and the third word is the | |
1803 | static chain value. Throughout GDB it is currently assumed that a | |
1804 | function pointer contains the address of the function, which is not | |
1805 | easy to fix. In addition, the conversion of a function address to | |
1806 | a function pointer would require allocation of a TOC entry in the | |
1807 | inferior's memory space, with all its drawbacks. To be able to | |
1808 | call C++ virtual methods in the inferior (which are called via | |
f517ea4e | 1809 | function pointers), find_function_addr uses this function to get the |
7a78ae4e ND |
1810 | function address from a function pointer. */ |
1811 | ||
f517ea4e PS |
1812 | /* Return real function address if ADDR (a function pointer) is in the data |
1813 | space and is therefore a special function pointer. */ | |
c906108c | 1814 | |
7a78ae4e ND |
1815 | CORE_ADDR |
1816 | rs6000_convert_from_func_ptr_addr (CORE_ADDR addr) | |
c906108c SS |
1817 | { |
1818 | struct obj_section *s; | |
1819 | ||
1820 | s = find_pc_section (addr); | |
1821 | if (s && s->the_bfd_section->flags & SEC_CODE) | |
7a78ae4e | 1822 | return addr; |
c906108c | 1823 | |
7a78ae4e | 1824 | /* ADDR is in the data space, so it's a special function pointer. */ |
21283beb | 1825 | return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize); |
c906108c | 1826 | } |
c906108c | 1827 | \f |
c5aa993b | 1828 | |
7a78ae4e | 1829 | /* Handling the various POWER/PowerPC variants. */ |
c906108c SS |
1830 | |
1831 | ||
7a78ae4e ND |
1832 | /* The arrays here called registers_MUMBLE hold information about available |
1833 | registers. | |
c906108c SS |
1834 | |
1835 | For each family of PPC variants, I've tried to isolate out the | |
1836 | common registers and put them up front, so that as long as you get | |
1837 | the general family right, GDB will correctly identify the registers | |
1838 | common to that family. The common register sets are: | |
1839 | ||
1840 | For the 60x family: hid0 hid1 iabr dabr pir | |
1841 | ||
1842 | For the 505 and 860 family: eie eid nri | |
1843 | ||
1844 | For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi | |
c5aa993b JM |
1845 | tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1 |
1846 | pbu1 pbl2 pbu2 | |
c906108c SS |
1847 | |
1848 | Most of these register groups aren't anything formal. I arrived at | |
1849 | them by looking at the registers that occurred in more than one | |
6f5987a6 KB |
1850 | processor. |
1851 | ||
1852 | Note: kevinb/2002-04-30: Support for the fpscr register was added | |
1853 | during April, 2002. Slot 70 is being used for PowerPC and slot 71 | |
1854 | for Power. For PowerPC, slot 70 was unused and was already in the | |
1855 | PPC_UISA_SPRS which is ideally where fpscr should go. For Power, | |
1856 | slot 70 was being used for "mq", so the next available slot (71) | |
1857 | was chosen. It would have been nice to be able to make the | |
1858 | register numbers the same across processor cores, but this wasn't | |
1859 | possible without either 1) renumbering some registers for some | |
1860 | processors or 2) assigning fpscr to a really high slot that's | |
1861 | larger than any current register number. Doing (1) is bad because | |
1862 | existing stubs would break. Doing (2) is undesirable because it | |
1863 | would introduce a really large gap between fpscr and the rest of | |
1864 | the registers for most processors. */ | |
7a78ae4e | 1865 | |
64366f1c | 1866 | /* Convenience macros for populating register arrays. */ |
7a78ae4e | 1867 | |
64366f1c | 1868 | /* Within another macro, convert S to a string. */ |
7a78ae4e ND |
1869 | |
1870 | #define STR(s) #s | |
1871 | ||
1872 | /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems | |
64366f1c | 1873 | and 64 bits on 64-bit systems. */ |
489461e2 | 1874 | #define R(name) { STR(name), 4, 8, 0, 0 } |
7a78ae4e ND |
1875 | |
1876 | /* Return a struct reg defining register NAME that's 32 bits on all | |
64366f1c | 1877 | systems. */ |
489461e2 | 1878 | #define R4(name) { STR(name), 4, 4, 0, 0 } |
7a78ae4e ND |
1879 | |
1880 | /* Return a struct reg defining register NAME that's 64 bits on all | |
64366f1c | 1881 | systems. */ |
489461e2 | 1882 | #define R8(name) { STR(name), 8, 8, 0, 0 } |
7a78ae4e | 1883 | |
1fcc0bb8 | 1884 | /* Return a struct reg defining register NAME that's 128 bits on all |
64366f1c | 1885 | systems. */ |
489461e2 | 1886 | #define R16(name) { STR(name), 16, 16, 0, 0 } |
1fcc0bb8 | 1887 | |
64366f1c | 1888 | /* Return a struct reg defining floating-point register NAME. */ |
489461e2 EZ |
1889 | #define F(name) { STR(name), 8, 8, 1, 0 } |
1890 | ||
64366f1c | 1891 | /* Return a struct reg defining a pseudo register NAME. */ |
489461e2 | 1892 | #define P(name) { STR(name), 4, 8, 0, 1} |
7a78ae4e ND |
1893 | |
1894 | /* Return a struct reg defining register NAME that's 32 bits on 32-bit | |
64366f1c | 1895 | systems and that doesn't exist on 64-bit systems. */ |
489461e2 | 1896 | #define R32(name) { STR(name), 4, 0, 0, 0 } |
7a78ae4e ND |
1897 | |
1898 | /* Return a struct reg defining register NAME that's 64 bits on 64-bit | |
64366f1c | 1899 | systems and that doesn't exist on 32-bit systems. */ |
489461e2 | 1900 | #define R64(name) { STR(name), 0, 8, 0, 0 } |
7a78ae4e | 1901 | |
64366f1c | 1902 | /* Return a struct reg placeholder for a register that doesn't exist. */ |
489461e2 | 1903 | #define R0 { 0, 0, 0, 0, 0 } |
7a78ae4e ND |
1904 | |
1905 | /* UISA registers common across all architectures, including POWER. */ | |
1906 | ||
1907 | #define COMMON_UISA_REGS \ | |
1908 | /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \ | |
1909 | /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \ | |
1910 | /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \ | |
1911 | /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \ | |
1912 | /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \ | |
1913 | /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \ | |
1914 | /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \ | |
1915 | /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \ | |
1916 | /* 64 */ R(pc), R(ps) | |
1917 | ||
ebeac11a EZ |
1918 | #define COMMON_UISA_NOFP_REGS \ |
1919 | /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \ | |
1920 | /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \ | |
1921 | /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \ | |
1922 | /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \ | |
1923 | /* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \ | |
1924 | /* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \ | |
1925 | /* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \ | |
1926 | /* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \ | |
1927 | /* 64 */ R(pc), R(ps) | |
1928 | ||
7a78ae4e ND |
1929 | /* UISA-level SPRs for PowerPC. */ |
1930 | #define PPC_UISA_SPRS \ | |
e3f36dbd | 1931 | /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr) |
7a78ae4e ND |
1932 | |
1933 | /* Segment registers, for PowerPC. */ | |
1934 | #define PPC_SEGMENT_REGS \ | |
1935 | /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \ | |
1936 | /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \ | |
1937 | /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \ | |
1938 | /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15) | |
1939 | ||
1940 | /* OEA SPRs for PowerPC. */ | |
1941 | #define PPC_OEA_SPRS \ | |
1942 | /* 87 */ R4(pvr), \ | |
1943 | /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \ | |
1944 | /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \ | |
1945 | /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \ | |
1946 | /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \ | |
1947 | /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \ | |
1948 | /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \ | |
1949 | /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \ | |
1950 | /* 116 */ R4(dec), R(dabr), R4(ear) | |
1951 | ||
64366f1c | 1952 | /* AltiVec registers. */ |
1fcc0bb8 EZ |
1953 | #define PPC_ALTIVEC_REGS \ |
1954 | /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \ | |
1955 | /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \ | |
1956 | /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \ | |
1957 | /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \ | |
1958 | /*151*/R4(vscr), R4(vrsave) | |
1959 | ||
7a78ae4e | 1960 | /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover |
64366f1c | 1961 | user-level SPR's. */ |
7a78ae4e | 1962 | static const struct reg registers_power[] = |
c906108c | 1963 | { |
7a78ae4e | 1964 | COMMON_UISA_REGS, |
e3f36dbd KB |
1965 | /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq), |
1966 | /* 71 */ R4(fpscr) | |
c906108c SS |
1967 | }; |
1968 | ||
7a78ae4e | 1969 | /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only |
64366f1c | 1970 | view of the PowerPC. */ |
7a78ae4e | 1971 | static const struct reg registers_powerpc[] = |
c906108c | 1972 | { |
7a78ae4e | 1973 | COMMON_UISA_REGS, |
1fcc0bb8 EZ |
1974 | PPC_UISA_SPRS, |
1975 | PPC_ALTIVEC_REGS | |
c906108c SS |
1976 | }; |
1977 | ||
ebeac11a EZ |
1978 | /* PowerPC UISA - a PPC processor as viewed by user-level |
1979 | code, but without floating point registers. */ | |
1980 | static const struct reg registers_powerpc_nofp[] = | |
1981 | { | |
1982 | COMMON_UISA_NOFP_REGS, | |
1983 | PPC_UISA_SPRS | |
1984 | }; | |
1985 | ||
64366f1c | 1986 | /* IBM PowerPC 403. */ |
7a78ae4e | 1987 | static const struct reg registers_403[] = |
c5aa993b | 1988 | { |
7a78ae4e ND |
1989 | COMMON_UISA_REGS, |
1990 | PPC_UISA_SPRS, | |
1991 | PPC_SEGMENT_REGS, | |
1992 | PPC_OEA_SPRS, | |
1993 | /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr), | |
1994 | /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit), | |
1995 | /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3), | |
1996 | /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2), | |
1997 | /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr), | |
1998 | /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2) | |
c906108c SS |
1999 | }; |
2000 | ||
64366f1c | 2001 | /* IBM PowerPC 403GC. */ |
7a78ae4e | 2002 | static const struct reg registers_403GC[] = |
c5aa993b | 2003 | { |
7a78ae4e ND |
2004 | COMMON_UISA_REGS, |
2005 | PPC_UISA_SPRS, | |
2006 | PPC_SEGMENT_REGS, | |
2007 | PPC_OEA_SPRS, | |
2008 | /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr), | |
2009 | /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit), | |
2010 | /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3), | |
2011 | /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2), | |
2012 | /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr), | |
2013 | /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2), | |
2014 | /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr), | |
2015 | /* 147 */ R(tbhu), R(tblu) | |
c906108c SS |
2016 | }; |
2017 | ||
64366f1c | 2018 | /* Motorola PowerPC 505. */ |
7a78ae4e | 2019 | static const struct reg registers_505[] = |
c5aa993b | 2020 | { |
7a78ae4e ND |
2021 | COMMON_UISA_REGS, |
2022 | PPC_UISA_SPRS, | |
2023 | PPC_SEGMENT_REGS, | |
2024 | PPC_OEA_SPRS, | |
2025 | /* 119 */ R(eie), R(eid), R(nri) | |
c906108c SS |
2026 | }; |
2027 | ||
64366f1c | 2028 | /* Motorola PowerPC 860 or 850. */ |
7a78ae4e | 2029 | static const struct reg registers_860[] = |
c5aa993b | 2030 | { |
7a78ae4e ND |
2031 | COMMON_UISA_REGS, |
2032 | PPC_UISA_SPRS, | |
2033 | PPC_SEGMENT_REGS, | |
2034 | PPC_OEA_SPRS, | |
2035 | /* 119 */ R(eie), R(eid), R(nri), R(cmpa), | |
2036 | /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr), | |
2037 | /* 127 */ R(der), R(counta), R(countb), R(cmpe), | |
2038 | /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1), | |
2039 | /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst), | |
2040 | /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr), | |
2041 | /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr), | |
2042 | /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc), | |
2043 | /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap), | |
2044 | /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn), | |
2045 | /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1), | |
2046 | /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1) | |
c906108c SS |
2047 | }; |
2048 | ||
7a78ae4e ND |
2049 | /* Motorola PowerPC 601. Note that the 601 has different register numbers |
2050 | for reading and writing RTCU and RTCL. However, how one reads and writes a | |
c906108c | 2051 | register is the stub's problem. */ |
7a78ae4e | 2052 | static const struct reg registers_601[] = |
c5aa993b | 2053 | { |
7a78ae4e ND |
2054 | COMMON_UISA_REGS, |
2055 | PPC_UISA_SPRS, | |
2056 | PPC_SEGMENT_REGS, | |
2057 | PPC_OEA_SPRS, | |
2058 | /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr), | |
2059 | /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl) | |
c906108c SS |
2060 | }; |
2061 | ||
64366f1c | 2062 | /* Motorola PowerPC 602. */ |
7a78ae4e | 2063 | static const struct reg registers_602[] = |
c5aa993b | 2064 | { |
7a78ae4e ND |
2065 | COMMON_UISA_REGS, |
2066 | PPC_UISA_SPRS, | |
2067 | PPC_SEGMENT_REGS, | |
2068 | PPC_OEA_SPRS, | |
2069 | /* 119 */ R(hid0), R(hid1), R(iabr), R0, | |
2070 | /* 123 */ R0, R(tcr), R(ibr), R(esassr), | |
2071 | /* 127 */ R(sebr), R(ser), R(sp), R(lt) | |
c906108c SS |
2072 | }; |
2073 | ||
64366f1c | 2074 | /* Motorola/IBM PowerPC 603 or 603e. */ |
7a78ae4e | 2075 | static const struct reg registers_603[] = |
c5aa993b | 2076 | { |
7a78ae4e ND |
2077 | COMMON_UISA_REGS, |
2078 | PPC_UISA_SPRS, | |
2079 | PPC_SEGMENT_REGS, | |
2080 | PPC_OEA_SPRS, | |
2081 | /* 119 */ R(hid0), R(hid1), R(iabr), R0, | |
2082 | /* 123 */ R0, R(dmiss), R(dcmp), R(hash1), | |
2083 | /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa) | |
c906108c SS |
2084 | }; |
2085 | ||
64366f1c | 2086 | /* Motorola PowerPC 604 or 604e. */ |
7a78ae4e | 2087 | static const struct reg registers_604[] = |
c5aa993b | 2088 | { |
7a78ae4e ND |
2089 | COMMON_UISA_REGS, |
2090 | PPC_UISA_SPRS, | |
2091 | PPC_SEGMENT_REGS, | |
2092 | PPC_OEA_SPRS, | |
2093 | /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr), | |
2094 | /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2), | |
2095 | /* 127 */ R(sia), R(sda) | |
c906108c SS |
2096 | }; |
2097 | ||
64366f1c | 2098 | /* Motorola/IBM PowerPC 750 or 740. */ |
7a78ae4e | 2099 | static const struct reg registers_750[] = |
c5aa993b | 2100 | { |
7a78ae4e ND |
2101 | COMMON_UISA_REGS, |
2102 | PPC_UISA_SPRS, | |
2103 | PPC_SEGMENT_REGS, | |
2104 | PPC_OEA_SPRS, | |
2105 | /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr), | |
2106 | /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2), | |
2107 | /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4), | |
2108 | /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia), | |
2109 | /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr), | |
2110 | /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3) | |
c906108c SS |
2111 | }; |
2112 | ||
2113 | ||
64366f1c | 2114 | /* Motorola PowerPC 7400. */ |
1fcc0bb8 EZ |
2115 | static const struct reg registers_7400[] = |
2116 | { | |
2117 | /* gpr0-gpr31, fpr0-fpr31 */ | |
2118 | COMMON_UISA_REGS, | |
2119 | /* ctr, xre, lr, cr */ | |
2120 | PPC_UISA_SPRS, | |
2121 | /* sr0-sr15 */ | |
2122 | PPC_SEGMENT_REGS, | |
2123 | PPC_OEA_SPRS, | |
2124 | /* vr0-vr31, vrsave, vscr */ | |
2125 | PPC_ALTIVEC_REGS | |
2126 | /* FIXME? Add more registers? */ | |
2127 | }; | |
2128 | ||
c906108c | 2129 | /* Information about a particular processor variant. */ |
7a78ae4e | 2130 | |
c906108c | 2131 | struct variant |
c5aa993b JM |
2132 | { |
2133 | /* Name of this variant. */ | |
2134 | char *name; | |
c906108c | 2135 | |
c5aa993b JM |
2136 | /* English description of the variant. */ |
2137 | char *description; | |
c906108c | 2138 | |
64366f1c | 2139 | /* bfd_arch_info.arch corresponding to variant. */ |
7a78ae4e ND |
2140 | enum bfd_architecture arch; |
2141 | ||
64366f1c | 2142 | /* bfd_arch_info.mach corresponding to variant. */ |
7a78ae4e ND |
2143 | unsigned long mach; |
2144 | ||
489461e2 EZ |
2145 | /* Number of real registers. */ |
2146 | int nregs; | |
2147 | ||
2148 | /* Number of pseudo registers. */ | |
2149 | int npregs; | |
2150 | ||
2151 | /* Number of total registers (the sum of nregs and npregs). */ | |
2152 | int num_tot_regs; | |
2153 | ||
c5aa993b JM |
2154 | /* Table of register names; registers[R] is the name of the register |
2155 | number R. */ | |
7a78ae4e | 2156 | const struct reg *regs; |
c5aa993b | 2157 | }; |
c906108c | 2158 | |
489461e2 EZ |
2159 | #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0])) |
2160 | ||
2161 | static int | |
2162 | num_registers (const struct reg *reg_list, int num_tot_regs) | |
2163 | { | |
2164 | int i; | |
2165 | int nregs = 0; | |
2166 | ||
2167 | for (i = 0; i < num_tot_regs; i++) | |
2168 | if (!reg_list[i].pseudo) | |
2169 | nregs++; | |
2170 | ||
2171 | return nregs; | |
2172 | } | |
2173 | ||
2174 | static int | |
2175 | num_pseudo_registers (const struct reg *reg_list, int num_tot_regs) | |
2176 | { | |
2177 | int i; | |
2178 | int npregs = 0; | |
2179 | ||
2180 | for (i = 0; i < num_tot_regs; i++) | |
2181 | if (reg_list[i].pseudo) | |
2182 | npregs ++; | |
2183 | ||
2184 | return npregs; | |
2185 | } | |
c906108c | 2186 | |
c906108c SS |
2187 | /* Information in this table comes from the following web sites: |
2188 | IBM: http://www.chips.ibm.com:80/products/embedded/ | |
2189 | Motorola: http://www.mot.com/SPS/PowerPC/ | |
2190 | ||
2191 | I'm sure I've got some of the variant descriptions not quite right. | |
2192 | Please report any inaccuracies you find to GDB's maintainer. | |
2193 | ||
2194 | If you add entries to this table, please be sure to allow the new | |
2195 | value as an argument to the --with-cpu flag, in configure.in. */ | |
2196 | ||
489461e2 | 2197 | static struct variant variants[] = |
c906108c | 2198 | { |
489461e2 | 2199 | |
7a78ae4e | 2200 | {"powerpc", "PowerPC user-level", bfd_arch_powerpc, |
489461e2 EZ |
2201 | bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc), |
2202 | registers_powerpc}, | |
7a78ae4e | 2203 | {"power", "POWER user-level", bfd_arch_rs6000, |
489461e2 EZ |
2204 | bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power), |
2205 | registers_power}, | |
7a78ae4e | 2206 | {"403", "IBM PowerPC 403", bfd_arch_powerpc, |
489461e2 EZ |
2207 | bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403), |
2208 | registers_403}, | |
7a78ae4e | 2209 | {"601", "Motorola PowerPC 601", bfd_arch_powerpc, |
489461e2 EZ |
2210 | bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601), |
2211 | registers_601}, | |
7a78ae4e | 2212 | {"602", "Motorola PowerPC 602", bfd_arch_powerpc, |
489461e2 EZ |
2213 | bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602), |
2214 | registers_602}, | |
7a78ae4e | 2215 | {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc, |
489461e2 EZ |
2216 | bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603), |
2217 | registers_603}, | |
7a78ae4e | 2218 | {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc, |
489461e2 EZ |
2219 | 604, -1, -1, tot_num_registers (registers_604), |
2220 | registers_604}, | |
7a78ae4e | 2221 | {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc, |
489461e2 EZ |
2222 | bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC), |
2223 | registers_403GC}, | |
7a78ae4e | 2224 | {"505", "Motorola PowerPC 505", bfd_arch_powerpc, |
489461e2 EZ |
2225 | bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505), |
2226 | registers_505}, | |
7a78ae4e | 2227 | {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc, |
489461e2 EZ |
2228 | bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860), |
2229 | registers_860}, | |
7a78ae4e | 2230 | {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc, |
489461e2 EZ |
2231 | bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750), |
2232 | registers_750}, | |
1fcc0bb8 | 2233 | {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc, |
489461e2 EZ |
2234 | bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400), |
2235 | registers_7400}, | |
7a78ae4e | 2236 | |
5d57ee30 KB |
2237 | /* 64-bit */ |
2238 | {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc, | |
489461e2 EZ |
2239 | bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc), |
2240 | registers_powerpc}, | |
7a78ae4e | 2241 | {"620", "Motorola PowerPC 620", bfd_arch_powerpc, |
489461e2 EZ |
2242 | bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc), |
2243 | registers_powerpc}, | |
5d57ee30 | 2244 | {"630", "Motorola PowerPC 630", bfd_arch_powerpc, |
489461e2 EZ |
2245 | bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc), |
2246 | registers_powerpc}, | |
7a78ae4e | 2247 | {"a35", "PowerPC A35", bfd_arch_powerpc, |
489461e2 EZ |
2248 | bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc), |
2249 | registers_powerpc}, | |
5d57ee30 | 2250 | {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc, |
489461e2 EZ |
2251 | bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc), |
2252 | registers_powerpc}, | |
5d57ee30 | 2253 | {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc, |
489461e2 EZ |
2254 | bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc), |
2255 | registers_powerpc}, | |
5d57ee30 | 2256 | |
64366f1c | 2257 | /* FIXME: I haven't checked the register sets of the following. */ |
7a78ae4e | 2258 | {"rs1", "IBM POWER RS1", bfd_arch_rs6000, |
489461e2 EZ |
2259 | bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power), |
2260 | registers_power}, | |
7a78ae4e | 2261 | {"rsc", "IBM POWER RSC", bfd_arch_rs6000, |
489461e2 EZ |
2262 | bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power), |
2263 | registers_power}, | |
7a78ae4e | 2264 | {"rs2", "IBM POWER RS2", bfd_arch_rs6000, |
489461e2 EZ |
2265 | bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power), |
2266 | registers_power}, | |
7a78ae4e | 2267 | |
489461e2 | 2268 | {0, 0, 0, 0, 0, 0, 0, 0} |
c906108c SS |
2269 | }; |
2270 | ||
64366f1c | 2271 | /* Initialize the number of registers and pseudo registers in each variant. */ |
489461e2 EZ |
2272 | |
2273 | static void | |
2274 | init_variants (void) | |
2275 | { | |
2276 | struct variant *v; | |
2277 | ||
2278 | for (v = variants; v->name; v++) | |
2279 | { | |
2280 | if (v->nregs == -1) | |
2281 | v->nregs = num_registers (v->regs, v->num_tot_regs); | |
2282 | if (v->npregs == -1) | |
2283 | v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs); | |
2284 | } | |
2285 | } | |
c906108c | 2286 | |
7a78ae4e | 2287 | /* Return the variant corresponding to architecture ARCH and machine number |
64366f1c | 2288 | MACH. If no such variant exists, return null. */ |
c906108c | 2289 | |
7a78ae4e ND |
2290 | static const struct variant * |
2291 | find_variant_by_arch (enum bfd_architecture arch, unsigned long mach) | |
c906108c | 2292 | { |
7a78ae4e | 2293 | const struct variant *v; |
c5aa993b | 2294 | |
7a78ae4e ND |
2295 | for (v = variants; v->name; v++) |
2296 | if (arch == v->arch && mach == v->mach) | |
2297 | return v; | |
c906108c | 2298 | |
7a78ae4e | 2299 | return NULL; |
c906108c | 2300 | } |
9364a0ef EZ |
2301 | |
2302 | static int | |
2303 | gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info) | |
2304 | { | |
2305 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
2306 | return print_insn_big_powerpc (memaddr, info); | |
2307 | else | |
2308 | return print_insn_little_powerpc (memaddr, info); | |
2309 | } | |
7a78ae4e | 2310 | \f |
7a78ae4e ND |
2311 | /* Initialize the current architecture based on INFO. If possible, re-use an |
2312 | architecture from ARCHES, which is a list of architectures already created | |
2313 | during this debugging session. | |
c906108c | 2314 | |
7a78ae4e | 2315 | Called e.g. at program startup, when reading a core file, and when reading |
64366f1c | 2316 | a binary file. */ |
c906108c | 2317 | |
7a78ae4e ND |
2318 | static struct gdbarch * |
2319 | rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
2320 | { | |
2321 | struct gdbarch *gdbarch; | |
2322 | struct gdbarch_tdep *tdep; | |
9aa1e687 | 2323 | int wordsize, from_xcoff_exec, from_elf_exec, power, i, off; |
7a78ae4e ND |
2324 | struct reg *regs; |
2325 | const struct variant *v; | |
2326 | enum bfd_architecture arch; | |
2327 | unsigned long mach; | |
2328 | bfd abfd; | |
7b112f9c JT |
2329 | int sysv_abi; |
2330 | enum gdb_osabi osabi = GDB_OSABI_UNKNOWN; | |
7a78ae4e | 2331 | |
9aa1e687 | 2332 | from_xcoff_exec = info.abfd && info.abfd->format == bfd_object && |
7a78ae4e ND |
2333 | bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour; |
2334 | ||
9aa1e687 KB |
2335 | from_elf_exec = info.abfd && info.abfd->format == bfd_object && |
2336 | bfd_get_flavour (info.abfd) == bfd_target_elf_flavour; | |
2337 | ||
2338 | sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour; | |
2339 | ||
7b112f9c JT |
2340 | if (info.abfd) |
2341 | osabi = gdbarch_lookup_osabi (info.abfd); | |
9aa1e687 | 2342 | |
e712c1cf | 2343 | /* Check word size. If INFO is from a binary file, infer it from |
64366f1c | 2344 | that, else choose a likely default. */ |
9aa1e687 | 2345 | if (from_xcoff_exec) |
c906108c | 2346 | { |
11ed25ac | 2347 | if (bfd_xcoff_is_xcoff64 (info.abfd)) |
7a78ae4e ND |
2348 | wordsize = 8; |
2349 | else | |
2350 | wordsize = 4; | |
c906108c | 2351 | } |
9aa1e687 KB |
2352 | else if (from_elf_exec) |
2353 | { | |
2354 | if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64) | |
2355 | wordsize = 8; | |
2356 | else | |
2357 | wordsize = 4; | |
2358 | } | |
c906108c | 2359 | else |
7a78ae4e | 2360 | { |
27b15785 KB |
2361 | if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0) |
2362 | wordsize = info.bfd_arch_info->bits_per_word / | |
2363 | info.bfd_arch_info->bits_per_byte; | |
2364 | else | |
2365 | wordsize = 4; | |
7a78ae4e | 2366 | } |
c906108c | 2367 | |
64366f1c | 2368 | /* Find a candidate among extant architectures. */ |
7a78ae4e ND |
2369 | for (arches = gdbarch_list_lookup_by_info (arches, &info); |
2370 | arches != NULL; | |
2371 | arches = gdbarch_list_lookup_by_info (arches->next, &info)) | |
2372 | { | |
2373 | /* Word size in the various PowerPC bfd_arch_info structs isn't | |
2374 | meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform | |
64366f1c | 2375 | separate word size check. */ |
7a78ae4e | 2376 | tdep = gdbarch_tdep (arches->gdbarch); |
9aa1e687 | 2377 | if (tdep && tdep->wordsize == wordsize && tdep->osabi == osabi) |
7a78ae4e ND |
2378 | return arches->gdbarch; |
2379 | } | |
c906108c | 2380 | |
7a78ae4e ND |
2381 | /* None found, create a new architecture from INFO, whose bfd_arch_info |
2382 | validity depends on the source: | |
2383 | - executable useless | |
2384 | - rs6000_host_arch() good | |
2385 | - core file good | |
2386 | - "set arch" trust blindly | |
2387 | - GDB startup useless but harmless */ | |
c906108c | 2388 | |
9aa1e687 | 2389 | if (!from_xcoff_exec) |
c906108c | 2390 | { |
b732d07d | 2391 | arch = info.bfd_arch_info->arch; |
7a78ae4e | 2392 | mach = info.bfd_arch_info->mach; |
c906108c | 2393 | } |
7a78ae4e | 2394 | else |
c906108c | 2395 | { |
7a78ae4e ND |
2396 | arch = bfd_arch_powerpc; |
2397 | mach = 0; | |
2398 | bfd_default_set_arch_mach (&abfd, arch, mach); | |
2399 | info.bfd_arch_info = bfd_get_arch_info (&abfd); | |
2400 | } | |
2401 | tdep = xmalloc (sizeof (struct gdbarch_tdep)); | |
2402 | tdep->wordsize = wordsize; | |
9aa1e687 | 2403 | tdep->osabi = osabi; |
7a78ae4e ND |
2404 | gdbarch = gdbarch_alloc (&info, tdep); |
2405 | power = arch == bfd_arch_rs6000; | |
2406 | ||
489461e2 EZ |
2407 | /* Initialize the number of real and pseudo registers in each variant. */ |
2408 | init_variants (); | |
2409 | ||
64366f1c | 2410 | /* Choose variant. */ |
7a78ae4e ND |
2411 | v = find_variant_by_arch (arch, mach); |
2412 | if (!v) | |
dd47e6fd EZ |
2413 | return NULL; |
2414 | ||
7a78ae4e ND |
2415 | tdep->regs = v->regs; |
2416 | ||
2188cbdd EZ |
2417 | tdep->ppc_gp0_regnum = 0; |
2418 | tdep->ppc_gplast_regnum = 31; | |
2419 | tdep->ppc_toc_regnum = 2; | |
2420 | tdep->ppc_ps_regnum = 65; | |
2421 | tdep->ppc_cr_regnum = 66; | |
2422 | tdep->ppc_lr_regnum = 67; | |
2423 | tdep->ppc_ctr_regnum = 68; | |
2424 | tdep->ppc_xer_regnum = 69; | |
2425 | if (v->mach == bfd_mach_ppc_601) | |
2426 | tdep->ppc_mq_regnum = 124; | |
e3f36dbd | 2427 | else if (power) |
2188cbdd | 2428 | tdep->ppc_mq_regnum = 70; |
e3f36dbd KB |
2429 | else |
2430 | tdep->ppc_mq_regnum = -1; | |
2431 | tdep->ppc_fpscr_regnum = power ? 71 : 70; | |
2188cbdd | 2432 | |
1fcc0bb8 EZ |
2433 | if (v->arch == bfd_arch_powerpc) |
2434 | switch (v->mach) | |
2435 | { | |
2436 | case bfd_mach_ppc: | |
2437 | tdep->ppc_vr0_regnum = 71; | |
2438 | tdep->ppc_vrsave_regnum = 104; | |
2439 | break; | |
2440 | case bfd_mach_ppc_7400: | |
2441 | tdep->ppc_vr0_regnum = 119; | |
2442 | tdep->ppc_vrsave_regnum = 153; | |
2443 | break; | |
2444 | default: | |
2445 | tdep->ppc_vr0_regnum = -1; | |
2446 | tdep->ppc_vrsave_regnum = -1; | |
2447 | break; | |
2448 | } | |
2449 | ||
a88376a3 KB |
2450 | /* Set lr_frame_offset. */ |
2451 | if (wordsize == 8) | |
2452 | tdep->lr_frame_offset = 16; | |
2453 | else if (sysv_abi) | |
2454 | tdep->lr_frame_offset = 4; | |
2455 | else | |
2456 | tdep->lr_frame_offset = 8; | |
2457 | ||
2458 | /* Calculate byte offsets in raw register array. */ | |
489461e2 EZ |
2459 | tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int)); |
2460 | for (i = off = 0; i < v->num_tot_regs; i++) | |
7a78ae4e ND |
2461 | { |
2462 | tdep->regoff[i] = off; | |
2463 | off += regsize (v->regs + i, wordsize); | |
c906108c SS |
2464 | } |
2465 | ||
56a6dfb9 KB |
2466 | /* Select instruction printer. */ |
2467 | if (arch == power) | |
9364a0ef | 2468 | set_gdbarch_print_insn (gdbarch, print_insn_rs6000); |
56a6dfb9 | 2469 | else |
9364a0ef | 2470 | set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc); |
7495d1dc | 2471 | |
7a78ae4e ND |
2472 | set_gdbarch_read_pc (gdbarch, generic_target_read_pc); |
2473 | set_gdbarch_write_pc (gdbarch, generic_target_write_pc); | |
2474 | set_gdbarch_read_fp (gdbarch, generic_target_read_fp); | |
7a78ae4e ND |
2475 | set_gdbarch_read_sp (gdbarch, generic_target_read_sp); |
2476 | set_gdbarch_write_sp (gdbarch, generic_target_write_sp); | |
2477 | ||
2478 | set_gdbarch_num_regs (gdbarch, v->nregs); | |
2479 | set_gdbarch_sp_regnum (gdbarch, 1); | |
2480 | set_gdbarch_fp_regnum (gdbarch, 1); | |
2481 | set_gdbarch_pc_regnum (gdbarch, 64); | |
2482 | set_gdbarch_register_name (gdbarch, rs6000_register_name); | |
2483 | set_gdbarch_register_size (gdbarch, wordsize); | |
2484 | set_gdbarch_register_bytes (gdbarch, off); | |
2485 | set_gdbarch_register_byte (gdbarch, rs6000_register_byte); | |
2486 | set_gdbarch_register_raw_size (gdbarch, rs6000_register_raw_size); | |
2a873819 | 2487 | set_gdbarch_max_register_raw_size (gdbarch, 16); |
b2e75d78 | 2488 | set_gdbarch_register_virtual_size (gdbarch, generic_register_size); |
2a873819 | 2489 | set_gdbarch_max_register_virtual_size (gdbarch, 16); |
7a78ae4e ND |
2490 | set_gdbarch_register_virtual_type (gdbarch, rs6000_register_virtual_type); |
2491 | ||
2492 | set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT); | |
2493 | set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT); | |
2494 | set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
2495 | set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT); | |
2496 | set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
2497 | set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
2498 | set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
2499 | set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
4e409299 | 2500 | set_gdbarch_char_signed (gdbarch, 0); |
7a78ae4e ND |
2501 | |
2502 | set_gdbarch_use_generic_dummy_frames (gdbarch, 1); | |
2503 | set_gdbarch_call_dummy_length (gdbarch, 0); | |
2504 | set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT); | |
2505 | set_gdbarch_call_dummy_address (gdbarch, entry_point_address); | |
2506 | set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1); | |
2507 | set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0); | |
2508 | set_gdbarch_call_dummy_start_offset (gdbarch, 0); | |
fe794dc6 | 2509 | set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy); |
7a78ae4e ND |
2510 | set_gdbarch_call_dummy_p (gdbarch, 1); |
2511 | set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0); | |
dd486634 | 2512 | set_gdbarch_get_saved_register (gdbarch, generic_unwind_get_saved_register); |
7a78ae4e ND |
2513 | set_gdbarch_fix_call_dummy (gdbarch, rs6000_fix_call_dummy); |
2514 | set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame); | |
58223630 | 2515 | set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos); |
7a78ae4e ND |
2516 | set_gdbarch_push_return_address (gdbarch, ppc_push_return_address); |
2517 | set_gdbarch_believe_pcc_promotion (gdbarch, 1); | |
2518 | set_gdbarch_coerce_float_to_double (gdbarch, rs6000_coerce_float_to_double); | |
2519 | ||
2520 | set_gdbarch_register_convertible (gdbarch, rs6000_register_convertible); | |
2521 | set_gdbarch_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual); | |
2522 | set_gdbarch_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw); | |
2188cbdd | 2523 | set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum); |
7a78ae4e | 2524 | |
26e9b323 | 2525 | set_gdbarch_deprecated_extract_return_value (gdbarch, rs6000_extract_return_value); |
9aa1e687 | 2526 | |
2ea5f656 KB |
2527 | /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments() |
2528 | is correct for the SysV ABI when the wordsize is 8, but I'm also | |
2529 | fairly certain that ppc_sysv_abi_push_arguments() will give even | |
2530 | worse results since it only works for 32-bit code. So, for the moment, | |
2531 | we're better off calling rs6000_push_arguments() since it works for | |
2532 | 64-bit code. At some point in the future, this matter needs to be | |
2533 | revisited. */ | |
2534 | if (sysv_abi && wordsize == 4) | |
9aa1e687 KB |
2535 | set_gdbarch_push_arguments (gdbarch, ppc_sysv_abi_push_arguments); |
2536 | else | |
2537 | set_gdbarch_push_arguments (gdbarch, rs6000_push_arguments); | |
7a78ae4e ND |
2538 | |
2539 | set_gdbarch_store_struct_return (gdbarch, rs6000_store_struct_return); | |
2540 | set_gdbarch_store_return_value (gdbarch, rs6000_store_return_value); | |
26e9b323 | 2541 | set_gdbarch_deprecated_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address); |
7a78ae4e ND |
2542 | set_gdbarch_pop_frame (gdbarch, rs6000_pop_frame); |
2543 | ||
2544 | set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue); | |
2545 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
2546 | set_gdbarch_decr_pc_after_break (gdbarch, 0); | |
2547 | set_gdbarch_function_start_offset (gdbarch, 0); | |
2548 | set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc); | |
2549 | ||
2550 | /* Not sure on this. FIXMEmgo */ | |
2551 | set_gdbarch_frame_args_skip (gdbarch, 8); | |
2552 | ||
8e0662df | 2553 | if (sysv_abi) |
7b112f9c JT |
2554 | set_gdbarch_use_struct_convention (gdbarch, |
2555 | ppc_sysv_abi_use_struct_convention); | |
8e0662df | 2556 | else |
7b112f9c JT |
2557 | set_gdbarch_use_struct_convention (gdbarch, |
2558 | generic_use_struct_convention); | |
8e0662df | 2559 | |
7a78ae4e | 2560 | set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid); |
9aa1e687 | 2561 | |
7b112f9c JT |
2562 | set_gdbarch_frameless_function_invocation (gdbarch, |
2563 | rs6000_frameless_function_invocation); | |
2564 | set_gdbarch_frame_chain (gdbarch, rs6000_frame_chain); | |
2565 | set_gdbarch_frame_saved_pc (gdbarch, rs6000_frame_saved_pc); | |
2566 | ||
2567 | set_gdbarch_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs); | |
2568 | set_gdbarch_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info); | |
2569 | ||
15813d3f AC |
2570 | if (!sysv_abi) |
2571 | { | |
2572 | /* Handle RS/6000 function pointers (which are really function | |
2573 | descriptors). */ | |
f517ea4e PS |
2574 | set_gdbarch_convert_from_func_ptr_addr (gdbarch, |
2575 | rs6000_convert_from_func_ptr_addr); | |
9aa1e687 | 2576 | } |
7a78ae4e ND |
2577 | set_gdbarch_frame_args_address (gdbarch, rs6000_frame_args_address); |
2578 | set_gdbarch_frame_locals_address (gdbarch, rs6000_frame_args_address); | |
2579 | set_gdbarch_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call); | |
2580 | ||
2581 | /* We can't tell how many args there are | |
2582 | now that the C compiler delays popping them. */ | |
2583 | set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown); | |
2584 | ||
7b112f9c JT |
2585 | /* Hook in ABI-specific overrides, if they have been registered. */ |
2586 | gdbarch_init_osabi (info, gdbarch, osabi); | |
2587 | ||
7a78ae4e | 2588 | return gdbarch; |
c906108c SS |
2589 | } |
2590 | ||
7b112f9c JT |
2591 | static void |
2592 | rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file) | |
2593 | { | |
2594 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
2595 | ||
2596 | if (tdep == NULL) | |
2597 | return; | |
2598 | ||
2599 | fprintf_unfiltered (file, "rs6000_dump_tdep: OS ABI = %s\n", | |
2600 | gdbarch_osabi_name (tdep->osabi)); | |
2601 | } | |
2602 | ||
1fcc0bb8 EZ |
2603 | static struct cmd_list_element *info_powerpc_cmdlist = NULL; |
2604 | ||
2605 | static void | |
2606 | rs6000_info_powerpc_command (char *args, int from_tty) | |
2607 | { | |
2608 | help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout); | |
2609 | } | |
2610 | ||
c906108c SS |
2611 | /* Initialization code. */ |
2612 | ||
2613 | void | |
fba45db2 | 2614 | _initialize_rs6000_tdep (void) |
c906108c | 2615 | { |
7b112f9c JT |
2616 | gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep); |
2617 | gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep); | |
1fcc0bb8 EZ |
2618 | |
2619 | /* Add root prefix command for "info powerpc" commands */ | |
2620 | add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command, | |
2621 | "Various POWERPC info specific commands.", | |
2622 | &info_powerpc_cmdlist, "info powerpc ", 0, &infolist); | |
c906108c | 2623 | } |