]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Target-dependent code for GDB, the GNU debugger. |
b6ba6518 | 2 | Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, |
1e698235 | 3 | 1998, 1999, 2000, 2001, 2002, 2003 |
c906108c SS |
4 | Free Software Foundation, Inc. |
5 | ||
c5aa993b | 6 | This file is part of GDB. |
c906108c | 7 | |
c5aa993b JM |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
c906108c | 12 | |
c5aa993b JM |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
c906108c | 17 | |
c5aa993b JM |
18 | You should have received a copy of the GNU General Public License |
19 | along with this program; if not, write to the Free Software | |
20 | Foundation, Inc., 59 Temple Place - Suite 330, | |
21 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
22 | |
23 | #include "defs.h" | |
24 | #include "frame.h" | |
25 | #include "inferior.h" | |
26 | #include "symtab.h" | |
27 | #include "target.h" | |
28 | #include "gdbcore.h" | |
29 | #include "gdbcmd.h" | |
30 | #include "symfile.h" | |
31 | #include "objfiles.h" | |
7a78ae4e | 32 | #include "arch-utils.h" |
4e052eda | 33 | #include "regcache.h" |
d16aafd8 | 34 | #include "doublest.h" |
fd0407d6 | 35 | #include "value.h" |
1fcc0bb8 | 36 | #include "parser-defs.h" |
4be87837 | 37 | #include "osabi.h" |
7a78ae4e | 38 | |
2fccf04a | 39 | #include "libbfd.h" /* for bfd_default_set_arch_mach */ |
7a78ae4e | 40 | #include "coff/internal.h" /* for libcoff.h */ |
2fccf04a | 41 | #include "libcoff.h" /* for xcoff_data */ |
11ed25ac KB |
42 | #include "coff/xcoff.h" |
43 | #include "libxcoff.h" | |
7a78ae4e | 44 | |
9aa1e687 | 45 | #include "elf-bfd.h" |
7a78ae4e | 46 | |
6ded7999 | 47 | #include "solib-svr4.h" |
9aa1e687 | 48 | #include "ppc-tdep.h" |
7a78ae4e | 49 | |
338ef23d | 50 | #include "gdb_assert.h" |
a89aa300 | 51 | #include "dis-asm.h" |
338ef23d | 52 | |
7a78ae4e ND |
53 | /* If the kernel has to deliver a signal, it pushes a sigcontext |
54 | structure on the stack and then calls the signal handler, passing | |
55 | the address of the sigcontext in an argument register. Usually | |
56 | the signal handler doesn't save this register, so we have to | |
57 | access the sigcontext structure via an offset from the signal handler | |
58 | frame. | |
59 | The following constants were determined by experimentation on AIX 3.2. */ | |
60 | #define SIG_FRAME_PC_OFFSET 96 | |
61 | #define SIG_FRAME_LR_OFFSET 108 | |
62 | #define SIG_FRAME_FP_OFFSET 284 | |
63 | ||
7a78ae4e ND |
64 | /* To be used by skip_prologue. */ |
65 | ||
66 | struct rs6000_framedata | |
67 | { | |
68 | int offset; /* total size of frame --- the distance | |
69 | by which we decrement sp to allocate | |
70 | the frame */ | |
71 | int saved_gpr; /* smallest # of saved gpr */ | |
72 | int saved_fpr; /* smallest # of saved fpr */ | |
6be8bc0c | 73 | int saved_vr; /* smallest # of saved vr */ |
96ff0de4 | 74 | int saved_ev; /* smallest # of saved ev */ |
7a78ae4e ND |
75 | int alloca_reg; /* alloca register number (frame ptr) */ |
76 | char frameless; /* true if frameless functions. */ | |
77 | char nosavedpc; /* true if pc not saved. */ | |
78 | int gpr_offset; /* offset of saved gprs from prev sp */ | |
79 | int fpr_offset; /* offset of saved fprs from prev sp */ | |
6be8bc0c | 80 | int vr_offset; /* offset of saved vrs from prev sp */ |
96ff0de4 | 81 | int ev_offset; /* offset of saved evs from prev sp */ |
7a78ae4e ND |
82 | int lr_offset; /* offset of saved lr */ |
83 | int cr_offset; /* offset of saved cr */ | |
6be8bc0c | 84 | int vrsave_offset; /* offset of saved vrsave register */ |
7a78ae4e ND |
85 | }; |
86 | ||
87 | /* Description of a single register. */ | |
88 | ||
89 | struct reg | |
90 | { | |
91 | char *name; /* name of register */ | |
92 | unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */ | |
93 | unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */ | |
94 | unsigned char fpr; /* whether register is floating-point */ | |
489461e2 | 95 | unsigned char pseudo; /* whether register is pseudo */ |
7a78ae4e ND |
96 | }; |
97 | ||
c906108c SS |
98 | /* Breakpoint shadows for the single step instructions will be kept here. */ |
99 | ||
c5aa993b JM |
100 | static struct sstep_breaks |
101 | { | |
102 | /* Address, or 0 if this is not in use. */ | |
103 | CORE_ADDR address; | |
104 | /* Shadow contents. */ | |
105 | char data[4]; | |
106 | } | |
107 | stepBreaks[2]; | |
c906108c SS |
108 | |
109 | /* Hook for determining the TOC address when calling functions in the | |
110 | inferior under AIX. The initialization code in rs6000-nat.c sets | |
111 | this hook to point to find_toc_address. */ | |
112 | ||
7a78ae4e ND |
113 | CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL; |
114 | ||
115 | /* Hook to set the current architecture when starting a child process. | |
116 | rs6000-nat.c sets this. */ | |
117 | ||
118 | void (*rs6000_set_host_arch_hook) (int) = NULL; | |
c906108c SS |
119 | |
120 | /* Static function prototypes */ | |
121 | ||
a14ed312 KB |
122 | static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc, |
123 | CORE_ADDR safety); | |
077276e8 KB |
124 | static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR, |
125 | struct rs6000_framedata *); | |
7a78ae4e ND |
126 | static void frame_get_saved_regs (struct frame_info * fi, |
127 | struct rs6000_framedata * fdatap); | |
128 | static CORE_ADDR frame_initial_stack_address (struct frame_info *); | |
c906108c | 129 | |
64b84175 KB |
130 | /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */ |
131 | int | |
132 | altivec_register_p (int regno) | |
133 | { | |
134 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
135 | if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0) | |
136 | return 0; | |
137 | else | |
138 | return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum); | |
139 | } | |
140 | ||
0a613259 AC |
141 | /* Use the architectures FP registers? */ |
142 | int | |
143 | ppc_floating_point_unit_p (struct gdbarch *gdbarch) | |
144 | { | |
145 | const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch); | |
146 | if (info->arch == bfd_arch_powerpc) | |
147 | return (info->mach != bfd_mach_ppc_e500); | |
148 | if (info->arch == bfd_arch_rs6000) | |
149 | return 1; | |
150 | return 0; | |
151 | } | |
152 | ||
7a78ae4e | 153 | /* Read a LEN-byte address from debugged memory address MEMADDR. */ |
c906108c | 154 | |
7a78ae4e ND |
155 | static CORE_ADDR |
156 | read_memory_addr (CORE_ADDR memaddr, int len) | |
157 | { | |
158 | return read_memory_unsigned_integer (memaddr, len); | |
159 | } | |
c906108c | 160 | |
7a78ae4e ND |
161 | static CORE_ADDR |
162 | rs6000_skip_prologue (CORE_ADDR pc) | |
b83266a0 SS |
163 | { |
164 | struct rs6000_framedata frame; | |
077276e8 | 165 | pc = skip_prologue (pc, 0, &frame); |
b83266a0 SS |
166 | return pc; |
167 | } | |
168 | ||
169 | ||
c906108c SS |
170 | /* Fill in fi->saved_regs */ |
171 | ||
172 | struct frame_extra_info | |
173 | { | |
174 | /* Functions calling alloca() change the value of the stack | |
175 | pointer. We need to use initial stack pointer (which is saved in | |
176 | r31 by gcc) in such cases. If a compiler emits traceback table, | |
177 | then we should use the alloca register specified in traceback | |
178 | table. FIXME. */ | |
c5aa993b | 179 | CORE_ADDR initial_sp; /* initial stack pointer. */ |
c906108c SS |
180 | }; |
181 | ||
9aa1e687 | 182 | void |
7a78ae4e | 183 | rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi) |
c906108c | 184 | { |
c9012c71 AC |
185 | struct frame_extra_info *extra_info = |
186 | frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info)); | |
187 | extra_info->initial_sp = 0; | |
bdd78e62 AC |
188 | if (get_next_frame (fi) != NULL |
189 | && get_frame_pc (fi) < TEXT_SEGMENT_BASE) | |
7a292a7a | 190 | /* We're in get_prev_frame */ |
c906108c SS |
191 | /* and this is a special signal frame. */ |
192 | /* (fi->pc will be some low address in the kernel, */ | |
193 | /* to which the signal handler returns). */ | |
5a203e44 | 194 | deprecated_set_frame_type (fi, SIGTRAMP_FRAME); |
c906108c SS |
195 | } |
196 | ||
7a78ae4e ND |
197 | /* Put here the code to store, into a struct frame_saved_regs, |
198 | the addresses of the saved registers of frame described by FRAME_INFO. | |
199 | This includes special registers such as pc and fp saved in special | |
200 | ways in the stack frame. sp is even more special: | |
201 | the address we return for it IS the sp for the next frame. */ | |
c906108c | 202 | |
7a78ae4e ND |
203 | /* In this implementation for RS/6000, we do *not* save sp. I am |
204 | not sure if it will be needed. The following function takes care of gpr's | |
205 | and fpr's only. */ | |
206 | ||
9aa1e687 | 207 | void |
7a78ae4e | 208 | rs6000_frame_init_saved_regs (struct frame_info *fi) |
c906108c SS |
209 | { |
210 | frame_get_saved_regs (fi, NULL); | |
211 | } | |
212 | ||
7a78ae4e ND |
213 | static CORE_ADDR |
214 | rs6000_frame_args_address (struct frame_info *fi) | |
c906108c | 215 | { |
c9012c71 AC |
216 | struct frame_extra_info *extra_info = get_frame_extra_info (fi); |
217 | if (extra_info->initial_sp != 0) | |
218 | return extra_info->initial_sp; | |
c906108c SS |
219 | else |
220 | return frame_initial_stack_address (fi); | |
221 | } | |
222 | ||
7a78ae4e ND |
223 | /* Immediately after a function call, return the saved pc. |
224 | Can't go through the frames for this because on some machines | |
225 | the new frame is not set up until the new function executes | |
226 | some instructions. */ | |
227 | ||
228 | static CORE_ADDR | |
229 | rs6000_saved_pc_after_call (struct frame_info *fi) | |
230 | { | |
2188cbdd | 231 | return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum); |
7a78ae4e | 232 | } |
c906108c | 233 | |
143985b7 | 234 | /* Get the ith function argument for the current function. */ |
b9362cc7 | 235 | static CORE_ADDR |
143985b7 AF |
236 | rs6000_fetch_pointer_argument (struct frame_info *frame, int argi, |
237 | struct type *type) | |
238 | { | |
239 | CORE_ADDR addr; | |
240 | frame_read_register (frame, 3 + argi, &addr); | |
241 | return addr; | |
242 | } | |
243 | ||
c906108c SS |
244 | /* Calculate the destination of a branch/jump. Return -1 if not a branch. */ |
245 | ||
246 | static CORE_ADDR | |
7a78ae4e | 247 | branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety) |
c906108c SS |
248 | { |
249 | CORE_ADDR dest; | |
250 | int immediate; | |
251 | int absolute; | |
252 | int ext_op; | |
253 | ||
254 | absolute = (int) ((instr >> 1) & 1); | |
255 | ||
c5aa993b JM |
256 | switch (opcode) |
257 | { | |
258 | case 18: | |
259 | immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */ | |
260 | if (absolute) | |
261 | dest = immediate; | |
262 | else | |
263 | dest = pc + immediate; | |
264 | break; | |
265 | ||
266 | case 16: | |
267 | immediate = ((instr & ~3) << 16) >> 16; /* br conditional */ | |
268 | if (absolute) | |
269 | dest = immediate; | |
270 | else | |
271 | dest = pc + immediate; | |
272 | break; | |
273 | ||
274 | case 19: | |
275 | ext_op = (instr >> 1) & 0x3ff; | |
276 | ||
277 | if (ext_op == 16) /* br conditional register */ | |
278 | { | |
2188cbdd | 279 | dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3; |
c5aa993b JM |
280 | |
281 | /* If we are about to return from a signal handler, dest is | |
282 | something like 0x3c90. The current frame is a signal handler | |
283 | caller frame, upon completion of the sigreturn system call | |
284 | execution will return to the saved PC in the frame. */ | |
285 | if (dest < TEXT_SEGMENT_BASE) | |
286 | { | |
287 | struct frame_info *fi; | |
288 | ||
289 | fi = get_current_frame (); | |
290 | if (fi != NULL) | |
8b36eed8 | 291 | dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET, |
21283beb | 292 | gdbarch_tdep (current_gdbarch)->wordsize); |
c5aa993b JM |
293 | } |
294 | } | |
295 | ||
296 | else if (ext_op == 528) /* br cond to count reg */ | |
297 | { | |
2188cbdd | 298 | dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3; |
c5aa993b JM |
299 | |
300 | /* If we are about to execute a system call, dest is something | |
301 | like 0x22fc or 0x3b00. Upon completion the system call | |
302 | will return to the address in the link register. */ | |
303 | if (dest < TEXT_SEGMENT_BASE) | |
2188cbdd | 304 | dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3; |
c5aa993b JM |
305 | } |
306 | else | |
307 | return -1; | |
308 | break; | |
c906108c | 309 | |
c5aa993b JM |
310 | default: |
311 | return -1; | |
312 | } | |
c906108c SS |
313 | return (dest < TEXT_SEGMENT_BASE) ? safety : dest; |
314 | } | |
315 | ||
316 | ||
317 | /* Sequence of bytes for breakpoint instruction. */ | |
318 | ||
f4f9705a | 319 | const static unsigned char * |
7a78ae4e | 320 | rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size) |
c906108c | 321 | { |
aaab4dba AC |
322 | static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 }; |
323 | static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d }; | |
c906108c | 324 | *bp_size = 4; |
d7449b42 | 325 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
c906108c SS |
326 | return big_breakpoint; |
327 | else | |
328 | return little_breakpoint; | |
329 | } | |
330 | ||
331 | ||
332 | /* AIX does not support PT_STEP. Simulate it. */ | |
333 | ||
334 | void | |
379d08a1 AC |
335 | rs6000_software_single_step (enum target_signal signal, |
336 | int insert_breakpoints_p) | |
c906108c | 337 | { |
7c40d541 KB |
338 | CORE_ADDR dummy; |
339 | int breakp_sz; | |
f4f9705a | 340 | const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz); |
c906108c SS |
341 | int ii, insn; |
342 | CORE_ADDR loc; | |
343 | CORE_ADDR breaks[2]; | |
344 | int opcode; | |
345 | ||
c5aa993b JM |
346 | if (insert_breakpoints_p) |
347 | { | |
c906108c | 348 | |
c5aa993b | 349 | loc = read_pc (); |
c906108c | 350 | |
c5aa993b | 351 | insn = read_memory_integer (loc, 4); |
c906108c | 352 | |
7c40d541 | 353 | breaks[0] = loc + breakp_sz; |
c5aa993b JM |
354 | opcode = insn >> 26; |
355 | breaks[1] = branch_dest (opcode, insn, loc, breaks[0]); | |
c906108c | 356 | |
c5aa993b JM |
357 | /* Don't put two breakpoints on the same address. */ |
358 | if (breaks[1] == breaks[0]) | |
359 | breaks[1] = -1; | |
c906108c | 360 | |
c5aa993b | 361 | stepBreaks[1].address = 0; |
c906108c | 362 | |
c5aa993b JM |
363 | for (ii = 0; ii < 2; ++ii) |
364 | { | |
c906108c | 365 | |
c5aa993b JM |
366 | /* ignore invalid breakpoint. */ |
367 | if (breaks[ii] == -1) | |
368 | continue; | |
7c40d541 | 369 | target_insert_breakpoint (breaks[ii], stepBreaks[ii].data); |
c5aa993b JM |
370 | stepBreaks[ii].address = breaks[ii]; |
371 | } | |
c906108c | 372 | |
c5aa993b JM |
373 | } |
374 | else | |
375 | { | |
c906108c | 376 | |
c5aa993b JM |
377 | /* remove step breakpoints. */ |
378 | for (ii = 0; ii < 2; ++ii) | |
379 | if (stepBreaks[ii].address != 0) | |
7c40d541 KB |
380 | target_remove_breakpoint (stepBreaks[ii].address, |
381 | stepBreaks[ii].data); | |
c5aa993b | 382 | } |
c906108c | 383 | errno = 0; /* FIXME, don't ignore errors! */ |
c5aa993b | 384 | /* What errors? {read,write}_memory call error(). */ |
c906108c SS |
385 | } |
386 | ||
387 | ||
388 | /* return pc value after skipping a function prologue and also return | |
389 | information about a function frame. | |
390 | ||
391 | in struct rs6000_framedata fdata: | |
c5aa993b JM |
392 | - frameless is TRUE, if function does not have a frame. |
393 | - nosavedpc is TRUE, if function does not save %pc value in its frame. | |
394 | - offset is the initial size of this stack frame --- the amount by | |
395 | which we decrement the sp to allocate the frame. | |
396 | - saved_gpr is the number of the first saved gpr. | |
397 | - saved_fpr is the number of the first saved fpr. | |
6be8bc0c | 398 | - saved_vr is the number of the first saved vr. |
96ff0de4 | 399 | - saved_ev is the number of the first saved ev. |
c5aa993b JM |
400 | - alloca_reg is the number of the register used for alloca() handling. |
401 | Otherwise -1. | |
402 | - gpr_offset is the offset of the first saved gpr from the previous frame. | |
403 | - fpr_offset is the offset of the first saved fpr from the previous frame. | |
6be8bc0c | 404 | - vr_offset is the offset of the first saved vr from the previous frame. |
96ff0de4 | 405 | - ev_offset is the offset of the first saved ev from the previous frame. |
c5aa993b JM |
406 | - lr_offset is the offset of the saved lr |
407 | - cr_offset is the offset of the saved cr | |
6be8bc0c | 408 | - vrsave_offset is the offset of the saved vrsave register |
c5aa993b | 409 | */ |
c906108c SS |
410 | |
411 | #define SIGNED_SHORT(x) \ | |
412 | ((sizeof (short) == 2) \ | |
413 | ? ((int)(short)(x)) \ | |
414 | : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000))) | |
415 | ||
416 | #define GET_SRC_REG(x) (((x) >> 21) & 0x1f) | |
417 | ||
55d05f3b KB |
418 | /* Limit the number of skipped non-prologue instructions, as the examining |
419 | of the prologue is expensive. */ | |
420 | static int max_skip_non_prologue_insns = 10; | |
421 | ||
422 | /* Given PC representing the starting address of a function, and | |
423 | LIM_PC which is the (sloppy) limit to which to scan when looking | |
424 | for a prologue, attempt to further refine this limit by using | |
425 | the line data in the symbol table. If successful, a better guess | |
426 | on where the prologue ends is returned, otherwise the previous | |
427 | value of lim_pc is returned. */ | |
428 | static CORE_ADDR | |
429 | refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc) | |
430 | { | |
431 | struct symtab_and_line prologue_sal; | |
432 | ||
433 | prologue_sal = find_pc_line (pc, 0); | |
434 | if (prologue_sal.line != 0) | |
435 | { | |
436 | int i; | |
437 | CORE_ADDR addr = prologue_sal.end; | |
438 | ||
439 | /* Handle the case in which compiler's optimizer/scheduler | |
440 | has moved instructions into the prologue. We scan ahead | |
441 | in the function looking for address ranges whose corresponding | |
442 | line number is less than or equal to the first one that we | |
443 | found for the function. (It can be less than when the | |
444 | scheduler puts a body instruction before the first prologue | |
445 | instruction.) */ | |
446 | for (i = 2 * max_skip_non_prologue_insns; | |
447 | i > 0 && (lim_pc == 0 || addr < lim_pc); | |
448 | i--) | |
449 | { | |
450 | struct symtab_and_line sal; | |
451 | ||
452 | sal = find_pc_line (addr, 0); | |
453 | if (sal.line == 0) | |
454 | break; | |
455 | if (sal.line <= prologue_sal.line | |
456 | && sal.symtab == prologue_sal.symtab) | |
457 | { | |
458 | prologue_sal = sal; | |
459 | } | |
460 | addr = sal.end; | |
461 | } | |
462 | ||
463 | if (lim_pc == 0 || prologue_sal.end < lim_pc) | |
464 | lim_pc = prologue_sal.end; | |
465 | } | |
466 | return lim_pc; | |
467 | } | |
468 | ||
469 | ||
7a78ae4e | 470 | static CORE_ADDR |
077276e8 | 471 | skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata) |
c906108c SS |
472 | { |
473 | CORE_ADDR orig_pc = pc; | |
55d05f3b | 474 | CORE_ADDR last_prologue_pc = pc; |
6be8bc0c | 475 | CORE_ADDR li_found_pc = 0; |
c906108c SS |
476 | char buf[4]; |
477 | unsigned long op; | |
478 | long offset = 0; | |
6be8bc0c | 479 | long vr_saved_offset = 0; |
482ca3f5 KB |
480 | int lr_reg = -1; |
481 | int cr_reg = -1; | |
6be8bc0c | 482 | int vr_reg = -1; |
96ff0de4 EZ |
483 | int ev_reg = -1; |
484 | long ev_offset = 0; | |
6be8bc0c | 485 | int vrsave_reg = -1; |
c906108c SS |
486 | int reg; |
487 | int framep = 0; | |
488 | int minimal_toc_loaded = 0; | |
ddb20c56 | 489 | int prev_insn_was_prologue_insn = 1; |
55d05f3b | 490 | int num_skip_non_prologue_insns = 0; |
96ff0de4 | 491 | const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch); |
6f99cb26 | 492 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
96ff0de4 | 493 | |
55d05f3b KB |
494 | /* Attempt to find the end of the prologue when no limit is specified. |
495 | Note that refine_prologue_limit() has been written so that it may | |
496 | be used to "refine" the limits of non-zero PC values too, but this | |
497 | is only safe if we 1) trust the line information provided by the | |
498 | compiler and 2) iterate enough to actually find the end of the | |
499 | prologue. | |
500 | ||
501 | It may become a good idea at some point (for both performance and | |
502 | accuracy) to unconditionally call refine_prologue_limit(). But, | |
503 | until we can make a clear determination that this is beneficial, | |
504 | we'll play it safe and only use it to obtain a limit when none | |
505 | has been specified. */ | |
506 | if (lim_pc == 0) | |
507 | lim_pc = refine_prologue_limit (pc, lim_pc); | |
c906108c | 508 | |
ddb20c56 | 509 | memset (fdata, 0, sizeof (struct rs6000_framedata)); |
c906108c SS |
510 | fdata->saved_gpr = -1; |
511 | fdata->saved_fpr = -1; | |
6be8bc0c | 512 | fdata->saved_vr = -1; |
96ff0de4 | 513 | fdata->saved_ev = -1; |
c906108c SS |
514 | fdata->alloca_reg = -1; |
515 | fdata->frameless = 1; | |
516 | fdata->nosavedpc = 1; | |
517 | ||
55d05f3b | 518 | for (;; pc += 4) |
c906108c | 519 | { |
ddb20c56 KB |
520 | /* Sometimes it isn't clear if an instruction is a prologue |
521 | instruction or not. When we encounter one of these ambiguous | |
522 | cases, we'll set prev_insn_was_prologue_insn to 0 (false). | |
523 | Otherwise, we'll assume that it really is a prologue instruction. */ | |
524 | if (prev_insn_was_prologue_insn) | |
525 | last_prologue_pc = pc; | |
55d05f3b KB |
526 | |
527 | /* Stop scanning if we've hit the limit. */ | |
528 | if (lim_pc != 0 && pc >= lim_pc) | |
529 | break; | |
530 | ||
ddb20c56 KB |
531 | prev_insn_was_prologue_insn = 1; |
532 | ||
55d05f3b | 533 | /* Fetch the instruction and convert it to an integer. */ |
ddb20c56 KB |
534 | if (target_read_memory (pc, buf, 4)) |
535 | break; | |
536 | op = extract_signed_integer (buf, 4); | |
c906108c | 537 | |
c5aa993b JM |
538 | if ((op & 0xfc1fffff) == 0x7c0802a6) |
539 | { /* mflr Rx */ | |
98f08d3d | 540 | lr_reg = (op & 0x03e00000); |
c5aa993b | 541 | continue; |
c906108c | 542 | |
c5aa993b JM |
543 | } |
544 | else if ((op & 0xfc1fffff) == 0x7c000026) | |
545 | { /* mfcr Rx */ | |
98f08d3d | 546 | cr_reg = (op & 0x03e00000); |
c5aa993b | 547 | continue; |
c906108c | 548 | |
c906108c | 549 | } |
c5aa993b JM |
550 | else if ((op & 0xfc1f0000) == 0xd8010000) |
551 | { /* stfd Rx,NUM(r1) */ | |
552 | reg = GET_SRC_REG (op); | |
553 | if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg) | |
554 | { | |
555 | fdata->saved_fpr = reg; | |
556 | fdata->fpr_offset = SIGNED_SHORT (op) + offset; | |
557 | } | |
558 | continue; | |
c906108c | 559 | |
c5aa993b JM |
560 | } |
561 | else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */ | |
7a78ae4e ND |
562 | (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */ |
563 | (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */ | |
564 | (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */ | |
c5aa993b JM |
565 | { |
566 | ||
567 | reg = GET_SRC_REG (op); | |
568 | if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg) | |
569 | { | |
570 | fdata->saved_gpr = reg; | |
7a78ae4e | 571 | if ((op & 0xfc1f0003) == 0xf8010000) |
98f08d3d | 572 | op &= ~3UL; |
c5aa993b JM |
573 | fdata->gpr_offset = SIGNED_SHORT (op) + offset; |
574 | } | |
575 | continue; | |
c906108c | 576 | |
ddb20c56 KB |
577 | } |
578 | else if ((op & 0xffff0000) == 0x60000000) | |
579 | { | |
96ff0de4 | 580 | /* nop */ |
ddb20c56 KB |
581 | /* Allow nops in the prologue, but do not consider them to |
582 | be part of the prologue unless followed by other prologue | |
583 | instructions. */ | |
584 | prev_insn_was_prologue_insn = 0; | |
585 | continue; | |
586 | ||
c906108c | 587 | } |
c5aa993b JM |
588 | else if ((op & 0xffff0000) == 0x3c000000) |
589 | { /* addis 0,0,NUM, used | |
590 | for >= 32k frames */ | |
591 | fdata->offset = (op & 0x0000ffff) << 16; | |
592 | fdata->frameless = 0; | |
593 | continue; | |
594 | ||
595 | } | |
596 | else if ((op & 0xffff0000) == 0x60000000) | |
597 | { /* ori 0,0,NUM, 2nd ha | |
598 | lf of >= 32k frames */ | |
599 | fdata->offset |= (op & 0x0000ffff); | |
600 | fdata->frameless = 0; | |
601 | continue; | |
602 | ||
603 | } | |
98f08d3d KB |
604 | else if (lr_reg != -1 && |
605 | /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */ | |
606 | (((op & 0xffff0000) == (lr_reg | 0xf8010000)) || | |
607 | /* stw Rx, NUM(r1) */ | |
608 | ((op & 0xffff0000) == (lr_reg | 0x90010000)) || | |
609 | /* stwu Rx, NUM(r1) */ | |
610 | ((op & 0xffff0000) == (lr_reg | 0x94010000)))) | |
611 | { /* where Rx == lr */ | |
612 | fdata->lr_offset = offset; | |
c5aa993b JM |
613 | fdata->nosavedpc = 0; |
614 | lr_reg = 0; | |
98f08d3d KB |
615 | if ((op & 0xfc000003) == 0xf8000000 || /* std */ |
616 | (op & 0xfc000000) == 0x90000000) /* stw */ | |
617 | { | |
618 | /* Does not update r1, so add displacement to lr_offset. */ | |
619 | fdata->lr_offset += SIGNED_SHORT (op); | |
620 | } | |
c5aa993b JM |
621 | continue; |
622 | ||
623 | } | |
98f08d3d KB |
624 | else if (cr_reg != -1 && |
625 | /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */ | |
626 | (((op & 0xffff0000) == (cr_reg | 0xf8010000)) || | |
627 | /* stw Rx, NUM(r1) */ | |
628 | ((op & 0xffff0000) == (cr_reg | 0x90010000)) || | |
629 | /* stwu Rx, NUM(r1) */ | |
630 | ((op & 0xffff0000) == (cr_reg | 0x94010000)))) | |
631 | { /* where Rx == cr */ | |
632 | fdata->cr_offset = offset; | |
c5aa993b | 633 | cr_reg = 0; |
98f08d3d KB |
634 | if ((op & 0xfc000003) == 0xf8000000 || |
635 | (op & 0xfc000000) == 0x90000000) | |
636 | { | |
637 | /* Does not update r1, so add displacement to cr_offset. */ | |
638 | fdata->cr_offset += SIGNED_SHORT (op); | |
639 | } | |
c5aa993b JM |
640 | continue; |
641 | ||
642 | } | |
643 | else if (op == 0x48000005) | |
644 | { /* bl .+4 used in | |
645 | -mrelocatable */ | |
646 | continue; | |
647 | ||
648 | } | |
649 | else if (op == 0x48000004) | |
650 | { /* b .+4 (xlc) */ | |
651 | break; | |
652 | ||
c5aa993b | 653 | } |
6be8bc0c EZ |
654 | else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used |
655 | in V.4 -mminimal-toc */ | |
c5aa993b JM |
656 | (op & 0xffff0000) == 0x3bde0000) |
657 | { /* addi 30,30,foo@l */ | |
658 | continue; | |
c906108c | 659 | |
c5aa993b JM |
660 | } |
661 | else if ((op & 0xfc000001) == 0x48000001) | |
662 | { /* bl foo, | |
663 | to save fprs??? */ | |
c906108c | 664 | |
c5aa993b | 665 | fdata->frameless = 0; |
6be8bc0c EZ |
666 | /* Don't skip over the subroutine call if it is not within |
667 | the first three instructions of the prologue. */ | |
c5aa993b JM |
668 | if ((pc - orig_pc) > 8) |
669 | break; | |
670 | ||
671 | op = read_memory_integer (pc + 4, 4); | |
672 | ||
6be8bc0c EZ |
673 | /* At this point, make sure this is not a trampoline |
674 | function (a function that simply calls another functions, | |
675 | and nothing else). If the next is not a nop, this branch | |
676 | was part of the function prologue. */ | |
c5aa993b JM |
677 | |
678 | if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */ | |
679 | break; /* don't skip over | |
680 | this branch */ | |
681 | continue; | |
682 | ||
c5aa993b | 683 | } |
98f08d3d KB |
684 | /* update stack pointer */ |
685 | else if ((op & 0xfc1f0000) == 0x94010000) | |
686 | { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */ | |
c5aa993b JM |
687 | fdata->frameless = 0; |
688 | fdata->offset = SIGNED_SHORT (op); | |
689 | offset = fdata->offset; | |
690 | continue; | |
c5aa993b | 691 | } |
98f08d3d KB |
692 | else if ((op & 0xfc1f016a) == 0x7c01016e) |
693 | { /* stwux rX,r1,rY */ | |
694 | /* no way to figure out what r1 is going to be */ | |
695 | fdata->frameless = 0; | |
696 | offset = fdata->offset; | |
697 | continue; | |
698 | } | |
699 | else if ((op & 0xfc1f0003) == 0xf8010001) | |
700 | { /* stdu rX,NUM(r1) */ | |
701 | fdata->frameless = 0; | |
702 | fdata->offset = SIGNED_SHORT (op & ~3UL); | |
703 | offset = fdata->offset; | |
704 | continue; | |
705 | } | |
706 | else if ((op & 0xfc1f016a) == 0x7c01016a) | |
707 | { /* stdux rX,r1,rY */ | |
708 | /* no way to figure out what r1 is going to be */ | |
c5aa993b JM |
709 | fdata->frameless = 0; |
710 | offset = fdata->offset; | |
711 | continue; | |
c5aa993b | 712 | } |
98f08d3d KB |
713 | /* Load up minimal toc pointer */ |
714 | else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */ | |
715 | (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */ | |
c5aa993b | 716 | && !minimal_toc_loaded) |
98f08d3d | 717 | { |
c5aa993b JM |
718 | minimal_toc_loaded = 1; |
719 | continue; | |
720 | ||
f6077098 KB |
721 | /* move parameters from argument registers to local variable |
722 | registers */ | |
723 | } | |
724 | else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */ | |
725 | (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */ | |
726 | (((op >> 21) & 31) <= 10) && | |
96ff0de4 | 727 | ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */ |
f6077098 KB |
728 | { |
729 | continue; | |
730 | ||
c5aa993b JM |
731 | /* store parameters in stack */ |
732 | } | |
6be8bc0c | 733 | else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */ |
c5aa993b | 734 | (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */ |
7a78ae4e ND |
735 | (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */ |
736 | { | |
c5aa993b | 737 | continue; |
c906108c | 738 | |
c5aa993b JM |
739 | /* store parameters in stack via frame pointer */ |
740 | } | |
741 | else if (framep && | |
742 | ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */ | |
743 | (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */ | |
744 | (op & 0xfc1f0000) == 0xfc1f0000)) | |
745 | { /* frsp, fp?,NUM(r1) */ | |
746 | continue; | |
747 | ||
748 | /* Set up frame pointer */ | |
749 | } | |
750 | else if (op == 0x603f0000 /* oril r31, r1, 0x0 */ | |
751 | || op == 0x7c3f0b78) | |
752 | { /* mr r31, r1 */ | |
753 | fdata->frameless = 0; | |
754 | framep = 1; | |
6f99cb26 | 755 | fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31); |
c5aa993b JM |
756 | continue; |
757 | ||
758 | /* Another way to set up the frame pointer. */ | |
759 | } | |
760 | else if ((op & 0xfc1fffff) == 0x38010000) | |
761 | { /* addi rX, r1, 0x0 */ | |
762 | fdata->frameless = 0; | |
763 | framep = 1; | |
6f99cb26 AC |
764 | fdata->alloca_reg = (tdep->ppc_gp0_regnum |
765 | + ((op & ~0x38010000) >> 21)); | |
c5aa993b | 766 | continue; |
c5aa993b | 767 | } |
6be8bc0c EZ |
768 | /* AltiVec related instructions. */ |
769 | /* Store the vrsave register (spr 256) in another register for | |
770 | later manipulation, or load a register into the vrsave | |
771 | register. 2 instructions are used: mfvrsave and | |
772 | mtvrsave. They are shorthand notation for mfspr Rn, SPR256 | |
773 | and mtspr SPR256, Rn. */ | |
774 | /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110 | |
775 | mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */ | |
776 | else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */ | |
777 | { | |
778 | vrsave_reg = GET_SRC_REG (op); | |
779 | continue; | |
780 | } | |
781 | else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */ | |
782 | { | |
783 | continue; | |
784 | } | |
785 | /* Store the register where vrsave was saved to onto the stack: | |
786 | rS is the register where vrsave was stored in a previous | |
787 | instruction. */ | |
788 | /* 100100 sssss 00001 dddddddd dddddddd */ | |
789 | else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */ | |
790 | { | |
791 | if (vrsave_reg == GET_SRC_REG (op)) | |
792 | { | |
793 | fdata->vrsave_offset = SIGNED_SHORT (op) + offset; | |
794 | vrsave_reg = -1; | |
795 | } | |
796 | continue; | |
797 | } | |
798 | /* Compute the new value of vrsave, by modifying the register | |
799 | where vrsave was saved to. */ | |
800 | else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */ | |
801 | || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */ | |
802 | { | |
803 | continue; | |
804 | } | |
805 | /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first | |
806 | in a pair of insns to save the vector registers on the | |
807 | stack. */ | |
808 | /* 001110 00000 00000 iiii iiii iiii iiii */ | |
96ff0de4 EZ |
809 | /* 001110 01110 00000 iiii iiii iiii iiii */ |
810 | else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */ | |
811 | || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */ | |
6be8bc0c EZ |
812 | { |
813 | li_found_pc = pc; | |
814 | vr_saved_offset = SIGNED_SHORT (op); | |
815 | } | |
816 | /* Store vector register S at (r31+r0) aligned to 16 bytes. */ | |
817 | /* 011111 sssss 11111 00000 00111001110 */ | |
818 | else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */ | |
819 | { | |
820 | if (pc == (li_found_pc + 4)) | |
821 | { | |
822 | vr_reg = GET_SRC_REG (op); | |
823 | /* If this is the first vector reg to be saved, or if | |
824 | it has a lower number than others previously seen, | |
825 | reupdate the frame info. */ | |
826 | if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg) | |
827 | { | |
828 | fdata->saved_vr = vr_reg; | |
829 | fdata->vr_offset = vr_saved_offset + offset; | |
830 | } | |
831 | vr_saved_offset = -1; | |
832 | vr_reg = -1; | |
833 | li_found_pc = 0; | |
834 | } | |
835 | } | |
836 | /* End AltiVec related instructions. */ | |
96ff0de4 EZ |
837 | |
838 | /* Start BookE related instructions. */ | |
839 | /* Store gen register S at (r31+uimm). | |
840 | Any register less than r13 is volatile, so we don't care. */ | |
841 | /* 000100 sssss 11111 iiiii 01100100001 */ | |
842 | else if (arch_info->mach == bfd_mach_ppc_e500 | |
843 | && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */ | |
844 | { | |
845 | if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */ | |
846 | { | |
847 | unsigned int imm; | |
848 | ev_reg = GET_SRC_REG (op); | |
849 | imm = (op >> 11) & 0x1f; | |
850 | ev_offset = imm * 8; | |
851 | /* If this is the first vector reg to be saved, or if | |
852 | it has a lower number than others previously seen, | |
853 | reupdate the frame info. */ | |
854 | if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg) | |
855 | { | |
856 | fdata->saved_ev = ev_reg; | |
857 | fdata->ev_offset = ev_offset + offset; | |
858 | } | |
859 | } | |
860 | continue; | |
861 | } | |
862 | /* Store gen register rS at (r1+rB). */ | |
863 | /* 000100 sssss 00001 bbbbb 01100100000 */ | |
864 | else if (arch_info->mach == bfd_mach_ppc_e500 | |
865 | && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */ | |
866 | { | |
867 | if (pc == (li_found_pc + 4)) | |
868 | { | |
869 | ev_reg = GET_SRC_REG (op); | |
870 | /* If this is the first vector reg to be saved, or if | |
871 | it has a lower number than others previously seen, | |
872 | reupdate the frame info. */ | |
873 | /* We know the contents of rB from the previous instruction. */ | |
874 | if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg) | |
875 | { | |
876 | fdata->saved_ev = ev_reg; | |
877 | fdata->ev_offset = vr_saved_offset + offset; | |
878 | } | |
879 | vr_saved_offset = -1; | |
880 | ev_reg = -1; | |
881 | li_found_pc = 0; | |
882 | } | |
883 | continue; | |
884 | } | |
885 | /* Store gen register r31 at (rA+uimm). */ | |
886 | /* 000100 11111 aaaaa iiiii 01100100001 */ | |
887 | else if (arch_info->mach == bfd_mach_ppc_e500 | |
888 | && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */ | |
889 | { | |
890 | /* Wwe know that the source register is 31 already, but | |
891 | it can't hurt to compute it. */ | |
892 | ev_reg = GET_SRC_REG (op); | |
893 | ev_offset = ((op >> 11) & 0x1f) * 8; | |
894 | /* If this is the first vector reg to be saved, or if | |
895 | it has a lower number than others previously seen, | |
896 | reupdate the frame info. */ | |
897 | if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg) | |
898 | { | |
899 | fdata->saved_ev = ev_reg; | |
900 | fdata->ev_offset = ev_offset + offset; | |
901 | } | |
902 | ||
903 | continue; | |
904 | } | |
905 | /* Store gen register S at (r31+r0). | |
906 | Store param on stack when offset from SP bigger than 4 bytes. */ | |
907 | /* 000100 sssss 11111 00000 01100100000 */ | |
908 | else if (arch_info->mach == bfd_mach_ppc_e500 | |
909 | && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */ | |
910 | { | |
911 | if (pc == (li_found_pc + 4)) | |
912 | { | |
913 | if ((op & 0x03e00000) >= 0x01a00000) | |
914 | { | |
915 | ev_reg = GET_SRC_REG (op); | |
916 | /* If this is the first vector reg to be saved, or if | |
917 | it has a lower number than others previously seen, | |
918 | reupdate the frame info. */ | |
919 | /* We know the contents of r0 from the previous | |
920 | instruction. */ | |
921 | if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg) | |
922 | { | |
923 | fdata->saved_ev = ev_reg; | |
924 | fdata->ev_offset = vr_saved_offset + offset; | |
925 | } | |
926 | ev_reg = -1; | |
927 | } | |
928 | vr_saved_offset = -1; | |
929 | li_found_pc = 0; | |
930 | continue; | |
931 | } | |
932 | } | |
933 | /* End BookE related instructions. */ | |
934 | ||
c5aa993b JM |
935 | else |
936 | { | |
55d05f3b KB |
937 | /* Not a recognized prologue instruction. |
938 | Handle optimizer code motions into the prologue by continuing | |
939 | the search if we have no valid frame yet or if the return | |
940 | address is not yet saved in the frame. */ | |
941 | if (fdata->frameless == 0 | |
942 | && (lr_reg == -1 || fdata->nosavedpc == 0)) | |
943 | break; | |
944 | ||
945 | if (op == 0x4e800020 /* blr */ | |
946 | || op == 0x4e800420) /* bctr */ | |
947 | /* Do not scan past epilogue in frameless functions or | |
948 | trampolines. */ | |
949 | break; | |
950 | if ((op & 0xf4000000) == 0x40000000) /* bxx */ | |
64366f1c | 951 | /* Never skip branches. */ |
55d05f3b KB |
952 | break; |
953 | ||
954 | if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns) | |
955 | /* Do not scan too many insns, scanning insns is expensive with | |
956 | remote targets. */ | |
957 | break; | |
958 | ||
959 | /* Continue scanning. */ | |
960 | prev_insn_was_prologue_insn = 0; | |
961 | continue; | |
c5aa993b | 962 | } |
c906108c SS |
963 | } |
964 | ||
965 | #if 0 | |
966 | /* I have problems with skipping over __main() that I need to address | |
967 | * sometime. Previously, I used to use misc_function_vector which | |
968 | * didn't work as well as I wanted to be. -MGO */ | |
969 | ||
970 | /* If the first thing after skipping a prolog is a branch to a function, | |
971 | this might be a call to an initializer in main(), introduced by gcc2. | |
64366f1c | 972 | We'd like to skip over it as well. Fortunately, xlc does some extra |
c906108c | 973 | work before calling a function right after a prologue, thus we can |
64366f1c | 974 | single out such gcc2 behaviour. */ |
c906108c | 975 | |
c906108c | 976 | |
c5aa993b JM |
977 | if ((op & 0xfc000001) == 0x48000001) |
978 | { /* bl foo, an initializer function? */ | |
979 | op = read_memory_integer (pc + 4, 4); | |
980 | ||
981 | if (op == 0x4def7b82) | |
982 | { /* cror 0xf, 0xf, 0xf (nop) */ | |
c906108c | 983 | |
64366f1c EZ |
984 | /* Check and see if we are in main. If so, skip over this |
985 | initializer function as well. */ | |
c906108c | 986 | |
c5aa993b | 987 | tmp = find_pc_misc_function (pc); |
51cc5b07 | 988 | if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, main_name ())) |
c5aa993b JM |
989 | return pc + 8; |
990 | } | |
c906108c | 991 | } |
c906108c | 992 | #endif /* 0 */ |
c5aa993b JM |
993 | |
994 | fdata->offset = -fdata->offset; | |
ddb20c56 | 995 | return last_prologue_pc; |
c906108c SS |
996 | } |
997 | ||
998 | ||
999 | /************************************************************************* | |
f6077098 | 1000 | Support for creating pushing a dummy frame into the stack, and popping |
c906108c SS |
1001 | frames, etc. |
1002 | *************************************************************************/ | |
1003 | ||
c906108c | 1004 | |
64366f1c | 1005 | /* Pop the innermost frame, go back to the caller. */ |
c5aa993b | 1006 | |
c906108c | 1007 | static void |
7a78ae4e | 1008 | rs6000_pop_frame (void) |
c906108c | 1009 | { |
470d5666 | 1010 | CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */ |
c906108c SS |
1011 | struct rs6000_framedata fdata; |
1012 | struct frame_info *frame = get_current_frame (); | |
470d5666 | 1013 | int ii, wordsize; |
c906108c SS |
1014 | |
1015 | pc = read_pc (); | |
c193f6ac | 1016 | sp = get_frame_base (frame); |
c906108c | 1017 | |
bdd78e62 | 1018 | if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), |
8b36eed8 AC |
1019 | get_frame_base (frame), |
1020 | get_frame_base (frame))) | |
c906108c | 1021 | { |
7a78ae4e ND |
1022 | generic_pop_dummy_frame (); |
1023 | flush_cached_frames (); | |
1024 | return; | |
c906108c SS |
1025 | } |
1026 | ||
1027 | /* Make sure that all registers are valid. */ | |
b8b527c5 | 1028 | deprecated_read_register_bytes (0, NULL, DEPRECATED_REGISTER_BYTES); |
c906108c | 1029 | |
64366f1c | 1030 | /* Figure out previous %pc value. If the function is frameless, it is |
c906108c | 1031 | still in the link register, otherwise walk the frames and retrieve the |
64366f1c | 1032 | saved %pc value in the previous frame. */ |
c906108c | 1033 | |
be41e9f4 | 1034 | addr = get_frame_func (frame); |
bdd78e62 | 1035 | (void) skip_prologue (addr, get_frame_pc (frame), &fdata); |
c906108c | 1036 | |
21283beb | 1037 | wordsize = gdbarch_tdep (current_gdbarch)->wordsize; |
c906108c SS |
1038 | if (fdata.frameless) |
1039 | prev_sp = sp; | |
1040 | else | |
7a78ae4e | 1041 | prev_sp = read_memory_addr (sp, wordsize); |
c906108c | 1042 | if (fdata.lr_offset == 0) |
2188cbdd | 1043 | lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum); |
c906108c | 1044 | else |
7a78ae4e | 1045 | lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize); |
c906108c SS |
1046 | |
1047 | /* reset %pc value. */ | |
1048 | write_register (PC_REGNUM, lr); | |
1049 | ||
64366f1c | 1050 | /* reset register values if any was saved earlier. */ |
c906108c SS |
1051 | |
1052 | if (fdata.saved_gpr != -1) | |
1053 | { | |
1054 | addr = prev_sp + fdata.gpr_offset; | |
c5aa993b JM |
1055 | for (ii = fdata.saved_gpr; ii <= 31; ++ii) |
1056 | { | |
524d7c18 AC |
1057 | read_memory (addr, &deprecated_registers[REGISTER_BYTE (ii)], |
1058 | wordsize); | |
7a78ae4e | 1059 | addr += wordsize; |
c5aa993b | 1060 | } |
c906108c SS |
1061 | } |
1062 | ||
1063 | if (fdata.saved_fpr != -1) | |
1064 | { | |
1065 | addr = prev_sp + fdata.fpr_offset; | |
c5aa993b JM |
1066 | for (ii = fdata.saved_fpr; ii <= 31; ++ii) |
1067 | { | |
524d7c18 | 1068 | read_memory (addr, &deprecated_registers[REGISTER_BYTE (ii + FP0_REGNUM)], 8); |
c5aa993b JM |
1069 | addr += 8; |
1070 | } | |
c906108c SS |
1071 | } |
1072 | ||
1073 | write_register (SP_REGNUM, prev_sp); | |
1074 | target_store_registers (-1); | |
1075 | flush_cached_frames (); | |
1076 | } | |
1077 | ||
7a78ae4e | 1078 | /* Fixup the call sequence of a dummy function, with the real function |
64366f1c | 1079 | address. Its arguments will be passed by gdb. */ |
c906108c | 1080 | |
7a78ae4e ND |
1081 | static void |
1082 | rs6000_fix_call_dummy (char *dummyname, CORE_ADDR pc, CORE_ADDR fun, | |
ea7c478f | 1083 | int nargs, struct value **args, struct type *type, |
7a78ae4e | 1084 | int gcc_p) |
c906108c | 1085 | { |
c906108c SS |
1086 | int ii; |
1087 | CORE_ADDR target_addr; | |
1088 | ||
7a78ae4e | 1089 | if (rs6000_find_toc_address_hook != NULL) |
f6077098 | 1090 | { |
7a78ae4e | 1091 | CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (fun); |
2188cbdd EZ |
1092 | write_register (gdbarch_tdep (current_gdbarch)->ppc_toc_regnum, |
1093 | tocvalue); | |
f6077098 | 1094 | } |
c906108c SS |
1095 | } |
1096 | ||
11269d7e AC |
1097 | /* All the ABI's require 16 byte alignment. */ |
1098 | static CORE_ADDR | |
1099 | rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) | |
1100 | { | |
1101 | return (addr & -16); | |
1102 | } | |
1103 | ||
7a78ae4e | 1104 | /* Pass the arguments in either registers, or in the stack. In RS/6000, |
c906108c SS |
1105 | the first eight words of the argument list (that might be less than |
1106 | eight parameters if some parameters occupy more than one word) are | |
7a78ae4e | 1107 | passed in r3..r10 registers. float and double parameters are |
64366f1c EZ |
1108 | passed in fpr's, in addition to that. Rest of the parameters if any |
1109 | are passed in user stack. There might be cases in which half of the | |
c906108c SS |
1110 | parameter is copied into registers, the other half is pushed into |
1111 | stack. | |
1112 | ||
7a78ae4e ND |
1113 | Stack must be aligned on 64-bit boundaries when synthesizing |
1114 | function calls. | |
1115 | ||
c906108c SS |
1116 | If the function is returning a structure, then the return address is passed |
1117 | in r3, then the first 7 words of the parameters can be passed in registers, | |
64366f1c | 1118 | starting from r4. */ |
c906108c | 1119 | |
7a78ae4e | 1120 | static CORE_ADDR |
ea7c478f | 1121 | rs6000_push_arguments (int nargs, struct value **args, CORE_ADDR sp, |
7a78ae4e | 1122 | int struct_return, CORE_ADDR struct_addr) |
c906108c SS |
1123 | { |
1124 | int ii; | |
1125 | int len = 0; | |
c5aa993b JM |
1126 | int argno; /* current argument number */ |
1127 | int argbytes; /* current argument byte */ | |
1128 | char tmp_buffer[50]; | |
1129 | int f_argno = 0; /* current floating point argno */ | |
21283beb | 1130 | int wordsize = gdbarch_tdep (current_gdbarch)->wordsize; |
c906108c | 1131 | |
ea7c478f | 1132 | struct value *arg = 0; |
c906108c SS |
1133 | struct type *type; |
1134 | ||
1135 | CORE_ADDR saved_sp; | |
1136 | ||
64366f1c EZ |
1137 | /* The first eight words of ther arguments are passed in registers. |
1138 | Copy them appropriately. | |
c906108c SS |
1139 | |
1140 | If the function is returning a `struct', then the first word (which | |
64366f1c | 1141 | will be passed in r3) is used for struct return address. In that |
c906108c | 1142 | case we should advance one word and start from r4 register to copy |
64366f1c | 1143 | parameters. */ |
c906108c | 1144 | |
c5aa993b | 1145 | ii = struct_return ? 1 : 0; |
c906108c SS |
1146 | |
1147 | /* | |
c5aa993b JM |
1148 | effectively indirect call... gcc does... |
1149 | ||
1150 | return_val example( float, int); | |
1151 | ||
1152 | eabi: | |
1153 | float in fp0, int in r3 | |
1154 | offset of stack on overflow 8/16 | |
1155 | for varargs, must go by type. | |
1156 | power open: | |
1157 | float in r3&r4, int in r5 | |
1158 | offset of stack on overflow different | |
1159 | both: | |
1160 | return in r3 or f0. If no float, must study how gcc emulates floats; | |
1161 | pay attention to arg promotion. | |
1162 | User may have to cast\args to handle promotion correctly | |
1163 | since gdb won't know if prototype supplied or not. | |
1164 | */ | |
c906108c | 1165 | |
c5aa993b JM |
1166 | for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii) |
1167 | { | |
f6077098 | 1168 | int reg_size = REGISTER_RAW_SIZE (ii + 3); |
c5aa993b JM |
1169 | |
1170 | arg = args[argno]; | |
1171 | type = check_typedef (VALUE_TYPE (arg)); | |
1172 | len = TYPE_LENGTH (type); | |
1173 | ||
1174 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
1175 | { | |
1176 | ||
64366f1c | 1177 | /* Floating point arguments are passed in fpr's, as well as gpr's. |
c5aa993b | 1178 | There are 13 fpr's reserved for passing parameters. At this point |
64366f1c | 1179 | there is no way we would run out of them. */ |
c5aa993b JM |
1180 | |
1181 | if (len > 8) | |
1182 | printf_unfiltered ( | |
1183 | "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno); | |
1184 | ||
524d7c18 | 1185 | memcpy (&deprecated_registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)], |
c5aa993b JM |
1186 | VALUE_CONTENTS (arg), |
1187 | len); | |
1188 | ++f_argno; | |
1189 | } | |
1190 | ||
f6077098 | 1191 | if (len > reg_size) |
c5aa993b JM |
1192 | { |
1193 | ||
64366f1c | 1194 | /* Argument takes more than one register. */ |
c5aa993b JM |
1195 | while (argbytes < len) |
1196 | { | |
524d7c18 AC |
1197 | memset (&deprecated_registers[REGISTER_BYTE (ii + 3)], 0, |
1198 | reg_size); | |
1199 | memcpy (&deprecated_registers[REGISTER_BYTE (ii + 3)], | |
c5aa993b | 1200 | ((char *) VALUE_CONTENTS (arg)) + argbytes, |
f6077098 KB |
1201 | (len - argbytes) > reg_size |
1202 | ? reg_size : len - argbytes); | |
1203 | ++ii, argbytes += reg_size; | |
c5aa993b JM |
1204 | |
1205 | if (ii >= 8) | |
1206 | goto ran_out_of_registers_for_arguments; | |
1207 | } | |
1208 | argbytes = 0; | |
1209 | --ii; | |
1210 | } | |
1211 | else | |
64366f1c EZ |
1212 | { |
1213 | /* Argument can fit in one register. No problem. */ | |
d7449b42 | 1214 | int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0; |
524d7c18 AC |
1215 | memset (&deprecated_registers[REGISTER_BYTE (ii + 3)], 0, reg_size); |
1216 | memcpy ((char *)&deprecated_registers[REGISTER_BYTE (ii + 3)] + adj, | |
f6077098 | 1217 | VALUE_CONTENTS (arg), len); |
c5aa993b JM |
1218 | } |
1219 | ++argno; | |
c906108c | 1220 | } |
c906108c SS |
1221 | |
1222 | ran_out_of_registers_for_arguments: | |
1223 | ||
7a78ae4e | 1224 | saved_sp = read_sp (); |
cc9836a8 | 1225 | |
64366f1c | 1226 | /* Location for 8 parameters are always reserved. */ |
7a78ae4e | 1227 | sp -= wordsize * 8; |
f6077098 | 1228 | |
64366f1c | 1229 | /* Another six words for back chain, TOC register, link register, etc. */ |
7a78ae4e | 1230 | sp -= wordsize * 6; |
f6077098 | 1231 | |
64366f1c | 1232 | /* Stack pointer must be quadword aligned. */ |
7a78ae4e | 1233 | sp &= -16; |
c906108c | 1234 | |
64366f1c EZ |
1235 | /* If there are more arguments, allocate space for them in |
1236 | the stack, then push them starting from the ninth one. */ | |
c906108c | 1237 | |
c5aa993b JM |
1238 | if ((argno < nargs) || argbytes) |
1239 | { | |
1240 | int space = 0, jj; | |
c906108c | 1241 | |
c5aa993b JM |
1242 | if (argbytes) |
1243 | { | |
1244 | space += ((len - argbytes + 3) & -4); | |
1245 | jj = argno + 1; | |
1246 | } | |
1247 | else | |
1248 | jj = argno; | |
c906108c | 1249 | |
c5aa993b JM |
1250 | for (; jj < nargs; ++jj) |
1251 | { | |
ea7c478f | 1252 | struct value *val = args[jj]; |
c5aa993b JM |
1253 | space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4; |
1254 | } | |
c906108c | 1255 | |
64366f1c | 1256 | /* Add location required for the rest of the parameters. */ |
f6077098 | 1257 | space = (space + 15) & -16; |
c5aa993b | 1258 | sp -= space; |
c906108c | 1259 | |
64366f1c EZ |
1260 | /* This is another instance we need to be concerned about |
1261 | securing our stack space. If we write anything underneath %sp | |
1262 | (r1), we might conflict with the kernel who thinks he is free | |
1263 | to use this area. So, update %sp first before doing anything | |
1264 | else. */ | |
c906108c | 1265 | |
c5aa993b | 1266 | write_register (SP_REGNUM, sp); |
c906108c | 1267 | |
64366f1c EZ |
1268 | /* If the last argument copied into the registers didn't fit there |
1269 | completely, push the rest of it into stack. */ | |
c906108c | 1270 | |
c5aa993b JM |
1271 | if (argbytes) |
1272 | { | |
1273 | write_memory (sp + 24 + (ii * 4), | |
1274 | ((char *) VALUE_CONTENTS (arg)) + argbytes, | |
1275 | len - argbytes); | |
1276 | ++argno; | |
1277 | ii += ((len - argbytes + 3) & -4) / 4; | |
1278 | } | |
c906108c | 1279 | |
64366f1c | 1280 | /* Push the rest of the arguments into stack. */ |
c5aa993b JM |
1281 | for (; argno < nargs; ++argno) |
1282 | { | |
c906108c | 1283 | |
c5aa993b JM |
1284 | arg = args[argno]; |
1285 | type = check_typedef (VALUE_TYPE (arg)); | |
1286 | len = TYPE_LENGTH (type); | |
c906108c SS |
1287 | |
1288 | ||
64366f1c EZ |
1289 | /* Float types should be passed in fpr's, as well as in the |
1290 | stack. */ | |
c5aa993b JM |
1291 | if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13) |
1292 | { | |
c906108c | 1293 | |
c5aa993b JM |
1294 | if (len > 8) |
1295 | printf_unfiltered ( | |
1296 | "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno); | |
c906108c | 1297 | |
524d7c18 | 1298 | memcpy (&deprecated_registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)], |
c5aa993b JM |
1299 | VALUE_CONTENTS (arg), |
1300 | len); | |
1301 | ++f_argno; | |
1302 | } | |
c906108c | 1303 | |
c5aa993b JM |
1304 | write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len); |
1305 | ii += ((len + 3) & -4) / 4; | |
1306 | } | |
c906108c | 1307 | } |
c906108c | 1308 | else |
64366f1c | 1309 | /* Secure stack areas first, before doing anything else. */ |
c906108c SS |
1310 | write_register (SP_REGNUM, sp); |
1311 | ||
c906108c | 1312 | /* set back chain properly */ |
fbd9dcd3 | 1313 | store_unsigned_integer (tmp_buffer, 4, saved_sp); |
c906108c SS |
1314 | write_memory (sp, tmp_buffer, 4); |
1315 | ||
1316 | target_store_registers (-1); | |
1317 | return sp; | |
1318 | } | |
c906108c SS |
1319 | |
1320 | /* Function: ppc_push_return_address (pc, sp) | |
64366f1c | 1321 | Set up the return address for the inferior function call. */ |
c906108c | 1322 | |
7a78ae4e ND |
1323 | static CORE_ADDR |
1324 | ppc_push_return_address (CORE_ADDR pc, CORE_ADDR sp) | |
c906108c | 1325 | { |
2188cbdd | 1326 | write_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum, |
88a82a65 | 1327 | entry_point_address ()); |
c906108c SS |
1328 | return sp; |
1329 | } | |
1330 | ||
7a78ae4e | 1331 | /* Extract a function return value of type TYPE from raw register array |
64366f1c | 1332 | REGBUF, and copy that return value into VALBUF in virtual format. */ |
96ff0de4 | 1333 | static void |
46d79c04 | 1334 | e500_extract_return_value (struct type *valtype, struct regcache *regbuf, void *valbuf) |
96ff0de4 EZ |
1335 | { |
1336 | int offset = 0; | |
1337 | int vallen = TYPE_LENGTH (valtype); | |
1338 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
1339 | ||
1340 | if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY | |
1341 | && vallen == 8 | |
1342 | && TYPE_VECTOR (valtype)) | |
1343 | { | |
1344 | regcache_raw_read (regbuf, tdep->ppc_ev0_regnum + 3, valbuf); | |
1345 | } | |
1346 | else | |
1347 | { | |
1348 | /* Return value is copied starting from r3. Note that r3 for us | |
1349 | is a pseudo register. */ | |
1350 | int offset = 0; | |
1351 | int return_regnum = tdep->ppc_gp0_regnum + 3; | |
1352 | int reg_size = REGISTER_RAW_SIZE (return_regnum); | |
1353 | int reg_part_size; | |
1354 | char *val_buffer; | |
1355 | int copied = 0; | |
1356 | int i = 0; | |
1357 | ||
1358 | /* Compute where we will start storing the value from. */ | |
1359 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
1360 | { | |
1361 | if (vallen <= reg_size) | |
1362 | offset = reg_size - vallen; | |
1363 | else | |
1364 | offset = reg_size + (reg_size - vallen); | |
1365 | } | |
1366 | ||
1367 | /* How big does the local buffer need to be? */ | |
1368 | if (vallen <= reg_size) | |
1369 | val_buffer = alloca (reg_size); | |
1370 | else | |
1371 | val_buffer = alloca (vallen); | |
1372 | ||
1373 | /* Read all we need into our private buffer. We copy it in | |
1374 | chunks that are as long as one register, never shorter, even | |
1375 | if the value is smaller than the register. */ | |
1376 | while (copied < vallen) | |
1377 | { | |
1378 | reg_part_size = REGISTER_RAW_SIZE (return_regnum + i); | |
1379 | /* It is a pseudo/cooked register. */ | |
1380 | regcache_cooked_read (regbuf, return_regnum + i, | |
1381 | val_buffer + copied); | |
1382 | copied += reg_part_size; | |
1383 | i++; | |
1384 | } | |
1385 | /* Put the stuff in the return buffer. */ | |
1386 | memcpy (valbuf, val_buffer + offset, vallen); | |
1387 | } | |
1388 | } | |
c906108c | 1389 | |
7a78ae4e ND |
1390 | static void |
1391 | rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf) | |
c906108c SS |
1392 | { |
1393 | int offset = 0; | |
ace1378a | 1394 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
c906108c | 1395 | |
c5aa993b JM |
1396 | if (TYPE_CODE (valtype) == TYPE_CODE_FLT) |
1397 | { | |
c906108c | 1398 | |
c5aa993b JM |
1399 | double dd; |
1400 | float ff; | |
1401 | /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes. | |
1402 | We need to truncate the return value into float size (4 byte) if | |
64366f1c | 1403 | necessary. */ |
c906108c | 1404 | |
c5aa993b JM |
1405 | if (TYPE_LENGTH (valtype) > 4) /* this is a double */ |
1406 | memcpy (valbuf, | |
1407 | ®buf[REGISTER_BYTE (FP0_REGNUM + 1)], | |
1408 | TYPE_LENGTH (valtype)); | |
1409 | else | |
1410 | { /* float */ | |
1411 | memcpy (&dd, ®buf[REGISTER_BYTE (FP0_REGNUM + 1)], 8); | |
1412 | ff = (float) dd; | |
1413 | memcpy (valbuf, &ff, sizeof (float)); | |
1414 | } | |
1415 | } | |
ace1378a EZ |
1416 | else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY |
1417 | && TYPE_LENGTH (valtype) == 16 | |
1418 | && TYPE_VECTOR (valtype)) | |
1419 | { | |
1420 | memcpy (valbuf, regbuf + REGISTER_BYTE (tdep->ppc_vr0_regnum + 2), | |
1421 | TYPE_LENGTH (valtype)); | |
1422 | } | |
c5aa993b JM |
1423 | else |
1424 | { | |
1425 | /* return value is copied starting from r3. */ | |
d7449b42 | 1426 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG |
c5aa993b JM |
1427 | && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3)) |
1428 | offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype); | |
1429 | ||
1430 | memcpy (valbuf, | |
1431 | regbuf + REGISTER_BYTE (3) + offset, | |
c906108c | 1432 | TYPE_LENGTH (valtype)); |
c906108c | 1433 | } |
c906108c SS |
1434 | } |
1435 | ||
977adac5 ND |
1436 | /* Return whether handle_inferior_event() should proceed through code |
1437 | starting at PC in function NAME when stepping. | |
1438 | ||
1439 | The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to | |
1440 | handle memory references that are too distant to fit in instructions | |
1441 | generated by the compiler. For example, if 'foo' in the following | |
1442 | instruction: | |
1443 | ||
1444 | lwz r9,foo(r2) | |
1445 | ||
1446 | is greater than 32767, the linker might replace the lwz with a branch to | |
1447 | somewhere in @FIX1 that does the load in 2 instructions and then branches | |
1448 | back to where execution should continue. | |
1449 | ||
1450 | GDB should silently step over @FIX code, just like AIX dbx does. | |
1451 | Unfortunately, the linker uses the "b" instruction for the branches, | |
1452 | meaning that the link register doesn't get set. Therefore, GDB's usual | |
1453 | step_over_function() mechanism won't work. | |
1454 | ||
1455 | Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks | |
1456 | in handle_inferior_event() to skip past @FIX code. */ | |
1457 | ||
1458 | int | |
1459 | rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name) | |
1460 | { | |
1461 | return name && !strncmp (name, "@FIX", 4); | |
1462 | } | |
1463 | ||
1464 | /* Skip code that the user doesn't want to see when stepping: | |
1465 | ||
1466 | 1. Indirect function calls use a piece of trampoline code to do context | |
1467 | switching, i.e. to set the new TOC table. Skip such code if we are on | |
1468 | its first instruction (as when we have single-stepped to here). | |
1469 | ||
1470 | 2. Skip shared library trampoline code (which is different from | |
c906108c | 1471 | indirect function call trampolines). |
977adac5 ND |
1472 | |
1473 | 3. Skip bigtoc fixup code. | |
1474 | ||
c906108c | 1475 | Result is desired PC to step until, or NULL if we are not in |
977adac5 | 1476 | code that should be skipped. */ |
c906108c SS |
1477 | |
1478 | CORE_ADDR | |
7a78ae4e | 1479 | rs6000_skip_trampoline_code (CORE_ADDR pc) |
c906108c SS |
1480 | { |
1481 | register unsigned int ii, op; | |
977adac5 | 1482 | int rel; |
c906108c | 1483 | CORE_ADDR solib_target_pc; |
977adac5 | 1484 | struct minimal_symbol *msymbol; |
c906108c | 1485 | |
c5aa993b JM |
1486 | static unsigned trampoline_code[] = |
1487 | { | |
1488 | 0x800b0000, /* l r0,0x0(r11) */ | |
1489 | 0x90410014, /* st r2,0x14(r1) */ | |
1490 | 0x7c0903a6, /* mtctr r0 */ | |
1491 | 0x804b0004, /* l r2,0x4(r11) */ | |
1492 | 0x816b0008, /* l r11,0x8(r11) */ | |
1493 | 0x4e800420, /* bctr */ | |
1494 | 0x4e800020, /* br */ | |
1495 | 0 | |
c906108c SS |
1496 | }; |
1497 | ||
977adac5 ND |
1498 | /* Check for bigtoc fixup code. */ |
1499 | msymbol = lookup_minimal_symbol_by_pc (pc); | |
22abf04a | 1500 | if (msymbol && rs6000_in_solib_return_trampoline (pc, DEPRECATED_SYMBOL_NAME (msymbol))) |
977adac5 ND |
1501 | { |
1502 | /* Double-check that the third instruction from PC is relative "b". */ | |
1503 | op = read_memory_integer (pc + 8, 4); | |
1504 | if ((op & 0xfc000003) == 0x48000000) | |
1505 | { | |
1506 | /* Extract bits 6-29 as a signed 24-bit relative word address and | |
1507 | add it to the containing PC. */ | |
1508 | rel = ((int)(op << 6) >> 6); | |
1509 | return pc + 8 + rel; | |
1510 | } | |
1511 | } | |
1512 | ||
c906108c SS |
1513 | /* If pc is in a shared library trampoline, return its target. */ |
1514 | solib_target_pc = find_solib_trampoline_target (pc); | |
1515 | if (solib_target_pc) | |
1516 | return solib_target_pc; | |
1517 | ||
c5aa993b JM |
1518 | for (ii = 0; trampoline_code[ii]; ++ii) |
1519 | { | |
1520 | op = read_memory_integer (pc + (ii * 4), 4); | |
1521 | if (op != trampoline_code[ii]) | |
1522 | return 0; | |
1523 | } | |
1524 | ii = read_register (11); /* r11 holds destination addr */ | |
21283beb | 1525 | pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */ |
c906108c SS |
1526 | return pc; |
1527 | } | |
1528 | ||
1529 | /* Determines whether the function FI has a frame on the stack or not. */ | |
1530 | ||
9aa1e687 | 1531 | int |
c877c8e6 | 1532 | rs6000_frameless_function_invocation (struct frame_info *fi) |
c906108c SS |
1533 | { |
1534 | CORE_ADDR func_start; | |
1535 | struct rs6000_framedata fdata; | |
1536 | ||
1537 | /* Don't even think about framelessness except on the innermost frame | |
1538 | or if the function was interrupted by a signal. */ | |
75e3c1f9 AC |
1539 | if (get_next_frame (fi) != NULL |
1540 | && !(get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME)) | |
c906108c | 1541 | return 0; |
c5aa993b | 1542 | |
be41e9f4 | 1543 | func_start = get_frame_func (fi); |
c906108c SS |
1544 | |
1545 | /* If we failed to find the start of the function, it is a mistake | |
64366f1c | 1546 | to inspect the instructions. */ |
c906108c SS |
1547 | |
1548 | if (!func_start) | |
1549 | { | |
1550 | /* A frame with a zero PC is usually created by dereferencing a NULL | |
c5aa993b | 1551 | function pointer, normally causing an immediate core dump of the |
64366f1c | 1552 | inferior. Mark function as frameless, as the inferior has no chance |
c5aa993b | 1553 | of setting up a stack frame. */ |
bdd78e62 | 1554 | if (get_frame_pc (fi) == 0) |
c906108c SS |
1555 | return 1; |
1556 | else | |
1557 | return 0; | |
1558 | } | |
1559 | ||
bdd78e62 | 1560 | (void) skip_prologue (func_start, get_frame_pc (fi), &fdata); |
c906108c SS |
1561 | return fdata.frameless; |
1562 | } | |
1563 | ||
64366f1c | 1564 | /* Return the PC saved in a frame. */ |
c906108c | 1565 | |
9aa1e687 | 1566 | CORE_ADDR |
c877c8e6 | 1567 | rs6000_frame_saved_pc (struct frame_info *fi) |
c906108c SS |
1568 | { |
1569 | CORE_ADDR func_start; | |
1570 | struct rs6000_framedata fdata; | |
21283beb | 1571 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
a88376a3 | 1572 | int wordsize = tdep->wordsize; |
c906108c | 1573 | |
5a203e44 | 1574 | if ((get_frame_type (fi) == SIGTRAMP_FRAME)) |
8b36eed8 AC |
1575 | return read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET, |
1576 | wordsize); | |
c906108c | 1577 | |
bdd78e62 | 1578 | if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), |
8b36eed8 AC |
1579 | get_frame_base (fi), |
1580 | get_frame_base (fi))) | |
bdd78e62 | 1581 | return deprecated_read_register_dummy (get_frame_pc (fi), |
8b36eed8 | 1582 | get_frame_base (fi), PC_REGNUM); |
c906108c | 1583 | |
be41e9f4 | 1584 | func_start = get_frame_func (fi); |
c906108c SS |
1585 | |
1586 | /* If we failed to find the start of the function, it is a mistake | |
64366f1c | 1587 | to inspect the instructions. */ |
c906108c SS |
1588 | if (!func_start) |
1589 | return 0; | |
1590 | ||
bdd78e62 | 1591 | (void) skip_prologue (func_start, get_frame_pc (fi), &fdata); |
c906108c | 1592 | |
75e3c1f9 | 1593 | if (fdata.lr_offset == 0 && get_next_frame (fi) != NULL) |
c906108c | 1594 | { |
75e3c1f9 | 1595 | if ((get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME)) |
8b36eed8 AC |
1596 | return read_memory_addr ((get_frame_base (get_next_frame (fi)) |
1597 | + SIG_FRAME_LR_OFFSET), | |
7a78ae4e | 1598 | wordsize); |
bdd78e62 | 1599 | else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (get_next_frame (fi)), 0, 0)) |
8b69000d AC |
1600 | /* The link register wasn't saved by this frame and the next |
1601 | (inner, newer) frame is a dummy. Get the link register | |
1602 | value by unwinding it from that [dummy] frame. */ | |
1603 | { | |
1604 | ULONGEST lr; | |
1605 | frame_unwind_unsigned_register (get_next_frame (fi), | |
1606 | tdep->ppc_lr_regnum, &lr); | |
1607 | return lr; | |
1608 | } | |
c906108c | 1609 | else |
618ce49f AC |
1610 | return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi) |
1611 | + tdep->lr_frame_offset, | |
7a78ae4e | 1612 | wordsize); |
c906108c SS |
1613 | } |
1614 | ||
1615 | if (fdata.lr_offset == 0) | |
2188cbdd | 1616 | return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum); |
c906108c | 1617 | |
618ce49f AC |
1618 | return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi) + fdata.lr_offset, |
1619 | wordsize); | |
c906108c SS |
1620 | } |
1621 | ||
1622 | /* If saved registers of frame FI are not known yet, read and cache them. | |
1623 | &FDATAP contains rs6000_framedata; TDATAP can be NULL, | |
1624 | in which case the framedata are read. */ | |
1625 | ||
1626 | static void | |
7a78ae4e | 1627 | frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap) |
c906108c | 1628 | { |
c5aa993b | 1629 | CORE_ADDR frame_addr; |
c906108c | 1630 | struct rs6000_framedata work_fdata; |
6be8bc0c EZ |
1631 | struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch); |
1632 | int wordsize = tdep->wordsize; | |
c906108c | 1633 | |
c9012c71 | 1634 | if (get_frame_saved_regs (fi)) |
c906108c | 1635 | return; |
c5aa993b | 1636 | |
c906108c SS |
1637 | if (fdatap == NULL) |
1638 | { | |
1639 | fdatap = &work_fdata; | |
be41e9f4 | 1640 | (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), fdatap); |
c906108c SS |
1641 | } |
1642 | ||
1643 | frame_saved_regs_zalloc (fi); | |
1644 | ||
1645 | /* If there were any saved registers, figure out parent's stack | |
64366f1c | 1646 | pointer. */ |
c906108c | 1647 | /* The following is true only if the frame doesn't have a call to |
64366f1c | 1648 | alloca(), FIXME. */ |
c906108c | 1649 | |
6be8bc0c EZ |
1650 | if (fdatap->saved_fpr == 0 |
1651 | && fdatap->saved_gpr == 0 | |
1652 | && fdatap->saved_vr == 0 | |
96ff0de4 | 1653 | && fdatap->saved_ev == 0 |
6be8bc0c EZ |
1654 | && fdatap->lr_offset == 0 |
1655 | && fdatap->cr_offset == 0 | |
96ff0de4 EZ |
1656 | && fdatap->vr_offset == 0 |
1657 | && fdatap->ev_offset == 0) | |
c906108c | 1658 | frame_addr = 0; |
c906108c | 1659 | else |
bf75c8c1 AC |
1660 | /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most |
1661 | address of the current frame. Things might be easier if the | |
1662 | ->frame pointed to the outer-most address of the frame. In the | |
1663 | mean time, the address of the prev frame is used as the base | |
1664 | address of this frame. */ | |
618ce49f | 1665 | frame_addr = DEPRECATED_FRAME_CHAIN (fi); |
c5aa993b | 1666 | |
c906108c SS |
1667 | /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr. |
1668 | All fpr's from saved_fpr to fp31 are saved. */ | |
1669 | ||
1670 | if (fdatap->saved_fpr >= 0) | |
1671 | { | |
1672 | int i; | |
7a78ae4e | 1673 | CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset; |
c906108c SS |
1674 | for (i = fdatap->saved_fpr; i < 32; i++) |
1675 | { | |
c9012c71 | 1676 | get_frame_saved_regs (fi)[FP0_REGNUM + i] = fpr_addr; |
7a78ae4e | 1677 | fpr_addr += 8; |
c906108c SS |
1678 | } |
1679 | } | |
1680 | ||
1681 | /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr. | |
1682 | All gpr's from saved_gpr to gpr31 are saved. */ | |
1683 | ||
1684 | if (fdatap->saved_gpr >= 0) | |
1685 | { | |
1686 | int i; | |
7a78ae4e | 1687 | CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset; |
c906108c SS |
1688 | for (i = fdatap->saved_gpr; i < 32; i++) |
1689 | { | |
366cfc9e | 1690 | get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = gpr_addr; |
7a78ae4e | 1691 | gpr_addr += wordsize; |
c906108c SS |
1692 | } |
1693 | } | |
1694 | ||
6be8bc0c EZ |
1695 | /* if != -1, fdatap->saved_vr is the smallest number of saved_vr. |
1696 | All vr's from saved_vr to vr31 are saved. */ | |
1697 | if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1) | |
1698 | { | |
1699 | if (fdatap->saved_vr >= 0) | |
1700 | { | |
1701 | int i; | |
1702 | CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset; | |
1703 | for (i = fdatap->saved_vr; i < 32; i++) | |
1704 | { | |
c9012c71 | 1705 | get_frame_saved_regs (fi)[tdep->ppc_vr0_regnum + i] = vr_addr; |
6be8bc0c EZ |
1706 | vr_addr += REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum); |
1707 | } | |
1708 | } | |
1709 | } | |
1710 | ||
96ff0de4 EZ |
1711 | /* if != -1, fdatap->saved_ev is the smallest number of saved_ev. |
1712 | All vr's from saved_ev to ev31 are saved. ????? */ | |
1713 | if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1) | |
1714 | { | |
1715 | if (fdatap->saved_ev >= 0) | |
1716 | { | |
1717 | int i; | |
1718 | CORE_ADDR ev_addr = frame_addr + fdatap->ev_offset; | |
1719 | for (i = fdatap->saved_ev; i < 32; i++) | |
1720 | { | |
c9012c71 AC |
1721 | get_frame_saved_regs (fi)[tdep->ppc_ev0_regnum + i] = ev_addr; |
1722 | get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = ev_addr + 4; | |
96ff0de4 EZ |
1723 | ev_addr += REGISTER_RAW_SIZE (tdep->ppc_ev0_regnum); |
1724 | } | |
1725 | } | |
1726 | } | |
1727 | ||
c906108c SS |
1728 | /* If != 0, fdatap->cr_offset is the offset from the frame that holds |
1729 | the CR. */ | |
1730 | if (fdatap->cr_offset != 0) | |
c9012c71 | 1731 | get_frame_saved_regs (fi)[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset; |
c906108c SS |
1732 | |
1733 | /* If != 0, fdatap->lr_offset is the offset from the frame that holds | |
1734 | the LR. */ | |
1735 | if (fdatap->lr_offset != 0) | |
c9012c71 | 1736 | get_frame_saved_regs (fi)[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset; |
6be8bc0c EZ |
1737 | |
1738 | /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds | |
1739 | the VRSAVE. */ | |
1740 | if (fdatap->vrsave_offset != 0) | |
c9012c71 | 1741 | get_frame_saved_regs (fi)[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset; |
c906108c SS |
1742 | } |
1743 | ||
1744 | /* Return the address of a frame. This is the inital %sp value when the frame | |
64366f1c EZ |
1745 | was first allocated. For functions calling alloca(), it might be saved in |
1746 | an alloca register. */ | |
c906108c SS |
1747 | |
1748 | static CORE_ADDR | |
7a78ae4e | 1749 | frame_initial_stack_address (struct frame_info *fi) |
c906108c SS |
1750 | { |
1751 | CORE_ADDR tmpaddr; | |
1752 | struct rs6000_framedata fdata; | |
1753 | struct frame_info *callee_fi; | |
1754 | ||
64366f1c EZ |
1755 | /* If the initial stack pointer (frame address) of this frame is known, |
1756 | just return it. */ | |
c906108c | 1757 | |
c9012c71 AC |
1758 | if (get_frame_extra_info (fi)->initial_sp) |
1759 | return get_frame_extra_info (fi)->initial_sp; | |
c906108c | 1760 | |
64366f1c | 1761 | /* Find out if this function is using an alloca register. */ |
c906108c | 1762 | |
be41e9f4 | 1763 | (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), &fdata); |
c906108c | 1764 | |
64366f1c EZ |
1765 | /* If saved registers of this frame are not known yet, read and |
1766 | cache them. */ | |
c906108c | 1767 | |
c9012c71 | 1768 | if (!get_frame_saved_regs (fi)) |
c906108c SS |
1769 | frame_get_saved_regs (fi, &fdata); |
1770 | ||
1771 | /* If no alloca register used, then fi->frame is the value of the %sp for | |
64366f1c | 1772 | this frame, and it is good enough. */ |
c906108c SS |
1773 | |
1774 | if (fdata.alloca_reg < 0) | |
1775 | { | |
c9012c71 AC |
1776 | get_frame_extra_info (fi)->initial_sp = get_frame_base (fi); |
1777 | return get_frame_extra_info (fi)->initial_sp; | |
c906108c SS |
1778 | } |
1779 | ||
953836b2 AC |
1780 | /* There is an alloca register, use its value, in the current frame, |
1781 | as the initial stack pointer. */ | |
1782 | { | |
d9d9c31f | 1783 | char tmpbuf[MAX_REGISTER_SIZE]; |
953836b2 AC |
1784 | if (frame_register_read (fi, fdata.alloca_reg, tmpbuf)) |
1785 | { | |
c9012c71 | 1786 | get_frame_extra_info (fi)->initial_sp |
953836b2 AC |
1787 | = extract_unsigned_integer (tmpbuf, |
1788 | REGISTER_RAW_SIZE (fdata.alloca_reg)); | |
1789 | } | |
1790 | else | |
1791 | /* NOTE: cagney/2002-04-17: At present the only time | |
1792 | frame_register_read will fail is when the register isn't | |
1793 | available. If that does happen, use the frame. */ | |
c9012c71 | 1794 | get_frame_extra_info (fi)->initial_sp = get_frame_base (fi); |
953836b2 | 1795 | } |
c9012c71 | 1796 | return get_frame_extra_info (fi)->initial_sp; |
c906108c SS |
1797 | } |
1798 | ||
7a78ae4e ND |
1799 | /* Describe the pointer in each stack frame to the previous stack frame |
1800 | (its caller). */ | |
1801 | ||
618ce49f AC |
1802 | /* DEPRECATED_FRAME_CHAIN takes a frame's nominal address and produces |
1803 | the frame's chain-pointer. */ | |
7a78ae4e ND |
1804 | |
1805 | /* In the case of the RS/6000, the frame's nominal address | |
1806 | is the address of a 4-byte word containing the calling frame's address. */ | |
1807 | ||
9aa1e687 | 1808 | CORE_ADDR |
7a78ae4e | 1809 | rs6000_frame_chain (struct frame_info *thisframe) |
c906108c | 1810 | { |
7a78ae4e | 1811 | CORE_ADDR fp, fpp, lr; |
21283beb | 1812 | int wordsize = gdbarch_tdep (current_gdbarch)->wordsize; |
c906108c | 1813 | |
bdd78e62 | 1814 | if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (thisframe), |
8b36eed8 AC |
1815 | get_frame_base (thisframe), |
1816 | get_frame_base (thisframe))) | |
9f3b7f07 AC |
1817 | /* A dummy frame always correctly chains back to the previous |
1818 | frame. */ | |
8b36eed8 | 1819 | return read_memory_addr (get_frame_base (thisframe), wordsize); |
c906108c | 1820 | |
bdd78e62 AC |
1821 | if (inside_entry_file (get_frame_pc (thisframe)) |
1822 | || get_frame_pc (thisframe) == entry_point_address ()) | |
c906108c SS |
1823 | return 0; |
1824 | ||
5a203e44 | 1825 | if ((get_frame_type (thisframe) == SIGTRAMP_FRAME)) |
8b36eed8 AC |
1826 | fp = read_memory_addr (get_frame_base (thisframe) + SIG_FRAME_FP_OFFSET, |
1827 | wordsize); | |
75e3c1f9 AC |
1828 | else if (get_next_frame (thisframe) != NULL |
1829 | && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME) | |
c877c8e6 | 1830 | && FRAMELESS_FUNCTION_INVOCATION (thisframe)) |
c906108c SS |
1831 | /* A frameless function interrupted by a signal did not change the |
1832 | frame pointer. */ | |
c193f6ac | 1833 | fp = get_frame_base (thisframe); |
c906108c | 1834 | else |
8b36eed8 | 1835 | fp = read_memory_addr (get_frame_base (thisframe), wordsize); |
7a78ae4e ND |
1836 | return fp; |
1837 | } | |
1838 | ||
1839 | /* Return the size of register REG when words are WORDSIZE bytes long. If REG | |
64366f1c | 1840 | isn't available with that word size, return 0. */ |
7a78ae4e ND |
1841 | |
1842 | static int | |
1843 | regsize (const struct reg *reg, int wordsize) | |
1844 | { | |
1845 | return wordsize == 8 ? reg->sz64 : reg->sz32; | |
1846 | } | |
1847 | ||
1848 | /* Return the name of register number N, or null if no such register exists | |
64366f1c | 1849 | in the current architecture. */ |
7a78ae4e | 1850 | |
fa88f677 | 1851 | static const char * |
7a78ae4e ND |
1852 | rs6000_register_name (int n) |
1853 | { | |
21283beb | 1854 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
7a78ae4e ND |
1855 | const struct reg *reg = tdep->regs + n; |
1856 | ||
1857 | if (!regsize (reg, tdep->wordsize)) | |
1858 | return NULL; | |
1859 | return reg->name; | |
1860 | } | |
1861 | ||
1862 | /* Index within `registers' of the first byte of the space for | |
1863 | register N. */ | |
1864 | ||
1865 | static int | |
1866 | rs6000_register_byte (int n) | |
1867 | { | |
21283beb | 1868 | return gdbarch_tdep (current_gdbarch)->regoff[n]; |
7a78ae4e ND |
1869 | } |
1870 | ||
1871 | /* Return the number of bytes of storage in the actual machine representation | |
64366f1c | 1872 | for register N if that register is available, else return 0. */ |
7a78ae4e ND |
1873 | |
1874 | static int | |
1875 | rs6000_register_raw_size (int n) | |
1876 | { | |
21283beb | 1877 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
7a78ae4e ND |
1878 | const struct reg *reg = tdep->regs + n; |
1879 | return regsize (reg, tdep->wordsize); | |
1880 | } | |
1881 | ||
7a78ae4e ND |
1882 | /* Return the GDB type object for the "standard" data type |
1883 | of data in register N. */ | |
1884 | ||
1885 | static struct type * | |
fba45db2 | 1886 | rs6000_register_virtual_type (int n) |
7a78ae4e | 1887 | { |
21283beb | 1888 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
7a78ae4e ND |
1889 | const struct reg *reg = tdep->regs + n; |
1890 | ||
1fcc0bb8 EZ |
1891 | if (reg->fpr) |
1892 | return builtin_type_double; | |
1893 | else | |
1894 | { | |
1895 | int size = regsize (reg, tdep->wordsize); | |
1896 | switch (size) | |
1897 | { | |
449a5da4 AC |
1898 | case 0: |
1899 | return builtin_type_int0; | |
1900 | case 4: | |
1901 | return builtin_type_int32; | |
1fcc0bb8 | 1902 | case 8: |
c8001721 EZ |
1903 | if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum) |
1904 | return builtin_type_vec64; | |
1905 | else | |
1906 | return builtin_type_int64; | |
1fcc0bb8 EZ |
1907 | break; |
1908 | case 16: | |
08cf96df | 1909 | return builtin_type_vec128; |
1fcc0bb8 EZ |
1910 | break; |
1911 | default: | |
449a5da4 AC |
1912 | internal_error (__FILE__, __LINE__, "Register %d size %d unknown", |
1913 | n, size); | |
1fcc0bb8 EZ |
1914 | } |
1915 | } | |
7a78ae4e ND |
1916 | } |
1917 | ||
7a78ae4e ND |
1918 | /* Return whether register N requires conversion when moving from raw format |
1919 | to virtual format. | |
1920 | ||
1921 | The register format for RS/6000 floating point registers is always | |
64366f1c | 1922 | double, we need a conversion if the memory format is float. */ |
7a78ae4e ND |
1923 | |
1924 | static int | |
1925 | rs6000_register_convertible (int n) | |
1926 | { | |
21283beb | 1927 | const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n; |
7a78ae4e ND |
1928 | return reg->fpr; |
1929 | } | |
1930 | ||
1931 | /* Convert data from raw format for register N in buffer FROM | |
64366f1c | 1932 | to virtual format with type TYPE in buffer TO. */ |
7a78ae4e ND |
1933 | |
1934 | static void | |
1935 | rs6000_register_convert_to_virtual (int n, struct type *type, | |
1936 | char *from, char *to) | |
1937 | { | |
1938 | if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n)) | |
7a292a7a | 1939 | { |
f1908289 AC |
1940 | double val = deprecated_extract_floating (from, REGISTER_RAW_SIZE (n)); |
1941 | deprecated_store_floating (to, TYPE_LENGTH (type), val); | |
7a78ae4e ND |
1942 | } |
1943 | else | |
1944 | memcpy (to, from, REGISTER_RAW_SIZE (n)); | |
1945 | } | |
1946 | ||
1947 | /* Convert data from virtual format with type TYPE in buffer FROM | |
64366f1c | 1948 | to raw format for register N in buffer TO. */ |
7a292a7a | 1949 | |
7a78ae4e ND |
1950 | static void |
1951 | rs6000_register_convert_to_raw (struct type *type, int n, | |
781a750d | 1952 | const char *from, char *to) |
7a78ae4e ND |
1953 | { |
1954 | if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n)) | |
1955 | { | |
f1908289 AC |
1956 | double val = deprecated_extract_floating (from, TYPE_LENGTH (type)); |
1957 | deprecated_store_floating (to, REGISTER_RAW_SIZE (n), val); | |
7a292a7a | 1958 | } |
7a78ae4e ND |
1959 | else |
1960 | memcpy (to, from, REGISTER_RAW_SIZE (n)); | |
1961 | } | |
c906108c | 1962 | |
c8001721 EZ |
1963 | static void |
1964 | e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, | |
1965 | int reg_nr, void *buffer) | |
1966 | { | |
1967 | int base_regnum; | |
1968 | int offset = 0; | |
d9d9c31f | 1969 | char temp_buffer[MAX_REGISTER_SIZE]; |
c8001721 EZ |
1970 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
1971 | ||
1972 | if (reg_nr >= tdep->ppc_gp0_regnum | |
1973 | && reg_nr <= tdep->ppc_gplast_regnum) | |
1974 | { | |
1975 | base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum; | |
1976 | ||
1977 | /* Build the value in the provided buffer. */ | |
1978 | /* Read the raw register of which this one is the lower portion. */ | |
1979 | regcache_raw_read (regcache, base_regnum, temp_buffer); | |
1980 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
1981 | offset = 4; | |
1982 | memcpy ((char *) buffer, temp_buffer + offset, 4); | |
1983 | } | |
1984 | } | |
1985 | ||
1986 | static void | |
1987 | e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, | |
1988 | int reg_nr, const void *buffer) | |
1989 | { | |
1990 | int base_regnum; | |
1991 | int offset = 0; | |
d9d9c31f | 1992 | char temp_buffer[MAX_REGISTER_SIZE]; |
c8001721 EZ |
1993 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
1994 | ||
1995 | if (reg_nr >= tdep->ppc_gp0_regnum | |
1996 | && reg_nr <= tdep->ppc_gplast_regnum) | |
1997 | { | |
1998 | base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum; | |
1999 | /* reg_nr is 32 bit here, and base_regnum is 64 bits. */ | |
2000 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
2001 | offset = 4; | |
2002 | ||
2003 | /* Let's read the value of the base register into a temporary | |
2004 | buffer, so that overwriting the last four bytes with the new | |
2005 | value of the pseudo will leave the upper 4 bytes unchanged. */ | |
2006 | regcache_raw_read (regcache, base_regnum, temp_buffer); | |
2007 | ||
2008 | /* Write as an 8 byte quantity. */ | |
2009 | memcpy (temp_buffer + offset, (char *) buffer, 4); | |
2010 | regcache_raw_write (regcache, base_regnum, temp_buffer); | |
2011 | } | |
2012 | } | |
2013 | ||
2014 | /* Convert a dwarf2 register number to a gdb REGNUM. */ | |
2015 | static int | |
2016 | e500_dwarf2_reg_to_regnum (int num) | |
2017 | { | |
2018 | int regnum; | |
2019 | if (0 <= num && num <= 31) | |
2020 | return num + gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum; | |
2021 | else | |
2022 | return num; | |
2023 | } | |
2024 | ||
2188cbdd | 2025 | /* Convert a dbx stab register number (from `r' declaration) to a gdb |
64366f1c | 2026 | REGNUM. */ |
2188cbdd EZ |
2027 | static int |
2028 | rs6000_stab_reg_to_regnum (int num) | |
2029 | { | |
2030 | int regnum; | |
2031 | switch (num) | |
2032 | { | |
2033 | case 64: | |
2034 | regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum; | |
2035 | break; | |
2036 | case 65: | |
2037 | regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum; | |
2038 | break; | |
2039 | case 66: | |
2040 | regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum; | |
2041 | break; | |
2042 | case 76: | |
2043 | regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum; | |
2044 | break; | |
2045 | default: | |
2046 | regnum = num; | |
2047 | break; | |
2048 | } | |
2049 | return regnum; | |
2050 | } | |
2051 | ||
7a78ae4e | 2052 | /* Store the address of the place in which to copy the structure the |
11269d7e | 2053 | subroutine will return. */ |
7a78ae4e ND |
2054 | |
2055 | static void | |
2056 | rs6000_store_struct_return (CORE_ADDR addr, CORE_ADDR sp) | |
2057 | { | |
da3eff49 AC |
2058 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
2059 | write_register (tdep->ppc_gp0_regnum + 3, addr); | |
7a78ae4e ND |
2060 | } |
2061 | ||
2062 | /* Write into appropriate registers a function return value | |
2063 | of type TYPE, given in virtual format. */ | |
96ff0de4 EZ |
2064 | static void |
2065 | e500_store_return_value (struct type *type, char *valbuf) | |
2066 | { | |
2067 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
2068 | ||
2069 | /* Everything is returned in GPR3 and up. */ | |
2070 | int copied = 0; | |
2071 | int i = 0; | |
2072 | int len = TYPE_LENGTH (type); | |
2073 | while (copied < len) | |
2074 | { | |
2075 | int regnum = gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3 + i; | |
2076 | int reg_size = REGISTER_RAW_SIZE (regnum); | |
2077 | char *reg_val_buf = alloca (reg_size); | |
2078 | ||
2079 | memcpy (reg_val_buf, valbuf + copied, reg_size); | |
2080 | copied += reg_size; | |
4caf0990 | 2081 | deprecated_write_register_gen (regnum, reg_val_buf); |
96ff0de4 EZ |
2082 | i++; |
2083 | } | |
2084 | } | |
7a78ae4e ND |
2085 | |
2086 | static void | |
2087 | rs6000_store_return_value (struct type *type, char *valbuf) | |
2088 | { | |
ace1378a EZ |
2089 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
2090 | ||
7a78ae4e ND |
2091 | if (TYPE_CODE (type) == TYPE_CODE_FLT) |
2092 | ||
2093 | /* Floating point values are returned starting from FPR1 and up. | |
2094 | Say a double_double_double type could be returned in | |
64366f1c | 2095 | FPR1/FPR2/FPR3 triple. */ |
7a78ae4e | 2096 | |
73937e03 AC |
2097 | deprecated_write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf, |
2098 | TYPE_LENGTH (type)); | |
ace1378a EZ |
2099 | else if (TYPE_CODE (type) == TYPE_CODE_ARRAY) |
2100 | { | |
2101 | if (TYPE_LENGTH (type) == 16 | |
2102 | && TYPE_VECTOR (type)) | |
73937e03 AC |
2103 | deprecated_write_register_bytes (REGISTER_BYTE (tdep->ppc_vr0_regnum + 2), |
2104 | valbuf, TYPE_LENGTH (type)); | |
ace1378a | 2105 | } |
7a78ae4e | 2106 | else |
64366f1c | 2107 | /* Everything else is returned in GPR3 and up. */ |
73937e03 AC |
2108 | deprecated_write_register_bytes (REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3), |
2109 | valbuf, TYPE_LENGTH (type)); | |
7a78ae4e ND |
2110 | } |
2111 | ||
2112 | /* Extract from an array REGBUF containing the (raw) register state | |
2113 | the address in which a function should return its structure value, | |
2114 | as a CORE_ADDR (or an expression that can be used as one). */ | |
2115 | ||
2116 | static CORE_ADDR | |
11269d7e AC |
2117 | rs6000_extract_struct_value_address (struct regcache *regcache) |
2118 | { | |
2119 | /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior | |
2120 | function call GDB knows the address of the struct return value | |
2121 | and hence, should not need to call this function. Unfortunately, | |
e8a8712a AC |
2122 | the current call_function_by_hand() code only saves the most |
2123 | recent struct address leading to occasional calls. The code | |
2124 | should instead maintain a stack of such addresses (in the dummy | |
2125 | frame object). */ | |
11269d7e AC |
2126 | /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've |
2127 | really got no idea where the return value is being stored. While | |
2128 | r3, on function entry, contained the address it will have since | |
2129 | been reused (scratch) and hence wouldn't be valid */ | |
2130 | return 0; | |
7a78ae4e ND |
2131 | } |
2132 | ||
2133 | /* Return whether PC is in a dummy function call. | |
2134 | ||
2135 | FIXME: This just checks for the end of the stack, which is broken | |
64366f1c | 2136 | for things like stepping through gcc nested function stubs. */ |
7a78ae4e ND |
2137 | |
2138 | static int | |
2139 | rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp) | |
2140 | { | |
2141 | return sp < pc && pc < fp; | |
2142 | } | |
2143 | ||
64366f1c | 2144 | /* Hook called when a new child process is started. */ |
7a78ae4e ND |
2145 | |
2146 | void | |
2147 | rs6000_create_inferior (int pid) | |
2148 | { | |
2149 | if (rs6000_set_host_arch_hook) | |
2150 | rs6000_set_host_arch_hook (pid); | |
c906108c SS |
2151 | } |
2152 | \f | |
7a78ae4e ND |
2153 | /* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR). |
2154 | ||
2155 | Usually a function pointer's representation is simply the address | |
2156 | of the function. On the RS/6000 however, a function pointer is | |
2157 | represented by a pointer to a TOC entry. This TOC entry contains | |
2158 | three words, the first word is the address of the function, the | |
2159 | second word is the TOC pointer (r2), and the third word is the | |
2160 | static chain value. Throughout GDB it is currently assumed that a | |
2161 | function pointer contains the address of the function, which is not | |
2162 | easy to fix. In addition, the conversion of a function address to | |
2163 | a function pointer would require allocation of a TOC entry in the | |
2164 | inferior's memory space, with all its drawbacks. To be able to | |
2165 | call C++ virtual methods in the inferior (which are called via | |
f517ea4e | 2166 | function pointers), find_function_addr uses this function to get the |
7a78ae4e ND |
2167 | function address from a function pointer. */ |
2168 | ||
f517ea4e PS |
2169 | /* Return real function address if ADDR (a function pointer) is in the data |
2170 | space and is therefore a special function pointer. */ | |
c906108c | 2171 | |
b9362cc7 | 2172 | static CORE_ADDR |
7a78ae4e | 2173 | rs6000_convert_from_func_ptr_addr (CORE_ADDR addr) |
c906108c SS |
2174 | { |
2175 | struct obj_section *s; | |
2176 | ||
2177 | s = find_pc_section (addr); | |
2178 | if (s && s->the_bfd_section->flags & SEC_CODE) | |
7a78ae4e | 2179 | return addr; |
c906108c | 2180 | |
7a78ae4e | 2181 | /* ADDR is in the data space, so it's a special function pointer. */ |
21283beb | 2182 | return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize); |
c906108c | 2183 | } |
c906108c | 2184 | \f |
c5aa993b | 2185 | |
7a78ae4e | 2186 | /* Handling the various POWER/PowerPC variants. */ |
c906108c SS |
2187 | |
2188 | ||
7a78ae4e ND |
2189 | /* The arrays here called registers_MUMBLE hold information about available |
2190 | registers. | |
c906108c SS |
2191 | |
2192 | For each family of PPC variants, I've tried to isolate out the | |
2193 | common registers and put them up front, so that as long as you get | |
2194 | the general family right, GDB will correctly identify the registers | |
2195 | common to that family. The common register sets are: | |
2196 | ||
2197 | For the 60x family: hid0 hid1 iabr dabr pir | |
2198 | ||
2199 | For the 505 and 860 family: eie eid nri | |
2200 | ||
2201 | For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi | |
c5aa993b JM |
2202 | tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1 |
2203 | pbu1 pbl2 pbu2 | |
c906108c SS |
2204 | |
2205 | Most of these register groups aren't anything formal. I arrived at | |
2206 | them by looking at the registers that occurred in more than one | |
6f5987a6 KB |
2207 | processor. |
2208 | ||
2209 | Note: kevinb/2002-04-30: Support for the fpscr register was added | |
2210 | during April, 2002. Slot 70 is being used for PowerPC and slot 71 | |
2211 | for Power. For PowerPC, slot 70 was unused and was already in the | |
2212 | PPC_UISA_SPRS which is ideally where fpscr should go. For Power, | |
2213 | slot 70 was being used for "mq", so the next available slot (71) | |
2214 | was chosen. It would have been nice to be able to make the | |
2215 | register numbers the same across processor cores, but this wasn't | |
2216 | possible without either 1) renumbering some registers for some | |
2217 | processors or 2) assigning fpscr to a really high slot that's | |
2218 | larger than any current register number. Doing (1) is bad because | |
2219 | existing stubs would break. Doing (2) is undesirable because it | |
2220 | would introduce a really large gap between fpscr and the rest of | |
2221 | the registers for most processors. */ | |
7a78ae4e | 2222 | |
64366f1c | 2223 | /* Convenience macros for populating register arrays. */ |
7a78ae4e | 2224 | |
64366f1c | 2225 | /* Within another macro, convert S to a string. */ |
7a78ae4e ND |
2226 | |
2227 | #define STR(s) #s | |
2228 | ||
2229 | /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems | |
64366f1c | 2230 | and 64 bits on 64-bit systems. */ |
489461e2 | 2231 | #define R(name) { STR(name), 4, 8, 0, 0 } |
7a78ae4e ND |
2232 | |
2233 | /* Return a struct reg defining register NAME that's 32 bits on all | |
64366f1c | 2234 | systems. */ |
489461e2 | 2235 | #define R4(name) { STR(name), 4, 4, 0, 0 } |
7a78ae4e ND |
2236 | |
2237 | /* Return a struct reg defining register NAME that's 64 bits on all | |
64366f1c | 2238 | systems. */ |
489461e2 | 2239 | #define R8(name) { STR(name), 8, 8, 0, 0 } |
7a78ae4e | 2240 | |
1fcc0bb8 | 2241 | /* Return a struct reg defining register NAME that's 128 bits on all |
64366f1c | 2242 | systems. */ |
489461e2 | 2243 | #define R16(name) { STR(name), 16, 16, 0, 0 } |
1fcc0bb8 | 2244 | |
64366f1c | 2245 | /* Return a struct reg defining floating-point register NAME. */ |
489461e2 EZ |
2246 | #define F(name) { STR(name), 8, 8, 1, 0 } |
2247 | ||
64366f1c | 2248 | /* Return a struct reg defining a pseudo register NAME. */ |
489461e2 | 2249 | #define P(name) { STR(name), 4, 8, 0, 1} |
7a78ae4e ND |
2250 | |
2251 | /* Return a struct reg defining register NAME that's 32 bits on 32-bit | |
64366f1c | 2252 | systems and that doesn't exist on 64-bit systems. */ |
489461e2 | 2253 | #define R32(name) { STR(name), 4, 0, 0, 0 } |
7a78ae4e ND |
2254 | |
2255 | /* Return a struct reg defining register NAME that's 64 bits on 64-bit | |
64366f1c | 2256 | systems and that doesn't exist on 32-bit systems. */ |
489461e2 | 2257 | #define R64(name) { STR(name), 0, 8, 0, 0 } |
7a78ae4e | 2258 | |
64366f1c | 2259 | /* Return a struct reg placeholder for a register that doesn't exist. */ |
489461e2 | 2260 | #define R0 { 0, 0, 0, 0, 0 } |
7a78ae4e ND |
2261 | |
2262 | /* UISA registers common across all architectures, including POWER. */ | |
2263 | ||
2264 | #define COMMON_UISA_REGS \ | |
2265 | /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \ | |
2266 | /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \ | |
2267 | /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \ | |
2268 | /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \ | |
2269 | /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \ | |
2270 | /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \ | |
2271 | /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \ | |
2272 | /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \ | |
2273 | /* 64 */ R(pc), R(ps) | |
2274 | ||
ebeac11a EZ |
2275 | #define COMMON_UISA_NOFP_REGS \ |
2276 | /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \ | |
2277 | /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \ | |
2278 | /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \ | |
2279 | /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \ | |
2280 | /* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \ | |
2281 | /* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \ | |
2282 | /* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \ | |
2283 | /* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \ | |
2284 | /* 64 */ R(pc), R(ps) | |
2285 | ||
7a78ae4e ND |
2286 | /* UISA-level SPRs for PowerPC. */ |
2287 | #define PPC_UISA_SPRS \ | |
e3f36dbd | 2288 | /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr) |
7a78ae4e | 2289 | |
c8001721 EZ |
2290 | /* UISA-level SPRs for PowerPC without floating point support. */ |
2291 | #define PPC_UISA_NOFP_SPRS \ | |
2292 | /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0 | |
2293 | ||
7a78ae4e ND |
2294 | /* Segment registers, for PowerPC. */ |
2295 | #define PPC_SEGMENT_REGS \ | |
2296 | /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \ | |
2297 | /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \ | |
2298 | /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \ | |
2299 | /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15) | |
2300 | ||
2301 | /* OEA SPRs for PowerPC. */ | |
2302 | #define PPC_OEA_SPRS \ | |
2303 | /* 87 */ R4(pvr), \ | |
2304 | /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \ | |
2305 | /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \ | |
2306 | /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \ | |
2307 | /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \ | |
2308 | /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \ | |
2309 | /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \ | |
2310 | /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \ | |
2311 | /* 116 */ R4(dec), R(dabr), R4(ear) | |
2312 | ||
64366f1c | 2313 | /* AltiVec registers. */ |
1fcc0bb8 EZ |
2314 | #define PPC_ALTIVEC_REGS \ |
2315 | /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \ | |
2316 | /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \ | |
2317 | /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \ | |
2318 | /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \ | |
2319 | /*151*/R4(vscr), R4(vrsave) | |
2320 | ||
c8001721 EZ |
2321 | /* Vectors of hi-lo general purpose registers. */ |
2322 | #define PPC_EV_REGS \ | |
2323 | /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7), \ | |
2324 | /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \ | |
2325 | /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \ | |
2326 | /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31) | |
2327 | ||
2328 | /* Lower half of the EV registers. */ | |
2329 | #define PPC_GPRS_PSEUDO_REGS \ | |
2330 | /* 0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7), \ | |
2331 | /* 8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \ | |
2332 | /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \ | |
338ef23d | 2333 | /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31) |
c8001721 | 2334 | |
7a78ae4e | 2335 | /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover |
64366f1c | 2336 | user-level SPR's. */ |
7a78ae4e | 2337 | static const struct reg registers_power[] = |
c906108c | 2338 | { |
7a78ae4e | 2339 | COMMON_UISA_REGS, |
e3f36dbd KB |
2340 | /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq), |
2341 | /* 71 */ R4(fpscr) | |
c906108c SS |
2342 | }; |
2343 | ||
7a78ae4e | 2344 | /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only |
64366f1c | 2345 | view of the PowerPC. */ |
7a78ae4e | 2346 | static const struct reg registers_powerpc[] = |
c906108c | 2347 | { |
7a78ae4e | 2348 | COMMON_UISA_REGS, |
1fcc0bb8 EZ |
2349 | PPC_UISA_SPRS, |
2350 | PPC_ALTIVEC_REGS | |
c906108c SS |
2351 | }; |
2352 | ||
ebeac11a EZ |
2353 | /* PowerPC UISA - a PPC processor as viewed by user-level |
2354 | code, but without floating point registers. */ | |
2355 | static const struct reg registers_powerpc_nofp[] = | |
2356 | { | |
2357 | COMMON_UISA_NOFP_REGS, | |
2358 | PPC_UISA_SPRS | |
2359 | }; | |
2360 | ||
64366f1c | 2361 | /* IBM PowerPC 403. */ |
7a78ae4e | 2362 | static const struct reg registers_403[] = |
c5aa993b | 2363 | { |
7a78ae4e ND |
2364 | COMMON_UISA_REGS, |
2365 | PPC_UISA_SPRS, | |
2366 | PPC_SEGMENT_REGS, | |
2367 | PPC_OEA_SPRS, | |
2368 | /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr), | |
2369 | /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit), | |
2370 | /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3), | |
2371 | /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2), | |
2372 | /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr), | |
2373 | /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2) | |
c906108c SS |
2374 | }; |
2375 | ||
64366f1c | 2376 | /* IBM PowerPC 403GC. */ |
7a78ae4e | 2377 | static const struct reg registers_403GC[] = |
c5aa993b | 2378 | { |
7a78ae4e ND |
2379 | COMMON_UISA_REGS, |
2380 | PPC_UISA_SPRS, | |
2381 | PPC_SEGMENT_REGS, | |
2382 | PPC_OEA_SPRS, | |
2383 | /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr), | |
2384 | /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit), | |
2385 | /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3), | |
2386 | /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2), | |
2387 | /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr), | |
2388 | /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2), | |
2389 | /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr), | |
2390 | /* 147 */ R(tbhu), R(tblu) | |
c906108c SS |
2391 | }; |
2392 | ||
64366f1c | 2393 | /* Motorola PowerPC 505. */ |
7a78ae4e | 2394 | static const struct reg registers_505[] = |
c5aa993b | 2395 | { |
7a78ae4e ND |
2396 | COMMON_UISA_REGS, |
2397 | PPC_UISA_SPRS, | |
2398 | PPC_SEGMENT_REGS, | |
2399 | PPC_OEA_SPRS, | |
2400 | /* 119 */ R(eie), R(eid), R(nri) | |
c906108c SS |
2401 | }; |
2402 | ||
64366f1c | 2403 | /* Motorola PowerPC 860 or 850. */ |
7a78ae4e | 2404 | static const struct reg registers_860[] = |
c5aa993b | 2405 | { |
7a78ae4e ND |
2406 | COMMON_UISA_REGS, |
2407 | PPC_UISA_SPRS, | |
2408 | PPC_SEGMENT_REGS, | |
2409 | PPC_OEA_SPRS, | |
2410 | /* 119 */ R(eie), R(eid), R(nri), R(cmpa), | |
2411 | /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr), | |
2412 | /* 127 */ R(der), R(counta), R(countb), R(cmpe), | |
2413 | /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1), | |
2414 | /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst), | |
2415 | /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr), | |
2416 | /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr), | |
2417 | /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc), | |
2418 | /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap), | |
2419 | /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn), | |
2420 | /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1), | |
2421 | /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1) | |
c906108c SS |
2422 | }; |
2423 | ||
7a78ae4e ND |
2424 | /* Motorola PowerPC 601. Note that the 601 has different register numbers |
2425 | for reading and writing RTCU and RTCL. However, how one reads and writes a | |
c906108c | 2426 | register is the stub's problem. */ |
7a78ae4e | 2427 | static const struct reg registers_601[] = |
c5aa993b | 2428 | { |
7a78ae4e ND |
2429 | COMMON_UISA_REGS, |
2430 | PPC_UISA_SPRS, | |
2431 | PPC_SEGMENT_REGS, | |
2432 | PPC_OEA_SPRS, | |
2433 | /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr), | |
2434 | /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl) | |
c906108c SS |
2435 | }; |
2436 | ||
64366f1c | 2437 | /* Motorola PowerPC 602. */ |
7a78ae4e | 2438 | static const struct reg registers_602[] = |
c5aa993b | 2439 | { |
7a78ae4e ND |
2440 | COMMON_UISA_REGS, |
2441 | PPC_UISA_SPRS, | |
2442 | PPC_SEGMENT_REGS, | |
2443 | PPC_OEA_SPRS, | |
2444 | /* 119 */ R(hid0), R(hid1), R(iabr), R0, | |
2445 | /* 123 */ R0, R(tcr), R(ibr), R(esassr), | |
2446 | /* 127 */ R(sebr), R(ser), R(sp), R(lt) | |
c906108c SS |
2447 | }; |
2448 | ||
64366f1c | 2449 | /* Motorola/IBM PowerPC 603 or 603e. */ |
7a78ae4e | 2450 | static const struct reg registers_603[] = |
c5aa993b | 2451 | { |
7a78ae4e ND |
2452 | COMMON_UISA_REGS, |
2453 | PPC_UISA_SPRS, | |
2454 | PPC_SEGMENT_REGS, | |
2455 | PPC_OEA_SPRS, | |
2456 | /* 119 */ R(hid0), R(hid1), R(iabr), R0, | |
2457 | /* 123 */ R0, R(dmiss), R(dcmp), R(hash1), | |
2458 | /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa) | |
c906108c SS |
2459 | }; |
2460 | ||
64366f1c | 2461 | /* Motorola PowerPC 604 or 604e. */ |
7a78ae4e | 2462 | static const struct reg registers_604[] = |
c5aa993b | 2463 | { |
7a78ae4e ND |
2464 | COMMON_UISA_REGS, |
2465 | PPC_UISA_SPRS, | |
2466 | PPC_SEGMENT_REGS, | |
2467 | PPC_OEA_SPRS, | |
2468 | /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr), | |
2469 | /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2), | |
2470 | /* 127 */ R(sia), R(sda) | |
c906108c SS |
2471 | }; |
2472 | ||
64366f1c | 2473 | /* Motorola/IBM PowerPC 750 or 740. */ |
7a78ae4e | 2474 | static const struct reg registers_750[] = |
c5aa993b | 2475 | { |
7a78ae4e ND |
2476 | COMMON_UISA_REGS, |
2477 | PPC_UISA_SPRS, | |
2478 | PPC_SEGMENT_REGS, | |
2479 | PPC_OEA_SPRS, | |
2480 | /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr), | |
2481 | /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2), | |
2482 | /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4), | |
2483 | /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia), | |
2484 | /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr), | |
2485 | /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3) | |
c906108c SS |
2486 | }; |
2487 | ||
2488 | ||
64366f1c | 2489 | /* Motorola PowerPC 7400. */ |
1fcc0bb8 EZ |
2490 | static const struct reg registers_7400[] = |
2491 | { | |
2492 | /* gpr0-gpr31, fpr0-fpr31 */ | |
2493 | COMMON_UISA_REGS, | |
2494 | /* ctr, xre, lr, cr */ | |
2495 | PPC_UISA_SPRS, | |
2496 | /* sr0-sr15 */ | |
2497 | PPC_SEGMENT_REGS, | |
2498 | PPC_OEA_SPRS, | |
2499 | /* vr0-vr31, vrsave, vscr */ | |
2500 | PPC_ALTIVEC_REGS | |
2501 | /* FIXME? Add more registers? */ | |
2502 | }; | |
2503 | ||
c8001721 EZ |
2504 | /* Motorola e500. */ |
2505 | static const struct reg registers_e500[] = | |
2506 | { | |
2507 | R(pc), R(ps), | |
2508 | /* cr, lr, ctr, xer, "" */ | |
2509 | PPC_UISA_NOFP_SPRS, | |
2510 | /* 7...38 */ | |
2511 | PPC_EV_REGS, | |
338ef23d AC |
2512 | R8(acc), R(spefscr), |
2513 | /* NOTE: Add new registers here the end of the raw register | |
2514 | list and just before the first pseudo register. */ | |
c8001721 EZ |
2515 | /* 39...70 */ |
2516 | PPC_GPRS_PSEUDO_REGS | |
2517 | }; | |
2518 | ||
c906108c | 2519 | /* Information about a particular processor variant. */ |
7a78ae4e | 2520 | |
c906108c | 2521 | struct variant |
c5aa993b JM |
2522 | { |
2523 | /* Name of this variant. */ | |
2524 | char *name; | |
c906108c | 2525 | |
c5aa993b JM |
2526 | /* English description of the variant. */ |
2527 | char *description; | |
c906108c | 2528 | |
64366f1c | 2529 | /* bfd_arch_info.arch corresponding to variant. */ |
7a78ae4e ND |
2530 | enum bfd_architecture arch; |
2531 | ||
64366f1c | 2532 | /* bfd_arch_info.mach corresponding to variant. */ |
7a78ae4e ND |
2533 | unsigned long mach; |
2534 | ||
489461e2 EZ |
2535 | /* Number of real registers. */ |
2536 | int nregs; | |
2537 | ||
2538 | /* Number of pseudo registers. */ | |
2539 | int npregs; | |
2540 | ||
2541 | /* Number of total registers (the sum of nregs and npregs). */ | |
2542 | int num_tot_regs; | |
2543 | ||
c5aa993b JM |
2544 | /* Table of register names; registers[R] is the name of the register |
2545 | number R. */ | |
7a78ae4e | 2546 | const struct reg *regs; |
c5aa993b | 2547 | }; |
c906108c | 2548 | |
489461e2 EZ |
2549 | #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0])) |
2550 | ||
2551 | static int | |
2552 | num_registers (const struct reg *reg_list, int num_tot_regs) | |
2553 | { | |
2554 | int i; | |
2555 | int nregs = 0; | |
2556 | ||
2557 | for (i = 0; i < num_tot_regs; i++) | |
2558 | if (!reg_list[i].pseudo) | |
2559 | nregs++; | |
2560 | ||
2561 | return nregs; | |
2562 | } | |
2563 | ||
2564 | static int | |
2565 | num_pseudo_registers (const struct reg *reg_list, int num_tot_regs) | |
2566 | { | |
2567 | int i; | |
2568 | int npregs = 0; | |
2569 | ||
2570 | for (i = 0; i < num_tot_regs; i++) | |
2571 | if (reg_list[i].pseudo) | |
2572 | npregs ++; | |
2573 | ||
2574 | return npregs; | |
2575 | } | |
c906108c | 2576 | |
c906108c SS |
2577 | /* Information in this table comes from the following web sites: |
2578 | IBM: http://www.chips.ibm.com:80/products/embedded/ | |
2579 | Motorola: http://www.mot.com/SPS/PowerPC/ | |
2580 | ||
2581 | I'm sure I've got some of the variant descriptions not quite right. | |
2582 | Please report any inaccuracies you find to GDB's maintainer. | |
2583 | ||
2584 | If you add entries to this table, please be sure to allow the new | |
2585 | value as an argument to the --with-cpu flag, in configure.in. */ | |
2586 | ||
489461e2 | 2587 | static struct variant variants[] = |
c906108c | 2588 | { |
489461e2 | 2589 | |
7a78ae4e | 2590 | {"powerpc", "PowerPC user-level", bfd_arch_powerpc, |
489461e2 EZ |
2591 | bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc), |
2592 | registers_powerpc}, | |
7a78ae4e | 2593 | {"power", "POWER user-level", bfd_arch_rs6000, |
489461e2 EZ |
2594 | bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power), |
2595 | registers_power}, | |
7a78ae4e | 2596 | {"403", "IBM PowerPC 403", bfd_arch_powerpc, |
489461e2 EZ |
2597 | bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403), |
2598 | registers_403}, | |
7a78ae4e | 2599 | {"601", "Motorola PowerPC 601", bfd_arch_powerpc, |
489461e2 EZ |
2600 | bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601), |
2601 | registers_601}, | |
7a78ae4e | 2602 | {"602", "Motorola PowerPC 602", bfd_arch_powerpc, |
489461e2 EZ |
2603 | bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602), |
2604 | registers_602}, | |
7a78ae4e | 2605 | {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc, |
489461e2 EZ |
2606 | bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603), |
2607 | registers_603}, | |
7a78ae4e | 2608 | {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc, |
489461e2 EZ |
2609 | 604, -1, -1, tot_num_registers (registers_604), |
2610 | registers_604}, | |
7a78ae4e | 2611 | {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc, |
489461e2 EZ |
2612 | bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC), |
2613 | registers_403GC}, | |
7a78ae4e | 2614 | {"505", "Motorola PowerPC 505", bfd_arch_powerpc, |
489461e2 EZ |
2615 | bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505), |
2616 | registers_505}, | |
7a78ae4e | 2617 | {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc, |
489461e2 EZ |
2618 | bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860), |
2619 | registers_860}, | |
7a78ae4e | 2620 | {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc, |
489461e2 EZ |
2621 | bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750), |
2622 | registers_750}, | |
1fcc0bb8 | 2623 | {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc, |
489461e2 EZ |
2624 | bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400), |
2625 | registers_7400}, | |
c8001721 EZ |
2626 | {"e500", "Motorola PowerPC e500", bfd_arch_powerpc, |
2627 | bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500), | |
2628 | registers_e500}, | |
7a78ae4e | 2629 | |
5d57ee30 KB |
2630 | /* 64-bit */ |
2631 | {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc, | |
489461e2 EZ |
2632 | bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc), |
2633 | registers_powerpc}, | |
7a78ae4e | 2634 | {"620", "Motorola PowerPC 620", bfd_arch_powerpc, |
489461e2 EZ |
2635 | bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc), |
2636 | registers_powerpc}, | |
5d57ee30 | 2637 | {"630", "Motorola PowerPC 630", bfd_arch_powerpc, |
489461e2 EZ |
2638 | bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc), |
2639 | registers_powerpc}, | |
7a78ae4e | 2640 | {"a35", "PowerPC A35", bfd_arch_powerpc, |
489461e2 EZ |
2641 | bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc), |
2642 | registers_powerpc}, | |
5d57ee30 | 2643 | {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc, |
489461e2 EZ |
2644 | bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc), |
2645 | registers_powerpc}, | |
5d57ee30 | 2646 | {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc, |
489461e2 EZ |
2647 | bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc), |
2648 | registers_powerpc}, | |
5d57ee30 | 2649 | |
64366f1c | 2650 | /* FIXME: I haven't checked the register sets of the following. */ |
7a78ae4e | 2651 | {"rs1", "IBM POWER RS1", bfd_arch_rs6000, |
489461e2 EZ |
2652 | bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power), |
2653 | registers_power}, | |
7a78ae4e | 2654 | {"rsc", "IBM POWER RSC", bfd_arch_rs6000, |
489461e2 EZ |
2655 | bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power), |
2656 | registers_power}, | |
7a78ae4e | 2657 | {"rs2", "IBM POWER RS2", bfd_arch_rs6000, |
489461e2 EZ |
2658 | bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power), |
2659 | registers_power}, | |
7a78ae4e | 2660 | |
489461e2 | 2661 | {0, 0, 0, 0, 0, 0, 0, 0} |
c906108c SS |
2662 | }; |
2663 | ||
64366f1c | 2664 | /* Initialize the number of registers and pseudo registers in each variant. */ |
489461e2 EZ |
2665 | |
2666 | static void | |
2667 | init_variants (void) | |
2668 | { | |
2669 | struct variant *v; | |
2670 | ||
2671 | for (v = variants; v->name; v++) | |
2672 | { | |
2673 | if (v->nregs == -1) | |
2674 | v->nregs = num_registers (v->regs, v->num_tot_regs); | |
2675 | if (v->npregs == -1) | |
2676 | v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs); | |
2677 | } | |
2678 | } | |
c906108c | 2679 | |
7a78ae4e | 2680 | /* Return the variant corresponding to architecture ARCH and machine number |
64366f1c | 2681 | MACH. If no such variant exists, return null. */ |
c906108c | 2682 | |
7a78ae4e ND |
2683 | static const struct variant * |
2684 | find_variant_by_arch (enum bfd_architecture arch, unsigned long mach) | |
c906108c | 2685 | { |
7a78ae4e | 2686 | const struct variant *v; |
c5aa993b | 2687 | |
7a78ae4e ND |
2688 | for (v = variants; v->name; v++) |
2689 | if (arch == v->arch && mach == v->mach) | |
2690 | return v; | |
c906108c | 2691 | |
7a78ae4e | 2692 | return NULL; |
c906108c | 2693 | } |
9364a0ef EZ |
2694 | |
2695 | static int | |
2696 | gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info) | |
2697 | { | |
2698 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
2699 | return print_insn_big_powerpc (memaddr, info); | |
2700 | else | |
2701 | return print_insn_little_powerpc (memaddr, info); | |
2702 | } | |
7a78ae4e | 2703 | \f |
7a78ae4e ND |
2704 | /* Initialize the current architecture based on INFO. If possible, re-use an |
2705 | architecture from ARCHES, which is a list of architectures already created | |
2706 | during this debugging session. | |
c906108c | 2707 | |
7a78ae4e | 2708 | Called e.g. at program startup, when reading a core file, and when reading |
64366f1c | 2709 | a binary file. */ |
c906108c | 2710 | |
7a78ae4e ND |
2711 | static struct gdbarch * |
2712 | rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
2713 | { | |
2714 | struct gdbarch *gdbarch; | |
2715 | struct gdbarch_tdep *tdep; | |
9aa1e687 | 2716 | int wordsize, from_xcoff_exec, from_elf_exec, power, i, off; |
7a78ae4e ND |
2717 | struct reg *regs; |
2718 | const struct variant *v; | |
2719 | enum bfd_architecture arch; | |
2720 | unsigned long mach; | |
2721 | bfd abfd; | |
7b112f9c | 2722 | int sysv_abi; |
5bf1c677 | 2723 | asection *sect; |
7a78ae4e | 2724 | |
9aa1e687 | 2725 | from_xcoff_exec = info.abfd && info.abfd->format == bfd_object && |
7a78ae4e ND |
2726 | bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour; |
2727 | ||
9aa1e687 KB |
2728 | from_elf_exec = info.abfd && info.abfd->format == bfd_object && |
2729 | bfd_get_flavour (info.abfd) == bfd_target_elf_flavour; | |
2730 | ||
2731 | sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour; | |
2732 | ||
e712c1cf | 2733 | /* Check word size. If INFO is from a binary file, infer it from |
64366f1c | 2734 | that, else choose a likely default. */ |
9aa1e687 | 2735 | if (from_xcoff_exec) |
c906108c | 2736 | { |
11ed25ac | 2737 | if (bfd_xcoff_is_xcoff64 (info.abfd)) |
7a78ae4e ND |
2738 | wordsize = 8; |
2739 | else | |
2740 | wordsize = 4; | |
c906108c | 2741 | } |
9aa1e687 KB |
2742 | else if (from_elf_exec) |
2743 | { | |
2744 | if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64) | |
2745 | wordsize = 8; | |
2746 | else | |
2747 | wordsize = 4; | |
2748 | } | |
c906108c | 2749 | else |
7a78ae4e | 2750 | { |
27b15785 KB |
2751 | if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0) |
2752 | wordsize = info.bfd_arch_info->bits_per_word / | |
2753 | info.bfd_arch_info->bits_per_byte; | |
2754 | else | |
2755 | wordsize = 4; | |
7a78ae4e | 2756 | } |
c906108c | 2757 | |
64366f1c | 2758 | /* Find a candidate among extant architectures. */ |
7a78ae4e ND |
2759 | for (arches = gdbarch_list_lookup_by_info (arches, &info); |
2760 | arches != NULL; | |
2761 | arches = gdbarch_list_lookup_by_info (arches->next, &info)) | |
2762 | { | |
2763 | /* Word size in the various PowerPC bfd_arch_info structs isn't | |
2764 | meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform | |
64366f1c | 2765 | separate word size check. */ |
7a78ae4e | 2766 | tdep = gdbarch_tdep (arches->gdbarch); |
4be87837 | 2767 | if (tdep && tdep->wordsize == wordsize) |
7a78ae4e ND |
2768 | return arches->gdbarch; |
2769 | } | |
c906108c | 2770 | |
7a78ae4e ND |
2771 | /* None found, create a new architecture from INFO, whose bfd_arch_info |
2772 | validity depends on the source: | |
2773 | - executable useless | |
2774 | - rs6000_host_arch() good | |
2775 | - core file good | |
2776 | - "set arch" trust blindly | |
2777 | - GDB startup useless but harmless */ | |
c906108c | 2778 | |
9aa1e687 | 2779 | if (!from_xcoff_exec) |
c906108c | 2780 | { |
b732d07d | 2781 | arch = info.bfd_arch_info->arch; |
7a78ae4e | 2782 | mach = info.bfd_arch_info->mach; |
c906108c | 2783 | } |
7a78ae4e | 2784 | else |
c906108c | 2785 | { |
7a78ae4e | 2786 | arch = bfd_arch_powerpc; |
35cec841 | 2787 | bfd_default_set_arch_mach (&abfd, arch, 0); |
7a78ae4e | 2788 | info.bfd_arch_info = bfd_get_arch_info (&abfd); |
35cec841 | 2789 | mach = info.bfd_arch_info->mach; |
7a78ae4e ND |
2790 | } |
2791 | tdep = xmalloc (sizeof (struct gdbarch_tdep)); | |
2792 | tdep->wordsize = wordsize; | |
5bf1c677 EZ |
2793 | |
2794 | /* For e500 executables, the apuinfo section is of help here. Such | |
2795 | section contains the identifier and revision number of each | |
2796 | Application-specific Processing Unit that is present on the | |
2797 | chip. The content of the section is determined by the assembler | |
2798 | which looks at each instruction and determines which unit (and | |
2799 | which version of it) can execute it. In our case we just look for | |
2800 | the existance of the section. */ | |
2801 | ||
2802 | if (info.abfd) | |
2803 | { | |
2804 | sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo"); | |
2805 | if (sect) | |
2806 | { | |
2807 | arch = info.bfd_arch_info->arch; | |
2808 | mach = bfd_mach_ppc_e500; | |
2809 | bfd_default_set_arch_mach (&abfd, arch, mach); | |
2810 | info.bfd_arch_info = bfd_get_arch_info (&abfd); | |
2811 | } | |
2812 | } | |
2813 | ||
7a78ae4e ND |
2814 | gdbarch = gdbarch_alloc (&info, tdep); |
2815 | power = arch == bfd_arch_rs6000; | |
2816 | ||
489461e2 EZ |
2817 | /* Initialize the number of real and pseudo registers in each variant. */ |
2818 | init_variants (); | |
2819 | ||
64366f1c | 2820 | /* Choose variant. */ |
7a78ae4e ND |
2821 | v = find_variant_by_arch (arch, mach); |
2822 | if (!v) | |
dd47e6fd EZ |
2823 | return NULL; |
2824 | ||
7a78ae4e ND |
2825 | tdep->regs = v->regs; |
2826 | ||
2188cbdd EZ |
2827 | tdep->ppc_gp0_regnum = 0; |
2828 | tdep->ppc_gplast_regnum = 31; | |
2829 | tdep->ppc_toc_regnum = 2; | |
2830 | tdep->ppc_ps_regnum = 65; | |
2831 | tdep->ppc_cr_regnum = 66; | |
2832 | tdep->ppc_lr_regnum = 67; | |
2833 | tdep->ppc_ctr_regnum = 68; | |
2834 | tdep->ppc_xer_regnum = 69; | |
2835 | if (v->mach == bfd_mach_ppc_601) | |
2836 | tdep->ppc_mq_regnum = 124; | |
e3f36dbd | 2837 | else if (power) |
2188cbdd | 2838 | tdep->ppc_mq_regnum = 70; |
e3f36dbd KB |
2839 | else |
2840 | tdep->ppc_mq_regnum = -1; | |
2841 | tdep->ppc_fpscr_regnum = power ? 71 : 70; | |
2188cbdd | 2842 | |
c8001721 EZ |
2843 | set_gdbarch_pc_regnum (gdbarch, 64); |
2844 | set_gdbarch_sp_regnum (gdbarch, 1); | |
0ba6dca9 | 2845 | set_gdbarch_deprecated_fp_regnum (gdbarch, 1); |
96ff0de4 EZ |
2846 | set_gdbarch_deprecated_extract_return_value (gdbarch, |
2847 | rs6000_extract_return_value); | |
46d79c04 | 2848 | set_gdbarch_deprecated_store_return_value (gdbarch, rs6000_store_return_value); |
c8001721 | 2849 | |
1fcc0bb8 EZ |
2850 | if (v->arch == bfd_arch_powerpc) |
2851 | switch (v->mach) | |
2852 | { | |
2853 | case bfd_mach_ppc: | |
2854 | tdep->ppc_vr0_regnum = 71; | |
2855 | tdep->ppc_vrsave_regnum = 104; | |
c8001721 EZ |
2856 | tdep->ppc_ev0_regnum = -1; |
2857 | tdep->ppc_ev31_regnum = -1; | |
1fcc0bb8 EZ |
2858 | break; |
2859 | case bfd_mach_ppc_7400: | |
2860 | tdep->ppc_vr0_regnum = 119; | |
54c2a1e6 | 2861 | tdep->ppc_vrsave_regnum = 152; |
c8001721 EZ |
2862 | tdep->ppc_ev0_regnum = -1; |
2863 | tdep->ppc_ev31_regnum = -1; | |
2864 | break; | |
2865 | case bfd_mach_ppc_e500: | |
338ef23d AC |
2866 | tdep->ppc_gp0_regnum = 41; |
2867 | tdep->ppc_gplast_regnum = tdep->ppc_gp0_regnum + 32 - 1; | |
c8001721 EZ |
2868 | tdep->ppc_toc_regnum = -1; |
2869 | tdep->ppc_ps_regnum = 1; | |
2870 | tdep->ppc_cr_regnum = 2; | |
2871 | tdep->ppc_lr_regnum = 3; | |
2872 | tdep->ppc_ctr_regnum = 4; | |
2873 | tdep->ppc_xer_regnum = 5; | |
2874 | tdep->ppc_ev0_regnum = 7; | |
2875 | tdep->ppc_ev31_regnum = 38; | |
2876 | set_gdbarch_pc_regnum (gdbarch, 0); | |
338ef23d | 2877 | set_gdbarch_sp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1); |
0ba6dca9 | 2878 | set_gdbarch_deprecated_fp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1); |
c8001721 EZ |
2879 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, e500_dwarf2_reg_to_regnum); |
2880 | set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read); | |
2881 | set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write); | |
96ff0de4 | 2882 | set_gdbarch_extract_return_value (gdbarch, e500_extract_return_value); |
46d79c04 | 2883 | set_gdbarch_deprecated_store_return_value (gdbarch, e500_store_return_value); |
1fcc0bb8 EZ |
2884 | break; |
2885 | default: | |
2886 | tdep->ppc_vr0_regnum = -1; | |
2887 | tdep->ppc_vrsave_regnum = -1; | |
c8001721 EZ |
2888 | tdep->ppc_ev0_regnum = -1; |
2889 | tdep->ppc_ev31_regnum = -1; | |
1fcc0bb8 EZ |
2890 | break; |
2891 | } | |
2892 | ||
338ef23d AC |
2893 | /* Sanity check on registers. */ |
2894 | gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0); | |
2895 | ||
a88376a3 KB |
2896 | /* Set lr_frame_offset. */ |
2897 | if (wordsize == 8) | |
2898 | tdep->lr_frame_offset = 16; | |
2899 | else if (sysv_abi) | |
2900 | tdep->lr_frame_offset = 4; | |
2901 | else | |
2902 | tdep->lr_frame_offset = 8; | |
2903 | ||
2904 | /* Calculate byte offsets in raw register array. */ | |
489461e2 EZ |
2905 | tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int)); |
2906 | for (i = off = 0; i < v->num_tot_regs; i++) | |
7a78ae4e ND |
2907 | { |
2908 | tdep->regoff[i] = off; | |
2909 | off += regsize (v->regs + i, wordsize); | |
c906108c SS |
2910 | } |
2911 | ||
56a6dfb9 KB |
2912 | /* Select instruction printer. */ |
2913 | if (arch == power) | |
9364a0ef | 2914 | set_gdbarch_print_insn (gdbarch, print_insn_rs6000); |
56a6dfb9 | 2915 | else |
9364a0ef | 2916 | set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc); |
7495d1dc | 2917 | |
7a78ae4e | 2918 | set_gdbarch_write_pc (gdbarch, generic_target_write_pc); |
b46e02f6 | 2919 | set_gdbarch_deprecated_dummy_write_sp (gdbarch, deprecated_write_sp); |
7a78ae4e ND |
2920 | |
2921 | set_gdbarch_num_regs (gdbarch, v->nregs); | |
c8001721 | 2922 | set_gdbarch_num_pseudo_regs (gdbarch, v->npregs); |
7a78ae4e | 2923 | set_gdbarch_register_name (gdbarch, rs6000_register_name); |
b1e29e33 | 2924 | set_gdbarch_deprecated_register_size (gdbarch, wordsize); |
b8b527c5 | 2925 | set_gdbarch_deprecated_register_bytes (gdbarch, off); |
9c04cab7 AC |
2926 | set_gdbarch_deprecated_register_byte (gdbarch, rs6000_register_byte); |
2927 | set_gdbarch_deprecated_register_raw_size (gdbarch, rs6000_register_raw_size); | |
a0ed5532 | 2928 | set_gdbarch_deprecated_max_register_raw_size (gdbarch, 16); |
9c04cab7 | 2929 | set_gdbarch_deprecated_register_virtual_size (gdbarch, generic_register_size); |
a0ed5532 | 2930 | set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 16); |
9c04cab7 | 2931 | set_gdbarch_deprecated_register_virtual_type (gdbarch, rs6000_register_virtual_type); |
7a78ae4e ND |
2932 | |
2933 | set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT); | |
2934 | set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT); | |
2935 | set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
2936 | set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT); | |
2937 | set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
2938 | set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
2939 | set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
ab9fe00e KB |
2940 | if (sysv_abi) |
2941 | set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT); | |
2942 | else | |
2943 | set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
4e409299 | 2944 | set_gdbarch_char_signed (gdbarch, 0); |
7a78ae4e | 2945 | |
b1e29e33 | 2946 | set_gdbarch_deprecated_fix_call_dummy (gdbarch, rs6000_fix_call_dummy); |
11269d7e | 2947 | set_gdbarch_frame_align (gdbarch, rs6000_frame_align); |
8b148df9 AC |
2948 | if (sysv_abi && wordsize == 8) |
2949 | /* PPC64 SYSV. */ | |
2950 | set_gdbarch_frame_red_zone_size (gdbarch, 288); | |
2951 | else if (!sysv_abi && wordsize == 4) | |
2952 | /* PowerOpen / AIX 32 bit. */ | |
2953 | set_gdbarch_frame_red_zone_size (gdbarch, 220); | |
a59fe496 | 2954 | set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos); |
28f617b3 | 2955 | set_gdbarch_deprecated_push_return_address (gdbarch, ppc_push_return_address); |
7a78ae4e | 2956 | set_gdbarch_believe_pcc_promotion (gdbarch, 1); |
7a78ae4e | 2957 | |
781a750d AC |
2958 | set_gdbarch_deprecated_register_convertible (gdbarch, rs6000_register_convertible); |
2959 | set_gdbarch_deprecated_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual); | |
2960 | set_gdbarch_deprecated_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw); | |
2188cbdd | 2961 | set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum); |
2ea5f656 KB |
2962 | /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments() |
2963 | is correct for the SysV ABI when the wordsize is 8, but I'm also | |
2964 | fairly certain that ppc_sysv_abi_push_arguments() will give even | |
2965 | worse results since it only works for 32-bit code. So, for the moment, | |
2966 | we're better off calling rs6000_push_arguments() since it works for | |
2967 | 64-bit code. At some point in the future, this matter needs to be | |
2968 | revisited. */ | |
2969 | if (sysv_abi && wordsize == 4) | |
b81774d8 | 2970 | set_gdbarch_deprecated_push_arguments (gdbarch, ppc_sysv_abi_push_arguments); |
9aa1e687 | 2971 | else |
b81774d8 | 2972 | set_gdbarch_deprecated_push_arguments (gdbarch, rs6000_push_arguments); |
7a78ae4e | 2973 | |
4183d812 | 2974 | set_gdbarch_deprecated_store_struct_return (gdbarch, rs6000_store_struct_return); |
11269d7e | 2975 | set_gdbarch_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address); |
749b82f6 | 2976 | set_gdbarch_deprecated_pop_frame (gdbarch, rs6000_pop_frame); |
7a78ae4e ND |
2977 | |
2978 | set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue); | |
2979 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
2980 | set_gdbarch_decr_pc_after_break (gdbarch, 0); | |
2981 | set_gdbarch_function_start_offset (gdbarch, 0); | |
2982 | set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc); | |
2983 | ||
2984 | /* Not sure on this. FIXMEmgo */ | |
2985 | set_gdbarch_frame_args_skip (gdbarch, 8); | |
2986 | ||
8e0662df | 2987 | if (sysv_abi) |
7b112f9c JT |
2988 | set_gdbarch_use_struct_convention (gdbarch, |
2989 | ppc_sysv_abi_use_struct_convention); | |
8e0662df | 2990 | else |
7b112f9c JT |
2991 | set_gdbarch_use_struct_convention (gdbarch, |
2992 | generic_use_struct_convention); | |
8e0662df | 2993 | |
7b112f9c JT |
2994 | set_gdbarch_frameless_function_invocation (gdbarch, |
2995 | rs6000_frameless_function_invocation); | |
618ce49f | 2996 | set_gdbarch_deprecated_frame_chain (gdbarch, rs6000_frame_chain); |
8bedc050 | 2997 | set_gdbarch_deprecated_frame_saved_pc (gdbarch, rs6000_frame_saved_pc); |
7b112f9c | 2998 | |
f30ee0bc | 2999 | set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs); |
e9582e71 | 3000 | set_gdbarch_deprecated_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info); |
7b112f9c | 3001 | |
15813d3f AC |
3002 | if (!sysv_abi) |
3003 | { | |
3004 | /* Handle RS/6000 function pointers (which are really function | |
3005 | descriptors). */ | |
f517ea4e PS |
3006 | set_gdbarch_convert_from_func_ptr_addr (gdbarch, |
3007 | rs6000_convert_from_func_ptr_addr); | |
9aa1e687 | 3008 | } |
42efa47a AC |
3009 | set_gdbarch_deprecated_frame_args_address (gdbarch, rs6000_frame_args_address); |
3010 | set_gdbarch_deprecated_frame_locals_address (gdbarch, rs6000_frame_args_address); | |
6913c89a | 3011 | set_gdbarch_deprecated_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call); |
7a78ae4e | 3012 | |
143985b7 AF |
3013 | /* Helpers for function argument information. */ |
3014 | set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument); | |
3015 | ||
7b112f9c | 3016 | /* Hook in ABI-specific overrides, if they have been registered. */ |
4be87837 | 3017 | gdbarch_init_osabi (info, gdbarch); |
7b112f9c | 3018 | |
7a78ae4e | 3019 | return gdbarch; |
c906108c SS |
3020 | } |
3021 | ||
7b112f9c JT |
3022 | static void |
3023 | rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file) | |
3024 | { | |
3025 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
3026 | ||
3027 | if (tdep == NULL) | |
3028 | return; | |
3029 | ||
4be87837 | 3030 | /* FIXME: Dump gdbarch_tdep. */ |
7b112f9c JT |
3031 | } |
3032 | ||
1fcc0bb8 EZ |
3033 | static struct cmd_list_element *info_powerpc_cmdlist = NULL; |
3034 | ||
3035 | static void | |
3036 | rs6000_info_powerpc_command (char *args, int from_tty) | |
3037 | { | |
3038 | help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout); | |
3039 | } | |
3040 | ||
c906108c SS |
3041 | /* Initialization code. */ |
3042 | ||
a78f21af | 3043 | extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */ |
b9362cc7 | 3044 | |
c906108c | 3045 | void |
fba45db2 | 3046 | _initialize_rs6000_tdep (void) |
c906108c | 3047 | { |
7b112f9c JT |
3048 | gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep); |
3049 | gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep); | |
1fcc0bb8 EZ |
3050 | |
3051 | /* Add root prefix command for "info powerpc" commands */ | |
3052 | add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command, | |
3053 | "Various POWERPC info specific commands.", | |
3054 | &info_powerpc_cmdlist, "info powerpc ", 0, &infolist); | |
c906108c | 3055 | } |