]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Target-dependent code for GDB, the GNU debugger. |
b6ba6518 | 2 | Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, |
2a873819 | 3 | 1998, 1999, 2000, 2001, 2002 |
c906108c SS |
4 | Free Software Foundation, Inc. |
5 | ||
c5aa993b | 6 | This file is part of GDB. |
c906108c | 7 | |
c5aa993b JM |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
c906108c | 12 | |
c5aa993b JM |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
c906108c | 17 | |
c5aa993b JM |
18 | You should have received a copy of the GNU General Public License |
19 | along with this program; if not, write to the Free Software | |
20 | Foundation, Inc., 59 Temple Place - Suite 330, | |
21 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
22 | |
23 | #include "defs.h" | |
24 | #include "frame.h" | |
25 | #include "inferior.h" | |
26 | #include "symtab.h" | |
27 | #include "target.h" | |
28 | #include "gdbcore.h" | |
29 | #include "gdbcmd.h" | |
30 | #include "symfile.h" | |
31 | #include "objfiles.h" | |
7a78ae4e | 32 | #include "arch-utils.h" |
4e052eda | 33 | #include "regcache.h" |
d16aafd8 | 34 | #include "doublest.h" |
fd0407d6 | 35 | #include "value.h" |
1fcc0bb8 | 36 | #include "parser-defs.h" |
7a78ae4e | 37 | |
2fccf04a | 38 | #include "libbfd.h" /* for bfd_default_set_arch_mach */ |
7a78ae4e | 39 | #include "coff/internal.h" /* for libcoff.h */ |
2fccf04a | 40 | #include "libcoff.h" /* for xcoff_data */ |
11ed25ac KB |
41 | #include "coff/xcoff.h" |
42 | #include "libxcoff.h" | |
7a78ae4e | 43 | |
9aa1e687 | 44 | #include "elf-bfd.h" |
7a78ae4e | 45 | |
6ded7999 | 46 | #include "solib-svr4.h" |
9aa1e687 | 47 | #include "ppc-tdep.h" |
7a78ae4e ND |
48 | |
49 | /* If the kernel has to deliver a signal, it pushes a sigcontext | |
50 | structure on the stack and then calls the signal handler, passing | |
51 | the address of the sigcontext in an argument register. Usually | |
52 | the signal handler doesn't save this register, so we have to | |
53 | access the sigcontext structure via an offset from the signal handler | |
54 | frame. | |
55 | The following constants were determined by experimentation on AIX 3.2. */ | |
56 | #define SIG_FRAME_PC_OFFSET 96 | |
57 | #define SIG_FRAME_LR_OFFSET 108 | |
58 | #define SIG_FRAME_FP_OFFSET 284 | |
59 | ||
7a78ae4e ND |
60 | /* To be used by skip_prologue. */ |
61 | ||
62 | struct rs6000_framedata | |
63 | { | |
64 | int offset; /* total size of frame --- the distance | |
65 | by which we decrement sp to allocate | |
66 | the frame */ | |
67 | int saved_gpr; /* smallest # of saved gpr */ | |
68 | int saved_fpr; /* smallest # of saved fpr */ | |
6be8bc0c | 69 | int saved_vr; /* smallest # of saved vr */ |
96ff0de4 | 70 | int saved_ev; /* smallest # of saved ev */ |
7a78ae4e ND |
71 | int alloca_reg; /* alloca register number (frame ptr) */ |
72 | char frameless; /* true if frameless functions. */ | |
73 | char nosavedpc; /* true if pc not saved. */ | |
74 | int gpr_offset; /* offset of saved gprs from prev sp */ | |
75 | int fpr_offset; /* offset of saved fprs from prev sp */ | |
6be8bc0c | 76 | int vr_offset; /* offset of saved vrs from prev sp */ |
96ff0de4 | 77 | int ev_offset; /* offset of saved evs from prev sp */ |
7a78ae4e ND |
78 | int lr_offset; /* offset of saved lr */ |
79 | int cr_offset; /* offset of saved cr */ | |
6be8bc0c | 80 | int vrsave_offset; /* offset of saved vrsave register */ |
7a78ae4e ND |
81 | }; |
82 | ||
83 | /* Description of a single register. */ | |
84 | ||
85 | struct reg | |
86 | { | |
87 | char *name; /* name of register */ | |
88 | unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */ | |
89 | unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */ | |
90 | unsigned char fpr; /* whether register is floating-point */ | |
489461e2 | 91 | unsigned char pseudo; /* whether register is pseudo */ |
7a78ae4e ND |
92 | }; |
93 | ||
c906108c SS |
94 | /* Breakpoint shadows for the single step instructions will be kept here. */ |
95 | ||
c5aa993b JM |
96 | static struct sstep_breaks |
97 | { | |
98 | /* Address, or 0 if this is not in use. */ | |
99 | CORE_ADDR address; | |
100 | /* Shadow contents. */ | |
101 | char data[4]; | |
102 | } | |
103 | stepBreaks[2]; | |
c906108c SS |
104 | |
105 | /* Hook for determining the TOC address when calling functions in the | |
106 | inferior under AIX. The initialization code in rs6000-nat.c sets | |
107 | this hook to point to find_toc_address. */ | |
108 | ||
7a78ae4e ND |
109 | CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL; |
110 | ||
111 | /* Hook to set the current architecture when starting a child process. | |
112 | rs6000-nat.c sets this. */ | |
113 | ||
114 | void (*rs6000_set_host_arch_hook) (int) = NULL; | |
c906108c SS |
115 | |
116 | /* Static function prototypes */ | |
117 | ||
a14ed312 KB |
118 | static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc, |
119 | CORE_ADDR safety); | |
077276e8 KB |
120 | static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR, |
121 | struct rs6000_framedata *); | |
7a78ae4e ND |
122 | static void frame_get_saved_regs (struct frame_info * fi, |
123 | struct rs6000_framedata * fdatap); | |
124 | static CORE_ADDR frame_initial_stack_address (struct frame_info *); | |
c906108c | 125 | |
7a78ae4e | 126 | /* Read a LEN-byte address from debugged memory address MEMADDR. */ |
c906108c | 127 | |
7a78ae4e ND |
128 | static CORE_ADDR |
129 | read_memory_addr (CORE_ADDR memaddr, int len) | |
130 | { | |
131 | return read_memory_unsigned_integer (memaddr, len); | |
132 | } | |
c906108c | 133 | |
7a78ae4e ND |
134 | static CORE_ADDR |
135 | rs6000_skip_prologue (CORE_ADDR pc) | |
b83266a0 SS |
136 | { |
137 | struct rs6000_framedata frame; | |
077276e8 | 138 | pc = skip_prologue (pc, 0, &frame); |
b83266a0 SS |
139 | return pc; |
140 | } | |
141 | ||
142 | ||
c906108c SS |
143 | /* Fill in fi->saved_regs */ |
144 | ||
145 | struct frame_extra_info | |
146 | { | |
147 | /* Functions calling alloca() change the value of the stack | |
148 | pointer. We need to use initial stack pointer (which is saved in | |
149 | r31 by gcc) in such cases. If a compiler emits traceback table, | |
150 | then we should use the alloca register specified in traceback | |
151 | table. FIXME. */ | |
c5aa993b | 152 | CORE_ADDR initial_sp; /* initial stack pointer. */ |
c906108c SS |
153 | }; |
154 | ||
9aa1e687 | 155 | void |
7a78ae4e | 156 | rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi) |
c906108c | 157 | { |
c5aa993b | 158 | fi->extra_info = (struct frame_extra_info *) |
c906108c SS |
159 | frame_obstack_alloc (sizeof (struct frame_extra_info)); |
160 | fi->extra_info->initial_sp = 0; | |
161 | if (fi->next != (CORE_ADDR) 0 | |
162 | && fi->pc < TEXT_SEGMENT_BASE) | |
7a292a7a | 163 | /* We're in get_prev_frame */ |
c906108c SS |
164 | /* and this is a special signal frame. */ |
165 | /* (fi->pc will be some low address in the kernel, */ | |
166 | /* to which the signal handler returns). */ | |
167 | fi->signal_handler_caller = 1; | |
168 | } | |
169 | ||
7a78ae4e ND |
170 | /* Put here the code to store, into a struct frame_saved_regs, |
171 | the addresses of the saved registers of frame described by FRAME_INFO. | |
172 | This includes special registers such as pc and fp saved in special | |
173 | ways in the stack frame. sp is even more special: | |
174 | the address we return for it IS the sp for the next frame. */ | |
c906108c | 175 | |
7a78ae4e ND |
176 | /* In this implementation for RS/6000, we do *not* save sp. I am |
177 | not sure if it will be needed. The following function takes care of gpr's | |
178 | and fpr's only. */ | |
179 | ||
9aa1e687 | 180 | void |
7a78ae4e | 181 | rs6000_frame_init_saved_regs (struct frame_info *fi) |
c906108c SS |
182 | { |
183 | frame_get_saved_regs (fi, NULL); | |
184 | } | |
185 | ||
7a78ae4e ND |
186 | static CORE_ADDR |
187 | rs6000_frame_args_address (struct frame_info *fi) | |
c906108c SS |
188 | { |
189 | if (fi->extra_info->initial_sp != 0) | |
190 | return fi->extra_info->initial_sp; | |
191 | else | |
192 | return frame_initial_stack_address (fi); | |
193 | } | |
194 | ||
7a78ae4e ND |
195 | /* Immediately after a function call, return the saved pc. |
196 | Can't go through the frames for this because on some machines | |
197 | the new frame is not set up until the new function executes | |
198 | some instructions. */ | |
199 | ||
200 | static CORE_ADDR | |
201 | rs6000_saved_pc_after_call (struct frame_info *fi) | |
202 | { | |
2188cbdd | 203 | return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum); |
7a78ae4e | 204 | } |
c906108c SS |
205 | |
206 | /* Calculate the destination of a branch/jump. Return -1 if not a branch. */ | |
207 | ||
208 | static CORE_ADDR | |
7a78ae4e | 209 | branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety) |
c906108c SS |
210 | { |
211 | CORE_ADDR dest; | |
212 | int immediate; | |
213 | int absolute; | |
214 | int ext_op; | |
215 | ||
216 | absolute = (int) ((instr >> 1) & 1); | |
217 | ||
c5aa993b JM |
218 | switch (opcode) |
219 | { | |
220 | case 18: | |
221 | immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */ | |
222 | if (absolute) | |
223 | dest = immediate; | |
224 | else | |
225 | dest = pc + immediate; | |
226 | break; | |
227 | ||
228 | case 16: | |
229 | immediate = ((instr & ~3) << 16) >> 16; /* br conditional */ | |
230 | if (absolute) | |
231 | dest = immediate; | |
232 | else | |
233 | dest = pc + immediate; | |
234 | break; | |
235 | ||
236 | case 19: | |
237 | ext_op = (instr >> 1) & 0x3ff; | |
238 | ||
239 | if (ext_op == 16) /* br conditional register */ | |
240 | { | |
2188cbdd | 241 | dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3; |
c5aa993b JM |
242 | |
243 | /* If we are about to return from a signal handler, dest is | |
244 | something like 0x3c90. The current frame is a signal handler | |
245 | caller frame, upon completion of the sigreturn system call | |
246 | execution will return to the saved PC in the frame. */ | |
247 | if (dest < TEXT_SEGMENT_BASE) | |
248 | { | |
249 | struct frame_info *fi; | |
250 | ||
251 | fi = get_current_frame (); | |
252 | if (fi != NULL) | |
7a78ae4e | 253 | dest = read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET, |
21283beb | 254 | gdbarch_tdep (current_gdbarch)->wordsize); |
c5aa993b JM |
255 | } |
256 | } | |
257 | ||
258 | else if (ext_op == 528) /* br cond to count reg */ | |
259 | { | |
2188cbdd | 260 | dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3; |
c5aa993b JM |
261 | |
262 | /* If we are about to execute a system call, dest is something | |
263 | like 0x22fc or 0x3b00. Upon completion the system call | |
264 | will return to the address in the link register. */ | |
265 | if (dest < TEXT_SEGMENT_BASE) | |
2188cbdd | 266 | dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3; |
c5aa993b JM |
267 | } |
268 | else | |
269 | return -1; | |
270 | break; | |
c906108c | 271 | |
c5aa993b JM |
272 | default: |
273 | return -1; | |
274 | } | |
c906108c SS |
275 | return (dest < TEXT_SEGMENT_BASE) ? safety : dest; |
276 | } | |
277 | ||
278 | ||
279 | /* Sequence of bytes for breakpoint instruction. */ | |
280 | ||
281 | #define BIG_BREAKPOINT { 0x7d, 0x82, 0x10, 0x08 } | |
282 | #define LITTLE_BREAKPOINT { 0x08, 0x10, 0x82, 0x7d } | |
283 | ||
f4f9705a | 284 | const static unsigned char * |
7a78ae4e | 285 | rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size) |
c906108c SS |
286 | { |
287 | static unsigned char big_breakpoint[] = BIG_BREAKPOINT; | |
288 | static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT; | |
289 | *bp_size = 4; | |
d7449b42 | 290 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) |
c906108c SS |
291 | return big_breakpoint; |
292 | else | |
293 | return little_breakpoint; | |
294 | } | |
295 | ||
296 | ||
297 | /* AIX does not support PT_STEP. Simulate it. */ | |
298 | ||
299 | void | |
379d08a1 AC |
300 | rs6000_software_single_step (enum target_signal signal, |
301 | int insert_breakpoints_p) | |
c906108c | 302 | { |
7c40d541 KB |
303 | CORE_ADDR dummy; |
304 | int breakp_sz; | |
f4f9705a | 305 | const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz); |
c906108c SS |
306 | int ii, insn; |
307 | CORE_ADDR loc; | |
308 | CORE_ADDR breaks[2]; | |
309 | int opcode; | |
310 | ||
c5aa993b JM |
311 | if (insert_breakpoints_p) |
312 | { | |
c906108c | 313 | |
c5aa993b | 314 | loc = read_pc (); |
c906108c | 315 | |
c5aa993b | 316 | insn = read_memory_integer (loc, 4); |
c906108c | 317 | |
7c40d541 | 318 | breaks[0] = loc + breakp_sz; |
c5aa993b JM |
319 | opcode = insn >> 26; |
320 | breaks[1] = branch_dest (opcode, insn, loc, breaks[0]); | |
c906108c | 321 | |
c5aa993b JM |
322 | /* Don't put two breakpoints on the same address. */ |
323 | if (breaks[1] == breaks[0]) | |
324 | breaks[1] = -1; | |
c906108c | 325 | |
c5aa993b | 326 | stepBreaks[1].address = 0; |
c906108c | 327 | |
c5aa993b JM |
328 | for (ii = 0; ii < 2; ++ii) |
329 | { | |
c906108c | 330 | |
c5aa993b JM |
331 | /* ignore invalid breakpoint. */ |
332 | if (breaks[ii] == -1) | |
333 | continue; | |
7c40d541 | 334 | target_insert_breakpoint (breaks[ii], stepBreaks[ii].data); |
c5aa993b JM |
335 | stepBreaks[ii].address = breaks[ii]; |
336 | } | |
c906108c | 337 | |
c5aa993b JM |
338 | } |
339 | else | |
340 | { | |
c906108c | 341 | |
c5aa993b JM |
342 | /* remove step breakpoints. */ |
343 | for (ii = 0; ii < 2; ++ii) | |
344 | if (stepBreaks[ii].address != 0) | |
7c40d541 KB |
345 | target_remove_breakpoint (stepBreaks[ii].address, |
346 | stepBreaks[ii].data); | |
c5aa993b | 347 | } |
c906108c | 348 | errno = 0; /* FIXME, don't ignore errors! */ |
c5aa993b | 349 | /* What errors? {read,write}_memory call error(). */ |
c906108c SS |
350 | } |
351 | ||
352 | ||
353 | /* return pc value after skipping a function prologue and also return | |
354 | information about a function frame. | |
355 | ||
356 | in struct rs6000_framedata fdata: | |
c5aa993b JM |
357 | - frameless is TRUE, if function does not have a frame. |
358 | - nosavedpc is TRUE, if function does not save %pc value in its frame. | |
359 | - offset is the initial size of this stack frame --- the amount by | |
360 | which we decrement the sp to allocate the frame. | |
361 | - saved_gpr is the number of the first saved gpr. | |
362 | - saved_fpr is the number of the first saved fpr. | |
6be8bc0c | 363 | - saved_vr is the number of the first saved vr. |
96ff0de4 | 364 | - saved_ev is the number of the first saved ev. |
c5aa993b JM |
365 | - alloca_reg is the number of the register used for alloca() handling. |
366 | Otherwise -1. | |
367 | - gpr_offset is the offset of the first saved gpr from the previous frame. | |
368 | - fpr_offset is the offset of the first saved fpr from the previous frame. | |
6be8bc0c | 369 | - vr_offset is the offset of the first saved vr from the previous frame. |
96ff0de4 | 370 | - ev_offset is the offset of the first saved ev from the previous frame. |
c5aa993b JM |
371 | - lr_offset is the offset of the saved lr |
372 | - cr_offset is the offset of the saved cr | |
6be8bc0c | 373 | - vrsave_offset is the offset of the saved vrsave register |
c5aa993b | 374 | */ |
c906108c SS |
375 | |
376 | #define SIGNED_SHORT(x) \ | |
377 | ((sizeof (short) == 2) \ | |
378 | ? ((int)(short)(x)) \ | |
379 | : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000))) | |
380 | ||
381 | #define GET_SRC_REG(x) (((x) >> 21) & 0x1f) | |
382 | ||
55d05f3b KB |
383 | /* Limit the number of skipped non-prologue instructions, as the examining |
384 | of the prologue is expensive. */ | |
385 | static int max_skip_non_prologue_insns = 10; | |
386 | ||
387 | /* Given PC representing the starting address of a function, and | |
388 | LIM_PC which is the (sloppy) limit to which to scan when looking | |
389 | for a prologue, attempt to further refine this limit by using | |
390 | the line data in the symbol table. If successful, a better guess | |
391 | on where the prologue ends is returned, otherwise the previous | |
392 | value of lim_pc is returned. */ | |
393 | static CORE_ADDR | |
394 | refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc) | |
395 | { | |
396 | struct symtab_and_line prologue_sal; | |
397 | ||
398 | prologue_sal = find_pc_line (pc, 0); | |
399 | if (prologue_sal.line != 0) | |
400 | { | |
401 | int i; | |
402 | CORE_ADDR addr = prologue_sal.end; | |
403 | ||
404 | /* Handle the case in which compiler's optimizer/scheduler | |
405 | has moved instructions into the prologue. We scan ahead | |
406 | in the function looking for address ranges whose corresponding | |
407 | line number is less than or equal to the first one that we | |
408 | found for the function. (It can be less than when the | |
409 | scheduler puts a body instruction before the first prologue | |
410 | instruction.) */ | |
411 | for (i = 2 * max_skip_non_prologue_insns; | |
412 | i > 0 && (lim_pc == 0 || addr < lim_pc); | |
413 | i--) | |
414 | { | |
415 | struct symtab_and_line sal; | |
416 | ||
417 | sal = find_pc_line (addr, 0); | |
418 | if (sal.line == 0) | |
419 | break; | |
420 | if (sal.line <= prologue_sal.line | |
421 | && sal.symtab == prologue_sal.symtab) | |
422 | { | |
423 | prologue_sal = sal; | |
424 | } | |
425 | addr = sal.end; | |
426 | } | |
427 | ||
428 | if (lim_pc == 0 || prologue_sal.end < lim_pc) | |
429 | lim_pc = prologue_sal.end; | |
430 | } | |
431 | return lim_pc; | |
432 | } | |
433 | ||
434 | ||
7a78ae4e | 435 | static CORE_ADDR |
077276e8 | 436 | skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata) |
c906108c SS |
437 | { |
438 | CORE_ADDR orig_pc = pc; | |
55d05f3b | 439 | CORE_ADDR last_prologue_pc = pc; |
6be8bc0c | 440 | CORE_ADDR li_found_pc = 0; |
c906108c SS |
441 | char buf[4]; |
442 | unsigned long op; | |
443 | long offset = 0; | |
6be8bc0c | 444 | long vr_saved_offset = 0; |
482ca3f5 KB |
445 | int lr_reg = -1; |
446 | int cr_reg = -1; | |
6be8bc0c | 447 | int vr_reg = -1; |
96ff0de4 EZ |
448 | int ev_reg = -1; |
449 | long ev_offset = 0; | |
6be8bc0c | 450 | int vrsave_reg = -1; |
c906108c SS |
451 | int reg; |
452 | int framep = 0; | |
453 | int minimal_toc_loaded = 0; | |
ddb20c56 | 454 | int prev_insn_was_prologue_insn = 1; |
55d05f3b | 455 | int num_skip_non_prologue_insns = 0; |
96ff0de4 EZ |
456 | const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch); |
457 | ||
55d05f3b KB |
458 | /* Attempt to find the end of the prologue when no limit is specified. |
459 | Note that refine_prologue_limit() has been written so that it may | |
460 | be used to "refine" the limits of non-zero PC values too, but this | |
461 | is only safe if we 1) trust the line information provided by the | |
462 | compiler and 2) iterate enough to actually find the end of the | |
463 | prologue. | |
464 | ||
465 | It may become a good idea at some point (for both performance and | |
466 | accuracy) to unconditionally call refine_prologue_limit(). But, | |
467 | until we can make a clear determination that this is beneficial, | |
468 | we'll play it safe and only use it to obtain a limit when none | |
469 | has been specified. */ | |
470 | if (lim_pc == 0) | |
471 | lim_pc = refine_prologue_limit (pc, lim_pc); | |
c906108c | 472 | |
ddb20c56 | 473 | memset (fdata, 0, sizeof (struct rs6000_framedata)); |
c906108c SS |
474 | fdata->saved_gpr = -1; |
475 | fdata->saved_fpr = -1; | |
6be8bc0c | 476 | fdata->saved_vr = -1; |
96ff0de4 | 477 | fdata->saved_ev = -1; |
c906108c SS |
478 | fdata->alloca_reg = -1; |
479 | fdata->frameless = 1; | |
480 | fdata->nosavedpc = 1; | |
481 | ||
55d05f3b | 482 | for (;; pc += 4) |
c906108c | 483 | { |
ddb20c56 KB |
484 | /* Sometimes it isn't clear if an instruction is a prologue |
485 | instruction or not. When we encounter one of these ambiguous | |
486 | cases, we'll set prev_insn_was_prologue_insn to 0 (false). | |
487 | Otherwise, we'll assume that it really is a prologue instruction. */ | |
488 | if (prev_insn_was_prologue_insn) | |
489 | last_prologue_pc = pc; | |
55d05f3b KB |
490 | |
491 | /* Stop scanning if we've hit the limit. */ | |
492 | if (lim_pc != 0 && pc >= lim_pc) | |
493 | break; | |
494 | ||
ddb20c56 KB |
495 | prev_insn_was_prologue_insn = 1; |
496 | ||
55d05f3b | 497 | /* Fetch the instruction and convert it to an integer. */ |
ddb20c56 KB |
498 | if (target_read_memory (pc, buf, 4)) |
499 | break; | |
500 | op = extract_signed_integer (buf, 4); | |
c906108c | 501 | |
c5aa993b JM |
502 | if ((op & 0xfc1fffff) == 0x7c0802a6) |
503 | { /* mflr Rx */ | |
504 | lr_reg = (op & 0x03e00000) | 0x90010000; | |
505 | continue; | |
c906108c | 506 | |
c5aa993b JM |
507 | } |
508 | else if ((op & 0xfc1fffff) == 0x7c000026) | |
509 | { /* mfcr Rx */ | |
510 | cr_reg = (op & 0x03e00000) | 0x90010000; | |
511 | continue; | |
c906108c | 512 | |
c906108c | 513 | } |
c5aa993b JM |
514 | else if ((op & 0xfc1f0000) == 0xd8010000) |
515 | { /* stfd Rx,NUM(r1) */ | |
516 | reg = GET_SRC_REG (op); | |
517 | if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg) | |
518 | { | |
519 | fdata->saved_fpr = reg; | |
520 | fdata->fpr_offset = SIGNED_SHORT (op) + offset; | |
521 | } | |
522 | continue; | |
c906108c | 523 | |
c5aa993b JM |
524 | } |
525 | else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */ | |
7a78ae4e ND |
526 | (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */ |
527 | (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */ | |
528 | (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */ | |
c5aa993b JM |
529 | { |
530 | ||
531 | reg = GET_SRC_REG (op); | |
532 | if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg) | |
533 | { | |
534 | fdata->saved_gpr = reg; | |
7a78ae4e ND |
535 | if ((op & 0xfc1f0003) == 0xf8010000) |
536 | op = (op >> 1) << 1; | |
c5aa993b JM |
537 | fdata->gpr_offset = SIGNED_SHORT (op) + offset; |
538 | } | |
539 | continue; | |
c906108c | 540 | |
ddb20c56 KB |
541 | } |
542 | else if ((op & 0xffff0000) == 0x60000000) | |
543 | { | |
96ff0de4 | 544 | /* nop */ |
ddb20c56 KB |
545 | /* Allow nops in the prologue, but do not consider them to |
546 | be part of the prologue unless followed by other prologue | |
547 | instructions. */ | |
548 | prev_insn_was_prologue_insn = 0; | |
549 | continue; | |
550 | ||
c906108c | 551 | } |
c5aa993b JM |
552 | else if ((op & 0xffff0000) == 0x3c000000) |
553 | { /* addis 0,0,NUM, used | |
554 | for >= 32k frames */ | |
555 | fdata->offset = (op & 0x0000ffff) << 16; | |
556 | fdata->frameless = 0; | |
557 | continue; | |
558 | ||
559 | } | |
560 | else if ((op & 0xffff0000) == 0x60000000) | |
561 | { /* ori 0,0,NUM, 2nd ha | |
562 | lf of >= 32k frames */ | |
563 | fdata->offset |= (op & 0x0000ffff); | |
564 | fdata->frameless = 0; | |
565 | continue; | |
566 | ||
567 | } | |
482ca3f5 | 568 | else if (lr_reg != -1 && (op & 0xffff0000) == lr_reg) |
c5aa993b JM |
569 | { /* st Rx,NUM(r1) |
570 | where Rx == lr */ | |
571 | fdata->lr_offset = SIGNED_SHORT (op) + offset; | |
572 | fdata->nosavedpc = 0; | |
573 | lr_reg = 0; | |
574 | continue; | |
575 | ||
576 | } | |
482ca3f5 | 577 | else if (cr_reg != -1 && (op & 0xffff0000) == cr_reg) |
c5aa993b JM |
578 | { /* st Rx,NUM(r1) |
579 | where Rx == cr */ | |
580 | fdata->cr_offset = SIGNED_SHORT (op) + offset; | |
581 | cr_reg = 0; | |
582 | continue; | |
583 | ||
584 | } | |
585 | else if (op == 0x48000005) | |
586 | { /* bl .+4 used in | |
587 | -mrelocatable */ | |
588 | continue; | |
589 | ||
590 | } | |
591 | else if (op == 0x48000004) | |
592 | { /* b .+4 (xlc) */ | |
593 | break; | |
594 | ||
c5aa993b | 595 | } |
6be8bc0c EZ |
596 | else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used |
597 | in V.4 -mminimal-toc */ | |
c5aa993b JM |
598 | (op & 0xffff0000) == 0x3bde0000) |
599 | { /* addi 30,30,foo@l */ | |
600 | continue; | |
c906108c | 601 | |
c5aa993b JM |
602 | } |
603 | else if ((op & 0xfc000001) == 0x48000001) | |
604 | { /* bl foo, | |
605 | to save fprs??? */ | |
c906108c | 606 | |
c5aa993b | 607 | fdata->frameless = 0; |
6be8bc0c EZ |
608 | /* Don't skip over the subroutine call if it is not within |
609 | the first three instructions of the prologue. */ | |
c5aa993b JM |
610 | if ((pc - orig_pc) > 8) |
611 | break; | |
612 | ||
613 | op = read_memory_integer (pc + 4, 4); | |
614 | ||
6be8bc0c EZ |
615 | /* At this point, make sure this is not a trampoline |
616 | function (a function that simply calls another functions, | |
617 | and nothing else). If the next is not a nop, this branch | |
618 | was part of the function prologue. */ | |
c5aa993b JM |
619 | |
620 | if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */ | |
621 | break; /* don't skip over | |
622 | this branch */ | |
623 | continue; | |
624 | ||
625 | /* update stack pointer */ | |
626 | } | |
7a78ae4e ND |
627 | else if ((op & 0xffff0000) == 0x94210000 || /* stu r1,NUM(r1) */ |
628 | (op & 0xffff0003) == 0xf8210001) /* stdu r1,NUM(r1) */ | |
629 | { | |
c5aa993b | 630 | fdata->frameless = 0; |
7a78ae4e ND |
631 | if ((op & 0xffff0003) == 0xf8210001) |
632 | op = (op >> 1) << 1; | |
c5aa993b JM |
633 | fdata->offset = SIGNED_SHORT (op); |
634 | offset = fdata->offset; | |
635 | continue; | |
636 | ||
637 | } | |
638 | else if (op == 0x7c21016e) | |
639 | { /* stwux 1,1,0 */ | |
640 | fdata->frameless = 0; | |
641 | offset = fdata->offset; | |
642 | continue; | |
643 | ||
644 | /* Load up minimal toc pointer */ | |
645 | } | |
646 | else if ((op >> 22) == 0x20f | |
647 | && !minimal_toc_loaded) | |
648 | { /* l r31,... or l r30,... */ | |
649 | minimal_toc_loaded = 1; | |
650 | continue; | |
651 | ||
f6077098 KB |
652 | /* move parameters from argument registers to local variable |
653 | registers */ | |
654 | } | |
655 | else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */ | |
656 | (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */ | |
657 | (((op >> 21) & 31) <= 10) && | |
96ff0de4 | 658 | ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */ |
f6077098 KB |
659 | { |
660 | continue; | |
661 | ||
c5aa993b JM |
662 | /* store parameters in stack */ |
663 | } | |
6be8bc0c | 664 | else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */ |
c5aa993b | 665 | (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */ |
7a78ae4e ND |
666 | (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */ |
667 | { | |
c5aa993b | 668 | continue; |
c906108c | 669 | |
c5aa993b JM |
670 | /* store parameters in stack via frame pointer */ |
671 | } | |
672 | else if (framep && | |
673 | ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */ | |
674 | (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */ | |
675 | (op & 0xfc1f0000) == 0xfc1f0000)) | |
676 | { /* frsp, fp?,NUM(r1) */ | |
677 | continue; | |
678 | ||
679 | /* Set up frame pointer */ | |
680 | } | |
681 | else if (op == 0x603f0000 /* oril r31, r1, 0x0 */ | |
682 | || op == 0x7c3f0b78) | |
683 | { /* mr r31, r1 */ | |
684 | fdata->frameless = 0; | |
685 | framep = 1; | |
686 | fdata->alloca_reg = 31; | |
687 | continue; | |
688 | ||
689 | /* Another way to set up the frame pointer. */ | |
690 | } | |
691 | else if ((op & 0xfc1fffff) == 0x38010000) | |
692 | { /* addi rX, r1, 0x0 */ | |
693 | fdata->frameless = 0; | |
694 | framep = 1; | |
695 | fdata->alloca_reg = (op & ~0x38010000) >> 21; | |
696 | continue; | |
c5aa993b | 697 | } |
6be8bc0c EZ |
698 | /* AltiVec related instructions. */ |
699 | /* Store the vrsave register (spr 256) in another register for | |
700 | later manipulation, or load a register into the vrsave | |
701 | register. 2 instructions are used: mfvrsave and | |
702 | mtvrsave. They are shorthand notation for mfspr Rn, SPR256 | |
703 | and mtspr SPR256, Rn. */ | |
704 | /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110 | |
705 | mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */ | |
706 | else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */ | |
707 | { | |
708 | vrsave_reg = GET_SRC_REG (op); | |
709 | continue; | |
710 | } | |
711 | else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */ | |
712 | { | |
713 | continue; | |
714 | } | |
715 | /* Store the register where vrsave was saved to onto the stack: | |
716 | rS is the register where vrsave was stored in a previous | |
717 | instruction. */ | |
718 | /* 100100 sssss 00001 dddddddd dddddddd */ | |
719 | else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */ | |
720 | { | |
721 | if (vrsave_reg == GET_SRC_REG (op)) | |
722 | { | |
723 | fdata->vrsave_offset = SIGNED_SHORT (op) + offset; | |
724 | vrsave_reg = -1; | |
725 | } | |
726 | continue; | |
727 | } | |
728 | /* Compute the new value of vrsave, by modifying the register | |
729 | where vrsave was saved to. */ | |
730 | else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */ | |
731 | || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */ | |
732 | { | |
733 | continue; | |
734 | } | |
735 | /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first | |
736 | in a pair of insns to save the vector registers on the | |
737 | stack. */ | |
738 | /* 001110 00000 00000 iiii iiii iiii iiii */ | |
96ff0de4 EZ |
739 | /* 001110 01110 00000 iiii iiii iiii iiii */ |
740 | else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */ | |
741 | || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */ | |
6be8bc0c EZ |
742 | { |
743 | li_found_pc = pc; | |
744 | vr_saved_offset = SIGNED_SHORT (op); | |
745 | } | |
746 | /* Store vector register S at (r31+r0) aligned to 16 bytes. */ | |
747 | /* 011111 sssss 11111 00000 00111001110 */ | |
748 | else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */ | |
749 | { | |
750 | if (pc == (li_found_pc + 4)) | |
751 | { | |
752 | vr_reg = GET_SRC_REG (op); | |
753 | /* If this is the first vector reg to be saved, or if | |
754 | it has a lower number than others previously seen, | |
755 | reupdate the frame info. */ | |
756 | if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg) | |
757 | { | |
758 | fdata->saved_vr = vr_reg; | |
759 | fdata->vr_offset = vr_saved_offset + offset; | |
760 | } | |
761 | vr_saved_offset = -1; | |
762 | vr_reg = -1; | |
763 | li_found_pc = 0; | |
764 | } | |
765 | } | |
766 | /* End AltiVec related instructions. */ | |
96ff0de4 EZ |
767 | |
768 | /* Start BookE related instructions. */ | |
769 | /* Store gen register S at (r31+uimm). | |
770 | Any register less than r13 is volatile, so we don't care. */ | |
771 | /* 000100 sssss 11111 iiiii 01100100001 */ | |
772 | else if (arch_info->mach == bfd_mach_ppc_e500 | |
773 | && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */ | |
774 | { | |
775 | if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */ | |
776 | { | |
777 | unsigned int imm; | |
778 | ev_reg = GET_SRC_REG (op); | |
779 | imm = (op >> 11) & 0x1f; | |
780 | ev_offset = imm * 8; | |
781 | /* If this is the first vector reg to be saved, or if | |
782 | it has a lower number than others previously seen, | |
783 | reupdate the frame info. */ | |
784 | if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg) | |
785 | { | |
786 | fdata->saved_ev = ev_reg; | |
787 | fdata->ev_offset = ev_offset + offset; | |
788 | } | |
789 | } | |
790 | continue; | |
791 | } | |
792 | /* Store gen register rS at (r1+rB). */ | |
793 | /* 000100 sssss 00001 bbbbb 01100100000 */ | |
794 | else if (arch_info->mach == bfd_mach_ppc_e500 | |
795 | && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */ | |
796 | { | |
797 | if (pc == (li_found_pc + 4)) | |
798 | { | |
799 | ev_reg = GET_SRC_REG (op); | |
800 | /* If this is the first vector reg to be saved, or if | |
801 | it has a lower number than others previously seen, | |
802 | reupdate the frame info. */ | |
803 | /* We know the contents of rB from the previous instruction. */ | |
804 | if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg) | |
805 | { | |
806 | fdata->saved_ev = ev_reg; | |
807 | fdata->ev_offset = vr_saved_offset + offset; | |
808 | } | |
809 | vr_saved_offset = -1; | |
810 | ev_reg = -1; | |
811 | li_found_pc = 0; | |
812 | } | |
813 | continue; | |
814 | } | |
815 | /* Store gen register r31 at (rA+uimm). */ | |
816 | /* 000100 11111 aaaaa iiiii 01100100001 */ | |
817 | else if (arch_info->mach == bfd_mach_ppc_e500 | |
818 | && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */ | |
819 | { | |
820 | /* Wwe know that the source register is 31 already, but | |
821 | it can't hurt to compute it. */ | |
822 | ev_reg = GET_SRC_REG (op); | |
823 | ev_offset = ((op >> 11) & 0x1f) * 8; | |
824 | /* If this is the first vector reg to be saved, or if | |
825 | it has a lower number than others previously seen, | |
826 | reupdate the frame info. */ | |
827 | if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg) | |
828 | { | |
829 | fdata->saved_ev = ev_reg; | |
830 | fdata->ev_offset = ev_offset + offset; | |
831 | } | |
832 | ||
833 | continue; | |
834 | } | |
835 | /* Store gen register S at (r31+r0). | |
836 | Store param on stack when offset from SP bigger than 4 bytes. */ | |
837 | /* 000100 sssss 11111 00000 01100100000 */ | |
838 | else if (arch_info->mach == bfd_mach_ppc_e500 | |
839 | && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */ | |
840 | { | |
841 | if (pc == (li_found_pc + 4)) | |
842 | { | |
843 | if ((op & 0x03e00000) >= 0x01a00000) | |
844 | { | |
845 | ev_reg = GET_SRC_REG (op); | |
846 | /* If this is the first vector reg to be saved, or if | |
847 | it has a lower number than others previously seen, | |
848 | reupdate the frame info. */ | |
849 | /* We know the contents of r0 from the previous | |
850 | instruction. */ | |
851 | if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg) | |
852 | { | |
853 | fdata->saved_ev = ev_reg; | |
854 | fdata->ev_offset = vr_saved_offset + offset; | |
855 | } | |
856 | ev_reg = -1; | |
857 | } | |
858 | vr_saved_offset = -1; | |
859 | li_found_pc = 0; | |
860 | continue; | |
861 | } | |
862 | } | |
863 | /* End BookE related instructions. */ | |
864 | ||
c5aa993b JM |
865 | else |
866 | { | |
55d05f3b KB |
867 | /* Not a recognized prologue instruction. |
868 | Handle optimizer code motions into the prologue by continuing | |
869 | the search if we have no valid frame yet or if the return | |
870 | address is not yet saved in the frame. */ | |
871 | if (fdata->frameless == 0 | |
872 | && (lr_reg == -1 || fdata->nosavedpc == 0)) | |
873 | break; | |
874 | ||
875 | if (op == 0x4e800020 /* blr */ | |
876 | || op == 0x4e800420) /* bctr */ | |
877 | /* Do not scan past epilogue in frameless functions or | |
878 | trampolines. */ | |
879 | break; | |
880 | if ((op & 0xf4000000) == 0x40000000) /* bxx */ | |
64366f1c | 881 | /* Never skip branches. */ |
55d05f3b KB |
882 | break; |
883 | ||
884 | if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns) | |
885 | /* Do not scan too many insns, scanning insns is expensive with | |
886 | remote targets. */ | |
887 | break; | |
888 | ||
889 | /* Continue scanning. */ | |
890 | prev_insn_was_prologue_insn = 0; | |
891 | continue; | |
c5aa993b | 892 | } |
c906108c SS |
893 | } |
894 | ||
895 | #if 0 | |
896 | /* I have problems with skipping over __main() that I need to address | |
897 | * sometime. Previously, I used to use misc_function_vector which | |
898 | * didn't work as well as I wanted to be. -MGO */ | |
899 | ||
900 | /* If the first thing after skipping a prolog is a branch to a function, | |
901 | this might be a call to an initializer in main(), introduced by gcc2. | |
64366f1c | 902 | We'd like to skip over it as well. Fortunately, xlc does some extra |
c906108c | 903 | work before calling a function right after a prologue, thus we can |
64366f1c | 904 | single out such gcc2 behaviour. */ |
c906108c | 905 | |
c906108c | 906 | |
c5aa993b JM |
907 | if ((op & 0xfc000001) == 0x48000001) |
908 | { /* bl foo, an initializer function? */ | |
909 | op = read_memory_integer (pc + 4, 4); | |
910 | ||
911 | if (op == 0x4def7b82) | |
912 | { /* cror 0xf, 0xf, 0xf (nop) */ | |
c906108c | 913 | |
64366f1c EZ |
914 | /* Check and see if we are in main. If so, skip over this |
915 | initializer function as well. */ | |
c906108c | 916 | |
c5aa993b | 917 | tmp = find_pc_misc_function (pc); |
51cc5b07 | 918 | if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, main_name ())) |
c5aa993b JM |
919 | return pc + 8; |
920 | } | |
c906108c | 921 | } |
c906108c | 922 | #endif /* 0 */ |
c5aa993b JM |
923 | |
924 | fdata->offset = -fdata->offset; | |
ddb20c56 | 925 | return last_prologue_pc; |
c906108c SS |
926 | } |
927 | ||
928 | ||
929 | /************************************************************************* | |
f6077098 | 930 | Support for creating pushing a dummy frame into the stack, and popping |
c906108c SS |
931 | frames, etc. |
932 | *************************************************************************/ | |
933 | ||
c906108c | 934 | |
64366f1c | 935 | /* Pop the innermost frame, go back to the caller. */ |
c5aa993b | 936 | |
c906108c | 937 | static void |
7a78ae4e | 938 | rs6000_pop_frame (void) |
c906108c | 939 | { |
470d5666 | 940 | CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */ |
c906108c SS |
941 | struct rs6000_framedata fdata; |
942 | struct frame_info *frame = get_current_frame (); | |
470d5666 | 943 | int ii, wordsize; |
c906108c SS |
944 | |
945 | pc = read_pc (); | |
946 | sp = FRAME_FP (frame); | |
947 | ||
58223630 | 948 | if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame)) |
c906108c | 949 | { |
7a78ae4e ND |
950 | generic_pop_dummy_frame (); |
951 | flush_cached_frames (); | |
952 | return; | |
c906108c SS |
953 | } |
954 | ||
955 | /* Make sure that all registers are valid. */ | |
956 | read_register_bytes (0, NULL, REGISTER_BYTES); | |
957 | ||
64366f1c | 958 | /* Figure out previous %pc value. If the function is frameless, it is |
c906108c | 959 | still in the link register, otherwise walk the frames and retrieve the |
64366f1c | 960 | saved %pc value in the previous frame. */ |
c906108c SS |
961 | |
962 | addr = get_pc_function_start (frame->pc); | |
077276e8 | 963 | (void) skip_prologue (addr, frame->pc, &fdata); |
c906108c | 964 | |
21283beb | 965 | wordsize = gdbarch_tdep (current_gdbarch)->wordsize; |
c906108c SS |
966 | if (fdata.frameless) |
967 | prev_sp = sp; | |
968 | else | |
7a78ae4e | 969 | prev_sp = read_memory_addr (sp, wordsize); |
c906108c | 970 | if (fdata.lr_offset == 0) |
2188cbdd | 971 | lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum); |
c906108c | 972 | else |
7a78ae4e | 973 | lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize); |
c906108c SS |
974 | |
975 | /* reset %pc value. */ | |
976 | write_register (PC_REGNUM, lr); | |
977 | ||
64366f1c | 978 | /* reset register values if any was saved earlier. */ |
c906108c SS |
979 | |
980 | if (fdata.saved_gpr != -1) | |
981 | { | |
982 | addr = prev_sp + fdata.gpr_offset; | |
c5aa993b JM |
983 | for (ii = fdata.saved_gpr; ii <= 31; ++ii) |
984 | { | |
7a78ae4e ND |
985 | read_memory (addr, ®isters[REGISTER_BYTE (ii)], wordsize); |
986 | addr += wordsize; | |
c5aa993b | 987 | } |
c906108c SS |
988 | } |
989 | ||
990 | if (fdata.saved_fpr != -1) | |
991 | { | |
992 | addr = prev_sp + fdata.fpr_offset; | |
c5aa993b JM |
993 | for (ii = fdata.saved_fpr; ii <= 31; ++ii) |
994 | { | |
995 | read_memory (addr, ®isters[REGISTER_BYTE (ii + FP0_REGNUM)], 8); | |
996 | addr += 8; | |
997 | } | |
c906108c SS |
998 | } |
999 | ||
1000 | write_register (SP_REGNUM, prev_sp); | |
1001 | target_store_registers (-1); | |
1002 | flush_cached_frames (); | |
1003 | } | |
1004 | ||
7a78ae4e | 1005 | /* Fixup the call sequence of a dummy function, with the real function |
64366f1c | 1006 | address. Its arguments will be passed by gdb. */ |
c906108c | 1007 | |
7a78ae4e ND |
1008 | static void |
1009 | rs6000_fix_call_dummy (char *dummyname, CORE_ADDR pc, CORE_ADDR fun, | |
ea7c478f | 1010 | int nargs, struct value **args, struct type *type, |
7a78ae4e | 1011 | int gcc_p) |
c906108c | 1012 | { |
c906108c SS |
1013 | int ii; |
1014 | CORE_ADDR target_addr; | |
1015 | ||
7a78ae4e | 1016 | if (rs6000_find_toc_address_hook != NULL) |
f6077098 | 1017 | { |
7a78ae4e | 1018 | CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (fun); |
2188cbdd EZ |
1019 | write_register (gdbarch_tdep (current_gdbarch)->ppc_toc_regnum, |
1020 | tocvalue); | |
f6077098 | 1021 | } |
c906108c SS |
1022 | } |
1023 | ||
7a78ae4e | 1024 | /* Pass the arguments in either registers, or in the stack. In RS/6000, |
c906108c SS |
1025 | the first eight words of the argument list (that might be less than |
1026 | eight parameters if some parameters occupy more than one word) are | |
7a78ae4e | 1027 | passed in r3..r10 registers. float and double parameters are |
64366f1c EZ |
1028 | passed in fpr's, in addition to that. Rest of the parameters if any |
1029 | are passed in user stack. There might be cases in which half of the | |
c906108c SS |
1030 | parameter is copied into registers, the other half is pushed into |
1031 | stack. | |
1032 | ||
7a78ae4e ND |
1033 | Stack must be aligned on 64-bit boundaries when synthesizing |
1034 | function calls. | |
1035 | ||
c906108c SS |
1036 | If the function is returning a structure, then the return address is passed |
1037 | in r3, then the first 7 words of the parameters can be passed in registers, | |
64366f1c | 1038 | starting from r4. */ |
c906108c | 1039 | |
7a78ae4e | 1040 | static CORE_ADDR |
ea7c478f | 1041 | rs6000_push_arguments (int nargs, struct value **args, CORE_ADDR sp, |
7a78ae4e | 1042 | int struct_return, CORE_ADDR struct_addr) |
c906108c SS |
1043 | { |
1044 | int ii; | |
1045 | int len = 0; | |
c5aa993b JM |
1046 | int argno; /* current argument number */ |
1047 | int argbytes; /* current argument byte */ | |
1048 | char tmp_buffer[50]; | |
1049 | int f_argno = 0; /* current floating point argno */ | |
21283beb | 1050 | int wordsize = gdbarch_tdep (current_gdbarch)->wordsize; |
c906108c | 1051 | |
ea7c478f | 1052 | struct value *arg = 0; |
c906108c SS |
1053 | struct type *type; |
1054 | ||
1055 | CORE_ADDR saved_sp; | |
1056 | ||
64366f1c EZ |
1057 | /* The first eight words of ther arguments are passed in registers. |
1058 | Copy them appropriately. | |
c906108c SS |
1059 | |
1060 | If the function is returning a `struct', then the first word (which | |
64366f1c | 1061 | will be passed in r3) is used for struct return address. In that |
c906108c | 1062 | case we should advance one word and start from r4 register to copy |
64366f1c | 1063 | parameters. */ |
c906108c | 1064 | |
c5aa993b | 1065 | ii = struct_return ? 1 : 0; |
c906108c SS |
1066 | |
1067 | /* | |
c5aa993b JM |
1068 | effectively indirect call... gcc does... |
1069 | ||
1070 | return_val example( float, int); | |
1071 | ||
1072 | eabi: | |
1073 | float in fp0, int in r3 | |
1074 | offset of stack on overflow 8/16 | |
1075 | for varargs, must go by type. | |
1076 | power open: | |
1077 | float in r3&r4, int in r5 | |
1078 | offset of stack on overflow different | |
1079 | both: | |
1080 | return in r3 or f0. If no float, must study how gcc emulates floats; | |
1081 | pay attention to arg promotion. | |
1082 | User may have to cast\args to handle promotion correctly | |
1083 | since gdb won't know if prototype supplied or not. | |
1084 | */ | |
c906108c | 1085 | |
c5aa993b JM |
1086 | for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii) |
1087 | { | |
f6077098 | 1088 | int reg_size = REGISTER_RAW_SIZE (ii + 3); |
c5aa993b JM |
1089 | |
1090 | arg = args[argno]; | |
1091 | type = check_typedef (VALUE_TYPE (arg)); | |
1092 | len = TYPE_LENGTH (type); | |
1093 | ||
1094 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
1095 | { | |
1096 | ||
64366f1c | 1097 | /* Floating point arguments are passed in fpr's, as well as gpr's. |
c5aa993b | 1098 | There are 13 fpr's reserved for passing parameters. At this point |
64366f1c | 1099 | there is no way we would run out of them. */ |
c5aa993b JM |
1100 | |
1101 | if (len > 8) | |
1102 | printf_unfiltered ( | |
1103 | "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno); | |
1104 | ||
1105 | memcpy (®isters[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)], | |
1106 | VALUE_CONTENTS (arg), | |
1107 | len); | |
1108 | ++f_argno; | |
1109 | } | |
1110 | ||
f6077098 | 1111 | if (len > reg_size) |
c5aa993b JM |
1112 | { |
1113 | ||
64366f1c | 1114 | /* Argument takes more than one register. */ |
c5aa993b JM |
1115 | while (argbytes < len) |
1116 | { | |
f6077098 | 1117 | memset (®isters[REGISTER_BYTE (ii + 3)], 0, reg_size); |
c5aa993b JM |
1118 | memcpy (®isters[REGISTER_BYTE (ii + 3)], |
1119 | ((char *) VALUE_CONTENTS (arg)) + argbytes, | |
f6077098 KB |
1120 | (len - argbytes) > reg_size |
1121 | ? reg_size : len - argbytes); | |
1122 | ++ii, argbytes += reg_size; | |
c5aa993b JM |
1123 | |
1124 | if (ii >= 8) | |
1125 | goto ran_out_of_registers_for_arguments; | |
1126 | } | |
1127 | argbytes = 0; | |
1128 | --ii; | |
1129 | } | |
1130 | else | |
64366f1c EZ |
1131 | { |
1132 | /* Argument can fit in one register. No problem. */ | |
d7449b42 | 1133 | int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0; |
f6077098 KB |
1134 | memset (®isters[REGISTER_BYTE (ii + 3)], 0, reg_size); |
1135 | memcpy ((char *)®isters[REGISTER_BYTE (ii + 3)] + adj, | |
1136 | VALUE_CONTENTS (arg), len); | |
c5aa993b JM |
1137 | } |
1138 | ++argno; | |
c906108c | 1139 | } |
c906108c SS |
1140 | |
1141 | ran_out_of_registers_for_arguments: | |
1142 | ||
7a78ae4e | 1143 | saved_sp = read_sp (); |
cc9836a8 | 1144 | |
64366f1c | 1145 | /* Location for 8 parameters are always reserved. */ |
7a78ae4e | 1146 | sp -= wordsize * 8; |
f6077098 | 1147 | |
64366f1c | 1148 | /* Another six words for back chain, TOC register, link register, etc. */ |
7a78ae4e | 1149 | sp -= wordsize * 6; |
f6077098 | 1150 | |
64366f1c | 1151 | /* Stack pointer must be quadword aligned. */ |
7a78ae4e | 1152 | sp &= -16; |
c906108c | 1153 | |
64366f1c EZ |
1154 | /* If there are more arguments, allocate space for them in |
1155 | the stack, then push them starting from the ninth one. */ | |
c906108c | 1156 | |
c5aa993b JM |
1157 | if ((argno < nargs) || argbytes) |
1158 | { | |
1159 | int space = 0, jj; | |
c906108c | 1160 | |
c5aa993b JM |
1161 | if (argbytes) |
1162 | { | |
1163 | space += ((len - argbytes + 3) & -4); | |
1164 | jj = argno + 1; | |
1165 | } | |
1166 | else | |
1167 | jj = argno; | |
c906108c | 1168 | |
c5aa993b JM |
1169 | for (; jj < nargs; ++jj) |
1170 | { | |
ea7c478f | 1171 | struct value *val = args[jj]; |
c5aa993b JM |
1172 | space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4; |
1173 | } | |
c906108c | 1174 | |
64366f1c | 1175 | /* Add location required for the rest of the parameters. */ |
f6077098 | 1176 | space = (space + 15) & -16; |
c5aa993b | 1177 | sp -= space; |
c906108c | 1178 | |
64366f1c EZ |
1179 | /* This is another instance we need to be concerned about |
1180 | securing our stack space. If we write anything underneath %sp | |
1181 | (r1), we might conflict with the kernel who thinks he is free | |
1182 | to use this area. So, update %sp first before doing anything | |
1183 | else. */ | |
c906108c | 1184 | |
c5aa993b | 1185 | write_register (SP_REGNUM, sp); |
c906108c | 1186 | |
64366f1c EZ |
1187 | /* If the last argument copied into the registers didn't fit there |
1188 | completely, push the rest of it into stack. */ | |
c906108c | 1189 | |
c5aa993b JM |
1190 | if (argbytes) |
1191 | { | |
1192 | write_memory (sp + 24 + (ii * 4), | |
1193 | ((char *) VALUE_CONTENTS (arg)) + argbytes, | |
1194 | len - argbytes); | |
1195 | ++argno; | |
1196 | ii += ((len - argbytes + 3) & -4) / 4; | |
1197 | } | |
c906108c | 1198 | |
64366f1c | 1199 | /* Push the rest of the arguments into stack. */ |
c5aa993b JM |
1200 | for (; argno < nargs; ++argno) |
1201 | { | |
c906108c | 1202 | |
c5aa993b JM |
1203 | arg = args[argno]; |
1204 | type = check_typedef (VALUE_TYPE (arg)); | |
1205 | len = TYPE_LENGTH (type); | |
c906108c SS |
1206 | |
1207 | ||
64366f1c EZ |
1208 | /* Float types should be passed in fpr's, as well as in the |
1209 | stack. */ | |
c5aa993b JM |
1210 | if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13) |
1211 | { | |
c906108c | 1212 | |
c5aa993b JM |
1213 | if (len > 8) |
1214 | printf_unfiltered ( | |
1215 | "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno); | |
c906108c | 1216 | |
c5aa993b JM |
1217 | memcpy (®isters[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)], |
1218 | VALUE_CONTENTS (arg), | |
1219 | len); | |
1220 | ++f_argno; | |
1221 | } | |
c906108c | 1222 | |
c5aa993b JM |
1223 | write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len); |
1224 | ii += ((len + 3) & -4) / 4; | |
1225 | } | |
c906108c | 1226 | } |
c906108c | 1227 | else |
64366f1c | 1228 | /* Secure stack areas first, before doing anything else. */ |
c906108c SS |
1229 | write_register (SP_REGNUM, sp); |
1230 | ||
c906108c SS |
1231 | /* set back chain properly */ |
1232 | store_address (tmp_buffer, 4, saved_sp); | |
1233 | write_memory (sp, tmp_buffer, 4); | |
1234 | ||
1235 | target_store_registers (-1); | |
1236 | return sp; | |
1237 | } | |
c906108c SS |
1238 | |
1239 | /* Function: ppc_push_return_address (pc, sp) | |
64366f1c | 1240 | Set up the return address for the inferior function call. */ |
c906108c | 1241 | |
7a78ae4e ND |
1242 | static CORE_ADDR |
1243 | ppc_push_return_address (CORE_ADDR pc, CORE_ADDR sp) | |
c906108c | 1244 | { |
2188cbdd EZ |
1245 | write_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum, |
1246 | CALL_DUMMY_ADDRESS ()); | |
c906108c SS |
1247 | return sp; |
1248 | } | |
1249 | ||
7a78ae4e | 1250 | /* Extract a function return value of type TYPE from raw register array |
64366f1c | 1251 | REGBUF, and copy that return value into VALBUF in virtual format. */ |
96ff0de4 | 1252 | static void |
46d79c04 | 1253 | e500_extract_return_value (struct type *valtype, struct regcache *regbuf, void *valbuf) |
96ff0de4 EZ |
1254 | { |
1255 | int offset = 0; | |
1256 | int vallen = TYPE_LENGTH (valtype); | |
1257 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
1258 | ||
1259 | if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY | |
1260 | && vallen == 8 | |
1261 | && TYPE_VECTOR (valtype)) | |
1262 | { | |
1263 | regcache_raw_read (regbuf, tdep->ppc_ev0_regnum + 3, valbuf); | |
1264 | } | |
1265 | else | |
1266 | { | |
1267 | /* Return value is copied starting from r3. Note that r3 for us | |
1268 | is a pseudo register. */ | |
1269 | int offset = 0; | |
1270 | int return_regnum = tdep->ppc_gp0_regnum + 3; | |
1271 | int reg_size = REGISTER_RAW_SIZE (return_regnum); | |
1272 | int reg_part_size; | |
1273 | char *val_buffer; | |
1274 | int copied = 0; | |
1275 | int i = 0; | |
1276 | ||
1277 | /* Compute where we will start storing the value from. */ | |
1278 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
1279 | { | |
1280 | if (vallen <= reg_size) | |
1281 | offset = reg_size - vallen; | |
1282 | else | |
1283 | offset = reg_size + (reg_size - vallen); | |
1284 | } | |
1285 | ||
1286 | /* How big does the local buffer need to be? */ | |
1287 | if (vallen <= reg_size) | |
1288 | val_buffer = alloca (reg_size); | |
1289 | else | |
1290 | val_buffer = alloca (vallen); | |
1291 | ||
1292 | /* Read all we need into our private buffer. We copy it in | |
1293 | chunks that are as long as one register, never shorter, even | |
1294 | if the value is smaller than the register. */ | |
1295 | while (copied < vallen) | |
1296 | { | |
1297 | reg_part_size = REGISTER_RAW_SIZE (return_regnum + i); | |
1298 | /* It is a pseudo/cooked register. */ | |
1299 | regcache_cooked_read (regbuf, return_regnum + i, | |
1300 | val_buffer + copied); | |
1301 | copied += reg_part_size; | |
1302 | i++; | |
1303 | } | |
1304 | /* Put the stuff in the return buffer. */ | |
1305 | memcpy (valbuf, val_buffer + offset, vallen); | |
1306 | } | |
1307 | } | |
c906108c | 1308 | |
7a78ae4e ND |
1309 | static void |
1310 | rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf) | |
c906108c SS |
1311 | { |
1312 | int offset = 0; | |
ace1378a | 1313 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
c906108c | 1314 | |
c5aa993b JM |
1315 | if (TYPE_CODE (valtype) == TYPE_CODE_FLT) |
1316 | { | |
c906108c | 1317 | |
c5aa993b JM |
1318 | double dd; |
1319 | float ff; | |
1320 | /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes. | |
1321 | We need to truncate the return value into float size (4 byte) if | |
64366f1c | 1322 | necessary. */ |
c906108c | 1323 | |
c5aa993b JM |
1324 | if (TYPE_LENGTH (valtype) > 4) /* this is a double */ |
1325 | memcpy (valbuf, | |
1326 | ®buf[REGISTER_BYTE (FP0_REGNUM + 1)], | |
1327 | TYPE_LENGTH (valtype)); | |
1328 | else | |
1329 | { /* float */ | |
1330 | memcpy (&dd, ®buf[REGISTER_BYTE (FP0_REGNUM + 1)], 8); | |
1331 | ff = (float) dd; | |
1332 | memcpy (valbuf, &ff, sizeof (float)); | |
1333 | } | |
1334 | } | |
ace1378a EZ |
1335 | else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY |
1336 | && TYPE_LENGTH (valtype) == 16 | |
1337 | && TYPE_VECTOR (valtype)) | |
1338 | { | |
1339 | memcpy (valbuf, regbuf + REGISTER_BYTE (tdep->ppc_vr0_regnum + 2), | |
1340 | TYPE_LENGTH (valtype)); | |
1341 | } | |
c5aa993b JM |
1342 | else |
1343 | { | |
1344 | /* return value is copied starting from r3. */ | |
d7449b42 | 1345 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG |
c5aa993b JM |
1346 | && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3)) |
1347 | offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype); | |
1348 | ||
1349 | memcpy (valbuf, | |
1350 | regbuf + REGISTER_BYTE (3) + offset, | |
c906108c | 1351 | TYPE_LENGTH (valtype)); |
c906108c | 1352 | } |
c906108c SS |
1353 | } |
1354 | ||
7a78ae4e | 1355 | /* Keep structure return address in this variable. |
c906108c SS |
1356 | FIXME: This is a horrid kludge which should not be allowed to continue |
1357 | living. This only allows a single nested call to a structure-returning | |
1358 | function. Come on, guys! -- [email protected], Aug 92 */ | |
1359 | ||
7a78ae4e | 1360 | static CORE_ADDR rs6000_struct_return_address; |
c906108c | 1361 | |
977adac5 ND |
1362 | /* Return whether handle_inferior_event() should proceed through code |
1363 | starting at PC in function NAME when stepping. | |
1364 | ||
1365 | The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to | |
1366 | handle memory references that are too distant to fit in instructions | |
1367 | generated by the compiler. For example, if 'foo' in the following | |
1368 | instruction: | |
1369 | ||
1370 | lwz r9,foo(r2) | |
1371 | ||
1372 | is greater than 32767, the linker might replace the lwz with a branch to | |
1373 | somewhere in @FIX1 that does the load in 2 instructions and then branches | |
1374 | back to where execution should continue. | |
1375 | ||
1376 | GDB should silently step over @FIX code, just like AIX dbx does. | |
1377 | Unfortunately, the linker uses the "b" instruction for the branches, | |
1378 | meaning that the link register doesn't get set. Therefore, GDB's usual | |
1379 | step_over_function() mechanism won't work. | |
1380 | ||
1381 | Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks | |
1382 | in handle_inferior_event() to skip past @FIX code. */ | |
1383 | ||
1384 | int | |
1385 | rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name) | |
1386 | { | |
1387 | return name && !strncmp (name, "@FIX", 4); | |
1388 | } | |
1389 | ||
1390 | /* Skip code that the user doesn't want to see when stepping: | |
1391 | ||
1392 | 1. Indirect function calls use a piece of trampoline code to do context | |
1393 | switching, i.e. to set the new TOC table. Skip such code if we are on | |
1394 | its first instruction (as when we have single-stepped to here). | |
1395 | ||
1396 | 2. Skip shared library trampoline code (which is different from | |
c906108c | 1397 | indirect function call trampolines). |
977adac5 ND |
1398 | |
1399 | 3. Skip bigtoc fixup code. | |
1400 | ||
c906108c | 1401 | Result is desired PC to step until, or NULL if we are not in |
977adac5 | 1402 | code that should be skipped. */ |
c906108c SS |
1403 | |
1404 | CORE_ADDR | |
7a78ae4e | 1405 | rs6000_skip_trampoline_code (CORE_ADDR pc) |
c906108c SS |
1406 | { |
1407 | register unsigned int ii, op; | |
977adac5 | 1408 | int rel; |
c906108c | 1409 | CORE_ADDR solib_target_pc; |
977adac5 | 1410 | struct minimal_symbol *msymbol; |
c906108c | 1411 | |
c5aa993b JM |
1412 | static unsigned trampoline_code[] = |
1413 | { | |
1414 | 0x800b0000, /* l r0,0x0(r11) */ | |
1415 | 0x90410014, /* st r2,0x14(r1) */ | |
1416 | 0x7c0903a6, /* mtctr r0 */ | |
1417 | 0x804b0004, /* l r2,0x4(r11) */ | |
1418 | 0x816b0008, /* l r11,0x8(r11) */ | |
1419 | 0x4e800420, /* bctr */ | |
1420 | 0x4e800020, /* br */ | |
1421 | 0 | |
c906108c SS |
1422 | }; |
1423 | ||
977adac5 ND |
1424 | /* Check for bigtoc fixup code. */ |
1425 | msymbol = lookup_minimal_symbol_by_pc (pc); | |
1426 | if (msymbol && rs6000_in_solib_return_trampoline (pc, SYMBOL_NAME (msymbol))) | |
1427 | { | |
1428 | /* Double-check that the third instruction from PC is relative "b". */ | |
1429 | op = read_memory_integer (pc + 8, 4); | |
1430 | if ((op & 0xfc000003) == 0x48000000) | |
1431 | { | |
1432 | /* Extract bits 6-29 as a signed 24-bit relative word address and | |
1433 | add it to the containing PC. */ | |
1434 | rel = ((int)(op << 6) >> 6); | |
1435 | return pc + 8 + rel; | |
1436 | } | |
1437 | } | |
1438 | ||
c906108c SS |
1439 | /* If pc is in a shared library trampoline, return its target. */ |
1440 | solib_target_pc = find_solib_trampoline_target (pc); | |
1441 | if (solib_target_pc) | |
1442 | return solib_target_pc; | |
1443 | ||
c5aa993b JM |
1444 | for (ii = 0; trampoline_code[ii]; ++ii) |
1445 | { | |
1446 | op = read_memory_integer (pc + (ii * 4), 4); | |
1447 | if (op != trampoline_code[ii]) | |
1448 | return 0; | |
1449 | } | |
1450 | ii = read_register (11); /* r11 holds destination addr */ | |
21283beb | 1451 | pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */ |
c906108c SS |
1452 | return pc; |
1453 | } | |
1454 | ||
1455 | /* Determines whether the function FI has a frame on the stack or not. */ | |
1456 | ||
9aa1e687 | 1457 | int |
c877c8e6 | 1458 | rs6000_frameless_function_invocation (struct frame_info *fi) |
c906108c SS |
1459 | { |
1460 | CORE_ADDR func_start; | |
1461 | struct rs6000_framedata fdata; | |
1462 | ||
1463 | /* Don't even think about framelessness except on the innermost frame | |
1464 | or if the function was interrupted by a signal. */ | |
1465 | if (fi->next != NULL && !fi->next->signal_handler_caller) | |
1466 | return 0; | |
c5aa993b | 1467 | |
c906108c SS |
1468 | func_start = get_pc_function_start (fi->pc); |
1469 | ||
1470 | /* If we failed to find the start of the function, it is a mistake | |
64366f1c | 1471 | to inspect the instructions. */ |
c906108c SS |
1472 | |
1473 | if (!func_start) | |
1474 | { | |
1475 | /* A frame with a zero PC is usually created by dereferencing a NULL | |
c5aa993b | 1476 | function pointer, normally causing an immediate core dump of the |
64366f1c | 1477 | inferior. Mark function as frameless, as the inferior has no chance |
c5aa993b | 1478 | of setting up a stack frame. */ |
c906108c SS |
1479 | if (fi->pc == 0) |
1480 | return 1; | |
1481 | else | |
1482 | return 0; | |
1483 | } | |
1484 | ||
077276e8 | 1485 | (void) skip_prologue (func_start, fi->pc, &fdata); |
c906108c SS |
1486 | return fdata.frameless; |
1487 | } | |
1488 | ||
64366f1c | 1489 | /* Return the PC saved in a frame. */ |
c906108c | 1490 | |
9aa1e687 | 1491 | CORE_ADDR |
c877c8e6 | 1492 | rs6000_frame_saved_pc (struct frame_info *fi) |
c906108c SS |
1493 | { |
1494 | CORE_ADDR func_start; | |
1495 | struct rs6000_framedata fdata; | |
21283beb | 1496 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
a88376a3 | 1497 | int wordsize = tdep->wordsize; |
c906108c SS |
1498 | |
1499 | if (fi->signal_handler_caller) | |
7a78ae4e | 1500 | return read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET, wordsize); |
c906108c | 1501 | |
7a78ae4e ND |
1502 | if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) |
1503 | return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM); | |
c906108c SS |
1504 | |
1505 | func_start = get_pc_function_start (fi->pc); | |
1506 | ||
1507 | /* If we failed to find the start of the function, it is a mistake | |
64366f1c | 1508 | to inspect the instructions. */ |
c906108c SS |
1509 | if (!func_start) |
1510 | return 0; | |
1511 | ||
077276e8 | 1512 | (void) skip_prologue (func_start, fi->pc, &fdata); |
c906108c SS |
1513 | |
1514 | if (fdata.lr_offset == 0 && fi->next != NULL) | |
1515 | { | |
1516 | if (fi->next->signal_handler_caller) | |
7a78ae4e ND |
1517 | return read_memory_addr (fi->next->frame + SIG_FRAME_LR_OFFSET, |
1518 | wordsize); | |
c906108c | 1519 | else |
a88376a3 | 1520 | return read_memory_addr (FRAME_CHAIN (fi) + tdep->lr_frame_offset, |
7a78ae4e | 1521 | wordsize); |
c906108c SS |
1522 | } |
1523 | ||
1524 | if (fdata.lr_offset == 0) | |
2188cbdd | 1525 | return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum); |
c906108c | 1526 | |
7a78ae4e | 1527 | return read_memory_addr (FRAME_CHAIN (fi) + fdata.lr_offset, wordsize); |
c906108c SS |
1528 | } |
1529 | ||
1530 | /* If saved registers of frame FI are not known yet, read and cache them. | |
1531 | &FDATAP contains rs6000_framedata; TDATAP can be NULL, | |
1532 | in which case the framedata are read. */ | |
1533 | ||
1534 | static void | |
7a78ae4e | 1535 | frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap) |
c906108c | 1536 | { |
c5aa993b | 1537 | CORE_ADDR frame_addr; |
c906108c | 1538 | struct rs6000_framedata work_fdata; |
6be8bc0c EZ |
1539 | struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch); |
1540 | int wordsize = tdep->wordsize; | |
c906108c SS |
1541 | |
1542 | if (fi->saved_regs) | |
1543 | return; | |
c5aa993b | 1544 | |
c906108c SS |
1545 | if (fdatap == NULL) |
1546 | { | |
1547 | fdatap = &work_fdata; | |
077276e8 | 1548 | (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, fdatap); |
c906108c SS |
1549 | } |
1550 | ||
1551 | frame_saved_regs_zalloc (fi); | |
1552 | ||
1553 | /* If there were any saved registers, figure out parent's stack | |
64366f1c | 1554 | pointer. */ |
c906108c | 1555 | /* The following is true only if the frame doesn't have a call to |
64366f1c | 1556 | alloca(), FIXME. */ |
c906108c | 1557 | |
6be8bc0c EZ |
1558 | if (fdatap->saved_fpr == 0 |
1559 | && fdatap->saved_gpr == 0 | |
1560 | && fdatap->saved_vr == 0 | |
96ff0de4 | 1561 | && fdatap->saved_ev == 0 |
6be8bc0c EZ |
1562 | && fdatap->lr_offset == 0 |
1563 | && fdatap->cr_offset == 0 | |
96ff0de4 EZ |
1564 | && fdatap->vr_offset == 0 |
1565 | && fdatap->ev_offset == 0) | |
c906108c | 1566 | frame_addr = 0; |
c906108c | 1567 | else |
bf75c8c1 AC |
1568 | /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most |
1569 | address of the current frame. Things might be easier if the | |
1570 | ->frame pointed to the outer-most address of the frame. In the | |
1571 | mean time, the address of the prev frame is used as the base | |
1572 | address of this frame. */ | |
1573 | frame_addr = FRAME_CHAIN (fi); | |
c5aa993b | 1574 | |
c906108c SS |
1575 | /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr. |
1576 | All fpr's from saved_fpr to fp31 are saved. */ | |
1577 | ||
1578 | if (fdatap->saved_fpr >= 0) | |
1579 | { | |
1580 | int i; | |
7a78ae4e | 1581 | CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset; |
c906108c SS |
1582 | for (i = fdatap->saved_fpr; i < 32; i++) |
1583 | { | |
7a78ae4e ND |
1584 | fi->saved_regs[FP0_REGNUM + i] = fpr_addr; |
1585 | fpr_addr += 8; | |
c906108c SS |
1586 | } |
1587 | } | |
1588 | ||
1589 | /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr. | |
1590 | All gpr's from saved_gpr to gpr31 are saved. */ | |
1591 | ||
1592 | if (fdatap->saved_gpr >= 0) | |
1593 | { | |
1594 | int i; | |
7a78ae4e | 1595 | CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset; |
c906108c SS |
1596 | for (i = fdatap->saved_gpr; i < 32; i++) |
1597 | { | |
7a78ae4e ND |
1598 | fi->saved_regs[i] = gpr_addr; |
1599 | gpr_addr += wordsize; | |
c906108c SS |
1600 | } |
1601 | } | |
1602 | ||
6be8bc0c EZ |
1603 | /* if != -1, fdatap->saved_vr is the smallest number of saved_vr. |
1604 | All vr's from saved_vr to vr31 are saved. */ | |
1605 | if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1) | |
1606 | { | |
1607 | if (fdatap->saved_vr >= 0) | |
1608 | { | |
1609 | int i; | |
1610 | CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset; | |
1611 | for (i = fdatap->saved_vr; i < 32; i++) | |
1612 | { | |
1613 | fi->saved_regs[tdep->ppc_vr0_regnum + i] = vr_addr; | |
1614 | vr_addr += REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum); | |
1615 | } | |
1616 | } | |
1617 | } | |
1618 | ||
96ff0de4 EZ |
1619 | /* if != -1, fdatap->saved_ev is the smallest number of saved_ev. |
1620 | All vr's from saved_ev to ev31 are saved. ????? */ | |
1621 | if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1) | |
1622 | { | |
1623 | if (fdatap->saved_ev >= 0) | |
1624 | { | |
1625 | int i; | |
1626 | CORE_ADDR ev_addr = frame_addr + fdatap->ev_offset; | |
1627 | for (i = fdatap->saved_ev; i < 32; i++) | |
1628 | { | |
1629 | fi->saved_regs[tdep->ppc_ev0_regnum + i] = ev_addr; | |
1630 | fi->saved_regs[tdep->ppc_gp0_regnum + i] = ev_addr + 4; | |
1631 | ev_addr += REGISTER_RAW_SIZE (tdep->ppc_ev0_regnum); | |
1632 | } | |
1633 | } | |
1634 | } | |
1635 | ||
c906108c SS |
1636 | /* If != 0, fdatap->cr_offset is the offset from the frame that holds |
1637 | the CR. */ | |
1638 | if (fdatap->cr_offset != 0) | |
6be8bc0c | 1639 | fi->saved_regs[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset; |
c906108c SS |
1640 | |
1641 | /* If != 0, fdatap->lr_offset is the offset from the frame that holds | |
1642 | the LR. */ | |
1643 | if (fdatap->lr_offset != 0) | |
6be8bc0c EZ |
1644 | fi->saved_regs[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset; |
1645 | ||
1646 | /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds | |
1647 | the VRSAVE. */ | |
1648 | if (fdatap->vrsave_offset != 0) | |
1649 | fi->saved_regs[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset; | |
c906108c SS |
1650 | } |
1651 | ||
1652 | /* Return the address of a frame. This is the inital %sp value when the frame | |
64366f1c EZ |
1653 | was first allocated. For functions calling alloca(), it might be saved in |
1654 | an alloca register. */ | |
c906108c SS |
1655 | |
1656 | static CORE_ADDR | |
7a78ae4e | 1657 | frame_initial_stack_address (struct frame_info *fi) |
c906108c SS |
1658 | { |
1659 | CORE_ADDR tmpaddr; | |
1660 | struct rs6000_framedata fdata; | |
1661 | struct frame_info *callee_fi; | |
1662 | ||
64366f1c EZ |
1663 | /* If the initial stack pointer (frame address) of this frame is known, |
1664 | just return it. */ | |
c906108c SS |
1665 | |
1666 | if (fi->extra_info->initial_sp) | |
1667 | return fi->extra_info->initial_sp; | |
1668 | ||
64366f1c | 1669 | /* Find out if this function is using an alloca register. */ |
c906108c | 1670 | |
077276e8 | 1671 | (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, &fdata); |
c906108c | 1672 | |
64366f1c EZ |
1673 | /* If saved registers of this frame are not known yet, read and |
1674 | cache them. */ | |
c906108c SS |
1675 | |
1676 | if (!fi->saved_regs) | |
1677 | frame_get_saved_regs (fi, &fdata); | |
1678 | ||
1679 | /* If no alloca register used, then fi->frame is the value of the %sp for | |
64366f1c | 1680 | this frame, and it is good enough. */ |
c906108c SS |
1681 | |
1682 | if (fdata.alloca_reg < 0) | |
1683 | { | |
1684 | fi->extra_info->initial_sp = fi->frame; | |
1685 | return fi->extra_info->initial_sp; | |
1686 | } | |
1687 | ||
953836b2 AC |
1688 | /* There is an alloca register, use its value, in the current frame, |
1689 | as the initial stack pointer. */ | |
1690 | { | |
1691 | char *tmpbuf = alloca (MAX_REGISTER_RAW_SIZE); | |
1692 | if (frame_register_read (fi, fdata.alloca_reg, tmpbuf)) | |
1693 | { | |
1694 | fi->extra_info->initial_sp | |
1695 | = extract_unsigned_integer (tmpbuf, | |
1696 | REGISTER_RAW_SIZE (fdata.alloca_reg)); | |
1697 | } | |
1698 | else | |
1699 | /* NOTE: cagney/2002-04-17: At present the only time | |
1700 | frame_register_read will fail is when the register isn't | |
1701 | available. If that does happen, use the frame. */ | |
1702 | fi->extra_info->initial_sp = fi->frame; | |
1703 | } | |
c906108c SS |
1704 | return fi->extra_info->initial_sp; |
1705 | } | |
1706 | ||
7a78ae4e ND |
1707 | /* Describe the pointer in each stack frame to the previous stack frame |
1708 | (its caller). */ | |
1709 | ||
1710 | /* FRAME_CHAIN takes a frame's nominal address | |
64366f1c | 1711 | and produces the frame's chain-pointer. */ |
7a78ae4e ND |
1712 | |
1713 | /* In the case of the RS/6000, the frame's nominal address | |
1714 | is the address of a 4-byte word containing the calling frame's address. */ | |
1715 | ||
9aa1e687 | 1716 | CORE_ADDR |
7a78ae4e | 1717 | rs6000_frame_chain (struct frame_info *thisframe) |
c906108c | 1718 | { |
7a78ae4e | 1719 | CORE_ADDR fp, fpp, lr; |
21283beb | 1720 | int wordsize = gdbarch_tdep (current_gdbarch)->wordsize; |
c906108c | 1721 | |
7a78ae4e ND |
1722 | if (PC_IN_CALL_DUMMY (thisframe->pc, thisframe->frame, thisframe->frame)) |
1723 | return thisframe->frame; /* dummy frame same as caller's frame */ | |
c906108c | 1724 | |
c5aa993b | 1725 | if (inside_entry_file (thisframe->pc) || |
c906108c SS |
1726 | thisframe->pc == entry_point_address ()) |
1727 | return 0; | |
1728 | ||
1729 | if (thisframe->signal_handler_caller) | |
7a78ae4e ND |
1730 | fp = read_memory_addr (thisframe->frame + SIG_FRAME_FP_OFFSET, |
1731 | wordsize); | |
c906108c SS |
1732 | else if (thisframe->next != NULL |
1733 | && thisframe->next->signal_handler_caller | |
c877c8e6 | 1734 | && FRAMELESS_FUNCTION_INVOCATION (thisframe)) |
c906108c SS |
1735 | /* A frameless function interrupted by a signal did not change the |
1736 | frame pointer. */ | |
1737 | fp = FRAME_FP (thisframe); | |
1738 | else | |
7a78ae4e | 1739 | fp = read_memory_addr ((thisframe)->frame, wordsize); |
c906108c | 1740 | |
2188cbdd | 1741 | lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum); |
7a78ae4e ND |
1742 | if (lr == entry_point_address ()) |
1743 | if (fp != 0 && (fpp = read_memory_addr (fp, wordsize)) != 0) | |
1744 | if (PC_IN_CALL_DUMMY (lr, fpp, fpp)) | |
1745 | return fpp; | |
1746 | ||
1747 | return fp; | |
1748 | } | |
1749 | ||
1750 | /* Return the size of register REG when words are WORDSIZE bytes long. If REG | |
64366f1c | 1751 | isn't available with that word size, return 0. */ |
7a78ae4e ND |
1752 | |
1753 | static int | |
1754 | regsize (const struct reg *reg, int wordsize) | |
1755 | { | |
1756 | return wordsize == 8 ? reg->sz64 : reg->sz32; | |
1757 | } | |
1758 | ||
1759 | /* Return the name of register number N, or null if no such register exists | |
64366f1c | 1760 | in the current architecture. */ |
7a78ae4e | 1761 | |
fa88f677 | 1762 | static const char * |
7a78ae4e ND |
1763 | rs6000_register_name (int n) |
1764 | { | |
21283beb | 1765 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
7a78ae4e ND |
1766 | const struct reg *reg = tdep->regs + n; |
1767 | ||
1768 | if (!regsize (reg, tdep->wordsize)) | |
1769 | return NULL; | |
1770 | return reg->name; | |
1771 | } | |
1772 | ||
1773 | /* Index within `registers' of the first byte of the space for | |
1774 | register N. */ | |
1775 | ||
1776 | static int | |
1777 | rs6000_register_byte (int n) | |
1778 | { | |
21283beb | 1779 | return gdbarch_tdep (current_gdbarch)->regoff[n]; |
7a78ae4e ND |
1780 | } |
1781 | ||
1782 | /* Return the number of bytes of storage in the actual machine representation | |
64366f1c | 1783 | for register N if that register is available, else return 0. */ |
7a78ae4e ND |
1784 | |
1785 | static int | |
1786 | rs6000_register_raw_size (int n) | |
1787 | { | |
21283beb | 1788 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
7a78ae4e ND |
1789 | const struct reg *reg = tdep->regs + n; |
1790 | return regsize (reg, tdep->wordsize); | |
1791 | } | |
1792 | ||
7a78ae4e ND |
1793 | /* Return the GDB type object for the "standard" data type |
1794 | of data in register N. */ | |
1795 | ||
1796 | static struct type * | |
fba45db2 | 1797 | rs6000_register_virtual_type (int n) |
7a78ae4e | 1798 | { |
21283beb | 1799 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
7a78ae4e ND |
1800 | const struct reg *reg = tdep->regs + n; |
1801 | ||
1fcc0bb8 EZ |
1802 | if (reg->fpr) |
1803 | return builtin_type_double; | |
1804 | else | |
1805 | { | |
1806 | int size = regsize (reg, tdep->wordsize); | |
1807 | switch (size) | |
1808 | { | |
1809 | case 8: | |
c8001721 EZ |
1810 | if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum) |
1811 | return builtin_type_vec64; | |
1812 | else | |
1813 | return builtin_type_int64; | |
1fcc0bb8 EZ |
1814 | break; |
1815 | case 16: | |
08cf96df | 1816 | return builtin_type_vec128; |
1fcc0bb8 EZ |
1817 | break; |
1818 | default: | |
1819 | return builtin_type_int32; | |
1820 | break; | |
1821 | } | |
1822 | } | |
7a78ae4e ND |
1823 | } |
1824 | ||
1825 | /* For the PowerPC, it appears that the debug info marks float parameters as | |
1826 | floats regardless of whether the function is prototyped, but the actual | |
1827 | values are always passed in as doubles. Tell gdb to always assume that | |
64366f1c | 1828 | floats are passed as doubles and then converted in the callee. */ |
7a78ae4e ND |
1829 | |
1830 | static int | |
1831 | rs6000_coerce_float_to_double (struct type *formal, struct type *actual) | |
1832 | { | |
1833 | return 1; | |
1834 | } | |
1835 | ||
1836 | /* Return whether register N requires conversion when moving from raw format | |
1837 | to virtual format. | |
1838 | ||
1839 | The register format for RS/6000 floating point registers is always | |
64366f1c | 1840 | double, we need a conversion if the memory format is float. */ |
7a78ae4e ND |
1841 | |
1842 | static int | |
1843 | rs6000_register_convertible (int n) | |
1844 | { | |
21283beb | 1845 | const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n; |
7a78ae4e ND |
1846 | return reg->fpr; |
1847 | } | |
1848 | ||
1849 | /* Convert data from raw format for register N in buffer FROM | |
64366f1c | 1850 | to virtual format with type TYPE in buffer TO. */ |
7a78ae4e ND |
1851 | |
1852 | static void | |
1853 | rs6000_register_convert_to_virtual (int n, struct type *type, | |
1854 | char *from, char *to) | |
1855 | { | |
1856 | if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n)) | |
7a292a7a | 1857 | { |
7a78ae4e ND |
1858 | double val = extract_floating (from, REGISTER_RAW_SIZE (n)); |
1859 | store_floating (to, TYPE_LENGTH (type), val); | |
1860 | } | |
1861 | else | |
1862 | memcpy (to, from, REGISTER_RAW_SIZE (n)); | |
1863 | } | |
1864 | ||
1865 | /* Convert data from virtual format with type TYPE in buffer FROM | |
64366f1c | 1866 | to raw format for register N in buffer TO. */ |
7a292a7a | 1867 | |
7a78ae4e ND |
1868 | static void |
1869 | rs6000_register_convert_to_raw (struct type *type, int n, | |
1870 | char *from, char *to) | |
1871 | { | |
1872 | if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n)) | |
1873 | { | |
1874 | double val = extract_floating (from, TYPE_LENGTH (type)); | |
1875 | store_floating (to, REGISTER_RAW_SIZE (n), val); | |
7a292a7a | 1876 | } |
7a78ae4e ND |
1877 | else |
1878 | memcpy (to, from, REGISTER_RAW_SIZE (n)); | |
1879 | } | |
c906108c | 1880 | |
c8001721 EZ |
1881 | static void |
1882 | e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, | |
1883 | int reg_nr, void *buffer) | |
1884 | { | |
1885 | int base_regnum; | |
1886 | int offset = 0; | |
1887 | char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE); | |
1888 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
1889 | ||
1890 | if (reg_nr >= tdep->ppc_gp0_regnum | |
1891 | && reg_nr <= tdep->ppc_gplast_regnum) | |
1892 | { | |
1893 | base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum; | |
1894 | ||
1895 | /* Build the value in the provided buffer. */ | |
1896 | /* Read the raw register of which this one is the lower portion. */ | |
1897 | regcache_raw_read (regcache, base_regnum, temp_buffer); | |
1898 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
1899 | offset = 4; | |
1900 | memcpy ((char *) buffer, temp_buffer + offset, 4); | |
1901 | } | |
1902 | } | |
1903 | ||
1904 | static void | |
1905 | e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, | |
1906 | int reg_nr, const void *buffer) | |
1907 | { | |
1908 | int base_regnum; | |
1909 | int offset = 0; | |
1910 | char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE); | |
1911 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
1912 | ||
1913 | if (reg_nr >= tdep->ppc_gp0_regnum | |
1914 | && reg_nr <= tdep->ppc_gplast_regnum) | |
1915 | { | |
1916 | base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum; | |
1917 | /* reg_nr is 32 bit here, and base_regnum is 64 bits. */ | |
1918 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
1919 | offset = 4; | |
1920 | ||
1921 | /* Let's read the value of the base register into a temporary | |
1922 | buffer, so that overwriting the last four bytes with the new | |
1923 | value of the pseudo will leave the upper 4 bytes unchanged. */ | |
1924 | regcache_raw_read (regcache, base_regnum, temp_buffer); | |
1925 | ||
1926 | /* Write as an 8 byte quantity. */ | |
1927 | memcpy (temp_buffer + offset, (char *) buffer, 4); | |
1928 | regcache_raw_write (regcache, base_regnum, temp_buffer); | |
1929 | } | |
1930 | } | |
1931 | ||
1932 | /* Convert a dwarf2 register number to a gdb REGNUM. */ | |
1933 | static int | |
1934 | e500_dwarf2_reg_to_regnum (int num) | |
1935 | { | |
1936 | int regnum; | |
1937 | if (0 <= num && num <= 31) | |
1938 | return num + gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum; | |
1939 | else | |
1940 | return num; | |
1941 | } | |
1942 | ||
2188cbdd | 1943 | /* Convert a dbx stab register number (from `r' declaration) to a gdb |
64366f1c | 1944 | REGNUM. */ |
2188cbdd EZ |
1945 | static int |
1946 | rs6000_stab_reg_to_regnum (int num) | |
1947 | { | |
1948 | int regnum; | |
1949 | switch (num) | |
1950 | { | |
1951 | case 64: | |
1952 | regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum; | |
1953 | break; | |
1954 | case 65: | |
1955 | regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum; | |
1956 | break; | |
1957 | case 66: | |
1958 | regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum; | |
1959 | break; | |
1960 | case 76: | |
1961 | regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum; | |
1962 | break; | |
1963 | default: | |
1964 | regnum = num; | |
1965 | break; | |
1966 | } | |
1967 | return regnum; | |
1968 | } | |
1969 | ||
7a78ae4e ND |
1970 | /* Store the address of the place in which to copy the structure the |
1971 | subroutine will return. This is called from call_function. | |
1972 | ||
1973 | In RS/6000, struct return addresses are passed as an extra parameter in r3. | |
1974 | In function return, callee is not responsible of returning this address | |
1975 | back. Since gdb needs to find it, we will store in a designated variable | |
64366f1c | 1976 | `rs6000_struct_return_address'. */ |
7a78ae4e ND |
1977 | |
1978 | static void | |
1979 | rs6000_store_struct_return (CORE_ADDR addr, CORE_ADDR sp) | |
1980 | { | |
1981 | write_register (3, addr); | |
1982 | rs6000_struct_return_address = addr; | |
1983 | } | |
1984 | ||
1985 | /* Write into appropriate registers a function return value | |
1986 | of type TYPE, given in virtual format. */ | |
96ff0de4 EZ |
1987 | static void |
1988 | e500_store_return_value (struct type *type, char *valbuf) | |
1989 | { | |
1990 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
1991 | ||
1992 | /* Everything is returned in GPR3 and up. */ | |
1993 | int copied = 0; | |
1994 | int i = 0; | |
1995 | int len = TYPE_LENGTH (type); | |
1996 | while (copied < len) | |
1997 | { | |
1998 | int regnum = gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3 + i; | |
1999 | int reg_size = REGISTER_RAW_SIZE (regnum); | |
2000 | char *reg_val_buf = alloca (reg_size); | |
2001 | ||
2002 | memcpy (reg_val_buf, valbuf + copied, reg_size); | |
2003 | copied += reg_size; | |
2004 | write_register_gen (regnum, reg_val_buf); | |
2005 | i++; | |
2006 | } | |
2007 | } | |
7a78ae4e ND |
2008 | |
2009 | static void | |
2010 | rs6000_store_return_value (struct type *type, char *valbuf) | |
2011 | { | |
ace1378a EZ |
2012 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
2013 | ||
7a78ae4e ND |
2014 | if (TYPE_CODE (type) == TYPE_CODE_FLT) |
2015 | ||
2016 | /* Floating point values are returned starting from FPR1 and up. | |
2017 | Say a double_double_double type could be returned in | |
64366f1c | 2018 | FPR1/FPR2/FPR3 triple. */ |
7a78ae4e ND |
2019 | |
2020 | write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf, | |
2021 | TYPE_LENGTH (type)); | |
ace1378a EZ |
2022 | else if (TYPE_CODE (type) == TYPE_CODE_ARRAY) |
2023 | { | |
2024 | if (TYPE_LENGTH (type) == 16 | |
2025 | && TYPE_VECTOR (type)) | |
2026 | write_register_bytes (REGISTER_BYTE (tdep->ppc_vr0_regnum + 2), | |
2027 | valbuf, TYPE_LENGTH (type)); | |
2028 | } | |
7a78ae4e | 2029 | else |
64366f1c | 2030 | /* Everything else is returned in GPR3 and up. */ |
2188cbdd EZ |
2031 | write_register_bytes (REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3), |
2032 | valbuf, TYPE_LENGTH (type)); | |
7a78ae4e ND |
2033 | } |
2034 | ||
2035 | /* Extract from an array REGBUF containing the (raw) register state | |
2036 | the address in which a function should return its structure value, | |
2037 | as a CORE_ADDR (or an expression that can be used as one). */ | |
2038 | ||
2039 | static CORE_ADDR | |
2040 | rs6000_extract_struct_value_address (char *regbuf) | |
2041 | { | |
2042 | return rs6000_struct_return_address; | |
2043 | } | |
2044 | ||
2045 | /* Return whether PC is in a dummy function call. | |
2046 | ||
2047 | FIXME: This just checks for the end of the stack, which is broken | |
64366f1c | 2048 | for things like stepping through gcc nested function stubs. */ |
7a78ae4e ND |
2049 | |
2050 | static int | |
2051 | rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp) | |
2052 | { | |
2053 | return sp < pc && pc < fp; | |
2054 | } | |
2055 | ||
64366f1c | 2056 | /* Hook called when a new child process is started. */ |
7a78ae4e ND |
2057 | |
2058 | void | |
2059 | rs6000_create_inferior (int pid) | |
2060 | { | |
2061 | if (rs6000_set_host_arch_hook) | |
2062 | rs6000_set_host_arch_hook (pid); | |
c906108c SS |
2063 | } |
2064 | \f | |
7a78ae4e ND |
2065 | /* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR). |
2066 | ||
2067 | Usually a function pointer's representation is simply the address | |
2068 | of the function. On the RS/6000 however, a function pointer is | |
2069 | represented by a pointer to a TOC entry. This TOC entry contains | |
2070 | three words, the first word is the address of the function, the | |
2071 | second word is the TOC pointer (r2), and the third word is the | |
2072 | static chain value. Throughout GDB it is currently assumed that a | |
2073 | function pointer contains the address of the function, which is not | |
2074 | easy to fix. In addition, the conversion of a function address to | |
2075 | a function pointer would require allocation of a TOC entry in the | |
2076 | inferior's memory space, with all its drawbacks. To be able to | |
2077 | call C++ virtual methods in the inferior (which are called via | |
f517ea4e | 2078 | function pointers), find_function_addr uses this function to get the |
7a78ae4e ND |
2079 | function address from a function pointer. */ |
2080 | ||
f517ea4e PS |
2081 | /* Return real function address if ADDR (a function pointer) is in the data |
2082 | space and is therefore a special function pointer. */ | |
c906108c | 2083 | |
7a78ae4e ND |
2084 | CORE_ADDR |
2085 | rs6000_convert_from_func_ptr_addr (CORE_ADDR addr) | |
c906108c SS |
2086 | { |
2087 | struct obj_section *s; | |
2088 | ||
2089 | s = find_pc_section (addr); | |
2090 | if (s && s->the_bfd_section->flags & SEC_CODE) | |
7a78ae4e | 2091 | return addr; |
c906108c | 2092 | |
7a78ae4e | 2093 | /* ADDR is in the data space, so it's a special function pointer. */ |
21283beb | 2094 | return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize); |
c906108c | 2095 | } |
c906108c | 2096 | \f |
c5aa993b | 2097 | |
7a78ae4e | 2098 | /* Handling the various POWER/PowerPC variants. */ |
c906108c SS |
2099 | |
2100 | ||
7a78ae4e ND |
2101 | /* The arrays here called registers_MUMBLE hold information about available |
2102 | registers. | |
c906108c SS |
2103 | |
2104 | For each family of PPC variants, I've tried to isolate out the | |
2105 | common registers and put them up front, so that as long as you get | |
2106 | the general family right, GDB will correctly identify the registers | |
2107 | common to that family. The common register sets are: | |
2108 | ||
2109 | For the 60x family: hid0 hid1 iabr dabr pir | |
2110 | ||
2111 | For the 505 and 860 family: eie eid nri | |
2112 | ||
2113 | For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi | |
c5aa993b JM |
2114 | tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1 |
2115 | pbu1 pbl2 pbu2 | |
c906108c SS |
2116 | |
2117 | Most of these register groups aren't anything formal. I arrived at | |
2118 | them by looking at the registers that occurred in more than one | |
6f5987a6 KB |
2119 | processor. |
2120 | ||
2121 | Note: kevinb/2002-04-30: Support for the fpscr register was added | |
2122 | during April, 2002. Slot 70 is being used for PowerPC and slot 71 | |
2123 | for Power. For PowerPC, slot 70 was unused and was already in the | |
2124 | PPC_UISA_SPRS which is ideally where fpscr should go. For Power, | |
2125 | slot 70 was being used for "mq", so the next available slot (71) | |
2126 | was chosen. It would have been nice to be able to make the | |
2127 | register numbers the same across processor cores, but this wasn't | |
2128 | possible without either 1) renumbering some registers for some | |
2129 | processors or 2) assigning fpscr to a really high slot that's | |
2130 | larger than any current register number. Doing (1) is bad because | |
2131 | existing stubs would break. Doing (2) is undesirable because it | |
2132 | would introduce a really large gap between fpscr and the rest of | |
2133 | the registers for most processors. */ | |
7a78ae4e | 2134 | |
64366f1c | 2135 | /* Convenience macros for populating register arrays. */ |
7a78ae4e | 2136 | |
64366f1c | 2137 | /* Within another macro, convert S to a string. */ |
7a78ae4e ND |
2138 | |
2139 | #define STR(s) #s | |
2140 | ||
2141 | /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems | |
64366f1c | 2142 | and 64 bits on 64-bit systems. */ |
489461e2 | 2143 | #define R(name) { STR(name), 4, 8, 0, 0 } |
7a78ae4e ND |
2144 | |
2145 | /* Return a struct reg defining register NAME that's 32 bits on all | |
64366f1c | 2146 | systems. */ |
489461e2 | 2147 | #define R4(name) { STR(name), 4, 4, 0, 0 } |
7a78ae4e ND |
2148 | |
2149 | /* Return a struct reg defining register NAME that's 64 bits on all | |
64366f1c | 2150 | systems. */ |
489461e2 | 2151 | #define R8(name) { STR(name), 8, 8, 0, 0 } |
7a78ae4e | 2152 | |
1fcc0bb8 | 2153 | /* Return a struct reg defining register NAME that's 128 bits on all |
64366f1c | 2154 | systems. */ |
489461e2 | 2155 | #define R16(name) { STR(name), 16, 16, 0, 0 } |
1fcc0bb8 | 2156 | |
64366f1c | 2157 | /* Return a struct reg defining floating-point register NAME. */ |
489461e2 EZ |
2158 | #define F(name) { STR(name), 8, 8, 1, 0 } |
2159 | ||
64366f1c | 2160 | /* Return a struct reg defining a pseudo register NAME. */ |
489461e2 | 2161 | #define P(name) { STR(name), 4, 8, 0, 1} |
7a78ae4e ND |
2162 | |
2163 | /* Return a struct reg defining register NAME that's 32 bits on 32-bit | |
64366f1c | 2164 | systems and that doesn't exist on 64-bit systems. */ |
489461e2 | 2165 | #define R32(name) { STR(name), 4, 0, 0, 0 } |
7a78ae4e ND |
2166 | |
2167 | /* Return a struct reg defining register NAME that's 64 bits on 64-bit | |
64366f1c | 2168 | systems and that doesn't exist on 32-bit systems. */ |
489461e2 | 2169 | #define R64(name) { STR(name), 0, 8, 0, 0 } |
7a78ae4e | 2170 | |
64366f1c | 2171 | /* Return a struct reg placeholder for a register that doesn't exist. */ |
489461e2 | 2172 | #define R0 { 0, 0, 0, 0, 0 } |
7a78ae4e ND |
2173 | |
2174 | /* UISA registers common across all architectures, including POWER. */ | |
2175 | ||
2176 | #define COMMON_UISA_REGS \ | |
2177 | /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \ | |
2178 | /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \ | |
2179 | /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \ | |
2180 | /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \ | |
2181 | /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \ | |
2182 | /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \ | |
2183 | /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \ | |
2184 | /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \ | |
2185 | /* 64 */ R(pc), R(ps) | |
2186 | ||
ebeac11a EZ |
2187 | #define COMMON_UISA_NOFP_REGS \ |
2188 | /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \ | |
2189 | /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \ | |
2190 | /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \ | |
2191 | /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \ | |
2192 | /* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \ | |
2193 | /* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \ | |
2194 | /* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \ | |
2195 | /* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \ | |
2196 | /* 64 */ R(pc), R(ps) | |
2197 | ||
7a78ae4e ND |
2198 | /* UISA-level SPRs for PowerPC. */ |
2199 | #define PPC_UISA_SPRS \ | |
e3f36dbd | 2200 | /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr) |
7a78ae4e | 2201 | |
c8001721 EZ |
2202 | /* UISA-level SPRs for PowerPC without floating point support. */ |
2203 | #define PPC_UISA_NOFP_SPRS \ | |
2204 | /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0 | |
2205 | ||
7a78ae4e ND |
2206 | /* Segment registers, for PowerPC. */ |
2207 | #define PPC_SEGMENT_REGS \ | |
2208 | /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \ | |
2209 | /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \ | |
2210 | /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \ | |
2211 | /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15) | |
2212 | ||
2213 | /* OEA SPRs for PowerPC. */ | |
2214 | #define PPC_OEA_SPRS \ | |
2215 | /* 87 */ R4(pvr), \ | |
2216 | /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \ | |
2217 | /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \ | |
2218 | /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \ | |
2219 | /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \ | |
2220 | /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \ | |
2221 | /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \ | |
2222 | /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \ | |
2223 | /* 116 */ R4(dec), R(dabr), R4(ear) | |
2224 | ||
64366f1c | 2225 | /* AltiVec registers. */ |
1fcc0bb8 EZ |
2226 | #define PPC_ALTIVEC_REGS \ |
2227 | /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \ | |
2228 | /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \ | |
2229 | /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \ | |
2230 | /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \ | |
2231 | /*151*/R4(vscr), R4(vrsave) | |
2232 | ||
c8001721 EZ |
2233 | /* Vectors of hi-lo general purpose registers. */ |
2234 | #define PPC_EV_REGS \ | |
2235 | /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7), \ | |
2236 | /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \ | |
2237 | /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \ | |
2238 | /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31) | |
2239 | ||
2240 | /* Lower half of the EV registers. */ | |
2241 | #define PPC_GPRS_PSEUDO_REGS \ | |
2242 | /* 0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7), \ | |
2243 | /* 8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \ | |
2244 | /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \ | |
2245 | /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31), \ | |
2246 | ||
7a78ae4e | 2247 | /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover |
64366f1c | 2248 | user-level SPR's. */ |
7a78ae4e | 2249 | static const struct reg registers_power[] = |
c906108c | 2250 | { |
7a78ae4e | 2251 | COMMON_UISA_REGS, |
e3f36dbd KB |
2252 | /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq), |
2253 | /* 71 */ R4(fpscr) | |
c906108c SS |
2254 | }; |
2255 | ||
7a78ae4e | 2256 | /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only |
64366f1c | 2257 | view of the PowerPC. */ |
7a78ae4e | 2258 | static const struct reg registers_powerpc[] = |
c906108c | 2259 | { |
7a78ae4e | 2260 | COMMON_UISA_REGS, |
1fcc0bb8 EZ |
2261 | PPC_UISA_SPRS, |
2262 | PPC_ALTIVEC_REGS | |
c906108c SS |
2263 | }; |
2264 | ||
ebeac11a EZ |
2265 | /* PowerPC UISA - a PPC processor as viewed by user-level |
2266 | code, but without floating point registers. */ | |
2267 | static const struct reg registers_powerpc_nofp[] = | |
2268 | { | |
2269 | COMMON_UISA_NOFP_REGS, | |
2270 | PPC_UISA_SPRS | |
2271 | }; | |
2272 | ||
64366f1c | 2273 | /* IBM PowerPC 403. */ |
7a78ae4e | 2274 | static const struct reg registers_403[] = |
c5aa993b | 2275 | { |
7a78ae4e ND |
2276 | COMMON_UISA_REGS, |
2277 | PPC_UISA_SPRS, | |
2278 | PPC_SEGMENT_REGS, | |
2279 | PPC_OEA_SPRS, | |
2280 | /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr), | |
2281 | /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit), | |
2282 | /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3), | |
2283 | /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2), | |
2284 | /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr), | |
2285 | /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2) | |
c906108c SS |
2286 | }; |
2287 | ||
64366f1c | 2288 | /* IBM PowerPC 403GC. */ |
7a78ae4e | 2289 | static const struct reg registers_403GC[] = |
c5aa993b | 2290 | { |
7a78ae4e ND |
2291 | COMMON_UISA_REGS, |
2292 | PPC_UISA_SPRS, | |
2293 | PPC_SEGMENT_REGS, | |
2294 | PPC_OEA_SPRS, | |
2295 | /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr), | |
2296 | /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit), | |
2297 | /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3), | |
2298 | /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2), | |
2299 | /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr), | |
2300 | /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2), | |
2301 | /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr), | |
2302 | /* 147 */ R(tbhu), R(tblu) | |
c906108c SS |
2303 | }; |
2304 | ||
64366f1c | 2305 | /* Motorola PowerPC 505. */ |
7a78ae4e | 2306 | static const struct reg registers_505[] = |
c5aa993b | 2307 | { |
7a78ae4e ND |
2308 | COMMON_UISA_REGS, |
2309 | PPC_UISA_SPRS, | |
2310 | PPC_SEGMENT_REGS, | |
2311 | PPC_OEA_SPRS, | |
2312 | /* 119 */ R(eie), R(eid), R(nri) | |
c906108c SS |
2313 | }; |
2314 | ||
64366f1c | 2315 | /* Motorola PowerPC 860 or 850. */ |
7a78ae4e | 2316 | static const struct reg registers_860[] = |
c5aa993b | 2317 | { |
7a78ae4e ND |
2318 | COMMON_UISA_REGS, |
2319 | PPC_UISA_SPRS, | |
2320 | PPC_SEGMENT_REGS, | |
2321 | PPC_OEA_SPRS, | |
2322 | /* 119 */ R(eie), R(eid), R(nri), R(cmpa), | |
2323 | /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr), | |
2324 | /* 127 */ R(der), R(counta), R(countb), R(cmpe), | |
2325 | /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1), | |
2326 | /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst), | |
2327 | /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr), | |
2328 | /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr), | |
2329 | /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc), | |
2330 | /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap), | |
2331 | /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn), | |
2332 | /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1), | |
2333 | /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1) | |
c906108c SS |
2334 | }; |
2335 | ||
7a78ae4e ND |
2336 | /* Motorola PowerPC 601. Note that the 601 has different register numbers |
2337 | for reading and writing RTCU and RTCL. However, how one reads and writes a | |
c906108c | 2338 | register is the stub's problem. */ |
7a78ae4e | 2339 | static const struct reg registers_601[] = |
c5aa993b | 2340 | { |
7a78ae4e ND |
2341 | COMMON_UISA_REGS, |
2342 | PPC_UISA_SPRS, | |
2343 | PPC_SEGMENT_REGS, | |
2344 | PPC_OEA_SPRS, | |
2345 | /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr), | |
2346 | /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl) | |
c906108c SS |
2347 | }; |
2348 | ||
64366f1c | 2349 | /* Motorola PowerPC 602. */ |
7a78ae4e | 2350 | static const struct reg registers_602[] = |
c5aa993b | 2351 | { |
7a78ae4e ND |
2352 | COMMON_UISA_REGS, |
2353 | PPC_UISA_SPRS, | |
2354 | PPC_SEGMENT_REGS, | |
2355 | PPC_OEA_SPRS, | |
2356 | /* 119 */ R(hid0), R(hid1), R(iabr), R0, | |
2357 | /* 123 */ R0, R(tcr), R(ibr), R(esassr), | |
2358 | /* 127 */ R(sebr), R(ser), R(sp), R(lt) | |
c906108c SS |
2359 | }; |
2360 | ||
64366f1c | 2361 | /* Motorola/IBM PowerPC 603 or 603e. */ |
7a78ae4e | 2362 | static const struct reg registers_603[] = |
c5aa993b | 2363 | { |
7a78ae4e ND |
2364 | COMMON_UISA_REGS, |
2365 | PPC_UISA_SPRS, | |
2366 | PPC_SEGMENT_REGS, | |
2367 | PPC_OEA_SPRS, | |
2368 | /* 119 */ R(hid0), R(hid1), R(iabr), R0, | |
2369 | /* 123 */ R0, R(dmiss), R(dcmp), R(hash1), | |
2370 | /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa) | |
c906108c SS |
2371 | }; |
2372 | ||
64366f1c | 2373 | /* Motorola PowerPC 604 or 604e. */ |
7a78ae4e | 2374 | static const struct reg registers_604[] = |
c5aa993b | 2375 | { |
7a78ae4e ND |
2376 | COMMON_UISA_REGS, |
2377 | PPC_UISA_SPRS, | |
2378 | PPC_SEGMENT_REGS, | |
2379 | PPC_OEA_SPRS, | |
2380 | /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr), | |
2381 | /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2), | |
2382 | /* 127 */ R(sia), R(sda) | |
c906108c SS |
2383 | }; |
2384 | ||
64366f1c | 2385 | /* Motorola/IBM PowerPC 750 or 740. */ |
7a78ae4e | 2386 | static const struct reg registers_750[] = |
c5aa993b | 2387 | { |
7a78ae4e ND |
2388 | COMMON_UISA_REGS, |
2389 | PPC_UISA_SPRS, | |
2390 | PPC_SEGMENT_REGS, | |
2391 | PPC_OEA_SPRS, | |
2392 | /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr), | |
2393 | /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2), | |
2394 | /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4), | |
2395 | /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia), | |
2396 | /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr), | |
2397 | /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3) | |
c906108c SS |
2398 | }; |
2399 | ||
2400 | ||
64366f1c | 2401 | /* Motorola PowerPC 7400. */ |
1fcc0bb8 EZ |
2402 | static const struct reg registers_7400[] = |
2403 | { | |
2404 | /* gpr0-gpr31, fpr0-fpr31 */ | |
2405 | COMMON_UISA_REGS, | |
2406 | /* ctr, xre, lr, cr */ | |
2407 | PPC_UISA_SPRS, | |
2408 | /* sr0-sr15 */ | |
2409 | PPC_SEGMENT_REGS, | |
2410 | PPC_OEA_SPRS, | |
2411 | /* vr0-vr31, vrsave, vscr */ | |
2412 | PPC_ALTIVEC_REGS | |
2413 | /* FIXME? Add more registers? */ | |
2414 | }; | |
2415 | ||
c8001721 EZ |
2416 | /* Motorola e500. */ |
2417 | static const struct reg registers_e500[] = | |
2418 | { | |
2419 | R(pc), R(ps), | |
2420 | /* cr, lr, ctr, xer, "" */ | |
2421 | PPC_UISA_NOFP_SPRS, | |
2422 | /* 7...38 */ | |
2423 | PPC_EV_REGS, | |
2424 | /* 39...70 */ | |
2425 | PPC_GPRS_PSEUDO_REGS | |
2426 | }; | |
2427 | ||
c906108c | 2428 | /* Information about a particular processor variant. */ |
7a78ae4e | 2429 | |
c906108c | 2430 | struct variant |
c5aa993b JM |
2431 | { |
2432 | /* Name of this variant. */ | |
2433 | char *name; | |
c906108c | 2434 | |
c5aa993b JM |
2435 | /* English description of the variant. */ |
2436 | char *description; | |
c906108c | 2437 | |
64366f1c | 2438 | /* bfd_arch_info.arch corresponding to variant. */ |
7a78ae4e ND |
2439 | enum bfd_architecture arch; |
2440 | ||
64366f1c | 2441 | /* bfd_arch_info.mach corresponding to variant. */ |
7a78ae4e ND |
2442 | unsigned long mach; |
2443 | ||
489461e2 EZ |
2444 | /* Number of real registers. */ |
2445 | int nregs; | |
2446 | ||
2447 | /* Number of pseudo registers. */ | |
2448 | int npregs; | |
2449 | ||
2450 | /* Number of total registers (the sum of nregs and npregs). */ | |
2451 | int num_tot_regs; | |
2452 | ||
c5aa993b JM |
2453 | /* Table of register names; registers[R] is the name of the register |
2454 | number R. */ | |
7a78ae4e | 2455 | const struct reg *regs; |
c5aa993b | 2456 | }; |
c906108c | 2457 | |
489461e2 EZ |
2458 | #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0])) |
2459 | ||
2460 | static int | |
2461 | num_registers (const struct reg *reg_list, int num_tot_regs) | |
2462 | { | |
2463 | int i; | |
2464 | int nregs = 0; | |
2465 | ||
2466 | for (i = 0; i < num_tot_regs; i++) | |
2467 | if (!reg_list[i].pseudo) | |
2468 | nregs++; | |
2469 | ||
2470 | return nregs; | |
2471 | } | |
2472 | ||
2473 | static int | |
2474 | num_pseudo_registers (const struct reg *reg_list, int num_tot_regs) | |
2475 | { | |
2476 | int i; | |
2477 | int npregs = 0; | |
2478 | ||
2479 | for (i = 0; i < num_tot_regs; i++) | |
2480 | if (reg_list[i].pseudo) | |
2481 | npregs ++; | |
2482 | ||
2483 | return npregs; | |
2484 | } | |
c906108c | 2485 | |
c906108c SS |
2486 | /* Information in this table comes from the following web sites: |
2487 | IBM: http://www.chips.ibm.com:80/products/embedded/ | |
2488 | Motorola: http://www.mot.com/SPS/PowerPC/ | |
2489 | ||
2490 | I'm sure I've got some of the variant descriptions not quite right. | |
2491 | Please report any inaccuracies you find to GDB's maintainer. | |
2492 | ||
2493 | If you add entries to this table, please be sure to allow the new | |
2494 | value as an argument to the --with-cpu flag, in configure.in. */ | |
2495 | ||
489461e2 | 2496 | static struct variant variants[] = |
c906108c | 2497 | { |
489461e2 | 2498 | |
7a78ae4e | 2499 | {"powerpc", "PowerPC user-level", bfd_arch_powerpc, |
489461e2 EZ |
2500 | bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc), |
2501 | registers_powerpc}, | |
7a78ae4e | 2502 | {"power", "POWER user-level", bfd_arch_rs6000, |
489461e2 EZ |
2503 | bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power), |
2504 | registers_power}, | |
7a78ae4e | 2505 | {"403", "IBM PowerPC 403", bfd_arch_powerpc, |
489461e2 EZ |
2506 | bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403), |
2507 | registers_403}, | |
7a78ae4e | 2508 | {"601", "Motorola PowerPC 601", bfd_arch_powerpc, |
489461e2 EZ |
2509 | bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601), |
2510 | registers_601}, | |
7a78ae4e | 2511 | {"602", "Motorola PowerPC 602", bfd_arch_powerpc, |
489461e2 EZ |
2512 | bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602), |
2513 | registers_602}, | |
7a78ae4e | 2514 | {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc, |
489461e2 EZ |
2515 | bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603), |
2516 | registers_603}, | |
7a78ae4e | 2517 | {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc, |
489461e2 EZ |
2518 | 604, -1, -1, tot_num_registers (registers_604), |
2519 | registers_604}, | |
7a78ae4e | 2520 | {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc, |
489461e2 EZ |
2521 | bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC), |
2522 | registers_403GC}, | |
7a78ae4e | 2523 | {"505", "Motorola PowerPC 505", bfd_arch_powerpc, |
489461e2 EZ |
2524 | bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505), |
2525 | registers_505}, | |
7a78ae4e | 2526 | {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc, |
489461e2 EZ |
2527 | bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860), |
2528 | registers_860}, | |
7a78ae4e | 2529 | {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc, |
489461e2 EZ |
2530 | bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750), |
2531 | registers_750}, | |
1fcc0bb8 | 2532 | {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc, |
489461e2 EZ |
2533 | bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400), |
2534 | registers_7400}, | |
c8001721 EZ |
2535 | {"e500", "Motorola PowerPC e500", bfd_arch_powerpc, |
2536 | bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500), | |
2537 | registers_e500}, | |
7a78ae4e | 2538 | |
5d57ee30 KB |
2539 | /* 64-bit */ |
2540 | {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc, | |
489461e2 EZ |
2541 | bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc), |
2542 | registers_powerpc}, | |
7a78ae4e | 2543 | {"620", "Motorola PowerPC 620", bfd_arch_powerpc, |
489461e2 EZ |
2544 | bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc), |
2545 | registers_powerpc}, | |
5d57ee30 | 2546 | {"630", "Motorola PowerPC 630", bfd_arch_powerpc, |
489461e2 EZ |
2547 | bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc), |
2548 | registers_powerpc}, | |
7a78ae4e | 2549 | {"a35", "PowerPC A35", bfd_arch_powerpc, |
489461e2 EZ |
2550 | bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc), |
2551 | registers_powerpc}, | |
5d57ee30 | 2552 | {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc, |
489461e2 EZ |
2553 | bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc), |
2554 | registers_powerpc}, | |
5d57ee30 | 2555 | {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc, |
489461e2 EZ |
2556 | bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc), |
2557 | registers_powerpc}, | |
5d57ee30 | 2558 | |
64366f1c | 2559 | /* FIXME: I haven't checked the register sets of the following. */ |
7a78ae4e | 2560 | {"rs1", "IBM POWER RS1", bfd_arch_rs6000, |
489461e2 EZ |
2561 | bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power), |
2562 | registers_power}, | |
7a78ae4e | 2563 | {"rsc", "IBM POWER RSC", bfd_arch_rs6000, |
489461e2 EZ |
2564 | bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power), |
2565 | registers_power}, | |
7a78ae4e | 2566 | {"rs2", "IBM POWER RS2", bfd_arch_rs6000, |
489461e2 EZ |
2567 | bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power), |
2568 | registers_power}, | |
7a78ae4e | 2569 | |
489461e2 | 2570 | {0, 0, 0, 0, 0, 0, 0, 0} |
c906108c SS |
2571 | }; |
2572 | ||
64366f1c | 2573 | /* Initialize the number of registers and pseudo registers in each variant. */ |
489461e2 EZ |
2574 | |
2575 | static void | |
2576 | init_variants (void) | |
2577 | { | |
2578 | struct variant *v; | |
2579 | ||
2580 | for (v = variants; v->name; v++) | |
2581 | { | |
2582 | if (v->nregs == -1) | |
2583 | v->nregs = num_registers (v->regs, v->num_tot_regs); | |
2584 | if (v->npregs == -1) | |
2585 | v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs); | |
2586 | } | |
2587 | } | |
c906108c | 2588 | |
7a78ae4e | 2589 | /* Return the variant corresponding to architecture ARCH and machine number |
64366f1c | 2590 | MACH. If no such variant exists, return null. */ |
c906108c | 2591 | |
7a78ae4e ND |
2592 | static const struct variant * |
2593 | find_variant_by_arch (enum bfd_architecture arch, unsigned long mach) | |
c906108c | 2594 | { |
7a78ae4e | 2595 | const struct variant *v; |
c5aa993b | 2596 | |
7a78ae4e ND |
2597 | for (v = variants; v->name; v++) |
2598 | if (arch == v->arch && mach == v->mach) | |
2599 | return v; | |
c906108c | 2600 | |
7a78ae4e | 2601 | return NULL; |
c906108c | 2602 | } |
9364a0ef EZ |
2603 | |
2604 | static int | |
2605 | gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info) | |
2606 | { | |
2607 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
2608 | return print_insn_big_powerpc (memaddr, info); | |
2609 | else | |
2610 | return print_insn_little_powerpc (memaddr, info); | |
2611 | } | |
7a78ae4e | 2612 | \f |
7a78ae4e ND |
2613 | /* Initialize the current architecture based on INFO. If possible, re-use an |
2614 | architecture from ARCHES, which is a list of architectures already created | |
2615 | during this debugging session. | |
c906108c | 2616 | |
7a78ae4e | 2617 | Called e.g. at program startup, when reading a core file, and when reading |
64366f1c | 2618 | a binary file. */ |
c906108c | 2619 | |
7a78ae4e ND |
2620 | static struct gdbarch * |
2621 | rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
2622 | { | |
2623 | struct gdbarch *gdbarch; | |
2624 | struct gdbarch_tdep *tdep; | |
9aa1e687 | 2625 | int wordsize, from_xcoff_exec, from_elf_exec, power, i, off; |
7a78ae4e ND |
2626 | struct reg *regs; |
2627 | const struct variant *v; | |
2628 | enum bfd_architecture arch; | |
2629 | unsigned long mach; | |
2630 | bfd abfd; | |
7b112f9c JT |
2631 | int sysv_abi; |
2632 | enum gdb_osabi osabi = GDB_OSABI_UNKNOWN; | |
5bf1c677 | 2633 | asection *sect; |
7a78ae4e | 2634 | |
9aa1e687 | 2635 | from_xcoff_exec = info.abfd && info.abfd->format == bfd_object && |
7a78ae4e ND |
2636 | bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour; |
2637 | ||
9aa1e687 KB |
2638 | from_elf_exec = info.abfd && info.abfd->format == bfd_object && |
2639 | bfd_get_flavour (info.abfd) == bfd_target_elf_flavour; | |
2640 | ||
2641 | sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour; | |
2642 | ||
7b112f9c JT |
2643 | if (info.abfd) |
2644 | osabi = gdbarch_lookup_osabi (info.abfd); | |
9aa1e687 | 2645 | |
e712c1cf | 2646 | /* Check word size. If INFO is from a binary file, infer it from |
64366f1c | 2647 | that, else choose a likely default. */ |
9aa1e687 | 2648 | if (from_xcoff_exec) |
c906108c | 2649 | { |
11ed25ac | 2650 | if (bfd_xcoff_is_xcoff64 (info.abfd)) |
7a78ae4e ND |
2651 | wordsize = 8; |
2652 | else | |
2653 | wordsize = 4; | |
c906108c | 2654 | } |
9aa1e687 KB |
2655 | else if (from_elf_exec) |
2656 | { | |
2657 | if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64) | |
2658 | wordsize = 8; | |
2659 | else | |
2660 | wordsize = 4; | |
2661 | } | |
c906108c | 2662 | else |
7a78ae4e | 2663 | { |
27b15785 KB |
2664 | if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0) |
2665 | wordsize = info.bfd_arch_info->bits_per_word / | |
2666 | info.bfd_arch_info->bits_per_byte; | |
2667 | else | |
2668 | wordsize = 4; | |
7a78ae4e | 2669 | } |
c906108c | 2670 | |
64366f1c | 2671 | /* Find a candidate among extant architectures. */ |
7a78ae4e ND |
2672 | for (arches = gdbarch_list_lookup_by_info (arches, &info); |
2673 | arches != NULL; | |
2674 | arches = gdbarch_list_lookup_by_info (arches->next, &info)) | |
2675 | { | |
2676 | /* Word size in the various PowerPC bfd_arch_info structs isn't | |
2677 | meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform | |
64366f1c | 2678 | separate word size check. */ |
7a78ae4e | 2679 | tdep = gdbarch_tdep (arches->gdbarch); |
9aa1e687 | 2680 | if (tdep && tdep->wordsize == wordsize && tdep->osabi == osabi) |
7a78ae4e ND |
2681 | return arches->gdbarch; |
2682 | } | |
c906108c | 2683 | |
7a78ae4e ND |
2684 | /* None found, create a new architecture from INFO, whose bfd_arch_info |
2685 | validity depends on the source: | |
2686 | - executable useless | |
2687 | - rs6000_host_arch() good | |
2688 | - core file good | |
2689 | - "set arch" trust blindly | |
2690 | - GDB startup useless but harmless */ | |
c906108c | 2691 | |
9aa1e687 | 2692 | if (!from_xcoff_exec) |
c906108c | 2693 | { |
b732d07d | 2694 | arch = info.bfd_arch_info->arch; |
7a78ae4e | 2695 | mach = info.bfd_arch_info->mach; |
c906108c | 2696 | } |
7a78ae4e | 2697 | else |
c906108c | 2698 | { |
7a78ae4e ND |
2699 | arch = bfd_arch_powerpc; |
2700 | mach = 0; | |
2701 | bfd_default_set_arch_mach (&abfd, arch, mach); | |
2702 | info.bfd_arch_info = bfd_get_arch_info (&abfd); | |
2703 | } | |
2704 | tdep = xmalloc (sizeof (struct gdbarch_tdep)); | |
2705 | tdep->wordsize = wordsize; | |
9aa1e687 | 2706 | tdep->osabi = osabi; |
5bf1c677 EZ |
2707 | |
2708 | /* For e500 executables, the apuinfo section is of help here. Such | |
2709 | section contains the identifier and revision number of each | |
2710 | Application-specific Processing Unit that is present on the | |
2711 | chip. The content of the section is determined by the assembler | |
2712 | which looks at each instruction and determines which unit (and | |
2713 | which version of it) can execute it. In our case we just look for | |
2714 | the existance of the section. */ | |
2715 | ||
2716 | if (info.abfd) | |
2717 | { | |
2718 | sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo"); | |
2719 | if (sect) | |
2720 | { | |
2721 | arch = info.bfd_arch_info->arch; | |
2722 | mach = bfd_mach_ppc_e500; | |
2723 | bfd_default_set_arch_mach (&abfd, arch, mach); | |
2724 | info.bfd_arch_info = bfd_get_arch_info (&abfd); | |
2725 | } | |
2726 | } | |
2727 | ||
7a78ae4e ND |
2728 | gdbarch = gdbarch_alloc (&info, tdep); |
2729 | power = arch == bfd_arch_rs6000; | |
2730 | ||
489461e2 EZ |
2731 | /* Initialize the number of real and pseudo registers in each variant. */ |
2732 | init_variants (); | |
2733 | ||
64366f1c | 2734 | /* Choose variant. */ |
7a78ae4e ND |
2735 | v = find_variant_by_arch (arch, mach); |
2736 | if (!v) | |
dd47e6fd EZ |
2737 | return NULL; |
2738 | ||
7a78ae4e ND |
2739 | tdep->regs = v->regs; |
2740 | ||
2188cbdd EZ |
2741 | tdep->ppc_gp0_regnum = 0; |
2742 | tdep->ppc_gplast_regnum = 31; | |
2743 | tdep->ppc_toc_regnum = 2; | |
2744 | tdep->ppc_ps_regnum = 65; | |
2745 | tdep->ppc_cr_regnum = 66; | |
2746 | tdep->ppc_lr_regnum = 67; | |
2747 | tdep->ppc_ctr_regnum = 68; | |
2748 | tdep->ppc_xer_regnum = 69; | |
2749 | if (v->mach == bfd_mach_ppc_601) | |
2750 | tdep->ppc_mq_regnum = 124; | |
e3f36dbd | 2751 | else if (power) |
2188cbdd | 2752 | tdep->ppc_mq_regnum = 70; |
e3f36dbd KB |
2753 | else |
2754 | tdep->ppc_mq_regnum = -1; | |
2755 | tdep->ppc_fpscr_regnum = power ? 71 : 70; | |
2188cbdd | 2756 | |
c8001721 EZ |
2757 | set_gdbarch_pc_regnum (gdbarch, 64); |
2758 | set_gdbarch_sp_regnum (gdbarch, 1); | |
2759 | set_gdbarch_fp_regnum (gdbarch, 1); | |
96ff0de4 EZ |
2760 | set_gdbarch_deprecated_extract_return_value (gdbarch, |
2761 | rs6000_extract_return_value); | |
46d79c04 | 2762 | set_gdbarch_deprecated_store_return_value (gdbarch, rs6000_store_return_value); |
c8001721 | 2763 | |
1fcc0bb8 EZ |
2764 | if (v->arch == bfd_arch_powerpc) |
2765 | switch (v->mach) | |
2766 | { | |
2767 | case bfd_mach_ppc: | |
2768 | tdep->ppc_vr0_regnum = 71; | |
2769 | tdep->ppc_vrsave_regnum = 104; | |
c8001721 EZ |
2770 | tdep->ppc_ev0_regnum = -1; |
2771 | tdep->ppc_ev31_regnum = -1; | |
1fcc0bb8 EZ |
2772 | break; |
2773 | case bfd_mach_ppc_7400: | |
2774 | tdep->ppc_vr0_regnum = 119; | |
2775 | tdep->ppc_vrsave_regnum = 153; | |
c8001721 EZ |
2776 | tdep->ppc_ev0_regnum = -1; |
2777 | tdep->ppc_ev31_regnum = -1; | |
2778 | break; | |
2779 | case bfd_mach_ppc_e500: | |
2780 | tdep->ppc_gp0_regnum = 39; | |
2781 | tdep->ppc_gplast_regnum = 70; | |
2782 | tdep->ppc_toc_regnum = -1; | |
2783 | tdep->ppc_ps_regnum = 1; | |
2784 | tdep->ppc_cr_regnum = 2; | |
2785 | tdep->ppc_lr_regnum = 3; | |
2786 | tdep->ppc_ctr_regnum = 4; | |
2787 | tdep->ppc_xer_regnum = 5; | |
2788 | tdep->ppc_ev0_regnum = 7; | |
2789 | tdep->ppc_ev31_regnum = 38; | |
2790 | set_gdbarch_pc_regnum (gdbarch, 0); | |
2791 | set_gdbarch_sp_regnum (gdbarch, 40); | |
2792 | set_gdbarch_fp_regnum (gdbarch, 40); | |
2793 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, e500_dwarf2_reg_to_regnum); | |
2794 | set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read); | |
2795 | set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write); | |
96ff0de4 | 2796 | set_gdbarch_extract_return_value (gdbarch, e500_extract_return_value); |
46d79c04 | 2797 | set_gdbarch_deprecated_store_return_value (gdbarch, e500_store_return_value); |
1fcc0bb8 EZ |
2798 | break; |
2799 | default: | |
2800 | tdep->ppc_vr0_regnum = -1; | |
2801 | tdep->ppc_vrsave_regnum = -1; | |
c8001721 EZ |
2802 | tdep->ppc_ev0_regnum = -1; |
2803 | tdep->ppc_ev31_regnum = -1; | |
1fcc0bb8 EZ |
2804 | break; |
2805 | } | |
2806 | ||
a88376a3 KB |
2807 | /* Set lr_frame_offset. */ |
2808 | if (wordsize == 8) | |
2809 | tdep->lr_frame_offset = 16; | |
2810 | else if (sysv_abi) | |
2811 | tdep->lr_frame_offset = 4; | |
2812 | else | |
2813 | tdep->lr_frame_offset = 8; | |
2814 | ||
2815 | /* Calculate byte offsets in raw register array. */ | |
489461e2 EZ |
2816 | tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int)); |
2817 | for (i = off = 0; i < v->num_tot_regs; i++) | |
7a78ae4e ND |
2818 | { |
2819 | tdep->regoff[i] = off; | |
2820 | off += regsize (v->regs + i, wordsize); | |
c906108c SS |
2821 | } |
2822 | ||
56a6dfb9 KB |
2823 | /* Select instruction printer. */ |
2824 | if (arch == power) | |
9364a0ef | 2825 | set_gdbarch_print_insn (gdbarch, print_insn_rs6000); |
56a6dfb9 | 2826 | else |
9364a0ef | 2827 | set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc); |
7495d1dc | 2828 | |
7a78ae4e ND |
2829 | set_gdbarch_read_pc (gdbarch, generic_target_read_pc); |
2830 | set_gdbarch_write_pc (gdbarch, generic_target_write_pc); | |
2831 | set_gdbarch_read_fp (gdbarch, generic_target_read_fp); | |
7a78ae4e ND |
2832 | set_gdbarch_read_sp (gdbarch, generic_target_read_sp); |
2833 | set_gdbarch_write_sp (gdbarch, generic_target_write_sp); | |
2834 | ||
2835 | set_gdbarch_num_regs (gdbarch, v->nregs); | |
c8001721 | 2836 | set_gdbarch_num_pseudo_regs (gdbarch, v->npregs); |
7a78ae4e ND |
2837 | set_gdbarch_register_name (gdbarch, rs6000_register_name); |
2838 | set_gdbarch_register_size (gdbarch, wordsize); | |
2839 | set_gdbarch_register_bytes (gdbarch, off); | |
2840 | set_gdbarch_register_byte (gdbarch, rs6000_register_byte); | |
2841 | set_gdbarch_register_raw_size (gdbarch, rs6000_register_raw_size); | |
2a873819 | 2842 | set_gdbarch_max_register_raw_size (gdbarch, 16); |
b2e75d78 | 2843 | set_gdbarch_register_virtual_size (gdbarch, generic_register_size); |
2a873819 | 2844 | set_gdbarch_max_register_virtual_size (gdbarch, 16); |
7a78ae4e ND |
2845 | set_gdbarch_register_virtual_type (gdbarch, rs6000_register_virtual_type); |
2846 | ||
2847 | set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT); | |
2848 | set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT); | |
2849 | set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
2850 | set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT); | |
2851 | set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
2852 | set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
2853 | set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
2854 | set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
4e409299 | 2855 | set_gdbarch_char_signed (gdbarch, 0); |
7a78ae4e ND |
2856 | |
2857 | set_gdbarch_use_generic_dummy_frames (gdbarch, 1); | |
2858 | set_gdbarch_call_dummy_length (gdbarch, 0); | |
2859 | set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT); | |
2860 | set_gdbarch_call_dummy_address (gdbarch, entry_point_address); | |
2861 | set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1); | |
2862 | set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0); | |
2863 | set_gdbarch_call_dummy_start_offset (gdbarch, 0); | |
fe794dc6 | 2864 | set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy); |
7a78ae4e ND |
2865 | set_gdbarch_call_dummy_p (gdbarch, 1); |
2866 | set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0); | |
dd486634 | 2867 | set_gdbarch_get_saved_register (gdbarch, generic_unwind_get_saved_register); |
7a78ae4e ND |
2868 | set_gdbarch_fix_call_dummy (gdbarch, rs6000_fix_call_dummy); |
2869 | set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame); | |
58223630 | 2870 | set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos); |
7a78ae4e ND |
2871 | set_gdbarch_push_return_address (gdbarch, ppc_push_return_address); |
2872 | set_gdbarch_believe_pcc_promotion (gdbarch, 1); | |
2873 | set_gdbarch_coerce_float_to_double (gdbarch, rs6000_coerce_float_to_double); | |
2874 | ||
2875 | set_gdbarch_register_convertible (gdbarch, rs6000_register_convertible); | |
2876 | set_gdbarch_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual); | |
2877 | set_gdbarch_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw); | |
2188cbdd | 2878 | set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum); |
2ea5f656 KB |
2879 | /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments() |
2880 | is correct for the SysV ABI when the wordsize is 8, but I'm also | |
2881 | fairly certain that ppc_sysv_abi_push_arguments() will give even | |
2882 | worse results since it only works for 32-bit code. So, for the moment, | |
2883 | we're better off calling rs6000_push_arguments() since it works for | |
2884 | 64-bit code. At some point in the future, this matter needs to be | |
2885 | revisited. */ | |
2886 | if (sysv_abi && wordsize == 4) | |
9aa1e687 KB |
2887 | set_gdbarch_push_arguments (gdbarch, ppc_sysv_abi_push_arguments); |
2888 | else | |
2889 | set_gdbarch_push_arguments (gdbarch, rs6000_push_arguments); | |
7a78ae4e | 2890 | |
d0403e00 | 2891 | set_gdbarch_store_struct_return (gdbarch, rs6000_store_struct_return); |
26e9b323 | 2892 | set_gdbarch_deprecated_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address); |
7a78ae4e ND |
2893 | set_gdbarch_pop_frame (gdbarch, rs6000_pop_frame); |
2894 | ||
2895 | set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue); | |
2896 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
2897 | set_gdbarch_decr_pc_after_break (gdbarch, 0); | |
2898 | set_gdbarch_function_start_offset (gdbarch, 0); | |
2899 | set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc); | |
2900 | ||
2901 | /* Not sure on this. FIXMEmgo */ | |
2902 | set_gdbarch_frame_args_skip (gdbarch, 8); | |
2903 | ||
8e0662df | 2904 | if (sysv_abi) |
7b112f9c JT |
2905 | set_gdbarch_use_struct_convention (gdbarch, |
2906 | ppc_sysv_abi_use_struct_convention); | |
8e0662df | 2907 | else |
7b112f9c JT |
2908 | set_gdbarch_use_struct_convention (gdbarch, |
2909 | generic_use_struct_convention); | |
8e0662df | 2910 | |
7a78ae4e | 2911 | set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid); |
9aa1e687 | 2912 | |
7b112f9c JT |
2913 | set_gdbarch_frameless_function_invocation (gdbarch, |
2914 | rs6000_frameless_function_invocation); | |
2915 | set_gdbarch_frame_chain (gdbarch, rs6000_frame_chain); | |
2916 | set_gdbarch_frame_saved_pc (gdbarch, rs6000_frame_saved_pc); | |
2917 | ||
2918 | set_gdbarch_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs); | |
2919 | set_gdbarch_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info); | |
2920 | ||
15813d3f AC |
2921 | if (!sysv_abi) |
2922 | { | |
2923 | /* Handle RS/6000 function pointers (which are really function | |
2924 | descriptors). */ | |
f517ea4e PS |
2925 | set_gdbarch_convert_from_func_ptr_addr (gdbarch, |
2926 | rs6000_convert_from_func_ptr_addr); | |
9aa1e687 | 2927 | } |
7a78ae4e ND |
2928 | set_gdbarch_frame_args_address (gdbarch, rs6000_frame_args_address); |
2929 | set_gdbarch_frame_locals_address (gdbarch, rs6000_frame_args_address); | |
2930 | set_gdbarch_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call); | |
2931 | ||
2932 | /* We can't tell how many args there are | |
2933 | now that the C compiler delays popping them. */ | |
2934 | set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown); | |
2935 | ||
7b112f9c JT |
2936 | /* Hook in ABI-specific overrides, if they have been registered. */ |
2937 | gdbarch_init_osabi (info, gdbarch, osabi); | |
2938 | ||
7a78ae4e | 2939 | return gdbarch; |
c906108c SS |
2940 | } |
2941 | ||
7b112f9c JT |
2942 | static void |
2943 | rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file) | |
2944 | { | |
2945 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
2946 | ||
2947 | if (tdep == NULL) | |
2948 | return; | |
2949 | ||
2950 | fprintf_unfiltered (file, "rs6000_dump_tdep: OS ABI = %s\n", | |
2951 | gdbarch_osabi_name (tdep->osabi)); | |
2952 | } | |
2953 | ||
1fcc0bb8 EZ |
2954 | static struct cmd_list_element *info_powerpc_cmdlist = NULL; |
2955 | ||
2956 | static void | |
2957 | rs6000_info_powerpc_command (char *args, int from_tty) | |
2958 | { | |
2959 | help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout); | |
2960 | } | |
2961 | ||
c906108c SS |
2962 | /* Initialization code. */ |
2963 | ||
2964 | void | |
fba45db2 | 2965 | _initialize_rs6000_tdep (void) |
c906108c | 2966 | { |
7b112f9c JT |
2967 | gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep); |
2968 | gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep); | |
1fcc0bb8 EZ |
2969 | |
2970 | /* Add root prefix command for "info powerpc" commands */ | |
2971 | add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command, | |
2972 | "Various POWERPC info specific commands.", | |
2973 | &info_powerpc_cmdlist, "info powerpc ", 0, &infolist); | |
c906108c | 2974 | } |