]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Target-dependent code for GDB, the GNU debugger. |
b6ba6518 KB |
2 | Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, |
3 | 1998, 1999, 2000, 2001 | |
c906108c SS |
4 | Free Software Foundation, Inc. |
5 | ||
c5aa993b | 6 | This file is part of GDB. |
c906108c | 7 | |
c5aa993b JM |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
c906108c | 12 | |
c5aa993b JM |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
c906108c | 17 | |
c5aa993b JM |
18 | You should have received a copy of the GNU General Public License |
19 | along with this program; if not, write to the Free Software | |
20 | Foundation, Inc., 59 Temple Place - Suite 330, | |
21 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
22 | |
23 | #include "defs.h" | |
24 | #include "frame.h" | |
25 | #include "inferior.h" | |
26 | #include "symtab.h" | |
27 | #include "target.h" | |
28 | #include "gdbcore.h" | |
29 | #include "gdbcmd.h" | |
30 | #include "symfile.h" | |
31 | #include "objfiles.h" | |
7a78ae4e | 32 | #include "arch-utils.h" |
4e052eda | 33 | #include "regcache.h" |
d16aafd8 | 34 | #include "doublest.h" |
fd0407d6 | 35 | #include "value.h" |
7a78ae4e ND |
36 | |
37 | #include "bfd/libbfd.h" /* for bfd_default_set_arch_mach */ | |
38 | #include "coff/internal.h" /* for libcoff.h */ | |
39 | #include "bfd/libcoff.h" /* for xcoff_data */ | |
40 | ||
9aa1e687 | 41 | #include "elf-bfd.h" |
7a78ae4e | 42 | |
6ded7999 | 43 | #include "solib-svr4.h" |
9aa1e687 | 44 | #include "ppc-tdep.h" |
7a78ae4e ND |
45 | |
46 | /* If the kernel has to deliver a signal, it pushes a sigcontext | |
47 | structure on the stack and then calls the signal handler, passing | |
48 | the address of the sigcontext in an argument register. Usually | |
49 | the signal handler doesn't save this register, so we have to | |
50 | access the sigcontext structure via an offset from the signal handler | |
51 | frame. | |
52 | The following constants were determined by experimentation on AIX 3.2. */ | |
53 | #define SIG_FRAME_PC_OFFSET 96 | |
54 | #define SIG_FRAME_LR_OFFSET 108 | |
55 | #define SIG_FRAME_FP_OFFSET 284 | |
56 | ||
7a78ae4e ND |
57 | /* To be used by skip_prologue. */ |
58 | ||
59 | struct rs6000_framedata | |
60 | { | |
61 | int offset; /* total size of frame --- the distance | |
62 | by which we decrement sp to allocate | |
63 | the frame */ | |
64 | int saved_gpr; /* smallest # of saved gpr */ | |
65 | int saved_fpr; /* smallest # of saved fpr */ | |
66 | int alloca_reg; /* alloca register number (frame ptr) */ | |
67 | char frameless; /* true if frameless functions. */ | |
68 | char nosavedpc; /* true if pc not saved. */ | |
69 | int gpr_offset; /* offset of saved gprs from prev sp */ | |
70 | int fpr_offset; /* offset of saved fprs from prev sp */ | |
71 | int lr_offset; /* offset of saved lr */ | |
72 | int cr_offset; /* offset of saved cr */ | |
73 | }; | |
74 | ||
75 | /* Description of a single register. */ | |
76 | ||
77 | struct reg | |
78 | { | |
79 | char *name; /* name of register */ | |
80 | unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */ | |
81 | unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */ | |
82 | unsigned char fpr; /* whether register is floating-point */ | |
83 | }; | |
84 | ||
7a78ae4e ND |
85 | /* Return the current architecture's gdbarch_tdep structure. */ |
86 | ||
87 | #define TDEP gdbarch_tdep (current_gdbarch) | |
c906108c SS |
88 | |
89 | /* Breakpoint shadows for the single step instructions will be kept here. */ | |
90 | ||
c5aa993b JM |
91 | static struct sstep_breaks |
92 | { | |
93 | /* Address, or 0 if this is not in use. */ | |
94 | CORE_ADDR address; | |
95 | /* Shadow contents. */ | |
96 | char data[4]; | |
97 | } | |
98 | stepBreaks[2]; | |
c906108c SS |
99 | |
100 | /* Hook for determining the TOC address when calling functions in the | |
101 | inferior under AIX. The initialization code in rs6000-nat.c sets | |
102 | this hook to point to find_toc_address. */ | |
103 | ||
7a78ae4e ND |
104 | CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL; |
105 | ||
106 | /* Hook to set the current architecture when starting a child process. | |
107 | rs6000-nat.c sets this. */ | |
108 | ||
109 | void (*rs6000_set_host_arch_hook) (int) = NULL; | |
c906108c SS |
110 | |
111 | /* Static function prototypes */ | |
112 | ||
a14ed312 KB |
113 | static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc, |
114 | CORE_ADDR safety); | |
077276e8 KB |
115 | static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR, |
116 | struct rs6000_framedata *); | |
7a78ae4e ND |
117 | static void frame_get_saved_regs (struct frame_info * fi, |
118 | struct rs6000_framedata * fdatap); | |
119 | static CORE_ADDR frame_initial_stack_address (struct frame_info *); | |
c906108c | 120 | |
7a78ae4e | 121 | /* Read a LEN-byte address from debugged memory address MEMADDR. */ |
c906108c | 122 | |
7a78ae4e ND |
123 | static CORE_ADDR |
124 | read_memory_addr (CORE_ADDR memaddr, int len) | |
125 | { | |
126 | return read_memory_unsigned_integer (memaddr, len); | |
127 | } | |
c906108c | 128 | |
7a78ae4e ND |
129 | static CORE_ADDR |
130 | rs6000_skip_prologue (CORE_ADDR pc) | |
b83266a0 SS |
131 | { |
132 | struct rs6000_framedata frame; | |
077276e8 | 133 | pc = skip_prologue (pc, 0, &frame); |
b83266a0 SS |
134 | return pc; |
135 | } | |
136 | ||
137 | ||
c906108c SS |
138 | /* Fill in fi->saved_regs */ |
139 | ||
140 | struct frame_extra_info | |
141 | { | |
142 | /* Functions calling alloca() change the value of the stack | |
143 | pointer. We need to use initial stack pointer (which is saved in | |
144 | r31 by gcc) in such cases. If a compiler emits traceback table, | |
145 | then we should use the alloca register specified in traceback | |
146 | table. FIXME. */ | |
c5aa993b | 147 | CORE_ADDR initial_sp; /* initial stack pointer. */ |
c906108c SS |
148 | }; |
149 | ||
9aa1e687 | 150 | void |
7a78ae4e | 151 | rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi) |
c906108c | 152 | { |
c5aa993b | 153 | fi->extra_info = (struct frame_extra_info *) |
c906108c SS |
154 | frame_obstack_alloc (sizeof (struct frame_extra_info)); |
155 | fi->extra_info->initial_sp = 0; | |
156 | if (fi->next != (CORE_ADDR) 0 | |
157 | && fi->pc < TEXT_SEGMENT_BASE) | |
7a292a7a | 158 | /* We're in get_prev_frame */ |
c906108c SS |
159 | /* and this is a special signal frame. */ |
160 | /* (fi->pc will be some low address in the kernel, */ | |
161 | /* to which the signal handler returns). */ | |
162 | fi->signal_handler_caller = 1; | |
163 | } | |
164 | ||
7a78ae4e ND |
165 | /* Put here the code to store, into a struct frame_saved_regs, |
166 | the addresses of the saved registers of frame described by FRAME_INFO. | |
167 | This includes special registers such as pc and fp saved in special | |
168 | ways in the stack frame. sp is even more special: | |
169 | the address we return for it IS the sp for the next frame. */ | |
c906108c | 170 | |
7a78ae4e ND |
171 | /* In this implementation for RS/6000, we do *not* save sp. I am |
172 | not sure if it will be needed. The following function takes care of gpr's | |
173 | and fpr's only. */ | |
174 | ||
9aa1e687 | 175 | void |
7a78ae4e | 176 | rs6000_frame_init_saved_regs (struct frame_info *fi) |
c906108c SS |
177 | { |
178 | frame_get_saved_regs (fi, NULL); | |
179 | } | |
180 | ||
7a78ae4e ND |
181 | static CORE_ADDR |
182 | rs6000_frame_args_address (struct frame_info *fi) | |
c906108c SS |
183 | { |
184 | if (fi->extra_info->initial_sp != 0) | |
185 | return fi->extra_info->initial_sp; | |
186 | else | |
187 | return frame_initial_stack_address (fi); | |
188 | } | |
189 | ||
7a78ae4e ND |
190 | /* Immediately after a function call, return the saved pc. |
191 | Can't go through the frames for this because on some machines | |
192 | the new frame is not set up until the new function executes | |
193 | some instructions. */ | |
194 | ||
195 | static CORE_ADDR | |
196 | rs6000_saved_pc_after_call (struct frame_info *fi) | |
197 | { | |
2188cbdd | 198 | return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum); |
7a78ae4e | 199 | } |
c906108c SS |
200 | |
201 | /* Calculate the destination of a branch/jump. Return -1 if not a branch. */ | |
202 | ||
203 | static CORE_ADDR | |
7a78ae4e | 204 | branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety) |
c906108c SS |
205 | { |
206 | CORE_ADDR dest; | |
207 | int immediate; | |
208 | int absolute; | |
209 | int ext_op; | |
210 | ||
211 | absolute = (int) ((instr >> 1) & 1); | |
212 | ||
c5aa993b JM |
213 | switch (opcode) |
214 | { | |
215 | case 18: | |
216 | immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */ | |
217 | if (absolute) | |
218 | dest = immediate; | |
219 | else | |
220 | dest = pc + immediate; | |
221 | break; | |
222 | ||
223 | case 16: | |
224 | immediate = ((instr & ~3) << 16) >> 16; /* br conditional */ | |
225 | if (absolute) | |
226 | dest = immediate; | |
227 | else | |
228 | dest = pc + immediate; | |
229 | break; | |
230 | ||
231 | case 19: | |
232 | ext_op = (instr >> 1) & 0x3ff; | |
233 | ||
234 | if (ext_op == 16) /* br conditional register */ | |
235 | { | |
2188cbdd | 236 | dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3; |
c5aa993b JM |
237 | |
238 | /* If we are about to return from a signal handler, dest is | |
239 | something like 0x3c90. The current frame is a signal handler | |
240 | caller frame, upon completion of the sigreturn system call | |
241 | execution will return to the saved PC in the frame. */ | |
242 | if (dest < TEXT_SEGMENT_BASE) | |
243 | { | |
244 | struct frame_info *fi; | |
245 | ||
246 | fi = get_current_frame (); | |
247 | if (fi != NULL) | |
7a78ae4e ND |
248 | dest = read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET, |
249 | TDEP->wordsize); | |
c5aa993b JM |
250 | } |
251 | } | |
252 | ||
253 | else if (ext_op == 528) /* br cond to count reg */ | |
254 | { | |
2188cbdd | 255 | dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3; |
c5aa993b JM |
256 | |
257 | /* If we are about to execute a system call, dest is something | |
258 | like 0x22fc or 0x3b00. Upon completion the system call | |
259 | will return to the address in the link register. */ | |
260 | if (dest < TEXT_SEGMENT_BASE) | |
2188cbdd | 261 | dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3; |
c5aa993b JM |
262 | } |
263 | else | |
264 | return -1; | |
265 | break; | |
c906108c | 266 | |
c5aa993b JM |
267 | default: |
268 | return -1; | |
269 | } | |
c906108c SS |
270 | return (dest < TEXT_SEGMENT_BASE) ? safety : dest; |
271 | } | |
272 | ||
273 | ||
274 | /* Sequence of bytes for breakpoint instruction. */ | |
275 | ||
276 | #define BIG_BREAKPOINT { 0x7d, 0x82, 0x10, 0x08 } | |
277 | #define LITTLE_BREAKPOINT { 0x08, 0x10, 0x82, 0x7d } | |
278 | ||
7a78ae4e ND |
279 | static unsigned char * |
280 | rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size) | |
c906108c SS |
281 | { |
282 | static unsigned char big_breakpoint[] = BIG_BREAKPOINT; | |
283 | static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT; | |
284 | *bp_size = 4; | |
285 | if (TARGET_BYTE_ORDER == BIG_ENDIAN) | |
286 | return big_breakpoint; | |
287 | else | |
288 | return little_breakpoint; | |
289 | } | |
290 | ||
291 | ||
292 | /* AIX does not support PT_STEP. Simulate it. */ | |
293 | ||
294 | void | |
379d08a1 AC |
295 | rs6000_software_single_step (enum target_signal signal, |
296 | int insert_breakpoints_p) | |
c906108c SS |
297 | { |
298 | #define INSNLEN(OPCODE) 4 | |
299 | ||
300 | static char le_breakp[] = LITTLE_BREAKPOINT; | |
301 | static char be_breakp[] = BIG_BREAKPOINT; | |
302 | char *breakp = TARGET_BYTE_ORDER == BIG_ENDIAN ? be_breakp : le_breakp; | |
303 | int ii, insn; | |
304 | CORE_ADDR loc; | |
305 | CORE_ADDR breaks[2]; | |
306 | int opcode; | |
307 | ||
c5aa993b JM |
308 | if (insert_breakpoints_p) |
309 | { | |
c906108c | 310 | |
c5aa993b | 311 | loc = read_pc (); |
c906108c | 312 | |
c5aa993b | 313 | insn = read_memory_integer (loc, 4); |
c906108c | 314 | |
c5aa993b JM |
315 | breaks[0] = loc + INSNLEN (insn); |
316 | opcode = insn >> 26; | |
317 | breaks[1] = branch_dest (opcode, insn, loc, breaks[0]); | |
c906108c | 318 | |
c5aa993b JM |
319 | /* Don't put two breakpoints on the same address. */ |
320 | if (breaks[1] == breaks[0]) | |
321 | breaks[1] = -1; | |
c906108c | 322 | |
c5aa993b | 323 | stepBreaks[1].address = 0; |
c906108c | 324 | |
c5aa993b JM |
325 | for (ii = 0; ii < 2; ++ii) |
326 | { | |
c906108c | 327 | |
c5aa993b JM |
328 | /* ignore invalid breakpoint. */ |
329 | if (breaks[ii] == -1) | |
330 | continue; | |
c906108c | 331 | |
c5aa993b | 332 | read_memory (breaks[ii], stepBreaks[ii].data, 4); |
c906108c | 333 | |
c5aa993b JM |
334 | write_memory (breaks[ii], breakp, 4); |
335 | stepBreaks[ii].address = breaks[ii]; | |
336 | } | |
c906108c | 337 | |
c5aa993b JM |
338 | } |
339 | else | |
340 | { | |
c906108c | 341 | |
c5aa993b JM |
342 | /* remove step breakpoints. */ |
343 | for (ii = 0; ii < 2; ++ii) | |
344 | if (stepBreaks[ii].address != 0) | |
345 | write_memory | |
346 | (stepBreaks[ii].address, stepBreaks[ii].data, 4); | |
c906108c | 347 | |
c5aa993b | 348 | } |
c906108c | 349 | errno = 0; /* FIXME, don't ignore errors! */ |
c5aa993b | 350 | /* What errors? {read,write}_memory call error(). */ |
c906108c SS |
351 | } |
352 | ||
353 | ||
354 | /* return pc value after skipping a function prologue and also return | |
355 | information about a function frame. | |
356 | ||
357 | in struct rs6000_framedata fdata: | |
c5aa993b JM |
358 | - frameless is TRUE, if function does not have a frame. |
359 | - nosavedpc is TRUE, if function does not save %pc value in its frame. | |
360 | - offset is the initial size of this stack frame --- the amount by | |
361 | which we decrement the sp to allocate the frame. | |
362 | - saved_gpr is the number of the first saved gpr. | |
363 | - saved_fpr is the number of the first saved fpr. | |
364 | - alloca_reg is the number of the register used for alloca() handling. | |
365 | Otherwise -1. | |
366 | - gpr_offset is the offset of the first saved gpr from the previous frame. | |
367 | - fpr_offset is the offset of the first saved fpr from the previous frame. | |
368 | - lr_offset is the offset of the saved lr | |
369 | - cr_offset is the offset of the saved cr | |
370 | */ | |
c906108c SS |
371 | |
372 | #define SIGNED_SHORT(x) \ | |
373 | ((sizeof (short) == 2) \ | |
374 | ? ((int)(short)(x)) \ | |
375 | : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000))) | |
376 | ||
377 | #define GET_SRC_REG(x) (((x) >> 21) & 0x1f) | |
378 | ||
55d05f3b KB |
379 | /* Limit the number of skipped non-prologue instructions, as the examining |
380 | of the prologue is expensive. */ | |
381 | static int max_skip_non_prologue_insns = 10; | |
382 | ||
383 | /* Given PC representing the starting address of a function, and | |
384 | LIM_PC which is the (sloppy) limit to which to scan when looking | |
385 | for a prologue, attempt to further refine this limit by using | |
386 | the line data in the symbol table. If successful, a better guess | |
387 | on where the prologue ends is returned, otherwise the previous | |
388 | value of lim_pc is returned. */ | |
389 | static CORE_ADDR | |
390 | refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc) | |
391 | { | |
392 | struct symtab_and_line prologue_sal; | |
393 | ||
394 | prologue_sal = find_pc_line (pc, 0); | |
395 | if (prologue_sal.line != 0) | |
396 | { | |
397 | int i; | |
398 | CORE_ADDR addr = prologue_sal.end; | |
399 | ||
400 | /* Handle the case in which compiler's optimizer/scheduler | |
401 | has moved instructions into the prologue. We scan ahead | |
402 | in the function looking for address ranges whose corresponding | |
403 | line number is less than or equal to the first one that we | |
404 | found for the function. (It can be less than when the | |
405 | scheduler puts a body instruction before the first prologue | |
406 | instruction.) */ | |
407 | for (i = 2 * max_skip_non_prologue_insns; | |
408 | i > 0 && (lim_pc == 0 || addr < lim_pc); | |
409 | i--) | |
410 | { | |
411 | struct symtab_and_line sal; | |
412 | ||
413 | sal = find_pc_line (addr, 0); | |
414 | if (sal.line == 0) | |
415 | break; | |
416 | if (sal.line <= prologue_sal.line | |
417 | && sal.symtab == prologue_sal.symtab) | |
418 | { | |
419 | prologue_sal = sal; | |
420 | } | |
421 | addr = sal.end; | |
422 | } | |
423 | ||
424 | if (lim_pc == 0 || prologue_sal.end < lim_pc) | |
425 | lim_pc = prologue_sal.end; | |
426 | } | |
427 | return lim_pc; | |
428 | } | |
429 | ||
430 | ||
7a78ae4e | 431 | static CORE_ADDR |
077276e8 | 432 | skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata) |
c906108c SS |
433 | { |
434 | CORE_ADDR orig_pc = pc; | |
55d05f3b | 435 | CORE_ADDR last_prologue_pc = pc; |
c906108c SS |
436 | char buf[4]; |
437 | unsigned long op; | |
438 | long offset = 0; | |
482ca3f5 KB |
439 | int lr_reg = -1; |
440 | int cr_reg = -1; | |
c906108c SS |
441 | int reg; |
442 | int framep = 0; | |
443 | int minimal_toc_loaded = 0; | |
ddb20c56 | 444 | int prev_insn_was_prologue_insn = 1; |
55d05f3b KB |
445 | int num_skip_non_prologue_insns = 0; |
446 | ||
447 | /* Attempt to find the end of the prologue when no limit is specified. | |
448 | Note that refine_prologue_limit() has been written so that it may | |
449 | be used to "refine" the limits of non-zero PC values too, but this | |
450 | is only safe if we 1) trust the line information provided by the | |
451 | compiler and 2) iterate enough to actually find the end of the | |
452 | prologue. | |
453 | ||
454 | It may become a good idea at some point (for both performance and | |
455 | accuracy) to unconditionally call refine_prologue_limit(). But, | |
456 | until we can make a clear determination that this is beneficial, | |
457 | we'll play it safe and only use it to obtain a limit when none | |
458 | has been specified. */ | |
459 | if (lim_pc == 0) | |
460 | lim_pc = refine_prologue_limit (pc, lim_pc); | |
c906108c | 461 | |
ddb20c56 | 462 | memset (fdata, 0, sizeof (struct rs6000_framedata)); |
c906108c SS |
463 | fdata->saved_gpr = -1; |
464 | fdata->saved_fpr = -1; | |
465 | fdata->alloca_reg = -1; | |
466 | fdata->frameless = 1; | |
467 | fdata->nosavedpc = 1; | |
468 | ||
55d05f3b | 469 | for (;; pc += 4) |
c906108c | 470 | { |
ddb20c56 KB |
471 | /* Sometimes it isn't clear if an instruction is a prologue |
472 | instruction or not. When we encounter one of these ambiguous | |
473 | cases, we'll set prev_insn_was_prologue_insn to 0 (false). | |
474 | Otherwise, we'll assume that it really is a prologue instruction. */ | |
475 | if (prev_insn_was_prologue_insn) | |
476 | last_prologue_pc = pc; | |
55d05f3b KB |
477 | |
478 | /* Stop scanning if we've hit the limit. */ | |
479 | if (lim_pc != 0 && pc >= lim_pc) | |
480 | break; | |
481 | ||
ddb20c56 KB |
482 | prev_insn_was_prologue_insn = 1; |
483 | ||
55d05f3b | 484 | /* Fetch the instruction and convert it to an integer. */ |
ddb20c56 KB |
485 | if (target_read_memory (pc, buf, 4)) |
486 | break; | |
487 | op = extract_signed_integer (buf, 4); | |
c906108c | 488 | |
c5aa993b JM |
489 | if ((op & 0xfc1fffff) == 0x7c0802a6) |
490 | { /* mflr Rx */ | |
491 | lr_reg = (op & 0x03e00000) | 0x90010000; | |
492 | continue; | |
c906108c | 493 | |
c5aa993b JM |
494 | } |
495 | else if ((op & 0xfc1fffff) == 0x7c000026) | |
496 | { /* mfcr Rx */ | |
497 | cr_reg = (op & 0x03e00000) | 0x90010000; | |
498 | continue; | |
c906108c | 499 | |
c906108c | 500 | } |
c5aa993b JM |
501 | else if ((op & 0xfc1f0000) == 0xd8010000) |
502 | { /* stfd Rx,NUM(r1) */ | |
503 | reg = GET_SRC_REG (op); | |
504 | if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg) | |
505 | { | |
506 | fdata->saved_fpr = reg; | |
507 | fdata->fpr_offset = SIGNED_SHORT (op) + offset; | |
508 | } | |
509 | continue; | |
c906108c | 510 | |
c5aa993b JM |
511 | } |
512 | else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */ | |
7a78ae4e ND |
513 | (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */ |
514 | (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */ | |
515 | (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */ | |
c5aa993b JM |
516 | { |
517 | ||
518 | reg = GET_SRC_REG (op); | |
519 | if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg) | |
520 | { | |
521 | fdata->saved_gpr = reg; | |
7a78ae4e ND |
522 | if ((op & 0xfc1f0003) == 0xf8010000) |
523 | op = (op >> 1) << 1; | |
c5aa993b JM |
524 | fdata->gpr_offset = SIGNED_SHORT (op) + offset; |
525 | } | |
526 | continue; | |
c906108c | 527 | |
ddb20c56 KB |
528 | } |
529 | else if ((op & 0xffff0000) == 0x60000000) | |
530 | { | |
531 | /* nop */ | |
532 | /* Allow nops in the prologue, but do not consider them to | |
533 | be part of the prologue unless followed by other prologue | |
534 | instructions. */ | |
535 | prev_insn_was_prologue_insn = 0; | |
536 | continue; | |
537 | ||
c906108c | 538 | } |
c5aa993b JM |
539 | else if ((op & 0xffff0000) == 0x3c000000) |
540 | { /* addis 0,0,NUM, used | |
541 | for >= 32k frames */ | |
542 | fdata->offset = (op & 0x0000ffff) << 16; | |
543 | fdata->frameless = 0; | |
544 | continue; | |
545 | ||
546 | } | |
547 | else if ((op & 0xffff0000) == 0x60000000) | |
548 | { /* ori 0,0,NUM, 2nd ha | |
549 | lf of >= 32k frames */ | |
550 | fdata->offset |= (op & 0x0000ffff); | |
551 | fdata->frameless = 0; | |
552 | continue; | |
553 | ||
554 | } | |
482ca3f5 | 555 | else if (lr_reg != -1 && (op & 0xffff0000) == lr_reg) |
c5aa993b JM |
556 | { /* st Rx,NUM(r1) |
557 | where Rx == lr */ | |
558 | fdata->lr_offset = SIGNED_SHORT (op) + offset; | |
559 | fdata->nosavedpc = 0; | |
560 | lr_reg = 0; | |
561 | continue; | |
562 | ||
563 | } | |
482ca3f5 | 564 | else if (cr_reg != -1 && (op & 0xffff0000) == cr_reg) |
c5aa993b JM |
565 | { /* st Rx,NUM(r1) |
566 | where Rx == cr */ | |
567 | fdata->cr_offset = SIGNED_SHORT (op) + offset; | |
568 | cr_reg = 0; | |
569 | continue; | |
570 | ||
571 | } | |
572 | else if (op == 0x48000005) | |
573 | { /* bl .+4 used in | |
574 | -mrelocatable */ | |
575 | continue; | |
576 | ||
577 | } | |
578 | else if (op == 0x48000004) | |
579 | { /* b .+4 (xlc) */ | |
580 | break; | |
581 | ||
582 | } | |
583 | else if (((op & 0xffff0000) == 0x801e0000 || /* lwz 0,NUM(r30), used | |
c906108c | 584 | in V.4 -mrelocatable */ |
c5aa993b JM |
585 | op == 0x7fc0f214) && /* add r30,r0,r30, used |
586 | in V.4 -mrelocatable */ | |
587 | lr_reg == 0x901e0000) | |
588 | { | |
589 | continue; | |
c906108c | 590 | |
c5aa993b JM |
591 | } |
592 | else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used | |
c906108c | 593 | in V.4 -mminimal-toc */ |
c5aa993b JM |
594 | (op & 0xffff0000) == 0x3bde0000) |
595 | { /* addi 30,30,foo@l */ | |
596 | continue; | |
c906108c | 597 | |
c5aa993b JM |
598 | } |
599 | else if ((op & 0xfc000001) == 0x48000001) | |
600 | { /* bl foo, | |
601 | to save fprs??? */ | |
c906108c | 602 | |
c5aa993b JM |
603 | fdata->frameless = 0; |
604 | /* Don't skip over the subroutine call if it is not within the first | |
605 | three instructions of the prologue. */ | |
606 | if ((pc - orig_pc) > 8) | |
607 | break; | |
608 | ||
609 | op = read_memory_integer (pc + 4, 4); | |
610 | ||
611 | /* At this point, make sure this is not a trampoline function | |
612 | (a function that simply calls another functions, and nothing else). | |
613 | If the next is not a nop, this branch was part of the function | |
614 | prologue. */ | |
615 | ||
616 | if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */ | |
617 | break; /* don't skip over | |
618 | this branch */ | |
619 | continue; | |
620 | ||
621 | /* update stack pointer */ | |
622 | } | |
7a78ae4e ND |
623 | else if ((op & 0xffff0000) == 0x94210000 || /* stu r1,NUM(r1) */ |
624 | (op & 0xffff0003) == 0xf8210001) /* stdu r1,NUM(r1) */ | |
625 | { | |
c5aa993b | 626 | fdata->frameless = 0; |
7a78ae4e ND |
627 | if ((op & 0xffff0003) == 0xf8210001) |
628 | op = (op >> 1) << 1; | |
c5aa993b JM |
629 | fdata->offset = SIGNED_SHORT (op); |
630 | offset = fdata->offset; | |
631 | continue; | |
632 | ||
633 | } | |
634 | else if (op == 0x7c21016e) | |
635 | { /* stwux 1,1,0 */ | |
636 | fdata->frameless = 0; | |
637 | offset = fdata->offset; | |
638 | continue; | |
639 | ||
640 | /* Load up minimal toc pointer */ | |
641 | } | |
642 | else if ((op >> 22) == 0x20f | |
643 | && !minimal_toc_loaded) | |
644 | { /* l r31,... or l r30,... */ | |
645 | minimal_toc_loaded = 1; | |
646 | continue; | |
647 | ||
f6077098 KB |
648 | /* move parameters from argument registers to local variable |
649 | registers */ | |
650 | } | |
651 | else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */ | |
652 | (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */ | |
653 | (((op >> 21) & 31) <= 10) && | |
654 | (((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */ | |
655 | { | |
656 | continue; | |
657 | ||
c5aa993b JM |
658 | /* store parameters in stack */ |
659 | } | |
660 | else if ((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */ | |
7a78ae4e | 661 | (op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */ |
c5aa993b | 662 | (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */ |
7a78ae4e ND |
663 | (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */ |
664 | { | |
c5aa993b | 665 | continue; |
c906108c | 666 | |
c5aa993b JM |
667 | /* store parameters in stack via frame pointer */ |
668 | } | |
669 | else if (framep && | |
670 | ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */ | |
671 | (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */ | |
672 | (op & 0xfc1f0000) == 0xfc1f0000)) | |
673 | { /* frsp, fp?,NUM(r1) */ | |
674 | continue; | |
675 | ||
676 | /* Set up frame pointer */ | |
677 | } | |
678 | else if (op == 0x603f0000 /* oril r31, r1, 0x0 */ | |
679 | || op == 0x7c3f0b78) | |
680 | { /* mr r31, r1 */ | |
681 | fdata->frameless = 0; | |
682 | framep = 1; | |
683 | fdata->alloca_reg = 31; | |
684 | continue; | |
685 | ||
686 | /* Another way to set up the frame pointer. */ | |
687 | } | |
688 | else if ((op & 0xfc1fffff) == 0x38010000) | |
689 | { /* addi rX, r1, 0x0 */ | |
690 | fdata->frameless = 0; | |
691 | framep = 1; | |
692 | fdata->alloca_reg = (op & ~0x38010000) >> 21; | |
693 | continue; | |
694 | ||
695 | } | |
696 | else | |
697 | { | |
55d05f3b KB |
698 | /* Not a recognized prologue instruction. |
699 | Handle optimizer code motions into the prologue by continuing | |
700 | the search if we have no valid frame yet or if the return | |
701 | address is not yet saved in the frame. */ | |
702 | if (fdata->frameless == 0 | |
703 | && (lr_reg == -1 || fdata->nosavedpc == 0)) | |
704 | break; | |
705 | ||
706 | if (op == 0x4e800020 /* blr */ | |
707 | || op == 0x4e800420) /* bctr */ | |
708 | /* Do not scan past epilogue in frameless functions or | |
709 | trampolines. */ | |
710 | break; | |
711 | if ((op & 0xf4000000) == 0x40000000) /* bxx */ | |
712 | /* Never skip branches. */ | |
713 | break; | |
714 | ||
715 | if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns) | |
716 | /* Do not scan too many insns, scanning insns is expensive with | |
717 | remote targets. */ | |
718 | break; | |
719 | ||
720 | /* Continue scanning. */ | |
721 | prev_insn_was_prologue_insn = 0; | |
722 | continue; | |
c5aa993b | 723 | } |
c906108c SS |
724 | } |
725 | ||
726 | #if 0 | |
727 | /* I have problems with skipping over __main() that I need to address | |
728 | * sometime. Previously, I used to use misc_function_vector which | |
729 | * didn't work as well as I wanted to be. -MGO */ | |
730 | ||
731 | /* If the first thing after skipping a prolog is a branch to a function, | |
732 | this might be a call to an initializer in main(), introduced by gcc2. | |
733 | We'd like to skip over it as well. Fortunately, xlc does some extra | |
734 | work before calling a function right after a prologue, thus we can | |
735 | single out such gcc2 behaviour. */ | |
c906108c | 736 | |
c906108c | 737 | |
c5aa993b JM |
738 | if ((op & 0xfc000001) == 0x48000001) |
739 | { /* bl foo, an initializer function? */ | |
740 | op = read_memory_integer (pc + 4, 4); | |
741 | ||
742 | if (op == 0x4def7b82) | |
743 | { /* cror 0xf, 0xf, 0xf (nop) */ | |
c906108c | 744 | |
c5aa993b JM |
745 | /* check and see if we are in main. If so, skip over this initializer |
746 | function as well. */ | |
c906108c | 747 | |
c5aa993b | 748 | tmp = find_pc_misc_function (pc); |
51cc5b07 | 749 | if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, main_name ())) |
c5aa993b JM |
750 | return pc + 8; |
751 | } | |
c906108c | 752 | } |
c906108c | 753 | #endif /* 0 */ |
c5aa993b JM |
754 | |
755 | fdata->offset = -fdata->offset; | |
ddb20c56 | 756 | return last_prologue_pc; |
c906108c SS |
757 | } |
758 | ||
759 | ||
760 | /************************************************************************* | |
f6077098 | 761 | Support for creating pushing a dummy frame into the stack, and popping |
c906108c SS |
762 | frames, etc. |
763 | *************************************************************************/ | |
764 | ||
c906108c | 765 | |
7a78ae4e | 766 | /* Pop the innermost frame, go back to the caller. */ |
c5aa993b | 767 | |
c906108c | 768 | static void |
7a78ae4e | 769 | rs6000_pop_frame (void) |
c906108c | 770 | { |
470d5666 | 771 | CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */ |
c906108c SS |
772 | struct rs6000_framedata fdata; |
773 | struct frame_info *frame = get_current_frame (); | |
470d5666 | 774 | int ii, wordsize; |
c906108c SS |
775 | |
776 | pc = read_pc (); | |
777 | sp = FRAME_FP (frame); | |
778 | ||
58223630 | 779 | if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame)) |
c906108c | 780 | { |
7a78ae4e ND |
781 | generic_pop_dummy_frame (); |
782 | flush_cached_frames (); | |
783 | return; | |
c906108c SS |
784 | } |
785 | ||
786 | /* Make sure that all registers are valid. */ | |
787 | read_register_bytes (0, NULL, REGISTER_BYTES); | |
788 | ||
789 | /* figure out previous %pc value. If the function is frameless, it is | |
790 | still in the link register, otherwise walk the frames and retrieve the | |
791 | saved %pc value in the previous frame. */ | |
792 | ||
793 | addr = get_pc_function_start (frame->pc); | |
077276e8 | 794 | (void) skip_prologue (addr, frame->pc, &fdata); |
c906108c | 795 | |
7a78ae4e | 796 | wordsize = TDEP->wordsize; |
c906108c SS |
797 | if (fdata.frameless) |
798 | prev_sp = sp; | |
799 | else | |
7a78ae4e | 800 | prev_sp = read_memory_addr (sp, wordsize); |
c906108c | 801 | if (fdata.lr_offset == 0) |
2188cbdd | 802 | lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum); |
c906108c | 803 | else |
7a78ae4e | 804 | lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize); |
c906108c SS |
805 | |
806 | /* reset %pc value. */ | |
807 | write_register (PC_REGNUM, lr); | |
808 | ||
809 | /* reset register values if any was saved earlier. */ | |
810 | ||
811 | if (fdata.saved_gpr != -1) | |
812 | { | |
813 | addr = prev_sp + fdata.gpr_offset; | |
c5aa993b JM |
814 | for (ii = fdata.saved_gpr; ii <= 31; ++ii) |
815 | { | |
7a78ae4e ND |
816 | read_memory (addr, ®isters[REGISTER_BYTE (ii)], wordsize); |
817 | addr += wordsize; | |
c5aa993b | 818 | } |
c906108c SS |
819 | } |
820 | ||
821 | if (fdata.saved_fpr != -1) | |
822 | { | |
823 | addr = prev_sp + fdata.fpr_offset; | |
c5aa993b JM |
824 | for (ii = fdata.saved_fpr; ii <= 31; ++ii) |
825 | { | |
826 | read_memory (addr, ®isters[REGISTER_BYTE (ii + FP0_REGNUM)], 8); | |
827 | addr += 8; | |
828 | } | |
c906108c SS |
829 | } |
830 | ||
831 | write_register (SP_REGNUM, prev_sp); | |
832 | target_store_registers (-1); | |
833 | flush_cached_frames (); | |
834 | } | |
835 | ||
7a78ae4e ND |
836 | /* Fixup the call sequence of a dummy function, with the real function |
837 | address. Its arguments will be passed by gdb. */ | |
c906108c | 838 | |
7a78ae4e ND |
839 | static void |
840 | rs6000_fix_call_dummy (char *dummyname, CORE_ADDR pc, CORE_ADDR fun, | |
ea7c478f | 841 | int nargs, struct value **args, struct type *type, |
7a78ae4e | 842 | int gcc_p) |
c906108c SS |
843 | { |
844 | #define TOC_ADDR_OFFSET 20 | |
845 | #define TARGET_ADDR_OFFSET 28 | |
846 | ||
847 | int ii; | |
848 | CORE_ADDR target_addr; | |
849 | ||
7a78ae4e | 850 | if (rs6000_find_toc_address_hook != NULL) |
f6077098 | 851 | { |
7a78ae4e | 852 | CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (fun); |
2188cbdd EZ |
853 | write_register (gdbarch_tdep (current_gdbarch)->ppc_toc_regnum, |
854 | tocvalue); | |
f6077098 | 855 | } |
c906108c SS |
856 | } |
857 | ||
7a78ae4e | 858 | /* Pass the arguments in either registers, or in the stack. In RS/6000, |
c906108c SS |
859 | the first eight words of the argument list (that might be less than |
860 | eight parameters if some parameters occupy more than one word) are | |
7a78ae4e | 861 | passed in r3..r10 registers. float and double parameters are |
c906108c SS |
862 | passed in fpr's, in addition to that. Rest of the parameters if any |
863 | are passed in user stack. There might be cases in which half of the | |
864 | parameter is copied into registers, the other half is pushed into | |
865 | stack. | |
866 | ||
7a78ae4e ND |
867 | Stack must be aligned on 64-bit boundaries when synthesizing |
868 | function calls. | |
869 | ||
c906108c SS |
870 | If the function is returning a structure, then the return address is passed |
871 | in r3, then the first 7 words of the parameters can be passed in registers, | |
872 | starting from r4. */ | |
873 | ||
7a78ae4e | 874 | static CORE_ADDR |
ea7c478f | 875 | rs6000_push_arguments (int nargs, struct value **args, CORE_ADDR sp, |
7a78ae4e | 876 | int struct_return, CORE_ADDR struct_addr) |
c906108c SS |
877 | { |
878 | int ii; | |
879 | int len = 0; | |
c5aa993b JM |
880 | int argno; /* current argument number */ |
881 | int argbytes; /* current argument byte */ | |
882 | char tmp_buffer[50]; | |
883 | int f_argno = 0; /* current floating point argno */ | |
7a78ae4e | 884 | int wordsize = TDEP->wordsize; |
c906108c | 885 | |
ea7c478f | 886 | struct value *arg = 0; |
c906108c SS |
887 | struct type *type; |
888 | ||
889 | CORE_ADDR saved_sp; | |
890 | ||
c906108c SS |
891 | /* The first eight words of ther arguments are passed in registers. Copy |
892 | them appropriately. | |
893 | ||
894 | If the function is returning a `struct', then the first word (which | |
895 | will be passed in r3) is used for struct return address. In that | |
896 | case we should advance one word and start from r4 register to copy | |
897 | parameters. */ | |
898 | ||
c5aa993b | 899 | ii = struct_return ? 1 : 0; |
c906108c SS |
900 | |
901 | /* | |
c5aa993b JM |
902 | effectively indirect call... gcc does... |
903 | ||
904 | return_val example( float, int); | |
905 | ||
906 | eabi: | |
907 | float in fp0, int in r3 | |
908 | offset of stack on overflow 8/16 | |
909 | for varargs, must go by type. | |
910 | power open: | |
911 | float in r3&r4, int in r5 | |
912 | offset of stack on overflow different | |
913 | both: | |
914 | return in r3 or f0. If no float, must study how gcc emulates floats; | |
915 | pay attention to arg promotion. | |
916 | User may have to cast\args to handle promotion correctly | |
917 | since gdb won't know if prototype supplied or not. | |
918 | */ | |
c906108c | 919 | |
c5aa993b JM |
920 | for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii) |
921 | { | |
f6077098 | 922 | int reg_size = REGISTER_RAW_SIZE (ii + 3); |
c5aa993b JM |
923 | |
924 | arg = args[argno]; | |
925 | type = check_typedef (VALUE_TYPE (arg)); | |
926 | len = TYPE_LENGTH (type); | |
927 | ||
928 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
929 | { | |
930 | ||
931 | /* floating point arguments are passed in fpr's, as well as gpr's. | |
932 | There are 13 fpr's reserved for passing parameters. At this point | |
933 | there is no way we would run out of them. */ | |
934 | ||
935 | if (len > 8) | |
936 | printf_unfiltered ( | |
937 | "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno); | |
938 | ||
939 | memcpy (®isters[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)], | |
940 | VALUE_CONTENTS (arg), | |
941 | len); | |
942 | ++f_argno; | |
943 | } | |
944 | ||
f6077098 | 945 | if (len > reg_size) |
c5aa993b JM |
946 | { |
947 | ||
948 | /* Argument takes more than one register. */ | |
949 | while (argbytes < len) | |
950 | { | |
f6077098 | 951 | memset (®isters[REGISTER_BYTE (ii + 3)], 0, reg_size); |
c5aa993b JM |
952 | memcpy (®isters[REGISTER_BYTE (ii + 3)], |
953 | ((char *) VALUE_CONTENTS (arg)) + argbytes, | |
f6077098 KB |
954 | (len - argbytes) > reg_size |
955 | ? reg_size : len - argbytes); | |
956 | ++ii, argbytes += reg_size; | |
c5aa993b JM |
957 | |
958 | if (ii >= 8) | |
959 | goto ran_out_of_registers_for_arguments; | |
960 | } | |
961 | argbytes = 0; | |
962 | --ii; | |
963 | } | |
964 | else | |
965 | { /* Argument can fit in one register. No problem. */ | |
f6077098 KB |
966 | int adj = TARGET_BYTE_ORDER == BIG_ENDIAN ? reg_size - len : 0; |
967 | memset (®isters[REGISTER_BYTE (ii + 3)], 0, reg_size); | |
968 | memcpy ((char *)®isters[REGISTER_BYTE (ii + 3)] + adj, | |
969 | VALUE_CONTENTS (arg), len); | |
c5aa993b JM |
970 | } |
971 | ++argno; | |
c906108c | 972 | } |
c906108c SS |
973 | |
974 | ran_out_of_registers_for_arguments: | |
975 | ||
7a78ae4e | 976 | saved_sp = read_sp (); |
f6077098 | 977 | #ifndef ELF_OBJECT_FORMAT |
7a78ae4e ND |
978 | /* location for 8 parameters are always reserved. */ |
979 | sp -= wordsize * 8; | |
f6077098 | 980 | |
7a78ae4e ND |
981 | /* another six words for back chain, TOC register, link register, etc. */ |
982 | sp -= wordsize * 6; | |
f6077098 | 983 | |
7a78ae4e ND |
984 | /* stack pointer must be quadword aligned */ |
985 | sp &= -16; | |
f6077098 | 986 | #endif |
c906108c | 987 | |
c906108c SS |
988 | /* if there are more arguments, allocate space for them in |
989 | the stack, then push them starting from the ninth one. */ | |
990 | ||
c5aa993b JM |
991 | if ((argno < nargs) || argbytes) |
992 | { | |
993 | int space = 0, jj; | |
c906108c | 994 | |
c5aa993b JM |
995 | if (argbytes) |
996 | { | |
997 | space += ((len - argbytes + 3) & -4); | |
998 | jj = argno + 1; | |
999 | } | |
1000 | else | |
1001 | jj = argno; | |
c906108c | 1002 | |
c5aa993b JM |
1003 | for (; jj < nargs; ++jj) |
1004 | { | |
ea7c478f | 1005 | struct value *val = args[jj]; |
c5aa993b JM |
1006 | space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4; |
1007 | } | |
c906108c | 1008 | |
c5aa993b | 1009 | /* add location required for the rest of the parameters */ |
f6077098 | 1010 | space = (space + 15) & -16; |
c5aa993b | 1011 | sp -= space; |
c906108c | 1012 | |
c5aa993b JM |
1013 | /* This is another instance we need to be concerned about securing our |
1014 | stack space. If we write anything underneath %sp (r1), we might conflict | |
1015 | with the kernel who thinks he is free to use this area. So, update %sp | |
1016 | first before doing anything else. */ | |
c906108c | 1017 | |
c5aa993b | 1018 | write_register (SP_REGNUM, sp); |
c906108c | 1019 | |
c5aa993b JM |
1020 | /* if the last argument copied into the registers didn't fit there |
1021 | completely, push the rest of it into stack. */ | |
c906108c | 1022 | |
c5aa993b JM |
1023 | if (argbytes) |
1024 | { | |
1025 | write_memory (sp + 24 + (ii * 4), | |
1026 | ((char *) VALUE_CONTENTS (arg)) + argbytes, | |
1027 | len - argbytes); | |
1028 | ++argno; | |
1029 | ii += ((len - argbytes + 3) & -4) / 4; | |
1030 | } | |
c906108c | 1031 | |
c5aa993b JM |
1032 | /* push the rest of the arguments into stack. */ |
1033 | for (; argno < nargs; ++argno) | |
1034 | { | |
c906108c | 1035 | |
c5aa993b JM |
1036 | arg = args[argno]; |
1037 | type = check_typedef (VALUE_TYPE (arg)); | |
1038 | len = TYPE_LENGTH (type); | |
c906108c SS |
1039 | |
1040 | ||
c5aa993b JM |
1041 | /* float types should be passed in fpr's, as well as in the stack. */ |
1042 | if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13) | |
1043 | { | |
c906108c | 1044 | |
c5aa993b JM |
1045 | if (len > 8) |
1046 | printf_unfiltered ( | |
1047 | "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno); | |
c906108c | 1048 | |
c5aa993b JM |
1049 | memcpy (®isters[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)], |
1050 | VALUE_CONTENTS (arg), | |
1051 | len); | |
1052 | ++f_argno; | |
1053 | } | |
c906108c | 1054 | |
c5aa993b JM |
1055 | write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len); |
1056 | ii += ((len + 3) & -4) / 4; | |
1057 | } | |
c906108c | 1058 | } |
c906108c SS |
1059 | else |
1060 | /* Secure stack areas first, before doing anything else. */ | |
1061 | write_register (SP_REGNUM, sp); | |
1062 | ||
c906108c SS |
1063 | /* set back chain properly */ |
1064 | store_address (tmp_buffer, 4, saved_sp); | |
1065 | write_memory (sp, tmp_buffer, 4); | |
1066 | ||
1067 | target_store_registers (-1); | |
1068 | return sp; | |
1069 | } | |
c906108c SS |
1070 | |
1071 | /* Function: ppc_push_return_address (pc, sp) | |
1072 | Set up the return address for the inferior function call. */ | |
1073 | ||
7a78ae4e ND |
1074 | static CORE_ADDR |
1075 | ppc_push_return_address (CORE_ADDR pc, CORE_ADDR sp) | |
c906108c | 1076 | { |
2188cbdd EZ |
1077 | write_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum, |
1078 | CALL_DUMMY_ADDRESS ()); | |
c906108c SS |
1079 | return sp; |
1080 | } | |
1081 | ||
7a78ae4e ND |
1082 | /* Extract a function return value of type TYPE from raw register array |
1083 | REGBUF, and copy that return value into VALBUF in virtual format. */ | |
c906108c | 1084 | |
7a78ae4e ND |
1085 | static void |
1086 | rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf) | |
c906108c SS |
1087 | { |
1088 | int offset = 0; | |
1089 | ||
c5aa993b JM |
1090 | if (TYPE_CODE (valtype) == TYPE_CODE_FLT) |
1091 | { | |
c906108c | 1092 | |
c5aa993b JM |
1093 | double dd; |
1094 | float ff; | |
1095 | /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes. | |
1096 | We need to truncate the return value into float size (4 byte) if | |
1097 | necessary. */ | |
c906108c | 1098 | |
c5aa993b JM |
1099 | if (TYPE_LENGTH (valtype) > 4) /* this is a double */ |
1100 | memcpy (valbuf, | |
1101 | ®buf[REGISTER_BYTE (FP0_REGNUM + 1)], | |
1102 | TYPE_LENGTH (valtype)); | |
1103 | else | |
1104 | { /* float */ | |
1105 | memcpy (&dd, ®buf[REGISTER_BYTE (FP0_REGNUM + 1)], 8); | |
1106 | ff = (float) dd; | |
1107 | memcpy (valbuf, &ff, sizeof (float)); | |
1108 | } | |
1109 | } | |
1110 | else | |
1111 | { | |
1112 | /* return value is copied starting from r3. */ | |
1113 | if (TARGET_BYTE_ORDER == BIG_ENDIAN | |
1114 | && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3)) | |
1115 | offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype); | |
1116 | ||
1117 | memcpy (valbuf, | |
1118 | regbuf + REGISTER_BYTE (3) + offset, | |
c906108c | 1119 | TYPE_LENGTH (valtype)); |
c906108c | 1120 | } |
c906108c SS |
1121 | } |
1122 | ||
7a78ae4e | 1123 | /* Keep structure return address in this variable. |
c906108c SS |
1124 | FIXME: This is a horrid kludge which should not be allowed to continue |
1125 | living. This only allows a single nested call to a structure-returning | |
1126 | function. Come on, guys! -- [email protected], Aug 92 */ | |
1127 | ||
7a78ae4e | 1128 | static CORE_ADDR rs6000_struct_return_address; |
c906108c | 1129 | |
977adac5 ND |
1130 | /* Return whether handle_inferior_event() should proceed through code |
1131 | starting at PC in function NAME when stepping. | |
1132 | ||
1133 | The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to | |
1134 | handle memory references that are too distant to fit in instructions | |
1135 | generated by the compiler. For example, if 'foo' in the following | |
1136 | instruction: | |
1137 | ||
1138 | lwz r9,foo(r2) | |
1139 | ||
1140 | is greater than 32767, the linker might replace the lwz with a branch to | |
1141 | somewhere in @FIX1 that does the load in 2 instructions and then branches | |
1142 | back to where execution should continue. | |
1143 | ||
1144 | GDB should silently step over @FIX code, just like AIX dbx does. | |
1145 | Unfortunately, the linker uses the "b" instruction for the branches, | |
1146 | meaning that the link register doesn't get set. Therefore, GDB's usual | |
1147 | step_over_function() mechanism won't work. | |
1148 | ||
1149 | Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks | |
1150 | in handle_inferior_event() to skip past @FIX code. */ | |
1151 | ||
1152 | int | |
1153 | rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name) | |
1154 | { | |
1155 | return name && !strncmp (name, "@FIX", 4); | |
1156 | } | |
1157 | ||
1158 | /* Skip code that the user doesn't want to see when stepping: | |
1159 | ||
1160 | 1. Indirect function calls use a piece of trampoline code to do context | |
1161 | switching, i.e. to set the new TOC table. Skip such code if we are on | |
1162 | its first instruction (as when we have single-stepped to here). | |
1163 | ||
1164 | 2. Skip shared library trampoline code (which is different from | |
c906108c | 1165 | indirect function call trampolines). |
977adac5 ND |
1166 | |
1167 | 3. Skip bigtoc fixup code. | |
1168 | ||
c906108c | 1169 | Result is desired PC to step until, or NULL if we are not in |
977adac5 | 1170 | code that should be skipped. */ |
c906108c SS |
1171 | |
1172 | CORE_ADDR | |
7a78ae4e | 1173 | rs6000_skip_trampoline_code (CORE_ADDR pc) |
c906108c SS |
1174 | { |
1175 | register unsigned int ii, op; | |
977adac5 | 1176 | int rel; |
c906108c | 1177 | CORE_ADDR solib_target_pc; |
977adac5 | 1178 | struct minimal_symbol *msymbol; |
c906108c | 1179 | |
c5aa993b JM |
1180 | static unsigned trampoline_code[] = |
1181 | { | |
1182 | 0x800b0000, /* l r0,0x0(r11) */ | |
1183 | 0x90410014, /* st r2,0x14(r1) */ | |
1184 | 0x7c0903a6, /* mtctr r0 */ | |
1185 | 0x804b0004, /* l r2,0x4(r11) */ | |
1186 | 0x816b0008, /* l r11,0x8(r11) */ | |
1187 | 0x4e800420, /* bctr */ | |
1188 | 0x4e800020, /* br */ | |
1189 | 0 | |
c906108c SS |
1190 | }; |
1191 | ||
977adac5 ND |
1192 | /* Check for bigtoc fixup code. */ |
1193 | msymbol = lookup_minimal_symbol_by_pc (pc); | |
1194 | if (msymbol && rs6000_in_solib_return_trampoline (pc, SYMBOL_NAME (msymbol))) | |
1195 | { | |
1196 | /* Double-check that the third instruction from PC is relative "b". */ | |
1197 | op = read_memory_integer (pc + 8, 4); | |
1198 | if ((op & 0xfc000003) == 0x48000000) | |
1199 | { | |
1200 | /* Extract bits 6-29 as a signed 24-bit relative word address and | |
1201 | add it to the containing PC. */ | |
1202 | rel = ((int)(op << 6) >> 6); | |
1203 | return pc + 8 + rel; | |
1204 | } | |
1205 | } | |
1206 | ||
c906108c SS |
1207 | /* If pc is in a shared library trampoline, return its target. */ |
1208 | solib_target_pc = find_solib_trampoline_target (pc); | |
1209 | if (solib_target_pc) | |
1210 | return solib_target_pc; | |
1211 | ||
c5aa993b JM |
1212 | for (ii = 0; trampoline_code[ii]; ++ii) |
1213 | { | |
1214 | op = read_memory_integer (pc + (ii * 4), 4); | |
1215 | if (op != trampoline_code[ii]) | |
1216 | return 0; | |
1217 | } | |
1218 | ii = read_register (11); /* r11 holds destination addr */ | |
7a78ae4e | 1219 | pc = read_memory_addr (ii, TDEP->wordsize); /* (r11) value */ |
c906108c SS |
1220 | return pc; |
1221 | } | |
1222 | ||
1223 | /* Determines whether the function FI has a frame on the stack or not. */ | |
1224 | ||
9aa1e687 | 1225 | int |
c877c8e6 | 1226 | rs6000_frameless_function_invocation (struct frame_info *fi) |
c906108c SS |
1227 | { |
1228 | CORE_ADDR func_start; | |
1229 | struct rs6000_framedata fdata; | |
1230 | ||
1231 | /* Don't even think about framelessness except on the innermost frame | |
1232 | or if the function was interrupted by a signal. */ | |
1233 | if (fi->next != NULL && !fi->next->signal_handler_caller) | |
1234 | return 0; | |
c5aa993b | 1235 | |
c906108c SS |
1236 | func_start = get_pc_function_start (fi->pc); |
1237 | ||
1238 | /* If we failed to find the start of the function, it is a mistake | |
1239 | to inspect the instructions. */ | |
1240 | ||
1241 | if (!func_start) | |
1242 | { | |
1243 | /* A frame with a zero PC is usually created by dereferencing a NULL | |
c5aa993b JM |
1244 | function pointer, normally causing an immediate core dump of the |
1245 | inferior. Mark function as frameless, as the inferior has no chance | |
1246 | of setting up a stack frame. */ | |
c906108c SS |
1247 | if (fi->pc == 0) |
1248 | return 1; | |
1249 | else | |
1250 | return 0; | |
1251 | } | |
1252 | ||
077276e8 | 1253 | (void) skip_prologue (func_start, fi->pc, &fdata); |
c906108c SS |
1254 | return fdata.frameless; |
1255 | } | |
1256 | ||
1257 | /* Return the PC saved in a frame */ | |
1258 | ||
9aa1e687 | 1259 | CORE_ADDR |
c877c8e6 | 1260 | rs6000_frame_saved_pc (struct frame_info *fi) |
c906108c SS |
1261 | { |
1262 | CORE_ADDR func_start; | |
1263 | struct rs6000_framedata fdata; | |
7a78ae4e | 1264 | int wordsize = TDEP->wordsize; |
c906108c SS |
1265 | |
1266 | if (fi->signal_handler_caller) | |
7a78ae4e | 1267 | return read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET, wordsize); |
c906108c | 1268 | |
7a78ae4e ND |
1269 | if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) |
1270 | return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM); | |
c906108c SS |
1271 | |
1272 | func_start = get_pc_function_start (fi->pc); | |
1273 | ||
1274 | /* If we failed to find the start of the function, it is a mistake | |
1275 | to inspect the instructions. */ | |
1276 | if (!func_start) | |
1277 | return 0; | |
1278 | ||
077276e8 | 1279 | (void) skip_prologue (func_start, fi->pc, &fdata); |
c906108c SS |
1280 | |
1281 | if (fdata.lr_offset == 0 && fi->next != NULL) | |
1282 | { | |
1283 | if (fi->next->signal_handler_caller) | |
7a78ae4e ND |
1284 | return read_memory_addr (fi->next->frame + SIG_FRAME_LR_OFFSET, |
1285 | wordsize); | |
c906108c | 1286 | else |
7a78ae4e ND |
1287 | return read_memory_addr (FRAME_CHAIN (fi) + DEFAULT_LR_SAVE, |
1288 | wordsize); | |
c906108c SS |
1289 | } |
1290 | ||
1291 | if (fdata.lr_offset == 0) | |
2188cbdd | 1292 | return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum); |
c906108c | 1293 | |
7a78ae4e | 1294 | return read_memory_addr (FRAME_CHAIN (fi) + fdata.lr_offset, wordsize); |
c906108c SS |
1295 | } |
1296 | ||
1297 | /* If saved registers of frame FI are not known yet, read and cache them. | |
1298 | &FDATAP contains rs6000_framedata; TDATAP can be NULL, | |
1299 | in which case the framedata are read. */ | |
1300 | ||
1301 | static void | |
7a78ae4e | 1302 | frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap) |
c906108c | 1303 | { |
c5aa993b | 1304 | CORE_ADDR frame_addr; |
c906108c | 1305 | struct rs6000_framedata work_fdata; |
7a78ae4e | 1306 | int wordsize = TDEP->wordsize; |
c906108c SS |
1307 | |
1308 | if (fi->saved_regs) | |
1309 | return; | |
c5aa993b | 1310 | |
c906108c SS |
1311 | if (fdatap == NULL) |
1312 | { | |
1313 | fdatap = &work_fdata; | |
077276e8 | 1314 | (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, fdatap); |
c906108c SS |
1315 | } |
1316 | ||
1317 | frame_saved_regs_zalloc (fi); | |
1318 | ||
1319 | /* If there were any saved registers, figure out parent's stack | |
1320 | pointer. */ | |
1321 | /* The following is true only if the frame doesn't have a call to | |
1322 | alloca(), FIXME. */ | |
1323 | ||
1324 | if (fdatap->saved_fpr == 0 && fdatap->saved_gpr == 0 | |
1325 | && fdatap->lr_offset == 0 && fdatap->cr_offset == 0) | |
1326 | frame_addr = 0; | |
1327 | else if (fi->prev && fi->prev->frame) | |
1328 | frame_addr = fi->prev->frame; | |
1329 | else | |
7a78ae4e | 1330 | frame_addr = read_memory_addr (fi->frame, wordsize); |
c5aa993b | 1331 | |
c906108c SS |
1332 | /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr. |
1333 | All fpr's from saved_fpr to fp31 are saved. */ | |
1334 | ||
1335 | if (fdatap->saved_fpr >= 0) | |
1336 | { | |
1337 | int i; | |
7a78ae4e | 1338 | CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset; |
c906108c SS |
1339 | for (i = fdatap->saved_fpr; i < 32; i++) |
1340 | { | |
7a78ae4e ND |
1341 | fi->saved_regs[FP0_REGNUM + i] = fpr_addr; |
1342 | fpr_addr += 8; | |
c906108c SS |
1343 | } |
1344 | } | |
1345 | ||
1346 | /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr. | |
1347 | All gpr's from saved_gpr to gpr31 are saved. */ | |
1348 | ||
1349 | if (fdatap->saved_gpr >= 0) | |
1350 | { | |
1351 | int i; | |
7a78ae4e | 1352 | CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset; |
c906108c SS |
1353 | for (i = fdatap->saved_gpr; i < 32; i++) |
1354 | { | |
7a78ae4e ND |
1355 | fi->saved_regs[i] = gpr_addr; |
1356 | gpr_addr += wordsize; | |
c906108c SS |
1357 | } |
1358 | } | |
1359 | ||
1360 | /* If != 0, fdatap->cr_offset is the offset from the frame that holds | |
1361 | the CR. */ | |
1362 | if (fdatap->cr_offset != 0) | |
2188cbdd EZ |
1363 | fi->saved_regs[gdbarch_tdep (current_gdbarch)->ppc_cr_regnum] = |
1364 | frame_addr + fdatap->cr_offset; | |
c906108c SS |
1365 | |
1366 | /* If != 0, fdatap->lr_offset is the offset from the frame that holds | |
1367 | the LR. */ | |
1368 | if (fdatap->lr_offset != 0) | |
2188cbdd EZ |
1369 | fi->saved_regs[gdbarch_tdep (current_gdbarch)->ppc_lr_regnum] = |
1370 | frame_addr + fdatap->lr_offset; | |
c906108c SS |
1371 | } |
1372 | ||
1373 | /* Return the address of a frame. This is the inital %sp value when the frame | |
1374 | was first allocated. For functions calling alloca(), it might be saved in | |
1375 | an alloca register. */ | |
1376 | ||
1377 | static CORE_ADDR | |
7a78ae4e | 1378 | frame_initial_stack_address (struct frame_info *fi) |
c906108c SS |
1379 | { |
1380 | CORE_ADDR tmpaddr; | |
1381 | struct rs6000_framedata fdata; | |
1382 | struct frame_info *callee_fi; | |
1383 | ||
1384 | /* if the initial stack pointer (frame address) of this frame is known, | |
1385 | just return it. */ | |
1386 | ||
1387 | if (fi->extra_info->initial_sp) | |
1388 | return fi->extra_info->initial_sp; | |
1389 | ||
1390 | /* find out if this function is using an alloca register.. */ | |
1391 | ||
077276e8 | 1392 | (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, &fdata); |
c906108c SS |
1393 | |
1394 | /* if saved registers of this frame are not known yet, read and cache them. */ | |
1395 | ||
1396 | if (!fi->saved_regs) | |
1397 | frame_get_saved_regs (fi, &fdata); | |
1398 | ||
1399 | /* If no alloca register used, then fi->frame is the value of the %sp for | |
1400 | this frame, and it is good enough. */ | |
1401 | ||
1402 | if (fdata.alloca_reg < 0) | |
1403 | { | |
1404 | fi->extra_info->initial_sp = fi->frame; | |
1405 | return fi->extra_info->initial_sp; | |
1406 | } | |
1407 | ||
1408 | /* This function has an alloca register. If this is the top-most frame | |
1409 | (with the lowest address), the value in alloca register is good. */ | |
1410 | ||
1411 | if (!fi->next) | |
c5aa993b | 1412 | return fi->extra_info->initial_sp = read_register (fdata.alloca_reg); |
c906108c SS |
1413 | |
1414 | /* Otherwise, this is a caller frame. Callee has usually already saved | |
1415 | registers, but there are exceptions (such as when the callee | |
1416 | has no parameters). Find the address in which caller's alloca | |
1417 | register is saved. */ | |
1418 | ||
c5aa993b JM |
1419 | for (callee_fi = fi->next; callee_fi; callee_fi = callee_fi->next) |
1420 | { | |
c906108c | 1421 | |
c5aa993b JM |
1422 | if (!callee_fi->saved_regs) |
1423 | frame_get_saved_regs (callee_fi, NULL); | |
c906108c | 1424 | |
c5aa993b | 1425 | /* this is the address in which alloca register is saved. */ |
c906108c | 1426 | |
c5aa993b JM |
1427 | tmpaddr = callee_fi->saved_regs[fdata.alloca_reg]; |
1428 | if (tmpaddr) | |
1429 | { | |
7a78ae4e ND |
1430 | fi->extra_info->initial_sp = |
1431 | read_memory_addr (tmpaddr, TDEP->wordsize); | |
c5aa993b JM |
1432 | return fi->extra_info->initial_sp; |
1433 | } | |
c906108c | 1434 | |
c5aa993b JM |
1435 | /* Go look into deeper levels of the frame chain to see if any one of |
1436 | the callees has saved alloca register. */ | |
1437 | } | |
c906108c SS |
1438 | |
1439 | /* If alloca register was not saved, by the callee (or any of its callees) | |
1440 | then the value in the register is still good. */ | |
1441 | ||
1442 | fi->extra_info->initial_sp = read_register (fdata.alloca_reg); | |
1443 | return fi->extra_info->initial_sp; | |
1444 | } | |
1445 | ||
7a78ae4e ND |
1446 | /* Describe the pointer in each stack frame to the previous stack frame |
1447 | (its caller). */ | |
1448 | ||
1449 | /* FRAME_CHAIN takes a frame's nominal address | |
1450 | and produces the frame's chain-pointer. */ | |
1451 | ||
1452 | /* In the case of the RS/6000, the frame's nominal address | |
1453 | is the address of a 4-byte word containing the calling frame's address. */ | |
1454 | ||
9aa1e687 | 1455 | CORE_ADDR |
7a78ae4e | 1456 | rs6000_frame_chain (struct frame_info *thisframe) |
c906108c | 1457 | { |
7a78ae4e ND |
1458 | CORE_ADDR fp, fpp, lr; |
1459 | int wordsize = TDEP->wordsize; | |
c906108c | 1460 | |
7a78ae4e ND |
1461 | if (PC_IN_CALL_DUMMY (thisframe->pc, thisframe->frame, thisframe->frame)) |
1462 | return thisframe->frame; /* dummy frame same as caller's frame */ | |
c906108c | 1463 | |
c5aa993b | 1464 | if (inside_entry_file (thisframe->pc) || |
c906108c SS |
1465 | thisframe->pc == entry_point_address ()) |
1466 | return 0; | |
1467 | ||
1468 | if (thisframe->signal_handler_caller) | |
7a78ae4e ND |
1469 | fp = read_memory_addr (thisframe->frame + SIG_FRAME_FP_OFFSET, |
1470 | wordsize); | |
c906108c SS |
1471 | else if (thisframe->next != NULL |
1472 | && thisframe->next->signal_handler_caller | |
c877c8e6 | 1473 | && FRAMELESS_FUNCTION_INVOCATION (thisframe)) |
c906108c SS |
1474 | /* A frameless function interrupted by a signal did not change the |
1475 | frame pointer. */ | |
1476 | fp = FRAME_FP (thisframe); | |
1477 | else | |
7a78ae4e | 1478 | fp = read_memory_addr ((thisframe)->frame, wordsize); |
c906108c | 1479 | |
2188cbdd | 1480 | lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum); |
7a78ae4e ND |
1481 | if (lr == entry_point_address ()) |
1482 | if (fp != 0 && (fpp = read_memory_addr (fp, wordsize)) != 0) | |
1483 | if (PC_IN_CALL_DUMMY (lr, fpp, fpp)) | |
1484 | return fpp; | |
1485 | ||
1486 | return fp; | |
1487 | } | |
1488 | ||
1489 | /* Return the size of register REG when words are WORDSIZE bytes long. If REG | |
1490 | isn't available with that word size, return 0. */ | |
1491 | ||
1492 | static int | |
1493 | regsize (const struct reg *reg, int wordsize) | |
1494 | { | |
1495 | return wordsize == 8 ? reg->sz64 : reg->sz32; | |
1496 | } | |
1497 | ||
1498 | /* Return the name of register number N, or null if no such register exists | |
1499 | in the current architecture. */ | |
1500 | ||
1501 | static char * | |
1502 | rs6000_register_name (int n) | |
1503 | { | |
1504 | struct gdbarch_tdep *tdep = TDEP; | |
1505 | const struct reg *reg = tdep->regs + n; | |
1506 | ||
1507 | if (!regsize (reg, tdep->wordsize)) | |
1508 | return NULL; | |
1509 | return reg->name; | |
1510 | } | |
1511 | ||
1512 | /* Index within `registers' of the first byte of the space for | |
1513 | register N. */ | |
1514 | ||
1515 | static int | |
1516 | rs6000_register_byte (int n) | |
1517 | { | |
1518 | return TDEP->regoff[n]; | |
1519 | } | |
1520 | ||
1521 | /* Return the number of bytes of storage in the actual machine representation | |
1522 | for register N if that register is available, else return 0. */ | |
1523 | ||
1524 | static int | |
1525 | rs6000_register_raw_size (int n) | |
1526 | { | |
1527 | struct gdbarch_tdep *tdep = TDEP; | |
1528 | const struct reg *reg = tdep->regs + n; | |
1529 | return regsize (reg, tdep->wordsize); | |
1530 | } | |
1531 | ||
7a78ae4e ND |
1532 | /* Return the GDB type object for the "standard" data type |
1533 | of data in register N. */ | |
1534 | ||
1535 | static struct type * | |
fba45db2 | 1536 | rs6000_register_virtual_type (int n) |
7a78ae4e ND |
1537 | { |
1538 | struct gdbarch_tdep *tdep = TDEP; | |
1539 | const struct reg *reg = tdep->regs + n; | |
1540 | ||
1541 | return reg->fpr ? builtin_type_double : | |
1542 | regsize (reg, tdep->wordsize) == 8 ? builtin_type_int64 : | |
1543 | builtin_type_int32; | |
1544 | } | |
1545 | ||
1546 | /* For the PowerPC, it appears that the debug info marks float parameters as | |
1547 | floats regardless of whether the function is prototyped, but the actual | |
1548 | values are always passed in as doubles. Tell gdb to always assume that | |
1549 | floats are passed as doubles and then converted in the callee. */ | |
1550 | ||
1551 | static int | |
1552 | rs6000_coerce_float_to_double (struct type *formal, struct type *actual) | |
1553 | { | |
1554 | return 1; | |
1555 | } | |
1556 | ||
1557 | /* Return whether register N requires conversion when moving from raw format | |
1558 | to virtual format. | |
1559 | ||
1560 | The register format for RS/6000 floating point registers is always | |
1561 | double, we need a conversion if the memory format is float. */ | |
1562 | ||
1563 | static int | |
1564 | rs6000_register_convertible (int n) | |
1565 | { | |
1566 | const struct reg *reg = TDEP->regs + n; | |
1567 | return reg->fpr; | |
1568 | } | |
1569 | ||
1570 | /* Convert data from raw format for register N in buffer FROM | |
1571 | to virtual format with type TYPE in buffer TO. */ | |
1572 | ||
1573 | static void | |
1574 | rs6000_register_convert_to_virtual (int n, struct type *type, | |
1575 | char *from, char *to) | |
1576 | { | |
1577 | if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n)) | |
7a292a7a | 1578 | { |
7a78ae4e ND |
1579 | double val = extract_floating (from, REGISTER_RAW_SIZE (n)); |
1580 | store_floating (to, TYPE_LENGTH (type), val); | |
1581 | } | |
1582 | else | |
1583 | memcpy (to, from, REGISTER_RAW_SIZE (n)); | |
1584 | } | |
1585 | ||
1586 | /* Convert data from virtual format with type TYPE in buffer FROM | |
1587 | to raw format for register N in buffer TO. */ | |
7a292a7a | 1588 | |
7a78ae4e ND |
1589 | static void |
1590 | rs6000_register_convert_to_raw (struct type *type, int n, | |
1591 | char *from, char *to) | |
1592 | { | |
1593 | if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n)) | |
1594 | { | |
1595 | double val = extract_floating (from, TYPE_LENGTH (type)); | |
1596 | store_floating (to, REGISTER_RAW_SIZE (n), val); | |
7a292a7a | 1597 | } |
7a78ae4e ND |
1598 | else |
1599 | memcpy (to, from, REGISTER_RAW_SIZE (n)); | |
1600 | } | |
c906108c | 1601 | |
2188cbdd EZ |
1602 | /* Convert a dbx stab register number (from `r' declaration) to a gdb |
1603 | REGNUM. */ | |
1604 | static int | |
1605 | rs6000_stab_reg_to_regnum (int num) | |
1606 | { | |
1607 | int regnum; | |
1608 | switch (num) | |
1609 | { | |
1610 | case 64: | |
1611 | regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum; | |
1612 | break; | |
1613 | case 65: | |
1614 | regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum; | |
1615 | break; | |
1616 | case 66: | |
1617 | regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum; | |
1618 | break; | |
1619 | case 76: | |
1620 | regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum; | |
1621 | break; | |
1622 | default: | |
1623 | regnum = num; | |
1624 | break; | |
1625 | } | |
1626 | return regnum; | |
1627 | } | |
1628 | ||
7a78ae4e ND |
1629 | /* Store the address of the place in which to copy the structure the |
1630 | subroutine will return. This is called from call_function. | |
1631 | ||
1632 | In RS/6000, struct return addresses are passed as an extra parameter in r3. | |
1633 | In function return, callee is not responsible of returning this address | |
1634 | back. Since gdb needs to find it, we will store in a designated variable | |
1635 | `rs6000_struct_return_address'. */ | |
1636 | ||
1637 | static void | |
1638 | rs6000_store_struct_return (CORE_ADDR addr, CORE_ADDR sp) | |
1639 | { | |
1640 | write_register (3, addr); | |
1641 | rs6000_struct_return_address = addr; | |
1642 | } | |
1643 | ||
1644 | /* Write into appropriate registers a function return value | |
1645 | of type TYPE, given in virtual format. */ | |
1646 | ||
1647 | static void | |
1648 | rs6000_store_return_value (struct type *type, char *valbuf) | |
1649 | { | |
1650 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
1651 | ||
1652 | /* Floating point values are returned starting from FPR1 and up. | |
1653 | Say a double_double_double type could be returned in | |
1654 | FPR1/FPR2/FPR3 triple. */ | |
1655 | ||
1656 | write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf, | |
1657 | TYPE_LENGTH (type)); | |
1658 | else | |
1659 | /* Everything else is returned in GPR3 and up. */ | |
2188cbdd EZ |
1660 | write_register_bytes (REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3), |
1661 | valbuf, TYPE_LENGTH (type)); | |
7a78ae4e ND |
1662 | } |
1663 | ||
1664 | /* Extract from an array REGBUF containing the (raw) register state | |
1665 | the address in which a function should return its structure value, | |
1666 | as a CORE_ADDR (or an expression that can be used as one). */ | |
1667 | ||
1668 | static CORE_ADDR | |
1669 | rs6000_extract_struct_value_address (char *regbuf) | |
1670 | { | |
1671 | return rs6000_struct_return_address; | |
1672 | } | |
1673 | ||
1674 | /* Return whether PC is in a dummy function call. | |
1675 | ||
1676 | FIXME: This just checks for the end of the stack, which is broken | |
1677 | for things like stepping through gcc nested function stubs. */ | |
1678 | ||
1679 | static int | |
1680 | rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp) | |
1681 | { | |
1682 | return sp < pc && pc < fp; | |
1683 | } | |
1684 | ||
1685 | /* Hook called when a new child process is started. */ | |
1686 | ||
1687 | void | |
1688 | rs6000_create_inferior (int pid) | |
1689 | { | |
1690 | if (rs6000_set_host_arch_hook) | |
1691 | rs6000_set_host_arch_hook (pid); | |
c906108c SS |
1692 | } |
1693 | \f | |
7a78ae4e ND |
1694 | /* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR). |
1695 | ||
1696 | Usually a function pointer's representation is simply the address | |
1697 | of the function. On the RS/6000 however, a function pointer is | |
1698 | represented by a pointer to a TOC entry. This TOC entry contains | |
1699 | three words, the first word is the address of the function, the | |
1700 | second word is the TOC pointer (r2), and the third word is the | |
1701 | static chain value. Throughout GDB it is currently assumed that a | |
1702 | function pointer contains the address of the function, which is not | |
1703 | easy to fix. In addition, the conversion of a function address to | |
1704 | a function pointer would require allocation of a TOC entry in the | |
1705 | inferior's memory space, with all its drawbacks. To be able to | |
1706 | call C++ virtual methods in the inferior (which are called via | |
f517ea4e | 1707 | function pointers), find_function_addr uses this function to get the |
7a78ae4e ND |
1708 | function address from a function pointer. */ |
1709 | ||
f517ea4e PS |
1710 | /* Return real function address if ADDR (a function pointer) is in the data |
1711 | space and is therefore a special function pointer. */ | |
c906108c | 1712 | |
7a78ae4e ND |
1713 | CORE_ADDR |
1714 | rs6000_convert_from_func_ptr_addr (CORE_ADDR addr) | |
c906108c SS |
1715 | { |
1716 | struct obj_section *s; | |
1717 | ||
1718 | s = find_pc_section (addr); | |
1719 | if (s && s->the_bfd_section->flags & SEC_CODE) | |
7a78ae4e | 1720 | return addr; |
c906108c | 1721 | |
7a78ae4e ND |
1722 | /* ADDR is in the data space, so it's a special function pointer. */ |
1723 | return read_memory_addr (addr, TDEP->wordsize); | |
c906108c | 1724 | } |
c906108c | 1725 | \f |
c5aa993b | 1726 | |
7a78ae4e | 1727 | /* Handling the various POWER/PowerPC variants. */ |
c906108c SS |
1728 | |
1729 | ||
7a78ae4e ND |
1730 | /* The arrays here called registers_MUMBLE hold information about available |
1731 | registers. | |
c906108c SS |
1732 | |
1733 | For each family of PPC variants, I've tried to isolate out the | |
1734 | common registers and put them up front, so that as long as you get | |
1735 | the general family right, GDB will correctly identify the registers | |
1736 | common to that family. The common register sets are: | |
1737 | ||
1738 | For the 60x family: hid0 hid1 iabr dabr pir | |
1739 | ||
1740 | For the 505 and 860 family: eie eid nri | |
1741 | ||
1742 | For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi | |
c5aa993b JM |
1743 | tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1 |
1744 | pbu1 pbl2 pbu2 | |
c906108c SS |
1745 | |
1746 | Most of these register groups aren't anything formal. I arrived at | |
1747 | them by looking at the registers that occurred in more than one | |
7a78ae4e ND |
1748 | processor. */ |
1749 | ||
1750 | /* Convenience macros for populating register arrays. */ | |
1751 | ||
1752 | /* Within another macro, convert S to a string. */ | |
1753 | ||
1754 | #define STR(s) #s | |
1755 | ||
1756 | /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems | |
1757 | and 64 bits on 64-bit systems. */ | |
1758 | #define R(name) { STR(name), 4, 8, 0 } | |
1759 | ||
1760 | /* Return a struct reg defining register NAME that's 32 bits on all | |
1761 | systems. */ | |
1762 | #define R4(name) { STR(name), 4, 4, 0 } | |
1763 | ||
1764 | /* Return a struct reg defining register NAME that's 64 bits on all | |
1765 | systems. */ | |
1766 | #define R8(name) { STR(name), 8, 8, 0 } | |
1767 | ||
1768 | /* Return a struct reg defining floating-point register NAME. */ | |
1769 | #define F(name) { STR(name), 8, 8, 1 } | |
1770 | ||
1771 | /* Return a struct reg defining register NAME that's 32 bits on 32-bit | |
1772 | systems and that doesn't exist on 64-bit systems. */ | |
1773 | #define R32(name) { STR(name), 4, 0, 0 } | |
1774 | ||
1775 | /* Return a struct reg defining register NAME that's 64 bits on 64-bit | |
1776 | systems and that doesn't exist on 32-bit systems. */ | |
1777 | #define R64(name) { STR(name), 0, 8, 0 } | |
1778 | ||
1779 | /* Return a struct reg placeholder for a register that doesn't exist. */ | |
1780 | #define R0 { 0, 0, 0, 0 } | |
1781 | ||
1782 | /* UISA registers common across all architectures, including POWER. */ | |
1783 | ||
1784 | #define COMMON_UISA_REGS \ | |
1785 | /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \ | |
1786 | /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \ | |
1787 | /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \ | |
1788 | /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \ | |
1789 | /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \ | |
1790 | /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \ | |
1791 | /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \ | |
1792 | /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \ | |
1793 | /* 64 */ R(pc), R(ps) | |
1794 | ||
1795 | /* UISA-level SPRs for PowerPC. */ | |
1796 | #define PPC_UISA_SPRS \ | |
1797 | /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0 | |
1798 | ||
1799 | /* Segment registers, for PowerPC. */ | |
1800 | #define PPC_SEGMENT_REGS \ | |
1801 | /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \ | |
1802 | /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \ | |
1803 | /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \ | |
1804 | /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15) | |
1805 | ||
1806 | /* OEA SPRs for PowerPC. */ | |
1807 | #define PPC_OEA_SPRS \ | |
1808 | /* 87 */ R4(pvr), \ | |
1809 | /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \ | |
1810 | /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \ | |
1811 | /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \ | |
1812 | /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \ | |
1813 | /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \ | |
1814 | /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \ | |
1815 | /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \ | |
1816 | /* 116 */ R4(dec), R(dabr), R4(ear) | |
1817 | ||
1818 | /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover | |
1819 | user-level SPR's. */ | |
1820 | static const struct reg registers_power[] = | |
c906108c | 1821 | { |
7a78ae4e ND |
1822 | COMMON_UISA_REGS, |
1823 | /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq) | |
c906108c SS |
1824 | }; |
1825 | ||
7a78ae4e ND |
1826 | /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only |
1827 | view of the PowerPC. */ | |
1828 | static const struct reg registers_powerpc[] = | |
c906108c | 1829 | { |
7a78ae4e ND |
1830 | COMMON_UISA_REGS, |
1831 | PPC_UISA_SPRS | |
c906108c SS |
1832 | }; |
1833 | ||
7a78ae4e ND |
1834 | /* IBM PowerPC 403. */ |
1835 | static const struct reg registers_403[] = | |
c5aa993b | 1836 | { |
7a78ae4e ND |
1837 | COMMON_UISA_REGS, |
1838 | PPC_UISA_SPRS, | |
1839 | PPC_SEGMENT_REGS, | |
1840 | PPC_OEA_SPRS, | |
1841 | /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr), | |
1842 | /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit), | |
1843 | /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3), | |
1844 | /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2), | |
1845 | /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr), | |
1846 | /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2) | |
c906108c SS |
1847 | }; |
1848 | ||
7a78ae4e ND |
1849 | /* IBM PowerPC 403GC. */ |
1850 | static const struct reg registers_403GC[] = | |
c5aa993b | 1851 | { |
7a78ae4e ND |
1852 | COMMON_UISA_REGS, |
1853 | PPC_UISA_SPRS, | |
1854 | PPC_SEGMENT_REGS, | |
1855 | PPC_OEA_SPRS, | |
1856 | /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr), | |
1857 | /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit), | |
1858 | /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3), | |
1859 | /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2), | |
1860 | /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr), | |
1861 | /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2), | |
1862 | /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr), | |
1863 | /* 147 */ R(tbhu), R(tblu) | |
c906108c SS |
1864 | }; |
1865 | ||
7a78ae4e ND |
1866 | /* Motorola PowerPC 505. */ |
1867 | static const struct reg registers_505[] = | |
c5aa993b | 1868 | { |
7a78ae4e ND |
1869 | COMMON_UISA_REGS, |
1870 | PPC_UISA_SPRS, | |
1871 | PPC_SEGMENT_REGS, | |
1872 | PPC_OEA_SPRS, | |
1873 | /* 119 */ R(eie), R(eid), R(nri) | |
c906108c SS |
1874 | }; |
1875 | ||
7a78ae4e ND |
1876 | /* Motorola PowerPC 860 or 850. */ |
1877 | static const struct reg registers_860[] = | |
c5aa993b | 1878 | { |
7a78ae4e ND |
1879 | COMMON_UISA_REGS, |
1880 | PPC_UISA_SPRS, | |
1881 | PPC_SEGMENT_REGS, | |
1882 | PPC_OEA_SPRS, | |
1883 | /* 119 */ R(eie), R(eid), R(nri), R(cmpa), | |
1884 | /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr), | |
1885 | /* 127 */ R(der), R(counta), R(countb), R(cmpe), | |
1886 | /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1), | |
1887 | /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst), | |
1888 | /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr), | |
1889 | /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr), | |
1890 | /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc), | |
1891 | /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap), | |
1892 | /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn), | |
1893 | /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1), | |
1894 | /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1) | |
c906108c SS |
1895 | }; |
1896 | ||
7a78ae4e ND |
1897 | /* Motorola PowerPC 601. Note that the 601 has different register numbers |
1898 | for reading and writing RTCU and RTCL. However, how one reads and writes a | |
c906108c | 1899 | register is the stub's problem. */ |
7a78ae4e | 1900 | static const struct reg registers_601[] = |
c5aa993b | 1901 | { |
7a78ae4e ND |
1902 | COMMON_UISA_REGS, |
1903 | PPC_UISA_SPRS, | |
1904 | PPC_SEGMENT_REGS, | |
1905 | PPC_OEA_SPRS, | |
1906 | /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr), | |
1907 | /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl) | |
c906108c SS |
1908 | }; |
1909 | ||
7a78ae4e ND |
1910 | /* Motorola PowerPC 602. */ |
1911 | static const struct reg registers_602[] = | |
c5aa993b | 1912 | { |
7a78ae4e ND |
1913 | COMMON_UISA_REGS, |
1914 | PPC_UISA_SPRS, | |
1915 | PPC_SEGMENT_REGS, | |
1916 | PPC_OEA_SPRS, | |
1917 | /* 119 */ R(hid0), R(hid1), R(iabr), R0, | |
1918 | /* 123 */ R0, R(tcr), R(ibr), R(esassr), | |
1919 | /* 127 */ R(sebr), R(ser), R(sp), R(lt) | |
c906108c SS |
1920 | }; |
1921 | ||
7a78ae4e ND |
1922 | /* Motorola/IBM PowerPC 603 or 603e. */ |
1923 | static const struct reg registers_603[] = | |
c5aa993b | 1924 | { |
7a78ae4e ND |
1925 | COMMON_UISA_REGS, |
1926 | PPC_UISA_SPRS, | |
1927 | PPC_SEGMENT_REGS, | |
1928 | PPC_OEA_SPRS, | |
1929 | /* 119 */ R(hid0), R(hid1), R(iabr), R0, | |
1930 | /* 123 */ R0, R(dmiss), R(dcmp), R(hash1), | |
1931 | /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa) | |
c906108c SS |
1932 | }; |
1933 | ||
7a78ae4e ND |
1934 | /* Motorola PowerPC 604 or 604e. */ |
1935 | static const struct reg registers_604[] = | |
c5aa993b | 1936 | { |
7a78ae4e ND |
1937 | COMMON_UISA_REGS, |
1938 | PPC_UISA_SPRS, | |
1939 | PPC_SEGMENT_REGS, | |
1940 | PPC_OEA_SPRS, | |
1941 | /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr), | |
1942 | /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2), | |
1943 | /* 127 */ R(sia), R(sda) | |
c906108c SS |
1944 | }; |
1945 | ||
7a78ae4e ND |
1946 | /* Motorola/IBM PowerPC 750 or 740. */ |
1947 | static const struct reg registers_750[] = | |
c5aa993b | 1948 | { |
7a78ae4e ND |
1949 | COMMON_UISA_REGS, |
1950 | PPC_UISA_SPRS, | |
1951 | PPC_SEGMENT_REGS, | |
1952 | PPC_OEA_SPRS, | |
1953 | /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr), | |
1954 | /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2), | |
1955 | /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4), | |
1956 | /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia), | |
1957 | /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr), | |
1958 | /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3) | |
c906108c SS |
1959 | }; |
1960 | ||
1961 | ||
1962 | /* Information about a particular processor variant. */ | |
7a78ae4e | 1963 | |
c906108c | 1964 | struct variant |
c5aa993b JM |
1965 | { |
1966 | /* Name of this variant. */ | |
1967 | char *name; | |
c906108c | 1968 | |
c5aa993b JM |
1969 | /* English description of the variant. */ |
1970 | char *description; | |
c906108c | 1971 | |
7a78ae4e ND |
1972 | /* bfd_arch_info.arch corresponding to variant. */ |
1973 | enum bfd_architecture arch; | |
1974 | ||
1975 | /* bfd_arch_info.mach corresponding to variant. */ | |
1976 | unsigned long mach; | |
1977 | ||
c5aa993b JM |
1978 | /* Table of register names; registers[R] is the name of the register |
1979 | number R. */ | |
7a78ae4e ND |
1980 | int nregs; |
1981 | const struct reg *regs; | |
c5aa993b | 1982 | }; |
c906108c SS |
1983 | |
1984 | #define num_registers(list) (sizeof (list) / sizeof((list)[0])) | |
1985 | ||
1986 | ||
1987 | /* Information in this table comes from the following web sites: | |
1988 | IBM: http://www.chips.ibm.com:80/products/embedded/ | |
1989 | Motorola: http://www.mot.com/SPS/PowerPC/ | |
1990 | ||
1991 | I'm sure I've got some of the variant descriptions not quite right. | |
1992 | Please report any inaccuracies you find to GDB's maintainer. | |
1993 | ||
1994 | If you add entries to this table, please be sure to allow the new | |
1995 | value as an argument to the --with-cpu flag, in configure.in. */ | |
1996 | ||
7a78ae4e | 1997 | static const struct variant variants[] = |
c906108c | 1998 | { |
7a78ae4e ND |
1999 | {"powerpc", "PowerPC user-level", bfd_arch_powerpc, |
2000 | bfd_mach_ppc, num_registers (registers_powerpc), registers_powerpc}, | |
2001 | {"power", "POWER user-level", bfd_arch_rs6000, | |
2002 | bfd_mach_rs6k, num_registers (registers_power), registers_power}, | |
2003 | {"403", "IBM PowerPC 403", bfd_arch_powerpc, | |
2004 | bfd_mach_ppc_403, num_registers (registers_403), registers_403}, | |
2005 | {"601", "Motorola PowerPC 601", bfd_arch_powerpc, | |
2006 | bfd_mach_ppc_601, num_registers (registers_601), registers_601}, | |
2007 | {"602", "Motorola PowerPC 602", bfd_arch_powerpc, | |
2008 | bfd_mach_ppc_602, num_registers (registers_602), registers_602}, | |
2009 | {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc, | |
2010 | bfd_mach_ppc_603, num_registers (registers_603), registers_603}, | |
2011 | {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc, | |
2012 | 604, num_registers (registers_604), registers_604}, | |
2013 | {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc, | |
2014 | bfd_mach_ppc_403gc, num_registers (registers_403GC), registers_403GC}, | |
2015 | {"505", "Motorola PowerPC 505", bfd_arch_powerpc, | |
2016 | bfd_mach_ppc_505, num_registers (registers_505), registers_505}, | |
2017 | {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc, | |
2018 | bfd_mach_ppc_860, num_registers (registers_860), registers_860}, | |
2019 | {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc, | |
2020 | bfd_mach_ppc_750, num_registers (registers_750), registers_750}, | |
2021 | ||
2022 | /* FIXME: I haven't checked the register sets of the following. */ | |
2023 | {"620", "Motorola PowerPC 620", bfd_arch_powerpc, | |
2024 | bfd_mach_ppc_620, num_registers (registers_powerpc), registers_powerpc}, | |
2025 | {"a35", "PowerPC A35", bfd_arch_powerpc, | |
2026 | bfd_mach_ppc_a35, num_registers (registers_powerpc), registers_powerpc}, | |
2027 | {"rs1", "IBM POWER RS1", bfd_arch_rs6000, | |
2028 | bfd_mach_rs6k_rs1, num_registers (registers_power), registers_power}, | |
2029 | {"rsc", "IBM POWER RSC", bfd_arch_rs6000, | |
2030 | bfd_mach_rs6k_rsc, num_registers (registers_power), registers_power}, | |
2031 | {"rs2", "IBM POWER RS2", bfd_arch_rs6000, | |
2032 | bfd_mach_rs6k_rs2, num_registers (registers_power), registers_power}, | |
2033 | ||
c5aa993b | 2034 | {0, 0, 0, 0} |
c906108c SS |
2035 | }; |
2036 | ||
7a78ae4e | 2037 | #undef num_registers |
c906108c | 2038 | |
7a78ae4e ND |
2039 | /* Look up the variant named NAME in the `variants' table. Return a |
2040 | pointer to the struct variant, or null if we couldn't find it. */ | |
c906108c | 2041 | |
7a78ae4e ND |
2042 | static const struct variant * |
2043 | find_variant_by_name (char *name) | |
c906108c | 2044 | { |
7a78ae4e | 2045 | const struct variant *v; |
c906108c | 2046 | |
7a78ae4e ND |
2047 | for (v = variants; v->name; v++) |
2048 | if (!strcmp (name, v->name)) | |
2049 | return v; | |
c906108c | 2050 | |
7a78ae4e | 2051 | return NULL; |
c906108c SS |
2052 | } |
2053 | ||
7a78ae4e ND |
2054 | /* Return the variant corresponding to architecture ARCH and machine number |
2055 | MACH. If no such variant exists, return null. */ | |
c906108c | 2056 | |
7a78ae4e ND |
2057 | static const struct variant * |
2058 | find_variant_by_arch (enum bfd_architecture arch, unsigned long mach) | |
c906108c | 2059 | { |
7a78ae4e | 2060 | const struct variant *v; |
c5aa993b | 2061 | |
7a78ae4e ND |
2062 | for (v = variants; v->name; v++) |
2063 | if (arch == v->arch && mach == v->mach) | |
2064 | return v; | |
c906108c | 2065 | |
7a78ae4e | 2066 | return NULL; |
c906108c SS |
2067 | } |
2068 | ||
9aa1e687 KB |
2069 | |
2070 | ||
2071 | \f | |
2072 | static void | |
2073 | process_note_abi_tag_sections (bfd *abfd, asection *sect, void *obj) | |
2074 | { | |
2075 | int *os_ident_ptr = obj; | |
2076 | const char *name; | |
2077 | unsigned int sectsize; | |
2078 | ||
2079 | name = bfd_get_section_name (abfd, sect); | |
2080 | sectsize = bfd_section_size (abfd, sect); | |
2081 | if (strcmp (name, ".note.ABI-tag") == 0 && sectsize > 0) | |
2082 | { | |
2083 | unsigned int name_length, data_length, note_type; | |
2084 | char *note = alloca (sectsize); | |
2085 | ||
2086 | bfd_get_section_contents (abfd, sect, note, | |
2087 | (file_ptr) 0, (bfd_size_type) sectsize); | |
2088 | ||
2089 | name_length = bfd_h_get_32 (abfd, note); | |
2090 | data_length = bfd_h_get_32 (abfd, note + 4); | |
2091 | note_type = bfd_h_get_32 (abfd, note + 8); | |
2092 | ||
2093 | if (name_length == 4 && data_length == 16 && note_type == 1 | |
2094 | && strcmp (note + 12, "GNU") == 0) | |
2095 | { | |
2096 | int os_number = bfd_h_get_32 (abfd, note + 16); | |
2097 | ||
2098 | /* The case numbers are from abi-tags in glibc */ | |
2099 | switch (os_number) | |
2100 | { | |
2101 | case 0 : | |
2102 | *os_ident_ptr = ELFOSABI_LINUX; | |
2103 | break; | |
2104 | case 1 : | |
2105 | *os_ident_ptr = ELFOSABI_HURD; | |
2106 | break; | |
2107 | case 2 : | |
2108 | *os_ident_ptr = ELFOSABI_SOLARIS; | |
2109 | break; | |
2110 | default : | |
8e65ff28 AC |
2111 | internal_error (__FILE__, __LINE__, |
2112 | "process_note_abi_sections: unknown OS number %d", | |
2113 | os_number); | |
9aa1e687 KB |
2114 | break; |
2115 | } | |
2116 | } | |
2117 | } | |
2118 | } | |
2119 | ||
2120 | /* Return one of the ELFOSABI_ constants for BFDs representing ELF | |
2121 | executables. If it's not an ELF executable or if the OS/ABI couldn't | |
2122 | be determined, simply return -1. */ | |
2123 | ||
2124 | static int | |
2125 | get_elfosabi (bfd *abfd) | |
2126 | { | |
2127 | int elfosabi = -1; | |
2128 | ||
2129 | if (abfd != NULL && bfd_get_flavour (abfd) == bfd_target_elf_flavour) | |
2130 | { | |
2131 | elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI]; | |
2132 | ||
2133 | /* When elfosabi is 0 (ELFOSABI_NONE), this is supposed to indicate | |
2134 | that we're on a SYSV system. However, GNU/Linux uses a note section | |
2135 | to record OS/ABI info, but leaves e_ident[EI_OSABI] zero. So we | |
2136 | have to check the note sections too. */ | |
2137 | if (elfosabi == 0) | |
2138 | { | |
2139 | bfd_map_over_sections (abfd, | |
2140 | process_note_abi_tag_sections, | |
2141 | &elfosabi); | |
2142 | } | |
2143 | } | |
2144 | ||
2145 | return elfosabi; | |
2146 | } | |
2147 | ||
7a78ae4e | 2148 | \f |
c906108c | 2149 | |
7a78ae4e ND |
2150 | /* Initialize the current architecture based on INFO. If possible, re-use an |
2151 | architecture from ARCHES, which is a list of architectures already created | |
2152 | during this debugging session. | |
c906108c | 2153 | |
7a78ae4e ND |
2154 | Called e.g. at program startup, when reading a core file, and when reading |
2155 | a binary file. */ | |
c906108c | 2156 | |
7a78ae4e ND |
2157 | static struct gdbarch * |
2158 | rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
2159 | { | |
2160 | struct gdbarch *gdbarch; | |
2161 | struct gdbarch_tdep *tdep; | |
9aa1e687 | 2162 | int wordsize, from_xcoff_exec, from_elf_exec, power, i, off; |
7a78ae4e ND |
2163 | struct reg *regs; |
2164 | const struct variant *v; | |
2165 | enum bfd_architecture arch; | |
2166 | unsigned long mach; | |
2167 | bfd abfd; | |
9aa1e687 | 2168 | int osabi, sysv_abi; |
7a78ae4e | 2169 | |
9aa1e687 | 2170 | from_xcoff_exec = info.abfd && info.abfd->format == bfd_object && |
7a78ae4e ND |
2171 | bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour; |
2172 | ||
9aa1e687 KB |
2173 | from_elf_exec = info.abfd && info.abfd->format == bfd_object && |
2174 | bfd_get_flavour (info.abfd) == bfd_target_elf_flavour; | |
2175 | ||
2176 | sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour; | |
2177 | ||
2178 | osabi = get_elfosabi (info.abfd); | |
2179 | ||
e712c1cf AC |
2180 | /* Check word size. If INFO is from a binary file, infer it from |
2181 | that, else choose a likely default. */ | |
9aa1e687 | 2182 | if (from_xcoff_exec) |
c906108c | 2183 | { |
7a78ae4e ND |
2184 | if (xcoff_data (info.abfd)->xcoff64) |
2185 | wordsize = 8; | |
2186 | else | |
2187 | wordsize = 4; | |
c906108c | 2188 | } |
9aa1e687 KB |
2189 | else if (from_elf_exec) |
2190 | { | |
2191 | if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64) | |
2192 | wordsize = 8; | |
2193 | else | |
2194 | wordsize = 4; | |
2195 | } | |
c906108c | 2196 | else |
7a78ae4e | 2197 | { |
e712c1cf | 2198 | wordsize = 4; |
7a78ae4e | 2199 | } |
c906108c | 2200 | |
7a78ae4e ND |
2201 | /* Find a candidate among extant architectures. */ |
2202 | for (arches = gdbarch_list_lookup_by_info (arches, &info); | |
2203 | arches != NULL; | |
2204 | arches = gdbarch_list_lookup_by_info (arches->next, &info)) | |
2205 | { | |
2206 | /* Word size in the various PowerPC bfd_arch_info structs isn't | |
2207 | meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform | |
2208 | separate word size check. */ | |
2209 | tdep = gdbarch_tdep (arches->gdbarch); | |
9aa1e687 | 2210 | if (tdep && tdep->wordsize == wordsize && tdep->osabi == osabi) |
7a78ae4e ND |
2211 | return arches->gdbarch; |
2212 | } | |
c906108c | 2213 | |
7a78ae4e ND |
2214 | /* None found, create a new architecture from INFO, whose bfd_arch_info |
2215 | validity depends on the source: | |
2216 | - executable useless | |
2217 | - rs6000_host_arch() good | |
2218 | - core file good | |
2219 | - "set arch" trust blindly | |
2220 | - GDB startup useless but harmless */ | |
c906108c | 2221 | |
9aa1e687 | 2222 | if (!from_xcoff_exec) |
c906108c | 2223 | { |
b732d07d | 2224 | arch = info.bfd_arch_info->arch; |
7a78ae4e | 2225 | mach = info.bfd_arch_info->mach; |
c906108c | 2226 | } |
7a78ae4e | 2227 | else |
c906108c | 2228 | { |
7a78ae4e ND |
2229 | arch = bfd_arch_powerpc; |
2230 | mach = 0; | |
2231 | bfd_default_set_arch_mach (&abfd, arch, mach); | |
2232 | info.bfd_arch_info = bfd_get_arch_info (&abfd); | |
2233 | } | |
2234 | tdep = xmalloc (sizeof (struct gdbarch_tdep)); | |
2235 | tdep->wordsize = wordsize; | |
9aa1e687 | 2236 | tdep->osabi = osabi; |
7a78ae4e ND |
2237 | gdbarch = gdbarch_alloc (&info, tdep); |
2238 | power = arch == bfd_arch_rs6000; | |
2239 | ||
2240 | /* Select instruction printer. */ | |
2241 | tm_print_insn = arch == power ? print_insn_rs6000 : | |
2242 | info.byte_order == BIG_ENDIAN ? print_insn_big_powerpc : | |
2243 | print_insn_little_powerpc; | |
2244 | ||
2245 | /* Choose variant. */ | |
2246 | v = find_variant_by_arch (arch, mach); | |
2247 | if (!v) | |
2248 | v = find_variant_by_name (power ? "power" : "powerpc"); | |
2249 | tdep->regs = v->regs; | |
2250 | ||
2188cbdd EZ |
2251 | tdep->ppc_gp0_regnum = 0; |
2252 | tdep->ppc_gplast_regnum = 31; | |
2253 | tdep->ppc_toc_regnum = 2; | |
2254 | tdep->ppc_ps_regnum = 65; | |
2255 | tdep->ppc_cr_regnum = 66; | |
2256 | tdep->ppc_lr_regnum = 67; | |
2257 | tdep->ppc_ctr_regnum = 68; | |
2258 | tdep->ppc_xer_regnum = 69; | |
2259 | if (v->mach == bfd_mach_ppc_601) | |
2260 | tdep->ppc_mq_regnum = 124; | |
2261 | else | |
2262 | tdep->ppc_mq_regnum = 70; | |
2263 | ||
7a78ae4e ND |
2264 | /* Calculate byte offsets in raw register array. */ |
2265 | tdep->regoff = xmalloc (v->nregs * sizeof (int)); | |
2266 | for (i = off = 0; i < v->nregs; i++) | |
2267 | { | |
2268 | tdep->regoff[i] = off; | |
2269 | off += regsize (v->regs + i, wordsize); | |
c906108c SS |
2270 | } |
2271 | ||
7a78ae4e ND |
2272 | set_gdbarch_read_pc (gdbarch, generic_target_read_pc); |
2273 | set_gdbarch_write_pc (gdbarch, generic_target_write_pc); | |
2274 | set_gdbarch_read_fp (gdbarch, generic_target_read_fp); | |
2275 | set_gdbarch_write_fp (gdbarch, generic_target_write_fp); | |
2276 | set_gdbarch_read_sp (gdbarch, generic_target_read_sp); | |
2277 | set_gdbarch_write_sp (gdbarch, generic_target_write_sp); | |
2278 | ||
2279 | set_gdbarch_num_regs (gdbarch, v->nregs); | |
2280 | set_gdbarch_sp_regnum (gdbarch, 1); | |
2281 | set_gdbarch_fp_regnum (gdbarch, 1); | |
2282 | set_gdbarch_pc_regnum (gdbarch, 64); | |
2283 | set_gdbarch_register_name (gdbarch, rs6000_register_name); | |
2284 | set_gdbarch_register_size (gdbarch, wordsize); | |
2285 | set_gdbarch_register_bytes (gdbarch, off); | |
2286 | set_gdbarch_register_byte (gdbarch, rs6000_register_byte); | |
2287 | set_gdbarch_register_raw_size (gdbarch, rs6000_register_raw_size); | |
2288 | set_gdbarch_max_register_raw_size (gdbarch, 8); | |
0e7c5946 | 2289 | set_gdbarch_register_virtual_size (gdbarch, generic_register_virtual_size); |
7a78ae4e ND |
2290 | set_gdbarch_max_register_virtual_size (gdbarch, 8); |
2291 | set_gdbarch_register_virtual_type (gdbarch, rs6000_register_virtual_type); | |
2292 | ||
2293 | set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT); | |
2294 | set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT); | |
2295 | set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
2296 | set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT); | |
2297 | set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
2298 | set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
2299 | set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
2300 | set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
2301 | ||
2302 | set_gdbarch_use_generic_dummy_frames (gdbarch, 1); | |
2303 | set_gdbarch_call_dummy_length (gdbarch, 0); | |
2304 | set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT); | |
2305 | set_gdbarch_call_dummy_address (gdbarch, entry_point_address); | |
2306 | set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1); | |
2307 | set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0); | |
2308 | set_gdbarch_call_dummy_start_offset (gdbarch, 0); | |
fe794dc6 | 2309 | set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy); |
7a78ae4e ND |
2310 | set_gdbarch_call_dummy_p (gdbarch, 1); |
2311 | set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0); | |
2312 | set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register); | |
2313 | set_gdbarch_fix_call_dummy (gdbarch, rs6000_fix_call_dummy); | |
2314 | set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame); | |
58223630 | 2315 | set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos); |
7a78ae4e ND |
2316 | set_gdbarch_push_return_address (gdbarch, ppc_push_return_address); |
2317 | set_gdbarch_believe_pcc_promotion (gdbarch, 1); | |
2318 | set_gdbarch_coerce_float_to_double (gdbarch, rs6000_coerce_float_to_double); | |
2319 | ||
2320 | set_gdbarch_register_convertible (gdbarch, rs6000_register_convertible); | |
2321 | set_gdbarch_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual); | |
2322 | set_gdbarch_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw); | |
2188cbdd | 2323 | set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum); |
7a78ae4e ND |
2324 | |
2325 | set_gdbarch_extract_return_value (gdbarch, rs6000_extract_return_value); | |
9aa1e687 KB |
2326 | |
2327 | if (sysv_abi) | |
2328 | set_gdbarch_push_arguments (gdbarch, ppc_sysv_abi_push_arguments); | |
2329 | else | |
2330 | set_gdbarch_push_arguments (gdbarch, rs6000_push_arguments); | |
7a78ae4e ND |
2331 | |
2332 | set_gdbarch_store_struct_return (gdbarch, rs6000_store_struct_return); | |
2333 | set_gdbarch_store_return_value (gdbarch, rs6000_store_return_value); | |
2334 | set_gdbarch_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address); | |
2335 | set_gdbarch_use_struct_convention (gdbarch, generic_use_struct_convention); | |
2336 | ||
7a78ae4e ND |
2337 | set_gdbarch_pop_frame (gdbarch, rs6000_pop_frame); |
2338 | ||
2339 | set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue); | |
2340 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
2341 | set_gdbarch_decr_pc_after_break (gdbarch, 0); | |
2342 | set_gdbarch_function_start_offset (gdbarch, 0); | |
2343 | set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc); | |
2344 | ||
2345 | /* Not sure on this. FIXMEmgo */ | |
2346 | set_gdbarch_frame_args_skip (gdbarch, 8); | |
2347 | ||
7a78ae4e | 2348 | set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid); |
9aa1e687 KB |
2349 | if (osabi == ELFOSABI_LINUX) |
2350 | { | |
2351 | set_gdbarch_frameless_function_invocation (gdbarch, | |
2352 | ppc_linux_frameless_function_invocation); | |
2353 | set_gdbarch_frame_chain (gdbarch, ppc_linux_frame_chain); | |
2354 | set_gdbarch_frame_saved_pc (gdbarch, ppc_linux_frame_saved_pc); | |
2355 | ||
2356 | set_gdbarch_frame_init_saved_regs (gdbarch, | |
2357 | ppc_linux_frame_init_saved_regs); | |
2358 | set_gdbarch_init_extra_frame_info (gdbarch, | |
2359 | ppc_linux_init_extra_frame_info); | |
2360 | ||
2361 | set_gdbarch_memory_remove_breakpoint (gdbarch, | |
2362 | ppc_linux_memory_remove_breakpoint); | |
6ded7999 KB |
2363 | set_solib_svr4_fetch_link_map_offsets |
2364 | (gdbarch, ppc_linux_svr4_fetch_link_map_offsets); | |
9aa1e687 KB |
2365 | } |
2366 | else | |
2367 | { | |
2368 | set_gdbarch_frameless_function_invocation (gdbarch, | |
2369 | rs6000_frameless_function_invocation); | |
2370 | set_gdbarch_frame_chain (gdbarch, rs6000_frame_chain); | |
2371 | set_gdbarch_frame_saved_pc (gdbarch, rs6000_frame_saved_pc); | |
2372 | ||
2373 | set_gdbarch_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs); | |
2374 | set_gdbarch_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info); | |
f517ea4e PS |
2375 | |
2376 | /* Handle RS/6000 function pointers. */ | |
2377 | set_gdbarch_convert_from_func_ptr_addr (gdbarch, | |
2378 | rs6000_convert_from_func_ptr_addr); | |
9aa1e687 | 2379 | } |
7a78ae4e ND |
2380 | set_gdbarch_frame_args_address (gdbarch, rs6000_frame_args_address); |
2381 | set_gdbarch_frame_locals_address (gdbarch, rs6000_frame_args_address); | |
2382 | set_gdbarch_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call); | |
2383 | ||
2384 | /* We can't tell how many args there are | |
2385 | now that the C compiler delays popping them. */ | |
2386 | set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown); | |
2387 | ||
2388 | return gdbarch; | |
c906108c SS |
2389 | } |
2390 | ||
c906108c SS |
2391 | /* Initialization code. */ |
2392 | ||
2393 | void | |
fba45db2 | 2394 | _initialize_rs6000_tdep (void) |
c906108c | 2395 | { |
7a78ae4e ND |
2396 | register_gdbarch_init (bfd_arch_rs6000, rs6000_gdbarch_init); |
2397 | register_gdbarch_init (bfd_arch_powerpc, rs6000_gdbarch_init); | |
c906108c | 2398 | } |